
WIITORD EIEGIDIISS

abrtronimstota
 international

men 197 AVG.

Vol. 6 No.

Features

VIDEOCRAFT TELETEXT KIT REVIEW18It's a superb service, but very tew of us can get it! This kit should help

ELECTRONICS IN PHOTOGRAPHY28
How the flashing electron is helping to bring those nakedladies into sharper focus!
VOCODERS!34
A machine which speaks for itself!36
ACTIVE FILTERS -- PART 2
Some basics. so49
Gary Evans finds a new bar worth talking about!
COMPONENTS - PART 1252
Potentiometers considered. (There's more to 'em than you think!) PICKUP PRINCIPLES 56
What goes on when your LP gets the needle!
ELECTRONICS - IT'S EASY - PART 42 64
Continuing our introductory series73
Three pages of readers own circuits to set you talking!

Projects

SWEEP OSCILLATOR10Very accurate, very versatile - very cheap to build
SYSTEM 6845
Bus structure and VDU interface19SOIL MOISTURE INDICATOR
24
24
EGG TIMER 26
Data Sheef
LM 2907, 2917 FREQUENCY TO VOLTAGE CONVERTORS 60LM 1830 FLUID DETECTOR62
NewsNEWS DIGEST6
ELECTRONICS TOMORROW 70
Information
ETI BOOK SERVICE 41
PREVIEW OF NEXT MONTH'S ETI 42
ETI SPECIALS 43
T-SHIRTS51
ETI CLOCK 71
SUBSCRIPTIONS 72
BINDERS81
READER SERVICES 82

COVER: The photograph of the camera on our front cover shows the Contax RTS and was kindly supplied by Photax.

EDITORIAL AND ADVERTISEMENT OFFICES

25-27 Oxford Street
London W1R 1 RF
Telephone 01-434 1781/2
Telex 8811896
HALVOR W. MOORSHEAD
Editor
RON HARRIS B.Sc
Assistant Editor
GARY EVANS
Editorial Assistant
JIM PERRY
Specials Editor
TONY ALSTON
Project Development
PAUL EDVUARDS
Technical Drawing
SANDRA ZAMMIT-MARMARA Subscriptions
VARGARET HEWITT
Administration
DAVID LAKE (Manager)
BRENDA GOODWIN
KIM HAMLIN
Reader Services

For Advertising Enquiries ring MARK STRATHERN
 on 434 1781/2

INTERNATIONAL EDITIONS

ALSTRALIA.Collyn Rivers Publishe: Les Bell Assistant Editor	
HOLLANDAnton Kriegsman Editor-in-chief	
CFINADA:Mike Kenward Editor	
FRANCE:	Denis Jacob Editor-in-chief

[^0]CCPYRIGHT: All material is subject to world wide Copyright protection. All reasonable care is taken in the preparation of the magazine to ensure accuracy but ETI cannot be held responsible for it legally. Where errors do occur, a correction will be published as soon as possible afterwards in the magazine.

PAKS - PARTS - AUDIO MODULES

BH-PA
 KHigh quality modules for stereo, mono and other audio equipment.

OUR PRICE ONLY゙

£20.45

Fitted with Phase Lock-loop Decoder

The 450 Tuner provides instant program selection at the touch of a button ensuring accurate tuning of 4 pre-selected stations any of which may be altered as often as you choose, by simply changing the settings of the pre-set controls
Used with your existing audio equipment or with the BI-KITS STEREO 30 or the MK60 Kit etc. Alternatively the PS 12 can be used if no suitable supply is available, together with the Transformer T538
The S450 is supplied fully built, tested and aligned. The unit is easily installed using the simple instructions supplied

PUSH-BUTTON STEREO FMTUNER

FET Input Stage

- VARI-CAP diode tuning

Switched AFC

* Multi turn pre-sets * LED Stereo Indicator

Typical Specification:
Sensitivity 3_{μ} volts Stereo separation 30db Supply required 20-30v at 90 Ma max.

STEREO PRE-AMPLIFIER

A top quality stereo pre-amplifier and tone control unit. The six push-button selector switch provides a choice of inputs together with two really effective filters for high and low frequencies, plus tape output
MK. 60 AUDIO KIT: Comprising 2. x AL60's. $1 \times$ SPM80. $1 \times$ BTM80. $1 \times$ PA100. 1 front panel and knobs. 1 Kit of parts to include on/off switch, neon indicator stereo headphone sockets plus instruction booklet. COMPLETE PRICE $£ 29.55$ plus 85 p postage TEAK 60 AUDIO KIT:
Comprising: Teak veneered cabinet size $163 / 4^{\prime \prime} \times 111 / 2^{\prime \prime} \times 33 / 4^{\prime \prime}$, other parts include aluminium chassis heatsink and front pane bracket plus back panel and appropriate sockets etc. KIT PRICE £10.70 plus 85p plus 85 p
postage

Frequency Response +1 dB 20 Hz
20 KHz Sensitivity of in Tape Input 100 mV into 100 K ohms 2. Radio Tuner 100 mV into

100 K ohms
Magnetic P.U. 3 mV into
50 K ohms
PU . Input equalises to R1AA curve with, Supply - $20-35 \mathrm{~V}$ at 20 mA
Dimensions
$299 \mathrm{~mm} \times 89 \mathrm{~mm}$
35 mm AL30A
10w R.M.S. AUDIO
 OUR PRICE £13.75 AMPLIFIER MODULE

The AL30A is a high quality audio amplifier module

 replacing our AL2O \& 30. The versatility of its design makes it ideal for record players, tape recorders, stereo amps, cassette and cartridge players. A power supply is available comprising a PS 12 together with a transformer T538, also for stereo, the pre-amp PA1 2. SPECIFICATION- Dulput Power 10 w . Supply 22 to 32 volts. - Load Imipedance 8 lo inpuit imperance 50k. 6ohms. - Sensitivity gomy for full oulput.
- Erequency Response Max. Heat Sink Temp

ONLY £3.60
 30
Enjoy the quality of a magnetic cartridge with your existing ceramic equipment using the new M.P.A. 30, a high quality pre-amplifier enabling magnetic cartridges to be used where facilities exist for the use of ceramic cartridges only. it is provided with a standard DIN input socket fór ease of connection Full instructions supplied

The Stereo 30 comprises a complete stereo pre-amplifier. power amplifiers and power supply, This with only the addition of a transformer or overw, wil produce a high quality audio unit suitable for use with a wide range of inputs i.e. high quality ceramic pick-up tereo tuner, stereo tape deck etc. Simple to install capable of producing really first class results, this unit is supplied with fult instructions, black front panel knobs main switch, fuse and fuse holder and universal mounting brackets enabling it to be installed in a record plinth, cabinets of your own construction or the cabine available. Ideal for the beginner or the advanced constructor who requires $\mathrm{Hi}-\mathrm{Fi}$ performance with a minimum of installation difficulty (can be installed in 30 mins)

TRANSFORMER $£ 2.45$ plus $62 p p$ \& TEAK CASE $\mathbf{£} 5.25$ plus $62 p p \& p$

Stabilised Power Supply Type SPM80

SPM 80 is especially designed to power 2 of the AL60 Amplifiers up to 15 watts (R.M.S.) per channel simultaneously. With the addition of the Mains Transformer BMT80, the unit will provide outputs of up to 1.5 A at 35 V . Size 63 mm .105 mm .30 mm . Incorporating short circuit protection
Transformer BMT80
$\mathbf{E 2 . 6 0}+\mathbf{6 2 p}$ postage

AL 60

* Max Heat Sink temp 90C. * Frequency respons 20 Hz to $100 \mathrm{KHz} \star$ Distortion better than 0.1 at 1 KHz Supply voltage $15-50 v \star$ Thermal Feedback \star Latest Design Improvements Load - 3.4.8 or 16 ohms Signal to noise ratio $80 \mathrm{db} \star$ Overall size 63 mm . 105 mm . 13 mm .
Especially designed to a strict specification Only th finest components have been used and the latest solid-state circuitry incorporated in this powertul little amplifier which should satisty the most critical A.F
enthusiast

25 Watts (RMS)

Power supply for AL30A
PA12, SA450, etc

National Semiconductor have launched a new Scientific calculator watch module. The watch/calculator is based on two new chips, the MM58101 and MM58102 and probably represents the most powerful such combination on the market.

The Watch/Calculator (the name is longer than the module) uses a liquid crystal display to provide a continuous indication of hours - minutes seconds, as well as a month/date calendar and AM indicator on demand. In the calculator mode, it employs

algebraic logic, has full scientific notation, trig. and log. functions, store and recall memory, pi, powers of numbers, register exchange and reciprocals.
The dual function keyboard, which has thirty six possible switch functions, is activated by a pen, pencil, or other small pointed object.
Unlike conventional digital watches there is no complicated procedure for setting time or date, since the keyboard may be used instead. For example, seconds can be added or subtracted from the display by pushing the plus or minus key followed by the desired number of seconds.
Another useful feature of this Calculator/ Watch module is its ability to store numeric information. A telephone number may, for example, be entered into memory where it will remain until altered by the user or the modules battery runs flat.
Other versions of the Watch/Calculator are also possible, such as financial, statistical or other scientic notations, all by simply re-programming the chip's ROM.

WOW - WHAT A METER

Pictured above is the new Wow and Flutter meter from Pye Unicam Ltd. The PM6307 is designed to allow
service technicians to check and align audio and video cassette records and record decks to performance

limits which could previously only be measured with laboratory equipment.
The meter consists of a high stability crystal controlled oscillator at 3 k Hz or 3.15 k Hz , a measurement section and two analogue meters showing DRIFT and FLUTTER to 3% each in three ranges.
The PM6307 should appeal to service technicians as it can differentiate between electrical and mechanical problems. Thus while excessive Wow and Flutter reading are indicative of mechanical wear, Drift is often associated with faulty electronic circuity. The technician can therefore by interpretation of the DRIFT and FLUTTER readings, locate the area of the fault.
A standard DIN input/output socket located on the front panel makes the unit easy to connect to most domestic tape recorders and record players which would be the majority of applications for the unit.

TEXAS STEP AHEAD (5,000 TIMES)

News concerning a new range of calculators has reached us from Fort Bedford.

The range includes two new programmable calculators which offer a significant advance in the provision of memory capability and programming flexibility when compared to the present generation of programmables.
These models, TI Prog. 58 and TI Prog. 59, differ in two respects. First in that the 58 is a key programmable machine whereas the 59 is a card programmable and secondly in their memory capacity. The 58 offers 480 program steps or 60 memory registers while the 59 offers 960 steps or up to 100 memory registers.
The flexibility offered by the capibility to partition memory between program steps and data store is a valuable feature. For every increase or decrease by 10 data memories 80 program steps can be added or taken away.
These calculators also feature plug in solid state software modules. These modules are prerecorded program
libraries containing up to 5000 program steps. These program steps can be addressed from the calculator's keyboard or inserted as subroutines in programs developed by the user. They cannot be altered by the user.
Each calculator is supplied with a master library solid state software module containing 25 prewritten programs in the engineering, mathematics, statistics and financial fields. A number of other solid state software modules are available concerning specialist fields such as navigation and engineering.
Both models may be used with Texas' PC-100A print unit to provide program and data lisitings. The printer provides the capability to print 64 characters on 6.35 cm wide thermal paper.
The price for these calculators are expected to be $£ 249$ for the TI 59, $£ 99.95$ for the TI58 with the PC-100A at $£ 209.00$.

INJECTING INTEREST

Alcon Instruments have launched their Chinaglia USIJET Universal Signal Injector. The device incorporates a

blocking oscillator as the main signal generator, giving a baic 500 kHz which is modulated at 1 kHz for identification and demodulation check purposes. The waveform contains harmonics up to 500 MHz and is thus uselul in many servicing applications.
Power consumption from the unit 1.5 V battery is 25 mA and the output at the probe tip is 20 V peak-topeak.
In use the fly-lead is connected to the earth line of the equipment under test and the probe tip touched to the point at which the signal is required.
The price complete with earthing lead and instructions, is $£ 11.55$ inc VAT.
Further details from Alcon Instruments Ltd., 19 Mulberry Walk, London SW3.

GI NOSE AHEAD

General Instruments have developed a single-chip LSI package containing a FET input, detector, voltage comparator, oscillator, trigger and C/MOS output. It just so happens that
this is about all you need for a 'sensitive nose' to detect combastion or, more technically, an ionization smoke alarm.
The MEM 4962 can replace more than 30 discrete components now being used in alarms of this type, to provide a small, rugged and reliable smoke detector.

LSI DPM OK

The panel meter pictured is based on single chip LSI technology and offers major savings in size, cost and power consumption over earlier digital panel meters.
The units feature a 1999 count, autopolarity, auto ranging and an accuracy of 0.05%. Power may be derived from a wide range of voltages, including AC mains. Power consumption is about 500 mW and meters covering ranges from 200 mV to 200 V are available from stock.
At a price of $£ 26.00$ each (1 off), these meters represent a practical alternative to analogue panel meters.
For further information contact OMB Electronics, Riverside, Eynsford, Kent, DA4 OAE.

Texas Instruments recently announced that they are to move into the LCD watch market. They are to introduce a range of models in a wide variety of slim line case styles.

The watches will be powered by a single silver oxide battery which will provide an average of 18 months use.

Prices are expected to start at £18 with top of the range models selling for about $£ 30$.

While moving into LCD production, Texas will continue their commitment to the LED market where the emphasis will be on the low cost 'impulse' market.

BALLY VIDEO GAMES

The Bally Manufacturing Corp of America are to produce a programmable video game based on the powerful Z80 MPU.
The programmable video games unit, which includes a calculator as well as video games, is expected to sell for about $£ 150$.

Additional plug-in units, each carrying up to three video games, will also be available These units will extend the range of the basic unit and are expected to retail at about $£ 10$.

THREE NEW EAGLES

Eagle have added three microphones to their range of audio products. The New models, PRO M70, PRO M80, and PRO M90, are rugged designs for use in stage and recording work.

The M90 is a dynamic cardioid mike with a frequency response from $40 \mathrm{~Hz}-16 \mathrm{kHz}$ and a 600 R impedence. The M70 is a capacitor mike while the M80 is dynamic, both are in the same body as the M90.

Prices are $£ 43.90$ for the M90, $£ 37.60$ for the M80 and $£ 34.20$ for the M70. All are backed by the usual two year guarantee.

TIME FOR THE FAX

The BBC has added a further time checking service to the many it already operates. The time is broadcast over the Corporation's CEEFAX service.

CEEFAX is the news and information service which is broadcast in the field blanking period of a television frame and can be displayed on a converted set (see page 17).

Although the BBC has transmitted day and date information since 1974 the service now offers a time display of seconds. The time is derived from the MSF Rugby signal, which is in turn checked against an atomic clock at the National Physical Laboratory.

Because it takes up to a quarter of a second to write a CEEFAX page, the system is limited in accuracy to this figure

CORRECTIONS

Digital Frequency Meter, June 1977:-

Foil pattern of board B is not shown full size. A full size foil side PCB pattern can be obtained by sending us a S.A.E.

A warm welcome now for the southern area offbeat section champions - Cynthia Coggles Aerial Erectors Precision Formation Team!!

Metac summer bargains

THE METAC DIGITAL CLOCKS

Pleasant green display - 12 /24 Hour readout
Silent Synchronous Accuracy. Fully electronic
Pulsating colon • Push-button setting
Building time 1 Hr . Attractive acrylic case
Easy-to-follow instructions' Size $10.5 \times 5.7 \times 8 \mathrm{~cm}$
Ready drilled PCB to accept components
A professional product for the home constructor. It has been designed by engineers using the most modern techniques and components. It will appeal both to the confirmed hobbyist and to the man who simply wants to 'have a go'. The kit contains everything except a mains lead. The only tools required are a small soldering iron, solder, screwdriver and wire cutters.

KIT PRICE $£ 9.60$
$+76 p$ VAT P\&P inc.

GIVE YOURSELF A TREAT

Why not pay us a visit and see for yourself the full range of top-quality watches; clocks; treasure tracers: watches; clocks; treasure tracers;
electronic ignition: TV games and electronic ignition.
battery eliminators.

DAVENTRY
67 HIGH STREET

67 HIGH STREET DAVENTRY NORTHANTS TEL: (032-72) 76545

Hours, Mins., Secs., Date
Mours, Mins.a, Secs., Date
Quality Metal Bracelet. Fully Guaranteed
SAME DAY DISPATCH orders received before 2 pm are posted same day
Cash, Cheque or Postal Order or if you wish to use Barclaycard or Access, simply quote name, address and card number
Metac-Electronics and Time Centre
AMERICAN-MADE LCD

TEL: UXBRIDGE
(0895) 56961
SHOWROOMS OPEN $9-5.30$ DAILY

SEE OUR COMPONENTS ADVERT ON PAGE 80

ETI PROJECT SWEEP OSCILLATOR

Invaluable test unit at less than one fifth of the commercial cost!
By Tim Orr and P. Wielk

SWEEP OSCILLATORS are generally considered to be a rather fancy piece of test equipment and usually attract a fancy price. Units similar to the one to be described sell for around $£ 200$ to $£ 300$. It produces square and triangle waveforms from a voltage controllable oscillator, which can be internally swept by the machine's own ramp generator, (which is itself controllable), or it can be connected to an external control voltage source. Thus various frequency modulations can be performed, the most useful one being a wide range logarithmic sweep for resolving the frequency response of various networks and filters. To do this, a swept sinusoidal waveform must be synthesised. The triangle waveform is bent, by passing it through a diode function generator, until is closely resembles a sinewave.

Another waveform provided by the function generator is a tone burst output. This gates the sinewave signal on and off and thus generates a burst of sinewaves followed by a period of silence. Tone bursts are very useful for
analysing the dynamic responses, (as opposed to the steady state responses), of networks such as filters, compressors, expanders, loudspeakers, etc. The last waveform provided is a square wave suitable for driving TTL circuits. This output uses a current sinking transistor, so that up to about 30 TTL unit loads can be driven by it.

Selecting IC's

The function generator needs fast op-amps to buffer the signals to the external world. These op-amps should also remain stable when connected to various reactive loads. Several devices were tried The 741S, a fast version of the 741 made by Motorola; the 748 , an uncompensated version of the 741 ; the CA3130 and the CA3140 made by RCA, both of which are fast CMOS devices. Also the LM318, a fast ($50 \mathrm{v} / \mathrm{HS}$) slew rate op-amp made by National Semiconductors; and the NE531v, another fast device made by Signetics. Not all of these proved successful, particularly when driving reactive loads. Also some of
them require external frequency compensation and so the PCB was designed to accept various capacitors. You can use any of the op-amps, but I feel that the best will be obtained by using the suggested devices. In fact you can use the ordinary 741, but this will result in degraded waveforms.
Recommended ICs are show on page 12

Using The Machine

Generally try to keep the load impedances presented to the machine as high as possible. The current driving capabilities of all the outputs are limited, particularly at high frequencies and so you may find that outputs become degraded as the frequency increases.

If you want to investigate the frequency response of a filter design, to get a non flickering display, you may have to use a fast sweep rate, say 20 times a second. This could result in a
'time-smeared' display due to the ringing time of the filter. The display will be a cross between the filters dynamic and steady state
response. To overcome this problem, there are two possible solutions. One, use a slow sweep speed, if you have a storage scope then this will be OK. Two, frequency scale the filter up in frequency, so that say, a 100 Hz bandpass filter becomes a 1 kHz filter. You can then increase the sweep speed by a factor of times 10. However this is generally only possible when you are designing a filter and when you know that there is a sufficient bandwidth margin still available.

Construction

Even though this is electronically a complex project, construction is reasonably straightforward! Main points to note are as follows - first insert and solder all the wire links, followed by the presets. The link near RV1 is insulated. It's a good idea to use terminal pins for all the off board leads, saves trouble if you have to move a wire. Next the resistors, capacitors and diodes can be fitted. C3 only needs to be fitted if you can't get C2 on the board. Q7 needs its base lead bending underneath to fit the board. The only IC that really needs a socket is IC15, but sockets can save hours if used for all ICs - if a fault develops.

All off board connections should be soldered before inserting IC 15 anyway. Screened wire should be used to the controls - but only the socket end should be earthed, otherwise nasty hum loops can develop. The external voltage control socket was mounted on the rear panel. The transformer specified has twin windings which are used in parallel. IC1 does not need any heat sink, as very little of its capacity is used. Last and by no means least,
R16 and R34 are both mounted off the main board - good luck!

Setting Up And Alignment

Having built and tested the generator it now only remains for you to align the six presets. RV1, frequency bias. Set switch SW2 to manual and switch SW4 to the high frequency range. By turning the frequency control knob, the output of the machine should range from approximately 20 Hz to 20 kHz . However the transistors in the transistor array IC3 are only matched to within + or - 5 mV

Fig. 2 Internal view of the completed unit.
and this can shift the generator's operating range. So to counteract this mismatch adjust RV1 until the manual operating range is as near to 20 Hz to 20 kHz as possible.
RV2, triangle time symmetry. The time symmetry of the triangle wave form may not be exactly 1 to 1 , and if it is not then the sinewave will have a large THD. The root cause of any time symmetry is IC5, which is a CA3080. If the time symmetry varies significantly when the frequency is changed then IC5 will have to be changed until a suitable output is obtained. To align RV2, set the operating frequency to 1 kHz , look at the triangle waveform and rotate RV2 until the best symmetry is obtained. This preset should be readjusted later on when the THD alignment is being performed. Move the frequency throughout its range and check that the symmetry is well maintained.

Ears and Things

THD minimisation RV3, 4, 5, 6. As it was not practical to use high tolerance components and matched diodes in this design, it is necessary to perform several alignments to produce the best possible sinewave The way in which you align this generator depends on the equipment at your disposal. Here are four methods.

First, by ear. Your hearing apparatus is surprisingly accute to matters of frequency and harmonic structure. For instance if you listen to the square wave output on a good pair of headphones (high impedance preferably), then you can adjust the time symmetry (RV2) by ear with far more accuracy than you can with a direct visual display on an oscilloscope.

As RV2 is adjusted and the symmetry changes there comes a null point where all the even harmonics disappear, which can be distinctly heard. You can also try to align RV3, 4, 5, 6 by listening to the sinewave output at a frequency of say 400 Hz . As you adjust each preset you should be able to minimise the harmonics and generally converge upon settings that give the purest tone.

Second, using an oscilloscope. Look at the sinewave (set to 1 kHz) on the oscilloscope and adjust RV6 so that the waveform, whatever it looks like, is vertically symmetrical RV6 merely compensates for any

Fig. 3 Technique used to synthesise sine' wave for triangle wave form.

loss of DC offset that has occurred in the production of the triangle. Presets RV3, 4,5, can now be used to adjust the breakpoint slopes. By careful adjustment of them it is possible to converge upon a waveform that looks very nearly sinusoidal.

Third, using a distortion meter. This device is merely a tuneable notch filter. The sinewave is connected to this device and the fundamental is notched out leaving only the harmonics, which you can see and measure. The procedure is to set the frequency to 1 kHz and adjust the distortion meter so that the 'sinewave' fundamental has: been removed: Look at the residue with an oscilloscope and/or millivoltmeter and adjust RV3, 4, 5 until this residue is at a minimum.

If you don't happen to own a distortion meter you can construct a notch filter at about 1 kHz , (see ETI, 'Active filters' and notch out the fundamental by altering the function generator's frequency.

Lastly, using a real time spectrum analyser. These devices are quite cheap, usually about $£ 7000$ each. The analyser will display all the harmonics, and so the effect of adjusting RV2, 3, 4, 5, 6 will be instantaneously displayed.

Problems likely to be Encountered

The power supply can be a problem source. The 12 V regulator can be responsible for many deviations from the predicted performance, due to the $\pm 5 \%$ spread in output voltage. This could cause the sweep range to be larger or smaller, or it can effect the distortion of the sinewave. Here is a list of some common problems and their solutions.

Reduced frequency range. If the manual or swept frequency range is less than expected then increase R12 from 1 k to 1 k 1 . This will provide approximately an increase of one octave. If the range is too large then reduce R12 to 910 ohms

Clipped Triangle. This could be caused by a low power supply rail or a large $V p$ in Q3. Either change Q3 for a low Vp FET or reduce R17 to 470 ohms. Similarly, if the sweep output waveform !output 19) is bent on its negative end, change Q 6 for a low $V p$ device or reduce R 24 to 4 k 7 .

Fig. 5 full size pattern for the PCB.

Tone burst does not shut off. This is because Q12 will not switch off. Change Q12 for a low Vp device

Sine wave has a high THD. If the THD cannot be trimmed to about 1% then it is likely that the diode function generator has the wrong gain. If the sinewave looks more like a triangle(a), then increase R42 to 20k. If it has flattened ends(b), then decrease R42 to 16 k . Note, very small changes in R42 have a large effect on the THD figure

SINE WAVE (Variable 0-4V) TONE BURST (Variable 0-4V) TRIANGLE (3V5 Fixed) SQUAREWAVE (3V5 Fixed) TTL (5V, pulldown to zero)	16 Hz on 48 Hz off Summetry $\pm 2 \%$ (better than) Markspace 1:1 $\pm 2 \%$ (better than) Markspace 1:1 $\pm 2 \%$ (better than)	TONEBURST GATE X SWEEP RAMP CONTROL INPUT SWEEP RANGE (Logarithmic) RAMP RANGE (30 Hz to 0.06 H high range LOW RANGE (Manual or Aut	12 V Fixed 1 V9 Fixed +1V/Octave +3V3/Decade 1000:1 500:1 z) 20 Hz to 20 kHz 0.2 Hz to 200 Hz matic Sweep)

sWEEP OSCILLATOR

[^1]

SWEEP OSCILLATOR

Fig. 8 Overlay and interconnection pattern.

The Texas Instruments TIFAX module is now available to the amateur and a kit is available comprising everything you need to convert your colour TV (if it is a suitable model) for reception of Teletext.

IN THE JULY 1975 issue of ETI, we carried a main feature entitled 'Teletext Takes Off'. History has shown that our title was a mite premature! This feature, and the forecast, was based on the announcement by Texas Instruments that they were going to produce a dedicated module which would bring down the cost of a Teletext capable TV set to the level of the massmarket.
Now most readers will know what Teletext is, but due to the lack of publicity over the past year or so, some of you may be unfamiliar with this system.

What is Teletext?

In late 1972 the BBC announced a system called CEEFAX: this would be aseriies of 'pages' of written information which could be displayed on a suitably modified or designed TV set. The 'pages'. would be broadcast during the frame blanking. •. The transmitted signals were (and are) a series of digital pulses which did not form a picture in themselves but programmed a character generator at the receiver to write the page.
The 'pages' are transmitted sequentially and to hold the display on the TV screen, memory was also necessary.
Not long after the BBC announced this system, the IBA announced ORACLE, technically a very similar system.
Sense prevailed and a committee of all interested parties got together and drew up a technical specification using the best of both CEEFAX and ORACLE. This new system is generally known as TELETEXT, though the BBC (who did invent the thing after all) seem reluctant to differentiate between the system and the service, both of which they call CEEFAX.

Progress report

In September 1974, the BBC started a full experimental service and although some of the information now broadcast is experimental in nature, it is fully operational.
Both BBC networks put out 100 pages on all 625 -line transmitters and the information provided is real and properly updated.

The IBA until recently were transmitting ORACLE only from London and from programmes networked from the capital but at the time that we're putting this issue to bed, ORACLE is due to be transmitted over the country, irrespective of the programme origin.
It is to the eternal credit of both the BBC and the IBA that they are operating very full systems - there is nothing amateurish or slip-shod - the information is mostly up - to - date and there is enough of it to be useful.
Both services are also operated with a sense of fun and are not yet plagued with considerations of 'balance'. The receipes on ORACLE are accompanied by a delightful graphic of one of the 'Homepride' men; retail outlets who are displaying Teletext can still get their names mentioned on a page and birthday greetings for Teletext users are put out.
Now the problem, if that's not too strong a way of putting it, is that very, very few people can receive it. No one knows for sure how many, TV sets are equipped but it's probably under 2,000
so we've got a fabulous system, fully operational put out over the entire country, but with only a handful of viewers.
Perhaps the publicity given to it was a bit premature but now is the time to give the flag another wave because you can now buy a converted set or, if you're technical, you can modify your own set.

Kitfax

The long awaited TIFAX module is now available and one company, Videocraft of London, is supplying a conversion kit to the likes of us.
When we first heard about this we were very excited and arranged to try out a kit and convert one of our own TV's. In fact things didn't work out as we expected but we learned a lot about the kit and Teletext in general.
The kit comprises four main items: 1. Power supply, 2. Tifax module 3. Keyboard (very like a pocket calculator on a string) and 4. The Interface board.

The keyboard and Tifax module need nothing doing to them, they're preassembled and even the connectors are prewired. The power supply needs building; all the components are supplied but there's no PCB or tag strip. The Interface board has to be built but this contains few enough components to be made up quickly in any one of two patterns to suit the particular TV to be converted. We'd rushed Videocraft a bit so we only got draft instructions which delayed matters a bit but we sorted out the problems O.K. Construction took about 3 hours and sorting out the connections to the TV and wiring it in took another $1 \frac{1}{2}$ hours. In theory the latter could take far, far less but you want to be careful.
The set we converted was an ITT 26 in

Principle index page of ORACLE. There is now so much put out that the complete index will not fit onto one page.

Part of the fun aspect that pervades both CEEFAX and ORACLE at the moment is demonstrated here.

CVC8 chassis about three years old. Our problems arose because we found out after a heck of a time that this is not a suitable chassis for conversion! The other colour set we had for conversion uses the BRC 9000 chassis which is also a tricky one (we didn't try it, Videocraft told us in advance). We feel that this was just bad luck. (We did get Teletext in brilliant colours and were able to operate it O.K. but had unbeatable troubles due to page rolling and hum). At Videocraft's workshops, which are really buzzing, they've modified a large number of sets which we've seen working so we know most sets work O.K.
This is not a beginner's kit by any

Photograph taken during the installation of the kit to the ITT CVC8 chassis.

We were experimenting at the time of the Jubilee as you can see. BBC-2 contains many such graphics.

The 'Clock Cracker' page contains all the possible characters that can be displayed.
stretch of the imagination - but it's not claimed to be. There is no casing as all the sections fit inside the TV . where there's always plenty of room - except for the keyboard and its wire to select TV, Teletext or the other facilities. You have to use some initiative but unless you've got some - and a measure of common sense - you shouldn't be dabbling inside the back of a TV set!
If you've got a TV which can be converted, it'll cost you £ 180 plus VAT and postage - well under half the price of any other method of converting.
Some readers may well ask why the kit isn't arranged as a 'plug-in'. In fact, this makes a colour display impractical and would increase the cost consider-

Newsflashes are one of the main features of Teletext and are a fully operational part of the system. The IBA update theirs until 23.00 Hrs .

The weather map is just one example of a rolling page. Although always page 115, this page alternates between two displays this is page B (may just be seen top right).
ably. Colour on Teletext may sound like a luxury but anyone who'se seen it in mono and colour wouldn't ask.
Teletext is here to stay and if you want to be a genuine pioneer and can indulge your enthusiasm to the tune of £196.90, Videocraft's Kitfax could be what your'e looking for if you've got a set suitable for conversion.
Just think of inviting around the neighbours - you'll have something working that they've probably never heard of, let alone got and the punch line is, of course, "Oh, I did it myself in a few hours, the rental companies will be offering suitable sets soon". Then go out and change your name to Jones!

SHOH CIRCUIS

TO A GREENHOUSE OWNER, or indeed to many indoor and outdoor gardeners the degree of moisture within a plant pot's soil or compost is important but relatively unknown. When pots were made of fired clay an expert could rap the pot with his knuckles and the 'ring' or 'thud' would show the need for watering! Nowadays however, the use of polythene sleeves and plastic containers gives too variable a sound for adequate guidance.

This circuit was developed to give an easy and accurate indication of the need for water or - just as important, very often - of a state of excess that tends to drown the roots of a plant.

Development

Ohmmeter measurements between probes in various soils and composts showed a surprising range of resistances, from about $3 \mathrm{k} \Omega$ to about $30 \mathrm{k} \Omega$ and further enquiry proved (as might have been expected) that soil acidity and probe dimensions also varied the readings; in particular the use of dissimilar metals for the probe tips gave enormous variations. Indeed some soil-probe combinations seemed to be trying to produce a reverse resistance reading when used in one way and then nearly full-scale zero resistance - when the probe connections were reversed. The probe electrodes must be of the same metal, preferably solid and not plated.

Initial circuitry suggested that a fairly seṇsitive micro-ammeter would be needed, or at least an amplifier to drive a less sensitive instrument. A gardener could easily drop the completed apparatus and this could be an expensive accident; also, a pointertype instrument led to queries about the 'needle is 2 mm further than last time', and 'not the same reading as last week' when (potted?) field trials were carried out in greenhouses. An LED display was therefore chosen as being cheaper, very robust and giving sufficiently repeatable results.

Construction

All the components with the exception of the LEDs, PB1, and SK1, which are mounted onto the front panel, are carried by the PCB. RV1, the sensitivity adjustment potentiometer, is made accessible via a hole drilled in the case.

The most taxing part of construct-

ing the device is the actual 'building up' of the probe. Ours was fabricated from a Japanese $11_{4}{ }^{\prime \prime}$ mono jack plug. Remove the cap, and upon inspecting the contents within, you will see that the tip contact is held in place by what appears to be a splayed rivet.

Take a file to this until the contact comes away freely. You can now remove the tip contact, earth contact and a spacing washer. However, we've not done yet. Hold the knurled 'body' of the plug in a vice or strong pliers, and physically pull the barrel out of it! (It may be necessary to make a small saw cut across the thread in order to achieve this.)

The barrel and tip portion is all you
need for this job. A plastic sleeve is now visible over the central rod, and this too can be pulled out. Solder the probe lead to this as shown below, fixing the rod in a central position with some Araldite or similar adhesive.

Mounting the probe assembly is largely up to you, but we found that a 'Biro Minor'. ballpoint, which is a cheap and universally available device, accepted the barrel like it was made for it.

Wiring from the probe to the box should be strong but as flexible as possible, so that continued use does not take its toll and incorrectly monitored moisture drowns both your plant and reputation as a genius!

Circuit of the moisture indicator

HOW IT WORKS

Fig. 1 is the basic diagram of the system. A constant current (preset to suit local soil conditions) through the probe tips, and the moist soil, produces a volt drop that is proportional to the resistance of the soil. This voltage then turns on an LED, which typically requires some 2 V at 15 mA for adequate brightness. A soil

resistance that is higher or lower than that given by the correct moisture content should also be indicated, so five LEDs are incorporated to cover the range of 'too wet' to 'too dry'.

Using silicon transistors, an emitterbase voltage of about 0.6 V is sufficient to turn on the emitter-collector current of Q7 and further increase in voltage (or base current) then results in additional emitter-collector current flow if the load allows. By connecting Q6 emitter to Q7 base, Q6 base needs to be 0.6 V more positive than Q7 case, hence at about 1.2 V (at the base) Q6 as well as Q7 is conducting. Similarly Q5, 4,3 will conduct at base voltages of $1.8,2.4$, and 3.0 V respectively.

The current through an LED is limited to $15-20 \mathrm{~mA}$ by an additional series resistor (R10-14); the transistors Q3-7 are bottomed at this present collector current, a collector voltage then being only slightly more positive than its emitter when an LED is at full brilliance.

Resistors . R5-9 are included to prevent the various base-emitter diodes from clamping the output of Q2 to a low value. The inclusion of these resistors and the required currents through them taken taken by the various bases means that the 0.6 V steps of voltage that should turn on Q3-7 are modified slightly. When the LEDs are illuminated the total base current drive for Q3-7 is in the order of $10-20 \mathrm{~mA}$ and this is supplied by Q2, an emitter follower.

A quick revision of theory reminds us that the collector characteristics of a transistor, Fig.2, shows a nearly constant-

current curve when the base is supplied with a steady value of current and vol age, this voltage being about 0.6 V . In Fig. 3 the base voltage is clamped or set by a zener diode to a particular value,
say Vz , and the emitter voltage is therefore about ($\mathrm{Vz}-0.6$) V . The emitter current (and, for all practical purposes,

the collector current too) is thus defined as $\mathrm{Ie}=\mathrm{VeRe}$ and by selection of Re the value of Ie (or Ic) is determined. As long as there is about one volt between emitter and collector the collector current remains constant at this chosen value - or at least until a resistor or load of too large a voltage and so robs the collector of its working voltage.

With only a 6 V supply Vz must be as small as possible and once again the fact that a forward biased silicon diode drops about 0.6 V is used. The two seriesconnected diodes D1-2 maintain Q1 basc at about -1.2 V and the voltage drop across $R 2-R V 1$ is about 0.6 V .

Above left: Component overlay for our Soil Moisture Indicator. The only thing to be careful of here is the orientation of the semiconductors Above right: Full size foil pattern for the PCB. This will be available from all the usual suppliers (see Mini-Ads) by the time you read this. Below: Just to prove it works! A shot of the unit actually in use at the ETI Rubber Plant Department, being deftly weilded by our resident doddering old bearded gardener!

Short Circuits

Details of the jack plug destruction, and subsequent probe construction!

Testing and Using

Before connecting the supply to the board, check carefully there are no 'bridges' present lest they lead you to troubled waters.

With the probe 'dry' all the LEDs should come on. With a short-circuit across it (i.e. VERY wet!) not one should be lit. Check the range of current in the probe, by short-circuiting with a milliammeter, to be about 0.1 mA to 0.6 mA approx.

Push the probe into soil of what
you consider correct moisture, and adjust RV1 to light three LEDs. More moisture than this then lights fewer LEDs, whilst a drier soil lights more.

Perhaps one usage for this would be if you trotted off on holiday, leaving some willing person to take care of the plant-life while you sample the nightlife. Once set the indicator could ensure that your instructions are carried out faithfully, and you don't return to see your favorite rubber plant impersonating a water-lily.

COMPLETE digital clock kits

Including P\& P Free Mains Plug FEATURES: 4 Red $1 / 2$-inch high LEDSs. 12 hour display with AM / PM indication. Power failure indicated by flashing display. Precise accuracy from mains frequency. Beautiful Burma teak case, or stylish Perspex (state first and second colcur chaice: White, Red. Blue, Green, Black, Mauve NON ALARM: Complete Kit, including Teak case £ 11.50 incl. Module Kit, excluding case ALARM EXTRAS: Pulsed alarm tone. Tilt operated "Snooze" period Automatic Brightness control Simple setting. ALARM: Complete kit, including Teak case. £14.50 incl. Module Kit including case PERSPEX CASES: 50 p less than Teak READY BUILT: Extra $£ 2.00$ on complete clocks. Extra 50 p on Modules TIMER/STOPWATCM FACILITY: Count in seconds up to 9 m . 59 sec . Extra 50 p 'ALPHA' £12.00 incl Ready built. Non alarm, 4 digits, phosphores cent green, $1 / 0^{\prime \prime}$ high, 12 or 24 hour display Black, whise, blue, red, green case.	

Herne Bay. Kent
Herne 8ay 63063

1. BAD THE BARGAIN PEOPLE ALL PRODUCTS NEW AND FULLY WARRANTED

ALL PRICES INCLUDE VAT
SYSTEMS
DEMONSTRATIONS AVAILABLE BY APPOINTMENT

VIDEOTONE 2020 (Limited number only)

> High fidelity stereo amplifier in Teak Case / Silver Front 30 Watis per channel in to 4 Oms

Frequency Response $40 \mathrm{KHZ} \cdot 25 \mathrm{KHZ}+1.5 \mathrm{db}$ Power Bandwidth. 30 KHZ $£ 45.00$ incl. VAT. P\&PP $£ 1.00$

ALL BRITISH MANUFACTURE - brand new and guaranteed by manufacturer , Low price available due to slightly imperfect front panel construction. Features include: Full tone controls, surround sound connection, contour control, high and low filters, inputs for tuner, tape and disc (suggested speakers Minimax 11 of Saphir 1).

KC450

High Fidelity Stereo System with luxury single player turntable AM/FM radio and comprehensive facilities
4 watts per channel O/P. Frequency response: for quKHZ $=1.5 \mathrm{db}$. T.H.D. Less than 0.15%. Facility socket.

This superb British made machine sells normally for £125.00

Last fow machines at $£ 60.00$. P\&P $£ 2.50$

SPEAKER KIT

Build your own full range Hi-Fi System designed by Videotone Engineers for the enthusiast with limited funds who still requires top quality speakers. Cabinet design available free to purchasers of complete set

Bass Unit 20 watts power handling ($\mathbf{8 8 . 0 0}$), operates' from 40 HX to 3.2 KHZ with low distortion
Philips Dome tweeter £4.00, operates from 3.2 KH to 20KHZ with exceptional clarity

Full Kit $£ 13.00$ incl VAT P\&P $£ 50$
Top grade four element crossover as used in the famous Minimax 11, inct Din Socket Connection £2.00.

MUSIC CENTRE MC8000

Manufactured for Hannimex, these Music Centres have all the features needed in the modern home
10 Watts per channel output Fulf stereo cassette recorder with storage space. Modern Auto changer player FM and AM radio. Headphone sockets. Tone controls and monito meters. Absolutely unrepeatable and limited quantity

NORMAL PRICE $\{150.00$ Our Price $£ 90.00$ incl VAT. P\& $\left.\mathrm{I}_{\mathrm{P}} £\right\} .00$
Brand new and fully guaranteed (suitable speakers KC42 or 43 and KC35)

AUDIO \& TUNER MODULES
AMP 14W amplifier module ready tested. 14 W att $0 / \mathrm{P}$ Distortion 0.15% at -9 db Load $Z 4.8$ ohms Fully
 $+50 p$ P\&P BOARD ICB

Gquipped with sockets for two

 AMP IUW. Provides tone controls and accepts directly ceramic cartridge to drive power stage Mains on/or switch, headphone socke $£ 2.25+50 p$ P\&PSPEAKER SYSTEMS
12 Watt Types
KC35 small budget speakers with full range sound $£ 14.00$ per pair incl. VAT. P\&P £ 1.00 flour mounting, full range type.
$£ \mathbf{2 8 . 0 0}$ per pair incl. VAT. P\&,P $£ 1.50$

20 Watt Types.
Videotone Minimax
Probably the most highly recommended bookshell speakers on the market.
P\&P f1 50
Saphir 1 £ 59.00 per pair incl. VAT P\&P $£ 2.00$
Encyclopedia
£41.00 per pair

IF AMP \& STEREO DECODER
Complete IF amplifier and latest stereo decode CA 1310 E including LED ste
eo beacon. Accepts inpul from FEI tuner head and directly drives $I C B+A M$
14 W combination. $£ 5.00$ 50p P\&P.

