

POWER PACKED - by POWERTRAN

Powertran's black boxes are packed with punch. Not only are they superb kits to buy and build they really do the jobl Imaginative and ingenious design goes hand in hand with top quality materials and outstanding performance capability. With their smart black styling the kits harmonise visually as well as musically.
Your can built each unit independantly for lts set task and then gradually increase your array untll you have a complete bank of formidable controllable power.

Complete Kit - £49.90 + VAT

Complete Kit - £ $49.50+$ VAT

Complete Kit - $\mathbf{f} 175.00$ - VAT

Complete Kit - $\mathbf{\Sigma 6 4 . 9 0}+$ VAT

MPA 200 is a low price, high power 100 W amplifier. Its smart styling, professlonal appearance and performance. make it one of our most popular designs. With adaptable inputs the mixer accepts a variety of sources yet straightfonward construction makes it ideal for the first-time builder.

CHROMATHEQUE 5000 - a 5-channel lighting system powerful enough for professional discos yei controllable for home-affects. Sound 10 light. strobe to music level, random or sequential effects - each channel can handle up to 500 W yet minimal winng is needed with our unique single-board design.

ETI VOCODER - 14 channels, each with independent level control, for maximum versatility and intelligibility; Two input ampliflers - for speech/excitation - each with level control and tone control. The Vocoder is a powerful yet flexible machine that is interesting to build and thanks to our easy to follow construction manual, is within the capability of most enthusiasts.

SP2 200 iwice the power with two of the reliable, durable and economic amps from the MPA200; fed by separate power supplies from a common toroidal transformer, Superb finish and quality components throughout - up to leven overll the standard of high priced factory-built units.

DJ90 Stere0 Mixer - this is a really versatile new mixer that enables the constructor $D J$ to produce a professional performance every time. There are two stereo inputs for magnetic cartridges, a stereo auxiliary input and mike input. Other 'plus' features are auto-panning for fast or slow, slider controls, multi-mixing, ducking, interrupt, input modulaticin, in short everything...the whole works - AND under E 100 complete! (We have illustrated the DJ90 teamed in our uwn console with the Chromatheque and an SP2 200 and speakers.

Complete Kit - £97.50 + VAT

Ron Harris B.Sc: Editor
Peter Green: Assistant Editor
Tina Boylan: Editorial Assistant
Rory Holmes: Project Editors
Phil Walker:
Alan Griffiths: Advertisement Manager
Paul Wilson-Patterson: Group Art Editor
T.J. Connell: Managing Director

PUBLISHED BY:
Argus Specialist Publications Lid.
145 Charing Cross Road, London WC2H OEE DISTRIBUTED BY:
Argus Press Sales \& Distribution Lid
12-18 Paul Street, London EC2A 4]S
(British Isles)
PRINTED BY
QB Limited, Colchester
COVERS PRINTED BY:
Alabaster Passmore

OVERSEAS
EDITIONS
and their
EDITORS

AUSTRALIA - Roger Harrison CANADA - Halvor Moorshead GERMANY - Udo Wittig HOLLAND - Anton Kriegsman

ABC
 Member of the Audit Bureau

 of CirculationElectronics Today is normally published on the first Friday in the month preceding cover date. ©Argus Specialist Publications Ltd 1982 : All material is subject to woridwide copyright protection All reasonable care is taken in the preparation of the magazine contents, but the publishers cannot be held legalty responsible for errors. Where mistakes do occur, a correction will normally be published as soon as possible afterwards Alt prices and data contained in advertisements are ac cepted by us in good faith as corfect dt time of going to press Neither the advertisers nor the publishers can be held responsibie, however, tor any variations aflecting price or and for fors after the public
\square Subscription Rates. UK $£ 11.95$ including postage. Airmail and other rates upon application to ETI Subscriptions Department. 513 London Road, Thornton Heath, Surrey CR4 6AR.

EDITORIAL AND ADVERTISEMENT OFFICE
145 Charing Cross Road, London WC2H OEE. Telephone 01-437 1002/3/4/5. Telex 8811896.

FEATURES

DIGEST

News at nine
ELECTROMUSIC TECHNIQUES
Circuits to experiment with
CRIMSON COMPETITION
Win yourself a hi-fi
KIT REVIEW .
and build some speakers for it

DESIGNER'SNÓTEBOOK
Sample our delights

9 READMRITE
54
Get it off your chest
17 IGNITION COMPETITION6133 10th BIRTHDAY SUPPLEMENT63
Happy birthday to us
35 BIRTHDAY COMPETITION 64
Win a decade's subscription AUDIOPHILE 88
Putting on the stylus
VEROCOMPETITION 111
Some prize boxesTECH TIPS113
A smattering of readers' circuits
CASIOCOMPETITION 117
For cool, calculating types45 ENTRYFORMS133
Only one cut required
PROJECTS

ACCURATE VOLTAGEMONITOR

Check out your battery
COMPUTER EXPANSION
This'll blow your EPROM AUTOMATICCONTRAST METER

SOUND EFFECTS 1
Bomb drop and explosion HIGH IMPEDANCE 100 MHz PROBE
Top flight test gear

23 ROBOT CONTROLLER PART 2
94
For producing PWM

SOLID STATE REVERB101

It's great-eat-eateat
CAPACITANCE METER PART 2 108
We conclude with the construction SOUND EFFECTS 2118

Steam train and whistle GUITAR PRACTICE AMP121

50 Cheap, and keeps your neighbours cheerful
57 FOILPATTERNS
This is where our boards find lodging

INFORMATION

NEXT MONTH'S ETI

Ever onward, ever better BOOK SERVICE
Read all about it

15 PCBSERVICE44
Why mess with ferric chloride?

31 SUBSCRIPTIONS
Advance booking

Sinclair 2X81 Personal Comp the heart of a system that grows with you.

1980 saw a genuine breakthrough the Sinclair ZX80, world's first complete personal computer for under $£ 100$. Not surprisingly, over 50,000 were sold.

In March 1981, the Sinclair lead increased dramatically. For just $£ 69.95$ the Sinclair ZX81 offers even more advanced facilities at an even lower price. Initially, even we were surprised by the demand - over 50,000 in the first 3 months!

Today, the Sinclair $\mathbf{Z X 8 1}$ is the heart of a computer system. You can add 16 -times more memory with the ZX RAM pack. The ZX Printer offers an unbeatable combination of performance and price. And the ZX Software library is growing every day.
Lower price: higher capability With the $\mathbf{Z X 8 1}$, it's still very sImple to teach yourself computing, but the ZX81 packs even greater working capability than the ZX80.

It uses the same micro-processor, but incorporates a new, more power ful 8K BASIC ROM - the "trained intelligence' of the computer. This chip works in decimals, handles logs and trig, allows you to plot graphs. and builds up animated displays.

And the ZX81 incorporates other operation refinements - the facility to load and save named programs on cassette, for example, and to drive the new $Z X$ Printer.

Every 2×81 conves with a comprehensive. specially-written manuaf - a complete ccurse an BASIC progrartining, from first principles to compter programs.

Higher specification, lower price how's it done?
Quite simply, by design. The ZX80 reduced the chips in a working computer from 40 or so, to 21. The ZX81 reduces the 21 to 4 !

The secret lies in a totally new master chip. Deslgned by Sinclair and custom-built in Britain, this unique chip replaces 18 chips from the ZX80 $^{\prime}$

New, improved specification

- Z80A micro-processor - new faster version of the famous $Z 80$ chip, widely recognised as the best ever made.
- Unique 'one-touch' key word entry: the ZX81 eliminates a great deal of tiresome typing. Key words (RUN, LIST, PRINT. etc.) have their own single-key entry.
- Unique syntax-check and report codes identify programming errors immediately.
- Full range of mathematical and scientific functions accurate to eight decimal places.
- Graph-drawing and animateddisplay facilities.
- Multi-dimensional string and numerical arrays.
- Up to 26 FOR/NEXT loops.
- Randomise function - useful for games as well as serious applications. - Cassette LOAD and SAVE with named programs.
- 1K-byte RAM expandable to 16 K bytes with Sinclair RAM pack.
- Able to drive the new Sinclair printer.
- Advanced 4-chip design: microprocessor, ROM, RAM, plus master chip - unique, custom-built chip replacing 18 ZX80 chips.

Built: £69., ${ }^{5}$

Kit or built - it's up to you!

 You'll be surprised how easy the ZX81 kit is to build: just four chips to assemble (plus, of course the other discrete components) - a few hours' work with a fine-tipped soldering iron. And you may already have a suitable mains adaptor -600 mA at 9 VDC nominal unregulated (supplled with built version).Kit and built versions come complete with all leads to connect to your TV (colour or black and white) and cassette recorder.

Designed as a complete module to fit your Sinclair ZX80 or ZX81, the RAM pack simply plugs into the existing expansion port at the rear of the computer to multiply your data/program storage by 16 !

Use it for long and complex programs or as a persohal database. Yet it costs as little as half the price of competitive additional memory.

With the RAM pack, you can also run some of the more sophisticated $Z \times$ Software - the Business \& Household management systems for example.
 Tel: (0276) 66104 \& 21282.

Available nowthe IX Printer for only £49.9

Designed exclusively for use with the ZX81 (and ZX80 with 8K BASIC ROM), the printer offers full alphanumerics and highly sophisticated graphics.

A special feature is COPY, which prints out exactly what is on the whole TV screen without the need for further intructions.

At last you can have a hard copy of your program listings - particularly

How to order your $\mathbf{Z X} 81$

BY PHONE - Access, Barclaycard or Trustcard holders can call
$01-2000200$ for personal attention 24 hours a day, every day BY FREEPOST - use the no-stampneeded coupon below. You can pay
useful when writing or editing programs.

And of course you can print out your results for permanent records or sending to a friend.

Printing speed is 50 characters per second, with 32 characters per line and 9 lines per vertical inch.

The ZXPrinter connects to the rear of your computer - using a stackable connector so you can plug in a RAM pack as well. A roll of paper (65 ft long $\times 4$ in wide) is supplied, along with full instructions.
by cheque, postal order, Access, Barclaycard or Trustcard. EITHER WAY - please allow up to 28 days for delivery. And there's a 14 -day money-back option. We want you to be satisfied beyond doubt and we have no doubt that you will be.

COMBINED FORCES!

South East Computers PLUS Castle Electronics can now offer you Unequalled Service - at Supermarket Prices!

COLOUR COMPUTER
 - Colour - Sound - Proxirammable function keys - 5 k memory expandable 10 32 K - Standard PE TBASIC - Full -sire iypmeeriser

BRITISH DESIGNED PERSONAL COMPUTER f140.00 4K Floating Point ROM BK ROM $+2 K$ RAM Ass
$12 K$ ROM $+12 K$ RAM Ki.
12

TANGERINE microtan

 ARE FULLY GUARANTEED BUY WiTH CONFIDENCE
ALL PRICES
INCLUDE VAT

FROM 345,00 Plus All Accessories Avallablel
Mendel 400 i 6 K Model 800 16K Cassatt Disk Driver 80 Col. Printer
 - $£ 199.00$ Tangerine equipment. Send SAE or Phone for details.

BK PET
16K PET
32K PET
Dual Disk Drive $£ 5958.85$
Printer
External Cassette $£ 49.00$
Complete range of PET
equipment in Stock

WE SPECIALISE ORDERS NORMALLY DESPATCHED DAY OF RECEIPT SYSTEMS FOR

From Only $£ 19$per week SILICON OFFICE SYSTEM
$1 \times$ CBM 8096 Computer $1 \times$ CBM 8050 Dual Disk Drive $1 \times$ CBM 8023 Matrix Printer Connecting cables, plus Silicon Software

Fum Only ± 43
Package B
ALTOS MULTI-USER per week HARD DISK SYSTEM 10 Mbyte Hard Disk 208Kbyte Memory (4 users) 500 Kbyte Floppy Disk Drive $2 \times$ VI 912C VDU's $1 \times$ OKI Microcline 83A Printer

SEC BUSINESS SYSTEMS SUPPLY A WIDE RANGE OF EASY-TO-OPERATE SYSTEMS AND PRO. GRAMMES TO MEET ALL OF TODAYS BUSINESS NEEDS + FULL RANGE OF COMPUTER RELATED PRODUCTS + LEASING AGREEMENTS + FULL AFTER SALES SERVICE
EAED The Complete Computer Service!
15 CASTLE STREET, HASTINGS, EAST SUSSEX TN34 3DY DEPT. ET4

ALL PERSONAL COMPUTER ENQUIRIES:Contact Paul Brown or Sam Wright on Hastings (0424) 437875 (Formerly Castle Electronics)

FOR ALL
BUSINESS
SYSTEMS
ENQUIRIES:-
Phone
Nick Rosenberg on Hastings (0424) 426844

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

D
 IGE ST

ETI PRICE DECREASE

Readers will have no doubt noticed (painfullyl) the cover price increase on this issue of ETI. We apologise for this, but are happy to say it is ONLY FOR THIS ISSUE and the price returns to 75 p with the May issue.

The one-month jump was made necessary by the sheer size of this special issue. We hope you will agree it is worth it. If you could see the price of paper these days... (moan, moan).

Thank you for sticking with us through thick and thin... (and 10p!)

Tempus Fugit

T's felt a liftle uncomfortable workIng in the ETI office this month; must be something to do with the sackcloth and ashes we're wearing. During the last few issues several of our reviews have featured Casio products, but we have consistently failed to credit the company which lent us the review models. The kindly folk in question are Tempus of 38 Burleigh Street, Cambridge CB1 1DG and we'd like to thank them for all the help therve been giving us. Tempus are leading Casio specialists and if there's something from Casio you're having problems obtaining, they will doubtiess be as nice to customers as they are to us.

Sun-Day Driving

A Volkswagon Dasher car is presently being tested carrying a roof-rack A of AEG. Telefunken solar modules which convert solar energy directly into electric current. The small 160 W 'solar power plant' of the test car complements the dynamio and charges the battery. This means that fuel consumption can be reduced by approximately five percent. As yet the cost of manufacturing these solar panels makes them uneconomical to use, but with the rising prices of fuel, it is foreseeable that low-priced solar generators will enter the market. Not only that, future car generations will make increased use of electricity, for example with automatic startstop devices and pollution-free electrical energy for air conditioning in cars in warm countries. Great idea - but where will you put the luggage?

Tweeters That Go Cheap

$W_{\text {ell, not }}$ fist the theters in fact. Mullard have a 40 W speaker system consisting of an $8^{\prime \prime}$ woofer as well as a high-power textile dome tweeter. They form part of a new low-price, (wo-way, self. build audió klt (whew!) belng marketed by 8 K Electronics. The

BK Electronics crossover unit have been combined with spring-loaded terminals and recessed mounting panel. The complete system, when built into the 23 litre enclosure, is capable of handling 40 W comfor tably. All this for the small outlay of E13.90 plus VAT and E1.50 car. riage per kit! Get yours now from BK Electronics Ltd, 37 Whitehouse Meadows, Eastwood, Leigh-OnSea, Essex SS9 5TY.

Top

Heading For The

Headphones seem to be getting lighter and smaller these days, so Sennheiser, that well-known manufacturer of headphones, has decided to launch a pair of their own lightweight 'phones. The new model HD 40 is soon to be released in the UK and weighs only 60 gram . mes with extremely light contact pressure. They can be supplied with either a three or seven metre lead, the seven metre variety incorporaling a volume control in the lead so that you don't have to march all that way back to the amp if it's too loud. Another feature is that each ear-piece can be revolved on the headband by 90 degrees if you have a funny shaped head or if you want to store them compactIy (!). The Sennheiser HD 40 will be launched in the UK with a suggested selling price, including VAT, of £16.55. For those of you interested in lechnical specs; fre. quency response is 22 to 18,000 Hz , impedance is 600 ohms, characteristic SPL is 90 dB and distortion factor $<1.2 \%$.

Electroware, OK?

O^{2}K Machine and Tool (UK) Ltd have launched a new division aimed at providing the electronics user with a really wide range of electronic hardware. All the products in the range will be avallable to everyone involved in building electronic equipment - that includes engineers, sludents, teaching staff, laboratory technicians and, not least, the hobbyist. The 40-page catalogue contains various products selected from OK's bench tool range - plus some new items - and includes soldering irons, wire-wrapping kits, IC tools, PCBs, cases, enclosures, connectors, sockets and test instruments to name just a few. Electroware is distributed throughout the UK by leading electronic and computer stores. Catalogues are íree, but send 30p for postage and packing. If you want any further information or one of their catalogues confact OK Machine \& Tool (UK) Ltd, Dutton Lane Eastleigh, Hants SO5 4AA.

Lack of ZX8l memory giving you headaches..?

The Memotech 64K Memopak

The growth of interest in computer use caused by the introduction of the Sinclair ZX81 has made new and exciting demands on the ingenulty of electronic engineers. At Memotech we have focused our attention on the design of an inexpensive, reliable memory extension.

The Memopak is a 64K RAM pack which extends the memory of the ZX 81 by a further 56 K . Following the success of our 48K memory board the new memory extension is designed to be within the price range expected by Sinclair users. It plugs directly into the back of the ZX81 and does not inhibit the use of the printer or other add-on boards. There is no need for an additional power supply or for leads.

The Memopak together with the ZX81 gives a full 64 K, whlch is neither switched nor paged, and is directly addressable. The unit is user transparent and accepts such basic commands as 10 DIM A(9000) 0.8 K ...Sinclair ROM

8-16K...Memopak memory which can switch in or out in 4K blocks to leave space for memory mapping.
$12 \cdot 16 \mathrm{~K} . . . \mathrm{Memopak}$ memory which holds its contents during cassette loads and allows communication between programmes. $16-32 \mathrm{~K}$... This area can be used for basic programmes and assembly language routines.
$32-64 \mathrm{~K} . .32 \mathrm{~K}$ of RAM memory for basic variables and large arrays.
With the Memopak extension the $\mathbf{Z X 8 1}$ is transformed into a powerful computer. suitable for business, leisure and educational use, at a fraction of the cost of comparable systems.

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

High-res
 Printing

NIew from Hi -Tek is the Faci 4542, a high-speed, high resolution printer which combines a new type of 'Flexhammer' printhead with advanced micropro cessor control to make it equally sulted to text printing, label or bar code production, and graphics output. Using 260 -character-persecond bidirectional iwo-colour printing and a 14×9 dot-matrix format, the 4542 can produce it virtually unlimited range of characters as well as different grey scales in graphics applications. In normal text-printing applications, the 4542 fealures proportional spacing, justified right-hand margin and an extensive set of up to 512 characters in 11 national reper. toirs with rediblack, elongated and underlining faciltifes. For label printing, a variable-size option is
avallable which allows characters or bar codes to be generated in 95 different sizes from 2.52 mm up to 240 mm . Selection of size and posifion is easily controlled by soft ware commands. In the graphics mode, scanning, semi-graphics and 10 levels of greyired scale are available to illustrate reporis with histograms, curves and diagrams, as well as generating halli-tone if lustrations in applications such as tomography, process monitoring and computer-aided design. The key to the versatility of the 4542 is the print-head, which consists of a set of nine stored-force flexible metal hammers mounted directly on a magnet armature. No adlust ment or lubrication is necessary, wear is minimal, and a 'floaling mount means that the correct paperiprint-head distance is always malntalned irrespective of the paper thickness or number of copies. Further information is available from Hi -Tek Distribution Limited, Trafalgar Way, 8ar Hill, Cambridge, C8385Q.

BT Bill Beater

Collowing the success of the Telcost TNA25 from the Ansafone Corpora -tion, it was decided that a single line unit should be manufactured. The new machine offers a range of functions which are all designed to save money by monitoring telephone use. Ansafone's single line Telcost 1 has leatures including a 24 -hour clock display, which instantly shows the cost of a call as soon as a user is connected with a number dialled. The unit also has a built-in printer which records details of the call including cost and number dialled. It also prints out the date, time, machine identificallon number and the duration of the call. Telcost 1 has a built-in memory which retains information even if the machine is disconnected from a power source. It also gives a special security midnight printout each night which frustrates any attempts to conceal the day's telephone costs by the destruction of the daily printout sheet. The machine is virtually tamper-proof as the printout will indicate if it has been disconnecled from the line at any time or if any information parameters have been changed. The machine has provision for it to be reprogrammed at any time to enable the user to keep in line with British Telecom unit rate charges and the date, time and identificatlon number can be changed for any reason if the machine is moved to a new location. This desk-top unil is no bigger than a telephone and for an investment of around $£ 249$ could help to cut out the abuse of telephones in both large and small companies.

Small And Beautiful

- ailed as 'the World's Smallest, Lightest and Lowest Power Consumption' television, the TH3-W3V from Matsushita certainly caught our editorial eye. Closer inspection revealed a colour TV set with a 3° colour piclure lube, only $115 \mathrm{~mm} \times 86 \mathrm{~mm} \times 323.5 \mathrm{~mm}$ in size and 1.5 kg in welght. Power consumption is a mere 9.5 W and it operates on AC power, car batteries and on optionally available rechargeable batteries. Yet, despite its small size, it is equipped with video inpulfoutput terminals and operates as a colour monitor and a video tuner when connected to a video camera and a portable VTR, respectively. This 3" colour TV was launched on to the Japanese market in mid-December 1981 at the approximale price of E200. It is due for launch in the US in June this year and, hopefully, will be seen in this country shortly after. Further details will be supplied by National Panasonic (UK) Ltd, 30013i3 Bath Road, Slough SL1 6|B.

Sticky Clips

randuer adhesive cable clips from Stotron provide an inex. pensive method of fixing round or ribbon cables to clean, dry surfaces. The range can handle round cables from just a few millimeters up to 19 mm and flat ribbon cables from 13 mm to 75 mm can be accommodated by a selection of cllps with widths in stages of 6 mm . The adhesive is instant acting and polyethylene pads provide high fevels of insulation, where necessary. Further information is avaliable from Stotron Ltd, Unit 1, Haywood Way, Ivyhouse Lane, Hastings, East Sussex.

Video Victory

Thorn EMI have just announced that agreements have been signed with Telefunken and JVC to form a holding company for the manufacture of video consumer electronics products in Europe. Thomson-Brandt was originally intended as a fourth partner, but this was not possible. However, the three other parties hope an opportunity will arise for ThomsonBrandt to join the venture.

Products manufactured by the joint venture will include VHS video cassette recorders, VHD video disc players and video cameras.

Grabbed By The Dooleys

Th
hose tireless chapples down at Casio have taken time off from disguising BASIC computers and arcade games as pocket calculators and watches, and have turned their attention to the music scene. Although there is un. doubtedly market for top-flight organs and synthesisers amongst home musicians, many people wilt prefer something more modest for financial reasons, because the llving room is too small or because they carr't figure out what all the knobs do. At the other end of the scale (sorry), the type of hand-held organ made notorious by Rolf Har ris is a little too limiting. With the Casiotone 701, Casio have not Just produced a solution to this problem but a radically new type of instrument.

The CT-701 is not just a 61 .key polyphonic (eight voice) minisynthesiser, but also contains an on-board computer that acts as a built-in sequencer; among other things. You can play along with the bullt-in rhythm unit, store your own music in memory and play it back automatically, of just load the machine with a Casio music score and let it get on with things by itself. The lafter function is
quite extraordinary - Casio supply the music scores as bar codes and you read them into the machine using alight pen (like those at supermarket check-out desks). In melody guide mode you can even teach yourself to play the instrument, as LEDs above each key light up to tell you which note to play next.

Twenty preset sounds are avallable, such as pipe organ, flute, piano, oboe, bassoon efc, plus the synthesised drum sounds of the rhythm unit and the 'pneooum' sound so beloved by producers of disco records. Opinions of the preset sound quality vary from "beautiful" (Casio) through "very good" (an independent reviewer) to "too sharply flliered" (another independent reviewer). Since they can't agree and we haven't heard it (though, we're trying hard to get our mucky paws on one), you'll have to listen to one yourself before parting with any cash, but professional musicians seem to like it - the Dooleys use Casiotone minl.keyboards in their slage shows ffellow head bangers may not see this as a compliment). With so much packed into such a compact case (onty slightly larger than the actual keyboard) and such a low price (about E500) Casio would certainly seem to have done it again.

Thin Meters

Cifam Ltd of Torquay in Devon Dare to market a range of very thin edgewise meters manufactured by General Electric of the USA. There are three sizes in the range with case widths of 38 mm , 63 mm and 89 mm and the units are scaled for vertical or horizontal presentation. The special feature of this design is the extreme thinness; the smallest has an overall depth of face of only 13 mm and the two larger sizes of about 17 mm . The smallest model has a rear-access zero sel and a
simple spring.clip method of mounting. The two larger models have front access zero set at end of scale and a slide bracket form of mounting. They incorporate jewelled pivot movements with special high-torque magnets for reliable and accurate operation. The standard meters are available ex-stock from Sifam and have a maximum sensitivity of 50 microamperes. Scale markings can be produced to sult individual requirements. Further details of these and Sifam's own range of meters are available from: Sifam Limited, Woodland Road, Torquay, Devon TQ2 7 AY.

ZX Revamp

Cof those of you who are serious - ZX-81 owners (is there such an animall) or would simply like to disguise the machine, there is a professional standard keyboard and enclosure now available from Protos Computer Systems. The keyboard is the flrst of a range of peripherals to make the computer suitable for more heavy-duty use. The 40-key Sinclair coded board uses top quality mechanical contacl lype key switches with relegendable tops. A steel mounting board holds the keys firmly in position and a high quallty printed circuit board completes the board's electrical circuit. Connection to the Sinclair board is made by a flexible connector which is a
push fit to the sockets provided on the $\mathbf{2 \times 8 1}$. Access to the edge board connector is via a side port on the Protos enclosure and tape infout, power and UHF connections are made through the rear. To fit the Protos entails removing the Sinclair board from the black ABS case it comes in and fixing it inside the Protos enclosure with four Phillips type screws. No soldering is required and all electrical connections are pluglsocket connections provided either on the Sinclair or the Protos. Further detalls on this and other forthcoming peripherals can be obtained from Protos Computer Systems, Frome Computing, 20 Ashtree Road, frome, Somerset BA112AS. Please enclose a large SAE with any enquiries.

Power For Peanuts

Grenson Electronics, designers and manufacturers of power supplies for the Nuclear Research Industry have come up with a series of bench power units. The first unit in the series is priced at

E59 and gives a variable stabilised output up to 30 V at 2 A in two ranges, has foldback re-entrant short circult protection and current and voltage metering. This unit is also available in kit form at only $£ 35$ and further details are from Grenson Electronics Lid, High March Road, Long March, Industrial Estate, Daventry, Nor. thants NN11 4HQ.

Miniature Magnification

 N ew irom stotron lid is the Scope Mark III pocket microscope with stand. Priced at under $£ 20$ it is a useful tool for laboratories, schools, workshops, service engineers and the electronics, electrical, automotive, print and graphic trades, Uncle Tom Cobbley and ail! if is $\mathbf{1 2 5} \mathbf{~ m m}$long, with 20x magnification and a graticule showing linear and angular measurements. Illumination is powered by standard IV5 'pen-light' batteries and a microstand (with spring clips for sample slides) Is available as an option so that the device can be used like a conventional microscope. Further details on this device are available from Stotron Ltd, Unit 1, Haywood Way, Ivy House Lane, Hastings, East Sussex.

HIFI STEREO AMPLIPER KITS

From one of Britain's leading esoteric amplfier manufacturers comes an exciting new package of stereo amplifier kits, designed to offer all the advantages of true high fidelity but without the usual price penalty. These new kits offer the choice of moving magnet or moving coil inputs, 40 or 100 watts per channel, in fact, everyhthing that made the previous models so popular is imcluded but with added style, easier construction and a full two year warranty.
The New Range Consists of The CK 1010 Stereo Pre Amplifier The CK 1404 WPC Power Amplifier The CK 1100 WPC Power Amplifier

CK 1010

This kit contains all the necessary parts to build a complete pre-amp. The main PCB is ready assembled and tested therefore construction is simply a matter of point to point wiring and mechanical assembly of the connections and controls to the pre punched chassis.

The CK 1010 takes its DC supply from the CK 1040, 1100 or, if using a different power amplifier a PSK power supply kit. Inputs for disc, tuner and tape are provided and an optional add-on moving coil input can be fitted to extend its versatility. (MC2K)

CK 1040

This is a nominal 40 watt per channel power amplifier kit which features our dual power supply and the DC output for the CK 1010. All components such as heatsinks, wire and connectors are included and protection is provided from short circuit outputs.

CK 1100

Similar to the CK 1040 this model provides a nominal 100 watts per channel with extra heatsinking and thermal cutouts are provided as standard.

When correctly assembled these kits are guaranteed for two years.

[^0]ETI FEB 1982

SPECIAL INTRODUCTORY OFFER 10-15\% OFF!

As a special incentive to buy our new range of D.I.Y. Hifi Kits, we are offering the range for a limited period at silly discount prices
The offer closes on March 31st, with prices this low, demand is sure to be heavy, so order now and avoid delays at the same time save $£ \in f$'s
CK 1010 - RRP $£ 90.00$. SPECIAL PRICE £79. 20
CK 1040 - RRP $£ 119.00$. SPECIAL PRICE £105.80
CK 1100 - RRP $£ 149.00$. SPECIAL PRICE $£ 130.80$
MC2K - RRP $£ 25.00$. SPECIAL PRICE £22.50

Barclaycard or Access accepted, otherwise send C.W.O. C.O.D. £1.00 extra
All prices include P\&P to anywhere in the U.K. Export: Write for pro-forma

SLOT CAR CONTROLLER

Let's not beat about the bush. Slot cars are fun. If you're as keen on slot cars and electronics as we are, you'll be equally appalled at the crude control systems provided in the basic sets. Naturally we decided something should be done about the situation and came up with this project. You can have controlled acceleration with overshoot, dynamic braking. 'electronic' fuel tanks - and all from quite a simple circuit. There'll also be some advice on how to tune your cars to get the ultimate in performance from them. A must to read for kids of all ages.

COLUMN LOUDSPEAKER DESIGN

Now this is good stuff. One of the bugbears of public address systems is acoustic feedback, which can be largely overcome by the use of a highly directional sound source. This directs the sound into the audience, where it's needed, and away from the microphone, where it isn't. This article describes the design of a novel column loudspeaker design that is cheap and highly effective.

ROBOT CONTROLLER PART 3

In next month's ETI we continue this series with the construction information for this month's analogue pulse width modulation controller, plus full details and a PCB for a dual digital PWM controller. This will not only be of interest to roboticists but to anyone who needs to control the speed of DC motors.

[^1]
DVMEG

Any scholars out there will know that D is Roman for 500 . Since V stands for volts, it will come as no surprise that this project generates 500 V to enable the leakage current through insulation to be tested using the built-in meter. In effect it is a high-voltage resistance meter for measuring values above about 1 M 0 - hence the last part of the name. We don't just throw these things together, you know!

BREADBOARDING SYSTEMS

There appears to have been a veritable explosion in the number of breadboarding and prototyping systems available to industry and the hobbyist; next month we'll be taking a look at some of them. Both soldenwrap and insulation displacement techniques will be examined and we'll have an exclusive first review of a major new development from a

\& SAE for current lists. t Official orders welcome. All prices include VAT. * Mail order only. All items packed (where applicable) in special energy absorbing PU foam. Callers welcome by prior appointment, please phone 0702.527572.

ELECTROMUSIC TECHNIQUES

Tim Orr, our tame electronic designer, emerged from his workshop this month just long enough to hand over this bundle of circuits for the ardent build-it-yourself musician.

Virtually all of the electronic music synthesisers that have been produced to date employ analogue circuits to generate the synthesised sounds. The process is known as subtractive synthesis, and operates by dynamically filtering out parts of the spectrum of a signal that is often rich in harmonics. The results are instant, easy to modify and relatively inexpensive to implement. It is not possible to produce an arbitrary output spectrum, and so it is very difficult to synthesise realistic copies of naturally generated sounds. This can be done using a digital technique known as harmonic synthesis, whereby the sound is constructed by precisely defining the amplitude and phase of each of the harmonics. These are then added together to produce the output. However, natural sounds are constantly varying and so the data defining all the harmonics must also vary. Harmonic synthesis can produce very realistic sounds and is in itself a powerful technique for generating completely new sounds, but the hardware is a combination of sophisticated microprocessor and digital technology and so is outside the scope of this article.

When we hear a sound we unconsciously analyse it for useful information; "Who wants another drink?" for example. Nobody knows how the human brain analyses incoming sounds, but it does it with incredible speed and sophistication. It can extract precise information from sounds (speech perception), it can experience pleasure from a rich harmony, or it can even learn to ignore certain sounds, such as a ticking clock. The brain is very good at perceiving pitch(or at least it thinks it is; it is also a fairly good liar); see Fig. 1. When you hear a pure tone you

Fig. 1 Pitch perception.

Fig. 2 (below) Keyboard layout with table showing equal temperament tuning.

NOTE	FREOUENCY IHz)	RATIO
C4	261.6	9,0000
$C A S_{4}$	277.2	1.0595
04	293.7	1.1225
24\%	311.1	1.1892
E4	329.7	12599
$f 4$	349.2	1,3348
F4*	370.0	1.4142
G4	392.0	1.4983
G6*	415.3	15874
A4	440.0	1.6818
A ${ }^{*}$	466.1	1.7818
B4	483.9	1.8877
C5	523.2	2.0000

will get a strong impression of its pitch. You will not be able to define its frequency in Hertz, but you will be able to remember its pitch. A sawtooth has a strong harmonic structure but even so you will get the same pitch perception. The ringing tone has virtually no energy at the fundamental frequency and yet it is still possible to correctly perceive the pitch of the signal, although it is more difficult than for the pure tone.

Most musical instruments produce a range of notes. Some instruments, like violins, can produce a continuous range of frequencies; because, unlike the guitar, there are no frets along the neck of the instrument. Keyboard instruments have fixed tuning; the piano, for example. The keyboard is an excellent choice for controlling a synthesiser, as it is easily converted so that it generates suitable electrical signals and it is widely accepted by musicians. Equal temperament tuning is used, that is there are twelve notes per octave and they are spaced at intervals of the twelfth root of two (that is 1.0594631) along an exponential curve, as in Fig. 2.

When You Hear The Tone . . .

The keyboard is used to define the fundamental pitch of a sound, but the actual shape of the waveform will determine its harmonic structure(Fig. 3). A sinewave is a pure tone and has no harmonics. A halfwaverectified sine wave contains a fundamental plus a series of even harmonics. A fullwave rectified sine wave is composed entirely of even harmonics. The squarewave and the triangle are both composed of a series of odd harmonics; in fact if you lowpass filter a square wave you can produce a triangle. The triangle is a fairly pure tone, with little of the energy in the waveform contained in its harmonics. The sawtooth is a rich waveform, having both odd and even harmonics.

The harmonic structure of all these waveforms extends to infinity, but the drawings only show the first 15 harmonics. If we call the harmonic number n, then the harmonic amplitude is easy to define. The rate at which the harmonic amplitude

 musical waveforms.
decreases is $1 / n$ for the sawtooth and square wave and $1 / n^{2}$ for the half and fullwave rectified sine wave and the triangle. Figure 4 shows a sawtooth being constructed from harmonics. The sum of the harmonics is beginning to look like a sawtooth. As more harmonics are added (with the correct phase and amplitude) the sum will converge upon the correct sawtooth shape. An interesting effect can be produced by changing the mark/space ratio of the square wave. This modifies the odd harmonic spectrum and introduces even harmonics. The mark/space ratio is often dynamically modified as a synthesis process.

Frequency modulation is often employed in synthesisers to produce vibrato and other dramatic pitch change effects. Figure 5 shows some of the effects of frequency modulation. As the modulation depth is increased, frequency sidebands are generated. Their spacing and amplitude are determined by the modulation depth and the modulation and carrier frequencies. To precisely calculate them involves some complex maths and Bessel functions (which I have forgotten all about). To make matters worse, synthesisers usually use voltage controlled oscillators with an exponential transfer function, which tends to exponentially distort the sideband positions. But so what! Music synthesisers are all about making music and not the calculation of sidebands. If a particular electronic device produces a useful musical effect, then use it, don't analyse it.

The output from an oscillator is known as an excitation signal. This defines the pitch of the signal, and to a certain extent the harmonic content of the final signal. It is common practice to filter the excitation signal (Fig. 6). The frequency response of the filter is referred to as a formant. The formant modifies the harmonic spectrum of the excitation, producing a colouration

Fig. 6 The effect of filtering an excitation signal.
of the sound. The format is usually a mobile filter and this makes it possible to dynamically alter the sound colour. If the formant has a sharp resonant peak, then the output signal will ring as it passes the harmonics of the excitation.

Another parameter that characterises a sound is its
amplitude contour or envelope (Fig. 7). A sound that has a sharp attack and a slow release is similar to a plucked instrument. Other envelopes will make the sound seem like something else.

