

Join the Digital Revolution Teach yourself the latest techniques of digitalelectronics
 Digital Computer Logic and Blectronics

Computers and calculators are only the beginning of the digital revolution in electronics. Telephones, wristwatches, TV. automobile instrumentation - these will be just some nf the application areas in the next few years

Are you prepared to cope with these developments?
This four volume course - each volume measuring $11 \frac{3^{\prime \prime}}{4} \times 8 \frac{1}{4}^{\prime \prime}$ and containing 40 pages - guides you step-by-step with hundreds of diagrams and questions through number systems, Boolean algebra, truth tahles de Morgan's theorem, flipflops, registers, counters and adders. All from first principles. The onthinitial ability assumed is simple arithmetic

At the end of the course you will have broadened your horizons, career prospects and your fundamental under standing of the changing world around you

Also available - a more advanced course in 6 volumes:

1. Computer Arithmetic
2. Boolean Logic
3. Arithmetic Circuits
4. Memories \& Counters
5. Calculator Design
6. Computer Architecture

Offer. Order this together with Digital Computer Logic \& Electronics for the bargain price of $£ 9.25$, plus 50 p p\&p

Design of Digital Systems contains over iwice as much information in each volume as the simpler course. Digital Computer Logic and Electronics. All the information in the simpler courge is covered as part of the first volumes of Design of Digital Systems which as you can see from its contents also covers mary more advanced topics

Designer
 Manager

Enthusiast
Scientist
Engineer
Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next

Guarantee - no risk to you

If you are not entirely satisfied with Digital Computer Logic and Electronics or Design of Digital Systems, you may return them to us and your money will be refunded in full, no questions asked.

A Self-instructional Course
$: \bullet \rightarrow \quad$ Logical
circuit
elements
$:-17$ Designing circuits
to carry out
logical functions
$: 01 / \sqrt{\text { Flipflops }}$
and
registers

£3. 95

plus 50p packing: and surface mail anywhere in the world.

Quantity discounts available on request.

Payment may be made in foreign currencies

VAT zero rated.

```
To: Cambridge Learning Enterprises,
FREEPOST, St: Ives, Huntingdon, Cambs
PE17 4BR
- Please send me ...set(s) of Digital Computer Logic \& Electronics at \(£ 4.45\) each, p\&p included
or.\(\quad\) sel(s) of Design of Digital Systems at \(£ 6.45\) each. p\&p included
or ...combined set(s) at \(£ 9.75\) each, p\&p included
Name
Address
```

delete as applicable
No need to use a stamp - just print FRLEPOST on the envelope.

EFHITIILS
 tulfa
 international

NOVEMBER 1975
Main Features $47-1425$

Vol. 4. No. 11
AUTO-CORRELATION IN AUDIO 17
A new technique to nid record surface noise.
CONTROLLED TEMPERATURE SOLDERING 23
What does it have to offer the home constructor?26SINCLAIR PROGRAMMABLE
A scoop review of this amazing calculator44
How radioactive materials can help diagnosis.
MODERN FM RECEIVING TECHNIQUES 52
The last part of our article on what's available today.
61
UNDERSTANDING COLOUR TV
Final part explains grey scale and decoder adjustments 64
$E_{n} \cdot{ }^{m}$ nic Filters.
Projects
FREQUENCY COUNTER 11
An inexpensive instrument measures up to 1 MHz .
200W GUITAR AMP 30
How to connect two ET/413 amplifiers in a bridge configuration
TIC-TAC RADIO 35
A MW radio in a plastic mints pack. 54
Final part on our easy-to-build hifi amp. 58
A breadboard idea for DIL IC work
Data Sheets
The NE504L, a power driver IC 41
The CA3130, a CMOS op amp IC 42
The ZN1034E, a precision timer IC 43
News \& Information
NEWS DIGEST 6
ELECTRONICS TODAY IN DECEMBER 40
BOOKS FROM ETI 51
ELECTRONICS TOMORROW 70
TECH-TIPS 72
Special Supplement

"ELECTRONIC REFERENCE DATA"

centre pages
An eight page extra giving handy information

Special Offer

EDITORIAL AND ADVERTISEMENT OFFICE

36 Ebury Street
London SW1W OLW
Telephone: 01-730 8282

HALVOR W. MOORSHEAD Editor

ROBERTC. EVANS
Advertisement Manager
STEVE BRAIDWOOD, G3WKE
Assistant Editor
JEAN BELL
Production

INTERNATIONAL EDITIONS

COLLYN RIVERS
Editorial Director
AUSTRALIA
BRIAN CHAPMAN
Technical Editor
BARRY WILKINSON
Engineering Manager
Modem Magazine Holdings Lid
Ryrie House, 15 Boundary Street
Rushcurters Bay 2011
Sydney, Australia.

FRANCE

DENIS JACOB
Editor in chiof
CHRISTIAN DARTEVILLE
Editor
Electronique Pour Vous International,
17 Rue de Buci
Paris, France.

Electronics Today International is published on the first Friday of the month prior to the cover date.

PUBLISHERS
Modern Magazines (Holdings) Lid
36 Ebury Street. London SWIW OLW
DISTRIBUTORS
Argus Distributars Lid
PRINTERS
QB Newspapers Limited, Colchester

READERS QUERIES: These can only be answered if they relate to recent articles published in the magazine. Rarely can we supply information in addition to that published. Written queries must be accompanied by a stamped addressed envelope, and telephone queries. must be brief, not before 4 pm and can only be answered subject to the availability of technical staff. BACK NUMBERS: Back numbers of many issues are available for $35 p$ each plus $10 p$ postage.
SUBSCRIPTIONS: Great Britain £5.00 per annum
Overseas $£ 5.50$.
COPYRIGHT: All material is subject to world wide Copyright protection. All reasonable care is taken in the preparation of the magazine to ensure accuracy but ETI cannot be held responsible for it legally. Where errors do occur, a correction will be published as soon as possible afterwards in the magazine.

BH-PAK

SEMICONDUCTORS

PO BOX 6 WARE HERTS

AL 60
 50w. PEAK (25w. R.M.S.)

ONLY £3.95

- Max Heat Sink temp $90^{\circ} \mathrm{C}$ - Frequency Response 20 Hz to 100 K Hz - Distortion better than 0.1 at 1 KHz Supply voltage 15-50 volts Thermal Feedback Latest Design Improvements Load - 3, 4, 5 or 16 ohms Signal to noise ratio 80 dH - Overall size $63 \mathrm{~mm} \times 105 \mathrm{~mm} \times 13 \mathrm{~mm}$. Especially designed to a strict specification. Only the finest components have been used and the latest solid state circuitry incorporated in this powerful little amplifier which should satisfy the most critical A.F. enthusiast.

STABILISED POWER MODULE SPM80

SPM80 is especially designed to power 2 of the AL60 Amplifiers, up to 15 watt (r.m.s.) per channel simultaneously. This module embodies the latest components and circuit techniques incorporating complete short circuit protection. With the addition of the Mains Transformer BMT80, the unit will provide outputs of up to 1.5 amps at 35 volts. Size: $63 \mathrm{~mm} \times 105 \mathrm{~mm}$ x 30 mm .
These units enable you to build Audio Systems of the highest quality at a hitherto unobtainable price. Also ideal for many other applications including:- Disco Systems. Public Address Intercom Units, etc. Handbook available 10p.

STEREO PRE-AMPLIFIER TYPE PA100

Built to a specification and NOT a price, and yet still the greatest value on the market, the PA100 stereo pre-amplifier has been conceived from the latest circuit techniques. Designed for use with the: AL50 power amplifier system, this quality made unit incorporates no less than eight silicon planar transistors, two of these are specially selected low noise NPN devices for use in the input stages.
Three switched stereo inputs, and rumble and scratch filters are features of the PA100 which also has a STEREO/MONO switch, volume, balance and continuously variable bass and treble controls.
£13.20

MK 60 AUDIO KIT
Comprising: $2 \times$ AL60, $1 \times$ SPM80, $1 \times$ BTM80, $1 \times$ PA100, 1 front panel, 1 kit of parts to include on-off switch, neon indicator, stereo headphone sockets plus instruction booklets.
COMPLETE PRICE: $\mathbf{E} 27.55$ plus 45 p postage.

TEAK 60 AUDIO KIT
Comprising: Teak veneered cabinet size $16 \% 4^{\prime \prime \prime} \times 11 z^{\prime \prime} \times 344^{\prime \prime}$. other paits Comprising: Teak veneered cabinet size $16 \% \times x 11 / 2 " \times 3 \times \ldots$. other parts
Include aluminlum chassis, heatsink and front panel bracket, plus back panel and appropriate sockets, etc. KIT PRICE: $\varepsilon 920$ plus 45p postage.

STEREO 30 COMPLETE AUDIO CHASSIS

7 + 7 WATTS R.M.S.

The Stereo 30 comprises a complete stereo pre-amplifier, power amplifiers and power supply. This with only the addition of a transformer or overwind, will produce a high quality audio unit suitable for use with a wide range of inputs, i.e. high quality ceramic pickup, stereo tuner, stereo tape deck, etc.
Simple to install, capable of producing really first-class results, this unit is supplied with fuil instructions, black front panel, knobs, mains switch, fuse \& fuse holder and universal mounting bracket, enabling it to be installed in a record plinth, cabinets of your own construction or the cabinet available.
Ideal for the beginner or advanced constructor who
requires Hi -Fi performance with a minimum of requires Hi -Fi performance with a minimum
installation difficulty. Can be installed in 30 mins.

PRICE $£ 15.75$

'Plus 45p.

installation difficulty. Can be installed 10
TRANSFORMER $£ 2.45$ plus 45 p postage \& packing
TEAK CASE $£ 3.65$
iplus 45p
postage \& pack:ng

AL 10/AL 20 / AL 30

The AL10, AL20 and AL30 units are similar in their appearance and in their general specification. However, carefur, selection of the plastic power devices has resulted in a range of output powers from 3 to 10 watts R.M.S.
The versatility of their design makes them ideal for use in record players, tape récorders, stereo amplifiers and cassette and cartridge tape players in the car and at home.

AL10 £2.30, AL20 £2.65, AL30 £2.95

NEW SCOPE

Although only formed three years ago, Scopex have managed to take a very nice share of the U.K. oscilloscope market. It is now believed that this company is the only British company making 'scopes now that Advance have been taken over by the U.S. Gould company.

The latest addition to the Scopex range is a truly low-cost unit: price tag is $£ 88$ (plus VAT). However this does not mean that every normal facility is reduced to minimum spec. Screen size is a respectable $6 \mathrm{~cm} \times 8 \mathrm{~cm}$ and the unit has a bandwidth of $\mathrm{DC}-6 \mathrm{MHz}$ with 10 mV sensitivity. Even included

ETI/DORAM COMPETITION

Readers are reminded that the ETI/ Doram Competition with $£ 500$ in prizes is still open until the end of October.

Details were given in the September issue - and all you need apart from this is the latest Doram Catalogue. Back numbers of September with the entry coupon in are available from ETI for 35 p plus 10 p postage.

POLICE 5

For the second time in a year ETI's offices in Ebury Street have been burgled. Amongst the number of items taken was an Advance Executive calculator without a serial number. This is unique, we believe, and anyorie coming across one should contact ETI. Fortunately the thief missed the Sinclair Programmable reviewed in this issue.
is a 'beam-locate' button - extremely useful for laboratory or experimental work. The circuit includes a really excellent trigger control - this is not a Scopex claim but showed up when ETI had a chance to play with one briefly.

Scopex feel that their main market is education and service engineers but we feel that at this price, with these facilities that the amateur may well be interested.

Scopex Instruments Ltd, Pixmore Industrial Estate, Pixmore Avenue, Letchworth, Herts.

TV GAMES COME OF AGE

It is just over two years since the first TV games started to appear in pubs. since then a lot has happened in this field with a large number of small companies marketing various units by a variety of methods. Although the TV games have received a considerable
amount of publicity they have not yet caught on in a big way.
"No one who has ever played TV games has ever said anything derogatory about the concept". Richard Fairhurst x_{i}^{i} Videomaster Ltd., told ETI, 'they may not like the price or the packaging but they always like the idea". .

TV games units cost from just under

'Trapper' is just one of the six games that can be played on the Videomaster Olympic. The simple but ingenious scoring method is by moving giant ball-bearings along dents in the top of the case.

NEW SCHOTTKY BARRIER DIODES

A new series of Schottky Barrier Diodes are now available in quantity from Ferranti Limited.

The ZC2800 and ZC5800 series of devices are intended primarily for use in R.F. mixer applications. Also, as these are essentially high speed devices, they are eminently suited to pulse shaping applications.
Ferranti Limited, Oldham, Lancs.
$£ 30$ to over $£ 60$ in the main but the current trend is for prices to fall and the sophistication of the games to improve.

Videomaster Ltd., of 119-120 Chancery Lane, London, WC2 appear to be the front runners in this new field. They have just introduced a 6-game unit known as the Olympic three for two players, three for one player only. The unit operates from a PP3 battery (only 20 mA is drawn) and the output plugs into the TV socket operating on UHF channel 36 (unused). Eleven I.C.s and 5 transistors are used in the circuit.

An attraction of the Olympic is that some of the games are far from easy - a serious drawback of the earlier Tennis games. Retail price is expected to be around $£ 38$.

The same company have a more sophisticated model: Videomaster Mk 1. This includes an extraordinarily realistic football game including tackling, dribbling, automatic kick-off and two tone scoring note.

Videomaster now have a kit (advertised in this issue) costing about £20 which could well tap a large market.

The UK rights to the TV games chip (News Digest August 1975) have now reportedly been sold to Videomaster but just when the chip will be available for commercial units remains to be seen.

HENRY'S IN NOTTINGHAM

Latest addition to the Henry's chain of stores is one in Nottingham (94/96 Upper Parliament Street, Nottingham, Telephone 40403). The new store will carry all the catalogue range of components and equipment.

AMBITIONS?

Seen outside ETI's offices was a car with the registration 1 TT. The accusations that ITT are powerful enough to be a sovereign state gained something when it was noticed that the car also carried a CD plate (used only by Embassies with Diplomatic Immunity)!

NORTH SEA COMMUNICATIONS SYSTEM

Marconi has won a large order to supply tropospheric scatter communications equipment for the offshore oil industry.

The order, worth around $£ 1$ million, comes from Phillips Petroleum . operators for one of the biggest oil consortia in the North Sea. It calls for the supply of equipment to establish a communications network along the line of a pipeline which will run from the Phillips Group field production facilities at Ekofisk to Emden in West Germany. This link is scheduled to be operational by late 1976.

On the Phillips' 1.75 acres of manmade "island" at Ekofisk, gas will be separated from extracted oil in a series of separators and dehydrators. The oil will then be pumped ashore in the U.K. on Teeside and the gas will be directed to Emden. In 1973 Marconi Communication Systems Limited signed a contract worth nearly $£ 3 / 4$ million for the supply of a tropo link to serve the former part of this operation. When implemented, the new contract, together with the one just announced to provide a tropo link between the Phillips platform in the Cod field and Ekofisk, will complete the major communications requirements of the Ekofisk complex.

The new tropo system will span the 270 miles of North Sea between Ekofisk and Emden in three stages: stage one will link Ekofisk with a compressor station (CS1) on the gas pipeline some 90 miles away to the south east; stage two will link this compressor station with a second (CS2) some 90 miles further away to the south east; and stage three will link the second compressor station to the gas processing facilities at Emden. In all, six tropospheric scatter terminals will be used in the system. These will

LASER HERMETICALLY SEALS LCD

A fully hermetic glass seal for liquid crystal displays, which has been announced by AMI Microsystems, greatly strengthens the position of LCD technology in the highly competitive electronic digital watch market.

This development, which uses glass fused by a carbon dioxide laser to seal the display completely, is claimed to be a significant advance in the production of robust, long-life displays. Theoretically, the lifetime of the display is now limited only by the
be based on the new Marconi type H3212/H3412 receiver and will operate at 2 GHz . Initially the system will carry 24 voice channels although, in fact, it has been engineered to carry 72.

The latest order follows a series of contracts announced by Marconi Communication Systems Ltd., over the
purity and stability of the liquid crystal material used.

Compared with other approaches to the final sealing of the LCD, the glass seal is not only chemically inert but mechanically and thermally compatible with the glass package which forms the display. This, coupled with the extremely low power consumption of the displays, less than 200 nA at 3 V adds further to their reliability. AMV Microsystems Ltd., 108A Commercial Road, Swindon, Wilts.
past three years to supply similar systems to British Petroleum, Burmah Oil, Occidental, Mobil, Signal and Total Oil Marine Ltd., who are also operating in the North Sea area. It brings the total value of tropo equipment sold to the offshore oil industry in that time close on $£ 5$ million.

[^0]
BUMPER CATALOGUE

The long awaited Henry's Catalogue is now out but its been worth the delay. Although marginally smaller than recent editions there seem th, be few if any omissions. Prices include VAT making ordering much simpler.

Due to the instability of prices in these days of inflation, Henry's will be issuing a quarterly price revision supplement available on request.

The Catalogue costs 50 p - a sum which must be far less than the cost of production - and includes a 50 p voucher which can be used with orders worth $£ 5$ or more.

SLIMMAEST-EVER ELECTRONIC WATCHES

A wide range of electronic digital watches has been introduced in the U.S. by Fairchild.

Initially available in six mens and three ladies styles, the new watches are slimmer than any other electronic watches currently available. This has been achieved by advances in the miniaturised electronic circuitry, and a new module design permitting the use of smaller batteries.

The watches are accurate to within 60 seconds a year, and use LED displays. . Five functions are provided through the operation of a single button which is pressed once and released. The first press displays the time in hours and minutes; the next

James Lines, Managing Director of Rank Radio International Limited, watches the latest news on a Rank Teletext Receiver. A limited number of units are being produced for selected customers such as the broadcasting companies and government departments. These units display both the BBC's Ceefax and IBA's Oracle Teletext data systems as well as normal television programme material.

gives a numerical display of the month and date, and the third press gives a seconds reading. Each display is held seconds reading. Each display is h
for $1 \frac{1}{2}$ seconds after the button is released, with the seconds display continuing sequentially as long as the button is depressed. These watches are the first product from Fairchild's newly formed Consumer Products Group.

Plans to market Fairchild digital watches in the UK and Europe are being considered

Continued on page 76

NEW CMOS WATCH CHIP

The latest of Motorola's new 14400 digital sub-system CMOS family is the MC14440 - a versatile watch/clock circuit that can directly drive a 4-digit 7 -segment liquid crystal display. To manufacture a complete clock or watch with the new device requires the LCD display, three switches, a 32.768 kHz crystal, three diodes, five resistors, three capacitors and a 1.58 V battery.

During normal operation the LCD display will indicate the time in hours and minutes, and the colon will flash on and off twice per second. When the seconds/date demand switch is closed, seconds are displayed on the two right hand digits of the display, the colon remains on and the left hand digits are blanked. Returning the seconds/date demand switch to its normal position will result in the date being displayed on the two central digits of the display for two to three seconds. While the date date is being displayed the outer display digits and the colon are blanked.
Motorola Ltd., York House, Empire Wav, Wembley, Mddx.

EUROWRSDNTE electronics

PiP

Inexpensive unit works to 1 MHz .

WE CONTINUE our series of simple units based on the ETI 333 Display Module (October 1975 issel) by describing a simple frequency meter. The unit is easy to construct and quite inexpensive.

DESIGN FEATURES

We originally considered that this project would only take a short time to develop - but were we ever wrong! Just about everything that could have gone wrong did so, and we became convinced that Murphy, was not only alive and well but was living in ETI's workshop.
The first problem was to choose suitable timebase circuitry. As the project had to remain fairly economical to build, the use of a crystal timebase was ruled out. We eliminated a mains referenced timebase because it was considered that the possibility of battery powered operation was a definite advantage. Especially as control tones on the mains can cause problems.
An NE555 timer was tried for the 10 second timebase but it soon became apparent that the device just was not stable enough even when the power supply was regulated. The change in frequency due to supply changes was about $1.5 \% /$ volt. And even with a regulator the stability was not good enough to allow more than four digit

SIMPLE FREQUENCY COUNTER

readings. The error occurs because the NE555 output stage does not go exactly to the supply rails but only 0.6 \checkmark away from them. The same applies to the discharge transistor which has a fixed saturation voltage.
We considered many oscillator designs in an effort to find one with a

SPECIFICATION

INPUT IMPEDANCE
INPUT SENSITIVITY 10 Hz to 10 kHz
RANGES
DISPLAY
ACCURACY
STABILITY

OVERLOAD
PROTECTION
up to 100 kHz 100 kHz to 1 MHz

POWER
$470 \mathrm{k} / / 47 \mathrm{pF}$
$<50 \mathrm{mV}$ rising to 1 V at 1 MHz 99.9 Hz to 999 kHz

3 digits (no overload indication) as calibrated.
0.01% can be expected but depends on resistor stability.

50 Vac .
dropping from 50 Vac to 10 Vac 50 Vdc .

240 Vac or 12 Vdc at 100 mA .
stability of better than one part in 10000 and ultimately chose the one shown in the circuit diagram. This type of oscillator is well known but is not normally considered to have good accuracy and stability. This is because in a conventional op-amp IC there is normally a base-emitter junction at the output, as in the 555 . However in the new CA 3130 device this problem has been eliminated as the output stage is CMOS and appears as a resistance (about 500 ohms) and not as a voltage drop. A further advantage of this IC is the extremely high input impedance which eliminates any inaccuracies due to loading effects. On the prototype the frequency change was less than one part in 10000 with a supply voltage change of from 8 to 16 volts. The main source of error is now due to the temperature coefficient of R10. The expected error, using good quality metal-film resistors would be around 0.01% per degree C.
The CA3130 IC is also ideal for the input stage, because of its high input impedance, and also because it allows a $0 \vee$ reference to be used thus eliminating the centre-tap point normally required for conventional operational amplifier circuits.

PARTS LIST

1 Dlode IN914
D2'06" IN4001, 1N4005, or simillar IC1,2 Integrated Circult CA 3130 (AWV)
1 c 3
"
. 4518 (CMOS)
$\begin{array}{lll}1 C 4 & \because & \because 4001 \text { (CMOS) }\end{array}$

- 7812 (plastic

Dack).
SW 1 Rotary switen 6 pole 5 position SW2 toggle switch DPDT (minlature) T1 transformer $240 \mathrm{~V} / 12.6 \mathrm{~V} 150 \mathrm{~mA}$
PC Board ETI 118
Case Vero 75-14110, see page 15.
Shield as per Fig. 7.
Front panel as per \dot{F} Ig. 5.
3 plain spacers 6.4 mm long insulated 3 plain spacers 19 mm long
$31 / 8$ whit. spacers 25 mm long
core flex plug oro
cheard pins grommet and clamp ${ }^{\text {pC board pins }}$
325 mm long $1 / 8$ whit. screws
$61 / 8$ nuts.
Two Input terminals (red-black)

GETTING THE COMPONENTS SEE BOX ON PAGE 15.

HOW IT WORKS - ETI 118
The frequency counter may be divided into several basic sections.
a. Input amplifier - Schmitt trigger.
b. 10 Hz oscillator.
c. Two divide by 10 networks.
d. Strobe and reset circuitry.
e. Power supply.
f. Display module (ETI 533).

The input amplifier is a CA3130 connected as a Schmitt trigger. Resistors R3 and R4 provide positive feeedback whilst resistor R2 provides protection for the input of the IC The resistor R5 is used to increase the negative slew rate of the ampiifies thus increasing the range of operation to one megahertz.
The 10 Hz oscillator is another CA3130 where positive feedback is applied by R8 and negative feedback by RIO. When the output is high the voltage at pin 6 is about 6.8 volts. The capacitor C5 charges via R10, and when it reaches 6.8 volts the output goes low. The voltage now set at pin three is 2.2 volts and the ortput remains low until C5 has discharged to this point at which the ouifert goes high again. Preset RV1 varies the oscillator frequency by

Fig. 2. Component overlay.

Fig. 3. Wiring of the rangeswitch.
Fig. 4. How the power supply is mounted on the back panel and interconnected.
about 4\% and a parallel resistor, R9, is required to set it within the required adjustment range. A higher value preset could be used but it becomes difficult to adjust with accuracy.
The divide by ten circuitry is simply a 14518 IC which contains two decade counters. It can be switched to divide the input frequency (100 k , 1 M ranges) or the timebase (100 Hz , 1 kHz ranges) by means of the range switch SW1.
The timebase, be it ten seconds, one second or 0.1 seconds, is coupled by SW1/d to $1 C 4 / 1$ pin 13. When this voltage goes high the output of IC4/1 goes low and Cl couples a short negative going pulse into the strobe terminal of the display module. After a short time, due to R12 and C7, the output of IC4/3 goes high and C10 couples a short positive pulse into the reset terminal of the display module. When the output of IC4/1 goes low the output of IC4/4 goes high and the output of IC4/1 remains low irrespective of what now occurs at pin 13. After about 350 milliseconds C9 recharges via R15 releasing IC4/1 to the control of the timebase. This
procedure removes three out of every four strobe pulses when using the 10 Hz timebase, making / the display easier to read.
The resistor R16 is used to raise the steady-state voltage at the reset terminal to about 1.8 volts, thus ensuring that the reset pulse goes high enough to give reliable tirggering. The voltage at the strobe terminal sits at about 10.4 volts due to the 100 k input impedance of the display module.
The power supply is a full-wave rectifier and capacitor filter supply which is regulated down to 12 volts by a 7812 regulator IC. The control circuitry is isolated by a diode D6 and capacitor C13 to prevent any ripple appearing on the 12 volts due to the current drawn by the display module.
The display module contains a three decade counter-store-decoder and display as published in the October 75 issuc of ETI.
To measure frequency all that is needed is to count the number of pulses occurring over a given period of time. If we count the number of
input pulses over a one second period we can measure to the nearest one cycle, or one hertz. If a three digit display is used then the maximum reading will be $999 . \mathrm{Hz}$. However if the frequency happens to be, say, 156254 Hz the display will read 254 and ignore the 156. To measure a higher frequency, either a shorter timebase must be used, or, the input frequency must be divided down. For the 10 kHz range we simply use an 0.1 second timebase giving 10 Hz resolution. For the 100 kHz we divide the input by 10 and use an 0.1 second timebase, whilst for the one megahertz range the input is divided by one hundred. For the 100 Hz range a ten second timebase and no division is used.
If we use the one megahertz range to measure our 156254 Hz , we display 156 . Switching to 100 kHz we get 563 , on 10 kHz we get 625 and finally 254 on the 1000 Hz range, thus the frequency can be read to the nearest hertz but the accuracy depends on the accuracy of the initial setting up and the fact that temperature variations cause an error of one part in 10000 per degree C.

SIMPLE FREQUENCY COUNTER

Initially the maximum frequency of operation was limited to 200 kHz due to the slow, negative slew-rate of the IC. Looking at the internal circuit of the IC it was decided to increase the bias current in the second stage by adding a resistor between the positive supply and bin 8. This allows the frequency response to be extended to beyond one megahertz. A small compensating capacitor was found to be necessary to eliminate the effects of a small amount of coupling from the 10 Hz ascillator. The resistor to pin 8 also alters the offset voltage but this does not affect the operation of this circuit.

Another problem that occurred was in the strobe and reset pulse network.
Using an 0.1 second timebase the display changes too rapidly for ease of reading. Therefore $1 C 4 / 4$, which is connected as a 350 millisecond monostable, is used to eliminate three out of every four strobe pulses thus making the display more readable. However it was discovered that, when
using this delay, the timebase changed frequency by about four parts in 10000 . Since the power supply to the control circuitry was isolated from the display module, the circuitry is mainly CMOS, and the oscillator rejects supply rail change, none of these factors could be suspected as a cause of the trouble. The problem was due to the fact that IC4/4 works in the linear mode and can draw 10 to 20 mA. This modulates the power supply by up to 20 millivolts. The cure is to power ICA directly from the 12 volts. This explains the use of the link on the board.
Some coupling between the display board oscillator and the input stage occurred and was cured by adding an aluminium shield between the two boards.
To obtain all five ranges with only two divide-by-ten sections necessitates a more complex switch. This was considered to be justifiable as the alternative was to use a switch with one less wafer but add one more 4518 IC.

CONSTRUCTION

The display module should be constructed as described in last month's ETI. The value of resistors R5. to R11 should be 560 ohms for operation on the 12 volt supply.
The control board should be assembled with the aid of the component overlay Fig. 2. Use printed circuit board pins for all outputs and for R9 as an aid to later assembly. Make sure that the link between +12 volts and pin 14 of IC4 is installed.
Wire switch SW1, in accordance with Fig. 3, and leave the leads long enough to reach the printed circuit board. Assemble the power supply onto the tag strip and the back panel of the box as detailed in Fig. 4. There is no need to insulate the tag of the regulator from the rear panel as it is the common terminal which should be earthed. The rear panel itself is earthed via the mains cable.
The front panel has to be cut and drilled as shown in Fig. 5. A piece of polarized or red plastic can be used to

Fig. 6. Printed circuit board for the counter. Full size $90 \times 45 \mathrm{~mm}$.

TABLE 1

Frequency with RV1 at minimum 50 Hz input	Value of R9 to allow RV1 to calibrate
$48.1-50$	-
$49.8-51.8$	15 Meg
$51.3-53.4$	8.2 Meg
$52.7-55.0$	5.6 Meg
$54.7-57.1$	3.9 Meg
$56.7-59.3$	3.0 Meg
$58.8-61.7$	2.4 Meg

Fig. 7. Drilling details of the shield plate.
protect the displays.
Fit the rear panel in to the box and then mount the input terminals to the front panel (the rear of the screws of the terminals may have to be shortened to clear the display module mounting spacers). The rotary and toggle switches should also now be mounted to the front panel. Connect a short length of coaxial cable to the input terminals (about 150 mm) for later connection to the control board. Connect leads to the positive volt, zero volt, strobe, reset and input clock inputs on the display module and assemble the display board, shield and control board as shown in Fig. 8. Make sure that the spacers do not touch the copper tracks on any of the boards, lexcept for the front spacer on the control board). If any of the spacers are too close to the tracks add a piece of insulation material under the

Tig. 8. The best way to assemble the counter ig. 8. The best way
ind display boards.
spacer. The whole assembly can now be mounted in to the box.
On the display module the power rails are taken direct to the power supply whilst the 'reset' and 'strobe' go to the control board and the clock to the rotary switch. On the control board the power rails also go direct to the power supply whilst all other leads, with the exception of the coaxial cable, go to the rotary switch.
Finally connect the power switch and insulate it with plastic tape to prevent accidental personal contact.

CALIBRATION

Apply about 6 volts ac at 50 Hz , from the secondary of a power transformer to the input of the
counter. Select the 100 Hz range and set.the trimpot, RV1, to its minimum resistance position. Wait for the reading to settle (there is about ten seconds between readings) and using this reading look up the corresponding value of R9 from Table 1. Instal this resistor and again check the reading, it should now be just under 50 Hz . The trimpot RV1 can now be adjusted to give a reading of exactly 50.0 Hz . If a more accurate frequency source than the mains is available it can be used instead of the 50 Hz for final calibration. Due to the effect of soldering upon the value of resistors final calibration should be left until several hours after R9 is soldered into position so that the resistor may stabilize.

GETTING HOLD OF THE COMPONENTS

THE CASE: shown on the cover is from a new range by Vero. These cases are 204 mm wide, 140 mm deep and come in three heights $-40 \mathrm{~mm}, 75 \mathrm{~mm}$ and 100 mm . Prices \vee VT) are $£ 2.44, £ 2.74$ and $£ 3.55$. From Vero, School Close Industrlal Estate, Chandlers Ford, Hants.
THE ICs: Marshalls will give ETI readers special discount if they buy IC packs for this project. The flive ICs in the frequency counter come in a pack for $£ 5.50$ (inctusive of $\checkmark A T$ and P \& P). The two ICs used In the display module are packed with the three LED displays for a special price of $£ 12.75$. Marshalls will sell both packs for $£ 17.50$ (inclusive). THE PCBs: These are available from Ramar Consrtuctor Services, 29 Shelbourne Road, Stratford-on-Avon, Warwicks. Send $£ 1.30$ for the display boards (ETI533), and $£ 1.02$ for the frequency meter board (ETI118). If you are also bullding our DVM you can buy
the boards (excluding display) for $£ 1.64$ (ETII17).

EXCLUSIVE to EATON AUDIO, a Professional quality modular constructural case system by VERO ELECTRONICS LTD., designed with the amateur's project in mind. Wide choice of modules from $1 / 2^{\prime \prime}$ to $8^{\prime \prime}$ wide. Send large S.A.E. or $10 p$ stamp for illustrated leaflet and price list before you start your next project.

ERTDI
 RUDID
 DEPT ETI
 ST. NEOTS
 为
 CAMBS PE19.3JB
 TERMS: MAIL ORDER ONLY
 C.W.O. MINIMIM ORDER $£ 1.00$
 VAT. Please add 25% to value of order inc. p\&p.
 unless otharwise stated. Cheques or P.O.s payable
 to Eaton Audio
 Orders over E5.00 fres of p. 8 p.
 Otherwise please add $10 p$ in the $£ 1.00$.

