This photo was taken using this

EXPOSURE METER

ELECTRONICS IN GEOPHYSICAL SURVEYS

PROJECTS:
CMOS TESTER
TONE BURST GENERATOR
DYNAMIC NOISE FILTER

NEW SERIES
CMOS INTRO TO THIS VERSATILE TECHNOLOGY
Manufacturers detailed leaflet £3.95.

FREE CIRCUITS

Our 8 Page A4 Multi-IC Booklet is supplied FREE with purchase of
linear IC's, work £3.95 or in
(1) £1.56

Strip

£1.95

others include 15% of 100.

PHOTO-DARLINGTON

New 24-pin NE555, £1.56

LINE-O-LIGHT

NEW LED Linear Circuits

74 TTL

MULLARD MODULES

VAT INC

OPTO-ISOLATORS

MAINS TRANSFORMERS

Digital Switch
FEBRUARY 1976 VOL 5, No. 2.

Features

CMOS 10
Part One of a new series

GEOPHYSICAL SURVEY 30
Electronics in the search for energy

DESKTOP GRAPHICS 54
Graph drawing made easy with this Microcomputer

OP-AMPS 58
Part Three discusses the design of a flat response amplifier

ELECTRONICS - IT'S EASY 62
The First of our series on Digital Electronics

Projects

CMOS TESTER 19
Sorts out the duff ICs

TONE BURST GENERATOR 25
Invaluable in the audio workshop

DYNAMIC NOISE FILTER 37
Eliminate record surface noise!

EXPOSURE METER 46
An excellent design for the amateur photographer

BOOSTER AMP 51
Now everyone can have SOW per channel

Data Sheets

AY-1-0212 & AY-1-5051, ORGAN GEN/DIVIDER ICs 41
AY-5-3507, A 3½ DIGIT DVM IC 42

News & Information

NEWS DIGEST 6

ETI BINDERS 36

ETI T-SHIRTS 36

MARCH'S ETI 40

ETI BOOKS 45

ETI SPECIALS 67

ELECTRONICS TOMORROW 88

TECH-TIPS 70

READER SERVICES 82

Cover: It's a nice exposure meter we know, but we thought you'd rather see a picture of a pretty girl. Well, we asked Lia to St James's Park and did some photos. This cover shot was taken using 1/125 at F8 measured on our simple meter.
74 SERIES TTL IC's

<table>
<thead>
<tr>
<th>Type</th>
<th>Quantity</th>
<th>Type</th>
<th>Quantity</th>
<th>Type</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPS8</td>
<td>9p</td>
<td>BPS14</td>
<td>10p</td>
<td>BPS16</td>
<td>11p</td>
</tr>
<tr>
<td>7441P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Linear IC

- **8 pin**: 20p

Timers

- **NE555**: 42p
- **DUAL NE556**: 85p

Transistors

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC128</td>
<td>15p</td>
<td>2N2218</td>
<td>15p</td>
</tr>
<tr>
<td>AC176K</td>
<td>15p</td>
<td>2N2219</td>
<td>15p</td>
</tr>
<tr>
<td>AC176K/176K</td>
<td>35p</td>
<td>2N2221</td>
<td>15p</td>
</tr>
<tr>
<td>7405</td>
<td>10p</td>
<td>2N2221A</td>
<td>15p</td>
</tr>
<tr>
<td>7406</td>
<td>10p</td>
<td>2N2222</td>
<td>15p</td>
</tr>
<tr>
<td>7407</td>
<td>10p</td>
<td>2N2222A</td>
<td>15p</td>
</tr>
<tr>
<td>7408</td>
<td>10p</td>
<td>2N2223</td>
<td>15p</td>
</tr>
<tr>
<td>7409</td>
<td>10p</td>
<td>2N2223A</td>
<td>15p</td>
</tr>
<tr>
<td>7410</td>
<td>10p</td>
<td>2N2224</td>
<td>15p</td>
</tr>
<tr>
<td>7411</td>
<td>10p</td>
<td>2N2224A</td>
<td>15p</td>
</tr>
<tr>
<td>7412</td>
<td>10p</td>
<td>2N2225</td>
<td>15p</td>
</tr>
<tr>
<td>7413</td>
<td>10p</td>
<td>2N2225A</td>
<td>15p</td>
</tr>
<tr>
<td>7414</td>
<td>10p</td>
<td>2N2226</td>
<td>15p</td>
</tr>
<tr>
<td>7415</td>
<td>10p</td>
<td>2N2226A</td>
<td>15p</td>
</tr>
<tr>
<td>7416</td>
<td>10p</td>
<td>2N2227</td>
<td>15p</td>
</tr>
<tr>
<td>7417</td>
<td>10p</td>
<td>2N2227A</td>
<td>15p</td>
</tr>
<tr>
<td>7418</td>
<td>10p</td>
<td>2N2228</td>
<td>15p</td>
</tr>
<tr>
<td>7419</td>
<td>10p</td>
<td>2N2228A</td>
<td>15p</td>
</tr>
<tr>
<td>7420</td>
<td>10p</td>
<td>2N2229</td>
<td>15p</td>
</tr>
<tr>
<td>7421</td>
<td>10p</td>
<td>2N2229A</td>
<td>15p</td>
</tr>
<tr>
<td>7422</td>
<td>10p</td>
<td>2N2230</td>
<td>15p</td>
</tr>
<tr>
<td>7423</td>
<td>10p</td>
<td>2N2230A</td>
<td>15p</td>
</tr>
<tr>
<td>7424</td>
<td>10p</td>
<td>2N2231</td>
<td>15p</td>
</tr>
<tr>
<td>7425</td>
<td>10p</td>
<td>2N2231A</td>
<td>15p</td>
</tr>
<tr>
<td>7426</td>
<td>10p</td>
<td>2N2232</td>
<td>15p</td>
</tr>
<tr>
<td>7427</td>
<td>10p</td>
<td>2N2232A</td>
<td>15p</td>
</tr>
<tr>
<td>7428</td>
<td>10p</td>
<td>2N2233</td>
<td>15p</td>
</tr>
<tr>
<td>7429</td>
<td>10p</td>
<td>2N2233A</td>
<td>15p</td>
</tr>
<tr>
<td>7430</td>
<td>10p</td>
<td>2N2234</td>
<td>15p</td>
</tr>
<tr>
<td>7431</td>
<td>10p</td>
<td>2N2234A</td>
<td>15p</td>
</tr>
<tr>
<td>7432</td>
<td>10p</td>
<td>2N2235</td>
<td>15p</td>
</tr>
<tr>
<td>7433</td>
<td>10p</td>
<td>2N2235A</td>
<td>15p</td>
</tr>
<tr>
<td>7434</td>
<td>10p</td>
<td>2N2236</td>
<td>15p</td>
</tr>
<tr>
<td>7435</td>
<td>10p</td>
<td>2N2236A</td>
<td>15p</td>
</tr>
<tr>
<td>7436</td>
<td>10p</td>
<td>2N2237</td>
<td>15p</td>
</tr>
<tr>
<td>7437</td>
<td>10p</td>
<td>2N2237A</td>
<td>15p</td>
</tr>
<tr>
<td>7438</td>
<td>10p</td>
<td>2N2238</td>
<td>15p</td>
</tr>
<tr>
<td>7439</td>
<td>10p</td>
<td>2N2238A</td>
<td>15p</td>
</tr>
<tr>
<td>7440</td>
<td>10p</td>
<td>2N2239</td>
<td>15p</td>
</tr>
<tr>
<td>7441</td>
<td>10p</td>
<td>2N2239A</td>
<td>15p</td>
</tr>
<tr>
<td>7442</td>
<td>10p</td>
<td>2N2240</td>
<td>15p</td>
</tr>
<tr>
<td>7443</td>
<td>10p</td>
<td>2N2240A</td>
<td>15p</td>
</tr>
<tr>
<td>7444</td>
<td>10p</td>
<td>2N2241</td>
<td>15p</td>
</tr>
<tr>
<td>7445</td>
<td>10p</td>
<td>2N2241A</td>
<td>15p</td>
</tr>
<tr>
<td>7446</td>
<td>10p</td>
<td>2N2242</td>
<td>15p</td>
</tr>
<tr>
<td>7447</td>
<td>10p</td>
<td>2N2242A</td>
<td>15p</td>
</tr>
</tbody>
</table>

Diodes

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>OA10</td>
<td>15p</td>
</tr>
<tr>
<td>OA17</td>
<td>5p</td>
</tr>
<tr>
<td>OA45</td>
<td>5p</td>
</tr>
<tr>
<td>OA47</td>
<td>5p</td>
</tr>
<tr>
<td>OA200</td>
<td>15p</td>
</tr>
<tr>
<td>OA2500</td>
<td>5p</td>
</tr>
<tr>
<td>OA314</td>
<td>4p</td>
</tr>
<tr>
<td>OA440</td>
<td>3p</td>
</tr>
<tr>
<td>OA600</td>
<td>4p</td>
</tr>
<tr>
<td>OA900</td>
<td>5p</td>
</tr>
<tr>
<td>OA1000</td>
<td>5p</td>
</tr>
<tr>
<td>OA4000</td>
<td>5p</td>
</tr>
<tr>
<td>OA5000</td>
<td>5p</td>
</tr>
<tr>
<td>OA7000</td>
<td>5p</td>
</tr>
</tbody>
</table>

S.C.R.'s

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC628</td>
<td>25p</td>
</tr>
<tr>
<td>BC627</td>
<td>25p</td>
</tr>
<tr>
<td>BC630</td>
<td>25p</td>
</tr>
<tr>
<td>BC631</td>
<td>25p</td>
</tr>
<tr>
<td>BC632</td>
<td>25p</td>
</tr>
<tr>
<td>BC633</td>
<td>25p</td>
</tr>
<tr>
<td>BC634</td>
<td>25p</td>
</tr>
<tr>
<td>BC635</td>
<td>25p</td>
</tr>
<tr>
<td>BC636</td>
<td>25p</td>
</tr>
<tr>
<td>BC637</td>
<td>25p</td>
</tr>
<tr>
<td>BC638</td>
<td>25p</td>
</tr>
<tr>
<td>BC639</td>
<td>25p</td>
</tr>
<tr>
<td>BC640</td>
<td>25p</td>
</tr>
<tr>
<td>BC641</td>
<td>25p</td>
</tr>
<tr>
<td>BC642</td>
<td>25p</td>
</tr>
<tr>
<td>BC643</td>
<td>25p</td>
</tr>
<tr>
<td>BC644</td>
<td>25p</td>
</tr>
<tr>
<td>BC645</td>
<td>25p</td>
</tr>
<tr>
<td>BC646</td>
<td>25p</td>
</tr>
<tr>
<td>BC647</td>
<td>25p</td>
</tr>
</tbody>
</table>

Voltage Reg.

- **L129 (L7400)**: 85p
- **L130 (L7412)**: 85p
- **L131 (L7415)**: 85p

F.E.T.

- **2N3819**: 15p
- **2N3822**: 15p
- **2N3824**: 15p
- **2N3826**: 15p
- **2N3828**: 15p

L.E.D.

- **T1209/FEU117**: 6p
High quality modules for stereo, mono and other audio equipment.

STEREO FM TUNER
Fitted with Phase Lock-loop
- FET Input Stage
- VARI-CAP dialle tuning
- Switched AFC
- Multi turn pre-sets
- LED Stereio Indicator

SPECIFICATION:
- Sensitivity 3.5µV
- Signal to Noise Ratio 80dB
- Frequency response +3dB 20Hz -20KHz
- Harmonic Distortion 0.025% at 1kHz
- Overall size 115mm x 230mm x 30mm

OUR PRICE ONLY
£19.95

The 450 Tuner provides instant program selection at the touch of a button ensuring accurate tuning of 4 pre-selected stations, any of which may be altered as often as you choose, by simply changing the settings of the pre-set controls.

Used with your existing audio equipment or with the BI-KITS MPA 30 or the MK60 Kit etc. Alternatively the PS12 can be used if no suitable supply is available, together with the Transformer T538.

The S450 is supplied fully built, tested and aligned. The unit is easily installed using the simple instructions supplied.

STEREO PRE-AMPLIFIER
- A top quality stereo pre-amplifier and tone control unit. The six push-button selector switch provides a choice of inputs together with two really effective filters for high and low frequencies, plus tape output.

SPECIFICATION:
- Signal to Noise Ratio 80dB
- Overall size 63mm. 105mm, 30mm.

OUR PRICE ONLY
£13.50 + 62p postage

STereo 30
Comprising TEAK 60 AUDIO KIT: comprising TEAK 60 AUDIO chassis
- Size 162mm x 111/2mm x 33/4mm.
- Complete PRICE £27.55

STEREO 30 is especially designed to power 2 of the AL60 Amplifiers, or use with a wide range of inputs i.e. high quality ceramic pick-up, magnetic P.O., etc. Complete with push-button selector switch, mains switch and fuse holder and universal mounting brackets enabling it to be installed in a record plinth, cabinets of your own construction or the cabinet available. Ideal for the beginner or the advanced constructor who requires hi-Fi performance with a minimum of installation difficulty (can be in stalled in 30 mins).

OUR PRICE ONLY
£13.50 + 62p postage

AL60
- **25 Watts (R.M.S.)**
- **Max Heat Sink temp 90°C.**
- **Frequency response 20Hz to 100kHz.**
- **Distortion better than 0.1 at 1kHz.**
- **Supply voltage 15-50V.**
- **Thermal Feedback.**
- **Latest Design Improvements.**
- **Load – 3, 4, 5, or 16 ohms.**
- **Signal to noise ratio 80dB.**
- **Overall size 63mm. 105mm. 13mm.**

Especially designed to a strict specification. Only the latest components have been used and the latest solid-state circuitry incorporated in this powerful little amplifier which should satisfy the most critical of listeners.

OUR PRICE ONLY
£3.95 + 62p postage

Transformer BMT80
- £2.60 + 62p postage

PS12
- £3.00 + 62p postage

MPA 30
- £2.65

Enjoy the quality of a magnetic cartridge with your existing ceramic equipment using the new M.P.A. 30, a high quality pre-amplifier enabling magnetic cartridges to be used where facilities exist for the use of ceramic cartridges only. It is provided with a standard DIN input socket for ease of connection.

Full instructions supplied.

AL10-20-30
Ideal for record players, recorders, stereo amplifiers, etc.

HARMONIC DISTORTION
Po = 3 watts
f = 1KHz 0.5%

LOAD IMPEDANCE
8-16ohm

FREQUENCY RESPONSE
+3dB 20Hz -20KHz

INPUT VOLTAGE
100mV into 100K ohms

APPLICATION
- As a complete stereo pre-amp together with power amplifiers. Power supply for AL10/20/30, AR25 etc.
- For use with AL10/20/30, AL20/30, etc. As a complete stereo pre-amp together with power amplifiers. Power supply for AL10/20/30, AR25 etc.
- As a complete stereo pre-amp together with power amplifiers. Power supply for AL10/20/30, AR25 etc.

OUR PRICE ONLY
£2.95 + 62p postage

AL10 3w R.M.S.
£2.30

AL20 5w R.M.S.
£2.65

AL30 10w R.M.S.
£2.95

NEW PA12 Stereo Pre-Amplifier completely redesigned for use with AL10/20/30 Amplifiers. Modules. Features include switchoff volume. Balance, Bass and Treble controls. Complete with tape output.

OUR PRICE ONLY
£6.50

Stabilised Power Supply Type SPM80
SPM80 is especially designed to power 2 of the AL60 Amplifiers, up to 15 watts (R.M.S.) per channel simultaneously. With the addition of the Mains Transformer BMT80, the unit will provide outputs of up to 1.5A at 35V. Size: 63mm. 105mm. 30mm. Incorporating short circuit protection.

OUR PRICE ONLY
£2.60 + 62p postage
An Ampex BCC-2 portable colour camera was recently carried to the summit of the Dufourspitze, Switzerland's highest peak. The cameraman is also wearing the backpack, through which this new hand-held camera generates full broadcast-quality pictures. Behind him is the dish of the temporary microwave link, and the Ampex VR-3000B portable videotape recorder is in the foreground with a monitor.

'SILVER' CALCULATOR FROM SINCLAIR

This new Sinclair 'Cambridge Memory' pocket calculator, which is finished in 'silver' and matt-black is supplied with a comprehensive instruction booklet and a rigid plastic carrying case, all packaged in an attractive 'silver' gift presentation box.

Featuring the four basic functions + − × ÷, the unit also incorporates a percentage key and an accumulating memory, which makes it ideal for all non-scientific applications. It is expected to appeal to a wide cross-section of people ranging from housewives to business men.

Typical selling price is £14.95 including VAT.

£1 OFF SINCLAIR CALCULATORS

These giant size Daz packs, which feature £1 refund on any Sinclair Calculator vouchers are currently being sold into 100,000 retailers nationwide. Millions of 'money-off' packs of Daz will carry this joint Proctor and Gamble and Sinclair Radionics promotion, which is valid until 1st November, 1976. The offer is valid for any Sinclair calculator, regardless of the price paid to the retailer.

Customers must supply the following proof of purchase to Sinclair, who will send a £1 refund by return:
- the front of the calculator pack.
- £1 voucher from the Daz pack.
- the connecting strip from the top of any bottle of Fairy liquid, and, either, – the end flap from any carton of Fairy household soap – any Head and Shoulders shampoo carton top.

NOVUS BONUS

This is just one of many letters we've received:

Dear Sir,
I have just received my Novus 3500 calculator and am delighted with its performance. Those of your readers who have also purchased one of these machines will be pleased to know that it is capable of lower case functions in addition to those of the inverse trig functions. Prompted by the similarity between the 3500 and the more expensive 4510 I have found that the ARC key can be used in the same way as the F key on the 4510. With x in the display and after touching ARC, the functions shown in the right hand column are performed on touching the corresponding key in the left hand column:

\[
\begin{array}{c|c}
\sqrt x & M+ M+ x^2 \\
\div & \\
\times & \text{rads}\times\text{.degrees} \\
+ & M- \\
\end{array}
\]

The two machines are therefore identical in performance. In correspondence with Novus prior to receiving my 3500 they had explained that the difference between the two was the lack of lower case functions on the 3500 excepting the inverse functions. This bonus greatly enhances the value of an already exceptional offer.

Yours faithfully,
G.O.Hayward,
Dyfed.

WHAT'S THIS?

Is it a flying saucer, or a contemporary flying pan? A new hovercraft perhaps? In fact, this is the new 3M Scotch 948 "Winchester" magnetic disc data module. The one illustrated has a capacity of 70 million bytes of information.
TRANSISTEK MODULAR CASES FOR ELECTRONIC INSTRUMENTS

Following their recent launch of the Transistek range of modular electronic instrument cases, Lektrokit Ltd now have available ex-stock a number of models in the WS3 Series. Ideal for housing logic circuitry, remote control units, power supplies, telecommunications equipment and the like, these low-cost extruded and laminated aluminium cases are suitable for both production units and prototype or development work.

Four sizes of the functional WS3 instrument case are offered (from 70mm high x 220mm deep x 286mm wide to 128.5 x 260 x 442mm) and each enables most types of electronic or electrical components to be fitted. Several sizes of perforated support trays and extruded aluminium cross sections are available for mounting such components, and the cases can also be supplied with ventilation holes in their lids.

There are eight styles of instrument case in the complete Transistek range, all of which are offered in various colours for production quantities; items from stock are blue and unventilated. Further models will be announced as soon as they are available. Lektrokit Ltd. 3 Trafford Road, Reading RG1 8JR.

HANDBOOK OF DATA COMMUNICATIONS

This 400-page volume has been published by the National Computing Centre for the Post Office, and is aimed at computer people who need to acquire a knowledge of telecommunications. The Post Office holds a range of training courses in data communications and now utilise their expertise in the production of a volume which serves both as an introduction to, and reference on data communications. The text, although easily readable, is also concise and quick to use for reference. Starting with the basics of communications and telephone systems the book progresses through transmission and modulation systems, terminals, error correction, concentrators and multiplexers, to distributed intelligence, message and packing systems and a summary of data transmission services in the UK and abroad. Priced at £8.50, the book can be obtained from technical bookshops or direct from the Post Office at: Data Communications Division (TMk4.3.1), Freepost, London EC2B 2TX.

ELECTROVALUE CATALOGUE

Now available is the latest edition (No.8) of the Electrovalue catalogue. This runs to 144 pages and gives plenty of useful information on transistors and IC's. Virtually all the components and hardware one could want are listed. Included is a 40p voucher refundable on purchases of £5 or over. The catalogue is available for 40p post paid, from Electrovalue Ltd., 28 St. Judes Road, Englefield Green, Egham, Surrey TW20 OHB.
LASER GUN -- A lightweight laser gun, weighing only 13 pounds, can be aimed by infantrymen to pinpoint targets for laser-homing missiles and projectiles, or used to designate targets for airborne laser spot trackers. It is built by the Hughes Aircraft Company, which has delivered 12 development units to the US Army Electronics Command. Starting March 1, the US Army will begin a six-month programme to field test the equipment under actual operating conditions against a variety of laser seekers and laser spot trackers.

LOW-PROFILE KEY SWITCHES

The new DC-60 Series switches from Invader Components offers the same desirable features as expensive reed or solid state switches at less cost than mechanical types. Profile of the new switch is a mere 19.558mm (0.7770in) including cap. High reliability is achieved with a trifurcated gold contact design giving a minimum 10,000,000 operations. Mounting alternatives include snap-in clips, high strength solder terminal mounting and heat stable bottom locating pins. Switch housing is in mineral filled nylon for high stability throughout the life of the device.

CMOS PRESETTABLE COUNTERS

Two new presettable up/down counters have been added to the comprehensive CD4000 Series of COS/MOS digital integrated circuits produced by RCA Solid State—Europe. The RCA-CD4510BE is a presettable binary-coded-decimal up/down counter and the CD4516BE is a presettable binary up/down counter; each device consists of four synchronously clocked gated D-type flip-flops connected as counters. Applications include up/down difference counting, multistage synchronous counting, multistage ripple counting, and synchronous frequency division.

The devices are designed for medium-speed operation (typically 7MHz), and incorporate facilities for resetting and presetting. The counters are cleared by a high level on the 'reset' line, and can be preset to any binary number by a high level on the 'preset' line. The counters can be cascaded in ripple mode by connecting the 'carry-out' to the clock of the next stage. Both devices are supplied in 16-lead dual-in-line plastic packages.

5-FUNCTION LCD WATCH CIRCUIT

AMI Microsystems have announced the development and production of the first 5-function, 4-digit LCD (liquid crystal display) watch with a voltage tripler. Designated S1424A, it is designed to interface directly with the standard 4-digit LCD and requires only two push buttons for all display and setting functions. In normal operation the S1424A provides a continuous display of hours and minutes. By pressing one button, hours and minutes are replaced with a display of the month and date; a second operation of the same button causes a display of seconds.

Also contained in the circuit is a calendar which automatically compensates for the 28-, 30- and 31-day months during the course of the year, so that the watch needs only to be reset when the batteries have been changed.

An integral voltage doubling or tripling circuit derives either 3V or 4.5V display drive voltage from a single battery at 1.5V, without the need for coils or transformers. This allows the manufacturer a wider choice of liquid crystal displays which, additionally, will present a greater contrast and viewing angle when driven from a 4.5V source.

The S1424A is available in a variety of packages, including a 40-pin DIP (S1427A) for evaluation purposes or clock applications. AMI Microsystems Ltd, 108A Commercial Road, Swindon, Wilts.

METRIC TOOL SETS

Set A -- Six instrument screwdrivers from 0.5mm to 3.8mm blade width. The tempered steel blades are mounted in chromium plated brass handles with a freely rotating top. Price £1.32 plus VAT.

Set B -- A combination set of nineteen pieces comprising five open ended, five socket spanners, allen screw, cross-head, and plain screwdrivers all of which fit into a collect driving handle. Price £3.28 plus VAT.

All the tool sets are supplied in a rigid plastic case with clear lid. Light soldering Developments Ltd., 97-99 Gloucester Rd, Croydon, Surrey.
Videomaster
urge all good electronics enthusiasts to play the game

The best thing about the Videomaster Home T.V. Game Mk. III is that the sheer pleasure of building it is immediately followed by the excitement of playing three fascinating games.

The famous Videomaster is now available for you to make. It plugs into any standard UHF 625 line TV set, and it shouldn't take you longer than a few hours to build.

In detail... The Videomaster Mk. III has eleven integrated circuits... four transistors... eleven diodes... is easy to build... with no alignment necessary because with ready-built and tested transistorized UHF modulator, is complete with all parts... including fully drilled and prepared p.c.b... handsome plastic box... control leads... complete step by step assembly instructions... Runs on a PP7 9 volt battery... and has logic and analogue "state of the art" circuitry all with National Semiconductors CMOS devices... with full specification.

The cost? Only £19.95 (+ VAT)

POST TODAY TO:

Videomaster Ltd
119 / 120 Chancery Lane, London WC2A 1QU

Please send me... (insert no.) Videomaster Mk. III kits at £21.55 ea. inc. VAT, P & P

I enclose my cheque/money order for £

Tick if VHF Modulator required ☐ - £1 extra

NAME
ADDRESS

ALLOW 14 DAYS FOR DELIVERY
THE FEATHEP PART OF A NEW SERIES BY T. BAILEY

THE AVAILABILITY OF THE CD4000 series of chips brings CMOS to the forefront of logic technology to rival TTL in many applications. CMOS is far less critical as regards power supplies and possesses high noise immunity as well as capabilities which are not offered by other logic families. In this article we shall give various circuits which illustrate the use of CMOS. We suggest that these circuits can be 'breadboarded' on ETI UtilityBoard (Nov 75 issue) using DIL sockets, there is nothing like trying it to see. Some of the circuitry, of course, is capable of realisation in a number of different logic families, so that, in these cases, we will merely be introducing equivalents of familiar devices. However, some of the applications we give show the revolutionary possibilities of CMOS.

HANDLING AND USE

Firstly we shall deal with the disadvantages of CMOS and get these behind us before we look more closely at some of the virtues. The first point is that these devices are very susceptible to surges of over-voltage from static electricity and un earthed test equipment. When you come to buy any of the ICs we will discuss you should find them with their leads buried in foam. This foam is conductive and protects the device so do not remove it until the IC is to be put in circuit. If you run out of foam for storing devices then stick them into a piece of soft balsa wood. Whatever else you do, you must not keep them in plastic containers or use ordinary plastic foam which may develop a great deal of static. It is in fact a good rule to keep the devices away from all plastics as much as possible including any nylon clothing. It is sensible to use IC sockets for the more expensive devices and also for any chip you may wish to re-use, but if you do solder them solder the V_{SS} pin first, then V_{DD} and then all the others. The reason for this is that the common ranges of CMOS have internal protection devices which operate fully only when the supply lines are connected. While we are on the subject of soldering, check that your iron and any other instruments you may use (meters, oscilloscopes, etc.) are all properly earthed.

The only other real disadvantages of CMOS compared with TTL are that it is slower (typical gate rise time 25ns) and that a few operating precautions are necessary. Firstly, all unused inputs must go somewhere. The alternatives are tying unused inputs to used inputs, either supply line as appropriate, or to a supply line via a resistor (220kΩ is usually about right). The last solution is particularly helpful for inputs to which off-board connections are to be made. This avoids leaving the input "floating" until it is wired in. The other point is to ensure that the chips do not have signals at their inputs when the power supply is not on.