Building Blocks

Most synthesisers are constructed from standard building blocks, and most of these blocks are voltage controlled. This is a very powerful concept, because it enables you to control a unit with a combination of control voltages and/or audio signals. Building blocks can be patched together in any arbitary order to produce any system that is wanted. Some standard building blocks are detailed below.

Voltage Controlled Oscillator Used to generate the pitched excitation signals. Often a VCO will generate a wide range of waveforms. The control sensitivity is usually $+1 \mathrm{~V} / \mathrm{octave}$. Therefore a one twelfth of a volt change will alter the oscillator pitch by one semitone. The exponential control law is a very powerful concept. If a VCO is being driven so that it produces a melody, then adding +1 V to the control input will transpose the melody up by one octave. Thus musical transpositions are very simple to produce. Often more than one VCO will be used, so that a rich chord is obtained.

Voltage Controlled Filter This is used as a formant for the excitation signal. The VCF is generally a lowpass filter, but it can often be a multi-mode device with lowpass, highpass, bandpass and notch responses. The VCF also has a Q (resonance) control. The control sensitivity is +1 V/octave for the frequency parameter, and undefined for the Q .

Voltage Controlled Amplifier The VCA controls the level of audio signals. The control law can be linear or logarithmic. The VCA is usually controlled by an ADSR unit and is employed to generate signal envelope contours. The device is a two quadrant multiplier.

Attack, Decay, Sustain, Release unit The ADSR is used to generate the signal envelope contour and also the VCF sweep waveform.

Ring Modulator This is a four quadrant multiplier or balanced multiplier. The output voltage is the product of the two input signals. It is often used to generate discordant or clangerous sounds.

Noise source Cenerates random noise, which can be used in the synthesis of non-pitched sounds such as explosions. Filtered or sampled noise can be used as a random control voltage.

Low Frequency Oscillator These oscillators are used to generate vibrato in the VCO or a filter sweep in the VCF.

Keyboard Musical control interface, generating pitch voltages of $+1 \mathrm{~V} /$ octave and also a gate signal to indicate that a $^{\text {a }}$ note is pressed. A monophonic keyboard only allows one note at a time to be pressed, but if more than one can be pressed simultaneously then the system is polyphonic.

There are several other building blocks such as flangers, sequencers, frequency shifters, and pitch detectors, but there isn't enough space to deal with them.

Polyphonic synthesisers tend to be voice-based; ie all the building blocks are pre-routed to form a voice (Fig. 8). Modular systems are not pre-routed and have to be patched, either with lots of jack-to-jack patch leads or via a matrix patch board using patch pins. Patch leads are relatively inexpensive, but the leads get in the way and it is often difficult to see just what you have patched. Matrix patch boards are easy to understand, but they suffer from crosstalk and a large board (60 by 60) might cost £500!

ShAFP ATTACK, SLOW DECAV - PLUCKED

SLOW ATTACK, SLOW OELAV - PIPE ORGAN
Fig. 7 (Above) Two typical amplitude contours, or envelopes.

Fig. 8 (Top right) The standard synthesiser voice.

Fig. 9 (Right) Silicon diode transfer characteristics.

Diode Data

The silicon diode has an exponential transfer function, that is the diode current increases exponentially for linear increments in the diode voltage (Fig. 9). This can be used to turn linear changes from, say, a keyboard into exponential or musical intervals in a VCO. The required musical range is probably no more than 200 to 1 and so a suitable operating current would be 0.5 uA to 100 uA , thus avoiding the non-exponential parts of the curve. The silicon diode is temperature dependent (it is often used as a thermometer) and so great care must be used to avoid thermal problems. The junction voltage changes by $-1.9 \mathrm{mV} /{ }^{\circ} \mathrm{C}$, but a semitone change is equivalent to 1.5 mV ,
therefore $\mathrm{a} 1^{\circ} \mathrm{C}$ change could result in a 1.27 semitone change in pitch! Figure 9 shows two temperature effects in operation; there is a large shift and the slope of the line changes.

Figure 10 illustrates the equations that determine the diode operation. Two facts emerge from these equations. First, an 18 mV change in V_{BE} will double the current I_{C}, and second, this parameter has a temperature coefficient of $-0.33 \% /{ }^{\circ} \mathrm{C}$. Both the temperature problems can be resolved by using a circuit similar to that shown in Fig. 11. Transistor Q1 is run at constant current $(12 \mathrm{uA})$ by the op-amp. Q2 is used as the exponentiator transistor. The emitter of Q 2 is held at a voltage of about -0 V 6 . Any voltage change at the base of Q 2 will result in an exponen-

THEREFORE. $\mathrm{IC}=10$ IS $\mathrm{V}_{\mathrm{BE} / 2 \mathrm{~m}}$
WHERE $V_{B E}$ IS MEASUREDIN mV
rearranging the eouation.

$$
\text { 26. } \ln \left(\frac{\mathrm{k}}{10}\right)-V_{\mathrm{EE}}
$$

THEREFORE. AN OCTAVE CHANGE IN IE IS CAUSED BY A 18.021827 mV CHANGE IN VBE (AT $28.58{ }^{\circ} \mathrm{C}$). HOWEVER, IF THE TEMPERATURE WERE $+1^{\circ} \mathrm{C}$ HIGHER. THEN VGE would have to be increased in size to anew value of

$$
25 \times\left(\frac{302.73}{301.73}\right)
$$

SO. FOR AN OCTAVE CHANGE IN ICAT THE NEW TEMPERATURE, VBE MUST CHANGE OY 18.08155 mV . AN INCREASE OF 0.059723 mV . THIS CAN EE EXPRESSED AS A PERCENTAGE CHANGE PER ${ }^{\circ} \mathrm{C}$:-
TEMPERATURE SENSITIVITY $=\frac{0059720_{n} 100}{18.021827}=0.33139 \% /{ }^{\circ} \mathrm{C}$

Fig. 10 Exponential transistor characteristics.

Fig. 11 (Below) An exporential current sink.

Fig. 13 A VCO using a monolithic device.

FEATURE : Electronic Music

tial change in the collector current of Q2. Q1 and Q2 are in thermal contact and so any temperature change will effect both equally. Thus the $-1.9 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ factor is cancelled out by Q1 acting as a compensating thermometer for Q2. The slope change is removed by using a temperature sensitive resistance (Q81 - Tel Labs) which has an equal but opposite temperature coefficient to the diode junction. This resistor is often in thermal contact with the matched transistors. If this circuit is connected to a linear current controlled oscillator, a musical VCO is produced.

VCO Circuits

Figure 12 is the circuit for an exponential VCO using an exponential current source. The oscillator is a standard trianglesquare wave device. IC2 is a current-controlled integrator; the slow rate at its output is equal tol $\left.\right|_{\text {ABC }} \mathrm{C}$. This voltage is buffered by IC3 which drives a Schmitt trigger IC4. The output of IC2 ramps up and down between the two hysteresis levels which are determined by the two clamping diodes connected to the output of IC4. Any stray capacitance on the output of IC4 will slow down the Schmitt trigger and this will make the VCO go flat at high frequencies. Also the propagation time delay around the oscillator will cause a flattening out ot the response at high frequencies. These effects can be nulled out but they may not even affect things if the VCO frequency is kept relatively low.

A very good VCO is shown in Fig. 13. It is a monolithic device, the CEM3340 from Curtis Electromusic Specialities Inc who make a range of electronic music devices. As can be seen, very few external parts are needed to implement the VCO. All the temperature compensation is performed inside the chip. Triangle, sawtooth and variable mark/space square wave outputs are simultaneously available. The mark/space ratio is a voltage controlled parameter. A sync input is also provided so that the VCO can be slaved to another oscillator.

LFO Circuits

A couple of LFO units are shown in Fig. 14. All four output waveforms can be usefully employed to sweep VCOs and VCFs. Often the waveforms are mixed together to produce strange frequency modulations. When the sawtooth is fed into one side of a ring modulator and noise into the other, a beat track can be generated; it sounds a bit like a cymbal being hit.

Noise Generators

In'the old days' noise sources were made by amplifying the noise current of a diode junction that was zenering. These were a bit unreliable, and always involved selecting the device. However, noise can be generated digitally with a maximum length pseudorandom sequence generator (Fig. 15). The noise spectrum is relatively flat and always the same. If you slow down the clock rate you can get some interesting sounds; I think that this is used on some TV games. If a longer shift register is used, say 30 or 40 stages (the 4006 is 18 stages long), and the noise source is turned on, a tone is initially heard which gradually changes into noise as the sequence becomes more scrambled up. You can purchase a monolithic noise generator (pseudorandom); it is the MM5837 made by National Semiconductor, also sold by AMI with the part number S2688.

Fig. 15 A digital noise source (top) and a noise generator chip (bottom).

Five pages gone already, and we've still only scratched the surface of this fascinating subject. In part two next month, Tim Orr will continue his discussion of electromusic techniques with yet more circuit building blocks.

The WERSI Comet

Aura Sounds nave pleasure announcing the Comet, the "Band in One" organ, is now available through our branches. Once again the Comet achieves the optimum performance in its class.
It offers:-

- Numerous reallstic and interesting tonal colours with guitar voices, synthesiser and other modern sounds together with the more traditional drawbar and orchestral sounds
- Playing aids include chord memory, WRS, Keyboard Selector, Wersi matic rhythm and automatic accompaniment section plus much, much more

AURA SOUNDS LTD.

 are the first company to successfully market WERSI organs and kits in the U.K. We have modern showrooms where we pride ourselves you will receive a friendly welcome Why not pop in and see the WERSI range for yourself - we can always arrange a free demonstration. We also offer a free technical telephone support service which is second to none.Alternatively, fill in the coupon below for free details. For immediate action telephone 01-668 973324 hour answering service.

- Comet can accept up to four satellite keyboards (in addition to the 2 keyboards on the organ - a five man band can play on one instrument.
- Wersi have simplified self assembly even more, with plug in circuits etc.
- Ergonomic playing table eases operation.

The Comet is available in the elegant lines of the spinet (W10 S) and with chromed steel legs (W10 T) for transportability.
The Comet, the Organ to see us through the eighties - available now.

For more details of this superb organ, ring us now on 01-668 9733 or write to Aura Sounds Ltd. at the Purley Branch.

IHE COMET SIINET WIOS

AURA SOUNDS LTD.

14-15 Royal Oak Centre, Brighton Road, Purley, Surrey. Tel: 01-668 9733
17 Upper Charter Arcade, Barnsley, Yorkshire.
Tel: (0226) 5248
1729 Coventry Road, Sheldon, Birmingham.
Tel: 021-7078244
Micro Centre, Albany Road, Newquay, Cornwall. Tel: Newquay 5953

ACCURATE VOITAGE MONTIOR

This simple, low-cost instrument can be built into power supplies or used as a portable or fixed 'battery condition' monitoring meter. Design by Simon Campbell and Roger Harrison.

Common storage batteries to power nominal 12 V DC electrical systems have-a terminal voltage that ranges from a little over 10 V when discharged to around 15 V when fully charged, the operating voltage being somewhere in the range 11 V 5 to 13 V 8 . Lead-acid batteries, for example, may have a terminal voltage under rated discharge that commences at around 14 V 2 and drops to about 11V8. A 12 V (nominal) nickel-cadmium battery may typically have a terminal voltage under rated discharge that starts at 13 V , dropping to 11 V when discharged.

Equipment designed to operate from a nominal 12 V DC supply may only deliver its specified performance at a supply voltage of 13 V 8 - mobile CB and amateur transceivers being a case in point. Other DC operated equipment may perform properly at 12 V 5 but 'complain' when the supply reaches 14 V 5 .

To monitor the state of charge/discharge of a battery, a battery-operated system or the output of power supplies, chargers, etc, a voltmeter which can be easily read to 100 mV over the range of interest (10 to 15 V) is an invaluable asset. This project does just that.

The Circuit

An LM723 variable voltage regulator is employed to set an accurate 'offset' voltage of 5 V , and the meter (M1) plus the trimpot RV2 and R3 make up a 5 V meter, with the trimpot allowing calibration. The negative terminal of the meter is connected to the output of the 723 so that it is always held at 5 V 'above' the circuit negative line. The positive end
of the meter goes to a zener which will not conduct until more than 5 V appears between the circuit $+v e$ and - ve lines. Thus the meter will not have forward current flowing through it until the voltage between the + ve and - ve rails is greater than 10 V , and will read full scale when it reaches 15 V (after RV2 is set correctly).

The meter scale limits may be adjusted by setting the output of the 723 higher or lower (adjusted by RV1) and setting RV2 so that the meter has an increased or decreased full-scale deflection range.

A variety of meter makes and sizes may be used.

Construction

Mechanical construction of this project has been arranged so that the PCB can be accommodated on the rear of any of the commonly available moving coil meter movements. We chose a meter with a 55 mm wide scale (overall panel width, 82 mm). A meter movement with a large scale is an

Fig. 1 Circuit diagram for the Voltage Monitor.

HOW IT WORKS

The meter, M1, is a 1 mA meter with series resistance - made up of R3 and RV2 - so that it becomes a 0.5 V voltmeter. The negative end of the meter is maintained at 5 V above the circuit negative line by the output of IC1, a 723 adjustable regulator. The positive end of the meter is connected to the circuit positive line via ZD1, a $4 \mathrm{V7}$ zener diode. Thus, no 'forward' current will flow in the meter until the voltage between the circuit negative line and the circuit positive line is greater than $5+4.7=9 \mathrm{~V} 7$.

Bias current for the zener is provided by a FET, Q1, connected as a constant current source so that the zener current is accurately maintained over the range of circuit input voltage. This ensures the zener voltage remains essentially constant so that meter reading accuracy is maintained.

The trimpot RV1 sets the output voltage of the 723. This determines the lower scale voltage. Trimpot RV2 sets the meter scale range, less resistance decreases it.

Diode D1 protects the circuit against damage from reverse connection.

Having chosen your meter, drill out the PCB to suit the meter terminal spacing first. The components may then be assembled to the board in any particular order that suits you. Watch the orientation of the 723, ZD1, the FET and particularly D1. The latter is an 'idiot diode'. That is, if you have a lapse of concentration or forethought and connect your project backwards across a battery, the fuse will blow and not the project. Fuses are generally found to be cheaper than this project!

Seat all the components right down on the PCB as the board may be positioned on the rear of the meter with the components facing the meter. The size of C2 may give you a little trouble. Polyesters are generally too large and therefore unsuitable. We used a ceramic type capacitor - as commonly used on computer PCBs as bypasses. Alternatively, a 100 n tantalum capacitor (+ ve to pin 2 of IC1) may be used. The actual value or type of capacitor is not all that critical.

We have used multiturn trimpots for RV1 and RV2 as they make the setting up a whole lot easier

Calibration

For this you will need a variable power supply covering 10 to 15 V and a digital multimeter (borrow one for the occasion).

First set the 10 V point. Connect the digital multimeter across the power supply output and adjust the power supply to obtain 10.00 V . Set the mechanical zero on the meter movement to zero the meter's pointer. Connect the unit to the power supply output and adjust RV1 to zero the meter needle.

Next, set the power supply to obtain 15.00 V . Now adjust RV2 so that the meter needle sits on 15 V (full scale). Check the meter reading with the power supply output set at various voltages across the range. We were able to obtain readings across the full scale within \pm half a scale reading ($\pm 50 \mathrm{mV}$). With a 2% FSD accuracy meter the worst error may be about \pm one scale division.

BUYLINES

Only one thing to comment on here; when you purchase your LM723 (or UA723 same thing) make sure you get the version that comes in a 099 case, not the DIL version. The PCB is designed for the 10 pin version as shown in the overlay and the DIL type won't fit. Speaking of PCBs, as usual you canget it from us using the order form on page 44 .

Fig. 2 Component overlay for the Voitage monitor.
Note that IC1 is in a 10 -pin T099 case.

BATTERY CONDITION AND TERMINAL VOLTAGE

The 12 V battery, in its many forms, is a pretty well universal source of mobile or portable electric power. There are leadacid wet cell types, lead-acid gel electrolyte (sealed) types, sealed and vented nickel cadmium types, and so on. They are to be found in cars, trucks, tractors, portable lighting plants, receivers, transceivers, aircraft, electric fences and microwave relay stations - to name but a few areas.

No matter what the application, the occasion arises when you need to reliably determine the battery's condition - its state of charge, or discharge. With wet cell lead-acid types, the specific gravity of the electrolyte is one reliable indicator. However, it gets a bit confusing as the recommended electrolyte can have a different S.G. depending on the intended use. For example, a low duty lead-acid battery intended for lighting applications may have a recommended electrolyte S.G. of 1.210 , while a heavy-duty truck or tractor battery may have a recommended electrolyte S.G. of i.275. Car battefies generally have a recommended S.G. of 1.260 . That's all very well for common wet cell batteries, but
measuring the electrolyte S.G. of sealed lead-acid or nickel-cadmium batteries is out of the question.

With NiCads, the electrolyte doesn't change during charge or discharge.

Fortunately, the terminal voltage is a good indicator of the state of charge or discharge. In general, the terminal voltage of a battery will be at a defined minimum when discharged (generally between 10 and 11 V), and rise to a defined maximum when fully charged (generally around 15 V). Under load, the terminal voltage will vary between these limits, depending on the battery's condition.

Hence a voltmeter having a scale 'spread' to read between these two extremes is a very good and useful indicator of battery condition. 1 'ts a lot less messy and more convenient than wielding a hydrometer to measure specific gravity of the electrolyte!

The charge and discharge characteristics of typical lead-acid and sealed NiCad batteries are given in the accompanying figures.

Micro-processor universal

 TimerThis incredibly versatile programmable timer can control up 1020 functions at accurately timed intervals over a period of a week. Originally developed for industrial and laboratory use it offers many interesting and exciting possibilities for the amateur constructor. Based on a pre-programmed: TMS 1000 Microprocessor, the unit provides a 24 hour clock with four Independent relay controlled outputs with

THE VELLEMAN KIT RANGE
2.2 Wate mini ampubieo

Mono VU using LED's
7 Wall amplifiet
Oummer 1000 Wartideparasite)
Migh precison stopwaten
Microprocessor Universal umer
20 Wati monouthec amplifer
FM orcillator
Stereo VU using LED's
Universat mono pre:amplifiet
60 Wast conver amplifies
Pcwer supply? Amo
Power supply tor sterec 60 Watt amplitier
Runnuing light
Dugital pandimeter
Single cupil counter
Transistor ignation
Complex souna gen
50 Hz cirsial lase
A Chanñel inflio.res remate control (transmatter of recenvet!
intra-red delection sustom Itransmutior op receiverl
Centrest alarm unit
FM siereo decocter
Magh quality FM tuner
Digital frequency counter for receivers Ce power suoply 3.5 Amp 12 V
Oigleas inermomelet
FM stereo recriver (19 m . rack-mounsing)
2 channel infis-red remote comirol light cimmer itransminter or receiverl infla- red receiver for tunet k 2558 infra red fransmitter for funer K2558 Intra red transmitter for
Tace/ stide synchronizer
3 channel cotoured inght organ
20 cm displey (common anodel
20 cm displey (common anodel
20 cm display (co
Three ton
$5.14 V$ OC Amp Universa power supply 5.limioc

Universal storeo pre-amplafie
Stereo RIAA corrector amplifier
Stereo RIA A corrector ampmiel
Universal 4 digit up/ down counter with Universal 4 ding
cumparator
Microprocessor doarbell with 25 tunes
40 Watt audio amplifier
Electric drier spend control
Electric drìl speed control
Microprocessor controlled EPROM Microgrocessor (lin form)
Microprocesser-controlied EPAOM
Micioprocesser-coniralied epted)
Universai stant/stop timel
The programmable timer can provide central control of domestic electrical cooking, heating and entertainment equipment.
The possibillties are limited only by the imagination of the user Control of house lighting to discourage intruders; contvol of TV or audio equipment; sound or video recording control; automatic plant watering; automatic pet doors or feeding - are a few simple examples. For the professional or industrial user many uses in this area of process control will be found.

TECNNICAL OATA
Powow supaliv
roumed on seoparate DCb math space for up to lour cuteut control felitys. Requies $12 \mathrm{~V} / 1 \mathrm{~A}$ transiormel
CONTROL SWITCMING
Standara reevs ione suocied with hil) mill switech 2 A .
Additional telary mey be ordered seoprately.

MICROPROCESSOR
TMS 1000
DISPLAYS:
12 mm 7 segment LED Dumeical dispoyv. LED programme function indicetors. difficultr arade 3 KIT NUMBER:KIGB2

Repair Service avallable for a nominal chargel if your soldering technique is not quite what it should bel

Any technical enquiries welcomed -in writing - and will be answered promptly by latter.

TRADE ENQUIRIES. WELCOME

COMPUTER EXPANSION SYSTEM

How's your memory? If you're lacking EPROM and the ability to program it, the fourth of our expansion cards is just what you need. Design by Watford Electronics.

This month we present an EPROM programmer and associated EPROM cards suitable for the machine code freak to store away those beloved extra routines or the space invaders freak to capture his aliens in 0's and 1's for life.

The first major consideration when designing an EPROM programmer is just what EPROMs should it be capable of blowing. There is more than just a little confusion here. There are two basic types of EPROM currently available - those that run off a three rail supply and those that run from a

Fig. f You can program these EPROMs..
single +5 V rail. The two sizes of PROM most popular at the moment are $2 \mathrm{~K} \times 8$ and $4 \mathrm{~K} \times 8$. Aha! here manufacturers have had some fun. Intersil and others like calling their triple rail PROMs 2716 and 2732 whereas Intel make their 2716 and 2732 single rail; not to be missed out Texas try to settle the balance by nominating their EPROMs 2516 and 2532; both are single rail!

To clear up the matter our programmer will program single rail EPROMs only, these being the most popular. It will program the Texas 2516 $2 \mathrm{~K} \times 8$ EPROM and Intel $27162 \mathrm{~K} \times 8$ EPROM as these are pin-for-pin compatible (see Fig. 1). However, 2532

HOW IT WORKS

PROM PROGRAMMER

The heart of this board is two 6520 peripheral input-output chips - they serve to generate the address bus, the data and control signals for the chip being programmed.

R1 and C1 generate the power up reset; C4, 5 and 6 are included in for decoupling. The rather peculiar need of the $V_{p p} p$ in for $0,+5 \mathrm{~V}$ and +25 V is met by the PSPU and switching circuit. Transformer T1 supplies 30 V AC to the bridge which rectifies it and feeds it to smoothing capacitor C3. IC3 and ZD1 regulate this to +25 V DC. C 2 is included in the interests of stability. Transistors Q1 and Q2 handle the switching of $V_{p p}$ between 0,5 and 25 V . This output is then fed to the DIL switch and then to the $V_{P P}$ pin of the EPROM to be programmed. Ports A and B of IC2 are used to generate the address bus - note A12 is connected to pin 1 of the EPROM (on a 28 pin basis) for use later with 2764 EPROMS. The data bus is generated by port A of IC1, while port B of IC1 generates the control for $V_{P p}$ and the $\overline{C S}$ and PGM lines which are switched with A11 to the correct pins of the EPROM by the Dil switch.

Inputs to the 6520s are straight from the expansion sockets $-\$ 2$ being used to enable the chips to reduce power consumption.
and $27324 \mathrm{~K} \times 8$ EPROMs are not compatible and we have stuck to the 2532, as this then allows for use of the new $27648 \mathrm{~K} \times 8$ EPROMs with the minimum alteration (see Fig. 2). If you wish to program 2764's then you must make the alterations to correct the $\overline{\mathrm{OE}}$ / $\mathrm{V}_{\text {pp }}$ and $\overline{\mathrm{CS}}$ lines. A12 has been brought to pin 1 and power (V_{CC}) to pin 28

Selection of the type of EPROM you want to program is made by means of a quad DIL switch. This switch is unusual in that each section operates two oppositely biased single pole switches - this means it can be

Fig. 2 ...or these ones.

Fig. 3 Circuit diagram of the EPROM programmer, with details of SW1
CX is the EPROM to be programmed.
 socket position has extra holes to allow for 2764 s .

PARTS LIST

PROM PROGRAMMER Resistors (all $1 / 4 \mathrm{~W}, 5 \%$)	
R1,2	1k0
R3	22k
Capacitors	
C1	4 4 725 V axial electrolytic
C2,4,5,6	100 n ceramic
C3	470u axial electrolytic
Semiconductors	
IC1.2	652016820
IC3	78 L 05
Q1	2N3904
Q2	2N3906
ZD1	$20 \mathrm{~V}, 1 \mathrm{~W} 3$ zener diode
BR1	$1 \mathrm{~A}, 50 \mathrm{~V}$ bridge rectifier
Miscellaneous	
SW1 Quad DPST DIL switc	
PCB (see Buylines); DIL sockets;	
transform	(6 VA, 0-15-0-15)

used as a 4 pole changeover switch and makes it ideal for the job. Two of the four sections are used for chip power $(+5 \mathrm{~V})$ and the programming can be destroyed if $V_{p o}$ is applied with $V_{C C}$ disconnected. The other two sections are used to switch $\overline{\mathrm{CS}}, \mathrm{PGM}$ and A11 to the correct pins of the ZIF socket according to whether a 2516 or 2532 is to be used.
PROJECT : Computer Expansion

A similar method has been used on the EPROM card. As there are four sets of switches needed for four EPROMs a 16 pin header plug and socket have been used. You can make
up a header for four 2516 and two 2532 s and easily change the role of the board by simply exchanging header
 710 aч1 parapisuos Kisnoinaud poypau
 s! injd ләреач әul moy to volteueןdxa рәл!м

Construction

 overlays given here. Note that if you
want to move the card around in connections $\overline{\mathrm{CS} 5}, \overline{\mathrm{CS} 6}$ to $\overline{\mathrm{CS} 2}$ of the 6520 and remake to the CS line you desire.
bring the 30 V AC from the transformer to the board - unfortunate as it is using a transformer mounted off the e wosf kem peripsesd kuo aut inoqe pue 0 jo sifes Moddns sey teyt rajnduos
 position on the EPROM board. This is chip at a later date.
When you have finished you will have a very powerful means of customising your system to your own specifications. To mention one use: you ROM and then while writing a BASIC program simply renumber by calling the routine through the USR(X) function.

 Fig. 7 Pin assignments
for the DIL header
(left), and the link
requirements for the
different EPROM

IC. $A=2516 / 2716$
$\overline{C S} 1 C 3125$

MICROCOMPUTER COMPONENTS AND SYSTEMS LOWEST PRICES
 FASTEST DELIVERY

electronics today international

 sterting only please. All prices include P \& P. Prices may be subfect to change without notice

Beginners Guide to Electronics Squires $£ 4.50$
Beginners Guide to Transistors Reddihough E4.50
Beginners Guide to Integrated Clrcuits Sinclair $£ 4.50$ Beginners Guide to Radlo King $£ 4.50$
Beginners Guide to Audio Sinciair $£ 4.50$
Introducing Amatour Electronics Sinclair $£ 4.50$
Introducing Microprocessors 25.20
Understanding Electronic Circults Sinclair $\mathbf{E 5 . 3 0}$
Understanding Electronic Components Sinclair $£ 5.30$

[^2]TV Typewriters Cookbook $\mathbf{5 9 . 3 5}$
CMOS Cookbook 89.85

Actlve Filter Cookbook $£ 11.30$
IC Timer Cookbook 88.65
IC Op-Amp Cookbook $£ 12.20$
ITL Cookbook 19.15
MC 6809 Cookbook Can D. Warren $£ 5.30$
PLL Synthesieer Cookbook Kinley $£ 5.85$ 8085A Cookbook Titus $£ 10.75$

How To Bulld Eloctronic Kits Chapel $\mathbf{E 3 . 4 5}$
110 Electronic Alarm Projects Marston $£ 5.25$
110 Semlconductor Projects for the Home Constructor Marston $\mathbf{£ 5 . 2 5}$
110 Integrated Clicult Projects for the Home
Constructor Marston E5.25
110 Thyristor Projectors Using SCRs Marston 85.25
110 Waveform Generator Projecte Marston $\mathbf{5 5 . 2 5}$ 99 Practical Electronic Projocts Friedman $£ 4.20$

Chapel $£ 3.45$
Marston $£ 5.25$
for the Home Constructor
for the Home
ing SCRs Marston $£ 5.25$
ojecte Marston $£ 5.25$
cts Friedman $£ 4.20$
cassette tapes plus a
ara and Microprocessors
$\mathbf{8 8 . 0 6}$
Albrecht $\mathbf{£ 6 . 6 0}$
ssors and Digital Logic
ok $£ 9.35$

Microprocessors and Microcomputers for Engineering Students and Technicians Woolland $\mathbf{E 5 . 9 6}$
\square Using CP/M - Self Teaching Guide Ashley Femandez f6.55
\square Digital Counter Handbook Frenzel $\mathbf{8 8 . 6 5}$
$\square 33$ Challenging Computer Games for TRS80-Apple-Pet Chance $\mathbf{5 6 . 7 5}$
How to Bulld Your Own Working Robot Pet Dalesta E5. 75
\square Microprocessor and Digltal Computer Technology £16.00
\square Guidebook to Small Computers Barden £4.20
How to Debug Your Personal Computer Huffman £6.30
How to Troubleshoot and Repair Microcomputers Leuk £8.30
$\square 6809$ Microcomputer Programmes end Interfacing with Experiments Staugaard $\mathbb{£ 1 1 . 4 5}$
\square Wordprocessor Programmed Training Guide with Practical Application £
\square Digital Clrcuits and Microcomputers Johnson $\mathbf{E 9 . 7 5}$
Experiments in Artificial Intelligence for Small Computers $\mathbf{E 7 . 2 5}$
\square The Oscllloscope In Use Sinclatr NEW EDTTION 1982 How to Get More Out of Low-cost Elactronlc Test Equipment Tobery $\mathbf{f 5 . 5 0}$
\square Digital Signal Processing. Theory and Applications Rabiner $\mathbf{f 2 6 . 4 0}$
Electronic Communication Systems Kennedy $\mathbf{£ 8 . 9 5}$
\square Principles of Communication Systems Taub $\mathbf{8 8 . 4 0}$
0 Introduction so Digital Fittering Bognor $\mathbf{£ 1 3 . 3 0}$
Transistor Clicult Design Texas Instruments $\mathbf{£ 1 0 . 9 5}$
\square Electronic Clicult Design Mandbook Design of active filters, with experiments: Berlin $\mathbf{£ 6 , 8 0}$
\square Electronic Engineers Reference Book Turner $\mathbf{£ 4 2 . 0 0}$
Electronic Components Colwell $£ 4.00$
Electronic Diagrams Colwell $£ 4.00$
\square International Transistor Selector Towers New $\mathbf{£ 1 0 . 7 0}$
International FET Selector Towers $\mathbf{8} 4.60$
\square International Op-Amp Linear IC Selector Towers 88.00
\square International Microprocessor Selector Towers $\mathbf{£ 1 6 . 0 0}$
\square Dictionary of Audlo - Radio and Vldeo Roberts $£ 16.00$
Dictionary of Eiectronics Amos $£ 16.00$
Dictionary of Electrical Engineering Amos $£ 16.00$
\square Dletlonary of Telecommunications Amos $£ 16.00$
Glant Book of Electronic Circuits Collins £12.75
World Radio/TV Handbook Vol. 351981 £10.50 How to Build Electronic Projects Malcolm E6,45 Modern Electronic Clircuit Reference Manual Marcus £33.50

Please send me the books indicated. I enclose cheque/postal order for £.
I wish to pay by Access/Barclaycard. Please deblt my account.

Signed
Name
Address

WIN A CRIMSON ELEKTRIK CK1010/CK1100 100 W AMPLIFIER WORTH £230!

Below are 16 amplifier parameters. Choose the ten you think contribute most to a good quality sound and place them in order of importance. For example if you think that Flat Frequency Response is the most important factor determining good amplifier sound, place ' E ' in the first box

Fill in your name and address on the coupon and list your ten letters (in order) on the outside back of the envelope. Closing date is April 30th 1982, and you must use the coupon provided on page 133. Multiple entries are acceptable, but each must be on a separate coupon.

RULES

1. Closing date is Apesi 30 th 1982 , and alf entries port-
2. marked later than this date will be discounted
3. The coupon provided in the magainie must be used. The coupon provided in the mada
Emplopees of ASP and their ielatives are nol eligible ion entry.
4. The fudzer decishon is to be comsidered tinal and no correspondence will be entered into conceining the competition.
```
A. Wide Bandwidth
B. Precise RIAA Equalisation
C. Separate PSU for Each Channel
D. High Power Output
E. Flat Frequency Response
F. Low Harmonic Distortion
C. Low Crosstalk
H. Stability of output under any loading
J. Ability to drive low impedance
K. Adequate heatsinking
L. Conservatively-rated output stage
M. Provision of tone controls
N. DC Coupling
P. Short Circuit Protection
R. Low Feedback
S. Flat open-oop response.
```


OEM USERS
 New amplifier boards to meet new needs

New Signals

With digital audio now a reality and third generation noise reduction techniques with us already, the dynamic range of programme material is about to shoot up by a phenomenal 30 dB . If the amp you work with at the moment can just cope, it's going to be in serious troauble when faced with the new signals. The clipping that will result will sound nasty and probably kill tweeters with its high frequency energy content.
J.W.R. have already solved the problem for you with their new high power PFAs. Designed to meet the exacting requirements of heavy duty P.A. and the even more exacting requirements of audiophile use, the ultra wide dynamic range modules can handle the most demanding of source signals.

The PFA/HV

Ths four powerfet module is designed to run from supply rails up to $\pm 100 \mathrm{~V}$. Rated at 300 W continuous RMS into 4 and 8 ohms and 250W into 16 ohms, the module can sustain, for musically significant periods of time, RMS powers of 500 W into 8 ohms and 900 W into 4 ohms. It also has the ability to drive 70 V line distribution systems directly, obviating the need for expensive and quality compromising transformers.
This amp is designed particularly with music in mind. We anticipate usage often at only 50 W to 100 W average levels leaving 10 dB of headroom.

PFA 500

This module uses $8 \mathrm{H}-\mathrm{PAK}$ powerfets and is designed to produce a continuous RMS output current of 25 amps and will run from a supply of up to ± 70 volts. The Unit will drive 250 W continuous RMS into 8 ohms, 450 W into 4 ohms, 600 W into 2 ohms and 700 W into 1 ohm.
Numerous features are included in the board to optimise efficiency. The H-Paks lthermally more efficient than TO3) are presented at ninety degrees to the P.C.B. so they can bolt directly onto the heatsink, instead of via the usual angle bracket. The resultant chip to heatsink thermal resistance is very fow keeping junction temperatures down and efficiencies up. The Powerfet supply rails are kept separate from the rest of the amp. This enables the driver stage to be run from slightly higher rails resulting in larger undistorted output swings at little extra cost.
In addition a bridge mode input pin is available on board permitting instant bridge mode between any two boards without the need for separate inverting amps. Powers comfortably in excess of 1 KW can be delivered into 4 ohms in this configuration.
N.B. The new boards exhibit the same exemplary noise and distortion periormance of the PFA80/120.

OPTIONS

We are particularly sensitive to a manufacturers individual requirements, and all our boards come with many options lincluding higher slew rates, response tailoring etc.). The chances are we've got what you're looking for, and if not, we can probably do it for you by next week!

INTERESTED?

Phone Phil Rimmer on 018006667 with your application requirement.

THE POWERFET SPECIALISTS J. W. RIMMER

Mail order only to:
Dept ETIII1, 148 Quarty Strcet, Liverpool L25 6HQ.
Telephone: 051-428 2651
Technical enquirias:
367 Graan Lanas, London N4 10Y. Tol: 01.8006667

Fancy a pair of Wharfedale E70s? Can't afford them? Then why not build 'em yourself? Peter Freebrey underwent the mystic rites of woodworking and saved himself over $£ 100$.

For many years now there have been speaker manufacturers who have marketed kits for the "do-it-yourself" audio enthusiast. At the present time there are several well known and respected firms supplying high quality kits. One such firm is Rank Hi Fi who manufacture the Wharfedale range. Their approach to this market is the Wharfedale Speakercraft series of drive units and crossovers, together with the constructional information necessary to duplicate their ready-built units using these same components. If the demand is there someone will supply that demand. . . such is the case with Wilmslow Audio who sell kits of the cabinets to suit the Wharfedale units. This review follows the construction of the E70 system using the WE70 flat-pack cabinet kit.