AUTO-CORRELATION

CORRELATION is a measure of the similarity between two quantities. As applied to electronic waveforms it is a statistically based process of recovering signals buried in noise.
Until fairly recently the use of correlation has been complex involving data recording and computer analysis, and the technique has therefore been limited to such esoteric applications as recovering signals from noise in deep-space communications.
Auto-correlation is a technique in which a signal is multiplied by a time-delayed version of itself to produce an output called the correlated function. If the signal is noise-like there will be no correlation, ie similarity, between the two waveforms - and the correlation function will be low. However if the signal is sinewave-like the two signals will be highly correlated and the correlation function will be high. The averaged correlation function may now be used as a control signal to alter the gain of an amplifier such that noise signals are attentuated and wanted signals are passed with full gain.
All sounds that occur in nature have
a correlation function somewhere between ' 0 ' (no correlation) and ' 1 ' $(100 \%$ correlation is pure sine wave). Examples of high-correlation sounds are the sound of a harp, a plucked guitar, a piano and some vocal sounds.
Examples of sounds that have a low correlation are sibilance, the hiss of air through your teeth, wire brushes, multitudinous handclapping, waves crashing against a beach and the sound of rushing water.
The correlation function of music is thus a function which varies from moment to moment and it is necessary for the processing circuits to continuously determine the value of the correlation function.
Correlators intended for scientific use cost tens of thousands of pounds and can recover signals buried deep in noise (even a -60 dB signal buried in +10 dB of noise). The Phase Linear Auto-correlator cannot do that, but it can considerably enhance the signal-to-noise ratio from conventional disc recordings.
There are two versions of the Phase Linear Auto-correlator, an ' A ' version which is intended for professional
applications and which we understand is not yet on the market, and a ' B ' version intended for domestic applications - incorporated in the Phase Linear 4000 Preamplifier.

THE 'A' VERSION

The block diagram of the ' A ' version (one channel only) is given in Fig. A. It can be seen that the incoming audio is split into two paths, one path goes to the programme circuits, the other to the control circuits. The correlation function is estimated by the sample-and-hold gates and differencing amplifier. The sample-and-hold gates store the signal amplitude for 50 microseconds after successive zero crossings of the signal. The difference between these two signals is proportional to the correlation function. The correlation function is then used to control the gain of an amplifier (VCA) to the signal which has been high-pass filtered and compressed logarithmically in the spectral weighting compressor.
The output of the VCA then goes to 9 bandpass filters followed by non-linear peak detection to produce a

PHASE LINEAR AUTOCORRELATOR NOISE REDUCTION SYSTEM "A" VERSION

push-pull control voltage for each bandpass region. These control signals control associated notch filters in the programme signal path.
The system effectively examines the incoming signal and, when a fundamental note is present, opens gates for the harmonics of the fundamental. If a fundamental is not present the harmonic gates remain closed thus reducing the hiss level by up to 10 dB .

THE 'B' VERSION

In the consumer version, as fitted to
the Phase Linear 4000 Preamplifier, only four, one octave wide gates are used which results in somewhat reduced resolution.

In addition the complex correlation function estimating circuit has been simplified. The sample-and-hold gates, differencing amplifier, zero crossing detector, clock and steering logic have all been omitted. The system now relies on the fact that the spectral energy of music approximates its correlation coefficient. Additionally only one control circuit is used which
is common to both channels.
The ' B ' version thus does not track as well as the ' A ' version, that is, it mistakes noise for music and music for noise on occasions. These effects are minimal however and must be listened for very carefully in order to be heard.
Note however that the simplification of the system has been taken so far in the ' B ' version that it cannot really be called an auto-correlator. Nevertheless the system does effectively reduce hiss without sacrificing high frequency content.

PHASE LINEAR 4000 AUTO-CORRELATOR" PREAMPLIFIER

ALTHOUGH HI-FI equipment quality continues to improve, it is ironical that the quality of recorded programme has not kept pace. In fact many people hold that record quality is progressively becoming worse.
There are two major problems in recorded material - dynamic range and signal-to-noise ratio. The two factors are interrelated because, to keep signal-to-noise ratio high, recording engineers compress the peaks and raise the level of quiet passages - thus substantially limiting the recorded dynamic range. Apart from this, whilst recording techniques have vastly improved, the quality of record pressings has not. Shorter press cycle times, recycled vinyl and increased number of pressings from the one master degrade the residual surface noise on a pressing.
Thus whilst recorded musical quality may be higher than ever before, the quality of records in terms of hiss, clicks and pops is widely variable even within different pressings of the same record.
Whilst it should be theoretically possible to improve the noise performance of records it must be faced that most record companies are unlikely to do so. Even if surface noise is dramatically lowered - it will still be a problem, and the limited dynamic range which can be accommodated on records may still make dynamic compression necessary during recording.
The same problems exist in tape recording but a great improvement in signal-to-noise (up to 10 dB) has been made possible by the introduction of

the Dolby noise reduction process. However tapes must be recorded via a Dolby encoder and then replayed via a similar decoder. Thus Dolby is a two-step process - it cannot improve the signal-to-noise ratio of material that has not been Dolby encoded. Although Dolbyized tapes are available, as yet records have not beer similarly processed.

A DIFFERENT APPROACH

A number of different units are available which can improve the signal-to-noise ratio of existing records. Perhaps the most well known of these is the dbx 117 Dynamic Range Enhancer which does precisely what its name implies; it increases dynamic range thus allowing lower volume settings to be used - resulting in a subjective improvement in hiss level.
What is needed then is a means of restoring the dynamic range of the original music and of reducing the hiss level without sacrificing

> Recommended Retail Price: E425 plus VAT.
> Distributed by: C.E. Hammónd \& C. LLd., Lamb House, Church Street, Chiswick, London W4.
high-frequency response. A tall order but these are precisely the problems that Phase Linear have tackled in their new model 4000 stereo pre-amplifier. Bob Carver of Phase Linear Corporation researched the necessary techniques and is responsible for the basic design of the pre-amplifier. His aim - to obtain excellent signal-to-noise and distortion performance from the pre-amplifier itself, and to provide facilities for overcoming the record defects outlined above.
The design approach is different from the conventional, although some of the conceptual approaches were investigated by Beranck et al in the 40 's. Bob Carver expounded his approach in a paper presented to the 51st Convention of the Audio

Exgineering Society, the title of the 2mancon Sysem". A feature of note \leq indusion of what Bob Carver y=ter as 'peak unlimiting'. This =ccu not only expands signals uncta are greater than a presettable $=5$ ut also compresses /reduces yein signals below a fixed level, the mothel signals being unaffected. This cor thus increases dynamic range Tin reduces subjective noise
second and perhaps more ysunt circuitry proposal is the use a correlation technique and carrelation co-efficient estimation to Setect the presence (or absence) of encorrelated distortion products. It should however be appreciated that De 'Auto-Correlator' pre-amplifier described in this review does not ectually incorporate an auto-correlator circuit - rather the noise reduction circuit indirectly estimates the value of the correlation co-efficient. The end result is very effective but we must query Phase Linear's use of the term 'Auto-Correlator' in this context. (A parallel is describing a weighing machine as a 'Volume Measurer' if it is used to monitor liquid volume by weight).
The Phase Linear 4000 Stereo Pre-amplifier is a four-channel SQ plus logic decoder pre-amplifier capable of driving four amplifier channels, or two, as desired by the user.
To cope with this requirement the unit features a joystick type balance control right in the middle of the front panel.

MECHANICAL DETAILS

Measuring 482 mm wide (19" standard rack mounting) by 178 mm high and 254 mm deep, this unit is the largest hi-fi pre-amplifier that we have seen since type 80 rectifier valves went out in the early 40's. The reason for its size appears to be Bob Carver's desire to have a unit which matches the size of a 700 B or 400 Phase Linear Amplifier.
The pre-amplifier has two tape recorder inputs with unusual switching arrangements which enable the user to monitor the output of one of them whilst recording from the second machine, even if one desires to listen to a completely separate third programme whilst this is taking place!
On the lateral centre line of the unit set between the six large knobs are a set of lever key switches which provide facilities from left to right of: Tape 2-Copy or Source; Monitor-Source or Tape 1; Peak Unlimit and Downward Expander-in or out: Active Equaliser-in or out, and on the right hand side of the four channel joystick balance control is an attenuator

output normal or -20 dB ; Four-channel SQ+Logic or Two Channel; Stereo or Mono; and Correlate-in or out.
On the bottom row, at the left hand side of the unit, is a small rotary knob for peak unlimit and downward expander threshold selection together with its adjacent solid state bezel light. In between the left bass and right bass control are the power on-off switch, the turnover frequency switches for treble (at 8 kHz or 2 kHz) and bass (at 40 Hz and 150 Hz). On the right hand side of this is a switch which cuts all tone controls out of circuit. On the right hand side of the right hand bass control is an aperture for providing access to a present potentiometer. This is for initially calibrating and adjusting the threshold setting of the low frequency dynamic filter to match the output of the phono cartridge. Next to this is a small knob which adjusts the 'auto-correlation' threshold. This only needs to be set by ear for large changes in the source background noise level.
The Phase Linear 4000 Stereo Pre-amplifier has a number of unusual controls. We will deal with each of these in turn. First the Peak Unlimiter and Downward Expander. The Peak Unlimiter provides a maximum of 4 $d B$ increase in output relative to input for signals which exceed the zero level threshold set by the Unlimit Threshold control knob. Such a control is intended to provide part of the performance that a device such as the dbx 117 Dynamic Range Enhancer provides. Whilst not as flexible as the dbx our subjective and instrument measurements showed that it achieves what it is supposed to.
At the other end of the dynamic range the downward expander once again emulates a small proportion of the dbx's performance by providing maximum attenuation of 5 dB to compensate for gain increases deliberately introduced by the recording engineer to improve signal to
noise ratio during low level passages.
The second major control activates the 'correlator' circuitry. It is here that we think the title 'auto-correlation' is misused, for whilst the proposed Type A Phase Linear Pre-amplifier is apparently a true correlator, the Type B or consumer version is not. Whilst the average man on the street has no concept of what a correlator is, professionals and serious amateurs may well do, and we think that the choice of the term 'auto-correlation pre-amplifier' for the consumer version is a misuse of a professional term. There are major differences from a purely technical viewpoint between the proposed professional Type A Phase Linear Pre-amplifier and the consumer unit. The most important of these is undoubtedly in the means by which the noise minimisation is achieved in the two different circuits. Without delving into the theory of operation of either of the twa versions, it is necessary to point out that differences exist and that small but nonetheless measurable and subjective differences must result.

We would however like to make it quite clear that we are in no way condemning the Phase Linear 4000 or its performance but rather pointing out that the title given to it, and some of the literature presented with it do not accurately portray its true mode of operation.
The system which we used for the subjective evaluation consisted of an Elac 50H Record Player fitted with an Elac D44E Cartridge, a Phase Linear 4000 Stereo Pre-amplifier driving a Phase Linear 700B Amplifier, and two pairs of speakers - Fisher ST550's and ESS amt 1 s .
The combination was selected to provide a highly critical oocmairation capable of highlighting any pomitle factor which would show up Ee limitations of the pre-amplifer. (Tlite had preiviously tried to eval-ate pre-amplifier driving en anglifas eith

PHASE LINEAR 4000 "AUTO-CORRELATION" PREAMPLIFIER

lesser performance than the Phase Linear 700B, and the results were not entirely to our satisfaction)
We carried out our major subjective evaluation at night time after children had gone to bed and with a background noise level in the listening room close to the normal threshold of hearing. Under these conditions the background level produced by the amplifier and pre-amplifier, with the volume control set at our peak listening level, without programme content, was about $25 \mathrm{~dB}(\mathrm{~A})$. With good clean records and a peak music level close to $105 \mathrm{~dB}(\mathrm{~A})$ the background noise level on the blank tracks did not exceed $28 \mathrm{~dB}(A)$! - an almost indiscernable increase! This was most heartening and indicative of the sort of performance of which the pre-amplifier is capable.

EASURED PERFORMANCE OF 4000 STEREO PREAMPLIFIER SERIAL NO: 4254	
ximum Outout:	8 vols ms
Gain:	16 de 8 oxiliary input
	100 H. 13.13%
Cros. Taks:	

We took special care in setting up the major controls on the pre-amplifier, most particularly the unlimit. threshold, correlation threshold, and the low frequency calibration setting.
This operation was painless and certainly well within the capabilities of the below average user: it is adequately described in the fourteen page handbook provided.
In the quiet conditions of our test environment the switching in and out of the peak unlimiter provided a most satisfactory expansion of the dynamic range, although not as good as that achievable with the dbx. Notwithstanding, we were pleased with the result and felt that it was adequate for the majority of listening situations and programme content that the average user would call for.
One limitation, however, was that when correctly set up, the peak unlimiter responds noticeably, if not savagely, to scratches on records providing a totally unwanted dynamic
expansion of something which would obviously be better compressed! We noticed this when forced to play two childrens' records just before the children went to bed, and the condition of these were typical of most childrens' records. It was obvious to us that the downward expander is intended for normal scratchy records but never conceived as a cure for badly scratched records.
The first serious record which we played was Sheffield Lab-1 (SL5/SL6) "Lincoln Mayorga Volume I/I" which has a dynamic range greater than any other record which we know. The background noise level on this record was completely inaudible when compared with the natural amplifier noise level in the absence of signal input. Under the conditions of our test the dynamic range which we achieved was in excess of 80 decibels and obviously superior to any other subjective evaluation which we have ever conducted. With the peak unlimiter set to respond to just the absolute peaks of the programme content, the clarity of sound achievable was quite outstanding.
We played a number of other records recorded in the conventional manner including E.M.I. Q4.Two. 400 "Mandingo" which is a record featuring over forty instruments, of which more than half are percussion instruments. The results were electrifying, and the record, which we had previously appreciated, took on an entirely new and much wider perspective.
The next round which we used for evaluation was an electronically synthesized record. Surprisingly, at first this did not sound substantially better when played through the Phase Linear 4000. The reasons for this are not hard to find in that the manner in which the music is produced is totally dissimilar to conventional recorded content. Bob Carver himself highlights the difference in his A.E.S. Paper. This is primarily a result of very fast rise and decay times, which are generated by conventional acoustic instruments in a normal recording environment. The circuitry of the Phase Linear 4000 offers little benefit when playing such music and cannot respond adequately to such music nor does the smaller dynamic range of such records benefit from the peak unlimiter and downward expander.
So if your musical taste begins and ends with synthesizers - forget this unit!

MEASURED PERFORMANCE

The total distortion, with voltages of less than one volt output is better than $.02 \%$ at all frequencies between 50 Hz
and 10 kHz . The signal to noise ratio on phono input (which we regard as the most important one) is substantially better than 85 dB . The tone controls offer a smaller degree of control than we have become used to in other pre-amplifiers and combined pre-amplifier-amplifiers, but are nonetheless more than adequate.
The active equaliser provides a 6 dB per octave boost below 50 Hz and certainly flattens out the low frequency response below 30 Hz of the speakers that we were using.
The peak unlimiter works remarkably well and certainly provides a maximum peak unlimited performance gain of +5 dB above the adjustable threshold limit.
The inside construction of the unit is very very interesting. The large numbers of printed circuits, which are all interconnected back into a mother board via printed circuit sockets, hold 45 transistors, 9 integrated circuits, and 57 signal diodes.
Each of the cards has obviously been individually calibrated and checked out during the manufacturing process to optimise performance and provide the promised results.
With regard to mechanical construction we should comment on the method chosen for printed circuit card restraint which is simply two large blocks of urethane foam glued to the inside of the top cover and which deform to prevent lateral card movement.
Also, we were surprised to note on removing the cover, the presence of unprotected live terminals on a relay in the power supply circuit, which were remarkably close to the side panel.
In all other respects the unit is well made and offers many more facilities than the average user will call for.

Subjectively, the auto-correlator (so called) noise reduction system works remarkably well, but we were unable to devise a measurement technique satisfactorily to quantify the performance.
We spent considerably more time on the subjective evaluation of this pre-amplifier than we have ever spent on any other piece of electronic equipment which we have reviewed this was undoubtedly one of the mostpleasant tasks that we have had in a long time!
Our overall impression of the Phase Linear 4000 Stereo Pre-amplifier is of a unit which offers unparallelled performance. When coupled to an amplifier of the calibre of the Phase Linear 400 or 700 B , fed by a good programme source, and driving good speakers, the unit's performance is truly outstanding.

ENGINEERS

Liels
 YOURSELF FOR A BETTER JOB ""

 MORE PAY!

Do you want promotion, a better job, higher pay? "New opportunities" shows you how to get them through a low-cost, Home Study Course. There are no books to buy and you can pay as you learn.

This easy to follow GUIDE TO SUCCESS should be read by every ambitious engineer. Send for this helpful 76-page free book NOW! No obligation, nobody will call on you. It could be the best thing you ever did.

CHOOSE A BRAND NEW FUTURE HERE

Dept. TET08, Reading RG7 4PF
also at our London Advisory Office, 4 Fore Street Avenue, Moorgate, London EC2Y 5EJ. Tel. 01-628 2721.

NAME (Block Capitals).
ADDRESS.

HOWE OF BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY

Enough books are written about crime, this one stops it.

Outside it's a book. Inside it's an ingenious ultrasonic burglar alarm from Heathkit. The GD.39.

A complete kit that can be assembled in only a few enjoyable hours, with the help of a very easy to follow mistruction manual.

The GD-39 works by transmitting a silent, ultrasonic signal throughout the room. And continuously monitoring it. Any movement made by an intruder in the room will then automatically produce a change in the signal. Which triggers off a lamp and, thirty seconds later, a remote buzzer, that just you hear, or a loud bell.

Enough to scare the living daylights out of a burglar.
For more details, and a bookful of other ideas, just post the coupon now for your Heathkit catalogue,

Or, if you're in London or Gloucester, call in and see us. The London Heathkit Centre is at 233 Tottenham Court Road. The Gloucester showroom is next to our factory in Bristol Road.

Heath (Gloucester) Limited, Dept. ET1115, Bristol Road, Gloucester GL2 6EE. Tel: (0452) 29451.

The GD-39
Ultrasonic Burglar Alarm

TELETYPE 28 - NEW SPECIAL PRICE

TELETYPE 28 without key board. Good condition (can be used as receive only) $£ 32.50$

TELETYPE 28 with housing, keyboard and Power supply £45 ea.

Limited quantities - information in process of being obtained this may not be available when orders are dispatched but we guarantee to forward comprehensive information at the earliest possible time.

Ex BEA

Control Units by Univac
Consisting of $2-50$ way plug/socket; 3 multiway switch assembly; a 2 \& 4 decade push button assembly electrical reset; etc. Very good value. £12.50 each.

FHACHI VCŌ MODULE FX11-10-100KHZ

 10V constant amplitude output. Requires only 1 meg ohm potentiometer to tune entire range - or can be swept with a saw tooth input

Price £5.75. P\&P 20p.
FHACHI RAMP MODULE FX21. 24 Volt DC input for 18 volt saw tooth output. Requires only external capacitor and 100 K ohm potentiometer to control frequency range up to 100 KHZ feg 50 mfd range up 10 100KHZ feg 50 mfd
electralytic gives sweep of approx 1 electrolytic gives sweep of approx 1
cm per second). In or out sync capability. Price £5.75. P. \& P. 20 p.

- ANEL mounting lamp holders. Red or green. op ea.
BECKMAN MULTITUAN DIAL
MODEI RB. 8rand new
E1.mo. P. \& P. 15p

FBAE GLASS PRINTED CIRCUIT BOARD. Brand new. Single or Double sided. Any size $1 \frac{1}{2} p$ per
sa. In. Postere zop per order.
Hewlett-Packard. Brand Now. 38p Information sp . Holders ip

METEAS by SIFAM type M $42.25-25$
micro micro mp. Scaled $25-0-25$ green. $250-0$
250 red. linest. As new. C2.95 ea. P. \& 37 p BLOCK PAPLA CAPACITORS AVAIL. ABLE, S.A.E. wrth requirements.
*photocell equivalent OCP 7p, 13p ea.
*STAMDARD 2 meģ, log pors. Curremt ivpe. isp
INSTRUMENT 3 in . Colvern 5 onm 35p ea. 50 K and 100 K e0p en.
BOURNS TAIMPOT POTENTIOMETERS 20: 50: 100: 200:500 Ohms; 1:
25K At 35p ea. ALL BRANO NEW.

EX-MINISTRY CT436. Double Beam Oscilloscope DC-6 megs Beam Oscilloscope DC-6 megs.
Max Sensitivity $10 \mathrm{mv} / \mathrm{cm}$. Small Max Sensitivity $10 \mathrm{mv} / \mathrm{cm}$. Small Suitable for Colour TV servicing. Price $£ 85$ each including copy of manual:
MODERN STYLE 7O6 BLACK
OR TWO.TONE GREY E3.75
each. P.\&P. 45p. STYLE 7006
TWO.TONE GREEN and GREY
E3.75 each. P.\&P. 45p. HAND.
SETS complete with 2 Insets
and lead 75p each. P.\&P. 37p.
DIALS ONLY 75p each. P. \&P.
25p.
MODERN STANDARO TELE.
PHONES IN GREY OR GREEN
WITH A PLACE TO PUT YOUR
FINGERS LIKE THE 746. E3.00
Each. P.\&P. 45p.

日ELIANCE P.C.B. mounting 270: 470 :
500 ohms: 10 K at 35 peo. ALL BRANO NEW VENMER Mour Meters- 5 digit. wallmount

- sealed case. Siandard mains 53.78 ea P. \& P. 55 p. TRANSFORMERS, All standard inputs.
GardParm/Part. $450-400-0-400-450.180$ MA. $2 \times 6.3 \mathrm{v} . \mathbf{E 3} \mathrm{ea}$.

Miniature ANTASTIC VALUE Miniature Transformer. Standard 240 V input. 3 Volt ${ }^{6}$ amp output. Brand New 65 p each P. \& P. 20 p . Oiscount for
quantity.

MARCONI OSCILLOSCOPES

$D C-15 \mathrm{MHZ}$

LOW FREQUENCY

ANALYSER
12" CRT Magnetic Deflection, Blue Trace Yellow Afterglow (P7). Information and recommended circuits with all purchases. Brand new boxed. $\mathbf{£} 4$ each. Carriage $£ 2$.

CAPACITOR PACK 50 Brand now components
only $50 p$. P. \&P. $27 a$.
*P.C. MOUNT SKELETON PRE-SETS. Screwariver adjust 10.5 and 2.5 M a 2 pea

*1000p FEED THAU CAPACITORS. ONIV solit in packs of $10-30 p$ P \& P 15
RECTANGULAR INSTRUMENT FANS. American Ex equ. Size $4 \frac{2}{4} \times 4 \frac{1}{4} \times 1 \frac{1}{}$. 115 Voit Vary quiet e3 ea P.\&P. 47 D.
DELIVERED TO YOUR OOOR
Electronic Scrap chassis OOOR 1 cw . of Rubbish. FOR ONLY f4. N. Ireland f2 extra
P.C.B. PACK S \& O. Quantity 2 sq. h. meno tinv pieces. 50 p plus P. \& P. 20 p.
*TRIMNER PACK, 2 Twin 50/200 pf ceramic: 2 Twin 10/60 pt ceramic. 2 min strips with 4 preset
$5 / 20$ ot on esch; 3 air soaced preset $30 / 100$ pt on ceramic base AII BRANO NEW 25p the LOT. P.\&P.
150 .

ALMA precision resistors $200 \mathrm{~K}: 400 \mathrm{~K}: 497 \mathrm{~K}$
$998 \mathrm{~K}: 0.1 \%$ 27pee.: $3.25 \mathrm{~K}, 5.6 \mathrm{~K} .13 \mathrm{~K}-0.1 \%$
$\mathbf{2 0 p e a}$.
RELAVS
Varler VP4 plastic covers 4 pole c/o 15K-
33p: 58 K - 40 opa.
$50 \mathrm{~Hz}-50 \mathrm{kHz}$ ASSEMBLY AND INSTRUCTION INFORMATION S.A.E PRICE E27. P. \& P. $75 p$ Board, modules and all components (excluding P.U.).

HIOHVALUE-PRINTED BOARD PACK. Hundrents of components, transistors, eic.two boards the same-no short-leaded ransis-

Large quantity LT. HT. EMT transtormers and
chokes.

> TVest quantity of good quality components -NO PASSING TRADE SO we other LB. Of ELECTRONIC GOOOIES for ES. 70 post paid

CRYSTALS.

Brand new. Oty Trimmer $1-9 / 30 \mathrm{pp}$ 8rand new. Qiy 1-9 13p ea, P.a P. 15p: $10-99$ 10p ea, p. \& P. $25 p: 100-999$ 7pea. P. \& P.free.

HF Corstal Drive Unit. 19 in rack moun Standard 240 V input with superh crystal oven by Latkgear (no crystals) \&5 ea. Carl f2.00. A.A. POTENTIOMETERS LIN. 100K + 100K DUAL GANG. $25 p$ esch. Oiscount *METERPACKS
METERPACKS-3 different meters for €. P.\&P. 55p.
RESETTABLE COUNTERS-4 digit by Stonebridge/Sodeco. 1000 ohm coil. $£$ ea. P.\&P. 35 p

DON'T FORGET

 YOUR MANUALSS.A.E. WITH REQUIREMENTS

LOW FREQUENCY WOBBULATOR

For alignment of Receivers, Filters etc. 250 KHz io 5 MHz , effective to 30 MHz on harmonics. Three controls-RF level sweep, width and frequency. Order LX63. Price E8.50 P. \& P.35p.
As above but can have extended cover range down to 20 KHz by addition of external capacitors. Order LX63E. Price £11.50 P. \& P. 35p.

Both models can be used with any general purpose oscilloscope. Requires 6.3 V AC input. Supplied connected for automatic 50 Hz sweeping. An external sweep voltage can be used instead. These units are encapsulated for additional reliability, with the exception of the controls (not cased, not calibrated).

20HZ to 200KHZ

SIne and square wave generator

In four ranges. Wien bridge oscillator thermistor stabilised. Separate independent sine and square wave amplitude controls. 3 V max sine, 6 V max square outputs. Completely assembled P.C. Board, ready to use. 9 to 12 V supply required. 88.85 each. P. \& P. 25p. Sine Wave only £6-85 each. P. \& P. 25 p

WIDE RANGE WOBBULATOR

5 MHZ to 150 MHZ (Useful harmonics up to 1.5 GHZ) up to 15 MHZ sweep width. Only 3 controls, preset RF level, sweep width and frequency. Ideal for 10.7 or TV IF alignment, filters, eceivers, Can be used with any general purpose scope. Full instructions supplied. Connect 6.3 V AC and use within minutes of receiving. All this for only $\mathbf{8 6}$.75. P. \& P. 25p. (Not cased, not calibrated.)

TRANSISTOR INVERTORS

TYPE A

Inpur: 12V OC
Output: 13 kV AC 1.5 MA
Price $£ 3.45$

TYPE B
Input: 12 V DC
Output: 1.3 kV DC 1.5 MA utput: 1.3 kV DC 1.5 MA
Price $£ 4.70$

TYPEC
Input 12 V to 24 V DC Output: 1.5 kV to 4 kV AC 0.5 MA P Price E6.35 Postage 8t Packing 36p

TYPE D
Input 12V to 24V DC
Output: 14kV DC 100 micro amps at 24 V Progressively reducing for lower input voltages

Price $\mathbf{E 1 1}$

MAKE YOUR SINGLE BEAM SCOPE INTO A DOUBLE WITH OUR NEW LOW PRICED SOLID STATE SWITCH.
2 HZ to 8 MHZ . Hook up a 9 volt battery and connect your scope and have two traces for ONLY E6.25. P. \& P. 25p. STILL AVAILABLE our 20 MHZ version ai E9.75. P. \& P. 25p.

Uniess stated - please add E 2.00 carriage to all units.
VALUE ADDED TAX not included in prices-Goods marked with $\star 25 \%$ VAT, otherwise 8% Official Orders Welcomed, Gov./Educational Depts., Authorities, etc., otherwise Cash with Order

CONTROLLED TEMPERATURE soldering

What does it have to offer?

CONTROLLED temperature soldering tools have been used for quite a while, though until recently their use was largely confined to critical applications such as life support equipment, communications, weapons, aero-space, etc.
They are more expensive than the conventional 'single-temperature' tool; so what does the man who simply wants to build an amplifier or repair the neighbour's TV get for the extra money?
Firstly, let us go back a few years to the pre-printed circuit, pre-integrated circuit era. Then electronic gear was like the motor car of that era - built like a tank. Resistors and capacitors (called condensers then) were soldered, via heavy pigtails, to terminal pins on valve and coil bases large enough to anchor a small boat, other components were mounted on tag strips strong enough to support a
house - or that's the way it seems, in retrospect.
In those days the soldering iron bit (why do we persist in calling it a soldering iron and a soldering bit?) was a great lump of copper rod, little different from that used by a plumber.

With the steady reduction in sizes of components, and the advent of printed wiring and integrated circuits, the heat requirements for soldering have shrunk in proportion. At this point, however, we must define what we mean by 'heat'.

HOW MUCH HEAT?

Just as high electrical power can be obtained from low voltage and high current, so can high thermal power be obtained with low temperature and high thermal capacity. So when we say 'more heat', we don't necessarily mean 'higher temperature'. We may simply mean more heat volume at a

temperature high enough to rapidly melt solder . . . and 60/40 solder at that, since we are talking electronics. As a matter of interest, the optimum working temperature range for $60 / 40$ solder is $245^{\circ} \mathrm{C}$ to $272^{\circ} \mathrm{C}$. (This should not be confused with the melting point, which is $185-188^{\circ} \mathrm{C}$).

HEAT ABSORPTION

Every time a soldering tip is placed on a termination, heat is absorbed by that termination, and the temperature of the tip drops. The ability of the soldering tool element to replace that heat determines its recovery rate. Obviously, a heavy chassis joint or a long sequence of joints will draw a substantial amount of heat from the tip, with the result that the temperature may drop too low for satisfactory soldering - particularly with a small, low mass tip.
Without some form of temperature control, there is inevitably a wide variation in the tip temperature, depending on the mass of the terminations and the frequency of soldering.
This problem was overcome in the blunderbus era by that massive big 'bit' we mentioned, but this is quite impossible with today's high density circuitry end miniature componentry. The only answer, therefore, is some means of rapidly replacing the heat as it is drawn out.

HIGH IDLING TEMPERATURES

In an attempt to compensate for the inevitable temperature reduction, particularly in production soldering, higher initial (idling) temperatures were frequently used, on the principle that the average operating temperature would be more acceptable. So it was but the first few joints of every soldering sequence were then exposed to an excessively high temperature.
The penalties of elevated temperatures can be quite severe, and they are not all immediately obvious: insidious latent faults in circuits and components frequently result in call-backs.

HIGH TEMPERATURE PENALTIES

Some of the more obvious results of excessive temperatures include:
*Flux preactivation: the flux vaporises and fails to do its job.
*Solder spatter: a short circuit hazard in high density circuitry.

* Printed circuit track and pad delamination: a fault which may not be immediately obvious.
* Excessive oxidation of tip and destruction of tip tinning: makes soldering harder instead of easier.
* Reduced element life: element wire oxides rapidly
* Damaged insulation: plastic insulation can be damaged, or will 'shrink back', even from the radiated heat.
* Component damage: this is the greatest hazard in today's circuitry, due to the predomination of solid state componentry.

COMPONENT DAMAGE

Both the electrical and mechanical properties of semi-conductor devices are often temperature dependent and excessive heat, even if it does not cause 'immediate failure, will generally accelefate ultimate failure. It can, for example, cause shear stress along the bonded interface between two dissimilar materials (silicon to ceramic for example) due to their different coefficient of expansions. FETs and integrated circuits based on MOS or CMOS technologies are particularly susceptible to thermal damage during soldering. Excessive soldering temperature, therefore, may well ruin relàtively expensive components; or at least reduce component life, undermine reliability, and degrade performance.

Even abnormally low temperatures do not remove this hazard. This simply entails leaving the soldering tip on the termination for an unduly long period, during which the component can soak up more heat than with a hotter tip and a quicker soldering operation.

TOOLS AVAILABLE

Three basic types of controlledtemperature soldering tools are readily available. One of these, the Weller, operates on the Curie principle, whereby a mechanical switch is operated by a magnetic pull. A tip with a specified temperature is first inserted in the tool. Below this specified temperature, the tip attracts the magnetic switch assembly, closing the element circuit. On reaching the elected temperature the magnetic force is reduced and the switch mechanism, via the spring, is released. To change temperature another tip, with the required Curie point, is substituted

The second type operates on a pushrod system: this is used by Onyx and and Litesold. As the metal expands a bell-crank switches the current on and off.

The third types is the recently developed Unit 222 from Adcola which is entirely electronic. The iron itself contains a wire-wound sensor positioned in front of the heating element. This is fed back, to the separate control unit with the electronic switching circuitry

The temperature can be set between 180 and $420^{\circ} \mathrm{C}$ and is maintained within 3\% of that selected. The 222 is totally earthed from the supply input to the soldering bit to provide maximum safety against leakage currents.

For safety reasons, the iron is operated from 24 V and is designed to fail 'cold!

The major benefits of controlled
temperature soldering tools will now be evident. In addition to the temperature control aspect, there are obvious benefits associated with the temperature selection feature. Low temperatures can be selected for specially critical work with low-melting-point solders. Higher temperatures can be selected for soldering self-fluxing wire, where surface oxide retards heat flow at soldering temperatures. For long sequences of heavy chassis joints, higher temperatures may also be permissible.

The graph compares a controlled temperature tool with a conventional tool. Note that the heat up time is only a fraction of that required for the fixed temperature tool, which also cools down progressively under identical load conditions.