Now we shall consider a few of the advantages of CMOS. Most of these will come out more clearly later and so we shall just mention them briefly here. The principal virtue is the ease of choice of power supply which may be anywhere between three and fifteen volts at low current. The actual power required depends on operating frequency (see Fig. 1) being comparable with TTL at ten megahertz but in the region of a few microwatts at sub-kilohertz speeds. Voltage regulation is not required but operating speed and current consumption rise with increasing supply voltage. For most practical purposes CMOS will run off a nine volt battery or the simplest of mains power supplies. Other advantages include high noise immunity and analogue possibilities. Before we proceed with some circuitry a table of operating conditions (Table 1) has been given and these should be adhered to rigidly.

Table 1: CMOS Operating Limits

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Temperature</td>
<td>-65 to +150°C</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40 to +85°C</td>
</tr>
<tr>
<td>Supply Voltage Limits (V<sub>DD</sub>−V<sub>SS</sub>)</td>
<td>-0.5 to +15V</td>
</tr>
<tr>
<td>Package Dissipation</td>
<td>200mW max.</td>
</tr>
<tr>
<td>Input Voltage</td>
<td>V<sub>SS</sub> < V<sub>in</sub> < V<sub>DD</sub></td>
</tr>
<tr>
<td>Recommended Supply Voltage</td>
<td>+3V to +15V</td>
</tr>
</tbody>
</table>

Unused inputs should be tied to a supply line. No input should be present when the supply lines are off.

Fig. 1. Power dissipation in CMOS as a function of frequency for a) a simple gate and b) an MSJ package.
SIMPLE GATES

It is an unpleasant fact that it seems one must always start considering any subject at its least interesting parts and it is hardly surprising that the least interesting logic ICs are the simple gates.

We shall assume that the reader is familiar with the truth tables and terminology of the subject and consequently our discussion will mainly be on the subject of monostable and astable multivibrators. For ease of future reference a list of basic CMOS gates and their pin-outs is given in fig. 2. It is worth remembering that inverters may be realised by trying together all the inputs of a NAND or NOR gate, thus allowing a circuit requiring two NOR gates and two inverters to be constructed for a single type 4001A package.

ASTABLE MULTIVIBRATORS

The basic CMOS astable is shown in fig. 3. This could of course be built using any of the packages in fig. 2 with the exceptions of the 4030A and 4050A, indeed, the 4049A could produce three of these circuits simultaneously. The period is approximately $1.4RC$ (R in ohms, C in farads) and the waveform may have a non-unity mark-space ratio due to the voltage at which the inverters switch (called the transfer voltage $-V_T$) not being exactly half way between V_{DD} and V_{SS}. The frequency is also dependent on the supply voltage. In keeping with normal practice, connections of the device to the supply voltage have not been shown.

The next few circuits will rectify some of the aberrations of the simple version. The addition in fig. 4 of R_a, which should be at least twice as large as R, makes the frequency almost independent of the supply voltage over a wide range. The frequency of any of the circuits may be made variable by making R a variable resistor.

Duty cycle adjustment may be achieved using the circuit in fig. 5. Altering the duty cycle will affect the frequency and the diode may have to be reversed to achieve the desired result.
GATING

A gated multivibrator is shown in fig. 6 where the oscillator only runs when the gate input is low, thus producing “bursts” of output in synchronism with the control signal. Using a NAND gate instead of the NOR would cause the circuit to run when the gate was high instead of low.

One of the huge advantages of CMOS is the exceedingly high input impedance. As a consequence of this the timing resistors can be very large and values in the hundred megohm region with capacitors of several microfarads can be a practical proposition.

Before we leave the astable multivibrator for a time we shall give one more circuit which corrects a tendency of all the preceding ones to “jitter” near the switching point. This requires an extra inverter and a fourth has been added as an output buffer. There are also two inhibit inputs which stop the circuit with the output high or low, depending on which is used. The theoretical diagram is shown in fig. 7. Another feature of this circuit, and indeed virtually all the others, is that the timing resistor may be substituted by one of the networks in fig. 8 to give a variable mark-space ratio. They work because the diodes effectively change the value of the timing resistor depending on whether the capacitor is charging or discharging and it is reported that values as large as 5000 : 1 may be achieved.

MONOSTABLE MULTIVIBRATORS

The basic CMOS monostable is shown in fig. 9. It is triggered by the input pulse’s leading edge and produces a positive going output pulse. The period may vary by more than ± 50% with different devices due to the dependence of the circuit on the transfer voltage of the inverter.

Once again we shall improve on the basic circuit and also give several alternative versions. The circuit in fig. 10 operates in an interesting way. The quiescent state is with the first and second inverter outputs at “0” and “1” respectively. The falling edge of the triggering pulse makes the first inverter go high. C2 charges through the diode up to \(V_{ce} \) and the second inverter goes low thus initiating the output pulse. C1 recharges through R1 and crosses the transfer voltage of the first inverter which consequently goes
low and is isolated from C2 by the now reverse biased diode. C2 then discharges through R2 and causes the second inverter to revert to its initial state thus completing the output pulse. The advantage of all this is that inverters fabricated on the same chip have similar transfer voltages and if the two time constants (R1C1 and R2C2) are made identical, errors cancel out and the period becomes well defined. It is in fact approximately equal to \(1.4R1C1 \approx 1.4R2C2\) and this circuit is capable of being retriggered during the output pulse.

Our last two monostables (figs. 11 & 12) are non-retriggerable and the two time constants should be made the same, as in the previous circuit. Fig. 12 is particularly interesting because the circuit isolates the trigger input during the output pulse as the charge on C2 holds one input to the NOR gate high, thus keeping the output low independently of the state of the trigger input.

FREQUENCY DOUBLER

The frequency doubler shown in fig. 13 works by differentiating the leading and trailing edges of the waveform and applying the resulting pulses to the two inputs of a NAND gate. This produces a complete output pulse at both the rise and fall of the input signal. The values of the discrete components will depend on the desired frequency of operation.

THE 4007

The next device we are going to consider has no equivalent in other logic systems. It is described as a "dual complementary pair plus inverter" and its type number is 4007. It can perform several different functions and while we are discussing it we shall present a number of useful circuits and have the added advantage of learning a little about the internal operation of CMOS.

In CMOS there are two different types of field effect transistors, namely n-channel and p-channel enhancement mode devices (see fig. 14). What all this means is that when biased in the conventional manner (drain positive in n-channel devices but negative in p-channel devices), the n-type turns on when the gate becomes sufficiently positive with respect to the source and the p-type when it is sufficiently negative. A "turned on" device may be considered to have a resistance of the order of 500-1k-
between source and drain whereas the equivalent resistance when "off" is about $10^{14}\Omega$. The resistance at the gate is always very high ($>10^{12}\Omega$) regardless of the state of the device.

The working of the CMOS inverter (fig. 15) should now be fairly clear. When the input is

![Fig. 14. The 2 different MOSFETs used in CMOS, (a) n-channel, and (b) p-channel.](image)

![Fig. 15. CMOS inverter, $V_{SS} = 0V$, $V_{DD} = +3$ to $+15V$.](image)

![Fig. 17. Some uses of the 4007; pins bracketed should be connected together. $V_{DD} \rightarrow$ pin 14, $V_{SS} \rightarrow$ pin 7.](image)

![Fig. 18. The Transmission Gate.](image)

![Fig. 19. An SPDT Electronic switch which could be used for multiplexing.](image)

![Fig. 20. Linear frequency-to-voltage converter.](image)
"high" the bottom FET is turned on and the top one off. Thus the output voltage is held very low. When the input is low the FETs reverse roles and the output is high. Now look at fig. 16 which shows the internal circuitry of the 4007. You should be able to see how joining a few pins together will allow three separate inverters to be produced. Reference to fig. 17 will reveal how several other gates may be produced and their mode of operation should be relatively easy to discern.

TRANSMISSION GATES

There is another way of connecting two FETS which produces a result unique to CMOS. This is the transmission gate (fig. 18). Here, due to the inverter, both FETS are either on or off simultaneously. When they are on, the path between input and output (they are interchangeable) may be regarded as a resistor of about 500-1kΩ whereas when they are off the equivalent value is about 1000MΩ.

Thus the device behaves as a switch capable of passing analogue signals with very little distortion provided that the load resistance is fairly high (=100kΩ). We shall have more to say about these "bilateral switches" later but while we are dealing with the 4007 fig. 19 shows how to connect one as a single pole-double throw switch which will pass analogue signals in both directions.

Any of the three or less inverter circuits we have mentioned to date may be realised with a 4007, as may several more interesting designs. Fig. 22 shows a linear frequency to voltage converter which works by charging a capacitor up once for every input cycle, the charge to do so being passed by a MOSFET into a summing amplifier. The component values given are based on an approximate five volt output for the given frequency. The resistor R1 should be made a 100kΩ preset if it is required to set a range exactly. The capacitor C2 "smooths" the output and need not be changed from 10μF if fast response on the upper ranges is not needed. The linearity achieved on the top range will depend on the particular "741" used and if reliable operation is required a higher speed op-amp should be used.

Fig. 21 shows an alternative monostable multivibrator. We have already given a number of multivibrator circuits and so we shall say nothing more about this one except that it has an extremely small power consumption. This is due to the feedback connection (pins 12-6) which turns off the n-channel MOSFET during the discharge of the time constant. This circuit is also an interesting demonstration of the use of components in the 4007 as discrete transistors.

A WIDE RANGE VCO

The voltage controlled oscillator depicted in fig. 24 uses two inverters as well as a separate transistor as a voltage controlled resistor. The inverters function as an astable multivibrator in the manner of Fig. 4 but the timing resistance is the parallel combination of R₁ and
the FET. As \(V_c \) varies between \(V_{ss} \) and \(V_{dd} \), so the resistance of the FET varies between about 1k and 1000MΩ. If the upper value is limited to 10MΩ by making \(R_1 \) that value, then the circuit will sweep over a 10000:1 range in frequency. There would seem to be scope here for experimenting with a pulse frequency modulation communications system. One might produce an analogue system although distortion would probably be high due to mismatching. The transmitter could be the circuit in fig. 22 and the receiver a phase locked loop along similar lines (fig. 23) using some sort of phase comparator and a low-pass R-C filter.

EXCLUSIVE-OR GATES

Exclusive-or gates, for example the 4030 (see fig. 2) will function as phase comparators but they require a unity mark-space ratio to be effective. Perhaps a voltage controlled oscillator might be designed with a narrower range along the lines of fig. 24 for both transmitter and receiver, together with a phase comparator and low pass filter as shown in fig. 24. While we are on the subject of the exclusive-or function, we shall consider two more uses of these devices. Fig. 25 shows the exclusive-or truth table and its use as a conditional inverter. This configuration causes the input signal to be inverted when the control input is high but not when it is low.

Liquid crystal displays are undoubtedly the readout devices of the future but they last longer in general if an a.c. drive is used. If then a square wave is applied to one end of a liquid crystal segment and also to the other connection via a conditional inverter (see fig. 26) then the control input will decide whether or not there is a net voltage across the segment.

CMOS and liquid crystal make an ideal combination for ultra-low power logic and display systems and so manufacturers have produced BCD to seven segment decoders and drivers specifically for this application. Their type numbers are 4054/5/6, the variations being due to the addition of latches and other refinements. These devices have too limited an appeal to justify a full description here and it is suggested that if it is intended to experiment with this technology, data sheets should be obtained from a manufacturer or large distributor. E.g. RCA, Sunbury-on-Thames, Middlesex, for the "CD4054/5/6A" range. Continued next month...
The only
6 Function L.E.D. Watch Kit
in the world . . .
for only £18.95*

SABCHRON DIGITAL
Probably the only six-function LED watch kit available today, the Sabchron Digital offers more features than many other LED WATCHES. At the touch of a single button you see the exact hour, minute, second, month and day-of-month—PLUS an automatic date change memory which remembers whether the month contains 28, 30 or 31 days. Also, an AM/PM indicator which lights up while setting hours.

NEW CMOS IC CHIP
Containing the equivalent of over 1,500 transistors, this new IC chip features STATIC-PROTECTED TERMINALS—this means the IC can be handled safely with bare hands. It contains all the logic, decoding, multiplexing, display drive and counting circuits on a single silicon slice 1/50 square inch.

QUARTZ CRYSTAL ACCURACY
The heart of the Sabchron Digital is a quartz crystal which provides a basic frequency of 32,768 Hz. This frequency is divided in half 15 successive times to provide one incredibly accurate pulse every second. This means a timekeeping accuracy to ±5 seconds per month. Careful adjustment of the trimmer can bring this accuracy to within ±1 second per month or ±12 seconds per year!

* ORDERING INFORMATION
All prices shown in British £’s are approximate equivalents of the following U.S. Dollar prices. Complete watch kit (less case and bracelet) £38.00; Gold-plated case only £12.00. Total £50.00 postpaid via registered airmail to customers in U.K., Eire and Canada. Other countries please add £3.00 additional for postage/packing. REMITTANCE BY BANK DRAFT or INTERNATIONAL MONEY ORDER IN U.S. DOLLARS (available from all banks and national Giro offices).

Sabtronics International, P.O. Box 64683, Dallas, Texas, 75206, U.S.A. Tel. (214) 369-7309.

Please send via Airmail (quantity) Sabchron Digital
6-function LED watch kits. Enclosed is a Bank Draft or International Money Order for U.S.$ (total).

NAME
ADDRESS

ELECTRONICS TODAY INTERNATIONAL—FEBRUARY 1976
SIMPLE CMOS TESTER
An inexpensive unit for the hobbyist.

NOW THAT the use of CMOS logic is becoming widespread there is an obvious need for a simple CMOS tester suitable for the hobbyist. In last month's issue we described a sophisticated tester for both CMOS and TTL. That particular instrument is very versatile but may be too expensive for many budding experimenters and we have therefore designed this simpler instrument to cater for their needs.

A simple CMOS tester, although being inexpensive, must be capable of performing the majority of tests required for CMOS logic without causing any damage to the ICs under test or being damaged itself. It must also use only those components which are readily available to the average home constructor. The ETI 123 Tester fulfills all these requirements.

The tester circuitry draws very little current except for that drawn by the LEDs. Even the LEDs only draw current whilst a device is actually under test. For this reason we thought that the expense of a mains power supply was unwarranted and chose to use batteries instead. For those who would rather operate the unit from a mains derived supply, one capable of supplying anywhere between 5 and 12 volts at up to 40 milliamps will be suitable. Another major expense, that of providing a large number of programming switches to set up the test conditions, has been alleviated by using flying leads fitted with alligator clips to connect to the IC under test.

Several steps have been taken to prevent damage to the IC by the tester and conversely, damage to the tester by the IC. Firstly each pin of the test socket is fitted with a static discharge resistor to earth. A current limiting resistor, R37, is in series with the supply so that the tester is protected against damage due to possible excessive current into an internal short in the test IC. This limiting resistor also ensures that current through the input-protection diodes on the IC does not exceed the specified limit of 10 mA.

Only readily available components are used in the tester and, in fact the ICs used are available from at least four different manufacturers.

To test simple gate functions, eg NAND gates, NOR gates, we need at least four switches and a logic level detector but for the more complex functions, eg multipliers, we need at least six switches and six level detectors. A clock - pulse generator is required for the testing of flip flop and other clocked devices. This pulse generator must be free of the contact bounce that is typically encountered with mechanical switches. For this reason we used a pair of CMOS NAND gates wired as an astable multivibrator to generate a continuous train of pulses. This may be used to increment counters and to shift data in shift registers. As it is a CMOS circuit it is perfectly suited to driving other CMOS devices.

CONSTRUCTION
We recommend that the printed-circuit boards as specified be used as construction is thereby greatly simplified. The printed-circuit boards should be assembled as detailed in the component overlay diagrams. Switches SW1 to SW7 should be mounted by first gluing two strips of printed-circuit board to the front panel (copper side out). The switches may then be soldered to the copper side of the board. This procedure avoids the necessity of having 14 screw heads visible on the front panel.

The test socket is mounted on the non-copper side of board 123b. This board also carries links Lk1 to Lk16 which connect directly to the pins of the test socket. These links are also mounted on the non-copper side of the board and should be of reasonably heavy gauge tinned-copper wire, and should be installed such that sufficient room is under the links for test leads to be attached to them by means of alligator clips or Easy-Hooks.

Resistors R1 to R16 are mounted on the copper side of this board so that they are not visible when the board is bolted to the front panel. The top two screws, nearest to the LEDs, should be 18 to 25 mm long so that board 123a may also be mounted on them later.

On board 123a, mount and solder in position on the component side of the
SIMPLE CMOS TESTER

HOW IT WORKS—ETI 123

The ETI 123 CMOS tester can be described in three separate sections. Firstly there is the test socket for the device under test. The test socket is mounted on a printed circuit board which also holds a 10 megohm static-discharge resistor to protect each pin of the IC. Each IC pin is also connected to a surface mounted link by which connections can be made to the IC.

The next major section of the tester contains detectors which monitor the voltage at each pin of the IC. Each detector consists of a CMOS inverter which drives an LED indicator. When the voltage at the input of the inverter is greater than half the supply voltage the LED will be alight. Conversely the LED will be off when the voltage at the input to the inverter is below half supply voltage. Resistors R19 to R30 protect IC2 against static charges and from the condition where a detector has no input. Resistors R31 to R36 set the operating currents for the LEDs.

The final section contains switches SW2 to SW7 and a clock oscillator. The output of the switches can be either 0 volts or +9 volts that is, a logic '0' or a logic '1'. These outputs are made available at test leads which may be connected to the IC under test as required. To protect the tester against internal shorts on the IC under test, and incorrect connections, R37 has been inserted in series with the supply rail to limit the current that may be drawn to a level which cannot cause any damage.

IC 1/2 and IC 2/3 are wired as an astable multivibrator where the frequency of oscillation is determined by the time constant of C1 and R17, whilst R18 is used to protect the input of IC 1/3 from any voltage excursions past the supply rails. IC 1/1 is used as an inverting buffer and the output of the circuit is made available at the front panel by means of a lead and alligator clip.

Fig. 1. Circuit diagram of the CMOS tester.

PARTS LIST—ETI 123

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1-R16, R25-R30</td>
<td>10M ohm resistance</td>
</tr>
<tr>
<td>R17</td>
<td>1.2M ohm resistance</td>
</tr>
<tr>
<td>R18</td>
<td>12M ohm resistance</td>
</tr>
<tr>
<td>C1</td>
<td>0.33 μF capacitor</td>
</tr>
<tr>
<td>C2</td>
<td>0.1 μF capacitor</td>
</tr>
<tr>
<td>IC1</td>
<td>4011 CMOS integrated circuit</td>
</tr>
<tr>
<td>IC2</td>
<td>4009 CMOS integrated circuit</td>
</tr>
<tr>
<td>LED1-6</td>
<td>Light emitting diode</td>
</tr>
<tr>
<td>SW1-7</td>
<td>Miniature slider switch</td>
</tr>
<tr>
<td>I.C. Socket 16 pin OIL (preferably with IC removing slide)</td>
<td></td>
</tr>
<tr>
<td>Case</td>
<td>150 x 90 x 50 mm plastic box with aluminium front panel UBI</td>
</tr>
<tr>
<td>Alligator clips (15)</td>
<td></td>
</tr>
<tr>
<td>Battery</td>
<td>9V (6 penlight cells)</td>
</tr>
</tbody>
</table>

Electronics Today International—February 1976
text continued from p 20

Fig. 2. Component overlay for the test-socket board ETI-123b, non-copper side.

Fig. 3. Component overlay for the copper side of board ETI-123b.

Fig. 4. Component overlay for board ETI-123a. Note that C1 may need to be mounted on reverse side, and that the LEDs should be mounted as detailed in the text.

Fig. 5. Switch interconnection diagram. Note that C3 is mounted across one of the switches.

Fig. 6. Switch interconnection diagram. Note that C3 is mounted across one of the switches.

board, all components with the exception of the LEDs and capacitor C1. As C1 needs to be a polyester type it may be physically too big to be mounted on the component side without fouling the front panel and should therefore be mounted on the copper side. The LEDs should be inserted in their positions but not yet soldered. Temporarily mount the board in position such that the LEDs protrude through their correct holes in the front panel. Keeping the front panel face down, solder the LEDs into the board. Remove the board and solder 150 mm lengths of hookup wire to the points marked A to F on the overlay and pass these leads through the corresponding holes in the front panel. Do the same for the leads G, H, J, K, L, M, P, Q from switches SW2 to SW7 using a different coloured wire to that used previously. These wires should also be passed through the appropriate holes in the front panel.

Finally solder alligator clips or Easy Hooks to the ends of all these leads and connect supply and earth leads to the 123b board. Check both boards for wiring errors or errors in component insertion before bolting board 123a in position. The battery may then be connected and the unit is ready for use.

Note that if the type UB1 box is used as in our prototype the top corners of the 123a board may have to have the corners trimmed off at 45 degrees so that the board will fit in the box.
SIMPLE CMOS TESTER

Fig. 6. Printed-circuit board layout - ETI 123a. Full size 88 x 63 mm. Fig. 7. Printed-circuit board layout - ETI 123b. Full size 88 x 71 mm.

without fouling the mounting pillars for the front panel.

OPERATION

Before testing or inserting any IC make sure that the power is switched off. Set up the operating conditions for the IC to be tested either by consulting the manufacturers data or by duplicating the conditions under which the IC will be used in the circuit.

Next insert the IC to be tested into the test socket and connect the power supply leads to the links for appropriate pins of the IC. Double check these connections to make absolutely sure that these connections are correct. Reversed power connections will destroy the IC. Switch on the tester and use the input switches to systematically apply all the possible input conditions to the IC whilst noting that the output conditions of the IC are as they are supposed to be.

Internal view of the tester. Note how the top board is mounted (see text).
BRAND NEW MODULES FROM THE DESIGN-BENCH OF A FOREMOST BRITISH DESIGNER AND EXCLUSIVE TO B-P-P

THE SS125 HIGH FIDELITY POWER AMPLIFIER

More Stirling Sound Modules

With easy to follow instructions

F.M. TONER UNITS

- SS.201 Tuner front end. Ganged, geared variable tuning. RS 100kHz A.F.C. facility. £5.00
- SS.202 F. Amp A tone and/or A.F.C. can be connected (size 3" x 2""). £2.65
- SS.203 Stereo decoder for use with SS.201 and 202 or any good F.M. tuner. A LED beam may be attached (3" x 2") £3.85
- SS.105 5 watt amplifier to run from 12V. (3½" x 2½" x ½") £2.25
- SS.110 Similar to SS.105 but more powerful giving 10W. (size 3" x 2½") £2.75
- SS.120 20 watt module when used with 34 volts into 4 ohms £3.00
- SS.140 Rotaries 40 watts R.M.S. into 4 ohms using a 45V/2A supply such as our SS.345. £3.75
- SS.110 50 watts R.M.S. into 8 ohms £5.25
- SS.100 Active tone control, stereo. ± 15dB cut and boost with suitable network £1.60
- SS.101 Pre-amp for ceramic p.u., radio & tape with passive tone control details £1.60
- SS.102 Stereo pre-amp with R.F.A. equalisation, mag. p.u., tape and radio in. £2.25
- SS.300 Power Supply Stabiliser. Add this to your stabilised supply to obtain a steady working voltage from 12 to 50V for your audio system, workbench etc. Money saving and very reliable £3.25

TERMS OF BUSINESS:

VAT at 10% must be added to total value of order except for items marked "off the shelf". Minimum mail order acceptable is £1. Overseas orders, add £3 for postage. VAT is added at 10%. We cannot quote V.A.T. charges. POST & PACKING add 25p for UK orders unless marked otherwise. Minimum mail order acceptable is £1. Overseas orders, add £3 for postage. Any difference will be credited or charged. PRICES subject to alteration without notice. AVAILABILITY All items are available at time of going to press when every effort is made to ensure correctness of information.

FROM BI-PRE-PAK

SS.125
HIGH-FIDELITY
Power Amp.

£7.25

A new Stirling Sound C.D.I. Unit for your car.

Even better than the original version, thousands of which are in use saving motorists appreciable time and money for petrol. Very easy to install. The Stirling Sound model incorporates switch for instant change to conventional ignition; instant adaption to pos. or neg. earth return; anti-burglar immobilising switch; pre-set control for rev. limitation. There is no exposed parts, the unit, or p.c.b. being housed in strong enclosed metal box. With instructions and leads.

Size 7½" x 4½" x 2½", switches (193 x 117 x 54mm) (P/P add 50p)

K I T Е 7.95
TESTED £10.50

A new X-HATCH GENERATOR

For colour and mono TV. Plugs into aerial socket of set. Operates without need for transistors, 4 push-button operation. Runs on 4 ordinary dry cells, or batteries. (P/P add 50p)

BUILT & TESTED £7.95

A USEFUL CATALOGUE — FREE

Send us a large S.A.E. with 10p stamp and we will send you the latest Bi-Pre Pack catalogue free by return. Packed with useful hints, tips and money saving ideas. The unit above is at 8½% V.A.T.

Order your Stirling Sound products from

BI-PRE-PAK LTD
Co Reg No 820999
222 224 WEST ROAD, WESTCLIFF-ON-SEA, ESSEX SS0 9DF.
TELePHONE: SOUTHEND (0702) 48344

FACTORY — SHOEBURYNESS, ESSEX

ETB 2
The
Exetron-Time Ltd. offer this unique transformerless design at a substantial saving on retail price.
The kit is complete less mains lead— all you require is a soldering iron, solder, and screwdriver to assemble your own digital clock.

MISTRAL Digital Clock

Complete Kit or fully built.

MISTRAL Digital Clock

Kit £12.50 (Incl) Built £18.00

- Pleasant green display
- 24 Hour readout
- Silent Synchronous Accuracy
- Fully electronic
- Pulsating colon
- Push button setting
- Building time 1Hr
- Attractive acrylic case
- Easy to follow instructions
- Size 10.5 x 5.7 x 8cm
- Ready drilled PCB to accept components

Exetron Time Ltd. offer this unique transformerless design at a substantial saving on retail price. The kit is complete less mains lead— all you require is a soldering iron, solder, and screwdriver to assemble your own digital clock.

EXETRON (Dept ETI)
Regal House,
Penhill Road,
Lancing, Sussex.

Payment: CWO, Cheque, Access, Barclaycard (Quote Number)
TONE BURST testing is a technique which is rapidly gaining acceptance in a wide variety of applications. Typical applications are in testing of hydrophones, signal-to-noise in telephone channels, reverberation chamber testing and in the determination of peak distortion in loudspeakers. With loudspeakers, tone burst testing has the further advantage that the speakers may be tested with their maximum peak power level whilst keeping the average sound output level low enough to not annoy the neighbours - a considerable advantage indeed.

Some time ago our audio consultants, Louis Challis and Associates, asked us to build them a tone-burst generator and the resulting instrument has been used by them ever since with much success.

DESIGN FEATURES

A tone burst must always be an integral number of cycles. If the burst is switched on or off part way through a cycle then undesirable transients will be produced that will mask the test results. Thus the burst must start and end exactly at the zero-crossing point of the sine wave in the burst.

In the original unit, designed for Louis Challis, preset times can be independently selected for the on and off periods of the burst with the exception that the burst time is automatically modified to give an integral number of cycles. The preselected on/off ratio, however, is independent of the burst frequency. To give the required control range, six switched ranges as well as a variable control are provided for both the on and off periods. Other features of the original unit are the ability to start at any point in the cycle as well as the zero crossing point, a phase-inverting switch to select either the positive or the negative half cycle first and an OFF LEVEL control to set a base tone level which is modified when the tone burst occurs. In addition the dc level of the output can be set and a switch is provided to select burst, pure tone or off as required.

