ELECTRONIC IGNITION
QUAD & DOUBLE QUAD
TRAFFICATOR FLASHER
TTL SUPER-TEST
WIN-DICATOR
AUTO AMP

SCIENCE IN ART

HI-FI . . . CONSTRUCTION . . . COMMUNICATIONS . . . DEVELOPMENTS

ETI 3600 SYNTHESISER

ETI/BI-PAK
5 IN 1 OFFER
£3.95 semiconductor packs for just £1 each - see page 38

ELECTRONIC IGNITION
QUAD & DOUBLE QUAD
TRAFFICATOR FLASHER
TTL SUPER-TEST
WIN-DICATOR
AUTO AMP

SCIENCE IN ART

HI-FI . . . CONSTRUCTION . . . COMMUNICATIONS . . . DEVELOPMENTS
HENRY'S RADIO

You can build the Texan and Stereo FM Tuner

**TEXAN** 20 WATT IC STEREO AMPLIFIER**

Features glass fibre PCB board. Gardeners low field transformer. 5 ICs. TR power supplies for each stage. Built-in 150 watt power amplifier. Designed by engineers for Henry's and P.W. 1170sound.

**AMPLIFIER CIRCUIT PANELS**

- **S100TR** 10050v plus transistor tester
- **THL33D (L33DX)** 2KlV/2000A robust integrated circuit panel
- **U4313 20KS2V**
- **U4312 20KS2V**
- **U4311 20KS2V**
- **U4310 20KS2V**
- **U4309 20KS2V**
- **U4308 20KS2V**
- **U4307 20KS2V**
- **U4306 20KS2V**
- **U4305 20KS2V**
- **U4304 20KS2V**
- **U4303 20KS2V**
- **U4302 20KS2V**
- **U4301 20KS2V**
- **U4300 20KS2V**

POWER SUPPLIES

- **S600** 15 volt 5A regulator
- **S500** 9 volt 5A regulator
- **S400** 5 volt 5A regulator
- **S300** 3 volt 5A regulator
- **S200** 2 volt 5A regulator
- **S100** 1 volt 5A regulator
- **S000** 0 volt 5A regulator

**S1007 5 volt regulator**

- **S1006 4.5 volt regulator**
- **S1005 4.35 volt regulator**
- **S1004 4.2 volt regulator**
- **S1003 4.05 volt regulator**
- **S1002 3.9 volt regulator**
- **S1001 3.75 volt regulator**
- **S1000 3.6 volt regulator**
- **S999 3.45 volt regulator**
- **S998 3.3 volt regulator**
- **S997 3.15 volt regulator**
- **S996 3.0 volt regulator**
- **S995 2.85 volt regulator**
- **S994 2.7 volt regulator**
- **S993 2.55 volt regulator**
- **S992 2.4 volt regulator**
- **S991 2.25 volt regulator**
- **S990 2.1 volt regulator**
- **S989 1.95 volt regulator**
- **S988 1.8 volt regulator**
- **S987 1.65 volt regulator**
- **S986 1.5 volt regulator**
- **S985 1.35 volt regulator**
- **S984 1.2 volt regulator**
- **S983 1.05 volt regulator**
- **S982 0.9 volt regulator**
- **S981 0.75 volt regulator**
- **S980 0.6 volt regulator**
- **S979 0.45 volt regulator**
- **S978 0.3 volt regulator**
- **S977 0.15 volt regulator**
- **S976 0 volt regulator**

**SCINCLAIR MODULES AND KITS**

- **S400** 10 volt 300mA regulator
- **S300** 5 volt 300mA regulator
- **S200** 2 volt 300mA regulator
- **S100** 1 volt 300mA regulator
- **S000** 0 volt 300mA regulator

**TEST EQUIPMENT MULTIMETERS (carr/packing 35p)**

- **U4324 200KV with case**
- **U4313 200KV with case**
- **U4312 200KV with case**
- **U4311 200KV with case**
- **U4310 200KV with case**
- **U4309 200KV with case**
- **U4308 200KV with case**
- **U4307 200KV with case**
- **U4306 200KV with case**

**HENLEY ELECTRIC FM TUNER**

Features capacity diode tuning. All transistors and module fully transistorized. Supplied with circuits and spec. data. BeClOire only 16 resistors and capacitors and a switch to complete. Supplied with circuits and spec. data.

**NEW SPECIAL PURCHASE**

- **Mullard type LP 1179 and LP 1171 AM/FM tuner modules**
- **LP 1179**
- **LP 1171**

**EMI SPEAKERS**

- **13-15 Ohm speakers**
- **10 Ohm speakers**
- **5 Ohm speakers**
- **2 Ohm speakers**

**AMPLIFIERS WITH CONTROLS**

- **E1210**
- **E1211**
- **E1212**
- **E1213**
- **E1214**
- **E1215**
- **E1216**
- **E1217**
- **E1218**
- **E1219**
- **E1220**

**EM AND AM TUNERS AND DECODERS**

- **E2311**
- **E2312**
- **E2313**
- **E2314**
- **E2315**
- **E2316**
- **E2317**
- **E2318**
- **E2319**
- **E2320**

**PREAMPLIFIERS**

- **S1000**
- **S1005**
- **S1006**
- **S1007**

**SPEAKERS**

- **S2005**
- **S2002**
- **S2001**
- **S2000**

**POWER SUPPLIES**

- **S6000** 15 volt 5A regulator
- **S5000** 9 volt 5A regulator
- **S4000** 5 volt 5A regulator
- **S3000** 3 volt 5A regulator
- **S2000** 2 volt 5A regulator
- **S1000** 1 volt 5A regulator
- **S0000** 0 volt 5A regulator

**SCINCLAIR SPECIAL PURCHASES**

- **S1007 5 volt regulator**
- **S1006 4.5 volt regulator**
- **S1005 4.35 volt regulator**
- **S1004 4.2 volt regulator**
- **S1003 4.05 volt regulator**
- **S1002 3.9 volt regulator**
- **S1001 3.75 volt regulator**
- **S1000 3.6 volt regulator**
- **S999 3.45 volt regulator**
- **S998 3.3 volt regulator**
- **S997 3.15 volt regulator**
- **S996 3.0 volt regulator**
- **S995 2.85 volt regulator**
- **S994 2.7 volt regulator**
- **S993 2.55 volt regulator**
- **S992 2.4 volt regulator**
- **S991 2.25 volt regulator**
- **S990 2.1 volt regulator**
- **S989 1.95 volt regulator**
- **S988 1.8 volt regulator**
- **S987 1.65 volt regulator**
- **S986 1.5 volt regulator**
- **S985 1.35 volt regulator**
- **S984 1.2 volt regulator**
- **S983 1.05 volt regulator**
- **S982 0.9 volt regulator**
- **S981 0.75 volt regulator**
- **S980 0.6 volt regulator**
- **S979 0.45 volt regulator**
- **S978 0.3 volt regulator**
- **S977 0.15 volt regulator**
- **S976 0 volt regulator**

HENRY'S Radio

Electronic Centres
404-406 Electronic Components & Equipment 01 402 0331
309 PA Disco Lighting High Power Sound 01 723 0963
303 Special offers and bargains store

Hi-Fi and Electrancs Centres
9 am - 6 pm

Prices correct at time of preparation. Subject to change without notice. £ & O.E
MAY 1975

main features

SCIENCE IN ART
Science can prove that the Raphael shown on the cover is an original.

UNDERSTANDING COLOUR TV—PART 4
Caleb Bradley explains the PAL Colour Signal

ELECTRONICS IT’S EASY—PART 15
Simple Power Supplies

projects

ELECTRONIC IGNITION SYSTEM—FINAL PART
Constructional details for our CDI/tacho/rev limiter system

TTL SUPERTESTER
IC tester/logic trainer/breadboard unit/digital trouble shooter

ETI 3600 SYNTHESIZER
ETI’s Portable Music Synthesiser

DOUBLE QUAD
What’s better than a Quad ESL Speaker?

TRAFFICATOR FLASHER
Reliable solid state flasher unaffected by load and voltage changes

ELECTRONIC WIN-DICATOR
To indicate who pressed the button first

LOW BATTERY WARNING
A device to give a flashing signal when the battery starts to go

AUTO AMP
Use a portable cassette or radio in the car...to give 5W of audio

main features

QUAD ESL LOUDSPEAKERS
After 20 years they are still ahead of the field

news & information

NEWS DIGEST

PREVIEW OF JUNE’S ETI

INPUT GATE

ELECTRONICS TOMORROW

TECH-TIPS

ETI—BI-PAK FIVE-IN-ONE OFFER
Pick a pak for £1 and save £2 or over on usual prices; and a special bonus offer
Go quad for around £50
(including the speakers!)

Sinclair Project 80 hi-fi modules

If you’ve thought of switching to quad, you’ve probably found it an expensive process. Do you part with your existing stereo amp – which probably cost you a lot in the first place – and replace it with an even more costly quad amp? Or do you buy an expensive add-on kit – often costing as much as £90 even without the extra speakers?

With Sinclair Project 80 hi-fi modules, you can keep your existing amplifier... add a quad decoder, two power amps and a power supply unit... a couple of Sinclair Q16 speakers and you’ve got a high-quality, true quad system which will have cost you only £50 or so to convert!

How does Sinclair Project 80 work?
Project 80 is a comprehensive set of hi-fi modules or sub-assemblies. Amps... pre-amps... FM tuner... quad decoder... control units... everything you need to assemble hi-fi units. They’re all designed to look alike and are all completely compatible with each other. Simply decide on the specification of the unit (stereo or quad) you want to build... buy the necessary modules... connect them up and house them.

You can even build a quad amp entirely from Project 80 modules. Two power amplifiers, a control unit and a power supply give you a stereo amp for as little as £31.80 plus VAT. The necessary add-on quad modules cost only £36.80 + VAT. Together, they make up a true hi-fi quad amp for only £68.60 + VAT!

And whenever you choose, you can add extra Project 80 refinements. An FM tuner... a scratch/rumble filter... higher-output power amps – Project 80 is an enjoyable way to develop your own hi-fi system!

Is it difficult to build?
Not at all. All Project 80 module circuitry is complete in itself – all you have to do is connect the external wiring to numbered solder points.

And if you’re not so hot with a soldering iron? Use Project 805 kits. Project 805 uses Project 80 modules, but provides special clip-on tagged-wire connections – positively no soldering! There are two Project 805 kits – the basic 805 stereo amplifier kit, and the 8050 quad conversion kit.

8050 can be used to convert a Project 80 or 805 stereo system, or your existing stereo system.

You’ll find more details and some system suggestions opposite.

ELECTRONICS TODAY INTERNATIONAL -MAY 1975
Project 80 hi-fi modules - the easy way to true quadraphonics.

Project 80 SO quadraphonic decoder
Combines with and exactly matches Project 80 control unit for true quadraphonics. This unit is based on the CBS SO system and is a complete quadraphonic decoder, rear channel pre-amp and control unit.

Specification
19 in x 2 in x 3 in. Connects with tape socket on Project 80

Project 80 power amplifiers
Two different amplifiers, designed to be used separately or combined, with Project 80 modules or as add-ons to existing equipment. Protected against short circuits and damage from misuse.

Z40 Specification
12 in x 5 in x 3 in. 12 transistors. Input sensitivity: 100 mV. Output: 25 W RMS continuous into 8 ohm. Frequency response: 10 Hz to 20 kHz. Distortion: 0.1%. S/N ratio: 60 dB. Rated output: 100 W. Phase shift network: 90 - 100 W to 3 kHz. Operating voltage: 27V - 35V. Price: £18.95 + VAT

Z60 Specification
12 in x 5 in x 3 in. 12 transistors. Input sensitivity: 100 mV. Output: 125 W RMS continuous into 8 ohm. Frequency response: 10 Hz to more than 20 kHz. Distortion: less than 0.1%. S/N ratio: 60 dB. Rated output: 250 W. Phase shift network: 90 - 100 W to 3 kHz. Operating voltage: 27V - 35V. Price: £74.55 + VAT

Project 80 power supply units
Range of power supply units to match desired specification of final system.

PZ5 Specification
Unstabilised. 30 V output. Including mains transformer. Price: £5.95 + VAT

PZ6 Specification
Stabilised. 30 V output. Including mains transformer. Price: £8.95 + VAT

PZ7 Specification
Stabilised. 30 V output. Including mains transformer. Price: £74.55 + VAT

Project 80 SO quadraphonic add-on kit
Converts your existing stereo hi-fi system to quad using solderless connections. Contains following Project 80 units:

Project 80 SO quad decoder rear channel pre-amp and controls unit
Sinclair O16 speaker

Sinclair Original and uniquely designed speaker of outstanding quality.

Specification

Quad system suggestions from Sinclair

1. Add-on quad to existing system:
12 W per rear channel RMS
Quadrophonic decoder + 2 x Z40 power amps + 1 x PZ6 power supply + (existing stereo amplifiers) + (2 x existing speakers) + (turntable). Total Project 80 cost: £57.70 + VAT.

2. Add-on quad to existing system:
25 W per rear channel RMS
Quadrophonic decoder + 2 x Z60 poweramps + 1 x PZ6 power supply + (existing stereo amplifiers) + (2 x existing speakers) + (turntable). Total Project 80 cost: £92.30 + VAT.

3. Quadraphonic system built from scratch:
12 W per channel RMS
Pre-amp/control unit + quadrophonic decoder + 4 x Z40 power amps + 2 x PZ6 power supply + 4 x Q16 speakers + (turntable). Total Project 80 cost: £110.40 + VAT.

What more can we tell you?
All Project 80 modules are backed by the remarkable no-quibble Sinclair guarantee. Should any defect arise from normal use within a year, we'll service the modules free of charge. And our Consumer Advisory Service is always available if you run into any problems. You'll find Project 80 at stores like Laskys and Henry's - but before you look, why not get really detailed information? Clip the FREEPOST coupon for the fully-illustrated Project 80 folder - today!

Sinclair Radionics Ltd,
London Road, St Ives, Huntingdon, Cambs., PE17 4HJ.
Telephone: St Ives (0480) 64646.

Address
Name

Please print FREEPOST - no stamp needed.
NEWS DIGEST

SINCLAIR OXFORD

Sinclair have introduced a new range of calculators featuring mains/battery operation. Initially three models are available in the 'Oxford' range, the 100, 200 and 300 at £13.99, £21.55 and £32.35 including VAT. The launch of the new range is hoped to increase Sinclair's share of the UK calculator market to 35% by the end of the year.

The 'Oxford' 100 has the same functional specification as the 'Cambridge' (4 function, constant and floating decimal point). A percentage key and full functional memory are added for the 'Oxford 200'. The 'Oxford 300' is an advanced scientific calculator with algebraic logic, 4 arithmetic functions, full memory, constant, Log and e^x, trig and inverse trig functions which are available in degrees or radians, square root, reciprocal and pi. It gives the added facility of either floating point or scientific notation for both number and entry result.

Power is from a 9 volt PP3 battery which gives around 10 hours use or direct from the mains via a Sinclair adaptor which will cost you another £3.19 (inc. VAT).

VIDEO ON SOUND TAPES

A prototype video system has been built up by a computer specialist of an American company, SRI of Menlo Park, CA94025, USA; The system uses one track of audio tape to record computer generated text and graphics (in the form of line drawings) while the other track carries the commentary of an audio-visual programme.

The display is on a computer terminal, but the computer itself is not used during playback. The developer of the system believes the principle application will be in education. Audio tape costs about a tenth of what video tape costs, but a computer terminal is much more expensive than a video player or film projector.

Perhaps when Ceefax/Oracle is established we will have educational audio visual tapes and a tape input on the decoder which will be suitably modified.

LISTEN TO THE COSMONAUTS

The latest newsletter of the "Link Scheme" (for schools and the electronics industry) carries an interesting piece of information from the Senior Science Master of Kettering Grammar School. The details of the voice communication between the cosmonauts and their ground control are given. The carrier frequency is 121.75MHz and modulation is broadband FM. A 3-element Yagi at an elevation of 59° and an azimuth of 109° should be all that is needed to pick up the cosmonauts as they come over the horizon. The call word used for voice communication is "Zarya" which is Russian for 'Dawn'.

School teachers interested in the Link Scheme should contact Peter Noakes at the Department of Electrical Engineering Science, University of Essex, Colchester, CO4 3SQ, Essex.

FIVE-KILOWATT, SOLID-STATE TRANSMITTER

The first five-kilowatt, totally solid-state, AM broadcast transmitter is "on the air" at WIND radio station, Chicago. Westinghouse Electric Corporation developed the solid-state transmitter and claim that it is easier to maintain, lighter, smaller, more efficient, safer and simpler than current valve-type transmitters. The WIND transmitter has an excellent frequency response between 30Hz and 15kHz and very low audio distortion.

ARTIFICIAL 'NORTHERN LIGHTS'

An Aurora Borealis, lasting several minutes, was recently created artificially by Soviet and French scientists. A French rocket, carrying a Soviet miniature accelerator, discharged particles along a line of magnetic force running from the Indian Ocean to the Soviet Arctic. The purpose was to gain a better understanding of the Earth's Magnetosphere to enable better space-weather forecasting the prediction of radio conditions.

LEDs FOR FIBRE OPTICS

Plessey have introduced high radiance gallium arsenide IR LEDs for use with optical fibre. Modulation rates up to 80MHz can be achieved using one of the microwave packages available. From Plessey Optoelectronics & Microwave, Wood Burcote Way, Towcester, Northants.

PIEZOELECTRIC HEADPHONES

The Pioneer SE-700 are the first high fidelity headphones to use the piezoelectric effect. As the audio signals reach the headphones, the driver elements of ultra-thin aluminium-coated high-polymer film expand and contract accordingly, creating "breathing" motion. Tonal characteristics are comparable to those of the electrostatic type headphones, but the SE-700 require no matching transformer.

GLOBAL EXPAND MAIL ORDER

Global Audio, the discount Hi-Fi people, have moved their entire mail order operation to new premises at 50 Stamford Hill, London, N16. The move will double their warehouse facilities and will enable Global to expand their mail order service for Hi-Fi equipment and tape cassettes to help the enthusiast in the provinces.
CARTRIDGE PERCUSSION UNIT

Bandmaster Limited of Gloucester Street, Glasgow, have designed a rhythm unit called the Powerhouse which uses multi-track continuous tape loop to produce multi bar synchronised “live” percussion rhythms.

The Powerhouse features an electronic speed governor, two automatic rhythm change selectors, two mute mechanisms, a monitoring facility and a mix control. A musician with a fixed pitch instrument can tune the tapes to play in perfect pitch by adjusting the speed control.

When a musician wishes to change rhythms or to mute the machines he can do so either by using a button on the front of the Powerhouse or by using the special rhythm control foot pedal. Two recordings of the same rhythm (one basic, one complex) can be combined with the mix control. The equipment provides mono or stereo output and can be used with standard cartridges as a hi-fi 8-track player.

32 rhythms come with the machine which will cost about £140.00.

NI-CAD CHARGER FOR 85c

In the US a range of wall-plug Battery Chargers, for charging 2, 3 or 4 cell ni-cad batteries, has been announced with a unit price of 85c. This is felt to represent an industry breakthrough.

These chargers are rated for 14 to 16 hour charging, and are provided with a customer’s or manufacturer’s hot-stamped logo. They are produced by Rowe Industries, Inc., Horseblock Road, Yaphank, N.Y. 11980, USA.

DOLBY IN THE CAR

The first car cassette player with Dolby noise reduction has been marketed by Pioneer. The KP-301 features an automatic reverse cassette deck (which eliminates the need to take out the cassette and turn it over at the end of one side), an FM Stereo Radio and the Dolby ‘B’ system.

The player costs £130.30 from Autocar Electrical, Chantry Road Estate, Kempston, Bedford, MK42 7SD.

BEE’S RADIO?

Scientists in Russia are investigating the hypothesis that bees communicate by electromagnetic waves. It has been established that there is a weak electric field around flying bees. A moving electric charge will produce electromagnetic waves. So maybe these play a role in communication.

Recorders have been set up in bee hives to study the changing pattern of the electric fields and to record the sounds made by a family of bees.

CEEFAX & ORACLE = TELETEXT

A term has been coined to describe the technology behind the Ceefax and Oracle services being developed by the BBC. Defined more generally as data transmission by television, the term ‘teletext’ also covers the systems used on cable TV in the U.S. to give up-to-date financial information.

The Business Enterprises Division of the Financial Times have just published a book, “Teletext: Data Transmission by Television”, which analyses the systems used and looks at applications and prospects. The main points made in the book are that teletext allows the viewer wide selection and that the data can be up-dated as soon as news is received.

The cost of the 180 page book is £80 and the address is 10 Bolt Court, Fleet Street, London, EC4A 3HL.

MICROPROCESSORS MAY GIVE 40% EXTRA MPG

Robert W. Sarnoff, the Chairman of RCA, says that, on the basis of preliminary tests it is estimated that a microprocessor will boost mileage by up to 40 per cent in standard size and large cars. Working with the automotive industry the electronics industry should be able to mass produce suitable microprocessors by the millions at a cost of around $100 a unit.

Installed in a car with the appropriate link-ups, it will automatically adjust both choke and throttle for maximum starting efficiency; it will run the engine at the right fuel mixture for highest fuel savings, and automatically shift gears at precisely the right time for optimum fuel efficiency.

The same functions of sensing and control can operate anywhere that energy (such as light and heat) is used - from a single room in a house or office building to an entire factory.
The latest catalogue from Heathkit is now available, free, from Heath Ltd, Bristol Road, Gloucester GL2 6EE. The catalogue introduces 15 new kits.

The new Colour Organ is a three channel sound-to-light display for £48.80 (inc. VAT & UK delivery).

There is an Electronic Workshop with 35 circuits to build up, for £24.50 (inc. VAT & UK delivery).

For the motorist Heathkit have a new gadget for £7.80. This is a Windscreen Wiper Delay which provides a 5 to 30 second interval between wipes.

There are six new audio products, starting with a Dolby Cassette Deck for £149.90. The other hi-fi products are what Heathkit call their Valu-System Audio Line. These are an AM/FM Stereo Receiver, an AM/FM Stereo Receiver with 8-track Player, a 4 channel Amplifier with 8-track Player and a 10W speaker system. Prices are £78, £99.80, £139, £99.80 and £21.60 (pair). The amplifiers give 4.5W rms per channel.

There are kits for the radio enthusiast, too. Two are for CW operators, the beginner can spend £7 and build up a Code Practice Oscillator while the CW fan can build a solid state Electronic Keyer for £29.70. For £26.50 you can build a solid state Dip Meter to cover 1.6 to 250MHz.

Other test equipment includes a Portable Digital Multimeter (£118.80) and a new Oscilloscope (£176). For measuring TV tube voltages there is a new 40kV High Voltage Probe Meter kit for £12.00.

Finally a kit for the boat builder - a Digital Radio Direction Finder kit for £124.

The Bowmar MX120 Superbrain is a rechargeable 8-digit calculator with a memory which converts to a 5-digit mantissa with 2-digit exponent scientific calculator providing 11 additional scientific functions.

A conversion key converts the 8-digit display into the scientific version at the press of a button and also reverses the process. The MX120 comes complete with rechargeable battery and charger unit for £39.95 including VAT. Bowmar Instrument Ltd., 41-45 High Street, Weybridge, KT13 8BB, Surrey.

Rapid inflation is affecting ETI in the same way as other publications. Continuing increased sales have enabled us to put off an increase for several months after many other magazines.

The next issue, June 1975, will go up by 5p to 30p. We hope that readers will still consider it good value for money.

Subscriptions are unaffected by this rise and remain at £4.25 (UK) and £4.75 (Overseas, Surface Mail).

Electronics Design Associates have introduced two new models as a development of their "Sparkrite" system. The new systems, the "Sparkrite GT" and the "Sparkrite GT3". These new systems offer a new feature; the accessory output socket.

This is a high voltage AC supply, taken from the ignition supply, to power two optional extras: the Sparkrite GT 8 watt Fluorescent Inspection Light and the "Sparkrite GT" Xenon Dynamic Timing Light.

As well as the features of the GT model, the GT3 has two more extras: a light which comes on when the contact breaker opens for static timing, and an electronics system for burning dust and oil off the points without causing pitting or wear. The prices are £19.87 inc. VAT for the Sparkrite GT ignition, £23.95 for the Sparkrite GT3 ignition (neg earth only) £4.30 for the Sparkrite GT inspection light, and £8.60 for the Sparkrite GT timing light. from Electronics Design Associates, B2 Bath Street, Walsall, WS1 3DE.
Bargains in Semi-Conductors, components, modules and equipment.

VERSATILE DEPENDABLE

TRANSISTORS
IN PACKS, ALL AT 50p EACH

- TESTED AND GUARANTEED
- UNMARKED & UNTESTED IN BARGAIN QUANTITY PACKS

PLASTIC POWER TRANSISTORS
In two ranges
40W and 80W. Silicon Plastic Power Transistors available. Sold under our dependable Tested and Guaranteed terms. Unbeatable value at these prices. For individual or quantity users.

CROSS-HATCH GENERATOR MK.2
Indispensable for aligning TV. Now with plug-in ICs and more sensitive sync. pick-up circuit. Reinforced fibreglass case, Pattern selector switch. Uses 3 U.2 type batteries internally.

REPORTED AUDIO IC (numbered SL40745) needs only two capacitors, modules & equipment.

OTHER ITEMS
LM324 AUDIO IC (numbered SL40745) needs only two capacitors and two pots to make an efficient 3 watt audio amp with little distortion.

A NEW COUNTER FOR YOUR CAR. The ‘Tacho Block’ enables you to record, convert and output a 0-5 input to an accurate 8-bit digital counter. Easy to use and operate with conventional equipment.

TRANSPORT IGNITION UNIT for better performance and economy. Easy to fit. State of the art, or ear, earth.

4 METICATION CHART. Thousands of cross ref. for length, area, volume, sounds, weight, Pocket size 12p. Wall chart 49p.

STIRLING SOUND AUDIO MODULES come to you as basic units assembled on P.C.B.s enabling you to add required components in layout of your own choice. Modules are tested and boxed before dispatch and include well printed instructions.

