
SUPPLIERS OF SEMI-CONDUCTORS TO THE WORLD

COMPLETE TELEPHONES MORMAL MOUSC TELE THE AS .
Only 99p
PA P45p EACN
TELEPHONE DIALS
Only 25p
Tested and Guaranteed Paks

879	4	$\begin{aligned} & 1 \mathrm{~N} 400 \\ & 1.000 \end{aligned}$	P
881	10	Reed Switches $1^{\prime \prime}$ long $1^{\prime \prime}$ dia High speed P.O. typé	50 p
	0	Mixed Diodes, Germ. Gold bond otc. Marked and Unmarked	
. 38	30	Short lasad Transistors. NPN Silicon Planar types	50p
н39	6	integrated circuits. 4 Gates BMC 962. 2 Flip Fhops BMC	50p
H41	2	Power Transistors Comp. Pair BD 131/132	
н63	4	2N3055 Tyo NPN Sil, Dower t sistors. Below spec. devices	50p
			50p
	4	T0. 5 can comp. to H65	

OE Unmarked Untested Paks

${ }^{81}$	50	Germanium Transi PNP, AF and RF.	50.
866	150	Germanium Diodes Min glass type	50p
${ }_{88} 8$	100	Silicon Diodes DO. 7 glass Equiv, to OA200, OA202	p
${ }^{88} 8$	100	Sil. Drodes sub. min. IN914 and IN916 types	Dp
${ }^{88}$	200	Trensistors, manufacturers. rejects, AF, RF, sil and germ	Op
H26	40	NPN Silicon Trans. 2N3707-11 range, kow noise amp	Pp
H34	15	Power Transistors. PNP. Germ. Siticon TO-3 Cen. P\& P 5 P ostra.	
	10	3819 N Channel FET plastic csso Npe	50 p

Make a rev counter

for your car

The TACHO BLOCK. This oncapsulated bock will tum for any car with nomal coll ignition system 납-1 1 each

ELECTRONIC TRANSISTOR

Now in kit form, we offer this up to the minute" electronic Ignition system. Simple to make, full instructions supplied with these outstanding features:Transistor and conventional switch. abillty, burglar proof
automatic alarm, negative and positive compatability.

EXTENSION TELEPHONES
deal for children's toys. 70p each
p and p 25p.

New X-Hatch

Gon now, vestiv it now avallable. Eseonthlal for
elfenmert of colour gurns on all TV recetvers
Featuring plug-in ICs and a more sensitive sync. pick up circuit. The case is virtually unbreakable-ideal to the engineer's toolbox-and only measures $3^{\prime \prime} \times 5$

(includes P \& P, but no batteries)

LM 380

 C. These re spacielly selected to a higher grade and ore marke1 with the number SL60745.This fenteatich ittle 3 watt avdio IC only requires iwo capactors and iwo potenliometers io make an ampinier with volume and tone control. The quality is goad and has to be heard ro bo belioved

Our apecial

Over 1,000,000 Transistors in stoch

We hold a very large range of tully marked, iested end guaraniead Transistors. Diodes and Rectifiers at ver
Oar very popular 4p Transistors
YPE - A- PNP SULIESTED \& GUARANTEED

TYPE "B"PNP Silicon, plastic encepsulation
TYPE 'E" PNP Germanium AF or AF
YPE E"PNP Germanium AF or RF.
YPE .G. NPN Sicor platic encepsulation
YYPE 'H" PNP Silicon, similar $\mathbf{Z X} 500$ range

8 nears ber $£ 1 \cdot 00_{2}^{2020}$

UHF
 TV Tuner Units

Brand new by a famous manufacturer
Data supplied $\mathbb{C} 2.50$

Plastic Power Transistors

Plastic Power tran These are 40W and 90W Silicon Plastic Power TranPNP at the most shatteringly low prices of all time. Wo have been selling these successtully in quantity to all parts of the world and we are proud to offer them under our Tested and Guaranteed terms.
Range 1. VCE. Min ${ }_{1-12}^{15}$. HFE Min 15. 40 watt $\begin{array}{lll}1-12 & 13.25 & 26-50 \\ 20 p & 18 p & 16 p\end{array}$ 90 Watt 24p $22 \mathrm{p} \quad$ 20p Range 2. $V C E$, Min 40 . HFE Min 40. 40 Watt 30p $\quad 28 p \quad 26 p$ 90 Watt 35 33p 30p

High-speed magnetic counters ex GPO

integrated cincuits
We stock a large range of ICs at very competitive保es from 10p achl Thase are lll listed in our FREE Catalogue, seo coupon below

METRICATION CHARTS now avelobt
This fantastically detailed converaion calculator carnes thousands of classified references betweon metric and British (and USA) measurements of length ares. ame. liquid messure woights otc.
Pocket Size ISp. Wall Chart 18p.
LOW COST DUALIN LINEI.C. SOCKETS 14 pin type at 15p each

Now new low profile type 16 pan type at $17 p$ each
sooks
Wo have d larg of

Dooks in slock.

BUMPER BUNDLES
These parcels contain all types of surpius electronic ansistors and diodes. ot
2 LBS in weight for $\mathbf{~} 1.00$

Our famous P1 Pak

is still leading in value
Full of Short Lead Semiconductors \& Electrontc Components, approx. 170. We quarantee at least 30 coally high quality factory marked Transistors PNP Printed Circuit Panels. Identification Chart supptiod to give some information on the Transistors.

Please ash for Pad P1. only 50p

Frease send me the FREE BI-Pre-Pak catalogue. I enclose large s.a.e. With 5p stamp.
Please add VAT at current rate
NAME
ADORESS
MINIMUM OROER 5OD. CASH WITH ORDER PLEASE wi 15 p post and packing per order. OVERSEAS AD
EXTRA FOR POSTAGE.

eleetronies today international

Vol. 3. No. 10

main features

ELECTRONICS IN CRIME 10
Sophisticated equipment is used by both sides
TIME CHECK FOR RADIO-CARBON DATING 22
How the Carbon-14 calendar is being corrected
ASSISTED RESONANCE 28
Improving acoustics in concert halls
WINDOW CLEANING ELECTRONICALLY 30
How to solve a problem by remote control
VIDEO-DISC COLOUR TV 46
Colour TV records - how the TelDec system works AMBISONICS 50
Interest is growing in this intriguing way to obtain true ' O ' sound
ELECTRONICS - IT'S EASY 54
A new approach to basic electronics 60
Simple radio receivers to build a
NEW NAGRA RECORDER 64
Kudelski to introduce three-motor recorder soon
projects
DUAL BEAM ADAPTOR 18
Converts single-beam CRO to dual beam operation 24
Receive a warning about a distant soundSWITCHED POWER SUPPLY53
Simple-to-build circuit gives $4.5-12 \mathrm{~V}$ at 400 mA
product testsADVANCE ‘SCOPE OS24038
Latest 'scope is ideal for the enthusiast
HEATHKIT'S DIGITAL FM TUNER 42
Super-sophisticated tuner justifies complexity
44
GOODMANS GOODWOOD LOUDSPEAKERS
Several unusual features
news \& information
NEWS DIGEST 6
BOOK REVIEWS 34
PREVIEW OF NOVEMBER'S ETI 36
ELECTRONICS TOMORROW 63
TECH-TIPS 66
DX MONITOR 62
SPECIAL READER OFFER 35
SINCLAIR SCIENTIFIC CALCULATOR KIT: £14.95!

Cover: Moaern Magazine's 'burglar' is 'caught' in this photograph using a simulated infra-red technique. See Electronics in Crime starting on page 10.

EDITORIAL \& ADVERTISEMENT OFFICE
36, Ebury Street, London SW1W OLW. Tel. 01-730 2139.

HALVOR W. MOORSHEAD
Editor
ROBERT C. EVANS
Advertisement Manager
STEVE BRAIDWOOD
Assistant Editor
JEAN BELL
Production
HELEN GIMPLE
Administration
KARRON DIAMOND
Subscriptions and Back Numbers
International Editions
COLLYN RIVERS
Editorial Director
Australia
BRIAN CHAPMAN
Technical Editor
ANDREW POZNIAK
Assistant Editor
BARRY WILKINSON
Engineering Manager
France
DENIS JACOB
Editor-in-chief
CHRISTIAN DARTEVELLE
Editor

Published by: Modern Magazines (Holdings) Ltd 36, Ebury Street, London SW1W OLW.
Electronics Today International is published on the third Friday in the month prior to the cover date.
Distributed by: Argus Press Ltd.
Printed by: Alabaster Passmore \& Sons Ltd. London and Maidstone.

International Associates:
Australia: Modern Magazines (Holdings) Ltd, Ryrie House, 15 Boundary Street, Rushcutters Bay 2011, Sydney, Australia.
France: Electroniques Pour Vous International, 17 Rue de Buci, Paris, France.
USA: ACP, Room 401, 1501 Broadway, New York, USA.
European News Bureau: H. Dvoretsky, Manager, 107 Fleet Street, London EC4.

CORRESPONDENCE: Readers querles can only be answered if they relate to recent articles published in the magazine and must be accompanied by a stamped, self-addressed envelope. We are rarely able to provide information in addition to that published. Answers may be subject to delays at certain times due to the production schedule of the magazine.
BACK NUMBERS: Back numbers of most issues are avallable at 25 p each plus 7 p postage.
SUBSCRIPTIONS: Great Britain, $£ 3.60$ per year, Overseas, £4.00 per year.
COPYRIGHT: All material is subject to Worldwide Copyright protection. All reasonable care is taken in the preparation of the magazine to ensure accuracy but ETI cannot be held responsible for it legally. Where errors do occur, a correction will be printed as soon as possible afterwards in the
magazine.

Lenrys
 LARGEST SELECTION OF ELECTRONIC COMPONENTS AND EQUIPMENT. LOW PRICES- MEAN LESS VAT.

