

Achtronitos

Features

LCD DISPLAYS EXPLAINED
At last! The inside story on liquid crystals displayed
KENNEDY SPACE CENTER
A look around Man's stepping-stone into the sky'
HP67 REVIEW
Hewlett Packard up-market machine considered
VALVE SOUND INVESTIGATED
You've heard all the opinions - now read some facts'
ELECTRONICS - ITS EASY! PART 40
Our long-running beginners series
TECH TIPS
Your ideas for experimenters

Projects

SYSTEM 68 -- VDU PART ONE
The first part of a completely new design to use with our system
MASTERMIND
An off-the-peg design for a solo game to develop your thinking!
SHORT CIRCUITS: DIGITAL FREOUENCY METER 19
BASS ENHANCER
53

Data Sheet

MOTOROLA MC14490 HEX BOUNCE ELIMINATOR
A useful, but hittle known, device
3-TERMINAL VOLTAGE REGULATORS
Ways and means of expanding the uses of these chips
News
NEWS DIGEST
ELECTRONICS TOMORROW

Information

SUBSCRIPTIONS - SPECIAL OFFER
ETI CLOCK
BINDERS
ETI BOOK SERVICE
NEXT MONTH'S ETI
52
TOP PROJECTS 5
OTHER SPECIALS
63
READERS SERVICES INFORMATION

Special offer

ETI-MARSHALL'S-NATIONAL COMBINED READER OFFER

EDITORIAL AND ADVERTISEMENT OFFICES
25-27 Oxford Street
London W1R 1RF
Telephone 01-434 1781/2
Telex 8811896
HALVOR W. MOORSHEAD
Editor
RON HARRIS B.Sc
Assistant Editor
GARY EVANS
Editorial Assistant
JIM PERRY
Specials Editor
TONY ALSTON
Project Development
JULIAN ZINOVIEFF
Production
MAREE BREEN
Technical Drawing
SANDRA ZAMMIT-MARMARA
Subscriptions
MARGARET HEWITT
Administration
DAVID LAKE (Manager)
BRENDA GOODWIN
KIM HAMLYN
Reader Services

For Advertising Enquiries ring
MARK STRATHERN
on $4341781 / 2$

INTERNATIONAL EDITIONS
AUSTRALIA: Collyn Rivers
Publisher
Steve Braidwood
Assistant Editor

HOLLAND	Anton Kriegsman Editor-In-chief
CANADA:	Mike Kenward Editor
FRANCE	Denis Jacob Editor•In-chief

Electronics Today international is normally published on the first Friday of the month prior to the cover date

PUBLISHED BY
Modmags Lid.
25-27 Oxford Street. W1R IRF
DISTRIBUTED BY
Argus Distribution Lid (British Isles)
Gordon. \& Goich Lid Overseas!
PRINTED BY
QB Newspapers Limited, Colchester
COPYRIGHT All material is subject to world wide Copyright protection. All reasonable care is taken in the preparation of the magazine 10 ensure accuracy but ETI cannot be held responsible for it legally. Where errors do occur, a correction will be published as soon as. possible afterwards in the magazine.

PAKS - PARTS - AUDIO MODULES

High quality modules for stereo, mono and
other audio equipment.

OUR PRICE ONLY,

£20.45

The 450 Tuner provides instant program selection at the touch of a button ensuring accurate tuning of 4 pre-selected stations any of which may be altered as often as you choose, by simply changing the settings of the pre-set controls
Used with your existing audio equipment or with the BI-KITS STEREO $\mathbf{3 0}$ or the MK60 Kit etc. Alternatively the PS 12 can be used if no suitable supply is available, together with the Transformer T538
The $S 450$ is supplied fully built, tested and aligned. The unit is easily installed using the simple instructions supplied

STEREO PRE-AMPLIFIER

A top quality stereo pre-amplifier

 and tone control unit The six push-button selector switch pro vides a choice of inputs together with two really effective filters for high and low frequencies, plus tape outputMK. 60 AUDIO KIT: Comprising $2 \times$ AL60's. $1 \times$ SPM80. $1 \times$ BTM80. $1 \times$ PA100. 1 front pane and knobs. 1 Kit of parts to include on/off switch, neon indicator stereo headphone sockets plus instruction booklet. COMPLETE PRICE $£ 29.55$ plus 85 p postage TEAK 60 AUDIO KIT: Comprising: Teak veneered cabinet size $16^{3 / 4} 4^{\prime \prime} \times 111 / 2^{\prime \prime} \times 3 \frac{3 / 4^{\prime \prime}}{}$, othe parts include aluminium chassis heatsink and front panel brackét plus back panel and appropriate sockets and appropriate sock
plus 85 p
postage.

Fitted with Phase Lock-loop Decoder

* FET Input Stage
* VARI-CAP diode tuning
- Switched AFC
* Multi turn pre-sets
* LED Stereo Indicator

Typical Specification: Sensitivity 3μ volts
Stereo separation 30db Supply required 20-30v at 90 Ma max.

SPÉCIFICATION
(Harmonic Distortion Po $=3$ watts $f=1 \mathrm{KHz} 02.5 \%$

- Load Impedance $8-16 \mathrm{ohm}$ Size: $75 \mathrm{~mm} \times 63 \mathrm{~mm} \times 25 \mathrm{~mm}$ - Frecuency response $\pm 3 \mathrm{~dB} \mathrm{Po}=2$ watts $50 \mathrm{~Hz}-25 \mathrm{~Hz}$
(Sensitivity for Rated U/P-Vs=25v. RL=8ohmf=1KHz̄75mV.RMS ĀL30 10w R.M.S. £3.45

A 5 25 Watts (RMS)

Frequency Response +1 dB 20 H
20 KHz Sensitivity of inputs

1. Tape Input 100 mV into 100 K ohms

Radio Tuner 100 mV inio
100 K ohms
Magnetic P.U. 3 mV into
50 K ohms
$P \mathrm{U}$ input equalises to RIAA curve with 1 dB from 20 Hz to 20 K
Supply -20.35 V at 20 mA

AUDIO AMPLIFIER MODULE

Enjoy the quality of a magnetic cartridge with your existing ceramic equipment using the new magnetic cartridges to be used where facilities exist for the use of ceramic cartridges only. It is provided with a standard DIN input socket for ease of connection Full instructions supplied

The Stereo 30 comprises a complete stereo pre-amplifier, power amplifiers and power supply. This, with only the addition of a transformer or overwind will produce a high quality audio unit suitable for use with a wide range of inputs i.e. high quality ceramic pick-up, stereo tuner. stereo tape deck etc. Simple to install, capable of producing really first class results, this unit is supplied with full instructions, black front panel knobs, main switch, fuse and fuse holder and universal mounting brackets enabling it to be installed in a record plinth, cabinets of your own construction or the cabinet available. Ideal for the beginner or the advanced constructor who requires Hi -Fi performance with a minimum of installation difficulty (can be installed in 30 mins)

TRANSFORMER $£ 2.45$ plus $62 p p$ \& p TEAK CASE $\mathbf{E} 5.25$ plus $62 p \rho \& p$
\wedge N $\quad \begin{aligned} & \text { NEW PA12 Stereo } \\ & \text { Pre-Amplifier com }\end{aligned}$ HEW PA12 HEW PA12:Monules. Features include on/off volume. Belance, Bass and Treble controls. Complete Balance,
$20 \mathrm{H}_{z}-20 \mathrm{KHz}$

* Max Heat Sink temp 90C. \star Frequency response 20 Hz to 100 KHz , Distortion better than 0.1 at 1 KHz Frequency Response 2onz-2antz
Supply voltage $15-50 v \star$ Thermal Feedback \star Latest $12 d B$. Inpurt Impedence 1 meg ohm. Design Improvements Load - $3,4,8$, or 16 ohms $\mid m p u$ S Sensitivity 300 mV . Supply Signal to noise ratio 80 db . Overall size 63 mm . 105 mm . requirements 24 V .5 mA . Size 152 mm 13 mm .
specially designed to a strict specification Only the finest components have been used and the latest solid-state circuitry incorporated in this powertul little
amplifier which should satisfy the most critical AF amplitier

Power supply for AL20/30 PA12, SA450 etc

Stabilised Power Supply Type SPM80

SPM80 is especially designed to power 2 of the AL60 Amplifiers up to 15 watts (R.M.S.) per channel simultaneously. With the addition of the Mains Transformer BMT80, the unit will provide outputs of up to 1.5 A at 35 V . Size 63 mm .105 mm .30 mm incorporating short circuit protection
Transformer BMT80
$£ 2.60+62 p$ postage

P.O. BOX 6, WARE, HERTS.

[^0]TV GAMES KIT

The availability G.I. TV games chip has led to kits other than that described in ETI last month. Watford Electronics lent us one of theirs, and this is especially interesting as it includes some special features.

Firstly, the sound is added to the UHF modulated signal and comes out of the TV set, not from a speaker in the unit

The second difference is that the rifle facility is available and is very impressive - circuitry is included which makes the rifle (actually a pistol as shown in the photo insert) sensitive only to the spot on the TV screen - it is not sensitive to other light including light bulbs or fluorescents. The pistol circuitry is fairly sophisticated and is an extra, but well worth it. Unlike the regular TV games it is very very difficult to hit the target (one of ETI's staff who used to have marksmen's
crossed rifles on his army uniform, scored only 30% hits first time!)

Watford claim that their hand units are designed with children in mind and, although arguably less elegant in appearance than those on the ETI unit, are very practical.

The photo shows two members of ETI's staff battling out a game of football. The inset photo shows the pistol; all the 'business' parts of this are included but the kit builder is left to his own devices as far as the detailed mechanics are concerned.

The 'Olympic', as the kit is known, retails for $£ 28.70$ with the rifle accessory kit costing another $£ 10.15$ (prices inclusive of VAT and postage).
Watford Electronics, 33 Cardiff Road, Watford, Herts.

STOP PRESS: Watford now have UHF modulators in stock suitable for any TV game; price is $£ 3.75$ inclusive.

SCRABBLING ALONG THE PROM?
Designated the TMS 27L08, the new EPROM has less than half the power consumption of devices like the TI TMS 2708 and the Intel.

New features are - reduced power consumption -245 mW is typical : ten per cent power supply voltage tolerances: guaranteed dc noise immunity in both high and low states: increased output drive capability (one Series 74, 74S, or 74LS TTL circuit).

The memory circuit is organised as 1,024 words of 8 -bit length. It is designed for high-density, fixed-memory applications. Maximum access and minimum cycle times are 450 nanoseconds. Prices on application. Texas Instruments Ltd., Microprocessor Dept., MS15 Manton Lane, Bedford, MK41 7PA.
CBM CHEAPEN THEMSELVES
Another price reduction. (Isn't it nice to be able to report things like this?) The CBM 5000 range of LED watches has come down to $£ 11.95$ (5001 and 5002) and $£ 14.95(5003)$ from $£ 17.50$ and $£ 21.00 \mathrm{RRP}$ respectively.

Later in the year CBM will be plunging into the liquidy crystal market.

BEEN FRAMED?

The new Seno PCB Workframe is an inexpensive purpose-designed holder for PCBs. Adjustment is simple and accurate. It will accommodate boards up to 240 mm . x 200 mm . in size, and can be angled to suit the individual.

Designed for inspection, test, soldering or draughting, the Workframe is constructed in plated, heavy-guage mild steel. It costs $£ 13.50$ including postage and VAT, from Decon Laboratories Ltd., Ellen Street, Portsdale, Brighton, Sussex BN4 1EQ.

BRITISH? PRECISELY!

From a firm called James Niell comes the Micro 2000 to rise into our News Digest with carefully measured precision. This instrument gets our vote for the best innovation of the year already! A digital micrometer no less.

As you can see from the picture, it actually reads out a measurement in seven-segment format. Goodbye verniers. It has so many features and advances, it is perhaps best simply to list them.

Accuracy to $\pm 0.002 \mathrm{~mm}$., with a 'constant force' spindle and selfcalibration facility. As soon as it is switched on, the 2000 self zeros.

The zero reset means that it can be used as a comparator against a known standard, and variations from that can be read directly. Also in awkward
situations, the instrument can be zeroed, utilised, and then removed to be read.

The unit is entirely self-contained from rechargeable cells. It can be mains run from a (supplied) recharger.

Operation is very very simple. The slider beneath the display is simply advanced until the jaws grab whatever you're measuring. The display reads the travel.

James Neill will be introducing the Micro 2000 onto the British market almost immediately, and to the world at large in 1978. Patent applications have gone in for 14 countries. We congratulate the makers on a superb achievement, and wish them every success James Niell Ltd., Napier Street, Sheffield S11 8HB.

A NIM-ROD FOR OUR OWN BACKS!
Britain has chosen to buy 11 Nimrod aircraft instead of the 'AWACS' (Air Warning And Control Systems) from Boeing of America. The decision means about 7000 new jobs. Boeing claim their system is superior over land but acknowledge the British edge over sea. American electronics papers have been sarcastic (at the least) about the decision. Well, so would we be, if they'd bought the yankee version!

LOGGING CATS

Bi-Pak Semiconductors are the latest company to submit their catalogue for our editorial perusal (keep 'em coming folks!) and the more we read of these efforts, the more we realise just how great a choice the mail-order constructor (?) has these days.

Bi-Pak are particularly strong on ready-built modules, books and 'hardware' i.e. leads, knobs, plugs etc. A very comprehensive range of semiconductors, ICs and passives is included. Perhaps of special interest are two teak-sleeved cases for audio equipment. Anyone who has built a piece of equipment for his living-room, and tried to find something other than an aluminium bird-cage to house it, will appreciate these. Bi-Pak Semiconductors, The Maltings, 63 a High Street, Ware, Herts.

CHUCK OUT YER SOLDER!

Fresh as anything can be from the USA, we have a new solderless method of assembling PCBs. The idea is called Augat sockets, and they are designed

for use with plated-through hole boards. They are 'built-in' sockets which fit inside the holes to hold leads etc. So they take up no room on the board in height or width. Boards can be spaced closer of need be, and the cost of soldering is lost. Contacts cost less per lead than do normal sockets.

In order to make mass production with this system feasible, a special machine has been developed to fit 30,000 contacts per hour. We suspect
however, that this method will gain its initial 'lift-off' from a prototyping market. The contacts are made of berylium-copper, and the producing company has been making switch contacts for well over ten years, which does tend to add a little more reliability to the notion!

Available in U.K. from Semiconductor Specialists, Premier House, Fairfield Road, West Drayton, Middlesex.

Metac SPRING bargains
 THE METAC DIGITAL CLOCKS
 * COMPLETE KIT *

 THE ‘METAC’ DIGITAL

 THE ‘METAC’ DIGITAL WATCHES

 WATCHES}

Pleasant green display - 12/24 Hour readout

- Silent Synchronous Accuracy. Fully electronic
- Pulsating colon - Push-button setting
- Building time 1 Hr . Attractive acrylic case
- Easy-to-follow instructions Size $10.5 \times 5.7 \times 8 \mathrm{~cm}$
- Ready drilled PCB to accept components

A professional product for the home constructor. It has been designed by engineers using the most modern techniques and components. It will appeal both to the confirmed hobbyist and to the man who simply wants to 'have a go'. The kit contains everything except a mains lead. The only tools required are a small soldering iron, solder, screwdriver and wire cutters.

KIT PRICE £9.60

+ 76p VAT P\&P inc.
ALARM CLOCK KIT
As above plus: -
24-Hour Alarm
${ }^{\star}-\frac{24}{10} \overline{\text { Minute }}$ Repeater
* Mercury Tilt Switch

KIT PRICE £11.60

+ 92p VAT

THE GRUEN EXECUTIVE

 AMERICAN MADE LCD

THE BLACK WATCH by BULER SWISS PRECISION MADE LCD

Glass-filled epoxy black case
$+£ 2.44$ VAT

THE TIMEBAND by FAIRCHILD AMERICAN-MADE LCD

THE SILVER BAND bY TIME-MICRO BRITISH-MADE LED

Hours; Mins.: Secs
Month; Date
Auto. 4 year calendar
$£ 17.95$
Quality metal bracelet

SAME DAY DISPATCH orders received before 2 pm are posted same day
Cash. Cheque or Postal Order or if you wish to use Barclaycard or Access, simply quote name, address and card number
Metac-Electronics and Time Centre

GIVE YOURSELF A TREAT

Why not pay us a visit and see for yourself the full range of top-quality watches; clocks; treasure tracers; electronic ignition; TV games and battery eliminators
DAVENTRY

67 HIGH STREET
DAVENTRY NORTHANTS TEL: (032-72) 76545

SEE OUR COMPONENTS ADVERT

SHOWROOMS OPEN 9-5.30 DAILY

SINCLAIR STEPS AHEAD (36 TIMES)

Take a good close look at the photo.
This is not just another calculator. See the word 'Programmable'? Well, it is! A 36 step programmable machine for $£ 17.22$ RRP all inc!!!

Sinclair's new Cambridge Programmable is destined to cause not so much as a stir, as a bloody good whisk! Its price is little more than an average scientific, and after the discounters have done their evil work, heaven only knows what it'll actually sell for.

As a straightforward machine, the Sinclair can handle algebraic functions plus $\sqrt{x}, 1 / \mathrm{x}, \mathrm{x}^{2}, \sin , \cos , \tan$, arc, rads/degs, In and antilog, e^{x}, parenthesis, change sign, scientific notation and constant. So the usual failing of programmable machines, i.e. insufficient key functions, has been comprehensively avoided!

The case is the well-known and (apparently) liked Cambridge case. Power comes from a Mallory (PP3) type cell which gives $30-40$ hours running time, or a separate optional (i.e. £3.20 extra) mains adaptor.

But the breakthrough here is the program capability. This has been made possible by the use of a single chip National MPU. This is a four-bit MPU with 12 k of ROM on chip. Sinclair did the algorithms themselves, and according to them they only just got it all on - so no one else has a chance they say!

Back-up is provided in the form of a four volume program library containing 294 programs in electronics, finance engineering, mathematics and even games! The market they're going for is honestly all of it! At this price they stand a good chance of interesting everyone from the schoolkid to the technician to the university student The library includes such stuff as mortgage payments, moon landing game, discount calculations etc., conversions from anything to everything else etc., etc., etc., etc.

Sinclair are expecting 60% of production to end up in the USA, but this leaves plenty for Europe! We're hoping to review this incredible little box very soon, but meanwhile your local retailer will be getting them. But be warned - to play with one is fatal you'll end up taking it home!

Nice one Sinclair.
Sinclair Radionics, London Road, St. Ives, Huntingdon, Cambs PE174HJ.

CORRECTIONS AND CORRIGENDA

1. The 9368 Hex display decoder mentioned in Tech-Tips recently is available from Conway Electronics Ltd., John Scott House, Market Street, Bracknell, Berks. The price for the two is $£ 5.48$ all inc.
2. DVM, March 77 , page 38 . The voltage regulator should in fact be isolated from the chassis with a mica washer.
3. System 68 PSU, May 77, page 57. Figure 7: the LEDs are shown the
wrong way round - this also applies to figure 11 on page 59.
4. Burglar Alarm, April 77, page 58 Bell test PB2 should be connected to J and K, not across SCR1. Page 60, pin 8 of the 400 l should be earthed, not pin 10 (which is left unconnected).
5. ERII speakers, May 77, Fig. I. The capacitors C 1 and C 4 are shown as 5 u . This should in fact be 16 u . The networks supplied by Badger Sound Services are correct

TEXAS RANGES EXTENDED

Twenty-seven new low cost LED watches are now unloaded on the public by Texas Instruments. They range in price from $£ 13.95$ to $£ 39.95$ RRP, no doubt though they will be discounted.

The ladies watches use a new module design, and smaller batteries (life circa six months) to get down to their tiny size. Texas include two free batteries with each watch.

For kiddies there is a plastic watch complete with a set of transfers which can be stuck onto the watch case to customise it! Clever piece of marketing that...

Guarantee an all models one year (Wonder if that includes the transfers? Don't say it's non-transferable (ouch!) Texas Instruments, Manton Lane, Bedford.

BIFET OP AMPS CHOPPED

National have reduced prices on their range of bifet op amps, including the 741. Prices of the LF335/6/7 range are down from $£ 1.45$ to 52 p in 100 off. Let us hope this reflects in the shops as soon as possible.

An interesting comment from National concerning the drop is that they feel they are "far enough down the learning curve that our production yield has increased significantly.?

Follow that.

SIGNETICS NOW NATIONALISED!

National Semiconductors Corporation of Santa Clara, California, and Signetics Corporation of Sunnyvale, California, have formally signed an alternate source agreement to manufacture and supply each others proprietary 8 -bit Microprocessors.

National Semiconductor will sec-ond-source Signetic's 2650 Microprocessor, and Signetics will secondsource National's SC/MP II Microprocessor.

HI-FI 77 GETTING HIGHER

The news for this year's superbly organised Heathrow Hi-fi exhibition is mainly about loudspeakers. And within this field, KEF undoubtedly stole the show!

Due for release in October is the KEF 105 linear phase enclosure. Put quite simply, it sounded better than any other domestic enclosure we've heard! The sound was crystal clear, and had a definite 'depth' to it, which lent a pin-point quality to the stereo imagery. You could see the boxes

standing in front of you - it's impossible to miss 'em - but the sound wasn't obviously coming from there in particular. Superb.

A new form of bass loading is employed, to improve power handling and efficiency. (It works!)

Linear-phase again, and with some neat ideas. On the front panel (it's impossible to speak of a baffle when there's three!) is an LED, recessed by some amount. When you can see this light from your listening position, the speaker is aligned to you. When you can't, it isn't! This allows optimisation of the vertical dispersion within the room. The LED doubles as a 'clipping indicator'

Both the smaller top enclosures can be rotated in the vertical and horizontal directions.

The 105 will be expensive (around £700 a pair) but worth every penny!

Completely new this time are a British firm called Mission Electronics, who launched an entire range of enclosures this month. First off the blocks are three speakers, the 710 , the 720, and the 730, in order of ascending size. Celestion and Peerless drive units are employed at present, but plans are afoot to make their own. All three of the designs are very good indeed, and should provide some stiff competition to existing wooden boxes. The 720 is particularly impressive,

having a clean and slightly forward sound, with good detail and excellent bass. At $£ 232$ RRP inc. VAT it has a sound future! (The first five years of which carry a guarantee!)

Mission are working on an amplifier combination to drive their speakers, probably out around Christmas. In the meanwhile add the speakers to any shopping-lists you draw up in the field.

If you missed this year's show, at least make sure you go next year - it's still the best exhibition of the year!

NAME PLEASE...

Designed to assist in trouble-shooting in MPU systems, the 5004A 'Signature Analyser' operates by locating faulty bit streams. The instrument recognises a unique hex number (the signature) for each data node, and checks the streams at each, by use of its active

probe. When a mis-match occurs between specified info and what the 5004 is receiving, the signature is displayed for the faulty point. At $£ 744$ it is NOT for the home constructor.

007 LINEAR

In the next James Bond film, he will travel on a boat powered by linear motors. In the film, The Spy Who Loved Me, two futuristic boats are situated one on either side of the interior of an ocean-going tanker and are fired through tubes to launch them from the tanker.

In the studio, each boat was supported by air pads above supporting aluminium track, concealed below a plywood floor. This formed a reaction plate for three pairs of linear thrust motors, which were mounted vertically underneath the boat, and travelled along either side of the track.

The boats reached a maximum speed of 12 mph along the 70 yaird track.

Each of the three thrust units were wound to give 300 N maximum stalled thrust on 415 volts, 3 phase, 50 Hz supply. The approximate input current was $11.75 \mathrm{amps} /$ line/motor .

The boat and track were designed and supplied by IES Projects Ltd., of Maidenhead, Berks.

CLOCK CHIPS \& KITS

TYPE
 SPECIAL FEATURES
 MM5309 7 seg + BCD. RESET ZERO

MM53.11 $7 \mathrm{seg}+\mathrm{BCD}$
MM5312 $7 \mathrm{seg}+$ BCD 4 DIGIT ONLY
MM53137 seg + BCD
MM5314 $7 \mathrm{seg}+$ BASIC CLOCK
MM531.5 $7 \mathrm{seg}+$ BCD REST ZERO
MM5316 Non-mpx ALARM
MM5318 7seg + BCD External digit select
MM5371 ALARM 50 Hz
MM5377 CAR clock. Crystal control LCD
MM5378 CAR clock. Crystal control LED
MM5379 CAR clock. Crystal control Gas discharge
MK5025 ALARM. SNOOZE
MK50395UP /DOWN Counter - 6 Decade
MK50396UP / DOWN Counter-HHMMSS
MK50397UP / DOWN Counter-MMSS 99
FCM 7001 ALARM SNZ. CALENDER. 7 seg
FCMTOD2 ALARM SNZ. CALENDER. 7 seg
FCM 7003 ALARM SNZ. CALENDER. BCD
CT 7003 ALARM. SNZ. CALENDER. Gas discharge
FCM 7004 ALARM. SNZ. CALENDER. 7 seg
AY5. 12027 seg. 4 digit
AY 5.12307 zs s . ON and OFF ALARM
All above clock kits include clock PC board, clock chip socket and CA3081 driver IC. MH15378 also includes crystal and trimmers. When ordering kit, please use prefix MHI e.g. MHI 5309

OLDE CLOCKS

In kit form or built these clocks are based on designs hundreds of years old Wood stone and iron are used to reproduce authentic "olde worlde" wall clocks in full detail. The kits contain all you need including glue, screws, etc and very comprehensive instructions. Stones for weights are excluded.

PRICES

Gothic Clock
Rotating Dial
Wrought Iron Wooden Whee Knight Clock Oak Foliot

Diam $6^{1 / 2}$

Diam 6"
Diam $51 / 2$
Diam $51 / 2^{\prime}$
Diam $61 / 2^{\prime}$
Diam
$71 / 2^{\prime \prime}$
Diam 14"

KIT
26.95
26.95
23.50
23.50
54.25
54.25
36.95
36.95
48.50
48.50
123.95

BUILT
BUILT
42.00
42.00
39.50
39.50 79.95
52.00 52.00
77.50 77.50
145.00

DISPLAYS

MHI707/4 digit $0.3^{\prime \prime}$
MHI707/6
MHI727/4 $0.5^{\prime \prime}$
MHI727/6
MHI747/4 $0.6^{\prime \prime}$
MHI747/6

MHI DISPLAY KITS

	Litronix class 2 product	
1.48	DL707E	0.70
5" (2 dig.) 3.75	DL727E (2 dig)	1.80
$6^{\prime \prime} 2.45$	DL747E	1.50
MHI DISPLAY KITS		
6.60	MHITO7E/4	3.50
9.50	MHIT07E/6	4.50
8.50	MHIT27E/4	4.50
12.00	MHI727E/6	6.00
9.80	MHIT47E/4	6.00
14.70	MHIT47E/6	8.10

Any one or two of the above MHI display kits will interface directly with any of the MHI clock kits

VERO 1 CASES (with perspex screen)
VERO $26^{1 "} \times 3^{1 / 4^{\prime \prime} \times 2^{\prime \prime} / 4}$

SOCKETS
24. 28 or 40 pin
0.60

Soldercon strip skis. 50 pins

CLOCK MODULES

MA $1002 \mathrm{~F}(12 \mathrm{Hr})$ or MA $1002 \mathrm{H}(24 \mathrm{Hr})$ with Alarm
Module only
7.97

Kit including casermer $\quad 0.90$

PAYMENT TERMS

Cash with order, Access, Barclaycard (simply quote your number). Credit facilities to accredited account holders 15% handling charge on goods ordered and paid for then cancelled by customer
All prices exclude 8\% VAT
PLEASE SEND 30p POST AND PACKING

BY ROBIN C. H. MOORSHEAD B.Sc.

AS DAY FOLLOWS NIGHT, there are certain patterns of change in the physical world which we hold to be always true. Perhaps one of the earliest that we learn is that matter exists in three states, solid (crystalline), liquid or gas. The particular state a substance exists in depends on temperature. At low temperatures substances tend to be solid, at higher temperatures liquid, and yet higher, gaseous. Further more, the transition between the states is clear and precise, for example, ice changes to water at $0^{\circ} \mathrm{C}$, there is no gradual transition.

