Angtronits thitay
 - 2.0 :

STEREO IMAGE CO~ORDINATOR Move Your Sound Around DESIGNING ACTIVE FILTERS FREQUENCY METER TIME CONSTANTS? HISTORY OFA SPACECRAFT

NEWS PROJECTS MICROPROCESSORS AUDIO

TRANSCENDENT 2000 SINGLE BOARD SYNTHESIZER

All kits also available as separate packs (e. 9 PC B . component sets, hardware sets, etc. Prices in FREE CATALOGUE

LIVE PERFORMANCE SYNTHESIZER DESIGNED BY CONSULTANT TIM ORR (FORMERLY SYNTHESIZER DESIGNER FOR EMS LIMITED) AND FEATURED AS A CONSTRUCTIONAL ARTICLE IN ELECTRONICS TODAY INTERNA.TIONAL.
The TRANSCENDENT 2000 is a 3 octave instrument transposable 2 octaves up or down giving an affective 7 octave range There is portamento pitch bending, a VCO with shape and pitch The TRANSCENDENT 2000 is a 3 octave instrument transposabie 2 octaves up or down giving an affective 7 octave range. There is portamento, pither and detector ADSR repeat, sample and hold, and special circuitry with precision components to ensure funing stability amongst its many features the kit includes fully finished metalwork, fully assembled solid teak abinet, filter sweep pedal professional quality components (all esistors either 2% metal oxide or $1 / 2 \%$ metal trim") and it really is complete - right down to the last nut and bolt and last piece of wire! here is even a 13A plug in the kit - you need buy absolutely no more parts before plugging in and making great music! Virtually all the components are on the one professional quality fibreglass PCB printed in component locations. All the controls mount directly on the main board, all connections to the board are made with connector plugs and construction is so simple it can be built easily in a few evenings by most anyone capable of neat soldering! When finished you will possess a synthesizer comparable in performance and quality with ready-built units selling for many times the price!

COMPLETE KIT ONLY

 $£ 168.50$ + VAT!Comprehensive handbook supplied with all complete kits! This fully describes construction and tells you how to set up your synthesizer with nothing more elaborate than a multi-meter and a pair of ears!

TRANSCENDENT 2000 рошппаи IIIIIIIIIIIIIIIII

TRANSCENDENT DPX

DIGITALLY CONTROLLED, TOUCH SENSITIVE, POLYPHONIC, MULTI-VOICE SYNTHESIZER ANOTHER SUPERB DESIGN BY SYNTHESIZER EXPERT TIM ORR - PUBLISHED IN ETI

The Transcendent DPX is a really versatile new 5 octave keyboard instrument There are two audio outpuls which can be used simultaneously On the first there is a beautiful harpsichord or reed sound - fully polyphonic, i.e. you can play chords with as many notes as you like. On the second output there is a wide range of different voices, still fully polyphonic. It can be a straightorward piano or a honky tonk piano or even a mixture of the iwo! Alternatively you can play strings over the whole range of the keyboard or brass over the whole range of an keyboard or should you preier - strings on the top of the keyboard and brass at the lower end (the keyboard is electronically split ather the first two ociaves) or vice versa or even俍 There is a master volume and ion control a separate control for the brass sounds and aso a vibrat circuit with variable depth control together with a variable delay controt so that the vibrat comes in only atter waiting a shor time ather the note is struck for even more realistic string sounds

Cabinet sire $36.3^{\prime \prime} \times 15.0^{\prime \prime} \times 5.0^{\prime \prime}$ (rear) $3.3^{\prime \prime}$ (${ }^{\prime \prime}$ (ront)
To add interest to the sounds and make them more natural there is a chorus/ensemble unit which is a complex phasing system using CCD (charge coupled device) analogue delay lines. The overall effect of this is similar to that of several acoustic instruments playing the same piece of music. The ensemble circuitry can be switched in with either strong or mild effects As the system is based on digital circuitry digital data can be easily taken to and from a computer (for storing and playing back accompaniments with or without pitch or key change. computer composing etc., etc.)
Although the DPX is an advanced design using a very large amount of circuitry, much of it very sophisticated. the kit is mechanically extremely simple with excellent access to all the circuit boards which interconnect with multiway connectors, just four of which are removed to separate the keyboard circuitry and the panel circuitry from the main circuitry in the cabinet
The kit includes fully finished metalwork, solid teak cabinti, protessional quality components (all resistors 2% metal oxide). nuts. bolts. etc. even a 13 A plug - you need buy absolutely n . more parts before plugging in and making great music! When finished you will possess an instrument comparable in performance and quality with ready-built units selling for over £1. 200

JULY 1980 VOL 9 NO IL

FEATURES

DIGEST 8 If it matters it's here
DESIGNING FILTERS 17 Do it yourself it's easier! HISTORY OF SPACEFLICHT 24 What goes up. ANTI-MATTER EXPLAINED 32 NOTHING to do with Star Trek DESIGNERS NOTEBOOK 37 A flash of LED knowledge. AUDIOPHILE 43 Atomic theory amplifier? TIME CONSTANTS 49 Have you the capacity for this? MICROFILE 53 Sinclair ZX 80 examined. TECH-TIPS 57 This is all your fault! RAVEN ON 63 News from around the world

PROJECTS

IMAGE CO-ORDINATOR 68 Moving sound reproduction? PORCH LIGHT 77 Don't be left out in the dark
STATE VARIABLE FILTER 84
ENVELOPE SHAPER 88
LOUDSPEAKER PROTECTOR 95 Cone preservation device FREQUENCY METER 99 Linear cycle counter

INFORMATION

Electronics Today International is normally published on the first Friday of the month prior to the cover date.

[^0]

WATFORD ELECTRONICS
THE DIGITAL FREQUENCY METER with a Difference

Large 8 digit display for high accuracy Period and time interval facility
Unit counter up to 99,999.999 10 MHz crystal timebase
Hold and reset buttons plus built-in PSU
All these features and more for less than half the price of an ordinary frequency meter. The DFM2000 has all its components including the displays. switches and transformer mounted on one double sided PC board. Assembly is simplicity itselt especially since interwiring has been eliminated this is a high quality design and will make a truiy protessional digital requen

Price: Only $\mathbf{£ 6 4 . 5 0}$ Kit (P\&P 65p). Probes: Optional extra $\mathbf{£ 8 . 7 5}$
Ready built and tested: $£ 75.50$ ($65 p p \& p$)

SWItches	SLIDE 250V			
TOGGLE: 2A, 250 V	1 1A DPDT	${ }^{14 p}$		
SPST 28 p	1 A DPDT $c /$ over	15p		
DPST 34p	4/AA OPD 4 pole 2 -way	13p		
	PUSH BUTTION			
4 poie on/OH 54p	OPDI B.ack Body			
SUB-MIN TOGGLE	Red, Blue, Grn., Yell			
SP changeover 59p	SRL Latching 125p			
SPST on/oh 54p				
SPST biased 85p		125p		
DPDT 6 rags 70p	MINI. Non Locking			
OPOT centre off 79p	Push to Make	15p		
OPDT biased 115p	Push Break	25p		
	Push to c/over	85 p		
ROTARY: Make your own multiway Switeh.				
Adjustable Stop Shafting Assembly. Accom.modate up toW,				
Mains Switch DPST to fit 40 p				
Break Before Make Wafers. 1 pole/ 12 way. $2 p / 6$ way. $3 p / 4$ way $4 p / 3$ way. $6 p / 2$ way				
Spacer and Screen ${ }^{\text {a }}$				
ROTARY (Adjumteble Stop)				
1 pole/2 to 12 way, $2 p / 2$ to 6 way ${ }^{3}$pole $/ 2$ to 4 way, 4 pole $/ 2$ to 3 way 43 l				
ROTARY: Mains 250 V AC. 4 Amp 52p				

QUESTION?

1. Is your hobby home computing or electronics?
2. Do you understand the application of IC's, Transistors. Diodes, etc?
3. Have you used or applied analogue or digital techniques?
4. Are you applying TTL Logic to your home computer?
5. Are you programming your home computer using simple software techniques?
If the answer is YES to any of these questions then why not consider turning your hobby into a career - applying your knowledge to servicing electronic equipment ranging from basic terminals and data processing machines through to advanced micro-processor systems.
We will train you through to advanced technology at the company training school, fitting the individual in at their own level.
We have vacancies over the whole of the U.K. especially in the London area, with the successful applicants working from home, usually in a radius of no more than 60-70 miles.
We supply all tools and test equipment, plus a company car which is available for private use
If you are interested, then why not contact Mr. C. Marklew on 0249813771 to discuss your own career opportunities in confidence, or write to:

KODE SERVICES LIMITED
 Station Road, Calne, Wiltshire

Conquer the chip.
 the Silicon Chip will revolutionise every human

 activity over the next ten yearsKnowledge of its operation and its use is vital. Knowledge you can attain, through us, in simple, easy to understand stages.

Learn the technology of the future today in your own home.

IUTORCOURSE
fixmicter

\qquad

Mk III FM Tuner series

Carriage for Mk III tuner $£ 3$ in
The Mark III series FM tuner has been updated, and now includes a centre zero tuning meter as standard. The instruction manual has been meticulously revised, enabling easy assembly by constructors of various levels of experience - a preview copy may be purchased for $£ 1.00$
Mark III A series 'Reference series' tuner modules
Mark III B series 'Hyperfi' modules, with switched
$\begin{array}{cc}\text { Mark III B series } & \text { 'Hyperfi' modules, with switc } \\ \text { IF BW, pilot cancel decoder }\end{array}$
£171.35 inc
f198.95 inc
A matching synthesiser unit will be made available later this year, and can be retrofitted to either version. All versions include digital frequency readout/clock, VU deviation meters, 6 preset stations, 10 turn pot manual tuning, toroidal PSU, output level adjustment, $110 / 240 \mathrm{v}$ AC input. Full alignment service available.

Power Amplifier style and performance with a real
After a couple of preview comments, it seems that many of you are waiting to hear about the matching HMOSFET power amplifier for the Mk 111 tuner. Well, it's out at last. complete with twin toroidal PSUs for comfortable 80W RMS per channel over 100 W peak but limited by thermal shutdown of the HMOS. 10W -100 W log LED output peak indicator DC offset protection and switch-on pause relay AC DC input coupling, direct or relay protected output terminals. The works. Dnly one version of this item: Complete kit

More features and facilities, thanks
Preamplifier
Previewing tite most comprehensive audio preamplifier yet...... DC switching of 7 inputs, plus
two tape in/outs. 2 low pass, 2 high pass active filters, genuine volume related loudness, 1dB woo tape in/outs. 2 low pass, 2 high pass active filters, genuine volume related loudness, 1 dB
channel matching, with DC volume, balance, bass and treble conirols. Suitable for bus/remote control, tape dubbing, switched monitor etc. 80dB S/N+, THD -75dB or better. Pluggable

LW-MW-SW-SW DC tuned and switched

91072. All switching of bands by a single pin to gnd. Varicap tuned, with LO output for synth. MW/LW version MW/LW. £15.58 +1SW £16.73

VHF Tunerheads

Europes largest stock range for broadcast and communications. Probably also the world's detalls in the catalogues and PL . Specials
also supplied in the region 30.220 MHz .

Pilot Cancel PLL Stereo decoders
944378.2

Again, Europe's widest range of stereo decoders heluding pilat cancel PLL types. The pic shows $26 / 38 \mathrm{kHz}$ filtering and muting preamp output

Switched bandwidth FM IF strips

Broadcast FM IF strips for all occasions, including the new 911225 with diode switched narrow filter option, ultra línear phase ceramic filters, $84 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$, and 0.04% THD (40 kHz deviation). Plus usual things like AGC, AFC, dev. mute, level meter drive. $\mathfrak{f} 23.95$ (supplied in screen can with 0.1 edge connection system Also the 7230 hyperfi series - as the 911225 , but with slope controlied AFC th operates in conjunction with signal level - and an extra IF amp stage for DXing.

Various digital frequency displays

The World's largest range of receiver DFMs is now joined by the DFM7 (shown) and L shaped version of the DFM3 with remote display mount connec 10.7 MHz offsets, 100 Hz res up to 3.9999 MHz , and VHF to 299.99 MHz in 10 kHz steps : $\mathbf{£ 4 1 . 7 5}$

Semiconductors

POWER MOSFETS
100W PA's made simple
ane proneening me of output devices and drivers that ought to revolutionise opinions and attitudes towards the design of all LF amplification systems. We have a new 48 page apptication note (f 1.50 inc) and
$\begin{array}{lllll}2 S K 133 & 120 v \\ \text { N.ch } & 100 \mathrm{~W} \text { MOSFET } & £ 6.33 \quad \text { 2SJ48 Pch complement } & £ 6.33\end{array}$
 2SK135 160v N-ch 100W MOSFET £7.29 2SJ50 Pch complement £7.39 PA101B Kit for 100W MOSFET PA less Heatsink £16.10. ($£ 23$ inc heatsink/bkt)

ULTRA LOW NOISE PU PREAMPLIFIER

The HA12017 is the last word in PU preamps, and general low noise audio design.

 It is an SIL IC, with $86 \mathrm{~dB} S / \mathrm{N}$ in RIAA configuration, 10 v RMS output capability 0.002% typ THD at 10 V RMS output (imagine the overload margin !!). It comfort. ably supercedes discrete circuit designs in terms of price/performance, and takes RIAA applications PCB s capabilities. (Replaces HA1457) £1.80 each 9.95
Radio Control CS We have various RC ICs, including NE544

KB4445 4 channel dig.prop. FM TX IC. 30 mW out (amplifyable) $£ 2.30 \mathrm{in}$ KB4446 4/5 ch, dig. prop FM RX IC. Suits KB4445 or RCME syst. $£ 2.65$

CMOS, LPSNTTL, TTL, MPU:

Most CMOS is available in low
volume - also LPSN. Standard Listings in the new pricelist. linears and TTL OK.
Things like ICM7216B, ICL8038, 8080A, 6800P, 2708, NE555,NE556, etc
Coming Soon.
SSB transceiver system : 10 kHz to 1000 MHz !!

Components

Crystal Filters
 Most popular types are availabl ex-stock, and in quantity.

$10.7 \mathrm{MHz} \quad 25 \mathrm{kHz}$ Channel spacing 8pole $£ 16.67$

 $121 / 2 \mathrm{kHz}$ 2.4 kHz SSB M. nolithic dual roofing filter 4.5 MHz 1. 1 B loss, 80 dB stopbard HF first filter in synth. RX RC XTALS FM pairs (no spilts)USB/LSB Xtals for 10.7 SSB filter
Piezo Soundens The most efficient warning so:"?ders yet
The latest thing in electro-acoustic efficiency. 1 mA of drive from CMOS will give an SPL of 83 dB - 10v RMS drive from CMOS uses. 3 mA for 100 dB SPL at $4.8 \mathrm{kHz}(88 \mathrm{~dB}$ at 1.65 kHz)
The data sheets shows various drive circuits, and give full specifications with regard to braadand 100 off 28.75 p (25 p ex vat)
consumption etc. 1 off 44 p inc. 100 .
Keyboard switches and caps
From the world's most widely used switch manufacturers. ALPS come the biggest and best range of keyswitches, and data entry keyboard switches. The SCM81 (with clear top, to enable
with the KT5 2-part cap (wis easy fitting of your chosen legend. Other types are easy fitting of your chosen egend. Other types SCM81101: 17p, KT5: 16 p - or 29p/pair

LCD CLOCKS

LCD DVM

Clocks use 1.5 at $15 u A$ onlv.
DVM $9 v / 1 \mathrm{~mA}$

CM161: 7 mm LCD $12 / 24 \mathrm{hr}$, alarms etc f 11.44 each

 CM172: $13 \mathrm{~mm}, 12 \mathrm{hr}$, alarms,timer etc $£ 14.32$ each CM174: $13 \mathrm{~mm}, 12 \mathrm{hr}$, min $/ \mathrm{sec}$ stopwatch $£ 14.32$ ea DVM 176: ICM7106 based LCD $31 / 2$ digit $£ 22.36$ each

WHAT's NEW at AMBIT

NEW PRCELIST/SHORTFORM:-
28 macs, FOC with A5 SAE pse
28 pages, FOC with A5 SAE pse
If you still need convincing to invest $£ 1.60$ in the cats, HANDBOOK by HITACHI

Bigger print than our recent one page list and vastly extended get this firs 51.50 each or free with parrs of HMO
and the PA1018.

DIGEST

Continental Time

A n attractive new instrument Afrom CSC offers time and frequency measuring capabilites plus signal conditioning facilities.

The model 5001 has two DC. coupled BNC inputs, both of 1 M plus 20 pF input impedance with a sensitivity of 20 mV RMS. Each has three position attenuator ($\times 1$, $\times 10$ and $\times 100$), a positive/negative going slope selector and a variable trigger-level control. Maximum frequency at the A input is specified as 10 MHz and at the B input as 2 MHz . Readings can be held on the display for a variable period.

The frequency counter, with a maximum input frequency of 10

MHz , has a selectable resolution of $100 \mathrm{~Hz}, 10 \mathrm{~Hz}, 1 \mathrm{~Hz}$ or 0.1 Hz .

The period measurement mode, with a range of 400 nS to 10 S and a maximum input frequency of 5 MHz , can resolve to 100 nS , $10 \mathrm{nS}, 1 \mathrm{nS}$ or 100 pS depending on the range chosen.

Time intervals from 200 ns between a rising edge at the A input and the next rising edge at B can be measured, with resolution down to 100 pS .

The ratio of cycles appearing at the A input per cycle at B can also be displayed. The unit will count the number of rising edges arriving at A before the reset button is pushed, in the count mode.

Power consumption is 10 W . The model 5001 Universal Counter-Timer is available at $£ 185$ plus VAT from Continental Specialties Corporation, Shire Hill Industrial Extate, Saffron Walden, Essex CB113AQ.

Look Out Busby

\mathbf{P}^{1}hillips' M100 Direct Speech P System is part of a new range of intercom equipment being launched for the 1980's. Fully compatible with the existing M100 system, its built-in microprocessor enable instant 'hands free' voice links for between two and many thousand stations and extra stations are simply plugged into the eight pair parallel cable and reprogrammed within seconds. The keyboard layout includes an improved volume control and privacy button as well as standard optional functions such as automatic call-
back, triplex conversations, group call and links with the DP600 digital paging system through a coupler. There is also facility for twelve programmable direct call buttons for frequently called stations. The M100 system therefore dispenses with the need for a large central exchange and the expense of wiring every station to it. It is available from Pye Business Communications, Cromwell Road, Cambridge CB1 3 HE . The BBC has already shown interest in this system by placing a $£ 75,000$ order with Pye to instal internal communications in the Beeb's News Department at Television Centre, this covers seven floors and initially 140 stations will be installed. It will replace part of the existing custom-built system.

Battery Farming

1980 may well herald a new 1 era for the motor vehicle, this is due to the Chancellor of the Exchequer abolishing Excise Duty from electric vehicles. The interest recently shown in this form of transport is being further strengthened by the forthcoming Drive Electric ' 80 exhibition to be

Calculate-ACalendar

ThThe casio HR10 is a slightly out of the ordinary printing calculator, in that apart from all the usual functions and a 10 digit display, it has the capacity to print calendars to order. Simply key in any year and month between lanuary 1901 and December 1099 and it will print out a full conventional calendar. Press add or subtract and it will print the month following or preceding it. The unit can be used either with four AA batteries, rechargeable battery pack or mains adapter. The HR-10 is $31 / 2$ " wide by $63 / 4$ " deep and $13 / 4$ " high. Recommended price is $£ 35.95$ including VAT. So, if you want to find out which day of the week your Granny was

Pinball Prices

Slashed

Demember the ETI Pinball Rwizard project, featured in the November 1979 issue? It has proved to be so popular (hundreds have been built) that the supplier has made a further bulk purchase of the chips.
held at the Wembley Conference Centre in London during October this year. It will be an international show case of electrically powered vehicles. In Great Britain over a thousandmew electric road vehicles are made each year and only here do electrically powered vehicles run as many as 300 million miles each year. The intention of the conference and exhibition is to prove the reliability and performance of the electric vehicle and to extend its acceptability as a means of transport.

born on. .

CHROMATHEQUE 5000

Panel size $19.0^{\prime \prime} \times 3.5^{\prime \prime}$. Depth 7.3'

5 CHANNEL LIGHTING EFFECTS SYSTEM

COMPLETE KIT
ONLY
$£ 49.50$ + VAT!

This versatile system featured as a constructional article in ELECTRONICS TODAY INTERNATIONAL has 5 frequency channels with individual level controls on each channel Control of the lights is comprehensive to say the least You can run the unit as a straightforward sound-to-light or have it strobe all the lights at a speed dependent upon music level or front panel control or use the internal digital circuitry which produces some superb random and sequencing effects Each channel handles up to 500W and as the kit is a single board design wiring is minimal and construction very straightforward
Kit includes fully finished metalwork, fibreglass PCB controls, wire, etc - Complete right down to the last nut and boitl

T20 + 20 20W STEREO AMPLIFIER £33.10 + VAT This kit. based upon a design published in Practical Wireless, uses a single primed circun quality amplifiers A 30 -watt version of this $k 1 t(T 30+30$) is also avallable for $£ 38.40+$ VAT
boards interconnected with gold plated contacts resulting in minimal wiring and construction delightfully straightforward The design was published in Hi-Fi News and Record Review and features include rumble filter, variable scratch filter, versatile tone controls and tape monitoring whilst distortion is less than 001%

Above 2 kits are supplied with fully finished metalwork, ready assembled high quality teak veneer cabinet cable nuts, bolts etc and full instructions-in fact everything

BLACK NOS

MUSIC EFFECTS DEVICE AS FEATURED IN ELECTRONICS TODAY INTERNATIONAL.
The BLACK HOLE designed by Tim Orr, is a powerful new musical effects device for processing both natural and electronic instruments, offering genuine VIBRATO (pitch modulation) and a CHORUS mode which gives a spacey feel to the sound achieved by delaying the input signal and mixing it back with the original Notches (HOLES). introduced in the frequency response move up and down as the time delay is modulated by the chorus sweep generator An optional double chorus modeallows exciting antiphrase input has high signal/ noise ratio obtained by an audio compander and is mains powered - no batteries to changel Like all ourkits everything is provided including a highly superior, rugged steel, beautifully finished enclosure
COMPLETE KIT ONLY £49.80 + VAT (SINGLE DELAY LINE SYSTEM)
De Luxe version (dual delay line system) also avalable for $\mathbf{£ 5 9 . 8 0}+$ VAT

MPA 200100 WATT (rms into 8Ω) MIXER/AMPLIFIER

Featured as a constructional article in ETI, the MPA 200 is an exceptionally low priced - but professionally finished - general purpose high power amplifier It teatures adaptable input mixer which accepts a wider range of sources such as microphone, guitar
The kit includes fully finished metalwork, fibreglass PCBs, controls, wire, etc - complete down to the last nut and bolt

Panel size $19.0^{\prime \prime} \times 3.5^{\prime \prime}$. Depth 7.3"

COMPLETE KIT ONLY $£ 49.90$ + VAT!

MATCHESTHE CHROMATHEQUE 5000 PERFECTLY!

PRICE STABILITY: Order with confidence Irrespective of any price changes we will honour all prices in this adverisement until Augusi 31 st 1980 if this month dvertisement is mentioned with your order Errors and VAT rate changes excluded EXPORT ORDERS, No VAT Postage charged at actual cosi plus $£ 1$ handling and
U.K ORDERS. Subject to 15% surcharge for VAT No charge is made for carriage or at current rate if changed
SECURICOR DELIVERY. For this op ional service (U K mainland only) add £2 50
(VAT inclusive) per kit
SALES COUNTER: If you prefer to collect kit from the factory call at Sales Counter Open 9 a ni- 12 noon, $1.430 \rho \mathrm{~m}$ Monday.Thursday

NEW FACTORY ON SAME INDUSTRIAL ESTATE ADDRESS AND PHONE NUMBER UNCHANGED OUR CATALOGUE IS FREE! WRITE OR PHONE NOW! POWERTRAN ELECTRONICS

ANDOVER
(STD 0264) 64455

Nimrod the
 Mighty Hunter

The latest addition to Britain's Airborne Early Warning (AEW) system was recently unveiled at a British Aerospace airfield 'somewhere' in Cheshire. The modified Nimrod aircraft is the first of a fleet of eleven ordered by the RAF.

The AEW radar system has been undergoing development
since 1977. Ground-based radar cannot see beyond the horizon. The airborne system carried by Nimrod can see further and, therefore, give earlier warning of approaching enemy aircraft.

Nose and tail radomes give the aircraft its odd bulbous appearance. The sophisticated avionics, designed by Marconi with electronic warfare in the crowded airways of Europe in mind, can detect ships and aircraft even against strong ground or sea 'noise' or deliberate jamming and can eliminate friendly craft. In ad-
dition to the active radar, there is a passive system, carried as sensors on each wing tip, to analyse and classify radiation received from targets.

Nimrod AEW has been designed to be fully compatible with other AEW systems, such as the American AWACS. Information can be transmitted from Nimrod AEW to the ground, ships, other aircraft or to virlually anywhere in the world via satellite link.

The first aircraft is due to make its first flight in August and enters service with the RAF in 1982.

Martian Gremlins

H^{o}ot news from our science correspondent on Mars - the Viking 2 Lander isn't a well spacecraft at all. Its on-board battery is presenting a low profile: It's flat. There isn't sufficient charge to keep the transmitter going.

Viking Lander 2 now sits on the rusty planet at its landing site in Utopia Planitia, where the daytime temperature rarely gets above $-115^{\circ} \mathrm{C}$. It has been working in that temperature since it landed there on September 3rd 1976.

Circuit Handbook (June)

We missed a denominator out of the equation for E_{o} accompanying Fig. 11 p.60. The first term of the equation should read (RA+RB)/RB. Also, on p.61, in the equation for Ein below Fig.12c, 'bandwidth' should not be squared. Therefore, two lines down, '20,000' should not be squared. In the design example the resistor noise effective resistor is $R A /(R B+R C) \bumpeq 1 k 0$. The ther mal noise term is then derived from Fig. 12 b .

Choked Up

Gone are the days when chokes Clooked like lumpy coils of wire. The new range of ultra miniature moulded RF chokes from RBS Capacitors look more akin to the common or garden carbon resistor.

The series 8 chokes have a body length of only 5 mm and a diameter of only 2 mm (free
magnifying glass with every order?). They come in values of 0.1 uH to $10,000 \mathrm{uH}$ with minimum Q from 35 to 95.

These military spec components can tolerate up to 1000 V RMS and if you fancy fixing your private jet's radio with one, you can use it up of 70,000 feet. Ten percent toleranc is standard, but five percent is available.

For further information on the Series 8 chokes contact RBS Capacitors Ltd, Orchard Works, Vencourt Place, London W6.

Flat Caps

ooking a bit like microscopic li-- quorice all sorts, the new range of capacitors from Welwyn Electric are designed specifically for micro-microelectronic applications. The largest of the range is only $3 \mathrm{~mm} \times 2.5 \mathrm{~mm} \times 1.8 \mathrm{~mm}$.

Initial production will cover values from 1 pF to 100 nF in two dielectrics. BX is suitable for most applications and NPO can be used where high temperature stability
is required. Three working voltages are available $-50 \mathrm{~V}, 100$ V and 200 V . The components have no leads. They have palladium silver terminations for flat soldering onto a substrate or PCB.

For further information on the new range of small multilayer chip capacitors contact Welwyn Electric Lid, Bedlington, Northumberland NE22 7AA.

Base 2 Model 800 MST 80 COLUMN HIGH PERFORMANCE IMPACT PRINTER The ideal companion for PET, Apple. TRS80, Exidy, Superboard, Compukit and most Micro's
Rugged metal enclosure makes it ideal for

* 96 character ASC II Standard
* Auxilliary User Defined Character Set

Accepts $8 \frac{1 / 2}{2 \prime}$ max pape
max paper - tractor feed
max
Tractor \& Fast Paper Feed / Graphics
ractor \& Fast Paper Feed/Graphics

X-RATED CLOCK!

£19.99
ond

Just clap your hands and the time appears for 5 seconds followed by the date for 4 seconds. A low
cost 9 V transistor battery provides stahd by power in the event of power failures up to 4 houss With
cost 9 V transistor battery provides stand by power in the event of power failures up to 4 houss with
the addition of a low cost 12 V 300 MA transtormer, the unit will work on AC .

WIIT ULTRASONIC SENDER RECEIVER KIT

TOTAL SECURITY! Completely invisible ultrasonic (23 KHZ) Sound beam works like a can be used from 6 inches to 25 feet! A solid object breaking the beam causes an output to go provided. Works on 12 VDC (unregulated) and draws lass than 100 MA . Use it for burglar alarms, object counters, automatic door openers, automat
trap(?) and more. ONLY £19.93 P\&P 67p + VAT

बK工WRRBLE RLARM Kit

Intersil $\begin{aligned} & 8 \text { Digit - } 10 \text { Megathartz } \\ & \text { Universat Counter K: }\end{aligned}$	
Kit includes.	- Reasistors
- 10 MHz Quartz Crystal	- Diodes
- (8) 7 Segment $3^{\prime \prime}$ LED Displayz	- Switches
- PCB Board	- IC Sock of

प्रुW THE ULTIMATE RECEIVER

cally prograck in a broad range of election
truly remarkable circuit Ons and fiters
ON $\mathbf{~} \mathbf{1 . 2 5}$

-
PROGRAMMABLE OUAL DP TRANSCDNDUCTANCE AMPLIFIER \qquad truly remarkable circuit. ONLY $\mathbf{~} 1.25$ VAT Oata 25 p.
4 Meeting Street, Appledore, Nr. Bideford, North Devon EX39 1RY Tet. Bideford (02372) 79507 Telex: 8953084

Only £3.95
JAPANESE TRANSISTOR

tuns for power saving.
Envelapg conlrol to give organ ar

- Sequen nial tuna

Sequen isal tune
4 door capdati
chime.
chime.
Operation with tunts

Only £4.90

Cassette Copying

Foxebay have announced the Fintroduction of the first portable machine capable of making three copies at a time. Despite its name, the 3 -Kassette-Copier is British made. It costs less than all other two copies cassette copiers.

Foxebay's copier is compatible with both half track IEC and quarter track Japanese formats. It uses the compatible C-format
(erase tracks $3 \& 4$, record onto track 4). A Hi-Lo switch can compensate for over-recorded/ distorted masters and the auto recording takes care of the rest.

There is also a portable seven cassette copying version, consisting of the three-cassette machine linked to a slave fourcassette unit.

The 3-Kassette-Copier (5398 plus VAT) and the 7 -KassetteCopier ($£ 796$ plus VAT) are available from Foxebay Ltd. 41/43 Charlbert Street, London NWB 61 N.

Inscrutable Japanese

VC are holding their Third , Tokyo Video Festival in December this year. In celebration of this they are holding a competition to judge video compositions from all over the world. The prize is an all expenses paid trip to Japan, a trophy and 300,000 yen ($£ 699$). So if you have a yen (ouch) to try for it, all you need is a video camera, recording on $1 / 2^{\prime \prime}$ or $3 / /^{\prime \prime}$ tape in any format. The film should be no more than 20 minutes in length and black and white or colour programmes are equally acceptable.

JVC Super Range

VC have just revealed their) new range of equipment, in cluding three new turntables, four new amplifiers, four tuners, four receivers and five new metal tape cassette decks.

All four of the new $A x$ series of amplifiers and two receivers incorporate what IVC describe as 'a remarkable innovation in amplifier design - the development of Super A amplification' JVC claims that this combines low distortion ahd high efficiency. Well, we'll let you know what we think when we get one to play with.

Two of the new turntables
feature another IVC technical innovation, the Electro-Dynamic Servo Tonearm. The arm senses record eccentricity, warp, etc and compensates for their effects. Tracking force and anti-skating force can be adjusted electronically with no contact between the arm and other parts of the turntable.

The range of metal tape cassette decks includes a budget model selling for under $£ 100$. You can build up one of nine recommended, rack-mounting systems from the separates to suit your needs and your pocket.

SEMICONDUCTORS Send your orders DEPT. ETIT , PO BOX 6 , WARE, HERTS.

ETI NEXT MONTH

100W MOSFET Amplifier

Yet another in the long line of top line audio projects from ETI. Next month we give you a $100+100 \mathrm{~W}$ power amp with bargraph output display, separate PSUs for each channel and a brilliant sound that puts this unit at the very top end of audio today. You will find it costs a lot less than you think to build, too.

Electromagnetic Pulse Effect.

Never heard of it eh? Most people haven't - yet EMP could be the deciding factor in a nations fight for survival during nuclear attack. With the international situation steadily worsening around us, the facts ETI has turned up about Britain's susceptibility to EMP are very, very disturbing and make mandatory reading for anyone concerned with keeping civilisation alive in the age of the Bomb!

As an indication of the situation, did you know that in 1958 a small warhead test in the Johnstone Islands produced power systems failure in Hawaii, SOME 1000 KM FROM THE EXPLOSION, due to EMP? (The British Isles are approx. 800 km in length).

Video Today - And Tomorrow

Next month ETI takes a detailed look at the expanding world of home video and offers a buyers guide to inform the intending purchaser. In addition we have a look at the next 12 months from Richard Dean (editor - TV and Home Video) probably the leading writer in the field today

Circuits Appetiser

How many times have you glanced at book titles all neatly aligned on a shelf and wondered just how interesting they really are? Well, as of next month maybe we can help. "110 Timer Circuits for the Home Constructor" has just been released by Newnes and ETI is publishing a chapter from it next month. Circuits galore and full details of this very nifty litttle volume. It is hoped that more books will receive this treatment in the future

Projects, Projects, Projects, Projects.

Abstract

In addition to that truly amazing MOSFET AMPLIFIER we have a further four constructional projects for you next month. There is an excellent VCA module . which fits in with Project 80 if you're following it. Also we give full details of an ULTRASONIC BURCLAR ALARM which could ensure than any visitors you get are at least invited. Two test gear "quickies" are featured in the shape of a LINEAR CAPACITANCE METER with good accuracy and easy construction and a very versatile LOGIC PROBE to allow you to hunt out those missing bits.

With all this how can you possibly not buy ETI next month?

[^1]
B.K. ELECTRONICS A SOUND CHOICE

« PROMPT DELIVERY * PRICES INCLUDE V.A.T. ^ AMPLE STOCKS A PERSONAL SERVICE FROM A SMALL EXPANDING COMPANY

Stereo cassette tape deck ASSEMBLY. Comprising of a top panel assembly and tape mechanism coupled to a record/play back printed board assembly. For horizontal installation into cabinet or console of own choice. Brand new. ready built and tested. Features: Pause control, auto stop, 3 digit tape counter. illuminated twin VU meters with in dividual level controls, twin mic, input sockets. AC erase system, LED record indicator. (Separate power amplifier required.) Input Sensitivity: 6 MV (with level control set at max). Input Impedance: 47 kOhms . Output Level: To both left and right hand channels 150 MV . Output Impedance: < 10k. Signal to noise ratio: 45 dB nominal. Power Supply Requirements: 12V AC at $300 \mathrm{M} / \mathrm{A}$. Connections: All connections to the unit are via a wander lead terminated with a nine pin plug (socket provided). Dimensions: Top panel - $111 / 2$ in $\times 61 / 2 \mathrm{in}$. Mechanism fits through a cut out $53 / 4 \mathrm{in} \times 101 / 2 \mathrm{in}$. Clearance required under top panel $21 / 4$ in. Supplied complete with circuit diagram etc. Price $£ \mathbf{} \mathbf{3 0 . 5 0}$ plus $£ 2.50$ postage and packing.

SCOTT AM /FM STEREO TUNER MODEL 516. This Scott tuner is one of the top American makes and is offered at a very realistic price. Features: $\$$ FM tuning range 87.5 to 108 MZ * AM tuning range 535 to 1605 kHz * FM tuning range $87.2 \mathrm{dBF} 2.2 \mu \mathrm{~V} \star 300 \mathrm{ohm} \& 75 \mathrm{ohm}$ Aerial inputs for Usable FM sensitivity $6.2 \mathrm{dBF} 2.2 \mu \vee \star 300 \mathrm{ohm} \& 75 \mathrm{ohm}$ Aerial inputs for
$\mathrm{FM} \star$ Signal strength tuning meter \star Stereo beacon indicator $\#$ Ferrite aerial FM \star Signal strength tuning meter \star Stereo beacon indicator \star Ferrite aerial
for $A M \star$ Mute switch. Size: Height 5 in , Width $141 / 2$ in, Depth 12 in . Silver for $A M \star$ Mute switch. Size: Height 5 in . Width $141 / 2 \mathrm{in}$, Depth 12 in . Silver
front panel. Black body. Modern stacking format. Price $£ 40.50$ plus $£ 2.50$ postage and packing.

PIEZO ELECTRIC TWEETERS - MOTOROLA
Join the Piezo revolution. The low dynamic mass (no voice coil) of a Piezo tweeter produces an improved transient response with a lower distortion level than ordinary dynamic tweeters. As a crossover is not required these units can be added to existing speaker systems of up to 100 watts (more if 2 put in series).

Type ' \mathbf{A} ' 3 in round with removable wire mesh. Ideal for bookshelf hi-fi speakers. Price $£ 3.80$ each.
Type ' \mathbf{B} ' $31 / 2$ in super horn. For general purpose speakers disco and PA systems, etc. Price $£ 4.80$ each.
Type ' C ' 2 in $\times 5$ in wide dispersion horn. For hi-fi systems and quality disco etc Price $\mathbf{5 6 . 2 0}$ each.
Type 'D' 2 in $\times 6$ in wide dispersion horn. Frequency response extending down to mid-range ($2000 \mathrm{c} / \mathrm{s}$) suitable for hi-fi systems and quality disco. Price £9 each.
Post and Packing, all types, $15 p$ each (or SAE for Piezo leaflets)

GEC AM/FM STEREO TUNER AMPLIFIER CHASSIS. Originally designed for installation into a music centre. Supplied as two separate built and tested units which are easily wired together. Note: Circuit diagram and interconnecting wiring diagrams supplied, Rotary Controls: Tuning, on /off plied, Rotary Controls: Tuning, on /off
volume, balance, treble, bass. Pushvolume, balance, treble, bass. Push-
button controls: Mono, Tape, Disc.. button controls: Mono, Tape, Disc..
AFC. FM (VHF), LW, MW, SW. Power Output: 7 watts RMS per channel, at better than 2% THD into 8 ohms. 10 watts speech and music. Frequency Response: $60 \mathrm{~Hz}-20 \mathrm{kHz}$ within $\pm 3 \mathrm{~dB}$.

Tape Sensitivity: Output - typically 150 mV . Input - 300 mV for rated output. Disc Sensitivity: 100 mV (ceramic cartridge). Radio: FM (VHF). $87.5 \mathrm{MHz}-108 \mathrm{MHz}$. Long wave $145 \mathrm{kHz}-108 \mathrm{kHz}$. Medium wave. $520 \mathrm{kHz}-1620 \mathrm{kHz}$. Short wave $58 \mathrm{MHz}-16 \mathrm{MHz}$ Size: Tuner $23 / 4$ in $\times 15$ in $\times 71 / 2$ in approx. Power amplifier -2 in $\times 7 \frac{1}{2}$ in $\times 4 \frac{1}{2}$ in approx. 240V AC operation. Supplied complete with fuses, knobs and pustibuttons, and LED stereo beacon indicator. Price £21.50 plus $£ 2.50$ postage and packing.

JVC TURNTABLE. JVC Turntable supplied complete with an Audio Technica AT10 stereo magnetic cartridge." * 'S' shaped tone arm.

- Belt driven

Full size 12 in platter.

* Precision calibrated counterbalance weight ($0-3 \mathrm{grms}$.)
Anti-skate (bias) device. Nylon thread weight.
Damped cueing lever © 240 V AC operation, $(50 \mathrm{~Hz})$ \star Cut-out template supplied. Size - $123 / 4$ in $\times 153 / 4$ in (approx) Price $£ 29$ plus $£ 2.50$ postage and packing.

DE-SOLDERING PUMP

This de-soldering pump made to a very exacting specification is ideal for the removal of small components from printed circuit boards. ponents ic. Comes complete with spare PTFE tip. $£ 5.30$ post $\{$ ree

BSR P163 BELT DRIVE TURNTABLE. This famous B.S.R. turntable is ideal for disco/hi-fi use and is offered 1 a special price of $£ 22$ plus $£ 250$ postage and packing Suitable stereo postage and packing. Suitable stereo magnetic cartridge type TTC/J2203. Price $\mathbf{E 4}$ post free. (Also available separately.)

LOUDSPEAKER

High quality full range $8^{\prime \prime}$ loudspeaker. 10 waths RMS. 80 HM . Rolled surround with aluminium certre dome. Price $£ 3.50$ each +75 p Postage and Packing

B.K. ELECTRONICS

\star SAE for current lists. \# Official orders welcome. »All prices include VAT. \# Mail order only. \#All items packed (where applicable) in special energy absorbing PU foam. Callers welcome by prior appointment, please phone 0702-527572

FIITER DESIGN

Following up his supplementary efforts last month, Tim Orr tackles the subject of Active Filters in the same explanitory manner.

The frequency response plot of a first order low pass filter (Fig.1) reveals several important features. The break frequency $F c$, is defined as the point at which the output signal is attenuated by 3 dB . The curve then approximates to a -6 dB /octave roll off slope. By using a straight line approximation it is easy to calculate attenuations caused by the filter. For example, an 8 kHz sinewave filtered by a 1 kHz first order lowpass filter will be attenuated 18 dB , a reduction in level of almost one tenth. The calculation is simple; 8 kHz is 3 octaves above 1 kHz . The filter attenuates at 6 dB per octave, therefore the final attenuation is $3 \times 6=18 \mathrm{~dB}$.

To increase the roll off slope, the filter order must be increased, figure 2. When constructing high order filters, it is necessary to assemble them out of smaller filter sections each having different Q factors. A high order filter constructed from sections all having the same Q factor will have a very 'unabrupt' frequency response curve, which is generally not what is required.