You can build the Texan and Stereo FM Tuner
 TEXAN 20 + 20 WATT IC STEREO AMPLIFIERS
 Features glass-fibre PC board, Gardners low field transformer, 6-1C's, formsistors plug diodes etc. Designed by Texas Instruments enginee construction. h.W. 1972. Supplied with full chassis work, detailed facilities. Stabilised supply. overall size $15 \frac{1}{4}$ in $\times 2 \frac{7}{4}$ in $\times 6 \frac{1}{\text { in mains }}$ operated. Free teak sleeve with every kit. $\mathbf{f 8 . 5 0}$ (GB post paid).
 STEREO FM TUNER
 Features capacity diode tuning, led and tuning meter indicators, stabilized power supply-mains operated. High performance and sensitivity with
 Complete kit with teak sleeve $\mathbf{£ 1 . 0 0}$ (GB post paid). Join the large band of happy constructors

TRANSISTORISED
MODULES
Tuners-Power Suppliers-Amplifiers

Amplifiers (All single channel unless siated)						
4300	9 volt	300 MW	otp 3-8 oh	Onvi/p	Special	11.75
2004	9 volt	250 MW	oip 3-8 oh	10 mvio	Spectisl	22.70
104	9 volt	1 watt	0 or-100	nv		[3.10
304	9 volt	3 watt	ols 1-8 oh	V10		[3.95
555	12 volt	3 watt	o\% 8-16	OmVir		(4.10
555ST	12 volt	1相11	op 8 ohm .	is	Staro	[595
E 1208	12 volt	5 watt	o/p 4-16	-60mV1/p		
608	24 volt	10 watt	of 48 oh	$5 \mathrm{mV} 1{ }^{\text {p }}$		[495
410	28 volt	10 watt	of 8 ohm.			[4995
	45 volt	30 wat	\% 1-8 oh	nViop		19.95
240	$30 / 35$ volt	15 watt	op 1-8 oh	$\underline{V} 1 / p$		75.45
	45/50 volt	25 wat	of 1-8 oh	250 mvip		¢6.95
SA6817	24 volt	$6+6$ watt	off 8 ohm.		Steres	10.20
Amplifiers with controls						
	12 voll	2 + $+2 \frac{1}{4}$ w	Is 8 ohms	Stereo		61.25
R500	Mans	5 warts 4	ohms	Mono		81.30
SAC14	Mains	$7+7$ wats	ohms	Stereo		$\int 11.75$
SAC30	Mains	$15+15$ wa	8 ohms	Stereo		[1495
CAO38	9 volt	+ +1 + wat	8 ohms	Stereo		18 \%
CA068	12 voh	$3+3$ watt	8 ohms	Stereo		f10 50
FM Modules						
Mullard LP 1186 FM tunar (front end) with data 10.7 MHz oip						
Gorler P	ermability F	M tuner (fro	tend) 107			14.20
FM and $A M$ tuners and decoders						
FM 5231 (tu 2) 6 volt FM tuner (7.95						
A1007 9 volt MW-AM tuner						
Sinclar	1245 volt	M tuner ster	eo recorder			[7A5
A10189 volt FM tuner in cabinet						
A1005M (S) 9-12 volt stereo decoder FM for above \quad \% 7.50						
106212	2 volt stereo	decoder G	neral purpos			c. 50
Preamplifiers						
Sinclair	Stereo 6	0 Preampli				
E1300	CART/T	PEJMIC IN	UTS 9 volt	Module		[2.85
E1310	Stereo 3	30 mV ma	cart 9 volt			14.75
FF3	Stereo 3	mV tape he	d 9 volt			[4.95
3042	Stereo 5	-20mV Ma	cart. main			[5.95
E025	Mono 3	250 mV Ta	/cartiflat. 9			${ }_{61.95}$
Power Supplies Mains input (*Chassis-reat cased)						
470 C 67 tigear 300 mA with adapiors						
P500 9 voll 500 mA (
-P11 24 volt $\frac{1}{2}$ amp 330° P 1528 volt $\frac{1}{2}$ amp						
P124t 12 volt $\mathrm{O}^{4-1 \mathrm{amp}}$						
SKO1A $36,8.12$ volt 1 amp stabilised \quad [12.75						

\section*{QUALITY CASSETTE TAPES Living Sound" made specially for Henry's by EMP Tapes Ltd. 	5 screw tye with library case. Post paid (GB)				
	$\mathbf{3}$ for	$\mathbf{6}$ for	10 for	25 for	
C60	$\mathbf{£ 1 . 1 0}$	$\mathbf{£ 2 . 0 0}$	$\mathbf{£ 3 . 1 5}$	$\mathbf{£ 7 . 5 0}$	
C90	$\mathbf{£ 1 . 4 7}$	$\mathbf{£ 2 . 8 5}$	$\mathbf{£ 4 . 6 5}$	$\mathbf{£ 1 1 . 3 7}$	
C120	$\mathbf{£ 1 . 8 3}$	$\mathbf{£ 3 . 5 4}$	$\mathbf{£ 5 . 6 0}$	$\mathbf{£ 1 4 . 0 0}$	}

COMPONENTS SUPPLY POSITION EXPECTED TO EASE

For a variety of reasons, the components shortage that has dominated the list of problems of the electronics industry, especially the smaller companies, could well take a dramatic turn in the near future.

From Japan comes a report that the serious economic problems in that country will stagnate domestic demand which will encourage the surplus to be exported.

Once components are seen to be available, companies will start to use up the stock that they felt obliged to hoard during the shortage. Figures are hard to come by but many small companies have admitted to ETI that they now have such large stocks that they are looking forward to running these down.

The Spring Budget imposed serious cash-flow problems on most companies and running down previously hoarded stock must be very tempting.

The combined effects of these measures could lead to almost a components glut but there are few indications that this will resuit in a price fall. One example of price rises is that Japanese components have risen by an average of 30% in the last nine months.

£5 COMPUTER BY 1980?

Before 1980 general-purpose microcomputer complete with central processor and internal working memory will be available on a single chip for a cost of between 50 p and $£ 5$. Magnetic bubble technology is expected to bring the cost of memory from the present $0.5 p$ a bit to 0.05 p per bit.

These and other similar predictions were made by L.S. Coles and J.M. Tenebaum of Stanford Research Institute, and O. Firschein and M.A. Fischler of Lockheed Research at New York's recent IEEE Intercon.

In their paper entitled 'Forecasting and assessing the impact of artificial intelligence on society', the authors considered the social implications of 21 postulated commercial products based on artificial intelligence technology.

One of their most startling forecasts is that of single chip computers capable of handling 20 million instructions per second with an internal 65,000 bit memory selling for less than 50 p. This, say the authors, should happen before the end of this century.

MORE SOLAR CELLS

In recent News Digests we have given details of the increasing development work and interest in solar cells. The latest company to release details of their work in this field is Ferranti.

The company is aiming to produce a solar cell panel designed to recharge a 12 V battery. The panels will measure $12^{\prime \prime} \times 10^{\prime \prime}$ and will typically supply 250 mA ; greater capacity would of course be available by connecting panels together.

Ferranti's research centred on two types: thin-film cadmium sulphide and single crystal silicon types. It is the latter which has shown most promise and which will be used.

If the demand is proven the initial selling price is in the $£ 100$ region, perhaps falling to $£ 30$. Under U.K. conditions about 20W/hours per week are expected.

Envisaged uses are remote and inaccessible instrumentation, navigation and telecommunication links.

LASER WEAPON CONFIRMED

The long-rumoured laser gun now seems to be for real. The U.S. Navy have just confirmed previously unofficial reports that they are just about to undertake sea trials of a shipborne anti-missile laser weapon. As the project is totally classified no other details can be published.

BOMB SNIFFER

A new and very welcome use has been found for gas leak detectors supplied by Leybold Heraeus of London, SE10. Normally these detectors are used by industry for detecting halogen gas which in turn is used to find leaks in pipes and vacuum systems. The electronic detectors are sensitive to a few parts per million.

The same detectors are now used in Ulster for sniffing out gelignite to which the detector is even more sensitive. So sensitive is the unit that it will show up anyone who has handled gelignite even 30 minutes beforehand and a car which has carried the explosive for two hours afterwards.

Apart from Halogen and Gelignite the detector only reacts to three or four chemicals but these are being kept secret to prevent attempts to mask the system.

BATTERY STATUS INDICATOR

New from Litronix is the RLC-400 battery indicator, a miniature-sized LED lamp with red diffused lens, incorporating a voltage-sensing I.C.

Designed to indicate battery state in small portable equipment, such as calculators and cameras, the RLC-400 features a sharp turn-on characteristic, having zero luminous intensity at 2.0 V and bright output at 3.0 V . Maximum forward voltage is 5.0 V . Litronix, Bevan House, Bancroft Court, Hitchin, Herts.

One of the major problems confronting the constructor is in providing an attractive housing for the electronics. For those who take a pride in the final appearance of their projects, the availability of a new range of plastic boxes must be very welcome.

As shown by the photograph, the boxes are available in several sizes and styles - some with carrying/support handles. All are made of high impact polystyrene. The suppliers are Vero Electronics Ltd, Industrial Estate, Chandler's Ford, Eastleigh, Hants.

HP. 70 CALCULATOR

More details are now available on Hewlett-Packard's new low-cost pre-programmed business calculator. The price of $£ 140+$ VAT is somewhat higher than the information we were given but still represents excellent value-for-money.

The calculator has of course the usual four functions ($+,-, x,-)$ but in addition can handle 21 of the most common equations used in business and finance. These include accrued interest, future value of a compound amount, effective rate of a mortgage, effective rate of return for compounded amounts, percentage difference. percentage calculations and discounted cash flow.

A major advantage for the user of the HP. 70 is that the financial data of any problem can be entered in any sequence and changed without having to re-enter the complete problem. The HP-70 also features a 4 -memory operational stack as well as two independent memories for intermediate storage and accumulation of numbers.