This pattern of change is explained by the "Kinetic theory." This theory is based on several assumptions: 'That matter consists of minute, more or less spherical particles which are held together by "cohesive forces" which are spread evenly over their surface. In the solid (crystalline) state the particles are tightly bound by the cohesive forces and are perfectly ordered like bricks in a wall. As the temperature increases, the particles begin to vibrate and the cohesive forces weaken so the particles can move about but are still attached to one another:

Fig. 1

At higher temperatures ,the cohesive forces are vanishingly small and the gas) particles fly about at random.

Fig. 2

Simple materials which fit into this description have another property, that their physical characteristics are the same from whichever direction they are approached. This is termed "Isotropic." Examples of isotropic materials are glass, steel or water. Their electrical resistance, refractive index and strength are the
same from whichever direction we measure them.

Against the grain

However, by no means all materials are isotropic, wood for example is much stronger across the grain than with the grain, graphite has a higher electrical resistance when measured through it's "plate" structure than when it is measured along the plates. Such materials as these are termed "Anisotropic."

Fig. 3
It would be surprising if wood and graphite were isotropic, since they are constructed of rods (cellulose fibres) and plates (the graphite). In the same way we would not expect roof slates to fall into a box in a random arrangement, they will have a strong tendency to fall flat and so order themselves into an anistropic arrangement.

Rods and plates

In exactly the same way many of the large molecules found in organic chemistry have rod- or plate-like shiapes and have anisotropic crystal structures. The tendency towards ordered arrangements in these substances is so great, that when they melt they retain a degree of order until the temperature is considerably increased. As a result the liquid has anisotropic properties, some flowing in a gliding stepwise fashion, or interfering with
the passage of light. When this happens the substance is said to possess a liquid crystalline phase isometimes termed a mesomorphic or paracrystalline state).
So we have:

For an
isotropic
material:

\(\left.$$
\begin{array}{l}\text { Increasing temperature } \\
\text { For an } \\
\begin{array}{l}\text { anisotropic } \\
\text { material: }\end{array}
$$

soliquid \rightarrow gas\end{array}\right]\)| liquid |
| :--- |
| crystal | isotropic \rightarrow liquid

It is of interest to note that this. property has been well known since 1890, and some 0.6% $, 15,000-20,000$) of organic che-' micals show this behaviour.

Nematic and smectic

Liquid crystals fall into two main categories: Nematic , from the Greek thread) and Smectic (from the Greek for soap).

Smectic liquid crystals have many interesting properties but have found little practical application, so they will not enter into the article any further..

The nematic liquid crystals have many applications and form the substance of this article. There are several types of nematic materials. The difference in these types is shown in fig. 4.

Some nematic liquid crystals possess properties which cause them to interfere with the passage of light in an applied electric field, or with changing temperature. They. are of great interest in modern electronic displays for several reasons:

1) The power consumption of. such displays is extremely small, between $2 \mu \mathrm{~A}$ and $0.2 \mu \mathrm{~A}$ per segment of a 7 -segment display, about $10 \mu \mathrm{~W}$ per Cm^{2} of display, where as a similar LED display consumes 500 1 mW .
2) They are made of the commonest elements, carbon, hydrogen, oxygen, nitrogen, rather than the more expensive elements

such as gallium, germanium, etc.
3) Since they do not emit light themselves, but interfere with the , passage of incident light, they cannot be "washed out" by strong incident light.
(4) They are compatible with PMOS circuits.

There are, needless to say; disadvantages as well:
(1) Since they are passive, i.e. they do not emit light, they cannot be read in the dark, however, this can be overcome by providing background illumination. This increases power consumption; the power consumed however does not have to pass through the addressing circuit, as it does in LED displays.
12) Since they are operating in a phase between solid and liquid their temperature range is limited, at a maximum between $-20^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$, but more typically $0^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$.

Below this temperature the display freezes, above the maximum the liquid is isotropic and no display is visible. Furthermore the response time near the freezing point is rather slow, in the order of 0.2 -second rise time and 0.6 -second fall time. Freezing or or liquifying the display does no permanent damage, but temperatures in excess of $150^{\circ} \mathrm{C}$ may cause irreversible damage. There is no doubt that future development ' will broaden this temperature range considerably.
(3) The lifetime is still limited, but provided 'conditions are ideal it is now well in excess of 10,000 hours. Future development of materials with higher purity, and chemical stability will improve this a great deal.
Stability may be affected by several factors. Firstly, certain liquid crystalline materials undergo irreverssible chemical changes under d.c. conditions, it is critical that such
display have no d.c. components whatsoever in the addressing circuit, secondly chemical changes are caused by impurities. Thirdly, certain liquid crystalline materials are effected by ultra violet light.

Chemistry

We have no intention of discussing the detailed chemistry of the materials used - it is quite complex - and most names are longer than those found in the small print on toothpaste tubes. However, an outline of the structure of a typical nematic and a typical cholesteric material arè included for comparison:

The anisotropic properties that materials suitable for display pur-

Fig. 7.
poses must include are:
11) The refractive index is different as the material is viewed from different aspects, i.e. the light is bent more as it passes through the material in one direction then another.
12) The molecule must possess a dipole. This is an uneven distribution of change on the molecule. which causes it to align in an electric field thus:"

Fig. 8.
A large proportion of organic molecules possess such dipoles. The dipole on the materials used in liquid crystalline displays have two components, one along the long axis ($\epsilon I I)$ and one perpendicular ($\mathrm{t} \in \mathrm{L})$ to it.

If the dipole along the long axis A is greater than dipole perpendicular to it, it is said to possess positive dielectric anisotrophy. If the dipole is greater on the perpendicular axis

it is said to possess negative dielectric anisotropy.

LONG AXIS
OF
MOLECULE
positive
POSITIVE
DIELECTRIC
ANISTROPY
Fig. 9.
3) The material also must possess anisotropic conductivity as graphite does). The conductivity in nematic liquid crystals is greater along the long axis than perpendicular to it.
4) The material should have a resistivity of the order of $10^{9} \Omega \mathrm{Cm}$.

Display construction

The displays work in two different ways, but the construction of the cells are similar, the differences are

Fig. 10.
mainly in the filters on the back and faces of the display and of the type of background.

The cell consists of a very thin layer about $12 \mu \mathrm{~m}$) of the liquid crystalline material between two sheets of glass which have a conductive coating on their inside. One glass plate , a) has the actual seven-segment display etched on it. The other plate (b) has a common electrode etched on it. This conductive coating is either tin oxide, or a mixture of tin and indium oxides This provides an electrode with about 90% transmission of light

This conductive coat is further treated so that the molecules align themselves with the surface while an electric field is not applied.

This provides a more or less translucent display. When an electric field is applied, the molecules move so as to align their dipoles with the electric field. This causes changes in the optical properties of the liquid crystal material which appears as the display

There are two principle techniques used here, dynamic scattering and polarization modes.

Dynamic scattering:

In this mode the liquid crystalline material is chosen such that it has negative dielectric anisotropy, with the greater electrical conductivity along its long axis. The molecules are normally perpendicular to the surface when an ac field is applied the molecules, in clusters, move to re-align their dipoles with the field. The re-alignment of the dipole is in opposition to the conductivity and the liquid becomes

Fig. 11.
turbulent. This turbulence is seen as milkiness in the display.

Since there is no light emitted the display must be used to modify the passage of incident light. This may be done either by passing light through the display, or more usually by reflecting light from a mirror behind the display.

Fig. 12.
 ELECTRODE

Fig. 13.

The transmissive cell will appear to glow where the segments are switched on. The reflective cell will appear misty where the segments are switched on. These displays have the shortcoming of a rather low "contrast ratio." That is, the apparent difference between the switched on and switched off display is not very great.

Polarization modes

The display is constructed in basically the same way as the dynamic scattering cell. The difference lies in the type of liquid crystalline material. The material used is one which assumed a twisted nematic structure, and has positive dielectric anisotrophy (the major component of its dipole along its long axis)

In this case the inside faces of the cell are coated so that the molecules are parallel to them and aligned in a particular direction when no electric field is applied.

The cell thickness is designed so that there is a complete 90 turn of molecules between the top and
bottom faces. The twisted nematic has the property that it twists light that passes through it. Polaroid filters are fitted above and below the cell so that light is polarized as it enters, and is twisted through 90 exiting through a filter opposed at 90 to the first. The light is then reflected off a mirror and returns via the same pathway.

In this state the cell is clear. When an electric field is applied the molecules re-orientate to lie perpendicular to the faces of the cell and no longer twist the light. The light is now polarized as it enters the cell, and without being twisted, meets the second filter which is at right angles to the first and so does not pass the light. Hence that portion of the display with the field applied appears black , since no light is re-flected).

If you have not seen this effect before take take two pairs of polaroid sun glasses, look at a source of light with one in front of the other, thus:

Fig. 15.
Held in this way light, although polarized, is free to pass through the second filter since the plane of polarization is the same for both lenses. If one lens is now rotated through 90° thus:

Fig. 16.
No light passes since the light polarized by the first lens will not pass through the second

The effect of having the "crossed polaroids" in the cell causes almost total extinction of reflected light and consequently a high contrast ratio, an almost completely black and white display. This is many times better than the dynamic scattering cells.

Addressing technique:

The cells are normally operated under ac conditions (although some cholesteric cells may operate under dc.

The technique commonly used is. to have dc pulses of identical amplitude, one applied to the back, the other to the display segment via an exclusive - or gate. In the offstate the two signals are in phase, in the on state they are out of phase.

Fig. 17.
This technique has limitations due to the large number of both circuits and connections, however this has been overcome by putting the circuit on the glass of the display using thick film techniques!

Alternatives to this form of drive are to use multiplexed addressing, or m.o.s. shift register memory.

Other uses of liquid crystals:

The use of liquid crystal is not restricted to electrical displays

Temperature measurement:

Certain nematic liquid crystals. cholesteric) change colour over the whole range of the spectrum , red to violet) as their temperature changes. Furthermore the colour change is over a very narrow temperature range, usually 2 or 3 C . The temperature at which this happens, and the range over which the change takes place can be adjusted by use of mixtures of different cholesterics.

A set of 10 or 12 of such cells in a row, the following one starting to show colour at 2 C higher temperature than the previous one, forms a useful thermometer working over a fairly restricted range. They have

Liquid crystal displays have made big in roads into the watch market but this may only be the beginning of the story.
found application as living room and refrigerator thermometers.

Perhaps a more important application is using liquid crystals which have a very narrow range over which they change colour 10.5 C). They have found application in medicine since they can resolve differences of 0.05 C .

Assuming the liquid crystal is set to show colour at normal skin temperature any local deviation from the correct temperature will show as a different colour. This has applications in detecting cancers, since they tend to be hotter than nórmal body heat. They can also be used to see areas of poor blood flow, or where allergic reactions are taking place, since they are slightly hotter or colder than the normal body temperature.

Cells with extremely low temperature resolution can even detect field intensity patterns of microwaves and ultrasonic sound fields due to local heating effects.

As might be expected there are also cells which change colour with applied electric field. This would appear to have interesting prospects for the future.

Other interesting possibilities which occur include the "memory effect". Certain cholesterics take hours, or some cases weeks, to return to their clear liquid crystalline state after they have been scattered by an applied electric field. The clear state can be restored by applying a different electric field.

Clearly liquid crystal technology has an enormous amount to offer a wide variety of fields - electronics, medicine and others. We are likely to see further interesting developments in the next few years as this technology takes over, and improves on existing display techniques. How about an alpha numeric display with independently variable colour segments?

BOOKS

* Displays a wealth of useful information on various aspects of electronics
* The series brings together acknowledged experts and leading writers of today
* Written in a clear, concise manner with numerous illustrations and diagrams to help beginners and enthusiasts reach a level of understanding and competence in each subject

MASTER IN-CAR ENTERTAINMENT

V. Capel

128 pages approx. 0408002867
1977
Contents: The Car-Equipment Scene Mono. Stereo or Quad? Mobile Tape Players. The Cartridge Player. The Cassette Player. Cassette or Cartridge? Car Radios. Car Antennae. Interference Suppression. Installing the System. Trouble Shooting. Index

MASTER CREATIVE TAPE RECORDING

John Gardner, MAES MBKS, Associate ISTC
144 pages 04080024411977
Contents: Recording and Reproduction. Choosing a Suitable Machine. Choice and Use of Microphones. Mixers, Monitoring and Installation. Improvising a Studio. Organisation and Method. Drama and Features. Mušic. Editing Appendix. Index.

MASTER ELECTRONICS IN MUSIC

T. D. Towers, MBE, MA, BSc(Econ), CEng, MIERE

128 pages 040800262×1976
Contents: Creating Musical Sounds by Electricity. Making Musical Instruments Louder. Musical Special Effects by Electronics. Electronic Keyboard Instruments. Electric Guitars. Magnetic-Tape Music. The Robot Drummer. Music Synthesisers. Music by Computer Index

MASTER HI-FI INSTALLATION

Gordon J. King, EchEng(CEI), RTechEng, MIPRE, FISTC, FSCTE, MAES MRTS
160 pages 04080023791976
Contents How it Works. The Amplifier Programme Signal Sources. Importance of Good FM Signal. The Loudspeaker Mono, Stereo and Quadronphonic Sound 4-Channel techniques. Room Effects. Best Use of Controls. Terminology Index

MASTER STEREO CASSETTE RECORDING

I. R. Sinclair, BSc, MIEE, MInstP

120 Pages 0408002387
1976
Contents Stereo Systems Signal Sources Controls and Facilities. Making the Recording. Replaying and Monitoring. Essential Maintenance. Alds for Better Recording Noise Reduction Systems Cassette Recorders and Hi-Fi
Better
Index.

Order from your local bookseller or from

Join the Digital Revolution

Understand the latest developments in calculators,

 computers, watches, telephones, television, automotive instrumentation . . .Each of the 6 volumes of this self-instruction course measures $113 / 4^{\prime \prime} \times 8 \frac{1}{4^{\prime \prime}}$ and contains 60 pages packed with information diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.
Uesign of Digital Systems.

$£ 6.20$
plus 80p packing and surtace post anywhere in the world
Payments may be made in foreign currencies
Quantity discounts available on request VAT zero rated

Also available - a more elementary course assuming no prior knowledge except simple arithmetic
Digital Computer Logic and Electronics

In 4 volumes.
Basic Computer Logic
2. Logical Circuit Elements
3. Designing Circuits to Carry Out Logical Functions
4. Flipflops and Registers
$£ 4.20$
plus 80p P. \& P
Offer Order both courses for the bargain price $£ 9.70$. plus 80 p P. \& P

Designer
 Manager
 Enthusiast
 Scientist
 Engineer
 Student

These courses were written so that you could teach yourself the theory and application of digital logic Learning by self instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next

Guarantee-no risk to you

If you are not entirely satisfied with Design of Digital Systems or Digital Computer Logic and Electronics, you may return them to us and your money will be refunded in full, no questions asked

SHORI CIRCUIS

DIGITAL FREOUENCY METER five ranges up to 10 MHz

BASED UPON A SIMPLE TTL 'heart', this project grew and grew until it formed a 'Short Circuit' which occupied more development time than most major projects!

The basic range of the DFM extends to 9.9 MHz , and will reliably read down to about 1 Hz . By use of the boards the design will pose no problems to the constructor (we hope!) and should prove straightforward in use.

CONSTRUCTION

Assemble the boards as per the overlays. Space within the case is restricted, so it might be a good idea to complete the interwiring before positioning them within the case. Drill all the mounting holes etc, and get an idea of lengths of wire beforehand - it'll look neater if you don't have six mile of cable where two inches would suffice.

> THIS DESIGN USES A HANDFUL OF STANDARD COMPONENTS TO ACHIEVE A SUPERIOR PREFORMANCE TO MANY COMMERCIAL UNITS.

Don't forget either to drill the holes into the back panel for calibrating the range pots; it's much easier to carry out this function once the meter is built and working.

FREQUENTLY USED

Just a few points about operation. The input squaring circuit is reasonably sensitive, about 100 mV is all you need to ensure correct operation. If

TAKING READINGS

Let's tell you how to use it first. A reading is taken upon operating the 'Test' button. The display will change upwards - for a short period, halting once the value of the frequency under test is reached. Before making a second test, clear the display, else the reading will be cumulative.

Calibration is always the biggest hurdle with DFMs, and we must confess we've found no new ladders. One suitable method is to use a highquality 'scope. The time base is usually very accurate on the better models, and each range can be set up using this signal. Failing this, a signal generator of known ' Q ' is needed. Each range is independent of the others, and so will need adjusting separately.

DICITAL FREQUENCY METER

you intend to pump appreciably more than this into the terminals, may we suggest an attenuator?

The units may well read with inputs lower than 100 mV , but is not intended to do so. Accuracy wilt depend on how it is set up, and on the higher ranges may be affected by length of leads from input circuitry etc, so keep these to a minimum.

How it works

The input signal is amplified and squared to TTL level by Q1 Q2 and the Schmitt trigger IC1, which means that a train of squarewaves at the input frequency will be presented to the NAND gate IC2c. This will be held open for a preset time depending on the frequency of monostable IC3.

This period is set by the timing (range) components RV1-5, R7-11, C2-6 respectively. The switch bank selects which network is in circuit, and hence
for how long IC2c allows the input pulse train to pass. The train is inverted by IC2d and fed to the counter chain IC4-6.

The number of pulses reaching IC4 will represent the input frequency, provided the period of IC3 has been correctly set (calibrated). RV1-5 is adjusted to achieve this.

IC2a and IC2b 'debounce' SW6, the test button, and IC7-IC9 and DISPLAY $1-3$ display the input frequency.

An internal view of the meter, showing the mounting of the display board onto the back of the front panel. Note that the display resistors, R12-R32 are mounted vertically onto the PCB.
On the left of this is the range switch bank, mounted onto the panel using standoff pillars. The DFM board DFMd solders onto this directly.
Down at the right hand lower corner the calibrating holes for the range pots can be seen.

Fig 3. The switching circuit for the DFM. Connections are achieved via the PCB which solders beneath the actual bank

Above and below left: The foil side PCB patterns for the four DFM boards. These are all shown full size and from the 'foil side upwards' direction.
Below right: Component Overlay for the PSU board, DFMS. Reg. 1. is mounted off board.

DIGITAL FREQUENCY METER

Above: Component Overlays for the main three printed circuit boards. Assembling these is the major part of the electronics work involved in constructing the DFM. Refer to the parts list (right) for values of the components.

Parts List

$\begin{array}{ll}\text { RESISTORS } \\ \text { R1 } & \text { 4M7 }\end{array}$	
R2	4k7
R3,6	2 k
R4,5	10 k
R7	56 k
R8	27 k
R9	18 k
R10,11	47 k
R12-32	390
R33	680
CAPACITORS	
C1	1 u Polyester
C2	100 u 10 V tantalum electrolytic
C3	15 u 16 V tantalum electrolytic
C4	2.2 u 25 V tantalum electrolytic
C5	150 n polyester
C6	15 n polyester
C7	2,200 u 25 V electrolytic
C8,9	220 n polyester
SEMICONDUCTORS	
01,2	BC109C
IC1	7413
1 C 2	7400
IC3	74121
IC4-6	7490
1C7.9	7447A
D1	IN4 148
DIS.1-3	DL707
REG. 1	$5 \vee 1$ A voltage regulator
BR1	200 V 1.6 A bridge rectifier
POTENTIOMETERS	
RV1-5	20 k Multiturn (.75" type or sim.)
SWITCHES	
SW1-5	5 bank assembly, 4 pole 2 way push button with cancelling action (Doram: $5 \times 338-636,5 \times 338-563$ $1 \times 338-254$)
SW6	S.P.D.T. momentary action
SW7	S.P.S.T momentary action
SW8	Off/on 1 A 250 V type

TRANSFORMER
T1 240V.9V1A type

CASE
Samos S7 (Doram: 984-497)

MISCELLANEOUS
Fuse holder, fuse, mains neon, 2 mm red and black sockets, PCB pillars, wire, 3-core mains flex, nuts, bolts, etc. PC boards as pattern.

An aerial view of the meter! Taken by a friendly passing sparrow, this shot clearly shows the layout of the boards within our recommended case. To the top left is the PSU board mountedvertically over the main board. Space is very tight but it does all go in - ho nest!

The trans former we used came from Radios pares (i.e. Doram!) and fitted nicely. Most other versions should go in easily as well however.

Hi-Fi Systems that GROW with you

MAGNUM III System as well as the features illustrated, has 20 W r.m.s. per channel (you could have 40) with typical distortion of only 0.07%. The magnetic input has $>70 \mathrm{~dB} . \mathrm{S} / \mathrm{N}$ ratio (Ref. 3 mV) and an overload with typical distortion of only 0.07%. The magnetic in of 43 dB

For details of CLIFFPALM AUDIO MODULES send large s.a e or see ad in Feb W W
NOW EX STOCK. All other parts required -knobs pots (rotary and linear) switches sockets etc
NEW THIS MONTH. PC.B s on which to build your MAGNUM I II or lll system
POWER MODULE CP-PS-18/2D. £6.50 + 81 pV.A.T.
Prices include full application data, post and packaging, U.K. only. "These products carry a 2 year guarantee
Cliffpalm Lid.
DEPT. HE, 13 HAZELBURY CRESCENT LUTON. BEDS LI1 1DF. Tel. 0582-415832

THE KENNEDY SPACE CENTRE

With this state of affairs NASA came into being with the peaceful exploration of outer space as its goal. To this end the Launch Operations Center was established at the Cape. On 5 October 1958 Project Mercury got underway and on 5 May 1961 Alan Shepard made a brief sub-orbital flight to become America's first astronaut; however, once again, the Russians had beaten the U.S. because on 12 April of the same year Yuri Gagarin had become the first man to orbit the Earth. In 1960 John F. Kennedy had been inaugurated as President of the United States and on 25 May 1961, just 20 days after Shepard's flight, he committed the U.S. "to achieving the goal, before this decade is out, of landing a man on the Moon and returning him safely to the Earth

The results of that commitment are now well known in the steady progression up through Mercury, Gemini, and finally to Apollo: Kennedy was not to see his dream fulfilled. On 22 November 1963 the President who pushed America to the Moon was assassinated while riding in a motorcade through Dallas, Texas. Seven days later the new President, Lyndon B. Johnson, .officially directed that the NASA Launch Operations

Center and Station No. 1 of the Atlantic Missile Range be renamed the John F. Kennedy Space Center.

KSC Facilities

Few people realise that the Kennedy Space Center is also a wildlife refuge. On 2 June 1972 the entire spaceport was incorporated into the Merritt Island National Wildlife Refuge which comprises some 145,000 acres of land and water. In spite of the occasional rocket blastoffs, racoons, bobcats, alligators and wild pigs roam the scrubland; rare species of birds, such as the Bald Eagle and Peregrine Falcon can also be found within the bounds of the space centre. When the KSC site was acquired NASA took over some 3306 acres of citrus trees which it now leases to their former owners. Also on site are 2 fishing camps and three private burial grounds.

Functions of the Space Center's life that are not required at the launch complexes are mostly grouped together in the Industrial Area. Here in the Headquarters building are located the Director of the Kennedy Space Center, procurement, programme management, legal, and other support functions.

The largest structure within the Industrial Area is the Manned Spacecraft Operations Building (MSOB) in which Apollo-type spacecraft underwent modification, assembly, and preliminary checkout. Within the MSOB are two 50 ft altitude chambers capable of simulating altitudes up to $250,000 \mathrm{ft}$ for the testing of spacecraft and systems. Here, also, are the astronaut quarțers and medical facilities. Instrumentation to receive, monitor; process, display and record information from the space vehicle during pre-launch, launch and immediate post-launch activities, is located in the Central Instrumentation Facility. The Flight Crew Training Building is the KSC equivalent of the Mission Simulation and Training Facility at the Johnson Space Center, Houston. Here astronauts and flight controllers practise for manned flights utilising the computerised mission simulators.

Other facilities within the Industrial Area include a cafeteria, fire station, occupational health building, security offices, warehouses, and specialised laboratories for spacecraft pyrotechnics checkout.

The Kennedy Space Center is also responsible for the launch of unmanned space vehicles from the Western Test Range at Vandenberg Air Force Base in California.

Launch Complexes

Within the Kennedy Space Center are fourteen main launch complexes plus launch and test facilities for Polaris, Poseidon, and Minuteman missiles. Some sites are no longer operational but all have played their part in the history of U.S. space exploration.

Heading northward from Port Canaveral the first call is at the pads of Complexes 5 and 6 . It was from here that the early Mercury-Redstone flights began. Today the pads are part of the Air Force Space Museum and are marked by a plaque commemorating Shepard's 1961 flight and a full-scale Mercury-Redstone space vehicle on the site of that historic launch. The Museum also incorporates Complex 26 from which Explorer 1 became the first U.S. satellite. Moving on, the next stop
is the Delta launch complex 17. From this area the versatile Delta vehicle has launched many well known unmanned spacecraft including Echo, TIROS, Relay, Telstar, Early Bird and Intelsat. Further north are the twin pads of complex 36 from which the Atlas-Centaur launches lunar and planetary spacecraft including Surveyor, Mariner, and Pioneer. Launch Complexes 12 and 13 were once the launch sites from which Atlas-Agena vehicles boosted Ranger and Lunar Orbiter spacecraft on their moonbound journeys. More Atlas-Agenas ascended from Complex 14 during the Gemini programme to place target docking vehicles into Earth orbit. This site was also used to launch the later Mercury missions using the Atlas booster. Moving on again we encounter Complex 16 which was utilised for Apollo Service Module static tests. Complex 19 was the launch site for the Titan 11 vehicles that placed 10 Gemini crews into Earth orbit during a 20-month period commencing in March 1965. Complex 34 and the adjacent Complex 37 were used for Saturn I and IB flights preceding and during the Apollo programme. The first manned Apollo launch took place from Complex 34 on 11 October 1968 when a Saturn IB lifted the Apollo 7 crew to orbit. Both complexes have since been deactivated and dismantled.

The next area reached is the Air Force's Integrate-Transfer-Launch (ITL) Facility. This site includes Launch Complexes 40 and 41. From here the Air Force conducts its own launch programme using Titan III-C vehicles. Tital III-E / Centaur vehicles which NASA uses
to launch Helios solar probes and Viking Mars landers are also launched from LC-41 when the facility is under the operational control of NASA. The last stop in the tour of launch complexes is at the twin pads of Kennedy Space Center's Launch Complex 39.

Launch Complex 39

Inspecting Complex 39 is like moving to another world where everything is larger than life. The main components are the Vehicle Assembly Building (VAB), the Launch Control Center, three Mobile Launchers, two Crawler-Transporters, the Crawlerway, a Mobile Service Structure, and two launch pads. Standing 526 ft high, 716 ft in length and 518 ft wide the Vehicle. Assembly Building covers 8 acres of ground. Due to its immense size the VAB can sway up to 12 inches in strong winds and is equipped with a gravity ventilation system which forces a complete change of 130 million cubic feet of air every hour to prevent condensation and - fogging within the structure.

Once the space vehicle has been assembled and checked out in the VAB aboard its Mobile Launcher (ML) it is ready for transfer to the pad. To accomplish this one of the Crawler-transporters moves under the ML and raises it ready for transfer. This vehicle itself weighs some 6 million pounds, is 131 ft long, and 114 ft wide. At a maximum speed of 1 mph the transporter moves out of the VAB carrying its precious cargo along the specially constructed crawlerway, the overall width

of which is equal to an 8 -lane highway. On arrival at one of the 3000 ft wide pads the transporter gently lowers its load and backs off. Pad A is some 3.5 miles from the VAB while Pad B is about a mile further on. In the centre of each of the octagonal pads is a 390 -by- 325 ft reinforced concrete hardsite, the top elevation of which is some 50 ft above sea level to allow the rocket's thrust chambers to rest above a 650 -ton mobile flame deflector

The Mobile Service Structure weighs over 10 million pounds and contains 5 service platforms from which the space vehicle can be serviced at the launch pad This 410 ft high structure is also moved by the crawler-transporter

Alongside the VAB, and connected to it by an enclosed bridge, is located the Launch Control Center (LCC) - a far cry from the blockhouses at other launch pads. The ground floor of the LCC contains offices, a dispensary, and a cafeteria. The first floor houses telemetry, measuring, and check-out systems used during assembly in the VAB and later at the launch pad On the second floor are the four firing rooms (only 3 are fully equipped) and their respective computer support rooms. Viewing of the firing rooms and the launch area is possible through specially laminated and tinted glass windows on the LCC's mezzanine level.