When it came to redesigning the unit as a project we decided that many of the features offered by the original design were unnecessary for the user concerned only with testing speakers. Hence the unit has been redesigned in a greatly simplified form.

Instead of using monostables to generate on/off times we now divide the input with a counter to obtain times that remain in the same ratio regardless of input frequency. We settled for the ability to select 2, 4, 8 and 16 cycles for the duration of either period, as this compromise

MEASURED PERFORMANCE

TONE BURST GENERATOR.

- **On Time Cycles:** 2, 4, 8 or 16
- **Off Time Cycles:** 2, 4, 8 or 16
- **Frequency Response:** 3 Hz – 300 kHz
- **Distortion:** <0.02%
- **Input Level:** 3 V RMS
- **Nominal range:** 100 mV to 1 V
- **Input Impedance:** 47 k
- **Output Noise Voltage:** <25 µV
- **Power Supply Current:** 4 mA

TONE BURST GATE

A valuable tool for testing loudspeakers.
Fig. 1. Circuit diagram.

POWER RAILS OF IC2, IC3, AND IC4 NOT SHOWN
PIN 16 OF IC2 IS +6V
PIN 8 OF IC2 IS -6V
PIN 14 OF IC3 AND 4 IS +6V
PIN 7 OF IC3 AND 4 IS -6V
PIN 7 AND 15 OF IC2 ARE RESET PINS AND -6V

WHERE TO GET THE COMPONENTS
No problems should be experienced in obtaining the components assuming that you try a CMOS stockist for IC3,4. The 4520 is not widely advertised but is available from Sintel under the coding MC1452OC. The PCB will be available from either Ramar or Crofton.
HOW IT WORKS – ETI 124

The input signal is squared by comparator IC1 such that the output of the comparator will be high if the input is above +6 mV, and low if the input signal is below -6 mV. Resistors R2 and R3 provide the necessary positive feedback to cause the IC to act as a comparator. The output of the comparator is connected to both clock lines of IC2. If the enable line is high these counters (IC2) will toggle at the input frequency.

IC3/3 and IC3/4 form an RS flip flop where the output must be in either a high or a low state, that is the flip flop has only two stable states. If the output of IC3/3 is high IC2/1 is allowed to clock and, after the number of input pulses selected by SW1 have been counted, the output from SW1 goes low. This low is coupled to the flip flop by C2 toggling the flip flop, disabling IC2/1 and enabling IC3/2. After the number of cycles, as selected by SW2, have been counted the flip flop is again toggled. IC3/1 and IC3/2 are used to square up the pulses generated by C2 and C3 respectively.

The input signal is also coupled to the output buffer, IC5, by the analogue switch IC4/1. When this switch is closed (control signal high) the output of the buffer will be the same as the input. When switch IC4/1 is open IC4/2 will be closed and the output will be held at zero. Since these switches are controlled by the flip flop the output will be the required tone burst.

A trigger output is taken from the flip flop to synchronize an oscilloscope if required. A second output is also available from pins 4/11 of IC4 which is the reverse of the main output.

Switch SW3 forces the flip flop into either of its two possible states thus allowing continuous tone or no output to be selected as required. In the centre position the normal tone burst is obtained.
TONE BURST GENERATOR

Fig. 5 (a) Top trace - the input tone burst of five cycles. (original design).
(b) Bottom trace - the response of a low-cost speaker at 1 kHz. Note the reduced amplitude of the first half cycle and that ringing has added another cycle at the end of the burst. The room reflection can be seen on the trace after the burst.

Fig.6. Printed circuit board for the Tone Burst Generator. Full size. 142 x 47mm.

greatly simplifies the circuitry. We still have the switch to select tone, tone burst or off, but the OFF LEVEL control has been deleted. The latter control may still be used to give an inverse output if required, that is, the reverse output is on when the other is off and vice versa. This output is not buffered or brought out to the front panel. If it is intended to load this output with less than 47 k it is recommended that a 4066 IC be used instead which will handle loads down to 10 k. For loads of lower impedance than this, a buffer such as is on the normal output should be used.

CONSTRUCTION

As with any project construction is greatly simplified if a printed circuit board is used. However the layout of the unit is not critical and any other suitable method, such as Veroboard or Matrix board may be used if desired, we strongly recommend that sockets be used for the CMOS ICs, especially if a printed circuit board is not used, as these devices are quite easily damaged when soldering. The use of IC sockets also facilitates later servicing. Also remember that, unlike TTL, all unused inputs of CMOS must be connected to either the positive or negative supply rail.

The plastic box that we used measured 160 x 95 x 50 mm and is very convenient in that the printed circuit may be held in position by sliding it down behind two of the pillars to which the front panel is screwed. As the amount of lettering required is quite small, this may readily be done directly on the panel by hand or with Letraset.

Shielding of the internal wiring is not required providing that the unit is kept away from strong 50 Hz fields. If operation in the vicinity of strong fields cannot be avoided then the unit should be mounted in a diecast box.

USING THE UNIT

The testing of loudspeakers is very difficult indeed and much effort is still being spent to find test methods which will not only give an accurate understanding of the relative effectiveness of the design, but which will be easy to reproduce.

One of the main problems with loudspeaker testing is that the speaker cannot easily be isolated from its environment. For example, reflections from the walls of a room modify the response, seen by a microphone, no matter where the microphone is placed in the room. If one could eliminate reflections then the situation would be improved considerably, and hence the use of anechoic (echo free) chambers for testing speakers. But such chambers are very expensive to build and consequently not readily accessible to the amateur.

A further problem is in assessing the transient power handling capability of the speaker. Speakers will handle far greater peak transient power than is indicated by their RMS power rating. This is a very important attribute of loudspeakers in handling musical transients. Any attempt to assess this with a sinewave signal may result in the destruction of the speaker due to thermal failure - apart from also being extremely noisy.

The use of a tone-burst generator minimizes both these problems. How this is achieved is better understood by examination of Fig. 5. This shows on the upper trace a five cycle 1000 Hz burst that is fed to a loudspeaker. The second trace shows the same burst as picked up by a microphone in front of the speaker. We notice that the burst has been changed by the speaker and an examination of these changes can tell us a lot about the speaker. For example we notice that the first half cycle has not reached full amplitude and this indicates that the speaker would have some difficulty in reproducing high frequency transients. Next we notice that instead of five cycles there are now at least five and a half. This could mean one of two things. Either there is a speaker/resonance or, the speaker itself is continuing to vibrate after the original excitation has ceased. Which is it? We can determine this by changing the position of the speaker to see if any change occurs in the shape of the burst, if not it is caused by the speaker itself, and if it does then it is a speaker/resonance. A speaker that lengthens the burst unduly will
sound muddy in that region. Of course the speaker must be examined over its whole range to gain a thorough assessment of performance.

It is of course possible to eliminate room reflections simply by performing the tests outside. However unless one lives in a very quiet area, background noise will introduce problems - and your neighbours are unlikely to appreciate the noise that you will generate.

By varying the off period we can also select a ratio where the room reflection, the oscillation seen after the cessation of the burst, does not interfere with the first few cycles of the burst and the response versus frequency of the speaker may then be assessed from the amplitude of the first half cycles that are stable in amplitude. Thus it is possible to gain an appreciation of the frequency response, transient performance and quality in terms of ringing of a speaker by careful use of the tone-burst technique.

The transient power handling capability of a speaker may be assessed by selecting a fairly long off to on ratio for the burst and by feeding the burst to the speaker via a high-power amplifier. If for example an off to on ratio of 8:1 is used then the peak power will be eight times the average power. Thus the speaker may safely be driven to a peak level where a predetermined amount of distortion occurs. Take care that the amplifier is capable of providing the peak power required.

Of course a tone-burst generator may be used for a wide range of testing. We have mainly concentrated in this article on its application to the testing of loudspeakers.

The circuitry of the tone-burst generator may easily be modified for use as a 'silent switch' for A/B speaker testing. The method of doing this will be described next month.

ETI HELPING HAND COMPETITION

This is our open competition to find solutions for problems facing the deaf.

This closing date is March 31st 1976. ETI and the Royal National Institute for the Deaf (RNID) are cooperating fully in the organisation of this competition.

Three problems are shown above. We invite individual readers, clubs, schools, universities, companies, in fact anybody, to develop a practical solution. The rules are as basic as possible and impose virtually no restriction apart from insisting that any Patent Royalties are waived if the idea is produced.

The prizes, three in all, will each be a silver trophy specially designed for ETI. At the close of the competition the magazine will hand over £250 to the RNID to help with development costs. There is a £1.00 entry fee (payable to RNID) and this will be added to the £250.

Background information has been prepared to help readers and say what is already known. This is available from ETI on receipt of a large self-addressed envelope. Enquiries should be sent to:

Helping Hand,
ETI Magazine,
36 Ebury Street,
London, SW1W 0LV.
GEOPHYSICAL SURVEYS
by Martin Blanchard

GEOPHYSICS IS THE study of the physical characteristics of the earth. In its applied form geophysics is an important tool in the world-wide search for minerals. Diamonds, gold, oil, copper, tin, uranium and many other minerals may be directly or, more often, indirectly located using geophysical methods.

The advantage of airborne geophysics over other prospecting methods is the ability to cover large areas of the earth's surface in a relatively short time. Interpretation of the survey results, combined with prior knowledge of the area's geology and follow-up field investigations, provides a short list of sites which merit intensive investigation. Areas of hundreds of square miles may be surveyed in a period of months rather than the years which would be required using more traditional methods.

The three characteristics studied in modern airborne geophysical surveys are (a) Magnetic (b) Radioactive (c) Thermal.

MAGNETIC EFFECTS
The earth's rocks have become magnetised by two methods; by induction due to their alignment in the earth's magnetic field or by a permanent (remnant) magnetisation which occurred when the rocks were formed. Often remnant magnetisation is completely disorientated with respect to the earth's field due to the fact that the rocks have been twisted and turned since they were cooled. These rocks modify the earth's magnetic field in the area and this attracts the interest of the prospector. A device used to measure magnetic flux density is called a magnetometer. There are two types: (a) the static type, which measures the field directly, and (b) the dynamic type, which measures the modification of a signal transmitted into the ground.

In geophysics the field is usually measured in gammas: 10^6 gammas = 1 Gauss = 10^-4 weber/m.

The magnetic flux density at the surface of the earth is normally between 25,000 and 60,000 gammas.

RADIATION EFFECTS
Radioactive elements are those containing atoms whose nuclei undergo spontaneous disintegration. During the disintegration two types of particle are emitted: (1) α (alpha) particles, which are helium nuclei, and (2) β (beta) particles, which are electrons or positrons.

After the emission of particles a nucleus is in an excited energy state and in order to return to its ground state a γ (gamma) quantum is emitted (Not to be confused with a gamma, the unit of magnetic flux density). In the atmosphere alpha and beta particles are quickly attenuated but gamma rays have a much greater range.

The Gamma rays are pure electromagnetic radiation. They do not alter the nuclear charge of the emitter but they are composed of discrete packages of energy (quanta) (the difference between finite energy levels in the atom). Each radioactive substance has a characteristic spectrum of gamma ray emission energies. Gamma ray energy is usually measured in electron Volts (eV), where 1 eV = 1.602 10^-19 joules. The range of energies of interest to the prospector is about 0.1 to 3.0 Mega-electron Volts (MeV). The following elements occur naturally and are important in geophysical work. They have these useful energy peaks in their spectra:

(a) Uranium 1.12, 1.38, and 1.76 MeV.
(b) Thorium 1.61 and 2.62MeV
(c) Potassium 1.46MeV

Gamma rays are attenuated by surface soil or sand and are usually detected with a Geiger counter or a scintillation counter.

THERMAL EFFECTS
Temperature changes on the surface of the earth are due either to the effects of the sun and atmosphere or to volcanic action. Various types of rock have differing thermal conductivities so that temperature measurements made over a period of time enable differentiation between the types of rock. Sub-surface volcanic heat is also detectable (providing that faults or cracks in the rock, or water rising to the surface, can transfer the heat).

In airborne geophysics temperature measurements are made with an Infra-red line scanner. Originally IR radiation comes from the sun or is emitted by the ground and it can be a combination of both. IR is electromagnetic radiation with a wave length range of about 0.000075 to 0.04cm.

Temperature measuring, although useful for additional information, is not so important as radiometric (radiation measuring) or magnetic techniques. IR line scan surveys are very useful, however, for such tasks as checking power station and industrial plant pollution in rivers or the sea.

MAGNETOMETERS
This month we will discuss the instruments used in Magnetic Surveys. Three types of magnetometer will be considered: (a) the proton precession magnetometer, (b) the flux gate magnetometer, and (c) the electro-magnetic (em) magnetometer. Types (a) and (b) are static magnetometers, (c) is a dynamic type.

PROTON PRECESSION MAGNETOMETER
This device uses the principle of nuclear magnetic resonance (NMR) to measure the earth's magnetic field. The NMR principle shows that in a suitable liquid the proton spins are aligned in the earth's field.

The detector head of a proton magnetometer consists of a container filled with a proton rich fluid (water or paraffin usually) and a coil either wrapped round the container or immersed in the fluid. The container and coil are often towed behind the survey aircraft in an airfoil known as a 'bird' so that the detector is not affected by the magnetic field of the aircraft.

The essence of the operation of this magnetometer is shown in Fig. 1. A current pulse of several amps is switched from the unit power supplies
down the tow cable and through the detector coil to create the strong magnetic field necessary to disturb the proton spins. As soon as the current pulse ends the protons begin to precess and the precession signal is picked up by the detector coil and passed through the tow cable to a sensitive amplifier in the main unit.

The next stage is to measure the frequency of the precession signal. A resolution of ±0.1 gamma in a field of 50,000 gammas requires that the precession frequency be measured within 0.04Hz in about 2kHz. The counter output is scaled so that a digital display may be read directly in gammas.

Fig. 2 shows the more sophisticated system normally used. The bird now contains not only the detector head but also an electronic package consisting of a preamplifier, a filter and a pulse shaper. These circuits improve the signal to noise ratio of the precession signal when it is passed through the tow cable.

Outputs from the counter are taken to the recording systems which are described later. The measurement accuracy of the system is within ±0.5 gammas and is a total field value. The main disadvantage of the proton precession magnetometer is the necessity to switch between energising and detecting from the coil as this means that the fastest sampling rate is about one reading per second which may mean that anomalies are missed. These factors of speed and resolution are important considerations in airborne geophysics as the survey aircraft travels about 200 feet in one second.

FLUXGATE MAGNETOMETER

The fluxgate is the detector in this type of magnetometer. The permeability of a ferro-magnetic material depends on its intensity of magnetisation. If a coil with a ferro-magnetic core is driven cyclically through saturation by ac, the inductance of the coil is proportional to the slope of its hysteresis curve. A distortion occurs in the voltage output across the coil. (see Fig. 3). If now two coils are connected in series, as shown in Fig. 4, with an external magnetic field in the direction shown the 'kink' in the coil output voltage waveform is shifted in phase and the summed output voltage V_o varies with the external field as shown in Fig. 4.
If now an artificial field is produced so that the fluxgate output pulses are always kept at the same amplitude then the artificial field is proportional to the external field. The external field is measured by the amount of current required through the compensation coil to cancel out the field.

In Fig. 4 it can be seen that the fluxgate is highly sensitive to an external field in the direction shown but that a field at right angles to that shown would have little or no effect. This means that the detector element must be orientated so that its sensitive axis is aligned with the total field vector of the earth.

PRACTICAL FLUXGATE MAGNETOMETER

A complete fluxgate magnetometer detector element consists of three fluxgates. Two of these provide orientation signals and the other provides the field measurement and has a compensation coil. Each fluxgate is energised at 410Hz as this avoids any harmonic interference from other supply frequencies used in aircraft. The operation can be seen in Fig. 5.

The current through the compensator coil is directly proportional to the external field and so measurement of the current will be an analogue of the field value. The usual problem of resolution arises as the current must be measured with an accuracy of 1 part in 50,000 (1 gamma in a total field of about 50,000 gammas).

The fluxgate detector is often towed behind a survey aircraft in a bird. Another method is to mount the detector in a 'stinger' which is an
extended portion of the tail of the aircraft. Using a stinger means that the detector is influenced by the magnetic field of the aircraft and in order to overcome this problem compensation coils are built in. A fluxgate magnetometer bird fitted to a DC-3 aircraft is illustrated in photo 4.

Generally the fluxgate magnetometer has an accuracy of ±1 gamma but values are relative rather than absolute and some instrument drift takes place. The fluxgate magnetometer does, however, provide a continuous record.

ELECTRO-MAGNETIC MAGNETOMETER

Electro-magnetic (em) magnetometers differ from those already described in the important respect that they do not measure the earth's magnetic field but rather the conductivity of the ground over which they are flown. There are many types of em magnetometer and they vary in performance, construction and operation. The general principle is illustrated in Fig. 6. Here a signal transmitted from the survey aircraft causes a current to be induced into any conducting body within the transmitted field. This induced current then sets up a secondary field which is detected along with the transmitted (primary) field by a receiving coil. The vector diagram shows that the resultant, Hr, of the received primary (Hp) and secondary (Hs) fields may be resolved into an in-phase and out-of-phase component of the primary field.

Two important characteristics of em systems are that the separation between the transmit and receive aerials is roughly proportional to the depth penetration capability and that the out-of-phase component is largely independent of the aerial spacing and alignment.

EM systems can be broadly split into two groups, rigid boom systems and towed bird systems. Rigid boom systems measure both in and out-of-phase components usually at a single frequency and with the aerials at fixed positions relative to each other. This is achieved by using a long boom towed by a helicopter or by mounting an aerial on each wing-tip of an aircraft. Towed bird systems measure out-of-phase components usually at two frequencies which give more detailed information about bodies of only moderate conductivity. The transmitting aerial is usually mounted in the survey aircraft while the receiving aerial is towed in a bird.

A serious problem in em magnetometers is the fact that the amplitude of the received primary field component is very much greater than the secondary field component which leads to some difficulties in measurement. A system known as INPUT (INduced PULse Transient) overcomes this problem by using a pulsed transmission and by only receiving the secondary field after the transmitted pulse is over.

INPUT EM MAGNETOMETER

In this system (Fig. 7) the transmitting aerial is a large loop strung between the aircraft wing-tips, nose and tail. The timing of the system is derived from the divided output of a crystal clock. The transmitted pulse has an output power of 2kW and a duration of 1mS at a repetition frequency of about 3kHz. The receiver is gated open when the transmit pulse is over and received signals from the aerial in the towed bird. The received signal is sampled at increasing intervals, usually six times between the transmitted pulses from 150 microseconds to about 2 milliseconds after. Each sample is displayed as a channel on a chart recorder. A rapidly decaying signal, which indicates a poorly conducting body, only shows a response in early channels while a slowly decaying signal, which indicates a good conductor, has a response in all chan-
ELECTRONICS IN

GEOPHYSICAL SURVEYS

Photo 6. DC-3 aircraft fitted with em magnetometer transmitting loops (on top of fuselage) and detector coils in the 'stinger'.

nels. As measurements are made when there is no primary field in the input system it is independent of aerial orientation.

OPERATIONAL TECHNIQUES
WITH MAGNETOMETERS

As with the use of most airborne geophysical equipment the two main operational parameters to be decided before the start of the survey are the altitude at which the aircraft is to fly and the line spacing. Line spacing refers to the manner in which survey areas are covered. Obviously the area must be flown in a methodical manner and this is done by covering the area with a series of parallel lines. The spacing of the lines and the altitude chosen are linked, in that the higher the magnetometer is flown, the greater is the area covered and therefore the wider apart the flight lines can be. Usually the line spacing and altitude are chosen to give the best results for the type of survey. Small ore bodies are best detected flying at fairly low altitude (say 150 meters) with a narrow line spacing (about 400 meters) while general geological surveys are more usually carried out at about 600 meters altitude with a line spacing of 1500 meters. These figures apply to proton and fluxgate magnetometers only — as em magnetometers will only function at low altitude. In practice the operational height is more limited by the terrain in the survey area and the performance of the aircraft being used.

Generally em magnetometers operated from conventional aircraft cannot be used below 100 meters because of safety considerations. Operation of em magnetometers from helicopters enables the survey height to be reduced to about 50 meters.

The magnetic field at any point on the surface of the earth is not constant but undergoes daily variations and during magnetic 'storms' (often caused by sun-spot activity) the field value will change radically over a very short period. Compensation for these effects is usually achieved by keeping another magnetometer at a ground base in the survey area. This ground magnetometer (often called a storm monitor) is run continuously and gives a record of daily magnetic variations which may be used to modify the results obtained from the airborne magnetometer and thus provide more accurate results. If the ground magnetometer indicates the presence of a magnetic storm magnetometer, flying is usually stopped as compensation for the large rapidly changing field values is not possible.

Often surveys are carried out with the aircraft carrying more than one type of detection system and the operational parameters must then be a compromise that best suits the characteristics of the various systems.

Next month we will look at the other two techniques used by the geophysicist: Radioactive Surveys and Thermal Surveys.
Special offer for readers of E.T.I.

Sinclair Scientific calculator kit.
Logs, trig, arithmetic, for only £9.95 (inc vat)

Forget slide rules and four-figure tables!
The Sinclair Scientific is an altogether remarkable calculator.

It offers logs, trig, and true scientific notation over a 200-decade range — features normally found only on calculators costing around £20 or more.

Yet as a kit, it’s on offer to Electronics Today International readers for the first time at £9.95 including VAT.

With the functions available on the Scientific keyboard, you can handle directly
sin and arcsin,
cos and arcos,
tan and arctan,
automatic squaring and doubling,
log to 5-digit mantissa, 2-digit exponent, both signable.
200-decade range, 10^-99 to 10^+99.
Reverse Polish logic. Post-fixed operators allow chain calculations of unlimited length.
Genuinely pocketable. 4 3/4” x 2” x 1/2”.
Weight 4 oz.

In fact, virtually all complex scientific or mathematical calculations can be handled with ease.

So is the Scientific difficult to assemble?
No. Powerful though it is, the Sinclair Scientific is a model of tidy engineering.

All parts are supplied — all you need provide is a soldering iron and a pair of cutters. Complete step-by-step instructions are provided, and our Service Department will back you throughout if you’ve any queries or problems.

Take advantage of this money-back, no-risk offer today
The Sinclair Scientific kit is fully guaranteed. Return kit undamaged within 10 days, and we’ll refund your money without question. All parts are tested and checked before despatch — and we guarantee any correctly-assembled calculator for one year.

In the preferential order form below and slip it in the post today.

Price in kit form £9.95 inc. VAT.

To: Sinclair Radionics Ltd.
FREEPOST, St Ives,
Huntingdon, Cambs., PE17 4BR.

Please send: Sinclair Scientific, kit at £9.95.

Price includes 8% VAT.

* Enclose a cheque for £9.95 to Sinclair Radionics Ltd, and crossed.

* Please debit my *Barclaycard/Access account. Account number...

* Delete as required.

Signed
Name
Address

Please print: FREEPOST — no stamp needed

£1276
A couple of issues ago we announced the ETI T-Shirt—the response has been enormous. Initially we just wanted to sell the surplus but we've had to reorder twice! Made in cotton (yellow with black printing) these are available in three sizes suitable for both sexes. Send your cheque and P.O. for £1.50 (payable to Electronics Today International) and state Small, Medium or Large. ETI T-SHIRTS, 36 Ebury Street, London SW1W 0LW.

Now there's a better way to keep your ETI copies

We reckon ETI is worth keeping, and our surveys indicate that a staggering 97% of readers keep their copies for at least three months. Now we can offer you a binder which holds 12 issues whose quality befits the magazine: excellent. Send £2.00 (which includes VAT and postage) to ETI BINDERS, 36 Ebury Street, London SW1W 0LW.

6-Digit Digital Clock Kits

£6.95

The response to our advert in the December issue was phenomenal. We are therefore extending this special offer so that you can get a second chance to purchase this fantastic bargain in case you missed the first offer. If you've been considering building a digital clock but were discouraged at the high prices, we have just removed your last excuse.

KIT COMPRISSES:
1. National MM5314 Clock Chip, 12/24 hour, 50/60 Hz option.
2. Bright red common cathode displays, 0.27" character height.
3. NPN Segment driver transistors.
4. PNP Cathode driver transistors.
5. Carbon resistors.
6. Diodes.
7. Disc caps.
8. Electrolytic filter cap.
9. Switches for time setting functions.
10. Etched, drilled and plated p.c. boards.
11. Illustrated assembly instructions manual.

All you provide is a 9-12v ac/200 m /a Transformer and case of your choice.

OPTIONAL JUMBO DISPLAYS

You can have 6 - 0.5" Jumbo displays with a suitable board instead of the 0.27" types. Clock kit with 6 jumbo displays £10.95 + 90p airmail p&p.

* ORDERING INFORMATION

The above prices shown in British £s are approximate equivalents of the following U.S. Dollar prices and should be used as a guide only:

Clock kit with 6 - 0.27" displays: U.S. $16.50 post paid.
Clock kit with 6 - 0.50" displays: U.S. $24.75 post paid.
Remittance by BANK DRAFTS or INTERNATIONAL MONEY ORDERS IN U.S. FUNDS. SENT ANYWHERE IN THE WORLD.

NO ELECTRONICS KNOWLEDGE REQUIRED TO BUILD THESE KITS

P.O. BOX 64683, DALLAS, TEXAS, 75206, U.S.A.
Flexible low-cost noise filter virtually eliminates record surface noise...

This two-part article gives you the theory you need to design your own unit... plus advice on construction.

DESPITE denials from many record manufacturers, many present day recordings have excessively loud surface noise — and this cannot be reduced using conventional tone controls without also losing a substantial amount of the programme content.

Serious collectors of older recordings have an even more serious problem. Most of these records are quite noisy — even by today's standards. For example, 78 rpm commercial discs, even though in mint condition, will have a typical signal-to-noise ratio of only 30 to 35 dB due to the abrasive nature of the record material.

Many collectors dub their best records onto tape. This way they may be played as often as desired — and conveniently shared with other collectors — while the often irreplaceable originals are safely preserved. Also, the sound can often be improved considerably during the copying process through equalization and filtering.

This article describes a flexible, low-cost noise filter designed for taping records with a maximum "fidelity-to-noise" ratio. It can be duplicated by the serious electronics experimenter with some circuit experience should have no difficulty. Minimum equipment requirements are an oscilloscope, sine wave generator, and multimeter.

The heart of this circuit is a dynamic noise suppressor with frequency characteristics and convenience features which are optimized for its intended use. The concept of dynamic noise suppression has existed for many years. Workable circuits were designed by N.H. Scott in 1946, and their performance was improved by Scott and others in 1947 and 1948. Then with the advent of the vinyl microgroove record and the rapidly increasing use of tape, both of which offered a considerable noise improvement over the 78 rpm system, the dynamic noise suppressor was almost forgotten. Recently, R. Burwen has revived this principle and applied it primarily to tape playback. Taking full advantage of modern integrated circuits, Burwen has designed highly sophisticated and flexible systems with impressive specifications. These, however, are too expensive for many hobbyists and do not have frequency characteristics optimized specifically for old, intrinsically band-limited material.