AMPLIFIER MODULES

Pre-amplifiers; tone control

Power Amplifiers

TUNER MODULES

STEREO DECODER. Designed essentially for use with SS-201 and 2, this module can also be used by most FM tuners. A LED may be attached. Operating voltage 9-16V, I.C.

Power Supply Stabilizing Unit for adding to unstabilized units. Max. input voltage—65V, d.c. output adjustable from 12 to 60V. Dependable rugged and money saving...

ALL MODULES TESTED AND GUARANTEED

WITH WELL PRINTED INSTRUCTIONS

SINGLE-CHIP STEREO AMP!

A fantastic bargain, a single chip stereo IC to generate a 5-5 watt music into a high impedance on P.C.B. with tone, vol. and balance controls. Requires breadboard...

TERMS OF BUSINESS

V.A.T. Prices shown here do not include V.A.T. Please ask for total price of order including postage. By V.A.T. on overseas orders.

POSTAGE Except when stated otherwise, and 1s. for postage & packing for U.K. orders. Overseas—ask if any difference being charged or refunded.

PAYMENT: Cash with order. Cheque or money order. Minimum value—£1. Also you can pay by ACCESS.

IMPORTANT—Every effort is made to ensure accuracy of prices and descriptions at time of composing this advertisement and going to press. Prices are subject to alteration without prior notice.

BARGAINS IN COMPUTER HARDWARE & SOFTWARE

BI-PRE-PAK LTD
222 224 WEST ROAD, WESTCLIFF-ON-SEA, ESSEX SS0 9DF.

TERMS OF BUSINESS

VAT. Prices shown here do not include V.A.T. Please ask for total price of order. Pricing subject to change. By V.A.T. on overseas orders.

POSTAGE Except when stated otherwise, 18p for postage & packing for U.K. orders. Overseas—ask if any difference being charged or refunded.

PAYMENT: Cash with order, cheque or money order. Minimum value—£1. Also you can pay by ACCESS.

IMPORTANT—Every effort is made to ensure accuracy of prices and descriptions at time of composing this advertisement and going to press. Prices are subject to alteration without prior notice.

BI-PRE-PAK LTD

222 224 WEST ROAD, WESTCLIFF-ON-SEA, ESSEX SS0 9DF.

Please send latest B.P.P. Catalogue. I enclose large S.A. envelope

NAME

ADDRESS

To BI-PRE-PAK 222 West Rd., Westcliff-on-Sea, Essex.

Please send latest B.P.P. Catalogue. I enclose large S.A. envelope

NAME

ADDRESS

TERMS OF BUSINESS

VAT. Prices shown here do not include V.A.T. Please ask for total price of order. Pricing subject to change. By V.A.T. on overseas orders.

POSTAGE Except when stated otherwise, 18p for postage & packing for U.K. orders. Overseas—ask if any difference being charged or refunded.

PAYMENT: Cash with order, cheque or money order. Minimum value—£1. Also you can pay by ACCESS.

IMPORTANT—Every effort is made to ensure accuracy of prices and descriptions at time of composing this advertisement and going to press. Prices are subject to alteration without prior notice.

BI-PRE-PAK LTD

222 224 WEST ROAD, WESTCLIFF-ON-SEA, ESSEX SS0 9DF.

TERMS OF BUSINESS

VAT. Prices shown here do not include V.A.T. Please ask for total price of order. Pricing subject to change. By V.A.T. on overseas orders.

POSTAGE Except when stated otherwise, 18p for postage & packing for U.K. orders. Overseas—ask if any difference being charged or refunded.

PAYMENT: Cash with order, cheque or money order. Minimum value—£1. Also you can pay by ACCESS.

IMPORTANT—Every effort is made to ensure accuracy of prices and descriptions at time of composing this advertisement and going to press. Prices are subject to alteration without prior notice.

BI-PRE-PAK LTD

222 224 WEST ROAD, WESTCLIFF-ON-SEA, ESSEX SS0 9DF.

Please send latest B.P.P. Catalogue. I enclose large S.A. envelope

NAME

ADDRESS

To BI-PRE-PAK 222 West Rd., Westcliff-on-Sea, Essex.

Please send latest B.P.P. Catalogue. I enclose large S.A. envelope

NAME

ADDRESS
SCIENCE IN ART

— proving that Raphael changed his mind — nearly five centuries after.

by Dr. Peter Sydenham

Photo courtesy of Radiography Markets Division, Eastman Kodak Company.
COLLECTIONS of antiquaria usually grow from the personal interest of one or more people who are interested in some intrinsic quality of the collection. It may be so that they can view the items on demand, or research the growth of a discipline. Others collect items just for the sake of collecting—or assemble a collection to make money. But regardless of the original intention, seldom are the collectors expert at maintenance or preservation, and all too often there are too little funds for adequate conservation anyway. So at some stage the collection is broken up by sale or moved as a whole into the care of a larger institution where, we might

AN IMAGE LOCKED IN MARBLE
Michelangelo's definition of sculpture was "to free the image hidden in the block." This he did in his majestic La Pieta, a statue of dense Carrara marble that remained unmoved from St. Peter's Basilica in Rome until it was displayed in the Vatican Pavilion at the 1964 World's Fair in New York. Prior to moving the priceless sculpture, however, the Vatican Pavilion Committee asked Eastman Kodak to conduct an exhaustive x-ray examination to determine the extent of damage and repair which La Pieta was known to have incurred. The results were unexpectedly beautiful, as in the ghost of a face that appears above. Radiography also revealed much about the physical condition of Michelangelo's creation. They showed that above metal pins had been used to rejoin the broken fingers on the hand of the Virgin, and that at one time a "pious vandal" (to use one ecclesiastic's phrase) had drilled shallow holes (seen above) in the top of the Virgin's head for the purpose of affixing a halo, later removed. This and other information assured the custodians of La Pieta that the voyage to America would not be dangerous, and has proven useful in subsequent maintenance and repair of the sculpture.

Fig. 1. The National Gallery was built in 1837—Nelson's column had not yet been erected.

Fig. 2. The museum scientist is rarely involved in detecting forgeries—the main role is to provide information that assists restoration and conservation. (Cartoon drawn by Marcus Rees-Roberts for a National Gallery publication).
Science in Art

Naively imagine, things are then done properly with the right priorities being allocated.

Large Institutions, although better endowed financially in the absolute sense, often face even more difficult problems in the setting of priorities; they must always make decisions in the light of current circumstances. Take, for example, the National Gallery in London where a large proportion of Britain's art treasures are stored. Its history typifies what has often happened to valuable collections of old works.

In 1777 John Wilkes, a member of Parliament, proposed the erection of a modest "Noble Gallery" to house a certain collection of pictures then up for sale. Wilkes' idea fell on sterile ground (at that time). It was not until the early nineteenth century that the idea was actually realised.

Then, John Angerstein, a rich merchant-collector, had built up a superb collection which was housed in a house in Pall Mall. On his death in 1823, various public-spirited noblemen, successfully lobbied the Government to buy the collection and its premises as the "foundation of a National Gallery". Sir George Beaumont and Rev. Howell Carr also donated their works to the cause.

So, in 1824 a new tradition began. The rooms in Pall Mall soon became overcrowded with the continually arriving new acquisitions and the Trustees began a search for a better home. By 1838 a new building (the one used today which was designed by William Wilkins) had been built and brought into use as the National Gallery. This was not the end of the accommodation difficulty because the new building, shown in Fig. 1., was originally shared with the Royal Academy. The lack of space and unenlightened public habits of the times rapidly turned the still-crammed rooms into foetid, miserable places wherein damage to the artworks became rampant - dust "an inch thick accumulated on the frames". The need for conservation was realised slowly and gradually various moves were taken in the right direction. In 1869, the Royal Academy moved to Burlington House overlooking the Mall - leaving the Wilkins designed building to cater solely for art.

Until 1855 the Trustees had little technical knowledge in their midst so truly scientific approaches to the problems of conservation were scant indeed. In that year, Sir Charles Eastlake became the first Director (rather than just the "Keeper") and this brought, because of his experience, some semblance of scientific approach into the Gallery's control. Eastlake, as a visionary buyer, provided the Gallery with 137 new priceless pictures at a time when costs were reasonable - the Director must play both art selector and conservator roles.

Some sound and potentially far-reaching advice on scientific matters had often been forthcoming before Eastlake's new appointment but usually to no avail. Faraday, for instance, in 1850, wrote of the dangers of the air pollution sources existing around Trafalgar Square - they used urine in those times to wash clothes and raw materials! The same report suggested air conditioning (which included humidification as well as temperature control) should be adopted; it had already been in use in the Houses of Parliament for 20 years but the Committee, in its wisdom, decided to merely cover a few of the...
works in glass as the improved preservation measures.

Science did eventually become recognised in the National Gallery for, in 1934, F. Rawlins was appointed as its first Scientific Adviser. Recommendations were again made for climate control but storage of the works in slate-mines during the Second World War did more to prove the point about climatary conditions than learned advice, and climate control gradually was introduced into the Gallery. Today, climate control is nearly total in the National Gallery few collections anywhere else enjoy proper climate control.

The National Gallery now has a specific Scientific Department wherein three trained scientists devote their entire time to providing scientific assistance for the many kinds of problems that arise in the Gallery. From the scientist's point of view there is need for more staff but the Trustees see that other priorities should use any spare funds. No doubt, with time, the ratio of scientific effort to total maintenance and acquisition costs will increase. How much effort should be expended for a collection with 2550 pictures of which many are purchased at over a million pounds each is the leading question.

Looking back on this account it is easy to suggest that unimaginative people were in control. Current opinion must, however, be tempered by the recognition that science, as we know it today (especially the electrical branch) was then in a stage of gradual development running concurrently with the National Gallery's maturity. Modern measurement and control, adequate to handle many of the problems involved were not even close to reality until the turn of this century.

Compounding the problem of blending science and art is the fact that scientists and artists/art lovers often lie at the extreme ends of the physical knowledge and attitude scales. It was not surprising to hear in the past (and the situation still continues) such statements as "the pictures must breathe" and that "they will not stand the shock if climate control should break-down putting the picture back in the uncontrolled environment to which it is unaccustomed". Even now it is held by critics that 'daylight' is essential for viewing - scientists certainly could not agree as to what 'daylight' the artists are implying so how can there be a basis for such an argument.

For all of this, science is now allowed to play an important role in conservation, not only in the art gallery but in any kind of museum. Today, plenty of science can be brought to bear on art problems that the Trustees of the National Gallery have inherited from the past. For instance, the building looks fine as a monument but what was adequate in 1836 does not entirely suit today's overall requirements.

Although there is clearly need for improved scientific effort at the National Gallery it still enjoys the distinction of being one of the most advanced galleries in the World in this respect. Much of the work of the modest scientific group is setting the pace for other galleries to follow.

Where can science help?

An art gallery, or any similar treasure-house, has to perform several simultaneous functions. It must house the collection in a suitable fashion, ideally with climate control; it must provide a secure environment not only against obvious theft but also against natural disaster and man-made destruction; it must provide experts and facilities for conservation, restoration, original research and, less commonly, for the identification of and the discovery of new finds.

As science is the systematic approach to gaining new information about a subject, virtually every aspect of an art gallery programme could benefit from the application of scientific effort. This fact is being recognised more and more with time.

On the use of the building, science can provide measurements such as climate variation and pollutant level but having figures is only part of the story, for the cost of control may not be acceptable — it is hard to imagine visitors being clad in sterile garments, entering via airlocks to view works hanging in clean-air rooms like those used in the manufacture of semiconductors.

Similarly, with security; the collection must be safe-guarded against theft and damage yet not appear to be over-safe. Over-zealous security measures can detract from the visitors' experience. Theoretically the collection should also be in an atomic-bomb proof type shelter for we are the custodians of treasures which are also the right of the future generations.

Anyone who has been into the Pergamon Museum (The Eastern-blocs' equivalent to the British Museum) in East Berlin will know how a concrete block house structure spoils the overall experience of visiting works of art.

Matters of security and the building, therefore, tend to lie more in the hands of government bodies rather than the museums' scientific staff. At the National Gallery, the latter are only able to advise and suggest what is needed - the rest is left to the Department of the Environment.
When it comes to assisting the professional art work of the gallery the scientist's role becomes vital. The scientists' main work is in providing information about restoration and conservation processes to the highly skilled restorers. Rarely is there need to play judge (as depicted by the cartoon given in Fig. 2) in cases of forgery. Fakes usually fail to convince on points that are picked up by the art expert — scientific methods (those using instruments) are secondary in making decisions. Occasionally, but not often, as we shall see at the end of this feature, science can act detective and point to more discovery.

The restorer is greatly assisted in his or her task — which can take up to several years to complete — by knowledge of pigment composition, of corrosion removal methods and of material structure. These points are, and have been, accepted for many decades now by nearly everyone as the vital requirements of the restorer. There is little glamour in this work and gradually improved chemical analytical methods which require little actual microchemistry procedure are finding application.

The core substance of gallery work is cleaning, restoring and conserving the pieces as they arrive into safe keeping. Cleaning involves removal of dirt and oxidised varnish. Research findings on solvents and electro-chemical corrosion reduction are applied here. Restoration involves ensuring that the medium is secure on its support; if not, remedying the faults and then the rebuilding of missing areas in an exactly similar manner as first existed. The golden rule of all antique restoration is that no repair or alteration is carried out in a manner that is not reversible. It must be possible to entirely remove the repair at a later date. The restorer should, ideally, add no permanent interpretation of his own.

Although much research has already been expended on corrosion mechanism, chemical analysis and strength of materials, the conservation/restoration scientist finds that many of the antiquarian problems in these fields have not been researched. Corrosion of metals over short periods is the main emphasis in engineering — not the slow decay of articles such as plaster, paper, wood and fabrics over centuries of time. For this reason alone, more research must be carried out as and when the demand occurs. Most forms of art deterioration occur so slowly that they often cannot be sensed in one man's lifetime. Surprisingly few groups are studying ways to detect deterioration more quickly. For example, only the National Gallery has equipment — and that is still in a prototype form — that can measure in an absolute way the changing colour of a painting. It seems the point that detection is the first stage to proper prevention has still not been taken by many museum trustees.

How science is applied

Just as a compromise must be made between scientific staff and arts staff, then so also must one be made about the amount of on the spot equipment made available for the resident scientists to use.

The National Gallery has quite a range, as we shall see, but their demands often run to requiring the use of other instruments. In such cases the instrument is moved to the art work or the art work to another laboratory, such as the more extensive British Museum Research Laboratory. The instrument range of the National Gallery reflects the proven needs and, to a lesser extent, the special interests.

Holographic interferometry can now be used to detect incipient damage in oil paintings. The technique has been devised by Italian scientists S. Amadesi et al and is fully reported in Applied Optics 13, 2009; 1974. The painting to be checked is warmed slightly. Any detached areas disperse heat less than sound areas — thus their thermal expansion is greater. The damaged areas can easily be seen by comparing two holograms made five minutes apart. Our example shows the technique used on Pierre Francesco Fiorentina’s ‘Santa Caterina’ — a 15th century panel painting. The kinks in the second picture are the damaged areas.
of the staff, Garry Thomson, who heads the Scientific Department, has been largely responsible for setting up objective colour fading practices. Joyce Plecters (whose husband is a restorer at the Victoria and Albert Museum), is the expert on pigment analysis.

In use, measurements and tests are made as needed and all data recorded in a dossier held on each artefact. These files contain the information built up about the picture - where and when it was found; the history, where known; the work that has been carried out over the ages and the measurements made. Some dossiers are centuries-old. At present it is the dossier information that largely shows if the work is safely conserved - not objective measurements. The more that is known about the picture, both from static and dynamic viewpoints, the better the restoration.

Environmental control

Since the National Gallery was first conceived it has been obvious to those more skilled in science that a constant environment having the right temperature (about 20°C, but not vital) and relative humidity (55 per cent RH held to within 3%) would best preserve the total fabric of the artworks. Probably the greatest single cause of damage is repeated stressing of the art surface by repeated humidity changes. It is also important to control the noxious gases content of the air - especially SO2 which forms sulphuric acid with condensation. Figure 3 shows the block diagram of the air conditioning system used. By using washed air methods, particulates and many gases are filtered out: it also enables the relative humidity to be controlled. Climate control, because it uses relatively straightforward technology, is left to the Department of Environmental responsibility. In certain cases the painting is given its own specially controlled environment - for example, hermetically sealed packing modules are being researched at present as a way to overcome transport problems.

Another aspect of environmental control is that the lighting intensity and quality must be up to standards laid down by art experts yet not be such that it accelerates colour changes because of harmful ultraviolet content. To this end natural daylight is made available in all rooms, entering via U.V. filter panels. To maintain a constant level many rooms have automatically moving venetian blinds that are controlled by photo electric cells monitoring the light level. For dull days natural light is supplemented by voltage controlled fluorescent lighting, having dimming capability of 6:1. The ideal illumination level is 150 Lux and (between you and I) much of the time the so-called "natural light" is in fact very much artificial!

CHEMICAL ANALYSIS

A major part of the work-load of the Scientific Department is chemical analysis of materials of paintings - wood panels, canvases, paint pigments, varnishes. The restorer desires as much information about the work that is in repair as is possible.

Literally pin-head sizes of paint are removed from the repair area. The flake is then moulded into a small plastic block that is then polished across the flake so as to reveal its cross section. Using a variety of microscope techniques cross-sectional colour photographs are produced that clearly show the various layers used by the artist. Such information does occasionally aid verification and identification of the artist or his school but not often. Study of the layers used mainly assists the restorer to rebuild the paint as the artist built it originally. In this way the same visual effect is repeated - the final appearance depends much on the underpaintings and composition of paints. In some cases, it is also possible to trace the history of a work, the penetration of one colour into cracks is a valuable pointer as to historical sequence of layer application. The microscope work needs little explanation.

Microchemistry is also used to assist identification of pigments but the move is toward analytic instrument usage. The newest tool purchased at the National Gallery is a laser micro-spectrochemical analyser, a new use to which the laser has been put.

In this instrument a small pulsed laser source is focused onto the specimen of material to be analysed. A shot to produce a minute crater. This vaporizes the extremely small area of surface (selected by a simultaneous visual viewing magnifier) liberating various chemicals as gases. It is not easy to make a direct analysis of these gases but the task is made much easier if they are produced against a background of an electrical spark. The resultant combined radiation spectrum is recorded using photographic recording of the dispersed wavelengths. The emission production unit is shown in Fig. 4 along with a typical "fingerprint" spectrum. In use a spectrum recorded for a specimen is compared against a library of standard records. The extremely fine pit of the laser shot, about 10-100μm across depending upon what is desired, gives the analyst extreme detail of pigment composition enabling measurements to be made within the thinnest of paint.
SCIENCE IN ART

layers. At present the Gallery possesses some three thousand odd plastic-mounted flakes to be analysed this way! Knowing about the pigment used is but one part of the need, for pigments must be secured with a medium that turns to a firm permanent binder with time. Artists used all manner of mediums and drying oils - egg tempera (yes, literally egg!); walnut, linseed, poppyseed oils. Whereas the pigments remain reasonably inert with linseed, poppyseed oils. Whereas the tempera (yes, literally egg!); walnut, linseed, poppyseed oils. Whereas the pigments remain reasonably inert with time these latter do not and the gallery staff need to know what happens in order to identify the medium originally used. This, they do, using gas chromatography.

In the equipment used (and shown in Fig. 5) a sample is injected into the end of a long tube that is heated and packed with a suitable absorbent powder. The partitioning chemical process in the tube acts to separate the various chemical constituents so that they arrive at the other end at differing times. With the use of appropriate electronic detectors the various arrival times can be recorded. A trace, such as that given in Fig. 5, provides another type of “fingerprint” that tells the composition.

The laboratory also has proprietary spectrophotometers that enable the transmission/reflection characteristics of filters, paint surfaces and the like to be recorded. The two instruments are shown in Fig. 6. The sample is placed in the appropriate machine - one covers the radiation wavelengths in the ultra-violet (190 nm-800 nm wavelength) - where monochromatic light is radiated (or reflected) through the specimen and the intensity recorded. This is repeated as a continuous scan with a range of wavelengths to produce an intensity versus wavelength plot. These instruments find use for checking U.V. and I.R. filter materials.

Many calculations are needed with the various analytical instruments. To reduce the effort a programmable desk calculator with coupled tape interfacing is available for use where needed. A one hundred channel data logger system is also used in various kinds of research tests. Many other methods of analysis exist - if the above methods do not suffice the staff make use of instruments in other institutions.

Non-visible imaging

In 1895 Röntgen discovered the existence of X-rays and the principle of X-radiography rocketed into immediate use.

It is common knowledge that X-rays enable photographs to be made where high-mass contrast exists, metals in non-metal bodies, for instance. This makes the technique useful for viewing the hidden shape of massively corroded articles - it was used by the British Museum to restore the Bull Cup from Cyprus. It can also be useful in art-work studies, for the X-ray shot can reveal variations in the underlayers densities that are not visible to the eye, especially before the work is cleaned. The painting "St. Michael" by Piero della Francesca was shown in this way to be one part of a five panel altar piece for the Church of St. Agostino in the mid-1400's. In this case, X-rays provided the clinching evidence by revealing (see Fig. 7) a piece of drapery in one corner. All but one panel have now been located.

Another non-visible imagery technique is to image the picture in the infra-red radiation region. The gallery staff use a television system based on the “Resistron” camera tube which is sensitive around 1.75μm. I.R. methods can penetrate the paint layers to reveal the original artist’s sketch made with charcoal or the like before painting was commenced. Such a sketch is a valuable clue to the actual artist, the school and the date. In this time, when remote-sensing is currently of interest for world resource mapping, one might be inclined to suggest that false-colour photography might be useful in art work but this is not so.

COLOUR CHANGE

I have already touched on the need to be able to detect deterioration with utmost speed - a century of subjective observation is not good enough.

Various tests can be made on substitute materials - they can be subjected to accelerated fading conditions of light and pollutants: the real test, however, is what is actually happening to the painting in question. Remarkably, no other gallery appears to have made attempts to find out how to make reliable objective measurements.

Working with Professor W.D. Wright (formerly of Imperial College, London) the National Gallery have
just completed a specially constructed prototype spectrophotometer. In use the painting is placed in front of its input viewing area, as shown in Fig. 8. The spot on the painting that is to be measured is brought into the correct place using a coincident optical viewer and past photographs. To ease this operation a fibre-optic bundle 'connects' the painting to the more massive spectrophotometer. Once set up, a monochromator, built into the unit, provides pure colour illumination that reflects from the picture to be registered in the photo-electric pick up sensor - a photo multiplier.

In this manner the reflection from an area of picture about 2 mm across is recorded for radiation ranging from 380 to 760 nm. Both reflectance and wavelength are automatically recorded thereby providing a 'fingerprint' of the chosen spot.

This equipment has been carefully designed to maintain long-term accuracy. As the components of the spectrophotometer undoubtedly alter with time, the equipment is periodically calibrated using standard colour ceramic tiles that are standardised with respect to national colour Standards. It is hoped that the method will prove to be so satisfactory that art experts in a century from now will be able to rely on today's results.

The spectrophotometer has not been in use long enough yet to provide deterioration data but without doubt it will provide vitally needed data much quicker than the traditional visual methods.

THE FASCINATION OF IDENTIFICATION

As I have said already the museum scientist is occasionally called upon to verify authenticity of a work. In the same vein, but more common, is the occasional chance find that occurs as the work is being studied to aid restoration and cleaning. For example, Prussian blue (based on ferric ferrocyanide) was accidentally discovered in 1704 and the fact was recorded in history. Hence, any use of it on works accredited before that date must be as additional, repainted areas, or the work must be a later copy. By knowing miriads of facts like this, scientists can provide valuable assistance.

To illustrate the remarks given here I shall outline the procedures of a recent instance. The National Gallery has a painting 'Portrait of Pope Julius II' that was thought to be one of a few copies made of an original by Raphael (1483-1520). (Such copies would not be fraudulent paintings but merely copies intended for distribution to places where a Papal picture was relevant.) The Deputy Keeper, Cecil Gould, claimed that the Gallery's version was not a copy, but the original. He based his claim on X-radiographs and an ancient inventory number. Figure 9 shows the painting in question.

X-rays of the uncleaned version had revealed a more formal pattern - of cross-keys and papal tiaras - lying under the green background curtain. It appeared that Raphael had changed his mind after its original completion and had overpainted the background to provide less formality.

The painting was subsequently further examined - X-rays could detect differing layers but did not confirm relative dates at which they were laid down, nor the colours of the original background. A minute piece of paint was observed in cross section under the microscope and a 100mm by 120mm colour transparency made of the paint layers.
In total the paint is about 250μm thick with some layers being only 25μm; they are easily seen in the original photograph. The bottom layer is calcium sulphate (commonly called gesso). On this are clearly seen white and yellow layers covered by two green layers. The white and yellow layers are the hidden original background which was over-painted with green. As there is no dirt or varnish layer between the yellow and green, and as the paint filling vertical cracks had dried simultaneously with the bulk of the paint, it is concluded that all layers were put down together indicating a change of heart as it was painted.

Using gas-chromatography, other tests were made to verify that the drying oil medium for the green verdigris pigment was indeed in use in that period. It is now recognised that the National Gallery's painting is, indeed, the original — a fact that can largely be attributed to the use of sophisticated science.

THE PART SCIENCE CAN PLAY IN THE FUTURE

Scientific instruments and procedures provide information about a subject so as the cost of measurement methods reduces and their usefulness increases and is better recognised we should see a continual increase in the scientific effort devoted to the discipline. Newly created museums and galleries will have an opportunity given them that their predecessors were denied. Let us hope those making these decisions make the most of their circumstance for their efforts will surely be questioned by later generations.

Electronics Today International is especially grateful to Garry Thompson and Joyce Plesset of the Scientific Department of the National Gallery for providing a most informative visit for the author.