Top

SN456
2N456A
2N456
2NA
2N45A
2N490
$2 N 491$
$2 N 492$
2 N 491
2N492
2 N 493
2N493
$2 N 696$
2N697
2N698
$2 N 698$
$2 N 699$
$2 N 706$
$2 N>0_{64}$
$2 N>08$
$2 N$
$2 N 708$
$2 N 709$
$2 N 711$
$2 N 718$
$2 N 718$
$2 N 718 \mathrm{~A}$
2 N 72 C
2N718A
2NT20
2N914
2N
2N9
2N9
2N
2

2 N 929
2 N 930
2 N 13 O
2 N 130

2 N 1303
2 N 1304
2 N 1305
2 N 1306
$2 N_{130}$
$2 N_{3} 06$
$2 N_{130}$
$2 N_{130}$
$2 N_{13}$
$2 N 1307$
$2 N 1309$
$2 N 1671$
$2 N 16714$
$2 N 161_{18}$
2 N 1671
$2 \mathrm{~N}, 6718$
2 N 1907
2 N 19 y
$2 N 1818$
$2 N 2107$
$2 N 2147$
$2 N 2148$
$2 N 2182$
$2 N 2148$
$2 N 22180$
$2 N 2184$
のัロ

$2 N 22194$
$2 N 2221$
$2 N 222$,
$2 N 2222 \mathrm{~A}$
2 N 2368
2 N 2369
$2 \mathrm{~N}_{2} 9 \mathrm{O}_{4}$
$2 \mathrm{~N}_{2} 9 \mathrm{O}_{4}$

$2 N 2907$
$2 N 29074$
2N2924
2N2926
2N2926
2N3053
2N3054
2N3054
2N3055

micond 2n3390

UK

TTL Integrated Circuits - Quality \& Prices you can't beat
SNT400

SN7400	0.15	SN7410	0.16							SN749	0.72	SN74i51	0.85	SN74175	. 25
SN 7401	0.15	SN7411	0.25	SN7437	0.37	SN7451	0.16 0.16	($\begin{aligned} & \text { SN7481 } \\ & \text { SN7482 }\end{aligned}$	1.25 0.75	SN7996	0.75	SN74153	0.85	SN7476	44
SN7402		${ }^{\text {SN7at }}$. 2.28	SN7438	0.35	SN7454	0.16	SN7483	0.95	¢N74100	1.25 0.36	SN74154	1.50	SN74180	. 9.9
SN7403	0.16	SN7416	0.35	SN7440 SN7441AN	0.16	SN7460	0.16	SN7484	0.95	SN7418	1.00	SN74157	0.95	SN74190	2.30
	0.19	SN7417	0.35	SN7442	0.65		- 0.26	SN7486	1.25	SN741	1.92	SN7	1.10		2.30
(SN7405	0.	SN7420	0.16	SN7445	0.90	SN 7473	0.36	SN7490	0.32 0.45	SN74129	0.37	SN74161	1.10	SN74192	1.15
SN74007	-0.45	(en ${ }^{\text {SN7423 }}$	0.29 0.29	SN7446	0.95	${ }^{\text {SN }} 7 \times 444$	0.36	SN7491	0.85	SN74123	0.60	SN7162	1.10	(SN74193	1.15 1.80
SN7408	0.19	SN7427	0.29	SN7448	0.95	SN7475	-	(entag	0.45	${ }_{5}{ }^{5174141}$	0.85	SN74164	2.01	SN74197	1.58
	0.22	SN7430	0.16	SN7450	0.16	(1)	0.50	SN7494	- 0.45	SN74	0.90 1.50	SN74	2.0	SN74198	${ }_{2}^{2.25}$

LONDON - GLASGOW - PARIS
AND NOW

1 STRAITS PARADE FISHPONDS
BRISTOL BS16 2LX
TEL: BRISTOL 654201/2

THIS YEAR EVERYBODY is buying scientific calculators, and it looks like next year everyone will want to buy programmable scientifics. Sinclair Radionics have scooped the field by producing a programmable for under $£ 30$ and ETI have had one in operation for a while.

What is a programmable? Basically it is a standard calculator usually a mathematical or scientific type with extra memory space which can memorise the sequence of keystrokes needed to solve a particular problem. Hence it can be used to find the values of " x " which satisfy $a x^{2}+b x+c=0$ for several sets of values of a, b and c. The sequence of operational keystrokes needed is stored in the extra memory. When the program is run the values of a, b and c are fed in as data (via the keyboard) and the calculator replays the mathematical operations required to extract the roots of the equation. The same program may be run many times with different values for the variables. Thus many long and repetitive calculations may be carried out in a short time. The era of cheap programmable calculators is now with us, giving everybody access to the powerful problem-solving and decision-making machines that were until now available only to the privileged few in the computer industry.

The program memory may be either an interchangable magnetic card, as found in the Hewlett-Packard HP65 ($\mathbf{~} 470$), or it may be a separate IC as in other HP models (HP55: £ 230; HP 25: £ 119) and National Semiconductor (Novus 4515: E99.95. Novus 4525: E119.25). Several other manufacturers plan to introduce programmables within the next few months. The basic difference between the capabilities of the various machines is the maximum number of program steps that may be stored. These range from 24
steps to over 100 steps in the machines mentioned. The ability of the machine to make decisions ($x>0, x=0$ etc) and to make branches and conditional branches from the main program are other factors to consider.

THE SINCLAIR PROGRAMMABLE

Well how does the Sinclair fit in? Being the cheapest programmable calculator on the market at the moment it lacks some of the 'features of the more sophisticated machines. The program memory (which is a semiconductor memory) has a capacity of 24 keystrokes which although not as many as one might desire still makes the Sinclair a powerful machine capable of solving quite complex problems.

The calculator is mounted in the same case as the Oxford range with the same keyboard layout of 19 keys plus the on/off switch. mounted in five rows of four keys. The display is a green, fluorescent type having a total of nine digits mounted at an angle to the plane of the keyboard so that the display is easily read over a large angle. The basic calculator, is very similar to the Sinclair Scientific with Reverse Polish Notation on input and all answers displayed in scientific notation only (separate mantissa and exponent). The display gives a five digit mantissa and a two digit exponent with signs for each. Fifteen of the keys are dual function with the following direct functions available: $\sin x, \cos x, \operatorname{arc} \tan x, \sqrt{x}$, $\operatorname{anti} \log x, \log x, 1 / x$, and x^{2}. There also are keys for the separate data memory: store, recall, and x-memory interchange. Because the machine uses RPN there is no $=$ key but there is a "enter" key (the second function of the zero key - of which more later). There are also four keys which will only be found on a programmable calculator:

B/E, EXEC, and VAR. Thus there are several useful keys missing from the usual scientific repertoire: arc \sin, are cos, tan and the constant π (all to be found on the Sinclair Oxford 300 scientific). The logarithms are all to base 10 as in the original Scientific, whereas in the Oxford 300 the base is e. The loss of arc \sin, arc cos, and tan is certainly a disadvantage. The handbook does give routines to find them but these take between 9 and 12 keystrokes instead of the usual one or two. All trigonometric functions are in radians only and are limited in argument range to 0 to $\pi / 2$.

APPRAISAL

As a standard scientific calculator the machine was a little disappointing because of the lack of functions and the compromises which had to be made to the key layout to incorporate the programming controls. The lack of a separate "enter" key means that a simple multiplication (2×3, for instance) requires 5 keystrokes: " 2 ", " $A^{\prime \prime}$, "enter", " 3 " and " x " (although a key stroke may be saved by using the " + " key as an enter key). Any calculator, even one with the additional feature of programming must first and foremost be a calculator. Why then did Sinclair not make the "enter" key a separate "first function" key - perhaps combined with the execute key as its second function? After all they have a lot in common. When data is entered the key marked ./EE/- has an interesting function. When first pressed during number entry it will set the decimal point in the mantissa. When pressed again during the entry of the same number it will set any further digits in the exponent range of the number. With the third or subsequent operation of the key it will change the sign of the exponent.

As a programmable calculator the Sinclair is good, although some
features are rather disappointing With only a 24 step program, memory keystrokes are at a premium. Yet any constants that may be required to be entered must be preceded, and followed, by a quote mark: each of which counts as a keystroke. Because only integer constants can be entered (ie no decimal points or exponents) there are problems if the constants " e " or
function is available as a single keystroke on many scientifics. If the function being tabulated is $f(x)=$ $\sinh x=e^{x}-e^{-x} / 2$ then there is not enough program space to allow direct calculation of $\sinh x$. The program given in the program library first calculates e^{x} and then $1 / e^{x} \quad\left(=e^{-x}\right)$. These are then subtracted and then the sign of the answer is changed. The last two

π are used in a program. The constant " e " is entered as $878 \div$ 323 and (because each digit counts as a separate keystroke) this uses 12 steps of program space (". $8,7,8,{ }^{\prime \prime}$, enter, " $, 3,2,3,{ }^{\prime \prime} \div$) or half the total program capacity.

The program to tabulate the function e^{x} for any x will occupy $14^{\text {. }}$ steps of memory $(B / E$, enter, ${ }^{\prime \prime}, 8,7,8,{ }^{\prime \prime}, x,{ }^{\prime}, 3,2,3, \div$,VAR).- This
operations require double operation of the \because key and then finally this intermediate answer is returned to the control of the program (operate the "Exec" key again) where it is divided by two and the displayed answer is at last " $\sinh x$ ".

Thus by adding the programmable feature to a fairly basic scientific calculator Sinclair give the option of having access to several functions
only available on scientifics several times the price of the programmable. However these additional functions will have to be programmed in whenever required and may still need several keystrokes before they are evaluated

PROGRAM LIBRARY

The program library supplied with the machine covers a fairly wide range of subjects and is impressively printed on high quality cards. The only criticism of the library is that the given programs are rather short on explanation. The lack of program memory space has been compensated for by some very ingenious programs but the owner will need to spend considerable time with pencil and paper working out the relevance of each program step or he will feel like the "trained monkey" just following the given instructions knowing that at the end he will get the reward of a correct answer. If the calculator is to be widely appreciated by its owners then more explanation is needed for program writers.

The handbook supplied with the machine is reasonably good although here again more program examples would be welcome. The machine is generally well constructed; the keyboard has a good positive feel to it although the on / off switch was almost impossibly stiff on our example. The machine is advertised as a mains/battery device but the current drain from a PP3 battery is nearly 100 mA . The handbook statement that only occasional use on battery is recommended must be emphasised. Low battery volts show up as either "rubbish" answers or as a lock-up into the program mode with data fed in never reappearing.

Summing up then the Sinclair Programmable Scientific is a very good attempt to produce a programmable at the lower end of the price range. Because of the attempt to stay under $£ 30$ some of the facilities are rather limited and operation can be somewhat inconvenient. For all our criticism however. Sinclair are to be congratulated on this model which will no doubt prove a useful introduction to programmable calculators for many people and it will act as a spur to other manufacturers to produce liow price programmables (just as the original Sinclair Scientific acted $s s=$
 standard scientifics). The year ahead should prove very interestin. for observers of the celiculano market

Programmable calculator:

 NEW! Sinclair Scientific PrcThree or four years ago, personal scientific calculators revolutionised the work of scientists, engineers and mathematicians.

With a wide variety of preprogrammed functions-logs, trig, $\sqrt{x}, \frac{1}{x}, x^{2}$ and many more complex functions-they took a lot of the drudgery out of calculations.

They were expensive.
But they were infinitely faster and normally more accurate than slide rules or tables.
Programmable calculatorsunlimited power Personal scientific calculators had limitations: the number of functions was determined by the number of keys that could be crammed onto a keyboard; and every extra function meant extra cost.
Programmability overcomes both limitations-and makes a calculator vastly more powerful. With a programmable calculator, the number of functions which can be performed is unlimited.
it becomes a true miniature computer.

Sinclair Scientific Programmable: fastest, cheapest, most convenient The two or three personal scientific programmable calculators on the market so far have cost hundreds of pounds.

The Sinclair Scientific Programmable is a technological breakthrough.

As a straightforward scientific calculator, it's remarkable. It gives access to the full range of scientific and mathematical functions. It uses true scientific notation. And it's the fastest personal scientific machine on the market-allfunctions are to all intents and purposes instantaneous.

It has an exceptionally convenient 19-key keyboard.

It's completely self-containedeven program-entry takes place through the keyboard.

And it costs only £29.95!

Functions and features of the

Scientific Programmable
Keyboard-entry programmability
Programs up to 24 steps entered simply by keying in a sequence equivalent to calculation. No program takes longer than 30 seconds to enter.
Scientific notation Full scientific notation, with floating-point entry option. Post-fixed operators (reverse Polish) for convenience in handling complex calculations. Exponent range 10^{-9}, to 10^{+9}
Log and trig functions
Sin, cos, arctan (radians): $\log _{10}$ antilog ${ }_{10}$: other functions immediately derivable. Mathematical functions
$+,-x \div$
$\sqrt{x}, \frac{1}{x}, x^{2}$, sign change.
Three-function memory
Store, recall, exchange
Program store can be used to give up to three extra memories.
Large green display
Mains/battery option
Program library
Over 400 standard programs
One-year, no-quibble guarantee
Size
$156 \mathrm{~mm} \times 77 \mathrm{~mm} \times 33 \mathrm{~mm}$. Weight: 200 g

Sinclair Scientific

 Programmable-a personal computer for under $£ 30$The Sinclair Scientific Programmable is startingly good value.

It represents a tremendous design achievement: all the functions of the calculator are packed onto a single chip-an outstanding example of large-scale integration.

Other calculators use up to five or more chips-expensive to produce, and expensive to assemble.

The unique single Sinclair chip means that the Scientific Programmable-the fastest personal scientific calculator in the worldcan be sold for $£ 29.95$ including VAT.

10-day no-ob
 There's a lot more to this remarkable

 machine-far more than one advertisement can describe.You need to see it and handle it... to program it yourself in a few seconds to save you hours...to check its performance against tables and graphs... to see the full range of standard programs.

It's not everybody's calculatorand as yet, it's not in the shops.

So we're offering you a 10 -day trial. Use the order form below and send us a cheque or your Access, Barclaycard, or American Express number. We'll send you a calculator direct. Or if you prefer, phone your credit card number to Ann Dent on St Ives (0480) 64646.

Use it for 10 days-and if you don't feel it's $£ 29.95$ well spent, send it

dramatic breakthrough! grammable. For under £30:

How the Scientific Programmable saves you time

Programmability-what it is...

 what it offersAny calculation consists of a series of operations performed on constant or variable numbers.

With a non-programmable calculator, every step demands at least one key-stroke.

With a programmable calculator, zonstants and operations can be sored in the right sequence in the ceiculator, ready to operate on the reriables as they are entered The calculator becomes a miniature computer.)

The task of the operator is reduced to entering the appropriate variables at the appropriate points.

Programs may be taken from the program library or devised by the operator, Either way, they are entered simply by keying in a sequence equivalent to the calculation.

This means

 1. unlimited power-any function can be entered as a program;2. enormous time-saving-for repetitive or iterative calculations only the variables need be entered; 3. consistent accuracy-eliminates risk of operator error during program execution;
3. flexibility. The Sinclair Scientific Programmable offers the choice of mains or battery operation-and once programmed can even be given to an operator who does not understand the program.

This is most evident in repetitive calculations and in iterative procedures like the NewtonRaphson method of successive approximation.
Typical examples of repetitive calculations 1. An electronics engineer needs to plot the theoretical output waveform of a long tailed pair with current source tail for a sine wave input of peak value V pk.

The change of output current is described by the formula

$$
\begin{aligned}
& \text { ミi } \\
& \frac{\left(10^{50}-1\right)}{\left(10^{60}+1\right)} \text { wherest is in } m V
\end{aligned}
$$

By storing a 24 -step program, from the program library, he can rapidly construct a plot of the output waveform by entering Vpk in $m \vee$ plus a series of linear steps corresponding to the time axis of the graph.

With no further instructions, the machine calculates the sinusoidal input waveform, applies it to the transfer function given, and displays the normalised change in output current.

If the calculation had to be performed step by step each time, graphing any substantial number of values could take hours. With the Scientific Programmable, each plot is instantaneous.
2. An accountant raising a loan may have a number of quotations giving different repayment terms and interest rates. He can enter a standard program from the program library to calculate annual repayments for any number of combinations in a matter of minutes
Typical example of iterative process
Solve the equation $\tan x=1+x$.
By storing as a program the formula for solution by successive approximation, the solution can be obtained with high accuracy in a matter of seconds.

Over 400 standard programs

The procedures above are derived from some of over 400 standard programs in the Sinclair program library. Other programs include

General
Fahrenheit to centigrade and centigrade to fahrenheit conversion Degrees minutes and seconds conversion to radians
Finance
Compound interest Loan repayment Cashflow
Electrical and electronic engineering Field variation from aeriats
Reactance frequency chart
Jransistor noise minimisation Determination of values for ladder attenuators Statistics
Sample mean
Chi' lest
Geometry
Solution of a triangle
Surface area of a cone

Mathematics Equation solving Hyperbolic functions Evaluation of polynomials
Roots of quadratic equations (real and imaginary parts) Decimal to binary and binary to decima conversion Resolution ol forces via paraltełogram taw Beam deflection analysis Critical loading of struts Moments of inertia of squase section torroids Thermodynamics Heat conduction shape factor of a cylinder Fluid mechanics Flow rate in a ventun Materials
Determination of crystal spacing from X-ray diffraction data

igation offer.
 back. We'll refund your money

 without question.There's nothing to lose, and so much calculating time to save. Post the coupon today.

Sinclair Radionics Ltd, London Road, St Ives, Huntingdon, Cambs., PE174HJ. Tel: St Ives (0480) 64646.
VAT Registration No. 213817088 Registration No. 699483

 To: Sinclair Radionics Ltd, St Ives, Huntingdon, Cambs., PE17 4HJ.

Please send me(aty) Sinclair Scientific Programmable calculators, at the introductory price of $£ 29.95$ each (to include calculator, carrying case, battery, mains adaptor, full instructions, program library, VAT, postage and packing-no more to pay).
I understand that if I return the calculator and accessories within 10 days from receipt you will refund my money in full.
Name (please print)
Address

* I enclose cheque no.....................................
£
* Please debit £...................... to my
*Access/Barclaycard/American Express account number
- Please complete as applicable

200W BRIDCE AMPLIFIR

How to connect two ETI 413100 watt amplifiers to double the output.

43×2

NO MATTER how big an amplifier you design - someone always wants a bigger one! We have certainly found this to be true, for hundreds of our ETI 413 Guitar Amplifiers have been built, and the only complaint that some builders have is that they would like even more power - especially into eight ohms.

Whilst a 200 watt amplifier can quite readily be designed, special high-voltage, high-power output transistors and a large and expensive power transformer are required. Fewer people require such power and hence, for commercial amplifiers, this means even higher cost in terms of £-per-watt of output power.
Here is a way to couple two ETI 413 amplifiers together to obtain 200 watts into 8 ohms.
The ETI 413 was first described in February of 1973. That issue of ETI is long out of print but was reprinted in Project Book No. 1 which is still
available from us for 85 p inc. postage.
Normally the ETI 413 provides 100 watts into 4 ohms or 65 watts into 8 ohms. By connecting the two amplifiers in a bridge configuration each amplifier effectively sees an 8 ohm load as 4 ohms. Their combined output will therefore be 200 watts. The only additional components required, apart from the two amplifiers are four resistors and three capacitors.

CONSTRUCTION

Construction of the individual 100 watt amplifiers is detailed in Project Book No. 1. If two existing amplifiers are to be interconnected they should be mounted end-to-end on a common base such that the connections between the two printed circuit boards are as short as possible. Of course, if the amplifiers are being specially built for the purpose, it is preferable to
mount them in a common box.
For 200 watts into eight ohms two complete power supplies will need to be constructed and their outputs commoned. This is cheaper than buying a larger transformer to supply both amplifiers. A larger transformer will certainly cost more than two individual transformers but, if one is available, it may be used together with a single rectifier bridge. If the amplifier is to be used to supply 100 watts to a speaker load of 16 ohms minimum, one single supply (as for the normal amplifier) will be sufficient.
Before modifying the amplifiers for bridge connection set up and test each of them separately.

To modifv the amplifiers add the series 0.1 microfarad and 4.7 ohm network across the output of each amplifier and add the series 0.01 microfarad and 10 ohm network from the base of transistor Q6, in the second amplifier, to ground. Using

Fig. 1. Circuit diagram of the ETI 413 amplifier. Full constructional details of this unit are given in Top Projects No. 1. Send 85p to: ETI Top Projects No. 1, ETI Magazine, 36 Ebury Street, London SWIW OLW.

23/0076 wire (or heavier) link each of the $+40 \mathrm{~V}, 0 \mathrm{~V}$ and -40 V , of one amplifier, to the corresponding rails of the other amplifier. The 4.7 k ohm resistor may now be installed between the output of the first amplifier and the base of transistor Q2 in the second amplifier. Use insulated wire to extend the resistor leads. The input of the second amplifier should be shorted out to prevent noise pickup. The speakers may now be connected (with a fuse in series) between the outputs of the two amplifiers.

Note that if it is possible to use two separate amplifiers, each delivering 100 watts into separate four ohm
loads, this is preferable to a bridge amplifier supplying 200 watts into an eight ohm load. In a bridge amplifier if one of the amplifiers fails then all output is lost. Thus from a reliability point of view the bridge amplifier should only be used where the eight ohm load cannot be separated.
The most queries arising from the original article concern the availability of the transformer. 56 V centre-tapped types are not common however $25-0-25$ and $30-0-30$ types at 2A are widely available and are perfectly suitable. The values of C11 and C12 can also lie between 2500 and $5000 \mu \mathrm{~F}$.

SPECIFICATION

OUTPUT POWER 8 Ohms
 200 watts
 15 Ohms
 120 watts *
 Loads less than 8 ohms not recommended.
 INPUT IMPEDANCE 3.9 k

INPUT SENSITIVITY 1 volt

- A single transformer may be used for 15 ohm loads in which case the power output will be 100 watts.

HOW IT WORKS - ETI 413x2

One of the amplifiers is driven normally such that the output signal is in phase with the input. The second amplifier is driven from the output of the first and is connected as a unity-gain inverting amplifier. The second amplifier is changed to an inverting amplifier by injecting the signal, via a 4.7 k resistor, into the base of transistor Q2. The differential pair, Q1 and Q2, always tries to balance the voltages at the bases of the transistors by means of a change in output voltage. In the unmodified amplifier if the input voltage increases, the output voltage must also increase by the ratio of (R9+R7)/R7 (gain determining components). In the inverting mode the voltage on Q1 is constant and therefore, to keep the voltage at the base of Q2 constant, the current in the new 4.7 k resistor (from the output of amplifier 1) must be balanced by an equal current through R9 in amplifier 2. Therefore the output of amplifier 2 is identical to that of amplifier 1 except that it is out of phase by 180 degrees. The speaker, being connected between the two amplifiers, receives twice the output voltage that could be delivered by one amplifier alone.
Some additional stabilizing networks are needed when working in this mode and these consist of a 4.7 ohm resistor and an 0.1 microfarad capacitor in series across each output. Also required is a 10 ohm resistor and an 0.01 microfarad capacitor in series from the base of Q6 to ground on the second amplifier only. The power rails $(+40 \mathrm{~V}, 0 \mathrm{~V}$ and -40 V) should also be linked between the two amplifiers.

CLOCK CRYSTAL TIMEBASE
32.768 kHz QUARTZ CRYSTAL: High accuracy/stability for clock and watch timebases. Can be used with CMOS divider \& logic to provide stable 50 cps . £3.60 50 cps K CO 4025 , trimmer C 's, zener, R 's IC socke1s. Also ideal for car and boat clocks

ALARM CLOCK KITS

Complete kits except for case for 4 or 6 digit alarm clocks with bleep alarm, snooze and intensity control. using MK50253 IC and LED displays. Kits also include: CB's - active and passive componems - IC skt - min. Tanstormer - switches - Har cable - houdspeaker. Choice of dipplay size now svailable. Digi ALAM CLOCK KIrs - with 0.3 DL704E displays. Case available) with $0.5^{\prime \prime}$ FND500 displays C o zero, very reliabl MK50206 12 hr 4 digit clock/appliance timer MK5030M CMOS LED watch IC with date and seconds MM5314 4/6 digit clock £4.44. AY51224 4 digin clock ©4.25.

LED DISPLAYS - Common Cathodo
fND500 0.5" Very attractive E1.50. DL704E $0.3^{\prime \prime}$ for only 85p.
Display PCB's available for clocks and counters (up to 8 digits)

BUILD YOUR OWN SIMPLE AND ATTRACTIVE CLOCK

BLTO1 Most attractive 4^{\prime} digit green $0.5^{\prime \prime}$ Phosphor Diode clock display £5.80 with am/pm and colon. Whole display has only 18 pins - mounts AY51202 (as featured in September's ETI) 4 digit clock IC specially designed £5.60 for use with the 5 LTO for minimum of interiacing components 24 pin DIL Transformer $£ 1.70$ - specially wound for use with 5LTO1 Combination of 5LTO1 + AY51202 + Transformer for £13.10 (Only other components needed: 20 R's 5 C 's. 6 diodes \& 3 Sws - our own perfected complete circuit included with orders)

DDD VAT et $8 \%-(25 \%$ rate does nor apply to any of above)

I. Understand electronics.

Step by step, we take you through all the fundamentals of electronics and show you how easily the subject can be mastered using our unique Lerna-Kit course.
(1) Build an oscilloscope.
(2) Read, draw and understand circuit diagrams.
(3) Carry out over 40 experiments on basic electronic circuits and see how they work.

CMOS from the leading manufacturers at their new low prices. - All devices in stock at time of going to Press.

CO4000k	0.17	CDA024UE	0.64	C0atigat	0.46	COLOT88E	0.18
COUMO1退	0.17	CDMO2SUE	0.17	CO4050NE	0.46	C040818E	0.18
COH002AE	0.17	CO4026AE	1.42	CDAO51AE	0.77	C04082\%	0.18
CO4006E	0.97	CDAO27AE	0.46	CDAOS2NE	0.71	CO40058E	0.57
CDA007AE	0.17	CO4029NE	0.94	castas3e	077	C04086BE	0.57
CO400AAE	0.79	CDAOsane	0.46	CDAOS4 E	0.95	CD40938E	0.66
COH009AE	0.46	COAO3IAE	1.81	CO4055	1.08	C740958E	0.86
COTO.10aE	0.45	CJ4033ME	1.14	C34056AE	1.08	C040968	0.86
COACIIAE	0.17	c04034N]	7.83	CO4050,	0.92	CDAO998E	1.50
C040124E	0.17	CO4035AE	0.97	CD4063BE	0.90	COLSO1BE	0.32
CO4013KE	0.46	CD4036 ${ }^{\text {a }}$	7.47	CDAOSGLE	0.58	C045028E	102
COHO14ME	0.83	CDI 0400 A	0.88	CD4068BE	0.18	COU508P	4.20
CDACI5AE	0.83	CDOCAIAE	0.69	C24063sE	0.18	CDH5108E	1.26
CDUAIGAE	0.46		0.69	CDAOTOBE	0.18	CDAS118E	1.55
CPADI7AE	0.83	C04043NE	0.83	C240713E	0.18	C245188E	1.03
CDA018ME	0.83	CDOPO4KE	0.17	CO4072BE	0.18	CO45208E	1.65
COALIGNE	0.46	COMO45 ${ }^{\text {che }}$	1.15	C04073EE	0.18	COA532BE	1.18
CDAO204E	0.92	COLO46AE	1.10	C04075E	0.18	CO45558E	0.74
CP4022 ME	0.79	CDU017 ${ }^{\text {c }}$	0.74	CO4076BE	1.7	CO45658E	1.45
CD4023AE	0.17	CO4048AE	0.45	C24077BE	0.18	MC14553	4.07

RCA 1975 CMOS Databook: 400 pages of data sheets and 200 pages of circuits, applications, etc. $\quad \mathbf{£ 2 . 3 0}$ (no VAT) $+\mathbf{3 7 p}$ P\&P New 1975 Motorola McMOS Databook: $£ 2.30$ (no VAT) +47 p P\&P

HARDWARE

SOLDERCON DIL SOCKETS F FOR IC's, displays. CMOS. TTTL
Strip of 100 for 50 p. 400 for $£ 2.1000$ for $£ 4.3000$ for $£ 10.50$.
LSI Sockets (Soldercons \& nylon supports) 24, 28 or 40 pin: 30p ea.
7-way Boss Switch: 7 Ultra-min. toggle sws in 14 pin DIL $£ 2.60$
20 -way Colour Coded Flexible Flat Cable $£ 1$ per metre; $£ 8.50 / 10 \mathrm{~m}$
ADD VAT at 8% - (25% rate does not apply to any of above) $\uparrow 5 \mathrm{p}$ P\&P on orders under $£ 3$. Despatch is 1 st Class Post BY RETURN Exports: No VAT. 350 (Europe) \&1 (Overseas) for Air Mail P \& P Full Price List \& Data with any order, or on request (a sae helps). Official Orders welcomed, written, phoned or telexed, from Univs, Polys, Nat. Inds., Govt., Cos., etc. Fastest delivery for R\&D.
53a Aston Street, Oxford
SINTEL
Tel. 086543203
Tix. 837650 A/B ELECTRONIC OXFD.

2. Become a radio amateur.

Learn how to become a radioamateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.
Brochure, without obligation to
BRITISH NATIONAL RADIO \& ELECTRONICS SCHOOL, Dept. E95
P.O. Box 156, Jersey, Channel Islands.

'CALLING GROUND CONTROL. THIS IS RED ALERTI PLEASE BEAM UP ANOTHER JUNE ETI! OVER...' 'ROGER. WILL PATCH YOU THROUGH TO ETI CONTROL, BACK ISSUES UNIT. HOLD THE CHANNEL...'

ETI Rescue Service is fully operational. Many back issues are available and important information can be supplied from those vtaich are not. So if you lose a copy send us details and $35 p$ per issue. (plus 10 p postage, 15 p for two or more)

To ensure a regular supply of future issues of ETI, take out a subscription by filling in the coupon and sending it together with a cheque/ P.O. for $£ 5.00$ ($£ 5.50$ overseas) to

SUBSCRIPTIONS DEPARTMENT.
ETI MAGAZINE,
36 Ebury Street,
London SW1W OLW.
Alternatively place a regular order with your newsagent.

To: SUBCRIPTIONS DEPARTMENT,

 ETI MAGAZINE,36 Ebury Street,
London SW 1W OLW
I enclose $\mathbf{£ 5 . 0 0}$ ($\mathbf{£ 5 . 5 0}$ overseas subscriptions) for the next twelve issues of ETI.
Name \qquad
Address. \qquad
\qquad

November 75
 inpur ond control tacitities. Stabolised supoly. Overall site $15 \mathrm{k}^{\prime \prime} \neq 2^{\prime \prime} \neq \mathrm{o}^{\prime \prime}$ maine £29.95 inc Vat C+P
Join the large band of happy constructors!
 features capacity diode tuning, led and tuning meter indicators, stabilited power
suppiy - mains operated. High performance and sensitivity with unique station supdy - mains opetatod. High pertormence and sensitivity with unique station £26.25 inc vat. Built E tested e31. 20
$C+P 50 p$

ELECTRONIC
COMPONENS AND
EQUIPMENT - More seloction- Bigger Stocks
for evory purpose. Let us quote
for your requiremments. (Ple ase
enclose SAE with all enquiries).
ALL HENRY'S
PRICESARENOW
PNCLUSIVEOF VAT

TAPE HEADS P\&P 15p

 Marrial XRSP / 361/2 Track Med. Marriot XRSP 6 631/ Track High
Marriot Erase Heads for XRSP Marriot Erase Heads for X
$17 / 18 / 36$ (XES 11$)$ Marript BXIZE $34 / 1 /$ trock eras
R/RPI Record $/$ Play $/ \$$ Track R/RPI Record/Play i/ Track
H/RP Single Track Rec/Plas H/RP Single Track Rec/P
Bogen Type UU290 Erase
Miniato

	37p
Miniazure Stereo Cassetro Rec $/$ Play	$\mathbf{6 1 . 6 9}$
	$\mathbf{£ 2 . 5 0}$

GARRARD CT4 STERED CASSETTE TRANSPORT MECHANISM

Auno-Srop 4 Eject

* Pavee Control 12v DC Operntion

Aobust. Precition engineered mechanism based on the STARR" patented design. Ideal for use in Car stereo
cassette players. Hi-Fi stereo cassette recorders. induatrial and mony oither applications Suituble for the "PW" Ascot Stereo Cassette Deck. £ 13.50 inc. VAT P\&P 35p

ELECTRONIC FOOTBALL \& TENNIS WITH THE FABULOUS

VIDEO SPORT

$£ 29.50$ inc. VAT
DEMONSTRATIONS
NOW IN ALL CENTRES

STOP PRESS

VIDEO SPORT NOW AVAILABLE AS A FULL KIT AND PARTS WITH INSTRUCTIONS ONLY £19.50. C + P 50p

SPECIAL PURCHASE MULLARD TYPE'LP1179 AND LP1171 AM/FM TUNER MODULES

 Requirses ond
complete.
Suppled mith circuits and Splitg
LP1179 FM Coverage 87.10
Bambidet 30 KHz
Soldivin 35 dB

 threshold 40 dB
Audio output 75 mV

LP 1171 AM Banowidth 6.5k Hz Senstivity $1 m b$ Buinin AGC

LP 1179 and LP1171 $\mathbf{E A .}$:
Suntable ferrite Aerial 83p.
Mutlard Modules
LP1157
LP1135
LP1 186
Gorler Perm. F/M Tuner

THIS MEDIUM WAVE receiver measures about $60 \times 36 \times 15 \mathrm{~mm}$ when constructed in a "Tic Tac" mint box. From the circuit in Fig. 1 it will be seen that the well-known TRF radio IC, ZN414, is used. This is followed by a single audio amplifier. This IC is often used alone for earphone reception, but the addition of an amplifier considerably boosts the volume.

The normal medium wave band is tuned by the compression trimmer VC1, which is available with a shaft fitted so that a standard control knob can be used. The audio output is to a 2.5 mm jack socket via the isolating capacitor C4 (to ensure that the operating conditions for Oi are not upset by the DC resistance of the phone or headset. A crystal earpiece can also be used.

