WHAT'S HAPPENING IN:
Projects, MPUs, Hi-Fi, Calculators, Video, Audio...

Behind the scenes of STAR WARS
WATFORD ELECTRONICS
33 CARDIFF ROAD, WATFORD, HERTS., ENGLAND
MAIL ORDER, CALLERS WELCOME. TO: Watford 7744

ALL MATERIALS DESCRIBED AND SHOWN ARE FULLY GUARANTEED. ORDERS DESPATCHED BY RETURN OF POST. TERMS OF BUSINESS: CASH/ CHEQUE/ P.O. S OR PERSONS DRAWN AT OUR CHEQUE ACCOUNT AND EDITIONS OF OUR CATALOGUE FOR NEW CUSTOMERS. ORDERS FROM OUR CUSTOMERS. ORDERS FROM OVERSEAS WELCOME. TRADE AND EXPORT WELCOME. P&P ADD 25p TO ALL ORDERS UNDER £10.00. OVERSEAS ORDERS WELCOME. VAT ON OUR FREE LIST. ALL PRICES OUR FREE LIST. ALL PRICES INCLUDE VAT AT 15%.

VAT
Export orders no VAT. Applicable to U.K. Customers only. Unless stated otherwise, all prices exclude VAT. Please add 15% to devices marked *. To the nearest 10p.

WATFORD FOOTBALL GROUND. Nearest Underground BR Station Watford High Street. Open Monday to Saturday 9a.m. to 5p.m., Sunday 2p.m. to 5p.m.

400V
68 10 12 18 22 33 47 50 68 75
Range 0-5pF to 10,000pF

CO -AXIAL (TV)

TANTALUM READ CAPACITORS

56 59 65 67 70 75 80 84 87 100 120 220
10 100 1000

CERAMIC CAPACITORS 50p

SILVER MICA (values at all) 3, 4, 6, 10, 12, 18, 22, 33, 47, 50, 75, 100, 150, 220, 330, 470, 560, 680, 1000
10 100 1000

CERAMIC TRIMMER CAPACITORS

MINIATURE TYPE TRIMMERS

COPPER BASE TRIMMERS

JACK PLUGS

DIN FLUGS SOCKETS In Line

PHA APPROVALS REGULATORS

BIDIODES

FERRIS CHLORIDE +

COPPER BOARDS

THYRISTORS +

NOISE FILTERS +

DIODES

ZEROES

TRIACS +

STANDARD Component List for Full Range of Components

CO -AXIAL (TV) Full Component List for Full Range of Components

STOP PRESS . . . Watford Electronics announce the introduction of their "ECONOGAME" the obvious answer to CHEAP yet reliable TV GAMES. This simple to build TV Game Kit, with the famous 8505 IC Ferris Glass PCB, semiconductors and full instructions. All you need to complete the Unit is two Pots, Switches, Loudspeaker and Control Boxes. The finished board fits our £3.50 Black & White TV and makes an attractive and inexpensive TV Games Unit. Price only £10.45 incl VAT (35p p&p insured)

COLOUR ADAPTOR FOR YOUR EXISTING BLACK & WHITE TV GAMES

Complete Kit including UHF/ VHF Modulator and the PCBs. £9.89 incl VAT (45p p&p insured)

Ready Built. Tested and Fitted £11.39 incl VAT (45p p&p insured)

Special Offer

TV Games IC £4.50 only.£3.50 Game demonstration on at our shop. Send £1.00 for leaflet.
Dear Reader,

Electronics Today International has been around for more than five years, serving the intrepid electronics enthusiast. Each month we have kept readers supplied with the latest information, new devices, interesting features and top notch constructional projects. The formula is a successful one (if circulation is a reflection of readers satisfaction). With this special edition we take a step away from the specific world of Electronics Today, and look at the trends and developments over the last year, with their implications for the future.

But not being a weighty intellectual bunch (even at the best of times!), we also have Roy Pullen’s slightly wacky view of typical readers — which one are you? The biggest feature is on the film Star Wars, with exclusive photographs of the robot insides and an in-depth account of the production, hope you enjoy it. Projects for everybody, from beginner to MPU builder, include a nice powersupply and CMOS switched amplifier — our DIY version of R2-D2 is not quite ready yet though!

Other features include an interview with the legendary electronics entrepreneur Clive Sinclair (he thinks robots will be here soon), and a look at the world of video by Angus Robertson. Unlike most of our previous special editions, all of the material has been specially commissioned, no editorial has appeared in the monthly magazine. All in all, we think Electronics Tomorrow is our best special yet.

Hope you enjoy it.

Jim Perry
Specials Editor.
PROJECTS

56 500 SECOND TIMER — First of four straight forward projects using our 555 Board.

58 MORSE OSCILLATOR — Practise for your radio amateur licence, and learn electronics at the same time.

60 BUZZ BOARD — Test your skill and nerves, with this electronic version of an old game.

63 TEMPERATURE ALARM — Baby it’s cold outside, find out when it’s too cold (or hot) for comfort.

68 CMOS SWITCHED PREAMPLIFIER — Use solid-state switches to control your Hi-Fi, can be modified for remote control.

76 EXPERIMENTERS' POWER SUPPLY — Versatile unit gives 0-15 Volts with current limiting.

FEATURES

8 THE ETI STORY — Meet the international editors and the bunch of dedicated loonies, that bring your favourite magazine out — and this amazing special edition.

14 CONSTRUCTIVE THINKING — What may happen in construction in 78 and what has happened recently.

16 ETI TYPES — Also called a leg Pullen feature, eight pages of Roy Pullen’s amazing cartoons.

25 CALCULATORS OF THE FUTURE — Halvor Moorshead investigates the future generations of calculators.

28 HI-FI 1978 — 2008 — With the help of a time capsule, Ron (bionic ear) Harris takes a look at audio past, present and future.

32 VIDEO TODAY & TOMORROW — Angus Robertson investigates the video revolution, and how it will affect the home.

42 PERSONAL COMPUTING — Gary Evans uses his main frame to evaluate future trends in MPUs.
44 INSIDE STAR WARS — Yes folks the biggest Sci-fi film ever, we have the inside story.

48 1, 2, 3 — How the computer aided special effects were produced.
49 R2 — D2 — How he (it?) was made and operated.
50 INSIDE VIEWS — R2 — D2, the Umbrella, the Stick, Dome and Box robots exposed!
55 ONCE UPON A TIME — Halvor Moorshead flew to Canada to see Star Wars, before UK release, read his review here!

82 CONVERT YOUR TV FOR VIDEO — Turn your old B & W set into a computer terminal without UHF modulator.

88 ELECTRONICS YESTERDAY — John Miller-Kirkpatrick takes a stroll down 2102 lane.

92 THE SINCLAIR STORY — Steve Braidwood and Halvor Moorshead tracked Uncle Clive down with a taperecorder — read his true life confessions.

NEWS & INFORMATION
13 ETI SPECIALS — Get yours here! All our other amazing special editions are advertised on this page.
34 T-SHIRTS — Yes folks, you too can let your girlfriend, wife, or yourself, prance around like our nubile young model.
80 TECHNICAL BOOKS — Too numerous to list here, look up our advert and educate yourself.
81 DING-DONG OFFER — Ready built MPU controlled door bell for only £19.95.
90 ETI SUBSCRIPTIONS — Don’t delay, subscribe today! To be convinced turn to this page, and discover how cheap a subscription is.
98 BINDERS — Keep your collection of the best electronics magazine in pristine condition.
NASCOM I
Microcomputer for the Hobbyist

HARDWARE FEATURES:
- Supplied in kit form for self-assembly
- Full documentation supplied
- Includes printed circuit board
- Full keyboard included
- Interfaces to keyboard, cassette recorder & TV
- 2K x 8 RAM
- 1K x 8 EPROM monitor program
- Powerful 280 CPU
- 16 line x 48 character display interface to standard, unmodified TV set
- On board expansion to 2K x 8 EPROM
- On board expansion facility for additional 16 lines I/O.
- Total expansion to 64K x 8 memory
- Total expansion to 256 input ports and 256 output ports

SOFTWARE FEATURES:
- 1K x 8 'NASBUG' program in EPROM
- Provides 8 basic operator commands including single step
- Expandable software system via additional user programs in RAM or EPROM

ONLY £197.50 (EX VAT)

IN KIT FORM

Please phone or write for details
92 BROAD STREET, CHESHAM, BUCKS.
TELEPHONE: (02405) 75154
24 Hour Electro-Mech Alarm Clock

Set to run, illuminated, A.C. Mains. Only £5.90 ea.

Built-in 5 watt power amplifier: Gould-Advance, 4.8 ohm output, up to 24V output. 300mV into 2K input. Complete with 5-pin plug top. £12.90 ea. 10 for £125.50. Suitable power supply for above: kit form £2.20 ea.

I.C. Audio Power by TOSHIBA 35W module. 24 hours a day, 7200mW max. 500mW into 2K input. Complete with 5-pin plug top. £5.00 ea. 10 for £48.50.

Suitable power supply for above: kit form £2.20 ea.

TOSHIKA 35W module.

Complete with instructions £3.00 ea. 10 for £27.00.

Suitable for use (220V OIL.

3r r.. E3-00 ea. 115 5. 6 r

I. C. Aube Power by TOSHIBA 35 WATT modulo

R

ohms o. p 220mY into 47K 10,

0 3

unas) 60V power supply required (11 50., 10

(7500

TEXAS saientrigss

SN76023N £1.75 10 for 115

SN76023NO E1.50 10 for E12 50

SN76033N £1.76 10 for E15

AY 8-500 GAME CHIP BY G I

£7.55

T84800 (1.20 10 for 110

TBA810S (1.20 10 for EIO

TBA820S C1.10 10, 19

T8A1205 75p

MULLARD TUNER MODULES

LP1171 combined AM/FM IF strip LP1179 FM front end with AM tuning gang, used with LP1171 Per pair £7.20 with resonet Ferrite Aerial-995p

7 Button selector switch with buttons 100K pots, ideal for use with synchra tuned FM sets and TV. 120x64x55mm £2.50 ea. 10 for £25.

6 Button selector switch as above £2.00 ea. 10 for £15.50.

ALMA push button feed switches. Push to make. High resistance 18 x 27 x 18mm 25p ea. 25 for £6. 100 for £25.

1MHz HCMU quartz crystals. For frequency meters, clocks. Frequency references etc. 17 x 19x 7mm £3 ea. 10 for £25.

ALL PRICES include VAT at current rate. UK call / pack 35p per 1.5 items.

FURTHER RANGE OF EQUIPMENT ALWAYS IN STOCK. SEE CATALOGUE.
THE ETI STORY

As the British Empire contracts to a handful of islands and enclaves, the star of ETI is in the ascendency (granted that this is a highly pompous statement, but we couldn’t resist it).

ETI is now published in Britain, Australia, Canada, Holland and Germany - each edition operating independently but also freely exchanging articles and information. Being as this is a special issue, we thought we’d take time out to tell you a bit about ourselves and show you some examples from our scrapbook.

ETI-Australia

ETI-OZ (big brother to ETI-UK, ETI-NED, ETI-CAN and ELRAD) was born in April 1971. It is published in Sydney by Modern Magazines, who also publish Modern Motor, Modern Boating, Modern Fishing, Rugby League Week, Australian Cricket, Australian Golf, Revs Motor Cycle News, Off-Road Australia, Camera and Cine, Movie 78, Hi Fi Review and CB Australia.

The publisher of the electronics trio (ETI, Hi Fi, and CB) is Collyn Rivers, who has been Editor/Editorial Director of ETI-OZ since before the first issue appeared. He set up a projects laboratory and took on an engineer, Barry Wilkinson, to manage it. It is Collyn’s original formula and Barry’s approach to project design that account for the quick success which led Collyn to add ‘International’ to the title in 1972, when the first overseas edition started.

In 1976 Barry Wilkinson broke free of Modern Magazines and started his own design company: Nebula Electronics. However, through Nebula, Barry still designs most of the projects used in ETI-OZ. When Nebula was formed a vacuum appeared in the ETI office and Steve Braidwood (Then Assistant Editor of ETI-UK) went down under to fill it. Today Steve has moved (to Canada) and Les Bell is handling editorial.

The sales of the Australian issue are almost 35,000 - which is not bad for a country a ¼ the size of the UK (by population). ETI-OZ covers a wider spectrum than ETI-UK. There’s more Hi-Fi, and recently quite a bit on CB. Even though Australia’s CB bands were legally authorised only in June this year, ETI gave away the first five issues of ‘CB Australia’ before the announcement was made.

ETI—UK

Originally published in Britain in April 1972 by Whitehall, ETI-UK had a chequered start with several editors in the first year. The present editor is Halvor Moorshead who joined in March, 1973 having been with Practical Wireless for 4½ years.

For its first year ETI was published from a couple of rooms in Fleet Street with three staff (Editor, Ad Manager and Secretary) and the fourth staff member didn’t join until shortly after the offices were moved to a converted house in Ebury Street. In November, 1973 the magazine was taken over by the Australian company though the staff didn’t change.

Since then ETI-UK has been extremely successful. In
late 1973 sales were around 24,000 which has built up to about 53,000 at present and it's still increasing regularly at about 1.5% a month and this has been in a period when other titles have lost substantial sales.

Currently ETU-UK employs seventeen. Seven journalists and technicians, three on artwork and design, five on accounts, reader services and subscriptions, and two on advertising; all staff are based in the Oxford Street offices.

ETI—Holland

We’re sure that one of our competitors in Britain reckon we entered Holland as a reprisal but it wasn’t that way. ETI (pronounced ‘Eighty’ in dutch) is produced by Anton Kreigsman who has two large components shops in Holland. The first issue appeared in October, 1976 and since then has established itself firmly.

We THINK it’s a good magazine - trouble is the term ‘double-dutch’ has a foundation in that none of us understood a word of it!

The magazine is very much a family as Mr. Kreigsman’s wife and daughter both work for it from the Den Dolder offices.

ETI—Canada

Until February 1977, Canada had not had its own magazine devoted to amateur electronics. That was put right after a successful experiment in exporting the British edition during 1976.

ETI-CANADA is based in Toronto and published by a company established specifically to produce the magazine. The editor is Steve Braidwood who has emigrated there after having been Assistant Editor of ETI in both Britain and Australia. The first editorial person was Les Bell who was lent from Britain and he has subsequently gone to Australia (join ETI and see the world!).

The All-Canadian editorial influence is provided for by Graham Wideman, the Assistant Editor.

The problems facing a magazine in Canada are entirely different from those we experience in Britain. You have to be careful not to choose a small-town printer - they’re sometimes snowed in for days. Even in ideal conditions the vastness of the country means it takes three weeks for the final copies of the magazine to reach the Maritime Provinces and British Columbia.
Publishing in Canada presents hazards which the British mind finds difficult to guess at: one of our covers showed a young couple at a table playing ‘Mastermind’ with a glass of Dry Ginger - we received several letters complaining of our encouraging young people to ‘partake of hard liquor’!

Elrad

Latest addition to the family is Germany where the title is ELRAD, it doesn’t mean anything being simply an amalgamation of Electronics and Radio, titles of this type are common in Germany.

Elrad will appear with no. 1 in January 1978 but the zero issue, a free copy given to potential subscribers, is due to appear at the same time as this issue.

Editor is Udo Wittig, a dedicated electronics enthusiast with a special interest in amateur radio which he shares with Les Bell who handles the editorial in Australia and Steve Braidwood, editor of ETI-CANADA.

Elrad is published in Hanover by an existing company Heinz Heise Hannover. Although only just getting under way, Elrad have their own minicomputer, a Siemens based on the 8080 with floppy disc, VDU and printout facilities. This is used for advertising analysis (something which is considered ultra-important in Germany), subscriptions and accounts.

The importance of the English language in electronics is demonstrated by a feature which has no parallel in the other editions: the left column contains English technical text, the right column carries the translation of specific terms.

Hobby-electronics magazines are undergoing an enormous growth in Germany; even eight years ago there was only one and that was a combined Wireless World and servicing magazine. Elrad will be the fourth magazine of its type in Germany: we wish this edition all the best.

Where The Articles Come From

The various editions of ETI employ fourteen full time technical journalists - considerably more than any other magazine - and a very high proportion of articles are re-
searched and written 'in-house' All editions however, use a number of free-lance authors from time to time and in fact anyone can send in manuscripts.
Both the Australian and British editions have fairly extensive labs/workshops where practically all the projects are built - or rebuilt if submitted from outside. In Britain there are two technicians, Tony Alston and recently John Koblanski both of whom were (and we hope still are) strongly devoted to project building.
Most of the projects are designed 'in-house', the technical staff and technicians working together. The workshop is equipped to a carefully planned standard - the principle adopted is to have it equivalent to really good home workshop using the tools and test gear available to everyone. If we had highly specialised equipment we'd be tempted to use it but of course readers wouldn't then be able to duplicate it. Most of the test gear is what we have presented as projects except for an inductance bridge, three 'scopes and regular multimeters.
All Tech-Tips, one of our most popular features, are submitted by readers and you certainly keep them coming - we accept about half of those submitted.
THE METAC DIGITAL CLOCKS

* COMPLETE KIT *

- Pleasant green display 12/24 Hour readout
- Silent Synchronous Accuracy - Fully electronic
- Pulsating colon, Push-button setting
- Building time 1 Hr. - Attractive acrylic case
- Easy-to-follow instructions - Size 10.5 x 5.7 x 8 cm
- Ready drilled PCB to accept components

A professional product for the home constructor. It has been designed by engineers using the most modern techniques and components. It will appeal to the confirmed hobbyist and to the man who simply wants to "have a go". The kit contains everything except a mains lead. The only tools required are a small soldering iron, solder, screwdriver and wire cutters.

KIT PRICE

£9.75 + 78p VAT

SPECIAL OFFER

LED DL707 0.3" Red £7.00
Futaba 5LT01 Bright Green clock display £4.96
Clock Chip AY1202 £3.02
Push Button switch £2.22
28 Pin & 24 Pin DIL socket £2.75
Mains Lead 2 metres moulded 2-pin plug . £2.65

+ 30p P & P per order

Send card number with order

SPECIAL OFFER

BRITAIN'S TOP SELLING DIGITAL ALARM CLOCK

* Fully Built, Tested and Guaranteed *

WITH SLEEP-OVER FEATURE

- Bright Orange 12 Hour Display or
- 24 Hour Alarm
- 10 Minute Repetition
- Alarm Set Indicator
- Accurate Silent Timekeeping
- British Designed and Built
- 5 in across, 3½ ins. deep

COMPLETE CLOCK

£13.43 + £1.07 VAT

BARGAINS

AMAZING VALUE

Top quality 6 digit watch.
Hours, mins., secs., day, date, auto cal., backlight. Superb metal slimline case with matching bracelet

£24.00

THE BLACK WATCH by BULER SWISS PRECISION MADE LCD

Continuous 6 digit display with backlight.

£30.55 + £2.44 VAT

BULER LCD QUARTZ CHRONOMETER

Swiss Electronic Stopwatch
Hours, mins., secs., day, date, auto cal., backlight, Independent Stop Watch
1/100, 1/1000, 1/100, 1/100, 1/100, 1/100
Split and Lap Timing
Silver metal bracelet & case

Similar to Seiko, Citizen, etc OUR PRICE £49.00

TV GAMES

4 Game, black and white £25.00
4 Game, colour £29.00
6 Game black and white, with gun £35.00
6 Game colour, with gun £45.65

Mail order customers please include 90p P&P

Metac-Electronics Time Centre

MAIL-ORDER

DEPT. PB
HIGH STREET
DAVENTRY
NORTHANTS
Tel. (032 72) 76545

SHOP

DAVENTRY

67 HIGH STREET
DAVENTRY
NORTHANTS

UXBRIDGE

NEW ARCADE
HIGH STREET
UXBRIDGE
MIDDX
(0895) 54061

LONDON

327 EGGWARE RD.
LONDON, W2

10 min. West Marble Arch, close to Henry's, Lusty's, Marshal's, etc.

Access

Bay it with Access

BARCLAYCARD

Mail order customers please include 90p P&P

Electronics Tomorrow — Winter 1977
ETI SPECIALS

TOP PROJECTS No. 1 + No. 2
A massive 180 page book containing all the projects originally described in our first two Top Projects Books - originally published in October 1976 and June 1975 - which are now out of print. Projects include: Master Mixer, 100W Guitar Amp, Low Power Laser, Fluorescent Test, Mixer Preamp. Logic Tester, Simple Amp, Ni-Cad Battery Charger, Touch Switch, Scope Calibrator. Electronic Ignition, Automatic Car Theft Alarm, Turn Indicator Canceler, Brake Light Warning, LM380 Circuits, Temperature Alarm, Aerial, Macheter, UHF TV, Preamplifier, Metal Locator, Four Input Mixer, Super Stereo, IC Power Supply, Rumble Filter, IC Tester, Ignition Timing Light. 50W Stereo Amp PLUS MANY MORE.

ETI CIRCUITS No. 1
Contains nearly 750 circuits, largely taken from the best of our Tech-Tips. Great care has been taken to index each circuit for rapid selection. An additional section at the back gives plenty of reference data including transistor specs and equivalents. Sales of this publication have been excellent - hardly surprising when the circuits cost less than 1p each!

£1.50 + 25p P&P

TOP PROJECTS No. 3

£1.00 + 25p P&P

TOP PROJECTS No. 4

£1.00 + 25p P&P

TOP PROJECTS No. 5

£1.00 + 25p P&P

HOW TO ORDER
ETI Circuits No 1 and Top Projects No 5 are available at newsagents or direct from ETI. Others are available only direct from ETI. Payment and packing is 25p overseas. Send remittance in sterling only.

ETI Specials, ETI Magazine, 25-27 Oxford Street, London W1R 1RF.

Please mark the back of your cheque or PO with your name and address.

ETI SPECIALS

TOP PROJECTS No. 1 + No. 2
A massive 180 page book containing all the projects originally described in our first two Top Projects Books - originally published in October 1976 and June 1975 - which are now out of print. Projects include: Master Mixer, 100W Guitar Amp, Low Power Laser, Fluorescent Test, Mixer Preamp. Logic Tester, Simple Amp, Ni-Cad Battery Charger, Touch Switch, Scope Calibrator. Electronic Ignition, Automatic Car Theft Alarm, Turn Indicator Canceler, Brake Light Warning, LM380 Circuits, Temperature Alarm, Aerial, Macheter, UHF TV, Preamplifier, Metal Locator, Four Input Mixer, Super Stereo, IC Power Supply, Rumble Filter, IC Tester, Ignition Timing Light. 50W Stereo Amp PLUS MANY MORE.

ETI CIRCUITS No. 1
Contains nearly 750 circuits, largely taken from the best of our Tech-Tips. Great care has been taken to index each circuit for rapid selection. An additional section at the back gives plenty of reference data including transistor specs and equivalents. Sales of this publication have been excellent - hardly surprising when the circuits cost less than 1p each!

£1.50 + 25p P&P

TOP PROJECTS No. 3

£1.00 + 25p P&P

TOP PROJECTS No. 4

£1.00 + 25p P&P

TOP PROJECTS No. 5

£1.00 + 25p P&P

HOW TO ORDER
ETI Circuits No 1 and Top Projects No 5 are available at newsagents or direct from ETI. Others are available only direct from ETI. Payment and packing is 25p overseas. Send remittance in sterling only.

ETI Specials, ETI Magazine, 25-27 Oxford Street, London W1R 1RF.

Please mark the back of your cheque or PO with your name and address.
A short history of construction with thoughts on future developments.

The present-day electronics enthusiast needs a wide variety of skills and equipment to get the most from available technology. In the early days of experimental electronics all you needed was a selection of woodworking tools, wire cutters and a soldering iron. You could even, literally, knock together a circuit with square wire and nails on the kitchen table. Alas, the days of a single valve radio sets are long since past.

The boom in home construction started with the introduction of transistor technology, rapidly accelerated by IC technology. With the availability of more and more sophisticated devices came the need for more sophisticated construction techniques, and deeper understanding of the actual device characteristics.

To help the enthusiast (and development work in industry) various constructional aids were developed. One of the earliest aids was pre-punched paxolin matrix board; with this, prototype circuitry could be assembled reasonably neatly and quickly, but all the actual wiring between components was still a major part of construction. Of course this was still not as neat as a specially designed printed circuit board, but in 1965 Veroboard was invented — with the copper in the stripes! This invention immediately made construction a lot neater, quicker and more flexible — leaving a lot more of the constructor’s time available for the more creative aspects of electronics. Various other fixed and variable pattern circuit boards have been introduced since Veroboard revolutionised the home constructor’s lot, the most recent being Blob-Board (similar to ETI’s Utiliboard), which has the stripes but no holes.

Plug it And Print It

All of the above techniques are suitable for one-off prototype work. More flexible development aids include S-Dec or the newer Protoboard. Both of these devices enable you to plug in components, without soldering, with the benefit of no possibility of heat damage and easy re-use of components.

Of course for a neat professional finish to any project a printed circuit board is best. Here there have been several advances in technology — to make the home constructor’s lot a happier one.

The first aid for the constructor was the appearance of photo-sensitive board — which enabled masters to be used for more than one board. A drawback to this method is the need for an ultra-violet exposure unit — although cheap units are now becoming available — at a push the sun can be used (in the UK this can be hard to find!).

It’s In The Bag

Next came the PCB pen, first marketed by Dalo, so that you could draw your circuit directly onto the board. By using dry transfer sheets for IC mounts, the tracks can be quickly drawn in for 1-off boards.

The Seno ‘etch-in-a-bag’ system removed the mess and danger of hot ferric chloride — a necessary evil of PCB production.

ETI PRINTS

All of these aids to PCB production are good, but the amateur is stuck with making up the master artwork, or drawing it each time. The latest innovation (brought to you by ETI) is PCB artwork complete, on etch resistant dry transfer sheets. ETIPRINTS cost 75p a sheet and can...
FEATURE: Constructive Thinking

THINKING

Amatek universal box, virtually any small project will fit inside.

be used as photomethod masters, or laid down direct onto the PCB — with six separate project designs per sheet.

Tooling Up

The mechanics of construction demand a reasonable selecting of hand tools. Side-cutters and screwdrivers haven’t really changed in the last twenty years — they just get more expensive! A good idea is to spend as much as you can on good quality tools, they last longer and will not get any cheaper. A pair of sidecutters from Lindström cost about £4 in 1974 — the ETI pair still cut paper!

Good soldering irons seem to be the exception to the above rule, they are still amazingly cheap — considering how useful they are! Rechargeable irons are becoming cheaper and with higher capacities — the throwaway iron may be just over the horizon.

Temperature-controlled irons can be bought for between £10 and £20, the price is well worth it — all ETI projects are assembled with controlled irons.

A Pain In The . . .