VHF TUNING HEAD FE1 FOR FM RECEPTION Designed to be used in fron of IF Amp provides luning Famous manulacturer brand new. $£ 5.00+50 \mathrm{p}$ Ps P P new. £5.00 +50 p P\& suit. $£ 1.00+25 p$ P\&P)

This superb unit is direct from the manufacturer and fully guaranteed This superb unit is direct from the manufacturer and fully guaranteed
Very comprehensively specitied in all functions this combination is a Very comprehensively specified in all functions this
fantastic bargain for anyone setting up their hi-fi system NORMAL PRICE: $£ 123.00$. Now only $£ 65.00$ incl VAT ${ }^{4} \mathrm{P}$ £250. (Suggested speakers. Minimax 1^{19} or Saphir

COMPONENTS

MOUNTING HARDWARE

Modern protessional system for mounting digital indicators Frudes sockets and attractive front bezel with polarized screen From 2 to 8 digits
Price for $0.3^{\prime \prime} \& 0^{\prime \prime}$, LEDS $£ 3.50+50$ p per digit over 2 digits Price for $0.6^{\prime \prime}$ and $1^{\prime \prime}$ Reds $£ 4.50+60$ p per digit over 2 digits
Front Bezel only $1 / 2$ price.

SWITCHES MIN. TOGGLE
1 pole, 2 wa
2 pole, 2 way
3 pole, 2 way
4 pole, 2 way
2 pole, 3 way
SWITCHES SLIDE MIN
1 pole, 2 way
BACK PANEL
Fuse Holder
5 pin Din. Sockets
2 pin Din. Sockets
Push button Micro Switches PANEL MOUNTING POTS $25 \mathrm{~K} / 25 \mathrm{~K}$ dual \log $100 \mathrm{~K} / 100 \mathrm{~K}$ dual line
47 K single linear
In mixed orders take the lartes
single P\&P price for complete lot

7 CHERITON AVENUE, BROMLEY, KENT PHONE 01-690 1916

MAIL ORDER ONLY
DEMOS BY APPT.

SHOR CIRCUIS

ELECTRONIC BONGOS!

MANY musical instruments can be simulated with sometimes astonishing accuracy by electronic circuitry. Complex circuits in the form of electronics synthesizers, can reproduce virtually any sounds that one can imagine.

Regrettably though at the present state of technology even a basic music synthesizer is an expensive and complex undertaking, and is beyond the scope of a series such as this. Nevertheless providing one attempts only to simulate a limited range of sounds some extremely realistic effects can be obtained without too much complication.

This article shows how to build up a circuit which simulates the sound of bongo drums. The finished unit is played in basically the same manner by tapping one's fingers on a pair of plates - one for each 'drum'.

Construction

The touch plates may be made of any electrically conductive material - copper, brass, stainless steel, aluminium, etc. Size and shape is not critical - they need to be at least 50 mm across but they may be much larger than this if desired - and round, square, triangular or whatever you will!

The finished unit may be housed as you wish in a box built into another instrument - or even made up as a full-size or miniature replica of a bongo drum. But if you use a metal case you must have the touch plates insulated from the case and spaced. away from any metal surface by at least 25 mm .

Potentiometers RV1 and RV3 are used only in the initial setting up procedure - easy access is not essential. Potentiometer RV2 controls the level of sound output and is required if the unit is to drive an amplifier which has no built-in volume control. If desired this potentiometer may be omitted from the board and replaced by a larger rotary potentiometer located away from the circuit itself. If you

do this you'll need a $50 k$ half watt rotary device (logarithmic curve). Connect it as if you were using the original potentiometer - except that now you're doing it via three bits of wire.

When the unit is assembled check out all connections and check all tracks to ensure there are no solder 'bridges'.

Setting up

Connect the unit to a suitable amplifier and loudspeaker. Connect the battery and then switch on the amplifier - keeping the volume control at a low setting.

Rotate RV1 to minimum setting and RV2 to about mid-way.
Transistor Q1 should now be oscillating and you should head a sound from the loudspeaker. Now turn RV1 until the oscillation just stops and touch the associated touch plate momentarily. This should cause the circuit to produce a 'bong' sound which then decays away. Continue to adjust RV1 until a realistic bongo sound is reproduced.

Now repeat the operation for the second oscillator by adjusting RV3. Turn the amplifier up loud and play away!

Extending the circuit

The components specified will result in frequencies of about 290 Hz and 400 Hz . These frequencies are determined by C1, C2 and C4 (for the left hand part of the circuit) and the corresponding C9, C10 and C11. The frequency produced is inversely proportional to the values of these capacitors. Thus doubling their value will halve the 'bong' frequency. If you change the frequency maintain the same approximate ratios between capacitor values.

If you are ingenious and/or have some knowledge of electronics it is quite possible to extend this circuit so that you have a whole series of oscillators of different frequencies. The circuit is totally symmetrical except for the capacitor values mentioned above, so all you do to build up 'half circuits' - all connected to the common battery - and with their outputs connected to the point on the circuit which is the junction of R8, R9 and R6.

It is also possible to build the circuit using a range of switched capacitors to provide the tonal range you require.

Fig. 1. Circuit diagram for the bongo circuit. Note that the voltages given around the circuit are all with respect to ground, and are intended as an aid to fault finding.

Above: The component overlay for the design. The board is symmetrical which may or may not make it easier to get working as there is a good chance one half will work first time! No case details are shown as the board will probably be built into something else.
Below: The foil pattern, shown full size.

This design uses two integrated circuit chips to provide a versatile and accurate timer for your kitchen

THE ANALOGUE MINERAL egg timer that has been used in the kitchen until now has a number of serious drawbacks. The main one being that when it has finished "doing its thing" it does nothing to draw attention to the fact. Instead it sits quietly on your shelf while your attention is elsewhere and your egg is becoming decidedly hardboiled.

Our egg timer gets over this problem by giving you a shout when it feels that your breakfast is ready.

Getting it fogether

Construction is made easier if our PCB layout is used, pay particular attention to the orientation of the integrated circuits and electrolytic capacitors during assembly. When the board is finished, make a quick check of the soldered joints, also check that there are no solder bridges.

Our pictures show how we mounted the PCB board and the layout of our front panel.

As you like it

The preset resistors, RV1, 2, 3, can be adjusted to provide the following range of times depending on the position of SW2

Soft	$2 \overline{1 / 2}-3$ mins
Medium	$31 / 2-4$ mins
Hard	$4-5$ mins

To use the timer, switch on SW1 and press PB1. The timer will operate after the period selected by SW2 has elapsed.

The unit uses very little current in its timing mode but a lot more when it is producing the tone. So, for long battery life, do not leave the unit switched on and producing a noise for too long.

HOW IT WORKS

The timer is based on the 741 op amp , IC1. R1 and R2 hold the inverting input at half supply voltage. Pin 3, the noninverting input, is connected to the junction of $\mathrm{C} 1, \mathrm{~PB} 1$ and SW2.

SW2 selects one of three resistor and potentiometer combinations, the value of this combination determines the timing period.

Upon operating PB1, to discharge C1, the voltage on C 1 will increase towards the supply rail at a rate determined by the resistors selected by SW2.

When the voltage on Cl reaches half

Fig. 1. Circuit diagram of egg timer

Short Circuits

Fig. 2. Foil pattern of egg timer shown full size $(100 \mathrm{~mm} \times 40 \mathrm{~mm})$.

PROCRESSIVE

RADIO

Stereo pleamp chassis. with.controls ceramic input with circuit E3.5s +50 p P\&P
Board with 146 Volt Reod relays $£ 2.40$
Toko FM Tuner Heads 88.108 MHz , new E 1.95
Board with 6 2N3055s 95p
preamp, new $£ 1.50$
100 Volt 10 amp Bridge Recs $\mathbf{3 5 p}$
300 KHz HC6U Crystal 40p
500 mtr . reels twin solid core-connecting wire $\mathbf{£ 4 . 0 0 +}$
Car Radio Chassis LW/MW dual polarity, complese
apart from outer case, new. $£ 2.50+50 \mathrm{p} \mathrm{P} \& \mathrm{P}$
CV2184 216"CRT wuth PD.A. £1.95 + 20p-R80
MAN-3A L E. D. display $3 \mathrm{~m} / \mathrm{m}$ 30p
$1.1+1$ Triac Pulse Transformers 30p
6MH 3 amp Smoothing Chokes 20p
6.12 volt G P.O. Buzzers 30p

Newmarket Power Supplies. 250 V AC input, 8 volis DC
250-maul 1.95
Board with 6 Volt chanmeayer Reed Relay $£ 1.75$
3RP.M. 115 V AC small motors with gearbox, new 30p
Model motors $1.5-6$ Volt 25p
British made Stereo Amplifiers
British made Stereo Amplifiers, 15 watts per channel self powered, with separate slide control preamp, have
production faults. with circuit $\mathbf{£ 1 5 . 0 0}+859$ PGPDecca Speaker Cabinets, front monting, 5 in cut:out
Yeak $£ 7.50$ pair, + E1.20 P\&P
Thensformers all 240 V AC. Primary $6-0-6 \mathrm{~V} 100 \mathrm{~mA}$ 75p. 90.9V $75 \mathrm{~mA} 75 \mathrm{p} \cdot 12 \cdot 0-12 \mathrm{~V} 50 \mathrm{~mA} 75 \mathrm{p} .12$ Volts 500 मीदे -9.9.
GPO board with 64 BC107 type transistors. Reed Relays. Mercury Relay. Diodes, etc. $£ \mathbf{2 . 0 0}+55$ p P\&P Please add 25 p P\&P for items where postage is not V.A.T included in alt prices

PROGRESSIVE RADIO

31 Cheapside. Liverpool 2 051-236 0982

ELECTRONIC CALCULATORS

SCIENTIFIC

TEXAS SR52 CCard Prog. 20 mem ${ }^{\text {a }}$	
AS Libraries and Accessories availab	
NOVUS 6035 (Stat 100 stee prog.)CBM 41488 (Scient Exp 10 dig)	
CBM Pro 100-Mats (M55) Nav (N60) Stat (Styen	
HP 25 (trogramme)	
MP ${ }^{\text {MP }}$ 27 (Sci./Mang,	
-HP 97 (fully prog), with Print	
Casio cal (Cal Dig. Alarm Clock),	
Mains charger included.	
dos fully guaranteed prices exclude	
Company/ Hospital and Government orders	
ccess orders acdepted by po	EXPORT ${ }^{\text {accepented by }}$ phone
Tel. 01-4559855	
MDJNTATMDENELT	
22 Cowper Street, London, EC2 (Near Old St. Station)	

FOR SOME CONSIDERABLE time now, there have beeri close liriks between electronics and photography. Glancing through, past issues of ETI, for example, we find a fair number of projects of particular interest to keen photographers, and a look through, past copies of "Amateur Photographer" shows the appreciation of the role of electronics showris by our photographic kindred. This article sets out to describe how electronics is irivolved in photography today, as it affects the keerı amateur and the professiorial.

Electronics circuits, ranging from the very elementary to the extremely complex, become involved with photography at almost every step in the photographic process; at the camera itself, in the darkroom, and in slide and cine projection. Some of the electronic circuits that are used will be familiar, others less so, and we assume that the readers of this magazine are much more familiar with the electronic circuits than with the photographic processes.

Exposure Control

One of the earliest applications of simple electronics to the camera was exposure metering and, later, control. The amount of darkening of a given photographic film is decided both by the intensity of the light that reaches the film, and the duration for which the film is exposed. The intensity of light Juminous flux) reaching the film is regulated by the iris of the camera,
a variable opening placed close to the lens, or built into the lens by placing it between the elements iseparate glass pieces making up the lens). The timing is decided by the open time of another aperture, the shutter, which opens when the shutter release is pressed, and closes a preset time later. From fairly early days, shutter timings were obtained by using clockwork mechanisms that were reliable and robust. Today with

Fig. 1. Acceptance angles. The amount of light passing through a camera lens is not usually the same as the amount passing through the window of a separate exposure meter. This problem is more apparent when a telephoto lens is in use.
smaller cameras in use, and more objects of interest moving, the range of shutter speeds has had to be increased to cope, and the regulation of the light level by an iris is used to a greater extent; the shutter speed is set to a value capable of "freezing" movement 'of object or photographer) and the iris is used to set the light level for the correct exposure. This is why camera electronics are so devoted to controlling the iris, leaving shutter control in a lesser rôle.

The first efforts concerned metering rather than control; consisting of exposure meters, using selenium cells driving moving-coil meters. The problem of these meters, which can produce excellent results if used properly, is that the light reaching the meter may not be proportional to the light reaching the lens (Fig. 1). The problem becomes more apparent when telephoto lenses are used, since there will be little relationship between the light entering the lens and the light entering the meter. One partial solution, still used, is the "incident light" reading, in which the meter, fitted with a diffusing cone, is pointed at the light source and the resulting reading used in setting the camera aperture.

The combination of colour slide film, which needs fairly exact exposure, with interchangeable lenses, and the single-lens reflex system, called for some improvements in light metering systems. Single lens reflex cameras use a mirror at 45 to the light path to divert the light path to

the viewfinder (Fig. 2), which therefore shows arı image identical to the ore that will appear on the film. Sirice the viewing is done through the lens, there is no parallax problem caused when close-ups are takerı, as there would be if a separate view'firider were used and specialised work such as photomicrography -becomes possible.

TTL Metering

The next logical step is to place the exposure meter somewhere in this reflex viewing system, so that the light coming through the lens also operates the exposure meter. Right away we come up against a problem that still divides good quality cameras into two groups - shall this light reading be taken at one point in the image (a spot reading) or should the photocell be affected by the total amount of light entering the lens (an average reading). If the reading is a spot one, we must be certain that the spot is located on a piece of the picture we most need to be correctly exposed, so that we can take this reading. If the reading is an average one, we must be sure that the exposure will not be faulty because of a misleading average.

The use of TTL Through The Lens) metering, whether spot or average, demands the use of cells much more sensitive than the old selenium type. Cadmium sulphide cells have been used for some time; since they are photoresistive, not photovoltaic, they need a battery. They are also much more sensitive to red and infra-red than the eye or the usual run of films so that some light filtering must be used to correct the
balance of the light reaching them.

Indication

The first types of TTL cameras used the cells to indicate correct exposure, which had then to be set by the user after taking the meter reading. Very soon, this developed to a system still used today in which the setting can be done while the image is viewed in the finder. The needle of the exposure meter appears in the viewfinder along with a marker coupled to the iris control. Aligning the marker and the needle by opening or closing the iris control sets the iris to the opening called for by the metering, but the photographer can, from experience of the
type of subject and lighting, modify the setting as needed. A more "electronic" modification of this method, pioneered by Yashica, uses two LED displays (Fig. $3 \mathrm{c}, \mathrm{d}, \mathrm{e}$), one shaped as a U, the other as a $\cap . A \cup$ displayed means that the iris is set for underexposure, an \cap indicates overexposure, and a complete oval indicates correct exposure, for average light reading. Once again, the experienced user can modify the setting.

These systems, though simple, still demand considerable design expertise. The exposure indication is controlled by four quantities: 'film speed, shutter speed, iris setting and subject illumination, so that variation of any of these quantities will affect the readings. Since the resistance of the cell is determined by the amount of light reachirig it, the compensation for film speed and shutter speed must be made by altering other parts of the system, either electrically by potentiometers in the current path, or optical, by neutral density filters in the light path.

With film speed set according to the type of film in use and the shutter speed set for coping with the motion of the subject or camera, the object is viewed and the meter needle position matched by the marker ganged to the iris opening. This scheme has the disadvantage that the image in the viewfinder might be very difficult to see if the iris is at a small aperture

Fig. 4. Yashica FXI open aperture control system.
(stopped down) so that the next design step was full-aperture finding. This comes in two types, full aperture viewing or full-aperture metering. In each case, the iris can be fully open until the shutter release is pressed; the aperture is then changed to a preset value just before the shutter opens. In full aperture metering, the iris control ring affects the meter sensitivity and presets the iris control without changing the setting of the iris, which remains at full aperture, hence the name, for a bright display in the viewfinder. When the release is pressed, the iris is set, and the shutter operates in simpler types of camera, viewing for focusing is done at full aperture !and cannot easily be done at reduced aperture) but the iris is stopped down when the metering system is switched in. With this system, the metering can be switched in momentarily to set the iris; if left in place, the system can reset after the release has been pressed.

Automatic Camera Systems

The final step in this progression is to use the photocell(s) to control the iris directly, with an over-ride to enable the photographer to adjust the
exposure if he wants to. A block diagram of the system used in the Yashica FX1 is shown in Fig. 5. TheIC in this system has been developed for Yashica, and comprises a set of comparators into which information on film speed, shutter speed, and iris setting is fed, along with the input from the cells. Since d.c. amplification is easily carried out using ICs, cadmium sulphide cells have now given way to silicon cells which, though less sensitive, can be made much smaller and have a colour
response that matches the films (whether colour or black and white) much better.

Time Control

For many years, the Compur shutter was the ultimate in timing. Pressing the shutter release opened a set of interlocking shutter blades situated between the lens elements and started a clockwork timer that closed the blades again after the preset time. With additional spring assistance, times of 3 ms or less were obtainable. The demand for interchangeable lenses and faster times led to the development of the focal plane shutter, the first types of which resembled a miniature roller blind with a slit of the same width as the film. This roller blind is set parallel to the film, and when the shutter release is operated, the slit is drawn rapidly across, exposing the film

The modern focal plane shutter consists of two blades operated electromagnetically rather than by clockwork. This makes the release action smoother, and enables the camera to be operated by remote electrical contacts. The principle used is that pressing the shutter release button activates a solenoid that pulls the blades of the shutter apart, and also starts charging a capacitor through a resistor. At a set Yevel of voltage on the capacitor, the current through the solenoid is switched off, and the blades are closed by a spring or by another solenoid. The timing here is achieved by capacitor charging, a familiar electronic principle, rather than by mechanical gearing, so that the speed is infinitely variable as compared to the set speeds obtainable with mechanical action. To conserve battery charge,

Fig. 6. Photograph of author's enlarger timer
however, the slower speeds are usually of set values obtained by mechanical operation, electrically triggered; this also avoids the problems of very long time constants, which would call for large capacitance and resistance values.

Darkroom Electronics - light readings

The design and construction of electronic devices for the darkroom is simpler than the corresponding work on cameras, because there are practically no restrictions on size or power supply. Whereas camera electronics must be fitted into the space available on a camera, and operate at the low voltage and current obtainable from small longlife cells such as the manganese alkali or silver oxide types, darkroom electronics equipment can be of any reasonable size and shape and can also be mains operated. The darkroom operations of interest to us àre measurements of enlarger light values and the timing of enlargement, possibly along with electronic control of the temperature of chemical baths, and voltage stabilisation of enlarger lamps. The requirements for colour printing are much more stringent than those for black/white printing, so that electronic aids, though very useful for B / W work, are of more use when a large amount of colour printing is done.

With the small format $136 \mathrm{~mm} \times$ 24 mm) negatives used for so much work nowadays, nearly every print produced is an erlargement.

The enlarger is a high-quality projector arranged vertically so that the photographic enlarging paper bromide paper) can be laid flat on a base-board and the negative, held in a carrier, used to project an enlarged image on to the paper. The amount of enlargement may be fairly small, such as to the "enprint" size, or very large. In each case, however, the amount of exposure time for the combination of negative and paper size must be determined.

The use of electronic expōsure meters simplifies problems of exposure and colour correction considerably. For B/W work, the use of an enlarger exposure meter is most

Fig. 7. Interior of unit shown above.
valuable when technical phtography 'such as photographing circuits for ETI!) is carried out, since the density of negatives, the contrast range, and the amount of enlargement may vary much more than those of the family snaps. The simplest types of B / W enlarger exposure meters use ORP12 cadmium sulphide photoresistive cells operating moving coil meters or other indicators. The setting of the speed of the paper, which must be done using a test-strip, since manufacturers do not quote paper speeds for most materials.

For colour adjustment, much more elaborate meters are needed, preferably using silicon cells with amplification. The problem now is not simply that of exposure, but of adjusting the colour of the light in terms of three primary colours (red, green, blue) or their complementary colours, cyan, magenta, yellow. This requires three light readings, one for each colour, and the outputs should be in the form of colour correcting factors that can be supplied in the form of filters. In the simpler types of enlarger, a "filter drawer" is used between the condenser lens lused to make the light from the lamp converge into the projecting lens) and the main lens, and the readings on the colour meter are used to help select the correct filters. On the more expensive enlargers, the correcting filters are built in the form of a "colour head," controlled by three dials on the lamphousing. These are set to correspond with the meter readings, so carrying out the colour correction. Another reading taken from all three sensing cells is then used to determine the exposure time needed

For the occasional colour print land the cost in money and work will ensure that the prints will be occasional) the high cost of a colour analyser is quite prohibitive, matching the price of a good oscilloscope, but for regular colour work, particularly when very expensive materials are used, such as in the Cibachrome process, the cost is comparable with the price of the type of enlarger that will have to be used anyway, and can be justified if really excellent results must be attained.

Before leaving the darkroom, we should note that for colour processing, the temperatures of several of the solutions, notably the first developer and colour developer, are critical, needing control to within 0.25 C. This can be done by keeping
all the bottles, along with the developing tank or drum, in a water bath, and the maintenance of the bath temperature is much easier if thermostatic control can be used. Conventional bimetalic thermostats have much too great a difference between switch-on and switch-off temperatures (differential), but an electronic type using a thermistor to sense temperature and a triac to control heating current can easily provide the amount of control that is needed.

Other Applications

Outside the darkroom, the applications of electronics mainly concern projectors, flashguns, and cine equipment. The capacitor-discharge flash gun, using a transistor inverter circuit to provide a few hundred volts to charge the capacitor, is well established. With the flash gun connected to the camera shutter contacts, the capacitor is discharged through a thyristor when the shutter is wide open, and the current flows through a tube containing Argon and Xenon gases at low pressure. The time of the flash is short, about $100 \mu \mathrm{~s}$ or less, which is very short compared to the shutter speed, and the usual arrangement is to have a fixed delay built into the camera, so that the shiutter speed must be set to $1 / 60 \mathrm{~s}$, or to a part of the shutter speed dial marked with the letter X. The timing of the exposure is then entirely due to the flash, though complications can arise if the long exposure time allows some exposure in conditions of partial darkriess.

A recent development is the triggered shut-off flash 'or "computer" flash, as the advertisements dub it). In this system, a silicon cell detects the light reflected back from the subject in the first microsecond or so of the flash, and this cell then charges a second capacitor feeding a comparator. At a fix̂ed value of voltage, the comparator fires a second thyristor that short-circuits the main capacitor, stopping the flash very rapidly. In this way, the camera can be left at a fixed setting and flash photos taken without the usual need to pace out distances and set the aperture of the camera each time. Other flash developments more familiar to the electronics constructor are light-triggered flash used to synchronise one flash gun to the flash
of another, so filling in shadows, and sound-triggered flash, used for some "frozen-action" shots where the speed of sound can be used to provide a variable delay.

Projection

Slide projectors of the semi-automatic type, using a magazine of slides advanced by a remote-control that incorporates motor-driven focus, have become popular within the last few years now that reasonably-priced models have become available. A more recent development is the fully-automatic projector, with the automatic focus 'also featured now on some enlargers). This is based on the principle that the light reflected back from a projection screen is greatest in intensity when the image is correctly focused. A photocell mounted at the front of the projector picks up the reflected light, and the output of the photocell is taken through a d.c. amplifier to a servosystem operating the focus screw of the lens. Because the photocell is part of a negative feedback loop, the system will settle with the lens in the position giving maximum reflected light, therefore in focus. The system is disabled during slide changing or in the absence of a slide in the carrier, to avoid having the servo-system hunt about for an impossible focus.

Another application of electronics to slide projectors of the automatic or semi-automatic types is the synchronised tape-slide show. To achieve this, using an ordinary reel-to-reel

Fig. 8. A modern flash gun, with automatic flash cut off. The small silicon cell that detects the reflected light can be seen in this view.
tape recorder, a synchroniser unit is needed. This consists of an additional tape head over which the tape is led on its way from the playback head to the take-up spool. The sound commentary is recorded on one track of the tape, and synchronising pulses via the additional (sync.) head on another track. On playback, each sync pulse at the sync-head is picked up and amplified to generate a pulse of sufficient amplitude to operate the slide-change switch. In this way, the slide changing can be synchronised exactly to the commentary providing that the order of slides in the magazine is unchanged. The pulses are placed on the track by setting up the equipment for recording, and changing the slides at the appropriate times. The pulse at the projector socket is now used to generate the sync signal, and this is recorded on to the tape at the sync head.

Finally, the closest marriage between photography and electronics occurs in modern cine sound. This is such a specialised field that even to start on cine sound systems would take up much more space than can be justified here, and we can only note that the use of Dolby noise reduction looks like making the optical sound system, in which the sound is recorded in the form of light-and-dark bands on the film, a very serious rival for the magnetic tape stripe systems that have dominated cine sound for years. The important advantage of optical sound is "lip-sync," meaning that the synchronisation of sound and picture is close enough to permit views of people speaking, without the nonsense mouthing words that are not these being heard.

Looking to the future, it seems that the applications of electronics to photography will surely increase. At the time of writing, new colour printing systems are being announced at almost monthly intervals, new cameras appear with still more advanced electronics systems, and elegant applications of electronics appear in instruments that previously used only optical or mechanical techniques. One outstanding possibility for the future is a more electronic image formation process -- we are still using the silver halide process for images 'along with dye coupling for colours) that was being used over 100 years ago. In these days of electrostatic copiers, could we be at last heading for a film that will wean us away from silver?

How do you put a price on a miracle

* This electronic 'Exact time' WAFER-THIN quartz watch is a miracle, years ahead of time in it's technology - why is it so special ...!
It's not only shock proof, water proof, and has a special sensitised time control (no irritating button to press), is accurate to seconds per year, has 10 -different functions but it's the Thinest WAFER-THIN watch ever produced in this price range.

This incredible WAFERTHIN watch beams L.E.D. display at the soft touch of a fingertip, and the exclusive electronic system will produce:Hours / Minutes, Minutes / Seconds, Day / Date, Month / Date, $12 \mathrm{hr} / 24 \mathrm{hr}$, 4 Adjustable Brightness Controls.

This elegant WAFERTHIN electronic watch has a metal casing with simulated gold finish and a matching simulated crocodile strap, ideal for both her or him and is fully guaranteed for one year.

THE EMS VOCODER (VOice CODER) is a machine that can change the age or sex of a talker, compress or expand the speech in " time without varying the pitch and make normally inanimate objects speak!

For instance, an electronic organ or guitar could be made to speak or sing! Other tricks include that of freezing a sound in midword, making a single voice sound like a chorus, producing synthetic speech at constant or varying pitch, and many others. Several well-known artists and organisations have used or own Vocoders. These include the BBC Radiophonic Workshop, The Pink Floyd, The Who, Stevie Wonder, Kraftwerk, Tangerine Dream, all of whom have used them to produce dramatic effects on records, radio and television, as well as live on stage.

History

One of the first speaking machines that we know of was designed by a man called Kratzenstein back in 1779. He had a bit of trouble getting hold of ICs and so he designed his machine with bellows, vibrating reeds and acoustic resonators. His machine was capable or generating vowel sounds, but b心! much else.

In the late 1800s, Alexander Graham Bell had a bash at constructing a speaking machine, which again was mechanical and could only produce very poor quality speech. However he claims to have 'taught' his dog 'a Skye terrier) to say "How are you Grandmamma?". This "was done by making the dog growil and then
manipulating its vocal tract by hand.

Other mechanical speakers were constructed but it wasn't until the advent of electronics that speaking machines became really practical. One type of machine that emerged was the Channel Vocoder, invented by Dudley (1939). This Vocoder was used to compress the band width necessary to send intelligible speech down, say, a telephone line.

Interesting Effects

However, as EMS has proven, the Vocoder can be used to do a whole lot of other interesting things. The Channel Vocoder operation is as follows, (fig. 1), speech is analysed into 22 frequency bands throughout the audio spectrum. The time varying energy levels in each channel is extracted by an envelope follower. This is in fact a real time spectrum analysis of the speech.

Another signal, the excitation, is
introduced into the Vocoder. This is the signal that we will make talk. That is, if the excitation signal is a chord from an organ, we will end up with a talking chord. The excitation signal is also analysed into 22 frequency bands throughout the audio spectrum. However, the signal that is presented to each band is multiplied by a control voltage, which is the envelope signal from the speech channels. Thus the time varying spectrum of the speech is imposed upon the excitation signal, that is the excitation is filtered in a way entirely prescribed by the speech signal.

Realism

If realistic synthetic speech is required, the excitation used is a voltage controlled oscillator and a noise source. The oscillator is controlled in pitch by a pitch extractor and is used to synthesise the 'voiced' portions of speech. The 'unvoiced' portions, sounds like 's'

'ch', ' f ', 'th', are synthesised with the noise source. The synthesised speech can be modified by, say, shifting the pitch of the oscillator and shifting up the interconnection between analysing and synthesising channels. This will change a man's voice into one of a woman or a child. If the original voice and the synthesised voice are then mixed together, a 'double tracking' or 'chorus' effect is heard

The first EMS Vocoder was designed by Tim Orr for West German Radio (Cologne). Since then he has designed two other types of unit (see photos), the larger one being for studio work, the smaller one, by virtue of its reduced size and portability, for live work.

So, next time you hear something strange on the record, radio or TV, then maybe it's a, it's on the tip of my tongue, it's a V

Two Vocoders are produced by EMS, a big 22 channel one (as in schematic) which is yours for only $£ 10,500$ plus VAT. Possibly more within the reach of our readers is the illustrated Vocoder 2000 which is $£ 2,500$ plus VAT

Further details from Electronic Music Studios Ltd, The Priory, Great Milton, Oxford

videooraft

Half price Teletext

You can now buy Texas Tifax module Teletext decoder complete with matching You can now buy Texas Tifax module Teletext decoder complete and complete instructions for installation in most common telévision receivers for only $£ 180$ + VAT and £2 50 postage, packing and insurance.

Since the interface is connected directly to the television's video output circuitry, picture quality is excellent with pure colours -- much more so than is possible from decoders which feed the aerial socket.

Tifax modules are available from our own stock
'Due to the compact nature of the Tifax module, installation with in most receiver cabinets is no problem. Facilities include seven colours, upper and lower case alphanumerics, graphics, time coded display, and newsflash and subtite inserted in TV picture.

To enable us to supply the correct interface board and instructions, we must know your television set make and model and, if possible, chassis type.

Additionally, for those uncertain about installing a decoder in their own television set, a colour television receiver complete with a fully operational Teletext decoder is being offered for under $£ 500$ - that's less than half the cost of existing receivers Please send an SAE for full details and prices.

Videocraft, Assets House, Elverton Street, London SW1P 2QR Phone: 01-828 2731. Telex; 896953

DESIGNING E USING

ACTIVE FILTERS PART 2

CONTINUING TIM ORR'S INSTRUCTIVE SERIES DESIGNED TO HELP THE HOME CONSTRÜCTOR EMPLOY ONE OF THE MOST USEFUL CIRCUIT BLOCKS AVAILABLE

The following section contains all the information needed to be able to build low and high pass filters, of first, second, third and fourth order to Bessel, Butterworth and Chebyshev characteristics.

Low pass
Figure 1 shows a first order low pass filter. In all the examples to follow the filters have been designed for 1 kHz operation. Equal component value 'Sallen and

Key' filters have been used as the basic building blocks. If operation at a frequency other than 1 kHz is required, then the resistor/s Rf should be scaled accordingly, (the Rd resistors are not altered). For example, if operation is required at 250 Hz , then the Rf in the chartmust be multiplied by

$$
\frac{1000}{250}
$$

which is

$$
\frac{(\text { Normalised } 1 \mathrm{kHz})}{\text { rea freouency ot oneration) }}=4
$$

Figure 2 shows second, third and fourth order filters. The design procedure is as follows:-

1. Decide which type of filter is required, high, low, bandpass or notch.
2. In the case of high or low pass, decide which type of response is required, Bessel, Butterworth or Chebyshev.
3. Next, what filter order is needed. This will have led you to a particular order filter with components designed for 1 kHz operation.
4. Scale the Rf components so that the filter will operate at the required frequency.
5. Build and test the filter.

Fig. 2a Second Order low pass filter design, break frequency $=1 \mathrm{kHz}$.

Fig. 2c Fourth Order Low Pass Filter.

There are of course some problems which may occur. One is that these filters have a voltage gain in their passband. So you might find that although you have got the required frequency response there is an unexpected signal gain.

This may cause some problems with op-amp bandwidth. As a rule of thumb, the op amps should have 10 to 100 times more bandwidth than the product of the filters maximum operating frequency times the individual stage gain of each section. If the op amp runs out of bandwidth or introduces a phase shift then the filter is not going to work properly. For the examples given, if you use a 741 as the op amp then a frequency limit of approximately 10 kHz should be imposed. (If an LM318 is used then the limit can go to 200 kHz). Another problem is one of range of values of Rf. If Rf is made too small then large currents have to flow from the Op amp and this may effect the performance of the filter. If Rf is too large there may be hum pick-up problems and DC offset voltage problems due to bias currents. Therefore, keep Rf between 1 k and 100 k . If Rf needs to exceed this range, scale the capacitor as well.

Charting examples

As an example of using the design tables, let us solve the following problem. Design an audio 'scratch' filter, having a break frequency of 7.5 kHz and an attenuation at 15 kHz of more than 20 dB . The first decision to be made is what type of response do we want? A roll off of more than 20 dB / octave is quite steep and so the Bessel filter is ruled out. The Chebyshev filter has a poor transient response and at 7.5 kHz we would hear it ringing. Therefore a Butterworth response should be used. Next, the filter order. Third order gives us - 18 dB / octave which is not sufficient, fourth order gives -24 dB /octave. Hence what is needed is a fourth order Butterworth design (fig. 2c).

The break frequency is 7.5 kHz and so the resistors Rf1 and Rf2 have to be divided by 7.5. This gives $\mathrm{Rf} 1=1 \mathrm{k} 42, \mathrm{Rf} 2=1 \mathrm{k} 42, \mathrm{Rd} 1=5 \mathrm{k} 9, \mathrm{Rd} 2=48 \mathrm{k} 7$, $\mathrm{C}=15 \mathrm{nF}$, and the component tolerance is 5%. Now we must fit preferred values to the resistors.

Rd2 becomes 47 k , Rd1 becomes 6 k 2 (this is just over the limit of tolerance) Rf1 and Rf2 are a problem. Even when taken to the nearest E24 value they are outside the component tolerance allowed. There are two solutions; use the nearest E96 T\% resistor or use 1 k 5 . This will lower the break frequency by about 6%, but as this is only an audio filter no one will probably be any the wiser!

High Pass

Figure 3 gives the design tables for high pass filters. The design procedure is exactly the same as that for low pass filters.

Band Pass

Several second order band pass filters can be cascaded to produce a different response shape which. like those discussed earlier for the low and high pass filters, can be optimised to give maximum roll off, or maximum pass band 'flatness'. However, these tend to get rather difficult to design and so only second order filters will be discussed.

GAIN IN COMPONENT

BESSEL	10 k 66	0	10%
BUTTERWORTH	10 k 66	0	10%
CHEBYSHEV	10 k 66	0	10%

GAIN IN COMPONENT

	RF1	RD1	GAIN IN dB	COMPONENT TOLERANCE
BESSEL	13 k 55	10k5	1.3	10\%
BUTTERWORTH	10k66	22k6	1.6	10\%
CHEBYSHEV	9k01	48k7	2.2	5\%

Fig. 3. From the top! First, second and third order high pass filters, break point 1 kHz . Final roll off is 6,12 and 18 dB/octave respectively.

ACTIVE FILTERS

Figure 4 shows a simple bandpass filter knowrı as a multiple feedback circuit. This circuit can only provide low values of Q up to about 5 . It will probably oscillate if it is designed to give a higher Q . Note that a high Q implies a large gain at the centre frequency. Therefore care must be taken to ensure the op amp has enough bandwidth to cope with the situation. Fig. 4

Q	R 1	R 2	GAIN IN dB
1	5 k 33	21 k 32	6 dB
2	2 k 66	42 k 66	18.1 dB
3	1 k 77	60 k 40	25.1 dB
4	1 k 33	85 k 33	30.1 dB
5	1 k 06	106 k 66	34.0 dB

Fig. 4. A multiple feedback bandpass filter. The centre circuit is normalised for 1 kHz . The table is the design table for this circuit. To change the centre frequency change R_{1} and R_{2} by an equal factor
gives a design chart, normalised for 1 kHz operation. First, choose a Q factor and then perform the frequency scaling. For instance, if the centre is 250 Hz , then multiply both R1 and R2 by a factor of 4 . If a high Q is required, then a multiple op amp circuit must be used The 'state variable' and the 'Bi-Quad' are two such circuits and Q's as high as 500 may be obtained with them

Figure 5 shows a state variable filter. It has three major features which are

1. It can provide a stable high O performance
2. It is easily tuned
3. It is versatile, providing bandpass, lowpass and highpass outputs simultaneously

Fig. 5. The state variable filter is called a universal filter because it can give bandpass, Iow and high pass outputs - as shown above. Note that all these responses are second order in nature.

The Q is determined by the ratio of two resistors; RA and $R B$, where $R A / R B=3 Q-1$). The resonant frequency fc $=$

$$
\frac{1}{2 \pi} \frac{1}{R_{C} C}
$$

Note that there are two C's and two Rf's in the circuit, and so if the filter is to be tuneable, then both Rf's should change by an equal amount (the Rf's can be a stereo pot).

You will note that Q and $f c$ are independent of each other, and so as the resonant frequency is changed, Q remains constant, and visa versa

Op amps

The requirements placed upon the op amps in the filter, Fig. 5, are less than that for the multiple feedback circuit. The op amps need only have an open loop gain of 3 Q at the resonant frequency. Say we have a Q of 100 and an fc of 10 kHz . Therefore the open loop gain is 300 , the frequency is 10 kHz and so the gain bandwidth product needed is 3 MHz . When using a high Q, care must be taken with signal levels. The gain of the filter is +0 at resonance, and so if you are filtering a 1 V signal with a Q of 100 then you could expect to get a 100 V output signal!

National Semiconductors manufacture an active filter integrated circuit, which is a four amp network that can be used to realise state variable filters with O's up to 500 , and frequencies up to 10 kHz . The device is called AF100.

Figure 6 shows a Bi-Quad active filter. It looks very similar to the state variable filter, but the small changes make it behave quite differently. It only has a bandpass and a low pass output. The resonant frequency is given by

$$
f_{C}=\frac{1}{2 \pi C R_{f}}
$$

Next month: Comb filters, delay lines and some practical circuits to build up.

Fig. 7 The state variable filter can also be made to oscillate (as above), It has a variable resonant frequency, it becomes a variable frequency oscillator. This circuit produces two low distortion sineusoids in phase quadrature: ie, sine and cosine waveforms at low distortion.

UPDATE $1:$ 3,4000 more Transistor Substitutes
 The most comprehensive, low-cost, single volume coverage of transistors you can buy.

Towers' International Transistor Selector

TOTom MBE MA ESe, CENG MERE

We've got the new one!

COMPLETELY REVISED. 30\% MORE COVERAGE. ONLY £5.00 INC. P \& P.

When the first edition of this excellent book was published in 1975 ETI was the first to offer it.

We are doing it again!
UPDATE 1 increases the coverage of transistors by about 30% on the first edition.

European Proelectron Standard devices increase by 1500 and now ensure a very comprehensive coverage of Philips, Siemens, Telefunken and Texas Instruments in Europe.

The Japanese 2 S Standard Devices coverage has been increased from 1:850 to 3,000 and a further 800 American 2 N devices have been selected.

The original 10,000 entries have been fully edited and this new production has been clearly printed from new computer setting.

Your order will be processed on the day of receipt.

