

CHROMATHEQUE 5000

 5 CHANNEL LIGHTING EFFECTS SYSTEMAll kits also avalable as separate packs !e g All kits also avalable as separate packs ie 9 Prices in FREE CATALDGUE

COMPLETE KIT

 ONLY$£ 49.50$ + VAT!

This versatile system featured as a constructional article in ELECTRONICS TODAY INTERNATIONAL has 5 frequency channels with individual level controls on each channel Control of the lights is comprehensive to say the least You can run the untr as a straightforward sound-to-light or hiave it strobe all the lights at a speed dependent upon music level or front panel control or use the internal digital circuitry which produces some superb randoni and sequencing effects Each channel handles up to 500 W and as the kit is a single bodrd design wiring is minimal and consituction very straightforward
Kit includes fully finished metalwork fibreglass PCB contols wire etc - Complete right down to the last nut and bolt

MPA 200100 WATT (rms into 8Ω) MIXER / AMPLIFIER

COMPLETE KIT
ONLY
$£ 49.90$ + VAT!

Featured as a construct onal article in ETi the MPA 200 is an exceptionally low priced - but professionally finished - general purpose rugged high power amplifier 'it features adaptabie mput mixer which accepts a wider range of souices such as disc, microphone gutiar eir There are wide range tone controls and a master volume control Mechanically he MPA 200 simplicity itself with minimal wiring needed making construction very straightorward

The kit includes fully finished metalwork fibre glass PCBs controls wire etc - complete down to the last nut and bolt
Parts to buld power amp module (mc. PCB Custom designed toroidal transformer with Parts for power supply only res caps s / c etc) $\mathbf{£ 1 0 . 6 0}+$ VAT. mountıng clamp $\mathbf{£ 1 0 . 5 0}+$ VAT. (caps, rects., fuses. F. holders) $£ \mathbf{3 . 4 0}+V A T$

TRANSCENDENT 2000 SINGLE BOARD SYNTHESIZER

LIVE PERFORMANCE SYNTHESIZER DESIGNED BY CONSULTANT TIM ORR (FORMERLY SYNTHESIZER DESIGNER FOR EMS LIMITED) AND FEATURED AS A CONSTRUCTIONAL ARTICLE IN ELECTRONICS TODAY INTERNATIONAL.
The TRANSCENDENT 2000 is a 3 octave instrument transposable 2 octaves up or down giving on effective 7 octave range There is portamento pitch bending a VCO with shape and pith modulation, a VCF with both low and high pass outputs and a separate dynamic sweep control a noise generator and an ADSR envelope shaper There is also a slow oscillator a new pitch detector $A D S R$ repeat, sample and hold and special circuitry with precision components to ensure tuning stability amongst its many feature
The knt int ludes tully finished metal work fully assembled sillid teak cabinet fillier
sweep pedal protessionial quality components fall resistors either 2% metal oxide or \%ep netal trmotessiond ald quality components iall resistors enther 2%, metal oxide or more parts hetore pluqging mand making grear music' Vou need bux alibsolutily ro
 mode with connestor plugs and contruc hion is so simple it an be bult easily in a ted

COMPLETE KIT ONLY
$£ 172.00$ + VAT!

Comprehensive handbook suppled with all complete kitst This fully describes construction and tells you how to set up you synthesizer with nothing more elaborate than a mulu meter and a par of ears!

ORDERING INFORMATION AND MORE KITS ON PAGE 8

Plant pampers p. 67

FEATURES

NEWS DIGEST
AUDIO MAGNETIC AMPLIFIERS PARIS IN SPRINGTIME 40 CMOS CIRCUITS AUDIOPHILE

LIFE OUT THERE DESIGNERS NOTEBOOK MICROFILE TECH TIPS

9 All that's worth knowing.
26 Have a field day
44 ETI goes Continental
53 Here beginneth the lesson
62 Ron Harris makes a show of himself.
72 Is there any ETI beyond ETI.
87 Ray Marston delves into his jottings again
95 Seen any good computer shows lately?
99 Son of readers circuits.

PROJECTS

TELETEXT
 POLYPHONIC KEYBOARD MOTOR SPEED CONTROLLER SOIL MOISTURE INDICATOR
 TUNER AMP 2
 BATTERY INDICATOR

20 A quick newsflash on your telly
36 Multi-note organs to you
47 Gear down your movements.
67 Wet or dry ETI gives you it straight
79 The final part of System 8000.
92 State of charge flashed for your convenience.

INFORMATION

SUBSCRIPTIONS	$\mathbf{1 5}$	Getting it regularly?
BINDERS	$\mathbf{1 7}$	Put a hard cover on it.
HOBBY ELECTRONICS	$\mathbf{1 9}$	Next month in HE
ETI PRINTS	$\mathbf{3 2}$	Fancy a rubdown PCB?
SPECIALS	$\mathbf{3 5}$	Top Projects and others for
MARKET PLACE	$\mathbf{6 4}$	Bargains galore.
ETI AUGUST	$\mathbf{7 1}$	Next month in ETI for you.
BOOK SERVICE	$\mathbf{7 8}$	Read any good books lately?

Electronics Today International is normally published on the first Friday of the month prior to the cover date
COPYRIGHT: All material is subject to world wide Copyright protection. All reasonable care is taken in the preparation of the magazine to ensure accuracy but ETI cannot be held responsible for it legally. Where errors do occur a correction will be published as soon as possible afterwards.

Ouality audio modules and accessories for

Professionals and Enthusiasts from BI-PAK

GIML
ELECTRONICS
(A DIVISION OF GOTHIC ELECTRONIC COMPONENTS LTD)
8 Hampton Street
Birmingham B19 3JR 021-233-2400 ONLY

ALL PRICES IN PENCE EACH UNLESS OTHERWISE STATED

COMPLETE KIT ONLY £196.90 + VAT READ THE REVIEW IN SOUND INTERNATIONAL DEC.' 78

T20 + 20 20W STEREO AMPLIFIER £ 33.10 + VAT
This kit, based upon a design published in Practical Wireless. uses a single printed circuit board and offers at very low cost. ease of construction and all the normal facilities found on

POWERTRAN SFMT TUNER $£ 35.90$ + VAT

This is a simple low cost design which can be constructed easily without special alignment equipment but which still gives a first-class output suitable for feeding any of our very popular amplifiers or any other high quality audio equipment. A phase-locked-loop is used for stereo selection (adjustable by controls on the front panel). This unit matches well with the T20 +20 and $\mathrm{T} 30+30$ amplifiers

WWII TUNER £47.70 + VAT

This cost reduced model of our highly successful Wireless World FM Tuner kit was designed to complement the T20 +20 and T30 +30 amplifiers and the cabinet size, front panel format and electrical characteristics make this tuner compatible with either. Facilities included are pre-aligned front-end module, switchable afc, adjustable switchable muting. LED funing indication and both continuous and push-button channel selection (adjustabie the front panel)

FOR ELECTRONIC KITS OF DISTINCTION $200+200$ watt AMPIIIIER

As featured in Electronics Today International 400W rms continuous - 800W peak! 0.03% THD at FULL power!

PLUS all the following features too!

* Each channel totally independent with its own stabilised power supply driven by custom designed TOROIDAL ransformers!
* Inherent reliability - monster heat sinks for cool running at the hottest venues - electronic open and short circuit protection!
* Ultra low feedback (an incredible low 14 dB overall!), super high slewing rate ($20 \mathrm{~V} / \mu \mathrm{s}$). 200 W rms continuous to 4 ohm from EACH channel, input sensitivity 0.775 V (OdB)
* Professional quality components, sturdy $19^{\prime \prime}$ rack mounting chassis complete with sleeve and feet for free gtanding work too.
- Easy to build - plenty of working space with ready access to all components, minimal wiring extensive instruction suitable for both experience constructors and newcomers to electronics.
* Value for money - quality and performance comparable with ready-built amplifiers costing over E6001

DE LUXE EASY TO BUILD LINSLEY HOOD 75W STEREO AMPLIFIER £99.30 + VAT

This easy to build version of our world-wide acclaimed 75 W amplifier kit based upon circuit boards interconnected with gold plated contacts resulting in minimal wiring and construction features include monitoring whilst distortion is less than 0.01%.

WIRELESS WORLD FM TUNER $£ 70.20$ + VAT

A pre-aligned front-end module makes this Wireless World published desige very simple to Anstruct and adiust without special instruments. Features include an excellent a.m. rejection, push-button station selection as well as infinitely variaole tuning and a phase locked loop stereo decoder incorporating active filters for "birdy" suppression.

LINSLEY-HOOD CASSETTE DECK £79.60 + VAT
This design, published in Wireless World, although straightforward and relatively low cost provides a very high standard of performance. There are separate record and replay amplifiers mechanism is the Goldring-Lenco CRV with electronic speed control.

COMPLETE KITS: Our complete kits really are complete. All of the projects shown on this page-are supplied with fully finished metalwork, ready assembled high quality teak veneer cabinet. cables, nuts, boits, etc, and full instructions - in fact everything!

All of the kits shown on this page are available as separate packs (except the Powertran SFMT Tuner) for those customers who wish to spread their purchase or perhaps make their own cabinets or metalwork. Prices are given in our FREE CATALOGUE

PRICE STABILITY. Order with confidence Irrespective of any price changes. We will honour all prices in this advertisement until August 31st, 1979, If the July 1979 issue is mentioned with your order. Errors and VAT rate changes excluded
EXPORT ORDERS: NO VAT. Postage charged at actual cost plus 50p handling and documentation.
U.K. ORDERS. Subject to $121 / 2 \%$ surcharge for VAT'(i.e. add $1 / 8$ to the price). No charge is made for carriage 'or at current rate if changed
SECURICOR DELIVERY: For this optional service (U.K. mainland only) add SALES COUNTER: If you pro
SALEs Counter (at rear of factory). Open $9 \mathrm{a} . \mathrm{m} .-4.30 \mathrm{p} . \mathrm{m}$. Monday-Thursday
our catalogue is FREE! write or phone NOW!

POWERTRAN ELECTRONICS

PORTWAY INDUSTRIAL ESTATE
ANDOVER, HANTS SP10 3NM

ANDOVER
(STD 0264) 64455

news digest.

CARRY-PACKS FROM JVC

A new range of equipment from JVC brings their VHS domestic video system into the portable market.
Leading the range is the HR4 100 colour portable video vassette recorder, with a price tage of $£ 799.92$ including VAT' it is fully compatible with all VHS recorders and weighs only 9.3 kg , complete with cassette, battery pack and RF converter.
The new GC4 100 colour video camera is a self-contained unit with the camera control unit built into the camera head. Two-tube design uses a new colour strife filter to improve colour reproduction, with an aperture correction circuit to give excellent resolution. Recording is possible with illumination as low as 100 lux. Retail price will be $£ 934.20$ p.
JVC have also launched the TV41 tuner/timer, which, when connected to the HR4100,
provides all the usual record/ playback facilities of a decktype recorder, the HR 3330, is a development of the previous successful model, but also includes extra refinements such as eight day timer, remotecontrol pause switch and audio dubbing facilities.

For further information on this new video range, contact JVC (UK) Ltd., Eldonwall Trading Estate, Staples Corner, 6-8 Priestley Way, London NW2 7AF.
to give

OPTO FETS

A new trio of opto-coupled FETs, available from JermynMogul Distribution, feature a minimum isolation resistance of 100 gigohms between input and output.

These new GE opto-couplers consist of a gallium arsenide infra-red emitting diode coupled to a symmetrical bilateral silicon photo detector. The detector is electrically isolated from the input and performs like an ideal isolated FET designed for distortion - free control of low level AC and DC analogue signals. They do this by varying in resistance from between 100
ohms to 300 megohms, the change in resistance being controlled by the amount of current flowing through the infra-red emitting diode.
Applications include isolated variable attenuators, 70 db automatic gain control, remote band switching, sample and hold circuits, optically isolated multiflexers and reed relay replacement. The H11F family come in the popular six pin DIL package.
For products and application sheets contact Jermyn-Mogul Distribution of Vestry Estate, Sevenoaks, Kent.
"HELLO, HELLO-ABOUT THIS NEW
GARDENING COMPUTER"

MADEN

news digest.......

BARGAIN

BOXES

A new service from OK Machine \& Tool can save up to 65% on the cost of cases for some commercially produced items.

If you need more than 1000 units, OK can incorporate you special requirements into their latest range of Pac Tec moulded enclosures, available in over 25 sizes.

As an example of the success of their new cost-cutting service, OK have been able to produce 2,500 alarm unit housings for $£ 3.92$ each, compared to $£ 5.52$ for sheet metal units. Taking the total assembly time into total assembly time into
account, the saving rose to 65%. account, the saving rose to 65%.
Customised
front and rear panels can be supplied.
For further information, contact OK Machine \& Tool (UK) Ltd, 48a The Avenue, Southampton, Hants SO1 2SY'.

LOW KEY

A new range of enclosures designed for housing a variety of keyboards has recently been introduced by Boss Industrial Mouldings.

Bimconsoles are all-aluminium cases with a textured black base which contrasts with either the semi-gloss sand or charcoal grey top panels.

The top panels slope at about 20 to provide a relaxed keyboard operating position. Vibration is reduced to a minimum by the use of a gasket assembly between top and bottom panels.

Bimconsoles are available in three sizes and are suitable for both prototype and OEM type applications. Further details

from Boss Industrial Mouldings Ltd, Higgs Industrial Estate, 2 Herne Hill Road, London SE24 0AU.

ELECTRONIC TACHO

Orbit Controls are now producing a four decade electronic tachometer for measuring speed, rate, flowrate and frequency.
The 74A 430 has a four decade, solid state, digital readout and a pre-wired timebase, controlled by a high precision 1 MHz crystal oscillator.
Flexibility of construction allows pre-wiring to any interval from 1 mS to 10 S . The unit features high noise immunity and freedom from false triggering counts.
The frequency range extends from 0.5 Hz to 10 kHz with an input sensitivity of 100 mV (adjustable). Input, positive puise or sinewave, is fully protected to 240 V rms. Power may be from $100-110 \mathrm{~V}$ or 210 $260 \mathrm{~V} 50 / 60 \mathrm{~Hz}$, or from 12 V DC.

Further details from Orbit Controls Ltd, Lansdown Industrial Estate, Gloucester Road, Cheltenham, Gloucestershire GL51 8PL

TEST CLIPPY

New IC test clips from Lektrokit offer a simple means of accessing any IC pin or lead.
The new aid clips over the IC bringing its individual pin connections out to a set of contacts at the opposite end of the clip. There are test clips available to match 8,14 and 16 pin DIL packages.
The gold-plated, phospho bronze spring contacts have been designed to achieve a wiping/cleaning action, making for high reliability.
The TC-14 which, as its name suggests, clips over a 14 pin DIP, costs $£ 2.95$. Further details from Lektrokit Ltd., Sutton Industrial Park, London Road, Earley, Reading, Berkshire RG6 1AZ,

COOLING OFF

Got any hot-spots in your cabinets? You can get the air circulating round your equipment with the Vero Electronics Fan Tray (AB 087).
Two versions (1U and 2U) are available for either 115 V or $230 \mathrm{~V}(50 / 60 \mathrm{~Hz})$ input. Each is supplied with four 119 mm square axial fans, but
additional fans can be fitted as required.
The 2 U version has a polyurethane foam filter covering the air intake. If your living room or office isn't a smokeless zone, never fear, the filter is cleanable. Both versions operate at low noise levels.
If you need cooling off, contact Vero Electronics Ltd, Industrial Estate, Chandler's Ford, Hampshire SO5 3ZR.

Measure Resistance to 0.01Ω At a Price that has no resistance at all

Newelenco sprecision Digital Multimeter M1200B USA

ONLY £55
 $(+£ 3 p \& p+$ VAT $£ 4.64=£ 62.64)$

*FULLY GUARANTEED FOR 2 YEARS
*METAL CASE

THE ULTIMATE IN PERFORMANCE - MEASURES RESISTANCE TO 0.01 OHMS,VOLTAGE TO 100 MICROVOLTS, CURRENT TO 1 MICROAMPS AT LOWEST EVER PRICE!

FEATURES

- $31 / 2$ digits $0.56^{\prime \prime}$ high LED for easy reading
- $100 \mu \mathrm{~V}, 1 \mu \mathrm{~A}, 0.01 \Omega$ resolution
- High input impedance 10 Megohm
- High accuracy achieved with precision resistors, not unstable trimpots
- Input overload protected to 1000 V (except 200 mV scale to 600 V)
- Auto zeroing, autopolarity
- Mains (with adaptors not supplied) or battery operation-built-in charging circuitry for NiCads
- Overrange indication
- Hi Low power ohms, Lo for resistors in circuit, Hi for diodes

	SPECIFICATIONS:
DC Volts	Range $200 \mathrm{mV}, 2 \mathrm{~V}, 20 \mathrm{~V}, 200 \mathrm{~V}, 1000 \mathrm{~V}$
	Accuracy $1 \% \pm 1$ digit, Resolution .1 mV
	Overload protection 1,000 volts max
AC Volts	Accuracy $1.5 \% \pm 2$ digits, Resolution .1 mV
	Overload protection 1000 V max, 200 mV scale 600 V
DC Current	Range $2 \mathrm{~mA}, 20 \mathrm{~mA}, 200 \mathrm{~mA}$, 2 amp .
	Accuracy 1\% ± 1 digit, Resolution 1 Microamp
	Overload protection -- 2 amp fuse and diodes
AC Current	Range $2 \mathrm{~mA}, 20 \mathrm{~mA}, 200 \mathrm{~mA}, 2 \mathrm{mp}$
	Accuracy 1.5\% ± 2 digits, Resolution 1 Microamp
	Overload protection - 2 amp fuse and diodes
Resistance	Range 20, 200, 2K, 200K, 2 Meg .20 Meg .
	Accuracy $1 \% \pm 1$ digit, Resolution .01 ohms
Environmental	Temp coefficient 0° to $30^{\circ} \mathrm{C} \pm .025 \%{ }^{\circ} \mathrm{C}$
	Operating Temp 0° to $50^{\circ} \mathrm{C}$ Storage - 20° to $60^{\circ} \mathrm{C}$
General	Mains adaptor: 6-9 Volts @ 200mA (not supplied)
	4 C size batteries (not supplied)
	Size $81 / 4 \times 5 \frac{1}{4} \times 21 / 4$ Weight $21 / 2 \mathrm{lbs}$.

At $£ 55, \mathrm{M} 1200 \mathrm{~B}$ is the best buy among DMM's currently available. Its 0.01 ohms resolution allows you to detect shorted windings in coils, transformers or motors. It is also useful in checking low contact resistance in switches, relays or connectors. Poor solder connections can also be spotted. The low power ohms function permits accurate measurements of in circuit resistance without forward biasing semiconductor junctions.
You have been waiting a long time for a digital multimeter with all these features at a price like this. Now its yours.

Also available from retail shops:
Audio Electronics,301 Edgware Rd,London W2 Z \& I Aero Services, 85 Tottenham Court Road London W. 1
*AGENTS WANTED

ELENCD : PRECISION Sole UK Distributor

ME
Maclin-Zand Electronics Ltd
38 Mount Pleasant, London WC1XOAP
Tel.01-837 1165 or Hemel Hempstead
(0442) 832966

Telex. 8953684 MACLIN G
(C) N Zand

ELECTRONICS TODAY INTERNATIONAL - JULY 1979

To: Maclin-Zand Electronics Ltd 1st Floor, Unit 10, East Block 38 Mount Pleasant, London WC1X OAP

Please send me \qquad DMM M1200B
@ $£ 62.64$ inc. $p \& p+$ VAT (overseas $£ 60$).
I enclose cheque/P.O./Bank Draft for $£$ \qquad

WATFORD ELECTRONICS

ILP MODULES 15-240 WATTS

We are now stockists for these world famous fuily guaranteed (2 years guarantee on all modules) Pre amps. Amplifiers \& Power Supplies.
HY5 Preamplifier. Input, magnetic pickup 3 mV , ceramic 30 mV . Output: Mains 500 mV HY30 Amplifier Kit is Watts into 80 extremely easy to construct. Output 15 W RMS. Distortion 0.1% at 15 W Freq. $10 \mathrm{~Hz}-16 \mathrm{KHz}$. Supply $\pm 18 \mathrm{~V}$

OHz-16KHz. Supply - 18 Price $\mathrm{E6.27}$
HY50 Hi-Fi Amplifier Module. 25 Watts 80 . In put Sensitivity 500 mV . Output 25 W RMS. Distortion 0.04% at 25 W . Freq. $10 \mathrm{~Hz}-45 \mathrm{KHz}$. Supply Price: $\mathbf{£ 8 . 1 8}$ HY120 Amplifier Module - 60 Watts 80 . Input sens. 500 mV . Output 60 W RMS. Distortion 0.04%. Freq. $10 \mathrm{~Hz} \cdot 45 \mathrm{KHz}$. Power Supply $\pm 35 \mathrm{~V}$
HY200 Hi-Fi/ Disco Amplifier Module - 120 Watts 80 . Input sens. 500 mV 120W RMS Freq. $10 \mathrm{HZ}-45 \mathrm{KHz}$. Power Supply $\pm 45 \mathrm{~V}$. Size $114 \times 100 \times 85 \mathrm{~mm}$ Freq. 10HZ-45KHz. Powar Supply = Price: £27.99* HY400 (Big Daddy) Amplifier Module - 240 Watts 4Ω. Ideal for High Power Disco
 Price: $£ 38.60$ *
POWER SUPPLIES
PSU36 - Drives $2 \times$ HY30s E8.44 PSU50 - Drives $2 \times$ HY50se. 8.18

JACK PLUES	
Screened chrome	
$2.5 \mathrm{~mm}{ }^{13 \mathrm{p}}$	
3.5 mm 18p	18 p
MONO 25p	25p
STEREO 32p	32p
DIN	
2 PIN Loudspeaker 3. 4. 5 Audio	
CO-AXIAL (TV)	
Phono assorted colours Metal screened	
$\begin{aligned} & \text { BANANA } 4 \mathrm{~mm} \\ & 2 \mathrm{~mm} \\ & 1 \mathrm{~mm} \end{aligned}$	
WANDER 3 mm DC Type AC $2 \cdot$ pin American	
DiM901	
$31 / 2$ DIGIT LCD Multimeter with Capacitance Meter (ETI Aug. 78) Complete Kit f54.50*only ($\rho \& \mathrm{p} 80 \mathrm{p}$)	
CRYSTALS*	
100 KHz 385	
1 MHI 323 1.0008 M 305	
$3.2768 \mathrm{M} \quad 323$	
4.032 MHz	Hz^{323}
4.433619 M 135	
$5.09 \mathrm{MHz} \quad 365$	
8.08333 M 276	
$\begin{array}{ll}10.0 \mathrm{MHz} & 323 \\ 10.7 \mathrm{MHz} & 323\end{array}$	
$18.432 \mathrm{M} \quad 323$	
20 OMHz	323
$27.648 \mathrm{M} \quad 323$	
48.0 MHz	323

ETI Projects: Partis available Parta avail
for: Click for: Click
Eliminator Ambush, GuAmbushoct Unit Send SAE plus 5 p for list. DC Type
AC 2 .pin

$$
\frac{450 p \star \text { pel }}{393}-\frac{230}{}
$$

PSU90 one HY200
PSU $1802 \times$ HY200 or one HY400

\qquad

DPDT contite off 7\%p	$\begin{array}{l}\text { Non Locking }\end{array}$	
DPDT Brased	115p	$\begin{array}{l}\text { Posh to Make } \\ \text { Push }\end{array}$

ROTARY: Make your own mulliwey Switch 25
ROTARY: Make Your Own multiwey Switch
Adjustable Stop Shafing Assombly. Actom modate up to 6 Whaters
Mains Switch DPST to fit
Mans Switch DPST to fit
Break Betore Make Wafers. 1 pole $/ 12$ way
$2 \rho / 6$ wry. $3 \rho / 4$ way $4 p / 3$ way. $6 p / 2$ way
47 p
Spaceprand Screen
ROTARY: (AAljurntere 3top)
1 pole $/ 2$ to 12 way $2 \mathrm{p} / 2106$ way, 3
poiet $/ 204$ way. 4 pote $/ 2103$ way 41 p
hotary. Mains 250 a an

LATEST CASIO MINIS

Casio have managed to reduce their successful LC-78G calculator in three ways.
First of all - price. The RRP of the LC-78G is down by $£ 3.00$ to £16.95.
Second is the new Casio LC-7 which has the same display and functions except that the fully independent memory is replaced by a simple automatic accumulating memory and a square root function. The LC-78S has a RRP of only $£ 13.95$.

Thirdly, thickness has been cut down from four to two millimetres. Casio's new Mini Card LC-79 remains credit card size, but in upright format. It keeps eight digits capacity and LCD, four functions and independent memory plus perfect
percent and function indicator. Also featured is a responsive, 'feather touch' keyboard, so light that it can be operated inside its protective wallet. A battery-conserving circuit automatically switches off nine minutes after the last key depression. The Casio LC-79 will retail at $£ 19.95$ (or less, if you're lucky).

If you prefer something a bit beefier, try the LC-841, another new one from Casio. With the same technical features as Mini Cards (including independent memory), the LC-841 is 62 x 110 mm , but still only 3.9 mm thick, with digits 6 mm high, and will retail at about $£ 15.95$.

For enquiries, get in touch with Casio Electronics Co Ltd, 28 Scrutton Street, London EC2A 4TY.

MILITARY FLASHER

Need a tough twinkler? Oxley are now producing a solid state indicator lamp, type PS/LH/8, in a military style rugged mounting.
The mounting incorporates the latest high brightness, high reliability LEDs. The lamp is fitted with a sealed glass lens and black shroud to optimise the visual effect and afford emitter protection.

Standard colours are available, red, yellow and green, and light output is calibrated to photometric standards to ensure consistent performance. The aluminium alloy body is compatible with standard chassis and provides electromagnetic shielding for military applications. Further details from Oxley Developments Co Ltd, Ulverston, Cumbria LA12 9Qg.

 ${ }^{50}$

MEAT SIN
For TO220
age Regs.
Transistors
For TO5

ZENERS
$2.7, ~=33 V$
400mW 9p
$15 p$

T.V. GAMES

PROGRAMMABLE - $£ 31.86$ inc. VAT COLOUR CARTRIDGE TV GAME
This TV Game can be compared to an audio cassilite deck and is programmed to play a mullitude of ditter ent games in COLOUR, using

 incluat the whil the ceasale. Other cartridges are curreatiy malath to mase to tiay such ganas as Grand Prix Motor hacime Supr wipowt and Stun Rider. Further cartridgas ars it bo

Homutactured by waddingions Videomaster ond guarmteed for 1 yaser.

EOLOUSCORE II 6 GAME - COLOURSCORE II - £ 14.58 inc. V

10 GAME - COLOUR SPORTSWORLD £24.30 inc. VAT

 cerim former. Mons.

CHESS COMPUTERS

THE WADDINGTONS VIDEOMASTER STAR CHESS - $£ 59.50$ inc. VAT PLAY CHESS AGAINST YOUR PARTNER using your own TV to display the board and pieces Suar Chess is a now ohsorting TV pames tor two players. which will inforista and excit! an apas. The unt plaps into the sorial socket of your TV set and displays the board and

 clastic pane of chess. For ine axpmencos chass play.
 but ascim piece can also axchungor rockor int war inse.

CHESS CHAMPION 6 - £89.50 inc. VAT PLAY CHESS AGAINST THE COMPUTER 6 LEVELS
Crass Chamoion is a nemy developed erecironic microcomputer. manulaciur od by WADOUMGTOWS VOEOMASTER. The syylish, compact, partable consola can be sel to diey al six different lavels of ability irom baginner to expert incluaing "mata in two" and "Chess by mail". The computier will anly make responses which oley internailonal chess rulas. Calling. an passant and prompating a pawn art all included as part of the computer's progamem. A is posidies to enter any givan probiem fram magazine or newspaper or alidr nalively griabilsh

"This chess computer is a new and interesting partner whth remarhable qame variations."
CHESS CHALLENGER $7-£ 92.50$ inc. VAT Play chass againat the compular at 7 difterent levels. [Similar to Chess
 wood or white and against itself and comes complote with a mesins adaptar and 12 monlits guarante.
CHESS CHALLENGER $10-£ 154.50$ inc. VAT
NEW IMPROVED PROGRAMME - MK 2 APAIL 1979
Pisy chass againal the computer at 10 ditieranil levets. Price includes uni
with solid wanut case, tiele res simulated leathar 8 brushed gold loil playing
wilh a mains admplor and 12 momhs guaranise. \quad BORIS - £178.50 inc. VAT [Chess Challenger 10 ittustrated above]
 borts is an advanced chess compuier that s proprammed for all classic chess mavas. He will play black or White. ever himser. Hoill aven taach you how to play chess and suggests the moves lor you whe n you're unsure of what to to ment. Boris can tatk to his opponent through his alphanumeric display and will tlash difterenl massages during sach pane to keep you on your loes. Goris will nol or sill up your own board positions. Bor is comas in hand cratied. solito watinut case with chese pieces and board. crames. solio wainut with a mains adapior and 12 manths puaranies.
FOREREE BROCHURES - SEND S.A.E.
For free Hiustrated brochures and revlews on T.V. and chess games please send a stamped addressed anvelope and state which particular games you require information on. res wilcome at our shop in Welling - demonstrations daily - Open from 9 am- 5.30 pm Mon.-Sat. (9am-1 pm Wod.)
Tegrder by telephone ple YAT is hecluded in all prices athove - Postage A Packing FREE AJD DIRECT SUPPLIE 8 LIMITED, Dept. HE3 102 Bellagrove Rosd, Wolling, Kent DA18 30D
Tolephone: 01-303 9145 (Day). 01-850 25.52 (Evering

NON-SUBSCRIBERS START HERE

It can be a nuisance can't it, going from newsagent to newsagent? "Sorry squire, don't have it - next one should be out soon.

Although ETI is monthly, it's very rare to find it available after the first week. If it is available, the newsagent's going to be sure to cut his order for the next issue - but we're glad to say it doesn't happen very often.

Do yourself, your newsagent and us a tavour. Place a regular order for ETI; your newsagent will almost certainly be delighted. If not, you can take out a postal subscription so there's nothing for you to remember - we'll do it for you.

For a subscription, send us $£ 7.00$ ($£ 8.00$ overseas) and tell us which issue you want to start with. Plase make your payment (in sterling please for overseas readers) to ETI Subscriptions and keep it separate from any other services you want at the same time.

> ETI Subscriptions
> Map Publications
> PO Box 35
> Bridge Street Hemel Hempstead

> Herts

Pet Expansion

Computhink Dual drive minifloppy

Complete with 4 K disk operating system in ROM, plugs into Expandapet memory. Adds 15 new commands to Pet's Basic to give full disk extended Basic. Loads 8 K in 2.6 seconds. Automatic reorganisation of free space. Utility Disk

$\mathbf{2 8 3 3}{ }_{\text {tvat }}$

Expandapet memory
Powered by Pet's own powersupply and mounted internally in 5-10 minutes without special tools.

All units are fully built and tested.

Super Board II

This 6502 based microcomputer comes with a full 8 K Microsoft basic in ROM. Full keyboard. 4 K static user RAM (on board expandable to 8 K). Kansas City standard interface for use with an ordinary cassette recorder. Machine code monitor and I/O utilities in ROM. Direct Video access with 1 K dedicated RAM (besides 4 K user RAM) and full graphics set.

Fully built and tested only needs a 5 V 3amp power supply and T.V. Monitor or R.F. modulator to be up and running.

Apple II

Apple II was the original with full colour high resolution microcomputer Basic, and it is still the best. With a very wide range of expansion available, including disk drive, interface cards, voice recognition card, light pen and many others.

Apple II has been well tried and approved by the public (over 200,000 sold) because of its thoroughly professional design and high quality engineering. You cannot get better value for money. Please send us a large s.a.e. for further details.

With 16 K user RAM only
$5820+$ V.А.T.

Apple II \& TRS80 Memory Expansion

Save Over $£ 100$

TRS 80 and Apple 11 memory expansion kits. Fully guaranteed and with full specification 4116 16K RAMs.

Kits come with full instructions and new jumper sets where necessary. Fitting takes $5-10$ minutes, or bring along your Apple or TRS 80 and we will fit it for you for $£ 5$.

16K upgrade kit $\{8+$ V.A.T.

KEY:

1: The bit of chocolate you thought you'd leave for later.

2: Coffee stains (instant).
3: A useful-sized bit of stiff paper to stop the window from rattling.

4: Rough calculations for your new combined egg timer/laser cannon project.

5: ETI makes a fair soldering iron stand.
6: The dog insisted on carrying your copy to you along with your slippers.

WHAT A BIND!

Half our orders for binders are repeats: we think that says a lot for their quality. At $£ 3.00$ all inc. you get a great deal of peace of mind too!

ETI Binders
25-27 Oxford Street,
London W1R 1RF.

GENTLEMEN The PET OISK has landed...

The U.K. designed and manufactured Novapac disk system for Commodore's PET*, first seen at Compec '78, is (after extensive industrial evaluation), now available to the domestic user. Its unique saddle configuration continues the integrated design concept of your PET, with no trailing wires or bulky desktop modules.

- Novapac may be used with any available RAM plane.

Data transfer takes place at 15,000 char/sec - effectively 1000 times faster than cassettel

- Storage capacity is $125 \mathrm{~K} /$ bytes (unformatted) on 40 tracks per diskette side
- Dual index sensors permit dual side recording for $250 \mathrm{~K} / \mathrm{bytes}$ per diskette
- Easy operation full width doors prevent media damage.

System expandable to $1 / 2 \mathrm{M} /$ byte on-line storage (4 drives)

- Dual head and 2D versions provide $2 \mathrm{M} /$ bytes on-line.
- Industry Standard IBM 3740 recording format for industry
wide media compatibility only offered by NOVAPAK
- Dedicated Intel 8048 microprocessor and 1771 FDC minimise

PET software overhead.

- Local hardware and software support available

The sophisticated Disk Operating System is disk resident, which allows for future DOS enhancements without hardware alterations. PDOS supports multiple file handling, dynamically allocating disk space to each as and when necessary. Any file may occupy from 1 to 600 sectors as required, at up to 16 noncontiguous locations on the disk, PDOS may be used alone, or within a BASIC program, and offers user-specified password security for any file. Multiple access-modes simplify BASIC program construction

Novapac dual-disk system complete with PDOS and BASIC demonstration programs on disc $£ 950+$ VAT.
Available from the manufacturer or selected dealers.
Terms; 50% with order, balance on delivery
Full cash with order is subject to 5% discoun
VAT-FREE Export arranged (Must be shipped by us)

analag electranics

47A Ridgeway Avenue, Coventry Tel: 0203417761

Hobby

Electronics

BUMPER SHORT CIRCUIT ISSUE

Look out this month for more than your usual share of our very popular. Short Circuit feature. Plenty of circuit designs for you to develop and experiment with.

SHARK

Not a game for the nervous. An LED-based game for two players which involved two swimmers in a race for survival in a sharkinfested sea. Which of these two castaways will reach the safety of the island? The unfortunate one is swallowed by the hungry shark, accompanied by a shrill scream. All good family fun!

LINEAR SCALE OHMMETER

If you ever look at a multimeter on the ohms range you'll notice that most of the numbers are all squashed up one end; this makes accurate readings difficult. The HE Ohmmeter overcomes this difficulty with a linear scale. The range of resistance covered is from 1 k to 1 M ohms in four ranges, a useful addition to any workshop's range of test equipment.

CASSETTE DECKS

 AND TAPES

Next to the TV and Transistor radio, the Cassette tape recorder is probably the most common piece of domestic electronic equipment. Next month Gordon King takes a close look at what has made the Compact Cassette so popular and one or two of its advantages and drawbacks, warts and all.

RESISTORS

Following the success of our feature on Capacitors (according to our reader questionnaire) we're doing a follow up on the ins-and-outs of Resistors. Like Capacitors it's not going to be a formula-strewn study but a rather slanted look into their construction and use. So if you've never heard of Thick Film resistors and Metal Oxide, now's your chance.

HOBBY CHIT CHAT

Ray Marston our Project Editor / Designer starts a new monthly series looking at our fast-moving hobby from the technical point of view. These articles are designed to take a look into the worlds largest growth industry, what's new and how it will affect us in our daily lives as well as a more specific look at our own side of the fence in HE .

KIT REVIEW

One for the motorist this month, we have built up an Electronic Ignition system from Sparkrite (X4); read all about it next month. .