Hand, finger — metal bashing can be painful, not to mention dangerous, high speed drills slipping off panels can work wonders on the kitchen table. The actual work of bending sheet metal into a vaguely rectangular shape is now done for you, but the various holes and slots are a time-consuming part of any project. In fact 90% of home-built gear falls down when it comes to the exterior finish. Even the most gifted electronics designer may cut slider slots crooked, and lettering usually ends up as stick-on labels.

Do not fear, ETI is here! Panel transfers of complete words add the professional touch to any project. This is still not much use if all your holes are like a dog’s hind leg; pre-punched boxes are the answer. The latest in this line is from Amatek; they produce a really neat case with lots of holes, and rectangular cut-outs. The Amatek PDS case comes complete with a front panel that can be used to mask unwanted holes. Expect more of this sort of Universal box in the near future.

What Next?

As the complexity of ICs increases the size seems to decrease. Finer and finer tools and techniques are needed for all constructional projects. One result is that a lot of people lose interest in actually building equipment, they find it much more interesting to just work the concepts out and possibly breadboard the design.

But lots of people actually enjoy the physical side of life, and are continually looking for new ideas to bring to mechanical and electronic life. Sometimes now, and probably more so in the future, the best combination is that of constructor and designer working as a team. This particularly applies in the MPU area — any competent constructor can put one together, but it needs a programmer to develop the software.

An interesting possibility is the establishment of an exchange/meeting centre, putting hardware constructors in touch with software ideas constructors — both doing what they enjoy most.
WIRELESS TIME:

approx. ½ full size digits shown here

National's MA1012 LED digital clock module is a complete clock & alarm unit, operating from 50 or 60 Hz mains, and includes all the features you would expect: Hours-minutes display in bright 0.5" LEDs with optional seconds, sleep and snooze alarms, fast and slow setting, AM/FM indicator, switched alarm outputs - but best of all its 2x2.

Thus the MA1012 is suitable for use in any radio/tuner applications, and requires just 1.75 x 3.75 x 0.7" total. (Ex. transformer.)

£9.45 per module, isolating mains transformer £1.50 each. (*8% vat)

Two modules, and two transformers for £20.00 (+8% vat)

In the latest Ambit catalogue: more TOKO coils, chokes, filters etc., data on the short wave coil sets, a revised price list, micro-microphone inserts, special offer lines etc.

DETECKNOWLEDGE

Metal locator principles and practise, including some of the facts and information manufacturers of £100+ detectors would rather you didn't know. £1,00 each.

The Bionic Ferret 4000 - a VCO metal locator based on the PW seekit, including all parts, plasticwork, ready wound coil etc. Inc. filter etc., data on the short wave coil sets, a revised price list, micro-microphone inserts, special offer lines etc.

WIRELESS TEST:

Number 2, Gresham Road, Brentwood, Essex. CM14 4HN

phone: 0277 216029

Our new premises are only 200 yards from Brentwood station - with parking facilities outside the door!
interest — at least the sump oil spilt on the woven axminster has cleared the mould caused by fallout from the glue factory where the fumes signal the melting down of another batch of dead nags. Well, perhaps facilities are not ideal but fortunately Grandad has donated his plumbing toolkit toward the enterprise. No doubt the Skulfington after-dinner drawing room conver-

sation will turn to the Crisis in Society and the contribution to be made by the rational technologists' disciplined mind — like Arnolds!

(After all a rabble never came up with anything, except possibly the French Revolution — and look at them!)
Complete digital clock kits
TEAK OR PERSPEX CASE

Features:
- 4 LED digits 1½" high, red
- 12-hour display with AM/PM indication
- Mains frequency accuracy
- Easy-to-build all components included
- Beautiful real wood case or Perspex
- White, Black, Red, Blue, Green
- Flashes to indicate power cuts

NON-ALARM
Complete Kit including case £12.50
Ready built £11.50
Module Kit excluding case £8.30
Ready Built £10.00

ALARM
Complete Kit including case £15.50
Ready built £14.50
Module Kit including case £12.00
Ready Built £13.50

TIMER FACILITY: Stopwatch use up to 9 mm 59 secs

DISPLAYS: FND 500 1/2" LED £1.19 each. 6 for £6.48
MM5385N 12 hr 4-dig. £2.19 each. 4 for £8.48
50362N Calendar clock £7.75
2502NA IK Static RAM £15.70
1702A UV Erasable PROM £11.35
Z80 PIO £16.70
UV PROM Eraser £5.00

RECHARGEABLE BATTERY SET, Super Value £8.10
Includes: 4 AA (1.5v) Nickel Cadmium batteries (separately £1.08 each)
3/6/9v switched Universal Mains Adaptor with 4 plug connector
for most calculators (separately £3.76) plus battery holder

Send payment with order, SAE for details.

EXCELLENT VALUE GUARANTEED
- National Semi. 5 Function LCD Watch. Backlight £17.28
- NOVS B50 Calculator £3.38. Adapter £2.70.

DISPLAYS: PND 900 ½" LED £1.19 each. 5 for £5.45
GSB 4140 ½" red LED stick of 4 £4.32 £4TO £½" green phosphor stick of 4 £1.40
50395/6/7 50342N Calendar clock £7.75
6 Micro 12/hr Counters. 50395/6/7 £15.10
MM885N 12 hr 4 digit. £4.32
20 Microprocessor £12.88

Z80 TCC £15.70
702A UV Erasable PROM £11.35
2502NA Kit £22.58
50362N £22.58
UV PROM Eraser £5.00
2502NA Kit £22.58

ALPHA CLOCK KITS ½" Green Display. Perspex Case
Alarm £18.50
Non Alarm £12.50

Send payment with order, SAE for details.

BARON (EA)
SOUTHWAY HOUSE
6 POWER ROAD
ROYSTON, HANTS.
Phone: Royston (0763) 43895

THE PROJECT
BUILDING FIEND

1 TALKING SOAP DISH Collection (or rather — non-talking).
2 Workshop radio.
3 Mini Drill (axis of rotation is well outside the drill diameter!)
4 Tee being warmed by "green concrete" dropper section.
5 All right! — We have ways of making YOU confess to it too!
6 Faithful old MULTIMETER. Has been dropped on floor 87 times, now has to be nursed along.
7 Unorthodox method of cutting studding, etc.
8 HOLE. Thought to lead to SPACE/TIME warp. Vital components drop through never to be seen again.
9 Instructional BOY-SCOUTS-KNOTS generator and display.
10 Equipment to simulate characteristics of length of wire.
11 Electronic MOTHER-IN-LAW. With late night auto-muting.
12 Digital display of cumulative ELECTRICITY BILL (SINTEL KIT).
13 DUSTBINMEN approach detector. (Programmed to monitor CLANGS OF E.E.C. approved EUROBIN hitting deck ... range 2½ miles).
14 Electronic Amoeba (ETI 639).
15 TTL Traffic Jam Synthesizer (MARSHALL'S OFFER).
16 EMT Source, High energy laxative, Senior Citizen Rejuvenator.
17 Dry Joint Simulator for testing dry joint testers (PW 975).
18 Electronic GRASS display (with variable differential growth and adjustable clipping) (Nominated by E.T.I. for the 1978 Wedgwood Benn Award for Innovation).
19 Farmyard Effects (EE 34).
20 Electronic Pterodactyl (WATFORD ELECTRONICS KIT).
21 VHF/FM to MW/AM Converter. (Also adds homely whistles, crackles, fading and distortion; strips treble, compresses and feeds into TRANNY (AMBIT KIT).
22 Infra-red SCORPION grill for toasty crunchy snacks. With timer.
23 Unit for making very loud HOOTING noise (Halvor simulator).
24 Quark detector (VV 946/83).
25 MACRCALENDER with ice ages and Solar super-nova.

EXPRESS (DRILLS) LTD
Unit 10, Sustanum Works,
Titchfield, Hants.
Telephone: 03294 41752

Twenty-eight years of relentless struggle with his home made television. The EF54s finally deliver. The picture is 3" X 4", and bright green!

Electronics Tomorrow — Winter 1977
prediction (plus optional PUROMETER — calibrated to 30 million degrees) (BYWOOD OFFER).

26 Reproduction vintage spark transmitter (R&EC 434).
27 Thermonuclear trigger (licence required). (DORAM KIT).
28 Analogue COMPOST heap (PE 966).
29 AQUARIUM TV display with moving Fishes — in colour. Also optional add-on EELS unit.

30 No-one knows what this does — let alone how it does it (MAPLIN KIT).
31 Sonic radar jammer to confuse bats.
32 STAR PROJECT... Mini TOMOSCANNER and display. For dubious sausage rolls and ailing hamsters (ETISCANNER!!)
THE PROFESSIONAL AUDIO AMATEUR

1 Fibre wedges to control room reverberation.
2 Variable geometry tracked speaker array. Gas-filled mid and treble range systems corrected for phase.
3 Electrostatic dust extractor.
4 Mood lighting.
5 Intercom to WORLD outside.
6 Lead-shielded duct for delivering antistatic radioactive isotope "bomb".
7 Headphone park.
9 Sound pressure level meter.
10 Cesium frequency standard.
11 On-line spectrum analyzer.
12 Ultimate F.M. tuner with panoramic display.
13 Tuner co-ax S.W.R. indicator.
14 Thermometer and Hygrometer.
15 Seismograph.
16 Barometer.
17 LIFE SUPPORT SYSTEM. (Uses existing Dental plumbing.)
18 Aerial rotator.
19 Record turntable — on stack of paving slabs through to substrate!
20 Disc hygiene trolley. Handling, decontaminating, examining, ionizing.
21 Omnidirectional combined channels deep basshorn in chimney.
22 Cryogenic plant for low noise preamp.
23 Secret development model of Giant NABCASSETTE recorder on loan from R****.
24 Looney-box. All known Quadro systems decoder — and one or two unknown!
25 X.Y Stereo display.
26 Card and Memory store for programmable equipment.
27 Converted dentists chair for maximum comfort and minimum acoustic interference.
28 Emergency escape facility.
29 Programmable graphic equalizer with group delay and phase shift displays.
30 IKON: Original 'Williamson' mumified in transparent potting resin (might be exhumed if transistors lose favour!)
31 Phial containing speck of dust found on stylus: to be sent for annihilation in CERN Synchotron, Geneva.
32 Continuity Announcer.

Special Introductory Offer*

The all-in-one Photolab kit, from Mega — a complete professional system for p.c. board, label and front panel production. Outstanding value at only £44.50.

Just see what you get.

• U.V. exposure unit
 • 16 sheets of drafting aids and film
• 3 sheets positive resist coated epoxy glass laminate
• developing and etching trays
 • developer and etchant
• 12V.d.c. drill
 • 5 twist drills
 • 8 sheets panel/label material, in 5 different colours
• photolabel developer, pads and reversal film
 • complete instructions.

Has there ever been such value? Complete the coupon and take advantage of this incredible offer, right now.

*Offer closes on January 15th, 1978

Access and Barclaycard welcome.
Offer includes postage, packing and V.A.T. (Allow 7 to 14 days for delivery.)

Mega Electronics Ltd.
9 Radwinter Road,
Saffron Walden,
Essex CB11 3HU.
Tel. (0799) 21918

Please send me the Mega Photolab kit. I enclose my cheque/postal order for £44.50
My Access/Barclaycard No. is

Name
Address

Mega Electronics Ltd.
A superb range of quality watches. We think they are unbeatable value for money.
Casiotron watches are probably the success story of the decade and rightly so! The constant liquid crystal display, with a life expectancy of over 6 years, can be replaced at low cost. Accurate to 10, 15 or 20 seconds per month, they display hours, minutes and seconds, a.m. p.m., date and month (permanent calendar adjustment). Must have a dual time zone feature as well (TM). Many have steel cases and mineral glass faces and are water resistant to 130 feet. Removable links. One battery lasts over 12 months (slimline or over 15 months). The slimline

Ultra Slim

Five-way Alarm

Lady’s Model

Available November/December

Not illustrated: 310S-108, ultra slim, heavy gold plated £99.95. 560-111, ladies mineral glass face, £39.95. Available soon: Chronograph measuring to 1/100 second, two lap times. Round watch £59.95, square watch £64.95. Low cosr lady’s watch £39.95.

NIBICO4511ES (left) watch/chromophall. All stainless still case, mineral glass face, water resistant to 1000. 1/1000 sec. to 1 hour, net and lap times £49.95.

NEW FROM NIBICO. Model 407, superbly styled 6 digit LCD. displaying hours, minutes, seconds (or hrs. mins. date and day of week. Backlight. Water resistant. Ultra slim case. Fully lighted face. £59.95. Lady’s models from £39.95.

FAIRCHILD TIMEBAND (centre) five functions backlight. TC41, chrome plated £15.95. TC440, gold plated £21.95. Lady’s models from £25.95. WT 66 (right) supports 6 function LED, metal case. S/S back and bracelet £11.95. Also: Accurist (analog). CITIZEN & ITRON (analog and digital), etc.

TIMEBAND DIGITAL ALARM CLOCKS (MAINS)

WAKE UP TO TIMEBAND. Precise timekeeping. Solid state reliability and long coming. 9 minute snooze features. Alarm on and mains fail indicators. C500 and CS90 can be synchronised to the exact second and will display last minute digit and seconds. C500 (left). £14.35. C6110 (centre). As £500 with more sophisticated controls. White only £15.90. C590 (right). With built-in high flow intensity elevating reading lamp. White only £23.35.

The amateur computer man shares with the Hi-Fi fanatic the same highly developed mania for interconnected SEPARATES. There is no way that a one box personalised high performance system could be tolerated. However, whereas audio equipment hovers on the strife-torn domestic borderline between FURNITURE AND MACHINERY, computer tackle is definitely machinery and as such (apart from the Skuffington household) is relegated to cellar, attic or shed.

Colleagues more familiar with the world of exotic signal processing, as found in audio, communications and television tend to scorn the pathetic ups and downs of the rustic digital signal, and insist that waveform processing is intrinsic to genuine electronics. They even scornfully question whether the computer man is concerned with ELECTRICITY!

Meanwhile the inscrutable practitioners of this new and bizarre branch of mathematical sorcery toil on — on a higher and rarified plane of intellectual existence to that of the dirty finger-nalled, scope battering radio rabbie.

KEY

1 Teletype unit.
2 Punched paper tape reader.
3 Floppy disc 'player' unit.
4 Home-made floppy disc experimental unit.
5 Incompatible systems interface patch-board.
6 Skeleton keyboard for manual entry.
7 Modulator for feeding display material to domestic magic lantern.
8 Domestic magic lantern showing results of simulated World cup final.
9 Another advanced game in progress.

Casio Scientific calculators from stock. Lowest prices. CO.T £25.95. MG-1 £25.95. SY-1 £25.95. We will beat anyone’s advertised prices on these products. Send cheque, P.O. or phone your credit card no. to:

T.M. £49.95.

Electronics Tomorrow — Winter 1977
10 Working microprocessor module.
11 Well ventilated reprogrammable read only memory.
12 Interesting teleprinter graphics — genuine system check — no kid!
13 Early home-made 8-bit processor.
14 Power supply with outboard cooling and attractive economy housing.
15 Another development module. Seems to have undergone pre-frontal lobotomy. . . . Last Night of the Proms?
16 Junked cassette player with sprinkling of cassette programmes. Alternative to papertape or manual entry.
17 Primitive one-shot switch input unit.
18 Aerosol spray for de-bugging.
19 Mighty de-bugged noughts and crosses programme listing being triumphantly brandished.
20 Attempt to fabricate home brew floppy disc.
21 Another teletype unit.
22 Personalised low density punched tape storage system.
Build a microprocessor electronic musical door chime which can play 24 different tunes!

A complete chroma-chime Kit for only £18 inc. p&p & VAT.

Plays:
- Greensleeves
- God Save the Queen
- Rule Britannia
- Land of Hope and Glory
- Oh Come All Ye Faithful
- Oranges and Lemons
- Westminster Chimes
- Sailor's Hornpipe
- Beethoven's "Fate Knocking"
- The Marseillaise
- Mozart
- Wedding March

* These tunes play longer if the push button is kept pressed.

* Handsome purpose built ABS cabinet
* Easy to build and install
* Uses Texas Instruments TMS1000 microcomputer
* Absolutely all parts supplied including I.C. socket
* Ready drilled and legended PCB included
* Comprehensive kit manual with full circuit details
* No previous microcomputer experience necessary
* All programming permanently retained is on chip ROM
* Can be built in about 3 hours!
* Runs off 2 PP3 type batteries.
* Fully Guaranteed

The Chroma-Chime is the world's first electronic musical door chime which uses a pre-programmed microcomputer chip to generate tunes. Instead of boring old buzzes, dings or dongs, the Chroma-Chime will play one of its 24 well known tunes from its memory using its tiny 'brain' to all the music synthesizing! Since everything is done by precise mathematics, it cannot play the notes out of tune.

The unit has comprehensive built-in controls so that you can not only select the 'tune of the day' but the volume, tempo and envelope decay rate to change the sound according to taste.

Not only visitors to the front door will be amazed, if you like you can connect an additional push button for a back door which plays a different tune!

This kit has been carefully prepared so that practically anyone capable of neat soldering will have complete success in building it. The kit manual contains step by step constructional details together with a fault finding guide, circuit description, installation details and operational instructions all well illustrated with numerous figures and diagrams.

The CHROMA-CHIME is exclusively designed by CHROMATRONICS

To CHROMATRONICS, River Way, Harlow, Essex, U.K.

Please send □ Chroma-Chime Kits at £18.00 each including VAT and post and packing

PLEASE USE BLOCK CAPITALS

Name

Address

I enclose cheque/PO value £
or debit my ACCESS/BARCLAYCARD account No.

Signature

N.B. The CHROMA-CHIME is also available, fully assembled, price £24.95 inc. VAT and post and packing

Please allow 7-21 days for delivery.

Electronics Tomorrow — Winter 1977
CALCULATORS OF THE FUTURE

Crystal (liquid?) gazing by H. Moorshead

One of the statistics that we have about ETI readers is that on average they own 1.8 calculators. This may sound extraordinary but it becomes mind boggling when you consider that pocket calculators have only been around for about seven years, and prices only broke the £20 barrier in the early summer of 1974. The first calculator survey we did in ETI was August 1974 and the cheapest was £10.95 (Minuteman S) but we believe that it was a model about to be replaced: The Sinclair Cambridge kit was £14.95.

These prices were of course for simple, 4-function models, the least expensive scientific was the Sinclair at £53.90.

OK, it's an old story, we all know how prices have gone down but what of the future - are we going to see the £2 disposable calculator? We think not.

Calculators and transistor radios share a common history. In the very early 1960s the first 'trannies' appeared at £20 or so (then 1 ½ weeks' wages) but the competition was such that the price of a pocket transistor radio fell to about £5 in 1962-63 but although there were exceptions at £3 or so, the competition at the low end of the market was not for price but for quality and facilities. Even the Japanese giants were finding the going tough and concentrated their production and advertising on firstly LW and MW, then SW, 'Pirate Bands', tone controls and later still, FM band. Joe Public was far more interested in a decent sound at a reasonable price than an ultra-cheap model.

So with calculators. We don't know which is the cheapest calculator at the moment but few people would care. From 4 functions, the manufacturers began to include % keys, fixed/floating decimals and then memory.

With competition at the bottom end of the market far too hot for most companies, resources were channelled into chip technology and scientific facilities.

Hewlett-Packard, who were the first in the field, always refused to be pulled into the price wars, relying instead on being a year or two ahead of everyone else. A number of companies were envious of this and company after company went bankrupt, presumably many of them were muttering on until the last minute that the public did not appreciate their quality, not realising that HP were the only ones in the real, as opposed to imaginary, quality table.

So, what do we look for in the next couple of years?

Prices

We have said already that calculators parallel transistor radios remarkably. If we take this a step ahead we can expect prices to hold at their present level for some time. Certainly we'll hear from time to time of the barriers being broken yet again but it will not be dramatic or newsworthy.

What will happen is for replacement models to come out at the same price but to improve continually in facilities.

The current price brackets are approximately £4-£9 for a standard calculator — many of them with memory, square root and percentage keys. Next are the specialised and inexpensive scientifics at £10-£25. Further along still are the super-scientifics and programmables over the £25 mark.

The facilities in the upper section will fall into the middle bracket fairly quickly and we feel that the excitement will be in the £25 plus area.

Developing

The falling price of memory will bring about the biggest change in the next couple of years. Bubble memories which are non-volatile, cost about £300 for 20K. We feel that two years is a bit early for these to be incorporated in normal calculators but it will follow not all that long afterwards. CMOS, or other semiconductor memory will have an enormous growth rate and be cheap enough to provide enormous memory capacity.

At present a number of calculators use magnetic program cards — this is only used because of the cost of memory and we shall see these systems disappear in the next couple of years. It will be replaced by a memory having a capacity of say 2 000 steps. This will not of course be used (normally) for a single program as the 2 000 steps can be broken up to hold 50 personally written programs with an average of 40 steps. In addition another chip — possibly included automatically with the main chip — with 50 programs supplied by the manufacturers will be included (this is with us now of course).

Already several calculators are displaying letters in association with the programming modes. This will be expanded to a complete alphanumeric display using a dot matrix LCD display. We are certain that LCD will dominate the market in the near future as the battery savings are enormous.

Recent LCD calculators have guaranteed battery life of 5 000 hours and this had led them to use available mercury cells. The battery workers must be working on long life batteries, possibly bigger than the mercury cells.

The highly complex functions of our calculators in two years will mean that current consumption will not be insignificant, but it is likely that the machine will auto-
matically dump any figures being worked on into low current consumption memory if no key presses are made — this will cut down current drain considerably.

If we have a calculator which will be storing a considerable amount of user material which needs some current to hold it, there will be two batteries which are changed one at a time, each capable of retaining the information.

The 1979 Calculator

If, as we predict, your calculator can handle and store alphanumerics, a whole range of possibilities occur — it becomes as much a diary as a calculating machine and can store telephone numbers, appointments or any other information you might care to retain. A clock will be built in to display day, date and time and, with a small buzzer, will act as an alarm to give you notice of the events stored in the diary.

Our 1979 model will do everything that current calculators do: simple addition is still likely to be a major use but the extended keyboard will show you the last five or six figures entered so that an interuption in the entry will not be serious.

A full Alphanumeric keyboard will be provided and whilst mnemonics could be used to take the place of scientific function (eg. SR for square root) we expect the keys to serve two or three functions as they do now on several calculators. In our drawing we have shown this as the upper shifts.

The maker would have already built in 50 or so prog-
rums — we show these as the lower shift functions. Instruction books, once they have been read, are a nuisance so the program key, once pressed will give (on one or two lines of the four line display) the information to be entered. This could read: \(F = \text{frequency}, \ L = \text{inductance in millihenries}, \ C = \text{capacitance in picofarads}. \) Enter \(L, \) Enter \(C, \) Ans. in kilohertz.

Alternatively on a more advanced machine the display could prompt each entry. After you access the "LCF" (or similar mnemonics) program the display replies:

"LCF" PROGRAM
RESONANT FREQUENCY OF INDUCTOR AND CAPACITOR

Then you press \(E \) (for 'enter'; this moves the program on to the next stage). The machine then displays:

ENTER INDUCTANCE IN MILLIHENRIES

You then press 2.5, check your entry, and then press \(E. \) The machine continues:

ENTER CAPACITANCE IN mF (M) nF (N) OR pF(P)

You press 470P and the machine displays 470 EE - 12 FARADS, so you press \(E \) and your result appears:

2.5 EE-3 HENRIES
470 EE-12 FARADS

RESONANT FREQUENCY (HERTZ) 146825.4019

There will be plenty of permanent memory for entering and retaining your own programs. These will only take up as many spaces as necessary in the memory.

To avoid the need for separate notes, there will be various 'search' keys. Since it may be difficult to remember the identification of your own programs, you may have to roll through all the titles. Similarly appointments can be run through for checking or amending.

The display will be LCD in a dot matrix — it is quite possible that instead of say four rows there will be a continuous dot pattern and some calculators will be able to display graphs and other simple graphics.

We have shown the 1979 model very much as a conventional calculator but there may be big changes in the appearance as well. The most obvious format would be similar to that of a diary which opens on a hinge, thus protecting the keys.

Although this model will almost certainly have many facilities similar to a minicomputer and some machines will undoubtedly be aimed at the computer enthusiast, we do not see any larger numbers in this field. This is not because the power isn't available but because the mass market is unlikely to demand or desire a personal computer.

Five Years On

Our 1979 model is simply using more of current technology but whole new fields will be opened by new techniques, as yet only a twinkle in the engineer's eye. Our 1982/83 model is likely to bear little resemblance to current machines.

Our two-year hence machine has a cluttered keyboard and this will have to go. Looking into our crystal ball we see complete elimination of moving parts. We see our calculator being about the size, but half the thickness, of a packet of 20 cigarettes — or about the size of a thickish pocket diary . . . it will be metal except for one surface being like a glassy slate.

Touch the top and a display comes up listing several words:

Math
Scientific
Diary
Memory Aid
Teletext
Compute

Touching Math (because it's likely to originate in the US) will bring up a display of a fairly simple calculator keyboard probably just like our current ones. Touch the keys and a section at the top will act as a display.

When you've finished adding up the groceries touch the top again and you revert to our prime index.

Now let's try Scientific. Instead of a scientific keyboard we'll be looking at a subsidiary index giving us further choices enabling us to use programs or make simple calculations.

Choosing Diary we'll be able to look at several pages of information and by touching a portion of the display, we'll be able to bring up an alphabet to 'type' in our new information.

Memory aid will enable us quickly to search through hand written notes: to enter these write on the surface with a pen and the impression will be remembered. (We do not see hand written character recognition in five years but a reproduction of your own handwriting isn't too hard.)

Selecting Teletext will display for you a choice of Ceefax 1, Ceefax 2 and Oracle (It takes more than ETI's crystal ball to predict an Oracle.). Choosing these will bring up the index page instantly and you'll be able to work your way through the various indices to find the news, TV programmes, share prices etc.

This calculator will be small and will probably need rather an efficient aerial but it will update every page in its own memory whenever the signal strength is high enough and will continually correct any errors. Everything will be stored in the calculator's own memory so take it to Central Africa and it'll show you for ever the last data it picked up.

In our discussions on what a calculator might be like some of the contributors suggested central plug-in points where batteries can be recharged and new data entered. Most thought that this is unlikely as whenever national standards, let alone international standards, are concerned that things have to wait for a decade or more.

By this time many readers will have their own mini computers and a battle will be raging as to whether it's best to have a good pocket calculator (though we doubt if they'll be called that) or a home computer.

In writing this piece we have to admit to a certain feeling of being ill-at-ease. We came across a copy of Strand magazine of 1905 which had an apparently serious feature on what aircraft would be like in 50 years time — there was a drawing of ladies (in fashions which to our eyes look no different from 1905) playing tennis on the wings of an almighty flying machine! We hope we're not that wrong but if we are this will make an amusing article to reprint in ETI in five years time!
THE HISTORY OF HI-FI
1978-2008

This article has a strange story behind it. While we were compiling the magazine, a strange box turned up out of the blue on Ron Harris's desk. It contained this report. The box disintegrated shortly afterwards, leaving nothing for analysis.