Why build loudspeaker kits? Well, one obvious answer is to save money; often the cost of a kit is very much less than buying the completed unit. If you are reasonably competent at woodwork, it is perfectly feasible to start from scratch with just a large sheet of flooring grade $3 / 4$ " chipboard. An electric power saw makes the job much easier and can also give a better edge to the cut. It is often the edges which concern people as they are going to be visible somewhere around the loudspeaker cabinet and it is easy to think that to get rid of the ugly sight of these will be difficult. This is not necessarily true; there are several ways in which unsightly edges may be hidden from view. The simplest answer is not only to buy a kit of speakers, crossovers, and soon, but perhaps to buy a ready-cut cabinet kit as well - this does not rid you of dealing with edges, but at least they are all cleanly cut!

I had heard that Wilm slow kits were of a very high standard - several people having commented upon the ease with which they went together. That sort of build-up sometimes takes a bit of living up to and I waited for the delivery of the WE70 kit with some uncertainty. When they arrived my initial reaction was favourable; all cuts were clean and the method of construction looked simple and sensible. The sides, top and base are rebated by about $1 / 2 "$. This not only gives you a better mechanical joint. but also makes it almost impossible to get any voids or gaps which is good, acoustically speaking. It also means that with the minimum of care the cabinet will slot together into its correct shape with no unsquare comers or leaning sides. Included with the kit were two cardboard transmission tubes for the mid-ange units, acoustic damping material, grille material (both black plastic foam for the reflex port and cloth for the front), nylon grille plugs and sockets, 3 mm wander plugs and sockets for loudspeaker lead connections, and the screws to fix the speaker units themselves. Last but not least there are written instructions on how to assemble the kit.

16 Steps To Heaven

Step one in the instructions is to examine the panels for transit damage. Presumably if any damage is noticed, Wilmslow Audio should be contacted as soon as possible Step two is to remove all dust, etc from the panels. Any excess of wood dust from the sawing operation can only do harm so vacuum all surfaces. If there were any buildup of sawdust at the surfaces to be glued that sawdust could conceivably impair any glue joints and also cause the fit of the joints to be out of true.

Step three is to assemble the cabinet without gluing to check the fit. It is also suggested that panels be swapped around to find the optimum results. This step proved to be most encouraging. . I assembled one unit (panels only) and held it together with just one turn of linen tape (no string please - it can bite into the corners of the chipboard and cause you extra work later). The cabinet felt as firm as a rock. No glue, just wellfitting joints. Thus encouraged I rapidly got on to step four, which was to paint the face of the baffle board matt black. I gave it a couple of coats of sanding sealer - not so much to get a 'de luxe' finish but to seal the wood surface. Chipboard is pretty thirsty stuff and you can use up a lot of paint if you do not seal the surface first. Just be careful not to get any of the sealer or paint on the edges, as this may affect the glue joint you have to make later.

Step five is to glue the midrange enclosures (transmission tubes) to the baffle boards, using plenty of glue to ensure an airtight seal. The baffle boards are recessed to take the cardboard tubes so it is easy to line up for position. I used Evostik Resin W. which is a PVA woodsworking adhesive for all glue joints. It is easy to apply and may be cleaned off the handsiclothes as it is water soluble. Just don't put your speakers out in the rain! Light pressure to a PVA glued joint gives a better joint so I placed one of the side panels across the top of the four tubes to ensure a light even pressure. Rather than apply liberal amounts of glue in one dose I used sufficlent so that a small bead of glue was squeezed out all around the tube. This was smoothed around with a handy finger and when dry a further fillet of glue was applied all round the tubefbaffle joint. Four pieces of approximately 1 " thick polyurethane foam are supplied which must be

glued to the rear (outside) end of the baffle tubes. Wharfedale recommend a hard rubber pad at this position but as this $1^{\prime \prime}$ foam is to be compressed to about $3 / 16^{\prime \prime}$ it probably is just as good.

Step six is probably the most critical point in the whole construction procedure, for at this point the cabinet panels are glued together. This entails gluing five of the six panels; the sixth (the side furthest from the midrange enclosures) is placed in its position while the glue is setting but is not glued. This enables you to work inside the cabinet; fitting the crossover, acoustic wadding etc.

Wharfedale suggest that the acoustic wadding be attached to the inside of the panels before you reach this step. Wilmslow Audio suggest that the wadding be fixed after the panels have been glued. Although I only learnt of Wharfedales' suggestion after I had completed step six. I favour the Wilmslow approach for several reasons.

If the wadding is stuckitacked or stapled to the panels before they are fitted together two things may happen:1) some of the wadding may inadvertantly get caught between the panels and cause either an air gap or 2) force the cabinet to go together 'out of true'. Also, with the wadding in place you cannot inspect the inside corners to check that there is a continuous fillet of glue all along the joint.

If you choose the Wilmslow way you will have to cut the wadding to fit around the mid-range enclosures but in practice this proved to be a very simple task.

Getting A Grip

Holding the whole thing together while the glue sets is quite a teaser. I was fortunate to have a set of excellent clamps known as Jet System Clamps made by TMT Design Ltd of Leamington Spa. They cost about $£ 10$ per clamp but areworth their weight in gold for this type of job. The problem comes from the 1 "thick foam stuck to the rear of the:mid-range enclosures; this tends to force the back panel out of position. Wilmslow suggest either that clamps be used or that the joints be held firmly together with masking tape. It is possible with masking tape but only just; remember that unlike your trial fitting in step three, the foam pads are being compressed to about $3 / 16^{\prime \prime}$ and all but one panel has glue all along the edges and is quite capable of sliding all over the place! I bought a wide webbing strap from a camping shop to assist the initial stages of holding the four vertical panels approximately in place while I set up the clamps. The cost of the strap was wasted as I could not get enough tension in it to over-
come the spring in the foam . . . a linen tape would have done just as welll If you are going to use masking tape then get someone to help apply the pressure to hold the front and back panels in position while you apply the tape. Lastly, cut up a thin polythene bag and place four pieces inside each corner of the panel that is not to be glued; it would be a shame if this stuck firmly to the rest of the panels by accident!

It is useful to have a rubber-faced hammer at this stage as, having clamped or taped the cabinet firmly together, you may wish to tap the panels firmly but lightly into position. A hammer and a block of wood do the trick just as well, but try not to mark or dent any edges. The places to look for out of true joints are the corners...remember once the glue has set there is nothing you can do, so a few light taps now can save the day. Wipe off excess glue with a damp cloth. Wipe from the centre of each panel out towards the edge; try not to get any glue smeared over the panels.

Having completed step six the rest of the construction is plain sailing. Step seven is simply to remove the loose side when the glue has set (leave for at least 24 hours). I then put a small fillet of glue all around the inside of all joints BUT not up to the edges where the last panel is to fit . . we want it to go back from whence it came!

Step eight is to place the drive units and reflex port trims in the baffle board and mark accurately where pilot holes for the fixing screws are to be drilled. Although the chipboard is high density it has a fairly soft texture so it is well worth buying a new $1 /{ }^{\prime \prime}$ " drill bit. This ensures the pilot holes are clean and in the right place . . worn bits tend to wander! Although I'm sure it is unnecessary I drilled all my pilot holes just deep enough for the screws by slipping a small rubber sleeve over the drill bit at the right depth. Noone could accuse me of having any extra holes or air gaps here!

Step nine is to position the grille frame on the front of the cabinet with the cabinet lying on its back. Use masking tape to hold it in position and carefully drill a pilot hole through the grille and into the baffle board. I used a $1116^{\prime \prime}$ drill bit and drilled four holes, one in each corner section of the grille frame. These holes can now be drilled out to the correct size to accept the nylon plugs and sockets that hold the grille in place. Wilmslow supply eight plugs/sockets for each grille but as Wharfedale suggested that four would be sufficient I chose the latter. It is far easier to line up four holes than eight! For the socket in the baffle board I used a $716^{\prime \prime}$ bit and for the grille a $7 / 32^{\prime \prime}$ bit. Don't forget to drill only from the rear of the grille and only to a depth of $1 / 4-5 / 16^{\prime \prime}$. The $1 / 16^{\prime \prime}$ pilot hole may be filled with wood filler
but when the grille material is fitted I doubt that these holes can be seen. If you are happy with the finish on the baffle board then glue the sockets in now; if not, then wait until you have quite finished before fixing them in position. Do not stick the plugs in the grille until you have fixed the material in place. I used a quickset epoxy glue for these fittings.

Step 10 is to glue the black, acoustically transparent foam over the inside of the reflex port aperture. You can use either PVA glue or quickset epoxy, just be careful not to get any of the adhesive on the foam where it is over the port.

Step 11 is to position the crossover network inside the cabinet on the rear panel opposite the bass unit aperture. Before you screw it into position check that the leads from the drive units can reach their appropriate tags! Wharfedale recommend that the crossover has a piece of felt or foam between it and the panel to prevent any vibration rattles. Also in step 11 is the fitting of the input terminals through the rear panel. I smeared the threads on these sockets with some latex glue, again to ensure that there would be no air gaps. Solder the leads from the crossover to these terminals. . make sure they are connected correctly, red to red and black to black!

Step 12 is to cut three $5^{\prime \prime}$ discs of wadding and place these in the mid-range tubes. The Wharfedale instructions that come with every Speakercraft unit specify that the packing density of this wadding should increase towards the back of the tube and that the tube should be completely filled with wadding. In view of this I cut two extra discs and fluffed out those towards the front of the tube.

It's In The Bag

Step 13 is to line the inside of the cabinet with the acoustic wadding and glue the remaining side into place. Now comes the tricky bit - how do you slide the wadding up behind the midrange tubes? The wadding catches on the side panel and snags up behind the tubes! Easy - get a large polythene bag 12^{*} or more wide and about $15^{\prime \prime}$ to $18^{\prime \prime}$ long, slide the wadding into the bag, slide the bag plus the wadding up behind the tubes and, lightly holding the wadding in place, pull out the bag. Cutting the wadding to fit round the tubes sounds fiddly but turned out to be quite easy. Cut the holes for the tubes smaller rather than larger as the wadding will easily stretch to fit comfortably in place. No wadding is required on the baffle board but don't forget to put wadding on the loose side panel before you glue it into place! The wadding may be tacked or stapled into place.

[^3]Step 14 is to attach the wires to the drive units - observing the correct polarity (ifif in doubt refer to the Speakercraft instructions and double-check every connection), and screw all units and ports to the cabinet. Wire up and fit the bass unit last as the bass aperture gives you ample room to work inside the cabinet connecting wires to the crossover. The wires from the mid-range units come through small holes in the tubes and these holes should be sealed after you have connected the wires to the crossover. The fitting of the drive units should only be started after the glue joints of the final side have thoroughly set and any glue fumes have completely cleared. The comment regarding fumes is highly pertinent if you are not using a waterbased adhesive. There is a possibility that the fumes could affect certain plastics used in the construction of the drive units.

Step 15: You have two working loudspeaker systems, so connect them to your amplifier and sit back and enjoy your favourite record.

Step 16: The cabinets are now ready for their f inal cosmetic treatment. There are a number of options open to you: they may be:

- veneered either by you or a local cabinet-maker.
- covered in iron-on veneer or plastic laminate.
- sealed and then painted (preferably sprayed) in colour of your choice.
- Wilmslow Audio also suggest the use of a 'Contact' type covering as these can be obtained in very realistic wood-grain finishes.

Whichever method you opt for you will probably have to attend to the cabinet edges/joints before you can proceed. Due to the small but noticeable tolerances in the cutting of the panels, the amount of glue and the pressure used during the construction, there are likely to be a few panels that are slightly proud of the edges that butt up to them. There are several ways to solve these problems but the simplest is to use one of the proprietary wood fillers. Which choice depends upon your choice of finish.

If the cabinets are to be covered in plastic laminate you can afford to use one of the more easily worked fillers such as Fine Surface Polyfilla, Alabastine or Plaster of Paris. If, on the other hand, you are going to cover them with 'Contact' or simply spray-paint them then I would suggest a tougher type of filler that is less likely to crack or crumble. My choice here would be one of the car body fillers - they are easier to sand than some of the loaded general-purpose fillers from the DIY shop. So you are less likely to sand away the wood from the cabinet instead of the filler!

The grille material must be stretched over the grille frames and either tacked/stapled or glued (or both) to the inside of the frame. The material supplied by Wilmslow Audio stretched easily and evenly; I smeared PVA glue over the rear faces of the frames (having first painted them black) and stapled the material in place while the glue set. When set I trimmed off the excess material (having removed the 50 -odd staples) and ran another bead of the adhesive over the edge of the material.

Looking back on the construction of this E70 loudspeaker system using the WE70 flat-packs, I can only say that I am very satisfied with the way they went together. There were one or two instructions that could have been a little clearer but they have been covered in this article. Common sense would probably have solved any uncertainties but I chose to phone Rank Hi fi to confirm my conclusions. The people I spoke to did not know that I was writing this review and so it is a pleasure to say the they could not have been more helpful. This entire project has been enjoyable from first to last.

BUYUNES

Wilmslow Audio sell the complete WE70 package (flat pack, drivers and all components for two speakers) for $£ 220$ plus $£ 8$ carriage. Wilmslow Audio, $35 / 39$ Church Street, Wilmslow, Cheshire SK9 1AS.

SABTRONICS EQUIPM	EENT MEW Low Palces！	
Yexteren		
隹		
为	Namen	
	zasis dayilc nome	
	Tupm Tax mod the cosen	
FUUCTIOM CEMERATOR（UK CIg £100	ciprasona	¢1

HAMEG OSCILLOSCOPES

Range of top quabily scopes lor Amareve and Prolessional（UKCig 307 § 3.00 other 84.00 307 Single trace 10 MHZ $5 \mathrm{mV}: 0.5$ micro sec．Plus buil in componenl tester $6 x 7 \mathrm{~cm}$ display \quad S158．70 Optionas carry case $£ 18,40$ ）
208 Dual 20 MHZ ．Trig to $30 \mathrm{MMZ} 5 \mathrm{mV} ; 0.5$ micro secs． $8 x$ IOcm display（replace model $3121 \quad £ 253,00$ 12.6 wal 20 whi celayed sweep：thing to 40 Naz smy 50 Tos Dual JMM2 Detoyd swoex Singie swver：Deiry

Opioces 2asis 12705 Yiewing hood
 1807．00 Cerry case islale moden）$£ 21.85$ Quane Probes All maders X1 $£ 7.95: \times 10 £ 9.45$ $\times 1-\times 10 £ 1050: \times 100 £ 18.95$
H25s add on component sester－Any Scope $£ 29.95$

AF ANO AUDIO SIGNAL GENERATORS Mans operatod
 TE220 Disio lion mex 1\％
LaE2 Distortion 05.16 leace
CA0120A 5 range 10 HZ .1 MHZ ．Sire／3q． $005-0.84$ aIS LAG125 Low distorfion version of LAG 120400024 A6202a Dislortion $0.5-1$ है Trío
Agra3 TOM2－1 MH2 5 Dand mandistortion 0 14 Trw AF An teatu＇e tni／Ext．MOD Variable output
Ti $200100 \mathrm{KHZ} \cdot 100 \mathrm{MHZ} 6$ band（ 300 MHZ narmonics． （ $\$ 616100 \mathrm{KMZ}-100 \mathrm{MH} 7.6$ band（ 300 MHZ harmonics）Leader
$\$ 6402100 \mathrm{KH2}-30 \mathrm{MH} 2 \mathrm{6}$ banc $\$ 6402100 \mathrm{KHZ}-30 \mathrm{MH} 26$ canc protessional trio

YANTABLE AND FIXEO

POWEA SUPPLIES
（UK C／p \＄1．00 amy model）．
SPCCIAL PURCHASE

113．\％
－PR241 0．12－12－24V0／1 amp £35 00 －Pp243 or 12 －12i24v 0r3 amo ع50．95 －月PI5A 5－15V 0／3 amo －meter cisplay

AMATEUR／CB
TESTING－fub his smid saE komb 1.510250 MHz 6 range DIP meter HM 2o 20 Kivoli nullir ange multimemor．Plus SWRAPower metee $150 \mathrm{MH2}$ £28．95 neld 150 H $100 / 1000$ walls M M BB8 10 Ch．Pockel ？meles
scamar scannar $£ 6900$ MJ56EM Marine Dand verstion 12 me 13 Am 6 ma ame

UBP4 SWR OIVOW Po wer
$0 / 50 / 140 / 430 \mathrm{MHZ}$ tester
FCIOOM 12V 100 MHZ Freg Counter
869.95
special ce accessor
PUACHASES POS：SSOM

SAFGAN PORTABLE OSCILLOSCOPES

Range of low cosi Dual Trace Scopes mans operated Nace in UK to exacting standards．Avaladie as 10 MHZ ， 15 MHZ or 20 MHZ All feature 5 mV sensitrvity． 0.5 miero sec． $64 \times \mathrm{Bcm}$ display（UK c / o E2．501 $01410 \quad$ Dual 10 MMZ §194．35
$\begin{array}{llll}07415 \\ 07420 & \text { Dual } 15 \mathrm{MMZ} & \text { DUal } 20 \mathrm{MHZ} & \text { £216．20 }\end{array}$ MADEINUK
OPTIOMAL SCOPE PROEES

THURLBY DIGITAL MODEL MULTIMETER

45 Oqi QUEN I Function ICD
 O2 Meq etmin tho noludes travency
 mane to mactiny stunderds In the UK．
Pice is wim nafterves．test tisads and mans acaplor．
（ontionat carry case $£ 20.45$ ）
\＆171．00
UK $6 / \mathrm{p} £ 1.00$

optional scopt proses－SEE hameg abeve

	Order by Post with CHEQUES ACCESS／VISA or Telephone
301 EDGWARE ROAD．LONDON，W2 1BN，ENGLAND．TEL 01－724 3564 ALSO AT HENAYS RADIO，404／406 EDGWARE ROAD，LONDON W2	or Telephone your order
WE AEE OPN 6 DAXO A MEEK－CALL IN AND SEE FOR YOURSELFÓ	Allow up to10days for delivery

LOGIC PROBES／MONITORS／PULSERS cIrcuit powered（uk c／0 60p）
LPI DTLITILICMOS． 10 Mm Pulse．Memory
ITR OILITTLICMOS 15 MHZ Pulse
LP3 $\$ T L$ ITLL ICMDS 50 MM2：Pulse Memory LWI Logic monlior for 8 to 16 pin ICs IPI Digital putser．Single of t0000s LOM16 50 MHZ：VAteg onm：Logic Probe with case 55.90

AUTOMATIC CONTRAST METER

> What's black and white and read all over? Answer - a photographic negative, providing you've built this simple and useful device. Design and development by Rory Holmes.

Contrast ratio is a very important quality of photographic negatives that must be assessed during the printing process, in order to select the correct grade of photographic paper. The contrast of negatives depends on the type of film used, the lighting conditions and the developing process; consequently five grades of printing paper are available to enable the full range of tones from black to white to be reproduced from any negative. Grade 1 is termed the softest and it is used with the highest contrast negatives. At the other end of the scale, grade 5 is the hardest paper, which will enhance the tonal variations of poor contrast negatives.

During the design stage of this project we experimented initially with two separate photodetectors which measured the instantaneous light difference between two points. There are a number of problems with this approach, as the photodiodes and their associated amplifiers must be carefully matched in light sensitivity.

Secondly, the lightest and darkest points of the image must be known exactly, and the two photodetectors need to be simultaneously positioned on these points while the reading is taken. This is an awkward business at the best of times, but especially so in a darkroom!

We considered that a different
approach was required and deveioped the circuit of Fig. 1 to overcome some of these difficulties. Only one photodetector is used and the peak positive and negative voltages obtained from different light levels are followed and stored independently by sample and hold circuits.

Now, as long as the photodiode is scanned at some time through the lightest and darkest points of the image, the peak detectors will memorize the maximum and minimum voltages, and thus provide a contrast measurement.

The photodetector input stage of our meter is rather unusual in its configuration. Photodiodes are usually

used in the 'photovoltaic mode' where the photocurrent developed and measured is linearly proportional to the light intensity. Our input amplifier has an extremely high input impedance and thus measures the open circuit voltage generated by the photodiode. This voltage is logarithmically proportional to irradiance as the graph of Fig. 2 illustrates. This is a very convenient property since the sampling circuitry can now work on the log of the light level to provide maximum and minimum values. By simply subtracting these two values with a differential amplifier we obtain a voltage that is logarithmically proportional to the ratio of the maximum and minimum light levels, ie the contrast.

Fig. 2 Response of the photodiode used in this project.

Meter Made

The ETI contrast meter was intended primarily to determine the paper grade for a well balanced print; consequently a 10 LED bargraph type meter is sufficiently accurate for calibrating the five grades of paper. At today's prices this also works out somewhat cheaper than a moving coil meter and is less prone to damage. After calibration, the meter will be found very easy to use. It is switched on with the 'sample/hold' switch in the 'hold' position and placed down flat on the enlarger base with the photodetector probe anywhere in the image area. (The photodiode has been mounted in a separate probe with its amplifier in order to keep it as close to the focused image plane as possible. If it were much higher than this the detecting element would pass through an unfocused image, giving a false contrast reading).

Any red safety lights should be switched off before the reading is taken to avoid error since the photodiode is responsive at this wavelength. The sample/hold switch should now be moved to the sample position; this will clear any previous reading and start measuring light variations. Now the photodiode may be moved across the image and through the areas that look the brightest and darkest. This can be
done quite slowly thanks to the peak detectors' long memory time; however, several areas should be scanned to ensure the recording of the true maximum and minimum. The eye can be deceived quite easily by those cunning optical illusions lurking among the shades of grey!

During the scanning process the reading on the LED scale will increase and finally level-off at the true contrast ratio when the black and white peaks have been covered. Before removing the meter from the image area the sample/hold switch should be set to 'hold'. The meter will now be immune to further light variations and will continue to display the contrast reading for a considerable time, thanks to the even longer memory of the sample/hold circuitry!

A true ratio is provided by the meter and thus the contrast reading for a given negative will be independent of the light source intensity and enlargement size (photographic aberrations known as "circles of confusion" may produce sources of error under certain conditions). Negatives may thus be compared or matched for contrast.

Construction

The meter is built into a slim style plastic enclosure produced by OK Machine and Tool company. This houses the battery and main PCB on which all the parts are mounted. Since the light sensing element must be as close to the enlarger base plane as possible, we have mounted it externally on a separate small PCB with its associated amplifier. A probe to house the external sensor is made from a short length of aluminium channel extrusion. Figure 3 shows the

Fig. 3 Details for the aluminium extrusion that houses the photoprobe.
dimensions for the probe; if the aluminium channel proves difficult to obtain, a piece of the slotted aluminium extrusion used for commercial shelfracking systems is ideal. This is available from most DIY
stores in short lengths with the required internal width. After filing or cutting to the right size, a piece of insulating tape should be stuck down on the inside to prevent shorting out the PCB. As shown in the diagram, a hole is drilled on the end for bolting it to the bottom of the case. This bolt should eventually be connected to circuit ground, thus providing screening for the photoamplifier. The two PCBs for probe and main meter circuits are laid out as one board, and should be sawn apart along the lines shown on the foil patterns.

For other construction arrangements, the circuit can be left as a single board, since the interconnections are already made.

Three wires are used to connect the two boards together as indicated on the overlay; these should pass through a small hole drilled in the case side where the metal probe case is bolted on. When the probe board is mounted and stuck down in its channel, a piece of thin aluminium sheet is cut to form a lid with appropriate holes for the photodiode and preset. (The photodiode case is internally connected to the cathode, so it must not short against the lid).

Calibration

Start with preset PR1 fully

 clockwise to set a gain of 1 ; also set PR2 fully anticlockwise, setting the voltage required to illuminate the lower end of the bargraph at zero. First. measure a high contrast negative that is known to require grade 1 paper for a good average contrast after developing. Initially a low contrast reading will be obtained, say about grade 4 or 5. Now, adjust PR1 anticlockwise to increase the gain of the photoamplifier. Take another measurement, when the contrast reading should be greater. Repeat this process until a grade 1 is consistently recorded.Now select a negative with very poor contrast ratio, one known to require paper grade 5 for bringing out the contrast. Take measurements several times while adjusting only PR2 clockwise, until the bottom end of the scale illuminates at grade 5 . The other contrast grades should now fall linearly between these points and can be checked for accuracy.

Although the bargraph display has a low resolution and accuracy, the rest of the metering circuit is obviously much better than this; consequently a moving coil meter could easily be added to measure the contrast voltage for those who may desire greater resolution.

The general circuit arrangement consists of a photo-amplifier which feeds a voltage derived from varying light levels in an enlarger, to a pair of peak detectors. One follows the peak positive voltage and the other the peak negative voltage. The capacitors used for storing the voltage peaks in the followers also form part of sample and hold circuits which are then switched to 'hold' after measurement. Their outputs represent the maximum and minimum values of light intensity. A differential amplifier then computes the ratio of these values and the result is displayed on an LED bargrapli meter.

IC1, a CA3140 CMOS op-amp, is used as the photodetector amplifier. It is configured as a non-inverting DC amplifier with a gain variable from unity to about 10 , set by PR1. Although IC1 can have input and output voltages all the way to ground, this facility is not used owing to the driving requirement of the TL084 quad op-amp. This requires inputs at least 1 V above ground, and thus IC1's output is offiset by a reference voltage of 3 V 9 provided by R1, ZD1 and C1. The anode of the photodiode is connected via R2 to the non-inverting terminal of IC1 which has an effectively infinite input impedance. Thus the open circuit voltage generated by the photodiode is amplified according to the gain set around IC1 and appears at the output on pin 6 added to the reference voltage.

The voltage at point A (ignoring the reference offset) will be logarithmically
proportional to the intensity of incident light, owing to the properties of the photodiode (see Fig. 2) R4 and C2 form a simple filter to remove 100 Hz ripple caused by AC mains bulbs. This voltage is fed directly to the peak detectors. These circuits are essentially the same, the difference being the polarity of the rectifier diodes. They operate in exactly the same way, and we shall deal only with the peak positive voltage follower.

Assume initially that the CMOS analogue switch IC3c is open and IC3d is closed. C 5 will be connected to the output of op-amp IC2c via the rectifiers D4 and 5 (we can ignore the action of R7 for the moment). C5 will charge up via the rectifiers to the most positive voltage peak when the voltage at point \mathbf{A} on the non-inverting terminal is greater than the capacitor voltage applied to the inverting terminal. The voltage held on C5 will droop over a period of time due to leakage current through the rectifiers D4 and 5 and the input bias current of IC2c. IC 2c was chosen as a FET opamp with a low input bias current and R7 is included to reduce the diode leakage current.

IC2d is connected to $\mathbf{C} 5$ as a straightforward high impedance voltage follower to buffer the stored voltage. When the input voltage to IC2c at point A drops below the peak value, IC2c's output will go negative, reverse biasing D4. However, IC2d applies the capacitor voltage via R7 to the anode of D5, effectively removing
leakage current through D5
The peak positive value of the signal at A thus appears at point C, and likewise the peak negative value at point B. When the analogue switch IC3d is now opened, C5 is disconnected from the peak detector and acts in conjunction with IC2d as a sample and hold circuit thus isolating the measured values from further light variations.

When SW1 is open, R8 and R5 hold the control pins 13 and 5 of IC3 low, opening both analogue switches. This is the 'hold' mode. When SW 1 is now closed, the control pin 13 is taken high, switching to the 'sample' mode. C3 and R5 produce a positive pulse (about 50 mS) on control pin 5 to briefly short out D4 and D5, so resetting the peak detector to the current voltage at point A. When C3 has charged the IC3c switch will open again, allowing the peak detector to function.

IC 4 is wired as a differential amplifier with a gain of 2 , to subtract the voltage at point C from point 8 . Since these voltages are the log of the light levels, the output on pin 6 will represent the contrast ratio of these light values.

IC 5 is a standard LED bargraph driver, the LM3914. The input voltage on pin 5 is converted linearly to illumina te one LED on a scale of $\mathbf{1 0}$. Full scale deflection (LED 10) is set internally at 1V2; the zero scale deflection is set by PR2 anywhere between 0 V and 1V2 during the calibration process. C6, a 10 uF tantalum, is required for IC5 to ensure stability from oscillation.

NOTE: $\mathrm{k}=\mathrm{CATHODE}$

Fig. 4 (Left) Component overlay for the meter (showing the board uncut).

PARTS UST

Resistors (all $1 / 4 \mathrm{~W}, 5 \%$)	
R1, 3, 8	10k
R2, 11, 12	100k
R4	2k2
R5	1 MO
R6, 7, 9, 10	47R
Presets	
PR1	100k subminiature horizontal preset
PR2	1k0 miniature horizontal preset
Capacitors	
C1	10u 35 V tantalum
C2	22u 25 V tantalum
C3	220u 16 V electrolytic
C4 6	82 n polycarbonate
C5	68 n ceramic

Semiconductors

IC 1,4	CA3140
IC2	TL084
IC3	40668
IC5	LM3914
D1	BPX65
D2, 3, 4, 5	1N4148
LED 1-10	3 mm re

Miscellaneous
SW1, 2 miniature slide switches
Case (see Buylines); PCB (see Buylines); B1 PP3 9 V battery (preferably alkaline type).

BUYLINES

The photodiode specified in the Parts List is the one used in our prototype, but any general purpose type should do. The case we used is a Pactec type HP, size $146 \times 91 \times$ 28 mm . The PCB is available from us using the order form on page 44 - price is $£ 2.12$.

BHPAK BARCAINS

3IT21 SCREW DRIVER SET 6 precision scrawdrivers in innpeo prasic case Sizes -08.1 .4 .2 .24 .
2.9 and 3 mmm [1.78

ST31 NUT DRIYER SET
5 orectison nut orveres in ninged plastic case When lurning roce.
\qquad 51.75

ST4 TOOL SET
5 precision insliuments in ningee plassec case Crosspomit (Pnilips) screworivers:-

5151 WRENCH SET
5 previsuon wianches in hinged Duasic case Sizes: - 4.4.5.5.5.5 ano 6 mm E $\$.75$ BUY ALL FOUA SETS: 5 T21.585t and ger HEX MEY SET PREE HEX KEY SET ON RMG SIzes: 1.9. 2. 2.5. 3. 4. 5.5 .5 sno 6 mm . Nage or mar oeneos stoel.

BRPAKPCB ETCHANT

 AMD DRILL KITComptene PCB Kn comerises 1 Eupo Mini Detill 10.000 RPN 12Y DC mal 3 calees $81 \times 1 \mathrm{~mm}$ tmst DC . i Snee PCB Translers 210 mm a 150 mm I Eten Resise Pan I H:D pach FERBIC CHLORNOE CYYsats 3 snees cacoer chan daye 2 shouts fibecelisss coppe cus barre Full instructions for muling yar Own PCB doaros. Ratal valun over it 18.00 OUR PI. PAK SPECIAL KKT PPICE Ee.78 ORDEA MO SXOI

BI-PAK SOLDER

 DESOLDER KITKacomprises ORDERMO. $\$ \times 60$ 1 Mron Cusility to watl Gererala Pur pose Cigntweight Salcering Iron 240\% mans mel $3 / 16^{\circ}(16.7 \mathrm{~mm})$ bit.
1 Ousity Descicering pump mont Suction wan autumatic enction, xnuried. ant-corrosme casing and letion nozzre.
15 meires or 0 e soltering oryid on oustic ospenser.
2 vos (1.83 m) Resin Corec Satider on Care. 1 hasi Smum 10ct Iweeze iype. Total Aeta Valve over 〔 12.00 OJA SPECIAL KTT PRICE EE.OB

semicon 100

A Collection ol Iransisios. Drodes. Rectiliers Bridpes SCR s luacs. IC's both logic and unear plus Opio's all of which ate curtent everyday usable dewces

Gocennled rave coet sho at mame Real prict
 ncoe no sis

EXPREAMEWTOA BOXES - ALUMINIUM PLASTIC
ALUMINIUM BOXES
Made with Brighet Alumnnum modiced construction wind derotid and sciews S1ZE ${ }^{\circ} L$ W H Oroer wo. 139. 159
161
163 161
163
164
$167 \quad 1.68$
1.12

Plastic Boxes

Covarof blach Close htling.
Flanged Lud, lituing serens inio drass jusnes. SUZE 'L W M Oroermo Price 44. 24 in 141 E 14300 6 Et 143 ti.30 Plastec as above but mith auminium top ase Plare 25 $1166 \quad \$ 1.40$ 54 4\% 26 sope

The Third and Fourth Hand...

Cur manc rever cot unlur nom
lins netptus unt with मoci meunted notromaty an Meroy fase Crocadem emos mactiad to ted enos Sir cail \& saitivel forms gre intimte ratution and positions througn 350° ats avalued atarree 10 hod a 2% \%um magnitien giving 25 x mageviation relong natnd unt ardituce mim or withoul magnemer Our Price weth nagnitar as tustrateo OADER NO 1402 E5.50 Wreat mignier imos H NO 1400 E4.75

ETI PCB SERVICE

Up untii now PCBs were always the hardest component to obtain for a project. Of course you could make your own, but why bother anymore?
Now you can buy your boards straight from the designers - us! As of this issue all (noncopyright) PCBs will be available automatically from the ETI PCB Service. Each board is produced from the same master used to build our prototypes, so you can be stre it's accurate, and will be finished to the high standard you would expect from ETI.
In addition to the PCBs for this month's projects, we are making available some of the more popular designs from our recent past. See the list below for details. Please note that NO OTHER BOARDS ARE AVAILABLE. If it's not listed, we don't have it!

[^4]

How to order: indicate the boards required by ticking the boxes and send this page, together with your payment, to: ETI PCB Service, Argus Specialist Publications Ltd, 145 Charing Cross Road, London WC2H OEE. Make cheques payable to ETI PCB Service. Payment in sterling only please. Prices may be subject to change without notice.

Total for boards	£ $\ldots .$.
Add 40 p p\&p 0.40 Total enclosed $£ \ldots$	

DESIGNER'S NOTEBOOK

Five into one does go. This month Don Keighley explains all about sampling and time-division multiplex systems, and looks closely at the advantages of pulse-width modulated telecommunications networks.

Sampling is a process we can undertake if we want to combine many different signals on to a single transmission line. The transmission line can be of any type such as wire, radio, or optical. Combining several signals into one is called 'multiplexing' and can save the expense of having many separate lines. Sampling is used in a specific type of multiplexing called time-division multiplexing (TDM) which I'll explain later. The other form of multiplexing - frequency-division multiplexing (FDM) - is the basis of all standard radio transmissions. Each signal to be transmitted is mixed with a carrier wave (or radio frequency) on to a set frequency within the radio spectrum. Thus many signals can be transmitted and received by radio link - one on each defined frequency of the radio spectrum.

Figure 1 shows an illustration of sampling. In the figure, a sinusoidal signal (known as the message signal) has a series of values taken at regular intervals. These sample values can be used to represent the message signal. For instance, we can pass the actual DC values of the samples, ie their voltages, along the line. At the other end of the line the sample values, or pulses as they are usually called, are converted back into the message signal, simply by passing them through a lowpass filter. The filter removes the high frequency pulses and thus re-creates the envelope of the original message signal - as shown by the sinewave of Fig. 2.

One of the most important questions arising is - How often do we need to sample the message signal? It is obvious that if the signal is sampled too few times we won't be able to
reconvert the pulses into the message signal at the receivingend of the transmission line.

The minimum number of samples is given by the sampling theorem, which states that a message signal of bandwidth 13 Hz can be represented by a set of sample values taken at a frequency of 213 Hz . For example, an audio system has a frequency response of 20 Hz to 20 kHz . Its bandwidth is thus $20,000-20$ $=19,980 \mathrm{~Hz}$. The audio signal of the system can thus be represented if samples are taken at $2 \times 19,980 \mathrm{~Hz}=39,960 \mathrm{~Hz}$

But the minimum number of representative samples (2B Hz) isn't the easiest number of samples to convert back into the message signal. It's usual to take a greater number of samples because doing so makes the reconversion easier. To see why this is so we've got to take a look at the spectra of the transmitted samples and see how they differ when different sample frequencies are used. Figure 3 shows the possible spectrum of a message signal such as an audio signal. It's the sort of result you would see on the screen of a spectrum analyser. Frequency f_{m} is the maximum frequency contained in the signal. The lowest frequency contained is 0 Hz (the signal extends down to DC); so the bandwidth of the message signal is $f_{m}-0=f_{m} \mathrm{~Hz}$.

When the message signal is sampled at a frequency f, the overall spectrum looks something like that shown in Fig. 4 and consists of components at harmonics of the sampling frequency, with upper and lower sidebands around them, as well as the original spectrum of the message signal. In Fig. 4 you can see the sampling frequency. f_{v} is more than twice f_{m} - hence there is a gap between the highest frequency of the higher sideband of a

Fig. 1 A message signal can be represented by a series of sample values of the signal.

Fig. 3 Power density spectrum of typical audio signal. The higher frequency component in the signal is f_{m}. The signal exlends down to 0 $H z$, so the bandwidth of the signal is $f_{m} H z$.