COMPUTERISEO LIFTS

Cynical readers may say that the lifts in modern high-rise offices have been thinking for themselves for some timeyou can wait for ages only to be presented with a choice of three lifts to take since they arrive together.

For some years multiple lift systems have had some form of control but a new lift control system announced by Marryat and Scott Ltd is claimed to be five years ahead of its competitors. Apart from the obvious interest, the techniques demonstrate well the way that computers are affecting even the mundane aspects of our life.

The lift control system uses a

The first item in last month's News Digest gave readers the first news on Doram, the new subsidiary of R.S. Components, which is entering the components field in a big way.

Doram are making their catalogue available this month and the photograph above gives some idea of the range which is going to be stocked - it shows just a tiny part of the 7,500 square foot warehouse in Leeds.
minicomputer to control the operation of a group of lifts to cut down waiting time and make maximum use of the equipment.

Passenger demand for particular journeys is updated ten times a second - this makes maximum use of the cars. A light beam controls the doors so that stay-open time depends on the numbers entering or leaving. The doors even open as the lift approaches the landing to cut time still further.

When lifts are not in use they can be arranged to 'park' on those floors which are likely to need most service for particular times of the day: ground floor in the mornings, canteen floors at meal times, etc.

The control system even has built-in facilities to frustrate those nuisance callers who press all buttons and those who enjoy their conversations while holding open the doors!

The unit will even provide a printout of the operation recording waiting times etc in order that the programme can be updated depending on experience.

MOLECULE - ULTIMATE MICROCIRCUIT

What must surely be the ultimate in micro-miniature circuitry was proposed recently by Avi Aviram of IBM and Mark Ratner of New York University.

Speaking at a meeting of the

American Physical Society recently the two researchers outlined a technique for designing individual molecules as functioning electronic devices. Presented to the conference was a blueprint for constructing a hypothetical rectifier in molecular form - along with quantum mechanical evidence of the scheme's feasibility!

SELF-AOHESIVE WIRING CLIPS

We were recently sent samples of an ingenious new wiring clip. These are supplied in a long row and individual clips are broken off. A backing paper is then removed enabling the clip to be stuck in position. Soft aluminium claws can then be bent over holding the wires firmly and neatly in position The sketch illustrates the principle.

Although intended mainly for large quantity industrial use, we contacted the suppliers, Special Products Distributors Limited, 81 Piccadilly, London W1V OHL, who told us they were happy to supply small quantities at 28 p for 20 plus $10 p$ postage and packing for quantities up to 250 staples.

The company are anxious to hear from retailers and other potential users.

The photograph shows David Metcalfe (left) Instrument Group Sales Manager of Hewlett-Packard and Halvor Moorshead, Editor of ETI (right) presenting an HP.970A Digital VOM to Charles Khoury of Bodmin, Cornwall, who was the winner of the competition held earlier this year.

Mr. Khoury is not new to Hewlett-Packard products as he already owns one of the company's HP. 35 calculators.

TANDY'S EXPANSION

The first Tandy store opened less than a year ago but the number has now topped the fifty mark with new ones opening weekly.

For those who have not yet heard of or come across these stores they are a chain of high street audio/component stores. The Tandy Corporation originates from the U.S. where they have 2000 outlets and a turnover of £200 million.

Each outlet issues an identical 96 -page free catalogue (very well produced, incidentally) which gives full details of the company's products. Quite a proportion is devoted to Hi -Fi equipment but the range of components - though not completely comprehensive - is considerable and includes some items not easily found elsewhere (one small example: heat shrinkable tubing).

Unlike the current trend towards mail order, Tandy is aiming for very wide coverage and hope to have 500 outlets within three years.

In addition to components, the Tandy stores market a number of electronic kits under the "Science Fair" brand name and a wide range of test gear.

Until recently the company have undertaken relatively little publicity but with the number of outlets grow. ing rapidly it is a name we will all get to know a lot better.

GOULD TAKE-OVER BID FOR ADVANCE

The American Gould company is making a takeover bid for the Essex-
based Advance Electronics Limited.
The U.K. company employ about 1,800 people and have plants in Essex, Hertfordshire, Wales and Germany. Sales last year were € 8 million.

Chicago-based Gould Inc. had sales of over $£ 300$ million largely in electronics and batteries.

TAPE REFERENCE BOOK UPDATED

'Tape Questions - Tape Answers', the popular tape reference paperback written by BASF tape specialist Heinz Ritter, has been updated by the addition of a supplement on (a) the Dolby System, (b) chromium dioxide tape, (c) Special Mechanics, and (d) Dynamic Noise Limiter (DNL).

The paperback was first published in 1971 and was an easy-to-follow, comprehensive guide to all aspects of tape from selecting the right tape software and hardware to operating techniques and maintenance. However, in the fast moving tape industry it soon became out-of-date as manufacturers, including BASF, introduced one tape development after another.

As an interim measure while a new edition is printed, a slip-in six-page explanation of the most important advances since 1971 will be available with all copies of the first edition.
'Tape Questions - Tape Answers' is available from Alan Patch, BASF (United Kingdom) Limited, Knightsbridge .4cuse, 197 Knightsbridge, London, S.W.7., priced 40p (post and packing included). The supplement is available free to anyone already possessing the first edition and wishing to update it.

FLUORESCENT LIGHT KIT

Recently announced by Electronic Design Associates is a 12 V fluorescent light kit at $£ 3.19$ including VAT and postage.

The system drives an 8 W tube and consequently draws only about twothirds of an amp from a battery.

The kit is complete including a ready-built p.c. board, ready drilled metal-work, clips etc. A diffuser is also available for 59 p inclusive (12 p postage if ordered separately).

Electronic Design Associates, 82 Bath Street, Walsall, WS 1 3DE.

NEW COLOUR TV DISPLAY

The first colour TV experiments mostly were based on a sequential system, bringing a coloured filter in front of a normal monochrome picture. The CBS experiments in the late 1940's and early 1950's are perhaps the best known. The disadvantages were the enormous wheel rotating at high speed - and the non-compatability of the system.

Serious work on this was dropped as a result of the development of the shadow-mask tube.

This principle however may not be dead. From no less a place than the Royal Radar Establishment comes news of work in an advanced state on a modern equivalent. The colour filter is placed over a B \& W tube and is made of liquid crystals which are switched electronically. The eye does not notice the changing colours.

If it proves practical, the system could bring about a dramatic fall in the cost of colour TV's ($£ 100$ is suggested) as well as resulting in a far, far brighter display as the system is not subjected to the inefficiencies of the shadow-mask.

The system is due to be unveiled officially at the European Solid State Device Research Conference at the University of Nottingham (to be held at the time this issue appears).

We hope to carry more details when they are available.

R.S. OPEN BIRMINGHAM DEPOT

A new regional depot has been opened by R.S. Components for their customers in the Midlands. This is now operational. Address is P.O. Box 253, Saltby Trading Estate, Birmingham B 81 BQ . Telephone 021-328 0233.

£10,000 PRIZE FOR NEW COMPANY

A recently held competition run by Barclay's Bank and the North of England Development Council has been won by John Jessop for his entry describing the establishment of a company to produce thick film microcircuits on ceramic bases.

The competition, with a $£ 10,000$ prize, entitled 'Build Your Own Business', was to encourage anyone who had the vision and drive to set up a new business in the North of England. The project could describe a manufacturing or service industry and was not limited to electronics.
J. J. Electronic Components Limited has now been established and will operate from Cramlington, Northumberland.
RESISTORS (E24 Serles) \qquad SCREWS,NUTS AND 1/2W 5\% Carbon Film \%2W 2\% Metal Oxide $21 / 2 W$ W\% Wire-wound $5 \mathrm{~W} \quad 5 \% \quad$ Wire-wound \%WW 5\% Carbon Fllm SEMICONDUCTORS \qquad BC107/8/9 11p 2N1302/3 $\begin{array}{lllll} & \text { 2N1304/5 } & 21 p & 2 N 3055 & 57 p \\ 2 N 3773 & \text { £2.95 }\end{array}$ $\begin{array}{lllll}2 N 1306 / 7 & 22 p & 1 N 4001 / 2 / 3 & 7 p & 2 N 3703 / 4 / 5 / 6 / 7\end{array}$ 2N3053 24p 1N4004/5 9p 13p

CAPACITORS

$\mu \mathrm{F}$	Volts	Price	2.2pF to 820pF	7p
1	100	6p	1000pF to 1800pF	10p
2.2	63	6p	I.C. HOLDERS	
4.7	35	6p	8 -way DIL	16p
10	16	6p	14-way DIL	24p
10	63	7p	16-way DIL	27p
22	35	7p	CROC CLIPS Std. 42 mm : 4 p, Min. 27 mm 3p	
100 100	10 50	7p		
220	50	17p	VERO range of boards - PIN insertlons tool 78p. Spot cutter 50p. 0.1 pins/50 20p 0.15/50-200.	
470	35	21p		
1000	25	24p		

LOW PRICES:
6 Minitrons for
£6. $1+8 \%$ VAT = £6.48)
300 Soldercon Pins for
$£ 1.50$ (+8\% VAT = £1.62)
NO P\&P CHARGE for UK orders. Add 10p Handling charge for orders under $£ 2$. Data, and circuits where appropriate, supplied with orders, or available separately ($41 / 2 p$ stamp each). SINTEL 53a Aston Street, Oxford.
CALCULATOR
KEYBOARO
FLEX KEY 19SK-6
Suitable for CT5001 Available to order £6.00 $(+8 \%$ VAT $=£ 6.48)$

ADD 10p for p\&p PLUS 10\% VAT
Send $20 p$ for our illustrated catalogue containing competitive prices and descriptions of hundreds of components, accessories etc.

SOLID STATE TIME!

DIGITRONIC II

- Reads: Hours, minutes, seconds
- Bright. clear display.
- No moving parts.
- Executive styling.
- Solid state reliability.