As the subject covered is exactly that which Ron Harris was working on at the time, we can only wonder at the origin of the work. The historical tone points to someone somewhen deciding to help us out with our predictions . . .

It is clear, in retrospect, how audio technology came to be in such a confused state in the later half of the 1970s. Having only recently progressed from such techniques as thermonic emission amplification and rubber band driven turntables (literally!) and having perfected neither, the industry was hardly in a condition to handle the newer and more promising ideas beginning to make themselves heard.

A classic case of nerves set in.

Things were a little better in the semiconductor field. VFETs were only introduced into the market in 1977, until which time bipolar transistors with all their inherent linearity and harmonic problems were universally employed. Perhaps it was the dissatisfaction felt with this device which caused the widespread vacillation that gripped the field at this time.

The Great Diversion

Early in 1976 the hi-fi press began to crystallise the feeling that 'things could be better', but in the most extraordinary, and to us, unbelievable manner. The forerunner of the transistor amplification circuit had been the thermionic or valve amplifier. Instead of controlling carrier movement within a doped semiconductor substance, these devices operated by modulation and retardation of electrons released from a heated electrode within an evacuated glass envelope.

Essentially the concept was a linear one, whilst transistors at that time were not. It was noted by such enthusiasts who had run both systems that the newer semiconductor amplifiers added an unpleasant 'edge' or harshness to the sound when compared to their predecessors. Not unnaturally two schools of thought drew themselves up, almost overnight.

The first stated flatly that valves were superior - and that was that. Transistors were 'edgy', 'harsh' and 'unmusical'. Bring back the 'good old days' (groan) of the 50s and 60s etc, etc.

Facing them were arranged the advocates of the new technology. Valves generated more distortion, more heat, required HT, deteriorated with age very rapidly and were generally to be ridiculed. Transistors gave a clean analytical sound much more faithful to the original (undefined but still held inviolate) and rightly replaced the outmoded valves.

Amid the effects of the debate, the cause began to get lost. Transistor technology was flawed - that much was recognised - but valves were beginning to gain acceptance as the answer to that flaw. Instead of harking back to the basic non-linearity of the amplification element itself, and attempting to correct this, it seemed for a depressingly long while as though valves would sweep back in, cheered...
on by the press, and set back sound reproduction technology twenty years or more.

Economic Pressure Begins To Tell

Thankfully the battle was a protracted one. As in all extended conflicts, eventually it is economics which decide the issue. While it is undoubtedly true that valve design had not fully exploited the potential of the single carrier device, being abandoned too quickly in the face of an apparent overwhelming semiconductor superiority, and that early bipolar power amplifiers were wont to exhibit a particularly nasty sound spectrum, the big industry money had gone into transistor designs.

The initial changeover coincided with the advent of the consumer society in the widest sense. Hi-fi equipment began to appear in more and more homes, and the industry grew rapidly. Expansion continued unabated until the world-wide economic depression of the early seventies.

By this time however the die was cast and the framework of the new giant corporations, mainly Japanese, and their 'feeder' firms producing specialist items (i.e. the British loudspeaker industry), was firmly set.

So when the public began to apparently reject transistor designs, reaction was not slow in coming. Within a year most big companies had a valve amplifier on the market — at a price. Valves were considered as a fanatic’s tool, and as such were available only in small numbers at high prices.

At the same time however the massive investments in semiconductor production had to be protected. With the power of the Yen behind it research at last began to identify and eradicate the faults of transistor amplifiers.

Meanwhile, back in print, some publishers were beginning to give space to freelancers who were coming up with ideas of their own. Microphony was belatedly identified as the cause of a supposed 'ambience' possessed by valve amps. This effect is a modulation of the election beam within the glass envelope by the action of sound waves striking that envelope. The valve acts like a microphone. Playing an uncased valve amp (as most of them were) in the same room as the loudspeakers gave an effect rather like turning up the reverberation control on modern signal processors. Pleasant, but highly disposable!

British firms acted totally in character. Small specialist concerns began to market the first truly acceptable semiconductor amplifiers. (Firms like Leesom, Naim and Quad began their climb to ascendency here.) Close behind came the Japanese with all the speed and industry indigenous to that nation; they produced a whole new generation of 'soft sound' hi-fi tailored to the ears of their predominantly western market.

Valve amplifiers settled into a niche, a minority taste to be catered for a huge profit, and gradually faded away again never to reappear. By 1980 they had vanished completely.

Fig 1: — the three diagrams show how the share of the amplifier market has been divided over the years. 1978 still shows the dominance of the early class AB hybrid design. Just ten years later, however, digital amps are accounting for a total of 77.7% of the total. 1998's figures require no comment!
Investment had been protected, and sound technology advanced. A luckily advantageous outcome from a most embarrassing incident. Progress could now be made.

Other Results Of Valve Resurgence

A furore of such magnitude could not help but have consequences far beyond the primary engagement. At about the same time as semiconductors came under attack, belt driven turntables were at last being replaced. Direct-drive units began to replace them at the top end of the market, and to seep downward into the mass sales area.

This 'watering-down' of a basically sound but expensive technique led to some degradation of performance at first, with the result that it was possible for the inherently inferior belt-drive units to outperform similarly priced direct drive devices.

Suddenly turntables too were in the great 'musicality' debate. Just as transistors suffered for their birth pains, direct drive was hailed as the ultimate manner of spinning discs. Such terms as 'information loss' 'hunting' and of course 'un-musical' were applied to direct drive turntables.

Once more the camps drew up, only this time they had somewhere to go! Belt-drive was a natural bedfellow for valve amplifiers, and the now sorely pressed direct drive fell gratefully in with the amplifier technocrats.

Mercifully this alteration was not to last long. Moderation has apparently been learned by now and opinion, divided though it was, never became so fiercely intransigent over the subject. Faults were recognised on both sides, and work progressed smoothly to correct them. Belt-drive reached its zenith with the Linn Sondek and Planar 3 designs, and once direct drive design surpassed these, belts began to fade from the hi-fi horizons.

Other smaller resurrections occurred elsewhere in audio. Moving coil cartridges, unjustly abandoned due to low output and tracking problems began to receive attention once more, and were developed considerably. Amplifiers began to incorporate circuitry to facilitate their usage just as the more advanced designs dispensed with the necessity!

Loudspeakers remained strangely untouched by the blight, national tastes continued to dominate with the British once more convincing the world that theirs was somehow more tasteful than anyone else’s with a resultant domination of the market. The incredible Quad elec-

Fig 2: Above — The first truly modern turntable design, Technics famous SL 900 unit. Launched in 1979 it swept the field in a way no other model has done before or since. Early versions suffered from field problems, but these were eliminated very rapidly, and the benefits of a turntable with the platter and arm as the only moving parts were quickly realised by both competitors and the public. All present day manufacturers producing magnetic levitation turntables do so under license from Technics.
Dawn Of The New Technology

Nineteen seventy-eight saw perhaps the most rapid progression of any one year in the period. This was when VFET amplifiers, led by Sony and Yamaha, moved to take a much larger segment of the market. This was when several companies simultaneously launched the new direct drive machines which rapidly settled that particular debate.

The research financed by the giants mentioned previously advanced digital sound processing seriously for the first time, but foindered initially due to the failings of signal processing generally. It was not until late 1978 that MPUs were first employed to control the A to D conversions and the output switching functions.

Soon afterwards someone somewhere put a very fast MPU controlled processor on the same breadboard with an output stage of VFET power types, and modern amplification was born.

Signals presented to the input where shunted around a 3 ms delay line, and correlated to eliminate noise. From here the signal was digitalised at the fast (for the time) sampling rate of 100 MHz and used to control the ‘power-switch’ output stage of VFET devices.

(The reader is referred to his data terminal for a more detailed discussion of amplifier types. Historical tapes will have to be accessed for treatment of types previous to H. As this is a general survey details would be inappropriate here.)

Amplifier design wavered back and forth for a while as each failing of the bipolar circuits was indentified and dealt with. Lecon’s was the first commercial design to acknowledge the importance of the rectifying metal-semiconductor junction in low level control circuits. Their solution was to employ FETs wherever possible in the signal path instead of switches. Naim simply left out as many switches (and hence facilities) as possible!

By the time charge contoured semiconductor material with its programmable carrier distribution in the surface layers appeared in the eighties, audio processing was almost entirely digital and so this solution was never seriously adopted.

Turntable design was reasonably static through 1978, refinements occupied most companies for a long while, and the first mag-lev design did not appear until well into 1979. This was the Technics SL900 which can still be found in modified form today.

Fig 3: Block diagram of the early digital power amplifier circuits. Opinions at the time differed on the length of delay line used, and on the required sampling rate. The basic premise, however, was not questioned until 1986 with the advent of Pioneer TSA 5180 unit. (Full details Viewdata Listing Elec 177/H).

Radially mounted drive elements in both the base and the table are used with a cycling drive signal to rotate the platter at the required speed. Control is achieved electronically by a sampling technique, and the high mass provides a good deal of smoothing. Isolation from external disturbance is of course very good.

The SL900 was also the first unit to employ a fixed height radial tracking arm, also mag-lev controlled, driven by pulses derived from the turntable drive circuitry for synchronisation. All in all quite a revolution for its time.

Conclusion

Thus audio technology emerged into the mid-eighties with a sound and undisputed base despite the dangerous turbulence of the late seventies. Loudspeaker development was thus able to bring about the startling advances of 1986 unhindered. Had the diversions of 1975-1978 gone much further however it is doubtful in the extreme whether we could now look back so smugly from our present day state of the art.

One is tempted to conjecture whether in a century or so a report such as this may be written in exactly these tones concerning our present day technology.

References

VIEWDATA HISTORICAL TAPES:
ECM 017 "Hi-fi magazines of the 1970s - volume three"
ECM AR7 "Amplifier History - Precis"
G. J. King 1984.
ECM 125 "Electronics Tomorrow" Published by ETI 1977.

VIEWDATA EDUCATION LISTINGS NOS.
Elec 197/A thru Elec 205/D
AP OS/E thru AP 09/Z

Our thanks also to the staff of IBM and ICL for their help in accessing the historical data necessary for this report. Without their programming skill the task would have been far more onerous.
Virtually every home has a television set, up until recently the only freedom to view was between BBC 1, 2 and ITV — the video revolution is happening. Angus Robertson investigates the next five years of liberated video in the home.

One thing is for certain — over the next five years we will be finding numerous other uses for the domestic television receiver than watching Crossroads. New technology and the continually reducing cost of microelectronics will combine to enable equipment that used to be cumbersome and unreliable to be produced satisfactorily — and in quantities sufficiently large to make this equipment economical for the home purchaser.

Television displays

The glass-envelope cathode ray tube has been with us for over fifty years and will almost certainly be here in twenty years time. Improvements are continually being made which enable CRTs to be produced more cheaply and reliably. The latest type places the three electron guns (required for a full-colour display) in-line rather than in the conventional delta formation. This considerably simplifies the convergence circuitry necessary to ensure that the correct electron beam falls on the correct coloured phosphor. Delta gun tubes required twelve dynamic and four static convergence adjustments, Sony Trinitron in-line tubes use four adjustments while the latest precision in-line tubes use toroidal deflection yokes wound with such accuracy that all dynamic adjustments are eliminated. Both static and purity adjustments are made by magnets preset during manufacture. This circuitry simplification not only reduces price but increases reliability and long term picture quality. RCA and Hitachi call such tubes PIL while Mullard has a similar type called the 20AX. Sony recently developed a 32 inch Trinitron but it costs several hundred dollars and is unlikely to come into common use.

Another CRT that might be developed is the focus-mask or focus-grill type which has larger grill openings than the normal shadow mask which act as small focusing lenses — allowing a brighter display for the same beam current. However an intermediate suppressor grid is required to increase picture contrast, and manufacturing difficulties currently make the focus-mask tube non-competitive.

A colour CRT that eliminates all convergence problems is the beam index tube which uses a single electron gun scanning vertical phosphor stripes on which index stripes have been deposited. These release either secondary electrons or ultraviolet radiation to indicate which colour stripe is being scanned — colour information is then electronically switched to the single gun to match. Problems rise when the electron beam scans more than one stripe at a time.

Large screen projection TV in the home for £3 000 today — who knows tomorrow?
Up against the wall

Flat TV screens have been demonstrated in several laboratories but they are still curiosities. There are primarily two different types of display — using either light-emitting or light-controlling cells. Light-emitting panels usually use gas discharge or plasma cells, arranged in a matrix which requires over 600,000 elements to provide full colour rendition. The light source of a plasma cell is ultraviolet; the three primary colours are produced using suitable phosphors. However, picture contrast and colour rendition are limited by the method used to provide varying intensities in each cell (for the grey scale). Each cell must also have some form of memory since it is being scanned only once every fiftieth of a second.

Brightness leaves something to be desired and current screen sizes are more suited to the Sinclair miniature TV rather than the average living room. Resolution is only about a tenth of that required for full-definition pictures. Undoubtedly research will continue and eventually flat screen television will become the norm, but I feel this is at least ten years away.

Large-screen colour television was introduced into the home about three years ago by the Advent Corporation with its Videobeam 1000A television projector. This uses the Schmidt optical technique (like telescopes) with three separate sealed tubes projecting red, green and blue television images onto a special 2.2m diagonal high-gain screen 2.5m away. The screen is very directional: instead of spreading a little light over a large area, it concentrates a lot over a small viewing angle. Advent has just introduced its Videobeam 750 which uses three 120mm diameter CRTs each with a glass and acrylic lens system projecting onto a 2m diagonal screen, and costs around £3,000. Over seventy companies in the USA produce large-screen television sets by using an acrylic lens in front of a standard 13-inch television set. Although very simple to implement, picture brightness is very poor and viewing is generally only possible in darkness. Large screen flat displays are limited by power dissipation and cell size.

Video recording

One big drawback with living in Europe is that our television system is different to that of Japan and America. Most recent video tape recording developments have occurred in these two countries, and they account for around 90% of the total market for such equipment. Consequently there is little incentive for manufacturers to modify their developments for our market so when we eventually receive new developments they are 12 months to three years out of date. This does, however, simplify marketing here, since only successful lines find their way to Europe and after all bugs have been discovered in America.

There are currently five main competitors in the video cassette recorder market. Sony developed the U-Matic format which provides up to one hour recording on 19mm wide video tape in a cassette costing about £16. The U-Matic format is now finding its main application in business and industry, because the recorders are very robust and picture quality and performance are exceptional. A basic recorder costs around £1,400 and when used with the correct monitor, will also replay tape recorded in America with NTSC colour. This compatibility has been found to be very useful in industry.
Greenbank

CMOS WITH DISCOUNTS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5400S</td>
<td>0.26</td>
</tr>
<tr>
<td>5401</td>
<td>0.29</td>
</tr>
<tr>
<td>5402</td>
<td>0.30</td>
</tr>
<tr>
<td>5403</td>
<td>0.34</td>
</tr>
<tr>
<td>5404</td>
<td>0.37</td>
</tr>
<tr>
<td>5405</td>
<td>0.39</td>
</tr>
<tr>
<td>5406</td>
<td>0.46</td>
</tr>
<tr>
<td>5407</td>
<td>0.48</td>
</tr>
<tr>
<td>5408</td>
<td>0.50</td>
</tr>
</tbody>
</table>

4000 Series (FCA / Motorola)

<table>
<thead>
<tr>
<th>Model</th>
<th>Price (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4010</td>
<td>0.74</td>
</tr>
<tr>
<td>4011</td>
<td>0.87</td>
</tr>
<tr>
<td>4012</td>
<td>1.18</td>
</tr>
<tr>
<td>4013</td>
<td>1.68</td>
</tr>
</tbody>
</table>

74C Series

<table>
<thead>
<tr>
<th>Model</th>
<th>Price (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>74C00</td>
<td>0.10</td>
</tr>
<tr>
<td>74C02</td>
<td>0.12</td>
</tr>
<tr>
<td>74C04</td>
<td>0.20</td>
</tr>
<tr>
<td>74C10</td>
<td>0.26</td>
</tr>
</tbody>
</table>

SOLDERING PINS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9000</td>
<td>0.00</td>
</tr>
</tbody>
</table>

SOLDER PASTE

<table>
<thead>
<tr>
<th>Model</th>
<th>Price (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>0.00</td>
</tr>
</tbody>
</table>

MOUNTAINDEE LTD

22 Cowper Street, London, EC2
(Near Old St. Station) Tel. 01-455 9855

SPECIAL OFFER

Texas T959

- **£35.00**
- **£28.00**

ETI-T-SHIRTS

Suitable for all sexes and in large, medium and small (please specify which). Yellow with black lettering. Send £2.00 which includes VAT and postage to:

ETI-T-SHIRTS

25-27 Oxford Street
London W1R 1RF
Costing about £20. The unit has a built-in TV tuner and behind Matsushita (brand name National Panasonic) including Toshiba, Sanyo, Zenith and Magnavox (USA behind Sony to manufacture Beta format recorders, which they hold copyright). Recording time is two hours against Sony, prompting a lawsuit (from Walt Disney and Universal format tapes).

Seconds out . . .

Three new contending video cassette recorders are being launched in the UK this autumn. Philips has VCR Long Play which enables 130 minutes to be recorded on the same “one-hour” cassette used in the VCR — by running the tape at half speed. The N1700 recorder costs about £700 and also features built-in tuner and time clock. Grundig has launched the VCR4000 which uses the same VCR LP format, and also the VCR5000 which is dual-standard (it plays back both new and old format tapes).

Sony is launching its Betamax recorder which has been extremely successful in America and has even prompted a law suit (from Walt Disney and Universal against Sony, for manufacturing a video cassette recorder that can illegally record programmes off-air for which they hold copyright). Recording time is two hours and again the unit includes a built-in tuner and time clock. A number of other manufacturers have lined up behind Sony to manufacture Beta format recorders, including Toshiba, Sanyo, Zenith and Magnavox (USA Philips).

The other Japanese manufacturers are lining up behind Matsushita (brand name National Panasonic) with the VHS format. Standing for Video Home System, this again allows two hour-recording, with optional skip field recording four hours. Skip field only records one of the two interlaced fields of a normal TV frame giving 312½ lines vertical resolution and slight loss of smoothness on very rapid movement. Since the horizontal bandwidth has already been reduced from 400 lines to 300 odd lines by the recording process, the advantage of skip field recording (cost) far outweighs the slight loss of quality. RCA, JVC (51% owned by Matsushita), Sharp and Sylvania will be bringing out VHS recorders.

Copyright Penetration

Although three contending formats for the home market (VCR LP, Beta and VHS) will make life difficult for suppliers who will have to stock different types of blank video cassette and spares for each, it is quite likely that each will achieve considerable market penetration. This is because each will normally be used in one location to record programmes off-air for watching at a later date on the same set and not for interchange with other video cassette recorder users. Problems will, however, arise when pre-recorded programmes are sold on all video cassette formats.

The other problem likely to delay the availability of pre-recorded programmes is copyright. Although the BBC and ITV have a vast stock of old programmes in archives, they commonly hold the copyright for only three screenings — after which repeat fees must be re-negotiated with every person concerned in making the programme. The complexity of such agreements, and their cost, will preclude using these archives until their cost, will preclude using these archives until some broad new principles can be established. Videograms, as the industry has started calling video-taped programmes, will initially be documenta-

Video discs

One report recently published uncovered twenty-six different video disc formats. Obviously very few will reach the market place. At the time of writing, although launch dates have been repeatedly reported, only one system has ever been marketed and that was a dismal failure. The most likely disc to appear is the VLP/Discovision from Philips/MCA, a joint venture. VLP uses a reflective disc 300 mm in diameter. This looks like a normal audio record but with a shiny surface and “grooves” consisting of pits of different lengths. The disc rotates at 1500 rpm and has 600 pit tracks per millimetre. The pits are read by directing a low-power laser at the track, the reflected light is then passed to a photo diode for processing. The disc provides 30 minutes of playing time. The cost of the player is expected to be £250 to £300 and a feature-film sized disc will cost £6 to £11.

Teledec video discs have been on the Central
European market for two years but sales have been minimal (a few thousand). Teledec, developed jointly by Decca and Telefunken, actually uses grooves on the record although these are very fine and are played by a special stylus up against which the flexible 190 mm disc is pressed by a cushion of air. Discs cannot yet be cut in real time so all programmes must originate from film. The player sells for about £330 and discs cost £3 each. The lack of suitable pre-recorded discs is probably instrumental in Teledec's lack of success to date. Other manufacturers developing discs include Hitachi (holographic), MDR (magnetic), RCA (capacitive) and Thomson-CSF (laser modulation).

Even when the technology for video discs is freely available at a price the consumer can afford (less than £500), again programme availability is likely to limit market penetration especially since they cannot be used for recording TV programmes off-air. Considerable losses must be sustained by programme distributors before the equipment becomes widespread. Only one video disc is likely to "win", probably VLP/Discovision.

TV sound

Although the pictures are normally considered most important, sound must not be forgotten. With the introduction of low-cost ICs it is probable that sound will soon be digitally encoded within the TV waveform. This type of system is already in use by the BBC and the Eurovision network ("sound-in-syncs"). Transmitting the digitally-encoded signal simplifies transmitting stations which normally use separate sound and vision transmitters, and also increases the sound quality heard at home.

Stereo television has been discussed and stereo programmes are transmitted on an occasional basis by the BBC using a radio network for stereo sound. ITV has transmitted a couple of local stereo programmes but has more difficulty since the commercials must work in sound only and be jointly sold with the participating local radio station. The logistics of such an exercise become very complicated and it can be safely said that no network stereo will be carried by ITV for many years.

There are more technical problems with transmitting stereo sound. Transmission of pilot tone stereo is possible with more recent UHF transmitters but it will not work with older types. Distribution between studio and transmitter also requires thought since the long term performance of normal audio circuits is inadequate for stereo and the existing sound-in-syncs system does not have sufficient bandwidth for stereo. Origination of stereo sound in studios creates artistic problems, since if the sound perspective remains stationary so should the picture. If a camera pans past a talking person, presumably the sound should pan as well... With time, these problems will be overcome, but even then a larger TV picture would be required to complement the wide
Watching a picture 15 inches wide with speakers 6ft apart, the minimum for stereo, is not really on.

Picture Telephones

A favourite with science fiction writers, picture telephones will undoubtedly appear, eventually.

In the meantime certain limitations of transmission circuits must be overcome. There appear to be no problems over the local terminal or lines. A basic picturephone terminal should cost no more than £200 and the same audio pair that connects the ordinary telephone to the exchange could, providing the distance was no more than a couple of kilometres, be used for video. The principal problem lies in interconnecting telephone, or rather picturephone, exchanges together.

Many years ago solid twisted pairs of copper wire were used for all telephone circuits. Then came multiplexed high frequency circuits with thousands of channels down a coaxial cable for long distances. More recently the utilisation of local twisted pairs has been increased by using pulse code modulation to transmit 24 channels down a cable that used to carry one circuit. This increase in technology has helped keep down the cost of phone calls, especially international calls.

The recent PO trials might assist in reducing these costs: a waveguide that allows many microwave channels to be sent down what is essentially a glorified drainpipe, and fibre optics, which again provide extremely wide bandwidths for low cost. Decreasing semiconductor costs enable digital circuits to be provided cheaply along cables that would otherwise be inadequate.

Phillips VLP-Discovision developed jointly with MCA is the most promising disc system for use in the home.

Teletext and Viewdata

Until wide-bandwidth telephone circuits become economically viable, we will have to make do with still pictures from teletext services. Broadcast teletext, still called Ccefax and Oracle by the BBC and ITV respectively, is now (after two years of trials) being operated as a full-scale public service by both BBC and ITV. The content is still originated in London but there are plans to establish between 10 and 15 regional editorial units which would contribute local news and information. This is unlikely to occur, however, until a far larger proportion of the public has purchased or rented teletext receivers.

Current estimates of teletext decoders in use is about 3 000. By the end of 1977 this should be 12 000, by the end of 1978 50 000, by the end of 1979 250 000 rising to 7 000 000 by 1985.

There are currently three means of receiving teletext — you can buy a new set with teletext already built-in (cost around £700), buy an adaptor which plugs into the TV aerial socket — but which for various technical...

Phillips were virtually first in the field with their VCR cassette recorders, introduced in 1972 about 35 000 have been sold in the UK.
reasons gives reduced quality display (costing about £350), or finally, you can actually modify an existing set by either building your own decoder or installing one of the teletext modules that are now becoming available costing between £150 and £200.

Five UK manufacturers are known to be developing teletext ICs and it is quite possible that European, and eventually Japanese companies will be doing so soon. Texas is ahead in the race with its XM-11 module used in 95% of current sets, which costs £80 in quantity, but which is electronically 'primitive' using fifteen ICs plus an interface chip for standard remote control ICs. A more versatile unit, the DM-11 which provides access to the memory and output circuits enabling Viewdata to be added, is on the way, and then eventually the VDP-11 complete with Viewdata.

Mullard and GEC semiconductors are next in the running with more versatile decoders that interface directly with remote control ICs, provide buses for a Viewdata chip or a microprocessor, and use fourteen (will be reduced by five or six) and five or six chips respectively. Plessey and General Instrument Microelectronics are both developing sets of chips for teletext and Viewdata but are still very much in a developmental state.

Interactive use

Viewdata has both advantages and disadvantages over teletext. The principle disadvantage is cost — probably around 1p to 5p a page, with some material such as public information and advertising free. Advantages however are vast information store of many hundreds of thousands of pages with an access time of two seconds (teletext has a 20 second access time for 100 pages), and, secondly, interaction, allowing questions to be asked of the computer.

This interaction is extremely important since it enables messages to be sent from one terminal to another and either stored in the computer for later display on your TV set, or for printing out as hard copy. This facility will be considerably enhanced by interconnecting the Viewdata network to the international telex system enabling messages to be sent both ways. Games can also be played with the computer, but in the early stages of Viewdata these types of interactive service will be restricted, because of their considerable demands on the central processor.

When the market trial commences in July 1978, some 1,000 subscribers will be participating in London, Birmingham and Norwich by using TV licence and telephone records, a representative group of potential subscribers will be selected and offered the service at concessionary rates — subscribers will however be required to purchase a Viewdata terminal. The earliest opportunity that the general public or business in the geographical areas mentioned above will have to obtain Viewdata will be early 1979. Market penetration for Viewdata in 1985 is estimated at 3,000,000 by the PO but only 300,000 by other sources. Unlike teletext which requires a single computer for all the millions of viewers, Viewdata requires an input port for each subscriber calling the computer simultaneously, so that a network of computers will have to be set up throughout the country. Even so, this cost will still be small in relation to total PO capital expenditure.