Fig.1. Frequency response of a first order low pass filter.

Fig.2. Filter roll-off slopes. As \boldsymbol{n} increases so does the roll-off.

Fig.4. Second order unity gain Sallen and Key low pass filter.

FOR A BUTTE RWORTH (FLATTEST AMPLITUOE)
RESPONSE, $d=1.414,0 \approx 0.707$

BUTTERWORTH
$\mathrm{Fc}=1 \mathrm{kHz}$
d
d
1.14
ROLLOFF $=-12 \mathrm{~dB}$ /OCTAVE

Fig. 5a. Second order low pass filter, 1 kHz .

BUTTERWORTH
$\mathrm{Fc}_{\mathrm{c}}=1 \mathrm{kHz}$
$\mathrm{Fc}=1 \mathrm{kHz}$
disecono ORDE
diSECOND ORDER STAGE $=1.0$
ROLLOFF $=$ - 18dB/OCTAVE
Fig. 5b. Third order low pass filter, 1 kHz .

Fig.5c. Fourth order low pass filter, 1 kHz .
A simple first order filter (Fig.3) merely requires a resistor, a capacitor and a voltage follower. A second order filter (Fig.4) requires two RC networks. This circuit has a 'flattest amplitude' response (when it has a Q of 0.7) and is often referred to as a Butterworth response. The response may be modified by altering the Q factor, but in all the following examples a Butterworth response has been chosen. This design is known as a 'unity gain Sallen and Key' filter. The Q factor is deteremined by the ratio of the two timing capacitors. This often leads to a circuit design which employs non-, preferred capacitor values as can be seen in the three filters by a process known as scaling. For instance, if the required break frequency is 5 kHz , then the resistors, or the capacitors, in the filter should be reduced by a factor of five. If say the filter in figure 5a had to be redesigned to operate at 250 Hz ,
then the required component changes would be to change the 10k resistors to 40 k . Active filters generally employ op amps and so care should be taken so as not to operate them near to their bandwidth limit, which would cause the filter response to be degraded. A 741, for instance, should not be used for frequencies above 50 kHz .

Figure 6 shows the effect of varying Q in a low pass filter. Generally, the response that is wanted is the 'flattest amplitude' curve. A fourth order filter (Fig.5c) is constructed from a low Q and high Q filter. The overall response of this filter is seen in figure 7. Note that the flattest amplitude curve (A) is made up out of the product of curves B and C. The peak in the high Q curve (C) is flattened out by the droop of the low Q curve (B).

The problem of having different and unpreferred capacitor values is greatly reduced by using an 'equal component' design, figure $8 \mathrm{a}, \mathrm{b}, \mathrm{c}$. The Q factors are controlled by the gain of the op amp and so the capacitor values are all the same. Note that these filters provide a voltage gain which is in fact

Fig.6. Frequency response versus Q factor.

Fig.7. Combining high and low Q factors.

Fig.8a. Second order low pass filter, 1 kHz .

COMPONENT TOLERENCE $=10 \%$
ROLLOFF SLOPE $=-18 \mathrm{~dB} /$ OCTAVE
Fig.8b. Third order low pass filter, $\mathbf{1 k H z}$.

Fig. 8 cc . Fourth order low pass filter, $1 \mathbf{k H z}$.

Fig.9. Use of a low pass filter in an ADC system.

Fig.10. Frequency response of different orders of high pass filter.

Fig.11. Unity gain Sallen and Key high pass filter.

Fig.12a. Second order Butterworth 1 kHz high pass filter.

Fig. 12b. Third order Butterworth $\mathbf{1 k H z}$ high pass filter.

Fig. 12c. Fourth order Butterworth 1 kHz high pass filter.

Fig.13b. Third order Butterworth 1 kHz high pass filter.

Fig.13c. Fourth order Butterworth 1 kHz high pass filter.

Fig.14. Band pass response (single pole).

Fig.15. Single pole multiple feedback bank pass filter.

C	$R A$	RB	$F \mathrm{Fc}$	0	GAIN
15 n	10 k 6	10 k 6	1 kHz	0.5	$\times 0.5$
15 n	5 k 305	21 k 22	1 kHz	1.0	$\times 2.0$
15 n	2 k 652	42 k 44	1 kHz	2.0	$\times 8.0$
15 n	1 k 326	84 k 88	1 kHz	4.0	$\times 32.0$

Fig.16. Multiple feedback filter selection chart.
the product of the DC gains of each amplifier. Frequency scaling can be performed by modifying the R and/or the C components. Capacitors generally are available in E6 or E12 values, whereas resistors can be obtained in the E24 series, and so it is usually much easier to scale the R components, keeping them within the range 1 k to 100 k . Low pass filters find many uses in audio processing and are often used in data acquisition systems (Fig.9). The high pass filter (Fig.10) is exactly complementary in operation to the low pass device. The unity gain Sallen and Key structure is seen in figure 11 with calculated values for second, third and fourth order filters in figure 12a,b,c. Also there are calculated values for 'equal component' realizations in figure $13 \mathrm{a}, \mathrm{b}, \mathrm{c}$.

The band pass response is defined in figure 14. This can be realized with a single op amp circuit, the multiple feedback band pass filter, figure 15. Calculated values are seen in the chart of figure 16 . The maximum Q thould be kept below a
value of 20 at 1 kHz , otherwise the filter may become unstable and oscillate. Frequency scaling may be performed by multiplying the R or the C components with a constant. High Q, high frequency operation is not possible with this design because the op amp runs out of bandwidth.

The state variable filter (Fig.17) overcomes this problem by using the bandwidth of three op amps. Q factors of several hundred at 1 kHz are obtainable with this circuit. It also produces four outputs; high, low, band pass and notch, making it a very versatile design. The frequency may be scaled by altering the R or the C components and also the Q factor is separately programmable and is invariant with frequnecy. The all pass filter (Fig.18) has a flat frequency response, which in

Fig.17. State variable filter.

Fig.18. All pass filter.

Fig.19. Notch filter using all pass sections.

Fig.20. Testing filter design with an oscilloscope. 'Scope traces from points A and B are shown left (A above, B below).
itself is of no use at all. However, it does suffer a 180° phase shift as a function of frequency. By cascading two stages (Fig.19) it is possible to obtain a 180° phase shift at the frequency Fc. This phase shifted signal when mixed with the original will give a notch response due to the cancellation of the two signals.

Testing active filters is very easy if you have a swept sinewave generator and an XY oscilloscope (Fig.20). The frequency response appears as a linear amplitude versus log frequency display. It is generally possible to sweep five times a second, which gives an almost continuous display and allows you to see immediately the effect of any changes that you make to the filter.

ETI

N/TA A D		
MITRAD QUA	QUARTZ L.G.D.s AT THEIR BEST! MITRAD	
GENT'S CHRONO ALARM FRONT BUTTON Brand new 1980 siyle. Basic working modes of chronograph. 24 -hour alarm and dual time zone. Constant display of hours, indicarion with am/pm. $T 2$ and A1 flags. Dat runs to $1 / 10$ th sec, with the $1 / 1$ Oth s running along the botiom of the watch. It has a iwelve hour capacity. The 24 actuated for a full 60 seconds. Dual timing the added touch of compactness. Back-light, closely woven adjustable ONLY $£ 15.50$	GENT'S MEMORY CALENDAR ALARM CHRONO LATEST TECHNOLOGY! Constant display of hours, snooze alarm indication. A further two optional display modes are available. one being the calenbe increased or decreased 10 give the appropriate 100 th sec chrono with split and lap mode facilwatch. A 24 -hour alarm with a 10 minute snooze to the watch. A further feature is the back-light and fully adjustable stainless steel strap.	GENT'S QUARTZ.ANALOGUE
GENT'S ALARM CHRONO 12/24 CYCLE	THINKING OF BUYING A NEW DIGITAL WATCH- THEN CONSULT OUR FREE FULL-COLOUR CATALOGUE FIRST TEL. OR WRITE FOR YOUR COPY [0536] 522024	GENT'S FOUR-BUTTON ALARM LM40 A very compact and sleek-looking GENT'S Alarm Watch Constant display of with an optional display Weekday. Date and A very effective alarm is with in a 24-hour period, and is activated for 60 seconds Back Light and a closely woven adjustable stainless-steel strap finish the watch off. ONLY $£ 10.25$
GENT'S CHRONOGRAPH Probably the best looking chrono on the play of hours, mins. secs with am/pm indidate and weekday indication. $1 / 100$ th and $1 / 10$ th sec with split and lap mode facilities. Back-light, closely less steel strap. SPECIAL £8.95	LADIES' DRESS WATCH	LADIES' SUGARCOATED Another superb ladies watch with that extremely popular sugar frosted finish. Links can easily be removed from the strap and the clasp built in to give a comfortable fitting. Con- stant display of hours stant display of hours and mins. with month, date, secs, auto calen dar and back-light. $£ 10.50$
MITRAD WHERE RELIABILITY, STYLE AND ELEGANCE REALLY COUNT MITRAD		

MITRAD QUARTZ L.C.D.S AT THEIR BEST MITRAD

GENT'S MELODY ALARM CHRONO DUAL TIME

This watch is super slim. Only 7 mm thick, but has 5 independent working modes. (1) Normal watch. Hours, Mins., Secs., A.M./P.M. and mode square indication. The weekday can be set in any of three different languages. French. English and German
(2) Countdown Alarm: Presettable to 24 hours, with the musical tune playing for 1 minute. (3) Ordinary alarm which can be set within a 24 -hour period and lasting for 60 seconds.
(2) Dual timing facilities
(4) Chronograph: This runs to a $1 / 100$ s. Freeze and split and lap mode facilities are standard.
This watch is finished in 3 micron gold and comes with a closed strap.
Back Light.

SPECIALLY PRICED AT £14.95

GENT'S CHRONOGRAPH SOLAR ALARM

The slimmest Chrono Solar Alarm in the World. Only 7 mm thick. This watch has a genuine solar panel. You can take the battery out and the watch will still function as normal. Battery hatch. Mineral glass.
Constant display of Hours, Mins. and Secs. with Date Flag. Optional display of Hours, Mins. and Date. The alarm can be set to any time within a 24 -hour period and is actuated for a full 60 seconds.
The chrono runs to a $1 / 10$ th Sec. with a maximum capacity of 24 hours. Lap Time and Freeze Facilities are available.
Dual timing facilities are readily available.
Back Light. Fully adjustable stainless-steel strap.
This watch is available in gold or silver.

OFFERED AT £19.95

ZEON DIGITAL ANALOGUE ALARM * EXCLUSIVE *

We are proud to be able to offer you this scoop purchase. One of the finest pieces of modern technology.
The analogue section can be set as a conventional hand watch and is totally independent of the L.C.D. section.
The digital part of the watch has the following functions:

1. Constant displày of Hours, Mins. and Seconds.
2. Optional Display of Date, Month and Weekday.
3. A unique alarm system, which can be set to any time within 24 hours, and is actuated for a full 40 seconds. A five-minute snooze is also available.

The watch is finished off with a Backlight and an infinitely adjustable stainless-steel strap.

BUY NOW
AT $£ 34.95$

GENT'S MELODY MULTI-CHIME ALARM CHRONO

Latest technology! Constant display of hours. mins and secs, weekday. date and month with mode and chime indication display The musical alarm once actuated plays the tune "Oh Suzanna". Two further alarm systems are incorporated in this outstanding watch: (i) 24-hour alarm. (ii) count-down alarm The watch can be set to chime on every full hour. A $1 / 100$ th sec chrono is standard to the watch. Can be switched off. Mineral glass face. The watch also has a battery hatch backlight and infinitely adiustable stainless steel strap.
VALUE AT £19.95

MITRAD

THE UNRIVALLED RANGE
MITRAD

We are able yet again to offer you the above watches plus a complete quartz watch range. All at unrivalled prices. Just look at the following points:
(i) 48 -hour despatch guaranteed on both retail, and trade orders.
(ii) Full instructions and 12 month manufacturers guarantee
(iii) Our own free back-up service.
(iv) 10 -day full money refund if not completely satisfied.
(v) Free felt presentation case with each watch.

* FULL COLOUR CATALOGUE NOW AVAILABLE *

Write or phone for your free copy. Trade lists on application.
Earn EEEs selling watches to all your friends. P/P per item 85 p which includes insurance. Cheques or P.O.S made payable to Mitrad and sent to (Dept. ETI), 58 Windmill Avenue, Kettering, Northants, NN 16 8PA.

Telephone (0536) 522024

AHISTORYOF SPACECRAFT

Ian Graham takes a well illustrated look at Spacecraft past and present and discovers just how far we've come in the twenty three since Sputnik.

0n April 12th 1961, a charred ball weighing over $10,000 \mathrm{lbs}$ lay in a field near the village of Smelovaka. Inside lay Yuri Gagarin, the first man to orbit the Earth and begin Man's adventure in space. Gagarin's flight marked the culmination of a research programme going right back to the first artificial satellite, Sputnik 1. Less than a month after Sputnik 1 proved the orbital equations correct, Sputnik 2 carried the first live passenger into orbit (apart from stowaway bacteria onboard Sputnik 1). The first 'cosmonaut' was a dog called Laika.

America boldly went where only one man had gone before, when, barely a month after Gagarin, Alan Shepard made a fifteen minutes sub-orbital hop to a height of 116 miles. In February 1962 a silver-suited John Glenn wedged himself into the cramped confines of his Mercury 6 capsule and made the first three orbits of the American experience in space. By then, however, Russia had established a commanding lead. Herman Titov had already spent more than a day orbiting the Earth in Vostok 2. The list of Russian firsts continued - first double flight, first woman in space, first three-man craft, first space-walk, etc. The six Vostok flights (from April 1961 to June 1963) made 259 orbits, in comparison with a grand total of 34 orbits for the six Mercury flights from May 1961 to May 1963.

Human Satellite

Gemini gave astronauts invaluable experience in long duration flight and the rendezvous and docking manoeuvres necessary for an Apollo-type moon mission and for future space station operations. In less than two years there were a staggering ten Gemini flights. In the same time Russia flew only one mission - Voshkod 2. (Voshkod 1 was the first three man spacecraft. It flew four years before the first Apollo. Voshkod 2 carried a crew of only two). It achieved yet another first for Russia - Alexei Leonov's space-walk. It was the first time a man had left his craft and orbited the Earth as a human satellite, albeit still tethered to his craft. Three months later Ed White spent 21 minutes outside his Gemini 4 spacecraft for America's first space-walk

Cemini 3 carried the first computer into space. Although it was glossed over at the time, largely overshadowed by the impact of Leonov's space-walk, it was an important development in manned spaceflight. The astronaut was no longer a passenger carrying out predetermined routines or commands from the ground.

He could make independent decisions on, for example, course corrections based on information on position, thrust, etc from his on-board computer. In addition, whereas most of the Mercury systems were carried inside the pressurised compartment with the astronaut, many of the Cemini systems were removed to a separate instrument module. The astronaut benefited by gaining a more spacious cabin and the system became more flexible, allowing the astronaut to work outside the craft on any defective instrument. Gemini 5, an eight day flight, proved that men could work in space without any adverse effects for the duration of a moon-landing mission.

Rendezvous and docking manoeuvres were practiced between two manned Gemini craft and between Gemini and the unmanned Lockheed Agena target vehicle. Gemini 6 should have rendezvoused with an Agena but when the Agena failed it used Cemini 7 instead. The craft manoeuvred to within 2 m of each other. Gemini 8 achieved the first docking, but the operation nearly ended in disaster. Shortly after docking, a jammed open thruster rocket started the couplet tumbling faster and faster. The crew, Neil Armstrong and David Scott, broke free from the target vehicle and ended the mission two days earlier than planned - survivors of the first major emergency in space. Gemini 11 carried out the first computer-controlled re-entry.

Before flight a Mercury astronaut's pressure suit was thoroughly tested.

Apollo

The next stage in America's successful space programme, now well ahead of Russia's, was the flight testing of the Apollo moon-landing systems and procedures. A Saturn 1 lifted the first Apollo Commmand Module into Earth orbit in May 1964. The first Apollo crew (Virgil Grissom, Roger Chaffee and Ed White) climbed aboard Apollo 204 for a countdown rehearsal on January 27 th, 1967 and the Command Module hatch was bolted down. A fire started unseen, somewhere below Grissom's feet and spread to nylon netting, fastenings and insulation material. In the 100% oxygen atmosphere it took only 15 seconds from Chaffee's first warning for the fire to burn through to the outer shell of the spacecraft. All three astronauts were dead before the hatch could be opened.

The Apollo programme was immediately suspended. A quick release mechanism was developed for the access hatch. Although pure oxygen continued to be used in space, ground operations were carried out with the safer 60/40 oxygen/nitrogen atmosphere (gradually changed to 100% oxygen after launch by the environmental control system). Less flammable materials were used in the cabin. Where non-metallic materials had to be used, they were positioned so as to behave as a fire break. The design of electrical equipment, location

The first American astronaut to make a space-walk - Ed White in orbit around Mother Earth.
of wiring and equipment checking procedures were also reviewed

Nearly two years after the fire, the Apollo programme was resumed. Apollo 7 successfully tested the hardware in Earth orbit for eleven days in October 1968. Only two months later NASA reached for the moon. Apollo 8 was the first manned craft to be launched by the giant Saturn 5, necessary for the circumlunar mission. You may remember Commander Borman's reading of a passage from Genesis against the backdrop of another world on Christmas morning, 1968. Borman, Lovell and Anders could not have landed on the moon if they'd wanted to - they did not carry a Lunar Module.

Apollo 9, the first manned mission with a Lunar Module, remained in Earth orbit rehearsing rendezvous and docking manoeuvres with the LEM (Lunar Excursion Module). While Schweickart was standing on the LEM porch he took the memorable photographs of Scott's head and shoulders out of the CM access hatch. Apollo 10 combined the experience gained from Apollo 8 and 9. taking the LEM to within 15 kms of the moon's surface.

Tranquillity Base

Approximately one million people were at Cape Canaveral on July 16 th 1969 to see Apollo 11 blast off for the moon. The television audience was around 500 million. After a trouble-free flight, Armstrong and Aldrin separated their Lunar Module from Collins' Command Module and began their descent. Armstrong interrupted the automatic landing sequence and flew the LEM manually when he saw boulders ahead, making it impossible to land. He finally touched down with only 2% of his fuel left.

I've met many, many people (not all space nuts like me) who sat up all night to watch the fuzzy image of Armstrong descending the LEM ladder and stepping off the landing pad on to the dusty surface of a nother world at 3.56 am on July 21 st , 1969. Aldrin joined him and together they loped around the surface placing scientific instruments and collecting samples. On their return to Earth the astronauts put on Biological Insulation Garments and were transferred to the Mobile Quarantine Facility to isolate any bacteria which they may have brought back from the moon.

The Mercury capsule was just large enough to carry one astronaut. By comparison Gemini was a deluxe model.

Apolia 10's Saturn 5 stands on the launch pad atop its mammoth transporter.

Edwin Aldrin deploys the Apollo 11 solar wind experiment

Strike A Light

Apollos 12 and 13 were more eventful than the first moon landing. Apollo 12 was struck by lightning at takeoff. Fortunately, neither the spacecraft nor the Saturn 5 launch vehicle were damaged. When the Apollo 13 Com mand, Service and Lunar Modules were more than 200,000 miles from Earth on their way to the moon, the astronauts felt a jolt and saw power and oxygen readings rapidly fall on their control panel. The moon-landing was abandoned. To conserve fuel it was decided to let the spacecraft swing round the moon and return to Earth. The crew moved into the Lunar Module, now aptly nicknamed the 'lifeboat'. Systems were powered down - the only way that the craft could be kept operational long enough for the return to Earth. Reduced power meant a cold, dimly lit cabin. The LEM air conditioner could not cope with the extra volume of both CM and docking tunnel. To keep carbon dioxide down to a safe level, the crew improvised an air conditioner from materials on board.

When the Service Module was discarded just before re-entry, the crew saw for the first time the extent of the damage. One panel ($4 \mathrm{~m} \times 1.8 \mathrm{~m}$) had been blown away completely, exposing a tangle of pipes and tanks. It was later found that heater switches had welded closed causing an oxygen tank to overheat and explode. It wasn't known if the explosion had damaged the CM's heat shield. However, re-entry went as planned and the crew of Apollo 13, launched at 13.13 (Houston time) on April 13th, returned safely to Earth. In 1972, four flights later, the programme was brought to a close with Apollo 17, the last of three missions intended to devote more energy to Apollo's scientific potential. Despite six moon landings and the return of over 380 Kg of rock samples, the origin of the moon is still not conclusively proven.

Meanwhile in the USSR

Meanwhile In The USSR

Like Apollo, the Soviet Soyuz programme had its setbacks. The test flight of Soyuz 1 seems to have been cut short. After re-entry, the parachutes failed to open properly and the spacecraft crashed to Earth, killing the one-man crew (Vladimir Komarov)

Further flights achieved the first docking of two manned craft and the first welding in space. Soyuz 11 (June

1971) spent 23 days docked with Salyut 1 . The flight went well until re-entry, when contact with the crew was lost On opening the access hatch after a normal re-entry, the three man crew was found to be dead. The craft had suffered rapid depressurisation in the upper atmosphere. From then on the crew wore spacesuits (during re-entry at least) instead of light overalls and flying helmets. The additional life support gear carried meant that the crew had to be reduced from three to two.

The Soyuz programme continued, successfully carrying out astronomical, Earth resources, EVA (spacewalking) and hardware experiments

The first post-launch abort occurred several minutes after what would have been Soyuz 18 lifted off. When the third stage began to go astray, the spacecraft was automatically detached from the launcher and brought down. The next flight (Soyuz 18) prepared the way for the joint US/USSR Apollo/Soyuz link-up

The Apollo/Soyuz Test Project (ASTP) was agreed on as early as 1972, with a planned launch date of July 15th 1975. Both craft did, in fact, take off on July 15th 1975 and docked for a total of 48 hours. Minor problems included failure of the Soyuz TV system. The huge television audience had to be content with pictures of Soyuz taken from Apollo. Stafford became the first US astronaut to fly in a Russian Spacecraft

Secret And Wet

Soyuz 22 achieved the dubious honour of being, it is believed, the first manned spy satellite. Its unusual orbit took it over a major NATO exercise. Soyuz 23 achieved yet another first - the first Soviet splashdown. During its descent high winds pushed the craft off course and into a lake. The crew were unhurt

Stations In Space

In the early to mid seventies, both the Soviet and American space programmes moved into their second generation. The hugely expensive one-shot all or nothing flight gave way to the space station. Once again Russia led the way with Salyut 1 (April 1971). The first few years of the programme were beset with technical problems with both the Salyut space stations and the Soyuz crew transporters, but Soviet persistence had paid off by 1975 The Soyuz 18 crew set up a new Soviet duration record of almost 64 days on-board Salyut 4.

Unlike Skylab, there appear to be two distinct types

The Russian end of the ApoliolSoyuz Test Project - Soyuz, still clamped down to the launch pad.

The Soyuz/Apollo spacecraft cluster with the newly designed docking module.

of Salyut craft. One performs a civilian role, similar to Skylab, but the other is part of a separate military programme.

Skylab

In May 1973 Skylab 1 lifted off, launch vibration being so great as to seriously damage the craft. The meteoroid/thermal shield had been torn away completely, turning the workshop interior into an orbiting oven. The debris from the shield had also ripped off one of the solar panels, giving the spacecraft its familiar lop-sided appearance.

The laboratory was only made habitable by the installation, by the Skylab 2 crew, of a makeshift sun-shade over the workshop

Life Out There

Astronauts complained of stuffiness and congestion of the inner ear for as long as twelve weeks. Red blood cell production was disturbed for about nine weeks. Hygiene and waste management seemed to constitute the most annoying problems. Urine was spilled. Astronauts found if they missed a meal they would experience flu-like symptoms. Heavy exercise helped

The first captive flight of America's Space Shuttle on the back of a NASA 747.
crews make more rapid recovery after their return to Earth. Health problems amounted to minor skin infections and eye trouble.

Results from the first few years of space station operation will themselves take years to analyse. The Skylab crews brought back over 40,000 pictures of the Earth's surface and over 180,000 frames of film of the Sun. They also carried out melting, welding and brazing experiments. One of the Earth Resources experiments identified a possible deposit of copper in Nevada. It may be worth several billions of dollars - more than the cost of the entire space programme to date.

Planes In Space

The most exciting development so far in space hardware is that of the Space Shuttle - a plane capable of being launched with the aid of strap-on boosters, flying on to orbit and returning to Earth, landing like a conventional aircraft

Although the Commander and Pilot could take
A cut-away model of the Salyut space station with Soyuz 11

The shape of things to come - the mile-long 'Palomino' spacecraft featured in Walt Disney's 'The Black Hole'.
manual control, the Space Shuttle is such a complex flying machine that it is usually flown with the aid of computers or completely under computer control.

After take-off the two boosters fall away and are recovered from the ocean to be used again. The huge external tank, whose fuel powers the Orbiter's three main engines almost to orbit, is discarded and breaks up in the atmosphere. Once in orbit, 44 tiny rocket motors position the Shuttle accurately.

With the cargo doors open, satellites can be launched or collected for repair by using the Remote Manipulator System - a remotely controlled arm made by Spar Aerospace in Canada.

A variety of materials protect the craft from the enormous temperatures of re-entry. The nose of the Orbiter reaches over $1400^{\circ} \mathrm{C}$. Normally the crew will not interrupt the completely automatic landing sequence. After landing, the Orbiter is serviced and repositioned on the launch pad for its next flight.

Technical problems have caused a serious of post-
Table 1, A comparison of manned spacecraft to date.
ponements to the first launch, which is now not expected until at least November 1980.

The Competition

America may appear to be way ahead of the Soviet Union, but there is already news of a Soviet Space Shuttle. So far very little information has been released. Known as the Raketoplan (Rocket Plane), it measures 60 m long (probably including the launcher) and 8 m across with three main engines. A prototype has already been test flown, dropped from a Tu-95 bomber.

Coming Soon

What does the future hold? The Space Shuttle is the first spacecraft to offer the possibility of carrying into orbit raw materials of prefabricated elements from which larger structures can be constructed. Film buffs may recall the Space Shuttle approaching the spinning wheel station in Stanley Kubrick's film of Arthur C Clarke's '2001: A Space Odyssey'. Which of the current rash of space westerns will prove as prophetic as 2001 is sure to be - 'The Black Hole' perhaps, with its spaceship modelled on Brighton pier, or Star Wars, with its World War I dog fights in space?

	MERCURY	GEMINI	APOLLO	SKYLAB	SHUTTLE	VOSTOK	VOSHKOD	SOYUZ	SALYUT
LAUNCH WEIGHT (kg)	1935	3792	5558	90265	68000	2400	5320	6000	18700
BASE DIAMETER (m)	1.89	3.05	3.90	6.58	.	2.3	.	2.63	4.1
LENGTH (m)	2.90	5.60	3.48	36.12	37	2.3	.	10.63	22
WORK VOLUME (m ${ }^{3}$)	.	1.558	5.97	361.4	71.5	.	.	9	100
WINGSPAN (m)	23.7	.	-	10.06	.

ETI

PLAIN PAPER

Fully built an
PRINTER housed in a with enclosure for just $£ 325$ plus VAT. Interiaces with aill micro computers
The Nascom IMP (Impact Matrix Pintor) foatures

IDEAL FOR WORD PROCESSING

SYรाETl kirs

Microprocessor board' (Nascom 2)

MHz 280 CPU . TV or Video +1200 baud Kansas City + Serial RS 232 printer Interfaces: Keyboard, 128 character ASCII plus 28 Graphics in $2 \times 2 \mathrm{~K}$ ROM tree 1,6 -way parallel port: 8k BASIC; NAS SYS operating monitor £280 built and tested
firmware \& MOSICs
Zeap Assembler (4, $1 \mathrm{~K} \times 8$ EPROMS) £50 Nas Pen text editor ($21 \mathrm{~K} \times 8$ EPROMS) $£ 30$

Floppy disc system
Double sided, double density $5^{1 / 4}$ in disc giving 280K Bytes formatted, including controller board/PSU/Housing and intercionnects. £480 Controller board £127.50 Second Disc £240 CP/M £80

System 80 housing
High strength GRP moulding
Accepts 12×8 Nascom 2 CPU board, four 8×8 expansion boards $£ 85$ incl frame racking terconnects and motherboard.
Expansion Boards' (in kit form)
6K RAM £ 127.50 -32K RAM £ 175
48 K RAM $£ 220$
High Resolution Programmable Graphics $£ 90$ Colour Board Kit £ 140
High Resolution Colour add on £3750

All prices subject to VAT (add 15\%)
COMPUTER KEYBOARDS

TASA 56 key touch senstitive keyboard All ASCl characters including control keys. Parallef output with strobe Shift lock Keys coded in 3 colours to indicate
竍 function 18 VDC at 35 mA .15
thick. Black resin
$£ 49.50+$ VAT
Star Devices Mk III 71 key touch sensitive keyboard With numeric pad. All ASCll characters including control keys Auto key repeat. Paraliel outpul with trobe Snic ' $25^{\prime \prime}$ Grey case with white keys on biue
$\mathrm{E48.50}$ + VAT
Carter 57 key ASCII keyboard Conventional keyboard 128 ASCll characters including conirol keys Paralie , Strobe Shift lock +5 V and $-12 \vee \mathrm{VC}$
E39.34 + VAT.
FERRANTI - "SIZE $14 \times 6 \times 3$ " SLOPING FRONT
Catew hicor case Conplerewn Plug
and Cable with curcuit to converit to T TL levels

No more slaving over hot soldering fron the now supplied BUILTI
Britain's biggest small syatem is avwilabte fully for the ridiculously low price of $£ 140$ plus VAT (kit price still only E 125 plus VAT).
noscom-I
$12^{\prime \prime} \times 8^{\prime \prime}$ PCB carrying 5LSI MOS packages, 161 K MOS memory packages and 33 Th packages. There is on-board interiace for UHF or un modulated video and cassette or teletype.
The 4 K memory block is assigned to the operating system, video display and Eprom option
The MPU is the standard 280 which is capable of executing 158
instructions including
all 8080 code.

处NASCOM PRODUCT LIST + vat
UART + BAUD rate generator + crystal for $1 / 0$ board CTC - MK 3882 multiple interrupt driven $\quad \mathbf{1 6 . 0 0}$ clock generator for $1 / 0$ board
clock generator for $1 / O$ board
$\mathrm{P} / 10-\mathrm{MK} 3881+$ interconnect for $1 / 0$ 8.50
$\mathrm{P} / 10$ interconnect only (for $1 / 0$ board) 8.50
3.80

Econographics kit for additional 128 ch 30.00
acters/(N716 Programmer suitable for N1 and N2 under NAS-SYS 20.95 for N1 and N2
Nas-DA disassembler 3 EPROM for Nas
MK SY 36271 8K BASIC in $8 \mathrm{~K} \times 8$ ROM 3750

Naspen VS in 2 EPROM 40.00

Nas-sys monitor in 2 EPROM 25.00

Nasbug T4 $2 \times$ EPRROM 12.50 Nasbug T4 $2 \times$ EPROM
Super Tiny Basic $3 \times$ EPROM 25.00
25.00 37.50 Super Tiny Basic upgrade $1 \times$ EPROM 12.50

ZEAP 1.2 tape and documentation for N 1 30.00

ZEAP 2 tape and documentation fo 30.00

8 N BASIIC tape and documentation for N 15.00 MEMORIES Discounts 10% for $\mathbf{4 , 1 5 \%}$ for 20\% for 16 MK3880 (Z80) for N1 7.50 MK411616K $\times 1$ dynamic RAM 7.95 MK411616K $\times 1$ dynamic RAM $21021 \mathrm{~K} \times 1$ static RAM $41181 \mathrm{~K} \times 8$ static RAM Unprogrammed 2708 2.25 2.75 Unprogrammed 2716 $21141 \mathrm{~K} \times 4$ Static RAM 19.95 8080A 4.95
3.95

EXCLUSIVE TO HENRY'S

50% OFF MAKER'S PRICE
for: Software selectable 20, 40 and 80 TANDY, column using 120 mm aluminium PET ised paper. 1 roll supplied
NASCOM Mentronics parallal data interface for

- 240 volt mains input. ASCII character se
- Paper feed, and onloff select switches
'BELL' signal Weight 101 bs
Size: $13^{\prime \prime} \times 103^{\prime \prime} \times 43^{\prime \prime}$
- New, boxed and fully guaranteed

POST PAID Price $£ 195.00$ + VAT
See COMPUTING TODAY Recommendation

COMPUTER SVSTEMS LONDON STOCKISTS
Microtan 65 Kit. Inc VAT £79.35 Microtan 65 Assembled, incl VAT

$£ 90.85$

$£ 90.85$
$\begin{array}{ll}\text { Tanex (niın. con) Kit, incl. VAT } & £ 49.45 \\ \text { Tanex Assembled, incl. VAT } & \mathbf{£ 6 0 . 9 5}\end{array}$

Lower case pack, incl. VAT	$\mathbf{£ 1 0 . 9 0}$
Chunky Graphics Pack, incl. VAT $£ 7.50$	
20 Way Keypad, incl. VAT	$£ 11.50$
Mini-mother board, incl. VAT	$£ 9.95$

20 Way Keypad, incl. VAT $£ 11.50$
Complete Tangerine range available Export Orders deduct VAT, but add 5% carriag Official Export \& Educational Orders welcome Our Telex 262284 Mono Ref. 1400 Transonics

HENRY'S
TO YOUR
TO YOUR
ORDER
EXCEPT
WHERE

404 Edgware fioad, London W2 1ED, England I.E.D. 01-4026822

GTUSCAN'ATOM TRANSAM

 $0<p /{ }_{0}$
Take astep up toyour next Computer!

THE CONCEPT

How many ways are there to build an S100 system? Not many, and all expensive.TUSCAN changes all that.

Five S100 boards on one single board - just for starters. Plus five extra slots for future expansion.

What a combination! Z80 and S100 with the TRANSAM total package of system and applications software.

How do we do it? Our prices start at $£ 195$ and you can build up in easy stages to a fully CP/M compatible disc based system. Something to think about!

THE HARDWARE
The first Z80 single board computer with integral S100 expansion. British designed to the new IEEE (8 BIT) S100 specification, the TUSCAN offers total system flexibility. A flexibility available now.

The board holds the equivalent of a Z80 cpu card, $8 \mathrm{kram}, 8 \mathrm{k}$ rom video and I / O cards with 5 spare S100 expansion slots and offers a price/performance ratio which is hard to beat.

Just compare our price with a commercial S100 ten slot motherboard with this specification.

THE SOFTWARE

TUSCAN offers the user the choice of system monitor, editor, resident 8 k basic, resident Pascal compiler or full CP / M disk operating system. All options are upwards
compatible and fully supported with applications software. Both $511^{\prime \prime}$ and $8^{\prime \prime}$ drives are supported in double density.

THE PACKAGE

TUSCAN is available in kit form or assembled. With several hardware and software options to suit your requirements and budget. Attractive desk top casealso available holds $2 \times 5{ }^{1 / 4} \mathbf{4}^{\prime \prime}$ Drives.

TRANJAM

NOBODY DOES IT BETTER!

Send to Transam Components Ltd,. 12 Chapel Street, London NW1

ANTI~ MATTER

Does antimatter really exist or is it a figment of your imagination? Have you an antimatter double in another universe? A.S. Lipson explains.

Antimatter is, figuratively speaking, the very stuff of which science fiction is made. Most of us have heard of it somewhere or other, but the most we actually know about it can be summarised in the immortal sentence from a TV' series that will remain un-named, 'Ye cannae mix matter with antimatter, Captain. . \therefore So what is this stuff? If it's 'antimatter' does it have 'antiweight'? Has it actually been made? Read on

In 1928, a British physicist, Paul Dirac, had developed an equation which seemed to solve an awful lot of the problems current in physics at the time. (Among these was the prediction and explanation of a quantity known as the 'giromagnetic ratio' of the electron - but that is really another story.) There was only one slight snag. In addition to ordinary matter, the equation seemed to be saying something about something rather different - a sort of 'negative energy' particle, previously unknown. Well, to cut a long story short, this eventually led to a theoretical understanding of what became known as 'antimatter'. The only thing left to do was to look for it and in due course antimatter was actually found! (Physicists are

Photon energy = recoil energy of heavy
particle + rest mass energy of particles + kinetic energy of particles.
Fig.1. In certain conditions, a photon can spontaneously transform itself into an electron and a positron (its equivalent antiparticle). The photon must pass by a heavy particle or nucleus which absorbs most of the photon's excess momentum.
ingenious fellows; they have to be to get their grants.) In fact, it turned out that antimatter had already been noticed in subatomic reactions, but had been interpreted as anomalous results!

Doing The Impossible

We have said that antimatter was found. It would be more correct to say that antimatter equivalents of sub-atomic particles were found. It all started off with the antimatter equivalent of the electron, in fact, and the people involved with its discovery were so excited about it that, instead of just calling it an 'anti-electron', they gave it a special name - the positron.

It wasn't long before other 'anti-particles' began to be discovered. Corresponding to the already known proton and neutron, which exist in the nuclei of atoms, there were an 'anti-proton' and 'anti-neutron'. In fact, right through to the present day, as more and more sub-atomic particles were discovered, it has been found that each has, corresponding to it, an anti-particle of equal mass (with the exception of a few particles which appear to be their own anti-particles). This was exciting! If every particle known had a corresponding antiparticle, then just as ordinary matter is made up of atoms, themselves made up of sub-atomic particles, it might be possible for there to be matter which was in the same way made up of 'anti-atoms', which would themselves be made up of anti-particles. . . Antimatter! Fine. There was just one small problem - anti-matter in any form, even just anti-particles, isn't very easy to contain. In fact, it would probably be fair to say that containing anti-matter is one of the closest things to 'impossible' that the physicists have cooked up yet. To understand this, we'll have to go right back to the discovery of the positron. . .

Disappearing Act

So far, we have completely omitted to say exactly what it is that is so special about antimatter. We can find this out most easily by looking at the way the positron - the 'anti-electron' - behaves. Now, the positron had a few rather interesting properties. In every way possible, it seemed to be the exact opposite of the electron; whereas the latter was negatively charged, the positron was positively charged (hence its name) and so on. The positron did not have negative mass, though. Negative mass, so far, is still in the realms of science fiction. Antimatter has positive mass, and hence, weight. This was interesting enough as it was, but things only really started to get going when a positron met an electron. If this happened the two particles would disappear into nowhere and a high energy particle of light, or 'photon' would be created. This was, in fact, an actual demonstration of the truth of Einstein's equation $E=\mathrm{mc}^{2}$, which says that mass and energy are equivalent. Under the right circumstances (such as meeting antimatter) mass can be turned into energy. When an electron collides with a positron, then the mass in each of them gets turned into pure energy and this is given off in the form of light photons. Pretty impressive eh? The same thing happens when other particles meet their own anti-particles; they disappear and all their mass is turned into energy, which is given off in the form of photons. The more massive the sub-atomic particle, the more energy is contained in the photons. When a proton and anti-proton meet and 'mutually annihilate', for instance, the energy produced is 1836 times as much as that produced when an electron and positron meet, because the proton and anti-proton have masses 1836 times as great as the electron and positron.

Fig.2. When an electron and positron meet, they annihilate one another and produce a photon whose energy ($\mathrm{E}=\mathrm{hv}$) equals the combined rest mass energies of the particles.

Let There Be Light

It now becomes apparent why it is so difficult to contain antimatter in normal containers; if we tried to do so, the positrons would quickly meet electrons, the anti-protons would meet protons and so on. All in all, the antimatter, together with an equal mass of the container, or whatever else was handy, would disappear and a lot of energy would be produced. A lot of energy. According to Einstein's equation (which has been very thoroughly tested), even a very small amount of mass, is equivalent to an incredibly large amount of energy. If a matchstick could be completely turned to energy, there would be enough produced to keep a 100 watt light bulb burning brightly for several centuries!

So far it looks as though the only likely way of containing antimatter would be to hold it in very strong magnetic fields, but the technique is far from perfected. Even if we could contain it easily, which so far we can't, there would remain the problem of obtaining antimatter in reasonable quantities. It is extremely rare and when it is found, (or made, in high energy particle accelerators) it always consists of sub-atomic particles; nothing anything as complicated as 'anti-atoms'. Certainly, antimatter has not been made in sufficiently large quantities even to weigh, with the most sensitive instruments available supposing that we could weigh it without it reacting with matter and producing enough energy to blow up the balance we were using ..

The rarity of antimatter has presented a problem to physicists, who like everything to be symmetrical in the universe; there is no apparent reason why there should be more matter than antimatter in the universe and yet antimatter seems to be very rare. This has led some people to suggest that, in fact, there is just as much antimatter as matter, but not in this galaxy. Perhaps about half of all galaxies are made out of antimatter, and half of matter; so, there is just as much of each kind of matter and the universe is nicely symmetrical. If this is so, then it is possible that, sometimes, out in space, a large quantity of matter might meet a large quantity of antimatter and the whole lot would disappear, giving off vast quantities of energy in the form of radiation. If this happens, our astronomers might see this radiation, and deduce what was going on. . . It is a fascinating idea. And just think; if there are 'antigalaxies', then maybe some of them carry life. Perhaps, somewhere, an 'anti-person' is reading a positronics magazine and wondering about the possibility of galaxies made of matter. . .