THEORY

Dynamic noise suppression is simple in concept. Record surface noise varies in spectral content, but the higher frequencies (above 1 or 2 kHz) predominate. Low-pass filtering is commonly used to limit noise. But unless used sparingly, this type of filtering band-limits the programme material, making it sound muffled and lifeless. The dynamic filter, however, provides a method by which a signal can be effectively extracted from the noise (at least subjectively) when signal and noise occupy overlapping frequency ranges.

Fig. 1. Interior of prototype unit.
DYNAMIC NOISE FILTER

Operation of the dynamic noise suppressor depends upon a characteristic of the human auditory apparatus. If two signals occupying well-separated frequency ranges are present simultaneously, they are clearly perceived as individual entities. This effect is often used to advantage in public address systems for noisy environments. If considerable high-frequency boost is used, voice announcements will seem to cut through ambient noise of predominately lower frequency without having to be excessively loud.) This is the case, at least for a large portion of the time, for a typical recorded signal with attendant surface noise; hence, the annoyance of the noise. However, if two simultaneous signals occupy substantially the same frequency ranges, the ear will tend to hear only the louder signal and ignore the weaker one. A level difference of only a few dB is sufficient for one signal to effectively override, or mask, the other. Operation of the dynamic noise suppressor depends upon this masking effect.

CHARACTERISTICS

The dynamic filter has a fairly steep low-pass characteristic which, in the absence of signal, starts cutting off at about 1 kHz. This very effectively rejects the noise spectrum. When a signal having high-frequency components at sufficient amplitude comes along, the filter is made to "open up"; that is, its cutoff frequency is quickly raised. As the high-frequency programme content drops in frequency and/or amplitude, bandwidth contracts. The idea is that when high-frequency signal components are present, they will tend to mask the accompanying noise. When highs are not present, the wide bandwidth is not needed. Admittedly, the recovered signal is not as faithful as a noise-free original would be. For example, high-frequency content in low-level passages may be lost. Of some help here is the fact that many musical instruments tend to have less harmonic content at low acoustic levels. In spite of this compromise, the processed signal is usually far more pleasing to the ear than the noisy input signal.

The bandwidth control signal is derived by separating the high-frequency programme components from the signal-plus-noise.

Unless the signal level is consistently higher than the noise to begin with, this becomes impossible. Thus, there is a minimum signal-to-noise requirement below which no improvement is possible. As the original S/N improves, the dynamic suppressor's performance improves also. Ideally, the signal frequency range to which bandwidth is most sensitive should correspond to the frequency range of maximum noise. The optimum filter characteristic for separating the bandwidth-control signal from the noisy input thus varies widely with the characteristics of the noise with which we are dealing. Bandwidth control sensitivity (or gain) must be set properly for the incoming signal level and noise properties. Bandwidth should respond rapidly to signal changes to avoid loss of transients and to prevent audible "swishing" sounds which can be produced by delayed bandwidth contraction.

DESIGN APPROACH

I have tried to implement the basic requirements outlined above as completely as possible in an easy-to-use, low-cost unit. A dynamic high-pass filter stage was considered but later dropped, as high-frequency noise predominates on most older records. Low-frequency noise can usually be handled adequately with a simple manually-set rumble filter.

Figure 2 shows an overall block diagram of the noise filter. Operational amplifier A1 is connected as a non-inverting amplifier with a voltage gain of 32 (10 dB), enabling the system to be driven to 0 VU with an input level of 0.25 volt. This amplifier also serves as a buffer, providing an input impedance of 100 kilohms for compatibility with virtually any signal source. Amplifier A1 drives the rumble filter, which could be omitted if one is available in the associated equipment. Following this is the pre-filter, which is simply a low-pass filter with a manually set cutoff. This filter is important for several reasons. First, it removes noise which is above the frequency range of the recorded signal. Many recordings have no signal content above 4 or 5 kHz (even lower for acoustic records), and no programme content is lost by cutting off the upper range. Thus, the total noise voltage is lowered, often appreciably, permitting the use of higher suppression gain settings as will be seen later. Another reason for this filter is that the dynamic filter can do nothing to reduce the annoyance of high-frequency distortion. Furthermore, since a limited-bandwidth signal cannot effectively mask higher-frequency noise, removal of the latter helps to eliminate audible evidence of the continually changing bandwidth.

From the pre-filter output the signal passes to the voltage-controlled
low-pass filter and, via the suppression
gain control, to the high-pass
filter/precision detector whose
function is to derive the bandwidth
control signal. This point additionally
goes to a switch which permits the
dynamic filter to be by-passed at will
so that its effect with various control
settings may be easily judged. Another
switch permits the output to be
compared with the "raw" input signal.

All of the filters used in this system,
including the voltage-controlled filter,
are of the 2-pole active type, giving a
12 dB/octave rolloff slope. The
damping factor is chosen (with one
exception) for a Butterworth response,
which produces the steepest possible
slope beyond cutoff with no peaking
in the passband. (High-pass filters with
3 dB peaking were tried, but these
produced a slightly rough, "grainy"
sound compared to the flat-passband
version.) The design approaches are
widely published and need no further
discussion here. The rumble filter
(Fig. 3) and the pre-filter (Fig.4) are of
this type; their response curves are
shown in Fig.5. The rumble filter is not
essential to proper suppressor
operation, but is convenient in case an
effective low-cut filter is not included
with the associated preamplifier in the
copying setup. The design shown here
has rather high settings intended
primarily for acoustic records.

BANDWIDTH
The bandwidth control signal is
derived with the circuit of Fig. 6,
which consists of a high-pass filter
followed by a precision detector. The
filter damping factor is made low in
order to produce a pronounced peak
and more rapid low-frequency rolloff
(Fig. 7). Three selectable cutoffs
produce peaks at 3.5, 5, and 7.5 kHz;
these were empirically determined to
best accommodate a wide range of
noise characteristics and recorded
bandwidths.

The knowledgeable enthusiast could
readily modify the cut-off points to
suit his own particular application.

The filter output is coupled to a
detector and an integrator. The opera-
tion of these circuits and discussion
of the variable-cut-off filter and con-
struction follows next month in the
final part to the article.
We’re usually pretty brash about the way we announce what is planned for the next issue. The March issue is something special so we decided to tell you about it in a different way: quietly.

First we’ve got a rather special competition which we are running in conjunction with Henry’s Radio. It is a sort of ‘Sale of the Century’ for the winners — something like a 99% discount (up to a certain limit) for goods in the Henry’s catalogue. ...and quite a lot is being given away at that. It won’t be an easy competition to enter, we get excellent responses to our competitions mainly because they are challenging and don’t insult the readers intelligence.

Second, there is a pretty good reader offer. Now, we can’t tell you too much about it at this stage, when you see it you will understand why. We are not being mysterious to hide a mediocre offer. We can say that it is for a highly popular product, especially of interest to the technically minded and at a price which is about 40% cheaper than the current cheapest price for any product in this field. As someone put it to us the other day, ETI brings you today’s products at tomorrow’s prices. In our field that could be taken as a compliment.

Next we have a Data Sheet Special: on Op-Amps. This will cover various types and should be something you will want to keep for future reference. It also forms a nice wrap up to our series which finishes in this issue.

We’ve also got an Index for you, covering every issue of ETI to date— that’s four years next month. In the March issue we are dealing with all subjects except Tech-Tips and Data Sheet, these will be done in April.

Then there is an excellent article by Gordon King on Distortion. Did you know that in certain cases distortion can actually help the sound quality? This is an article which we feel will be of interest to everyone.

There are plenty of projects of course. A 5V Switching Regulator Power Supply. An unusual design operating on very different principles to the regular stabilised PSU. Next is an Audio Level Meter using a ‘bar’ of LEDs instead of a moving coil meter. Even if you have no interest in this subject, the technique may be of interest. There is also an article describing how to modify the Tone-Burst Generator for silent A-B switching Cannibals and Missionaries - sounds ridiculous, but it’s a great party game. Another simple project is a headphone adaptor with adjustable stereo separation — it also restores natural damping, giving a better quality sound.

Well, if you have read this we hope your appetite has been whetted. We have to add the rider that circumstances can affect the final contents but everything we mentioned is at an advanced state of preparation. The March issue will be published on Friday, February 6th.
The General Instruments Master Tone Generator is a digital tone generator which produces from a single input frequency, a full octave of twelve frequencies on twelve separate output terminals.

The MTG consists of twelve divider circuits which divide the input by an exact integer to produce an achromatic scale of twelve notes. When used in conjunction with an oscillator and frequency dividers, a system may be configured which generates all the frequencies required by an electronic music synthesiser. The AY-1.0212 operates at input frequencies up to 1.5MHz. Typical advertised price is £7.

The AY-1.5051 is a 4 stage divide-by-two frequency divider which will operate up to 1MHz on either sine or square wave input. The outputs change state on the negative going edge of the clock.

Other divider configurations are available:
- AY-1.6721/5 5 stage divider 10 lead CAN
- AY-1.6721/6 6 stage divider 12 lead CAN
- AY-1.6721 7 stage divider 14 pin DIL
- AY-1.5050 7 stage divider 14 pin DIL
- AY-1.6722 8 stage divider 16 pin DIL.

The typical advertised price of the AY-1.5051 is £1.50.
The AY-5-3507 is a MOS LSI chip containing all the logic necessary for a 3½ Decade Digital Voltmeter utilising Dual Ramp indication. Automatic polarity detection is incorporated, as is automatic overrange indication. The outputs are multiplexed onto a 7 segment highway allowing easy interface to LED and similar displays whilst keeping the pin count to 18. Typical advertised price is £6.50.

OPERATION

The operation of the circuit is as follows:

Initialy the signal and reference outputs are in the logic '0' state. The counter continuously and at the 1999 to 0000 transition a → 2 is toggled driving the signal switch output to logic '1' turning on the signal switch. The integrator generates a ramp, the amplitude and polarity of which depend on the amplitude and polarity of the input signal. After a further 2000 clock pulses the → 2 is toggled again. This stores the state of the comparator output in a type flip flop (the signal represents the sign of the input signal). The appropriate reference switch is then energised to cause the integrator output to ramp back to zero. When the comparator output subsequently changes state the reference is switched off and the number in the counter is transferred to the store together with polarity information.

Should the input signal be so large that zero is not reached during one counter cycle, an overrange flip flop will be set and will remain set until the next 1999 to 0000 transition of the counter. During overrange the main display will be set to 0000 and the overrange indicator will flash.

To minimise pin requirements a time shared output is used. The display store output (including the 0/1 and overrange) is updated sequentially a decade at a time onto a common 7 line output highway.

INPUT AND OUTPUT SIGNALS

COMPARATOR INPUT

A logic '0' level corresponds to a negative input signal. A logic '1' level corresponds to a positive input signal.

CLOCK INPUT

This signal should be supplied from an external oscillator giving a square wave signal.

REFERENCE SWITCH OUTPUTS

These outputs drive analogue switches which connect the Reference Voltages to the Integrator. A logic '0' at the Comparator Input will be followed by a logic '1' at the Positive Reference Switch Output. A logic '1' at the Comparator Input will be followed by a logic '0' at the Negative Reference Switch Output.

SIGNAL SWITCH OUTPUT

These outputs will be at logic '1' during the time that the signal is connected to the Integrator.

DISPLAY MULTIPLEX OUTPUTS

These outputs are at logic '1' to display. The outputs selected will be as follows:

- MX1 0/1, ±, Over-range
- MX2 Decade 2 (10²)
- MX3 Decade 3 (10³)
- MX4 Decade 1 (10⁰)

SEGMENT OUTPUTS

The outputs of the 3 decade counters are presented sequentially on the outputs A, B, C, D, E, F, G. In the first multiplex position 1 is indicated by segments B and C, + is indicated by segment G, overrange by the flashing of segments A and D. 0, + and underrange are not indicated.

PACKAGE INFORMATION

<table>
<thead>
<tr>
<th>PIN FUNCTION</th>
<th>PIN FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segment F</td>
<td>10. Vss</td>
</tr>
<tr>
<td>Segment G</td>
<td>11. Segment C</td>
</tr>
<tr>
<td>Segment E</td>
<td>12. Segment D</td>
</tr>
<tr>
<td>Signal Switch</td>
<td>13. V_GG</td>
</tr>
<tr>
<td>Comparator Input</td>
<td>14. Clock</td>
</tr>
<tr>
<td>Negative Ref. Switch 15. Mux 1</td>
<td></td>
</tr>
<tr>
<td>Segment A</td>
<td>17. Mux 3</td>
</tr>
<tr>
<td>Segment B</td>
<td>18. Mux 4</td>
</tr>
</tbody>
</table>

18 lead Dual-in-Line

ELECTRICAL CHARACTERISTICS

CLOCK & COMPARATOR INPUTS

- Logic '0' level between -5V & -18V
- Logic '1' level between +0.3V & +1V
- Clock frequency between DC and 20kHz

DISPLAY MULTIPLEX OUTPUTS

- Logic '1' sink current 2mA typical
- Logic '1' leakage current less than 10µA

SWITCH OUTPUTS

- Logic '1' sink current 0.8mA typical
- Logic '0' leakage current less than 10µA

SEGMENT OUTPUTS

- Logic '1' sink current 7mA typical
- Logic '0' leakage current less than 10µA

SUPPLIES

- Vss 0V
- V_GG -12V to -18V

At V_GG = -12V, Supply current is 1.5mA typical

At V_GG = -18V, Supply current is 3.6mA typical

PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>SUPPLIES</th>
<th>CHARACTERISTICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vss</td>
<td>-18V</td>
</tr>
<tr>
<td>V_GG</td>
<td>-12V to -18V</td>
</tr>
</tbody>
</table>

PACKAGE INFORMATION

ELECTRONICS TODAY INTERNATIONAL – FEBRUARY 1976
EXTERNAL CIRCUITRY TO BUILD A DVM

We give here circuitry required to build a 3½ digit Dual Ramp Integrating DVM which will run from a 6V battery and has an FSD of ±2V. The circuits described here are an integrator, a comparator, a voltage reference, a clock oscillator and a display.

ANALOGUE CIRCUITRY (Fig. 1)

This consists of an LM308 integrator followed by an LM301A comparator. The input and reference signals are switched onto the integrator by an MEM 780 quad n-channel MOS FET switch.

Zero setting is achieved by injecting a small current into the input, sufficient to balance out the bias current of the LM380 and the leakage current of the MEM 780. Full scale setting is achieved by adjusting the Positive and Negative references.

The voltage reference is decoupled with 220 Ohms and 150uF, this is only when the ITT 7120 power supply is used.

VOLTAGE REFERENCE (Fig. 2)

A BVZ10 temperature compensated Zener diode is used to provide a basic 6.5V reference. An LM301A operational amplifier is used to generate a +3.25V and a -3.25V reference from the Zener voltage. Four outputs are provided: the Positive and Negative references (+3.25V and -3.25V) substrate bias for the MEM 780 analogue switch and a zero set control for the integrator.

POWER SUPPLY AND CLOCK OSCILLATOR (Fig. 4)

The circuit is designed to be run from a 6V battery, an ITT 7120 calculator power supply is used to generate -14V supply. This results in supplies of 6V for the DVM. The 7120 also contains a clock oscillator, this runs at 10kHz giving a reading rate of 2.5 per second.

Typical power consumption for the circuit, excluding the display, is 50mA at 6V. The display as shown takes on average a further 50mA.

Alternative power supplies may be used, the restriction being that each supply must lie within the range 4.5 to 10.5V and the sum of the supply voltages must be in the range 12 to 18V. If it is desired with a positive supply greater than +6.5V, limiting resistors will be required in the segment and multiplex outputs.

OVERALL PERFORMANCE

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full scale range</td>
<td>±1.999V</td>
</tr>
<tr>
<td>Accuracy</td>
<td>±0.1% reading ±1 digit</td>
</tr>
<tr>
<td>Input Resistance</td>
<td>220k</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>0°C to +70°C</td>
</tr>
<tr>
<td>Zero stability</td>
<td>1 digit change 0°C to 70°C supply 5 to 7V</td>
</tr>
<tr>
<td>FSD stability</td>
<td>0.004% per °C</td>
</tr>
<tr>
<td>Reading rate</td>
<td>0.16% per volt supply</td>
</tr>
<tr>
<td>Power supply</td>
<td>2.5 per second</td>
</tr>
<tr>
<td>Reading rate</td>
<td>4.5 to 6.5V, 6V nominal at 100mA</td>
</tr>
</tbody>
</table>

INPUT ±2V

MEM 4016 or equivalent may be used in place of MEM 780.
Top 500 Semiconductors from the largest range in the UK

Top 500 Semiconductors from the largest range in the UK

Trade and export enquiries welcome

PE W.E.T.E.L.E.T.E.N.N.I.S KIT
It's our service that makes us grow

LONDON - GLASGOW - PARIS AND NOW

BRISTOL!
How to build Electronic Kits
M. Capel
Constructs the reader on how to connect and build electronic components, how to solve problems and how to cure faults.

NEW SCROGGIE!
FOUNADIONS OF WIRELESS ELECTRONICS
M. G. Scroggie
Price: £4.25

BEGINNERS GUIDE TO ELECTRONICS
T. L. Squires
Price: £2.55
A short cut for those wishing to obtain a quick acquaintance with modern electronics.

I.C. OP-AMP COOKBOOK
W. G. Jung
Price: £8.15
Covers the basic theory of I.C. OP-Amp in great detail and gives 285 practical circuit applications, clearly illustrated.

TTL COOKBOOK
D. Lancy
Price: £5.80
Comprises a general and circuit guide to TTL, its theory, how to use it, and some suggested applications.

110 OPERATIONAL AMPLIFIER PROJECTS FOR THE HOME CONSTRUCTOR
R. M. Marston
Price: £2.85
Outlines the essential characteristics of the OP AMP and presents 110 useful projects.

110 SEMICONDUCTOR PROJECTS FOR THE HOME CONSTRUCTOR
R. M. Marston
Price: £2.85
This book introduces the reader to useful new devices such as the Fet, SCRs and IC's, with full constructional details of many useful circuits.

UNDERSTANDING CMOS INTEGRATED CIRCUITS
R. Meier
Price: £3.25
Begins with basic digital I.C.s. covers semiconductor physics, CMOS fabrication, design and applications.

INTEGRATED ELECTRONICS
J. Millman
Price: £5.00
Using an integrated circuit approach that best leads the reader step by step from semiconductor physics to devices, models, circuits and systems.

LINEAR I.C. PRINCIPLES, EXPERIMENTS AND PROJECTS
E. M. Noll
Price: £5.80
As help to one of electronic's most exciting devices.

DESIGNING WITH TTL INTEGRATED CIRCUITS
Texas Instruments
Price: £6.85
Covers the entire family of TTL and practical application of the Crystal to digital circuits.

OPERATIONAL AMPLIFIERS DESIGN AND APPLICATION
G. Tobary (Sum-Brown)
Price: £4.70
Completely up to date, this work covers the entire field of operational amplifiers.

RADIO, VALVE & SEMICONDUCTOR DATA
A. M. Ball
Price: £5.50
Tenth edition, gives data on 1,000 valves and CRTs, 9,000 transistors, diodes, rectifiers and optical devices.

ELECTRICAL CIRCUIT DESIGN HANDBOOK
By the Editors of EEE Magazine
Price: £5.20

Please list titles (with price) separately. Cheques, etc., to be payable to Electronics Today International and sent to:
ETI BOOK SERVICE, 25 Court Close, Bray, Maidenhead, Berks.
All prices include postage and packing.

BEGINNERS' GUIDE TO TRANSISTORS
J. A. Reddough
Price: £2.55
Covers the basic theory and practice of modern transistors.

COLOUR TV THEORY
G. F. Hutson
Price: £4.86
P.A. Systems, processor and receiver circuit for engineers, technicians and students.

TV SERVICING HANDBOOK
G. King
Price: £8.00
A practical handbook, deals with modern receivers.

COLOUR TELEVISION SERVICING
G. King
Price: £5.90
A practical handbook, deals with modern receivers.

THE OSCILLOSCOPE
O. Seal
Price: £5.30
A practical handbook, dealing with over 200 illustrations.

THE MACZDA BOOK OF PAL RECEIVER SERVICING
G. King
Price: £4.60
A practical handbook, deals with modern receivers.

COLOUR TV THEORY
J. A. Reddough
Price: £5.20
Covers the basic theory and practice of modern transistors.

TRANSISTORS
J. A. Reddough
Price: £2.55
Covers the basic theory and practice of modern transistors.

TRANSISTOR SELECTION
Towers' International
Price: £1.80
Data on transistors, valves, and diodes.

THE OSCILLOSCOPE
J. A. Reddough
Price: £1.95
A practical handbook, deals with over 200 illustrations.

HOW TO USE YOUR VOM VTVVM AND OSCILLOSCOPE
M. Capel
Price: £1.80
A book aimed to give you knowledge and help you perform a wide variety of essential tasks in many different kinds of test, appliance and equipment.

1976
EXPOSURE METER

By Dave Adams

The prototype unit as seen on the front cover. The case is a Kodak 20-exposures transparency case.

IT IS COMMON for amateur photographers to find three or four useless prints in the wallet picked up from the chemists, and usually there are a couple of shots lost because the exposure was so way-out that there is no image on the negs. For a few quid, however, you can build this simple instrument and ensure that all your shots are correctly exposed.

The exposure meter uses an LDR (Light Dependent Resistor) to measure the amount of light falling on a translucent window. The position of the potentiometer control when the meter is set is directly related to this quantity. Setting up simply involves adjustment of the knob until the two LEDs glow with equal brightness.

The prototype is built in a 20-exposures transparency case and uses a slider control. The control is calibrated in units which are 1 stop (representing a doubling in quantity of light) apart; we call these LV (Light Value) units. Having found the LV number, the camera setting can be found using the circular calculator on the underside of the meter.

After building the first prototype we found that we needed to build a second one (there were two of us at ETI who wanted the meter, so to save arguments we built another). The Mark II shows some of the possible alternative methods of construction — we used a small Vero box and a conventional pot. Now the rotation of the control automatically sets the calculator without the need for LV numbers. The circuit was the same in each case.

As it stands the meter is ideal for measuring light levels normally found indoors — but it cannot cope with highly illuminated sets or outdoor work. To give an additional range to the meter we use an optical attenuator, a mechanical filter placed in front of the LDR window. Now the instrument can cope with all the lighting conditions met by the amateur photographer.

Fig. 1. The circuit diagram of the Exposure Meter.

Fig. 2. The pcb design.

Fig. 3. The component overlay.

PARTS LIST

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>Resistor 12k 1/8W 10%</td>
</tr>
<tr>
<td>R2</td>
<td>680Ω</td>
</tr>
<tr>
<td>R3</td>
<td>3k9</td>
</tr>
<tr>
<td>R4</td>
<td>68kΩ</td>
</tr>
<tr>
<td>R5</td>
<td>1k</td>
</tr>
<tr>
<td>VR1</td>
<td>Potentiometer 4k7 lin</td>
</tr>
<tr>
<td>Q1,Q4</td>
<td>Transistors BC108</td>
</tr>
<tr>
<td>Q2,Q3</td>
<td>BC176</td>
</tr>
<tr>
<td>LEDs</td>
<td>TIL209</td>
</tr>
<tr>
<td>LDR</td>
<td>ORP12</td>
</tr>
<tr>
<td>S1</td>
<td>Miniature slide switch or push-on switch</td>
</tr>
<tr>
<td>Batteries</td>
<td>3x1.5V Mercury Cells</td>
</tr>
<tr>
<td>PCB</td>
<td>ETI 951</td>
</tr>
<tr>
<td>Box</td>
<td>Either Kodak or similar 20-exposures transparency case or Vero 75-1413-E</td>
</tr>
</tbody>
</table>

Also: 18swg aluminium for the filter; 3.1mm perspex (at least 50 x 35mm); red perspex 30 x 15mm; matt black paint, plastic card, impact adhesive, etc.
The reward! This is the kind of picture you can take with this meter (shown in action on the front cover).

CONSTRUCTION

The PCB holds all the electronics except the pot, the batteries, the switch and the LDR. The transistors must be mounted as low as possible on the board so that it can be fitted under the pot. The positioning of the LEDs can be finalised only when the board is mounted in its case.

We will give details of construction in the slide case. Fig. 4 shows how slots are cut to enable the mechanical filter to be fitted. The LDR window is marked out, according to Fig. 5, and made into a diffuser by rubbing with wirewool. Then the transparent top is painted (except for the window) with a couple of coats of matt black paint.

Fig. 6. shows the construction of the LDR holder. The dimensions here are important — they decide how much of the light falling into the window will be measured by the LDR. The holder must be a light-tight box — use matt-black paint and glue to achieve this.

The battery holder is located at the other end of the box top, and is made from perspex; see Fig. 7. A useful source of copper contacts is raw printed circuit board — glue pads at each end of the holder and solder leads to these.

The photographs show how the slider pot and on-off switch are mounted. Fig. 8 gives details of calibration for the pot. The PCB is mounted by one bolt through the centre — this bolt also acts as the centre of the calculator. The prototype calibrations, Fig. 9, will work if the meter is constructed exactly like the prototype. Check the meter against a known accurate instrument, then if adjustment is required this only needs to be done by moving the scale of LV numbers a little (the time and aperture scales ought to be ok).

The prototype was held together by MATT BLACK PAINT

THICKNESS OF BORDER — APPROX. 1MM

Fig. 5. The LDR Window. This is rubbed inside with wirewool and then the surrounding area is painted matt black.

Fig. 6. How the LDR Holder is made using two pieces of perspex inside the lid.

Fig. 7. Construction of the battery holder. The inside of the end faces of the holder should be lined with copper contacts.

Fig. 8. The scales for calibrating the slider pot.

The top of the transparency box is painted black inside. Then the Battery Holder (left) and LDR Holder (right) are built into opposite ends.
EXPOSURE METER

a 6BA bolt (Fig. 10), but less crude methods can be used if you can think of them.

The mechanical filter is constructed from 18swg aluminium. The necessary information is given in Fig. 11. Twelve holes are drilled, in three columns of four. Vertical separation is 4mm, horizontal 9mm. The size of the holes is 1.16mm diameter. Check that all the holes are over the window (the format of the matrix is not critical, but should be symmetrical).

Construction in the Vero box can be seen from the photographs. The LDR holder and battery holder are the same as before. We used a push-on miniature switch — this will keep the drain on the mercury cells down to a minimum. The PCB is mounted on the back of the pot. It is held by the connecting wires. The body of the pot is covered in pvc tape to prevent shorting.

The calculator was made from two discs cut from plastic board. Perhaps the best way to calibrate the MKII is to use an accurate meter (borrow one). We found that we needed to divide the circle into 13 segments. The useful range of the pot's rotation has nine stops (nine of these segments). The aperture settings found on your camera can be marked on the outer disc (in the sequence 1, 1.4, 2, 2.8, 4, 5.6, 8, 11, 16, 22, etc).

Beneath the outer disc we glued a pointer (a plastic arrowhead) which runs in a slot cut into the thick perspex block beside the calculator. This holds the outer disc firm while the inner is rotated and allows the outer disc to be turned for setting film speed.

In the middle of the perspex block we marked a speed of 80 ASA (the full sequence was 20, 40, 80, 120, 320; with extra markings for 25, 50, 100, and 200 ASA). With the pointer at 80 ASA we found that with the control set mid-range an aperture of f5.6 would require an exposure of 1 second. So we calibrated the inner scale 1/15, 1/8, 1/4, 1/2, 1, 2, 4, 8, 16, to give times for all apertures marked on our meter. To extend the range for other film speeds we marked two more stops each way.