To date Launch Complex 39 has been used to launch Saturn V's for the Apollo and Skylab programmes and Saturn IB's for Skylab and the Apollo-Soyuz Test

Project. In the future the Space Shuttle is planned to use complex 39's facilities. To accommodate the different vehicle, modifications to the Launch Pads, Mobile Launchers, and VAB will be necessary and these are already the subject of design contracts. In addition, since the Shuttle will return to a runway landing, a $15,000 \mathrm{ft}$ long by 300 ft wide landing strip with associated overruns, apron, taxiway and access roads has been constructed to the north-west of the VAB on a northwest-southeast alignment

Epilogue

The John F. Kennedy Space Center is also a site of great historical significance. During construction of the Center archeologists unearthed traces of pre-Christian human activity, Indian burial mounds and refuse piles, and signs of French and Spanish occupation. The petrified bones of prehistoric mammals were dredged up from the Banana River at the same time. It was with these discoveries in mind that Professor Charles Fairbanks of the University of Florida remarked that 'this was one of the areas where Western civilisation came to the New World, and now it is the area from which our civilisation will go forth to other worlds

Acknowledgements

We thank Spaceflight for their kind permission to reproduce this article

SIWTEL for KITS - GMOS - BOOKS aviw $\mathbf{Z 8 0}$

SINTEL chooses the ZILOG Z80

Sintel offers you the world's most advanced 8 -bit microprocessor. designed by the team who created the 8080 . The 280 is manufactured by Zilog (backed by Exxon the worid's largest corporation) and by Mostek - the world's leading memory manutacturer

Here are some of the features which will warm the expert's heart
Single +5 V power supply 158 instructions, including all 78 of Static operation
Single, simple clock
1.64 sec cycle time Block move instructions Two index registers the 8080A
Automatic dynamic RAM refresh Superb set of addressing modes 4-bit rotates for BCD multiplication Loop counting and exit with single
instruction
Great interrupt handling 12 general purpose registers

Z80/

 now only £29.50Send for free Sintel 280 Newshee
THE SINTEL Z80 COMPUTER
We think it's worth waiting for
Zilog 280 Data Already Available From Sintel
Zilog Z80 - CPU Technical Manual
Zilog Z80 - CTC Product Specification
Zilog 280 - P10 Technical Manual
Zilog 280 Datasheet

LOW COST SOLDERCON IC SOCKETS

Soldercon Pins are the ideal low cost method of providing sockets for TTL. CMOS Displays and ICs. Simply cut off the lengths You need, solder into board and snap you may need, and at low prices. $\quad 3,000$ for £10.50
100 pins for 50 p $\quad 1,000$ for $\mathrm{£4}$
$\mathbf{3 , 0 0 0}$ for £10.50

A NEW RANGE OF

SINTEL INDUSTRIAL MODULE KITS

Using only the highest quality compone
direct from "Blue-chip Manufacturers.
KITS FOR TTL LATCHED COUNTER MODULES
Each kit includes a set of displays ($0.5^{\prime \prime}$ Red LED type TIL $321 /$ FND 507) and iwo PCBs one each per digh of 7447 , screws, washers, instructions, eic. Sockets are NOT included and we recommend that you order Soldercon Pins separately (112 for a 2 digit module, 224 for a 4
digit module and 336 for a 6 digit modulie) Each module consists of one vertical PC8
Each module consists of one vertical PCB holding the
horizontal $P C B$, which holds the remaining components.
Full Kit for 2 dight TTL Counter with Latct: Order as 526.412
£10.52
617.98 Full Kit for 4 digit TTL Counter with Latch. Order as $\mathbf{6 5 7 4 1 2}$
Full Kit for 6 digit TTL Counter with Laich Order as 721412

¢17.98 $\mathbf{6 2 5 . 6 6}$

SETS OF JUMBO OISPLAYS WITH DISPLAY HOLDING PCE
Each kit consists of the appropriate number of 0.5" red LED displays leither common anode TIL321/FND507s or common cathode TYPE

TVPE Non-Multiplexed	COMMON ANODE Part No. Price		COMMON CATHOOE Pori No. Price	
2 digit Counter	574-822	¢3.37	446-822	E2.97
4 digit Counter	777-822	¢6.63	128-822	E5.83
6 digit Counter	684-822	¢9.89	271-822	c8.69
4 digit Clock	801-822	E6.68	262-822	65.86 c8.95
6 digit Clock	417-822	¢10.15 c13.09		$\begin{array}{r}18.8 .95 \\ \\ \hline 11.49\end{array}$
8 dig: Counter				

Our offices are at Link Property. 209 Cowiey Road. Oxford, but please do not use this as a posta
FAST SERVICE. We guarantee that Tefephone Drders for goods in stock, received by 415 pm (Manday-Friday) will be despar Private customers should telephone and pay by giving their Access
ooss) and our stocking sood
or Barclaycard number. with a minimum order value of $£ 5$ Otticial orders. no minimum
ORDERS: C.W.O. add VAT @ $8 \%+25 \rho$ P\&P TELEPHONE and CREDIT (Invoice) Orders add YAT
O $8 \%+50$ p PRP and please see FAST SERVICE EXPORT Min order $£ 10$ no VAT but adu $@ 8 \%+50 \mathrm{p} P \&$ P and please see FAST SERVICE EXPORT Min order £10. No

ATTRACTIVE SIX DIGIT ALARM CLOCK KIT
A A comptere kit including slim white case h. $40 \mathrm{~mm} w 25 \mathrm{~mm}$ a Features bleep alarm, snooze. automatic nt ensiten between them) Touch switch snooze
This alarm clock is atso available with CRYSTAL CONT ROL and BATTEAY BACKUP if mans power is disconnected (deliberately or accidentally) the clock wilt keen pervect thme Accuracy to wish
seconds a month. While on backup, the displays ere off to conserve ballery but the alarm remains fully operational
Order as ACK + BEK + XTK

```
GCK CLOCK KIT 
and battery,
Also avalable with crystar control and battery back-up (a)
```


SOHz CAYSTAL TIMEBASE KIT clock with battery backup Accurate to within a few seconds a month
Size $\mathrm{h} .14 \mathrm{~mm} w .64 \mathrm{~mm}$ d. 49 mm . Order as XTK

DIGITAL CAR CLOCKS

GYSTAL CONTRDLLED 6 digit Car Clock with independent journey-timer. hows time or elapsed time in hrs mins. secs. Auns off car 12 v supply Nine pust buttons for Star-Stop-Reset, selecting display to show it ol display mode
Order as $\mathbf{c c k}$ Four $0.5^{\prime \prime}$ red digit Near white case Crystal conirol Battery backup Surtable for all 12 v egative earit cars Size h $40 \mathrm{~mm} w 143 \mathrm{~mm}$ d 85 mm . Complete tess battery Order as AUT-CK

A FREE CATALOGUE requested thy post or phone. wir be sem or in und $\begin{array}{lll}\text { SEND } & \text { SINTEL } \\ \text { YOUR } & \text { PO BOX 75A, OXFORD } \\ \text { ORDER TO } & \text { Tel. } 086549791\end{array}$

IT IS NOW three years since Hewlett Packard released the HP65 fully programmable pocket calculator, and that is a long lifetime for any calculator by today's standards. Although the HP65 represented a considerable advance in personal computing, technology has progressed somewhat since then; specifically, the level of integration which can be achieved in LSI logic has gone up, along with improvements in IC packaging and tricks like pin multiplexing, etc. In addition, users quickly came to appreciate the new approch to prob-lem-solving afforded by the programmable calculator and now want more powerful machines.

The HP67 is the latest in the HP line of programmable calculators, and is by far the most powerful. It has 224 steps of program memory and 26 data registers, with indirect addressing. An important feature is the "smart" card reader, which permits the loading or recording of data, as well as angular mode, display and flag settings, so that initialization routines are not needed.

PREPROGRAMMED FUNCTIONS

The HP67 seems to have been designed, keyboard-wise, at least, with existing HP65 users in mind. Most of the HP65's pre-programmed functions are duplicated with the same keyboard layout. Gone is the NOP (no-operation) function: 'the PAUSE facility is more useful for program debugging as you can see intermediate results without single-stepping. The HP67's program memory is line-numbered, not a rotating shift register as in the 65 . Each line of memory contains a complete keyphrase, so that all prefixes are merged, e.g. LBL f a (three keystrokes) is one memory step. By contrast, the LBL A instruction on the 65 is two keystrokes, two memory steps. The same applies to TI's SR 52; a label occupies two steps.

Several new functions have been implemented on the HP67 - many of them prompted by the desire for software compatibility with the printing HP97. The $-x$ - or "flash x " command halts the calculator for five seconds, allowing output of data (analogous to PRINT x). The REG and STK instructions are similar functions for reviewing the contents of the registers or operational stack. An HP97, encountering this instruction in a program, would print them.

The HP67 also includes functions which have been found useful in recent HP calculators - the PAUSE instruction, \% functions, ENGineer-

Fig. 1 The HP67 keyboard is rather complex, but logically arranged. You can have the pleasure of tickling its keys for $£ 350.00$ (inc. VAT). We wonder why dealers don't like demonstrating it?
ing display format, mean and standard deviation with automatic accumulation. The only major new keyboard function is RND, which rounds off the display to the number of digits displayed. This is important in financial calculations.

PROGRAMMING FACILITIES

With the W/PRGM-RUN switch in the RUN position, programs may be loaded from magnetic cards, or the machine may be used as a conventional calculator.

In the W/PRGM mode, when a key is pressed, that function is not immediately executed, but is instead stored in the program memory, and a
keycode is displayed. For example, the code 31 would represent the first key in the third row (f). Similarly, the complete code $00131 \cdot 5211$ would represent f LBL A and would be the first step of the program.

A major advance on the HP65 is the ability to nest subroutines three deep. This is achieved through use of the "GSB" instruction, and the program will then jump to the designated label to continue execution until it encounters a RTN command, when it will return to the instruction following the GSB. This function can be used with the l-register for indirect addressing.

The 1 -register is the key to the

indirect addressing facility. When the number in the 1 -register is between 0 and 19, GTO (i) or GSB (i) unconditionally jump to the label specified $(0-9, A-E$, or a-e). If the 1 -register contains a negative number, GTO (i) or GSB (i) will branch backwards the number of steps specified.

The 1 -register can also be used to control STO and RCL operations on the data register, i.e. STO (i) and RCL (i), where the i-register contains a value between 0 and 26.0-9 refers to the primary register, 10 to 19 refers to the secondary storage registers, which are not directly accessible by STO and RCL, and 20-25 represents registers A through E. An (i) value of

26 accesses the I-register itself.
As we have said, the 10 secondary storage registers, $\mathrm{R}_{\mathrm{s}} \mathrm{O}-\mathrm{R}_{\mathrm{s}} 9$, are not accessible through the STO and RCL commands, except indirectly, and also the $\Sigma+$ key, which accumulates statistical information. In order to get at the secondary registers, you have to swap them with the primary registers using the $P \leftrightharpoons S$ function. At first we were slightly bemused by this method of addressing storage in comparison with the SR52's 00 to 19 (and 60 to 99 , if they're unused by program), but in practice it turned out to be no problem at all.

CARD READER'S IQ

As the program memory is 224 steps, this has to be recorded on two sides of a magnetic card, using the same basic method as the HP65. When one zips a card through with the machine in the W/PRGM mode, the first 112 steps of the program are recorded in the form of a header, program and
checksum. The calculator, before writing the card, checks whether the program is over 112 steps long, and if it is, it writes the appropriate 28 -bit header. This identifies whether the card is (a) a one-sided program, (b) first side of a two-sided program, (c) second side of a two-sided program, (d) a one-sided data file, (e) first side of a two-sided data file, or (f) second side of a two-sided data file. If the program is over 112 steps, the card will have to be passed through again to record the second side, and the calculator will prompt the user to do this by displaying CRD. A similar process is used to read the card - the calculator will identify from the header whether the second side is required and prompt the user.

The ability to write data onto a card is very useful also. When the W/DATA key is pressed, the calculator displays CRD, and checks the contents of the secondary registers to see

Continued overleaf

Fig. 2. This program listing was produced on an HP97. but the program will product a print-out of the open loop amplitude and phase response (Nyquist plot) of a control system. The various time constants are entered serially, leads first, then a zero to separate them from the lags, then the lags. The program pulls data from the secondary registers and processes it as leads, until it finds the zero, and the continues to process the remaining data as lags.

HP 67 reviewed

if any are non-zero. If they are all zero, this data is compressed and recorded, along with the registers $0-9$ and $A-E$ on the first side; otherwise the calculator again prompts the user to insert the second side where it records the secondary register contents When a program is running, insertion of a card will not trigger the card drive, until a W/DATA instruction is encountered; hence you can set a long program running, insert a card and forget it, knowing that your results will be recorded.
the instruction / address line
A new chip developed for the HP67 combines 1024 10-bit words of ROM with 1656 -bit registers in a single 8 -pin package - this is why multiplexing techniques are so important. Programs are stored in these 56-bit registers in the form of 224 8-bit instructions. This allows 256 possible instructions, of which 250 are used. Another 18-pin ROM also carries the anode drivers for the DMA for card reading, with the micro-processor not involved at all, in
packs. Now available are Stat Pac 1 (21 programs), Math Pac 1 (19 programs), Electrical Engineering 1 (18), Business Decisions (22), Mechanical Engineering (23), Clinical Lab and Nuclear Medicine (19) and Surveying (19 programs). Soon to be announced is a Games Pac

The overall impression we gain from using the HP67 is that it is a more powerful machine than the SR52 if you have really tough problems to solve. It is more efficient in using program memory, particularly STO and RCL instructions.. The smart card reader is a very useful feature and gives the machine a real "data-base" of use in business applications.

We weren't terribly happy with the

Fig. 3. If you want a print-out, the E580.00 (inc VAT) HP97 is software compatible with the HP6 7.

Finally, the card reader can merge programs or data automatically. For instance a numerical integration routine may call as a subroutine the function $f(x)$ to be integrated. Several standard functions can be pre-recorded and loaded from cards, avoiding the necessity to key them in through the keyboard.

WHAT'S INSIDE?

The microprocessor around which the HP67 is very solidly built, is the Arithmetic, Control and Timing (ACT) chip used in the HP21, 22,25 series of calculators. This chip carries eight general-purpose registers, four of which form the stack, In addition, the instruction decoding ROM, clock control and timing, keyboard control, addressing and pointer logic are on this chip. It can access up to 4096 instructions by sending out a 12 bit address, least significant bits first, on
the HP67, the card reader chip (CRC) and ACT interact. The CRC contains two 28 -bit buffers which are alternately loaded while the ACT chip deals with the contents of the other buffer. Each card side carries 32 28-bit records, either 112 program steps ($31 / 2$ steps per record) or 16 data registers ($1 / 2$ register per record), plus header and checksum. As each record is stored it is also added to a running total, which is finally compared with the checksum. If they differ, memory is cleared and "Error" is displayed

SOFTWARE SUPPORT

An important application area for programmable calculation is the specialist user who requires a wide range of preprogrammed functions rather than a truly user-programmabie machine. HP cater to this area by supplying a wide range of application

67's approach to indirect addressing, particularly when trying to write a version of the computer game "REVERSE' , for the calculator. No matter how we tried, we always needed a second I-register so we never did get the program to run. We suspect that it should be considerably easier on the SR52. Please, HP, give us two l-registers next time, or a similar implementation to the SR52's!

SUMMING UP

In conclusion, then, the HP67 is an extremely efficient and powerful calculator. The HP97 printing version, because of its data handling capabilities should be popular in commerce. But we can't help feeling that the efficiency has been achieved at the expense of ease and flexibility of programming, so that it's just not as much fun.

Described by John Miller-Kirkpaṭrick

The System 68 VDU board A is really a complete VDU with more characters and more variety than the 560 . If the address outputs were connected to switches and comparators as in the 560 VDU then the end result would be very similar. In part two next month we will demonstrate the interface to the MPU. (although primarily designed for System 68 with a 6800 chip in mind,) the VDU boards A and B could be used with any other 8 bit MPU system.

Before you start

The VDU described here uses a commercial 625 line 50 Hz television set as an output device. In order to be able to display at least 64 characters per line we need a master dot frequency (to be described later) of 10 Mhz or more. As most TV modulators and demodulators only accept frequericies up to about 6 MHz it was decided to use a, modified, "dedicated" television.

The modification needed is similar to that described in other similar articles where a point inside the TV at which a 2 V p-p composite video circuit can be inserted. As this usually means physically breaking the connections between the TV tuner and the rest of the circuitry it is possible to install a 'video switch' to allow the modified set to work normally if required.

In our experience people tend towards linear or digital circuitry but not both, and so if you are not willing to sacrifice the family TV set to the VDU, then consider buying a secondhand portable and modifying that. Or ask your local dealer to modify it for you. As the TV is used to set up the VDU you will need to do this before starting the VDU, ie now!

Basic VDU concepts

In order to display anything on a TV set we must first set up the timing signals to represent the mixed sync television signals. These signals instruct the TV where to start a new line and a new frame. As all of our character display signals are referenced to the line and frame syncs these are very important. Each TV frame contains 312 or 313 TV lines which are "interlaced" in normal program display to give a total of 625 displayed lines. In our VDU we have not used interlacing as this leads to over-complexity in the circuitry and concept, thus our system uses only 312 (or 313) lines per frame.

In practice we have only used 300 lines per frame as this gives enough accuracy to obtain frame lock on most TVs, the resultant timing means that a complete frame is displayed 50 times per second.

The frame sync signal is derived from counting the line sync signals and dividing these into groups of 300 . Each line sync signal has a total duration of $64 \mu \mathrm{~S}$ which is broken up as shown in Fig 1. As the actual negative going strobe is decoded by the TV as being off the screen, we need a gap between this strobe and the start of our display, for similar reasons and for neatness we need a similar gap after the last part of the display, and before the next line sync signal. The display time we have left in the middle is the time used to display our 64 character slots.

Characterisation

Each character slot is capable of displaying 5 dots of a 5×7 matrix plus
a "null" dot to define a space between characters, thus each character time slot is further sub-divided into six "dot times." If each line sync is 64 s S in length it can be calculated that each dot time is only about 100 nS long thus requiring an oscillation of about 10 MHz which is our "master dot frequency."

In order to cut down on the number of ICs required it was decided to design a system where each line sync is broken up into 100 time slots and to use two divide by ten counters for the purpose. This idea requires no gates for "reset to zero" signals, as the counters automatically zero after 99 . If we use 64 of these times slots for characters, and decode others to give the margins before and after the display then we have a requirement for a master dot clock frequency calculated as follows 1. Line sync period required $=64 \mathrm{~m}$ or $64000 n \mathrm{~S}$
2. Character time $=L S / 100=640 n S$ 3. Dot time $=\mathrm{CHAR} / 6=640 / 6 \mathrm{nS}$ 4. Dot Freq $=1000 \times 6) / 64=75 / 8=$ 9.375 MHz .

Figure 2 shows a diagram of the timing generation system derived from our master clock. The dot frequency is divided by six to give a character frequency and both signals are also used in the display side of the VDU. The character rate clock is divided by 100 and decoded to give signals for line sync, start and stop character count, start and stop display (border generation). The line sync signal is passed to the vertical counters which divide the LS by 300 and decode to give a frame sync pulse and vertical count and display enables. These timing signals plus others derived from them are passed over to the RAM addressing and character generation circuitry of the VDU.

VIDEO DISPLAY UNIT

Display of character

The character clock signal is divided, in binary, by 64 to give 6 lines. This is used to partly address the RAM storing the character data; the other 4 lines needed to uniquely address any of the 1024 characters stored in the RAM come from a character row counter Each character row is made up from 16 TV lines and we need 16 rows per frame, the 256 TV lines required are decoded by the divide by 300 counters so that they are positioned in the centre of the screen by the vertical display enable signal.

In order to address and display a character we have to use the divide by 64 counter and the divide by 16 row counter to uniquely access one character in the RAM. As the row counter is only updated every 16 TV lines this means that each character slot in the RAM is accessed 16 times (ie once per TV line for the particular character row)

Each time that the RAM is accessed 8 bits of data is retrieved from the RAM and passed to the character generator ICs.
The basic generator is (a new one!) from National Semiconductors and it includes latches, counters, ROM and shift registers on one chip. Using this chip cuts the package count considerably when compared to using 2513 ROMs and associated components.

The DM8678-CAB generates 64 upper-case ASCII characters in a 5×7 matrix, other chips in the range give lower-case characters, 9×7 matrices and other character sets. All of these chips are pin compatible and can be used solo
or in tandem to give full upper and lower or other mixes of character sets The design philosophy of the System 68 VDU has allowed for future expansion of this type if required. (If expansion is not required then there are three. display options included in the VDU which are normally only to be found on expensive commercial equipment.) Only six of the eight RAM data bits are required by the DM8678 and we have used the other two bits to enable the normal white character on a black background to be changed to black on white, black on grey, white on grey or to flash once per second. These options can be used on any of the 1024 characters to be displayed and can be used to denote special areas or important messages on the VDU screen.

Call a Cab

Each of the 8idata bits from the RAM is latched for the whole character display period* to prevent spurious changes from affecting the display. The six data bits sent to the DM8678 are used to partially address the ROM inside the DM8678, the rest of the ROM address being supplied by the divide by 16 TV line counter (also inside the DM8678).

In the CAB version of the chip only the first 7 TV lines of each group of 16 are used to address the ROM

This responds with a set of 5 dots for each ASCII data plus TV line number address. These 5 dots are loaded into an internal shift register which then shifts out the dot data at the master dot rate. Thus for each of the dots which we have defined on the VDU screen the RAM

on the edges). With the 5 V supply off at each IC insertion, ICs $1-13$ and 15 can be inserted and the video output connected to a monitor or converted TV set. The resultant display on the screen should be a white box with grey borders, on a 12 in TV and borders will be about $1 / 2$ in wide with a centre box about 9 in wide.

If you have a display of a lot of sloped lines then adjust VR1 until the sync locks and the box display is obtained. In case of no display the following IC pins can be checked with a scope or frequency meter -
ICI pin8 9.375 MHz
IC2 $2 \operatorname{pin} 1 \quad 9.375 \mathrm{MHz}$,
IC2 pin 11 approx 1.5 MHz
IC3 pin 12 approx 150 KHz
IC4 pin 12 approx 15 KHz
IC5 pin 5, 64uS line sync (negative)
IC6 pin 13 64uS horizontal count enable
IC7 pin 6 64uS horizontal display enable
IC12a AND of horizontal and vertical display enables
IC 12b AND of frame and line syncs.
C4 output should be similar to fig 1
Take a wire link about 9 in long and strip both ends. Push one end into IC socket 14 pin 11 and use the other end to check the following effects on the Central portion of the VDU. With the link connected to IC13 pin 2 the screen is split in two halves with the left side black and the right side white Similarly check that connection to IC 13 pins 3,5 $6,7,9$ produce respectively vertical divisions into 4, 816,32 and 64 divisions. Connection to IC8 pin 13 will divide screen horizontally by two, pin 4 by 4 , pin 2 by 8 and pin 3 by 16 . These lines represent the character slot counters and the character row counter outputs. With these checks successfully completed the wire link can be removed from IC 14 socket and IC14 inserted.

With IC14 in position the VDU should display a question mark in all 1024 character locations, if the question mark tends to change into other characters in horizontal bars this is only because of stray 50 Hz getting into the open data inputs of the DM8678

Board A is now virtually finished and requires only the insertion of two ICs to complete it. In order to fully demonstrate the facilities of the VDU and to fully test all of the ICs temporary links can be made from the address counter outputs to the data inputs. These should be done in the following sequence and the effects checked with those predicted until all links have been installed. It will be necessary to remove all of these temporary links before connection to board B
Link DO-CO All '?' changes to all
Link D1-C1 All ' ?' changes to ' $=$?'
Link D2-C2 '89:' added before
Link D3-C3 '01234567 added
Link D4-C4 Special characters added (brackets, quotes, asterisk, etc)
Link D5-C5 Alphabet and rest of chracter set added.

Each row of the VDU should now display 64 different characters, white on

wmo9! 1q wmool $2 z / 5 / / n_{\beth}$
black background. Now insert IC16 and make 'permanent' links $A-D$ and $B-E$ and continue with temporary links. L.ink D6-RO Alternate character rows will show inverted video signal as black characters on white background
Link D7-R 1 Alternate pairs of character rows will take on a grey background
(two shades of grey are possible)
Insert IC1 7 and check that the whole display flashes at about 1 Hz , during the flash which takes about $1 / 5$ second the video signal is inverted ie a B / W character becomes W / B and vice-versa To stop the flashing connect point C to ground.

VIDEO DISPLAY UNIT

PARTS LIST -		Integrated Circuits			Hardware
Resistors	Capacitors	IC1	7400	IC10 74C00	71-3845B 2 in Front panel (Vero)
R1 220R	C1. 2150 pF	1 C 2	7492	IC117400	25 Way socket (466-220)
R2, 3, 4, 390R	C3, 4100 uF 16 V	IC3	CD4017	IC12 7408	25 Way plug (466-191)
R5, 6, 7, 1 K	C5 10uF 16 V	IC5	CD4017 74000	IC13 CD4040 C14 DM8678	25 Way cover (466 258)
R8 68K	C6 500uF 16 V	IC6	74 COO	IC15 7486	Co-axial socket, surface (455-545)
R9 10K		1 C 7	74C00	IC16 7475	ETI 68 VDU board A
RV1 1 K vert preset		IC8	CD4040	IC17555	Doram (RS) numbers in brackets.
All resistors 1/4W 5\%		IC9	74C42		Doram (RS) numbers in brackets.

[^1]

VIDEO DISPLAY UNIT

Options

With the assembly of board A completed it is only necessary to decide on the optional links of points A, B, C, D and E. At the end of the tests these are connected as A-D and B-E and give the results shown, (in this example the flash option is ignored.) Points D and E are the latched outputs from RAM data bits 6 and 7 , Points A, B and C are the option inputs, any unused option inputs should be connected to logic 1 or 0 and not left floating
The option inputs are as follows -
Point A gives a halftone (grey) background when selected as logic 0 . Point B gives B/W character when 0 W / B character when 1
Point C gives 1 Hz video invert "flash" when 1 , steady state when 0

Because these options are controlled by RAM bits 6 and 7 each character can have a different option from its neighbour, thus with the 64 different characters from the DM8678 each with four options we have a VDU with 256 different possible characters.

NEXT MONTH

In next month's issue we will continue with board B which contains the RAM and the MPU interface. The basic interface could also be used to connect the ETI 560 VDU, PW Videowriter (if you must!) or other similar units to System 68.

Now there's a better way

 to keep your EII copies

Detecknowledgey

Detecknowledgey ? No, we haven't forgotten how to spell - a number of you thought we had during our 'Tecknowledgey' ad series last year - it is simply an expression of Ambit's specialist topic for Summer 1977: Metal Detectors. In other words, we want you to know that we know about them, not just selling them, but how they work, and why. It is surprising how few people can explain the theory and application of first principles to metal locators. Things like why a bunch of keys can sometimes fail to register, whilst a $2 p$ piece indicates at $8-10^{\prime \prime}$ or why a lump of iron reacts as if it were son-ferrous. See our new publication on the subject, a consise reference work that sets out to explain from first principles the various phenomena you will encounter, $£ 1.00$ inc PP.

PW SEEKIT COMPLETE KIT

Speaking of technology - that is, the application of scientific discoveries to practical situations and every day equipment - the PW Seekit can claim to have used a few innovative features only achievable with devices that we have been largely instrumental in promoting, so it is not surprising we are able to offer complete kits, and all parts for this exciting project. The complete Seekit-kit costs $£ 36.00$ including PP AND VAT. This kit contains all electronic and plastic components (undrilled), bar things like glue foil etc., which you are more than likely to have around the house. An SAE will bring you our new leaflet (A5 size please) with a more detailed list. Please note we can only consider service/testing on complete kits purchased from US.