Further Reading:

---

**NEW CHIP PRICES as from 1st May 75**

**DIGITAL DISPLAYS**

<table>
<thead>
<tr>
<th>Chip</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>DL707</td>
<td>Common Anode 0.3&quot; LED display</td>
<td>£1.70</td>
</tr>
<tr>
<td>DL704</td>
<td>Common Cathode DL707</td>
<td>£1.70</td>
</tr>
<tr>
<td>DL701</td>
<td>Common Anode 0.3&quot; ±1</td>
<td>£1.70</td>
</tr>
<tr>
<td>DL747</td>
<td>Common Cathode DL747</td>
<td>£2.45</td>
</tr>
<tr>
<td>DL746</td>
<td>Common Anode 0.6&quot; ±1</td>
<td>£2.45</td>
</tr>
<tr>
<td>3015F</td>
<td>Minitor filament 12.5mm</td>
<td>£1.26</td>
</tr>
<tr>
<td>3017F</td>
<td>Minitor filament 17.5mm</td>
<td>£2.00</td>
</tr>
<tr>
<td>RDS1</td>
<td>Itoka filament 2.5&quot;</td>
<td>£8.00</td>
</tr>
<tr>
<td>RDM2</td>
<td>Itoka filament 5.0&quot;</td>
<td>£24.80</td>
</tr>
<tr>
<td>DG12</td>
<td>Phos-diode 12.6mm</td>
<td>£2.20</td>
</tr>
<tr>
<td>DL703</td>
<td>Phos-diode 4 digit clock display</td>
<td>£5.80</td>
</tr>
</tbody>
</table>

**DIGITAL CLOCKS**

<table>
<thead>
<tr>
<th>Chip</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIGITRONIC N6</td>
<td>6 digit clock</td>
<td>£31.00</td>
</tr>
<tr>
<td>DIGITRONIC N7</td>
<td>1/10th seconds</td>
<td>£34.00</td>
</tr>
<tr>
<td>DIGITRONIC N9</td>
<td>6 digit Quartz clock</td>
<td>£43.50</td>
</tr>
<tr>
<td>DIGITRONIC N11</td>
<td>Main Stopwatch clock</td>
<td>£54.00</td>
</tr>
<tr>
<td>DIGITRONIC N12</td>
<td>Time/Date/Alarm Clock</td>
<td>£67.00</td>
</tr>
<tr>
<td>CHANTICLEER</td>
<td>4 digit alarm clock</td>
<td>£16.60</td>
</tr>
</tbody>
</table>

**MHI KIT SYSTEMS**

<table>
<thead>
<tr>
<th>Chip</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MHI-5314</td>
<td>5314 chip, driver &amp; PCB</td>
<td>£6.60</td>
</tr>
<tr>
<td>MHI-7001</td>
<td>7001 chip, driver &amp; PCB</td>
<td>£9.00</td>
</tr>
<tr>
<td>MHI-5025</td>
<td>5025 chip, driver &amp; PCB</td>
<td>£9.35</td>
</tr>
<tr>
<td>MHI-D707/6</td>
<td>6 DL707 LEDs plus PCB</td>
<td>£11.00</td>
</tr>
<tr>
<td>MHI-D707/4</td>
<td>4 DL707 displays plus PCB</td>
<td>£7.80</td>
</tr>
<tr>
<td>MHI-D747/6</td>
<td>6 DL747 displays plus PCB</td>
<td>£15.15</td>
</tr>
<tr>
<td>MHI-D747/4</td>
<td>4 DL747 displays plus PCB</td>
<td>£10.25</td>
</tr>
<tr>
<td>MHI-D727/6</td>
<td>6 Digital 0.5&quot; units plus PCB</td>
<td>£14.50</td>
</tr>
</tbody>
</table>

All prices on this advert exclude VAT.

---

**DIGITAL CLOCK CHIPS**

<table>
<thead>
<tr>
<th>Chip</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM5314</td>
<td>Basic 12/24Hr, 6 digit, 50/60Hz chip.</td>
<td>£4.44*</td>
</tr>
<tr>
<td>MM5311</td>
<td>As MM5314 but with additional BCD outputs.</td>
<td>£5.18</td>
</tr>
<tr>
<td>MK50250</td>
<td>6 digit alarm chip with alarm tone output.</td>
<td>£5.60*</td>
</tr>
<tr>
<td>CT7001</td>
<td>Time, Date &amp; Alarm on one 6 digit chip. The Alarm can be used in 3 modes including a time switch.</td>
<td>£7.30*</td>
</tr>
<tr>
<td>CT7002</td>
<td>As CT7001 but with BCD outputs not 7 seg.</td>
<td>£7.30</td>
</tr>
<tr>
<td>TMS3952</td>
<td>Stopwatch chip, most read, stopwatch functions 6 digits (hhmmss or mmmss).</td>
<td>£10.50</td>
</tr>
<tr>
<td>HEFC2</td>
<td>8 digit (hhmmssss), snooze/reset, £8.50 50Hz/60Hz/100kHz input, BCD output or 100kHz frequency.</td>
<td>£15.00</td>
</tr>
<tr>
<td>CT6002</td>
<td>CMOS chip for Liquid-crystal displays, 12Hr, 1Hz colon, input 32768Hz or 65536Hz.</td>
<td>£15.00</td>
</tr>
<tr>
<td>MMS5316</td>
<td>4 digit non-mixed alarm clock, with direct drive Ic or phosphor-diode displays.</td>
<td>£9.25*</td>
</tr>
</tbody>
</table>

* Available in a MHI kit.

We advise the use of sockets for all ICs, 24128/40 pin £1.00.

---

**BYWOOD ELECTRONICS**

181 Ebbern Road, Hemel Hempstead, Herts. HP3 9RD.
Tel: 0442-62757
ETI SUBSCRIPTIONS

If you have no trouble obtaining ETI from your newsagent, that's the obvious place to get it. However five out of the last six issues have been sell-outs and early analysis of the reader questionnaire has shown that one in three readers has trouble in buying ETI.

If you are one of those having trouble, why not take out a subscription? Normally you receive your copy a few days before our official publication.

ON SALE AT YOUR NEWSAGENTS—75p

ETI TOP PROJECTS

IN CASE OF DIFFICULTY, FILL IN THE COUPON SENDING 85p TO RECEIVE YOUR COPY DIRECTLY FROM US.

NAME ___________________________ ADDRESS ________________________________

May 1975

To: SUBSCRIPTION DEPARTMENT
ELECTRONICS TODAY INTERNATIONAL
36 Ebury Street,
London SW1W OLY.

Please find enclosed £4.25 which includes postage (£4.75 overseas) for my annual subscription to ETI starting with the next available issue.

Name __________________________ Address ________________________________

May 1975

TO: ETI TOP PROJECTS BOOK
Electronics Today International,
36 Ebury Street,
London SW1W OLY.

Please send me a copy of the ETI Top Projects Book I enclose a cheque/P.O. for 85p (payable to Electronics Today International) which includes 10p postage (applicable to surface mail world-wide).

Name __________________________ Address ________________________________

May 1975
WORLD SCOOP!
JUMBO SEMICONDUCTOR PACK
Transistors-Germ and Silicon
Rectifiers-Diodes-Triacs-Thyristors
I.C.'s and Zeners ALL NEW AND CODED
APPROX 100 PIECES!
Offering the amateur a fantastic bargain Pak and an enormous saving—identification and data sheet in every Pak
ONLY £2 p & p 30p

MAMMOTH I.C. PAK
APPROX. 200 PIECES
Assorted full-put integrated circuits including: Logic, 74 series, Linear, Audio and D.T.I. Many coded devices but some unmarked—you identify.
OUR SPECIAL PRICE £1.25 including V.A.T. p. & p.

SPECIAL PURCHASE by BI-PAK
2N3055. Silicon Power Transistors N/P
Famous manufacturers out-of-spec devices free from open and short defects—each device able 111.5 watts T03. Metal Can.
OUR SPECIAL PRICE 8 for £1.

BATTERY HOLDERS
Takes 10, 15, 20, 25, 30, 35, 40, 50, etc. with lock and handle

CARBON
Potentiometers
Log and 2
1/8" D.P. Links

CARBON FILM RESISTORS
The R12 Range of Carbon Film Resistors is available in a PAK of 50 pieces. They are rated into the following groups:
5, 2.5, 1, 0.5, 0.1 Watt 5% Code: B, C, D, E, F, G
Selenium Bridge Rectifiers
2N, 5A. Ideal for those building battery operated equipment.

REPAIR TRANSFORMERS
220V, Primary, Secondary, voltages also available: 240V, 110V, 12V, 9V, 6V, 150V, 12.5V, 20V, 9V, 115V, 50V, 6V

SILICON BRIDGE RECTIFIERS
2N, 5A. Ideal for those building battery operated equipment.

BOOK BARGAIN BUNDLES
8 Books comprising:
1 Radio & Electronic colour code and data charts
1 Radio & Electrical Servicing-Fundamentals
2 Famous manufacturers—out-of-spec devices free from open and short defects—each device able 111.5 watts T03. Metal Can.

THE LARGEST SELECTION

WORLD SCOOP!
JUMBO SEMICONDUCTOR PACK
Transistors-Germ and Silicon
Rectifiers-Diodes-Triacs-Thyristors
I.C.'s and Zeners ALL NEW AND CODED
APPROX 100 PIECES!
Offering the amateur a fantastic bargain Pak and an enormous saving—identification and data sheet in every Pak
ONLY £2 p & p 30p

MAMMOTH I.C. PAK
APPROX. 200 PIECES
Assorted full-put integrated circuits including: Logic, 74 series, Linear, Audio and D.T.I. Many coded devices but some unmarked—you identify.
OUR SPECIAL PRICE £1.25 including V.A.T. p. & p.

SPECIAL PURCHASE by BI-PAK
2N3055. Silicon Power Transistors N/P
Famous manufacturers out-of-spec devices free from open and short defects—each device able 111.5 watts T03. Metal Can.
OUR SPECIAL PRICE 8 for £1.

BATTERY HOLDERS
Takes 10, 15, 20, 25, 30, 35, 40, 50, etc. with lock and handle

CARBON
Potentiometers
Log and 2
1/8" D.P. Links

CARBON FILM RESISTORS
The R12 Range of Carbon Film Resistors is available in a PAK of 50 pieces. They are rated into the following groups:
5, 2.5, 1, 0.5, 0.1 Watt 5% Code: B, C, D, E, F, G
Selenium Bridge Rectifiers
2N, 5A. Ideal for those building battery operated equipment.

REPAIR TRANSFORMERS
220V, Primary, Secondary, voltages also available: 240V, 110V, 12V, 9V, 6V, 150V, 12.5V, 20V, 9V, 115V, 50V, 6V

SILICON BRIDGE RECTIFIERS
2N, 5A. Ideal for those building battery operated equipment.

BOOK BARGAIN BUNDLES
8 Books comprising:
1 Radio & Electronic colour code and data charts
1 Radio & Electrical Servicing-Fundamentals
2 Famous manufacturers—out-of-spec devices free from open and short defects—each device able 111.5 watts T03. Metal Can.

THE LARGEST SELECTION

WORLD SCOOP!
JUMBO SEMICONDUCTOR PACK
Transistors-Germ and Silicon
Rectifiers-Diodes-Triacs-Thyristors
I.C.'s and Zeners ALL NEW AND CODED
APPROX 100 PIECES!
Offering the amateur a fantastic bargain Pak and an enormous saving—identification and data sheet in every Pak
ONLY £2 p & p 30p

MAMMOTH I.C. PAK
APPROX. 200 PIECES
Assorted full-put integrated circuits including: Logic, 74 series, Linear, Audio and D.T.I. Many coded devices but some unmarked—you identify.
OUR SPECIAL PRICE £1.25 including V.A.T. p. & p.

SPECIAL PURCHASE by BI-PAK
2N3055. Silicon Power Transistors N/P
Famous manufacturers out-of-spec devices free from open and short defects—each device able 111.5 watts T03. Metal Can.
OUR SPECIAL PRICE 8 for £1.

BATTERY HOLDERS
Takes 10, 15, 20, 25, 30, 35, 40, 50, etc. with lock and handle

CARBON
Potentiometers
Log and 2
1/8" D.P. Links

CARBON FILM RESISTORS
The R12 Range of Carbon Film Resistors is available in a PAK of 50 pieces. They are rated into the following groups:
5, 2.5, 1, 0.5, 0.1 Watt 5% Code: B, C, D, E, F, G
Selenium Bridge Rectifiers
2N, 5A. Ideal for those building battery operated equipment.

REPAIR TRANSFORMERS
220V, Primary, Secondary, voltages also available: 240V, 110V, 12V, 9V, 6V, 150V, 12.5V, 20V, 9V, 115V, 50V, 6V

SILICON BRIDGE RECTIFIERS
2N, 5A. Ideal for those building battery operated equipment.

BOOK BARGAIN BUNDLES
8 Books comprising:
1 Radio & Electronic colour code and data charts
1 Radio & Electrical Servicing-Fundamentals
2 Famous manufacturers—out-of-spec devices free from open and short defects—each device able 111.5 watts T03. Metal Can.

THE LARGEST SELECTION
74 Series T.T.L. I.C'S

The STEREO 20 £14.45 p.a.

The features of this amplifier are as follows:
- Full dual mono channels
- Operating from 20Hz to 20kHz
- Intermodulation distortion better than 0.01%
- Output power 10W peak
- Price £14.45 p.a.

NEED HELP CHOOSING?

If you need help choosing the right product for your needs, feel free to contact us. We are here to assist you.
New Sinclair IC20.
20 watts stereo amplifier kit for only £7.95 (plus VAT)

A build-it-yourself stereo power amplifier with latest integrated circuitry... 10 W RMS per channel output... full short-circuit and overheat protection.

Latest from Sinclair—the brand new IC20 power amp. It incorporates state-of-the-art integrated circuits—2 monolithic silicon chips each containing the equivalent of over 20 transistors! These deliver 10 W per channel into 4 Ohm speakers. And the IC20 has integral short-circuit protection and thermal cut-out—it's virtually indestructible!

How should I use the IC20?
Use the IC20 for converting your mono record player to stereo... for upgrading your existing stereo... for improving your car radio/tape player. The IC20 runs off a 9-24 V power supply. If you're running the IC20 off the mains, simply add a Sinclair PZ20 power supply (£4.95 plus VAT).

Using the IC20 to improve your car radio/tape player's quality and volume? Run the IC20 off the car battery direct. You don't need a separate power supply, and you're reducing the drain on the player's dry batteries.

Typical performance of the IC20 stereo amplifier
Supply voltage: absolute maximum 24 V, minimum 6 V.
Current consumption: 24 V, no signal = 20 mA each channel.
18 V, 9 W into 4 Ohm = 770 mA each channel.
Power output: 14 V supply, 4 Ohm load, 10% distortion = 5½ W RMS per channel.
20 V supply, 4 Ohm load, 10% distortion = 10 W RMS per channel.
Total harmonic distortion: at 50 mW, 4 Ohm load, 20 V supply—less than 0.1%.
Input sensitivity: for 9 W into 4 Ohm = 90 mV.
Frequency response: —3 dB at 40 Hz and 16 KHz.
Load impedance: 4 Ohm or 8 Ohm, but device is safe with any load.

Improve your audio equipment—today
Both the IC20 and the PZ20 are covered by the Sinclair one-year, no-quibble guarantee—if absolutely any defect arises, Sinclair will replace the whole unit—unconditionally.

You can find both the IC20 and the PZ20 at stores like Laskys and Henry's. But if you have any difficulty, send us a cheque direct and we'll send you an IC20 and/or a PZ20 at once.

14-day money-back undertaking, naturally.

Sinclair Radionics Ltd,
London Road, St Ives,
Huntingdon, Cambs., PE17 4HJ.
Tel: St Ives (0480) 64464
VAT Registration number: 213 8170 88.
IN LAST month's issue we traced the historical development of electronic ignition systems, detailed many of the failings common to existing CDI (Capacitor Discharge Ignition) designs, and introduced the ETI system which effectively overcomes these failings.

Here are full constructional details for our ignition system.

CONSTRUCTION

Construction of the unit is considerably simplified by the use of a printed circuit board and this is strongly recommended.

All components should be mounted on the printed circuit board in accordance with the component overlay diagram. Take particular care with the orientation of transistors, diodes, ICS and electrolytic capacitors.

Wiring between the printed circuit board and external components is illustrated in Fig. 5. The switch used in our prototype was mounted internally (it is only used in initial setting up) by soldering it onto the screws which mount the power transistors. If this method of mounting the switch is used, the screws to which it is mounted must be insulated (by insulated mounting washers on both sides of the transistor) from the transistor case. The other two transistor mounting screws should be insulated from the box lid but not from the transistors. When drilling the lid of the box check that the distance

---

**SPECIFICATION**

<table>
<thead>
<tr>
<th>SUPPLY VOLTAGE</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal</td>
<td>+ 12 Volts</td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>+ 16 Volts</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAPACITOR VOLTAGE</th>
<th>8 to 16 volt input</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points Current</td>
<td>350 volts (nominal)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SUPPLY CURRENT*</th>
<th>CURRENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPM</td>
<td></td>
</tr>
<tr>
<td>8 cyl</td>
<td>6 cyl</td>
</tr>
<tr>
<td>1500</td>
<td>2000</td>
</tr>
<tr>
<td>3000</td>
<td>4000</td>
</tr>
<tr>
<td>4500</td>
<td>6000</td>
</tr>
<tr>
<td>6000</td>
<td>8000</td>
</tr>
<tr>
<td>7500</td>
<td>10,000</td>
</tr>
<tr>
<td>9000</td>
<td></td>
</tr>
</tbody>
</table>

* ballast resistor of one ohm
The general block diagram and principle of operation was given last month and we now treat this in greater detail.

Integrated circuits IC2/1 and IC2/2 form a multivibrator which runs at about 26 kHz. The output of the multivibrator clocks the D-type flip-flop IC3/1, the D terminal of which is connected to the primary of the ignition coil. This current is small (less than 150 mA) and has no effect on the operation of the coil. However, the output voltage is measured and the inverter is turned on when the coil voltage is measured and the inverter is turned on when 350 V is applied. Transistors Q1 and Q2 form a simple trigger circuit which triggers only when Q2 is high. The output of Q3 goes above 350 volts and reverts to a low state if the voltage falls below 325 volts. The reference for this circuit is the 5 volts supplied by the 7805 regulator which also supplies the TTL circuitry. This effectively maintains constant voltage on the capacitor inputs from 8 to 16 volts.

The Q and Q outputs are 0.15 seconds out of phase with each other. If when Q is high, Q is low, these two gates run in a manner similar to the output of IC3/1. The sequence of operation must be low to high, whereas the trigger is high to low. The Q and Q outputs are 0.15 seconds out of phase with each other. If when Q is high, Q is low, these two gates run in a manner similar to the output of IC3/1. The sequence of operation must be low to high, whereas the trigger is high to low.

When the distributor points open, the output of IC4/2 reverts to high and the monostable returns to low. When the points close, the output of IC4/2 is low. The sequence of operation is as follows. When the two gates run in a manner similar to the output of IC3/1. The sequence of operation must be low to high, whereas the trigger is high to low. The Q and Q outputs are 0.15 seconds out of phase with each other. If when Q is high, Q is low, these two gates run in a manner similar to the output of IC3/1. The sequence of operation must be low to high, whereas the trigger is high to low.
ELECTRONIC IGNITION SYSTEM

Fig. 2. Printed circuit board layout. Full size 149 x 100 mm.

GETTING HOLD OF THE COMPONENTS
Semiconductors
The transistors are not unusual types and are all listed by more than one mail-order supplier and should present no problem.

The '74' series IC's are of course readily available, and the 556 is listed by a number of companies including Trampus and Marshall's. Both of these companies and Technomatic stock the 7805 regular IC.

The SCR must have a minimum voltage rating of 400V and a current handling capacity of 15A. This is deliberately rated very generously as a failure is more serious in this type of equipment than in some others. A number of companies list SCR's by spec, others use manufacturers' codes, however 400V/15A types or better are widely listed.

Diecast boxes are available from Doram (172x121x55mm) and Home Radio (184x114x51 mm).

The printed circuit board is available for £1.30 (inc. VAT and postage) from Ramer, 29 Shelbourne Road, Stratford-on-Avon, Warwickshire.

Q1 Transistor 8C328 BC178 etc.
Q2 " " BC108 etc.
Q3,6 " " BD139, BD135 etc.
Q4,5 " " 2N3055
Q7 " " 2N2219, BC328 etc.

IC1 Integrated circuit 7805C
IC2 Integrated circuit 7402
IC3 Integrated circuit 7474
IC4 Integrated circuit NE556

If the car does not have an internal ballast resistor a 20 watt, M1.1 mA FSD meter scaled to RPM

INSTALLATION
A standard ignition system, illustrated in Fig. 6, usually has a ballast resistor which is either a separate wire-wound resistor, or is built into the wiring loom in the form of a resistive lead. In either case the power for the inverter must be tapped off the battery side of this resistor so that a solid +12 volts is obtained. If the resistor is in the wiring loom it may be easier to use another circuit (e.g., reversing lights) which is only on when the ignition switch is on.

The connection socket should be wired into the standard circuit as shown in Fig. 7. If the car does not have a ballast resistor, then the power PARTS LIST ETI

R13,17,19 Resistor 10 \( \frac{1}{2} \)W 5%
R10,11,12 " " 68 1W 5%
R14,15,16 " " 68 1W 5%
R20,21,22 " " 180 1W 5%
R31 " " 220 \( \frac{1}{2} \)W 5%
R23 " " 270 1W 5%
R9,18,29 " " 560 \( \frac{1}{2} \)W 5%
R12 " " 820 1W 5%
R3,4,5,6 " " 10k 1/2W 5%
R34,36 " " 47k \( \frac{1}{2} \)W 5%
R20,21,22 " " 180 1W 5%
R24 " " 220 \( \frac{1}{2} \)W 5%
R37 " " 220 \( \frac{1}{2} \)W 5%
R28,34,36 " " 180 1W 5%
R25 " " 1M 1W 5%
R26 " " 100k 1W 5%
R27,33 " " 100k 1W 5%
R30 " " 100k \( \frac{1}{2} \)W 5%
R8,9,10 " " 10k 1W 5%
R2 " " 0.047 \( \frac{1}{2} \)F Polyester
C1 Capacitor 0.0022 \( \frac{1}{12} \)F polyester
C5 0.0033 \( \frac{1}{12} \)F polyester
C10,15,16 Capacitor 0.01 \( \frac{1}{12} \)F polyester
C7 Capacitor 0.01 \( \frac{1}{2} \)F 500V disc ceramic
C9 " " 0.047 \( \frac{1}{2} \)F Poly
C3,4,5 " " 0.068 \( \frac{1}{12} \)F Poly
C2 " " 0.1 \( \frac{1}{2} \)F Polyester
C12 " " 10 \( \frac{1}{2} \)F 16V electrolytic
C11 " " 10 \( \frac{1}{2} \)F 16V PC mounting electrolytic
C1 Capacitor 470 \( \frac{1}{2} \)F 25V PC mounting electrolytic
C8,11,14 See Text.

T1 Transformer — see text
L1 Inductor — see text
PC Board ETI 312
DPOT Slide or toggle switch
Diecast Box, about 7"x5"x2"

2 Octal sockets
1 Octal plug and cover
4 spacers 12mm long plain
8 screws 10mm long
2 insulation kits for 2N3055s
Wire etc.

If the car does not have an internal ballast resistor a 110/20 watt, M1.1 mA FSD meter scaled to RPM
is taken to pin 1, and a one ohm, 20 W resistor connected between pins 1 and 2. In addition the standard ignition socket should use pins 1 and 3 rather than 2 and 3.

Mount the unit in the coolest possible place whilst at the same time not making the leads too long. The changeover socket should be mounted on the car in close proximity to the unit.

USE OF REV LIMIT

The rev-limiter is designed to prevent engine revving beyond its safe operating speed. IT IS NOT INTENDED TO ACT AS A SPEED LIMITER. Nor should it be regarded as an infallible watchdog. It is intended solely to limit engine speed if the safe limit is exceeded inadvertently. Clearly some people will use the device as a 'continuous limiter' — racing and rally drivers, motor boat race drivers for instance. In such applications no engine damage should occur, but the silencer (if fitted) may be damaged as some fuel will be burnt in the tail pipe.

The device should never be used in this manner on the road. It wastes fuel and it is potentially dangerous as there is no reserve power available to cope with possible emergencies.

### TABLE 1

<table>
<thead>
<tr>
<th>REV LIMIT Value of C14</th>
<th>8 cyl</th>
<th>6 cyl</th>
<th>4 cyl</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000</td>
<td>0.039µF</td>
<td>0.047µF</td>
<td>0.082µF</td>
</tr>
<tr>
<td>5000</td>
<td>0.027µF</td>
<td>0.033µF</td>
<td>0.047µF</td>
</tr>
<tr>
<td>6000</td>
<td>0.022µF</td>
<td>0.033µF</td>
<td>0.039µF</td>
</tr>
<tr>
<td>7000</td>
<td>0.022µF</td>
<td>0.027µF</td>
<td>0.033µF</td>
</tr>
<tr>
<td>8000</td>
<td>0.019µF</td>
<td>0.022µF</td>
<td>0.033µF</td>
</tr>
</tbody>
</table>

### TABLE 2

<table>
<thead>
<tr>
<th>WINDING</th>
<th>TURNS</th>
<th>WIRE SIZE</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secondary</td>
<td>600</td>
<td>0.315mm (30swg)</td>
<td>layer wind and use 0.05mm insulation every 150 turns</td>
</tr>
<tr>
<td>interwinding insulation 0.25mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary 1</td>
<td>15</td>
<td>1mm (20swg)</td>
<td>Bipolar wound (i.e. wind both primaries together as a pair)</td>
</tr>
<tr>
<td>Primary 2</td>
<td>15</td>
<td>1mm (20swg)</td>
<td></td>
</tr>
</tbody>
</table>

**CHOKE DETAILS:** Approx. 30 turns of 0.315mm (30swg) single layer wound onto a 1W resistor with a value over 1kΩ (a resistor is only used as an inexpensive former).
ELECTRONIC IGNITION SYSTEM

Fig. 5. Wiring diagram — printed circuit board to front panel components.

NOTE if standard system does not use a ballast resistor link pin 1 and 3 not pin 2 and 3.

Fig. 6. Standard ignition system.