Potentially Viewdata can provide numerous other facilities such as reading your bank statement, paying bills, and buying items advertised directly by credit card (this facility will be used on the market trial). Although the Viewdata system being developed by the PO uses numerical page selection, Mullard Research Laboratories is working on a similar system using mnemonics (short words) for simplicity.

One way to decrease the access time of broadcast teletext is to use more lines in each field for transmitting information. Taking this to the extreme, if a TV channel is dedicated to teletext (with no TV pictures as such) an access time of 20 seconds could be achieved with 15,000 pages. Our future developments could be transmitting teletext information with VHF radio
FEATURE: Video

Programmes although the information content could be used giving approximately the same capacity as the existing TV service.

TV games

Many believe that video games will be the next consumer item to make the considerable achievement of reaching sales of several millions per annum within two or three years of launch (following calculators and digital watches). The original patent on video games was taken out in 1966 by the Sanders Corporation; Magnavox subsequently acquired an exclusive licence to manufacture and market TV games, the first being the Odyssey game marketed in 1972. Magnavox now licences other companies to market video games, the basic agreement being £60 000 up-front and 5.5% of gross sales. At the last count, there were five licencees in Europe, five in America, eleven in Hong Kong, nine in Japan, one in Korea and one in Taiwan. In addition there are numerous manufacturers who are unlicenced (and thus open to prosecution — in the past, Magnavox has pursued patent infringements with great vigour).

There have been four generations of games so far. The early Odyssey displayed only a ball and bats (paddles) on the screen, plastic overlays being used to denote pitches and courts. The next generation had electronically displayed court boundaries but the games were still simple, with a couple of game variations and with score being kept mentally. Discrete components with TTL ICs were used in these early games, but then in 1975 General Instruments came out with the AY-3-8500 chip which was immediately purchased by anybody who could lay their hands on it, resulting in dozens of different manufacturers all making and marketing virtually the same game, these being the third generation using a single IC.

Fortunately, since the GI chip was designed in Scotland, versions were made for both European and US standards, most unlike ICs developed in America. It now sells for £3 in respectable quantities (100 000) and games made using it in the Far East cost, typically, £10 to make. During 1977, this third generation of games has progressed and colour games have become available, some using the GI chip with a modulator, others using the National Semiconductor chip (such as Videomaster), and finally some using the Sportel chip. Again, as part of the third generation, other dedicated games are being developed such as battles (AY-3-8700), black jack (AY-3-8888), noughts and crosses and lunar landing (AY-3-8889) and car racing games.

Such dedicated games now have a restricted market, since four generation games are appearing in America these use microcomputers programmed with cartridges to give space wars, fun with numbers and educational-type games. The RCA Studio II is still monochrome although colour is promised. Coleco market a versatile colour console game that includes a steering wheel, gear lever, speedo and pistol, called Telstar Arcade. Cartridges contain up to eight colour games and other add-on accessories are available. The Ball Professional Arcade game includes a four-function printing calculator (built-in) and uses a custom chip from AMI and a microprocessor — this year six cartridges with twelve games each are expected. The cost is £180 with cartridges at £12. Atari, who also manufacture pub games using hundreds of TTL chips, market a game called the Video Computer Systems which uses MOS technology microprocessor with plug-in cartridges. Games include combat (27 variants), street racer (27 variants), space mission (17 variants), air-sea battle (27 variants), and video pinball (14 variants). Atari also manufacture a rather interesting unit called Video Music which takes music from a radio or record player and produces rapidly changing synthesised colour pictures on a TV set. Price is around £90.

Most TV games generate sound, and Texas recently introduced a chip specially designed for this purpose which contains a variety of circuits including oscillators, VCO, noise generator and modulator. By hanging resistors, capacitors and assorted volts on pins, one has a dedicated synthesiser capable of simulating bells, sirens, explosions, engines etc.

Electronics Tomorrow — Winter 1977 39
Teletext and Viewdata games

Viewdata games can be played directly with the computer because of the interactive capability (a maze has been demonstrated), and Oracle is currently working on something called 'telesoftware' which allows a software program for a microprocessor to be transmitted on a teletext page, and sorted in an intelligent teletext decoder which can then play the game.

Home computers

Of course the ultimate games could be played on a home computer, such as those described on the microfile pages of ETI. The PET from CBM features a 14K ROM operating system (BASIC language), 4K RAM expandable to 32K, and a keyboard with 73 keys including full alphanumerics and graphic (including diamond, spade, heart and club symbols). The display is a dedicated 230mm monochrome monitor with 40 columns by 25 rows. PET also includes a cassette recorder and IEEE-488 instrument interface for peripherals, such as a printer. The market will initially be educational and business, but at only £600, it should also reach the consumer market where it will find numerous applications. The CBM PET is just the first of the whole range of home computers that will become available during the next five years.

Conclusions

Without doubt, the next five years are going to see numerous technical developments, especially where the application of microelectronics is concerned. After all, LSI is only five years old now, and development has hardly started. Video equipment will benefit from reduced cost although in applications where mechanics are required, the cost is bound to remain high. Teletext and Viewdata will become widely available, as will TV games and computers. Developments might even bring a change in our basic life style, although the electronic newspaper is still fifteen years away, and Big Brother even further?

Half price Teletext

You can now buy Texas Tifax module Teletext decoder complete with matching cable connected keyboard, power supply, interface board and complete instructions for installation in most common television receivers for only £180 + VAT (12½%) and £2.50 postage, packing and insurance.

Since the interface is connected directly to the television's video output circuitry, picture quality is excellent with pure colours — much more so than is possible from decoders which feed the aerial socket.

Due to the compact nature of the Tifax module, installation within most receiver cabinets is no problem. Facilities include seven colours, upper and lower case alphanumerics, graphics, time coded display, and newsflash and subtitle inserted in TV picture.

To enable us to supply the correct board and instructions, we must know your television set make and model and, if possible, chassis type.

Oracle T-Shirts, full colour. Please state size (L, M or S). Only £2.50. Please hurry whilst stocks last.
THE MOST COMPREHENSIVE RANGE OF TUNER MODULES EVER DISPLAYED

HF 7948 FRONT END

£13.12
Inc. VAT, P&P

TECHNICAL CHARACTERISTICS:
Output terminal for digital frequency meter; Antenna impedance - 75 to 300 Ohms; Frequency ranges 87.5 to 104 MHz or to 108 MHz; Sensitivity - 0.9 uV 26dB signal to noise ratio ± 75 kHz deviation; Intermodulation 80dB Image rejection - 60dB; Tuning voltage - 1V to 11V; Total gain - 33dB; Intermediate frequency - 10.7 MHz; Power supply voltage +1.5V; Power consumption 15mA; Dimensions 104 x 50 mm

TECHNOLOGY:
Double sided epoxy printed circuit board with plated through holes; Dual gate effect transistors; Silvered coils.

FI 2846 IF AMP AND DECODER

£9.86
Inc. VAT, P&P

TECHNICAL CHARACTERISTICS:
Intermediate frequency - 10.7 MHz; IF Bandwidth - 280kHz; Signal to noise ratio - 70dB with 1mV input; Distortion - mono 0.1%, stereo 0.3%; Sensitivity - 30uV up to the 3dB limit; Channel separation - 40dB at 1kHz; Pass band - 20 to 15,000Hz; Rejection at 38 kHz greater than 55dB; AM rejection - 45dB; De-emphasis - 50 to 75.14s; Pilot capture at 19kHz +4%; Channel matching within less than 0.3dB; Output impedance - 100 Ohms; Output voltage - 500mV; Phase locked loop stereo decoder; Output for LED VU-meter; Null indicator; Outputs for AGC AFC and inter-station muting; Consumption - 55mA LEDs extinguished, 100mA LEDs illuminated, Power supply - 15V, Dimensions 195 x 76mm

CIRCUIT TECHNOLOGY:
Epoxy printed circuit board; Monolithic integrated circuits, ceramic filter.

ALS 1500 STABILISED POWER SUPPLY

£2.53
Inc. VAT, P&P

TECHNICAL CHARACTERISTICS:
Output voltage - 15V. Max. output current - 500mA; Thermal coefficient less than 1mV/C. 15V power supply for modules HF 7948 and FI 2846; Supply protected against short circuit (power and current protection); Dimensions - 65 x 55mm

TECHNOLOGY:
Double sided epoxy circuit board; Monolithic integrated circuit.

OPTOELECTRONIC OPTIONS

£8.06
Inc. VAT, P&P

LED VU-METER
Station strength indicator

£8.77
Inc. VAT, P&P

TOUCH CONTROL PRE-SELECTION UNIT
LED channel indication

£13.50
Inc. VAT, P&P

ILLUMINATED POINTER
Station finder

£22.74
Inc. VAT, P&P

FREQUENCY METER
Digital display of received station frequency

£4.35
Inc. VAT, P&P

NUMERICAL DISPLAY
Pre-selected channel number
When the Editor came along and asked me if I would like to write a few words on personal computing over the next year or so, I instantly said yes. The reason for the instantaneous affirmative was not that I liked the idea of gazing into the future, but that I have long since given up saying no to people who are bigger than me (the route to a long healthy life) or to people who employ me (the way to have the where-with-all to enjoy your healthy life). I said yes to the Editor for both reasons.

Getting Things Straight

Having now committed myself, I found that the idea of looking at the future of personal computing began to appeal to me, but before going any further I would just like to get something straight. In my view it seems that when people are asked to write about the future, in any field, they will adopt one of two courses:

The first is to predict a few events and present them in such a way that it seems as if the author has incredible insight. In fact the events could have been foreseen by anyone in the field. At the end of the year this type of fellow can, rightly, claim to have been accurate in his predictions he fools no one though.

The second approach is to make numerous, outrageous, suggestions in the hope that one of the many may just come about. When, at the end of the year, this type of fellow has been lucky, instead of being credited with amazing insight and knowledge of the field, the reaction is to group the prediction with the first type with an "anybody could have seen that" reply. You just cannot win!

Having said that, what I will do is to assess the current situation, give a few personal views on personal computing and leave the star gazing up to you!

Year of Growth

Having got the above out of my system (a 1954 organic), now is the time to get my feet wet — the penalty for having no confidence, according to some sources — with a few of my ideas and opinions.

I think it would be generally accepted that 1978 will be a year of growth in the home computer industry. Generally accepted because of the fact that there is very little activity in this area at present. The reason for this lull is because until recently there have been no ready-built systems specifically aimed at the home user. (I am discounting development systems and the more small business/education orientated products available from people like Computer Workshop.)

By the end of next year, according to all present indications, the situation will be somewhat different, with a significant number of ready-built home systems available.

Many of these new products will be imported from America, although it is encouraging to note that some all-British systems have been developed and are just coming onto the market (eg those from Sintel and Crofton).

It would take up too much space to go into the details of all the various systems, so I shall just pick on one that is typical of most, and interesting in that it comes from an unexpected quarter.

Tandy Terminal

The machine, designated the TRS-80, is based on Zilog’s muscular and intelligent Z-80 MPU. The surprise, for me at any rate, is that the TRS-80 has been developed by Radio-Shack, better known under the Tandy banner in this country.

Tandy are known for their electric/electronic component outlets which also sell ‘mid-fi’ audio gear. The venture into the personal computing field marks a departure from their present operation and I for one shall follow it with interest.

A brief description of the machine, which as I have said will be typical of most home systems, is that it consists of four major units:

- A PSU, a 12in VDU monitor, a cassette interface unit and a CPU housing, which also contains a 53-key keyboard.

The memory supplied with the minimal system will comprise 4K user RAM plus a 4K BASIC package.

Radio Shack aim to support the system by introducing a collection of peripherals, mini-floppies,
printers, memory expansion cards (up to 62K), etc.

Launch date is January the first, so nip down to your Radio Shack shop (don’t say that in too much of a hurry) and see it then.

Other systems that should be available during 1978 are those from Commodore (PET), Heathkit (H8) and Apple II based on MOS Technology’s 6502 MPU.

The Hard Sell

With all of these systems, one of the major problems faced by the manufacturer concerns how to market them. The problem being that nobody in this country has much idea of what type of person will want to buy a home system, for what purposes the system is likely to be used, or what form the retail outlet should take (mail order, local non-specialist shop or large dedicated computer store).

The first two questions are closely linked. It seems likely that the major use of these home systems, in the early stages at least, will be for information handling/manipulation tasks rather than control applications.

With over 5,000 teletext units already in use it would seem that there is already a demand for sophisticated data-handling media. The teletext experience also shows that people are prepared to accept data displays on a TV screen rather than on the printed page they are more used to.

Any home system should be able to provide, perhaps in conjunction with a teletext decoder or information on cassette tapes, a far superior system to that offered by present day teletext.

This then points to a large potential market for home computers. There are of course many other applications. The American experience is that people at first use the machine in tasks related to their job, doctors store lists of names like FLEX, SMALLTALK and perhaps APL, may be heard soon in an effort to bring purpose-built languages into the home.

I think that the next year or so will see a vigorous development of software as people begin to realise that the difference between a good machine and one that’s OK will be in the quality of software, and not in how many lights and levers a machine has.

Bubbles Finally

Finally just a word about new products appearing on the professional market: bubbles, CCD, single chip computers, etc. These products are very expensive at the moment and even if the usual price/learning curves are followed, it will be some time before they appear in devices offered to the home user.

This means that it will be some time before (as your latest memory card blows up in a puff of smoke) you can coin the phrase “I’m forever blowing bubbles”.

So to sum up, the next year will be a year of growth rather than startling technological developments, after which we shall see real computing power in a large number of homes for the first time. Whilst Arthur C. Clarke’s hand-held “Miniseq” is some way off, I doubt that it will be the twenty-third century before a hand-held computer with large computing power will appear on the shelves of your local matter transmitter/receiver.

The potential problems that the home computing revolution will produce are not a subject for these pages, but I hope someone, somewhere is thinking about them.
INSIDE STAR WARS

Specials Editor Jim Perry looks behind the scenes and inside the robots

By the time this story is printed STAR WARS will have probably grossed 200,000,000 dollars worldwide. All those zeros are the result of six years work by writer-director George Lucas, and an end product that makes the TV series Star Trek look as spectacular as News at Ten!

As early as 1971 George Lucas had the idea of filming a space fantasy. Originally he wanted to make an up-to-date version of Flash Gordon — but couldn’t obtain the copyright to the characters created by Alex Raymond. Thwarted by this setback, he started researching the possible sources that inspired Flash Gordon. After a fair bit of digging, he realised that the Flash Gordon concept was probably based on a series of books by Edgar Rice Burroughs (of Tarzan fame) about “John Carter of Mars.” In turn it looks as though Burroughs had been inspired by Edwin Arnold’s “Gulliver on Mars” published in 1905. Jules Verne had preceded even this but never made his hero battle space creatures or have adventures on distant planets — the basis for a whole new concept (then) in adventure stories.

As soon as he finished American Graffiti George started writing Star Wars — that was in January 1973. He worked on the story virtually full time right up to and even during the actual filming in March 1976. At one point there were four different scripts, each one with a different blend of storyline and characters. United Artists were the first to be offered the embryo idea, but they turned it down because they couldn’t see the potential! Universal were more interested at first, but also gave it the thumbs down. Finally 20th Century Fox were persuaded to back it, but nobody thought it would be a big success — little did they know!

New Worlds

The first step after completing a satisfactory basic script concept was to visualize a whole new world. Collin Cantwell, who had worked on “2001 — A Space Odyssey,” was brought in to design the spacecraft models. Starting off with simple sketches, Ralph McQuarrie began visualizing the characters, costumes, robots and scenery — finally producing a series of full colour paintings to give an idea of what George Lucas wanted in various scenes.

Meanwhile producer Gary Kurtz had the headaches of finding a suitable place to film, working out logistics and budgeting. In turn all American, North African and Middle Eastern deserts were visited; the aim was to find a suitable location for Tatooine, the desert planet home of hero Luke Skywalker. Finally the southern part of Tunisia was chosen, near Tozeur in the Sahara desert.

Partly as a result of the decision to film locations in Tunisia, but mainly because of the facilities and people available, the interior work was to be done at EMI...
Studios in Elstree. It was the only studio complex in England or America that could provide up to nine sound stages simultaneously, and the technical staff are among the best in the world.

Production designer John Barry and his crew began designing and building the huge number of props and sets in August 1975. In order to make things look realistic £25 000 was spent on junk and scrap metal; anything from sewage pipes to jet engines were used to make scenery look realistic. One of the interesting aspects of Star Wars is that everything looks used — just like real life!

The job of making the robots was given to John Stears (alias Special Effects Worldwide), who won an Academy Award for his special effects in Thunderball. John had also worked on six other Bond movies — he fitted out the legendary Aston Martin that did everything except make tea!

John’s job was to turn Ralph McQuarrie’s illustrations into reality (or as near as possible). He was also responsible for the production effects. The main robot is R2-D2 (Artoo Detoo): the one that looks a bit like a dustbin with three legs. Artoo’s partner is C-3PO (See Threepio), an android type. The only robot not made by John was Threepio, as he was just a casing designed by art director Norman Reynolds and sculptress Liz Moore — with Anthony Daniels entombed inside.

Besides Artoo types there were four other basic robot types used in the film, these were the Umbrella-type, Stick-type, Dome-type and Box robots. All of these were radio controlled — internal shots are given later in this article.

Now You See It...

As well as the variety of robots, John designed the Speeders used as transport on Tatooine, the multitude of explosions and the light sabres. The Speeder shells were moulded in fiberglass, and supported on a boom arm; after filming the boom was painted out frame by frame.
The light sabre effect was produced with the aid of reflective and non-reflective facets of the sabres. With a light mounted on the camera, the sabres appeared dark if their non-reflective part was towards the light, and gloved when revolved to expose their reflective section. By spiraling the reflective portion and spinning the sabre the effect of the light moving out was created.

Even though John Sears is an electro-mechanical wizard and special effects veteran, he hadn't made anything quite like Artoo and his (its?) fellow robots — even though his hobby is radio-controlled models. Asking for advice at St. Mary's College (University of London), where he met Professor Thring, the robotics expert, and Queen Mary's Hospital in Roehampton, where he met artificial limb specialists, he gained useful information on pneumatics and electronics. The only problem was that when told the time available, everyone said it was impossible! In fact John did the impossible — with one exception: there wasn't enough time to produce a version of Artoo that wobbled on two legs.

The wobble effect was needed to make Artoo a bit more human and, as a final solution, a special Artoo casing was constructed for 3ft. Bin. Kenny Baker to wobble around in! Simple way of telling which version is in a scene is two legs Kenny, three legs the real Artoo with radio control. In March, 1976, the production unit moved into Tozeur in the South of Tunisia, to begin the transformation of desert into desert (from a different galaxy), and construction of massive Jawa transport vehicles. The Algerian army caught sight of these massive props and thought they were real!

After eight weeks of preparation the filming started. During the first week the entire crew had to wear sand goggles due to a big sandstorm. The filming lasted two and-a-half weeks on location before moving to Elstree for the next 14½ weeks, where all nine sound stages were filled with John Barry's 30 sets. Planets, starships, caves, control rooms, cantinas and a vast network of corridors from inside the Death Star were at Elstree — but the Alliance's secret hangar full of X-wing and Y-wing fighters had to be built at Shepperton Studios, because it was the only place in Europe big enough!

When on location all the robots had to be cleaned every day — the sand and salt got in everywhere! One problem arose with the radio control systems because of static-charged windborne sand particles present in the Sahara; an extra aerial wire had to be attached to Artoo. Also being miles from nowhere the internal batteries had to be charged from mobile generators, which also had to be maintained. Trying to keep track of up to 30 sets of batteries is guaranteed to give anyone a twitch! Artoo and company were operated by John Stears and his crew, with Dick Hewitt (of Compact Video Systems) supervising the electronics.

Built from Scratch

As well as the robots and mechanical effects, *Star Wars* uses the most advanced optical and miniature effects — the deep space shots, laser guns, etc. In June 1975 John Dykstra was asked to supervise all the photographic special effects. There was a slight problem — no commercial facility had either the time or even equipment to produce what was required — so John built Industrial Light and Magic Corporation, from scratch, in an empty warehouse in the San Fernando Valley.

The ILM complex included a carpentry shop and machine shop, which had to build or modify the special camera, animation equipment, editing and projection equipment needed to produce the effects. Other departments included optical printing (for putting the many different layers of film together), a rotoscope department (for matte work and general backgrounds) and a library section for keeping track of the thousands of pieces of film.
huge sandcrawler in the background was mistaken for a military vehicle by the Algerian army.

Dykstraflex Films O.K.

The most important part of ILM is the Dykstraflex camera, this is based on an old VistaVision camera, linked into a computer. The VistaVision camera runs 35mm film through sideways, like a 35mm still camera, whereas normal movie cameras run the film vertically — the benefit is increased resolution, which is needed when up to 12 shots are put together on one print. The computer is used to store movement information and provide "action replay" of the camera movement, with control of seven separate parameters simultaneously.

Each of the 365 special effects needed between two and 12 separate exposures of film, in all 3,838 exposures were needed. For example in the battle sequence you see an X-wing fighter swooping and soaring over the Death Star — in fact, the model of the X-wing never moved an inch! The camera moves, creating the illusion that the fighter is moving, the Death Star is filmed separately with different camera movements. The two exposures are then printed together to create the impression of X-wing swooping over revolving Death Star — not to mention more fighters, laser flashers, stars, etc.

This is where the computer comes in. If the angle of the camera changes during a shot, the other shots change as well — hence each separate frame has to be exactly matched for each different component of the composite shot. The computer remembers everything and moves the camera accordingly — simple, but until the Dykstraflex, no camera could do it.

To create realism in the dogfight scenes, thousands of feet of World War II movies were viewed, together with storyboards. By studying the real life movements of the planes, the model shots were planned to be the most realistic ever made — they succeeded.

Even with the aid of the Dykstraflex the ILM crew had several problems to solve. It was easy for the director to move his hand, and say "I want the starship to move like this..." but to actually turn this into a finished shot was a problem. Firstly the movement had to be put down on paper, so that the camera operator could try and emulate the movement — then the operator had to teach the computer the movement, in fact he had to 'fly' the camera over the fixed model. Needless to say at the end of the filming the camera operators were all accomplished pilots!
An example of the shot sequence needed to produce the stunning optical effects in Star Wars...

Step 1, models are fixed in their relative positions on a blue background.

Step 2, a 'garbage' mask is used to obliterate unwanted images from the frame.

Step 3, laser flashes are added in the third exposure.

Step 4, background detail of stars and Death Star complete the frame.

Final product, the assembled film print as seen by the cinema goer.
Contrary to some reports, most of the R2-D2 sequences were with a real robot, built by mechanical wizard John Stears — read all about the real R2-D2 here!

Two versions of R2-D2 were made, one for Kenny Baker to fit inside and the three-legged radio controlled version. Our interest is centred on the radio controlled version.

R2 D2 has three forward speeds, but no reverse, and is steerable. Provision is made for the change from two legs to three legs by radio control, also when tilted the third leg drops automatically. The reason for this is that R2 would fall over if left on only two legs!

Mechanical
In order to achieve forward motion, the two rear legs have individual traction motors which drive twin inline wheels. Steering is via the front drop leg, with a proportional self centring servo unit. The twin wheels in the steering foot remain parallel to the other wheels during turns.

The front leg and foot can be retracted inside the body. When the front leg drops it is held at the correct distance by wires, R2-D2 can then move off at full speed.

The casings for all the R2s were specially made by a company called Petric Engineering for the modest sum of £18 000, which may seem a trifle high — but they were precision pieces of engineering to the highest standard, in fact John Stears says they were excellent value.

Cleaning Up
For several of the scenes R2-D2 was made to appear thoroughly blasted, or covered in grime. The only way was to virtually blast it in real life, and then clean up for the next shot. While in the Tunisian desert John Stears was also continuously cleaning real dirt and sand from R2, it got in everywhere!
Head Interior

1. QI light source (front)
2. Coloured disc motor (front)
3. Pulsating lights (green/yellow)
4. Fibre optic display (rear)
5. QI light source (rear)
6. Coloured disc motor (rear)
7. Fibre optic display (front)
8. Pulsating lights (red/blue)

Driving Foot

1. Drive front gear box
2. Chain sprocket, both wheels in each foot driven by single chain
3. Foot retaining pin

Leg Drop

1. Leg drop solenoid
2. Damper
3. Body tilt tension springs
4. Leg drop locking arm
5. Leg drop locking rod

General

1. Radio control gear
2. Head ring
3. Shoulder bearing
4. Two 6V batteries for lights and steering (removable)
5. Six 6V batteries for traction (not removable)
R2

General
1. Radio control gear
2. Head ring
3. Shoulder bearing
4. Two 6V batteries for lights and steering (removable)
5. Six 6V batteries for traction (not removable)

D2
6. Headlight switch
7. Front foot (steering)
8. Rear feet (traction)
9. Radio on/off switch
10. Leg drop (mechanical)
11. Leg drop (electrical)

Leg Drop
1. Leg drop solenoid
2. Damper
3. Body tilt tension springs
4. Leg drop locking arm
5. Leg drop locking rod

Pulsating Light Drives
1. Pulsating light control box
2. Pulsating light connections
3. Leg drop solenoid
4. Light and steering batteries.
FEATURE: Star Wars

Radio Control Gear
1. Deac
2. Main receiver
3. Leg drop servo and microswitches
4. Steering servo and microswitches
5. Speed control microswitches
6. Speed control servo
7. Traction motor connections
8. Traction batteries charge terminals

Pulsating Light Drives
1. Pulsating light control box
2. Pulsating light connections
3. Leg drop solenoid
4. Light and steering batteries.

Drive Motor
1. Leg distance wire and strut
2. Traction motor, 36V for full speed, 12V or 24V for reduced speed
Radio Control
1. Suppressors
2. Fuse holders
3. Turntable motor
4. Arm turntable
5. Batteries
6. Deac
7. Left speed control
8. Right speed control
9. Receiver

UMBRELLA

Compartment
1. Eyes turn servo
2. Turntable servo

General
1. Dummy aerial
2. Radio control cover
3. Real aerial
4. Arm turntable
5. Rotating head
6. Pneumatic arm
7. Servo cover
8. Battery compartment

Turntable Motor
1. Drive motor
2. Turntable
3. Ring gear
4. Gearbox

Arm
1. Raise/lower ram
2. Airlines
3. Scoop ram (inside)
4. Scoop
5. Elbow
DOME

General
1. Real aerial
2. Eye
3. Slot
4. Perspex dome

Super Structure
1. Dome locating blocks
2. Mirror domes
3. Electronics compartment

Bridge Assembly
1. Eye Socket
2. Dummy aerial
3. Deac
4. Receiver on/off
5. Real aerial
6. Oil light
7. Mirror dome
8. Flashing beacon

Radio Control Gear
1. Suppressors
2. Receiver
3. Connecting block
4. Speed controls
5. Lighting servo
6. Lighting relay

BOX
Most people think the Box robot should have been called the Rat robot, it's the one that runs around the Imperial Death Star. A Radio controlled yellow streak, makes Box robots turn and run when confronted with a Wookie!
ETI's Editor, Halvor Moorshead, went to see Star Wars in North America, where it has been playing to packed houses since the summer.