To: ETI BOOK SERVICE

P.O. BOX 79, MAIDENHEAD, BERKS SL6 2EG

Please send me \qquad copies of
Towers' International Transistor Selector
Revised Edition Up Date 1 at $£ 5.00$ each inc. p\&p.
l enclose cheque/postal order for $£$
made payable to ETI BOOK SERVICE.
NAME
ADDRESS \qquad
\square
\qquad ET14

CALCULATORS

AOVANCED APPLICATIONS FOR POCKET
CALCULATORS
CALCULAT
gETTING THE MOST OUT DF YOUR ELECTROMIC CALCULATBR
W. Hunter

COMPUTER \& MICRO-
PROCESSORS
BUILI YOUR OWH WORKING ROBOT
D. Heiseman

COMPUTER CIRCUITS ANO HOW THEY WORK B. Wolls

COMPUTER TEGHNICIANS HANOBOOK
B. Wend
dIGITAL ELECTRONIC CIRCUITS AND SYSTEMS
N. M. Morria

Introouction to oigital filtering
Bogner
INTRODUCTION TO MICROCOMPUTERS
oi. 1 Basic Concepts
Vol. 2 Some Real Products
Admm Ozborne Ase
MICROPROCESSOR/MICROPRDGRAMMING HANOBOOK
hanobod
MICROPROCESSORS
D. C. MeGlynn
mDOERN GUIDE TO OIGITAL LOGIL
Procensors - Memorios and Interface
LOGIC DESIGH PROJECTS USING
standaro ics
J. Wekerty
55.00
practical oigital design using ies
J. Greentiold

COMMUNICATION

GOMMUMICATION SYSTEMS INTRO TO SIGNALS 8 NOISE
d. Carizon dighal processing, theory

8 APPLICATIONS
L. R. Rebiner

ELECTRONIC COMMUNICATIOM SYSTEMS
G. Kemonedy

FREQUENCY SYNTHESIS. THEORY R OESIGN Mennaseowitech

RINCIPLES DF COMMUNICATION SYSTEMS
H. Tanb

ELECTRONICS

ACTIVE FILTER COOKBOOK
APPLICATIONS OF OPERATIONAL AMPLIFIERS Greeme (Burr Brown)
basic maths courses for electronics
H. Jecobowitz

BUILO It BOOK OF miniature test INSTRUMENTS
R. Haviland
designing with TTL INTEGRATEO CIRCUITS Texea Instruments
OESIGNING WITH OPERATIONAL AMPLIFIERS Burt Brown
ELECTRONIC ENGINEERS REFERENCE BOOK 4the Edition
L. W. Turner

SOLIO STATE CIRCUIT GUIOE BOOK
B. Werd

E2.15
TRANSDUCERS IN-MEASUREMENT CONTROL
P. H. Sydenhem

TRANSISTOR CIRCUIT OESIGN
Toxes

ELECTRONIC COMPOMENT
M. A. Colwall

ELECTRONIC DIAGRAMS
M. A. Colwell

ELECTRONIC FAULT OIAGNOSIS
I. R. Sinclair

ELECTRONIC MEASUREMENT SIMPLIFIED C. Hallmark

ELEGTRONICS AND PHOTOGRAPHY
R. Brown

ESSENTIAL FORMULAE FOR ELECTRICAL AND
ELECTRONIC ENGINEERS
N. M. Morriz

FIRE AMD THETT SECURITY SYSTEMS
B. Wols

HOW TO READ ELECTRONIC CIRCUIT DIAGRAMS
B. Brown

HOW TO BUILD PROXIMITY DETECTORS AND
metal locators
J. Shields
how to use ic circuit logic elements J. Streater
integrated electronics
J. Milman

IC OP-AMP COOKBOOK
W. Jung

LINEAR integrated circuit applications
G. Clayton

FUNCTION CIRCUITS OESIGN \& APPLICATIONS
Burt Brown
110 ELECTRONIC ALARM PROJECTS
R. M. Marston

110 OPERATIONAL AMPLIFIER PROJECTS FOR THE HOME CONSTRUCTOR
R. M. Marsion

110 SEMICONDUCTOR PROJECTS FOR
THE HOME CONSTRUCTOR
R. M. Marston

1 fo COSmOS OIGITAL IC PROJECTS FOR THE HOME CONSTRUCTOR
R. M. Merston

110 INTEGRATED CIRCUIT PROJECTS FOR THE HOME CONSTRUCTOR
R. M. Marsiton

110 THYRISTOR PROJECTS USING SCRS
R. M. Morston

MICROELECTRONICS
Hallmark
mooern electronic maths
clifford
mos digital ics
G. Flynn

OPERATIONAL AMPLIFIERS DESIGN ANO
APPLICATIONS
G. Tobey (Burt Brown)

OP-AMP CIRCUIT DESIGN \& APPLICATIONS I. Com

PRACTICAL ELECTRONIt PROJECT BUILOING
Ainalis and Colwell
PRACTICAL SOLID STATE D.C. SUPPLIES
T. D. Towers

PRACTICAL TRIAC/SGR PROJECTS FOR THE
EXPERIMENTER
R. Foy

PRINCIPLES OF TRANSISTOR CIRCUITS
S. Amos

PRINTED CIRCUIT ASSEMBLY
Hughes \& Colwell
RAPID SERVICING OF TRANSISTOR EQUIPMENT
G. King

SEmiconouctor circuit elements
T. D. Towers

ITL CDOkBook
D. Lencaeter

UMDERSTAMOING ELECTRONIC CIRCUITS R. Sinctair	¢4.00
understandimg electronic cọmponents R. Sincleir	¢4.00
URDERSTANOIMG CMOS INTEGRATEO CIRCUITS r. Mden	¢3.
understanoing solid state circuits N. Crowhuret	£1.90
SEMICONDUCTOR DATA	
intermational transistor selector	E5.00
international fet selector T. D. Towers	¢4.25
popular valve/transistor substitution GUIOE	¢2.15
raoio valye and semiconouctor data A. M. Ball	E2.
RADIO, TELEVISION AND AUDIO	
a aolo handbook G. King	0
begimaters guioe to audio I. R. Sinclair	c3.10
radio tv-audio cassette tape recoroers	55.
founoations of wireless ano electronics M. ©. Scroggio	¢4.35
COLOUR TELEVISION THEORY Hudzon	c6.
WORLO RADIO TV HANDBOOK 1977 (A complere Directory of Redio, TV Stutions)	¢5.50
RADID. TV ANO AUOIO TECHMICAL REFERENCE B00K	
Amos	c24.75
solio state coldur ty circuits G. R. Wiraing	£6.
TEST EQUIPMENT \& OSCILLOSCOPES	
basic elegtronic test procedures 1. M. Gotrtiob	¢2.35
THE OSCILLOSCOPE IN USE Ian Sinclait	¢3.00
the Oscilloscope G. Zwick	¢2.10
practical test equipment you can bullo W. Groen	£2
test instruments for electronics M. Clifford	¢2.30
WORKIng with the oscilloscope A. Saunders	¢1.85
SERYICING WITH THE OSCILLOSCOPE G. King	E5.50
HOM TO OBDEB	
Please add 10p per book cover increased pos rates. Orders to: ETI Book Service P.O. Box 79 Maidenhead Berks. Payment in sterling please	

Achtronits
 toria

What to look for in the September issue: On Sale August 5th

Graphic Equaliser

THERE ARE OCCASIONS when ordinary tone controls are just not good enough. The room you listen to your hi-fi in will have more effect on the sound pouring forth from the speakers than anything else.

It has been acknowledged for some time that to really 'get through to the music' one must cancel this detrimental effect somehow. Graphic Equalisers are the tool to do the job! Basically an equaliser is a ten/twenty channel tone control system, allowing for greater flexibility in tailoring the overall sound of a system. They can be employed for special effects, like picking

TRANSFORMERS

IT is true to say that in most mains powered projects the mains transformer will be the single most costly item, yet often very little attention is given to the selection of this unglamorous component.

We take a close look at the different types of transformers available, and how best to use them

STEREO SIMULATOR

ADD LIFE to those dull mono sounds with this circuit. When used between a mono signal source and a stereo amplifier this unit gives an extra something - we're not sure what it is - but we like it.
the voice out of a 'too-heavy' backing, or bringing out a guitar solo from the boring bass track - but being purists we shan't mention that.

Next month we publish full details of a revolutionary new design for such a device, a 20 channel equaliser with a spec that includes it in the 'super-fi' class, and NO COILS! Our equaliser uses gyrator circuits to replace all the inductors which are usually so messy and so expensive.
With this to add to your hi-fi, some systems will be more equal than others!

BUCKET BRIGADE

COMMONLY CALLED 'bucket brigade' by those who are fond of such things, charge coupled devices are roaring onto the market, and seem destined to take a firm hold in several places!
They take the form of ANALOGUE shift registers, and immediately make such things as echo units, phasers and even TV cameras smaller and better. At the most basic they work by shifting a 'packet' of charge along a long, long line of electrodes under the influence of an external clock signal. Since the size of this 'packet' is variable, you have an analogue device - the variable clock means variable delay, too.

September is bargain marth in ETI

IN AUGUST 1976 we carried a mass of September issue. There will be money offers - these proved to be śo popular with readers and suppliers that we're repeating this type of offer in the
saving vouchers on a mass of different products and with a wide variety of ETI's advertisers

LOUDHALLER
NOT a megaphone, but a hand-held amplifier and very efficient horn speaker together with the microphone separated. A 12 V supply is used which can be taken from internal batteries or external supply from a car battery.

Two IC's are used enabling a good microphone to be used and giving $21 / 2 \mathrm{~W}$. Now this output may sound pathetic to those associating this power with regular, highly inefficient speakers but it's more than adequate when using a good horn speaker.

The separation of the microphone and the speaker greatly reduces howl-round problems as well.

CONTINUITY TESTER

NOT your hackneyed multivib with a break in the supply rail (see old copies of our competitions) but a properly designed unit which will tell you if there's continuity and very little else - no voltages to turn on transistors etc.

SYSTEM 68:
 CPU BOARD

PUT the 68 into System 68 with our CPU board. The board, based on the M6800 MPU provides the various clocks and control signals required by this chip. The board also provides for the mounting of a small amount of ROM, for the system firmware, and some RAM, for a scratchpad memory area.

Electronic components distributors

JUDGE US BY THE COMPANIES WE KEEP

TO ALL OUR CUSTOMERS

IF YOU HAVE NEVER HAD A MARSHALL'S CATALOGUE BEFORE, YOU'VE PROBABLY ONLY SEEN OUR ADVERTS AND NEVER REALLY APPRECIATED THE VAST RANGE OF PRODUCTS WE CAN OFFER. WELL, HERE'S AN OPPORTUNITY TO CHANGE ALL THAT! IN THIS 32-PAGE CATALOGUE, We have set out to make your Component buying easy. The centre page is a TRANSISTOR WALL CHART FOR QUICK REFERENCE AND FOR THOSE OF YOU WHO BUY COMPONENTS IN QUANTITY WE CAN OFFER ATTRACTIVE DISCOUNTS; SOME EXAMPLES OF these are given in our "topliners" on page 31

We are an officially appointed distributor for the companies listed on the RIGHT AND AS SUCH CAN SUPPLY QUALITY COMPONENTS AT REASONABLE PRICES WHATEVER YOUR NEEDS MAY BE

IF, ON THE OTHER HAND, YOU HAVE ALREADY GOT ONE OF OUR CATALOGUES, YOU'LL already know the range of components we keep. And the specialist services we PROVIDE IN AlL OUR LOCATIONS, BUT WE TRUST THAT THE NEW LINES WE HAVE INCLUDED MEET WITH YOUR APPROVAL ... READ ON
A. MARSHALL (LON.) LTD.

SPECIALIST CONSUMER DISTRIBUTOR

\author{

- NATIONAL
 - TEXAS
 - MULLARD
 - SIEMENS
 - THOMSON CSF
 - VERO
 - ANTEX
 - ARROW HART
 - SIFAM
 - BAHCO
 - DOUGLAS
 - REDPOINT
 - ERMA
 - electrolube
}

TERMS AND CONDITIONS OF SALE

Our Retail and Trade Counters are open 9.00-5.30 Monday to Friday and $9.00-5.00$ on Saturday. Cheques accepted only with Bankers Card Barclay Card, Access and American Express welcome.

CASH WITH ORDER

No minimum order charge if cash or cheque is sent. Post \& Packing charge is 40 pence. All postal orders, money orders and cheques must be crossed and made payable to A. Marshall (London) Ltd. Please use our mail order forms to speed the processing of your order.

CREDIT ACCOUNTS

Minimum order charge $£ 10$. Credit facilities will be provided subject to the submission of two satisfactory trade references and a Bank reference. Government Departments and Government Sponsored 'Organisations, H.M Forces, Educational Establishments and Nationalised Jndustries automatically qualify for a credit account
Accounts are granted solely on the understanding that payment is made 30 days from date of invoice.
All credit sales are subject to a minimum invoice value of $£ 10$. The post \& packing charge is 50 pence.

DESPATCH

All items in stock are despatched the same day as receipt of order and are sent by first class parcel post. Exceptions to our same day turn round service are where matched transistors are required or when we are out of stock of a particular item. In the latter case the balance of your order will be sent as soon as possible.

NON-DELIVERY

All complaints should be made in writing giving exact details of the items ordered, the remittance sent if applicable and the date the order was posted to us.

CARRIAGE \& PACKING CHARGES

Minimum 40p, balance will be charged at cost.

ENQUIRIES

Requests for quotations and details of the items offered for sale by this company should be sent separate from any orders, and we would appreciate the enclosure of a stamped addressed envelope to facilitate prompt attention.

ORDERS

These should be worded exactly as per description in our catatogue and confirmation orders must be clearly marked confirmation, otherwise we cannot be held responsible for duplication.

PRICES

All goods will be supplied as per prices quoted in our lastest catalogue, subject to no special quotation having been made, but we do reserve the right to change prices without prior notification and would point out that all prices quoted are exclusive of VAT
As we are distributors for a large number of British, Continental and American semiconductor and component manufacturers, we can offer attractive quantity prices for all devices in this and our other product lists.

Please note that one of the main factors affecting prices is the parity of the $£$ to other currencies, particularly the S (U.S.).

RETURNS/SHORT DELIVERIES/DAMAGED GOODS

No goods may be returned without our prior consent. There will be a 10% handling charge on goods returned other than for replacement due to fault or damage as described below, e.g. goods wrongly ordered.

1. Marshall's liability is limited to goods lost or damaged in transit and claims must be made within 7 days of delivery.
2. Goods which can be proved to be of faulty manufacture or below manufacturer's specification should be returned to us accompanied by a full statement specifying the faulf and the application, and will be returned by us to the original supplier for checking. Claims of this kind must be made within 14 days of despatch and returned to us in the original condition and packing material. Please note no claims can be accepted for goods which have been soldered
3. We must emphasise that we cannot replace components that have been soldered, and recommend the use of sockets, or if in doublt, prior testing.

EXPORT \& DOCUMENTATION

For customers requiring details on export procedures with any necessary documentation, please apply to our Sales Department.

CONSEQUENTIAL DAMAGE

We cannot accept responsibility for damage to persons or equipment as a result of failure of product supplied by us.

DATA

All data in this catalogue is believed to be correct but Marshall's cannot accept responsibility if errors or omissions occur.

TELEPHONE ORDERS

Orders for promt delivery can be accepted from account customers subject to our standard minimum order charge.
Credit Card telephone orders are subject to the same £10 min - goods can only be sent to the cardholders home address.

MAIL ORDER FACILITIES

Our Company offers a return-of-post service on all stock items.
Marshall's mail order forms should be used whenever possible in order to reduce errors and save time. The prices shown in this catalogue are those valid at the date of publication and are subject to change without notice, but every effort will be made to ensure you a swift return service. In the event of a price change, or an item being out of stock, you will be notified immediately ' of the problem. Items ordered which are out of stock will be sent on at a later date as soon as we receive fresh stocks We can only ask you to be patient as in some cases deliveries are very extended.
When writing out an order to us, we would appreciate a complete description of the items being ordered, including the various type numbers where available.
'All goods are guaranteed brand new and to makers' specification. Faulty goods will be replaced under guarantee providing they are returned within 14 days from date of purchase, unused and with full information on the fault. Subject only to our technical agreement. Note: We cannot exchange soldered devices.

6 ground
5 MC
4 PaAK LIGhts
3 batt. 12v
DASH LAMPS
1 IGMITION

NEW DIGITAL
CAR CLOCK MODULE

THE MA1003 ready-buill module was specially buily and designed for the American market, with the luxury car, aircratt and boat in mind. Unlike conventional quartz clocks, this unit operates from a very high frequency crystal resonating at over 2 MHz for extra accuracy and stability. Stringent safety regulations dictate that this
module is completely suitable for use in hostile environments and shake, rattle and roll conditions. Automatic display blanking is included when ignition is turned off. 10 consume a miserly 3 mA .
"THE BRIGHT GREEN DISPLAY, Huorescent, can be fitered from green to blue to give that personalised look. The compact and rugged design enabies the module to be mounted anywhere, easily and with the minim
OEVELOPED BY NATIONAL SEMICONDUCTORS. A name known worldwide and respected
RECOMMENDED TO RETAIL AT E29 95 +VAT
PRICE£17.50 ${ }_{\text {VAT }}^{+}$

- DIMS TO 50\% BRIGHTNESS WHEN CAR LIGHTS
- LOW POWER CONSUMPTION - FOR PORTABLE
- IDEAL FOR CARS BOATS AIRCRAFT

ALSO AVAILABLE
Specially destgned case, with cur our centre front black rexine finish for dash centre front
mounting

BRISTOL 0272654201

ELECTROLYTIC - AXIAL

Miniature electrolytics
By SIEMENS and Types 841313 B41283 B41010.015.016

UF	Volts	Size mm	Price 1-99	UF Volts	Size mm Price 1-99	
$\cdot 47$	100	4.5×11	£0.13	4740	8.5×15	£0.11
1.0	40	3.2×11	¢0.13	4763	8.5×20	¢0.14
1.0	100	4.5×11	£0.13	$68 \quad 16$	6.7×18.5	¢0.09
1.5	63	6.1×12.5	£0.09	10016	8.5×15	¢0.12
2.2	25	3.2×11	£0.13	10025	8.5×17.5	£0.13
2.2	63	4.5×11	£0.13	10040	10×20	¢0.15
2.2	100	5.8×11	£0.14	10063	10×25	£0.20
3.3	63	6.1×12.5	£0.09	100100	14×30	£0.28
4.7	16	3.2×11	¢0.13	15016	8.3×18.5	£0.12
4.7	40	4.5×11	£0.13	15025	10.3×18.5	£0.14
4.7	63	5.8×11	£0.14	22016	8.5×20	£0.14
4.7	100	6.5×17.5	£0.10	22025	10×20	£0.16
6.8	40	4.8×12.5	£0.08	22040	10×25	¢0.20
6.8	63	6.1×12.5	£0.08	22063	14×30	£0.28
10	25	4.5×11	£0.13	220100	18×30	£0.38
10	40	5.8×11	¢0.14	47016	10×25	¢0.18
10	63	6.5×17.5	£0.11	47025	12×30	¢0.21
10	100	8.5×15	£0.12	47040	14×30	£0.26
15	16	4.8×12.5	£0.08	47063	18×30	¢0.40
15	40	6.1×12.5	£0.08	$470 \quad 100$	21×40	$\underline{0.60}$
15	63	6.7×18.5	£0.08	100016	14×30	¢0.25
22	25	5.8×11	£0.14	100025	16×30	¢0.35
22	40	6.5×17.5	£0.1.1	100040	18×35	¢0.43
22	63	8.5×15	£0.11	100063	21×40	¢0.60
22	100	8.5×20	£0.14	220016	18×35	£0.42
33	16	6.1×12.5	¢0.08	220025	21×40	¢0.50
33	40	6.7×18.5	£0.09	220040	25×40	£0.65
47	16	6.5×20	£0.11	470016	21×40	£0.60
47	25	6.5×17.5	£0.11	470025	25×40	£0.82

ELECTPOUYT\|C—RADAA				HIGH RIPPLE
UF	Volts DC	- Size mm	Price 1-99	
1000	40	25×35	£0.93	
1000	63	25×45	¢1.05	
2200	25	25×45	£1.00	
2000	40	30×45	E 1.08	
2200	63	30×55	£ 1.30	- wf
2200	100	30×55	£1.50 Tol	
4700	25	30×45	£1.15 + 50\%	
4700	40	35×55	£1.36	
4700	63	40×74	£2.00	
10000	25	35×55	$£ 1.80$	SEIMENS B41070

ELECTROLYTIC—PLUGGABLE

UF	Volss DC	Size $\mathbf{m m}$	PRICE $1-99$	SIEMENS
1.0	63	8.7×12.6	$\mathbf{£ 0 . 1 2}$	
2.2	63	8.7×12.5	$\mathbf{£ 0 . 1 2}$	
4.7	63	8.7×12.5	$\mathbf{£ 0 . 1 2}$	
10	63	8.7×12.5	$\mathbf{£ 0 . 1 2}$	
22	63	10.7×12.5	$\mathbf{£ 0 . 1 2}$	
47	63	12.7×16.5	$\mathbf{£ 0 . 1 5}$	
100	63	15×20	$\mathbf{£ 0 . 1 9}$	Tol
220	16	12.7×16.5	$\mathbf{£ . 0 . 1 4}$	$+100 \%$
470	16	15×20	$\mathbf{£ 0 . 1 8}$	-10%
1000	16	15×30	$\mathbf{£ 0 . 2 6}$	

TANTALUM BEAD

CERAMIC DISC 63 V

Flat Ceramic Capacitors from a New Material with Dielectric Constant of 50,000

The development of a new titanate ceramic material represents a step towards reducing capacitor size which is significant for capacitors used for coupling and decoupling in AF circuits.

			$\mathbf{1 . 9 9}$
UF	VDC	Size mm	Price
.01	63	$4 \times 2.5 \times 4$	$\mathbf{£ 0 . 0 6}$
.022	63	$4 \times 2.5 \times 4$	$\mathbf{£ 0 . 0 6}$
.033	63	$4 \times 2.5 \times 6$	$\mathbf{£ 0 . 0 6}$
.047	63	$4 \times 2.5 \times 8$	$\mathbf{£ 0 . 0 7}$
.068	63	$4 \times 2.5 \times 10 \mathbf{£ 0 . 0 8}$	
.1	63	$4 \times 2.5 \times 9$	$\mathbf{£ 0 . 0 8}$
22	63	$6 \times 2.5 \times 18 \mathbf{£ 0 . 1 7}$	

HIGH VOLTAGE CERAMIC DISC

Capacitance VDC Price
Capacitance VDC Price

100pf 4 kv	$\mathbf{£ 0 .}$
100pf 2 kv	$\mathbf{£ 0}$
100pf 3 kv	$\mathbf{£ 0 .}$
100pf 4 kv	$\mathbf{£ 0}$
220pf 6 kv	$\mathbf{£ 0}$
470 pf 2 kv	$\mathbf{£ 0}$
470 pf 6 kv	$\mathbf{£ 0}$
1.0002 kv	$\mathbf{£ 0}$
$1,000 \mathrm{pf} 4 \mathrm{kv}$	$\mathbf{£ 0}$
$1,000 \mathrm{pf} 6 \mathrm{kv}$	$\mathbf{£ 0}$

2,200pf 2 kv £0.09
2.200pf 4 kv

2,200pf 5 kv $£ 0.12$
$£ 0.17$
3,300pf 2 kv 3,300pf 4kv 4, 700pt 2 kv $4,700 \mathrm{pt} 4 \mathrm{kv}$ 10,000pt 2kv 0.000pf 3kv £0.17 0.15

CERAMIC PLATE ALL 63 VDC WORKING 6 P EACH Quantity Price on request				
\bigcirc	100	1000		
$\begin{array}{lll}12.2 & 12 \\ 1.5 \\ 1.5\end{array}$	150 150	1500 1500		
	220	2200		
$\begin{array}{ll}\text { 27 } \\ 3.7 & 27 \\ 33\end{array}$	${ }_{330}^{27}$	${ }_{3300}^{2700}$	${ }_{\substack{1.8 .22 \\ 27.47}}$	源 $5 \times 5.5 \mathrm{~mm}$
$\begin{array}{llll}3, \\ 3 & 39 \\ 47 & 37\end{array}$		3900 4700	${ }_{\substack{56.68 \\ 8.2100}}^{2}$	
56 56		5600		
8.28		10000	270.330	6.5×10.5

POLYSTYRENE

Close tolerance Polystyrene capacitors from Siemens B31110/B31310 5% Tolerance. 160 v working \qquad
Values available
10pf, 15 pf, 22pf, 33pf 47pf, 68pf, 100pf, 150pt, 220pf, 330pf, 470pf, 680pf, 1000pf
$1500 \mathrm{pf}, 2200 \mathrm{pf}, 3300 \mathrm{pt}, 4700 \mathrm{pt}$, 6800pf
$10000 p^{7}$
10p each

POLYESTER MMLARO Czeo EELIES

250 VDC-RADIAL LEADS	UF	Price	S	T	L	H
Merallized film capacitors	0.01	¢0.05	10.2	4	12.5	9
Tor $013-22.2 \mathrm{uf}+1.0 \%$	0.015	¢0.05	10.2	4	12.5	9
mas -	0.022	£0.05	10.2	4	12.5	9
-	0.033	£0.05	10.2	4	12.5	9
	0.047	£ 0.05	10.2	4	12.5	9
Hman	0.068	£0.06	10.2	5	12.5	10
1	0.1	£0.06	10.2	6	12.5	11
+	0.15	£0.07	15.3	6	17.5	11
-	0.22	£0.08	15.3	7	17.5	12
	0.33	£0.11	20.3	6.5	22.5	11.5
ℓ min	0.47	E0.13	20.3	7.5	22.5	12.5
1 ¢	0.68	¢0.18	20.3	9.5	22.5	14.5
	1	¢0.22	27.9	9.5	30	14.5
5 -	1.5	¢0.33	27.9	10.5	30	18
Mullard	2.2	£0.37	27.9	12.5	30	20.5

DISCOUNTS

POLYCARBONATE					
Polycarbonate Polyester				5	
7.5 mm lead spacing tinned 1-99					
250 V	It working	Price			
001	$9 \times 2.6 \times 7.3$	¢0.06			
0022	$9 \times 2.6 \times 7.3$	£0.06			
0033	$9 \times 2.3 \times 7.3$	£0.06			
0047	$9 \times 2.3 \times 7.3$	£0.06		7.5 and 10 mm spa	
0068	$9 \times 2.7 \times 7.3$	£0.06			
0082	$9 \times 2.7 \times 7.3$	£0.06			
01	$9 \times 2.3 \times 7.3$	£0.06			1-99
012	$9 \times 2.5 \times 73$	£0.06	100	Volt DC	Price
015	$9 \times 2.9 \times 7.3$	£0.06	12	$9 \times 3.5 \times 8.3$	£0.09
022	$9 \times 2.6 \times 7.3$	£0.06	15	$9 \times 3.6 \times 10$	£0.09
27	$9 \times 2.4 \times 7.3$	$£ 0.06$	18	$9 \times 4.1 \times 10$	£0.11
033	$9 \times 2.6 \times 7.3$	£0.06	22	$9 \times 4.7 \times 10$	£0.11
039	$9 \times 2.9 \times 7.3$	£0.07	27	$9 \times 5.0 \times 11$	£0.15
047	$9 \times 3.2 \times 7.3$	£0.07	33	$9 \times 5.5 \times 11$	£0.15
056	$9 \times 3.5 \times 7.5$	£0.07	39	$9 \times 6.6 \times 11.5$	£0.18
068	$9 \times 3.5 \times 7.5$	£0.08	47	$9 \times 7.2 \times 12.5$	£0.18
082	$9 \times 3.5 \times 11$	¢0.10	56	$9 \times 8.4 \times 12.5$	$£ 0.23$
1	$9 \times 3.9 \times 11$	£0.10	68	$9 \times 8 \times 13$	£0.23
Self-healing layer capacitor with polycarbonate as dielectric. In accordance with DIN 41379 these types are designated MKC					
B32541/61 Polycarbonate / Polyester as B32540/60 but 10 mm lead spacing - also available in $\mathbf{1 0 0}$ and $\mathbf{2 5 0}$ volt DC working 1-99					
			UF	Dimensions mm	Price
250 Volt working		1-99	1	$11.5 \times 3.5 \times 8.3$	£0.08
UF Dimensions mm		Price	15	$11.5 \times 4.2 \times 9.6$	£0.10
01	$11.5 \times 3.2 \times 6.6$	$¢ 0.06$	22	$11.5 \times 4.9 \times 115$	£0.12
015	$11.5 \times 3.2 \times 6.6$	£0.06	100	Volt working	
022	$11.5 \times 3.2 \times 6.6$	£0.06	, 22	$11.5 \times 3.9 \times 9.5$	£0.10
			47	$11.5 \times 5.3 \times 11.5$	$£ 0.16$
047	$11.5 \times 3.2 \times 6.6$	¢0.06	1.0	$11.5 \times 9.8 \times 115$	£0.28
068	$11.5 \times 3.2 \times 6.6$	£0.06	2.2		¢0.56

POLYESTER					
SIEMENS B32234 MKH 20\% Tol Self healing flat capacitor winding with polyetheieneterephtalene dielectric to DIN 41379 spec . Encapsu lated and epoxy resin sealed. The case is provided with spacers to improve solderability in solder bath, parrallel					
100Vot DC		1-99			
		Price			
1	$4 \times 9.5 \times 13$	¢0.13	250 V	oit DC	1-99
15	$5 \times 10.5 \times 13$	£0.15	uF	Dimensions	Price
22	$6 \times 11.5 \times 13$	£0.16	-047	$4 \times 9.5 \times 13$	¢0.12
33	$5.5 \times 11 \times 18$	£0.18	. 1	$5.5 \times 11 \times 18$	¢0.13
47	$5.5 \times 11 \times 18$	£0.23	22	$7 \times 13 \times 18$	¢0.14
68	$7 \times 13 \times 18$	£0.27	10	$8.5 \times 18.5 \times 27$	¢0.32
10	$9 \times 14.5 \times 18$	¢0.33			
1.5	$7 \times 16.5 \times 27$	£0.43	400 V	Volt DC	
2.2	$8.5 \times 18.5 \times 27$	£0.49	01	$4 \times 9.5 \times 13$	£0.10
33	$10.5 \times 19 \times 27$	£0.64	015	$4 \times 9.5 \times 13$	£0. 10
4.7	$11 \times 20 \times 32$	¢0.75	022	$4 \times 9.5 \times 13$	£0.10
68	$13 \times 22.5 \times 32$	£1.01	047	$5.5 \times 11 \times 18$	£0.14

PLASTIC FOIL_-HIGH RELIABILITY					
SIEMENS B32110 High reliability plastic foll Axial lead 20\% Tol MKL					
63 V	olt working	1-99			1-99
uF	Dimensions	Price	uF	Dimensions	Pri
15	54×18.5	c0.48	3.3	9.4×25	£1.41
22	5.4×18.5	$\underline{0.51}$	4.7	10.7×25	£1.47
33	6.4×18.5	¢0.54	6.8	10.7×34	¢2.00
47	7.4×18.5	¢0.60	10	12.7×34	¢2.55
68	7.4×18.5	$¢ 0.65$			
1.0	7.4×21	¢0.71	100	Volt Working	
1.5	8.4×21	$¢ 0.73$	1	5.4×18.5	£0.56
2.2	10.7×21	¢1.25	1.0	94×21	£1.06
In accordance with DIN 41379 these types are designated. MKU capacitors.					
Enclosed in tubular metal case, shrunk sleeve insulated epoxy resin sealed face ends. Central axial leads					

METALLISED POLYESTER up to 630 vort

B32231 metallised Polvester from SIEMENS
Axial leads
Tolerance
Tolerance 20\%
Type MKH similar to
Mullard C281 range
available in three
voltages 250,400 and
630 VDC
250 Volt DC
uF Dimensions mm
$047 \quad 4.5 \times 8.5 \times 14$
$068 \quad 5.5 \times 9 \times 14$

$\begin{array}{ll}1 & 6 \times 9 \times 14\end{array}$
$224.5 \times 10.5 \times 19$
$33 \quad 7 \times 11 \times 19$
$47 \quad 4.5 \times 13.5 \times 26.5$
$686 \times 15 \times 26.5$
$0 \quad 8 \times 17 \times 26.5$
$15 \quad 8.5 \times 20.5 \times 29$
$2.2 \quad 10.5 \times 22.5 \times 29 \quad £ \mathbf{0 . 4}$
$\begin{array}{llllll}4.7 & 12 \times 27.5 \times 44 & £ 1.06 & 22 & 7.5 \times 16.5 \times 26.5 & \text { £0.29 }\end{array}$
NB. 630 V. d.c. rating equivalent 250 V rms
Self-heating flat capacitor winding with polyethylene-teraphtalate as dielectric. In accordance with DIN 47.379 these types are esignated MKT capacitors.

Capacitor winding coated with insulating material, epoxy resin sealed face ends.