Fig. 7. Method of connecting octal plug into existing ignition system.
CENTURION

INSTRUMENT CASES

Model Nos 119 & 121 two part aluminium construction
base
front & back unit finished in white gloss, hooded cover finished
in blue hammer stove enamel.

MODEL

D W H PRICE

119 152mm 127mm 89mm £1.60 each

121 152mm 202mm 76mm £2.00 each

Model Nos 221F & 222F Fiat packs. Front & Rear panels
aluminium case mild steel front panel finished in white gloss
other parts finished in blue hammer stove enamel.

MODEL

D W H PRICE

221F 152mm 203mm 152mm £2.80 each

222F 197mm 254mm 159mm £3.40 each

Prices include P & P U.K. Add 8% VAT U.K. only.

Send S.A.E. for full brochure.

SO IS A TRADEMARK OF CIS INC.

SO QUADRAPHONIC DECODERS

So me leading ...an...onic audio designed by CBS engi...ers offers no: ctry 4 channel arnlhophome holm : to

last 141/1441411.3 range nf SO encoded discs but also immensely ..teased depth and dullness w sound from

Standard stereo rat...dings

Feed 2 channels 1200-1 DOOmV as realneble hum mcdt ore amplifiers: into your ch.,. Of any Of our 3 ...clefs

end take 4 channels out vnth no overall stitnal level reduction. On the logic enhanced decoders Volume. Front

Back_ IF RF. LB -NB and Chmension.connors can all be Implemented by simple single gang notentrometers

an

need for ekotoc 4 -gang

Theme

state.of-the-art circuits

are offered

in

kit form comprising first

gracecompments

only-fibre glass circuit boards of orufess.onal gualdy desioned fce edge connect. ,nsen,oe

all

resistors 2% metal vsideall pohmtyrene and nolycartenate canaecors 5% or better and in decoder 12 ultra low

noise IMPS AIS 0 5dB rep.l transistors used in each arnearhnn, slaw

MI Basic m., decoder oath lived 10-40 blend

10 Res:Noes 14 Capacitors. 1 Integrated Circuit Printed

Circuit Board £554.

LI

Full logic controlled decoder entli 'wane marching and front back lopic ,Or enhanced channel Senaratro. using

three sPec.afly de -storied integrated Circuits 24 Resistom 42 Capacitors

3 Integrated C4GvilSPrinted Orcuil

Board_ CI 110

More advan.0 full

logic

with -vas.a1414 Ptervt

esanded trenueede response

increased

separatOn 43 Resistees 44Caoacitors 3 Integrated Circuits 9 Transdhom 6 Chcdas Pr.ntedCirCuliB.rd E21120.

al kits include IC SeCkets and comm.:non Wee Prices include CBS lEcomefee

Please write for further details .n FREE LIST

United Kingdom. Post Free Please add 6% VAT Overseas Nn VAT Please add iner sin 11 5O p & u AIR MAIL,

80o o & 0 SURFACE MAIL.

The Decon-Dalo 33 PC marker is now available in France, Germany, Italy, Switzerland, Austria and all Scandinavian countries. Send for details of local supplier.

A unique drafting aid for the electronics engineer enabling him to prepare in minutes a perfect PCB.

A fine-tipped marker charged with a free-flowing etch-resist ink. Simply draw the desired circuit onto copper laminated board—etch—clean.

The circuit is ready to use.

NO MESS—NO MASKING

£1.08 for one off £4.32 for six £8.64 for twelve VAT and post included. Available now in every country in EUROPE!

Post to: DECON LABORATORIES LTD.

DEPT. ETI 5

PO BOX 3000

ANDOVER HANTS SP10 3LQ

FREEPOST

PORTSLADE, BRIGHTON, ENGLAND

(No Stamp Needed) Phone 0273 414371
The Australian edition of ETI recently ran a design competition. The prize was to go to the best circuit designed using a limited number of components. This TTL tester/logic trainer/breadboard unit/digital troubleshooter won the first prize. The LED readout is an optional extra because only without this did the circuit qualify for the competition.

ORIGINALLY conceived as a tester for checking out disposals dual-in-line T.T.L. integrated circuits, this device has also proven effective in the roles of logic trainer, breadboarding unit and digital trouble-shooter.

Two SN7400 quad NAND integrated circuits, together with an NPN bipolar transistor, have been adapted to perform the functions of multivibrator clock-generator, unipulser and pulse lengthener/detector, each function being located on a sub-board and brought out to banana sockets on the front panel.

Continued on page 32.

BCD OPTION
A useful addition to the Supertest project is a BCD readout facility consisting of four LEDs brought out through current limiting resistors to binding posts on the front panel.

The LED's, positioned in line and close together for easy interpolation, are fitted in the positions indicated on the layout diagram, using the islands provided on the front panel for mounting the associated resistors and binding posts. The posts should be clearly labelled ABCD and the LED's defined by their binary weightings of 1, 2, 4, 8.

For those enthusiasts who find continuous operation of the clocking multivibrator objectionable, the clock may be inhibited by isolating pin 1 of gate B1 and connecting this point via a toggle switch to ground. When the ground is removed the clock will operate normally. This switch can be located conveniently inboard of the unipulser switch. With the clock inhibited the clock output at TP1 will be a 'low'.

Front panel layout of unit (with optional BCD readout). Use printed circuit board as guide for marking out hole centres etc.
MULTIVIBRATOR CLOCK
The clock consists of a multivibrator formed by gates A4 and B1 and associated RC networks. The period of oscillation is about 0.8 seconds and the output is buffered by gate B4 to reduce loading effects.

The clock rate may be varied, if required, by altering the value of both capacitors. It is inadvisable to increase the value of the resistors beyond 2k as this may result in unstable operation.

UNIPULSER
The purpose of the unipulser is to provide a single, bounce-free pulse, at each depression of SW1, which may be used in testing counters etc.

The two gates A3 and B2 are interconnected to form a switched bistable (RS flip-flop). Normally pin 4 of B2 is grounded via SW1 and the resulting high at pin 6 is coupled directly to pin 9 of A3. As pin 3 of A3 is not connected, A3 sees both inputs as 'high' and its output will be 'low'.

When S1 is depressed pin 10 is earthed and pin 4 goes high. A3 output goes 'high' and this appears at pin 5 of B2. As both inputs of B2 are now high its output will transfer a 'low' to pin 9 of A3 causing its output to be locked into the high state regardless of any further bouncing of the switch contacts which would otherwise provide spurious input pulses to the counter under test.

Releasing SW1 causes the flip-flop to revert to the state where A3 output is low.

PULSE EXTENDER
This simple circuit stretches very short pulses to about 100 milliseconds duration thus allowing them to be detected easily.

The two NAND gates A1 and A2, together with C3 and R6, form a monostable. Initially both inputs of A2 are held 'low' due to R6, its output is therefore 'high'. All inputs of A1 are thus 'high' and its output is 'low'.

If the input of A1 is driven 'low', by a short duration pulse, the output of A1 will go 'high' transferring a high via C3 to the input gates of A2. Output of A2, and A1 input, will go 'low' holding A1 output 'high'.

Hence the LED indicator will be alight.

Capacitor C3 now discharges via R6 and after approximately 100 milliseconds the input to A2 will revert to 'low' and hence A2 output and A1 input will go 'high'. If both inputs of A1 are now 'high' (pulse not present) A1 output will go 'low' and the LED will extinguish. However if a pulse is present A1 output will remain 'high' and the LED lit.

As a 'low' is required at gate A1, an inverter is required for logical '1' detection. This is performed by Q1. Q1 also acts as a current amplifier allowing the logic probe to be of reasonably high impedance. Resistor R3 provides a light load, for the disconnected outputs of operating ICs, thus allowing logic levels to be observed. Resistors R3 and R4 also form a potential divider such that Q1 does not draw excessive current at normal logical '0' levels.

INVERTER
The spare NAND gate, B3, is wired as an inverter. This allows inversion of the clock or unipulser outputs or 'low' logic detection using the logic probe.
Three hook probes with banana plug terminations are provided. The use of banana sockets for probe entry frees the probes for use in conjunction with other equipment.

Logical 'I' and 'O' detection is available. Logic indication is by a red LED - alight for TRUE.

A 16 pin dual-in-line socket with base connections fanned to well spaced binding posts (Fig. 38) is used for the testing of both 14 and 16 pin D.I.L. integrated circuits and also for breadboarding and training purposes.

The front panel is clearly labelled with carefully applied Letraset - lacquered to increase durability - and housed on a small black plastic utility box to give the completed unit a professional appearance.

Thirteen short leads - approximately 230 mm long - twelve terminated with small insulated alligator clips and one with banana plugs, complete the test kit.

The unit is intended to operate from an external power source of 5 V and this is normally provided by the digital equipment under test. But for casual purposes a 6 V lantern battery, connected via two forward biased silicon diodes, is a satisfactory and economical power source. Current drain is about 30 mA.

CONSTRUCTION

Prepare the sub-board from Veroboard by cutting the tracks as shown on page 53 and then commence wiring by fitting the resistors and links. Sleeve any long links with 'spaghetti'. Next mount the ICs taking particular care to orientate the notch (or dot) as shown in the overlay.

Mount the capacitors and Vero-pin terminal posts taking care to insulate the capacitor leads with spaghetti. As C1 and C2 are physically large, they should be laid on their sides and bound to the board with a length of spaghetti-sleeved wire.

After checking the board for errors, poor solder joints etc, it may be tested by temporarily wiring the LED between TP3 and TP7 - the lead closest to the flat on the LED being connected to the grounded terminal, TP7. The unit is then powered by applying +5 volts to TP8 (zero volts to TP7). The LED should flash briefly on application of power and then extinguish.

Connect TP2 to TP8 - the LED should light and then extinguish when the connection is broken. Observe that there is a pulse stretching action by flicking TP2 against TP8.

Connect TP2 to TP1. The LED should flash regularly at approximately 1 Hz. Now connect TP5 to TP7 and TP2 to TP4 in that order - the LED will be extinguished. Disconnect TP5 and connect TP6 to TP7 - the LED will light. Note that repeated disconnections of TP6 will have no effect on LED indication.

The parts list includes:

- Integrated circuits: SN7400, BC108
- Capacitors: 470μF, 470pF, 100pF, 0.22μF
- Resistors: 820 ohm, 33k, 1k
- Terminals: 16 pin
- Vero-board 1” matrix, PCB, Veropins.
- LED: TIL209
- Probes: Self gripping (Doram)
- Banana sockets
- Crocodile clips, sleeving, solder, hook-up wire.
- Box: 190 x 90 x 50mm

ELECTRONICS TODAY INTERNATIONAL - MAY 1975
to TP7 – the LED will extinguish.
Note that repeated interruptions of TP5 connection will have no effect on LED indication.

Connect TP9 to TP7 and TP2 to TP10 – the LED will be lit.
Disconnect TP9 from TP7 – the LED will go out. Now connect TP9 to TP8 – the LED should still be out.

That completes testing of the sub-board. The banana sockets, IC socket, power terminals and unipulser switch should now be fitted to the front panel. Note that the common lead on SW1 is earthed to the panel ground-plane adjacent to the switch body.

Mount the LED using the plastic mounting clip provided, and solder the lead near the flat side of the LED to the ground plane. Take care, when bending the leads from the LED, to hold the wire near the base of LED with long nose pliers. Unless the strain is relieved as above, the leads are prone to break off at the base.

Mount four, half-inch insulated posts to the sub-board with screws and then, using 5 minute epoxy, cement the other end of the pillars to the front panel. When the glue is set unscrew the sub-board so that final wiring may be performed as follows.

Connect TP1 to B1; TP2 to B3; TP3 to LED; TP4 to B2; TP5 to NC SW1; TP6 to NO SW1; TP7 to GND; TP8 to +5 V; TP9 to B5; TP10 to B4.

When all these connections have been made, the sub-board may be reinstalled on the front panel and the whole assembly mounted in the utility box.
At the time of their introduction, the Quad speakers were undoubtedly the finest monitor loudspeakers produced anywhere in the world. Their major attribute was colouration one or two orders less than virtually any other competing speakers. Added to this they had a transient response which was at that time described as superb. The aim of our investigation was to determine just how well this twenty-year-old system compares with the legion of new breeds of systems and speakers which have been developed since.

Our first series of tests were to place the Quad electrostatic speakers in an anechoic environment above a reflecting plane to plot out the polar patterns of each speaker at frequencies of 125 Hz, 1 kHz, 2 kHz, 4 kHz, 8 kHz and 16 kHz, in both the horizontal and vertical planes. The manufacturer’s literature includes polar curves, which we presume show the horizontal plane as no commentary or description is provided. We could not reproduce the front to back discrimination that their curves showed at the high frequency end of the spectrum, but did achieve bandwidths between the 3 dB points that were comparable and if anything, superior.

Vertical pattern at two metres (input, one-third octave filtered pink noise).
- 1 kHz
- 2 kHz
- 4 kHz
- 8 kHz
- 16 kHz

Horizontal pattern at two metres (input, one-third octave filtered pink noise).
- 1 kHz
- 2 kHz
- 4 kHz
- 8 kHz
- 16 kHz
It is twenty years since the quad ESL Speakers were introduced at the Waldorf Hotel in London. In those days everyone agreed they were ahead of their time. But after 20 years of development in the audio field we are just beginning to appreciate how far ahead these speakers were.

Measurements in the vertical plane, however, were far more interesting. In particular they highlighted the problems of vertical dispersion which are a limitation of this system. Thus, at 16 kHz, the response is 10 dB down at ±10° vertical angle, and is 20 dB down at ±30° at frequencies of 4 kHz, 8 kHz and 16 kHz. This, we should point out, is still no mean effort but not really what one would expect or desire from a system which is intended for use as a monitor speaker. This limitation should not necessarily deter people from using any of these fine speakers for home listening where the narrow vertical angle is unlikely to be noticed.

The frequency response of the Quads is exceptional and most probably still among the best yet achieved. Right through to 20 kHz it is every bit as good as the manufacturers claim -- if anything it is slightly better. We performed this measurement above a single reflecting plane rather than in truly anechoic conditions and found that the frequency response from 50 Hz right through to 17 kHz has a deviation of less than ±5 dB, it would be regarded as being flat by most purists.

Our next test, which we regard as being of critical importance, was the tone burst response evaluation using the E.T.I. tone burst generator. The performance here, and the results achieved, were to say the least exemplary. The only speaker which has offered a superior performance at higher drive levels is the ESS amt-1 which can produce peak sound pressure levels in excess of 110 dB at two metres on axis. The manufacturer's literature and guarantees for the Quad electrostatic speaker specifically state that the maximum output of the Quad should be limited to 93 dB at two metres on axis, in fact Quad's 303 amplifier provided for the test was unable to produce such high levels.

Notwithstanding, within the manufacturer's rating limits, the response was as clean as we have ever encountered and certainly equal to the best that we have ever measured.

The impedance of the speaker is well controlled over the major portion of the frequency spectrum. This is most probably one of the greatest attributes of the Quad speaker for most other electrostatic speaker systems that we have measured have a response which rises at the top end of the spectrum. Distortion characteristics are exemplary and certainly every bit as good as the best conventional systems available on the market.

Our final series of tests consisted of a subjective evaluation between the Quad and other state-of-the-art speaker systems, including ESS, Fisher and A-R. At sound pressure levels below 93 dB (at two metres on axis) the Quad still exhibits the cleanest and most uncoloured sound imaginable.

The bass response cannot really cope with modern day rock but it must be remembered that this speaker was designed in another generation, years before “rock” had even been thought of, but for the classical purist we know of no other speaker which is superior in terms of colouration.
**BYWOOD CHANTICLEER**

- READ: TIME & ALARM
- ELECTRONIC 'BEEP' ALARM TONE
- TEN MINUTE 'SNOOZE' FEATURE
- BRIGHT, CLEAR DISPLAY
- NO MOVING PARTS
- EXECUTIVE STYLING
- SOLID STATE RELIABILITY

**Digital Clock**

The heart of the CHANTICLEER is a tiny electronic package containing thousands of transistors which divide the 50 cycles/second mains frequency into precise time units. The clock "movement" in fact has no moving parts.

**Recommended Price** £16.60 + VAT.

"We would like to apologise to those people who have experienced delays in delivery but this has been due to phenomenal demand. We have experienced delays in delivery but we would like to apologise to those people who have experienced delays in delivery but this has been due to phenomenal demand. We are doing all we can to supply you."
"So! This is the spot of decorating you were hoping to do while I was staying with mother."

What to look for in June’s ETI

**COLOUR SYNTHESISERS**
Apply the techniques of modern music synthesisers to a PAL Colour TV and you have what is being hailed as a new art form. Read about the techniques and potentials in June’s ETI.

**ELECTRONIC FLASH TRIGGER**
An ingeniously simple project which enables a camera to be triggered by light, impulse or sound.

**500W LIGHT DIMMER**
A superbly designed, practical project costing about £2.50. Our unit will replace a standard light switch and handle up to 500W.

**BICYCLE SPEEDO**
An electronic circuit which should be very popular with younger readers. An easily built project, costing very little.

**WORKING WITH THE ‘SCOPE**
A profusely illustrated article which will enable you to make the best use of your ‘scope. It shows how to interpret the waveforms displayed.
1 **TRANSISTOR PAK**
Containing 20 of the most popular transistors. Each one brand new and fully guaranteed.

**COMPRISING:**
- 2 AC128
- 2 OC71
- 2 2N1306
- 2 BC107
- 2 BC108
- 2 BF115
- 2 BFY50
- 2 BFY51
- 2 2N708
- 2 ZTX300

**NORMAL RETAIL VALUE £3.26**
**SPECIAL OFFER PRICE £1.00**

2 **COMPLEMENTARY PAK**
Complementary transistor pak, containing 8 complementary pairs of popular transistors. All new and guaranteed.

**COMPRISING:**
- 1 pair BC107 BC177
- 1 pair BC108 BC178
- 1 pair BC109 BC179
- 1 pair BC171A BC251A
- 1 pair AC128 AC127
- 1 pair BFX84 BFX29
- 1 pair 2N2221A 2N2806
- 1 pair 2N1613 2N2905

**NORMAL RETAIL VALUE £3.00**
**SPECIAL OFFER PRICE £1.00**

3 **TTL PAK**
Containing 10 of the most popular TTL transistors. Each one brand new and fully guaranteed.

**NORMAL RETAIL VALUE £3.05**
**SPECIAL OFFER PRICE**

4 **DIODE, S.C.R. PAK**
Containing 35 of the most popular S.C.R.'s. All brand new and guaranteed.

**NORMAL RETAIL VALUE £3.35**
**SPECIAL OFFER PRICE**
**Reader Offer**

**Popular 74 Series IC’s**. All brand new

**Comprising**:
- 3 x 7400
- 2 x 7402
- 2 x 7410
- 1 x 74141
- 1 x 7490
- 1 x 74121

**£1.00**

**BI-PAK**

**Popular and useful diodes** and guaranteed.

**Comprising**:
- 5 x IN4001
- 5 x IN4004
- 10 x IN914
- 1 x BY100
- 10 x General purpose germanium diodes that replace: OA81, OA85, OA91.
- 1 x 1A 50V SCR T05
- 1 x 1A 400V SCR T05
- 1 x 3A 50V SCR T066
- 1 x 3A 400V SCR T066

**£1.00**

**Free Catalogue with Two Special Order Forms Giving 10% Reduction on Your Next Two Orders When Purchasing Any of the Paks.**

**TO: ETI Offer**

**BI-PAK Semiconductors,**

P.O. Box 6,

Ware, Herts.

Please find enclosed my cheque/P.0. for £______ (payable to BI-PAK Semiconductors). Please tick paks required below:

<table>
<thead>
<tr>
<th>Pak 1</th>
<th>Pak 2</th>
<th>Pak 3</th>
<th>Pak 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transistor</td>
<td>Complementary</td>
<td>TTL</td>
<td>Diode, SCR</td>
</tr>
</tbody>
</table>

This coupon is valid for up to 4 paks (one of each) but cannot be used for more than one of any particular pak.

NAME ........................................

ADDRESS ......................................

This offer closes 31st May 75.
"METER BEATER BEATER"

I designed this device to give the police a chance against readers of your February issue who built the "meter beater". I felt it was my duty (ha! ha!). The principle is that the QAP65 transistor creates a high frequency alternating field in the coil which makes the meter run ten times as fast. So a meter which normally lasts an hour will run out in 6 minutes!
— Anon.

METRIC WIREGAUES

I note that the wire recommended for the projects in your magazine is quoted in metric units. This can cause a few problems (see April's letters page) as the SWG figure is often used in the shops. I do not suggest you print the SWG figure because I believe the sooner we are completely metric the better. To use the old-fashioned units would hold up progress and prolong the confusion. However, to help us over the transition could you publish a conversion table. Then I will be able to re-label the old reels in my workshop.
— P.S., Leeds.

The chart on the right shows the metric diameter of common SWG values. However we will, for a while, publish the equivalent SWG when we recommend wire gauge.

THE HOME CONSTRUCTOR

100 OPERATIONAL AMPLIFIER PROJECTS FOR

BUTTERWORTH

BEGINNERS GUIDE TO ELECTRONICS

BUTTERWORTH

BUTTERWORTH

BUTTERWORTH

BUTTERWORTH

BUTTERWORTH
**SPARKYBE MK2**

**CAPACITIVE DISCHARGE ELECTRONIC IGNITION KIT**

“Sparkybe MK2” is a high performance, high capacity, capacitive discharge system, designed to complement any system of the same type. 

- **Voted best of 8 ignition systems tested by Popular Motoring**
- **No. 197**
- **50Hz**
- **1555**
- **90x90**
- **10000**
- **9000**
- **3**
- **2**
- **1**
- **0.17**
- **assembly kit £10.93 incl. VAT. post & packing. Ready built unit £4.10 ex. VAT. post & packing.**

**ORDER NOW TO**

**TO ELECTRONICS DESIGN ASSOCIATES**

**81/50 GROVE RD**

**555 C.W. ADD VAT TO ALL PRICES IN U.S. F.P. £5. REPORTS ETC.**

**FRIDAYS 14.90 NO. VAT.**

**MONEY IS NOT SATISFIED**

**ALL OPENINGS 61070**

**C-RAT**
THE International Voltage Controlled Synthesizers have been developed as "state of the art" systems. Extensive use has been made of digital techniques and CMOS has been used as the primary logic family.

This article introduces the construction of the second of our two music synthesizers—the International 3600. The larger International 4600 was described in a series commencing January 1974.

The 3600 is a relatively inexpensive model that is basically designed as a portable, limited capability instrument for stage work. It does however offer a performance superior to most small synthesizers at present on the market.

The larger 4600 is a full scale unit. It uses the same electronics but has more modules, a programming patchboard and many additional features which make it more suitable for studio use.

The flexibility of both units, in particular the larger, allows individual constructors to tailor an instrument to their own requirements.

In the larger 4600 unit no compromises were made that would hinder expansion of the system. Construction could pace the ingenuity or finances of its builder. The unit had a 22 x 22 way patchboard to facilitate the rapid selection of various module configurations.

The 3600 offers the most popular features of our larger 4600 synthesizer but is simpler.

It is faster to operate as it has a switch patching system rather than the matrix patchboard of the larger unit.

The 3600 is particularly suitable for live performance and portable use, being completely enclosed in a rugged carrying case with detachable lid, the lid is large enough to house a monitor loudspeaker which can be driven by the headphone amplifier.

3600 FORMAT

Three Oscillators:

Three identical Voltage controlled Oscillators give Sine, Triangular, Sawtooth, Inverted Sawtooth (Ramp) and Rectangular waveforms. Each oscillator is switchable over seven (precisely tuned) octaves, plus a
Sub-sonic (very low frequency) range for control purposes. The oscillators are insensitive to temperature changes.

**Four Octave Keyboard** A four-octave monophonic keyboard is provided with variable "Glide" and 'Sweep' control. Tuning to other instruments is done using the 'Tune' control located on the 'keyboard control' module.

**Modulation Mixer** A 'Modulation' module provides a control source by mixing the output of Oscillator 3, the Transient generator, and white noise in any combination. The output is also sent to the Keyboard module where it is mixed (technically it is multiplied) with the keyboard voltage and a 'key mod' output is obtained i.e. the modulation modules' output tracks the keyboard.

**External Input** An external input signal such as guitar or voice can be sent directly to the filter by a continuously variable gain control located in the 'Level' module. A white noise control in the same module sends noise directly to the filter input.

**New Low-Pass Filters** A low-pass voltage controlled filter selects its control from the 'Transient', 'Keyboard', 'Modulation', Module or 'Key Mod' outputs. The depth of control is continuously variable by a control next to the selector switch. A 'Tune' control determines the filters starting point (pitch) and a 'Resonance' control provides variable resonant peak at the (voltage controlled) cut-off point. This filter is not the same as the original filters in the 4600 Synthesizer.

**Unique Transient Generators** A transient generator, intended primarily to control the filter, is triggered whenever a key is pressed on the keyboard and provides a programmed control voltage. It has two slopes, either of which can be rising or falling depending on the 'Start', 'Hold' and 'Final' level setting.

Initiation of the transient can be delayed until some time (variable) after a key is depressed on the keyboard. The hold level can be sustained until the key is released, or it will hold only for the duration of a preset (variable) period regardless of the key being lifted prior to, or after the set period.

**Envelope Generator with 'Hold delay'** The output of the filter goes directly to the Envelope Control (Loudness contour) which has three slopes and an adjustable Hold Level. A hold delay similar to that in the transient generator is also incorporated. This can be overridden for manual hold on the keyboard.

**Five Section Tone Equalizer** The output of the Envelope control unit goes directly into a five-section equalizer for finer refinement of tonal quality.

**Reverberation** A Reverberation unit forms the final path for the audio signal. A single control adjusts the amount of reverberation from zero to full.

**Super-stable** A special feature of the 3600 (and 4600) is that an 'exponential' control voltage is derived directly from the keyboard.

The reason for this is that the basic electronics of a voltage-controlled oscillator requires that a 'linear' voltage change at its input will provide a 'linear' pitch change at its output. However, our twelve-semitone musical scale works exponentially rather than linearly, and so a synthesizer keyboard must ultimately provide an 'exponential' voltage scale if the oscillators are to provide an exponential pitch scale.