ONCE UPON A TIME

George Lucas in his book of the film states "instead of making 'isn't-it-terrible-what's-happening-to-mankind' movies ... I decided I'd try to fill the gap. I'd make a film so rooted in imagination that the grimness of everyday life would not follow the audience into the cinema, in other words, for two hours, they could forget." The fact that Star Wars has overtaken Jaws as the fastest box office success of all time shows that he's succeeded.

SF fans have been badly served until now, the notable exception Kubricks '2001' but in that you were obliged to argue for hours about the inner meaning of it all. Star Wars is uncomplicated. The heroes are all good, the baddies are super evil, that in itself isn't unknown in the current cinema but as often as not such stories are 'self-spoofs'.

The effects are brilliant — they're almost dominant — and the director has avoided the temptation of over-displaying a set, or an effect simply because it was expensive to arrange.

We see believable space shops and background. We see sunset on a planet of a binary star pair but they don't explain it or make a meal of it — SF addicts will understand. Alien creatures and androids continually crop up and are extremely well done.

The story? The book is available and reading it in advance won't spoil the movie — it may even make it more interesting but the story is almost irrelevant. Mix up the 'Dam Busters,' "Battle of Britain," "The Magnificent Seven" and add characters like Merlin and Laurel and Hardy and you've got the gist of it: this isn't meant unkindly.

We're told in the opening sequence that Princess Leia has acquired vital plans from the controllers of the all-evil Galactic Empire and is trying to deliver them to the freedom-loving rebels, the last vestiges of the Republic, the Galactic organisation which preceded the Empire. It doesn't occur to us to ask what a Princess has to do with a Republic but that is only because we have abandoned the complexities of our world. (Some of us must take some satisfaction from the fact that the Galactic Empire is apparently controlled by the British). The film does give the impression that a lot has been left on the floor of the cutting room and, as most of the audience are spending most of their time looking at effects, its a bit difficult to follow occasionally but not enough to spoil your enjoyment.

If you note a measure of enthusiasm, you're right. I did get in free to see the film — and I went to see it again the next night I enjoyed it so much!
500 SECOND TIMER

This is the first of four straightforward projects using the ETI 555 PCB shown above, Veroboard layouts are also given.

Most timing devices are clockwork mechanisms which ring a bell at the end of a preset period. They are relatively cheap and reliable but often difficult to build into existing equipment or adapt to specific needs.

The timer described here has none of these limitations. It is small and light so it may readily be built into existing devices - and the actual warning device may be mounted remotely from the timer itself.

Timing is adjustable (by RV1) from a minimum of a few milliseconds to a maximum of approximately 500 seconds. At the end of the preset period the loudspeaker will produce a loud warning tone.

The circuit is based on the ubiquitous 555 timer IC. This is used here not only as part of the timing circuit but also as an oscillator to generate the warning tone at the end of the preset period.

The components may be assembled on Veroboard or on the printed circuit board designed for this project. Usual care must be taken to ensure that the main components are located exactly as shown in our drawings.

Notes:
Switch SW1 must be a double pole unit as specified. If desired this switch may be removed from the board and connected via a suitable length of multi-core cable.

The timing potentiometer may also be located at a distance from the unit in this case it will be better to replace the small preset unit with a ½ watt rotary unit.

If more accurate control is required over a limited range simply reduce the value of RV1 from the specified 5 MΩ to 1 MΩ or less (experiment with fixed value resistors until you have the required result then substitute a suitable value potentiometer).

The speaker and the battery may also be mounted away from the circuit board. If this is done you may find that at the end of the preset time the warning signal starts at a low volume. This may be remedied by connecting a 10 nF capacitor across pins 1 and 8 of the 555 IC.
PROJECT: 500 Second Timer

HOW IT WORKS

ETI 555/1

The unit produces a warning tone at a preset period after switching on. The delay period is dependent upon C1/R1 and RV1 and is adjustable from a minimum of a few milliseconds to a maximum of approximately 500 seconds.

The 555 IC will oscillate if a voltage greater than 2/3rds of the voltage across the device is applied to pins 2 and 6. When it oscillates it produces a square wave which is turned into an audible warning tone by the loudspeaker.

In its 'switched off' state the circuit is arranged such that the 100 μF capacitor C1 is connected across the battery and is thus normally fully charged. When the timer is energised i.e. by closing SW1, C1 discharges via transistor Q1 at a rate determined by the bias resistors R1 and RV1. Thus the emitter of Q1 is held at a low voltage, in turn clamping pins 2 and 6 of the 555 IC below the '2/3rds' level.

As the capacitor slowly discharges, the voltage at pins 2 and 6 slowly rises until the '2/3rds' level is exceeded. As soon as this occurs the 555 commences to oscillate thus producing the warning tone.

PARTS LIST

- **Resistors** all 1/4 W 5%
 - R1: 10 k
 - R2: 1 M
 - R3: 220 k
 - R4: 100 R
 - RV1: Preset 5 M

- **Capacitors**
 - C1: 100 μF 16 V electrolytic
 - C2: 1 nF polyester

- **Semiconductors**
 - Q1: BC558 or equivalent
 - IC1: NE555

- **Miscellaneous**
 - SW1: slide switch dpdt
 - PP3: battery plus clip
 - Speaker: 8-16 ohms
 - PC Board: ETI 555 or small piece of 0.1 matrix Veroboard.

Top of page, complete circuit diagram of the 500 second timer, with the component overlay for the PCB shown below it.

Veroboard layout and pattern for this project.
MORSE PRACTISE SET

Second in our set of four 555 projects helps you practise for a radio amateur licence.

THE MORSE CODE was the original telegraphic code — a slightly modified version — still known as the Morse Code — is used today. Today’s version differs in some respects from the original but it’s a truly international code recognised by all countries.

The great advantage that Morse Code has over speech communication is that it has a far greater chance of being read correctly in poor reception conditions. This is because it consists of a sequence of dots and dashes of fixed pitch and providing one is familiar with the Code it is possible to interpret the sequences correctly in reception conditions that would render speech quite unrecognisable.

A really experienced operator can transmit and receive Morse at speeds as high as 60 words a minute (that’s about a third of the rate of normal speech). Most operators work slower than that — twenty to twenty five words per minute is usual for radio amateurs — many of whom still use Morse regularly.

The project described in this article is an oscillator designed specifically for Morse Code practice. It is based on the same 555 IC used in all the other projects in this series.

Construction

Apart from the battery, speaker and Morse key — all of which are located away from the main circuit — the oscillator requires only one 555 IC plus four other components. These may be mounted on a short strip of Veroboard.

An alternative approach is to use the printed circuit board shown in this article. The printed circuit is a multi-purpose board designed to be used also for the Buzz-board Game, Temperature Alarm and 500 Second Timer published in this series.

The layout of the Morse Code oscillator is in no way critical. If desired the speaker may be located hundreds of metres away from the oscillator. If you make up a pair of these units you can establish a simple two way telegraph link.

The Morse key may be purchased quite cheaply from many electronic component suppliers. Alternatively a key can be made using a strip of springy brass with a suitable knob mounted on one end.

If desired the pitch of the unit may be changed by varying the value of capacitor C1. Increasing the value will decrease the pitch — and vice-versa.

Electronics Tomorrow — Winter 1977
HOW IT WORKS

ETI 555/2

When the Morse key is pressed down current flows through resistors R1 and R2 thus charging up capacitor C1. When the voltage across C1 reaches the required 2/3rds battery voltage level, the 555 conducts – discharging C1 via R2 until the voltage is 1/3 Vc. The cycle is continuously repeated whilst the key remains depressed thus causing a tone to be generated by the loudspeaker.

PARTS LIST

ETI 555/2

- Resistors all 1/2W 5%:
 - R1: 47 k
 - R2: 100 k
 - R3: 22R
- Capacitor:
 - C1: 47 n polyester
- Semiconductor:
 - IC1: NE 555
- Miscellaneous:
 - PC Board ETI 555 (or Veroboard)
 - Battery nine volt plus clip
 - Morse key

Circuit diagram

Component overlay for the printed circuit version.

THE MORSE CODE

<table>
<thead>
<tr>
<th>Letter</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>di-dah</td>
</tr>
<tr>
<td>B</td>
<td>dah-di-di-dit</td>
</tr>
<tr>
<td>C</td>
<td>dah-di-dah-dit</td>
</tr>
<tr>
<td>D</td>
<td>dah-di-dit</td>
</tr>
<tr>
<td>E</td>
<td>dit</td>
</tr>
<tr>
<td>F</td>
<td>di-di-dah-dit</td>
</tr>
<tr>
<td>G</td>
<td>dah-dah-dit</td>
</tr>
<tr>
<td>H</td>
<td>di-di-di-dit</td>
</tr>
<tr>
<td>I</td>
<td>di-dit</td>
</tr>
<tr>
<td>J</td>
<td>dah-di-dah</td>
</tr>
<tr>
<td>K</td>
<td>dah-di-dah-dah</td>
</tr>
<tr>
<td>L</td>
<td>dah-di-dit</td>
</tr>
<tr>
<td>M</td>
<td>dah-dah</td>
</tr>
<tr>
<td>N</td>
<td>dah-dit</td>
</tr>
<tr>
<td>O</td>
<td>dah-dah-dah</td>
</tr>
<tr>
<td>P</td>
<td>dah-dah-dit</td>
</tr>
<tr>
<td>Q</td>
<td>dah-dah-di-dah</td>
</tr>
<tr>
<td>R</td>
<td>dah-dit</td>
</tr>
<tr>
<td>S</td>
<td>dah-dah</td>
</tr>
<tr>
<td>T</td>
<td>di-di-dah</td>
</tr>
<tr>
<td>U</td>
<td>di-di-di-dah</td>
</tr>
<tr>
<td>V</td>
<td>di-dah-dah</td>
</tr>
<tr>
<td>W</td>
<td>di-dah-dit</td>
</tr>
<tr>
<td>X</td>
<td>dah-di-di-dah</td>
</tr>
<tr>
<td>Y</td>
<td>dah-di-dit</td>
</tr>
<tr>
<td>Z</td>
<td>dah-dah-dit</td>
</tr>
</tbody>
</table>

Note:

One ‘dah’ should be equal to three ‘dits’ in length. The space between parts of the same letter should be equal to one ‘dit’. The space between two letters should be equal to three ‘dits’ (or one ‘dah’). The space between two words should be equal to six ‘dits’.
Test your steadiness of hand with this updated version of an old game.

THIS PROJECT is a sophisticated version of a simple game in which the player attempts to pass a small metallic loop along a bent wire path without making contact with that wire.

In its simplest form there are no electronics at all: the 'circuit' consisting primarily of a battery and buzzer. The simple version works quite well but there is no facility for varying the difficulty of the game, short of bending the metal contacting loop.

The version shown here has a time delay built-in. This is adjustable so that the 'buzzer' will sound only if the loop contacts the wire for longer than the set time — and this time is adjustable from zero to a little less than one second.

CONSTRUCTION

As with most circuits described in this series the unit may be built up on Vero-board or the printed circuit board shown here. The external wire path should be made of heavy gauge bare wire — fencing wire or a straightened out coat-hanger for example. This path can be as long as you reasonably like — certainly several hundred metres if you want to make the game really tough!

The metallic sensing loop again should be made of heavy gauge wire or tubing. Unlike the simpler form of this game a low resistance contact between the loop and the wire is not essential — so it doesn't matter too much if either becomes a little tarnished.

If required potentiometer RV1 may be removed from the board and located in any convenient manner. In this event it will probably be more satisfactory to replace it by a conventional ½ watt rotary potentiometer.
HOW IT WORKS

ETI 555/3

Transistor Q1 holds the voltage on pins 2 and 6 of the 555 IC below 2/3rds of the battery voltage whilst the game contacts are not made. This action prevents the 555 IC from oscillating.

If the game contacts are made, capacitor C1 charges up via the potentiometer RV1. After a period (determined by the setting of RV1) the charge on C1 becomes high enough to bias Q1 to cut off. This action allows the 555 to commence oscillating thus producing a tone in the loudspeaker.

PARTS LIST

ETI 555/3

Resistors all 1⁄2 W 5%
- R1,2 1 M
- R3 220 k
- R4 100 R

RV1 Trimpot 500 k

Capacitors
- C1 1 μF 16 V electrolytic
- C2 1n0 polyester

Q1 Transistor BC 558 or similar
IC1 Integrated circuit 555

Speaker 8-15 ohms any size
Printed circuit board ETI or ETI 555 Veroboard
Nine volt battery and clip.

Here’s how the components are located in the printed circuit board version of the game.
Sparkrite Mk 2 is a high performance, high quality capacitive discharge, electronic ignition system in kit form. Tried, tested, proven, reliable and complete. It can be assembled in two or three hours and fitted in 15/30 mins.

Because of the superb design of the Sparkrite circuit it completely eliminates problems of the contact breaker. There is no misfire due to contact breaker bounce which is eliminated electronically by a pulse suppression circuit which prevents the unit firing if the points bounce open at high R.P.M. Contact breaker burn is eliminated by reducing the current to about 1/50th of the norm. It will perform equally well with new, old, or even badly pitted points and is not dependent upon the dwell time of the contact breakers for recharging the system. Sparkrite incorporates a short circuit protected inverter which eliminates the problems of SCR lock on and, therefore, eliminates the possibility of blowing the transistors or the SCR. (Most capacitive discharge ignitions are not completely foolproof in this respect). All kits fit vehicles with coil/distributor ignition up to 8 cylinders.

THE KIT COMPRISSES EVERYTHING NEEDED

Ready drilled pressed steel case coated in matt black epoxy resin, ready drilled base and heat sink, top quality 5 year guaranteed transformer and components, cables, coil connectors, printed circuit board, nuts, bolts, silicon grease, full instructions to make the kit negative or positive earth, and 10 page installation instructions.

OPTIONAL EXTRAS
Electronic/conventional ignition switch. Gives instant changeover from "Sparkrite" ignition to conventional ignition for performance comparisons, static timing etc., and will also switch the ignition off completely as a security device, includes switch connectors, mounting bracket and instructions. Cables excluded. Also available R.P.M. limiting control for dashboard mounting (fitted in case on ready built unit). CALLERS WELCOME. For Crypton tuning and fitting service - phone (0022) 33008.

Improve performance & economy NOW

Note: Vehicles with current impulse tachometers (Smiths code on dial R V 11) will require a tachometer pulse slave unit. PRICE £3.30.

PRICES INCLUDE VAT, POST AND PACKING.

order as many as you like with this coupon. enclose with order

£2 off
Sparkrite Mk 2
(christmas period only)
also
£1 off
Ignition changeover switch

special prices:
Sparkrite Mk 2 kit £9.80
Changeover switch £3.30

(name)
(address)

Mk. 2 DIY Ass. Kit @ £11.80
Mk. 2 Ready Built Negative Earth @ £14.97
Mk. 2 Ready Built Positive Earth @ £14.97
Ignition Changeover switches @ £4.30
R.P.M. Limit systems in above units @ £2.42

Send SAE if brochure only required.

Enclosed cheque/PO's for £
Cheque No.

Electronics Tomorrow — Winter 1977
TEMPERATURE ALARM

Find out if it’s cold outside or inside with the last, but not least, of our straightforward project series.

THIS IS A SIMPLE BUT VERY versatile temperature monitor which can be used in two different ways:
1. To warn if temperature exceeds a preset level.
2. To warn if temperature falls below a preset level.

The unit may be used to monitor temperature in fish tanks, laboratory ovens and/or water baths, incubators, cooking vessels, etc.

The temperature at which an alarm is given is adjustable over a range predetermined by the combined values of the components RV1 and R1. RV1 is a potentiometer which is used to adjust the final ‘set point’ (the temperature at which the alarm is given).

Actual temperature sensing is done by a device called a ‘thermistor’. This is basically a resistor in which the resistance value varies with changes in temperature. Thermistors are obtainable in innumerable shapes, sizes and temperature ranges.

The unit may be built so that a small loudspeaker provides an audible warning when the set limit is reached.

The unit may be constructed so that the warning takes place as temperature exceeds the set limit — or so that the warning takes place as temperature falls below the preset level.

All that is required to convert either unit from one mode of operation to the other is as follows: both the printed circuit board and Veroboard layouts show alternative positions for R1 and the thermistor leads. Each alternative is marked appropriately. Thus to use the circuit in the ‘over-temperature’ mode just insert R1 into the position marked ‘over-alarm’ and connect the thermistor to the ‘over-alarm’ positions. Naturally only one R1 is required.

Figure 1 shows the unit with loudspeaker set up to warn if the temperature exceeds the limit preset by RV1.

Building the unit
Constructional method is not at all critical — we show the unit made up on Veroboard and also on a printed circuit board for those who wish to use this simpler and more elegant method.

The thermistor should be mounted in the end of a short length of thin-walled glass tube and sealed with epoxy resin. Thermistors can actually be...
fig. 1. Basic circuit provides audible warning if temperature exceeds set point adjusted by RV1. See text if opposite operation is required.

parts list

etl 555/4

resistors all 1/2 W 5%

R1 4k7
R2 1 M
R3 47 k
R4 100 ohms
RV1 100 k preset

capacitor

C1 1n0 polyester

semiconductors

D1 IN4001
IC1 NE555

miscellaneous

Speaker 8 ohms
PC Board ETI 555 or Veroboard 3.3 x 1.1”
9 V battery
Thermistor 47 k (25°C) Philips type 64211473 (available from A. Marshall (London) Ltd.)

as outlined above, the combined values of R1 and RV1 determine the temperature at which the unit triggers. Table 1 shows roughly what the combined resistance should be for various triggering temperatures. Thus for the unit to operate at high temperatures the 100 k potentiometer and the 4k7 resistor specified will enable the set point to be adjusted from about 20°C to about 82°C.

if finer control is required then the 100 k potentiometer could be replaced by a 25 k potentiometer and R1 increased from 4k7 to 75 k.

how it works

ETL 555/4

Temperature is sensed via a thermistor. This is a resistor which varies its resistance as temperature changes. The one chosen for this application is a NTC (negative temperature coefficient) type in which resistance falls as temperature rises. The resistance at 25°C is about 47 k falling to about 3 k at 100°C. This thermistor forms a voltage divider with RV1 and R1.

The familiar 555 IC is the basis of the unit. The IC will oscillate if pins 2 and 6 are allowed to exceed approximately 2/3rds of the supply voltage, however the voltage divider along with diode D1 can prevent this and while it does so the alarm will be off.

As temperature increases thermistor resistance falls and the voltage begins to rise at the junction of D1, the thermistor and R1. When the voltage reaches 2/3 V - 0.6 V the 555 begins to oscillate and causes the loudspeaker to sound (at about 1.2 kHz). If an 8 ohm speaker is available then R4 must be included. However if an 80 ohm speaker is available then R4 may be left out — the sound will then be much louder.

Table 1 shows the unit set up to sound an alarm as temperature exceeds the set point. If an alarm is required as temperature falls below the set point then the position of the thermistor, and the combination of RV1 and R1 should be reversed — i.e., so that the thermistor is connected to the negative supply rail.
This is how the components are mounted on the Veroboard version. Note particularly that two alternative positions are shown for resistor R1—the position chosen depends upon whether 'under alarm' or 'over alarm' operation is required. Similar comments apply to the pc board version shown on the right.

Here's how the components are mounted on the pc board version.

PROBLEMS?

Suffixes 'k', 'm', 'M' etc.

Suffixes 'k', 'm', 'M' etc after component values indicate a numerical multiplier or divider — thus:

Multipliers

- k = X 1000
- M = X 1000 000
- G = X 1000 000 000

Dividers

- u = ÷ 1000 000
- n = ÷ 1000 000 000
- p = ÷ 1000 000 000 000

Where the numerical value includes a decimal point the traditional way of showing it was, for example, 4.7k. Experience showed that printing errors occurred due to accidental marks being mistaken for decimal points. The Standard now calls for the ex-suffix to be used in place of the decimal point. Thus a 4.7 k resistor is now shown as 4k7. A 2.2 uF capacitor is now shown as 2u2 etc.

Some confusion still exists with capacitor markings. Capacitors used to be marked with multiples of microfarads — thus 0.001 uF, 470 uF etc. Markings are now generally in sub-multiples of a Farad. Thus—

1 microfarad (1μ) = 1x10⁻⁶ F
1 nanofarad (1n) = 1x10⁻⁹ F
1 picofarad (1p) = 1x10⁻¹² F

OV on our circuits in this series means the same as —ve (an abbreviation for 'negative').

Unless otherwise specified all components in our drawings are shown as seen from above — note however that component manufacturers often show them as seen looking into the pins.

Pin numbering of ICs — with the IC held so that the pins are facing away from you and with the small cut-out downwards pins are numbered anti-clockwise starting with pin number 1 at bottom right.

The thin line on a battery schematic drawing is positive (+ve or just +).

If a circuit won't work the most probable causes of trouble in the most probable order of occurrence are:

(a) Components inserted the wrong way round or in the wrong places.
(b) Faulty soldering.
(c) Bridges of solder between tracks (particularly with Veroboard) — breaks in Veroboard omitted — and/or whiskers of material bridging across Veroboard breaks.
(d) Faulty components.
INTRODUCES VIDEOPLAY

Plays TV games with plug in cartridges

- Fully Pal. Colour Compatible — just plugs into your aerial socket
- No batteries — runs from mains supply
- Automatic on-screen scoring & time-keeping
- Hold button freezes play action indefinitely
- Play action speed control
- Time limit selection
- Electronic sound effects
- Optional cartridges

This system can play a variety of different video games available on OPTIONAL VIDEOCRAFT cartridges.

Up to 4 different games on each Videocraft. Two built-in games: Tennis/Hockey (no cartridges required)

Games available NOW
Cartridge 1: Noughts & crosses/Shooting Gallery/Doodle/Quadra-Doodle
Cartridge 2: Desert Fox/Shooting Gallery
Cartridge 3: Black Jack
Cartridge 4: Spitfire
Cartridge 5: Space War

AVAILABLE SOON: Backgammon, Magic Nos., Maths Quiz, Drag Strip, Maze, Baseball.

Price Only £180.00 inclusive of VAT, Postage, Packing and Insurance.

Demonstrations available at: Videocraft, Assets House, Elverton Street, London SW1P 2QR. Tel: 01-828 2731/2/3
GREENBANK DIGITAL CLOCK MODULES

IDEAL FOR XMAS!

1224-704E £7.95, 8mm Digits
1224-747E £11.95, 16mm Digits

FEATURES: 12/24 hr. + Reset. Can also be modified for use as 4 range time ie, 24 mins + seconds, etc.

KIT INCLUDES: P.C.B., chip, displays, transistors, resistors, capacitors and instructions. Just connect 12v 500mA A.C. and it ‘ticks’ away. (Transformer can be purchased at £2.25.)

BEGINNERS NOTE: For an extra 50p (optional) we will undertake to repair your clock whatever the fault!

PLUS

Our new CKI liquid crystal display clock, quartz crystal controlled, works off 1½v C11 battery (kit of components) No P.C.B., case or wire supplied £25.00.

FREE CATALOGUE: On request.

TERMS: Add 8% VAT to all above prices. Postage 25p + 8% VAT = 37p.

GREENBANK ELECTRONICS
94 New Chester Road
New Ferry, Wirral. Merseyside, L62 5AL
Tel: 051-645 3391

AUDIBLY SUPERIOR AMPLIFICATION

HIGH DEFINITION — ‘MUSICAL’ — POWER AMP MODULES

- **T.H.D. TYPICALLY .007%**
 @ 10W, 500Hz
- **ZERO T.I.D. (SLEW-RATE LIMIT 16V/µS)**

<table>
<thead>
<tr>
<th>Module size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>120 x 80 x 25 mm</td>
<td>Using glass fibre pcb with lead and solder resist. Illustrated. Light duty heatsink.</td>
</tr>
</tbody>
</table>

CRIMSON ELEKTRIK power amplifier modules are fast gaining a reputation as the best sounding, most musical modules available. Perhaps the most important features of this design and exceptional freedom from distortion due to the use of output transistors and zero T.I.D. The amplifier is protected against open and short output loads and yet will drive a highly reactive lower impedance load, which is a major representative of a real loudspeaker. Square waves maintain their rise times up to full power whilst reproducing all music tracks without distortion. Zero T.I.D. allows the output stage to be driven into extremely high impedance loads, with negligible overshoot and settling time of 12-20µS in both push-pull and single-ended modes. Outstanding low noise makes this unit well suited for stereo use. The amplifier is also well suited to driving high-impedance, high-sensitivity loads, or head amplifier loads and is capable of driving very high impedance loudspeakers without distortion.

POWER AMP MODULES

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 100100 1000W or 750W</td>
<td>£7.95</td>
</tr>
<tr>
<td>CE 1004 500W or 350W</td>
<td>£12.13</td>
</tr>
<tr>
<td>CE 1008 150W or 100W</td>
<td>£22.71</td>
</tr>
</tbody>
</table>

POWER SUPPLIES

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPS 1 24DC</td>
<td>£12.13</td>
</tr>
<tr>
<td>CPS 2 12DC</td>
<td>£17.10</td>
</tr>
</tbody>
</table>

HEAT SINKS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>£2.30</td>
</tr>
<tr>
<td>Medium</td>
<td>£3.30</td>
</tr>
<tr>
<td>Large</td>
<td>£6.85</td>
</tr>
</tbody>
</table>

CRIMSON ELEKTRIK power supplies are in kit form for maximum flexibility and feature a low loss, stable toroidal transformer with a 1:10:240 primary and screen. Two large capacitors bridge rectifier and all filtering. Heatsinks are attractive black anodised extrusions, 80mm wide.

NOTE OUR NEW ADDRESS

CRIMSON ELEKTRIK
1A STAMFORD STREET
LEICESTER LEI 6NL
TEL (0533) 386211

Electronics Tomorrow — Winter 1977
CMOS SWITCHED PREAMPLIFIER

A versatile unit designed with our 480 power amplifier modules in mind

The preamplifier incorporates rumble and scratch filters, and something new in audio amplifiers, at least in magazine projects: solid-state switching of the audio inputs and filters. This simplifies wiring, as the only wires connected to the selector switches are control wires—not shielded cables as before.

In this design we have used a bank of push-buttons, but there is no reason why touch sensitive circuitry cannot be used. Indeed it is a simple matter to use a remote switch bank with multicore cable, for armchair selection of input or filter.

Construction.

The ETI 480 power amplifiers are described in detail in the March 1977 edition of ETI complete with a suitable power supply—if you are unfortunate in not having this issue do not despair! Xerox copies are available, see box on opposite page. Of course commercial modules can be used, but will probably work out more expensive.