BIONIC FERRET 4000

Not an electronically souped up rabbit catcher, but AMBIT's own VCO metal locator system. The $£ 40.74$ ferret, (a saving of aprox. $£ 3.529 \mathrm{~m}$ on the human version), comes complete with drilled, and cut-plastic parts, earpiece, all electronics etc. The $£ 40.74$ includes PP and VAT at 8%. A free copy of metal Detecknowledgey with all kits.

COMPLETE
 digital clock kits

Teak or Perspex Case, $6^{\prime \prime} \times 21 / 2^{\prime \prime} \times 3^{\prime \prime}$
FEATURES:
Red $1 / 2$-inch high $1 . E D S$ s. 12 hour display with AM/PM indication. Power failure indicated by flashing display
Precise accuracy with mains frequency White, Red, Blue Green. Black)
NON ALARM: Complete Kit, including Teak case
Module Kit, excluding case $£ 950$ incl
ALARM EXTRAS: Pulsed alarin tone Tilt operated "Snooze period Automatic Brightness control Simple setting.
ALARM: Complete kit, including Teak case E 1650 incl Module Kit including case
PERSPEX CASES: 50 p less than Teak
READY BuILT. Extra \& 100 on complete clocks Extra 50p on Modules
TIMER FACILITY: Count in seconds up to 9 m .59 sec . Extra 50ρ

'ALPHA' £12.00 incl.
Readdy built. Non alarm. Perspex only, 4 digits. phosphorescent green, $12^{\prime \prime}$ high, 12 or 24 hour display

Discount on orders over live clocks or kits
Overseas Add $£ 2.50$ Air Mail.

arciarcabo
 Pulse Electronics Ltd.

(E1), 6 Gower Road
Royston, Hertfordshire
Phone Royston (0763) 43695

Name:
Address
$120 A \cdot D . B T, 20 w_{0}$＂600 100 imen＂VAF TX．B7A $110 D$ ．BT low＂300． 76 and ean＂HF Tx B9A

			SHO
Depre eti 5 Statioul	LIttleport，cambs．cbe 19E	post pald（uk	K ONLY，SAE WITH EL
Tel．Ely（0353） 860185 （Tues．	to Sat．）	calers welcom	IE EY APPOITTMENT ONIY
ALL BELOW－ADD 8% VAT	${ }_{\text {Ale }}$	ALL BEELOW－ADD 8% VAT	ALt
边	为		
为		为	
			Une
为	mextiod	mas	Sill
		wo	边
Type MB 22 to 32 MHz （when 33 pf fitted paralletl） Type MC 25 to 35 MHz （when 33 pf fitted			and
paralleil） Type MD 38 to 50 MHz （when 33 pt fitted			Namen
den			
	\％umberim		
	than sistone		
Sectua ort			
		Mosem ind	

Are you receiving us？NEW Doram
 DIGITAL FREQUENCY METERYOURS FOR ONLY could save you up to $£ 25$ ．It＇s easy to see how accurate this new Doram meter is thanks

 04 digit display with extra shift left to check You can see the well－designed You can see the well－designed display tilt－foot looks so much more expensive than many a kit product． But Doram kits always give you the bes for less．This complete kit with case，printed circuit boards，all components and instructions is yours for only $£ 54.50+£ 4.36$
$V A T$ VAT．

The meter covers 20 Hz to 50 MHz with prescaler（additional purchase）provision allowing you to measure up to 500 MHz ． Input impedance and sensitivity are very high with read－out accurate to $\pm 0.01 \%$ ！ So the message comes through loud and clear－don＇t miss this latest Doramdigital DEPEND ON DRYAm

hodern technolog og

Doram Electronics LTd．PO Box TRB，Wellingion Aoad Industrial Estate Wellington Bridge．Leeds．West
Yorkshire LS12 2 UF York

KEY DATA

Frequency range	20 Hz to 50 MHz in 3 steps
Sensitivity	20 mv i．m．s．
Input Impedance	1 M ，in parallel with 30pF
Input Coupling	AC
Maximum Input	loverms．
Frequency Standard	1 MHz 001\％calibration tolerance
Display	4 Digit LED display with snith left for 5 digit readout
Accuracy	± 1 digut（ 01%
Supply Voltage	220.240 V ac with 12 V dc 100 mA output for prescaler supply

CAN YOU DO WITHOUT IT？

NEARLY ALL CONSTRUCTION PROJECTS REQUIRE SOME TYPE OF CIRCUIT BOARD

VEROBOARD is offered to you in 15 sizes， $0.1^{\prime \prime} \times 0.1$
and $0.15^{\prime \prime} \times 0.15^{\prime \prime}$ matrix．Every square inch of 0.1 Veroboard has 100 accurately placed holes for maximum versatility（imagine drilling those yourself！！
Vero also manufacture boards for integrated circuits， strip boards．plain boards，tools，pins and a superb range of plastic and metal cases．All these products are available from your local shop or mail order，company

Send for our booklet describing these products S．A．E
plus 10 p to
VERO ELECTRONICS LTD．RETAIL DEPT
NDUSTRIAL ESTATE，CHANDLERS FORD，HANTS．SO5 3ZR Telephone Chandlers Ford 2956

-ETI PROJECT
 an electronic game to develop clear thinking eti MAStermind

DIGITAL ELECTRONICS is a natural for game circuits. Things that go 'high' in' the night and will keep scores accurately (when told to), conjure up visions of nice neat Veroboxes lined with LEDs and seven-segment displays all flashing away in time to a maniac beat.

In practice such pyrotechnic exuberance is rarely achieved, and the vaulted scheme reaches completion as yet another digital dice, or in the event of a unprecedented brainstorm, a clock.

Well, although we must admit to a minimum of pyrotechnics, we can truthfully claim to have gone beserk with the T.T.L! This project should, however, provide a nice 'middle-class' undertaking for those wishing to move from Reaction Testers to MPU's.

Getting stars for dots

The game is based on the old 'star and dot' game where one player sets up a number code consisting of three to six digits (depending on how clever his opponent is - or thinks he is!) and another attempts to 'break' the code. Stars are awarded for correct digit, correct position, and dots for correct digit, wrong position.

For example if the code was 1234, and the guess 0247, orie star is awarded for the ' 2 ' and one dot for the '4'. The game has recently been marketed under the name 'Mastermind', using colours for numbers.

Our version uses logic to replace one of the protagonists, such that the game becomes playable in solo fashion. When the 'set up' button is operated, the circuit generates its own random 4-digit number and stores this. The player then has to 'guess' using the four BCD switches and use the 'play' button

Once this is pressed, a comparison is run, and the machine will award the appropriate stars and dots on the bars of LED's. These do not correspond in position to the BCD switches, so that all you know is how many you got right, and not where the correct numbers lie.

FROM A CIRCUIT DESIGN BY GILES GUMMER

Conditional discharge

One proviso -- repeated digits are not allowed in either your guesses or the machines code. The circuit won't cheat you - it checks its own number on generation, and will re-run the counters if a repeat occurs. This means there will be $10 \times 9 \times 8 \times 7(5040)$ possibilities for the answer. We consider this sufficient for all except the bionic brained!

Keep a note of past attempts and what score you obtained for it :" you like, but its more fun just
playing without notes - time yourself and see how the time you take goes down the more you play. As a competition between two people, it is the fastest time which will be an obvious decider rather than number of attempts.

Having said that, it would require very little extra circuitry to add a counter and LED display to the play button, so that every time it was pushed, the display advanced by one. A limit could be set, and the game played much the same way as the commercial version.

ETI MASTERMIND

This is the main circuit diagram of the MasterMind unit. The only sections not shown here are the counters (page 41) and the BCD switch wiring (page 46).

The control logic has to provide a single cycle of WXYZCk whenever a play push-button is pressed, must run the machine's counters, stop them, run a self-comparing play sequence, and repeat the process if the number generated is illegal.
The two control pushbuttons - play and set-up - are each bounce-protected by a pair of cross-coupled NAND gates IC26. A test sequence is run, either by pushing play or by triggering the monostable IC21, through the OR gate formed by IC27c and IC22b. The five bit counter that cycles WXYZCk (IC28 and IC29) is run by a gated astable built around IC24d and IC23c. The gating input comes from IC22c and the astable runs when the gate line goes low. Exclusive OR (XOR) gates are used to drive both the astable (IC22c) and the monostable (IC22a). These gates provide four distinct phases of operation per cycle, and allow for slow fingerwork from the player. The five bit counter has a five input NOR gate, formed from IC23b and IC24a, b and c, attached to its output lines, which goes high when the counter is in its rest state (00000)

Normally the test input of IC22 is low and the other input high. Thus its output will be high and the astable disabled. When play is pressed, its output falls and the astable runs. The counter counts once, the five input NOR gate goes low, the inputs of IC22c differ again, and the counter stops. Releasing play lowers the second input, and the astable runs the counter once more until the NOR gate detects the end of the cycle, and stops it.
Since the shift register is clocked by a falling pulse, the Q output of IC28 (Ck) is used, though the NOR gate is fed with Q. Pressing set-up does two things, Firstly, it sets the anti-race latch formed by IC22d and IC27a, b and d, which raises P/M to order the 'self-comparison' test from the
multiplexers. Secondly, it triggers the monostable IC21. This causes its Q output to go low, which enables the four astables running the machine's number counters (via line R). Simultaneously its Q output rises and, as described above, the five bit counter counts to 00001, and stops. (This means that the first test comparison is run on the machine's old number, but this information is not in fact used.) When the monostable falls, the machine's counters stop and the rest of the test sequence is run on the number they have settled into.
The display logic includes circuits to detect illegal numbers which are signalled on Line I. At the end of the test cycle, IC25a turns on IC25d if the number is declared illegal, and IC25b if not - IC23d is an inverter. IC25b resets the latch and ends the set-up sequence. IC25d re-triggers the monostable if the latch is set (IC25c) and if the set-up button has been released (IC22a - which operates similarly to IC22c).

The four machine counters (ICs 10, 11, 12 and 13) are each run by one of the four gated astables formed by NOR gates in ICs 8 and 9. These astables run at different speeds and provide an unguessable, if not truly random, four digit number after a run pulse on Line R. The data from these counters, as well as that from the player's BCD switches, is passed to the multiplexers, ICs 1 to 6 . These are dual four-to-one multiplexers, type 74153, wired so that each multiplexer (two to a package) chooses the same bit from one of our digits, e.g. for the four player digits, bit B is multiplexed in the lower half of ICI. ICs 1 and 2 form multiplexer 2 (Mpx 2) and present at their four outputs the bits of the digit selected by W and X, their control inputs. Mpx 3 (ICs 3 and 4) does the same for the machine's number, and Mpx 4 (IC7, a 74157 quad two-to-one multiplexer) presents either the selected machine digit or the selected player digit to one side of the comparator circuit. P / M is the control line;

raising it selects the machine digit, required for a 'self-comparison' test.
The other side of the comparator circuit is permanently connected to Mpx 1 (ICs 5 and 6) which selects a machine digit according to the state of the control lines Y and Z.
In the comparator circuit equivalent bits are compared in an XOR gate (all four in IC14). All four bits must be identical if the digits are equal, so all four XOR gates must be low. IC15a and b, and IC23a, form a four input NOR gate that sums the outputs and goes high for identical digits.
Information from this gate is passed to the serial input of the shift register (ICs17 to 20). These four ICs, type 7495, are cascaded to form a 16 bit , serial in/parallel out register. Data is clocked in once the state of the multiplexer outputs has had time to settle - on the rising edge of Ck , i.e. the falling edge of $\overline{\mathrm{Ck}}$.
The sixteen parallel outputs of the register provide Star information directly the cycle has ended, but as each digit has a choice of three from which it can 'earn' a Dot, four three input OR gates are required to sum this redundant information. These are formed from ICl5a, b and $\mathrm{c}, \mathrm{ICl6c}$ and IC30a, b, c, and f.
An illegal number generates at least one Dot when compared with itself. Thus the I Line is driven from the same source as the 'ONE' Dot LED

VALVE BARGAINS

Any 5-64p, 10-£1.20, 50-£5.00. Your choice from the list below.
ECC82, EF80, EF183, EF184, EH90 PCF80, PCF802, PCL82, PCL84 PCL85, PCL86, PCL805, PL504 PY81/800, PY88, 30PL-14, 6F28
Colour Valves-PL508, PL509, PL5 19 PY500/A. All tested. 35p each.
Aerial Slitters-2 way. 75 OHMS Inside Type. £1.50.

AERIAL BOOSTERS

Aerial boosters can produce remarkable improvements on the picture and sound, in fringe or difficult areas.
B11-For THE stereo and standard VHF/FM radio.
B12-For the older VHF television Please state channel numbers
B45 - For Mono or colour this covers the complete UHF Television band
All boosters are complete with battery, with Co -ax plugs $\&$ sockets. Next to the set fitting.
£3.80

All prices include VAT. P\&P $20 p$ per order. Exports at cost

> ELECTRONIC MAILORDER LTD.

62A BRIDGE ST., RAMSBOTTOM, BURY, LANCS
TEL. RAMS (070 682) 3036

Component overlays of the main circuit boards. Any holes without component leads are through board links. Solder these both sides, and check for continuity. Because of the size of these double-sided boards, we have not given the foil patterns, as usually we do. Home etchers can obtain these by sending an S.A.E. to 'MasterMind Boards' ETI Magazine. Firms should note however that Crofton Electronics hold the copyright on these designs.

Parts List

RESISTORS - all $1 / 4$ W 5\%	
R1,3,23-38	1k
R2	4k7
R4	10k
R5-14,18,20	470R
R15,16,21,22	390R
R17,19	100R
CAPACITORS	
C1,5,6	10n polyester
C2	470n polyester
C3,4	4 n 7 polyester
C7-14,17	100n polyester
C15	$\begin{aligned} & 2,200 \mathrm{u} 16 \mathrm{~V} \text { (or } 2 \mathrm{x} \\ & 1000 \mathrm{u} 16 \mathrm{~V} \text {) } \end{aligned}$
C16	220 n polyester
SEMICONDUCTORS	
IC1-6	74153
IC7	74157
1C8,9,24,27,31,33	7402
IC10-13	7490
IC14,22	7486
IC15,16	7427
IC17-20	7495
IC21	74121
IC23,26,34-36	7400
IC25,32	7408
IC28	7472
IC29	7493
IC30,37	7404
LED1,6	. $2^{\prime \prime}$ ' type green
LED2-5,7-10	.2' type red
REG1	5V 1.2A (min.) TO3 cased regular i.e. 7805 k.c.
BR1	200V 1.6A bridge rectifier
SWITCHES	
SW1-SW4	min.B.C.D. switches Doram: $4 \times 338-339$ mounted in end cheeks (Doram: $1 \times 338-406$)
SW5	On-off rocker 240 V 1A type
SW6,7	S.P.D.T. momentary action
TRANSFORMER	
T1	240V-9V 1A type
(Maplin have a suitable type to fit within	
$1 / 2$ A windings which are paralleled to	
Supplies, Rayleigh, Essex. Cost: £2.35	
inc. VAT, p\&p. Order as: Min tr. type 9V.)	
BOARDS	
Board A and B are available from Crofton electronics, 35 Grosvenor Road,	

CASE

Vero type 65-2523E sloping front.

MISCELLANEOUS

Mains neon, multiway cable, pcb mounting pillars, nuts, bolts, etc., 3 -core mains flex, aluminium for heatsink, TO3 insulating kit, mounting feet for case, power supply board as pattern.

Building up to it

Although this is a very complex project, actual construction is not that bad. Having paused a second there to allow those who fainted at the audacity of that remark to recover, let us continue

$$
\begin{array}{ll}
\text { MOUNT REGI TO HEAT SINK VIA } \\
\text { NNSULATNG KIT THUS ISOLATING } & \text { MATEAIAL TE GUAGE ALUM, OR } \\
\text { THICER } \\
\text { SUPPLY FROMMETALL } & \text { ALL DIMENSIONS IN MBLLLIMETERS }
\end{array}
$$

Power supply details. below the foil pattern for the PCB is the circuit diagram of the supply. Reg. 1 will get very warm in operation, and if it is a problem, or you run the thing continually for hours and hours, some ventilation holes will be needed in the case:say beneath the heatsink and in the rear of the box will do. Heatsinking is necessary in this case, so PLEASE don't leave it off!

unabashed, to point out that most of the potential problems are side-stepped by use of the PCB's.

If you are the proud owner of a wiring pen however, this is the perfect chance to put those pretty little reels to work. Make up a list of point-to-point connections from the circuit diagram before you start (and CHECK it) and work your way down the list. Use IC holders.

This method produces excellent, neat results, but requires amounts of patience guaranteed to enhance the soul - or so they tell me.

Meanwhile back at the PCB there are a large number of through hole connections to make. With a logic circuit of this complexity it is unfortunately unavoidable. Through-plating the holes pushes the price too high to reach. So the first step is to wire up all the through board links, solder top and bottom, and check each one with an ohm-meter. IC sockets (or soldercon pins) must be used for all ICs; we spent hours unsoldering, when troubleshooting a faulty chip on the first prototype!

Wiring for the BCD switches. The lettering refers to the contacts on the switches. These are best wired before mounting the switches on the front panel.

Another important point is that $1 / 4 \mathrm{~W} 5 \%$ resistors must be used, especially on the back of the BCD switches, otherwise the front panel will not fit properly, fouling the PCBs inside.

Decoupling capacitors should be mounted on the boards where indicated, and if soldered both sides will act as through-links quite
happily. The biggest hurdle to construction will be the interwiring. With all the data passing around the various circuit blocks, there is no way we could make this any simpler. Ribbon cable is expensive, but will more than save its cost in avoided headaches.

Since there are so many connections to make, keep a record (written, preferably emblazoned on marble with holy fire), of which colour goes where, and which is what in each ribbon cable. Don't try and build the project in an evening. The small hours are no time to be checking a 20 -way ribbon cable connection, and 'midnight-oil' light will confuse the colours anyway. Take your time!

Boxing clever

There is not much room inside the case to fit all the various bits into - you would never swing a diode in there, let alone a cat. Have a look at our photographs and keep to our layout - we've had the nightmares already trying to get everything in so why.suffer yourself?

There are two types of BCD
switch on the market at least, our choice, and those ingenious, but difficult to read, ' 7 segment' type. If you intend to use the latter, your front panel will need altering, and so will the internal wiring.

Don't ring us; we'll
As regards a PSU, batteries will most definitely not do this time current consumption is not far short of an amp most of the time, and a PP3 won't last long enough to switch off again!

Conclusions?

Well it could have been simpler, but it could have been worse! If we'd used static logic, there would have been approx 70 chips, and about 2.5A (yes Amps) drawn from the supply. As it is the project is a good exercise in logic design, and following through the circuit in conjunction with the 'How It Works' should pay dividends in return for time expended.

Once built of course it is a compulsive game to play (if there is no ETI next month you'll know why!) and should prove a nice alternative to 'Crossroads' now and then!

'nternal shot of the MasterMind. If you use the same box as us, keep to this lavout, as there is very little room.

MARCONI TF675F WIDE RANGE PULSE GENERATOR $+/-$ variable outputs up to 50 V Optional delay. Small compact unit £18 еа.	ROYA tured 115 V A new. Cr	NVERTORS manufac28V. DC Input. Output OHZ up to 2 KVA . Brand $£ 12.50$ ea	MARCONI NOISE GENERATOR TF987/1. 4 Ranges 0-5: 0-10; 0-15; 0-30 Due to large purchases now priced at £15 ea.	AVO TRANSISTOR ANALYSER CT446 Suitcase style NOW £27.50 each
FOR THE VDU BUILDER. New stock of Large Rectangular Screen $30 \times 20 \mathrm{~cm}$ tube Type M38 at the ridiculous price of $£ 4$ each. And also still available the CME $1220,24 \times 15 \mathrm{~cm}$ at $£ 9$ ea Base connections for both tubes supplied		WE ARE BREAKING COMPUTERS UNIVAC /HONEYWELL/ICL 1900 etc Boards, Power Supplies, Core Stores are available CALL AND SEE		EDWARDS HIGH VACUUM PUMPS Type 1SC30@ $\mathbf{5 5 5}$ each. Type ES35@ £45 each Carriage £2.50
HONEYWELL MAGNETIC TAPE UNITS Self-contained, complete with heads, magnetic tape, leads, etc Tested Carriage paid $£ 5 \mathbf{7 . 5 0}$		SPOOLS OF $1 / 2^{\prime \prime}$ MAG TAPE APPROX. 2000ft $50 p$ ea. $P \& P f 1$ ea		COMPRESSOR/VACUUM PUMP Twin Cylinder opposed with Integral $1 / 2 \mathrm{H} . \mathrm{P} .50 \mathrm{HZ}$ Single Phase Motor Tested \& Checked 110 Volts models only £ 15 ea. $1 / 2 \mathrm{H} . \mathrm{P}$ Motor 110 V £ 10 ea.
TRANSFORMERS - All 240V 50 HZ mputs Type A. $170-17 \mathrm{~V} 250 \mathrm{MA} \quad 7.5-0-7.5 \mathrm{~V}$ 250MA 0-20V 5 Amps 0-4V 5 Amps 0-1-1.5V 5 Amps $£ 2$ each P\&P $£ 1.25$ Type B 17-0-17V 250MA. 8-0-8V 250MA 0-12 5.13.5V 5 Amps 0-1 5-2V 5 Amps £1.50 ea P\&P £ 1 Type C. 19-0-19V 250MA, 8-0-8V 250 MA $07.5 \mathrm{~V} 5 \mathrm{Amps} ; 0-14 \mathrm{~V} 5$ Amps $£ 1.25 \mathrm{ea}$ P\&PE1 25 Type E 3V 1 Amp 25p ea. P\&P 50p All brand new (APT surplus types A, B, C Honeywell surplus type E) *POT PACK. All Brand New Madern Single and Ganged, Our choice. 7 for 25p. P\&P 48p SEMICONDUCTORS - Now all at 5p ea.*. P\&iP exira Guaranteed all full spec devices. Manufacturer's markings BC147, 2N3707, BF197, BC327 2N4403. BC172B: BC261. BC251B BC348B, BC171A/B BF183. BC108 2N5879 with 2N5881 Motorola 150 Watt	Comp pair $£ 2$ pr. P\&P 15p *Linear Amp 709 25p ea P\&P 8p VARIACS 240 V input $0-230 \mathrm{~V}$ output 8 $\operatorname{anp} £ 18$ ea. $20 \mathrm{amp} \boldsymbol{\mathrm { C }} \mathbf{3 0}$ ea Carr extra tUBES. All Brand New Boxed Electrostatic deflection Type DB7/36 3"' dia. (Replacement for Telequipment S31) 11 ea P\&P $£ 1.50$ Type GEC 924F 3 $1^{1 / 2^{\prime \prime}}$ dia (Replacement for Telequipment D33 \& Solartron 1016 scopes) £25 ea. P\&P $£ 1.50$ Type GEC 924E $312^{\prime \prime}$. dia. (Replacement for Solanton 1015 scope) $£ 17.50$ éa P\&P fibreglass board pack. More board - less money Larger pieces Not less than 25 sq ft for 95p. P\&P 65 p. NEW - UPGRADED CONTENTS - FOR LESS MONEY *3lb Electronic Goodies $£ 1.60$ post paid *High Value Printed Board Pack - hun dreds of components, transistors, etc - no flat to the board transistors $\& 1.65$ post paid very special prices 1000t Feed thru Capacitors 10 for 30p. P\&P 15p.		*BEEHIVE TRIMMERS 3/30pf. BRAND NEW 10 off 40p P\&P 15 p ; 100 off $\mathbf{~} \mathbf{3 . 5 0}$ P\&P 75p, 500 off £15 P\&P £1 25; 1,000 off $£ 25$ P\&P $£ 150$. PHOTOMULTIPLIER Type 931 A £4 ea P\&P 75p. Other types available. HIVAC Miniature NEONS App 60 V Brand New 10 off 20p. P\&P extra *Meter PACKS - 3 different meters $\mathbf{E 2}$. P\&PE1 DON'T FORGET YOUR MANUALS. SAE with requirements. GRATICULES $12 \times 14 \mathrm{~cm}$. high quality plastic 15p ea. $9 \&$ P $10 p$. *CAPACITOR Pack. 50. Brand New components only 50p. P\&P48p tTRIMMER PACK. All Brand New 2 Twin 50/200pf ceramic. 2 Twin $10 / 60$ pf ceramic: 2 min . strips with 4 preset $5 / 20 \mathrm{pf}$ on each; 3 air spaced preset $30 \% 100 \mathrm{pf}$ on ceramic base 25p the lot. P\&P 15 p *POTENTIOMETERS - All 5p ea P\&P extra Metal bodied AB Linear. PCB Mount. Brand New. 10 K single, 100 K ganged: 250 K ganged; 100 K ganged concentric shatts. LARGE RANGE ELECTROSTATIC VOLTMETERS, from 0 300V: $2^{\prime \prime}$ £3; to 20 KV Max General guide $5 \mathrm{KV} 3 \sqrt{1 / 2}$ £5; thereatter £1 per KV P\&P 75p MARCONI TF1101 Audio Oscillator. $20 \mathrm{c} / \mathrm{s}$ to $200 \mathrm{ks} /$ Low distortion. 60 dB step attenuator $£ 50$ each * SPECIAL OFFER Guaranteed full spec devices Manufacturers markings. POWER TRANSISTOR 2N3055 40p ea P\&P 8p * TELEPHONES Post Office Style 746 black or two-tone Grey $£ 6.50$ ea. Modern Style 706. Black or two-tone Grey. $£ 4.50$ ea All telephones complete with standard dial and bells. P\&P all styles 75 p ea. handsets complete with 2 inserts and lead $\mathbf{£ 1 . 7 5}$ ea P\&P 65p \qquad	
$D C E-A=$ FROM O		ACK" AREA ESTRICTIONS	DENCEA GH UP YOUR OWN CON WHAT YOU TAKE	NENTS
SUPERB PROFESSIONAL VDU CA Hammer gr SCHLUMBERGER Surp	, size 5 each	$16^{\prime \prime} \times 27^{\prime \prime}$ on stands ge $£ 2.50$	EX-DYNAMCO Osci 30 V Input 6KV Outpu Complete with circ	copes INVERTORS $122^{\prime \prime} \times 4^{1 / 2^{\prime \prime}} \times 1^{1 / 2^{\prime \prime}}$ $£ 10$ each. P\&P $£ 1$
LINE PRINTERS - VARIOUS £100 each Carriage £ 1 Size approx. $4^{\prime} 4^{\prime \prime} \times 3^{\prime} \times 4^{\prime}$				
MINIATURE - OXLEY PATCH PANE NEW EX-DYNAMCO 10×10 complete with pins $£ 8$ eac	$\begin{aligned} & \text { BRAND } \\ & \text { P } 50 \mathrm{p} \end{aligned}$	power supply, etc. Fi $£ 100$ ea Size approx 2^{\prime}	lition with Disk Pack lage $£ 15$$\|$Qin. and Prices fr	\rightarrow ler. Computer types \rightarrow very smart £4 to $£ 20$ dependent on size. Carr $£ 2.50$
$C B=$			0 PENCE A-PIECE" AREA	
SURPLUS - BRAND NEW - REPL FOR DYNAMCO 7100 SERIES OSC BRIMAR D13-5IG Mesh PDA Transistor Scan Wide B Rectangular $6 \times 10 \mathrm{~cm}-1 \mathrm{KV}$ EHT \times S THIS IS A MUST AS A SPARE FOR THE DYN OR IDEAL FOR THE HIGH QUALITY TR B'JILDER At $£ 65$ each. Carriage $£$ To Tube purchasers only Numetal ALSO AVAILABLE TUBE type BRIMAR Rectangular $7 \times 5 \mathrm{~cm}$ Mesh PD. A. Sh Sensitivity $\times 14 \mathrm{~V} / \mathrm{CM}$ Y $10 \mathrm{~V} / \mathrm{CM}$. BRAN Carriage $£ 2.50$	Ement t DSCOPES width 60 M ituvity 15 V ength $13 \mathrm{~V}^{\prime \prime}$ MCO 7100 SISTOR SC 0 Ids at $£ 2.50$ 10-210GH NEW at $£ 70$		DATA LOG These are BRAND completed but for th lid is quite superb a well as the mother with the following v this supply is crow $-24 \mathrm{~V},-48 \mathrm{~V}$ and This unit supplied in with original manua professional constr construction of a m high $\times 19^{\prime \prime}$ wide $\times 2$ Price \mathbf{E}	GERS BY DYNAMCO NEW - not finished They are e plug-in boards. The case with hinged nd extremely adaptable. It contains as board an equally superb Power Supply oltages $+28 \mathrm{~V},+15 \mathrm{~V} ;+5 \mathrm{~V}(2.5 \mathrm{~A})$ bar protected: $-5 \mathrm{~V} i-14 \mathrm{~V},-20 \mathrm{~V}$ other supplies including auto 110 V its original cardboard box complete and must be of serious interest to the uctor and anyone considering the cro processor system. Unit size $71 / 2^{\prime \prime}$ $3^{\prime \prime}$ deep 45 each. Carriage $£ 2.50$
A LARGE SELECTION OF BRAND NEW AND EX-EQ. METERS.				