OLIVETTI PRINTER \& KEYBOARD type Te 300
with PUNCH \& READER. Upper case ASCII with V24 Interface. 240 volt operation.
£125 each
INFRA RED IMAGE CONVERTER type 9606 (CV 144)
$13 / 4^{\prime \prime}$ diameter. Requires single low current 3 KV to 6 KV supply Individually boxed. With data
$£ 12.50$ each P\&P 75 p Infra Red Lamps also advertised

709 DIL 14 PIN
OPERATIONAL AMPLIFIERS
at 8 p each
MINIATURE KEYBOARD Push contacts, marked 0.9 and A.F and 3
optional function keys.
E1.75 ea. P8p 65 p

STEPPING

 MOTORS200 steps - 20 oz. /in. torque. $12 / 24$ volt input, 4 wire £12 each P\&P $£ 1.50$

STEPPING MOTORS

200 steps 20 oz. / in. torque. 120 volt operation, 3 wire. £4 each P\&P $£ 1.50$
$£ 120$
£85

770R used
730/10 used
Limited quantity only

RXs

BC172	5p	MC4001	15p	TIS92	10 p	BC337	8 p
$8 \mathrm{BYP84} \mathrm{~V}^{7}$	${ }^{10 p}$	MC4012	15 p	TIS93	${ }^{10 p}$	BC 327	8 p
82Y88, 3 V	100	MC4020	75p	2N3704	8 p	BC 251	5 p
2N3006	5 p	74 C 20	25p	2N5447	5 p	BC171A	5 p
1N4305	$5{ }^{5}$	${ }^{74008}$	25p	2N5449	5 p	8FT60	5p
$8 \mathrm{BX79C12}$	${ }^{10 p}$	74 Cl 10	20p	2N3053	15p	4013	30 p
BC212B	5p	MC4049	35p				
IC 7451	10p						

REGULATORS - att at 45 p ach. MC7805: 7812; 7815; 7912; 7915.
MC14961 70p
16 pin OlL Sockel 10p. 14 pin DIL Socket 8p
16 pin OIL Socker 10 p . 14 pin DIL Socker 8 p
SLOTTEO OPTO SWITCH supplied With data
ROCKER SWITCHES 2 pole c/o- 15p oach - normally over $£ 2$. OUR PRICE 75p each
SPING ACtion TERMINALS - normally

L.E.D.s.
Standard White 12 p: Standard Yellow 15p; Small White $8 p$.

We still have a large quantity of
TEST GEAR, OSCILLOSCOPES, SIGNAL GENERATORS ETC, and they are priced to move.
Calters welcome or write or Better Still PHONE for details.

DIODES

All new full spec. devices. IN 3063; BAX 13; IN4148; IS44. 100 off $£ 1.50-1,000$ off £10.

VARIACS 20 AMPS Some 3 pha

20 AMPS
Some 3 phase available Please enquire
CRYSTALS

19.2 KHZ FLAT METAL CASE - 50 p each.
$10 \mathrm{MHZ} \mathrm{B7G} \mathrm{50p} \mathrm{each}$.

LOUD HAILERS $\begin{aligned} & \text { Transistorised } \\ & \text { baiteries supplied } \\ & \text { hand-held }\end{aligned}$ Howl switch

TRANSFORMERS - Standard Mains input	
Secondary outputs	
6KV 01254 E15 ea	
3440 V 066 A with matching 40 H Choke $£ 30$ the pair	
22.5 KV 110MA £50 日a. 5 KV 300MA $\mathbf{f 1 5}$.	
$60 \mathrm{KVV} 0.0273 \mathrm{¢150}$ 12KV 30MA ¢20.	
MULTI PURPOSE MAINS TRANSFORMER 4 windings each winding 0.10-110-125 at 48A E15 em.	
425 V 50 HZ 2 Wire input. Output 85 KV 2.55 KV A Could be fun on 240 V at $1 / 2$ raling $\mathbf{E 1 5} \mathbf{6 a}$.	
STEP DOWN ISOLATING TRANSFORMER InPUI 220.250V 50 HZ Output $115 \mathrm{~V} 1,8 \mathrm{KVA}$ GRAND NEW These are very	
conservalively rated $\mathbf{£ 2 0}$ *a. CAPACITORS	
2 mld 5 KV ¢4 4 ea	0.5 mdd IOKV E
$0.5 \mathrm{mid} 5 \mathrm{KV} \mathrm{C4} \mathrm{es} .8 \mathrm{mfd} 25 \mathrm{KV} \mathbf{C 4} \mathrm{ea}$	
CARRIAGE on these unis will be charged at cost.	

spacing. $\mathbf{1 5 p}$ as.
IF
Standard MAINS LEAD. Moulded 13 vertical flat pins centre
oftsely 60 p as.
EANS. 115 V 13 Watts Size $31 / 4 \times 31 / 4 \times 11 / 2$ BRAND NEW
$\mathbf{E 4 . 5 0}$ ea. Secondhand $\mathbf{£ 2 . 5 0} \mathrm{ea}$.
MINIMUM ORDER $\{3$ VALUE OF GOODS. MINIMUM P\&P £1 - where P\&P not stated please use own discretion - excess refunded. CARRIAGE ALL UNITS
f5. P\&P or CARRIAGE and VAT at 15% on total MUST BE ADDED TO ALL ORDERS
CALLERS VERY WELCOME STRICTLY BETWEEN 9am-1pm and $2-5 p m$ Monday to Saturday inc
BARCLAYCARD (VISA) and ACCESS taken. Official orders welcome.

There are so many digital watches on the market, with varying functions, that the average person is bound to feel somewhat confused.
A new survey of the electronic watch industry has been produced to clarify this confusion and to give an unbiased and objective answer to the many questions that are constantly being raised.

The survey answers all of these questions and tells you what to look for in a quartz watch; how they work: why the prices vary so much; what the future holds.

FREE OFFER

Send today for this free technical report, plus news of a unique Metac offer to beat all special offers.

Complete the coupon below and send it FREEPOST (no stamp required) and we will post, Same Day Despatch, the technical report giving you all you need to know about electronic watches and details of our special offer.

Whichis the best watch?

These four watches are very different in price, durability and functions. How would you choose between them?

This unbiased and objective report helps you to make this decision and gives you a deeper insight into the rapidly changing and exciting world of the micro-chip.

For your free copy of the report complete and return the coupon to: Metac Electronic \& Time Centres, 24 -hour Despatch Centre, FREEPOST, 47A High St.. Daventry, Northants.

DESIGNER'S NOTEBOOK

In this month's 'Notebook' Ray Marston looks at practical applications of a neat little eight pin National chip, the LM3909 LED flasher/oscillator

Acommon and seemingly trivial task often facing the design engineer is that of providing an illuminated (glowing or flashing) indication of the ON state of a piece of electronic equipment or the location of a passive device (fire extinguisher, emergency switch, etc) in a darkened room.

These tasks are obviously easily solved if mains power is readily available, but can present serious problems when battery powered equipment is concerned. LED indicators typically draw 12 mA or more when illuminated and can thus place a fairly heavy strain on small supply batteries. LEDs, in any case, drop two or more volts under the ON condition and can thus not readily be powered from battery voltages below 3 V or so.

National Semiconductors provided an ingenious solution to this problem some years ago when they introduced the eight pin LM3909 LED flasher/oscillator chip. This device acts basically as a low duty cycle (brief ON period, long OFF period) oscillator that provides a voltage-doubled high-current pulse to an external LED. Because of the voltage-doubling facility, the IC can flash a LED even when powered from cell voltages down to 1V1. Because of the low duty cycle facility, the device can provide high pulse currents (up to 100 mA) while still drawing very low mean currents (typically 0.3 to 1.5 mA) and can thus provide months, or even years, of continuous operation from a single 1 V 5 cell.

Fig.1. The internal circuit and practical connections of the LM3909 low voltage LED flasher/oscillator IC. The IC outline is also shown.

Fig.2. Practical 1V5 LED flasher with details of estimated battery life. Nominal flash rate is 1 Hz and typical average drain current is 0.63 mA .

The LM3909

The internal circuit of the LM3909, together with typical external connections for 1 V 5 flasher operation, is shown in Fig.1. In this application, the LED receives current (via the 270 uF capacitor and the internal 12 R resistor and Q 3) for only about 1% of the time. For the remaining part of each operating cycle all transistors except Q4 are off. The 20 k resistor from Q 4 's emitter to supply common draws only about 50 uA . The 270 uF capacitor is charged through the two 400 R resistors connected to pin 5 and through the $3 k 0$ resistor connected to pin 4 of the circuit.

Transistors Q1-3 remain off until the 270 uF capacitor becomes charged to about 1 V . This voltage is determined by the junction drop of $Q 4$, its base-emitter voltage divider and the junction drop of Q1. When the voltage at pin 1 becomes a volt more negative than that at pin 5 (the supply positive terminal) Q1 begins to conduct and then turns Q2 and Q3 on.

The LM3909 then supplies a pulse of high current to the LED. The current amplification of Q2 and Q3 is between 200 and 1000: Q3 can handle over 100 mA and rapidly pulls pin 2 close to supply common (pin 4). Since the 270 uF capacitor is charged at this time, its other ter-
minal at pin 1 goes below the supply common; the voltage at the LED is then higher than the battery voltage; the internal 12R resistor (between pin 5 and 6) limits the LED current to a safe value.

Thus, the 270 uF capacitor alternately charges via the $3 k 0$ timing resistor and discharges via the LED and 12R resistor. In some other applications, the short between pins 1 and 8 can be removed, enabling the capacitor to charge through a total of 9 kO , with a consequent reduction in duty cycle and mean current consumption.

If voltage boosting is not needed (with or without current limit), loads can be hooked directly between pins 2 and 6 or pins 2 and 5 of the IC.

Let's look now at some practical applications.

LED Flasher/Indicator Circuits

Figure 2 shows the Fig. 1 1V5 flasher circuit redrawn in a practical configuration. The circuit gives a brief flash once every second or so and typically draws an average current of only 0.63 mA . As you can see from the table, this circuit will give from three months to 2.6 years of continuous operation from a battery, depending on the size and type of cell that is used.

Fig.3. Minimum power TV5 flasher. Nominal flash rate is 1.1 Hz and average drain current is 0.32 mA .

An even longer life can be obtained from the 'minimum power' flasher circuit of Fig.3. This is similar to the one described above, except that the short is removed from between pins 1 and 8, causing the capacitor to charge via 9 kO of internal IC resistance and so operate with a reduced duty cycle and reduced mean current consumption. The circuit has a typical current drain of 0.32 mA .

The Fig. 2 and Fig. 3 circuits are of particular value as 'indicator' or 'locator' becons for use on fire extinguishers, emergency lanterns, torches, emergency switches, etc. The operating frequencies of these circuits are heavily dependent on supply voltage, as indicated in Fig.4. This circuit is similar to that of Fig.3, except that it is designed for 3 V operation, in which case the timing capacitor value has to be increased by a factor of 2.7 for approximately the same flash rate.

Figure 5 shows another variation of the 1V5 flasher circuit. In this case the internal timing resistors are

Fig.4. 3 V 1 Hz flasher consumes an average current of 0.77 mA .

Fig.5. Fast 1 V 5 blinker. Flash rate is 2.6 Hz and drain current is $\mathbf{1 . 2} \mathbf{~ m A}$. shunted by an external 1 kO resistor, thereby reducing the charge time constant of the circuit and causing the flash rate to increase (to 2.6 Hz) and the duty cycle and mean current consumption to rise. The circuit gives a more noticeable flasher indication than the three earlier circuits, but at the expense of 1.2 mA of mean current drain.

If you enjoy experimenting with circuits, you can build the variable rate flasher of Fig.6. The rate is variable from zero to 20 Hz via the 2 k 7 potentiometer. The two external 68 R resistors are used to stabilise the duty cycle of the circuit and maintain a fairly steady apparent brilliance level in the LED as the rate is varied.

Fig.6. Variable rate flasher. The rate is variable from zero to 20 Hz .

Fig.7. High efficiency 'continuous' IV5 LED indicator. The circuit provides a steady but dim illumination by pulsing the LED at $2 \mathbf{k H z}$. Drain current is 4 mA .

The Fig. 7 circuit is designed to give apparently continuous illumination of the LED when powered from a 1 V 5 cell. The circuit in fact acts as a 2 kHz square wave generator, the two external 68 R resistors being used to approximately equalise the on and off times of the generator. The circuit gives a dim LED Illumination and has a battery drain of about 4 mA . LED brilliance can be increased, if required by using the alternative connections of Fig. 8 , but at the expense of 12 mA of battery drain.

Fig.8. This 1V5 circuit gives an apparently steady and continuous LED indication. Battery drain is 12 mA .

Fig.9. This 6 V flasher operates at about 1 Hz .

Fig.10. This LED flasher circuit can be operated from any supply in the $85-200 \mathrm{~V}$ range.

All of the LED flasher circuits that we've looked at so fare are intended for operation from 1 V 5 or 3 V supplies. Most of these designs can in fact be used, in slightly modified form, at voltages up to 6 V , as shown by the circuit of Fig.9. Note in this case that a 68R resistor is wired in series with the ALED, to limit its drive currents.

The LM3909 IC has a 6V5 zener built in between pins 2 and 4 (not shown in Fig.1). This fact is put to practical use in the flasher circuit of Fig.10, which ca be powered from any DC supply in the $85-200 \mathrm{~V}$ range. The 100 uF timing capacitor is connected between pins 4 and 5 in this application.

ETI

CALCULATORS

SCIENTIFIC

*SPECIAL OFFER TEXAS T159 together with PC 100C (Complete as manufacturer's specifications) £285.00	
TEXAS/HP Accessories available *TEXAS T 159 (Card prog 960 prog steps of 100 mem) *TEXAS T158 (Key prog 480 steps of 60 mem) *TEXAS PC 100C (Printing Unit for T158/159) *TEXAS T 157 (Key Prog 8 mem. 150 Keystrokes / 50 Prog Steps)	$\begin{array}{r} £ 156.50 \\ £ 60.00 \\ £ 140.00 \\ £ 25.00 \end{array}$
For your Texas T158/59 Calculator electrical eng. module LEISURE (GAMES) MODULE structural eng. module now avallable	
*TEXAS TI PROGRAMMER (Hexadecimal Oct) *TEXAS T151/iii (10 mem 32 Prog Steps Stat/Sci) TEXAS T150 LCD (Sci/Stat. 2 Con Mems) TEXAS T125 LCD (Sci/Stats)	$\begin{aligned} & £ 46.50 \\ & £ 26.30 \\ & £ 23.00 \\ & £ 17.00 \end{aligned}$

SUMMER SALE

NOW IT'S YOU AGAINST 'COMPUTERS'	
CHESS CHALLENGER " 7 " 17 Levels of game) CHESS CHALLENGER "VOICE" (10 Levels - beginner to Master Plus) The strongest Prog yet in this series - twice as last as the other challengers A microprocessor with 128.000 to 160,000 bits of read only Mern Over 8000 bits of Random Access Mem Teaches opaning \& end game solutions Plays against itself Solves book problems etc - and in addition IT SPEAKS Complete with Deluxe olayboard, hand cerved men with magnetised base plus Daluxe carry case §170.00 SARGON. The most advanced chess game yet with ad on module avallability for other games POA (Our price inc. FAEE rechargenble bartery pack)	
FREE - mans/Charget included	
learning aids	
TEXAS DATAMAN (Number Games-Table learning etc $5 / 10$ yrs)	E18.00
TEXAS SPELLING B (Spelling Games ideal $5 / 10$ years)	¢22.50
TEXAS SPEAK AND SPELL (for older children $8 / 13$ years)	£39.95

IDEAL FOR STUDENTS ALI WITH LCD DISPLAY	
TEXAS T120 (Jun Sct + Con PMem)	E13.00
TEXAS T135 (Scl/Stat C Mem)	$\underline{17.00}$
TEXAS T 138 (Sci/Con Mem-Pota Rec Cony Dec Deg conv/Deg Min Sec)	£19.85

GOODS FUILY GUARANTEED PRICES EXCLUDE VAT (ADD 15\%)
Company Hospital and Government orders accepled by phone
TEL. 01-455 9823

Tum

PCB OFFERS

(1A) 100 bit shift register PCB $115 \mathrm{~mm} \times 94 \mathrm{~mm}$ containing
$9 \times 7491,6 \times 7496$ and 1×7441 $9 x / 491,6 \times 7496$ and 1×744 Territc bargain 85p, p\&P 30p
(1) Audio amp PCB (LM 380) (1B) Audio amp PCB (LM 380)
$9-18 v$ d.c. output $21 / 2$ watts into 8 ohm with heatsink. 1.25 watt
40 hm without heatsink $£ 1.50$ 40 hm without heatsink. £1.50 p8p 25p.
(1C) PCB $215 \mathrm{~mm} \times 290 \mathrm{~mm}$ $12 \times$ TMS 3122 J (or sim.) Hex
32 -bit Shift Reg. +39 iCs. $£ 2 .+$ 32 -bit Shift Reg. +39 iCs $£ 2$. 50 p p\&p (limited stocks)

MPU CORNER

$\varepsilon 4.50$
200ns), £3. 2114 (450ns)
ع4.50,
1702 £2.50. 2708 (400 ns) $) ~$
£6. 25.
2716 (Single Rail) £ 19.00 .
741254 for $£ 1+p \& p 25 p$ MK 1002P (dual 128 bit Shift Reg) 35p. LM 711 CH (Voltage Comparator)

30p.

MM5240 Character Generator + Data 2560 Bit
\&3.50, p\&p 25 p .
E3.50, p\&p 25 F (All Full Spec)
2526 Character Generator (64×9 $\times 9) £ 2.95+$ data $\& p$ \&p $25 p$.

D TYPE CONNECTORS
15 Way: wirewrap plugs only 75 p. 25 Way: ribbon plugs $£ 1.20$. 25 Way: slugg (solder) (solder) £1.00 37 Way plg $£ 1.40$. 50 Way: skt (wirewr 50 Way: skt \& 1.45 , p\&p 25 p. COVERS
37 Way: 80p. (plastic) p/p 25 p 25 Way: 65p. (plastic) p/p $25 p$. DISPLAYS
MAN 727 seg CC $£ 1.25$ p\&p' $25 p$ Burroughs Panaplex 9 Dig + skt and berel £ 1.00 , p\&p 25 p.
LED 3 Digit DIL 55 p. p\&p 25 LED 3 Digit DIL 55p, p\&p 25p
Lewnar 9 digit 1in LED with red berel. (As used in calculators) 10.00 + $25 p$ p\&p.

SUPERSAVER
Ribbon Cable Headers 16 DIL Jermyn, gold plated, with cove 45p, p\&p 25p

SUPERSAVER 2
Tantalum Capacitors 25 volt 4.7 UF. 14 for £1.00, p\&p 25p SUPERSAVER 3 Stepping motors, 40 mm dia. $12-24 \mathrm{~V}$ torque 340 GMC . Brand new, give away price £2.50, p\&p 40p.

SUPERSAVER 4
HYBRID SYSTEMS DAC 371.88 Bit, Dil packaged, ideal MPU users, with data, £2.95, p\& 1 25p. SUPERSAVER 5
LM 323 K Voltage Regulator. 5 volt 3A. \&4.50, p\&p 25p

SUPERSAVER 6
RS 338-383 Miniature Decade Thumbwheel Switch. £1.65, p\&p 25p.

SUPERSAVER 7
SN 74116 Dual 4 Bit letch 75p. p\&ip 25p
SN7418 Arithmetic Logic Unit. 80p, p\& $25 p$.
SN741944 Bit Register, 50p poip 25p SN741988 Bit Shift Register. 75p p\&p 25p.

SUPERSAVER 8
BC 108 b 8 p each or 100 for E7. P\&P 25p.
4 Digit 7 segment LED Bubble Display. NSA 1540A Ex equipSUPERSAVER 10 9 way male/female connector. ELCO $8129,0.1$ inch pitch, goldplated PCB mounting, ideathor Superb value, 35p, p\&p 25p. SUPERSAVER 11 STAR OFFER. Dynamic hand microphone 200 ohm with lead and 5 pin plug. £1.25 (unrepeatable) p $8 p$ 30p.

SUPERSAVER 12
TMS 3128 NC Static shift register £1.50, p\&p 25p.

SUPERSAVER 13
PL259 (UHF) Elbow Connectors, 50p each, p\&p 25 p .
15423 Stud mounting rectifiers. $440 \mathrm{v}, 10 \mathrm{~A}$, giveaway price, 10 for $440 \mathrm{v}, 10 \mathrm{~A}$, giveaway price. 10 for £2, P\& SUP.
SUPERSAVER 15 2OK Painton multiturn trimpots, PCB mounting, per box of 1 £2.50, psip 25p.
SUPERSAVER 16
Astec UM 1163 E 36 modulator
plus PAL colour PCB (faulty). Few only $£ \mathbf{2 . 2 5}$, p\&ip 30p.

LEDs (Full spec).
TIL209, red 10p. 0.2 in , red 12p. 0.2 in . green 28 p .0 .2 in , yellow 28p.
RL54 red Axial lead. $15 p$. P\&p on all above 25 p.
VERNITRON Ceramic filters type FM4 $107 \mathrm{MHz} 45 \mathrm{p}, \mathrm{p} \& \mathrm{p} 25 \mathrm{p}$. "'rRANSISTORS, BD236 40p. BC 183L 10p. BF 195 10p, SGS 2N3055 30p, p\&p on all 25p. TBA 810S with data. 85p, 4-way DII switches, 75p. MC1303 Dual Stereo preamp with data, $\mathbf{£ 1 . 2 5}$. 7in. Nylon cable ties 100 for
£1.50. All p\& $25 p$. £1.50. All p\&p 25p.
stock). Sound Generator IC (Train, stock). Sound Generator IC (Train,
plane explosion, laser gun etc) with data £3.25, p\&p 25 p .
PCB KEYBOARD, 65 m
82 mm .18 key Clickers less Key tops, ideal Hexadecimal use 35p. p\&p 25p.
CAPACITOR SCOOP. $1,600 \mathrm{uF}$ at $10 \mathrm{v}, 160 \mathrm{uF}$ at 25 v . Axial lead. 2 dozen for $£ 1+25 p$ p\&p. PAPST min fans $80 \mathrm{~mm} \times 80 \mathrm{~mm}$ (approx) 220 V 50 Hz Brand new £8, p\&p £ 1 (limited stocks). Pewec Boxer. As abo
at $\mathbf{£ 4 . 5 0 + £ 1} \mathbf{~} \mathbf{~ \& ~} \mathbf{p}$.

IEC mains chassis plug with filter. 250 V 6 amps . Ideal for MPU users, Equivalent £2.50, each p\&p 30p. (Limited stocks.)
Suitable cable socket 65 p each p\&p 25p.

GIVEAWAY
22 pin low profile dil socket. gold plated

20pEACH

p\&p 25p

WE STOCK PETs

 $8 K$ version $£ 599$. SAE for the PET SORCERER software lists at discount prices.We can also offer a 48 -hour repair service for out of warranty PETs. Telephone for details. PET edge connecto
IC HOLDERS (Low-profile) $\begin{array}{ll}8 \text { Dil 12p } & 14 \text { Dil 15p } \\ 16 \text { Dil 17p } & 18 \text { Dil 20p }\end{array}$ $\begin{array}{ll}16 \text { Dil 17p } & 18 \text { Dil 20p } \\ 22 \text { Dil 28p } & 24 \text { Dil 35p }\end{array}$ 28 Dil 45p All p\&p 35p WE STOCK a vast range of TTL. CMOS some 74LS MINIATURE OGGLES, etc.
PSUs. We have a large stock of power supplies at very realistic prices (callers).

RELAYS

IT 700 ohm Single pole changeover. 45p. BANOR reset-
table double pole changeover 12 V £1. Both p\&p 25p.

CIRCUIT BREAKERS

$4450 v$ AC 65v DC 0.5A 50p; ditto 7A 80p. perp 25p.
ALLENKEYS, $7 / 16 \mathrm{in}$ 5p: 12 for 50p; p8p 25p.
ASA 33 (with tape punch reader). generally overhauled, $£ 225$ inc. of
CALCOMP MODEL 1408 in Disc CALCOMP MODEL 140 8in Disc
Drive fully tested, $£ 195$ inc VAT. Crive fully tested

MEMOREX 651 dual disk drives.

 complete with power supplies and format electronics (sorry, no data as yet). E3S each inc. of vat. Recordacail telephone answering machines (rarmer removed) sold as is rom $£ 2$ to $£ 10$ depending on condition. Fitted with very nice standard cassette deck. With circuit diagrams SORRY BUT FOR CALLERS ONLYTerms cash with order (official orders welcomed from colleges. etc). All enquiries s.a.e. please. All prices inclusive of VAT. unless otherwise stated Postage as FOR THE PROFESSIONAL USER. CP Clare Keyboard USER. CP Clare Keyboard switches pip 25p each p\&ip 25p 4
Brand new $£ 45$ p\&p £3.50. Many more in stock but in small numbers. Please phone for requirements.
PLEASE DO NOT ORDER GOODS FROM OLD ADVERTS. PHONE BEFORE ORDERING
Surplus stocks purchased for cash

LB ELECTRONICS

11 HERCIES ROAD HILLINGDON, MIDDLESEX

UB10 9LS, ENGLAND
All enquiries s.a.e. please
New retail premises, now open
Mon. Thurs Fri. and Sat. 9.30 Mon. Thurs Fri. and Sat. 9.30-
6.00 Lunch 1-2.15 weekdays. 6.00. Lunch $1-2.15$ weekdays.
Closed all day Wednesday. We are Closed all day Wednesday. We are
situated just off the A40 Opposite situated just off the
Master Brewer.

UXBRIDGE 55399

All components full spec.

KRAMER \& CO PRESENT THE LATEST IN CONSUMERELECTRONICS

gargon 2.5 modular chess sys- TEM. Contact us for price Unparalleled strengths through entire geme. Opening Book Library. Mate-in iwo problems solved in two minutes. Seven computer strengih levels. - Instructional mode features. Pliays by USCF \&\& BCF Rules. Audio Aler System Exclusive rank disploy and position vertica. tion. Position programming. Backspace - Battery extra. Position storage memory. Hatithint control - Changing sides Alphanumeric display. As fecommended by ETI £270 Rechargeable batteries available at special price. S.A.E	-7 LeVEL Chese Computer at a realistic price. Plays black, white or itself. Seven levets of play from beginner to expert. Does not permit illegal moves. Castles, Kingside, Queenside, En Sicilian. French, Ruy Lopez Queens Gambit declined. Analyses as many as $3,024,000$ board positions. Establish your own position and watch the computer react Pawn promotion sides changeable Mains powered Voice CHESS CHALLENGER available. P.O.A. SENSORYCHESS CHALLENGERB Major-Festures pess 1) No keys to press. every move. 3) The playing squares light up 10 graphicaily show you the computer's next move.	SUPER SYSTEM III LCD display of International symbols for all moves. Plays black/white or itself. Timed playing strength 0 secs 10 100 hours o All International Chess Rules inc. Draw by 3 \& 50 move rule hours Aove Countrational Ches up your own prasition Position verification. Illegal moves resected. Automatic Castling \& This is the start of a system TO fit your needs Rechargeabie Powe' Pack. LCD Chess Board $\mathbf{E 1 0 6}$. 95 . Memory Unite: store games for up to 1 year. Plus the world's first Electronic Printer to record moves. SAE for deaiails and prices of accessories. AS RECOMMENDED BY ETI
 SPACE INVAOERS Geme Program She utimate Game Programme with 112 game The ultimate Game Programme with variations Including Moving Shields. Zigzagging Laser Bombs, Fast Laser Bombs. Invisibie invaders and $1 \& 2$ Player Games! This superb cantidge uses the joystick controilers and cosis only $£ 27.50$ incl VAT plus 50 P Post and Packing. Order Nowl Atari with space invaders. $£ 148$	sensory chess challengerb Major-Foatures 1) No keys to press. 2) New sensory playing surface automatically tells the computer your every move. 3) The playing squares light up to graphicaily show you the computer's nent move 4) Eight levels of play. 5) Dry cell battery operated, or through the mains using the adaptor supplied. 7) Anck. easy, position verification teature 7) Analyses as many as $3,024,000$ board positions. $€ 129$	ataribasic programming
	ELMAC 4810 CRT 5 MHz scope £120 + VAT. As recommended by ETI. The best selling $5 \mathrm{MHz} 4^{\prime \prime}$ CRT scope in the UK. Timebase include sweep range - 100 msed. $3^{\prime \prime}$ also ovaileble. E66 - VAT	
ADVENTURE - Adventure plays like the addictive Dungeons and Dragons fantasy role playing board game and includes the addeddimension of video A wicked magician has tolen an Enchanted Goblet and hidden i somewhere in the Kingdom. The object of the somewhere in the Kingdorm. The object of the inside the Golden Castle whers it belongs - no easy task. Three deadly dragons and a black bat hinder your quest, but scattered ihroughout theKingdom are objects to help you slay the Kingdom are objects to help you slay thedragons and-outwil the evil magician, $\mathbf{E 2 2 . 5 0}$ plus 50p P\&P.	Free 10:1 Probe Elex $5810 \mathbf{5}^{\prime \prime}$ CRT (12.5 MHz) £181.71 VAT Vertical axis 1 deflection sensitivity $10 \mathrm{mV} / \mathrm{div}$ Bandwidth - DC DC 12.5 MHz	Orders being booked for July delivery $£ 34.50$.
	$\begin{aligned} & \text { Allenua } \\ & \text { in } 1-2 \end{aligned}$ Sweep Sweep range 0.5 sec/div $100.1 \mathrm{sec} /$ div in control Variable botween steps includes TB calibration position	SINCLAIR SC110 (mini scopo) $£ 146.20$. PEM 200 £58.20. DM 450 E102. 46. DM350 £76.99. PDM 35 £ 34.50 DM 235 £55.80.
	Kramer \& Co., Dept. ETI 9, October Place, London NW4. Tel: 01-203 2473. Telex 888941. Atti: K 7. Visa. Access. Barclaycard of Company orders accepted. Orders by telephone/telex, Open Mon.Fri (Sunday by appointment only).	Wo will match any lower price if competitor ham stock. SAE for comprehonsive chese reports on ell the ebove.

Let's look at the simple Seiko first - a dependable chronograph with no nonsense operation. At the touch of a button you can select either the things that normal watches do i.e. telling the time or a stopwatch display with the usual split/lap time facility.
The next Seiko is a bit clever. It's an alarm chronograph with a locking facility. What does that mean, I hear you say. Buttons are prone to being pushed, especially buttons that reset the watch time. However, with this remarkable wrist piece you can just press the LOCK button and pushing all the other controls suddenly has no effect. Full chronograph and alarm facilities we also featured.

You save because we design manufacture, sell and service Tandy have over 7,000 stores and dealerships worldwide. Over 2.500 products are made
specifically for or by Tandy at 16 factories around the world. The quality of our products has been achieved by over 60 years of continuous technological advancement

AUDIOPHILE

A small step for an electron, a quantum jump for amplifiers? Being unable to resist the obvious puns, Ron Harris takes a searching look at one of Britains newest amplifier stars.

Show-time again this month. Spent an editorial hour or eight wandering around the hallowed halls of the Cunard Hotel. My annual pilgrimage to the Far East (or London) this - all face the Mecca Bingo Hall and pay homage to the gods of high technology.

Frankly, though, I thought this year's offering a little below the standard that this event has set itself in the past. Somehow there did not seem to be that charisma, that indefinable something, that electric charge to propel the visitor from room to room, eyes goggling at the plethora of mind mangling miracles wrought since last he trod these boards.

Or to put it another way a lot of it was boring. Naturally there were exceptions, but somehow the best demos were given by companies showing established products. One which particularly caught my ear was the minute A4-14 active loudspeakers, from Audio Pro. These have a sub-woofer built in to the enclosures and are capable of bone bleaching sound levels with a bass that sounds a lot larger than its $20 \times 12 \times 10$ inches. The sound is simply stunning and would appeal to a very large number of people, I think.

Also making an impressive debut was the new JBE loudspeaker, with its unusual 'four-box' approach. The bass drivers are separately housed and would win no prizes for appearance despite the well finished enclosures. Still, the sound was very nice indeed, being well balanced and possessing excel!ent transient ability. Nice legs, shame about the facia?

B \& Ws new offspring is also worth a listen if you get a chance.

Aside from that people like Trio, Shure, Goldring, STD, Quad and Crimson made the most pleasing noises to be detected, others being either too full of people or too empty of ideas to attract the attention. KEF 105 s appeared to have been breeding quietly between the staircases - there were hundreds of them everywhere

The prize for making WORST use of your equipment (if you'll pardon the expression) goes to Audiostatic of Holland. They were showing off a quite incredible electrostatic 'panel' speaker with built-in valve amplifier and making a right mess of it when we went in. I only
hope things improved later on. The sounds I heard have done much to persuade the average audio man that perhaps his idols have clay feet after all.

One little twenty second burst of a very well recorded opera is the only reason I bother to mention them at all. Insipid musical wallpaper and delicate solo flute is no way demonstrate such a systems capability in a crowded, noisy environment.

If you've got it - flaunt it, don't flute it.

Quantum Amplification

Having started somewhat slowly, Quantum Electronics are well on the way to becoming one of Britain's most successful amplifier manufacturers. At that miserable Hi -fi 80 exhibition their room was one of the few that was continually carpeted with wall to wall people, which did detract considerably from the demonstration, admittedly. This sort of thing need not concern the Audiophile reader, however, as I'd already arranged for a review model.

Listening is infinitely more pleasant sat sitting at home, in front of the speakers you know and Iove, than packed into a tiny hotel room like a demented sonic sardine trying to pick up some of the sound waves being absorbed by the solid wall of bodies around you.

The particular combination from Quantum under scrutiny here is the 102 pre-amp and 204 power amp. It is available in many many forms, from ready built and tested, down to modules and hardware. In former form it will cost you $£ 80.41$ (102) and $£ 153.42$ (204). Modules (minus metalwork) cost $£ 51.75$ and $£ 109.42$ (204 kit).

It is worth a few words to point out that Quantum are in no way, shape, size or form connected with, or any

part of; Crimson Electrik, the company that is now their biggest rival. Tim Nind, Quantum's designer and brain trust, left Crimson to form Quantum and is rightly niggled by being repeatedly referred to as part of the company he is now in battle against. The products are both black(!) and that is as far as any similarity goes.

One Oh Two Preamp

The 102 replaces Quantum's earlier 'dual-version' machine, employing instead a very well thought out 'matching card' system to cater for all sorts of pickup cartridge from moving coil on down through any sort of magnetic variation.

Above: the 102 Quantum pre-amp full frontal. It is black, of course.
A small edge connecting $P C B$ is plugged into the main PCB and carries the input matching components. Thus by changing card any pickup loading can be optimised. Handy for people upgrading, the pre-amp never dates. Even handier for deranged souls like me who are always swopping cartridges around. A link has to be made/removed on the board for $\mathrm{MC} / \mathrm{MM}$, however, and I fail to see why this could not have gone on the matching card, too.

Above: the matching board for the pickup input in close-up. Note the nicely worked up edge connections. This particular board is for a Shure V15 IV pickup, I think. Trouble was I tried so many it is now impossible to remember which one was in when the camera went off!

Inputs and outputs are via DIN, with phono for disc. As I cannot abide DIN plugs of any sort, this drove me around the nearest loop, but no criticism intended. of the Quantum. As you can see from the photo glaphs, controls have been "minmmsed" to a volume and balance with input selector arrangement. Adequate in most situations, hut Baxandall help you if you live in an
awkward room as there is no tonal correction facility at all. Still, if you need it build an equaliser as treble and bass probably won't help anyway.

Tape sensitivity is variable by on-board switching and as all hardware is of board mounting variety there is little chance for noise/hum et al to creep in past the shielded cables that festoon most other equipment.

Table One displays the numbers, both claimed and measured, to which l'll return some paragraphs further on.

Two Oh Four Power?

Long black boxes would appear to be the only way British companies can produce amplifiers. Where has all the chromium gone? I think the correct word to describe this shade of approach is functional.

Above: the 204 power amplifier. Finished in an unusual black (!?)
The 204 unit consists of two 110W audio modules, PSU with toroidal transformer (which buzzes audibly!) and separate supply for the pre-amp $(\pm 15 \mathrm{~V})$ One DIN (yeuk!) carries out the pre-amp volts and carries in the signal for amplification. Neat. Speaker output is via 4 mm plugs. Thank Cod this isn't DIN.

The hardware package is more or less standard across the range, so that you can house any power you like, up to around 200 W , in the same box.

Table One				
PARAMETER	SPECIFIED	measured		
THD	$<015 \%$ to clipping Moving Coil < 01% to clipping	below nowe tloor unmeasurdble		
Input Sensitivity \& Overloud	Disc 35 mV or 100 uV standard Variable Tape 150 mV Disc 34dB Tape untinate	Disc overload 35 dB at 35 mV and 100 uV		
Signal to Norse	Dre 70 dB ret 35 ml or 52 dB ret 100 N Tape 96 dB	$65 \mathrm{~dB} / 50 \mathrm{~dB}$ 85 dB		
Frequency Response	```DISC }\pm1\textrm{dB}R\|AA 50H	z-20kH Tape -```	$\begin{gathered} \text { agreed } \\ \pm 1 \mathrm{~dB} .20 \mathrm{H} 2-20 \mathrm{kHz} \end{gathered}$	
Separation	46 dB at $7 \mathrm{kHz}, 36 \mathrm{~dB}$ at 20 kHz	$45 \mathrm{~dB}, 38 \mathrm{~dB}$ (R on L)		
Output \& Impedancer	775 mV and 150 mV tape 600k man. 1 k 8 on dinc. 10 k on aux	agreed dgreed		
Table Two				
PARAMETER	SPECIFIED	MEASURED		
Output Power (RMS. al 1 kHz Peak Delivery	8 R $\begin{aligned} & 110 \mathrm{~W} \\ & 300 \mathrm{VA} \end{aligned}$	$\begin{aligned} & 121 \mathrm{~W} \\ & 205 \mathrm{~W} \end{aligned}$		
Signal to Noise Ratio (unveighted)	$>100 \mathrm{~dB}$	102 dH		
THD (any level to (lupping)	$<11015 \%$	below norse		
Gain	30) dB	agreed		
Power Bandwidth (-3 dB)	$3 \mathrm{dBj} \quad \mathrm{bHz}-50 \mathrm{kHz}$	$5 \mathrm{~Hz}-45 \mathrm{kHz}$		
Damping factor (5017z)	1z) 80	agreed		
Input Impedance	50 k	agreed		
Protection Operation load	\|4R		\|4R3	

Tables One and Two. These are for the pre-amp and power amp respectively, comparing the claims against the measurements.

Above: the 204 power amp revealed. Note the huge toroidal mains transformer and pre-amp PSU board away to the left. Separate heatsinks are used for each power output device.
Below: a de-cased 102 pre-amp. Most components are PCB mounted to cut down interwiring. Instructions on pickup matching are written on the inside of the lid! (not shown).

Figuring Out The Figures

In summary of Tables One and Two we can say that the Quantum $102 / 204$ is an amplifier of better than average noise performance with excellent distortion figures - or lack of them - which has a high enough overload on the disc input to ensure that no problems will ever be encountered in normal use.

The S / N on moving coil input is very good indeed, prartirally up to moving magnet inmut standards and has little hum rommonent to give trouble No mean feat this. Gly seview modei was set-up, to match the inevitable Coral MC81 as a 'norm', but I spent many a happy hour playing with the matching cards for Ortoton, Coldring and Shure moving magnet designs. The moving coil input bettered Coral's own H300 head amp for noise and distortion - which suggests that the self-standing Quantum moving coil pre-amps would be worth a look or two.

The 204s figures are unimpeachable - with the exception of that minimum impedance into protection. I would like to have seen around $2 R$ there - the lower the better 1 suppose. Still it is honestly specified and lower impedance driving modules are available if you're troubled. In use the 204 drove my 105 IIs with no sign of distress at all. Check your speaker impedance curves before matching though. Better safe than burning.

What A Turn On

Funny how all reviewers leave discussing the sound of equipment until the end of an article, as though we test it all out first, THEN sit and listen. No chance. Just like everyone else it's a case of home with the packages, out of the boxes and CLICK.

In fact unwiring it all to start injecting boring test signals is the worst part of this job.

Quite frankly I didn't know what to expect from the Quantum, I knew the sound of its competitor Crimson well and respected it as the best module sound around and comparisons are inevitable I suppose. A direct $A B$ test will have to wait though as our German edition has our Crimson set-up at present and is more than a little reluctant to part company with it. Damn cheek if you ask me, who won the war anyway?

So it is to the Lecson AC1/AP3 II combination that the Quantum was to be referenced, using KEF 105 II speakers and Coral MC81 and Ortofon/SME 30H cartridges. (The sound of the latter grows on me the more I hear it.)

With the 102 set to moving coil, the first thing I noticed was the much better noise performance. At first I thought something wasn't connected! The sound is open and beautifully rich in all the little things that make music on a good system worth listening to. The pre-amp is very good indeed, but I felt that against the Lecson the 204 lacked bass punch. The lowest registers were not as well defined, or as 'coherent'. Mid-range and treble were little different.

Summary

In a word - yes. A good solid product which does its job superbly and gives excellent value for money, both in terms of its sound quality and its engineering. Home built hi-fi has a new championship contender!

Marantz Esotec

Below: the new Marantz Esotec TT 1000 turntable. This employs a glass and aluminium 'sandwich' as a base and a 5 mm thick glass turntable mat. The idea is to cancel any resonances due to the base material and produce a truly non-resonant support. Air suspension is employed to hold this massive machine clear of the ground and the motor is claimed to have sufficient power to reach full speed in $1 / 4$ turn. Released in September - price not yet fixed, but will be VERY high.

How do you put over 2,000 different tools and toolkits into one envelope?

The New Toolrange Catalogue is still the only comprehensive single source of electronic tools and production aids.
Products from over 100 top manufacturers are available from stock.
For your free copy of the new catalogue contact Toolrange today.

DIGISOUND LIMITED

-providing a service ta all wha are interested in electraric music

ETI 80. MODULAR SYNTHESISER

Complete kits or P.C.B.'s and individual components supplied. Front panels now available in 1.15 mm white PVC clad steel with holes and lettering to the style shown in ETI. Also blank panels allowing you to put other modules in the same format. Exclusive suppliers to the U.K. hobby market for customised I.C.s from Solid State Music and Curtis Electromusic Specialties for use in music and other audio applications. I.C.'s include voltage controlled oscillators, filters, amplifiers and envelope generators. Also stocks of the elusive 081 temperature compensating resistor ($1 \mathrm{k}, 1 \%$).