The mechanical filter is of the same basic design as before but needs re-modelling to fit around this box. The inner scale of the calculator is in fact cut into 26 segments so that the second range (with the mechanical filter) could be incorporated. On this range we got an exposure of 1/250 sec at f5.6, ASA 100, with the pot mid-range.

All that remains now is to find some black leather, a 5" zip, and some obliging lady to make you a case! •

WHERE TO GET THE COMPONENTS

The slider pot is available from Electrovalue (Type PG8B) for 38p. (plus 15p small-order surcharge inc VAT)

The batteries are type 675 from boots, but these aren't critical.

The PCB can be obtained from advertisers in this magazine (Ramar or Crofton).

The Vero boxes are available from Vero only in 10-off quantities. Your local components shop is likely to sell them for about 30p, plus VAT, each.

North America Radio Shack supply the following components for this project:

Cadmium Sulphide photocell (LDR); General purpose NPN transistors—2N3904 etc; General purpose PNP transistors—2N3906 etc; Resistors, pot, switches, LEDs, all OK; South Africa Hamrad can supply the components for this project. The MK7251 Cadmium Sulphide photocell will do for the LDR but the calibration might have to be done again.

HOW IT WORKS

The resistance of the LDR varies from 300k to 10MΩ from bright sunlight to darkness. When the meter is set up the ratio of LDR resistance to R1 is the same as the ratio of resistances on the pot, so the position of the wiper contact varies with the light being measured.

In equilibrium Q1 and Q4 are both turned off (Q2 and Q3 sense this condition and the LEDs light up). Setting up equilibrium is made critical by the common emitter resistor, R3. When one transistor is conducting the potential on the emitter rises and helps turn off the other transistor.

The Vero boxes are available from Vero only in 10-off quantities. Your local components shop is likely to sell them for about 30p, plus VAT, each. North America Radio Shack supply the following components for this project: Cadmium Sulphide photocell (LDR); General purpose NPN transistors—2N3904 etc; General purpose PNP transistors—2N3906 etc; Resistors, pot, switches, LEDs, all OK; South Africa Hamrad can supply the components for this project.

The MK7251 Cadmium Sulphide photocell will do for the LDR but the calibration might have to be done again.

Fig. 10. How the meter is held together — a 6BA bolt.

Fig. 11. The mechanical filter for the Mark I meter is constructed from 18swg aluminium. For the Mark II the front is the same but the supports need re-designing to fit the case.
AMTRON KITS

- UK 302: Radio Control Transmitter 4 channel £17.50
- UK 105/C FM: Microtransmitter £18.07
- UK 325: R/C 'Gxc2' Channel Splitting Unit 1000 K 2000Hz £8.34
- UK 330: 'Gxc2' Channel Splitter £8.34
- UK 220: Signal Injector £3.53

MACK’S ELECTRONICS FOR MOTOROLA McMOS

- MC14001CP Quad 2 Input NOR 20p
- MC14002CP Dual 4 Input NOR 20p
- MC14003CP Hex Invertor Buffer 98p
- MC14009CP Dual 4 Bit Static Shift Register £1.24
- MC14011CP Quad 2 Input NAND 20p
- MC14015CP Dual 4 Bit Static Shift Register £1.26
- MC14017CP Decade Counter £1.22
- MC14021CP 8 Bit Static Shift Register £1.26
- MC14023CP Triple Three Input NAND £1.25
- MC14027CP Dual J-K Flip Flop 86p
- MC14042CP Quad Latch £1.26
- MC14048CP Phase Locked Loop £1.85
- MC14510CP BCD Up-Down Counter £1.40
- MC14511CP BCD 7 Segment Latch Decoder £2.10
- MC14528CP Dual Monostable £0.96

MACK’S ELECTRONICS FOR FAIRCHILD

- FAIRCHILD 723: 14 Pin var. voltage Regulator 55p
- FAIRCHILD 741: 8 Pin Op Amp 30p
- SIGNETICS NE555V: 8 Pin Timer 60p
- FERRANTI ZN 414: Radio Chip £1.25
- MOTOROLA MC1310P: 14 Pin Coiless Stereo Decoder £2.10
- MOTOROLA MFC4000B: 7 Watt Audio Amp 75p
- NATIONAL SEMICONDUCTOR LM380: 14 Pin 2 Watt Audio Amp £1.20
- NATIONAL SEMICONDUCTOR LM380-8: 8 Pin 1 Watt Audio Amp £1.05
- NATIONAL SEMICONDUCTOR LM1303: 14 Pin Stereo Pre-Amp £1.65
- NATIONAL SEMICONDUCTOR LM3900: 14 Pin Quad Amp 69p
- NATIONAL SEMICONDUCTOR MM5314: 24 Pin Dual Clock Chip £4.35

**AM/FM Antenna Amplifier £4.16
DHF/UHF Antenna Amplifier £8.87

LITRONIX DISPLAYS

- DL704: Common Cathode (See ETI Digital Frequency Meter in this issue) £1.80 each 4 for £7
- DL707 (Common Anode) £19.95

ALL PRICES INCLUDE V.A.T. Please allow 20p to cover P. and P.

The revolutionary SUPERTESTER ICE 680R

- outstanding features:
 - Di: 29000 ohm per volt sensitivity
 - C: Full screened operation against external magnetic fields
 - O: Accuracy and stability ±1% in 42°C, 3% in 80°C of Industrial readings
 - F: Full range of accessories
 - P: Printed circuit board is insensitive to vibration
 - S: 16 Tiers of ranges standard & 20 ranges

FAIRCHILD 741 8 Pin Op Amp 30p
SIGNETICS NE555V 8 Pin Timer 60p
MOTOROLA ZN 414 Radio Chip £1.25
MOTOROLA MC1310P 14 Pin Coiless Stereo Decoder £2.10
FAIRCHILD 723 14 Pin var. voltage Regulator 55p

MACK’S ELECTRONICS FOR FAIRCHILD

- FAIRCHILD 723: 14 Pin var. voltage Regulator 55p
- FAIRCHILD 741: 8 Pin Op Amp 30p
- SIGNETICS NE555V: 8 Pin Timer 60p
- FERRANTI ZN 414: Radio Chip £1.25
- MOTOROLA MC1310P: 14 Pin Coiless Stereo Decoder £2.10
- MOTOROLA MFC4000B: 7 Watt Audio Amp 75p
- NATIONAL SEMICONDUCTOR LM380: 14 Pin 2 Watt Audio Amp £1.20
- NATIONAL SEMICONDUCTOR LM380-8: 8 Pin 1 Watt Audio Amp £1.05
- NATIONAL SEMICONDUCTOR LM1303: 14 Pin Stereo Pre-Amp £1.65
- NATIONAL SEMICONDUCTOR LM3900: 14 Pin Quad Amp 69p
- NATIONAL SEMICONDUCTOR MM5314: 24 Pin Dual Clock Chip £4.35

283 EDGWARE ROAD LONDON W2 1BB

MACK’S ELECTRONICS

1. Understand electronics.

Step by step, we take you through all the fundamentals of electronics and show you how easily the subject can be mastered using our unique Lerna-Kit course.

1. Build an oscilloscope.
2. Read, draw and understand circuit diagrams.
3. Carry out over 40 experiments on basic electronic circuits and see how they work.

2. Become a radio amateur.

Learn how to become a radio-amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.

- **Brochure, without obligation to:**
 - BRITISH NATIONAL RADIO & ELECTRONICS SCHOOL, Dept. ETL 125
 - P.O. Box 156, Jersey, Channel Islands.

NAME

ADDRESS

Block caps please
PRICE LIST

CLOCK CHIPS

<table>
<thead>
<tr>
<th>NATIONAL</th>
<th>MHI-50395</th>
<th>MHI-50397</th>
<th>MHI-5001</th>
<th>MHI-50318</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM5307</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
</tr>
<tr>
<td>MM5309</td>
<td>7.35</td>
<td>7.35</td>
<td>7.35</td>
<td>7.35</td>
</tr>
<tr>
<td>MM5311</td>
<td>7.35</td>
<td>7.35</td>
<td>7.35</td>
<td>7.35</td>
</tr>
<tr>
<td>MM5312</td>
<td>15.10</td>
<td>15.10</td>
<td>15.10</td>
<td>15.10</td>
</tr>
</tbody>
</table>

LOW PRICES

- **C-MOS LOGIC**
 - CD4066: 19p
- **ICs NEW**
 - CD4066: 19p
- **LINEAR I.C.s**
 - CD4066: 19p

DISPLAYS

- LIPTONIX: D107E, 707E, 704E
- LIPTONIX CLASS 11 PRODUCTS: D107E, 707E

MHI DISPLAY KITS

<table>
<thead>
<tr>
<th>MHI-707/4 + digit 0.3"</th>
<th>704</th>
<th>707</th>
<th>704</th>
</tr>
</thead>
<tbody>
<tr>
<td>MHI-707/4 + digit 0.3"</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
</tr>
<tr>
<td>MHI-707/4 + digit 0.5"</td>
<td>8.6</td>
<td>8.6</td>
<td>8.6</td>
</tr>
</tbody>
</table>

TITLES BY TEXAS

<table>
<thead>
<tr>
<th>TITLE</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>7400</td>
<td>1.40</td>
</tr>
<tr>
<td>7401</td>
<td>1.50</td>
</tr>
<tr>
<td>7402</td>
<td>1.60</td>
</tr>
<tr>
<td>7403</td>
<td>1.70</td>
</tr>
</tbody>
</table>

VOLTAGE REGULATORS (FIXED PLASTIC - 3 Terminals)

<table>
<thead>
<tr>
<th>HP</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>7501</td>
<td>1.20</td>
</tr>
<tr>
<td>7502</td>
<td>1.30</td>
</tr>
<tr>
<td>7503</td>
<td>1.40</td>
</tr>
</tbody>
</table>

VARIABLE

<table>
<thead>
<tr>
<th>TITLE</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>723</td>
<td>1.40</td>
</tr>
</tbody>
</table>

OPTO-ELECTRONICS

<table>
<thead>
<tr>
<th>TITLE</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>6900</td>
<td>1.20</td>
</tr>
</tbody>
</table>

LOW PROFILE DIL SOCKETS BY TEXAS

<table>
<thead>
<tr>
<th>TITLE</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>1501</td>
<td>1.40</td>
</tr>
</tbody>
</table>

FOR ADDITIONAL INFORMATION

- Please add VAT to total
- All listed devices are available on request. Please allow 2 to 3 weeks for delivery.
- G.P.O., Colman, etc., orders accepted

MHI-50397

- MHI-50397: 19.50
- MHI-50397: 19.50
- MHI-50397: 19.50
- MHI-50397: 19.50

VAT RATES

- FULLY-BRANDED DEVICES BY TEXAS, RACA, MOTOROLA, NATIONAL, MULLARD, etc.
- VAT RATES AT 10% EXCEPT WHERE SPECIFIED.
Increase the output from your existing amplifier to 50 watts per channel.

<table>
<thead>
<tr>
<th>MEASURED PERFORMANCE OF THE PROTOTYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWER OUTPUT</td>
</tr>
<tr>
<td>Both channels driven</td>
</tr>
<tr>
<td>into 8 ohm load</td>
</tr>
<tr>
<td>50 watts RMS</td>
</tr>
<tr>
<td>FREQUENCY RESPONSE</td>
</tr>
<tr>
<td>20 Hz - 20 kHz</td>
</tr>
<tr>
<td>± 0.5 dB</td>
</tr>
<tr>
<td>CHANNEL SEPARATION</td>
</tr>
<tr>
<td>at rated output and 1 kHz</td>
</tr>
<tr>
<td>80 dB</td>
</tr>
<tr>
<td>HUM AND NOISE</td>
</tr>
<tr>
<td>With respect to rated output</td>
</tr>
<tr>
<td>-100 dB</td>
</tr>
<tr>
<td>SENSITIVITY</td>
</tr>
<tr>
<td>For 50 watts output</td>
</tr>
<tr>
<td>500 mV</td>
</tr>
<tr>
<td>DISTORTION</td>
</tr>
<tr>
<td>100 Hz</td>
</tr>
<tr>
<td>1 kHz</td>
</tr>
<tr>
<td>6.3 kHz</td>
</tr>
<tr>
<td>1 watt</td>
</tr>
<tr>
<td>0.14%</td>
</tr>
<tr>
<td>0.11%</td>
</tr>
<tr>
<td>0.12%</td>
</tr>
<tr>
<td>5 watts</td>
</tr>
<tr>
<td>0.17%</td>
</tr>
<tr>
<td>0.13%</td>
</tr>
<tr>
<td>0.15%</td>
</tr>
<tr>
<td>10 watts</td>
</tr>
<tr>
<td>0.16%</td>
</tr>
<tr>
<td>0.11%</td>
</tr>
<tr>
<td>0.13%</td>
</tr>
<tr>
<td>50 watts</td>
</tr>
<tr>
<td>0.27%</td>
</tr>
<tr>
<td>0.38%</td>
</tr>
<tr>
<td>0.60%</td>
</tr>
<tr>
<td>DAMPING FACTOR</td>
</tr>
<tr>
<td>> 70</td>
</tr>
</tbody>
</table>

AFTER many years of faithful service you have finally decided to update your old Hi-Fi system with a new pair of speakers. Upon evaluation however, you find that the modern speakers you have chosen are much less efficient than those you presently have. This means that not only do you have to get new speakers, but you also have to replace an otherwise perfectly good amplifier because its five-to-fifteen watts output is no longer anywhere near enough. A pity, because there may be nothing wrong with the preamplifier and you may have to pay out £60 or more just to get that additional power.

An obvious solution is to retain your existing amplifier, which has all the facilities that you require, and obtain the extra power required by means of a booster amplifier. Unfortunately commercial booster amplifiers are very rare, if available at all. The ETI 4226 is designed to fulfill this need and thus save the person updating his system a considerable amount of money that need not be spent in replacing the preamplifier.

The ETI 4226 is designed to be used as a main amplifier, driven from the existing preamplifier, or as a booster amplifier driven directly from the speaker output of the existing power amplifier.
Amplifier. It provides an output of up to 50 watts into 8 ohm speakers with a distortion that is typically around 0.2%.

It must be noted however that the distortion and noise cannot be less than that available from the existing amplifier and you must ensure that this amplifier is of good quality if this add-on technique is to be successful.

HOW IT WORKS

The amplifier is constructed around the power module from the ETI 422 first described in the August 1974 issue of ETI and subsequently reprinted in Project Book 2. The only additional circuitry required is that for the input attenuator or for a direct input depending on whether a booster or main amplifier approach is being used. We have used 33 ohm resistors in the earthy side of each input to prevent the damage which may occur to some amplifiers if the leads to the booster amplifier are inadvertently connected the wrong way around.

CONSTRUCTION

Assemble the main amplifier printed-circuit board and the heatsink assemblies in accordance with the component overlays and drawings for the 422.

Any conveniently sized box would be suitable as a housing. To minimize hum pickup the transformer was mounted centrally to keep it as far away from the input circuits as possible. If a larger box is used put the transformers as far away as is possible from both inputs. Chassis mounting fuses were used as they are less expensive than the rear-panel mounting types, and only need to be changed on the very rare occasions when the speakers leads are accidently shorted.

A power outlet socket was fitted to the amplifier so that the existing amplifier may be powered from it if required. The individual constructor may include or omit this socket as required. The interwiring details (except for the heatsinks) are given in Fig. 1. For the values of resistors required in the divider networks reference should be made to Table 1 as these will vary depending on the power output of the existing amplifier. If required these may be made adjustable by substituting a potentiometer (10 kΩ) for the series resistor.

Most modern amplifiers can work into a high impedance without trouble. However some older types, especially those with an output transformer need to be terminated into the correct load. The resistors shown across the inputs are for this purpose and should be made equal in value to prevent the output impedance of the existing amplifier. The rating of these resistors should be about two watts.

TABLE 1

<table>
<thead>
<tr>
<th>Amplifier Value of Power (8 ohms)</th>
<th>Series Resistor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2W</td>
<td>2.7 k</td>
</tr>
<tr>
<td>5W</td>
<td>4.7 k</td>
</tr>
<tr>
<td>10W</td>
<td>6.8 k</td>
</tr>
<tr>
<td>15W</td>
<td>8.2 k</td>
</tr>
<tr>
<td>20W</td>
<td>10 k</td>
</tr>
</tbody>
</table>

FOR NEW READERS

The circuit and full constructional details of this extremely popular 50W audio module are still available in Project Book 2, copies of which may be obtained by sending 90p (inc. postage) to: Top Projects No. 2, ETI Magazine, 36 Ebury Street, London SW1 W OLW.

FOR CANADIAN READERS

Copies of Top Projects No. 2 will be sent to Canada surface mail for $2.00 (2–3 weeks) or Air Mail $3.00. Transistor equivalents to those shown: BC177 may be replaced by Radio Shack's RS 2022, BD139 and BD140 may be replaced by 2N4921 and 2N4918 (Archer-Pak 2927–117). MJE2955 is complimentary of 2N3055.

PARTS LIST ETI 4228

All components as per 422 parts list. Other components as follows:

- Chassis and cover as required.
- 4 input terminals
- 2 speaker sockets
- Power outlet socket (if required)
- Power switch (2 pole)
- Neon indicator (ft required)
- Nuts, bolts, spacers etc.
FREE Brochure on New KITS

Whether professional, student, teacher or amateur, the field of electronics can open up a new world for you.

CROFTON don't just sell kits, we offer you a technical back up service to ensure your success.

The following is a selection of some of the more popular kits:

- Mullard CCTV Camera
- PE CCTV Camera
- PE Rondo Quadrophonic Four Channel Sound (Designer Approved)
- Electronic Ignition
- Electronic Flash
- P.W. Tele-Tennis Game
- U.H.F. Modulator
- Bench Power Supply
- Wobbulator
- All ETI Top Projects
- Many of the Elektor Projects

NOTE: PC BS for most published projects available to order.

CROFTON ELECTRONICS LTD
Dept C 124 Coine Road, Twickenham, Middx. 01 898 1569

The Plessey Company Limited and L.S.I. (Electronic Systems) Limited announce, following settlement of a dispute between themselves and General Instrument Corporation of America and General Instrument Microelectronics Limited, that the following metal oxide semiconductor circuits have been withdrawn from the market:

- MP9100 Push button telephone dialler
- MP9200 Repertory telephone store
- MP1013A Universal asynchronous receiver/transmitter

The equivalent circuits AY-5-9100, AY-5-9200 and AY-5-1013/1013A can be obtained from General Instrument Microelectronics Limited.

Sparkrite MK 2

The tried, tested, proven, reliable, complete, professional, capacitive discharge, Electronic Ignition Kit

Sparkrite MK2 is a high performance, high quality, capacitive discharge electronic ignition system. Because of the superb design of the Sparkrite circuit it completely eliminates problems of the contact breaker. There is no chance of contact breaker bounce because of a built-in suppression circuit which prevents the spark firing if the points bounce open at high RPM. Contact breaker burn is eliminated by reducing the current to about 1/500th of the normal. It will operate equally well with new, old, or even badly pitted points and is not dependent upon the dwell time of the contact breaker for recharging the system. Sparkrite incorporates a short circuit protection feature which prevents the occurrence of SCR lock on and therefore eliminates the possibility of burning the transistors or the SCR. Many capacitive discharge ignition systems are not completely foolproof in this respect.

Sparkrite can therefore give you:
- up to 20% better fuel consumption, instant all weather starting, smooth acceleration, higher top speeds, longer oil life, efficient fuel burning and less air pollution.
- continual peak performance.

THE KIT COMPRISSES EVERYTHING NEEDED
- Ready assembled pressurised transformer and components. Driven off contact breaker, portable circuit board, nuts, bolts, silicon grease, full instructions to make the kit negative or positive earth, and 10-page installation instructions.

OPTIONAL EXTRAS
- Electronic R.P.M. limitation
- Electronic/conventional ignition switch - gives instant changeover from Sparkrite ignition to conventional ignition, for performance developments, is ideal for racing etc., and will also switch the ignition off completely as a security device. Includes: switch, connectors, harness and instructions.

CALLERS WELCOME
DESK-TOP GRAPHICS

AT THE END of November, Tektronix revealed for the first time in Europe a new development in the microcomputer field. Their new 4051 desk-top micro-computer offers a facility never seen before in the most sophisticated of programmable calculators—graphics ability.

It has long been obvious that the human half of the man-machine interface can become punch-drunk when confronted with too many columns of figures on a print-out; and since time immemorial information has been presented in the forms of graphs, charts and histograms on paper. How often has a scientist, statistician or businessman processed all his figures in a few moments and then spent a few hours plotting the results on graph paper, only at the end, to discover he'd made a mistake and had to repeat the process? Only the lucky few who had access to a graphics computer terminal which was coupled to a full-scale, expensive and probably underworked computer, could delegate the boring plotting to a machine, and gain the full benefits of working interactively with the machine.

Programmable calculators have been getting smaller in size (to pocket size now) and more powerful, to minicomputer standards virtually, until now we have the Tektronix 4051—which is a megalomaniac's dream. This microcomputer is programmable in BASIC, a very well-known, simple, yet powerful language, through a keyboard similar to that of a typewriter so that anyone who knows BASIC will be able to walk up to the 4051, switch on, and commence solving problems. The basic BASIC (?) language has been supplemented by some special instructions which are easy to learn—for instance, typing SET DEG will put the unit in degrees mode for trigometric calculations.

NO NEED TO PROGRAM

One very reassuring feature is that one needn't write programs to solve simple calculations. For example, we tried "2+2, carriage return" and the 4051 responded with "4". The extra calculator keyboard beside the main one is very useful when using this "immediate" mode.

WHAT MAKES IT TICK?

The electronics inside are based on the Motorola M6800 microprocessor with 8k of RAM supplied as standard—this is expandable to 32k. Microprocessor enthusiasts will be interested to know that all the standard routines and the BASIC language interprets are squeezed into 32k of read-only memory. The RAM storage is backed up by a magnetic tape cartridge unit which offers another 256k characters of storage.

By pushing the 'TUTOR' tape and pressing the 'AUTO LOAD' button, a completely inexperienced user can be taught to use the 4051, by the 4051. The program asks questions which are answered YES/NO, and the machine then proceeds to a new question, or explains fully the last point more fully if a mistake was made. Obviously, the principle can be expanded to enable the 4051 to 'teach' other subjects, such as statistics, electrical engineering, as well as solving problems in these fields. And at the price of about £4,500 it's probable that the 4051 will appear in schools and offices—it won't be long before you meet one.
EXCLUSIVE TO ETI READERS
Excellent New Range of QUARTZ CRYSTAL Digital Electronic Watches

LIGHT EMITTING DIODE MODELS

LED MODEL TLE4
£39 inc. VAT
* Hours
* Minutes
* Seconds
* Date

LED MODEL TLE5
£45 inc. VAT
* Hours
* Minutes
* Seconds
* Date
* Alpha Day

THE BLACK WATCH

SPECIAL OFFER
£25.55 inc. VAT

Jet Black Stainless Steel Bracelet

LED MODEL TLE3
* Hours
* Minutes
* Seconds

LIQUID CRYSTAL DISPLAY MODELS

MODEL TLC4
Gold Bracelet

CONTINUOUS DISPLAY
* Hours
* Minutes
* Seconds
* Date
with unique Backlight

METAC INTERNATIONAL
CROSS LANE, BRAUNSTON, NORTHANTS
Tel: Rugby 890672

Please supply the following
Name
Address
Signature

I enclose cheque ☐ postal order ☐ money order ☐
I wish to pay by Barclaycard/Access and my number is

Money refunded in full if not satisfied

THE ELECTRONIC WATCH CENTRE
* Large range of watches
* Solid state — no moving parts
* Quartz Crystal controlled, accurate to 5 secs. per month.
* One year guarantee with every watch
* Attractive presentation gift box
Now...the most exciting Sinclair kit ever

The Black Watch kit

At £17.95, it's

* practical – easily built by anyone in an evening’s straightforward assembly.
* complete – right down to strap and batteries.
* guaranteed. A correctly-assembled watch is guaranteed for a year. It works as soon as you put the batteries in. On a built watch we guarantee an accuracy within a second a day – but building it yourself you may be able to adjust the trimmer to achieve an accuracy within a second a week.

The special features of The Black Watch

Smooth, chunky, matt-black case, with black strap. (Black stainless-steel bracelet available as extra–see order form.)

Large, bright, red display – easily read at night.
Touch-and-see case – no unprofessional buttons.
Runs on two hearing-aid batteries (supplied). Change your batteries yourself – no expensive jeweller’s service.

The Black Watch by Sinclair is unique. Controlled by a quartz crystal... powered by two hearing aid batteries... using bright red LEDs to show hours and minutes and minutes and seconds... it’s also styled in the cool prestige Sinclair fashion: no knobs, no buttons, no flash.

The Black Watch kit is unique, too. It’s rational – Sinclair have reduced the separate components to just four.
It’s simple – anybody who can use a soldering iron can assemble a Black Watch without difficulty. From opening the kit to wearing the watch is a couple of hours’ work.
The Black Watch—using the unique Sinclair-designed state-of-the-art IC.

The heart of the Black Watch is a unique IC designed by Sinclair and custom-built for them using state-of-the-art technology—integrated injection logic.

This chip of silicon measures only 3 mm x 3 mm and contains over 2000 transistors. The circuit includes:

a) reference oscillator
b) divider chain
c) decoder circuits
d) display inhibit circuits
e) display driving circuits.

The chip is totally designed and manufactured in the UK, and is the first design to incorporate all circuitry for a digital watch on a single chip.

...and how it works
A crystal-controlled reference is used to drive a chain of 15 binary dividers which reduce the frequency from 32,768 Hz to 1 Hz. This accurate signal is then counted into units of seconds, minutes, and hours, and on request the stored information is processed by the decoders and display drivers to feed the four 7-segment LED displays. When the display is not in operation, special power-saving circuits on the chip reduce current consumption to only a few microamps.

Complete kit £17.95!

The kit contains:
1. printed circuit board
2. unique Sinclair-designed IC
3. encapsulated quartz crystal
4. trimmer
5. capacitor
6. LED display
7. 2-part case with window in position
8. batteries
9. battery-clip
10. black strap (black stainless-steel bracelet optional extra—see order form)
11. full instructions for building and use.

All you provide is a fine soldering iron and a pair of cutters. If you've any queries or problems in building, ring or write to the Sinclair service department for help.

Take advantage of this no-risks, money-back offer today!
The Sinclair Black Watch is fully guaranteed. Return your kit within 10 days and we'll refund your money without question. All parts are tested and checked before despatch—and correctly-assembled watches are guaranteed for one year. Simply fill in the FREEPOST order form and post it—today!

Price in kit form: £17.95 (inc. black strap, VAT, p&p).

To: Sinclair Radionics Ltd, FREEPOST, St Ives, Huntingdon, Cambs., PE17 4BR.

Please send me

(qty) Sinclair Black Watch kit(s) at £17.95 (inc. black strap, VAT, p&p).
(qty) black stainless-steel bracelet(s) at £2.00 (inc. VAT, p&p).

*I enclose cheque for £

*Please debit my *Barclaycard/Access/American Express account number

Name

Address

*Delete as required

Sinclair Radionics Ltd,
London Road, St Ives,
Huntingdon, Cambs., PE17 4HJ.
Tel: St Ives (0480) 64646.
Reg. no. 655483 England; VAT Reg. no. 213 8170 88.

ELECTRONICS TODAY INTERNATIONAL—FEBRUARY 1976
In this down-to-earth series, J. T. Neil explains the basic theory and practical applications of op amps.