DIODES, ZENERS AND RECTIFIERS
PRICES AND EQUIVALENTS

Type		Case	Equiv	Case	Price	Type		Case	Equiv	Case	Price	Type		Cose	Equiv	Case	Price	Type		Case	Equiv	Case	Price
AA111	Ge	1	OA90	2	-	bay21	5	2	BA145	5	-	OA91	Ge Ge	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	-	-	. 10	IN444	St	$\begin{aligned} & 11 \\ & 11 \end{aligned}$	BY 127 BY1 27	116	-
${ }^{\text {A A } 112}$	Ge	2	OA90	2	-	BAY23	5	2 a	$8 \mathrm{Y} \times 10$	5		0 OA9						in 457	Si				
AA113	Ge	2	OA90	2	-	BAY31	Si	2		7	. 15	04:27	${ }_{\text {St }}^{\text {Si }}$	2	batiou	2	-	IN458	Si	2	BA145	5	-
As 114	Ge	2	$\bigcirc{ }^{\circ} \mathrm{A} 990$	2	-	BAY33	Si		$\operatorname{BAA} 16$	7		OA129	Si	2	${ }_{8 A \times 16}$	7	-	in459	5	2	BAlOO	2	
AA115 AA 116	Ge	2			. 12	BAY36	Si	2			. 25	OA130	Si	2	BAX16	7	-	in461	S	2			14
AAA17	Ge	2	OA91	2		BAY38	Si	2			25	0 A 131	Si	2	84148	5	-	in ${ }_{\text {IN4 }}$	Si	2	baloo	2	-
AA 118	Ge		\checkmark	-	12	BAP44	St	2	INS14	7	-	${ }_{\text {OAA }}{ }_{\text {OAI }}$	Ge	$\stackrel{1}{1}$		2	-	in464	Si		baloo		-
${ }_{\text {AA }}{ }_{\text {A } 120} 19$	$\mathrm{cie}_{\text {Ge }}$	$\frac{2}{3}$	OA90	2	. 14	bar43	Si	2	IN914	7		OA159	Ge	1	OA90	2		in476	Ge	2	0491		
A 121	Ge	2	O490	2	-	BaY44	Si	2		7	15	OAI60	Ge	1	OA90	2	-	- 1 N477	$\mathrm{Ge}_{\mathrm{Ge}}$	2	${ }^{\text {OAS }}$	2	--
AA123 ${ }_{\text {A }}$	$\mathrm{Ge}_{\text {Ge }}$	$\frac{2}{2}$	OA90	2	. 09	${ }_{\text {BAY46 }}$	$\stackrel{\text { Si }}{ }$	2	${ }_{\text {BA } 145}$	5	-	${ }_{0 \text { OAI }} 74$	Ge	1	OA90	2	-	- 4479	Ge	2	OA91	2	-
${ }_{\text {AA } 130}$	Ge	2	OA90	2		bay60	St	2	iN4154	7	-	OA179	Ge	1	OA90	2	-	1 N 480	Ge	2	0491	2	-
AA131	Ge	2	OA90	2	-	BAY61	Si	7	- N 4148	7	-	04181	Ge	1	OA90	2		IN483	Si	7	BA100	2	-
AA 132	Ge	2	OA91	2	-	BAY63	Si	2	IN4151	7	16	OA202	Si	$\frac{2}{2}$.14	\|N484	Si	7	BA148	5	-
${ }_{\text {AA }}{ }^{\text {A }} 134$	${ }_{\text {Ge }}$	2	${ }_{0} \mathbf{0 4 9 0}$	2	-	BAY72	St	2			. 20	OA210	Si	10	BY134	16	\square	in485	5	7	$8 \mathrm{A148}$	5	-
AA 137	Ge		0490	2	-	BAY74	Si	2			. 17	04211	Si	10	-		. 27	in ${ }^{\text {in }} \mathbf{1 8 6}$	Si	7	BAA 148 88148	5	-
${ }_{\text {AA }} 138$	Ge	${ }_{4}^{2}$	OA90 OA90	2	-	${ }_{\text {BAYB6 }}$	Si	$\frac{2}{2}$	1N400	4	-	OAZ201	-	$1{ }^{1}$	-	-	. 27	- 1488	Si	2	BA148	5	-
${ }_{\text {AA }}{ }^{\text {A } 42}$	Ge_{0}	4 c	OA90	2	-	BAY87	Si	2	\|N4002	4		OAZ204	-	$1 a$. 27	TN490	$\stackrel{5}{5}$	$\stackrel{2}{1}$	BAI48		-
AA143	Ge	2	OA90	2	-	BAY88	Si	2	IN4004	4	-	OAZ206	-	${ }^{1 a}$		-	. 27	- N 531	Si	1	BY127	116	-
AA144	Ge	2		. 10		${ }^{\text {BAYB9 }}$	S:	2	BYx10	5	-	OAz209	-	$1{ }^{1}$	-		. 27		Si	11	8 Br 27	116	-
AAY30	Ge	2	-	-	16	BaY92	Si	2	BYx10	5	-	OAz237	-	9	-		27	\|N533	Si	11	BY127	116	-
${ }_{\text {AAY33 }}$	$\mathrm{Ge}^{\text {e }}$	2	-	-	. 18	BAY94	Si	7	IN4154	7	-	OAz241	-			-	. 27	${ }^{\text {ins34 }}$	St	11	BY127	116	-
AAY43	Ge	2			. 18	BAYY5	St	7	1N4151	7	$=$	OAZ244	-	2	-	-	. 20	-	$\stackrel{\text { Si }}{ }$	11	${ }_{\text {BY }}$	116	-
AAY47	Ge_{6}	2	AAZH	2	-	${ }_{\text {BAY99 }}$	Si	$\frac{2}{2}$	${ }_{\text {BAX }} 16$	7	-	OAZ270	-	2	-		. 20	in537	Si	9	8×127	116	-
${ }_{\text {AAZ13 }}$	$\mathrm{Ge}^{\text {e }}$	2	Aaz	$\stackrel{-}{-}$	28	B8100	Si	2	B8105G	6	-	RAS508	-	9		-	. 50	- ${ }^{\text {N338 }}$	$\stackrel{\text { Si }}{\text { Si }}$	9	8Y127	11 b	-
AA215	Ge	2	-	-	. 22	${ }_{88103}^{88102}$	Si	2	881056		30	TV12	${ }_{\text {S }}^{\text {S }}$	${ }_{2}^{2}$. 25	\|N541	Ge	2	OA90		-
AACIV	Si	2	-		.18	-B8104	Si	8	-	-	40	in34	Ge	2	OA90	2	-	${ }^{1} 5453$		2	$8 \mathrm{BY} \times 10$	5	-
8A101	Si	2	BA111	2	10	-8B105A	Si	6			. 30	in34a	Ge	2	OA90	2	--	in 560	Si	9	8 BY 127	116	-
BA 102 88103	S	${ }_{3}^{2}$	Bax16	7	. 18	:BB1056	Si	6	-	-	${ }^{36}$	in36	Ge	2	OA90	2	-	in561	Si	9	8 Br 27	116	-
${ }_{\text {BA }} 104$	5	3	Bax 16	7	-	- BB109	S	6	-	-	. 36	(N38	Ge	2	OA9 1	2	-	ins69	$\mathrm{Si}_{\text {Si }}$	9	8Y127	116	-
BA105	Si	3	${ }^{\text {BY }} 10$	5	-	-88139	Si	2	8Y 134		1.12	1 N 40	Ge	2	OA91	2	\square	in601	Si	9	8 Br 127	11 b	-
EA108	Si	3	${ }^{\text {OAP202 }}$	2	\because	${ }_{\text {BY }}$ BY102	Si	10	${ }_{8 Y} 127$	110	-	1 N 43	Ge	2	$\bigcirc{ }^{\text {O991 }}$	2	-	in602	5	9	BY127	116	-
BA109	S1		${ }_{8 A 102}$	2		BY103	Si	11			. 50	IN44	Ge	2	OA91	2		in603		9	Br127	110	
	si	2		$\stackrel{-}{-}$. 27	BY104	St	11	8 Br 27	110	-	'N45	Ge	2	OA91	2	-	- 1 N604	$\mathrm{Si}_{\mathrm{Si}}$	9	8 Br 127	116	-
BA112	Si	2	BA102	2	--	Bri05	Si	12	${ }_{\text {BY }}^{\text {BY } 133}$	116 116	-	(N46	$\mathrm{Ge}_{\mathrm{Ge}}$	${ }_{2}^{2}$	OA90	2	-	in606	Si	9	8 Br 127	116	-
BA 114 BA 115	Si	$\frac{2}{2}$		$\underline{-}$	15	BY 113	si	12	BY134	11 b	-	in49	Ge_{8}	2	0 O91	2	-	IN616	Ge	2	OA91		-
8 8A117	Si	2	8A 100	2	-	${ }^{\text {BY } 114}$	Si	1	BY134	11 b	-	1 N 50	Ge	2	OA91	2	-	IN617	Ge	2	${ }_{0}$	2	-
88119	Si	2	${ }_{88102}^{88105}$	${ }_{6}$	z	- ${ }^{\text {BY115 }}$	Si	Ha	${ }_{\text {BY }}$ BY4 34	110	-	IN51	${ }_{\text {Ge }} \mathrm{Ge}$	2	OA91	${ }_{2}$	-	IN625	Si	7	8A100	2	-
${ }_{\text {BA }}$ BA122	Si	2	${ }_{88}^{881056}$	6	Z	BY120	si	11 a	BY134	116	-	1 N 54	Ge	2	OA91	2	-	in626		7	BA100	5	-
BA124	Si	2	BA 102	2	-	BY 121 BY/ 12	Si	-	BY1 BY/ 64	116	-	(1N55	Ge	2	OA9,	2	-	in628	s:	7	BA148	5	-
$8 A 125$ $8 A 127$	Si	$\frac{2}{2}$. 20	BY 26	Si	11b			. 29	in58	Ge	2	OA91	2	二	IN629		7	${ }^{88148}$	${ }^{5}$	-
- BA 128	si	2	${ }^{\text {ba }} 100$	${ }_{5}$	-	BY127 BY130	Si	116 116	BY134	11 b	. 36	IN60	$\mathrm{Ge}_{\mathrm{Ge}}$	2	OA90 OA90	$\frac{2}{2}$	-	IN643	Si	2	BA145	5	-
BA129 BA130	$\stackrel{\text { Si }}{\text { Si }}$	$\frac{2}{2}$	BA148		. 10	${ }_{\text {BY }}$	Si	116	Brist	dr	32	- N 62	Ge	2	OA91	2	-	${ }^{1} 1058$	S		BAX16	7	
BA131	si	a	in4005	4	--	BY134	Si	11 b		\lrcorner	. 30	1 N 64	Ge	2	OA90	2	-	in660	Si	2	Bax16	7	\bigcirc
BA 132 SAI	Si	4	IN4006	4	25	- BY140	$\stackrel{\text { si }}{ }$	19 a	8 BY 182	-	-	in66	Ge	2	$0{ }_{0} 91$	2	-	in661	5		BAX 16	7	-
${ }_{\text {BA }}^{\text {BA }}$ (36	Si	2	8A1B2	6	. 25	BY/42	Si	11 b			-	iN67	Ge	2	OA91	2		in770	Ge	2	OA90	2	-
BA) 37	Si	2	BA148	5		BY143	Si	11 b	BY134	11t	-	- ${ }^{1} 68$	Ge	2	OA91	2	-	in805	Ge	2	OA91	2	33
	Si	2			25	(er ${ }^{\text {BY151N }}$	$\stackrel{5}{5}$	15 15	${ }_{\text {BY }}{ }^{\text {BY } 133}$	1110	=	IN75	Ge	2	OA91	2	-	in823	-	-	-	-	. 50
BAA BA 140		2	${ }_{8}^{\text {B8105A }}$	6 6		BY152N	Si	15	Brioges			in84	Ge	2	OA90	2	-	iN825					. 60
${ }_{\text {BAP141 }}$	${ }_{\text {Si }}$	2	881054	6		${ }_{\text {BYIT7 }}$	5	5	Bri 134	10	-	in86	Ge	2	OA91	2	-	in846	5	2	IN4001	4	-
BA142	Si	2		-	17	BY178	Si	5	BY133	11b		1N87	Ge	2	OA90		-	IN847			N4002		
8A144	Si	2	-	-	12	'BY182	Si	${ }_{2}^{2 a}$	in4001	\square	1.50	1N88	Ge_{6}	2	OA91	2	-	-1N849		2	in4004	${ }_{4}^{4}$	\sim
-BA145	Si	5			18	${ }^{\text {BY183/50 }}$	Si	Oa	N4001	4	3.50	\% NO	Ge	2	OA91	2		IN850	s	2	in4004	4	-
- 8 P4148 BA149	Si	5	${ }_{86}^{81056}$	6	\pm	BY183/600	S	2	In4005	4	3.5	in95	Ge	2	$0{ }^{\text {O }} 91$	2	-	[N851	Si	2	in 4005	4	-
B. 150	Si	2	BB103	2		BY190	Si	10a			3.45	\|N96	Ge	2	OA91	2	-	iN852	${ }_{5}$	2	in 4005	${ }_{4}^{4}$	-
- 3 ¢ 154	Si	2		-	10	${ }_{\text {BY } 206}$	St	5	-	-	${ }_{22}^{20}$	(N97	$\mathrm{Ge}_{\mathrm{Ge}}$	2	OA91	2	-	in 854	s,	2	in4006	4	-
3A 55 B41:6	Si	${ }_{2}^{2}$	-	-	12	BY207	Si	12	8 8133	116		in 107	Ge	2	OA90	2	-	1N855	Si	2	1 N 4007	4	-
$88,15$.	St	2	-	-	. 29	BY250	Si Si	5_{5}^{11}	BY133	116	27	IN111 IN112	Ge	$\frac{2}{2}$	OA90 OA90	$\frac{2}{2}$	-	- 1 N856	Si	2	IN4001	4	-
BA158 BA: 59	${ }_{\text {Si }}$	$\frac{2}{2}$	-	-	. 58	$8 Y \times 10$ BYx $36 / 150$	${ }_{\text {Si }}^{\text {Si }}$	5	in 4003	4	27		Ge	2	OA90	2	-	in858	Si	2	- N 4002	4	-
	${ }_{\text {Si }}$	${ }_{4 a}$	- ${ }_{8 B} 1058$	6	15	BY $36 / 600$	s	5	IN4005	4	-	[N114	Ge	2	OA90	2	-	- $\begin{aligned} & \text { N859 } \\ & \text { in860 }\end{aligned}$	${ }_{\text {Si }}$	${ }_{2}^{2}$	(1N4003	4	-
bate?	Si	${ }^{4}$ a	${ }^{881056}$	${ }_{6}^{6}$	-	BYX60/50	St	2	1 N 4001	4		IN115 in 117	${ }_{\text {Ge }}^{\text {Ge }}$	$\frac{2}{2}$	OA90 OA90	${ }_{2}^{2}$	-	in861	S	2	IN4004	4	
${ }_{\text {BA16 }}^{\text {BA165 }}$	Si	${ }_{7}^{2}$	BA1 BA 100	${ }_{2}$	-	1000	Si	2	IN4007	4		IN118	Ge	2	OA95	2	-	- C 862	S.	2	IN4005	4	\because
8 BA 167	si	7	ba 100	2	-	BYY BYY 2	Si	11	BY 127 BY127	116	-	inl 19 in 120	$\mathrm{Ge}_{\mathrm{Ge}}$	2	AA119	$\frac{2}{2}$	-	in864	5	2	IN4006	4	-
BAA 170 BAI	$\stackrel{\text { Si }}{\text { Si }}$	${ }_{2}^{2}$	8A100	$\stackrel{2}{4}$	-	${ }_{\text {BrY33 }}$	Si	11	BY127	116	-	W126	Ge	2	OA91	2	-	in878	5	2	in 40007	4	-
BA174	S	4 c	IN4154	?	-	BrY ${ }^{\text {ch }}$	Si	11	Br^{8127}	116		© 127	Ge	2	OA91	2	-	1, 8880	Si	2	iN4002		
8 BA 175	St	${ }^{4 c}$	BA 100	2	-	8rY35 BrY 36	Si	11	in4007	\%	-	[N175	Ge	2	OA91	2	-	1N881	5	2	in 4003	4	-
¢A176	Si	${ }_{6}$	${ }_{\text {BAA }}^{\text {BAX }}$	6	-	8YY 37	si	11	- 14007	4		- 1919	Ge	2	OA91	2	-	(1N882	$\stackrel{\mathrm{Si}}{\mathrm{Si}}$	$\frac{2}{2}$	(1N4004	4	-
BA 180	Si	7	bal 100	2	-	${ }_{\text {CLL }}{ }_{\text {CliOO2 }}$	Si	100 108	-	-	${ }_{70}^{65}$	in inl 192 ind	${ }_{\text {Si }}^{\text {Ge }}$	$\frac{2}{2}$	OA9 BA 100	${ }_{2}$	-	${ }_{-1} \mathrm{~N} 884$	si	2	\| N 4005	4	-
BA181	Si	7			. 20	${ }_{\text {Cl1 }}$	Sil	10	-	-	75	\|N196	Si	2	bal 100	2	-	-10885	Si	2	IN4005	4	-
8 8187	Si	7	15920	7		CL1005	Si	10	-	-	77	IN198	${ }_{5}$	2	OA910	2	-	-1887	Si	2	iN4006	4	
BAA 188 BA 189	Si	7	15921 15922	$?$	-	Cl1 Cl1503 clis	$\mathrm{S}_{\mathbf{S}}$	10	-	-	. 83	IN215	Si	2	${ }_{\text {BA }}{ }^{\text {BAP }}$	5	-	-1888	$\stackrel{5}{\text { Si }}$	2	in4007	4	-
BA190	Si	7	15923	7	-	CL1506	Si	10	-	-	8	in 217	Si	2	${ }^{88148}$	5	-	\|N889	${ }_{\text {Gi }}$	$\stackrel{2}{2}$	${ }^{\text {OAP90 }}$	$\frac{4}{2}$	
BA195	${ }_{5}$	7	8A 145	5	-	Cl1507 Cl7001	Si	11 l		-	95	iN252	Si		BAX16	7	-	in914	Si	7			. 07
${ }_{\text {BA } 197}$	Si	7	BA145	5	-	Cl7002	St	11 b	in5401			1N265	Ge		0491	2	-	(n914A	${ }_{\text {Si }}^{\text {Si }}$	7	\|N4446	7	-
8A198	Si	7	88145	5		$\mathrm{CLLVOO}^{\text {c }}$	$\stackrel{\text { Si }}{\text { Si }}$	11 b 110	(1N5402	-	-	- $\begin{aligned} & \text { IN266 } \\ & \text { IN267 }\end{aligned}$	${ }_{\text {ce }}^{\text {Ge }}$	2	${ }_{\text {OAP }}$	2	=	-N916	S.	7	-	-	. 07
BA203	SI	-		-	. 09	Cl7005	S	11 b	in5404	-	-	(N268	Ge	2	OA91	2	-	- $\mathrm{N9358}$	-	-	-	-	${ }_{82} 65$
'bazo3	Si				12	CL7006	Si	116 116	IN5406	-		in 290 in294	$\mathrm{Ge}_{\mathrm{Ge}}$	2	OA91	2	Z	iN9378	\square		Z	-	. 82
BA209 BA210	${ }_{\text {Si }}^{\text {Si }}$	7	ing14	7	5	CL7047	G	10	N5407	-	. 65	iN297	Ge		OA91	2	-	- ${ }^{\text {N9418 }}$	-	-	-	-	
BA213	Si	7	in4448	7	-	CV7071	St	3	-	-	. 50	IN298	Ge	2	OA91	2	-	- $\mathrm{N94348}$	-	-	-	\square	1.20
${ }^{\text {BA } 214}$	Si	7	BA100	2		CV7130	${ }_{\text {Si }}^{\text {si }}$	$\frac{2}{2}$	=	-	. 25	- N 316	Si	11	OYY ${ }^{\text {OAP }}$	${ }_{116}$	=	\|N1100	Si	9	in4002	4	
¢ ${ }_{\text {BAP } 243}$	${ }_{\text {Si }}^{\text {Si }}$?	-	-	. 50	cri60	Si	43	-	-	. 15	1N317	si	11	BY:27	116	-	iN1101	${ }_{\text {S }}^{\text {S }}$	9		4	-
${ }_{8 A} 316$	Si	2	-	-	.06	${ }^{\text {D }} 13004$	S	-	-	-	. 32	in318 N319	Si Si		BYY 127 BY/27	${ }_{1116}^{116}$	-	IN1103	St	9	IN4004	4	-
${ }_{8 \text { BA318 }}^{8,317}$	${ }_{\text {Si }}$	$\frac{2}{2}$	-	-	. 066		S:	7	-	-	. 22	-1N320	si	11	BY127	110	-	inl 104	Si	9	ina005	4	-
-bavio	Si	2	-	-	. 08	DK110	5	1	-	-	. 33	in321	Si	${ }^{11}$	BY127	2^{116}	-	iN1 183	Si	10	N-005	$\stackrel{-}{-}$	
-BAV19	St	$\frac{2}{2}$	-	-	. 11	${ }_{\text {Gex }}^{\text {GEX }}$ IT334	Si	$\frac{2}{7}$	-	--	. 07	-	Si	$\frac{2}{2}$	BA100	2	-	IN1183R	S.	10	-	-	
- bawz	Si	${ }_{2}$		7		$1 T T 44$	S	7	-	-	. 07	in 345					15	(N1188	S:	10	-	-	${ }_{\text {2 }}^{2.52}$
BAW75	si	$\frac{7}{7}$	IN4154	-7	-	ITT210	Si	7	-	-	.68 .10	in350 in 351	Si	3	BA 100 Bal 145	2	-	IN11908	St	10	-	-	2.52
BAW 76 BAW49	${ }_{\text {Si }}$	1 7	IN4151	$\stackrel{-}{7}$. 15	17922	Si	7	-	-	11	IN352	Si	3	BA145	5	-	IN1192 IN1192A	Si	10 10	-	-	.90
- $\mathrm{BA} \times 13$	Sı	17	-	-	. 07	TTT922	${ }_{\text {S }}^{5}$	7		-	12	- $\begin{aligned} & \text { N353 } \\ & \text { in354 } \\ & \\ & \text { N }\end{aligned}$	${ }_{\text {Si }}^{\text {Si }}$	3	BA145 BA145	5	=	IN11194	Si	10	-	$=$	-1.10
- ${ }^{\text {bax }}$ (16	${ }_{\text {Si }}^{\text {Si }}$	7	BAX 16			ITT2001	Si	7	-	-	11	1N355	Ge	2	BA144	2	-	IN194A	Si	10	-	-	1.15 1.64 1
BAP21	Sis	i 7	SAX16	7		itT2002	$\stackrel{5}{\text { Si }}$	7		-	${ }^{12}$	in359 N360	${ }_{5}$	10	${ }_{\text {BY/ }}^{\text {BY127 }}$	116	-	iN1196A	Si	10	\square	-	1.64
8AA 22 BAX 25	${ }_{\text {Si }}$	17		7		${ }^{\text {OTS }}$	Ge	10	CV7047	10	. 23	- ${ }^{1} 361$	Si	10	BY127	116	-	iN198	S!	10	-	-	2.40
BAX26	Si	2	BAX 13	7	-	0410	Ge	10		-	. 55	- ${ }^{\text {N }} 3628$	Si	10	BY127	110	-	IN198A	Si	10	$=$	-	
${ }^{\text {BaY } 14}$	Si	si 11	IN4005		-	OA47 0.470	Ge	$\stackrel{1}{1}$	0490		13	- 1×364	$\stackrel{\text { Si }}{\text { Si }}$	10	${ }_{8 \times 127}$	116	-	ini200a	Si	10	-	-	. 68
${ }^{\text {BAYY }}$ BAY16	$\stackrel{\text { Si }}{\text { Si }}$	i 11	IN4006	8	-	OA72	Ge	1	OA90	2	-	- 365	Si	10	BY127	it	-	IN1201A	$\stackrel{\text { Si }}{5}$	10 10	-	-	70 73
BAY17	Si	${ }^{9}$	84×16	7	-	OA79	Ge	1	${ }_{\text {OAP9 }}^{\text {OA9 }}$	${ }_{2}^{2}$	-	IN440 IN441	$\stackrel{\text { si }}{\text { Si }}$	11	BY127 8 Br 127	,116	-	in 1204A	5	10	-	-	77
BAY 18 BAY 19	Si	,		7	-	${ }_{\text {OAB }}$	Ge	1	OA9,	$\stackrel{-}{+}$	18	in 442	Si	$\cdot 11$	BY127	116	-	in 12068	Si	10		-	80
bayzo	Si_{1}	S 2	BA145	5		OA90	Ge	2	OA9!		08	IN443	Si	11	BY127	116							

A. MARSHALL (LONDON) LTD.

E24 series $=10,11,12,13,15,16,18,20,22,24,27,30,33,36$, $39,43,47,51,56,62,68,75,82,91,100$ PLUS DECADES. $E 12$ Series $=10,12,15,18,22,27,33,39,47,56,68,82,100$ PLUS DECADES

PRESET POTENTIOMETERS-TRIMMERS

© PIHER
 FOR THE
 PROFESSIONAL FINISH

PT10 SERIES (FULLY ENCLOSED)

 PT10V horizontal mounting 0.15 watt at $40^{\circ} \mathrm{C}$. Tol 20\%.
Price 12 peach . Please specify horizontal or vertical PT15 SERIES (FULLY ENCLOSED) PT15 Nh vertical mounting 0.3 watt at $40^{\circ} \mathrm{C}$ PT1 5 Nv horizontal mounting 0.3 watt at $40^{\circ} \mathrm{C}$ tol. 20\%
Price 14 p each. Please specify horizontal or vertical The PT1 5 range has the extra facility of clip in thumb wheels or spindles for easy adjustment without a screwdriver. Thumb wheels
Spindles
VALUES AVAILABLE: PT10 and PT 15, 100R 5 p each $500 \mathrm{k}, 1 \mathrm{M}, 2.5 \mathrm{M}, 5 \mathrm{M} .1 \mathrm{OM}$

POTENTIOMETER-VOLUME CONTROLS

ROTARY POTENTIOMETERS. All standard $1 / 4^{\prime \prime}$ spindles俍die. double wiper, available in following values As above but with 2 Pole

75p 3) DUAL GANGED-STEREO As above, but dual No Switch

	$5 k$	$10 k$	LIN
$25 k$	$50 k$	$100 k$	or
$250 k$	$500 k$	1 Meg	LOG
$5 k$	$10 k$	$25 k$	LIN
$50 k$	$100 k$	$250 k$	or
$500 k$	1 Meg		LOG
$5 k$	$10 k$	$25 k$	LiN
$50 k$	$100 k$	$250 k$	or
$500 k$	1 Meg		LOG

SLIDER POTENTIOMETERS
45p 1) SINGLE--LOG OR LINEAR in following values $5 k, 10 k, 25 k, 50 k, 100 k$ $250 \mathrm{k}, 500 \mathrm{k}, 1 \mathrm{M}, 2 \mathrm{M}$, Price 45 p includes Knob.
80p 2) DUAL GANGED-STEREO-LOG OR LINEAR, matched to 2 dB . $5 \mathrm{k}, 10 \mathrm{k}$ $25 k, 50 k, 100 k, 250 k, 500 k, 1 \mathrm{M}, 2 \mathrm{M}$. PRICE 80p includes Knob.

NON LINEAR RESISTORS

Thermistors	R at $25^{\circ} \mathrm{C}$.	Price	VAll1]	33k	0.18
1) Rod type 0.6 w Dissipation					
VA10665	4.7k	0.17	3) Disc Ty	Dissip	
VA10555	15k	0.17	VA1086	2.2	0.13
VA10565	47k	0.17	VA 1033	4.	0.13
VA10655	150k	0.17	VA1074	6	0.13
2) Disc Type 0.6w Dissipation			VA1053	8	0.13
VA1096	150	0.15	VA1110	10	0.13
VA1097	470	0.15	VA1100	15	0.13
VA1098	1.5k	0.15	VA1077	32	- -
VA1109	4.7k	0.18	VA1034	50	0.13
VA1108	15k	0.18	VA 1040	130	0.13
VA1112	22k	0.18	VA1039	500	0.13

VOLTAGE DEPE NDENT	
V) Rod Types	
E298ED/A258	1500
E298ED/A260	1800
E298ED/A262	2200
E298ED/A265	2400
E298ED/P268	3000
E298ZZ/O6	3020
2) Disc Types	
E2990D/P116	14
E2990DXP118	18
E2990D/P120	21
E29900/P216	25
E29900/P218	32
E2990D/P220	40

A. MARSHALL (LONDON) LTD.

THYRISTORS

TYPE	RATING		CASE	PRICE	$\square=$	POWER THYRISTORS					PLASTIC POWVER
			C106A C106B C106C			+ 4A	$\begin{aligned} & 100 \mathrm{v} \\ & 200 \mathrm{v} \end{aligned}$	Plastic Plastic	$\begin{aligned} & 0.35 \\ & 0.40 \end{aligned}$		
-TIC44 \dagger	0.6A	30 v		T018		0.32	4A	300 V	Plastic	0.44	
-T+C46 \dagger	0.6A	100 v	T018	0.46		C106D +	4A	400 v	Plastic	0.49	
-TIC47 \dagger	0.6A	200v	T018	0.67		C116A	8A	100 v	Plastic	0.43	
-2N5060	0.5A	$25 v$	T018	0.29		C1168	8A	200 v	Plastic	0.49	PLASTIC TO66FROM TEXAS INST
-2N5061	0.5A	50 v	TO18	0.30		C116C	8A	300 v	Plastic	0.56	
- 2 N5062	0.5A	100 v	T018	0.36		C116D	8A	400 v	Plastic	0.62	
-2N5063	0.5A	150 v	T018	0.39		C116M	8A	600 v	Plastic	0.74	QUALITY AND RELIABILITY
-2N5064	0.5A	200v	TO18	0.41		$\begin{aligned} & \text { C126A } \\ & \text { C126B } \end{aligned}$		100 V	Plastic	0.57	
								200 V	Plastic	0.65	-
							12A	300 v	Plastic	0.73	C-
-BstBO 126	1.2A	400 v	Plastic	0.67		C126D	12A	400 v	Plastic	0.81	
*BstB0140	1.2A	600 v	Plastic	0.95	边	C126M	12A	600 v	Plastic	0.97	
- BstB0146	1.2A	700 v	Plastic	1.25							
BstB0206	4.7A	100 v	M478	0.65	BsiB01 series		HIGH	STAN	ARDS		Mechancal intachangeabily of the
BstB02 13	4.7A	200 v	Plastic	0.75			High		ARDS		dastic packace wh moblutine
BstB0226	4.7A	400 v	Plastic	0.85	-	ThIS Portio	Nort				
BstB0240	4.7A	600 v	Plastic	1.15	10-135-	matim ter	fliash				毞
BstB0246	-4.7A	700v	Plastic	1.35	8u1802 wnos	MANN TERA	Minal 2	=		${ }^{\frac{1065}{965}}$	

SC/MP LOW COST DEVELOPMENT SYSTEM - FROM NATIONAL SEMICONDUCTORS

DESCRIPTION The SC/MP LCDS provides all the features necessary for development and testing of SC/MP hardware and soltware designs. For a user's application the system comes complete with one CPU card plugged into one of four sockets on the $10^{\prime \prime} \times 12^{\prime \prime}$ motherboard. Also on the motherboard are a 16 key, dual function hexadecimal keyboard, four function keys. 3 control switches and a 6 digit hex display. Control logic, scratchpad memory and ROM based firmware on the motherboard allow user to examine and alter the SC/MP registers, and memory locations, run SC/MP programs in continuous or single instruction mode or operate optional teletype using SC/MP debug. The CPU card supplied provides the CPU interface for execution of user generated application programs and development system resident firmware
Four prewired 72 pin edge connector sockets provide a plug-in interface for SC/MP family cards - a selection of which (listed below) may be used in conjunction with the SC/MP LCDS system to provide additional memory for user applications or system development. The cards can be plugged into any of the connectors on the card bus

SC/MP Development System

LCDS - Comes complete and constructed (as illustrated) with one CPU card included. ISP.8P/301
$£ 335.00$
RAM CARD - $2 k \times 8$
ISP.8C/ 002
$£ 107.20$
ROM/PROM CARD $4 \mathrm{k} \times 8$ with sockets for 8 MM5204/5414's...|SP-8C/004B £83.75
ROM/PROM CARD $4 \mathrm{k} \times 8$ includes 8 MM5204
ISP.8C/004P £351.75
Dipar provide the following solware debug capabily
Display contents of SC/MP program counter accumulator in hexadecimal

Display contents of any memory location Initiate execution of user penerated programs Select single instruction or normal execution Interrupt execution of program at any poin

CPU CARD 256×8 of RAM and sockets for 512×8 of ROM ISP-8C/100 $\mathbf{£ 1 6 7 . 5 0}$

COMES COMPLETE WITH FULL DATA AND INSTRUCTIONS OR SEND SAE + 30p FOR DATA

NEW FROM MOTOROLA
 A SELF-CONTAINED MICROCOMPUTER KIT

features

- 72 basic instructions
- 7 addressing modes
- On board monitor program ircuiry
- 256 words of RAM + monitor program
- Comprehensive literature/fact"pack

The kit when assembled, is a fully functional microcomputer. The integral keyboard/display module can be used in conjunction with monitor program. For entering and debugging of user programs. a second P.I.A. allows operation via TTY or other input/outputs

On board cassette interface - connecting direct to cassette mike and earphone socket

- Spare prewired sockets for additional ROM/RAM, etc., + space for user's extra
- Expandable via data bus to 65 k words using inbuilt motherboard techniques

MC6800P - Microprocessor chip-plastic
£16.00 MC6810A - 1 k static (128×8) ram 24 pin
£4.50 MC6820P - Peripheral interface adaptor MC6850P - Interface adaptor

ULL RANGE OF SUPPORT DEVICES WILL BE AVAILABLE SHORTLY

PRICE £190 +VAT DATA 30p+Sae

SC/MP Frogramming and assembler manua Technical description Applications manual Linear IC data book TIL data book nterface data book Special function data book MOS data book Memory data book Audio handbook PRICES ARE EXCLUSIVE OF POST/PACKING 50p PER BOOK

AUDIO VISUAL

"TEACH YOURSELF"

CASSETTES PLUS BROCHURES

COMPLETE TEACH YOURSELF COURSE WHAT IS A MICROPR OCESSOR? The amazing response we experienced at our last two microprocessor forums in London - and the tremendous interest shown by individuals in microprocessor technology, has prompted us to telease an edited recording of the lecture on cassette accompanied by a 72 -page booklet keyed to the tapes - the forum was arfanged by National Semiconductors, Practical Electronics and ourselves in an effort to remove the problems and uncertainties arising for anyone not familiar with this new and increasingly important subject. The lecture (0 n $1 \times \mathrm{C} 90$ and $1 \times \mathrm{C} 60$ cassettes) was given by wo of National Semiconductors leading microprocessor eng ineers.
A. MARSHALL (LONDON) LTD.

POCKET TTY

THE LOW COST ANSWER FOR DATA INPUT

DATA PACK SC/MP
Price $\mathbf{£ 1 . 5 0 + P / P 5 0 p}$

INTROKIT - NATIONAL
Price £68.61 + VAT

SC/MP , Microprocessor kit from National Somiconductor includes everything yu need to build a mpletely functional microprocessor system - featuring the National SC/MP microprocessor - the low Small Business Machines Word Processing Systems; Educationai Systems. Multiprocessars Systems Process Controllers. Terminal Contral Laboratory Instrumentation. Sophisticated Games. Automotive Controller and Appliance Controllers
The kit. neatly packaged with all the components and titerature you need in a booseleat binder includes. The SC/MP Microprocessor - a single-chip Central Processing Unit in a 40 pin, duat in-line package Features static operations, forty-six intruction types. single-byte and double-byte. software controlied interiupt struciure, buit in serial mput/output ports; bidirectional 8 -bit TRI-STATER bus,
parrallel data/port and latchied 12 -bit TRI-STATER address port. RDM -512 bytes (8 -bis/byte) of pre-programmed Read-Only-memory containing KITBUG - monitor and debugging program to assist int the development of your application programs. KIT8UGprovides teletypewrite input/output routines and allows examination, modification, and controlled execution of your programs. RAM- 256 bytes of static read/write memory for slorage of your application programs. Transfers of data to and from RAM are controlled by SC/MP and KITBUG. Teletypewriter Interface including buffer and dive cspability for 20 MA current loop intertace. Voltage REgulator. Data Buffer-providing interface between memory and bidirectional data lines All the literature you need. including schematics and programming manuals.
Tuming Crystal-providing $1,000 \mathrm{MHz}$ uming signal. Plus all the passive compnents and circuit board with 72 pin edge connector required to build and interconnect your microproces sor system with external hardware.

KEYBOARD KIT - National Semiconductors $£ 65.84$ + VAT
Replaces the need for a conventional teletype terminal for input/output data. The calculator type keyboard provides manual input commands to the SC/MP and a six digit hex display provides visual output. An umbilical cord connects it to the Introkit P.C.B. Using the keyboard, programmes can be entered in hexadecimal (easier to use than binary). As well as the 16 hexadecimal keys ($0.9, A, B, C, D, E$ and F) there are 4 control keys, which allow the contents of any RAM address to be examined or modified

UNIVERSAL INTERFACE		Price
DM81LS95	Tristate Octal Buffers (TRUE-8 COM)	£1.45
DM81LS96	Tristate Octal Buffers (INV -8 COM)	£1.45
DM81LS97	Tristate Octal Butfers (TRUE-4/4)	£1.45
DM81LS98	Tristate Octal Buffers (INV 4/4)	£1.45
MM74C173	Tristate Quad Latch	$£ 0.95$
MM74C174	Hex D Flip Flop	£0.95
MM74C175	Quad D Flip Flop	£0.95
DM74173N	Tristate Quad D Flip Flop (DM8551N)	£2.76
DM74174N	Hex D Type Flip Flop	£2.14
DM74175N	Quad D Type Flip Flop	£1.90
DM74LS173	Low Power Schottky Tristate Quad D Register	£2.93
DM74LS174	Low Power Schottky Hex D Flip Flop	£1.41
DM74LS175	Low Power Schottky Quad D Flip Flop	£1.34
LM555	Timer	£ 0.40
LM556	Dual Timer	£1.10
DS8833	Quad Tristate Receiver	£1.99
DS8835	Quad Tristate Transceiver (Inverting)	$£ 1.99$
DM74LSi38	1 of 8 Binary Decoder	£1.27
DM8131	Hex Comparator	£2.76
DM8223	1-8 Line Demultiplexer	£1.38
DM9602	Resettable One Shot (DM8851)	£6.21
HUMAN INTERFACE		
DM8544	Tristate Quad Switch Debouncer	£1.03
CD4511CN	7 Segment Latch Decoder Driver	£2.30
DM8678CABN	CRT character Gen 5×7 upper case	¢15.20
2513	CRT character generator 5×7 UC	¢8.00
INSTRUMENT \& MACHINE INTERFACE		
DA1200CD	12 Bit D to A Converter Binary	¢ 29.63
DA1202CD	12 Bit D to A Converter 3 Digit BCD	¢29.63
DA1201CD	10 Bit D to A Converter (12 Bit) Binary	¢25.24
DA1203CD	10 Bit D to A Converter (12 Bit) BCD	£25.24
MM5357D	8 Bit A to D converter	£10.00
MM74C922N	16 key keyboard encoder	¢4.00
MM74C923N	20 key keyboard encoder	¢4.00
RAMS-STATIC		
MM2101-2N	N Channel 256×4 Bit, 650NS 22 Pin DIL	¢3.00
MM2102-2N	N Channel 1024×1 8it, 650 NS 16 Pin DIL	¢2.10
MM2111-2N	N Channel 256×4 Bit. 650NS 18 Pin DIL	¢3.00
MM2112-2N	N Channel 256×4 Bit, 650 NS 16 Pin DIL	¢3.00
MM74C9200	CMOS RAM 256×4 Bit 22 Pin DIL	¢12.57
ROMS		
MM5214	512×8 Bit 24 Pin DIL (Special Order)	£26.95
PROMS		
DM74S287	256×4 Bit Bipolar Fusible Link Prom	$£ 5.33$
MM5204Q	512×8 Bit Erasable Prom	£32.30
MM1702AQ	256×8 Bit Erasable Prom	£10.80
MM27080	8192 Bit (1024×8) Erasable Prom	£ 35.00
COMMUNICATIONS		
MM5307AA/N	Baud Rate Generator	£12.68
MM5303N	UART	¢6.34
SC/MP MICROPROCESSOR FAMILY		
1SP-8A/5000	SC/MP CPU chip	£12.00
15P.8A/600N	N-channel CPU chip	£10.00
8080A 8 BIT MICROPROCESSOR FAMILY		
INS8D80A	N Channel 40 Pin 8 Bit replacement for intel 8080	¢23.45
DP8224N	Clock Generator \& Driver for 8080A CPU	£6.16
DP82280	System Controller \& Bus Driver for 8080A CPU	¢7.30
DP8212N	8 Bit Input/Output Port	¢3.08
DP8216 =	DS8833	
Data Sheet for INS8080A available at		£0.50

条First-choice for linear and digital circuits

National, currently the secondlargest manufacturer of integrated circuits in the world, can offer an unparalleled range of products in all semiconductor technologies. Many are made in the UK.

* THE SYSTEM
 verowire

Verowire is basically a new kind of interconnecting system for P.C. Boards enabling maximum density to
be achieved using integrated and/or discrete be achieved using integrated and or discrete The Verowire wiring system is ideal for prototypes bread boards and limited production runs. Finished appearance achieved in significantiy less time than required by more conventional methods previously available

KONTAINS
Wiring Pen
Circuit 8oard
Reels of Wire, 38 AWG. (Red) (one reel fitted to wiring pen)
Reels of Wire,
Shouldered Terminal Pins
Plastic Wiring Comb
Lead deformation tool
Pin insertions tool
Cutters
inspection magnifie
PRICE \&17.50 FULL KI

WIRE WRAPPING
UNWRAPPING TOOL
the weight. It is quick, convenient and easy-10-use
TYPE 58-1908K
WIRE WRAPPING
WIRE
Standard packs of $500 \times 4^{\prime \prime}$ lengths of Kynar insulated wire - Silver plated soft copper wire - pre-stripped

WIRE WRAPPING SOCKETS
8 PIN DIL
14 PIN DIL
16 PIN DIL
24 PIN DIL.

High quality sockets designed to provide max reliability at a most
Excellent cos

SIEMENS

Maximum quality. Minimum size.

Siemens Limited, Great West House
Great West Road, Brentford, Middx. TW8. 9DG Telephone: 01-568 9133

COOLING FANS

The new Mule fan represents a breakthrough in slim axial fan it reverses the drive principle in normal use with this type of fan by employing an outer stator/inner fotor design
The result is up to 20% more output than other fans of its size (up to 60 cim) and a large saving in production costs. The impeller is glass re-inforced nyion with a specially-developed aerol sect for maxim perfor
either way round to enable induction or extraction and can be positioned inside of outside the cabinet.
Built to the highest standards of safety, the unit incorporates a thermal cut-out to eliminate overheating problems should the fan be it will be of great use in electronics, vending machines, refrigeration. air conditioning, and other fields

New design means

Lower price.
Up to 20% more output than other fans of its size
Easily mounted for either induction or extraction
thigh cutout 10 protect
Thermat cut-out to protect unit and installation

SC/MP POWER SUPPLY
POWER SUPPLY FOR SC/MP INTROKIT

Note: Disconnect common secondary winding
C1 1000uF 25v B41010

II MT 79 at
RI LM309K
RI LM309K R2 LM $320-12$
B1. B2 WOO5

C2 $0.22 \mu \mathrm{~F}$ B37449 C3 $2.2 \mu \mathrm{~F}$ TANT B45134 C4 220 μ F 40 V B4 1283 C5 0.22 山F 837449 C6 22 HF TANT B45134
A. MARSHALL (LONDON) LTD.

PHOTO TRANSISTORS
2N5777 Darlington Amplifier
2N5778 Darlington Amplifier
2N5779 Darlington Amplifier
0.80 0.80
0.90 0.90
1.30
$\begin{array}{ll}\text { BPX25 } & \text { General Purpose Silicon }\end{array}$ BP $\times 29$ General Purpose Silicon BP X80 General Purpose Silicon Array (10) BPX81 General Purpose Silicon BPX86 General Purpose Silicon (5) TIL63 General Purpose Silicon TIL64 General Purpose Silicon TIL65 General Purpose Silicon TIL66 General Purpose Silicon TIL67 General Purpose Silicon OCP71 Germanium Photo Transistor

PHOTO DIODES

BPW32	Low Dark Current Silicon
BPW34	Infra Red Photo Diode
BPX48	Differential (Precision)
BPX60	High Output Voltage
BPX61	10 MH
BPX63	Ultra Sensitive Silicon
BPX65	High Speed Silicon
BPX97	General Purpose Silicon
BPX68	General Purpose Silicon

BPX68 General Purpose Silicon

SOLAR CELLS

BPX79 Miniature Solá Cell Blue Sensitive
General Purpose Solar Cell
BPY64 General Purpose Solar Cell

OPTO COUPLERS
4N25 Opto Couplers
CNY17 Opto Couplers 4N25 8 PIN DIL

MISCELLANEOUS

ORP12
Photo Conductive Cell Cad. Sulph Photo Conductive Cell Cad. Sulph. Photo Conductive Cell Cad.Sulph Photo Conductive Cell Cad. Sulphoselen Photo Conductive Cell Cad.Sulphoselen
ORP61
FW9802
RPY60
RPY 63

Off the shelf availability...

texas instruments products STOCKED IN DEPTH. watch out for texas devices in the electronics press.
the designers favourite
from Texas Instruments

The Good Guys Ride Together!

A. MARSHALL (LONDON) LTD.

TRANSFORMERS douglas and refanco

TYPE No. SECONDARY VOLTAGES		$\begin{aligned} & \hline \text { CURRENT } \\ & 250 \mathrm{~mA} \end{aligned}$	WEIGHT 2759	P/P	$\begin{aligned} & \text { PRICE } \\ & £ 2.35 \end{aligned}$	MINIATURE MAINS TRANSFORMERS									
MT111CS	$0.12+0.12$ 24 vollt		${ }_{4}^{2759}$												
MT213C	- $0.12+0.12$ (24 vollt	1 amp	${ }_{8259}$	${ }_{90} 0^{\circ}$	${ }_{\text {E3.66 }}$		6.0-6v		500						
mT T68AT	$0.12+0.12$ (24 voll)	1.5 amp	${ }^{1} .05 \mathrm{~kg}$	£1.00	${ }^{\text {E4. } 20}$	${ }_{\text {MT12 }}$			${ }^{5} 505 \mathrm{~mA}$	2009	${ }_{40 p}^{40 p}$	¢1.50			
MT18AT	${ }^{0} 0.12+0.12$ (24 volt	${ }_{2}^{2}$ amps	980 g 1.3 kg	$\begin{array}{r}\text { 90 } \\ \text { ¢100 } \\ \hline 100\end{array}$	${ }_{\text {E4.90 }}$				150 mA	2009	40 p	¢1.50			
MT111CT - MT85AT may have their secondaries parallel to give $0-12 \mathrm{v}$ at twice the secondary current ratings: i.e. MT71AT to give $0-12 \mathrm{v}$ at 2 A or $0-24 \mathrm{v}$ at 1 A															
TYPE No,MT1 12 CT	SECONDARY VOLTAGES	current	WEIGHT	P/P	PRICE	$\begin{aligned} & \text { TR1 } \\ & \text { R2 } \end{aligned}$		looma		WEIG 75 75	${ }_{40}^{40}$	${ }_{\text {c1 }}^{\text {¢ } 1.00}$			
	0. 2.2 .15 .20 .24 .30 V	500 m	5759 7259	${ }_{60}^{60}$	${ }_{\substack{\text { 22, } \\ \varepsilon 3.95 \\ \hline 6.95}}$		${ }_{120.12}^{12.0 .12}$	50 mA		75.9	${ }_{40 p}^{40 p}$	¢1.10¢1.25			
MIT3AT	0, 12, 15, 20, 24,30v	2 lam	725 g 1.35 kg	${ }_{\text {¢ }}{ }^{60 \mathrm{O}}$		TR2 TR3 TR4									
mt20at	O. 0 0 0 0 12.15 .15 .20 .24 .20 .30 V	3 amp	1.95 kg	\&1.00	${ }_{\text {E66.60 }}$	TYPE No.	SECONDARY VOLTA		current	WEIGHT	¢R1CE				
MT21AT	0.12.15. 20.24 .30 v	${ }_{4}^{4} \mathrm{amp}$	${ }_{3}^{2.735959}$	${ }_{\text {¢ }}^{61.25}$	${ }_{\text {c }}^{\text {E7.900 }}$	mт207CT	0.8.9v		500 mA	5109					
Secondary output of MT112CT to MT51AT may be taken from between any of the following voltages 2. 4. 5. 6.8.8, 10 . 12 . 15 , 18. 20. 24.30 v or $15-0.15 \mathrm{v}$															
TYPE No. MT102AT MT 104AT MT 105ATMT 107AT	SECONDARY VOLTAGE $0.19 .25 .33,40.50 \mathrm{v}$ $0,19,25,33.40 .50 \mathrm{v}$ 0. 19. 25. 33.40 .50 v $0,19.25 .33 .40,50 \mathrm{v}$ o. 19. $25.33 .40,50 \mathrm{v}$	$\begin{aligned} & \text { CURRENT } \\ & 500 \mathrm{~mA} \\ & 1 \mathrm{~A} \\ & 2 \mathrm{~A} \\ & 3 \mathrm{~A} \\ & 4 \mathrm{~A} \end{aligned}$	WEIGHT 800 g 1.3 kg 2.9 kgm 5.25 kgm		PRICE $£ 3.90$ E 4.95 $£ 9.00$ £15.50	20es		mi6 MIT2	$60 \times 40 \times 45$	MT7994					
									$60 \times 40 \times 45$ $60 \times 40 \times 45$	MT85AT	$95 \times$				
									$45 \times 25 \times 27$	MT103AT					
									$45 \times$						
								R	${ }^{45 \times 25}$	mT105AT					
The secondary output of MT 102AT to MRI07AT may be taken from between any of the above tappings to give the voltages $6,7,8,10,14,15,17,19,21,25,31,33,40$								miJat	75x55x90	MT112CT					
									$95 \times 60 \times 7$	MT123					
TYPE No.	SECONDARY Voltages	current	Weight	P/P PRICE		Houc		Mosat	$100 \times 90 \times 85$	MT 126 AT	$\times 7$				
	0. 24.30 .40 .48 .60 v	500 mA	700 gm						MT207CT						
MT1 26AT	0. 24. 30.40 .48 .60 V	,	1.4 kgm	${ }^{\text {E1 }} 100$	¢5.95			${ }_{\text {MTTIAT }}$		${ }_{75 \times 75 \times 75}$	$75 \times 50 \times 60$$81 \times 45 \times 45$				
MT1 2 MAT	O. ${ }^{\text {24, }} 24.30,40,48,60 \mathrm{v}$	${ }_{4}^{2 A}$	2.4 ${ }^{2} .4 \mathrm{kgm}$	¢¢1. ¢2 25 100	${ }_{\text {¢ }}^{\text {¢8.00 }}$	DON'T FORGET POSTAGE									
Following vollages avalabie from secondary tappings. MT 124AT io MT123AT 6.8 $10,12,16,18,20,24,30,36,40,48,60 \mathrm{v}$ or $30 \cdot 0 \cdot-30 \mathrm{v}$															

HEATSINKS-REDPOINT

VEROBOARDS

A. MARSHALL (LONDON) LTD.
 LONDON 014520161

SOLDERING-EQUIPMENT

MODEL X25-25 watt

Near perfect insulation. Breakdown voltage 1,500v A.C. Leakage 3.5uA
Stainless steel shaft and phenolic handle. Length 22 cms , weight 50 g .

DESOLDERING TOOL. £6.00

A new and improved model to deal with solder removal where components are tightly grouped or otherwise inaccessible. Instantly removes all unwanted solder from printed circuits and all other solder joints. Simple, reliable, speedy and accurate

CORDLESS SOLDERING IRONS

 with one spare tip.