The DHitimonic II is availsobe as

品 mument to a mom29.65

C33.65

 Mn-

DIGITRONIC III

- Reads: Time, Date \& Alarm
- Electronic beep alarm tone.
- Ten minute "snooze feature.
- Four year calendar.
- Attractive "woodgrain" case.

C46.50

 -

Remember that the September ETI reader offer is open until September 30th.

ELECTRONICS IN CRIME

A
Hours after the murderer has moved his victim's body, a heat-sensing camera produces this thermogram showing exactly how and where his victim lay. The camera has reconstructed a scene - that the detective (left) can see only as a bare rug.

In the battle against crime - both sides are using increasingly sophisticated techniques. Electronics Today reports -

HOURS after a murderer has moved his victim's body a thermographic (heat-sensing) scanner can clearly delineate the exact manner in which the victim first lay.
A person's movements can be plotted - hours after his presence - using holographic pictures to show up microscopic (elastic) deformation of the area where he has been.
It is electronics that has made this possible - together with other equally impressive instruments for a multiplicity of purposes - from infra-red image converters used for
night vision to laser eavesdropping devices; from sophisticated devices for hidden weapon detection to units for finding long-since buried bodies.

IT'S A TWO-WAY
GAME
Needless to say, since the devices used in surveillance and detection are of a 'passively aggressive' nature there have as a result evolved complementary devices used to neutralise or counteract the originals.
Many of the devices described in this
series operate in conditions that are, at best, on the ragged edge of legality or sometimes in contradiction of it. One can readily foresee that the future battle against crime will be one in which both sides use electronic devices and counterdevices.
Already there are instances where this has happened. Recently a radio operator tuning across the 27 MHz band overheard bank robbers using walkie talkies during an actual felony.

The police unsuccessfully tried to locate the crime when notified. Unfortunately, it being a weekend,
 image converterfintensifier.
image converter infensifier tubi

A MODERN IMAGE CONVERTER-INTENSIFIER SYSTEM

Passive night viewing devices depend upon the light amplification of the image intensifier.
The scene is very faintly illuminated from sources such as starlight or proximity to man made lights.
Conversely in an active system a source of infra-red light, such as a tungsten filament globe kept just below incandescence, is directed onto the scene. By using an infra-red filter over the "searchlight", the subject is not aware that he is being illuminated since infra-red rays are invisible to the human eye. The image converter tube is capable of "seeing" both visible and infra-red radiation.
The optical system focuses the reflected light onto the face of the input fibre optic plate on the image converter. The optical image is then transferred by the fibres to the interior concave
surface where a high sensitivity photocathode transforms the photon image into an electron image. Photoelectrons are released in direct proportion to the light intensity at each spatial point of the image. These electrons are now accelerated and focussed electrostatically onto the phosphor screen of the output fibres optic plate by the potential applied between the anode cone and the photocathode.
The electrons striking the phosphor produce an image similarly to that on a cathode ray tube and so a radiant image is built up. The intensification factor depends on the accelerating voltage of the tube. For a voltage of 15 kV , the intensified image is typically 25 to 60 times brighter than the optical image formed at the photocathode. Apart from the refinement of fibre optics and higher bias voltage this unit is little different to the "Tabby" system (described in the main text).
all banks were locked making a total search impossible.
Major payroll robberies have been committed by 'bent' computer operators who not only programmed their machines to divert funds in their direction, but wrote deletion instructions into the programme as well - thus effectively covering up their tracks.

SURVEILLANCE

During the second world war a device was developed by the allies known as "Tabby", "cats eye" or "owl eye". Supplied mainly for tanks it eriabled the tank-driver to "see" in the dark.

Later versions giving greater definition were used as snipers appendages for night work. (See last month's ETII.
"Tabby" consisted of an orthodox optical system which brought the image to focus on the photocathode of an image converter tube. By applying a bias voltage an image was formed on a fluorescent screen at the rear of the converter. This image was intensified by the tube giving an improved brightness over the original picture. The bias was obtained from a then special type of battery called a "Zamboni pile." The image appeared on the fluorescent screen inside the converter. Image quality left
something to be desired but the unit was adequate for the purpose of assisting night drivers.

From these early instruments have evolved both active and passive image intensifiers and viewers as well as thermal imagers.
Thermal lmaging is an additional night vision technique which has certain advantages over intensifiers for the detection and observation of people and vehicles.
A human body (live) emits about 100 watts of heat energy in the form of long wave (far infra-red) light.
The average temperature of a man's head and his outer clothing is several

Fig.2. Thermal imaging (left) via image intensifier (right), both pictures are of a man walking along a path in open country on a dark night Fig. 2 Thermal imaging (left) via image intensifier (right), borh pictures are of a man walking along a
$(10.4$ ft. candles). Using thermal imaging, the man could be clearly seen 1000 metres away, compared to the 100 metre or so maximum using the image intensifer.

ELECTRONICS IN CRIME

degrees above the background temperature so although other objects around him are also giving off infra-red radiation the man stands out thermally from his background.
Over the past few years a number of thermal cameras have come into use. However most of these are intended for industrial rather than forensic use and their need for liquid nitrogen cooling of their indium antimony IR detectors has rendered them too cumbersome for police use.
More recently details of a de-classified unit developed for the US army have become available. This unit is hand-held, has a thermoelectrically cooled detector and a 2.5 cm CRT display viewed through an eyepiece. Developed by Hughes in the USA the unit is energised by a 3 kg power pack
and takes approximately 15 seconds to reach operational temperature.
Hughes have more recently announced a new portable unit called "Probeye". The unit weighs 3.1 kg and contains six InSb detectors cooled to 870 K by an argon gas cooler. Sensistivity is high and a small battery supplies the 1.5 watts required to operate the unit. Both battery and argon bottle have a life of four hours.
Latest work in the field comes from the English Electric Valve Co. where thermally sensitive TV tubes (pyroelectric vidicons) are being developed. Their main advantage is that they do not require cooling.

The two photographs on page 11 illustrate the differentl images obtainable by a light intensifying system via $1 R$ image converter as compared to a thermal image system.
The image intensifier system relies on the subject being illuminated by the surrounding faint light or by an infra-red source, whilst the thermal
image is a heat picture which builds up an image from radiation emanating from the subject itself.
Thermal viewers form a valuable addition to night viewing equipment. Men and vehicles in most situations can be detected at twice the range obtainable using intensifiers and active IR systems.
Under certain conditions where the scene illumination makes observation with an intensifier difficult, (as in woods where little light enters from outside to illuminate the subject, or where there is a presence of strong lights in the field of view) then thermal viewers make detection and observation simple.

Cadaver Sniffing - A
 "Grave Operation"

A more macabre aspect of personnel detection is the detection of cadavers (dead bodies).
Searching for cadavers concealed in vegetation, buried or underwater often

"FALSE COLOUR" INFRA-RED COLOUR PHOTOGRAPHY

Infra-red can be used to take pictures in colour but the colour is what is known as false colour. Colours are sensations produced in the brain by certain wavelengths of visible light, that have entered the eye. Infra-red radiation produces no sensation because the human retina is not sensitive to it. But since certain photographic emulsions are sensitive to infra-red, it can be considered a colour and used to take pictures that show it as a colour when they are developed.
This is generally done by making invisible infra-red reveal itself as a red in the final photograph.
Like standard film that can take pictures in true colours, infra-red film has three superimposed emulsions, each sensitive to a different set of wavelengths - in this case infra-red, green and red.
These wavelengths form images on their respective layers, but when the film is developed, positive images in other colours appear.

Four graves, seven weeks old, normal colour.

False colour pictures are useful militarily because they make it even more difficult for an enemy to hide behind camouflage.
False colour has its civilian uses too. When an orange grove is photographed in false colour the healthy plants appear as a uniform reddish brown whilst trees attacked by fungi or pests are purplish or blue. Similarly landscape has its individual components brought out in full gamut of false but meaningful colours.
Amateurs have no great difficulty with false colour film and sometimes get surprising results that even experts cannot explain.
False colour film is available from the better known film manufacturers in standard 35 mm rolls for the would-be experimenter, as is manufacturers literature containing tips on how to use the film. (Kodak Ektachrome infra-red film to be used with orange filter).

Four graves, seven weeks old, false infra-red colour.

