With the Doram catalogue, even the guarantee is guaranteed.

Doram is an entirely new way of buying electronic components.

So, to succeed, it's got to have something going for it, right?

We agree with you.

And where Doram scores is in the security it gives the amateur buyer.

We'll give you peace of mind three ways.

No-quibble guarantee.

Firstly, we guarantee to replace any component which arrives faulty. Absolutely free of charge.

And secondly, our guarantee is backed by the biggest electronics distribution Group in Britain.

7-day service.

Thirdly, we guarantee you'll have your components within 7 days from our receipt of your orders.

We're so confident of our service that if we can't supply the part you want within 7 days we'll give you an immediate refund.

So you'll never get a tedious wait.

You know just where you stand with Doram.

All branded goods.

All goods supplied by Doram are made by big-name manufacturers. And they're all to manufacturer's specifications. They're the best money can buy.

In fact, Doram gives the amateur the sort of service only professionals have enjoyed before.

Millions of components.

All in all, we're big enough to offer you stocks of millions of components, on over 4,000 product lines.

All you do is buy the Doram catalogue for 25p that's a yearly reference book for the price of a pint of lager and then take your pick from it.

Use the coupon now.

Send today for the first-ever Doram catalogue. It can take a lot of worry out of amateur components buying.

And for 25p that's not bad, is it?

I ENCLOSE 25p*. PLEASE SEND ME THE NEW DORAM CATALOGUE.

Name

Address

Doram Electronics Limited, PO Box TR8, Wellington Road Industrial Estate, Wellington Bridge, Leeds LS12 2UF.

* This will be refunded on orders of £5 less VAT or more received by us before March 31st, 1975.
DECEMBER 1974 Vol. 3, No. 12

main features

PICTURE TO SIGNAL
How modern TV cameras work ... 10
ROAD SAFETY—AN ELECTRONICS APPROACH
Technology as well as driver education is the key to accident prevention........... 24
HI-FI TODAY
Recent developments break new barriers towards audio fidelity 40
ELECTRONICS IN CRIME—PART THREE
Sophisticated equipment is being used by both sides in the crime war 51
ELECTRONICS—IT'S EASY
Introducing the elements of transistor amplifiers 60

projects

TACO TIMING LIGHT
Check total ignition advance curve with our adjustable delay unit 18
LM380 AMPLIFIER DESIGNS
Circuits to build using this month's I.C. offer 32
SPRING LINE REVERBERATION UNIT/MIXER
Built-in mixing and stereo operation featured in this versatile circuit 46
FAMILY FERRY
An electronic version of an old game ... 56

product tests

HEATHKIT 1031 DEPTH SOUNDER
An ideal unit for the small boat owner 38

news & information

NEWS DIGEST ... 6
PREVIEW OF JANUARY'S ETI .. 36
INPUT GATE .. 37
ELECTRONICS TOMORROW .. 64
TECH—TIPS .. 66
DX MONITOR ... 68

SPECIAL OFFERS
TWO LM380 AUDIO AMP IC'S FOR £1.00!
50,000Ω/V MULTIMETER FOR £10.25!

EDITORIAL & ADVERTISEMENT OFFICE
36, Ebury Street, London SW1W 0LW.
Tel. 01-730 8282.

HALVOR W. MOORSHEAD
Editor
ROBERT C. EVANS
Advertisement Manager
STEVE BRAINTWOOD
Assistant Editor
JEAN BELL
Production
HELEN COHEN
Administration
International Editions:
COLLYN RIVERS
Editorial Director
Australia
BRIAN CHAPMAN
Technical Editor
ANDREW POZNIAK
Assistant Editor
BARRY WILKINSON
Engineering Manager
France
DENIS JACOB
Editor-in-chief
CHRISTIAN DARTEVELLE
Editor

Published by: Modern Magazines (Holding) Ltd
36, Ebury Street, London SW1W 0LW.
Electronics Today International is published on the third Friday in the month prior to the cover date.
Distributed by: Argus Distribution Ltd.
Printed by: Alabaster Passmore & Sons Ltd.
London and Maidstone.

International Associates:
Australia: Modern Magazines (Holding) Ltd,
Ryrie House, 15 Boundary Street, Rushcutters Bay 2011, Sydney, Australia.
France: Electroniques Pour Vous International,
17 Rue de Buci, Paris, France.
USA: ACP, Room 401, 1601 Broadway, New York, USA.
European News Bureau: H. Dvoresky, Manager,
107 Fleet Street, London EC4.

CORRESPONDENCE: Readers queries can only be answered if they relate to recent articles published in the magazine and must be accompanied by a stamped, self-addressed envelope. We are rarely able to provide information in addition to that published. Answers may be subject to delays at certain times due to the production schedule of this magazine.
BACK NUMBERS: Back numbers of most issues are available at 25p each plus 7p postage.
SUBSCRIPTIONS: Great Britain, £3.50 per year.
Overseas, £4.00 per year.
COPYRIGHT: All material is subject to World-wide copyright protection. All reponsible care is taken in the preparation of the magazine to ensure accuracy, but ETI cannot be held responsible for it legally. Where errors do occur, a correction will be printed as soon as possible afterwards in the magazine.

Cover: Colour TV camera at work in Thames Television's London Studios — see Picture to Signal on page 10.
THE CHANGING FACE OF WATCHES

What was moving and isn't and also wasn't moving but is now? Answer: Digital Watches. No moving parts is the answer to the first part, answer to the second part is that new models are appearing rapidly and things are really moving on this front.

Bowmar of 41 High Street, Weybridge, Surrey, are of course well-known for their calculators and as makers of LED displays and have now entered the top end of the digital watch market with a model costing about £200. Both the chip and display are made by Bowmar in Canada.

The watch uses as a standard a 32768Hz crystal and is claimed to be accurate to within a minute a year. Using the push buttons, the watch displays hours, minutes, seconds and the date. A special screen enables the display to be read even in bright sunlight. Power is derived from two mercury cells; when these need replacing, the display flashes four times a second. The batteries will last about a year.

Shopertunities, the mail-order company are now advertising a liquid crystal watch for £57.95, the lowest price we have yet seen, but advertisements for several watches using either liquid crystal or LED readouts are now appearing.

Mike Fischer, one of our friends from Sintel, 53a Aston Street, Oxford dropped in to see us recently sporting a digital watch with LC display which had been built up from a kit that they hope to market for about £55. Anyone interested should contact Sintel.

A combination calculator/watch has just been introduced in the USA by the US Fondiller Corp. of New York. The unit is called the Calcor and is a full scientific calculator. It is a 40-function device including Trig, Logs, exponential, square roots etc. Time is shown on the digital readout.

Nickel-cadmium batteries power the unit for some 20,000 calculations. The selling price in the United States is reported to be as low as £200.

IRENE is made up of a number of complex modern electronic units controlled by a small but powerful computer. The Premium Bond numbers are generated at random by electronic circuits at high speed and stored in the memory of the computer. The computer ensures that numbers which belong only to a previously specified valid range are stored. These are then recorded simultaneously on two magnetic tape machines for

UK 5 NOW ARIEL V

UK 5, Britain's latest scientific research satellite is now in its designed 550km orbit and the spacecraft is in A1 condition and working perfectly.

Now that the £2.5 million satellite is in orbit it will be known as Ariel V. The all-British satellite, which carries both American and British experiments, is to carry out the most comprehensive investigation yet initiated into X-ray sources in deep space including such phenomena as 'black holes' (see last month's ETI).

ERNE'S SISTER 'IRENE'

The Central Bank of the Philippines has just ordered a new premium bond number selection equipment to be named 'IRENE' — Indicating Random Electronic Numbering Equipment — a twist on the initials 'ERNE' which was the name given to the United Kingdom machine.
security. The contract has gone to a division of Plessey Telecommunications.

BRITISH TECHNOLOGY X4 SPACECRAFT 'MIRANDA'
The picture shows the launch of the British Technology Spacecraft X4, known as MIRANDA. Among the experiments on board is an experimental star sensor, designed and built at the Royal Aircraft Establishment, Farnborough, and using a specially designed EMI photomultiplier tube (type D119 NMA).

At present MIRANDA is in a circular sun-synchronous orbit of approximately 765 km and will provide a space platform for the testing of new types of sensors and attitude control systems for future space applications. It is expected to have a six months operational life before going into eclipse.

SEMICONDUCTOR NEWS
It's some time since we heard of a company entering the transistor field but International Rectifier have done just that. IR are of course the world’s largest manufacturers of thyristors, diodes and rectifiers but have now launched 12 discrete and 15 Darlington power transistors.

Market research by IR of Hurst Green, Oxted, Surrey indicated an expected long term volume increase for high voltage transistors.

A feature of the new range is the use of glass passivation, normally associated with thyristors. This gives better voltage ratings, long term stability and improves production yields. This technique effectively provides ‘on-the-junction’ hermetic sealing, preventing the ingress of moisture and impurities.

The discrete transistors are rated up to 700V VCEO, 7A IC and the Darltons 600V VCEO, 20A IC.

Typical applications are for switching for power conditioning, electric motor speed control, car electronic ignition systems and for horizontal scanning circuits for c.r.f.s.

Semiconductors of Wembley, Middx have available Signetics double-diffused MOSFETS. This manufacturing process, known as DMOS, ensures that the devices have a better performance in the range 500MHz to 1GHz. They feature low capacitance, high power gain and low noise.

The range includes both single and dual-gate n-channel enhancement mode devices, all of which have built-in gate protection.

General Instrument (UK) Ltd, Cock Lane, High Wycombe, Bucks have introduced a new family of low-cost plastic MOSFETs, which because of their moulded packages represent cost savings over metal can types.

Initially there are four types: MEM630, MEM631, MEM632 and MEM712.

The MEM630 is intended for use in high frequency r.f. amplifiers of FM radios, the MEM631 for use in VHF amplifiers such as TV tuners and i.f. amplifiers. The MEM632 is for use in h.f. and VHF mixers and its high conversion gain makes it suited for TV or VHF mixer applications.

The MEM712 is an n-channel MOS transistor which has a low threshold limit of 2.0V making possible direct drive from TTL logic levels. The low ON resistance, low feed-through capacitance and low cost make it ideal for high speed analogue switching.

Motorola, York House, Empire Way, Wembley Middx, have announced sweeping price cuts on all their CMOS devices. These price cuts average about 25% and are the second to be made by Motorola within six months.

The same company have also announced price cuts for their popular MRF619 and MRF620 UHF power
transistors. These devices designed for 25W and 35W operation use internal matching (controlled Q) to raise the base impedance, thereby increasing the bandwidth and simplifying circuit design.

Another price reduction is that of Signetics CMOS devices. The 4001, 4002, 4011 and 4012 have been cut substantially in price. Ten further devices are going to be reduced in the next few weeks. Available from Walmore Electronics of 11-15 Butterton Street, Drury Lane, London WC2 is a device known as a Byistor. This has been developed by the Communications Transistor Corporation (CTC) of America to enable the best possible performance to be obtained from silicon r.f. power transistors without the risk of thermal runaway.

The Byistor consists of a special diode and resistor within a single package. Use of the device ensures that the bias current applied to an r.f. transistor is automatically adjusted to exactly the right value whatever the operating temperature and the need for a power wasting emitter resistor to stabilise d.c. conditions is eliminated.

The Byistor depends on its thermal characteristics being an accurate inverse thermal match to the power transistor. As the temperature of a power transistor increases, the collector current also increases leading to runaway. The byistor reduces the bias current applied as the temperature increases, maintaining the collector current at a steady level.

To obtain the accurate match, CTC manufacture the diode within the byistor using exactly the same material, device geometry and diffusion process used by the manufacturer of silicon r.f. power transistors. To improve the thermal match still further, the internal resistor is also made of silicon.

The byistor is intended for mounting on the same heat-sink as the power transistor and as close to it as possible. As the temperature increases, the silicon resistor increases in value and the voltage across the diode decreases. The diode acts as a voltage source with an impedance of 0.3 ohms and the silicon resistor contributes a further 0.7 ohms, giving an apparent source impedance of about 1 ohm.

For class A8 operation about 350mA is applied to the injector terminal from any convenient voltage and the desired static collector current in the power transistor is set by adjusting the variable resistor. Increasing the value of the variable increases the VBE and also the collector current.

IBA TECHNICAL REVIEW

The series of engineering texts under the title of 'IBA Technical Review', published by the IBA, has been expanded by the recent publication of Volume 4 'Television Transmitting Stations' and Volume 5 'Independent Local Radio'. These fully illustrated books are intended for professional broadcasting engineers, for technical and other educational centres and for libraries. If you want to read one tell your librarian that copies can be obtained from: IBA Engineering Information Service, Crawley Court, Winchester, Hants SO21 2OA.

Volume 4 describes recent designs for high power stations and for low-power, all-solid-state local relays; control systems for unmanned stations; aerials and aerial-combining equipment; power supplies; station buildings; and the planning and control of construction programmes. All articles are contributed by engineers of IBA’s station design and construction department.

Volume 5 includes papers on the engineering planning of ILR services; design of MF and circularly-polarized VHF sound transmitting stations; control equipment; directional MF aerial arrays; and the design and operation of an ILR studio centre.

NEW HOPE FOR B & W TV

Good news for fans of black and white television. Tubes for their sets will still be available because Elicron Limited (who have been importing black and white TV picture tubes from Czechoslovakia for some years) is planning to increase its supplies. So the news that manufacturers may be stopping production does not mean that black and white sets, many of which are rented, will immediately become obsolete.

WALKIE-TALKIE MESSAGE SENT 50,000 MILES

With an antenna fashioned from an umbrella, an engineer beamed a walkie-talkie message more than 50,000 miles to demonstrate the dramatic potential of space satellites for search-and-rescue missions. The long-distance transmission, originating from a walkie-talkie with a typical range of only five miles, showed that simple radio gear and a collapsible antenna could enable persons in distress to summon help from any point on earth, using a space satellite.

The demonstration was given by an American engineer using a five-watt radio identical to the walkie-talkies carried by law enforcement officials, firemen and foresters. For the demonstration, however, its transmitter and receiver had been tuned to the satellite’s broadcasting frequencies. Two other items were needed: a special antenna, constructed on the frame of a golfer’s umbrella, and the services of a geostationary space satellite orbiting at an altitude of 22,300 miles over the Amazon River in Brazil.

In the demonstration, by means of the ‘press-to-send’ key on the walkie-talkie, a message in Morse code was transmitted from NASA headquarters in Washington DC to the ATS-3 geostationary satellite, which then relayed the signals to GEUSAY’s Radio Optical Observatory near Schenectady, New York - a total distance greater than 50,000 miles.

After receiving the message, Observatory personnel transmitted voice signals back through the satellite to the engineer’s radio. This showed that downed pilots, the survivors of shipwrecks, and others in need of help could readily receive a voice reply from a search-and-rescue station, acknowledging the SOS and providing rescue information.

A global search-and-rescue system would require only six geostationary satellites to cover all but the polar regions. The satellites could be monitored by three ground stations using range measurements to locate
TELE TENNIS KIT
as featured on BBC Nationwide and in the Daily Mail October 2nd 1974

This exciting new game is now available in kit form. Due to popular demand we are now able to offer a fantastic saving on our price list, ideal game for whole family. Top need is not to modify your TV set, just plug it into a spare socket.

Parts list as follows:
A. Buzzer Pack
B. Transmitter Pack
C. Cigarette Pack
D. Spot Indicator Pack
E. IC Socket
F. Transmitter
G. Power
H. Switches

$7.75 sp 20p
$12.75 sp 50p
$17.75 sp 85p
$22.75 sp 125p
$27.75 sp 160p
$32.75 sp 205p
$37.75 sp 250p
$42.75 sp 300p

Price correct at August 1974. but all exclusive of V.A.T.

OUTER NEW GLASGOW SHOP IS NOW OPEN
Prices correct at August 1974, but all inclusive of V.A.T.
Post and Package 25p postagge and package charges

Popular Semiconductors

<table>
<thead>
<tr>
<th>Price</th>
<th>SB</th>
<th>59p</th>
<th>65p</th>
<th>71p</th>
<th>75p</th>
<th>80p</th>
<th>85p</th>
<th>90p</th>
<th>95p</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2.40</td>
<td>25</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>32</td>
<td>34</td>
<td>36</td>
<td>38</td>
</tr>
<tr>
<td>$5.50</td>
<td>64</td>
<td>67</td>
<td>70</td>
<td>73</td>
<td>76</td>
<td>79</td>
<td>82</td>
<td>85</td>
<td>88</td>
</tr>
<tr>
<td>$6.50</td>
<td>110</td>
<td>114</td>
<td>117</td>
<td>121</td>
<td>124</td>
<td>127</td>
<td>130</td>
<td>133</td>
<td>136</td>
</tr>
<tr>
<td>$7.50</td>
<td>141</td>
<td>144</td>
<td>147</td>
<td>150</td>
<td>153</td>
<td>156</td>
<td>159</td>
<td>162</td>
<td>165</td>
</tr>
<tr>
<td>$8.50</td>
<td>177</td>
<td>181</td>
<td>185</td>
<td>189</td>
<td>193</td>
<td>197</td>
<td>201</td>
<td>205</td>
<td>209</td>
</tr>
<tr>
<td>$9.50</td>
<td>217</td>
<td>221</td>
<td>225</td>
<td>229</td>
<td>233</td>
<td>237</td>
<td>241</td>
<td>245</td>
<td>249</td>
</tr>
</tbody>
</table>

For more details, and a bookful of other ideas, just send me a free Heathkit catalogue.

Remember easy terms are available with the Heathkit Monthly Budget Plan.
WHEN WE USE OUR eyes to look at any scene, there are two features in particular which the eyes convert into signals to pass to the brain. These are hue and brightness.

The hue is what we can describe as the colour; the eye not only detects this but also the degree of saturation of the colour, how pure it is or how mixed with white to make a pale colour.

The brightness Information is more important, for it tells us more about the shape of the object, and can operate at lower light levels. All this information is received by the eye as light waves which come in diverging paths from any object.

What happens to the light rays inside the eye is of considerable interest, not only to specialists in the eye but also from the point of view of the electronic engineer, since television systems operate in ways which must match the action of the eye.

In each case, there has to be an imaging system—a lens, which makes the diverging light rays from an object converge to form an image. That image must be formed on some sensitive layer which can convert the light intensity and hue into electrical signals for transmission.

In the eye, this is done in the retina, and the signals are transmitted along countless nerves to the brain.

In a television system, the job of converting image to signal is done in the camera tube, but we cannot have countless channels: the information must eventually end up as one electrical signal to be transmitted. It is because of this last restriction that the camera tube is so unlike the eye in detail.

PICTURE TO SIGNAL

IAN SINCLAIR TELLS HOW TODAY'S TV CAMERAS WORK

BREAKING UP THE SIGNAL

To transmit picture information in any way other than as light, involves splitting up the picture into pieces. There is always more information than we can cope with.

Even light is itself not a continuous wave but stops and starts irregularly in groups called quanta, but these bits are too small for our purposes; we must break up the picture into a number of bits which we can handle.

The eye does this by having the retinal surface made of sensitive fibres, the 'rods and cones', so that the number of rods and cones determines the number of bits into which the picture is broken. Each sensitive portion has a 'wire' (the nerve) linking it to the brain, so that an image is broken into bits, and the hue and brightness information on each bit is taken to the brain at the same time.

As we said earlier, we cannot have a separate channel for each piece of information, so we cannot transmit all the bits of our picture at the same time. The only way in which we can transmit all the pieces of a picture is by transmitting them in sequence: this is the process of scanning.

If the picture is scanned in sequence at the transmitter and each piece of information transmitted as it is scanned, then a similar sequence at the receiver should reconstruct the picture. This is the heart of the television system, and a television transmitting tube must therefore be able to convert an image into an electrical signal and then to scan it so that only one bit of information at a time is transmitted.

PICTURE TUBE PROBLEMS

The early mechanical systems of television carried out the scanning by means of perforated wheels, but totally electronic television camera tubes have now been with us for as long as high definition television.

High definition means that the picture is broken into a large number of pieces, so that fairly fine detail can be seen, not simply the outline of shapes.

The development of such tubes has occupied men of great inventiveness and intellect and has resulted in the remarkable achievements which we take for granted today, but in every case the operation of these tubes involves a number of compromises in order that the system as a whole can work.

For example, the number of bits into which the picture can be broken, which determines the resolution of the picture, is affected by several parts of the whole television system. The normally favoured scanning system is into lines, and the resolution of the
picture is affected by the number of lines. But we cannot simply decide to have more lines so that we may have more resolution. The scanning spot of the receiver cathode ray tube may be too large to show a number of closely spaced lines as separate parts, as also may the scanning spot of the transmitting tube. In addition, the greater number of lines means taking up more channel width, so that we can have fewer transmissions. Similar conflicting factors affect every part of a television system, so that the camera tube must be tailored to fit the remainder of the system, and be at least of a comparable performance.

On the face of it, we need only two sections in a camera tube, one to convert the image on the face of the tube into an electrical signal, another to scan the electrical signal and "read out" the information on each picture bit to the transmitter. This we find to be insufficient.

The conversion of light image to electrical signal is not an efficient business, and the materials used convert only a small fraction of the energy of the light into electrical energy — with different efficiencies at different colours. What is more, the signal coming out carries no colour information. The result is that using the electrical signal direct from the conversion of light to electrical signal gives us insufficient energy, so that early television worked only under lighting of ferocious power. For this reason, all camera tubes incorporate the idea of storage.

At each part of the picture, light energy is converted into electrical energy, but the electrical energy is stored, and built up until it is scanned and removed. The electrical output is not therefore present during the microsecond or so that the scan spent on that part, but the amount built up between scans, which is a very much longer time, several thousand times longer.

The use of this principle has resulted in the high sensitivity obtainable today; but materials are still not available to enable the scanned signal to carry colour information, though some ingenious recent tubes have achieved colour coding inside the tube. In most cases, the colour information has to be gathered by having separate tubes working on separate colours, and we are fortunate that only three 'primary' colours, red, blue and green, are needed to re-create any colour found in nature, (and a large number which are not). Since the colour information does not involve any difference in the camera tube (except in the case of the specialised tubs mentioned), we need not mention it further, but will look at the types of
PICTURE TO SIGNAL

This model LDH 20 colour TV camera from Philips is equipped with three +25 mm plumbicon tubes — adaptors enable it to be used with vidicons if required.

THE VICON

This tube is considerably smaller than other types, and exists in a number of types according to the material used for light sensitivity. Since the tube works in the same way, we need not bother too much about this at the moment, but the differences are of importance later.

The conversion of light information into electrical signal is performed by a photoconductive material, whose electrical resistance changes with the amount of light falling on it. It is very high (in the region of megohms) in the dark, and low when illuminated, the amount of the resistance depending directly on the light level.

In the "traditional" vidicon, this material is antimony trisulphide, in the more modern type of vidicon, a form of lead oxide is used. This material has a dual role, since it acts also as the means of storing the electrical information. These substances will polarise in an electric field, meaning that if they are sandwiched between conducting plates with a voltage across them their molecules will charge so that one part is negative and the other end positive. This is the familiar action of a capacitor, and normally we use insulators for this job; there is no reason for not using conductors except that they would lose the charge too quickly. If we use poor conductors, then the charge will be lost only slowly, and as it turns out, this is ideal for our purpose.

Imagine then, a glass plate which has been treated with stannous chloride at a high temperature. This treatment makes the glass a conductor along the treated surface, so that it transmits light and can have an electrical contact made to it. On the conducting side there is now deposited a thin film of photoconductor, antimony trisulphide or lead oxide (Fig. 1).

Suppose now that we make contact with the photoconductor, and connect the glass to a positive voltage of about 40 V. With no light falling on the glass, the photoconductor does not conduct, so that the glass side remains at 40V and the other side remains at zero volts. If some light now shines on this sandwich, the photosensitive material conducts, and some of the 40V present on the glass appears on the other side. How much? It depends on the resistance of the connection we have made, which can be kept constant, and on the level of light. What is more, the material will act as a capacitor, and the voltage will build up with time, giving us the storage which we need.

The whole assembly acts as a capacitor shunted by a resistor whose value depends on the light intensity.

SCANNING

Reading the information from this sandwich is done by a scanning electron beam. The beam must have a very small spot size, since this directly affects the resolution. Fortunately this is not difficult to achieve, but some care has to be taken that the beam current is not cut down too much to achieve a small spot, otherwise the signal will be very small, and the signal-to-noise ratio will be poor.

The beam has then to be made to scan so that it arrives at the sandwich structure, the target just described, at right angles to the surface and scan across and down in the familiar TV pattern. This task is made easier by the small size of the vidicon; it is always easier to achieve precise scanning of a small area than of a large area. As it scans the target, hitting the surface of the photosensitive material, it sets up a high-resistance contact connecting the target surface with the electron-gun cathode wherever it touches. As it does so, any voltage built up on the surface of the target at that point is discharged, as would be a capacitor.

This action does not depend on the resistance of the material; it is the action of a capacitor, and it causes an equal amount of current to flow in the contact to the glass (Fig. 2). The amount of current is that needed to charge the target up again to its original level (zero volts on the gun side, 10 V on the glass side), and is proportional to the amount of charge, which in turn is proportional to the amount of light which discharged the target between scans. The current which flows to the glass contact in this way is the signal current, and it can be amplified in the usual way.

THE COMPLETE ACTION

Consider now the complete cycle of action at any piece of the target while a scan is being televised. An image of some scene is focused on to the glass side of the target, so that some areas are brightly lit, and others are darker. Imagine one portion, neither fully lit nor totally dark. On the glass side of the photoconductor, the voltage is maintained at +40 V by the power supply. Assuming that the scan has just passed, the action of the photoconductor is to allow the voltage on the electron gun side to rise towards 40 V.

The rate of rise depends on the capacitance between the two sides of the photoconductor, which is fixed by the type of material and the thickness of the layer, factors which remain constant after manufacture, and also on the resistance, which depends on the light level.