It is relatively easy to obtain a 'linear' voltage scale from a keyboard by simply having resistors in a chain, all the same value. Voltages are ramped along the chain as a key is depressed. This 'linear' voltage scale is then converted to an exponential scale electronically, by an 'exponential converter' sometimes called an 'oscillator controller'.

**Exponential converters** are particularly susceptible to temperature, and most instruments based on such techniques have to be frequently retuned to overcome the inherent drift in pitch caused by temperature changes. Some synthesizers use only one or two exponential converters to control banks of oscillators, whilst others have a separate converter for each oscillator.

To overcome this very common problem, the 3600 (and 4600) derive an exponential voltage directly from the keyboard by a unique matrixed voltage selection system which is not sensitive to temperature change. This technique also allows more accurate keyboard tuning than the 1% tolerance resistor chain found in most other synthesizers.

Constructional details of the 3600 synthesizer will commence next month. The 3600 uses many modules which are common to the 4600.
ONE HAS ONLY to listen to music through a pair of good quality electrostatic headphones to realise that the auditory performance of most loudspeakers leaves a lot to be desired. Good quality headphones are, of course, easier to build. Low mass distortion-free units can be built at moderate cost since the physical size of the moving parts is relatively small. The close coupling between the earpiece and ear enables adequate sound-energy to be made available, hence realistic levels of loudness may be achieved without the need for large diaphragm displacements.

Full-range electrostatic loudspeakers are particularly difficult to build - in fact very few are available. The Quad is probably the most familiar example of this type of speaker since it has been in existence for many years, but other brands are now appearing which tackle the problems in different ways and by so doing, generate a new range of subsidiary complications.

The Quad is a push-pull system in which a lightweight diaphragm is free to move in an air-gap between perforated static plates - so producing sound.

A limitation of such a speaker is that low frequencies (below 50 Hertz) may be restricted, since the large excursions of the diaphragm required for significant acoustic output may not be physically achievable.

In the United States, the Dayton Wright full-range electrostatic loudspeaker uses a system in which the charged plates are sealed in an atmosphere of sulphur hexafluoride. This confers two advantages over an air-spaced system: it gives a higher loading to the moving membrane - because of the density of sulphur hexafluoride relative to air; it also enables the voltages of the static plates to be increased because of the better electrical insulation properties of the gas. This in turn enables the spacing between plates to be increased, so allowing the diaphragm to be driven harder when reproducing low frequencies.

In general, a full-range electrostatic loudspeaker has certain merits relative to the majority of moving coil designs. It has low colouration since it is of doublet design and has no cabinet resonances. It has a lightweight diaphragm which is driven uniformly across the whole of its surface rather
than from one small area, which minimises unwanted diaphragm flexing.

**SPEAKERS IN PARALLEL**

The advantages of driving two moving-coil speakers in parallel has been often stressed, for example by Gilbert Briggs, (‘Loudspeakers’, Wharfedale Wireless Works Ltd) but little has been written concerning the possible advantages of driving two full-range electrostatic speakers in parallel. One advantage, in the case of the Quad electrostatic, would be to double the amount of air acted upon. Also if the speakers were mounted vertically one above the other, high frequency dispersion would be improved. Because of the shape of the high frequency transducer of the Quad (which is a long narrow vertical element) the horizontal dispersion is approximately 70°. However, the vertical dispersion is only 15° and this produces a beaming effect which results in changes in loudness of high frequencies when the listener moves his head. Such effects can be tiring and this is one of the reasons why “reflected sound” loudspeakers are preferred by many audiophiles. The construction of the double Quad system was undertaken with the aim of bringing about these improvements.

**HOW THEY WERE MADE**

Constructing double Quad speakers is quite straightforward. The wooden side pieces are removed and two extended wooden arcs screwed in their place. The arcs are constructed to continue the line of curvature of the front of the speaker grille. The angle of tilt of the complete assembly is then adjusted so that the uppermost speaker retains the same angle of inclination as a single unit mounted on the floor. The three feet of the Quad speaker are replaced by two parallel wooden extensions projected fore and aft from the speaker assembly. Four castors enable the unit to be moved quite easily and since the centre of gravity is well within the base, it is completely stable.

The complete double speaker construction is much more easily moved than the single Quad with its rather unstable tripod leg arrangement. This feature of the standard Quad is something which the manufacturers could well improve since even an obstreperous cat has on occasion tipped ours over!

A danger to be avoided when loudspeakers are run in parallel results from the excessively low impedance which may be created; this may produce undesirable effects upon the amplifier. Modern direct-coupled amplifiers can supply large amounts of subsonic energy and therefore may damage a speaker if its impedance is very low. The Acoustical Quad amplifier has a capacitor output which blocks direct current and low-frequency signals and it is for this reason that the manufacturers of other amplifiers (for example Amcron, who produce the D-60 amplifier), recommended that a capacitor, in parallel with a four ohm resistor, be inserted between the amplifier and an electrostatic loudspeaker load when the direct current resistance of the input transformer of the loudspeaker is less than three ohms, (which it is in the case of the Quad speakers).

When driving Quad electrostatic speakers in parallel, the impedance of the double unit falls to three ohms at frequencies above 8 kHz, but this is not too bad compared with some electrostatic systems in which impedances may fall even lower than this.

It may perhaps be asked why one should go to all this trouble with electrostatic speakers when the problems could be solved by using moving-coil units which in general do not have the limitations of full-range electrostatic speakers. However in lengthy listening sessions involving moving-coil, hybrid and full-range electrostastics, full-range electrostastics seemed the most transparent. Although at the extremes of frequency response some roll-off occurs, the detailed and accurate mid-range reproduction combined with an absence of bass colouration makes them difficult to beat.

**STEP BY STEP INSTRUCTIONS**

**SIGNAL INPUT:**

(a) Remove rear wire mesh cover of lower speaker.
(b) Loosen the four retaining bolts on the signal input transformer and displace slightly to one side so that the wooden speaker base is exposed.
(c) Cut hole in exposed speaker base to take DIN socket.
(d) Wire DIN socket to shanks of transformer signal input sockets, observing polarity.
(e) Replace transformer.
(f) Staple signal leads carrying a DIN plug to speaker framework to carry signal to uppermost speaker.

**MAINS INPUT:**

(a) Cut hole in wooden speaker base near the mains input transformer to take three pin socket with locking collar.
(b) Connect three wires between the pins of the socket and the Bulgin socket mounted in the mains transformer corner (or to other appropriate wiring points which may be more easily reached and which preserve the correct polarity).
(c) Replace lower speaker rear mesh.
(d) Staple mains cable to edge of wooden framework.
(e) Terminate mains cable with Bulgin plug to energise uppermost speaker.

---

**NOTE:**

This Data Sheet is published on page 34 of this issue.

---

**STEPPING IN**

Solid-state flasher for cars

FLASHING TURN INDICATOR lamps on cars are invariably controlled by a thermal relay unit. Many of these units are fragile and unreliable. A further disadvantage is that the flashing rate is affected by the load current. Thus, connecting up a trailer or caravan may vary the flash rate beyond the legal limit.

The unit described has the inherent reliability of solid state components and is not affected by load current. Its flashing rate is independent of supply voltage, and should cost little more than a commercial thermal relay unit.

The flash rate and duty cycle can be varied (providing they remain within the legal limit—which is between 60 and 120 flashes per minute). It can be used in either a 6 V or 12 V system.

Details are shown for both +ve and -ve earth systems. A switch can be added to give an "all lamp flashing" mode as a warning signal at the scene of an accident.

This inherently reliable flash unit is not affected by voltage or load changes.

CIRCUIT DESCRIPTION

The solid state flasher unit consists of two sections, the adjustable timing circuit and the high current switching circuit.

The heart of the timing circuit is Signetics' versatile integrated timer—NE555. It is used here in an "astable" or "free running" mode. Its frequency and pulse duty factor are determined by three external components RA, RB, and C.

A flash rate and duty cycle of ½ sec on—½ sec off is achieved using the values shown in the circuit diagram, however for those who might wish to vary this the necessary calculations are shown elsewhere in this article.

The NE555 is decoupled from the supply rail by a 56Ω resistor and a 0.01µF capacitor in parallel with a 68µF tantalum. For 6 V auto systems, the 56Ω resistor is not really essential as the chip will operate from a Vcc of between 4 V and 16 V and still produce the same accurate timing. Decoupling capacitors are required across the supply to eliminate voltage spikes on the supply rail. The 68µF capacitor smooths out most of these spikes but it is just not quick enough (it has too much inductance) to ground the very sharp, short spikes that may damage the NE555, hence the 0.01µF capacitor which must be

The Telephone Receiver can be obtained from Bi-Pre-Pak.
placed as close to the chip as possible.
The output (pin 3) controls a direct coupled Darlington transistor output stage that switches the current through the lamps, the 100Ω resistor limits the current from the chip. The circuit is energized continuously when the ignition is switched on but the power consumed is negligible. Only when the trafficator control switch is moved right or left, does heavy current flow through the 2N3055. The driver of the 2N3055 is not a critical type but seeing that this unit was designed to switch 10 amps comfortably a medium power transistor with a collector current of 1 amp was chosen.
The law requires that an audible indication be given to indicate that the trafficators are operating. This is achieved by connecting a telephone receiver earpiece across the 2N3055, thus producing the audible clicks.

Most cars have two pilot lamps on the dashboard to indicate right or left hand indicator operation. If, however, there is only one pilot lamp, it can be connected between the two sides of the trafficator lever, providing that the lamp can be completely insulated from the dash. Thus when one set of lamps is energised, the pilot lamp operates in series with the un-energised lamps, which, being of high wattage and with cold filaments, do not light.

It is also a good idea to provide an "emergency flash" mode to warn other drivers of a road accident, etc. A double-pole switch capable of handling the current (shown on the -ve earth circuit) will provide this. The extra load will not affect the flash rate or ratio, but one should check the fuse/s used in conjunction with the flasher unit to see if it will handle twice the normal current.

### Construction Details

The most convenient method of building this flasher unit is to mount the components on the lid of a die-cast box. The main part of the box should be bolted firmly to the car chassis, thus providing the necessary earth. The receiver can be attached to the lid, using epoxy resin. The 2N3055 can be mounted on the outside of the lid, thus providing the transistor with a ready-made heatsink. This transistor must be completely insulated from the metal lid and a transistor cover must be used. The remaining components can easily be mounted on a small piece of Veroboard which in turn can be secured to the lid via the screw used for the terminal block.

---

**Electronic Windicator**

Circuit indicates which of two switches is first depressed.

![Electronic Windicator Circuit](image)

The circuit was originally designed for use in a game in which two players on command each try to press their respective switch before the other.

The first to do so causes 'his' bulb to light, and providing he keeps his button depressed his opponent cannot cause his own globe to light until the circuit is reset by momentarily breaking the power input or by the winner releasing his button.

With minor modifications, the circuit may be used in quiz games and/or the lights replaced by buzzers (in the latter case diodes should be wired across the buzzers to protect the transistors from voltage spikes generated by the back emf).
Operating principle is simple. Assume switches SW1 and SW2 are open, both transistors Q1 and Q2 have their bases floating - neither is turned on. Neither bulb is alight.

Now assume SW1 is closed. The voltage at the collector of Q2 (which is high) will flow via R1 to Q1's base. Transistor Q1 will now be switched on thus lighting L1. Although SW2 may now be depressed the voltage at Q1's collector is too low to bias on Q2. So L2 cannot be energized.

One disadvantage of the circuit is that it is not self-latching. The winner must keep his button depressed until his opponent has conceded defeat.

SELF-LATCHING
The modification shown here overcomes this disadvantage - at the cost of a slight increase in price. Basically all that is required is to replace the two BC 108 transistors by two small SCR's. Almost any low current devices will do - C106's for instance. SCR's are self-latching devices so the first bulb to be illuminated will stay that way - even though the winner's button is released - until the main power is momentarily broken.

Low-battery warning
Flashing light indicator warns of low battery voltage

The prototype of this device will be used in a hospital operating theatre in conjunction with battery operated medical equipment (powered by four 'pen-light' cells).

A moving coil voltmeter was not appropriate as, in the designers' experience, medical staff have difficulty in interpreting a voltmeter and sometimes find themselves half way through an operation with exhausted batteries. Therefore, the requirements for the indicator were that:

1) the display be eye catching, easily understandable and provide a sense of urgency as the battery approaches exhaustion;

2) provide adequate warning of battery failure (at least 1 hour);

3) current consumption of the indicator be low in relation to the main equipment;

4) preferably, be more rugged and cheaper than a moving coil meter.

The design was based on a programmable unijunction transistor (PUT), because its threshold characteristics can be well defined, arranged to flash a light emitting diode (L.E.D.) indicator.

The circuit is shown in Fig. 1. The PUT (Q1) is used in a relaxation oscillator circuit. As the voltage being monitored (V_mon) falls, the voltage on the gate (V_g) falls whilst the anode voltage (V_a) remains essentially constant. Oscillation commences when V_g falls below V_a by 0.6 volts. As V_mon falls further, V_g falls and the PUT triggers at lower values of V_a. Thus the cycle time shortens and the frequency of flashing increases giving a sense of urgency as the battery approaches exhaustion. Transistor Q2 and C2 act as a pulse stretcher and amplifier to drive the L.E.D. display.

In the prototype the trigger point can be adjusted from 4.5-5.5 volts and the current drain when V_mon is 6 volts is 1 mA (controlled primarily by R1). This is considered acceptable as the device being monitored draws 17 mA. All the requirements have been met. The components are mounted on the printed circuit board of the main device.
TO MAKE WAY FOR NEW ADDITIONS

AMTRON

SPECIAL OFFER

AT UNREPEATABLE PRICES

UK160 I.C. Mono Amp. 8 Watt
Specifications:
Output power: 8 W, peak
AUX input sensitivity: 30 mV
Output impedance: 5 Q

Power supply: 12 V DC
Transistors:
(1) ADI91
(1) ADI12

SALE
PRICE £ 6.04 R.R.P £ 11.46

Sale Rec. Price
UK80 Oscilloscope Calibrator £1.70 2.86
UK82 Telephone Amplifier 5.39 8.93
UK110 Stereo Amp. 5+5 Watt 7.55 12.48
UK185 Hi-Fi Mono Amp. 8 Watt 2.95 4.86
UK135 High Impedance Pre-Amp. 1.42 2.32
UK140 Low Impedance Pre-Amp. 1.42 2.32
UK167 C.C.I.R. Stereo Pre-Amp. 3.95 6.38
UK195 Miniature Amp 2 Watt 2.50 3.99
UK255 Level Indicator 4.20 5.91
UK270 I.C. Amp 6 Watt 4.95 7.85
UK275 Microphone Pre-Amp 4.50 7.38
UK375 27MHz Crystal Calibrator 5.45 9.94
UK415/C Resistor Substitution Unit 4.65 8.22
UK425/C Capacitor Sub Unit 4.65 8.17
UK435/C Stab. Power Supply 3.75 7.24
UK445/C L.F. Watt Meter 5mV=15 Watt 6.55 10.36
UK465 Quartz Crystal Tester 5.50 9.06
UK470/C Crystal Calibration Marker Gen 8.75 14.99
UK555/R/C 27MHz Field Strength Meter 5.90 7.25
UK610 Power Supply 24V DC 0.5 A 3.75 7.38
UK615 Power Supply 24V DC 1 Amp 3.75 7.24
UK630 Stab.Power Supply 6V-7.5 9V-12VDC 4.95 7.62
UK640 Auto Light Dimmer 200 Watt 4.65 8.19
UK670 Buffer Batt. Charge 12+=16V 200mA 4.25 9.45
UK710/C Four Channel A.F. Mixer 7.95 11.65
UK765 Multiple Stereo Junction Box 4 x Standard Jack Output 1.98 2.85
UK835 Guitar Pre-Amp. 3.75 5.37
UK840 Car Burglar Alarm 4.65 7.59
UK6 55 Electronic Fuzz Box 5.50 7.99
UK860/C Photo Timer 7.95 13.32
UK885 Capacitive Contact Alarm 5.50 7.99
UK900 R.F. Crystal Oscillator 20+=60MHz 1.60 2.86
UK905 R.F. Crystal Oscillator 3+=20MHz 1.60 2.86
UK910 R.F. Mixer 12+=170MHz 1.60 2.86
UK915 R.F. Amp. 12+=170MHz 1.60 2.86
UK920 R.F. Mixer 2+=27MHz 1.60 2.86
UK925 R.F. Amp. 2+=27MHz 1.60 2.86
UK930 R.F. Power Amp. 3=30MHz 1.60 2.86
UK985 Wide Band Amp. 3+=30MHz 1.60 2.86

ALL PRICES INC. VAT. POST & PACKING 25p.

FOR ILLUSTRATED CATALOGUE OF FULL RANGE SEND 25p TO:
AMTRON UK LTD.
4 & 7 CASTLE ST.
HASTINGS, SUSSEX.
TEL (0424) 438785

PW TELETRONICS KIT - £42-50 + VAT Reprint 75p
TRY OUR GLASGOW SHOP

Our ranges cover over 7,000 items. The largest selection in Britain
Top 200 IC’s TTL, CMOS & Lines

Our catalogue. Available now price 25p
Trade and export enquiries welcome

ELECTRONICS TODAY INTERNATIONAL—MAY 1975
HUNDREDS OF SQ. FT. PACKED WITH CLEARANCE ITEMS, TEST GEAR ETC. ALL INDIVIDUALLY PRICED. CALL OR SEND FOR LISTS.

HARTLEY 13A Double Beam Oscilloscope TB. 2ks-750k. Band width 5-500mS. Sensitivity 33mV/mV. Calibration markers 100k/s and 1M/S. £30 ea.

EX-MINISTRY CT436 Double Beam Oscilloscope DC-6 mgs. Max Sensitivity 10mV/mV. Small compact. Size 10 x 10 x 16 in. Suitable for Colour TV. Price £58 each including copy of manual.


CAPACITOR PACK 50 Brand new components only 50P. P. & P. 27p.

P.C. MOUNT SKELETON PRE-SETS. Solderwells 10, 5, and 2.5M ohm 38p. 1K, 500, 250 and 22o ohm 100P ea. Ferrite pin. coll. 2, 5, 2, 5. 33k 25p. 1% 1M, 500, 250 and 220 in 5s. Min P. & P. 1%.

100pf FEED THRU CAPACITORS. Only solution boxes £3-95. Brand New.


DELIVERED TO YOUR DOOR 1 Each of: Electronic Screw chains boards, etc. No bacterial. DIY ONLY EX. Irish £2. Brand New boxed. £30 ea. Carriage £2.

TRANSMIT PACK. 2 Twin 10/60 pf ceramic: 2 min strips with 4 different resistors and 20p ea. P. & P. 27p.

VMS. 200 x 200 ceramic 200 ohms 34p ea. All BRAND NEW.


FANTASTIC VALUE Rectangular Instrument Fans. 3.18 x 3.18 x 1.25 in. FACE: £2.00 carriage.

LOW FREQUENCY WOBBULATOR For alignment of Receivers, Filters etc. 250KHz to 5 MHz, effective to 30 MHz on harmonics. Three controls—RF level sweep, width and frequency. Order LX63. Price £8-50 P. & P. 35p.


WIDE RANGE WOBBULATOR 5 MHz to 150 MHz (Useful harmonics up to 1.5 GHz) up to 15 MHz sweep width. Only 3 controls, preset RF level, sweep width and frequency. Ideal for 10 MHz or TV IF alignment, filters, receivers. Can be used with any general purpose scope. Full instructions supplied. Connect 6-3V AC and use within minutes of receiving. All this for only £6.75. P. & P. 25p. (Not cased, not calibrated.)

DON'T FORGET YOUR MANUALS S.A.E. WITH REQUIREMENTS

LOW FREQUENCY WOBBULATOR Calibration £4 each P. & P. 35p.

HIGH FREQUENCY WOBBULATOR £1.00 each P. & P. 35p.

PHOTOCELL equivalent OCP 71. 13p ea.


RELIANCE P. & P. 250KHz to 30 MHz, effective to 30 MHz. 3 controls-RF level sweep, width and frequency. Ideal for 10-7 or TV IF alignment, filters, receivers. Can be used with any general purpose scope. Full instructions supplied. Connect 6-3V AC and use within minutes of receiving. All this for only £6.75. P. & P. 25p. (Not cased, not calibrated.)

FANTASTIC VALUE Rectangular Instrument Fans. 3.18 x 3.18 x 1.25 in. FACE: £2.00 carriage.

LOW FREQUENCY WOBBULATOR For alignment of Receivers, Filters etc. 250KHz to 5 MHz, effective to 30 MHz on harmonics. Three controls—RF level sweep, width and frequency. Order LX63. Price £8-50 P. & P. 35p.


WIDE RANGE WOBBULATOR 5 MHz to 150 MHz (Useful harmonics up to 1.5 GHz) up to 15 MHz sweep width. Only 3 controls, preset RF level, sweep width and frequency. Ideal for 10 MHz or TV IF alignment, filters, receivers. Can be used with any general purpose scope. Full instructions supplied. Connect 6-3V AC and use within minutes of receiving. All this for only £6.75. P. & P. 25p. (Not cased, not calibrated.)

DON'T FORGET YOUR MANUALS S.A.E. WITH REQUIREMENTS

LOW FREQUENCY WOBBULATOR Calibration £4 each P. & P. 35p.

HIGH FREQUENCY WOBBULATOR £1.00 each P. & P. 35p.

PHOTOCELL equivalent OCP 71. 13p ea.


RELIANCE P. & P. 250KHz to 30 MHz, effective to 30 MHz. 3 controls-RF level sweep, width and frequency. Ideal for 10-7 or TV IF alignment, filters, receivers. Can be used with any general purpose scope. Full instructions supplied. Connect 6-3V AC and use within minutes of receiving. All this for only £6.75. P. & P. 25p. (Not cased, not calibrated.)

FANTASTIC VALUE Rectangular Instrument Fans. 3.18 x 3.18 x 1.25 in. FACE: £2.00 carriage.

LOW FREQUENCY WOBBULATOR For alignment of Receivers, Filters etc. 250KHz to 5 MHz, effective to 30 MHz on harmonics. Three controls—RF level sweep, width and frequency. Order LX63. Price £8-50 P. & P. 35p.


WIDE RANGE WOBBULATOR 5 MHz to 150 MHz (Useful harmonics up to 1.5 GHz) up to 15 MHz sweep width. Only 3 controls, preset RF level, sweep width and frequency. Ideal for 10 MHz or TV IF alignment, filters, receivers. Can be used with any general purpose scope. Full instructions supplied. Connect 6-3V AC and use within minutes of receiving. All this for only £6.75. P. & P. 25p. (Not cased, not calibrated.)

DON'T FORGET YOUR MANUALS S.A.E. WITH REQUIREMENTS

LOW FREQUENCY WOBBULATOR Calibration £4 each P. & P. 35p.

HIGH FREQUENCY WOBBULATOR £1.00 each P. & P. 35p.

PHOTOCELL equivalent OCP 71. 13p ea.


RELIANCE P. & P. 250KHz to 30 MHz, effective to 30 MHz. 3 controls-RF level sweep, width and frequency. Ideal for 10-7 or TV IF alignment, filters, receivers. Can be used with any general purpose scope. Full instructions supplied. Connect 6-3V AC and use within minutes of receiving. All this for only £6.75. P. & P. 25p. (Not cased, not calibrated.)

FANTASTIC VALUE Rectangular Instrument Fans. 3.18 x 3.18 x 1.25 in. FACE: £2.00 carriage.

LOW FREQUENCY WOBBULATOR For alignment of Receivers, Filters etc. 250KHz to 5 MHz, effective to 30 MHz on harmonics. Three controls—RF level sweep, width and frequency. Order LX63. Price £8-50 P. & P. 35p.

This month — the PAL colour signal.

A PAL COLOUR television signal is similar to a monochrome signal except that it includes a high frequency subcarrier on which the colour-difference signals are modulated in quadrature. This subcarrier is known as the chroma signal. The frequency of the subcarrier is chosen with absolute precision to minimise the interfering effect of chroma on luminance. This involves the following factors:

1. The subcarrier frequency should be as high as possible so that any interference it causes on a monochrome picture is invisible from a reasonable viewing distance.

2. Since the colour-difference signals are allowed a bandwidth of about 1 MHz, the sideband energy of the chroma signal extends 1 MHz above and below the subcarrier frequency. The bandwidth of the composite television signal is limited to 5.5 MHz so the subcarrier frequency must be below 4.5 MHz to avoid excessive attenuation of the upper chroma sideband.

3. In Part 2 it was shown that interference between luminance and chroma can be minimised by placing the subcarrier frequency between any two harmonics of line frequency (15 625 Hz). This causes the predominantly line-harmonic energy...
contents of luminance and chroma to 'interleave'. So far, a reasonable choice of subcarrier frequency would seem to lie between the 283rd harmonic of line frequency (4.421875 MHz) and the 284th harmonic (4.437500 MHz), i.e. at 283.5 x (line frequency).

4. Since one of the colour-difference signals (V') is reversed (or 'modulated') by half-line-frequency in the PAL system, the chroma energy peaks due to V alone are at steps of only half-line-frequency either side of subcarrier frequency — see Fig. 23. To separate these peaks from the luminance peaks, a better choice of subcarrier is 283.75 x (line frequency).

Thus the final choice of subcarrier frequency for the PAL signal is:

\[(283.75 \times 15,625) + 25 \text{ Hz} = 4.43361875 \text{ MHz}\]

Broadcasters maintain this frequency accurate to a fraction of 1 Hz!

5. Areas of saturated colour where the chroma signal is large suffer slightly from a fine dot patterning caused by the subcarrier frequency appearing as luminance detail. While colour sets are designed to reject the subcarrier from the luminance signal, older monochrome sets with good resolution may show the effect. The pattern is minimised if the dots and the spaces between them are in relatively staggered positions on adjacent lines. This is achieved by offsetting the subcarrier frequency by an amount equal to the rate at which each line of the picture is refreshed (frame frequency) i.e. 25 Hz.