The sine wave oscillator described in the previous article was an example (albeit an extreme one) of how frequency selective feedback is used with operational amplifiers. We shall now go on to consider an amplifier employing non-frequency-selective feedback and then amplifiers using feedback of such a nature as to produce two particular forms of frequency response. Then to conclude, there is a description of the use of an op. amp., as a dc amplifier, to increase the sensitivity of a moving coil meter.

In audio applications, a 'tailored' frequency response is often called for; for example, the output of a tape replay head should be fed to a stage with a gain rising at 6dB per octave below about 2.5 kHz, and a flat response above that frequency. (The actual value of the break frequency depends on the tape speed and the particular replay characteristic employed.) Such a response is readily arrived at by replacing \(R_6 \) of Fig. 1 with the network shown in Fig. 2a.

At high frequencies \(C_6 \) has a reactance low compared to \(R_6 \) and hence it can be ignored. Thus the gain is determined by \(R_6 \) alone (although \(R_5 \) is in parallel its value is large enough to be disregarded). As the frequency is lowered, the reactance of \(C_6 \) rises and consequently the feedback is reduced, so giving the frequency response shown in Fig. 3a. Resistor \(R_5 \) provides a dc connection for the negative input of the op. amp, and limits the gain at very low frequencies.

The voltage gain of this circuit at high frequencies is about 16 times; this will make the tape head output comparable to that from a magnetic pick-up. If more gain is called for, this is best done by increasing the value of \(R_5 \) and reducing the value of \(C_5 \) in proportion.

Fig. 1. High input impedance ac amplifier. Positive supply rail is pin 7 and negative supply rail is pin 4.

Fig. 2. Alternative feedback networks. (a) Tape head; (b) Magnetic pick-up.

In this down-to-earth series, J. T. Neil explains the basic theory and practical applications of op amps.

The sine wave oscillator described in the previous article was an example (albeit an extreme one) of how frequency selective feedback is used with operational amplifiers. We shall now go on to consider an amplifier employing non-frequency-selective feedback and then amplifiers using feedback of such a nature as to produce two particular forms of frequency response. Then to conclude, there is a description of the use of an op. amp., as a dc amplifier, to increase the sensitivity of a moving coil meter.

In audio applications, a 'tailored' frequency response is often called for; for example, the output of a tape replay head should be fed to a stage with a gain rising at 6dB per octave below about 2.5 kHz, and a flat response above that frequency. (The actual value of the break frequency depends on the tape speed and the particular replay characteristic employed.) Such a response is readily arrived at by replacing \(R_6 \) of Fig. 1 with the network shown in Fig. 2a.

At high frequencies \(C_6 \) has a reactance low compared to \(R_6 \) and hence it can be ignored. Thus the gain is determined by \(R_6 \) alone (although \(R_5 \) is in parallel its value is large enough to be disregarded). As the frequency is lowered, the reactance of \(C_6 \) rises and consequently the feedback is reduced, so giving the frequency response shown in Fig. 3a. Resistor \(R_5 \) provides a dc connection for the negative input of the op. amp, and limits the gain at very low frequencies.

The voltage gain of this circuit at high frequencies is about 16 times; this will make the tape head output comparable to that from a magnetic pick-up. If more gain is called for, this is best done by increasing the value of \(R_5 \) and reducing the value of \(C_5 \) in proportion.

What if a response suitable for pre-amplification of the output of magnetic pick-up is required? In this case the network of Fig. 2b is a suitable replacement for \(R_2 \) in the original circuit; the overall response of the stage is now as given in Fig. 3b. Similar reasoning to that given for the tape head amplifier applies here also — the gain rises at lower frequencies as \(C_6 \) reactance becomes larger, falling at the higher frequencies as the reactance of \(C_6 \) and \(C_7 \) both fall. As before, \(R_5 \) sets the low-frequency gain.

These two latter configurations are good examples of the shaping of a frequency response to suit a particular need — as indeed was the audio oscillator of Part 2. Note that the response and the overall gain can be
All the circuits given so far in Part 3 are intended to make use of type 709 op. amps, although a 741 or an LM301 could be used with the appropriate equalizing network changes as detailed last month.

The amplifier configuration described is an inherently stable one and almost any convenient layout can be employed. A small piece of Veroboard was used in the prototypes, with a dual-in-line IC holder soldered in place and the remaining components placed around it.

For convenience, it is best to build the whole amplifier in a small metal box, either mounting this in existing equipment or leaving it as a separate unit for greater flexibility. The box must be earthed to give a measure of screening to reduce hum pick-up. This is especially necessary if the feedback networks of Figs. 2a or 2b are employed as both of these provide considerable bass boost thus aggravating the hum problem.

METER AMPLIFIER

Now for the dc meter amplifier which uses a 741 type IC. The circuit is given in Fig. 4. The values shown give full scale deflection on a 1 mA meter with only 10µA flowing into the input.

Circuit function depends on there being negligible difference between the voltages at the two inputs of an op. amp, when arranged in a negative feedback configuration. Accordingly, whatever voltage is applied to the non-inverting terminal, that is, across R1, will appear at the inverting terminal, that is, across R3. However, R2 is only 1/100th of the value of R1, so that the current through R3 must be 100 times larger than that through R1. It is, of course, the current through R3 that flows through the meter, and it is worth noting that the value of this current is not affected by resistor R5 in series with the meter -- provided of course that R2 is not too large to allow the required meter current to flow. The value of R2 is chosen here to limit meter current to about twice the FSD current, so providing a useful safety device should an unexpectedly high voltage be applied to the non-inverting terminal.

Thus we have a circuit incorporating a meter of 1 mA basic sensitivity but which appears to be a meter of 100 times that sensitivity.

Resistor R4 is included to improve the performance with regard to drift, of the meter reading, as temperature changes cause changes in the op. amp. bias currents. It is best selected by experiment, although the value given was found to be satisfactory with three individual 741’s.

The voltage at the slider of RV1 is fed via R6 to the inverting input to provide a means of setting the meter zero. It can, if desired, be used to give a centre zero, so producing a 5 mA-0-5 mA meter. The capacitor C5 ensures that the gain falls at high frequencies.

With a basic sensitivity of 10 µA, this amplifier enables a dc voltmeter of 100 kohm per volt to be constructed, by connecting the appropriate resistor in series with the input. The value of the resistor is given by:

\[R = \frac{1000 \text{ k} \Omega}{V} \]

where V is the input voltage required to give FSD.

Note that the basic meter of 1 mA is a type of movement that is much more robust, and yet cheaper, than others of greater sensitivity.

The actual method of construction can be adapted to suit individual requirements. If a 1 mA meter is bought for the job, almost any housing capable of containing it will have room for the 741 and the few other components required, whilst only three short lengths of wire are required for connection to the power supply. The test-meter used in the prototype had a 1 mA range, so a small aluminium box was used for the circuitry, with two output terminals for the test-meter connections, and, again, three leads for the power supply.

As with the audio amplifier, it is best to use a small piece of Veroboard to mount the IC holder and components, and to bolt the board to the box with insulated spacers if required.
STANDARD CANNON, STANDARD DIN

With reference to the article in your News Digest column (October issue) referring to the correct wiring standard for Cannon (or XLR) connectors, I am afraid you may have been misled as to the 'common' standard. As you may have noticed, DIN plug wiring is not always as standard as it should be (ie — right channel either 1 or 5 both — there are two 'standard' ways of wiring a stereo DIN plug, both commonly appearing on domestic and foreign equipment and not interchangeable). As to saying that most manufacturers work to DIN standard, I can assure you that this is the exception. I know of two manufacturers of radio mixers that use male cannons on inputs and female cannons on outputs.

As to the correct wiring sequence, you were more correct in your original statement as Cannon plugs are wired in numerically ascending order ie: 1— Earth, 2 — Low, 3 — High (for balanced inputs) with 1 and 2 tied to Earth and 3 — Hot (for unbalanced inputs). This system is easy to remember and suits the common name for these plugs in America, XLR, (earth, left, right); Cannons are mainly a US device. This system of wiring is common to all American radio and recording studios, and issued in all PA systems.

My band runs all of their equipment at 600 ohms: instruments, microphones, and amplifiers (customized by a US PA company). In the past 22 months we have never had to alter any wiring for feeds to any recording, radio, or TV studio nor PA company. This includes, recently, BBC radio, Capital radio, EMI Abbey Road studio, AIR London studio and The Music Centre, Wembley (DeLane Lea studio) as well as various radio and television studios in Europe and America. I believe this speaks for itself regarding 'standardization'.

Hoping I have been of assistance.

Wm. T. Pentman, Equipment Manager "Renaissance"

IR BURGLAR ALARM

Having constructed the infra-red burglar alarm (July 1972) and overcome one or two minor problems, I tried to obtain the sealed beam lamp recommended in the parts list without success. I contacted one of the largest importers of electric lamps, who said he did not have that model and that it was not worthwhile to import just one. Other readers must have met the same problem and solved it, if so I should be grateful for information that would enable me to replace the bulb and reflector that I have at present with a sealed beam lamp giving a parallel beam.

A. P. N. Beumont-White, Putney.

AMBISONIC SEPARATION

Using ambisonics the separation between the front pair of speakers is only 3dB whereas that between the diagonal pairs is (in theory) infinite. With most programme material the majority of the ‘action’ takes place in the front part of the sound stage. It would therefore seem better if the greater separation was between the front (and rear) pairs of speakers. Using the notion used in ETI Vol. 4 No. 7 and taking LF as the reference direction the ‘A’ channel could be changed from

\[\begin{pmatrix} RF & LB & LF \end{pmatrix} \begin{pmatrix} RB \end{pmatrix} \]

(keeping the ‘O’ channel the same).

This is the same as changing over the RF and RB microphones and speakers and means that the diagonals become the front and rear pairs when encoded. By extending this idea the front to rear separation could be made the greatest which might be useful for dramatic stage effects. If height were encoded as well then music could at the flick of a switch be turned upside down which is useful if you happen to be a sleeping bat.

C. P. Isbell, Hants.
New Course in Digital Design

Understand the latest developments in calculators, computers, watches, telephones, television, automotive instrumentation.

Each of the 6 volumes of this self-instruction course measures 11½” x 8½” and contains 60 pages packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.

After completing this course you will have broadened your career prospects and considerably increased your fundamental understanding of the changing technological world around you.

Design of Digital Systems
A Self-Instruction Course in 6 Volumes
1. Computer Arithmetic
2. Boolean Logic
3. Arithmetic Circuits
4. Memories & Counters
5. Calculator Design
6. Computer Architecture

£5.95
plus 50p packing and surface post anywhere in the world (VAT zero rated). Payments may be made in foreign currencies. Quantity discounts are available on request.

To: Cambridge Learning Enterprises,
FREEPOST, St. Ives, Huntingdon, Cambs PE17 4BR
'Please send me... set(s) of Design of Digital Systems at £6.45 each, p&p included
'or... set(s) of Digital Computer Logic and Electronics at £4.45 each, p&p included
'or... combined set(s) at £9.75 each, p&p included
Name: ________________________________
Address: ...

*delete as applicable.
No need to use a stamp—just print FREEPOST on the envelope.

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

Guarantee—no risk to you
If you are not entirely satisfied with Design of Digital Systems or Digital Computer Logic and Electronics, you may return them to us and your money will be refunded in full, no questions asked.
WE BEGAN this course with a discussion of electronic systems in general; what they do, how they do it and how we can progressively break down a complex system into fundamental building blocks. The example chosen then, a TV system, uses, in the main, analogue signals. These we know from other parts of the series are those signals that contain information in the form of many continuously changing levels of an electrical voltage (or current).

Although we have already introduced the concept of the on-off, or digital kind of signal, the course so far has concentrated almost entirely on the linear, analogue circuits used in electronic systems. The time has now come to study an alternative philosophy and practice, by which tasks can be accomplished in another manner — the digital electronic approach.

DIGITAL OR ANALOGUE SIGNAL APPROACH?

By itself a purely electronic system has no real value until it is applied to the real world we exist in. At the input of a system physical variables are measured by sensors that convert the information, from the original form of energy, into an electrical signal. This electrical-input signal is then conveyed, through the system being modified, and converted in different ways as required. The output signal from the system is fed to actuators which convert this signal back to real-world variables at the output. It is the differences between two basic means of transmitting and converting information that we are concerned with now.

We have seen in the earlier part dealing with information that both analogue and digital signals can convey the same information between two points. It is a matter of how the information is coded on the signal. It is not possible to state categorically that one signal form is better than the other. Each has its advantages depending upon the application. Analogue systems can process the same information using far less components, than their digital counterparts, but they are unable to provide anywhere near the same ultimate accuracy, precision and long-term stability. In some uses, such as precise mathematical computation, digital techniques are a must. The same holds true for measuring equipment needing better than around 1 percent, or perhaps 0.1 percent, accuracy.

Other factors that decide the choice of signal form are the cost of components needed, the size of equipment and power supply demands. Today, "the enormously large-volume production of digital circuits, especially when marketed as large-scale integrated systems, coupled with the tremendous effort that has been expended on digital techniques for computing markets, has now tipped the balance heavily in favour of using digital methods. This is now true even for what have traditionally been analogue applications. It may well now be cheaper to use a mass-produced digital assembly for a more unusual analogue requirement, even when analogue circuits could easily supply the need.

Take, for example, the choice confronted when purchasing a good quality multimeter. The traditional multimeter can be represented as a resistive network driving a display meter — see Fig. 1. The signal level can be ascertained by the degree of pointer deflection seen on the meter. High input impedance units incorporate a linear amplifier to buffer the signal source against a relatively low-impedance meter movement. Apart from the selector switch which has discrete settings, all components work with analogue signals and this means they must be linear in operation and adequately stable with time. Some components — the ballast and shunt resistors, for instance — must be made to tolerances that require expensive hand-made manufacture. We can summarize the situation as one where only a few components are needed but they are inherently expensive.

The alternative is to use a special circuit that we will discuss in detail in a later part. This is called an analogue-to-digital converter (or just A-to-D converter). As represented in the schematic of a digital multimeter given in Fig. 2, it converts the analogue input level into a digital signal form that is then used to drive a digital readout display. These units display the output value as a decimal number rather than as the position of a pointer as is used in totally analogue systems. We will see, as we delve more deeply into how such a system works, that the digital alternative uses literally dozens of active elements and many
many more passive components than an analogue type of multimeter. Yet
today, there is little difference in the
cost of either alternative for the same
accuracy. The digital scheme, however,
can be made considerably smaller, may
be made more accurate, uses no more
power and may even have circuitry
that automatically selects the most
appropriate range for itself.

Another example is found in
computing. We have seen how
operational amplifiers — those that
perform linear arithmetic inherently —
can be used to solve equations and do
complicated arithmetical operations
in what are called analogue computers.
These can provide extremely powerful
solutions of mathematical problems
for quite small outlays. But only if the
problem does not require high-
accuracy — then digital computation is
needed. Another instance where digital
method is a must is when the problem
involves logical type operations where
yes-no decisions are needed. Digital
computers can sort information into
groups and decide which way to
proceed at a decision junction. This
will become clearer when we discuss
the mathematics of logic which is
quite unlike normal algebra.

As with the multimeter example,
digital computers also involve many
more components than the analogue
units that would perform similar tasks.

Yet, somewhat strangely, they can be
far less expensive, much more accurate
and more reliable. Undoubtedly the
trend in electronic systems is toward
more use of digital solutions — but this
does not mean that analogue systems
have no place in electronics.

One dominant reason why digital
systems can be so reliable and positive
to design is that the signal operations
involve switching rather than
continuous-mode action. We, there-
fore, begin our study of digital systems
by looking at the design merits of
various switching devices, starting with
the mechanical kind.

MECHANICAL SWITCHES
The ON-OFF switch has only to
define two states of circuit operation
and hence the tolerances associated
with each state can be very wide.
Consider the basic mechanical switch
having two contacts as shown in Fig.
3. When the contacts are disengaged it
matters little how much further the
designer separates them; the further
they separate the less the chance of a
spurious make-condition occurring.
Conversely, when closed the spring
action will ensure contact over a wide
range of relative positions. The harder
the two contacts are pressed together
the better the reliability, but there will
be negligible electrical change in the
circuit-made state.

Continuing with the mechanical
switch example we can also easily see
that a switch with heavily
over-travelled contact pressure or
excessive opened distances will be slow.

Fig. 3. Mechanical
switches are designed
to allow considerable
latitudine in the open
and closed contact
positions, thus
ensuring reliability.
Electro-mechanical
switches come in
many shapes and sizes.

Fig. 4. Switches can
handle large power signals
with little loss (a) open
(b) closed.
to change to the opposite mode because greater force, or more travel, is needed to effect the change.

Another feature of the two-state switching circuit is that the switch’s power rating can be very small compared with the load power being controlled. This arises because in each of the two states the switch has only to dissipate very small power losses. When open, see Fig. 4(a), the voltage across the switch is maximum but the current minimum. The power rating needed of the switch (neglecting arcing effects in this case) whilst open is, therefore, the product V.I.s, and this is always very small, for only leakage currents flow when the switch is open.

When closed, the situation is reversed; the current is now of the maximum value but the voltage drop is merely that due to resistive losses in the made contact (which can be very small). In practice the change of state from one condition to the other is so rapid that we can consider the switch as only ever being in the fully-off or fully-on case. This low-loss feature is used to effect in power-supply switching regulators where the “made” to “not-made” times of a vibrating contact are varied to pass the required amount of average power.

SOLID-STATE SWITCHES

Originally digital circuits did indeed use electro-mechanical switches; the relay as we know it. These are still used in some circumstances today but their size, cost, slowness of switching and possible unreliability now make them a poor choice, for logic applications, compared with solid-state switching alternatives.

A switch by definition, is a device that provides either a satisfactorily high or low resistance between two points, with the state being rapidly reversed by an external control input. It can be used in series or shunt to effect control. The degree of isolation provided is decided by the open-state resistance; the power rating is decided by the made-state switch resistance. What is high or low is purely relative, depending upon the impedances of the circuit elements connected to the switch. A perfect switch provides infinite open-circuit resistance and zero closed-circuit resistance. Typical resistances encountered in a small relay are from many megaohms (contacts open) down to mere milliohms (contacts closed) thus giving excellent switching characteristics. Solid-state switches normally do not provide such large resistance ratios (some special devices come close) giving around a megohm to a hundred ohms change which is adequate for most logical tasks performed by digital systems.

Another disadvantage of most solid-state switches is that, as we will see below, the circuit connected to the switching part of the solid-state switch is not completely isolated from the circuit actuating the switch mechanism. This concept is shown in Fig. 5. At times this is most inconvenient and the development of workable solid-state switching systems has been influenced by the need to make-do with this shortcoming. A relatively recent newcomer to the solid-state switch, which overcomes the last disadvantage, is the solid-state opto-electronic isolator, shown in Fig. 6. This uses the actuating input to energise a solid-state light-emitting diode (LED); this, in turn, deduces the resistance of a light sensitive detector that acts as the ‘contact’. This device is used in a minority of switching operations involved in digital circuits where extremely high isolation is required between the switching and the switched circuits.

The two most commonly used solid-state switching techniques are those using two-terminal diode designs and three-terminal active element designs based on devices such as the transistor and other solid-state amplifying devices.

SWITCHING WITH DIODES

Let us first look at a diode wired to provide a switching function. In Fig. 7 a diode is connected to a bias supply V and to the input as shown. When the input voltage Vin is more negative that the bias voltage V the diode is forward-biased providing a quite low resistance path between the input and the output terminals. In this state Vout will be closely equal to Vin. If the bias voltage (or the input voltage) are changed to make Vin more positive than V the diode becomes reverse-biased placing a high-resistance between input and output. Thus, by changing V from positive to negative we have produced a switching action between input and output terminals.

A similar action is provided if the diode is wired in shunt across the line rather than in series as shown in Fig. 8. The state of V decides whether the diode shunts the line (when forward-biased) or not (when reverse-biased).

In either design it is important that the diode resistances in the two states, the output impedance (R.) of the preceding stage connected to the input, the load impedance (R.L) connected to the output and the
The speed at which diodes can switch is a function of circuit values and the characteristics of the diode. It is routine practice with diodes to switch at tens of megahertz rates or higher. Mechanical switches are limited to less than 1 kHz at the very best.

Later in the course we will see how these basic diode switches can be used to perform logical operations by connecting more than one diode to the same bias source. Such connections are called gates.

SWITCHING TRANSISTORS

Now to the use of three-terminal devices, transistors for instance, as switches rather than as linear amplifiers. This can be explained using the I_C versus E_C characteristics of a typical transistor, as is given in Fig. 10.

The two switching states occur when I_B is either large or small. A chosen collector resistance value (in common emitter configuration) establishes the load-line on the characteristic. In a switching-mode the transistor operates around points A or B. At A, I_B is large; the transistor is, therefore, switched on with V_{CE} being very close to zero volts. At B I_B is small (practical circuits may apply a reverse polarity to ensure this); the transistor is switched off with V_{CE} being virtually at the supply voltage. In the on-stage the transistor provides a low-resistance path between its collector and emitter; when off, a high-resistance path.

The transistor switch, unlike non-amplifying diodes and mechanical contacts, does not directly pass the input signal but instead replicates a signal current in its base by providing an equivalent change in collector current or voltage. In reality a large proportion of digital circuits regenerate in this way with the output signal change closely following that of the input.

At either of the circuit operating points A or B the transistor is operated well within its allowable power dissipation. As we should expect, a given transistor used in a switching mode can handle a greater power than if operated as a linear amplifier. A little thought will also show that the load line can, in switching use, intercept the maximum dissipation curve, the reason being that the transistor does not dwell long enough in states other than A or B to produce deleterious heating. It is vital, however, in such designs to ensure that the switching action is rapid between states, and that the device never dwells on the way through. A ramp input signal may well destroy a stage designed to switch!

The above explanation is most basic — reality requires other criteria to be recognised to obtain more ideal switching. Like the over-travelled mechanical switch, a transistor switch with too much reverse-bias base current (off-state) or too much on state base current will be slower to operate than one not driven so hard. This is because the charge associated with the base current must be removed to alter the state and the more the charge there is to move, the slower

Fig. 9. Typical characteristics of silicon and germanium diodes.

Fig. 10. In the switching mode the transistor is operated at either end of the chosen load line.
ELECTRONICS - it's easy!

Fig. 11. High-speed switches are designed to remain non-saturated. This circuit employs feedback D1 with D2 providing a voltage supply needed. The speed-up capacitor is C. Diode D3 assists reduce the delay time.

Fig. 12. Transistor-transistor logic, TTL, is a commonly accepted integrated-circuit manufacturing method. This gate combines up to three inputs switching with a delay of only 10 ns. The whole circuit is integrated on a common chip.

be the switching time. Solid-state switches operated very positively by use of large drive currents are said to be working in a saturated state.

Certain circuit devices can be added to the basic solid-state switch to speed up the response. The first is to supply a much larger input signal than would be needed to just turn it on. This speeds up the charge movement but would take the device into deep saturation unless clamps are added that hold the circuit nodes at given values. Diodes acting as switches are often used to hold a point at a given voltage. A second circuit addition is the speed-up capacitor. This is a small value capacitor placed across the resistor feeding the input of the switching stage. When fast switching signals occur the capacitor provides a low impedance path around the resistor which must be of a reasonably high value to supply correct dc signal level requirements. Yet another technique is to use feedback between the collector and the base to speed up the switching transition yet hold the stage in a non-saturated state once switched. Fig. 11 is a non-saturating switch circuit - one of many possibilities. It shows how the basic transistor needs the addition of more components to realise fast switching in discrete designs.

The integrated-circuit revolution has provided us with inexpensive, ready-made digital circuits of great sophistication. These are extremely basic yet super fast — see Fig. 12. Rarely does one now have to consider the in-depth design of switching circuits. The task is usually one of devising a system using a few basic, digital system building blocks which have been so developed as to facilitate their ease of connection into systems.

The reliability of the switching state of an electronic circuit is one reason for the widespread use of digital techniques. There is another equally important reason for the use of digital signals and that is that philosophers and mathematicians of the past have developed powerful ways to process logical information by way of special algebra and techniques. This is employed to design complicated switching circuits and other digital systems with the simplest possible circuitry. In the next part we look at these philosophical concepts in readiness to return to a discussion of the basic, digital-system building blocks.
1. Top Projects No. 1
with 21 projects, published in July 1974. 75p + 15p p&p

2. Top Projects No. 2
with 26 projects, published in July 1975. 75p + 15p p&p

3. Electronics It's Easy
The first thirteen parts of our popular introductory series.
£1.20 + 15p p&p
We apologise for the delay in despatching 'Electronics It's Easy' to those who have ordered. These should be ready in mid-January.

4. International 4600 Synthesiser
Maplin Electronic Supplies, who supply the parts for this project, have published a book of reprints.
£1.50 + 15p p&p

To ETI SPECIALS, ETI Magazine, 36 Ebury Street, London SW1W OLV and please write the appropriate issues ordered on the top left corner of the envelope.

POSTAGE AND PACKING is 15p for the first, 10p for subsequent (overseas 20p and 15p).

Please send me the issues indicated above; I enclose which indicates postage.

NAME
ADDRESS
EARLIER THIS WEEK a small parcel insinuated itself through our letter-box: inside was a beautifully packaged Black Watch kit from Sinclair. As usual with Sinclair kits, all of the parts were laid out in a plastic tray and the whole kit is presented in a neat plastic case; first impressions — very good. Open up the case and find the instructions plus any of the usual addendas and read thoroughly to get a general idea of the construction sequence. The only addenda mentioned read thoroughly to get a general idea of the construction sequence. The only addenda mentioned were worth making. You will find or any comments that are obvious and unfair comment that could melt the varnish and cause a short. Sinclair mention components from the list and check that none are duplicated in any way. Most of the components listed are obvious but some could be identified better by drawings or by further description. For instance, the kit contains an ampule of grease and a small tube of varnish (these are mentioned as grease and varnish), if you open the grease in mistake for the varnish you could get into a very sticky mess. Now we will follow Sinclair's instructions through with any problems that I found or any comments that I feel are worth making.

ASSEMBLY

1. PREPARE PCB. "The component side of the board should be thinly coated with some of the varnish supplied. Do not get varnish on the rear of the board and do not varnish the lower row of contacts. Allow the varnish to set for 2-4 hours before proceeding." The varnish can be applied with a small piece of scrap paper but I suppose that a small paintbrush would be better — add this to your list of tools required. As you can see the kit is not to be completed within a couple of hours, in fact it will take you about 3-4 hours' construction time spaced over as many days.

2. PREPARE TRIMMER. "The arms of the trimmer should be carefully removed with side-cutters. Take care as the body of the trimmer is easily cracked. A small file will be useful to remove burr from the legs. The trimmer is now inserted in the board ensuring the base is flush with the board, it is then soldered in place. Do not use too much solder on the large lead . . . cut off the leads within \(\frac{1}{2} \)mm of the rear of the board." The trimmer supplied has two legs, one fat, one thin; each has a small projection about halfway up which has to be removed in order to get the trimmer sitting correctly on the PCB. All of the components have to be as close to the PCB as possible and the leads and soldering on the back of the PCB have to be as short as possible in order for the completed module to fit into the case. The runout of your kit could start here if this major rule is not adhered to.