[^0]occupies large numbers of people for long periods. Nevertheless cadaver location, even if foul play is not suspected, is treated by the police with a high order of priority.
But it is often a long and difficult task, for the places of concealment and other circumstances, which determine the most effective search technique, are as wide as the environment in which man lives.
The Plessey Radar Research Centre have recently undertaken a study of various aspects of cadaver detection on behalf of the Home Office Police Scientific Research Development Branch. Plessey studied various search methods suitable for three well defined types of area. Large areas in open country, small areas in well defined boundaries such as back gardens; and areas of water such as canals, gravel pits, quarries, ponds, rivers or docks.
The study of the effluents of a living human body, including breath and vaporisation of odours from the body surface, have revealed that a broad number of chemicals are given off. The total organic emission is as high as 0.5 gms/hour.
Similarly a cadaver whether on or beneath the surface not only undergoes chemical changes and emmits organic matter into the atmosphere but also affects the surrounding soil and vegetation.
With these factors in mind electronic detectors of organic matter have been developed.
Most successful among these has been the body ammonia detector first used by the US army in Vietnam; continuous sampling monitored the air for ammonia together with carbon dioxide produced when the urea of sweat is broken down by bacterial action. This "sniffer" could detect the presence of humans, under jungle conditions and in the dark, even when concealed.
However, when searching for a cadaver over a large area it is more difficult and a combination of techniques has to be applied.
Photographic methods, using special film sensitive in the infra-red region, will pick up spectral anomalies of a grave where a body has been buried. In brief it constitutes a sensitive detector of recently disturbed vegetation and soil.
This technique has been used for detecting camouflage by the military with great success.
Evidence will be visually apparent with a fresh grave, but as the grave becomes overgrown other methods of detection must be used. For the first six months or so, the drop in soil moisture content above the cadaver will restrict vegetation growth. As
decomposition products due to the cadaver's putrefaction seep up, thus enriching the soil, a lusher vegetation will appear (Ugh! - Ed). Some changes in the type and nature of the vegetation are also evident. Both these effects produce changes in the visible and near infra-red reflection spectra which are detectable on infra-red film.
Thermal imaging methods can also be used to detect thermal anomalies over a grave site. These occur for similar reasons as those causing spectral anomalies. It is to be noted that whereas the previous method measures the reflectivity of the soil and vegetation, thermal imaging measures the emissivity of the area.
Live humans have been observed from aircraft fitted with thermal imaging equipment even when concealed in trees.
During the rapid decomposition of the cadaver either on the surface or lightly buried, the surface temperature of the skin, clothing or even the soil, may be raised by the exothermic reactions set up inside the putrefying body. This effect could lead to a marked temperature anomaly which could make this type of system attractive.
Multispectral sensing is an experimental technique developed to improve on "false colour" infra-red photography. By this method a target is viewed using spectral bands by which it appears with maximum contrast against its background.
A special instrument called a
"Telespectro-reflectometer" has been constructed. This is designed to scan a selected area of ground from an evaluation platform. It provides a very narrow spectral resolution of 0.005 $\mu \mathrm{m}$ over a broad wavelength range. The data are extracted on punched tape for computer analysis. Vegetation reflection spectra over graves are being investigated to see if a characteristic "fingerprint" of a grave for all conditions of weather, solar angle, age of burial and soil type, can be established. (Fig. 3).
Acoustics may also be used for cadaver location - and a single operator instrument is already in use.
Sound travels at different velocities through compacted soil as compared with less compacted fill. The more compacted the soil the higher the velocity and vice versa. Thus if the instrument is located over a grave the slower time of arrival of the shock wave at the sensor will be indicated by a time anomaly as compared with the surrounding more homogeneous terrain.
In the instrument shown (Fig 4) a hand-held striker generates a mechanical impulse which is transmitted into the ground and about five to 20 cm away a sensor picks up the vibrations transmitted by the soil and feeds it to the measuring unit. Tests have shown anomalies to be evident when over shallow test graves with pig carcasses in them.
VHF techniques have also been applied as a search medium. A

Fig.3. Telespectroreflectometer.

ELECTRONICS IN CRIME

Fig.4. Experimental acoustic cadaver derector.
differential VHF cadaver detector has been developed. The search head for this unit consists of three equally spaced co-planar dipoles. The outer pair are used for transmission and the inner one for reception. The two transmitted signals are of equal amplitude and opposite phase so the received signal is zero when the search head is placed over a homogeneous medium such as undisturbed soil. If the head is swept towards an anomaly, the disturbance to the field of the nearer transmitting dipole will be greater than that to the field of the further dipole. The system thus becomes unbalanced and a signal appears at the receiving dipole.
The results obtained with this rig have been most encouraging. The detection of cadavers buried in soil to a depth of 15 cms has been achieved with soil moisture content of about 15% by weight.
Radar A more recent experimental method uses a short-pulse high resolution radar developed by Calspan Corp of Buffalo NY. Subsurface cadaver detection is accomplished by transmitting a very short pulse, receiving its (much weaker) reflection from the target and presenting the time delayed, changed pulse shape either for visual inspection by a human

Fig.5. Soil surface radar return signal betore burying dog.
observer, or to suitable automatic recognition circuitry.
The transmitted signal must have a sufficiently large bandwidth to permit separation in time of the very strong soil surface return from the much weaker subsurface object return.
This experiment has demonstrated that a one-man-portable radar may be employed as a means of detecting buried objects. The holes made by disturbing the natural soil can also be detected, even though they have been filled and covered with an appreciable amount of soil fill. Animal bodies or cadavers may be easily detected.
By scanning the radar antenna laterally and longitudinally and noting corresponding signal response a fair estimate of the cavity size may be obtained.
Display of the signals obtained when a recently-dead dog was buried in a shallow grave are shown in Figs. 5 \& 6.

Finally, the detection of bodies underwater. Turbid water can provide good transmission of ultrasonic energy up to 3 MHz . This is adequate for imaging objects of the size of cadavers, or even as small as hand weapons.

Fig.6. Signal obtained.

There are nevertheless many engineering problems associated with generating a display which provides the operator with readily recognisable signals.
There are three main imaging systems.

1. Focused sonic image using refraction or reflection optics and an image converter.
2. Phased linear arrays of discrete pulse generating and receiving elements, which with suitable electronic processing can provide image displays.
3. Holographic techniques.

These are then a number of techniques which are available on an experimental basis. Further research and development is required before they can be put into general use.

Much research has been applied to techniques for detecting evidence of intrusion in some area or location. Recently a new technique of laser hologram interferometry has been applied with encouraging results.
The principle is that any surface which has had some force applied to it, such as the pressure of a human

Fig.7. This is a black schematic of the Calspan radar system used for cadaver detection.
foot, elastically deforms around the pressure region. The elastically distorted area recovers rapidly at first - with about 90% return to original shape within seconds of removal of force, however further relaxation is progressively slower and detectable displacements persist for several hours.
This phenomenon is most marked with fibrous substances such as wood and textile materials.
If now, a method of comparing the surface shape of such a material at two instants during the slow recovery period is possible, it will provide the evidence of the earlier disturbance without the need for knowledge about the pre-disturbed state of the surface.
Through the use of holography this is possible. It must be noted here that such changes are of very low amplitude and the resolution of any measuring system used must be better than the minimum displacement of the material over the period of measurements taken. With a laser interferometer the resolution is at least half the wavelength of the light source (about $0.3 \mu \mathrm{~m}$). This is of the order of magnitude required for detecting the minute changes of shape found by this technique.
Since interferograms are produced by taking photographs from the same location at successive intervals, absolute mechanical stability of the measuring system is essential. This requires a rather bulky set-up with a vibration-reducing platform if successful interferograms are to be obtained. Also motion of the object can mask localised variations.

Figure 8 shows that by locating a local reference mirror on the object surface, the motion of the object itself is compensated for. Any localised displacement due to elastic distortion by an external force will show up as interference fringes unmasked by the total motion of the object.
Figure 9 shows results from test set-ups using fixed-size samples of various materials which have been

Fig.8. Local reference beam for object motion compensation. (See main fext)
subjected to the force of a fixed weight for various intervals of time. The interferograms were taken at five minute intervals.
The illustration shows two identical hardboard samples. The weight on the upper one has been removed 15 minutes prior to making the hologram. The result indicates that the centre has moved $1.5 \mu \mathrm{~m}$ relative to the ends during the five minute sampling period. Each fringe corresponds to $0.34 \mu \mathrm{~m}$. The lower "control" sample has shown no movement thus indicating the mechanical stability of the measuring system. After two hours the disturbed sample was still recovering at the rate of half a fringe per five minute interval. This dramatically demonstrates the order of magnitude of the measurements to be taken; measurements that were physically impossible prior to the development of the laser and holography.
Tests on rubber backed carpet underlay, where a footprint has been
produced, yielded the fringe interferograms shown in Fig. 10. Photographs covering the time up to four hours after the event are shown.

These experiments have indicated the very high sensitivity of hologram interferometry in a stable environment. Where there are air currents, temperature changes and vibration, the technique can still be used with a pulsed laser and a local reference beam. The limits of sensitivity in an uncontrolled environment have not yet been established. The requirement of pulse to pulse frequency stability, coherence length and power requirement demand a somewhat bulky laser system at present. It is expected that future improvements in laser technology will overcome this disadvantage.
(These experiments were supported by the Police Scientific Development Branch of the Home Office and were implemented by EMI Electronics).

To be continued next month.

Fig.9. Interferogram showing movement in a hardboard sample. A second (control) sample is shown beneath the sample under test.

30 MINUTES

2 HOURS
4 HOURS
Fig.10. Sequence of 'live' fringe interferograms of footprint.

Goodbye to the long wait

for electronic components.

Now there's Dorama completely professional electronics service for the amateur.

7-day service.

Ifyou've been buying electronic components long you'll know all about the long wait.

Somehow the things you really need never turn up on time.

Well, OK, now things have changed. Now there's Doram.

Doram is a brand-new deal for serious amateurs. If's a complete door-to-door components service operated by mail order.

Millions of components.

You just buy the Doram catalogue for 25 p lthat's a yearly reference book for the price of a pint of lagerl and then you orderfrom it.

We can offeryou stocks of millions of components. With a choice of over 4,000 different lines.

And we're so confident of our service that if we can't supply the part you want within 7 days of receiving your order, we'll give you your money back. Immediately.

So you know just where you stand. You'll never waste time hanging around while we re-order.

No-quibble guarantee.

It's iust about impossible to buy a defective partfrom us. Because our checking is so pains-taking.

But even if the unthinkable does happen-and you're unlucky-then

Name

Address

ET1/10/74

Doram Electronics Ltd.,

PO Box TR8
Wellington Road Industrial Estate, Wellington Bridge, Leeds LSI22UF.

we'll still make you happy quickly. Because we offer a no-quibble replacement part service.

And our guarantee is guaranteed by the fact that we belong to the biggest electronics distribution Group in Britain.

All the goods supplied are branded goods. Produced by bigname manufacturers like RS, Mullard, SGS-ATES, Ferranti, Siemens etc.

£5 Vouchers

As an added incentive we're giving free purchase vouchers away. To the first 50 catalogue buyers whose applications are pulled out of the sack at 12 noon on the 31 st October 1974.

At that time, at the Amateur Radio Traders Exhibition at Granby Hall, Leicester, comedian Brian Rix will open our correspondence sack and make the winning selections.

The first voucher out will be a £1O voucher. The next 49 will be £5 vouchers.