The portion which we are looking at is therefore rising in voltage at a rate
which depends on the light level. If there were no scan, it would continue to rise (though not at a constant rate) until it reached 440 V. Because of the scan, however, it rises only part of the way when the beam scans across, the capacitance is discharged down to zero volts, the current flows in the glass contact, and the action of that part of the target starts again.

The vidicon relies so heavily on the properties of the material and for its target that it is not surprising that the choice of material is very critical to its operation. When antimony trisulphide is used, the main problem is "vidicon lag", which is a problem of storage, causing a changing picture to appear smeared, as if the previous image were not wiped clear before the next one appeared. This is, in fact, exactly what is happening, and it is most troublesome when the vidicon is operated at low light levels with moving subjects.

This problem became acute with the advent of colour television. The cameras used had three vidicons, one for each colour, and each individual vidicon thus dealt with less than at the total light.

As a result, development of lead oxide surfaces was speeded-up, and this work, due to Philips, has resulted in much improved vidicon behaviour. Nowadays the lead oxide type of vidicon is used almost in all colour cameras.

Work on vidicon target materials is not complete, and the most promising recent reports have been on silicon photodiode arrays. A sheet of dots of silicon, each a miniature photodiode, forms the target for this type of vidicon. The construction follows the familiar methods used for integrated circuit construction, and the advantages spring from the greater control over the process, and from the fact that each miniature diode is isolated from its neighbours rather than being part of a sheet of material. So far, the difficulty has been that of creating a sufficiently large target surface free from defects, since one faulty diode can be detected as a spot in the final picture.

IMAGE ORTHICONS

Despite the large number of lead oxide vidicons in use in colour cameras, the image orthicon is still the most used camera tube world-wide.

The principles of the image orthicon are totally different from those of the vidicon, it is a tube which has "grown up" with television itself, as it can trace its ancestry back to the earliest types of camera tube.

The image orthicon can be divided, for the sake of understanding its action, into three distinct parts. These are the image section, (Fig. 5), where the light image is turned into an electrical signal, the target section (Fig. 6), where the electrical signal is stored in the form of charge, and the scanning section, where the charge signal is scanned and the information extracted from it and amplified within the tube.

THE IMAGE SECTION

This part of the tube consists of a thin film of photo-emissive material deposited on a glass plate. The film is made from a complex mixture of materials, the metal caesium and the semiconductor antimony being the most prominent. When light shines on

Fig. 1. Magnified cross-section of Vidicon target.

Fig. 2. Action of target. The equivalent circuit is of a set of capacitors with variable resistors (controlled by light intensity) in parallel. The beam scanning action is to earth one side of each capacitor in turn and then disconnect. As each capacitor is scanned, its beam-side plate is clamped to zero volts. The voltage will rise as the capacitor discharges through the resistor in parallel. The amount of the rise achieved in one scan time depends on the value of the resistor. (a) Typical waveform for light and dark areas. (b) Current flowing in common circuit as capacitors are discharged. (c) Brightness pattern on the tube face.

Fig. 3. Complete vidicon assembly. The target mesh exists to act as an anode for electrons which do not land on the target.

Fig. 4. Scanning/Deflection coil cross-section. The coil assembly fits over most of the length of the vidicon.
such a material (which must be formed and kept in a vacuum), electrons are released, and the current which can be drawn from the surface depends on the intensity of the light. To draw this current, an accelerating voltage must be used, and this must be in the region of 1000 V. By using electrodes of carefully designed shape, the electrons leaving the photocathode, (as the film of photoemissive material is known) can be made to keep the relative positions which they had as they left. In this way, an "image" of electrons exists at any plane parallel to the photocathode, and electrons landing on any surface on such a plane should recreate an image in the form of electric charge, since each electron is a unit of electric charge.

THE TARGET SECTION

The target of the image orthicon is a thin film of glass which is slightly conducting. This is no ordinary glass, but a material which is able to conduct by flow of electrons through it, and it is made as a very thin film, less than a thousandth of an inch thick.

Two properties of this material are used. One is the now-familiar idea of charge storage, using the glass as one plate of a capacitor to store charge, the other plate being the target mesh. The second property is "secondary emission", a property of all substances but little known outside this field of electronics.

When a surface is hit by electrons, the way in which it is affected depends on the speed of the electrons. Very slow electrons, accelerated by only a few volts, simply remain on the surface or bounce off. The electrons which remain cause the surface to be charged negatively, unless there is a conducting path to discharge it. When faster electrons are used, accelerated perhaps by several hundred volts, the energy of the electrons can cause the target material to release some of its own electrons. For each electron that surfaces, there may be more than one released, so that the surface, if it is an insulator, becomes positively charged.

The voltage which exists between the photocathode and the target is enough to ensure that this condition exists, so that the electrons striking the target from the photocathode leave more than their fair share of charge behind them. If the electrons from the photocathode have retained their relative positions so as to form an image, they will leave an image of charged areas on the target after the secondary emission process has taken place. The formation of a true charge image can take place only if no electrons return to the target; as the target is positively charged by the secondary emission process, this is likely to happen unless there is a more positive surface to attract the electrons. This, however, must be able to distinguish the secondary emitted electrons which must be trapped from the electrons from the photocathode, which must be allowed to pass through with as little impediment as possible. This rather difficult task is performed by a mesh of very fine texture (750 lines per inch in each direction).
which is spaced close to the target on the photocathode side and which also acts as a capacitor plate. The rapidly moving electrons from the photocathode pass through the holes in the mesh, though a rather large fraction (about 40 per cent) is intercepted. The mesh is held at about 2 V positive, and the slow-moving secondary electrons are readily trapped.

This established the charge image on the target, it only remains to scan it and take the signal out.

THE SCANNING SECTION

One of the peculiar advantages of the image orthicon, over earlier tubes, is that the target is scanned from the opposite side from the photocathode, so that there is some degree of isolation between the photocathode image field and the scanning fields. This is possible because the target is made of a glass which conducts slightly through the thickness of the film, but very little across the surface. Because of this, the positive charge which appears on the photocathode side appears also on the scanning side of the target. The resistance of the glass is so high though that we cannot make use of a beam current to the target to form a signal.

Instead, the beam which scans across the target from the electron gun is made to strike the target at such a low speed that the main part of the beam returns down the tube to the gun. How much of the beam will return depends on the conditions at the target. If the beam is scanning over a positive portion of the target, the electrons of the beam will land on the positive target until the surface is discharged. If the beam is scanning over a negative portion of the target, most of the beam will return, as there is much less to charge to replace. The return beam therefore carries the charge information, being dense where the beam has scanned a more negative area (low light level at the photocathode) and thin where the beam has scanned a more positive area (high light level at the photocathode).

Unfortunately, because the spot size of the beam must be small, the beam current is very low, and amplification of such a small signal would be difficult and would give signals of very poor signal-to-noise level.

The solution is to amplify the beam current variations noiselessly within the tube itself.

On the way back to the gun, the return beam strikes a surface called the first dynode; a surface of metal at a high voltage (about 500 V) and coated with a material which is a good secondary emitter. Four or five secondary electrons are released, for each electron of the return beam landing on the first dynode. This represents an amplification of the beam signal four or five times.

This does not finish the process, though, for the secondary electrons can be accelerated in turn to a second dynode so that each one releases another four or five, and the process may be continued to five dynodes before the final anode at which the total current of the amplified beam signal is available. Because no other electrons are involved, this process of multiplication, as it is called, adds practically no noise to the signal, and enables a usable signal output to be obtained from a beam signal too small to be used at the light levels now common. Each dynode must, of course, be run at a voltage rather higher (several hundred volts) than the previous one to ensure that the electrons released from one dynode are attracted to the next.

OVERALL ACTION

The overall action is as follows: assume an image of half light, half dark across one line. The image on the photocathode causes electrons to be emitted — in large numbers on the bright side, very few on the dark side. These electrons are accelerated, without changing positions, to the target. The electrons from the bright side of the photocathode cause the target to have a voltage of several volts positive (relative to the gun cathode) and the electrons, few in number, from the dark side leave the target at its natural voltage close to the voltage of the gun cathode. Because of the conductivity of the cathode, the voltages appear also on the other side of the target.

On this other side, the electron gun scans with a fine-spot beam across the target. As the beam scans across the half which is positive, (corresponding to the bright side of the photocathode), the beam lands, and very little of the beam returns. On the other half of the scan, where the target is at low voltage (corresponding to the dark portion of the photocathode), the beam is almost totally reflected. The return beam, whose current depends on the state of the target, has its fluctuations amplified by the dynodes. Finally the signal emerges as a current signal at the final anode. Note that the action of scanning has left the target on the scanning side at a uniform voltage, and the time between the scans is available for charging up the target again, so giving the scanning action no delay.

PROBLEMS AND DEVELOPMENTS

The target action has proved to be the greatest headache in image orthicon design and used for the conductivity of the target is most critical.

If the conductivity is low, then the scanning beam will be unable to wipe off the signal from the photocathode side, and the target will be 'sticky', meaning that a scene will remain, giving an output signal after the tube has been pointed at another scene or capped up, this, of course, makes the tube useless for scenes having momentary light changes.

If the conductivity is too high, the charges may move sideways on the target and so cancel each other out, giving a low signal output.

Before the invention of the electronically conducting target, due mainly to Peter Banks of E.E.V., problems of this sort were endemic, and it was accepted that the life of an image orthicon would be a short one due to target deterioration.

The new types of target have changed this dramatically, and excellent working is achieved provided that the target is run at the correct temperature — since its conductivity varies with temperature. Cameras for image orthicons have always incorporated thermostatically controlled heaters and blowers to keep the target of the tube at a constant temperature.

The main development of recent years concerns the use made of the beam. It is rather illogical that the return beam should be most dense in the part of the target corresponding to low light, for a large return beam density means greater noise in the signal just where the signal is small and can least afford greater noise. The image iscon is a development of the image orthicon, which makes use of the different type of reflections of electrons at the target to separate the signal-carrying electrons from the remainder which make up the steady beam current. This gives an enormous increase in signal-to-noise ratio, enough to enable the iscon to be used in applications where the light level is too low for normal vision. Such tubes are even more of a precision job than the image orthicon, and so are not in quantity production, but have undoubted applications.

SUMMING UP

The camera tubes used for television purposes are remarkable achievements in electron beam technology, and at the moment there seems nothing likely to replace them from the "solid-state" stable. The scanning operation is the most difficult to replace, an operation which is comparatively simple to carry out on an electron beam presents most formidable difficulties in a solid array; the problem is not impossible, and has been solved after a fashion for low definition pictures, but its extension to the high-definition picture to which we are accustomed is fraught with difficulty. It seems likely that we shall be living with the vidicon and its larger cousin, the image orthicon, for a long time to come.
We thought the fantastic offer with 7 segment LED displays would be popular. But the response was shattering.

Our apologies to those of you who didn’t get the devices as quickly as you, or we, would have liked - but we were slightly overwhelmed. Anyway, we have still got devices available, so if you want some DL704, 5 for £3.25 inc. VAT & pp please send the coupon from September ETT. Otherwise, they will cost you £5.00 for five. After all, special offers have to be special - nonetheless, this is still terrific value.

Don’t forget we do things like TTL, PLL, TOKO coils and filters, lots of linear. And don’t forget we know more about using our devices than any other enthusiast orientated supplier. Try us, and see.

First step is to get our catalogue — 25p, refundable with £5 worth of goods. Here’s a very brief selection:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>NE560/1/28</td>
<td>ICL8038CC</td>
<td>£3.19</td>
</tr>
<tr>
<td>NE565A</td>
<td>CA3089E</td>
<td>£2.75</td>
</tr>
<tr>
<td>NE566V</td>
<td>CA3122E</td>
<td>£2.65</td>
</tr>
<tr>
<td>NE567V</td>
<td>LM380</td>
<td>£2.75</td>
</tr>
<tr>
<td>NE567V</td>
<td>LM390</td>
<td>£1.00</td>
</tr>
<tr>
<td>NE567A</td>
<td>CFT1310P</td>
<td>£2.60</td>
</tr>
<tr>
<td>NE567B</td>
<td>TIP3055/2955</td>
<td>£1.90</td>
</tr>
<tr>
<td>NE567V</td>
<td>TIP3055/2955</td>
<td>£1.85</td>
</tr>
<tr>
<td>NE567V</td>
<td>LF3130</td>
<td>£2.55</td>
</tr>
<tr>
<td>NE567V</td>
<td>IC1310P</td>
<td>£2.50</td>
</tr>
<tr>
<td>NE567V</td>
<td>IC1310P</td>
<td>£1.90</td>
</tr>
<tr>
<td>NE567V</td>
<td>IC1310P</td>
<td>£1.40</td>
</tr>
<tr>
<td>NE567V</td>
<td>IC1310P</td>
<td>£1.00</td>
</tr>
<tr>
<td>NE567V</td>
<td>IC1310P</td>
<td>£0.50</td>
</tr>
</tbody>
</table>

VAT EXTRA: 15p POST AND PACKING
ACCESS WELCOME

All goods are brand new marked and tested, and available in quantity. Manufacturer enquiries welcome.

37 HIGH STREET, BRENTHWOOD, ESSEX CM14 4RH
Tel: (0277) 216029 Telex: 995194

SAE All enquiries please

BYWOOD INTERNATIONAL

COMpletely Electronic
No Moving Parts

CHANTICLEER

* READ: TIME & ALARM
* ELECTRONIC ‘BEEP’ ALARM TONE
* TEN MINUTE ‘SNOOZE’ FEATURE
* BRIGHT, CLEAR DISPLAY
* NO MOVING PARTS
* EXECUTIVE STYLING
* SOLID STATE RELIABILITY

Digital clock

The heart of the CHANTICLEER is a tiny electronic package containing thousands of transistors which divide the 50 cycles/second mains frequency into precise time units. The clock “movement” in fact has no moving parts to wear out or tick or tock or hum or click.

RECOMMENDED
PRICE £19.95 + VAT.

Alarm

Has a.m. or p.m. setting with alarm on/off indicator. A gentle electronic ‘beep’ tone with special snooze feature that resets the alarm for ten-minute intervals. The snooze is activated by simply tilting the clock forward and then releasing. Upon cancelling, the alarm can be immediately reset for the same time next day.

BYWOOD ELECTRONICS,
181 Ebberns Road,
Hemel Hempstead,
Herts. HP3 9RD.
Tel: 0442-62757

ELECTRONICS TODAY INTERNATIONAL—DECEMBER 1974
Extended circuitry allows timing check over full speed range.

Our September issue described a project for a single timing light with a xenon flash lamp. Now we describe a more advanced instrument which will facilitate updating of the earlier design. This instrument incorporates a calibrated delay which gives a meter indication of the exact advance of the ignition in degrees - at any engine speed. It has a built-in tachometer so a serious enthusiast could check the complete distributor advance curve.

The use of such an instrument will allow checks on the correct operation of the distributor particularly with respect to mechanical and vacuum advance with increasing RPM.

CONSTRUCTION

The layout and construction of the timing light will vary depending on the housing.

We purchased a cheap torch which takes four HP2 batteries.

Our layout and method of construction can be seen from the illustration but this can readily be varied to suit the housing used.

Most of the electronic components are mounted on a printed circuit board which can be assembled with the aid of the circuit diagram and the component overlay, Fig. 2. Check the polarity of diodes, capacitors and transistors etc before soldering. All external wiring to the PC board is numbered and interconnections from the PC board to external components should be made with the aid of the circuit diagram, note that C4 is mounted on the back of the meter and C12 on the rear of the reflector.

The inverter power transistors should be mounted on, but insulated from, a heatsink made from aluminium sheet of at least 40 square centimetres area.

If the unit will not oscillate, (you will hear a 2 kHz whistle when it is oscillating) try reversing the feedback winding.

The secondary voltage is around 350 volts and care should therefore be taken to insert insulation as specified in Table 1, between the primary and secondary windings in the transformer, and to keep the windings separate on the matrix board.

The reflector of the torch may be modified to house the flash lamp in the following manner.

Remove the existing socket, using a pair of pliers or cutters, and file the

WARNING

On some cars the fan blades rotate close to or at a multiple of the crankshaft speed. When strobed by the timing light, the fan may appear to be stationary or rotating slowly.

This is common to all strobe light timers and failure to remember this can result in serious personal injury, or a wrecked timing light.

ALWAYS - keep well clear of the fan, or remove the fan belt whilst timing the engine.
opening until it is large enough to accept the flash lamp with about one millimetre clearance all round. Insert the lamp from the front and use modelling clay at the rear of the reflector to hold the lamp and seal the opening. Then pour quick-dry epoxy cement into the reflector until there is sufficient around the base of the tube to secure it in place. Be careful not to get epoxy elsewhere on the reflector. When dry, remove the clay and use more epoxy to fill any recesses in the rear.

If and when the tube is to be replaced a hot soldering iron may be used to destroy the epoxy thus permitting removal.

The discharge capacitor C12 should be mounted on the rear of the flash-tube/reflectors assembly as shown in the photograph.

The pick-up coil is wound on a toroidal ferrite core, as shown in the photograph, using screened audio cable as follows. Remove about 0.8 metre of the inner cable from its shield and twist 20 turns of this around the ferrite core. Then solder the end of the inner conductor to the screen thus creating a complete loop.

The coil should also be shielded to prevent the magnetic field around nearby spark-plugs (other than number one plug) from triggering the timing light. To do this we cut strips of aluminium foil about 10mm wide and sandwiched them between two layers of 0.1mm wide cellulose-tape to produce a continuous strip of insulated foil 1 metre long. A length of wire should be connected to one end so that the strip may be connected to the screen of the coaxial cable. The foil is wrapped around the coil, in a similar manner to the coax, except that the ends of the foil must not touch. Should the ends touch, a shorted turn would be created which would prevent the transducer from operating at all. The coil should be completely covered and will appear as shown in the photograph.

CALIBRATION

Two different methods may be used to calibrate the timing light. In method A, the preferred method, you will need an oscilloscope with a triggered and calibrated time base, and an accurate tacho. In method B, you will have to refer to the local garage to allow you to calibrate your unit against their accurate (?) unit.

Method A.
1. Connect the unit to the engine with the transducer over number 1 spark lead.
2. Switch the timing light to “tacho” mode.
3. Start the engine and adjust the sensitivity control to the minimum setting that allows the meter to move smoothly as engine revs are increased.
4. With the CRO monitor between the common line and the collector of O4, the voltage should swing from zero to +9 volts and back to zero each time the number one plug fires.
5. Adjust RV2 such that the pulse width at O4 collector is 1.67 milliseconds.
6. Remove the CRO leads and set the engine revs to 3000 with the aid of the accurate tachometer.
7. Adjust RV4 such that the meter reads 3000 RPM. This completes the calibration.

Method B.
1. Connect both your timing unit and the garage unit to the car.
2. Switch the unit to “timing” mode.
3. Start the engine and set the RPM to 3000.
4. Now using your own unit adjust the sensitivity control as in step 3 method A.
5. Adjust RV1 until the timing marks coincide.
6. Adjust RV4 such that the same reading is obtained on meter M2 as on the garage unit.
7. Switch to tacho and adjust RV2 to read 3000 RPM.

Note that the engine must be held at constant speed throughout this process.

USING THE UNIT

The workshop manual for most cars contains details of the timing changes with respect to engine RPM and vacuum. If an engine is to perform at maximum efficiency these characteristics need to be checked and corrective measures taken if out of tolerance.

To check mechanical advance:
1. Remove vacuum line to distributor.
2. Fit transducer over number 1 spark-plug lead.
3. Switch timing light to “TACHO”.
4. Start engine and switch on timing light.
5. Adjust sensitivity such that meter indicates correct RPM over full range without undue jitter.
6. Set the idle speed as specified in manual.
7. Switch to TIMING and set “timing adjust” potentiometer until the flywheel mark corresponds with TDC marker on the crankcase. (If some other mark than TDC is used, simply add the number of degrees the mark is BTDC (before top dead centre) onto the meter reading. If this is less than 2° advance (minimum obtainable with delay) switch SW3 may be used to remove all delay.
8. Switch back to tacho and increase speed to next calibration point as detailed in the manual.
9. Whilst holding engine revs steady at this setting, switch back to “TIMING” and set “TIMING ADJUST” until the marks again coincide. The meter now indicates the number of degrees of advance. Note that engine revs must not change otherwise the reading will be in error.
10. Repeat 8 and 9 for all other specified calibration points.

To check vacuum advance:
The only points on vacuum advance that need checking are the maximum advance with vacuum and that a vacuum is held, i.e. no leaks in the distributor.
1. With the motor idling check the timing with the vacuum line disconnected.
2. Draw a vacuum in excess of the normal vacuum (sucking the line by mouth will be sufficiently effective) and check the timing advance against that specified in the manual.
3. Hold the vacuum in the line and check that the timing does not shift (due to leak in distributor vacuum mechanism).

If a more accurate check is required the above checks can be done in conjunction with a vacuum gauge.

(Not - refer to September 1974 issue re capacitor life)

<table>
<thead>
<tr>
<th>SPECIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy per flash</td>
</tr>
<tr>
<td>Maximum flash rate</td>
</tr>
<tr>
<td>Trigger method</td>
</tr>
<tr>
<td>Input voltage</td>
</tr>
<tr>
<td>Timing meter range</td>
</tr>
<tr>
<td>Minimum delay</td>
</tr>
<tr>
<td>Maximum delay</td>
</tr>
<tr>
<td>50° maximum</td>
</tr>
<tr>
<td>Tacho meter range</td>
</tr>
</tbody>
</table>
Fig. 1. Circuit diagram of the Tacho Timing Light.

This picture shows how the transducer is wound with the inner core of screened cable. Aluminium foil shielding is wound over the completed coil as detailed in the text.

Parts List

Timing Light

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R14</td>
<td>Resistor 335W 5%</td>
</tr>
<tr>
<td>R4</td>
<td>120kW</td>
</tr>
<tr>
<td>R7</td>
<td>12kW</td>
</tr>
<tr>
<td>R3</td>
<td>470kW</td>
</tr>
<tr>
<td>R12</td>
<td>82kW</td>
</tr>
<tr>
<td>R13,15</td>
<td>2k5W</td>
</tr>
<tr>
<td>R8</td>
<td>8k5W</td>
</tr>
<tr>
<td>R12,11</td>
<td>470kW</td>
</tr>
<tr>
<td>R10</td>
<td>82kW</td>
</tr>
<tr>
<td>R7</td>
<td>12kW</td>
</tr>
<tr>
<td>R6,9</td>
<td>15kW</td>
</tr>
<tr>
<td>R16</td>
<td>1M8W</td>
</tr>
<tr>
<td>R18</td>
<td>82kW</td>
</tr>
<tr>
<td>RV1</td>
<td>Potentiometer 100k 10% rotary</td>
</tr>
<tr>
<td>RV2,4</td>
<td>10k trim type</td>
</tr>
<tr>
<td>RV3</td>
<td>20k lin rotary</td>
</tr>
<tr>
<td>C5,3</td>
<td>Capacitor 220pF ceramic</td>
</tr>
<tr>
<td>C10</td>
<td>0.022µF 400V</td>
</tr>
<tr>
<td>C11</td>
<td>0.002µF 400V</td>
</tr>
<tr>
<td>C8,9</td>
<td>0.01µF poly</td>
</tr>
<tr>
<td>C1</td>
<td>0.022µF poly</td>
</tr>
<tr>
<td>C12</td>
<td>3.3µF 500V electrolytic</td>
</tr>
<tr>
<td>G6,7</td>
<td>4.7µF 500V electrolytic</td>
</tr>
<tr>
<td>C5</td>
<td>25µF 25V</td>
</tr>
<tr>
<td>Q1</td>
<td>Transistor 2N2905</td>
</tr>
<tr>
<td>Q2,3</td>
<td>BC109</td>
</tr>
<tr>
<td>Q4</td>
<td>BC178</td>
</tr>
<tr>
<td>Q5,6</td>
<td>2N2055</td>
</tr>
<tr>
<td>SCR1</td>
<td>2N2640</td>
</tr>
<tr>
<td>Q2,2</td>
<td>Diode IN914 or equivalent</td>
</tr>
<tr>
<td>D2,3</td>
<td>1N4001</td>
</tr>
<tr>
<td>D6,7</td>
<td>1N4004</td>
</tr>
<tr>
<td>ZD1</td>
<td>Zener diode BZX79C9V1 (9.1V 0.1W)</td>
</tr>
<tr>
<td>T1</td>
<td>Transformer see text</td>
</tr>
<tr>
<td>T2</td>
<td>Pulse Transformer</td>
</tr>
<tr>
<td>T3</td>
<td>Pickup coil</td>
</tr>
<tr>
<td>LP1</td>
<td>Flash tube</td>
</tr>
</tbody>
</table>

PC Board

ETI-311

M1 meter 0.500µA FSD

SW1 Switch: 2 pole 2 position

SW2,3 Switch: on/off

(There were already incorporated in the torch housing used in our prototype)

reflector, heatsink, housing for electronics.
HOW IT WORKS ETI 311

The flash tube used requires a supply of 300 to 400 volts. This is obtained by stepping up the vehicle 12 volt supply by means of an inverter.

Transformer T1, together with transistors Q5 and Q6 form a self oscillatory inverter. The frequency of operation, about 2 kHz on a 12 volt supply, is primarily determined by the core materials, the number of primary turns and the supply voltage. Protection against reversed-polarity supply leads is provided by diode D3.

The output from the secondary of transformer T1 is voltage doubled by D6, D7, C6 and C7 to provide about 400 volts dc which is fed to the flash tube via R17. Capacitor C12, in parallel with the flash tube, charges to this voltage and thus stores the energy needed for the flash.

Capacitor C11 is also charged up via R16 and the energy stored in this capacitor is used to trigger the flash as follows. When the SCR is triggered by a pulse on its gate it conducts and rapidly discharges C14 through the primary of pulse transformer T2. The pulse of current through the primary of T2 induces a 4000 volt pulse in the secondary winding which fires the flash tube.

When C11 is fully discharged the current through R16 is not sufficient to hold the SCR on and it turns off. Thus the flash is fired at a time determined by timing of the trigger pulse to the SCR.