Send S.A.E., or $12 p$ in stamps, for current price list of components and range of synthesiser modules available.

DIGISOUND LIMITED,
13 THE BROOKLANDS, WREA GREEN.
PRESTON, LANCS. PR4 2NQ
Tel. : 0772683138 (MAIL ORDER ONLY)

HARD LABOUR?

Not exactly, about 20 hours spent building the amplifier that was the success story of 1979, and has no peers in 1980.
The WINTON, $50+50$ watts of real Hi-Fi using power Mosfet's and a specification and performance that is totally unprecedented in this price range.
You will find it an interesting and absorbing project, serve time and get your just deserts.
Act Now, send us a 10p stamp and we will send you a spec' sheet that will make you sit quietly for a while reflecting just how ordinary some amps really are, or get involved at once, send us your cheque for the best value in $\mathrm{Hi}-\mathrm{Fi}$ kits around
Power MOSFET's rule, ok?
COMPLETE KIT, of all parts necessary to build the P.W. WINTON
£133.50

SPECIAL LIMITED OFFER $£ 115$

Order with complete confidence (C.W.O. only please) from: T.\&T. ELECTRONICS

Green Hayes, Surlingham Lane, Rockland St. Mary, Norwich, NR14 7 HH . Telephone 05088632
PRICE INCLUSIVE OF V.A.T. \& CARRIAGE.
Callers by appointment only

GREENWELD
 443A Millbrook Foad Southampton SD1 DHX

All prices include VAT @ 15% - just add 40p post

OUT NOW THE NEW 1980 GREENWELD catalogue

EATURES INCLUDE

60p Discount Vouchers
Quantity prices for bulk buyers

- Bargain List Supplement

Reply Paid Envelope

- Priority Order Form

PRICE $40 \mathrm{p}+35$ p POST
buy a complete range of COMPONENTS AND THESE PACKS WILL HELP YOU

ALL PACKS CONTAIN FULL SPEC. BRAND NEW MARKED DEVICES - SENT
POST, VAT INCLUSIVE PRICES
K001 50V ceramic plate capacitors. $5 \%, 10$ o ach value 22pF to $1,000 \mathrm{pF}$, total 210 . $\mathbf{E 3 . 6 9}$. E5.53.
K003 Polyester capscitors, 10 each of these $\begin{array}{llll} \\ 068, & 0.01, & 0.015,0.022, & 0.033, \\ 0.0 .047\end{array}$ altogether for $£ 5.07$. KOOA Mylar capacitors, min 100 V type 10 each
al values from 1.000 pF to $10,000 \mathrm{pF}$ Total 130 all valuss from 1.000 pF to $10,000 \mathrm{pF}$ Total 130
for $£ 4.05$. Co 18.05
chysical size 10 each of these popular values 2. 4 7. 10, 22. 47. $100{ }_{\mu} \mathrm{F}$ Total 70 for $£ 3.59$. K008 Extended range, as above, also including
220.470 and $1000 \mu \mathrm{~F}$ Total of 100 for $E \in .05$.
. $K 024$ Minature carbon film 5% resistors CR 25 or sumilar. 10 of each value from 10 R to 1 M . E12 series. Total 610 resistors $\mathrm{E6} .15$.
$\mathbf{K O 2 2}$ Extended range. Total 850
R 1022 Extended range. Total 850 resistors from $K 041$ Zener diodes $400 \mathrm{~mW} 5 \%$ BZY88. etc. 10 feach value from 27 V to 36 V . E24 senes. Total

REGULATED PSU PANEL

xelusive Greenweld design - bettar spec. nithing on the market being offered at the pfice. onents including bridge ractifier and smooth apacitor. Ready built and tested - just add a 30 V A transtormer and two pors for a fully variable oltage and current supply

```
SPEC Output voltage 0-28V 
    Source Impedance OR1
```

Sand SAE for full detants of the many ways this
sefiu moduie can be used. together with price lis

TRANSISTOR PACK K516

Take advantage of this unbelievable offer ' mall signai NPN/PNP transistors in plastic are marked with type number - almost all are full spec devices Some have bent leads Over 30 oliferent types have been found by us including
$\mathrm{BC} 184 / 212 / 238 / 307 / 328 \quad$ BF $196 / 7$ 2TX107/8/9/342/450/550, etc. Only avall able as a muxed pack at $£ 3$ per 100. $£ 7$ per 250教

```
BUZZERS, MOTORS
            8. RELAYS
2401 Powerful 6V DC buzer all metal construc
ton. 50mm dia x 20mm 70p.
22\times15\times15mm Very neat 53p
*2\times15\times15mm vary neat 53p only
M0 Miniature 6V DC motor, high quality type
O2mm ©1.
372 Audible Warning device - solid state circui:
drives high efliciency transducer to give high
output Voltage reqd 4-18V Can also be driven
direct from TTL or CMOS Module siz
1.50}\times12\textrm{mm
W892 Heavy Duty }12\textrm{V}\mathrm{ reley, ideal tor car use
single 15A make contact coin 25R in sealed met
can with mounting bracket 85p.
Only E2.20.
See last month's ad for other nems
```

COMPONENT PANELS 2525 Contains 11800 mA 60 V 2 N 5061 SCRs, 11 EV8 zeners, 11 IN4004 diodes plus Rs. Cs. 74 Series iCs - Gates and complex logic. 20 asstd ICs on ponels E1; 10 ICs E4.
$\mathbf{Z 5 2 7} 2 \times 6 \mathrm{~V}$ reed relays 6×25030 or 25230
$6 \times 409 \mathrm{~V}$ ret. $6 \times 400 \mathrm{~V}$ rects. plus Rs Only $\quad 50 \mathrm{p}$

TM4030 RAM
4096 but dynamic RAM with 300 ns access tume, 470 ns cycle time: single low capacitance high
level cleck i/p. fully TTL compatible; low power
dissipation Supplied with data $£ .75$.

VEROCASE SALE!!
Only one size left now - these have sold very fast - it you want a $1 / 2$ price case like 75-3008. only in GREEN, order one now!! $21051180 \times 120 \times 85 \mathrm{~mm} £ 2.30$

BULK SUPPLIES
All now full apec. devices. Pricoe are for. a minimum of 100 of any one device and Minimum order value from inis section is E10 +VAT + pose. VAT rectipt on request.
.27
.17
.32
AO161
BC108
C109
C114
BC118
BC119
Cl1 125
CC 139
C147
BC148
BC148
C1488
C149
BC149
BC159
BC16BC
BC168C
BC169C
BC172C
BC 177
BC 1828
BC 1838 C1838
C212
BC2128
BC213
BC214L!
ヘñ
BC2378
BC237C
BC238B

BCC
BC 2
BC

is

BF757	. 27
BFR 40	. 17
BFW43	. 32
BFY 17	. 19
BYF 50	. 13
BFY51	13
BFY52	. 13
BFY56A	. 18
BFY56A	. 16
BFY64	. 15
BR101	28
BRX48	. 095
BRY46	. 17
BSX20	. 075
BSY 38	. 12
BSY56	. 10
BSY82	. 19
BSY85	23
BSY95A	. 065
BT 121	. 90
BU205	. 60
BU206	. 60
BU407	. 60
CV7001	. 23
CV7493	. 19
CV7588	. 18
ME0475	.055
MJE340	22
MPS2369	. 08
MPS3638A	. 06
MPS6515	. 08
MPSA66	. 24
OC44	. 19
OC45	. 17
OC139	. 28
OCP71	. 63
PBC 108	. 065
TIP32	. 22
TIP41A	28
TIP42A	. 29
TIP2955	. 46
TIP3055	. 45
ris91	. 12
21×107	. 08
2TX212	. 08
21×214	. 06
2TX303	. 07
21×311	. 07
ZT×313	. 06
ZTX341	. 07
21×450	. 08
Z1×501	. 96
21×503	. 07
27×550	. 06
2N1021	. 94
2N1132	. 16
2N1377	. 62
2N1711	. 18
2N1893	. 16
2N 2369	. 12
2N 2646	. 34
2N2894	12
2N2926Y	045
2N2926R	. 045
2 N 3053	. 13
2N3064	. 36
2N3055	30
2N3442	. 78
2N3583	42
${ }_{2}{ }^{2 N 3618}$. 80
2N3702-10	. 045
2N4124	08
2N4400	. 08
2N4401	. 06
2N4403	. 06
2N4410	. 06
2N5193	20
2N5195	22
2N540:	. 17
2 N 5447	. 06
2N5831	. 08
2N6121	16
2 SC 536	. 05
2 SC 1617	. 62
2SC2068	43
2SC2073	45
Send SA	

Build the World Famous CHROMA-CHIME

Give your friends a warm welcome
This kit has been carefully prepared so that practically anyone capable of neat soldering will have complete success in building it. The kit manual contains step by step constructional details together with a fault finding guide. circuit description, installation details and operational instructions all well illustrated with numerous figures and diagrams.

- Handsome purpose bull cabinet
- Easy to build andinstall
- Uses Texas Instruments TMS1000 microcompute
- Absolutely all parts supplied including I C socket
- Ready drilled and legended PCB ıncluded
- Comprehensive kit manual with full circuit details
- No previous microcomputer experience necessary
- All programming permanently retained is on chip ROM
- Can be built in about 3 hours
- Runs off 2PP3type batteries
- Fully Guaranteed

* Save paunds an narmal retail price by building yourself.

ALL CHROMATRONICS PRODUCTS SUPPLIED WITH MONEY BACK GUARANTEE Please send me: TO CHROMATRONICS. RIVER WAY. HARLOW, ESSEX NAME
ADDRESS

I enclose cheque/PO value £
or debit my ACCESS/BARCLAYCARD account no.

Signature
GHROMATRONICS

HRTMASONTE electronics

56 FORTIS GREEN ROAD MUSWELL HILL LONDON N10 3HN TELEPHONE 01-883 3705 01-883 2289
your soundest connection in the world of components.

Demonstration At Our Shop (enter through stationers)

NOW AVAILABLE Low cost computer in kit form UK101
NO EXTRAS NEEDED SIMPLY HIT 'RETURN' AND GO

INCLUDED FREE
Sample tape with extended machine code moditor and disassembler

Price includes RF modulator and power supply

ABSOLUTELY NO EXTRAS

 NEEDEDAlso available ready assembled, tested and ready to go only $£ 249$ +VAT

Build, understand, and program your own computer for only a small outlay

6502 Assembler/Editor for UK101 E14.90 + VAT

STOP PRESS

The latest edition of our 'STOP PRESS' is now available, and contains an up-to-date price list showing all the items that we stock. Just send an S.A.E. or phone for your FREE copy

CAPACITORS AND TIME CONSTANTS

A.S.Lipson takes the bull by the time constants and explains how to use capacitors in timing circuits.

Those little brown discs or large blue cylinders that do funny things to your multimeter if you try to measure their resistances are frequently used as AC coupling devices, but they are also of great use in timing circuits. A resistor and capacitor together can produce a changing voltage whose magnitude at any moment can easily be calculated.

Fig. 1 Series and parallel RC networks.

First The Circuits

The first circuit in Fig. 1 consists of a resistor, R in series with a capacitor, C. A voltage, V_{O} is applied across the combination and the output voltage (that across the capacitor) is monitored. The output voltage (V) slowly rises from zero, coming closer and closer to the value of V_{0}, although it never actually quite reaches it. A graph showing output voltage plotted against time is shown in Fig. 2a. It is found by experiment that the rate of increase of voltage becomes smaller if either R or C are increased, and greater if either is decreased. That is, the voltage rises more slowly for large values of R and C than it does for small values of C. In fact, if we take the product $R \times C$, (R in ohms, C in Farads) we find that this gives the time (in seconds) required for the output voltage V to reach about two thirds the value of V_{O}.

The second of the two circuits consists of a capacitor and resistor connected in parallel. The capacitor is charged by an external source to a voltage V_{O}, and then disconnected. The output voltage, V is monitored once again. Here, we find that V slowly, decreases from V_{0} to zero, getting smaller and smaller, but, again never quite making it (Fig. 2b). Again, it is found that the voltage changes more slowly if either the resistance or the capacitance (or both) are increased and changes faster if they are decreased.

Time Constant

The product $\mathrm{R} \times \mathrm{C}$ is called the 'time constant' τ (the greek letter Tau) of the circuit and it can be used to find rough values for V at different times. It turns out that, no

Fig. 2 The output voltages associated with the RC networks of Fig. 1 .
matter how long the voltage has been changing in the circuit, it always takes τS for the voltage across the capacitor (in the first circuit) to increase by two thirds of the remaining voltage. eg If V_{0} is 9 V , and the output voltage V at a time t is 4 V , then after $\tau \mathrm{S}$, at time $t+\tau, V$ will have risen by two thirds of $(9-4)$ volts, or 3 $1 / 3$ volts. This can be used to plot a graph of V against time. At τ seconds, V will be two thirds of V_{0}. At $2 \tau S, V$ will have risen by two thirds of the remaining voltage, ie by two thirds of $1 / 3 V_{0}$, and will thus have risen to eight ninths (approximately) of V_{0}. Similarly, voltages at $3 \tau S$, $4 \tau S$ and so on may be calculated and plotted on a graph (Table 1 and Fig. 3). A line may then be drawn in freehand, joining the points, and approximate values for V at different times calculated.

This is all very well for rough values, but it is of considerably less use if we want to find exact figures especially at times much less than the time constant. Fig. 4 shows a freehand curve drawn onto the first three calculated points on a graph. We know nothing from our method about the voltage before it reaches $2 / 3$ of its final value, except that it starts at zero. The correct graph could be A or B or anything in between - we have no way of knowing,

Fig. 3 Plotting graphs of output voltage against multiples of time constant.

Curve Drawing (No, Not . . .)

It is an interesting and useful property of the way in which the voltage changes in these circuits that, at any instant, if the voltage continued to increase (or decrease) at the same rate, it would reach its final value in exactly τS. The reason why it doesn't actually do this is simply that the rate of increase is not constant. As the voltage becomes larger (Fig.1a) or smaller (Fig.1b) its rate of change decreases. However, as has been stated, if the rate of increase of the voltage, $\mathrm{dV} / \mathrm{dt}$ was constant from any time t , then V would reach V_{O} (or zero, as the case may be) at time $t+\tau($ Fig. 5).

Fig. 5 V tends towards Vo.

We can make use of this property of the curve. Mark on the graph (Fig.6) a line representing the final voltage, V_{O}, of the system. Now mark along this line a distance τ from the beginning (point A) and draw in a straight line from this point to the origin, 0 . This, then, will give a fair approximation to the voltage as it changes in the first few moments. Now choose a point on this line, near the bottom (P1). Mark a distance τ along from P1 and find the point on the line representing V_{O} directly above. Call this point B. Draw a line from P1 to B. Now choose a point P2, near P1 on this line, and repeat the same process. Eventually, the lines shape themselves round a curve, which turns out to be a fair approximation to the graph of voltage plotted against time.

This method is fine, but it has three great disadvantages; it takes a long time to draw the curve this way, it isn't very accurate beyond about 2τ and (as you will have realised if you had to read the last few paragraphs more than four times) it's complicated. If we want to find values of V beyond τ seconds, we can use the first method of drawing the graph and if we want values of V for times less than τ seconds, this second method can be used, but it is simpler, if we only want to know one value,

Capacitors.

We are so used to thinking in terms of currents and voltages that it is very easy to forget the existence of a more basic quantity - charge. Charge is what passes when a current exists. Current, then, is actually rate of passage of charge. Now capacitance is defined as the ratio of the charge stored in a component to the voltage developed across it. That is, if C is the capacitance in Farads, Q is the charge in coulombs and V is the voltage,

$$
\text { or } \quad C=Q N \quad Q=V C
$$

We can differentiate each side of the equation:-

$$
\frac{d Q}{d t}=\frac{d}{d t}(V C) \quad=V d C \quad d V
$$

Now C is a constant, so $\mathrm{dC} / \mathrm{dt}$ is zero:-

$$
\frac{\mathrm{dQ}}{\mathrm{dt}}=\mathrm{C}_{\mathrm{dt}}^{\mathrm{dV}}
$$

Finally, we can see that, since current is rate of flow of charge, $d Q / d t$ is the current flowing into the capacitor, so

$$
I=C d V
$$

Now let's take another look at the circuit in Fig.1a. If we assume that no current is being drawn from the output, then the current into the capacitor must equal the current through the resistor. The voltage across the resistor, though, V_{R}, is obviously equal to $V_{o}-V$, and by Ohm's law;
Therefore,

$$
\left(V_{O}-V\right) / R=1
$$

$$
\left(V_{o}-V\right) / R=C_{d t}^{d V} \quad V_{o}-V=R C_{d t}^{d V}
$$

This is the differential equation that must be solved to find V. The mathematicians out there might like to show that the equation is solved by

$$
\begin{aligned}
& \text { solved by } \\
& v=v_{o}\left(1-e^{-t / R C}\right)
\end{aligned}
$$

where e, as any scientific pocket calculator will tell you, is 2.7182818 and t is the elapsed time. This is the equation we can use for precise values. We'll do an example; a 9 V power source is connected actoss a series combination of a 47 k resistor and a 10 uF capacitor. What is the voltage across the capacitor after 0.6 S ? Fitting the values into the equation:-

$$
\begin{aligned}
& V=V_{o}\left(1 \times e^{-t / R C)}\right. \\
& =9 \times\left(1-\exp \left(0.6 /\left(4.7 \times 10^{4} \times 10^{-5}\right)\right)\right. \\
& =6 \mathrm{~V} 49
\end{aligned}
$$

(If you don't believe me, try it . . .)
A similar sort of argument works for the circuit in Fig.1b. The output voltage V is given, by Ohm's law, by

$$
V=I R
$$

However, I in this case is the current flowing out of the capacitor, and so it is given by the relation

$$
I=-C \begin{gathered}
d V \\
d t
\end{gathered}
$$

Hence we have

$$
V=-R C_{d t}^{d V}
$$

Andwe find that this differential equation has the solution

$$
v=v_{o} e^{-t / R C}
$$

where V_{O} is the voltage to which the capacitor was charged.
Let us suppose we have a 200 uF capacitor in parallel with a 330 k resistor. The capacitor is charged up to 12 V and the supply removed. What is the voltage across it after 2 S ? Well, plugging these values into our equation, V_{O} is $12 \mathrm{~V}, \mathrm{t}$ is $2 \mathrm{~S}, \mathrm{R}$ is $3.3 \times 10^{5} \mathrm{ohms}$, and C is 2×10^{-4}

ETI

HIGH FREQUENCIES

Aerial amplifier (80022) Improves the sensitivity of an existing receiver specify VHF/UHF ivity
65.45 TV signals $\quad \mathbb{E 6 . 2 5}$ Mini shortwave receiver (9920). Interesting introduc FM IF strip (78087) Using the CA 3189 £6.95 demodulator iC Stereo decoder (79082) Compatible with the FM IF strip
igital tuning scale (80021). A sophisticated digital
Ohequency indication
aerial for $1,8-30 \mathrm{MHz}$

Chorosynth (80060). A cheap mini-synthesizer
Elektor vocoder (80060) The first vocoder designe to be built from a kit with excellent features it has 10 channels162.50
Front panels for vocoder per channel £1.25 Analog reverberation unit (9973). Kit with 1 SAD Piano. Excellent kit of an electronic piano with three voices. Master tone oscillator/generator $£ 37.00$
Octave PCB (9914) Octave PCB (9914) Filter PCB (9981) Power supply (9979) E 18.75
E 16.50 igital reverberation unit main board Extension boards £67.20
Steam train and whistle (80019). Simulates the sound on steam and whistle and the light comes on (ekdoorbell (79095). Program your own signature $\quad £ 22.00$ Touch dimmer (78065). Room lighting controlled by single touch
TV sound modulator (9925)
Simple sound effects (79077)
Electronic nuisance (80016)
Ultrasonic transmitter (audio) (79510)
Ultrasonic receiver (audio) (79511)
Jizer (79505)
Variable fuzz-box (9984)
ariable fuzz-box (9984)
negative ions

negativaphics (9979)
Oscillogran of
9.55

your oscilloscope $\quad \mathbf{E 1 1 . 2 5}$
Cackling egg timer (9985). Times your egg, then

could win you a fortune
corghs up the odds and
$£ 8.15$

Alarm unit
£10.85
ouch tuning FM preselect unit (79519) With digital …... 17.50 aik funny (80052). Deliberate electronic distortion of speech
olour gene......69.60 Colour generator
Pools predictor (79053)

Buying one of our PROJECT PACKS will save you the frustration of tracking down those evasive comOur packs include Printed Circuit Board, all the components listed in the article together with sockets and solder. Cases, knobs, etc can be supplied as extra items if required. Ask for more information.

NBW - MEW

* Battery protection (80109). Forgetting to turn off the headlights need no longer be a motorist's nightmare. This project is designed to monitor the battery voltage and switch oft the lights automati
* Transistorignition (80084). A system which Combines the most significant advantages of other systems including the conventional system
A dip-stick probe (80102). indicators and warning lights in modern kands o an oil temperarure ing lights in modern cars, bu easiest way to add this type rareyincluded. The existing car is 10 mount a temperature censor in ip-stick

Project without dip-stick $£ 3.65$ Dip-stick with indicator (short) \quad E11.00 Dip-stick with indicator (long) £11.45 delay only needs to be told once what is required of it. It will then carry out your orders until you change them, which you can at any time. instantly $£ 15.85$

* Active car aerial ($80018-1+2)$. If there is one place to use a good aerial it is in a car $\mathbf{£ 1 3 . 8 5}$ Stop thief! (80097). There are all sorts of systems for protecting cars, but this one is unusual: it is
* Battery volage indicator (80101). Only a fow components are needed to obtain an optional indication of the battery condition: a single lamp that changes colour as the battery goes into the danger area

MEASURING
Digital thermometer (80045) CD display (supplied wrthout relay) $£ 28.95$ ED display (supplied without relay) Relay (wo poie changeover) and audio generator E23.20 and audio generator). FET input meter circuit Universal digital meter (79005) Digital replacement Precision timebase (9448) Generates a precisi.65 - 13.10 Power supply for timebase $\quad \mathbf{£ 5 . 4 0}$ Universal timebase (78100). Crystal controlled / 4 GHz counter $(98871+2+3+4$). Excellent kit count up to 250 MHz . $\mathbf{~} 98.15$ Minicounter (9927). 1KNz 4 digit display E27.70 analyser (9932). An anelyser which can por or the deliciencies in a particular audio £14.80 Spot sinewave generator (9948). Programmable sinewaves with less har (9023). Sine Simple function generator (9453). Sine. square and
sawtooth outpurs
$£ 27.70$ Sinewave generator (79019). Always sinewaves TV scope basic version (9968 1/5). Produces display up to $\uparrow \mathrm{KHz}$ on TV $\mathrm{£34.50}$ TV scope advanced version (9969 1/3). Converts Digiscope (9926) Digifarad (79088). A digital capacitance meter with a Gate dipper (79514) Checks the resonant frequency of a circuit $\begin{array}{r}\text { £16.00 }\end{array}$

AUDIO

Equaliser (9832). Single channe audio equatiser with depots $£ 15.60$ with preset pots $£ 13.95$ UAA 180 LED meter (9817). A iwo-channel display Peak programme meter (9850). For use with UAA 180 LED meter to give stereo audio display Luminant (9949 $1+2+3$). A novel LED audio leve Indicator
.
filte equaliser (9897)
$£ 6.45$

$$
\begin{aligned}
& \text { filter section (9897-1) } \\
& \text { Tone control section (9897-2) }
\end{aligned}
$$

HOW TO ORDER:

to DORA (nclude V.A.T. Please add 40 p for postage and packing
Ottice hours Monday-Friday 9 a.m to 5 pm .
Tetephone Swalfham (0760) 21627 . Telex 817912

WERSI is the first kit producing company applying the latest achievements of the space age technology
This has decisive effects on the technical and musical quality of WERSI'S electronic organs for the do-it yourselfer
The application of modern integrated circuits, so called ICs simplifies the organ construction considerably. A single IC may replace up to 10,000 conventional electronic com ponents.
In addition, ICs save a lot of space and they are extremely reliable devices
WERSI, however, went a step farther yet. IC's which were not available on the open market, were developed for specific purposes by WERSI engineering. They are being produced by the most highly reputed IC manufacturers in the world. The result: economical electronic organs with the most up-to-date techniques and unsurpassed musical capabilities.

Tomorrow's Electronic Organ Kit is Here

POSSIBLY A NEW NAME TO YOU, BUT KNOWN IN OVER 25 COUNTRIES FOR THE SUPERIOR INSTRUMENTS WHICH THIS GERMAN COMPANY PRODUCE.

USED BY WEST GERMAN BROADCASTING SERVICE PLAYED BY KLAUS WUNDERLICH AND OTHER FAMOUS ORGANISTS

Without doubt the most comprehensive kits and the most up-to-date designs available today. Just consider a few of the features

- Precision Master Generator, using MOS-LS 1
- Integrated electronic keying in $1^{2} \mathrm{~L}$ technology
- Unique - All switch functions are programmable
- Even the smallest organ has drawbars in addition to fixed stops.
- Craftsman-made cabinets available in five veneers.
- Ready-made wiring harnesses eliminate errors.

WERSI MAKES DO-IT-YOURSELF CONSTRUCTION EASIER THAN EVER BEFORE AT A FRACTION OF THE PRICE OF THE FULLY ASSEMBLED WERSI RANGE. GET THE FACTS NOW.

AURA SOUNDS 14-15 Royal Oak Centre, Brighton Rd., Purley, Surrey. Tel: 01-668-9733 and at 17 Upper Charter Arcade, Barnsley, W. Yorks Tel: Barnsley (0226) 5248.

MICROFILE

By popular request Henry Budgett reviews the Sinclair ZX 80 microcomputer kit.

Ever since the first announcements and press comments on the new Sinclair ZX 80, Microfile's phone has been ringing with readers asking for a review. Well, after a few months of controversy and careful study here is the report you've all been waiting for.

Kitted Out

If a system such as the ZX 80 is offered in kit form, it is often worth buying it in this form to save the odd few pounds and so we took a kit and built it. There are few components that raise any eyebrows and the whole thing was slotted neatly together in less than two hours. Whilst we were putting it together we also built in the suggested modification to change the video from black on white ("standard") to white on black ("normal") and this has proved very useful.

The instructions supplied with the kit are adequate and clear enough to allow any reasonably competent constructor to achieve success. There is a circuit diagram of sorts. We found great difficulty in deciphering the various bits and pieces so it would not be of any great help in debugging a "dead" system.

The Great Turn On

The first thing to be said about the ZX 80 is that it worked, albeit a little hesitantly. I am rather accustomed to full size keys and have yet to come to terms with a touch keyboard. It does work very well, though, and shows no signs of wearing away even after weeks of hard use. The TV picture produced by the system is less than satisfactory. The much publicised juddering when keys are pressed is not in the least beneficial and, when you actually get round to running a program, the blank and flickering screen is positively unnerving.

The BASIC has been another point of considerable controversy. Inside the 4 K ROM is a compressed Integer BASIC, the character set and the (minimal) operating system or monitor. This BASIC may give the beginner a feel for high level language programming but anyone who has used systems such as PETs or Apples will find it very restrictive. The single keystroke programming facility is certainly not my cup-of-tea. I'm too used to typing the whole thing out, but it would be of benefit to the beginner.

Manual Intercourse

The "Course in BASIC Programming" that is supplied with the system is a very poor substitute for books such as "Basic BASIC" and "Illuminating BASIC" but is adequate for finding your way round the ZX 80 . The format needs to be considerably improved, odd and even chapter numbers are aimed at different people. There are a number of errors; some are corrected in an addendum, but several trap the unwary.

The explanation of many of the functions of the system is very poor indeed and in some cases can lead one rather up the garden path. The best function concealed within the system is the Editor, truly a marvellous system. We did wonder why they had made it so good. It must use up a fair proportion of the available space which, it could be argued, would be better used by providing more BASIC functions.

The Ins And Outs

Tape interfaces come in many different disguises. The ZX 80 is no exception and offers an "around 300 Baud" audio cassette interface which works tolerably well. You can experience trouble if you leave both input and output jacks connected to the tape recorder but ! gather a note to this effect is being included in the manual. The VDU is less praiseworthy, the aforementioned flicker being just one of its little quirks. The problems really start to occur when you find that the program crashes every time you fill the screen. The cause is that the VDU is acting as a serial output device and needs a buffer. When the buffer is full it stops everything and tells you - nasty!

We also encountered another interesting VDU quirk for which there appears to be little explanation. On some TVs you encounter you will find that white on black is unreadable but black on white is, or vice versa. We also discovered, again no explanation is offered, that the system would produce a double (ghost) image on some colour sets. The designer assured us that the modulator was not, as we had suspected, a cheaper version that could not handle the bandwidth so there must be something funny going on.

Hardware Design

A certain number of design features of the ZX 80 are worthy of note. It is generally understood that an eight bit micro, with its sixteen bit address bus, can have up to

NewBear's New Brain - a professional, hand-held micro coming soon.
64 K of memory hung on it. The ZX 80 offers a maximum of 16 K of RAM and a (possible) 16 K of ROM, done by moving PC tracks around. What you may well ask has happened to the other 32 K ? Sorry chaps, but it is used for other things like decoding the keyboard, so the thoughts of giant, disc based systems fade rather rapidly. Whilst on the topic of memory it should be noted that the 3 K Sinclair RAM boards are not capable of being "piggy backed", you'll have to wait for the 15K RAM plane. You cannot use the cheaper dynamic RAM either because the RFSH signal produced by the Z80 CPU is utilised by the video synchronisation circuitry and this means that instead of getting a mean refresh every 2 mS that the dynamic memory needs, it may have to wait 20 mS , which is cutting things very fine. Under normal operating conditions this might not cause problems, but if the temperature of the RAM chips rises then they may well start to lose data.

The final oddity in the design of the hardware is the lack of a crystal controlled clock. It uses a ceramic filter instead. This is not to be recommended as it simply isn't accurate enough. The ZX 80 runs at 3.25 MHz , which is a multiple of the TV linebase frequency. The filter appears to be used to save a couple of divider chips and possibly pass this saving on in a reduced price, but it should be remembered that the earlier Sinclair computer, the now defunct Mk 14, was equipped with a crystal and cost about half the price.

Expansion Capabilities

Apart from the memory expansion problems mentioned earlier, there is another, more subtle, problem that will occur when the user wishes to attach that most popular of peripherals, the printer. This problem arises because the 2×80 does not use the normal ASCII character code set but its own. This means that to interface to a printer, a task of more than average complexity, the user will have to write a look-up table routine to convert between the two code sets

However, the first thing that any expansion minded user must do is to put buffers onto all the bus lines. Space and pricing have omitted these and, although it is hoped that Sinclair will produce a buffer board, it does not appear to rank highly on their list

Mention has been made of certain possible add-ons like Prestel and it is worth making the point that, because the ZX 80 uses a serial output screen format rather than a memory mapped type, it will be almost im-
possible to connect exotic systems such as Viewdata and Teletext. In the same way it is impossible to use the $Z X$ 80 for playing interactive video games of the Space Invaders type.

Software

At the moment there is not much commercial software available. The Users Group is probably the best source after magazines like Computing Today, but there are very strong indications that a professional software house will be supplying the user with a range of programs. For users who are looking for software now the following points should be borne in mind;
a) the BASIC is Integer only,
b) the cassette format is not "standard",
c) you can't use interactive graphics, PEEK and POKE,
d) The BASIC is not compatible with Microsoft types, in either direction

Conclusion

Sinclair and his Science of Cambridge team have produced what is probably the forerunner of the 1980 generation of personal computers and in common with most "firsts" it has a number of faults that its competitors will rapidly seek to iron out of their, yet to be released, products. The currently poised opposition include Acorn with their Atom, NewBear with the New Brain and (allegedly) Sharp with a similar type of system. The competition is going to be fierce and as yet Sinclair is the only runner in the race.

As regards the system we feel that it would probably make a starting point for the complete beginner, but for anyone experienced in microcomputing it may not have sufficient facilities compared with other low cost systems like Acorn and Tangerine. The lack of proper machine code access may put the system down in some people's opinions but as a first time system for the complete beginner, be they in the classroom or at home, it is currently the cheapest and that may well be the overriding factor.

New from NewBear

Newbury, the terminal company who opened the NewBear computing shops to gain access to the world of microcomputing, have launched a professional handheld micro for anyone from businessmen to the hobbyist. Called New Brain it contains a 16 K Compiling BASIC, 2 K RAM which is expandable to 4 K in static or 16 K in dynamic, a full size QWERTY keyboard, single line display with direct video output and enough I/O to make most systems look a bit undernourished. The whole thing is battery powered, with charger capability and uses a COPS chip from National Semi to look after the keyboard and display (which powers down after 60 seconds of inaction). The main computing is provided by a Z80 which only powers up when you actually RUN a program. The machines we were shown at the Press launch were unfortunately only half built and they are not expected to be available until at least September, so we can't get our hands on one yet. When we do we'll tell you what it does but expect the prices to be from $£ 150$ (video only) to £250 (full system). One feature that I will tempt you with is the fact that they have committed themselves to Prestel - it has a button on the front marked Viewdata.

£25.25

D.V.M. THEAMOMETER KIT

 Based on the ICL 7106 . This kit contains a PC8resistors, presets, capacitors, diodes, IC and 0.5 Based on the ICL 7106. This kit contains a PCB
resistors, presers, copacitors, diodes. IC and $0.5^{\prime \prime}$
liquid crystal display. Components are also liquid crystal display. Components are also
included to enable the basic OVM kit to be
modified to a Digital Thermometer usin a single diode as the sensor. Requires a 3mA 9V supply (PP3 battery).

WINI KITS

These kits form useful subsystems which may bo incorporated intolarger designs or used alone. Kits
include PCB. short instructions and all com. POnents. THERMOSTAT USes LM3911 IC to sense temperature $\left(80^{\circ} \mathrm{C}\right.$
 $500 \mathrm{~W} £ 3.20$
MK2 SOLID STATERELAY
$1 \mathrm{KW} £ 3.50$ MK2 SOLID STATE RELAY Ideal for switching motors. lights. heaters, atc.
from logic. Opto isolated with zero voltage switching. Supplied without triac. Select the
required triac from required triac from our range
MK3 BAR / DOT DISPLAY Displays an analogue voltage on a linear 10 element LED display as a bar or single dot. Ideal for thermometers, level indicators. etc. May be
stacked to obtain 20 to 100 element dispiays. $\begin{aligned} & \text { stacked to obtain } 20 \text { to } \\ & \text { Requires } 5 \text {-20V supply. }\end{aligned} \mathbf{1 0 0}$ element dispiays.
$£ 4.75$ MKAPROPORTIONAL TEMPERATURE CONTROLLER Based on the TDA 1024 Zero voltage switch, this
kit may be wired to form kut may be wired to form a "burst fire" powe
controller or a "proportional temperature controller enabling the temperature of an enclosure to be maintained to within $0.5^{\circ} \mathrm{C}$.
1.5 KWW
KW 5.25 .55
 Based on the ZN 0 O34E Timer IC this kit will switch
a mains load on (or offf for a preset time from 20 a mains load on (or off) for a preset time from 20
minutes to 35 hours. Longer or shorter perrods may be real sed by minor component changes
Maximum load 1 KW

TOUCH GONTROL LIGUFING KITS These KITS replace light switches and control up
to 300 Watts of lighting. No rewiring. fit plaster depth boxes, insulated touchplates. Easy to follow instructions.
TO 300 K TOUCHDIMMER. Single touchplate with alternate action. Brief touch switches lamp on
and off, longer touch dims or brightens lamps. TDE/K Extension Kit for TD 300 K for 2.50
 Single touchplate, small knob controls brightness TSA 300 K TIME DELAY TOUCHSWITCH

TNTEGRATED CRBCUITS

555 Timer 741 Op. Ampl AY-5-1224 Clock

 AY-5.1230/2 Clock/Timer ICL7106 OVM (LCO drive) M3377 Dual 2 W Amp LM3795 Oual 6W Amp LM382 Dual/fow noise Preamp LM386 250 mW low voltage Am (M1 830 Fluid Level Detector M2907 fov Converter (8 pin)LM2917 fve Converter (14 pin) LM2917 fve Converter (14 pin) LM331 1 Thermometer
LM3914 Dot/Bar Oriver MM74C911 4 digit display controller MM74C926 a digit counter with 7 se
S5668 Touchdimmer

110 projécts in every book!
 The '110' books have been acclaimed by enthusiasts, students and engineers. Each contains 110 different circuit applications. Use them as project books or as source books for circuit ideas.

110 CMOS Digital IC Projects for the Home Constructor R. M. MARSTON $0408002166 \quad £ 3.95$

110 Electronic Alarm Projects for the Home Constructor R. M. MARSTON 0408002697 £3.95

110 IC Timer Projects for the Home Constructor JULES H. GILDER 0408004800 £3.95

110 Integrated Circuit Projects for the Home Constructor Second Edition
R. M. MARSTON 040800309 X
$£ 3.95$

110 Operational Amplifier Projects for the Home Constructor R. M. MARSTON 0408001534
$£ 3.95$

110 Semiconductor Projects for the Home Constructor Second Edition
R. M. MARSTON 0408003227 £3.95

110 Thyristor Projects using SCRs and Triacs R. M. MARSTON 0408000745 £3.95

110 Waveform Generator Projects for the Home Constructor R. M. MARSTON 0408003537 £3.95

Available from your bookshop or in case of difficulty direct from the publishers.

§ $\overline{\text { ewnes }}$ Technical Books Borough Green, Sevenoaks, Kent TN15 8PH

Happy Memories

\author{

4116 200ns
 2114 200ns 2708 450ns
 | $£ 3.95$ | $\mathbf{4 1 1 6} 150 \mathrm{~ns}$ | $£ 5.50$ |
| :--- | :--- | ---: |
| $£ 3.95$ | 2114450 ns | $£ 3.45$ |
| $£ 4.95$ | 27165 volt | $£ 13.50$ |

}

MEMOREX míni discs soft sectored £19.95 per ten

SALE

We're moving shortly to new premises and don't want to carry much Bargains for all
All prices include VAT, 30p postage on orders below £10 Access and Barclaycard

All orders to:
Dept. ETI
19 Bevois Valley Road
Southampton, Hants. SO2 OJP
Telephone (0703) 39267

ELEGTROVALUE

 SUPPLIERS OF COMPONENTS THAT COUNT

OUR MINI-SELECTION POINTS THE WAY!
EXAMPLE ONE - SOLDERING IRONS

EXAMPLE TWO - PRINTED CIRCUIT MATERIALS

EXAMPLE FOUR - CAPACITORS BY SIEMENS
Polvastar 7.5 mm PCM

$33 \mu 21,37 \mu 27 p .6$
$1 / 4024 p, 1 / 10015 p, 2.2 / 2524 p, 2.2 / 6315 p, 4.7 / 1624 p, 4.7 / 4015 p, 10 / 25$
15p, 10/40 18p, 22/25 18p, $22 / 4018 p, 22 / 6319 p, 47 / 1018 p, 47 / 2518 p, 47 / 40$
$16 \mathrm{p}, 47 / 63 \mathbf{2 0 p}$, up to $1000 / 16 \mathrm{~V} 36 \mathrm{p}$, then $1000 / 25 \mathrm{~V} 49 \mathrm{p}$ to $47 / 1665 \mathrm{p}$
EXAMPLE FIVE - POTENTIOMETERS BY RADIOHM

EXAMPLE SIX - RESISTORS

AND AS FOR SEMI CONDUCTORS

			99p		£1.70	ITP41A	69p
			36p	MJ4		T1PA1C	
N4148	5p	AC176		MJ2	97.	硡	
5402	19p	AD136	4.25		¢1.13	T1P42	
2N1599	c1.01	AD149	£1.01	MJE	£1.0	T1P295	
N2369	24p		40 p	PSA	42 p	T1P305	
N3055	$81 p$	AD16	52	MPSA6	4	T1S4	
3702		A27	43 p	0447	14	W02	
4443	¢1.78	L102	1.84	0 O90		$2 \mathrm{~T} \times 1$	
4444	¢2.28	A37	29p	OA9		1 $\times 30$	
4991	98p	B810		OA20	16		
5457-		B	70	OC29	,		
HF40	2.25	8 B 10					
40361	49	C106		T2800			
40636	1.6	E12 \dagger	97p				
INFORMATION - To show everything we supply would take about seven pages of closely packed type in this journal - the range is enormous including not oniy opto devices and very advanced sophisticated items, but all the everyday things you need as well down to nuts and washers its all in Catalogue 10 - OUR 120 PAGE Catalogue free for the ASKING.							
PRICES AND V.A.T. - All prices quoted here include V.A.T. for U.K orders. Overseas buyers deduct 13% when ordering.							
POSTAGE - For orders up to $£ 5.75$ value (U.K.) please add 40 p for p / p. If over. orders sent post free in U.K. Overseas orders sent at cost (Min. 40p).							
DISCOUNTS - 5% allowed on non-net items if order value exceeds $£ 11.50 .10 \%$ if order value exceeds E 29 Quantity discount prices on most components.							
ELECTROVALUE LTD. Dept. 55 St. Judes Road, Englefield Groen, Egham, Surrey TW20 OHB. Phone Egham 33603 Telex 264475.							
Northern Branch (Personal Shoppers only) 680 Burnage Lane, Bur INA. Phone (061) 4324945.							

TECH TIPS

Multi-Flash Trigger

R O'Rourke, Eastleigh

This circuit provides a cheap and safe system for parallel connection for electronic flashguns and prevents damage to shutter sync. contacts.

Electronic flashguns used for photography usually have a voltage of between +200 V and +400 V present at the trigger input connector.