All catalogues will be despatched upon receipt of coupon and remittance; coupons will then go into the correspondence sack for the draw.

So don't delay. Use the coupon. Send today for your first Doram catalogue. It can make your life a whole lot easier. And you could win a voucher if your order is one of the first 50 out on October 3lst.

dUAL BEAM ADAPTOR

Simple unit converts single beam CRO to dual beam operation.

THE oscilloscope, next to the multimeter, is perhaps the most useful test instrument. Indeed, for any serious experimental work an oscilloscope is indispensable. Unfortunately they are expensive beasts, and whilst an experimenter may well afford a simple, low-frequency single-beam type, a dual-beam version (at $£ 100$ or more) is usually beyond his means.
Nevertheless a dual-beam facility is most convenient, for it allows comparison of two different signals, for wave-shape or timing, and makes obvious, differences which otherwise would not be discernable.
The simple dual-beam adaptor described here, whilst not providing a/l the capabilities of an expensive dual-beam CRO, will however, cover most experimenter's requirements.
It is a low cost unit which allows two inputs of similar amplitude to be displayed simultaneously on separate traces. Frequency response of the unit is sufficient to allow observation of signals up to about 1 MHz .

CONSTRUCTION

Most of the components are mounted on a printed circuit board. However, if desired matrix or veroboard may be used.
Be careful to orientate the polarised components correctly, as shown on the component overlay. Wiring to the sockets and switches should be as short as possible. Note that C3 and C4 are mounted on the input switches and C5 is mounted on the output socket. Our prototype was mounted in a small aluminium minibox as illustrated. As individual requirements will vary, details of front panel layout and metalwork only are supplied.

USING THE ADAPTOR

Connect the output of the adaptor to the input of the CRO. The two adaptor inputs now become A and B trace inputs to the CRO. A triggering signal should be applied direct to the trigger input of the CRO as otherwise the CRO will tend to synchronize to the chop frequency and not to either input signal.
It is preferable that the two input signals have approximately the same amplitude as there is no input amplifier or range selection provided

on the adaptor. However there is an attenuator provided on each input so that some adjustment may be made.
If only one input is to be applied it is best to switch to that input only thus eliminating the second trace and any cross talk which may occur due to the high input impedances.
Two chopping frequencies are used, having widely different frequencies, so
that if the input signal is a harmonic of the chopping frequency, (see Fig. 4) choosing the other chop mode will prevent the chop frequency being visible.
Normally CHOP 1 would be used for high frequency inputs, and CHOP 2 for low frequency inputs. An ALTERNATE mode has not been included (entails obtaining an output

SPECIFICATION			
Input Level			
dc	± 4 volts max		
ac	2 volts RMS max		
dc insula-			
tion on ac	± 400 volts max		
dc level shift	± 1.5 volts		
Frequency Response			
$-3 d B$ point $>1 \mathrm{MHz}$			
Chopping Frequencies			
A	60 Hz		
B	35 kHz		
Input Impedance			
100 kHz			

from the CRO of unknown level and availability) as the CHOP 1 mode is similar and almost as effective.
By means of the two shift controls traces A and B may be separated by up to ± 1.5 volts.

HOW IT WORKS - ETI 114

Switches SW2 and SW3 select dc or ac coupling, or input shorted, for channel A and channel B inputs respectively. The signals are applied to the sensitivity potentiometers RV1 and RV2 and then passed to IC2/1 and IC2/2 which select one of the signals as an input to source follower Q1.
Transistor Q1 is supplied with a constant current (approximately 2.7 mA) by transistors Q2 and Q3. Hence, there is about 3 volts actoss RV3 and RV4, and this is unaffected by changes in input signal level. These potentiometers therefore provide a level-shift facility. When channel A is selected by IC $2 / 1$, IC $2 / 3$ selects RV3, and when channel B is selected by IC $2 / 2$, IC $2 / 4$ selects RV4. Thus as each signal has an independant level shift the two traces may be separated when chopped.
The CMOS gates of IC2 are driven by the outputs, A and B , the circuit y associated with IC1. The drive circuit mode of operation is selected by SW1, a four position switch, such that channel A only, channel B only, A and B chopped at 60 Hz or, A and B chopped at 35 kHz may be selected. The operation is as follows.
Integrated circuit ICl forms a multivibrator which can run at 60 Hz or 35 kHz , or be locked in A-high B-low, or A-low B-high output states. For example, if SW1 selects -7 volts, IC1 pin 10 will be at +7 , $I C 1$ pin 11 will be at -7 , IC1 pin 3 will be at +7 and ICl pin 4 will be at -7 volts. The CMOS switches of IC2 will be "on" if the control voltage is at +7 volts and "off" if the control voltage is at -7 volts. Thus when -7 volts is selected by SWI, "A" will be at +7 volts, and IC2/1 and IC2/3 will select channel A. Similarly if +7 volts is selected by SW1, IC2/2 and IC2/4 will select channel B.
If C2 and R2 are selected by SW1 the multivibrator will be free to run at 60 Hz and channels A and B will be alternately selected at this frequency. Similarly if C1 and R1 are selected, channels A and B will be alternately selected at 35 kHz .
The power supply is a simple full-wave bridge type which uses two Zeners to provide the +7 and -7 volt supplies required.

Fig.2. Printed circuit board pattern for the adactor. (Shown fullsize).

Fig.3. Component overlay.

Fig.4a. Two signals, correctly displayed using the dual beam adaptor.

Fig. 4b. Use of incorrect chopping frequency for a carticular input signal (chop frequency a harmonic of signal) results in above effect. To cure use other chop frequency.

Fig.5. Artwork for front panel of the adaptor.

Layouts of components within the unit can be seen from this and accompany. ing photographs.

caming soon....
 TOP PROUEETS BOKK

A collection of the most popular ETI Projects published in the last $21 / 2$ years all in one great volume. More details next month.

BEDEVILLED with the problems of establishing the true age of prehistoric remains, archaeology has been revolutionised in the past 20 years by the introduction of scientific methods of dating where previously there was mainly inspired guesswork. For organic remains such as wood and bone, the chief of these methods is radiocarbon dating. But this technique has been shown not always to give accurate results
The principle of radiocarbon dating is that a fraction of the carbon dioxide in the atmosphere contains radioactive carbon- 14 which is absorbed by plants during photosynthesis and by animals feeding on plants. When the plant or animal dies, the input of carbon stops and the carbon-14 gradually reverts to the common non-radioactive form, carbon-12. So the ratio of carbon-12 to carbon-14 in a dead plant or animal is a record of the time lapse since it died.
Radiocarbon dating is not accepted without reservations howe ver. Where written records are occasionally available, as in Egyptology, the method is sometimes shown to be wrong by several hundred years. Probably the proportion of carbon-14 in the atmosphere in those times differed from today's value so that
dates calculated using the present level have a built-in error. Therefore, the radiocarbon method itself needs checking.
A way of doing this has now been devised by Professor Colin Renfrew, an archaeologist at the University of Southampton, and a statistician from the University of Sheffield, R. M. Clark. They report that the radiocarbon method can be corrected to make it safely applicable to finds dating back to 5000 BC .

COMPARISON AVAILABLE

Clark and Renfrew looked at two geographical regions where alternative methods of dating happen to be available for comparison with the radiocarbon clock.
American scientists have found that high up in the White Mountains of California a tree, the Bristlecone Pine, survives to an incredible age - some are 4500 years old, making them the oldest living things - and the dry climate allows the preservation of still older dead trees. By counting the annual growth-rings the wood in the trees can be dated to within two or three years. That is a ready-made check on the radiocarbon method which shows that dates obtained by it

Carbon dating is throwing new light on the Megalithic structures of Western Europe, such as Stonehenge.
are fairly accurate - back to 1500 BC , although they become seriously wrong for earlier times. For example, pine formed in 2500 BC gives a radiocarbon date of only 2100 BC , and wood known to have been formed about 5000 BC is given a date almost a thous and years younger.
But because of the uncertainty engendered by the imprecision of the radiocarbon clock, archaeologists are loth to rely on the Bristlecone Pine calibration. One fear is that the concentration of carbon-14 at the high altitudes where the pine grows might have. been in some way unusual, making the radioactive basis in California not strictly comparable with that in Europe and the Middle East.
So, for a second check, Clark and Renfrew went back to the written records of ancient Egypt. From 1800 to 3000 BC these can be dated accurately by reference to the astronomical events they mention. Thus when-ever organic material is found in conjunction with written records a further check on the radiocarbon method is possible.
However, neither method can be used on its own as a calibration for the radıocarbon me thod - in the first case because the carbon- 14 content of the trees may be in some way anomalous, and in the other because the Egyptian finds dated by the radiocarbon method may somehow have got mixed up with written material from an earlier or later time. So Clark and Renfrew used statistical techniques to compare the two methods of calibration. This is necessary to check whether any discrepancies that do occur are sufficiently small to have happened by chance, or whether they are serious enough to cast doubt on the validity of either scale.
It turns out that the two scales are compatible, and as the chance of each scale being in error by exactly the same amount is extremely small, the

Continued on page 29.

We thought the fantastic offer with 7 segment LED displays would be popular. But the response was shattering. Our apologies to those of you who didn't get the devices as quickly as you, or we, would have liked - but we were slightly overwhelmed. Anyway, we have still got devices available, so if you want some DL704,5 for £3.25inc. VAT \& pp - please send the coupon from last months ETI. Otherwise, they will cost you £5.00 for five, After all, special offers have to be special - nonetheless, this is still terrific value.