LINEAR ICs

If you've been wondering what's going to happen now Into Electronics has finished, don't worry, Ian Sinclair has begun his follow-up series Linear ICs. Month by month the articles will introduce most aspects of IC use, construction and theory. With the background knowiedge gained from Into Electronics your understanding of new technology should increase dramatically.

POINTS CONTROLLER

Another project for model railway buffs. This unit gives full control over an unlimited number of electro-mechanical points using a pushbutton control. This makes an ideal companion to our HE Model Train Controller featured in the April issue.

BABY ALARM

A really simple project to keep one ear on the kids whilst you're building your latest HE project.

The July issue will be on sale June 8th

TELETEXT SYSTEM

A complete ultrasonic controlled Teletext design employing the newly released Mullard chip set. Design by GMT Electronics for ETI. Facilities include double size characters and video superimpose.

THIS PROJECT is designed to allow the home constructor to produce himself a full spec Teletext unit at around half the cost of comparable commercial units. The design requires no hard wiring into the set, as it contains its own modulator and works into the aerial socket. Definition usually suffers utilising this method, but here great attention has been paid to overcoming this problem.
As with all decent designs remote control is ultrasonic, and gives both full and half page displays. The keyboard arrives already fitted to the PCB, and only needs the decoder chip and transducer soldering in to produce a complete unit.
A complete kit is available from GMT electronics, which includes plated-through hole PCBs, full metalwork and the hand controller. See Buylines for final details.

Construct-a-Text

Despite the complexity of this project construction is amazingly straightforward, all that is required is to assemble the four boards CAREFULLY following the overlays, and fit these into the chassis. Interwiring between the PCBs is dealt with by following the list given here, and referring to the wire nos. shown on the overlays. Don't be tempted to change this, best results - indeed any results - will only be obtained by strict adherence!
Once you're satisfied that all is as it should be, fit the ICs into their sockets and move on to the setting up.

Set up!

1) Disconnect encoder video O / P from the modulator board.
2) Disconnect blanking and picture on (PO) outputs from main board.
3) Connect UHF O/P to set, and UHF aerial to converter.
4) Select spare channel on T / V set
5) Tune T / V for blank screen (ie. no noise).
6) Switch off.
7) Link P.O. input of UHF and mixer board to 12 V .
8) Switch on.
9) Tune RV 201 (front panel to obtain best picture on BBC1
10) Re-adjust set for best colour picture, modulator RV 401 may need adjustment.
11) Repeat 7 and 8 as required
12) Switch off
13) Reconnect steps 1 and 2 remove link step 6
14) Switch on.
15) Set RV 100 to midpoint.
16) Connect pin 1 C103(VIP) to 12 V
17) Connect pin 7 via 5 M 6 to 12 V .
18) With transmitter switch to mix mode.
19) Adjust CV101 until characters lock with picture
20) Switch off.
21) Remove steps 14 and 15
22) Switch on.
23) Adjust L101 to obtain page header and time clock stepping (note this setting is sharply defined). L101 should not need adjustment (ignore any colour flicker).
24) Switch off
25) Link pin 10 1C103 to 12 V rail.
26) Switch on. Note CV102 and L101 interactive repeat 20 and 24 as necessary.
27) Adjust CV102 for best display (approx $1 / 4$ closed).
28) Switch off
29) Remove step 22.
30) Switch on.
31) Switch to text mode.
32) Adjust CV301 for best colour.
33) Other channels can now be tuned (hit reset followed by channel No $1=\mathrm{BBC} 1: 2=1 \mathrm{TV}$; $3=B B C 2$).

ITH MAIH INDEX. 200 HEADLINES: NEUS. 201

LOMDON IMBEK. . . 102 ITV RERIONS. .. 300 KIDS ${ }^{\circ}$ PACEs. ... 100 LEISURE INDEK. . 100 Your 8tare..... 1 . TECHNICAL* ..TJO

FOR THE DEAF...? ABVERTISIMC	

40143K nap.i... 401 K0ADS Latzst. .. 415 FULL IMDEX A-E. • 130

INSTANT ELECTION
 RESULTS. 274

Above and below, two typical screen displays from the ITV, Oracle service. Now do you see what you're missing out on?

HOW IT WORKS

Ultrasonic Receiver And Transmitter

In the transmitter the keyboaid, commands are encoded by the SAA 5000 which switches the HEF 4069 transmitter IC in the correct code sequence.
This pulse coded 40 Hz transsmission is received by the TDB 1033 which provides 90 dB of gain in AGC system and a carrier filter. The output is fed to the decoder section.

The Decoder

This design is based on the Mullard L.S.I. design and uses four main IC's and a memory section of seven 2102's.
The signal from the TDB 1033 is fed to the SAA 5010 receiver decoder and checked for error content and then produces various outputs.

1. Analogue Controls - Not used in this design.
2. Station Selector Drive Output Used via an HEF 4011 inverter to step an HEF 4017 station selector.
3. Message Received Output - Used to drive an LED and audible indicator.
4. Control Signals for the SAA 5040 TAC.

SAA 5030 VIP Video Input Processor

The data retrieval section of IC, slices the incoming data signal by means of an automatic adaptive data slicer circuit. This circuit sets the threshold level for slicing at half the data amplitude, regardless of the amplitude of the incoming signal, and provides some compensation for distortion such as cochannel interference; the performance of the system under noisy conditions is thus improved. A clock signal is generate from the sliced data by using an external 6 M 9375 Hz tuned circuit, and this signal is used to clock the data into the TAC integrated circuit.
A 6 MHz display system clock is also included in the VIP, the output of which is divided in the TIC to produce a clock pulse every 64us. This signal is passed back to the VIP where it is compared with the incoming line sync signals. By this means, the timing system of the teletext display is phase-locked with the incoming television picture signal.
A 'signal quality' detector circuit is also included. When a signal with a high noise content is being received, or in the
absence of an incoming signal, the signal quality detector cuts off the teletext data to the TAC and allows the display system to free-run. Thus the detector prevents the data stored in the memory from being corrupted by noise. This facility, combined with the local display clock, allows a stable display even in the absence of an incoming television signal. Both are essential for after-hours display.
The IC also contains an adaptive sync separator which extracts the sync signals from the incoming video signal and also provides a sync output signal for the timebases of the television receiver. When a full page of text is displayed, the sync output signal is derived from the SAA 5020 TIC.

SAA 5040 TAC Teletext Data

Acquisition And Control

The principal function of the data acquisition section of the TAC integrated circuit is to process the teletext data so that it can be written into the memory. The control section processes the information from the remote control

system, and uses this information to operate the various display functions of the teletext decoder system such as selection of television, teletext, or viewdata modes; page hold, time display, or timed page select.
The datā acquisition section, divides the data from the VIP into its component parts. The Hamming-coded address words are checked, and words having a single wrong bit are corrected. Address words having two wrongs bits are rejected. The row address of the incoming data line (one of twenty-four) is fed by this section to the 5-bit row address bus, and the character date is fed through the data to the memory as a sequence of forty 7 -bit parallel words.
A signal denoted as WOK (Write O.K.) indicates to the memory when valid data is to be written in, and a WACK (Write Address Clock) signal causes the address counters 74LS 161 to step on after each character.

The IC also contains circuits for the implementation of the control bits for the page header.

SAA 5020 TIC Timing Chain

The divider stages in the TIC integrated circuit sub-divide the 6 MHz clock signal from the VIP down to 25 Hz , the television frame rate, and generate all the timing signals for the teletext display. During the display period, a 1 MHz clock signal RACK (Read Address Clock) takes over from WACK to step the character addresses. The address counters 74LS161 are cleared at the end of every line and reset to the first position. After every ten lines during the display, the TIC steps the row address on by one to access the next row of characters in the memory.

In addition to providing all the timing signals for the display, the IC also generates a complete composite sync signal. This signal can be used to drive the timebases of the television receiver without the need for the transmitted sync signal. (This form of operation is also termed 'after-hours' operation.)

Memory Blcok

The memory block consists of seven $1 \mathrm{k} \times 1$ static RAMs.

SAA 5050 TROM Teletext

Read-Only Memory

The read-only memory of the TROM converts the 7 -bit character data from the memory into a dot matrix pattern. This matrix is in a 7 -by- 5 dot form for each character. It also contains a 'character rounding' facility which effectively increases this matrix to 14 -by- 10 dots, giving improved definition to the displayed characters.

Additional circuits enable various control functions to be performed. These functions are determined by control characters received from the memory. Examples of these control functions are the selection of graphics or alphanumerics, 'flashing' words, or newsflashes and subtitles displayed in boxes within television pictures.

A 'concealed display' function is also provided which can be operated by the user.

BUYLINES

The designers of this project GMT - have a complete kit of parts available. This includes all metalwork, PCBs and hardware. A manual is also included. Cost is $£ 155$ plus VAT (total $£ 178$ inc p\&p).

As an alternative the teletext decoder board and control system is available separately at $£ 125$ for those who wish to wire into their own television.

PCBs and chip sets are available separately also - but are PoA.

See advert on page 6 for address.

Fig. 2. Relay switching circuit (board four).

Fig. 3. Hand controller circuitry. Note that no overlay is shown for this, as no constructional work is needed using the kit. IC 1 is a SAA5000 for those wishing to go it alone.

Above: a unit complete except for mounting of the ultrasonic receiver

Next month we conclude the project with component overlays, parts lists and some erudite hints upon getting the best results from this superlative design.

Fig. 5. (Above, left): tuning circuit.
Fig. 6. (Below): Power supply circuitry to produce the three rails needed.

MAGNETIC FIELD AUDIO AMPLIIIERS

Abstract

Carver Corporation's Model M400 amplifier using the unique 'magnetic cavity' was released in the US a few short months ago. Employing FETs throughout, except for bipolar silicon output transistors, Carver Corp. claims that the M400 has a slew rate around $\mathbf{8 0}$ volts per microsecond, hum and noise over 100 dB down, $\mathbf{0 . 0 5 \%}$ distortion and a frequency response from $1 \mathbf{H z}$ to 250 kHz - all for an expected retail of US\$300!

IT REALLY DOĖS EXIST. ETI first reported Bob Carver's Magnetic Field Audio amplifier in our Australian issue saying . . . "we hear from normally authoritative sources that Bob Carver founder of Phase Linear - has developed a totally new concept in audio amplifiers which \qquad stores energy in a magnetic field rather than in power supply capacitors . . . his new device generates no heat, weighs a mere five kilos•for vast numbers of watts and lasts for ever".

It seemed a bit hard to take seriously - even though we were totally aware of Bob's previous efforts such as the range of Phase Linear super-amps and the Autocorrelator noise reducer.

But it seems as if this revolutionary concept in audio amplifiers is for real patent protection has been arranged and preliminary details have been released.

Bob's basic concept is to store energy in a magnetic field rather than very large value electrolytic capacitors - eliminating at the same time the need for a bulky expensive power transformer.

Our circuit drawing shows the essential features. The heart of the circuit is
the magnetic cavity ($M C$). This is basically similar to the AM detector transformer used in conventional AM radios but constructed on a grand scale. A further and significant difference is that the transformer is arranged such that an output occurs as the primary field collapses rather than builds up.

The secondary winding of the magnetic cavity is centre-tapped and the resultant full-wave output is rectified by a pair of high current diodes - the output waveform is thus a conjugate pair of time-varying audio voltages. Further circuitry, described later in this article, provides a feedback loop to remove commutation noise and reduce distortion.

- The primary of the magnetic cavity is energised by an amplitude-modulated current (corresponding to the audio signal voltage). The current signal is produced from the audio input, via the optical isolator and modulation and control logic, to the scanning SCR, the ramp SCR, a pair of scanning and commutating diodes, and L1, L2 and C1.

This current signal energises the
primary of the magnetic cavity. The time taken for this is called the 'ramp period'. The primary energy is then reflected in the secondary windings (and thence to the speaker) during the subsequent 'scan period'.

As our graph shows, the ramp and scan periods are made up of four separate timing intervals. During the period $t_{0}-t_{2}$ an incoming audio signal has caused a magnetic field to 'ramp' up in the primary of the magnetic cavity. At t_{2} the field has reached its peak and is beginning to collapse. This collapsing field generates an associated decaying current i_{1} and this decaying current falls to zero when the energy in the primary field falls also to zero (point t_{3}). During the time period $t_{2}-t_{3}$, the control logic provides a positive signal on the gate of the scanning SCR, however this SCR will not again conduct until sufficient voltage is applied between its anode and cathode.

Throughout the scanning period, energy is of course being transferred from the primary of the magnetic cavity to the secondary - and thence to the speaker load.

Fig. 1. This schematic shows the major operating components.

At time t_{3} the direction of current is reversed - current being no longer maintainable by cavity inductance and the scanning diode is reverse biased - this causes the scanning SCR to be forward biased and current flows as shown in our sketch.

Summarising then, energy stored in the magnetic cavity is caused to shuttle around the circuit of L1, L2, C1 and the speaker load depending on instructions from the control logic.

Noise and distortion

Components Q1 - Q3 form a feedback loop which reduces the inherently poor bandwidth, noise and distortion to very acceptable levels. Theoretically the circuit has some quite strong objections - at low frequencies Q1 and Q 2 will act much as switches except that the feedback correction voltage developed by Q3 will adequately cancel aberrations but at higher frequencies, i.e. $10 \mathrm{kHz}-$ 20 kHz the modulator circuit is unable to follow accurately the audio input

Fig. 2. During the ramping period energy builds up in the primary of the 'magnetic cavity'. Throughout the scanning period energy is transferred from the primary to the secondary of the magnetic cavity and thence to the speaker load via Q1 and Q2.
signal. Hence the filtered output from the magnetic cavity is a dc level with a superimposed ac signal and Q1 and Q2 thus operate much as any other conventional amplifier.

Nevertheless as less power is generally required at high audio frequencies than at mid frequency and low frequency, amplifier efficiency is very high if fed with music signals. This situation does not of course apply if the amplifier is fed with a high frequency steady tone.

Bob Carver's radical amplifier will be rated in accordance with FTC rules - the specification is expected to include power output: 200 watts-perchannel into eight ohms from 20 Hz to 20 kHz . Total harmonic distortion is expected to be less than 0.08% across this range.

Signal noise ratio is expected to be 100 dBA below rated maximum output. All-up weight is an incredible 5.5 kg .

As far as we are aware the magnetic field amplifier exists at present solely as a prototype unit but we understand that Bob Carver has very real plans for putting the unit in to production at a presently projected price of US $\$ 300$ or so.

It's a fascinating concept, one that will cause amplifier designers and manufacturers world-wide to furiously rethink their design philosophies. It may even herald the coming of a new hifi technology.

ETI

BUDGET PRICES

Special just in full spec. 1702 (intel) $£ 2.00$ each p/p 20p. 2526 character generator 9×9 (dual rail) $£ 3.50 \mathrm{p} / \mathrm{p} 20 \mathrm{p}$. Mostek 4116 (200ns) 16 k . Dynamic $£ 8.50 \mathrm{p} / \mathrm{p} 20 \mathrm{p}$. All limited stock so rush now.

IS 423 STUD MOUNTING RECTIFIERS 1OA 400 V . Silly price, 10 for $£ 2 \mathrm{p} \& \mathrm{p} 20 \mathrm{p}$

MC1303L Dual Stereo Preamp, plus data £1 p\&p 20p.

7in NYLON CABLE TIES 100 for $£ 1.50$ p\&p 20 p . Cannon 25 way (d-type) male or female with cover plus 2 metres 25 way cable assembled $£ 2.50$ each plus p\&p 20p.
ML723 (T0100). Monolithic adjustable voltage regulator. Plus or minus $2 \mathrm{v}-6 \mathrm{v}, 6 \mathrm{v}-8 \mathrm{v}$, $8 \mathrm{v}-37 \mathrm{v}$ to 150 mA plus data 55 p p\& 20 p .
PCB KEYBOARD $65 \mathrm{~mm} \times 82 \mathrm{~mm} 18 \mathrm{key}$ clickers less key tops, ideal hexadecimal, 35p each, p/p 20p. Hewitt Packard 4 digit displays 12 pin DIL 0.11" common cathode (LED red) £1.50 p/p 20p (few only).

CANNON D-TYPES. Only ones left: 15 way socket 50 p, 37 way plug 80 p, 50 way socket £1.20, 50 way wire wrap socket $£ 1.30,25$ way ribbon plugs 90 p. Cinch 25 -way plastic cover 60 p . Metal cover and retainer 80p. P/P 20p
NEW SN76477 sound generator IC (train plane, explosion, phaser gun etc.) with data $£ 2.80+20 \mathrm{pP} / \mathrm{P}$.
MICROSPEECH Speech Synthesiser board (assembled and tested, British made) single PCB, plugs directly into a SWPTc 6800 buss. The package offered consists of PCB MSP. software on floppy disc, hardware and software manual. Will interface to other systems - leaflet manual. Will intertace s .a.e. and details of MPU being used $£ 320$ inclusive.
SUPERSAVER 1 Price smash - 10 K multiturn electratrim panel mounting pots, 6 for $£ 1, p \& p$ 20p.

SUPERSAVER 2 Hybrid Systems DAC 371.8 (8-bit) DIL packaged + data, ideal MPU users, brand new $£ 2$ price smash! now $£ 1.75$ each (fraction of original cost) p/p 20p.

SUPERSAVER 3 IR Bridge rectifier type 127 20 T (12 amps 200 V) 3 phase or single phase. 95 plus p\&p 20p

MEMORIES 2708 E6-85, 2102 (Signetics) $£ 1,1702 \mathrm{~A} £ 2.95,2513$ (upper case) $£ 4.65$, Mostek MK4012N (1024 x 1), few only, 68p. p/p 20p. 21 LO2 (250ns) E1. $15 \mathrm{p} / \mathrm{p} 20 \mathrm{p}$

SUPERSAVER 4. RS338-383 miniature decade thumbwheel switch $£ 1.35$ p/p 20 p.

9-WAY MALE/FEMALE connector (Elco 8129) 0.1 inch pitch, PCB mounting ideal for bussing two PCBs together 35 p/pair p/p 20p.

LEDS (red) TIL 209 9p, 0.2 10p. Vernitron Ceramic filters FM-4 10.7 MHz 45 p, BD 236 40p, 2N3055 (TI) 40p, BC183L 10p, BC213L 10p, BF 195 10p, 2521 V (Dual 128 bit static shift register 65p), RS 12-0-12 50 mA subminiature transformer E1 35 , suitable clock IC $£ 3.25$, TMS $3128 N C$ (static shift reg) $£ 1.25$, £3.25, TMS LM 71 CH T0-99 (Voltage comparator) 25 p . LM 711 CH TO-99 Noltage comparator) 25 p ,
FPE 100 infra red emitter + data 15 p , FPE 100 infra red emitter + data $15 p$.
DILSWTS 4-way 60 p. TBA810S + DATA $65 p$ P/P20p

All enquiries, Sae please, Cat. SAE 8×6 or free with goods. P/P same for quantities except where greater than $£ 1$.
Rush orders as some stocks are limited
L. B. ELECTRONICS

43 WESTACOTT, HAYES.
MIDDLESEX UBA BAH, ENGLAND

Car Audio

Manual
MW/LW Push-Button MW/LW

One LW, four MW buttons plus manual tuning. Complete with speaker and moun $£ 15.60+{ }^{11.00}$ £15.60+ Post

+ MW
Standard cassettes and FM in stereo plus medium wave. Tone and balance controls Fast forward facility on tape. Adjustable shafts. Suitable for 4 or 8 ohm speakers (not supplied) This model is discounted else si.00
where at $£ 50$ up.
ula $£ 39.95+$ fosis

Stereo

Speaker Set
Suitable for above stereo unit. Good quality £3.95 in surface mounted (pair) Casing,
$+70 p$ Post
Telescopic Car Antenna
Multi-section standard type, suitable for angled mounting with locking key.
$\mathrm{E1.60}+30$ p Post
MetalDetectors
Treasure Tracer Mk III The original Treasure Tracer. Sales exceed 7,000 -transistor circuit with Varicap tuning. Sensitive stable BFO design. Built-in speaker shield. Kit supplied with pre-built search head
Kit: $£ 17.50+£ 1.00$ Post Buill: $£ 22.50+£ 1.00$ Post

* Induction Balance Model

Built with sensitivity up to 10 in on single coin; fitted with speaker and meter; PP3 battery; 7 in dia search head. Telescopic stem. Excellent pin-pointing, positive reaction to non-ferrous, negative reaction to rron. This model's normal price is £39.95!
$£ 22.95+£ 1.00$ Post
All goods guaranteed one year 10 -day money-back offer Goods ex-stack at time of going to press. Callers by appointmerit only please Send s.a.e. for illustrated leaflet

Minitris Electronics Ltd. GD Cleveland Road S. Woodford
 London E18 2AN

ETCH RESIST TRANSFER KIT SIZE 1:1

Complete kit 13 sheets 6 in $\times 41 / 2$ in £2.50 with all symbols for direct application to P.C. board. Individual sheets 25 p each. (1) Mixed Symbols (2) Lines 0.05 (3) Pads (4) Fish Plates and Connectors (5) 4 Lead and 3 Lead and Pads (6) DILS (7) BENDS 90° and 130 (8) $8-10-12$ T.O.5. Cans (9) Edge Connectors 0.15 (10) Edge Connectors 0.1 (1.1) Lines 0.02 (12) Bends 0.02 (13) Quad in Line.
FRONT AND REAR PANEL TRANSFER SIGNS
All standard symbols and wording. Over 250 symbols, signs and words. Also available in reverse for perspex, etc. Choice of colours, red, blue, black, or white. Size of sheet $12 \mathrm{in} \times 9 \mathrm{in}$. Price $£ 1$.

GRAPHIC TRANSFERS

WITH SPACER

ACCESSORIES
Available also in reverse lettering, colours red, blue, black or white. Each sheet $12 \mathrm{in} \times 9$ in contains capitals, lower case and numerals $1 / 8$ in kit or $1 / 4$ in kit. £1 complete State size
All orders dispatched promptly.

All post paid

Ex U.K. add 50p for air mail
Shop and Trade enquiries welcome Special Transfers made to order

E. R. Nicholls

P.C.B. TRANSFERS DEPT. ETI 7
46 LOWFIELD ROAD STOCKPORT, CHES. 061-480 2179

BREAKING FOR SPARES

Printed boards containing at least:

12 TRIACS 200V 1.5A
 3 TRIACS 400V 8A
 12 TRANSISTOR BC337
 8 ZENER Diodes 16V
 6 CD4050 CMOS Buffers
 8 BICC Burndy Connectors

And numerous other discrete components are being offered for sale at the incredible low price of:
£10. ONLY + 20p P\& P
These boards will be ideal for A.C. control applications, such as motor control, solenoid control, lamp control, etc.
Please send cheque or postal order to
Race Electronics Limited Department ET, WW 56/64 Morfa Road Strand, Swansea

tOTAL AMPLIFICATION FROM CRIMSON ELEKTRIK

WE NOW OFFER THE WIDEST RANGE OF SOUND PRODUCTS

STEREO PRE-AMPLIFIERS

MC 1

CPR 1

CPR 1-THE ADVANCED PRE-AMPLIFIER
The best pre-amplifier in the U.K. The superiority of the CPR 1 is probably in the disc stage. The overload margin racking heavily modulated records. Common-mode distortion is eliminated by an unusual design. RIIA. A accurate 10 td8; signal to noise ratio is 70 dB relative to 3.5 mV ; distortion $<.005 \%$ at 30 dB overload 20 kHz .
Foflowing this stage is the flat gatn / batance stage to bring tape. tuner, etc., up to power amp. signal levels.
 signal to noise ratio 86 dB ; slew-rate $3 \mathrm{~V} / \mathrm{uS} ; T . \mathrm{H} . \mathrm{O} .20 \mathrm{~Hz}-20 \mathrm{kHz}<.008 \%$ at bny levet. F.E. T. muting. N
controls are fitted. There is no provision for tone controls. CPR 1 size is $138 \times 80 \times 20 \mathrm{~mm}$. Suppiy to

MC 1 PRE-PRE-AMPLIFIER

Suitable for nearly all moving-coil cartridges. Sensitivity $70 / 170 \mathrm{uV}$ switchable on the p.c.b. This module bring signals from the nowpopular low output moving-coil cartridges up to 3.5 mV (typical slgna
preamp disc inputs). Can be powered from a 9 V battery or from our REG 1 regulator boerd.

X02 : X03 - ACTIVE CROSSOVERS

REG 1 - POWER SUPPLY
The regulator module, REG 1 provides $15-0-15 \mathrm{v}$ to power the CPR 1 and MC 1 . It can be used with any of our

POWER AMPLIFIERS

establishments, etc., who have been using CRIM SON amps satisfactorily for quite some time government repuration for the highest quality at the lowest prices. The power amp is available in five types, they al have ia
 signal io noise ratio 110 de ; frequency response $10 \mathrm{~Hz}-35 \mathrm{kHz}$. -3 dB ; stability unconditional; protection drive

POWER SUPPLIES
We produce suitable power supplies which use our superb TOROI DAL 1 ransformers only 50 mm high with a
120.240 primary and POWER AMPLIFIER KIT
supply. It is contemporarily styled and its quality is consistent with that of our other products. Comprehensive

OWER AMPLIFIER MODULES
C. 1004 60W/8 ohms $35-0-35$

CE 1008 100W/8 ohms $35-0-35 \mathrm{~V}$ CE $1704170 \mathrm{~W} / 4$ ohms $45-0.45 \mathrm{~V}$

TOROIDAL POWER SUPPLIES
CPS2 for $2 \times$ CE 1004 or $2 / 4 \times$ CE 608
CPS 3 for $2 \times$ CE 1008 or $1 \times$ CE 1704 CPS4 for $1 \times$ CE 1008 CPS6 for $2 \times$ CE 1704 or $2 \times$ CE 1708

heatsinks

Lighiduty, $50 \mathrm{~mm}, 2 \mathrm{c} / \mathrm{W}$

Disco/group. 150 mm , it C / W
Fan, 80 mm , state 120 or 240 v
Fan mounted on two drilled 100 mm heatsinks.
THERMAL CUT-OUT, 70 C
Oistributor

Minic Telepro
Box 12035

S. 75012

Uposala
Sweden

CRIMSON ELEKTRIK

Ux Please allow up to 21 days for delivery
All prices shown are UK only and include VAT and post. COD 90 p extra, $£ 100$ limit. Export is no problem, please

10" Metal Case Industrial Video Monitor

Another Grofton First Brand Mew Full Specification

Video Bandwidth 8MZ (3db down). Ideal for Computer Terminal or General Video Monitor.
Complete With Own Power Supply.
Input Sensitivity IV Composite.
The unbeatable * Including CROFTON 6800 MICRO Tiny Bastc and on board Prom is probably the best value for money today

POWER SUPPLY \&20 EXTRA + VAT \& P/P

CROFTOK

 Electronics Limited 35 Grosvenor Road, Twickenham middlesex - Té: 01-891 1923Extracts from our lists, which are now available, of Equipment, Components etc THAT MUST BE SOLD.

TEK scope 545 A with H plug-in $£ 125$ ea TEK scope 545A with CA plug-in $£ 175$ ea. H.P. scope 175 A 50 MHZ Dual trac
£175 日
E125ea. SOLARTRON CD 10146 MHZ Twin Beam OLARTRON SOLARTRON CD1400 15 MHZ Twin Beam Telequipment D33R 6 MHZ Twin Beam SOLARTRON CT316 6 MHZ Single Beam Ex-Ministry CT52 Small. Sing 47.50 a 37.50 es. MARCONI Wave Analyser TF2330 MARCONI Audio Oscillator TF1 10120 HZ 200KHZ Signal Generator J1A (CT433A) ADVANCE Signal Generator JIA (CT433A) MARCONI Valve Voltmeter TF 1041 C £30 es. No dio to VHF DIGITAL EQUIP. CORP. Disk Drives (Fixed) £160 ea.

10wny Muid Coleur Riablan Canio. Mew 40p per mora Pap Sop

Comictons Hoand Dry $24 Y \mathrm{MC/DC} 5$ milk. \&i es. Pap B5

 rose m 35p on. Pap 25 .
 rusing. 9314 P. network E2 as. Pap £

TRAMSFORMERS

semicomouctors

 144303: 11.3v Zunor.

${ }_{70}$ loturamad Circrins	5 p	$74{ }^{4} 51$	7p
7451	5 s	74538	1.09
1401	5p	74502	12p.
7402	12p	74500	12 p
7443	70p	74154	70%
7476	20p	15325	\& 1
7495	35 p	5115862	${ }^{4} \mathrm{p}$
709	15 p	9.314	${ }^{\text {P }}$ P
$74 \mathrm{H74}$	12 p	MC4028	60 p
14874	12 p	1417	14 P
14510	${ }^{5 p}$	1411	¢p
14504	120		

matorola Dond in Une 5 pia Opro Coupler 50 p ea.

 Carriage all units $£ 4$ ea. V.A.T at 8%
CALLERS VERY WELCOME STRICTLY BETWEEN 9am-1pm and $2 \mathrm{pm}-5 \mathrm{pm}$ Monday to Saturday incl. BARCLAYCARD (VISA) and ACCESS taken. Official orders welcome.

HIIPRINTS

ETIPRINTS are a fast new aid for producing high quality printed circuit boards. Each ETIPRINTS sheet contains a set of etch resistant rub down transfers of the printed circuit board designs for several of our projects.

ETIPRINTS are made from our original artwork ensuring a neat and accurate board. We thought ETIPRINTS were such a good idea that we have patented the system (patent numbers 1445171 and 1445172).

PARTS LIST

Shown below is the listing for the last year's ETIPRINTS.

Earlier sheets are available, ring Tim Salmon for details.

Project Book Six	016	Stac Timer Xhatch Gen Wheel of Fortune	Sept 78
	017	Complex Sound Gen Tele Bell Extender Power Bulge	Oct 78
Project Book Six	018	RF Power Meter Proximity Switch Audio Oscillator (2)	$\begin{aligned} & \text { Oct } 78 \\ & \text { Oct } 78 \\ & \text { Nov } 78 \end{aligned}$
Project Book Six	019	Car Alarm (2) Wine Temp (2) Curve Tracer	Dec 78 Dec 78 Dec 78
Book Six	020	Digital Tacho Module Digital Dial	Jan 79 Jan 79 Jan 79
Project Book Six	021	Tape Slide Synch Tape Noise Limiter Light Tacho	Feb 79
July 78 July 78 Aug 78	022	Logic Trigger Power Meter Headlight Delay ($\times 2$)	Mar 79

HOW IT WORKS

Lay down the ETIPRINT and rub over with a soft pencil until the pattern is transferred to the board. Peel off the backing sheet carefully making sure that the resist has transferred. If you've been a bit careless there's even a 'repair kit' on the sheet to correct any breaks!

BUY LINES
 ORDER TODAY

Send a cheque or P.O (payable to ETI Maqazine) to
ETI PRINT, ETI MAGAZINE
25/27 OXFORD STREET, LONDON W1R1RF

CABLE ADDRESS: ICUSD
Telex \#697.827 ICUSD SDG

I^{2} L, LINEARS, REGULATORS, ETC.

-
-
-

HOURS: 9 A.M. 6 P.M. MON, thru SUN

INTEGRATED CIRCUITS UNLIMITED
 7889 Clairemont Mesa Blvd. - San Diego, California 92111 U.S.A.
 NO MINIMUM

COMMERCIAL AND MANUFACTURING ACCOUNTS INVITED
ALL PRICES IN U.S. DOLLARS. PLEASE ADD POSTAGE TO COVER METHOD OF SHIPPING. ORDERS OVER $\$ 100$ (U.S.) WILL BE SHIPPED AIR NO CHARGE.

PAYMENT SUBMITTED WITH ORDER SHOULD BE IN U.S. DOLLARS.
ALL IC'S PRIME/GUARANTEED ALL ORDERS SHIPPED SAME DAY RECEIVED.
CREDIT CARDS ACCEPTED: \$35-\$99

Deduc
\$100-\$300
\$301-\$1000 20\%

SPECIFICATIONS

ELMAC electrical dat

4" SCOPE VERTICAL AXIS (Y) Deflection Sensitivity - 100 m V /division. Bandwidth (between 3 dB points) - DC 5 MHz . Input Attenuator - (calibrated) - $9 \operatorname{step~} 0.1$, $0.2,0.5,1,2,5,10,20,50 /$ div. Input impedance - ? Mea/40 of in shunt Input Voltage - Max - 600V P.P. HORIZONTAL AXIS (X). Deflection Sensitivity $0.400 \mathrm{mV} /$ division. Bandwidth (between 3 dB points $1 \mathrm{~Hz}-350 \mathrm{KHz}$. Gain Control - Continuous when time bases in EXT position. Input Impedance - 1 Meg. Input Voltage - Max - 500 V P.P
TIME BASE. Sweep Range (calibrated) $-100 \mathrm{msec} / \mathrm{div}$ to $1 \mu \mathrm{sec} / \mathrm{div}$ in 5 steps. FINE Control - Variable
between steps - includes time-base calibration position. Blanking - Internal - on all ranges.
SYNCHRONISATION. Selection - Internal external. Synchronisation Level - Continues from positive to negative.
POWER SUPPLY. Input voltage - $115 / 200 \mathrm{VAC} \pm$ 10% at $50 / 60 \mathrm{~Hz}$ Power Dissipation - 18 W . CRT DATA - 4 in - flat face, single beam. Maximum high votage - 1.5 kV . - Fitted with 8×10
division blue filter gaticule. division blue filter graticule
PHYSICAL DATA Dimensions- $15 \mathrm{~cm}(\mathrm{~h}) \times 20$. $5 \mathrm{~cm}(\mathrm{w}) \times 28 \mathrm{~cm}(\mathrm{~d})$ Weight -4.3 Kg (approx.) Stand -2 pod Front and ined Case - Steel, epoxy enamelled. Front panel - Alum (Ae recommended by ETI)
ting. Csah with order Teast lesde available $£ 2.00$ £109 ($+£ 8.72 \mathrm{VAT}+\quad$ Barciay and Acces: 10MHz Scope with $5 \times$ Magnifier for $\mathbf{~} \mathbf{5 1 4 7 . 9 5}$.
($\mathrm{f11} 84 \mathrm{VAT}+52$ carriage

5" CRT
SAE for further details

- 10 mV to $50 \mathrm{~V} / \mathrm{cm}$ in 12 calibrated steps $0.5 \mu \mathrm{~S}$ to $0.1 \mathrm{Sec} / \mathrm{cm}$ sweep range in 6 calibrated steps plus 12.1 Vernier
- Magnifier $\times 5$.
- Fully automatic trigger
- OC to 2 MHz horizontal bandwidth
- Rise time on 35 ns
- Time base range from 0.5 us to $10 \mathrm{~ms} / \mathrm{cm}$ in 6 steps - Flat $8 \times 10 \mathrm{~cm}$ display with graticule on blue filter Smallest' sub-division 2 mm
- Fastest sweep $100 \mathrm{~ns} / \mathrm{cm}$ with magnifier

Sensitivity: $<1 \mathrm{~cm}$ deflection 10 Hz to $>15 \mathrm{MHz}$ L.F trigger extends below 5 Hz with 2 cm deflection. Trigger circuit locks to the mean value of the displayed including sine, square, triangle, pulse and TV video signals. When no signal is present 10 repetition rate is below 5 Hz the trace free runs producing a bright base line. Company orders welcome by phone and Telex

6MHz OSCILLOSCOPE 3106 B

Similar in appearance to 10 MHz scope. SAE for details

SINCLAIR PFM 200

FEATURES include Resolution to 0.1 Hz and sensitivity to 10 mV . 8 -digit LED displaying frequency Xial time base accurate to $0.3 \mathrm{ppm} / \stackrel{C}{ }$ at 10 ppm
year and all this in a year and all this in a package weighing just 60 . and
$6.2^{\prime \prime} \times 1.25^{\prime \prime}$ Adaptor £3.20. Padded case $£ 3.20$ PDM35 £29.20
UK microvision
DM350

KRAMER \& CO.
9 October Place. Holders Hill Road London NW4 TEJ. Telex: 888941 attn. Kramer k 7. Tel: 01-203 2473

HOBBYISTS! ENGINEERS! TECHNICIANS! STUDENTS!

Write and run machine language programs at home, display video graphics on your TV set and design microprocessor circuits - the very first night - even if you've never used a computer before!