The flash unit operates when the trigger is grounded (by the shutter sync. contacts) and a current pulse of between 1 and 3 amps , lasting about 10 to 30 microseconds is carried by the sync. contacts.

Direct connection of electronic flashguns in parallel can cause two major problems:
(a) Different makes or powers of flashguns may have different operating voltages and may therefore be damaged by parallel connection.
(b) Shutter contacts could be damaged or burned by the excess current of multiple gun operation.
This circuit overcomes these two problems as follows:
(a) Diodes D2 to D5 effectively isolate the hot side of each flashgun from the next and also prevent the high voltage appearing on the unused flashgun contacts.
(b) The SCR trigger circuit operates as follows:

When one or more flashguns are connected to the unit, the cathodes of D2-D5 rise to a high positive value, say +200 V .

C 1 is charged via $\mathrm{R} 2, \mathrm{R} 1$ and D 1 in a time constant $\mathrm{C} 1 \times(\mathrm{R} 1+\mathrm{R} 2)=$ $0.02 \times 118 \mathrm{k}=2.36 \mathrm{mS}$.

SCR1 is non-conductive at this time as its cathode is slightly positive and its gate is grounded.

When the shutter contacts of a camera connected to the device are closed the R2 end of C1 is grounded and therefore the R1 end is driven negatively to -200 V . This enables a negative current pulse to be delivered to the cathode of SCR1 (D1 allows SCR cathode to go negative) of about 11 mA , for about 360 uS duration, this
pulse turns on the SCR which then carries the trigger current of the flashguns.

When the flashguns fire the trigger voltage drops to zero and the SCR turns off. C1 will recharge as the voltage of the flashguns recover ready for the next flash.

As can be seen, the maximum current through the camera contacts is thus reduced even with a flashgun voltage of 400 V , to only 22 mA .

When using more than one flashgun in a direct lighting system, allowance should be made for the increased guide number:-
Effective Guide Number =

$$
\sqrt{a^{2}+b^{2}+c^{2}} \ldots
$$

Simple Cassette Interface R Thomas, Port Talbot

The cassette interface on my NASCOM1 has never worked correctly and despite many frustrating fault finding sessions the only solution was to replace it. No originality is claimed for this circuit. Indeed anyone with a basic knowledge of electronics or radio will recognise part of it as an envelope detector or demodulator. No alteration of the cassette output of the NASCOM is required assuming it dumps properly.

Take the output of the 7402 to the serial input link LK3.

Component values are not that critical and by inserting another resistor and capacitor of the same value in front of C1 and R1 the response will be improved, although I did not find these necessary. The interface does require a fairly large input signal and the volume setting is rather precise but once set the interface should work perfectly. Although built for the NASCOM, the interface will work with any low speed cassette interface system that switches an audio frequency on or off.

[^2]
VDU Shift Control

R J Cheason, Fareham

Most low cost VDU boards using the SFF96364 do not have the facility to adjust the monitor/TV picture left or right. This circuit was developed for a VDU board using the 'Triton' design but is suitable for any board using the same controller.

The SFF96364 outputs a pulse on Pin 10 enabling the picture - point oscillator. The counter/divider then outputs a pulse to the controller every character, stepping the character address. After 64 characters Pin 10 goes low.

The modified circuit uses the positive going edge from Pin 10 to trigger a monostable whose pulse length is set by RV1 and C1. When the monostable's output goes high it triggers a flip flop into the high state. After the current line has been output, the input from Pin 10 goes low clearing the flip flop and stopping the picture - point oscillator.

In practice slight jittering was caused by interference on the supply lines, but it was found that a capacitor of about 100 uF across the supply close to IC1 cured this problem.

Soft Limiter

J.P. Macaulay, Crawley

One of the fundamental differences between valve and transistor amplifiers is their behaviour when driven into clipping. The valve amps go into socalled soft clipping whilst their transistorised counterparts generate large quantities of harmonic distortion. The circuit shown simulates the soft clipping of valve amplifiers and is intended to be used between the power amplifier's input and the preamplifier's output.

R4 and R5, decoupled by C2 set a half supply reference for the noninverting input of the op amp. Input signals are fed into the inverting input via the DC blocking capacitor and R1, the latter defining small signal gain and input impedance.

For small signals the amplifier's output is an exact unity gain copy of the input. As the signal level increases, however, the time will come when the voltage across the output and slider of PR1 will be sufficient to bias Q1 or Q2 on. When this occurs the feedback
increases due to the shunting effect of R2 and R3.

The net effect is that musical peaks above a certain threshold are reduced in amplitude to prevent the power amplifier going into hard clipping. As a result distortion is noticably decreased, whilst the subjective loudness appears unaffected.

The circuit is adjustable in operation between 130 mV and 10 V rms input sensitivity by means of PR1. To set the circuit up simply set the slider so that it is shorted to the output of the amp. Play some music at high volume through the system and adjust until the harshness just disappears. It's easier to do than describe.

Electronic Hangman

G.N. Durant, Selby

The circuit diagram shows a design for an Electronic Hangman Game. The scoring display is made up of $0.125^{\prime \prime}$ and 0.2" LEDs, as shown. The controls consist of two one pole make pushbuttons. The first button is pressed every time a letter is wrongly guessed. At the start of the game, the other button is pressed, to reset the display, blanking it. When a letter is wrongly guessed the 'wrong' button is pressed once, and the first part of the display, (A), is illuminated. Every time another wrong letter is guessed, the 'wrong' button is pushed, and the next part of the display is lit up. When the display is all lit up, and the victim is 'hung', the display automatically blanks.

Now this is where the clever bit comes in. To show that the victim has lost, the display is blanked, then the first part of the display lights itself, then the next part and then the one
after that. In fact, all the parts light up in sequence, until the last part lights, when the display blanks again, and the whole 'chasing' process starts again. This process repeats itself until the 'Reset' button is pressed, when the display blanks, ready for a new game to begin.

The circuit consists of eight ICs, one of them being a 4017 B CMOS device. This device is a ten stage decade counter. Each output is fed directly to its own LED and, because some outputs require more than one LED and there is not enough current from the 4017 to drive more than one, the affected outputs are connected to a CMOS 'AND' gate which is in turn connected to a LED, so the required power is obtained from the power supply and not the outputs of the 4017. The input of the 4017 is triggered by a push button connected to the positive supply rail, so when it is pushed (Wrong button) the IC is triggered and the next part of the LED display is illuminated. The 'lower' LEDs are kept lit by another

AND gate, connected as a chain linking each output of the 4017, so their outputs will go high, when a 'higher' LED is lit.

When the top LED is lit, another AND gate (gate 3, IC 6) goes low, locking a latching flip-flop formed by gates 1 and 2 of IC6, a CMOS NAND gate. This latch allows the output of an astable multivibrator to go to the trigger input of the 4017 and to start the automatic sequencing. The reset button makes the input of one of the gates go high, unlatching the flip flop and resetting the display. The small preset varies the clock rate over a wide range, speeding or slowing the sequencing.

If desired, a 'Display PCB' can be designed to ease the LED wiring. When the circuit is known to be functioning correctly, lines can be painted onto the display to join up the LEDs, and to make them appear as a 'picture'.

When all the LEDs are illuminated, the circuit will take a great deal of current, so a mains power supply is advised.

24 TUNE DOOR CHIMES

ODOA TUNES E17.13 + VAT
 Waddington's videomaster announce a doorbell that does go Brstinggg, Ding- Dong of Bzrm. Instead it plays 24 difterent classical and popuiar tunes. It will play the tune you select for your mood, the season or the visitor you are expecting to call. Door funes is nol only great fun and a expecting to call Coar tunes is nol only great un and a wonderful ice breaker, but is also very tennctionally and beacuifully designed to enhance your home. There is visiors or your relations from the states, and even something for the Queen. Door cunes is easy to install and

T.V. GAMES

PROGRAMMABLE $\mathbf{7 2 . 5 0}+$ VAY

COLOUR CARTRIDGE T.V.GAME.
The TV game can be compared to an audin cassetre deck and is programmed to play a multiude of different games
in CoLOUR, using various plung in cartidges At long TV game is avaviable which will keep pace with improving technology by allowing you to extend your library of games with the purchase of additional cantridges as new games are developed. Each carridge consains up to ten different action garmes and the first cantioge containing ten spons games is included free with the console. Other cartridges are currenty available to enable you to play such games as
Grand Prix Motor Racing, Super Wipeout and Stuat Rider Further carridges are to be released later this year induding Tank Batte, Hunt the Sub and Target. The
console comes complete with iwn removable iovstick console comes complese with iwn removable foystick player controls to enabe you to move in al tour drections
lupidownirightleftu and bult into these ioysick cantrols are ball serve and target fise butions. Othee feazures include several ditticulty option swiches, autamaic on sereen digital scofing and colour coding on scooes and batis Lifelike sounds are rransminted through the TV's speaker, simulating the actual game being plaved. 6 Game - COLOURSCORE II - $\mathbf{£ 1 3 5 0}+$ VAT. Manulaclured by Waddington's Videomaster and 10 Game COLOUR SPORTSWORLD $£ 2250+$ VAT. guaranteed tor one year

CHESS COMPUTERS

STAR CHESS - EESK 09 + VAT

PLAY CHESS AGAINST YOUR PARTNER.
using your own N to display the board and pieces. Star
Chess is a new absorbing game for two players, which will mreerest and excite all ages. The unif plugs into the aerial socket of yout TV set and disolays the board and pieces in full colour for bleck and whitel on your TV screen. Based on
the moves of chess. It adds even more exciement and the moves of chess. It adds even more excitement and
interest to the game. For those who have never plaved interest to the game. For those who have never played,
Star Chess is a novel untroduction to the classic game of chess. For the experienced chess player, there are wivie new dimensions of unpredictabitiy and chance added to
the strategy of the game. Not only can pieces be raken in conventiongl chess rype moves, bun each piece can also exchange rocket fire with ins opponenis. The unit comes complete with a free 18 V mains adapior, full instructions and rwelve months guarance.
CHESS CHALLEMGER - £85. 65 + VAT PLAY CHESS AGAINST THE COMPUTEA
The stylish, compact, ponable console can be set to play at seven ditterent levels of ability from beginner to expen including "Mare in "wo" and "Chess by mail". The compurer Will only make responises which obey international chess rules. Casting. on passant. and promoting a pawn are a
included as pan of the computer's prooramme it ucluded as par of the computer's programme. It
possible 10 enter any given probten from magazines possible 10 enter any given probiem from magazines or
newspapers or athernatively establisth your own board position and watch the computer react. The pasiicms of all putitan.
Price incluces unl! with wood grained housing, and Staunton design chess pieces. Computer plays black or whine and aganst inself and comes complete with a mains adaptor and 12 months guarantee.
OTHER CHESS COMPUTEAS IN OUR RANGE INCLUDE: CHESS CHAMPION - 6 LEVELS $£ 47.39$ + VAT CHESS CHALLENGER - 10 LEVELS - £138.70 + VAT.
BORIS £163.04 + YAT

DRAUGHTS COMPUTERS

CHECKER CHALLEWGER 2 LEVELS $£ 43.00$ + VAT
44 LEVELS $£ 78.00$ + VAT The draughts computer enables you to sharpen your skills,
improve your game, and play whenever you wann The improve your game, and play whenever you wan!. The
computer incorpbrates a saphisicated, relibble, decisionmaking microprocesson thinking ability enables it to respond with is beet fovel af moves like a skilled thuman opponen! You can select oftence or defence and change playing difficuly levels as recall. Marchine does nol permit ilegal moves and can solve set problemis. Contipuer s.omes complete with insiructions,

FOR FREE BROCHURES - SEND S.A.E

AJD DIRECT SUPPLIES LIMITED, Dept. ET7 102 Bellegrove Road Welling, Kent DA16 300. Tel: 01-303 9145 (Day) 01.850 8652 (Evenings)

AUDIO AND TEST EQUIPMENT CENTRE

Tplephone your order with Access and

LONDON'S TEST GEAR CENTRE OPEN 6 DAYS A WEEK $9 \mathrm{am}-6 \mathrm{pm}$ HAMEG TRIO LEADER SINCLAIR LASCAR LEVELL CSC Test Equipment now in stock-send large s.a.e

SCOPES-(UKP/P $£ 2.50$ 8a.) \qquad
HM $307-3$ 10MHz single bea
HM $312-820 \mathrm{MHz}$ dual trace
 287.50
402.50 HM $412-420 \mathrm{MHz}$ sweep delay dual trac
\qquad

DIGITAL MULTIMETERS

DIGITAL MULTIMETERS	
DM235 Sinclair portable 31/2 digit LED	0
PDM35 Sinclair Pocket 31/2digit LED	0
DM 350 Sincleir $31 / 2$ digit ${ }^{\text {d }}$ d 50 Sinclair $41 / 2$ digit with 10 amp range	78.50
M 300 KV Probebes 15.95 . P/S 4.00 . OM Nicads 7.8	$\begin{aligned} & 107.95 \\ & 80) \end{aligned}$
M1200 Bench Portable $31 / 2$ dipit LED. Resolut 0.01 hhm SPECIAL	$10.1 \mathrm{mv}$ $V \lessdot 59.50$
LMM 100 Lascar 3 $1 / 2$ digir 2A LCO Bench 0.1%	86.85
LM 2001 Lascar 31/2 digit 2A LCD Hand 0.1\%	51.70
LM200 Lascar 31/2 digit 2A LCD Economy 0.5\%	43
ME502 31/2 digit 10a LED plus transistor tester	¢43.95

FREQUENCY COUNTERS OPTO 70109 digit, 600 MHz

Portable. 0.1 HZ Resolution | | |
| :--- | ---: |
| with NiCADS | |
| | 139.95 | MAX 5050 MHz 6 digis

 $\begin{array}{ll}\text { portable counter } & 88.75 \\ \text { MAX } 550550 M H Z \\ 6\end{array}$ pocket counter max 50 or max $100,40.00$ PFM200 Sinclair 200 $\mathrm{MHz}^{\text {min }}$ Ocket Counter 8 digit 54.50 nectio Pack PFM200 \&9.95 c7216R. 10 MHz \& Digi
Panel Mounting Panel Mounting
c7216RP. 150 MHz version

MULTI-METERS - GENERAL PURPOSE \& ELECTRONIC

Bind it

It's so easy and tidy with the Easibind binder to file your copies away. Each binder is designed to hold approximately twelve issues and is attractively bound and blocked with the ELECTRONICS TODAY INTERNATIONAL logo.
 Price U.K. £3.95 including postage, packing and V.A.T., overseas orders add 30p. Why not place your order now and send the completed coupon with remittance to:
EASIBIND LTD., 4 UXBRIDGE STREET, LONDON W8 7SZ. Tel: 01-727 0686 Please allow $3 / 4$ weeks for fulfillment of order.

Easibind Lid, 4 Uxbridge St,London,W8 TSZ. Nat. Giro No. 5157552. Onder Kolan

QUANTITY PRICES - SAVE - SAVE - IMmEDIATE DELIVERY (incl. VAT) NEW STOCKS BELOW MANUFACTURERS PRICES. Postage \& packing add 50p per order
BCD Decimal Decoder-Driver 10 for 44p aw. 100 or 40 p ear. 1,000 for $35 p$ ea. DISPLAYS by Hewiett-Packard. Seven segment 01707 (5082-7750) 95p. Common anode half or $\mathbf{E 5}$. 50 for 70p an.
IV SOUND. High quality sound through your h.-f. Simply plug into your aritial socket. $\mathbf{£ 8 . 5 0 \text { , as }}$ BURROUGHS 8 DIGIT Panaplex calculator display 7 segment. $025^{\prime \prime}$ digits. Neon type with
red bevel socket and dare, $\mathbf{£ 1 . 9 5} \mathbf{~ e e . ~} 10$ tor $\mathbf{£ 1 7}$. ed bevel socket and dare. ETY OETECTOR int HONEYWELLPROXIMITY ETEC 30 . MULLARD TBA800. IC audio amplifier 95 p e. 10 for E8, 100 for $£ 70$. CA CA3089. FM IF E1,50, 10 for f 12 CA CA3090AQ. FM decoder $£ 2.50,10$ for BU205 TEXAS, $£ 1,50$ ee, 10 for E12, 100 for E100 pel 1.00085 .em. AMPLIFIER. SN 76018 5-pin, package, £1.25 BU208 TO3 Texas TV power transistors E1. OA, 10 for E15, 100 for $\mathrm{E120} 1,$,000 tor MC1310P-SN78115N FMO Sterso E1.20 en, 10 for E1 AUM, 162 Matched pairs. Pair BOp, 10 pbirs $\mathrm{EB}, 100$ pairs E 50 . Cortons of 600 pairs 2250 EX STOCK RADIATION DETECTORS Quariz Fibre Current list price $2250-5 \mathrm{R}$ in new condition tested Sel ready for use only $\mathbf{E 5} .95$.

 MULLARD TUNER MODULES with data LP117) combined AM/FM IF strip $£ 3.50$. LP 1979 FM tront end with AMM suning gang, used,
with $P 1171$ E3.50. LP1171 and 79 pair $\mathbf{E 5 . 7 5}$, 10 pairs for $\mathrm{E50}$.
CABOB5 RCA POSITIVE VARIABLE REG. 5 volt 100 mamp variable. 18 - 24 V 55 p at. 10 for E5. 100 for $£ 35$.

P1157 AM tuner modules w Circuil $£ 2.50$ en, 10 for $\mathbf{E 2 0}, 100$ for $£ 175$. LUSTRAPHONE RIBBON MIKE E1.50, TAM6618 TAA661B (14 pin DIL) C I P . circuit board with other parts. Complete with data \& connections 60p. 10 for E5. 100 tor 40 ®e
DRYFIT RECHARGEABLE BATERY. 6 volt $4.5 \mathrm{amp} / \mathrm{h}$. Size $6^{\prime \prime} \times 3^{\prime 1} /^{\prime \prime} \times 11 / 2^{\prime \prime}$ at half price. 8 fand new $\mathbf{E 7 . 5 0}$, post 50 p .

MAR IOTT MAPE MEADS O water wack

Type XRPS 18R/Replay
 RPS 36R /Replay
 RSP631/2rack XES 11 Erase
 $\begin{array}{lr}\text { Each } & \text { Per } 10 \\ \mathbf{6 3 . 0 0} & \mathbf{E 2 5 . 0 0}\end{array}$ $\begin{array}{ll}£ 2.25 & £ 20.00 \\ £ 1.25 & £ 11.00\end{array}$ MAINS TRANSFORMERS all $200 / 250 \mathrm{~V}$. IN

 $\begin{array}{lccc}\text { Type } & \text { Current } & \text { Size } & \text { Price } \\ 12 V & 100 \mathrm{~m} / 3 & 1 / 3 \times 11 / 2 \times 1 / 2 & \mathbf{8 0 . 9 5}\end{array}$
 STEREO CAS SETTE TAPE HEAD. High quality mith mounting bracket ma.95. Mith maunting MICROPHONE. Low imo foster insert $£ 1.45,10$ for $£ 11,100$ for $£ 100$.
TWO GANG MINIATURE VARICAP TUNER 500 pt with tuning kiob, size $3 \times 1 / 2 \times 1 / 3 / 2 \mathrm{in}^{2}$ £1.25 a. 10 for E 10.100 for $£ 85$. ATES $\mathbf{0 1 4 5 5 2}$ AUDIO IC, 10 for $£ 4.50,100$ for E35, 1,000 for 30p es.
GENERAL ELECTRIC $2+2$ watt IC stereo audio chips with cricuir \& data $£ 1.95$ at RCA CD4029AE 16 pin DIL presettage up down 1,00 tor $£ 355$ (in anti static tubes of 25). UHV TUNER (preamp) with 8F 180 55p asch. Builh on PC board 2×2 in (sold without data) 10 HELICAL 10 TURN POTS BY M.P.C. 2.5 warts 5% tolerance type MM1OS British made. 100 $220 / 470.1 \mathrm{k} / 2.2 \mathrm{k} / 4.7 \mathrm{k} / 47 \mathrm{k}$. All ar our price £1.95 as. Manufacturers list price ${ }^{\text {E.3.8. }}$. CASTage requlator panel $\mathbf{£ 2 . 5 0}$.
WIRE WOUND MINIATURE M.P.C. controls BRITISH MADE M $/ 2 / 13$ ALL AT 60 p esch $\begin{array}{llll}47 \text { ohms } & \begin{array}{l}2.2 \mathrm{k} \\ 220\end{array} & \text { Por } 10 & \text { 50p es. }\end{array}$ 220
470
RELAYS min open rype. 6/9v change over 85 p .
P. 10 75p en. P 100 65p. P. 1,000 50p 84. Min $9 / 12 v 2 p$ over $200 \mathrm{ohm} \in 1.20$.
TBA625ATES voliage regulalors $55 p$ aa, 5 volis
 100 for $\varepsilon 8,1,000$ for 6 p oa. THYRISTORS Motorola 2 N5061 0 B amp 60 vif $19 \mathrm{p}, 10$ for $15 \mathrm{pes}, 100$ for 13 p as, 1,000 for 11 p om. Pair at $\mathbf{£ 2 . 9 5}$. 10 pairs at $£ 2.50$ pair

SUBSCRIPTIONS

This year we present a new twelve-part, non- fiction series - ETI 1980. available from your newsagent every month.
Forget to buy it this month, or is your newsagent sold out?

Why worry when ETI gets to the shop? Sit back and wait for it to come to you. Take out an ETI Subscription. For only $£ 10.00$ we'll send you twelve issues of ETI PLUS A free copy of ETI 1999, a chronicle of future times including the first report of World War III. You've never seen anything like it before.
To claim your FREE ETI 1999 (and a years' supply of ETI, of course) send your PO or cheque direct to

> ETI Subscriptions
> MAP Publications
> PO Box 35
> Bridge Street Hemel Hempstead Herts.

Freepost Birmingham B19 1BR 021-233.2400 $\quad 24$ HR PHONE ANSWERING SERVICE

ALL PRICES IN PENCE EACH UNLESS OTHERWISE STATED

RAVEN ON

Dave Raven of Metac Electronics reports on a revitalised Swiss watch industry and the programmer catastrophe.

To inake a fortune in electronics is not an unrealistic ambition in the 1980's. It compares favourably with the earlier successes of entrepreneurs at the turn of this century, making fortunes from the boom in bicycles and then motor cars. Similarly, young dynamic companies have emerged all over the world feverishly setting up new businesses that are associated with the enormous boom in the microchip industry.

At this time of year students face a major challenge in the examination room which they perceive as directly affecting their future careers. With the right results at hand the next task is to start selecting a suitable job with prospects for the future. If electronics and cash are the big motivators, then much thought must be given, since some areas of this industry will in the next decade be prepared to part with larger sums than others. Supply and demand is still the order of the day, even in science, and if cleaning ladies are in short supply then they will command a higher salary than say a PhD Physicist.

The increasing popularity of microcomputers has placed industry on a direct collision course with a major obstacle. With some careful planning now our intrepid students may find this rich in rewards by the mid 1980's. A software crisis large enough to slow down the whole business of microcomputer expansion is looming high over the horizon. The simple arithmetic which can confirm this shows that although the numbers of microcomputer designs is increasing by 30% a year the cost of implementing the designs will double. In the USA it has been estimated that by 1990 they will require at least one million software engineers and since the electrical engineers graduating at present can be numbered in only thousands it is described as a "programmer catastrophe".

In addition to the limited educational system which is seen as a further major contribution to the potential software crisis, the cost of developing software is also seen as having serious consequences. The cost of purchasing the hardware is expected to change little since this reflects the increased memory capacity of the microchips. However, software costs have risen dramatically. The alternative open to the semiconductor giants is to develop more complex microchips which contain software packages within. Thus a programmer can reduce the time taken to assemble his software. This is similar to the developments of earlier circuit designs which have progressed from single discreet transistor design to designing with complex blocks of circuits. The cost of these new developments are enormous and only a few very large manufacturers can undertake projects on this scale.

Microchip R \& D

In the USA the Department of Defence have decided to implement a 200 million dollar programme for the development of very high speed integrated circuits (VHSIC). This money will be granted to companies in private industry to make it easier for them to build the

The new quartz analogue watch modules now look very similar to their digital counterparts. Typical thickness for these models is about 3.9 mm . Swiss companies have a great deal of experience in producing these and it will present a major challenge to Japanese and Hong Kong assembled watches.
advanced chips the military need and to stimulate the development of "integrated systems". Other American companies such as Intel will spend up to 150 million dollars on capital equipment in 1980 as part of their "integrated systems" programme. For the next decade or so I sincerely hope we don't have cause to fall out with the Americans since, as the decline of our own ability to fabricate microcircuits continues, we will be less able to compete in the manufacture of industrial equipment without supplies of devices from the USA

Whilst other major industrialised countries are sinking cash into research programmes the UK Government have just announced that they intend to resist pressure for further state aid. The micro-electronics Industry Support Programme has been cut (not increased) from $£ 70$ million to $£ 55$ million over a five year period. Also the microprocessor Awareness Programme has retained its budget of $£ 55$ million over a three year period. This total cash is less than one medium sized USA company will spend on R \& D during the same period. As for spending $£ 55 \mathrm{~m}$ on making people aware of micro-electronics I would have thought that regular reading of the electronics Press in the UK and USA would wake people up sufficiently to what is happening. This would of course be a lot cheaper and the real spending should be done on making devices. I suspect that most of this money will be spent on making up for the lack of technical education and ignorance that results from the narrow curriculum of the schools and universities where many of the nation's leaders spend their youth.

It is easy to grow cynical on matters which are not every day problems to government. However, I am personally convinced that urgent attention must be given to our country's future role in electronics. The solution to our avoiding a software crisis and indeed an industrial crisis in Britain lies here within our shores. We can very soon find plenty of aware people if the cash is available to support them. Personalities like Derek Roberts who currently heads the GEC Hirst Research Centre and John Bass from Plessey, to name but two individuals, must have quite a lot of experience in organising microchip development between them. Instead of carting parties of TUC officials to the West Coast of America in search of awareness about how microchips are made they should take a bus to Towcester, Swindon or Wembley. Here they will see just as much technology and its all British. Forget Inmos factories in Colorado Springs. How about setting up something twenty minutes from Heathrow Airport or at least within easy distance of some of the best microcircuit designers in the world, here in England.

Swiss watches return at Basle Fair.

The annual event of the Basle Fair, held in Switzerland each Spring, incorporates probably the largest exhibition held anywhere in the world for watches and clocks. This very traditional fete is the assembly point for watch buyers from all over the world who place orders for their full year's requirements. Exhibitors at the show are almost exclusively from the Swiss Industries with just a smattering of other European companies. Walking through the lavish exhibits of such famous names as Omega, Tissot and Rolex it was very hard to believe that the Swiss watch industry had just emerged from five years of nightmare competition. This of course was a result of the enormous increase in quartz electronic watches during this period.

The sudden arrival of LED and then LCD watches and the continued rapid developments of microchip technology produced shock waves which must have threatened the existence of many of the smaller watch producers. Hong Kong, who were at the very heart of this watch revolution, increased their market share in watches from being a net importer of watch modules from Switzerland to becoming the world's largest watch exporter and in terms of value of watch exports they now rank third.

The way in which the Swiss watch manufacturers operate must have considerably altered in the past five years, with a number of mergers and trading agreements taking place. The saving grace, however, seems to be the Swiss watch manufacturers' strong financial resources and also their ability to withstand change and rapidly learn new techniques.

The presentation by manufacturers at Basle for both digital and analogue display watches was of a very high standard. My biggest surprise, however, came from the strong contingent of quartz analogue watches. These models, which I previously thought were extinct, have risen once again in quite a different form. The first impression was that this was confirmation of the demise of the Swiss watch industry. Then after closer inspection I realised how much slimmer and neater these little beasts looked. I was left in little doubt that these will be well received in the watch market place despite my own prejudices towards mechanical displays. I feel their

New generation of quartz LCD Watches. Sabre Alarm Chronograph uses standard watch cells and measures only 3.9 mm thickness.
popularity stems from the neater, cleaner looking design and also this new slimline case, which dispels the cause for much complaint in the past. Also quite a number of people, particularly those over a certain age, experience difficulty in seeing the digital display without spectacles. My additional suspicion for the strong emergency of quartz analogue was that the Swiss were probably struggling to keep up with the current level of high technology in the digital quartz. This was also quickly dispelled, I am pleased to report, since the electronic varieties were every bit as advanced as anything yet seen coming out of the Far East.

Quartz analogue watches deserve some further mention in particular because of the technical achievements which have occurred during their redevelopment. The Swiss have of course a long tradition in the manufacture of traditionally designed watches and they also have a large number of credits for new development work in the manufacture of watches. It was here that the thinnest watch ever made was produced in $1975(1.2 \mathrm{~mm})$. Its conception was quite revolutionary and was described at the time as defying the logical laws of watch mechanics. This same company incidentally has been taken over this past year by one Japanese company called K. Hattori, who, you may or may not know, own the brand name of Seiko.

On the new technology front, Bulova announced their rather unusual watch which drives its energy from the body's own heat. A voltage produced from the thermoelectric elements is transformed through a sophisticated electric circuit to the required voltage necessary to operate the watch. On attaining the required level of voltage, this energy is directed towards an accumulator, which is in effect a rechargeable battery. The average body temperature of $37^{\circ} \mathrm{C}$ delivers at the case back more than 1000 uW of "heat" power. The power consumed to operate a typical quartz wristwatch containing a tiny battery is approximately 2 uW . the device that Bulova has perfected receives from the thermo-generator approximately 8-12 uW. Therefore, the electric energy produced is four to six times greater than that which is consumed in operating the watch.

One other Swiss company in strong evidence was Buler, whose range of ultra slim analogue and digital models will certainly be serious competition for the Japanese quality watches. The new twelve digit quartz electronic model from Buler must be the most advanced module coming on the market this year and will further increase the market share for Swiss-made electronic watches. pulse width of 50 nanoseconds and maximum input frequency of 10 MHz . This 100 K ohm probe is an inexpensive workhorse for any shop, lab or field service tool kit. It detects high-speed pulse trains or one-shot events and stores pulse or level transistions, replacing separate level detectors, pulse detectors, pulse stretchers and pulse memory devices. All for less than the price of a DVM

£31.00*

LP-2 Logic Probe

 The LP-2 performs the same basic functions as the LP-1, but, for slower-speed circuits and without pulse memory capability. Handling a minimum pulse width of 300 nanoseconds, this 300 Kohm probe is the economical way to test circuits up to 1.5 MHz . It detects pulse trains or single-shot events in TTL, DTL, HTL and CMOS circuits, replacing separate pulse detectors, pulse stretchers and mode state analysers.(Available in kit form LPK-1 £11-92)

£18.00*

The logic probes shown are all suttable for TTL. DTL, HTL and CMOS cIrcuits.
*price excluding P. \&P and 15\% VAT.

LP-3 Logic Probe
 Our LP-3 has all the features of the LP-1 plus extra high speed. It captures pulses as narrow as 10 nanoseconds, and monitors pulse trains to over 50 MHz . Giving you the essential capabilities of a high-quality memory scope at $1 / 1000$ th the cost. LP-3 captures one shot or low-rep-events all-but-impossible to detect any other way. All without the weight, bulk, inconvenience and power consumption of conventional methods.

The New Pulser DP-1
The Digital Pulser: another new idea from C.S.C. The DP-1 registers the polarity of any pin, pad or component and then, when you touch the 'PULSE' button, delivers a single no-bounce pulse to swing the logic state the other way. Or if you hold the button down for more than a second, the DP- 1 shoots out pulse after pulse at 1000 Hz .
 The single LED blinks for each single pulse, or glows during a pulse train. If your circuit is a very fast one, you can open the clock line and take it through its function step by step, at single pulse rate or at 100 per second. Clever! And at a very reasonable price. $£ 51.00$ *

STEREO IMAGE CO-ORDINATOR

> Following his article on the 1537A VAC, Keith Brindley comes up with a complete application using this most resourceful chip.

Perhaps an explanation is required! What, you may ask, is a Stereo Image Co-ordinator? Briefly it's a panning control - simple? - well, not so simple. Panning is an effect whereby you apply a single mono sound source and derive two independent adaptations of that original sound, which together form the inputs to a stereo (or $2 \times$ mono) amplifier. By varying the amplitude of these two adaptations, the stereo image they produce can be altered providing an apparently moving sound source. It is an effect used quite often in recording studios usually with modern rock and pop music. Commercial units are now available (though not as effective or as good as the ETI Stereo Image Co-ordinator), which produce the effect live, for stage work, but in the past panning has been predominantly a studio technique.

Not Only But Also

The ETI Stereo Image Co-ordinator produces the usuai effect of panning using a manually turned pot, but added to this are the exclusive facilities of automatic control over the image produced. The use of these facilities obviously allows
the musician to concentrate on the music rather than the equipment.

Control over the stereo image is provided by four methods:

Manual - a single pot positions the image wherever required.

Sweep - the image is swept from one channel to the other at a variable rate, automatically.

Automatic Trigger - the instant a note is played or sung the image is swept from one side to the other at a completely variable rate.

External - control is accorded by an externally applied voltage eg from a foot pedal.

The unit utilises the 1537 A Voltage Controlled Attenuator which as ETI readers will know is the high quality (good enough for studio applications), recently introduced integrated circuit for VCA use. All other active components used in the audio section of the circuit are high quality, low noise types which coupled with the considerations of careful PCB design should allow the builder to construct a device which is at home in the studio as well as in live stage work.

Any input signal within the range 10 mV to 10 VAC should successfully operate the device, although obviously the best signal to noise ratios will be obtained with the larger values of input signal.

The overall signal gain of the Image Co-ordinator is approximately 6 dB , which allows for a unity gain output signal when the level pot is at approximately three-quarters of its rotation.

Construction

The project consists of two printed circuit boards which together hold all components, switches, pots, etc apart from the nine LEDs. This makes construction a proverbial "doddle" and ensures high standards and a good chance of first time success.

Roughly speaking, the, right hand board includes all components to the right hand side of the circuit diagram and similarly the left hand board includes all left side components. The left hand board also contains the PSU.

PCB mounting pots and switches are used throughout eliminating the use of flying leads, therefore cutting down the

This box of tricks gives you the opportunity to try out what has up to now been an effect used predominantly in the studio. The stereo sound image can be controlled automatically or manually. You can position the image in one place and keep it there or continually sweep the image between channels and more.
possibility of pickup in the audio section. Any jumpers or wires only carry DC control voltages or power and are, therefore, of no problem. There is one exception, however, and that is the connection between the Auto Trig output on the right hand board and the Auto Trig input on the left hand board. This should be screened lead taken neatly, either under or over the boards, keeping it away from the PSU section.

The right hand board is double sided whilst that of the left hand is single sided with jump leads. Neither are too difficult to construct, although it is worthwhile when building up the project to construct each stage separately, testing as you go along eg start with the PSU then the automatic trigger, then the sweep, etc, etc. In this way any faults which develop can be traced to one particular area very quickly. Actually this constructional method is highly recommendable with any project! Test procedures are described in the section on Setting Up.

IC sockets are advisable though not necessary, likewise cermet presets, although more expensive, present easier setting up and a high quality than their cheaper carbon colleagues.

The simple layout of the rear panel -- mains in, signal in, signal out.

HOW IT WORKS

The main function of the unit is to create an impression of a stereo image from a single signal from a musical instrument. This is done by feeding the signal via IC4 (a quad op-amp) to 2 parallelled VCAs whose output amplitudes are controlled by an external control voltage. These VCAs form the output channels and are buffered by IC8a and b, providing drive for a stereo power amplifier. The stereo image is created simply by allowing the signal output from one channel to be greater than that from the other channel. The origin of the sound thus appears closer to the first side of the sound field than it does to the latter.

Interested readers who wish to know more about the VCA chips in question should refer to the March 1980 edition of ETI for a detailed discussion of the 1537A VCA.

IC5 provides phase split control voltages of 0 to -10 volts DC and -10 to 0 volts DC from a single input voltage of 0 to +10 volts DC. RV15 provides a depth control which simply limits the effect of the control voltages applied to the VCAs. IC5a inverts the DC control whilst IC5b inverts and also offsets it so that both outputs are in the range 0 and -10 volts, al though 180° out of phase. IC5a also is a fairly high impedance buffer so as not to load the source.

SW1a gives selection of whichever source is required, there being three internal, sweep, manual and automatic trigger and one external method of controlling the stereo image. The corresponding LEDs are also switched in via SW1 allowing an indication of which function is in use at the switch and also at the function controls - see photographs. LED 1 is a special type of LED with an integral IC to provide an intermittent, flashing display. As this is in series with two other LEDs (2 and 6,3 and 7,4 and 8, or 5 and 9, dependent on SW1) then all three LEDs will flash on and off simultaneously.

External control of image is provided so that, for example a foot pedal can be used to control positioning of the applied signal within the stereo field. RV10 adjusts for various values of pots inside the pedal, although 100 k lin is the nominal value.

RV12 acts as the manual pot in an identical fashion to an external control pedal pot but positioned on the front panel.

The signal switches which comprise SW1 a and b might be slightly difficult to get hold of so it is worthwhile taking your PCB along with you to make sure you get the right ones. Also see Buylines. Various other types are around but in our (dare we say it?) vast experience, these switches are by far the most superior for signal switches, which demand low resistance contacts and low noise levels. If you use the same push-fit knobs for the switches ie coloured transparent fronts you may like to do the same as us with the consecutive function marker LEDs and glue them into position inside the switch knobs so that the flashing indication is visible through the front of the switch. The square type of LEDs now available are ideally suited for this application. Alternatively the LEDs can be panel mounted vertically above the switch front. If LED 1, a flashing LED with integral IC, cannot be obtained an ordinary LED can be used in its place - but replace ZD1 with a suitable limiting resistor eg 560R.

The control marking LEDs should be positioned close to the corresponding controls in order that the user can clearly see which function is in use.

Finally use PCB pins for external connections so that when the two boards are fixed in their case side by side the nine links can be soldered into position along with input and output connections, without removing the boards.

Setting Up

After the PSU section is complete, it can be tested to make sure that the correct supply rails, $+15 \mathrm{~V}, 0 \mathrm{~V}$ and -15 V are obtained.

The components around the automatic trigger should be

Fig.1. Block diagram of the Stereo Image Co-ordinator.
inserted next (R1-9, C1-7, IC1 and 2, RV1-4 and D1-3). This can be tested by applying an AC signal of about 500 mV at its input on the left hand board whilst watching the voltage across C7. (All four pots should be mid-position). This voltage should increase from 0 V to about +12 volts then after a short time decrease back down to 0 V DC.

The sweep generator circuit can be built up next (R1018, C8-14, IC3 and RV5-9) and tested. Set all pots and presets to mid-position. The DC output voltage at pin 7 of IC1 should be a low frequency near sine wave oscillation approx-

Fig.2. (left) Circuit diagram. Note the orientation of LEDs connected to signal switch SW1.

Fig.3. (below) Power supply producing $+15,0,-15$ volts output.

BUYLINES

The dual and quad op amps are available from the better mail order companies, if you cannot obtain them from your local stockist. Electrovalue supply the printed circuit mounting pots.

The signal switches were RS Components stock and these may have to be ordered through a retail stockist. They are worth the bother of obtaining.

The case is a West Hyde Developments type CL2CDJ. Finally the 1537A VCA chips can be obtained from Aphex Audio Systems UK Ltd., 35 Brittania Row, London N1 8QH.
imately 10 Vpk-pk (adjusted by RV8 and varying between 0 and +10 V DC (adjusted by RV9). By altering RV6 and RV7 which control the charge and discharge rates of capacitor C9 (which in turn controls the overall frequency and shape) the best setting can be found whereby RV5 controls the frequency of the sine wave between approximately 0.1 Hz and 10 Hz . Fairly careful adjustment of these two presets is necessary and it is a distinct advantage if a scope is available with a slow time base so that the waveform can be studied for purest sine wave.

The manual control function circuitry is simple consisting of only two components RV11 and RV12. The DC voltage at the wiper of RV12 should vary between 0 and 10 V dependent on wiper position and is adjusted by RV11.

The external control circuit is equally as simple but an external pot is necessary in the shape of a foot pedal. RV10 adjusts for a wiper voltage of 0 to 10 V DC for different values of pot. Alternatively a control voltage of 0 to 10 VDC relative to chassis can be fed in from some external control circuit.

The control voltage phase splitter is next to be assembled and set up (R36-40, C27-30, IC5 and RV13,14). With a known input voltage of 0 to +10 V DC (derived best from the manual pot by pressing the manual switch and varying the pot) the voltage at pin 1 of IC5 should be 0 to $-10 \vee \mathrm{DC}$ the op amp being a simple unity gain inverter. The output at pin 7 should be the same size pk to pk (adjusted by RV13) but 180° out of phase ie -10 to 0 V DC (adjusted by RV14).

There is no further setting up to be undertaken so the rest of the circuit can be installed and testing of the whole job undertaken.

Construction should pose no problems. The two PCBs hold almost all of the components and controls.

Fig.4. Component Overlay for the single sided board, which carries the power supply

Fig.5. Component Overlay of the double sided board.

PARTS LIST

RESISTORS All $1 / 4 \mathrm{~W}$,	5%
R1	1 kO
R2,3	6 M 8
R4,5	1 M 2
R6,20,32,35,43,45	$4 k 7$
R7,10,11,12,25	$22 k$
R8,9	$1 k 5$
R13,14,17,24,39	$47 k$
R15	$82 k$
R16	$33 k$
R18,36,37,40	$100 k$
R19,20,21,31,33,44,	
46	$10 k$
R22,23,26,27,28,29,	
41,42	$3 k 3$
R34	$220 R$
R38	$68 k$
R47,48	$12 k$

POTENTIOMETERS
RVi
R. $\sqrt{2}$

RV3.4,12
RV5
RV6,7,9
RV8,13
RV10,11
RV14
RV15
RV16
$47 \mathrm{k} \log$ PCB mounting pot 1 MO lin PCB mounting pot 100 k lin PCB mounting pot 10k lin PCB mounting pot 500k min horiz cermet preset 47 k min horiz cermet preset 100k min horiz cermet preset 220k min horiz cermet preset 100k lin dual PCB mounting pot 47 k log dual PCB mounting pot

CAPACITORS
C1,12,17,24,27,30,33 22p polystyrene
C2,5,6,8,10,11,13,14,
$18,19,20,21,23,25,28$,
29,3
C
C $4,9,26,34$
100 n polyester
C4,9,26,34 $\quad 1 \mathrm{u} 025 \mathrm{~V}$ electrolytic
C7 10 u 16 V electrolytic
C15 22u 25 V electrolytic
C16,22,32
C35
C36,37
C38,39
SEMICONDUCTORS
IC1,5,8
IC2
IC3

IC4
IC6.