The pulse from number one spark-plug lead is picked up by transducer T3 and used to trigger a monostable consisting of Q1, 2 and 3. Each time a spark-plug pulse occurs Q3 turns on and Q2 turns off, and remains off for a predetermined time before resetting. Whilst Q3 is off C1 charges via RV1/R2 (or RV2/R1) and when the voltage across it reaches about 6 volts the unijunction transistor Q1 fires, discharging C1, producing a pulse which resets the monostable. By varying the setting of RV1 the time duration of the monostable pulse can be altered.

Transistor Q4 simply inverts the output pulse train from Q3 and drives the meter M1. When Q3 is on Q4 is on and its collector a at +9 volts, and when Q3 is off Q4 is off and its collector at zero volts. Thus capacitor C4 will charge to a voltage which is proportional to the average of the on/off ratio, and this voltage is read by the meter. Zero diode ZD1 stabilizes the supply to Q4 at 9.1 volts.

The output of Q3 (Q4 in the no delay mode) is used to trigger the SCR. Since the SCR requires a positive pulse to trigger it, it will fire when Q3 turns off, that is, at the end of the delay period produced by the monostable. Since the output of Q4 is “inverted”, when this output is selected the SCR fires the instant Q3 turns on, that is without any delay.

In the timing mode the delay period is adjustable by means of RV1 so that the timing mark on the flywheel is aligned with that on the block. The meter M1 will then read the number of degrees of spark advance. In the tacho mode the inverter is disconnected to disable the strobe and a preset delay of 1.66 msec is selected. The meter now reads RPM with full scale of 5000 RPM.

The picture shows how the transducer is wound within the core of a shielded cable. Aluminium foil shielding is wound over the completed coil as detailed in the text.

Fig. 2. Component overlay for the Tacho Timing Light (this drawing has been placed sideways on the page to simplify checking against main circuit drawing).

GETTING HOLD OF THE COMPONENTS

THE TRANSFORMER
This is available for £2.37 including VAT and postage from RCS, MCQ or Henry's. The RCS transformer will not fit the PCB mentioned below. Winding details were given in our September issue.

THE XENON FLASH TUBE AND TRIGGER TRANSFORMER
These can be bought from Henry's disco store or MCQ Entertainments for a special ETI readers' reduced price of £6.81 including VAT and postage. The ZFT-82 tube is slightly different from the one in our prototype, but the same mounting method will work.

THE PICK-UP COIL
This is made from a ferrite ring with an inside diameter of 1".

The Mullard FX158B will do. Further details are given in the text.

THE PCB
PCBs are available for this project or the simpler version for £1.75 plus 10p P & P, from MCQ. However these are suitable only for the transformers from MCQ or Henry's.

RCS Products Ltd, 31 Oliver Road, London E17.
Henry's Radio (Disco), 303 Edgeware Road, London W2.
MCQ Entertainments, 9 Greystock House, Fromeham Street, London SE15.

Fig. 3. Printed circuit board dimensions 74mm x 82mm (full size).
Britain's most original calculator
now in kit form
The Sinclair Scientific is an altogether
remarkable calculator.
It offers logs, trig, and true scientific
notation over a 200-decade range --
features normally found only on
calculators costing around £100 or
more.
Yet even ready-built, the Sinclair
Scientific costs as mere £32.35
(including VAT).
And as a kit it costs under £20!

Forget slide rules and four-figure
tables!
With the functions available on the
Scientific keyboard, you can handle
directly
sin and arcsin,
cos and arccos,
tan and arctan,
automatic squaring and
doubling,
log_{10}, antilog_{10}, giving quick
access to x^n (including square
and other roots).

plus, of course, addition,
substraction, multiplication,
division, and any calculations
based on them.
In fact, virtually all complex scientific or
mathematical calculations can be
handled with ease.

So is the Scientific difficult to
assemble?
No. Powerful though it is, the
Sinclair Scientific is a model of
tidy engineering.
All parts are supplied -- all you
need provide is a soldering
iron and a pair of cutters.
Complete step-by-step
instructions are provided,
and our Service
Department will back
you throughout if
you've any queries or
problems.

Of course, we'll
happily supply the
Scientific or the
Cambridge
already built, if
you prefer --
they're still
exceptional
value.

Components for Scientific kit
(illustrated)
1. Coil
2. LSI chip
3. Interface chips
4. Case mouldings, with buttons,
windows and light-up display in
position
5. Printed circuit board
6. Keyboard panel
7. Electronic components pack
(diodres, resistors, capacitors, etc.)
8. Battery assembly and on/off switch
9. Soft carrying wallet
10. Comprehensive instructions for use
Assembly time is about 3 hours.

Features of the Sinclair Scientific
- 12 functions on simple keyboard
Basic logs and trig functions (and their
inverses), all from a keyboard as simple as
a normal arithmetic calculator's. 'Upper and
lower case' operation means basic
arithmetic keys each have two extra
functions.

- Scientific notation
Display shows 5-digit mantissa, 2-digit
exponent, both signable

- 200-decade range
10^-99 to 10^99

- Reverse Polish logic
Post-fixed operators allow chain
calculations of unlimited length --
eliminate need for an = button

- 25-hour battery life
4 AAA manganese alkaline
batteries (e.g. MN 2400) give
25 hours continuous use.
Complete independence from
external power.

- Genuinely pocketable
4 1/3" x 2" x 11/16". Weight 4 oz.
Attractively styled in grey, blue and
white.
At its new low price, the original Sinclair Cambridge kit remains unbeatable value.

In less than a year, the Cambridge has become Britain’s most popular pocket calculator.

It’s not surprising. Check the features below – then ask yourself what other pocket calculator offers such a powerful package at such a reasonable price.

Components for Cambridge kit
1. Coil
2. LSI chip
3. Interface chip
4. Thick film resistor pack
5. Case mouldings, with buttons, window and light-up display in position
6. Printed circuit board
7. Keyboard panel
8. Electronic components pack (diodes, resistors, capacitors, transistor)
9. Battery clips and on/off switch
10. Soft wallet

Assembly time is about 3 hours.

Features of the Sinclair Cambridge
- Uniquely handy package. 4 1/3" x 2" x 11/16", weight 3 1/2 oz.
- Standard keyboard. All you need for complex calculations.
- Clear last entry feature.
- Fully floating decimal point.
- Algebraic logic.
- Four operators (+, -, x, ÷), with constant on all four.
- Powerful constant with separate ‘K’ button.
- Constant and algebraic logic combine to act as a limited memory, allowing complex calculations on a calculator costing less than £15.
- Calculates to 8 significant digits
- Clear, bright 8-digit display
- Operates for weeks on four AAA batteries

Take advantage of this money-back, no-risk offer today
The Sinclair Cambridge and Scientific kits are fully guaranteed. Return either kit within 10 days, and we'll refund your money without question.

All parts are tested and checked before despatch – and we guarantee any correctly assembled calculator for one year. (This guarantee also applies to calculators supplied in built form.)

Simply fill in the preferential order form below and slip it in the post today.

Scientific
Price in kit form £19.95 inc. VAT.
Price built £32.35 inc. VAT.

Cambridge
Price in kit form £14.95 inc. VAT.
Price built £21.55 inc. VAT.

To: Sinclair Radionics Ltd.,
FREEPOST, St Ives,
Huntingdon, Cambs. PE17 4BR

Please send me
☑ Sinclair Scientific kit at £19.95
☑ Sinclair Scientific built at £32.35
☑ Sinclair Cambridge kit at £14.95
☑ Sinclair Cambridge built at £21.55

All prices include 8% VAT.

* I enclose a cheque for £
* Please debit my *Barclaycard/Access account. Account number

Signed

Name

Address

Please print: FREEPOST – no stamp needed

Sinclair
Sinclair Radionics Ltd.,
FREEPOST, St Ives,
Huntingdon, Cambs. PE17 4BR.

ELECTRONICS TODAY INTERNATIONAL—DECEMBER 1974
SOME road accidents may well be inevitable, believe many road research workers.

A driver has to make too many virtually instantaneous decisions as his vehicle progresses through a seething mass of hopefully well-controlled movement. Too often speed and the number of events are beyond his capability to react correctly and in time — and accidents occur.

Hence, any economic method of improving the available data will help the driver improve quality of decisions — and this will improve safety.

But the driver cannot take in up-dated data at a rate faster and more distant than his senses can perceive. Better communications are required.

Radio is an obvious way to improve communication and the BBC are working on a plan that will provide motoring information at all times, rather than relying on disk jockeys who give it at present.

The proposal is that network groups of single frequency stations be created at 50 km separations working on an exclusive medium-wave frequency to ensure easiest reception.

Time-multiplexing the stations in a group will put sixteen of them on the air together at any one time, sending a thirty second message. This way a vehicle will receive data at eight minute intervals and the problems of interference will be largely avoided.

An override control will enable a central transmitter to speed up the interval time to cope with more urgent messages. These groups would be repeated with minimum distances of 200 km between identical transmitters to reduce mutual interference.

An international motor service that would extend the concept beyond Britain into the all European community. As the reception is at a single frequency the receivers would be inexpensive.

There is also talk of an international motor service that would extend the concept beyond Britain into the all European community. As the reception is at a single frequency the receivers would be inexpensive.

The use to which the system can be put is widespread. A traveller in each group area can be informed of bottle-nicks to avoid and of approach into fog or rain; police messages can be sent more readily and so forth.

The system provides communication in the macro road system but would
be unable to provide for the very immediate needs of the driver. This would be catered for by other systems now in development. Firstly let us look at "AWARE".

ADVANCE WARNING EQUIPMENT

The design aim is to provide the driver with a number of valuable tit-bits of information as well as danger warnings. On the dash panel will be a display — shown in Fig. 2 — that normally appears opaque.

The rear mounted signs will illuminate selectively to compose a message. For example, to warn of a hazard or delay ahead it would show for about one minute, "CONGESTION 1 MILE 20 MINS DELAY". It can also be used to suggest alternative routing and the nature of the road hazard. (The displays exhibited have now passed through four different physical forms. The next stage is said to be rear projection to bring the message into a single line but obviously an LSI light emitting diode matrix will come with time to reduce the area needed and the cost of the display.)

The next requirement is that the display be set up by some means that is external to the vehicle as it travels. Inductive loop and ferrite-cored coil sensing is proposed in the manner shown in Fig. 3. Alongside the appropriately serviced road is a system to excite the message loop (after the unit in the car is triggered on). At present, 108 bits of data can be sent. Forty four control the message, thirty two carry the variables of the message and five are used for checking. A trigger loop is included to provide the necessary directional data ensuring that the driver gets data for what lies ahead, not behind.

This is an EEC development, and is intended for use on the European road network in general. Allied to the same concept is RITA (road information transmitted aurally) which gives the driver similar information via the ear rather than the eye.

There are many reasons for pursuing this alternative and it is yet unclear which is the best as both have their respective pros and cons.

Language variation across Europe is an obvious problem for aural systems whereas visual distraction and changing illumination levels go against visual counterparts.

Three alternatives are under study for RITA — inductive loops, point-source radio beams and radiating coaxial cable. The alternatives are shown in Fig. 4.

It remains to be seen which system of communication will be adapted but certainly any is better than the present virtually non-existent services.

The potential of this work is great for it paves the way to automatic vehicle guidance and navigation.

LIGHTING

Lighting is one area where electronic methods are increasingly being considered.

Headlights need to be used as effectively as possible with as little glare to oncoming drivers as is
ROAD SAFETY

practicable. Designers need to ensure that the vehicle warning lights are efficient in all conditions that may exist. Also there are the probable improvements that can be made to street lighting.

Reducing headlight glare.

There exist a number of possible solutions: one design aim is to ensure that the headlights point correctly regardless of vehicle attitude.

Research has shown that modern vehicles tilt significantly with varying load application — 30% of private vehicles tilt from the design position by 0.5 degrees and 7 percent by up to 1.0 degrees.

These changes cause a normally well-adjusted beam to generate severe glare.

Several solutions have been tested by the TRRL and they each use some form of automatic arrangement that swivels the lamp in its bearings.

The Cibie method uses hydraulic actuation, the Martin-Vaughan prototypes are entirely mechanical in principle. Road tests have shown that one feels somewhat divorced from the self-leveling lights at first, a sensation that eventually becomes acceptable.

Having provided means to keep the lights pointing correctly, it is then necessary to make actual measurements of beam distribution of the moving vehicle to decide how to reduce glare.

Figure 5 shows the TRRL set up used to monitor an on-coming car's headlights.

The recorders are triggered on by infra-red beams that are intercepted by the car. Two telephotometers (narrow viewing-angle light meters) set up (60m ahead) record the illumination level seen by the on-coming driver.

This equipment has been used to compare the British cum/American Standard with its Continental counterpart for each differs somewhat in respect to the beam distribution in space.

Research has shown that dipped lights are often annoying to other drivers in well lighted streets and that the driver cannot accurately decide whether to use them dipped or to use side lights only.

In Britain it is normal to use only side and tail lamps when driving through cities at night. This appallingly dangerous practice still continues despite many accidents directly attributable to it — one in particular, occurred about twenty years ago when a bus ran down and killed nearly 30 people.

A decade ago suggestions were made to use two-level dipped lights the effect being produced with a series resistor that dropped the lamp voltage to about 60 percent of maximum supply.

It was called the dim-dip system. The ability of drivers to use this system correctly was doubted so the TRRL designers pressed on to automate the idea.

The system specifications needed were that it be insensitive to other vehicle lights, have variable dim range (not just switched high-low), be slow to dim but fast to brighten and that no dimming should occur in daylight fog.

Basically the first TRRL system made use of the light level of the modulated content of street lights (at 100 Hz). A schematic of the system is shown in Fig. 6.

A detector is coupled to an ac amplifier which peaks selectively at 100 Hz. The output from this initial stage is proportional to light level of the 100 Hz signal.

In daylight the stage provides zero output as no 100 Hz signal is present. The ac output is then fed to a circuit that generates a square wave as long as the peak value exceeds a minimum reference value.

The variable mark-space ratio of the square wave conveys the required intensity level to a circuit that charges

Fig. 7. The Bosch polarized headlamp
a capacitor memory, providing the time constant needed, plus an output that is inversely proportional to street light level.

Headlight intensity is adjusted using this signal by on-off switching, with on periods varying from 120 to 1.2 ms, and a fixed 2 ms off period.

The switch is controlled by the voltage existing on the memory capacitor. Intensity range swing is about 75 per cent.

Another way to reduce glare is to vary the centre road-side cut-off angle of the undipped beam so that it does not shine with full amplitude into the on-coming driver's eyes.

As far back as 1969 Lucas designed a system called "Autosensa" that worked this way. As the same system was on display again without mention of improvements it appears that the idea is yet to be perfected.

It uses a projection lamp rather than the normal car bulb, with a controllable projection aperture that can be vignetted with a servo-driven slide to cut off one side of the beam.

A photo-cell senses the location of the oncoming car by the car's beam strength and causes the shutter to move across accordingly.

By far the most actively promoted scheme to reduce glare is the use of polarized lights and special polarized viewers fitted in front of the driver.

It is a relatively simple matter to polarize white light from lamps by using special optical elements. Treated this way the light can only pass a similar viewing window when the direction of polarization is the same as that of the window material.

Rotation of the polarization of the oncoming beams to be at a different angle to the viewer will give a very marked reduction in intensity. No electronics are needed and (in principle) it works.

A demonstration system was on display and one could easily look into a 100 W halogen lamp and see past it.

Unfortunately, it is not quite so easy to implement in everyday practice. Problems to be overcome include getting everyone to co-operate with the fitting of polarizers to both lights and windscreen; finding a way of maintaining correct polarization even though the vehicle is still tilted; producing polarized viewers that do not attenuate ordinary light substantially more than for polarized light and able to withstand heat generated in headlamps. Finally producing cheap polarizing elements.

A Bosch proposal is shown in Fig. 7 together with a picture of an installation in a recent model car.

The subject has been in vogue since the late 40's and could continue for some time before we see it in widespread use.

Rear lights are also receiving attention. In the ESV shown by Nissan, the tail lamps have changeable brightness to suit day or night conditions.

On the 'heavier' side are the now standard high-intensity rear warning fog lamps fitted to the Crane-Fruehauf 'doubles' haulage units.

It has long since been recognised that lighting columns should break away under impact thus reducing vehicle damage substantially.

To further reduce the hazard, and to reduce re-erecting cost of the columns, TRRL have designed a special breakaway joint which also disconnects the electricity (see Fig. 8) on impact.

INSTRUMENTATION

There was a period in automobile design when the instrument panel was required to a bare minimum.

That time seems to be passing as more alarms and indicators are introduced to keep the driver informed.

Several vehicle accessory manufacturers were displaying lamp failure indicators. Smiths method, for which a schematic circuit is given in Fig. 9, uses two reed-relay switches to monitor the two rear stop lamps. If either fails to operate, a transistor driver is operated by one of the relays, lighting a warning lamp.

Side and rear lamp indicators use a series connected bimetal switch contact that closes if no through
current exists to heat and bend the bimetal.

Tyre pressure sensors are also incorporated in some of the ESV units. Checks that doors are locked and even a built-in device indicating excessive breath alcohol content (Honda) were also outlined along with indication of vital component failure.

Another unit, available for original equipment only at this stage, is the Smiths dual level sensor for indicating low coolant and brake fluid levels.

The sensors make use of the change in electrical conductivity between probes mounted high in the fluid chamber. The two sensors use one integrated circuit mounted on a printed circuit board.

Several manufacturers have included audible as well as visual alarms, into their instrumentation array.

The Crane-Fruehauf double outfit (engine unit with its semi-trailer and a second coupled trailer) goes as far as incorporating closed-circuit television to aid the operator in backing.

The camera is contained in a safety enclosure under the rear of the tray. Also on show were several forms of head-up display of vital panel meter readings. These use a simple projector to place an image of the dial on the windscreen, the speedometer for instance is in the direct view of the driver as he looks ahead.

Digital and analogue forms are being tried out in tests in which the West Yorkshire Metropolitan Police are co-operating.

COLLISION AND ANTI-COLLISION MEASURES

When collision occurs, some mechanisms need to be terminated, others initiated. Various safety standards now call for devices that cut the petrol supply and the ignition via the battery circuit, thereby reducing fire risk.

Switches that open or close have been devised to act when the acceleration (or deceleration) exceeds certain values, typically in excess of 5g.

Inertia seat belts also require acceleration sensing – in the range exceeding 0.4g; electrical sensing has been proposed for this as an alternative to mechanical methods.

A whole range of sensors covers electric supply isolation, fuel pump cut-off, fuel line cut-off, passive restraint crash sensors; severe braking indication to operate high intensity rear warning lights and inertia switches to operate seat belt locks.

The method used by Inertia Switches is simple, as Fig. 10 shows. Magnetic pull on a steel ball provides the retardation force to hold the ball until the g forces exceed the limit, releasing the ball and toggling the contacts.

The ball seats in a cone holder, thus providing a directional force characteristic that can be tailored to suit side accelerations as well as those produced dead ahead.

A typical 48 km/h impact produces deceleration of over 20 g with the vehicle coming to rest in only one tenth of a second!

The Honda and Nissan ESV's include accelerometer sensing to disconnect the fuel and electrical systems.

The General Motors development air-bag restraint system uses two accelerometers; one is placed in the bumper bar and operates the safety device at around 25 km/h impacts, a back-up unit is placed in the fire wall (see Fig. 11) acting at 35 km/h impact in case the bumpers override.

It was also clear that more advanced sensors are in the research stages. Nissan described a radar sensor that was now operational (in prototype form). No doubt theirs is but one of a number being developed.
The Harrison-Fraba general-purpose infra-red sensing system makes use of a modulated IR beam to flood the path ahead. Any obstacle in the path sends a return signal to the photo detector which operates an alarm. It can be adjusted to provide surveillance over a range set from 2-30m. A similar system can detect fog and monitor traffic flow.

VEHICLE CONTROL

It is some years now since anti-lock braking was launched as the answer to braking on slippery surfaces, but displaying a prototype is one thing, producing units is another. Lockheed gave impressive demonstrations of their system as applied to semi-trailers. Although the system uses mainly hydraulic and pneumatic control its basis is an electrical sensor that measures the velocity of the propeller shaft.

Figure 12 shows the location of the pick-up sensor and the sensor itself. The principle of operation is that velocity change of the propeller shaft is processed to indicate the degree of deceleration.

If it exceeds the value known to be close to wheel lock (1.5 g), the brakes are released and reapplied when speed is regained.

The result, on wet roads, is pulsed brake operation with greatly reduced braking distances.

Fig. 13. Actual components of anti-lock system. The toothed wheel produces pulses in the pick-up coil shown on the lower right. After signal processing with the circuit (lower left) the brakes are applied and released as needed.

Fig. 14. Engineers set up a pedestrian dummy at the Rolls Royce test centre.

Fig. 15. In his "birthday" suit an anthropometric dummy might look like this.
On perfect road surface conditions braking is slightly inferior to ordinary (non-controlled) methods. Figure 13 shows the extra components that are added to provide anti-lock braking for the rear wheels of a semi-trailer prime mover.

A demonstration clearly showed that trucks without anti-lock are extreme hazards on wet surfaces and lack all control once skids start. With this device the unit could brake and steer around sharp bends under normal control.

Semi-trailers can now have a 'swing' sensor fitted to indicate when the rear has reached the jackknife limit.

It will not be long, with so many warning devices to monitor, before the transport driver needs to be as highly trained as an air pilot.

RESEARCH

Considerable effort still goes into the use of actual crash testing using anthropometric dummies simulating occupants and now, with increasing interest, pedestrians.

The manufacture and sale of dummies is a commercial enterprise with a growing turnover. Designs are becoming very sophisticated. Triaxial accelerometers measure g forces. Side force transducers measure impact loads at the main upper skeletal joints and bones. Compressional load cells determine the loads in the thigh bone.

Figure 14 shows a male dummy used in research at Rolls Royce Motors' pedestrian-to-car collision rig at Crewe in Cheshire.

The test trolley in the rear gains energy, falling down the ramp, rolling on to collide with the propped up dummy.

With clothes removed a well instrumented dummy appears as in Fig.15; this 'man' is used primarily for side impact tests in cars.

Close-up, the triaxial accelerometer unit would look like the Endevco unit shown in Fig.16. Dummies can be most complex with as many as 50 odd signal channels being needed.

Nevertheless, no manufacturer suggests that the anthropometric dummy is still any more than a crude experimental tool.

Another interesting phase of research is that of vehicle automation. Several exhibits, again mainly from TRL sources, displayed how automation might come to road vehicles.

Estimates suggest it is worth £50 per vehicle and £2,500 per kilometre of lane and that mass production costs would be less than these figures.

Given automated control, the gains expected would be less accidents, more accurate steering allowing more lanes in a road, safer headway as reaction time is reduced thus enabling vehicles to travel closer together, stress-free travelling for occupants and a cheaper mode of transport.

One pamphlet suggested it could be in full scale use by 2000 AD.

Control systems envisaged are fairly obvious in principle; control of lateral steering and vehicle spacing. This creates the need for steer, braking and speed servomechanisms.

Numerous devices are envisaged as alternatives for each, but basically the block diagram of a steering appears as in Fig.17. Sensors A, B decide the lateral clearances giving an error signal that actuates the power-steering mechanism. (The steering wheel, you will be pleased to know, will remain for override purposes).

The throttle controls of the TRL design use electro-vacuum sensors in which the error signal actuates an electric-magnetic pull-motor that in turn controls a vacuum assisted control of the throttle butterfly.

If you see a radar set pointing at you on the highway it may not be a cause for alarm for they are now being used as much to investigate driver behaviour as to control speed.

One unit, lawful in the States but not in all countries, takes a photo as you approach, recording speed and time at the same time. These units can operate in fog as well as in the dark. As they use infra-red photography the driver is totally unaware of their existence.

Another means of observing drivers is to follow the unsuspecting with a television camera. A video tape unit mounted out of sight records the scene. The aim of these research workers is not to catch a driver out or invade his privacy but to establish how drivers react in real situations.

It is clear that electronics plays a major role in road safety. The motor vehicle is rapidly becoming a piece of elaborate equipment that needs sophisticated servicing and care. The days of do-it-yourself repairs will soon be over.
A special bumper issue of ETI containing reprints of some of the most popular projects published by ETI since we started in April 1972. All the projects are updated regarding components and modifications and include many of the articles published in back numbers which are no longer available.

ETI has recently gained very large numbers of new readers and this book will enable these new readers to catch up on projects they have missed.

Copies now available at your local newsagent.

price 75p

WE KNOW YOU NEED IT!

The MES 1974 Catalogue

The MES 1974 Catalogue has over 75 pages and is STACKED with dozens of tempting new bits. BRING IT OVER with clear illustrations and detailed data.

WE'RE WAITING TO RUSH YOU A COPY.

You'll be IMPRESSED with our POST-PAGE ordering system. EXCITED by our BIG VALUE discount vouchers. STAGGERED by our UNBEATABLE speed of service. Take the first step towards real service NOW! Send ONLY 25p for our beautifully produced catalogue and leave the rest to us!
TIME was when the main considerations in any circuit design were to assemble the electronic components in the right order, IC's have changed all that: now we have a vast variety of 'standard' circuits already encapsulated. Even now most linear IC's require a number of external components, to set the gain, decouple, provide bias currents etc. The LM380, which has been around for some time is an IC which requires virtually no external components. For most purposes it can be regarded as having four connections, +, -, in and out. Although encapsulated in a 14-pin package, there are only six different connections (see Fig. 1). The connections in addition to the four already mentioned are a second input pin giving a choice of inverting or non-inverting input relative to the output and an optional hum-decoupling pin.

The LM380 is available from a number of suppliers and also as this month's ETI reader offer: two for £1.00. Our devices are made by National Semiconductor but carry a different coding as they have a slightly higher voltage rating than the regular LM380 (the coding is SL60745).

The supply voltage for the LM380 can lie between 9V and 22V. However the low limit is a bit misleading as one assumes that a common 9V battery will do. Certainly it will, but distortion will appear under 8V giving you little use from a 9V battery. For full output about 200mV at the input is necessary, though this varies with the supply voltage. The maximum output at 22V is about 4W. No heatsink is necessary, nor is a tab provided for this.