ELF II tataing RCA COSMAC mitrorosesarsaminicOMPUTER

SPECIFICATION

* RCA 18028 bit microprocessor with 256 byts RAM expandable to 64 K bytes
* RCA 1861 video IC to display program on TV scrasin via the RF Modelator
Single Board with pro fessional hax keyboard fully decoded to efiminate the waste of mamory for keyboard decoding circuits Load, run and memory protect switches 16 regiaters interrupt. OMA and ALU Stable crysial clock Built-in power regulator 5 slot plug in expansion bus (less connectors)

THE FASTEST WAY TO LEARN COMPUTER FUNDAMENTALS! Owning an ELF II is probably the fastest, easiest, most foolproof way to gain a working knowledge of computers the world has ever known. First of all, you get your hands on your own computer, so you can spend all the time you want with it and use it for anything that turns you on

Secondly, our Short Course in Microprocessor And Computer Programming makes it impossible for you to fail. We take you inside the RCA 1802 and teach you every instruction it can be given. Everything is explained in plain English. When you're finished, you'll know everything there is to know about using an ELF II. You'll be able to make ELF II do whatever you want it to do. You won't be limited to predeveloped software.

Third, once you understand ELF II inside and out, you'll be ready to use its highly sophisticated add-ons intelligently. And, as you expand your ELF II, you'il begin to appreciate just how advanced its technology really is

Now Available!
The TEXT EDITDR gives you word process ing atility and the ablily to edil assembly language programs while they are displayed on your video menitor. Llases and characters may be quickly insertod. deleted or changed. Add a printor and EEF 11 tan type lotiters
maliang list!

ELF II's ASSEMBLER translales assembly language programs heto haxidecimal machine cade for ELF II use. The Assambler leatures mnemonic abbreviations rather than numerics so that the instructions on your programs are easier lo resid - llisis is a big halp in calching errors
ELF Hz DISASSEWBLER lakes machtne code programs and produces assombly language source listings. This heips you undersiand the programs you are working with and improve them when required.

The naw ELf II vided displar boahd lets you generale a sharp, prolessional 32 or 64 characier by 16 line upper and fower case dispiay on your TV screen or video monitor - dramatically improving your unexpanded $£ 79.95 \mathrm{ELF}$ if.

To: MEWTRONICS. HE AUOID LTO 138 Kingsland Road. London E2 BBY Please send me the items below

In addition to $1 / 0$, monitor memory, ASCII keyboard and BASIC. ELF II offers you exotic add-on features such as the ELF II Light Pen and the ELF II Colour Graphics and Music System

It's no wonder ELF IIs are being used by schools and universities, factory training programmes, trade schools and R\&D Labs.

ELF II and all ELF II add-ons are also available wired and tested. And. as if all that weren't enough, the help that's always available from our Ser vice Department further guarantees your success!

PHONE ORDERS ACCEPTED Call 01-739 1582
 [requires 6.3 ie a melts ac power supply|

- Powrs Suppyy (rquirred) Es + YAT

QRCA tor User : mmanal Ed

 1802 compaler. Writites in non techaical inaguage ils: NLSO AMALABLI FOR E!

 $1 / 0$ instr
+WaI
+VIupe
E12.33+ Vat 6KK E69.44tic RAM
\square Goid otitued 86 -pin caneneclers pone required lor

ИूגM| $£ 19$ + VaI
\square Pratasional ASCII Kepooerd kill with IzB ASCII upper/lowar case sil. 96 priatavie cheraclers.
 4 mondstabing signals to mate will almost my
computer $550.58+Y A T$ Q Delure metal calinel tor AsCu Keypoard E15.02 + Wit
\square Video Dispay Boars kill lats you querrate a sharp protesimas 33 or 54 character by 16 fine upper and
 - dramatically inmomng your vnixpanded $£ 79.95$ ELf

Cosiuxe Matal Cabiatei with plexiplas dusi cover lar EUK $1523.01+\mathrm{WT}$

\square I matt my ELf il wired and lestet

IF/THEN. IMPUT, PAIMT. 60 TO. 60 SUE. RETUMM, EMA AEM, CLEAR. UST. RUM. PIOT, PEEK. POKE. COMOS Fully rocumonia and mociudes miphinimeric quntraty your TV scre on withoet aditional hardware. Alse play lie-tactor plus e drawng jama hal uses Etf ifs hax keptoerri is olopslick, $4 \times$ memery required $E 13.50$

+ Tom Pitimatiz Shor Course on Tiny Ansic tor ElF

 and aute strolline. A mast ter lie sorious grourrammer! c13.50 + YAT

inzeri, dinte or soit liens suld worts iram your

your maling fisl $186.95+$ VhT

Fanguage programs into hexidecimal mechlose code for
(rather istan mamerica) make progizams exzier lo res

Totit melaseof
Curpe il te: \square Acchas \square Barctayctart

Ding mind wrors $26.93+$ thy
 praprame end proluces 13 semmity languapa source

\square SAME 10% Toxs Efiler. Nessembier and Ois assemblar purchased lopsinher only $£ 45.76+$ VAI equires Video Ditplay Boart ples $4 \times$ mamory EES II Colour Graphics \& Music \$yslom Boord kit $35.95+$ vaI
EU II connacis dirreclly to ithe vides inpul of your TV (a) witheut additional hardware To connect ELLF II to
 Coming soon: AD. O-A Carverter. Controiler Boars and
morel morn
Print
Name Ader s

SPECIALS

TOP PROJECTS

Book $1+2: £ 2.50+25 p$ P\&P

Master mixer, ICOW guitar amp., low power laser, printmeter, transistor tester, mixer preamp., logelc probe, NH-Cad charger, loudhailer,' scope callibrator, electronic ignition, car theft alarm, turn indicator canceiler, brake light warning, LM 3809 circuits, temperature alarm, aerial matcher, UHF.TV preamp., metal locator, four input mixer, IC power supply, rumble filter, IC tester, ignition timing light, 50W stereo amp. and many more.
Book 3: SOLD OUT!
Book 4: £1.00 + 25p P\&P.
Sweet sixteen stereo amp., waa-waa, audio level meter, expander/compressor, car theft alarm, headiamp reminder, dual-tracking power supply, audlo millivoltmeter, temperature meter, intruder alarm, touch switch, push-button dimmer, exposure meter, photo timer, electronic dice, high-power beacon, electronic one-armed bandlt .. .
Book 5: $£ 1.00+25 p$ P\&P.
5W stereo amp., stage mixer, disco mixer, touch organ, audio limiter, infra-red intruder alarm, model train controller, reaction tester, headphone radio, STD timer, double dice, general purpose power supply, logic tester, power meter, digital voltmeter, universal timer, breakdown beacon, heart rate monitor, IB metal locator, temperature meter ...
Book 6: $\mathbf{£ 1 . 0 0}+\mathbf{2 5 p}$ P\&P.
Graphic equaliser, $50 / 100 \mathrm{~W}$ amp. modules, active crossover, flash trigger, "Star and Dot" Grame, burglar alarm, pink nolse generator, sweep osclilator, marker generator,
gudio-visual metronome,LED dice, skeet game, lie detector, disco light show ...

Grumic Equaliser........inter Gemerater Power Amplifier Imatres..... $\mathbf{E 2}$ Sumu CCIY Camera....... Meathowe Itmpter ItEA Dice....Sount-Lisut flest Irinem Enpaner-compressur siveo 5 018 , wuryiar Alarm. ...Digitel Thermometer Stars ${ }^{5}$ Dots Logic Game..... Lightshow Active Crossover.... Hear and Tell Durit Pink Noise Generatop...... G5R Moniter Sweep Oscillator.....Sterte Simubtrer

ELECTRONICS TOMORROW
Comprised entirely of new material, the edition covers such diverse topics as Star Wars and Hi-Fi! The magazine contains
projects for everyone - none of which projects for everyone - none of which future of MPUs, audio, calculators and wideo. How can you not read it?
$75 p+25 p$ P\&P.

ELECTRONICS - IT'S EASY Books I, 2 \& 3.
Our successful beginners series came to an end some time ago now, and the whole series is avallable from us in reprint form. the information presented in the series (sometimes in more detaill) and to sether orm an excellent starting point for anyone interested in learning the art of electronics.
£1.20 + 25p P\&P each.

ETI CIRCUIT

Books 182.
Each volume contains over 150 clrcuits, mainly drawn from the best of our TechTips. The circuits are indexed for rapid selection and an additional section is included which gives transistor specs, and plenty of other useful data. Sales of this publication have been phenomenal hardly surprising when the circults cost under Ip each!
$\mathbf{E 1 . 5 0}+\mathbf{2 5 p}$ P\&P each.

ORDER FROM

Specials Modmags Ltd 25-27 Oxford Street London W1R 1 RF
Postage and packing also refer's' to overseas. Send remittance in Sterling only.
Please mark the back of your cheque or PO with your name and address.

POIYPHONIC KEYBOARD CONTROLIER

Tired of playing one note at a time on a boring old monophonic synthesizer? In this design Tim Orr describes how you can build a four octave polyphonic keyboard controller incorporating first note priority.

THE MUSIC synthesizer is probably the most powerful musical instrument of today, and it will most probably form the basis of the next generation of keyboard instruments However, the synthesizer suffers from one major drawback due to its unique structure. The disadvantage is that it is a monophonic instrument as opposed to traditional keyboard instruments, such as organs and piano's which are polyphonic, or multi-voiced. A brief resumé of synthesizer structure should clarify the reasons behind this.

To start with, the synthesizer is composed of a set of modules or independent circuit packages whose parameters in most cases are voltage controllable. For instance, a voltage controlled oscillator (VCO) has an output frequency (pitch) which is dependant on the magnitude of the input control voltage. These modules can be split up into three distinct
groups. Firstly there are Sources, such as:

1. Noise
2. Voltage controlled oscillators

Secondly there are Modifiers which form by far the largest 'group:

1. Voltage controlled filters (VCF's)
2. Voltage controllled amplifiers (VCA's)
3. Ring modulators
4. Filter banks or graphic equalisers
5. Phase shifters
6. Reverbration

Thirdly there are control voltage sources:

1. Sample and holds
2. Sequencers
3. Transient generators
4. Trigger delays
5. Keyboard controllers

Getting Your Priorities Right

First note priority was adopted for this design, i.e. first note pressed to channel 1 , second to channel 2 , and so on. If more notes are pressed then the system can cope with, these are locked out. The reason for this, as opposed to last note priority, is that first note priority stops the note jumping that can occur when, momentarily, more notes are pressed than the system caters for.

Binary Notation

When the code (note code) driving the decoder energises a contact which is closed, the output of the OR gate goes high, showing a unique code on the input representing the particular note being pressed. This code, the note code, is arranged such that the lowest note is binary zero, the next note up binary one, the next
two and so on up to N .
The scanning can also be achieved using a multiplexer.

The size of keyboard decided on was a 4 octave one having 49 notes. Hence this makes the value of N49 and therefore the size of the note code will be 6 bits (64 possibilities). In fact this is useful in that a 6 bit code will be just big enough to scan a 5 octave keyboard (61 notes) if required. In the case of this design it will simply be a mattter of adding 12 extra diodes since the decoder already had a total of 64 outputs. Incidentally, the scanner will have another output not yet mentioned. This is called 63rd note, the 63rd output on the decoder) which simply provides a pulse to the decision logic to say that a scan has been completed. The multiplexer method would require decoding of the note code to do this. The scanner simply gives each note a binary code, but how can this be extracted as a set of control voltages with associated gate signals?

Pumping Caps

The note code is changed to an analogue voltage using a D-A ,converter, the output of which is switched onto the correct analogue channel and held using a set of sample and holds. The gate signals are dealt with in a similar way using CR circuits. The counter for the note code causes the scanner to increment from the lowest note upwards. If three notes are depressed the scanner reaches the lowest note first and causes the output of the D-A to be stored by channel 1 sample and hold, and channel 1 gate capacitor to be pumped up. On moving on the channel counter is incremented, prepairing the output channels for channel 2 data. When the scanner reaches the second note up the process occurs again only using channel 2 and again for channel 3 , with the third note. When the scan has been completed the channel counter is reset and made ready for the next scan.

Dying Charge

If on the next scan the notes are still depressed, the gate capacitor will again be pumped up maintaining the gate output high. When a note is released the time constant is such that the gate capacitor's charge dies away in about one and a half scan

The largest of the four PCB's, carrying the logic circuitry.
times, thus removing the gate signal. By experiment it was found that the scan time needs to be about 4 mS . Even when a key is pressed and released very quickly, it will have been scanned about ten times or more. The NAND gate should be mentioned because it allows two adjacent notes to be played. This is because if two notes right next to each other are depressed, the output of the scanner remains high for the duration of both notes and so only one note would be detected. By NANDing the scanner output with the clock the output is broken up allowing adjacent notes to be detected.

Note Jumping

Although this circuit will work, it is far from satisfactory. When notes other than the top note are released, the channels on which the remaining notes appear, above the released note, all jump down one place. This makes the instrument very difficult to play as it must be remembered to release the keys from the upper one downwards, to get a chord that dies away nicely without the note jumping effect.

Special Decision

This means that the simple logic must be replaced by some special decision logic, incorporating a memory of notes already activated in previous scans.

The scheme here is that note codes are gathered into the memory as the scanner sweeps up the keyboard. When the $63^{\text {rd }}$ note is reached, the
entire memory is dumped onto the output channels by sequencing the peripheral address lines. It is also necessary to reset all of the gate data bits in preparation for the next scan. This means that while a particular key remains pressed, the gate for that channel will be refreshed on every scan. When the key is released, the gate for that channel will go low when data is again output.

Logical Channels

The effect of the decision logic from the musicians point of view, is that upon playing a chord, say C, E and G the first one depressed normally comes out on channel 1 , the second on channel 2 and the third on channel 3 (the difference in time between depresssions need only be milliseconds). There is, however, an exception to this when a note is depressed that is already stored in memory. For instance, if the three note chord described above were depressed such that C was first E second and G third, then it would be expected that C would come out on channel 1, E on channel 2 and G on channel 3. But if a previous chord had been played using the same C which had emerged on channel 2 then the decision logic would cause it to remain on channel 2 and so the E would be placed onto channel 1 and G onto channel 3.

Key Question

Construction of this project will depend almost entirely upon the keyboard it is built around. If you

Fig. 1. Circuit diagram of the scanner. The four 74154 's are used as a one out of 64 line decoder.
address counter reaches 2 the comparator output goes high acknowledging that the note is already entered. This causes the gate bit to be refreshed (since it is reset during data block) along with the data being re-entered into the note memory, (re-entering the data in the note memory is not necessary but occurs due to circuit architecture) after which the decision flip flop IC15 is again reset and the scanner restarted.
All the time a note remains depressed the decision logic will refresh the gate bit associated with the channel in which the note has been placed. At the end of a scan the gate bits are reset immediately after they have been placed on the output channels meaning that if the note is not still depressed on the next scan the gate signal on the output channel will go low in the next data block period.
During a scan the data valid signal is high, it only toggles in data block. Simply enabling the gate RAM during the decision cycle loads it with a ' 1 ', since data valid is the input. Note that loading these Ram's with a ' 1 ' results in the output going to a ' O ' as they invert. This is the reason for the invertors on the outputs of the note RAM's, which are also tri-state for the computer interface.
The clock for the system is an NE555 timer wired in the astable mode.
The Output Channels
There are two_outputs per channel which
are multiplexed out by the data block period. These are the gate outputs and the control voltage outputs. The gates are obtained from the CD4099 addressable latch (note that these outputs may need buffering depending on the impedance they are driving as the CD4099 is CMOS). The address lines of the latch are attached to the memory address counter and the input is connected to the gate data line (IC10 pin 2). The enable input of the latch is connected to the data strobe line so that as the data is output from the memory the correct gate state (1 or 0) is stored on the relevant channel.

The data sample pulses are for loading the sample and holds on the analogue channels. They are derived from the 1 of 8 decoder and the clock. To interface bet ween the TTL logic and the analogue switches comparators are used so that the analogue signals can be between -3 volts and +12 volts. All the comparator outputs are disabled when the clock is high by using the two resistors R65 and R53 to feed the reference input to the comparators, the clock signal being attached to R65. The binary codes representing the notes are converted into analogue voltages using the D-A convertor IC14.
As the memory address counter is incremented in data block the data in the note memory is converted into an analogue voltage and passed onto the correct analo gue channel by the comparator and analo-
gue switch. The D-A convertor has a cur rent output such that when the resistor R82 is added to convert it into a voltage, the output goes more negative with increasing binary codes. The op-amp IC29 (pins 12, 13 and 14) corrects this by inverting the out put of the D-A. It also allows the scaling or volts per octave of the keyboard to be adjusted, by varying the resistor in the feedback loop. Another function that the op-amp allows is the summing of voltages that have to appear on all the output channels at once.
There are three sources of voltage that are summed at this point, the tune voltage the vibrato voltage, and the pitch bender voltage. The tune voltage is derived from a potentiometer which draws its current from the voltage reference circuit. The vibrato voltage is generated by a standard triangle wave generator comprising a regenerative comparator IC29 pins 8,9 and 10 and an integrator IC29 pins 5, 6 and 7. The output is coupled to the summing amplifier via a pair of back to back electrolytics to remove any DC offset and a pair of resistors that allow their centre point to be connected to earth via an externa vibrato depth potentiometer.

Offsets around the circuit are trimmed out using the trimmer RV1 which obtains its reference from the diode D1. Since the offsets are predominantly in one direction due to Q 2 the offset control only works in the negative voltage direction.

employ the ARAK kit, no problems should arise at all. The PCBs are designed to fit their keys and comprehensive instructions are included with the kit.

We have not attempted to go into any detail with any other unit, simply because there is such a great diversity available on the market.

Setting Up

Once the components are all mounted on their boards, each section has to be set up. Let's start with the

PSU

Before the mains is connected to the PSU it should be thoroughly checked for shorts. The three low voltage fuses FS202, FS203 and FS204 should then be removed and the mains turned on. Now check the voltages across the smoothing capacitors C201, C202 and C203 which should be around $+8 \mathrm{~V},+17 \mathrm{~V}$ and -17 V respectively. If this is the case the +12 V regulator can be tested by replacing FS203. If this works the +5 V regulator can be tested by replacing FS202. As the +5 V regulator is supplied from the +12 V supply via R201 they must be tested in this order. Finally the -12 V and -3 V supplies can be tested by inserting FS204. It should be noted that the fuse holders may need bending to give correct contact to the fuses as they are very simple pressed steel pieces for PC mounting

The Logic Board

Check the logic board thoroughly for shorts on supplies. It is also wise to
'buzz out' every connection on the board to test for continuity which may well save a lot of fault finding time, but note that it will not guarantee correct operation as it does not test for shorts.

When these preliminary tests have been carried out and the power supply unit is functioning correctly. power can be applied to the logic board. Firstly only apply the +5 V supply until the TTL is known to be working correctly.

And a Log

Once the logic is working the analogue section can be tested. This time some setting up can also be done:

First check the positive reference is sitting at about 6 V 2 above earth. This level can be increased using the trimmer RV7 if a higher reference is required for any reason.

If the touch circuit is not to be used R63 should be removed as it will probably cause the output of IC29 pin 14 to saturate against one of the supplies as the output of the touch circuit is indeterminate.

R19 sets the maximum glide rate. The smaller it is the longer the maximum glide rate will be However, it is unwise to make it any smaller as the maximum range is set by the V_{EE} on SAT of the switching transistor, this only creating an offset when it is turned on and not when it is turned off. It may be necessary to increase the value of R19 although problems will probably occur on one channel only and will most likely be remedied by replacing the switching transistor for one with a lower V_{CE}

Fig. 4. (below) Component overlay of power supply board.
Fig. 5 (above) One of the two keyboard PCBs, designed to fit Araks keys.

CAPACITORS C1-3, C8, C9, C11, C12, C14, C15		IC9-11, IC13	74LS93
		1 Cl 2	74LS123
		IC14	MC1408L-8
C17, C18, C24	10 n polyester	IC15-18,	
C4	22p	IC31, IC32	74 LSOO
C5, C6	100p	IC19, IC20	$74 \mathrm{LSO4}$
C7, C10, C13, C16,		IC21	$\begin{aligned} & \text { 74LS366 } \\ & \text { (or 74LS368) } \end{aligned}$
C19, C25, C26	100n polyester		
C20, C21	33u	IC22, IC23	$74 \mathrm{LS10}$
C22, C23, C29	1 uO 35 V electrolytic	IC24	CD4066
C27, C28	330p	IC25	LM339
SEMICONDUCTORS	BCY72	IC26, IC27, IC28, IC30	TL084
Q2-6, Q8	BC107	IC29	LM4741
07	2N5163	D1, D3-7	1 N914
IC1	NE555	D8	LED
IC2	CD4099	Miscellane	
IC3, IC4	74LS85	MISCELLANE	
IC5-7	7489	37 way 'D' st	jack (3 off), SPDT
IC8	74LS155	switch (4 off).	tre off.

ELECTRONICS TODAY INTERNATIONAL - JULY 1979

Abstract

As a London-based magazine, we tend to concentrate our interest on exhibitions and electronics shows in the London area. Lest we become too parochial in our outlook, we decided to see what our fellow Europeans have to offer. We sent our roving reporter, Ian Graham, to Paris to see how the other half live.

I PROBABLY RECEIVE a couple of hundred Press releases every day. Most, concerning orders for electronic equipment won by companies or appointments to the top management of larger corporations or annual accounts, end up in the waste paper bin. Our reports on the cream of the rest appear monthly in our news pages. Occasionally I am invited to attend Press receptions. Again, few are interesting enough to prise us out of our armchairs. However, I did sit up and take notice when I was invited to attend an electronic components exhibition 'sur le continent'. The occasion was the Salon International des Composants Electroniques 79, held in Paris from the 2nd to 7th of April. Well, I thought about it, for several seconds at least, and decided that I had indeed been neglecting our European brothers.
On a sunny April morning I made my way from Charles de

The tops of stands stretch into the distance, in the biggest of the three exhibition halls.

Row upon row of stands full of goodies - paradise for the exhibition addict.

Gaulle airport to the exhibition site at the Parc des Expositions in the Place de La Porte de Versailles. My first impression as 1 emerged from the Metro station was of the unexpected size of the exhibition, which stretched over a staggering 63,000 square metres, split up into four sections. It would have taken several days to see everything on display, certainly more than the single day I had allowed myself.
Although it was essentially a trade show, the atmosphere inside was more akin to that of our own Ideal Home Exhibition. However, great expectations of an entertaining exhibition were not borne out by my admittedly swift tour of the stands.

A fun way of counting trains with photocounters. This stand attracted a great deal of interest from people who had probably never seen a photocounter before. This simple display illustrated the principle of the unit admirably for the layman.

Dry Stuff?

Unfortunately, few exhibitors showed any imagination in the presentation of their wares. Sound to light units and TV games naturally lend themselves to entertaining stands, but what about more mundane electronic components? General Instrument Microelectronics (a British firm, I'm happy to say) managed to make microprocessors a crowd puller (I wouldn't have thought it possible) by using one to control a noise generator. Pretty dry stuff, you might say. However, the generator was producing car engine, gear change, skid and crash noises for a model racetrack. Visitors could control the cars with conventional pistol grips. Well, perhaps a model race track has little to do with microprocessors and vice

A closer look at the electronic 'train' spotter above. One colour of wagon, in this case blue, can be counted, ignoring the train and all the other wagons.
versa, but it did attract interested visitors. Isn't that what it's all about?

Eyecatching Pyramids

Another firm displayed photocounters by using them to count wagons on a pyramid of model railway layouts. Talking about pyramids, yet another firm (American) presented a striking display, a pyramid of multimeters. They might uncharitably be called gimmicks, but they were eyecatching. Too many exhibitors relied on a glass case full of components accompanied by row upon row of standard black and white exhibition photos, none of which deserved or got a second look. Still, there were plenty of product demonstrations to keep me busy, as I made my way through the maze of stands. There were also lectures. How do you fancy soaking up 'Monolithic Memories' at half nine in the morning? No, neither did I.

Keithley's pyramid of multimeters. We strongly suggest that you don't try this with your Avo. 8's, or if you do, don't blame us if there are disastrous consequences.

Light Entertainment to Heavy Machinery

Although I found plenty to criticise at the Paris show, it put some of our own electronics shows to shame. Whatever you are interested in, from hi-fi to heavy machinery, there's plenty of it at the Salon, with some 1300 firms exhibiting. Hi-fi enthusiasts could spend a day or two wandering round the stands devoted to the love of their life. That goes equally well for every field of interest represented and there wasn't much that was not represented.

See You Next Year

My brief visit to the show was very enjoyable. There was plenty of food and drink to be had from seemingly numerous bars. The French exhibition staff were so good to me that I'm thinking of doing it again next year. If you feel like joining me, the Salon International des Composants Electroniques 80 will be held from March 27 to the 2nd of April. If you feel like nipping across the pond to pay your visit on Sunday, March 30th, don't......they're closed. ETI

MOTOR SPEED CONTROULER

A sophisticated unit that allows control of model electric motor speed and direction via a single radio control channel. The unit can supply peak currents up to 10 amps .

THIS DEVICE lets you use a single channel of your radio control system to control both the speed and direction of an electric model motor. The unit has been designed specifically to control the drive motor of our 1/16th scale Tamiya Leopard tank but can in fact be used to control any 4 V 5 to 8 V DC electric motor that draws peak current below 10 amps . The unit is ideal for use in model boats and large-scale land vehicles, and costs only a fraction of the price of equivalent commercial units.

The unit derives it's control signals from one of the output channels of a radio control decoder. It accepts standard positive or negative decoder pulses, which have widths variable over the 1 mS to 2 mS range, and is designed to work with systems having fixed frame (or frame repeat) periods of approximately 20 mS . The Strato $4+2$ system, published in the May and June editions of ETI, can be used with the controller.

The controller circuit incorporates only two pre-set pots. One of these is a 'set null point' control, and can be used to set the motor speed to zero in any desired position of the transmitter joystick control. The other pre-set is used to set the maximum speed of the motor.

The two pre-sets can be used to give a variety of operating modes. If they are adjusted so that the null point occurs at the centre of the joy stick travel, the motor will have identical maximum speeds in forward and reverse. If the null is set to occur towards the 'low' end of the joy stick travel, the motor will have a high maximum forward speed and a low maximum reverse speed.

Construction And Use

The unit is assembled on two PCB's. Board 1 holds all the logic, timing components, and the two pre-set pots, and board 2 holds the power driver transistors and the relay. Construction of board 1 should present few problems: note, however, that no provision is made on the PCB for decoupling capacitor C8, since we hooked this component into the wiring harness on our prototype unit.

Note when constructing board 2 that power transistor Q4 can either be mounted directly on the board in low- to medium-power applications, or can be mounted externally on a suitable heat sink (such as a vehicle chassis, etc) in high power applications. The relay used on this board is a 6 volt two pole changeover type with a coil resistance of 70R (see Buylines).

When construction is complete the two boards can be mounted in the model, preferably as far away from interference-generating motors and servos as possible. Board 1 is powered from the radio control decoder supply lines. The signals from the selected output channel of the decoder are fed to either the positive pulses or negative pulses input leads of board 1, depending on the pulse polarity of the particular decoder that is used.

Board 2 is powered from the motor supply leads. Note that the OV line of the motor supply must be made common with the OV line of the decoder. Also note that one lead must be connected between R6 on board 2 and pin 4 of IC1 on board 1, and another lead must be connected between R12 on board 2 and Q1 collector on board 1

The input pulses from one channel of the decoder, which have widths that are variable between 1 mS and 2 mS , are fed to either pin 1 or IC 2 a (negative input pulses) or to pins 12 and 13 of ICla (positive input pulses), and appear in positive-going form at the output of IC2a. This positive-going pulse is fed directly to pin 12 ot 1 C 2 b , and is fed in inverted form to pin 5 of IC2c: the inverted pulse is also used to trigger reference-pulse generator IC3 via Cl. This reference pulse has a nominal width of 1.5 mS , which equals the mid-band width of the input pulses from the decoder.

The positive-going reference pulse is fed directly to pin 6 of IC2c, where it is compared with the negative-going version of the input pulse on pin 5 . The action of IC2c is such that its output is normally high, but switches low for a period equal to the difference between the reference and input pulse widths only when the input pulse duration is less than that of the 1.5 mS reference pulse. This negative-going output pulse, which has a width that is variable between zero and a nominal 0.5 mS , is used to rapidly discharge C4 via D1 and thus cause the output of ICId to switch high and drive relay RLA on via Q1 and R6. This relay, which dictates the direction (forward or reverse) of the motor that is being controlled, is thus off when the input

HOW IT WORKS

pulses are greater than 1.5 mS (nominal), and on when the input pulses are less than 1.5 mS .

The 1.5 mS reference pulse of IC3 is inverted by IClc and fed to pin 13 of IC2b, where it is compared with the positive-going version of the input pulse from the decoder. The action of IC2b is such that it's output is normally high, but switches low for a period equal to the difference between the reference and input pulse widths only when the input pulse duration is greater than that of the 1.5 mS reference pulse. This negative-going pulse, which also has a width that is variable between zero and a nominal 0.5 mS , is fed to pin 9 of IC 2 d .

Thus, a negative-going pulse appears on pin 9 of IC2d if the decoder pulse is greater than 1.5 mS , or on pin 8 of IC 2 d if the decoder pulse is less than 1.5 mS . Consequently, IC2d generates a positive-going output pulse that has a width that varies from zero on a 1.5 mS decoder input pulse to 0.5 mS on a 1 mS or 2 mS input pulse.

This pulse is fed, via D2, to a pulse-expander circuit designed around IC4, which expands the pulse width by a factor of about 40 . The resulting expanded pulse is passed on to the external motor via transistors Q2 to Q4 and the contacts of the relay, and is used to give pulse-width or variable
mark/space-ratio control of the motor speed. Diode D4 is used to damp motor back-EMF, and lamp LP1 is used to minimise the effects of
interference-generating current surges.
In practice, RV1 is used to adjust the width of the reference pulse (nominally 1.5 mS) so that the motor speed is zero when the transmitter joy-stick control is in its central or null position, and RV2 is used to adjust the expansion factor of the pulse expander circuit and thus pre-set the maximum speed of the motor when the transmitter control is in its 'maximum' position.

BUYLINES

The relay is the only component that calls for comment here. It is a 6 Volt 2-pole changeover type with a coil resistance of 70R, and is available from Greenweld, 443 Millbrook Road, Southampton, SO1 OHX. The price is $£ 3.30$, including postage and the usual extras.

And this is how the boards should look once you've built them up. Check very carefully before switching on.

What A Turn On

When installation is complete, turn on all power switches, check that the unit functions correctly, and then adjust pre-set pots RV1 and RV2 for the required operation. To set RV1, move the transmitter joy stick to the required 'null' position, and then adjust RV1 for zero motor speed: under this condition the relay should be on the verge of switching between the on and off states. Next, move the transmitter joy stick fully forward, and adjust RV2 for the desired maximum motor speed. The setting up procedure is then complete.

Finally, note that the operation of the motor speed controller can be adversely affected by electrical interference from motors, etc. All motors in the model must therefore be adequately suppressed. A 100 n disc ceramic connected directly across the motor terminals works pretty well in most cases. ETI

a digitizer adds another dimension

The Bit Pad computer digitizer converts graphic information into digital form for direct entry into a computer. By touching a pen like stylus or a cursor, to any position on a drawing, diagram, photograph, or other graphic presentation, the position co-ordinates are converted to digital equivalents

Bit Pad interfaces with almost any micro computer.

- Bit Pad consists of a 15 " sq. digitizer tablet (11" sq. active area), a stylus, and a controller cabinet.
- Bit Pad costs only $\mathbf{£ 4 5 0}$ (excluding VAT). Fill in the coupon and we will send you full information and details.

Terminal Display Syslems LId.. Hillside, Whitairk Industrlaa Essate, Biackburn BB1 5SFF. Lancs. Eng|and

BRIDGE RECTIFIERS

						,	
		s005	4				
Trios in		sol	2	1008	4	PW02 6	6a 2000
wol in	100\% 30	S02	2	2004	48	PWos 6	on toov
${ }^{\text {wor }}$	2000 32		${ }^{24}$	400	. 60	PW0\% 5	50 goov
\%00	soor	${ }_{\text {s00 }}$	${ }_{2}^{24}$	500Y	. 70	${ }^{\text {PWWO }}$ 6	SA soor
${ }^{\text {wos }}$	buor 60		2			k005 2	${ }^{\text {d }}$
vile	doev.4	840				${ }_{k 01}$	
		11500	1.54		. 53	k02	now
		時					Dow
	${ }^{2000} 4$	${ }_{8800}^{63200}$			11.20		251 soou
				row	A2		
	880						
				$\frac{\text { moor }}{\text { sov }}$	$.90$		

SINGLE IN LINE PLUGS AND SOCKETS

NEW SIEMENS TURN-SLIDE SWITCHES

TTLs

ANSISTORS \&for full rang

RESISTORS

UIII

BRINDLEY TOOLS AND

LINEAR (for full range see catalogue)					
L¢339\#	60	Lmi310M	2.10	Mce61p	45
Im340t. 5	88	(m135)	1.30	mc1035 P	1.90
Lm340T-12	. 88	- ${ }^{\text {mas }} 145$. 45	Ca3000	3.30
Lm340T.15	. 88	L/m1496m	97	ca3001	4.25
Lm340T-24	. 88	(timisobm	1.94	CA3002	
(m34)P.5	. 56	(m18011)	2.25	Ca3000	3.30 4.60
Lm341p-12	. 56	LIm1808M	2.10	CA3007	4.15
Lm341P.15	. 56	LM1812M	6.20	CA3008	2.55
Im341P. 24	. 56	(1m 1820M	1.16	CA3012	1.65
Lm345k	6.97	1m1828	1.90	CA3013	1.85
Lm348 ${ }^{\text {m }}$. 95	Im1830\%	1.90	CA3D 14	2.20
LM350k	6.50	LM1845M	1.50	CA3018	75
Lm358 ${ }^{\text {ch }}$	60	tm18481	1.98	Ca3018	1.10
Lm360M	3.00	(1)1850\%	1.90	C43028	2.20
Lm3700	3.30	Lm1809\%	2.50	CA3020n	2.50
[m3714	2.35	(m1890)	P.O.A.	CA3021	2.40
[m373M	3.35	L/m2907M-8	1.00	Ca3022	2.20
L\%374	3.35	(m2917M-8	1.80	CA3023	2.20
LM377\%	1.80	Lm3301\%	. 60	C43026	. 70
Lm378M	2.40	LM3302\|	55	C43028A	90
Lm379s	4.25	Im3401\%	. 55	C 430288	1.25
LM380M-8	96	Lm3900\%	68	CA3029	. 75
Lm380M-14	1.08	LIM3905.	1.15	CA3029A	90
Lm381al	2.70	(\%)3999\%	78	Сазозо	1.50
LM3811	1.69	[m39114	1.10	cajosoa	2.20
LM382M	1.32	Lm3913!	P.o.a.	Ca3033	3.70
Lm384\|	1.55	(tm3914	2.79	CA3034	2.75
Lm386\%	88	LM4250CM	1.30	с 13035	1.95
LM387\%	1.10	(m)78LOSCK	. 35	CA3036	1.21
LM388\%	1.00	Lm78L12CH	. 85	CA3038	2.90
เ-3899	1.00	Lm78L15CH	. 05	Ca3038	4.10
(m392\%	. 6	¢m7at2ack	85	CA3039	
LM7018	2.99	(m7B05kc	1.55	CA3840	3.75
Lm701C	2.99	LM7812KC	1.56	CA3041	1.65
Lm702C	81	[1.7815kC	1.56	CA3042	1.65
Lm7031m	1.15	1m7824KC	1.56	Ca3043	2.20
[m709CH	. 70	Lm78L05cz	. 30	C43045	1.55
Lm709.8	. 50	1m7812cz	. 30	CA3046	
IM709-14	. 49	1m78L15cz	. 30	CA3047	2.20
Lm710C\%	. 67	Lm7BL24Cz	30	ca3047	3.70
Lmp10.14	48	mC667P	2.75	CA3048	2.45
(m711CM	48	mC671p	1.75	CA3049	1.98
tm716	1.00	MC672P	1.75	CA3050	2.66
1 1m73C\%	62	MC724P	2.10	CA3051	1.83
LM723C-14	45	MC789P	1.80	CA3052	1.78
Lm741CH	50	MC 790p	3.10	C13053	77
Lm741C.8	30	MC798p	2.20	Ca3054	1.10
Lm741C.14	60	MC799p	2.20	Са3059	2.10
Lm747CM	. 78	mC832P	. 70	ca3060	2.50
LM748-8	50	mC833P	. 70	C13062	3.75
Lm748-14	. 50	MCB36p	B2	CA3064	1.1
LM 900	50	MC837P	. 2	CA3065	1.10
LM911	. 50	MC83ap	2.35	CA3068	3.80
Lm921	50	MCB40p	1.65	CA3070	1.90
Lm923	. 50	MC844P	. 70	CA3071	1.90
LM1303M	1.15	mC346P	. 70	CA3072	1.90
Lm13094	1.52	mC348p	1.10	CA3075	
Lm1305*	1.52	MC849P	70	CA3076	2.12
Lm1307M	1.22	MC857P	85	cajos	
NEW LOW PRICE "KIM" - THE READY TO USE MICROPROCESSOR SYSTEM					
Not a kit but supplied fully tested, wired and guaranteed. Expandable Memory that grows with your system not just an evaluation kit. Starting with					
KIM 1 at ¢107.95 VAT inclusive you get immediate					
capability which can be expanded to a complete system capable of addressing up to 65 K BYTES of					
Memory					
KIM IS EXPANDABLE. Expand as you learn up to 65K. KIM 1 - Basic board with above features assembled					
KIM 1 - Basic board with above features assembled £107.95					
KIM $3-8 K$ static RAM card plugs into motherboard £140.35					
KIM 4 - Motherboard (takes $8 \times$ KIM 3) plus power supply					

40 CMOS CLOCKS

There are many ways of using the CD4001 and CD4011 CMOS ICs to make bistable, astable and monostable multivibrator circuits. Ray Marston presents the definitive work on the subject, with 40 practical circuits.