ZD 1
LED 1
LED 2-9
D1-3
MISCELLANEOUS
SW1a and b
T1
FS1
Mains connector, input and output sockets case (see Buylines).

BUILD YOUR OWN METAL DETECTOR VLF/TR VCO/TR IB/TR BFO

ALTEK
(ETI), 1 Green Lane
Walton-on-Thames Surrey
Order by post or phone (24 hours)
Phone
$(083$
22

HAND HELD GAMES

Supersonic Mastermind Galaxy Invader ENTERPRISE 4 in 3 Games and calculator in one Electronic Mastermind U.F.O. Master Blaster Amaze-A-Tron maze game Touch Me by ATARI (like Simon) Football (two players) ZAP missile gam - DIGITS (like Mastermind) AUL GAMES HAVE SOUND E14.95 EXCEPT

ATARI video
computer

SPACE INVADERS CART STAR CHESS T.V. Game DATABASE Prog. T.V. Game HESSMATE B NEW £89.95 CHESS CHALBENGER 7. NEW £59.95 CHESS CHALLENGER $10 \quad$| ©99.00 |
| :--- |
| 180.00 | VOICE CHALLENGER ... £219.00 CHECKER CHALLENGER $2 \ldots £ 54.00$ CHECKER CHALLENGER 4 . $£ 90.00$ ZODIAC Astrology Computer Snooze Alarm …....NEW $\begin{gathered}\mathbf{2 9 . 9 5} \\ \mathbf{1 4} 90\end{gathered}$ EL-MAC 5MHz Scope $£ 139.90$ RADAT 10MHz Scope … 169.00

Featured in Nov issue of ET TI Featured in Nov issue of E T
Home TV Game - B W Ki Basic Kit $£ 28.90$ Contains everything except box and conBox \& Controls - $\mathbf{£ 6 . 5 0}$. Mains Adapto - $\mathbf{8 3 . 9 0}$ Play 7 games with 4 options on each game 4-Pinball games 2-Basket. 1-Breakou $\begin{array}{ll}\text { Versatile car alarm kit } & \mathbf{E 1 8 . 9 0}\end{array}$ see review in Hobby CHROMA CHIME 24 tune door chimes kI £10.75 Built £15.95 C B Aerials and Accessories
COMPUTERS - Home, Business etc. PET 8K PET 16 K
$£ 550.00$ SORCERER 16K $\quad £ 747.50$ SOACERER 16K £874.00 SORCERER 32K ….........887.75 SUPERBOARD $114 \mathrm{~K} \ldots . . £ 172.45$ UK 101 Kit 4 K Built 4K
£226.85
£286.35 RSBO Level $216 \mathrm{~K} \quad . \quad . \quad £ 409.40$ $51 /{ }^{\prime \prime}$ ' Floppy Drive $£ 288.65$ Dual Drive $E 506.00$ NASCOM 2 Kit …...... £339.25 HEATH WH89 $£ 1805.00$ HEATH WH 14 Printer $£ 586.50$ Softy Kit $\quad £ 115.00$ Softy Buil
£138.00 Intelligent EPROM Programmer PRINTEAS: FLOPPY DISC: BOOKS
S.an. Enquiriss. Please alow up to 21 days for delinary. All prices inc. of Var.

61 BROAD LANE, LONDON N. 154 D
 yourself and answer questions on each new aspect as you go. This gives rare satisfaction - you know that you are really learning and without mindless drudgery. With a good self-instruction course you

become your own best teacher

Understand Digital Electronics

In the years ahead digital electronics will play an increasing part in your life. Calculators and digital watches mushroomed in the 1970's -soon we will have digital car instrumentation, cash cards. TV messages from friends and electronic mail.
After completing these books you will have broadened your career prospects and increased you knowledge of the fast-changing world around you.

DIGITAL COMPUTER LOGIC AND ELECTRONICS £7.00
 This course is designed as an introduction to digital electronics and is written at a pace that suits the raw beginner. No mathematical knowledge is assumed other than the use of simple arithmetic and decimals and no electronic knowledge is expected at all. The course moves painstakingly through all the basic concepts of digital electronics in a simple and concise fashion: questions and answers on every page make sure
 that the points are understood

 Everyone can learn from it housewives, scientists. its four A4 volumes consist of: conversion of fractions; octalldecimal conversion tablesBook 2 AND. OR gates; inverters. NOR and NAND gates; truth tables: introduction to Boolean algebra.
Book 3 Positive ECL: De Morgans Laws; designingłlogic circuits using NOR gates; dual-Inpui gates.

egisters: half-adders
 DESIGN OF DIGITAL SYSTEMS $£ 12.50$

This course takes the reader to real proficiency. Written in a similar question and answer style to Digital Computer Logic and Electronics, this course moves at a much faster pace and goes into the subject in greater depth. Ideally suited for scientists or engineers wanting to know more about digital electronics, its six A4 volumes lead step by step through number systems and Boolean algebra to memories, counters and arithmetic circuits and finally to an understanding of calculator and
 computer design
Book 1 Octal, hexadecimal and binary number systems; conversion between number systems; representation of negative numbers; complementary systems: binary multiplication and division.
Book 2 OR and AND functions: logic gates; NOT, exclusive-OR, NAND. NOR and exclusiveNOR functions: multiple input gates; truth tables; De Morgans Laws; canonical forms; logic conventions; karnaugh mapping; three state and wired logic.
Book 3 Half adders and full adders; subtractors; serial and parallel adders; processors and arithmetic logic units (ALUs); multiplication and division systems.
Book 4 Flip trops; shift registers; asynchronous and synchronous counters: ring. Johnson and exclusive - OR feedback counters; random access memories (RAMs) and read only memories (ROMs)
Book 5 Structure of calculators: keyboard encoding; decoding display data; registe systems; control unit; program ROM; address decoding; instruction sets: instruction decoding; control programme structure.
Book 6 Central processing unit (CPU); memory organization; character representation program storage; address modes; input/output systems; program interrupts; interrup prioritues; programming; assemblers; computers; executive programs: operating systems and time sharing.

Flow Charts and Algorithms

are the essential logical procedures used in all computer programming and mastering them is the key to success here as well as being a priceless tool in all administrative areas -presenting safety regulations government legislation, office procedures etc
THE ALGORITHM WRITER'S GUIDE $£ 4.00$
explains how to define questions, put them in the best order and draw the flow chart, with numerous examples.

Microcomputers are coming - ride the wave! Learn to program.
Millions of jobs are threatened but millions more will be created. Learn BASIC - the language of the small computer and the most easy-to-learn computer language in widespread use. Teach yourself with a course which takes you from complete ignorance step-by-step to real proficiency with a unique style of graded hints. In 60 straightforward lessons you will learn the five essentials of programming: problem definition, flowcharting, coding the program, debugging, clear documentation. Harder problems are provided with a series of hints so you
 never sit glassy-eyed with your mind a blank. You soon learn to tackle really tough tasks such as programs for graphs, cost estimates, compound interest and computer games.

COMPUTER PROGRAMMING IN BASIC $£ 9.00$

Book1 Computers and what they do well; READ, DATA. PRINT. powers, brackets, variable names; LET; errors; coding simple programís
Book 2 High and low level languages; flowcharting: functions; REM and documentation INPUT. IF... THEN, GO TO; limıtations of computers, problem definition
Book 3 Compilers and interpreters; loops. FOR...NEXT. RESTORE debugging; arrays bubble sorting: TAB
Book 4 Advanced BASIC: subroutines: string variables; files complex programming examples: glossary

THE BASIC HANDBOOK £11.50

This best-selling American title usefully supplements our BASIC course with an alphabetical guide to the many variations that occur in BASIC terminology. The dozens of BASIC 'dialects' in use today mean programmers often need to translate instructions so that they can be RUN on their system. The BASIC Handbook is clear, easy to use and should save hours of your time and computer time. A musi for all users of BASIC throughout the world

FORTRAN COLORING BOOK $£ 5.40$

If you have to learn Fortran (and no one actually wants to assimilate it for the good of the soull buy this book. Forget the others-this one is so good it will even help you understand the standard, dense, boring. unintellible texts." New Scientist

A.N.S. COBOL $£ 4.40$

The indispensable guide to the world's No. 1 business language. After 25 hours with this course, one beginner rook a consulting job documenting oil company programs and did invaluable work from the first day. Need we say more?

GUARANTEE - No risk to you

If you are not completely satisfied your money will be refunded on return of the books in good condition.

Please send me:
Digital Computer Logic \& Electronics @ $£ 7.00$
Design of Digital Systems @ £12.50
Algorithm Writer's Guide @ £4.00
Computer Programming in BASIC @ $£ 9.00$
BASIC Handbook@ £11.50
Fortran Coloring Book @ £5.40
A.N.S. Cobol @ £4.40

FUUR WAYS TO PAY

1) A U.K. cheque or a U.K postal order (Not Eire or overseas)
2) A bank draft, in sterling on a London bank (available at any major bank)
3) Please charge my Access/M.Ch $\square \quad$ Barclay/TrustC/Viss \square Am. Exp. \square Diners \square 4) Or phone us with these credit card details - 048067446 (ansaphone) 24 hour service

Card No
SURFACE MAIL WORLDWIDE AIRMAIL
HESE PRICES COVEA THE COST

Name

Address
U.K. Delivery: up to 21 days (or send 50 p for 1 st cl.p.)

Cambridge Learning Enterprises. Unit 12 Rivermill Site. FREEPOST St tves. Huntingdon
Proprietors: Drayridge Lid. address as above. Reg in Eng, No. 1328762

STOCKTAKING CLEARANCE SALE!

Thousands of Modules must go at Trade Prices
DIRECT TO THE PUBLIC RING 01-689 4138
and Order Now whilst stocks last

LB31000SL SOUND TO LIGHT A SUPERB PERFORMING SYSTEM
AT AN INCREDIBIY LOW PRICE AT AN INCREDIBLY LOW PRICE. 3 channels. 1000w each. Fully fused Very high input impedance. Operates from $1 / 4$ to 300 w sound input Third order fitters. Zero voltage fired Master/Vol/Base/Mid/Treble controis.

OSLC SOUND TO LIGHT/CHASER THE MOST ADVANCED SOUND TO UTOM MODC SWE AVAILABLE, WITH AUTOMATIC SWITCHING TO CHASE
UPON ABSENCE OF A MUSIC INPUT

3 Channels, 1000 w each. Fully fused Very high input impedance. Electronic filters 5 HZ to 70 KHZ bandwidth. Operates from $1 / 4$ to 300 w Master Vol/Bass/Mid/Treble/Chase speed controls

LB31000SL £14.89

LB81000LC CHASER An 8 channel chaser with speed and chase return delay. Can be wired as a 4 channel. (Rope light controller:)
£18.43

LB81000LC

LBA1000LS SEQUENCER LBGIC RANDOM SEQUENCER, WITH TW SPEED CONTROLS OFFERING A WIDE RANGE OF EFFECTS. 4 channels. 1000

1000w per channel CMOS circuitry Zero voltage fired Can be footswitch triggered. Additional modules can be
tascaded to torm 16.24 .32 chan cascaded to form 16, 24, 32 chan ect

LB41000LS £12.18 $+£ 1.83$ VAT LB31000LD and IOOOLD DIMMERS. FULL POWER 38 SINGLE CHANNEL LIGHTING DIMMERS for use in clubs/pubs/ theatres/Schools. etc. Full input and individual Triac filters £10.22 LB1000LD £4.66 NEW! lbacju
3.channel active crossover module with 18 dB boost 3.channel active crossover module with 18 dB boost
control of lift Bass mid or treble bands. Available with control of lift Bass mid or treble bands. Avallable with
crossover frequencies of 200 or 300 and 2 k or 3 kHz crossover frequencies ores LBPSUI $\pm: 15 \mathrm{v}$ supply for LABCOI $£ 4.31+65 p \mathrm{VA}$

PQwer amps, 250. 150.100825 w , etc. RUGGEO TOUGH DEALING AUDIO
POWER AMP MODULES.

LBPA3. Complete stereo disco preamp system. Compnsing of L\&R deck mixers. auto lade over decks. PFL, output drivers and its own regulators. LBPA2. General purpose 4 chan. mixer/to
LBPA1 Stereo
 LBRLD 1. Relay de layed speaker connee
ling device placed between Amp of
Speaker Spaaker
e4.96

ROPE LIGHTS NOW

 8 metres in length Red /blue green yellow. R.R.P £45 Units with Complete Control Units with forward/reverse andautomatic options from $2 / \mathrm{sec}$ to $2 / \mathrm{mm}$. R.R.P. $£ 69+£ 1035 \mathrm{VAT}$

POWER SUPPLIES
Four types of powertul supply units for our
power amps. Consisting of a varnish impregnated mains transformer and rectifier
board (fuse protected)

LB250PS E17.04 LB150PS £12.52 LB100PS £10.22 LB25PS £7.79

LBPA 1 £13.57 LBPA2 £11.97

LBPA3-M (magnetic deck inputs) 21.36

LBPA3-M . 9.5 cm deck inputs) £21.36

YOU REQUIREA BOARD THAT'S MIGHTY COMPETITIVE, RELIABLE MANUFACTURED FROM THE HIGHEST QUALITY COMPONENTS, OF HIGH PERFORMANCE, TESTED AND INSPECTED, SUPPLIED WITH CONNECTION AND CCT, DGM AND GUARANTEED. IN TWO LETTERS YOU REQUIRE L \& B L \& B. 45 WORTLEY ROA
 PPacking FREE in the UK except

0

Wilmslow Audio

THE firm for speakers!

SEND 50P FOR THE WORLD'S BEST CATALOGUE OF SPEAKERS, DRIVE UNITS, KITS CROSSOVERS ETC, AND DISCOUNT PRICE LIST.

AUDAX - AUDIOMASTER - BAKER - BOWERS \& WILKINS CASTLE - CELESTION - CHARTWELL - COLES - DALESFORD DECCA - EAGLE - ELAC - EMI - FANE - GAUSS - GOODMANS HARBETH - ISOPHON - I M.F - JORDON - JORDAN WATTS KEF - LOWTHER - MCKENZIE - MISSION - MONITOR AUDIO MOTOROLA - PEERLESS - RADFORD - RAM - ROGERS RICHARD ALLAN - SEAS - SHACKMAN - STAG - TANNOY VIDEOTONE - WHARFEDALE

WILMSLOW AUDIO

SWAN WORKS, BANK SQUARE WILMSLOW, CHESHIRE SK9 1HF

Tel. 0625-529599 FOR MAIL ORDER AND EXPORT OF DRIVE UNITS, KITS, ETC.

Tel. 0625-526213 (SWIFT OF WILMSLOW) FOR HI-FI AND COMPLETE SPEAKERS.

AUTOMATIC PORCH LIGHT

Take yourself home in style and don't be left in the dark with this ingenious Reader's Design from Mr P. Dakin

An automatic porch or outside light is a valuable asset to people who want their homes to have that 'some one about' look, and the convenience of the front door or drive lit when returning home during the hours of darkness. The circuit to be described will turn on a lamp when it is dusk and turn it off at dawn. There is, of course, a master On-Auto Off switch. The unit will handle lamps up to 500 W , with a 240 V supply, 250 W with a 115 V supply, and in the off state draws approximately 20 mA . The heart of the unit is the common 555 switching IC, but used in an uncommon configuration.

Construction

Fit all the components except C3, which is fitted after testing. The board is designed to fit into a MK type 2140 surface mounting wall box. The LDR may be mounted into the blanking plate MK type 3827 , as shown in Fig.2, or remote from the unit.

Fig.1. IC1 is used as a level dectector with hysteresis.

Fig.2. The LDR is mounted in the blanking plate (top). A shielding tube may be fitted if necessary (above).

Setting Up and Testing

Having built the board, check for solder splashes and dry joints. Set RV1 to mid-position, connect a lamp, the LDR and the mains. A WORD OF CAUTION, there is mains and rectified mains on the board, also the tab of the thyristor is connected to its anode. Be careful where you put fingers and voltmeter.

Now switch on. If the LDR is in a light area, nothing will happen. Darken the LDR and the lamp will light. Increase the light around the LDR and the lamp will extinguish. The exact setting of RV1 will depend on the

Fig.3. Circuit diagram. A common or garden 555 is at the heart of the unit.

HOW IT WORKS

Figure 3 shows the full circuit diagram of the unit. Light Dependent Resistor LDR1 is the sensor for the system. Its resistance depends upon the amount of light falling on it, the more light the lower its resistance. IC1 is used as a level detector with hysteresis. The 555 has inbuilt resistence levels of $2 / 3 \mathrm{Vcc}$ and $1 / 3$ Vcc. When the voltage on pins 2 and 6 rises above $2 / 3 \mathrm{Vcc}$ the output, pin 3, swings low, and as the voltage falls below $1 / 3 \mathrm{Vec}$ the output goes high as shown in Fig. 1.

RV1 is adjusted so that the unit switches on at the required light level. R3 and C3 form a 10 S time constant. This is the time it takes for the voltage on pins 2 and 6 to rise to $2 / 3 \mathrm{Vcc}$, asuming C3 charges from 0 V , and is included to reduce the possibility of false triggering, eg passing car headlamps, or children with torches! The supply for the circuit is via D1-D5, R1, and regulated by D6. C2 is supply smoothing.

The external lamp is switched by the thyristor SCR1. A thyristor was chosen because it is easier to trigger than a triac, and does not have a radio frequency interference problem in this configuration. The disadvantage of this method is that a diode bridge, D1-D4, is required, and the bridge must be capable of handling the lamp current.

It was found with early prototypes that mains transients could cause the lamp to flicker when nearing the lower (switch on) threshold level. A comprehensive filter circuit has been included, comprising D5, R1, C1 and C2.

Any high frequency spikes on the mains supply will pass via D1-D5 and be decoupled to the negative side of the supply by C1. The impedance of C1 being smaller than the value of R1. Should the mains voltage fail or fall for a few cycles, C2 would try to discharge through R1 and the lamp circuit. D5 and C2 hold the supply high for this short period, D5 being reversed biased.

The thyristor used is the C106D sensitive gate type. This requires $0 \vee 8$ cathode to gate, and 200 V gate current. It is triggered from the output of the 555 . R 5 and R6 form a potential divider to give approximately 2 V cathode to gate, sufficient to ensure reliable triggering. R5 also ensures the gate returns to the same potential as the cathode when the output of the 555 goes low, thus ensuring the thyristor remains untriggered.

The circuit may be modified for 115 V operation by reducing the value of R 1 to $4 \mathrm{k} 7(2 \mathrm{~W}$). The other components remain the same. However, because of the reduction in the supply voltage, the maximum wattage that can be switched is reduced to 250 W the current through the diode bridge D1-D4 and thyristor SCR1 being 2 A maximum.

Fig.4. Component overlay. THERE IS MAINS AND RECTIFIED MAINS ON THIS BOARD.

PARTS LIST

Final Installation

When the unit has been sucessfully tested, it can be mounted in an appropriate place. The method of connection is shown in Fig.5. The best position for the sensor is an outside location away from the influence of traffic, street lamps and neighbours' lights. If a suitable location cannot be found, a small tube to shade the sensor can be fitted which will increase its directivity, as shown in Fig.2. This completes the construction of the unit.

If the completed unit is mounted externally, some form of weather proof seal must be made between the box and the blanking plate. The best type of sealer to use is silicone bath sealer. Spread a small amount on the mating surfaces of the box and tighten down the plate. The sealer will harden and prevent water entering. ETI

AT BLINKIN' LAST! COLOURBOARD II THE NEW $50 H Z$ COLOUR VERSION OF OHIO SCIENTIFIC'S SUPERBOARD II IS HERE AND LIKE A TON OF BRICKS DOWN CRASHES THE PRICE OF STANDARD SUPERBOARD II.		COMPONENTSIN4 148 0.09p. 1N4002 2.9p 72314 dil 33 p. NE555 8 dil 24p. 7418 dil 18p. bc547, bc549. bc182, bc 184, bc212 bc214, bo 13227 p . plastic equiv bey 724.5 p . fuses to 10 M 1 p , 0.8 s for $50+$ of one value, polyester capactiors 01 mf $3.0 \mathrm{p}, .022 .033 \mathrm{mi}$. $3.3 \mathrm{p}, 047 \mathrm{mf}$ 4.0 p. $15,33 \mathrm{mi} 4.9 \mathrm{p}, 47 \mathrm{mt} 6.0 \mathrm{p}$. polystyrene capactiors E1263V10 to 1000 pf 3 p. 1 n 2 to 10 n 4 p . ceramic capacitors 50 V E6 22 pf to 47 n 2 p . electrolytic capacitors $50 \mathrm{~V} 5,1,2 \mathrm{mf} 5 \mathrm{p}, 25 \mathrm{~V} 5$. 100 mi \&p, $330,470 \mathrm{mf} 9 \mathrm{p}, 1000 \mathrm{mi} 11 \mathrm{p}$. zeners $400 \mathrm{mw} E 24 \quad 2 \mathrm{~V}$ to 33 V 7 p . preset pots sub- menature 01 W horiz or vert 100 to $4 \mathrm{M} 7 \mathrm{7p}$. murnature potentiometers $1 / 4 \mathrm{~W} 4 K 7$ to $2 M 2 \log$ or 1 in $\operatorname{singliz}$ battery eliminators
COMPUTER GAMES	bracketed price includes transtormer TTL. computer suppless 5 V 2 A ③.13 (E7.44), 5V 4A (EB.50), 2A ES. 50 (EA.8\$). Vartable voltage £3.30 (£6.75). 1.30 V 2 A £5.80 (E 12.10). PRINTED CIRCUIT MATERIALS En $1 / 32^{4}$ or 1 mm 34p. Etching dish 92p. Laminate cutter $£ 1.20$.	©3.77. $9+9 \mathrm{v}$ E4.99. $6+6 V$ $41 / 2+41 / V$ [4.99. casselte ecorder mans uni $71 / 2 \mathrm{~V} 100 \mathrm{~ms}$ with 5 pin din plug stabilizad type 3/ $6 / 71 / 2 / 9 \mathrm{~V} 400 \mathrm{ma}$ C5.97. car conver. ulput dc mput. 300 ma £ 1.19 . output $3 / 41 / 2 / 6 /$ $71 / 2 / 9 / 12 \mathrm{~V}$
PFM200 £E1.95. case $£ 2.07$, adaptor $£ 4.20$, con- nector kit $£ 13.95$. Microvision $\boldsymbol{\text { TV }} \mathrm{EES}$, manns adoptor E8.8. PDM35 E 34.23 . Mains adaptor $\mathbf{E 4} .20$. Csse E2.07. DM350 E78.70, DM450 E102.17. DM 235 batteries $\mathbf{E 7 . 0 9 , \text { mains adaptor/charger } \mathbf { E 4 . 2 0 } \text { , case }}$ Es. 90 . Enterprise prog calculator $£ 19.95$. New SC 110 Es.20. Enterprise prog calculas. 10 MHz oscilloscope E 144.95 . Chess challenger 7 (illustrated) $£ 84$. Chess champion 6 $£ 49.95$. Checker challenger $2 £ 46$. Star Chess $£ 62$. E49.95. Checker chalienger 2 e46. Star Chess 8.62 . Videocarrs $E 12.60$. Phillips $G 7000$ Videopak home computer $£ 139$. Video paks $£ 12.95$. Atar, Videocom. puter $£ 129$. Camndges $£ 14.85$ (except chess $£ 43.95$ and backgammon £33.95).	BI-PAK AUOIO MODULES Al30A 54.53 . T538 $£ 2.70$. 5450 E27.90. 	BoOma E 2.7 F . BATTERY ELIMINATOR KITS 100 ma ractio types with press.sluc connectors 4. $4 / 2+4 / 25$ 13. way Ivpas $4 / 2 / 2 / 6 / 7 / 81 / 2 / 11 / 13 / 14 / 17 /$
SWANLEY ELECTRONICS Dept, ETI, 32 Goldeel Road, 8 wenley, Kent BRE BEZ. Mal order only Please add 35 postage Prices include VAT unless stated Lists 27 p post free Overseas customers deduct 13% Official credit orders welcome	SPM80 £5. 26. B Stereo 30 £23.84. AL80 £8.56.	21/25/28/34/42V 1A E5.52. 2A C8.80. car convertor input 12 V dc. output $6 / 7 \frac{1}{2} / 9 \mathrm{~V}$ iA stabilized £1.35. S-DEGS AND T-DECS S-Dec E3.79. T-Dec £4.59. u-DecA E4.69. U-DecB £7.16. 16 dil adaptor $£ 2.31$.

III
 ?SIIDVIC

How to order: Make cheques payable to ETI Book Service. Payment in sterling only please. Orders should be sent to: ETI Book Service, Modmags Sales Office, 145 Charing Cross Road, London WC2. All prices include P\&P. Prices may be subject to change without notice.

BEGINNERS

Beginners Guide to Electronics Squires $£ 3.45$
Beginners Guide to Transistors Reddihough £3.45
Electronics Self Taught Ashe $£ 4.60$
Beginners Guide to Integrated Circuits Sinclair £3.45
Understanding Electronic Circuits Sinclair $£ 4.20$
Understanding Electronic Components Sinclair $£ 4.20$
Beginners Guide to Radio King $£ 3.45$
Beginners Guide to Audio Sinclair $£ 3.45$

COOKBOOKS

TV Typewriters Cookbook $£ 7.75$
CMOS Cookbook $£ 8.20$
Active Filters $£ 11.30$
IC Timer Cookbook $£ 7.50$
IC Op-Amp Cookbook $£ 10.00$
Video Cookbook $£ 7.00$
TTL Cookbook $£ 7.55$
The Basic Cook $£ 4.00$ inc. p/p
The Basic Cook $£ 4.00$ inc. p/p

APPLICATIONS

Fire and Theft Security Systems B. Weis $£ 2.15$
How To Build Electronic Kits Capel $£ 2.35$
110 Electronic Alarm Projects R. M, Marston $£ 3.95$
110 Semiconductor Projects for the Home Constructor R. M. Marston $£ 3.95$
110 Integrated Circuit Projects for the Home Constructor R. M Marston £3. 95
110 Thyristor Projects Using SCRs R. M. Marston £3.95
110 Wave Form Generator Projects R. M. Marston £3.95

CCOMPUTING \& MICROPROCESSORS

What is a Microprocessor? 2 cassette tapes plus a 72-page book £12.00
Beginners Guide to Computers and Microprocessors with Projects C Adams $£ 6.05$
Basic Computer Games Ahl $£ 5.40$
Basic for Home Computers A self-teaching guide B. Albrecht $£ 5.40$
Illustrating Basic D. Alcock $£ 3.00$
Intro to Microprocessors Aspinall $£ 6.55$
Z-80 Microcomputer Handbook W. Barden $£ 7.75$
How to Program Microcomputers W. Barden $£ 7.25$
Introduction to Microcomputers and Microprocessors A. Barna $£ 8.60$
Microprocessors in Instruments and Control R. J. Bibbero $£ 12.60$
Basic Basic J. S. Coan $£ 7.80$
Advanced Basic J. S. Coan $£ 7.30$
Getting Acquainted with Microprocessors L. Frenzel $£ 7.25$
Beginners Guide to Microprocessors C. M. Gilmore $£ 4.90$
Beginners Guide to Home Computers Grossworth $£ 4.50$
Beginners Guide to Home Compu
Beginning Basic R. E. Gosling £4.75
Microprocessor Programming for Computer Hobbyists N. Graham £7.15
Miniprocessors from Calculators to Computers Heiserman $£ 5.00$
Microcomputers, Microprocessors, Hardware, Software and Appli
cations J. L. Hilburn $£ 17.40$
Basic Programming J. G. Kemeny $£ 6.70$
Microprocessor Systems Design E. Klingman $£ 17.00$
Intro to Microprocessors Leventhal $£ 17.00$
Microprocessors - Technology, Architecture \& Applications D. R
McGlynn $£ 9.20$
McGlynn £9.20 Computing with Basic Monro $£ 3.65$
Interactive Computing with
Basic with Style P. Nagin $£ 4.25$
Basic with Style P. Nagin $£ 4.25$
Software Design for Microcomputers Ogdin $£ 7.20$
Software Design for Microcompute
Microcomputer Design Ogdin $£ 7.25$
Microcomputer Design Ogdin $£ 7.25$, $£ 5.70$
Hands on Basic with a PET Peckham $£ 9.00$
Basic - A hands on method Peckham £6.95
6800 Software Gourmet Guide and Cookbook Scelbi $£ 8.90$
8080 Software Gourmet Guide and Cookbook $£ 8.90$
The 8080A Bugbook: Microcomputer Interfacing \& Programming
P. H. Rony $£ 8.35$

8080/8085 Software Design Titus $£ 7.60$
57 Practical Programs \& Games in Basic Tracton $£ 6.65$
Microcomputer Primer M. Waité $£ 6.50$
Your Own Compger Waite $£ 1.60$
Microprocessor/Microprogramming Handbook Ward £6.2̄

LOGIC

Logic Design Projects Using Standard ICs J. Wakerly $£ 5.35$ Practical Digital Design Using ICs J. Greenfield $£ 12.70$ Designing With TTL Integrated Circuits Texas Instruments $£ 9.35$ How To Use IC Circuit Logic Elements J. Streater $£ 3.80$ 110 COSMOS Digital IC Projects for the Home Constructor R. M. Marston $£ 3.95$

Understanding CMOS Integrated Circuits R. Melen $£ 4.15$
Digital Electronic C ircuits and Systems R. M. Morris $£ 3.65$
MOS Digital ICs G. Flynn $£ 5.25$

TEST INSTRUMENTS

The Oscilloscope In Use Sinclair $£ 3.10$
Working with the Oscilloscope A. Saunders $£ 4.25$
Servicing with the Oscilloscope A. King $£ 6.65$
Radio Television and Audio Test Instruments King $£ 7.00$

OP-AMPS

Applications of Operational Amplifiers Graeme (Burr Brown) £8.45 110 Operational Amplifier Projects for the Home Constructor R. M. Marston $£ 3.95$
Designing With Operational Amplifiers Burr Brown $£ 18.35$
Operational Amplifiers Design and Applications G. Tobery (Burr Brown) £7.55
Op-Amp Circuit Design \& Applications J. Cart £4.15

COMIMUNICATIONS

Communication Systems Intro To Signals \& Noise B. Carlson $£ 7.65$
Digital Signal Processing Theory \& Applications L. R. Rabiner £24.40
Electronic Communication Systems G. Kennedy £8.75
Frequency Synthesis. Theory \& Design Mannassewitsch $£ 23.80$
Principles of Communication Systems H . Taub $£ 8.40$

THEORY

Introduction to Digital Filtering Bogner $£ 10.60$
Transistor Circuit Design Texas Instruments $£ 9.75$
Modern Electronic Maths Clifford $£ 6.95$
Foundations of Wireless Electronics M. G. Scroggie £5. 25

$=$ REFERENCE

Electronic Engineers Reference Book (Ed. 4) L. W. Turner $£ 34.50$
Electronic Components M. A. Colwell $£ 2.70$
Electronic Diagrams M. A. Colwell £2.70
International Transistor Selector T. D. Towers New update $£ 10.20$
International FET Selector T. D. Towers $£ 4.35$
International Op-Amp Linear IC Selector Towers $£ 7.65$
Radio Valve and Semiconductor Data A. M. Bell $£ 3.60$
Radio, TV and Audio Technical Reference Amos $£ 30.40$

-MISCELLANEOUS

Electronic Fault Diagnosis Sinclair $£ 3.55$
Integrated Electronics J. Milman $£ 8.20$
Practical Solid State DC Supplies T. D. Towers $£ 6.40$
Practical Triac/SCR Projects for the Experimenter R. Fox $£ 2.35$
Printed Circuit Assembly Hughes \& Colwell $£ 2.70$

Fallen behind recent advances?
Just starting out?
Need a decent reference book?
ETI Book Service provides an easy
way of getting your hands
on the right title.

STATE VARIABLE

The Voltage Controlled State Variable Filter has low pass, high pass, band pass and notch filtering capabilities. The first three responses are available as both two pole (12 dB /octave) and four pole ($24 \mathrm{~dB} / \mathrm{oc}$ tave) filters. Manual and external control of resonance is included.

Design Features

The state variable filter using three operational amplifiers, as shown in Fig.1, is probably familiar to most readers.

Fig.1. Circuit diagram of a state variable filter using three op amps.

[^3]Solid State Micro Technology for Music, namely, the SSM2040. This device contains four closely matched transconductance amplifiers and an exponential generator which is common to the four cells. For resonance control the relatively new LM13600, dual transconductance amplifier, is used in the feedback of the two stages of state variable filters. Both manual and external voltage control of resonance is provided and while these controls are additive the maximum useful range is our standard 0 to 10 volts into 100k.

Seven filter responses are available, one at a time, via a selector switch - low pass (12 and 24 dB /octave); high pass (12 and 24 dB /octave); band pass (2nd and 4th orders); and notch. The low pass and high pass outputs are 180° out of phase and so combining these outputs results in a notch. A notch filter is of limited use in synthesis since the ear only responds to frequencies present and not to frequencies which are absent. The latter may sound rather obvious but since the notch filter allows most frequencies to pass the ear cannot detect the difference between the original and filtered signals, except in some exceptional circumstances or unless the notch is fairly wide.

The filter has three signal inputs and the combined signal should not exceed 10 volts peak to peak. An attenuating potentiometer has been provided on one of the inputs and if mixing of signals is required then external attenuating controls can be used. The filter has approximately unity gain at maximum resonance feedback.

Frequency response control is obtained using the exponential converter within the SSM2040 and an attenuating network, with adjustment, allows the $1 \mathrm{~V} / \mathrm{oc}-$ tave characteristic to be obtained. Initial frequency (zero control voltage) is set to approximately 20 Hz and the filter has a 1,000:1 control range. Control Input 1 is used for keyboard input; Control Input 2 has an attenuating potentiometer for use in conjunction with an envelope shaper, etc; a Coarse control provides manual sweep over 10 octaves and a Fine control is included for more accurate initial setting and has an adjustment range of one octave. Temperature stability should not be

Fig.2. The voltage controlled state variable filter can be built into this Teko Alba case (see Buylines) as a 'stand alone' project.
a problem under normal circumstances. If required, however, R47 may be replaced by a Q81, 1k0, 1\% temperature compensating resistor.

Construction

The first point to note is that the SSM 2040 outputs (OUT, CAPACITOR and IN) are not short circuit protected and shorting any of these to either supply will generally blow the circuit, although connections to ground can be tolerated for several seconds. Some additional resistors have been used to provide additional safeguard in the latter circumstances. Take particular care on both the orientation of this IC and when any probes are connected to components on the PCB, for whatever reason.

Identify and solder the seven wire links before installing components. The capacitors around the SSM2040 will accept both preformed (as illustrated) and normal polystyrene capacitors. When all components have been installed, the two holes remaining around IC1 are for installing a Q81 temperature compensating resistor, when required. The manual resonance control (RV2) may be wired via the jack socket used for the external resonance control such that the former is disabled when external control is in use. The manual and external controls may also be wired up independently but no increase in gain will be achieved when their combined voltages exceeds the equivalent of about 10 volts into 100k, eg manual control half way and five volts external input. In fact the resonance will begin to decrease somewhere above 10 volts.

The most complicated task is wiring up the switch
but this should not pose any problems if reference is made to both the circuit diagram and the PCB layout.

Setting Up And Calibration

First adjust the module to achieve the seven filter responses. These can be readily observed on an oscilloloscope by using the VCLFO and VCO as a sweep frequency generator, as described for the 80-6 filters. There are, however, only two adjustmenst to make in order to ensure that the seven responses are present (assuming no wiring errors) and these can be made by ear with the aid of an amplifier, as shown below.-

Fig.2. The seven filter responses can be inspected with the circuit shown above.

Set Coarse frequency controls on VCLFO and filter 80-7 to mid position and to zero on the VCO. With the edge connections of the filter facing you and the components uppermost set the wipers of both PR1 and PR2 to about the 9 o'clock position. Put selector switch on BP2 output and slowly turn PR1 anti-clockwise. Initially there may be no output but then a low pass output will be heard. Further rotation of PR1 will result in a fairly abrupt change from low pass to band pass and this is audibly obvious. PR1 should be left at this setting. Now switch to LP4 output and turn PR2 slowly clockwise. Initially nothing will be heard and then a low pass response. PR2

If you wish to build all of the Project 80 modules and install them in a single case with keyboard, mount the PCB on this front panel. At the end of the series you'll have a matching set.

Fig.2. Circuit diagram of the state variable filter.

HOW IT WORKS

The SSM2040, VCF produced by Solid State Micro Technology for Music, contains four independent filter sections which may be interconnected to provide a wide variety of filter responses. Each section contains a transconductance amplifier followed by a buffer and by using two of these sections with an external op amp a state variable filter may be realised as shown below.

Fig.3. Using the sections of the SSM 2040 and an op amp to form a state variable filter.

The signal levels into the gain cells should be limited to 2 mV RMS and since $\mathbf{R 2}$ should be 200 R for optimum control rejection then $R 1$ is 10 k with a 1 V signal at the op amp output. The equivalent input noise for the SSM2040 is $0.5 \mathrm{u} . \mathrm{V}$ RMS at 20 Hz to 20 kHz so a signal to noise ratio of about 90 dB is achieved. In the first state variable filter section around IC 3a, IC2, IC1a and IC1b a 10 V signal into R 1 , 2 or 3 is reduced by IC2 and R4 to produce the 1 V into attensating resistor network R5, 6. The two pole low pass, high pass and band pass filter responses are derived and a notch produced by combining the low and high
pass outputs which are 180° out of phase. These four outputs are connected to the rotary switch, SW1a and the signal restored to its original level by R49, R 50 and IC5b. The signals are AC coupled into IC5b to remove any DC offsets.

The low pass, high pass and band pass outputs from the first stage are also separately connected to rotary switch, SW1b and fed into the second stage formed around IC3b, IC4a, IC1C and IC1d. The four pole outputs derived in this section return to switch SW1a and are available via IC5b, as before.

Resonance control is provided by an LM13600 (IC3), dual transconductance amplifier, interposed between the band pass output and the non-inverting input of the filters external op amps (IC2 and IC4a). The amount of feedback is controlled by the current developed across R 39 and this has been commoned for both halves of the LM13600. Manual control is obtained via RV2 and R36 into IC4b and external voltage control via R34 into the same input summing node. The control voltage should be limited to an equivalent of 10 V into 100 k .

Frequency control is common to all four amplifiers in the SSM 2040 and best results for a 1,000 to 1 sweep in the range 20 Hz to 20 kHz is obtained with +90 V at pin 7 . Resistor R 40 connected to - 15 V provides approximately +90 mV and a lower frequency limit of about 20 Hz . A 0 to +10 V control voltage into Control Inputs 1 or 2 will then allow frequency adjustment over a range of ten octaves. Manual adjustment over a ten octave range is provided by the Coarse Control (RV4 into R43) and Fine Control over a range of one octave by RV5 into R44. Precise adjustment of the 1 V per octave response is achieved by adjusting the gain of IC5a using PR3.

should be left at the setting where the low pass output commences. The selector switch can then be turned through its seven outputs to check that the appropriate response is present and these can be clearly identified by ear. If an oscilloscope is available then switching to BP2, LP4 and HP4 outputs and making minor adjustments to both PR1 and PR2 may result in some improvement to the filter responses

The final step is to calibrate the filter for 1 V /octave frequency control. The $80-7$ filter will not oscillate at maximum resonance feedback and so the best approach is to observe the maximum signal amplitude using an oscilloscope. Connect the sinewave output from a VCO to Signal Input 2. Connect the LP4 output to an oscilloscope, set VCO frequency to about 250 Hz and adjust RV4 (Coarse Control) and RV5 (Fine Control) to obtain maximum signal amplitude. Increase voltage on Control Inputs 1 of both VCO and VCF by exactly 1 V and adjust PR3 until maximum amplitude is restored. Repeat the above steps until calibration is achieved. If an oscilloscope is not available then an alternative ap-
proach is to set all VCF controls to zero and apply about 4 V to Control Input 1 and measure the voltage at the junction of R46 and R47, using a high input impedance voltmeter. Increase the control voltage by exactly 1 V and then adjust PR3 to obtain an 18.0 mV change at the junction of R46 and R47. Again repeat the procedure until an 18.0 mV change is obtained for a 1.000 V change in control voltage.

BUYLINES

An 80-7 State Variable Filter module kit (PCB plus components) is available for the inclusive price of $£ 20.10$ from Digisound Ltd, 13 The Brooklands, Wrea Green, Preston, Lancs PR 4 2NQ.

The modules are cased in Teko Alba A23G cases (order code TEK A23G), available from West Hyde Developments Lid, Unit 9, Park Street Industrial Estate, Aylesbury, Bucks HP 20 1ET at E4.43 each all inclusive.

ENVELOPE SHAPER

Tamper with your time constants. This Project 80 design by R.C. Blakey gives full control of Attack, Decay, Sustain and Release.

The envelope generator is based on the SSM2050, a voltage controlled transient generator produced by Solid State Micro Technology. Using this IC all that is necessary to vary the time constants for the AtI tack (A), Initial Decay (D) and Final Decay or Release (R) is a voltage applied to the appropriate pin via a scaling resistor. A minimum range of 2 mS to 20 S is available for each of the three timing functions. The voltage response is exponential which means that the most useful time range utilises the highest proportion of the associated control potentiometer. The attack output is nominally 0 to 10 V and the Sustain level (S) is simply a voltage applied to Pin 12.