[^2]
TECHMICAL SUOKKS FBOM ETTI

CALCULATORS

99 WAYS TO KNOW ANO USE YOUR ELECTRONIC
Calculator
L. Fremzel
£4.50
SCIENTIFIC ANALYSIS ON YOUR POCKET
CALCILLATOR
Smith
$£ 9.85$

COMPUTERS AND MICROPROCESSORS -

COMPUTER CIRCUITS ANO HOW THEY WORK
B. Wells
£1.80
technology
COMPUTER TECHNICIANS HANDBODK
B. Werd
£3.25
This giant
mechanics
digital elect ronic circuits ano systems
N. M. Morris
£2.90
rechniques
MICADPROCESSORS
f11.75
L. Alitman
applicalion

TMICROPROCESSORS E8.30
D. C. McGlynn
Technolngy Arc
des
MICROPROCESSORS AND MICROCOMPUTERS E18.00
B. Souctin
Describes

Describes the application programming and interfating techniques

ELECTRONICS

active filter cookbdok
D. Lancemetor
$£ 10.75$
ELECTADNIC ENGINEEAS REFERENCE 800K - 4th EOITION
L. W. Tumar
¢27.60
A complete
students
BASIC MATHS COURSE FOR ELECTRONICS
H. Jatotownte

DESIGNING WITH TTL Integrated CİRCuITS
Toxas inatrumants
Covers the entire ta
Covers the entin
digital systems.
'ELECTRONIC MEASUREMENTS SIMPLIFIED
c. Hathmerk

ELECTRONICS POCKET BOOK
ELECTRONICS AND PHOTOGRAPHY
R. Brown
Practical circull projects oevoted to photography

ESSENTIAL FORMULAE FOR ELECTRICAL ANO ELECTRDNIC

 ENGINEERSN. M. MOrn
N. M. Morris
Handy reference book includes a section on 51 inuts iesistor 10
codes and preterred values
FIRE AND THETT SECUAITY SYSTEMS
B. Wels
Selection
£1.90
how to read electronic circuit diagrams
8. Brown
Everything

Everything you ne
MOW TO BUILO PROXIMITY OETECTORS ANO METAL LOCATOR J. Strelds
how to use ic circuit logic elements
J. Streator
integrated electronics
E7.6

IC OP-AMP COOK'BOOK
W. Jung
Covers the

LINEAR INTEGRATEO CRACUIT APPLICATIONS
G. Clavton
$£ 4.90$

LINEAR IC PRINCIPLES EXPERIMENTS ANO PROJECTS
E.M. Nol

110 operational amplifien projects for the home COMSTRUCTOR AL AMPLIFIER PROJECTS FOR THE HOME R. M. Marsion

 C2.85R. M. Marsion
Oulines the essental characteristics of op amps and presents useful Oullines
projects

110 SEMICONOUCTOR PROJECTS FOR THE HOME CONSTRUC

 TOR$£ 2.85$ R. M. Marston detalls of many usetul circuits
IIO COSMOS OIGITAL IC PROJEGTS FOR THE HOME CONSTRUCTOR

IO INIEGRATEO CIRCUIT PROJECTS FOR THE HOM

 CONSTRUCTOR E2.85 All the projects have oeen devised buith and tulity evaluated by the 110 ThYmistor PROJEcTS USING SCR'sA. M. Marsion
£2. 85
mas digtal ics
G. fynn

E4.50
his book contains intormation
construction to circuil application
OPERATIONAL AMPLIFIERS DESIGN ANO APPLICATIONS [Burr Brown
G. Tobey

PIN POINT TRANSISTDR TROUBLES IN 12 MINUTES
L. Garner
complete information procedures

NEVNBOOKS	
THE OSCILLOSCOPE IN USE	
Imen Sinclair	. 00
A practical handibook aimed at the more advanced enthusia	
110 ELECTRONIC ALARM PROJECTS	
R. M. Marsion	£3.35
The latest in this popular series	
MICROELECTRONICS	
C. L. Hallmark	¢3.80
How they re fabricated how to test them.	
TV TYPEWRITER COOKBODK	
Don Lencmater	¢7.00
All the circuitry and explanations lor making your own VDU	
PRACTICAL ELECTRONIC CIRCUIT BUILDING	
A concise introduction to some of the modern methods of project building.	
PRINT ED CIRCUIT ASSEmbly	
Hughes and Colwell Abundant information on making and assembling PCBs.	£2.35
ELECTRONIC DIAGRAMS	
M. A. Colwall c2. 35 Comprehensive information on circuit symbols and diagrams	
ELECTRONIC COMPONENTS	
M. A. Colwall $\$ 2.35$ Information on the different iypes of components and their	
DP Amp CIRCUIT DESIGN \& APPLICATIONS	
1. Cent 'designs to your own requirements	
PRACTICAL SOLID STATE D.C. SUPPLIES	
Towors Up-to-date, state-ot-the ari, coverage of D.C. supplies	£6.10

PRACTICAL TRIAC/SCR PROJECTS FOR THE EXPERIMENTER R. Fox

E2.15 OIACs
PRINGIPLES OF TRANSISTORLIRCUITS
S. Amo
¢4.40
Generally accepted as berng a standard textbook on fundarmental RAPIO SERVICING OF TRANSISTOR EQUIPMENT
G. King
£2.85
and h.tictic guide
SEMiCONOUCTOR CIRCUIT ELEMENTS
T. D. Yowern
£6.30
avallabie, for each device is covers a general description circuil diagram symbols and working primeiples
solid state circuit guioe book
B. Ward
£2.15
transistor circuit oesign
Toxes
$£ 9.25$
TIL COOKBOOK
O. Lancaster
practical applications

UNOERSTANOING ELECTRONIC CIRCUITS
R. Smelair
$£ 4.00$
Describes vanous cricurts encountered today with a strong emphas Ur linding and serviting procedures
UNOERSTANOING ELECTRONIC COMPONENTS
A. Sinclair
£4.00
extbooks and unapproachable advanced treatmenis
UNOERSTANOING CMOS INTEGRATEO CIRCUITS
R: Melen
£3.80
Begins with basic digutal IC 5 covers semiconducior physics CMOS abrication technology and diesion

UNOERSTANOING SOLIO STATE CIRCUITS
N. Crowhurst
£ 1.90

ELECTRONIC ORGAN BOOKS

thansistor electronic organs for the amateun A. Douglas

Nriten in a simple style this gives a complete explanation of everything
o do with transistoried organs and is protusely illustrated with clea
diagrams
the electronic musical instrument manual
A Douglas

SEMICONDUCTOR DATA

POPULAR VALVE/TRANSISIOR SUBSTITUTION GUIDE E2.15 Substitution dara fur both vaives and liansistors in one new volume
radio valve and semiconductor oata
A. M. Ball $£ 2.50$

Characteristics of 1000 valves calions Thay niew ediumistiors diodes up to date and over 450.000 coples have been sold

RADIO AND TELEVISION
FOUNDATIONS OF WIRELESS AND ELECTRONICS
M. G. Scroggie
chnical
coloun television theory
E6.10
Coloun

TEST EQUIPMENT AND OSCILLOSCDPES-
8ASIC ELECTRONIC TEST PROCEDURES

1. M. Gorlieb
£2.35
Shows how to
oscilloscopes
THE OSCILLOSCOPE
G. 2wick
£2.10
practical test equipment you can builo
W. Green

TEST IMSTRUMENTS FOR ËLEG TRONICS
M. Clifiord
M. Clifford
Easy modifications to your VOM VIVM and scope with the ard of this book

WORKHGG WITH THE OSCILLOSCOPE
A. Saunders
£1.85

SERVICING WTH THE OSCILLOSCOPE

G. King

Includes a unique seres of photographs showing oscilioscope traces in
be found in normal and tauliy equipnient stereo radio colour TV
Circults servicing is dealt with

MC14490 HEX BOUNCE ELIMTNATOR

MOTOROLA

The MC14490 is constructed with complementary MOS enhancement mode devices, and is used for the elimination of extraneous level changes that result when interfacing with mechanical contacts. The digital contact bounce eliminator circuit takes an input signal from a bouncing contact and generates a clean digital signal four clock periods after the input has stabilized. The bounce eliminator circuit will remove bounce on both the "make" and the "break" of a contact closure. The clock for operation of the MC14490 is derived from an internal R-C oscillator which requires only an external capacitor to adjust for the desired operating frequency (bounce delay). The clock may also be driven from an external clock source or the oscillator of another MC14490.

CHARACTERISTICS

The single most important characteristic of the MC14490 is that it works with a single signal lead as an input, making it directly compatible with mechanical contacts.

The circuit has a built in pullup resistor on each input. The worst case value of the pullup resistor is used to calculate the contact wetting current. If more contact current is required, an external resistor may be connected between $V_{D D}$ and the input.

Because of the built in pullup resistors, the inputs cannot be driven with a single standard CMOS gate when $V_{D D}$ is below 5 V . At this voltage, the input should be driven with paralleled standard gates or by the MC14049 or MC14050 buffers.

The clock input circuit (pin 7) has Schmitt trigger shaping such that proper clocking will occur even with very slow clock edges, eliminating any need for clock preshaping. In addition, other MC14490 oscillator inputs can be driven from a single oscillator output buffered by an MC14050.

The MC14490 is TTL compatible on both the inputs and the outputs. When $V_{D D}$ is at 4.5 V , the buffered outputs can sink 1.6 mA at 0.4 V . The inputs can be driven with TTL as a result of the internal input pullup resistors.

OPERATION

To understand the operation, we assume all bits of the shift register are loaded with 1 's and the output is at a 1 or high level. At clock edge 1 the input has gone low and a 0 (low level) has been loaded into the first bit or storage location of the shift register. Just after the positive edge of clock 1 in input signal has bounced back to a logic 1. This causes the shift register to be reset to all 1's in all four bits - thus starting the timing sequence over again.

During clock edges 3 to 6 the input signal has stayed low. Thus a logic 0 has been shifted into all four shift register bits and, as shown, the output goes to a 0 during the positive edge of clock pulse 6 .

It should be noted that there is a $31 / 2$ to $41 / 2$ clock period delay between the clean input signal and output signal. In this example there is a delay of 3.8 clock periods from the beginning of the clean input signal. After some time period of N clock periods, the contact is opened and at $N+7$, a 1 is loaded into the first bit. Just after N+7. when the input bounces low, all bits are reset to 0 . At $N+8$ nothing happens because the:

The MC14490 is available ex-stock from Celdis Ltd., 37-39 Loverock Road, Battlefarm Estate, Reading, Berks. Two versions are stocked in plastic 16 -pin packages. The VP suffix indicates 3.0 Vdc to 6.0 Vdc operation, the other version is suffixed FP which has 3.0 Vdc to 1.8 Vdc operation range.
MC14490 VP is $\mathbf{£ 6 . 6 1}$ inclusive MC14490 FP is $\mathbf{£ 8 . 3 6}$ inclusive. Both prices are for 1 off, for further prices contact Celdis direct.
input and output are low and all bits of the shift register are 0 . At time $N+9$ and thereafter the input signal is a high (1) clean signal. At $N+13$ the output goes high (1) as a result of four 1's being shifted into the sift register.

Assuming the input signal is long enough to be clocked through the Bounce Eliminator, the output signal will be no longer or shorter than the clean input signal plus or minus one clock period.

CLOCKING

The only requirement on the clock frequency in order to obtain a bounce free output signal is that four clock periods do not occur while the input signal is in a false state.

If the user has an available clock signal of the proper frequency. it may be used by connecting it to the oscillator input (pin 7). However, if an external clock is not available the user can place a small capacitor across the oscillator input and output pins in order to start up an internal clock source. The clock signal at the oscillator output pin may then be used to clock other MC14490 Bounce Eliminator packages. With the use of the MC14490, a large number of signals can be cleaned up, with the requirement of only one small capacitor external to the Hex Bounce Eliminator packages.

ASYMMETRICAL TIMING

In applications where different leading and trailing edge delays are required (such as a fast attack/slow release timer.) Clocks of different frequencies can be gated into the MC14490. In order to produce a slow attack/fast release circuit leads A and B should be interchanged. The clock out lead can then be used to feed clock signals to the other MC14490 packages where the asymmetridal input/output timing is required.

LATCHED OUTPUT

The contents of the Bounce Eliminator can be latched by using several extra gates. If the latch lead is high the clock will be stopped when the output goes low. This will hold the output low even though the input has returned to the high state. Any time the clock is stopped the outputs will be representative of the input signal four clock periods earlier.

MULTIPLE TIMING SIGNALS

Bounce Eliminator circuits can be connected in series. In this configuration each output is delayed by four clock periods relative to its respective input. This configuration may be used to generate multiple timing signals such as a delay line, for programming other timing operations.

One application of the above is where it is required to have a single pulse output for a single operation (make) of the push button or relay contact. This only requires the series connection of two Bounce Eliminator circuits, one inverter, and one NOR gate in order to generate the signal $A B$. The signal $A B$ is four clock periods in length. If the inputs to the NOR gate are interchanged the pulse $A B$ will be generated upon release or break of the contact. With the use of a few additional parts many different pulses and waveshapes may be generated.

THREE TERMINAL VOLTAGE REGULATORS

Voltage regulator use can be expanded beyond that of the simple three-terminal fixed voltage regulator. Some of the circuits which are practical and useful are described in this section. Pertinent equations are included rather than providing fixed component values as the circuits are equally applicable to all regulators within a family.

POSITIVE REGULATORS

FIGURE 1 Basic Regulator Connection
If the regulator is located more than two inches from the supply filter capacitor, a supply bypass capacitor is required to maintain stability (much as is the case with op-amps). This should be a $U .22 \ldots t$ or larger disc ceramic, $2 \mu \mathrm{~F}$ or larger solid tantalum, or $25 \mu \mathrm{~F}$ or larger aluminium electrolytic capacitor. Transient response of all the regulators is improved when output capacitors are added. To minimize high frequency noise, an $0.1 \mu \mathrm{~F}$ output capacitor is recommended on the LM78LXX and LM3910 series.

HIGH CURRENT REGULATOR

This current circuit takes advantage of the internal current limiting characteristics of the regulator to provide short-circuit current protection for the booster as welt. The regulator and Q_{1} share load current in the ratoo set between R_{2} and R_{1} if $V_{D}=V_{\text {BE(OY) }}$

FIGURE 2 High Current Regulator with Short Circuit Limit During Output Shorts.

$$
I_{1}=\frac{R_{2}}{R_{1}} I_{R E G}
$$

During output shorts

$$
i_{1(S C)}=\frac{R_{2}}{R_{1}} I_{R E G(S C)}
$$

If the regulator and Q, have the same thermal resistance θ_{Jc} and the pass transistor heat sink has R_{2} / R_{1} times the capacity of the regulator heat sink, the thermal protection (shutdown) of the regulator will also 'be extended to Q_{1}. Some suggested transistors are listed below.

ADJUSTABLE OUTPUT VOLTAGE

FIGURE 3 Adjustable $V_{\text {our }}$
A fraction of the regulator cuirent $V_{\text {REG }} / R$, is used to raise the ground pin of the regulator and provide through voltage drop across R_{2}. an adjustable output voltage

FIGURE 4 Variable Output Voltage of 0.5 - 28V

A wide range of output voltages can be obtained with the circuit of Figure 4. A 0.5to 20 -volt supply can be built using a 30 -volt supply and a conventional op-amp, such as the LM143. If
$R_{2}+R_{3}=R_{4}+R_{5}=R$, and $R_{2} / R_{3}=1 / 10$.
then $V_{0}-V_{R E G}\left(\frac{R_{2}}{R_{4}}\right)=V_{R E G}\left(\frac{1}{11}\right)\left(R_{4}+R_{5}\right.$
Since V_{0} is inversely proportional to R_{4}, low output voltages can be very accurately set. The required R_{1} is

$$
R_{1}=\frac{V_{1 N^{-}}}{I_{0}}
$$

The $V_{\text {OIMAX }}$ is dependent on $V_{\text {IN }}$ and $V_{\text {dropout }}$ provided that the amplifier can source the current required to raise V_{G} to $V_{O}-V_{R E G}$.

Example:

$$
\begin{array}{ll}
V^{-} \text {IN }-15 V & R_{1}=2 K 2 \\
V^{+} \text {IN }=+30 V & R_{2}=910 R \\
V_{0}=0.5 \cdot 28 V & R_{3}=9 K 1 \\
\text { LM340K.05 } & R_{4}+R_{5}=10 K
\end{array}
$$

ELECTRONIC SHUTDOVNN

Required if regulator far from power supply filter
FIGURE 5 Electronic Shutdown Circuit
Electronic shutdown in three-terminal regulators is done by simply opening the input circuit using a transistor switch. $Q_{\text {, }}$ operates as the switch which is driven by Q_{2}. The control voltage V_{C} can be TTL compatible with the use of $R_{3}=1 \mathrm{~K} . R_{1}$ is a biasing resistor, and R_{2} can be calculated as

$$
R_{2}=\frac{V_{I N}-1 V}{I_{0}} \beta_{\text {SAT }(Q 1)}
$$

Figure 6 illustrates a short-circuit-dependent power shutdown circuit with reduced heat sink requirements under short-circuit conditions,

When the power is first applied, Q_{2} turns ON and saturates Q_{1}. The regulator output ramps up to turn $Q_{3} O N$, which turns $Q_{2} O F F$ $\left(V_{c}\right.$ should be $\left.>V_{A}\right)$, thus maintaining Q_{1} in the ON state.

FIGURE 6 Output Electronic Shutdown on High Voltage Regulator

When the output is shorted, Q_{3}. turns OFF, Q_{4} turns ON to clamp Q_{2} OFF. Q_{1} loses base drive and so opens to isolate the regulator from $\mathrm{V}_{\text {iN }}$. When the short circuit is removed, Q_{4} loses some base drive and enables Q_{2} to re-start the regulator. Q_{1} always operates as a switch and needs no heat sinking. Q_{2} and Q_{3} need not be matched. O_{4} may be any small signal PNP transistor. The entire circuit (less regulator) fits easily on a one-inch squre PC board.

Example: LM340K-24
$V_{\text {IN }}=36 \mathrm{~V}$
$R_{1}=500 \mathrm{R}$
$V_{0}=24 \mathrm{~V}$
$R_{2}=250 \mathrm{R}, 2 \mathrm{~W}$
$\mathrm{I}_{0}=1 \mathrm{~A}$
$\mathrm{~V}_{4}=2.5 \mathrm{~V}$
$\mathrm{R}_{3}=3 \mathrm{~K} 3$
$V_{A}=2.5 \mathrm{~V}$
$V_{B}=8 \mathrm{~V}$
$R_{4}=240 \mathrm{R}$
$V_{\mathrm{B}}=8.8 \mathrm{~V}$
$\mathrm{R}_{5}=62 \mathrm{R}$
$\mathrm{R}_{6}=2 \mathrm{~K}$
$\mathrm{Q}_{2}=2 \mathrm{~N} 4141$
$\mathrm{R}_{8}=680 \mathrm{R}$
$\mathrm{Q}_{3}=2 \mathrm{~N} 4141$
$\mathrm{R}_{9}^{8}=3 \mathrm{~K} 3$
$\mathrm{Q}_{4}=2 \mathrm{~N} 2906$

NEGATIVE REGULATORS

All the applications circuits for positive regulators can be used with the polarities inversed for the negative regulator LM320/345 series (e.g., reverse the sense of the diodes, replace PNP's with NPN's etc., etc.),

FIGURE 7 Negative Regulator Circuits

BASIC DUAL POWER SUPPLY

FIGURE 8 Dual Power Supply
A positive regulator can be connected with an LM320 to form a non-tracking duat. power supply. Each regulator exhibits line and load regulation consistent with their specifications as individual devices. Protective diodes D_{1}, D_{2} allow the regulators to start under common load. They should be rated at the regulator short circuit current.

TRIMMED DUAL SUPPLY

Figure 8 may be modified to obtain a dual supply trimmed to a closer output tolerance. The trimming potentiometers are connected across the outputs so positive or negative trimming currents are available to set the voltage across the $R_{1}\left(R_{2}\right)$ resistors. \mathbf{R}_{3}, R_{5} are included to linearize the adjustment and to prevent shorting the regulator ground pin to opposite polarity output voltages.

FIGURE 9 Trimmed Dual Supply

FIGURE 10 Tracking Dual Supply
A tracking supply can be built as in Figure 10 where the positive regulator tracks the negative regulator. V_{A} is a virtual ground under steady state conditions. Q_{2} conducts the quiescent current of the positive regulator.

If $-V_{\text {OUt }}$ falls, V_{A} follows forward biasing collectorbase junction of $Q_{1} . V_{A}$ falls, thus raising the collector voltage of Q_{2} and $+\mathrm{V}_{\text {our }}$ to restore V_{A} to desired voltage. Germanium diode D_{1} may be needed to start the positive regulator with a high differential load.

Example: $+15 \mathrm{~V}, 1 \mathrm{~A}$ tracking dual supply:
LM340T-05, LM320T-15.
The 340 will track the LM320 within 100 $\mathrm{mV} . \mathrm{D}_{2}, \mathrm{D}_{3}$: IN4720.

VARIABLE TRACKING DUAL SUPPLY

FIGURE 11 Variable Tracking Dual Supply $\pm 5.0 \mathrm{~V}- \pm$ @ $\mathbf{1 8 V}$

The ground pins of the negative regulator and the positive regulators are controlled by means of a voltage follower and an inverter, respectively. The positive regulator tracks the negative to within 50 mV over the entire output range if R_{2} is matched to R_{3} within .one per cent.

National Semiconductor regulators are available from virtually all component suppliers. The full range is stocked by A. Marshall (London) Ltd, 42 Cricklewood Broadway, London NW2 3ET.

Also Maplin Electronic Supplies, P.O. Box 3, Rayleigh, Essex, SS6 8LR, stock a wide range of regulators from National and equivalents from other manufacturers.

\dot{H}

What to look for in the July issue: On sale June 3rd.

DATA SUPPLEMENT

Next month's ETI carries an 8-page pull-out supplement that is a must for the home constructor. EIGHT pages of the kind of information you've always had to hunt for hours to find. Such things as abbreviations, codes and pin-out data collected and assembled into one easy-reference supplement to speed up your projects.

ACTIVE FILTERS

An article explaining how to design active filters doesn't sound very exciting, does it? Well, it should do! Next month we have a DIY guide to active filter design written by an expert in the field which will enable you to make use of circuits you always thought too complex to design!

T.V. RIFLE

The ETI TV game (May '77) has proved very popular. Next month we describe the extra circuitry to enable the two rifle games described in May to be played

GSR MONITOR

As a follow-up to our biofeedback article recently, we present full constructional details of a galvanic skin response monitor - simply because you asked us to!

SOFTWARE-HARDWARE

Experience gained with digital hardware can be extremely valuable in MPU designs.
We describe the interaction between the development of software and the hardware design of a system.

SHORT CIRCUITS

ALARM ALARM:-

An alarm to alarm you if your car alarm is active! Provides a good deterrent to the would-be thief

MICROAMP:-

A very ingenious self-contained STEREO test-amp - it's of surprising quality!

TACHOMETER:-
A design to convert a $1 \mathrm{~m} / \mathrm{A}$ meter into a RPM indicator for your car

SHORH CINCUIS

bass eniancer

ONE UNAVOIDABLE DRAWBACK of small speakers, as compared to their larger brethren, is a lack of extreme bass frequencies. They may not 'boom' and they may sound less 'coloured', but they will NEVER play the lowest of the low as well!

There are many high quality 'minimonitors' around these days - Rogers, Chartwell and Videotone are the first names to come to mind, which possess an excellent sound overall, but are victims of their size with regard to bass response. Let it not go unsaid, however, that all the aforementioned designs produce a bass signal which is incredible for that size!

As you may have gathered (or hoped!) from this little lecture, this circuit has something very much to do with small speakers. It is designed to compensate in some degree for this
lack in the last octaves. Turning up the bass control on the amp doesn't help, indeed it will generally make things worse by introducing too much lift too high in the spectrum. Most tone controls have a turnover at about 100 200 Hz , and will thus still have some appreciable effect at 500 Hz or more

What is needed is a boost below about 70 Hz , but above 15 Hz or so (to avoid amplifying warp signals) and this is impossible to apply with conventional tone controls.

ETI TO THE RESCUE!

Having now told you what's wrong with your 'Mighty Mouth XXV Mini Super Monitors' we'd better explain how we can help put it right. Our Bass Enhancer is designed to insert a 'hump' at precisely the aforementioned frequency, into that part of the overall
frequency response where the small speakers are rolling off.

The circuit is of no use to you unless your speakers, and your amp, are capable of taking the extra punishment at these frequencies. Most hi-fi components are. Most of the hardboard boxes which are sold with music centres masquerading as loudspeakers are most definitely not. If in doubt, either check with your supplier, or give us a ring. (Not all the same day PLEASE, and not before 4 p.m.)

As a precaution against smoking ruins replacing your amplifier, we have included the ETI 'Overled' project to keep watch for clipping in the amplifier. With this unit in circuit, more power is drawn at the lowest frequencies, and amplifiers driven to distraction by these demands will exact revenge in horribly audible form.

How it worlis

1 Cl and associated components form a buffer amplifier stage which isolates the lowpass filter R8, C3, R9, C4, R10, C5 from the source. C6 forms a single-pole roll-off filter to get rid of warp signals etc bclow the band with which we are concerned.

1C2 amplifies the low frequency signal fed to it from the filter, and so provides the 'enhancement' signal. This is mixed back with the amplified and buffered version of the input signal coming from 1 C 3 in the mixer amplifier 1C4. RV2 provides output level control, and SW1 allows the unit to bc bypassed completely.

Fig. 1. Circuit diagram of the Bass Enhancer and power supply (left).

bass Eni/ANCER

CONSTRUCTION

A single board layout has been chosen, to keep down the cost, and to simplify things as much as possible. The clipping indicator section is in fact the 'Overled' circuit previously published, so if you've already built this, you don't really need to build up this section of the unit. A mains supply was added simply because it is cheaper in the long run.

Standard - good quality - 741s are employed in the prototype, and very well they work ton. However, there is a low noise 741, the 741 N , which does have much less inherent noise and if you find the noise is too high for your liking, Doram Electronics can supply a pack of eight 741s for $£ 10.20$ all inc.

When building up the Over-Led, refer to the table given to set the values for your amp and speakers.

All that is entailed is to fit all the components to the board as shown in the overlay drawing, and wire up to the LEDs and controls.

GET SET...

Setting up the clipping indicator is best done with the enhancer out of circuit. Advance the volume until the sound from the speakers becomes distorted - it doesn't matter whether it's the amp or the speakers cracking up, something is! - and then advance the pre-set until the LED just lights. This is the point of 'no-fidelity'!