The preamplifier is built on two boards, one being the 'mag' preamp and selector board; the other being the tone control and filter board. These can be assembled with the aid of the appropriate overlay drawing. Note that the mag preamp board has tracks on both sides and must be soldered on both sides where applicable. If you use a small soldering iron and fine solder, this should not prove any problem. Use pc board pins for all external wires as this makes wiring much easier later.

Commence assembly of the chassis with the 12mm spacers for the selector switches and the power switch. Although the switches should not be fitted yet, the countersunk screws used to mount them are covered by the front panel and these will not be accessible later. The potentiometer and tone control board can now be installed and interconnected. The small rear panel can be assembled and fixed to the chassis.

Add wires about 40 mm long to each of the 10 inputs to the mag preamp board (it is neater if these are soldered to the rear of the board) and connect them to the appropriate phono sockets. Also add an earth link from this board to a lug under one of the phono input sockets. Connection of all the commons of the phono input sockets is via the chassis itself. The preamplifier board can now be installed.

Before fitting the amplifier modules they should have the bias current adjusted. While this can be set later, if anything is wrong it is easier to fix before installation. Provided no load is connected, no heatsink is required at this stage. The module can now be fitted, along with the heatsink on the rear of the chassis. The chassis goes between the modules and the heatsink, but the heat loss is not great. While the heatsink used in the 480 modules is not the only one which can be used, it must be about this size—and be capable of being clamped against the rear panel, to ensure adequate cooling.

The power supply and the selector switches can now be added and the complete amplifier wired with the aid of the diagram in Figure 4. We left the transformer out until this stage to keep the weight down. It can now be added and the wiring completed.
SPECIFICATION

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output power</td>
<td>50 watts into 8 ohms</td>
</tr>
<tr>
<td>Frequency response</td>
<td>± 0.5 dB</td>
</tr>
<tr>
<td>20Hz–20kHz</td>
<td></td>
</tr>
<tr>
<td>Signal to noise ratio</td>
<td></td>
</tr>
<tr>
<td>with 50 W output</td>
<td></td>
</tr>
<tr>
<td>Tape, tuner and aux inputs</td>
<td>-79 dB</td>
</tr>
<tr>
<td>Disc input (re 10mV)</td>
<td>-63 dB</td>
</tr>
<tr>
<td>Input sensitivity</td>
<td></td>
</tr>
<tr>
<td>Tuner and aux inputs</td>
<td>180 mV into 100k</td>
</tr>
<tr>
<td>Tape input</td>
<td>180 mV into 47k</td>
</tr>
<tr>
<td>Disc input</td>
<td>2.5 mV into 47k</td>
</tr>
<tr>
<td>Main amp input</td>
<td>500 mV into 10k</td>
</tr>
</tbody>
</table>

Total harmonic distortion at 1 kHz.

- **at 1 kHz**
 - 50 watts out: 0.3%
 - 10 watts out: 0.08%
 - 1 watt out: 0.08%

Tone controls
- See graph

Filters
- See graph

Damping factor: 25

Channel separation: 45 dB

ETI 480 Power Amplifier

Xerox copies of the ETI 480 article are available for 50p inclusive from:

ETI 480,
ETI Magazine,
25-27, Oxford Street,
London. W1R 1RF.

Please make cheques or postal orders payable to ETI Magazine and write your name and address on the back.

Electronics Tomorrow — Winter 1977
The output from a magnetic pickup has to be amplified and equalised before it can be used. This is achieved using 741, 3 and IC1 to provide a gain of about 40 dB at 1 kHz and using C9 and C15 to provide the equalisation required to meet the RIAA curve. The transistors are used to reduce the noise of the 741 amplifier to acceptable levels.

Selection of the inputs is done by IC3, 5 and 6, which are CMOS analogue switches. If the control input to these devices is high (+6V) the switch appears as a 300 ohm resistor and if it is low (-6V), it appears as an open circuit. Therefore, IC3/1, IC5/1 and IC5/2 can select phono, tuner or aux inputs and IC7 buffers the one selected.

The output of IC7 is used as tape output for recording purposes. The tape input is fed with a second buffer, IC9, and IC6/1 disconnects IC7 when this is to allow monitoring (when recording) and this is selected by depressing both the tape button and the input required. The gain of the second buffer, IC9, is variable by means of RV1, which is the balance control. The two channels are wired to the opposite way around on RV1, so that increasing gain on one channel decreases the gain on the other.

The filters used are two-pole active type and CMOS switches are used to enable or inhibit the circuits. C27 and C29 determining the low filter cutoff frequency and the values can be varied to suit your requirements. The values given give a cutoff at about 50 Hz and increasing the capacitance decreases the cutoff frequency, and vice versa. In the high cut filter C31 and C33 determining the frequency and these values can also be varied if required. The approximate ratio between these capacitances should be maintained.

The tone controls are conventional and we used the same values as in the 440 amplifier (they have a better range than those in the original 422). To reduce the effective noise level, the volume control is wired between the filter section and the tone control stage. This does mean, however, that the input levels are more critical than they would be if the control was further back in the circuit. Input levels should be kept below about 2 volts.
Fig 2 Circuit diagram of the filter and tone control board

Fig 3 Component overlay of the preamp board

PARTS LIST

ETI 482A
Resistors 1/2w 5%
R1, 2, 5-8, 16, 43, 44 1 k
R3, 4, 17, 18 50 k
R9, 14 33 k
R19-20 560 k
R21, 22 47 k
R23, 26, 35, 36 1 M
R29-34, 37-40 100 k
R41, 42 220 k
R45, 48 15 k
R46, 47 10 k

Capacitors
C1, 2 1 µ 35 V Tantalum
C3, 4 47 p ceramic
C5, 6 1 n polyester
C7, 8, 19-22 10 µ 16 V electrolytic
C8, 10 5 n6 polyester
C11-14, 17, 18 1 µ 35 V electrolytic
C15, 16 3 n3 polyester
C23 47 n polyester

Semiconductors
Q1, Q2 Transistor BC549
IC1, 2 Integrated Circuit 741
*IC3, 5, 6 Integrated Circuit 4016
IC7-IC10 Integraled Circuit 741
*The number IC4 is not used
PC Board ETI 482A
Fig 4 Interconnecting diagram of the complete amplifier.
ETI 482B

Resistors all 1/2 W 5%
R49, 50, 57, 58, 61, 62 1 M
R51, 52 100 k
R53, 54, 63, 64, 69, 70 27 k
R55, 56, 59, 60, 65, 66, 71, 72 6 k
R67, 68 47 k
R73, 74 1 k
R75, 76 15 k
R76, 77 10 k

Capacitors
C25, 26, 35-38, 43, 44 10 µ 16 V electro
C27-C30 68 n polyester
C31, 32 82 n polyester
C33, 34 22 n polyester
C39, 40 560 p ceramic
C41, 42

Potentiometers
RV2 10 k log dual rotary
RV3 100 k lin dual rotary
RV4 25 k lin dual rotary

Integrated Circuits
IC11, 12 4016 or 4066
IC13-1C16 741

PC board ETI 482 B

Parts List

ETI 482 GENERAL
2 50 W ETI 480 Amplifier modules
1 ETI 480 P Power supply module
1 240 V power indicator
1 Power cord, grommet and clamp
1 Stereo headphone socket
1 Single phono sockets
1 Small double pole slide switch
2 2 pin DIN socket
8 12mm spacers
nuts, bolts, washers etc.

Chassis
Cover
Front panel
Heatsink
Rear panel
6 brackets
4 knobs
1 Selector switch bank
1 Power switch
1 2 pin power socket
1 33 n 630 V capacitor

PROJECT: CMOS Switched Preampifier
Foil patterns for the printed circuit boards. Note that 482A is double sided — all artwork is correct size.
Play chess, day or night. Now you have your chess partner! You can even sharpen your chess skills without any embarrassment!

Whether you're a beginner, average or advanced chess player, you'll have the game of your life on the computerised Chess Challenger from Kramer.

The Chess Challenger is totally unlike any other electronic game. Its advanced mini-computer provides the Chess Challenger with a memory and high-level thinking ability. The Chess Challenger responds to your every move quickly and aggressively and, if you're not careful, you'll wind up in very short order!

Practice Makes Perfect

Because the Chess Challenger serves as your chess partner, it is ready to play whenever you are, day or night. And it eliminates the age-old problem of chess players — finding someone who wants to play chess! This is especially important for beginner players, who may be too embarrassed by their lack of skill to challenge a better player. By practising with the Chess Challenger, a novice quickly learns to plan upcoming moves and cover the board positions.

Easy to Play

If you know the basic chess moves, which can be learned in ten minutes, you can take on the Chess Challenger a few minutes after reading its simple directions.

Set up both sides of the chess board with the included wood pieces (you can play white or black) and make your first move. Enter your move into the Chess Challenger mini-computer by touching a couple of keys on the Control Center.

Seconds later, Chess Challenger responds with its move, which is displayed in standard chess alphabetic notation in the FROM and TO windows on the Control Center. You can move the Chess Challenger's piece on the board to match the display. Make your next move, enter it, take a note of the Chess Challengers response and move its piece to the appropriate square on the chess board. That's all there is to it!!

But Can You Beat the Challenger!!

Winning, however, isn't so easy. Chess Challenger is programmed for aggressive play and works to control the chess board. It castles (so can you, and you can make en passant moves) when appropriate. Special lights on the Control Center tell you if you've managed to checkmate the Chess Challenger.

You control Chess Challenger's level of play. Turn on Chess Challenger and it plays Chess Level I, an average game. If level I is too easy, press the CL (clear) button and call up level II, a tougher game. If you master Level II, you can play Level III, an extremely difficult chess game. These varying games make Chess Challenger an ideal opponent and a perfect teacher for aspiring chess masters.

Check

Lights when computer admits defeat and is in checkmate position.

Resert

Starts the game - will cancel memory.

Double Move

To be used for casting and other moves.

Clear

To clear an unwanted move before pressing enter and to select Chess Level.

CONTROL CENTER

POSITION VERIFICATION

An outstanding feature of CHESS CHALLENGER is its ability to inform you, the player, of the exact position of each of the pieces on the board during the course of the game at any time after completing a move.

Top Quality Product

Backed by American technology and manufacture this sophisticated advanced computer game is fully guaranteed for one year.

ETCH RESIST TRANSFER

kit size 1:1

Complete kit 13 sheets 6in x 4½ in £2.50 with all symbols for direct application to P.C. board. Individual sheets 25p each. (1) Mixed Symbols (2) Lines 0.05 (3) Pads (4) Fish Plates and Connectors (5) 4 Lead and 3 Lead and Pads (6) D.I.L.S. (7) Bends 90° and 135° (8) B-10-12 T.0.5. Cans (9) Edge Connectors 0.15 (10) Edge Connectors 0.1 (11) Lines 0.02 (12) Bends 0.02 (13) Quad in Line.

Circuit Layout Transfers Size 2:1

One sheet 12in x 19in giving all transfers as in etch, one to resist from No. 3 to No. 10 inclusive makes circuit layout easy. Black only. Price £1.

Circuit Layout Transfers Size 2:1

One sheet 12in x 9in lines and bends. Black Only. Price £1.00.

Front and Rear Panel Transfer Signs

All standard symbols and wording. Over 250 symbols, signs and words. Also available in reverse for perspex, etc. Choice of colours, red, blue, black, or white. Size of sheet 12in x 9in. Price £1.

graphic transfers with spacer accessories

Available also in reverse lettering, colours red, blue, black or white. Each sheet 12in x 9in contains capital, lower case and numerals 14in kit or 14in kit. £1 complete. State size.

Graphic Transfers ⅛ in with spacer accessories

Comprising 10 sheets 6in x 4½ in capitals, lower case and numerals, front working only. Red, blue, black or white. Complete kit £2.50.

Graphic Transfers ⅛/116 in Ideal for P.C.B. Identification

(etch resist). Red, blue, black or white. Capitals or numerals only. Not available in reverse. 4 sheets 6in x 4½ in £1.

Special Translucent Artwork Plastic

Ideal for graphic or circuit layout. Size 12in x 9in. 10 sheets for £1.

Printed Circuit Board

Clean unmarked. Size 10½ in x 4½ in. 4 pieces for £1. Includes postage.

Silk Screnes

Made to customers requirements. Print your own P.C. boards. Send details for quote.

All orders dispatched promptly. All post and VAT paid

E.U.K. add 50p for airmail

Special Transfers made to order

E.R.Nicholls

P.C.B. Transfers

DEPT. PE/10

46 LOWFIELD ROAD

STOCKPORT, CHES.061-480 2179
EXPERIMENTERS' POWER SUPPLY

Versatile, two version bench supply — no workshop is complete without one!

THIS ECONOMICAL POWER SUPPLY gives the full range 0 to 15 V. In addition this supply features metering (or you can use the calibrated scale on the second version if you don't have a spare meter) to enable accurate setting of voltage or current.

Construction
Commence by assembling the pc board with the aid of the component overlay diagram. The main filter capacitor C1 is normally a chassis-mounting type, but we mounted this satisfactorily by passing the lugs through the large holes in the pc board, bending them flush with the copper and soldering. Check the polarity of the capacitor before fitting, as it cannot be seen later. The transistor Q3 is fitted, along with its heatsink, with the two mounting screws. No insulation is used between the transistor and the heatsink but pass a small piece of tubing over the base and emitter leads where they go through the heatsink, to prevent shorting. If the meter is not required RV3, RV4 and R10 are not used.

The front and rear panels can now be drilled. Note that the mounting bracket of the transformer has to be cut back about 12 mm on one end to allow it to fit easily.

Assemble the front and rear panels and wire the unit according to Fig 3. The wires to and from the power switch can pass the pc board via the chamfer on the lower left hand side. Other wires from the pc board to the front panel can be connected onto the copper side of the board.

SPECIFICATION

<table>
<thead>
<tr>
<th>Output Voltage</th>
<th>0-15 V variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Current</td>
<td>0-1 A</td>
</tr>
<tr>
<td>Current Limit</td>
<td>approx 1.2 A</td>
</tr>
<tr>
<td>Load regulation</td>
<td>35 mV 0 to 1 A load</td>
</tr>
<tr>
<td>Line regulation</td>
<td>20 mV 220 to 260 V input</td>
</tr>
<tr>
<td>LED indication</td>
<td>of current overload</td>
</tr>
</tbody>
</table>
The 240 V mains is reduced to 18 V in T1. This 18 V ac is then rectified by D1-D4 and filtered by C1 to give about 25 volts dc (on no load). The voltage reference for the supply is ZD2, which gives about 5 V dc. However, due to the large variation in voltage across C1 (caused by load changes) additional regulation is used, incorporating ZD1, and the two circuits give the stability required.

The regulator is a 'series-pass' type with the positive rail common and the negative rail variable. We have done it this way to achieve outputs down to 0 V. The comparator IC (LM301) cannot work with its input less than about 2 volts above the negative rail, but it can work with the inputs at the positive supply rail. However this will not work with all types of op amp — so do not substitute the 301 with a 741 or similar.

The output of IC1 controls the output transistors, Q2 and Q3. A level-shifting zener ZD3 is used in the output of IC1 as its output cannot swing low enough. The output voltage is divided by R8 and R9 and is taken to IC1 which compares it to that set on RV1. IC1 then adjusts the drive to the output stage until the two voltages are the same. RV2 is used to compensate for variations in the voltage of ZD2.

In the event of an overload the voltage drop across R3 will forward-bias Q1, which will bypass current away from the output transistors. This causes the output voltage to fall, the comparator sees this error, and the output of IC1 goes to the positive supply rail (trying to compensate). Q1 however will continue to bypass any extra current, holding the output current constant at about 1.2 A. However, the additional current out of IC1 will forward-bias LED 1 and it will indicate the overload.

With such high gain in the circuit additional frequency stability is needed and C3 and C5 provide this. For metering, we simply use a 1 mA movement meter and measure the voltage across the output (via R10 and RV4) and across R3 (current).

Setting Up

1. Without Meter — With this version we rely on the potentiometer to be linear. In practice it is not linear at the two ends of its travel. Calibration is done by adjusting the knob position and RV2.

Set the output to one volt and position the knob to read one volt. Now turn the knob to 15 V and adjust RV2 to give 15 V output. Recheck the 1 V setting and repeat the procedure, if necessary.

2. With Meter — Connect the output to an accurate voltmeter and turn the pot to maximum. Adjust RV2 to give 16 V. Adjust RV4 until the meter reads 16 V (with RV2 switched to volts). Now connect a load and an ammeter. Set 1 A on the ammeter and then adjust RV3 until the power supply meter reads 1 A.

![Fig 1. The circuit diagram of the power supply.]
![Fig 2. The meter scale used.]
Fig 3. The component overlay and interconnection diagram.

Parts List

Resistors
- R1, R6: 1 kΩ ½ W 5%
- R3, R4, R5: 10 kΩ ½ W 5%
- R7, R8: 470 Ω ½ W 5%
- R10*: 12 kΩ ½ W 5%
- RV1: 10 kΩ lin rotary
- RV2: 2k2 Trim
- RV3*: 1 kΩ
- RV4*: 5k

Capacitors
- C1: 2500 µF electrolytic
- C2: 33 pF ceramic
- C3,5: 100 pF
- C4: 100 µF 25 V electrolytic

Semiconductors
- D1-D4: Diodes 1N4001
- ZD1: Zener 12 V 400 mW
- ZD2,3: Zener 5.1 V 400 mW
- LED1: TIL 209 with clip
- Q1: Transistor BC548
- Q2: BD139
- Q3: 2N3055
- IC1: Integrated circuit LM301

Miscellaneous
- PCB ETI 132
- Transformer 240 V – 18 V 2A
- Case
- Power cord and clamp
- Heat sink
- Two 2 pole 2 position 240 V Toggle switches
- Two terminals
- Meter 1 mA FSD *
- Knob

*If meter is not required delete RV3, RV4, R10, the meter and one switch
Fig 4. Printed circuit layout

Full size 132 x 66 mm.
<table>
<thead>
<tr>
<th>Category</th>
<th>Title</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculators</td>
<td>Advanced Applications for Pocket Calculators</td>
<td>£29.50</td>
</tr>
<tr>
<td></td>
<td>Getting the Most Out of Your Electronic Calculator</td>
<td>£29.80</td>
</tr>
<tr>
<td>Computer & Microprocessors</td>
<td>Build Your Own Working Robot</td>
<td>£3.50</td>
</tr>
<tr>
<td></td>
<td>Computer Circuits and How They Work</td>
<td>£1.50</td>
</tr>
<tr>
<td></td>
<td>Digital Electronic Circuits and Systems</td>
<td>£2.50</td>
</tr>
<tr>
<td></td>
<td>Introduction to Digital Filtering</td>
<td>£0.40</td>
</tr>
<tr>
<td></td>
<td>Introduction to Microcomputers</td>
<td>£10.10</td>
</tr>
<tr>
<td></td>
<td>Microprocessor/Microprogramming Handbook</td>
<td>£4.10</td>
</tr>
<tr>
<td></td>
<td>Introduction to Microprocessors</td>
<td>£5.15</td>
</tr>
<tr>
<td></td>
<td>Modern Guide to Digital Logic Processors - Memories and Interfaces</td>
<td>£4.30</td>
</tr>
<tr>
<td>Logic Design Projects Using</td>
<td>Standard Ics</td>
<td>£5.10</td>
</tr>
<tr>
<td></td>
<td>Practical Digital Design Using Ics</td>
<td>£12.50</td>
</tr>
<tr>
<td>Communication</td>
<td>Communication Systems Intro to Signals & Noise</td>
<td>£7.50</td>
</tr>
<tr>
<td></td>
<td>Digital Signal Processing, Theory & Applications</td>
<td>£23.80</td>
</tr>
<tr>
<td></td>
<td>Electronic Communication Systems</td>
<td>£6.60</td>
</tr>
<tr>
<td></td>
<td>Frequency Synthesis, Theory & Design</td>
<td>£20.40</td>
</tr>
<tr>
<td></td>
<td>Principles of Communication Systems</td>
<td>£8.10</td>
</tr>
<tr>
<td>Electronics</td>
<td>Active Filter Cookbook</td>
<td>£11.00</td>
</tr>
<tr>
<td></td>
<td>Applications of Operational Amplifiers</td>
<td>£3.30</td>
</tr>
<tr>
<td></td>
<td>Basic Maths Courses for Electronics</td>
<td>£1.95</td>
</tr>
<tr>
<td></td>
<td>Build It Book of Miniature Test Instruments</td>
<td>£3.55</td>
</tr>
<tr>
<td></td>
<td>Designing with TTL Integrated Circuits</td>
<td>£9.05</td>
</tr>
<tr>
<td></td>
<td>Designing with Operational Amplifiers</td>
<td>£13.75</td>
</tr>
<tr>
<td></td>
<td>Electronic Engineers Reference Book</td>
<td>£27.70</td>
</tr>
<tr>
<td></td>
<td>SOLID State Circuit Guide Book</td>
<td>£2.25</td>
</tr>
<tr>
<td></td>
<td>TRANSISTOR CIRCUIT DESIGN</td>
<td>£9.35</td>
</tr>
<tr>
<td></td>
<td>ELECTRONIC COMPONENTS</td>
<td>£2.45</td>
</tr>
<tr>
<td></td>
<td>ELECTRONIC DIAGRAMS</td>
<td>£2.45</td>
</tr>
<tr>
<td></td>
<td>ELECTRONIC FAULT DIAGNOSAN</td>
<td>£2.20</td>
</tr>
<tr>
<td></td>
<td>ELECTRONIC MEASUREMENT SIMPLIFIED</td>
<td>£2.20</td>
</tr>
<tr>
<td></td>
<td>ELECTRONICS SELF TAUGHT</td>
<td>£4.40</td>
</tr>
<tr>
<td></td>
<td>EXPERIMENTS WITH OPERATIONAL AMPLIFIERS</td>
<td>£3.40</td>
</tr>
<tr>
<td></td>
<td>FIRE AND THEFT SECURITY SYSTEMS</td>
<td>£2.00</td>
</tr>
<tr>
<td></td>
<td>HOW TO READ ELECTRONIC DIAGRAMS</td>
<td>£1.95</td>
</tr>
<tr>
<td></td>
<td>HOW TO BUILD PROXIMITY DETECTORS AND METAL LOCATORS</td>
<td>£3.45</td>
</tr>
<tr>
<td></td>
<td>HOW TO USE IC CIRCUIT LOGIC ELEMENTS</td>
<td>£3.85</td>
</tr>
<tr>
<td></td>
<td>INTEGRATED ELECTRONICS</td>
<td>£7.70</td>
</tr>
<tr>
<td></td>
<td>IC: OP-AMP CIRCUIT Designs & Applications</td>
<td>£9.30</td>
</tr>
<tr>
<td></td>
<td>LINEAR INTEGRATED CIRCUIT APPLICATIONS</td>
<td>£5.00</td>
</tr>
<tr>
<td></td>
<td>FUNCTION CIRCUITS DESIGN & APPLICATIONS</td>
<td>£15.95</td>
</tr>
<tr>
<td></td>
<td>110 ELECTRONIC ALARM PROJECTS</td>
<td>£3.45</td>
</tr>
<tr>
<td></td>
<td>110 OPERATIONAL AMPLIFIER PROJECTS FOR THE HOME CONSTRUCTOR</td>
<td>£2.95</td>
</tr>
<tr>
<td></td>
<td>110 SEMICONDUCTOR PROJECTS FOR THE HOME CONSTRUCTOR</td>
<td>£2.95</td>
</tr>
<tr>
<td></td>
<td>110 COSMOS DIGITAL IC PROJECTS FOR THE HOME CONSTRUCTOR</td>
<td>£2.20</td>
</tr>
<tr>
<td></td>
<td>110 INTEGRATED CIRCUIT PROJECTS FOR THE HOME CONSTRUCTOR</td>
<td>£2.95</td>
</tr>
<tr>
<td></td>
<td>110 TRISTOR PROJECTS USING SCRs</td>
<td>£2.95</td>
</tr>
<tr>
<td></td>
<td>MICROELECTRONICS</td>
<td>£3.90</td>
</tr>
<tr>
<td></td>
<td>MODERN ELECTRONIC MATHEMATICS</td>
<td>£6.70</td>
</tr>
<tr>
<td></td>
<td>NOS: DIGITAL ICS</td>
<td>£4.60</td>
</tr>
<tr>
<td></td>
<td>OPERATIONAL AMPLIFIERS DESIGN AND APPLICATIONS</td>
<td>£7.40</td>
</tr>
<tr>
<td></td>
<td>UP-AMP CIRCUIT DESIGN & APPLICATIONS</td>
<td>£4.00</td>
</tr>
<tr>
<td></td>
<td>PRACTICAL ELECTRONIC PROJECT BUILDING</td>
<td>£2.45</td>
</tr>
<tr>
<td></td>
<td>PRACTICAL SOLID STATE O.G. SUPPLIES</td>
<td>£6.20</td>
</tr>
<tr>
<td></td>
<td>PRACTICAL TRIAC/SCR PROJECTS FOR THE EXPERIMENTER</td>
<td>£2.25</td>
</tr>
<tr>
<td></td>
<td>PRINCIPLES OF TRANSISTOR CIRCUITS</td>
<td>£4.75</td>
</tr>
<tr>
<td></td>
<td>PRINTED CIRCUIT ASSEMBLY</td>
<td>£2.45</td>
</tr>
<tr>
<td></td>
<td>RAPID SERVICING OF TRANSISTOR EQUIPMENT</td>
<td>£2.95</td>
</tr>
<tr>
<td></td>
<td>SEMICONDUCTOR CIRCUIT ELEMENTS</td>
<td>£6.40</td>
</tr>
<tr>
<td></td>
<td>TTL COOKBOOK</td>
<td>£7.55</td>
</tr>
<tr>
<td></td>
<td>UNDERSTANDING ELECTRONIC CIRCUITS</td>
<td>£4.10</td>
</tr>
<tr>
<td></td>
<td>UNDERSTANDING ELECTRONIC COMPONENTS</td>
<td>£3.35</td>
</tr>
<tr>
<td></td>
<td>UNDERSTANDING CMOS INTEGRATED CIRCUITS</td>
<td>£3.90</td>
</tr>
<tr>
<td></td>
<td>UNDERSTANDING SOLID STATE CIRCUITS</td>
<td>£2.00</td>
</tr>
<tr>
<td>Semiconductor Data</td>
<td>INTERNATIONAL TRANSISTOR SELECTOR</td>
<td>£9.10</td>
</tr>
<tr>
<td></td>
<td>INTERNATIONAL FET SELECTOR</td>
<td>£4.35</td>
</tr>
<tr>
<td></td>
<td>POPULAR VALVE/TRANSISTOR SUBSTITUTION GUIDE</td>
<td>£2.25</td>
</tr>
<tr>
<td></td>
<td>RADIO VALVE AND SEMICONDUCTOR DATA</td>
<td>£2.60</td>
</tr>
<tr>
<td>Radio, Television and Audio</td>
<td>Audio Handbook</td>
<td>£6.50</td>
</tr>
<tr>
<td></td>
<td>Beginners Guide to Audio</td>
<td>£3.20</td>
</tr>
<tr>
<td></td>
<td>Radio TV Audio Cassette Tape Recorders</td>
<td>£5.25</td>
</tr>
<tr>
<td></td>
<td>Foundations of Wireless and Electronics</td>
<td>£4.45</td>
</tr>
<tr>
<td></td>
<td>Colour Television Theory</td>
<td>£8.20</td>
</tr>
<tr>
<td></td>
<td>World Radio TV Handbook 1977 (A complete Directory of Radio, TV Stations)</td>
<td>£5.60</td>
</tr>
<tr>
<td></td>
<td>RADIO, TV AND AUDIO TECHNICAL REFERENCE BOOK</td>
<td>£24.85</td>
</tr>
<tr>
<td></td>
<td>SOLID STATE COLOUR TV CIRCUITS</td>
<td>£5.60</td>
</tr>
<tr>
<td>Test Equipment & Oscilloscopes</td>
<td>Basic Electronic Test Procedures</td>
<td>£2.45</td>
</tr>
<tr>
<td></td>
<td>The Oscilloscope in Use</td>
<td>£3.10</td>
</tr>
<tr>
<td></td>
<td>Practical Test Equipment You Can Build</td>
<td>£2.25</td>
</tr>
<tr>
<td></td>
<td>Test Instruments for Electronics</td>
<td>£2.40</td>
</tr>
<tr>
<td></td>
<td>Working with the Oscilloscope</td>
<td>£1.95</td>
</tr>
<tr>
<td></td>
<td>Servicing with the Oscilloscope</td>
<td>£3.60</td>
</tr>
</tbody>
</table>

HOW TO ORDER

Please note that our prices include postage and packing. Make cheques payable to ETI Book Service. Payment in sterling only please.