Fig. 2 If the series of sample values is passed through a lowpass filter the original message signal is recreated.

Fig. 4 Power density spectrum of an audio signal, sampled at a frequency of f_{s}. In this example, i_{s} is greater than $2 f_{m}$.

Fig. 5 Sampling frequency f_{s} equals $2 f_{m}$. A simple lowpass filter may filter out some of the wanted message signal.

Fig. 6 Sampling frequency less than $2 f_{m}$. A lowpass filter cannot be used to recreate the original message signal.

Fig. 7 A simple time-division multiplex (TDM) system.
component and the lowest frequency in the lower sideband of the next component. This gap between bands means that a simple lowpass filter can be used at the receiver to pass only the message signal and not the higher components: so the message signal is recreated

With a sampling frequency of only $2 f_{m}$ (Fig. 5) the highest frequency of one band and the lowest frequency of the next occur at the same point. A simple lowpass filter would filter out some of the message signal, as shown in the figure. A more complex lowpass filter (with a steeper roll-off slope) could be used to correctly recreate the message signal

In Fig. $6, f_{s}$ is less than $2 f_{m}$ and, as you would expect, the spectrum shows how message signal and sidebands overlap. A lowpass filter cannot be used to recover the whole of the message signal without letting through part of the next sideband

TDM Tricks

A simple TDM system is shown in Fig. 7, in block diagram form. Each signal to be transmitted is connected to an input of switch SW1. This switch, although shown in the diagram as a mechanical-type switch, will be of electronic construction in a real TDM system, so that a high switching speed can be obtained. The output signal from the switch is transmitted along the transmission line to switch SW2, which connects each receiver, in turn, to the line Providing the switches are operating fast enough so that the sampling theorem is fulfilled ($f, \geq 2 f_{m}$) for all the message signals, everything is fine and we have five signals passing down one line

The whole process of sampling and TDM is a form of modulation because only a representation of the message signal is transmitted, not the actual signal. And because pulsed samples of the message signal are transmitted, we call the process pulsemodulation

Fig. 8 Pulse-width modulation. The width of each pulse varies in accordance with the amplitude of the message signal.

Fig. 9 Pulse-position modulation. Each pulse's position, with respect to a reference point, varies in accordance with the message signal amplitude.

Fig. 10 A pulse.width modulation microphonelloudspeaker system.
There are various forms of pulse modulation which can be used in a TDM system, all relying on the fact that the original sample values control some property of corresponding pulses. The one just described uses the DC value (ie amplitude) of the pulses and is therefore known as pulse-amplitude modulation. Other forms of pulse modulation are: pulse-width modulation (where the width of the pulses is varied according to the sampled value) and pulse-position modulation (the position of the pulse, relative to a reference position, is proportional to the sample value). Figures 8 and 9 show examples of these pulse modulation systems and the sampling frequencies of both must follow the sampling theorem - the sampling frequency must be at least twice that of the message signal bandwidth. There is a final pulsed system, in which each sampled value is converted into a train of binary digits. This is, strictly speaking, a digital system and doesn't concern us here; however the system must still follow the sampling theorem.

Practical Matters

With careful design all the pulse modulation systems can give good results in TDM but perhaps the best - because it's easy to use, has a high immunity to interference and yet needs a minimum of component hardware - is pulse-width modulation (PWM). Figure 10 shows a block diagran of a PWM microphoneiloudspeaker set-up - such as you might have in a multi-station intercom system or similar.

We can investigate the modulation and demodulation blocks in more detail, as in Fig. 11 and 12. Figure 11 shows a simplified pulse-width modulator. It consists of an oscillator to provide sampling pulses at a rate of over $2 f_{m}$, so that the sampling theorem is fulfilled. In a good quality audio modulator, the sampling rate is therefore over 40 kHz and the time between pulsesmust be $1 / \mathrm{t}_{\mathrm{s}}=25 \mathrm{uS}$.

The pulse duration is less than this, say 1 uS , and each pulse charges the capacitor C1 to full voltage. After charging, the capacitor is linearly discharged via the constant current source. The cycle repeat itself at every pulse. The capacitor's discharge rate is a product of the capacitor/constant current time constant, which should be about 2 uS . Comparator IC1 compares the ramp discharge with the incoming audio signal - when the non-inverting input voltage is above that of the inverting input

Fig. 11 A pulse-width modulator in detail.
the comparator output is high; when the non-inverting input is below the inverting input the output is low. Thus the output is high the instant of every sampling pulse, but falls low again after a time which is linearly related to the amplitude of the audio signal. In other words, the width of the pulse is modulated by the audio signal.

A pulse-width demodulator is shown in Fig. 12. A capacitor with a parallel constant current source is again used and the incoming width-modulated pulses cause a charge/discharge cycle similar to that in the modulator. The average DC level of charge across the capacitor is dependent on the width of the pulses - the wider the pulse, the higher the DC level. Buffer IC1 prevents loading of the voltage across the capacitor and the output is lowpass filtered by capacitor C2 to remove the sharp spikes of the sampling pulses, thus re-creating the original audio message signal.

Fig. 12 A pulse-width demodulator can be built using the same basic components used in a pulse-width modulator.

The advantages of such a system aren't always immediately obvious, but you must remember that the audio signal is being represented by a pulse of nominal width $2 u S$ in a cycling time of 25 uS . This means that 12 different, high-quality audio signals can be time-division multiplexed down that transmission line simultaneously and without interference - and this is just a simple system. With a shorter nominal pulse width and more accurate modulators and demodulators, many more signals can be multiplexed on to a single transmission line.

It's all down to economics really. When you look at a large telecommunications system like the telephone network, there are literally thousands upon thousands of miles of expensive copper cable. By putting 100 telephone conversations down one line the overall cable cost is only 1 M00th of that of a nonmultiplexed system. Makes sense, doesn't it!

ETI

UITS. COWPON: NIT micios \& paritis

THE GARAGEDOOR AT YOUR COMMAND

DISCO LIGHTING KITS inis valua-for-money kil Teblurese obldiracioiona
 dimming c
DL21000K
A lower toat version of the aboue, leaturing natiobie of masha of a preasee pot. Outpuls switched only st maing 2 eroc crossang points Options operonnel OLAA

DVM/ULTRA SENSITIVE THERMOMETER KIT Thu nit own is bases on

 besis of ospitel multimeter (only a lewredcentionwimesistors and swaches
 revoing $100.1^{\circ} \mathrm{C}$. Tho buate ket has sonpilnity of zocmu fer s full scele reading.
automatc pormity incication and an vila avematic poiminty incucation and an wian What used 8 hours a dey. I cerve ofer Price fis. 50

DO YOU LONG TO HEAR
YOUR DOORBELL RING? you p Dimino three ELECTRONK DOOR rilsto tone seouman \square CHIM inol o microarocessor
conirouch ouzz os ine cerse ovd ding connal at alouch of buiticn Thls kil bosed on an
misotiso circuit, ivoplec compitece wite ${ }_{3}{ }^{3}$ brintec compurice with oox mexs reavires ony Fo batitery and puint bulion common to moni housenicion
 PA. Eysioms, ate. The onit grobuctas
 Irom a Pp3 baytory atren ing lone chat
Suopliac complete will circuit and Suoplisc camplete wis. LDEAL PROJECT FOR BEGINNEAS

WE ALSO STOCK: VERO PROOUCTS ANTEX SOLDERING IRONS BABANI BOOKS

THE KEY TO YOUR SECURITY IS IN OUR LOCK

If was moughl of car thiever, houre browkert of peooly to

Ow LLECYRONIC LOCK KIT incwoes o IOwsy hovbourd and o spec er IC which provider 750 mA oubut to drive B whonord or retay inor supoliectl when boup hevi ere deprmand in the
 oribiling the goen cose to be reared fospocially unaful in a car when it ie left in a opereptor semeing is the open code noud nof be daclowed). Size: $7 x 8=3 \mathrm{cms}$. Powet Consumption it 4OUA st 5 V to 15 V oc
At only 510.50 \& VAT. A will moke e amalior nole in your pocket than a bunch of hevsi
Electric Lock Mechanism

THE MULTI-PURPOSE TIMER HAS ARRIVED
 - 50150 m z mains operation

- Bultery tsekup avies st
- Datiery not sucolioo).
- Olisptiy Dianking ounMg pewe tolure to conserve tastery pow
- It progamme time sets

- Direce switch controt unaclime on outpul for ore how
lime imeraal.
- 20 Punction iergoad roe programme entry
- Procramme Venication al ine touch of a builon

ONLYESS OF SO MUCW AT SUCH ALON PRICEOntr Eas.00

ALL PRICES EXCLUDE VAT switetures two latedned is transmitrot circults treiary relay solid ing 240 V a ached outpuisted) is indicalay elosea transmitater swic. mains loads with common by LED
 rangeys: Open/ciose, ory goration a nanditias 3 a general poproximatefy on 1 . on 2 consifitution or switching lige remote control incfuctord 9 iving appliances, This television and the home AS FEATURO or cisitioled ival for the
UREO INPE FEB \& MAR
$£ 2375$

EDUCATIONAL EXPANSION WITH SOFTY 2
Prog SOFTY 2 into ime EPROM socrem of rour and SOFTV 2 wil operate os ine ROM my your syseem but erwobe you to wite casa imo any location, oossone matrony comente on any
 cassette recorder in inuro. Various esning lacillinise ate also sualliablay Changeo, insertec. ©eeked. Mc., enabling the orogrammo to be cevoloces ans fun on the noaic compuler.
 Aftein odebuging SOFTY 2 mBy de
oropramine an ERON 12716 of 27321 . Youcen helo
rolfrom lace
Houmed in a buek ABS case SOFTY 2 comes comptefe with a memb supuly cabie and 24 -pin d.a.1. plug for connection to your prototyce system and TV ieas. FULLY BUILT ANO TESTEO - ONLY $\$ 18 \mathrm{BE} .00$

THE PERFECT AID FOR "LAZYITIS"

24 HOUR CLOCK/APPLIANCE TIMER KIT Smiscrims any acoliance up to qtW Crscook Beble RH
 $0_{0} 5^{\circ}$ Lito (501131 $\times 71 \mathrm{~mm}$)
$\underset{\substack{\text { E14.90 } \\ \text { E17 }}}{ }$

add 350 postage a packing - ibs VaT to tors iniace, PCes ond full insanuctions. And E1.75 (Eurodel, Ca.so luseur.orel to oalo. Send S.A.E. for futther STOCK DETAILS -
OPEN

FAST SERVICE•TOP QUALITY•LOW LOW PRICES

No circuit is complete without a call to ELIECTRONICS ${ }^{\text {En }}$ 11 Boston Road

TKEOWPDUEIT ETIT
 ALL GOOOS SUPPLIED
 ARE GUARANTEEO BRAND NEW ANO TOMAKER'S SPECIFICATION. CAPACITORS

YOU CAN'T (REMOTEI CONTROL YOURSELF

DISPLAYS

Dos ovit comper,	Frape criome tany morounsuer 20 月
	Name comies inno
\cdots	
 mony mo whileo culbul curare, :o 	Mact-omed intre mas
	inder ore
	mat $-4 \mathrm{~mm} k \mathrm{~km}$
A Aoned atre res wore when comen 	
	MM10-16

LEDs

TRANSISTORS

REMOTE CONTROL. COMPONENTS

50

Wiph) wishon mom momy

74 LSTTL

VMOS

敦

Ther
CMOS

FOR PAICE LIST SEND SAE

H $=$

Congra oje everinas ?no se git
Nats) ary
28.

Kl901

RESISTORS
Wh susisson 10 vam ro mam
Presels

polyester

Ceramic - 50 V

Polystyrene 160 V d.c.
1006
Electrolytic

11 Boston Road London W7 3SJ

SOUND EFFECTS 1: BOMB DROP

One of the attractions of the more sophisticated video games seen in 'fun' arcades these days is the realistic array of sound effects that go with the action - gunshots, bomb whistles and explosions, etc. Make some yourself with just one IC. Design by Phil Wait.

Those 'cannon shots' and explosions that go with the popular 'Space Invaders' video games and its variants add a measure of interest, feedback and stimulation to the action in which you participate on screen. Those sounds are electronically synthesised - that is, they consist of a complex mixture of waveforms that make up the required sound.

A 'bomb drop and explosion' is a remarkably complex sound when analysed carefuly. Looking at it simply, there is a descending tone followed by a burst of noise that dies away in intensity. The descending tone starts at quite a high pitch and is not a 'pure' tone (ie a sine wave). The explosion is a burst of noise that commences suddenly and dies away slowly in a recognisable way (usually exponentially). While it is possible to electronically produce very nearly an exact replica of a bomb drop and explosion, some compromises are acceptable to reduce the complexity and cost of the task and yet produce a recognisable replica of the sound.

To produce such sound using conventional components transistors, diodes, op-amps, resistors and capacitors - would require a whole legion of components. Fortunately, the IC maufacturers can come to our rescue here and much of the circuitry can be incorporated into a complex integrated circuit requiring the addition of a minimum of external components and the appropriate interconnections to synthesise the required sound. Generating a wide variety of sounds fortunately requires only a limited number of functional blocks, such as: a noise generator, voltage controlled oscillators, multivibrators, envelope generators (a sort of modulator), mixers and amplifiers. Tim Orr discusses such circuitry elsewhere in this issue.

Texas Instruments, the giant USbased component and equipment
manufacturer, have designed a series of complex function ICs for various applications and among them is the SN76488 Complex Sound Generator. This chip contains both linear and digital circuitry and is intended for use in applications requiring audio feedback to the user - video games, pinball, alarms, toys, etc, or industrial indicators, feedback controls and the like. Power consumption is quite low, allowing battery operation, and only a single supply rail is required.

The SN76488 is contained in a 28 -pin package and can be purchased for less than $£ 5$. It is quite a versatile chip, but we have chosen to describe how to obtain only two sound effects, these being a bomb drop and explosion, and a steam train and whistle. The former is described here; the latter appears on page 118.

Construction

Both the projects described use the one PCB design. Only the required components are assembled into the board according to each overlay diagram to obtain the required sound generator. Naturally enough, the polarity of the IC should be noted as well as the polarity of electrolytic and tantalum capacitors used. Commence construction by assembling the passive components, followed by the IC. This is not a CMOS device and no special care is required, apart from being careful not to bend any pins under the device when inserting it. If you wish, a socket may be used for the IC. This way, you can assemble both projects and purchase only one IC, swapping between the boards as you need to use them!

Fig. 1 Circuit diagram of the Bomb Drop and Explosion sound effects board.

Wiring to the switches, the speaker and the supply should be attached last.

The unit may be mounted in any convenient-sized box and the speaker mounted on the front. Alternatively, it may be wired into an existing piece of equipment. We'll have to leave these arrangements up to you.

Projectile Project

This produces a 'bomb drop and explosion' sound at the press of a button. Alternatively, the pushbutton PB1 could be replaced by a pair of relay contacts operated by a piece of equipment or a transistor (emitter to pin 9 , collector to other side of PB1) that is turned on by a logic high applied to its base via a resistor. This project is one of the most complex, using almost every functional block within the SN76488. Varying R3 and C3 a little will vary the pitch range of the 'bomb drop' (desending whistle), while varying R4 or C4 a little will alter the characteristics of the explosion. Note that it is generally easier to 'fine tune' things by varying the resistor values. The duration of the event can be varied by changing the value of either C1 or R1 and the decay of the explosion can be changed by varying R5 (varying C5 produces quite gross changes in the decay period).

Watch that you insert the link on the PCB in this one, located at the 'notch' end of the IC.

PARTS LIST

Resistors (all $1 / 1 \mathrm{~W}, 5 \%$)	
R1,2,5	1 MO
R3	470 k
R4	20 k

Capacitors
C1,5 4 u 716 V PCB electrolytic
C2 22 u 16 V tantalum
C3 $\quad 4 \mathrm{n} 7$ ceramic
C4 470p ceramic
C6 $\quad 10 \mathrm{n}$ ceramic
Semiconductors
IC1 SN76488 (see Buylines)
Miscellaneous
PB1 SPST push-button switch PCB (see Buylines); 50 mm diameter 8 ohm speaker; PP3 battery and clip.

BUYLINES

Very few components and very few supply problems with this one. The SN76488 is an improved version of the Texas SN76477 and 'can be obtained from Technomatic. The PCB will cost you £1.80 from our PCB Service; see page 44 for details.

Fig. 2 Component overlay for the Bomb Drop board.

HOW IT WORKS

Abstract

This unit employs most of the function blocks in the SN76488. The SLF provides a linearly increasing voltage waveform, or ramp, to the VCO, taking several seconds for the ramp voltage to rise from zero to maximum value. The causes the VCO to produce a tone which 'glides' down in pitch, making the 'bomb drop' effect. The explosion is generated by the Noise Generatorifilter and the Envelope Generator. It starts with a burst of noise, which dies away in intensity exponentially in a few seconds.

The whole sequence is triggered by operating the pushbutton, P81. This applies a high (+5 V) to the input of the System inhibit block, pin 9. This in turn triggers the One Shot and the Envelope Generator. At the commencement of the One Shot timing period, the One Shot triggers the SLF HIJLO Sync, starting thes SLF, and the VCO does its things. At the end of the One Shot timing period the Envelope Select Logic becomes operative, the SLF is disabled and the

Envelope Generator commences to do its thing. The Mixer selects the VCO output at the start of the One Shot timing period and the Noise Generator/Filter output at the end of the One Shot timing period. Thus the two sounds are switched through to the audio output stage in sequence, the Envelope Generator modifying the noise so that it dies away, the time it takes to do so being controlled by the time constant of R5, C5.

The starting pitch of the VCO is determined by R3 and C3, the rate of rise of the voltage ramp produced by the SLF is determined by C2 and R2, while the One Shot timing period is determined by the time constant of C1 and R1. The frequency characferistics of the broad-band noise produced by the Noise Generator are modified by R4 and C4 connected to the noise filter control pins (5 and 6).

Audio output is coupled to the loudspeaker via C7, a 100uF electrolytic capacitor.

THE 1982 CAEB WORLD BEATERS

AND.

BY TEMPUS

Our prices are the lowest authorised dealers are allowed to advertise; lower prices $=$ no Casio guarantee (E\&OE). Nevertheless we can beat any lower price by 5\%*. We have scanned last month's magazine for you and marked the lowest price we could find against a star \boldsymbol{x}.

Time and suro catender. Alarm and hourty chimes
Countdown oleirm timer whth repeat memory function. Professional $1 / 100$ second stopwatch Time in oweyy on diaplery, repardless of display mode Amazing 5 vear
tithum battery life. Superior to the W- 260 .

50 METAE WATER RESISTANT

AA 82W. LCD Anulog ibpioy of hours and minutes, with sync. aigital seconds. Dual time. Oigital disgley of time Countdown alarm timer with smazing "S:arburst displuyr. Mat hourty chimes. Long lite littium battery.
W81. The seme module and functions to the

12124 hour ume and outo calender. Aarm and hourly chimes. Profestiond $1 / 100$ second stopwatch to 12 his. Compact and sime cases, acoror. Bmen thich Lithum:

OTHER MODELS

CA 85'901. Tine and outo calendar. Canculator. Alarm and hourty chimas. Stopwatch. Dual pime. DIGITAL SPACE INVADER gomt
J100. Sirnty to the CA-85 but without duat time and with -JOGGING COMPUTER instadd of the game function. GM.10. Alamn chrono with SPACE INTEACEPTOR game
AA 85. As AA-92W bul in chrome. nom W/A case $02 \%_{5}$ Fer Alarm chronogroph. Resin case and Fitao $\mathrm{flo} \mathrm{\%}$ M.3 modes

IW- Time/cete Hopwatch. Resin, S/S trim. . 1495 IW HoOC. 6 dipis. Time diate, $1 / 100$ second stopmatch 100 m Water Rashatent $5 / 5 \mathrm{case}$ mith resin strag 618.96 Providing the aduemisar has stocke and wo do not all

- lose.
Analog Display
C Display of hours end minutes - Ligiter displey
- Loces time, 12 or 24 hour
Dundimo 12 a 24 is
- Alarm time displar
- Counidown alarm timer
With memory function
- Proferstiona $1 / 100$ cona stopwatch.
Hourty time signad. Claily alarmdectronic buzzar or 3 electabd netodes. Repid forwerd/bect Ting Ueuel Price $\mathrm{c79}$ os Ueual Price Cz9.95
\&27.95
CALCULATORS

OUR BEST SELLING SCIENTIFIC FX-3e00P
10 dights, 61 scientific functions including integrals and
Regressional anstytia, Up to 38 program slaps, 2 progroms and Waller size. 1,300 hour betrery. Usuis Price 20.95 Price wisowhere
t $£ 21.95$

FX-180P. Mand held version withour hypertoling

[8.95; FX. 7 c10.96; FX- 62 £12.95; FX- 100 \&
CALCULATING ALARM CLOCKS

Clock, slarm. hourty chimes. caender. Predictions of ousiness fortunas ineoth. gambling investment persoms and lowa), of the compatidility beween two sons on any oven day. Usual Price £ 16.95

$$
\text { Price elsewhero } \mathbf{f 1 5 . 9 6}
$$

8Gin15 Boxing garne, elarm clock, caculator. Usual Prioe
〔16.95 Pitce evewtiere $£ 1595$
ML.75. 12 melody azams, clock. calculstor 14.95 ML.120. Wallat vertion of sbove 6149

ML $2000 £ 2296$. UC- 3000 E27.95 UC 3601386 f19 95

BASIC CALCULATORS

MG-7 Compendium of Games
gemin of chance, a game to ter
rove reactions and 8 geme to tax

SYMPHONIC ALARM CLOCK MA1
f95 \qquad
Mozer No .
or Buzzer. Mouty chimes Snoors fecility i) $\times 4 \mathrm{~K} \times 3$

VIVIO REALISN

Sound is the ontervon whan puiging a musical instiument. Our CASIOTONE keyboards are ovt-seling al others because of their supert repeoduction, queltity and legendery reliabdity. GENERAL SPECIFICATION
al Camotone keyboards rexcept VL-Tone) are poryphonic an up to 8 notes can be played simutaneousty. They ell hase an integre amplifier and loudspapher, plus on output ject for headphones and external amplifier or recorder.

25 inatpuments over 4 octoves. Four voice mamory function with puth button solection. Vibesato and sustain switches. 16 Atyithm socomparimentes with filtin variation Caseo Auto Chord for one linger or auto plaving of mapor, minor and Tih chorde with bass. Tien functions controts including piten. AC only- $4318 \times 303 / 8 \times 113 / 4$. Weight 17.Eios

Son of wuccess . . . The two harpalichords demonstrate the Casiotones taimit for stavtiving orvetel ctear tones. Even more impressive to ind clov. Malody Maker|
49 instruments over 4 octaves 4 soice memory function with push burton solection. 3 vibrato sattings and sustain. Pitoh control. O/P jacke. AC onty. 3%. $34 \% \times 11 \%$ " 16.8 bs .
 ONLY £225
5 instruments over actaves. Fou vace momary lunction with push button selection. 8uilt in vibrato and sussain. Pitch control. AC only. $303 / 8 \times 113 / 4 \times 45 \mathrm{r} 8$. Werght 16 8ibs

VLTONE [VL-1)
Monophonic
 ONLY £35.95
VL-1 records and olavs back Up to 100 notos as a mhody, with memary break-in. ONE KEY PLAY OF AUTO PLAY of 5 inatrumonts, or create your own unique sounds whth A.D.SA, 10 buitr-in AUTO RHYTHMS and TEMPO CONTROS. LCO digitel reedout of notes and tempo. Abc With samg book, $1 \% \times 111 / 4 \times 3^{3}$.

Price includes VAT and P\&P. Send cheques, PO, or phone your ACCESS, VISA or B'CARD number to:

LEADING CASIO SPECIALISTS
Dept. ETI
38 Burleight Streer, Cambridge CB1 1DG
Telephone: 0223 3/2866

THE SENSATION OF THE JAPANESE MUSIC FAIR

Designed by a genius. Controlled by a computer. Programmed by a laser. Played by amateurs professionally and by professionals supertlys

THE NEW CASIOTONE 701

what is going to become THE instrument of 1982 . . . probably the best instructive keyboard I have come across. But it is also a top line musical instrument capable of satistying even the most proficient musician. . . I suggest you place your orders now. (Keyboard \& Music Player).
opens in music making for all the family ... one of the most advanced music teaching aids so far developed ... this instrument is going to be one of the biggest sellers of

Complete Programmable Polyphonic Keyboard (RRP £555)

ONLY £495

* Input an entire piece of music, specially scored in bar code and read by a light pen attached to the instrument.
Alternatively, program your own melodies (max, 345 steps), chords (max. 201 steps) and tempo via the keyboard, into the extensive memory, (up to 5 minutes playing or more) with full editing facilities.
* 3-WAY PLAYBACK.

Automatic playback of the entire piece: melody, chord, bass and rhythm with arpeggio. Follow the melody as it plays via lamps above each individual key.
2. Manual melody playing, guided by the keyboard lamps, with automatic bass and thythm accompa PiAY

- ONE KEY PLAY facility, allows the melody line to be played, simply by stroking one key.

Non-players can become Instant Musicians!

* The 5 octave, 8 -note polyphonic keyboard can be split into 2 E 3 octaves and a different voice can be selected for the accompaniment.
* 20 "breathtakingly clear and brigh1" pre-set instruments and voices.
* 3-way chord section: - Fingered, Memory and Casiochord auto accompaniment.
* 16 riythm accompaniments with "fill in" variation and two percussion effect buttons. Start/Stop, Synchro, Tempo and Balance controls. Variable Vibrato and Sustain. 1/p 5 o/p jacks. Integral amplifier/speaker. Music book. AC only. Dims: $5 \times 373 / 4 \times 134 / 16^{\prime \prime}$ Optional extras: Foot pedals. Hard case.

FREE
CREDIT. 0\% interest, $1 / 2$ deposit. 12 monthly repayments. (Not MT-31. T-40 or VL-1), or reduced rates for longer period. keyboard purchase over $£ 90$.

[^5]
£100 COMPUTER

"Can do the job of a micro costing four times as much"I Personal Computer World
CASIO FX-702P POCKET COMPUTER

ONLY £99.95 Manufacturer's price reduction 1/2/821
Plus FREE MiCROL Professional Programming Pack (RRP 99.951
Or we will beat any lower advertised price by 5\%
Eat your hearts out, H-P, Sharp and Texas!
The Casio FX.702P features: The biggest program storage capacity fup to 1680 steps), the biggest data storage capacity lup to 226 memoriesl, and the widest range of math. science and statistics functions 155 in all, including Regression and Correlation), the most powerful waitingl Suroutines: 10 levels, FOR. NEXT and and trace modes. 240 hours battery life. $17 \times 165 \times 82 \mathrm{~mm}$.
FA-2. Cassette adaptor for bulk storage of programs and data, with powerful fife name and remote control options. ONLY $£ 19.95$.

FP.10. Permanant hàrd copy printer; full 20 character line width, fast 40 character per second print speed. 2.600 lines per roll. (Low cost replacement rolls, $£ 2.50$ for five). 6,000 to 9,600 lines battery life. Rechargeable battery pack, NP-4M, printes 13,000 lines (E6.90), Mains adaptor, AD-4150, 65

> FP. 10 Printer ONLY $£ 44.95$ Plus FREE Pack worth $\mathrm{f5}$, or we will beat any lower price by 5%

SYSTEM PRICES - Savo up to $\mathbf{E 5 0}$ on RRP

PACK A: FX-702P - MiCROL Professional Programming Pack PACK B: FX-702P + FA. 2 cassette interface + PPP + PROCOS
PACK C: $F X-702 P$ + FP. $702 P$ +FP-10Printer $+F A-2+P P P ~+~ P R O C O S$

MiCROL PROCOS for the 702P. Exclusive to TEMPUS

Now you can create powerful, relable programs in just minutes with this advanced integrated operating system, even if you have never programmed a computer beforel "Visicalc-type" system answers "what if" questions and analyses trends. On ready-to-run cassette, with user manual.

CASIO FX-602P The World's Fastest Programmable?

* LCD aipha/numenc (dot matrix)
* Variable input from 32 program steps with 88 memories, to 512 steps with 22 mamories.
* Memory and program retention
when switched off
* Up to 10 pairs unconditional jumps
- Condition

Conditional jumps and count jumps. Indirect addressing. Manual jumo

* Up to 9 subroutines, up to 9 levels.
* 50 scientific functions, all usable in
* PAM \{Algebraic) with 33 brackets a 11 levels.
* Program and data storage on cassetr tape using optional FA-2 remote control adaptor, £19.95
* Compatible with the FX-501P and

FX-502P.
$* \quad 9.6 \times 71 \times 149.2 \mathrm{~mm} .100 \mathrm{~g}$.
ONLY £74.95

Plus FREE MiCROL Professional Programming Pack (RRP f9.951
Oi we will beat any lower advertised price by 5\%

READ/WRITE

Dear Mr. Ron Harris Sir,
We seem to have been hearing quite a bit about System A recently, technically it looks a rather nice amplifier. However, it's difficult to tell how good commercially-produced units are with only limited information available about them. So what about the other end of the problem - what does System A sound like, compared with other amplifiers? Unfortunately, I can't see any of the hifi mags doing a review of it, so - how about you doing one (totally unbiased, of course) please, pretty please? Come on, put your reputation on the line!

Yours grovellingly,
M.R. Barrett,

Hove.
Certainly not. Someone might chop it off!

System A has a comparable sound to any of the more highly regarded
commercial units. Listening tests we have conducted over the months since the creature's completion, have shown it (the power amps) to have a more detailed and open midrange/top than ANY we have compared it to. The top commercial boxes - Threshold, Monogram, Carver, etc can exhibit a better bass control than the System A however, but as to whether or not that is important for your particular application (ie loudspeaker), I could not say (because you haven't told me what speakers you've got, have you?).

Anyone contemplating building a System A is welcome to write to us for advice on speaker matching.

Dear Sir,

I read with interest the articles in the July and August editions of ETI describing the construction of the System A Audio Amplifier, as I have been on the lookout for a high-quality
class A amplifier design for some time My particular interest in class A stems from the fact that lown a pair of Lowther loudspeakers - these units are almost ridiculously sensitive, requiring only some 10 W or so of input to produce the equivalent sound output of a conventional 100 W system. Given this sensitivity, most high quality class $A B$ amps are only ticking over when driving a pair of Lowthers, and hence are working at the highest distortion end of their operating range. Hence the interest in class A, where no penalty is paid for operating the amplifier at low levels of power output. However, before going ahead and building the System A, I would like the answers to a couple of questions. Firstly, the July article heralds System A as "quite simply the best, designed to out-perform even commercial equipment." There is, however, no objective assessment or comparison to back up this claim, and before laying out the not insignificant construction cost, I would like to see the amplifier reviewed, preferably alongside its "competition" in the commercial amplifier field. Is this a possibility?

Secondly, the high power output of the System A seems more than a slight degree of overkill in the context of my

It's true! Continuing our special offer (while stocks last) means there's still nearly $£ 5.00$ off the price of 'Speechtime' - the first ever easy-to-build speaking clock kit. 'Speechtime's combination of electronics and quartz technology plus clear instruction manual make it fun to build and fun to own - equally suitable for beginner or expert
Speechtime also makes a great gift to build for someone else. Look at these 'plus' features:

- Accurate to a minute a year - Adjustable voice pitch
- Pocket size - approx. 5in. $\times 2 \frac{1}{2}$ in. $\times 1 \mathrm{in}$.
- Grained stainless-steel case
- Useful in the home or office

Silicon Speech Systems ξ^{5}
(A Powertran Subsidiary)

PORTWAY INOUSTRIAL ESTATE, ANDOVER, HANTS., SP10 3NM
EASY ORDERING BY TELEPHONE - RING ANDOVER (0264) 64455 AND GIVE YOUR ACCESS OR BARCLAYCARD NUMBER

RELAYS BY (EYSWITCH 10A 2-Pole C/O 240V Coil. ONLY 80p 2 for $\mathbf{\$ 1 . 5 0}$ 5 for $£ 3.50$	LOW-COST, RUGGED TEMPERATURE CONTROL high ovality TEMP. GAUGE $0^{3}-120^{\circ} \mathrm{C}$ Remote sensor on 38' capillary, panel mounting dial 55 mm . dia. ONLY £1.85
$\begin{aligned} & \text { RUBBER GROMMETS } 1 / 4 \text { " } 10 \\ & \text { for 20p } \\ & \text { STRANRELIEF SLEEVE } \\ & \text { 10 for } 30 \text { p } \end{aligned}$	
USED EQUIPMENT Ex-P.O. Multimeters in leather case. AC/DC Volts. DC current, ohms. Absolute Bargain Es	16A 240V RANCO THERMOSTAT Wide control range (iow roort temp. to over boling point) Sensor on 22" capialiary. $\{2.30$. inciuding conrrol knob
	RANCO THERMAL CUT-OUT $100^{\circ} \mathrm{C}$ 15 A 240 V . Sensing coil on 41 in . capilliary panel mounting with reset button £1.20
Transistorised Insulation Tester and four decade resistance bridge with four ranges. Invalualste piece of test gear. In case with carrviry handle. Uses one PP9 batt: $\mathbf{E 1 5} 000+\mathbf{E} 2$ PqP	BUY ONE EACH OF ABOVE
	LATCHING RELAY WITH MANUAL RESET
Pecent Style P.O. Telephones $\mathbf{E 4 . 7 5 + \mathbf { ~ } 1 . 8 0 \text { P\&P }}$ 2 for $£ 9+£ 2.50 .5$ for $£ 20+£ 5$	3 POLES BREAK WHEN ENERGISED ONLY E1.00
Robust Melal Caturets apprux. $12^{\prime \prime} \times 6^{\prime \prime} \times 5$ $\mathbf{£ 3 . 5 0}+\mathbf{~} \mathbf{1 1 . 8 0} \mathbf{P q} \mathbf{P}$	Rubber Cabinet reet 4 ige da 4 small for 10 p High quality plated metal terminal posis only 200
$\begin{aligned} & 10 \text { Assurled P.O. Retays } \\ & £ 3.00+£ 1.50 \text { P6p } \end{aligned}$	Bellung Lex 4 nuti plugs with circuid siftery coniact 10 p
5 Digit Counters 48 V coil. resetable	VERY SPECIAL OFFERS Rotary Wafer switches 5 p $8 \mathrm{~W}-\mathbf{£ 1 . 1 0}$ 2p 9W-50p Spring-return lever 5p switch SDT 50p Tag-ended electrolytic 4700. $63 \vee 75 p$
FREE on request - Leatlet D.I.Y. Telephone Systems and Automatic Exchange Design	
LE.M. SERVICES 239 RUGBY RDAD LEAMINGTON SPA CV32 6DYWARWICKSHIRE TEL: 092630622 FOR QUANTITY DISCOUNTS ETC. ALL ITEMS - MONEY BACK IF NOT DELIGHTEO.	ADD 50p P\&P ORDERS OVER E7.50 POST FREE
	OISCOUNTS ETC not delighteo.

Lowthers. Is it reasonable, therefore, to construct a lower power version of the power amp section? It so, what modifications should be made to the present design?
Yours sincerely.
T. Jeffree,

Milton Keynes
Taking the two points you raise, in order, first we feel it is inappropriate for us to review our own product against anyone else's. (Would you believe us anyway?) 'Objective' would not be an appropriate word to apply to such a test.

System A has aroused a great deal of interest and we know that a large number of sets have been completed. There is probably, however, a larger number of people still who would tackle the project, if only they could get to hear one first! Accordingly any owners of a System A who would be prepared to let a fellow ETI reader have a listen, can write to us and we'll run the letters herein. Secondly the high power output of the amp will not be wasted, even on your Lowthers, it will simply provide you with more headroom - and hence a cleaner sound with better bass output on transients.

Dear Mr Harris,

I am writing for advice on the purchase of an amplifier and speakers combination. I list my present system below.

Home-brew 10 W amp
Ferguson (?) 3way speakers
(actually 2-way, 3-cone)
Realistic 31-987 Graphic Equaliser
Hitachi D. 225 Cassette Deck
Pioneer PL-300 turntable (the latest addition!)

The amplifier now ceases to be of any great use in terms of power, although quality is more than adequate (based on Bi-Pak AL30A) I have considered NAD3020, Pioneer SA410, and also the "Audiophile" amp, the MOSFE T amps from IW Rimmer, and the Linsley-Hood kit from Powertran. The last three give me extra headroom. and I would like to teed them into AR18 speakers from Acoustic Research.

Basically, I would like your opinion on the Linsley Hood 75 De Luxe/AR18 combination, plus any comments on the other "possibles".