THE AMATEUR AND PROFESSIONAL circuit designer often finds himself in the situation where he needs to use a minimum-cost CD4001 or CD4011 CMOS pulse or clock generator circuit, or where he needs to use a few spare CMOS NAND or NOR gates from an existing circuit to make up a multivibrator that will meet his specific design needs. In either case, the designer will find a concise guide to practical NAND- and NOR-gate CMOS multivibrator circuits of inestimable value.

This article is just such a guide. It presents some forty different ways of using the low-cost CD4001 and CD4011 quad 2-input gate CMOS integrated circuits in bistable, astable and monostable multivibrator applications. All of the circuits shown can be operated over the full five volts to fifteen volts supply range when used with ' B ' series CMOS.

Fig. 1. Outline and pin connections of the CD4001.

THE CD4001 and CD4011 ICs

Figures 1 and 2 show the outlines and pin connections of the CD4001 and CD4011 integrated circuits. These two ICs are quad 2 -input gates. The CD4001 provides NOR gate functions and the CD4011 provides NAND gate functions. Fig. 1 shows the truth table of each of the four NOR gates of the CD4001. Note that the output is high if both inputs are low, but goes low if either or both inputs go high. Fig. 2 shows the truth table of each of the four NAND gates of the CD4011. The output is normally high and goes low only if both inputs are high.

Fig. 2. Outline and pin connections of the CD4011.

The CD4001 and CD4011 are very inexpensive ICs. They typically retail at about 16 pence each in one-off quantities (allowing for some variation between suppliers), which works out at about 4 pence per gate. They can be used in a wide variety of very useful two-gate multivibrator applications and are thus highly costeffective devices.

Bistable Multivibrator Circuits

The CD4001 and CD4011 can both be used in two-gate R-S (Reset-Set) bistable multivibrator circuits, but have quite different input triggering requirements. Fig. 3 shows the practical circuit and waveforms of a pulsetriggered NOR version of the bistable. The circuit has two outputs, a normal output from IC 1a and an inverted output from IC1b. When a positive-going trigger pulse which switches between roughly zero and full supply is applied to the IC1b input, the normal output sets high and locks in this state irrespective of any further signals at the input of 'IC1b. The output can only be reset low again by applying a positive-going pulse to the input of IC1a, at which point the output goes low and is then immune to any subsequent trigger pulses at the input of IC1a.

Fig. 3. Practical circuit of a pulse-triggered NOR bistable.
Note that the input terminals of IC1a and IC 1 b are tied to ground (the zero-volts line) via R1 and R2: these resistors can have any convenient values in the range 10 k to 10 M . If inputs to IC 1 a and IC1b are directcoupled from preceding logic networks, however, R1 and R2 can be omitted from the circuit.

Manual NOR Gate

Fig. 4 shows a manually-triggered version of the Fig. 3 NOR gate circuit. This type of circuit is often referred to as a 'noiseless' switch, since its output is unaffected by the contact bounce, etc., of its two control switches.

Fig. 4. Manually triggered NOR bistable.

NAND Bistable

Fig. 5 shows the CD411 NAND gate version of the bistable circuit. This circuit is almost identical with that of Fig. 3, except for the positioning of R1 and R2. Note, however, that the NOR gate circuit needs positive-going trigger pulses, while the NAND circuit needs negativegoing pulses, and that the set pulse is applied to IC 1 b in the NOR circuit, but to IC 1 a in the NAND circuit.

Fig. 5. A CD4011 NAND bistable, pulse triggered.

Manual NAND Bistable

Fig. 6. Manually triggered NAND bistable.
Fig. 6 shows the manually-triggered version of the NAND-type bistable. Note here that although R1 and R2 are shown as having values of 10 k , they can in fact have any resistance values from a few thousand ohms up to about 10 M , depending on the precise details of the specific application. This versatility leads to the development of the touch-triggered NAND bistable circuit of Fig. 7, in which R1 and R2 have values of 10M, and the circuit can be triggered by placing any resistance that is significantly less than 10 M (such as finger resistance) across the touch contacts. R3 and R4 are used in this circuit to protect the inputs of the two gates.

Fig. 7. Touch-triggered NAND bistable.

The bistable circuits that we have looked at so far all use same-polarity (either both positive or both negative) trigger signals. In some applications, however, it is necessary or convenient to use opposite-polarity signals to trigger the bistable, and this type of action can be obtained by placing an inverter stage in series with one or other of the normal bistable input terminals. Figs. 8 and 9 show two alternative circuits of this type.

Using opposite-polarity signals to trigger a 4011 bistable, Fig. 8 (above), and a 4001 bistable, Fig. 9 (below).

Fig. 10 shows alternative ways of connecting a 2 -input NAND or NOR gate so that it acts as a simple pulse inverter stage. These circuits are useful in a multitude of applications.

Fig. 10. Using a 2-input NAND or NOR gate as an inverter.

Basic 2-Gate Astable Circuits

The CD4001 and CD4011 can both be used in a variety of basic 2-gate astable multivibrator circuits. In these circuits the gates are connected as simple inverters, so the two types of IC give identical performances.

CMOS Astable

Fig. 11. Circuit of the basic 2-gate CMOS astable.
The most basic and useful 2-gate CMOS astable circuit is shown in Fig. 11. This circuit generates a decent square wave output, has excellent thermal stability and operates at about 1 kHz with the comfort values shown. The frequency is inversely proportional to the C-R time constant, so the frequency can be raised by lowering the values of either C1 or R1. In practice, C1 must be a non-polarized capacitor, and can have any value from a few tens of picofarads to a few microfarads. R1 can have any value from about 4 k 7 to 10 M . For variable frequency operation, wire a fixed and a variable resistor in series in the R1 position.

The output of the Fig. 11 astable circuit switches - (when lightly loaded) almost fully between the zero and positive supply voltage levels, but the junction of R1 and C1 is prevented from swinging below zero or above the positive rail levels by the built-in clamping diodes at the input of IC1a. This characteristic causes the operating frequency of the circuit to be somewhat dependent on supply rail voltages. As a rough rule of thumb, the frequency falls by about 0.08% for each 1% rise in supply voltage. Typically, if the frequency of this astable is normalised with a 10 volt supply, the frequency will fall by 4% at 15 volts, or rise by 8% at 5 volts.

Also, the operating frequency of the Fig. 11 circuit depends somewhat on the transfer voltage value of the individual gate that is used and can be expected to vary by as much as 10% between individual ICs. The output symmetry of the waveform is also dependent on the transfer voltage value of the IC and, in most cases, the circuit will give a non-symmetrical output. In the vast majority of 'hobby' and other non-precision applications, these deficiencies of the basic astable circuit are of little practical consequence.

Some can be minimised by using the 'compensated' astable circuit of Fig. 12, in which resistor R2 is wired in series with the input of IC 1a. This resistor can have any value between two and ten times that of R1, and its main purpose is to allow the R1-C1 junction to swing freely below the zero and above the positive supply rail voltages during the switching action and thus reduce the dependance of the circuit operating frequency on the supply voltage. Typically, when R2 is given a value ten times greater than R1, the frequency varies by only about 0.5% when the supply voltage is varied between 5 and 15 volts.

Fig. 12. A compensated astable circuit.
The basic and compensated astable circuits of figs. 11 and 12 can be built with a good number of detail variations. Some of these are shown in Figs. 13 to 18. In the basic astable circuit, for example, C1 alternately charges and discharges via R1. Figs. 13 to 15 show how the basic circuit can be modified to give alternate C1 charge and discharge paths.

Fig. 13. Modifying the circuit to give C1 alternate charge and discharge paths and produce a non-symmetrical output waveform.

Fig. 13 shows one way of modifying the stable so that it gives a non-symmetrical output waveform. Here, C1 charges in one direction via R1 and R2 in parallel, to give a high output, but discharges in the reverse direction via R2 only, to give a low output.

Fig. 14. Controlling the astable's on and off time.

On/Off Control

Fig. 14 shows how the circuit can be further modified by also wiring a diode in series with R2, so that the ON time of the output is controlled only by R1, and the OFF time is controlled only by R2. These two circuits can be made to give variable outputs by replacing either or both of their timing resistors with a fixed and a variable resistor in series.

Variable Symmetry

Fig. 15 shows how the astable can be modified to give a variable symmetry or M/S-ratio output, while maintaining a near-constant frequency. C 1 in this circuit charges on one direction via D1-R2 and one half of RV 1 , and in the other direction via D2-R1 and the other half of RV1. The M/S-ratio can be varied over the range 1:10 to $10: 1$ via RV1.

Fig. 15. Controlling the mark/space ratio.
Fig. 16 shows the circuit of a multi-tone push-button activated astable. Normally, when all push-button switches are open, R5 holds the input of IC 1a (and thus the output of IC1b) low. Resistors R1 to R4 all have values that are low relative to R 5 , so the circuit acts as a normal astable when any one of the push-button switches is closed. This circuit can be used in multi-tone musical instruments and gadgets, etc. and has the major advantage that it draws negligible current when in the standby mode. There is no limit to the number of push-button switches that can be used with the circuit.

NOTE:

Fig. 17. Frequency modulation of an astable.

Frequency Modulation

Fig. 17 shows how the astable can be subjected to frequency modulation or voltage control of frequency by simply feeding the FM or voltage-control signal to the input of IC1 a via a resistance that is much larger than R1 and Fig. 18 shows how the circuit can be further modified to act as a special-effect voltage-controlled oscillator that shuts off when the input voltage falls below a pre-set value.

Fig. 18. Using an astable as a voltage-controlled oscillator with an output cut-off.

Gated 2-Gate Astable Circuits

Fig. 19. A NAND astable with a normally-low output, gated by a high input signal.

All of the astable circuits of Figs. 11 to 15 can be modified for gated operation, so that they can be turned on and off via an external signal, by simply using a 2-input NAND or NOR gate in place of the inverter in the IC1a position and applying the input control signal to one of the gate input terminals. The CD4001 and CD4011 ICs can both be used in this type of application, but give quite different types of gate control and output operation. Figs. 19 and 20 show the two basic. versions of the gated astaile circuit.

Fig. 20. A NOR astable with a normally-high output, gated by a low input signal.

Note that the Fig. 19 NAND astable circuit has a. normally-low output and is gated by a high input signal, while the fig. 20 NOR astable has a normally-high output and is gated by a low input signal. Also note that, although $R 2$ is shown in the diagram as having a value of $10 \mathrm{k}, \mathrm{R} 2$ can in fact have any value in the range 10 k to 10 M and can be omitted altogether if the gate signal is applied from a preceeding logic state.

Note in the Fig. 19 and 20 circuits that the output signal terminates immediately the input gate signal is removed. Consequently, any noise present at the gate terminals of these circuits also appears at their outputs.

Fig. 21 (above) and Fig. 22 (below) overcome the problem of noise appearing at the gate terminals.

Figs. 21 and 22 show how the circuits can be modified to overcome this defect. Here, the gate signal of IC1a is derived from both the outside world and from the output of IC1b via diode OR gate D1-D2-R2. As soon as the circuit is gated from the outside world via D 2 the output of IC1b reinforces the gating via D1 for the duration of one half astable cycle, thus eliminating any effects of a noisy outside world signal. The outputs of the circuits are complete numbers of half cycles. Note that R2 is an essential part of these circuits.

Fig. 23 (top) and Fig. 24 (above) show manually-triggered astables with noise-elimination networks.

Figs. 23 and 24 show manually-triggered versions of the Fig. 21 and 22 circuits. These circuits are of particular value when they are used as low speed clock generators, operating at about 5 Hz : when PB1 is briefly stabbed, the generate a single clean clock pulse: when PB1 is held down, they generate five clean clock pulses per second.

Clock Generator Circuits

Fig. 25. Speeding up the rise and fall times of the astable output to produce clean clock signals.

The 2-gate astable circuit is generally not suitable for direct use as a clock generator with fast-acting counting and dividing circuits. Such circuits require the use of clean clock signals, with fast rise and / or fall times. The problem is that 2 -gate astables designed around ' A ' series or non-buffered CMOS produce clock outputs with rather slow rise and fall times, whereas 2-gate astables designed around buffered-output 'B' series CMOS produce outputs with good rise and fall times, but tend to produce 'dirty' clocking if there is the slightest trace of noice on their power supply lines

Fortunately, these problems can easily be overcome by wiring a couple of inverter-connected gate stages in series with the output of the astable circuit, as shown in the example of Fig. 25. These inverter stages speed up the rise and fall times of the astable output waveform and also produce effective level shifting between the output of the astable and the clock input terminal of any external device, thereby reducing or eliminating the effects of noise on the clock circuit.

The Ring-of-Three Astable Circuit

Fig. 26. The 'ring of three' astable circuit produced a very clean output waveform.

An alternative way of making a clock generator is to use the 'ring-of-three' astable circuit of Fig. 26. This circuit is similar to the basic circuit of Fig. 11, except that the positions of R1 and C1 are transposed, and the inverting input stage (IC1a) of the Fig. 11 circuit is effectively replaced by an ultra-high-gain non-inverting stage (comprising IC1a and IC1b in series) in the Fig. 26:
circuit. Because of the very high gain of its composite input stage, the Fig. 26 'ring-of-three' circuit produces a very clean output waveform, with excellent rise and fall times, and is directly suitable for use as a clock generator.

The 'ring-of-three' astable circuit can be subjected to all of the basic design variations shown for the 2-gate astable. For example, C1 alternatively charges and discharges via R1 in the same way as in the Fig. 11 circuit, so the circuit can be subjected to all of the variations shown in Figs. 13 to 15 . It can be designed in either basic or 'compensated' versions, etc.

Fig. 27. A gated NOR 'ring of three' circuit with a normally low output, gated by a low input.

The 'ring-of-three' circuit offers interesting possibilities when it is used in the gated mode, because it can be gated on and off via either its IC1b or IC1c. stages. Figures 27 to 30 show four variations on this theme.

Fig. 28. A gated NOR 'ring of three' circuit with a normally high output, gated by a low input.

Figs. 27 and 28 show alternative versions of the gated NOR-type 'ring-of-three' circuit. Both circuits need a 'low' signal to gate the astable on. Note that the output of the circuit is normally-low if the gate signal is applied to IC1c, or is normally-high if the gate signal is applied to IC1b.

Fig. 29. A gated NAND 'ring of three' circuit with a normally low output, gated by a high input.

Fig. 30. A gated NAND 'ring of three' circuit with a normally high output, gated by a high input.

Similar variations are found in the NAND version of the gated 'ring-of-three' circuit, as shown in Figs. 29 and 30. These circuit need a 'high' signal to gate them on, and have a normally-low output if the gate signal is fed to IC 1 b , or a normally-high output if the gate signal is fed to IC 1 c .

Monostable Multivibrator Circuits

Fig. 31. A 2-gate NOR monostable multivibrator.

The CD4001 and CD4011 can both be used to make an exceptionally useful type of 2 -gate monostable multivibrator or pulse generator circuit. The two basic versions of this circuit are shown in Figs. 31 and 32. In these circuits the duration of the output pulse is determined by the values of R1 and C1, and approximate one second per microfarad of C1 value when R1 has a value of 1 M 5 . In practice, C 1 can have any value from roughly $100 p$ to a few thousand u, and R1 can have any value from about 4 k 7 to 10 M .

One outstanding feature of these circuits is that the input trigger pulse or signal can be direct coupled and has no appreciable effect on the length of the circuit's output pulse: the trigger pulse can be shorter or longer than the output pulse. The NOR version of the circuit has a normally-low output, and is triggered by a positivegoing input pulse, while the NAND version of the circuit has a normally-high output and is triggered by a negative-going input pulse.

A signal feature of these circuits is that the pulse signal appearing at point " A " has a length that is equal to that of either the output pulse or the input trigger pulse, depending on which is the greater of the two. This feature is of value when making pulse-length comparators and over-speed alarms, etc.

The Fig. 31 and 32 circuits have only two significant defects. One of these is that the pulse length depends somewhat on the transfer voltage value of the individual IC that is used in the circuit. The other is that the pulse length also depends somewhat on the supply voltage value that is used with the circuit, just as the operating frequency of the basic 2-gate CMOS astable varies slightly with the supply voltage value. These defects are of little consequence in most practical applications, however.

If a number of the Fig. 31 and 32 circuits are to be interconnected to give cascaded delays (as in a delayed-pulse generator, for example), an inverter stage must be interposed between the outputs and inputs of successive monostables, to give correct-polarity trigger signals. Figure 33 shows the basic system.

Alarm Call Sound Generator Circuits

A single CD4001 or CD4011 IC and one or more transistors can readily be used to make a variety of types of very useful alarm call sound generator circuits. Figs. 34 to 41 show some practical circuits of this type. In all cases, the circuits can be powered from any supply in the range 5 V to 15 V and can be used with any speaker in the range 3 R to 100 R . Output powers range from tens to hundreds of milliwatts, depending on speaker impedances and supply rail voltages used, but can readily be boosted to tens of watts by using additional transistor power-boosting stages.

Fig. 34. Circuit of a NOR latching monotone alarm call generator.
Figs. 34 and 35 show two versions of a latching monotone alarm call generator. IC 1 a and IC 1 b are wired is applied to the circuit the IC1a-IC1b bistable selflatches and switches on the $1 \mathrm{C} 1 \mathrm{c}-\mathrm{IC} 1 \mathrm{~d}-1 \mathrm{kHz}$ astable tone generator. The circuit can be reset to the OFF state by momentarily closing PB1.

Fig. 35. Circuit of a NAND latching monotone alarm call generator.

Fig. 38. Generating a pulsed-tone signal with 6 Hz and 1 kHz NOR astables.

Fig. 39. Generating a pulsed-tone signal with 6 Hz and 1 kHz NAND astables.

Fig. 37. A NAND alarm call generator with auto turn-off.
The Fig. 38 and 39 circuits generate a pulsed-tone signal, in which a 1 kHz astable (IC1c and IC1d) is gated on and off by a 6 Hz astable (IC1a and IC1b) when a suitable control signal is applied to the input terminal of IC1a.

Finally, Fig. 40 shows a warble-tone generator, which switches through a 2-tone cycle once per second when a suitable control signal is applied to the inputs of IC1a and IC1c, and which generates a sound similar to a British police car siren. The depth of frequency variation of the circuit is determined by R3, which can have any value in the ăpproximate range 120 k to 1 MO . ETI

Fig. 40. A warble-tone generator - sounds like a police car siren.

QUARTZ LCD ALARM 6 Function

$£ 12.65$ Thousands sold!
Guaranteed same day despacth. M3 Hours, mins., secs
month, date, back light, 24 hour ALARM.
Adjustable stainless steel bracelet. Only 9 mm thick
£12.65

Guaranteed same day despatch

M4

SOLAR QUARTZ LCD Chronograph with Alarm
 Time Zone Facility

QU ARTZ LCD Alarm Chrono

22 function, 6 digit Hours, mins., secs. date, day of week, stopwatch, split time, alarm, second watch (dual time), backlight. FRONT BUTTON OPERATION.
$£ 22.65$
Guaranteed same day despatch metac \& $\boldsymbol{\wedge}_{\text {Price }}$

DIGITAL LED CLOCK

QUARTZ LCD

Automatic brightness contral. Weekend alarm cancel.
Features ind Sprecification
Hour mirnute display Large LED display with p.m and alarm on indicator 24 Hours alarm with
on off contiol. Display flashing for power loas indicator Repeatable 9.minute snooze. Auto matic brightness control Weekend alarm cancel
£10.95

Guaranteed same day despatch.

South of England 327 Edgware Road LONDON W. 2 Telephone: \{01\} 7234753

Only $25 \times 20 \mathrm{~mm}$ and 6 mm thick.
5 function. Hours, mins., secs., day, date and back light and auto calendar.
Elegant metal
bracelet in silver or
gold.
State preference.
£9.95
Guaranteed same day
despatch.

HOW TO ORDER

Payment can be made by sending cheque, postal order, Barclay. Access or American Express card numbers Write your name, address and the order detals clearly, enclose 30 p for post and packing or the amount stated We do not watt to clear your cheque before sending the goods so this will
not delay delivery. All products carry 1 year quaranteee and full money back 10 day , eassurance, not delay delivery. All products carry 1 year guaranteee and full money back 10 day reassurance Battery fitting service is available at our shons. All wrices inctude VAT
Trade enquiries: Send for a complete list of trade prices - minimum order value $£ 100$ Telephone Orders: Credit card customers can telephone orders direct to Doventry or Edyware Rd 24 hour phone service at both shops. 01-723 47530327276545 .

CALLERS WELCOME Shops open 9.30-6.00.

audiophile...

Hi-fi 79 at the Cunard Hotel attracted Ron Harris this month, as did a new record cleaner. Also a good chance to show how witty you are and win a free subscription.

A TALE OF MANY speakers is what the 1979 Spring hi-fi show turned into. Wandering the halls of the Cunard in search of the sonic grail you get buffeted from side to side by the alternate blasts of sound emanating from the demo rooms. After about two hours of solid listening 1 start to get ear fatigue and thingd son't seem the same somehow.

In consequence things get done in bursts of two hours at a time punctuated with clincking of refreshments. On the first pasś this year it became apparent that it was to be the Year of the Cone.

MA24U

Monitor Audio first. The MA2 is a 'domestic reference design and stands some 850 mm high. (About 33 in in English height). It will handle around 100 W of programme power, and produces a very nice sound indeed. At about $£ 300$ the pair they are going to give the competition a tough time.

Wharfedale have extended their ' E ' series upwards into an E90 design which is twice the size of the E70 nearly and more than twice as imposing. We've got no photographs of the beast simply because Wharfedale hadn't got any and haven't kept their promise to send us any since! So there. Its still a nice speaker anyway.

KEFs contribution to the herd was a small one. Tiny in fact. I'd go so far as to say it was so small I almost missed it. The Reference 101 is a bookshelf speaker that just might fit into a bookshelf. This was the real surprise of the show, however, as upon first encounter the almost universal reaction was to hunt the 105s that were not hiding behind the curtains.

The sound was open and spacious with good imaging and a convincing bass response. Very nice one Kef.

Celestions Follies

The Celestion stand was dominated by two huge double boxes which, when energised, did a quick 'room empty' job. The efficiency is somewhat high you see, and the amplifier somewhat powerful.

I think they're designed for PA and studio usage but they are finished in wood veneer and more than likely quite a few dozen will end up in living rooms. Big living rooms I hope. At their price and size they come up against things like the JBLs and for sound quality I personally prefer the P1s (that's what they're called by the way). Well worth the listen if you're in that market.

Above: the Monitor Audio MA2 loudspeaker. A highly recommended domestic design.

Below: the Celestion P I. It sounds as imposing as it looks.

Left: JVCs KDA8 computerised cassette deck. It fixes up its own own bias and equalisation levels, and can cope with metal tape.

Right: Goldring headphones! Superex classic CLis, a good smooth sound at a decent price. No, I'm not gonna tell you how much, find out yourselves!
Head Man
New for heads from Goldring is the Suprex headphone range. Amongst the four models they decided to import the Classic C1 - the middle of the group caught my attention most. They possess a nice smoothness to them that could be lived with. And they're comfortable. Koss take note please. Speaking as someone stuck with the habitual earache engendered by ESP 10s the Suprex could be very attractive if for no other reason than that.

On Your Metal
Scotch and JVC between them made an exhibition of the new metal tape formulations and the JVC KDA8 machine to use them. The KDA8 is quite a story in itself really. It sets up for each type offered to it by recording a test tone and optimising bias, sensitivity and equalisation automatically - it even rewinds to the beginning again and all in 25 secs. The demonstration was most impressive - as they usually are - and we hope to do more with the machine in the near future.

Before anyone asks I could find no possible reason to include the beautiful Felicity Kendal in this months Audiophile. She was not at the exhibition nor has she anything to do with any of the products featured here. That being the case I have no reason to mention the lovely lady and therefore I shall refrain.

This here picture advertises Marantz. But we couldn't find the Marantz stand!! Now with a picture like this, there just HAS to be a brilliant, witty, superb caption. But we can't find THAT either, 80 its open to you lot. The best wins a years subscription. Closing date June 30th. Mark envelopes 'Audiophile Caption.'

Below: No this mesn's at the show but it's worth the look anyway. A now record cleaner called a TANTRACK. Two arms are provided to cope with any turntable height, and the finish is a very posh steel and chicme. Availablie from Dorking Systems Ltd, 23 South Streat, Dorking, Surrey. Price £6.25 plus VAT.

More people in Britain buy

 than
 any other electronics magazine. Why?

Most magazines have their circulations independently audited according to very strict rules and ETI has just taken over as the largest selling magazine in the field in Britain. Starting as a small "also-ran", ETI has now overtaken mags originally selling four times the number of copies.

Find out why ETI is No. 1 for yourself. Could it be something to do that it's better than the competition?

THIS IS THE THIRD digital alarm clock that we are offering (we regret the earlier versions are no longer available). We have sold thousands and thousands of these and our buying power enables us to offer a first rate branded product at a really excellent price.

The Hanimex HC-1100 is designed for mains operation only $(240 \mathrm{~V} / 50 \mathrm{~Hz})$ with a 12 hour display, AM/PM and Alarm Set indicators incorporated in the large display. A switch on the top controls a Dim/Bright display function.

Setting up both the time and alarm is simplicity itself as buttons are provided for both fast and slow setting and there's no problem about knocking these accidentally as a 'locking' switch is provided under the clock. A 9 -minute snooze switch is located at the top.

A example of this clock can be seen and examined at our Oxford Street offices.

5190

(Inclusive of VAT and Postage)

To:
Hanimex Alarm Offer
ETI Magazine
25-27 Oxford Street
London W1R1RF
Please find enclosed my cheque PO for $£ 8.95$ (payable to ETI Magazine) for a Hanimex Digital Alarm Clock

Name
Address

Please allow 28 days for delivery

We feel we've got to tell you carefully about this offer which we're introducing for the first time. Why? Because our price is so enormously lower than anywhere else you may suspect the quality.

The exact same watch is currently being offered by another magazine as a special at $£ 24.95$ - some of the discounters are selling it at $£ 29.95$, the price to ETI readers for exactly the same watch is $£ 12.95$.

The display is LCD and shows the seconds as well as the hours - and minutes - press a button and you'll get the date and the day of the week

Press another button for a couiple of seconds and you have a highly accurate stopwatch with hundredths of a second displayed and giving the time up to an hour There is a lap time facility as well - and of course a back light.

Our Chrono comes complete with a high grade adjustable metal strap and is fully guaranteed
A sample of this watch can be seen and examined at our Oxford Street offices.

£12.95

(Inclusive of VAT and Postage)

To:

LCD Watch Offer
ETI Magazine
25-27 Oxford Street
London W1R 1 RF
Please find enclosed my cheque/PO for £12.95 (payable to ETI) for my LCD Chronograph

Name
Address

Please allow 28 days for delivery

DIGTAL ALARM MK2

Both EII and Hobby Efectronics have sold a lot of digital alarm clocks - over 10.000 in fact - maybe that's something to do with the fact that we sell at real bargain prices. Now we can offer you a truly modern, space age model

It includes all the facilities expected in a good design - fast, slow setting, snooze facility, etc plus two unusual features automatic brightness control and a weekend alarm cancel.

An example of this clock can be seen and examined at our Oxford Street offices.

(Inclusive of VAT and Postage)

To:
DIGITAL ALARM CLOCK MK2 Offer,
ETI Magazine
25-27 Oxford Street
London W1R 1 RF.
Please find enclosed my cheque/PO for $£ 10.50$ (payable to ETI Magazine) for my digital alarm clock

Name
Address

ALARM: CHRONO LCD

This new addition to our unbeatable selection of bargains is no ordinary LCD watch. It's a slim, multi-function, dual time chronograph alarm watch, no less.

This model will show hours, minutes, seconds, date, day of the week, stop watch, split time, alarm and alternate dual time zone - not all at once, of course. There is also a night light.

Hours, minutes, seconds and day of the week are displayed continuously, while the date will appear at the touch of a button. The day of the week is indicated by a flag. When used as a stopwatch, the maximum count is 0.1 secs. short of thirteen hours.

An example of this watch can be seen and examined at our Oxford Street offices.

£22.95

(Inclusive of VAT and Postage)

To:
ALARM/CHRONO LCD WATCH Offer, ETI Magazine,
25-27 Oxford Street,
London W1R1RF.
Please find enclosed my cheque/PO for $£ 22.95$ (payable to ETI Magazine) for my Alarm / Chrono LCD watch

Name
Address

Please allow up to 28 days for delivery

raDAR oral vomatar TRANSFORMERS

PRIMARY 220-240 50 HZ
ALTERNATIVE SECONDARY VOLTAGE AND CURRENT
AVAILABLE BY SERIES OR PARALLEL CONNECTION

Tpe	Yollage	Current	E	P/P	Type	Voltape	Current	f	P/P
OOCOH	$6+6$	0.51 each	1.58	50p	08FE24	$24+24$	0.154 asch	1.51	50p
0 OFED	$6+6$	0.61 each	1.90	50p	12FE24	$24+24$	0.24 axch	2.10	60p
12 FEO	$6+6$	14 sach	2.10	60 p	20FE24	$24+24$	0.41 each	274	70p
20 FEO	$6+6$	1.64 asch	2.74	70p	50FE24	$24+24$	0.8 ath	3.25	70 p
SOFEOS	$6+6$	3A sach	3.25	70p	60FE24	$24+24$	1.24 asch	3.98	85p
COFEOS		4. eath	3.98	85p	80 FE 24	$24+24$	1.50 esch	4.72	1.00
DGFED9	$9+9$	0.34 esch	1.58	50p	50 F228	$28+28$	0.75 asch	3.25	70p
$08 F 509$	$9+9$	0.54 each	1.90	50 p	60FE28	$28+28$	1.1A mach	3.98	850
12FEO9	9+9	0.754 each	2.10	60p	80 FE28	28+28.	1.44	4.72	1.00
20FE09	$9+9$	la meth	2.74	70p	20 FE 301	$30+30$	0.350 exem	2.74	70%
50FE09	9+9	2.54 esch	3.25	70p	50 FE 30.	$30+30$	0.754 asch	3.25	70 p
EDFED9	9+9	3a esel	3.55	85p	${ }^{\text {B0, }}$ 80FE30 ${ }^{\circ}$	$30+30$	18 axil	472	85p
06FE12	$12+12$	0.254 atch	1.58	50p	80 FE30	$30+3$	l.24act	4.72	
08FE12	$12+12$	0.34 sach	1.50	${ }^{50 p}$	WhariTom	9. Voliaen			
12 FE 12	$12+12$	0.51 asch	2.10	60p	Avainte 3	. 5. 6, 8,	12, 15.		
20 FE 12	$12+12$	0.84 eseh	2.74	70 p		$124-12$	A $15.0-15$		
50 FE 12	$12+12$	$2{ }^{2}$ esch	3.25	70 p	30 FE 30	$24+30$	14	3.55	
60 FE12	$12+12$	2.54 asch	3.98	${ }^{85 p}$	60FE36	$24+30$	2 A	4.76	85
80 FE12	$12+12$	3. asch	4.72	1.00	80FE36	$24+30$	3 A	5.95	1.15
06 FE15	$15+15$	0.2h mach	1.50	50 p	100 Ft 40	$24+30$	40	7.10	
DeFEE 15	$15+15$ $15+15$	0.25A Bach	1.90	50 p 60 p	conte It	Socsintir			
12 CE 15	$15+15$ $15+15$	0.44 вach	2.10	$60 p$ $70 p$	FEOC	686	1 A asch	210	60p
20 FE 15 50 FE 15	$15+15$ $15+15$	0.68 bach	2.74 3.25	70p	Fte9	969	14 esel	2.74	70p
S0FE15 60FE15	$15+15$ $15+15$	23 arch	3.25 3.98	85p	FE12	120-12	14 each	2.00	70 p
80 FE 15	$15+15$	34 日ach	4.72	1.00	FE15	15-0.15	1 A mach	3.25	$70 p$
06FE20	$20+20$	0.15 esch	1.58	50p	FE20	$20-0-20$	14 each	3.25	70 p
08FE20	$20+20$	0.24 mech	1.90	50p	60\%E52	26-0.26	14 each	3.98	1.00
12FE20	$20+20$	$0.25 A$ such	2.10	60p	60FE28	28-0-29	1A each	3.98	1.00
20FE20	$20+20$	0.54 mech	2.74	70p	60FE0	30-0.30	1 A asch	3.88	1.00
50FE20	$20+20$	1.24 erch	3.25	70 p	1005 F 26	26-0-26	24 math	5.15	1.15
60FE20	$20+20$	1.54 日ach	3.98	$85 p$	100FE30	$300-30$	24 nach	5.15	1.15
80FE20	$20+20$	24 asch	4.72	1.00	Ifare36	36-0.36	2A anct	5.15	1.15
		Yranstormer			Als cero	-	or Colt		
48 FE 12 66 FE 12 76 FE 12	$\begin{aligned} & 0-5-12 \\ & 0-6-12 \\ & 0-6-12 \end{aligned}$	$\begin{aligned} & 4 A \\ & 5 A \\ & 6 A \end{aligned}$	3.25 4.00 5.10	$70 p$ $85 p$ 1.00	FE01 FE03 FE05	$\begin{aligned} & 0.1 \text { wiw } \\ & 0.3 \text { winh } \\ & 0.5 m H \end{aligned}$		$\begin{aligned} & 0.26 \\ & 0.26 \\ & 0.30 \end{aligned}$	$\begin{aligned} & 20 p \\ & 20 p \\ & 20 p \end{aligned}$
FLADAR ELECTRIC P.O. BOX 19 WESTCLIFF-ON-SEA ESSEX, 0702-613314			TRADE ENQUIRIES WELCOME				PAYMENT TERMS C.W.O., Cheques Postal Orders Plemse add 8\% VAT After poat \& packing		
			PLEASE ENQUIRE FOR OTHER TYPES NOT SHOWN						

Your leading direct suppliers of

RESISTORS

Carbon Film
$1 / 2$ watt 1 to 10

1/2 watt 47 to 4M7	E12 values	$\begin{aligned} & \text { en. } 2 p \\ & \text { en } \end{aligned}$
$3 / 4$ watt 47 to 10	E24 values	en. 2p
1 watt 4.710 M	E12 values	ea. 5p
Metal Oxide -		
$1 / 2$ watt Electrosil TR510 to 1 M2% E24 values		
Metal Fitm		
0.4 watt Mullard MR25		
5.1 to 300K	2\%E24	ea. 5p
Wirewound		
1 watt 022 to 39	E12 values	ea. 15p
2.5 watt 1 to 1 K	E12 values (vitreous)	อ.. 26p
3 watt 1 to 10K	E 12 values	อ.. 16p
7 watt to 10K	E12 values	ea. 16p

Discs-VA 1039500 19p. VAT 1040130 . VA1 10015 19p. VA1 104 15-25, 59p
Plate and Bead (vacuum) types also available from 22p to $\mathbf{£ 4 . 8 0 \text { each } . ~}$

ELECTROVALUE FOR E.T.I. PROJECTS

Buying from Electrovalue can cost you even less when buying from either of our shops or catalogue No. 9. (See pages $85 / 86$ and discounts scheme) You will find pracically everyhing you wantin our Catalogue ar good prices backed by good senice lect. Add Bx
V.A.T. Add 8% to atl prices quoted here except those alteration without prior notice
Discounts non-allowable on Barclaycard of Access, and Pricas items pice Nof or with N

- We pay postage
in U.K. on cw order list value $£ 5$ and over. I under add 27p hand ling charge.