Two circuits are described in some detail but of course the LM380 has almost unlimited uses.

INTERCOM

Intercom circuits have appeared in all the constructional magazines at one time or another but most of them that we have seen are thoroughly impractical.

Our circuit has a number of useful points. 1. Only two wires connect the Master Unit to the Slave. 2. Either station can signal the other with a tone burst to draw attention. 3. Batteries are only needed at the Master Unit. 4. The quiescent current on standby is insignificant.

The circuit is shown in Fig. 2 but has the disadvantage that it appears considerably more complex than in fact it is due to the wiring of SW1. Operation is fairly unusual and is explained in the separate box.

The Master Unit contains all the main components including the battery and amplifier. The Slave unit comprises a small loudspeaker, electrolytic capacitor and switch and these can be housed in a much smaller case.

Relatively few components are used and although we have used a Fender and shown the pattern (Fig. 3), some readers may feel that a small

PARTS LIST

<table>
<thead>
<tr>
<th>PART</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>Capacitor 100µF 25V electrolytic</td>
</tr>
<tr>
<td>C2</td>
<td>Capacitor 3300pF polystyrene, ceramic etc.</td>
</tr>
<tr>
<td>C3</td>
<td>Capacitor 100µF 25V electrolytic</td>
</tr>
<tr>
<td>IC1</td>
<td>LM380/SL60745 Audio I.C.</td>
</tr>
<tr>
<td>T1</td>
<td>Transformer Transistor output transformer (approx. 10:1 or 20:1 ratio).</td>
</tr>
<tr>
<td>LS1</td>
<td>Speaker 8Ω small type</td>
</tr>
<tr>
<td>LS2</td>
<td>Speaker 8Ω small type</td>
</tr>
<tr>
<td>SW1</td>
<td>Rotary Switch 4-pole, 3-way, SW2 3 Switch Push-to-make.</td>
</tr>
<tr>
<td>P.C. Board or Drilled S.R.D.P.</td>
<td></td>
</tr>
<tr>
<td>Plastic Boxes, one large and one small.</td>
<td></td>
</tr>
<tr>
<td>Twin wire to connect units</td>
<td></td>
</tr>
<tr>
<td>2xP3 or equivalent 9V batteries</td>
<td></td>
</tr>
<tr>
<td>Battery terminals</td>
<td></td>
</tr>
</tbody>
</table>

COMPONENT COMMENTS

The LM380 is this month's ETI offer but is available from many of the semiconductor mail-order companies once the offer closes. Transformers suitable for T1 are widely available, perhaps the best known is the Eagle LT700 but other types are listed in catalogues.

The electrolytic capacitors should have a minimum working voltage of 25V but this can be higher. The unit will work using even 10µF components for C1 and C4 but output will be marginally down. Values higher than 100µF will improve output but only marginally and the cost will be higher.

C2 can be any form of capacitor and the value can be between 2000pF and 0.01µF. In the main text we suggest that this may advantageously be experimented with.

Suitable cases are the M2 and M3 from Doran but others will do quite as well. The speakers listed are 8Ω type but we tried the circuit using the high impedance speakers [35Ω-80Ω] and operation was perfectly satisfactory. We have in the past used very small push button switches made in Japan; we cannot recommend these as even when soldering quickly to the terminals, the plastic body melts.
piece of drilled s.r.b.p. board is all that is necessary.

T1, the LM380 and three capacitors are mounted on the board which should be near the main switch SW1. The PCB or component board should be mounted at right angles to the front panel of the case. The construction, component layout and switch wiring are shown in Fig. 4. The two PP3 type batteries should be clamped firmly in the body of the case.

The Slave unit is much simpler and a component layout can be seen clearly in the photograph. Some readers may query using two small batteries for an IC which can draw up to 200mA at the supply voltage of 18V used here. This is quite satisfactory for an intercom circuit. Firstly current is only drawn when the unit is actually being used. Secondly the input will not normally be high enough to give full output. When the IC is used to signal one of the units the current drain is very high but this will normally be only for a second or two at the most. Even if the unit is left switched on, unless there is a lot of noise near the input, current drain is a modest 15mA or so.

OPERATION

MASTER TO CALL SLAVE. Switch SW1 to Talk and press SIGNAL button, SW2. If there is doubt about anybody being there, switch SW1 to LISTEN for acknowledgement, otherwise talk.

HOW IT WORKS

The loudspeakers at the Master and Slave double as microphones but as a microphone are unsuitable for connecting to the input to the LM380, and therefore a transformer is used to step up impedance and signal level, this is T1.

SW1 is the main controlling switch and it can be seen in the off position shown in the circuit that the battery does not connect to the main circuit. Other parts of the switch place C2 between the input and the output of the I.C. making it oscillate, LS1 is connected to the output and the slave loudspeaker LS2 connected to the input via C4.

When the slave presses SW3, battery negative is applied to the main circuit negative line via LS2 and one winding of T1. The circuit oscillates and a tone comes up on LS1.

On receiving the signal the master unit switches to listen, disconnecting C2 and picking up the battery negative.

For the Master to call the Slave, SW1 is switched to Talk and SW2, a push-to-make switch, can be pressed, the tone will then be connected to LS2.

SW1b and SW1d switch the speakers as required.

SLAVE TO CALL MASTER. Press SIGNAL button SW3, wait a couple of seconds and talk.

MASTER ACTION ON RECEIVING TONE. Switch to TALK if acknowledgement is the normal practice or LISTEN if not.

The need for acknowledgement will depend on individual circumstances.
Note that T1 is used in reverse: the windings normally regarded as the primary (and marked as such on the circuit) become the secondary. Most transformers of this type have a centre tap on the primary – this should be ignored.

The signal tone may be considerably different from one station to the other: this will be due to the use of C1 and C4 in series when Master calls Slave, the effect of the wire etc. C2 is not a critical value and may be experimented with to obtain a satisfactory tone in both units.

RECORD-PLAYER AMPLIFIER

Having an output of about 3W, the LM380 makes for an excellent record player amplifier for use with ceramic or crystal pickups. The quality will be nothing to write home about but compares favourably with commercial amplifiers at the low end of the price scale.

To match the high impedance of the pickup, a high value volume control is needed – 500kΩ is shown in the circuit. The tone control is a simple passive top cut but this gives adequate control for the type of amplifier we have in mind. The circuit is shown in Fig. 5.

The power supply is perfectly conventional; a 15V transformer feeding into a bridge rectifier. The low value of the smoothing capacitor C4 is not an oversight. If a low value capacitor (10µF) is connected between pin 1 on the I.C. and the negative line, there is excellent hum rejection permitting the use of a low value for C4 (and a resulting cost saving).

The only current drain on standby should be the leakage of C4: it is worthwhile checking to ensure that C4 is a healthy component by measuring current drain; it should certainly be no higher than 20µA. If it is, change C4.

BABY ALARM

The circuit and switching allow the unit to operate as a baby alarm, but two modifications are suggested for this. Firstly a baby alarm will have to be on for several hours at a stretch and battery operation is therefore uneconomical. A mains power supply should therefore be substituted (a suitable one is used with our record player).

Secondly, whilst a volume control is necessary with an intercom, this does not apply with a baby alarm. Therefore a simple volume control can be fitted. This should be a 1MΩ pot wired with one end connected to input pin 2, the slider and other end wired to pin 6. This should be fitted with a d.p. switch which can be connected to the power supply mains.

PARTS LIST

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RV1</td>
<td>Potentiometer 500kΩ log. pot. with double pole mains switch</td>
</tr>
<tr>
<td>RV2</td>
<td>10kΩ linear pot.</td>
</tr>
<tr>
<td>C1</td>
<td>0.01µF ceramic, polyester etc.</td>
</tr>
<tr>
<td>C2</td>
<td>1µF electrolytic 500V, 25V</td>
</tr>
<tr>
<td>C3</td>
<td>10µF, 25V electrolytic 500V, 25V</td>
</tr>
<tr>
<td>IC1</td>
<td>LM380/56074 integrated circuit.</td>
</tr>
<tr>
<td>01-04</td>
<td>Diode 1N4001 (50V, 1A) silicon rectifier</td>
</tr>
</tbody>
</table>
| T1 | Transformer 240V/15V at 500mA. Oil filled.

CONSTRUCTION

There are so few components that a P.C. board is hardly necessary – we built our unit on drilled s.r.b.d. board (the layout is shown in Fig. 6). The component board can be mounted on a simple chassis as shown with the front bent up to hold the two controls as seen in the photograph. However layout is not critical and readers may well wish to build the unit into the record players plinth.

It is worthwhile using a reasonable sized speaker; these are more efficient and give better quality than small ones.

It is important that screened wire is used for the connection between the pickup and RV1.
this month's
eti offers:

TWO LM380
3W audio ICs

£1.00

With SAE and Coupon

This price includes VAT but each coupon must be accompanied by a self-addressed strong envelope with the correct postage in UK stamps.

LIMITED TO THE FIRST 2000 COUPONS BUT ORDERS WILL NOT BE DEALT WITH UNTIL NOVEMBER 20TH TO GIVE OUR READERS IN THE PROVINCES A CHANCE.

NO SPECIFICATION SHEETS SO KEEP THIS ISSUE.

50,000 & 25,000 OHMS PER VOLT

MULTITESTER

BIG SIZE
6.5”
×4.75”
×2.5”

EXCLUDING HANDLE

Uses a 15μA meter. Accuracy is ±4% or better on all ranges except 1.5V (±5%).

12 DC VOLTAGE RANGES
0.5 25 50 100V...at 25,000Ω/V
0.25 1.25 2.5 5 12.5 25 50 100 250 500 1000V...at 50,000Ω/V

10 AC VOLTAGE RANGES
0.1 1 10 50 250 1000V...at 10,000Ω/V

10 DC CURRENT RANGES
0.5 2.5 25 250 1000mA 10A
0.25 2.5 25 250mA 5A

4 RESISTANCE RANGES
10k 100k 1k 10k full scale
10k 1k 100k mid scale

£10.25

(Incl. VAT and P & P) With SAE and Coupon.

This is a high specification instrument which is comparable to models normally sold for over £18, and features built-in diode protection, big mirrored scale, 10 decade ranges, a handle which can support the meter at a convenient viewing angle, 'tapped' needle when switched off, etc. A range doubler switch operates on voltage and current ranges to double the sensitivity.

A self-addressed stamped envelope must be included for return of money if the offer is over subscribed.

LIMITED TO THE FIRST 750 COUPONS BUT ORDERS WILL NOT BE DEALT WITH UNTIL NOVEMBER 20TH TO GIVE ALL READERS A CHANCE.

TWO ICs PER COUPON

TO: ETI OFFER
ETI MAGAZINE
36 Ebury Street,
London SW1W 0LY

Please find my cheque/P.O. for £100 (payable to ETI) plus a stamped self-addressed envelope for the return of the ICs or my money should the offer be over-subscribed.

Name:
Address:

ONE METER PER COUPON

TO: RICHARDS ELECTRICS
16 Frier Street,
Worcester WR1 2LZ

Please find my cheque/P.O. for £10.25 (payable to Richards Electronics) plus a stamped self-addressed envelope for a multitester (model C7081GN).

Name:
Address:

ELECTRONICS TODAY INTERNATIONAL—DECEMBER 1974
1. Understand electronics.
Step by step, we take you through all the fundamentals of electronics and show you how easily the subject can be mastered using our unique Lerna-Kit course.

(1) Build an oscilloscope.
(2) Read, draw and understand circuit diagrams.
(3) Carry out over 40 experiments on basic electronic circuits and see how they work.

2. Become a radio amateur.
Learn how to become a radio- amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.

What to look for in January’s eti

TWO GREAT ETI READER OFFERS

1. FIFTEEN BC108 TRANSISTORS
Brand new BC108's made by ITT and carrying the "C" suffix (highest gain grouping). Price includes VAT and postage.

2. 36 ELECTROLYTIC CAPACITORS
Not mixed, but specially new component covering 10uF-1000uF, 10V/25V. Details of types next month. Price is inclusive of VAT and postage.

ETI SPECIAL SURVEY: CONSTRUCTIONAL KITS
We have been scouring the country to collect details of kits available for the amateur constructor. Specifications are of course given but we will be giving a lot more details.

GRAPHIC ROOM EQUALISER
A project which gives gain of plus or minus 13dB at nine frequencies which enables you to tailor the output curve.

RUMBLE FILTER
Inexpensive project gives very sharp cuts below 36Hz and gets rid of low frequency noise.

MATRIX TV
Considerable progress has been made recently towards solid-state picture transmission, doing away with c.r.t. etc. Details in next month's issue.

TIPS
Earlier this year we increased our Tech—Tips section. Popular demand has meant we will be increasing this even further from next month.

The features mentioned here are, at the time of this issue going to press, in an advanced state of preparation. However, circumstances, including highly topical developments may affect the final contents.

JANUARY 1975 ISSUE
ON SALE DECEMBER 13TH
25p AT YOUR NEWSAGENTS
COMPONENTS FOR OVERSEAS

Over the last few years, I have tried to help friends of mine from abroad to get components advertised in your magazine for their projects, especially those components not available in their own countries.

I have worked out a way to help acting as a buying and distributing centre. It is a non-profit making venture and if your readers would like to get in touch with me by sending a prepaid envelope (i.e. International Postal Coupons, etc.) I shall be glad to send them details of how to order what they need.

I hope this letter will solve some of the problems of your overseas readers, as I was one of them not so long ago.

— S. Tan,
15, Winterstoke Road, London SE6

UPSIDE-DOWN CALCULATOR PROBLEMS

We've already received a couple of letters with upside-down calculator problems. We're printing these below. We'll not be judging the competition until next month (see Electronics Tomorrow November issue).

NAUGHTY LESLIE

Leslie and Mary drove at an average speed of 50km per hour for exactly 1.0748 hours in a southerly direction starting from near Welwyn Garden City and finishing in Highgate Woods, London. Find the total distance they covered in kilometres, and what Mary said when Leslie wanted to go further.

— J. Keneally, Weymouth, Dorset

NOT OUR HELEN

ETI's secretary went out last night with six friends. Between them they drank 54.007415 litres of beer. If they all drank the same amount how much did she drink in c.c.'s and why didn't she turn up for work this morning?

Add 37344.656 to the answer you'll get our reaction.

P.S. Add another 12656 and you'll find out what you breathe with when there's that much drink about!

— D. G. Evans, Southampton

CALCULATORS IN SOUTH AFRICA

I wish, on behalf of a number of colleagues and myself, to thank you for your August edition of ETI which featured the Directory of Calculators.

We're high school teachers, and were beginning to find that the amount of "figure work" involved in education, put us in line for personal calculators. As many of the calculators featured are locally available, the Directory was of immense value in helping us decide what we needed for our particular requirements.

We appreciate the amount of work which must have gone into its compilation, but feel that one of the most important columns was omitted - approximate battery life in hours. It would also have been of value to have included a column stating whether zero suppression was featured or not - a fact directly related to the cost of operating these calculators.

The South African market has become flooded "overnight" with calculators - mostly from America and Japan. Prices seem to be very reasonable compared to those in your Directory. We have a local discount store selling a reasonable small model with 6 digit display, fixed decimal (2) and the usual four functions (+ - x ÷) for about £9.50 - very popular with the pupils. The Sinclair range cost no more here than in the U.K. and our Bowmar prices are better than yours. You had the price for the Canon Palmtronic LE83 as £32.45. It markets here (not discount!) for R35.50 (about £14.00). I have included the above information purely for interest.

In conclusion may I say how much I personally appreciate your publication - I've only missed the one copy since it became available over here. The one disappointment is that we cannot benefit by your special offers.

— A. D. Johnstone,
Transvaal, South Africa

ANY MORE OFFERS?

I would like to congratulate you on the Sinclair Scientific kit offer. As soon as I received the magazine I placed my order for the calculator and received the kit in well under 3 weeks. After only two hours of assembly my calculator gave the answers in the operating instructions, down to the last digit! I have only one question to ask: How come you don't do these special offers more often? There are plenty of firms who's products are worth buying. Why not have special offers for oscilloscopes, digital voltmeters, digital frequency meters, digital watches, etc. I am sure the manufacturers would not be disappointed by the advertising your magazine can provide for their product. As a regular reader of your magazine from the No. 1 issue I make sure that I get every issue of ETI.

How about an electronic digital watch kit in your next issue? I am sure it can be done like the Sinclair offer.

Well done M. Editor.

LETTERS SENT IN WITH CALCULATOR OFFER COUPONS - DROOLS

Your offer on the 'Scientific' is quite phenomenal - quite the best you've done yet!

I must also say that every issue I get makes me positively drool as I first skim through it and see just how much exciting reading awaits me.

Without doubt, your mag is unique and beats all others into a cocked hat — keep it up.

— C.B. Capital Radio.

TIP

You will notice that the mentioned price of the special offer is £14.95 and that the enclosed postal orders amount to £15 leaving a surplus of 5p.

Well I considered that the offer was such good value for money that I would dedicate a fabulous, never to be repeated, tip of 5p to be shared equally amongst all the staff of ETI.

No thanks are necessary.

— R.W.M., Skipton, N. Yorks.

Any gratuities are accepted with thanks! — Ed.
HEATHKIT M1-1031
DEPTH SOUNDER

THIS IS ONE of three depth sounders available in kit form from the Heathkit range of marine electronic equipment. The M1-1031 is a dual range instrument supplied complete with transducer and has an audible alarm for alerting the helmsman of entry into shallow water or of underwater obstacles. This alarm can be preset for any given depth from 5 feet. The two depth ranges cover 0 to 60 feet and 0 to 240 feet and the unit operates from a 12V supply. The other two depth sounders marketed by Heath are the M1-1030/1, a single range, 0 to 250 feet, instrument but without the alarm (retailing at £39.95) and the M1-101/1 which has a digital read-out, shallow water alarm light and depth ranges of 2.5 to 19 feet and 20 to 199 feet (retailing at £77.80). The M1-1031/1, the subject of this review, retails at £46.45.

DESCRIPTION
The display unit is shown in Fig. 1 and is housed in a waterproof plastic case which also contains the sounder electronics. The display is mounted on a gimbals and can be adjusted to a convenient viewing angle. Depth indication is by means of a rapidly flashing neon which is clearly visible even in direct sunlight. Only two connections are made to the display, the 12V d.c. supply cable and the transducer coaxial cable, both via plug and socket entry which allows the display itself to be quickly removed and stowed away when not in use.

Two types of barium titanate transducer are available: a through-hull type and a transom mounting type. The price of the kit is the same whichever transducer is required. The through-hull type can be mounted on the bottom, i.e. with the securing fitting through the hull itself, or can be mounted inside in a small water container to improve the supersonic pulses from the transducer through the body of the hull, providing it is made of wood or fibreglass. Full instructions and diagrams for transducer mounting are given in the handbook.

PRINCIPLE OF OPERATION
First a master pulse is generated by a small magnet attached to a rotating disc driven by a d.c. motor. As the magnet rotates it passes over a pole-piece mounted within a coil, generating a voltage pulse across that coil. The pulse is then shaped and adjusted for the required duration: 0.8 ms for the 60 ft range and 1.5 ms for the 240 ft range. Then it drives the supersonic pulse generator (the transmitter) and the output is connected direct to the transducer. The master pulse is simultaneously used to strike the rotating neon indicator which flashes at zero feet as in Fig. 2. When an echo is returned from the sea bed, via the transducer, it goes to a 200kHz receiver, where it is amplified and rectified into a d.c. pulse which is used to strike the neon again but some time later. This is the time taken for the echo to return so it can be used to indicate depth, as shown in Fig. 2, by matching the position of the second flash to the nearest reading on the calibrated scale. The neon spins at 2400 rpm for the 60 ft range and 600 rpm for the 240 ft range. The pulse repetition rate is 40 and 10 times per second for 60 and 240 ft respectively.

The shallow water alarm operates from a gate circuit which passes only

SPECIFICATIONS

- **Range:**
 - 0 to 60 ft on hard bottom, 0 to 240 ft on hard bottom.
 - 0 to 60 ft on soft bottom, 0 to 240 ft on soft bottom.

- **Accuracy:**
 - ±2% with motor speed of 2400 rpm in the 0-60 foot range.
 - ±5% with motor speed of 600 rpm in the 0-240 foot range.

- **Sounding:**
 - Range: 10 times per second on the 0-60 foot range.
 - 10 times per second on the 0-240 foot range.

- **Frequency:**
 - 200 kHz ± 5%

- **Amplitude at the transducer:**
 - 150 V peak-to-peak minimum.

- **Pulse width:**
 - 0.8 milliseconds on the 0-60 foot range.
 - 1.5 milliseconds on the 0-240 foot range.

- **Noise Rejection:**
 - Fixed at approximately 500 microsecond rise time.

- **Receiver Sensitivity:**
 - 0.5 mV nominal at 200 kHz.

- **Depth Indication:**
 - Neon lamp flashes at zero and again at the indicated depth from the object.

- **Alarm:**
 - 5-59 feet on the 0-60 foot range, 5-239 feet on the 0-240 foot range.

- **Controls:**
 - Sensitivity, with on-off switch. Alarm, with a pull-to-read alarm.

- **Transducer:**
 - 25 ft with transom-mount type transducer.
 - 15 ft with through-hull type transducer.

- **Power Requirements:**
 - 13.8 VDC nominal (11-15 VDC) at 225 mA when using the 0-60 foot range, or 125 mA when using the 240 foot range, with only one return flash.

- **Dimensions (less Gimbal Mounting Bracket):**
 - 5-1/4" wide x 6-1/4" high x 7-1/4" deep.

- **Net Weight:**
 - 2-1/4 lbs.
SUMMARY: This is a complete system which gives a visual depth reading (on one of two ranges) and has an audible alarm to warn the helm of shallow water. The Heathkit M1-1031 does both these jobs well, and the finished equipment would soon become almost indispensable to a boat owner.

There is nothing special needed for construction and setting up except for patience. Building should not be rushed and the unit should not be relied upon until the builder is completely satisfied that it is calibrated exactly and functioning perfectly.

Fig. 1. The finished display unit.

Fig. 2. Top central flash at zero feet and echo flash at 6 feet (to the right).

Fig. 3. Upper trace: transmitted pulse at zero feet and echo at 6 feet. Lower trace: the gate pulse taken in this echo which sounds the shallow water alarm.

Fig. 4. Strobe effect obtained when setting the disc motor speed.

Fig. 5. Upper trace: transmitted pulse (extreme left) and three echos, one from 6 feet followed by two repeats. Lower trace: some signals after rectification.

As with all Heathkit projects one should find no difficulty providing the echo signals from a given depth (see oscillogram, Fig. 3). The depth can be pre-set with a panel control and the gated echo triggers off a multi-vibrator to give an af signal which is amplified and taken to a small loudspeaker at the rear of the display.

CONSTRUCTION AND PERFORMANCE

As with all Heathkit projects one should find no difficulty providing the highly detailed and well illustrated instruction book is followed precisely and great care is taken with the soldering. Assembly is virtually on a single circuit board which supports the drive motor and the rotating disc (which carries the neon indicator) as well as the small components and transistors. Remember, however, that mistakes can be made and one may even find that a component is missing or faulty, but this is very rare and can happen with any kit project. Heath are not infallible but they do provide a good service. If your project fails to work they will get it going for you.

The total building time of this project, without hurrying, was about 8 hours and it takes another hour to check out and set the motor speed. Final tuning for maximum sensitivity can be done without instruments, but has to be done with the transducer mounted on the boat and with a reasonable depth of water (10 feet or more). The motor speed can be adjusted for both ranges with the preset controls and a 50Hz supply. Instructions for doing this are given and it is quite simple using the neon indicator as a strobe for showing true speed, as in Fig. 4.

Performance tests were carried out with the depth sounder installed in a 21ft cruiser fitted with twin outboard engines. The upper trace of the oscillogram (Fig. 5) shows the signal prior to the detector stage with the transmitted pulse (left) and three echos obtained in a 6 foot deep tank. The lower trace shows the rectified pulses which trigger the neon. Initial instrument tests showed the sounder to be accurate to within less than 1 foot on the 60ft range and to within less than two feet on the 240ft range. The shallow water alarm comes into operation at about 2 feet more than the setting to allow a small safety margin.

The waveforms obtainable at various points are shown in the circuit diagram in the instruction book. The measured transmitter pulse output was a little over 120V (pk to pk) for a 12V supply, which agrees with the specification (150V with a supply of 13.8V). The pulse widths, repetition rates and the supersonic operating frequency (200kHz) were as specified.

Tests carried out on the water proved operation to be satisfactory. The shallow water alarm was reliable and quite audible above the noise of two outboards at full power! However, a word of warning. Ignition interference from engines not fitted with suppressors could be troublesome despite the fact that the depth sounder receiver has a built-in noise-suppression circuit. Ignition pulses produce random flashes around the dial and these can intermittently (or even continuously) trigger off the alarm circuit. Sensitivity was very good even over areas with a deep mud bottom which is about the worst condition for reliable depth sounding.

Although this is an excellent and worthwhile project, inaccurate operation could run you aground or into dangerous rocks. Initial trials should be carried out in known safe water. A small but well illustrated booklet on the operation of the unit and interpretation of readings is also included with the kit.

ELECTRONICS TODAY INTERNATIONAL—DECEMBER 1974
Collyn Rivers looks at hi-fi developments this year and tells us what to watch out for in 1975.

Apart from its starting appearance, the GALE GT2101 turntable incorporates many technical innovations which have more in common with inertial guidance systems than high fidelity record players. The turntable is continuously adjustable in speed from 10.0 rpm to 99.0 rpm and incorporates a 5.0MHz crystal-controlled reference oscillator to provide the time base, ensuring speed control independent of the malus frequency (stability is better than 0.001%).

The speed indicated by LED displays. The three-phase, brushless DC servo motor turntable drive system is unique in its incorporation of an optical shaft encoder to both measure the turntable speed and provide the error and control signals necessary for the servo system. This results in a short-term speed stability claimed to be better than any other turntable currently on the world market. The manufacturers also claim a sound figure which is lower than anything that was previously possible.