Don't forget we do things like TTL, PLL, TOKO coils and filters, lots of linears. And don't forget we know more about using our devices than any other enthusiast orientated supplier. Try us, and see.
First step is to get our catalogue $-25 p$, refundable with $£ 5$ worth of goods. Here's a very brief selection:
NE560/1/2B £3.19 ICL8038CC £3.10 LM381N £1.85 TOKO EF5603 Tuner £8.40 CFS10.7 (sim FM4) 40p
NE565A E2.75 CA3089E £1.90 MC131OP £2.80 CFT AM ceramic filters 45p
NE566V £2.55 CA3123E £1.40 CT7001 £10.00 MFH mechanical filters £1.35

VATEXTRA POST AND PACKING 15p ACCESS WELCOME
All goods are brand new marked and tested, and available in quantity. Manufacturer enquiries welcome.

37 HIGH STREET, BRENTWOOD, ESSEX CM14 4RH Tel: (0277) $216029 \quad$ Telex: 995194 Tel: (0277) 216029
 SAE All enquiries please

I. Understand electronics.

Step by step, we take you through all the fundamentals of electronics and show you how easily the subject can be mastered using our unique Lerna-Kit course.
(1) Build an oscilloscope.
(2) Read, draw and understand circuit diagrams.
(3) Carry out over 40 experiments on basic electronic circuits and see how they work.

2. Become a radio amateur.

Learn how to become a radioamateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.

Brochure, without obligation to
BRITISH NATIONAL RADIO \& ELECTRONICS SCHOOL, Dept ETX 104
P.O. Box 156, Jersey, Channel Islands.

NAME

HERR
 ann TEIL
 unit

PROJECT

THE HEAR-AND-TELL does not fall into any neat category for description. Basically it will pick up any sound over a certain level and sound a bell or bring on a warning light. There are several uses for such a circuit. It has distinct advantages over, say, a microphone and amplifier in that background noise is absent.

Where a telephone is fitted in a room some distance from that normally used for watching TV for instance a call can easily remain unheard. This is avoided by having the Hear-And-Tell near the phone with an extension lead to an indicator lamp near the TV, or to a bell if preferred; there is no physical connection made to the phone.

Similarly, a door bell which may not be readily heard in some part of the house can trigger the alarm. Where the Hear-And-Tell is operated from the sound of a door bell, the translation to a visual signal (indicator (amp) will prove of great aid for hard-of-hearing or deaf people.

The unit will also act as a baby-cry alarm, with audible or visual indication in any room to which the extension lead is run.

CIRCUIT

Figure 1 shows the circuit; this is for a.c. mains operation. A small high impedance speaker ($30-100 \Omega$) fitted in the case picks up sounds, which are amplified by Q1 and Q2. The manual control RV1 is the sensitivity control. If, for example, the unit is placed near a telephone, the sensitivity control is adjusted so that the circuit is operated by the phone bell but not by slight extraneous sounds.

When an audio signal is present, Q3 is driven into conduction, thereby moving the base of $\mathrm{Q4}$ negative and increasing the current through the relay coil. RV2 is a pre-set, and is merely to allow the circuit to be set for best working with a change in supply voltage or in relay resistance.

The completed Hear-and-Tell master unit.

The tag-board, switches and controls.

Fig. 1. Complete circuit of the Hear-and-Tell.

Fig. 2. The tag-board wiring.

Contacts $X \cdot X$ and $Y \cdot Y$ of the relay are normally open. When the relay is energised, current flows through SW1, $X-X$ and R5, thereby locking on the relay. At the same time contacts $Y-Y$ close and current from the secondary of T2 is available at the extension lead sockets, to operate the remote bell or lamp.

If the lock-on switch SW1 is open, contacts Y.Y open when the sound ceases, and this is satisfactory if the warning lamp or bell is likely to receive immediate attention. The pilot lamp LP1 is of aid when setting the unit, as with SW1 open it will show at what sound level operation is being obtained.

For occasional use battery operation is possible by omitting the silicon rectifier D1, C5 and transformer T2. A 9 V battery is connected to the positive and negative points shown, with an on-off switch in circuit. Quiescent current is about 6 mA . which is not very heavy and will allow a long period of working from a PP9 or similar battery.

BOARD COMPONENTS

The components are readily assembled on a tag board (Fig. 2). T 1 is of the usual push-pull driver type; the centre tap on the secondary is not used. Two bolts with extra nuts allow the tag board to be mounted in the case and also form the negative return to the case itself.

Leads are provided from the lefthand tags, to run to the speaker (acting here as a microphone). Also solder leads to tags 3, 4 and 5 of the top row, Fig. 2, to connect to RV1. These connections should not be too long, or be too near other leads. R4

Fig. 3. Connection of the power supply components.
is soldered to RV2, and leads run to positive (top tag 6) and C4 (bottom tag 6). Fit flexible leads from one X contact on the relay and bottom $\operatorname{tag} 7$, for SW1.

Run a red lead from top tag 6 (positive) and a black lead from bottom tag 8 (negative) for the board power supply. Components for the latter are assembled on a tag strip
(Fig. 3). If a battery is to be used instead, remember that an on-off switch is necessary in one battery lead.

TRANSFORMER T2

The common type of bell transformer $(8 \mathrm{~V}$ tapped at 3 V and 5 V) will be suitable, and connections from the secondary to relay contact Y can be arranged to provide $3 \mathrm{~V}, 5 \mathrm{~V}$ or 8 V , depending on which is most suitable for the alarm device. A 6.3 V transformer is also suitable. The core, one secondary terminal or tag, and the metal case are all joined together and connect to the earth lead of the mains cable. A 2A or other low rating fuse should be fitted in the plug.

The tag board, tag strip and transformer are bolted to the bottom of the case, with the pilot lamp holder, SW1 and RV1 on the front panel. RV2 and the extension circuit sockets are at the back.

ADJUSTMENTS

With SW1 open and RV1 at minimum gain position, adjust RV2 until the relay remains open. For battery use, RV2 can be set for minimum current, as shown by a meter in one battery lead, and consistent with reliable working.

RV1 is advanced until sounds of the required volume cause the relay
to close. Where the extension bell or lamp is too far away for its indication to be known, observe the pilot lamp (this will go on when the relay switches).

If it is required for the warning bell or lamp to remain on once tripped, then SW1 should be left in the closed position. It is necessary either temporarily to turn back RV1 when closing SW1, or to have SW1 closed before current is switched on at the main socket outlet, since the sound of closing the switch will trigger the circuit and leave it locked on (shown by the lamp PL1 remaining lit).

Current required by the warning device should not exceed that available from T 2 . A $6 \mathrm{~V}, 3$ watt lamp will usually be ideal.

BACK NUMBERS

Back numbers are available for 25 p each plus $7 p$ postage on one, 10 p on two. We are unable to supply the following:

April, May 1972
February, November 1973
March 1974
There are very limited supplies of January and April 1974.
Orders should be sent to:
BACK NUMBERS DEPT, ETI, 36 Ebury Street, London SW1W OLW.

PRECISION POLYCARBONATE CAPACITORS
$440 \mathrm{~V} \mathrm{AC}(+10 \%) \quad$ Range $+1 \%+2 \%+5 \%$ $0.1 \mu F$ ($\left.111 / 8^{\prime \prime} x^{2 \prime \prime}\right] \quad 50 p \quad 0.47 \mu F \quad 56 p \quad 46 p \quad 36 p$
 $0.25 \mu \mathrm{~F}\left(13 / 8^{\prime \prime} \times 5 / 8^{\prime \prime}\right) 62 \rho 2.2 \mu \mathrm{~F} \quad 80 \mathrm{p} \quad 65 \mathrm{p} \quad 55 \mathrm{p}$ $0.47 \mu \mathrm{~F}\left(13 / 8^{\prime \prime} \times 3 /{ }^{\prime \prime}\right)$ 71p $4.7 \mu \mathrm{~F}$ £1.30 $£ 1.05$ 85p