We give discounts On cw orders only 5% on list value £10 o more.
10% on orders lis
value $£ 25$ or more

We stabilise prices

By keeping to our printed price lists which appear, but three or four times a year

- We guarantee

All products brand new clean and to maker specs. No seconds, no surplus

- WE WILL SEND YOU OUR 120 PAG CATALOGUE NO. 9 FREE ON REQUEST. Write, phone or call for your copy together with latest price list

SOIl PROBE

Check out the roots scene with this ETI soil probe and have happier, healthier plants.

THIS COMPACT UNIT enables you to accurately check the moisture content of your plants' soil in one simple operation. Its range and sensitivity may be adjusted to complement the most fastidious horticulture and horticulturist. The unit works by measuring the resistance of the water in the soil between two probes and comparing it with a previously selected internal resistance adjustable between 1 k and 250k.

A Better Buzz

A small 9 volt battery powers the circuit which is built around a few cheap CMOS chips and a low power quad op-amp. To avoid undesirable electrolytic effects at the probes, the resistance bridge is AC
energised. We don't known if the plants like this but we have had no complaints. The probes may be made of any conducting material or just tinned copper
wires placed in the soil a few inches apart and a couple of inches deep. The circuit will tolerate wire leads up to a few feet in length and no special screening is required. A three level comparator whose pass range is internally preset indicates whether the soil is too wet, dry or OK and the required resistance is set by adjustment of a case-mounted potentiometer.

Construction and Use

If you want to use the case shown in the accompanying photographs, be prepared for some precision work as some of the internal pillars need to be removed and the components and PCB are a very snug fit.

Construction is straightforward provided care is taken and attention paid to the polarity and orientation of the diodes and capacitors. Wire links should be inserted first, note that some of these are mounted under the integrated circuit sockets, followed by the sockets themselves, resistors, capacitors, transistor and diodes. The ICs should be inserted last after the off-board components have been

connected. Also ensure that the flying leads have all been soldered into place and that the LEDs are connected correctly. A short lead, indent or flat on the plastic encapsulation usually indicates the cathode. We used miniature LEDs, two red and one green. However, any desired colour may be used. The prototype also featured a miniature 'keypad' type pushbutton for SW1 though this is only critical if the specified verobox is used. 2 mm sockets were used to connect the probe leads and the power source was a PP3.

In use, the unit is turned on; the probes plugged in, and RV2 adjusted until the OK LED lights. This setting may be noted and recorded on a calibrated scale. As the probes are simple and cheap to make they may be left permanently buried in the soil and a set made for each plant. facilitatingrthe repeatability of measurements

BUYLINES

All components should be readily available. If you use the PCB they should be as small as possible.

The circuit consists of an AC energised bridge whose two active arms are formed by R11 plus RV2 and the soil resistance between the probes. Its operation may be best understood by reference to the circuit diagram and Fig.1. ICla and IC1b are configured as an astable oscillator whose squarewave output (Fig. lb) clocks IC2a. This signal, inverted by IClc (Fig.1c), clocks IC2b.

The antiphase Q and \bar{Q} outputs of $\operatorname{IC} 2 b$ are buffered by IC4a and IC4b whose outpits (Fig. 1d and 1e) drive the resistance bridge formed by R11 plus RV2 and the soil resistance between the probes. Rll protects the amplifier outputs against inadvertent short circuits.
*The output of IC2a (Fig. 1a) is a squarewave of the same frequency, phase shifted by 90 degrees. This means that the edges of the waveform are coincident with the centre of the squarewave from IC2b (Fig 1d and le) and facilitates phase detection by IC3a and IC3b. When the soil resistance measured between the probes is equal to the resistance of R11 plus RV2, the signalls from IC4a and IC4b will cancel out. However, when an imbalance occurs, there will be an error signal whose phase will depend on whether the soil has a greater or lesser resistance than the other arm of the
bridge. The amplitude of the error signal will also diminish as the bridge approaches balance (Fig. 1f).

This signal is coupled via C5, R10 to amplifier IC4c and squared up to provide CMOS input levels by schmitt trigger IC4d, where it is input to IC3a and IC3b and clocked in by the signal from IC2a. The outputs of IC3a and IC3b will follow the phase of the input; reflecting the state of imbalance of the bridge, and either LED 1 or LED 3 will be lit (Fig. 1g).

The amplified signal from IC4c is also fed via C3, D1 and D2 to C2 which will acquire a charge proportional to the level of the input. This drives Q1 which controls the direct, clear, and set inputs of IC 3a and IC3b respectively. When the input signal is insufficient to turn on Q1, these inputs are driven to their active high state by R3.

This causes both LED 1 and LED 3 to extinguish and the condition (shown shaded in Fig. 1g) is detected by nand gate ICId whose output goes low causing LED 2 to light. The sensitivity of the circuit to this condition is preset by adjustment of RVI which controls the gain of IC4c. The required soil resistance is set by RV2. The circuit is powered from a 9 V battery decoupled by C6. A mid voltage point is provided by R12 and R13 decoupled by C4.

Fig. 1. Waveforms associated with the ETI Soil Moisture indicator, resulting in an LED display of whetper the soil is wet, OK or dry.

HOW IT WORKS

PARTS LST	
RESISTORS	
R1, 2, 6	820R
R3, 4, 10	100k
R5	10M
R7, 12, 13	10k
R8	1 M
R9	100R
R11	68R
POTENTIOMETERS	
RV1	470k preset
RV2	$250 k \mathrm{lin}$
CAPACITORS	
C1	1n
C2	$4{ }^{4}$
C3	10u
C4	22u
C5	220u
SEMICONDUCTORS	
IC1	4011 B
IC2, 3	4013B
IC4	LM324
Q1	BC108
D1, 2	IN4148
LED 1, 2, 3	$0.125^{\prime \prime}$
MISCELLANEOUS	
PCB	
SW1	SPST
VERO BOX	

An internal view of the Soil Moisture Indicator, showing the position of the four ICs.

Clef Kits

Designer apprőved quality kits for Electronic Musical instrument Construction.

JOANNA 7288 PIANOS Six and $71 / 4$ Octave Electronic Pianos with unique Touch Sensitive Action, as used in the P.E. JOANNA, which electronically simulates piano key inertia - a feature not available in any other design.
P.E. STRING ENSEMBLE The only kit available to the proven A. J. Boothman Design for this versatile String Machine.

Send S.A.E. to:
Clef Products (Dept E.T.I.)
16 Mayfield Road, Bramhall, Cheshire SK7 1JU

Play 9 Mastermind games anainst the computer or sel your own secret cade 3.4 or 5 digits. Free Mini mastermind with each order

STEREO FUNCTION MODULE CP-FG 1

For comprehensive hi and lo filtering and control of stereo separation (image width) mount a CP-FG1, 2 switches and 3 pots on a Magnum CP-MPC2 Interconnection Board. This fully encapsulated function module incorporates some unique features. Two stereo filters ("rumble" and "hiss") are provided, each with its own slope control and choice of three 'cut-off frequencies. Stereo separation control allows variation of the apparent image width to suit listening conditions - if you can't place your speaker where it really ought to be, let the CP-FG1 do it for you! All modules are, of course, available separately - Magnum boards aren't essential but coupled with their specially designed P.C. mounting pots and switches, they are an easy way to build the system of your choice
CP-FG1 - £13.25 inc. (U.K.). £15.25 incl. (Export).
Also available: Pre-Amplifiers, Filters, Power Amplifiers, Peak Programme Monitors. Compressor/Expander, Active Crossovers, Power Supplies, plus all pots, switches, etc.

TRETUT RUDILLtU.
 DEPT. ETI7, 13 HAZLEBURY CRESCENT LUTON, BEDS. LU1 1DF
 TELEPHONE: 058228887
 SEND LARGE S.A.E. FOR DETAILS

What to look for In the August Issue: On sale July 6ih

STRING THING

To call this project an electronic piano would be an injustice. To call it a string ensemble likewise fails to explain all the mysteries and beauties awaiting the builder once this beast is activated. Yes it can be a piano. Yes it can play string sounds.

The designer (Tim Orr who also can be blamed or praised for the Transcendent 2000) wanted to call it a "Digital Multi-

Voice String Synthesising Keyboard Instrument'. But we wouldn't let him. We couldn't think of a better title ourselves, but we still wouldn't let him. It's the way we are.

Being fitted with a CCD choraliser allows our String Thing to sound like several of 'em at once. Why not tune in and be amazed next month?

BENCH AMPLIFIER

One for the workshop or table top. How many times have you been half-way through a project and needed to test something, somehow, somewhen. And that of course is exactly when it occurs to you that there is nothing around suitable.
A bench amp is worth its weight in soldering ten times over, and if you DON'T build this you will regret it.

MICROSENSE

MPUs are definitely for you. Oh yes they are, don't give me that old line about them being all covered in mystery and incomprehension. MPUs are nice friendly little chips, and next month we've got the definitive article to prove it. Based on a book by John Miller Kirkpatrick it takes you through the subject from scratch in a thorough but light-hearted manner.

LED AUDIO DISPLAY

A really lovely little design to amaze, astound and hypnotise the entire universe. This project takes the input from your hi-fi or TV or budgie and turns it into a dazzling and bemusing shifting pattern of light upon a LED matrix.

Build it any size you like it'll add a bit of visual spice to the hi-fi rack - or simply keep mother-in-law quiet while you nip off down the local.

ZENER DIODES (400 mW)2.7V 1033 V			8 p	OPTO/ oisplar	LIMEARS			$\begin{aligned} & 18 p \\ & 60 p \end{aligned}$	$\begin{aligned} & 74165 \\ & 74166 \end{aligned}$	$\begin{aligned} & 36 p \\ & 75 p \end{aligned}$	$\begin{aligned} & 4048 \\ & 4049 \end{aligned}$	$\begin{aligned} & 50 p \\ & 25 p \end{aligned}$	$\begin{aligned} & \text { BC147 } \\ & \text { BC149 } \end{aligned}$	8p	$\begin{aligned} & 8 f 115 \\ & 8 F 167 \end{aligned}$	$\begin{aligned} & 35 p \\ & 25 p \end{aligned}$	51P33 TIP34A	$\begin{aligned} & 60 \mathrm{p} \\ & 40 \mathrm{p} \end{aligned}$			
			710CM		30p	7444															
				2 5 5777 50p	741.8	22 p	7445	64 p	74173	80 p	4050	25p	BC157	8	Bf 173	20p	TIP354	230 p			
				OCP7.1 70p	7476-14	$45 p$	7446	50p	74174	60p	4066	35 p	BC158	8 p	8 F 178	27p	TIP36A	290p			
VERO BOAROS (0.1" Copper)				ORP12 70p	$748 \mathrm{C}-8$	30 p	7447	50p	74175	36 p	4069	12p	8C159	8 p	Bf 179	25p	TIP4IA	60 p			
$2.5^{\prime \prime} \times$				$51 p$	02704 100p	CA3011	80 p	7448	50p	74176	50 p	4070	12p	BC168	8 p	BF180	8 p	T1P42A	60 p		
$3.75{ }^{\prime \prime} \times 5^{\prime \prime}$			60p	01707 100p	CA3018	80 p	7450	10p	74177	50 p	4071	12p	8 C 170	8 p	BF181	$16 p$	T1P2955	65 p			
			. $125^{\circ \prime \prime}$ \% $2^{\prime \prime}$	CA3028A	85	1451	12 p	74180	20 p	4012	12p	BC171	8 p	BF182	20 p	TIP3055	55p				
				LED:	CA3036	120p	7453	12p	74181	$66 p$	4073	16 p	8C172	8 p	Bf 183	$20 p$	27×108	12p			
				Red ${ }^{\text {dp }}$	CA3046	75 p	7454	$10 p$	74182	25p	4081	14p	$8 \mathrm{C173}$	6 p	8F184	20p	27×109	12p			
RESISTORS (1/4 watt) 10 ohms to 1 Mahm				1p	Green 13p	ca3054	110 p	7460	14 p	74190	$36 p$	4082	14 p	8C182	8 p	8F185	20 p	21×300	14 p		
			Yellow 13p		СА3080	70p	1470	16p	74191	70p	4086	60 p	BC183	8 p	BF194	8 p	210500	$16 p$			
PRESETS [Horizontal]				125"c11p 3p	CA3140E	51 p	7472	$20 p$	74192	$25 p$	4510	60 p	BC184	9 p	BF196	8 p	2N706	10 p			
100 ohm to 1 Mobm			5p	$2^{\prime \prime} \quad \text { Clip }$	Lm301an	28p	7473	$12 p$	74193	60 p	4511	70 p	BC186	19p	BF197	8 p	2N1131	15p			
			Lm308H		64 p	7474	12p	74194	55 p	4516	64 p	BC187	19p	BF 198	8 p	2N1132	24p				
					Lm380M	61 p	1475	25p	74195	50 p	4518	$65 p$	8C207	8 p	BF200	33p	2W1302	38 p			
POTENTIDMETEAS (carbon) I Konta to 2 Mohess log.linear				$\begin{aligned} & 22 p \\ & 50 p \end{aligned}$		LM381\%	120p	7476	25p	74196	50 p	4520	65 p	BC212	10p	BF224	18 p	2 W 1304	50 p		
					ME555	25 p .	1480	20p	74197	32p	4528	80 p	BC213	10 p	BF257	14p	2W1305	40 p 380 p			
5 Kohm to 1 Mohm \log with switch			DIODES		HE556	60 p	1485	60 p	74198	100 p		ap	8 C 214	10 p	BF258	28 p	2 W 1306	$38 \mathrm{p}$			
				BY127 10p	T84641-811		7486	10 p	74199	90p	TRANSI		8 C 237	15p	8 8259	15p	2 W 1308	50p			
CERAMIC CAP (5OV)				0447 8p		200p	7490	25p			${ }_{\text {AC }} 126$	17p	${ }^{8} \mathrm{C} 238$	15p	8 FR39	18 p	2 N 1613	18p			
22pF to 50,000.pf			3p	$0 \mathrm{A91}$ 8p	T84800	70p	7491	25p	CMOS		${ }_{\text {ACl }} 127$	17p	8 8301	25p	BFR40	18p	2 N 1711	20p			
			0 A 200 6p	tbabio	100p	7492	15p	4000	12p	${ }_{\text {AC }} 128$	17p	8 C 303	$25 p$	BFR79	18p	2 W 1893	25p				
			0 A 202 9p			7493	15 p	4001	12p	128/176		BC328	16p	BFRBO	22p	2 L 2217	24 p				
POLYEStER CAP [250y				IM4148 4p	ITL		7494	25p	4002	12p	\#P	35p	BC338	$16 p$	BFx 29	20p	$2 \mathrm{2N219}$	$21 p$			
.01, .015, .022, 033, .047, .068, . 1 uf				5p	1 N 916 5p	7400	10p	7495	25p	4006	$68 p$	AC141	24p	8 C 547	$11 p$	BF×30	32p	2N2369	10p		
			6p	1144001 4p	7401	10p	7496	25p	4007	14p	${ }^{\text {AC }} 142$	18 p	BC548	$11 p$	BF×85	20p	2 N 2484	18 p			
				12p	1\%4002 4 P	7402	10 p	7497	120p	4008	64 p	AC151	2p	BC549	11p	$8 \mathrm{~F} \times 86$	27p	2N2905	22 p		
$\begin{aligned} & 1 \quad \mathrm{uF} \\ & 2.2 \mathrm{uF} \end{aligned}$			15p	IN4003 5p	7403	10p	74100	40p	4009	25p	${ }^{\text {AC153 }}$	22p	BC557	11p	BF $\times 87$	20 p	2 N 2906	10 p			
			20p	1 144004 6p	7404	12p	74105	40p	4010	$35 p$	AC176	16 p	$8 \mathrm{Cr30}$	60p	BFY50	15p	2 N 2907	12p			
$2.2 \mathrm{uF}$				114005 7p	7405	12p	74107	10p	4011	12p	${ }_{\text {AC }} 187$	23 p	8 CY 34	66p	$8 \mathrm{FY51}$	15p	2 N 2926	10 p			
ELECTRDLYTIC CAP 25%				IM4006 8p	7406	12p	74109	30p	4012	12p	AC188	20p	BCY59	16 p	BFY53	17p	2 W 3053	15p			
				1 144007 9p	7407	24 p	74110	46 p	4013	30p	A0149	65p	8 CY 70	14 p	BSX19	20p	2 W 3054	50 p			
68 uF, 100 uF				6p	1 115400 13p	7408	12p	74118	75p	4014	60 p	40161	35p	8 Cr 71	isp	BSx20	18p	$2 H 3055$	50p		
			68 uF, 100 uF 150 uF				1155401 14p	7409	12p	74121	20p	4015	50p	00162	35 p	80115	30 p	8 U 205	130p	2 W 3702	8 p
							1\%5402 15p	7410	12p	74122	20p	4016	30 p	AF114	23p	80121	70p	Bu208	150p	2 W 3703	8 p
220 uF				1月5404 20p	7411	15p	74123	40p	4017	50p	AF\|18	30p	80123	60p	OC25	76p	2 F 3704	8 p			
330 uF 11					7412	15p	74125	35p	4018	$55 p$	AFi25	22p	80124	77p	OC28	70p	2N3706	8 p			
$\begin{aligned} & 470 \mathrm{uF} \\ & 1000 \text { uF } \end{aligned}$			$14 p$		7413	25p	74126	35p	4019	40p	AF126	22p	80131	35p	0 C 35	70p	2H3707	8 p			
			22p		7414	45p	74132	45p	4020	50p	AF127	22p	80132	35p	0C71	16p	$2 \text { 24 } 3710$	8 p			
				7416	24p	74141	35p	4021	60p	AFI39	32p	80135	30p	0C72	32p	2N3711	${ }^{8} \mathrm{p}$				
			voltage REGULATORS	7417	24 p	74142	180 p	4022	50 p	AF186	54 p	80136	30 p	0 C 84	42p	2N3772	100p				
			7420	12p	74145	30p	4023	12p	AF239	40p	80137	30p	TIP 29	40p	243713	$280 p$					
					320 H -05 40p	7421	20p	74150	65p	4024	45p	ASY53	33 p	80.138	30p	TIP30	35p	2N3866	54 p		
				320H-24 40p	7422	15p	74151	45p	4025	12p	ASY54	33p	80139	30 p	TIP31	45p	2 N 3904	8p			
DIL SOCNETS ${ }^{\text {a }}$ (BRIUGE				7805 60p	7427	10p	74153	45p	4021	30p	ASY55	33 p	80140	30 p	T1P32	45p	2N4061	12p			
8 pin	10p	hectifier		7812 60p	7428	25p	74154	25p	4028	45p	BC107	8 p									
14 pin	12p	1A/50Y	22p	7815 60p	7430	12p	74155	45p	4029	50 p	$8 \mathrm{8C108}$	8 p									
16 pill	13p	14/100V	24p	7818 60p	7432	10 p	74156	25p	4030	30 p	8 8C109	${ }^{8 p}$									
18 pin	18 p	1A/200Y	27p	7824 60p	7433	24 p	74157	25p	4035	60p	$8 \mathrm{Cl13}$	10 p			case ad	p for					
22 pin	22p	14/400V	32p	7905 80p	7437	10 p	74160	55p	4041	57p	8 C 117	12p									
24 pin	24p	2A/50Y	34 p	7912 80p	7438	10 p	74161	20 p	4042	54 p	$8 \mathrm{BC119}$	25p					1				
28 pin	28p	2h/100v	38 p	7915 80p	7440	10p	74162	55p	4043	54 p	${ }^{8 C 140}$	27p					\checkmark				
40 pin	40p	2h/200V	44 p	7918 80p	7441	46p	74163	$35 p$	4044	50 p	${ }^{8 C 142}$	12p									
		2h/400V	$48 p$	7924 80p	7442	$40 p$	74164	60 p	4047	80 p	BC143	12p	$62 N$	AO	$\begin{aligned} & \text { ROA } \\ & \text { prices } \end{aligned}$	ON T inc		OHN			

IBM 3740 COMPATIBLE DISC SYSTEM

The twin drives and controller are housed in a metal saddle maintaining an integrated configuration, one of the major features of the PET. Connection is via the PET memory expansion port and the system comes complete with a PROM which boots the disc resident P-DOS into RAM. Control of the disc system via PET BASIC USR instruction with simple commands from either the keyboard or under program control.

COMPLETE SYSTEM $£ 1,900$

Other accessories: Saddle conversion package $£ 180$, S100 Buff expansion £96, Voice recognition £176, Voice response $£ 182$, Robot control $£ 236$; Quum Printer £1,400.

The following disc system commands are available LOAD, SAVE, CREATE, DELETE and CATALOGUE

The file management system provides for up to 8 files to be opened concurrently. Files can be opened in READ, WRITE, UPDATE and
APPEND mode. The user may write his own disc system modules to expand the facilities of the disc resident system

LIFE OUT THERE?

Is there anybody there? Does anyone care? Yes to both. Read on . . .

ABOUT 20 YEARS AGO scientists, realised that their equipment might be able to detect suitably powerful radio emissions from intelligent beings on planets in other solar systems which may be many light years away from us. Attempts to detect Extra-Terrestrial Intelligence (appropriately abbreviated to ETI!) have already been made in the USA, Canada and the USSR without success, but much more work with larger aerials is required to provide workers in this field with a reasonable chance of success.

Apart from the Search for Extra-Terrestrial Intelligence (SETI), drawings and radio signals have been sent into space outside the solar system in the hope that they will eventually be detected and understood by intelligent beings many light years distant. Unfortunately the chances of two way communications with such beings are very remote, since the nearest star is a few light years away and most planetary systems are at much greater distances. Thus anyone sending a message from the earth to anywhere but one of the very nearest of the stars would be dead by the time any reply could be returned to the earth.

Attempts have also been made to detect signs of life within the solar system. In particular, the Viking spacecraft which landed on Mars conducted prolonged tests
to try to detect life or the chemicals associated with life. Although no organic molecules that could be the past or present constituents of living things were found and the results were generally rather discouraging, they were certainly not conclusively negative as regards the possibility of life on Mars.

Communication Techniques

It seems likely that there are three possible ways in which we may be able to communicate with intelligent beings from outside the solar system. The first way involves a direct meeting of space vehicles or a landing by them on the earth. Unless the other beings have a longevity which far exceeds that of man, the journey time would make this method quite impossible. Many people do not fully appreciate how much vaster are the distances involved in interstellar space than those within the solar system. Light takes about 8 minutes to reach us from the sun, but about 180000 years to cross our galaxy and some thousands of millions of years to reach us from the farthest known objects.

As we require something which will convey information quickly, the obvious thing to use is electro-magnetic

Fig. 1. Some of the most important factors which determine the choice of listening frequency. As signals from other stars would be very weak, it is important to choose a frequency where the natural background noise is relatively small. Most SETI work has been done in the relatively low total noise region of 0.5 to 10 GHz , christened the 'Water Hole', since it contains frequencies strongly associated with water. The favourite frequency is 1.42 GHz, emitted when the electron in a hydrogen atom flips over, reversing its direction of spin.

The noise contributions shown are - the 2.76 K cosmic background radiation (remnants of the big bang), atmospheric noise (as water and oxygen absorb and reradiate energy), quantum noise associated with the arrival of each photon in the atmosphere and synchrotron radiation emitted by particles spiralling round galactic magnetic fields (the level varies with galactic latitude. The extreme lines shown are for galactic latitudes of 10° and 90°).
signals which travel at the speed . ht. We can only send signals by this technique and n_{c} material objects, but generally it is far more sensible to send information on how to construct an object rather than to send the object itself over such vast distances. Should one use light, infra-red, radio waves or some other form of electromagnetic radiation? Radio-waves are to be preferred, since the energy required per transmitted photon is relatively low.

The third possible communicating technique involves the acceleration of sub-atomic particles to velocities very near to the speed of light, but as far as is known this technique has not yet been tried. If particles which can travel faster than light (known as 'tachyons') are ever discovered, one can only wonder whether they could be used in an extra-terrestrial communications system if they can be produced relatively easily; however, at the moment such a suggestion is nothing more than pure speculation.

It has been suggested that we should avoid transmitting any signals into space which would inform possibly hostile intelligent beings of our location. It is generally. felt, however, that we can take comfort from the fact that any intelligent beings would be more interested in sharing information with us and co-operating with us as far as possible rather than in attacking us as in science fiction stories. In any event, it seems likely that it would take them so long to arrive here that our civilization would be in a very different state by the time they could reach us.

Basic Problems

Let us first consider the basic problems associated with receiving radio signals from outside the solar system, since any of our attempts to send messages are not likely to bring any result for an enormously long time. Any radio signals reaching the earth from outside the solar system are likely to be extremely weak owing to huge distances involved and it therefore follows that SETI projects require the use of the largest radio telescopes in the world.

One is left with decisions to make on the direction in which one should point the telescope, the frequency or frequencies which one should attempt to receive, the bandwidth one should use and perhaps even the time at which one should attempt to receive any transmissions. In the work on SETI which has been performed up to the present time, the telescopes have usually been pointed towards some star in our galaxy which is not excessively distant and which astronomers feel may possibly have a satellite system on which life could have evolved in some form or other.

In general astronomers have concentrated their searches in the regions of stars of the same or similar spectral classes as the sun. It has been felt that if a star has a luminosity much greater than that of the sun, then the lifetime of any planetary system associated with that star is probably too short to have enabled life to have developed to the point where intelligent civilizations have evolved. Stars of luminosity much smaller than that of the sun seem to have rather violent coronal activity which would probably result in any associated planetary system being rather inhospitable to most imaginable forms of life. Other stars have departed from the main sequence as a result of a super-nova or nova explosion and SETI workers have tended to disregard these
because it seems doubtful whether any living species could survive the catastrophe event of such an explosion in the star.

Signal Types

What types of signal should we expect to receive from other planetary systems and how could we recognise such signals as originating from intelligent life? The SETI workers are basically searching for coherent signals, possibly modulated. For example, our own radio transmissions have a coherent carrier wave, although the modulation present inevitably involves a finite bandwidth. The presence of this type of signal would almost. certainly indicate it is not of natural origin and hence would imply the existence of intelligent life elsewhere in the universe.

There are three basic types of signal from other planetary systems which we may be able to detect. The first type of signal is leakage of a șignal into space in just the same way that our own radio and television signals leak away to a greater or lesser extent through our ionosphere. Indeed, a spherical wave of radio signals of a fairly wide range of frequencies has been travelling away from the earth over a period of rather over 50 years. In the case of more highly developed societies, it seems probable that they have been transmitting such signals for a far longer period (although one hopes they have not been stupid enough to destroy themselves by nuclear war).

A second type of signal we may possibly be able to receive is some form of inter-stellar or even inter-galactic communications between highly developed communities. Such reception would be by chance and it must be assumed that highly developed communities would employ very high gain antennae which are unlikely to be pointing towards our solar system. Thus the chances of intercepting such messages cannot be regarded as being very high.

The third type of signal we may hope to receive is an intentional one directed at our solar system by a society in a distant stellar system in order to notify us of their presence. It is also possible that such a society may send signals out isotropically (that is, all directions at equal intensities), but unless they have transmitters of extremely high power, such signals would be so weak at the earth that it is doubtful if we could detect them.

It is difficult to make an estimate of the optimum bandwidth one should select for SETI work. Narrow bandwidth receivers (possibly with a bandwidth of a few Hz) enable very weak signals to be detected, since the narrower the bandwidth of the chănnel used, the less the external noise which can penetrate into that channel. (Someone once said: '"The wider you open the window, the more the amount of dirt that flies in," and this certainly applies to radio bandwidths). Unfortunately if one has a very narrow bandwidth channel, it takes a very long time to examine an appreciable range of frequencies. Modern plans are to use both narrow and wide band search techniques together with spectrum analysers for the simultaneous examination of numerous frequencies by computer techniques.

The Drake Equation

Before spending millions of dollars on SETI programmes, one would like to have some approximate
estimate of the number of civilizations which are likely to possess the technology to be able to communicate with us. Such an estimate can be obtained by the use of the Drake equation. Professor Frank Drake is one of the leading SETI workers and is now Director of the National Astronomy and Ionosphere Centre of Cornell University. His equation reads:

$$
N=R^{*} f_{p} n_{e} f_{1} f_{i} f_{c} L
$$

where N is the number of existing civilizations possessing the interest and capability for inter-stellar communications
R^{*} is the mean rate of star formation averaged over the lifetime of a galaxy
$f_{p} \quad$ is the fraction of stars with planetary systems
$n_{e} \quad$ is the mean number of planets in each system with an environment favourable for the origin of life
$f_{1} \quad$ is the fraction of suitable planets on which life does develop
$\mathrm{fi} \quad$ is the fraction of life bearing planets on which intelligence together with manipulative abilities appears
$f_{c} \quad$ is the fraction of the planets evolving advanced technical civilzation
$L \quad$ is the lifetime of the technical civilization (perhaps very difficult to estimate!)

The estimate obtained from the use of this equation will obviously vary widely according to the estimated values employed. However, most estimates now place the value of N around one million, these being distributed amongst approximately 500 million stars in our galaxy.

SETI History

Perhaps the first important paper on SETI work appears in Nature in 1959 under the title "Searching for Interstellar Communications" by Philip Morrison and Guiseppe Cocconi. It is interesting to note that they suggested the use of the 1.420 MHz hydrogen

Fig. 2. On November 16 th, 1974 , the Arecibo telescope was used to transmit a message at 2380 MHz towards the Great Cluster in Hercules, Messier 13, some 25,000 light years away.

The message, 1679 bits long, can be decoded by breaking it into 73 consecutive groups of 23 characters and arranging these groups in sequence under one another as shown. The first piece of information consists of the first ten digits in binary form - the numbering system to be used. It continues with the atomic numbers of five common elements found in living things. Information on sugars and DNA follows, with a sketch of a human being and the solar system, ending with information about the Arecibo telescope.

Encoding information in various types of message poses some interesting problems in order that decoding can be carried out as easily as possible by intelligent remote beings.
frequency, since it is a unique standard frequency which must be known to every observer in the universe.

Eight separate major efforts have been made by US, Canadian and Russian radio astronomers since 1960 to detect extra-terrestrial signals from intelligent beings. Although each search has concentrated on one or more specific frequencies in the range from 600 MHz to 22.2 GHz , the receivers used were those designed mainly for normal radio astronomical work which involves the detection of incoherent naturally produced radiation rather than the coherent radiation the SETI workers were seeking.

Although no confirmed sources of signals from intelligent beings outside the solar system have yet been detected, it has been estimated that the number of stars which have been examined is about 0.1% of the number which would have to be investigated if there is to be a reasonable statistical chance of detecting extraterrestrial intelligent signals.

Project Ozma

The first SETI work was led by Frank Drake using the 1420 MHz hydrogen frequency. It was named "Project Ozma' after the ruler of Oz - a far away place populated by exotic beings. Drake employed a bandwidth of 100 Hz and aimed his receiver at the two stars Tau Ceti and Epsilon Eridani which are both some 11 light years away from the earth. The observing time was some 150 hours using a 26 m (85 feet) diameter steerable antenna in 1960.

Project Ozma II is a much more extensive one which has also been carried out at the National Radio Astronomy Observatory, Green Bank, West Virginia. In this work some of the largest and most sophisticated radio telescopes in the world have been used; they include the 92 m (300 feet) diameter partially steerable antenna completed in 1962 at a cost of about 1 million dollars (500000 pounds) and the 43 m (140 feet) diameter
equatorially mounted, fully steerable antenna which was completed in 1965 at a cost of some 14 million dollars ($£ 7$ million).

Project Ozma II was commenced in late 1972 under the leadership of Benjamin M. Zuckerman of the University of Maryland and Patrick Palmer, of the University of Chicago, the intention being to run the project for about two years. However, the Observatory made more time available and the project continued until December 1976 with an examination of about 700 stars at distances of up to some 65 light years. The prime targets were main sequence stars of the F5 to K5 class. The observations were carried out at 1420 MHz , each of 384 separate receivers being tuned to a slightly different frequency near to the 1420 MHz hydrogen line. A total bandwidth of 3 kHz was used.

At the end of the Project Ozma II work, about 12 stars showed some unexplained phenomena which were probably due to terrestrial radio interference, but which could have been due to faint signals from intelligent beings. These stars will doubtless be examined very carefully at some later date.

Arecibo

Some SETI work has been carried out using the largest telescope in the world at the Arecibo Observatory in Puerto Rico which has a diameter of 305 m (500 feet) in the air. The reflector panels consist of 38,778 individual panels each a little over 1 m by 2 m in size; each pane, must be positioned with an accuracy of better than 1 mm .

In 1967 a British post-graduate student noticed a mysterious regular pulsing signal from space and there was much speculation as to whether this was a signal from intelligent life beaming a message to earth. The Arecibo antenna was used to show that this signal was coming from the first pulsar to be discovered and that it was in the Crab Nebula.

The Goldstone 26 m Deep Space Network Antenna may be used in an all sky search. (Photo by courtesy of Jet Propulsion Laboratory)

Two of the best known SETI workers, Prof. Frank Drake and Prof. Carl Sagan, have used the Arecibo antenna to examine the radiation from whole galaxies for signs of signals from intelligent life. Although the use of this technique has enabled them to examine many millions of suitable types of stars simultaneously, it would require a signal of very great intensity to enable frequencies of $1420 \mathrm{MHz}, 1654 \mathrm{MHz}$ and 2380 MHz , but the time allocated to this work is relatively small.

Canadian Work

Dr. Bridle and Dr. Feldman commenced work at Canada's nationally owned Algonquin Radio Observatory in Algonquin Park, Ontario in 1974. They are using a 46 m (150 feet) diameter telescope to examine many of the nearest sun-like stars, but the frequency employed is 22.2 GHz - the emission frequency of the water molecule - which is much higher than that used by other workers.

Project Cyclops

One of the most ambitious SETI projects yet proposed is known as Project Cyclops. This is intended to be suitable for not merely detecting high power signals (such as those from our own Arecibo antenna), but also to allow eavesdropping on much lower intensity signals which other civilizations use for their own communications (like our radio and television transmitters). In order to be able to receive such signals from stellar systems at distances of a few hundred light years from the earth, enormous antenna systems are required.

It seems unlikely that it would be a practical possibility to construct a single reflecting dish of adequate size and therefore it has been suggested that the Cyclops project could employ an enormous array of radio telescopes, each of which may be about 100 m in diameter. For example, as many as 1500 such 100 m dishes could be spread out in lines over an area of perhaps $65 \mathrm{~km}^{2}$ and connected together electrically to.
provide the same performance as a single dish of enormous dimensions.

Project Cyclops was initiated as a study by the NASA Ames Research Centre and Stanford University in 1971 under the leadership of Dr. John Billingham and Dr. Bernard Oliver. There have been vast improvements since then in solid state memories, microprocessors, wideband maser low-noise amplifiers, etc.

Conclusion

The Search for Extra-Terrestrial Intelligence has not yet been successful, but this is not particularly surprising in view of the small number of star systems which have been examined with high sensitivity equipment. Some people (including many of those who control scientific finance) may feel that the SETI project is rather frivolous and perhaps even a silly one. However, there are many scientists very strongly committed to work in this field a point which can be demonstrated by the fact that a new journal, Cosmic Search devoted entirely to SETI work will be published from January 1979 under the editorship of Dr. Robert S. Dixon who is well-known for his SETI work at the Ohio State University Radio Observatory.

Dr. Frank Drake at times feels somewhat cynical about the cuts in the SETI budgets. Indeed, he has commented that the search for extra-terrestrial intelligence begins with the search for intelligence here on earth! He feels that at the present time there is a very well qualified group of people who are keen to carry out an extensive SETI project and, if no funds are forthcoming for a year or more, it is likely that many of thesêe peöple will move to other work. If you were paying taxes in a country considering becoming involved in an extensive SETI project, how would you feel about paying an extra amount (far less in total than that to place a man on the moon) in order that the project could proceed? SETI work will doubtless continue, but more funds are required if it is to proceed at a rate which is likely to bring success within the lifetime of most people who are living today.

ET

An artists impression of a complex Cyclops array on the far side of the moon containing 216 large (200 m diam.) reflecting radio telscopes with a control building in the middle of the array. The lunar base is in the middle distance towards the left-hand side and is quite small.
(Photo by courtesy of NASA Ames Research Centre).