Nineteen seventy-four was the year of the cassette player. This year, for the first time ever, we were able to say that we have a cassette machine that can compete on open terms with open-reel machines and the gramophone record format.

The machine, the Nakamichi 1000, costs the earth! But so do the open-reel machines that it trounces.

On a more down to earth level, machines such as the TEAC A-450, the Harman Kardon HK 1000 and the Pioneer CT 5151 to name just three of several, have performance so close to better quality gramophone records as to be virtually indistinguishable.

Until very recently it seemed improbable that the cassette players and cassettes would make really deep inroads into the gramophone record market — let alone ever replace it. Now we are not so sure. Cassette tapes have improved enormously; when used with a suitable recorder, virtually all premium tapes can now handle the complete audio spectrum. Many have a response extending beyond it.

The widespread adoption of the Dolby Noise Reduction system has ensured that tape hiss can be reduced to a level where it is about the same as from an average to good quality gramophone record.

Pre-recorded cassettes are also improving in quality. Most are still churned out on cheap low performance tape, but several recording companies, in particular DGM, are now producing pre-recorded cassettes on good quality material using Dolby processing.

There is still a marketing battle between proponents of ferric oxide tapes and chromium dioxide tapes.

The use of these two types of compounds would not matter particularly were it not that cassette recorders must have control circuitry to optimize the bias and equalization characteristics for type of tape.

But the tape industry is about to release a new generation of high-energy tape formulations that combine the two hitherto competing materials.

Pioneered initially by Sony, the ferric-chrome combinations optimize performance by taking advantage of ferric oxide's particular advantages for 'low' — and of chromium oxide's advantages for the 'highs'.

The 3M company, who until very recently were strong advocates of ferric-based tapes, have now signed an agreement with DuPont to manufacture a ferric-chrome tape cassette (which 3M launched at the US Consumer Electronics Show last year) with Japan's Fuji Film Company — in cooperation with the Japanese National Broadcasting Co — has developed a single layer ferric-chrome tape which it will offer to other manufacturers. Maxell are also developing a ferric-chrome tape.
Other tape manufacturers including BASF, TDK, Ampex and Capitol are known to be preparing to release new products shortly.

Although it is far from certain that all tape manufacturers will settle for the new combined formulation, there are indications that chromium dioxide may be on its way out.

In a recent press statement, George Johnson, President of Audio Magnetics, said: "The recent development in the field of ferri-chrome is a return to the ferrite fold on the part of certain manufacturers who have realized that chromium technology has reached a plateau."

Despite their involvement in the chrome field, Ampex agree with Audio Magnetics, saying, "Chrome is not where the high-end customer is going to be - not where he is now for that matter."

A contrary view is expressed by BASF. A company spokesman (in America) said that in BASF's opinion, chromium dioxide is the ultimate in recording - it is the high end of the market. Significantly though, BASF is currently putting a lot of effort into promoting its new SK low noise, high output ferrite cassettes and recently released a new high energy ferrite tape. We also have details of a revolutionary new cassette system from BASF. Designated 'Unisette', the new cassette is totally different from the standard Philips' designed unit. It uses ¼" tape of recording studio quality and has been designed for use at 1.7/8"/sec, 3.3/4"/sec, or 7.1/2"/sec. BASF are saying very little about the new cassette - except that it will negotiate licensing arrangements in a similar fashion to those laid down by Philips.

However 'informed sources' tell us that the cassette is quite large (about the size of a paperback book), has no moving parts - in the sense that it relies upon the hardware for all transports, and can compete in every way with open-reel tapes of any quality. In Europe, the tape industry's association quote pre-recorded tape sales at 9.8 million cassettes (and 5.7 million cartridges) worth approximately £26 million. The total of 17.5 million units is nearly twice the previous year's.

There is a strong swing away from the cartridge format and it is our opinion that cartridges will eventually be used only for automobile systems. Even there, cassette players are making big inroads into the market.

A possible rival to the cassette machine is a new system called Mavica which has just been released by the Sony Corporation. Intended at present for video replay, the system is based on a flat chromium oxide card 160mm by 220mm. This provides 10 minutes playback in colour, plus stereo sound.

The blank cards cost only a few pence each (in volume) and recording is virtually a mass-duplicating process similar in many ways to printing - except that the programme material is transferred thermally.

It is not yet clear whether Soni intend to market an audio-only version of the Mavica system. From initial reports it seems ideally suited for hi-fi sound reproduction - especially as the method of replicating recordings is so cheap and simple.

RECORD QUALITY

This year seems to be the year when record quality hit an all-time low.

One pressing I heard recently could only have been made by a Serb fishmongers' co-op during a low point in a five year plan.

Or by a manufacturer so cynical about quality control that the mind boggles. (Two further pressings of the same recording were just as bad).

Criticizing record quality, brings squeals of rage and anguish from record manufacturers.

Several told us that their quality was better than ever. Others said that they had received no customer complaints.

Manufacturers are rather more realistic, accepting that present-day quality is bad.

One major British record manufacturer has admitted this publicity - stating ominously that quality could even become worse.

The cause of the decreasing quality seems to be the world shortage of vinyl. This has resulted in record manufacturers relaxing their quality control in order to obtain more saleable records per batch of raw material.

A further cause is that several manufacturers are now recycling their rejects. At first this seems commendable. It becomes less so when one realizes that they recycle the whole record. Paper labels, glue and all! Great for the signal/noise ratio!

The infuriating thing is that there does not seem to be any positive correlation between quality and price. As one of our readers pointed out last month, one often finds that the $1.99 specials are far superior to the full price efforts.

One company (Phase Linear) has a partial solution to the poor signal/noise ratio problem.

Phase Linear have developed an absolutely fascinating pre-amplifier with an auto-correlator built in. This device has sophisticated circuitry that can tell the difference between noise (which is of a basically random nature) and programme material (which has a recognisable pattern - or harmonic structure).
hifi today

Having determined which bits of the total signal are programme and which are noise, the auto-correlator automatically filters out the noise.

We have heard the device in operation. With most programme material it is extra-ordinarily effective. Even a dreadfully noisy record was 'magically' quietened.

There are some probably insoluble problems with this technique — it cannot for instance cope with synthesized white noise — which is random by definition. Nor can it cope very successfully with hand clapping — although that might be a blessing in disguise!

Auto-correlation is not a new technique. It has in fact been used for years — especially in space communications where it successfully extracts minute signals which are often below the level of noise.

Although not new it is still an expensive technique and it is unlikely that it will be widely adopted unless one of our enterprising IC manufacturers produces a chip with the auto-correlator function included.

FOUR-CHANNEL FOUL-UP

The four-channel scene remains much as it was this time last year. We seem no closer to one agreed system, and even the matrix protagonists have yet to agree on one universal matrix format.

It's bad news, and the public have every reason to treat the sorry scene with caution.

One possible solution is a new format developed jointly by Nippon Columbia and Dr. Duane Coopa of the University of Illinois.

Nippon Columbia's President, Takami Shobochi, told us that the system is completely universal — not only can it handle both discrete and matrix recordings without the need for switching — but it is completely compatible in both stereo and mono modes as well.

Currently, UD-4 is just an engineering concept. Prototype units are currently being demonstrated to interested manufacturers but no commercial units are yet on sale. Nevertheless, according to Nippon Columbia's Record Division at least, there is a strong possibility that the system will be on sale soon.

In our last issue the review of the Sennheiser Dummy Head recording system described how a two-channel recording played back through perfectly ordinary two-channel headphones can provide almost total spatial location.

The effect is quite uncanny — if it could ever be adapted so that speakers could be used instead of headphones one could probably forget the whole existing four-channel scene.

In Britain, two academics and a leading loudspeaker manufacturer are developing their new concept of surround sound — which they have called Ambisonics. The technique has been described extensively in recent issues of ETI.

So far practical demonstrations have been disappointing, mainly, it is claimed, because the venues chosen have been unsuitable for the new system.

As patent applications are still pending, not a great deal of technical information has been released, but it is significant that several major US and Japanese companies are now said to be investigating the whole ambisonic technique.

On the four-channel broadcasting scene, it now seems virtually certain that the US Federal Communications Commission will sooner or later lay down a standard for discrete four-channel FM broadcasting.

Certainly, GE, Zenith, RCA, Nippon Columbia, and Lou Dorin all have discrete systems under evaluation by the (US) National Quadraphonic Evaluation Committee.

Matrixed four-channel recordings are broadcast by a number of stations around the USA, but station managements are naturally reluctant to spend a great deal of money on equipment that will soon be technically obsolete.

There are now strong indications that the previous objection to broadcasting discrete four-channel, i.e. that of the great bandwidth required — has been overcome. It is probable that the US will end up using one of the five currently competing discrete systems, and techniques will be devised for processing matrix material so that it can be transmitted via the discrete broadcasting link.

A matrix-type link can only handle discrete material by reducing that material's channel separation to matrix proportions.
WATTS RMS NOW OFFICIAL

Like the contenders in the GREAT AMERICAN HORSEPOWER RACE, US and Japanese amplifier manufacturers have now largely caused their practice of seemingly multiplying their product's power output by the last two digits of their telephone number.

Soon, in the USA at least, manufacturers will have no choice anyway because the US Federal Trade Commission has now set strict new rules for audio power claims.

Legislation, from November 4 this year, specified that amplifier power output must be quoted as continuous power capability — to be expressed in that technically dubious but colloquially accepted unit, the 'watt rms'.

Other specifications, such as peak power or music power may still be used, but must be based on recognised industry standards — and must be subordinated to the main power output disclosure.

There is of course a strong argument for disclosing both figures — for in assessing amplifier performance it is necessary to know the amplifier's ability to handle peak transients as well as continuous high levels.

BIG MOTHERS

The trend to ever more powerful amplifiers continues, and now there are at least ten models of hi-fi grade power amplifiers available with outputs of 200 watts and more. There is even one monster that puts out 2 kW.

Whilst power such as this is not needed for driving low-priced speakers — in fact such speakers could not withstand the electrical onslaught for more than a second or two — there is a growing trend toward large speakers of very low efficiency.

Transmission-line enclosures are a typical example. Speakers such as these really do need a lot of power if they are to operate satisfactorily.

It is also our opinion, having listened to a very large number of amplifier/speaker combinations, that virtually all speakers sound cleaner and firmer when driven by amplifiers of thirty-five or fifty watts rating than by the more generally used twenty-five watt units.

We stress that there is not a great deal of difference in maximum sound output. In fact as the ear has a vaguely logarithmic response to sound pressure levels it would be necessary to go from twenty-five to two hundred and fifty watts even to double the subjective sound levels. The difference is rather one of quality — and it is a big difference.

WHAT OF THE FUTURE?

Apart from the recent development of truly hi-fi quality cassette recorders, and a few loudspeakers, hi-fi development still consists largely of refining and polishing what went before.

With rare exceptions, speaker drive units are still made very much as they were forty years ago. Cone materials and magnets have been improved and performance is substantially better than was obtainable from the early units — but improvements in loudspeaker performance owe more to developments in enclosure design than drive unit design.

Small modern loudspeakers are dramatically better than they were fifteen years ago, but size apart, Paul Klipsch's horn-loaded domestic speakers, designed in the late nineteen-forties, (and largely unchanged ever since) have still to be seriously out-performed.

Much the same is true of electrostatic speakers. It is now nearly twenty years since P.J. Walker's dramatic demonstration of the full-range Quad ESL.

Yet here again few other speakers can equal the Quad's performance even today. Let alone surpass it.

In fact many authorities believe that the Quad electrostatic speaker is still the top unit — at all but high sound levels, which are not any electrostatic's best point.

Amplifier design has improved to the point where a good example closely approaches the ideal of a piece of straight wire having adjustable gain.

In some areas, particularly that of distortion, several amplifiers have been 'over-developed' — to the point where buyers are paying for 'improvements' that could only be detected by physical measurements.

Not all the improvements have filtered through to the cheaper low-powered models — but even there, amplifiers are probably the strongest link in the hi-fi chain.

Turntables and cartridges too have improved and performance of the top models has now reached the stage where their limitation is the quality of the programme material.

We expect to see progressive refinements of programme material and of loudspeakers for some years to come. Eventually though we believe that there will be a complete change in the technology employed.

The change, we believe, will be to a totally digital technology:

Such a technology would have been unthinkable even three years ago — because of the enormous complexity and sheer quantity of operating elements. Literally thousands of transistors would be required.

But solid-state technology has now advanced to the point where thousands of transistors and associated components can be formed on a single chip — making feasible many applications that were hitherto totally impossible.

The adoption of digital technology would virtually eliminate any problems of noise — either from programme material or generated within the reproducing equipment.

It would open the way to a totally new concept in loudspeaker design. These would become a bank of innumerable tiny transducers — driven in various ways and combinations — but capable of reproducing original sounds in a way that can never be even approached by present-day speaker systems.

Sounds way out? Maybe. But in the past few weeks we have discussed this possible trend with four of the world's leading audio equipment engineers — all were actively investigating similar approaches.
THE SOUND of many musical instruments may be "enhanced" by the addition of reverberation. Particular examples of instruments, to which reverberation is commonly applied, are the electronic organ and the guitar.

Reverberation is defined as the persistence of sound within an enclosure after the original sound has ceased. It may also be defined as a series of multiple echoes, decreasing in intensity, so closely spaced in time as to merge into a single continuous sound eventually dying away to nothing. Reverberation, added with discretion, gives life and brilliance to the music from individual instruments which otherwise appear dull and flat. It is less commonly known that, when reproducing recorded material, the addition of reverberation can considerably enhance the liveliness of the material and its apparent spatial depth.

Artificial reverberation can be achieved in several ways. One system employs echo chambers to achieve the delay. A second system employs magnetic tape-loop techniques, whilst a third, the one used in this project, uses an amplifier that drives springs to provide the delay. It is also possible to achieve delay by fully electronic means but, for normal instrumental or home use, the circuitry is prohibitively complex and expensive.

The unit described is based on a sensitive reverberation spring assembly and is suitable for incorporation into existing amplifier instrumental setups, or for adding reverberation to the reproduction from stereo Hi-Fi systems.

This unit has the required mixing facilities built-in, the proportion of echo to original signal being adjustable by a control called DEPTH. In addition, we decided to make the unit capable of adding reverberation to stereo systems. This involves very few extra components since both channels are mixed into the reverb spring and the combined echo then separately mixed with the original left and right channels. This extra expense is only that of an extra transistor stage and is well justified, even if the unit is mainly intended for monophonic work.

As the unit is completely functional within itself, and fitted into a strong but attractive metal cabinet, it will be equally suitable for use by professionals or high-fidelity audio enthusiasts.

CONSTRUCTION

We housed our unit in a simple pan-shaped chassis with metal cover.

<table>
<thead>
<tr>
<th>SPECIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT VOLTAGE</td>
</tr>
<tr>
<td>Maximum</td>
</tr>
<tr>
<td>Range</td>
</tr>
<tr>
<td>FREQUENCY RESPONSE</td>
</tr>
<tr>
<td>Direct</td>
</tr>
<tr>
<td>Delayed</td>
</tr>
<tr>
<td>IMPEDANCE</td>
</tr>
<tr>
<td>Input</td>
</tr>
<tr>
<td>Output</td>
</tr>
<tr>
<td>CROSS TALK</td>
</tr>
<tr>
<td>With 10 k source impedance</td>
</tr>
<tr>
<td>GAIN</td>
</tr>
<tr>
<td>Maximum</td>
</tr>
<tr>
<td>SIGNAL TO NOISE RATIO</td>
</tr>
<tr>
<td>Direct</td>
</tr>
<tr>
<td>Reverberation</td>
</tr>
</tbody>
</table>
NOTES:
VOLTAGES GIVEN ARE OF THE PROTOTYPE
AND SHOULD BE TYPICAL.
IF USED WITH OTHER EARTHED EQUIPMENT,
ONLY THE EXTERNAL DBX SHOULD BE
EARTHED TO THE MAINS.
THE REVERB UNIT ITSELF SHOULD BE
INSULATED FROM THE CHASSIS.

Fig. 1. Circuit diagram of the spring reverberation unit.

Fig. 2. Full size printed circuit board layout.
SPRING REVERBERATION UNIT

Fig. 3. Component overlay.

HOW IT WORKS

The reverb spring is an electro-mechanical device for delaying and producing echo on audio signals - it operates in the following manner. A relay-like transducer vibrates one end of a spring in response to an input audio signal. The spring continues to vibrate after the excitation has been removed and thereby produces a decaying 'echo' as well as delaying the propagation of the signal to the transducer at the other end. The mechanical system naturally has many resonances and the frequency response therefore cannot be flat over a small frequency range, but is substantially flat over the broad frequency range of 50 Hz to 4 kHz.

Integrated circuit IC1 is connected so as to provide current drive to the input transducer of the spring. The transducer is inductive and hence, the voltage across it will increase with frequency. However, since the current remains constant, the power in the transducer also remains constant. The stereo input is summed into R3 by resistors R1 and R2 (with a loss of 20 dB) to provide a composite signal at pin 3 of IC1. As the amplifier always tries to keep pin 2 at the same potential as pin 3, the voltage across R4, and the current through it, is therefore proportional to the input voltage. As very little current flows into pin 2 of the IC, all this current flows through the transducer.

The output signal from the transducer at the other end of the spring is very small (about +50dB referred to the input) and is therefore amplified back to a reasonable level by Q1, Q2 and IC2. Transistors Q1 and Q2 are low noise types and are arranged as a differential pair to add gain before the inherently noisy IC. The gain is set by (R10+R8)/R8 to about 46 dB. The low frequency cutoff is set by C5 and R8, and the high frequency cutoff is set by R10 and C4. Note that these last figures refer only to the receiving transducer amplifier and not to the whole system.

The direct inputs, left and right, are now both mixed with the common reverb signal in mixers Q3 (right) and Q4 (left). The proportion of direct and reverb signals is adjustable by means of depth control RV1. The gain of the output stage is set by R20, R21 and the bias by R18, 19, the overall gain of the complete system being approximately unity.

If single channel operation only is required, simply delete the second mixer transistor and its associated components. If reverb-only operation, without the mixing facility, is required the output may be taken direct from pin 6 of IC2.

In the event that a volume control is not required, resistors may be fitted to the board (holes provided on board) to set the volume to any desired level. These resistors may have any value between 10 k and 1 M.

This enables the unit to be used as a flexible system component, but, if desired, the electronics may easily be incorporated within an existing system box if room permits.

The majority of the components are mounted upon one single printed-circuit board, although matrix or veroboard can quite easily be used if preferred.

Whichever constructional method is used, it is essential to check polarized components, for correct orientation, before soldering. Note especially that...
two different pin configurations for the BCS49 are available and that it is the Philips type which is shown on the overlay.

The unit should be wired, as shown in Fig. 1, taking care to keep all 240 volt ac wiring well clear of the electronics and especially clear of the receive end of the reverberation spring. The metal case itself should be earthed even though the electronics itself is not earthed.

Fig. 4. Method of mounting the hardware and printed circuit board into the chassis is illustrated in this internal view.

Fig. 5. Front panel drilling details.

Fig. 6. Front panel artwork for the string reverberation unit (half size).

Fig. 7. Dimensions and drilling details of the chassis.

ALL DIMENSIONS ARE IN MILLIMETRES
SPRING REVERBERATION UNIT

SETTING UP
As the reverberation spring is a mechanical device, vibration will produce unwanted outputs. Hence it is an inherently noisy device and should be used at a point in the system where the signal level is high.

Two typical points at which the unit may be inserted in the system are:

1. Between the preamplifier and the main amplifier.
2. After the disc preamplifier, or high level input and the preamplifier.

If inserted between line and main-amplifiers, i.e. after the volume control, turn the reverber volume control to maximum and adjust the preamplifier volume control such that the main amplifier is just below clipping level. The reverber volume control can then be used to set the level required.

If the reverberation unit is inserted before the system volume control, the volume control on the reverberation unit should be set to maximum (or deleted altogether if desired) and the preamplifier volume control used to set the required level.

GIRO NO. 331 705A
C.W.O. on C.P. 150 on orders below £5
Discount: £0-0-0, 20-—£0—15; (except net items)

Export Orders are ex works only (VAT free).

All Orders accepted from Educational & Government Departments

ALL QUANTITIES SPECIFIED ABOVE ARE APPROXIMATE.

MULLARD POLYESTER CAPACITORS C30 SERIES
0.05, 0.1, 0.15, 0.22, 0.33, 0.47, 0.68, 1, 2.2, 3.3, 4.7, 6.8, 10, 15, 22, 33, 47, 68, 100, 150, 220, 330, 470, 680, 1000, 1500, 2200, 3300, 4700, 6800, 10000, 15000, 22000, 33000, 47000, 68000, 100000, 150000, 220000, 330000, 470000, 680000, 1000000

MULLARD POLYESTER CAPACITORS C60 SERIES
0.01, 0.022, 0.033, 0.047, 0.068, 0.1, 0.15, 0.22, 0.33, 0.47, 0.68, 1, 1.5, 2, 2.2, 3.3, 4.7, 6.8, 10, 15, 22, 33, 47, 68, 100, 150, 220, 330, 470, 680, 1000, 1500, 2200, 3300, 4700, 6800, 10000, 15000, 22000, 33000, 47000, 68000, 100000, 150000, 220000, 330000, 470000, 680000, 1000000

MINIATURE CERAMIC PLATE CAPACITORS
0.01, 0.022, 0.033, 0.047, 0.068, 0.1, 0.15, 0.22, 0.33, 0.47, 0.68, 1, 1.5, 2, 2.2, 3.3, 4.7, 6.8, 10, 15, 22, 33, 47, 68, 100, 150, 220, 330, 470, 680, 1000, 1500, 2200, 3300, 4700, 6800, 10000, 15000, 22000, 33000, 47000, 68000, 100000, 150000, 220000, 330000, 470000, 680000, 1000000

POLYSTYRENE CAPACITORS 160V 5%
10, 15, 22, 33, 47, 68, 100, 150, 220, 330, 470, 680, 1000, 1500, 2200, 3300, 4700, 6800, 10000, 15000, 22000, 33000, 47000, 68000, 100000, 150000, 220000, 330000, 470000, 680000, 1000000

B. H. COMPONENT FACTORS LTD.
PART 3

ELECTRONICS IN CRIME

In the battle against crime — both sides are using increasingly sophisticated techniques, Electronics Today reports.

MOST people have an "it couldn't happen to me" attitude toward crime. This results in what the police call 'patchwork' security — the householder waits until a crime has been committed before installing an alarm system — which is then more than not only partially effective. Nevertheless there are many domestic alarm systems, commercially available, that can provide very effective anti-intrusion security — especially if tailored to suit individual applications.

PERSONNEL SECURITY SYSTEMS

On a larger scale the security of widely dispersed installations presents a more complex problem.

Airports, factories, warehouses and other public buildings must be protected not only against the clandestine intruder, but, also against the activities of extremists carrying firearms or explosives as well.

Arson is particularly difficult to prevent. If the potential arsonist can penetrate an intrusion security screen, then there is very little that can be done to prevent him planting devices and successfully starting a fire. Such devices are quite ingenious and can be made to look like everyday objects.

One example is a device used by saboteurs during the Second World War. It looked just like a pencil — hence its name 'fire-pencil'. Inside were two compartments, separated by a thin wall of copper. One compartment contained picric acid (a highly sensitive explosive compound). The other contained a concentrated mineral acid inside a membrane.

When the membrane was perforated the acid would come in contact with the copper dividing wall and after a desired time, (determined by the thickness of copper), would eat through the wall and attack the picric acid.

The result was a violent reaction producing a sheet of flame of high temperature that ignited any surrounding flammable material. The time delay gave the saboteur ample time to leave the scene.

More effective intrusion security and patrolling of areas seems to be the only effective measure against the potential arsonist.

Where an "insurance" job takes place, about all that can be done is to determine the cause of a fire and investigate suspected persons.

It is estimated that about a third of reported fires are deliberately lighted.

AREA SECURITY

Alarm systems play a key role in the reduction of burglary, robbery and other crimes. The mere presence of an audible alarm system may act as a deterrent. Its primary mission is to
prevent a crime from occurring and thereby prevent loss.

In contrast a "silent" alarm with remote "alert" facility has no deterrent value, but provides a better opportunity to capture the intruder. The widespread introduction of electronic alarm systems is forcing many criminals to rethink their methods of working. Successful disabling of alarm systems demands an increased level of skill — and more specialised tools.

Various types of alarm systems are used:

The hard-wired alarm system

In this a series of switches and trips are wired into strategic locations such as windows, door catches etc. The alarm is triggered if any of these switches is activated.

Whilst fairly effective against the casual thief, the more determined intruder can overcome such alarms by studying the system and placing "jumpers" across switch terminals or trip wires. Furthermore if the system is mains powered the simple expedient of disconnecting the power at the main will immobilise the system unless automatic changeover to standby batteries is included.

"Volumetric sensor" alarm systems

Volumetric sensors provide a three-dimensional detection zone. A variety of these devices are available: ultrasonic, passive acoustic, microwave, radar, optical and passive infrared are the most widely used.

They offer a formidable obstacle to the intruder, but are prone to a high percentage of false alarms.

They operate by detecting noise or heat produced by the intruder, or by detecting movement in the protected area (by reflected energy or by Doppler effects introduced into a sonic or RF field saturating the area).

"Perimeter security" systems

In larger industrial applications where security is required beyond the buildings themselves, more elaborate methods are necessary. Here, alarm
systems may be used in conjunction with guards patrolling the area.

Where variable factors come into play as at exhibitions, museums, trade fairs etc. a flexible system has been developed that can be quickly set up and linked to a central control unit, as well as providing communications with guards. (see Fig. 1a and 1b)

This system consists of miniature alarm transmitters that are portable and can be quickly placed at strategic locations. Portable alarm relay stations link one or more of these transmitters with a central processing unit, (which is part of the fixed equipment) together with diversity receivers and control units.