AUDIO CONNECTORS EMTK ${ }^{-1}$

Compatible with Cannon A(')F CORD PLUGS

Frest, streamlined design includes rugged diecast zinc body, satin nickel finish high-impact resistant thermosetting plastic socket insert, moulded latehlock, dual pressure plates, keyed neoprene telief bushing Features "Ground Terminal" and "Ground Contactors" offers 4-5. 5-6. and 7 -contact versatility. Mates with Switchcraft A() M and other connectors with similar contacf arrangements. Overall length $37 / 32^{\prime \prime}$ diameter $3 / h^{\prime \prime}$

Has "Captive Design" insert screw, one-piece pin insert assembly easily removable for fast soldering. Polarizing groove Die-cast zinc shell, satin nickel finish. Mates with Switchcraft A()F and other connectors with similar contact arrangements. Brass. silver plated chromate dipped pins to resist tarnishing. Overall length $225 / 32^{\prime \prime}$; dia.

RIGHT-ANGLE

Newly styled right angle cord plugs with rugged die-cast housings in two types. 因 $\mathbf{R}_{(}$) F femate and, 国 R()M male Ideal for equipment with limited space for connectors. Satin nickel finish, high-impact resistant thermosetting plastic insert, moulded latch-lock, dual pressure plates. Features "Ground Terminal" and "Ground Contactors". Mates with Switchcraft $A() M, R() M, S() F M$ and other connectors and receptacles with similar contact arrangements.

D(')F RECEPTACLES
Rectangular flange design receptacle permirs close
mounting on crowded panel or chassis. Features "Captive Design" loss-proot insert screw, positive latch locking device and high impact thermosetting socket inser. Mates with Switchcraft A(M and otherconnectors with similar contact arrangements
Dimensions: Flange $11 / 16^{\prime \prime} \times 17 / 16^{\prime \prime} ; 8$ arrel $13 / 64^{\prime \prime}{ }^{\prime \prime}$. Flange $11 / 6^{\prime \prime} \times{ }^{\prime \prime}$, 8arre

d()M RECEPTACLES

Narrow. rectangular flange design receptacle for mounting on compact panel or chassis. Mates with Switchcraft A()F and other connectors with similar contact arrangements. Dimensions: Flange $1 / 8^{\prime \prime} \mathrm{x}$ Barrel $13 / 16^{\prime \prime}$ overall; pin extension the above are available in 3 \& 5 pin versions

A3F	-	3 Pin	-	£1.70	R3M	-	3 Pin	-	£3.75
A5F	-	5 Pin	-	$£ 3.50$	D3F	-	3 Pin	--	£2.50
А 3 M	-	3 Pin	-	$£ 1.50$	D5F	-	5 Pin	-	£3.75
A5M	-	5 Pin	-	¢3.00	D3M	-	3 Pin	-	£1.45
R3F	-	3 Pin	-	¢4.00	D5M	-	5 Pin	-	¢2.60
15\% DISCOUNT for 50 -piece Mix			the professional connection						

MULLARD VALVES

Type	Price	Type	Price	Type	Price
DY87/802	. 85	EL95	1.30	PCL83	1.26
ECC8 1	. 85	EYB6/802	. 85	PCL84	1.20
ECC82	. 85	GY501	2.11	PCL86	1.26
ECC83	. 85	G234	1.50	PCL805 / 8 S	1.26
ECC84	1.04	PC86	1.72	PD500	3.10
ECC85	1.30	PC88	1.72	PFL200	1.50
EC88	1.50	PC92	1.26	PL36	1.72
ECF80	1.04	PC97	. 85	PL83	2.10
ECH83	1.93	PC900	1.04	PL84	1.30
ECH84	1.93	PCC84	1.04	PL95	1.04
ECL80	1.30	PCCB5	1.30	PL504	1.72
ECL82	1.20	PCC89	1.26	PL508	2.10
ECL86	1.26	PCC189	1.50	PL509	3.00
EF80	. 85	PCF80	1.04	PL519	4.50
EF85	. 85	PCF86	1.26	PL802	3.00
EF86	2.10	PCF200	1.80	PY800	. 97
EF183	1.20	PCF201	1.80	PY88	1.04
EF184	1.20	PCF801	1.26	PY500A	1.75
EL34	1.72	PCF802	1.30	UCH81	2.10
EL36	1.92	PCF806	1.26	UCL82	1.30
EL84	. 85	PCH200	2.10	UCL83	1.30
EL86	1.72	PCL82	1.04	UL84	1.55

WHY SETTLE FOR ANYTHING LESS - ASK FOR MULLARD

BOXES AND CASES

REXINE COVERED

R81 $6 \times 4^{1 / 2 \times 13 / 4^{\prime}}$
RB2 $8 \times 5 \times 2^{\prime \prime}$
$\begin{array}{llll}\text { RB3 } & 9 \times 5 \times 21^{\prime \prime} & \text { £1.9 } \\ \text { RB4 } & 11 \times 6 \times 3^{\prime \prime} & £ 2\end{array}$

$\begin{array}{llll}\text { R85 } & 11 \times 71 / 2 \times 3^{1 / 2} & \text { E2.90 } \\ \text { RB6 } & 13 \times 8 \times 412^{\prime \prime} & \mathbf{E 4 . 0 0}\end{array}$
R87 $15 \times 8 \times 4^{\prime \prime} \quad$ ¢ 4.25
Complete with screws and

VERO POTTING BOXES
 VP81 $2 \times 3 \times 1$ Black

VPB2 $2 \times 3 \times 1$ White

HAND HELD CONTROL BOX

The new Vero Hand Held Control 8ox - ideal for remote control uses -- specially designed for the purpose. White ABS plastic. Measures $94 \times 61 \times 22.6 \mathrm{~mm}$ Price 62 p

VERO CASES

1 PLASTIC BOXES
V81-65×120×40mm CODE 65.2518 H

VB2-80×150×50mm CODE 65-2520J

V83-110×188×160mm CODE 65.2522 K

Moulded in 2 tone high impact polysty rene - screw fixing - very strong ideal for wall mounting or bench use threaded brass inserts for P.C. mounting

2 PLASTIC CASES

a) illustrated

VC $1-205 \times 140 \times 40 \mathrm{~mm}$ CODE 75-1410.

VC2-205×140×75mm $£ 3.29$ CODE 75-1411D VC3-205× $140 \times 110 \mathrm{~mm} \quad £ 4.27$ CODE 75. 14 12 K

Moulded in light grey high impact A8S includes internal P.C. 8 . fixing screws and anodised aluminium front panel held in place by the two halves of the case screw fixing plus rubber feet.

3 PLASTIC CLIP CASES

VCC $1-85 \times 40 \times 154 \mathrm{~mm}$ CODE 75-1237J VCC2 $-85 \times 60 \times 154 \mathrm{~mm}$ CODE 75-12380
VCC $3-85 \times 80 \times 154 \mathrm{~mm}$ CODE $75-1239 \mathrm{~K}$

Similar to plastic boxes (1) but with anodised atuminium front panel, two tone halves clip logether solidly without screws for ease of access. P.C. 8 fixings

4 PLASTIC SLOPING CASE VSC1 $-220 \times 174 \times 100 / 50 \mathrm{~mm}$ CODE 65-2523E

VSC2-171×121×75/37.5mm CODE 75-1798K

Two tone case - removable anodised al front panel and recess at rear for cable entry ideal instrument case.

SOLDERLESS TERMINALS

Red
15715
$\mathbf{£ 1 . 5 0}$ RING TONGUE

SERVICE AIDS

ELECTROLUBE - SERVICE AIDS

RELAYS—DIL

D.I.L. REED RELAYS

Low power drive - 35 mW - for operation direct from TT
5, 12 and 24 V nominal coils available
Contact rating 10 VA switched to carry 1 A
Optional internal diode and electrostatic screen
Isolation between coil and contacts
$10,000 \mathrm{M}$-ohms - proof tested to 500 V min
At present available with 1 form A contact configuration

	VOLTAGE DC					
	Coil	Operate	Release	Max	Nom	
	Resistance					PRICE
$150 Q 2$	530	8	2	18	12	£2.00
15003	2000	16	4	32	24	£2.00
15005	360	3.5 I	1	15	5	£2.00
15005AB	360	3.50	1	15	5	£2.75
15005B	360	3.5 宸	1	15	5	¢2.25
15015 AB	2000	11.5	4	32	15	£2.85

Modification 'A' - Electrostatic shield connected to pin 2
Modification 'B' - Diode connected between pin 6 and 9

PIN CONNECTIONS

dIL PACKAGE

PICOREED

INSTRUMENT CASE

THE PROFESSIONAL TOUCH!
CASE-A housing unit for plug in Eurocards (100×160) and/or modules. Can be used free standing or in $19^{\prime \prime}$ racking. Consists of aluminium frame. 34 prs. of guides and separate mounting raif for 31 -way connectors -- top, rear and base removable - blue PVC clad aluminium - base and rear are ventilated -- inside width is $17^{\prime \prime}$ - to take a combination of modules and front panels.
$4^{\prime \prime}$ MODULE-Consists of $4^{\prime \prime}$ front panel. 4 guide rails with fixing holes, a rear and base plate - rigid construction
FRONT PANELS available $1^{\prime \prime}$ or $2^{\prime \prime}$ wide made of anodised aluminium - easily attached to Eurocards with mounting angles and screws - economic way of building control units
CARDS-Standard Eurocards - designed to slide in and out easily
CONNECTORS - A 31 -way plug and socket array - designed to work quickly and efficiently - accurately guided together when cards are inserted
Description

- CASE (including guides) $\quad 71-3841 . \mathrm{L}$ Price
- 4" MODULE
- $2^{\prime \prime}$
$71-3845-G \quad \mathbf{~} \quad \mathbf{~} 1.02$
- VEROBOARD

DIP BOARD

- 31.WAY PLU
- 31-WAY SOCKET

POSTAGE
Although the case comes flat, please allow an extra $£ 1.00$ for postage. Many thanks

CABLE

AUDIO-SCREENED CABLE

TOOLS \& CUTTERS

GENERAL PURPOSE $100 \mathrm{~mm}\left(4^{1} / 2^{\prime \prime}\right)$ DIAGONAL CUTTERS ROUND NOSE PLIERS FLAT NOSE PLIERS SNIPE NOSE PLIERS END/TOP CUTTERS A quality range of tools for the service man and
enthusiast. Box joint construction for strength. Small compact and reliable, insulated handles and smari individual wallet
20\% DISCOUNT

are bought at
same time deduct 20%
£3.15 £3.15 £ 2.95 £ 2.90 $£ 2.90$ £ 3.35

FROM BAHCO \& BRINDLEY

PROFESSIONAL TOOLS/CUTTERS

DIAGONAL CUTTERS TYPE 2111-4 with bevel on outer edge DIAGONAL CUTTERS. TYPE 2112 -4 with no bevel - cuts flush SNIPE NOSE PLIERS TYPE 2411.4 A high quality range of Swedish electronic $\mathbf{E 6 . 5 4}$ utters qualty range of Swedish electronic pliers and with precision at reasonable cost. Spring loaded insulated handles 115 mm .

QUALITY FROM BAHCO

NEW CUTTERS

New safety cutters with loaded with satety guard offcut retaining clip

INSTRUMENT KNOBS

SIFAM COLLET KNOBS Function, styling,
 handling \& simplicity of assembly are the main features of this new range of collet knobs. The various accessories caps. pointers \& nut covers - are simply plugged into basic knobs to form a vibration proof unit. Full size illustrations shown here indicate the possible combinations of colours available
Two basic ranges are stocked along with retated accessories, hese at diameter range and a 21 mm diameter range
KNOBS available in black or grey S150 - 15 mm short knob. plain
S151 - 15 mm short knob and line pointer K 150 - 15 mm standard knob and plain K151-15mm standard knob and line pointer W151-15mm wing knob and line pointer K210-21 mm standard knob, plain K11 $\mathbf{- 2 1 m m}$ standard knob and line pointer W211 - 21 mm wing knob and line pointer CAPS available in black, red grey, green, blue or yellow C150 - cap for 15 mm knob, specify colour C210 - cap for $21 \mathrm{~mm} k n o b$. specily colour POINTERS available in same colours as caps P150 - pointer for 15 mm knobs P210 - pointer for 21 mm knobs NUT COVERS available black, red. grey N150 - nut cover for 15 mm knobs Nut covers not needed on 21 mm knobs FIGURE DIALS available as shown Black with white pointer Grey with black poinie Clear with black taper Figure dial 1-10 clear ALL KNOBS ARE FOR $14^{\prime \prime}$ SPINDL
DON T FORGET TO SPECIFY COLOUR REOD

A. MARSHALL (LONDON) LTD.

MULTITESTERS

DIGITAL MULTITESTERS-PORTABLE
COMPLETE WITH CHARGER

Model: LM-3A £82.00 + VAT

MAINS/BATTERY OPERATED - COM
TERIES \& CHARGER UNIT Features * Automatic polarity, decimal and overload indication
\# Automatic polarity, decimal and overload indication * Battery operated - NiCad batteries; also AC line operation * Large LED display for easy reading without interpolation * Size $1.9^{\prime \prime} \mathrm{H} \times 2.7^{\prime \prime} \mathrm{W} \times 4^{\prime \prime}$ deep * Parts and labour guaranteed for one year

* Input voltage protection in ohms and current range Ranges Volts DC $-0-1,10,100,1000$ volts Resistance $-0.1 \mathrm{k}, 10 \mathrm{k}, 100 \mathrm{k}, 1 \mathrm{meg}$. Curent - $0.1 \mathrm{~mA} \quad 10 \mathrm{~mA} \quad 100 \mathrm{~mA}$ iA Omegohms

Complete with tilt stand for benchwork or optional case $\mathbf{£ 8 . 0 0}$

Model. LM 3. 5A $£ 95.00$ + VAT

DIN PLUGS \& SOCKETS

PHONO PLUGS \& SOCKETS

JACK PLUGS \& SOCKETS

MONO
1/4" STANDARD JACK

\cdots Clim $C=0$	$1 / 4^{\prime \prime}$ STANDARD JACK PLUG - FULLY SCREENED	25p
$C=100$	1/4" STANDARD JACK PLUG - UNSCREENED	16p
	$1 / 4^{\prime \prime}$ STANDARD JACK CHASSIS SOCKET SWITCHED	20p
$\sqrt{6}+10$	y/4" STANDARD LINE SOCKET PLASTIC or METAL	$\begin{aligned} & \text { 20p } \\ & \text { 30p } \end{aligned}$

STEREO

$\cdots \pi=C-m e$	$1 / 4^{\prime \prime}$ STEREO JACK PLUG FULLY SCREENED	35p
$\Leftrightarrow 1 G 100$	1 $1 / 4$ " STE‘REO JACK PLUG UNSCREENED	25p
	$1 / 4^{\prime \prime}$ STEREO JACK CHASSIS SOCKET SWITCHED	25p
C6 Coli	$1 / 4^{\prime \prime}$ STEREO LINE SOCKET 1) METAL 2) PLASTIC	$\begin{aligned} & 45 p \\ & 25 p \end{aligned}$
Cive	3.5 mm JACK PLUG FULLY SCREENED PLUG LINE SOCKET	$\begin{aligned} & 16 p \\ & 16 p \end{aligned}$
	3.5 mm JACK PLUG PLASTIC UNSCREENED LINE SOCKET	$\begin{aligned} & 10 p \\ & 10 p \end{aligned}$
	3.5 mm JACK SOCKET CHASSIS-PLASTIC	12p
\sin	$\begin{aligned} & 3.5 \mathrm{~mm} \text { JACK SOCKET } \\ & \text { CHASSIS-METAL } \end{aligned}$	$10 p$
\square	2.5 mm JACK PLUG PLASTIC METAL	$\begin{aligned} & 10 p \\ & 15 p \end{aligned}$
egto	2.5 mm JACK SOCKET CHASSIS, SWITCHED PLASTIC	10p

POWER CONNECTORS

	12 WAY FLEXIBLE
$\mathbf{3 0 p}$	
	CONNECTOR BLOCK

BNC CONNECTORS (75R)

TERMINALS \& CLIPS

COAXIL CONNECTORS

COAXIAL TV AERIAL ALUMINIUM PLUG

COAXIAL PLASTIC PLUG

COAXIAL CHASSIS
SOCKET Plastic or metal

COAXIAL SNAP-IN CHASSIS SOCKET

30p COAXIAL LINE SOCKET METAL

COAXIAL IN LINE ALUMINIUM COUPLER

15p CAR AERIAL PLUG
${ }^{2}$

STANDARD TOGGLES

STANDARD
SPST (2 tags) 2A 250 V
Chrome toggle-on/off plate DIMS $25 \times 14 \times 14 \mathrm{~mm}$

DPDT (6 tags) 2A 250 V Extra long toggle + plate DIMS $29 \times 18 \times 17 \mathrm{~mm}$

SUB MINIATURE 2A 250 V
SPST (2 tags) $12 \times 6 \times 9 \mathrm{~mm}$ Red toggle
SPDT (3 tags) $12 \times 6 \times 9 \mathrm{~mm}$
Red toggle
DPDT (6 tags) $12 \times 11 \times 9 \mathrm{~mm}$
Red toggle
DPDT (6 tags) $12 \times 11 \times 9 \mathrm{~mm}$ Centre off Red toggle
micro miniature 2 A 250 V
SPST (2 tags) $8 \times 5 \times 7 \mathrm{~mm}$
Chrome toggle
SPDT $(3$ tags) $8 \times 5 \times 7 \mathrm{~mm}$ Chrome toggle
DPDT (6 tags) $8 \times 7 \times 7 \mathrm{~mm}$ Chrome toggle
STANDARD
SPST (2 tags) $24 \times 16 \times 17 \mathrm{~mm}$ 6A 250 extra long paddle shaped chrome toggle

250v, 15 amp . SPST (2 tags) Body dims: $24 \times 13 \times 14 \mathrm{~mm}$ Black plastic toggle
FLAT TOGGLE
$250 \mathrm{~V}, 3 \mathrm{amp}$. SPST (2 tags) Flat toggle, two screw fixing eschtcheon covers screws. As above but SPCO (3 tags)

QUALITY TOGGLES

ARBOW

CT SERIES

Approved to BS3955 Spec
2 A 250 V AC. 5 A 29 V DC
Low cost subminiature toggle switches, designed for applications where compact size. low weight and rugged construction are required. Fitted with solder lug terminais of silver alloy, moving contacts of silver alloy and fixed contacts of silver alloy

Initial Contact Resistance	10 M Max (at 4Vd.c. IA)
Proof Voltage	$2000 \mathrm{~V} \mathrm{r.m.s} at sea leve$.
Insulation Resistance	1000 M Min.
Electrical Life	50,000 cycles Min.
Mechanical Life	100,000 cycles Min.
Operational Force	$150-200$ grms.
Temp Range.	-40 C to +80 C
Angular Movement	$24+3$

POLE, 2 AND 3 POSITIONS - 3 TAGS

CTS3 S.P. Change Over £0.81
CTM3 S.P. Biased C/Over £0.99
CTC3 S.P.Centre Off $\mathbf{£ 0 . 8 7}$
CTE3 S.P. Centre Off
1/2 Biased
f0.99
$\begin{array}{lll}\text { CTG3 } & \text { S.P. Biased Centre } & \mathbf{E 0 . 9 9}\end{array}$
BODY DIMS
$14 \times 6 \times 16 \mathrm{~mm}$

2 POLE, 2 AND 3 POSITIONS - 6 TAGS

ROCKER SWITCHES

SPECIFICATION: 16A. 250 Volts A.C. Contact Rating
Dimensions: 1600 Series Cutout $27.4 \times 12.3 \mathrm{~mm}$
2600 Series Cutout $27.4 \times 22 \times 3 \mathrm{~mm}$.
FEATURES:

- Low cost
- Compact design with popular snap-in fixing
- Choice of colour and termination.
- Complementary pilot lights and illuminated switches
- Slow, make and break action providing Class B
disconnections as defined in BS. 3955 Part 3, 1972
- Overseas approved
- Choice of single pole 1600 Series or double pole 2600.

iltuminated push button-ADAPT-A-SWITCH

This switch is available in two basic forms 1) Momentary action Type 83502 2) Aheinate action Type 83505

The Switch comes complete with one SPCO contact block. Extra contact blocks may be ordered to add on to the basic switch (maximum 3/switch)
Coloured lenses available in Red. White, Green, Blue, Yellow, Amber these are avaitable separately at 14 p each, but each switch comes with these are
one lens.
\square

ARROW

1 POLE 2 AND 3 POSITION
1600-22E $\quad 1$ Pole On-Off (2 tags)
$1602 \cdot 22 \mathrm{E} \quad$ 1P2W Changeover 3 tags
1603-22E 1P2W Chanceover biased one way 3 tags $1604-22 \mathrm{E} \quad 1 \mathrm{P} 2 \mathrm{~W}$ Changeover 3 position centre off 3 tags $\begin{array}{ll}\text { 1604-22E } \\ 1622-R 22 E & 1 P 2 W\end{array}$ $1622-R 22 \mathrm{E} \quad$ As above but for 12 v -filament indicator

2 POLE 2 AND 3 POSITION

2 POLE 2	POSITION	
2600-22E	2 Pole On-Off (4 tags)	£0.48
2602-22E	2P2W Changeover 6 tags	£0.60
2603-22E	2P2W Changeover biased one way 6 tags	£0.62
1604.22 E	2P2W Changeover 3 position centre off	£0.64
1600-R22E	2P2W On/ Off with red mains neon 4 tags	£0.97
2600-R52E	As above but for 12 v filament indicator	£0.88
pilot ligh	NDICATORS	
1609-R22E	250 v Red mains neon indicator	¢0.48
1609-G22E	250v Green mains neon indicator	$\underline{50.67}$
1609-R52E	12v Filament indicator red	¢0.42
1609-G52E	12v Filament indicator green	¢0.42

Price
1.99
£ 0.41
£0.46
£0.48
£0.49
0.95

ع0.95

HOW TO ORDER

Specify momentary or alternate action.
Specify colour of lens required
Specify number of contact blocks required Miniature flange bulbs included in price. Specify $6 \mathrm{~V}, 12 \mathrm{~V}$ and 28 V .

Exira Contact
Blocks
$£ 1.53$ ea Code 83500-30
\square

FOOT SWITCHES

Very stylish unit - non-slip base and foot pad switch permanently off until depressed-release off complete with flex and 2.5 mm plug.

PRICE 2.40

Ideal for remote control operation of tape recorders, amplifiers, dictating and other bench equipment. Size $21 / 2^{\prime \prime} \times 31 / 2^{\prime \prime} \times 1^{\prime \prime}$ 5 Amp 250 Volt

ROTARY SWITCHES

Available in four types all having adjustable rotation limit stop (Located under fixing nut and washer)

MICROSWITCHES

Miniature Microswitches-10A 250v AV Changeover type BODY DIMS. $28 \times 16 \times 10 \mathrm{~mm}$. Available as standard (S 160) Or with free action lever-roller 17 mm long (S 162)

BRISTOL 0272654201

GLASGOW 0413324133

ACCESSORIES

	To fit Indicators M575, B2'15 and B218			
BU1	r2v	12 volt, 0.1 amp. Lilliput screw		
BU2	6 v	6 volt, 0.2 amp , Lilliput screw	8 pp	

BATTERY HOLDERS

B1	B205	$2 \sqrt{5}$	Moulded. To take four SP11 HP11 batteries in line. Tag terminals	28p
B2	8203	$x=9$	Moulded To take four SP11. HP11 batteries Two by two Snap terminals	28p
B3	A302		Moulded. To take four penlight batteries. Two by two. Snap terminals	20p
84	A303		Moulded To take four Menlight batteries. Side by side. Snap terminals	20p

MAINS KEYNECTOR
 Fuse housing'shut-keys cannot be depressed circuit closed complete
 Ideal for high speed bench testing, shop demonstrations etc. It can take connections up to 13 amp maximum
 Connects electrical equipment to a mains supply in seconds. No plugs or sockets needed. No dangers from touching a live-wire circuit.
 Built-in safety switch with
 amp fuse

SILICON GREASE

Thermpath 167 -- When mounting semiconductors this material improves thermal resistance by up to 40%. The compound is stable over a wide temp. range and maintains insulation.

SUPPRESSORS

An essential component for dynamo and ignition interference suppression, the following range of suppressor condensers provide most values and fixings required

SOCKETS \& HOLDERS

TO18 4 pin holder A1236/4
TO5 3 pin holder A1192
$\begin{array}{lll}\text { TO18 } & 3 \text { pin holder } & \text { A1236 } \\ \text { TO99 } & 8 \text { pin holder } & \text { A23 } 2013\end{array}$
TO99 10 pin holder A23 A2014
TO99 12 pinholder A1200
dUAL-IN LINE SOCKETS
8 pin D.I.L.
14 pin D.I.L.
16 pin D.IL.
18 pin D.I.L.
22 pin D.I
LOW PROFILE
24 pin D.I
28 pin D.I.L
TRANSISTOR COVERS
TO3C Plastic cover
TO66C Plastic cover
SOLDERCON PINS
FOR LOW COST
IC SOCKETS £0.55/100 STRIP Strip of 100 pins for those
odd moments you find
yourself without a socket

ENAMELLED COPPERWIRE

Available on 202 Reels in the following guages

ETCH RESIST PEN

ACCESSORIES

THE MINI-BLEEPTONE 525 £3.75
is an electronic warning device that doubles as a fault indicator or localised warning of fire or intruders. Developed for panel mounting its solid state electronics gives reliability whitst its small size and low current consumption of 3-15mA produce a choice of two signals up to 80 dBA . Its wide voltage range ensures operation from almost any transistorised equipment, completing the flexibility of this unit
Requires $12.7 \mathrm{~mm}\left(0.5^{\prime \prime}\right)$ fixing hole

QUARTZ CYRISTALS

Frequency		Tol.	Load	Case	Price
1.00	Khz	$\pm 50 \mathrm{ppm}$	32 pt	HC13/U	¢ 3.50
1.0	Mhz	- 50 ppm	32 pt	HC6/U	£3.75
3.2768	Mhz	$\pm 20 \mathrm{ppm}$	12 pt	HC33/U	£2.75
4.194304	Mhz	$\pm 20 \mathrm{ppm}$	12 pt	HC18/U	£2.75
5.0	Mhz	$\pm 20 \mathrm{ppm}$	30 pt	HC18/U	£2.50
10.0	Mhz	$+20 \mathrm{ppm}$	30 pd	$\mathrm{HC} / 18 \mathrm{U}$	£2.25
10.7	Mhz	$\pm 20 \mathrm{ppm}$	30 p	HC6/U	¢ 3.40

Plastic	Low P	r Tran	ors TO-92	Characteristics similar (Economic proposition
NPN	$\mathrm{V}_{\text {cbo }} \mathrm{V}$	$\mathrm{Ic}(\mathrm{Av})^{\text {A }}$	Near or Direct Replacements	acceptable)
BC547	50	01	BC183. BC207. BC171. BC237. BC347. BC385	BC182 BC350
BC547A				
BC5478				
8C548	30	01	BC208. BC170. BC172, BC238. BC348. BC 386	BC183, BC318, BC351, BC354
BC548A			BC 132	
BC5488			BC113	
BC548C				
BC549	30	0.3	BC209. BC173. BC239, BC335, BC333: BC349	BC 184, BC319, BC382: BC383.
BC549B			BC114	
BC549C				BC413
BC337	50	0.5	BC223: BC232. BC317	BC537. BC255
BC338	is	95		
PNP				
BC557	-50	01	BC213, BC225, BC204, BC251, BC257, BC307	BC212
BC558	-30	01	BC205, BC250, BC252. BC258. BC308. BC357	BC2 13. BC355
BC558A				
BC558B			BC224	
BC559	-25	0.1	BC206, BC253. BC259, BC309	BC214.
BC559A			BC334, BC336	
BC559B				BC415
BC327	-50	0.5	BC327. BC231. BC320: BC321. BC381	BC322. BC527
BC328	-30	0.5		BC381

INDEX

description	PAGE	DESCRIPTION	Page	DESCRIPTION	page	descripion	Page
Adaplaswitch	26	Daio Marker Pen	28	Microprocessors	10/11/12	Siliton Grease	28
Aerial Plugs	25	Desolder Tool	Braid	Microswithes	27	Slide Switches	27
Aerosols	21	Diacs	9	Microtester	23	Sockers	28
Audio Connectors	20/2425	Dighal Mutitesters	23	M.ODULES-Audio	29	Sockets Wire Wropp	12
Audio Modules	29	D.I.L Sackets	28	Modules-Clock	3	Solder	28
Batery Holders	28	D.IL. Relays	21	Multumeters	23	Soldering lrons	19
Connectors	25	Din Plugs \& Sockets	24	Neons	28	Sprays	21
8NC Connectors	25	Diodes	6/7	Opto Electronics	13	Suppress ofs	${ }^{28}$
Boards - Printed Circuit	it 18	Data	7	Coupter	13	Switches	$26 / 27$
Boxes	20	Displays --Digital	13	Panel Melers 29		Terminats	24/25/21
Brad-Solder		Ear Pieces	29	Printed Circull Pen	28	Terms \& Condinions	${ }_{29}^{2}$
Bridge Rectifiers	,	Electrolytic Capactors	4	Board	18	Test Leads	29
Bubs	28	Enamelled Wire	28	Phono Plugs \& Sockets	24	Meters	23
Buzzers	29	Etch Resist Pen	28	Photo Devites	13	Thermistor	
Cabinets	20/21	Etthing Kit	29	Prick-up Coil - tetephone	- 29	Thyristor	9
Cases	20/21	Fets - Field Effect T	Trans 16/17	Phers	22	Toggle Swilches	26
Cable	22	Foot Swith	27	Plugs \& Sockets	24/25	Tools	22
Capacitors	4/5	Fuses \& Holders	29	Portable Oigital Meters	23	Tool Wre Wrapp	12
Electrolytic	4	Heat Sinks	18	Porentometers	8	Transtormers	18
Tantalum	4	Compound	28	Presets	8	Transistors	18
Ceramic	4	High Stability Ressistors	rs 8	Push Button Swithes	26/27	Transistors	1617
Polycarbonate	5	Illuminated Swith	26	Quadracs	9	Data	16/17
Metal Film	4/5	imtegrated Circuits	1.1/14/15	Quick Charge Irons	19	Sockets	28
Silvered Mica	5	Sockets	28	Rectifiers	$6 / 7$	Triacs	
Plastic Foil	4/5	Indicators-Numerical	$1 \quad 23$	Reguiators - Vollage	9	Ttimmers	8
Polyester	4/5	Pamel Mounting	28	Relays DIIL	21	UHF Connectiors	25
Polystyrene	5	Instiument Cases	20/21	Resistors	8	Uniunetions	16/17
Variable	5	isotup lions	19	Rotary Variable	8	Valves	20
Card Frame 19	21	Jack Plugs \& Sockers	24	Slider Varable	8	Veroboard	18
Car Clock	3	Keynectior	28	Carbon Fixed	8	Verowire	12
Chokes	29	Knobs	22	Metal Oxide	8	Voliage Regulators	9
Coaxial Cable	22	Lamps	23	Preset Skeleton	8	Data	9
Connectors	20/24/25	L.D.R. 5	13	Neon Linear	8	Volume Controis	2
Coil Formers	29	LE.O.s	13	wWirewound	,	Wre Dropping Toal	9/22 ${ }^{12}$
Conditions of Sale	1	Manl Order Facilities	2	Rockery Switches	26/27	Wre	9/22/28
Cordless Iron	19	Mains Plugs	25	Rolary Switches	27	Wire Wrap Pen Wrre Wrap Sockets	12
Crimping Tool	21	Melers ${ }_{\text {Mica }}$ Caparinors	23/29	Signal Injector	29	Zener Diodes	7

A. MARSHALL (LONDON) LTD.

LONDON 014520161

A MARSHALL (LONDON) LTD

FREE CUTTERS

with all orders over $£ 30$ cash received before the end of August 77. A free pair of the latest Bahco Precision Cutters as illustrated on Page 22 .
Orders can only be accepted on the M/O Form below, and is limited to one tool per order
Please specify when ordering © EXPRESS MAIL ORDER - CONSUMER ELECTRONICS

NATIONAL TEXAS MULLARD

40/42 CRICKLEWOOD BDY LONDON NW2 3ET

85 WEST REGENT STR GLASGOW G2 200

1 STRAITS PARADE FISHPONDS, BRISTOL BS 16 2LX

SIEMENS SESCOSEM antex VERO

REDPOINT SWITCHCRAFT ELECTROLUBE ARROW HART
THIS OFFER CLOSES 31st AUGUST
1977. ORDERS CAN ONLY BE ACCEPTED ON THE FORM BELOW. THE DISCOUNTS ARE FROM $1+$ PRICES ON P14/15/16/17

ALL PRICES EXCLUDE VAT

PLEASE ENSURE THAT YOU COMPLETE YOUR ORDER FORM ACCURATELY

Join the Digital Revolution

Understand the latest developments in calcuiators,

 computers, watches, telephories,television, automotive instrumentation
Each of the 6 volumes of this self-instruction course measures $113 / 4^{\prime \prime} \times 8^{1 / 4^{\prime \prime}}$ and contains 60 pages packed with information. diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.
Uesign of Dịital Systems.

plus 80 p packing and surtace post anywhere im the world
Payments may be made in foreign currencies
Quantity discounts available on request VAT zero rated

Also available - a more elementary course assuming no prior knowledge except simple arithmetic
Digital Computer Loqic and Electronics In 4 volumes

1. Basic Computer Logic
2. Logical Circuit Elements
3. Designing Circuits to Carry Out Logical Functions
4. Flipflops and Registers

£4.20

plus 80p P. \& P
Offer Order both courses for the bargain price $£ 9.70$. plus $80 p$ P. \& P.

Designer
Manager
Enthusiast
Scientist
Engineer
Student

Guarantee-no risk to you

If you are not entirely satisfied with Design of Digital Systems or Digital Computer Logic and Electronics, you may return them to us and your money will be refunded in full, no questions asked

SOME OF THE WORLD'S MOST ADVANCED WATCHES AND CLOCKS

the people you can trus
LCD WATCHES FROM CASIO (TRON)
Arguably the best watches in the world Almost certainly the most versatile. All stainless steel,
Minera! Glass face. Battery hatch. Water esistant to 130 feet. Rapid adjustment facilities.
Black face - 1 . Blue face--2
R16B (left) R.R.P. $£ 59.95$
$£ 44.95$ and Month Backlight Auto Calendar
S15B (right) R. R.P $889.95 \quad \mathbf{E 6 9 . 9 5}$
8 functions and backligh
STOPWATCH - DUAL TIME ZONES

FROM FAIRCHILD TIMEBAND
NEW 1977 MODELS WITH BATTERY HATCH AND FREE REPLACEMENT BATTERY VOUCHER. $5+4$ functions. Constant LCD display of Hours and Minutes. At the touch of a bution. Month and Date, Push button twice for seconds readout. Push again to return Time display Automatic Catendar. Backlight. Optional alternating Time/Date display easily selected.
TC441 Chrome (left) $\quad \mathbf{E 1 9 . 9 5 ~ T C 4 4 0 ~ G o l d ~ p l a t e d ~ (l e f t) ~} \mathbf{E 2 1 . 9 5}$
TC411 Chrome (centre) $£ \mathbf{£ 2 4 . 9 5}$ TC4 10 Gold plated (centre) $£ \mathbf{£ 2 7 . 9 5}$
TC412 Gold plated (right) $£ \mathbf{3 1} 95$

TIMEBAND DIGITAL ALARM CLOCKS (MAINS)
WAKE UP TO TIMEBAND Precise timekeeping. Can be synchronised to second. Alarm accuracy to the exact minute. Will display last minute digit and seconds. Solid state reliability and silent running. 9 minute snooze feature. Alarm on and matns fain indicators
C500 (left) H. $3^{1 / 8^{\prime \prime}} \times$ W. $3^{3 / 4^{\prime \prime}} \times$ D. $3^{3 / 9^{\prime \prime}}$. Black or White £ 14.35
C6110 (centre). As C500 with more sophisticated controls. White only $£ 15.90$
C59D (right). With built-in high / low intensity elevating reading lamp
$£ 23.35$

FROM NATIONAL SEMICONDUCTOR

DAC 5 WS Chrome on strap	\boldsymbol{E}
DAC 5 Y	£25.90
DAC 5 WB (left) Chrome	
Bracelet	E24.
DAC 5 YB (left) Gold	
Braclet	£28.50
DAB 5 WB (right) All	
stainless steel DAB 5 YB (right) Heavy)
DAB 5 YB (right) Heavy gold plate	£39.50

FROMIBICO

403 NS (left) Displays either Hours, Minutes Seconds or Hours, Minutes and Date resistant to 100 feet. Display can be switched off to save battery.
£39.75 R.R. £59.95
700 Analogue (right) 4 basic functions. Lates Swiss 1000 -day movement with stepping motor. Tritumnight time illumination. Mineral glass. Water resistant to 100 feet. Electronic second corrector Battery life expectancy of
THREE YEARS
$\mathbf{E 3 3 . 5 0}$

CALCULATORS

The following are available
FROM STOCK for prompt
casio
ACA CO $£ 29.95$
AC Adaptor $£ 3$
FX-110 38 scientific functions
3-way power source $£ 17.95$
FX-2000 36 sc functions
1000-hour battery life $£ 24.95$
FX-201P Programmabie. 127
steps. 11 memories $\mathbf{£ 4 9 . 9 5}$
FX.202P £69.95

PRO-FX1 $£ 124.95$
ST1. New Stopwatch from Casio Hand held. Four functions. Also includes Calculator with full memory, square root, \% etc. Time key + - - \times hours, minutes and seconds Conversion to decimal hours and back. Available late July
Send $15 p$ for ouf ILLUSTRATED CATALOGUE of over 50 watches
£29.95
TEMPUS $=$ Cambridge CB1 1EH
Tel. 0223312866

SYSTEM BUS ε VDU INTERFACING

Described by John Miller-Kirkpatrick

THERE ARE SEVERAL "standard" methods of interconnecting PCBs in an MPU system, these are known as different 'Bus Structures'. Probably the first of these is the one now known as the 'IMSAI' or S-100 Bus, developed for use with the Altair and Imsai computer systems which were the first popular 8080
microcomputer systems in the USA.
Most of the semiconductor manufacturers have chosen to ignore this standard in producing development kits and as other kit manufacturers copy or base their designs on the development kits so the hopes of a real standard dwindle. There are several groups now trying to set up another set of bus structures for the UK. Apart from the IMSAI BUS, SWTC BUS, etc, most of the others are based on the idea of using the DIN standard 'Eurocard' format of card size. This allows the smallest card to be $100 \times 160 \mathrm{~mm}$ with double and quad Eurocards being multiples of the basic size. In System 68 we have decided to adopt the small single Eurocard as the basic card size, thus allowing the use of standard casing and connector systems.

The connector which we intend to use whenever possible is a 31 -way DIN standard plug and socket system. There is no fixed parallel bus structure as 31 -way severely limits the number of signal lines which can be included on every card.

The basic System 68 is based on a 4 K block which most people will want to extend not long after getting the basic system operational. The logical extension to make is to add on
more program memory in the form of PROM or RAM, a logical size to allow for in each expansion card is 4 K . A 4 K RAM card would require 2 or perhaps 3 power supply lines, 8 data lines, 12 address lines, read and write strobes and a "CARD ENABLE" line. Thus we have already allocated 26 of our possible 31 ways leaving 5 lines uncommitted, we could of course parallel the top 4 address bits

System 68 backplane connections

PIN	VDU	PREFERRED
No.	CARD	FORMAT
1	$+5 \mathrm{v}$	GND
2	GND	U/C
3	U/C	U/C
4	NWDS	U/C
5	Address bit 9	NWDS
6	Address bit 8	NRDS
7	Address bit 7	U/C
8	Address bit 6	U/C
9	Address bit 5	U / C
10	Address bit 4	Data bit 7
11	Address bit 3	Data bit 6
12	Address bit 2	Data bit 5
13	Address bit 1	Data bit 4
14	Address bit 0	Data bit 3
15	VDU ENABLE	Data bit 2
16	KBD ENABLE	Data bit 1
17	NRDS	Data bit 0
18	Data bit 0	Address bit 11
19	Data bit 1	Address bit 10
20	Data bit 2	Address bit 9
21	Data bit 3	Address bit 8
22	Data bit 4	Address bit 7
23	Data bit 5	Address bit 6
24	Data bit 6	Address bit 5
25	Data bit 7	Address bit 4
26	-12V	Address bit 3
27	INT/KBD STROBE	Address bit 2
28	RESET	Address bit 1
29	U/C	Address bit 0
30	U/C	--12V
31	U/C	$+5 \mathrm{~V}$

$\mathrm{U} / \mathrm{C}=$ Uncommitted
Note. On the PCB layout for VDU board B the pin numbers are marked from the wrong end.
as well as the lower 12 but this would leave only a couple of lines spare 'CARD ENABLE would not be required).

From our definition of the requirements for a 4 K RAM card we can lay down a 'preferred' bus structure on which System 68 cards should be designed wherever possible. Now the eagle-eyed amongst you will notice that the VDU cards do not fit this 'preferred' structure and the reason is that the VDU is an example of available space being a more important consideration than conforming to the 'preferred' bus. As the card sockets have to be wired to each other it is a simple matter to change from one layout to another. This makes System 68 a lot more flexible than most of the other micros on the market.

When wiring up the backplane connectors be neat, using different coloured wires for each signal and connecting them with as little excess wire as possible will help you and the MPU.

Using the VDU

The VDU system described in the past two months is of the 'Direct Access' type of VDU rather than the 'Serial' or pseudo-teletype type. The main advantages of the System 68 VDU over the TTY compatible units are speed and Read/Write facilities. Speed is very different because the direct access VDU has RAM which is shared with the MPU and thus the speed of writing a character or page of characters relies only on the speed of the MPU and the efficiency of the program.

Carriage Return?