BEGINNERS

Beginners Guide to Electronics Squires $£ 2.65$
Beginners Guide to Transistors Reddihough $£ 2.65$
Electronic Measurement Simplified C. Hallmark $£ 2.20$
Electronics Self Taught Ashe $\mathbf{£ 4 . 4 0}$
Beginners Guide to Integrated Circuits Sinclair $£ 3.15$
Principles of Transistor Circuits S. Amos £4,75
Understanding Electronic Circuits Sinclair £4.10
Understanding Electronic Components Sinclair £4.10
Beginners Guide to Radio King $£ 3.15$
Beginners Guide to Audio Sinclatr $£ 3.10$

COOKBOOKS

TV Typewriters Cookbook $£ 7.75$
CMOS Cookbook $£ 8.20$
Active Filters $£ 11.30$
IC Timer Cookbook $£ 7.50$
IC Op-Amp Cookbook $£ 10.00$
Video Cookbook $£ 7.00$
TTL Cookbook $£ 7.55$

APPLICATIONS

Advanced Applications for Pocket Calculators J Githert $£ 4.20$
Build Your Own Working Robot D. Heisman £3.70
Electronics and Photography R. Brown $£ 2.30$
Fire and Theft Security Systems B. Weis $\mathbf{E 2 . 0 0}$
How To Build Proximity Detectors and Metal Locators J. Shields $£ 3.90$
How To Build Electronic Kits Capel $£ 2.10$
Linear Integrated Circuit Applications G. Clayton $£ 5.40$
Function Circuits Design \& Applications Burr Brown £15.95
110 Electronic Alarm Projects R. M. Marston $£ 3.45$
110 Semiconductor Projects for the Home Constructor R. M. Marston $£ 3.25$
110 Integrated Circuit Projects for the Home Constructor R. M. Marston $£ 3.25$
110 Thyristor Projects Using SCRs R. M. Marston $£ 2.95$
Handbook of IC Clrcuit Projects Ashe $£ 2.30$
Practical Electronic Project Building Ainslie and Colwell $£ 2.45$

TV AND HiI-FI

Audio Handbook G. King $£ 6.50$
Cassette Tape Recorders J. Earl $£ 5.25$
Solid State Colour TV Circuits G. R. Wilding £6.35
Fi-Fi Loudspeakers and Enclosures Cohen $£ 8.20$
How To Build Speaker Enclosures Badmateff $£ 3.90$
Master Hi-Fi Installation King $£ 2.80$

LOGIC

Logic Design Projects Using Standard ICs J. Wakerly £5.10
Practical Digital Design Using ICs J. Greenfield $£ 12.50$
Designing With TTL Integrated Circuits Texas Instruments £9.05
How To Use IC Circuit Logic Elements J. Streater $£ 3.65$
110 COSMOS Digital IC Projects for the Home Constructor R. M. Marston £3.20
Understanding CMOS Integrated Circuits R. Meien $\mathbf{£ 4 . 0 0}$
Digital Electronic Circuits and Systems R. M. Morris $£ 3,50$
MOS Digital ICs G. Flyin $£ 5.10$

COMPUTING

Microprocessors and Microcomputers B. Soucek $\mathfrak{E 1 8 . 8 0}$
Microprocessors D. C. McGlynn £8.40
Introduction to Microprocessors Aspinall $£ 6.40$
Beginners Guide to Microprocessors $£ 4.70$
Beginners Basic Gosling $£ 3.35$

OP-AMPS

Applications of Operational Amplifiers Graeme (Burr Brown) $£ 8.30$
110 Operational Amplifier Projects for the Home Constructor R. M. Marston $£ 2.95$ Experiments With Operational Amplifiers Clayton $£ 3.40$

Designing With Operational Amplifiers Burr Brown $£ 16.65$
Operational Amplifiers Design and Applications G. Tobery (Burr Brown) $£ 7.40$ Op-Amp Circuit Design \& Applications J. Carr $£ 4.00$

TEST INSTRUMENTS

The Oscllloscope In Use Sinclair $£ 3.10$
Test Instruments for Electronics M. Clifford $£ 2.40$
Working With the Oscilloscope A. Saunders $£ 1.95$
Servicing With the Oscilloscope G. King £5.60
Radio Television and Audlo Test Instruments King $\mathbb{E 5 . 9 0}$

SERVICING

Electronic Fault Diagnosis Sinclair $£ 3.20$
Rapid Servicing of Transistor Equipment G. King £2.95
Tape Recorder Servicing Manual Gardner Vol. 1: 1968-70 £8.50 Vol. 2: 1971-74 £8.50
FM Radio Servicing Handbook King $£ 4.80$

-COMMUNICATIONS

Communication Systems Intro To Signals \& Noise B. Carlson $£ 7.50$
Digital Signal Processing Theory \& Applications L. R. Rabiner $£ 23.80$
Eléctronic Communication Systems G. Kennedy $£ 8.50$
Frequency Synthesis. Theory \& Design Mannassewitsch £23.40
Principles of Communication Systems H. Taub £8. 10

THEORY

Introduction to Digital Filteling Bogner $\mathbf{£ 1 0 . 2 0}$
Transistor Circuit Design Texas Instruments $£ 9.35$
Essentlal Formulae for Electrical and Electronic Engineers N. M. Morris £1.65
Modern Electronic Maths Clifford $£ 6.70$
Semiconductor Circuit Elements T. D. Towers $£ 6.40$
Foundations of Wireless Electronics M. G. Scroggle $£ 4.45$
Colour Television Theory Hudson £6.20

REFERENCE

Transistor Tabelle (Includes physical dimensions) £4.10
Electronic Engineers Reference Book (Ed. 4) L. W. Turner £27.70
Solid State Circuit Guide Book B. Ward $£ 2.25$
Electronic Components M. A. Colwell $£ 2.45$
Electronic Diagrams M. A. Colwell $£ 2.45$
Indexed Guide to Modern Electronic Circuits Gqodman $£ 2.30$
International Transistor Selector T. D. Towers $£ 6.00$
International FET Selector T. D. Towers £4.35
Popular Valve/Translstor Substitution Guide $£ 2.25$
Radio Valve and Semiconductor Data A. M. Bell $£ 2.60$
Master Transistor/Integrated Circuit Substitution Handbook £5.60
World Radio TV Handbook 1978 (Station Directory) £8.00
Radio. TV and Audio Technical Reference Amos $£ 24.85$
TV Technicians Bench Manual (New Ed.) Wilding $£ 5.10$

MISCELLANEOUS

Integrated Electronics J. Milman $\mathbf{£ 7 . 9 0}$
Microelectronics Halimark $£ 3.90$
Practical Solid State DC Supplies T. D. Towers $£ 6.20$
Practical Triac/SCR Projects for the Experimenter R. Fox $£ 2.25$
Printed Circuit Assembly Hughes \& Cotwell $£ 2.45$

Fallen behind recent advances?
Just starting out?
Need a decent reference book?
ETI Book Service provides an easy
way of getting your hands
on the right title.

TUNER~AMPLIFIER

PART TWO: This month we conclude the System 8000 project with the setting up procedure and a description of the digital frequency readout.

THE SETTING UP and alignment must be approached in a systematic fashion.

Procedure

a) Power Supply
b) Power Amp L \& R
c) Auxilliary
d) Tone Controls
e) Filter Controls
f) Tape
g) Magnetic pre-amplifier
h) FM sections
I) AM
J) Frequency read out module

Before commencing alignment it is necessary to check that:
i) All wiring has been checked and components are correctly positioned and orientated
ii) That there are no solder bridges
iii) A good multimeter is also required

Power Supply

Remove all fuses except for the mains fuse. Switch on, you should
hear the relay click over. Measure from earth to positive and negative on the smoothing capacitors. The voltage should read approximately plus or minus 50 V . Check that regulator reads about 30 V . Switch off.

Power Amp

Check each power amp in turn, ensure that speakers are switched out. Using a meter, do a resistance check from the case of each power transistor to chassis to ensure that there is no short. Find two high wattage resistors (56R-300R will do) and place in fuse holders of amp being checked.

Switch on volume control (minimum). If there appears to be no problems feel cases of power transistors - should be cool. Switch on speaker. Power transistors may be slightly warm. Now 'Buzz' input pins of the amplifier with your finger. If okay switch off, remove the resistor fuses, insert two amp fuses. Switch on, if everything is okay one can now set RV1.

If you have access to a low distortion audio generator put this on the input and a distortion meter across the speaker sockets using a dummy load. Feed in 100 mV sine wave and set for minimum distortion. Without this test equipment set RV1 to mid travel. Repeat for other channel.

Tone and Filters

Insert either an audio generator, or any music source such as a tape-recorder, into the Aux. socket. Select Aux. on switchbank, slowly increase volume, and listen to sound, check that the tone controls are working. To check the high and low filters turn the bass control on full and this will emphasise the rumble filter, likewise the treble control will emphasis the scratch filter.

Tape

If the above is working, check that pressing tape 1 and tape 2 disconnects the Aux. Transfer the tape recorder/audio generator to take 1 and 2 in turn and ensure that

Fig. 1. Component overlay for the power supply board.
pressing the respective switch brings them into circuit. The pre-set resistors are adjusted to match the levels of your own tape recorders otherwise they can be turned full on.

Magnetic

Using a record player with a magnetic cartridge check that everything sounds okay. Excessive hum indicates an earthing fault.

FM

Before aligning this section it may be an advantage to set the frequency counter straight away. However, this is not essential. The tuner head is pre-aligned and will not need adjustment. Tune through the band with an aerial connected - ensure that mute and AFC are off. You should hear a continuous hiss, with stations heard between 88 MHz and 95 MHz . If this is so, tune to an area above 95 MHz without stations and adjust using a non-inductive tool L4 until centre zero needle is centred. This should correspond with
maximum hiss level. L3 can only be adjusted ideally if an FM signal generator is used. Generate 100 MHz , attach a distortion meter to pin 6 of the CA3189E, there is a test pin for this, tune for maximum signal strength and adjust L3 for minimum distortion. Re-adjust L4 for centre zero. Adjust L1 for maximum signal level. RV11 is the muting adjustment, and can be set all the way from no mute to absolute quiet between stations - however, do not overset, as the mute may not lift quickly enough when tuning a station.

Move next to the stereo decoder, KB 4437 - either:-tune to a stereo broadcast, set RV6 to the middle of the range that brings the stereo light on, set VC5 and RV7 for mid-way: or:-using a stereo generator, adjust VC5 and RV6 for maximum, set separation at 1 kHz . Observing the 19 kHz component of the multiple signal on a oscilloscope, set RV7 for minimum 19 kHz . This completes the FM

Amplitude Modulation

The frequency counter can help considerably, and an AM generator is an asset.

MW Tune to minimum volts on varicap line, feed in a 470 kHz signal, peak until there is no improvement, Tune L9 for a 550 kHz station. Move to maximum varicap volts, set CV1 for a 1620 kHz signal. Tune up and down the band checking that $550-1620 \mathrm{kHz}$ is covered without any shifting in noise level. Tune to 600 kHz . Peak L5 and L z for maximum. Tune to 1400 kHz . Peak CV2 and CV4 for maximum. Repeat until there can be no improvement. RV8 is set to give a satisfactory signal level reading on the meter.

LW Switch to LW. Set CV3 so that minimum varicap volts 175 KHz . Tune to 200 kHz (Radio 4) peak L6 and L8 for maximum. If no generator

Fig. 2. Componenf overlay for the tone control board.

Fig. 3. Circuit diagram of the digital frequency meter.

HOW IT WORKS

A digital frequency readout is both cost effective and an accurate method of displaying the frequency of a radio station. GEM has been developed to interface directly with the tuner sections of the SYSTEM 8000 , and most existing AM/FM receivers.

The principle of operation is simple, and is a progression from the many digital clock ICs. Basically, the oscillator of the radio being 'read' is fed (via buffer stages) into the 5525 , and converted to digital pulses. These are counted by the IC, for a period determined by the external crystal, and the count is fed to the display.

Allowance is made for the IF offset of the radio -470 kHz and 10 k 7 Hz . This offset is externally programmed by the diodes DID6.
In this application, the source for switching from AM to FM is obtained from the switch bank of the System 8000, and uses the positive power line. This is converted from
a 'Hi' to a 'Lo' signal by IC2, a HEX invertor. The beauty is that the buffer stages for the AM/FM oscillators are also switched off when not in use, and thus cannot cause interference.

Because the display would be running when the tuner is not being used. A section of the hex invertor takes an additional 15 V input (F) and uses this to reset the counter and thus give a fixed reading. D7 ensures that this signal cannot accidentally exceed 5 V . The unit must be earthed directly to the central earthing point of the system 8000 , otherwise noise may be fed back into the system.

The unit may be used independently of course and requires $\pm 12 \mathrm{~V}$ at least, for operation. If using a supply of lower than $\pm 20 \mathrm{~V}$, omit R10. Maximum supply is $\pm 35 \mathrm{~V}$. Other IF offsets may also be programmed in. It uses a fluorescent display for a good readibility and gives AM/FM and $\mathrm{MHz} / \mathrm{kHz}$ indication.

Fig. 5. Component overlay for the digital frequency meter board.
(Below) The digital frequency meter display and driver board.

is available, the digital frequency counter can be peaked. L11, L10, can be set for maximum output (be careful - small adjustment only)

Readout

The frequency counter should need no adjustment, however, if another frequency counter is available, the crystal input should be tuned to precisely 6553 k 6 Hz with TC 1.

NB: It has been found in practice that two laminated transformers give excellent regulation and a low hum field, also low voltage taps are available to power the centre zero and signal meter. The metah case will take both torroidal and conventional transformers.

PARTS LIST

RESISTORS (all $1 / 2 \mathrm{~W}$ 5\%)	
R1, 10	330R
R2	330 k
R3	1 M
R4	100R
R5	1k5
R6	82R
R7	100k
R8, 11	1k
R9, 13, 14	4k7
R12	150R
CAPACITORS	
C1, 14	10 u 16 V electrolytic
C2, 10	22 n polyester
C3, 4, 5, 9, 12	1 n polyester
C6, 7	100 n polyester
C8	100p ceramic
C13	100 n 45 V electrolytic
C14, 15	220 n polyester
C17	22p ceramic
SEMICONDUCTORS	
Q1	BC107
Q2	BF394
Q3	BF256
Q4	BD 140
IC1	5525
IC2	4069
IC3	SP8629
D1-6	1 N914
D7	5 V 400 mW zener
D8	10 V 400 mW zener
Reg.	7805
INDUCTORS	
L1 2	1 mH
MISCELLANEOUS	
TC 1-0-50p, F1-6553k6 H7 X71, 6LT06 display, PCB	

$30 /$ to pin (28)
31 / to pin (31)
$\left.\begin{array}{l}32 / \\ 33 /\end{array}\right\}$ to pin (33)
34/ to pin (37)
35/ Earth
$36 /$ to 38 pin
37/ to pin (34)
$38 /$ to pin (36)
$39 /$ to pin (45)
40/ to pin (46)
41 / to pin (47)
42/ Earth pin 49 and 51
$43 /$ pin 48
44/ pin 50
45/ pin 39
46/pin 40
47/pin 41
$48 /$ pin 43
49/ Earth pin 42
50/ pin 44
51/ Earth pin 42
$\left.\begin{array}{l}52 / \\ 53 /\end{array}\right\}$ to 56 V winding of Transformer
54/ $\}$
55/ $\}^{C}$
56/ to speaker switch L.
57/ to speaker switch R
$58 /\}$
59/
60 / pin 70
61/ pin 71
62/ +45V fuse 66
63 / -45V fuse 67
64/ +45V fuse 68
65/ -45V fuse 69
$66 /$ to 62
67 / to 63
68/ to 64
69/ to 65
$70 /$ to 60
71 / to 61
$\left.\begin{array}{l}72 / \\ 73 /\end{array}\right\}$-to L and R of Head-Phones
74/ -L
75/ -R to FM switch
76/ Earth
$77 /$ on FM switch, to mono switch

78/ +15V
79/ on mono switch, to stereo. LED anode
80/ Earth
81/ to stereo LED
82 8/ \}mono options, disconnected
All other earth connections to tabs of power board-including centre-tap of transformer.

CORRECTIONS FOR DIGITAL
 FREQUENCY DISPLAY
 pin 7-(FM tuner lead) to pin 100
 pin (6) -to pin 101

Uni-Electric have sent us the following list of corrections to the parts list and circuit diagrams published last month.

C105 in 100n.
Circuit diagram shows a short from output of 7815 to earth. Omit indicated line.
Switch marked 'rumble" is tape switching. 'Mono' switch, left channel shown connected to earth, via a 470 k resistor. This should be connected to Mono switch via a 1 k resistor.
C67 and C1 50 are 10 uf cápacitors.
C 136 is 470 p. C 137 is 330 p. 10 n capacitor omitted from pin 7 to CFUO50D. C147 is 10 n . R171 is 10 k .
R120 are R121 are $47 k$. Base of Q20 is shown shorted to earth - should be a 47p capacitor here.
R10 is shown connected to the base of Q2. and Q 2 connected to earth. This is wrong. R10 goes to earth and not to 22, R3 is 47R. not 47 k .
Mast head preamp uses 2 not 5 Mosfets. AM coverage is 2 band not 5 band.
Sensitivity is 1.0 uV not 10 V .
In Buylines, the complete kit with metalwork is $£ 165$. Uni-Electric will align the RF sections and check finished mother boards for $£ 15.00$.

Pin Wiring for PCBs

An internal view of the complete unit, ready for the setting up procedure. The digital frequency meter board is top centre.

STEVENEON Electronic Components
 REGULATORS
 <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$78 L 05$</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$30 p$</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">7805</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$60 p$</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$79 L 05$</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$70 p$</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">7912</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$80 p$</td>
</tr>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$78 L 12$</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$30 p$</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">7812</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$60 p$</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$79 L 12$</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$70 p$</td>
<td style="text-align: left; border-right: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">7915</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$80 p$</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| $78 L 05$ | $30 p$ | 7805 | $60 p$ | $79 L 05$ | $70 p$ | 7912 | $80 p$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $78 L 12$ | $30 p$ | 7812 | $60 p$ | $79 L 12$ | $70 p$ | 7915 | $80 p$ |</table-markdown></div>
 $78 L 15$ 30p 7815 60p 7905 80p LM72335p

 HARDWARE

 HARDWARE MINIATURE TRANSFORMERS

 240 Volt Primary

 240 Volt Primary
 Secondary rated at 100 mA .
 Available with secondaries of
 6-0-6,9.0-9 and
 12-0-12.
 92p. each

 LOUDSPEAKERS

 LOUDSPEAKERS
 56 mm dia. 8 ohms 64 mm dia. 8 ohms 64 mm dia. 64 ohms
 70 mm dia. 8 ohms
 70 mm dia. 80 ohms

 TERMINALS

 TERMINALS
 Rated at 10A. Accepts 4 mm plug, black

TRANSISTORS

7415		LS73	25p	LS156	60p
		LS74	25p	LS157	48p
		LS75	30p	LS164	65p
LSOO	13p	LS76	25p	LS174	48p
LSO1	13p	LS78	35p	LS175	48p
LSO2	13p	LS83	35p	LS190	62p
LSO3	13p	LS85	700	LS192	60p
LSO4	13p	LS86	$30 p$	LS193	600
LS08	15p	- LS90	$36 p$	LS196	60p
LS10	13p	LS93	38p	LS251	50p
LS13	28p	LS95	450	LS257	50p
LS14	45p	LS123	$70 p$	LS258	50p
LS20	13p	LS125	38p	LS266	300
LS30	13p	LS126	$38 p$	LS283	$60 p$
LS32	16p	LS 132	60p	LS290	60p
LS37	24p	LS136	$28 p$	LS365	40p
LS40	17p	LS138	50p	LS366	400
LS42	400	LS139	$50 p$	LS367	40p
LS47	900	LS151	50p	LS368	40p
LS48	70p	LSi53	50 p	LS386	35p
LS54	150	LS155	550	LS670	40p
$T \mathrm{~L}$		7454	12p	74132	450
		7473	$20 p$	74141	55p
		7474	22p	74148	90p
		7475	250	74150	55p
7400	10p	7476	20p	74151	40p
7401	10 p	7485	550	74156	40p
7402	100	7489	1350	74157	40p
7404	12p	7490	25p	74164	55p
7408	12p	7492	30p	74165	550
7410	10p	7493	250	74170	100p
7413	22p	7494	450	74174	50p
7414	39p	7495	350	74177	50p
7420	10 p	7496	45p	74190	50p
7427	20p	74121	25p	74191	500
7430	100	74122	$38 p$	74192	500
7442	38p	74123	38p	74193	500
7447	45p	74125	350	74196	500
7448	50p	74126	35p	74197	50p
CMOS		4018	55p	4050	25p
		4023	12p	4066	35p
		4024	400	4068	18p
4001	12p	4026	900	4069	12p
4002	12p	4027	300	4071	12p
4007	12p	4028	48p	4081	13p
4011	12p	4029	500	4093	45p
4013	$28 p$	4040	600	4510	650
4015	50p	4042	500	4511	65p
4016	30p	4046	90p	4518	65p
4017	48p	4049	25p	4520	600
FULL DETAILS IN CATALOGUE!					

SKTS

Low profile

8 pin $8 p \quad 16$ pin 11p 23 pin 22p 14 pin $10 p \quad 24$ pin $18 p$ 40 pin $32 p$ Soldercon pins: 100:50p. 1000:370p

OPTO

LED's 0.125 in . 0.2 in each $100+$ Red TiL209 TIL220 9p 8p $\begin{array}{lllll}\text { Green } & \text { TIL211 } & \text { TIL221 } & 13 p & 12 p \\ \text { Yellow } & \text { TIL213 } & \text { TIL223 } & 13 p & 12 p\end{array}$ $\begin{array}{lllll}\text { Yellow } & \text { TIL213 } & \text { TIL223 } & \text { 13p } & \text { 12p } \\ \text { Clips } & 3 p & 3 p & & \end{array}$ Clips 3p
DISPLAYS
DL704 $\quad 0.3$ in CC $\quad 1300 \quad 1200$ $\begin{array}{llll}\text { FND500 } & 0.5 \text { in CC } & 1000 & 800\end{array}$

RESISTORS

Carbon film 'resist ors. High stability low noise 5\%.
E12 series. 4.7 ohms to 10 M . Any mix: $\begin{array}{llll} & \text { each } & 100+ & 1000 \\ 0.25 W & 1 p & 0.9 p & 0.8 p \\ 0.5 W & 1.5 p & 12 p & 1 p\end{array}$ Soecial development packs consisting of 10 of each value from 4.7 ohms to Meg
ohm (650 res) $0.5 \mathrm{~W} £ 7.50$. $0.25 \mathrm{~W} £ 5.70$. METAL FILM RESISTORS
Very high stability, low noise rated at $1 / 4 W$ 1\%. Available from 510 hms to 330 k E24 series. Any mix.

| each | $100+$ | $1000+$ |
| :--- | :--- | :--- | :--- |
| $4 p$ | $3.5 p$ | $3.2 p$ |

PLEASE WRITE
FOR YOUR FREE COPY OF OUR
NEW 64 PAGE
CATALOGUE OF COMPONENTS
CONTAINS
OVER 2500
STOCK ITEMS
blue, green, brown and red
22p

SWITCHES

Subminiature toggle. Rated at 3 A 250 V . SPDT 70p SPDT centre off 75p DPDT 80p DPDT centre off 95p

CAPACITORS

TANTALUM BEAD
$0.1 .0 .15,0.22,0.33,0.47,0.68$
182.2 uF @ 35 V

22 @16V, 47@6V.100@3V
MYLAR FILM
$0.001,0.01,0.022,0.033,0.047$
POLYESTER
$0.01,0.015,0.022,0.033,0.047,0.06$ 合, $0.1 .5 p$ $0.15,0.22$
0.33 .0 .47
$14 p$
CERAMIC
Plate type 50 V . Available in E 12 series from 22 pF to 1000 pF and E 6 series from 1500 pF to RADIAL LEAD ELECTROLYTIC
$\begin{array}{llllll}63 V & 0.47 & 1.0 & 2.2 & 4.7 & 10\end{array}$ \qquad $5 p$

NEMSMD

We welcome callers at our new premises at the address below (5 mins. from High St.) We are open Mon - Sat, 9am 6 pm . Special offers availabl
Express telephone order service. Orders received be fore 5pm. are shipped first class on that day. Contact our Sales Office now!
Tel: 01-464 2951/5770.

Mail orders to: STEVENSON (Dept ET)

DESIGNER'S NOTEBOOK

A monthly look at the notebook of ETI's chief design engineer, project editor Ray Marston.

AUNTI IRIS (the one with the big eyes) says that the ETI gremlins loved last month's "Notebook." They gobbled up the original figure 1 (a method of precision gating a 555 astable) and left a copy of Fig 4 (a 555 pulse expander) in it's place. To set the record straight, this month's Fig 1 shows what last month's Fig 1 should have looked like. I hope aunti Sible approves.

Fig. 1. Here it is in all its glory, the missing link, Fig 1 from last month - a precision gated astable.

Who Loves Yer, Baby?

Regular readers of ETI will have noticed that the design team has a particular love of the CD4017 IC. This modestly priced (about 80 pence in 1 off quantities) little device glories in the title of a "decade counter/divider with ten decoded outputs." It's the "ten decoded outputs" bit of the title that makes us really like the device, because those outputs can be used to do a lot of useful things.

The ten decoded outputs of the B-series 4017 can be used to directly drive a bank of LED's to make pretty displays, or to switch tone generators to create pretty tunes. Alternatively, outputs can be coupled back to the devices control terminals to make the IC count to, or divide by, ' n ' (any number from 2 to 9) and then either stop or recycle. Numbers of 4017 IC's can readily be cascaded to give either multi-decade division, or to make counters with any desired number of decoded outputs. Let's take a closer look at the device.

4017 Basics

Figure 2 shows the outline and pin designations, the functional diagram, and the basic timing diagram of the CD4017, which incorporates a 5 -stage Johnson counter. The device has clock, reset, and clock inhibit input terminals.

The counters are advanced one count at each positive transition of the clock signal when the clock inhibit and reset terminals are low. Nine of the ten decoded outputs are low, with the remaining output high, at any given time. The outputs go high sequentially, in phase with the clock signal, with the selected output remaining high for one full clock cycle. An additional carry out signal completes one cycle for every ten clock input cycles, and can be used to ripple-clock additional 4017's in multidecade counting applications.

The 4017 counting cycle can be inhibited by setting

Fig. 2a. Outline and pin designations of the CD4017
the clock inhibit terminal high. A high signal on the reset terminal clears the counter to zero and sets the ' O ' output terminal high

4017 Applications

Figures 3 to 7 show a few ways of employing the decoded outputs of a single B-series 4017 .

Figure 3: the circuit of a 10 -stage sequential LED flasher or cheser, in which one LED is on and the other nine are off at any given time, and the on LED moves one step up the line each time a clock pulse arrives. An alternative action, in which nine LED's are on and one is off at any given time, can be obtained by reversing the polarity of all LED's and taking their common point to the positive supply line.

Figure 4: the circuit of a 10-stage 4-note musical sequencer, that can be used to generate simple tunes or melodies. The number of available notes can be increased by adding more resistors to the R1-R2 component chain.

Figure 5: how to connect the 4017 so that' it stops operating after completing a pre-determined counting sequence. Here, the counter is set to stop when it's clock inhibit terminal is driven high by the ' 9 ' output. The count sequence can be restarted by pressing reset button PB1.
Note in the figure six and seven circuits the counter can be made to divide by any number simply by taking the "free" terminal of the circuit's multi-vibrator to the Nth output terminal of the counter.

Greater than 10

There are times when ten stages of counting/decoding aren't enough for a particular task. Examples that spring to mind are complex remote control coders and decoders

Figure 6: one way of connecting a 4017 as a divide-by-N $(2<N$ <9) counter with \mathbf{N} decoded outputs. This circuit is set to divide by 5. The circuit operation here is such that the Nth output of the counter momentarily goes high on the positive transition of the Nth clock pulse, and immediately causes the IC1a-IC1b flip-flop to change state and apply a reset command to pin 15 of the 4017. which in turn causes it's ' O ' output to go high and feed a low signal to one terminal of NOR gate IC1c. When the negative transition of the Nth clock pulse arrives, it places a low signal on the remaining terminal of the IC1c NOR gate, which therefore feeds a high signal to IC1 a and causes the flip-flop to again change state and remove the reset command from pin 15 of the $\mathbf{4 0 1 7}$. The 4017 is then free to count again.

Figure 7: an alternative way of obtaining divide-by-N operation. Here, the Nth output (the 5 th in this diagram) momentarily goes high on the arrival of the positive transition of the Nth clock pulse and causes the IC1a-IC1b monostable to generate a 15 US pulse that immediatley resets the counter to the ' O ' or empty state, reedy for the arrival of the positive transition of the next clock pulso.
that may require as many as nineteen sequential stages, simple music or tone sequencers that may require more than twenty stages, and LED-driving electronic games such as roulette which may require up to thirty-eight sequential stages. In such cases it is a fairly simple matter to interconnect a number of 4017 IC's to obtain any required total of decoded output stages.
Note in the Fig 9 circuit that the 1 counter gives nine useful outputs, and that all succeeding stages give eight useful outputs. The basic circuit can be expanded to incorporate any number of 4017 stages by simply adding slightly modified IC2-IC4a-IC4b stages between IC1 and the final two stages of the system.

Rabbiting on

You may be wondering why l've chosen this precise moment of history to rabbit on about applications of the 4017. The fact is, I'm presently playing with some rather unușual 4017-based multi-channel remote control systems for possible future projects, and all the stuff that I've crammed into this month's Notebook is spin-off from that development work. I'll tell you more about these next month.

In the meantime, if you want to play with the 4017 circuits that l've already described, you may find the Fig 11 clock generator circuit useful. It uses only one quarter of a CD4093 Schmitt, but generates beautifully clean and interference-free clock pulses.

You can fiddle with the R1 and C1 values to get any

Figure 8 how to interconnect a pair of 4017's to make a 10- to 17 -stage counter/decoder. The circuit is shown set for divide-by-17 operation.

The clock input signal is parallel-fed to IC1 and IC2. When, however, the count is below 9, the '9' output of IC1 is Iow and causes the clock inhibit terminal of IC2 to be set high via IC3c, so IC2 is not influenced by the clock signals. As soon as the 9th clock pulse arrives the ' 9 ' output of IC1 goes high and inhibits IC1 from further clocking action, and simultaneously drives the clock inhibit terminal of IC2 low via IC2c and enables IC2 to respond to subsequent clock signals.

Eventually, on the arrival of the 17 th clock pulse, the ' 9 ' output of IC2 goes momentarily high and triggera the IC3a-IC3b 15 us monostable, which in turn resets both counters to the empty or ' O ' states. The counting sequence then repeats.

Note that the ' 9 ' output of IC1 and the ' 0 ' and ' 9 ' outputs of IC2 are "'lost" in the counting action, so the circuit provides a maximum of 17 usable counter/decoder stages. The circuit can be made to count by any number in the range 10 to 17 by connecting the "'free" input terminal of IC2a to the appropriate output terminal of IC2.
clock' frequency that you want. C1 can have any value from 100 p to 10 u , and R 1 can have any value from 10 k to 10 M . Values of 10 n and 100 k give a clock frequency of about 1 kHz .

Smarter than the average bear

Does your cranium tend to inflate ever-so-slightly each time that you develop a particularly clever little circuit? If
so, imagine how Robert J. Widlar must feel. He's the guy who, virtually single handed, designed the original 709 op-amp. And the 710, the 711, the LM 101, the 108, the 109, and the 111 . On top of that, he either owns or shares patents on the band gap reference and the super beta transistor.

Old smarty boots has done it again, and designed an opamp called the LM10. The LM 10 is reckoned to represent one of the most important developments in IC op-amp technology in recent years. Amongst other things it can operate over the supply voltage range 1 V 1 to 40 V , drawing only 270 uA of current in all cases. Its output can swing within 15 mV of the supply terminals, or will deliver 20 mA of output current with 400 mV saturation.

We plan to give full details of the LM 10, complete with extensive applications information, in the near-future. Meantime, it really does seem that Robert J. Widlar is a lot smarter than your average bear.

Fig. 11. This simple circuit makes an excellent clock generator for driving 4017 circuits.

Figure 9 shows the connections for making an 18- to 25-stage counter/decoder from three 4017 's. In this case IC3 is inhibited via IC4b and the low output '9' of IC2. and IC2 is inhibited via IC4a and the low output ' 9 ' of IC1, up to the 9 th clock pulse. IC1 is inhibited via it's high '9' output, and IC3 is inhibited via IC4b and the low output '9' of IC2, between the 10 th and 17 th clock pulses.

Fig. 10. A 26-to 33-stsge counter/decoder set for divide-by-33 operation. This circuit can be expanded to give a ny number of decoded output stages by interposing additional IC2-IC52-IC5b stages between IC2 and IC3. Each additional 4017 B stage makes an extra eight decoded outputs available.

Make your hobby more Constructive
 星

Become an Electronics Engineer or a Technical Engineer. At PNL we offer two interesting, full-time courses.

B.Sc. in Electronic and Communications Engineering

Two " A " levels, usually Maths and Physics, could qualify you for this three-year full-time degree. Specialise in Acoustics, Digital Electronics and/or Radar and Microwaves in the final year

Technician
 Engineer Certificate

Three "O" levels, usually Maths, Physics and English, are the entry requirements for this two year full-time certificate specialising in Computer Engineering Sound Studio Engineering and Radar Microwaves

Details from: Secretary, DECE, PNL Holloway Road, London N7 8DB

The Polytechnic of North London

0000000000000000 Codespeed Electronics:
P.O. BOX 23, 34 SEAFIELD ROAD, COPNOR,

BÜIĽ̃ YOU OW'N METAL DETECTOR TR/IB TR/VCO BFO ...

Test equipment not required. Manuals for kits available at 25p each (refundable). UK prices post \& VAT paid except where men tioned. Overseas: write for quote. Literature available: SAE Please.

Shadow TR/IB (i)
lustrated) A true trans
mit receive/induction balance metal detector - uses the latesi circuitry for maximum
range and sensitivity. Speaker or phones. Pre-assembled search head with lightweight closed cell foam encapsulated coils for thermal insulation and water resistance. A very powerful machine!

Shadow TR/VCO. An advanced version of the above detector use it as a sensitive TR/IB machine or switch to VCO mode when the depths achieved approach the maximum in air range. Low power requirement: runs on standard 9 volt batteries. The most sophisticated detector available as a kit.
Shadow TR/IB kit £22.50 (£29.95 assembled). Shadow TR/VCO kit £27.50 (£36.95 assembled)
Padded stereo headphones suitable for 'Shadow' detectors $£ 5.50$.
Designing vour own detector? Then we can supply the (hard to obtain) hardware "shell" including fully adjustable shaft with handle, search head moulding with hinge completely non-metallic: suitable for any type of detector (TR-Pi-V F-BFO etc) Suppled undrilled as a kit with full instructions (as used on our Shadow range). Detector Shell kit £8.50.
Low cost BFO detector. $200 \mathrm{~mm}\left(8^{\prime \prime}\right)$ annular search head gives wide scan with easy pinpointing. Simple high efficiency circuit draws $<3 \mathrm{~mA}$. Extra lightweight 300 gms (10.50zs) with bettery. Very detailed construction manual: ideal as a first project Absolutely everything supplied including pre-assembled search head, tuning coil and earpiece. ALT3 detector (kit) - £13.85. Padded high'Z headphones for ALT3: $£ 4.90$. Order by post or phone (24 hours) - for quickest delivery quote credit card number Callers by appointment only please!

ALTEK
Dept. ETD, 1 Green Lane Walton-on-Thames, Surrey

ELECTRONIC SERVICING LTD.

PET 2001/8 micro-computer
 $£ 550$ + V.A.T.

WHY BUY A MICRO COMPUTER FROM US?

 BECAUSE:1) Established Company trading since 1971
2) Electronic servicing is our speciality.
3) We have in house programmers / systems analysts.
4) We have our own service engineers.
5) We will demonstrate the PET at your premises.
6) We can customise the PET to your requirements.
7) We can arrange finance.
8) We offer, after the three month warranty, an annual service contract from £69.50.
9) You benefit from our experience of having sold over 150 Micro Computers to industrial, educational and business, personal users.

VISIT OUR SHOWROOM AT:

 34 Chertsey Road, Woking, SurreyWe supply the full range of C.B.M. PET Microcomputers. We also supply:
Dual Floppy Disks £840
24K Memory Boards £320
All types of Printers from $£ 450$
All types of Printer Interfaces, Electronic balance Interfaces, Programs from C.B.M., Petsoft, Gemsoft. We also offer a full consultancy and programming service.
We are developing a number of our own business packages for all applications.
Books on Basic, Programming, Interfacing, etc.
Full range of KIMs available.
Tandy and ITT 2020 available.
Maintenance, Hire Purchase facilities as well as ACCESS and BARCLAYCARD available.