The enhancer goes into the chain between pre- and main-amps, or into the tape monitor circuits, and can be switched out of circuit by SW1. Set the output levels so that there is no 'jump' in level when you switch it in from another source path - it's much kinder on both your ears and your hi-fi.

Varying the value of R15 varies the amount of enhancement produced by the circuit, so if you think we've over (or under) done it - let's see you do it better! Our value gave consistent results on quite a few different speakers, from Wharfedale to Celestion.

If the clipping indicators come on you're driving things too hard - turn something down! (If your neighbours bang on the walls floor or cieling - move house!)

- SEE TABLE 1 FOR VALL こ S

Fig. 2. The circuit of the Overload Indicator. This is the 'Over-Led' project taken from ETI Top Projects No. 2. Further details can be found in Top Pro. jects 1 and 2 reprints.
one channel only •hown

TABLE 1

SPEAKER IMPEDANCE						
RMS watts per channel	4Ω		8Ω		16Ω	
	R1	R3	R1	R3	R1	R3
5	68	5.6k	82	8.2k	120	12k
10	82	8.2k	120	10k	180	18k
15	100	10k	150	15k	220	22k
20	120	12k	180	18k	240	24k
25	150	15k	220	22k	270	27k
35	180	18k	240	24k	330	33k
50	220	22k	270	27k	390	39k
75	240	24k	330	33k	470	47k
100	270	27k	390	39k	560	56k
		1				

ETI - MARSHALLS - NATIONAL - SPECIAL OFFER MAKING TECHNOLOGY WORK - EVERY TIME!

NEW DIGITAL CAR CLOCK MODULE

HE MA 1003 ready-built module was specially built and designed for the American market, with the fuxury car, aircraft and boat in mind. Unlike conventonal quartz clocks, this unit operates from a very high frequency crystal resonating at over 2 MHz for extra accuracy and stability. Stringent safety regulations dictate that this module is completely suitable for use in hostle environments and "shake, rattle and roll" conditions. Automatic display blanking is included when ignition is turned off. to consume a miserly 3 mA

THE BRIGHT GREEN DISPLAY, fluorescent, can be filtered from green to blue to give that personalised look. The compact and rugged design enables the module to be mounted anywhere. easily and with the minimum of effort Works from any 12 volt supply First time in Europe

DEVELOPED BY NATIONAL SEMICONDUCTORS. A name known worldwide and reşpected RECOMMENDED TO RETAIL AT £29 95 + VAT

SPECIAL ETI READER PRICE $£ 15.50$ + vat SAVE OVER 45\% ON R.R.P.

ALSO AVAILABLE. Specially designed case with cut out for display centre tront, atracive black rexine finish for dash mounting. Special Price $\mathbf{£ 1 . 0 0}$ when ordered with module. All items in this offer may be collected from our branches
LONDON GLASGOW • BRISTOL 01-4520161 041-3324133 0272654201

MICROPROCESSORS

SC/MP 40-PIN B-BIT MICROPROCESSOR Normally COMPLETE INTROKITS \& KEYBOARD KITS AVAILABLE

RAMS

RANDOM ACCESS MEMORIES

	¢325	
MM2101-2N-£4 14	¢3.25	MM2111-2N-£4 14

MM2102-2N-£2 $90 \quad £ 2.00 \quad$ MM2112-2N-£4.14 £3.25
ROMS ${ }_{\text {erasabale }}$
MM1702AQ£ $10.80 \quad \mathbf{£ 8 . 0 0}$ MM5204 £32.30 £25.00

2513 CHARACTER GENERATOR

Normally $£ \mathbf{E} .00 \quad £ 6.00$
 40 PIN 8-BIT MICROPROCESSOR

Offer $£ 16.00$

BUFFERS

Normal TRISTATE Offer
Price \quad Normal Offer
 $\begin{array}{llllll}\text { DM81L595 } & £ 1.45 & £ 1.15 & \text { DM81L598 } & \text { £1.45 } & £ 1.15\end{array}$

SAVE UP TO 30\%
All products in this offer carries our normal quality guarantee

TTL + LOW POWER SCHOTTKY

VAIVE SOUND WHFT' IS IT?

Can Valve Sound be achieved from Solid State? An investigation by Mark A Sawacki, M.Sc.

Abstract

"Almost every musician has a favourite amplifier which may be so old it's held together with chewing gum and solder, but it produces exactly the sound he wants, so he has to carry it around with him, practically packed up in cotton wool to keep it from falling apart." (Melody Maker, April 10 1976, Karl Dallas)

A reasonable man might be expected to ask the following: "If you want it to sound like valves, why not use Valves? and the two answers to this would be - reliability and weight - "When he plugged into a transistor amp, it didn't distort, it reproduced a more accurate sound, but he didn't. like it, neither did the rest of the band. (International Musician and Recording World, July 1976, Ray Hammond)

IN ORDER TO UNDERSTAND the above quotes more fully an early history and problem presentation will clarify the situation. Recently there was a great hulabaloo about "valve sound" in the U.K. instrument market and way back in March/April 1976 Tony Reeves (Curved Air basist) told Melody Maker's Karl Dallas that - Dick Parmee, a Cambridge University graduate, currently with PA:CE as an Electronics Research Engineer, had analysed this dilemma and solved the problem of making a transistor amp sound like a valve amp.

Around the same time I visited another Cambridge factory - H.H. Electronics, where boss Mike Harrison showed me (with great pride) his new baby - V.S. Musician - a 100W RMS power combination amplifier, as well as his V.S. Musician Solo model, both valve sound constructions.

During that same year, the Japanese musical giant YAMAHA came onto the market with their. G100 series of solid state amplifiers, claiming to capture the warmth of vacuum tubes without sacrificing the reliability, economy or portability of transistor amps.

This phenomenal "vacuum tube" market explosion has been in answer to a deep seated and widespread conviction amongst guitar sounds and certain other instruments, a valve amplifier will produce a far better sound than a transistor amplifier.

Filling a vacuum

Some elementary considerations should be taken into account before delving into this issue any further. Solid state with simulation of "vacuum tube sound" of the 60's is now a fact, although for people not au courant with the problem, it will appear as a regression, which is of course completely untrue. Since I intend to concentrate on the technical side of the "valve phenomena", I will leave all associated aspects, ie psycho-social, for others,
to deal with (only recently I heard it said that it was a mass hypnosis phenomena - upon which I prefer not to comment!)

In my analysis of the problem, I set up a small experiment. I tested eight internationally known instrument amplifiers, all from highly reputable manufacturers, and chosen as representative of both solid-state and valve technologies. The choice itself was made by a person who is not associated with the investigation, but who did have 15 years musical stage experience!

The first "valve" group:

1. Marshall MK2 - Master Model 100 W Lead Amp (GB)
2. Fender 160 PS Vocal Amp (USA)
3. Fender Guitar/Bass 300 PS Amp (USA)
4. Roost Session Master SM 100R

Combination Amp (GB)
and these are presented in Table 1 with a comparison of the T.H.D (Total Harmonic Distortion) in \% plotted against specific amplifier power output in W.RMS as shown in Fig. 1.

TYPE	COUNTRY of origin	POWER OUTPUT in Watts R.M.S., ref. 1 kHz	TOTAL HARM measured at	MONIC DISTORTION specified power level	COMMENTS
MARSHALL Mk. 2 Master Model 100 W Lead Amp.	G.B.	136.1 W R.M.S. at 10% THD into 8 R 107.2 W R.M.S. at clipping into 8 R	$\begin{aligned} & 4.75 \% \text { at } 100 \mathrm{~W} \\ & 5.25 \% \text { at } 80 \mathrm{~W} \\ & 5.05 \% \text { at } 50 \mathrm{~W} \\ & 3.81 \% \text { at } 30 \mathrm{~W} \\ & 1.45 \% \text { at } 10 \mathrm{~W} \\ & 0.57 \% \text { at } 1 \mathrm{~W} \end{aligned}$	Masared into 8 R dummy load ref 1 kHz .	Classical European design. Dnly slight changes since introduction 10 years ago. Still very successiul. 'Marshall sound' - predominance of 2 nd . harmonic in overload.
FENDER 160 P.S. Vocal Amp.	U.S.A.	285.0 W R.M.S. at 10% THD into 2.6 R 206.0 W at clipping into 2.65 R	$\begin{aligned} & 4.95 \% \text { at } 160 \mathrm{~W} \\ & 4.82 \% \text { at } 100 \mathrm{~W} \\ & 0.42 \% \text { at } 10 \mathrm{~W} \\ & 0.23 \% \text { at } 1 \mathrm{~W} \end{aligned}$	Measured into 2.6 R dummy load ref 1 kHz	Very special piece of equipment - original design for musician P.A. system. Inct. built in graphic equaliser 8 four channel mixer.
ROOST Session Master Combination Amp.	G.B.	110.5 W R.M.S. at clipping into 8 A	$\begin{aligned} & 3.80 \% \text { at } 110 \mathrm{~W} \\ & 3.85 \% \text { at } 80 \mathrm{~W} \\ & 3.22 \% \text { at } 10 \mathrm{~W} \\ & \mathbf{1 . 8 5 \%} \text { at } 10 \mathrm{~W} \\ & 0.55 \% \text { at } 5 \mathrm{~W} \\ & \hline \end{aligned}$	Measured into 8 R dummy load ref 1 kHz	Pelativaly 'new' when compared to other three. Very orthodox in design. Pre. dominance of 2 nd . harm. onic in overload.
FENDER 300 P.S. Bass Amp. Table 1.	U.S.A.	312.5 W at 10\% THO into 8 R 220 W R.M.S. at clipping into 8 R	5.94\% at 200 W 5.14\% at 150 W 3.74% at 100 W 2.14\% at 50 W 0.38% at 10 W 0.26% at 5 W	Measured into 8 R dummy load ref 1 kHz	Popular on both sides of Atlantic. Vary high power delivery, quite high THD levels, but still respectable for valve amps. Predominance of 2nd. harmonic in overload.

Omission

Someone is bound to ask at this point why I did not include makes such as VOX, Orange, Carlsboro, or Leslie, and the reason is that this selection was purely a matter of individual preference (as well as limited space!)
The second "solid-state" group consists of:-

1. H.H. V.S. Musician Reverb 100W Amplifier (GB)
2. Pearl Vorg 102 Guitar Combination Amp (Japan)
3. Dynacord Emminent 200 vocal Amp (West Germany)
4. "MM" Electronics - AP 360 Dual Power Slave (GB)
and the results of experiments on this group are presented in Table 2 and Fig. 2.

TYPE	COUNTRY of origin	POWER OUTPUT in Watts R.M.S., ref. 1 kHz	TOTAL HARMONIC DISTORTION measured at specified power level
H.H.V.S. Musician Reverb 100 W Amp.	G.8.	$\begin{aligned} & 144.03 \text { W R.M.S. at clipping } \\ & \text { into } 4 \text { Ohms } \end{aligned}$	$n .04 \%(20.5 \%)$ at 100 W $0.06 \%(13.9 \%)$ at 80 W $0.06 \%(13.8 \%)$ at $60 \mathrm{~W} \quad$ Measured into $0.08 \%(14.5 \%)$ at $40 \mathrm{~W} \quad 4$ Ohms dummy $0.1 \%(13.2 \%)$ at $20 \mathrm{~W} \quad$ load, ref 1 kHz $0.14 \%(9.8 \%)$ at 10 W $0.24 \%(3.2 \%)$ at 1 W
PEARL vorg 102 Guitar Combination Amp.	JAPAN	108.16 Wm m.m.s. at cuppiry into 4 Ohms	11.47% at 100 W 0.67% at 80 W 0.28% at 60 W Measured into 4 Ohm 0.27% at 40 W dummy load ref 1 kHz 0.28% at 20 W 0.26% at 10 W 0.30% at 1 W
C.ivacofic Eminent 200 System Amp.		.62.5 W R.M.S. at clipping into 2 Ohms	. $.27 \%$ at 140 W 0.27% at 100 W Measured into 2 Ohms 0.085% at 10 W dummy load ref 1 kHz
'MM' Electronics AP. 360 Dual Power Slave Amp.	C.B.	140.28 W m.iv.S. at clippriy into 8 Ohms	$\begin{aligned} & \text { U.080\% at } 140 \mathrm{~W} \\ & 0.04 \% \text { at } 100 \mathrm{~W} \\ & 0.04 \% \text { at } 70 \mathrm{~W} \\ & 0.035 \% \text { at } 40 \mathrm{~W} \\ & 0.0 \mathrm{dummy} \text { load ref } 1 \mathrm{kHz} \\ & 0.04 \% \text { at } 20 \mathrm{~W} \\ & 0.075 \% \text { at } 5 \mathrm{~W} \end{aligned}$
Table 2.			

Drawing in the threads

From Fig. 1 and 2 it is possible to draw the following. conclusions; the transistor amp output is relatively distortion free and a typical THD figure across the whole power range would be about 0.15%. The figure of 0.05% is also realistic, even just prior to clipping.

Similar figures were also confirmed sometime ago by D. T. N. Williamson in a series of articles proposing standards of THD for audio amplifiers at full rated power output and they have been generally accepted as the target figures for high quality audio.

We found the average level of THD for our four valve amplifiers was somewhere in the region between 4.5% and 6.5% (for power levels measured at onset of clipping). When the power output was slightly increased, then the THD shot up rapidly reaching 10% with no problem!

This fairly high THD level however, is nothing new as far as valve technology is concerned, and even well-known European standards and specifications often rate power output at 10% THD for valve amps. To conclude then, the most important difference noticed in the performance between valve and transistor amps was. the overload distortion characteristics of the output stages. Comparing the value ($0.04-0.4 \%$ THD for solid state systems to 2.0 - 10% in valve constructions), it is quite easy to see the differences and consequently understand the changes in the specific character of both types of sound. All these THD tests were carried out with a single 1 KHz sine input which is acceptable as a very useful standard. A practical set-up arrangement for this test is shown in Fig. 3.

Further into tubes

Before discussing the problem any further, a little mathematics will help in clarifying it. In order to examine the construction of sound (even single frequencies), it is necessary to use analysis of the tonal spectrum characteristics. The oldest historical model known was developed by a German physicist and physiologist, Herman Helmholtz in 1863, at present the most popular method used is the "Fourrier Array'

According to Fourrier's hypothesis, every periodical wave can be divided into a family of sinusiodal harmonic components (Fourrier

Figure $\overline{3}$.
components) where the lowest Fourrier component is equal to the fundamental frequency and the others are: $2 f, 3 f, 4 f$, and so on

A 1 Khz frequency sinusiodal signal will produce the subsignals, $2 \mathrm{Khz}, 3 \mathrm{Khz}, 4 \mathrm{Khz}$ etc. The THD waveform of an amplifier's output is quite a complicated construction, and its final shape depends not only on the operating frequency but also on its amplitude and phasing. See. Fig. 4.

The above analysis is quite complicated and requires a lot of calculation to obtain the results of the number of harmonic amplitudes. In the simplest one dimensional case there may be expressed as:
$f(x)=1 / 2 A_{0}+\Sigma A_{h} \cos 2 \pi(h x / a)$ $+\mathrm{B}_{\mathrm{h}} \sin 2 \pi(\mathrm{~h} x / \mathrm{a})$.
where $h=0$, 1
where $f(x)$ is known as the repetition interval (O, a) and it is required to determine the values of Fourrier components Ah and Bh. Naturally, we also have from the orthogonality of the sine as well as the cosine, the functions:
$A h=2 / 9 \circ \int_{0} f(x) \cdot \cos 2 \pi(h x / a) d x$ where: $\mathrm{h}=0,1$
and respectively
$B h=2 / 9_{\circ} f^{\circ}$ of $(x) \cdot \sin 2 \pi(h x / a) d x$ where: $\mathrm{h}=1,2$

To solve this problem computing numerical methods were developed and for more technical areas, the most common method is - Heterodyne/Resonance Analysers and Spectroscope filters.

In the circumstances it seemed worth while to obtain more detailed information, with special emphasis on the systems analysis. This is available by measuring the amplitude of each of the harmonic separately. For this experiment a band stop filter rejects the fundamental for measurements of THD, but the band pass filter can measure distortion components individually. The next two tests carried out on valve as well as solid state construction show the harmonic spectrograms in Fig. 5.

The amps tested had a similar power output of approximately 100 W. RMS and again the difference is easy to see.

Valve:-

Apart from the fundamental frequency the dominant line is at 2 f , with 'train' of amplitudes at $3 \mathrm{f}, 5 \mathrm{f}$, $7 f$ where $4 \mathrm{f}, 6 \mathrm{f}$ and 8 f attain quite a low level.

The relatively distortion free solid-state amps have harmonics which are much lower but still with a $3 f$ predominance. $4 f, 6 f$, and $8 f$
are difficult to measure because of very small magnitudes and their influence in our analysis can be easily ignored.

We can now say that valve amps have a tendency to clip on the second harmonic which gives that characteristic 'punch', whilst a transistor amp tends to clip on the third harmonic, which may create a quite unpleasant sound. Of course 'unpleasant' or 'pleasant' is really a question of personal taste.

Solutions

Bearing in mind the practical non-linear amplifier (and any real amp is non-linear to some degree) only a very small portion of the Input/output characteristic (LAPLACE transform) may be considered substantially linear. The curvature of the Input/output characteristic (nonlinearities) generally give rise to distortion known as "non-linear" distortion, which consists of the previously presented harmonic distortion tests, in addition to the intermodulation group, where the intermodulation groups consists of:
Difference frequency Intermodulation and Transient Intermodulation

Even a, brief look at other methods of testing shows the effects of nonlinear distortion in both types of amplifiers, but the

T. H_{-}

Figure 5.

VALVE SOUND - WHAT IS IT?

The Yamaha G-100-B-212;;
complexity of the work should । imagine be undertaken by scientists as part of a (really fascinating) research program.

Butions for tubes

Let's look at what the Japanese YAMAHA engineers call the 'vacuum tube' sound, and what Cambridge H.H. Electronics claim as the 'valve sound' - As can be expected both are 'combotype' designs in principle but designed as a real effort to simulate the valve 'character'. The Yamaha G 100B 212 amplifier 's THD figures plotted against specific power output, ref. 1 Kz is shown in fig. 6.

And now the H.H. V.S. Musician Reverb Model 100W - Fig. 7

Both the Yamaha G100B 212 and the H.H. V.S. Musician were tested in conjunction with a good quality electric guitar and the test was carried out purely from the subjective sound quality point of view.

Subjected subjectively

Both amps performed satisfactorily, however, the sound which was obtained was entirely different in both cases. H.H.'s amp and gave a more dynamic sound, very harsh but with good sustain when the 'valve sound' footswitch was on. At the same time, the sound produced was very similar to an overworked valve amp, but the overall volume was controlled by the 'Master Volume Control'. This was found to be a useful feature when very loud volume is a problem, but when the wound-up 'valve amp' sound is still necessary. This particular feature has a wide range of applications as far as studio recording work is concerned

After testing the Yamaha G 100B 212 amplifier, one important difference emerged, namely the total absence of an ON/OFF pedal footswitch. However, the manufacturer provided a special rotary 'Distortion Control' specially for this function. By experimenting with the

The H.H. V.-S. Musician.

Figure 6.

Figure 7.

We support SC/MPs!

NEW SC / MP USERS START HERE

```
of SC/MP kits we can oller a start at vertually any level of experience or
avallabie finance
SCRUMPI is our own SC/MP starter kit. It contains one SC/MP. chip, two
```



```
tor ease of testing. SCRUMP! can bo exiended to address up to 64K byte
and can be interfaced to ROM. PROM. RAM, EAROM or many types of 1/0
devices.SCRUMPI can atso be used to replace a SC/MP in ano:her circuit io 
M,
INTROKIT & KBBLKIT. Eurocard PCB with SC/MP chip. 256 bytes of RAM
```



```
replace the KITBUG PROM with another supplied, add a fev other
M
SC1 SC/MP Control Card. Eutocard PCB with provision ior 256 byres of
in concept to the INTROKII PCB but can be suppled with or withoul RAM of
PROMs. PROMs can be supplied with any of our software programs listed
SC1 PCB + decoding chips
¢13.89**
LCoS. Nationals Low Cost Development Kafor SC/MP Uses a hex keyboaid
and digital display of a TTY device to communicate wtth a 2K moniso
the main mother PCB Additional PROM and RAM application cards are
avasible to expand the system up to its full 60K byte capacity
```

SOFTWARE in MM5204 PROMs

Our range of sotiware PROMS is smar at present but riew programs wir give MEMORA DUMP. MEMORY CHANGE and EXECUTE facilities CASSIO Adds National's cassette interface to VOUBUG SUb-routine. All above PROMs $£ 32.30$ each

EXISTING USERS START HERE

VOU SYSTEM. Two Eurocards which allow for intertace to a modilied IV se (Video not UHF) and ASCII keyboard. The TV display is in the form of 16 lines each of 64 characters (or 16×32 or 8×32 can eb used), each character position can display any of 645×7 chataciers in black on white, black on grey, white on grey or white on black. any character set can also be flashed Any keyboard giving paralle! ASCII plus negative strobe output can be used	
vou system	¢83.34*
CASSETTE INTERFACE. Eurocard PC recorder in format specified by National interface as found on an INTROKIT togeth swith a reader/punch of cassette record sofiware (or sumplar as published by NS) CASS INTERFACE	Audio cassente includes a TTY can be used to ITY or CASSIO £16.67*
TTY INTERFACE. Convert your paralte and thus talk to your IVTROKIT or LCDS $1 / 0$ is TTL or $5 v$ CMOS compatible	TTY compatible O. etc) Paralle
tiv interface	c18.52*
4K PROM CARD. Eurocard PCB with MM5214 devices with address decoding 6 or $\mathbf{8}$ blank or programmed PROMs fro	ight MM5204 of pplied with 2.4 ów.
4 K . PROM CARD WITH 2 PROMs	C64.
4 K PROM CARD with 4 PROMs	¢120.
4 K PROM CARD with 6 PROM ${ }^{\text {a }}$	E168

SPECIAL PUBLIC

TWENTY-TWO COMPLETE PROJECTS INCLUDING:

* FIVE WATt StEREO AMP
* STAGE MIXER
* DISCO MIXER
\star touch organ
* AUDIO LIMITER
* infra-red intruder ALARM
* model train CONTROLLER
* REACTION TESTER

HEADPHONE RADIO

- STD TIMER
\star double dice
\star G.P. POWER SUPPLY
\star logic tester
* POWER METER
\star digital voltmeter
\star UNIVERSAL TIMER
\star breakdown beacon
* 1-2 hour timer
* heart rate monitor
* Ib metal locator
\star TEMPERATURE METER

ITIONS FROM ET

TOP PROJECTS

No. $1+$ No. 2
A massive 180 page book containing all the projects originally described in our first two Top Projects Books - originaly published October of print.
now out of projer mis include Master Mixer 100 W Gutar Amp. Low Power Laser. Printumer Transistor Tester, Mixer Preamp. Logic Probe, Simple Amp. Ni-Cad Battery Charger Loudhailer. Scope Calibrator. Electronic Ignition, Automatic Car Theft Alarm, Turn Indicator Canceller, Brake Light Warning. LM380 Circuits. Femperature Alarm. Aerral Matcher. UHF TV Preamp. Metal Locator. Four Input Mixer, Super Stereo. IC Power Timing Light, 50 W Stereo Amp PLUS MANY MORE

$£ 2.50+20 \mathrm{p}$ P\&P

TOP PROJECTS No. 3
Originally published in March 1976 Top Projects No 3 contains 27 constructional projects including Graphic Equatiser. International New Sound for your Guitar Bass Stereo New Sound for your Guitar Bass Electronic Ignition Tacho Timing Light Car Alarm, Dual-Beam Adaptor, AF Meter, Impedance Meter Digital Display Digital Voltmeter. TI Supertester Fluorescent Light Dimmer Radar Intruder Alarm Lighs Dimmer. FM Tuner Colour Organ. Drill Speed Controller plus many more

$$
£ 1.00+20 p \mathrm{P} \& \mathrm{P}
$$

TOP PROJECTS No. 4

Avalable at your newsagents or from ETI direct Published October 1976 This Whates Sweet-Sixteen Stereo Amp Compressor Car Anti-Theft Alarm Headlight Reminder Dual-Tracking Power Supply Audio Millivoltmeter Thermocouple Meter Intruder Alarm. Touch Switch. Push-Button Dimmer Exposure Meter Photo Timer. Electronic Dice High Power Beacon Temperature Controlter Electronic One-Armed Bandit plus many more

$$
£ 1.00+20 p \mathrm{P} \& \mathrm{P}
$$

ETI CIRCUITS No. 1

Contains nearly 250 circuits, largely taken from the best of our Tech-Tips Great care has been taken to index each circuit for apid selection An additional section at the back gives plenty of reference data
including transistor specs and equivalents including transistor specs and equivalents
Sales of this publication have been excellent -- hardly surprising when the excellent -- hardy surprising
$1.50+20 p$ P\&P

ELECTRONICS - IT'S EASY
Our unbelievably successful series. Shortly
drawing to a close. is available complete in three parts - logically known as volumes . 2 and 3
Volumes 2 and 3 are avalable now (No 3 completes the series and includes those parts stlll to be carried in the magazine) but Volume 1 sold our of its original print run a coured now for immediate despatch upon delivery to us

£1.20 + 20p P\&P

STOP PRESS:
Volurte 1 now available.

TRANSDUCERS IN MEASUREMENT AND CONTROL
This book is rather an unusual repint from the pages of ETI The series appeared a couple of years ago in the magazine. and was England thought of by the Universished the series splendidly for use as a standard textbook Written by Peter Sydenham, M E Ph D. M Inst M C. F II.C A., this publica tron covers practically every type of transducer and deals with equipment and Enquiries from educational authortes Enquirsities and colleges for bulk supply of this publication are welcomed These should be addressed to H W Moorshead. Editor

$$
\hat{\mathfrak{z}} 2.55+20 \mathrm{p} \text { P\& }
$$

ETI 4600 SYNTHESISER
A complete reprint of our superb synthesiser design. published with Maplin Electronics (who also supply the parts). This reprint will also be of interest to those not specifically lighly original and is in fact patented by highly
ETI!
$£ 1.50+20 p$ P\&P

HOW TO ORDER

ETI Circuits No 1 and Top Projects No 5 are avallable at newsagents or direct from ETI. Others are available only direct from
Postage and packing is 20 p for the first. 25 p and 20p respectively) Send remittance

ETI Spacials,
ETI Magazine,
25-27 Oxford Street
London W1R 1 RF.
Please mark the back of your cheque or PO with your name and address.

ELECTRONICS it's easy!

Oscilloscopes

PART 40

OF THE MANY INSTRUMENTS required to service, test and maintain electronic systems, the cathode-ray oscilloscope must be the most versatile and useful. Other names are derivatives from the full name - the C.R.O., CRO (pronounced crow), oscilloscope and scope. Early works also refer to it as an oscillograph.

THE CATHODE RAY TUBE

The first cathode-ray tubes were experimental, designed to investigate the nature of beams of particles produced in thermionic-diode arrangements operating at extremely-high voltages.

Figure 1 shows the three stages in developing the basic cathode ray tube. Fig. 1 (a) is a thermionic diode - a valve diode. The cathode, heated by the current passing through it, emits electrons into the space around it. These, being negatively charged, are attracted to the positive anode.

The greater the voltage between the cathode and anode the greater the velocity of the electrons. If a hole is made in the anode, as in Fig. 1b, many of the electrons will pass through, forming a diverging beam on the other side of the hole. When a phosphor powder is placed on the inside of the tube the electrons reaching it cause it to glow as they give up their kinetic energy. The powder re-emits this energy as photons of visible light. Early researchers' tubes did little more than this. The nature of cathode rays was studied in the early 1900s by such famous names as Goldstein, Braun, Crookes, J. J. Thompson, Rontgen, Coolidge and Dumont. Experiments showed that the beam could be deflected by a permanent magnet and by electro-magnetic and electrostatic fields. Prior to 1897 interest had been in physical-science investigation - not in the measurement of electronic signals. Then in 1897 K.F. Braun
produced the first basic measuring device from the CR tube.