Thus the final choice of subcarrier frequency for the PAL signal is:

\[(283.75 \times 15,625) + 25 \text{ Hz} = 4.43361875 \text{ MHz}\]

Broadcasters maintain this frequency accurate to a fraction of 1 Hz!

SUBCARRIER BURST

Colour receivers contain a reference oscillator which generates subcarrier frequency to drive the U and V demodulators. A quartz crystal is used to determine the frequency accurately but the oscillator can only be brought to exactly correct frequency and phase by a special synchronising signal included in every picture line of the colour signal. This is a short transmission of unmodulated subcarrier, just 10 cycles (2.25 microseconds) long, known as the 'burst'. Fortunately, for monochrome/colour compatibility a monochrome signal contains a 'dead' period at the start of each scanning line, known as the back porch. The burst is inserted in this space — Fig. 24. Its position on the line is carefully defined so that a simple gating circuit in the receiver can extract it for controlling the reference oscillator. This is achieved by applying the local oscillation and the burst to a phase comparator which detects any error in the local oscillator phase and corrects it by means of a control voltage applied to the oscillator. The phase-lock loop so formed is shown in Fig. 25. The control voltage is usually applied to a varicap diode in the oscillator circuit; changing the control voltage affects the capacity of the diode to charge and the change in load on the quartz crystal affects the oscillator phase.

Since the burst is present for only 3 1/2% of a line, an integrating capacitor is needed to store the control voltage between bursts. The integrator also makes the phase lock more resistant to interference.

SWINGING BURST

The U and V demodulators require different phases of reference oscillation and these are obtained from the reference oscillator by simple phase shift networks. While the U
demodulator needs a fixed phase, the V demodulator needs different phase (±90°) on successive lines to match the PAL switching at the transmitter — see Fig. 26. Some receivers switch the V signal itself instead of the demodulation phase; this achieves the same thing and in either case an electronic reversing switch working at half line-frequency (7.8 kHz) is needed. The switch phasings must match the transmitter for correct V demodulation. The burst is used to synchronise the V switch as follows.

The bursts do not have uniform phase, instead they alternate ±45° on successive lines. These swings are not intended to be followed by the reference oscillator and to prevent this the integrator in Fig. 25 has a time constant much longer than one line. Therefore the reference oscillator settles at the average phase of the bursts which is the –U axis. The purpose of the swinging burst is to produce a small 7.8 kHz ripple in the error voltage from the phase comparator. This ripple is picked off by a tuned amplifier to give a 7.8 kHz signal known as the ident. The ident conveys the phase information needed by the V switch. Without it the V switch would only have a 50% chance of starting in the right phase every time the set is switched on.

**PAL-D (Delay)**

Although under ideal conditions U and V can be separated from the chroma signal by correctly phased demodulation, the phase errors which occur in real situations cause Hanover blind colour errors. Although these are less objectionable than the corresponding hue errors in the simpler NTSC system (since the eye tends to integrate the errors to see near-correct colours) most PAL receivers use the PAL-D refinement by which Hanover blinds are entirely eliminated. This involves passing the chroma through a one-line delay unit. The delay consists of a ceramic transducer which converts the chroma into ultrasonic (4.43 MHz) vibrations which travel a carefully measured path through a glass block to a second transducer which converts the vibrations back to an electrical signal. The block is ground to give a 64 microsecond delay. In Fig. 27 the direct and one-line-delayed chroma signals are both fed to two stages: an adder where the alternate line phased V components cancel out leaving U alone, and a differencer where the U components, being similar on successive lines, cancel out instead leaving alternating V. Thus U and V are separated before the demodulators. This is not essential but gives the advantage that phase errors (Fig. 22 last month) are averaged out between adjacent lines electronically without Hanover blinds appearing. A minor consequence of PAL-D is that vertical colour resolution is slightly reduced but this is far preferable to Hanover

---

**Fig. 28.** 100% amplitude, 100% saturation colour bar pattern and waveform. Levels are shown relative to OV = black level.

**Fig. 29.** Chroma and burst vectors on successive lines for colour bar pattern.
blinds. The delay line in Fig. 27 must be trimmed to one-line period to within a fraction of a subcarrier cycle or the circuit will cause permanent Hanover blinds!

When PAL was introduced it was expected that slightly cheaper PALS (simple) receivers without a chroma delay line would be made. In practice the cost of the mass-produced glass delay line is so low that virtually all PAL receivers are PAL-D type.

**COLOUR BARS**
A standard pattern of colours is enormously useful for checking receiver performance — the colour bars pattern is shown in Fig. 28. The sequence of colours is chosen to give descending luminance levels from left to right so that a monochrome receiver displays steps of grey from white to black. The separate red, green and blue signals which make up the bar pattern are shown in Fig. 28; they are generated electronically for accuracy. If the receiver decoder is working correctly the red, green and blue beams of the display tube will be controlled by these signals. This is readily checked by switching on each beam in turn and counting the number of bars of colour displayed.

The peak excursions of the composite luminance waveform are given in Fig. 28. The luminance levels are found from:

\[ E_Y = 3E_R + 0.59E_G + 0.11E_B \]

The peak-to-peak chroma amplitudes are found by summing vectorially the U and V values for each colour found from the equations given in Part 3 i.e.

\[ U = 0.493 (E_B - E_Y) \]
\[ V = 0.877 (E_R - E_Y) \]

The amplitudes of the resultants are the same for +V and -V lines, only the chroma phases change. The chroma phase for each colour is shown in Fig. 29. Note that black and white have no chroma signal. The colour bar pattern in Fig. 29 is the most basic but the 100% amplitude, 100% saturation colours do not often occur in real pictures. Therefore other versions of the pattern where amplitude or saturation is reduced are often used. This does not affect the vector angles in Fig. 29, only the luminance or chroma amplitude respectively.

**COMPLETE RECEIVER**
The delay line in Fig. 27 and the phase lock loop in Fig. 25 are the heart of a receiver colour decoder which will be described next month.

---

**Wilmslow Audio**

**THE firm for speakers!**

- **Baker Group 25.3 8 or 15 ohm** £7.75
- **Baker Group 35.3 8 or 15 ohm** £10.75
- **Baker Deluge 8 or 15 ohm** £9.50
- **Baker Major. 3 8 or 15 ohm** £9.50
- **Baker Refractor. 8 or 15 ohm** £12.95
- **Baker Superb. 8 or 15 ohm** £14.50
- **Celestion P20TS (1000W Max)** £3.90
- **Celestion M1050 horn. 8 or 15 ohm** £3.95
- **EM 13 X 8. 3 or 15 ohm** £2.25
- **EM 13 X 8.50 or 15 ohm** £3.75
- **EM 13 X 8.30 or 15 ohm** £3.75
- **EM 10 X 8. 20 watt bass** £6.60
- **EM2.1" tweeter. 8 ohm** £0.65
- **Elac X 5. 8 or 15 ohm** £2.50
- **Elac S612015 ohm. S611144 ohm** £2.80
- **Electro Voice. Elon 255 ohm** £3.90
- **Electro TW41" tweeter** £1.50
- **Fane Pop 15 watt 8 ohm** £2.75
- **Fane Pop 251" 12 8 ohm** £7.25
- **Fane Pop 50 watt. 12 8 watt** £12.00
- **Fane Pop 55. 12 60 watt 8 ohm** £12.50
- **Fane Pop 60 watt. 15 8 ohm** £13.25
- **Fane Pop 100 watt. 30 8 ohm** £24.50
- **Fane Crescendo 12A 8 or 15 ohm** £26.00
- **Fane Crescendo 15. 8 or 15 ohm** £28.50
- **Fane Crescendo 18. 8 or 15 ohm** £31.75
- **Fane BOTT 8" d/c. rolls. 8 or 15 ohm** £8.75
- **Fane BOTT 16" d/c. rolls. 8 or 15 ohm** £9.25
- **Goodmans 8P 8 or 15 ohm** £5.00
- **Goodmans 10P 8 or 15 ohm** £5.20
- **Goodmans 15P 8 or 15 ohm** £5.90
- **Goodmans 12P 8 or 15 ohm** £6.15
- **Goodmans 12P 12 8 ohm** £6.75
- **Goodmans 12P 15 8 ohm** £7.25
- **Goodmans Twinaxiom 10" 8 or 15 ohm** £22.50
- **Kef 727** £5.25
- **Kef 719** £5.25
- **Kef 710** £7.25
- **Kef 510** £7.25
- **Kef 515** £7.25
- **Kef 515** £7.25
- **Kef 150** £7.25
- **Kef DN16** £4.95
- **Kef DN18** £4.95
- **Kef DN13** £3.30
- **Richmond Crellin. C81808 d/c. rolls.** £6.35
- **STC4001C 8" 400watt** £6.90
- **Fane 701 twin ribbon horn** £13.90
- **Fane Major Module each** £10.75
- **Goodmans Mezzo Twin kit** £45.00
- **Goodmans DN25 8 ohm each** £6.25
- **Heineke. XLK30 (pair)** £22.00
- **Heineke. XLK30 (pair)** £22.00
- **Heineke. XLK30 (pair)** £22.00
- **Kef 1 each** £20.95
- **Kef 1 each** £20.95
- **Philips PL13.5 13 (3 oz. system) each** £15.00
- **Richard Allan Triang wall speaker each** £11.75
- **Richard Allan Triplon each** £19.95
- **Richard Allan Superfite each** £33.75
- **Wharfedale Linton 2 kit (pair)** £19.25
- **Wharfedale Axl (pair)** £34.50
- **Wharfedale Dovetail 3 kit (pair)** £32.50
- **Super 10 RS/SD** £12.95
- **Super 8 RS/SD** £8.95

**PRICES INCLUDE VAT**

- Cabinets for PA and HiFi, wadding, vinyl, etc.
- Send stamp for free booklet "Choosing a Speaker"

**FREE with orders over £7** — HiFi loudspeaker enclosures & book.

**All units guaranteed new and perfect.**

**Prompt dispatch.**

**Carriage:** Speakers £3.80 each, tweeters and crossovers 20c each, kits 75p each (pair £1.50).

**WILMSLOW AUDIO**

Swan Works, Bank Square, Wilmslow, Cheshire SK9 1HF Tel. Wilmslow 25999.

**WILMSLOW**

**Audio**

38p each.

- **Goodmans Twinaxiom 10" 8 or 15 ohm** £12.00
- **Goodmans 12P-G 8 or 15 ohm** £12.95
- **Goodmans Audiom 100 8 or 15 Ohm** £36.75
- **Goodmans 12P-0 8 or 15 ohm** £36.00
- **Goodmans 12P0 8 or 15 ohm** £24.50
- **Goodmans 12P0 8 or 15 ohm** £12.00
- **Goodmans Twinaxiom 8" 8 or 15 ohm** £14.95
- **Fane Pop 15 watt 12" 8 ohm** £5.50
- **Fane Pop 30 watt 12" 8 ohm** £10.75
- **Fane Pop 55 watt 12" 8 ohm** £13.75
- **Fane Pop 25T 12" 8 ohm** £9.75
- **Fane Pop 55 12" 60 watt 8 ohm** £39.95
- **Fane Pop 15 watt 12" 8 ohm** £22.95
- **Fane Pop 25T 12" 8 ohm** £13.75
- **Fane Pop 55 12" 60 watt 8 ohm** £39.95

**37 High Street**

**Brentwood, Essex.**

**CM14 4RH**

**Tel. 216029 Fax: 995194**

**VAT EXTRA: P&P 20p**
AUTO-AMP

Boost portable radio output in your car.

MOST portable radios and cassette players have a power output which seldom exceeds 100 milliwatts. Whilst this is entirely adequate for normal listening, many people find that it is entirely inadequate when such equipment is used in a car. There the extremely high noise level effectively drowns out such radios and one is left with the choice of buying a proper (and quite expensive) car radio, or, of forgetting about the whole deal.

However this problem can be overcome by using a small booster-amplifier to provide the additional power required. Such an amplifier should be powered from the 12 volt car supply and should accept an input from the earphone, or external speaker socket of the radio or cassette player.

The ETI booster amplifier has been designed to suit such applications and uses the inexpensive LM380 (or SL60745) ICs. Two ICs are connected in a bridge arrangement which provides an output of around five watts RMS (12 volt supply and 8 ohm speaker). The amplifier may be used to drive an eight-ohm speaker permanently mounted in a suitable position in the car.

CONSTRUCTION

The components should all be mounted on a small printed circuit board (or Veroboard etc) as shown in the component overlay diagram. If Veroboard construction is used it is preferable to mount the ICs, in line, such that a common heatsink may be attached to both ICs on each side. Each heatsink should be at least 25x50mm and be constructed from copper or tin plate.

Two preset potentiometers are provided for setting up the amplifier. The preset-volume potentiometer, RV1 should be adjusted to suit the output voltage available from the radio or cassette. Sensitivity of the booster is such that 5 watts output will be obtained (with RV1 at maximum sensitivity) with an input of 50 mV. This should be entirely adequate as most radios will provide in excess of 200 millivolts.

The balance potentiometer should be set for minimum dc through the speaker as detailed in the 'How It Works' section.

The compactness and simplicity of the amplifier enable it to be mounted in any convenient position, eg, even on the rear of the speaker itself! However, care should be taken to position it such that mechanical damage is unlikely to occur, and that adequate ventilation of the heatsink is obtained.
**HOW IT WORKS – ETI 314**

The LM380 (SL60745) is an integrated audio amplifier which, has a fixed gain of 50 (34 dB) and, can be connected in either inverting or non-inverting mode (ie output 'out of phase' or 'in phase' with the input respectively).

Two of these ICs have been used in a bridge arrangement which allows a higher power output to be obtained with the low supply voltage (12 volts) available from the car. To do this we drive both amplifiers with the same signal, but connect one for inverting, and the other for non-inverting mode. The speaker is now connected between them and thus receives twice the output voltage that would be available from a single IC.

The input required for full power output is about 50 millivolts. Hence we have provided an input attenuator to increase the input requirement to about one volt which will enable preset adjustment to suit most radios or cassettes.

We used a trim potentiometer on the board to adjust sensitivity such that full volume is obtained with the volume control of the source about half way up. If desired, a separate potentiometer may be used in place of the preset as a volume control.

Output voltage of the ICs is about half of the supply. However since the speaker is direct coupled, any slight difference in amplifier outputs will result in a dc current flow through the speaker. Potentiometer RV2 should be adjusted, with the aid of a multimeter, for zero volts across the speaker (or minimum current from the supply). Alternatively, if a multimeter is not available, make and break one speaker connection and adjust RV2 for minimum 'clicking' sound from the speaker.

**SPECIFICATION**

<table>
<thead>
<tr>
<th>POWER OUTPUT</th>
<th>12.6 volt supply 8 ohm load</th>
<th>5 watts</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISTORTION</td>
<td>12.6 volt, 8 ohm, 1 kHz</td>
<td>3% at 5 watts, 0.5% at 3 watts</td>
</tr>
<tr>
<td>SUPPLY VOLTAGE</td>
<td>Nominal</td>
<td>12 volts</td>
</tr>
<tr>
<td>MAX SUPPLY VOLTS</td>
<td>Speaker load</td>
<td>8 volts, 15 volts at 5 watts, 16 volts, 22 volts at 3 watts</td>
</tr>
<tr>
<td>SPEAKER IMPEDANCE</td>
<td>&gt; 7 ohms</td>
<td></td>
</tr>
<tr>
<td>FREQUENCY RESPONSE</td>
<td>10 Hz – 100 kHz</td>
<td>±0.3 dB</td>
</tr>
<tr>
<td>SENSITIVITY</td>
<td>Maximum (no input attenuator)</td>
<td>50 mV into 75 k ohm</td>
</tr>
</tbody>
</table>

**MATERIAL:**

TINPLATE OR THIN COPPER
AN AC SUPPLY provides a sinewave current that changes direction at the supply frequency. Firstly, the ac voltage has to be transformed to the appropriate voltage level. To obtain dc a switch (the rectifier) is needed to reverse polarity of alternative half cycles. This done, all that remains to be added is a method of smoothing out (filtering) the half-sinusoids to obtain a steady current. We will look at each of these steps in turn.

TRANSFORMERS

The principles of inductance were briefly introduced in Part 6 of this course. We suggest that the section be read again.

If two inductors A & B are placed such that the axis of their coils align (as in Fig. 2), and coil A is energised with an ac source a voltage will be generated across coil B.

As we move the coils closer to each other the voltage developed, across coil B, approaches a value which is proportional to that across coil A. The proportion will be equal to the ratio of the number of turns on B, to the number of turns on A.

\[
\frac{E_B}{E_A} = \frac{N_B}{N_A}
\]

Where \(E_B\) = voltage across coil B  
\(E_A\) = voltage across coil A  
\(N_B\) = turns in coil B  
\(N_A\) = turns in coil A

The effect is due to the field of one coil cutting the turns of the other and is known as mutual inductance. If the coils are wound on top of each other, and an iron core is used, the coupling is improved to almost unity and we have a device capable of changing ac voltage from one level to another. Such a device is known as a transformer.

There are losses in the transformer due to the resistance of the wire in the coils — these are known as copper losses, and in the iron of the magnetic core — these are known as iron losses. A transformer can never create power — it can only transfer it and change voltage levels. Small transformers have power efficiencies from 60-90%; 85% is typical.

To reduce the iron losses as much as possible the core material (at frequencies below 20 kHz) is usually a special silicon steel called "transformer iron". The core is built up of thin laminations of this iron individually insulated by a thin coating of lacquer. By this means eddy current (circulating currents within the core) losses are reduced to a minimum.

Note particularly that the transformer is an ac device. It will only produce voltage in the secondary winding when there is a current change in the primary. A dc current flowing in the primary will not produce a secondary output.

The iron laminations retain the magnetic field ensuring virtually total magnetic linkage between coils. For high frequencies, up to several megahertz, ferrite powder mouldings are often used. In many high-frequency applications, the ferrous magnetic circuit is omitted altogether. Figure 3 shows a range of transformers for use at various frequencies.

In mains-operated power supplies the relatively low frequency of the mains leads to efficient coupling. Hence the ratio of input/output voltage is as the ratio of input turns/output turns. A transformer is, therefore, selected to provide the correct voltage (stepped down or up) and must be designed with wire in each winding heavy enough to carry the currents needed without overheating. Usually selection of a transformer is made from manufacturers' product lists using the nearest listed, with any difference being on the conservative side — higher voltage or higher current capability when the exact requirement is not available. The power capacity of transformers is stated as the volt-amp.

---

Fig. 1. The various sections required in the process of converting the ac mains supply into a source of dc power.

Fig. 2. Transformer relies on the principle that when lines of magnetic force move through a coil, a voltage is induced in the coil which is proportional to the number of turns in the coil.
The design of a transformer depends greatly on the frequency of operation and the amount of power to be handled.
At low frequencies (e.g., 50 Hz mains) a laminated silicon-steel core is required, (TOP LEFT).
At medium frequencies a ferrite core or slug may well be used to adjust as well as increase inductance (50 kHz to several MHz).
At high frequencies (e.g., 50 MHz and above) air spaced coils may be all that is necessary, (RIGHT).

These characteristics of common rectifier arrangements will help you select a transformer to obtain a particular dc output.

### Common Rectifier Arrangements

<table>
<thead>
<tr>
<th>Cycle Output Waveform</th>
<th>Average dc Volts Output</th>
<th>RMS Volts at Output</th>
<th>Peak Volts Output</th>
<th>Peak Reverse Rectifier Voltage</th>
<th>Percent Ripple RMS/dc out</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) 1 φ HALF WAVE</td>
<td>1</td>
<td>1.57</td>
<td>3.14</td>
<td>3.14</td>
<td>121%</td>
</tr>
<tr>
<td>(B) 1 φ FULL WAVE CCT</td>
<td>1</td>
<td>1.11</td>
<td>1.57</td>
<td>3.14</td>
<td>48%</td>
</tr>
<tr>
<td>(C) 1 φ FULL WAVE BRIDGE</td>
<td>1</td>
<td>1.11</td>
<td>1.57</td>
<td>1.57</td>
<td>48%</td>
</tr>
<tr>
<td>(D) 3 φ STAR (WYE)</td>
<td>1</td>
<td>1.02</td>
<td>1.21</td>
<td>2.09</td>
<td>18.3%</td>
</tr>
<tr>
<td>(E) 3 φ BRIDGE</td>
<td>1</td>
<td>1.00</td>
<td>1.05</td>
<td>1.05</td>
<td>4.2%</td>
</tr>
</tbody>
</table>
product of the total output or input. This can be found as the product of volts times amps of all of the secondary output circuits plus about 10% for losses.

All transformers have rms rated outputs. In practice this voltage is the unloaded output voltage and may vary from transformer to transformer. Additionally, because of the finite winding impedance, the transformer output will drop when loaded. This effect, known as transformer 'regulation', is quoted as the percentage voltage between load and no-load. In prototype designs it is therefore advisable to use a transformer with a number of tappings so that the correct rms output may be selected on test.

**RECTIFIER STAGES**

Many different rectifier systems may be used, Fig. 4 shows the most commonly encountered, together with their schematic diagrams and relevant conversion factors. Note that the dc output is not the same as the ac input. A mistake commonly made by beginners is to assume that the dc output from the rectifier will be the same or less than the rms output from the transformer.

A single rectifier, as in A, gives half wave operation only and clearly, whilst saving a rectifier element, only allows half the sine-wave through with a resultant drop in average dc output. The gain in saving rectifier elements is offset by the need to provide a higher output voltage from the transformer and a more powerful filter to smooth out the pulsating dc current (121% ripple!).

Clearly, fullwave rectification (that is, use of both half cycles) is better but it requires more rectifiers. There are two main methods. One uses four rectifiers to create a 'reversing' switch - the so-called bridge circuit. Output current from the transformer of one polarity passes through to the filter stage using two of the rectifiers; the next direction of current is then allowed through by the second pair which are connected to accept reverse current polarities. An alternative full-wave method uses only two diodes instead of four. It works as two half-wave systems that alternately connect to the common filter terminals with the same polarity. It uses less rectifier elements than in a bridge circuit but requires a centre-tapped transformer. Rectifier diodes for bridge circuits are available ready-packaged as a full 4-element bridge in a common encapsulated unit.

Where a three-phase (the normal industrial high-power mains) supply is available, other rectifier arrangements are possible - as shown. As the number of phase half-cycles used is increased the dc produced becomes smoother, relaxing the degree of filtering needed. Other more sophisticated six-phase systems (using special transformers) are used industrially.

Originally, rectifier elements were either vacuum-tube diodes (two-element tubes) or specially made contacting surfaces of copper oxide or selenium. Although both of these are still in service, they have been more or less superseded by modern solid-state, two-layer semiconductor diodes (in the simplest form) and by the family of multiple-layer semiconductor devices in which the current can be controlled as well as being rectified. (These devices, SCRs and TRIACS, will be covered later.)

Virtually all diodes designed for power rectification are now silicon devices - although germanium still finds some use for low-power, signal-detection diodes. The power handling capability of a diode depends upon the voltage drop across it and the current flowing through it. These determine the heat to be dissipated at the diode junction. Provided the junction itself is maintained below its maximum safe value, all is well. Heat sinks are usually used to help liberate this waste heat, thereby raising the current capacity of the rectifier units. When selecting diodes for power use it is necessary to ensure that they can safely withstand the peak reverse voltage of the waveform - this can be as much as three times the quoted ac value (which is usually the rms value). In the manufacturer's data this is shown as the peak inverse voltage (PIV). In a half-wave circuit supplying, say, a 100 Vdc output, the peak inverse voltage rises to 314 V!

Diodes come in all shapes and sizes as Fig. 5 shows. Large power diodes are intended to be mounted on heat sinks and the manufacturers have built them accordingly to ensure good thermal contact. Special heat-sink extrusion is made for this purpose.

Individual diodes in a bridge circuit must be insulated from one another - nevertheless it is often convenient to mount them on a common heat-sink. Mica washers are often used for this purpose as they provide good electrical

---

**Fig. 5a.** A selection of commonly used solid state rectifiers. High-power diodes are sometimes mounted on a heatsink to help radiate the heat generated due to internal losses.

**Fig. 5b.** Selenium rectifiers were quite bulky but were extensively used in valve radio days.
insulation whilst allowing heat to be passed through.

The current rating needed for the diodes depends upon the rectifier circuit. If half-wave it must be able to handle the full current expected. For full-wave bridge or centre-tapped single-phase arrangements, the diodes only switch on alternate half cycles and, therefore, can be rated for half the output load current. Special care must be taken when silicon diodes are used. The initial onrush of current to the uncharged filter capacitors can exceed the safe maximum of the diodes unless adequate limiting resistance exists in the transformer winding or input leads. Typically, the peak current may be as much as 10 times the average dc current.

FILTERING
The output of any rectifier system consists of a train of half-sinusoidal waveshapes. We know that all waveshapes can be constructed by adding a number of pure sinusoidal signals. Thus the rectifier output is a complex waveshape containing a basic dc level plus many other frequencies. To smooth the signal, therefore, a low pass filter is needed that rejects all frequencies above dc (frequency of zero).

Several alternative methods of filtering are available. The commonest, shown in Fig. 6, is to use a large value shunt capacitor across the output terminals. At each new half-cycle the diodes pass a burst of current into the capacitor to recharge it, making up for charge drawn by the circuit load on the supply. By appropriate choice of capacitor size for a given load and adequately low bridge resistance (this decides how quickly the charge will enter the capacitor), the supply can be made to hold a voltage up near the peak value of the waveform. However care must be taken to ensure that the peak current rating of the diodes is not exceeded.

In applications where a relatively large power level is involved it may be more economical to use another method. The shunt capacitor method, above, provides a short-circuit path to high frequency signals (capacitive reactance falls with increasing frequency) thereby shunting them away. Only dc is unattenuated. The same effect may be achieved if an inductor is used, as shown in Fig. 6—but this time in series with load. The inductor provides lowest impedance to lowest frequency so dc passes virtually without loss (provided the dc resistance of the winding is low—hence the high cost of effective filter inductors) but provides increasing impedance as the signal frequency rises.

These two basic methods can be taken further again using both together to increase the frequency rejection. We will not pursue the design of sophisticated power supply filters for they tend to be rather specialised. Note, however, that the filtering effect depends largely upon the magnitude of the load current drawn. This can be seen by regarding the filter component reactance and the load impedance as a series or parallel network (see Fig. 7) in which the supply voltage is the output produced across the load impedance.