Orders should be sent to:
ETI Book Service
PO Box 79
 Maidhead, Berks.
ARE YOU
Bored with
THE SAME OLD
‘DING·A·LING’?

Well if you’re not you should be! The old boring doorbell is about to gasp its last with the arrival on the scene of Videomasters Doortunes unit. This plays no less than 24 different tunes, at a variable speed and pitch.

Nothing old fashioned here – the unit is microprocessor controlled – and is as far ahead of the old buzzer as the calculator is of the abacus. The Doortune contains its own amplifier and speaker, so all you need to do is wire up to the existing push-button and you’re in business. No mains transformer is needed, the Doortune runs from its internal PP3 batteries, which last between 3 months and a year – depending upon how popular you are with callers!

Our price is inclusive of P&P and VAT, and comes READY BUILT all set to be wired up. You won’t match the price anywhere else, so why not give an MPU a home today? (They’re quite house-trained you know!)

£19.95
all inc
average price £26

THE VIDEOMASTER DOORTUNES
PLAYS ALL THESE 24 TUNES:

Greenstrees
Rule Britannia*
Oh come all ye faithful
Westminster Chimes*
Cook House Door
Beethoven’s Ode to Joy (9th)
Soldier’s Chorus (Faust)
Great Gate of Kiev
Beethoven’s “Fate Knocking”
Deutschland uber Alles
Mozart
Wedding March (Mendelssohn)

God Save the Queen
Land of Hope and Glory
Oranges and Lemons
Sailor’s Hornpipe
The Stars and Stripes*
William Tell Overture
Twinkle Twinkle Little Star
Red Flag/Maryland/Tannenbaum
The Marseillaise
Toccata in D Minor (Bach)
Colonel Bogie
The Lorelei

*These tunes play longer if the push button is kept pressed.

To:
DOORTUNES OFFER, ETI MAGAZINE,
25-27, Oxford Street, London W1R 1RP.

I enclose Cheque/Postal Order made payable to ETI for the amount of £. Please send me . Doortunes.

Payment in sterling only please.

NAME

ADDRESS

Allow 28 days for delivery

Electronics Tomorrow — Winter 1977

81
MODIFY YOUR TV FOR VIDEO INPUT

How to turn your isolated TV into an MPU terminal

THIS ARTICLE GIVES SOME HINTS on how to modify a normal television receiver so that a signal can be fed directly into the video circuit. This enables you to use your TV for video games or other video displays without needing to use an RF modulator.

Besides the obvious reduction of cost and complexity, the use of a direct video connection has the advantage of higher resolution. A good RF modulator is quite a complex device and because of the UHF signals it must handle, it calls for special construction techniques.

Once modified for external video input, the receiver can be used for a variety of experiments. It can be used with the VDU section of the micro-computer terminal that has recently appeared in ETI, or as a simple video monitor for black and white TV cameras. (For colour TV use much more elaborate circuitry would be required to ensure the required bandwidth and phase characteristics).

Normal Receiver Operation

Figure 1 is a block diagram of the signal processing section of a normal TV set.

The signal from the antenna is a low level UHF signal of a few microvolts amplitude. The tuner outputs a signal at the receiver's intermediate frequency, which is amplified by the IF stages to give an RF signal of about 1-2 volts peak to peak amplitude. The detector rectifies the output of the IF amplifier, usually by means of a diode, in much the same way as a crystal set. The result is a composite video waveform — that is...
a waveform containing both picture and synchronising information. In addition, the 5.5 MHz sound carrier is usually extracted at the video detector.

This waveform would result from reception of a “staircase” test signal, which consists of a number of vertical bars ranging in greyscale from white to black. The output from the detector looks something like the waveform shown in Fig. 2(b). In this example it is assumed that the detector diode is configured so as to produce a more positive output with an increase in carrier amplitude.

The video amplifier provides a signal of sufficient amplitude for modulating the brightness of the dot displayed by the CRT.

The sync separator detects when the video signal reaches its maximum excursion, which corresponds to sync level. The horizontal and vertical sync pulses are then extracted from this composite sync signal and fed to the deflection circuitry.

Format
In England the vision information is put onto the radio wave at the TV transmitter using negative amplitude modulation. This means that the brighter the picture element is, the less the carrier amplitude. Maximum carrier amplitude corresponds to the sync pulses, minimum corresponds to white, and black level lies somewhere in between. The signal at the output of the IF amplifier therefore looks something like Fig. 2(a).

Requirements
The universally adopted standard for “line level” video is 1 volt peak-to-peak into 75 ohms positive-going (more positive means greater brightness). Most video games and the Video Display Unit in the ETI microcomputer terminal project provide such a video output suitable for feeding directly into a monitor or modified receiver. Alternatively an RF modulator can be used to generate a signal suitable for feeding into the TV set via the antenna terminals for viewing on a vacant TV channel. This latter alternative means that the video signal is modulated and then demodulated which can degrade the picture quality unless the modulator is carefully designed.

In many cases it is simpler to modify the TV set than build a modulator. The receiver can be fitted with a changeover switch which can be used to return it to normal reception when required, or an old black and white set can be butchered specifically for the job. In view of the low cost of second hand black and white sets it may be preferable to persevere the latter course rather than strain family relationships by dissecting the new telly.

The modification involves feeding in the video signal where the detector normally goes. The input should be via a 75 ohm coaxial connector and it must present a 75 ohm terminating impedance to the source. In most cases a certain amount of additional circuitry will be required to match the 75 ohm, 1 V positive input to the impedance, amplitude and polarity required by the video stages of the receiver.

Before You Start
There are several important factors to consider before attempting the modification. Before you start check these points:

1. The TV must not be of the “hot chassis” type. These receivers do not use a transformer to isolate the works from the mains. In many cases one side of the mains connects directly to the chassis of the set. Check that the chassis is securely grounded via the power cord and that the power supply section does not use an isolating transformer. “Hot chassis” sets are not suitable for modifications. Moreover they are potentially lethal and should be left alone.

2. Unless you are sure about what’s in your TV set you will need a circuit diagram of the chassis. These can be obtained from the manufacturers or their service departments.

3. Don’t attempt the modification unless you are quite confident you know what you are doing. This is not meant to discourage the adventurous hobbyist spirit, but if you rush in without sufficient knowledge you could wind up with a smouldering wreckage where once your TV stood (or where you yourself stood).

Finding The Right Spot
The first task is to locate the video detector stage. This will often be...
labelled on the circuit diagram, but if it is not it can be found by following the circuit starting from the tuner. There will be a couple of stages of IF amplification followed by a detector in the form of a diode or, in more recent sets, part of an integrated circuit. Figure 3 shows a simplified diode detector stage. With the diode this way around, the recovered video waveform will be positive going, as shown. If the diode were reversed, an inverted video waveform would be present.

In some receivers the video detection and pre-amplification are accomplished by an integrated circuit. If the sync separator is internal to the IC you should look for a different receiver to modify as it may not be possible to find a suitable point to feed in the video signal. If the sync separator occurs after the IC you can treat the IC as a glorified diode detector and feed the video into the first transistor video stage.

The Simplest Case

If you are lucky the first video amplifier in your TV receiver will be designed to operate with a negative-going video signal of about 1 volt peak to peak. In this case very little extra circuitry will be required to modify the set. The simple arrangement shown in Fig. 4 will probably suffice.

The change-over switch SW1 selects an internal or external source of video for the 1st video amplifier transistor. When switched to external, base bias for Q1 is provided by RV1 and R1. RV1 provides a large range of adjustment so that the DC level at the base of Q1 can be matched to the level present when the receiver is operating normally. Capacitor C1 provides DC isolation and R2 presents the required 75 ohm impedance to the coaxial video input.

Input Buffering

In some cases the 1 volt video input will not be of sufficient amplitude to drive the video stages fully. Figure 5 shows the circuit of a simple non-inverting amplifier which will bring the input amplitude up to a suitable level.

Q1 is wired in common-base configuration which provides the low impedance input required and does not invert the signal. RV1 allows adjustment of the amplitude from 1 volt to 3 volts P-P. Once again, RV2 is provided for bias adjustment. The polarity of C2 will be determined by the relative settings of RV1 and RV2.

Inverting Buffer

If the receiver requires a positive-going video input, means must be provided for inverting the external video input. Depending on the exact requirements of the particular TV receiver in question, it may also be necessary to provide some gain as well.

Figure 6 shows a simple circuit which fulfills these requirements. The gain is adjustable from 1 to 3 by means of VR2. VR1 adjusts the bias on the following stage of video amplification.
Finishing Off

With a little experimentation a suitable circuit can be developed using the above hints as guidelines. Keep the wiring to the switch as short as possible. Mount a coaxial connector on the rear panel of the TV set for the external input.

The modern standard for video connectors is the “BNC” type, although there is still a lot of equipment using the more cumbersome “VHF” type (also known as a PL-259). A much cheaper alternative is the “Belling and Lee” coaxial connector commonly used at the antenna input connection of colour TV sets.

ARE YOU READY FOR SYSTEM COUPLING MODE?

GO AWAY IM KEEPING MYSELF PURE!
Microprocessor Components

MICROPROCESSOR COMPONENTS

All prices are exclusive of VAT

<table>
<thead>
<tr>
<th>Component</th>
<th>Price</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>8080A</td>
<td>24.95</td>
<td>B/E T8080 8 BIT MICROPROCESSOR FAMILY</td>
</tr>
<tr>
<td>8080A MCU8080</td>
<td>23.45</td>
<td>N Channel 40 Pin</td>
</tr>
<tr>
<td>8080P/80P-10.50</td>
<td>21.40</td>
<td>Clock Generator</td>
</tr>
<tr>
<td>8080P/80P-10.50 (DP)</td>
<td>22.40</td>
<td>System Counter</td>
</tr>
<tr>
<td>8080P/80P-10.50 (DP)</td>
<td>23.45</td>
<td>8 Bit Bin</td>
</tr>
<tr>
<td>8080P/80P-10.50 (APP)</td>
<td>24.95</td>
<td>ZIP/100/400</td>
</tr>
<tr>
<td>8080P/80P-10.50 (APP)</td>
<td>25.95</td>
<td>ZIP/100/400 (ZIP1)</td>
</tr>
<tr>
<td>8080P/80P-10.50 (ZIP)</td>
<td>26.95</td>
<td>ZIP/100/400 (ZIP2)</td>
</tr>
</tbody>
</table>

SC/MP

1200 Clock Modules Digital

Built and tested — requires only switches and transistors to complete a full or 24-bit system

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA1001 12V, 5" display</td>
<td>£10.00</td>
<td>$12.00</td>
</tr>
<tr>
<td>MA1002 24V, 5" display</td>
<td>£15.00</td>
<td>$18.00</td>
</tr>
<tr>
<td>MA1003 36V, 5" display</td>
<td>£20.00</td>
<td>$24.00</td>
</tr>
</tbody>
</table>

SC/MP RETROFIT KIT

Now available from stock this new SC/MP/II Retrofit which enables existing users to evaluate the new SC/MP/II Microprocessor 18.40 excl VAT £85 psp 75p

TRIACS

Pack of 1000

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 amp</td>
<td>0.75</td>
</tr>
<tr>
<td>1.0 amp</td>
<td>1.75</td>
</tr>
</tbody>
</table>

THYRISTORS

Pack of 1000

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 amp</td>
<td>0.60</td>
</tr>
<tr>
<td>1.0 amp</td>
<td>1.20</td>
</tr>
</tbody>
</table>

Many more types — listed in our new catalogue — select with Light switches, etc.

VOLTAGE REGULATORS

Pack of 1000

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>5000A 10V200W @ 20V</td>
<td>0.60</td>
</tr>
<tr>
<td>5000A 10V100W @ 20V</td>
<td>0.65</td>
</tr>
</tbody>
</table>

OPTO ELECTRONICS

Full range of Opto devices in our New Catalogue

DISPLAYS

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>37 Segments</td>
<td>£2.50</td>
</tr>
<tr>
<td>36 Segments</td>
<td>£2.50</td>
</tr>
<tr>
<td>24 Segments</td>
<td>£1.50</td>
</tr>
</tbody>
</table>

Many more types — listed in our new catalogue — select with Light switches, etc.

LOW PROFILE SKTS

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>12006</td>
<td>0.20</td>
</tr>
<tr>
<td>12007</td>
<td>0.20</td>
</tr>
<tr>
<td>12008</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Telephone orders with cash cards — £10 min. order
UP-DATED 4th EDITION

UP-DATED 4th EDITION

Prices stabilised minimum 3-month periods
144 pages, 40p

ELECTROVALUE LTD

28 ST JUDES ROAD, ENGLEFIELD GREEN, Egham, Surrey TW20 0HR. Tel: Egham 3603. Telex 364485. Shop 9.30-9.30. 1 pm Sat. NORTHERN BRANCH: 690 Burnage Lane, Burnage, Manchester M19 1NA. Tel: (061) 432 4545. Shop 9.30-1 pm Sat.

"So the little old lady, who used it once a week to go to Church, built the transistor ignition then?"
John Miller-Kirkpatrick reminisces about Electronics Tomorrow, and puts his crystal MPU on line

It all started when the phone rang and ETI gave me the news about this publication you are reading. "Thought you might like to write a couple of pages for it", said the voice, "sort of look through the back issues and do a review or something?" This is the sort of opportunity no author can afford to miss, being asked to write a two page review of your own work.

As a regular feature article 'Electronics Tomorrow' has been quite an innovator of new ideas, some of which have since become products, others which may still be a little difficult to see as your next Christmas present. Some of the ideas rubbed off onto ETI itself - one example being the first of the now regular special offers in ETI Aug 73. That was for a pair of LED lamps, one green and one red at £1.10. It may not sound like much of an offer at today's prices but it was the first of a range of special offers which has subsequently resulted in some special issues with 20 or more offers per issue.

The policy statement made in that first Electronics Tomorrow still stands, "It is intended to be more than a product review in as much as we hope to give short constructional examples of some of the products, this approach gives a better insight to the capabilities of the product than one gets with just a data sheet." Since then we have reviewed many new products and put forward some rather mind bending applications and ideas while hopefully making the article amusing and educational.

In 1974 some of the subjects were -

January: The 556 dual timer, then a very new device, now commonplace.
February: The MM5371 alarm clock chip and new 0.6" LED display.
March: CT6002 liquid crystal drive CMOS clock chip, the first of the digital watch chips.
April: A battery charger using a 555 and the new LM3900 quad Amp.
July: How to use a calculator as an MPU, now its how to use a calculator with an MPU.
October: What to do during those long winter nights.
November: Variable speech control and an upside-down calculator problem.

The Inebriated Reporter Saga

We started 1975 with a futuristic horror story about super-automation with computers which were capable of building and controlling themselves. A bit far fetched perhaps, but not impossible. March 75 brought digital FM tuners, done the hard way - with TTL. This was followed by complex counter chips, 'Time on TV' display chips, a cassette recording system, a few stopwatch chips, and a self controlling hair curler. My favourite article during 1975 must be the October 'Tank Fight', not so much from the obvious literary talent displayed but more from the joy of sinking several pints whilst collecting data for the article - my thanks to the landlord for ignoring the hysterical laughter coming from the corner with the TV tank game.

The new year brought forth the 'Black Watch Kit', an add-on calculator programmer, the first low cost clock module and the start of two sagas. The first saga was the seven segment to BCD conversion problem for which I received and am still receiving lots of clever solutions, one obvious solution was to input data into an MPU as seven segment data and let the MPU do the conversion. The second saga started in May 1976 with the idea of including an MPU in a Teletext system (or vice-versa), I understand that Texas Instruments now have a version of TIFAX for just that application!

A similar saga also started about that time, the problem of getting your MPU to use a calculator chip, the latest device is the MM57109 - a calculator chip specifically designed to do the job.

More and More and More

It is a little obvious that 1976 was the year that I became very interested in microprocessors with the year ending up with more teletext plus MPU plus cassettes plus calculators plus low cost direct-access devices. This must have started some brains ticking because ever since then I have been receiving letters with comments, ideas and tales of resultant systems.

It is my experience from letters like these and from past experience that there was a lot of interest in calculators at £80 in 1974, in 1975 it was in £100+ digital watches, 1976 saw £200 VDU systems and teletext interest and 1977 has seen a lot of interest in £500 MPU systems. In each of the first three examples the products became almost household items with corresponding price drops to give the £5 calculator, £20 watch and £150 Teletext decoder. This should mean that 1978 will bring us the home computer for games, household accounts, diary, etc for about £200. Already several manufacturers are producing MPU systems for business use at £3,000 odd with a very small simple version at about £1,000, with an MPU kit on sale at about £50 in November 1977 what will prices be like in 1978?

Having started a forecast for 1978 in the amateur and consumer electronics market perhaps I should continue in the same vein. Having had several lucky guesses committed to print in Electronics Tomorrow I...
YESTERDAY

feel that a few more suggestions might also work out in the same way.

First of all obviously, microcomputers. By Christmas 78 you should be able to buy a unit consisting of a typewriter keyboard, MPU plus memory, interface to TV and cassette recorder for under £200. It will talk to you in BASIC, one of the simplest possible programming languages and will allow you to play very complex games far into the night — goodbye 'Monopoly', hello 'Star Trek'.

Of course this is not the only form in which you can use MPUs for fun, already there are several MPU based board games for sale at Christmas 77, the first of these use a calculator style MPU to control games similar to 'Battleships', 'Campaign' and other 'strategy' rather than luck games. This type of unit will also see a new industry spring up in the form of a 'Game of the Month Club', supplying new programs for old board games.

With all of these board and TV games around you are going to have to start talking to your neighbours again, if TV was the death of the art of conversation perhaps MPUs can cause the rebirth.

The use of MPU chips in games applications leads on to their use in teaching, training and overcoming disabilities. The MPU can cover the same training ground repetitively at any time of day or night and can be programmed to lead a student at the correct rate and in the right direction. If it doesn't sound too harsh, MPUs could be used as a substitute for 'electric shock' training or correction techniques. First you catch your rat, then you teach it BASIC insert, and then let it solve mazes the easy way!

The new style of MPU controlled cooker will be able to cook a complete Sunday meal, you just tell it the weight of your Sunday joint and vegetables, which cooking units they are on or in and what time you want to eat. It calculates the cooking time of each unit with any temperature changes necessary and works out what time to start each unit. The super de-luxe version also keeps a record of your favourite recipes and any changes you make to them. When this type of computer becomes commonplace (198?) it might also order your groceries from the supermarket computer thus allowing advance programming of a week's meals based on diet, seasonal availability and personal preferences. With the advent of little vacuum cleaners programmed to clean rooms whilst you are out, MPU based tomato watering systems and computer controlled dish and clothes washers you are going to need the MPU games to have something to do other than eat!

Shops for Everything

Electronic products are now finding a place in most homes, cars, offices and factories, within the next couple of years the consumer market will be flooded with more electronic gadgets, some useful and others useless. Many more people are now becoming interested in the various fringes of electronics as you do not have to have a knowledge of radio receivers to use TTL logic or MPUs or vice-versa. This decentralisation of electronics as a hobby is confirmed by the growth of specialist suppliers who tend to only stock components within their own specialisation. With the high rate of new technology on the whole electronics front this approach allows the supplier to hold large stocks of the specials without committing money and effort into another field of electronics. To the constructor it means that the supplier will probably be able to give a better and more detailed service than before. Your local electronics component shop will continue to supply basic standard components, kits and accessories for most constructional projects whereas the specialist supplier will stock components for the larger more complex projects.

If you are not a regular reader of ETI I hope that this article has given you some idea of what you are missing in just a couple of pages each month, just think what you are missing in the other 80 or so pages of ETI each month.

Electronics Tomorrow is put together each month with help from lots of people, I would like to take this opportunity of passing on my thanks for support. To my wife for patience and coffee, to manufacturers like National and GIM for new data and products, to Halvor and Co for editing and publishing, to readers and personal friends for ideas and inspiration, and to Bywood for the time.
It can be a nuisance can’t it, going from newsagent to newsagent? “Sorry squire, don’t have it - next one should be out soon.”

Although ETI is monthly, it’s very rare to find it available after the first week. If it is available, the newsagent’s going to be sure to cut his order for the next issue - but we’re glad to say it doesn’t happen very often.

Do yourself, your newagent and us a favour. Place a regular order for ETI: your newagent will almost certainly be delighted. If not, you can take out a postal subscription so there’s nothing for you to remember - we’ll do it for you.

For a subscription, send us £6.00 (£7.00 overseas) and tell us which issue you want to start with. Please make your payment (in sterling please for overseas readers) to ETI Subscriptions and keep it separate from any other services you want at the same time.

ETI Subscription Service,
Electronics Today International,
25-27 Oxford Street, London W1R 1RF.
INTRODUCING A NEW TV GAMES PROJECT USING THE AY-3-8600

WITH 8 EXCITING GAMES, THREE OF WHICH HAVE NEVER BEFORE BEEN AVAILABLE!

Basketball, Hockey, and the new American sensation — GRIDBALL.
PLUS! Horizontal and vertical bat movement of forward players on FOOTBALL, SQUASH, HOCKEY, BASKETBALL and TENNIS.
PLUS PLUS! Two gripping one-player games that really call for skill — the games will score against you! EXTRA! The ball changes from black to white in SQUASH to indicate whose turn it is.
A penalty point is scored should a player hit the ball out of turn.
This remarkably simple circuit is easy to construct and operate and is currently available EXCLUSIVELY to the home constructor — it is not expected to be available as a commercial unit until Spring 1978.

SYSTEM DIAGRAM AY-3-8600

Ball and paddle 2
Strobe 1
Strobe 2
Strobe 3
Select i/p 1
Select i/p 2
Select i/p 3

12 S AC
50K %
330k
.6v Video out
Sound out

TO MODULATOR

BASKETBALL
HOCKEY
GRIDBALL

SPECIAL FEATURES

- vertical and horizontal bat movement
- separate bat and score colour for each player
- realistic ball service
- independently selectable bat sizes
- automatic ball speed-up after seven hits
- five bat angles (40°, 20°, and horizontal)
- forward shooting in hockey and football
- sound outputs for hit, rebound and score
- automatic or manual service
- kit incorporates sound and vision modulator (sound comes out of the TV)
- full technical back-up and service to guarantee your success

HOW IT WORKS:
Simple! The clever i.c. does all the hard work — all you have to connect is a clock circuit and a few controls; the system diagram speaks for itself. Games are selected by the momentary connection of one or other strobe input to one or other selector input, as enumerated below.

STR 1/SEL 1 Tennis
STR 1/SEL 2 Hockey
STR 1/SEL 3 Squash

STR 2/SEL 1 Solo
STR 2/SEL 2 Gridball
STR 2/SEL 3 Football

STR 3/SEL 1 Basketball
STR 3/SEL 2 Solo Basketball

(Further information and instructions are supplied with the kit)

WHAT IT COSTS:
AY-3-8600 paddle 2 kit (includes ic, pcb, sound and vision modulator and all components except controls) black and white £15.00, colour £20.90 ★ joystick controls suitable for the above project (available late November) £5.95 per pair ★ Also: colour encoder units £6.80 ★ vision modulators £2.50 ★ sound and vision modulators £4.90 ★ and while stocks last the AY-3-8500 kit (includes ic pcb, modulator and all components except controls and speaker) black and white £9.95, colour £15.50 ★ spare ic's: AY-3-8500 £4.95, AY-3-8550 £8.50, AY-3-8600 £9.50.

★ ★ All prices include vat, post and packing ★ ★ cheques and postal orders made payable to "TELECRAFT"

TELECRAFT, 53 Warwick Road, New Barnet, Herts. EN5 5EQ (MAIL ORDER) ● RETAIL AND DEMONSTRATION of tv games and teletext at 14 Station Road, New Barnet, Herts. EN5 1QW. Further information and technical advice on 01-440 7033 seven days a week.

★ Access and Barclaycard accepted ★ ★ Quantity discounts negotiable ★★

Electronics Tomorrow — Winter 1977 91
THE SINCLAIR STORY

Steve Braidwood and Halvor Moorshead travelled to Cambridge for this exclusive Electronics Tomorrow interview.

You may be surprised to learn that Clive Sinclair never went to university. When he left school he got a job as an editorial assistant on an electronics magazine, so from our common starting point he explained to us how he got where he is today (we couldn’t understand why anyone would want to leave the fun world of electronics magazines... but apparently not all magazines are as much fun as ETI). We asked Clive why he didn’t continue formal education after school:

Because I’d already been writing articles on electronics when I was at school — electronics was my prime interest then — and I decided that a university degree wouldn’t teach me what I wanted to know at the sort of rate I wanted to learn it. Primarily universities then, and still many today, taught electrical engineering rather than electronics.

Clive learned by studying on his own, but it wasn’t long before he was in business: The company started by selling transistors — individual transistors which I bought from Plessey and tested (they were rejects). They were rejected because they didn’t meet the computer-type specs, but they were perfectly satisfactory. Are these the ones that you put your own number on? Yes, that’s right — MAT101s...

That was 1961 and Clive was operating his mail-order business from his room in London. He was 21.