FURTHER DEVELOPMENTS

However the CRO to become a useful, practical instrument more development was needed. From Fig. 1b it can be seen that the beam of an elementary device is badly defined and floods over the entire area of the phosphor. A tube or grid arrangement placed between the cathode and anode causes the beam to pass through the anode more cleanly, because of the negative repulsive effect of this tube assembly. The whole assembly cathode, anode, grids and tube - is called the electron gun. Its full design is quite complex: Other elements are used to make electron-lenses (akin to optical lenses and light) to focus control and an intensity control, the former adjusts the spot shape and size on the screen, the latter the current flowing in the electron beam.

[^3]
ELECTRONICS-it's easy!

The choice of phosphor on the screen determines the persistence (the length of time the spot glows after removal of the beam) of the display. The storage effect of various phosphors enables CROs to be made so that beam energy can be dispersed as light over time durations varying from microseconds to milliseconds. Fig. 2 is a guide to the selection of a phosphor. Manufacturers often offer a choice of screen persistence values to suit various applications. Fast moving spots, where the spot is likely to reappear on the same point in a short time, require short persistence. Longpersistence screens are suitable for slowly changing signals. (See the discussion of storage methods in the next part.)

ELECTROSTATIC DEFLECTION

The next refinement provides a method by which the beam can be made to deflect under the control of electrical signals. Fig. 3 shows how this is done for one axis, using the electrostatic method. A voltage difference of zero between the deflection plates allows the beam to pass along the tube axis undeflected. Any voltage differential will cause the beam to be deflected towards the more positive plate. Thus we have a way to cause the beam to move in the vertical direction (called Y -axis or Y plates). A further two plates set ar right angles to these (the X plates) will cause the beam to deflect in the horizontal plane when a voltage is similarly applied to them. Beam-intensity control by electrical means is defined as the Z control.

Electrostatic deflection is the easiest to deploy for voltage measurements because deflection is proportional to applied voltage. Small cathode ray tubes usually use electrostatic deflection. Large tubes, such as those used in television systems or large-screen teaching oscilloscopes, usually use magnetic deflection because electrostatic deflection would require very high deflection voltages. These do not have deflection plates set inside the tube, but make use of magnetic fields created by electromagnet coils placed around the neck of the tube. The deflection in this case is approximately proportional to the current in the coils.

Cathode ray tube design (for CROs and TV) has remained reasonably static since the late 1930s, the only obvious differences being in the linearity of beam sweeps and the shortness of tubes for a given screen size in television applications. Figure 4 is a modern oscilloscope with the cover removed to show the tube. From

the instrument viewpoint the differences have been improvements in frequency response, spot control, linearity of sweep and a wider choice of phosphors. In addition the development of tubes with more than one gun and deflection system (some dualbeam oscilloscopes, but not all, use separate beams for each channel) and storage tubes which enable the effective persistence to be varied at will have greatly improved the versatility of today's instruments.

tURNING THE TUBE INTO A MEASURING INSTRUMENT

In the majority of cases the CR tube is used to produce a graphical display with the amplitude of a signal being expressed in the vertical (Y) direction and its variation with time being along the horizontal (X) direction.

Time-base: If the X plates are driven by a signal voltage that increases proportionally with time the electron beam will be deflected across the tube at a steady speed. When the signal returns to its original value the spot returns to begin the next sweep. The waveform required to produce such linear deflections is a sawtooth. (During return the beam is normally blanked out.) This provides a sweep function. The period of the sawtooth determines the time taken to cross the screen; this is expressed in the units of time per division (screens are divided into a grid of centimetre squares by means of plastic graticule or by engraving the inner face of the tube). A selector switch in the time-base section of the panel enables the sweep rate to be chosen to suit the period of the signal being examined. Basic units will have time bases which range from $0.5 \mu \mathrm{~s}$ to 0.1 seconds per centimetre; sophisticated units can go as slow as

10 seconds per division to as fast as 1 ns per division. (Special "sampling" plug-ins can provide $10 \mathrm{ps} /$ division.)

The time-base sawtooth generator is an integral part of all CRO measuring instruments. The accuracy of the rates are determined by circuit components - more expensive units can provide more-accurate information. A further control in the time-base section (See Fig.5) allows the switch-selected sweep rate to be varied continuously. This is usually referred to as a vernier control. When making time measurements, such as waveform period, it is important to set the vernier control to the calibrated position.

To obtain a static display (where each cycle of a periodic signal overlays the previous one) the time-base must be synchronized with some point of the input signal. That is, the time-base is caused to begin its sweep across at the same point on the waveform being viewed. The circuit which does this is called the triggering circuit. Triggering can be taken from either an internal or an external source. When switched to 'internal' it is possible to vary the voltage level of the signal operating the trigger. Thus the sweep may be adjusted to commence at a chosen point on the waveshape. An 'auto' control position provides automatic selection of the voltage level for most reliable triggering.
Time Base Amplifier: The voltage required to deflect the beam over the full X (or Y) traverse is of the order of hundreds of volts. The time-base generator therefore requires an ' X ' voltage amplifier between it and the plates.

In certain applications the X plates are used with signals in the same way as Y plates - that is without a timebase signal. In such cases considerable amplification may be needed. More versatile CROs offer plug-in facilities for the X input to give the user a wide choice of functions from the one unit. Simple units however, have the ' X ' amplifier wired in permanently.

Vertical Inputs: At the same time as the time-base circuits sweep the line across the screen the ' Y '-plates are driven with a voltage proportional to the amplitude of the signal of interest. This causes the beam to be deflected in the vertical direction whilst it is swept across the screen. The result is the graphical display of signal amplitude versus time.

Again an amplifier is needed to increase the signal level so that a useful vertical deflection results. Such an amplifier must be able to amplify the incoming signal without distortion to provide vertical sensitivities up to $10 \mathrm{mV} /$ centimetre (typically the most sensitive range of educational units), or maybe as high as $10 \mu \mathrm{~V}$ per division (in sensitive oscilloscopes). The insensitive end of the range will usually be around $50 \mathrm{~V} / \mathrm{cm}$ but special units (for electrical supply authority use) provide for much higher levels. (Attenuator probes also enable high voltage signals to be investigated.)

The application needed from Y amplifiers can, therefore, rise to 100000 on the most sensitive range. In addition it is important that the gain be constant over the bandwidth of the signals being monitored.

Basic units provide amplifier response flat from dc to a megahertz or more. (Bandwidths are defined between points 3 dB down from maximum.) Magnetic-deflection display monitors will only reach 20 kHz whereas sophisticated highquality instruments have bandwidths rising to 350 MHz . Sampling plug-ins provide bandwidths equivalent to dc to 1 GHz .

Vertical amplifier controls are usually grouped together on the front panel, as are time-base controls. Figure 6 shows the panel layout of a 50 MHz bandwidth amplifier. From this it may be seen that the vertical sensitivity is selected by a switch and that the y amplifier has a 'vernier' sensitivity control which must be at the 'calibrate' position when measurements of signal amplitude are being made.

The position of the trace on the screen depends upon the standing voltage applied to the plates. On both Y and X axes extra controls enable vertical and horizontal shift of the trace position by adjustment of the bias applied. When using the CRO to probe circuits involving ac signals combined with standing dc levels - as is the case in ac amplifiers for example - the dc level on the Y signal causes the trace of the ac signal to be displaced vertically and, perhaps, to go right off the viewing area. This difficulty is overcome if you couple the circuit signal to the Y amplifier via a capacitor. The ac signal then centres itself on the screen at the position chosen by setting the vertical shift control. This method is acceptable provided frequencies below

ELECTRONICS-it's easy!

the cut-off of the RC filter produced are not wanted. Measurement of very. low frequency to dc signals must be dc coupled on the ac/dc selector switch provided. A further switch position enables the input to the plates to be brought to its dc zero position. This helps the operator to establish where this level is on the screen
Signal Input Connections:
Oscilloscopes for use with frequencies below about 1 MHz can make use of separate plug-in/screw-down banana-piug terminals. More usually, however, the input to the Y amplifier, and perhaps to the external trigger, will use standard BNC connections. These are designed for use with coaxial cable and coax should be used for all except the shortest end connections to the circuit. The input impedance characteristics are usually quoted 1 megohm with $20-100 \mathrm{pF}$ shunting capacitance being typical values. In some applications the CRO must be matched to reduce reflections - in such cases the input might be 50Ω or 600Ω. For fast rise-time studies it is necessary to ensure that the capacitive value presented does not reduce the overall bandwidth by shunting the device to which the CRO is connected. In exacting cases, needing high input impedance and small capacitance, special probes are used. These are described later.
Calibration of the Time Base and Y-Amplifier: The value of electronic components may drift with time, altering the sweep rate and vertical amplifier values from those indicated by the selector switch. To enable the operator to check these, more advanced oscilloscopes incorporate a special circuit that provides a fixedfrequency, fixed-amplitude square wave signal for calibration purposes. A typical signal would be 1 volt peak-topeak. As it is derived from the mains frequency (50 Hz or 20 ms period) its time duration is also quite accurate.

MULTIPLE TRACE OSCILLOSCOPES

Measurement situations involving oscilloscopes more often than not require display of comparative information between two points in a system - the relative input and output signals in an amplifier response test, or the phase shift between two signals across a filter stage. Single-beam oscilloscopes are very limited because they cannot provide as much information to the user as a unit that
can compare the waveforms at two points simultaneously. Three distinct alternatives are available to provide dual beam operation:

Separate gun: These use two, physically-separate, electron beams and deflection systems that are mounted inside the tube anvelope. The beams may be generated by splitting the beam from a single gun. These are generally referred to as dual-beam units (dual-trace is a term reserved for the next method described).

Each beam has its own Y -input panel with a complete set of controls as described earlier. Dual-beam units drive both X-scans with a common set set of deflection plates (as in Fig.7) but some (rather rare) oscilloscopes enable each time-base to scan at a different rate.

In general, dual-beam units are less common because of the higher expense compared with the next method.

Electronic switching - chopped mode: The deflection response of an electron beam is rapid enough to allow it to be directed from one position to another at a speed exceeding the scan rates used with the signal being viewed. Fast electronic switches are used to switch the common single beam between two (or three or four) Y -inputs. Figure 8 illustrates this. Appropriate blanking (that is reduced Z intensity) is applied
when needed, when the beam is chopping from one trace to the other. If the chopping rate is chosen to be at least 100 times faster than the highest frequency to be viewed the two traces appear as separate traces. Hence the name "dual-trace" for this method. In reality the traces are not continuous but are made up of dash-spaces. A hundred dashes across a screen produces a virtually continuous trace to the eye. The limit of usefulness is reached when the inbuilt chopping rate comes close to the upper frequency being viewed thus producing a dashed-line trace in which the dashes are of length equal to wanted signal features. At this point information is lost.

As far as the user is concerned there are still two groups of Y controls just the same as for a dual-beam arrangement. The difference arises as the position chosen on the selector switch where a 'chop' mode must be -selected.

Chopped operation ensures that the time relationship between the two signals is faithfully presented: phase measurements are also accurate (that is, providing the input amplifiers to each are identical).

Chopped operation will also display two simultaneous, non-recurrent signals, such as transients induced at various points when a complex resonant system is excited by an impulse. It is quite suitable for lowfrequency signals but less convenient as the frequency rises.

Fig. 7. Schematic of Philips 3232 dual beam oscilloscope. Common x plates provide scan for both beams, separate y plates deflect the two distinctly separate electron beams that are derived

Fig.8. Electronic-switching enables a single-beam and deflection system to provide dual-trace operation.

ELECTRONIC SWITCHINGALTERNATE MDDE

Switching can also be employed on a full alternate trace-by-trace basis. The first trace is a scan of channel 1 , the next of channel 2 and so on. This does not suffer from the dotted defect with high-frequency viewing but it suffers from another deficiency in that the phase relationship between the two signals may not necessarily be as indicated on the screen.

The method is unusable for observation of "once-only" dual events because the second transient signal may have gone to zero by the end of the trace of the first simultaneous transient signal. The panel shown in Fig. 11 is typical of dual trace units. The selector switch enables choice of alternate, chop, channel 1, channel 2, and channel 1 plus channel 2 modes.

With two channel operation it is necessary to decide which input will synchronize the time-base scan. A switch provides the choice of appropriate internal triggering. Although only channel 2 , for example, may be being viewed there are circumstances where it is desirable to trigger from the channel 1 signal.

The electronic-switching method enables more than two traces to be displayed- three and four-trace units are available.

DIFFERENTIAL AMPLIFIERS

Generally the dual-trace oscilloscope is recognised by two sets of input terminals. There is, however, another two-input unit that is for single trace operation. This is the differential input amplifier unit; it is normally provided as an optional plugin.

Two two inputs are amplified by the high-gain differential arrangement of a dc amplifier. These are used when common-mode noise rejection is needed and when the difference between two fully floating inputs must be studied.

FINDING THE TRACE

Even experts can experience temporary difficulty when confronted with an unfamiliar oscilloscope especially when it is complicated. Naturally it takes training to get the best from a unit. A basic difficulty is often finding the trace! These steps provide an efficient procedure that should be learned. Begin with the input to the Y -amplifier unconnected.

1. Ensure that the power is on. The on-off switch control is usually built in with the intensity knob, but not always.
2. Turn the intensity to 75% clockwise.
3. Switch the time-base (horizontal) to a medium speed - say $1 \mathrm{~ms} / \mathrm{cm}$. This ensures that the screen displays a full line across the screen rather than a point which occurs when the scan speed is on the slow ranges.
4. Switch to auto triggering. This may be a marked position of the trigger control or a separate switch. This ensures that the trace is being triggered.
5. Switch to internal triggering. This is necessary for (4) above. Relying on an external signal to trigger the scan is unreliable - it may not be of adequate magnitude.
6. With this done slowly vary the vertical position control about its mid range point widening out to get the trace on screen.
7. The above may still not produce the trace. If not put the vertical position in its middle point and the gain at an insensitive value and begin a scan of the x-position control. This should be somewhere mid range. Too much x-shift can cause the trace to slide off screen.
Complicated oscilloscopes will invariably incorporate a variety of controls that may also need adjustment to find the trace. Space prevents a full guide to spot finding. Fortunately the more expensive units often provide a spot-finder button. Press it and the spot appears on screen enabling the controls to be adjusted accordingly to bring it back from the direction it flies too when the button is released.

When the trace is located in mid screen the intensity and focus are then adjusted by switching the scan to the slowest rate to produce a spot. These should be adjusted to produce a small round spot without halo: stationary spots on screens should be avoided as this shortens the life of the phosphor at that point.

The next part will continue the discussion on oscilloscopes providing understanding of storage kinds, the delay sweep mode, probes and special plug-ins.

EECTRONICS TOMORROU by John Miller-ㅅirkpatrick
 cost per character. However, the

 cost of each 5×7 LED matrix was high and apparently difficult to make due to problems of getting all 35 LED dots to work to the same intensity.
TV or not TV

Designers looked elsewhere for the low-cost alphanumeric output device and came up with the CRT or TV tube. These break down immediately into two groups, the CRT where the spot is controlled by the logic and the TV where the spot must follow a fixed pattern of movements and the logic must interpret these, movements. CRT display systems can usually be seen associated with. computer graphics displays where the computer uses the CRT like an oscilloscope with a storage facility or a regular refresh or repeat of the drawing.

With this type of unit the computer draws or writes each character or line as a complete unit and then starts another and so on until the whole pattern is complete and then repeats the whole operation perhaps up to 20 times per second.

The TV type of VDU relies on the regular line. scanning circuitry already installed in a normal TV set. Most applications use the TV the normal way up and scan horizontally, some systems use the TV on its side and scan vertically; the basic logic is similar for both systems but we will continue with the more usual horizontal scan.

Scanning for lines

A normal 625 line TV set whether it be a complete set or simply a monitor expects to receive about 300 odd lines of picture information 50 times per second with the beginning of each set marked by a frame syncronisation signal, and the beginning of each line marked by a line sync signal.

These signals must meet certain specifications for the TV to lock into them properly and thus to display the required picture information without loss of line or frame hold. The picture information for each line is basically a modulated signal peaking at about $5-6 \mathrm{MHZ}$ and denoting the intensity of the spot in
a B / W set or the intensity of each gun in a colour set. This signal is derived from a light sensor which produces different voltage levels according to the light falling on the sensor. The signal could also come from a logic source which indicated that a logic 1 was to indicate a low intensity spot (black) and a logic 0 was to indicate a high intensity spot . (white).

In this way a TV could be persuaded to show a black and white picture (no greys) if the dots were arranged by the logic to occur at certain points on the screen. The most usual example of this type of logic/TV combination can be seen in the 'Ball \& Paddle' TV games.

Imagine the TV dots arranged as 5×7 matrixes repeated all over the screen, each character space would have to be at least 6×8 dots to give a gap between characters. With the picture line data being about 50 uS in each 64 uS line a time 5 MHz dot rate would yield about 250 dot positions per line,. at 6 horizontal dots per character this would give a maximum of about 40 characters (eg TELETEXT output).

Similarly, there are about 250 usable TV lines per 20 mS frame, at 8 lines per character row so we could display about 30 rows of characters. In practice, at least 10 and more usually 16 lines are used per character row to give a reasonable vertical spacing. This results in two standard row counts of 16 and 24 (TELETEXT) rows per frame.

The payoff

With more manufacturers (and amateurs) turning towards TV as a display system it was obviously not going to be long before someone put it all into a 16 pin IC - it's called the DM8678/O (from .National).

The DM8678 is a 64 character ROM, latches, PISO, counters and ancilliary logic packaged into a 16 pin DIL. The data input is a six bit binary code to select 1 of 64 characters from the ROM, and to output that data as a serial signal dependent on a line counter and a dot frequency input. The input data can be internally latched if required to enable external devices to set up the input for the next character. The DM8678 can be supplied with various character sets in 5×7 or 7×9 matrixes in upper or lower case format. The DM8679 is a similar chip but has the additional feature of ignoring the first 4 TV lines thus resulting in a 'below the line' facility for lower case, g, j, p, q, z display if . required.

Making an example

To illustrate the operation of the DM8678 an example is given tracing the sequence of events in generating the letter ' N ' on a 7×9 matrix. The required input data is latched from the input pins and directed to a 1 of 64 decoder which in turn addresses the ROM. The ROM is organised as 64 words each 63 bits long, each word can be further sub-divided as 9 set of seven bits. The choice of 1 of 9 is controlled by a TV line counter which in our example is currently accessing the first set of 7 bits. The 7 bits are loaded into the shift register and the next low-to-high transition of the input dot clock would load the first of the seven bits into the serial output stage; in our example' this would be a logic 1. The next low-to-high transition of the dot clock would load the next bit into the output stage and so on until all 7 bits had been output for row 1 . in our example row 1 data is 1000001

On the next transition of the TV line count input the counter would be advanced to the second set of 7 bits and these would be output in the same way as the first, the other rows would also be output in the same way until all 9 rows had been output. The 9 sets of data in our example are -

1000001
1000001
1100001
1010001
1001001
1000101
1000011
1,000001
1000001
(if you hold this page at a distance the letter ' N ' will be seen.
Rows of characters
In a typical application more than one character per row is displayed. This simply means that a character per row counter will access a RAM and retrieve a different set of input data for each character per TV line. Each TV line might access 32 RAM locations for character data, all other TV lines in that character row would access exactly the same RAM locations and each time a different set of serial outputs could come from the DM8678.

The DM8678 can be used in 16 or 24 rows per frame systems, and with a maximum 20 MHz dot rate could generate over 100 characters per row, in practice 80 is a reasonable maximum to look for. At about $£ 16$ it compares favourably with the multichip design on grounds of package size and count.

TRANSISTORS

－ 1 Sol lnvictus
 Detectors linited
 The makers of the famous Viking and Probe detectors bring you．．．THE SID

 DETECTOR KITEnjoy one of the world＇s most exciting hobbies with this high quality metal detector．Use it to search for gold，silver， coins，jewellery and other valuable articles．The kit is simple to assemble and contains the latest in ．electronics and design features．It＇s performance is comparable with detectors costing up to twice as much．The kit includes all components，circuit board speaker and aluminium frame incorporating search head with Circuit diagram \＆instructions（included faraday screen．in kit）available separately．

Mail Orders to：81 Moorgate Street Blackburn，Lancs． 025462561 \＆ 664789 Showroom： 3 Sudell Cross，Blackburn， Lancs． 025456917

Big saving，good looking，fast checking NEW Doram
 BUILD IT YOURSELFANDSAVE UPTO £40！

A clear，functional multimeter， featuring extremely accurate digital display，in superbly styled shatterproof carry－case．It could cost $£ 100!$ But the complete Doram kit with case，printed circuit board，leads and all components is yours for just $£ 54.50$ plus $£ 4.36$ VAT．

Based on Ferranti technology with accuracy $\pm 0.6 \%$ ，the new Doram Multimeter is an indispensable tool at a terrific saving．Measurement is indicated by a $31 / 2$ digit display updated twice per second－ display flashes to indicate overload．

END OF LINE CLEARANCE

The following items are available at the Special Prices shown．As these are a＇once only＇offer，we suggest you telephone to ensure availability，and reserve your requirements，before sending in your order．

CERAMIC FILTERS 455 kcs 30 w －inclusive price total £ 2.80 each				
	Cost	p / p	8\％VAT	Tolal
$17 \times$ Réey Keyboard －Svilthes，facks of 46.	$\begin{gathered} \text { E24.80 } \\ \text { per Pack } \end{gathered}$	75p	£2．02	£27．57
100 x CDI［Bedestignar 312］ Met of Pees．Thyrifor．TXA． choke． 1 Transistor．I speciar I．C．	¢6．00	75p	54p	£7．29
$23 \times 4 \times 3$ Guitar Amp How Kil pi：Plain 女年 Heablink． Lid brither \＆Sprayef．Box Drilled \＆Sprayed． 2 PCBs． Handle．	£8．50	£1．20	77p	£10．47
Assorled Stabilised Power Supplies． 3 to $15 v .1$ to 15 －Amp	$\begin{array}{r} £ 5.00 \text { to } \\ £ 25.00 \end{array}$	－	－	－
$\xrightarrow[\text { Complete Built and Tested }]{3 \times \text { Red }}$	£25．00	${ }^{95 p}$	£2．08	£28．03
$4 \times$ ent［liedesignay 312］． Complete and Tested．Un－ boxed．	£12．00	75p	£1．02	£13．77
$2 \times \text { 8rmple.cor-[E.T.I.] }$	£10．50	95p	92p	£12．37
$21 \times$ Master－mixer Kii of： Untestofir 11 Chassis －o Overlays． 7 PCB c／w composenis［Order No－2t］ gety near comptrie unit in bof．muknobs！	$€ 150.00$	£1，35	£12．10	¢163．45
$9 \times$ Sels－at 8 Slider Pols（No knotis）Ior Masteŕr Mixer	$£ 4.00$	75p	． 38 p	£5．13
$12 \times$ Camera Cases c / w Sundry Parts	$£ 5.00$	$£ 1.10$	49p	£6．59
$25 \times$ Cmas－Burgirar Alarm © PGO－（E．TI．I） c / w Components but less ferlay	£4．00	50p	38p	£4．88
$7100 \times$ Dice－Single．Complate －in plastic box－no baltery	£3．50	75p	34p	£4．59
$1 \times$ Organ Keyboard．FM／99 Mod．I．Easybuity－Ofgan	£36．00	$£ 1.50$	£3．00	£40．50
$100 \times 21 / 1 \times 21 / 3$ Perspex Faged Maters．Odd scalp calibrations 50a／A Move． ments	75p	50p	10 p	£1．35
$12 \xrightarrow{12} 6^{\prime \prime}$	£1．25	£1．25	20p	¢2．70
$2 \times$ Un enenovatad Philips Pan 8 Till Heads	£28．00	£3．00	£2．48	£33．48
$5 \times$ Pye Semiai Protessional ，Monitors 9＂Unrepaired 405L．	£15．00	£5．00	£1．60	£21．60
$\begin{aligned} & \text { Jxpye Semi } \\ & \begin{array}{l} \text { Monilesssional } \\ \text { Mont } \\ -405 \mathrm{~L} \end{array} 4^{\prime \prime} \text { Unrepaired } \end{aligned}$	£17．00	£8．00	£2．00	£27．00

CROFTON ELECTRONICS E LIMITED

35 Grosvenor Road，Twickenham，Middiesex TW1 4AD 01－891 1923

SWI	F.S.D.
1	1 mV
2	10 mV
3	100 mV
4	1 V

AUDIO MILLIVOLTMETER

This circuit was conceived as an easily built instrument offering a $\pm 2 \%$ accuracy.

Q1 and 02 are connected as a high gain feedback pair with a fixed gain of 100.

IC 1 and IC 2 form a precision-full wave rectifier with a gain of 10 over a bandwidth extending from below 20 Hz to above 50 kHz .

The gain of the whole circuit therefore is 1000 and input signals above 1 mV must be attenuated.

No setting up is required except for the zero adjustment of RV1. Input impedance is $1 M \Omega$ on all ranges.

Resistors marked with an asterisk are 1% types.

DUAL P.S.U.

Anyone who experiments with opamps will need a dual stabilised power supply. The circuit shown was designed to power up to twenty 741 s simultaneously.

IC 1 is used to provide an output voltage of 18 V at pin 10 . R2 sets the short circuit current at 100 mA and should be rated at 1 W .

IC 2 is used as a precision short circuit proof voltage divider.

A 9-0-9 V supply has been found in practise to cater for most op-amps with the notable exception of the CA3130 which has a maximum supply rating of 16 V .

techtips

TELEPHONE RINGING AND SPEECH CIRCUIT

This circuit was designed to be used by children as a language teaching aid in primary school. For safety reasons, power is taken from a dc battery source, necessitating the incorporation of an ac generator in the circuit.

If handset A is lifted, RLA is activated changing over contacts RLA energising RLD. RLD has a pair of N/C contacts wired in series with its coil and this causes the relay to vibrate. The contacts would not however, change over fully, and a capacitor is wired in parallel and stores enough charge to allow the relay to change fully. The value of the capacitor will depend on the type of relay being used but the value selected should be chosen to cause the relay to vibrate at about 25 Hz .

A second set of contacts is wired in series with the transformer, which in the prototype was an old 250 to 125 V transformer with the 125 V winding being used as the primary. The output of the transformer is fed to the third set of contacts of RLA which selects which telephone is to be rung.

On lifting the other handset relay RLB will energise and the exclusive OR arrangement of contacts RLA and RLB will inhibit the bellringing circuit.

To prevent either bell ringing again if one of the handsets is replaced RLC is included. When both handsets are

raised RLC energises and is self-latching, one set of its contacts being in series with RLD. When both handsets are replaced, RLC is shorted through the 100 Ohm resistor and turns off,
resetting the bellringing circuit. The 1 uF capacitor provides the required coupling for speech between the two handsets.

BLOWN FUSE INDICATOR

Base current for Q1 is taken from the 'earthy' side of FS1. Q1 will conduct its collector voltage falling to zero. Q2 base will also be zero, switching LED 1 off.

If FS1 were to 'blow' or cease to exist, depart for its maker, have a rest, go to sleep, peg out, become inoperative, deceased, out of order, or duff, kick the bucket, bite the dust, pass away, self destruct, become no longer intact, or cease to conduct in any way, due to war, flood, corrosion or act of God etc., Q1 would switch off, causing its collector to rise to 12 V , switching Q2 and LED 1 on. R2 is the current limit resistor for LED 1. SW1 will bypass FS1 via emergency fuse 1, until FS1 can be replaced.