3. CAPACITOR. "The capacitor should be soldered in place with the white dot facing toward the integrated circuit." Apart from the obvious and unfair comment that the integrated circuit is still in the box, the leads on this capacitor have to lie across tracks on the PCB. These tracks should have varnish on them and thus be insulated but ensure that the capacitor leads are not touching the tracks during soldering as I suspect that the heat could melt the varnish and cause a short.

4. QUARTZ CRYSTAL. No problem with this component, yet again Sinclair mention components being flush with the board.

5. DISPLAY. Once you have identified pin 1 with the help of a drawing this major component should cause no problems.

6. INTEGRATED CIRCUIT. The instructions on handling the IC and soldering it into place are very clear and this component should cause no problems.

7. FLEXIBLE PCB. This PCB carries the switch contacts and the battery contacts; if you have one or two dummy runs at the instructions you will probably get it right. There is a drawing of the folding of the PCB but it is not quite clear enough at first. Be very careful with this PCB as it can be melted or torn quite easily; one of the problems with this type of PCB is that the track can break from continuous folding and this break can be very difficult to find and correct.

The basic module is now complete and we come to the crunch, the Sinclair testing procedure. If you follow the instructions correctly you stand a good chance of cracking the flexi or flattening one of two expensive batteries.

TESTING. "Place the batteries on the battery contacts in the correct positions and use the Bulldog clip to hold them in place as shown. The metal clip acts as a series connection between the batteries. When the contact pads are touched with a metal object the display should light up. If this does not happen check that you have assembled the board correctly and that the batteries are connected in the correct polarities. The clip must be making a good series contact. If a single bright digit appears, momentarily interrupt the battery supply. The watch should then appear blank until one of the contact pads on top of the IC is touched." I used a Bulldog clip as prescribed and immediately shorted one of the batteries; if the Bulldog clip is too large then the clip not only connects the negative of battery A to the positive of B but also can connect it to the positive of battery A — result no battery A. Use a small clip and insulate one side with tape; it is also a good idea to scrape the other side to ensure a good contact. The same flattened battery can result if the two battery cases touch, which cannot happen when the module is housed but can...
easily happen at this point; use a small piece of tape or card to separate the two. Flat batteries can cause a lot of trouble and upset at this point so, if in doubt, check that the total voltage is 2.7 volts — on load as well as off load. Pin 18 of the IC is positive and pin 10 negative, if you can connect a meter to these points and then test the display you can check the condition of the batteries.

THE LONG HAUL STARTS

Now that your module works you have only to varnish the back of the PCBs, trim the timing with the trimmer and case the watch — this should take you three days. The instructions on varnishing and adjusting are very good and quite understandable but the final assembly into the case would be helped if an exploded diagram was given. It is reasonably obvious where everything goes but it might take you several tries to get everything in the right place, the right way round at the right time; a drawing could make it clearer. It is at this point that you find out how well you managed to get your components close to the board and how good your soldering and lead trimming was; if the back of the case does not fit don’t try to force it, find out why it won’t fit.

SUMMARY

The Sinclair Black Watch is a brilliant piece of design both inside and outside. If you want one I would suggest to most people that they should buy the completed watch from Sinclair at £24.95 plus VAT — they should be available from January 1st. If you really want to build one make sure that you have the right tools and the patience and the experience. Remember that this is probably the most intricate and the most compact kit that you have ever built. I would not recommend it for beginners or even for people with some experience; it is much more complicated and fiddly than a Cambridge or Scientific kit. On the other hand, a completed Black Watch kit will give a lot of pleasure and pride; not only do you own one of the first digital watches that looks like a digital watch, but you built it!

Editor’s Note: We have not altered the author’s comments on the Sinclair Watch but the Editor has also built one of these and considers some comments a trifle harsh. It is not a beginner’s kit and we did have a few problems, largely due to our impatience to get it working. Nevertheless we consider these minor and do not detract, in the long run, from an excellent product. Our watch is incredibly accurate, gaining less than a second a week!

After my recent comments on digital watches I received a lot of letters asking for advice. I have not had time to answer these letters individually and my apologies to those people. I would not advise the purchase of a complex watch until after the Basle Fair later this year as there might be some surprises being saved up for them. If you want to buy a watch with four or more functions, see it before you buy it and make sure that it is what you want. If you buy one from a mail-order company make certain that the company knows watches and can supply batteries, etc. You can usually tell at a glance from the advertisement if they show a LCD watch and call it LED, if they use words like "unique" too much, if they sell plastic toys in the same ad, especially if they say "scoop purchase," ie the original manufacturer has gone bust.

My personal recommendations are either of the Black Watches (from Sinclair or Metac), the TLC4 from Metac or the Novus range of multi-function watches. Tesco’s watch is supposed to be very good and I haven’t heard anything bad about it, but I haven’t seen one to comment on. The two Black Watches offer similar functions at similar prices and the choice is really in the case style. I like the Sinclair but my wife hates it (check with yours before you buy). My favourite is the TLC4 which has hours, minutes and seconds plus a date readout; this is a LCD watch with the additional facility of a back-lit display for night viewing—surely this is much more logical than normal LCD or LED displays.
AN AUTOMATIC HEADLAMP DIPPER UNIT

The circuit follows an automatic parking light circuit in that when light from an external source falls upon the light dependent resistance LDR causing it to go low, the transistors in the circuit are not triggered, but when the external light fades, the resistance of the LDR goes high, allowing Q1 base to go positive and conducting so that Q1 emitter and Q2 base also go positive. Q2 collector current rises, energising the relay L1, this being 'normally open' contact arrangement, the contacts close and energise relay L12 which livens up the headlamp bright filaments. When approaching rays from street lamps or oncoming cars, the relay L1 drops out and disconnects L2 which drops out and energises the dipped filaments. RV1 controls the sensitivity.

The change over switch when switched to manual allows the dip switch to be used in a normal manner.

The unit can be placed under the forward edge of the dash. Then the headlamp wire is removed from the headlamp switch and taken to the unit and another is run back to the vacated terminal. The LDR should be mounted in a bicycle rear light housing (torpedo shape) and mounted at bumper height on the offside of the car.

HALF CHARGE RATE FOR CAR BATTERIES

Many simple fixed rate battery chargers have a circuit as shown in Fig. 1. When the battery is very low, excessive current may be taken, but a half-charge rate switch would prevent this. A resistor switched into the positive lead would do, but this would need to have a very high wattage. An alternative is to switch in a single diode in the low voltage A.C. feed to the bridge as shown in Fig. 2. This turns the full wave charge into half wave, thus cutting down the current. If a bridge is used, the addition of a switch in the link between the negative plates will cut out half of the bridge, and half charge is obtained without the additional diode, as shown in Fig.3.
LOW FREQUENCY STROBE

The circuit will flash the bulb at a rate between 0 and 10 Hz. Points to note are:
(i) Because all components are connected directly to the mains, do not touch whilst the unit is on.
(ii) Use a television type 25k pot with insulated spindle.
(iii) Mount in an insulated box with ventilation holes.
(iv) The 5k resistor gets hot, hence the wattage rating.
(v) The 27k may be altered to obtain a full range of control by the pot.

There is a risk of inducing convulsive seizures in people suffering from epilepsy if this unit is operated in their presence. Such people should avoid areas where strobe lights are used. A rate of nine flashes per second is considered the most dangerous and most people will find this unpleasant.

TEST TRANSISTOR CURRENT GAIN

A reasonable estimate of current gain can be obtained from the above circuit. Before the button is pressed, the meter should give negligible deflection. Closing the contacts gives approximately 10μA to the base of the transistor, so every mA indicated by the meter has to be multiplied by 100 to obtain the current gain. The resistors and diodes are to protect the meter in the event of a short circuit transistor being tested.

For NPN transistors, A & B should be + & - whilst for PNP, A & B should be - & +. The meter also needs to be reversed with the change of polarity.

SIREN CIRCUITS FOR CHILDRENS TOYS

This circuit was originally designed to produce the sound of a police siren for my son's pedal car. It uses two 555 timers connected as oscillators (see Fig. a). The first oscillator IC1 is set for a period of 6 secs, 3 on and 3 off. Diode D1 is included to give equal mark-space ratio. This oscillator determines the rise and fall time of the siren.

The square wave output on pin 3 is turned into an exponential rise and fall by R3 and C3. This is reproduced at a low impedance by the emitter follower TR1 at pin 5 of IC2. The 555 timer has the facility for its timing period to be controlled externally by means of a control voltage applied to pin 5. IC2 is set for a nominal frequency of oscillators of about 1kHz, but this is pulled above and below the set frequency by the exponential waveform on pin 5. The output wave form starts at a low frequency, rises over 3 secs to a high frequency, falls over 3 secs to a low frequency and so on.

The loudspeaker was a 75 ohm ex mobile radio handset speaker. This gave more than adequate volume off a 9V battery. Any loudspeaker can be used, provided a resistor is put in series with it to keep the total impedance above 45 ohms (for a 9V supply).

As originally designed the circuit gives an American-type police siren. It can easily be changed to give other types of siren: If R3, C3, TR1, R4 are omitted, and IC1 pin 3 is linked to IC2 pin 5 by R7 as shown in Fig. 1b, the “De-Dah” sound used by the British police is given.

If the values of R1, R2 are changed and D2 is added as shown in Fig. 1c we get the Star Trek “Red Alert”. The values of R1 and R2 give a highly unsymmetrical output from IC1. C3 now
Component Values

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>220k</td>
</tr>
<tr>
<td>R2</td>
<td>220k</td>
</tr>
<tr>
<td>R3</td>
<td>220k</td>
</tr>
<tr>
<td>R4</td>
<td>1k</td>
</tr>
<tr>
<td>R5</td>
<td>4k7</td>
</tr>
<tr>
<td>R6</td>
<td>4k7</td>
</tr>
<tr>
<td>C1</td>
<td>0.01µF</td>
</tr>
<tr>
<td>C2</td>
<td>250pF</td>
</tr>
<tr>
<td>C3</td>
<td>250pF</td>
</tr>
<tr>
<td>C4</td>
<td>0.1µF</td>
</tr>
<tr>
<td>C5</td>
<td>250µF</td>
</tr>
<tr>
<td>C6</td>
<td>25V</td>
</tr>
</tbody>
</table>

IC1, IC2 555 (or one 556)

TR1 Any G.P. NPN Silicon (eg BC107)

D1 Any G.P. Silicon diode

D2 Any G.P. Silicon diode

Di Any G.P. Silicon diode

R7 5k6

R1c 1k

Ric 1k

gets a rapid charge via D2 during the short positive output from IC1, but discharges through R3 during the long low output time. The waveform at IC2 pin 5 thus approximates to a saw tooth, and the resulting output starts at a low frequency rises up to a high frequency over a period of 3 secs then falls abruptly to the low frequency again, and so on.

The circuits were originally built with 555 timers because I had a box full of them. A more elegant circuit can be made, however, by using the 556 dual timer. IC1 and IC2 can thus be obtained in one chip. The circuit works equally well with the 556, but the device has a slightly lower current rating than the 555. The loudspeaker impedance should be kept above 60 ohms by a series resistor as described above.

LED RF INDICATOR

An RF output indicator using a LED is very useful for monitoring the output of a transmitter. This circuit will give indication from a 5 W transmitter. The capacitor C1 and the RFC are chosen for the appropriate frequency. The RFC could be replaced by a resistor for wideband use. The sensitivity depends on the value of C1 and the resistor used if the RFC is replaced. For high power transmitters, C1 could be a small 'gimmick' capacitor.

continued from previous page
TEXAN AMPLIFIER

Here's your opportunity to build the superb Texan amplifier and tuner! Designed especially for Henry's by Richard Mann of Texas Instruments, the Texan amplifier was featured in Practical Wireless. Through bulk buying, Henry's are able to offer both these kits of quality components at low cost. Naturally, as sole appointed UK distributors, Henry's offer a full after sales service - so if your kits don't result in properly functioning units, we'll help you sort them out!

TEXAN AMPLIFIER

Incorporating fully integrated stereo preamp and power amp, with 6 I.C.'s, 10 transistors, 6 rectifiers and zener diodes. Plus stabilised, protected circuitry; glass fibre pcb; Gardeners iowfield low-line mains transformer: and all facilities and controls. Slim design, chassis 14;" x 6" 2" overall. Professional appearance and oeiformance. 20 watts pet channel RMS, less than 0.1% distortion at 1 kHz.

KIT PRICE £35.00 inc. VAT + 80 p. & p. Built & tested £45.00 inc. (1.00 p. & p.

TEXAN TUNER

Features var.cap tuner; and passband lock in discriminator in a professional IV designed circuit. this tuner has a glass fibre per,. built-in AFC; 9 transistors, t I.C., 9 diodes: and a teak cabinet. Aerial sensrtivity 2.5 uV; stereo separation 40 dB; treouency response on stereo 20 - 15,000 HZ 3 dB (upper land set by transmitter). Mono 20 -22,000 Hz 3 dB. Circuit can be altered to cover amateur and aircraft bands. Mains operated.

Helen's Radio, The Sole UK Distributors.

Electronic Football & Tennis Video Sport

ON YOUR OWN TV

Play and enjoy your own games on your own TV! Just plug Video Sport into the aerial socket of your TV and watch it go. Completely safe for your valuable equipment and your TV. Make a great gift.

HENRY'S PRICE ONLY £29.50 inc. VAT + 50p & p

Draughtsmanship & Design

-58 'O' & 'A' Level Subjects

-10,000 Group Passes!

Aldermaston College

Dept. TET.11, Reading RG7 4PF
also at our London Advisory Office, 4 Fore Street Avenue, Moorgate, London EC2Y 5EJ. Tel. 01-628 2721.

NAME (Block Capitals)

ADDRESS

Other subjects of interest

Accredited by C.A.C.C.

Member of A.B.C.C

HOME OF BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY
NEW CONSUMER PRODUCTS ANNOUNCED BY AMI

Under the name of OM:EX, AMI have introduced two new watches with back-lit liquid crystal displays, and a range of executive desk-top products. These include a calendar holder, notebook and 3-ring binder, each incorporating a 5-function calculator with an 8-digit electrofluorescent display, floating decimal and automatic constant. Additional to this range is a memo pad holder with a built-in solid-state clock.

INSTRUMENT CASES

A new range of plastic instrument cases has been released by Mentor Electronics Ltd. of Northwood. The BOCON is a two-tone high-impact plastic case with interlocking tongue and groove seal. The smallest box (E410) is 25 x 50 x 100mm with the largest (E450) 60 x 110 x 188mm; this largest box will carry a Eurocard 160 x 100mm pcb. Brass inserts and screws are supplied and the screw head recesses are square for sealing compound. The lower section has inserts for mounting components or pcbs and there are key-hole knockouts for wall fixing. Prices start just over a pound for the E410. Mentor Electronics Ltd., Ryefield Crescent, Northwood, Middlesex HA6 1NN.

CMOS PRESETTABLE COUNTERS

Two new presettable up/down counters have been added to the comprehensive CD4000 Series of COS/MOS digital integrated circuits produced by RCA Solid State—Europe. The RCA-CD4510BE is a presettable binary-coded-decimal up/down counter and the CD4516BE is a presettable binary up/down counter; each device consists of four synchronously clocked gated D-type flip-flops connected as counters. Applications include up/down difference counting, multistage synchronous counting, multistage ripple counting, and synchronous frequency division. The devices are designed for medium-speed operation (typically 7MHz), and incorporate facilities for reset and presetting. The counters are cleared by a high level on the 'reset' line, and can be preset to any binary number by a high level on the 'preset' line. The counters can be cascaded in ripple mode by connecting the 'carry-out' to the clock of the next stage. Both devices are supplied in 16-lead dual-in-line plastic packages. RCA Ltd., Sunbury-on-Thames, Middlesex.

TRANSISTOR SELECTION AND CROSS REFERENCE

Motorola Semiconductors have just published a free 24-page booklet entitled “Small-Signal Multiple Transistor Selection Guide and Cross Reference”. This features full details of over 200 quad, dual and Darlington transistors. It also includes a most useful equivalents or replacement table for over 640 EIA devices.

A useful insight into transistors and transistor type numbers is given. This explains how the multitude of different types is derived from a smaller number of prime devices, each designed with specified parameters in mind.

Device selection is made easy by tables headed with major applications categories. In each table the first delineation is by NPN/PNP device types. Under these classifications are highlighted the prime devices, the basic (discrete) chip from which these are formed, the basic design parameters, and a list of derivatives.

WESTINGHOUSE POWER TRANSISTORS

Westinghouse have introduced two new NPN silicon power transistors designed for switching, amplification and regulation in industrial, commercial, and military applications. The new JEDEC types 2N6254 and 2N6262 transistors are particularly useful in power supplies, amplifiers, voltage regulators and ultrasonic cleaners.

Rated at 15A and 150W, the new devices have large for forward and reverse safe operating areas for switching inductive loads. The 2N6254 transistor is rated at 8V and the 2N6262 device at 150V. A 200°C temperature range permits reliable operation in high ambient, and a hermetically sealed case insures high reliability and long life. Both devices are 100% power tested at full rated load and carry the Westinghouse Lifetime Guarantee.

The extra gain of the 2N6254 transistor permits its use in circuits where the 2N3055 device is marginal. The extra voltage rating of the 2N6262 transistor allows replacement of the popular 2N3234 or 2N3442 devices to provide a greater margin of safety.
of sophistication. Now supplied with a new 'data system'

BC147/209 MEM6160.50 MEM615 CT7001 NE555
NE550A 78L12 78M12/20/24 1.20 7805KC
TDA2020 TBA120AS

components are designed to offer a complete range of levels

ICL8038CC *3.10 (Power supplies) *

MC1312 LM380N MC1496 MC13500.70 HA1137W

ambit

Linear IC (RF)
CA3123E 1.40 BD151 10w 0.27
CA3086E 1.94 BD158 3.80
CA3080AO 3.70 BD160 20w 0.50
MC1310P 2.00 BD166 0.54
HA1137W 2.28 BD609 90w 0.70
MC1330 0.70 BD810 0.45
uA753 0.99 NA101 0.09
TBA551 1.70 NA104 0.14
TBA120AS 1.00 Varicap diodes
SN7400N 0.75
MCI286 1.02

Discretes contd.
CA3080AO 3.70 BD158 3.80
CA3086E 1.94 BD151 10w 0.27
CA3123E 1.40 BD160 20w 0.50

Modules & kits
7252 fm tuner set b £24
7253 FM tunerset b £24
MC720 varicap am mw tuner set £8.00
39305 - the best stereo decoder kit £7.05
91310 - stereo decoder kit £9.50
less audio preamps 5.10
12000 - FM IF strip with 0.1% distortion 6.20
F11185 - FM IF strip with ceramic filter 4.35

Electrick A Wireskilled by a

Components are designed to offer a complete range of levels

FM tuner - with wrap around teak finish

The Elektrik FM Wireless - a restyled version of the

Elektrik FM Wireless - a restyled version of the

Electrovalue has risen to a position of pre-eminence as mail-order and (industrial)
suppliers of semiconductor components, accessories, etc. There are wide ranges and large stocks to choose from as well as many special low-cost advantages to enjoy when you order from Electrovalue.

The good components service

In relatively few years, Electrovalue has risen to a position of pre-eminence as mail-order and (industrial)
suppliers of semiconductor components, accessories, etc. There are wide ranges and large stocks to choose from as well as many special low-cost advantages to enjoy when you order from Electrovalue.

The good components service

In relatively few years, Electrovalue has risen to a position of pre-eminence as mail-order and (industrial)
suppliers of semiconductor components, accessories, etc. There are wide ranges and large stocks to choose from as well as many special low-cost advantages to enjoy when you order from Electrovalue.

The good components service

In relatively few years, Electrovalue has risen to a position of pre-eminence as mail-order and (industrial)
suppliers of semiconductor components, accessories, etc. There are wide ranges and large stocks to choose from as well as many special low-cost advantages to enjoy when you order from Electrovalue.

U66 25+25W amp/tuner. Kit with superb styling, and easy construction with top quality

The 93090 stereo decoder with MPX filter. Still the best value of any kit available. £76.00.

The 93090 stereo decoder with MPX filter. Still the best value of any kit available. £76.00.

The 93090 stereo decoder with MPX filter. Still the best value of any kit available. £76.00.

The good components service

In relatively few years, Electrovalue has risen to a position of pre-eminence as mail-order and (industrial)
suppliers of semiconductor components, accessories, etc. There are wide ranges and large stocks to choose from as well as many special low-cost advantages to enjoy when you order from Electrovalue.

The good components service

In relatively few years, Electrovalue has risen to a position of pre-eminence as mail-order and (industrial)
suppliers of semiconductor components, accessories, etc. There are wide ranges and large stocks to choose from as well as many special low-cost advantages to enjoy when you order from Electrovalue.

The good components service

In relatively few years, Electrovalue has risen to a position of pre-eminence as mail-order and (industrial)
suppliers of semiconductor components, accessories, etc. There are wide ranges and large stocks to choose from as well as many special low-cost advantages to enjoy when you order from Electrovalue.

The good components service

In relatively few years, Electrovalue has risen to a position of pre-eminence as mail-order and (industrial)
suppliers of semiconductor components, accessories, etc. There are wide ranges and large stocks to choose from as well as many special low-cost advantages to enjoy when you order from Electrovalue.

The good components service

In relatively few years, Electrovalue has risen to a position of pre-eminence as mail-order and (industrial)
suppliers of semiconductor components, accessories, etc. There are wide ranges and large stocks to choose from as well as many special low-cost advantages to enjoy when you order from Electrovalue.

The good components service

In relatively few years, Electrovalue has risen to a position of pre-eminence as mail-order and (industrial)
suppliers of semiconductor components, accessories, etc. There are wide ranges and large stocks to choose from as well as many special low-cost advantages to enjoy when you order from Electrovalue.

The good components service

In relatively few years, Electrovalue has risen to a position of pre-eminence as mail-order and (industrial)
suppliers of semiconductor components, accessories, etc. There are wide ranges and large stocks to choose from as well as many special low-cost advantages to enjoy when you order from Electrovalue.

The good components service

In relatively few years, Electrovalue has risen to a position of pre-eminence as mail-order and (industrial)
suppliers of semiconductor components, accessories, etc. There are wide ranges and large stocks to choose from as well as many special low-cost advantages to enjoy when you order from Electrovalue.

The good components service

In relatively few years, Electrovalue has risen to a position of pre-eminence as mail-order and (industrial)
suppliers of semiconductor components, accessories, etc. There are wide ranges and large stocks to choose from as well as many special low-cost advantages to enjoy when you order from Electrovalue.

The good components service

In relatively few years, Electrovalue has risen to a position of pre-eminence as mail-order and (industrial)
suppliers of semiconductor components, accessories, etc. There are wide ranges and large stocks to choose from as well as many special low-cost advantages to enjoy when you order from Electrovalue.

The good components service

In relatively few years, Electrovalue has risen to a position of pre-eminence as mail-order and (industrial)
suppliers of semiconductor components, accessories, etc. There are wide ranges and large stocks to choose from as well as many special low-cost advantages to enjoy when you order from Electrovalue.

The good components service

In relatively few years, Electrovalue has risen to a position of pre-eminence as mail-order and (industrial)
suppliers of semiconductor components, accessories, etc. There are wide ranges and large stocks to choose from as well as many special low-cost advantages to enjoy when you order from Electrovalue.

The good components service

In relatively few years, Electrovalue has risen to a position of pre-eminence as mail-order and (industrial)
suppliers of semiconductor components, accessories, etc. There are wide ranges and large stocks to choose from as well as many special low-cost advantages to enjoy when you order from Electrovalue.

The good components service

In relatively few years, Electrovalue has risen to a position of pre-eminence as mail-order and (industrial)
suppliers of semiconductor components, accessories, etc. There are wide ranges and large stocks to choose from as well as many special low-cost advantages to enjoy when you order from Electrovalue.

The good components service

In relatively few years, Electrovalue has risen to a position of pre-eminence as mail-order and (industrial)
suppliers of semiconductor components, accessories, etc. There are wide ranges and large stocks to choose from as well as many special low-cost advantages to enjoy when you order from Electrovalue.

The good components service

In relatively few years, Electrovalue has risen to a position of pre-eminence as mail-order and (industrial)
suppliers of semiconductor components, accessories, etc. There are wide ranges and large stocks to choose from as well as many special low-cost advantages to enjoy when you order from Electrovalue.
MINIATURE SCOPE

The B1010 miniature battery-mains oscilloscope is a development of the original A1010 announced in 1974 but with additional facilities with the same small dimensions.

It is the smallest 10MHz battery-mains oscilloscope available to meet the growing need for more sophisticated portable test equipment. The Y amplifier sensitivity ranges from 10mV/Div to 50V/Div with time base speeds from 1μS - 1 second/div. With the choice of free running or triggered time base and positive or negative slope selection the ‘micro-Scope’ is equally effective for display of complex waveforms as found in colour TV or for pulses with a large mark space ratio as found in radar systems. A decibel scale on the graticule gives direct reading of bandwidth response and modulation depths in communication applications. The rechargeable nickel cadmium cells gives up to 3 hours operating time and it can also operate and recharge from 240V, 100 AC and 12V DC. The Z modulation display facility is retained and an internal Y amplifier calibrator has been added giving even greater overall facilities without increasing the small case size. Complete with the rigid carrying case the B1010 costs £198 Lawtronics Ltd, 139 High Street, Edenbridge, Kent TN8 5AX.

SILICONIX SHORT-FORM

The new Siliconix general short-form covers latchproof CMOS, A/D converters, multiplexers, driver-gates (NMOS, PMOS and CMOS), op amps, N and P-channel junction FET’s, CR’s and low leakage diodes. All major parameters are listed for device comparison, and circuit configuration are provided for the multiple-switch assemblies. Siliconix Limited, Morriston, Swansea SA6 8NE.

THE ENTERTAINING ELECTRON

The Faraday Lecture is now touring the country: presented by IBA engineers, and entitled ‘The Entertaining Electron’, it gives the inside story on modern TV techniques. Don’t miss it if you can possibly go, Venues and dates are:

- Birmingham Town Hall 26-27 January 1976 E MAE;
- New London Theatre 3, 4, 5, 6 February 1976 E MAE ME MA;
- The Great Hall, Exeter University 26 February 1976 AE;
- The Albert Hall, Bradford 9 March 1976 AE;
- Liverpool Philharmonic Hall 11 March 1976 AE;
- Manchester Free Trade Hall 19 March 1976 AE;
- The Kelvin Hall, Glasgow 21 April 1978 E;
- The Usher Hall, Edinburgh 23 April 1976 AE;
- The Newcastle City Hall 21 April 1976 AE;
- Portsmouth Guildhall 4 May 1976 AE;
- Tickets available from Local IEE offices M-Morning, A-Afternoon, E-Evening.

MARANTZ 112 AM/FM STEREO TUNER

Designed to match the newly-introduced 1040 and 1070 integrated stereo amplifiers, the Marantz 112 AM/FM stereo tuner is now available in this country through sole UK distributors of Marantz audio equipment, Pyser Limited. The 112 has an AM sensitivity (IHF) of 2.2μV with selectivity (IHF) of 65dB, and features Phase Lock Loop circuitry equipped with a separate automatic stereo/mono switching circuit.

In addition, this new model incorporates an FM muting circuit, to eliminate interstation noise and cut out the unit’s side slope spurious response, a four-channel output jack, a Dolby FM switch and of course the now-famous Marantz gyro-touch combination fly-wheel and tuning control.

The Marantz 112 tuner will retail, under the new Marantz pricing policy, at between £150.00 and £181.25 (including VAT). The usual three year (parts and labour) guarantee will apply to the 112.