An increasing load current occurs due to a reduction in load impedance (usually regarded as a resistive load). The series inductive method provides less ripple (the name given to the ac component present) as the load increases. On the other hand, with the capacitive shunt method the ripple increases as load increases. Hence the
two methods complement each other and (as neither is ideal) the two are combined in more advanced filtering methods.

It should now be clear that the rectifier stage design will largely determine the specification of the transformer and that the filter method must also be considered in the overall design.

Power supply design is not as straightforward as might at first be thought. Each stage determines the requirements of the other stages so a certain degree of skill and experience is needed to reach a satisfactory design. Furthermore, as we will see later, the design must also make allowances for the way the supply is to be used and for the method of stabilisation employed.

**POWER SUPPLY TERMS**

The two forms of power supply - voltage or current - as we have seen earlier, can be represented as black boxes which consist simply of a source (voltage or current) and an equivalent resistance value. A voltage source ideally maintains the required voltage regardless of load current. A current source, the reverse situation, provides the required current regardless of output voltage. Practical supplies have a finite resistance value (the ideal of zero output impedance is unobtainable) but it is possible to produce a circuit that is close enough to the ideal for practical purposes.

Let us now see what happens to a voltage supply as the load current increases. We see from Fig. 7 that the voltage appearing across the load is that produced by a perfect generator driving a divader chain. Hence, provided the source resistance is much smaller (at least ten times smaller) than the minimum load resistance, the change in voltage across the load as the load current varies will be negligible. The aim, therefore, in good voltage supply design is to produce a unit with low internal resistance. Factors of one thousandth are typically obtained.

Constant voltage supply is by far the most common requirement, but there are also many applications for constant current supplies. In addition there are other supplies available with special characteristics. Because of finite internal power-supply resistance the voltage output of basic supplies (caused in reality by the resistance of the diodes, transformer losses and filter resistances) drops as the load current increases. All these effects produce voltage drops that subtract from the original voltage source. The ratio of, no-load voltage (less full load voltage) to the no load voltage is called the regulation of the supply. This is expressed as a percentage.

**IMPROVING REGULATION**

In some instances, battery supplies for example, the internal resistance is adequately low and the output remains reasonably constant with time and changing load. A lead-acid storage battery for example will provide voltage constant to about 0.1% for quite a long time as long as the load is fairly low.

Mains derived supplies, however, exhibit poor regulation, unless (costly) stabilising circuits are added. Apart from this their output is also proportional to changes in mains voltage - which can fluctuate by as much as ±10%.

In many electronic systems the voltage must remain constant regardless of changes of mains input and load and changes in component values with time. Consequently, basic sources of dc power are often followed by a unit known as a regulator. Its role is to maintain the output constant to a chosen degree (0.1% changes in output due to load or input changes is typical). The degree of stability obtained relates to cost. Techniques cover a wide range - from a single special diode and a resistor, to multiple transistor circuits and special purpose IC's.

Power systems such as these will be covered in the next part of this series.

**ELECTRONICS— in practice**

This month we will continue our discussion of operational amplifiers by looking at some of the design considerations for one of our most popular projects. The circuit uses two op-amps, illustrates a number of new points and provides a very useful piece of equipment.

**A MIXER-PREAMPLIFIER CIRCUIT USING OP-AMPS**

The signal provided by a sensor operating at audio frequencies, eg a microphone, a guitar-string vibration sensor, a record-player cartridge - needs boosting before the signal is used to drive a main amplifier or recording unit. The preamplifier shown here accepts signals of around 2 mV level, has an input impedance of

![Fig. 8. Circuit diagram of a general purpose mixer/preamplifier with tone controls.](image-url)
1 k, provides a gain of approx. 1600, and has an output swing of up to 3.2 V for 2 mV input. It introduces comparatively little distortion and is designed to accept four inputs, each having a level control. A special tone control network is incorporated that enables bass and treble signal frequencies to be varied over ±10 dB (at 100 Hz and 10 kHz respectively). Although primarily intended for mixing audio signals in entertainment applications, the circuit can also be used in decentralized broadcasting and the opposite way to provide opposite polarities.

Note that the transformer supplies a total of 12.6 volts rms, that is 6.3 volts on either side of the centre tap. This, when rectified and filtered, provides 9 volts dc (capacitor charges to peak of waveforms that is \sqrt{2} \times 1.5 \times 6.3 \approx 8.9 volts). Hence the capacitors must be rated for at least 9 volts - a little more is usually required, say 12 volts, but not too much higher as the rated capacity of some capacitors fails if not worked at near full design voltage.

The diodes must have a peak-inverse voltage of twice the peak voltage, 18 volts in this case, because at the time of rectification the voltage from the transformer on the opposite side of the centre tap is two separate supplies, driven from different sides of a centre tapped transformer, each being connected in the opposite way to provide opposite polarities.

A simple power supply (Fig. 9) may be used if batteries are unsuitable. This provides the positive and negative supplies necessary for the op-amp. At first glance the circuit appears to be that of a full-wave bridge. In reality it is two separate supplies, driven from different sides of a centre tapped transformer, each being connected in the opposite way to provide opposite polarities.

**Building the Unit**
A printed circuit-board layout for the pre-amplifier is given in Fig. 10 along with the component overlay that shows where each component is placed. Take particular note of the polarities of the diodes, the ICs and the electrolytic capacitors when fitting the pre-amplifier to the board.

The power supply components (watch the mains connections - they must be made safe) and the board may be conveniently housed in a diecast box or one of the plastic boxes made for electrical use. Mark each control clearly for ease of operation.

---

**Parts List for mixer/preamplifier**

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
<th>Quantity</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1, R2</td>
<td>22 k</td>
<td>(\frac{1}{2}) watt</td>
<td>5%</td>
</tr>
<tr>
<td>R3, R4</td>
<td>22 k</td>
<td>(\frac{1}{2}) watt</td>
<td>5%</td>
</tr>
<tr>
<td>R5</td>
<td>470 k</td>
<td>(\frac{1}{2}) watt</td>
<td>5%</td>
</tr>
<tr>
<td>R6, R7</td>
<td>2.7 k</td>
<td>(\frac{1}{2}) watt</td>
<td>5%</td>
</tr>
<tr>
<td>R8</td>
<td>1.8 k</td>
<td>(\frac{1}{2}) watt</td>
<td>5%</td>
</tr>
<tr>
<td>R9, R10</td>
<td>3.3 k</td>
<td>(\frac{1}{2}) watt</td>
<td>5%</td>
</tr>
<tr>
<td>R11, R12</td>
<td>470 k</td>
<td>(\frac{1}{2}) watt</td>
<td>5%</td>
</tr>
<tr>
<td>RV1</td>
<td>potentiometer</td>
<td>1 k log</td>
<td></td>
</tr>
<tr>
<td>RV2, RV3</td>
<td></td>
<td>1 k</td>
<td></td>
</tr>
<tr>
<td>RV4, RV5</td>
<td></td>
<td>100 k</td>
<td></td>
</tr>
<tr>
<td>RV6, RV7</td>
<td></td>
<td>100 k</td>
<td></td>
</tr>
<tr>
<td>RV8</td>
<td></td>
<td>290 k</td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>4.7 \mu F</td>
<td>10 V</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>4.7 \mu F</td>
<td>10 V</td>
<td></td>
</tr>
<tr>
<td>C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13</td>
<td>ceramic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C14</td>
<td>47 \mu F</td>
<td>16 V electro. P.C. mount</td>
<td></td>
</tr>
<tr>
<td>D1, D2, D3</td>
<td>1N4001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I1, I2</td>
<td>LM301A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC1, IC2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC3</td>
<td>47 \mu F</td>
<td>16 V electro. P.C. mount</td>
<td></td>
</tr>
<tr>
<td>SI</td>
<td>DPDT toggle switch, 400 V, 1 AMP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>transformer 240V–12.6V C.T.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1, D2, D3</td>
<td>1N4001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---

**Fig. 9. Circuit diagram of an unregulated power supply suitable for use with the preamplifier of Fig. 8.**

---

**Fig. 10a. Printed circuit board for the mixer preamplifier.**

(b) Component overlay for the preamplifier incorporating the components for the ac power supply (except the transformer).
New Course in Digital Design

Understand the latest developments in calculators, computers, watches, telephones, television, automotive instrumentation.

Each of the 6 volumes of this self-instruction course measures 11 1/4" x 8 1/4" and contains 60 pages packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.

After completing this course you will have broadened your career prospects and considerably increased your fundamental understanding of the changing technological world around you.

Design of Digital Systems
A Self-Instruction Course in 6 Volumes

1  Computer Arithmetic
2  Boolean Logic
3  Arithmetic Circuits
4  Memories & Counters
5  Calculator Design
6  Computer Architecture

£5.95
including packing and surface post anywhere in the world (VAT zero rated). Payments may be made in foreign currencies. Quantity discounts are available on request. Total packaged weight does not exceed 4lb—please allow enough extra for air mail.

To: Cambridge Learning Enterprises,
FREEPOST, St. Ives, Huntingdon, Cambs PE17 4BR.
*Please send me... set(s) of Design of Digital Systems at £5.95 each,
*or... set(s) of Digital Computer Logic and Electronics at £3.95 each,
*or... combined set(s) at £9.25 each.

Name:_________________________________________
Address:_____________________________________

*delete as applicable.
No need to use a stamp—just print FREEPOST on the envelope.

Guarantee—no risk to you
If you are not entirely satisfied with Design of Digital Systems or Digital Computer Logic and Electronics, you may return them to us and your money will be refunded in full, no questions asked.

ELECTRONICS TODAY INTERNATIONAL—MAY 1975
FIRST OF ALL I must apologize in advance for mentioning two of my favorite subjects again - calculators and television sets. I am not about to launch into a praise or criticism of anybody's new pocket calculator or a new television set but the modifications thereto.

Let me introduce you to three new products from the Mostek stable, all based on calculator chips in one way or another. Two of these chips are in fact reprogrammed calculator chips, reprogrammed internally that is. The MK50206 was a standard four function calculator chip until some genius designer came up with the idea of changing some of the internal count registers to divide by 6's instead of 10's. This unit is then fed with 1Hz pulses which (I assume) are added into the count register, presented to the display register, and end up on a four digit display. In case you haven't already guessed, the chip is now a digital clock, but a clock chip with a few very important differences. For a start the time setting is done via a standard calculator keyboard thus making the setting up procedure very simple and very fast, and it could be done via logic gates instead of the keyboard. One of the other main features of a calculator which has been inherited by the MK50206 is the ability to compare two numbers or to inherited functions.

The MK50206 has several comparison systems; two alarm times may be set as an accessory start time and an accessory stop time, a minutes and seconds timer can be set up to count down to zero and then switch off an accessory.

When power is initially applied to the MK50206 it lights up with the display flashing to indicate a power failure. This condition is reset by pressing the CLEAR key. The correct time is then set by pressing the SET TIME key and then entering the desired time in hours and minutes from the keyboard including the AM/PM key, pressing the DISPLAY CLOCK key will start the clock running normally. If an illegal entry is made (such as 11.65) the display will flash and the alarm will beep three times as soon as the DISPLAY CLOCKS key is pressed. The countdown timer works by pressing the COUNTER TIME key and entering the desired run time in minutes and seconds. The timer is allowed to run by closing the TIMER ENABLE switch and pressing START TIMER, it can be stopped by opening the TIMER ENABLE switch. When the counter reaches zero the timer output will switch off, the display will switch to time of day and the alarm will beep once. The accessory timer is used by pressing RUN TIME and entering the desired run time in hours and minutes and then pressing STOP TIME and entering the desired accessory stop time in hours and minutes, the chip then calculates the required accessory start time. The accessory timer will then be turned on and off at the appropriate times each day. Applications for such a chip include tape recorder controls, cooking ranges, central heating, street lights, and many other forms of time switching applications.

The second chip is from the same family as the first and is identified by the code MK50204. This IC is still a calculator chip and can be used in a standard four function calculator but it has additional advantages. The MK50204 acts as a standard 50200 series calculator with the added features of hours/minutes/seconds to seconds and seconds to hours/minutes/seconds conversion and stopwatch timing. Conversion is made by simply entering hours/minutes/seconds or seconds and pressing the appropriate conversion key. The stopwatch is used by connecting digit 9 output to the KQ input line via a simple toggle switch. The stopwatch will count up if the plus key is pressed or down if the minus key is pressed. The count will stop if the equal key is pressed and then resume if the plus or minus key is pressed. The count can be initialised by entering a time in seconds before switching into stopwatch mode, this time is then converted into the hours/minutes/seconds/1/10th seconds format used for counting. The information sheet from Mostek did not say what the timing frequency source was, but I presume that a standard CR network is used, in which case it could be replaced with a crystal source to give a very accurate stopwatch which, if necessary, could be started and stopped with logic gates in parallel with the keyboard.

So much for modified calculator chips which still look like calculator chips and use keyboard type inputs. The MK50395 is a six decade synchronous up/down counter display driver with compare register and storage latches. The counter and the compare register can both be loaded by digit with BCD data, and the counter also has asynchronous clear and count inhibit functions. Figure 1 shows a possible application of the chip together with TTL inputs, BCD switch inputs and a six digit display. The counter can be loaded from the TTL data by multiplexing the data and entering it digit by digit, the load is controlled by the 7410 which gives the multiplexer a BCD form of which digit is being presented by the MPX SCAN and the 50395. Once the data has been stored in the counter register it is latched into the display register and displayed, if the latch control is now removed then the display will continue to hold the loaded number regardless of any changes in the counter register. Let us assume that the number that has been loaded from the TTL is the required number of production units to be despatched from a conveyor belt for a specific order. As each unit passes a photo-cell counter it causes the count to be reduced by one each time. When the counter reaches the number that has been set up on the BCD switches, the compare equal output will change state and sound an alarm which also stops the conveyor belt. An operator then manually restarts the belt at a slower speed and supervises the packing of the final units. When the count
reaches zero the belt will stop again to allow the operator to remove the packing box, mark on it the number of units loaded from the display and then press a button to inform the system to get the next quantity ordered from the TTL control.

This simple example shows most of the functions of the 50395 chip, but we have not used the clear counter function, the count up function or the load comparator function. The display can show the actual count and does not have to be latched and either of the BCD inputs can be from switches or TTL or indeed any other form of BCD input. A very versatile little chip which can perform various count and control functions, it could replace the unit which was described in Electronics Tomorrow last year using an Advance calculator.

I mentioned television sets at the beginning of this article for two reasons. Firstly to remind you that CEEFAX/ORACLE is now being transmitted and that the IBA are now doing test transmissions as well as the BBC. If you already have a receiver then the two organisations would like to hear your comments on the system. If you haven’t built a receiver yet then do so at the earliest opportunity - it’s a British development which could do with your support. If you want further information on CEEFAX/ORACLE then either the BBC or IBA can supply you with a booklet with technical information for the modest sum of 50p plus P & P.

The second reason for mentioning television sets was to hopefully pre-release some information about a set of clock chips which will display the time on your TV screen. The data and permission to release it has not yet arrived on my desk and so it will have to be held over until next month.

Will the data arrive in time? Can Captain Marvel escape the clutches of the evil monster and rescue the fair damsel in distress? Will the ‘copy’ reach ETI offices this month? Do not miss next month’s thrilling installments.

Now Available From ETI...

Towers’ International Transistor Selector

HOW THE INFORMATION IS GIVEN (SHOWN HERE REDUCED SCALE)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2N2393</td>
<td>5.5</td>
<td>5.0</td>
<td>20.0</td>
<td>20.0</td>
<td>35.0</td>
<td>25.5</td>
<td>25.0</td>
<td>25.0</td>
<td>20.0</td>
<td>20.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>2N3055</td>
<td>5.5</td>
<td>5.0</td>
<td>20.0</td>
<td>20.0</td>
<td>35.0</td>
<td>25.5</td>
<td>25.0</td>
<td>25.0</td>
<td>20.0</td>
<td>20.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>2N4085</td>
<td>5.5</td>
<td>5.0</td>
<td>20.0</td>
<td>20.0</td>
<td>35.0</td>
<td>25.5</td>
<td>25.0</td>
<td>25.0</td>
<td>20.0</td>
<td>20.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>2N4085</td>
<td>5.5</td>
<td>5.0</td>
<td>20.0</td>
<td>20.0</td>
<td>35.0</td>
<td>25.5</td>
<td>25.0</td>
<td>25.0</td>
<td>20.0</td>
<td>20.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>2N4085</td>
<td>5.5</td>
<td>5.0</td>
<td>20.0</td>
<td>20.0</td>
<td>35.0</td>
<td>25.5</td>
<td>25.0</td>
<td>25.0</td>
<td>20.0</td>
<td>20.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>2N4085</td>
<td>5.5</td>
<td>5.0</td>
<td>20.0</td>
<td>20.0</td>
<td>35.0</td>
<td>25.5</td>
<td>25.0</td>
<td>25.0</td>
<td>20.0</td>
<td>20.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>2N4085</td>
<td>5.5</td>
<td>5.0</td>
<td>20.0</td>
<td>20.0</td>
<td>35.0</td>
<td>25.5</td>
<td>25.0</td>
<td>25.0</td>
<td>20.0</td>
<td>20.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>2N4085</td>
<td>5.5</td>
<td>5.0</td>
<td>20.0</td>
<td>20.0</td>
<td>35.0</td>
<td>25.5</td>
<td>25.0</td>
<td>25.0</td>
<td>20.0</td>
<td>20.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>2N4085</td>
<td>5.5</td>
<td>5.0</td>
<td>20.0</td>
<td>20.0</td>
<td>35.0</td>
<td>25.5</td>
<td>25.0</td>
<td>25.0</td>
<td>20.0</td>
<td>20.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>2N4085</td>
<td>5.5</td>
<td>5.0</td>
<td>20.0</td>
<td>20.0</td>
<td>35.0</td>
<td>25.5</td>
<td>25.0</td>
<td>25.0</td>
<td>20.0</td>
<td>20.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>2N4085</td>
<td>5.5</td>
<td>5.0</td>
<td>20.0</td>
<td>20.0</td>
<td>35.0</td>
<td>25.5</td>
<td>25.0</td>
<td>25.0</td>
<td>20.0</td>
<td>20.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>2N4085</td>
<td>5.5</td>
<td>5.0</td>
<td>20.0</td>
<td>20.0</td>
<td>35.0</td>
<td>25.5</td>
<td>25.0</td>
<td>25.0</td>
<td>20.0</td>
<td>20.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>2N4085</td>
<td>5.5</td>
<td>5.0</td>
<td>20.0</td>
<td>20.0</td>
<td>35.0</td>
<td>25.5</td>
<td>25.0</td>
<td>25.0</td>
<td>20.0</td>
<td>20.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>2N4085</td>
<td>5.5</td>
<td>5.0</td>
<td>20.0</td>
<td>20.0</td>
<td>35.0</td>
<td>25.5</td>
<td>25.0</td>
<td>25.0</td>
<td>20.0</td>
<td>20.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>2N4085</td>
<td>5.5</td>
<td>5.0</td>
<td>20.0</td>
<td>20.0</td>
<td>35.0</td>
<td>25.5</td>
<td>25.0</td>
<td>25.0</td>
<td>20.0</td>
<td>20.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>2N4085</td>
<td>5.5</td>
<td>5.0</td>
<td>20.0</td>
<td>20.0</td>
<td>35.0</td>
<td>25.5</td>
<td>25.0</td>
<td>25.0</td>
<td>20.0</td>
<td>20.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>2N4085</td>
<td>5.5</td>
<td>5.0</td>
<td>20.0</td>
<td>20.0</td>
<td>35.0</td>
<td>25.5</td>
<td>25.0</td>
<td>25.0</td>
<td>20.0</td>
<td>20.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>2N4085</td>
<td>5.5</td>
<td>5.0</td>
<td>20.0</td>
<td>20.0</td>
<td>35.0</td>
<td>25.5</td>
<td>25.0</td>
<td>25.0</td>
<td>20.0</td>
<td>20.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
</tbody>
</table>

When we saw ‘Towers International Transistor Selector’ we were so impressed that we have made arrangements with Technical Book Services to supply readers directly. This 142-page book gives comprehensive details of over 10,000 British, US, European and Japanese transistors including electronic and mechanical specifications, manufacturers and available substitutes.

ALL FOR

£2.95 PLUS 45p POSTAGE

TO: TOWERS INTERNATIONAL TRANSISTOR SELECTOR ETI, 36, Ebury Street, London SW1W OLW.

Please find enclosed cheque/P.O. for £3.40 (£2.95 + 45p postage).

NAME

ADDRESS

ELECTRONICS TODAY INTERNATIONAL—MAY 1975
SIMPLE DC-DC CONVERTER

Often in circuit design it is handy to have a low-current negative rail available to bias FETs etc. This circuit generates a supply rail 2 to 5V below its OV line.

If the lower end of R2 is connected to OV, then the circuit is seen to be an op-amp relaxation oscillator driving a pair of diodes that charge C1 negatively. R3 provides positive feedback, changing the switching point of the op-amp, according to whether C2 is charging or discharging through R4. When the voltage on C2 reaches the switching point, the circuit changes state, and the C2 voltage sets out for the other switching point.

When the lower end of R2 is attached to the negative output, then as the negative charge on C1 increases, the operating range of the oscillator is pulled down until it is outside the operational range of the 741, and the charging ceases. This provides a form of switching regulation of the output voltage, roughly halving the output impedance. The output voltage can be set to the desired value by altering R2. For 3.3V output the prototype showed about 10mV ripple on full design load of 1mA.

The output is inherently short-circuit protected by the current-limiting action of the 741.

CRYSTAL CHECK-UP

If one has access to a signal generator and oscilloscope, the hook-up shown will check both the generator and crystal. As the frequency is increased, the low impedance series vibration of the Xtal can be observed by a sharp increase in Y amplitude. This is followed by a dip as the Xtal goes into the high impedance parallel mode. The harmonic activity can be checked by comparison with the fundamental.

SIMPLE SIREN

The circuit consists of two unijunction relaxation oscillators, Q1 for low frequency and Q2 for audio frequency. R3 couples the slow rising voltage across C1, determined by the time constant C1 and R2, to the audio frequency across C2, determined by the time constant of C2 and R4. The effect is that the audio frequency generated by Q2 rises in pitch as the slow rising voltage across C1 is applied, via R3 to the time constant C2/R4. This type of sound carries much further than a continuous note from a single oscillator. Extra amplification can be achieved, by adding two transistors in a super-alpha arrangement as shown dotted. R5 should be replaced by a 100 ohm ¼W resistor.

Connected to a pressure mat (from across C2), this unit would make an excellent baby snatch alarm for prams.
VARIABLE FREQUENCY MULTIPLE WAVEFORM GENERATOR

Signetics 566 IC chip lends itself ideally as a test generator by utilising its internal voltage controlled oscillator (VCO).

The circuit will deliver separate outputs giving triangular and square waves and both positive and negative going spikes.

The square wave amplitude is 5 V pk-pk, all other waveforms are 1.5 V pk-pk.

Frequency is determined by the value of the capacitor connected to pin 7.

It is preferable to use tantalum capacitors rather than electrolytics.

The outputs are designed to operate into high impedance loads. A transistor buffer stage is needed to match to low input impedance devices.

---

NEON TUBE FLASHER

Flashing neon globes have use in many applications, however their relatively high working voltage precludes their general use where a mains supply is not available.

This circuit enables neon tubes or bulbs to be operated from a low voltage dc supply.

The voltage required to ignite the neon tube is obtained by using an ordinary filament transformer (240-6.3V) in reverse.

Battery drain is quite low – being in the region of 1 to 2 milliamps for a nine volt battery.

Q1 is a unijunction transistor and operates as a relaxation oscillator. Its frequency of operation is determined by R2-C1.

The pulses from Q1 are directed to Q2 which in turn drives Q3 into saturation.

The sharp rise in current through the 6.3V winding of the transformer as Q3 goes into saturation induces a high voltage in the secondary winding causing the neon to flash.

The diode D1 protects the transistor from high voltage spikes generated when switching currents in the transformer.

---

TRANSISTORISED BEEPER

This circuit consists of an assymetric multivibrator activated by a pushbutton. The loudspeaker is a transistor radio type with a voice coil impedance of about 25 to 40 ohms. Earpieces up to 500 ohms can be used for lower power output. R1 varies frequency over the audio range.

Transistor Q1 can be any LF small signal type (NPN), either germanium or silicon. (AC127, BC107, BC108 etc). Q2 is a small signal germanium type of up to 1A collector current. (AC128, AC132, AC186 etc). The battery size should be determined by the drain current of Q2.
**TOUCH-SENSITIVE SWITCH**

The circuit illustrated can be set to energise the relay when the plate is lightly touched. Under certain circumstances the proximity only of the body is sufficient to operate the switch.

A high impedance input is provided by Q1, a general purpose field effect transistor such as 2N3819. A general purpose 741 op-amp is used as a sensitive voltage level switch and this in turn operates the current buffer Q2, a medium current pnp bipolar transistor, thereby energising the relay which can be used to control equipment, alarms etc.

In the quiescent state, the voltage at pin 3 of the op-amp is set higher than the voltage at pin 2 by adjustment of VR1. This ensures that the voltage at pin 6 is high and Q2 and the relay are off. Upon lightly touching the touch-plate, a decreasing reverse bias VGS increases the drain current flowing through Q1 and the resultant voltage drop across R1 lowers the voltage at pin 3 below that at pin 2. The voltage at pin 6 falls and switches on the relay via Q2. Resistor R4 may need to be selected to ensure that the relay is held off since a small positive voltage at the output remains even though the voltage at pin 3 is lower than that at pin 2 in the quiescent state. This problem can be overcome by using dual power supply for the op-amp in the more usual mode of operation of this device. Component values are not critical and there is considerable scope for experimentation.

The sensitivity of the circuit to the proximity of the body depends upon the nature and strength of the surrounding electromagnetic fields produced by mains wiring and equipment in the vicinity, for it is the pick-up of this energy which the body couples to the circuit.