Factory: Telephone WOKING 69032/68497/20727. Shop: Telephone: WOKING 23637.

BATTERY INDICATOR

you've just offered a friend a lift? The conversation goes a little flat when you're both riding the bus to work, 20 minutes late. Jonathan Scott found a solution...

THE OLD, RELIABLE lead-acid battery may be way ahead of what ever is in second place for vehicle electrical systems, but they do need a 'weather eye' kept on them. Particularly if they're out of warranty. The same applies to 'reconditioned' batteries, so often found in secondhand vehicles of some age.

That's the problem with cars running out of petrol and running out of battery produces the same heartrending result. Immobility.

Most vehicles have a petrol gauge. Few have an equivalent for the battery. Many 'older' cars included a 'charging current' meter. This told you something about the car's generatorregulator and required some inter-
pretation to figure out whether the battery was in good health.

Probably the best way to oheck on the state of your battery is to use a hydrometer. However, hydrometers have a number of drawbacks. Being made of glass,'they're fragile and can't be used while a car is in motion. The small amount of battery acid that remains on them presents a storage problem - the drips and fumes attack most metals and materials. They're okay for the corner garage but justifying their cost, for the occasional use they get in home workshops, is not always possible.

Another method of testing battery condition is by checking the voltage 'on load'. A lead-acid vehicle battery in a reasonable state of charge will have a
terminal voltage under normal working load somewhere between 11.6 and 14.2 volts. When a battery shows a terminal voltage below 11.6 volts its capacity is markedly decreased and it will discharge fairly quickly. Like as not, it won't turn the starter motor for very long! On the other hand, if the voltage on load is above 14.5 volts then the battery is definitely fully charged! However, if it remains that way for any length of time while the car is on the road, the vehicle's alternator-regulator system is faulty and the battery may be damaged by overcharging.

Reading the battery voltage can be done in a number of ways. You could use a digital panel meter, set up as a voltmeter. Their drawback is that they cost nearly ten times as much as a hydrometer! The next best method is to use an 'expanded-scale voltmeter'. Reading the voltage range between 11 and 15 volts on a meter face calibrated $0-16$ volts is a squint-and-peer exercise. On a $0-30$ volts scale, as used on many modern multimeters, it's worse. A meter which reads between 11 volts at the low end of the scale and 16 volts at the high end is ideal. Hence, the term 'expandedscale'.

However, you don't want to be peering at a meter on the dash board when you're driving through traffic. The range of voltage over which your battery is healthy is some two volts. An indicator which simply requires the

The circuit diagram and component overlay (below). During construction, make sure all of the diodes and LEDs are the right way round.

TO BATTERY + Ve

HOW IT WORKS

4
This circuit depends for its operation upon the different voltage drops across different colour LEDs.

At 20 mA the voltage drops across red, yellow and green LEDs are typically $1.7,3.0$ and 2.3 volts respectively. When the vehicle battery voltage is too low to cause either ZD1/ZD2 or ZD3 to conduct, Q1 and Q2 are held off by R3 and R5. Under these conditions the yellow LED is forward biased and conducts via Dl producing a potential of about 3.7 volts at point A (see circuit diagram). When the supply rises above about 11.6 volts ZD3 conducts, biasing Q2 on. By virtue of its lower voltage requirements the green LED conducts, reducing the voltage at point A to approximately 2.6 volts. This is not enough to bias D1/LED3 on, so the yellow LED goes off. The green LED 'steals' the bias from the yellow LED. When the supply rises above about 14.2 volts, Q1 is biased on and the red LED 'steals' the bias from the green. The potential at point A falls to two volts and only the red LED conducts.

R1 limits the current through the LEDs. R2 and R4 limit the base currents into Q1 and Q2.

PARTS LIST

Resistors all $1 / a W, 5 \%$	
R1	470 R
R2	100 R
R3, R5	10 k
R4	680 R

Semiconductors

D1	1 N914
ZD1, ZD2	6V8 400 mW zener
ZD3	11 V 400 mW zener
Q1. 02	BC547,8,9 or
	BC107,8,9 or
	common silicon
	NPN type
Miscellaneous	
Aluminium ang	bracket for under-
dash mounting	

Aluminium angle bracket for underdash mounting.

BUYLINES

Nothing to worry about here really, but make sure the LEDs are the correct colours, otherwise the voltage drops will not be correct!
occasional glance, and needs no 'interpretation', is what is really needed.

With this project, that's exactly what we've done.

Go, caution, stop

We have devised a simple circuit that indicates as follows:
Yellow: battery 'low'
Green: battery okay
Red: battery overcharging
When the battery voltage is below 11.6 volts, a yellow indicator lights. This indicates the battery is most likely undercharged or a heavy load (such as high power driving lights) is drawing excess current. When it is between 11.7 and about 14.2 volts the green indicator lights, letting you know all is sweet. If the red indicator lights, as it will if the voltage rises above 14.2 volts, maybe the vehicle's voltage regulator needs adjusting or there is some other problem.

The circuit

The circuit is ingeniously simple, having barely a handful of parts. Reliability should be excellent.

We actually started out with a somewhat complex circuit. It used only two indicators and required you to 'interpret' what was happening. In trying to convert that to a yellow-green-red style of indication it sort of grew like topsy. This circuit had four transistors, a dozen resistors etc and didn't look at all attractive as a simple project that the average hobbyist or even handyman could build one Saturday afternoon and get going immediately. A rival circuit was devised by another staff member using a common IC. This sparked a controversy as to which was the better! Certainly, both did the job required . . but maybe there was a simpler method.

It was discovered that different coloured light emitting diodes (LEDs), which we had decided to use for the indicators in the project, had different voltage drops when run at the same current. Seizing on this idea, the original circuit (four transistors, a dozen resistors . . .) was modified to exploit this characteristic and the simple circuit you see here was the result.

Construction

Construction is straightforward. If you haven't soldered electronic components before - and this project was designed for the motorist/handyman as well as electronics enthusiasts - then we suggest you practice on something before tackling this project. Soldering is one of those things like swimming or riding a bicycle, or sex - it's okay once
you've done it once or twice but you don't practice out on the street!

We recommend you use the printed circuit board designed for this project. The actual layout of the components themselves is not critical but a printed circuit board reduces the possibility of errors.

It is best to mount and solder the resistors first. Follow this by soldering in the diodes D1 and the zener diodes ZD1, ZD2 and ZD3. Carefully follow the accompanying component overlay making sure the diodes are all inserted the correct way around. Next, mount the transistors, again referring to the overlay, checking to see they are inserted correctly before soldering.

Finally, mount the light emitting diodes. These too may only be inserted one way. Check with the component overlay and connection diagrams. Make sure they are in the correct sequence. On the component overlay, LED 1 is the red LED, located at the left. The yellow LED is on the right, marked with a ' 2 '. The green LED, marked ' 3 ' is between them.

The circuit could be tested at this
stage if you have a variable power supply, or access to one. Simply vary the voltage across the range between 11 and 16 volts and note whether the LEDs light up in the correct sequence and close to the voltages indicated.

Mounting

As vehicles vary so much in dash panel layout, we can only make general suggestions.

Clearly, the indicator should be mounted such that the three LEDs are not in direct sunlight. A low part of the dash, but make sure it's readily visible from your normal driving position, will pretty well ensure the display may be easily read during the daytime. Alternatively, if you have an 'overhung' dash, or a portion which overhangs (usually where the instruments are mounted anyway), then a suitable position will generally suggest itself.

Exact mechanical details will have to be determined according to your particular situation. Two holes are provided in the board for mounting bolts. Alternatively, the whole assembly
may be mounted from the LEDs. Three LED holders inserted through part of the dash panel, or an escutcheon plate mounted on the dash, will hold the LEDs quite securely. Providing the leads on the LEDs are fairly short, the board will place little strain on them and the assembly should be mechanically secure.

Connection

The indicator may be installed in vehicles having positive or negative earth electrical systems.

The component overlay shows the connection for a negative earth vehicle. The 'battery +ve' lead goes to the ignition switch - the indicator only operates when the vehicle is being used - the battery negative lead should be taken to a good 'earth' point on the vehicle frame.

For a positive earth vehicle, the lead marked 'battery - ve' goes to the ignition switch connection, while the 'battery +ve' lead goes to the vehicle frame.

ETI

NEW PRICES AND SOME NEW CMÖS ĀDDITIONS If you need your CMOS by retum - buy if from siwtel									
CD4000	0.15	CD4027	0.44	CD4051	0.82	CD4086	0.44	CDAO182	1.40
CD4001	0.17	CD4028	0.77	CD4052	0.82	CD4089	1.39 0.80	CD40192	1.40
CD4002	0.17	CD4029	1.03	C04053	0.82	CD4094	1.68	CD40194	1.18
C04006	1.04	CD4030	0.50	C04054.	1.18	CD4095	0.94	CD4025 7	1.48
CD4007	0.18	CD403	2.85	CD4056	1.18	CD4096	0.94	CO4502	0.81
CD4008	0.87		1.25	CD4059	4.29	CD4097	3.35	CD4510	1.01
CD4009	0.50 0.50	CD4034	1.71	${ }_{5}$	1.00	CD4098	0.98	CD4511	1.25
CD4010	0.50 0.18	CD4035	1.06	-04063	0.98	CD4099	1.65	CD4514	2.47
C04012	0.20	CD4036	2.86	C04066	0.55	CD40100	2.51	CD4515	2.87
CD4013	0.43	CD4037	0.85	C04067	3.35	CD40102	2.13	CD4518	0.97
CD4014	0.83	CD4038	2.98	CD4068 CD4069	0.20	CD40103	2:13	CD4520	1.04
CD4015	0.33	CD4039	2.78	CD4069	0.48	CD40104	1.10	CD4527	1,43
C04016	0.48	CD4041	0.75	CD4071	0.20	CD40105	1.08	C04532	1.21
CD4018	0.83	CD4042	0.69	CD4072	0.20	CD40106	0.62	CD4555	0.78
CD4019	0.80	C04043	${ }_{0}^{0.88}$	CD4073	0.20	CD40108	5.36	NT14528.	0.03
CD4020	1.11	${ }^{\text {COA }}$ C044	${ }_{1} 0.26$	C04075 CD4076	1.17	CD40109	1.03	MC14553	4.43
C04021	0.00	${ }^{\text {CD }}$ CD4045	1.20	${ }^{\text {CDS }}$ C07077	0.39	CD40160	1.19	IM6508	8.05
CD4022		CD4047	0.89	CD4078	0.20	CD40161	1.19		
CO4024	0.20	CD4049	0.50	C04082	0.20	CD40163	1.19		
CD4026	1.55	CD4050	0.43	CD4085	0.84	CD4018)	3.40		

OFFICIAL ORDERS ARE WELCOME from Companies. Govt Ospts. Nain inds. Univs. Polys.
OFFICIAL OROERS CW O. Add VAT @ $8 \%+350$ prip TELEP HO NE And CREDIT (Invoice) ORDERS add VAT $@ 8 \%+60 \mathrm{p}$ p\&p minimum charge (the basiance will be charged at costi). Please see FAST SERVICE EXPORT ORDERS welcome. no VAT but add 10\% (Eurape) 15% (Overseas) for Air Mail p\&p For Expor postage
us first.
ORDERS TO: SINTEL, PO BOX 75A, OXFORD

Tel: 086549791

FAST SERVICE: We guertantee that Telophone Orderi for goods in tock, recelved by 4.15 p.m. (Mon.-F ri.) will be heme by parcel poit) and our stocking is good. Privato customers should telephone and pay by giving thair Accoes or
or Earclaycard number. with
Official orders, no minimum.

microfile

Henry Budgett wandered across the States in the name of Microfile. This is his report, and other small world shattering items that happened to crop up while he was away.

Pets in Business

THE LONG AWAITED PET add-on's have arrived at last, honest! Launched at a Cafe Royal press conference was a new PET based business system with a price tag of $£ 2,500$ excluding software. Utilizing the new, largekeyboard 32 K machine with Commodores own dual disk drive and tractor-fed printer it forms the cheapest small business system yet available. The software is being written by a new division of ACT, Petsoft's parent company, called PETACT and will cost between £225 for a single package to about $£ 800$ for a complete suite of programs. It will be available in either disk or cassette format and is the first business software for a micro to be written by a professional software house. The software price also includes a day's training for an employee.

We rather thought that the printer was never going to arrive as it was trapped at Heathrow in customs but it surfaced during the Champagne and Orange cocktails and appeared to be of high quality. The second reason for the Press reception was to announce the forming of an 'endorsement" scheme for non-Commodore produced PET add-on's, the PETACT software being the first product to be launched under the scheme.

Deliveries of the new style PET's have started and should be available in most areas now, the disks and printers will start to appear in mid-May at some of the 100 dealers and will hopefully be generally available within a couple of months. Chuck Peddle the father of the PET and KIM was at the reception and gave a strong indication that new and exciting things were on the way in connection with both machines, memory expansion being one possibility.

On a final note the sales of the UK machine were around 3000 during 1978 and this figure had been reached by the end of April of this year, the market is still growing.

NASCOM With Added Plus

After the phenomenal success of the NASCOM I (150,000 sales worldwide) the company have announced a new single board machine called NASCOM II.

Although it is physically the same size as the ' 1 ' and uses the same bus structure it is not intended as a simple upgrade but rather as a new starting point in the home computing market. Based on the Z80A it offers a 75% increase in processing speed along with an 8 K Microsoft BASIC in ROM. Several new features are included on the machine, a new 2 K monitor with many improvements over the T4, A CUTS cassette interface, 8 K of user RAM and a new extended keyboard. The interfaces supplied include an on-board UART for the RS232 or the cassette interface, capable of running at 300 or 1200 Baud, and an uncommitted P10 for two 8 bit ports. The video is run from a 1 KA RAM with a 2 K character generator, an optional socket is supplied for another 2 K graphics ROM which is software selectable.

Above and below: the new bits for PET.

Below: the new more powerful NASCOM.

Both the new monitor and the BASIC can be used with the ' I ' and all the peripherals for the ' I ' can be used with the 'II' making it the basis of a very nice OEM system. The circuit board is of the usual superb quality and the kit will be available from June at $£ 295$ ex VAT. We hope to get our hands on one to review soon and this will be published in CT as close to the release date as possible

Clubbing Together

A couple of new clubs have sent us details of themselves this month. The first is the Sorcerer Programme Exchange Club, SPEC, which has been formed to promote the Exidy Sorcerer. Rather than having an actual club they are aiming to become an information exchange on useful. hints and programs for the machine and would be most grateful for anyone who has some to send them in. The people to contact are Mr G. F. Counsell and Mr M. P Hannaby at 65 Trafalgar Road, Birkdale, Southport, Merseyside.

The second club is the South Yorkshire Personal Computing Group, SYPCG, who are appealing to people in the area interested in do-it-yourselr computing. They hope to meet on the second Wednesday of each month with a variety of topics under discussion. Membership is $£ 3$ for 1979 and the meetings will be held at 7.00 pm in the University of Sheffield. For further information you should contact the Secretary, Mr Tony Rycroft, at 88 Spinneyfield, Moorgate, Rotherham, S. Yorkshire.

Showing It Off USA Style

I spent a pleasant weekend in Orlando, Florida, last month at a micro-show. It really was a micro-show, dealing with the machines and also being very small. However this was really an advantage as it allowed free and personal access to the exhibitors rather than the situation which arises at some of the UK exhibitions. The variety of machines was impressive, ranging from an IAM 65 to an LSI 11, but there were no PET's, KIM's or Superboards which was rather surprising. The only new machine there was an $\mathrm{Z80}$ based S100 system called Informer which also used an SC / MP for keyboard and video control. Supplied either with or without an integral floppy it looked impressive but is unlikely to appear on this side of the Atlantic.

The show also featured a siminar programme, again on a very informal and personal level which resulted in a most entertaining question and answer forum. The whole show was most professionally run and I only wish that some of the UK shows coutd adopt a similar attitude and become smaller and more personal instead of bigger and unhelpful.
The biggest business system at the show, an LSI II with dual floppies being used for stock control.

The familiar Apple II with a speech recognition board installed. It worked remarkably well and 'echoed' back your word

New TRS 80 printer. Will it reach us, we wonder.
A Texas system with dual floppies and integral thermal printer as well as a Centronics 702 on-line. It played a mean game of Star Trek!

THREIR

 ELECTRONICS BY NUMBERS

 ELECTRONICS BY NUMBERS LED BAR GRAPH UNIVERSAL LED BAR GRAPH UNIVERSAL INDICATOR

 INDICATOR} FROM CSC

Now using EXPERIMENTOR BREADBOARDS and following the instructions in "Electronics by numbers" ANYBODY can build electronic projects.
Look at the diagram and select R1, this is a resistor with a value between 120 to 270 ohm. Plug it into holes X20 and D20, now take LED 1 and plug it into holes E20 and F20. Do the same with the Diodes e.g. plug D7 into holes G7 and G10.

YOU WILL NEED

EXP. ANY EXPERIMENTOR BREAD.

 BOARD

 BOARD}D1 to D15 - Silicon Diodes (such as 1N914) R1 to R6 - From 120-270 ohm resistors $1 / 4$ watt.
LED1 to LED6 - Light emitting diodes.
LED BAR GRAPHS are replacing analogue meters as voltage-level indicators in many instances.
This circuit uses the forward voltage drop of diodes to determine how many LEDs light up. Añy type of diode can be used but you must use all the same type. For full working details of this circuit fill in the coupon. If you have already built the Two-transistor Radio and the Fish'n'cliks projects you will find that you can reuse the components from these projects to build other projects in the series.

FILL IN THE COUPON AND WE WILL SEND YOU FREE OF CHARGE FULL COPIES OF "ELECTRONICS BY NUMBERS" PROJECTS No 1, No 2 and No 3.

PROTO-CLIP TEST CLIPS.

Brings IC leads up from crowded PC boards. Available plain or with cable with clips at one or both ends.

$$
P C-16 \text { pin. } £ 2.75
$$

PC - 16 pin with cable.

PC - $\mathbf{1 6}$ with cable and 16 pin clips at both ends. $£ 10.25$.

Europe, Africa, Mid-East: CSC UK LTD. Unit 1, Shire Hill Industrial Estate Saffron Walden, Essex CB11 3AO. Telephone: SAF FRON WA LDEN 21682.

EXPERIMENTOR BREADBOARDS.

No soldering modular breadboards, simply plug components in and out of letter number identified nickel-silver contact holes. Start small and simply snap-lock boards together to build breadboard of any size.
All EXP Breadboards have two bus-bars as an integral part of the board, if you need more than 2 buses simply snap on 4 more bus-bars with the aid of an EXP.4B.

EXP.325. The ideal breadboard for 1 chip circuits.
Accepts $8,14,16$ and up to 22 pin IC's.

ONLY £1.60.

EXP. 300.
550 contacts with two 40-point bus-bars. £5.75.

EXP, 650 for Microprocessors. £3.60.

EXP 4B.
More busbars. £2.30.

- EHBE sims

ALL EXP. 300 Breadboards mix and match with 600 series.

PROTO-BOARDS.
the ultimate in breadbóards FOR THE MINIMUM COST
TWO EASILY ASSEMBLED KITS.

PB. 6 Kit, 630 contacts, four 5 -way binding posts accepts up to six 14-pin Dips. PROTO-BOARD 6 KIT. $£ 9.20$.

PB. 100 Kit complete with 760 contacts accepts up to ten 14 -pin Dips, with two binding posts and sturdy base. Large capacity with Kit economy.
PROTO-BOARD 100 KIT £11.80.

HOW TO ORDER AND RECEIVE FREE COPY OF TWO-TRANSISTOR RADIO PROJECT,
FISH'N'CLIKS AND LED BAR GRAPH.
CSC UK LTD. Unit 1, Shire Hill Industrial Estate, Saffron Walden. Essex CB11 3AQ.
It's easy. Give us your name and full postal address, in block capitals. Enclose cheque, postal order or credit card number and expiry date. OR telephone 079921682 and give us vour Access, American Express or Barclavcard number and vour order will be in the post that night.

BREADBOARDS.
IC CAPACITY
14 PIN.DIP.
1
3
6
use with 0.6
pitch Dip's
Bus-Bar Strip
UNITPRICE
INCLUDING POSTAGE AND V.A.T.

$$
\begin{array}{ll}
£ & 2.53 \\
£ & 4.21
\end{array}
$$

£ 4.21
£ 7.29
£ 4.69
£ 3.29
Four 40 Point Bus-Bars
£ 3.78
£ 7.56
£12.15
6
10
£11.01
£13.82
NAME
ADDRESS

Not knowing Mega, hurts.

P.C. production system-for under $\boldsymbol{\& 5 0 0}$.

* U.V. exposure unit with built-in electronic timer;
* developing tank;
* spray wash tank;
* heated thermostatically controlled tinning tank;
* heated thermostatically controlled bubble etching tank;
* precision variable speed (1500-15000 r.p.m.) drill;
* gold plating unit for d.s. edge connectors with movement and coulomb control for accuracy;
* complete range of consumables from stock:
* quality products with 1 year's guarantee. In short the complete system for the production of p.c.b.'s, labels, and panel overlays of up to $12 \times 10 \mathrm{in}$. At under $£ 500$! Or as individual items.
From Mega. The p.c. production people

From Mega. The p.c. production people

ELECTRONICS LMMIED

Mega Electronics Ltd., 9 Radwinter Road, Saffron Walden, Essex, CB11 3HU. Tel: (0799) 21918. Telex: 81653.

		yin con	Nunnten spitatasian ond		
		Rxine (six			
				Rown suphis, yor	
		otem			
Terms. Cash with order (otficial orders welcomed from colleges etc) 3.0 p. postage please unless otherwise shown. VAT inclusive prices. S.A.E. for new illustrated			PROGRESSIVE RADIO 31 CHEAPSIDE, LIVERPOOL L2 2JD		

Mine Sweeper

E. A. Johnson

The object of the game is to locate and destroy a moving minesweeper. The ship moves along a set course, but, to avoid destruction it can deviate slightly from the course and alter its speed.

Playing the game

The game is started by entering a number (in the range 0 to 1) into register E, to set the initial position of the minesweeper through a random number generator. A shot is made by entering the xy co-ordinates (into the A and B registers respectively) of the square where the ship is believed to be. The calculator determines the position of the ship and displays the distance by which the shot missed. If the shot is within five units of the ship, damage occurs which slows the ship down in proportion to the nearness of the shot. When the ship is destroyed the display flashes.
After the ship has been destroyed, the number of shots used can be displayed by pressing ' C ', and a new game can be started by pressing ' D '.

Method of calculation

The initial value of Θ, which determines the ship's position is determined using the calculator's random number package. The ship's co-ordinates are then calculated by the following equations:

$$
x=(50+45 \cos 3 \Theta)+\text { RNUMX }
$$

$$
y=(50+45 \sin 2 \Theta)+\text { RNUMY }
$$

where RNUMX and RNUMY are random numbers (in the range of -3 to +3) to give the ship its avoiding action.
The distance of the shot from the ship is calculated using pythagoras and displayed in integer mode.

The next value of Θ is then given by

$$
\Theta=\Theta+\Theta \text { INCR }
$$

where ©INCR is originally set to 5 , the calculator then determines the new co-ordinates of the ship.
When the distance of the shot from the ship is less than five units, the value of OINCR is reduced to slow the ship down. The new value is given by ©INCR $=$ OINCR - $(5 \div$ distance $)$.
The above procedure continues until OINCR $\leqslant 0$ when the ship is destroyed.
A new game, if required, is started by automatically generating a new random initial value of Θ.

MINESWEEPER PROGRAM FOR TI 58 \& 59

Example Game			
Comment	Enter		Display
Enter a number between 0 \& 1	0.258	E	0
Enter guess for x co-ordinate	50	A	0
Enter guess for y co-ordinate	11	B	65 (Distance)
\times co-ordinate	84	A	0
y co-ordinate	70	B	62
x	40	A	0
y	85	B	7
x	43	A	0
y	87	B	3
x	51	A	0
y	89	B	3
x	54	A	0
y	90	A	9.999999999
			(Flashing)
To display number of shots		C	6
To start a new game		D	0
\times co-ordinate	50	A	0
y co-ordinate	11	B	42

ETC.

8K ON BOARD MEMORY!
$5 K$ RAM. 3 K ROM or 4 K RAM. 4 K ROM (llink selectable). Kit supplied with 3 K RAM. 3 K ROM. Systern expandable for up to 32 K memory.

2 KEYBOARDS!

56 Key alphanumeric keyboard for entering high level language plus 16 key Hex pad for easy entry of machine code.

GRAPHICS!

64 character graphics option - include transistor symbols! Only $£ 18.20$ extra!

MEMORY MAPPED

high resolution VOU circuiry using discrete TTL for extra flexibility. Has its own 2 K memory to give 32 lines for 64 characters.

KANSAS CITY

ow error rate tape interface.

COMPLETE KIT

2 MICROPROCESSORS

280 the powerful CPU with 158 instruction, including all 78 of the 8080, controls the MM57109 number cruncher. Functions include + , -, ., squares roots, logs ${ }_{9} g^{x}$ ponentiads trig functions, inverses etc Range 10^{-99} to 9×19^{99} to 8 figures plus 2 exponen digits.

EFFICIENT OPERATION

Why waste valuable memory on sub routines for numeric processing? The number cruncher handles everything internally!

RESIDENT BASIC with extended mathematical capability. Only 2 K memory used but more powerful than most 8K Basics!

IK MONITOR
resident in EPROM.

SINGLE BOARD DESIGN
Even keyboards and power supply circuitry on the superb quality double sided plated through-hole PCB.

ONLY £275.00
+VAT

POWEFTRAM

PSI Comp 80. 280 Based powerful scientific computer Design being published in Wireless World - NOW!

The kit for this outstandingly practical design by John Adams being published in a series of articles in Wireless World really is complete!
P 80 , fibre-glass double sided, plated-through-hole printed circuit board. 2
 Basic and 1 K monitor in EPROMS and, of course, wire, nuts, bolts, etc.

Value Added Tax not included in prices

PRICE STABILITY. Order with confidence Irrespective of any price ahe we will honour all prices in this advertisement unt August 31 changes we will hon' and VAT rate changes excluded
EXPORT ORDERS: No VAT. Postage charged at actual cost plus 50p handling and documentation
U.K. ORDERS: Subsquent to 8% surcharge for VAT'. NO charge is made for carriage. Or current rate if charged
SECURICOR DELIVERY: For

UK Carriage FREE

POWERTRAN COMPUTERS
 (a division of POWERTRAN ELECTRONICS)

PORTWAY INDUSTRIAL ESTATE ANDOVER HANTS SP 10 3NM

ANDOVER
(0264) 64455

Lunar Landing
Sarah J. Owen.
This program was devised for use on the Commodore PR. 100 calculator, but is easily adapted for use on any other programmable ones. Imagine you are the Astronaut controlling the final descent of a lunar module, at regular intervals the speed of descent is displayed, the period of burn of the retro-rocket has to be calculated, after allowing for the reducing weight of the fuel on board. Five speed corrections are allowed, after which the final impact velocity is displayed. If an error is made and all fuel is used, there is just time to transmit an urgent S.O.S. message before destruction on the lunar surface. Due to the lack of program space, the method of selecting the initial random speed is unusual, but ranges between 20 and $100 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.

Recommended periods for
Retro-rocket firing

SPEED	BURN	
5	1.6	
7	1.9	200
10	2.3	220
15	2.7	250
20	3.0	270
30	3.4	300
40	3.7	330
50	3.9	365
60	4.1	400
70	4.2	450
80	4.4	500
90	4.5	550
100	4.6	600
110	4.7	660
120	4.8	730
130	4.9	800
150	5.0	900
160	5.1	1000

PROGRAM

LOC	CODE	KEY	fuel allow 1 period for weight of fuel remaining (approx)		
00	21	F	36	85	-
01	63	S	37	52	MR
02	21	F	38	81	1
03	51	FRAC	39	85	-
04	74	X	40	52	MR
05	81	1	41	91	0
06	91	0	42	74	X
07	95	$=$	43	95	$=$
08	51	M	44	35	x
09	91	0	45	51	M
10	53	X_{n}	46	91	-
11	82	2	47	52	MR
12	91	0	48	81	1
13	51	M	49	94	+/-
14	81	1	50	15	SKIP
15	71	4	51	14	GOTO
16	51	M	52	73	6
17	82	2	53	63	9
18	52	MR	54	52	MR
19	91	0	55	82	2
20	74	\times	56	85	-
21	62	8	57	81	1
22	84	+	58	95	$=$
23	52	MR	59	15	SKIP
24	81	1	60	14	GOTO
25	95	$=$	61	81	1
26	51	M	62	73	6
27	91	0	63	52	MR
28	21	F	64	91	0
29	52	INT	65	13	R/S
30	13	R/S	66	14	GOTO
31	21	F	67	91	0
32	85	M-	68	91	0
33	81	1	69	72	5
34	21	F	70	91	
35	32	e^{x}	71	72	5

D.C. POWER SUPPLIES

Now, like Intel, Motorola and National you can buy Power-One open frame power supplies and enjoy quality and reliability at LOW LOW prices. Over 70 different models to choose from including floppy disc drive supplies as well as single, double, triple and quad output.

Floppy Disc Drive

Supplies

with connectors and cables for Shugart drives if required.
CP- 249 - drives one mini drive $\mathbf{£ 3 3 . 0 0}$ CP- 323 -drives two mini drives $\mathbf{5 0 0 . 0 0}$ CP-205 - drives one Shugart SA800 ar equivalent 8 " drive 5800 EB8.00 P. 206 - drives two SA800

Discount available to bona-fide educational establishments. Quantity discounts start at five units. Trade enquiries welcome. Send large SAE for full catalogue and price list.

COMPUTERS LTD.,
133 Woodham Lane, New Haw, Weybridge, Surrey KT15 3NJ. Telex. 8813487

TUNER AMPLIFIER SYSTEM 8000

'Probably the best tuner amplifier ever designed in the UK."
The system 8000 Receiver is available now from Unielectric Ltd. The ultimate HIFI kit using the latest circuit techniques, its specification is equal to commercial units costing twice its price. The system 8000 marks a significant advance in HIFI, the sole criterion in its design has been overall performance. Unielectric's design and buying power with your labour means a real advantage over similarly priced commercial units.

* VMOS OUTPUT゙
\star FM sensitivity below $1 \mu \mathrm{~V}$
* 50 dB stereo separation on FM
* Digital Readout
* Multi inputs

PRICES

1. Metal work kit is $£ 32.40$ plus VAT at 8%
£35.00
Includes knobs, fascia, nut, bolts
2. Set of PCBs is $£ 13.43$ plus VAT at 8%
$£ 14.50$
3. Complete kit of parts including Metal Work is $£ 146.67$ plus VAT at 12.5%
$£ 165.00$
(Postage on 1 and 2 is included) (Securicor delivery $£ 5$ on item 3) (VAT RATES MAY CHANGE DURING THE BUDGET)
4. A full alignment service for the Mother board is available

UNIELECTRIC LTD.

182-184 Addington Road, South Croydon, Surrey

Mastermind

P. R. Kemble B.Sc.

This program enables the popular game Mastermind to be played on a HewlettPackard HP29C calculator.
A five digit number (no two digits the same) is set by one player, and then the second player must deduce what it is. There are 30,240 possibilities.
After each guess the calculator indicates how many digits in the guess were correct and in the right position, and how many were correct but in the wrong position.

To play:
Player A enters a 5 figure number and then presses GSB 1.

Player B enters his guess and presses R / S. After several seconds calculation the display shows a number such as 1.2 which means 1 digit in the right place and 2 more correct figures but in the wrong position.

Player B then enters another guess and presses R / S, etc. until he achieves a score 5.0.

For cheats (!) or if the number set has been forgotten, it is held in STO . 5 .

The use made of the calculators stores is shown below.
If the number set was $A B C D E$, and the guess is FGHIJ, then:

STO	0	Used
1	J	
2	I	
3	H	
4	G	
5	F	
6	Used	
7	Used	
8	Used	
9	Used	
.0	E	
.1	D	
.2	C	
.3	B	
.4	A	
.5	ABCDE	

STEP	INSTRUCTION
01	gLBL1 fFIX1 STO. 5 1 4 CHS GSBO gLBL9 0
10	
20	$\begin{aligned} & \text { RCLi } \\ & 9 \\ & \text { STO }+0 \\ & x \gtrless y \\ & \text { RCLi } \\ & - \\ & \text { gx }=0 ? \\ & \text { GSB3 } \\ & 8 \\ & \text { STO- } 0 \end{aligned}$
30	RCLO 6 $\mathrm{fx}=\mathrm{y}$? GTO4 GTO5 gLBL3 STO+7 RTN gLBLO
40	$\begin{aligned} & \text { STO } 0 \\ & x \gtrless y \\ & \text { EEX } \\ & 4 \\ & \div \end{aligned}$
45	$\begin{aligned} & \mathrm{gLBL} 2 \\ & \text { fINT } \end{aligned}$

-6 Wilmslow Audio

THE firm for speakers!

Send 15 p stamp for the world's best catalogue of Speakers, Drive Units, Kits, Crossovers, etc., and discount price list.
> - AUDAX BAKÉR BOW̄ERS \& WILKINS CASTLE CELESTION CHARTWELL COLES DALESFORD DECCA EMI EAGLE ELAC

> FANE GAUSS GOODMANS I.M.F. ISOPHON JR O JORDAN WATTS KEF - LEAK - LOWTHER - McKENZIE MONITOR AUÓIO PEERLESS RADFORD RAM RICHARD ALLAN - SEAS TANNOY VIDEOTONE WHARFEDALE SHACKMAN AUDIOMASTER TANGENT STAG YAMAHA

WILMSLOW AUDIO Dept. ETI

SWAN WORKS, BANK SQUARE, WILMSLOW CHESHIRE SK9 1 HF Discount HiFi, etc., at: 5 Supan Street and 10 Swan Street
TEL. WILMSLOW 529599 FOR SPEAKERS WILMSLOW 526213 FOR HI-FI

TRANDAA
 Comes complete witn keyboard, case,

The exciting new

TRITON Personal Computer

Basic in Rom: a powerful $2 k$ Tiny basic resident on board, makes Triton unique. easy to use and versatile.
Graphics: 64 Graphic characters as well as full alpha numerics.
Single Board: Holds up to $8 k$ of memory, 4 k RAM and 4 k Rom, supplied with $3 k$ ROM and $2 k$ RAM.
Memory Mapping: 2 mode VDU, I/O or memory mapped for animated graphics.
Cassette Interface: crystal controlled modem tape 1/O with auto start/stop + "named" file search.
UHF TV Interface: On board uhf modulator, plugs into TV aerial socket.
full power supply, quality through hole plated PCB, full (118 page) instruction manual. A powerful 1 k monitor \& 2 k tiny basic in Eprom. All IC sockets.

All components can be bought separately, so you can start construction on a low budget. Full details of prices and discounts are shown in our new 1979 catalogue.

EXPANSION BOARDS
 Mother Board: 8 slot.

A new 8 slot Triton motherboard is now available based on Eurobus, it allows easy expansion \& has its own meaty power supply.

8 k Static Ram

Eurocard size ($160 \times 100 \mathrm{~mm}$) 8k Static RAM fully buffered, on board regulation \& decoding. Uses $4 \mathrm{k}(1 \mathrm{k} \times 4)$ Static RAMS. Just plugs into motherboard for memory expansion.
8k Eprom Board
Designed to take 8×2708 Eproms on the Triton bus. Don't forget our programming service, on Data I/D System

Triton Kit £286 Motherboard Kit £50
8k RAM Card Kit 8k EROM Card Kit ع97

Full details in Catalogue 30p + SAE

Cambridge Learning Enterprises

SELFINSTRUCTION COURSES

UNDERSTANDING DIGITAL ELECTRONICS

In the years ahead the products of digital electronics technology will play an important part in your life. Calculators and digital watches are already commonplace. Tomorrow a digital display could show your vehicle speed and fuel consumption; you could be phoning people by entering their name into a telephone which would automatically look up their number and dial it for you.
These courses were written by experts in electronics and learning systems so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being faster and more thorough than classroom learning. You work at your own pace and must respond by answering questions on each new piece of information before proceeding.
After completing these courses you will have broadened your career prospects and increased your fundamental understanding of the rapidly changing technological world around you.