Then I did a radio kit, a thing called the Slimline. That was the first one. Was that the one in a full-page ad in PW? Yes.

Then there was a very tiny little amplifier module, a thing called the Microamp. A single-ended thing with...a power transistor? No, that came later. There was one even before that. But that’s right, there was something called the TR750 — by that time though the company employed two people, three including myself.

You may be surprised to learn that Clive Sinclair never went to university. When he left school he got a job as an editorial assistant on an electronics magazine, so from our common starting point he explained to us how he got where he is today (we couldn’t understand why anyone would want to leave the fun world of electronics magazines... but apparently not all magazines are as much fun as ETI). We asked Clive why he didn’t continue formal education after school:

Because I’d already been writing articles on electronics when I was at school — electronics was my prime interest then — and I decided that a university degree wouldn’t teach me what I wanted to know at the sort of rate I wanted to learn it. Primarily universities then, and still many today, taught electrical engineering rather than electronics.

Clive learned by studying on his own, but it wasn’t long before he was in business: The company started by selling transistors — individual transistors which I bought from Plessey and tested (they were rejects). They were rejected because they didn’t meet the computer-type specs, but they were perfectly satisfactory. Are these the ones that you put your own number on? Yes, that’s right — MAT101s...

That was 1961 and Clive was operating his mail-order business from his room in London. He was 21.

Then I did a radio kit, a thing called the Slimline. That was the first one. Was that the one in a full-page ad in PW? Yes.

Then there was a very tiny little amplifier module, a thing called the Microamp. A single-ended thing with...a power transistor? No, that came later. There was one even before that. But that’s right, there was something called the TR750 — by that time though the company employed two people, three including myself.

And then you went into the audio field? Into hi-fi modules. Wasn’t there a device called the X10 that caused you some problems? In the early days we had some problems with the transistors blowing up so we did a revised design, the X20, which was much more satisfactory.

But there was the problem, fundamentally, that they tended to radiate. If you kept them in a biscuit tin they weren’t too bad, but otherwise they were a bit of a problem.

In the early days the products were designed completely by Clive himself, there was no one else around. The X10 was a design that Clive got from another company, but when it caused problems he designed the X20 himself. After the X20 the company set about producing conventional amplifiers (the X10 and X20 were pulse-width modulation designs) starting with the Z12, a class-B design.

We had just done the Z12 when we moved to Cambridge and then in Cambridge we started to widen the range of hi-fi modules. And from that we went into built hi-fi units. We started with the Neoteric 60 amplifier — it was black on the top with a rosewood front and gold or silver knobs.

Sinclair is no longer in the hi-fi market. But he hasn’t given up the electronics hobby-kit market, it is too closely associated with the way Clive thinks. Of Sinclair Radionics he says: We’re not basically very much in the business of the hobbyist these days. Sinclair Radionics are concerned with supplying the public in general on one hand, and specialists with instruments, on the other. But a large part of Sinclair’s market is comprised of hobbyists because, as Clive says, we tend to make products that are interesting technically because I’m personally interested in the technology. I hope our products will always be of interest to electronics enthusiasts because they’re of interest to me, but they won’t always be aimed at that market any more than the pocket television which, although interesting to an electronics engineer or amateur electronics enthusiast, is of use to anybody.

We asked Clive if he considered himself to be an enthusiast: Yes, very much so. Not in the sense of...
wielding a soldering iron, because I have never particularly been interested in that aspect anyway. I’m much too interested in the theoretical side.

It is the way that Clive involves himself personally in the development of the company’s products that makes the company so exciting — to us and to Clive. But some people in the business world thought that Clive ought to be spending more time managing the company and taking fewer or lesser risks. But before looking at the state of Sinclair today, we’ll return to the history of Sinclair Radionics.

The Amazing Executive

The Sinclair Executive calculator was launched in 1972. It was the world’s first truly hand-held electronic calculator and it was surprisingly easy for Sinclair to get into production, thanks to one very clever idea. That was not a product that had been a long time in development — it was only about six months. One of the fastest developments we ever did!

I had always wanted to make calculators and it was the development of the single-chip that made it possible for us. And we did everything possible to get hold of it at the earliest possible time, then we moved rapidly into production.

Was it the first single-chip calculator? Yes. We weren’t the first people to make one — a firm in the States made the calculator at the same time as us, or a bit earlier, using the same chip. What we did was to make a pocket calculator. Whereas theirs was a hand-held calculator, ours was a pocket one. Because we had this power-saving circuitry: it cut the power consumption by about twenty times.

How did you manage that? We switched the chip on and off; off most of the time. The charges on the capacitors on the chip held the data. That’s a technique we developed.

So you discovered this when you got the chip into your lab? No we didn’t discover it . . . I had anticipated that this would be theoretically possible, and so I devised a circuit to do it which worked. And so we were able to make a very slim machine.

But that was before the calculator boom. Then there was no demand. It boomed because we caused it to boom. It wasn’t there when we started and it was there when we advertised.

And what about production problems? It was horrendously difficult to make this product. We were making it ourselves and there were so many parts in such a small space.

How many staff did you have at that time? I’d say about sixty.

From these beginnings Sinclair have become world-famous as calculator manufacturers: today the Cambridge programmable outsells all programmables and all scientifics.
Measuring the Instrument Market

Sinclair is also in the instrument field; he has been selling the DM2 digital multimeter for six years and is now the largest manufacturer of multimeters in Europe. In October he launched another digital multimeter, the PDM35. Clive expects that by the middle of 1978 his company will be the largest manufacturer (by number of units sold) of digital multimeters in the world (but there are more meters to be released this winter).

We asked John Nicholls, head of Sinclair’s instrument division, if there were any other companies competing with Sinclair in the cheap digital multimeter market: In America there are a number of meters at a hundred dollars, in the UK we have the field virtually to ourselves, in other European countries there is a certain amount of low-cost Far-East meters but their penetration is very small.

Before the DM2 Sinclair wasn’t making any instruments, but after selling 25 000 units it’s hardly surprising that he’s going into business seriously with a new range — including, we’re told, an auto-ranging 4½-digit model priced at around £100 (but this wasn’t released at the time of the interview).

One of the factors that accounts for the success of Sinclair in the early days was the sub-contracting of production. Sinclair would buy the components, send them out to another company to be assembled, and then check the quality of the products in his own factory before sending them out into the marketplace. He then concentrated on research and development, free from the hassles (financially and managerially) of production. But there was a danger that he might be let down by one of his contractors, with disastrous results.

The Black Watch Disaster

This happened in 1976 when he lost £355 609 thanks to the suppliers of the chip for his Black Watch. We asked Clive if technical problems played any part in the disaster. No, the chip we got worked beautifully. We had some early snags but so does everybody in watches — they’re just teething troubles. It was a great shame because the chip was miles ahead of anyone else’s — way ahead of the Americans.

And the chip was a Sinclair design? Yes, entirely. Was it the first production 1½-chip in the world? Yes, we were ahead of TI on it. But I’ll was developed by Philips and IBM, how come Sinclair used it first? They invented it and we spotted that this looked like an ideal technology for watches — way ahead of anyone else. Indeed, we did all the work to make it a technology for watches, you couldn’t just use conventional circuits.

We remember quite a lot of problems when the watch first came out, do you regret launching it as early as you did? There were problems with everybody else’s. I just think that something as new as that can’t do without having some problems.

What went wrong was one of those things that happens now and again and it was tough luck.

That was your only venture (so far) into watches? Yes. We did then make a version of the Black Watch using CMOS chips but only to fulfill obligations of supply, because we couldn’t then be particularly competitive.

The watch business has been a particularly bad business for everybody who’s been in it, really, because there’s been such absurd competition and price cutting. Even if we hadn’t had the problem with the supply of the chips we would probably have seen some other problems.

But the same applies to the calculator field, to some extent, where you certainly have been able to hold your head above water? That’s right, and so we would have done in the watch field, had we had the ‘chance. So we much regret that the chips weren’t available.

As a company you’re quite remarkable as innovators. But you’ve been hit down a bit — with
the PWM amplifier and the 1"L watch. Has that made you a bit more cautious?

No, not a bit. In both cases the technology was right and something else was wrong. In the case of the PWM, we were a much smaller company then and we didn’t do our homework properly. We didn’t test it thoroughly enough before we launched it, but we soon put that right.

In the case of the 1"L watch, again the snag was the people who were making the chip who suddenly found themselves with a processing problem which had nothing to do with the fact that it was that chip.

Haven’t you become just a bit more conservative? No, I don’t think I have. The television is a massive risk by any standard. But you did go to the NEB. That was of necessity. The risk was such a damn big one. Generally, large companies are not prepared to take big risks, but I personally am.

Since the misfortunes of 1976 Sinclair has been helped out by the National Enterprise Board with cash and a 43% shareholding, and by the NRDC with £700,000 for further development of the pocket television.

Satisfaction Guaranteed

One nice thing about Sinclair is that from the start, before the law came in to protect the consumer, he offered an unconditional money-back guarantee to his customers. So when innovatory new techniques caused problems you didn’t need to be one of Clive’s guinea-pigs if you didn’t want to be, but it was so much fun to be at the forefront of technology that most hobbyists didn’t mind coping with teething troubles themselves. Clive’s views on the money-back deal are double-edged: In mail-order it was likely to succeed in helping sales; it was also quite a genuine policy. We stuck to it and meant it. We didn’t want a situation where customers weren’t happy — at the end of the day. It was very deliberate. It is a genuine policy we’ve stuck to ever since: we don’t argue with customers, we do replace products.

We asked Clive if he had got over the bad name he once had — in the hi-fi days it was commonly rumoured that he had a 20% failure rate on some of his products. True. The quality control wasn’t as good as it should have been, there’s no doubt about it. The reason was that we sub-contracted production and really didn’t have enough experience of quality control in those days.

Our quality is superb now.

And the bad name? There was indeed, yes. I think that’s behind us now. We don’t seem to get that at all now — we did until a year or two ago. Our reputation with the big stores, who have got very quality-control conscious themselves (and do their own goods-inwards checks), is excellent.

Exporting Success

What percentage of your products do you export? Seventy per cent overall, now. I think mainly the USA? No, it’s only recently. We haven’t been very big in the USA, although we’ve got our own company there, but just this year it’s suddenly taking off there. For two reasons: the television is the obvious one, but the multimeter is pushing out very heavily in the USA, hitherto it’s been mostly Europe.

The pocket television was obviously designed with the export market in mind — the switches on the front allow you to select UHF or VHF, US, UK or European standards. The marketing effort has so far been concentrated in the US, with the result that most of the 1977 sets have been sold there. Marketing in Europe (except for the UK, where the set was available from the start) starts at the beginning of 1978. Now 40% of the turnover is attributable to the TV (20% to multimeters and 40% to calculators) but the production of the TV (and consequently the sales) will double between October and December 1977. Clive Sinclair is confident that the television is a success, but with twelve years of research and development behind it and massive investments, let’s hope that he doesn’t get let down by his suppliers (he has only a single source for the two-inch picture-tube) or be price-cut into bankruptcy by Japanese competition. But at £200+VAT I can’t see many being sold in the UK until the price does come down.
Researching for the Future

Clive has about a dozen people working in research (as opposed to development) but he says he isn’t about to enter any new areas in the immediate future. We asked him about the electric vehicle research: The electric vehicle side have done work over quite a long period and are still doing work on the motor side, but it’s not a ‘product development’ area, it’s a ‘research’ area.

If you were fifteen years younger what area would you now go into, if you had the same starting point you had in 1962?

Personal computers, probably, in the constructor field, if you have to be in the constructor field. I only did so in the first place because that’s an area where it’s possible to start small.

We would have expected to see you in personal computers by now. Well, I’m waiting to see what happens. I think the programmable calculator is, in a way, a venture in that direction. Evolutions of that type of product might meet that demand. It’s hard to see which way it’s going at the moment.

We’ve spent an awful lot of time looking into this problem and we’re still not definite which way we’ll go. But I suspect it’ll be from calculators upwards to computers.

Do people buy calculators to play with, or to use? There’s certainly a market sector, the calculcholics, God bless them. It’s quite an important one, but it’s not that big.

What about innovations in calculators, like bigger memory?

We offer a service to our customers whereby we’ll write programs for our calculators, for them. When we did our first programmable, to 50% of those who wrote in we had to say I’m sorry but our programmable won’t do it. On the present machine only two of the many hundreds who’ve written in did we have to say that to, and one of those couldn’t be done on a programmable anyway. So, basically, we’re offering a machine, which, much to our surprise, already meets the overwhelming majority of people’s current needs.

How long will it be before you are using bubble memories? The problem today is that there aren’t enough suppliers for there to be competition; there’s TI and nobody else. Intel are coming out, and if the competition builds up things could happen quickly. Charge-coupled devices might come in faster.

Over the Horizon

Is there anything on the horizon that will make a significant change in our life-style, do you think the

home computer will: I think there’s not much use for the computer in the home. I think what will change our lives much more is robots. This is the thing that intrigues me — looking quite a long way ahead — the electronics is becoming available to make simple robots practical. I don’t know why, for example, we can’t already buy mowing machines that mow the lawn and learn where the trees are and where the humps are. There’s nothing in the technology preventing them appearing now. Nor is there anything in the technology preventing, say, a robotic vacuum cleaner that could learn the layout of a house and busily set about cleaning the house every day and plugging itself into the mains at night to recharge itself. And so on. The first robots will not be made by the traditional companies, they’ll be made by new companies. Then the large companies may take it up.

Are you researching this at the moment? No. It’s too early? It’s too early in the sense it’s something that evolves out of general computer work. It’s too early to put everything together today.

What will you be selling in 1984? What we’re selling now, but lots more of them.

Did you know seven years ago what you’d be selling today? Yes I did, very much so.

In 1984 we’ll be more into computers than we are now. We see ourselves as on the beginning of computers with the programmable. I’m sure that will have gone a lot further by them.

If you look at the areas that we are in — television, instruments and calculators — you’ll see that there are some common factors that could lead to some interesting product areas. I won’t say more than that.

Things like a two-inch pocket scope? Scopes are an example, yes. There are a lot of others. A miniature VDU? Yes, things just like that.

Well, thank you for a most enjoyable afternoon, Electronics Tomorrow readers may be the founders of Robotic companies after reading this interview. They could well be, it has been a pleasure talking to you.
Professional VDU Macro Computer Modularized and Adaptable to your requirements

Look at these features

* Available with basic (nibe)
* Crystal Controlled
* Expandable Number of Lines
* Telephone Interface
* Tape Programmable
* Software Available
* Ideal for Education
* Expandable Memory
* Games and Things on Tape
* Ready-Built or in Kit Form
* Video or UHF Output
* Selectable Flashing Characters
* Forward and Reverse Typing Mode
* Repeat Facility
* Tab Key
* Automatic Tape Stop/Start

COME ALONG AND PLAY MASTERMIND ON OUR DEMONSTRATION MODEL or S.A.E. FOR INFORMATION

CROFTON ELECTRONICS LIMITED
35 Grosvenor Road, Twickenham, Middlesex · 01-8911923

Electronics Tomorrow — Winter 1977
B. BAMBER ELECTRONICS

For ELECTRONIC COMPONENTS & EQUIPMENT AT BARGAIN PRICES!

See our regular ads. in ETI Magazine for latest offers!

5 STATION ROAD
LITTLEPORT
CAMBRIDGESHIRE
Tel. ELY (0353) 860185 (Tuesday to Saturday)

PRINTED CIRCUITS and HARDWARE

Comprehensive range Constructors' Hardware and accessories. Selected range of popular components. Full range of ETI printed circuit boards, normally ex-stock, same day dispatch at competitive prices. P.C. Boards to individual designs. Resist-coated epoxy glass laminate for the d.i.y. man with full processing instructions (no unusual chemicals required). Send 15p for catalogue.

RAMAR CONSTRUCTOR SERVICES
MAGNOS ROAD
STRATFORD-ON-AVON
WARWICKS. Tel. 4879

WHAT A BIND!

About half our orders for ETI Binders are repeats: we think that says something about their quality.

Send £2.50 (inclusive) to:

ETI Binders, ETI Magazine, 25-27 Oxford Street, London W1R 1RF

ADVERTISMENT INDEX

- **Ambit** .. p16
- **Bamber** .. p98
- **Baron** ... p18
- **Bywood** ... p99
- **Chromatronics** p24
- **Crimson Elektrik** p67
- **Crofton** ... p97 & 98
- **E.D.A.** ... p62
- **Electrovalue** p6
- **Expo Drillsp** p18
- **Greenbank** pp34 & 67
- **Henry’s Radio** p7
- **I.L.P.** .. p41
- **Kramer** .. pp6 & 75
- **Lynx** ... p6
- **Maplin** .. p100
- **Marshalls** p86
- **Mega** ... p20
- **Metac** .. p12
- **Minikits** .. p32
- **Mountaineer** p34
- **Nicholls** .. p75
- **Ramar** ... p98
- **R.F. Equipment** p87
- **Stuart-Bruges** p98
- **Tamtronik** p98
- **Telecraft** ... p91
- **Tempus** .. p22
- **VideoCraft** pp6, 40 & 66
- **Watford** .. p2

ETI PC.B.s

Available for all ETI projects from day one of ETI’s new guide. What a Binder!。“About half our orders for ETI Binders are repeats: we think that says something about their quality.”

Send £2.50 (inclusive) to:

ETI Binders, ETI Magazine, 25-27 Oxford Street, London W1R 1RF
I'm the new (and larger) SC/MPU 2. Play with my PROM, conduct my buses, use my extra RAM.

Only with 2F kit.

We also stock:
- E.T.I. System 68 MPU kits, VDU kits, Case kits
- Comprehensive selection of Hardware & Software support
- Digital clock chips, kits, displays

Bywood Electronics
68 Ebberns Road
Hemel Hempstead, HP3 9QRP
Tel. 0442-62757

SC/MPU 2

MHL DISPLAY KITS

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPTION</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MH1707/4 3 digit 0.3"</td>
<td>7.60</td>
<td>3.00</td>
</tr>
<tr>
<td>MH1707/6 3 digit 0.3"</td>
<td>11.60</td>
<td>3.00</td>
</tr>
<tr>
<td>MH1727/4 0.5"</td>
<td>9.70</td>
<td>3.00</td>
</tr>
<tr>
<td>MH1727/6 0.5"</td>
<td>13.80</td>
<td>3.00</td>
</tr>
<tr>
<td>MH1747/4 0.6"</td>
<td>11.40</td>
<td>3.00</td>
</tr>
<tr>
<td>MH1747/6 0.6"</td>
<td>17.30</td>
<td>3.00</td>
</tr>
</tbody>
</table>

Any one or two of the above MHL display kits will interface directly with any of the MHL clock kits

CLOCK MODULES

LTS01 Alarm Clock Module, similar to MA1002

PAYMENT TERMS
Cash with order. Access, Barclaycard (bumply quote your number). Credit facilities to accredited account holders. 15% handling charge on goods ordered and paid for then cancelled by customer.
All prices exclude 8% VAT

PRODUCTS FROM:
- Fairchild, General Instruments
- Liton, Litronix, Mostek
- Motorola, National Semi.
- S.M.C., Vero.

CLOCK CHIPS & KITS

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPTION</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MML309 7 seg + BCD RESET ZERO</td>
<td>8.52</td>
<td>1.50</td>
</tr>
<tr>
<td>MML311 7 seg + BCD</td>
<td>8.63</td>
<td>1.50</td>
</tr>
<tr>
<td>MML312 7 seg + BCD 4 DIGIT ONLY</td>
<td>6.75</td>
<td>1.50</td>
</tr>
<tr>
<td>MML313 7 seg + BCD</td>
<td>7.60</td>
<td>1.50</td>
</tr>
<tr>
<td>MML314 7 seg + BASIC CLOCK</td>
<td>6.60</td>
<td>1.50</td>
</tr>
<tr>
<td>MML315 7 seg + BCD RESET ZERO</td>
<td>9.60</td>
<td>1.50</td>
</tr>
<tr>
<td>MML316 Non-mxp ALARM</td>
<td>9.60</td>
<td>1.50</td>
</tr>
<tr>
<td>MML318 7 seg + BCD External digit select</td>
<td>12.00</td>
<td>1.50</td>
</tr>
<tr>
<td>MML319 74LS00, 50 Hz</td>
<td>9.00</td>
<td>1.50</td>
</tr>
<tr>
<td>MML376 CAR Clock. Crystal control. LED</td>
<td>9.60</td>
<td>1.50</td>
</tr>
<tr>
<td>MML379 CAR Clock. Crystal control. Gas discharger</td>
<td>9.60</td>
<td>1.50</td>
</tr>
<tr>
<td>MK5026 ALARM SNOOZE</td>
<td>9.00</td>
<td>1.75</td>
</tr>
<tr>
<td>MK5038 UP/DOWN Counter</td>
<td>12.60</td>
<td>1.75</td>
</tr>
<tr>
<td>MK5039 UP/DOWN Counter - HHMMSS</td>
<td>12.60</td>
<td>1.75</td>
</tr>
<tr>
<td>MK5039C UP/DOWN Counter - MMSS.99</td>
<td>12.60</td>
<td>1.75</td>
</tr>
<tr>
<td>FCM7001 ALARM. SNZ CALENDAR 7 seg</td>
<td>9.00</td>
<td>1.75</td>
</tr>
<tr>
<td>FCM7002 ALARM. SNZ CALENDAR. BCD</td>
<td>9.00</td>
<td>1.75</td>
</tr>
<tr>
<td>CT7003 ALARM. SNZ CALENDAR Gas discharger</td>
<td>9.00</td>
<td>1.75</td>
</tr>
<tr>
<td>FCM7004 ALARM. SNZ CALENDAR 7 seg</td>
<td>12.50</td>
<td>1.75</td>
</tr>
<tr>
<td>AYS 14027 7 seg 4 digit</td>
<td>4.76</td>
<td>1.75</td>
</tr>
<tr>
<td>AYS 14027 7 seg ON and OFF ALARM</td>
<td>5.25</td>
<td>1.75</td>
</tr>
</tbody>
</table>

All above clock kits include clock PC board, clock chip, socket and CA3081 driver IC. MH15376 also includes crystal and trimmers. When ordering kit please use prefix MHI e.g. MHI 5309.

DISPLAYS

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPTION</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DL707. 704 701 0 3"</td>
<td>1.70</td>
<td>1.00</td>
</tr>
<tr>
<td>DL727. 726 721 0 5"</td>
<td>2.82</td>
<td>1.00</td>
</tr>
<tr>
<td>DL747. 750 746 6"</td>
<td>2.82</td>
<td>1.00</td>
</tr>
</tbody>
</table>

BITS & BYTES

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPTION</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>74C00 Quad NAND</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>74C04 Hex Inverter</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>74C10 Quad NAND</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>74C42 BCD Decoder</td>
<td>1.10</td>
<td>0.00</td>
</tr>
<tr>
<td>74C157 Quad Select</td>
<td>1.25</td>
<td>0.00</td>
</tr>
<tr>
<td>74C163 4 bit counter</td>
<td>1.25</td>
<td>0.00</td>
</tr>
<tr>
<td>74C164 PSDO register</td>
<td>1.25</td>
<td>0.00</td>
</tr>
<tr>
<td>74C165 SIPO register</td>
<td>1.25</td>
<td>0.00</td>
</tr>
<tr>
<td>74C173 3S Quad latch</td>
<td>1.25</td>
<td>0.00</td>
</tr>
<tr>
<td>74S139 1000 Z-2-4 Dec</td>
<td>1.25</td>
<td>0.00</td>
</tr>
<tr>
<td>DM8095 3S Hex buffer</td>
<td>1.25</td>
<td>0.00</td>
</tr>
<tr>
<td>DM8096 Inv 8095</td>
<td>1.25</td>
<td>0.00</td>
</tr>
<tr>
<td>DM81LS 85 3S 8 bit buffer</td>
<td>1.25</td>
<td>0.00</td>
</tr>
<tr>
<td>DM81S87 3S 4 4 bit buffer</td>
<td>1.25</td>
<td>0.00</td>
</tr>
<tr>
<td>DM81LS Inv 87</td>
<td>1.25</td>
<td>0.00</td>
</tr>
</tbody>
</table>

OLDE CLOCKS

In kit form or built these clocks are based on designs hundreds of years old. Wood, stone and iron are used to reproduce authentic ‘olde world’ wall clocks in full detail. The kits contain all you need (including glue, screws, etc.) and very comprehensive instructions. Stones for weights are excluded.

For coloured brochure please send 15p stamps.

PAYMENT TERMS
Cash with order. Access, Barclaycard (bumply quote your number). Credit facilities to accredited account holders. 15% handling charge on goods ordered and paid for then cancelled by customer.
All prices exclude 8% VAT

PAYMENT TERMS
Cash with order. Access, Barclaycard (bumply quote your number). Credit facilities to accredited account holders. 15% handling charge on goods ordered and paid for then cancelled by customer.
All prices exclude 8% VAT
A superb stereo audio mixer. It can be equipped with up to 16 input modules of your choice and its performance matches that of the very best tape-recorders and hi-fi equipment. It meets the requirements of professional recording studios, FM radio stations, concert halls and theatres. Full construction details in our catalogue. A component schedule is available on request.

An international 4500 Synthesiser. A very comprehensive unit. Over 400 sold. We stock all the parts costing less than £500 including fully punched and printed metalwork and a smart teak cabinet. Far less than half what you'd pay for a ready made synthesiser of equal quality. Specification on request. Full construction details in our construction book £1.50.

A completely self-contained pedal unit. 13-note, 2-octave range. 4 organ stops. It can be added to any organ. A really unusual extra is the bass guitar stop which uses four envelope shapers to give a real bass guitar sound. A must for the solo guitarist. Full construction details in our catalogue — post the coupon below now!

WHO SAYS THE MAPLIN CATALOGUE'S WORTH HAVING??

In our 'musts for readers-to-collect list' — P.E.
"contains...just about everything the DIY electronics enthusiast requires..." — P.W.
"probably the most comprehensive catalogue we have ever come across." — E.E.
"has been carefully prepared and is very well presented." — R.E.C.
"make the job of ordering components an easy, accurate and enjoyable pastime." — P.W.
"only one word describes the publication — superb!" — E.T.
"over 60,000 copies sold...don't miss out! send 60p now.

MAPLIN ELECTRONIC SUPPLIES
P.O. Box 3, Rayleigh, Essex SS6 8LR
Telephone: Southend (0702) 715155
Shop: 284 London Road
Westcliff-on-Sea, Essex
(Closed on Monday)
Telephone: Southend (0702) 715157

POST THIS COUPON
NOW FOR YOUR COPY OF OUR CATALOGUE
PRICE 60p

Please rush me a copy of your 216 page catalogue. I enclose 60p, but understand that if I am not completely satisfied I may return the catalogue to you within 14 days and have my 60p refunded immediately.

NAME
ADDRESS

EA12