BRIEF SPECIFICATIONS

- Capture Ratio: 1.5dB
- Total Harmonic Distortion
 - Mono: 0.30%
 - Stereo: 0.50%
- AM Suppression: 50dB
- Stereo Separation
 - 1kHz: 40dB
 - 10kHz: 28dB
- AM Sensitivity: 20μV
- Spurious Rejection: 65dB
- Signal-to-Noise Ratio: 50dB
- Freq. Response (3dB): 50-3000Hz
- Total Harmonic Distortion: 0.7%

ERRATA

The CBM SR990 is now replaced by the CBM SR1920, which has the same features for the same price but calculates to 12 (not 9) digits. The machine is available only through Boots.

The Decimo machines are to be replaced by the Vatman Scientific – an 8, 8+2 calculator. The Decimo 2001E has a 10, 10+2 display, not the 8 digit one stated.
ADVANCED ALARM CLOCK KIT

Complete kit including attractive slim case with perspex panel for 6 digit alarm clock with sleep alarm, snooze and automatic intensity control (high brightness display driving); uses MKS0253 IC and Jumbo 0.5in. LEDs. Kit also includes PCBs, active and passive components, ICs, kit, min. transformer, switch, flat cable, loudspeaker, mains cable and plug. Full instructions. Crystal control/battery back-up and touch switch snooze and alarm are optional add-ons.

£27.31

CRYS TAL TIMEBASE KIT

Simple & attractive 4-digit clock kit for Govt. Departments, Companies, etc. Fastest delivery for R&D. Official orders welcomed, written, phoned or telexed from Universities, Polytechnics, etc. on request (phone or send s.a.e.).

£47.71

Component layout, etc.

pins, screws, sockets, CMOS, resistors, capacitors, 5.12 MHz crystal, trimmer, PCBs, 6 x MANOM displays. With instructions, component layout, etc.

£31.80

STOPWATCH

Complete Kit for Stopwatch (as in December ET1); choose 6 digit range from hours to milliseconds. Contents: Vericase 75/140, J.U. red perspex front panel. Manganese batteries, clips, transistors, diodes, wiring pins, screws, sockets, pin header, resistors, capacitors, 5.12MHz crystal, trimmer, PCBs, 6 x MANOM displays. With instructions, component layout, etc.

£47.71

ADD VAT at 8% to all Prices in this advertisement. 15p P&P on orders under £3.

CRYSTAL TIMEBASE KIT

All components including PCBs (47mm x 59mm) to provide 60 clocks for clock ICs giving time accurate to a few seconds a month. Kit includes PCB, 32768 kHz miniature watch crystal, trimmer, 3 CMOS ICs and sockets.

£6.28

32.768 kHz miniature watch crystal, trimmer, 3 CMOS ICs and sockets, pin header, CMOS. resistors, capacitors, 5.12 MHz crystal, trimmer, PCBs, 6 x MANOM displays. With instructions, component layout, etc.

£31.80

ADVANCED ALARM CLOCK KIT

Advanced alarm clock with bleep alarm, snooze and automatic intensity control, high brightness display driving; uses MK50253 IC and Jumbo 0.5in. LEDs. Kit also includes PCBs, active and passive components, ICs, kit, min. transformer, switch, flat cable, loudspeaker, mains cable and plug. Full instructions. Crystal control/battery back-up and touch switch snooze and alarm are optional add-ons.

£64.95 inc. VAT p.&p.
TELETYPE 28 – NEW SPECIAL PRICE

TELETYPE 28 without key-

board. Good condition (can be used as receive only) £32.50

TELETYPE 28 with housing, key-

board and power supply £45 ea.

Ex BEA

Control Units by Univac.

Consisting of 2 -50way plug/socket; 3 multiway switch assembly; a 2 & 4 decade push button assembly electrical reset, etc. Very good value. £12.50 each.

ALWAYS A LARGE QUANTITY OF TEST EQUIPMENT, SPECIALISED UNITS, CHASSIS, ETC. CALL AND SEE

FLACHER RAMP MODULE

FX21. 24 Volt DC output for 18 volt saw tooth output. Requires only external capacitor and 100K ohm potentiometer to control frequency range up to 100KHZ (eg 50 mfd electronic gives sweep of approx 1 cm per second). In or out of stock. Price £6.75. P & P. 20p.

GRACEFUL, 18 cm. by 14 cm. in High Quality BLACK. £3.50. P. & P. 55p.

FIRE GLASS PRINTED CIRCUIT BOARD

Brand new. Single or Double sided. Any size up to 100 sq. in. Postage 25p per order.

METERING DIODES (Red, 3.3V 100mA) from Stonebridge/Sodeco. Brand New. 25p ea. Information to: Harris Imports. £1.05. P & P. 25p.

LOW FREQUENCY ANALYSER

50Hz–50KHz. £55. Information to: Electronic Equipment Direct. 121/2 BIC MARGARET STREET, LONDON W.1. Tel: 01-405 0503.

LOW FREQUENCY WOBBULATOR

20Hz to 200KHz

SINE AND SQUARE WAVE GENERATOR

In four ranges. Wien bridge oscillator thermostated stabilised. Separate independent sine and square wave amplitude controls. 3V max sine, 6V max square output. Completely assembled P.C. Board. Ready to use. 9 to 12V supply required. £85 each. P. & P. 35p. Sine Wave only £65 each. P. & P. 35p.

DIRECT TRANSFORMERS INVERTERS

TYPE A

Input: 12V DC

Output: 1.3V DC 15MA

Price £3.45

TYPE B

Input: 12V DC

Output: 1.3V DC 15MA

Price £4.70

TYPE C

Input: 12V to 24V DC

Output: 14V DC 100 micro amps at 24V Progressively reducing for lower input voltages

Price £11

FRACHER VCO MODULE FX11

10HZ–100KHZ. Size 2 x 1.7 x 11.7. Input 12V to 24V DC (not centre tapped), 18V input giving 10V constant amplitude output. Requires only 1 meg ohm potentiometer to tune entire range — or can be swept with a saw tooth input. Price £5.75. P. & P. 20p.

SOLARTRON OSCILLOSCOPE

TYPE CT316 DC–6 mV to 5 V. 81/2 x 11 x 20. Very fine condition in Ministry transit cases. Complete with copy of manual. £45 each.

MICRO.VALUE—PRINTED BOARD PACK.

Hundreds of components, transistors, etc. — no doubles. the same one-shot monostable-transistor circuit. £7.75 each.

BEEHIVE TRANSFER

2000 to 10000 off. 1/10th a cwt. £1.95 cwt. 5/10th a cwt. £1.75 cwt.

ALWAYS A LARGE QUANTITY OF TEST EQUIPMENT, SPECIALISED UNITS, CHASSIS, ETC. CALL AND SEE

TELETYPE 28

Without manual. D.C. or A.C. Input: 12V DC

Output: 1.3V DC 15MA

Price £4.70

For alignment of Receivers, Filters etc. 250KHz to 5 MHz, effective to 30 MHz on harmonics. Three controls—RF level sweep, width and frequency, Order LX62. Price £11.50 P. & P. 35p.

As above but can have extended cover range down to 20KHz by addition of external capacitors. Order LX63E. Price £11.50 P. & P. 20p.

Both models can be used with any general purpose oscilloscope. Requires 6-3V AC input. Supplied connected for automatic 50Hz sweeping. An external sweep voltage can be used instead. These units are encapsulated for additional reliability, with the exception of the controls (not tested, not calibrated).

LOW FREQUENCY WOBBULATOR

5 MHz to 150 MHz (Useful harmonics up to 1-5 GHz) up to 15 MHz sweep width. Only 3 controls, preset RF level, sweep width and frequency. Ideal for 10.7 or TV IF alignment, filters; receivers. Can be used with any general purpose scope. Full guarantee to forward comprehensive information at the earliest possible time.

WIDE RANGE WOBBULATOR

5 MHz to 150 MHz (Useful harmonics up to 1-5 GHz) up to 15 MHz sweep width. Only 3 controls, preset RF level, sweep width and frequency. Ideal for 10.7 or TV IF alignment, filters; receivers. Can be used with any general purpose scope. Full guarantee to forward comprehensive information at the earliest possible time.

MAKE YOUR SINGLE BEAM SCOPE INTO A DOUBLE WITH OUR NEW LOW PRICED SOLID STATE SWITCH.

2 Hz to 8 MHz. Hook up a 9 volt battery and connect your scope and you have two traces for ONLY £6.25. P. & P. 25p.

STILL AVAILABLE our 20 MHz version at £7.50. P. & P. 25p.

UNLESS STATED — PLEASE ADD £2.50 carriage to all units

VALUE ADDED TAX not included in prices—Goods marked with ★ 25% VAT, otherwise 8%

Official Orders Welcomed, Gov./Educational Depts., Authorities, etc., otherwise Cash with Order

Open 9am to 5.30pm Mon to Sat.

779 ARTHUR ROAD, READING, BERKS. (near Tech. College, Kings Road) Tel.: Reading 582605/65916

ELECTRONICS TODAY INTERNATIONAL—FEBRUARY 1976
MAINS TRANSFORMERS
Pri. 240v sec. 27/0/27v at 800 m/a, £2.25, P.P. 50p.
Pri. 110/240v sec. 50v at 10amps, £10.00, P.P. £1.50.
Pri. 110/240v sec. 23/24/25v at 8 amp, £6.00, P.P. £1.50.
Pri. 110/240v sec. 24/40v at 8/2 amp, £1.90, P.P. 60p.
Pri. 240v sec. 20/40/60v at 2 amp, £3.00, P.P. 70p.
Pri. 240v sec. 20v at 21/2 amp, £2.00, P.P. 50p.
Pri. 240v sec. 18v at 1.5 amp and 12v at 1 amp, £2.25, P.P. 50p.
‘TOROIDAL’ Pri. 240v sec. 30v at 1/2 amp, £1.65, P.P. 30p.

CIRCUIT BOARD
P.C.B. 1/16 oz. COPPER FORMICA
Dim. 8.4 x 7.7 in 3 pcs., 75p.
Dim. 9.4 x 8.1 in 3 pcs., 90p.
Dim. 10.1 x 7.9 in 3 pcs., £1.00
Dim. 13.1 x 9.4 in 3 pcs., £1.20.
Post & Packing 30p per sheet.

S-DECS AND T-DECS
S-DEC £1.90, Post & Packing 20p.
T-DEC £3.60, Post & Packing 30p.

FIBRE GLASS
6 x 6 in, 35p each.
12 x 6 in, 60p each.
12 x 12 in, £1.00 each.
Post & Packing 10p per sheet.

RESIST COATED FORMICA
10.1 x 7.9 in, 55p ea.
13.1 x 9.4 in, 70p ea.

MINIATURE METERS
500 micro-amp (level-stereo beacon, etc.),
scaled half black/half red. Size 1 x 1 in, 65p.
P.P. 15p.

METER & RELAY 240v
3c/o 10 amp contacts, 80p with base, P.P. 20p.

GARRARD PLINTH & COVER
For Zero-100, etc. Finished in brushed aluminium and black, with hinged smoke grey perspex lid, £11.00.

S-DECS AND T-DECS
S-DEC £1.90, Post & Packing 20p.
T-DEC £3.60, Post & Packing 30p.

OVERLOAD COUT-OUTS
Panel mounting 800 M/A, 1.8 amp, 55p ea.

HIGH CAPACITY ELECTROLYTICS
1000mfd/100 volt, 70p, P.P. 25p.
2200mfd/100 volt, 90p, P.P. 25p.
4700mfd/16 volt, 65p, P.P. 20p.
6800mfd/16 volt, 50p, P.P. 15p.
10,000mfd/25 volt, 75p, P.P. 25p.
25,000mfd/40 volt, £1.25, P.P. 30p.
47,000mfd/40 volt, £2.00, P.P. 50p.
100,000mfd/10 volt, £1.50, P.P. 50p.
160,000mfd/10 volt, £2.00, P.P. 50p.

10.7 M.H.Z. CANNED I.F.s
Size 1 x 1/2 x 1/2 in, 65p, P.P. 10p.
3 Gang Tuning Capacitor, 8.5pf to 320pf, 80p, P.P. 20p.

SIEMENS MINIATURE RELAYS
6v 4c/o with base, 65p ea.
24v 2c/o with base, 50p ea.

TOTALS AND CUT-OUTS
Panel mounting 800 M/A, 1.8 amp, 55p ea.

BONUS!
Take out a subscription — or renew it — before February 28th and we’ll send you a complimentary copy of Projects Book No.2 with your first issue.

SUBSCRIPTIONS
In the past year, ETI’s print run has increased by 30%. This is an amazing growth but has led to problems of availability. We are now getting our first queries on where to get a copy, on the Tuesday following Friday’s publication — and remember we’re monthly, not weekly! There are only two ways to ensure a copy. Place an order with your newsagent or take out a subscription.

To:

SUBSCRIPTIONS DEPARTMENT
ETI MAGAZINE
36 Ebury Street,
London SW1W OLW

I enclose £5.00 (£5.50 overseas subscriptions except Canada: $10) for the next twelve issues of ETI.

Name
Address

February 1976

ELECTRONICS TODAY INTERNATIONAL - FEBRUARY 1976 79
THE UNIVERSITY OF MANCHESTER MEDICAL SCHOOL. ELECTRONICS TECHNICIAN GRADE B. Applications are invited for the above post in the Department of Physiology. Applicants should have a good general electronics background, being qualified to at least ONC standard, and have a minimum of 7 years' practical experience. Duties of the post are concerned with the design, construction, modification and maintenance of a variety of electronic devices used in teaching and research. Salary scale £2,751-£3,207 p.a. Applications, with full details of career to date, and the names of two referees, should be sent to the Departmental Superintendent, Department of Physiology, University of Manchester, Stopford Building, Manchester M13 9PT.

GLASS FIBRE P.C.B.'s. Send 1 master and 30p per board plus 7p per square inch trimmed or plus 9p per square inch drilled and trimmed Discount for quantities.

PROTO DESIGN, 4 Highcliffe Way, Wickford, Essex.

M.S.C. COURSE IN ELECTRICAL ENGINEERING
with specialisation in any one of the following:

Electrical Machines
Communication Systems
Electronic Instrumentation
Control Engineering and Digital Electronic Systems
Design of Pulse and Digital Circuits and Systems

The Course which commences in October 1976, may be taken on a Full Time, Part Time, Sandwich or Block Release basis, and is open to all applicants who will have graduated in Science or engineering, or who will hold equivalent qualifications, by that date. The Science Research Council has accepted the Course as suitable for the purpose of its Advanced Course Studentships.

A Diploma Course, in some of the above topics or in Power Systems, is also open to applicants with the above, or slightly lower qualifications.

Research in Electrical Engineering
Applications are also invited from similarly qualified persons who wish to pursue a course of research leading to the Degree of M.Phil. or Ph.D. in any of the above topics.

Application forms and further particulars from the Head of the Department of Electrical Engineering (Ref: MSc. 6), The University of Aston in Birmingham, Birmingham B4 7PB.

FOR DETAILS ON ADVERTISING IN MINIADS, OR ELSEWHERE IN ELECTRONICS TODAY INTERNATIONAL—FEBRUARY 1976

CONTACT BOB EVANS, 01-730 8282

Send 15p for catalogue.

RAMAR CONSTRUCTOR SERVICES
MASON'S ROAD
STRATFORD-ON-AVON
WARWICKS. TeL 4879

MASCOT TRADING
(Dept. D1)
The Old School, Edlaston, Nr. Wem. Shropshire
Tel. Whixall (Shropshire) [STD 09472] 464/5

(Masons Road (Dept. D1))
INDEX TO ADVERTISERS

Ambit 75
S.H. Components Minials 73
B.I.E.T. 73
Bi-Pak 45
Bi-Pre-Pak 23
B.N.R.S. 49
Bywood 50, 75, 82
Cambridge Learning 81
CDI Electronic Systems Minials 78
Chimtread 2
C.J.L. Ltd. Minials 17
Croton Electronics 15, 53
Electronic Design Associates 53
Electro Value 76
Elvins 82
Extron 24
Green Bank Electronics Minials 73, 82
Henry's 73

HEDDON VALLEY ELECTRONICS, Bumpsley the home constructor, for the price of a s.a.e. sizes, all components guaranteed. A must for catalogue and order forms now available.

"HEDDON VALLEY ELECTRONICS"
ELECTRONICS TODAY INTERNATIONAL-FEBRUARY 1976

"GOT YOURS?"
Add 8% VAT to all prices. post, etc. 10p + VAT per order

Greenbank Electronics
FREE!
Data and suggested circuits for AY-5-1224 and MK 50253 clock chips, details of PCB's and component kits for AY-5-1224, data sheets for LED 0.3" and 0.8" displays.

NEW!
PCB TO SUIT AY-5-1224 clock chip 95p

LED CLOCKS (ECONOMY TYPES)
DL -704E 0.3" common cathode
DL -747E 0.6" common anode Add 8% VAT to all prices. post, etc. 10p + VAT per order

Greenbank Electronics (Dept. T126)
ST, New Chester Road, New Ferry Wirral, Merseyside L62 5AG Tel: 051-645 3391

X-BAND GUNN OSCILLATOR MULTIPLEXER CL8630, 8Wm solid state 10.7 GHz source. 46 x 42mm, flange to match WG16 waveguide. Applications include miniature radar - distance and speed, intruder alarms, remote control and radio link. As these are new excess stock, they are offered to experimenters, with data at £5.00 + 20p

Temperature
P.P. A. M.ukerjee, Box 26
ELECTRONIC PIANO KIT
SYNTHESER KIT
ELECTRONIC ORGAN KITS

There are five superb Electronic Organ kits specially designed for the D-I-Y enthusiast. With the extreme flexibility allowed in design, you can build an organ to your requirements which will compare with an organ commercially built costing double the price.

- Portable organ with 4 octave keyboard, £145.29
- Console organ with 5 octave keyboard, £250.95
- Console organ with 2 x 4 octave keyboards and 13 note pedal board, £470.85
- Console organ with 5 x 5 octave keyboards and 32 note pedal board, £680
- W/W Touch Sensitive Electronic Piano, £100

All components can be purchased separately, i.e. semiconductor devices, O.S. master oscillators, coils, keyboards, pedal boards, 10k fob, draw bars, key-contacts, etc.

Send 50p for catalogue which includes 5 x 10p vouchers or send your own parts list, enclosing S.A.E. for quotation.

ELVINS
ELECTRONIC MUSICAL INSTRUMENTS
Designers and component suppliers to the musical industry
12 Brett Road, Hackney, London, E8 1JP. Tel. 01-966 8455

BYWOOD ELECTRONICS
68 Eberns Road
Hendon
Hampstead
HP2 3RD
Tel 01-422 2972

To whom it may concern,

Please note that as from mid-November we are able to offer a range of Litronix full spec devices. With the Class II displays all parameters are guaranteed to work and have no guaranteed match in output spec. Device availability and prices are:

<table>
<thead>
<tr>
<th>MULL SPEC</th>
<th>DISPLAYS</th>
<th>CLASS II DISPLAYS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DL701/6/7</td>
<td>129p</td>
<td>DL707E 79p</td>
</tr>
<tr>
<td>DL217/7/8</td>
<td>375p</td>
<td>DL27TE 180p</td>
</tr>
<tr>
<td>DL316/7/90</td>
<td>245p</td>
<td>DL37TE 150p</td>
</tr>
</tbody>
</table>

Quantity prices for either type are available upon request.

We are also able to offer a full range of National Semiconductors Clock chips, most Robert and Gallax clock chips, National MC10 series counter/lifiers, our KH modular kit system, Illuminare and other technology displays.

We accept Access and Barclay cards or OVO or accounts to accredited customers. A SAE sent to us will be returned with our latest catalogue and price list enclosed.

As we are the experts in our field why bother to contact anybody else? Call us today on 0142 29727.

P.S. 5314 Clock chip, CA3081 display driver, PCB, 4x7L7E, 2x707E, £314.40

Managing Director, John Kirkpatrick

SUBSCRIPTIONS
The annual subscription to ETI for UK readers is £3.00. The current rate for foreign readers is £5.50. Canadian subscription rate is £10 per year. Send orders to ETI SUSS Dept...

BACK ISSUES
The cost of a back issue is 40p. Postal and packing costs an additional 10p for the first and 10p for each subsequent copy. Send orders to ETI BACK ISSUES Dept...

SPECIAL ISSUES
At present we have four Special Issues: Top Projects 1, Top Projects 2, Electromusical: It's Easy [Parts 1 to 13], and International 4600 Synthesizer (published by Maplin). The prices are 75p, 75p, £1.20 and £1.50 respectively. Postage and packing is an additional 15p per issue. Send orders to ETI SPECIALS Dept...

BINDERS
Binders, for up to 13 issues, are available for £2.00 including VAT and carriage. Send orders to ETI BINDERS Dept...

BOOKS
ETI Book Service sells books to our readers by mail order. The prices advertised in the magazine include postage and packing. Send orders to ETI Book Service, 25 Court Close, Bray, Maidenhead, Berks.

SPECIAL OFFERS
Normally special offers are open from the date of publication to the end of the month on the cover of the issue. Usually the filing of orders and the dispatch of goods is handled by the company supplying the products. In this case queries should be addressed to the company and not to ETI.

T-SHIRTS
ETI T-shirts are available in Large, Medium, or Small sizes. They are yellow cotton with black printing and cost £1.50 each. Send orders to ETI T-SHIRTS Dept...

PCBs
PCBs are available for our projects from companies advertising in the magazine, such as Ramar and Crofton, who do an excellent service.

EDITORIAL QUERIES
Written queries can only be answered when accompanied by a SAE, and the reply can take up to three weeks. These must relate to recent articles and not involve ETI staff in any research. Mark your letter ETI QUERY...

TECH-TIPS
We pay for items printed in this section: send ideas for submission to ETI TECH-TIPS...

CONTRIBUTIONS
Before submitting any material for publication contact the Editor who will advise on suitability (except for letters, news & Tech-Tips).

TECHNICAL PROJECTS
We cannot advise on suitability (except for letters, news & Tech-Tips).

NON-FUNCTIONING PROJECTS
We cannot advise on suitability (except for letters, news & Tech-Tips).

LETTERS FOR PUBLICATION
We do not pay for letters published and we only print them if they are very interesting or important. They should be addressed to the Editor.

MINI-ADS & CLASSIFIEDS
This is a pre-payment service - rates on application to ADVERTISING Dept. or phone Bob Evans on 01-730 7319.

ADDRESS FOR ETI DEPARTMENTS
36 Ebury St, London SW1W OLW

ELECTRONICS TODAY INTERNATIONAL - FEBRUARY 1976
Have you seen this year's most important component catalogue yet?

HENRY'S CATALOGUE IS NOW AVAILABLE

LARGEST SELECTION OF ELECTRONIC COMPONENTS AND EQUIPMENT
LOW PRICES — MEAN LESS VAT

SINCLAIR MODULES AND KITS

Test Meters & Test Equipment

PACKAGE DEALS

SUINCLAIR SPECIAL PURCHASES

TEST METERS & TEST EQUIPMENT

EMI SPEAKERS SPECIAL PURCHASE

MULLARD MODULES

ECM COMPONENTS AND EQUIPMENT

LOW PRICES — MEAN LESS VAT

ALL HENRY'S PRICES ARE NOW INCLUSIVE OF VAT

HP TV TUNERS

EMI SPEAKERS SPECIAL PURCHASE

Emi Speakers Special Purchase

New from Henry's Radio!

HENELEC RADIO CONTROL SYSTEM

Proportionally Controlled switch to minimize power consumption and extend battery life.

Specially designed to provide aircraft and boat modellers with a low-cost, ready-to-use radio control. The Henelec System gives you everything from single channel, up to sophisticated 1-channel Digital Proportional System. Buy the components you want. Ideal for any radio control application. Use with servos, or with our P.C. Switches for relay outputs. Or both.

Simple Transmitter

Simple Transmitter

PC board for above

Channel add-on unit

Basic Receiver

Single-ch. add-on switch

Proportionally controlled switch

£17.75

£1.25

£9.95

£6.95

£3.50

£1.75

£9.95

£6.95

£3.50
More than just a catalogue!

PROJECTS FOR YOU TO BUILD
4-digit clock, 6-digit clock, 10W high quality power amp., High quality stereo pre-amp., Stereo Tuner, F.M. Stereo decoder, etc., etc.

CIRCUITS... Frequency Doubblers, Oscillators, Timers, Voltmeters, Power Supplies, Amplifiers, Capacitance Multiplier, etc., etc. Full details and pictures of our wide range of components, e.g. capacitors, cases, knobs, veroboards, edge connectors, plugs and sockets, lamps and lampholders, audio leads, adaptor plugs, rotary and slide potentiometers, presets, relays, resistors (even 1% types!), switches, interlocking pushbutton switches, pot cores, transformers, cable and wire, panel meters, nuts and bolts, tools, organ components, keyboards, L.E.D.'s, 7-segment displays, heatsinks, transistors, diodes, integrated circuits, etc., etc., etc.

Really good value for money at just 40p.

The 3600 SYNTHESIZER
The 3600 synthesizer includes the most popular features of the 4600 model, but is simpler. Faster to operate, it has a switch patching system rather than the matrix patchboard of the larger unit and is particularly suitable for live performance and portable use.

Please send S.A.E. for our price list.

The 4600 SYNTHESIZER
We stock all the parts for this brilliantly designed synthesizer, including all the PCBs, metalwork, and a drilled and printed front panel, giving a superb professional finish. Opinions of authority agree the ETI International Synthesizer is technically superior to most of today's models. Complete construction details in our booklet available now, price £1.50, or S.A.E. please for specification.

GRAPHIC EQUALIZER
A really superior high quality stereo graphic equalizer as described in Jan. 1975 issue of ETI. We stock all parts (except woodwork) including all the metalwork drilled and printed as required to suit our components and PCB's.

S.A.E. for price list or complete reprint of article - price 15p.

ELECTRONIC ORGAN
Build yourself an exciting Electronic Organ. Our leaflet MES51, price 15p., deals with the basic theory of electronic organs and describes the construction of a simple 49-note instrument with a single keyboard and a limited number of stops. Leaflet MES52, price 15p., describes the extension of the organ to two keyboards each with five voices and the extension by an octave of the organ's range. Solid-state switching and new footages along with a pedal board and a further extension of the organ's range are shown in leaflet MES53 priced at 35p. (pre-publication price 15p.)

NO MORE DOUBTS ABOUT PRICES
Now our prices are GUARANTEED (changes in VAT excluded) for two month periods. We'll tell you about price changes in advance for just 30p a year (refunded on purchases). If you already have our catalogue send us an s.a.e. and we'll send you our latest list of GUARANTEED prices. Send us 30p and we'll put you on our mailing list - you'll receive immediately our latest price list then every two months from the starting date shown on that list you'll receive details of our prices for the next GUARANTEED period before the prices are implemented - plus details of any new lines, special offers, interesting projects - and coupons to spend on components to repay your 30p.

NOTE: The price list is based on the Order Codes shown in our catalogue so an investment in our super catalogue is an essential first step.

Call in at our shop, 284 London Road, Westcliff-on-Sea, Essex. Please address all mail to

MAPLIN ELECTRONIC SUPPLIES
P.O. Box 3 Rayleigh Essex SS6 8LR.

I enclose Cheque/P.O. value For copy/copies of your Catalogue Name
Address

MAPLIN ELECTRONIC SUPPLIES P.O. Box 3 Rayleigh Essex SS6 8LR.