A/so, the Pioneer PL 300 I have just bought is certainly the best turntable I
have heard at the price ($£ 79.95$), and I can't help wondering why it gets so little attention. Perhaps you can fill me in?

Thank you for your valuable time, D. Crary, IIford, Essex

PS When is Felicity Kendall to return to our screens?

The AR18 is a fine unit and if you like the sound of them, go ahead and buy yourself a pair. You haver't named your cartridge so l've no idea if it matches.

Ditch the equaliser, with decent speakers and amp, you wor't need it!

As to amplifiers, from the units you mention the Linsley Hood power amps are the best bet, but the preamp of that unit is getting a bit long in the tooth now, although the sound quality is still very good by any standards. Have a listen to the Crimson CK1010/1100 setup befíore you decide, however, as it is in your price range and offers a highquality alternative.

The Pioneer PL300 I have not been able to listen to at any length and must thus refrain from commenting upon!

In addition to the above a wide range of compethively priced electronic components is stocked. Please telephone your specific requirements.

- V.A.T. nust be added on all items. OShop hours 9.5.30 (Weds. 9 1) oex-stock delivery on all items. Units on demonstration, callers welcome. - Post and packing charge 50p per order. © S.A.E. with all enquiries please.

RISCOMP LIMITED

Dept. E.T.I.5.
21 Duke Street,
Princes Risborough, Bucks.
Tel: Princes Risborough (084 44) 6326

TECHNOMATIC

"TECHNOMATIC" compliments "ETI" on its 10th anniversary and takes this opportunity to announce some facts about "TECHNOMATIC". ETI readers and our customers, have seen, over a number of years, our advertisements containing product listings etc., but no details on our policies or capabilities. We now rectify this situation for sake of completeness.

Our aim is to supply prime grade components which are fully guaranteed and backed by manufacturer/distributor. We stress the fact that we are totally quality and value conscious and handle components from major manufacturers.

Our volume buying enables us to obtain preferential prices and the savings are passed onto the customers in the form of low prices - sometimes lower than tradel

As a matter of routine, we provide "by return of post" service, and all orders received by 3.30 pm are despached on the same day. Our in depth stock holdings enable us to do this. Why not test us on your next order?

And some more facts:

LONDON'S No 1 of micro processors in LONDON

We are fully authorised distributors to the hobbyist market for TEXAS INSTRUMENTS, World's No 1 semi conductor manufacturer.

We are a major distributor of ACORN COMPUTERS who manufacture ATOM, ECONET and BBC microcomputers. Other dealerships include VERO, OK Machine Tool, GSC, ILP, and AP PRODUCTS.

We carry large stocks of MICROS, MEMORIES, TTLs, CMOS, LINEARS, OPTO-Devices, TRANSISTORS and other semi-conductors. We can normally offer ex-stock deliveries to volume buyers at special prices.

Our connector range includes: TI Sockets, IDC connectors, Euro connectors, Min-D connectors, Juniper Leads and a variety of Edge connectors.

We also carry in stock EPROM programming equipment including Softys, ganged programmers, erasers etc.

GET THE BEST VALUE FOR YOUR MONEY

TECHNOMATIC LIMITED

15/17 BURNLEY ROAD LONDON NW10 1ED
305 EDGEWARE ROAD
Tel 01-452 1500/4506597
LONDON W2
Tel 01-7230233
Telex 922800

LONDON'S No 1 RETAIL COMPONENT OUTLET

INSTRUMENT PROBE

This probe will allow you to make CRO or frequency meter/timer measurements on high impedance circuits with waveforms having rise times as fast as three or four nanoseconds. Cost is well below commercial equivalents. Design by Jonathan Scott.

Most readers would be aware that, when taking a measurement on electronic circuitry, the input impedance of the measuring instrument must be much greater than the impedance of the circuit to which it is attached, otherwise the accurary of the measurement suffers. The input impedance of the majority of oscilloscopes is generally 1 M 0 with a parallel capacitance of between 20pF and 40 pF . For a wide variety of applications this is perfectly adequate and will suffice for measurements of frequencies up to 5 MHz or so. The input impedance of the CRO falls with increasing frequency owing to the falling reactance of the input capacitance. For example, a capacitance of 30 pF - which may be made up of direct input capacitance plus cable capacitance - has a reactance of only 500 ohms at 10 MHz . The input capacitance also affects the rise time of the input - that is, the speed at which a 'step' input will rise from the 10% amplitude value to the 90% amplitude value.

The input impedance of an oscilloscope can be effectively raised, and the capacitance decreased, by using a 'stepdown' probe. For example, a 'x10' probe will generally have an input impedance of 10 M and a parallel capacitance of between 5 pF and 15 pF . While this improves the input impedance there are two trade-offs. Firstly, unless elaborate (and expensive) compensation is employed, the rise time is degraded, and secondiy, maximum sensitivity is decreased by a factor of 10. As Murphy's law would have it, your CRO will run out of grunt. just when you need it most.

Taking the situation with digital counter/timers, we find similar problems. Those that operate beyond 30 MHz or 50 MHz generally employ a prescaler with an input impedance of 50 ohms - which is perfectly all right if you're working on low impedance circuits and/or with high signal levels. But there are those occasions when you need a high impedance input and a fast (high frequency) rise time. As with the CRO, this is where your

counter/timer runs out of grunt.
It's times like these you need this project; a $\times 1$ active instrument probe using a special buffer IC with an input impedance of typically 100,000 megohms! - that's 10^{11} ohms - a very low input capacitance of around four to five picofarads, a fast rise time (around three nanoseconds) and a bandwidth of 100 MHz . Output impedance is around 50 ohms and the device is capable of driving capacitive loads up to several thousand picofarads. Thus it is eminently suited for use with high speed, wide bandwidth oscilloscopes and digital frequency meter/timers at frequencies up to 100 MHz . Output impedance is close to 50 ohms and it is thus suited tc drive both high impedance instrument inputs and low impedance inputs (which are generally 50 ohms).

Design

It's all done inside a special IC an LH0033CG from National Semiconductors. This is described as a 'fast buffer amplifier'. (It has a companion designated $\mathrm{LHOO63}$, described as a 'damn fast buffer amplifier!). The LH0033 is a directcoupled FET-input voltage followerbuffer (gain $\simeq 1$) designed to provide high current drive at frequencies from $D C$ to over 100 MHz It will provide $\pm 10 \mathrm{~mA}$ into 1 kO loads ($\pm 100 \mathrm{~mA}$ peak) at slew rates up to $1500 \mathrm{~V} / \mathrm{US}$, and the chip exhibits excellent phase linearity up to 20 MHz No offset voltage adjustment is required as the unit is constructed using specially selected FETs and is laser-trimmed during construction. Input is directly to the gate of a

- AXIAL LEAD SOLID TANTALUM

Fig. 1 Circuit diagram for the probe. C2 and C4 need to be ceramic Fig. 1 Circuit diagram for the probe. C2 and C4 need to be 10 n ceramic chip or 1 n0 ceramic disc or plate types. C5 and C6 need only be disc or plate ceramic. See 'Bypassing' over the page.
junction FET, operated as a source follower, driving a complementary output pair of bipolar transistors.

Regulated plus and minus supplies of 15 V each provide power to the IC. Low-power three-terminal regulators are used to keep the unit compact. An external unregulated supply of between 18 and 22 V at around 50 mA is required to power the probe

The supply pins on the IC need to be well bypassed over a wide frequency range so that the IC can maintain its characteristics, and the construction has been specially arranged to achieve this. Axial lead solid tantalum capacitors are used to bypass the IC's supply pins at the lower frequencies, while low inductance ceramic capacitors are employed as bypasses for the higher frequencies. A double-sided fibreglass PCB is used to preserve the high frequency response and the high input impedance, and the layout is arranged to permit direct connection to the probe tip and provide low input capacitance

However, the presence of the PCB substrate will degrade the input impedance, surprisingly enough, and you can drill out the area of board immediately beneath pin 5 of the IC and solder the pin directly to the probe tip. For those who wish to go 'all the way' (as Frank Sinatra sings), the plastic insulation of the probe tip can be replaced with a similar piece of Teflon - if you can afford it and have access to a lathe

The maximum inpul voltage permissible, when driving a high impedance load, is plus or minus 15 V . When driving a 50 ohm load, maximum input voltage permissible is only plus or minus 10 V (limited by maximum output current). No input protection has been included. However, if you are only working with circuits where voltages are no greater than about 1 V peak-to-peak, protection can be added by putting two diodes back-to-back in parallel with the input, along with a 10 M resistor. The maximunt input voltage figures include any DC voltages present, plus the superimposed signal voltage.

At this stage it is only fair to tell you that the LH0033CG is an expensive device (by comparison). But compare the total cost of this probe to a similar commercially-made type and you won't catch your breath a second time!

Construction

The project is constructed on a small double-sided fibreglass PCB with

BYPASSING

Supply lead bypassing is important in order that the LH0033 can operate correctly over the full bandwidth from DC to 100 MHz . To ensure this, the bypassing has been specially arranged and the techniques employed are probably unfamiliar to many readers.

The output circuit signal return path for the IC is via the ground and the two supply rails. Any significant impedance in series with this path (or paths) will subtract signal from the output load. Thus, the supply rail bypassing has to present an impedance which is a fraction (like one-tenth or belter) that of the minimum output load impedance. Here, the minimum output load is about 100 ohms ($R 1+50$ ohms instrument input impedance) and the supply bypassing impedance should ideally be less than $\mathbf{1 0}$ ohms across the frequency range.

The bypassing on each supply rail to the IC leads here takes advantage of the characteristics of three separate components to cover three sections of the frequency range.

From DC to around 100 kHz , each three-terminal regulator (IC2, IC3) has an output impedance well below one ohm, rising to four or five ohms at 1 MHz , as shown in Fig. 1. The two tantalum capacitors, C1 and C3, then take over.

Solid tantalum capacitors have a characteristic impedance that falls with frequency according to its value, which then 'flattens out' in the region around $500 \mathrm{kHz}-1 \mathrm{MHz}$, rising to a few ohms around 10 MHz , as can be seen in Fig. 2. Thus, C1 and C3 serve as effective bypasses across the range from around 100 kHz to around 10 MHz . Axial lead tantalum capacitors were chosen as their construction exhibits the slowest impedance rise following the minimum impedance value.

To provide bypassing over the decade from 10 MHz to 100 MHz , capacitors C 2 and C4 have been specially chosen and positioned on the PCB. For the prototype, 'chip' ceramic capacitors were used. These tiny, 'raked' chips of ceramic with a capacitor embedded in them are probably the most effective bypass capacitors made. The leads and physical construction of all capacitors form an inductance which is

Fig. 1.

effectively in series with the capacitance of the component. The combined effect forms a series resonant circuit, the frequency of which (that is, the self-resonant frequency of the component) is mainly dependent on the length of the connecting leads, the particular construction of the capacitor and the way in which it is mounted. Ceramic chip capacitors, being a tiny block with connecting pads or surfaces on each end, have extremely low values of series inductance and thus very high self-resonant frequencies - see Fig. 4. Now, any value of chip capacitor between 1 n 0 and 10 n can be used for C2 and C4. The self-resonant frequency of a 1 n0 chip capacitor is somewhat above 100 MHz (as per Fig. 4), but that of a 10 n chip is between 40 MHz and 50 MHz . Now, this isn't a problem, for the chip's impedance falls with frequency as usual until near the self-resonant frequency where it falls rapidly, reaching a minimum at the self-resonant frequency. Above that fre quency its impedance rises again, but is stil low enough for effective bypassing.

Ordinary ceramic disc and plate capacitors behave in much the same way. The self-resonant frequency of a typical 5 mm diameter disc or 5 mm square plate capacitor depends on the lead length, as shown in Fig. 5. Thus, you could use 470 pF or $1000 \mathrm{pF}(1 \mathrm{n0})$ capacitors of this type for C2 and C4, provided you installed them on the underside of the board with absolute minimum lead length.

Fig. 3 Ceramic chip capacitors shown about actual size.

Fig. 4.

Fig. 5.
components mounted on both sides of the board. Commence by soldering in place the components that go on the top side of the board, leaving ICI until last. Note that the positive leads of both C 3 and C 8 are soldered to the groundplane areas on both the top and the bottom sides of the board. Take care with the orientation of the tantalum capacitor, as well as IC2 and IC3. Having done that, solder C2, C4, C5 and C6 to the bottom side of the board. Now you can install IC1. You will have to juggle the legs a little. Push the can as far down on the board as you're able; its base should sit no more than 3 mm from the board.

Now that you have everything in place, check it all. It seems pretty simple, but Murphy's law will ensure that the simplest things have the highest stuff-up rates!

All's well? - now you attach the output coax cable to the underside of the board, plus the DC input and ground (0 V) wires. But - before you do, slip the output end piece of the probe case over the cable and supply wires, push it down about 150 mm or so and then slip the case of the probe case down the wires. This saves slipping them over the other end of the whole business and sliding them all the way to the probe.

The probe tip can be attached and soldered in place last of all. Now you can screw it all together and attach the appropriate plugs to the other end of the cable and supply wires.

With the construction completed, you can power up and try it out. Note that the transformer suggested in our power supply is but one of many suitable types. Any transformer that will deliver at least 26 V AC at a load of about 50 mA will suffice. Alternatively, any dual polarity DC supply having an output between 18 and 22 V at 250 mA will power the probe.

Note

Always take care that you don't exceed the input voltage limitation; LH0033s are expensive.

BUYLINES

Ceramic chip capacitors and solid tantalum axial capacitors are a trifle unusual; however, they are stocked by C.I. Electronics (Action) Ltd, 267 \& 270 Acton Lane, London W 4 5DG. (They also stock the BNC plug should you have any problems there). We will be selling the double-sided board through out PCB Service - the order form is on page 44.

PARTS LIST

Resistors (all $1 / 4 \mathrm{~W}, 5 \%$)	Semiconductors
R1 47R	IC1 LH0033CG
R2, R3 68R	IC2 78L15A
	IC3 791.15A
	D1-D4 1N4001,2,efc.
	(if required)
Capacitors	
C1, C3 34316 V solid tantalum axial leads	Miscellaneous PCB (double-sided fibreglass); RG58U coax
C2, 4, 5, 6 10n ceramic block	cable and BNC plug; $11-$ (if required)
C7, C8 10u 25 V tantalum	240 V to 30 V transformer or similar; op-
C9, C10 470u 35 V electrolytic	tional $10 \mathrm{M} / 1 / 4 \mathrm{~W} 5 \%$ resistor and $2 \times 1 \mathrm{~N} 914$
(if required)	diodes; wire; probe housing.

g. 2 Component overlays for the top of the board (top) and the bottom of the
board (bottom!).

HOW IT WORKS

This instrument probe employs a wideband hybrid voltage follower/buffer IC, the LH0033, with very close to unity gain, that features a very high input impedance and a low output impedance. It requires regulated, well-bypassed supply rails. Two three-terminal low power regulators provide plus-and-minus 15 V supplies from an unregulated input.

The internal circuit of the $\mathbf{1 H} 0033$ is shown below. Basically, it consists of a FET input stage (Q1), operated as a source follower, The other FET, Q4, provides a constant current source for the source bias of Q1, while Q2 and Q3 are connected as diodes and provide bias for the bases of Q5 and Q6. Resistors R1 and R2 are laser trimmed in manufacture so that the IC meets the offset voltage specification. As Q1 has a constant current source load, the input impedance at the gate of Q1 is very low. The output of the source follower drives a complementary pair output stage Q5-Q6. Thus the IC will have a very high in put impedance, a very low output im pedance and a gain very close to unity With appropriate construction employed for the internal devices, the bandwidth over which the device will operate can be made very wide indeed. The -3 dB point for the LH0033 is 100 MHz .

As the device is direct-coupled, DC levels will be maintained between input and output.

Bypassing requirements for the IC's supply leads are explained elsewhere in the article.

To provide regulated plus-and-minus 15 V rails for the IC, two three-terminal regulators are employed, a 78L15A for the positive rail and a 79115A for the negative rail. These can supply up to 100 mA and have a very low output impedance up to
several hundred kilohertz, which is exploited for low frequency bypassing. Each supply rail requires an unregulated input of between 18 V and 22 V . Decoupling of the supply leads provided by R2/C7 on the positive rail and $\mathrm{R} 3 / \mathrm{C} 8$ on the negative rail. The input terminal of each regulator is bypassed to prevent instability.

As the input voltage is limited to a maximum equal to the supply rails (high impedance load), input protection may be added in applications where only low level signals are being examined. As shown in the main circuit, this protection consists of two 1N914 diodes connected back-to-back in parallel with a 10 M resistor across the input. Signals above 1 V peak-to-peak will be clipped, preventing any damage to the IC. If very fast rise time signals are to be examined then better protection for the IC can be obtained by using hot-carrier diodes such as the HP 5082-2800 instead of the 1N914s.

STEREO AMPLIFIER KII

- Featuring latose SGS/ATES TOA 200610 worl output IC's with in built thermal and short circuls protection. - Mullord Steroo Prosmplifier Modute.
 (appron).
- 10*10 Stereo converts to a 20 watt Disco amplifiep To complete you just supply connecting wire and rolter fotures inchude cin input sockels for ceramic cortridne. mikrophone, tepe or tunet. Outputs - tape, sheskers snd hasdoniones. By the prest of o button iz trensforms inio - 20 wats mona cisco amplifier mith twn dock mixing. The kit incordorates a Mullard LP1 183 prosmp mochle. Dius pover amp assem bly kit and madis porier supply. Also fesfures 4 alider level controls, ratary bass and treble controls and 6 push button switches. Silver finish tascia with mateching knobe and contrasting cabiner. Instruction

£16-50

 Supplied FREE vith kit E2.90 p 8 p SPECIFICATIONS Suliable for 4 to B ohm speakers Frequency response $\quad 30 \mathrm{~Hz}-20 \mathrm{KH}$Inpul sensifivity P.U. 150 mV . Aux. 200 mV Tone controls \quad Bors $=1200860 \mathrm{~Hz}$ Distortion 0.1 in typically \& 8 watis $8^{\prime \prime}$ SPEAKER KIT
$8^{\prime \prime}$ SPEAKER KIT Troo $8^{\prime \prime}$ inin cone domestic
 purchassed with smplifiler. Available separotely $\mathbf{C} 5.75$ \& E1. 70 pto.
PRAGTICAL ELECTRONICS CAB

RADIO

KII series ॥
2 WAVE BAND, MW - LW

- Esary to build. - 5 pught button tuninge. Mossern design. - 6 wett output. - Rasdy erched and punchiod PCB. - Incorparates wipprestion cireutis.
All the enectronic combonents to bulld the radio, you Eupoly only the mre and the solder, featured in Practice Elactronick. Features: preset tunimg with 5 push Owlton options, black illuminated tuning scase. The P.E. Travelier has ac wats output neg. pround and incorporates an insegrated circurt outputs stage, a Nullero assembled, and o Berd pretaligned push button tuning unit Suirbbe stointess steel fully rarract.
sbie seribi ficckingl snd spuaker

- 22.00 p\&ip.
pliste kit. E 2.50 pack $+\varepsilon 1.50$ p\&p.
$\square+\infty$
BRDAVDIO
STEREO CAR RADIOBOOSTER
To noost your car radio or radio
cossette to $15 W$, ms. pet channel
$50-5$
- 11.50 pera.

125W HIGH POWER AMP WODULE

кіт: £10-50 виІт: £14-25
 $+£ 1.15 \rho 81 p$
 $+£ 1.15$ pop

The power amp kit th a module for hign power anplicat. tons - disco units, guitar ampilfiert, public address systems and eveen high power domestle systems. The unit is prorected against shorl corcuiting of the lowd and is safe in on open circuit condition, A barge safety margin exists by use of generously fated components, resule, a high pocerered rugged unit. The PC board is back printed, etched and ready to drill for rase of comstruction and the aluminium chessen is preformad and reedy to use Supplied with all parts, circust diagrams and instructions ACCESSORIES: Surtable mains power supply tit with transformer: E 7.50 plus $£ 3.15$ p 8 p .
Surtable LS couping electrolytic: \&1.00 phus 250 p\&p.

Max. output power (RMS): 125 W . Opersting voltspe (DC): 50.80 mak.
Losts: 4. 16 ohms. Sensitivity for 100 watts: 400 mV . 47 K .
Typical T.M.D. 50 watzs. 4 ohms: 0.1%
Gimensions: 205×90 and $190 \times 36 \mathrm{~mm}$.

HH-F SPEAKERS
 ATBARGAN PRICES

GOODMANS TWEETERS

8 ohm woft dome rediator tweet. systems; win 2 etemeni crosi

35 WATT MICRO 2.WAY SPEAKER SYSTEM Unit comprises one 50w 14 " ppp . I Au
solf dome tweter HDIOD, And one $5^{\prime \prime}$ Auctar basstmidrange 350° diver HIF 115 SM . Comolete with 2 Torm impertance. Tote impertance £7.95

P.E.STEREO TUNER KII

This easy 10 build 3 band stereo A BA/FM turner kit is designed in confunction with Precticel Electronics (July 81 issue). For asse of construction and eligmment if incorp. orates three Mullard modules and an I.C. IF. System. FEATURES: VHF, MW, LV Bands, inferstation muting and AFC On VHF, Tuning meter, Two nack prineed PCO's. Rendy made chassis and scale. Aerial: AMt - ferrite rod, FM $=75$ or 300 ohms, Stabalised pover supply with 'C' core mains rensformer, All components supplied are to P.E. struct specification. Front scale size: 80% $x 25^{\prime \prime}$ approx. Complete with diagiom and instruetions

£17.95

 Self assembly simulated wooct cabinet sleeve to sult tuner only. Finish sire: $11 x^{*} x 8 x^{\prime \prime} \pi 3 x^{c}$ £3.50 Pus $£ 1.50$ p\&o.SPECIAL OFFERI TUNEA KIT PLUS
-abeching 1.C. 10 witt per channel Power amp kiz. sullard LP1183 buily pro-amp. suitable for cercomic pich rransformer. Matching ser of 4 slider supply lelt with controls for Dass, vreble and volumes. $£ 21,95$

MOMO MIXER AMP £39.95

50 WATT Sax indivicually muxed inpues for two pick ups ICer. or mag.., tho moving coll microphones and two suxiliapy for tane, euner, orgens. orc, Enght slider controls - fix for isval and two for master bass and trabin, four extran freble controls 6 x, 20 . 4 . for use with 4 to 8 ohm 5 peakers. Altractiva black vin
case with matching fascio sind knoos. Reacy so use.

ALL CALLERS TO: 323 Edgware Rd, London W2. Telephone: 01.7238432.
Open 9.30-5.30pm. Clased all day Thursday RTVC Limited reserve the right to update thelr products without notice.

$=5$
 TV

WIN AN Electronio IGNTIION!

Hands up all those who had trouble start ing their cars during the recent appalling weather. Don't you wish your car was fitted with an electronic ignition to make the most of your battery, as well as increasing the life of your contact breaker and giving you more miles to the gallon into the bargain?

The prize in this competition is a Total Energy Discharge ignition unit designed by Electronize Design, a company with a great deal of experience in
the field. The unit is supplied as a kit of parts and is easy to assemble.

To win this kit you have to answer these two questions:-
(1) The standard ignition circuit, using a coil and contact breaker, has been fitted to virtually all mass produced cars for 60 years. Who designed it? (We'll accept surname only).
(2) In a four-cylinder engine, firing the cylinders in the order 1.2.3-4 would lead to excessive engine vibration. Give one
firing sequence commonly used to overcome this problem.

Write your name, address and answers on the form on page 133 (there's no need to cut up this page) and send it to us by April 30th, 1982. (All right, you can put your hands down now!)

RULES

1. Closing date is Agril 30th 1982 , and all entries postmarked tater than this date will be discounted.
The coupon provided in the magazine mus be ured. Photocopies are NOT acceptable.
2. Employees of $A S P$ and their relatives are not eligible for
enter.
3. The judges decision is to be comsidered final and no comespondence will be entered into concerning the

MASHMR FTHCHMOLICS
 $$
\begin{aligned} & \text { IVOWN! } \\ & \text { The PRACHCAL way! } \end{aligned}
$$

This new style course will enable anyone to have a real undersianding of efectronics by a modern, practica and visuat method. No previous
knowledge is required, no maths, and an absolute minimum of theory
You learn the practical way in easy steps mastering all the essentials of your hobby or to start or further a career in electronics or as a selfemployed servicing engineer.
All the training can be carried out in the comfort of your own home and at your own pace. A tutor is available to whom you can write personally at any ilme, for advice or help durling your work. A Certificate is given at the end of every course.
You will do the following:

- Build a modern oscilloscope
- Recognise and handle current elecironic components
Read. draw and understand circuit diagrams
- Carry out 40 experiments on basic
electronic circuits used in modern equipment
- Build and use digital electronic circuits and current solid state 'chips
- Learn how to test and service every type of electronic device used in industry and commerce roday. Servicing of radio, T.V.. $\mathrm{Hi}-\mathrm{Fi}$ and microprocessor/compuier
 equipmeni.

Newdob?NewCareer?NewHobby?Getinto Electronics Now!

IF YOU'VE READ THE LAST TEN YEARS OF ETI WIN THE NEXT 10 FREE!

This is a special competition for our regular readers. We're offer ing a ten year subscription to ETI as a 'thank you' prize for supporting us this far. All the questions refer to back copies of our magazine and will be easy if you've kept the issues! (Surveys tell us that over 90% of readers keep ETI for longer than a year!) Index issues will be particularly useful, but will not give you all the answers. Fill in the coupon on page 133 - you don't need to ruin this issue - and don't forget your name and address! In the event that no one gets all the answers correct, the highest number of right answers will win. In the event of a tie, it will be the earliest postmark that takes the ten year subscription.

Read the questions carefully before answering.

1. Which issue was designated a " 4 Channel Sound Special Issue"?
2. Who edited the May 1973 issue of ETI?
3. What month did the first issue of ETI appear in Britain?
4. What makes March 1979 good theatre?
5. ETI published the firstever TV games project. In which issue?
6. Which IC is featured in the July 1976 "Data Sheet"?
7. The amplifier on the cover of the February 1982 issue has also appeared on a previous cover of ETI. Which one?
8. In 1979 who reviewed Star Chess for ETI?
9. Who first wrote the series "Electronics Tomorrow"?
10. The 100 W Cuitar Amplifier (the first one!) appeared when?
11. Microfile is the title of ETI's regular computing hardware section. In which issue did it first appear?
12. In what year did we publish a synthesiser, an LED multimeter and an FM tuner in successive months?
13. What was "The Beast"?
14. How many parts of the popular "Electronics - It's Easy" series were published in ETI?
15. How many editors has ETI had in the past years?
16. In October 1976, who was ETI's Assistant Editor?
17. Who designed the Transcendent DPX?
18. Which issue began "Project 80^{\prime} "? \qquad
19. The 4600 synthesiser is one of our all-time most popular projects. In which issue did the series begin?
20. DIY Polyphonic keyboards came to ETI when?

RULES

1. Closing date is Aprll 30th 1982, and all entries post

Closing date is Aprll 30th 1982, and all entries
2. The coupun provided in the magazine mast be used. Photocoples are NOT acceptsble
3. Ennployees of ASP and their relafives are nol eligible io entry.
4. The judger decision to to be comsidered tinat and no cosrespondence will be enterend Into concerning the competition

TRIO OSCILLOSCOPES
Range of mains operated Scopes with S" disolays, Irigpered sweeo IUK c / p ES.50)
oual trace
C $\$ 1562 \mathrm{~A} 10 \mathrm{MHZ}$: 10 MNV I micro sec.
CSISe0m il 15 MH2: 10mV. 0.5 macro sec
CS1586A 20 MMZ: Sen V: 0.5 nicro sec.
C81577A 35 MHZ 2 mV a 1 microsec.
CS 180020 MHR 2.5mV 1 micro delay swief
C\$1880 mk $\mid 1300 \mathrm{MHZ}$. $2 \mathrm{mV}, 02$ micro sec
$\{523.25$
(fitted delay line)
C $\$ 15755 \mathrm{MHZ}$ ImV. 05 micio sec. Mulli dosplay Audio 5 Sope
$£ 3 / 2.80$
SIMGLE TAACR
and up 10 anc. fom

MULTIMETERS

(UK c/0 650 or f 1.00 for (wD) CMOOSE FADM UX'S LARGEST RAMGE KRFIO1 10 range pockel ik /Vor Kill 10012 range pocket k / V olt \$10L 12 range $1 \mathrm{~K} /$ Yoir - overfend wh5 10 range pocket 2K/Volt STS 111 range pocket tx Nolt aII 12 range pocket dewxe $2 \times$ ryoir MHS6R 22 range pocket 2OK IVoll re350if 19 range plus Me tesI 20kr Yolt KRT5001 16 range - range double 50k/Voll ST303in 21 eange plus He Tesi 20K/Volt Al1020 19 range Deluxe plus He Test zok/Yol
SC 15000 As KAT 5001 plut colour scales $50 \mathrm{~K} N \mathrm{~V}$

5495 25.75
58.50

Multi-range cla mos all with resistance range, carry case 8 leads. Also digilal and OC ciamp in stock (UK Cio 75p \$1300 3004600V 9 ranges $\mathbf{C 2 5} 05$ $\$ 73103004600 \% 9$ ranges
 $k 2008$ H50A. 600 V . AC 7 ranges $£ 35.95$ - $\$ 2500300 \mathrm{H} .600 \mathrm{~V}$, AC 8 ranges $£ 48.50$ K2603 300A 500 V . AC 9 ranges $£ 59.95$ K2903 900A. 750 N . AC 9 ranges ET7. 50 $K 21031600 A, 750$. AC 9 fanges 585.00 - Optional temperature probe \quad \& 13.80 ELECTROMIC MSULABION TESTERS Battery oper ated complete witt carry case (UK C/D \& 100 .
FFSol $500 \mathrm{v} /$ H00Meg Pius 0.100 ohm
K 3103 600v/ 100men. Plus 0.26 K ohem K 3106500 F \& 1000 y 1000 \& 109.00 4101 Earir 119.00 500 M . mom Hand cranked insulation tesier $500 \mathrm{~W} / 100 \mathrm{M}$ eo \quad [79.50
SCOPE ADD ON UNITS SUITABIE FORAL SCOPES LTCS05 Semsonducior Cusverracer $\quad 89545$ $\begin{array}{rr}\text { M } 265 \text { Component Tester } & \text { (00si850) } \\ & \text { £29.85 }\end{array}$

\section*{OSCILLOSCOPE PROBE KJTS} | (UK $C / 0$ SOp per 18034 avanable BNC pluy |
| :--- |
| of Banana $\times 1 \quad \$ 7.95 \quad \times 10 ~$ | or Banana Xi $£ 7.95 \times 10 £ 8.45: \times 1 \times 10$ £ 10.50 Also x 100 (ANC onlyl $£ 16.95$

CLAMP-ON-METERS

 INSULATION TESTERS roti 18 range double 10A OC 50K/Voh - E23.T5 Tux500 23 range olus 12A DC plus cont, buzzer
158m 36 range large scale $10 A \mathrm{ACIOC}$ SOKIVot 28.50 AT 200017 range Deture plus Hfe rester $50 \mathrm{k} / \mathrm{Y}$ oil
 3607 月 23 range large scale 10\& AC IDC Whe les 50 meg ohm IKV ACIDC $100 \mathrm{~K} / \mathrm{YOH}$:

CROTECH OSCILLOSCOPES

Aange of Portable Scoges mans and battery operated Pus special teatures (UK c/0 £3.DO) 3030 Single frace 15 MH2. $5 \mathrm{mV}, 05$ micro secs. Plus buiftin component lester. S5mm fube
5 micro secs. Rus ountin 3131 Oual trate 15 MHZ , trg $1035 \mathrm{MHZ} .5 \mathrm{mV}, 0.5$ micro sect 3034 Battery-mans dual trace 15 MHZ tria 1020 MHZ buitt in Nrads, SmY, 0.5 micro secs. Elimenator charger ontional £20.75) Alse Avallate 3003 , single trace 3034 3037 . qual MHZ. 130 mm

STOP PRESS
Model 3035 was £189.75 - Soecial Diler $\mathcal{L} 168.50$

THANDAR - SINCLAIR

Reliadie low cost portable instruments, bench models all $25 \times 15 \times 1$ Scm. Generators mains operated rest batlery (supphed). UK C/g Hand models 65p, bench \&1.15)
 DIEITAL MULTIMETEAS (3) diglt LCD)
TIM 354 Hand held. OC $2 \mathrm{~A}, 2 \mathrm{~m}$ ohm, imV - 900 V OC. 500 v AC.
ITM352 Hama heid. DC IOA. Mie fest Contunuriy lest \quad [57.44 M353 Bench 2A AC/DC 1000V ACFOC 20M ohm Typical 0.25\% NEWLOWPRICE EB6. 2π msi bench, IOA AC/OC. 1000 W ACIOC. 20 W ohm Typical 0.1\%
Fatoutncy COUNTEAS 18 Oigit
. 2000 Hand hevd LED 200 MHZ $50 \mathrm{~m} Y$ (600 MHZ with IPtom New Mocel fired 8NC sockets.

1prom New Mosel hired 8NC sochets. TF200 Bench LCD. 200 MHZ 10-30m' 1600 MHZ with (TPe001)

TP800 600MH Z - 10 Prescater 10 mv
CENERATges (AAl bench models) mains operated
TGi0e Functon $1 \mathrm{HZ}-100 \mathrm{HHz}$ sine / SOitilangle L4.

TG0 8 I6105 Pulse 5 HHZ . 5 HZ (200nS-200mS) various culouts $£ 97.75$ OSCILIOSCOPE (Bench moce: low pawer portable)

Model SC 110
E159 85
Pechargeabte battery pach EA .63 . AC acaptor/charger ES 69 opilomal ITEMS
Carry case (bench only) I6 84 AC Auaptors (state model) CS 69

KEITHLEY PROFESSIONAL DIGITAL MULTIMETER

Madel 130.25 range. Easy to how and use LCD OMM. Size $7 \times 11 \times 15$

Ramge:

DC Yons 200 mV . 1000 y 0.54100 micro vel AC Volis 200 mV - 750 V 145100 micro voll OC curfent 2mA. 10AMP $1.24,1$ mocro amp AC current $2 \mathrm{~mA} \cdot 10 \mathrm{AMP} 2 \mathrm{Z}, 1$ micto amp Resistance 200 onm- 20 Meg 0.54 C .10 hm \{102.35
 with CHEQUES ACCESSIVISA or Telephone your order Allow up to10 days for delivery

TY COLOUR GENERATORS

PAL UNF and YHF Mocets LCG393 VHF 6 pattern $\$ 14375$
 CG3s2V VHF 15 pattern $£ 231.15$ WCIOI UAF pocket colour §1b2.50 Fited NICADS

TV GAMES COME OF AGE

It is just over two years since the first TV games started to appear in pubs since then a lot has happened in this field with a large number of small companies marketing various units by a variety of methods. Although the TV games have received a considerable
amount of publicity they have not yet caught on in a big way.
"No one who has ever played TV games has ever said anything derogatory about the concept", Richard Fairhurst af Videomaster Ltd., told ETI, 'they may not like the price or the packaging but they always like the idea".

ETI NEWS NOV 1975

Doctor Who

O
ne of our readers, Mr. S. Knowles of Hampshire, sent us a scope pleture he took whilst

- designing with a Textronix 7403 on $500 \mathrm{nS} / \mathrm{div}$ with $\times 10$ expand. It seems he was looking for a pulse, but he may well have dis. covered the secret of time travel!

Pet Chip

This should appeal to those of you who spent your hard. eamed pennies on a 'pet rock.'

We recently received a letter from an anonymous dad who made an apparently trivlal Christmas presi for his daughter. However since then he has been inundated with orders.

ETINEWS MARCH 1980

Mr A. Nonvmous painted a face on one end of an IC (pet IC. you see) and made a matchstick cage for it complete with watch battery feeding bowl.

The chip should quickly LATCH on to its new OHM. As for feeding. a few BITS of CURRENTS a day should be AMPle. Just let it NOR away to its heart's content. You can teach it tricks.

Ta. Mr Nonymous. We haven't had a good groan in ages.

bbc get it taped

The BBC and 3 M have collaborated to develop a new tape recording system claimed to provide 90 dB noise fiqure. The system will accommodate 32 tracks on one-inch tape at an undisclosed tape speed.

ETI NEWS JULY 1973

PIEZOELECTRIC HEADPHONES

The Pioneer SE. 700 are the first high fidelity headphones to use the piezoelectric effect. As the audio signals reach the headphones, the driver elements of ultra-thin aluminium. coated high-polymer film expand and contract accordingly, creating "breathing" motion. Tonal characteristics are comparable to those of the electrostatic type headphones, but the SE-700 require no maiching transformer.