COMPONENTS

An important consideration in building a miniature radio is the actual size c^{8} the components. C 1 and C2 are easily obtained low voltage ceramic discs; C3 and C4 are small bead capacitors. The resistors are standard $1 / 3$ or $1 / 4$ watt.

Cut the board so that it will slip into the case. A part of the board is then cut away to allow the battery to fit. VC1 is fitted to the board by its bush, which is cut or filed down to avoid unnecessary projection.

The box lid takes the miniature slide switch with no modification to

the slot. Two small bolts hold the switch. The switch and jack are placed inside the lid as in. Fig. 2.

FERRITE ROD

This will have to be cut from a longer rod. File a groove all round the rod 42 mm from one end. The rod can then be broken by hand. Start to wind the 32 swg enamelled wire 6 mm from one end and fix with adhesive. Wind on eighty turns, side by side, and glue the wire again. Finally cement the rod to the perforated board.

WIR:NG

All leads etc can be seen in Fig. 2. It is important to keep the connections close to the board. Avoid large joints or the depth will prevent the radio fitting in the case. It is best to fix S1 and the jack to the lid before fitting the board,

Before S1 and the socket are fitted connect projecting leads for negative line, $\mathrm{C4}$, and battery negative. Battery connections are soldered to the cell.

RESISTOR R2

Here 1.5 k should be suitable. The actual layout of leads and components is likely to vary from that of the prototype and this increases the chances of instability. This would be manifest by IC1 oscillating so that whistles accompany reception with some signal levels, or on some frequencies. A check can easily be made before fitting the radio in its box. If reception is satisfactory (as is likely) R2 can be left'at 1.5 k . If R2 can be reduced in value, possibly to 1.2 k or 1 k , without whistles arising, this will increase gain. (R2 should not be less than 470 ohm).

BOX AND VC1

Push the receiver into its box and mark the position of the adjusting screw of VC1. Remove the radio and drill this point right through (so that

PARTS LIST

R1	100 k	$1 / \mathrm{W}$	5%
+R2	1.5 k	$1 / \mathrm{W}$	5%
R3	100 k	$1 / \mathrm{W}$	5%
R4	10 k	$1 / \mathrm{W}$	5%
C1	$0.01 \mu \mathrm{~F}$	disc ceramic	
C2	$0.1 \mu \mathrm{~F}$ disc ceramic		
C3	$0.47 \mu \mathrm{~F}$	tantalum bead	
C4	$0.47 \mu \mathrm{~F}$	tantalum bead	

* (may need adjustment)

VC1 Type TP4 250pF compression trimmer with 2236 spindle (Home Radio, Mitcham)
IC1 ZN414
Q1 ZTX300
L1 80 turns 32 swg enamelled wire on $42 \times 9 \mathrm{~mm}$ ferrite rod.
D23, 1.5 V cell, small knob, 2.5 mm jack socket, miniature slide switch, $42 \times 30 \mathrm{~mm} 0.15$ in matrix per-
forated board, "TIC TAC" mint box.
the bush and nut can fit in the bottom hole in the boxl. Use a sharp drill with light pressure, or ream out the hole. Be careful because the material is brittle.

With the receiver replaced, completely remove the adjusting screw, taking care not to displace the washers, and screw in the shaft. The latter is cut back to 6 mm so that a small knob can lie near the box. This is a push-
fit over a flat filed on the shaft.

PHONES

Best reception of all is with a good pair of high impedance headphones (the Heathkit GD-396, $2 k$ impedance, will be ideall. Where a miniature earpiece is required, this should be a high impedance unit, or volume is to be severely reduced.

IC. BUNDLIE sheets of 6×4 single sided laminate, a generous supply of etchant powder, etching
dish, etchant measure, tweezers, etch resistant marking pen, high quality pump $\begin{array}{ll}2 \times 7400 & 2 \times 7474 \\ 2 \times 74121 & 2 \times 74141\end{array}$ $2 \times 7412{ }_{2 \times 741}$ drill with spares, cutting knife with spare blades, $6^{\prime \prime}$ metal ruler, plus full easy-to-folPLUS FREE $2 \times$ BPS8 and

BARGAIN BUNDLES

Send to: BI-PAK SEMICONDUCTORS DEPT E.T.I., P.O. BOX 6, WARE, HERTS.

Bi-Pak bring you, for 2 months only a fantastic inflation beating offer designed to help you, the customer. With every Pak comes a usefut FREE GIFT. In addition to this, our star attraction is the D.I.Y. Printed Circuit Kit. With every kit sold during this offer comes a voucher to the value of $£ 1.50$ to be spent on any items from our Retail Catalogue.
 E1

3 for the PRICE of 2 Buy 2×660 cassettes for 72 per pair
$-G E T 1 \times C 60$ ABSOLUTELY FREE Buy $2 \times$ C90 cassettes for 96 p per pair -GET $1 \times$ C 90 ABSOLUTELY FREE

S.C.C. B. BUNDIE

$2 \times .6 A^{-1} 100 \mathrm{v} 2 \times 3 \mathrm{~A}^{50} \mathrm{v}$ $2 \times 1 \mathrm{~A} 50 \mathrm{v} \quad 2 \times 5 \mathrm{~A} 400 \mathrm{v}$ 2×1 A 400 v

PLUS FREE 2 METERS OF 18SWG MULTICORE SOLDER

ALL FOR ONLY £1.50 OFFER WORTH £3.00

WATCH THIS SPACE FOR THE GREAT BI-PAK CHRISTMAS COMPETITION WITH A FIRST PRIZE OF A COLOUR TV PLUS 52 OTHER PRIZES

ELEGTROVALIVE IMPORTANT ANNOUNCEMENT price stablizaton catalogue iliscounts

 1975 is the year of challenge. Rather than sit back produced our own policy to help stabilize price structure and maintain the services which have made ELECTROVALUE pre-eminent.PRICES as shown in our latest catalogue (No. 7, issue 3) are being maintained at least until March 31st 1975 (except in severe cases of market fluctuation) and then held after review for further 3 -month periods instead of making day to day price changes.
CATALOGUE No. 7. ISSUE 3 is now ready with 108 pages of bargains and information. Price-30p post paid, including 25 p refund voucher for use on orders for $£ 5$ or more
DISCOUNTS apply on all items except the few where prices are shown NETT. 5\% on orders from £5 to £14.99: 10\% on orders value $£ 15$ or more.
FREE POST \& PACKING in U.K. for pre-paid mail orders over £2 (except Baxandall cabinets). If under $£ 2$ there is an additional handling charge of 10 p .
QUALITY GUARAMTEE-All goóds are sold on the understanding that they conform to makers' specifications. No rejects, seconds or sub-standard merchandise.

SUPPLIERS OF QUALITY COMPONENTS AND SEMI-CONDUCTORS AT COMPEIITIVE PRICES

\section*{ELECTROIALUE LTD

- Therliz

- Therliz

28 ST. JUDES ROAD, ENGLEFIELD GREEN, EGHAM, SURREY TW2O OMB. Telephone Egham 3603. Telex 264475. Shop hours: 9-5.30 daily. 9-1 p.m. Sots. NORTHERN BRANCH: 680 Burnage Lane, Burnage, Manchester M19 INA. Telephone (061) 4324945 . Shop hours: Daily 9-5.30 p.m.; 9-1 p.m. Sats. U.S.A. CUSTOMERS are invited to contact ELECTROVALUE AMERICA. P.O. Box 27 Swarthmore PA 19081.

TITLE	NUMBER	$\begin{aligned} & \text { TOTAL } \\ & \text { COST } \end{aligned}$
I.C. Power Supply	111	1.43
Thermocouple Meter	113	1.47
Dual Beam Adaptor	114	0.90
Brake Light Warning	303	0.49
Car Theft Alarm	305	0.96
International 309 Battery Charger	309	0.94
Tacho Timing Light	311	0.94
Ignition System	312	1.72
Car Alarm	313	0.50
Auto Amp.	314	0.49
Impedance Meter	. 316	1.01
Guitar Amp	413	1.73
The Over-Led *	417	0.62
Mixer Pre-Amp	419	0.81
Discrete SQ Decoder	420 E	1.69
Four Channel Amp.	420	1.27
Stereo Amp.	422	1.21
Decoder Amp.	423	0.91
Reverberation Unit	424	1.81
Stereo Rumble Filter	426	0.63
Graphic Equaliser	427	1.85
Colour Organ	428	1.35
Siereo Amp	429	1.10
Line Amp	430	0.39
Dimmer-Fluorescent Light	508	0.68
Photographic Timer	512	0.94
Digital Stop Watch	520	1.72
Push Button Dimmer	527	0.96
Temperature Control	530	0.75
8600 Synthesizer	601 P	1.36
Music Synthesizer	601 L	0.73

Prices include V.A.T. and P\&P
 Boards will be available for all new projects Allow 10 days for delivery

CROFTON ELECTRONICS

124 Coine Road. Twickenham, Middlesex TW2 60 S
Telephone: 01-898 1569

Weller

When we first considered a Weller Solder Gun offer it was suggested that this tool is so useful that most of you will have one alreadyl When we asked a group of readers we found that a large number had never tried.

The greatest advantage of a solder gun is that it heats up - and cools down - almost instantly: there's no waiting for your iron to heat up. The trigger is two-position; light pressure gives you a bit temperature of $450^{\circ} \mathrm{C}$, press more and you get $600^{\circ} \mathrm{C}$. And there's a bulb which lights up your work.

At ETI we always use two irons when constructing - a small 15 W for semiconductors and our Weller for other work, that's why we've arranged this special offer.

SAVE DVER A THIRD! usual price 69.80 ETI Reaner PRICE

Inc. VAT and P \& P

DECEMBER ETI

ENTER THE ET/HEATHKT

COMPETITON

COMPETITION

Take part in our free competition next month and you can win vourself one of three Heathkit Scopes. First prize is the spanking Heathkit Scopes. First prize is the spanking
new $10-4540$ worth 299.90 - the second and new $10-4540$ worth 299.90 - the second and
third prizes are the $10-4560$ selling at $£ 69.90$. ANO THERE ARE TWO BONUSES

Firstly every entrant ticking the coupon will get the latest Heathkit catalogue - free, of course.
Secondly Heathkit are running some special offers open only to those who enter - details are supplied in the catalogue.

SCOOP IEST!

 HEATHKIT'S 10-4540 5 MHz SCOPE So you'll know just how good the first prize of our competition is, we have got hold of the first available kits of the Heathkit 10-4540.We'll be building it up and putting it through its paces.

DGTMA STO DMATMI DDOLENT

The problem with doing a digital stopwatch project is that the possible facilities and uses are as wide as the number likely to build it. Designed by one of Britain's experts in this field our project is almost modular - you choose the final design yourself!

LOGIC PROBE \& PULSER

The trouble-shooting and servicing of digital equipment is greatly simplified by using a logic pulser and probe. Next month we carry constructional projects for both.

At the time of this issue going to press, the features mentioned here are in an advanced state of preparation. However, circumstances, including highly topical news, may affect the

ACTVE CROSSOVER

As the cost $8 f$ speakers and simple crossovers rise compared to amplifiers, the stage has been reached where it becomes advantageous to tailor the amplifiers for each speaker. This results in greatly improved fidelity for relatively low cost.

ORDER A COPY FROM YOUR NEWSAGENTS

ETI DATA SHEET

The new series of ETI Data Sheets are arranged so that they can easily be removed from the magazine if required. It is planned to give details of between two and four devices each month, the emphasis being strictly on maximum information in the available space on I.C.'s and other semiconductors.

ETI Data Sheets are intended as an introduction to the devices, not as complete information though applications circuits will occasionallv be modified
to make it easier to build them up. All serriciconductor manufacturers produce their own excellent data sheets but the majority of the information is not relev nt to the enthusiast: we are concentrating on the data that is.

Internal circuits of I.C.'s will only be shown if it is felt that this will lead to a better understanding of the operation.

NE 504L POWER DRIVER

SIGNETICS

The 540 is a monolithic, class $A B$ power amplifier designed specifically to drive a pair of complementary output transistors. The device features low standby current yet retains a high output current drive capability with internal current limiting. A wide power bandwidth and excellent linearity make this device ideal for use as an audio power amplifier.

SPECIFICATION

Values are typical.

Supply Voltage Quiescent Current Input Offset Voltage Input Offset Current Input Bias Current Input Impedance (40dB Gain) Current Gain Frequency Response (40 dB Gain $\pm 1 \mathrm{~dB}$)
Distortion(Output 3d8
below maximum, $R_{L}=600 \Omega$)
Equivalent Input Noise Voltage ($\mathrm{R}_{\mathrm{s}}=600 \Omega$, $50 \mathrm{~Hz}_{2}$ to 500 kHz)
Power Supply Rejection Ratio (40 dB Gain)
Common Mode
Rejection Ratio
Output Drive Current
$\pm 100 \mathrm{~mA}$
Typical Advertised Price $£ 2.50$ inc. VAT
Data supplied by Signetics.
$\pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$ 13 mA
7 mV
$0.5 \mu \mathrm{~A}$
$2 \mu \mathrm{~A}$
$20 \mathrm{k} \Omega$
90 dB
100 kHz
0.5\%
$1.0 \mu \mathrm{~V}$
80 dB
90 dB

$$
1
$$

L PACKAGE

Power Limit
Non Inverting Input
NC
Inverting Input
Power Limit V^{-}
Output 1 (emmitter) Output 2 (base) Output 3 (collector) v^{+}

The CA3130 series of operational amp lifiers combines the advantages of both CMOS and bipolar transistors on a monolithic chip.

Gate-protected p-channel MOSFET (PMOS) transistors are used in the input circuit to provide very high input impedance, very low input current, and exceptional speed performance. The common-mode input-voltage capability goes down to 0.5 V below the negative-supply lead, an important attribute in singlesupply applications.

The CA3130 ICs operate at supply voltages ranging from 5 to 16 V . or $\$ 2.5$ to ± 8 volts when using split supplies. They can be phase compensated with a single external capacitor, and have terminals for adjustment of offset voltage for applications requiring offset-null capability. Provisions are also made to permit strobing of the output stage. The CA3130 series is supplied in either the standard 8 -lead TO-5-style package (T suffix) or in the duat-in-line formed-lead TO-5-style package "DIL-CAN" (S suffix). The CA3130B is intended for applications requiring premium-grade specifications. The CA3130A offers superior input characteristics over those of the CA3130. Three Class A amplifier stages,

	SPECIFICATION	LEAD CONNECTIONS
21	$1.5 T \Omega\left(1.5 \times 10^{12} \Omega\right)$	
11	5 pA at 15 V operation 2 pA at 5 V operation	DTASE COMPENSATION TAE STRO日E
Common-mode inputvoltage	down to 0.5 V below negative supply rail	
Output signal swing	to either supply rail	
V_{10}	2 mV max (CA3130B)	InNV (2) $=>10$ OuTm
BW	15 MHz (unity-gain crossover)	
SR	$10 \mathrm{~V} / \mu \mathrm{s}$ (unity-gain follower)	NON-INT (5) OFFSET
(10)	20 mA	
AOL	320,000 (110dB)	Funetronel diegrem of the CA3130 Series.
MAXIMUM RATINGS		
DC Supply Voltage	16 V	Device Dissipation
Differential-Mode Input Voltage	$\pm 8 \mathrm{~V}$	Without Heat Sink $\quad 630 \mathrm{~mW}$ With Heat Sink
Common-Mode DC		
Input Voltage	V^{+}to ($\left.\mathrm{V}^{-}-0.5 \mathrm{~V}\right)$	Typical Advertised Price 90p inc. VAT
Input-Terminal Current	1 mA	Data supplied by RCA.

provide the total gain of the CA3130. Care should be taken in handling the CA3130see "Handling CMOS' in ETI November 1974.

Offset-voltage nulling can be accomp-

Open-loop voltage gain and phase shife vs. frequency
for various values of C_{L}, C_{C}, and R_{L}.
$=$ VOLTAGE REGULATOR
10.1 co 50 Val 1 A).

Continued on page 43

I] ©

 Rospronco D) NOVEMBER 1975
Common Abbrieviations

A	Ampere or Anode	H	Henry	$P_{\text {tot }}$	Maximum Total Power Dissipation
$A C$	Alternating Current	HF	High Frequency	PU	Pickup
Ae	Aerial	$h_{\text {fe }}$	Transistor small signal current gain	PUJT	Programmable Unijunction
AF	Audio Frequency	$h_{\text {Fe }}$	Transistor large signal current gain	PUJ	Transistor
AFC	Automatic Frequency Control	HT	High Tension	0	- Transistor, 'Goodness' factor of
AGC	Automatic Gain Control	Hz	Hertz		uned circuit
AM	Amplitude Modulation	1	Current	R	Resistance
ATU	Aerial Tuning Unit	lb	Base Current of Transistor	FiAM	Random Access Memory
AVC	Automatic Volume Control	Ic	Collector Current of Transistor	RF	Radio Frequency
b	Base of Transistor	IC	Integrated Circuit	RFC	Radio Frequency Choke
B\&S	Wire Gauge (U.S.)	Icbo	Collector-base current with	R_{L}	Load Resistor
BCD	Binary Coded Decimal	IF		r.m.s.	Root-mean-square
C	Capacitor, Cathode, Centigrade.	lgt	Gate Current to Trigger Thyristor	RTL	Resistor Transistor Logic
c	Collector	IIL	Integrateo Injection Logic		
CCTV	Closed Circuit Television		(also 12L)	SCC	Single Cotton C
c.g.s.	Centimetre-gramme-second	i/p	Input	R	Silicon Contro
Ck	Clock	i.p.s.	Inches per Second	SPDT	Single-pole double-throw
CMOS	Complementary Metal Oxide Semiconductor	K	Kilo (10^{3}) or Cathode	SPST	Single-pole single-throw
CW	Continuous Wave			SSC	Single Silk Covered
D	Diode	LED	Light Emitting Diode	SSI	Small Scale Integration
d	Drain (of FET)	LF	Low Frequency	SWG	Standard Wire Gauge
dB	Decibel	Lin	Linear	TRF	Timed Radio Frequency
DC	Direct Current	Log	Logarithimic	TTL	Transistor Transistor Logic
DCC	Double Cotton Covered	LS	Loudspeaker	TVI	TV Interference
DF	Direction Finding	LSI	Large Scale Integration	Tx	Transmitter
DIL	Dual-in-line	M	Mega (10 ${ }^{6}$)	uF	accepted alternative to $\mu \mathrm{F}$
DIN	Audio Standard of German	mA		UHF	Ultra High Frequency
	Standards Institute	mH	MilliHenry	UJT	Unijunction Transistor
DPDT	Double-pole double-throw	mH	Mint	V	Volts
DPST	Double-pole single-throw	mmF	Alternative to Picofarad	VA	Collector-emitter voltage with
DSC	Double Silk Covered	MOSF	Metal Oxide Semiconduct		
DTL	Diode Transistor Logic	MOSFE	Metal Oxide Semiconductor		
DX	Long Distance Reception		Medium Scale Integration	$V_{\text {ceo }}$	Collector-emitter with base open - circuit
E	Sometimes used for Voltage	MOST	Metal Oxide Semiconductor Transistor	VA	Volt Amps
e	Emitter	MPX	Multiplex	VCO	Voltage Controlled Oscillator
EHT	Extra High Voltage	mV	Millivolt	Veb	Base-emitter reverse voltage
EMF	Electromotive Force	mW	Milliwatt	Vf	Forward Voltage of Diode
ERP	Effective Radiated Power	n	Nano (10-9)	Vgs	Gate - source Voltage of FET
F	Farad or Fahrenheit	Ni -Cad	Nickel Cadmium	Vgt	Gate Voltage necessary to
f	Frequency	\%/c	Open Circuit		trigger thyristor
FET	Field Effect Transistor	o/p	Output	VHF	Very High Frequency
fhfb	Frequency at which current gain	Op.Amp	Operational Amplifier	VLF	Very Low Frequency
	in common-base transistor mode is reduced by $3 \mathrm{~dB}^{-1}$.	p	Pico (10-12)	VR	Variable Hesistor
FM	Frequency Modulation	PA	Public Address	W	Watts
f_{T}	Frequency at which current gain	PCB	Printed Circuit Board	X	Reactance
	is unity in corrmon-emitter mode	p.d.	Potential Difference	Xtal	Crystal
G	Giga (109)	PIV	Peak Inverse Working Voltage	z	Impedance
9	Grid	PLL	Phase Locked Loop	2D	Zener Diode

Component Colour Codes

COLOUR	$B N N D$	BANP B		BANDD					
			resistors capacitors	resistors	capacitors up tp 10pF	capacitors over 10 pF	tantalum working voltage	resistors	capacitors
BLACK	-	0	11	-	2pF	$\pm 20 \%$	10 V	-	-
BROWN	1	1	$10 \quad 10$	$\pm 1 \%$	0.1 pF	$\pm 1 \%$	-	-	-
RED	2	2	$10^{2} \quad 10^{2}$	$\pm 2 \%$	-	$\pm 2 \%$	-	-	250 V
ORANGE	3	3	$10^{3} \quad 10^{3}$	-	-	$\pm 2.5 \%$	-	-	-
YELLOW	4	4	$10^{4} \quad 10^{4}$	-	-	-	6.3 V	-	400 V
GREEN	5	5	10^{5} -	-	0.5pF	$\pm 5 \%$	16 V	-	-
BLUE	6	6	10^{6}	-	-	-	20 V	-	630 V
VIOLET	7	7	$10^{7}-$	-	-	-	-	-	-
GREY	8	8	$10^{8} \quad 0.01$	-	0.25pF	-	25V	-	-
WHITE	9	9	$10^{9} \quad 0.1$	-	-	-	2V	-	-'
SILVER	-	-	0.01 -	$\pm 10 \%$	-	-	-	-	-
GOLD	-	-	0.1 -	$\pm 5 \%$	-	-	-	-	-
PINK	-	-	- -	-	-	-	35 V	High Stability	-

NOTE: Adjacent bands, if the same colour are not always separated.

Preferred Values of Resistors

E12 Series (10\%)

1.0	1.2	1.5	1.8	2.2	2.7	3.3	3.9	4.7
5.6	6.8	8.2	and their decades					

E24 Series (5\%)

1.0	1.1	1.2	1.3	1.5	1.6	1.3	2.0	2.2
2.4	2.7	3.0	3.3	3.6	3.9	4.3	4.7	5.1
5.6	6.2	6.8	7.5	8.2	9.1	and their decades		

Decibel Table

The voltage and current figures are given on the assumption that there is no change in impedance.

Voltage or current ratio	Power ratio		Voltage or current ratio	Dower ratio
1.000	1.900	0	1.000	1.000
0.989	0.977	0.1	1.012	1.023
0.977	0.955	0.2	1.023	1.047
0.966	0.933	0.3	1.035	1.072
0.955	0.912	0.4	1.047	1.096
0.944	0.891	0.5	1.059	1.122
0.933	0.871	0.6	1.072	1.148
0.912	0.832	0.8	1.096	1.202
0.891	0.794	1.0	1.122	1.259
0.841	0.708	1.5	1.189	1.413
0.794	0.631	2.0	1.259	1.585
0.750	0.562	2.5	1.334	1.778
0.708	0.501	3.0	1.413	1.995
0.668	0.447	3.5	1.496	2.239
0.631	0.398	4.0	1.585	2.512
0.596	0.355	4.5	1.679	2.818
0.562	0.316	5.0	1.778	3.162
0.501	0.251	6.0	1.995	3.981
0.447	0.200	7.0	2.239	5.012
0.398	0.159	8.0	2.512	6.310
0.355	0.126	9.0	2.918	7.942
0.316	0.100	10	3.162	10.00
0.282	0.0794	11	3.55	12.6
0.251	0.0631	12	3.98	15.9
0.224	0.0501	13	4.47	20.0
0.200	0.0398	14	5.01	25.1
0.178	0.0316	15	5.62	31.6
0.159	0.0251	16	6.31	39.8
0.126	0.0159	18	7.94	63.1
1.100	0.0100	20	10.00	100.0
3.16×10^{-2}	10^{-3}	30	3.16×10	103
$10-2$	10^{-4}	40	102	104
3.16×10^{-3}	10-5	50	3:16×102	105
10^{-3}	10-6	60	10^{3}	106
3.16×10^{-4}	10^{-7}	70	3.16×10^{3}	107
10^{-4}	10-6	80	10^{4}	108
3.16×10^{-5}	10-9	90	3.16×104	109
10^{-5}	10-10	100	105	1010
3.16×106	10-11	110	3.16×105	1011
10-6	10-12	120	106	1012

Dielectric Constants and Power Factor

	Dielectric Constant at 50 Hz	Power Factor at 50 Hz	Power Factor at 1 MHz	Power Factor at 100 MHz
Air (normal pressure) Glass, Crown	1	-	-	-
Glass, Pyrex	6.2	-	1	-
Mica	4.5	-	0.5	-
Paper	$2.5-8.0$	0.2	$0.2-6$	-
PTFE	$2-2.5$	-	-	-
Polystyrene	2	-	-	0.001
Polythene	2.5	0.02	0.02	0.03
PVC	2.25	0.03	0.02	0.03
Vinyl resins	$2.9-3.2$	1.2	1.6	0.8
	4	-	4.2	-

Mail Order Companies

 with catalogues
ARROW ELECTRONICS LTD.

7 Coptfold Road.
Brentwood,
Essex, CM14 4BN
B.H. COMPONENT FACTORS LTD

59 North Street,
Leighton Buzzard,
Beds. LU7 7EG

B!-PAK.
P.O. Box 6

Ware,
Herts.

BI-PRE-PAK LTD.
222-224 West Road
Wectcliff- on- Sea,
Essex SSO 9DF
DORAM ELEECTRONICS LTD.
P.O. Box TR8,

Wellington Road Industrial Estate,
Wellington Bridge,
Leeds, LS 12 2UF

ELECTROVALUE LTD.
28 St Judes Road,
Englefield Green,
Egham.
Surrey TW20 0HB

HENRY'S RADIO LTD.
303 Edgware Road.
London IV2 1 BW
HOME RADIO (COMPONENTS) LTD.
240 London Road
Mitcham,
Surrey CR4 3HD
MAPLIN ELECTRONIC SUPPLIES.
P.O. Box 3,

Rayleigh,
Essex SS6 8LR
A. MARSHALL (LONDON) LTD.

42 Cricklewood Broadway.
London NW2 3ET
S.C.S. COMPONENTS.

Northfield Industrial Estate,
Beresford Avenue
Wembley,
Middlesex HAO 1 YY

Wire Gauge Comparisons

 (preferred sizes)

| S.W.G.
 (nearest) | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 22 | 24 | 26 | 28 | 30 | 32 | 33 | 34 | 36 | 38 | 40 | 42 | 44 |
| :--- |
| B\&S
 (nearest) | 12 | 13 | 14 | 15 | 16 | 18 | 19 | 21 | 23 | 25 | 27 | 28 | 29 | 30 | 31 | 32 | 34 | 36 | 38 | 40 |

Formulae

Capacitance

$C=0.0885 \mathrm{KA}$
d
C in pF
K is dielectric constant (air $=1$)
A is area of plates in cm^{2}
d is thickness of dielectric

Frequency-Wavelength

```
f= = 300,000 kHz
\lambda = 3 0 0 , 0 0 0 ~ m e t r e s
```

f is frequency in kHz
λ is wavelength in metres

Ohms Law

$I=\frac{V}{R}$ or $V=I R$ or $R=\frac{V}{R}$
I is current in amps.
V is volts
R is resistance in ohms.

Power

$W=V I=12 R$

Reactance
$X_{L}=2 \pi f L$
Y_{L} is reactance of inductor.
f is specific frequency.
L is inductance in Henries.

$$
X_{C}=\frac{1}{2 \pi f C}
$$

X_{C} is reactance of capacitor.
C is capacitance in Farads.

Resonance

$f=\frac{10^{6}}{2 \pi \sqrt{L C}}$
L is inductance in microhenries.
C is capacitance in picofarads.
f is frequency in kilohertz.

Time Constant

For a combination of capacitance and resistance in series, the time constant (defined as the time necessary for voltage to reach 63% of final value) is:
$\mathrm{t}=\mathrm{CR}$
t is time in seconds.
C is capacitance in Farads.
R is resistance in ohms.

Popular Transistors

Transistor Outlines

Transistor Codings

> The preferred applications of many British and European semiconductors can be derived from their letter code. The first letter A describes a germanium device, a first letter B is for siljicon devices. The second letter describes the following:-

A Diode low power	P Photo type
C AF low power	S Switching low power
D AF low power	V Switching power
E Tunnel Diode	Y Diode power
F RF low power	z Zener Diode
L RF power	

C AF low power
D AF low power
Tunnel Diode
L RF power

Reactance Chart

The ZN1034E utilises digital and precision linear functions on the same chip to allow easy construction of simple precise timer modules.

The frequency of an on-chip oscillator is determined by an external capacitor and and resistor. Fine adjustment can be achieved by connecting a calibrating timing potentiometer. Pulses from the oscillator feed through a 12 stage binary divider which times out after 4085 counts. The IC incorporates its own voltage regulator. Two modes of operation can be used.

Supply Voltage Options: For operating from TTL supply rails connect pin 4 to positive. Connect a $0.1 \mu \mathrm{~F}$ capacitor between pins 4 and 7. For operating from an unregulated supply $(6 \mathrm{~V} \mathrm{~min})$ the on-chip regulator is used. Connect pins 4 and 5 together and connect the supply via resistor to pin 5. The resistor limits the current to 50 mA if pin 5 is connected to a TTL supply rail otherwise the device will be destroyed. Excluding current drive to output loads, the current consumption is typically 5 mA . With a DC supply a $0.1 \mu \mathrm{~F}$ decoupling capacitor must be connected as possible to pins 5 and 7. For operation from the mains supply the circuit shown below can be used.

Calibration allows fine adjustment of the time period using fixed R_{T} and C_{T}. An external $250 \mathrm{k} \Omega$ and $47 \mathrm{k} \Omega$ resistor may be connected between pins 7 and 12 (pin 11 spen circuit). Variation of the resistance between $50 \mathrm{k} \Omega$ and $300 \mathrm{k} \Omega$ will vary the time period between $2500 \mathrm{C}_{T} \mathrm{R}_{\boldsymbol{T}}$ and 7500 $\mathrm{C}_{\mathrm{T}} \mathrm{R}_{\mathrm{T}}$.

Setting of Modes and Time Period. The timing sequence can be initiated at switchon of the external supply by connecting pin 1 to earth. Alternatively the sequence can be initiated through external contacts by connecting them between pin 1 and earth (it is recommended that a 1000 pF capacitor is connected between pin 1 and pin 14 in order to suppress contact bounce).

To set the time period the appropriate combination of C and R is connected between pin 14 and earth; pin 13 is connected

SPECIFICATION

Typical Figures
Time Intervals Internal current consumprion Output current drive Temperature stability Repetitive timing
accuracy
up to 7500 CR
5 mA
$25 m A$ max $<0.01 \% /{ }^{\circ} \mathrm{C}$ 0.01%
between the timing \mathbf{C} and R . Adjustment to the time period is then carried out by inspection of the oscillator frequency at pin 13 ($T=4095 \times$ ascillator frequency).

So that the measuring instrument connected to pin 13, causes a minimal change in the oscillator frequency being measured, an interface buffer amplifier is required.

Timing Capacitor $\mathrm{C}_{\boldsymbol{T}}$. The maximum value of timing capacitor (C_{T}) that can be used depends upon the time period accuracy required (this is directly related to the timing capacitor leakage current. For timing capacitors $<10 \mu F$. low leakage components are readily available. For greater values electrolytic capacitors have to be used and since their leakage currents are

Outputs

Callbration facility Timing sequence

 initiation TTL triggered Repetitive and cascade operation possible On-chip regulator or TTL supply option.Typical Advertised Price £3.25 inc. VAT Data supplied by Ferranti.
directly related to capacitance there wil come a point where, for very long time periods and good accuracy, it will be necessary to use two ZN1034 circuits in cascade.

Example: 1 hour timer using one ZN1034E and external RCAL
The 12 stage counter $2 \mathbb{1 2}=4096$ and $T=$ $4095 \mathrm{kR}_{\mathrm{t}} \mathrm{C}_{\mathrm{t}}$.
For $R_{C A L}=150 \mathrm{k} \Omega, k \approx 1.0$
For $T>30$ secs. use $R_{T}=1 \mathrm{M} \Omega$
$C_{t}=\frac{3600 \text { (secs) }}{4095} \mu \mathrm{~F}=0.9 \mu \mathrm{~F}$
Use $C_{t}=1 \mu \mathrm{~F}$ and trim $\mathrm{R}_{\mathrm{CAL}}$ external to give correct oscillator frequency on pin 13. Oscillator Period $=\frac{3600}{4095}=879.1 \mathrm{~ms}$
complementary, TTL compatible Internal/External Internal/External

INITIATED BY CONTACTS

RADIOACTIVE ISOTOPES are trace elements that liberate a continuous stream of fast particles that can be detected with suitable instruments. The quantity and type of emitted particles depends upon the isotope.
The strength of this process diminishes with time, reducing to half intensity in a time that is known as the half-life (denoted $T_{1 / 2}$). Some radioactive substances have half-lives of seconds, others tens of thousands of years.
An incredibly large number of radio isotopes can be made, and since 1896, when Becquerel first discovered radioactivity, they have found innumerable applications. Medicine is crediled as being the first scierice to employ them for a useful purpose.
Isotopes are largely created by irradiating substances in the many forms of nuclear reactor that exist all over the world.