The term Carriage Return / Line Feed otherwise known as CR/LF comes from TTY printer systems where at the logical or physical end of each line the printer carriage which holds the paper must be returned to its start position and the paper advanced one line by a line feed instruction.

In the case of the TTY VDUs the hardware is worked out to reset the character counter per line to zero (CR) and to cause the VDU to address the next line down (LF).

In the case of the System 68 VDU we do not have any hardware commands whatsoever and so all commands of this type must be decoded by a software routine which is driven by the main program and which in turn is solely in command of the VDU.

Carriage Routine

In its simplest form this routine will be passed the character to be output by the main program via a register, a stack or Working Storage RAM. The routine will test the character and decide whether it is an ASCII control character or a printable character. If the character is to be 'printed' then it is placed in the next available VDU RAM location and will thus be displayed by the VDU on the next page scan, as this happens every 20 mS the change on the VDU can be considered to be instant. The routine will now increment the 'next available VDU location' register and store this address in RAM and then pass control back to the main calling program.

If the output character is found to be an ASCII control character the routine must go through a sequence of operations which will have the same effect as the control chajacter would have on a TTY printer.

If it is a CR then what we need the MPU to do is to write spaces up to the end of the current line and then jump back into the normal end of routine which will update the 'next location' register and store it. Thus next time the main program wishes to output a character that character will be placed in the location following the previous end of line which just happens to be the first location on the next line. The interesting thing is that in most MPUs which I have looked at this simple form of VDU control takes up about the same amount of software

Fig. 1 Flow chart showing routine to implement writing to $V D U$. With this routine the only allowable ASCII control character is CR.
(program) as a software TTY routine, about 40-50 bytes. An example of this will be given when we discuss the software for System 68 in a couple of months' time, in the meantime those of you with MPUs who want to use System 68 VDU should be able to grasp the basic program requirements.

MPU + VDU = AOK

Connecting the System 68 VDU to an MPU is a reasonably simple matter as the shared RAM concept makes it almost as easy as adding RAM. For a start the 8 bit data bus from the VDU is connected to the MPU data bus (with buffering if required), similarly the basic 10 bit VDU address bus is connected to the lower 10 bits of the MPU address bus.

Ignoring the keyboard control signals for the time being we are left with only three signal lines -- VDU ENABLE, NWDS and NRDS. The VDU ENABLE line is effectively the same as the chip select line on a 1 K RAM, it must be taken to a logical low status at the same time as the address is set up on the bus. It is hardware decoded from the upper bits of the MPU address bus to define a 1 K byte block starting address, in a small 4 K system this might well be $X^{\prime} 800^{\prime}$ and thus the

VDU ENABLE line will go low if the upper address bus indicates an address in the range $X^{\prime} 800^{\prime}$ to X'BFF' inclusive. As far as the MPU is concerned this RAM is now available for it to use as it wishes and it is the job of the VDU sub-routine to use it as a VDU.

The two other signals are NWDS (Not Write Data Strobe) and NRDS (Not Read Data Strobe), NWDS goes low whenever data is available on the data bus and a valid address is available on the address bus and a WRITE to RAM condition is required. NRDS is similar except that it is available if a READ operation is required, these are standard signals which must be available in any MPU system which uses RAM. By studying last month's circuit you should be able to see the effects of these signals on the VDU RAM and thus on the screen.

Key to Success

The keyboard control signals on the System 68 VDU board B are similar to the controls for the VDU and thus the DATA, and NRDS strobes are shared with those of the VDU (NWDS makes no sense with

Fig. 2 Flow chart showing routine to implement a read from keyboard operation.
most keyboards). The additional control signals are 'INT' or strobe, RESET and three reserves. 'INT' is the negative going strobe signal produced by most ASCII keyboards and can be connected to the MPU interrupt or other sense input or can be connected as the eighth input bit from the keyboard. RESET is to be connected to allow resetting of the MPU from the keyboard rather than or in addition to the front panel, it should be connected to the MPU RESET pin. The three Reserves are intended for user applications for keyboard option switches or to allow the MPU to drive lamps, buzzers, relays, etc, on the keyboard, note that although only three lines are available these could be encoded or decoded by a 3 to 8 multiplexing chip.

Key to the Sub

The software required for examining the keyboard is very simple and again let us assume that it is a sub-routine called by the main program. The subroutine could have been called by the interrupt system in which case we know that the strobe line is already low and thus valid data is available at the keyboard buffer. Alternatively we have to enter a loop which continually tests the strobe signal and branch out of the loop when this signal goes low. In both cases we can now put the KBD ENABLE line low in a manner similar to that used for VDU ENABLE. At the same time we must put NRDS low to indicate that we wish to read the data of that location and the combination of both signals will enable the outputs of the KBD buffer and place the keyboard data on the MPU data bus. Our subroutine does all of this by executing a READ instruction and then saves the character data input in RAM. In order to fully debounce the keyboard the routine will now enter another loop to await the release of a key and thus the change to logic ' 1 ' of the strobe pulse. Command is now passed back to the main calling program with the input character in RAM or a register.

Device address decoding

This concept can be one of the most daunting to new MPU users but have no fear, System 68 is here! Most MPUs claim to be able to access 64 Kilobytes $\mathbf{~} 65.536$ bytes) but do not say what they are accessing. Others claim to have bolt-on goodies like I/O PORTS or

PIAs and ACIAs, these are all ways of kidding the MPU that it is addressing one of the 64 K locations available to it.

In the case of the 6800 the first instruction (effectively) is fetched from location X'FFFE' after a RESET or Power-up. The data in this location cannot be random and thus it has to be previously defined as ROM or switches and then has to be uniquely accessed by the MPU address bus so that the data at that location only can be loaded onto the MPU data bus.

Consider the standard (not ITT) 74LS 139, this is a dual 2 to 4 line decoder in a sixteen pin package. If we wish to break up our 4 K into four 1 K blocks we can ignore the lower 10 bits of the address bus and use the next two as inputs to one of the 2 to 4 line decoders. These two address lines can be in any of 4 live (ie not TRI-STATE) states defined by logic levels 00, 01, 10, 11. The 74LS139 uses these to enable one of four outputs which can then in turn be used to enable a block of 1 K bytes 'eg VDU ENABLE). Similarly we can break down one of these blocks into four 256 byte blocks by using the other half of the 74LS 139 and use one of the outputs as KBD ENABLE We can also use another output from the 74LS 139 (second half) to define an area of 256 bytes of RAM for use as a stack or Working Storage RAM. A RAM chip such as the 2112 is

Fig. 3 Chip pin-out for 74139 is shown in (a) above; (b) shows the truth table for this IC.
presented as 256 locations each with 4 bits, thus two of these chips would give 256×8 bits or 256 bytes.
These chips are internally decoded to access each of the 256 locations uniquely and all they require is the lower 8 bits of the address bus plus a device address 'usually called CHIP ENABLE) which in our example is output from the 74LS139.

By using further similar decoding techniques it is not difficult to work out how to access X'FFFE' uniquely without having to use a ton TTL decoders.

Tri-State Buffers, etc

MPUs introduced a new concept to digital electronics, that of a third output state of a logic gate. This can be very difficult to comprehend especially as most explanations are in the form of technical language.

We can however consider a TRI-STATE thus as two lots of 8 two position switches so that the first 8 switches are either open circuit or connected to the wipers of the other 8 switches and in turn these switches are connected to either logic ' 1 ' or ' O^{\prime}. It is assumed that all of the second batch of switches are preselected with the required logic states and that the first set of switches are all in the open circuit state. By closing all 8 of these

Fig. 4 A TRI-STATE gate may be represented by switches as shown above. switches at once the 8 outputs will change from open circuit to the preselected logic states. If you control all 8 of the output switches with a solenoid driven from a relay which in turn is driven by a logic ' 0 ' signal then you have just built an 8 bit TRI-STATE port! Most IC manufacturers have put all of this into ICs in the form of 4,6 or 8 bit buffers, for example the $8095,6,7,8$ 6 bit buffers or the 8195,6,7,8 8 bit buffers as used in System 68 VDU.

Next month

The 6800 MPU board.

Greenbank

TIME BOX. Digital Clock Case $56 \times 131 \times 715 \mathrm{~mm}$ with red acrylic window. Choice of case colour white, red, orange, blue
$£ 2.25$.
"E"LED DISPLAYS. Class II d

not satistied			
DL-704 0.3in	70p	OL-727E 2×0.5	E1.80
DL.707E 03 in	70p	DL-750E 0.6 in	E1.50
OL. $728 \mathrm{E} 2 \times 0.5 \mathrm{in}$	E1.80	DL-747E 06 m	C1.50
SOLDERCON PINS		DIL SOCKETS	
100	60p	8/14/16 pin	15p
1000	¢4.00		
3000	E10.50		
10,000 half price [¢3	.00)		
CMOS WV	H	SCOUN	

4000 Serien											
4000	0.20	4027	0.60'	4051	1.04	4081	0.24				
4001	0.20	4028	1.00	4052	1.04	4082	0.24				
4002	0.20	4029	1.27	4053	1.04	4085	0.80				
4006	1.31	4030	0.60	4054	1.29	4086	0.80				
4007	0.20	4031	2.46	4055	1.46	4089	1.74				
4008	3.07	4032	1.19	4056	1.46	4093	0.89				
4009	0.60	4033	1.55	4057	29.81	4094	2.08				
4010	0.60	4034	2.11	4059	6.20	4095	1.16				
4011	0.20	4035	1.31	4060	1.24	4096	1.16				
4012	02.0	4036	. 3.09	4061	25.60	4097	4.13				
4013	0.60	4037	1.06	4062	10.10	4098	1.22				
4014	1.12	4038	1.20	4063	1.22	4099	2.03				
4015	1.12	4039	3.09	4066	0.69	40101	1.76				
4016	0.60	4040	1.19	4067	4.13	40102	2.16				
4017	1.12	4041	0.93.	4068	0.24	40103	2.16				
4018	1.12	4042	0.93	4069	0.24	40104	2.26				
4019	0.60	4043	1.12	4070	0.65	40107	0.66				
4020	1.24	4044	1.04	4071	0.24	40108	6.18				
402	1.12	4045	1.56	4072	0.24	40109	2.21				
4022	1.07	4046	1.48	4073	0.24	40181	4.30				
4023	0.20	4047	1.01	4075	0.24	40182	1.73				
4024	0.87	4048	0.60	4076	1.71	40194	2.26				
4025	0.20	4049	0.60	4077	0.65	40257	2.26				
4026	1.92	4050	0.60	4078	0.24						
14100 and 14400 Series											
14160	1.13	14175	1.04	14415	7.35	14450					
14161	1.18	14194	1.17	4419	2.67	14451	2.67				
14162	1.18	14410	5.70	14422	2 4.98	490	51				
14163	1.18	14411	9.54	14435	5.93						
14174	1.08	14412	17.07	14440	11.58						
14500 Series											
14501	0.20	14518	1.39	14537	13.17	1456	0.70				
14502	1.38	14519	0.57	14539	1.24	14562	5.59				
14503	0.75	14520	1.39	14541	11.62	14566	1.67				
14505	4.38	14521	2.77	14543	1.82	14568	3.15				
14506	0.57	14522	2.15	14549	9.10	14569	3.72				
14507	0.60	14526	2.15	14552	210.50	14572	0.27				
14508	3.08	14527	1.76	14553	34.66	14580	8.35				
14510	1.51	14528	1.22	14554	41.67	14581	4.30				
14511	1.74	14529	1.72	14555	51.01	14582	1.64				
14512	1.03	14530	0.95	14556	61.01	14583	0.84				
14514	3.47	14531	1.74	14557	74.65	14584	0.71				
14515	3.47	14532	1.39	14558	81.25	14585	1.10				
14516	1.51	14534	8.15	14559	94.10						
14517	4.02	14536	4.00	14560	O2.17						
74 COO Series											
74 COO	0.26	$74 \mathrm{C86}$	0.69	74 C 1	731.21	74 C 910	07.20				
74 CO 2	0.26	75049	-65	74 C 17	741.21	74 C 914	41.50				
$74 \mathrm{CO4}$	0.26	$14 C 90$	0.82	74 Cl 19	921.49	$74 \mathrm{C9} 18$	82.90				
74 CO	0.26	-607	-0\%	74 C 1	931.49	$74 \mathrm{C9} 20$	09.84				
74 Cl 10	0.26	74 C 95	1.31	74 Cl 1	951.31	$74 \mathrm{C9} 21$	19.84				
74 C 14	1.51	74 Cl 10	71.31	74 C 20	2007.20	$74 \mathrm{C925}$	58.28				
74 C 20	0.26	74 Cl 5	04.17	74 C 22	211.50	74 C 926	68.28				
74 C 30	0.26	74 Cl 5	12.63	$74 \mathrm{C9O}$	2010.74	74 C 92	78.28				
74 C 32	0.26	74 C 15	43.93	$74 C 90$	020.74	$74 \mathrm{C9} 28$	88.28				
74 C 42	1.20	74 C 15	72.36	74.90	030.74	80 C 95	1.20				
	2.37	74 Cl 16	01.49	$74 C 90$	040.74	$80 \mathrm{C96}$	0.92				
$74 C 73$	0.74	74 C 16	11.49	$14 \mathrm{C9O}$	057.71	$80 ¢ 97$	0.87				
$74 C 74$	0.63	74 C 16	21.49	$74 \mathrm{C9} 9$	060.74	80 C 98	0.92				
74 C 76	0.74	74 Cl 16	31.49	$74 \mathrm{C90}$	9070.74	88 C 29	6.21				
$74 \mathrm{C83}$	1.97	74 Cl 16	41.31	74 C 90	082.63	88С30	6.21				
C85	1.97	74 C	51.31	$74 \mathrm{C9} 0$	1.74						
VEROBOARD'				OP-AMPS							
				CA $3130, \mathrm{COS} / \mathrm{MOS} 1$							
$2^{1 / 2^{\prime \prime}} \times$	1 " pac	ck of 5)	$61 p$								
${ }^{1 / 1 / 2^{\prime \prime}} \times$	31/4		42p								
$21 / 3^{\prime \prime} \times$	5 "		50 p	TIMER IC							
$2^{1 / 2}{ }^{\prime \prime} \times$	17"			NE 555							
	33/2"		${ }_{56 p}$				99p				
	$17^{\prime \prime}$		¢1.98	LEDs (red only)							
$47^{\prime \prime}{ }^{\prime \prime}$	17.9"		£2.55	$\begin{array}{lll} 0 & 11 " \text { dia } \\ 0 & 2 " d i a \end{array}$			15p				
$01 . .{ }^{\text {P }}$	Plain boa	ard ano stim	105								
$3^{\frac{3}{4} 4^{\prime \prime}} \times$	$21 / 2^{\prime \prime}$		28p	QUARTZ CRYSTALS							
3\%" *	5"		45 p								
$31 / 4{ }^{\prime \prime} \times$	17.9"		E1.28								
Iermina	al pins	E1.	/500	$4194304 \mathrm{MHz}^{2}$ all same price, each $\mathbf{£ 3 . 7 5}$.							
DIP bre	readtoar										
Spor to	ace cutter		$74 p$	Motorola 32.768 kHz minia.							
Pin ins	sertion to			ture c	crystal $¢ 4$	50.					
				LIquIO CRYSTAL							
				DISPLAYS							
CLOCL	K CHIP			E13.95							
AYK 5-1			3.50								
MK 50	0253		65.50	CLOCK CHIP							
MK 50 .MK 5	0362		E8.00	$1 / 2$ volt batery operated, to sult out LCD. 40 pan DIL							
MK	0366 co	comingi									
CATALOGUE. Fige on reques SWO. Add VAT to all prices al 8% $25 p(+2 p=27 p)$ per order. Export add $75 p$ Europe). $£ 2.50$ elsewhere, no VAT es. regd Cos.. etc.. can telephone their orders for immediate despatch											

GREENBANK ELECTRDNICS (Dept. T7E)

BUILD THE

- Genuine 5 silicon transistor circuit. does not need a transistor radio to operate.
- Incorporates unique varicap tuning for extra stability.
bearch head fitted with Faraday screen to eliminate capacitive effects.
- Loudspeaker or earphone operation (both supplied)
- Britain's best selling metal locator kit. 4,000 already sold.
- Kit can be built in two hours using only soldering iron, screwdriver, pliers and side-cutters.
Excellent sensitivity and stability
- Kit absolutely complete including drilled, timned, fibreglass p.c. board with components siting printed on.
Complete after sales service.
- Weighs only 220z.; handle knocks down to $17^{\prime \prime}$ for transport.
Send stamped, self-addressed envelope for literature.
$\begin{aligned} & \text { Complete kit } \\ & \text { with pre-built } \\ & \text { search coil }\end{aligned}$ 45
Plus £1.00 P\&P
Plus £1.18 VAT (8\%)

Built, tested
and
Guaranteed
$£ 19.75$
Plus $£ 1.00$ P\&P
Plus £1.58 VAT (8%)
MINIKITS ELECTRONICS
6d Cleveland Road, South Woodford, LONDON E18 2AN
(Mail order only)

TV GAMES CHIP AY-3-8500 £11.50. Printed circuit and kit of extra parts £8.95. Rifle kit $£ 4.95$. Add on colour kit P.O.A. Send sae for free data.	
PONENT SERVICE	
Resistors 5% carbon E12 18 to 10M 1/aW 1p. 1W 3p. Preset Pots subminiature 0 iW 1002 to 4M7 9p.	
5 4p. $01,02,02541 / 2 \mathrm{p}$. Polyestar capacitors	
11p. Electrolytics 50 V 47.1.2mi 5 p . 25 V 5.10 mf	
5p. $16 \mathrm{~V}, 22.33 .47 \mathrm{mF}$ 6p. 100 mf 7p. 220.	
9p. 470 mf 11 p .1000 mf 18p. Zener Diodes 400 mw E24 3V3 to $33 \vee 81 / 2 p$.	
MAINS TRANSFORMERS	
0.6V 100 mA 94 p . 9.0 .9 VV 75 mA 94 p .	
PRINTED CIRCUIT KITS ETC * Contains etching dish, 100 sq ins of pc board. 1 lb ferric chloride. etch resist pen, drill bit and laminate cutter £3.65. 100 sq ins pc board 75p. 1 lb FeC 1 95p. Etch resist pen 75p.	
S-DECS AND T-DECS S-DeC £1.94. T-DeC £3.61. u-DeCA £3.97. u-DeCB £6.97. IC carriers with sockets. 16 dire1.91. 10 T05 £1.79.	

SINCLAIR CALCULATORS AND POCKET TV
Sinclair pocket Programmable $£ 13.95$. Prog. library $£ 4.95$. Cambridge $^{\text {E }}$ Scientific $£ 8.45$. Oxford Scientific $£ \mathbf{1 0 . 6 0}$. Mains adaptors £3.20.

BATTERY ELIMINATOR BARGAINS

3.WAY MODELS

With switched output and 4 -way multi-jack connecto $71 / 9 \mathrm{~V}$ at $300 \mathrm{~mA} £ 2.90$
100mA RADIO MODELS $9 V £ 3.45 .6 \mathrm{~V} £ 3.45$. 9 V With press-slud connectors $9 V £ 3.45 .6 V £ 3.45 .9$. CASSETTE MAINS UNIT
FULIY STABILIZED MODEL $£ 5.45$
Switched output of $3 / 6 / 71 / 2 / 9 \vee 400 \mathrm{~mA}$ stabilized CAR CONVERTORS 12 V INPUT
Output $9 \mathrm{~V} 300 \mathrm{~mA} £ 1.80$. Output $71 / 2 \mathrm{~V} 300 \mathrm{~mA}$ £ 1.80.

BATTERY ELIMINATOR KITS

100 mA radio types with press stud battery terminals $41 / 2 V £ 2.10$. $6 V$ £2.10. $9 V £ 2.10$. £2.50. $6 \mathrm{~V}+6 \mathrm{~V} £ 2.50 .9 \mathrm{~V}+9 \mathrm{~V} £ 2.50$. Cassette type: $7 \mathrm{~V} / \mathrm{V}$ 100mA with DIN plug $£ 2.10$. Transistor stabilized 8-way type for low hum.
$3 / 41 / 2 / 6 / 71 / 2 / 9 / 12 / 15 / 18 \mathrm{~V} 100 \mathrm{~mA} £ 3.20$. 1 Amp c6.50.
Heavy duty 13-way types
$81 / 2 / 11 / 13 / 14 / 17 / 21 / 25 / 28 / 34 / 42 V^{4 / 2 / 6 / 7 /}$ model £4.95. 2 Amp model $£ 7.95$. Car convertor kit: Input 12 V DC

Stabilized Laboratory power kit. Switched 1 to 30 V
SINCLAIR PROJECT 80 AUDIO MODULES
PZ5 £4.95. Z40 £5.75
B1-PAK AUDIO MODULES
S450 tuner $£ 21.95$. AL60 $£ 4.86$. PA 100 £14.95. MK60 audio kit £36.45. Stereo 30 £ 17.95 . SPM80 $£ \mathbf{3 . 7 5}$. BMT80 £4.25. Send sae for free data.

SINCLAIR IC20

printed circuit and data $£ \mathbf{6 . 9 5}$
P220 Power supply kit for above $\mathbf{£ 3 . 6 5}$
VP20 Volume, tone-control and preamp kit £8.95. Send

JC12 AND JC40 AMPLIFIERS

amp with free data
and printed
circuit $£ 1.95$
Also new JC40 20W model with pcb
£3.95. Send sae for free leatlet on IT $£ 3.95$. Send sae for free leatlet on
both models and associated power
both models and associa

FERRANTI ZN414

IC radio chip $£ 1.44$. Exira parts and

SWANLEY ELECTRONICS

 Swanley, KentMait order only. No callers. Send sae for rree data on kits. Post 30 p on orders under $£ 4.50$. otherwise free. Prices customers please deduct 7% on items marked \star and

Our micro man, Gary Evans, takes a look at a new system of large scale software
distribution and at some new items of hardware.
THE PATTERNS THAT are shown at the top of this page are beginning to appear on a wide range of products, from paperback books to tins of baked beans. They are typical of the optical bar codes that can be used to record digitally encoded information.

The advantage of storing information in this way is that the data may be quickly and accurately read into a POS (Point Of Sale) terminal, stock control computer etc., thus making sophisticated stock control procedures and easy handling of invoices possible.

An example of use would be at a supermarket checkout. Each product would have a code printed on its label which would be read with the aid of a simple bar code reader. The POS terminal would decode the product information and access a "look up" table to determine the unit price. This amount would then be added to the invoice total. The terminal could also modify the stock level of that product enabling accurate, up to the minute stock levels to be maintained.

The increased flexibility of systems such as this together with the falling costs of the hardware involved means that many people are beginning to adopt systems based on these bar codes.

More Bars Please

Let's turn now to a problem faced in the home computer field -- namely that of low cost software distribution on a large scale.

Software, be it in the form of high level language statements, assembly language statements or as an object code, can be stored and transported in a wide variety of forms. In this country at the moment it seems that there is, no standard method of software exchange media, instead, the first method that comes to mind is used.

These methods include dumping the program to PROM, to paper or cassette tape, or indeed, as a teletype print out.

None of the above methods meet the ideal requirements of a software exchange medium, namely that it be of low cost and of high reliability.

These two requirements should be met by both the encoding and

decoding operations. Thus while a paper tape reader may be cheap to produce, the production of paper tape requires a large amount of mechanical devices, slowing the process and adding to the cost. On the other hand, while software trading via a paper print out is cheap it does not meet the requirement of high reliability, depending as it does on manual loading into a system.

It's about now that the relevance of our first few paragraphs becomes apparent. Why not encode our software in the form of a bar code?

Software in this form could be produced reasonably cheaply on high speed printing machines, perhaps as part of a magazine. The data may also be easily loaded into a home computer system. With a simple light per reader, consisting of a light source and photo-sensitive element, not costing a great deal, this system meets our two basic requirements.

It may not surprise you to know that this has already been done in America. A number of software packages have been published.
including a nice 4 K Assembler for any M6800 based system.

Hard Time For Soft Pirates

The low cost of distributing software by means such as bar coding also has an incidental advantage. It kills off the "Software Pirates" that were begining to operate in this area.

These "pirates" would operate in much the same fashion as record bootleggers. They would produce low grade copies of any new software offered on the market, usually in the form of a CUTS encoded tape.

These copies being of very inferior quality, contained many bugs. They were supplied without any documentation i.e. source listing, flow charts, and so often proved impossible to debug 'Have you ever tried to debug an object code program without good documentation and retained your sanity?)

With the major suppliers able to offer software cheaply and with adequate additional information it is

MKRROFILE

hoped that the "pirates" will find no room in our lobby as they benefit nobody but themselves

2716 Is FAMOS

Intel have recently developed a 16 K EPROM which has a number of new features which make it one of the easiest to use EPROMS that we have come across. Apart from being the largest device of this type commercially available, the 2716 has programming requirements that are far easier to meet than many of the earlier types.

When programming the 2716 , the 26 V supply required does not have to be externally switched during the program cycle. Instead the necessary switching is incorporated on the chip enabling each address to be selected and programmed with a single pulse.

The chip uses FAMOS transistors as the storage elements and makes use of passive oxide isolation to reduce the space between the transistors of the memory array.

It is interesting to compare the 2716 with the 2708 lat 8 K the largest EPROM to date).

The 2716 is four times as dense as the 2708, consumes 20% less power while retaining the same access time. It also incorporates a low power standby mode which does not degrade its access time.

While not for the amateur yet, it will not be long before we are able to get our hands on goodies like this.

National COPS Out

National Semiconductor recently launched their COPS ICalculator Orientated Processor Systems) family of 4-bit microprocessors. They are aimed at filling the gap between general-purpose micros, which are often too powerful, and dedicated systems which take too long to develop.

The range consists of the MM 5781 and MM5782, a two chip set, together with two single chip controllers, the MM5799 and the MM57140. Each chip has the same basic architecture but they differ in the amount of ROM, RAM and number and type of $1 / 0$ ports they provide.

These chips should prove ideal for applications from basic industrial control situations to sophisticated POS (Point Of Sale) terminals. The MM5799 has already found a home in Sinclair's new Programmable

Calculator
COPS chips should also be able to provide a nice fast "number cruncher" board for your microcomputer system

Daz-ling Chip

Glancing through an ITT semiconductor catalogue the other day, we came across a device which we found quite interesting

The pin-out of the 28 pin package is quite different from those that we usually see. Pins marked -- 15 V and OV are familiar enough, but pins marked BIO, RINSE HOLD and FAST WASH?

The chip is in fact the ITT7150 which is typical of the dedicated micros that are beginning to appear in consumer goods. The 7150 spends its life controlling washing machines, hence the pin designations above. It provides a comprehensive range of control functions, and when used with a few interface circuits, it can replace the mechanical wonders that have appeared in washing machines until now

With micros finding their way into dish washers, microwave overs and freezing systems in the near future we wonder what chip pin-outs of the future will look like.

CALCULATOR BARGAINS

Save on Calculators

Suitable for all sexes and in large. medium and small [please specify which. Yellow with black lettering. Send $£ 2.00$ (which includes VAI and postage) to:

ETI T-SHIRTS

25-27 Oxford Street London W1R1RF

PART 12 OF OUR GOMPONENT SERIES LOOKS AT THE VARIOUS POTENTIOMETER TYPES THAT ARE IN COMMON USE TODAY

POTENTIOMETERS ARE MADE in such a bewildering array of sizes, shapes, styles, and combinations that it is difficult to sort out what best suits a particular situation and what alternatives there may be. Apart from that, they come in a variety of wattage ratings, voltage ratings, resistance variation 'laws', etc - and how are you going to sort through that lot?

Potentiometers perform some control function by varying a resistance element or by tapping off a voltage from a fixed resistance. The variable resistor may need to be varied continuously so that some control function is performed, or it may be a 'preset' control which is only required for some calibrating or 'trimming' function. Preset potentiometers are generally called 'trimpots'.

So, potentiometers are generally split into two broad categories continuously variable types, which are equipped with a shaft for the attachment of a knob, and trimpots which are generally equipped with a screwdriver slot.

Types

There are five basic types of potentiometer, classified according to the type of resistance element employed:
(1) Carbon composition
(2) Carbon Film
(3) Hot-Moulded Carbon
(4) Cermet
(5) Wirewound

Carbon composition pots have a composition element moulded to the required size and shape and generally employ a metallic spring-wiper. They are generally quite inexpensive but have the disadvantage that they become noisy after use. Carbon film pots consist of a resistive film that is sprayed or screened onto a phenolic former of the required size and shape. A metallic spring-wiper is also generally used in this type of pot, and the element will withstand many more rotations than a composition type before noise problems. Carbon film pots are also inexpensive
and are the commonest types in use, along with Hot Moulded Carbon types. Carbon film pots have a good degree of resolution whereas the composition types are poor in this respect.

Hot Moulded Carbon potentiometers are manufactured by a process wherein the resistive element, insulating base, and terminations are moulded into one integral part. A carbon wiper contact is usually employed. They have a high wattage rating on a size-to-size basis and a high degree of conformity between units. This factor, together with their very high resolution, has led them to be increasingly used as precision controls. They exhibit low noise levels in operation compared with carbon film and wirewound types.

Fig. 1. The common, basic style of potentiometer. It has a threaded bushing and nut for panel mounting through a single hole and standard solder lug terminals.

Cermet potentiometers find wide application in precision controls, as trimpots and in many stringent applications (the element is rugged, exhibits low noise levels in use, and has good resolution). Wattage ratings are similar to those for hot moulded carbon pots of a similar size. They are generally somewhat more expensive. A metallic wiper is usually employed.

Wirewound potentiometers consist of a resistance wire would on a former with a metallic wiper, although a graphite wiper contact is sometimes used on low value, high wattage types. They have the disadvantage of being
noisy, the resistance changes in small 'steps' as the wiper passes over the turns of wire, and they are usually more bulky than other types of equivalent value. However, they can be made in very low resistance values and they are able to dissipate much more power than other types of equivalent value.

Styles

The most common, basic style of potentiometer is illustrated in Figure 1.

In some applications, 'Tandem' or 'Ganged' potentiometers are required (for example for stereo tone and balance controls). They consist of several potentiometers all connected to the one shaft and stacked one behind the other, as illustrated in Figure 2. 'Dual-Concentric' potentiometers appear similar to the dual-ganged pot on the left in Figure 2. However, in this case, each pot is separately controlled by means of two concentric shafts. Dual-concentric pots are often used where there is limited space (e.g., for the RF and audio gain controls on a communications receiver).

The assembly illustrated in Figure 3 consists of four potentiometers mounted on the four sides of a metal box and connected by means of a special linkage to the lever which may be moved in any direction. These assemblies are used for complex control functions such as quadrophonic 'balance' controls, radio controlled models etc.

Switches are often mounted on the rear of potentiometer assemblies and connected (mechanically) to the control shaft so that the one control knob may serve several functions. There are three basic types of switches generally used: the rotary type, the push-pull type and push-push type. A rotary styleof switch is often employed as a mains-power switch on a control, such as a volume control. It has the advantage that when the switch is moved to the ON position the control is at minimum. But, it has the disadvantage that anything up to the first 15% or 20% of the control cannot be used. On many controls this is of

Fig. 2 'Tandem' or 'ganged' potentiometers consist of several potentiometers controlled by one shaft. 'Dual-concentric' type are similar to the one on the left except that they are separately controlled by concentric shafts, one inside the other - the inner, shaft controlling the 'back' pqt and the outer shaft controlling the 'front' pot.

Fig. 3 Lever-controlled 'quad' pot assembly. These assemblies are used for complex control functions such as quadrophonic sound 'balance' and in model control applications etc.
little consequence. Push-Push and pushpull switches have the advantage that the control may be left in a certain position and switch operation does not disturb it. With a volume control however, this may be disastrous as the equipment may be turned on while the volume control is at a high setting, or worse still, full on!

While solder-lug terminals are commonly found, potentiometers are also manufactured with terminals suitable for printed circuit board mounting,

Power Ratings

With the exception of wirewound types the majority of standard potentiometers are obtainable in ratings of $0.1,0.2$, $0.25,0.5$ and 1 watt. Potentiometers are derated in much the same manner as fixed resistors. If this information is desired it is best to consult the manufacturer's literature.

Wirewound potentiometers are obtainable in ratings up to 100 watts (!!) but more usually they are available in ratings (depending somewhat on their resistance value) of $0.5,1,2,5,10,15$ and 20 watts. The higher power ones are usually quite bulky. Cermet and hot moulded carbon types are generally the smallest size for a given rating.

Resistance Law

The resistance "taw' of a potentiometer refers to the manner in which the resistance changes (as measured between as end terminal and the wiper terminal) with rotation of the shaft. There are a considerable number of different 'laws' in common use. The main ones however are: linear, logarithmic, and 'S' law. These are illustrated in Figure 4. Note that various log laws are used, the 20% log law is the more common one however. The laws for both clockwise (CW) and counter-clockwise (CCW) log are
illustrated, as the potentiometer may be connected to operate in reverse fashion if desired. The various common laws are given a letter code which is stamped or marked on the body of the assembly along with the resistance value. The code is quite straightforward, as follows:

$$
\begin{aligned}
& A=\text { linear law } \\
& B=\text { logarithmic law } \\
& C=\text { reverse logarithmic (or anti- } \\
& \text { log) } \\
& S=S^{\prime} \text { law. }
\end{aligned}
$$

A pot may be marked 25 kA , which is a 25 k ohm, linear law potentiometer. Another may be marked $1 \mathrm{M} / \mathrm{C}$, which is a one megohm, reverse logarithmic pot.

The linear law control varies resistance in direct proportion to the rotation of the shaft. This type of pot is commonly used in voltage control applications, on tone controls and other

applications which require a straightforward resistance variation.

With a log law control, the resistance increases very gradually during the initial rotation of the shaft, most of the resistance change occurring in the last $20-30 \%$ of the rotation. This type of law approximates the natural sensation of loudness as our ears follow a logarithmic law in their sensitivity to sound amplitude. Consequently, such controls are frequently used as volume controls so that they produce an apparent linear increase in sound output as the shaft is rotated. If a linear control were used, the greatest change in perceived volume would occur within the first $10-20^{\circ}$ of shaft rotation.

Anti-log laws provide the reverse the greatest change in resistance takes place in the early portion of the shaft rotation, the least change occurs in the last $30-40 \%$ of shaft rotation.

The 'S' law provides only a small change in resistance for the initial and final 20% of shaft rotation and provides a linear variation between these extremes.

Other laws include semi-log and linear-tapered. These have curves that lie between the log and linear curves on the graph in Figure 4. The semi-log law provides a somewhat greater change of resistance-versus rotation over the first 40% of shaft rotation than with the log curve. The linear-taper provides, a nearly logarithmic variation over the first 50\% of shaft rotation and a linear variation thereafter.

Resistance Ranges

Most types of carbon element potentiometers are made in values ranging from 50 ohms up to 2 M . Some older types were made in values as high as 500 M . Cermet potentiometers are made in values ranging from 10 ohms to 10 M .

Some manufacturers make their pots to values in the standard E6 (20\%) series (i.e.: 47 ohms to 2 M for carbon types). However, many pots are made with values according to the following decade series: $10,15,20,25,50 \& 100$. i.e: $2 \mathrm{k} 5,5 \mathrm{k}, 10 \mathrm{k}, 15 \mathrm{k}, 20 \mathrm{k}, 25 \mathrm{k}$, $50 \mathrm{k}, 100 \mathrm{k}$ etc. . .
Some (typically of US make) include 75 in the value range.

Wirewound potentiometers are made in values ranging from 10Ω to 100 k .

Slide Pots

These are pots having a linear element rather than a circular element as in standard pots. They are available generally with a carbon element having slider ranges of typically $50 \mathrm{~mm}, 75$ mm , and 100 mm in the various laws as previously illustrated.

Slide pots have particular advantages of their own. One being that it is easier to see the proportional position of the control at a glance than with standard potentiometers. In some circumstances the slide pot provides a much more convenient form of control, for example in multi-channel audio mixer applications.

Trimpots

Trimpots are usually 'preset' controls. That is, they are only adjusted occasionally to set certain circuit parameters or conditions, for calibration purposes etc. Consequently they are generally adjustable by means of a screwdriver slot on the control shaft, although some have an integral knob to. allow finger adjustment.

Trimpots are made in a wide variety of styles and sizes, as illustrated in Figure 5. Some types are enclosed to prevent the ingress of dust etc which can cause the control to become noisy in operation. Many types are only single-turn controls with the wiper covering only 180° in some cases, while others cover the more conventional 270 280° of rotation. Other trimpots are made for more critical applications and have a multi-turn control which allows a much finer and more accurate adjustment.

Manufacturers make trimpots in values ranging from 50 ohms to 5 M for carbon element types, and typically up to 30 M for Cermet types. Wirewound types are made in values typically ranging from 100 ohms to 5 k . Wattage ratings for the various types are typically $0.1,0.2,0.25,0.5$ up to 1 W . Trimpots are available in the same range of laws as are standard potentiometers, although most common styles have a linear law. Other characteristics are the same as for the type of element employed.

Open Style Circular Trimpots

Enclosed Types

VERTICAL MOUNT HORIZONTAL MOUNT

MULTI-TURN TRIMPOT

Fig. 5. Examples of various styles of trimpots.

Connecting Potentiometers

One thing that baffles electronic project constructors is the 'correct' way to connect a potentiometer.

The best way to illustrate how to do it is by example. The most common application of a potentiometer is that where it is required to vary a quantity (signal, voltage, etc) so that an increase occurs when the control shaft is rotated clockwise. The best example of this is a volume control.

In Figure 6 a pot is illustrated typically as you would see it when you come to make the connections. The arrow indicates the direction in which the control shaft will be turned to increase the output. THE TERMINAL IN THE CENTRE IS ALWAYS THE WIPER CONNECTION. So, terminal 1 (on the left as you view it to wire it up). connects to 'ground' or minimum. Terminal 2 (the wiper) connects to the output (in some cases it can also be the

input terminal; operation of the pot still remains the same). Terminal 3 (the one on the right) connects to the input (or the output if the input is connected to the wiper).

Try it out for yourself. Get a 1 k (linear is best) pot and a battery (anything from 1.5 V to 9 V will do), hook up the battery with the positive to terminal 3 , and the negative, to terminal 1. Connect a voltmeter with the negative to terminal 1 and the positive lead to terminal 2. Commence with the control shaft at the fully anti-clockwise position (hard left!). As you slowly rotate the shaft clockwise, the reading on the voltmeter will rise. True! It's easier to do it than it is to read about it. The wiper, in this case, commences at terminal 1 and moves towards terminal 3.

Some applications require the pot to work in the reverse fashion. For example, as a frequency or pulse rate. control in an oscillator or multivibrator. In such cases, an increasing effect occurs as the wiper traverses towards the 'minimum resistance' end of the control. The pot is simply connected so that terminal 1 is the 'maximum resistance' end of the control and terminal 3^{3} the minimum.

Fig. 6. Connecting a pot as a simple increase clockwise" control (e.g. volume).

Fig. 7. Pots in some applications require only a variation in resistance. Which terminals are connected together depends on the circuit effect.

In some applications the circuit shows that the wiper is shorted to one of the 'end' terminals. But which one? Terminal 1, or 3? In such cases it depends on whether the 'maximum effect' occurs at minimum or maximum resistance. Look at Figure 7. The circuit shows that as the wiper traverses the element it shorts out the section of the track it has just traversed, decreasing the resistance as it moves towards the terminal which is not connected to the wiper. Leaving one 'end' terminal unconnected achieves the same purpose.

If the maximum effect (from the circuit in which the pot is to be connected) occurs at minimum resistance then terminals 1 and 2 are connected together. Maximum resistance (and thus minimum effect) occur at fully anticlockwise rotation (hard left!). The effect increases as the control is rotated clockwise.