It has separate gate and trigger inputs whereby a combined gate and trigger pulse will initiate a full ADSR response; a trigger applied after the first one and while the gate pulse is still present will restart the attack response and a gate pulse on its own will generate an $A D$ contour. When the gate pulse is released the final decay commences, as is usual with ADSR and AD envelope shapers.

Fig.1. Wave forms associated with envelope processing.

The time constants may be trimmed so that any number of ADSR's can be adjusted to exactly the same scale. Also an adjustment to ensure that the sustain voltage accurately matches the peak attack voltage is provided. The output buffer in the SSM2040 is adequate for most practical purposes but to retain our 'plug in anything to anywhere' philosophy an external buffer has been added. Other features included are external initiation of the ADSR or AD contours, for example, from a manual push button, as well as provision to use gate and trigger pulses derived from TTL logic.

Construction

The PCB is designed to take two envelope generators and as usual will fit either a panel or the TEKA ALBA A23C case. If the latter is used then there is only sufficient panel space to sensibly install a single envelope generator.

Construction is very straightforward and the only points to note are the single wire link and the opposed orientation of the SSM2050 and the 741 buffer.

An on-off switch, SW1, is connected across the inputs marked 'TRIGGER (CMOS)' and 'GATE (CMOS)' so

that when only single pulses are available, eg, manual gating, then both the ADSR (SW1 closed) and AD (SW1 open) responses can be obtained. The manual gating can be added by connecting a push to make switch between the PCB connections marked 'OUTPUT FOR MANUAL CATE' and 'MANUAL GATE'. The push button may be panel mounted but the preferred approach is to take the former connection to a jack socket and to use an external hand, or foot, switch connected to two jack plugs. These jack plugs go to the Gate (G) input and the Manual input (from R11). The option and type of switch is left to the constructor.

Resistors R12, R13 and R14 are not part of the basic kit but are to be installed by constructors who are using TTL logic to derive gate and trigger pulses. Also in this case the switch. SW1, is connected across the PCB con-

HOW IT WORKS

The SSM2050 Voltage Controlled Transient Generator contains a voltage controlled resistor to generate the nominally exponential slopes and various logic devices to define the states. An attack flip-flop (AF/F) is set by the trigger pulse and reset by either NOT GATE or the attack comparator determining that the output has reached +10 V . Thus ATTACK $=$ GATE and AF/F; INITIAL DECAY = GATE and NOT AF/F; FINAL DECAY = NOT GATE. Each state is characterised by a nominally exponential approach to a characteristic voltage; these being +13 V , sustain voltage and 0 V for attack, initial decay and final decay respectively.

The input stages of the SSM 2050 logic inputs have a lateral PNP structure which protects them from excess voltages. Their sensitivity is 750 UA or 1V5 max., these being the minimum current and voltage required to trigger the SSM2050. For $5 \mathrm{~V}, 10 \mathrm{~V}$ and 15 V CMOS gate and trigger inputs these requirements are met using $1 \mathrm{k}, 10 \mathrm{k}$ and 15 k resistors respectively to these inputs.

The altack, initial decay and final decay inputs have a nominal impedance of 3 k 1 and a time constant sensitivity of 18 mV/octave with a 100 n timing capacitor (C4). An increasing positive voltage increases the time constant. Thus R6, 7 and 8, connected to +15 V via the rotary controls RV2, 3 and 4 , will have nominal values of about 300 k to achieve a five decade timing range from 2 mS to 20 S . The input impedance, however, varies by up to $+25 \%$ between devices. Fortunately the impedance may be measured with a high input impedance ohmmeter as the resistance between pins 1 and 7 and so the appropriate scaling resistor may be selected by multiplying this resistance by 100 and adding 10k. The nearest E24 resistor is chosen and more precise adjustment of timing is achieved by injecting a small offset voltage via PR2 and R3,4 and 5. The attack voltage may vary between 10 and 11 volts and PR1, R1 and R2 provide a means of matching the maximum sustain voltage to the peak attack voltage. The sustain level can then be varied from 0 to 100% of allack voltage using RV1.

As an additional safeguard the output of the SSM2050 has been buffered by IC2 configured as a voltage follower.
nections marked 'TRIGGER(TTL)' and 'GATE(TTL)' to provide the same function as before. For manual gating with TTL a push to break switch should be connected between 'CATE(TTL)' and OV, since the gate and trigger pulses are held high by the additional resistors.

Setting Up And Calibration

Provide a means of manually gating the envelope generator as described in the previous section and the switch may be constructed from two strips of metal, if necessary. Connect the output to a voltmeter set to a DC range of 15 V and turn Attack control (RV4) to about 3 o'clock position and all other external controls to zero. Put SW1 in the ADSR position (gate and trigger commoned), turn PR1 fully anti-clockwise and PR2 about mid position. Apply power to the module, depress the manual button and keep held down while observing the voltmeter. The voltage should steadily rise and will probably take between 5 and 20 seconds to reach about 10 V . Since the module is not calibrated the time taken may be outside of the range stated. The important point is that the voltage increases to a maximum of about 10 V and then drops sharply to zero. If this response is observed then set Sustain control (RV1) to mid position and RV2, 3 and 4 to about the 3 o'clock position (a little less if the time to reach 10 V was greater than 10 seconds in the previous step or a little more if the time was less than 5 seconds). Press button and hold down as before. The voltage should now rise to about 10 V and then decay at the same rate to a voltage of approximately 5 V and remain steady. On releasing the button there will be a final decay to about 0V. Finally, open switch SW1 to check

PARTS LIST

Resistors	$1 / 4 \mathrm{~W}, 5 \%$
R1	Carbon film
R2	33k
R3,4,5	100k
R6,7,8	330k text
R9,10,11	see
R11	1k0
Potentiometers	
RV1,2,3,4	100k linear
PR1	22k carbon
PR2	100k carbon
Capacitors	
C1,2	10u 25V electrolytic
C3	10n polyester
C4	100n polyester
Semiconductors	
IC1	SSM2050
IC2	LM741CN,
	or equivalent
Miscellaneous	
SW1	Sub Min SPST
	(or SPDT) switch

the $A D$ response and repeat the last step. This time the voltage should rise to about 5 V and maintain this value until the button is released which will initiate the decay to about zero. Note that in the AD mode the Initial Decay control (RV3) determines the attack time and the Sustain level controls the amplitude of the $A D$ contour. The above demonstrates that all functions are operational.

The next step is to adjust the sustain voltage to match the peak attack voltage. Close SW1; set RV4 to about 3 o'clock; RV1 fully clockwise; RV2 and RV3 to the zero. Depress the manual button, observe the voltmeter and note whether there is a discernible drop in voltage after the attack has reached its peak. If so, turn PR1 clockwise and repeat the last step. Repeat until peak attack voltage and sustain level are matched. The adjustment to PR1 must be made in small increments so as to avoid having a higher sustain voltage than the attack voltage, otherwise malfunction of the SSM 2050 can occur. It is therefore better to err on the safe side and wait until the envelope shaper is connected to the VCA at which time any mismatch between the two voltages can be checked by ear and a minor adjustment made to PR1 to correct it, if necessary.

The final step is to adjust the time constants and this calibration is only required for the Attack time control ($\mathrm{R} V 4$). The module should be in the ADSR mode (SW1 closed) and all other control pots set to zero. If an oscilloscope with a triggered sweep is available then the gate and the oscilloscope can be simultaneously triggered and PR2 adjusted to give an attack time of 2 mS when RV4 is at zero. An alternative method is to time the attack period, for example, by observing a voltmeter connected to the output and measuring the itime between pressing the manual push button and the voltage dropping sharply. With the latter method adjust RV4 so that there is 10 V 0 at its wiper, trigger the module and adjust PR2 until the time taken is 9 S (slightly more than less). When this time is obtained turn RV4 to zero and check that a fast response time is obtained.

BUYLINES

A single 80-8 module with PCB and all components shown on the circuit diagram for CMOS inputs is available from Digisound Limited for $£ 9.83$ and a dual unit for $£ 17.02$, both inclusive of postage and VAT.

Quantum Electronics UNBEATABLE PERFORNANCE, UNBEATABLE PRICES

Have you noticed how the top end audio equipment has risen in price out of reach of many people? Even some kits are now very expensive. Well, while others make inflated claims about cost-elfective designs Quantum is the only one to deliver the goods. At £215.66 our 102/202 pre-power combination is the lowest cost British amplifier to cater for moving-coils and it gives a very generous 45 W per channel. It is also available in kit form for a mere $£ 162.21$! Our $102 / 204$ at $£ 237.81$ is the lowest cost 110 W British amplifier or in kit form it is £184.35. So how has this come about? We have not scrimped on the electronics. For instance, the pre-amplifier, though sparse in controls, uses no less than six I.C.s and 22 transistors in a unique and elegant circuit configuration. We have not lost out on performance. The overall t.h. d. of the pre-/power amplifier is below $.01 \%$ at 1 kHz , typically below $.005 \%$ at 10 W with a slew rate of $35 \mathrm{~V} / \mathrm{uS}$. The main reason our prices are so low is that we have taken steps in the design to produce a low cost method of assembly, and we have then priced them accordingly. This is exemplified in our 102 pre-amplifier, which, because of its single board construction, we can offer for $\mathbf{£ 8 0 . 4 1 \text { ready }}$ built or in a "no soldering" 20 minute easy build kit for $£ \mathbf{7 0 . 9 5}$. If this was in a more conventional package of module, loose pots, sockets, etc. we would have to charge more for no improvement in performance, just the dubious privilege of hours of fiddly wiring!

The 102, shown above with a 202, is all that virtually anyone requires catering for auxiliary, 2 or 3 head tape and moving coil or magnetic cartidge The sensitivity and load for the disc input is specified by a small, cheap (£3.30) plug-in card, which makes it ideal if you might upgrade to moving coil from magnetic - just buy a new card or change the existing components. Cards are available off the shelf to suit the majority of popular cartridges but full matching information is supplied with each pre-amplifier. When used with our 202 or 204, all that is required is a special connecting lead, called AC 1 at $£ 3.98$. For use with other power amplifiers there are mains power supplies both ready built and in kit form. These are described fully in our detailed information, as are our moving coil head amplifier modules and kits.

Our 205s are the ultimate in low cost super-f. Designed to drive any loudspeaker this is a mono power amp to be used in pairs for stereo, giving $145 \mathrm{Wr.m.s}$ into a $8 \mathrm{ohms}, 260 \mathrm{Wr.m.s}$. into 3 ohms, with a transtent power of 600 VA into 2 ohms. A complete system, including pre-amplifier, ready built is $£ \mathbf{~} \mathbf{8 5 5}$ plus leads or in kit form for $£ 277$ plus leads, the price you might pay for a low power system. The full range is described in our information

Our power amplifier kits are supplied with ready built and tested printed circuit boards and are complete down to the last washer They require only simple assembly and point to point wiring following the detailed instructions and wifing diagrams
Pre-Amplifier, built $102, £ 80.41$; kit $£ 70.95$. Lead, AC 1, £3.98. 45W, 202 built, £131.27; P2 kıt £87.28. 110W 204 built, £153.42; P4 kit £109.42.

MIODULES, SUPPLIES

The module used in the 102 pre-amplifier is available separately as the C2, at $\mathbf{£} \mathbf{5 1 . 7 5}$, and is complete including all pots, switches and sockets requiring only $a \pm 25 V$ supply a kit for which the CS 1 is $£ 12.13$

We have the widest range of power amplifier modules, from 45 to 260 W r.m.s. in the popular L bracket mounting up to 170 W "module rating" and in medium and high dissipation formats using large separate heatsinks. These achieve the highest standard of reproduction but can be used in stage or P.A. applications. We also have power supplies for use with these modules, all using toroidal transformers. Our largest is for two 260 W modules, using a massive 500 VA transformer. Full details in our information. We have too many items to describe in such a small space but here are a few examples:
QE1708-L bracket mounting giving $150 \mathrm{Wr.m.s} / 8$ ohms on our MS 3 supply
E31.96
M1508 - As QE1708 but with the power transistors mounted on a 76 mm
 M2603 - Giving $150 \mathrm{~W} / 8$ ohms 260 W m s $/ 3$ ohms this uses four 150 W power transistors mounted on two 76 mm heatsinks $\quad \mathbf{£ 5 0 . 2 8}$ MS5 - Toroidal power supply for 1 or 2 MS 2603

YES! IF YOU SEND AN ORDER TO REACH US BY 14 JULY ENCLOSING THIS AD. YOU CAN DEDUCT 10% FROM ALL OUR NORMAL PRICES! BEAT THAT!

* NEW SPEAKER KITS

Have you wondered why the existing sources of speaker kits offer a bewildering choice of systems, particularly combinations of 200 mm bass unit and tweeter? Don t they know which ones are best? If so why bother with the rest Well we have sorted out these super kits so you can order in confidence, knowing you gel ur full endorsement of their performance and value. The kits incorporate profesionally finished front baffles with the drive units already mounted so all the fiddly work is done for you. All that is left to do is to make a simple box Crossover networks, foam and terminals are also included

System 1. Small bookshelf design using Son Audax 200 mm bass unit and 25 mm dome tweeter, giving very good results from a small enclosure
System 2. Using similar drive units to system 1 this is a larger reflex design intended to be used on a stand. We can enthusiastically recommend this as the best 2 -unit kit we have heard to date with a smooth and extended bass response and excellent stereo image
System 3. A 3 -way I.B system using a Seas 250 mm bass unit Seas 120 mm midrange and Son Audax 25 mm dome tweeter. A floor standing design cleverly incorporating a stand at the bottom of the enclosure. Order now for August delivery
System 4. The most sophisticated, most expensive and undeniably the best speaker kit on the market using a 250 mm Volt bass unit with a 250 mm Volt ABR for the bass, a very specially treated Peerless mid range unit and a Son Audax 25 mm dome tweeter. The Rolls Royce of speaker kits comes with the active drive units mounted on the front baffle and the ABR on the rear baffle. A floor mounting design incorporating a stand as above. Excellent bass response and smooth untiring mid band and treble are the result of countless hours of dedicated development by one of the country's leading designers. Capable of very high sound levels when used with a good amplifier such as our 205 s Orders accepted now for August delivery

We will also be retailing selected drive units at competitive prices. Please ask for details.

System 1 £69.00. System $2 £ 89.00$. System $3 £ 159.00$ System $4 £ 359.00$ Son Audax 200 mm bass, 20B25J4 £13.50. 25 mm tweeter. HD1000 25 $£ 9.00$.

8 ALBION ST., LEICESTER

Write or phone for our full information. All prices include VAT and carriage Export is no problem - all equipment can be wired for 110 V - send for quote by return
Enquiries are invited from retailers and trade. Excellent discounts available

If you don't see what you want, ask. Tel: (0533) 546198

MIPRRNIS

ETIPRINTS are a fast new aid for producing high quality printed circuit boards. Each ETIPRINTS sheet contains a set of etch resistant rub down transfers of the printed circuit board designs for several of our projects.

ETIPRINTS are made from our original artwork ensuring a neat and accurate board. We thought ETIPRINTS were such a good idea that we have patented the system (patent numbers 1445171 and 1445172).

PARTS LIST

Shown below is the listing for the last year's ETIPRINTS.
$038 A$ Long Period
Timer
Rain Alarm
Touch Switch
Flash Trigger
Pseudo Random
Noise Gen
038B Hum Filter
Dice
Logic Probe
038C Function
Generator
039 Buffer
Moving Coil Preamp
Process Controller
039A Hum Filter
Logic Probe
039B Long Period Timer
Rain Alarm
Touch Switch
Flash Trigger
Pseudo Random Noise Gen

Dec 79 049A ETI $80-\mathrm{VCO}$
and VCLFO

040B ETI 80 - PSU
Tuning Fork
Filter
Coin Toss
041A ETI Audiophile
ETI VCA
Signal Trace
ETIHC
Electromyogram

041 B VCM

Heater Controller
022A 300W Amp Module
033 Fuel Level Monitor,
Alarm, Screen Controller
Dynamic Noise Reducer
042B Touch Dimmer,
Battery Charger,
RC Guardian
(Top, Bottom) 1 \& 2

Earlier sheets are available, ring Tim Salmon for details.

039C Function Generator

043 IR60 Preamps,
Receiver, PSU,
Servo Tester
VU-PPM

Feb 80 Feb 80	$\begin{aligned} & 032 B \\ & 033 \end{aligned}$	Fuel Level Monitor, Alarm, screen controller Dynamic Noise Reducer	Sep 79
Mar 80	$\begin{aligned} & 040 A \\ & 042 B \end{aligned}$	Touch Dimmer, Battery Charger RC Guardian (Top,Bottom) 1 \& 2	Apr 80
Mar 80 Apr 80	043	IR60 preamp, Receiver, PSU, Serva Tester, VU-PPM	May 80
Sep 79 Apr 80	044A	IR60 Function Board (Top \& underside) Control Circuit, Line Transmitter, Tape Response Meter Ohmmeter	June 80

May $80-044 B$ FM receiver
June 80

PSU \& Monitor Amp
Drum Synth
(function board)

HOW IT WORKS

Lay down the ETIPRINT and rub over with a soft pencil until the pattern is transferred to the board. Peel off the backing sheet carefully making sure that the resist has transferred. If you've been a bit careless there's even a 'repair kit' on the sheet to correct any breaks!

BUY LINES
 ORDER TODAY

Send a cheque or P O (pavable to ETI Magazine) to
ETI PRINT, ETI MAGAZINE
145 Charing Cross Road, London WVC2H OEE

SUPERIOR QUALITY AND RELIABILITY

CASIO＇S NEW EXECUTIVE WATCH

79CS－51B ALARM CHRONOGRAPH

Hours，minutes，seconds，am／pm and date．Calenda display．Day，date，month and year．Monthly calendar from the year 1901 to 2099． $1 / 10 \mathrm{sec}$ stopwatch 1012 hrs ．Net ap．Ist \＆ 2 nd 24 －hour alarm with 10 step tone control Hourly chimes，backlight，lithium battery．Steinless steel
case 8.6 mm thick．Mineral glass，water resistant．（RRP ${ }^{\text {£44．} 951} £ 39.95$

OUR BEST－SELLING WATCH CASIO C－80 CALCULATOR WATCH
（Finger－touch keyboard）． Hours．minutes，seconds am／pm，day．Day，date． month，auto calendar Professional 24 －hour stopwatch：net，lap． 1 st \＆
2nd place to $1 / 100 \mathrm{sec}$ 2nd place to $1 / 100 \mathrm{sec}$ Dual time．（24－hour） Nightlight，B digit calculato：
Water resistant．Glass Black resin case／strap ONLY £24．95

830S－41B ALARM CHRONOGRAPH

S／S encased．Minबral glass Water resistant 3 YEAR BATTERY，Hours，minutes seconds，date，am $/$ pm，or
hours，minutes，alpha day，date am／ pm ． 24 －hour alarm，hourly chimes．Stopwatch from $1-10$ second to 12 hours，net lap and 1 st and 2nd place Nightight ONLY £24．95

F．80．As above but w
£19．95
NOW AVAILABLE GOLD PLATED
83 GGS－41B（RRP £4495）
$£ 39.95$

F．8C £9．95； 111 OS． 34 B £14．95；F－200 £12．95； 950 S 42 B £17．95； $950 \mathrm{~S}-36 \mathrm{~B}$ £19．95； $560 \mathrm{~S}-38 \mathrm{~B}$ £24．95；
 £29．95．
LADIES＇CASIO
$£ 12.95$
NEW 11－NOTE MELODY MAKER
CASIO ML－82
Clock，calendar
musical alarm，houriy chimes， $1 / 10$ second stopwatch 1024 hours，net，lap and 1 s Calculator with musical keys，full memory，\％，square roots． $9 / 32 \times 21 / 2 x$ 43／4 inches． ONE YEAR BATTERAES
$£ 19.95$

NEW METRIC CONVERTER／ CALCULATOR

CASIO MC－34 CARD

34 conversion tunctions， 17 metric， 17 reversible．Dis ances，weights，areas volumes and temperatures．Calcula tar with GT me mory \％．square roots， 1.100 hours batteries $5 / 32 \times 3^{1 / 4} \times 2^{1 / 6}$
（£13．95）$£ 11.95$
Casio＇s guarantee is only valid if goods are purchased from an authorised dealer，who WON＇T advertise lower prices than ours．Nevertheless we promise to BEAT（sensible）lower prices IF the advertisers have stocks

Send for our FREE LEAFLET＇＇The whole truth about digital watches．＇

OUR BEST SELLING

 CALCULATOR

あもGぁもG ロロロヒもの ロロロロ日が

FX－8100 1 Year batteries Hours，minutes，seconds am／pm，day．Calendar pre－programmed to year 1999 24 －hour alarm．Alarm timer interval timer，or $1 / 100$ second stopwatch，net，lap，ist and roots 5 levels parentheses， hyperbolics．standard deviations co－ordinates． conversions． X to Y, X to M $\times 21 / 4 \times 51 /$＂＂$^{\prime \prime}$（RRP £27．95）
ONLY £24．95 HUNDREDS SOLD！ OTHER CALCULATORS
WITH CLOCK，ETC．
PW．B1 £14．95；AQ－1500£14．95；MO． 6 £ 19.95 ；MO． 12 £19．95；AQ－2200£19．95；ML－71 £22．95；ML－8 £22．95；HR－10 £29．95
SCIENTIFICS．With clock．FX－ $7100 £ 24.95$ ，Others FX．81£12．95；FX－100 £15．95；FX－330 £15．95；FX． 510

BETURN OF POST SERVIGE

Postal and telephone orders received before $4.00 \mathrm{p} . \mathrm{m}$ ．will normatly be despatched the same day by FIRST CLASS POST
Send your order by FREEPOST（2nd class post－no stamp required）．Please phone urgent orders or use first class nail

MONEY SAVING BARGAIN EX-STOCK FROM US
J.V.C. belt driven

WITH STEREO MAGNETIC AUDIO TECHNICA CARTRIDGE

LIST PRICE OVER £50

J.V.C. Turntable supplied com plete with Audio Technica AT10 stereo magnetic cartridge. Belt driven
'S' shaped tone arm
Modern design
Full size $12^{\prime \prime}$ platter Calibrated counter balance weight ($0-3$ grms)
Anti-skate (bias) device
Size $-12^{3 / 4^{\prime \prime}} \times 15^{1 / 4^{\prime \prime}}$ (approx)
AT ONLY
LIMITED £25.99
PLUS VAT £3.89 Post $£ 250$

GEC ${ }_{\text {qUALITY }}^{\text {HIG }}$ STEREO

$10+10$ watt AMPLIFIER WITH AM/FM STEREO TUNER IDEAL FOR THE HOME
A cancelled export order brings you this offer from the worldfamous firm of G.E.C.
AM/FM stereo Tuner Amplifier
Ready buill. Comprising of a tuner/pre-amp. board and separate power supply/power amp. board with wiring diagram.
Rotary Controls: Tuning. on/oft volume, balance. treble. bass. Stereo Bgacon indicator
Push-button Controls. Mono. Tape. Disc. A.F.C F.M. [VHF). LW. MW. SW.

Power Output: 7 watts RMS per channel. at betier ower Output: 7 watts RMS per channel. at betier
than 2% THO into 8 ohms. 10 walts speech and than 2^{2},
music.
requency Response: $60 \mathrm{~Hz} \cdot 20 \mathrm{KHz}$ within +3 HB
Tape Sensitivity: Oulput - rypically 150 my Input
300 nw for raled outpul.

LOW

 PRICE OFFERon/gFf balance. treble, bass, mono tape Phono afC fm lw mw sw tuning Volume

Fully Guaranteed Ex-Stock

Limited stocks Superb Value Don't delay order one today
x / ith. $\times 4 / \mathrm{sin}$.

CAR STEREO CASSETTE MECHANISM made for MOTOROLA

\star Front loading 12 volt transistorised \star Limited stocks
\star Speed \& Voltage control \quad Size onlr £7.50

INC. VAT
\star Ex-equipment - Tested O.K. \quad * Takes standard C60 cassette POST BOp

LIST PRICE £37.40 OUR PRICE £19.95 inc VAT
OST $£ 1.50$

Phone (01) 723 1008/9 404 Edgware Road, London W2, England I.E.D.

PRO M25 Protessional capacitor boom-arm microphone by Eagle. A gracefui 60 cm boomm-arm capaciler studie microphone using a cardifid capsule. A high Siandard of tinish for in invision usis and yet robust enoughto withstand long pariods between maintenance. Supplied complete with I red and 1 black windsthield and 6
screeneo cable ferminating at the microphone ond in an XLR connector. Impedance: 600 ohms flloating|. Response: $20-18,000 \mathrm{~Hz}$. Sensitivity: - 70 dBV . Cable: 6 metres 1 wo conducter shielded. Connector: XLR 3.11 C . Battery type: HP7.

find

A RANGE OF $31 / 2$ DIGIT LCD MULTIMETERS OFFERING HIGH PRECISION AND EXTENDED BATTERY LIFE. ALL TYPES FEATURE FIVE FUNCTION OPERATION (AC AND DC VOLTS, AC AND DC CURRENT RESISTANCE) WITH ABILITY TO CHECK DIODES. O.5" LCD DISPLAY WITH 'BATTERY LOW' WARNING. AUTOPOLARITY, AUTO-ZERO. FULL PROTECTION AGAINST TRANSIENTS AND OVERLOADS WITH ABILITY TO WITHSTAND MAINS ON ANY RANGE. RUGGED ABS CASES AND A COMPREHENSIVE 1-YEAR WARRANTY

The LMM-200 is a compact handheld multimeter with 0.5% basic accuracy and 15 different ranges. It measures $\mathrm{AC} / \mathrm{DC}$ voltage from 0.1 mV to $500 \mathrm{~V}, \mathrm{AC} / \mathrm{DC}$ current from $0.1 \mu \mathrm{~A}$ to 2 Amps and resistance from 0.1 』 to $2 \mathrm{M} \Omega .200$ hour battery life

The LMM-2001 is an identical instrument but with a 0.1% basic accuracy

The LMM-100 is suitable for field or bench use. It has a basic accuracy of 0.1% and 25 different ranges. It measures $A C / D C$ voltage from 0.1 mV to $1 \mathrm{KV}, \mathrm{AC} / D C$ current from $0.1 \mu \mathrm{~A}$ to 2 Amps and resistance from 0.1Ω to 20MS. Battery life is over 2,000 hours. It also features a unique 'digital hold' facility and adjustable carrying handle.

To: Lascar Electronics, Unit 1, Thomasin Road, Basildon, Essex.

Please send me Data

LMM-100 £88.61 \square LMM-200 £44.56 LMM-2001 £52.84 TEST LEADS $£ 2.53 \square$
Name
Address
Tel No.
enclose chequetP O. value

LOUDSPEAKER PROTECTION MODULE

Modern transistor power amplifiers use the technique of DC coupling between the low level amplifier stages and between the output stages and the loudspeaker. This has the advantage of removing coupling capacitors from the signal path, decreasing parts count and improving performance at low frequencies.

Older transistor amplifiers used a single supply rail so the transistors operated between the supply voltage and ground. Since an AC signal has both negative and positive excursions the power amp was designed so that a DC voltage was present on the output stage. Positive excursions would cause an increase of this DC voltage while negative excursions decrease the voltage. Since DC cannot be applied directly to a loudspeaker it was necessary to insert a capacitor, called a blocking or output capacitor, between the output stage and the loudspeaker. The load impedance of the loudspeaker is around 8 R so the capacitor has to be 5000 uF to 10,000 uF before an acceptable low end performance can be obtained.

The solution to these problems was DC coupling. The power amp is run from a 'split supply' so that the output transistors are supplied from a positive and negative supply voltage. The average of these supply rails is zero volts, so the output can be connected directly to the loudspeaker. Both positive and negative excursions are possible due to the split power supply.

Coupling Fault

Unfortunately, DC coupling also has its disadvantages. The biggest of these is the possibility of damage to the loudspeakers in the case of power amp failure. Since all the stages are DC coupled, a fault anywhere in the power amp can cause the output stage to swing hard against one of the supply rails. The most common power amp fault is a condition in which one or several of the output or driver transistors is destroyed, and this almost always causes the full DC voltage from one of the supply rails to be applied directly to the loudspeaker. The loudspeaker cone is slammed against the suspension and the power dissipation in the voice coil causes a rapid increase of voice coil temperature. In this condition most woofers will survive for only a few seconds.

This type of fault is all too common and is the most expensive fault likely to occur in a modern hi-fi system. Some top line amplifiers have built in protection circuits with relays that disconnect the loudspeakers should this condition occur, but these are the minority.

Make your loudspeakers immune to everything except music and the End of The World with our comprehensive protection circuit.

Fig. 1 (above) The circuit diagram for the loudspeaker protection unit. Note that one channel only is shown and that on the PCB components for the second channel are numbered from 100 to avoid confusion. Relay RLA1 should be a 12 V type with the facility for one, at least, pair of changeover contacts. This project has been designed such that it does
not place a significant load upon the amplifier itself during usage, such that the damping to the speaker is unaffected. Secondly the high input impedance of the protector ensures that a load-sensitive amplifier is unlikely to be pushed into colouration by your decision to save your loudspeakers from destruction if it cracks up.

Remedy

This circuit 'looks' at the loudspeaker wires and protects the loudspeakers in two ways. The presence of any DC automatically trips the relay and disconnects the loudspeaker. The protector also looks at the amount of power applied to the loudspeaker. It allows high power transients but will disconnect the loudspeaker if the applied power exceeds the loudspeaker rating for more than about 50 milliseconds. In this way the advantage of the improved high power amplifiers is not lost but the loudspeaker is still protected. The circuit includes a twosecond monostable delay circuit so that the loudspeaker is automatically reconnected approximately two seconds after the 'fault condition' has been removed.

The project is designed around two standard CMOS ICs. This ensures a very low current consumption and obviates the need for a power switch. This is important since a fault with an amplifier could well occur at the moment of turn-on and it is essential that the loudspeaker protector is already on. When the relay trips, the circuit pulls around 50 mA for each relay so it is important that battery is capable of supplying 100 mA during relay operation. There should be no problem with the battery lasting for its shelf life, providing the relays are not tripped more than very occasionally.

Construction

Solder the resistors, capacitors, diodes and relay first. The diodes and electrolytic capacitors must be inserted the right way round as shown on the pc board overlay. Lastly, solder the transistors and ICs on the board. Again, these devices must be oriented correctly.

The prototype was constructed in a general purpose steel box but this is not critical. The front panel is fitted with a stereo 100k potentiometer. This sets the trip point of the protector so that it can be adjusted for your particular loudspeakers. The rear panel holds the terminals for the wires from the amplifier and loudspeakers. The wiring to the rear panel and to the front potentiometer is shown in the wiring diagram.

Finally, make the connection to the battery.

HOW IT WORKS

The signal voltage from the amplifier is rectified by a full-wave bridge consisting of diodes D1, D2, D3 and D4. The potentiometer RV1 and the resistor R1 and capacitor C1 form a potential divider that determines the sensitivity of the circuit. At normal signal frequencies C1 has a relatively low impedance and the resistance across the diode bridge becomes that of resistor R1, i.e: 15 k . As the frequency approaches DC however, the impedance of this capacitor increases, increasing the sensitivity of the circuit. If a DC voltage is presented to the input C1 acts as an open circuit and the protector is therefore at its most sensitive.

Signal voltages from the full wave rectifier are averaged by the capacitor C2 and R2, and then applied to a Schmitt trigger. The Schmitt trigger is formed from the resistors R3, R4, ICIc and ICId. This circuit will only respond to a voltage level greater than a preset amount. When this voltage is exceeded (around 6 V 5 in this case) the output goes positive charging C3 through diode D5. This diode prevents C3 from being discharged by the Schmitt trigger when its output goes low again so the capacitor can only be discharged by the 10 M resistor R 5 . This takes about two seconds to this circuit is in reality a simple and effective monostable. Another two stages of the IC drive the transistor which is in series with the relay coil. Diode D6 protects the transistor from large back-EMF voltage spikes produced when the relay is turned off.

Testing

Check the orientation of all polarised components including the transistors and ICs. If all is well cut two short lengths of speaker cable and connect the output of the amplifier to the input of the loudspeaker protector. Connect the speaker cables to the output of the protector. Now switch on the hi-fi system. Choose music with reasonably even amplitude for this test. Turn the front panel level control on the loudspeaker protector for the lowest power and slowly increase the amplifier volume.

PARTS LIST

| Two of each of the following is required for stereo. |
| :--- | :--- |
| Resistors all $1 / 2 \mathrm{~W}, 5 \%$ |
| R1 15 k |
| R2 100 k |
| R3 220 k |
| R4 1 M |
| R5 10M |
| Potentiometers |
| RV1 100k lin. (dual) |
| Capacitors |
| C1 470n polyester |
| C2 10u 25V electrolytic |
| C3 220n polyester |
| C4 100u 25V electrolytic |
| Semiconductors |
| Q1 BD139 |
| D1-D4 IN4002, or similar |
| D5 D6 IN914 or similar |
| IC1 4049B |

When the power to the loudspeakers exceeds that set by the potentiometer the protector should trip in and disconnect the loudspeakers.

Turn the amplifier down, and the loudspeakers should be reconnected after about two seconds. Since loudspeaker power figures are a rather dubious quantity, it is probably best to establish the correct setting for the loudspeaker protector experimentally rather than just setting it to the rated power handling of your loudspeakers. Your ears are the best indication that the

Fig.2. (above) The component overlay for a stereo version of the loudspeaker protection module. Note the ' 100 upwards' component numbering of the second channel. Apart from the battery connections, the PCB is, in fact, symmetrical. Mains power was not employed because it is important that the module is operating at amplifier power up and the best way to ensure this is to use battery power! In normal use the battery (PP6) will last well-nigh its normal shelf-life as it draws virfually zero power until tripped. If you run the circuit so that it continually operates something is amiss - so stop it!

BUYLINES

Nothing unusual used in this circuit, so your local neighbourhood component emporium should be able to supply with no problems.

One thing we have heard in the past is that high value 5% resistors are not easy to obtain. In this design lower values of R4 and R5 must not be substituted.
system is being strained. Set the loudspeaker protector so that it trips just below that volume where distortion starts to occur.

We have done extended tests on the protector, even to the point of connecting expensive loudspeakers and inducing power amp faults that would otherwise destroy a loudspeaker in seconds. In all of these tests the loudspeaker protector has performed well and it is a comforting thought that should a power amp fault occur, it will not take your loudspeakers with it.

ETI
Instant all-weather starting - Smoother running

- Continual peak performance
- Longer battery \& plug life - Improved fuel consumption
- Improved acceleration/top speed
Extended energy storage

0 -10

SPARKRITE $X 5$ is a high performance. $10 p$ quality inductive discharge electronic ignition system designed for the electronics D.I.Y. world. It has been tried, tested and proven to be utterly reliable. Assembly only takes $1-2$ hours and installation even less due to the patented "clip on' ea
The superb technical design of the Sparkritecircuit eliminates problems of the contact breaker. There is no misfire due to contact breaker bounce which is eliminated electronically by a pulse suppression circuit which prevents the unit firing if the points bounce open at high R.P.M. Contact breaker burn is eliminated by reducing the current by 95% of the norm.
There is also a unique extended dwell circuit which allows the coil a longer period of time to store its energy before discharging to the plugs. The unit inclucles built in static timing light, systems function light, and security changeover switch Will work all rev counters

Fits all 12 v negative-earth vehicles with coil/distributor ignition up to 8 cylinders. THE KIT COMPRISESEVERYTHINGNEEDED
Die pressed case Ready drilled, aluminium extruded
base and heat sink, coil mounting clips and accessories. All kit
components are guaranteed for a period of 2 years from date of
purchase. Fully illustrated assembly and installation instructions are included.

Roger Clark the world famous rally driver says" Sparkriteelectronicignition systems are the best you can buy.

HIGH PERFORMANCE ELECTRONIC IGNITION
Electronics Design Associates, Dept. ET1/7 82 Bath Street, Walsall, WS1 3DE. Phone: (0922) 614791
Name
Address

PLEASE MENTION

ETI WHEN REPLYING

 TO ADVERTS
LINEAR FREQUENCY METER

A project dedicated to all those hundreds of times you've needed to know one cycle from another and been frequently left wanting.

Above: waveform diagrams which indicate two possible sources of incorrect reading using a DFM. The drawings are selfexplanatory on the whole.

There are many applications in the home workshop where simple audio frequency measurements are required. When experimenting with oscillators, building or repairing function generators etc, it is often handy to have some means of measuring frequency accuracy to the last Hertz is not always required and thus a full-blown digital counter is not warranted.

This project will enable you to measure frequency from around 100 Hz right up to 100 kHz with an accuracy of a few percent. It is inexpensive to build but performance is quite adequate to meet a large number of needs in any hobbyist's workshop. Accuracy is unaffected by the waveshape of the signal being measured and the unit will accept signal levels as low as 200 mV . The input is fully protected against high signal levels and against $D C$ voltages up to the rating of the input capacitor, C1. The input is also fully floating above earth - a useful feature.

The frequency meter may be powered from an internal 9 V battery or from a battery eliminator. A suitable socket may be installed on the rear of the cabinet.

Circuit Features

The circuit generates a series of short pulses at the same frequency as the input. These pulses drive a moving-coil meter the current through which will be the average amplitude of the pulse waveform; that is, it will integrate the pulses. This average will be proportional to the ratio of time the pulse is on to the time it is off. The time the pulse is on, that is - the pulse width, is fixed. At low frequencies, the time the pulse is off will be much, much longer than the time the pulse is on. Thus, the average current through the meter will be quite low. At higher frequencies, the time between pulses will be quite short and the average current through the meter willibe quite a bit higher (as shown in the diagram). Thus, as the frequency of the pulses is proportional to the input frequency, the pulse on/off ratio, and therefore the meter current, will be proportional to the input frequency. The meter can be calibrated directly in frequency as the relationship is a linear one. We have used a 100 uA movement for convenience as it does not have to be rescaled.

Fig.1. A full circuil diagram for the linear
frequency meter.

HOW IT WORKS

The circuit consists of an op-amp operated as a Schmitt trigger to amplify and square the input signal, followed by a 555 timer wired as a monostable, giving a short output pulse of fixed width for each cycle of input signal. This pulse drives a moving-coil meter, the reading being an average of the pulse amplitude, which is proportional to the pulse frequency. As the pulse frequency is directly related to the input frequency, the meter reading is directly proportional to the input frequencr.

The inputsignal is coupled into IC1 via C1, which provides DC blocking. Protection from overload caused by high amplitude input signals is provided by a diode clipper consisting of D1, D2 and R1. The diodes are connected in an inverse-parallel arrangement so that both positive and negative peaks, above the diode forward conduction voltage, are clipped.

IC1 is a fast op-amp connected as a Schmitt trigger with amplification, as mentioned above. Resistors R5 and R6 provide hysterisis, a 'dead band' in the action of the Schmitt, centred on zero input level. This dead band ensures that the Schmitt ignores noise pulses.
As the unit is required to operate from a single supply, for convenience, R2 and R3 bias the input of IC1 at half the supply voltage.

The output of IC1 is a train of square waves at the same frequency as the input. The output of IC1 is differentiated to provide short trigger pulses for the 555 timer, IC2. The differentiating network consists of C3, R7 and R8. This network is arranged to provide a trigger pulse that is always shorter than the output pulse of the 555 . Capacitor C3 is selected to give the shortest possible pulse to the 555 consistent with reliable triggering.

The output of the 555 monostable will be a pulse of fixed width, determined by the range resistors, R9 to R12, and capacitor C 4 . The ranges are arranged to give a 75% output duty cycle al frequencies of $100 \mathrm{~Hz}, 1 \mathrm{kHz}, 10 \mathrm{kHz}$ and 100 kHz on the input.

The output pulse from the 555 is clipped at 5 V 6 by a zener diode, ZD1, to avoid inaccuracies caused by falling battery voltage (as the battery ages). The meter responds to the average value of the clipped pulses. As the frequency increases, the duty cycle (on/off ratio) of the pulse train increases, increasing the average voltage and thus the meter current in direct proportion. Thus the reading on the meter will be linearly related to frequency.

The lowest range is 100 Hz full-scale deflection, the highest, 100 kHz .

Only two cheap IC's are used in the whole design, a 3140 op-amp and a 555 timer. The 3140 amplifies and squares the input signal and was selected for its high slew rate, wide frequency response and high input impedance. The output of this stage will be a square wave of the same level for all input signal levels and waveforms.

The pulses are generated by a 555 timer connected as a one-shot monostable giving a single pulse output for each input cycle. The monostable has four ranges giving decade scales on the meter. A fifth position on the switch is used as a power switch.

Regulation of the output pulses by a zener diode preserves the accuracy of the unit with falling battery voltage.

Construction

As mentioned previously, we constructed our prototype in a plastic box. This has the advantage that the unit can be operated fully floating from earth - handy in some situations. Check placement of components on the front panel and the positioning of the PCB inside before commencing major assembly. It's probably best to assemble the components on the board first. Take care with the orientation of the ICs, diodes and tantalum capacitor.

The input capacitor, C1, can be obtained in several voltage ratings. Polyesters are available in ratings of 100 $\mathrm{V}, 250 \mathrm{~V}$ and 630 V . If all your work is with solid-state circuitry, a 100 V type will be more than adequate. If you anticipate using your unit with say, valve equipment, the highest rating type for C 1 is recommended. The rating applies to the combined voltage that may be present on the input, plus the possible peak value of the input signal.