Their dominant use is as a tracer or marking substance. A suitable radio pharmaceutical (the isotope combined with other chemicals) is first introduced into the body itself or into a body specimen. Its flow path, or the accumulated strength at a particular spot, is monitored with detectors thereby prowiding information about the processes of the system under study.
This concept is well iliustrated by an amusing yet profound use of an isotope which was probably the first ever application for detection. History has it that around 1910 Georg von Hevesy, a pupil of Rutherford, was having domestic problems with his landlady. He suspected she was using the scraps left in their plates to make the meat pies of subsequent days. One Sunday - the roast day - Hevesy seeded his meat left-overs with radioactive lead. On the following days he sampled the meals and tested them to find indeed, the existence of radioactive lead. Hevesy, later in life, won a Nobel Prize for his work on radioactive indication.

The subject of this second part on measurement methods used in clinical pathology is nuclear medicine.

by Peter Sycienham

 PART

 PART TWO

 TWO}
SUMMARY USES OF NUCLEAR MEDICINE TECHNIQUES IN CLINICAL DIAGNOSIS

NERVOUS SYSTEM -

A. BRAIN SCAN - NEOPLASTIC DISEASE - NON-NEOPLASTIC DISEASE
B. DYNAMIC STUDIES - CEREBROVASCULAR DISEASE
C. C.S.F. STUDIES - C.S.F. RHINORRHEA - SHUNTS

THYROID GLAND -

A. UPTAKES - THYROTOXICOSIS - EUTHYROID - HYPOTHYROID
B. IN VITRO STUDIES
c. SCANNING - "COLD" NODULES - NEOPLASTIC

- NON-NEOPLASTIC
"HOT" NODULES
METASTATIC LESIONS
PARATHYROIO - PARATHYROID ADENOMAS - "HOT" NODULES
RESPIRATORY SYSTEM -
A. PARTICLES - PERFUSION - PULMONARY EMBOLISM -

OBSTRUCTIVE AIRWAYS DISEASE - CARCINOMA
B. GASES VENTILATION

BLOOD -
A. BONE MARROW - RED CELL PRECURSORS
B. IRON METABOLISM - ABSORPTION - TRANSPORT - UTILIZATION
C. VITAMIN E 12 METABOLISM
D. BLOOD VOLUME
E. RED CELL SURVIVAL
F. SPLEEN SCANNING
G. PLATELET

CIRCULATION - BLOOD POOLS - HEART, e.g. PERICARDIAL EFFUSIONS

- PLACENTA, e.9. PLACENTA PRAEVIA

SKELETON - - PLACENTA, e.g. PLACENTA
A. BONE SCANNING - NEOPLASTIC - NON-NEOPLASTIC
B. BONE VIABILITY STUDIES
GASTROINTESTINAL -
A. ABSORPTION-SUGARS - LIPIDS - VITAMIN B12
B. LOSSES - BLOOD - PROTEIN

LIVER - LOSSES - BLOOD - PROTEIN
A. LIVER SCAN - NEOPLASTIC - PRIMARY

- SECONDARIES
- NON-NEOPLASTIC - ABSCESS, TRAUMA, CYSTS

DIFFUSE DISEASE - CIRRHOSIS:
B. LIVER BLOOD FLOW STUDIES

PANCREAS - PANCREATIC SCAN - NEOPLASTIC
KIDNEY -

- NON-NEOPLASTIC
A. RENAL SCAN - NEOPLASTIC - PRIMARY

SECONDARY

- NON-NEOPLASTIC - TRAUMA - ABSCESS RENAL ARTERY STENOSIS - CONGENITAL
B. FUNCTIONAL STUDIES
- RENOGRAPHY - R.A.S.
- OBSTRUCTIVE UROPATHIES
- BLOOD FLOW STUDIES
- R.A.S.
- CYST OR TUMOUR

Fig. 1. Table summarizing.
the uses of nuclear techni.
ques in clinical diagnosis.

Fig. 3. List of organ studies and the isotope preparation used.

In diagnostic aspects of nuclear medicine the radio isotope of interest can be introduced into the live person - (called "in vivo") for a patient study. Alternatively, the radio isotope may be introduced into sampled biological material - called "in vitro" testing. The patient (or sample) is then subjected to tests that measure parameters such as concentration, take-up rate and distribution in the organ or area of interest. The size of a radioactive dose given today is minute; public fear of nuclear medicine is quite unjustified for there is no danger in the processes used.
A table of uses has been compiled for this feature - see Fig. 1. In each case the underlying principle is initially the introduction of a suitable isotope - by injection, inhalation, via food or by direct placement. The isotope may be conveyed away by physiological processes providing a marker as the isotope disperses. Alternatively, it can flow continuously coming to more or less permanent rest in different locations - cancerous (carcinoma) growths, for example, having a higher metabolism, take up more isotope than surrounding areas. In another type of use - respiratory investigations - the patient inhales isotope atomised into the breathing air iritake. Where the individual lung cells accept air, isotope is deposited. Unhealthy lung tissue receives none. Detectors are then used to map the intensity of the static or dynamic distribution of the isotope - thus providing the diagnostic output required by the physician.

What happens to the radioactivity given in such dosing? The answer is simple. The isotopes used have comparatively short lives, for example, one Techetium isotope used, 99 mTc , has a half life of just six hours. This means that six hours after initial preparation its radioactivity has fallen to half, twelve hours later to a quarter and so on. It is, therefore, only a comparatively short time before its energy is negligible, much less than the naturally existing background radio-activity in fact. All that remains is the original trace element which is removed by normal body processes.
Radio pharmaceuticals or radio nuclides are selected and manufactured in accordance with the sensing sensitivity available, the physiological characteristics that decide where the trace elements end up or pass through and the acceptability of the body to the trace chemicals. A second table, given in Fig. 2, !ists some of those used in organ studies. Others based on chromium, cobalt and molybdenum are used in other tests. To give some idea of the dose, a patient needing a brain study is given 10 millicuries of 99 mTc , this liberating a radioactive dose of roughly 0.14 rads. This is similar to that received during a routine chest X-ray. The choice of chemical, isotope and technique is a skilled task requiring highly specialised personnel.

RADIATION PRODUCTS
 EMANATING FROM ISOTOPES

Radiation products occur as three types of energy: alpha particles, beta
particles and gammy rays, denoted by $a^{\prime} \beta$, and γ.
Alpha particles are protons (atoms stripped of electrons). Being relatively large and possessing comparatively low kinetic energy, these are unable to penetrate much more than a thin sheet of paper.
Beta particles are electrons but, although only $1 / 1850$ th of the mass of the alpha particle, possess much higher kinetic energy by virtue of their far greater velocity. These can penetrate further than alpha particles but still only a little distance - a 0.5 mm thick piece of aluminium reduces their intensity by half.
Gamma particles are more adequately identified with electromagnetic EM radiation because they exhibit characteristics of X-rays of very short wavelength. These pass through most materials, the best common absorbing material being lead - a 13 mm thick shield provides 50 per cent loss. It is this radiation product that finds greatest use in nuclear medicine, for the former two have insufficient penetration for most applications - doses deposited in the interior of the body would not be easy to monitor externally due to the severe attenuation.

BASIC RADIATION DETECTION

Radioactivity was discovered by Antoine Henri Becquerel in 1895 when he observed its effect on photographic plate; it also causes fluorescence in certain substances (re-radiation at visible radiation wavelengths) and can also ionise gases. Direct photographic methods play

ELECTRONICS IN MEDICINE

little part in nuclear medicine as they require extreme exposure times for realistic safe dose levels.
The next simplest method of detection makes use of the ionising effect of radiation. The so-calred Geiger counter uses a Geiger-Muller (G-M) tube which comprises an insulated wire anode placed inside an inert gas filled metal case which acts as the cathode - see Fig. 3. At one end is a "window" of beryllium, mica, nylon or other material that is adequately transparent to β and γ nuclear radiation products; a particles cannot pass into the chamber. These cells are particularly sensitive to β particles which ionise the normally conducting gas allowing a momentary current to pass through the cell. Gamma rays can be detected with the G-M tube but via a secondary effect in which they liberate electrons that start an ionising action. Ionisation detection is enhanced by the application of a steady dc potential of 500 to 3000 V (positive to the wire): this puts the gas closer to an ionisation state. lonisation chambers and proportional counters are similar in structure to G-M tubes, the differences being in the magnitude of ionising potential applied in each case.
The output of each of these three alternatives is similar - as a series of pulses of different amplitude and frequency of occurrence with time. The actual characteristics depend on the mode used - the G-M tube is the most sensitive but lacks response time and all pulses have the same energy. Pulses produced in these detectors are counted over a chosen timing interval to provide a measure of radiation intensity - a faster count rate indicates higher intensity.
The practical difficulties and relatively insensitive characteristics of these detectors largely excludes them from nuclear medicine however, the dominant detector being the scintillation counter.

SCINTILLATION DETECTORS

The difficulty with ionisation style detectors is that the inherent energy of the radiation products is not used efficiently thereby reducing the available sensitivity. As well as this shortcoming is the practical problem of amplifying small signal levels of a signal having random noise characteristics: the amplifier will also amplify noise - not being able to dist.inguish between the two.
The scintillation counter makes use

Fig. 3. Basic arrangement of ionisation kinds of radioactivity sensors - the G-M tube, ionisation and proportional detectors.
of the photo-multiplier detector which can provide excellent low-noise amplification of light energy (photons) - gains of 1000000 are used with negligible degradation of the signal/noise ratio.
Radiation products, however, are at a higher energy level than photons so a conversion process is used to transform the high frequency energy down to optical wavelengths. This is done in a scintillating crystal.
In these crystals, ionising radiation gives up its energy which is reliberated as scintillations at optical wavelengths.
The basic arrangement is shown in Fig. 4. The larger the crystal the better the "capture" of energy. The choice of crystal material (usually sodium iodide) and phosphor of the photo multiplier decides what radiation level the unit sees (the phosphor converts photons to electrons, another

Fig. 4. In the scintillation counter a crystal absorbs the radioactivity energy liberating optical wavelength energy that is detected with a photo multiplier.
transformation stage, in the photo-multiplier).
The vast majority of the instruments used in nuclear medicine are based upon the scintillation counter which possesses extreme sensitivity along with the ability to allow analysis of the energy levels of the radiation pulses. As with the ionising tube style of detector, these also provide a pulse form of output. Pulses are formed from successive transformation stages
ionising radiation particles cause optical scintillations as photons which, in turn, produce electrons to form the current pulse that is detected.
Scintillation counters have found application in two distinct ways. First as single detector units that provide count levels at a choser position or on a chosen sample. Secondly, as imaging arrays wherein as many as 37 scintillation detectors see the subject simultaneously providing a graphical two-dimensional picture of radiation intensity emanating from an area.

COUNTING UNITS

These are used either to study samples loaded into a machine or alternatively the sensor is taken to the patient and directed at the area of interest.
Housed together in the Counting Laboratory are several different kinds of sample counting devices - two automatic gamma counters, an automatic liquid scintillation spectrometer, a large-volume counter, a proportional counter and a gas flow detector.
This collection enables a wide variety of tests to be carried out that estimate the radioactivity liberated by gamma-emitting substances and also by weak and strong alpha and beta emitters. The instruments enable volumes ranging from 5 ml vials to containers holding two litres to be measured. The laboratory also has a . 128 -channel pulse height analyser for use with various detector assemblies.

Automatic gamma counters

The Nuclear-Chicago system 4216, is designed automatically to load, one by one, 100 preloaded vials into the measuring area where a scintillation detector determines the gamma radiation level. This is recorded on a printed output. The cross-section, shown in Fig.5, shows the well-type detector of this system. Effective shielding is vital, for the sample under test must not be contaminated by the others waiting above. Note particularly the thickness of steel, tungsten and lead that is used to ensure that the 50 mm or 75 mm diameter, thallium activated, sodium iodide crystal sees only the sample loaded into the well. It is impossible to

Fig. 5. The use of shielding is vital to abtain correct measurements in the gamma counting system.
eliminate all stray radiation; the aim of the shielding is to ensure that the background count remains constant as the vials and transport mechanism change position. This relatively small machine weighs around 500 kg !
Built into the console is a pulse height analyser that can be set to measure specific pulse energy levels. This enables the diagnostician to monitor specific isotopes, largely ignoring other unwanted ones that may be present in the sample. A typical count run would take around a minute, involving half a million individual counts. It is also possible automatically to subtract the background count.
A second counter, a Philips Model PW4003, performs a similar function for a 50 sample loading.
As these scintillation counters have pulse height analysis facilities, they can be used to measure specific wavelength gamma rays by much the same concept as an optical spectrometer which separates wavelengths. For this reason these systems are sometimes referred to as gamma spectrophotometers.

Liquid Scintillation Spectrometer

The low energy of beta radiation from

 isotopes such as 14^{C} and 3_{H} prevents the particles passing ' through the windows of normal detectors. Solid scintillation crystals are not very effective for this radiation for similar reasons. To overcome this practical defect, yet retaining the sensitivity of the scintillation method, the sample to be measured is mixed with a suitable liquid the whole forming a liquid scintillating medium which acts in a similar manner as a solid crystal.This much done, the necessary detection process still requires special
techniques to reduce the effect of thermal noise inherent in the photo multipliers and to reduce the influence of background count: beta radiation is less energetic than gamma. By placing the liquid in a differential detection arrangement - see Fig. 6, common-mode background counts are largely eliminated. To further aid signal detection the detectors can be cooled with refrigeration to around $-20^{\circ} \mathrm{C}$ to reduce their internal noise levels.

Gas flow detector?

Another method for detecting weaker radiations is to place the radio-activated sample inside the ionisation chamber proper rather than placing it outside. The chamber is set up as a proportional counter. This avoids the problems of signal attenuation caused by a window but adds a difficulty in that the chamber has to be assembled each time and the ionisation gas added. Figure 7 shows a diagrammatic cross-section of a gas flow detector. Gas flows continuously to ensure the chamber is adequately purged of previous gas and air.

Large-volume counter:

Some tests require the measurement of the radio-activity of quite large samples - a litre or more in capacity as, for example, in investigation of internal bleeding which is detected by faeces collection over a period of time. This poses different kinds of problems for the difficulties of shielding such a large volume can be expensive and weighty. The method used by the AEI designers concentrates on providing detection that incorporates the already mentioned common-mode rejection of stray background by employing two large scintillation crystals, $75 \times 75 \mathrm{~mm}$ each, one above and one below as can be seen in Fig. $\overline{8}$. The sample bucket is placed in through the side door.
So much for machines that count radiation levels in samples.

Scintillation probes:

A scintillation counter assembly

Fig. 6. Differential detection provides common-mode signal rejection in the liquid
scintillation spectrometer.

Fig. 7. In the gas flow detector gamma.and beta radiation is monitored without the attenuation of windows.

Fig. 8. The large volume scintillation counter has detectors above and below the sample region. scintillation spectrometer.

ELECTRONICS IN MEDICINE

(crystal plus photo multiplier) is mounted on an adjustable framework that enables the detector to be placed adjacent to the area of interest, as shown in Fig. 9. Once set, the probe takes a count of the radio activity in the region chosen - for example, a test for thyroid gland iodine uptake. These Philips surface counting systems are fitted with 50 mm diameter crystals.
Facilities exist that enable several such probes to be monitored simultaneously, enabling the observer to study differential effects such as renal uptake and clearance in a patient. It also enables changes in radioactivity to be monitored in the liver and spleen after radionuclide-labelled blood cells have been injected.

Fig. 9. The adjustable framework enables a sensitive scintillation counter head to be placed close to the area of interest.

IMAGING

Rectilinear scanning

If a singledetector scintillation head, such as that shown in Fig. 12, is made to move over the still patient it is quite feasible to build up a two dimensional picture of radiation distribution provided the radiation level in the patient is satisfactorily static.
In the scanner shown in Fig. 13, the patient lies on the table to provide the image attitude required. The tubular head, which contains the scintillation detector, is moved across the bed by a driven slide-way in the cross arm, the whole arm moving along the bed. Given enough time, for counting rates are not fast, the whole body can be imaged. This technique is known as rectilinear scanning.
The output form for this machine
can be of two kinds. First, as a Teledeltos paper picture in which dots are made on special paper by passing high voltage through it on demand the more intense the radiation the greater the dot density and the blacker the area on the picture. Figure 11a shows the system schematic for this. The second method provides a photograph which is exposed, using Polaroid film, by a cathode ray tube produced image formed from light dots - see Fig. 11b. A direct copy of a case study - that of cancer of the prostrate - made with the latter display is shown in Fig. 12.

The gamma camera

The rectilinear scanner suffers from the major disadvantage that considerable time is needed to image an organ or the body. If more scintillation detectors were added, working simultaneously, this would reduce the time. This is the basis of the technique originally proposed by Dr. Anger which is now known as the gamma camera. His idea, however, is more profound, for the multiple sensors are combined to yield a $2-\mathrm{D}$ display from a static array.
The "camera" is very large in size (close to a metre in diameter) and heavy (ships at just less than a tonne) shown in Fig. 13. Inside the 40 mm heavy steel and lead housing is one very large ($300 \mathrm{~mm} \times 12 \mathrm{~mm}$) scintillation crystal which is sensed by as many photo-multipliers as can be fitted into the circle. Earlier models used 19 photo-multipliers, the latest have 37. A cross-section, given in Fig. 14, shows the arrangement. Note the collimator which, in the optical sense, ensures that the sensors see only rays emanating in a parallel direction from the source. The collimator shown is a lead disc machined with parallel holes through it.
Each photo multiplier has its own

Fig. 10. This rectilinear scanner moves the single scintillation counter over the stationary patient: A typical scan could take up to half an hour.
power supply and amplifier board mounted in the camera housing. The multiple channel information is combined with a resistor matrix on the basis that each sensor sees more than just its immediate frontal area - values are weighted for scintillations occurring anywhere in the crystal on the basis that their contribution falls off with distance. The combined "video" signal output leaves the camera as four lines which convey pulses and position information - not as a continuous signal form. The pulses are selected and sorted with the pulse height analyser (PHA), and other ancillary equipment to provide suitable drives for an oscilloscope display - this is shown in a simplified manner in Fig. 15. The output display

Fig. 11. The two methods used to produce an image from rectilinear scan data. (a) Dots are made on paper. (b) Dots are formed on a CRT.

Fig. 12. This photograph is copied from the original made with the rectilinear scanning system. The darker the colour the greater the concentration of radio isotope take-up.
is built from individual dots.
Gamma-cameras produce an image much faster than rectilinear scanners a liver image takes only a minute compared with 30 minutes using the scanner. With these short times it is far easier to exclude unwanted secondary effects such as a patient breathing which moves the organ relative to the camera.
The gamma-camera photograph, however, is still in the class of a fuzzy X-ray plate and correct interpretation is a matter of the clinician's skill. Providing the camera with improved resolution would not improve matters much for the organ is invariably masked by overlying body tissue; the radioactive emission process itself lacks detail. A typical image is shown in Fig. 16. This is from a study of the lung which is diagnosed to be multiple pulmonary emboli (blood flow obstructions). The label substance in this case was 131 I. It is usual to perform other tests to assist with the final diagonostic decision.

Whole body imaging:

The latest developments are to bodily move the patient past the stationary gamma-camera building up a whole body picture in the manner shown in Fig. 17. Electronic circuitry ensures that the scans are overlapped correctly to produce a total picture. Scanning is still, however, time consuming. The image shown in Fig. 18 took 19 minutes a side. Fig. 18b is

Fig. 13. Pho/Gamma III scintillation camera ready for use. These produce an image without need for scanning.

Fig. 14. Gamma cameras con. tain multiple photo mulzipliers viewing a single large diameter crystal. The outputs are combined to provide image data - see Fig. 18.

of a person with metastatic meningioma (a tumour transferred from other parts of the body).

THE RADIO PHARMACY

Isotopes used as tracers in nuclear medicine have a short half-life, by necessity for the need to use only short-lived radiation sources in a patient's body. Furthermore, it is
often the case that the isotope most suited, because it is naturally transported to the organ of interest, has short half-life. For example, Fluorine-18, one of the best for bone scanning, has $T 1 / 2=1.8$ hours. As this must be produced originally in a reactor. In cases of short half-life a considerably stronger original amount is required to obtain the dose needed, when it reaches the patient.

ELECTRONICS IN MEDICINE

Fig. 15. Schematic of data handling in gamma camera system.

Fig. 17. The gamma camera is made to move relative to the patient (the patient is moved automatically) to expand the image size.

Fig. 18. Gamma camera scanned image (clinical case of metastatic mentingioma).

One particularly interesting isotope is $\quad 99$ Molybdenum .99 m Technetium ($99 \mathrm{Mo}-99 \mathrm{~m} \mathrm{Tc}$). The more useful isotope of the two is 99 m Tc but this has half-life of only six hours - direct shipment would be extremely costly. 99 Mo , however, has a half-life of 67 hours and it produces as part of its decay process the "daughter" isotope 99 mTc . Separation is achieved by absorbing the parent 99 Mo on to an alumina column for which 99 mTc has low affinity. When a saline solution is passed through the column it elutes the 99 mTc as a pertechnetate ion of extreme purity. The column is called the "cow" which is "milked" each day to provide isotope for brain scanning.

Another cow used is ${ }^{113} \mathrm{Sn}$ which has a half-life of 119 days. This yields $113 \mathrm{~m} / \mathrm{n}$ chemicals which have only 1.7 hour half-lives.
In this two part teature we have looked at the internal workings of a well equipped clinical pathology centre.
We have not covered... all of the measurement devices involved in the many thousands of tests made each day but we have we hope shown something of the great concentration of measurement effort involved in modern pathological medicine.

shancitial Please list titles (with price) separately. Cheques, etc.. to be payable to Electronics Today

 International and sent to:
ETI BOOK SERVICE, 25 Court Close,

 Bray, Maidenhead, Berks.All prices include Pontage and Packing.

ELECTRONICS SELF-TAUGHT WITH

 EXPERIMENTS AND PROJECTS
J. Anto

$\varepsilon 2.20$
simple circuits.

TEST INSTRUMENTS FOR

 ELECTRONICSM. Clifford
$£ 2.05$

ELECTRONIC MUSICAL

INSTRUMENTS
N. Crowhurst £2.05

This book looks at

EXPERIMENTING WITH ELECTRONIC

MUSIC

R. Brown and M, Oisen

BASIC MATHS COURSE FOR

ELECTRONICS

H. Jecobowitz Ohms Law and al
£1.70 untion

ELECTRONICS UNRAVELLED

J. Kyle
$£ 2.20$

DIGITAL ELECTRONIC CIRCUITS AND SYSTEMS
 N. M. Morrie
 The idiag book

INDUSTRIAL ELECTRONICS
N. M. Morria
£3.20
N. M. Morria The book concentrates mainly on semiconductor devices and circurs The book concentates mainty on semiconductior tovices many numerical problems are given. S.I. units are used throughout.
LOGIC CIRCUITS
N. M. Morris

E3.10
Ards the understanding of log
INTRODUCING AMATEUR ELECTRONICS
I. R. Sinclair

The book for the comp
knowledge is assumed
wledge is assumed

BEGINNERS GUIDE TO ELECTRONICS
T. L. Squires £2.25 A short cut for th
1.C. OP-AMP COOKBOOK
W. G. Jung

Co. Jung $£ 7.50$ Covers the basic theory of IC OP.Amp in great
practical circuit applications fiberally illustrated.
TTL COOKBOOK
D. Lencester £5.40

Complete and detailed gurde to TTL how It works, how practical application

110 OPERATIONAL AMPLIFIER PROJECTS FOR THE HOME
CONSTRUCTOR
R. M. Marston £2.10. Outlines the essen
useful proiects

110 SEMICONDUCTOR PROJECTS FOR THE HOME CONSTRUCTOR
A. M. Marston This book introduces the reader to useful now devices such as the circuite

UNDERSTANDING CMOS

INTEGRATED CIRCUITS

R. Meten

INTEGRATED ELECTRONICS

. Miluma

Using an inegraved circurts approach ind ionk lead the reader siop by step trom miconductor physics to devices. models. cirevits and

LINEAR IC PRINCIPLES.
EXPERIMENTS AND PROJECTS
E. M. Noll
£5.40

DESIGNING WITH TTL INTEGRATED CIRCUITS
Texas Instrumionts $£ 5.55$
Covers the entire family of TTL and practical spplications of the circuits AND APPLICATION
a. Tobey (Burr-Brown)

Compietely up to date this wort covers the enture fritd of operational

MODERN
 FM RECEIVING PMA techniques

In this final article on FM receiver circuitry Brian Dance continues his discussion of decoder ICs and looks at Stereo output filters

OTHER DECODER ICS

Another type of stereo decoder. which requires no external inductance first appeared in 1972 as the Motorola MC131OP This is a phase locked loop device operating on similar principles to the CA3090AQ. The frequency is set by a preset resistor rather than an inductance.

The LM 1310 (National semiconductor) device is a 14 pin dual-in-line circuit equivalent to the Signetics MC1310. Other equivalents are the RCA CA1310E and the Texas Instruments SN76115N. These devices can be used in type of circuit shown in Fig. 22.

Rather similar devices are available in 16 pin dual-in-line cases in which an emitter follower is included in each output circuit. The type of circuit which can be used with these devices is shown in Fig. 23. The de-emphasis components are in the pin 3 and pin 6 circuits, whilst the emitter follower outputs appear at pins 4 and 5 . Devices of this type include the LM1301E from National Semiconductor, the MC1310E frolm Signetics, etc.

The National. Semiconductor LM 1800 device can also be used in the same circuit as that shown in Fig. 23, but has the additional advantage that it contains a built-in circuit for providing 45 dB power supply ripple rejection. The RCA type CA758E and the Motorola MC1311P are similar devices.

The only adjustment which must be made to the circuits of Fig. 22 and 23 before use is the setting of the free running frequency of the phase locked loop by means of VR1. If a frequency counter is available. pin 10 of Fig. 22 or pin 11 of Fig. 23 may be connected to the input of the counter and VRI adjusted until the

Fig. 22. A Stereo decoder circuit using the LM1310 type of device.
signal from the device has a frequency of 19 kHz . (The amplitude of the signal is about 3 V peak).

Most readers will find it easier to adjust VRI until the stereo indicator lamp remains illuminated at the lowest possible signal level. This adjustment is very easy and causes no problems whatsoever.

The capture range is typically 3%. It can be increased by reducing the capacitance from pin 14 of Fig. 22 or pin 15 of Fig. 23 to ground and increasing the resistors in parallel with this capacitor in proportion. However, these alterations are likely to cause increased beat note distortion at high signal levels due to oscillator phase jitter

The capacitor between pins 8 and 9 of Fig. 22 (or between pins 9 and

10 of Fig. 23) controls the stereo-monaural switching delay. The switching time constant is equal to its value multiplied by about 53 k . If pin 8 of Fig. 22 or pin 9 of Fig. 23 is earthed, the circuit operates only in the monaural mode.

There is some variation in the power supply ratings of the devices offered by various manufacturers. For example, the National Semiconductor devices are specified as operating over the range 10 to 24 V and the Signetics devices 8 to 16 V , whilst the RCA 1310 E has a supply voltage rating of 8 to 14 V and the CA758 of 10 to 16 V . These ratings should be strictly obssived for the particular device employed. The currend drawn is of the order of 30 mA .

The audio output voltage is typically 485 mV RMS from both the circuit of Fig. 22 and that of Fig. 23. The minimum value of the load resistors in Fig. 22 is affected somewhat by the power supply voltage. The circuit of Fig. 23 does not suffer from this limitation, since the emitter follower outputs provide a low output impedance.

Readers requiring further information on this topic are advised to consult individual device data-sheets and also to study the report by T. D. Isbell and D. S. Mishler "LM 1800 phase locked loop FM stereo demodulator", National Semiconductor Application Note AN-81. June 1973.

STEREO OUTPUT FILTERS

The stereo decoder circuits discussed generate $19 \mathrm{kHz}, 38 \mathrm{kHz}$ and 76 kHz waveforms. Although the decoder circuits incorporate about 25 dB to 45 dB rejection of these frequencies, they can still cause trouble when one wishes to feed the output to a tape recorder. Harmonics of these signals may beat with a harmonic of the tape recorder bias oscillator.

This problem can be solved by the addition of a suitable filter to the stereo decoder output. The Toko Company make a number of suitable filters which provide considerable rejection at 19 kHz and 38 kHz .

The Toko BLR-2011-N filter provides a maximum attenuation of 1 dB at frequencies up to 15 kHz and a minimm attenuation of 30 dB at 19 kHz and 38 kHz . This filter is about 1.65 by 1.34 by 0.79 inches in size. The two inputs from the stereo decoder are connected to the filter, an earth connection made to it and the two outputs taken from the appropriate pins.

The Toko BLR-2007-N is a rather similar filter which provides an attenuation not exceeding 3 dB at frequencies up to 15 kHz and minimum attenuations of 20 dB and 55 dB at frequencies of 19 kHz and 38 kHz respectively. A third Toko low pass filter is the 170 BLR- 3107 N which has a maximum attenuation of 1.2 dB at frequencies up to 15 kHz and minimum attenuations 26 dB and 50 dB at 19 kHz and 38 kHz respectively The crosstalk does not exceed -45 dB between 50 Hz and 10 kHz , whilst the ripple in the pass band has a maximum value of $\pm 0.5 \mathrm{~dB}$

HEATHKIT DIGITAL TUNER

We will conclude our review of

Fig. 23. A stereo decoder circuit using the LM1310E type of device.

modern FM receiver techniques by mentioning the Heathkit 'Computer' tuner. Perhaps the most striking aspect of this tuner is the tuning technique used together with the digital display of the frequency. The required frequency channel can be obtained by merely pressing the buttons corresponding to the digits of that frequency, the channel spacing being 200 kHz . In addition, this receiver incorporates facilities for sweeping the FM band, stopping at any station which provides a signal above a certain preset level.

The general performance is first class, being comparable with the best of the circuits discussed previously. The harmonic distortion is about 0.3% and the AM rejection about 60 dB . Spurious signal rejection exceeds 90 dB .

INTERNATIONAI•25

This second part completes the details for building the INTERNATIONAL- 25 amplifier. This high fidelity 25W per channel amp matches the INTERNATIONAL.FM tuner in our September and October issues. This project is built on one pcb and does not require any advanced knowledge of electronics.

The component overlay diagram, Fig. 1 , should be used when the components are soldered to the board. Do the linking wires first. There are two links which go under resistors R49 and R50 in the power amplifier and these should be insulated with sleeving. All other links may be tinned copper provided that they are kept straight and flat on the board.
Although the components can be mounted in any order it is usually easier to mount the smallest (lowest height) components first, ie, resistors and diodes. These should be mounted flush on the surface of the board. The capacitors may now be mounted taking care not to damage the small ceramic capacitors by bending the leads too close to the body of the device. Make sure that electrolytic capacitors are orientated correctly. i.e., the polarity is correct.

The transistors, apart from Q7, $8,9,10,15,16,17$ and 18 (which are on the heatsink) may now be fitted to the board.
The integrated circuits may now be installed making sure that orientation is correct as indicated by the mark on the IC which is at the pin 1 end. Then mount the relay by passing the pins through the holes provided in the board and then bend the leads flush with the copper and solder them to the tracks.

The chokes L1 and L2 are made by winding about 25 turns of 0.4 mm copper wire (insulated) onto the body of a 10 ohm 1 watt resistor terminating the ends of the wire on the resistor leads. These may now be mounted on the board.
The balance, treble and bass controls should now have lengths of copper wire soldered to each of the terminals. They are then mounted, by passing the leads through the holes in the board, but are not soldered in position as vet. The front bracket should now be attached to the component side of the printed-circuit board and the potentiometers mounted to the panel. The leads from the potentiometers should then be drawn through the board as far as possible and then soldered in position. Then mount the heatsink bracket to the rear of the board using 9.6 mm spàcers and countersunk screws.
The output transistors have to be prepared in a couple of ways before installation. The leads are too close together, and since they are mounted close to the board the transistors may be damaged if the leads are just pulled apart. Figure 2 shows the lead bending process which should be done carefully with a pair of long nose pliers. After bending, a BC108 should be epoxyed with flat side onto the face of these transistors.
It is preferable to use one of the slow
dry epoxies as they appear to withstand the elevated temperature better. If such epoxy is dried in the $100-1300$ range it will normall dry in about 30 minutes. Before gluing, however, it is best to scratch the type number on to the side of the output transistor to aid later identification.
When dry, the transistors can be mounted using insulation washers and a smear of silicon grease if available. The leads of the BC108 have to be bent out a long way but they should be long enough. If a small soldering iron is used these transistors can now be soldered in without removing the heatsink.
The rotary switch and volume control can now be mounted on to the front bracket. There are four links from the board to the rotary switch as shown in Figure 4, the rest of the connections going to the rear panel. There are also four links to the volume control and two coax cables which go from the volume control to the main-amplifier inputs.
The chassis can now be assembled by mounting the transformer (terminals on the outside), the front panel, the headphone socket, LED, speaker sockets, the 6 -way phono sockets, the rubber feet, the grommet for the power cord and the power cord itself. The screw for the cable clamp also mounts one of the rubber feet.
The printed-circuit board module can

Fig. 1. The component overlay.
now be temporarily installed. If the potentiometers used have a long threaded portion (this depends on the brand) there may be room for extra nuts to hold the module and front panel on. If not, the nuts will have to be removed and refitted on the outside of the front panel. The module is held in by the potentiometer and by two self-tapping screws into the heatsink from the underside. Due to the variations in alignment of the mechanical parts, the location of the holes in the heatsink cannot be accurately determined. Therefore these holes have been left undrilled and can now be marked through the holes in the chassis. The unit can now be removed to facilitate drilling these holes to a size suitable for the self tappers. Be careful not to damage the printed circuit board, and to remove any shavings during this process.