On the other hand, if the maximum effect occurs at maximum resistance then terminals 2 and 3 are connected together. Thus, as the control is rotated clockwise from the fully anti-clockwise position the resistance, and thus the effect, increases.
B. BAMBER ELECTRONICS
DEPT. ETI, 5 STATION ROAD, LITTLEPORT, CAMBS. CBG IQE Tel. ELY (0353) 860185 (Tues. to Sat.) PLEASE ADD VAT AS SHOWN

ALL BELOW - ADD 8\% VAT
 ALL BELOW - ADD 8% VAT

FULL RANGE OF BERNAROS/BABINI ELECTRON-
ICS BOOK IN STOCK. SA.E. FOR LIST.
A NEW RANGE OF QUALITY BOXES A NEW RANGE OF QUALITY

Vinyt Coated Aluminium Instrument Cases

PLASTIC PROJECT BOXES. W

 Other sizes available shorly.
CHARCR PCE
CHARGER PCBE for ITT Starphone batteries (12 v)
with battery compartment Requires with battery compartment. Requires 28 VDC a current himiting $£ 2.75$. -ARGAIM PACK OF LOW VOLTAGE ELEC
TROLYTIC CAPACITORE. Up TO 50 V wOIking TROLYTIC CAPACITORS. Up to 50 V working
Seatronic manufacture Approx. 100. £1. 50 per TUNEED COILS. 2 section colls, around $/ \mathrm{MHz}_{2}$ with a black smart tuning knob. Which moves an easily rewound, 3 for 50 p 110 WNEONS , screw-in-type 4 tor 50p QUARTZ-XTAL CONTROLLED CLOCKS. 9 to 12 DC at approx 3 mA reourired Dial size approx 2
depth of unit approx 2.1 No in cases. Unit only
smart modern appearance. black lace with whit lettering. 12 hr . with second hand and red hour and minure hands Cost over $£ 40$ to produce) $£ 1000$
BFY51 Transistors. 4 for 60 p
BY . $38 / 300$ Stud Rectifiers. 300 V at

OSMOR REED RELAY COILS ffor reed relays up to
$1 / \mathrm{H}^{*}$ dia, not supplied 12 V . 50 ohm coid, 2 for 50 l PEREPEX TUNER PANELS (for FM Band 3-tuners), marked $88 \cdot 108 \mathrm{MHz}$ and Channels
0.70 . clear numbers, rest blacked O-7. clear numbers, rest blacked out, smart
modern appearance, size approx $81 / 2^{\prime \prime} \times 1 / a^{\prime \prime}, 2$ for 35 p
MIXED
MIXED COMPONENT PACK8, containing resistors, capacitors. switches, pots, etc. All new.
and hundreds of items. $£ 200$ per pack, while Stocks last
PROQRAMNERS (magnetic devices) contain 9
micro-switches (surnable for mains operation) with
9 rotaing cams, all individually adiustable micro-switches (suinable for mains operation) with
9 rotatnig cams, all individually adjustable Ideal
for switching disco lights. displays, eic. or industrial machine programming (Noed slow
motion motor to dive cams. motion motor to drive cams. not supplited).
9 -swith version $£ 1,50$.
PLUGSAND SOCKETS
BNC PLUGS (ex equip.). IVe for $£ 150$
N-TYPE PLUGS, $500 h m 60 \mathrm{p}$ each. 3 for $£ 150$
Greenpar (GE300015) Chassis Greenpar (GE300015) Chassis Lead Terminations
(These are the units which bolt on to the chassis.
the lead is secured by screw cap and the miser the lead is secured by screw cap, and the inner of
the coassis.
 for $£ 1.00$ (PTFE), brand new, packed with
reducers. 650 each, or 5 for $£ 300$ reducers. 65 p each. or 5 for $£ 3$ oo
so 239 Sockets (TFFE) brand new (4-hole fixing trpe). 50
valves
VALVES
 C39A ceramic (ex-equipment). $£ 200$ each
OET- 22 (ex-equipment). 2 for $£ 1.00$
6 BHO (ex equipment). 2 for sU0
6BHo (exequipment, 2 for bup
and no guarantee of percentage of emission is ivater Sorry, no returns
MULLARD 85A2 B5V STABILISER-VALVES (brand new). 70 p each of 2 for $£ 120$
TRANSISTORS

600 $B C Y 72$

BCY 72 Transistors. 4 for 50
BSX 20 (NHF osc/mult). 3 tor
8 BC 108 (metal can) 4 For 50 p .
PBC 108 (plastic BC108), 5 for 50 p
BF 152 (UHF amp/mixer). 3 for 50
2 N 381 g Fet, 3 for 60 p
BC148 NPN SIIICON. 4 for 50p
BC15 P PNP SILICON, 4 for 50 p
BAY31 Signal Diodes. 10 for 35 D

ALL BELOW - ADD 8% VAT DIECAST BOXES We sull stock these but. owing to postal charges. It has been found mand and costl publish up-ro-date prices on these items Please ring of white (with SAE) for latest maif-order prices. AEICS 14-DIL REED RELAYS, 5 to $12 V D C, 450 \mathrm{ohm}$ col Designed to work directiy from TTL Logic. Single Pole Changeover, Contact ratings. 28 V , $1 / 4 \mathrm{~A}$. 3 W,
\& 1.75 each. spiralux

4 MHz XTAL PACKS (10 assorted xtals between
4 MHz and 5 MHz), our selection only $£ 100$ pack ALU.SOL ALUMMINIUM SOLDER (made by
Multi-core) solders Mult-corel). solders alumumium to itself or copper
brass, steel, nickel or tinolate 16 SWG brass. steel. nickel or unplate. 16SWG with
Multicore flux with instructions. approx 1 m coil 40p pack Large reel $\mathrm{C2} 75$
SOLDER SUCKERS
SOLDER SUCKERS (Plunger Type) Standard Model $£ 5.00$
Skirted Model $£ 550$
Spare Nozzles. 60 p
MULTICORE SOLDER
Size 5 Savbit. $185 W G G$, in alloy dispenser. 32p
Size CISAV18 Savbit. 18 SWG 56 . $1 / 2 \mathrm{Kg}$. (1 11b) $60 / 4020$ SWG on $1 / 2 \mathrm{Kg}$. (1.1b) $60 / 4020$ SWG on plastic reel WELLER W6OD Mains operated temperature control
soldering iron $£ 1380$ soldering iron E1380
SPARE TIPS (for W60D). Two types avalable. TYPE CC7 (W60D) Standard, TYPE AA7 (W600). Finer tip 11.15 each.
18 VOC RELAYS 4 pole change-over Touble
contacts). (will work from 14.24 CC) Band contacts). (will work trom $14.24 \vee \mathrm{DC}$, Brand New.
boxed, good quality, made by AEI 40 D each boxed, good quality, made by AEI 40 p each.
Slider Swiches. 2 pole make and break (or can
${ }_{4}$ as 1 pole change-over by binking the two centre pins) 4 for 50 p
Smart Min
rectangular sungular Push to Make Swithes. black
overall size $12 \times 17 \mathrm{~mm}, 3$ white rectangular button ELECTRONICS DHAPER TOOLS FOR THE (GOOD QUALITY. FULIY GUARANTEED) MAINS TESTER SCREWDRIVERS. 100 to 500 V
 DIAGONAL SIDE CUTTERS $61 / 4, "$, 11 , 80 DIAGONAL SIDE CUTERS, $61 /{ }^{\prime \prime} "$ " 1,90
SMALL SIDE CUTTERS LJ
Standard E3 70 LJ7 (with wire holding device). E4 10
FLAT NOSE TOP CUITERS

§3 25 (Round, flat, eic
TAP AND DIE SETS (18.).
Piece) contain 1 each of 0 .
2. 4. 6. 8. BA SIZES IN Dies. Plug taps. Taper
Taps + American Type tiap wrench, T-type tap
wrench. Die Holder $\overline{\text { E }} 1 \uparrow 60$.
wrench, Die Holder £1 60
TU8ULAR HACKSAW FRAMES (with Blade).
£2.75.
HEAVY DUTY RELAYS. 24V DC Operated (will work
on $18 \mathrm{VV}, 3$ heavy duty make contacts (around
10A rating) +4 change-over contacts +1 break
contact New. complete with mounting bracket.
(hdealior swithing HT on Linears)

ALL BELOW - ADD 8\% VAT TIN SNIPS. $7^{\prime \prime}$ SLIM OPEN ENDED SPANNER SETS, $0+3,1+2$ $2+4,3+5,4+6,6+88 A$ SIZES, $£ 1.13$
MIDGET OPEN ENDED SPANNER SETS

ALL BELOW - ADD $121 / 2 \%$

 VATBrapic tuners, Mullard type. elc 1043/05 $\stackrel{\text { Brand now. } £ 4,40}{ } \mathrm{~V}$ Plugs metal type
TV Sockets (metral type) 4 for 50 p
T.V Line connectors (back-to-back skt) 4 for 50 p -pin Din Plugs, 4 for 50 D
Din 3 -pin Line Sockets. 15 peach.
Din Speaker Skts. 2 -pin. 4 for 30 p
WIN IF CANS, approx $1^{\prime \prime} \times 1 /{ }^{\prime \prime} \times 1,{ }^{\prime \prime}$ high, around
35 to 5 MHz , 2 separate transformers in
internally screaned, 5 for 50 p
Dubulier Electrolytics, 50 F
Dublier Electrolytics. $50 \mu \mathrm{~F} 450 \mathrm{~V}$. 2 for 50 p Dubilier Electrolytics. $100 \mu \mathrm{~F} 275 \mathrm{~V}$, 2 for 50 p .
Plessey Electrolytics. $470 \mu \mathrm{~F} 63 \mathrm{~V} 3$ for 500 TCC Eloctrolytics. $1000 \mu \mathrm{~F} 30 \mathrm{~V}, 3$ for 60 p ubilier Electrolytics $5000 \sim \mathrm{~F} \frac{\mathrm{~V}, 3 \mathrm{~V}, 50 \mathrm{p} \text { each }}{}$ Dubilier Electrolytucs. 5000 HF 50 V .60 peach T Electrolytics. 6800 LF 25 V , high grade

A RANGE OF CAPACITORS AVAILABLE AT

Ron Harris explains the workings of Hi-Fi's smallest black box

FOR ALL THE continuing sophisti--cation within the electronics of the hi-fi chain, no viable method has been offered up to extract the mechanical information from the good old L.P. other than the trusty electromechanical cartridge.
This in itself generates an order of magnitude more distortion than any hi-fi component, but for some as yet unexplained reason, people seem more ready to accept some quite quirky behaviour from cartridges than from anything else.
After all if a particular brand of amplifier needed its wires cleaning before every usage, its sales would remain nicely static at zero.
The term electro-mechanical can be seen to excuse a multitude of sins.

INDUCTION

Most pickups owe thier existance to Mr Faraday and his laws of induction. If you move a wire relative to a magnet within its field, you will generate an emf across that wire. It matters little whether you move the magnet or the coil of wire.
Various methods and variations have of course been evolved to utilise this principle to obtain an amplifiable voltage from the ups and downs of the vinyl.
Not all cartridges operate on this principle, just 90% of them!Ceramic devices are the main exception but these have completely faded from
hi-fi usage, as the quality is no longer of comparitively high enough standard for the enthusiast.
The most common types are;
(i) Moving magnet
(ii) Moving coil
(iii) Moving iron Induced magnet
(iv) Electret

We shall be considering each type in turn.

No reference is made in this article to such universal parameters as tip mass compliance of cantilever, arm resonance, output level etc etc
Such things are of paramount importance, but have little to do with the operating principles behind the cartridges themselves.
We mention them lest you think we had forgotten, or worse still were ignorant of them!

By far the most common method. Fig I shows the basic operation of a Phillips 412 super M pickup, which can be considered typical of the bar magnet variety.
The pole pieces $P L$ and $P R$ are composed of mu-metal. When the stylus moves following the groove wall at say the left channel signal, the magnet will follow a similar path such that movement takes place parallel to PR, varying the distance relative to $P L$. This causes an emf to be set up across the left channel coils. Since that movement takes place parallel to the right channel coil, no emf is generated across that coil.
Since the coils are detecting minute changes in flux, sheilding from external influences must be good so that these are not registered as signals. Transformers must be kept well away from all pickup cartridges, which is why your deck will invariably work better on one side of your amplifier than on another!
A variation on this theme has been penned by Audio Technica, who use one magnet for each channel, set at 450 to the record surface which makes them perpendicular to the groove walls. This does imitate the return of the cutting head pretty closely. The magnets are much smaller than usual, being around 25% of the mass normally utilised.
Since each channel was a totally separate motor assembly, stereo separation cannot help but be enhansed. Perhaps the most famous sons of the moving magnet are Shure, led by the VI5 111. This flagship design uses a laminated core structure, increasing the efficiency.

Figure 1. The workings of a moving magnet cartridge, which in this case is a Philips 412. The bar magnet is marked ' M ', and PL and PR are the pole pieces for each channel.

Audio Technica's dual magnet system. On the left an actual stylus assembly, and on the right how that bit in the circle operates, cooying the cutting head movements.

A cutaway drawing of the JVC XI cartridge. This device has an extended h.f. response to allow it to produce CD4 records, a task for which it has become the standard machine!

Surely this needs no introduction? The Shure V15 MK3, probably the most famous moving magnet cartridge and arguably the most transparent in reproduction.

A Philips 422 Super M Very under-rated device this, people tend to only use them in Philips decks! The diagram in Fig 1 refers to this cartridge.

The oldest form of pickup cartridge. Originally developed by Ortofon, and now carried on by such adherents as Satin, Fidelity Research (and even Sony!).
The principle is extremely simple. The magnets are held in a fixed position within the cartridge body, and the coils for each channel are attached to the stylus assembly. The basic design is shown below. As the stylus follows the groove, the coils are forced to move next to the relevant magnets, thus inducing an emf in each.
The main drawback is the low output, roughly 0.5 mV , as compared to 2 - 5 mV for the moving magnet designs. There are exceptions, notably Satin and Ultimo which produce outputs around 2 mV . In order to raise this low level to one which can be fed to a normal input, a transformer or booster amp is required between cartridge and amplifier. However a tiny, but increasing number of amplifiers are now incorporating moving coil input to negate this requirement.

A highly simplified model of how a moving coil cartridge works. The blocks to either side represent the magnets, and the little flocks of circles are the coils.

Cutaway drawing of an early Ortofon moving coil device. An interesting feature is the vertical armature mounting. Note the protective nose mounted to safeguard the stylus!

1. Stylus tip
2. Cantilever
3. Stylus housing
4. Tension wire
5. Plate spring
6. Stylus mounting magnet
7. Output terminals
8. Connecting wire
9. Oscillating block resonance damper
10. Oscillating block restriction wall
11. Magnet
12. Pole piece
13. Oscillating block restriction wall
14. Magnetic gap
15. Gap spacer
16. Yoke
17. Moving coil
18. Cartridge main housing
19. Armature positioning pin
20. Armature support
21. Pantograph-type armature

Above is an internal peek at a Satin moving coil pickup. This is one of the high-output cartridges which does not need a trans former or booster amp to be used with normal amplifiers.
If you're setting up a hi-fi system based on a moving coil cartridge, check out the Yamaha 1010 amplifier, it already possesses a high quality moving coil pre amp!
And in the right corner a Fidelity Research device with its booster transformer. This Japanese device has picked up quite a few followers in its short but glorious career in Britain.

INDUCED MAGNET OR
 MOVING IRON

Replacing the moving magnets is a single high permeability armature which itself moves with the stylus within the field of the (fixed) magnets. As there is no mechanical linkage the mass of the stylus is reduced. ADC are the prophets of this system.
Bang and Olufsen have an innovation on the market in the form of the MMC range. Here a small 'cross' is attached to the armature and this influences the 4 induction coils, to obtain that emf.

induced magnet The drawing shows the vitals of a 036 pickup following this doctrine. Further right is how it looks when in use and in one piece.
Below: Bang and Olufsen MMC is heavily based on the moving iron principle, but incorporates the tiny little cross (shown as an insert) to improve the transfer from armature to coils. Note that two coils per channel are used.
!" mounting bracket
Hycomax magnet
Induction coil (4 in total)
Moving micro-cross (MMC patent)
Block suspension
Pole piece (4 in total)
Mu metal screen
Ultra light cantilever
Stylus

ELECTRET

Just as a quartz crystal is capable of producing an output under stress so are some semiconducțor substances. An 'electret' is a permanently polarized block of material which, when stressed, produces an output voltage directly proportional to the force causing the stress.

In the Micro-Acoustics QDC 1E cartridge, a conventional stylus assembly joins with a pyramid shaped chunk of material which is pivoted in the centre of the base, and supported by two elastomer blocks, at each corner, where the actual electret contacts the pyramid.
Output impedence is around 8 K , which shunts the usual 47 K of
amplifier inputs down. Micro claim this engenders their cartridges with lower noise figures. Phase shift characteristics should certainly be good, since the output impedence

will be almost pure resistance, with very little capacitance present, and no inductance. The signs are that this system will be used increasingly as time goes on.

The drawing shows the insides of a Micro Acoustics 2002 electret cartridge. This is the cheaper version of the QDC $1 E$ referred to in the text. To explain the numbers: 1, Total device possesses a mass of 4.0 grams; 2 . Internal connecting wires to the matching circuit; 3, Dampers (mechanical); 4, Retainer spring for the stylus assembly; 5, Stylus assembly; 6, Beryllium cantilever; 7, Bearings and resolver; 8, Stylus to electret coupling; 9. User replaceable stylus assembly: 10. The actual electret transducer: 11. Passive matching circuit (matching to phono inputs).

The LM2907, LM2917 series are monolithic frequency to voltage converters with a high gain op amp/comparator designed to operate a relay, lamp, or other load when the input frequency reaches or exceeds a selected rate. The tachometer uses a charge pump technique and offers frequency doubling for low ripple, full input protection in two versions (LM2907-8, LM2917-8) and its output swings to ground for a zero frequency input.

Features

The op amp/comparator is fully compatible with the tachometer and has a floating transistor as its output. This feature allows either a ground or supply referred load of up to 50 mA . The collector may be taken above V_{cc} up to a maximum V_{CE} of 28 V .

The two basic configurations offered include an 8-pin device with a ground referenced tachometer input and an internal connection between the tachometer output and the op and amp non-inverting input. This version is well suited for single speed or frequency switching or fully buffered frequency to voltage conversion applications.

The more versatile configurations provide differential tachometer input and uncommitted op amp inputs. With this version the tachometer input may be floated and the op amp becomes suitable for active filter conditioning of the tachometer output.

Both of these configurations are available with an active shunt regulator connected across the power leads. The regulator clamps the supply such that stable frequency to voltage and frequently to current operations are possible with any supply voltage and a suitable resistor.

Applications

The LM2907 series of tachometer circuits is designed for minimum external part count applications and maximum versatility. In order to fully exploit its features and advantages let's examine its theory of operation. The first stage of operation is a differential amplifier driving a positive feedback flip-flop circuit.

The input threshold voltage is the amount of differential input voltage at which the output of this stage changes state. Two options (LM2907-8, LM2917-8) have one input. intermally grounded so that an input signal must swing above and below ground and exceed the input thresholds to produce an output. This is offered specifically for magnetic variable reluctance pickups which typically provide a single-ended ac output. This single output is also fully protected against voltage swings to $\pm 28 \mathrm{~V}$, which are easily attained with these types of pickups.

Following the input stage is the charge pump where the input frequency is converted to a dc voltage. To do this requires one timing capacitor, one output resistor, and an integrating or filter capacitor. When the input stage changes state (due to a suitable zero crossing or differential voltage on the input)

Applications

- Over/under speed sensing
- Frequency to voltage conversion tachometer)
- Speedometers
- Breaker point dwell meters
- Hand-held tachometer
- Speed governors

Cruise control
Automotive door lock control

- Clutch control
- Horn control
- Touch or sound switches

Absolute Maximum Ratings

Supply Voltage

28 V
Supply Current (Zener Options)
25 mA
Collector Voltage
Differential Input Voltage
Tachometer
Op Amp/Comparator
28 V

Input Voltage Range
Tachometer
LM2917-8
LM 2907-8
LM2907, LM2917
$\pm 28 \mathrm{~V}$ $0.0 V$ to $+28 V$
$0.0 V$ to $+28 V$
Power Dissipation
500 mW
the timing capacitor is either charged or discharged linearily between two voltages whose difference is $\mathrm{V}_{c c}$ /2. Then in one half cycle of the input frequency or a time equal to $1 / 2 f_{\mathrm{in}}$ the change in charge on the timing capacitor is equal to $\mathrm{V}_{\mathrm{cc}} / 2 \times \mathrm{C} 1$. The average amount of current pumped into or out of the capacitor then is: $=\mathrm{V}_{\mathrm{cc}} \times \mathrm{f}_{\mathrm{IN}}$
The output circuit mirrors this current very accurately into the load resistor R1 connected to ground, such that if the pulses of current are integrated with a filter capacitor, then $V_{o}=i_{c} \times R 1$, and the total conversion equation becomes:
$\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{CC}} \times \mathrm{f}_{\mathrm{IN}} \times \mathrm{C} 1 \times \mathrm{R} 1 \times \mathrm{K}$
Where K is the gain constant - typically 1.0 .

Choosing R1 and C1

There are some limitations on the choice of R1 and C1 which should be considered for optimum performance. The timing capacitor also provides internal compensation for the charge pump and should be kept larger than 100 pF for very accurate operation. Smaller values can cause an error current on R1, especially at low temperatures. Several considerations must be met when choosing R1. The output current at pin 3 is internally fixed and therefore $V_{0} / R 1$ must be less than or equal to this value. If R1 is too large, it can become a significant fraction of the output impedance at pin 3 which degrades linearity.
It appears R1 can be chosen independent of ripple, however response time, or the time it takes $V_{\text {out }}$ to stabilize at a new voltage

increases as the size of C2 increases so a compromise between ripple, response time, and linearity must be chosen carefully.

As a final consideration, the maximum attainable input frequency is determined by $\mathrm{V}_{\mathrm{cC}} \mathrm{Cl}^{\prime}$ and I_{2} :

$$
f_{\operatorname{MAX}}=\frac{\mathrm{I}_{2}}{\mathrm{C} 1 \times V_{C C}}
$$

Using Zener Options

For those applications where an output voltage or current must be obtained independent of supply voltage variations, the

The LM 1830 is a monolithic bipolar integrated circuit designed for use in fluid detection systems. The circuit is ideal for detecting the presence, absence or level of water, or other polar liquids. An AC signal is passed through two probes within the fluid A detector determines the presence or absence of the fluid by comparing the resistance of the fluid between the probes with the resistance internal to the integrated circuit. An AC signal is used to overcome plating problems incurred by using a DC source. A pin is available for co. Inecting an external resistance in cases where the fluid impedance is of a different magnitude than that of the internal resistor. When the probe resistance increases above the preset value, the oscillator signal is coupled to the base of the open-collector output transistor. In a typical application, the output could be used to drive a LED, loud speaker or a low current relay.

Applications

The LM 1830 requires only an external capacitor to complete the oscillator circuit. The frequency of oscillation is inversely proportional to the external capacitor value. Using $0.001 \mu \mathrm{~F}$ capacitor, the output frequency is approximately 6 kHz . The output from the oscillator is available at pin 5. In normal applications, the output is taken from pin 13 so that the internal 13 k resistor can be used to compare with the probe resistance. Pin 13 is coupled to the probe by a blocking capacitor so that there is no net DC on the probe

Since the output amplitude from the oscillator is approximately $4 \mathrm{~V}_{\mathrm{BE}}$, the detector (which is an emitter base junction) will be turned "ON" when the probe resistance to ground is equal to the internal $13 \mathrm{k} \Omega$ resistor. An internal diode across the detector emitter base junction provides symmetrical limiting of the detector input signal so that the probe is excited with $\pm 2 \mathrm{~V}_{\mathrm{BE}}$ from a 13 k source. In cases where the 13 k 'resistor is not compatible with the probe resistance range, an external resistor may be added by coupling the probe to pin 5 through the external resistor as shown in Fig. 2. The collector of the detecting transistor is brought out to pin 9 enabling a filter capacitor to be connected so that the output will switch "ON" or "OFF": depending on the probe resistance. If this capacitor is omitted, the

Features

- Low external parts count
- Wide supply operating range
- One side of probe input can be grounded
- AC coupling to probe to prevent plating
- Internally regulated supply
- AC or DC output

Applications

- Beverage dispensers
- Water softeners
- Radiators
- Washing machines
- Irrigation
- Reservoirs
- Sump pumps
- Boilers
- Aquaria

Absolute Maximum Ratings	
Supoly Voltage	28 V
Power Dissipation	300 mW
Output Sink Current	20 mA

output will be switched at approximately 50% duty cycle when the probe resistance exceeds the reference resistance. This can be useful when an audio output is required and the output transistor can be used to directly drive a loud speaker. In addition, LED indicators do not require DC excitation. Therefore, the cost of a capacitor for filtering can be saved

Probes

In a typical application where the device is employed for sensing low water level in a tank, a simple steel probe may be inserted in the top of the tank with the tank grounded. Then when the water level drops below the tip of the probe, the resistance will rise between the probe and the tank and the alarm will be operated. This is illustrated in Fig. 3. In situations where a non-conductive container is used, the probe may be designed in a number of ways. In some cases a simple phono plug can be employed. Other probe designs include conductive parallel strips on printed circuit boards.
In automotive and other applications where the power source is known to contain significant transient voltages, the internal

regulator on the LM 1830 allows protection to be provided by the simple means of using a series resistor in the power supply line as illustrated in Fig 4. If the output load is required to be returned directly to the power supply because of the high current required, it will be necessary to provide protection for the output transistor if the voltages are expected to exceed the data sheet limits.

Output is activated when $R_{p} \geqslant 1 / 3 R_{\text {REF }}$
FIGURE 4. Direct Coupled Applications

Although the LM 1830 is designed primarily for use in sensing conductive fluids, it can be used with any variable resistance device, such as light dependent resistor or thermistor or resistor or resistive position transducer.

The LM 1830 is available from A. Marshall (London) Ltd., 42 Cricklewood Broadway, London NW2 3ET. Price for one off is £ 1.86 plus $\mathbf{3 0}$ p per order post and packing

ELECTRONICS -it's easy! part 42

Chart recorders

IN GENERAL, chart recorders are designed to accept electrical voltage signals as these constitute the majority of signals produced by sensing equipment. Occasionally the chart recorder is more appropriately connected to a mechanical output without electrical signals being involved: in some circumstances there is no need for electrical circuitry.

Chart recorders are, therefore, electronic system units which accept a voltage signal converting it to an equivalent graphical representation on paper. The recorder can be put to use in any application where an electrical signal is produced. Examples are measurement of fluctuations of the power mains voltage, records of body currents in medical diagnosis and changes in temperature in a process
plant. The earliest chart recorder was probably Lord Kelvín's 19th century paper-tape siphon-recorder used to record electric telegraph signals. Because of the large and varied demand for chart recorders, manufacturers have developed numerous alternatives. Figure 1 shows a number of recorders installed to monitor an oil rig.

In fundamental terms chartrecorders are electro-mechanical converters - electrical signals are changed into equivalent mechanical ones which are used to make a permanent record on a paper-chart. For this reason there are two aspects to a chart recorder its mechanical design and its electrical design. For convenience we look at each more or less separately but in designing and operating the recorder

[^2]the two are so closely related that the response depends on adjustment of both disciplines of thought.

Chart Recorder Formats:- Chart recorders are designed to display a signal in a graphical form that is convenient to the user. There are two basic types: those which record one or more variables with respect to time (commonly called $x-t$ recorders) and those which plot one variable against the other ($x-y$ recorders).
Strip-chart:- In these recorders a continuous roll of suitably scaled paper is motor driven at constant speed past the marking head. The paper drive is usually driven by a synchronous or stepping motor as this ensures accurate paper-speed. Where mains supply is not available dc governed-motors and clockwork alternatives can be used. Chart speed changes are commonly obtained by altering gear ratios. Figure 2 shows the construction of a typical panel mounted strip-chart x-t recorder. The module shown withdrawn from the housing is the paper drive unit, the housing contains the electronic amplifier driving the pen which contacts the top of the paper when the drive unit is plugged in.

Strip chart recorders for bench top use are also common - Figure 3. Some strip chart recorders take up the used paper by rolling it or by folding it in a concertina. The latter, known as z-fold, is very convenient when the need to refer to the record arises.

Chart ${ }^{-\quad}$ speeds vary widely - from metres per second in fast-writing recorders used to capture kilohertz bandwidth transients, down to millimetres per hour for industrial process and slow-scientific phenomenon recording. It is not usual, however, to find a range as wide as this in the one unit.

Process industry strip-chart recorders generally run at one speed only; units for scientific use usually have switched speed capability. The choice is decided by matching the resolution required with the amount of paper consumed.
Paper sheet:- The flat-bed style lends
itself to $x-y$ operations where the axes are driven by two independent variables: Examples are plotting the properties of a material, as shown in Fig. 3, and charting antenna field strength versus position. In this style the recording paper is a single sheet which is attached to the platen. The pen moves both in the x and y directions. The paper may be held by clips or by electrostatic attraction. If the x axis input (horizontal) is fed with voltage that rises linearly with time (a ramp function) the x axis will move across the chart with time making the unit an x-t format re corder. Plug-ins generating appropriate ramps are often provided as an acces* sory - one is illustrated in Fig. 4

Fig. 3. Plotting an hysteresis curve for material under test in the large magnet shown at the rear

ELECTRONICS-it's easy!

Circular:- Where the Geometry of the measurement task is circular, such as recording out-of-roundness of a ground shaft, or where the measure has a cyclic time function, such as daily temperature changes, a circular form of chart is easier to use. The chart rotates under the marking device at a rotational velocity locked to the geometrical position or the appropriate sub-unit of time - hours, days, weeks and months. An example of a circular-chart recorder is given in Fig. 5.

The size of chart papers varies greatly from recorder to recorder. Strip charts are used from 50 mm width to around 800 mm with lengths as much as 150 m . The duration of the .naximum record that can be taken on a roll is decided by the chart length and the chart speed. Flat bed units begin in paper size at about 200 by 300 mm ranging to huge computercontrolled automatic-draughting units with beds as much as $6 \mathrm{~m} \times 4 \mathrm{~m}$. Circular charts rarely exceed 300 mm diameter.

Supply of chart papers can be difficult at times because stockists find difficulty in holding large stocks of the numerous options available. It is wise for the operator to hold a generous supply in hand at all times.

When reading values from paper charts care must be exercised in ensuring that inaccuracies caused by paper size changes, paper wander across its platen and marking mechanism offsets are allowed for. Good quality charts are a necessity with high-quality measurements.

PAPER MARKING TECHNIQUES

In these units an electronic amplifier coupled to a mechanical drive moves a mechanical point across the

chart. It is then necessary to mark the paper in order to show where the point has travelled. Five commonly used techniques will be encountered.
Ink pen-- Samuel Morse's telegraph recorder used a pencil to mark the paper strip. A limitation is that the lead wears away making a feed mechanism necessary. Ink can flow from a reservoir continuously: Kelvin introduced the siphon system in 1873 . This system is used extensively today in one form or other. Ink feed rate is a factor of the pen, paper absorbency and ink viscositv. Figure 6 a shows pen details.

A second ink feed method uses a combination of gravity feed and capillary action through small bores.

These are the ballpoint and fibre-tip pens. A third ink method pressurizes the ink, recording being performed by a very fine ink jet. This method is suitable for fast writing speeds (as high as 60 metres per second compared with around 1 m per second for unpressurized ink feeds). There is no mechanical contact with the paper in pressurized systems, the fast writing rate arising because of the very small size of nozzle built into the deflecting system. Figure 6b shows the schematic of such a recorder. The pressure is automatically adjusted to suit the chart speed set.

The correct choice of ink and paper for the speed of operation is essential.

Water-based inks are to be avoided as the record can be destroyed by accident. Fast drying inks are needed or else the trace may be rolled-up before the ink is dry. In short, although the alternatives to ink offer certain advantages we are still forced to use ink as the best all-round choice in many applications.

Pressure sensitive papers-- Black paper treated with tiny wax beads appears white until the beads are flattened to form a transparent cover window thereby exposing the black. Pressure sensitive papers are marked by the action of a gentle pressure exerted by the stylus. The relatively high contactforce needed restricts these to slow response application. Pressure-sensitive papers are more usually used with marking mechanisms that are periodically pressed against the paper to form a dot.

Electro-sensitive papers: Some recorders use paper which is marked when an electric current is passed through it. The earliest was carbon impregnated; dielectric breakdown producing the mark by applying a high voltage between the stylus and the platen.

Another method electroplates onto the surface of paper made conductive by saturation with salts. It requires wet paper use but will operate with lower voltage levels than the above carbon paper method.

Zinc oxide reduced to free zinc is the process used in another kind of recording system. Metallized papers in which the metal film is fused to its paper backing are another. Yet another is based on providing a change in the paper surface which takes up toner (similar to the Xerox process) it is fine for very fast systems but not those that occur slowly.
Heat senstitive papërs: Yet another method of making the record is to use a heated stylus melting a wax-like coating on black paper. These papers can be manufactured with greater resistance to marking (during handling) than the pressure sensitive papers. Stylus temperature can also be varied with ease to suit the writing speed concerned.

Photographic paper: The earliest photographic systems used negative film. Such systems are still in use today but the majority of the highest speed recorders (30 kHz is possible) use ultraviolet light to expose specially treated paper. Exposure produces a latent (invisible) image which needs further exposure to form the visible image. This is shown in Fig. 7: the fluorescent lamp intensifies the traces.

Fig. 7. UV recorders provide traces by exposure of photographic paper. Further exposure is needed to bring the latent image into view.

Continuous versus dotting mechanisms: Fast writing speeds require continuous marking and for these the writing mechanism functions continuously. For ${ }^{\text {very }}$ slow speed needs, as are found in process plant monitoring an alternative, in which a dot is produced on the paper at regular periods, has certain advantages. Figure 8 shows one form of mechanical arrangement. A separate motor, or pick-off from the chart drive causes a point to periodically press on the paper, marking it by the appropriate method used. By incorporating a geneva mechanism (one that rotates a shaft in steps) the input signal can be switched sequentially over a number of different signal channels (six and twelve are usuall. Also synchronised to the channel changing action is an inking system that steps from colour to colour to provide a different coloured dot for each channel. Inking may be as shown (different ribbons) or may be provided as individual pads each soaked with ink. A multipoint dotting head wipes through this ink. One maker uses a multicolour single ribbon, akin to a typewriter ribbon.

Fig. 8. Dotting recorders offer the advantages in slow-speed applications of being suit able for multi-channel multiplexing.

Multi-channel operation is also provided in some continuous trace recorders. This is almost always achieved by incorporating separate. Multi-trace recorders in which each trace has the full paper width capability are älso available. Mechanical drives have the disadvantage in that the traces must be slightly out of phase so that the pens can pass one another without fouling. Optical recorders do not suffer from this drawback.

RECORDING MOVEMENTS

We now look at the methods used to transduce the electrical input signal into an equivalent mechanical movement.
Moving coil mechanisms: Basically these use modified moving coil and pointer. The end of the pointer carries an ink pen or acts as a marking point when forced onto the chart paper in dotting styles (see Fig. 8). Simple systems trace an arc across the chart giving a non-linear record. (curved markings on the paper overcome this but complicate the platen design). This can be linearized to provide better accuracy by various means such as that shown in Fig. 9.

Optical recorders also use a moving coil unit on which a mirror is mounted to reflect a high intensity focussed beam across the paper. These units have their origin in practical oscillographs designed by Duddell (to Blondel's ideas) at the turn of the century. The choice of galvanometer unit largely decides the frequency response. Today they are supplied as robust plug-in units like that shown in Fig. 10. The application, in many units, decides which galvanometer is

ELECTRONICS-it’s easy!

used and the optimum terminating resistance value in order to know the deflection and sensitivity for a given frequency of signal. These recorders offer the ability to modulate the trace intensity producing 2-D half-tone chart records.

Potentiometric recorders: Around 1898 Professor Callendar devised his recording resistance pyrometer and in doing so, provided instrumentation with the potentiometric or self-balancing recorder. This method makes use of a closed-loop system that causes the pointer to follow input signals. Referring to Fig. 11 the recorder has a drive motor mechanism which translates the pointer in one direction or the other depending upon the polarity of the signal driving the motor. Attached to the shaft driving the pen is a rotary resistance balancing potentiometer, as shown in Fig. 11a. Schematically this can be shown as a linear equivalent (the more recent design style used) as shown in Fig. 11b. The potentiometer wiper moves across in unison with the pen and generates a changing value signal. The potentiometric system circuit layout is represented in Fig. 11c. A reference voltage is supplied across the potentiometer. Voltage from the wiper is compared with the input signal voltage to be recorded. If a difference exists this constitutes an error which causes the drive motor to move accordingly to correct the error. The input signal and reference signals are suitably attenuated to provide the sensitivity needed at full-scale deflection.

The advantages of recorders such as those described above are that the mechanism plots a linear scale, and there is considerable power available to move the pen against frictional forces. The system, being potentio metric, draws little current once the unit has achieved balance and, as considerable drive power is available under closed-loop control, the pen response can be made tighter than for the open-loop pointer-type moving coil units. Sensitivity is decided more by the amplifier gain than mechanical constants. The majority of flat-bed recorders use this principle:' at full trace movement their writing speeds can reach several metres per second. The method also overcomes the restriction on traverse length suffered by rotationally driven recorder mechanisms. Although a simple dc servo control is shown, potentio-

Fig. 10. Galvanometer unit for UV recorder (Hathaway Instruments).
metric recorders, especially those built before around 1970 more usually used ac control systems.
CRT - Fibre Optic Recorders:
A recent design concept couples a CRT linear sweep trace to photosensitive paper via an optical fibre connection. This provides the highest response of all chart recorders so far available - dc to 1 MHz .

DYNAMIC RESPONSE

A point commonly overlooked is that chart recorders have a certain dynamic response and are effectively low-pass filters of the input signal. The response of a recorder to a sine signal, that is, the recorded trace, will look like the original but will lack adequate amplitude if the pen cannot follow fast enough. When quoting response rater it is therefore necessary to state amplitude as well as frequency. For example, moving-coil recorders with short pen arms have a typical response that is flat from dc to 100 Hz at 10 mm peak-topeak deflection for a sinewave. If the frequency is increased the recorder will still operate but the amplitude of a sinewave record falls off. Plots of complex waveforms may be severely distorted for the fundamental may be recorded at full amplitude with harmonics attenuated
progressively. A square-wave input may be recorded as a near sine-wave if the response is inadequate. It is better to use a smaller signal amplitude in such cases.

Simple moving-coil chopper-type recorders will roll off from as low as 1 Hz . Ink jet units extend to 800 Hz : beyond that optical recorders are needed providing up to 1 MHz in the CRT design. Frequencies above this must be viewed by oscilloscopes using cameras to record the image.

Faithful response is also a function of amplifier characteristics. With the exception of simple . moving-coil recorders most units have built-in amplification because the majority of signals to be recorded, have insufficient power to 'provide an adequate response. Recorder sensitivities may be fixed in manufacture, as in process industry dotting recorders, or have adjustable ranges. The
manufacturers of recorders usually provide the amplifiers as part of the recorder, the purchaser only has to make the selection.
Event-marking recorders: In many recording applications the variable remains constant for more of the time than it varies. An example might be recording rainfall in dry areas. If the record must provide fine time. resolution the chart must run fast which means using immense lengths of paper for little data recorded. An approach, slowly finding acceptance, is to use a time/date printer which prints a value each time an increment of event occurs. Each increment printout causes the chart to advance a unit. The result is a record chart completely filled with non-zero data. It is harder to interpret but much more efficient for spasmodic data situations. At present, however, this form of equip. ment is hard to procure commercially.

Th Wilmslow Audio

THE firm for speakers!

Send 10p stamp for the world's best catalogue of Speakers, Drive Units, Kits, Crossovers, etc., and discount price list

> ATC AUDAX BAKER BOWERS \& WILKINS CASTLE CELESTION CHARTWELL
> COLES DALESFORD DECCA EMI EAGLE ELAC FANE GAUSS GOODMANS HELME I.M.F. ISOPHON JR JORDAN WATTS KEF LEAK LOWTHER MCKENZIE MONITOR AUDIO PEERLESS RADFORD RAM RICHARD ALLAN SEAS TANNOY VIDEOTONE WHARFEDALE

WILMSLOW AUDIO Dept. ETI

SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE, SK9 1 HF
Discount HiFi, etc., at 5 Swan Street and 10 Swan Street
TEL: WILMSLOW 29599 FOR SPEAKERS
WILMSLOW 26213 FOR HIFI

> SAVE £'s ON THIS SPECIAL T.V. CHiP AY-3-8500 OFFER ONLY £5.50

> INCLUDING
> * Circuit diagram for automatic ball speed up *Black \& white bats
> * Extra 'funny football' game *All the other usual features available SEND NOW-WHILE STOCKS LAST TO: TELECRAFT, 4 Pinevale, Prospect Rd. New Barnet, Herts. Tel: 01-440 7033 (TRADE ENQUIRIES WELCOME) P.O.'s \& cheques to be made payable to 'Telecraff'

Hear No Evil . . .
FOR ABOUT $£ 3,500$ you can buy a microcomputer system complete with VDU, Printer, Multi-cassette system, 18KRAM, software, etc - all you need to be up and running is a mains plug. The most likely add-on to this sort of system is a floppy disk, more RAM or 'telecommunications facilities to be able to use it with a telephone to talk to a mainframe computer.

One problem with the idea of communicating with a mainframe from a micro is that the micro could possibly be more intelligent than the mainframe. For example I used the word "talk" earlier and I was not kidding. A company called Heuristics Inc, 900 N San Antonio Rd; Los Altos, California is now offering a product called "Speechlab" which adds to an S-100 bus to enable you to talk to your micro via a microphone. The signal from the microphone is amplified and then passed into three filtering networks with time averagers following each. The filter outputs are digitised by using a standard A/D converter and multiplexer, the resulting digital voltage levels are stored in RAM and another microphone sample taken. As each spoken word can be analysed into sections of high, medium or low frequencies sustained for different times the micro can build up a digital "picture" of the word. This "picture" can then be compared to word pictures already stored for comparison and hopefully a match found.

An interesting side application of this unit is for handicapped persons, even those with a serious speech handicap. Speechlab can recognise repetitions of sound patterns which do not necessarily need to be from a spoken language. Thus a slightly extended version of the Speechlab program could give a handicapped person the ablity to operate household or office equipment, including a typewriter, simply with a set of sound commands. The really remarkable thing about this MPU add-on kit is its relative simplicity and its price of $\$ 250$, with the hopeful or perhaps inevitable advent of the Speechchip in a few months time we might well be able to look forward to micros with a vocabulary in excess of 1,000 words - well above that of a lot of adults!

Speak No Evil

Of course the $1000+$ word vocabulary mentioned above is only the number of spoken words that the micro can understand. A microprocessor will never be able to produce anything like human speech with a level of vocabulary of anything near 1000 words. Unless, of course, you happen to have something like the Al Cybernetic Model 1000 speech synthesiser from Al Cybernetic, Box 4691. University Pk, NM88003. USA. Again this unit plugs on to an S-100 bus at one end and an audio amplifier at the other, to give, according to reports, an understandable if slightly robotic speech output. The output sounds are made up from a conversion of a phonetic interpretation of the ASCII character set, supplied as a string of characters. Essentially the Model 1000 is a hardwired analogue of the human vocal tract with variouls parts of the circuit emulating the vocal chords, the lungs, mouth, tongue, lips and teeth.

See No Evil . . . ?

Just to complete the trio, I should mention the digital camera seen recently at the Build Your Own Computer Exhibition. I can't recollect which company were showing it or exactly what it was capable of doing but it is enough to recognise that we can'now build a machine with ears, mouth and eyes. With RAM and PROM now being designed in 64 KByte packages and mass production leading to low prices how long will it be before machine intelligence becomes an everyday fact: of life? Perhaps one of the first applications is in a telephone answering system that is able to answer an unattended phone, take a message, give a message, ring you at another number and pass on any important messages. Connect up a digital camera and TV screen to it before 1984 and you get a free Big Brother thrown in!

Green Fields and Blue Water.