BUILD THE

TREASURE TRACER

METAL
LOCATOR
, AS SEEN ON BBC. 1 \& BBC-2 TV

- Genuine 5 silicon transistor circuit, does not need a transistor radio to operate.
- Incorporates unique varicap tuning for extra stability
- Search head fitted with Faraday screen to eliminate capacitive effects.
- Loudspeaker or earphone opera dion (both supplied).
- Britain's best selling metal locator kit. 4,000 already sold.
- Kit can be built in two hours using only soldering iron, screwdriver, pliers and side-cutters.
- Excellent sensitivity and stability.
- Kít absolutely complete including drilled, tinned. fibreglass p.c. board with components siting printed on.
- Complete after sales service.
- Weighs only 22oz.; handle knocks down to $17^{\prime \prime}$ for transport

Send stamped, self-addressed envelope for literature.


```
Plus 1.00 P\&P Plus \(£ 1.18\) VAT ( \(8 \%\) )
Built, tested and
Guaranteed


FULIY STAB IN DIZED Mg.
Switched oubuiz of \(3 \quad 6 / 71 / 2 / 9 \mathrm{~V} 400 \mathrm{~mA}\) stabilized.
CAR CONVERTORS 12 V INPUT
Output 9 V 300 mA £ 1.80 Output \(71 / 2 \mathrm{~V} \quad 300 \mathrm{~mA}\) £1.80.

BATTERY ELIMINATOR KITS
Send sae for free leaflet on range.
\(41 / 2 \vee £ 210 \quad 6 V £ 210.9 V £ 21041 / 2 V+41 / 2 \vee £ 250\) \(6 v+6 v £ 2.50 \quad 9 v+9 v £ 2.50\)
Cassette type: \(71 / 2 \mathrm{~V} 100 \mathrm{~mA}\) with DIN plug \(£ 210\) Transistor stabilized 8-way type for low hum \(3 / 41 / 2 / 6 / 7 \frac{1}{2} / 9 / 12 / 15 / 18 \mathrm{~V}\) 100mA £3.20. 1 Amp
£6. 50
Heavy duty 13-way types \(41 / 2 / 6 / 7\) 0/2/11/13/14/17/21/25/28/34/42V I Amp model £4.95. 2 Amp model \(£ 7.95\)
Car convertor kit: Input 12 V DC. Output \(6 / 7 \frac{1}{2} / 9 \mathrm{~V}\)
Ciliansior stabile
Stabilized Laboratory power kit. Switched 1 to 30 V
SINCLAIR PROJECT 80 AUDIO
MODULES
Project \(8050 £ 2095\)
I-PAK AUDIO MODULES
S450 tuner \(£ 20.95\) AL 60 £4 60. PA \(100 £ 14.95\)
MK60 audio kit £31.95. Stereo \(30 £ 16.95\) SPM80 365. BMT80 £3.32. Send see for free data

\section*{SINCLAIR IC20}
with printed circuit and data \(£ 4.95\)
PZ20 Power supply kit for above \(£ 365\)
VP20 Volume, tone-control and preamp kit £8.95. Send
JC12 AND JC40 AMPLIFIERS
mp with free audio
mp with free da
and printed
circuit £ 1.95 .
Also new JC40 20W model with pcb
£3.95. Send sae for free leaflet on
supply and preamp kits.

\section*{FERRANTI ZN414}

C radio chip \(£ 1.44\). Extra parts
Case \(£ 1\) Send spae for free data

\section*{SWANLEY ELECTRONICS \\ Dept. ETI, PO Box 68, 32 Goldsel Road Stanley. Kent}

Mail order only. No callers. Send sae for free data on kits. Post 30 p on orders under \(£ 4.50\), otherwise free Prices include
customers please deduct \(7 \%\) on items marked \(*\) and

\section*{Save on Calculators}


\section*{techtips}


\section*{1-12 MINUTE TIMER}

The circuit is centred around the NE555V timer which provides a logic 0 level at pin 3 every 1 - 12 minutes, depending upon the position of the 12 way switch (SW1). SW2 is a push. button switch which synchronises the first pulse (originally a switch circuit was fitted to the reset pin, 4 , but the first timing period was never the same as the subsequent periods). The var-
iable 22 k resistor allows a degree of fine adjustment for the timing period.

Gates \(A\) and \(B\) form a tone generator. Gate C inverts the output of the NE555V so that a logic ' 1 ' is fed to gate \(D\) at the end of each timing period. Thus a tone burst of a few seconds is produced by the transducer (any surplus crystal microphone insert should be suitable).


\section*{LOW RIPPLE P.S.U.}

The power supply circuit shown may be used where a high current is required with a low ripple voltage (such as in a high powered class \(A B\) amplifier when high quality reproduction is necessary).

Q1, Q2 and R2 may be regarded as a power darlington transistor. ZD1 and

R1 provide a reference voltage at the base of Q1. ZD1 should be chosen thus: ZD1 \(=V_{\text {out }}-1.2\).

C2 can be chosen for the degree of 'smoothness' as its value is effectively multiplied by the combined gains of Q1/Q2, if 100 uF is chosen for C2, assuming minimum \(\mathrm{h}_{\mathrm{fe}}\) for Q 1 and Q2, \(\mathrm{C}=100 \times 15(\mathrm{Q} 1) \times 25(\mathrm{Q})=37,000 \mathrm{~L} \cdot \mathrm{~F}\).


\section*{DIODE VOLTAGE MONITOR}
\(R\) is chosen such that as ID2 is the 'trickle charge' rate of B3.

If \(\mathrm{V} 2>\mathrm{V} 3\); ID3 \(=0\) and ID2 is the charging current.

If \(\mathrm{V} 3>\mathrm{V} 1\), ID3 flows, but ID2 is now zero.


\section*{SIMPLE COUNTER/DISPLAY MODULE}

The signal is connected to the input line of the 7490 decade counter. When the 'latch' is high, the display will follow the count. When the 'latch' goes low, the display holds.

The module may be constructed on two pieces of veroboard, the boards being held together by wire soldered at each corner.

In order to cascade, common up all the latch hold and reset lines, and connect the carry line to the input line of the next module.

\section*{TV-Computersystem 6800 8080 SC/MP}

\section*{ROTEX-EMMEN -HOLLAND}


The microcomputersystem specially for:

\[
\begin{array}{ll}
\text { Education } & \text { - schools } \\
& \text { - selfstudy } \\
\text { Industry } & \text { - program - development } \\
& \text { - systems - development } \\
& \text { - terminal } \\
\text { Hobby } & \text { - entertainment } \\
& \text { - games }
\end{array}
\]

\section*{15-240 Watts!}

\section*{HY5}

Preamplifier
The HY5 is a mono hybrid amplifier ideally sulited for all applications. All common input functions (mag Cartridge. funer etc) are catered for internally, the desired function is achieved either by a mult-way switch or direct connection to the appropriate pins The internal volune and tone circuit LP power amplifiers and power supplies To ease construction and mounting a P.C connector is
SUpplied with each pre-amplifier FEATURES: Complete pre-amplifier in single pack - Multi-function equalization - Low noise - Low distortion - High overload -- two simply combined for stereo
APPLICATIONS: Hi-Fi - Mixers - Disco - Guitar and Organ -- Puttlic address
PECIFICATIONS
NPUTS Magnètic Pick-up 3 mV Ceramic Pick-up 30 mV . Tuner 100 mV Microphone 10 mV OUTPUTS Tape 100 mV : Main output 500 mV R M S
ACTIVE TONE CONTROLS Treble \(\pm 12 \mathrm{~dB}\) at 10 kHz . Bass \(\pm\) at 100 Hz
DISTORTION \(01 \%\) at 1 kHz Signal/Noise Ratio 6 BdB
OVERLOAD 38 dB on Magnetic Pick-up: SUPPLY VOLTAGE +1650 V


HY5 mounting board B1 \(48 p+6 p\) VAT P\&P free
HY30
15 Watts into \(8 \Omega\)
and thermal protection The kit consists of I C heatsink P P indeard 4 resistors. 6 capacitors mounting ki1, together with easy to follow construction and operating instructions This amplifier is deaily suited to the beginner in audo who wishes to use the most up-to-date technology available FEATURES: Complete kit - Low Distortion - Short, Open and Thermal Protection - Easy to Build APPLICATIONS: Updating audio equipment -- Guitar practice amplifter - Test amplifier -- Audio SPECIFICATIONS:
UTPUT POWER 15 W R M S \(\operatorname{BO}\) BISTORTION 0 : \(1 \%\) at 15 W
NPUT SENSITIVITY 500 mV FREQUENCY RESPONSE \(10 \mathrm{~Hz}-16 \mathrm{kHz}-3 \mathrm{~dB}\) \(Y\) VOLTAGE \(\pm 18\)
Price \(£ 5.22+65 p\) VAT P\&P free.


HY50
25 Watts into \(8 \Omega\)
The HY50 leads I L.P s total integration approach to power amplifier destgn. The amplifier features an integral heatsink together with the simplicity of no external components During the past three years the amplifier has been refined to the extent that it must be one of the most reliable and robust high
Fidelity modules in the Wortd FEATURES: Low Distortion
APPLICATIO components
APPLICATIONS: Medium Power Hi-Fi systems -- Low power disco - Guitar amplifier SIGNAL/NOISE RATIO 75dB FREQUENCY RESPONSE \(10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}\) SUPPLY VOLTAGE 25 V SIZE 1055025 mm
Price \(\mathbf{£ 6 . 8 2 + 8 5 p}\) VAT P\&P free
HY120
60 Watts into \(8 \Omega\)
equirements the baby or most exacting equirements including load line and thermal protection, this ampliter sets a new standard in modular FEATURES: Very low distortion - integral Heatsink - Load fine protection - Thermal protection Five connections - No externat components organ SPECIFICATIONS:
NPUT SENSITIVITY 500 mV
OUTPUT POWER 6OW RMS into 80 LOAD IMPEDANCE 4-16\%) DISTORTION \(0.04 \%\) a: 60 W at
SIGNAL/NOISE RATIO 90dB FREQUENCY RESPONSE \(10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}\) SUPPLY VOLTAGE Size \(114 \times 50 \times 85 \mathrm{~mm}\)
Price \(£ 15.84+£ 1.27\) VAT P\&P free
HY200
The HY200 now improved to give an outpul of 120 Watts has been designed to stand the mo ugged conditions. such as disco or group while still reta!ning true HI-Fi performance FEATURES: Tharmal shutdown - very tow distortion - Load line protection - Integral heatsink No external components
APPLICATIONS: \(H_{1}\)-Fi - Disco - Monitor - Power Slave - Indusirial -- Public address SPECIFICATIONS
NPUT SENSITIVITY 500 mV
OUTPUT POWER 120W RMS into 8:2. LOAD IMPEDANCE 4-16:. DISTORTION 0 05\% at 100W at
SIGNAL/NOISE RATIO 96dB FREQUENCY RESPONSE \(10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}\) SUPPLY VOLTAGE SIZE \(114 \times 100 \times 85 \mathrm{~mm}\)
Price \(£ 23.32+£ 1.87\) VAT P\&P free
HY400
The HY400 is I L.P s "Big Daddy" of the range producing 240W into 4g\% th has been designed for high power disco or public address applications it the amplitier is to be used at continuous high power levels a cooling tan is recommended The amplifier includes all the qualities of the rest of the family to FEATURES. Thermal shuidown - Very low distortion
- Load line protection - No extemal

APPLICATIONS: Public address -- Disco -- Power slave -- Industrial
SPECIFICATION
OUTPUT POWER 240W RMS into 4? LOAD IMPEDANCE 4-16! DISTORTION \(01 \%\) at 240 W at SIGNAL/NOISE RATIO 94dB FREQUENCY RESPONSE \(10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}\) SUPPLY VOLTAGE INPUT SENSITIVITY 500 mV SIZE \(114 \times 100 \times 85 \mathrm{~mm}\)
Price £32.17 + £2.57 VAT P\&P free.
POWER

SUPPLIES

PSU180 sulable lor two HY2000s or one HY400 \& 23.10 P pree



TWO YEARS GUARANTEE ON ALL OF OUR PRODUCTS
I.L.P. Electronics Ltd Crossland House
Nackington, Canterbury
Kent CT4 7AD
Tel (0227) 63218

Please Supply
Total Purcihase Price
I Enclose Cheque \(\square\) Postal Orders \(\square\) Money Order \(\square\)
Please debit my Access account \(\square\) Barclaycard account \(\square\)
Account number
Name \& Address

\section*{THIS SECTION IS A PRE-PAYMENT SERVICE ONLY}

MINIADS: \(\left.\left.31 / 4^{\prime \prime} \times 21 / 8^{\prime \prime}, 1-3\right) £ 26,4-11\right) £ 23,12\) or more) £22 per insertion. CLASSIFIED DISPLAY: \(£ 3.50\) per single column centimetre. No P.O. Box Numbers can be accepted without full address.
: NQUIRIES TO: Mark Strathern, Advertising Department 01-4375982), 25-27 Oxford Street, London W1R 1RF.


Comprehensive range Constructors' Hardware and accessories.
Sheet aluminium cut to size.
Aluminium lightweight sections.
Aluminium lightweight sections.
Selected ranges of popular components Full range of ETI printed circuit boards, normally ex-stock, same day despatch at competitive prices.
P.C. Boards to individual designs.

Resist-coated epoxy glass laminate for the d.i.y. man with full processing instructions (no unusual chemicals required).
Send 15 p for catalogue.
RAMAR CONSTRUCTOZR SERVICES MASONS ROAD STRATFORD-ON-AVON WARWICKS. Tel. 4879

Complete component service 2nd to none, suppliers to D.O.E., A.E.R.E., U.K.A.E.A., Government departments, Universities, Schools and Equipment Manufacturers. All orders are dispatched on day of receipt. Are you being served? Join the professionals and get this best service at the right prices. Stock list free, send s.a.e. Big catalogue 50p (includes 2 vouchers worth \(50 p\) ). Discounts for the big spender, its all here! For the fastest friendly service. Orchard Electronics, Flint House, High Street, Wallingford, Oxon (049135529).

\section*{P.C.B.s For
ETI Projects}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{March} & \multicolumn{2}{|l|}{Shon Circuits:} \\
\hline ETI 480 & 94p & Temp Alarm (2 & Brds) \\
\hline ETI 480PS & 106p & & 48p \\
\hline ETI 155A & 26p & Function Gen. & 42p \\
\hline ETI 155B & 35p & Drill Speed Control & 52p \\
\hline ETI 155C & 88p & & \\
\hline ETI 1550 & 94p & & \\
\hline & & Bench Supy. PSU
Fuzz Box & 25p
25p \\
\hline ETI 631 & 200 & Burglar Alarm & 41p \\
\hline ETI 630 & 30p & & \\
\hline ETI 444A & 22p & Injector Tracer & 43p \\
\hline \begin{tabular}{l}
May: \\
ETI 804
\end{tabular} & 130p & \begin{tabular}{l}
Metronome \\
Mainframe PSU
\end{tabular} & 22p
\(65 p\) \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{All ETI P.C.B.s avalable from January 1977 Send S.A.E. for price list or telephone. Prices include VAT and post and packing}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{T̈rade enquires welcome for prototype P.C.B.s and screen printing of front nlates ptr} \\
\hline
\end{tabular}

\section*{CLARK SCREEN PRINTERS}

CLOVELLY, CHELMSFORD ROAD
BATTLESBRIDGE, WICKFORD, ESSEX Telephone: Wickford 66761

\section*{TOUCH CONTROLLED LIGHTING KITS}

These KITS replace conventional light switches and control 300 W of lighting No mains rewiring required.
Insulated Touch Plates. All with easy to follow instructionśs.
NEW! TSD300K - TOUCHSWITCH and DIMMER combined. ONE touchplate to switch light on or off. Brighiness controlled by small knob. ONLY - £5.95. TS300K - TOUCHSWITCH. TWO touch plates ON and OFF. ONLY - £3.67.
TSA300K - AUTOMATIC. Ōe iouch plate. Light turns off after preset delay. ONLY - £3.67.
LD3OOK - LIGHiT DIMMER KIT - £2.45.

\begin{tabular}{|c|c|}
\hline 20 Case & NE555 8 pin dil \\
\hline isolated tab & 74188 pindil \\
\hline 6.5A 80p 8.5A 85p & 2N6027 (PUT) \\
\hline Diac 21p & 2N3055 \\
\hline
\end{tabular}
\[
\begin{aligned}
& \text { 2N602 } \\
& \text { 2N3055 } \\
& \hline
\end{aligned}
\]

QUANTITY DISCOUNTS ON REOUEST
Add \(8 \%\) VAT \(+25 p\) P\&P. Mail Order Only to
T. K. ELECTRONICS (ETI)

106 Studley Grange Road, London W7 2LX

CARBON FILM RESISTORS. \(5 \%\) E12 Series. \(1 / 8 \mathrm{~W}, 1 / 4 \mathrm{~W}, 1 / 2 \mathrm{~W}\) mixed to your choice, 100 for 90p. MICROPROCESSORS SC/MP \(£ 15\), INTRO-KIT £77, KEYBOARD KIT £74, MM6800 £27. P\&P 15p. Mail order only. CANDAR, 8 Almond Drive, Caversham Park, Reading.

MPU BUILDERS. Information, Sofiware and Hardware for your MPU, inc. System 68. Send s.a.e for Price List to: K. Roche, 100 Berkshire Drive, Woolston, Warrington, Cheshire


We have expanded our premises and product range for all our existing and of course newly welcomed customers. Besides our widely acclaimed comprehensive component service which is growing in product profile, we now offer mai ordar and counter wales on the following range.

Test Equp. Wire. Boxes (plastic and metal), Tech and Project Books. Speakers. Chassis and Boxed. Modules.
Solder Microphones. Amplifiers \(i 5\) watt to 150 watt Solder Microphones. Amplifiers ( 5 watt to 150 watt). Aerials, Crossover Units, Signal Boosters. Vero Board Aerials, Cros
Headphones

NOW ALSO AVAILABLE Full range of Metal Detectors in stock
Do phone us to discuss your requrements or Send 35 p to receive our Full Product and Price List
to receive our Full Product and Price List
Better still if you can make it call and see us -we are Better still if you can make it call and see us -we are Bus Station near the County Hotel (you can park)

Telex: 995377. 48/50 Rainstord Road. 024558605
\begin{tabular}{|c|}
\hline \multirow[b]{19}{*}{\begin{tabular}{l}
Orders received before 2.00 p.m. are posted on same day \\
Vero Cases, \(60 \times 108 \times 180 \mathrm{~mm}\)
\[
\text { £2.40 }+19 p \text { VAT }
\] \\
Push-button Switches 20p \(+2 p\) VAT \\
LED DL707. \(3^{\prime \prime} . . . .6 \mathbf{6 0 p}+4 p\) VAT \\
Futaba 5LTO1 Green Clock Display
\[
£ 4.60+36 \mathrm{p} V A T
\] \\
Clock Chip AY1202 £2.80 \(+22 p\) VAT \\
Clock Chip DIL socket 30p \(+2 p\) VAT \\
Clock Printed Circuit Board
\[
\mathbf{7 5 p}+6 p \text { VAT }
\] \\
Clock Case . . . . . £2.50 +20 p VAT \\
Clock Circuit Diagram and Assembly \\
Details \\
\(+30 \mathrm{p} P\) \& P per arder \\
Barclay and Access welcome \\
Send card number with order \\
METAC-ELECTRONICS \& TIME CENTRE \\
Uxbridge \\
Daveritry \\
3 New Arcade \\
67 High Street \\
High Street \\
Daventry \\
Uxbridge. Middx. \\
Northants \\
Tel 10895) 56961 \\
Tel. 1032 72) 76545 \\
Shops open 9 to 5.30 dally
\end{tabular}} \\
\hline \end{tabular}
\begin{tabular}{|c|}
\hline Brand New Components \\
\hline  ET). \({ }^{\text {ased }}\) \\
\hline
\end{tabular}

Wire Threading (separates). W/D/Pencil £1.71, DIL Board £1.62, Wire Guides ( \(\mathrm{V}^{\prime} / \mathrm{D} /\) Strip) 'press' 2 inches long, 30 per pkt., £1.30. "Glue" 6 inches long, 10 per pkt., \(£ 1.30\). Spare Bobbin of wire 50 p. Please add 35 p P\&P for every \(£ 10\) of goods, or buy complete wire threading kit (W/D/System) for \(£ 5.95\) inc. VAT and P\&P. Zartronix, 115 Lion Lane, Haslemere, Surrey GU27 1JL.



FULL SPEC. COMPONENTS. Special مfter. 74H00 22p. 7490A 30p, 7474A 28), 75450 50p. MJE3055-50p. ITF -6870ST N \(1 \times 1\) + Bata 50p, MM5314 + Data £3.25. Sperry SP425.09 (9 digit \(7 \mathrm{seg})\) + Data £1, SKT 50p, 55545 p , \(74120 \mathrm{p}, 741\) T099 (Dil) \(30 p_{1}^{\prime} 1 \mathrm{~N} 4148\) 3D BC108C 10p. T1L \(209+\) Glip 75p, BYX49 (1200v. 2.5 Amps) 35p. \(747.6^{\prime \prime}\) £1.35, RS Fuse Holder \(1 / 4^{\prime \prime}\) Panel Mnt 20p, P/P 10p.
LB Electronics, 43.Westacott
Hayes, Middx. UB4 8AH (ETI)

WATCH BATTERIES 82p EACH INC. VAT \& P\&P. CASH WITH ORDER AND BATTERY NO. OR OLD BATTERY. HAYES AUDIO, 44 NORTH CRESCENT, LONDON N3.
\(16 \times 16\) Sealectro Patch Board. Perfect condition, suitable for D.I.Y. Synthesisor £ 18.00 o.n.o. ( 35.00 new). Ruislip 36629

\section*{E.T.I. P.C.B's}

Available for every E.T.I. Project. Send s.a.e. for details or telephone your order using Barclaycard or Access. Alternatively send Postal Orders with written order.

\section*{CROFTON ELECTRONICS LIMITED}

35 Grosvenor Road, Twickenham Middlesex TW1 4AD

Tel. No. 01-891 1923

\begin{abstract}
\section*{VALVES}

Radio - TV - Industrial - Transmitting We dispatch Valves to all parts of the world by return of post. air or sea mail. 2700 Types in stock. 1930 to 1976 Obsolete types a speciality List 20p Quotation SAE Open to callers Monday to Saturday 930 to 500 . Closed Wednesday 100 We wish to purchase all types of new and boxed Valves Cat Writ Sureay PO20 88N. W., The Parade, 2023 (STD Cont 024366) 20 8BN. West Wittering 2023 (STD Code 024366 )
\end{abstract}

VHF pocket portable radio tuning 108 to 138 MHz . Very sensitive. Easily adjusted to tune over the 144 MHz band. \(£ 16.50\) (inc. post and VAT). Romak Eng. Lid., 10 Hibel Road, Macclesfield, Cheshire

QUALITY CARBON FILM RESISTORS. 5\% tolerance, 0.25 watt, 5 each value, 30 values spaced throughout the range, \(4 R 7\) to 2 M7. 150 in all. Send \(£ 1+\) strong s.a.e. \(9 p\) stamp) or \(15 p\) P\&P. Mail order only. D.J.T. 15 Spring Head Road, Kemsing, Sevenoaks, Kent TN 15 6QL.

TURN YOUR SURPLUS COMPONENTS INTO CASH. PHONE 049135529 (Oxon).

\section*{ADVERTISEMENT INDEX}
\begin{tabular}{|c|c|c|c|c|c|}
\hline A.D.E.. & Mini ad & E.D.A. & & Precision Pelite & 69 \\
\hline Ambit & & Elecironic Mailorder & 43 & Pulse & 39 \\
\hline Anco & Mini ad & Electrovalue & 82 & Radio Rotex & 78 \\
\hline Arrow & 61 & Greenbank & 24 & Hamar & Mini ad \\
\hline Bamber & 40 & Henry's Radio & 83 & R. F. Equipment & 82 \\
\hline Bear Microcomputer & 76 & Hifi Care & 38 & Sintel & 47 \\
\hline Bi Pak & 4 \& 5 & I.L.P. & 79 & Sol Invictus & 72 \\
\hline Bywood & 12 \& 61 & Island Devices & Mini ad & Swanley & 76 \\
\hline Cambridge Learning & 17 & Jayen & 24 & Jamironic. & Minicad \\
\hline Calronics & 18 & Kramer \& Co. & 24 \& 76 & -echnomatic & 69 \\
\hline Clarke Screen Printers & Mini ad & Lynx & . 71 & Tempus & 69 \\
\hline Clifipalm & ... 23 & Maplin-...... & 84 & 1. K-Etectronics & Mini ad \\
\hline C. N. Stevenson & Mini ad & Marshall8 . . & - 14 & Vero & 40 \\
\hline Crofton & & Melac, & 8 \& Mini ad & Watiord & 2 \\
\hline Decon & & Minikils & 76 & Wilmslow & 24 \\
\hline Doram & 40 \& 72 & Newnes & 17 & & \\
\hline
\end{tabular}

\section*{Alathoniks toitey reader sevices}

\section*{BACK NUMBERS}

These cost 40p. each. Postage and packing costs 15 p for the firsI. and 10 p for each subsequen issue. Orders to ETI BACK ISSUES Dept. please. We CANNOT supply the following is sues: All 1972 January, February, April, August. October and November 1973; January, March. September, October. Movember and December 1974 January, June, July, August, September November and December 1975; January, March 1976.

\section*{PHOTOCOPYING SERVICE}

Due to the steady pressure on our back numbers department, and the dwindling number of issues available, we have set up a photocopying service. This involves our staff in considerable time consuming endeavour, so we hope our readers understand our decision to apply a fla charge of \(50 p\) inclusive. This covers any article regardless of the number of pages involved. from any ONE issue of EII.
Please state clearly NAME of article, and from which issue the copy you require is taken. Address envelope to 'ETI Photocopy Service

\section*{EDITORIAL QUERIES}

Written queries can only be answered when accompanied by an SAE, and the reply can take up to three weeks. These must relate to recent articles and not involve ETI staff in any research Mark your envelope ETI OUERY ... Telephone queries can only be answered when technical statf are free, and NEVER before 4 p.m.

\section*{BINDERS}

Binders, for up to 13 issues, are available for £2.50 including VAT and carriage. Send orders to ETI BINDERS DEPT

\section*{SPECIAL ISSUES}

Presently we produce six specials. See our ads on pages 62, 63

\section*{T-SHIRTS}

ETI T-shirts are available in Large, Medium, or Small sizes. They are yellow cotton with black printing and cost \(£ 2.00\) each. Send orders to ET T-SHIRTS Dept.

\section*{BOOKS}

ETI Book Service sells books to our readers by mail order. The prices advertised in the magazine include postage and packing. Send orders to ETI Book Service, P.O. Box 79, Maidenhead. Berks.

\section*{NON-FUNCTIONING PROJECTS}

We cannot solve the probiems faced by inidividual readers building our projects unless they are concerning interpretation of our articles. When we know of any error we print a correction as soon as possible at the end of News Digest. Any useful addenda to a project will be similarly dealt with. We cannot advise readers on moditications to our projects.

\section*{SUBSCRIPTIONS}

The annual subscription to ETI for UK readers is E6. The current rate for readers overseas is \(£ 7\). Send orders to ETI SUBS Dept. PAYMENT IN STERLING ONLY PLEASE.

\section*{PCBs}

PCBs are avaidable for our projects from companies advertising in the magazine.

PLGASE MARK REVZRSE OF GACH CHEQUE WTH NAME A ADDRESS ANO ITEMS AECUIRED. ALLOW 10 TO 14 DAYS FOR DELIVEAY



Posi paid. inc.
refund voucher for 40 p


All commanications please to Head Othice please 10 Head Othice.
Enam address. Dept. Egham address. Dept.

28 ST JUDES ROAD ENGLEFIELD GREEN EGHAM SURREY TW 20 OHB Tal Egham 3603 Telex 264475. Shop 9.5.30, 9.1 pm Suts NORTHERN BHANCH 680 Burnage Lane Burnage Manchester M19 1NA. Tel. (061)4324945. Shop 9-5.30 pm, 1 pma Sate

```


[^0]: SHOP
 AT
 18 BALDOCK ST., WARE, HERTS

[^1]: IMPORTANT NOTE: The outputs from this half of the VDU module will be connected via ribbon cable to the B board next month. The PCB has however been laid out with connections for a Vero 31 way connector, if the memory board is not used a connector can be used on this board - so if you intend to build the complete module DO NOT solder a 31 way connector

[^2]: Encon
 7/9 ARTHUR ROAD, READING, BERKS. (rear Tech. College, King's Road). Tel. Reading 582605

[^3]: Fig. 2. Chart showing characteristics of oscilloscope screen phosphors.