Connect coax cable from the phono input and the tape output, long enough to reach the rear panel socket. Leads to join the output of the main amplifier to the relay, and leads from the relay long enough to reach the headphone socket can be installed along with the lead from the speaker
common and the LED leads. To facilitate the assembly pins should be installed to the board where the transformer is connected.
The 240 V input cable can now be joined to the switch and then to the transformer primary along with the capacitor C35. The earth wire should be bolted directly onto the chassis as shown. To prevent possible personal injury the switch and the transformer
primary terminals should be taped up with insulation tape.

Detail of power transistor assembly and installation. Note compensation transistors glued to output transistors (see text) and mica insulators between power transistors and chassis. Care should be taken with cooling 015 and Q17 (the two transistors on the left). If the amp is likely to be driven hard these will need individual heatsinks.

BEND OUTSIDE LEADS OUTWARDS AND THEN BACK. AGAIN TO GIVE

MOUNT BC108 TRANSISTOR WITH EPOXY WITH FLAT FACE DOWNWAROS Centre lead of main transistor not shown

Fig. 2. How to prepare the power transistor leads for installation.

O 2 HOLES 6 mm DIA.
-6 HOLES 10 mm DIA
Fig. 8. Front panel details.

ALL DIMENSIONS IN MILLIMETRES
Fig. 9. Potentiometer support bracket.

The printed-circuit board module can now be permanently reinstalled. The transformer secondary can now be connected and the rest of the wiring installed. The headphone socket along with R80 and R81 can be wired according to Fig. 1.
This completes the assembly of the unit which is now ready for testing.

TESTING

Providing all components are in the correct place and all interconnections are correct the only adjustment is that to set the bias current in the output transistors.
Before switching on rotate the trim potentiometers, RV5 and 6, fully clockwise i.e. toward the transformer. Switch on without speakers connected and measure the voltage across R63 and adjust RV5 to give about 3 volts. Repeat the process with the other channel and R64 and RV6. The resistors R63, 64, 73 and 74 can now be shorted out (after switching off) by short links of wire soldered onto the leads of the resistor. If a fault exists in the output stage, either a transistor is shorted to the heatsink or the bias setting is taulty etc. In such a case the resistors R63, 64,73 and 74 will overheat and may burn out. This effectively protects the output transistors.

PROBLEM

R63 or R 73 gets hot (only one)
R63 and R73 gets hot (both)
Bias current not adjustable down to within limits

Bias current too low or zero

Output voltage high (near supply rail)

Output voltage low

Main amplifier has no gain

Main amp appears OK but
pre amp does not work

Fig. 11. Chassis details

FINDING

POSSIBLE FAULT AND CHECKS

shorted insulation on Q15 or Q17
bias current too high
Q7 and/or Q8 faulty or wrong polarity. Voltage between base of Q15 and base of Q17 should be about 2.3 Volts
check output voltage, if about 0 V then possible shorted Q7 or Q8
check current source Q11 is working Voltage across R61 should be about 0.65 V. Check voltage across R45 it should be almost 0 V (output high) if it is suspect Q5. If not check voltage at base of Q1 and Q3. Q3 should be higher than Q1 if so suspect Q1 or Q3
check voltage across R 45 should be about 0.7 V if $>0.7 \mathrm{~V}$ suspect Q 5 . If less than 0.5 V measure voltages at base of Q1 and Q3: Q3 should be lower than Q1 if so suspect Q1 or Q3
faulty or disconnected C33, R51 or R53 wrong value
check supply vol tages or pin 6 $(+10 \mathrm{~V})$ and pins 9 and $16(-6.6 \mathrm{~V})$ Check output voltage of each individual amplifier. They should all be about 0 V if not check components in local area.

Fig. 12. Cover for the amplifier. This can be made from contiboard or from 16 gauge aluminium.

A versatile board for experimenters.

ETI UTILIBOARD

THE CONSTRUCTION of any project is always simplified by the use of a proper printed-circuit board. The neat and tidy appearance of a well made printed-circuit board, full of components, gives a professional look and is most satisfying. There are however some drawbacks. Each design requires a different board and you need a reasonable degree of knowhow and time to make your own boards.

Quite often it may be felt that the cost of a ready made printed circuit board, for a simple project, is unwarranted or it is just too much of a hassle to send away for one.

There are several alternatives, such as Veroboard and Matrix board, and many people are now using specially designed general purpose boards which are specifically made for versatility in the construction of general circuitry.

This latter approach has several advantages. The finished board looks
neat and professional, fairly-complex circuits can be quickly assembled, and the large pads available allow experimental circuits to be debugged with ease. Such boards allow the builder to change the circuit of a particular project to suit his personal needs or, to use physically-larger components (eg junk-box parts) than those specified.

There are many of these boards available but many of them are quite expensive and some are lacking in versatility. Hence we decided to design our own board for use in simple projects.

USING THE UTILIBOARD

On conventional printed-circuit boards the components are always mounted on the non-copper side of the board and all our previous overlays have shown components in this way.

However in experimental circuits it is more convenient to mount the components on the copper side. This allows components to be added, or shifted, without having to continually turn the board over.

Note that the board consists of four individual 16 -pin dual-in-line IC pad-groups, each pin of which has associated with it a large pad to which several component leads can be soldered without the need for holes.

The broad lines through the centre of the pads, and on either side, are suitable for supply or earth connections. They are continuous so that the group of pads can be used together or the board may be sawn up into single or 2 -way sections as required.

The broad line up the centre has indicator marks which point to pin I of an IC when it is mounted on the non-copper side of the board and the dot marker on the IC points to indicator-mark end of the board. Note that this central line is broad enough so that individual pads may be connected to it by solder bridging.

Of course any of eight, 14 or 16 pin DIL IC's can be mounted as required, or, discrete transistors may be inserted into appropriate holes. You will find this board extremely versatile and easy to use.

Mnl Kit

MHI (Monolithic Horometric Integration) is a complete module system to enable the building of digital timing circuitry. Two basic modules are required for each system: one clock or counter kit plus one display kit. Each of the six display kits is compatable with any of the clock kits and thus you can decide which display size or how many digits you require quite independently from your choice of clock kit.
Most of the PCBs for the clock kits are $2 \mathrm{in} \times 4 \mathrm{in}$

SYSTEM
with the exceptions being only slightly larger, the PCB contains spaces for all of the basic components excluding switches, transformer and display. Each clock kit includes main LSI chip plus socket, segment driver chip, PCB and may also include any other unusual components. The kits exclude resistors, capacitors, transistors and switches which are all easily obtainable types and values. All clock kits will interface to any MHI display kits or to any other common-anode LED displays.

MHI-5039 (UNIVERSAL COUNTER]

Uses a new counter chip from MOSTEK (MK50395) and will count up or down at speeds of up to 1 MHz with a total system speed of 400 kHz . Count and compare registers can be loaded from logic ICs or BCD switches, features count inhibit, display latch, display decode. Outputs: 6 digit drives, BCD and 7 -segment, count $=$ compare count $=z e r o$, etc. Applications include: very fast stopwatch, sequence timers, 'auto-cue' for tele-cine, batch counters, repeatable "pill" counters, etc.

Interfaces with any six digit MHI display kit
$£ 24.00$ + VAT

MHI-5024 (DIGITAL STOPWATCH KIT]

Based on the MOSTEK MK50204 chip the MHI5024 is a modified calculator chip which will still function as an 8 -digit four-function calculator but has the additional facilities of conversion of hours, minutes and seconds to seconds or vice-versa. The Chip will also count in Hours, Minutes, Seconds and tenths with start/stop/reset facilities. The timing source for the counting is an RC network set to run at 140 KHz .
The Kit includes: MK50204, 28-pin skt., CA3081 segment driver and P.C.B. $£ 14.00$ + VAT
(For H.MM.SS.s use MHI-D7x.7/6, for M.SS.s use a four-digit MHI display)

MHI-5378 (DIGITAL CAR CLOCK KIT)

Uses the new National MM5378 Auto-Clock chip. The Chip has full car/boat clock facilities with a voltage range of $9-20 \mathrm{v}$ with no-loss-of-time down to 5 v . Timing source is a 2.097152 MHz Quartz Crystal which is driven and divided by the chip. Facilities include: (i) display on/off 'switching with ignition leaving the clock running at all times (draws about 5 mA). (ii) display brightness control. MM5738 kit skt CA3081. 2 MHz Xtal and Trimmers, P.C.8. £15.10 + VAT. (Interfaces with MHI four-digit displays kits)

WHI-5314 (BASIC CLOCK)

Uses National MM5314 chip to give a four or six digit clock with $12 / 24$ hour readout from $50 / 60 \mathrm{~Hz}$ supply. This kit and chip are so simple that no previous electronics experience is really necessary to have an electronic clock working within a couple of hours. $£ 6.60+$ VAT.

MHI-5025 (ALARM CLOCK)

For a digital bedroom clock with accurate alarm time, snooze facility and display brightness control. Six digit output in $50 \mathrm{~Hz}, 24$-hour format. Alarm tone oscillator is on-chip and will drive small loudspeaker with single transistor interface. Very simple to assemble. E 9.35 + VAT.
MHI-5023 as MHI-5025 but with $12 / 24$ hour option. $£ 9.35$ + VAT

MHI-7001 (ALARM/DATE/TIMER)

A six digit clock with optional display of date. Has switched alarm output and a switched timer (clock/radio, "sleep") output. Apart from being a very unusual clock this kit can be used for remote switching of tape recorders, etc. We advise the use of a six digit readout with this tape recorders, etc.
kit. $£ 10.00+$ VAT.

The DL707 display is a standard 0.3 in LED display readable from distances of 10 feet or so. Four or six digits plus a PCB
MHI.D707/4E6.60 + VAT
MHI-D707/6£9.50 + VAT

NEW MHI-D727 0.5" DIGITAL DISPLAY KITS

The DL727 is a new double-digit display from Litronix presented in an 18 -pin pack. Four or six digits are provided with P.C.8. The MHI display kits connect directly to the outputs of any of the MHI clock kits.

Four digits - MHI-D727/4£8.50 + VAT
Six digits - MHI-0727/6£12.00 + VAT
The DL747 "JUMBO" display is the largest single package LED display available with a digit height of 0.6 in . Can be read from distances over 25 feet. Four or six digits plus PCB.
MHI-D747/4E9.80 + VAT
MHI-D747/6E14.70 + VAT
DISPLAYS

DL701, DL704, DL707	£1.48
DL721, DL727 (per pair)	£3.75
DL749, DL750, DL747	£2.45
5-LT-01, 5-LT-03*	¢5.80
Minitron 3016,3017	£2.00
Itoka $21 / 2$ in.	$£ 8.00$
Itoka 5 in.	21.80
L-C Watch Display	£10.00

CHIPS
MM5309, MM5311
£5. 18
MM5314
84.44

MM5316
9.25

MM5378
$£ 7.43$
MK50250, MK50253
$£ 5.60$
MK50204, MK50206
£15.11
CT7001, СT7002', СT7003
E7.30
СT6002
£15.00
HEFC2 2°
£8.50
CA3081 7 segment Interface chip
E1.47
ALSO: Some other displays, calculator and clock chips available in small quantities to callers only
LSI sockets for 24, 28, 40 pin: £1.00
PCBs for MHI and other kits
DATA available on most chips, send SAE
Subject to availability
Terms: C.W.O., Access, Barclaycard (Simply quote your number and sign). Credit facilities to Accredited Account Holders.
All prices on this advert exclude VAT at 8%

BYWOOD ELECTRONICS
68 Ebberns Road Hemel Hempsiead Herts HP3 9QRC Tel. D44262757

The best thing about the Videomaster Home T.V. Game Mk. III is that the sheer pleasure of building it is immediately followed by the excitement of playing three fascinating games.

The famous Videomaster is now available for you to make. It plugs into any standard UHF 625 line TV set, and it shouldn't take you longer than a few hours to build.

POST TODAY TO:

In detail ... The Videomaster Mk. III has eleven integrated circuits . . . four transistors eleven diodes . . . is easy to build . . . with no alignment necessary because with ready-built and tested transistorized UHF modulator, is complete with all parts . . . including fully drilled and prepared p.c.b. . . . handsome plastic box . . . controlleads . . . complete step by step assembly instructions . . . Runs on a PP7 9 volt battery ... and has logic and analogue "state of the art" circuitry all with National Semiconductors CMOS devices . . . with full specification.

The cost? Only £19.95 (+VAT)

Videomaster Ltd

119/120 Chancery Lane, London WC2A 1QU

Please send me
(insert no.) Videomaster Mk. Ill kits at $£ 21.55$ ea. inc. VAT. P \& P
I enclose my cheque/money order for $£$
Tick if VHF Modulator required \square - $£ 1$ extra
NAME
ADDRESS
ETIM

[^1]
UNDERSTANDING COLOURTV

In this final part, Caleb Bradley describes grey scale and decoder adjustments.

AT THE START of this series we showed that natural reproduction of each colour depends on three primary colours being combined in exactly correct ratio of strengths. Unfortunately the shadowmask tube cannot be guaranteed to be equally efficient for each primary colour; the efficiencies of the screen phosphors are unequal (red is usually much less efficient than the other twol and the situation is made more unpredictable by manufacturing tolerances in the electron guns which cause variations of gain and cut-off voltage. The relative performance of each gun of a particular tube might be as sketched in Fig. 56a.

GREY SCALE

The 'grey scale' adjustments are concerned with matching the three gun responses. Only when this is done can colours be correctly reproduced, in particular the fully desaturated 'colours', i.e. shades of grey or white, will be reproduced as perfectly neutral shades without any colour bias caused by relative excess or shortage of a primary.
To assess the grey scale quality of a colour receiver look at a monochrome programme and compare the picture colour with a neutral white source such as a typical overcast sky - not a tungsten lamp (too vellow) or a white object whose actual colour depends of course on its illumination. The cause
of any overall tint can be found from Fig. 56b.
To confuse this, some receivers feature a rather spurious 'Tint' control which enables the viewer to upset the grey scale slightly to give a 'warm' or 'cold' picture impression - leave this control at mid position. Another point to watch is that a few sets have a special circuit associated with the decoder colour killer to give a deliberate blue tint to monochrome pictures. This is to resemble the appearance of normal monochrome sets since a monochrome picture displayed on a colour set in truly neutral grey seems somewhat 'warm' by comparison.
Besides relating any grey scale error to Fig. 56b one must decide whether it affects the dark greys, the light greys (whites) or both.

BACKGROUND AND HIGHLIGHT CONTROLS

In Fig. 56a it is necessary to match the three gun characteristics for both cutoff voltage and slope (gain). The grey scole controls for this are simplest on a receiver using colour-difference drive - Fig. 57.
When grey is being displayed the colour-difference voltages on the tube grids are equal; this was ensured by clamps in the decoder. To obtain neutral dark grey the cutoff voltages of the guns are equalized by the first
anode (Ail) voltage controls which are often called the background controls. If the grey scale is already approximately right it should only be necessary to trim one of these controls with reference to Fig. 56b, seeking neutrality exclusively in the dark greys and ignoring white. This is best done in a darkened room.
With correctly neutral background setting, the highlights may need balancing. In the circuit in Fig. 57a this is achieved by two potentiometers which allow the luminance drive from the valve output to the blue and green cathodes to be varied so that the differing slopes in Fig. 56a can be matched. The red gun permanently receives full drive since this usually has lowest overall gain due to the phosphor characteristic.
The lower end of each potentiometer is returned to a dc level which is approximately equal to the luminance black level, conveniently in this circuit the decoupled screen grid supply. This is to minimise the effect of highlight adjustments on the background settings.
The procedure is to look for any pastel tinting of picture whites and from Fig. 56a decide which highlight control to trim to remove it. As a tube ages, the gun efficiencies change and at some stage it may prove necessary to back off the drive to the red gun; if so it is easy to swap two cathode connections to put the full luminance

b)

Fig. 57 (a) Greyscale controls associated with tube in a set using colour-difference drive i.e.: Iuminance (Y) fect to all three cathodes and colour-difference signals fed to grids. (b) Parts of grey scale affected by controls. This monochrome pattern is simply the common colour bars test transmission with the colour turned off.
drive to another gun. Avoid excessively bright (defocussed) whites where the least efficient gun, particularly of an old tube, may be driven into forward grid current which ruins the whole grey scale.

BEAM LIMITING

Besides ruining the picture, over-advancing the brightness control can in extreme cases cause damage by overheating the shadowmask so it distorts, or overloads an eht multiplier. To avoid this possibility most receivers incorporate some form of beam limiting device. Three representative circuits are shown in Fig. 58. Circuit a is common on early sets which use the bulky but efficient valve rectifier plus stabiliser circuit for eht. As beam current through the overwind and VR increases, the stabiliser grid is driven negative. Beam limiting is accomplished by diode D which conducts if it becomes excessive and pulls down the brightness control voltage. A similar circuit but with the
diode connected to the contrast control has also been used.

Circuit buses a low-value resistor to sense the emitter or cathode current in the line output stage - which increases with increasing beam current due to the internal stabilisation feedback. If the current becomes excessive the transistor turns on and again puills down the brightness control voltage to keep the beam current in hand. The 'beam current' control should be set so this happens at a bearn current of about 1 mA . The capacitors in this kind of circuit are important because they restrict the bandwidth of the control loop; they sometimes fail which causes symptoms of oscillating brightness and picture size.

Circuit c is much simpler and is connected in series with the tube cathodes (shown for one cathode only). Normally the diode is forward biased and provides a low impedance path for the luminance signal. However if the luminance drive goes too negative the diode blocks and the
peak beam current is limited by VR. The capacitor prevents hf loss in the diode impedance.

DECODER

With correct grey scale established, the final step is to assess the decoder performance. As a colour transmission is tuned in, the picture should initially be monochrome and the colour suddenly pop in at the correct tuning point. This indicates correct action of the colour killer which enables the decoder only when adequate chroma is received. Distant (grainy) colour, programmes will therefore be received in monochrome only.
Complete failure to receive colour calls for servicing action which we can only describe in a general way. The first step is to disable the colour killer so that demodulated chroma should be fed to the tube regardless of whether the reference oscillator is in lock. If doing this produces a perfect colour picture there is a simple fault in the killer stage itself. Another possibility is

UNDERSTANDING COLOUR TV

that alternate picture lines will show different colours (like Hanover blinds but with more extreme differences). This means the PAL bistable has stopped working and should be easy to cure.
A common fault is the reference oscillator failing to lock to the burst.

An unlocked oscillator produces a cyclic variation of colours from top to bottom of the screen, caused by it passing in and out of correct phase, with a large number of cycles if its frequency is far removed from the burst. The cure may be found by adjusting the oscillator frequency

RED GUN ONLY

BLUE GUN ONLY
control to bring it into lock. Set it to the centre of the lock-in range which is best found by monitoring the varicap diode bias voltage. If lock cannot be obtained or is unstable the next thing to check is the timing of the pulse which gates the burst into the phase discriminator; usually this is determined by an adjustable coil. At this stage an oscilloscope becomes necessary for fault finding.
With a functioning PAL decoder it is child's play to assess the colour performance if a colour bar transmission is available. Switch on the red gun alone. Set contrast and colour saturation so the red bars of the pattern are equally bright. Then change to the blue gun alone which should also be producing equally bright bars. Likewise the green gun. The correct positions of the bars are shown in Fig. 59. Incorrect ident phase has the effect of reversing the red bars. If necessary trim the colour channel gains in the decoder to achieve equally bright bars across the screen from all three guns.
Check the colours for freedom from Hanover blinds (chroma delay amplitude and phase adjustments) and your PAL receiver is ready for action.

NEW! SPACE AGE KITS
 DIRECT FROM THE U.S.

 PRESENTNG FIRST LED DIGITAL WRIST WATCH KITSINGLE I.C. WATCH PROVIDES HOURS/MINUTES/ SECONDSIDATE ON DEMAND-SAVES BATTERY POWER

ONLY£39-50 Compolain wic

- 1125 Aarmail postage. insurance. etc

LOOK AT THESE AMAZING FEATURES!

- Easy 2 button operation
* Easy 10 read LED display with antl-glare
filter
- Crystal controlled accuracy. adfustable to

2 seconds or better per month.

* Incorporates the latest in solid state technology
- Quality nickel-silver case included. Case style
may vary from that illustrated
* Detalled pictorial instructions supplied with
every kit.
- Batteries included at no extra cost

This kit recommended for the advanced constructor
The prices quoted are the approximste equivalents of the actual US. dollar prices Remittances should be sent by bank draft or internatlonal money order for U. $\mathrm{S} \$ 90-00$ (watch) or U.S. $\$ 28.00$ (photo eich set). Prices include air mail postage and insurance all countries including $U K$

Send payment with order (U.S FUNDS only) BANK DRAFT or INTERNATIONAL MONEY ORDER (include receipt with order). Shipment made via first class airmail parcel within five days after receipt of order Sorry no C.O.D.

ELECTRONICS

Fig. 1 (a). A filter alters the frequency content of a signal. This means the wave shape is changed when displayed as an amplitude-time graph. (b). Using the frequency spectrum form of display the filter removes (or enhances) certain frequencies.

TO SEPARATE peas from boiling water, or dirt from engine oil, one must use an appropriate filter. When the term filter is used, in any discipline, the meaning is always the same - it is a device for separating or selecting something from an available mixture or range of things.
Filters are also extensively used in electronics where they are used to select a desired part of the range of frequencies which make up a particular signal. We have seen many examples of this throughout our course so far. For instance, in our discussion of multiplexed telephone
systems, we saw how it is necessary to separate the various frequency channels and pass them to individual outlets. We also saw how an LC tuned circuit is used to select only one desired radio broadcast station from the many available.
Other examples of the use of filters are the crossover networks used in hi-fi speaker systems, to divide the audio bandwidth between two or more speaker drive units, the compensation stages in instrumentation control systems which improve performance by attenuating or enhancing relevant frequencies or the filters used to

(a) PASSIVE DESIGN

(b) ACTIVE DESIGN

Fig. 2(a). Passive filters use R, L. and C components only. (b). Active filters incorporate active elements with passive elements to great effect.
correct for the non-linear attenuation versus frequency which occurs with long-line telephone communications.

ALTERING THE FREQUENCY
 RESPONSE

Electronic filters, in a general sense then, alter the frequency content of signals. Their action can be comprehended first by considering the stage as a unit that alters the amplitude/time shape of an input waveform. This concept is illustrated in Fig. 1a where a square-wave is filtered to remove all but its fundamental sine wave. Alternatively, filters may be thought of as devices that change the frequency spectrum. This is illustrated in Fig. 1b. Both concepts are correct, each finding use to suit different needs.
We generally think of filters as devices which change the amplitude of the signal with frequency. However, filters may also change the phase of the signal. In many applications the phase shift is undesirable and must be considered when making the selection of filter type.

Unlike other circuit blocks which are available as built up units, filters are generally made specifically for the task.
Many filters are extremely simple varying from two components to (say) ten and the design procedures of most are easily found in texts. This is not, however, to say that filters are trivial and not worth learning about. Filter designs may be grouped into two main classes - those called passive filters (Fig. 2a) that use passive components only - such as resistors, capacitors and inductors; and those called active filters (Fig. 2b) that are based upon an op-amp using single or multiple path feedback loops. Design procedures can be quite complicated but because of the universal need for a few basic types of response, most design is now a matter of applying simple formulae or using graphs to arrive at the component values.
By way of interest the design philosophy of filters - or any network requiring a given frequency response can proceed two ways. First, one can propose a network configuration and then mathematically analyse it to get the generalised formula. This is called network analysis. The alternative and more modern approach (in the last few decades, that is) is to start with a mathematical expression of the

Fig. 3. Bode diagrams usually express amplitude (and phasel variation with frequency in terms of simplified responses consisting of straight Unes turning at break points. The actual response will be more gradual near the breakpoint
frequency response needed and, by using appropriate mathematical procedures, create on paper the circuit needed to provide such a response. This is called circuit synthesis. The latter method has a certain fascination because it provides the answer in a more logically direct manner than the cut and dried analysis process (although sometimes one ends up with a requirement for non-realisable circuit needs such as negative frequency!). On the other hand, however, synthesis requires mathematical ability and considerable experience.
In the following sections we will analyse a few of the more common filter stages.

THE BODE DIAGRAM

One of the, now classical, works on network analysis is a book "Network Analysis and Feedback Amplifier Design" by H. W. Bode published by Van Nostrand in 1945. Today Bode's work is mostly remembered by the
graph which carries his name and relates the amplitude, or phase shift, to frequency for an amplifier, feedback system or a frequency modifying stage such as a filter. There is, at least, in principle, no distinction between the frequency response plots we have discussed to date and the Bode diagram. In practice, however, Bode diagrams are usually mathematical simplifications in that they are drawn with straight lines only, these lines changing direction at what are known as break-points and sloping at known rates.
The Bode diagram exemplifies the behaviour of a circuit as a tool, and is derived from mathematical knowledge of the system, not from actual tests. In truth, the linearization simplification is usually not far from reality, and we will meet Bode diagrams in our study of filters. Fig. 3 shows the difference between a Bode diagram and an actual response plot for an RC filter. The Bode diagram plots signal amplitude in

(a) SIMPLE R.C. LOW PASS FILTER STAGE

Fig. 4. Idealised responses of various categories of filter.
decibels on a linear scale against frequency on a logarithmic scale.

TYPES OF RESPONSE

As with amplifiers, filter frequency responses are grouped into low-pass, band-pass and high-pass. Theoretically, ideal filters would have responses as shown in Fig. 4. There is also a constant need in electronic systems for a band-stop stage.
In reality it is impossible to obtain exactly square response curves. The response always rises or falls, within the transition region, with a rate of steepness that depends on the design used. A general rule is that the simpler the design (least number of components) the more gradual will be the transition. Also the more rapid the transition the more likely are effects of "ringing" encountered. Do not confuse these concepts of shape with amplitude-time wave shape graphs: these are amplitude (phase) frequency curves. To illustrate this concept compare the two extremes given in Fig. 5. Figure 5a is for a most basic RC stage, Fig. $5 b$ is for a response having rapid cutoff -a Chebyshev filter stage.

Fig. 5. As a general rule the more complex the filter circuit, the sharper the roll-off but the more variable the response in the passband region. (a) RC low pass stáge. (b) Advanced Chebyshev stage.

ELECTRONICS -it's easy!

Fig. 6. By converting the electronic signals to mechano-acoustic form it is possible to make use of the extreme sharpness of mechanical resonant systems.

It is also worth noting that no filter is perfect, for frequencies are only attenuated relative to each other. If a signal appears at a high enough level at the input of a filter stage it will appear at a reduced level in the output and could be troublesome. Acknowledging this, the degree of attenuation chosen should be matched to the circumstances expected. It is pointless (and unnecessarily expensive) designing a stage to provide, say, 120 dB reduction of the unwanted frequency if it never reaches more than, say, 10 dB of the wanted frequency, apart from which an unwanted signal which is more than 60 dB down on the wanted one rarely causes problems.

DEFINING THE

RESPONSE BANDWIDTH

As realistic filterrs fall short of being ideal there is no clear-cut point, where the response changes markedly enough, to use as the criteria for defining bandwidth. In some simple filters we could use the apparent position of the breakpoint but this would not hold for all filters.

The convention used is that the cut-off point is defined as where the response power falls to one-half of the passband value. Half power, expressed as a voltage change, is 0.707 of the passband voltage level which is -3 dB in decibel units. (Often called the '3 dB down' point.)
The bandwidth of bandpass (or bandstop) filters is, therefore, the frequency interval between the two cut-off points situated on each side of the bandpass (or stop) region. Bandwidth of a high-pass design has no real-meaning as the frequency rises to infinity. Low-pass units have a band-width from zero frequency (dc) to the cut-off value.
In the cased of complex designs the stated response often omits what happens at frequencies remote from the usual frequencies of interest. It is wise never to assume that, say, a bandpass filter only passes frequencies between the design points. It may well have "windows" much removed from that region. Additional stages are added in some system designs to exclude these effects.

Fig. 7. Reflection of RF energy will arise if stages are not terminated into each other with the same impedance. Filter stages should observe this requirement.

Whereas the majority of filters used in electronic systems are made solely from electronic components there do exist circumstances where transduction to mechanical principles for filtering, and back again to electrical, are advantageous. One example is the use of tuned resonant reed filters, such as is depicted in Fig, 6. which exhibit extremely narrow band-pass characteristics.
Often the response of a bandpass is expressed in terms of its quality factor - that is the Q-factor of the peak. This definition was discussed when we dealt with resonant circuits earlier in the course.

THE EFFECT OF

ADDING A FILTER

When the main purpose of adding a filter is to alter the frequency composition of signals it is not unexpected that the other effects brought about by its insertion might be overlooked.
As in any system changed by the addition of a cascaded 'box', the output of the preceding stage and the input of that following must be considered from the loading point of view. It is quite unrealistic to design a stage in isolation, unless the filter stage is adequately buffered, for the impedances connected to its input and output will alter the cut-off points and hence different values will be required to achieve the designed characteristic.
The term 'Insertion Ratio' will often be encountered, it describes the ratio of output voltage with and without the filter, that is, the voltage Insertion Ratio $=$ Vout (no filter)

> Vout (with filter)

Expressed in decibels of loss we arrive at the term Insertion Loss $=20 \log _{10}$ (Voltage Insertion Ratio). In practical cases, however, one may well design a stage to provide insertion gain (especially in active filter stages).
When matching a filter into a system. it may be important to conserve power, voltage or current. To ensure maximized power transfer the input impedance to the filter must be of the same value as the output impedance of the stage before. Similarly, its output must be terminated into the same value. If voltage levels are to be maximized then the filter input impedance must be much higher than the output impedance of the driving stage. Current maximization requires the reverse relationship.
When the frequency of operation is high another problem becomes significant - that of reflections. When energy is launched into a network containing storage elements - a filter stage is such - some of the energy
may be returned to the source which, in turn, may reflect it again, the final situation being that the net sum of all of these travelling waves of energy cause excessive power losses in the line (and distortion). This effect is very pronounced in radio-frequency transmission lines.
The extent to which a reflection occurs is decided by the degree of difference in the impedances seen in both directions at a system block junction. If a filter is terminated into the source with the same impedance in both directions there is no mismatch and no reflection occurs. This concept is depicted in Fig. 7.
As the two impedances differ in magnitude so does the amount of signal reflected. A similar situation applies at the output of the filter.
Mismatch terminations begin to generate noticeable spurious signals this way from megahertz frequencies upwards. This is the reason why wide-bandwidth amplifiers, such as videoamps, must be designed with output impedances that match the feeder cable. Coaxial cable can be shown to have a characteristic impedance set by the ratio of size and spacing of its conductors. It is invariant with length of cable. Typical coaxial cables have impedances of 50 or 75 ohm . Alternatively another kind of cable having two wires with a fixed separation between them may be used. Such transmissions lines have typical impedances of 200,300 or 600 ohms. Whilst on this subject, one way of locating open-circuit and short circuit faults in cables is to send a sonic pulse (these travel much slower than electromagnetic waves) down the cable - timing the arrival of reflected pulses produced by the gross mismatch that exists at the fault.
Filter stages, as said before, also introduce phase shifts. A sine-wave input will appear at the output shifted in time by some fraction of the electrical cycle. In the compensation networks of feedback controllers phase shift must be carefully controlled, for a wrong value of phase shift may cause the system to become unstable. That is, if the phase shift approaches 1800 , the feedback becomes positive, instead of negative, and the system oscillates.

PASSIVE DESIGNS

THE RC FILTER

The simplest passive electronic filter is the RC network set to act as a low-pass or high-pass stage. The two alternatives are shown in Fig. 8. In Fig. 8 a it is easy to see that at low frequencies the capacitive reactance is very high and the output is the same as the input, provided the load

Fig. 8. Basic RC filter stages (a) low-pass (b) high-pass.

Fig. 9. Bode diagram for low-pass RC filter in which source and load are not significant.
impedance connected is significantly higher than the value R. As the frequency rises X_{c} decreases, lowering the output voltage. The reverse situation applies for the high-pass unit.
Mathematical analysis shows that the response plot - the Bode diagram for these can be constructed by recognizing that there is just one break point and that the response falls away at $20 \mathrm{~dB} /$ decade change in frequency (ie $6 \mathrm{~dB} /$ octave). An octave change corresponds to 2:1 frequency ratio; a decade change is a $10: 1$ ratio. The jargon used is that the response rolls-off at the stated rate. Regardless of the values of RC chosen the roll-off rate stays the same. The break point occurs at $f_{C}=\frac{1}{2 \pi R C}$.
To illustrate this consider the construction of the Bode diagram for a low-pass filter with $R=100$ kilohms and $C=500$ pico-farads. The break point occurs at

$$
\mathrm{fc}=\frac{1}{6.28 \times 100 \times 10^{3} \times 500 \times 10^{-12}}
$$

and it slopes downward from there at 20 dB /decade to give the plot shown in Fig. 9.
This much may seem almost trivial and, indeed, it is over-simplified. In

Fig. 10. Practical RC filter designs should allow for source and load resistances.
practice there will be a source and a load impedance connected to the filter terminals. Fig. 10 shows the practical case in general.
It is also not hard to reason out what happens when the source and load impedances are taken into account for R_{s} is in series with R and R_{L} is in parallel with C. By expanding our mathematics we find that the formula becomes

$$
f_{c}=\frac{1}{\left.2 \pi\left[R_{S}+R\right) / / R_{L}\right] C}
$$

Hence, if the stage is not buffered the breakpoint can be quite different from that arrived at from the time-constant of the filter alone. For example if load and source impedances are both 1 k in our previous example the breakpoint changes from 3.2 kHz to 2.66 kHz . Further, the stage will introduce attenuation: the gain in the passband becomes

$$
\begin{aligned}
& \begin{aligned}
\frac{\text { Vout }}{V \text { in }} & \frac{R_{L}}{R_{S}+R+R_{L}} \\
\text { for our example } & =\frac{1000}{1000+5000+1000} \\
& =0.4
\end{aligned}
\end{aligned}
$$

By use of appropriate values of source and load resistance it is possible, therefore, to set the attenuation and draw an appropriate Bode diagram.
The high-pass RC filter is considered in the same way - to arrive at

ELECTRONICS -it's easy!