If you already have or are considering building one of the TV games kits using the General Instruments AY $-3-8500$ then the fact that GI have just released the pin compatible AY-3-8550 may interest you. The 8550 plays the same six games as the 8500 but allows for changes in colour of the background, ball and players. The colour coding of the players allows one player to be "Blue" and the other player to be "Red", thus making their pieces on the screen easy to identify.

With the ability to encode the background according to the type of game you can produce new games from the existing logic. Changing the football background from green grass to blue water changes the game from football to water polo - same type of game but different rules.

The main physical differences between the 8500 and the 8550 are changes at pins -

1, 14 and 15 allow the bats to be moved horizontally as well as vertically by use of two more variable controls.

6 , now Black/white bat select, allows payer colour coding.

28 is now a composite output being the sum of the signals for bats, ball, field and score and can be used in lieu of the data on pins 9,10 and 24.

Data on the 8550 and other GI.TV games is available from GIM, 57/61 Mortimer St, London W1N 7TD

SAVEUPTO£75 DON'T MISS DORAM'S SHORT SAVE BAND

 and the complete Digital Frequency kit for only $£ 99.95+£ 8.00$ VAT! Buy these products aiready assembled and together they could cost you up to $£ 75$ more!

Complete Digital Multimeter kit normally $£ 54.50+£ 4.36$ VAT.

Complete Digital Frequency Meter kit normally $£ 54.50+£ 4.36$ VAT.

SOLD AS A PAIR FOR ONLY £99.95+£8.00 VAT

Digital accuracy. Ferranti-based technology. printed circuit boards, elegant shatterproof carry-cases with display tilt foot . . . and Doram dependability. What a rare chance to save even more than usual with Britain's leading professional kits. Don't delay. post today.
YES, I WANT TO SAVE UP TO £75

KEY DATA
Digital multimeter k
VOLTS DC

DEPEND ON DRYAM

$$
\begin{aligned}
& \text { ME TER kits at } \mathbf{\text { C9P9}} \\
& \text { claim my money back if kits are returned in the form received and ready tor re-sale }
\end{aligned}
$$

Please send me complete DORAM KITSCATALOGUE(s). showing an additional 25 kits at 25 peach
lenckosecheque/PO value
NAME (BLOCKCAPITALS)
ADDRESTS
TOWN.
COUNTY
Post to DORAM ELECTRONICSLTD.DEPT POBOXTR\& LEEDS. WEST YORKSHIRE LS122UF

38555 iRCUIIS

It can be a nuisance can't it, going from newsagent to newsagent? "Sorry squire, don't have it -' next one should be out soon."

Although ETI is monthly, it's very rare to find it available after the first week. If it is available, the newsagent's going to be sure to cut his order for the next issue - but we're glad to say it doesn't happen very often.

Do yourself, your newagent and us a favour. Place a regular order for ETI; your newsagent will almost certainly be delighted. If not, you can take out a postal subscription so there's nothing for you to remember - we'll do it for you.

For a subscription, send us $£ 6.00$ ($£ 7.00$ overseas) and tell us which issue you want to start with. Please make your payment (in sterling please for overseas readers) to ETI Subscriptions and keep it separate from any other services you want at the same time.

ETI Subscription Service,

Electronics Today International, 25-27 Oxford Street, London W1R 1RF.

techtips

Tech-Tips is an ideas forum and is not aimed at the beginner. We regret we cannot answer queries on these items.
ETI is prepared to consider circuits or ideas submitted by readers for this page. All items used will be paid for. Drawings should be as clear as possible and the text should preferably be typed. Circuits must not be subject to copyright. Items for consideration should be sent to ETI TECH-TIPS, Electronics Today International, 25-27 Oxford St., London W1R 1 RF.

Stereo Input Selector

T. E. Huffinley

Four different inputs can be switched through by the continual pressing of SW1. IC1 is a dual ' D ' type flip flop. The Q outputs are connected to the D inputs so that the clock inputs are divided by two. The two flip-flops are connected in series, giving a two stage binary counter.

IC2 is a quad OR gate. This is used to decode the four states of the counter. The outputs are used to control the quad switches of IC3 and IC4.(4016AE).

PCB Bag

L. Rink

A piece of foam plastic is placed between two boards of about the same size as the PCB being printed, on top of this is placed the Photo-resist PCB with the master copy transparency in position on top. The whole of this is put inside a plastic bag and then sqaushed flat.

The end of the plastic bag is then sealed by folding over, and then when the pressure is released, and the plastic foam tries to expand, air pressure presses the transparency tight against the PCB and usually can hold it for several minutes:

Guitar Synthesiser

R. Barnett

This circuit uses a CMOS Phase Locked Loop, the 4046, to produce a very unusual sound from a guitar, which sounds something like a syntheiser.

The signal from the guitar is amplified by two of the amplifiers in the 4007. The amplified signal is used by the phase comparator to lock the VCO to the frequency of the note played. The VCO does not oscillate until a note is played, when using the low pass filter shown (i.e. the, 15 k resistor and 100 n capacitor). If the value of the resistor is increased, the VCO oscillates continuously at about 1 kHz (with no input signal). This gives very smooth note changes. The basic frequency may be changed by varying the 100 k resistor.

SINTEL BARGAINS offer open until z1st Juty, 1977

SINTEL SPECIAL OFFER - CONDITIONS
OPEN UNTIL 31st JULY, 1977 INCLUSIVE - WHILE SPECIAL OFFER STOCKS LAST
Orders must bear a postmark dated betore 3 st July. 1977 inclusive
SPECIAL OFFER prices are before VAT and p\&p charcas.
SPECIAL OFFER prices are before VAT and $p \& p$ charges.
This ofter only applies to orders enclosing our cut-out SPECIAL OFFER COUPON in the bottom right hand corner of this advertisement
Offer applies to UK only Otter open to FTI readers on
Offer applies to UK only. Otter open to E.T.I. readers
After 31 st July prices will be as our current Price List

BARGAIN KIT PRICES

ATTRACTIVE SIX DIGIT ALARM CLOCK KIT
A complete kit including sitim white case h 40 mm w. 205 mm d 140 mm with deep red panei Features
bleep alarm. snooze. automatic intensity conirol and high brighness display driving Twelve or OFF ACK AND CCK

This alarm clock 15 also available wht CAYSTAL CONTROL and BATTERY BACKUP 11 mains power is
distonnected deliberately or accidentally the clock will keep perfect Ime Accuracy to whin a lew disconnected (deliberately or accidentally) the clack will keep perfect sime Accuracy to within a few
seconds a month White on backup. the displays are off to conserve battery but the alarm temains fully
operational Order as ACK + BBK + XTK

SIX JUMBO DISPLAYS

Common Cathode 0.5 in . Character Height Order as FND500×6

CD4000	0.17	CD4025	0.23	CD4048	0.58	CD4077	0.45	CO45	
CD400	0.18	CD4026	1.78	C04049	0.58	CD4078	0.2	CO45	24
CD4002	0.17	CD4027	0.58	CD4050	0.58	CD4081	0.23	CD4516	1.40
CD4006	1.20	CD4028	0.92	CO405 1	0.94	C04082	0.23	CD4518	1.25
C0.4007	0.18	C04029	1.18	C04052	0.94	CD4085	0.74	CD4520	1.19
CD4008	1.00	CD4030	0.58	CD4053	4	CD4086	0.74	CD4527	1.64
CD4009	0.58	CD4031	2.30	CD4054	1.20	CO4089	1.60	CD4532	1.39
CD4010	0.58	C04032	1.02	CD4055	1.36	CD4093	0.92	CD4555	0.
CD4011	0.20	CD4D33	1.44	CD4056	1.36	CD4094	1.94	CD4556	0.90
CD4012	0.23	CO4034	1.97	CD4059	4.93	C04095	1.08	MC14528	1.22
CD4013	0.58	CD4035	1.22	C04060	1.15			MC14553	4.68
CD4014	1.04	C04036	3.29	CD4063	1.13	C04097	3.85		
CD4015	1.04	CD4037	0.98	C04066	0.63	CD4098	13		
CD4016	0.58	CD4038	1.10	C04067	3.85	C04099	1.90		
CD401.7	1.04	CD4039	3.20	CD4068	0.23	C04502	4		
CO4018	1.03	CD4040	1.11	C04069	0.23	CO4510	1.41		
C04019	0.58	CD404 1	0.86	CD4070	0.51	CD4511	2		
CD4020	1.28	CD4042	0.86	CD4071	0.23	TAKE 10\% OFF			
C04021	1.04	CO4043	1.01	CD4072	0.23				
CD4022	0.94	CD4044	0.96	CO4073	0.23	THES	CM	OS	
CD4023	0.23	CO4045	1.45	CD4075	0.23	PRICES			
CD4024	0.80	CD4046	1.37	CD4076	1.34				

SPECIAL OFFER
FROM£6.70
RCA CMOS AND
LINEAR IC
DATABOOK
Only 14.9 .9.

SINTEL chooses the ZILOG Z80 A COMPUTER USING THE Z80

We think it's worth waiting for
SINTEL offers you the world's most advanced B-bit microprocessor designed by the team who created the 8080 The 280 is manufactured by Zilog (backed by Exxon
the world's largest corporation) and by Mostek - the world's leading memory manufacturer.
Here are some features which will warm the expert's heart

Single +5 V power supply
Siatic operation
Single, simple clock
Block move instruction
Two index registers

158 instructions, including all 78 of the 8080A Automatic dynamic RAM refresh
Superb set of addressing modes Superb set of addressing modes
Loop counting and exit with single instruction Great interrupt handling 12 general purpose registers

ON SPECIAL OFFER FROM SINTEL

FAST SERVICE for SPECIAL OFFER ORDERS. Orders will be despatched on the amme day by 1 a Clana Poot (some heavy itema by parcel post). Officiel (credit) orders accepted it our normal

A FREE CATALOGUE requested by post or phone, will be sent by return giving full details of our complete range including other components not listed here, with same day despa
prices valid until 31 st Augusi. 1977 Our new issue is now evaliable.
SEND YOUR SPECIAL OFFER ORDER PiU: a \% VAT plus 25 p post and packing charge to us at

TAKE 10\% OFF PRICES OF ALL				
Each kit consists of the appropriate number of $05^{\prime \prime}$ red LED displays teather common anode TIL321/FND507s or common calhode TiL322/FND500s) and a display hoiding PCB. OPTIONS PCBs wired for multiplexing or non-multiplexing. clock format or counter format				
TYPE Non-Multiplexed	common Part No	NODE Price	COMMON Part No.	ATHODE Price
2 digl Counter	574-822	¢3.37	446-822	¢2.97
4 digi Counter	177.822	c6.63	128.822	65.83
6 digil Counter	684-822	c9.89	271-822	¢8.69
Multiplexed				
4 digil Clock	801-822	E6.66	262-822	¢5.86
6 digh Clock	$417-822$ $119-822$	¢10.15 $\mathbf{c 1 3 . 0 9}$	$452-822$ 515.822	¢8.95
8 digit Counter			515.822	£11.49

LOW COST SOLDERCON IC SOCKETS
Our offices are at 209 Cowiey Aoad. Oxford, out please do not $\{3,01$ use this as a postal address.

techtips

Thermo Touch Switch

S. B. Dick

The following touch switch works on the temperature dependence of the forward voltage of silicon diodes. At $0{ }^{\circ} \mathrm{C}$ this is about 650 mV , but drops by 2 mV per : C increase in temperature.

When a finger is placed on D3 and D4 the voltage at A will drop below that at B and the O / P of the Op-Amp will go high, causing a TTL compatible pulse to appear at C. D1 and D2 provide compensation against ambient temperature changes. VR1 is initially set so that VA is greater than VB by about 10 mV .

The system has the intrinsic advantage that it may be used in moisture-prone conditions in which ordinary touch switches would be most unsatisfactory due to their principle of operation.

Loudness Control

David Chivers
This loudness control works with the volume control to provide a more even listening contour. Since the human ear can hear sound in the middle of the audio spectrum better than at the extremities, it is desirable to attenuate high and low frequencies less than the middle frequencies as the volume is cut.

With SW1 on, bass and treble are boosted relative to middle frequencies. RV1a is ganged to the volume control, this varies the strength of loudness control so that at low volume the effect is more noticeable. This unit will replace the volume control in a present system, coming between the preamp and power amplifier. It a stereo unit is to be made, SW1 should be four pole two way, and it is best to have separate volume / loudness controls for each channel since four way potentiometers are hard to find.

MARCONI TF675F WIDE RANGE PULSE GENERATOR +1 - variable outputs !p to 50 V Optional delay. Small compact unit £18 ea.

ROYAL INVERTORS manufac tured USA, 28V DC Input. Output 115 V AC 400 HZ up to 2 KVA . Brand new. Crated $£ 12.50$ ea

AVO TRANSISTOR

4 Ranges $0.5 ; 0.10 ; 0-15 ; 0-30$ Due to large purchases now priced at

ANALYSER CT446

Suitcase style NOW $£ 27.50$ each

FOR THE VDU BUILDER.

 Rectangular Screen $30 \times 20 \mathrm{~cm}$ slock of Large the ridiculous price of $£ 4$ each. And also still available the CME1220, $24 \times 15 \mathrm{~cm}$ at $\mathbf{£ 9}$ ea. Base connections for both tubes supplied
C.D.C. DISK DRIVES. TWIN EDS

Single phase - air conditioning not essential
Guaranteed fine condition. $£ 240$ each. Complete with copy of manual and 50 packs.
Size approx. $2^{\prime} \times 2^{\prime} 10^{\prime \prime} \times 3-36^{\prime \prime}$ high

TRANSFORMERS - All 240 V 50 HZ Inpurs
Type A 170-17V 250MA 750.75 V 250MA 0.20 V 5 Amps. $0-4 \mathrm{~V} 5 \mathrm{Amps}$ 0-1.1-5V 5 Amps $£ 2$ each. P\&P $£ 1.25$. Type B $17-0.17 \mathrm{~V} 250 \mathrm{MA}, 8-0.8 \mathrm{~V} 250 \mathrm{MA}$ 0.125 .13 .5 V 5 Amps $0.1 .5-2 \mathrm{~V} 5 \mathrm{Amps}$ £ 1.50 ea. P\&P £ 1
Type C. $19.0-19 \mathrm{~V} 250 \mathrm{MA}, 8-0-8 \mathrm{~V} 250 \mathrm{MA}$ $0-7.5 \vee 5$ Amps $0-1.4 \vee 5$ Amps $£ 1.25$ ea P\&P £ 125
Ali brand new (APT surplus types, A, B, C) *POT PACK. All 8rand New Modern Single and Ganged. Our choice. 7 for $\mathbf{2 5 p}$. P\&P 48p.
SEMICONDUCTORS - Now all at $5 p$ ea. *. P\&P extra. Guaranteed all full spec devices Manufacturer's markings BC147 2N3707, 2N4403, BC172B BC261 BC251B BC348B, BC171A/B. 2N5879 with 2N588 Motorola 150 Wau Comp par £2 pr. Psp $15 p$.
tinear Amp 709 25p ea. P\& P $8 p$
VARIACS 240 V input 0.230 V output amp $£ 18$ ea. $20 \mathrm{amp} £ 30$ ea. Carr. extra

WE ARE BREAKING COMPUTERS
UNIVAC/HONEYWELL/ICL 1900 etc.
oards Power Supplies, Core Stores are available CALL AND SEE

EDWARDS HIGH VACUUM PUMPS

Type1SC30@£50 each. Type ES35@£40 each
Carriage E2.75

PICK-A-PACK - 50 PENCE A POUND
 FROM OUR "PICK-A-PACK" AREA WEIGH UP YOUR OWN INDIVIDUAL COMPONENTS

NO RESTRICTIONS ON WHAT YOU TAKE

Quantity of CABINETS - Approximately 5 ft . 6 in . and smaller. Computer types - very smart. Prices from $£ 4$ to $£ 20$ dependent on size. Cabinets at $£ \mathbf{2 0}$ each. Carriage all sizes $£ 2.75$.

EX-DYNAMCO Oscilloscopes INVERTORS 30 V Input 6 KV Output. Size $2^{\prime \prime} \times 4^{1 / 2^{\prime \prime}} \times 1^{1 / 2^{\prime \prime}}$ Complete with circuit $£ 10$ each. P\&P $£ 1$.

INTERFACING

SERIAL/PARALLEL - PARALLEL/SERIAL. TTL buffered Ins and Outs Inverted and Non-inverted; Pos or Neg strobe: Adjustable Baud rates (dispatched at 110): Min
20 mA drive for all outputs. Requires +5 V . Supplied with 20 mA drive for all outputs. Requires

TTL/232 (CCITT) - 232 (CCITT)/TTL. Min. TIL output 20 mA . Requires +12 V ; -12 V : amd $/ 5 \mathrm{~V}$. 19.50 ea. P\& F 20 mA
DRIVER BOARD to suit most Paper Tape Punches. TTL to
DRIVER BOARO to suit most Paper Tape Punches.
$24 / 48 \mathrm{~V}$ for solenoids. etc. 9 Channel. § 55 ea. P\&P 2.
TELETYPE PLUG COMPATIBLE 20 mA to 0.5 amp . Drive Board with edge connector $£ 18.50$ ea. P\&P $£ 1$ Requires
external $18-0-18 \vee 1$
and Power Transistor.

SURPLUS - BRAND NEW - REPLACEMENT TUBES FOR DYNAMCO 7100 SERIES OSCILLOSCOPES TYPE BRIMAR DI3-5IGH
Mesh P.D.A. Transistor Scan Wide Bandwidth 60MHZ + Rectangular $6 \times 10 \mathrm{~cm}-1 \mathrm{KV}$ EHT \times Sensitivity $15 \mathrm{~V} / \mathrm{CM}$
Sensitivity $6 \mathrm{~V} / \mathrm{CM}$ Standard heaters Length $13^{\prime \prime}$.

Sensitivity $6 \mathrm{~V} / \mathrm{CM}$ Standard heaters Length $131 / 4$ SCOPE OR IDEAL FOR THE HIGH QUALITY TRANSISTOR SCOPE BUILDER
At $£ 65$ each. Carriage $£ 2.75$
To Tube purchasers only Numetal Shields at $£ 250$ ALSO AVAILABLE TUBE type BRIMAR D10-210GH/32 Rectangular $7 \times 5 \mathrm{~cm}$. Mesh P.D.A. Short $91 /{ }^{\prime \prime}$. $30 \mathrm{MHZ}+$
Sensitivity $\times 14 \mathrm{~V} / \mathrm{CM}: Y$ Y $10 \mathrm{~V} / \mathrm{CM}$. BRAND NEW at $₹ 70$ each
Sensitivity \times Carriage $£ 2.75$

1/2" MAG TAPE
Approx $2,000 \mathrm{ft}$
NOW 25p each P\&P £1

LINE PRINTERS - VARIOUS MODELS £100 each. Carriage £15 Size approx. $4^{\prime} 4^{\prime \prime} \times 3^{\prime} \times 4^{\prime}$ high

```
MINIATURE - OXLEY PATCH PANELS - BRAND NEW EX-DYNAMCO
\(10 \times 10\) complete with pins. 88 each. P\&P 50p
```

ITEMS OFTEN AVAILABLE

CORE STORES with Drivers from £100. Som

 small RAM Boards from £ 15 . DISK PACKS. Good used TWIN PACKS £10 ea. Good used MULTI PACKS £25 ea. CORE PLANES (no drivers) from $\mathbf{5} 5$. HEADS for PACKS (individual) £15 ea P.C. MOTORS (Disk Drives?) £15 ea.

DATA LOGGERS BY DYNAMCO

These are BRAND NEW - not finished. They are completed but for the plug-in boards. The case with hinged lid is quite superb and extremely adaptable. It contains as well as the mother board an equally superb Power Supply with the following voltages $+28 \mathrm{~V} ;+15 \mathrm{~V} i+5 \mathrm{~V}(2.5 \mathrm{~A})-$ this supply is crowbar protected: $-5 \mathrm{~V},-14 \mathrm{~V},-20 \mathrm{~V}$ $-24 \mathrm{~V}:-48 \mathrm{~V}$ and other supplies including auto This unit supplied in its original cardboard box complete with original manual and must be of serious interest to the protessional constructor and anyone considering the construction of a micro processor system. Unit size $71 / 2$ high $\times 19^{\prime \prime}$ wide $\times 23^{\prime \prime}$ deep.

Price $\mathbf{4 5}$ each. Carriage E2.75

PICK-A-PIECE - 50 PENCE EACH
 PICK-A-METER - £1 EACH
 A LARGE SELECTION OF BRAND NEW AND EX-EQ. METERS

Wide Range Astable

P. D. Mā̄dinson

In a conventional astable, the bipolar transistors take a significant amount of base current, which limits the use of high value timing resistors. By replacing bipolar transistors with FET's, which consume a much smaller 'gate' current, we can use much higher values of timing resistor and hence get a much wider range.

N-channel FET's were chosen, so that a positive Vcc rail could be used, and with a 5 V supply the circuit was able to drive TTL without trouble.
With the component values given one time constant was approx. $5 \mu \mathrm{~S}$, and the other was variable from $5 \mu \mathrm{~S}$ to approx. 2 mS ; a range of 400: 1^{i}.

ASCII Keyboard

R. Barnett

This circuit uses a 16 key calculator keyboard to generate the 7 bit ASCII code, using two hex numbers to define ASCII character.

If, for example, the code for $A(41$ hex) is required, ' 4 ' is pressed first. After 10 mS (to avoid switch bounce) the binary code from the diode matrix is latched into three D-type flip-flops. ' 1 ' is now entered. This time, after the 10 mS delay, a 200uS pulse is produced by the second 74121 . If the ENABLE input is low, a negative pulse appears on the STROBE output, while the ASCII code for A appears on the other outputs. If the enable input is high, the circuit remains in its initial state with the strobe pulse disabled.

15-240 Watts!

HY5
Preamplifier
\section*{HY30}

mag Catris a mono hybrid amplifier ideally suited for all applications. Alt common input functions multi-way switch or direct connection tor internally, the desired function is ached ene the by merely require connecting to external potentiometers (not included) The HY5 is compatible with alt L.P. power amplifiers and power supplies. To ease construction and mounting a P.C connector is supplied with each pre-amplifier FEATURES: Complete pre-amplifier in single pack - Multi-function equalization - Low noise - Low distortion - High overload - two simply combined for stereo
APPLICATIONS: Hi-Fi - Mixers - Disco - Guitar and Organ - Public address
SPECIFICATIONS
INPUTS Magnetic Pick-up 3 mV Ceramic Pick-up 30 mV : Tuner 100 mV : Microphone 10 mV OUTPUTS Tape 100 mV ; Main output 500 mV R M S
ACTIVE TONE CONTROLS Treble $\pm 12 \mathrm{~dB}$ at 10 kHz . Bass \pm at 100 Hz
DISTORTION 0.1% at 1 kHz ; Signal/ Noise Ratio 68 dB .
OVERLOAD 38dB on Mannetic Pick-up: SUPPLY VOLTAGE $\pm 16.50 \mathrm{~V}$

15 Watts into 8Ω
The HY30 is an exciting New kit from I.L. P., it features a virtually indestructible I.C. with shor circuit and thermal protection. The kit consists of I.C., heatsink, P.C. board, 4 resistors, 6 capacitors mounting kit, together with easy to tollow construction and operating instructions. This amplifier is ideally suited to the beginner in audio who wishes to use the most up-to-date technology available. FEATURES: Complete kit - Low Distortion - Short, Open and Thermal Protection - Easy to Build APPLICATIONS: Updating audio equipment - Guitar practice amplifier -- Test amplifier - Audio SPECIFICATIONS
OUTPUT POWER 15W R.M.S. into 80 DISTORTION 0.1% at 15 W
NPUT SENSITIVITY 500 mV FREQUENCY RESPONSE $10 \mathrm{~Hz}-16 \mathrm{kHz}-3 \mathrm{~dB}$
Price $£ 5.22+65 p$ VAT P\&P free.
HY50
25 Watts into 8Ω
The HY50 leads I.L.P 's total integration approach to power amplifier design. The amplifier features an integral heatsink together with the simplicity of no external components. During the past three years the amplifier has been refined to the extent that it must be one of the most reliable and robust High FEATURES: LIW Distortion

- No external components

APPLICATIONS: Medium Power Hi-Fi systems - Low power disco -- Guitar amplifier
SPECIFICATIONS: INPUT SENSITIVITY 500 mV
OUTPUT POWER 25W RMS in 80) LOAD IMPEDANCE 4.160 DISTORTION 0.04% at 25 W a 1 kHz .
SIGNAL/NOISE RATIO 75 dB FREQUENCY RESPONSE $10 \mathrm{~Hz} .45 \mathrm{kHz}-3 \mathrm{~dB}$. SUPPLY VOLTAGE +25 V . SIZE 105.50 .25 mm
 Price $\mathbf{E 6 . 8 2 + 8 5 p}$ VAT P\&P free

The HY: 20 is the baby of I.L.P's new high power range, designed to meet the most exacting requirements including load line and thermal protection, this amplifier sets a new standard in modular FEATURES: Very low distortion - Integral Hearsink - Load ine protection _ Thermal protecion Five connections - No external components
APPLICATIONS: Hi-Fi - High quality disco - Public address - Monitor amplifier - Guitar and organ.
INPUT SENSITIVITY 500 mV
OUTPUT POWER GOW RMS into 80. LOAD IMPEDANCE 4-160 DISTORTION 0.04\% at 60W at 1 kHz .
SIGNAL/NOISE RATIO 90dB. FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$. SUPPLY VOLTAGE Size $114 \times 50 \times 85 \mathrm{~mm}$
Price $£ 15.84+£ 1.27$ VAT $P \& \bar{P}$ free
HY200
The HY200, now improved to give an output of 120 Watts, has been designed to stand the mos FEATURES Conditions, such as disco or group while still retaining true Hi.Fi performance FEATURES: Tharmal shutdown - very low distortion - Load'line protection - Integral heatsink
120 Watts into 8Ω
APPLICATIONS: Hi.Fi - Disco. - Monitor - Power Slave - Industrial - Pubic address SPECIFICATIONS:
NPUT SENSITIVITY 500 mV
OUTPUT POWER I 2OW RMS into 80. LOAD IMPEDANCE 4-160. DISTORTION 0.05% at 100 W at SIGNAL/NOISE RATIO 96 dB . FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$. SUPPLY VOLTAGE
$\pm 45 \mathrm{~V}$ SIZE $114 \times 100 \times 85 \mathrm{~mm}$
Price $£ 23.32+£ 1.87$ VAT P\& P free.
HY400
240 Watts into 4Ω
The HY400 is I.L.P. 's "Big Daddy" of the range producing 240 W into 40 It has been designed for high power disco or public address applications. If the amplitier is to be used at continuous high power levels a cooling fan is recommended. The amplifier includes all the qualities of the rest of the family to FEATURES: Thermal shutdown - Very low distortion

APPLICATIONS: Public address -- Disco - Power slave - Industrial

components

SPECIFICATIONS
OUTPUT POWER 24OW RMS into 4 2 LOAD IMPEDANCE 4.16I DISTORTION 0.1% at 240 W at
SIGNAL/NOISE RATIO 94dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}$ - 3 dB SUPPLY VOLTAGE 45 V
NPUT SENSITIVITY 500 mV SIZE $114 \times 100 \times 85 \mathrm{~mm}$
Price $£ \mathbf{3 2 . 1 7}+\mathbf{£ 2 . 5 7}$ VAT P\&P free.
POWER SUPPLIES

PSU 70 sutable for two HY5O s $£ 8.82$ plus 85 V VAT P/P tree
PSU 70 sultable tor 2 HY $120 \mathrm{~s} £ 13.75$ plus $£ 1.10$ VAT P / P fre
PSU90 surtable for one HY200 12.65 plus $£ 1$ al VAT P/P free
B1 48 m olus ou VAT

I.L.P. Electronics Ltd
Crossland House
Nackington, Canterbury
Kent CT4 7AD

Tel (0227) 63218

Please Supply
Total Purchase Price
I Enclose Cheque \square Postal Orders \square Money Order \square
Please debit my Access account \square Barclaycard account \square
Account number
Name \& Address

Tpidnitamk
Capacitive discharge electronic ignition kits

VOTED BEST OF LSYSTEMS TESTED BY MOPULAR. MAGATME

* Smoother running

Instant all-weather starting
Continual peak performance
Longer coil/battery/plug life
Improved acceleration/top speeds
Optimum fuel consumption
Sparkrite Mk. 2 is a high performance, high quality capacitive discharge electronic ignition system in kit form. Tried, tested, proven, reliable and complete. It can be assernbled in two or three hours and fitted in $15 / 30$ mins.
Because of the superb design of the Sparkrite circuit it completely eliminates problems of the contact breaker. There is no misfire due to contact breaker bounce which is eliminated electronically by a pulse suppression circuit which prevents the unit firing if the points bounce open at high R.P.M. Contact breaker burn is eliminated by reducing the current to about $i / 50$ th of the norm. It will perform equally well with new, old, or even badly pitted points and is not dependent upon the dwell time of the contact breakers for recharging the system. Sparkrite incorporates a short circuit protected inverter which eliminates the problems of SCR lock on and, therefore, eliminates the possibility of blowing the transistors or the SCR. (Most capacitive discharge ignitions are not completely foolproof in this respect). All kits fit vehicles with coil/distributor ignition up to 8 cylinders.
"THE KIT COMPRISES EVERYTHING NEEDED
Ready drilled pressed steel case coated in matt black epoxy resin, ready drilled base and heat-sink, top quality 5 year guaranteed transformer and components, cables, coil connectors, printed circuit board, nuts, bolts, siticon grease, full instructions to make the kit negative or positive earth, and 10 page installation instructions
OPTIONAL EXTRAS
Electronic/conventional ignition switch
Electronic/conventional ignition switch.
Gives instant changeover from "Sparkrite" ignition to conventiona Gives instant changeover from 'Sparkrite" ignition to conventional
ignition for performance comparisons, static timing etc., and will ignition for performance comparisons, static security device, includes
also switch the ignition off completely as a secur switch connectors, mounting bracket and instructions. Cables excluded Also available RPM limiting control for dashboard mounting (fitted in case on ready built unit).
CALLERS WELCOME. For Crypton tuning and fitting service 'phone (0922) 33008
Improve performance \& economy NOW Note. Vehicles with current impulse tachometers i S
require a tachometer pulse-slave unit. PRICE $£ 335$ PRICES INCLUDE VAT, POST AND PACKING.

POST TODAY!

Quick installation No engine modification required

Electronics Design Associates, Dept. ETB
82 Bath Street, Walsall, WS1 3DE. Phone: (0922) 33652

\square

\square

 1 Send SAE if brochure

Orders	SAME-DAY DISPATCH received before $2.00 \mathrm{p} . \mathrm{m}$. posted on same day
Vero Cases, $60 \times 108 \times 180 \mathrm{~mm}$ $\mathbf{£ 2 . 4 0}+\mathbf{1 9 p}$ VAT	
Push-button Switches $20 \mathrm{p}+2 \mathrm{p}$ VAT LED DL707. $3^{\prime \prime \prime} \ldots . .6 \mathbf{6 0 p}+4 \mathrm{p}$ VAT	
Futaba 5LTT01 Green Clock Display £4.60 + 36 p VAT	
Clock Chip AY1202£2.80 +22 p VAT	
Clock Chip DIL socket 30p + 2p VAT	
	Printed Circuit Board
Clock Case £2.50 + 20p VAT	
Clock Circuit Diagram and Assembly Details 45p	
+ 30p P AP per oader.,	
Barclay and Access wollcome	
METAC-ELECTRONICS\& TIME CENTRE	
Uxbridge New Arcad Uxbridge. Middx Tel. ©O895) 5696	
Shops open 9 to 5.30 daly	

Now Quality Stereo Amp Chassis. 60 w (RMS). Protected $3 \Omega \mathrm{~min} .03 \%$ THD $12 / 30 \mathrm{~V}$ Wkg. 20 trans., din socks. controls: Select, V/C, etc. Boxed, data $£ 9.95$ (inc.). K. Lawrence, 1 Regent Road. Ilkley, W. Yorks.

[^3]FULL SPEC. COMPONENTS. Special offer. $74 \mathrm{H} 0022 \mathrm{p} .7490 \mathrm{~A} 30 \mathrm{p}, 7474 \mathrm{~A}$ 28p. 8080A £19.95, 2102 £1.95.

ITT 5870ST N $1 \times 1+$ Data 50p, MM5314 + Data £3.25, Sperry SP425.09 (9 digit 7 seg) + Data $£ 1$. SKT 50p, 555 45p, 741 20p. 741 T099 (Dil) 30p, 1N4148 3p, BC108C 10p. T1L $209+$ Clip 15p, BYX49 (1200v. 2.5 Amps) 35p, 747.6' 1 £1.35, RS Fuse Holder $11 / 4^{\prime \prime}$ Panel Mnt 20p, P/P $10 p$.
LB Electronics, 43 Westacott
Hayes, Middx. UB4 8AH (ETI)

VHF pocket portable radio tuning 108 to 138 MHz . Very sensitive. Easily adjusted to tune over the 144 MHz band. $£ 16.50$ (inc. post and VAT). Romak Eng. Ltd., 10 Hibel Road, Macclesfield, Cheshire

SIX 7-Segment LED displays $£ 1$. In arrays of six. Ex-equipment but guaranteed. Also 9 array for $£ 1.50$. Supplied with data and clock circuit.
For experimenters - part working arrays $\mathbf{£ 1}$ per pack (my choice). Postage 10p per order. MR. BOBKER, 29 Chadderton Drive, Unsworth, Bury, Lancs.

MPU SOFTWARE. "The Scelbi 6800 Cookbook" includes floating point arithmetic, code conversion and Input/Output. A must for System 68 Users. $£ 10$ post paid or Sae for details. K. Roche, 100, Berkshire Drive, Woolston, Warrington.

STATIC RAMS TMS 4033. DIRECT EQUIV. 2102/2 (FASTER) 450 NS. 1024X1 VDUS, MPUS £2.95 EACH 6 UP £2.75 EACH INCLUDING DATA, VAT P\&P CWO. B.S.L. ASSOCIATES, 2 MANOR PARK. RICHMAND, SURREY. 01-9406386.

We have expanded our premises and product range for all our axisting and of course newly welcomed customers. Besides our widaly acclaimed comprehensive component sarvice which is order and counter tales on the following range. Test Equp. Wire, Boxes (plastic and metal), Tech, and
Project Books. Speakers, Chassis and Boxed. Modules. Solder. Microphones. Amplifiers (5 watt to 150 watt). Turntables. Special Effects, Uni1s. Lighting Units. F.M. Aerrals, Crossover Units, Signal Boosters. Vero Board, Headphones.
NOW ALSO AVAILABLE Full range of Metak Detectors in stock
Do phone us to discuss your requirements or Send 35p to receive our Full Product and Price List
Better still if you can make it call and see us - we are situated 10 min . from the Main Chelmsford Train and Bus Station near the County Hotel (you can park).

E.T.I. P.C.B's

Avaílable for every E.T.I. Project. Send s.a.e for details or telephone your order using Barclaycard or Access. Alternatively send Postal Orders with written order.

CROFTON ELECTRONICS LIMITED

35 Grosvenor Road, Twickenham Middlesex TW1 4AD
Tel. Na. 01-891 1923

CMOS - $1 / 2$ PRICE! Guaranteed devices. E.G. $4001,4002,401110 p$ ea. + TTL devices: Phone for details Aldershot (0252) 310022.

Shoebridge, 16 Park Road, Aldershot Hants.

> WHEN REPLYING TO AN AD PLEASE MENTION ETI

ADVERTISEMENT INDEX

Anco	Miniad	Electronic Design	p79	R. F. Equipment	p79
Bamber	. p 55	Electrovalue	. . p79	Sintel	p74
Baron	.p22	Greentank	. . p 48	Sol Invictus	-p82
Baydis	.p22	I.L.P.	.p78	Stevenson	- p63
BiPak	pp 48	Island Devices	Miniad	Swanley	p48
Bywood	$\cdots \mathrm{p} 3$	FKramer	. p5 5	Tamtronik	Miniad
Cambridge	p44	Lynx	. p51	Technomatic	. p71
Catronics	. p63	Maplin	p84	Telequipment	-p69
Chiltmead	. p76	Metac	p8 \& Miniad	Tempus . .	${ }^{\text {p44 }}$
Crimson Elektrik	p50	Minikits	P48	T.K. Electronics	Miniad
Crofton	Miniad	Mountaindene	pp27 \& 33	Videocraft	p35
D\& D Powersupply	. . p82	Precision Petite	. p63	Watford	. p2
Doramp72	Progressive Radio	. . pr ${ }^{27}$	Wilmslow	p69
Elbar	$23 \& 50$	Ramar	Miniad		

COULD

that you've been missing out on ETI Specials? These publications have really caught the imagination of readers and our sales, both on news-stands and direct from ETI, are enormous. Direct sales from ETI now exceed 1000 a week!

Our specials comprise reprints of the cream from past issues of the magazine.

See our advertisement which gives details of what is available on page 43.

We've got something to interest you if you're that way inclined. Sorry, it's got nothing to do with kinkiness if that's what you thought, but if you want your old copies of ETI. under bondage, we've got the perfect binder for you.

Beautiful quality as well, this binder. No messing with string, either: it has concealed rivets and gold lettering, and made specially for us in black simulated leather to take twelve issues of ETI.
P.S. Just in case, binders are sent under plain cover.

Send $\mathbf{5 3 . 0 0}$ (which includes VAT and postage) to: ETI Binders,
$25-27$ Oxford Street,
London W1R 1RF.

Alehtronicsimiter reader sevices

BACK NUMBERS

These cost 60 p each inclusive of postage. Overseas charge: 70 p each all inc, sterling only. All orders to ETI BACK NUMBERS DEPT.
We CANNOT supply the following issues: All 1972; January, February. April, May, August. October and November 1973; January. March. September, October, November and December 1974; January. June, July. August, September, October. November and December 1975; January, February, March, April, June and November 1976.

PHOTOCOPYING SERVICE

Due to the steady pressure on our back numbers department. and the dwindling number of issues available, we have set up a photocopying service. This involves our staff in considerable time consuming endeavour. so we hope our readers understand our decision to apply a flat charge of 50 p inclusive. This covers any article regardiess of the number of pages involved, from any ONE issue of ETI.
Please state clearly WAME of article, and from
which issue the copy you require is taken.
Address envelope to 'ETI Photocopy Service

EDITORIAL QUERIES

Written queries can only be answered when accompanied by an SAE, and the reply can take up to three weeks. These must relate to recent articles and not involve ETI staff in any research. Mark your envelope ETI QUERY . . . Telephone queries can only be answered when technical staff are free, and NEVER before 4 p.m.

BINDERS

Binders, for up to 13 issues, are available for $£ 3.00$ including VAT and carriage. Send orders to ETI BINDERS DEPT. .

SPECIAL ISSUES

Presently we produce five Specials. See our ads on page 39.

T-SHIRTS

ETI T-shirts are available in Large, Medium, or Small sizes. They are yellow cotton with black printing and cost $£ 2.00$ each. Send orders to ETI T-SHIRTS Dept

BOOKS

ETI Book Service sells books to our readers by mail order. The prices advertised in the magazine including postage and packing. SEND ORDERS to ETI BOOK SERVICE, P.O. Box 79, Maidenhead Berks.

NON-FUNCTIONING PROJECTS

We cannot solve the problems faced by individual readers building our projects unless they are concerning interpretation of our articles. When we know of any error we print a correction as soon as possible at the end of News Digest. Any useful addenda to a project will be similarly dealt with. We cannot advise readers on modifications to our projects.

SUBSCRIPTIONS

The annual subscription to ETI for UK readers is £6. The current rate for readers overseas is $\mathbf{£ 7}$ Send orders to ETI SUBS Dept. PAYmENT IN STERLING ONLY PLEASE

PCBS

PCBS are available for our projects from companies advertising in the magazine.

SPECIAL OFFER FOR READERS

- AM / FM Radio Alarm Clock (SC 220-240V only) - 24-hour Clock
- High quality white ABS Case
- Push-button Mode Selection
- Sleep delay Control
- Illuminated Clock and Radio Scale
- Alarm with Buzzer and / or Music
- A. Chrome Control Knobs
- Complies with BS415 (1972) Safety Requirements
- Each Unit full inspected before despatch
- Guaranteed for one year

Please send cheque or postal order to

D\&D POWER SUPPLY CO. LTD.

79 LOWFIELD STREET, DARTFORD, KENT
Please allow 10-14 days for delivery
Callers welcome Monday-Friday 9-5, Saturday 9-1

- 1 Sollnvictus Detectors Limited

The makers of the famous

 Viking and Probe detectors bring you... THESID DETECTOR KITEnjoy one of the world's most exciting hobbies with this high quality metal detector. Use it to search for gold, silver coins, jewellery and other valuable articles. The kit is simple to assemble and contains the latest in electronics and design features. It's performance is comparable with detectors costing up to twice as much. The kit includes all components, circuit board speaker and aluminium frame incorporating search head with

Mail Orders to:81 Moorgate Street Blackburn, Lancs. 025462561 \& 664789 Showroom: 3 Sudell Cross, Blackburn, Lancs. 0254.56917

[^0]: Electronics Today International is normally published or the first Friday of the month prior to the cover date.

 PUBLISHED BY
 Modmaigs Lid.
 25-270xford Street. W1R 1 RF
 DISTRIBUTED BY
 Argus Distribution Lid (British Isles)
 Gerdon. \& Gotch Ltd. overseas)
 PFINTED BY
 Q8 Limited. Colchester

[^1]: Fig. 7 Main circuit diagram, see page 12 for details of IC11, 12, 13 .
 16 and compensation capacitors.

[^2]: Fig. 1. Chart recorders are used in many varied applications. The panels of this control room contain a number that are used by the operators to see how the process is behaving.

[^3]: TURN YOUR SURPLUS capacitors, transistors, etc.. into cash. Contact COLESHARDING \& CO., 103 South Brink, Wisbech, 'Cambs. 0945-4188. Immediate settlement.