The alarms are sensitive to acceleration, temperature and position and when triggered send a signal identifying that transmitter. The alarm signal is picked up by a receiver and transmitted to a central processing unit.

Immediately a signal is received, the guard nearest the alarm point is alerted by UHF radio or an inductive loop. If the guard fails to acknowledge the call a nearby group of guards is alerted. At pre-set time intervals other actions may be initiated, eg. automatic closure of doors, telephone alarms to the police etc.

All alerts are registered on a printer which registers date, time and location as well as the name of the guard.

This integrated system has been developed by Sweden's Sonab AB and is representative of a modern highly effective security system.

The laser "fence"

Because installations such as airports and military bases are vulnerable to intrusion, the US Air Force has developed a laser system for perimeter security.

Solid-state injection lasers (giving off radiation in the near infra-red) generate narrow beams of energy which are monitored by remote receivers.

Any intruder crossing the optical path will trigger an alarm. Fig. 2 shows how an overlapping array of laser fences can provide total security around a given area. The units shown in Fig. 3 are portable and can withstand the high winds experienced around airfields.

They are operable even when visibility is poor. The low power laser sources are safe to personnel.

Weapon detection

With the current wave of terrorist attacks and hijackings the need for security at airports, post offices, and other public places has resulted in a large range of devices coming into use.

Baggage, for instance, is checked prior to loading into a plane's cargo-hold. Security guards usually search each piece by hand but this is both time consuming and costly.

Devices are now available for automatically checking luggage for weapons and other hidden items. Westinghouse, have developed a gamma-ray detection system for continuous luggage monitoring.

The luggage is scanned as it is carried along a horizontal conveyor, between the gamma source and the detector array. (see Fig. 4).

A fan beam of gamma rays passes through the luggage and is monitored by an array of scintillation detectors.

By adjusting the detection level appropriately the system detects the presence of a weapon by looking for radiation falling below a preset threshold level.

The high degree of absorption by weapons, especially lead bullets, makes them stand out compared to most metal objects carried by travellers. The incidence of false alarms is sufficiently low to make this an effective and fast security monitor.

Since the radiation source consists of a radioisotope inside a shielded container, the unit is compact and easily transportable.

Another type of system that can be used on conveyor belts is the magnetic metal detector similar to that used to detect tramp metal in quarries and mines.

Goods moving along the conveyor pass through a detector loop which is adjusted to detect metal objects above a certain size. When a metal object enters the activated loop, it distorts the magnetic field and triggers the alarm. Units such as this have been tested in postal sorting offices with good results.

Detecting explosive and non-metallic objects

Firearms are relatively easy to detect, their concentrated mass of metal can be spotted by conventional metal detectors.

But explosives and non-metallic objects pose a more difficult problem.
ELECTRONICS IN CRIME

- in fact many of the recent ‘letter bombs’ were impossible to detect without the use of very sophisticated equipment.

At present the only effective way to detect explosives and non-metallic objects is to sense their characteristic odours.

Explosives are naturally unstable compounds. They emit vapours that can be detected by gas chromatographs, and other forms of chemical analysers.

These ‘electronic sniffers’ sample the air (often routinely), in places where explosives are likely to be concealed: luggage lockers at airports and railway stations are common examples. These units can also detect fire-arms by sensing the vapours of the oil with which they are usually lubricated.

Specially-trained dogs are also used to detect the odour of explosives, firearms and other contraband material. At present, trained dogs are the most sensitive of our sensors, in fact their sensitivity to very small concentrations of vapour far exceeds that of even the most sensitive gas chromatograph. (Both dogs and chromatographs are much more sensitive than an unaided human.)

Protecting key public figures

Assassination and terrorism is a growing menace.

A great deal of research into personal protection has been carried out by the US Army’s Mobility Equipment Research and Development Centre (MERDC).

MERDC’s recent efforts have been concentrated on three main research projects. These are, controlled access to crisis areas, crowd surveillance, and sniper fire detection.

Controlled access checkpoints have existed since hostile actions started between groups of human beings. Until recently these consisted of visual and physical checks, and evaluation of behaviour patterns. But now, these checks are aided by various electronic devices.

The principle hazard is concealed weapons. These are usually detectable by channelling people through a limited number of entrances housing various types of magnetic and X-ray equipment coupled to alarm systems. (Fig. 5).

Fig. 7 shows an X-ray of a simulated 80 kg human. The dummy is a walking arsenal. Observable on the X-ray are several otherwise-concealed weapons distributed about the body. This X-ray photo was taken using an image intensifier. TV screen displays are also used. These are less clear but improved systems are being developed.

Whilst this technique provides a quick generalised ‘scan’ of the population, more sophisticated methods are used to investigate individual suspects.

One device that shows great promise is the psychological stress analyser. This device analyses changes in involuntary modulated components of the human voice (Fig. 7). In use, the suspect is asked a series of questions and his answers recorded. The subsequent tape is run through the analyser which produces a chart which must then be interpreted by a trained operator.

MERDC’s goal is to produce a unit which can analyse suspects’ speech directly, indicating the presence and degree of stress without operator interpretation.

Basic voice analysis units are currently being used by several police forces and army units worldwide. Regrettably, these devices are also being used by employers to vet their prospective employees – with or without their permission. However legislation may well soon be passed in the USA to outlaw their use except, presumably, by security organisations.

Another device used for crowd surveillance is the infra-red imager. Figure 8 shows how a weapon will reveal its presence thermally at a distance of about four metres. This technique works well but has not yet been evaluated practically.

Another device developed by MERDC detects and locates the source of sniper fire. Naturally this is only effective after the act, but some measure of protection is provided if the origin of a shot is known.

The device uses multiple radiometers in a 360 degree array to detect and locate the infrared component of a gun-flash. Maximum range is about 300 metres. The unit covers twelve 30 degree segments in azimuth and four 20 degree layers in elevation. Thus there are 48 fields of view (Fig. 9).

The unit incorporates an acoustic alarm actuated when ancillary sensors detect gunshots close by.

Fig. 8. Thermal image of concealed weapon.

Fig. 9. IR gunflash detector display console.

The various technologies being researched by MERDC have many civilian applications and their efforts have been closely coordinated with the US Dept. of Transportation, Federal Aviation Agency, Customs, Secret Service etc.

At the beginning of this century there were only three crimes a year per thousand people. By 1971, this figure had increased to three per one hundred people – ten times as many. (Source – Prof. Sir Leon Radzinowicz, Wolfson Professor of Criminology, University of Cambridge).

An American gangster Al Capone once said “There is in this country a gangrene... it is called the almighty buck. As long as people are prepared to do anything to get it, I can control them”.

Ernest G. Rezak
ETI TOP PROJECTS

CONTENTS

AUDIO
100W GUITAR AMPLIFIER .. 6
Rapport, high quality circuit satisfies 100W continuous power
MIXER PREAMPLIFIER ... 11
Simple circuit for use with 100W guitar amp
MASTER MIXER .. 38
Major project gives professional performance
SIMPLE AMPLIFIER ... 83
1.5W amplifier using discrete components
SIMPLE LOUDHAILER ... 90
A few components — a lot of power

TEST GEAR
WIDE RANGE VOLTMETER .. 14
Solid state circuit has 22 ranges — from 10mV to 1000V a.c. d.c.
TRANSISTOR TESTER ... 23
Basic circuit measures gains up to 1000
FET DC VOLTMETER ... 24
Cheap to build with 100k, input impedance
OSCILLOSCOPE CALIBRATOR 66
A circuit to build into your 'scope
AUDIO ATTENUATOR ... 84
Provides 0–59dB attenuation in 1dB steps

FOR THE MOTORIST
ELECTRONIC TRANSISTORISED IGNITION 30
A popular design to improve your car's performance
THE REVEALER .. 60
Is there metal or filler underneath the paint?
BRAKE LIGHT WARNING 76
Dash panel indicator flashes when brake lights are a.k.

FOR THE PHOTOGRAPHER
PHOTOGRAPHIC TIMER ... 26
Provides accurate timing of photographic processes
SOUND OPERATED FLASH 66
Can be triggered by anything, from a dripping pin to a thunderclap

FOR THE HOME
TEMPERATURE METER .. 19
Gives a meter reading — even at a distance
UHF TV PREAMP ... 20
One transistor circuit pops up week signals
BURGLAR ALARM ... 86
A variety of alarm circuits are described

MISCELLANEOUS
LOW POWER LASER ... 62
Build your own laser for about £100
COIN COLLECTOR METAL LOCATOR 70
Simple but sensitive circuit
EASY WAY TO MAKE P.C. BOARDS 80
Solves messy painting and hours of time
TECH-TIPS ... 92
A collection of circuit ideas for the experimenter

We show the actual contents section here — there’s really something for everybody! All articles appear as they did originally but have been updated for new components etc. where necessary. The book is bound in a special thick cover to protect it from the use you are bound to give it.

IN CASE OF DIFFICULTY, FILL IN THE COUPON BELOW, SENDING 85p, TO RECEIVE YOUR COPY DIRECTLY FROM US.

TO: ETI TOP PROJECTS BOOK
Electronics Today International,
36 Ebury Street,
London SW1W OLW.

Please send me a copy of the ETI Top Projects Book [enclose a cheque/P.O. for 85p (payable to Electronics Today International) which includes 10p postage (applicable to surface mail world-wide)].

Name
Address

December 1974.

ON SALE AT YOUR NEWSAGENTS — 75p

ELECTRONICS TODAY INTERNATIONAL — DECEMBER 1974
THE ORIGIN of this problem is not known. The writer heard it a while back, and thought it would be fun in electronic form. So here's the story:

A family comprised Dad, who weighed in at 140 lbs, Mum, who also tipped the scales at 140 lbs; son Tom — 70 lbs; and daughter a nimble 70 lbs, plus Fido a well fed dog of 15 lbs. They all came to a river which they wanted to cross. In the boat which was tied up there, was a notice which read 'CAUTION! MAXIMUM LOAD 150 lb.' Now this river was infested with crocodiles, so no one was keen on swimming. Problem: how did all the family get across the river?

The circuit is arranged so that the alarm operates while switches are being moved from side to side — if the total load they represent exceeds 150 lbs.

Each member, including the dog, is represented by a three-position lever switch. Only the contacts in the middle position are used, as they are closed while the levers are passing through the 'dangerous' position, i.e., while people are in the boat. Fig. 1 illustrates the arrangement. The alarm is a red pilot lamp marked SUNK.

The circuit is shown in Fig. 2. The lever switches used are 3-pole three position, although the links between poles are not shown in the circuit. All the levers are shown in one side position, and they close circuits only momentarily as they pass through their centre positions. This brief contact applies a voltage to the gate of the silicon controlled rectifier SCR, which turns it on and leaves it on, thus leaving the SUNK light turned on. The moving contacts on the switches are so wide that if the switches are moved reasonably together there is no chance of failing to make a circuit when one should be made.

To reset the game after the boat has been sunk, a SALVAGE push button is provided. This is a normally closed push button, which, on being pushed, simply opens the circuit momentarily.

PARTS LIST — ETI 230

- R1 Resistor 1k, 1/2W, 5%
- R2 3k
- Switches 5 by 3 pole 3 position rotary
- 1 by normally closed push button
- SCR1: Silicon controlled rectifier C106 or similar
- 4.5 volt battery, 1.5 volt pilot lamp.

THE FAMILY FERRY

An old problem updated — electronically
and so turns off the SCR — unless the switches have been left in a 'sunk' arrangement.

A study of the circuit will show that the lamp is turned on if any circuit is made between the right and left hand side lines. The switches between those lines are such that, in all dangerous situations, a circuit IS made. No main switch is provided as the leakage through the SCR is negligible.

CONSTRUCTION

This project was assembled on an aluminium panel in a plastic box. The underside view of the panel is shown in Fig. 3. The SCR and two resistors involved are mounted on a tag strip, as shown in Fig. 4 and the wiring diagram.

Switches should be assembled first, and wired one by one as they are mounted — there is too little space to get at all the terminals once they are all mounted.

The switch wiring is shown in Fig. 4, where each dot represents one of the 12 terminals on each switch. The terminals on the switches are not actually numbered, but the numbers given to them in the right hand column of Fig. 6 relate to the positions indicated by numbers in the switch diagram in Fig. 5.

After mounting and wiring the switches the tag strip should be wired and mounted. An aluminium clip was made to hold the flat 4.5 volt battery, and this was anchored by the tag strip mounting screws. The pilot lamp and push button should be mounted and wired last.

CHECKING

Each of the 'dangerous' conditions should be set up to see that the SUNK lamp comes on as it should. If there is any difficulty with the SCR turning on, the value of R2 may be reduced. The value shown suits the SCR specified, but other SCRs with less sensitive gates may need more current to trigger them, and so the resistor may be reduced to suit.

Incidentally, if you can get this family across the river safely in less than eleven crossings, let's know how you do it!

Fig. 3. Underside view of the front panel showing how switches are mounted.

Fig. 4. Schematic of the connections to the tag strip.

Fig. 5. Switch numbering convention used. Note that terminals 1, 5 and 9 are the wipers.

Fig. 6. Method of wiring the switches. Pin numbers at side are the same as those shown in Fig. 5.
Beginner's Guide to Electronics
T.L. Squires, CEng, MIEE, and C.M. Deacon, MSc, BSc.
The third edition of this highly successful work of reference written for those entering the diverse field of electronics has been completely revised and brought up to date.
Contents: Electric Currents, Direct and Alternating Currents, Electronic Components, Basic Electronic Circuits, Test Instruments, Radar, Medical Electronics, Electronics in Space, Television, Electronics in Industry, The Future of Electronics, Training to be an Electronics Engineer, Modern Components, Computers. Index. 240 pages 7½" x 5" Illus. 1974 Cased £1.90

Elements of Transistor Pulse Circuits
T.D. Towers, MBE, MA, BSc, CEng, MIEE MI E
In the new edition of this popular book the opportunity has been taken to bring up-to-date the coverage of switching transistors and diodes and to include substitutions for obsolete transistors. The work is designed to provide electronic engineers and others who may be interested with a review of the transistor version of the building blocks commonly used in pulse circuits.

IC's & Semiconductors
DANEBOROUGH, CROOKED VILLAGE, ENGLAND.

Digital Displays

LEDS 14 P.
MINI DIGI DISPLAY OR RED DIODE DISPLAY LEDS, 20" STYLE OR CLIP 14P ea.
1209 RED LED & CLIP 17p ea.
BIG 1" RED OLD & CLIP 10p ea.
ORANGE & GREEN LEDS:
MINI 35P ea. OLD & CLIP 35P ea.
INFRA RED LED 11.287.773.35P.
PS12 PHOTO IC IC/310A-Pitch 11.

DIGITAL CLOCK
NEC INTEGRATED CIRCUITS.
AY1224 & AY143B-Cips supplied with 21p socket & data 4.25
MS3011/1 & DIO: CLOCK with 21p socket & data 19.50
3 DIGIT DOW AVIS130 17.50
3 DIGIT DOW AVIS130 17.50
3 DIGIT DOW AVIS130 17.50

CASSETTE MECHANICS £12.50
STEREO CASSETTE MECHANIS.
As used in imported types costing £1000 USSR requires a case & electronics parts supplied. Semi for data 15p.
NO P&P CHARGE for UK orders. Add 10p Handling charge for orders under £2. Data, and circuits where appropriate, supplied with orders, or available separately (4p stamp each). SINTEL 53A Artes Street, Oxford.

LOW PRICES:
6 Minitrons for £1.80 (+8% VAT = £1.96)
300 soldercon pins for £1.50 (+8% VAT = £1.62)

CALCULATOR KEYBOARD
FLEX KEY 195K-6 Suitable for CT5001 Available 10 order £0.60 (+8% VAT = £0.66)

SPECIAL COMBINATION PRICES:
MK50250N ALARM CLOCK IC £1.50 (+8% VAT = £1.68)
MK50250N with 4 Minitrons £1.00 (+8% VAT = £1.08)

7-SEGMENT DISPLAYS
Minotron 3015F (9mm, HT) £1.20 (+8% VAT = £1.29)
Licitron DL707 in Common anode Red LED 3" RH/PH £1.70 (+8% VAT = £1.83)

Soldercon PINS (Instructions supplied)
- A Low Cost, Reliable and Flexible Way of making sockets for IC's, displays, etc. Strips of 50 pins 40p (+8% VAT = 43p) Strip of 100 pins 70p (+8% VAT = 75p).

Siemens NE555V (555 Timer) £1.00 (+8% VAT = 1.08)

LARGE* ATTRACTIVE
(used by Britain's largest manufacturers of digital clocks) Continuous 7 segment plastic or discharge displays. Attractive orange, legible to 48 feet.

SP151 BECKMANN DIGITAL DISPLAYS
- SP151 3½ digit (30") clock module = £1.40 + VAT = £1.52
- SP152 1½ digit (55") clock module £4.00 + VAT = £4.40
- SP3522 digits £4.40 + VAT = £4.84
- SP3523 digits £4.40 + VAT = £4.84

SPARKRITE Mk II
Electronic Ignition... Better on all points

The SPARKRITE MK II is a full capacitive discharge electronic system. Simply designed to retain the points assembly - with all the advantages and none of the disadvantages. No misfire because contact breaker bounce is eliminated electronically by a simple suppression circuit which prevents the unit firing if the points bounce open at high rpm. Contact breaker bounce is eliminated by reducing the current to about 1/50th of normal, thus avoiding firing. But you can still revert to normal ignition if need be. To seconds, 1 points go 1½ times longer without attention. All these advantages.

- Fitted in 15 minutes.
- Up to 20% better fuel consumption.
- Starts all weather starting.
- Cleaner plug - last 5 times longer without attention.
- Fatter acceleration.
- Faster top speeds.
- Coated battery last longer.
- Efficient fuel Burnng with less air pollution.

The kit comprises everything needed
- Ready drilled scratch and rust resistant can,
- Mounting cables, coil connections,
- Sparking coil,
- Standard 5 year guaranteed transformer and components,
- Full instructions to make positive or negative earth system,
- 6 page installation instruction leaflet.

SPARKRITE MK II IS THE BEST SYSTEM AT ANY PRICE!!

SOLDIERS
40 ELMSTON ROAD, SELFIDE, WIGGLESWEE
TEL. 01-301 3629

ORDER NOW TO:
ELECTRONICS DESIGN ASSOCIATES
(Department ET12) 82 Bath Street,
Walsall WS1 3DE Phone 33652

Please send:
Sparkrite Mk II D.I.Y. Kit(s) at £6.95 each incl. VAT and P & P
Sparkrite Ready Built Neg. Earth Units at £15.95 each incl. VAT and P & P
Sparkrite Ready Built Positive Earth Units at £19.45 each incl. VAT and P & P

NAME
ADDRESS

Send cheque/or P.O. for £

Send SAE for brochure.
ELECTRONICS
-it’s easy!

Introducing the elements of amplification.

AN AMPLIFIER, whether electronic, mechanical, acoustic or optical, is a system building block. It allows the amplitude of an input signal to control a secondary source of power such that the amplifier output is of larger power (or voltage or current etc.) than the input signal. This concept is shown as a block diagram in Fig.1. In its simplest form, an electronic amplifier has one input, one output and source of power. The common line is usually not shown in block diagrams, being there by inference. Actual circuits always require a common line which is variously referred to as earth, ground or negative rail.

![Amplifier Block Diagram](image)

SOURCE OF STEADY POWER
THAT IS CONTROLLED INTO OUTPUT BY INPUT

INPUT SIGNAL

OUTPUT SIGNAL

ACTIVE DEVICE

IMPLIED COMMON LEAD

Fig.1. Schematic diagram illustrating the Amplifier function.

PART 11

Would you believe that there is a ten transistor radio on that tiny 1 mm square chip. The device is the Ferranti 2N144 radio IC.

ALL SHAPES, SIZES AND PURPOSES

Although the basic electronic building blocks now available are extremely versatile, there is still no single magic box that can perform all amplifier tasks at the best price and performance. Consequently, we make do with many different forms of amplifier to suit an even greater number of applications.

Most amplifiers increase signal voltage amplitude; others, more unexpectedly may reduce it. In both cases we say the amplifier has a gain eg. a gain of 10 — or a gain of 0.1.

The most common need to amplify the voltage at the input, but often we may need to increase the current or power level. Yet another need might be to accept a current input and provide a voltage output. The purpose of the amplifier must be clearly understood, for the design and trouble-shooting procedures will differ for each case.

Newcomers to electronics may think that an amplifier must alter the signal/amplitude-level linearly without affecting its time or frequency characteristics. This is certainly so with hi-fi audio-frequency amplifiers and with very sensitive transducer amplifiers, but again some amplifiers are designed to distort the signal in some ways to suit a particular purpose. More about these later.

AMPLIFIER JARGON

The role of an amplifier is denoted, to some extent, by a prefix. For example a pre-amplifier may precede a main amplifier. It amplifies low-level signals (micro-amperes, microvolts and microwatts). Figure 2 shows a string of amplifiers in a typical system.

A power amplifier increases the power level of signals in order to drive the output device of the electronic system eg. the loudspeaker in a hi-fi system, the display tube in an electronic counter. What constitutes a power amplifier and what constitutes a small-signal amplifier is quite arbitrary in absolute terms — the power stage of a digital pocket calculator needs to drive devices rated in milliwatts, but a rolling-mill control may need tens-of-kilowatts capability.

Amplifiers have other applications apart from providing gain. You will...
An example of a hybrid FET-input, operational amplifier IC. The small chip contains two FET transistors, the large chip the remaining bipolar transistors. The circuit contained in these two tiny chips is shown on the right. Each division of the scale on the left is 1/8 mm.

Remember in an earlier section, we discussed how connecting a low impedance meter to a high impedance circuit could affect, or even damage, the circuit. This effect, the loading of one stage by another, may be overcome by using an amplifier as a “buffer” between the stages.

Buffer-amplifiers usually have a voltage gain of less than one. However, they do have a power gain and their usefulness is mainly in that their input resistance is considerably greater than their output resistance. Thus the output of a buffer stage can be loaded heavily with little effect on the input. They are, in effect, impedance converters.

Another amplifier characteristic of interest is whether it can handle direct-coupled signals or not. If the signal is coupled to the input via a capacitor, dc signals cannot pass, and such an amplifier is known as an ac amplifier. This is not necessarily a disadvantage for, in many systems, only ac signals are of interest.

Another type of amplifier that will often be encountered is the so-called operational amplifier. In the early days of electronics, dc amplifiers were difficult and expensive to build because any drift of component values or gain resulted in an unwanted output change. Thus special design procedures had to be used for dc amplifiers, making them very expensive. Nevertheless, they were used extensively in early analogue computer systems to perform basic arithmetical operations — adding, subtracting, sign inversion and integration— hence their name. (This will be expanded later in the series). Today the operational amplifier can be manufactured inexpensively in integrated circuit form.

In fact, the tables are now turned; the modern operational amplifier is even challenging the single transistor in price, and has tremendous advantages in stability and flexibility, over discrete transistor stages. Indeed these new basic building blocks come close to providing an all-purpose basic amplifier unit.

FREQUENCY RESPONSE

A very small change in the dc level at the input of a dc amplifier will produce a corresponding dc output-level change. The ratio of output to input-level change is called dc gain. In an ac amplifier, this change is virtually zero because ac signals are not recognized. This does not, however, mean that there is zero dc level at the output, merely that it is unchanged by very-low frequency signals.

Fig. 2. Amplifiers having different functions are often combined in a series chain to achieve an overall purpose.

Fig. 3. Response curves of amplifiers having three different amplitude/frequency characteristics.
THE FREQUENCY PERFORMANCE OF ALL AMPLIFIERS CAN BE SHOWN BY TWO GRAPHS

The frequency performance of all amplifiers can be shown by two graphs—amplitude versus frequency and phase versus frequency. The first is more commonly encountered. There are other things a designer needs to know, such as time-response to a step-change input, but for the moment we will restrict ourselves to the amplitude versus frequency characteristics.

Physical factors make amplification very difficult at high frequencies. Thus, all amplifiers cease to be effective at some upper frequency, but in practice, it is the attainable relative-frequency limit that matters. For example, if the signal to be amplified has no content beyond 20 kHz — as in hi-fi sound systems — there is little point in using a unit with 200 MHz capabilities. This would be more expensive to build and, therefore, a waste of effort.

We use several descriptive terms that denote an amplifier's type of frequency response. Figure 3 shows three main classes — Low Pass (passes only frequencies below a selected cutoff point), Band Pass (passes only frequencies between upper and lower cutoff points), and High Pass (passes only frequencies higher than a selected cutoff point).

Note that the high-pass amplifier still has some upper frequency limit beyond which its response will drop off. The same terms apply to filter circuits — indeed amplifiers can be regarded as filters capable of providing gain.

The frequency response of an amplifier is primarily limited by the active device itself (transistors etc) and secondly by the passive components around the active device which modify its performance. Some amplifying elements will work at megahertz frequencies, some only at kilohertz frequencies. Each have their units.

PRACTICAL LIMITATIONS

The first active electronic-amplifier element was the triode thermionic valve (briefly described in the last section). This has now been replaced in most applications by the transistor. The transistor does the same job but with less power loss, smaller space requirements and much reduced cost. Several packaged forms of transistor are shown in Fig.4.

The system designer would ideally like amplifiers that accept any polarity of input signal (be it negative or positive with respect to the common line) and amplify it without changing the polarity, or distorting the waveform in time or amplitude.

Unfortunately neither the thermionic valve, nor the transistor, can provide these facilities unless they are used in special ways along with passive elements. Both devices individually will only operate with one polarity of input signal — see Fig.5. If the signal swings to the other polarity, the output disappears: they become rectifiers. Transistors may be constructed to operate with either polarity dc signal, but not both polarities with the same device. That is, they may be constructed as complementary units, valves cannot.

Another practical limitation is that these basic devices can only tolerate certain maximum-magnitude signals; as the input signal is increased, a point is reached at which the output signal ceases to increase in amplitude (it gets clipped). If exceeded still further the device may fail altogether. These two effects are the main shortcomings of both valve and transistor, and are illustrated diagramatically in Fig.6.