$f_{c}=2 \pi \frac{1}{\left(R_{S}+R / / R_{L}\right)} C$ and
Vout $=\frac{R / / R_{1}}{R_{S}+R / / R_{L}}$
for the practical case where source and load impedances cannot be ignored.
The observant reader will probably have realised that an amplifier stage with capacitive coupling has an equivalent circuit that is a combined highpass and lowpass filter with gain added between. The high-pass response arises from the coupling capacitor and the stage input impedance, the low-pass response from the output impedance and the stray capacitance existing to ground.
It is possible to combine a low-pass RC stage with a high-pass stage to arrive at a bandpass filter. These, however, are not particularly selective bandpass filters because of the relatively poor roll-off slopes $(20 \mathrm{~dB} /$ decade $)$. Further, if the bandwidth required is small, the two stages interact producing a non-constant passband gain. To obtain a satisfactory design it is important to ensure that the second stage resistance (the shunt of the high-pass stage) is at least ten times that of the first (the series resistance of the low-pass stage). Also the two break points should be at least a decade apart.

RC NOTCH FILTERS

Some applications call for rejection of a narrow band of frequencies, the reduction of 50 Hz or 100 Hz noise, for example. A very effective, yet, inexpensive technique makes use of a type of Wheatstone bridge which requires only resistors and capacitors and yet provides very sharp roll-off.
The Twin-T or parallel-T notch filter is such a circuit and is shown in Fig. 11. It can be redrawn as a more-obvious bridge circuit and comprises two T circuits connected in parallel). At high or low frequencies it is easy to see that the capacitances either go to low or high reactances providing in both instances a virtually unaltered signal level through the stage. At the balance point, of a twin-T bridge, there exists a frequency - the so-called notch - at which the output falls very nearly to zero. This occurs for the circuit of Fig. 11 at
$f_{c}=\frac{1}{2 \pi R C}$
Loading will reduce the depth of the notch.

In some applications it is desirable to be able to tune the notch to varying

Fig. 11. The Twin-T notch filter provides very narrow rejection of a particular frequency.
frequency values. In the Twin-T design this requires that all three resistors (or capacitors) be varied simultaneously. A ganged multi-unit potentiometer or capacitance bank is used.
Other forms of bridge filter exist, each having its own particular feature. No simple RC circuits exist that exhibit the reverse characteristic of the notch filter - that is spike acceptance

Fig. 12. Notch acceptance can be provided by using a notch-rejection circuit in the feedback of an op-amp.
of a particular frequency. This reponse however, can be provided by using a notch-filter as the feedback impedance in an op-amp that is set up as a simple inverter. This is shown in Fig. 12. In this way the gain of the stage rises rapidly with increase in effective feedback resistance at the notch frequency.

IMPROVING THE ROLL-OFF

RC filters, apart from notch circuits, cannot provide much selectivity between signals due to their poor 20 $\mathrm{dB} /$ decade rolloff. This slope can be improved by cascading stages but this is not a preferred method for there exist other more economical designs.

The next stage of complexity is to use designs combining inductors and capacitors: no resistors are needed. That these provide improved roll-off is to be expected for we have seen earlier in this course that a resonant circuit can provide very sharp responses. By way of example a single stage LC filter can provide at least 12 dB and up to $25 \mathrm{~dB} /$ octave rolloff compared with only 6 dB /octave for an RC stage, and furthermore methods have been established (discussed in next part)
that enable these to be cascaded without difficulty - a four stage unit can achieve 100 dB /octave rolloff! It is even possible to 'peak up' a specific frequency in the passband. In the next part we will also explain the virtues of adding amplifiers to form active filter circuits.

A SECONO CHANEE

to see these projects from ETI

ETI Colour Organ
Meter Beater
Push-Button Dimmer
Drill Speed Controller
Courtesy Light Extender
in February 1975
Three Temperature Controllers Car Alarm
Simple Stereo Amp (LPM380)
Headlight Reminder
Electronic Combination Lock
in March 1975
Electronic Ignition (Part 1)
Flip-Flop Flasher
CMOS Burglar Alarm
in April 1975
Electronic Ignition (Part 2)
TTL Supertester
Trafficator Flasher
Electronic Win-Dicator
Low Battery Warning
in May 1975

To order send $35 p$ for each issue plus
P\&P (10p for one, 15p for two or more)
to; Back Numbers Dept.,
ETI Magazine,
36 Ebury Street
London SW1W OLW
stating clearly the issues you require.
We are unable to supply the following
1972 issues (except Oct. and Dec.)
February and November 1973
March. September and October 1974 and January 1975.

FLLLLLEELUC

 GLDLEEE ELELELLLEECEelectronics -it's easy

EIECTRONIICS IT'S EASY!

MORE TOP ARTICLES FROM PAST ISSUES OF ETI.
We are preparing a special book of the first thirteen parts of our popular introductory series 'Electronics it's Easy'. Watch out next month for more details.

1 BLACK BOXES AND TRANSDUCERS
2 CONDUCTORS, SEMICONDUCTORS AND RESISTORS.
3 MEASURING V, I, AND R.
4 ALTERNATING CURRENT.
5 FREQUENCY SPECTRUM AND AC MEASUREMENTS.
6 DIGITAL SIGNALS, MODULATION.
7 CAPACITANCE AND INDUCTANCE.
8 PHASE AND REACTANCE.
9 COMBINING L, C, AND R.
10 HOW VALVES DEVELOPED.
11a PRINCIPLES OF AMPLIFICATION AMPLIFICATION
11b INTRODUCTION TO TRANSISTORS.
12 EMITTER FOLLOWERS AND DC AMPLIFIERS.
13 INTRODUCTION TO THE OP-AMP.

Electronirs minnexima

THERE ARE A LOT of environments where it is necessary to control the temperature of a heating element to within a few degrees of the preset limitations. Examples are in tropical fish tanks, manufacture of some plastics and piastic materials, crystal ovens, hair curlers, etc. The usual method of control used to be a bi-metallic strip which bent and sprung in one direction as the temperature exceeded the upper limit and then clicked back into its normal position as the temperature passed the lower limit, the strip acted as a conductor and thus was used as a crude form of electrical switch. The problem with this sort of control is that the effective range is fixed in manufacture. Thus for use in different processes a wide range of strips has to be made.

BOILED FISH

Other problems with this type of control unit are contact erosion giving rise to sparking and subsequent RF interference and the fact that the temperature rise from the heating element can be faster than the strip can react to - how many tropical fishkeepers have had boiled fish as a result of an inefficient thermostat?

HAIR CURLERS

With the advent of power semiconductors the physical contact disappeared but we are still left with the problems of mains borne interference generated by old devices, much to the annoyance of digital clock owners! The problems of reaction time and the width of the temperature window (upper to lower temperature limits) are still with us and very important in some applications. Do you know that hair curlers should work at $130^{\circ} \mathrm{C}$ with very little tolerance on either side of this figure? Too hot and the hair is ruined and split, too cool
and the hair will not keep its curl.
This problem, and specifically its application in hair curlers, has led to a new solution to the problem of controlled heating using electricity. Development engineers in the Netherlands working for the Elcoma division of Philips have come up with what appears to be a very simple answer in the form of a positive - temperature - coefficient thermistor. It's a single component heating device for electric hair tongs that, after a short warm-up period, maintains the heat at exactly the right temperature for making curls.

POSITIVE TEMPERATURE THERMISTOR

The device works like any other positive thermistor except that this one is a power unit as well. A normal thermistor is used to measure the temperature of its environment and to change its resistance as the external temperature changes, usually the resistance change is somewhat dramatic and happens at a predetermined temperature. This resistance change is usually sensed by a transistor which controls a cut-off or an alarm. In this new development the thermistor has a low resistance which rises very slowly until the preset limit $\left(130^{\circ} \mathrm{C}\right)$ after which it suddenly increases to a very high resistance. The difference between this and other thermistors is that this thermistor is also a heating element; when the resistance is low the voltage applied across it causes the thermistor to heat up as any overcooked resistance would do. As the thermistor heats up to its limit the resistance suddenly rises, thus lowering the power dissipation and therefore the amount of heat generated. Once at its operating temperature the resistance changes linearly with the temperature which in turn is controlled by and derived from the
resistance, and thus we have a closed lóop control system which will hoverat $130^{\circ} \mathrm{C}$ without any great variance or any great rate of change. You can try this for yourself if you can find a thermistor which is low resistance up to about 40 or $50^{\circ} \mathrm{C}$ and then changes rapidly to a high resitance. Work out the mathematics and apply a voltage directly across the thermistor, it should get warm or even slightly hot to the touch and then not change whereas a low value resistor would get hotter and hotter. If you double the voltage applied it will make very little difference except in the time taken to reach stability, in fact you can raise the voltage considerably wihout much change in the stable temperature until you get to the point where the termistor will continue to heat at its high resistance and then you will have a runaway situation. (If you do try this experiment use batteries otherwise you are more than likely to overload your power supply.)

PHYSICAL CONSTRUCTION

The thermistor that Elcoma are offering for this application will work at $110-250 \mathrm{~V}$ and is insulated to withstand voltages in excess of 4000 V . It is made of a semiconducting ceramic material embedded in a special insulating material. The element, about 1.5 cm in diameter and 5 cm long, fits into a tube which. in turn, goes inside another tube. It is this outer tube, typically heated by the inner tube to $130^{\circ} \mathrm{C}$, that contacts the hair. Apparently Elcoma have started marketing these curling tongs and so you may be able to show your beloved the advantages of solid-state electronics by buying her curling tongs for Christmas!

YET ANOTHER PROBE INTO DIGITAL LOGIC!

The first logic probes to come onto the market a few years ago
were basically logic ' 1 ' detectors, if the lamp lights you have a logic ' 1 ' or a pulse train, if the lamp doesn't light then you have a logic ' O ' or a power failure or a lamp failure. After this came the red and green indicators which could show High (red), Low (green), pulse train (both), high impedance or nothing (none). The problem is still high speed pulse trains or short pulses which are too fast for the human eye to detect.

I have an idea for a logic probe which some of you may care to play around with based on the fact that the ear is more sensitive to changes in frequency than the eye. You need a few 555 timers or similar units and a few logic gates, the power supply can be tapped off the unit under test and the probe should be able to test TL, DTL and CMOS due to the voltage range of the 555 s and CMOS gates used. The unit will probably become a little upset at frequencies in the 1 MHz region without some further modification unless ICs other than 555 s and CMOS can be used in the design.

SOUND PULSES

The probe input is connected to a pair of inverting gates to act as
buffers, a switch can be included at this point to bypass the first these gates, thus effectively inverting the input for tracing negative going pulses. The output from these buffers is fed to a series of 555 s which act as oscillators and pulse stretchers. The first 555 is set up as an astable with a frequency of about 1 KHz with pin 5 connected to the input buffers. If the test signal is logic ' 1 ' then the output tone will be 1 kHz , for logic ' O ' it will be a much lower note probably about 250 Hz . A short pulse will be missed and a pulse train will have an unknown effect. To overcome the short pulse problem we should include a pulse stretcher by inputing the buffered signal into. pin 2 of a 555 monostable set up for about $250-500 \mathrm{mS}$, the output from this pulse stretcher is input to another astable set up at about 2 kHz . A short pulse will now cause a short but noticeable 2 kHz tone burst. A train of pulses will continuously trigger this part of the circuit and thus tend to give a continuous 2 kHz tone. Frequencies between 2 kHz and 15 kHz can be heard directly by the ear but those above 15 kHz would need a switchable divide stage to be included before they
become audible. I was also trying to think of a simple circuit which could indicate the relative mark/space ratio of a pulse train but no genius ideas were forthcoming.

GATED

All of the oscillator outputs are gated together (possibly mutually exclusively) and then fed via a transistor to a high impedance speaker or earpiece. If you can use a 'tri-state' input gate on the probe then you would get no tone for no signal whereas a two state input will tend to pull towards logical ' 1 ' if it is not connected and thus give a 1 kHz tone for a no signal condition. These are only ideas which might trigger somebody's brain into instant action, unfortunately I have no spare time at present to investigate the circuits in any detail. The basic idea seems to be good, the ear is a lot more sensitive than the eye, you can hear a difference between 50 Hz and 60 Hz or 6 kHz but the eye would notice no difference in an LED displaying these frequencies. If any reader comes up with a working circuit I would be very interested in seeing it - you could even get yourself some money by putting it into Tech-Tips or a full article.

If YOU have a genuine interest in electronics and project building and an above-average ability to express yourself in writing, you could be the person we're looking for. We are being serious.

We are increasing the editorial team and reckon that an enthusiastic reader is likely to be the type to join us. Not an uncritical reader - we want to continue to improve. The work will entail dealing with articles and news - licking them into shape - and making them better than anyone else's articles and news. Readers employed in journalism at the moment will be considered but we are not primarily looking for someone with magazine experience.

We are flexible about age and experience but imagine that the person who gets the job will be between 20 and 25 .

Experience has told us that people who read ads like this think a) that it doesn't apply to them
b) that their own knowledge is far b) that their own knowledge is far too limited or c) that ads of this type are only put in because we have to fill half a page. None of these is true.

Apply in writing to:
 Halvor Moorshead, Editor,
 Electronics Today International, 36 Ebury Street, London SW1W OLW

[^2]
techtpe

SOUND OPERATED TWO-WAY SWITCH

The circuit operates a relay each time a sound of sufficient intensity is made, thus one clap of the hands will switch it one way, a second clap will revert the circuit to the original condition. Q2 and Q3 form a Schmitt trigger. The JK flip-flop is used as a bistable whose output changes state every time a pulse is applied to the clock input (pin 12). 04 allows the output to drive a relay.

Under quiescent conditions Q1 is on, holding the base of Q2 low and keeping the output of the Schmitt trigger low (Q 3 collector). If a sharp noise is made (e.g. a clap) it will generate a pulse in the loudspeaker which is fed through C1 and switches Q1 off. D1 prevents any large pulses damaging Q1. As Q1 switches off, its output goes high causing the output of the schmitt trigger to go high. When the clap is finished Q1 again conducts, causing the output of the schmitt: trigger to go low. Therefore each clap causes a high pulse at the

Schmitt trigger's output which is fed to the clock of the JK flip-flop causing it's output to change state. This is used to turn a relay on and off. Because the circuit is only sensitive to sharp noises it is generally unaffected by talking or sounds caused by movement. (The sensitivity control can be adjusted to prevent such noises triggering the circuit if this does arise). A moving coil loudspeaker is used as a microphone as it can respond to sounds from any direction. It was
found that any loudspeaker from $3-80 \Omega$ worked in the circuit. The $\overline{\mathrm{Q}}$ output of the JK flip-flop could be used as well, allowing two relays to be switched on and off complementarily.

The circuit has limitless applications like turning on a radio or controlling motorised toys by clapping. The diodes can be any general purpose silicon types (1N914 etc) and the relay a $5-6 \mathrm{~V}$ type with minimum resistance of 50 ohms.

HUM STOPPER
BLOCK DIAGRAM OF SYSTEM

Hum can be removed trom an audio signal to great effect by mixing an antiphase hum of equal level.

In the circuit below all the transistors can be cheap or surplus npn (low or high gain) types.

VR1 is adjusted with VR2 low (not off) until the hum is at a minimum, SW1 may have to be changed over, then the level VR2, is altered until the hum is removed.

Tech-Tips is an ideas forum and is not aimed at the beginner. We regret we cannot answer queries on these items.

ETI is prepared to consider circuits or ideas submitted by readers for this page. All items used will be paid for Drawings should be as clear as possible and the text should preferably be typed. Circuits must not be subject to copyright. Items for consideration should be sent to the Editor Electronics Today International, 36 Ebury Street, London SWIW OLW.

FAST-EDGE SQUARE-WAVE GENERATOR

The circuit shown above generates a clean square-wave with very fast rise and fall edges; such a signal is essential for some applications such as the testing of amplifier transient responses, and the reliable driving of TTL.

The multivibrator circuit shown is unusual in that it produces a waveform with fast risetime as well as fast fall time. The standard astable multivibrator has a slow risetime as capacitor C is charged relatively slowly through the collector load af Q 2 ; in the modified circuit C is charged very quickly through Q3. Diode D ensures that Q 3 is only turned on when $\mathbf{Q} 2$ is off. The final stage (Q 4) increases rise and fall speed still further; at the output the rise time is 100 nanosec. and the fall time 300 nanosec. When the

output is used for driving TTL the collector load must be returned to a voltage no greater than +5 V .

The two-pole switch gives an out-
put at about 1 kHz when open and about 10 kHz when closed; these two frequencies being standard for checking the stability of audio amplifiers.

REDUCED RIPPLE AT LOW CURRENT

FIG. 2.

In the normal circuit (Fig. 1) the ripple at 1 amp is at least 2 volts. Cheap power amps use this circuit (with low supply ripple rejection) and produce annoying amounts of hum at low signal levels.

In the circuit in Fig. 2 the ripple is considerably reduced at low levels and
at high currents the supply voltage is only minimally affected.

Maximum low ripple current $(1 m)=V z_{\prime}^{\prime} R$ where Ptot R must be more than $\mathrm{Vz} \mathrm{z}^{2} / \mathrm{R}=\mathrm{Im} \mathrm{Vz} . \quad \mathrm{IM}=$ maximum total current so $\mathrm{P}_{\text {tot }}=\mathrm{IM}$ Im Vz. A typical set of values for Im = $1 / 2 \mathrm{Amp}$ is $\mathrm{Vz}=3 \mathrm{~V}, \mathrm{R}=11 / 2$ ohms.

LED CHANGEOVER CIRCUIT

This configuration allows a green LED to be turned off and a red LED turned on by the operation of one "make" contact only, thus simplifying the design of circuitry to indicate, for 'example, safe/unsafe or standby/on states.

The circuit relies on the fact that a green LED has a slightly higher "on" voltage than a red LED of the same size, and hence is turned off when the red LED is paralleled with it.

For the diode types shown, R should be chosen to give a current drain of about 20 mA from the chosen supply rail voltage.

tech-tips

SIMPLE FLASHER CIRCUIT

A simple circuit which will cause a relay to open and close with a period of about 4 seconds is shown. This type of circuit has obvious applications in shop window lighting and in the lighting of Christmas trees. For shop windows it will normally be driven from a mains power pack, but if used in toys for children, a battery supply may be safer.

When the voltage at pin 6 is in its 'high' state, no current passes through the relay to pin 10 of the device and the $100 \mu \mathrm{~F}$ capacitor charges through the 68 k ohm resistor. After about two seconds the internal voltage comparator circuit connected to pin 5 switches the mode of operation of the device so that the potential at pin 6 falls to about +0.2 V and a current flows through the relay to pin 10 .

The capacitor now discharges through the resistor into pin 6. After about another two seconds, the voltage at pin 5 will have fallen to a value which is low enough to cause the device to switch back to its former state where the voltage at pin 6 is 'high' and no current flows through the relay.

The 'high' voltage at pin 6 is stabilised at about 4.6 V . The rate of charging (and hence the period of oscillation) is therefore independent of the supply voltage.

The maximum output current which should be allowed to flow into pin 10 is 150 mA . A 12 V relay which can switch up to 10 A at 240 V a.c. normally requires a current of about 100 mA and it is therefore easy to switch over 2.5 kW of power with this circuit. A smaller relay may be used to reduce the power consumption of the circuit if the current to be switched is smaller than 10A. If the relay has a pair of change over contacts, one or more lights can be switched on as another set of lights is extinguished.

The frequency of oscillation is given by the approximate equation:

$$
f=\frac{800}{R C}
$$

where R and C are the value of the resistor in kilohms and of the capacitor in microfarads connected in the pin 5 circuit. In practice most electrolytic capacitors have a value above that marked on their case, so a lower frequency than expected may be obtained.

LOGIC PROBE

Transistors Q1 and Q2 form a simple voltage buffer, providing the probe with a reasonable input impedance.

Q3 and Q4 form a level detecting circuit as the voltage across the baseemitter junction of the Q 3 rises above 0.6 V the transistor turns on thus turning on Q4 and lighting the red (high) LED.

Q5 and Q6 perform the same function but for the green (low) LED.

Q1, Q4, $\mathbf{0 5}$ are all pnp general purpose silicon transistors (BC 178 etc). Q2, Q3, Q6 all pnp general purpose silicon transistors (BC 108 etc). The threshold Low $\leqslant 0.8 \mathrm{~V}$, the threshold High $\geqslant 2.4 \mathrm{~V}$.

It's another knockout offer

 from AMBIT, the wireless specialists.The phone rang in the AMBIT office the other day. It was Halvor Moorshead - the editor of this fine magazine.
"Can you do anything about an FM tuner article ?" he asked. "Of course we can, Halvor. After all, we claim to be the wireless specialists."
And so the project was born. When choosing the specification, we thought we would present a smart, sophisticated and stylish unit - but not so expensive as to be beyond the means of the readers of this magazine. And as this is the first fully documented FM tuner to appear in ETI, we wanted something that would become a standard - like some of the audio projects that have preceeded the International FM tuner.
We feel that we may have been successful in our aim.

The International FM tuner.

EC3302 FET tunerhead $\quad \mathbf{5 5 . 0 0}$ KB4402 IC IF system £1.94 ḰB4400 IC MPX decoder BLR pilot tone filter £2.20 £1.60 7812 UC voltage regulator 99326 preset bank £1.55 WS150 long slider pot 5 way push button unit £3.40 £3.00 £1.50 Cabinet and panel each $£ 2.50$ £10.00

The details of the special offer, strictly limited to orders which are accompanied by the coupon, appeared in the October issue of ETI.

The regular price for the kit of the International FM tuner will be $£ 50.00$ including VAT. Postage $£ 2.50$ per kit.

FOR those constructors who live in fringe areas for $F M$ reception, or those of you looking for a tuner for DX listening, we have two alternative RF/IF strip modules. Ready built by Larsholt of Denmark.

The 7252, featuring dual MOS front end, with four tuned circuits, AGC, AFC, total muting, scan and hold, 0.1\% typ THD. Due to the complexity of the IF system, a stereo decoder is not included in the 7252 .
The 7253 has an FET input, with a four circuit tunerhead. The IF is similar to the circuit published for the internationalbut the pilot tone filter is not integral. 0.5\% typ THD.
7252 £24.00 (ex VAT)
7253 $£ 24.00$ (ex VAT) 993090 deluxe mpx decoder and filter £7.60 (ex VAT) Ambit also sells components:Coils, ceramic and mechanical filters from TOKO inc. Linear ICs: NE560 series PLL, the 78 series voltage regulators, ICs for AM/FM radio and audio, (LM380N $£ 1.00$), and still a few DL704 LED 7 segment displays from our offer last year - 10 for £7.50 ($+8 \%$ VAT).

All prices are quoted EXCLUSIVE of VAT unless otherwise stated. In most instances the rate will be 25%. Postage 20p per order (unless otherwise indicated). A shortform price list and product summary is available free with an SAE. Full catalogue 40 p(inc).
ambit international

Dept. ETI 37 High Street, Brentwood, Essex. CM14 4RH tel:216c29 tlx 995194

news digest

NEW PYROMETER FOR SOLDERING HIGH POWER GaAs LIGHT SOURCE IRONS

The new Litesold Pyrometer is designed as a simple, accurate and convenient means of checking the effective bit temperature of soldering irons. The instrument uses an Iron/Constantin thermocouple in conjunction with a

specially calibrated high quality moving coil meter which incorporates automatic cold junction compensation. The range of the pyrometer is from zero to 500 degrees Celcius with a scale marked every twenty degrens.

Light Soldering Developments Ltd.,

97-99 Gloucester Road, Croydon,

 CRO 2DH.Tungsten lamps have been used for many years for all types of light. sources associated with photocell applications but recently the trend has been to change to Gallium Arsenide Light Sources. These new devices have the advantage of longer life, no filament sag, low drive current, smaller size, faster switching and the ability to match the peak spectral of modern silicon photocells.

A new unit is now available from Photain Controls Ltd., Unit 18, Hangar 3 The Aerodrome, Ford, Sussex which has an improved power output and yet will still operate with low drive current at room temperature. It is a hermetically sealed unit in a metal can with glass window and is designed for printed circuit board applications. It will withstand severe shock and vibration. Price is $£ 2.00$ to $£ 3.00$ each depending on quan tity.

OPTICAL WAVEGUIDE PROVED AT 10K.

It is reported that Corning Glass in its research laboratories have fabricated a 10 kilometer length of optical waveguide having attenuation of 5.4 dB per kilometer at 799-nanometer wavelength and a pulse broadening of only one nanosecond per kilometer; the light source was a laser.

The waveguide demonstrated capability of signal transmission of $100 \mathrm{M} \cdot \mathrm{Hz}$ over 10 km (6.2 miles) without intermediate amplification or enhancement, Corning claim. This is equivalent in capacity to the transmission of 33,000 telephone conversations half across the area covered by the London postal code district, without repeaters, in a cross-sectional area the diameter of a human hair.

It was in the Corning labpratories, in 1970, that scientists first lowered attenuation to $20 \mathrm{~dB} / \mathrm{km}$. This research achievement provided the impetus for the present work around the world in developing optical communications systems.

ETI HEIPING HAND COMPETITION

In last month's issue we gave details about our open competition which is to find solutions for problems facing the deaf.

This closing date for Helping Hand is March 31st 1976 so readers who missed last month's details have plenty of time. Already the number of enquiries has demonstrated considerable interest in this.

ETI and the Royal National Institute for the Deaf (RNID) are co-operating fully in the organisation of this competition.

Three problems are shown on the right: we invite individual readers, clubs, schools, universities, companies, in fact anybody, to develop a practical solution. The rules are as basic as possible and impose virtually no restriction apart from insisting that any Patent Royalties are

waived if the idea is produced.

The prizes, three in all, will be a silver trophy specially designed for ETI. At the close of the competition the magazine will hand over £250 to the RNID to help with development costs. There is a $£ 1.00$ entry fee (payable to RNID) and this will be added to the $£ 250$.

Background information has been prepared to help readers avoid obvious traps and to say what is already known - and has been done in the particular field. This is available from ETI on receipt of a large stamped, self-addressed envelope. This should be sent to:

Helping Hand,
 ETI Magazine,
 36 Ebury Street,
 London, SW1W OLW.

THE PROBLEMS

1 A sick person is being looked after by a deaf person. The deaf person has no useful hearing and requires to know whether the sick person is all right and above all needs to know if the sick person is in a state of distress anywhere in the sick room.
2 A hard of hearing person is attending a College of Further Education and has considerable difficulty in understanding what the lecturer says due to his distance from the lecturer and to the background noise in the room. A device is required to enable him to make the best possible use of his hearing.
3 Many deaf people have great difficulty in using the telephone and in fact many of them cannot use the telephone at all. The development of a writing tablet which would allow them to write a message on a small pad and for this to be communicated over the telephone line to a pad at the other end would have many great advantages. In addition the communication should be two way so that the person can receive a message or an indication that the message has been received.

DIECAST BOXES

West Hyde are now marketing a wide range of diecast aluminium "work boxes" under the BOPAL trade name. The mounting screws are inside the case, but outside the enclosure and, like the captive stainless steel fixing screws for the lid, are outside the gasket area which is recessed to protect the seal against mechanical damage.

There is a wide range of sizes from approx. 0.1 litre to 24 litres. Pads and

earthing screws are provided for fixing terminal strips or mounting chassis. The finish is blue stove enamel hammer. Prices range from $£ 1.39$ tb $£ 52.19$ including postage and packing. West Hyde Developments Ltd. Ryefield Crescent, Northwood, Middlesex, HA6 1NN.

SUPER-HEAVY ELEMENT IS FOUND

Traces of a super-heavy element of atomic number 113 have been found in meteorite fragments by Russian geochemist Georgi Goncharov.

The deduction was made after computer analysis of some thousands of examinations of meteorite material, which showed an excess of Xenon-136.

The report lends strength to the theoretical calculation that an island of stability might exist for elements of atomic number 108 to 126 .

None of these have yet been made or found in nature.

NEW CMOS LOGIC PROBE

A new CMOS logic probe has just been announced by Kurz-Kasch.

Available through Nimrod Electronics Ltd., the units work Grom 5 to 15 volt by automatically keeping the threshold at 30% of supply voltage for a "low" and 70% of supply for a "high".

These new probes maintain the excellent noise immunity built into the CMOS logic. The high input impedance

A new $31 / 2$ digit, 5 -fiunction digital muitimeter from Gould Advance, the DinM7, is aimed at the general-purpose medium-accuracy market. It features very high stability and accuracy, and includes an automatic zeroing feature to eliminate offset errors. Polarity and decimal points are automatically displayed, and overrange is indicated by the display flashing. The DMM7 uses p-MOS LSI for both analogue and digital functions, and is housed in a metal case measuring $63 \times 272 \times 216 \mathrm{~mm}$.
of 2.7 Meg ohm for a high or low state prevents circuit loading or false triggering.

The probes are available with memory option and gating options. Two styles of read-out are offered - an incandescent read-out or an LED digital read-out. The LED style digits uses separate displays to indicate a " 0 " and " 1 " while relative intensities yield duty cycle information.
Nimrod Electronics Ltd. . 85 High St, Billinghurst, West Sussex, RH14 90X.

BROCHURE DESCRIBES FUNDAMENTAL TRANSDUCER TECHNOLOGY

The many different technologies applied to instrument transducers are simply described, outlining their advantages and disadvantages, in the introductory pages of a new brochure from SE Labs (EMI) Ltd.. of Feltham, Middlesex.

Entitled 'A Guide to your transducer requirements' the sixteen-page brochure illustrates the full range of SE's aerospace and industrial devices for the measurement of pressure, displacement, acceleration, vibration, and force.

Copies of the brochure are available from: The Sales Department, SE Labs (EMI) Ltd., Spur Road, Feltham, Middlesex.
D.C. voltages ranges go from $\pm 199.9 \mathrm{mV}$ to $\pm 1200 \mathrm{~V}$ full-scale. The - same ranges are available for a.c. voltage measurements.

Five d.c. current ranges are available from $\pm 199.9 \mu \mathrm{~A}$ to $\pm 1999 \mathrm{~mA}$ full scale and six resistance ranges are included from 199.9Ω to $19.99 \mathrm{M} \Omega$.

The price of the DMM7 is $£ 138$ (plus VAT).
Gould Advance, Instrument Division, Roebuck Road, Hainault, Essex.
\qquad

getting in time

After the Russian revolution in 1917, that country had to lose several days to get their calendar to fall in line with the rest of the world.

It has just become known that they have had to do it again because of the Soyuz-Apollo link-up but on this occasion the difference was not large enough to cause much loss of sleep - in fact one-thousandth of a second!

The Soviet standard clock is accurate to one millionth part of a microsecond but this differed from U.S. time. The exact matching was necessary due to t'le extraordinarily accurate timing of t'ie mission.

ERRATA

DIGITAL DISPLAY - OCTOBER 1975
The transistors shown in the circuit and in the Parts List are wrong. BC178 or similar silicon PNP types should be used, not BC108 as shown. Additionally on $\mathbf{0 3}$ the collector and base are labled wrongly in Fig. 1.

INTERNATIONAL-FM SEPTEMBER

In Fig.4, the component overlay, R20 and R21 are transposed, so are C6 and C7. Both ar hown correctly in the circuit.
 does not need trenalstor radio to oparate.

- Incorporates unique varlcap zuning for extre stabilliy.
- Search head fitted with Faraday screen to oliminate capacitive sffects.
- Loudspeaker or earphone oparation (both supplied).
- Britain's best selling metal locator kit.
- Kit can bo built in two hours using only soldering iron, screwdriver, pliers and side-cutters.
- Excellent sensitivity and stability.
- Kit absolutely complete including drilled, tinned, fibreglass p.c. board with components siting printed on.
- Complete after sales service.
- Weighs only 2202; handle knocks down to $17^{\prime \prime}$ for transport.
Send stamped, self-eddressed envelope for literature.

Plus 60p P\&P
£15.25
Plus 60p P\&P
Plus £1.27 VAT
MINIKITS ELECTRONICS,
6d Cleveland Road, South Woodford, LONDON E18 2AN
(Mail order only)

Wilmslow Audio

THE firm for speakers!