ETI NEWS MAY 1975

its a wide word

Intel, Zilog and Motorola are taking their plates in the front rank on the grid for this years expected race to 16 bis yesirs whes. All shree 16 bit MPU plesed All three have com. pleled development, and will
probably show the nature probably show the nature of On yer marks
ETINEWS MARCH 1978
Solid reeth at next months US ence State Circuils Conference. The pause between this and letting looxe of the hounds as it were will almost certainly mean late aupuint production. duction.

SHORTS

- Every Ready - now called Berec - have released four rechargable consumer batteries, in the HP2. HP1I. HP7 and PP3 vartetles. Chargers are also available. An undoubted reaction to the phenominal Ioss of dry cell power these days
- Direct drive turntables ves. But direct drives MPUs? Als, Wex - now. The $\$ 2000$ is a new release from A.MI which can drive flouorescent displays directl: with H ${ }^{\prime}$ drive and 7-segment decoding on chip. Nlan on board 6. $\mathrm{x}+$ RAM and IK ROM. In tended for low lowe applications,
- Ingersall - the lick tock people - are into eleceranics. They have releaned three 7V'gimes. theree clase ratios. two Thun Chimes. tund is purt. able microsenssette plaver. Phento shenws ane of thear new TV מumme It must beo Chnstmas.
- Fairchild are making a big fuss about having their Fi6K Dynamic 16K RAMs available at last. Access times sary from 150 ns to 300 ns .

TALKING IN TRAINS

British Rail's plans for 150 mph trains include improved communication systems between drivers and guards. Also planned are passenger address systems.
A range of equipment - known as EMTEL - has been designed specif. ically for this task by Britain's Nelson Tansley Ltd.
The main problem to be overcome was the impossibility of providing a special cable, running the length of the train, on which to carry the signals.

The equipment was therefore designed to accommodate any continuous circuit, for example, the control wires for the lighting relays which (in British Raill, are the only conductors alsways connected throughout any passenger train. In this case, departure from the ideal of a 600 ohm noise-free line is caused by the connexion across the wires of many relay solenoids, the impedance of which is not only complex, but variable.

$$
\text { ETINEWS JULY } 1972
$$

LASER MISSILE INTERCEPTOR

The US armed forces may soon have a laser missile interceptor. Air Force reports state that prototype deuterium fluoride lasers have been successfully tested at 'very very high' power outputs.

Power output is apparently so high that the laser beam burns straight through heavy gauge stainless nickel steel plate.

ETINEWS IULY 1975

BIAS - AUTOSELECTION

Cassette tape recorders that have been designed specifically for use with chromium dioxide tapes require special bias switching facilities.
At present this is done manually. However the latest BASF 'SM' chromium dioxide cassettes have a notch on the rear of the cassette (in addition to the tab now used to prevent erasure of recorded material) and, hope BASF - and Philips who are backing the system - future cassette players will have a switch mechanism actuated by this tab to bring in the necessary bias circuitry.

ETI NEWS APRIL 1972

LIGHTING THE WAY

Many local authorities are now using a street lighting control system in which a photoelectric cell measures the light level and varies the input to
a thick film heating element controlling a temperature sensitive switch. The street lights are therefore automatically switched on at dusk and off at dawn, which means that light is provided only when it is needed and ensures that electricity is not wasted.

It had to happen. The integrated circuit is so old that it has earned its place in a museum. Doesn't it make you feel old? The world's first IC, invented by Jack Kilby of Texas Instruments in 1958, is one of three exhibits on loan from TI in Dallas for the 'Challenge of the Chip' exhibition at the Selence Museum. The other two are the first sllicon transistor and the first single chip microcomputer.

ETI NEWS MAY 1980

GETTING READY FOR COMMERCIAL RADIO

Commercial radio is on its way: anyone doubting this should tune around the medium wave band where tests transmissions are already being conducted. Contracts for the supply of the transmitters and the derials have been placed with EMI, the value of the order is put at $£ 160,000$.

ETI NEWS MAY 1973

shorts

- Tandy is doing well with its home computer in the USA. and is expanding, both physically and financially, that side of the business.
- New from GI - the Cricket chip. The AY-3. 8910 is a programmable sound generator and is software controlled, needing only a power supply and clock to begin chirping or hooting or ...

Hong Kong King

Some numbers to tick off on your fingers. In the first six months of the year Hong Kong exported 16 million watches (worth £77m). These break down as 81 \% mechanical, 29% LCD and only 10% LED and quartz analogue com.
bined. Surprising LED fig ures eh?

Germany developed a sudden lust for these nontockers and their imports leapt up by 287%, putting them as the second largest consumers - behind the US and ahead of us!

ETI NEWS NOV 1978

forget who

BE WARNED (IN A SMALL WAY!)

The Mini-Bleeptone 525 is a unit which provides a choice of two continous signals of up to 80 dBa with current consumption ranging from $3-15 \mathrm{~mA}$.

Its applications are wide, being ideally suited as a fault indicator mounted onto portable equipment and instrument panels, or for localised warning of such things as intruders and/or fire

NEW LC DISPLAYS FOR WATCHES
A new series of Liquid Crystal displays have been announced by Beckman for digital watches. These display hours and minutes continually with either date or seconds, selected

20:1. power requirement is 1 microwatt so that even with constant read out battery life is over a year. LC modules are available for both 3 V and 6 V models and a CMOS compatible. Beckman Instruments Ltd., Queensway, Glenrothes, Fife, Scotland. ETINEWS OCT 1978

Pocket Companion

Not just an electronic dictinnary or a translator or an appointments diary or an encyclopedia, but something of all these rolled Into one, the 'Brainbank' is halled as the world's first pocket information centre and language laboratory.

Brainbank is programmed via a series of interchangeable. plug-in memory cells. so you have witually unlimited infor. mation stotage possibillties (armed with a bucket full of memory cells).

Each language cell. which contains 32 K of ROM torlds about 1200 of the most common
words. stored individually and in groups of up to fifty in categories such as travelling and food. The program also includes short phrases. automatically corrects spelling errors and explains words whth double meanings (with its double en lendre chip?).
The infarmation centre's heart is a Mostek 3870 microprocessor. Memury cells are currently available on dlet and nutrition, first aid, taxation and a thesaurus. New cells will be. come avsilable every month. A custom cell service is also avaitable.
Brainbank will cost around £150 plus E 20 or less for each additional cell. We will tell you more about this tittle marvel. when we can get hold of one to play with.

Computerised control and data recording equipment that can handle information from up to 413 different sources will be used in the development of Britain's tracked hovertrain during its period of full.scale development.
From this console, commands will be transmitted by radio to the hovertrain and radioed signals from the measuring instruments inside the vehicle will be received, recorded and analysed.
The 25 -ton vehicle straddles the track and is supported approximately an inch above it by a system of fans employing the hovercraft principle. The linear motor consists of an aluminium strip set into the top of the track as the motor's "stator", and a complex set of electrical windings mounted inside the body shell. Power is picked up from a trackside rail.
The train made its first run over a mile of the track recently, watched by visiting experts and the press from several countries. It performed perfectly during the slow-speed run and is now expected to reach speeds of up to 90 mph during the next two months.
The hovertrain has been designed and constructed by Tracked Hovercraft

300 MPH HOVERTRAIN - PUBLIC SHOWING

ETINEWS APRIL 1972 (OUR FIRST EVER NEWS ITEM!)
Lid., a company set up by Britain's National Research Development Council, and would be capable of providing a link between central

London and the airport planned for Foulness, its passengers completing the journey in quiet pollution.free comfort in about 20 minutes

RED TAPE GAGS THE QUEEN!

In the wree small hours of January 19th 1903, Marcont established the first iwo-way communlcation across the Atlantic. Messages were exchanged between the American president Theodore Roosevelt and the British King Edward VII. To mark the 7 Sth anniversary of thls event, the Cornish Radio Amateur Club have organised a team of sixiy local amateurs to run GB3 MSA (Marconl's Seventy-fifth Anniversary). The station was run 24 hours a day, from the

14th to the 22nd January, from the lounge of the Poldhu Hotel in sunny Cornwall - only metres away from the spot Marconi used.

Transmitting on $80 \mathrm{~m}, 20 \mathrm{~m}$ and 2 m the team had already madc 1100 contacts in 51 countries when ETI contacted them on the 16 th! All the equipment was owned by the club and its members and set up for the week specially, On the American side was another station, KM1 CC, based in Cape Cod. KM1 CC was run by
the local Barnstaple. Mass. radio club with the help of the Radio Club of America.

Now for the red tape . . President Capter sent a message via KM1 CC and the Queen wanted to send a reply via GB3 MSA, just like Edward VII did back in 1903. The Home Office said that if she did, it would break a condition in all British amateurs licences - namely the one about not passing on messages from 3 rd parties! So after 2 years preparation the Cornish Amatcurs and the Queen were denjed permission to reply to President Carter.

ETI NEWS MARCH 1978

Something Bugging You?

W
ith the increase in telephone tapping and boardroom bugs. ing Audiotel International have developed a simple to use, yet sophisticated successor to their Scanlock radio surveillance receiver. II is called the Scanlock Mark V8 and is a fast, easy means of detecting and locating an eavesdropping transmitter as well as being capable of routine 'sweep' searches of high level meetings rooms. Carried in a vehicle it can also locate amy bleeper bug used for 'trailing'.

The Scanlock is not limited to the conventional radio receivers range of 88.108 MHz . If covers the wider frequency spectrum of 10.1800 MHz and its automatic 'sweep' mode scans this range four times a minute. Finally all that is necessary is to press the 'locate' button and use the hand-held wand to guide you to where the bug is located. The kit is the size of a small briefcase, weighing $6.3 \mathrm{Kg}_{\mathrm{g}}$ complete with spare battery pach. There is also provision for mains usage. For further information contact Audiotel International Ltd at Saddlers Court Yately, Surrey, GU177RX.

CONCORDE BAN?

Whilst we are currently bombarded with PR material extolling the virtues of the Concorde supersonic airliner it is interesting to note that in the USA Senator Alan Cranston has introduced a bill, co-sponsored by Senators Edward Muskie and Caliborne Pell, to prohibit overseas supersonic transports from landing at any US airports or flying over US territory at supersonic speed

The SSTs which carry less than half the passenger load of a 747 make ten times as much noise on take-off and
landing. ETI NEWS IULY 1972

RICE LOGIC?

Later this summer - about June National Semiconductor and Kellog's are to hook-up on a promotional deal. All Kellog cereal packets will carry coupons for reductions on National calculators. Barley credible is it not? ETI NEWS JULY 1976

hammer fet-ish

A new range of low cost VMOS power FETs in plastic have been intro duced by Siliconix. These devices are almed at replacing conventional bipolar transistors in a great many applications. This development in VMOS technology has cut the price of such devices by a third enabling them to compete dipectly wheh bipolar devices ETINEWS APRIL 1978

CALCULATOR CHIPS NOW LESS THAN E1

Calculator chips prices continue their inexorable fall in price. Latest prices in the USA for four function eight digit MOS chips are now as low as 40 p
to 80p. Even the complex scientific calculator chips are down to $£ 6$ or less compared to $£ 20$ this time last year.

MOS Technology Corporation for instance are selling a single chip scientific unit for $£ 7$.

ANTISKID CONTROL

The first standard i.c.'s designed speciflcally for the automotive market have been announced by Fairchild. Both are complex linear circuits developed over the past two years as 'custom' circuits before being added to the standard product line.

ETINEWS OCT 1973

ELECTRONIC CHEQUEBOOK CALCULATOR

A pocket calculator that will hold and display bank cheque account balances for a year or more is shortly to be announced by the US Mostek Corporation.

During the times that the calculator is 'off' data is stored in a static shift register (drawing a mere 100 microamps). This data is then clocked solely when access is required.

The unit is expected to retail for less than $£ 16$ and will be built into a plastic chequebook holder.

ETINEWS JULY 1975

BUBBLING OVER

Next year Rockwell are hoping to launch their now developed one--megabit bubble memory price? One millicent per bit!
Their device can uperate up to 300 kHz and measures $10 \times 9.5 \mathrm{~mm}$ and is designed for a 1.8 micron bubble diameter. ETI NEWS SEPT 1977
somposed of reflective alumindum plastic film, and deployed in two Fiers of six each. After launch from the space shuttle, centrifugal force
would open the blades fo their $41 / 2$ MILE length. (They're 28 ff . wide). The craft sits th the centre of the array.

The craft would be slowly spun by the sun's photon càdiation. and complete a rotationt every three minutes. A square sall, and hence windjamming torthe stars, was rejected in favour of the blades, which now fight if out with an ion stream próp. ulsion systern for NASA considerati

ACC AFTER ONE YEAR

Now moving into lts second year of existence the Amateur Computer Club has now formulised its activities into a constitution and has a membership of over 200. ETI NEWS AUG 1974

Power Cuts On The Way

\| 1968 your 20 inch colour telly using 90° deflection would have consumed over 200 W . Now, the figure is around 65 W . A new development from Finland will further reduce that to about 40 W . The system, which results in a reduction of about 40% in power reduction of about 40% in power
consumption, has been incorporated in the Salora G Series of portable colour sets. The design is basically a 90% efficient couple between the power supply and pleture tube using an induction transfer system. The resultant cool running improves rellability and extends operational llfe.

Bowmar has Texas's range and is homing in. range and eing sued for $\$ 3$ Texas are being Bowmar who million by Bowly of a large allege the supply dective calnumber of deards. culator keyboards.
KR4741 to you. No. - XR474 with sci-fi buta thing to do with sci-f. Very new quad op-amp. better than low noise and better thalla 741 in all respects. Avall 275 a 741 in am RASTRA at 275 able from Rammersmith. King St, Ham. Ideal for London W6. where the audio projects wher circuits hissing of summ
is not required. - The Governments are to firm. Serathem are ${ }^{2} 000$ frminch their new SM2000 launch their new autumn. turntable in the wilace the which will repl. Once again SMA2 model. the unit looks tecuccess at sound - maybe sud-dif last for nation OCT 1978 ETI NEWS OCT 1978

The C Series, with lis 16,20 and 22 inch models, will operate from a standard 60 A hour 12 V battery for 15 hours, or from mains for as fong as you pay your bills.

All the models feature automatic electronic tuning, fine
tuning and memory plus add-on options for remoted control, 12 V battery and video frequency interface unit.

Salora products are available in the UK from Salora (UK) Ltd, 25A Techno Trading Estate, Swindon SN2 6EZ.

Extremely pure silica glass has been manufactured for at least 40 years longer than jet aircraft have been around. Now it is to aid and abet the

ultimate aircraft - the U.S. Space Shuttle. Made into tiles (composed of 96% silica glass) of which 34,000 are used, the material covers well over 70% of the surface of the Shuttle.

These tiles are incredible heat 'shedding' devices (see photo) and will be expected to withstand temperatures of up to $1260{ }^{\circ} \mathrm{C}$ for 100 reentries into the atmosphere. Previous heat shields were destroyed on re-entry.

Each tile is precisely milled to fit exactly against the curvature of the Shutlle body, thus making the composite craft as light as possible, and as aerodynamic as is feasible. This does however mean that no two of those 34,000 tiles are alike! Imagine the little man in a white coat with the job of fitting them to the aircraft - a huge 3-D jigsaw puzzle with only one solution out of 34,000 (i.e. $34,000 \times$ $33,999 \times 33,998 \ldots \times 1)$ possibilities! Rather him than me.

ETI NEWS MARCH 1977

solid state speech

If the latest goodie from Texas Instruments is as successful as we think it will be. the next generation will speak with an American accent: Called "Speak \& Spell" it is a box that talks to the kids (with a 'standard' American accent).
and theoretically helps them pronounce new words correctly - it also compares how the kids spell the word with the correct (Amerlcan) spelling, and indicates whether they gave the right answer.
ETI NEWS AUG 1978

ORACLE ON AIR
ORACLE, JTV's Teletext system (see ETI, July 1975) began an on-air experiment on the ITV network on 30th June. Operating the experiment are two editorial teams and three computer systems. At ITN there is an editorial team (plus computer) for news and associated information. At London Weekend Television there will be an editorial team preparing public service and similar information pages, and the second computer. At Thames Television the third computer will be used to insert data into the network during the Monday to Friday broadcasting period with LWT taking over for the weekend transmissions. It is hoped that there will soon be sets with decoders in the main entrace lobbies of ITN House, London Weekend Television's South Bank Studios and Thames Television's Euston Studios, so that visitors can interrogate the system and see how ORACLE works.

$$
\text { ETI NEWS SEPT } 1975
$$

WATCHES FACE COLLAPSE!

Five companies have dropped production of digital watches, due entirely to the price war raging around the product. Gruen, Benrus, Armin Litronix and Gillette have decided the wrist borne digit is not for them. Those still there are sufferin too. Bulova are expected to make a loss this year. Gillette in fact pulled out before they pulled in, scraping well laid plans to burst into the 'marketplace' at the eleventh hour.

Even the cheapest pf domestic radio receivers may soor have Dolby circuitry inbuilt according to Alan Gregory of the Signetics Corporation, manufacturers of the NE545 Dolby IC chip.

Gregory believes that the inclusion of the chip (which will be sold to manufacturers for less than a dollar will increase the price of domestic receivers by a pound at the most ETI NEWS APRIL 1975

SCREEN TEST

The l'K is now Hong Kenge largeal market for TV' games. We absurbed 26 of their exprort in the fleld, some 523,506 items if you please. in the firsi cight months of this tear. (iermane finished second
on 22% and the USN came third withat we. Somewhat of a sumrine and it shame. that we take more than the States of these items. I always thought we had more taste.

A POCKET CALCULATOR IN EVERY HOUSEHOLD

"By the mid-70's the pocket electronic calculator will be as much an essential part of the household as the transistor radio is now". This is the prediction made by Sinclair Radionics.

Recent market research confirms that increasing numbers of the population are becoming aware of the possible applications of pocket electronic calculators. This is most marked in the educational field, at school and college levels although considerable interest is also being shown on the domestic front by husbands and wives who are able to use a calculator to help control the family budget.

ETI NEWS DEC 1973

THE END OF THE AMP?

A British invention (three cheersl) could well mark the end of the amplifier as a circuit block. A new device called a 'voltage-to-current transactor' can do everything an op-amp can - but better. Invented by Professor Gosling and Carl Brinker, the device contains no passive components at all, and consists of a network of transistors.

The advantages are that it integrates smoothly rather than as a series of steps, follows an input quicker and with a wider dynamicrange, is smaller in chip form and uses less external components. A VCT can also double as a transformer!

ETINEWS OCT 1976

Blonde

Bombshell

Now be honest with yourself aren't there times during those long cold winter days when you could do with one of these in your office. No, unfortun. ately I don't mean Blondie in the white pants. The blonde bombshells here are the brushed aluminium boxes of ITT Terryphone's new solid. state intercom units.

The intercom, which doubles as a security and alarm system, consists of a master unit and from one to nine sub-units. The system is easily installed in many configurations.
Simple press-button-to-talk operation is featured on the master and sub-units. Each sub-unit can be called independently from the master unit, or all sub-units can be called simultaneously. Pressing the self-latching security button allows noises from children, equipment, burglars, etc to be picked up and transmitted to other parts of the premises. So. the intercom can be used as a security system in small businesses of a baby alarm at home.

Each sub-unit comes complete with cable and cable fixing pads for $£ 20$ each. The master unit costs $£ 85$ and comes with a mains plug and a screwdriver. Talking of Blondie - she can install an intercomin my office any time.

Further details of this system is available from ITT Terryphone, Station Approach, L.ondon Road, Bicester, Oxon OX6 7BZ.

ETI NEWS JAN 1980

FIELO EFFECT LC DISPLAYS

Siemens incorporate the field effect principle in their new liquid crystal displays with low operating voltages.
10:28

All the liquid crystal displays in field effect technology have dark symbols on a light background and are suitable for reflection operation, all with high contrast ratios, low operating voltage and low power draw. Such features allow the displays to be driven by CMOS and other ICs.

BANDING TOGETHER

The Editor, Today International,
36 Ebury Streel.
thondonswi W oLW.
Dear Sir.
He were most pleased to read the article "C.B. for Brituin" In your July issue. The in We were most pleadion ts campaikning for the establish youl make.
Citizens UK agrees with nearly all the points
We have prepared a sechnical proposal for a Viscussion and contains a number of proposals to ensure that ase
to the Home Office for discussion and contan disadvantases of the American of the ditisens Band suffers from
Brtish Citizens B:
propossals include:
proposals include. shall be FBi which avoids many problems of fution . Mod ich is transmitted equipment break-in.

every time the transmit
can easiy be idensinn time should be limited to 75 srconds monoponlised.

Apart from the above, und a few purely technical propasals concer so unnecessanly
Apart from the above, and at in purciy interference to other services but not so that Brevent Brish
should be high enoltizens Band equipmens out of the
Citizens' Band should have a minimum of reruizions.
Membership of
Yours falthfully,
James M. Bryanl.
President. Citirens Band Association.
ETI NEWS MARCH 1975

STEERING WHEEL? WOT STEERING WHEEL?

We had a very careful second look at this photograph. vowed to give up wine, women, and especially song, (for at least five minutes) then decided yes he was in the back seat, and yes the car was moving. Visions of a huge hoax flashed to the editorial mind frenzied navvies rushing about with the backdrop to simulate movement tiny men crammed into the wing mirrors steering via cunning Chinese arrangements of levers and gears. The mind boggled.

Alas the answer is nought so scand alous. Quite simply an Australian electronics enthusiast has packed his car full of voice recognition and MPU circuitry to the end that it will now
obey verbal commands - even by walkie-talkie up to a range of 12 miles (Naturally it obeys only its owners voice).

The car has a CCTV system installed which enables. the driver to see behind him - very useful in injon country. Infra red sensors pick up red traffic lights and brake the car automatically - no we're not joking. Radar ranging maintains a constant distance with respect to the car in front, and sensors apply the brakes should the car come too close to any object - even people.

All this makes it a better driver than most of us.

ETI NEWS NOV 1976

right hook

In a historic ruling, the US Supreme Court has confirmed that private individuals have the right to buy or make their own telephone equipment and connect it to the US telephone network.
Under the ruling it will be legal to hook
up as many devices as the user wishes computer controlled systems. 'phone diverters. memory diallers. picturephones etc. etc. The only restriction is that the various bits must meet the relevant FCC requirements.

DIGITAL RECORDING

Japan's Nippon Columbia company have developed a digital recording testnique. The new equipment, sid to cose over \& 125,000 uses pulse code modulation.
Advantage of this eechnique is its virtual imperviousnces to noise and distortion. Further details will be published as they come to hand.

ETINEWS IAN 1973

LASER STICK
 FOR THE BLIND

A stick specially designed for blind persons gives the bearer a loud sonic signal in the event' of impediment in his path at wrist height or above. The new device was commissioned by the Swedish Institute forthe Handicapped and work on the project was initially financed by the Swedish Board for Technical Development (STU). The prototype stick comprises a 1.3 -metre. long tube made of glassfibrereinforced plastic. To it is attached a gallium-arsenide laser, a midget transmitter and receiver, and an amplifier. The power source is a tiny nickel-cadium accumulator. The laser beam's trajectory is almost at right-angles to the stick's length, and as such sticks are normally held forward at an angle of about 45 degrees to the ground, the beam is directed both upward and forward. The laser sends about 1000 pulses per second and when one of these meets an object - such as a lorry, car or a road sign - it is reflected back to the stick, where it is electronically trans* formed into a sonic warning signal to alert the bearer. ETI NEWS NOV 1972

Dynachem
 New Dimensions in Chemistry

ETINEWS SEPT 1973

GIRL BY INSTALMENTSI

Electronics manufacturers throughout
Europe are receiving a series of unusual sales leaflets from a manufacturer of specialist chemicals used in the making of
printed circuit boards.
Dynachem are sending out four leaflets spaced at regular intervals. On the front of each will be printed a tantalising part of the company's DYNAGIRL, an exquisite young lady well worth a second look. By keeping
the leaflets, the recipient will be able
to build up a complete picture.
On the reverse sides will be information about the company's range of photo-resists, plating solutions, brighteners, cleaners and ancillary chemicals.

description VERO INSTAUMENT	$\begin{aligned} & 1 \\ & 208 \\ & 200 \\ & 205 \\ & 180 \\ & 180 \\ & 180 \\ & 180 \\ & 185 \\ & 156 \\ & 125 \\ & 155 \\ & 125 \end{aligned}$	$\begin{aligned} & w \\ & 140 \\ & 10 \\ & 140 \\ & 10 \\ & 120 \\ & 120 \\ & 80 \\ & 80 \\ & 80 \\ & 68 \\ & 68 \\ & 08 \end{aligned}$	$\begin{gathered} 0 \\ 0 \\ 40 \\ 75 \\ 110 \\ 03 \\ 6 \\ 6 \\ 0 \\ 0 \\ 0 \\ 0 \\ 00 \\ 30 \\ 50 \end{gathered}$	
VEAOPLASTIC zenersi durceme 	$\begin{array}{r} 72 \\ 72 \\ 120 \\ 10 \\ \hline 10 \end{array}$	43 48 100	$\begin{aligned} & \mathbf{3} \\ & \mathbf{3} \\ & \mathbf{3} \\ & \mathbf{3} \\ & \hline \end{aligned}$	$\begin{gathered} 000 \\ 100 \\ 100 \\ 100 \end{gathered}$
ALUMGNEUM Presseld, with two SPK scrows	$\begin{aligned} & 70 \\ & 010 \\ & 001 \\ & 001 \\ & 901 \\ & 70 \\ & 760 \\ & 180 \\ & \hline \end{aligned}$	$\begin{gathered} 130 \\ 100 \\ 70 \\ 133 \\ 64 \\ 51 \\ 101 \\ 001 \end{gathered}$		
	$\begin{aligned} & 1200 \\ & 121 \\ & 152 \\ & 110 \end{aligned}$	$\begin{array}{r} 30 \\ 646 \\ 80 \\ 813 \end{array}$	$\begin{aligned} & 28 \\ & 40 \\ & 50 \\ & 81 \end{aligned}$	$\begin{aligned} & 870 \\ & 1080 \\ & 1230 \\ & 216 p \end{aligned}$
	$\begin{aligned} & 60 \\ & 100 \\ & 113 \\ & 121 \\ & 118 \\ & 18 \end{aligned}$	$\begin{gathered} 50 \\ 50 \\ 63 \\ 60 \\ 68 \\ 113 \end{gathered}$	$\begin{aligned} & 28 \\ & 25 \\ & 31 \\ & 30 \\ & 50 \\ & 60 \end{aligned}$	$\begin{aligned} & 800 \\ & 1400 \\ & 130 \\ & 1500 \\ & 1950 \\ & 3050 \end{aligned}$
Inay annsed Diocest $\begin{aligned} & 5001 \\ & 5002 \\ & 5003 \\ & 5004 \\ & 5005 \\ & 5006 \end{aligned}$	$\begin{aligned} & 500 \\ & 100 \\ & 113 \\ & 121 \\ & 125 \\ & 192 \end{aligned}$	$\begin{gathered} 50 \\ 80 \\ 60 \\ 60 \\ 6 \\ 68 \\ 13 \end{gathered}$	$\begin{aligned} & 25 \\ & 25 \\ & 31 \\ & 40 \\ & 60 \\ & 61 \end{aligned}$	$\begin{aligned} & 1060 \\ & 1450 \\ & 1900 \\ & 1450 \\ & 300 \\ & 2080 \end{aligned}$

HANDY PACKS

Sivo yoo ames. trach and manay
Exol pact contions too in one oecide quanobies of eech watue aocording to pop-

 scobarlry 10 popularity.

Heat Sinks

Types 5F2, 5F, 18F2, 18F، 224F, $266 \mathrm{~F} \quad 14 \mathrm{p}$ each 2Y-T066 £1.23 2Y-T03 96p TV3 29p TV35 100N £1.98 6W4 (Drilled) £4.30 Many other types and sizes in stock
analogueic SELECTION

CAN 110 E
CAH
M
(Mzolt
incelin
NESETV

Yoricp
romep
Hotick

NAA 1000
\times A2200
${ }_{2}^{2 \mathrm{~N} / 6}$

2 mess

SWITCHES

CONNECTORS
We stock connectors from highly specialised types to the everyday kind that you must be sure of being able to get when you wanf them. Here are some examples. See also Catalogue 82.

AUDIO DIN

Ways	Plug	Socket	Ways Sock Plug			
2	$8 p$	$8 p$	9	$104 p$	$78 p$	$130 p$
3	$14 p$	$8 p$	15	$147 p$	$106 p$	$139 p$
4	$15 p$	$14 p$	25	$218 p$	1500	$152 p$
$5\left(180^{\circ} \mathrm{C}\right)$	$14 p$		37	$315 p$	$210 p$	$160 p$
6	$18 p$	$20 p$				

PANELMOUNTING METERS
SPECIAL OFFER TO MARCH 31 st
Panel mounting meters offered in the following
F.S.D. ranges: -

$0-50 \mu 4$. $0.100 \mu A$. $0.500 \mu A, 0-1 \mathrm{~mA} .0-5 \mathrm{~mA}$. 0.10 mA . 0.50 mA . 0.100 mA . 0.500 mA . 0.1 A | $\begin{array}{l}\text { Normal } \\ \text { price, each } \\ £ 2.69\end{array} \begin{array}{l}\text { Special offer } \\ \text { price to Mar. } 31\end{array}$ |
| :--- |

SABTRONICS

FREQUENCY METERS

Model 8000B: 9-digit 1GHz Frequency Meter.

Proleusional epecification 2015 A Bonch OMM ILCOI

180.00
683.00

8110 A 3 digle 100 AH O DFM
88104 B digit 600 MHz OfPs

- $\quad . \quad$ C37.00

TTL Somare wawe outputs
TRANSFORMERS
BUDGET RANGE All primaries 240 V

SECONDARIES	sva	16 VA
0.6.0.6	[2 85	¢3.40
0-12, 0-12	$\underline{E 2.85}$	[3.40
0.15, 0-15	[2.85	[3 40
$0-20.0-20$	¢285	(3.50)

CHARGER TYPES Secondaries
$0.9 .171 A$
$0.917 V 2 A$
$0.9-17 V 2 A$
$0-9-17 V 4 A$
'fanwing about isV on full soad')

TOROIDAL RANGE

Fop delmits of secondary owtputs, slease see curtent I.C.P. Adverpisernents All primaries - 240 Volts

ORDERING DISCOUNTS

\& VAT

 OIsCOUNTB Et's sowpd on ordere 23.00 snd OVN. TO On orders E57 S0 and ove encepl tor a emol number of items with pries showng Nut OIN. - clowe gode sop handing cravge

COMPUTER CUSTOMERS

 700 Burnage Lane Burnage, Manchester M19 1 MAA Telephone C81 4324945あ

- memi conductory in grate:

ELECTROVALUE LTD

SEND FOA YOUR COPY AND START SAVING HOWI

Heed Ottice and Shop (ALL mail order end correspondence) Dep: ETM, 28 St Jude's Rasd, Englefield Oroen, Egham, Surrey TW20 OHB Tolephone - Ephem 33603 ISTD 60784 London En Telan 264476
NORTHEAN BRANCH (Parsonal shoppert only 680 8urnage Lene, Burnage. Munctraster M19 IMA Telephone 106114324348

ETI NEWS SEPT 1981	
Mini Discs	system will eventually replace the LP as we know it PolyGram Records
Dhilips, Sony and PoivGram have	Operations and CBS/Sony have now
declared the Compact Disc	put their productions on Compact
gital Audio System ripe for pro-	Disc. If is not expected that the CD
uction. These companies are	will be on the market before the
unanimous in the belief that this new	autumn of next year.

STEREO CONTROL UNIT

Connect this unit to your existing power amplifier, and at your fingertlps you will have a degree of control over the audlo spectrum previously unattainable with conventional tone control systems. JVC's unique Model SEA- 10 takes the full audio range of 20 to $20,000 \mathrm{~Hz}$ and divides it up into five discrete frequency bands centred at 40,250, 1000,5000 , and $15,000 \mathrm{~Hz}$. Each band can then be varied independently by $\pm 12 \mathrm{~dB}$ using the professional type slider controls with 2 dB click stops.

ETI NEW'S IULY 1973

CARTRIDGE PERCUSSION UNIT

Bandmaster Limited of Gloucester Street, Glasgow, have designed a rhythm unit called the Powerhouse
which uses multi-track continuous tape loop to produce multi bar synchronised "live" percussion rhythms.

MPG meter........

A device called a Milcate Compuser (what elsc?) from the Young Corporarion in America is designed lo produce a digital readoul of miles per gallon heing whtained. from a vehicle at any given insiant.

The device is composed of speed and distunce sensors. fuel level indicator and calculator circuit. A sensor atlached to thic speedu pieks up pulses every revolution to provide some of the inlo needed.

The UP'; meter will sell al around $\$ 20$ in the USA. ETINEWS DEC 1977

COLOUR PREJUDICE?

Official figures for the number of homes with colour TV's, i.e. those with a license, have just exceeded 50% of the total. Some lesser mortals might well be tempted to conjecture how high the total would be if the un-licensed felons in our midst could be stood up and counted. Naturally we refrain from any such thoughts. ETI NEWS DEC 1976

TELEPHONE COMPONENTS

High-standard telephony today relies on components and function elements whose design and properties render them equally suitable for use in completely different fields. Read-only memories, MT components, keylock connectors and automatic cutouts are some examples of such components.
The MT (magnetic-core transistor) component developed detection of switching criteria in de signalling systems, has a magnetic core with a rectangular hysteresis loop to detect signals which are amplified by the transistor. The core and transistor circuits are operated at the same potential and the defined Yes/No statements can be evaluated electronically or via relay circuits.

ETINEWS APRIL 1973

PLASTIC BOXES

Vero Electronics Limited have recently become distributors for the Odenwalder Kunststoffwerk range of plastic products which include a range of plastic boxes. These are manufactured from high impact polystyrene, which is sudtable for machining, engraving and silk screen printing. The upper portion of the box is coloured light grey and the lower portion, dark grey. The latter is provided with integra! fixing points for circuit boards. The boxes can be free standing or wall mounting and should provide an attractive enclosure for reader's projects.

Vero Electronics Limited, Indusirial Estate, Chandler's Ford, Easileigh, Hants.

ETI NEWS JAN 1974

CMOS IN PLASTIC PACKAGES
Motorola Semiconductors have just announced that 39 devices from their standard CMOS logic family are now available in plastic packages. In the past, ceramic packages have been used for all CMOS devices

ETI NEWS SEPT 1973

FAIRCHILD TO MAKE CONSUMER PRDDUCTS

The USA's Fairchild group are actively planning to enter the consumer products market, according to a usually reliable source.

Fairchild's first products are believed to be a low-end of the market onechip hand-held calculator with 8-12 digits. However several industry commentors query Fairchild's ability to produce the necessary MOS chips, quoting Lester Hogan's (president of Fairchild) own description of his company's performance in the MOS field as 'disappointing'.

ETI NEWS JUNE 1974

SOVIET RADAR BLAMED FOR HIGH HEART DISEASE

A Russian radar tracking station near the Finnish town of Ilomarltsi may be responsible for a sharp increase in heart disease and cancer according to Dr. Milton Zaret, an American microwave expert.

The Finnish border towns have the highest rate of heart disease in the world and cancer has increased inexplicably.

the little cb that santa forgot

Citizes Band. radio manufacturers around the world are erying into their transceivers after Xmas. They expected a boost to sales to revive their drooping business, and it didn't materialise. Seems no-one wanted to contact anyone else - not even the reindeer.

ETI NEWS MARCH 1978
ETI NEWS JULY 1975

BLUE RESFARCH

Your chaice of LED colours might include blue In the not so distant future. The new devices. being developed by Siemens. use silhoon carbide and are predicted to have a forward voltage drop of 4 V at 50 mA .

ETI NEWS OCT 1979

- Polaroid are about to release an automatic focusing camera that uses an ultra-sonic trans. ducer to measure distance.
- Computers stores in the US are opening up literally every day - we have just heard that 700 have been identified by someone preparing an exhibition! In addition to those dedicated to Home computers. office equipment suppliers and camera shops are at the forefront when it comes to jumping on the bandwagon; even Macey's stores have now got a computer department in some of their stores.
- Sanyo have demonstrated a 6 mm thin solid state green and black television. The display is made out of 6,144 green LEDs in an area only 50 mm by 75 mm . They hope to have a commer. cial set by 1981.
- A radar based overspeed detector is in use in the U.S. of A, the unit measures your speed and lights up a neon sign saying YOUR SPEED IS REDUCE SPEED. The unit is very effective, only problem was the local hot-rodders using it to check their top speed! Problem solved by limiting display to 75 instead of 99 .

ETI NEWS SEPT 1978

Watch This!