Eventually an active element may be discovered that does not suffer from these shortcomings; until then we must modify the characteristics of existing active elements in order to obtain the characteristics we need.
This is done by using the device in combination with other active and passive elements to form complete circuit combinations that become our required basic amplifier blocks. Such circuits are either built from individual components — the discrete circuit; or alternatively they are purchased ready designed and manufactured as hybrids — a discrete circuit packaged into one unit. A third alternative is the integrated circuit (the IC) in which all active and passive elements are fabricated on a common substrate. Figure 7 shows several modern amplifiers based on the transistor amplifying element.

AMPLIFIER CHARACTERISTIC CURVES

The various types of individual amplifier elements behave differently, have different signal-level handling ability and have different input-to-output signal ratios (gain). Furthermore, the gain may depend upon the amplitude of the input signal and on what is connected to the output.

The information, needed by a designer on device characteristics is commonly provided by graphs known as characteristic curves. We met the simplest form of curve when we discussed the light-dependent resistor in Part 2 of this course. In that case there was only one relationship — that of resistance versus light level.

The problem of presenting characteristic curves for amplifiers is more complex than for that light-dependent resistor, for there are an infinite number of describing curves. To understand this, consider the relationship between the supply current (I) flowing into an active element (Fig.6) and the voltage developed at the output (Vout). It is not possible to draw a unique single graph, as the relationship depends upon the signal current into the input terminals — call it fin. For each value of fin there will be a specific graph of I versus V (out).

A convenient way of representing what happens is for us to draw individual curves at evenly-spaced, realistic values of fin. The result is a family of curves as depicted in Fig.8.

A little thought shows that other families can be constructed also output-voltage versus input-voltage for various values of input current is one. Furthermore the fixed parameter — could be input voltage instead of current — as is the case for valves.

The characteristics of both valve and transistor devices can be visualised this way (as indeed can any type of three terminal amplifier) and these curves are of great value to designers.

Most people engaged in electronics do not need to measure the characteristic curves for themselves, they are provided in manufacturers’ data sheets. It is important for us to understand these curves, for they help explain how the non-ideal characteristics of active elements (discussed above) are overcome in practical circuits. Before discussing how this is done we need to know more about the transistor itself.
I BELIEVE that I have mentioned before that there are radio stations in the USA and in Switzerland that transmit accurate information on VHF. This data ranges from pulses at specific time intervals right through to full BCD coded time of day. So far nothing anything like this is available in this country but - when CEEFA/ ORACLE starts up full time transmissions - the date, day of the week and time of day is to be transmitted on each page header. The page header contains data to identify it to your receiving equipment with the intention that the equipment will ignore all pages except the one that you have chosen to view on your selector. The rate at which new pages are transmitted is of course a lot faster than one per second but as one page may contain a full screen of data and another page only a few lines, the time between pages is not constant.

TELLING THE TIME WITH CEEFA

A TV tuner with basic decoder circuitry for page headers added would give a source of some very valuable data. At present the data is transmitted in ISO-7 (or ASCII) coded format to enable all 64 character codes to be transmitted along with some instructions and a parity checking bit. This in turn makes up into 8 bit words where the low order bits for the numbers 0-9 are in standard BCD format. After the sync and control data for each page header (which could possibly be ignored in most applications) comes data in the format 'CEEFA P309 Thu 19 Feb 14.05/34'. This data starts in word number 14, ie after 13 words of eight bits, and is 32 words long. To extract the time data you would need to check the clock run in (the first two words of the control data), then ignore the next 34 words (34 x 8 bits). This would put you at the first bit of the tens of hours digit, as we do not need the first four bits of any ISO-7 word for numeric purposes we can now ignore 4, read 4, ignore 4, read 4, ignore 12 (includes separator), read 4, etc until we have read the six lots of 4 bits BCD data into a storage register. We can now parallel read from this register into a set of latches to give us latched BCD time information with an accuracy of about +/- 10mS from an accurate nationwide source.

Thus we have a system whereby we can have any number of clocks all of which will always read the same correct time, a digital TIM. The only two problems at present are the cost of such a unit, which would not deter those who need this sort of accuracy, and the fact that the source is only available during normal TV transmission times. If you think that this facility, or even the whole of the CEEFA/ORACLE system should be available 24 hours a day then write to BBC or IBA and put forward some good reasons for a 24 hour service.

PROGRAMMABLE CALCULATOR WITH PLASTIC TAPE INPUT

Once upon a time I was quite involved with a range of calculators from Advance Electronics, they are the people that produced an 'Executive' at the same time as Sinclair. I still have an Advance model BB which I think is one of the best ergonomically designed machines on the market even if it is too expensive for its functions. The same company has also had a programmable machine on the market for about 18 months and recently has offered this as a kit (see last month's ETI), the machine has two memories, square root, percent, and 16 digit readout (8+8). The programmability is restricted to a total of 40 steps over two programs one up to ten steps and one to 30 steps, these are enough for most engineering and scientific calculations. There were in my opinion only two faults with this machine, the first was the fact that there was no 'compare' available and thus whenever a comparison was required the machine stopped for a manual comparison and then a continue or switch to program 2 instruction was given - manually. The second fault was that the memory was mains dependant and so the machine had to be reprogrammed after being disconnected from the mains. This fault has now been overcome with a new adaptation to the basic 152P calculator which consists of a plastic strip with instruction steps punched into it on a simple mechanical punch similar to an ordinary portable paper-tape punch.

In operation, the new programming device bypasses the calculator keyboard; the program is punched as a series of indentations on a sprocketed plastic strip which is fed over a sensing device by a miniature drive motor. A novel principle is used in the patented sensing device; the indentations
in the plastic strip are detected by a row of miniature ball bearings which then depress a strip of electrically conductive rubber onto a row of contacts. The 162P calculator fitted with the new programming mechanism and complete with the punch costs £249. In addition Advance Electronics is making available a series of commonly used programs and providing an advisory service to users who wish to write their own routines.

BUTTONS ARE OUT!

Television sets were one of the first, and light switches not far behind - what? The no buttons revolution, touch-tuning TVs, proximity sensing lift 'buttons', touch-sensitive light switches are all part of the new revolution away from pushes and clicks. The latest application of this approach is a little more sensible than most, with the advent of the electronic alarm clock with the 'snooze' feature the idea is to not really wake you fully but to warn you that the time to emerge from your cocoon is approaching. To activate the ten minute or so alarm delay that the 'snooze' gives you, you have to close a circuit somehow. The first answer is to put a button on the back of the clock which will kill the alarm when pushed, the problem here is that there are probably at least five or six buttons on the back of the clock and by the time you have found the right one you are fully awake anyway and might as well get up. So far there have been two approaches to this problem, the first uses a mercury switch or swinging magnet and relay to give a 'snooze' closure when the clock is tilted, this needs to be thought of at case design stage so that the case can be tilted and return to rest safely. The second approach is to use a large touch switch area on the clock case where you just have to touch it in the right area to activate the 'snooze'.

The new Heathkit digital clock kit, the CG-1092AE uses a strip of metal on the top of the case as a touch switch, if you have to have a lump of metal on your case you might as well make it useful in some other way so Heathkit have made it in the form of their logo - quite clever. For instance, when the electronic beep wakes you in the morning, there are no switches to fumble for. Instead, the slightest touch of the Heathkit logo on the top of the case turns off the alarm electronically. The snooze cycle, if activated the night before will give you another 7 minutes catnap (repeateable up to an hour). The clock has its own built-in battery supply that takes over in case of a power failure, keeping reasonably accurate time (without the lighted display) and still waking you in the morning at the correct time. When AC power is restored the correct time is once again displayed without needing to reset the clock by more than a few seconds.

Other features are 12/24 hour format, 24 hour format, 24 hour alarm, automatic brightness control, and a battery switch so that the batteries do not discharge unintentionally. The kit is complete with plug-in ICs and case with optional stand and as with most Heathkit products no previous experience is necessary with their instructions. The price of the kit is rather high at £50.80 (incl. of P&P, VAT), and the completed ready-built clock at £72.40.

H.P.I.C.s.

What is the most expensive commercially available IC. We exclude customised ICs and very complex mini-computer ICs and only mean that the average amateur or engineer might buy. The most expensive one I know of is £46.71 plus VAT and is only a digital stopwatch IC, the ICM7045 from Intersil via Celdis. The functions of this chip are basically a stopwatch with eight digits giving readings down to 1/100th of seconds from a 6.563MHz crystal. Its functions include four run states -

1. **Standard**: After Reset, Start begins the timing, Stop halts the count and displays the total time. A second event can be timed from the previous time or from zero, i.e Reset, Start, Stop, Reset, Start, Stop; or Reset, Start, Stop, Start, Stop.
2. **Sequential**: Here, after the initial Reset, the Start will time the first event. A second depression of Start will stop the first time, display and hold it whilst the clock has reset to zero and started timing the second event.
3. **Split**: Similar to Sequential except that the times are cumulative, i.e. the reset to zero at each 'Start' is not operative.
4. **Rally**: Basically similar to the Standard except that the times are cumulative and so the Reset function is disabled.

Very nice, well designed, ideal for most stopwatch timing applications. The only point is that the new Emihus chip with about £8 of low power TTL added will do the same job and more at a cost (including the TTL) of about one third of the Intersil chip. It's a lot extra to pay for the advantage of a one chip unit even if it is in low power CMOS. If there really is a big market for accurate stopwatches with all of these functions either Intersil should drop their price or Emihus should put an internal latch on their chip (that could then also be used as a frequency counter).

REFERENCES

1. BBC, Broadcasting House, London W1A 1AA
2. IBA, 70 Brompton Road, London SW7.
3. Advance Electronics Ltd, Raynham Road, Bishops Stortford, Herts.
4. Heathkit (Gloucester) Ltd, Gloucester, GL2 6EE.
5. Intersil Chips - Celdis Ltd, Loverrock Road, Reading.
6. Emihus Chips - Bywood Electronics 181 Ebbwens Road, Hemel Hempstead, Herts.
Stable RC Oscillator

The frequency of oscillation of this circuit is determined by a twin T network and is stable to within 0.05% for ±10% supply variation.

A temperature stability of 0.2% from -20°C to 80°C will be obtained if polycarbonate capacitors are used throughout.

With the values shown the circuit oscillates at 60 Hz. It will operate at very low frequencies for which the values required are given by the formula:

\[F = \frac{0.159}{R_3C_1} \]

where \(F \) = frequency in hertz and \(R_3 \) is in ohms \(C_1 \) in farads \(C_1 = C_2 = \frac{1}{2}C_4 \) and \(R_3 = R_4 = 2R_5 \).

Transistorised Flasher

This simple circuit will flash a 6 volt lamp at a rate determined by the size of capacitor \(C_1 \). It is most economical on power as it only draws current when the lamp is ON. When the lamp is OFF both transistors are biased OFF.

Variable Duty Cycle Oscillator

The circuit shown enables a rectangular wave output to be obtained with a duty cycle which can be varied over a wide range by the setting of the potentiometer VR1.

The well known 555 integrated circuit is used as a monostable device. The capacitor \(C \) charges from the positive line through \(R_1 \), part of VR1 and \(D_2 \). When the voltage across this capacitor rises to two-thirds of the power supply voltage, the state of the 555 is switched so that the capacitor \(C \) discharges through \(D_1 \), \(R_2 \) and the other parts of VR1 into pin 7 of the 555 device. The diodes therefore enable the charging and discharging paths to be separated; the effective value of the charging and discharging resistors can therefore be set independently of one another.

When the slider of VR1 is near to \(R_2 \), the discharging time is very short and the output spends only a small fraction of its time in the low voltage state. In this case short negative pulses will be obtained at the output. Similarly, short positive pulses are obtained when the slider of VR1 is near to \(R_1 \).

One great advantage of this type of circuit is that the frequency is almost independent of the setting of VR1 over most of its travel. If VR1 is in the centre of its track, the duty cycle will be approximately 1:1. The frequency is almost independent of the output current up to the recommended maximum of 200mA.

The value of \(C \) is chosen according to the frequency required. The latter can be as great as 100kHz or very low indeed - one cycle in a few minutes.

Op-Amp Radio Receiver

The figure shows how to wire an op-amp so that it amplifies the voltage generated across a tuned circuit in order for the circuit to operate as a simple radio receiver. The '741' op-amp is suitable.

Note that the signal is applied to the non-inverting input of the op-amp so that good selectivity is provided due to the high input impedance of this connection which provides negligible loading of the tuned circuit.
A 2000 ohm earpiece may be used directly at the output of the op-amp but, as shown, an 80 ohm speaker can be driven via a capacitor whose value should be selected for optimum results.

Should the signal suffer from distortion, this may be due to high frequency noise generated by the op-amp and can be cured by connecting a 470pF capacitor across the feed-resistor \(R_f \). The values of the components are not critical.

The circuit shown in the figure provides a simple radio receiver which is both sensitive and selective. A low-cost FET is used - the JUGFET 2N3819.

In order to ensure that the impedance of the parallel tuned circuit is high at resonance, the inductance of the coil should be high and the value of the tuning capacitor should be kept low.

The amplitude modulated carrier wave sets up a varying voltage across the tuned circuit which causes \(V_{GS} \) to vary and a changing drain current \(I_D \) to flow. A varying voltage is developed across \(R_1 \) which is amplified by the npn bipolar transistor \(Q_2 \). Capacitor \(C_2 \) decouples the emitter of the bipolar transistor to ground for AC signals and capacitor \(C_1 \) couples the radio frequency component of the signal from the phones.

Detection of the amplitude modulated carrier wave is achieved by operating \(Q_2 \) close to the ‘knee’ of its transfer characteristic. If the receiver tends to be unstable, the tendency for it to break into oscillation can be reduced by coupling the aerial to the circuit by means of a 47pF capacitor.

The time constant \(T \) of this circuit is equal to 0.7 \(R_1C_2 \). Where \(T \) is in seconds, \(R_1 \) in ohms and \(C_2 \) in farads. For example when \(R_1 = 10 \) k and \(C_2 = 100 \) microfarads the time constant will be one second.

Capacitor \(C_2 \) may be selected over wide a range and \(R_1 \) may be a potentiometer 100 k maximum. Outputs 1 and 2 provide pulses of opposite polarity but the rise time of output 2 is long due to the charging current of \(C_2 \).
This is the last ETI before Christmas so let me be amongst the earliest with wishes that you may have a Very Joyful Christmas and that 1975 be a real good year for you, and yours, in every way possible! Merry Christmas everyone!

Before we start on the promised Asian Expedition there's some news from nearer home that - after a gap of some 40 years since the B.B.C. local stations at Swansea and Cardiff closed down - it is once again possible to get a QSL for a Welsh IC station. The Radio 4 Wales monitor on 561 kHz located at Wishford Cross on the English side of the Bristol Channel.

However on 30 September the Independent Local Radio Station for South West Wales began operations on 1169kHz and 95.1 MHz VHF, under the slogan "Swansea Sound". The MW transmitter, located a mile or so to the north of Swansea, operates with a rated 500 watts, whilst the VHF transmitter is a 1KW job atop Kilvey Hill, overlookiing the wide expanse of Swansea Bay, and transmitting much of its output in stereo, using circular polarisation. Early reports indicate that "Swansea Sound" is getting out really well and reception reports have come in from many areas of Britain and also from parts of Scandinavia. The station is on the air Monday-Sunday from 0600 to 2400 clock time, and from 0800-2000 on Sunday: normal scheduling has Welsh language programmes in the 1900-2030 spot each weekday evening with the rest of the schedule in English. A policy of checking each report against the station log means that a "Swansea Sound" QSL really will be worth having and the address is the name you give - "Swansea Sound", Victoria Road, Gowerton, Swansea, West Glamorgan. I'll be doing a short spot especially for DX listeners - regularly on Thursday evenings around 2315 clock time.

And with that, let's up, up and away on our magic carpet to the majesties of Asian DXing!

Reception is often much more difficult than with the African stations previously discussed. One major factor is that the time differences between Asia and Europe are very substantial, ranging from 5 hours upwards (if we leave out the Middle and Near East areas) and this means that many Asian stations are only on the air for very brief periods during which reception is even possible in the U.K. Then we have the greatest difficulty of all and that is the languages of Asia are unfamiliar to the majority of Westerners and are completely different in structure to those of Europe, since tonal differences don't just signify varied emphasis of a word or phrase (as in English): but often they give a particular syllable completely different meanings depending on how that syllable is uttered.

Yet another problem is the terrific variety of languages used: India alone recognises some 800 separate languages (not dialects but distinct languages) and all these factors tend to make identification of Asian stations very much more difficult than is the case for African stations, assuming that you can hear them in the first place! So, let's do some picking and choosing in the hope that what follows will stir your interest in this fascinating area for DXing.

It doesn't seem illogical to start with CHINA since Radio Peking is one of the world's most powerful radio voices broadcasting in a vast array of tongues European, African and Asian. In the vast majority of the tongues used, the word "Peking" is not too difficult to recognise, but the two main Chinese Home Services, backed up by an array of regional services on many frequencies on the SW bands can be quite a puzzle as "Peking" is a noticeable absentee in the station identifications. The word to listen for is "Changyung" followed by the phrase "jmnm kwng-lo tic-tal", meaning "Central...people's broadcasting station". In the case of the regional outlets "Changyung" is replaced by the location of the station. One soon becomes adept at recognising the opening bars of a tune called "East is Red" which R Peking uses as an internal signal in most of its operations. However the name by which "Free China" is now generally known, and the Broadcasting Corporation of China is the title of the organisation which transmits the External Service from Taipei. B.C.C. isn't all that hard to hear in the U.K. provided that one has the patience to chance on one of the frequencies currently in use but they change programmes bewilderingly, and this is best probably the 1830-2000 (both in English and Chinese). The service is broadcast in Europe and Asia normally broadcasts on 6 or 7 channels in the 31, 25, 19 and 16 metre bands. Two favourite frequencies are 15125 and 17780KHz, so try your luck there!

JAPAN - if you are relatively new to DXing - can be a very hard country to hear but, having once made the break-through you will wonder why you have not heard it before! NHK, the Overseas Service of Radio Japan, has a service especially for Europe from 0630-0830 G.M.T. daily, with the English segment of the transmission running from 0800-0830 on 1540 and 1785KHz. The evening service, with output 1830-1930, is rather more difficult to hear owing to band congestion but the frequencies used are currently 9605 and 7915KHz. As an alternative, NHK has a General Overseas Service, throughout the 24 hours, in both English and Japanese: the spots are of 30 minutes with the first 15 minutes being in English and the second portion in Japanese: worth trying at this time of year the stations are on 15000, 0800 and 0900 when the frequencies are 15195, 9505 and 17855KHz.

Moving over to the Indian sub-continent, things start to get a lot more difficult. Problem No. 1 is the absence of detailed transmission schedules - very often they arrive after the stations have made further changes! - and Problem No. 2 is the extreme variety of frequencies used. INDIA, however, has a raed for liking for some out-of-band frequencies and 9912KHz is a frequency that All-India Radio seldom seems to leave for very long: others to try are 3905 and 15080 (but beware of R Teheran using 15040KHz for its Home Service). PAKISTAN, too, shows a bewildering series of changes in both times, languages and frequency usage and a good place to look, as this is being written, is 17690kHz between 0830 and about 1100, with programmes in Urdu and English: If this fails, try 11672 where R Pakistan is often to be found, or 6280KHz often used in the late afternoon period. BANGLADESH'S External Service is still in the formative stage with scheduling changes coming thick and fast: try 1200-1300 on about 15520KHz although the frequency varies by as much as 20KHz at times.

Many of the Asian countries carry their Home Services on the low-frequency SW bands and they are happy hunting grounds for the experienced Asian DXers in the winter period. The very absence of exact schedules is in one of the spaces favouring this kind of DXing! As of mid-October giving some of the following: a try should result in some good catches for the log - SINGAPORE: R Singapore is very good between 1500-1630 and 2230-2330 on two parallel channels, 5010 and 5053, in the 60 metre band; NEPAL: R Nepal is, at the moment, using the strange frequency of 2425KHz for its Home Service, in parallel with 7100KHz. Worth trying around 0200 when it signs-off, for the morning, or again about 1500 in the afternoon. Much Indian film-music is included in the schedule. TIMOR: if you are very, very, lucky you may catch this one, in Portuguese on 3668KHz - another odd frequency - from about 1430 until 1500 on a day when conditions are really electric! And if you can't get this one? MALAYSIA: a variety of Home Services are broadcast by Radio Malaysia: two channels worth trying are 5005, which is Kuching in local languages from around 2230 to 2300 when it closes, and 4985KHz, about the same time, when it has a pleasant morning music programme in English. Another one country which I have deliberately left out of this "Expedition" is the Indonesian broadcasting authorities are in the midst of a major reorganisation of their Home Services and it really is somewhat pointless listing stations which may well have ceased to operate. You could try 4805KHz about 1530 or 2230 when Jakarta - the new capital for Jakarta is to be heard there. AFGHANISTAN: R Afghanistan has recently reduced its External Service and best bet is now 4775KHz throughout the afternoon in a variety of Middle East Languages.

Finally, a few words about DXing 60 metres. At this time of the year, it is the easiest thing in the world to come up with many mistaken identifications. There is a substantial Muslim influence throughout much of Asia and what sound like "Arab" stations may, in fact, turn out to be those of Indonesia or other parts of the Far East. Furthermore, a number of Russian local services are audible in the U.K. in late afternoon and some of them, from the north of the India-Pakistan area can cause real identification troubles: one to beware of, is Radio Tashkent on 4805KHz and another is Radio Baku on either 4785 and 4985KHz since the languages used are, to say the least, unfamiliar to many Westerners. It is a fascinating area for the keen DXer.
INTRODUCTORY OFFER

A V.C.O. by FHACHI

1HZ to 100KHZ

FOR £3.85p. P & P 15p.

Size: 2" x 1 1/8" W. 5/8" H. Input: 12V to 24V DC (not centre tapped) 18V input giving 10V constant amplitude output. Requires only a 1 meg ohm pot to tune entire range - or can be swept with a saw tooth input. Enormous possibilities - music, synthesizers, filters; communications, frequency modulation etc. Detailed application sheet with all purchases. Sole Distributor.

CAPACITOR PACK 16 Sand-winch caps. mix, 6422, 325, 17u.

POST 10 assorted values. Sorted 10 50p, P & P 1lb.

DELIVERED TO YOUR DOOR 1 part Electrode, Oxid. Anodes, etc. No Radium. For ONLY £36. N. Ireland £2 extra.

A/P A/P 5 & C, Dundee 22 W. - no

Any price, 30p plus P & P 20p.

<table>
<thead>
<tr>
<th>TYPE</th>
<th>Input</th>
<th>Output</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>12V DC</td>
<td>12V DC AC 1.59mA</td>
<td>£3.45</td>
</tr>
<tr>
<td>B</td>
<td>12V DC</td>
<td>12V DC AC 0.59mA</td>
<td>£6.35</td>
</tr>
</tbody>
</table>

NEW RANGE OF TRANSISTOR INVERTERS

Type A Input: 12V DC Output: 1.3V to 4.8V AC 1.59mA Price £3.45

Type B Input: 12V DC Output: 2.5V to 4.8V AC 0.59mA Price £6.35

Postage and Packing 36p.

MAKE YOUR SINGLE BEAM SCOPE INTO A DOUBLE WITH OUR NEW LOW PRICED SOLID STATE SWITCH. 2Hz to 8MHz. Hook up a 9V battery and connect to your scope and have two traces for ONLY £6.25p P & P 25p. STILL AVAILABLE OUR 20MHZ version at £7.75 P & P 25p.

5MHz to 150MHz (Useful harmonics up to 1.5GHz) up to 15MHz sweep width. Only 3 controls, preset RF level sweep width and frequency. Ideal for 10.7 or TV IF alignment, filters, receivers. Can be used with any general purpose scope. Full instructions supplied. Connect 6.3V AC and use within minutes of receiving. All this for only £8.75. P & P 25p. Not calced, not calibrated.

Always available range of: Oscilloscopes; signal generators; voltage meters; EHT Power units; EHT capacitors; EHT transformers; etc.

LOW FREQUENCY WOBBULATOR

Primary intended for the alignment of AM Radios; Communication Receivers; Filters, etc. in the range of 250KHz to 5MHz, but can be effectively used to 30MHz. Can be used with any general purpose oscilloscope. Requires 12V AC input. Three controls - RF level, sweep width and frequency. Price £8.50. A second model is available at above but which allows the range to be extended down in frequency to 20KHz by the addition of external capacitors. Price £11.50.

Both models are supplied complete for automatic 50Hz sweep. An external sweep voltage can be used instead. These units are encapsulated for additional reliability, with the exception of the controls (not cased, not calibrated).

WIDE RANGE WOBBULATOR

5MHz to 150MHz (Useful harmonics up to 1.5GHz) up to 15MHz sweep width. Only 3 controls, preset RF level, sweep width and frequency. Ideal for 10.7 or TV IF alignment, filters, receivers. Can be used with any general purpose scope. Full instructions supplied. Connect 6.3V AC and use within minutes of receiving. All this for only £8.75. P & P 25p. Not calced, not calibrated.

UNLESS STATED–PLEASE ADD £1.50 CARRAGE TO ALL UNITS.

VALUE ADDED TAX not included in prices–PLEASE ADD 8%

Official Orders Welcomed, Gov./Educational Depts., Authorities, etc. otherwise Cash with Order Open 9 am to 6.30 pm any day (later by arrangement.)

CHILLMEAD LTD

7/9 ARTHUR ROAD, READING, BERKS. (rear Tech. College, Kings Road) Tel.: Reading 582605/45916

BYWOOD ELECTRONICS – ONE STOP SHOPPING FOR—

Clock Chips
Calculator Chips
Led Displays
Liquid Crystals
Phosphor-Diodes
Gas Discharge
Display Drivers
MHI Kits
Digitronic Clocks
Customised Units

Clock Chips
With Products from—
Beckman, Brown-Boveri, Cal-Tex.
Imtech, Ioka, Jermy, Litronix.
Mostek, National, RCA, Siemens.
Swarovski, Texas, 3M

Just about all you need to go digital is some of our ICs, some of our digits and drivers, some data and some advice. As they are all available at the end of a telephone line it would make sense to ring 0442-62757 before doing anything else.