Baker Group 25, 3, 8. or 15 ohm
Baker Group 35, 3. 8, or 15 ohm
Baker Deluxe, 8 or 15 ohm .
Baker Major, 3, 8 or 15 ohm
Baker Regent, 8 or 15 ohm .
Baker Superb. 8 or 15 ohm
Celestion PST 8 (for Unilex)
Celestion MH 1000 horn 8
Celestion MH 1000 horn, 8 or 15 hm
EMI $13 \times 8.150 \mathrm{~d} / \mathrm{c} .8 \mathrm{ohm}$.
EMI $13 \times 8,350,8$ or 15 ohm
EMI 13×20 watt bass
EMI $21 / 4 / 4$ tweeter 8 ohm
EMI $8 \times 5,10$ wall. d / c. rolli/s 8 ohm

Elac $61 / 2^{\prime \prime} \mathrm{d} / \mathrm{c}$ roll/s 8 ohm .
Elac TW4 4" 'weeter
Fane Pop 15 watt $12^{\prime \prime}$.
Fane Pop $25 \mathrm{~T} 12^{\prime \prime} 8$ ohm
Fan Pop 50 wat $12^{\prime \prime} 8 \mathrm{ohm}$
Fane Pop $5512^{\prime \prime \prime} 60$ walt B ohm
Fane Pop 60 wat $15^{\prime \prime} 8 \mathrm{ohm}$.
Fane Pop 100 watl $18^{\prime \prime} 8 \mathrm{ohm}$
Fane Crescendo 12A of B, 8 or is ohm
Fane Crescendo 15.8 or 15 ohm
Fane Crescendo 18,8 or 15 ohm
ane $807 \mathrm{~T} 8^{\prime \prime} \mathrm{d} / \mathrm{c}$. rolls/s. 8 or 15 ohm
Fane $801 \mathrm{~T} 8^{\prime \prime} \mathrm{d} / \mathrm{c}$ roll/s 8 ohm
Goodmans BP 8 or 15 ohm
Goodmans 10P 8 or 15 ohm.
Goodmans 12 P 8 or 15 ohm .
Goodmans $12 P 8$ or 15 ohm.
Goodmans 12 P .08 or 15 ohms
Goodmans $12 \mathrm{P} . \mathrm{G} 8$ or 15 ohms
Goodmans Audiom 2008 or 15 ohm
Goodmans Axtent 1008 ohm
Goodmans Axiom 4028 or 15 ohm
Goodmans Twinaxiom $8^{\prime \prime} 8$ or 15 ohm
Goodmans Twinaxiom $10^{\prime \prime} 8$ or 15 ohm
Kef T27
Kef T15.
Kel B110
Kef B200
Kef B139
Kef DNB
Ket DN12
Richard A
Richard Allan CG $8 T 8^{\prime \prime} \mathrm{d} / \mathrm{c}$ roll/s STC 400 I G super tweeter Baker Maior Module, each Good mans Mezzo Twinkit. pair Goodmans DIN $20,4 \mathrm{ohm}$, each Helme XLK25, pair
Helme XLK 30 , pair
Helme XLK 50, pair
Kefkit 1 , pair
Kei kir
iil
each
Kef kit III, each
Peerless $\mathbf{3 / 1 5}(3$ sp. system) each Richard Allan Twinki1. each Richard Allan Triple 8, each Aichard Allan Triple, each. Aichard Allan Super Triple, each Whartedate Limion 2 kit (pair) Wharfedale Gle ndale 3 kit, pair Wharfedale Dovedale 3 kit, pair
Wharfedale Super 10 AS/DD Wharfedale Super 10 R
Castle Super 8 RS/DD

£8.64

 £10.25 ع13.75 E11.87 ع10.00 £ 18.12 $E 3.75$$$
15.60
$$ E15.60 $£ 2.94$

$£ 9.56$ $E 9.56$
$E 7.69$ E7.69 E3.44 E3.44
E3.44 $£ 3.44$

64.06 $£ 4.06$

$£ 1.75$ 12.95 c13.75 $\begin{array}{r}\text { ع } 25.95 \\ \\ \hline\end{array}$ E34.50 E47.50 | 68.12 |
| :--- | 68.12

65.50 65.50
65.80 65.80
ع13.95
including vat at 25%
Cabinets for PA and HIFi, wadding. Vynair, etc. Send stamp for free booklet "Choosing a Speaker

FREE with all orders over E7 - "HiFi Loudspeaker Enclosures" Book

All unite are guaranteod now and perfect
Prompt despatch
Carriage: Speakers 38p each, 12" and up 50p each weeters and crossovers $25 p$ each, kits $75 p$ each ($£ 1.50$ pair)

WILMSLOW AUDIO
 Dept. ETI

Swan Works, Bank Squere, Wilmslow. Cheshire SK9 1 HF. Tel. Wilmelow 29599 Discount Mifi, PA and Radio at 10 Swan Street. Wilmslow)

magswitch

introduce their brilliant and compratensive range

CLOCRS
The MAGSWITCH philosophy is to affer a range of clocks, kits and modules that are imaginative in concept - exciting to construct - etyled to add prestige to any home or office setting.

BASIC KITS

Designed and engineered for successiul assembly. Versatile and extendable for successtulassembly calendar ~ alarm - radio timer.

MODULES

Build into your hi.fi, embed it into a wall or anywhere.

COMPLETE CLOCKS

Assembled and rested or in kit form. A stunning choice of styles, cases and colours. From the simple to the prestigeous.
Square clocks - cylindrical clocks - Irendy cool clocks - hot rainbow clocks - ultra-modern chrome clocks

Priced from £15.45-c29.95 + 8\% VAT
Let MAGSWITCH convince you with a set of information sheets and full colour photograph of the range. Send $15 p$ (gladly refunded against order) 10 : MAGSWITCH
36 CELL BARNES LANE
ST. ALBANS. HERTS. ALI 5 OY

Available from ETI Book Service

We first saw 'Towers International Transistor Selector when a copy was sent in for review. We were so impressed that we started to supply readers direct. If seems that you share our high opinion as several hundred have been sold to date.

This 142-page book gives comprehensive details of over 10,000 British, IJS, European and Japanese transistors including electronic and mechanical specifications, manufacturers and available substitutes.

INCLUDING POSTAGE

TO: TOWERS INTERNATIONAL TRANSISTOR SELECTOR ETI Book Service
25 Court Close, Bray, Maidenhead, Berks.
Please find enclosed cheque/P.O.
for $£ 3.45$ (payable to ETI)
NAME
ADDRESS

CONSTRUCTOR

BUILD THESE VEROBOARD PROJECTS

FREE UERUBNARDIN OCTOBER ISSUE

VERSATILE LIGHT ALARM

PLUS MANY MORE ARTICLES ON SALE Ist OCTOBER

BROADCAST BAND RECEIVER

BUY NOW AND BE SURE OF YOUR COPY - PRICE 30p

KINTADS
 FOR DETAILS ON ADVERTISING IN MINIADS, OR ELSEWHERE IN ETI, CONTACT BOB EVANS, 01-730 8282

PCB's

Printed Circuit Boards for all ETI projects. Boards also available for other published designs or individual requirements, one-offs or small runs.

HARDWARE

Screws, nuts, washeis, ctc. Sheet aluminium cut to size or in standard packs, plain or punched/drilled to spec. Fascia panels, dials, name plates, etc., in etched aluminium.

Send $10 p$ stamps for Catalogue
RAMAR CONSTRUCTOR SERVICES
MASON'S ROAD
STRATFORD-ON-AVON
WARWICKSHIRE
Tel: Stratford-on-Avon (0789) 4879

VAT INCLUSIVE	TOP SPEC	OEVICES
555 TIMER 8 Pin Dill 2 lor $£ 1.10$	DIGTM CLOCX Aㅏ.51224 CNAP £3. 60 each	BC107 N. P. . 8 for $£ 1.10$
$\begin{aligned} & 741 \mathrm{C} \text { OP. AMP } \\ & 8 \text { pin OIL } \\ & 3 \text { for } \sum 1.10 \end{aligned}$	5558 pin .60 7418 pin .40 7098 pin .30 7400 .16 7404 .16 7413 .30 7473 .30 7475 .52 7447 .98 7490 .63 $8 C 107 / 8 / 9$.14 $2 N 3055$.60	$\begin{aligned} & \text { 3C108 M.P.M. } \\ & 8 \text { for } £ 1.10 \end{aligned}$
IN4001 1 AMP 50 VOLT 20 for $£ 1.10$		$\begin{aligned} & \text { BC109 M.P. . . } \\ & 8 \text { for } £ 1.10 \end{aligned}$
$\begin{aligned} & \text { IN4005 } \\ & \text { I AMP } 400 \text { VOLT } \\ & 15 \text { for } £ 1.10 \end{aligned}$		2N3055 M.P.M. 115w Power 2 for £1. 10
	LATEST UST 10 pence	

EXPRESS ELECTRONIC COMPONENTS
3 BA
KERVILLE RD., WANDSWORTH LONDON S.W. 18
VAT included in all prices
+15 p P\&P Min order $£ 1$

ill Spretirl ofiter

Due to circumstances beyond our control the publication of this book has been delayed by one month and we would like to apologise to readers for this. It does however mean that we are able to extend this offer until the end of October.

The ETI Book Service has made special arrangements with MacMulan's for a pre-publication in November which we feel will be of great interest to ETI readers.

The book 'Linear Integrated Circuit Applications' is by George Clayton. A practical approach is
emphasised throughout and the emphasised throughout and the reader is encouraged to try out the devices for himself.
In this book the applications of operational amplifiers as measurement amplifiers and the use of ter circuits are dealt with Sub sequent chapters are concerned with linear IC.'s, monolithic IC modulators, four quadrant multipliers, timers, waveform generators and PLL. The price inc. P\&P will be E 6.90 for the hardback edition and $E 3.35$ for the paperback but if you use the coupon below, you will be entitled to a pre-publication discount. ETI, reader prices are $£ 5.25$ or $£ 2.65$. Offer closes 31st October, 1975
75

To: LINEAR I.C. APPLICATIONS
ETI BOOK SERVICE,
25 Court Close, Bray, Maidenhead, Berks.
Please find enclosed my remittance for $£ 5.25 / £ 2.65^{*}$ for Linear I.C. Applications. I understand this book will be dispatched on publication in November.
Name .
Address
(*Delete as applicable) Offer closes 31st October 1975.

Greenbank Electronics

FREEI
Data and suggested circuits for AY-5-1 224 and MK 50253 clock chips, details of PCB's and component kits for AY-5-1224, data sheets for LED $0.3^{\prime \prime}$ and $0.6^{\prime \prime}$ displays.
PCB TO SUIT AY-5-1224 clock chip
4 DIGIT KITS
Kit includes: PCB, AY-5-1224 chip, 4 LED digits, transistors, diodes, resistors, capacitors, solder pins (success guaranteed), with $0.3^{\prime \prime}$ digits §9.95 (0.6" high digit version also available)

CLOCK CHIPS
AY-5-1224 4 digit 12/24 hour
MK 50253 4/6 digit alarm clock
LED DISPLAYS (ECONOMY TYPES)
DL-704E 0.3" common cathode
DL-747E $0.6^{\prime \prime}$ common anode
Add 8% VAT to all prices, post, etc. $10 p+$ VAT per order GREENBANK ELECTRONICS (Dept. T9E) 94 New Chester Road, New Ferry Wirral, Merseyside L62 5 AG

Tel: 051-645 3391

LEIGHTON ELECTRONICS CENTRE, 59 NORTH ST. LEIGHTON BUZZARD, BEDS. LU7 7EG. Tel. (05253) 2316.

PRECISION POLYCARBONATE CAPACITORS

 RAOV AC DIMEN RANGE: SIONS PRICEEACH: Axial or Radial 63 V DC Range

(μ)	1	D		Value (F)	$\pm 1 \%$	$\pm 2 \%$	\$5\%
0.14 F	27	12.7	51p	$0.01 \mu \mathrm{~F}$	$66 p$	49p	42p
$0.15 \mu \mathrm{~F}$		12.7	59p	$0.1 \mu \mathrm{~F}$	$66 p$	$49 p$	42p
$0.22 \mu \mathrm{~F}$	33	16	64 p	$0.22 \mu \mathrm{~F}$	$67 p$	30 p	43p
$0.25 \mu \mathrm{~F}$	33	16	67p	$0.33 \mu \mathrm{~F}$	$67 p$	50 p	43p
$0.33 \mu \mathrm{~F}$	33	16	75p	$0.47 \mu \mathrm{~F}$	$67 p$	50p	43p
0.47μ F		19	80 p	$0.68 \mu \mathrm{~F}$	74p	53p	46
$0.5 \mu \mathrm{~F}$	33	19	$87 p$	1.0mF	82 p	62 p	52p
$0.68 \mu \mathrm{~F}$	50.8	19	93 p	$1.5 \mu \mathrm{~F}$	${ }^{89}$ p	$71 p$	$58 p$
$1.0 \mu \mathrm{~F}$	50.8	19	¢1.03	$2.2 \mu \mathrm{~F}$	$96 p$	$75 p$	$61 p$
$1.5 \mu \mathrm{~F}$	50.8	25.4	£1.21	$3.3 \mu \mathrm{~F}$	¢1.15	82 p	68p
$2.0 \mu \mathrm{~F}$	50.8	25.4	¢1.44	$4.7 \mu \mathrm{~F}$	¢1.62	¢1.13	$94 p$
				6.8 \% F	81.96	c1.38	c1.13
				$10 \mu \mathrm{~F}$	¢2.40	¢1.95	¢1.64
				$15 \mu \mathrm{~F}$	£3.22	c2. 39	¢2.24
				$22 \mu \mathrm{~F}$	¢4.28	¢3.68	¢3.08

TANTALUM BEAD CAPACITORS - Values available: 0.1. $32.0 .47,1.0,2.2,4.8,6.8 \mu \mathrm{~F}$ at $15 \mathrm{~V} / 25 \mathrm{~V}$ or 35 V : $10 \mu \mathrm{~F}$ at $16 \mathrm{~V} / 20 \mathrm{~V}$ or $25 \mathrm{~V} ; 22.0 \mu \mathrm{~F}$ at 6 V or $16 \mathrm{~V}: 33.0 \mu \mathrm{~F}$ at 6 V or 10 V : $47.0 \mu \mathrm{~F}$ at 3 V or
GV ; $100.0 \mu \mathrm{~F}$ at 3 V . ALL at tup cach. 10 for 95 p . 50 for $\mathrm{C4}$.

TRANSISTOR

$\begin{array}{lllll}\text { BC } 107 / 8 / 9 & 9 p & \text { BC212/212L } 14 p & \text { BFY50 } & 20 p \\ \text { BC } 147 / 8 / 9 & 10 p & \text { BC } 547 & 12 p & \text { BFY } 51\end{array}$ $\begin{array}{llllll}\mathrm{BC} 14718 / 9 & 10 \mathrm{p} & \mathrm{BC} 547 & 12 \mathrm{p} & \text { BFY51 } & 20 \mathrm{p} \\ \mathrm{BC} 157 / 8 & 12 \mathrm{p} & \text { BC558A } & 12 \mathrm{p} & \text { BFY52 } & 20 \mathrm{p} \\ \mathrm{BC} 182182 \mathrm{~L} 11 \mathrm{p} & \mathrm{BF} 194 & 12 \mathrm{p} & \text { OC71 } & 12 \mathrm{p} \\ \mathrm{BC} 183 / 183 \mathrm{~L} 11 \mathrm{p} & \mathrm{BF} 197 & 13 \mathrm{p} & 2 \mathrm{~N} 3055 & 50 \mathrm{p}\end{array}$ BC184/184L12p

POPULAR OIOOES: All brand new and marked: 1 N 914 $6 \mathrm{p}: 8$ for $45 \mathrm{p}: 1 \mathrm{~B}$ for 90 p ; 1 N9 $168 \mathrm{p} ; 6$ for $45 \mathrm{p} ; 14$ tor $90 p$. 1 S44 5p: 11 for $50 \mathrm{p}: 24$ for £1.00. 1N4 1485 p , 6 for $27 p ; 12$ for 48ρ. LOW PRICE ZENER OIOOES 400 mW : Tol. 45% al 5 mA . Values available: $3 \mathrm{~V}: 3.6 \mathrm{~V}$: $4.7 \mathrm{~V} ; 5.1 \mathrm{~V} ; 6.2 \mathrm{~V} ; 6.8 \mathrm{~V} ; 7.5 \mathrm{~V} ; 8.2 \mathrm{~V} ; 9.1 \mathrm{~V} ; 10 \mathrm{~V}: 11 \mathrm{~V}$ $12 \mathrm{~V}: 13 \mathrm{~V} ; 13.5 \mathrm{~V}: 15 \mathrm{~V}: 16 \mathrm{~V}: 18 \mathrm{~V}$: $20 \mathrm{~V} ; 22 \mathrm{~V}$;
$24 \mathrm{~V} ; 27 \mathrm{~V}: 30 \mathrm{~V}$. All at 7 p each: 6 for 39 p ; 14 for 84 p Special Offer: 100 Zeners for 8550 RESISTORS Hiph Special Offer: 100 Zeners for ©5.50. RESISTORS: High
stadinty, low nouse carbon film $5 \% ; 1 / 2 \mathrm{~W}$ at $40^{\circ} \mathrm{C}$; $/ 3 \mathrm{~W}$ at $70^{\circ} \mathrm{C}$. E. 12 series only, from 2.20 to 2.2 M . All at 1 p each: 8 p for 10 of any one value: 70 p for 100 of any one value. Special Pack: 10 of each value 2.2 K to 2.2 M П (730 resistors) $£ 5.00$ SILICON PLASTIC RECTIFIERS. 1.5A. Brand new wire ended 0027: 100 P.IV. $-7 P \quad(4 / 26$ p). 400 P.I.V. $-8 P$ ($4 / 30 \mathrm{p}$). BRIOGE RECTIFIERS: $21 / 2 \mathrm{~A} \quad 200 \mathrm{~V}-40 \mathrm{p}$. $350 \mathrm{~V}-45 \mathrm{p}$. $600 \mathrm{~V}-55 \mathrm{p}$. SUB-MINIATURE VERTICALPRESETS: 0.1 W only; All at $5 p$ each. $50 \mathrm{n}, 1000$. $220 \mathrm{~N}, 470 \mathrm{n}, 6800 \mathrm{~m}$ ik, $2.2 \mathrm{k}, 4: 7 \mathrm{k}, 6.8 \mathrm{k}, 10 \mathrm{k}$ $15 \mathrm{k}, 22 \mathrm{k}, 47 \mathrm{k}, 68 \mathrm{k}, 100 \mathrm{k}, 250 \mathrm{k}, 680 \mathrm{k}, 1 \mathrm{M}, 2.5 \mathrm{M}$ 5 M .
Please add 15p Post and Packing on all orders: below 5.00 . All export ordere add cost of Sea/Airmail. Please edd 25% VAT to orders. Send Wholesale price lists availabie to bona fide comparies.

MARCO TRADING

Oept. 18. The Old School, Edstaston, Near WEM Salop. Tel. WiXHALL $464 / 465$ STD (094872) (Props: Minicost Trading Lid.)

FOR SALE IN THE WEST COUNTRY

Small, established radio-communication rental business. Genuine reason for sale Yields on rental alone over $£ 9.000$ per annum + installations and sundries, etc. Easily run by one person. Offers of £19.000 and over to Box number ? ?7??

MELEOD SPECIAIS?

McLeod International Ltd. Special Products Division offer design, source, manufacture and consultancy on all types of digital electronic equipment such as Public Display clucks, data recording instruments, stop clocks, etc.
Give us your specification and let us quote you.

McLeod International Limited,
(Special Produats Divisioń)
Sovereign House, Lion Green Road, Coulsdon, Surrey.
Tel: 01-668-8286, Telex: 945832.

EnCAPSULTED MANS POWERED P.C.B. MOUMTIMg lelly stablized POWER SUPPLES inlerchangeable with U.S. IYpes
lized
price I

$$
\begin{array}{ll}
\text { lype } & 0 / P \text { curre } \\
5250 & 250 \mathrm{~mA} \\
5.1 \mathrm{c} & 1000 \mathrm{~mA} \\
15-200 & 200 \mathrm{~mA} \\
12.250 & 250 \mathrm{~mA}
\end{array}
$$

$$
\begin{array}{rr}
5 & 16 \\
5 & 18 \\
15.0 .15 & 23 \\
120.12 & 23
\end{array}
$$

All compenents in the DELPAK range ari preaged and lested Delivery - EX-STOCK
ingut voltage range $103.126 \mathrm{~V}, 200-240 \mathrm{~V}, 210-250 \mathrm{~V}$
requency $50-400 \mathrm{kz}$ all types

- POST \& PACKING 30p each
- all prices plus vat

CASH WITH ORDER
DAVIAN (ELECTRONICS) LIMITED DEPT HS
54. Cardigan Street, Luton, Bedfordshire Telephone: 0582411945
Cables: 'Daviàn' Luton

The Proprietors of British Patent No. 992666 for "Discharge chamber with current lead-in" desire to negotiate for the sale of the patent, or for the grant of licences thereunder. Further particulars may be obtained from Marks \& Clerk, 57-60 Lincoln's Inn Fields, London WC2A 3LS.

 otal order value for postage \& packing.

8 WATT 12 VOLT FLUORESCENT LIGHT KIT Complete Kit including all components, hearsink, channel. tube. etc. ONLY $£ 3.49$ inc. VAT $p \& p$
\qquad
ELECTRONICS DESIGN ASSOCIATES Dept. ET1 9,82
Eath Street, Walsall WSI 3DE. Phone Walsall 33652

PLEASE MENTION ETI WHEN REPLYING TO ADVERTISERS

INDEX TO ADVERTISERS

Ambit 75
Axial Products 81
B.H. Component Factors 80
B.IET. 21
Bi-Pak 4, 5, 38
Bi-Pre-Pak 32
Cambridge Learning 83
Chiltmead 22
Chromasonics 10
Crotton 38. 82
Davian. 81
Decon 82
Eaton Audio 16
E.D.A. 8
Electrovalue 38
Elvins 82
ETI Book Servie 51
Euray Trading 63
Express Components 80
Greenbank Electronics 80
Heathbit. 21
Henry's Radio 34
Island Devices 80
Macks 9
Marco Trading 81
Marshall's 25
Maplin Back Cover
Minikits 78
Ramar 80
Radio Constructor 79
Sales Team 60
Sinclair 28. 29
Sintel 32
Technomatic. 79
Trampus 16
Wilmslow Audio 78

NEW! the decon-dalo 33 PC Quick-Dri etch•resist marker

A unique drafting aid for the electronics engineer enabling him to prepare in minutes a perfect PCB A fine-tipped marking pen charged with free-flowing etch-resist ink new formulation QUICK-DRI ink is ready for etching in just two minutes!
Simply draw the desired circuit onto copper laminated board etch - clean.
The circuit is ready to use

NO MESS - NO MASKING A perfect circuit every time!

Still only $£ 1.00$ for one-off, $£ 4.00$ for six, $£ 8.00$ for twelve VAT and post extra. Available now in every country in Europe.
Decon Laboratories Ltd., Ellen Street,
Portslade, Brighton BN4 1EQ Phone: 0273414371
Name
Address
Please send me further details on the 33 PC Quick-Dri
Post to: DECON LABORATORIES LTD.
FREEPOST
PORTSLADE,BRIGHTON,ENGLAND
(No Stamp Needed) Phone O273 414371
I
\star ELECTRONIC PIANO KIT
\star SYNTHESISER KIT
\star ELECTRONIC ORGAN KITS

There are five superb Electronic Organ kits specially designed for the Dol-Y enthusiast. With the extreme fresibility allowed in deslon. you can bulld an organ to your requirements.
which will compare with an organ commercially buill costing double the price.
\star Portable organ with 4 octave keyboard, $£ 145 \cdot 29$. \star Console organ with 5 octave heyboard, $£ 250.95 \star$ Console- organ with 2×4 octave heyboards and 13 note pedal board, £470.65. Console organ with 2×5 octave keyboards and 32 note pedal board. $£ 680$. $\$$ Console organ with 3×5 octave keyboards and 32 note pedal board, $£ 960+$ W/W Sound Synthesiser Kit. £130. *W/W Touch Sensitive Electronic Piano. £100.
All components can be purchased separately, i.e., semi conductor devices. M.O.S. master oscillators, coils, keyboards, pedal boards, stop tabs, draw bars, key-contacts, etc.
Send 50p for catalogue which includes $5 \times 10 \mathrm{p}$ vouchers or send your own parts list, enclosing S.A.E. for quitation.

ELVINS

ELECTRONIC MUSICAL INSTRUMENTS
Desloners and component suppliers to the musical Industry 12 Brett Road, Hackney, London, E8 1JP. Tel. 01-986 8455

FREE Brochure on New YT®
 Whether professional,
 student, teacher or amateur. the field of electronics can open up a new world for you.

CROFTON don't just sell kits, we offer you a technical back up service to ensure your success
The following is a selection of some of the more popular kits
Mullard CCTV Camera
PE CCTV Camera
PE Rondo Quadraphonic Four Channel Sound
Electronic Ignition
Electronic Flash
PW Tele-Tennis Game
UH.F Modulator
Bench Power Supply
Wobbulator
All ETI Top Projects
Many of the Elektor Projects
TE PC B's for most published projects avallable to or

NOTE: P.C.8's for most published projects available to order

CROFTON ELECTRONICS LTD
Dept C 124 Colne Road. Twickenham, Middx 018981569

$=1-2-1=-2 \mathrm{~K}$
 The people for component bargains

AUDIO MODULES - today's most challenging values!

PRE-AMP/CONTROL MODULES

POWER AMPS
SSIO3
Compact IC amp 3 watts R M.S. Single channel (mono) On P.C.B sice $31 / 2^{\prime \prime} \times 2^{\prime \prime}$ Needs 6 -22V supply $\quad £ 1.75$

SS103-3

Stereo version of above (Twol.Cs.)
£3.25
NEW! SS 105 Mk. 2
A compact all-purpose power amp. Can be run from 12 V car battery. Size $31 / 2^{\prime \prime} \times 2^{\prime \prime}$. Useful 5 w output (mono) into 3Ω using 12 V . Excellent value.
£2.25
SSI 10 Mk. 2
Similar in size 10 SS105 but will give 10 w output into 4Ω
using 24 V (mono) Two in stereo give first-class results

NOW SSI 20
$3^{1 / 2^{\prime \prime}} \times 2^{\prime \prime}$. 20 w R.M.S. inio 4Ω using 34 V
$£ 3.00$
SSI 40
Beautifully designed. Will give up to $40 \mathrm{wRM} S$ into 4Ω Excellent S N.R and transtent response Fine for P A disco use eic Operates from 45 V DC. Two in bridge formation will give 80w R.M S into 8Ω E3.60*

SUNDRY
P.1.PAK - Approx. 170 shor-lead semi-con-
ductors and components PNP NPN diodes
marked Some data supplied 50 p.
UHF 625 lire tuner rotary $\mathbf{£ 2 . 5 0}$.
Rov Counter lyo cars) $(8 \%$; $£ 1.00$.
Books by Bernard's Publications Newnes
Buterworth's etc

NEW RANGE TRANSISTOR \& COMPONENT PACKS

SS100
Active tone control unit to provide Bass and Treble lacilites SS 101
Pre-amp for stereo ceramic cartridges radio and tape $\mathbb{£ 1 . 6 0}$ SS102
Preamp for low-output stereo magnetic cartridges radio
BUILD A STEREO F.M. TUNER FM Tuners
SS20i
Font End assembly Ganged iuning with well engineered low-motion geared drive in robust housing. A. F.C lacility Excelient sensitivity. $88-108 \mathrm{mHz}$ £6.25 SS202 F Slage (with IC) Designed to use with SS201 uses $1 C$ lhecked before desparch 5.25

SS203

Stereo Decoder Designed essentially for use with SS201 and SS202. this excellent decoder can also make a stereo uner of almost any single channel FM tuner Supplied ready aligned A L.E.D can easily be fitted $\mathbf{£ 5 . 6 2}$

SAVE $£ 5$ ON THE S/S TUNER

By buying Units SS 201. SS 202 and SS. 203 together the price is $\mathbb{E} 1212$ - a genuine saving of C 5 on this very efficient tuner $\mathbf{E 1 2 . 1 2}$

Ready-built	£9.93
and tested	
In kit form	$£ 7.93^{*}$

TV SIGNAL STRENGTH METER Complete kit as describe
plus VAT at current rate.

TERMS OF BUSINESS

: Wo vat on overseas orders. POST a PACKNG Aoc 22p for uk ordars. Mmimum mail order acceplable.- £1. Overseas orders, add ह1 lor pastage Any difterence will be crediled or hen every emort is mace to ensure carrectiness of information
222224 WLST MOMD, WLSTCLIFF-ON-SEA, ESSEX SSO SDF. TELEPHOME: SOUTHEND (0702) 46344.

Type
AON $\triangle O N 2$
$\triangle O P 1$ olarity NPN
NPN PNP PNP 90 WATT SILICON* TyO \quad Polarit
GONI NPN $\begin{array}{ll}\text { 9ON1 } & \text { NPN } \\ \text { 90N2 } & \text { NPN }\end{array}$ 90P1 PNP
$\begin{array}{ll}\text { Gain } & \text { VCE } \\ 15 & 15 \\ 40 & 40 \\ 15 & 15\end{array}$ Price
$20 p$ $20 p$
$30 p$
$20 p$
$30 p$

To BI-PRE-PAK, 222-224 WEST ROAD WESTCLIFF-ON-SEA, ESSEX

Please send

ADORESS

TP SELECTION

TP5
TP6
TP7

TPI

P19 100 diodes, miked Germanium Gold bonded etc. Marked Un Twarked
TP23 Twenty NPN Silticon uncoded 2N696 2N1613 BFY50/2 mentary to TP24 4 etc Comple TP24 Twenty PNP Silicon, uncoded TP29 8 power diodes 400 V 125 A

UT SELECTION

UT1 50 PNP's Germaniunt AF \& RF
UT2 150 Germanium diodes. min glass
UT4 100 silicon diodes min glass. sumilar to IN9I4 IN916
UT5 $40 \quad 250 \mathrm{~mW}$ Zener diodes OAZ24 range average 50% good

UT7 30 Silicon rectifiers 750 mA mixed voltages. Jop Hals. etc
UT9 40 NPN Silicon planers Similar to 2 N3707.11 range low noise amps
UT12 25 2N3702/3 Transistors. PNP

CP SELECTION
CP1 Mised bag of capacitors (Approx 150 - sold by weighi)

CP2 200 (approx) Resistors. va, iuna types values watis (Sold by weignt)

CP3 40 Wire wound resithors. mixed
CP4 12 pots - pre-set w/wound carbon. dual. with/withou switches - all mixed

CP7 Heat sinks. assoned To fit SO. 2 (OC72) TO. (AC 128) etc

ALL ABOVE PACKS - 60p EACH.TP Tested \& Guaranteed: UT Untested unmarked CP Compone
CAPACITOR DISCHARGE IGNITION KIT SS300 POWER SUPPIY STABILISER

Simple to assemble and fit Improves car periormance saves on fuel P/P 30p	£7.50*	Add this to your unstabilised supply to obtain a steady workng voltage from $15-50 \mathrm{~V}$ for your audio system, workbench, etc. Money

BI-PRE-PAK X-HATCH GENERATOR MK. 2
saving and very reliable
£3.25

Four-pattem selector switch

PLASTIC POWER TRANSISTORS

More than just a catalognue! PROJECTS FOR YOU TO BUILD

4-digit clock, 6 -cigit clock, 10 W high quality power amp., High quality stereo pre-amp., Stereo Tuner, F.M. Stereo decoder, etc., etc.

CIRCUITS . . Frequency Doublers, Oscillators, Timers, Voltmeters, Power Supplies, Amplifiers, Capacitance Multiplier, etc., etc.
Full details and pictures of our wide range of components, e.g. capacitors, cases, knobs, veroboards, edge connectors, plugs and sockets, lamps and lampholders, audio leads, adaptor plugs, rotary and slide potentiometers, presets, relays, resistors (even 1\% types!), switches, interlocking pushbutton switches, pot cores, transformers, cable and wire, panel meters, nuts and bolts, tools, organ components, keyboards, L.E.D.'s, 7 -segment displays, heatsinks, transistors, diodes, integrated circuits, etc., etc., etc.
Really good value for money at just 40p.

The 3600 SYNTHESISER

The 3600 synthesiser includes the most popular features of the 4600 model, but is simpler. Faster to operate, it has a switch patching system rather than the matrix paichboard of the larger unit and is particularlv suitable for live performance and portable use.
Please send
S.A.E. for
our price
list.

GRAPHIC EQUALIZER

A really superior high quality stereo graphic equaliser as described in Jan. 1975 issue of ETI. We stock all parts (except woodwork)
including all the metal work
 drilled and
printed as required to suit our components and PCB's.
S.A.E. for price list or complete reprint of article - price 15p.

The 4600 SYNTHESISER

We stock all the parts for this brilliantly designed synthesiser, including all the PCBs, metalwork and a drilled and printed front panel, giving a superb professional finish. Opinions of authority agree the ETI International Synthesiser is technically superior to most of today's models. Complete construction details in our booklet available now, price $£ 1.50$, or S.A.E. please for specification.

NO MORE DOUBTS ABOUT PRICES

Now our prices are GUARANTEED (changes in VAT excluded) for two month periods. We'll tell you about price changes in advance for just 30 p a vear (refunded on purchases). If you already have our catalogue send us an s.a.e. and we'll send you our latest list af
GUARANTEED prices. Send us 30 p and we'll put you on our mailing list - you'll receive immediately our latest price list then every
two months from the starting date shown on that list you'll receive details of our prices for the next GUARANTEED peitiod before the prices are implemented! - plus details of any new lines, special offers, interesting projects - and coupons to spend on components to repay your 30p
NOTE: The price list is based on the Order Codes shown in our catalogue so an investment in our super catalogue is an essential first step.
Call in at our shop, 284 London Road, Westcliff.on-Sea, Essex. Please address all mail to

ELECTRONIC ORGAN

Build yourself an exciting Electronic Organ. Our leaflet MES51, price 15p, deals with the basic theory of electronic organs and describes the construction of a simple 49 -note instrument with a single keyboard and a limited number of stops. Leaflet MES52, price 15p, describes the extension of the organ to two keyboards each with five voices and the extension by an octave of the organ's range
 Solid-state switching and new footages along with a pedal board and a further extension of the organ's range are shown in leaflet MES53 priced at 35p.

[^0]: At the time of this issue going to press, the British expedition to climb the South.West face of Everest is well under way. With them they took two special solar panel arrays for recharging the batteries used by the film crew. These were made by Ferranti.

[^1]: ALLOW 14 DAYS FOR DELIVERY

[^2]: Applications should reach us before October 10 with C.V. Prospective applicants may telephone the Editor for further details but this must be followed by written application.