---

**DISCO AUTOFADE**

This is an autofade circuit for use in discoteques and the like. This autofade unit has advantages over VCG ICs which introduce distortion and noise (the 741s may be substituted by low noise op-amps) by using a FET to switch the signal gain characteristic. The principle may be easily adapted into existing mixers.

The microphone is amplified by IC1 and fed to the input mixer (IC2 the gain of which is set by R) and to the comparator IC3. If the input is large enough (larger than the voltage on the wiper of VR4) the output swings positive and charges C3 (in about 4mS). When the voltage across C3 is sufficient the FET is turned fully on and the fade depth-control is grounded hence attenuating the signal. The FET turn off time is determined by R11, VRs and C3 and may hence be varied between 25mS and 2.5S.

---

**BLOWN FUSE INDICATOR**

Here is a very simple method of identifying a blown fuse. This is of course more advantageous on systems employing several fuses.

Across the fuse holder is wired a neon in series with a resistor. When the short circuit, or whatever, blows the fuse, the neon will light indicating immediately the area of the fault. Neons with built-in resistors need not of course have an extra 150k as shown.
CMOS From the 2 leading manufacturers only, RCA and Motorola:

At the new manufacturers’ prices.

<table>
<thead>
<tr>
<th>Device</th>
<th>F</th>
<th>Description</th>
<th>Man.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD4000AE</td>
<td>0-21</td>
<td>Dual 3-Input NOR gate plus inverter</td>
<td>RCA</td>
</tr>
<tr>
<td>CD4001AE</td>
<td>0-21</td>
<td>Quad 2-Input NOR gate</td>
<td>RCA</td>
</tr>
<tr>
<td>CD4002AE</td>
<td>0-21</td>
<td>Dual-Input NOR gate</td>
<td>RCA</td>
</tr>
<tr>
<td>CD4007AE</td>
<td>0-21</td>
<td>Dual Complementary Pair Plus Inverter</td>
<td>RCA</td>
</tr>
<tr>
<td>CD4011AE</td>
<td>0-21</td>
<td>Dual 2-Input NAND gate</td>
<td>RCA</td>
</tr>
<tr>
<td>CD4012AE</td>
<td>0-21</td>
<td>Dual 4-Input NAND gate</td>
<td>RCA</td>
</tr>
<tr>
<td>CD4013AE</td>
<td>0-63</td>
<td>Dual “D” Flip-Flop with Set/Reset</td>
<td>RCA</td>
</tr>
<tr>
<td>CD4016AE</td>
<td>0-62</td>
<td>Dual Bilateral Switch</td>
<td>RCA</td>
</tr>
<tr>
<td>CD4017AE</td>
<td>1-63</td>
<td>Decode Counter/Divider</td>
<td>RCA</td>
</tr>
<tr>
<td>CD4019AE</td>
<td>0-73</td>
<td>Quad AND-OR Select Gate</td>
<td>RCA</td>
</tr>
<tr>
<td>CD4023AE</td>
<td>0-72</td>
<td>Triple 3-Input NAND gate</td>
<td>RCA</td>
</tr>
<tr>
<td>CD4025AE</td>
<td>0-26</td>
<td>Triple 2-Input NOR gate</td>
<td>RCA</td>
</tr>
<tr>
<td>CD4027AE</td>
<td>0-91</td>
<td>Dual J-K Master Slave Flip-Flop</td>
<td>RCA</td>
</tr>
<tr>
<td>CD4029AE</td>
<td>0-96</td>
<td>Presettable Up/Down Counter</td>
<td>RCA</td>
</tr>
<tr>
<td>CD4030AE</td>
<td>0-65</td>
<td>Quad Exclusive-OR Gate</td>
<td>RCA</td>
</tr>
<tr>
<td>CD4047AE</td>
<td>0-17</td>
<td>Monostable/Available Multivibrator</td>
<td>RCA</td>
</tr>
<tr>
<td>CD4049AE</td>
<td>0-02</td>
<td>Hex Buffer/Converter (Inverting)</td>
<td>RCA</td>
</tr>
<tr>
<td>CD4050AE</td>
<td>0-62</td>
<td>Hex Buffer/Converter (Non-Inverting)</td>
<td>RCA</td>
</tr>
<tr>
<td>CD4069BE</td>
<td>0-26</td>
<td>Hex Inverter</td>
<td>RCA</td>
</tr>
<tr>
<td>CD4071BE</td>
<td>0-26</td>
<td>Quad 2-Input OR Gate</td>
<td>RCA</td>
</tr>
<tr>
<td>CD4073BE</td>
<td>0-26</td>
<td>Triple 3-Input AND Gate</td>
<td>RCA</td>
</tr>
<tr>
<td>MC14501CP</td>
<td>0-32</td>
<td>Triple Gate</td>
<td>MOT</td>
</tr>
</tbody>
</table>

RCA = RCA; MOT = Motorola

We also have smaller stocks of most of the rest of the CMOS range – see or phone for stock/price list.

RCA 1975 CMOS Databook (645 pages) £1.50 (No VAT) plus 33p p&p

ADD VAT at 8% = 10 p&p on orders under £2
TEXAS SR-51

Texas Instruments have a new scientific calculator, the SR-51. It combines scientific functions and statistical analysis and includes the features of the SR-50. Algebraic logic is used and for statistical analysis there is automatic computation of the mean, variance, standard deviation, least squares, linear regression, factorials, permutations and a random number generator is included.

The random number generator function, which gives a two digit readout, is believed to be unique. The least squares linear regression provides for a minimum of two and a maximum of 99 data points. This feature is particularly useful in business applications such as projecting future earnings and in scientific applications such as the correlation of experimental data. The basic mathematical functions include trig functions and their inverse, hyperbolic functions and their inverse powers and roots, common and natural logs and anti-logs. Others include percent, delta percent, constant mode for group calculations and a fixed or floating decimal point option. The constant key allows the user to perform group calculations using the four basic functions, plus $x^y$, $\sqrt[3]{y}$, and delta percent.

Three separate accessible memories greatly extend the usefulness of the SR-51. These memories are accessed either as direct storage, summation in memory or product of memory and displayed quantity entered in to memory. Twenty common engineering conversions and their inverses, including 13 metric conversions can be performed.

The SR-51 display is a 14-digit red LED display made up of a 10-digit mantissa, a 2-digit exponent and two sign digits. Three major MOS/LSI ICs provide all the computational power required for the SR-51. Two ICs are ROMs, storing a total of 26,624 bits and the third is a complex data processor chip.

The SR-51 comes complete with carrying case, rechargeable batteries, adapter/charger, operator's handbook and 12 months' guarantee. It costs £129.95 (inc. VAT).

HIGHLY CONDUCTIVE ORGANIC COMPOUND

A new type of organic crystal, whose ability to conduct electricity approaches that of some metals, has been fabricated by IBM scientists in the USA. The high conductivity was achieved by replacing sulphur atoms with selenium atoms in a crystal of tetrathiofulvalenium tetracyano-p-quinodimethane (commonly called TTF TCNQ).

The new organic crystal (called TSeF TCNQ) consists of separate columns of positively and negatively charged organic molecules, allowing for the movement of electrical charges along the columns. It is being studied to see if it can be used in any novel electronic device. At room temperature, the conductivity of organic "metals" lies between that of a metal and a semiconductor, and the conductivity increases many times as the crystals are cooled to cryogenic temperatures. However, when cooled further - below a transition temperature - they are converted from "metals" into semiconductors.

TEA CO2 LASER

A new TEA CO2 laser operating at 10.6μm is available from Rofin Limited. The model DDL2SH gives a peak power output of more than one megawatt of infrared radiation. The price of the system is £2651. From Rofin, 13 Alston Works, Alston Road, Barnet, Herts.

'SLIDING BIAS' MINI AF AMP

Bowmar have a new 75dB class A monolithic integrated circuit audio amplifier. The circuit of the BL1100 incorporates a 'sliding bias' class A output stage providing 0.75mW output power with low distortion. The sliding class A circuit adjusts its bias current in response to input signal resulting in power consumption being less than that normally associated with this class of amplifier.

The Dokorder 1140 is one of several ranges of hi-fi products which are now available in the UK from Acoustico Enterprises Ltd, Unit 7, Space Waye, North Feltham Trading Estate, Feltham, Middlesex, TW14 0TQ. The Dokorder 1140 is a 2/4 channel machine selling at £470 plus VAT. Other Dokorder tape and cassette decks are available, as well as Jensen loudspeakers, Fuji tapes and Jecklin Floats (electrostatic headphones).
This is the control centre of the London Fire Brigade in Croydon where a new VDU system handles emergency calls for the entire Greater London area South of the Thames. About 100 emergency calls are handled each day and passed to the 45 stations in that 420 square mile area. Control centres in Wembley and Stratford also have the new system, which is said to reduce call handling time by 25 seconds (or 25%) and give clearer call details.

**Bowmar Cheapies**

Bowmar are launching two new inexpensive battery calculators, the Mathmate 1 and the Mathmate 11.

The Mathmate 1 is an 8-digit, 5 function machine with floating decimal automatic constant and % for a price of £16.95 (including VAT).

The Mathmate 11 offers the same features as the Mathmate 1, plus a memory facility and is priced at £19.95 (including VAT). Both calculators are covered by Bowmar's one year warranty.

**Circuit Assembly Kit**

A re-usable Circuit Assembly Kit (No. 13) is available from Letrokit. It comprises five plain circuit boards and 500 pre-tinned brass solder pins.

The SRBP circuitboards measure 4⅝ x 4in, and are perforated on a 0.1in. matrix. The kit costs £4.32 from Letrokit Limited, 3 Trafford Road, Reading, RG1 8JR, Berkshire.

**Skylark Guidance**

The Inertial Systems Department of Ferranti Limited in Edinburgh, whom we mentioned in our March "Space Craft Guidance" article, has been awarded a contract by the Science Research Council to supply two inertial attitude reference units for the Skylark sounding rocket. The contract also covers ground control equipment.

In previous Skylark rockets, attitude control has been achieved using sun or lunar sensors together with an associated gyro stabilisation system. This type of attitude control constrains the rocket launch times to the availability of the optical reference.

The Ferranti system for Skylark is designed to provide a high-precision attitude reference so that the rocket can be pointed accurately in a desired direction in space during the stage of flight when scientific observations and experiments are made. The forthcoming programme of SRC scientific experiments will be concerned primarily with measurement of x-ray emission from space sources and an x-ray survey of the southern skies.

**Cassette Service Set**

Combined Electronic Services Limited are marketing a new Philips Cassette Service Set.

It incorporates a meter measuring device to indicate any deviation in a 50Hz tone when played back via the recorder under test, compared to a mains frequency signal derived from the test unit. By means of adjustment controls available in the motor control circuit of the cassette recorder, the correct speed is indicated by minimum deflection on the meter.

The record/play back head of the cassette recorder can be adjusted for correct alignment by using a 8kHz recorded tone which comes on a test cassette. There is also a cassette cleaning tape and an unrecorded C60 cassette in the pack. It is priced at £18.00 + VAT from Combined Electronic Services Limited, 604 Purley Way, Waddon, Croydon CR9 4DR.
4 x 741 (8 DIL) £1
15 x BC108 equiv. in plastic case (BC148) £30 x 1N4148 £1.
Full spec. details. Prices include 8% VAT P & P 15p on orders under £3.

SCOTT ELECTRONICS
(Dept ET)
P.O. Box 42, Wembley, Middx.

ELECTRONIC BOOKS, Cause & Cure T.V.
Manuscripts - Free lists - COLIS & CO. 33
Maple, Southchurch, Essex.

VALVES and TRANSISTORS

Valves 1930 to 1975 2000 types in stock. 50,000 prices. 1st 650 minimum list 15p.
We buy new and boxed valves also transistors COX RADIO (SUSSEX) LTD. The Parade,
East Wittering, Sussex. Tel: West Wittering 2032.

FIBRE OPTIC SUPPLIERS

MARE'S TAIL FOR DECORATIVE DISPLAYS
7.000 + Fibre 22 diameter. Immediate from 100m lengths. FIBRE-FLEXIBLE 4.5mm FIBRE-PLASTIC 4.5mm 24V stranded glass light conduit. 100m £60.00 per metre. CROFON 1810 64 strand plastic light conduct. 100m £50.00 per metre. O.B.F. Lighting 5.1mm £1.70 per metre.

LOW PRICES

POLYCARBONATE CAPACITORS

6V, 12V, 24V, 25V, 28V, 40V, 50V, 63V, 125V, 250V, 500V, 1000V, 2500V, 5000V, 10000V, 50000V.

MIXED IC's 50p, 200 Mixed Semiconductors in etched aluminium. 6p for details, drilled to spec.

AMORPHOUS POLYCARBONATE LENS

In etched aluminium. 6p for details, drilled to spec.

COMPACTORS - Values available:
0.1, 0.25, 0.5, 1.0, 2.2, 4.7, 8.2, 10.0 15.0 22.0 33.0 47.0 68.0 100.0 220.0 470.0 1000.0

All at 10% off. 100p for 1000p.

250V, 1100V, 1500V, 2300V, 3000V, 4000V, 5000V, 6300V, 10000V.

FIBRE OPTIC SUPPLIERS (ET)
2, Loudoun Road Mews, London NW8 ODN.

TAMAR ELECTRONICS

Low Prices

BARGAIN UNTESTED PACKS:
80 Transistors 54p, 200 Diodes 54p, 50
400mW Zeners 54p 40 2W Zeners 54p, 50
Mixed IC's 54p, 200 Mixed Semiconductors

SPECIAL OFFER:
One each of the above packs for £2.60.

3 lbs weight of computer panels £1.50.

PLASTIC RECTIFIERS 54p

Band new and boxed. ICs. 1.50 each. 12 each. 100p.

PHOTOSEMICONDUCTORS 54p

Silicon PhotoTransistor 40V 709 MLS203 Light 40kHz Tx/Rx pair E. £3.50.

Mix 6p each. FP20, FP40, FP60, 315-2700U.

EPOXY RESIN SUPPLIERS

Low viscosity, 30m. 60p, 6x 300U, 1000U, 2000U, 3000U, 6000U, 10000U, 20000U.

FIBER-BRISTLE 'Polish' for plastic fibres 2m £9.00. OPTIKON 250 = £16.00.

ECONOMY 3mm dia. £1.70 per pack. £2.55.

PRECISION COMPONENTS

ELECTRONIC BOOKS, Cause & Cure T.V.

MANUALS

ELECTRONIC BOOKS, Cause & Cure T.V.

Printed Circuit Boards, PCB for any ETI project 60p per board. Individual patterns £1 blue print per square inch. Add 10p P&P per PCB. Mail Order from TEC 241 Burnt-Oak, Broadway, Midddex.
## BUILD A PROFESSIOAL POWER SUPPLY WITH A VOLTAGE REGULATOR

- **High performance with many unique features.**
- **Voltage range 1-40 volts**
- **Current to 2amps**
- **Single resistor programs current or voltage**
- **30W peak, 25W continuous maximum**
- **Drains include integral heat sink**
- **Safe operating area protection**
- **R2A (2amp) £16.40**
- **R2B (4amp) £18.60**

**DAVIAN (Instruments) Ltd (Dept HS) 52 Cardigan Street. LUTON BEDS.**

**Telephone - Blackmoor (Hants) 449**

---

## TTL AT LOW PRICES

<table>
<thead>
<tr>
<th>4 ELEMENT</th>
<th>FM STEREO SAVE MONEY IT'S EASY TO ORDER ORDERS UNDER C2 PLUS 25% POST &amp; P&amp;P</th>
<th>10 ELEMENT ONLY £1.75 + VAT &amp; 35% P/P</th>
</tr>
</thead>
<tbody>
<tr>
<td>7400 14D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
<tr>
<td>7401 14D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
<tr>
<td>7402 14D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
<tr>
<td>7403 14D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
<tr>
<td>7404 14D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
<tr>
<td>7405 16D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
<tr>
<td>7406 16D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
<tr>
<td>7407 16D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
<tr>
<td>7408 16D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
<tr>
<td>7409 16D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
<tr>
<td>7410 16D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
<tr>
<td>7411 16D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
<tr>
<td>7412 16D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
<tr>
<td>7413 16D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
<tr>
<td>7414 16D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
<tr>
<td>7415 16D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
<tr>
<td>7416 16D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
<tr>
<td>7417 16D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
<tr>
<td>7418 16D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
<tr>
<td>7419 16D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
<tr>
<td>7420 16D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
<tr>
<td>7421 16D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
<tr>
<td>7422 16D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
<tr>
<td>7423 16D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
<tr>
<td>7424 16D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
<tr>
<td>7425 16D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
<tr>
<td>7426 16D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
<tr>
<td>7427 16D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
<tr>
<td>7428 16D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
<tr>
<td>7429 16D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
<tr>
<td>7430 16D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
<tr>
<td>7431 16D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
<tr>
<td>7432 16D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
<tr>
<td>7433 16D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
<tr>
<td>7434 16D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
<tr>
<td>7435 16D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
<tr>
<td>7436 16D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
<tr>
<td>7437 16D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
<tr>
<td>7438 16D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
<tr>
<td>7439 16D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
<tr>
<td>7440 16D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
<tr>
<td>7441 16D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
<tr>
<td>7442 16D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
<tr>
<td>7443 16D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
<tr>
<td>7444 16D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
<tr>
<td>7445 16D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
<tr>
<td>7446 16D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
<tr>
<td>7447 16D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
<tr>
<td>7448 16D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
<tr>
<td>7449 16D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
<tr>
<td>7450 16D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
<tr>
<td>7451 16D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
<tr>
<td>7452 16D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
<tr>
<td>7453 16D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
<tr>
<td>7454 16D</td>
<td>£3.00 + VART &amp; 35% P/P</td>
<td>25/99</td>
</tr>
</tbody>
</table>

**DAVIAN (Instruments) Ltd (Dept HS) 52 Cardigan Street. LUTON BEDS.**

**Telephone - Blackmoor (Hants) 449**

---

## 1974-1975 TRANSISTOR COMPARISON TABLES

A truly up-to-date reference book which gives equivalents of over 2500 types - several alternatives are given for each. Originally a German publication, this book gives the information in English, French, German and Italian. 24 pages are devoted to transistor lead connections and over 130 to the equivalent sections giving basic construction, lead details and manufacturers.

Send a cheque or P.O. for £1.25 (includes postage) to ETI to receive this truly up-to-date reference book.
There are five superb Electronic Organ kits specially designed for the DIY enthusiast. With the extreme flexibility allowed in design, you can build an organ to your requirements, which will compare with an organ commercially built costing double the price.

- Portable organ with 4 octave keyboard, £145.29.
- Console organ with 5 octave keyboard, £250.95.
- Console organ with 2 x 4 octave keyboards and 13 note pedal board, £470.65.
- Console organ with 2 x 5 octave keyboards and 32 note pedal board, £680.
- W/W Sound Synthesiser Kit, £130.
- W/W Touch Sensitive Electronic Piano, £100.

All components can be purchased separately, i.e., semiconductor devices, M.O.S. master oscillators, coils, keyboards, pedal boards, stop tabs, draw bars, key-contacts, etc.

Send 50p for catalogue which includes 5 x 10p vouchers or send your own parts list, enclosing S.A.E. for quotation.

**ELVINS**

**ELECTRONIC MUSICAL INSTRUMENTS**

Designers and component suppliers to the musical industry

12 Brett Road, Hackney, London, E8 1JP. Tel. 01-986 8455

---

**INDEX TO ADVERTISERS**

<table>
<thead>
<tr>
<th>Advertiser</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient Acoustics</td>
<td>29</td>
</tr>
<tr>
<td>Ambit</td>
<td>54</td>
</tr>
<tr>
<td>Amtron</td>
<td>49</td>
</tr>
<tr>
<td>Arbour Electronics</td>
<td>29</td>
</tr>
<tr>
<td>B.H. Components</td>
<td>36</td>
</tr>
<tr>
<td>B.I.E.T.</td>
<td>75</td>
</tr>
<tr>
<td>Bi-Pak</td>
<td>20 &amp; 21</td>
</tr>
<tr>
<td>Bi-Pre-Pak</td>
<td>9</td>
</tr>
<tr>
<td>Bywood</td>
<td>188</td>
</tr>
<tr>
<td>Cambridge Learning Enterprise</td>
<td>63</td>
</tr>
<tr>
<td>Chittmead</td>
<td>50</td>
</tr>
<tr>
<td>Davan Instruments Ltd</td>
<td>73</td>
</tr>
<tr>
<td>Decon</td>
<td>29</td>
</tr>
<tr>
<td>Electronic Design Associates</td>
<td>41</td>
</tr>
<tr>
<td>Elvins</td>
<td>74</td>
</tr>
<tr>
<td>Fibre Optic Supplies</td>
<td>72</td>
</tr>
<tr>
<td>Henry's Radio</td>
<td>2</td>
</tr>
<tr>
<td>J.E.T.</td>
<td>69</td>
</tr>
<tr>
<td>Maplin</td>
<td>76</td>
</tr>
<tr>
<td>Marshall's</td>
<td>49</td>
</tr>
<tr>
<td>Marco Trading</td>
<td>72</td>
</tr>
<tr>
<td>Minkits</td>
<td>43</td>
</tr>
<tr>
<td>Ramar Constructor Services</td>
<td>72</td>
</tr>
<tr>
<td>Sinclair (Project 60)</td>
<td>48 &amp; 5</td>
</tr>
<tr>
<td>Sinclair (IC20)</td>
<td>22</td>
</tr>
<tr>
<td>Sintel</td>
<td>69</td>
</tr>
<tr>
<td>Tamar Electronics</td>
<td>72</td>
</tr>
<tr>
<td>Technomatic</td>
<td>72</td>
</tr>
<tr>
<td>Trampus</td>
<td>41</td>
</tr>
<tr>
<td>Wilmow</td>
<td>54</td>
</tr>
</tbody>
</table>

---

**and now....**

**THE COMPLETE CLASSIFIED SECTION**

For the smaller advertiser, we have introduced a new SALES and WANTS section offering a lineage rate. If you wish to sell new, surplus or used equipment - nuts, bolts, switches, valves or you are seeking to fill that extra work capacity USE OUR NEW CLASSIFIED FACILITY.

ALL YOU HAVE TO DO IS FILL OUT THE FORM BELOW FOLLOWING OUR TERMS

| **RATE:** 50p PER LINE, Average Six words per line. Minimum three lines. | **Single column centimeter DISPLAY BOX £2.40.scc.** |
| **Name and address count as lineage if used in advertisement.** | **Single column centimeter SEMI-DISPLAY £1.50.scc.** |
| **BOX No. allow 25p extra and indicate on form below if required.** | **MINI-AD 1/9th page and multiples thereof each £1.5. (Minimum of THREE insertions)** |

*PLEASE MAKE CHEQUE/POSTAL ORDER payable to: “ELECTRONICS TODAY INTERNATIONAL” and crossed “& Co.”*

---

**LINEAGE**

**PLEASE PRINT CLEARLY**

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>TEL:</th>
<th>TICK HERE FOR</th>
<th>1 ENCCLOSE CHEQUE/POSTAL ORDER TO THE VALUE OF</th>
<th>No. of insertions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---

**74 ELECTRONICS TODAY INTERNATIONAL—MAY 1975**
Practical Radio & Electronics Certificate course includes a learn while you build 3 transistor radio kit. Everything you need to know about Radio & Electronics maintenance and repairs for a spare time income and a career for a better future.

FIND OUT FOR YOURSELF

These letters, and there are many more on file at Aldermaston College, speak of the rewards that come to the man who has given himself the specialised know-how employers seek. There's no surer way of getting ahead or of opening up new opportunities for yourself. It will cost you a stamp to find out how we can help you. Write to Aldermaston College, Dept. TET02, Reading RG7 4PF., Home of B.I.E.T.
3 GREAT PROJECTS FOR YOU TO BUILD

* AN EXCITING ELECTRONIC ORGAN

BUILD AN ORGAN TO YOUR OWN SPECIFICATION!
Full construction details in our leaflets.
Leaflet MES 51 price 15p, describes a fully polyphonic basic organ which can be used later as the basis of a large sophisticated instrument.
Further leaflets issued at approx. 3 monthly intervals describing more footages, solid state switching, foot pedal board, many more stops, special effects, rhythm section, "Leslie" speaker etc.
At every stage in this organ we shall be using the very latest technology, to give you a really high quality instrument, that is not only on a par with, but probably in advance of most commercially available organs.

REDUCED COSTS!
Eventually you could be the owner of a highly sophisticated instrument, and parts of it will still be using the original components you bought for the basic organ. Of course this means greatly reduced costs and the satisfaction of having "built it yourself."

* THE INTERNATIONAL 4600 SYNTHESISER

We stock all the parts for this brilliantly designed synthesiser, including all the PCB's, metalwork and a drilled and printed front panel, giving a superb professional finish. Opinions of authority agree the ETI International Synthesiser is technically superior to most of today's models. Complete construction details available shortly in our booklet. S.a.e. please for specification and price lists.
* We shall be stocking all parts for the International 3600 Synthesiser, to be published shortly.

* A GRAPHIC EQUALIZER for under £50!

A really superior high quality stereo graphic equaliser as described in Jan. 1975 issue of ETI. We stock all parts (except woodwork) including all the metal work drilled and printed as required to suit our components and PCB's. S.a.e. for price list.

GET A SUPersonic SAME-DAY-SERVICE WITH QUALITY COMPONENTS – FAST!

MAPLIN ELECTRONIC SUPPLIES

Our fantastic 1975 Catalogue is much more than just a stock list. Inside its attractive glossy cover it is packed with: CIRCUITS YOU CAN BUILD. A 10 w stereo tuner-amp, a MW/LW radio, a high quality pre-amp, a 10w stereo power amp, a digital clock. Application circuits for our I.C's (e.g. a frequency doubler, audio amps and pre-amps, flip-flops power supplies, notch filter etc. etc. Detailed data on all our semiconductors. A comprehensive transistor equivalents list. Full data and hundreds of pictures of the thousands of lines we stock, including hundreds of new ones!

P.O. Box 3 • RAYLEIGH • ESSEX Telephone: Southend-on-Sea (0702) 44101
VAT. Please add