Digital Computer Logic and Electronics is designed for the beginner. No mathematical knowledge other than simple arithmetic is assumed, though the student should have an aptitude for logical thought. it consists of four volumes - each A4 size - and serves as an introduction to the subject of digital electronics. Everyone can learn from it - designer, executive, scientist, student, engineer.

Contents include: Binary, octal and decimal number systems; conversion betweem number systems, AND, OR, NOR and NAND gates and inverters Boolean algebra and truth tables; De Morgans Laws; design of logic circuits using NOR gates; R-S and J-K flip flops; binary counters, shift registers and half adders.

FLOW CHARTS \& ALGORITHMS help you present: safety procedures, government legislation, office procedures, teaching materials and computer programs by means of YES and NO anwsers to questions.

The Algorithm Writer's Guide

explains how to: define the questions, put them in the best order and draw the flow chart, with numerous examples shown. All that students require is an aptitude for logical thought. Size: A5, 130 pages. This book is a MUST for those with things to say.

NEW ${ }^{4}$ from.Cambridge Learning Enterprises O- LEVEL ENGLISH LANGUAGE

More and more jobs require a C-GRADE PASS, and over ' 250,000 people fail to get this every year. Will one of them be in your family? This new course, written by experts in a style that's serious yet fun to read, shows you how to mark your own work and compare it with the work of other people in their exam year. Set your own pace and assess your results immediately with no postal delays: watch your speed and standards improve. In Book 1 learn how you will be marked on COMPREHENSION, Book 2 covers SUMMARY
PUNCTUATION \& SPELLING, and Book 3 coaches you in the principles of COMPOSITION. Size: 3 A4 volumes totalling 250 pages.

CAMBRIDGE LEARNING ENTERPRISES, UNIT 10

 RIVERMILL SITE, FREEPOST, ST. IVES, HUNTINGDON, CAMBS. PE17 4BR, ENGLANDTELEPHONE: ST. IVES (0480) 67446.
PROPRIETORS: DAYRIDGE LTD. REG. OFFICE: RIVERMILL LODGE, ST. IVES PROPRIETORS: DAYRIDGE LTD. REG. OFFICE: RIVERMILL LODGE, ST. NES REGD. IN ENGLAND No. 1328762

Derign of

Design of Digital Systems is written for the engineer seeking to learn more about digital electronics. Its six volumes - each A4 size are packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters and simple rithmetic circuits, and finally to a complete understanding of the design and operation of calculators and computers. Contents include:
Book 1 Octal, hexadecimal and binary number systems; conversion between number systems; representation of negative numbers; complementary systems; binary multiplication and division.
Book 2 OR and AND functions; logic gates; NOT, exclusive-OR, NAND. NOR and exclusive-NOR functions; multiple input gates; truth tables; De Morgans Laws; canonical forms; logic conventions; Karnaugh mapping; three-state and wired logic.
Book 3 Half adders and full adders; subtractors; serial and parallel adders; processors and arithmetic logic units (ALUs); multiplication and division systems.
Book 4 Flip flops; shift registers; asynchronous and synchronous counters; ring, Johnson and exclusive-OR feedback counters: random access memories (RAMs) and read only memories (ROMs).
Book 5 Structure of calculators; keyboard encoding; decoding display data; register systems; control unit; program ROM; address decoding; instruction sets; instruction decoding; controt'programe structure.
Book 6 Central processing unit TCPU); memory organization; character representation; program storage; address modes; input/output systems; program interrupts; interrupt priorities; programming; assemblers; com puters; executive programs; operating systems and time sharing.

Four volumes Digital Computer Logic \& Electronics at $£ 6.50$ inc Six volumes Design of Digital Systems at $£ 10.50$ inc $p \& p$ Three volumes 0 -Level English Language at $£ 6.50$ inc p \& p The Algorithm Writer's Guide at $£ 3.40$ inc p \& p
If your order exceeds $£ 14$ deduct $£ 2$ from your payment
Price includes surface mail anywhere in the world, airmail extra
GUARANTEE If you are not entirely satisfied your money will be refunded

Please allow 21 days for delivery

- Cambridge Learning Enterprises, Ūnit 10 Rivermill Site, I I FREEPOST, St. Ives, Huntingdon, Cambs. PE17 4BR, I England.
Please send me the following books:
... . sets Digital Computer Logic \& Electronics at $£ 6.50, \mathrm{p} \& \mathrm{p}$ sets Design of Digital Systems at $£ 10.50$, p \& p included O-Level English Language at $£ 6.50 \mathrm{p} \& \mathrm{p}$ included . . The Algorithm Writer's guide at $£ 3.40$, p \& p included
Name
I Address

I …......... ${ }^{*}$. prises for f

Please charge my *Access/Barclaycard/Visa/Eurocard/ Mastercharge/Interbank account number.
I Signature *delete as appropriate.
I Telephone orders from credit card holders accepted on
| 0480-67446 (Ansafone). Overseas customers should send a
I bank draft in sterling drawn on a London Bank, or quote credit
I card number.

Simply ahead!

HIGH PERFORMANCE MODULAR UNITS BACKED BY NO-QUIBBLE 5 YEAR GUARANTEE

I.L.P POWER AMP MODEL HY50

Of all the purpose-built power amplifier modules by I.L.P the HY50 is understandably the most popular with those wanting to build new or up-grade an existing hi-fi system, run a small high quality P.A. system, amplify a musical instrument (say for practice or small range use) or use it for lab work. Its useful 30 watts RMS output into 8 ohms, its rugged construction and freedom from heatsink worries make it the ideal all-purpose quality power amp - and it is unconditionally guaranteed for five years! Tens of thousands‘are in regular use throughout the world
... .and a spec that means what it says!
Encapsulated power amp with integral full-rated heatsink
Input - 500 mV
Output 30 watts RMS / 8Ω.
Load Impedance - 4 to 16Ω
S/N Ratio 75 dB
Distortion - 0.02% from 100 mW to 25 watts at 1 KHz into 8Ω Supply Voltage $\pm 25 \mathrm{~V}$. Size $105 \times 50 \times 25 \mathrm{~mm}$
Inc. VAT and postage in U.K
$£ 8.15$

Nothing has been overlooked in the design and manutacture of I.L.P. Modula Units. Heavy duty heatsinks, encapsulated circuitry, no-compromise production standards and true protessional finish ensure world leadership in their field for L.P. Now we have up-graded output ratings and down-graded prices to bring L.P. within easier reach of all who want the best with which to build with Prices reduced by an average around 20%

Guaranteed 7-day dispatch on all products

FREE PQST - No stamp required when sending your order or enquiry for information sheets
freepost 4, Graham Bell House, Roper Close, CANTERBURY Kent CT2 7EP. Phone (0227) 54778. Telex: 965780

GATHERED HERE are all the PCBs for this month's projects.

All are shown foil side up, and full size. Companies wishing to produce these for sale as ready made PCBs should note that where the board carries a copyright symbol, the designer retains that copyright to himself, so his company,

108

PATTERNS

and that particular board may not be produced on a commercial basis.

These pages form the basis of our ETIPRINT sheets, which are etch resistant transfers of the foil patterns, designed to simplify one-off PCB production.

(AND WAIT TILLYOU SEE OUR SEMINAR PROGRAMME)

The Great Big 'Bazaar' for the hobbyist, amateur, and small buyer.

There's never been an event like this before.
First, the very scale of the exhibition is huge. Virtually all the companies you're used to hearing about (and buying from) will be there. Companies like Fluke and Gould showing off their low cost multimeters; smaller but important manufacturers like Lektrokit and Chromasonics; and even the R.S.G.B. who will have a station'on the air' throughout the 'Bazaar.'

Then there are the suppliers of low-cost components and equipment. Plus almost all the journals in the business. Plus, oh, so many more interesting people catering for your needs (including computer kits!!.
And you get in FREE if you send an s.a.e. (see alongside).

Our Symbol
We think it tells you just what the Bazaar is all about.

The Seminars.

If you would like to hear just what the experts have to tell you, a season ticket for three whole days can be yours for only $£ 1.50$
Sendan s.a.e. and we'tl give you all the information (just use the

Our home for three days - Alexandra Palace, where it all began. (Our seminars are sited alongside the organ-for those who know this unique hall.)

ISEMINAR TICKETS

£1.50.
I'd like to sit in at your seminars. (And like a free ticket to the exhibition.) Send me full details, please, and I enclose a large-ish s.a.e.
Name:
\qquad
Post to: 'The Bazaar,' 34-36 High Street, Saffrón Walden, Essex.Ifyou'd rather just pay 50p, go to Wood Green Tube Station and take a bus (every 3 minutes) to Alexandra Palace. We're open 10 am- 6 pm daily, Thursday to Saturday, 28th-30th June.

Terknawledgey for sule.

DIY Hi-Fi will never seem the same again. Ambit's Mark III visually superior to all others.
vill Some options available, but reference series modules
£ $149.00+£ 18.62 \mathrm{VAT}$

$00 .:$ [9888

Digital Dorchester All Band Broadcast Tuner: LW/MW/SW/SW/SW/FM stereo all fearures you would expect of designs of far greater complexity. The FM section uses a three section (air gang) tuned FET tunerhead, with ceramic IF filters and interstation mute
AM employs a double balanced mixer input stage, with mechanical IF filters - plus a BFO and MOSFET product detector for CW/SSB reception. Styled in a matching unit to the
Mark III FM only tuner, employing the same degree of care in mechanical design to enable easy construction. MW/LW reception via a ferrite rod antenna.
$\begin{array}{ll}\text { Electronics only (PCB and all components thereon) } & £ 33.00+£ 4.12 \text { VAT } \\ \text { Complete with digital frequency readout/clock-timer hardware } & £ 99.00+£ 12.37 \text { VAT }\end{array}$
Complete with MA1023 clock/timer module with dial scale $\quad £ 66.00+£ 8.25$ VAT
Hardware packages are available separately if you wish to house your own designs in a
professional case structure. Please deduct the cost of electronics from complete prices.

PW SANDBANKS PIMETAL LOCATOR \quad Radio and Audio Modules: The biggest range/best specs Maintaining our professional approach to
home constructor kits, we offer the pulse horne constructor kits, we offer the pulse
induction 'Sandbanks'. Now with iniectinduction Sandbanks. Now with inject-
ion molded casing for greatly improved enviromental sealing. $\mathbf{\$ 3 7 . 0 0 +}$ "£2.96vat. VHF MONITOR RX WITH PLESSEY IC 4/9 channe! version of the PW design TOYO 8 pole crystal filter with matching 'transformers. Coil sets from our standard range to cover bands from 40 to 200 MHz
Complete module kit $£ 31.25+£ 3.90$ vat
ETI - REIACON RADIO CONTROL
A tried and tested RC system with a
full set of supporting hardware from a

EF5801/3/4 6 stage varicap tunerheads with LO feed and various levels of sophistication. New 5804 include pin AGC loop 'on board'. $5801: £ 17.45+£ 2.18 v a t-5803: £ 19.75+£ 2.47$ vat
$5804: £ 24.95+£ 3.18$ val $5804: £ 24.95+£ 3.18$ vat. Frequencies in $40-180 \mathrm{MHz}$ on appcn. EF5402 4 stage varicap with TDA1062, compound FET/Bipolar input stage, low noise, balanced mixer, pin agc, osc output. A worthy successor to the $5400 . £ 10.75+£ 1.34$ vat
The 5402 is available centred on a wide range of frequencies from
30 MHz to 180 MHz . Non standard units $£ 14.75+f 184.3$ weeks
30 MHz to 180 MHz . Non standard units $£ 14.75+£ 1.84$. 3 weeks.
8319 4 stage varicap tunerhead from Lārsholt using MOSFE T RF and mixerstages. New temperature compensated osciflator
7252 Complete Larsholt FM tuner less stereo decoder. $\mathrm{f} 26.50+£ 3$ 7253 Stereo FM tunerset from Larsholt wid, FET head. (as 7252) 944378 Hyperfi stereo decoder. The very best. $£ 19.95+$ 911223 Pilot cancel stereo decoder, priced to make the MC1310 as obsolete as it now deserves to be. $£ 12.50+£ 1.56$ vat

Tl:Standard MnD LP SchottkY

Current news: Work conlinues apace on on HMOS PA kit, and by the

[04000

COMPONENTS for Radio and Audio ICs, HMOS etc

The list is too long to attempt here, but AMBIT specializes in all types of semiconducter for radio reception, including devices operating from DC to 5 GHz . New low cost SBL 1 diode ring mixers (equiv case MD108 etc) -firs with HMOS fets, now with a PCB for DC amplifier, and offset sense and protection relay for speakers. See catalogue and updates for most info, pse Radio ICs cost + vat Stereo ICs cost + vat AF power ICs cost +vat | Radio | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| CA3089E | 1.94 | 24 | MC1310P | 1.50 | 19 | LM380N | $\begin{array}{lllllllll}\text { CA3189E } & 2.45 & 30 & \text { UA758 } & 2.20 & 27 & \text { TBA810AS } & 1.09 & 14\end{array}$ $\begin{array}{lllllllll}\text { HA1137W } 2.20 & 27 & \text { CA3090A } & 2.75 & 34 & \text { TDA2002 } & 1.95 & 24\end{array}$ $\begin{array}{lllllllll}\text { SN76660 } & 0.75 & 9 & \text { HA1196 } & 3.95 & 49 & \text { TBAB2OM } & 0.75 & 9\end{array}$ $\begin{array}{lllllll}\text { TDA1090 } & 3.35 & 42 & \text { HA11223 } & 4.35 & 54 \\ \text { TDA1083 } & 1.95 & 24 & \text { KB4437 } & 4.35 & 54\end{array}$ from the general list: $\begin{array}{lllllll}\text { TDA1083 } & 1.95 & 24 & \text { KB4437 } & 4.35 & 54 & \text { LED5:all colours and } \\ \text { TDA1220 } & 1.40 & 17 & \text { KB2224 } & 2.75 & 34 & \text { LES }\end{array}$ $\begin{array}{llllllll}\text { TDA1220 } & 1.40 & 17 & \text { KB2224 } & 2.75 & 34 & \text { low prices }\end{array}$ $\begin{array}{lllll}\text { SL6640 } & 2.75 & 34 & \text { Preamp ICs/switches } & \text { 2SJJ48/2SK } 134 \text { HMOS } \\ \text { MC3357 } & 312 & 39 & \text { HAD }\end{array}$ $\begin{array}{lllllll}\text { MC3357 } & 3.12 & 39 & \text { TDA } 1028 & 3.50 & 44 & 9.90+\text { f0. } 80 \text { vat (Pair) }\end{array}$ $\begin{array}{lllllll}\text { HA1197W } & 1.40 & 17 & \text { TDA1029 } & 3.50 & 44 & \text { Signal fets/transistors and }\end{array}$ $\begin{array}{lllllll}\text { MC1496 } & 1.25 & 16 & \text { TDA1074 } & 4.14 & 52 \\ \text { LM373/4 } & 3.75 & 49 & \text { KB4438 } & 2.22 & 28 & \text { TOKO COILS \& FILTERS! }\end{array}$

6soo series

\qquad
\qquad

KINT-ADS \& CLASSIIED

BARGAINS FOR THE ELECTRONIC HANDYMAN BRANDED LED DIGITAL ALARM CLOCKS

(1)
Reiurn

Reiurned to (2)
period.
(1) With alarm repeat - S.R.S P. of £ 17.00 offered at 2) 23.95 inc VAT.
(2) With luxury lamp and repeat alarm as featured in most major U.K. Mail Order catalogues, S R.S.P
£ 3100 - offered at $\mathbf{£ 6 . 9 5 \mathrm { inc } \text { . VAT }}$
(3) With integral luxury light and repeat alarm also as featured in most major U.K. Mail Order catalogues S.R.S.P. of £32.00 - offered at $\mathbf{£ 6 . 9 5}$ inc VAT

These will be sold as received from our customers with the existing fault(s) and without guarantee.
iscounts available on large bulk purchases PRESCOTT CLOCK AND
WATCH COMPANY LIMITED
rescott House. Humber Road, London NW2 6ER

AF/RFSIGNALINJECTOR £3.50. AF/RF Signal Tracer £3.75. Also Transistor Tester, uses your meter, $£ 5.50$. Send SAE for leaflets. G. Bobker, 29 Chadderton Drive, Unsworth, Bury, Lancs.

Carbon Film Resistors and 1N4148 equivalent silicon diodes supplied from $1 / 2 p$ each Free details and generous samples from D Johnston, 12 Balgillo Road, Dundee DD5 3LU.

CIRCUÍT DESIGN, Prototype consiruction Analogue or Digital, Single Circuits or Com plete Instruments / Systems. Write A. J ATTWOOD, C.Eng., MIERE, Heathercote, Heatherton Park, Taunton, Somerset, TA4 1ET or Phone Bradford-on-Tone (082-346) 536.

PRINTED CIRCUITS and HARDWARE

Comprehensive range Constructors Hardware and accessories
Selected range of populat components Full range of HE printed circuit boards normally ex-stock same day despatch at competitive prices
PC Boards to individual designs
Resist-coated epoxy glass laminate for the diy man with full processing instructions tho ,unusual chemicals required)

Alfac range of etch resist transters and other drawing materials for $p t$ boards

Send $15 p$ for catalogue.
RAMAR CONSTRUCTOR SERVICES MASONS ROAD STRATFORD-ON-AVON WARWICKS. Tel. 4879

FOR NASCOM 1 IN SGOTLAND SEE STRATHAND

stock now: Nascom 1 Buffer Boards
8, 16, 32K Ram Boards Super Tiny Basic Zeap on tape

Please note it is not our policy to advertise Nascom products which are not currently available.

STRATHAND

44 St. Andrew's Sq.
Glasgow G15PL
041-552 6731 or 2
Access and Barclaycard sales welcome Callers welcome 9-5 Monday to Friday

HE LOW-COST WAY TO ORGANISE YOUR COMPONENTS

COMTRAYS

Store resistors. capacitors, IC's. screws, etc Ideal for organısing your project components - saves all that searching around while constructing. Plastic trays with 16 compartments, each compartment $31 / 4 \times 2 \times 11 / 21 \mathrm{~ns}$. deep
e1.60 each, including p.p. and VAT Four for $£ 5.90$ (64 compartments) Eight for $\mathbf{£ 1 0 . 9 0 \text { (} 1 2 8 \text { compertments) }) ~}$

Cheque or P.O. ro:
HELISTAR SYSTEMS LTD 150 WESTON ROAD
AYLESBURY, BUCKS HP22 5EP
Tel. Aylesbury 630364

MAINS TRANSFORMERS 240 V Pri two separate secs. Each 7 V at 500 mA . £1. 10 each +35 p P\&P. P.C.B. with LM 300 2-20 V Precision voltage regulator, $74114 \mathrm{pin}, 1$ amp bridge rect./ X med. power transistors, "X SJE $5039+6$ other transistors, 2N5061 Thyristor +7 caps. 35 res. 90 p each $+15 p$ P\&P. D. Nicholls, Lyndale, Church Lane, Flax Bourton, Bristol

[^0]

ROADRUNNER WIRE THREADING SYSTEM

Introkit £.9.88, Wiring Pencil with full Bobbin £2.44, Distribution Strips glue fix 20/pkt. 6"' long £2.80 pkt., press fix 20/pkt. $2^{\prime \prime}$ long fit Vero/RS Bds. £2.92 pkt., Bobbins of 'Q.S.E.'" wire 4 of 1 col. /pkt. green, blue, copper, pink £2.12 pkt.
SPECIAL OFFER: Oryx 50 temp. cont. iron \& stand $£ 12.50$ (rec. price £13.25), Microshear Cutters $£ 3.15$ pair, Conductive Paint $£ 2.35$. DIL Breadboards $+\&$ Gnd. Bus, 20 Ic Posns, Decouplers, CFingers $£ 1.50$ ea
Prices include P\&P. Please add 8\% VAT.

> T. J. Brine Associates Blackdown Rural Inds. Haste Hill
> Haslemere, Surrey

COLOUR MODULATOR

 £6.95 FOR ALL TV GRAPHICS! Red. Green. Blue inputs (can be mixed).SUPER EXPLOSION FLASH EFFECT FOR TANK BATTLE FREE INTERFACE DE. inc UHF
Modulator TAILS
WILLIAM STUART SYSTEMS
Dower House. Billericay Road, Herongate, Brentwood. Essex CM133SD Tel (0277)810244 Barclaycard/Access wolcome

NEW QUALITY STEREO AMP CHASSIS. 60w (RMS) Silicon Power Modular System Protected $3 \Omega \mathrm{~min} .0 .03 \%$ Thd. $12 / 30 \mathrm{v}$. Wkg. din socks, controls select v/c, etc., Boxed, data $£ 9.95$ (inc.). Available with P.s.u. £. 12.50
K. Lawrence, 1 Regent Road, IIkley, W Yorks.

MORE POWERFUL TITAN MINI KIT WITH 20 TOOLS Full range of accessories
available from stock.

517.55 SAME PURCHASED, THIS SUPERB UTTING SET CONSISTING OF STEEL MANDRELL 8 5 FINE GRIT CUTTING DISCS: . 020 Thick X7/8* Dia VALUE: 11.00

ELLIOTTS CAMERACRAFT LTD 31 QUEENSWAY SOUTHAMPTON.HANTS

Tel.
25944

THIS SECTION IS A PRE-PAYMENT SERVICE ONLY

MINI-ADS: $31 / 4^{\prime \prime} \times 21 / 8^{\prime \prime}, 1-3 £ 38,4-11 £ 36,12$ or more $£ 34$ per insertion. CLASSIFIED DISPLAY: 19p per word. Minimum 25 words. Boxed classifieds are $£ 6.33$ per col. centimetre. No P.O. Box Numbers can be accepted without full address.

Enquiries to: Advertising Department, 01-437 5982. 25-27 Oxford Street, London W1R 1RF

TIRRO's new mail order price list of electronic components now available on receipt of SAE. TIRRO Electronics, Grenfell Place Maidenhead, Berks.

SITS-VAC

$$
\begin{aligned}
& \text { To auis protipe Liccical NICIAN - WILLESDEN }
\end{aligned}
$$

Morgan.

We are leading specialists in computer numerical control systerns for machine tools - an expanding firm in an expanding technology. We are currently building large premis.
sales.

TEST ENGINEER

To test for and repair faults, down to component level, in our C.N.C. systems: and to construct and maintain H.N.C. Aptesticants should be of a logic-based electronics industry (ideally with involve ment in microprocessor applications)

PROTOTYPE WORKERS

For assembly and wiring consoles and control panels, and in-house test equipment, working from circuit diagrams, plus preparation of associated wire-run sheets, etc. Applicants should be experiencedinet
prototype work on P.C.B.'s and wiring in cabinet enclosures; ideally with O.N.C./C \& G electronic engineering. We can offer excallent conditions and carear prospects for the right men and women. Why not ring Alizon Peirson on Basingstoke 29303 for full details?

POSIDATA LTD.
 Basingstoke, Hants. RG24 OPP

VMOS POWERFETS
 (with free data and ideas sheet)

VN67AF (60v, 2A, 15W, TO202)
85 p
60 p VN10KM ($60 \mathrm{~V}, 1 / 2 \mathrm{~A}, 1 \mathrm{~W}$, TO92 thb)60p

Lateat VMOS Powerfer Design Catalog 45p

Selected Powerfets also avalable with lower maximum ON resistances, for reduced $i^{\text {' }}$ power losses

Select VN67AF (2.5Ω max. instead of $3.5 \Omega @ i_{D}=2 A, v_{G S}=10 \mathrm{v}$)
Select VN10KM 70p
(4Ω max. instead of $5 \Omega @ I_{D}=1 / 4 A, V_{G S}=10 \mathrm{~V}$)

BIFET OPAMPS

TLO81CP (single opemp) T074CN (qued opemp)

BIFET opamps, superior to bipolar types, even have a tew advantages over BIMOS types. Most obvious is their lower cost. Less obvious is the lower noise and greate stability of their input stages.) The TLO 74CN (inciden tally) is a quad BIFET with particularly low noise and distortion suitable for hi-fi applications.

P\&P 20p. Mail Order only
S.a.e. for latest informative lists
J. W. RIMMER

367 Green Lanes, London N41 DY
COMPONENTS TEST EQUIPMENT. CCT boards, anything electrical/electronic purchased for cash. " 0 " Services Electronic (Cambridge) Ltd., 29 Lawford Crescent, Yateley (0252) 87148, Camberley, Surrey.

CM2506 DIGITAL CAPACITANCE METER $1 \mathrm{pf}-2 \mu \mathrm{f}, 21 / 2$ digits, acc 1%. Intro, ductory price $£ 24.99+8 \%$ VAT. Return in 8 days if unsatisfied. Allow 28 days for delivery. Precision Measurements, 8 St Stephen's Court, Canterbury

Ultrasonic Transducers. $£ 2.85$ per pair + 25p p\&p. DATAPLUS DEVELOPMENTS, 81 Cholmeley Road, Reading. Berkshire.

SECURITY PRODUCTS

Designed for the Do-it-Yourself market. Easily installed Full instructions supplied As supplied to the trade.
Magnet and Reed Switch Flush 85p
Surface $85 p$
Large $£ 2.10$
Pressure Mats
6" Heavy Duty Bells
Sirens $12 \mathrm{v} 84 \mathrm{~dB} @ 10^{\circ}$ Bell Covers
Window Foil Self-Adhesive
Foil Blocks
Door Loops, complete
Key Switches, top grade
Control Panels from Stair £1.35 $€ 10.50$
£7.05
$£ 8.05$
£3.20
$20 p$
f1.
$£ 1.10$
$£ 4.00$
Control Paneis from $£ 29.50$
able. Price list supplied free
Please note that our prices now INCLUDE VAT
SECURITY CATALOGUE
Giving details of current professional alarm techniques - £1 (retundable on orders over £10)
Access and Barclaycard Sales welcome
We also sell Nascom 1
STRATHAND SECURITY
44 St. Andrew's Sq., Glasgow G1 5PL $041-5526731$ or 2

COMPONENT PACKS. 100 Mixed Resistors 70 p. 25 Polyester capacitors 60 p. 10 Micro-switches, ex equip. 80p. 100 Com ponents (mixed) 100p. 10 Mains neons 50 p. 10 Cable Ties 15 p. 100 Connectors, Spades Tags, Eyelets etc. 100p. 10 BC108 95p. 10 BC109 95p. c60 Cassettes 49p. C90 Cassettes 59p. Add 20p P\&P. Durrants (Components), 9 St Mary's Street, Shrewsbury.

ETI FOR SALE. Complete set from No. 1, 87 issues, mint condition. Offers to: B. Dawson, School House, St Michaels Road, Sutton Coldfield B735SY

£99.99 ${ }_{\text {inc. } \mathrm{ipp} \text { \& } \mathrm{V} \text { VAT }}^{\text {Total fin }}$ C
A
M
E
R
A BEST OFFER EVER Camera Kit, Lens, Vidicon $\&$ Modulator
CROFTON
Tel: 01-891 1923 Cocitilis

BRITISH MOTOROLA 6800 SYSTEMS

6800S: 16K Dynamic RAM, 1 K Mikbug compatlble monitor, room for 8 K BASIC in ROM, VDU with u / l case and graphics, CUTS and HI Speed tape interfaces, Single pcb with power supply components. Price of kit from £ 275 with out kdb or $£ 299.00$ with keyboard.
Mini 6800 MK2. 1 K user RAM, CUTS VDU with u/l case and graphics wit QUERTY keyboard from $£ 152.50$
NCU Board. This number cruncher using the MM57109 is supplied with our own Basic style program on tape of the 8 K Basics as a programmable calculator. Sultable for any 6800 system with Mikbug. Kit price £ 32.00
8 K RAM (2114) and 5 or 10 KPROM board. This pcb is bus compatible with the above systems and has all the buffering and decoding that you need. PCB only, e 13.00
ALL PRICES WITHOUT VAT AND POST PLEASE SEND S.A.E. FOR LEAFLETS.
HEWART MICROELECTRICS 95 Blakelow Road, Macclesfield, Cheshire.
Prices
de VAT
RECHARGEABLE BATTERIES

TRITON COMPUTER KIT, with expansion RAM. Complete, unused, ready for immediate delivery. Perfect condition, original packing, but now unwanted. Any offers, Basildon 280154 , after 6 p.m.

ETI MIXING DESK $14 / 2$ foldback, equal L/R/Mon, Echo in/out needs final checks part costs over £250, accept £220, C. Deane, 26 Page Close, Calne, Wilts, 0249812329.

PRECISION SHEET METAL work chassis, panels, etc. Steel, stainless or aluminium, long/short runs, good deliveries. E.E.S. Limited, Clifford Road, Monks Road, Exeter 36489. Telex: 42401.

ADVERTISEMENT INDEX

INTERESTED in HOME COMPUTING?

FREE B BUG valued at $£ 23.00$ plus $10 \times$ C12 cassettes valued at $£ 4.00$ plus Standard Modulator valued at $£ 2.25$ WITH EVERY NASCOM

Start now and don't get left behind THE NASCOM 1 is here Ex-stock with full technical services
Plus the opportunity to join the fastest moving club of personal computer users enabling you to get the most our of your computer. You can OBTAIN and EXCHANGE programs andi other software - many now availabie.
The Powerful $Z 80$
Micreprocessor
Professional Keyboard 1 Kbyte Monitor in EPROM 2 Kbyte RAM (expandable) Audio Cassette interface
Plugs into your domestic TV Easy construction from straight forward instructions no drilling or special tools Just neat soldering
required

Only E197-50 + 8\% VAT (includes p \& p + insurance) $\begin{array}{ll}\text { Manuals seperately } & 2.95 \quad \text { NEW LOW PRICE }\end{array}$ $Z 80$ programming Manual 6.90 Z80 Technical Manual 2.95 PIO Technical Manual 2.95 (All prices add 8\% VAT)
2.95 Power supply suitable for

NASCOM AO ONS - Nascom improved monitor B Bug (2K)
featuring - "Four times tape speed "Direct text entry without ASCII *Extended kevboard facility "Additional useful subroutines $£ 23.00$

Nascom Vero Case £22.50
Nascom Joy Stick Kit £14.90

Nascom Music Box Kit $£ 9.90$
(write your own tunes and play
them on your Nascom.
Complete with full documentation)
GRAPHICS ADD ON BOARD $£ 9.90$
Complete kit to upgrade your NASCOM for graphics capability
includes full documentation and demonstration program

NEW! AT LAST 8K BASIC FOR NASCOM 1 Complete on
 £160 EX-STOCK

THE EXIDY SORCERER.

SORCERER
COMPUTER SYSTEM
The Sorcerer Computer is a completely
assembled and tested computer system. Standard contiguration includes 63 -key
 numeric pad. 280 processor, dual cassette
$1 / 0$ with remote computer control ar 300 and 1200 baud data rates, RS232 serial $/ 1 / O$ for communications. parallel port for direct Centronics printer attachment. $4 K$ ROM operating system. 8 KK ROM
Micro Soft BASIC Microsoti BASIC in Rom PacTM, cartridge,
composite video of 64 chardine 30 line composite video of 64 charAine 30 line
screen. 128 upper lower case ASCII set and 128 user detitnec graphic symbols. operation manual, BASIC Programming manual and cassette/video cables. connect ion for $\mathrm{S}-100$ bus expansion.

MODULATORS UHF Channel 36

Standard 6 meg band width $£ 2.25$
High Quality 8 meg band width $£ 4.90$
EX.STOCK

SHORT C12 CASSETTES

EX-STOCK
FOR COMPUTER PROGRAMMES 10 for $£ 4.00$

PET COSTS LESS

 AT COMP and it's a pedigree (Rap 850The No. 1 Personal Computer in the U.K. \qquad SAVE N $£ 50$
for the first time user and the professional check out the PET, the world's most popular personal computer

Also 16 K big professional keyboard $\mathbf{£ 6 2 5 + \text { Vat }}$

- Audio cassette tape intertace • Up to 48K RAM on board. BASIC in ROM (graphics commands include COLOUR = VLIN, HLIN. PLOT and SCRN) Built in Loudspeaker • Buckets of software already available •disk system (110 K byte per drive - includes controller) only £ 425 + VAT EX.STOCK

THE TRS-80 (SPECIAL SCOOP) Low Priced, Ready to Go!

Use your own cassette

Level.II with 4K RAM

Improved graphics, print
formatting, and a faster cassette transfer rate are features of
Level-II BASIC.

Level.ll with 16K RAM
A combination of 16K RAM and the powerful Level-!! BASIC produces a system capable of handling most demands

KEY BOARD ONLY

COMPLETE WITH UHF MODULATOR

UK POWER SUPPLY - £9.90 + vat

All prices include VAT except where shown. Orders over $£ 5$ post and packing free otherwise add 20 p. Please make cheques and postal orders payable to COMP, or phone your order quoting BARCLAYCARD or ACCESS OPEN - 10am to 7pm - Monday to Salurday
CREDIT FACILITIES ARRANGED

COMPUKIT UK101

statements Much faster than currently available

 Professional 52 Key keyboard in 3 colours -. sot ware polled meaning that all cebouncing and kef, decoding done in softwareThe Compukit UK 101 has

* Video output and UHF Highgrade modulator (8 Mz LOW COST SUPERBOARD
- Uses ultra powerful 6502 microprocessor
* 50 Hz Frame refresh for steady clear picture

USA products with 60 Hz frame refresh always
results in jittery displays)
system providing high speed access to mapped video enabling animated games and graphs * Extensive 256 character set which includes full upper and lower case alphanumerics. Greek symbols characters enabling you to form almost any shape you desire anywhere on the screen PET APPLE SORCERER hence taking the headache Bandwidth which connects direct to the aerial socket * Fully stabilised 5 V power supply including trans former on board NSAS city tape interface providing high reliability grogram storage - use on an, standard domestic tape of cassette recorder CA_{3} * 40 line expansion interface socket on board for disk controller ((O ר 10 Scientific compatible)

* 6502 machine code accessible through powerf
* High quality thru plated PC

FULL CONSTRUCTION DETAILS
IN P.E. AUG 1979 EDITION

Delivery date June 1979
at the 1 G79 MicroComputer Show
Customer orders in strict rotation only.

SEND ONLY £10.00 DEPOSIT TO RESERVE ONE

Simple Soldering due to clear and consise
instructions compiled by Dr T Berk. BS PhD

COMMANDS
 STATEMENTS

 CLEAR DATA DEF GOSUB IF GOTO IF THEN END FOR LET NEXT ON GOTO ON GOSUB POKE PRINT READ REM RESTORE RETURN STOP EXPRESSIONSR $>\langle\langle \rangle\rangle=\left\langle=\right.$ RANGE $10^{32} 1010^{+32}$
Erases tine being typed then provides carriage OPERATORS

variables

ABC Z and two letter variables
The above can all be subscripted when used in an
array String variables use above names plus $\$ \mathrm{eg}$ A S $\begin{array}{llll}\cos (x) & \operatorname{EXP}(X) & \text { FRI }(x) & \operatorname{INT}(x)\end{array}$ POS (1) RND $(X) \quad \operatorname{SGN}(X) \quad \operatorname{SiN}(X)$ FRE(XS) LEFTS(XSI) LEN (X\$) MIDS(XS

The stederdan Colour Programagame now back in stock at reduced prices

road race EUROPE'S LARGEST STOCKIST OF TV GAME COMPONENTSway You will save pounds in the long run works OK on Black and White TVThe Teleplay Kl consists of a Professional Finished Inject Mounted BoxJoystick Hand Controls - one cartridge which consists of 10 gamesFootball Tennis, Solo Squash (1 \& 2 players). Shoot etc Mains Adaptor Al
holes are pred drilledholes are pred drilled - No Special equipment required You'll be surprised hoveasy it is 10 assemble this professional kit' Instruction Manual Supplied
separately at 0 45SLAYING THE MOST PROFESSIONAL TV GAME KIT EVER OFFEREDElectrical knowledge is not a necessity to assemble this project - just simplesoldering
\qquad

COMP IS AN APPOINTED DEALER FOR COMMODORE, EXIDY, APPLE, NASCOM, OHIO, GI, ATARI, TELEPLAY \& ITHACA. 14 STATION ROAD, NEW BARNET, HERTFORDSHIRE TEL: 01.4412922 (Sales) CLOSE TO NEW BARNET BR STATION - MOORGATE LINE TELEX: 298755 OPEN - 10am to ppm - Monday to Sat

[^0]: INTRODUCTION TO MICROPROCESSORS AND COMPUTING. 50 pages of diagrams and explanation to get you started. Price $£ 2.30+45$ p postage
 EDUCATIONAL DATA AND TECHNICAL SERVICES
 59 Station Road, Cogenhoe, Northampton NN7 1 LU