PARTS LIST

Resistors All $1 / 2 \mathrm{~W}, 5 \%$	
R13,5,11	10k
R4,6,9	1 MO
R7,14	33k
R8	22k
R10	100k
R12	1k0
R13	390R
Potentiometer PR1 22k Trimmer	
Capacitors	
C1	470n polyester
C2	10u tantalum
C3	56p ceramic
C4	678 polyester
C5	100u 25 V electrolytic
Semiconductors D1,2 1N914 or similar ZD1 $5 V 6,400 \mathrm{~mW}$ zener diode IC1 3140 op amp IC2 555 timer	
Miscellaneous M1 100uA meter, SW1 two pole five position wafer switch.	

A 630 V rated capacitor will be physically larger than a 100 V type and the leads may have to be shaped to fit the capacitor on the board.

Once the board is assembled, the major components can be assembled onto the front panel of the case. We made up an overlay for the front panel.

The board may be mounted anywhere convenient in the case and wires run to the front panel for the input and switch connections. Make sure the board does not get in the way of the meter when the front panel is in place.

The unit may be powered from an internal battery, which makes it a handy portable unit. If you wish to operate the unit from a plugpack battery eliminator, then we recommend you purchase a unit giving a nominal 6 V DC output. The current requirement for the project is quite modest and the output of these small battery eliminators is dependent on the load. A 6 V unit will typically deliver 9 V or so under a light load.

If you do decide to use one of these units, a socket matching the unit's plug will have to be mounted on the rear panel and leads run to the supply rail pads on the board. If you wish to have the option of both battery and mains operation, then a small SPDT toggle switch should be mounted on the rear panel also and wired into the circuit.

BUYLINES

As one of the criteria in designing the project was that it would be assembled from easy to obtain bits and pieces, it is (or should belunlikely that any problems will be encountered in that area! Boxing is not critical at all and the ever-present Vero range would serve as well as the one we employed here.

SPECIFICATION

	Frequency
	10 Hz to 100 kHz
Minimum input	in four decade ranges
Maximum input	200 mV RMS
Supply voltage	250 V peak AC or DC
	(dependent on voltage rating of C1)

Calibrating It

Calibration of the frequency meter is very easy, aided by the fact that it has a very high input impedance.

With the unit switched to the 100 Hz range, touch your finger to the input. There will usually be enough 50 Hz field from the electrical wiring in a building to drive the input. This will cause a deflection on the meter and RV1 should then be adjusted to give a meter reading of 50 (half scale). Move the unit near house wiring to increase the amount of signal to the input if a reading cannot be obtained.

If a signal generator of known accuracy is available the instrument can be calibrated on any range. Only one range need be calibrated as the others will automatically fall intoline.

If it is impossible to obtain any reading on the meter, the coupling capacitor (C3) may have to be increased in value to say 100 pF or 150 pF . This component has been selected to give a very short trigger pulse into the 555 and has been found to work correctly, using the value shown in the circuit, with several different ICs.

Selecting the 100 kHz range will connect power to the unit and the unknown signal can then be applied to the input. Set the reading and switch to a lower range if required.

PCB FOIL PATTERNS

ETCH RESIST TRANSFER

 KIT SIZE 1:1Complete kit 13 sheets 6 in $\times 41 / 2$ in $£ 3.00$ with all symbols for direct application to PC board Individual sheets 30 p each (1) Mixed Symbols (2) Lines 0.05 (3) Pads (4) Fish Plates and Connectors (5) 4 Lead and 3 Lead and Pads (6) DILS (7) BENDS 90° and 130° (8) 8-10-12 T.O.5 Cans (9) Edge Connectors 0.15 (10) Edge Connectors 0.1 (11) Lines 0.02 (12) Bends 0.02 (13) Quad in Line
FRONT AND REAR PANEL TRANSFER SIGNS
All standard symbols and wording. Over 250 symbols, signs and words. Also available in reverse for perspex, etc. Choice of colours, red, blue, black, or white. Size of sheet $12 \mathrm{in} \times 9 \mathrm{in}$. Price £1.20.

GRAPHIC TRANSFERS

WITH SPACER
ACCESSORIES
Available also in reverse lettering, colours red blue black or white. Each sheet $12 \mathrm{in} \times 9$ in contains capitals, lower case and numerals $1 / 8$ in kit or $1 / 4$ in kit. $£ 1.20$ complete. State size
All orders dispatched promptly.
All post paid
Shop and Trade enquiries welcome Special Transfers made to order E. R. NICHOLLS
P.C.B. TRANSFERS DEPT.ETIT

ARE YOU INTO THE C.B. SCENE?

If so, a $9^{\prime \prime} \times 4^{\prime \prime}$ SAE will bring you free details of our carefully selected range of C.B Accessories

MAIL ORDER ONLY
Post today to

POLAR
 ENTERPRISES

2 SWORDERS HOUSE

 HIGH STREETCROWTHORNE, BERKSHIRE
TEL. 0344671714
(24-hr. Answering Service)
REMEMBER! UNTIL C.B. BECOMES LEGAL WE DO NOT SELL RIGS

Codespesed Esctronios
P.O. BOX 23. 34 SEAFIELD ROAD, COPNOR, PORTS MOUTH, HANTS, PO3 58.J

REJECT FLUORESCENT CALCULATORS, modern, fluorescent. 10 tunction calculators with memory. Most
repairabte but no quarantees. $\mathbb{£ 2 . 9 9}$ each. ALARM CLOCK I.C. MM 5316 , brand new, with date $£ 2.29$ each. POLARIZING FILTER $0006^{\prime \prime}$ thick plastic film Any size cut, max size fir by 250 feet. 2 D per square build a $41 / 2$ digif multimeter. With dera C 3.49 each WhisTWATCH LCD supplied with polarizers and date. 99 peach 0.8 LED DISPLAY 4 digit. comman cathdoe. with date E3. 75 eBch LED ALARM CLOCK 10 UNTESTED LED DISPLAYS you to test. 0 . 1 " digits. common cathode 99p. LED WRISTWATCH I.C. Mostek MRIS Maiches MK5030 I.C. With data 95 F each NOTE the MK5030 and OIS501 are in 'legless flatpack' style package and require some fairly fine soldering. 20 KEV CALCULATOR NORTEK 4204 calc chip) REJECT LED CAL CULATORS, some reparabie. but all good value for spares. £2-50 each. MINI SLIDE SWITCMES 2 pole change-OVEr contacts 15p. PUSH-BUTTON
SWITCHES spring contact 14p. LM 555 TIMER I.C. Supplied with applications booklet 23 p each. LED CALCULATOR DISPLAY 8 digit oommon cathode, multiplexed. $0.1^{\prime \prime}$ diguts With data 99p 2102 MEMORIES. Siatic Memories for the micro men With dasa $95 p$ Calcu-
LATOR CHIP. Nortec 42044 function and constant With data 80p. MINI REED RELAYS 500 ohm coll. 12 V d c One no. contact 79 P each. QUALITY SUBMINIATURE REED SWITCHES, brand Now, extremely sensllive
tywraps for only 35 .

POST ANO PACKING ADD 35p (OVERSEAS ORDERS
MORE GOODIES IN OUR CATALOGUE, SEND MEDIUM-SIZED S.A.E. FOR YOUR FREE COPY. VAT: ADD 15% TO TOTAL COST IINCLUDING FULE SATISFACTION GUARANTEE ON ALL

NEST HYDE CASES FOR E.T.I. PROJECTS
Soil Probe (July 1979) Order Code BOC 410
Bench Amplifiar (August 1979) Order Code WEC 801
Audiophile Pre-Amp (October 9 979) Order Code CL2 CDL
Audiophile Power Amp (October 1979) Order Code CL2 CGL Audiophile PSU (October 1979) Order Code CL2 AEL

Pinball Wizard (November 1979) Order Code TEK 364 Points Controller (December 1979) Order Code BOC 680 Moving Coil Pre-Amp (January 1980) Order CL2 ADJ Synthesiser Project Order Code TEK A23G

PLEASE ASK FOR OUR FREE

 80-PAGE CATALOGUE AND PRICE LIST

THE BIGGEST SELECTION OF CASES IN EURDPE

The kit for this outstandingly practical design by John Adams published in a series of articles in Wireless World really is completel
Included in the PSI COMP 80 scientific computer kit is a professionally finished cabinet, fibre-glass double sided, plated-through-hole printed circuit board. 2 keyboards PCB mounted for ease of construction, IC sockets, high reliability metal oxide resistors, power supply using custom designed toroidal transformer. 2 K Basic and 1 K monitor in EPROMS and. of course, wire, nuts, bolts, etc.

KIT ALSO AVAILABLE AS SEPARATE PACKS

PSI COMP 80 Memory Expansion System
Expansion up to 32 K all inside the computer sown cabine
By carefully thoughi out engineering a mother board with buffers and its own power supply (puwered by the computer stranslormer) enables up to cabinet Connections to the mother board from the main board expansion socket is made via a ribbon cable

Fibre glass douvle sided plated through hole PCB $87^{\prime \prime} \times 30^{\prime \prime}$ set of all components ncluding all brackets fixing parts and ribbon $\$ 39.90$
Fibre glass double sided plated through hole Set of components including IC sockets plug and socket but excluding RAMs $£ 11.20$ 2114 L. RAM $\{16$ required $\} \quad £ 5.00$ Complete set of board components 16 RAMS £89.50. 8 K ROM board

Fibre glass double sided plated through hole
PCB $56^{\prime \prime} \times 48^{\prime \prime}$ PCB $56^{\prime \prime} \times 48^{\prime \prime} \quad £ 12.40$ Set of components incliditig IC sockets pluy 2708 ROM i8 required) 58.00 Complete set of board components 8 ROMs $£ 78.50$

New Factory on same Industrial Estate Address and Telephone Number unchanged

Value Added Tax not included in prices

PRICE STABILITY: Order with confidence Irrespective of any price changes we will honour all prices in this advertisement until August 31 st and VAT rate changes excluded
EXPORT ORDERS: No VAT Postage charged at actual cost plus £ 100 handling and documentation
U.K. ORDERS: Subsequent to 15% surcharge for VAT' No charge is made for carriage "Or current rate if changed
SECURICOR DELIVERY: for this optional service (UK mainland only) add I2 50 (VAT inclusive) per kit SALES COUNTER: If you preter to collect your computer from the factory call at Sales Counter Open $9 \mathrm{am} \cdot 12$ noon 1.430 pm Monday Thursday

UK Carriage FREE

POWERTRAN ELECTRONICS

PORTWAY INDUSTRIAL ESTATE
ANDOVER (0264) 64455
 all ICs: case; leads for direct connection to a cassette recorder and television (black and white or colour); everything!

Yet the ZX80 really is a complete, powerful. full-facility computer, matching or surpassing other personal computers at several times the price.

The ZX80 is programmed in BASIC, and you can use it to do quite literally anything from playing chess to managing a business.

The $\mathbf{Z X 8 0}$ is pleasantly straightforward to assemble, using a fine-tipped soldering iron. - It immediately proves what a good job you've done: connect it to your TV... link it to an appropriate power source * ... and you're ready to go.

Your 2X80 kit contains . .

- Printed circuit board, with IC sockets for allics.
- Complete components set, including all ICs-all manufactured by selected worldleading suppliers.
- New rugged Sinclair keyboard, touchsensitive, wipe-clean.
- Ready-moulded case.
- Leads and plugs for connection to domestic TV and cassette recorder. (Programs can be SAVEd and LOADed on to a portable cassette recorder.) - FREE course in BASIC programming and user manual.

Optional extras

- Mains adaptor of 600 mA at 9 VDC nominal unregulated (available separately - see coupon).
- Additional memory expansion boards allowing up to 16 K bytes RAM. (Extra RAM chips also available - see coupon).
*Use a 600 mA at 9 VDC nomınal unregulated mains adaptor Avallable fromSinclair if desired (see coupon)

The unique and valuable components of the

 Sinclair ZX80.The Sinclair ZX80 is not just another personal computer. Quite apart from its exceptionally low price, the ZX80 has two uniquely advanced components: the Sinclair BASIC interpreter; and the Sinclair teachyourself BASIC manual.
The unique Sinclair BASIC interpreter offers remarkable programming advantages: - Unique 'one-touch' key word entry: the 2X80 eliminates a great deal of tiresome typing. Key words (RUN, PRINT, LIST, etc.) have their own single-key entry.

- Unique syntax check. Only lines with correct syntax are accepted into programs. A cursor identifies errors immediately. This prevents entry of long and complicated programs with faults only discovered when you try to run them.
- Excellent string-handling capability - takes up to 26 string variables of any length. All strings can undergo all relational tests (e.g. comparison). The ZX80 also has string inputto request a line of text when necessary. Strings do not need to be dimensioned.
- Up to 26 single dimension arrays.
- FOR/NEXT loops nested up 26.
- Variable names of any length.
- BASIC language also handles full Boolean arithmetic, conditional expressions, etc.
- Exceptionally powerful edit facilities, allows modification of existing program lines.
- Randomise function, useful for games and secret codes, as well as more serious applications.
- Timer under program control.
- PEEK and POKE enable entry of machine code instructions. USR causes jump to a user's machine language sub-routine.
- High-resolution graphics with 22 standard graphic symbols
- All characters printable in reverse under programcontrol.
- Lines of unlimited length

Fewer chips, compact design, volume production more power per pound!

The ZX80 owes its remarkable low price to its remarkable design: the whole system is packed on to fewer, newer, more powerful and advanced LSI chips. A single SUPER ROM, for instance, contains the BASIC interpreter. the character set, operating system, and monitor. And the ZX80's 1 K byte RAM is roughly equivalent to 4 K bytes in a conventional computer-typically storing 100 lines of BASIC. (Key words occupy only a single byte.)

The display shows 32 characters by 24 lines.
And Benchmark tests show that the ZX80 is faster than all other personal computers.

No other personal computer offers this unique combination of high capability and low price.

ETI JULY 1980

plete
 ZX80 software now available!

See the advertisements in Personal Computer World (June) and Electronics Today International (July)

New dedicated software - developed independently of Science of Cambridge reflects the enormous interest in the ZX 80 . More software available soon - from leading consult ancies and software houses.

The Sinclair teach-yourself BASIC manual.

If the specifications of the Sinclair $Z \times 80$ mean little to you-don't worry. They're all explained in the specially-written 128 -page book free with every kit! The book makes learning easy, exciting and enjoyable, and represents a complete course in BASIC programming - from first principles to complex programs. (Available separately - purchase price refunded if you buy a $Z \times 80$ later.) A hardware manual is also included with every kit.

The Sinclair ZX80. Kit: £79.95. Assembled: £99.95. Complete!

The ZX80 kit costs a mere £79.95. Can't wait to have a ZX80 up and running? No problem! It's also available, ready assembled, for only $£ 99.95$.

Demand for the ZX 80 is very high: use the coupon to order today for the earliest possible delivery. All orders will be despatched in strict rotation. We'll acknowledge each order by return, and tell you exactly when your $Z \times 80$ will be delivered. If you choose not to wait, you can cancel your order immediately, and your money will be refunded at once. Again, of course, you may return your ZX80 as received within 14 days for a full refund. We want you to be satisfied beyond all doubt - and we have no doubt that you will be.

Science of Cambridge Ltd

6 Kings Parade, Cambridge, Cambs, CB2 1SN. Tel: 0223311488.

Simply ahead...

 encapsulated heatsinks within signed to meet total heat dissipation needs. They are pugged and made to last a lifetime. Advanced circuitry ensures their suitability for use with the finest loudspeakers, pick. ups, tuners, etc using digital or analogue sound sources

Model	Output Power R.M.S.	Dis. tortion Typical at 1 KHz	Minimum Signal/ Noise Ratio	Power Supply Voltage	Size in mm	Weight in gms	Price +
HY30	$\begin{aligned} & 15 \mathrm{~W} \\ & \text { into } 8 \Omega \end{aligned}$	0.02\%	100 dB	-20-0 + 20	$105 \times 50 \times 25$	155	$\begin{array}{r} £ 6.34 \\ +95 n \end{array}$
HY50	$\begin{aligned} & 30 \mathrm{~W} \\ & \text { into } 8 \Omega \end{aligned}$	0.02\%	100 dB	$-25-0+25$	$105 \times 50 \times 25$	155	$\begin{aligned} & £ 7.24 \\ & +£ 109 \end{aligned}$
HY 120	$\begin{aligned} & 60 \mathrm{~W} \\ & \text { into } 8 \Omega \end{aligned}$	0.01\%	100 dB	. $35 \cdot 0+35$	$114 \times 50 \times 85$	575	$\begin{gathered} £ 15.20 \\ +\quad £ 228 \end{gathered}$
HY200	$\begin{aligned} & 120 \mathrm{~W} \\ & \text { into } 8 \end{aligned}$	0.01\%	100 dB	-45-0.45	$114 \times 50 \times 85$	575	$\begin{gathered} £ 18.44 \\ +\quad £ 277 \end{gathered}$
HY400	$\begin{aligned} & 240 \mathrm{~W} \\ & \text { into } 4 \Omega \end{aligned}$	0.01\%	100 dB	$45 \cdot 0+45$	$114 \times 100 \times 85$	115 kg	$\begin{array}{r} £ 27.68 \\ +4.15 \end{array}$

Load impedance - all models $4 \Omega-\infty$
ILP PRE-AMPS ARE
COMPATIBLE WITH ALL ILP POWER AMPS AND PSUS

Input sensitivity - all models 500 mV
input impedance - all models $100 \mathrm{~K} \Omega$
Frequency response - all models $10 \mathrm{~Hz}-45 \mathrm{KHz}-3 \mathrm{~dB}$

POWER SUPPLY UNITS

LP Power Supply Units with transformers made in our own factory are designed specifically for use with ILP power amplifiers and are in two basic forms - one with circuit panel mounted on conventionally styled aminated transformer. for smaller PSU's - in the other, forlarger PSU'S. ILPtoroidaltransformers are used which are half the size and weight of laminated equivalents, are more efficient and have greatly reduced radiation.

PSU $30+15 \mathrm{~V}$ at 100 mA to drive up to $12 \times$ HY 6 or 6 \times HY6-6 £4.50 + £0.68VAT THE FOLLOWING WILL ALSO DRIVE ILP PRE -AMPS PSU 36 for 1 or 2 HY $30 \mathrm{~s} \quad £ 8.10+£ 122$ VAT PSU 50 for 1 or 2 HY50's f8. $10+$ E 1.22 VAT PSU 60 with toroidal transformer for PSU $70 \begin{aligned} & 1 \text { HY } 120 \quad \text { with toroidal transformer for } 1 \text { a }\end{aligned}$
2 HY120's £13.61+£2.04 VAT
PSU 90 with toroidal transformer for
HY200 £ 13.61 + £2.04 VAT
PSU 180 with toroidal transformer for 1 HY 400 or $2 \times$ HY $200 £ 23.02+£ 3.45$ VAT

AVAILABLE ALSO FROM WATFORD ELECTRONICS, MARSHALLS AND CERTAIN OTHER SELECTED STOCKISTS.

CLASSIFIED INFORMATION

Send to
ELECTRONICS TODAY INTERNATIONAL
145, Charing Cross Road,
London WC2H OEE. Tel. 01-4397449.

Semi-Display:-
$1-3$ insertions - $£ 6.00$ per single column centimetre
4.11 insertions - $£ 5.50$ per s.c.c.

12 insertions - $£ 5.00$ per s.c.c. Classified:-
23 pence per word (minimum 25 words)
Box number on application (Personal ads onlv)

ALL ADVERT ISEMENTS IN THIS SECTION MUST BE PRE-PAID
Closing date: 1 st Friday in month preceding publication.
Advertisements are accepted subject to the terms and conditons printed on the advertisement rate card (available on request)

PRINTED CIRCUITS HARDWARE

Comprehensive range Constructors Hardware and accessories
Selected range of poputar components Full range of HE printed carcuil boards normally ex-stock same day despatch at competitive prices
PC Boards to individual designs
Resist-coated epoxy glass laminate for the diy man with full processing instructions (no unusual chemicals required)

Alfac range of etch resist transfers and other drawing materials for $D C$ boards

Send 15 p for catalogue.
RAMAR CONSTRUCTOR SERVICES MASONS ROAD STRATFORD-ON-AVON WARWICKS. Te, 4879

MEMORY MART

UK $101^{\prime \prime}$ 'Superboard' 4 K RAM

Memory Expansion
E30 arch
21141 kx 450 small £ 3.75 each
E5.00 each
P\&P20p
£5.00 each
MEMORY MART
19 Wastherby Gardens

PET COMPUTER 8K. Calculator type keys 2 years old. No manual $£ 445$ o.n.o. Cash Pigott, Cambridge Phone 76865 evenings please.

MK14 PRINTER

This fully built, tested and ready to go printer connects directly to your unexpanded MK 14 computer It prints a full character set of up to 21 characters per line a: 50 characters per second on standard paper You need only a simple 12 -volt power supply to drive it. All are required to print characters Send SAF for sample are required to print characters.
print and full details. Price $£ 112.00$.

MK14 VDU

This VDU connects to yous MK14 1/O chip to give a 64 character $x 16$ Line VDU On board modulator. 64 ASCII and 64 graphic characters. Minimal
software requirements. Has its own memory (1 K) Full software requirements. Has its own memory tik) Fulf flashing cursor control. Crystal controlled for rock
steady display. Price $£ 59.90$. Send SAE for details.

MK14 TO Z80 CONVERSION

Plug this conversion board into your SC / MP socket and have the power of the Z80, and amazing power of versatile graphic control, edit facilities. conditionat jumps. eic. So easy to use, you will learn to use in in a tewhours. Kit price $£ 29.95 \mathrm{incl}$ postage Your MK 14 repaired and conversion fitted if required. Machine code monitor available instead of interpreter at same price $2 K$ basic version and extra 1 K ram kit $\mathbf{£ 4 9 . 9 5}$
Send SAE for details.

COMPUTER REPAIRS

Any computer repaired at a tixed price Eg. MK 14 £2.50. Nascom 1 £5. Nascom 2 E12. Rıng for others. Plus parts and postage

Phone redditch (0527) 61240 evenings
REDDITCH ELECTRONICS
21 ferney hill avenue
REDDITCH, WORCESTERSHIRE B97 4RU

VIDEO MUSIC

Videograph il links to the aerial socket of your tv and provides a full cotour G|ANT oscilloscope display. A must for h.fi, home entertanment, discos, organs etc.
New - Signal thert contiols in then generator Plus - tull detals for lesting yourt autifio sysiem for transitint distortion, crosstaik etc Complete $£ 29.95$ Luxury cabinet and Kit only $£ 29.95$ controls. $£ 14.95$

COLOUR MODULATOR

 £9.95 FOR ALL TV GRAPHICS!
 WILLIAM STUART SYSTEMS
e. Biliticay Rioad. Herongate Bren
CM13 3SO Tel 102777810244

SOLARTRON CT436 OSCILLOSCOPE Good condition £60. Akai 4000 Reel to Reel Tape Deck, excellent condition £55. Phone Beguildy 273.

SPEED - VERSATILITY - ECONOMY

Designed originally for logle wiring applications, it is now accepled and used extensively throughout industry, education and research. AOADRUNNER is used by hobbyists. sludents, techniclans, designers and engineers, to carry out work on:-
-P.C.B. REPAIRS -ANALOQUE BREADBOARDINO ${ }^{\circ}$ SIMPLE LOGIC WIRING - COMPLEX INTERCONNECTING OF MICROS AND MEMORIES.
EURO INTROKIT £14.84. PROJECT INTROKIT EB.27. PENCH WITH LOADED BOBBIN E2.44. WIRE DISTRIBUTION STRIPS:GLUE FIX 2OIpkt 6 "' LONG \&2.80. ADHESIVE 0-36TUBE. PRESS FIX 201. Kkt 2" LONG $₹ 2.92$. SINGLE EUROCARO HIGH DENSITY CAPACI (36×16 PIN DILS) E4.50. DOUBLE EUROCARD, WITH CAPACITY OF 84×16 PIN DILS $£ 7.25$. PROJECT CARD HIGH DENSITY S-SIDED 20×14 PIN DILS $£ 2.85$. BOBBINS - BLUE £2.12. 1 OF EACH COL. £2.20. TINNED COPPER WIRE 4/pkt ع2.12. RECOMMENDED SOLDERING IRON FOR ROADRUNNER HOBBYIST E4.80.

Plesse add 40 p for plip $+15 \%$ VAT to all orders.
FOR FURTHER INFORMATION ON ROADRUNNER PRODUCTS SEND LARGE S.A.E. TO:-
T.J. BRINE ASSOCIATES,

56B, HIGH STREET, HASLEMERE, SURREY.

200 COMPONENTS £4. 100 diodes 85p. 150 caps $£ 1.50 .100$ resistors $85 p$. All mixed. Lists 15 p . Sole Electronics \{ETI), 37 Stanley Street, Ormskirk, Lancs. L39 2DH

AERIAL BOOSTERS. Improve weak VHF radio and television reception, price $£ 6$. S.a.e. for leaflets, Electronic Mailorder Ltd. 62 Bridge Street, Ramsbottom, Bury, Lan cashire BLO 9AGP.

LINSLEY-HOOD 75 WATT AMPLIFIERS constructed and repaired. Power amp modules from £13.75, fully built and tested Details free. I. G. Bowman (Dept. ETI), 59 Fowey Avenue, Torquay, S. Devon.

TRANSFORMERS MANUFACTURED to specification, many popular types ex-stock. Fast turn around on volume production. Send enquiries to Louth Transformers, Queen Street, Louth, Lincs. Tel: (0507) 606436.

RECHARGEABLE BATTERIES

TRADE ENQUIRIES WELCOME
 Camium Powar" plius Cataiogue. Write or call: Sandwall Plant Lide., 2 Union Orive, 80Lamere, SUTTO COLOFIELD. WEST miolanos. Lomdon, w.c. 2.

FOR SALE. UK 101 uncased, full board 8 k ram, includes manual plus extras $£ 315$ ono Also Sinclair PDM35 plus transformer £25. Phone 01-422 9246 (evenings)

BARGAINS FOR THE ELECTRONIC HANDYMAN BRANDED LED DIGITAL ALARM CLOCKS

(2)

(3)

Returned to Service Department within guarantee

 period1) With alarm repeat - S R S P of £ 1700 offered at $€ 3.95$ inc VAT
(2) With luxury lamp and repeat alarm as featured in mosi major UK Mall Order catalogues, SRS P € 3100 -offered at $£ 7.95$ inc VA T
(3) With integral luxury light and repeat alarm also as leatured in most major UK Mall Order catalogues S RSP of $£ 3200$-offered at $£ 7.45 \mathrm{inc} V A T$ These will be sold as recerved from our customers with the existing fault(s) and without guarantee
UK ONLY

Discounts available on large bulk purchases PRESCOTT CLOCK AND WATCH COMPANY LIMITED Prescott House. Humber Road. London NWZ GER

DIGITAL WATCH BATTERY REPLACEMENT KIT

 These watches all require batter (power cell) replacement at regula intervals. This kit provides th means. We supply eyeglass, non driver case knife and screw screw case opener full instructions and battery idenufication chart W
 then supply replacement batterie then supply replacement batteries £7.50 for complete kit and get into a fast-grow. despatch.
 WATCH BATTERY REPLACEMENT CO. (ET14) 11 Percy Avenue, Ashiord, Middx., TW15 2PB

FREE 1980 AMTRON CATALOGUE with new range of kits and equipment cabinets Send S.A.E. Amtron UK Lid., 7 Hughenden Road, Hastings, Sussex TN34 3TG. Tel Hastings 436004

KITSWITCH Hex Keyboards, wired to any format, 25 coloured keys, £12.75, also Reed-operated keyboards, up to 40 keys. Details: 185 Musley Hill. Ware. Herts. Ware (0920) 61944.

CIRCUIT DESIGN, Prototype construction, Analogue or Digital, Single Circuits or Complete Instruments/Systems. Write A. J ATTWOOD, C.Eng., MIERE, Heathercote, Heatherton Park, Taunton, Somerset, TA4 1 ET or Phone Bradford-on-Tone (082-346) 536

CHEAPER THAN A VISIT TO THE PICTURES. Latest top quality films prerecorded on videocassettes from only E 6 . Full details from G.T. Technical Video Library (10a ETI), 119 Oxford Street, London W1R 1PA.

VHF CONVERTER. (Varicap). 28 to 30 MHz tuneable IF. Highly sensitive unit $£ 7.50 \mathrm{inc}$ post. Other models available. SAE data, lists H. Cocks, Cripps Corner, Robertsbridge Sussex. Tel. O58083-317

SEIKO ANALOGUE AND DIGITAL QUARTZ. The very latest products at highly competitive prices. Personal service. Un biased advice. Analogue day/date $£ 35$. Ultra thin dress from $£ 42$. Sports 100 from $£ 60$ Digital alarm chrono/timer $£ 39$. Calendar alarm $£ 45$. Dress alarm/tımer £52. Calculator alarm $£ 55$. Programmable alarm chrono £58. Plus many more interesting Japanese products. Send S.A.E. for illustrated list to: Powditch-Digital, 5 De-Vere Gardens, IIford, Essex. No callers please

BOOKS . . BOOKS . . . BOOKS - Large range of Electronic Books in stock. Send s a e. for list. - Servio Radio, Dept. ETI7, 156.8 Merton Road, Wimbledon, London SW 19 1 EG.
$771 B$ METAL DETECTOR. Build the best Special integrated circuits. Printed circuit board and full instructions. Only $£ 12.50$ inclusive special offer. 117 Horton Road, Brighton BN 1 7EG
£5 OSCILLOSCOPE. Standard junk box components plus approx. another $£ 5$. \{Total components approx. £12). This unit plugs into TV aerial socket and converts TV to oscilloscope. Circuit and plans £3. Kerr. 27 Coles Road, Milton, Cambridge CB4 4BL

50 Hz SUPERBOARDS BRITISH MODEL FROM $£ 159.95$ + Vat
Fully buit set up and tested AUTHORISED dealer back-up Free cursor control backspace, atc. tape
C.T.S., 1 Higher Calderbrook Littleborough, Lancs. Tel. Lititeborough 79332 any time

TIME WRONG?

MSF CLOCK is ALWAYS CORRECT - never gains or loses, self setting at switch-on, B digits show Date, Hours, Minutes and Seconds, larger digit Hours and BST and leap year, also second-in-a-month STOP CLOCK and parallel BCD output - for your computer, alarm, etc. receives Rugby time signals, 1000 Km range, now get ABSOLUTE TIME, £49.80. 60KHZ RUGBY RECEIVER, as in MSF Clock, serial data output, built-in antenna, £13.70.
Each fun-to-bulld ktl includes all parts, printed circuit. case, instructions, postage, etc., money-back assurance so SEND off NOW

CAMBRIDGE KITS
45 (TG) Old School Lane, Milton, Cambridge

AD INDEX

AJD DIRECT SUPPLIES 60 KRAMER \& CO.
ALTEK INSTRUMENTS AMBIT INTERNATIONAL

LASCAR ELECTRONICS
LB ELECTRONICS
AUDIO ELECTRONICS
LRBELECTRONICS
AURASO
MAPLIN
MARSHA
MICRO-CIRCUITS
BKELECTRONICS
B.N.R.S.

MICRO-CIRCUITS
MONOLITH
MOUNTAINDENE
E. R. NICHOLLS

NIC MODELS
POLAR ENTERPRISES
POWERTRAN ELECTRONICS 106
PRODUCT LAUNCH LTD.
progressive radio
QUANTUM
J. W. RIMMER
R.T.V.C.

SCIENCE OF CAMBRIDGE
C. N. STEVENSON

TANDY
TANDY
TELERADIO
TEMPUS
TK ELECTRONICS
TOOLRANGE LTD.
TRANSAM COMPONENTS
T\&TELECTRONICS
VIDEOTONE LTD.
WATFORD ELECTRONICS
WEST HYDE DEVELOPMENTS
WILMSLOW AUDIO

A Surplus \& Ex Equipment Clearance Offer!

NEW QUALITY STEREOAMP CHASSIS
60 w . (RMS) protected 90 w . plastic outputs. Controls + selector, all din. sockets, smoothing, Heatsinking, $12 / 50 \mathrm{v}$. wkg.
Tested + data $£ 9.95$ inc. (leaflet sae)
K. Lawrence, 1 Regent Road, Ilkley, W. Yorks.

TI-57, 58, 59 GAME SOFTWARE! Inc. "Meltdown Syndrome", "Lunalander," Fruit Machine + Nudge," etc. Write P. J. Lynch, 48 Coleridge Cres., Worthing. Sussex. For free catalogue inc SAE.

XZ80 users!!!!!!

Low-cost plug-in memory cards available.
NOW: $1 K £ 29.95$
2K £ $\mathbf{3 9 . 9 5}$
3K £49.95
Our cards come ready built/tested. Prices fully inclusive.

Dept. 2X
FLAIR MARKETING CO.
9 Park Hill Road
The Arbours, Northampton

COURSES IN ELECTRONICS

BSc IN ELECTRONIC ENGINEERING

A four-year part-time degree course for mature students. Of particular interest to those engaged in Digital, Telecommunications or Central Systems. Entry qualification required is an HNC or equivalent in Electrical and Electronic Engineering or Applied Physics. This CNAA degree is considered by the Council of Engineering Institutions as meeting their C. Eng. academic requirements.

CEI PART II

One year full-time or two years' part-time course in preparation for the CEI Part II examination which is the present academic qualification for Chartered Engineers. Subjects offered include Electronics, Communication, Central and Computer Engineering. Entrants should have passed CEI Part I or have been exempted; holders of HNC and endorsements of HND are so qualified.
Further details and application forms are available from the Information Office, Room G219, Cambridgeshire College of Arts and Technology, Cambridge CB1 2AJ. Telephone (0223) 63271.

ELECTRONIC SYSTEMS. Advanced level G.C.E.? Join the sixth form at South East London School. Mornington Road, London SE8 4BL. Full range advanced level courses available. Details 01-692 1803.

EXTENSIVE COURSES IN
 BASIC
 AND
 PASCAL

including hands on mini-computer operation
These intensive courses are intended to instruct from minımal knowledge to an operatıonal capability of computer programming.
Courses are fully residential, allowing maximum time for instruction and programming.
BASIC - Weekends from Friday Evenıng to Sunday Afternoon.
PASCAL - Weekdays Monday Morning to Friday Afternoon inclusive
For further details, dates available, fees Phone (0401) 43139, or write
CLEVELAND BUSINESS SERVICES
(Dept. ETI-2), Cleveland House
Routh, North Humberside HU179SR

NEW MONITOR FOR COMPUKIT UK101 - in $2 k$ Eprom 2716 - Allows screen editing - Saves data on tape - Flashing cursor Text scrolls down $\mathbf{£ 2 2 . 0 0}+V A T$
$\star 6502$ based system - best value for money on the market. \star Powerful $8 K$ Basic - Fastest around \star Full Qwerty Keyboard $\star 4 K$
RAM Expandable to $8 K$ on board. \star Power supply and RF Modulator on board. \star No Extras needed - Plug-in and go. \star Kansas City Tape Interface on board. \star Free Sampler Tape including powerful Dissassembler and Monitor with each Kit. \& If you want to learn about Micros, but didn't know which machine to buy then this is the machine for you.

The Compukir UK101 comes in kit form with all the parts necessary to be up and working, supplied. No extras are needed Ater plugging in just press the reset keys and the whole world of computing is at your fingertips. Should you wish to work in the machine code of the 6502 then just press the M key and the machine will be ready to execute your commands and programs. By pressing the C key the world of Basic is open to you.
This machine is ideal to the computing student or Maths student. ideal to teach your children arithmetic, and is also great fun to use.
Because of the enormous volurre of users of this kit we are able to offer a new reduced price of $\mathbf{f 1 9 0}+$ VAT

THE ATARI VIDEO

COMPUTER SYSTEM

Atari's Video Computer Syetem now offers more than 1300 different geme variatione and options in twenty great Game Progrem TM cartridgeal Have fun while you sharpen your mental and physical coordination. You can play rousing, challenging,
sophisticated video games, the sophisticated video games, the
games that made Atari famous games that made Atari famous.
You'll have thrill after thrill, You'll have thrill after thrill,
whether vou're in the thick of a whether vou re in the thick of a
dogight, screeching around a racetrack, or dodging asteroids in an alien galaxy. With crisp bright colour (on colour TV) and incredible, true to-life sound effects. With special circuits to protect your TV.
Cargridgea now available All at $\mathbf{5 1 3 . 8 0}$ each + VAT Basic maths, Airsea Battle, Black Jack, Breakout, Surround,
Spacewar, Video Olympics. Spacewar, Video Olympics,
Outlaw. Basketball. Hunt E Outlaw, Basketball, Hunt
Score ${ }^{*}$, Space War. Sky Diver, Air Sea Battle Codebreaker", Sea Battle
Miniature Golf

every Nascom 2 purchased from us either FREE POWER SUPPLY OR FREE GRAPHICS ROM OR FREE VERO CASE TO TAKE NASCOM 2

Microprocessort Z80A 8 bit CPU This wilt tun at 4 MHz but is selectable between $1 / 2 / 4 \mathrm{MHz}$ This CPU has now
been generally accepted as the most powerful, 8 bit pro been generally accepled as the most powerful, 8 bit proINTERFACE
Keyboerd New expanded 57 key Licon solid state keyboard especially bult for Nascom Uses standard Nascom, monitor controlled, decoding T.V. The lv peak 10 peak video signal can drive a montor directiv and is also ted to the on-board modularor to drive I.O. On-board UART (Ini 6402) which provides seriai handling for the on-boand cassette inierface or the RS $232 / 20 \mathrm{~mA}$ veletype interface
The cassette interface is Kansas City standard at either 300
of 1200 baud This is a link option on the NASCOM The RS232 and 20 mA loop connector the NASCOM-2 into any standard reletype The input and output sides of the UART are independently swichable between any of the options -
ie it is possible to house input on the cas on the primter PIO There is aiso a totally uncommited Paralise $1 / 0$ (MK388") giving 16 , programmable, I/O lines These are

Documentation full construction article is provided for those who buy akit and an extensive sofiware manual is provided for the monutor and Basic
Beaic The Nascom 2 contans a full 8 K Microsafi Basia in one ROM Chip with additional features like DEEK, DOKE. SET, RESET for simple programming

Fully converted to UK T V Standard Comes complete with easy 10 foliow manuals UK Power Supply Cassette Leads Sample tapes Special box to enable you to plug inio your
TV Recommended for tirs! time buyers. Jusi plug in and go Full Range of Sotware Available

NEW REDUCED PRICES $8 \mathrm{~K} \mathbf{f 4 4 9}$ $16 \mathrm{~K} \mathbf{f 5 4 9}$ $32 \mathrm{~K} \mathbf{f 6 4 9}$ RRP 795
 RRP $\mathrm{f795}$ for 32 K The PEDIGREE PETS

 Very poputar tor horne \& business use 8 K Microsofi Basic in ROM 8 K Pet $32 \mathrm{~K} \& 16 \mathrm{~K}$ with new improved keyboard Exira cassette dect E55 Full tange ol sotExira casseme deck $\mathbf{E 5}$ Full tange of software avatlable.

Videa 100

12* BLACK \& WHITE LOW COST VIDEO MONITOR RRP $£ 79$ only $\mathbf{£ 6 9}$ + vat

- Ideal for home, parsonal and business computer systems - $12^{\prime \prime}$ diagonal viceo monitor - Composite video input - Composite video input - Compatible with many computer systems - Solid-state circuitry for a stable $\&$ sharp picture Video ba odwidth - $12 \mathrm{MHz}+3 \mathrm{DB}$ - Input impedance .75 Ohms - Resolution - 650 lines Minimum In Central 80% of CRT; 550 Lines Minimum beyond central 80%

"Europes Largest Discount Personal Computer Store"

Please add VAT to all prices - Delivery al cost, will be advised at time of purchase. Please make cheques and postal orders payable to COMPSHOP LTD., or phone your order quoting BARCLAYCARD. ACCESS, DINERS CLUB or AMERICAN EXPRESS number CREDIT FACILITIES ARRANGED - send S.A.E. for application form
14 Station Road, New Barnet, Hertfordshire, EN5 1QW Telex: 298755 TELCOM G Telephone: 01-441 2922 (Sales) 01-449 6596
OPEN - 10 am - 7 pm - Monday to Saturday
Close to New Barnet BR Station - Moorgate Line
带 NOW in IRELAND at: 80 Mariborough St., Dublin 1. Tel: Dublin 749933
(Part of the Compshop Lid Group)

For beginners or professionals, the Maplin catalogue will help you find just about everything you need for your project.

Over 5,000 of the most useful components - from resistors to microprocessors - clearly described and illustrated.

Send the coupon for your copy

 and STEP UP TO MAPLIN SERVICE NOW
[^0]: ©MODMAGSLTD. 1980 All material is subjeci to worldwideCopyright protection. All reasonable care is taken in the preparation of the magazine to ensure accuracy but ETI cannot be held responsible for it legally. Where errors do occur a correction will be published as soon as possible afterwards.

[^1]: Articles mentioned herein are in an advanced state of preparation, however, circumstances may dictate charges to the final contents.

[^2]: Tech-Tips is an ideas forum and is not aimed at the beginner. We regret we cannot answer queries on these items.
 ETI is prepared to consider circuits or ideas submitted by readers for this page. All items used will be paid for. Drawings should be as clear as possible and the text should preferably be typed. Circuits must not be subject to copyright. Items for consideration should be sent to ETI TECH-TIPS, Electronics Today International, 145 Charing Cross Road, London WC2H OEE.

[^3]: A simple way to convert this into a voltage controlled filter is to interpose operational transconductance amplifiers (eg CA3080) prior to the two integrators around IC2 and IC3. Voltage control of Q (or resonance) can also be obtained by using an OTA in the feedback to the non-inverting input of IC1. This is the basis of the present design. Such a filter gives $12 \mathrm{~dB} /$ octave low and high pass responses and second order band pass response. By placing two such filters in series it is possible to increase the roll-off characteristics by a factor of two. In practice, however, this is often difficult due to component mismatching which results in uneven roll-off characteristics. The problem has been minimised in this design by using a customised integrated circuit from