If you're sick of digital watches, how about taking a look at this watch from Casio Its all analogue. but with a difference. It's fully electronic and has no moving parts, It uses LCD and has conventional hours, minutes and sweep seconds hands. The Model ANBCL is designed to be attractive and fashionable, face colour matches the synthetic strap. Hour positions are marked by standard Roman numerals and all the time settings and adjustments are handled by two buttons, keeping the compact gold-plated watch case simple and uncluttered. The display shows hour and minute hands, and seconds indication is by a third sweep hand or as a series of marks on the face edge to show accumulated seconds. Accuracy is to within 15 seconds month. RRP Is, E2795, but products of this type are often sold cheapef. Further information can be obtained from Casio Electronics Co Ltd, 28 Serutton Street, London EC2A 4 TY.

ETINEWS NOV 1981

GREENWELD
443A Millbrook Foad Southampton SO1 DHX
All prices include VAT at 15% - just add 50 p post
CONGRATULATIONS TO ETI ON THEIR 10TH ANNIVERSARY
Here are some special Bargains to celebrate!!!
ET1 Electrolytic Pack - 10 each of these PC mnig types: (uf /V) . 47/50: 1/50, 2.2/50. $4.7 / 100,10 / 49,22 / 50,30 / 28,47 / 16,47 / 40,100 / 16,100 / 35,220 / 63,330 / 25,1000 / 16$ Tosai 150 cans for $\mathrm{E} 5 \%$
ET2 IA reces - 25 each 1 Na001, 3.567 . Total 100 for $\mathrm{C3} .95$
ET3 Minibox polyestor caps 10 even of .01/830, .022:250, .047/400, .068:250, 1/100. $.22 / 100,30 / 100,47 / 100,1 / 100$. Total 90 caps for $£ 3.50$
ETA TTi pack - 5 each ot: 7400,02, 05, 10, 13, 20, 30, 47, 73, 74, 88, 90, 93, 98, 107, 121 Tols1 80 chips for C 14.96

ETE 1500 uF 40v PC mntg caps. Sfor $\mathrm{C1}$
ETS ThouF 10 V axiel caps 12 for E1
ET10 \%W 5\% CF resistors. 20 each of these yalues 2月2, 4R7, 5R8 22R 33R 47R, 688
 6M8, 10t1, Tota 500 lor just tis 50 ET11 Mains eransformer, $12-0-12 \mathrm{~V} 50 \mathrm{~mA}: 2$ for juse \&1
ET12 1001 N 4148 diodes C?

STABILIZED PSU PANEL

A199 A versatile stactiked power suppir With bor volloge 30 and cunt 20mA-2A) Nully verieble. Many uses th bench PSU, Niced charys, ben. Durpas resting. Paer ready built. 10sted and pots $\mathbf{t o} .00$. Full data suppled.

SPECIAL ETI

BIRTHDAY OFFER

(Aren't we nicellll)
The above PSU, transformer, Dots, heal. sink, $0-30 \mathrm{~V}$ and $0-2 \mathrm{~A}$ melers. switch, terrinals, neon and smart cabinet to mount it at in, plus wring diagram $\&$ info.

JUST $£ 24.95$
MIXED LED PACK
All new full spec by Micro, farchlkt, atc,
Red, Yellow, Green, Ambow, Ciear, 3 mm Red, Yellow, Green, Amber, Ciear, 3 mm
85 mm , Pack of 50 asstd 13.88 si 250 1 is

1W AMP PANELS

A011 Compect audio amp inlended for record player on panel $95 \times 65 \mathrm{~mm}$ inciuding vol conirol and swith. Complete with knobs. Apart from smp elscuitry built around LM300N or TBAB20M, there is a wheed control circuil usina 5 transstors. OV opevation, connexion dita suppited. ONLYE1so

OP-AMP PSU KIT

A198 all ports instructions 10 make a
$50 \mathrm{~mA}-15,0,-15 \mathrm{~V}$ suppty from mains anput Onty E1.95

P.C. ETCHING KIT MkV

The best valua in eiching wits on the marke - contains 10080 ins coopen ciod board, Forric Chiorida, Etch resist pon, sorathe ciemer, twio minature drifl bits. fiching dish and ingervetions. All for E495,

PANELS

2521 Panel whe 16236 12N3442) on (mall now suk, 2N2223 duel tranastor, 2 BC108. diodes, caps, resistort, otc, s0p
5327 howd may panel - contains $2 \times 8 \mathrm{~V}$ oedr. 6 Kr 25
0 cts o Rus. 50
2529 Pack of ex-computer paneis contaniry 4 serles $1 C$. Lots of differert gates end

Mo a code for which in rownsfication theet is aupplind. 20 ICE E1.00: 100 ICs E4.00 A 508 slack case $50 \times 50 \times 78 \mathrm{~mm}$ with

CHEAP CHIPS

2017 Sound IC C1.26
$2102 A$ RAM 8 for 13

WA Jring + volt reg C1.00
34.5112 Dual Flip. Floo 8 ion
fil.311 Mexsdecmat display with decode $0-9$ and $A-F$. With data t3 50

DEVELOPMENT PACKS

Theso packs of brand new 100 quabiy comporents aro deskinned to give the construcior complete range so the right siso give s substentiel seving opeor buying iso give subs.
$\mathrm{K001} \mathrm{SON}$ ceramic piste capaciturs. 5%, K001 BoN ceramic pite capsciturs. 5%,
10 of each malue zopf to $1,000 \mathrm{of}$, sotal 10 of each
210 EA 80 .
K002 Empended range 22pF to 0.1. Values aver 1000 pF are of a grester tolorance. 10 of eech ratue 22. 27, 33, 39. 47. 55. 68, $82,100,120,160,180,220,270,330,390$. 470. $560,520,820,1000,1500,2200$. PRICE E7 66
KRO
$K 003$ c280 or similar Polyester capositors 10 eact of the foilowing: 01, $015, .022$, .033 , 047, 088, 1, 15, 22. . 33 and STUF PRICE CB. 40
K004 Mrler capactons. Smot size, vertical mountung 100 V . 10 each of the followntis: $\begin{array}{llllll}001, & 0012, & 0015, & .0018, & 0022, & 0027 \\ .0033, & 0039 & 0047 & 0066, & 0068 & 0082\end{array}$ $.0033,0039.0047,0056,0068,0082$ K007 Eecerovic ceosacizors 25 V worthing amal perysical stie axlal or redial heand 10 each of the followirg: $1,2.2,4.7,10$, $22,47,100 \mathrm{uF}$. Total 70 cepocitors. Phice 1369
$k 008$
K008 Entended range, as sbove, Wwo including 220 . 470 snd 1000 of all in 25 V . Totat of 100 cspscitors. PRICE 6635 KO21 CR2E resistors or Aimilar, miniatume \% watt carbon fitm 5%, is used in nearlis all projects 10 of cach walue from 10 ohms to 181. Et2 sanies Total 610 resistors. PRICE E5.95
K041 Zener dionters $400 \mathrm{~mW} 5 \%$. 10 nach of ell the vatuea from $2 V 7$ to 38 V . Total 200 zeners, PRICE $\mathbf{5 1 5 . 9 5}$
K051 LEDs. Pact of 60 compriming 10 each rod, green and yellow 3 mm and 5 mm together with clips PRICE C8.96

UHF TUNERS

GJE Srlvantio Fatzo
Brono new, no dato t3.00.

VHF TUNERS

TVDe
onty E 3.00 OA 400\% trive, S5 limer, $10 \times$ INAMOI dicotes. 2NS061 SCA. $2 \times 3 \mathrm{~mm}$ LED's $3 \times 2 \mathrm{NJ7O4}$, 月1 8 \& C's. Amaring veve - boupm seperatioty, pertio would crat sound c811 Ove price los the pamel. wat 11.50

LIE DETECTOR
 Not a soy, thas prechson inetrumemt was uriginafy
part of on "Opy Unvwruiy" coursa, used so masoury a change in emotional bolisnee, or as हैfe delector. Full detais of how to wee in are given ard ercuit diag am Supphat complate whe bats Overst size $166 \times 100 \times 100 \mathrm{rov}$ Only

1000 RESISTORS $\mathbf{E} 2.50$
tocesors. and can make of simile offer to thet made Nwo yoars too, at the seme pricelllik 553 1000 mined ${ }^{2}$ and YW 58 carbon film tange of prelgred valuee. to00 for C2 50: 6000 [10: 20m 5%

200 ELECTROLYTICS $£ 4.00$
Koopoed teats for PC8 mrig. $1-$ te00uF, $10-6 \pi \mathrm{~V}$ Al nca full spar. ce
200 [f: 1000 §17 50

CAPACITOR BARGAINS

 200 H
$44 m \mathrm{~m}$
63100
033 F

4.7 A PETV PC mnig serne orice

1500 U /4OV ían $10 / 220100 \mathrm{e}$ els
OOu 2SON can 10/CK 60 10cares4
$100 \mathrm{u} / 300 \mathrm{~V}$. $100+100+50 / 300 \mathrm{~V}$ tal in ome can 10/65.00 10arc38.00

TOROIDAL TRANSFORMER

18 V 4 A . $6 \mathrm{~J} \mathrm{JV} 1 \mathrm{~A}, 240 \mathrm{~V} 0.3 \mathrm{~m}$, lowell for socoper manitors. VOU's enc. Specull how price $\{5 \%$

TRANSFORMERS

DISC CERAMICS

226 t000 $\mathrm{Ez0} \mathrm{co}$.

 $0251000 \mathrm{Tz0} 00$. $100 \mathrm{ct} 50 \mathrm{e} 1000 \mathrm{\$ 1200}$ Pact of bisc ceramicic1N4006 DIODES
Spaciel purchase of 10 recers Rusian made 530 00, 10 bones C75 50,

AUOIBLE WARNING DEVICE

 to give ragn ourput. Vohage recid 8-1N. Con to give bich dnven ourect from TTL of CMOS, Moous sise is $x 21$
NICAD CHARGER

butseries Cherge/teg! owiteh. LEO' indicators or ach of the 5 thargeng ponts. Mars powered.
 uniss how in o $120 \times 100: 40 \mathrm{~mm}$ cose ate brand new and Daned. They wout by transtrission of a 40 k Hz beom which resporios to miswminint by detectron the Dupporn freo. shtf. Muns opershed unita are excallont yalue ar onty tN 4.95

SOLENOIDS ANO RELAYS
wez1 Solenod rated 49V at 25\% duty evcia, but work wef on $28=18000 \mathrm{~m}$ pe
w922 Mwrie 240 V oc tolenoid, 10% duty cycie, aush or WBO SV OC stay 500R SPCO 24 $\times 24 \times 19.500$ w733 11 pin plug m reloy. 240 N Ac, 3PCO 5 A conracis C.50 Base E33p
we38 TOCA 2av apCO C
$30=18$ anty Hip: $105 C 700$
Wey 378 s-10y

 12.50

Wegs 24 V ac coll, but works well on 6 V DC. 2 I

AMAZINGI COMPUTER GAMES
PCB's for PEANUTSII
A bulli purctase of PC6's lrom wrotral well known comouse games nowding lastreshipe. Simon, Logic st and Starturd

'STARBIRD'

Oves rodiske enifity wionde and frewhing waet Gdests - acceleriting engere notion wtion module is ported up, owcilvating noise when pormed down. Press contact to see liesth and have blask of lasers shocing. PCB teled and workuy.

"SIMON"

The ablec: of this gerne is to 'epent correctly a longe and longer reovinct of signas in 3 contsint chros, switcties, umphotoers and umps. and is costed worting. Complete with soeatice. Nieeds PPS and 8
130 mm . Ony $[3.95$

COMPUTER BATTLESHIPS'
Prowabty one of the Moft popule efectronc pornes on the morkse. Uniortunater the desinn model. athough 18 min well function perfecth, the bove hove lested the sound chic. Sna sel wound IC TPASTOOD U.pmocien or; bal olpe. R's. Ce me. Saso 160 x 140 mm . Only $\$ 150$.

- MICROVISION' Cartridges These are a small PCB with o micro-processor chio. derigned to payg whe the microvision consolesit However, they cen to uned as an
oscibeor with 4 difterter frea. oulputs mingly by oscibetor with 4 difterent frea. oulputs bempt by cannecting barrery and spowige. Tested and woeking tom
$72 \times 60 \mathrm{~mm}$

ONLY 25 p eachll

LOGIC 5 PANEL
Testod Logic 5 now hom out - Dut we hive acome PCB' wht 10 LED'g

 second number, ing rome soun to the nurnber, Onty whan this has been compoted in
 ctose. The se cen be wed to oowntes reway of

1982 CATALOGUE
out of rest, by uese March 02 - Sand $7_{5 p}$ low your copy now!

WHOLESALE LIST

we supphy strope. M/O compenies. Schools.
 aunbiy 1100 - 1 paces for new hil spoc bull ouvers for.

NEW CONTROL SYSTEM FOR SLR CAMERAS

Electronic shutter speed and exposure controls can now be built into single lens reflex cameras without mechanically modifying the camera bodies or lenses.

A new control system, developed by Matsushita Electrical Industrial Corporation, measures the light at a preset aperture fin less than two
milliseconds) and then sets exposure time accordingly. Control range varies from 0.0005 seconds to four seconds - dependent upon lens aperture and film speed.

Prior to the Matsushita development, it was necessary to have a light measuring device accommodated behind the main lens - calculating light intensity with the lens held wide open. ETINEWS JULY 1975

Eirad: Enİ Germany...................
A new edition of ETI starts this month - Elrad in Germany. The name Elrad itself means nothing and is simply an amalgamation of electronics and radio. It is being published by Heinz Heise in Hanover and is edited by Udo Wittig

ETI NEWS IAN 1978

RIDING HIGH

The next step in America's space programme is the tesing of NASA's space shuttle. Landing tests are to be carried out in mid 1977. Amazingly the machine will be launched 'piggyback' from a Jumbo 747! Several

flights will be made to ensure stability before the shuttle is actually released. Trust Americans to build the worlds largest airliner and then carry people outside it! ETI NEWS AUG 1976

COSMOS NOW CHEAPER THAN TTL FOR MAJORITY OF DIGITAL SYSTEMS

RCA has announced further price reductions in its CD4000 range of COS/MOS integrated circuits. The reductions range from 35% to 50%. The biggest price reductions have affected the more established MSI devices of the CD4000 range, with many types being reduced by over 50%.

As a result of the price cuts, many of the popular TTL devices are currently more expensive than the equiv. alent COS/MOS functions.

ETINEWS SEPT 1975

CB2B

A long last a specification has A been published by the Home Of fice for the legatisation of Citizen's Band radio. Two frequencies will be allocated: 934.025 to 934.975 MHz and 27.60125 to 27.99125 MHz . For the 934 MHz (AM) frequencies the maximum power is $8 \mathrm{~W}(25 \mathrm{~W}$ ERP) 20 channels at 50 kHz channel spac ing: Hand-held units are restricted to 3 W PEP. On the 27 MHz (FM) fre quencies the maximum power is 4 W (2 WERP), 40 channels at 10 kHz spacing. Frequency tolerance: $\pm 1.5 \mathrm{kHz}$. Maximum frequency deviation: $\pm 2.5 \mathrm{kMz}$. Adjacent channel power: -60 dB to 2 uW , sourious emission less than 50 nW .

PLAY-ALONG-WITH-RCA
Single chip I/O for video games is the laudible aim of messers. RCA. To be intruduced in January the device is primarily a vertical and horizontal synching circuit designed for use with RCA's 1802 MPU. Price could well be around $£ 12$ when and if introduced into this country.

Right - now you've stopped staring at the picture can we proceed with this month's news. Thank you. Once again our old friends CBM have managed to get in on the act. The above watches
long-awaited entry into the digital watch market - with the 5,000 series. All three use a common module, with the casings making for a price range of E 17.50 £ 21.00 - yes watches - represent their

ETI NEWS IAN 1977

CZECH ON CALCULATOR PRICES ETINEWSMAY 1976

A typical dour Czech day. The rain sleets across Prague.
Somewhere in the back streets well away from the patrols and the populace, Ivan scuttles into a dingy corner shop.

There, amid the Western papers and naughty mags, he spots the object of his desires.

Eyes alight he lifts the proscribed machine from the rack, and carries it reverently to the counter behind which stands the owner.
"How much?" he stammers, hands shaking.
"Novus 650 comrade? To you £172. Crossed the border this morning right under the army's noses," he looks around furtively. and leans across the counter, whispering.

Interested in the REAL thing eh comrade? "Ivan nods. The man reaches below the counter and produces a battered show box. Ivan's eyes are wide by now. riveted to the lid as it lifts. Inside lies a full frontal scientific, a HP 45.

Ivan faints.

Now before you dismiss this as merely the alcoholic follies of the ETI staff, following a pariy, let us inform you dear reader, that whilst we may be guiliy of slight embroidery, our flight of fancy is based on fact

It seems our Eastern friends consider pocket calculators to be highly prized items, and will pay vast sums to acquire them. What would cost you or $1 £ 7$, our Ivan would need £172 to own. For that HP 45 you could possibly get a weekend with Siberian Sue, belle of the Balkans.

The reason behind this black marketing and smuggling is that calculator ships are not produced behind the ferric curtain and the machines are banned from importers lists by the governments, to preserve foreign exchange as their value is so high.

I wonder how they count it?

FOUR CHANNEL DISCS

In the UK the EMI group have announced plans to release quadra. phonic discs - using the CBS developed 'SQ Matrix' system - in April.
The company claims that the new discs will be fully compatible with existing stereo equipment.

COMPUTER 'ON A CHIP' WITH CASSETTE TAPE

A new byte-orientated micro-computer with its own in-built cassette tape backing storage has been produced by Computer Electronics Lid, of Saffron Walden, Essex, as part of its range of cassette tape data systems.

Believed to be one of the first 'processors on a chip' computers to be developed in this country, the complete computer fits on one of the company's standard printed circui cards. ETINEWS AUG 1973

TV GAMMES LSI CHIP AVAILABLE SOON

Rumours have been abounding for about a year now that an LSI chip for television games was being developed.

We now have definite news that Logic Leisure, a British Company, have produced a chip which will produce four TV games; with two variations on each, giving eight permutations. There is score and sound facillty. Type number is not yet known but the chip is suitable for both 625 -line, 50 Hz and 525 -line, 50 Hz .

It is hoped that the chip will be on sale in October and the price tag is going to be in the $£ 10-£ 12$ range (plus VAT). U.K. distributorship is in the hands of Television Sprots Co. Ltd., 6 Half Moon Street, Mayfair, London, WIY 7RA. ETINEWS AUG 1975

brief news

NASA have received weak signals from Skylab for the first time in four years. The possibility of sending it deeper into space is being considered.

* A study by the American National Institute for Occupational Safety and Health (Niosh) has concluded that VDUs in use In the offices of the New York Times are not res. ponsible for cataracts de. veloped by two copy editors working there.
ETI NEWS SEPT 1978

Hitachi MAGic

Hitachi have developed an experimental colour video camera combined with a video tape recorder - provisionally christened the 'MAG Cameral. Using ligh density recording tectuniques, the combination is little bigger than an 8 mm cine camera. The cassette, using $1 / 4^{\prime \prime}$ tape, is almost as smill as an audio cassette and allows two hours of recordingjplayback. The complete unvi weighs only 2.6 kg , including a rechargeable battery pack. Watch this space for news on development of the MAC Camers.

ETI NEWS IAN 1981

From a firm called James Niell comes the Micro 2000 to rise into our News Digest with carefully measured precision. This instrument gets our vote for the best innovation of the year already! A digital micrometer no less.

As you can see from the picture, it actually reads out a measurement in seven-segment format. Goodbye verniers. It has so many features and advances, it is perhaps best simply to list them.

Accuracy to $\pm 0.002 \mathrm{~mm}$., with a 'constant force' spindle and selfcalibration facility. As soon as it is switched on, the 2000 self zeros.

The zero reset means that it can be used as a comparator against a known standard, and variations from that can

BRITISH? PRECISELYI

be read directly. Also in awkward situations, the instrument can be
zeroed, utilised, and then removed to be read. ETI NEWS IUNE 1977

Sat 54

Well, it was Satcom 3 actually, but the plot is reminiscent of that old, old American telly series. The Car 54 in this case, however, was an RCA communications satellite, last heard of in Dccember, 22.000 miles above mother Earth.

If anyone finds a communications satellite answering to the name of Satcom 3, send it to RCA, nto us. Mind you, if it has gone up in a puff of smoke, it has probably burned up on its way back to Earth. NASA quick to assure us that It won't cause another Skylab incident. So, you needn't dust off your antf. Skylab umbrella, yet.
ETI NEWS MARCH 1980

HP AT A (CALCULATED) LOSS;

Hewlett.Packard - renowned for their up-market calculators, are apparently running this section of the business at a loss. Equipment and other activities are keeping then in the black, and H.P. cite the delays occurring on the introduction of new models as the cause for this. Also named as a culprit is "severe price erosion in the pocket calculator marketplace". Pick the bones out of that ye rivals of the beast.

ETI NEWS NOV 1976

CEEFAX AND ORACLE SYSTEMS COMBINED

The BBC and IBA, together with BREMA and the Broadcasting Department of the Home Office have agreed on a unified system of data broadcasting.

Until now the BBC have been working on CEEFAX, the IBA on ORACLE. Both systems allow a TV viewer to select at will from a number of different 'pages' of information and put these onto his screen.

ETI NEWS IULY 1974

K_{c}speaker unit. sound

Text To Talk

 urzwellComputer Products of Cambridge, Massachussetts has developed a machine to turn written text into speech.The machine contains an optical scanner, a small computer, a small synthesiser and a loud-

The page to be read is placed over the scanning unit which then converts the written text to digital signals for the computer. The computer then converts them into

ETI NEWS APRIL 1980 mputer system cap
of
ontrolling in up

junk calls

From the land that brought us Muzak and MPUs comes the Junk call - the same as Junk mail but verbal! A machine is being used to dial up to 1,000 numbers a day and make a prerecorded sales pitch, unllke junk mail there is no way of knowing when the call will be junk or not, By dialfing up numbers from 0001 to 9999 the machine annoys everybody who answers on a particular exchange, even If you hang up
it holds the line open until the pitch is finished - this has caused emergency calls to be delayed in some cases,

Ten states are considering legislation 10 curtail the activities of the machines. However they intend to exempt charities, pollsters and politicians. Some people want an electronic 'no thanks' slgn to be developed, although nobody is quite sure how it would work. What next?

ETI NEWS SEPT 1978

ANRIS INTEGRATED INTO A SINGLE IC CHIP

In 1972, JVC first introduced their Automatic Noise Reduction System (ANRS) into their top-range cassette decks. Since then, ARNS has been incorporated into a wide range of tape decks. Recent improvements however, in cassette deck quality and the possibility of "noise-reduced" FM broadcasts have meant improvements in the quality of noise reduction systems and the application of these systems to components other than cassette tape decks.

To meet these new requirements, JVC has recently completed the development of the ANRS IC.

ETINEWS OCT 1975

A Preview from the Next Issue of

AMBIT

INTERNATIONAL'S

Wori

EfRedino
CONCISE PARTS CATALOGUE

The LOWEST PRICE Full-Spec. NICADS

 in the UK

Prices for 50 or more on appilcation.
Prices exclude VAT Postage \& Packing 50p per order.

Send your orders to: Ambit International 200 , North Service Road, Brentwood, Essex CM14 4SG

ant Tik
 meritekELECTRONICS IN-GAR CB

HY-TEK PA150 A multi purpose mixer-amp. dellvers 150 watis into t ohms, fully open and short circult proot. These are $4 / / \mathrm{p}$ channels with micfline selection on each. The pre amp has facilties for connecting an ocho unit. also leatured are BASS and TREBLE controls, a slawe socket and a masier volume.
Hy-Tek Special Offer Price only $£ 79.90$ (1 \& p (2.50) Slave version available $£ 59.90$ ipso $£ 2.00$)

Swilichable phonoflinelf ps, Cross fade on decks. P.F.L. on deck I/os. Master votume control. Malns operated.
£59.90 (p\& pE2.00)

HYTEK DM404
HIOH OUALITY DISCO MIXER
$2 \times$ turntable $1 / \mathrm{ps} .1 \times$ tape I / p. Mic I/p with separate Bass and Treble
Headphone monitor facility. £34.90 1 psp E 150 .
Requires power supply ($30 \mathrm{~V}-50 \mathrm{~V}$ DC).
Suitable power supply available $\mathrm{C5} .99$ (0 \& 075 ph

5-channel stereo disco mixer with 7-band graphic equalliser bultt in, l.e.d. dls play, headphone monitor, cross fade and mic. over-flde controle. And many other features.

DISCO \& P.A. EQUIPMENT

140W Disco with Fiexi Lights.
 120 W Disco (wihout hohis).

180 W Double 12° Cabinet (pain with
Goodmans 128 \& Pieso Twitelers.
90W Single 12 Cabinet (pain whth Goodmans $12^{\prime \prime}$ \& Piezo Tweever 250W Slave Amplifier 500 W Slave Amolifte Digital Echo Unit Le 3003 CHNL SoundChase Mono Headphones wilh
mic Boom.
Condensor Microohonev Dual impedence.
Sound Effects Generato 157 different soundiat. 3 Channel Rope inght fitted with $\varepsilon 39.99$ (p8p \&1.25) 21 litong

GOODMANS LOUDSPEAKER CHASSIS
8. 60 OV General Purpose $£ 10.90$ (pho E 1.50) 12" 90 WV General Purpose. $£ 24.99$ (pdo $£ 200$)
 High Ouality Dome Tweele?
$2 \mathrm{kHz}-22 \mathrm{kHz}$
CrossonerNenvork 2 Way 100 W . 4.99 pdo 1.00
3 Way $100 \mathrm{~W} E 5.8$ each

ع94. 99 (p8p C2.95) ¢ 244.99 (180 F 4.50) 778.99 ($p 80$ (1.95) £34.99(p\$p 1.50 £ 12.99 ($\rho 60$ © 1.25) C12.98(pAp [1.25)
c7.99(08p $£ 1.00$)

7 band/ channel. Tape monitor button. 120日boost and cul (each band). Mains operated. £59.90 (0\& p £2.00)

CASSETTE DECK
L.ED.V.U. meters, Dolby system, metal and chrome facilities, and a soft eject system plus sound quality you would expect from the Sharp company. expect from the Sharp company. ($\rho 8 \mathrm{p}$ 〔200)

SHARPRT 10 STEREO

BSRChassds Fitted with stereo corantic cartindge accepsional quality greas or aufomatic decks avalable. Sungle plery 14.99 uto play E15.99 10Ep E 1.501

MISCELLANEOUS

 ITEMS
240V-110V Comertor Transtormer

mer

. 88.99
£10.99
240-110V Convertor Switching 1000 W Type
(p o E 1.00 each)
Atari 2600 Video Computer Game Induding Combat
 Cartndoes Avaitable. Activision
Pair ot ounlity steres mics suthole for most mush
centres \& cassette deck: supplied with 48.3 .5 mm jacks.

World's most versatile alarm chronograph watch Casio AX210 Alternative displays Ahternative displays
over 60 usetul functions Continuous display of hrs mins seconds amipm data day Auto calendar cen at 28 days for Fecaruary Accurasy. \pm secsimonth

6 mic I/ ps. 2 stereo line I/ ps.
Silde volume control for each.
Stereofmono conirol oulput. $£ 59.90$ (0 \& p£2,00)

100 watt
P1F20 PIEZO
FLAIRED HORN FLAIRED HORN
No crossover. No Crossover. \&6.90 (p\& pfree)

100 walt
PIE 20
DISCO HORN
No crossover.
Tweeter

E4.35 ($08 . \mathrm{p}$ free)

CB EQUIPMENT RIGS

Fidetiry 100040 ch UK Legal £59.99 Fidesyy 200040 ch UK legalc79.99
Rolel fvC 23040 ch UK tegal 79.99

Tristar 777 C827/81 40 ch UK legal rig capable of 120 ch . AM/FM USB LSB SKC......... 199.99 Colt $610 \mathrm{CE} 27 / 8140 \mathrm{ch}$. UK legal rig capable of 120 ch . AM/FM $\boldsymbol{\text { IT }} 15.99$

Beta 1000 Slimine 40 ch UK legal E89.99 Eeta 2000 Slimine 40 ch . UK iegal E 79.99 Beta 3000 Slimline 40 ch UK tegal $\mathbf{8 9} .99$ with Channat 9 Priortty (perp És 50) all rigs supplied wnth Mic \& Fixing Kits

CB ACCESSORIES

SWR Meter
 87.99 (p8p 75p)
 SIVR Antenna Matcher

 Power MeterPasch Lead.
Mobile Aenals
Boot Lip Mounl.
Antenna SAatcher.
Slide Mount
Power Supoles $\{13.8 \mathrm{~V}$ Stabilisoc
$3 A$.
$5 A$.
$\varepsilon 17.25(080\{1.00)$ 81.99 (p8 04001
£ 11.99 (08 p £ s .00) E10.99 (psp (\%.00) © 5.99 (060 51.00$)$ 812.99 (OBOC190) ᄃ15.99 (pBP (1.90)

48 Dalston Lane,

AUDIOPHIIE

Soon burglars won't be bothering to nick your whole hi-fi; they'll just take the cartridge. This month Ron Harris reviews two new pickups, one with a gemstone cantilever and the other a work of modern art.

News just in of a new piece of British circuitry genius. This is a new protection circuit, soon to be added to a famous manufacturer's product, which is claimed to make an amplifier totally invulnerable electrically.

Totally in this case means "even from 240 V mains at input or output". Ultrafast relays are set at the output and on the supply lines to the PCB. These are driven from the new circuit, which has as its final stage a voltage amp with an incredibly high slew rate. This ensures a high speed of operation for the relays.

Out Of Phase

The protection circuit operates like this: if an amplifier is suddenly faced with a massive input signal, the ratio of the feedback signal to input will drop dramatically. A comparator senses the change and a 'low-eedback' signal is generated. This by itself is sufficient to trip the supply relays, so that the overload cannot be passed on to the output stages, thus destroying them - and probably the speakers.

A second block within the circuitry watches the supply rails and any surges which are outside the requirements of normal drive will trip the protection circuit, since this is a "lowfeedback likelihood situation" as the designer puts it. Creat play is made of the fact that the music signal and the feedback voltage are in anti-phase at the point of comparison, so no interaction within the buffer is likely. 'Anti-phase reset', as it is called, thus introduces no colouration. Hence the protection reset of the relays can occur either in the case of low feedback-to-signal ratio, or in event of an "overload likelihood". I suppose this is where the somewhat pompous title of the circuit is derived AntiPhase Reset In Low Feedback (Or Overload) Likelihood.

Shure MV30HE

A dedicated offshoot of the renowned V15 IV design, the MV30HE is for use in the SME Series III or IIIS only. The cartridge is built into a SME carryarm such that no headshell is used, or needed.

The moving components are those of the V15, save that no damper is provided. The cartridge body is all new, however, and quite a few problems it must have given them getting the coils and poles into a body as slim as this. The design is so arranged that the point of bearing intersection and the stylus line up parallel to the record. This will tend to aid stability in the replay of warped records.

As in the V15 a hyperelliptical stylus is used, which will give lower distortion results than either a spherical or elliptical tip. Tip mass is commendably low and output level is on a par with the V15 IV

Once fitted into the SME the MV3OHE looks very smart indeed is and visually extremely classy!

Testing an Armful

In the lab the MV30HE had an easy time passing just about every test. It tracks as well as the V15 IV and measures slightly better. There is no higher technical accolade than that. The LF resonance came out - surprisingly - at around 16 Hz , a little higher than optimum in my opinion. Best values are somewhere around $10-12 \mathrm{~Hz}$ so as not to affect extreme LF reproduction. Best tracking was obtained at around 1.0 g . and no improvement was forthcoming for increased force.

Frequency response was boringly perfect at $20 \mathrm{~Hz}-$ $20 \mathrm{kHz} \pm 1.3 \mathrm{~dB}$ with a separation figure of 27 dB at 1 kHz . Compliance measured very high at 34 Cu , so only the smallest damping paddle is required. It is required however - see later.

Instructive Stuff

The instruction booklet is worth a special mention. It is a straight 'copY' of the SME style, right down to the little diagrams with ticks and crosses for right and wrong answers. Some sort of deal has been struck here, methinks!

One point that I just have to mention here; I could not,

[^6]Brief Specification:

Full limiting	I V	IF Rejection	100 dB
S/N $(1 V$ Input)	7 dB (stereo)	AM Supression	60 dB
Distortion $(1 \mathrm{KHz})$	0.15%	Image Rejection	80 dB
Capture Ratio	2.5 dB	Crosstalk $(1 \mathrm{KHz})$	40 dB

 MV30HE must be the V15 IV. So, as I'm getting old and predictable (I still hunger after Felicity Kendal . .) that was the first pickup against which I auditioned the unit. Frankly, I had expected to discern no difference, and initial tests confirmed this to some degree. However, having settled in at home with my own system around me and the reassuring brandy in hand, subtle differences began to manifest themselves. The MV30HE has a more coherent sound - the midrange is more open under close examination and the bass is 'cleaned-up' and tighter, if a little more prominent. These are exactly the changes to be expected from a unit which simply matches the arm better, but has a higher resonance. Which, of course. if I'd thought about, is exactly the MV30HEN15 IV relationship. Serves me right for being so sure of myself! In comparison to the market as a whole, the MV30HE/SME pickup stands well-up with the best. The damper is not significantly missed, provided the SME paddle is employed. Leave it off and boom is liable to result, as is a certain lack of stability on warped records.
A limited application, then, but a very creditable performance and one which will compete with Shure's own V15 IV. After all, if you've got an SME and were contemplating a V15 IV, the MV 30 HE is a better bet all around. It is no more expensive than the V 15 IV with a CA1 arm to hold it and it provides a cleaner, more refined performance. All in all, a nice touch Shure. Whither goest thou now?

Dynavector Karat Ruby

Both this month's cartridges are unusual in their own way; Dynavector's Karat is notable for its gemstone cantilever. This 2.5 mm long piece of single-crystal ruby is cut with a laser to accept the stylus (diamond) and then allowed to cool, thus fixing the stylus in place. The length is remarkably short, since Dynavector say that the less material the stylus information has to pass through, the higher will be the fidelity of the output.

Wave propagation through a medium is something not many of us take up as a hobby, but someone down at Dynavector must have it all well sussed! Apparently this equation:-
$\frac{E I}{m} \frac{\partial^{4} y}{\partial x^{4}}+\frac{\partial^{2} y}{\partial t^{2}}-\rho \frac{E I}{m}\left(\frac{1}{E}+\frac{r}{G}\right) \frac{\partial^{4} y}{\partial x^{2} \partial t^{2}}+\frac{\rho^{2} r}{m G} \frac{\partial^{4} y}{\partial t^{4}}=0$
$C_{B}=\alpha \sqrt{2 \pi^{f}}\left[1-\frac{1}{4} \beta \frac{2 \pi f}{\alpha^{2}}+\frac{1}{4} \delta(2 \pi)^{2}+\cdots \cdots\right]$
where $\mathbf{E}=$ Young's modulus; $1=$ secondary moment of section area; $\mathbf{G}=$ shear modulus; $m=$ mass per unit length of a cantilever; $p=$ density of the cantilever material; $x=$ distance from the end of the cantilever; $y=$ flexural displacement of the cantilever; $r=$ constant; $t=$ time.
sums up the vibrational behaviour of a cantilever under dynamic conditions. It can also be used to prove that rigid materials, such as ruby and diamond, make for better cantilevers than boron, berylium and the rest.
(There is a 'big brother' to the Ruby, which has a diamond cantilever and costs around £450 as opposed to the Ruby's $£ 100$. If I can persuade the ever-helpful Dynavector into lending one I hope to report on the differences soon. Maybe if I say "please". . ?)

Temperate Zones of Test

Another piece of original thinking has gone into solving the problem of temperature dependence and damping material. The only rubber used in the Karat is to prevent the cantilever taking its jewelled self up into the body whilst playing records. Normally the pivot damping in a cartridge is accomplished by a rubber block and this is prone to suffer from changes in temperature and slow deterioration as it ages - the Karat suffers neither of these weaknesses.

In fact, due to the short rigid construction of the cantilever, the Ruby requires no damping at all.

Under test the Karat showed a ruler flat response from 100 Hz to 30 kHz of under $\pm 0.5 \mathrm{~dB}$! It was only 1 dB down at 30 Hz and separation measured an excellent 24 dB at 1 kHz and a more than adequate 18 dB at 20 kHz . Stylus resonance fell at 49 kHz and in the SME Series III (what else?). LF resonance was well placed at 12 Hz , below audibility and above warps.
 formation.