LATEST LISTS, PRICES AND PRODUCTS ARE ADVERTISED EACH MONTH IN ELECTRONICS TODAY INTERNATIONAL—DECEMBER 1974

BYWOOD ELECTRONICS

181 Ebberns Road
Hemel Hampstead, Hertfordshire
Tel: 0442-62757
persons in trouble, and then despatch assistance. The six satellites could routinely be used for other important activities — since the search-and-rescue function would require only a thousandth of any satellite's transmission power. The global satellite system could relay communications between ships, aircraft, and other vehicles and their home offices, while fixing the vehicles' positions with great accuracy. Then the search-and-rescue capability would be an added feature.

IRL FOR WALES AND YORKSHIRE

The first Local Radio service in Wales, Swansea Sound began on Monday, September 30, using the new radio transmitters of the Independent Broadcasting Authority. It will also be the first radio station providing listeners in Wales with stereo broadcasting. Details of Swansea Sound are given in DX Monitor by Alan Thompson.

Swansea is the seventh Independent Local Radio service to open and the first in Wales.

The first Independent Local Radio service in Yorkshire, Radio Hallam, began on Tuesday, October 1 using the new sound radio transmitters of the Independent Broadcasting Authority. It is in the Sheffield area providing listeners with stereo broadcasting.

The daily programmes will start just before 6 a.m. (7 a.m. on Sundays) and run through until midnight except on Saturdays when they will continue until 3 a.m. on the Sunday morning.

Initially the VHF transmissions will come from Tapton Hill on 95.2MHz and later they will be supplemented by a second VHF transmitter on 95.9MHz to improve reception in the east of the service area. The medium wave transmitter is at Skew Hill and is on 194 metres (1546kHz). The VHF coverage area, when supplemented by the Rotherham relay, will represent a population of about 600,000.

The present VHF transmissions on 95.2MHz come from an omnidirectional aerial and are horizontally polarised. This means that aerial rolls should be horizontal.

Each station is equipped with two transmitters, one of which acts as a standby and can be brought quickly into operation should this be necessary. Radio Hallam is the eighth Independent Local Radio service to open.

GASBOARD ELECTRONIC BLACKBOARD

The photo shows the control room of the mobile TV unit of West Midlands Gas. It is built into a Ford Transit Van and is part of a CCTV system that they use for training their staff. Up to six monitor screens are used to teach staff more quickly and effectively in the operation of their computer-based VDU's (visual display units).

Five years ago West Midlands Gas equipped its training department with the mobile TV unit, and it proved particularly valuable at its residential training centre in Stratford-upon-Avon. The CCTV equipment is new and has been installed at the same centre and to improve its versatility. The unit provides audio visual support to marketing and engineering training, supervisory development such as public speaking or speaking to a group, interview techniques, craft training, security guard training, telephone techniques, first-aid safety competitions, and for providing viewing facilities in an 'overflow' situation.

These training activities can be carried out at any West Midlands Gas premises.

The unit was manufactured and supplied by Reliance Systems Ltd. (A member of the GEC Group). It has also been used by the Wales, East Midlands, Eastern and Northern regions of the British Gas Corporation.

VIDEO SYNTHESIZERS NOW

An American company (Electronic Music Studios) is currently developing the video equivalent of the electronic music synthesizer.

The 'electronics palette' enables the user to generate an almost infinite variety of moving or static coloured shapes or patterns. The system, called Scepire, is digitally operated. It can generate images in a range of 64 different colours and 16 levels of brightness.

CHEAP RAM

Walmore are offering Intel's new 2107A-8 4K RAM at £6.00 when ordered in quantities of 100 or more.

The 2107A-8 is a 4096-bit word, dynamic N-channel, MOS RAM with an access time of 420ns (max), designed for memory applications where low cost and large bit storage are important design objectives.

DYNAMIC circuitry is used to reduce operation and standby power dissipation.

Information reading from the memory is non-destructive, and refreshing is accomplished by performing one read cycle on each of the 64 row addresses; each row address must be refreshed every two milliseconds. The memory is refreshed regardless of chip select being a logic one or logic zero.

SINCLAIR WIN MAJOR MARKETING AWARD

Sinclair Radionics, Europe's largest manufacturer of pocket calculators, has won the 1974 Institute of Marketing Award (Category 2, turnover £2-10m pa). According to the...
IOM panel of judges, Sinclair was selected because they have "pioneered technological and promotional innovation in the calculator market".

Commenting on the award, Roger Helmer, Sinclair's marketing manager said "The award entry was based on our success in establishing Sinclair as the major European manufacturer of pocket electronic calculators over only a two year period. During that time, June 1972 to April 1974, turnover rose from £761,861 to £4,009,322 and exports from 35% to 56%. The rationale behind our marketing effort was to establish the pocket electronic calculator as a consumer electronic product. It had to become as much a personal possession as a transistor radio, a wristwatch or a briefcase".

During the last two years, calculator sales were responsible for 75% of the company's turnover.

NEW FERRIC OXIDE CASSETTES

Good news for the cassette man who uses ferric oxide tape: now you will be able to get reproduction quality comparable to that of the guy who fashions out on chromium dioxide cassettes. And you'll still pay 30% less than he does.

Recent work with FeO tape has come up with an increase of 3.4dB, in the 8-15kHz range. This means brighter treble response. Overload characteristics have been improved to give lower distortion at high recording levels. Less tape hiss results from a widening of the dynamic range by increasing the magnetic remanence of the tape.

The new specification, 20 channel, 4 group, 2 main output, broadcast console from Rupert Nove. The model 5301 is one of the most compact units in the world (1.2m long) offering such comprehensive facilities with no compromise having been made to performance standards.

ERRATA

Printmer November 1974 page 44.
The components list printed was that of our Australian edition. However the only difference is the Audible Alarm: the types mentioned are not available. Our parts list should have given Audible Warning Device (12V version) from Doram, P.O. Box TR8, Wellington Road Industrial Estate, Wellington Bridge, Leeds LS12 2UF.

Doram are producing a kit for this project including PC board, and case etc. for £7.99 which includes VAT and postage.

The computer system mentioned here uses multi-colour VDU's developed from a system marketed by SERCK CONTROLS. We misspelt their name last month.

Kits for the Car Nov. 1974 page 43.
Since we printed this article we have been informed by Dobar Electronics that the Scorpion ignition system is suitable for all types of car ignition, including systems with a ballast resistor, and in this case modification is simple.
FERRIC CHLORIDE
Anhydrous to Mil-spec in double-sealed packs. 1lb 55p (22p) 3lb £1.32 (30p) 10lb £3.85 (60p).
7lb BARGAIN PARCELS
Contains hundreds of resistors, switches, capacitors, pot (all new) & crystals, transistor packs and odd & ends. Only £1.82 (40p).
VERSATILE POWER UNIT
Contains double insulated mains transformer, 2amp thermal cut-out and bridge rectifier. Will give 1.7V--10.5V output with two extra capacitors (provided). Ideal for Nickel-Cad charger, 5V TTY supply, cassette, radios, etc. Supplied complete with information (5p) (20p). Also available as model garage work lamp, switch, jack plug, etc. £1.35 (30p).
3W TAPE AMPLIFIERS
Polished wood cabinets 14 x 13 x 9" containing a sensitive (20pi) 4 valve amplifier with tone and volume controls, 3 watts output to the 7 x 4" speaker, is a non-standard tape deck. Supplied in good working condition with mains input. Price £3.30 (£1.25). Amplifier chassis complete and tested (2xEC88, EL84, 6B6G) and speaker £2.20 (£1). COMPUTER PANELS
315 best assorted panels £1.10 (30p) 715s £2.20 (40p). Pack containing at least 50 components including at least 50 transistors 66p (20p). 12 high quality panels with power transistors, trimpots, IC's, etc. (£2.20 (30p) £10 for £13.00 (£1.00). Trade supplied.
ALL PRICES INCLUDE VAT; Carriage in brackets, SAE list, enquiries.
GREENWELL (ET2) 51 Shirley Park Road, Southampton, New Retail/Wholesale/Mail Order Premises. Tel. 0703 772501. Also Retail shop at 38 Lower Addiscombe Road, Croydon.
STEREO FADERS
78mm fixing centres. 64mm travel. Knobs available.
1,000 off, long EGEN moulded slide faders, 10K log stereo, 45p each including post and VAT Quantity discounts.
VU PANEL METERS
1/2" Bach-Simpson, 100 micro-
A Less diode. SUPER STYLING, £4.00 each including post and VAT.
Cash with order to:
CHYMES
P.O. Box 87, Reading, Berks. Tel: 0734-691405.

FOR FURTHER INFORMATION
PHONE: BOB EVANS
01-730-2139

MINI-ADS

TTL AT LDL PRICES!
(All devices type 64, Prices include VAT)
1/24 25/9 1/24 29/9
7400 37p 15p 7402 17p 15p
7404 20p 18p 7405 20p 18p
7410 17p 15p 7420 17p 15p
7415 17p 15p 7430 17p 15p
7440 13p 11p 7450 13p 11p
7445 £1.03 96p 7470 96p 96p
7417 13p 11p 7435 13p 11p
7436 36p 36p 7475 56p 56p
7516 35p 35p 7545 35p 35p
7483 £1.02 95p 7485 £1.56 95p
7480 £1.02 95p 7485 £1.56 95p
7493 55p 55p 7511 37p 37p
7493 55p 55p 7511 37p 37p
7423 7p 96p 7476 36p 36p
7457 87p 87p 7515 155p 155p
All devices full spec. by famous manufacturer. Devices may be ordered for 212. P. P. rates S.A.F. for full list. 1sp P & P on orders under £1, likewise post free.

J. C. JONES
46 Burnstella, St. ives, Hunting PE17 AXF (Mail Order only)

SPECIAL OFFER
POST FREE INCLUSIVE

741
8p 5 for 1.45

741
OP-AMP 10 for 2.90

ISLAND DEVICES, PO BOX 11, MARGATE, KENT.

TI 77 required to finish design project eight wanted urgent write or phone, F. P. Jones 20 Blunham Road, Mogerham, Bedford, MK43 3RA. Tel. Biggleswade 40220.

PRINTED CIRCUIT BOARDS. PCB from your pattern £1 plus 5p per square inch. From published patterns in this magazine 50p per board. Add VAT, 5p & P per PCB. Mail order only. TEC, 241 BURNST DAK, BROADWAY, MIDDLESEX.

SUB MINIATURE VHF TRANSMITTER

Kit of parts (less microphone only): £2.20 including VAT and postage.

ELECTRONIC SUPPLIES
408 Sharrow Vale Road, Sheffield, S11 8ZP

Licence required in U.K., Jassy Kit stockists.

Electronics men. You are worth more than a measly £40 or £50 a week. List year I earned £3600 for six months work. The other six I hid off, You could do similar, My basic explains how, It's 65p from ALBEN, SITE 3, CHURCH STREET. DIS. IP22 3DO.

MANUFACTURERS PRINTED CIRCUIT BOARDS
Any ETI Project PCBs, from September 74 on, one price, 65p each. Any kit, wire more than one item, £1.20 the lot. Add 5p & P per PCB.

PRODUCTION SERVICES
Full production facilities for PCBs, manufac-
ture, from your Master or Art-work or design from your diagrams, no matter how rough. Full service for Design and Artwork, Also Electroplating, (Contact, connectors, all sizes) Radium, Tin or Silver, Taping, by self or contract, Silk-Screening, Component layout etc.

M. A. HINDAVERS
Return Post Service or Phone, service required to UK. W.K.F. ELECTRONICS, Weasbeach Street, Whitwell, Worksop, S80 4TW. Phone: Whitwell (Derby). 695...
RECRUITMENT

MARCONI INSTRUMENTS LIMITED

ELECTRONIC TECHNICIANS

are required to work on calibration, fault-finding and testing of telecommunications measuring instruments. The work is varied and will enable technicians with experience of R.F. circuits to broaden their knowledge of the latest techniques employed in the electronics and telecommunications industries by bringing them into contact with a wide range of the most advanced measuring instruments embracing all frequencies up to U.F.

Entrants may be graded as Test Technicians, Senior Test Technicians or Technician Engineers according to experience and qualifications. Our production and servicing programmes, geared to our recognised export achievement, provide employment combined with prospects of advancement, not only within these grades, but in other technical and supervisory posts within the Company at St. Albans and Luton.

Salaries are attractive and conditions excellent. A Pension Scheme includes substantial life assurance cover provided by the Company. Assistance with removal may also be given in appropriate cases. Please write or telephone quoting reference ET7410, for application form to:

Mr. P. Elsip
Personnel Officer,
Marconi Instruments Ltd.
Lengages, St. Albans, Herts.
Tel. St. Albans 59292
Member of GEC—Marconi Electronics

and now....

THE COMPLETE CLASSIFIED SECTION

For the smaller advertiser, we have introduced a new SALES and WANTS section offering a lineage rate. If you wish to sell new, surplus or used equipment - nuts, bolts, switches, valves or you are seeking to fill that extra work capacity USE OUR NEW CLASSIFIED FACILITY.

ALL YOU HAVE TO DO IS FILL OUT THE FORM BELOW FOLLOWING OUR TERMS

* RATE: 45p PER LINE. Average Six words per line. Minimum three lines.

* Name and address count as lineage if used in advertisement.

* BOX No. allow 25p extra and indicate on form below if required.

PLEASE MAKE CHEQUE/POSTAL ORDER payable to:
"ELECTRONICS TODAY INTERNATIONAL," and crossed "& Co."

SEND COPY FOR THE NOVEMBER ISSUE TO REACH US NO LATER THAN 27.9.1974

LINEAGE

PLEASE PRINT CLEARLY

TEL.

 TICK HERE FOR

sci Display sci Semi Display Box No

TO THE VALUE OF

ENCLOSE CHEQUE/POSTAL ORDER

No. of insertions.

You can build this reverse polarity proof light for use in homes, garages, caravans, for camping or emergency lighting. Everything, tube, all metalwork, all components, P.C.B., instructions etc., is supplied.

Price only £3.19 inc. VAT

ORDER NOW TO -

ELECTRONICS DESIGN ASSOCIATES
82 Bath Street Walsall WS1 3DE
Phone 33652

HARDWARE

Screws, nuts, washers etc. Sheet aluminium cut to size or in standard packs, plain or punched/drilled to spec.

Printed circuit boards for published designs or individual requirements, one-off or small runs. Facia panels, dials, nameplates etc. in etched aluminium. 6p for details.

RAMAR CONSTRUCTOR SERVICES
29 Shelbourne Road, Stratford on Avon, Warwick.
SPECIAL XMAS OFFER!!

FOR THIS MONTH ONLY: CALCULATORS

<table>
<thead>
<tr>
<th>Brand</th>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sinclair</td>
<td>TI-1500</td>
<td>£26.25</td>
</tr>
<tr>
<td>Sinclair Memory</td>
<td>TI-2000</td>
<td>£18.95</td>
</tr>
<tr>
<td>Scientific</td>
<td>TI-2000</td>
<td>£19.05</td>
</tr>
<tr>
<td>Executive</td>
<td>TI-2500</td>
<td>£20.95</td>
</tr>
<tr>
<td>Executive Memory</td>
<td>SR-10</td>
<td>£23.00</td>
</tr>
</tbody>
</table>

WANTED A JOB WITH ETI?

There is a vacancy at the Ebury Street offices for a young but intelligent girl who can do some typing. The job will be very varied but will include handling the subscriptions and the back numbers. Salary is attractive but the applicant must be able to work well with a small but enthusiastic team. Anyone interested, or knowing anyone interested should phone the Editor on 730 8292.

INDEX TO ADVERTISERS

<table>
<thead>
<tr>
<th>Company</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambit</td>
<td>17</td>
</tr>
<tr>
<td>Bi-Pak</td>
<td>4 & 5</td>
</tr>
<tr>
<td>Bi-Pre-Pak</td>
<td>75</td>
</tr>
<tr>
<td>B. H. Components</td>
<td>50</td>
</tr>
<tr>
<td>B.N.R.S.</td>
<td>36</td>
</tr>
<tr>
<td>Bywood</td>
<td>17 & 69</td>
</tr>
<tr>
<td>Chalmead</td>
<td>69</td>
</tr>
<tr>
<td>Chymes Audio</td>
<td>72</td>
</tr>
<tr>
<td>Doraz</td>
<td>2</td>
</tr>
<tr>
<td>E.D.A.</td>
<td>59 & 73</td>
</tr>
<tr>
<td>Electronic Supplies</td>
<td>72</td>
</tr>
<tr>
<td>Greenwell</td>
<td>72</td>
</tr>
<tr>
<td>Heathkit</td>
<td>9</td>
</tr>
<tr>
<td>Henry's</td>
<td>42 & 43</td>
</tr>
<tr>
<td>JET Electronics</td>
<td>16</td>
</tr>
<tr>
<td>Licril Ltd</td>
<td>59</td>
</tr>
<tr>
<td>Maplin Electronics</td>
<td>31</td>
</tr>
<tr>
<td>Marconi Instruments</td>
<td>73</td>
</tr>
<tr>
<td>Marco Trading</td>
<td>72</td>
</tr>
<tr>
<td>A. Marshall & Son</td>
<td>9</td>
</tr>
<tr>
<td>Minikits</td>
<td>16</td>
</tr>
<tr>
<td>Newnes Butterworth</td>
<td>58</td>
</tr>
<tr>
<td>Powel Electronic Components</td>
<td>74</td>
</tr>
<tr>
<td>Ramaq</td>
<td>73</td>
</tr>
<tr>
<td>RCS Products</td>
<td>72</td>
</tr>
<tr>
<td>Sinclair Calculators</td>
<td>22.23</td>
</tr>
<tr>
<td>Sintel</td>
<td>59</td>
</tr>
<tr>
<td>Trampus</td>
<td>58</td>
</tr>
<tr>
<td>Wilmslow Audio</td>
<td>16</td>
</tr>
<tr>
<td>W.K.F. Electronics</td>
<td>72</td>
</tr>
</tbody>
</table>

SUBSCRIPTIONS TO ETI

If you have no trouble obtaining ETI from your newsagent, that's the obvious place to get it. However five out of the last six issues have been sell-outs and early analysis of the reader questionnaire has shown that one in three readers has trouble in buying ETI.

If you are one of those having trouble, why not take out a subscription? Normally you receive your copy a few days before our official publication. Note also that although the cover price of ETI is now 25p, we have not raised our subscription rates for the time being.

To: SUBSCRIPTION DEPARTMENT
ELCETRONICS TODAY INTERNATIONAL
36 EUBY STREET,
LONDON SW1W OLW.

Please find enclosed £3.60 which includes postage (£4.00 overseas) for my annual subscription to ETI starting with the next available issue.

Name

Address

DECEMBER 1974
SUPPLIERS OF SEMI-CONDUCTORS TO THE WORLD

BI-PRE-PAK LTD
Co. Reg. No. 826019

Phone: 222-232 WEST ROAD WESTCLIFF-ON-SEA, ESSEX
Telephone: SOUTHEND (070) 46344

Telephone Corner

Complete Telephone Normal Hold-Type 12
Only 99p

Telephone Dials
Standard 4-pc Office type
Guaranteed in working order.

Only 25p

UNMARKED UNTESTED PAKS

- 30 Germanium Transistors
- 150 Germanium Diodes
- 815 Silicon Emitter Diodes
- 100 Silicon Diodes
- 200 Transistors, manufacturers
- 40 N-P-N Silicon Transistors
- 15 Silicon To-3 Can. P & P to extra 50p
- 10 2815 H Channel FETs, plastic case type

Make a revolt counter for your car
The TACHO BLOCK: This semiconductor block will tune all 0-12V makes into a simple and accurate revolt counter for any car with manual ignition system.

£1.00 each

Electronic TRANSISTOR

IGNITION £6.00

Complete M1, P & P 11p.

Now in kit form, we offer this "up to the minute" electronic ignition system, simply to make, full instructions supplied with these outstanding features:
- Transistor and standard switchability, bungar proof lock up and automatic advance, negative and positive compatibility.

EXTENSION TELEPHONES

NEW X-HATCH

Our new, vastly improved Match Two Cross Hatch Generator in now available. Essential for all owners of optical gears on all TV receivers. Featuring plug ICs and a more sensitive sync pick up circuit. The case is virtually unbreakable—ideal for the average's leisure—and only measures 3 1/2 x 3 3/4.

Ready built case only £7.95
(Includes P & P, but no batteries)

Over 1,000,000 Transistors in stock

We hold a vast range of high-grade, tested and guaranteed Transistors. Diodes and Rectifiers at very competitive prices. Please send for our Free Catalogue.

Our very popular 4p Transistors

FULLY TESTED & GUARANTEED

TYPE: A 1/2 PNP Silicon, TO-5 can.
TYPE: B 1/2 PNP Silicon, TO-5 can.
TYPE: C 1/2 PNP Silicon, TO-5 can.
TYPE: D 1/2 PNP Silicon, TO-5 can.

8 RELAYS FOR £1.00

UHF TV Tuner Units

Brand new by a famous manufacturer

Data supplied £2.50

Plastic Power Transistors

NOW IN TWO RANGES

These are 40W and 50W Silicon Plastic Power Transistors of the very latest design, available in NPN or PNP at the month after very low prices of £1.00. We have been selling these successfully in quantity to all parts of the world and we are proud to offer them under our Tested and Guaranteed name.

Range 1: VCE, Min 15, 50W, Min 60.
- 1-2 15 25 26-50
- 40 Watt 90 90 80 70 60
- 30 24 20 20 10

Range 2: VCE, Min 40, 50W, Min 80.
- 1-2 15 25 26-50
- 40 30 24 20 10

High-speed magnetic counters ex GO 4 digit (non-rotor) 4" x 1" x 1" 30p.

INTEGRATED CIRCUITS

A few are £1.50 in our rare and expensive chips. These are all listed in our FREE CATALOGUE, please ask for copy.

METERING CHARTS

We have a large selection of Reference and Technical Books in stock.

Bumper Bundles

These parcels contain all types of surplus electronic components, printed panels, switches, potentiometers, transistors, and diodes, etc.

2 LBS in weight for £1.00

Our famous P1 Pak

Is still leading in value

Full of Short Lead Semiconductors & Electronic Components. Approx 170. We guarantee a list of 20
each: High Quality, Fast Delivery, Marked Transistors PNP & NPN, and a 50% off our own shop.

Please send in the FREE Bi-PRE-PAK catalogue. Enclose large s.a.e. with 1/- P & P.

Please add VAT at current rate.

NAME

ADDRESS

MINIMUM ORDER 50p. CASH WITH ORDER PLEASE.

Add 1/- post and packing per order. OVERSEAS ADD EXTRA FOR POSTAGE.

Buy these goods with Accuracy.
Practical Radio & Electronics Certificate course includes a learn while you build 3 transistor radio kit.
Everything you need to know about Radio & Electronics maintenance and repairs for a spare time income and a career for a better future.

Tick or state subject of interest. Post to address below.

MECHANICAL
- Safety of Engineers - A.M.S.E. (A.M.)
- Illustrated of Engineer & Technicians - A.I.M.E.

ELECTRICAL & ELECTRONIC
- CITY & GUILDS Gen. Electrical Engineering Electrical Installations Electrical Wires & Cables
- Electrical Electronics Electronic Eng. Practical Radio & Electronics (with kit)

MANAGEMENT & PRODUCTION
- Institute of Cost & Management
- Accounts: Computer Programming Work Studies Gen. Production
- Estimating & Planning

AUTOMOBILE AERONAUTICAL
- Institute of the Manufacturing & Aeronautical
- Institute of the Automobile Institute of the Aeroplane
- CYCLE & MILITARY
- Coaching for testing major exams including O.C.C. & G.C., etc.

CONSTRUCTIONAL
- Institute of Building - L.I.O.I.
- A.B.T. Clerk of Works
- Contractors Institute - L.C.S.I.

ELECTRICAL
- CITY & GUILDS Gen. Radio & Electronics
- Radio Amateur Exam Radio Servicing

G.C.E.
- 58 'O' & 'A' LEVELS SUBJECTS
- Over 10,000 group passes

POST TODAY FOR A BETTER TOMORROW!

To Aldermaston College, Dept. BE180,
Reading RG7 4PF.

NAME

Address

OTHER SUBJECTS

AGE

Photocopy of this coupon can be put out on the ready to receive
post to address below.

This FREE 16 page book can put you on the road to success
through B.I.E.T. Home Study Course Choose your subject now!

FREE! Over 150 ways to engineer a better future
HIGHER PAY A BETTER JOB SECURITY
find out how in just 2 minutes

That's how long it will take you to fill in the coupon. Mail it today and we'll send you full details and a free book. We have successfully trained thousands of men at home equipped them for higher pay and better, more interesting jobs. We can do as much for YOU. A low-cost home study course gets results fast - makes learning easier and something to look forward to. There are no books to buy and you can pay as you learn.

Why not do the thing that really interests you? Without losing a day's pay, you could quietly turn yourself into something of an expert. Complete the coupon for write if you prefer not to cut the page. No obligation and nobody will call on you... but it could be the best thing you ever did.

Others have done it, so can you
"Yesterday I received a letter from the institution informing me that my application for Associate Membership had been approved. I can honestly say that this has been the best value for money I have ever obtained, a view echoed by two colleagues who recently commenced the course". - Student D.J.B., Yorks.
"Completing your course meant going from a job I detested to a job that I love, with unlimited prospects". - Student J.A.O. Dublin.
"My training quickly changed my earning capacity and, in the next few years, my earnings increased fourfold". - Student C.C.F., Bucks.

FIND OUT FOR YOURSELF

These letters, and there are many more on file at Aldermaston College, speak of the rewards that come to the man who has given himself the specialised knowledge employers seek. There's no sure way of getting ahead or of opening up new opportunities for yourself. It will cost you a stamp to find out how we can help you. Write to Aldermaston College, Dept. BE180, Reading RG7 4PF, Home of B.I.E.T.