If at this point you're looking around the pages in search of the usual response graphs, don't bother - I haven't included any. If you really want to see a straight line, go buy a ruler. Dishearteningly disappointing for us cynics.

Listening Out

As the K arat Ruby matches the SME Series III sowell, it was left in that arm all through the listening test. One brief excursion into a Linn Itokk showed the two to be completely inconpatable in my opinion, as the sound stage broke up and the bass became so loose as to be positively flapping! Strange that, as both are capable of much better and there is little on paper to point to such obvious mutual abhoration.

The loudspeakers used were my trusty KEF 105 II's fed by a variety of amplification from Crimson, Monogram and Trio. Source equipment remained at Thorens 160S/SME 111 throughout.

On the very first LP side I played with the Ruby it was obvious that here was something special. The sound is so detailed and open, with such tight control of the bass that it makes you sit up and take notice of the music. This is a cartridge that will be much appreciated by reviewers, as it is so easy to listen through for long periods.

In fact there is little I can say against the Karat. It is a trifle recessed - I cannot account for this impression from the lab results, however, but it remains a definite impression - but is so relaxed and balanced a sound that none but the most obnoxious could find aught to quibble with. The sound quality reminded me greatly of the Ortofon MC30, but with greater resolution of complex passages and a more extended bass end.

At around $£ 100$ the Karat Ruby is an excellent bargain. Even accounting for the required step-up device, this pickup is required listening for anyone in the market. I have no hesitation in saying that it out-performs many units costing much, much more and will give more musical pleasure than just about any other cartridge I know.

Mind you, I haven't heard the Karat Diamond yet". . but can it really be worth $£ 350$ more? On this evidence I would doubt it! (Pause while Dynavector work out whether this is a compliment or an insult...)

ELECTRONIC IGNITION Makes a good car beffer

TOTAL ENERGY DISCHARGE electronic
ignition gives all the well known advantages of the best capacitive discharge systems.
PEAK PERFORMANCE \longrightarrow higher output voltage under all conditions
IMPROVED ECONOMY no loss of ignition performance between services.
FIRES FOULED SPARK PLUGS no other system can better the capacitive discharge system's abilliy to fire fouled plugs.
ACCURATE TIMING \qquad prevents contact wear and arcing by reducing lasd to a few volts and a fraction of an amp.
SMOOTH PERFORMANCE \quad immune to contact bounce and similar effects which can cause loss of power and roughness.

PLUS

SUPER POWER SPARK - $31 / 2$ times the energy of ordinary capacitive systems $-3 / 2$ timws the power of inductive systems.

OPTIMUM SPARK DURATION 3 times the duration of ordinary capacitive systems - essential for use on modern cars with weak fuel mixtures.
BETTER STARTING full spark power even with low bertery.
CORRECT SPARK POLARITY unlike most ordimary C.D. systems the corroct output polarity is maintained to avoid increased stress on the H.T. system and operate all voltage trlogered tachometers.
L.E.D. STATIC TIMING LIGMT for accurate setting of the engine's most important adjustment.
LOW RADIO INTERFERENCE fully suppressed supply and absenca of inverter 'spikes' on the output reduces interference to a minimal lovel.
DESIGNED IN RELIABILITY an inherently more reliable circuit combined with top quality components - plus the "ultimate insurance" of a changeover switch to revert instantly back to standard ignition.

IN KIT FORM It provides a top performance electronic ignition system at less than half the price of competing ready. bullt systems. The kit includes everything needed, even a length of solder and a thy tube of heatsink compound. Detailed easy-to-follow instructions, complete with circuit diagram, are providad - all you need is ; small soldering tron and a few basic tools.

AS REVIEWED IN

ELECTRONICS TODAY INTERNATIONAL June '81 Issue and EVERYDAY ELECTRONICS December ' 81 Issue
FITS ALL NEGATIVE EARTH VEMICLES.
6 or 12 vols, with or without ballast
OPERATES ALL VOLTAGE IMPULSE TACHOMETERS Some older current impulse iypes (Smiths pre "74) require an adaptor PRICE 82.95

STANDARD CAR KIT	£ 14.85	
Assembled and Tested	£24.95	£1.
		P. ${ }_{\text {d }}$
TWIN OUTPUT K	$£$	
For MOTOR CYCLES and CARS		

ELECTRONIZE DESIGN

Dept. D. Magnus Road. Wilnecote Tamworth, B77 5BY Phone: (0827) 281000

TECHNICAL DETAILS
The baisic function of a spark ignition system is ofien lost among chaims for longer 'burn times' and other marketing fantasies. It is only necessary to consider that, even in a small engine, the burning fuel releases over 5000 times the energy of the spark, to realise that the spark is only a trigger for the combustion. Once the ruel is ignited the spark is insignificant and has no eflect on the rate of combustion. The essential function of the spark is to start that combustion as quickiy as possible and that requires - high power spark.

The traditional capscitive discharge system has this high power spark but, due to h's very short spark duration and consequential low spark energy, is incompatible with the weak air/fuel mixtures used in modern cars. Because of this most manufacturers have abandoned capacitive discharge in favour of the cheaper inductive system with it's low power but very long duration spark which guarantees that sooner or later the fuel will ignita. Mowever, a spark lasting $2000 \mu \mathrm{~S}$ at 2000 rev/min. spans 24 degrees and later' could mean the actual fuel bgnition point is retarded by this amount.

The solution is a very high power, medlum duration, spark generated by the TOTAL ENERGY DISCHARGE system. This gives ignition of the weakest mlxturas with the minimum of timing delay and varlation for a smooth efficient engine.

SUPER POWER DISCMARGE CIRCUIT A brand new technique prevents energy baing reflected back to the storage capacitor, giving $31 / 2$ times the spark energy and 3 times the spark duration of ordinary C.D. systems, generating a spark powerful enough to cause rapid ignition of even the wrakest fuel mixtures without the ignition delay associated with lower power 'long burn' inductive systems.

HIGM EFFICIENCY INVERTER Ahlyh power, regulated inverter provides a 370 volt energy source - powerful enough to sture twice th: energy of other designs and regulated to provide sufficient output even with a battery down to 4 volts.
PRECISION SPARK TIMING CIRCUIT This circuit removes all unwanted signals caused by contact volt drop. contact shuffie, contact bounce, and external transients which, in many designs, can cause timing errors or damaging un-tlmed sparks. Only at the correct and prectise contact opening is a spark produced. Contact wear is almost eliminested by reducing the contact breaker current to a low level - jubt sufficient to keep the contacts clean.

TYPICAL SPECIFICATION

SPARK POWER (PEAK)
SPARK ENERGY (STORED ENERGY) SPARK OURATION OUTPUT VOLTAGE ILOAD 50pF EQUIVALENT TO CLEAN PLUGS) OUTPUT VOLTAGE (LOAD SOPF + $500 \mathrm{~K} \Omega$ EQUIVALENT TO DIRTY PLUGS)
VOLTAGE RISE TIME TO 20 KV (Lood 50pF)

TOTAL ENERGY CNERGY CAPDINAMY Capacitive DISCHARGE

140 W 90 W

$36 \mathrm{~mJ} \quad 10 \mathrm{~mJ}$
$135 \mathrm{~mJ} \quad 65 \mathrm{~mJ}$
$500 \mu \mathrm{~S} \quad 160 \mu \mathrm{~S}$
$38 \mathrm{KV} \quad 26 \mathrm{KV}$
$26 \mathrm{KV} \quad 17 \mathrm{KV}$
$25 \mu \mathrm{~S} \quad 30 \mu \mathrm{~S}$

TOTAL ENERGY DISCHARGE should not be confused with low power inductive systems or hybrid so called roactive systems.

 blue rexine covered ALUMINIUM BOXES 4813 2ndxim, $152.4 \times 101 \Delta x 50 \mathrm{smm}$ $A 815$ 8xtw 3 min ($2052 \mathrm{a} 1524 \times 2 \mathrm{~mm}$) AB16 10x7n3m ($2510 \times 17784 / 5$ imml AB18 $12 \mathrm{x} 5 \times 3 \mathrm{Bin} 1304$ Eri. 127 Can $2 \mathrm{~mm} /$.

RELAYS

CONTINENTAL

SUBMIN POWER, 5A contacts, small physical size. 4PCO
100p, bases 25p
POWER RELAVS. Plug in octal and 11 -Pin 2 and 3 PCO types with $71 / 2$ Amp contact ratings. By Schrack, B\&R Omron, etc.

Oniy 2.00p ea.
ZETTER LOW PROFILE (Type AZ5 and 6)
Just in, a large quantity of 'flat pack' relays in standard, heavy duty and latching types. We can offer these at a fraction of list price in many coil voltages and contact artangements. Full data supplied on request. Send SAE or ring for list.
DIL Relays
Form A.
Only 1.00p es.

SWITCHES

Special offers include:

ILLUMINATED

Licon $01-800$ push fit 2PCO switches. Separate bulb contacts (T1/4 flange) 5A rated contacts, lenses included. Latching or momentary action.

Only 1.50p
MATCHING INDICATORS ..60p ea.
Aftention: Licon stocks rapidly diminishing - BUY NOW and SAVE.

ROCKER

llluminated mains rocker switches, 16A contacts
DPST. Red, push fit, $26 \times 30 \mathrm{~mm}$ standard type 75p
SPST. Amber, push fit. $14 \times 30 \mathrm{~mm}$ standard type 30p

ROTARY

1P12W. 2P6W. 3P4W Lortin type... 50p es.
2P11W Elma gold plated adjustable. High quallty 1 ea.
MICRO
V3 roller, arm or standard... 40p ea.
V4 roller, arm or standard ... 50p ea.
DIL
4xDPDT; $5 \times$ DPDT, gold contacts, by ERG \& CTS, only 80p
Industrial type 2 Pole 12A/600VAC... 50
8 Pole 10A/380VAC
10 Pole 12A/600VAC
3.00

CABLE

Our cable stock must be seen to be believed, so it is impossible to list it all. ELECTRICIANS ... buy our $2.5 \mathrm{~mm}^{2}$ for only $£ 6 / 100$ and $1.5 \mathrm{~mm}^{2}$ only $£ 5 / 100$. VIDEO CABLE. UR75 75Ω Coax Mil spec. only £20/100. BELDEN CABLE. Hook up wite in 24, 20 and 18 AWG. Super prices. MAINS CABLE in $0.5 \mathrm{~mm}^{2}, 0.75 \mathrm{~mm}^{2} 1 \mathrm{~mm}^{2}, 1.5 \mathrm{~mm}^{2}$ T.V. DOWNLEAD, excellent ràtes for 100 m . MULTICORES of all types. RIBBON CABLE. We've got it. Why not see for yourself.
$01-7471555$
$01-9946275$
9.30 am .6 pm

MON. SAT comimuous

G. Telephone
 Telex 291429

SEMICONDUCTORS

We of course carry a fulf range of transistors, diodes, CMOS, TTL, Linears, Triacs, Thyristors and other devices but lack space to print long boring lists. Suffice to say we will beat mosi of our competitors on price, availability and quality of product.
The following are available in enormous quantity, generous trade discounts are offered:

BC184L - BUY69C - BFR87 - ZTX342(npn) - ZTX542(pnp) BY208. Our price 2.00 p - 2N3373. Our price 1.80 p

> 74LS Series TTL

The following numbers are held in quantity. Maximum savings.

TO5 tpe $\left(50^{\circ} \mathrm{C} / \mathrm{W}\right)$.

CONNECTORS

RF CONNECTORS
BNC Plug (50R or 75R) 50p
BNCLine socket 500
BNC Chassis socket
Flange........................... 45p
SHF
PL259 Plug \qquad
Raducer.......................
SO239 Flange Chassis socke 14p
PL258 Double socket 50p
PL259 to BNC (male) adaptor
PET100 plugs $\quad .20 \mathrm{p}$
PET100 Chassis socket......... 50p
N -Type Plugs (Amphenol)... 75p
N-Type Chassis sockets (SHF Amphenoll.
750
MULTIWAY CONNECTORS
Series rectangular connectors
from 9 to 50 way.
Example:
New D15 socket. \qquad 60p
New D9 plug 60p

MAINS CONNECTORS

US pattern 2 pin flat plugs, sockets, line sockets all 20p en. IEC Europlugs
Bulgin 3 pin 6 Amp plug and free sockel80p pr. Cannon LNE latching mains free socket................................. 1.75p Chassis mounting plugs ... 1.50p EDGE CONNECTORS (ALL GOLD PLATEDI
$0: 15$ pitch

2x22 way.......................... 1.50
0.1 pitch

24 way............................. 1.00
37 way............................ 1.50
40 way......................7.75
2×40 way $£ 2.00$. 78 way 2.50. 2×78 way 4.50

AUDIO CONNECTORS

We stock all types of jack, phone and DIN plugs too numerous to list, phone for details. in professional types we have:
CBC Type ring locking multiway connectors fashioned in heavy duty nickel plated steel with cable clamp. In $2,3,4.5$ and 6 way

Only $£ 1.00$ per pr.
Switchcraft XLR Series, the professionals choice
A34M 3 pin free plug ... 1.20p
A3F 3 pin free skt ... 1.32p

D3F 3 pin chassis skt... 1.60p
FUSES: 20 mm QB 7p. AS 10p. $11 / 4$ inch QB 7p. A/S 12p. \%/8 inch 6p each.
HOLDERS: 20 mm P/M 35p. Chassis mounting $10 \mathrm{p} .11 / 4$ inch Panel mounting 40 p . C/M 10p. 5/8 inch P/M 25p
MAINS FILTERS: Computer grade but ideal for HiFi, etc. 8 or 15
Amp..e4 es.
SLOW MOTORS: Mains or 115 V operation, great for timing purposes or discos
NEON BULBS: We have very large quantities in stock.
QI BULBS: 50W 12 V projector type, to clear..
$€ 1.50$ ea.
50p ea.
LOCTITE: Penetrating adhesive. It really sticks. 50ML for only.......e3 DIGITAL MULTIMETERS: Superb value, copy of professional model. Full ranges and specs.OUR PRICE £40
TMK500 METERS: Tough dependable Multimeter 20 K N sens. Full
ranges in V, A \& R
.OUR PRICE £24
CAR SPEAKERS: 3 way 20 watt shelf mounting. 4" Bass driver, 21/2" Midrange. 1" Tweeter. Internal passive crossover. Great sound E32/pr. PLUS $4^{* *}$ driver BALL SPEAKERS, real 20W output. crisp, clean sound, a genuine bargain at .
SOLDER: $60 / 4018 S W G, 500 \mathrm{gm} £ 6.50 .250 \mathrm{gm} £ 3.50$
IRONS: Antex X25 £4.50. Antex C15 £4.50. 12V 25W Irons £6.

This advertisement is mainly of our excess stockholding. We also have excellent stocks of semiconductors, hardware, cables, etc, etc. For further details send for our lists and retail price catalogue, phone or visit our shop. All prices are exclusive of VAT (and P\&P). Minimum Mail Order $£ 5+$ P\&P + VAT, Government departments, schools, colleges, trade and export welcome.

 Reyisterent in Enylana 1179820
 267 \& 270 ACTON LANE, LONDON W4 5DG. Telephone
 01.7471555
 9.30 8.m. $60 . \mathrm{m}$
 Telex 291429

STABILISED POWER SUPPLIES

FARNELL A15: 210/240V IP. Dual Op. 12-17v per rail at 100 mA Remote sensing, current limit protection. (164×130×38mm), with manual. e12.
FARNELL $7 / 3 S C: 120 / 240 \mathrm{~V} 1 P$. Adjustable current limit. Remote sensing. ($188 \times 96 \times 93 \mathrm{~mm}$.) Two versions available: 15 V at 2 A or 30 V at 1A. 115 es .
COUTANT OA2: Op. amp, psu. 120/240V IP. Dual Op. 12.15 v at 100 mA ($138 \times 80 \times 45 \mathrm{~mm}$.) £ 12 ea . or 2 for $£ 22$.
BRANDENBURG Photomultiplier PSU. 19 in . rack mounting. Metered, current limit protection.
374300 V - 1 KV at 5 mA
$376660 \mathrm{~V} \cdot 1 \mathrm{~K} 6 \mathrm{~V}$ at 10 mA
$375500 \mathrm{~V}-1 \mathrm{~K} 5 \mathrm{~V}$ at 6 mA . All models $£ 40$.
PIONEER MAGNETICS POWER SUPPLIES ...5V 150 amp , output input 115 vac . (Switchmode) Price £ 120 each.
Various other makes of power supplies in stock. Please send for lists, S.A.E. please.

D TO A CONVERTERS
 $15 \mathrm{MHz}, 8$ BIT

By Micro Consultants Ltd. 50Ω cable drive op. Linearity 0.25%, max. 0.125% typ. Sertling time: 2 V step 70 nS typ. 2 MV step 50 nS colour television transmission standard. Diff. gain 0.5\% diff. phase shift 0.5° types rad 802 and MC2208/8. Unused. Ex-maker's pack.

SPECIAL OFFER PRICE: $£ 20$
NEW IN STOCK
A range of high quality transformers SPECIALLY WOUND for us. By buying direct we can offer these superb SPLIT PRIMARY \& SECONDARY transformers at highly competitive prices.

VERO PRODUCTS

Veroboard 0.1 Copper	Apple proto boards 4.00p
21/2x33/4............................. 70p	Vero boxes - 2 tone grey/white
21/2x5............................... 80p	plastic boxes
31/4×39/4 80p	
33/4x5................................ 90p	
	$41 / 2 \times 2^{1 / 2 \times 11 / 2 \ldots \ldots ~ 2.51 p ~}$
4.7×17............................ 4.20p	$7 \times 41 / 2 \times 21 / 4$ (alinfront)........3.51p
0.1 plain	Vero ABS Black Plastic Boxes
	$41 / 2 \times 31 / 4 \times 11 / 2 \ldots78 p$
31/4x5................................ 75 p	$7 \times 41 / 2 \times 2^{1 / 4} 41 .42 p$
V-Q Board 1.30p	Veropins 45p/100. Stand off
V-Q Board 1.30p	45p/100. Track cutters £1.18p.

4 MILLION

 I.t.t. ELECTROLYTICS NEW AND BOXED NOW IN STOCKEN 1212 AXIAL EN 1235 RADIAL
The whole range available at unbeatable prices. Send for list.

Abstract

5 million Disc Ceramics in stock. Ceramic plate. Multi-layer ceramic. Low voltage discs. Monolithics. Ceramics. High voltage discs. Subminiature plate, epoxy cased. Send for lists or please phone for details.

MULLARD: Series 106 Computer grade electrolvtics 10.00011 F at 16V. Brand new and boxed. SPRAGUE: Series 36 D Computer grade electrolytics 3,300 at 40 V . Brand new and boxed. 35p ea.
SIEMENS: Procond Radial Polvester Film Capacitors. $10 ॥ \mathrm{~F}$ at 63 V . Brand new... 40 p

Quantity available

RESISTORS - PRESETS - POTS

CARBON FILM. $1 / 4 W$ from IRO 10 12M..... Only $£ 1 / 100$ or $£ 5 / 1000$ METAL OXIDE: TR4. TR5, TR6. TR8 in E24 range, by Electrosil or Philips in $5 \%, 2 \%$ 1\%. Save EEEs on manufacturer's prices.
WIREWOUND: We specialise in Welwyn Vitreous Enamelled W. series types in $21 / 2 W$ to 12 Watt. Also a good selection of HSA type metar clad power resistors and TV dropper replacement sections. HIGH STABILITY: 0.1% Tolerance Resistors for instrumentation purposes. By Filmet or Welwyn. 3K, 10K, 30K, 1M.........Only 30p ea. PRESETS: Skeleton and enclosed, horizontal or verlical Piher quality presets. Range from 100 P to 5 M . Pobular PT 10 size 10 p each AND GREAT DISCOUNTS ON QUANTITY
CERMET PRESETS. Top quality presets, good range stocked
Only 15p ea.
MULTITURN PRESETS: y_{4} " and $11 / "^{\prime \prime}$ Bourns type Only 50p each. SPECIALI 100K 15 turn $3 / /^{\prime}$. Oniv 20 p each.
SWITCHED POTS. Push switch pois from AB. In 22 K lin and 100K
lin. Switch independent of pot action........................30p ea.
RESISTOR NETWORKS. Large range in DIL \& SIL packages by Beckman \& AB. Send SAE or phone for list.
WELWYN STRAIN GAUGE. (Precision Micro-Measurements). Romulus Michegan type MA-09-50084-350. Our price £1.25 ea, List price $\mathbf{〔 3 . 8 5}$. Large quantities available.

WE PURCHASE

Surplus component stocks, redundant materials, obsolete computers, for cash.

We also collect - distance no object. Just call:

C. T. Electronics (Acton) Ltd.

> 267 \& 270 Acton Lane, London W4 5DG Telephone 01-747 1555; 01-994 6275 .

DIP Board ($113 \times 156 \mathrm{~mm}$)... 3.26p
RS DIP Board $(100 \times 160 \mathrm{~mm})$

ROBOT MOTOR CONTROL

This month we feature a control board for last month's motor driving board. This is part 2 in a series of DIY robot modules - collect them all! Design and development by Rory Holmes.

n this second part of the series on the ETI intelligent programmable mobile we shall describe the design of an analogue pulse width modulator for controlling the motor driver stage featured last month. We shall also take a brief look at some of the modules being offered later in the series which can be added in stages to enhance the motorised vehicle. The intention is to build up to a complete computerised mobile.

A lot of flexibility has been allowed for in the actual use and configuration of the modules, as we are well aware that constructors interested in this type of project have firm ideas of their own on the final form and capabilities of their mobile.
Construction and interconnection details for all the modules we are presenting will be given along with guidelines to a range of applications.

The facilities we have planned for the mobile will continue with the digital motor control and an on-board programmable computer for overall cont.ol of other modules. A lightweight manipulator arm complete with teaching arm has also been designed. for mounting on the front of the mobile. It is powered by four radio control servo motors and the electronics interface betwien ive servos and computer will be described
along with details of the arm mechanics. Optical proximity detectors for object sensing, and infra-ed tachogenerators for speed sensing will also be featured on the ETI mobile.

It is hoped that the designs will also prove useful as stand-alone modules for individual use in other applications. Optical proximity detectors, for example, have numerous applications in batch counting, limit sensing detection, alarms and so on.

The digital pulse width modulator in next month's issue will find many uses in the control of analogue functions; how about a computer interfaced to a pulse width modulated optical data link, for analogue information transmission? Our version will control two pulse width modulated channels, with a resolution of one part in 256. via an eight bit data port; modulation being achieved solely by logic to satisfy the all-digital purists.

Optical Proximity Detectors

These have been designed as small independent units with as much in-built versatility as possible. The circuitry is housed in a short length of aluminium tube axially aligned in the detector direction, with three external
connecting points; ground, positive supply, and an open collector digital output. A number of detectors can thus be easily mounted in strategic locations. All circuit operating parameters are independent of the supply voltage, which can be anywhere between 5 and 35 V at a current of 20 mA .

The proximity switch works on the princlple of transmitting and detecting a modulated infra-ed beam. The infrared transmitter receives 1 A peak current pulses, of 10 uS duration, with a modulation frequency of 1 kHz . The 100:1 duty-factor thus achieved allows high currents to be used to increase the detection range, while reducing the average supply current to only 10 mA .

The sensor can be set by a preset pot, accessible through a small hole, to detect an object at any distance in the range 1 cm to 35 cm .

A small amount of hysteresis is introduced into this switching distance to ensure clean switching thresholds and stability of the output signal. The use of tuned detector amplifiers provides excellent infrared interference rejection.

Analogue Speed Control

The analogue speed control has

Fig. 1 Various voltages associated with the circuitry around Q3. The control voltage is measured at point A in Fig. 5.

BUYLINES

> No problems here with any of the components specified - most mail order companies who advertise in the magazine will be able to supply everything. We can supply the PCB - see page 44 for details.

Fig. 2 PWM motor driving waveforms for last month's circuit.
been devised for manual control of the main traction motors; it provides two pulse width modulated signals suitable for the motor driver amplifier.

The circuit is designed to provide a linear control-voltage-to-pulse-width relationship for greater flexibility in application, and to simplify the addition of speed feedback velocity control.

The modulator can be built either single or dual, and the manual control section, if not required, is easily omitted. Speed control is achieved via two remote potentiometers, allowing speed to be set in either forward or reverse directions independently for each traction drive.

Since both motors are controlled via switching amplifiers from the same battery supply, it is important to reduce the peak currents that are drawn. This can be achieved by offsetting the phase of the switching waveforms relative to each other, such that at 50% duty cycle modulation, power

Fig. 3. How PWM waveforms may be generated using a comparator.

HOW IT WORKS

The circuit for the dual analogue pulse width modulator is shown in Fig. 5 ; it will be seen that each channel is identical with the exception of the circuitry around the CMOS gates IC1 and IC4. As described earlier the two switching waveforms must be the same frequency and synchronized 180° out of phase, to distribute the motor current peaks more evenly through the cycle. This is achieved by synchronizing both pulse generators to a master clock based around IC1a and b. A 20 kHz square wave is generated by this conventional astable arrangement and its frequency, set by R1 and C1, is fairly independent of supply variations.

The output of IC1d at pin 6 provides a buffered square wave in the same phase as the output on pin 10 of IC1b. C2 and R3 differentiate the positive-going edge of the square wave to produce a very short logic low pulse at the output of Schmitt inverter gate IC1c. In similar fashion C9 and R16 produce a logic high pulse coinciding with the negativegoing square wave edge. IC4b further inverts this signal to a logic low pulse. Two separate trains of 500 nS negative-going pulses are thus provided in the correct phase relationship for resetting the charging cycle of two sawtooth oscillators as described below.

The pulse width modulators are iden-
tical from here on and we shall refer to the topmost circuit for description. Voltage controlled pulse width modulation is, in principle, very simple; a ramp waveform (sawtooth) is applied to one input of a comparator and the modulation voltage to be encoded is applied to the other, producing the required PWM squarewave at the comparator output. Figure 3 illustrates this operation.

Due to the design requirement of a linear relationship between control voltage and pulse width, a constant current source formed from Q2 is used to generate the linear ramp waveform. LED1 and the baseemitter iunction of Q2 are forward biased by R6 and together define a temperaturecompensated voltage across R7 which in turn defines a constant emitter and collector current of about 1 mA . C3 is charged up negatively from this current, until the negative-going reset pulse arrives from inverter IC1c. This pulse turns Q1 hard on for very short period (500 nS), during which C3 is completely discharged, taking the ramp voltage back to +8 V . This process repeats at the clock frequency of 20 kHz , providing a negative-going sawtooth of about 3 V peak-to-peak referenced to the +8 V rail.

IC 3 b , the comparator used to perform the modulation, is an LF353 dual op-amp,
chosen for its large bandwidth and high slew-rate. The inverting terminal on pin 2 is fed from the ramp waveform, while the noninverting terminal is fed from op-amp IC3a, an inverting amplifier configured to sum control voltage inputs relative to a 4 V reference.

The potential divider R11 and R12 provides the 4 V reference to the non-inverting terminal of IC3a, and the control voltage applied to R13 at point A is summed relative to the 4 V . An offset voltage set by PR1 is also summed at the inverting terminal of IC3a, and is used to bring the control voltage into the correct operating range and for setting a deadband region on the manual control pot RV1.

The output of op-amp IC3b (and in deed most others) will not swing to the full supply rail voltages, so the inverter gate IC1e is used to buffer the square wave to full CMOS logic levels.

The manual control system included in this circuit enables a single potentiometer to control the speed in both forward and reverse directions. When the pot is at centre travel, and for a certain deadband around this point, the motor must be stopped and no switching pulses should occur (ie the PWM signal is continuously low). As the pot is turned in either direction from its midpoint, the pulse width should in-

PROJECT : Robot Motor Control Part 2

crease and this requires a positive-going input voltage to the summing amplifier IC 3a. The forward/reverse logic level should also change state as the pot moves through its midpoint. Q3 provides the necessary voltage transfer function from the pot RVI to the control voltage summing amplifier, as explained graphically in Fig. 1.

The emitter and collector resistors of Q3 are both equal and the base voltage is taken directly from the slider of the manual control pot RV1. The output voltage is taken from the collector of Q3 to feed the summing amplifier, and will be held at +8 V via R 9 when Q3 is switched off. As the slider of RV1 moves toward the centre of travel, the base voltage rises, slowly turning on Q3 and lowering the collector voltage.

When Q3 is turned hard on as RV1 reaches its mid-point, R9 and 10 will form a potential divider giving 4 V as the minimum control voltage. Further increase of base voltage can now only increase the emitter and collector voltages back up to the positive rail, reaching a maximum at one $\mathrm{V}_{\text {be }}$ drop from the +8 V rail.

During the above process the voltage on the emitter of Q3 rises from zero to the same maximum voltage, and is fed to the inverting terminal of IC 2, a CA3140 used as a comparator. The other comparator input receives 4 V derived from the potential
divider R11 and R12. This provides the required forward/reverse signal that corresponds to each half of the control pot. Inverter gate IC1f buffers the output of IC2.

C7 and C8 provide supply decoupling for both channels, while C5 and C6 provide further smoothing for the 8 V zener regulator formed by R16 and ZD1. This 8 V reference rail is used for two reasons; firstly to allow for fluctuation in the 12 V battery power supply that would otherwise affect the output pulse width, and secondly to ensure that the op-amp supply voltage is well above the maximum input voltage.

The resistor marked as Rx_{x} in the circuit shows where a speed feedback voltage will be added to the controller to close the velocity control loop. An infra-red tachometer module to directly sense the traction speed will be described later in the series.

If the manual control input is not re quired, the components associated with this can be simply omitted (ie RV1, R8, R9, R10, C4, Q3, IC 2 and their equivalents in the other channe!). Control voltages may now be fed to the unconnected end of R13, where a variation of 3 V , set by PR1 to be anywhere in the range 0 V to 8 V , will pro vide 100% control of the output pulse wid th. Forward/reverse switching must also be applied to the input of IC1f on pin 3.
will be switched alternately to each motor. This spreads the current peaks more evenly over the switching cycle.

Construction and setting up with interconnection details for the motor driver will be described next month.

PARTS LIST

Resistors (all 1/4W, 5\%)	
R1	100k
R2	15k
R3,6,17, 20	2k7
R 4,18	470R
R5,7,8,19,	
21,22	1k0
R9,10,23,24	22k
R11,1 2,25,26	10k
R13,15,27,29	1M0
R14,28	330k
R16,29	150R
Potentiometers	
RV1,2	10k linear
PR1,2	10k linear miniature horizontal preset
Capacitors	
C1	1n0 ceramic
C2,9	20p ceramic
C3, 10	15n polycarbonate
C4, 11	2 u 235 V tantalum
C5, 7, 12	100n ceramic
C6, 13	220u 16 V axial electrolytic
C8	100u 25 V axial electrolytic
Semiconductors	
IC1	40106B
IC2,5	CA3140
IC3,6	LF353
IC4	4093B
Q1,4	BC2141
Q 2,3,5,6	BC184L
LED1,2	red LED
ZD1,2	8 V 2400 mW zener diode
Miscellanous PCB (see Buvlines)	

\qquad

2urspuica
xse

号号宣 3 ？
\qquad
\qquad 5
8
\qquad
\qquad

为 200
2000
2000
800 がスとが

等

\section*{${ }^{\text {ax }}$}

RONICS LTD
Tel: 014520161 unethical to mention their name

cop pcip

[^0]: "It would seem then that Crimson have maintained their position at the top of the commercial kitbuild field. There is no oriental amplifier I know of that can better the sound of this combination overall at any price and only a few - such as the KA- $1000(500+1$ - are of comparable standard . . . I can say no more than that for $£ 250$ it (CK1010/MC2K/1100) is a bargain and one that becomes the reference point for kit amplifiers from now on."

[^1]: Articles described here ane in an advanced state of preparation. Howeve, circumstances may dictate changen to the final comment

[^2]: \square What is a Microprocessor? 2 cassette tapes plus a 72 -page book $£ 10.00$
 Beginners Guide to Computers and Microprocessors with projects $£ 6.05$

 - Basic Computer Gemes Ahl $\mathbf{E 8 . 0 6}$
 \square Basic for Home Computere Albrecht $\mathbf{£ 6 . 6 0}$
 - lliustrating Besic Alcock E4.25
 \square Troubleshooting Microprocessors and Digital Logic Goodman E 6.10
 2-60 Microcomputer Handbook $£ 9.35$
 Microprocessors in Instruments and Control Bibbero $\$ 16.30$
 Basic Besic Coan $\mathbf{£ 9 . 9 5}$
 - Advanced Baslc Coan 29.95
 $\square 1001$ Things to do with your Personal Computer Sawusch $\mathbf{E 6 . 0 0}$
 Microcomputers, Microprocessors, Hardwere, Software and Applicetions Hilbuin £17.40
 \square Microprocessor Systems Design Klingman 21.95
 \square Introduction to Microprocessors Leventhal £11.25
 \square Microprocessor Technology, Architecture and
 Applications $£ 11.30$
 B Baslc with Style Nagin $\mathbf{£ 6 . 3 0}$
 D Microcomputor Dosign Ogdin $\mathbf{1 9 . 2 5}$
 \square Hands on Basic with a PET Peckham $£ 11.96$
 - 6800 Software Gourmet Guide and Cookbook Scelbi $£ 9.30$
 $\mathbf{8 0 0 0}$ Software Gourmet Gulde and Cookbook $£ 9.30$ The 8080A Bugbook Rony $£ 10.05$
 8080/8085 Software Design Titus $\mathbf{£ 1 0 . 0 5}$
 How to Design, Build and Program your own Working Computer System $\mathbf{1 7 . 1 0}$
 \square Your Own Computer Waite $\boldsymbol{£ 2 . 2 5}$
 D Microcomputer Interfacing Handbook A/D \& D/A £6.35
 \square Crash Course in Microcomputers Frenzel $£ 14.95$
 \square Musical Applications of Microprocessors Chamberlain f 20.95
 The Pascal Handbook Tiberghien $£ 12.45$
 50 Basic Exercises Lamoitier $£ 11.10$
 Learning Basic with the Sinclair $\mathbf{2 \times 8 0} \mathbf{E 4 . 9 6}$
 Microprocessort for Hobbyists Coles $\mathbf{£ 4 . 2 5}$
 Introduction to Microcomputer Programming Sanderson E5. 25

[^3]: The wadding is tacked or stapled in place.

[^4]: APRIL 79Guitar Effects Unit
 Click Eliminator
 JUNE 79
 \square
 Accentuated Beat Metronome
 FEBRUARY 80
 \square Tuning Fork
 MARCH 80
 \square Signal Tracer
 AUCUST 80CMOS Logic TesterCapacitance Meter
 itrasonic Burglar Alarm
 OCTOBER 80
 \square
 Cassette Interface
 Fuzz/Sustain Box

 ## NOVEMBER 80

 Touch Buzzer
 Light Switch
 Metronome
 2W Power Amp
 RIAA Preamplifier
 Audio Test Oscillator
 DECEMBER 80Musical Doorbell
 Bench Amplifier
 Four Input Mixer
 JANUARY 81LED Tacho
 Multi-Option Siren Universal Timer
 FEBRUARY 81
 Infra-ed Alarm(four boards)
 Pulse Generator

[^5]: NEW PORTABLE KEYBOARDS

 (RRP £125)
 AN INCREDIBLE $£ 99$

 * 8-note polyphonic playing of this 37 key, 3 octave kevboard.
 * 8-note polyphonic playing of this 37 key, 3 octave keybord.
 * 15 key bass keyboard with automaticent sounds and voices.
 * 6 built-in auto rhythms, with dual "Fill -in" rhythmic inteludes.
 * Sustain, Vibrato and Pitch controls. Line out and Meadphone jacks.
 * Sustain, Vibrato and speaker. Battery powered, or optional AC adaptor. Dims: $61.6 \times$ $\left.584 \times 178 \mathrm{~mm}(27 / 16) \times 23 \times 7^{\prime \prime}\right)$. Weight: $2.2 \mathrm{~kg}(4.91 \mathrm{~b})$.

 CASIOTONE MT-31
 basically a revision of the MT-30 (one of my all time favourite electronic keyboards)." Electronics \& Music Maker.
 Similar to the MT-40 but without the rhythm box, bass and auto functions. Dimensions: As MT-40. Weight: $2.0 \mathrm{~kg}(4.4 \mathrm{fb})$ including batteries.

[^6]: At long last Quad have released their new tuner, the FM 4. It was shown for the flrst time at the Audio 82 exhibition in Swiss Cottage recently. Designed to match the Quad 44 control unit (preamp to the rest of us) the FM. only unlt has digital tuning and seven pre-set stations. Programme locations are stored in memory.

 A tuning knob has been retained In preference to a set of pushbuttons, since Quad say it is easier to use.