 All high srabliryentremely low leake $£ 2.5$ All high stability-extremely low leak age. TANTALUM BEAD CAPACITORS-Values available. $0.1,0.22,0.47,1.0,2.2,4.7,6.8, \mathrm{~F}$ ar $15 \mathrm{~V} / 25 \mathrm{~V}$ or 35 V $10.0 \mu \mathrm{~F} .16 \mathrm{~V} 10 \mathrm{~V}$. $27 \mathrm{~V}, 22.0 \mathrm{~F}$ ar 10 V or $33.0 \mu \mathrm{~F}$ at 6 V or 10 V : $47.0 \mu \mathrm{~F}$ a 3 V o $\mathrm{V}, 100.0 \mu \mathrm{~F}$ at 3V. All at $10 p$ each
TRANSISTORS.
BC107/8/9 $\quad 9 p \quad$ BC212/212L 14 p BFY50 $20 p$ $\begin{array}{lrllll}\text { BC107/8/9 } & 9 p & \text { BC212/212L } & 14 p & \text { BFY50 } & 20 p \\ \text { BC147/8/9 } & 100 & \text { BC547 } & 12 p & \text { BFY5 } & 20 p\end{array}$ $\begin{array}{llllll}\text { BC1478/9 } & 10 & \text { BC547 } & 12 \mathrm{p} & \text { BFY55 } & 20 p \\ \text { BC157/B } & 12 \mathrm{p} & \text { BC558A } & 12 \mathrm{p} & \text { BFY52 } & 20 \mathrm{p}\end{array}$ $\begin{array}{llllll}\text { BC182/182L } & 11 p & \text { BF194 } & 12 p & \text { OC. } 71 & 12 p\end{array}$ $\begin{array}{llllll}\text { BC182/182L 11p } & \text { BF } 194 & 12 \mathrm{p} & \text { OC.71 } & 12 \mathrm{p} \\ \text { BC183/183L 110 } & \text { BF } 197 & 13 \mathrm{p} & 2 \mathrm{~N} 3055 & 50 \mathrm{p}\end{array}$ $\begin{array}{lllll}\text { BC183/183L } & \text { 11p } & \text { BF197 } & \text { 13p } & \text { 2N3055 } \\ \text { BC1 }\end{array}$ POPULAR DIODES. All brand new and marked: 1N914 6p. 8 for 45 p . 18 for 90 p ; IN916 8p; 6 for 45 p 14 for 90 p, 1S445p; 11 for $50 \mathrm{p} ; 24$ for E 1.00 . 1 N 4148 $5 p, 6$ for 27 p, 12 for 48 p. LDW PRICE ZENER DIODES 400 mW , Tol $+5 \%$ at 5 mA . Values avalable: $3 \mathrm{~V}, 3.6 \mathrm{~V}$. $4.7 \mathrm{~V}, 5.1 \mathrm{~V}, 5.6 \mathrm{~V} ; 6.2 \mathrm{~V}: 6.8 \mathrm{~V}, 7.5 \mathrm{~V}, 8.2 \mathrm{~V}: 9.1 \mathrm{~V}, 10 \mathrm{~V}$ $11 \mathrm{~V} ; 12 \mathrm{~V}, 13 \mathrm{~V}, 13.5 \mathrm{~V} ; 15 \mathrm{~V}, 16 \mathrm{~V} ; 18 \mathrm{~V} ; 20 \mathrm{~V} ; 22 \mathrm{~V}, 24 \mathrm{~V}$ $27 \mathrm{~V} ; 30 \mathrm{~V}$. All at 7 p each: 6 for 39 p ; 14 for 84 p . Specis Offer: 100 Zeners for $£ 5.50$. RESISTORS. High stability. low notse carbon film 5%; KW at $40^{\circ} \mathrm{C}, 1 / 3 \mathrm{~W}$ at 70° C. El 12 series only - from 2.2Ω to $2.2 \mathrm{M} \Omega$. All at 1 p each 8 p for 10 of any one value; 70 p for 100 of any one value. Special Pack: 10 of each value 2.2Ω to $2.2 \mathrm{M} \Omega$ (730 resistors) 55.00 . SILICON PLASTIC RECTIFIERS 1.5 A Brand new wire ended DO27-100 P.I.V. 7 p (4/26p) 400 P.I.V. - $B p(4 / 30 p$) 800 P.I.V. - $11 p(4 / 42$ p) BRIDGE RECTIFIERS: $2 K A 200 \mathrm{~V}-40 \mathrm{p} 350 \mathrm{~V}-45 \mathrm{p} 600 \mathrm{~V}-55 \mathrm{p}$. SUBMINIATURE VERTICAL PRESETS - 0.1 W only All at 5 p each $50 \Omega 2,220 \Omega 2,470 \Omega 2680 \Omega 2.1 \mathrm{k}, 2.2 \mathrm{k}$ $4.7 \mathrm{k}, 6.8 \mathrm{k}, 10 \mathrm{k}, 15 \mathrm{k}, 22 \mathrm{k}, 47,100 \mathrm{k}, 250 \mathrm{k}, 680 \mathrm{k}$. $1 \mathrm{M}, 2.5 \mathrm{M}, 5 \mathrm{M}$.
PLEASE ADD 8% VAT TO ORDERS
Send S.A.E. for lists of additional ex-stock items.
Wholesale price lists available to bona fide companies.
VARCO TRADING
Dept. T10, The Old School, Edstaston, near WEM, Salop Tel: WHIXHALL 094872 (STO 464) (Props: Minicost Trading Ltd.)

WHAT! FIND A LARGE DIAMOND IN ONE OF THESE OLD CANALS? . . . WE SHOULD BE SO LUCKY!

With a kit as complete asthis, all you need add is a little time.

1/5000

You may have found, from past experience, that your definition of 'complete' is not quite the same as other people's. And your so called complete kit comes minus a cabinet, or knobs, or a multitude
 of other bits and pieces.
That won't happen with a Heathkit Take our very popular digital alarm clock kit. Every part you need will be there, right down to the solder. And you'll also receive a very casy to understand instruction manual that makes light work of assembly:

In factall younced are a few
basic tools and a few enjoyable hours of your time.
After which you may like to try your hand at
 our AR-1214 stereo recciver. Or evena TV. And how about an ultrasonic burglar alarn disguised as a book?
Or, for a bookful of other ideas, just clip the coupon and we'll send you the Heathkit catalogue.

Otherwise call in and see us at the London Heathkit Centre, 233 Tottenham Court Road. Or at our showroom in Bristol Road, Gloucester.

You'll find it well worth your time.
Heath (Gloucester) Limited, Dept. ETI-104,

A. Marshall \& Son (London) Limlted Dept. ETI 42 Cricklewood Broadway London NW2 3HD Tel: 01-452 0161 \& 65 Bath Street Glasgow G2 BX Tel: 041-3324133
Everything you need is in our new catalogue available now price 20p
Trade and export enquiries welcome
SPECIAL
TELE TENNIS KIT
We are now able to offer at special prices all the components listed in the July 1974 Practical Wireless for the Tele Tennis Project. As per parts Ilst we can supply:-Reslstor packs £1 $+P$ \& P 20p. Potentlometer packs $£ 1.25+P$ \& $P 20 p$ Capacltor packs $£ 3.10+P$ \& P 20p. Seml-conductor packs £17.50 + P \& P 20D. IC Holders £4.50 + P \& P 20p. Transformer $£ 1.15+P$ \& P. We offer a stlll further reduction in price with all packs purchased together- $\mathbf{2 6 . 5 0}+\mathrm{P}$ \& P 30D.

Type SN7400	Price	Type SN7437	Price	Type SN1483	Price E1 20	Type SN14154	
			5 p				
SN7401	18 p	SN7438	$35 p$	SN1484	35	SN74155	E1
SN7401 AN	38 p	SN7440	13p	SN7485	E15	SN74157	E1
SN7402	16p	SN7441	85p	SN7486	45p	SN74160	E1
SM7403	16p	SN7442	85	SN7490	65p	SN74161	E1
SN7404	24p	SN7445	E15	SN7491	E110	SN74162	$E 1$
SN7405	240	SN7446	¢200	SN7492	750	SN 74164	¢2
SN7406	45p	SN7447	E1 30	SN7493	65p	SN74165	¢2
SN7407	45p	SN7448	E1 50	SN7494	85p	SN74167	¢ 4
SN7408	$25 p$	SN7450	18p	SN7495	30 p	SN74174	E1
SN7400	33p	SN7451	18p	SN7496	E100	SN74175	¢1
SN7410	18p	SN7453	18p	SN74100	¢2 16	SN74176	E
SN7411	25p	SN7454	16p	SN74107	43p	SN74180	E
SN7412	20p	SN7460	16p	SN7al18	£100	SN74181	
SN7413	$50 p$	SN7470	30 p	SN74119	\&192	SN74190	$E 1$
SN7416	45p	SN7472	38 p	SN74121	57p	SN74191	E1
SN7417	30p	SN7473	4 4	SN74122	30	SN74192	E2
SN7420	16p	SN7474	48 p	SN74123	729	N74193	
SN7423	370	SN7475	540	SN74141	510	SN74196	
SN7425	370	SN7476	45 p	SN74145	814		
SN7427	$45 p$	SN7480	$75 p$	SN74150	E1 44	SN74198	
SN7430	16 p	SN7481	¢1 25	SN74151	E1 10	SN74198	¢
SN7432	45p	SN7482	870	SN74153	810	SN74199	

Most of th
Marshalls
Prlces correct at August 1974 but all extuslve of Post and Package charges 20p.

POPULAR SEMICONDUCTORS

Abstract

 - -

This diagram illustrates the principle of 'assisted revorance'?

ASSISTED RESONANCE

Multi-channel sound optimizes concert-hall reverberation times.

by P. H. Parkin, Building Research Station W/atford.

MANY factors control the acoustics of a concert hall or theatre but the most important influence, and the only one under any control, is what is known as the reverberation time.
This is defined as the time taken for the sound in a room to decay to one-millionth of its original intensity after the source of sound has stopped. Roughly speaking, it is the time it takes for a moderately loud sound to die away to inaudibility.
In a furnished living room this time will be about a half-second, in a theatre about one second, in a concert hall between one and a half and two seconds, and in a cathedral five seconds or more.
The reverberation time of a room is determined by two things: the size of the room, and the amount of sound-absorbing material it contains. The sound can be visualised as travelling round and round the room after it has left the source, and each time it strikes a reflecting surface some of it is absorbed. Therefore the more absorbent each surface the quicker the sound is absorbed and the shorter the reverberation time. Also, the larger the room the farther the sound has to travel between each reflection, making the reverberation time longer. Nearly
always the reverberation time is different at different frequencies because the sound absorption of all room surfaces, and of people, varies with the sound frequency.

MOST IMPORTANT FACTOR

Why the reverberation time should be such an important factor is not clear. It is probably not so much the time itself that matters as the fact that it is a measure of the amount of reverberant sound in the room. That is to say, it is a measure of the ratio of the sound that reaches a listener directly from a speaker or an orchestra to that which reaches him after being reflected from the room surfaces. But whatever the reason for its importance, it is the one factor we can measure and probably the most important influence on producing - so far as music is concerned - that elusive, desirable quality for concert halls known variously as 'warmth', 'resonance', 'fullness of tone', and many other similar terms.
As already mentioned, a theatre, or any room designed primarily for speech, will have a reverberation time of about one second. Anything shorter than this will cause the sound to seem
'dead', even for speech, and anything much longer will make speech rather difficult to hear. For music, however, a reverberation time of one second means that the sound will be very lifeless, one and a half seconds is generally reckoned to be about the minimum and two seconds about the optimum.
One obvious consequence is that there is an acoustical conflict when as often happens - a room is to be used for both speech and music. A reasonable compromise reverberation time is one and a half seconds, but the effect is not very good for music and a little too reverberant for rapid speech.
This conflict has been realised for many years and various attempts have been made to overcome it. For example, rooms have been built with variable surfaces such as rotatable panels, one side of which is covered with sound-absorbing material so that when that side is facing into the room the reverberation time is shortened. On their other side these panels have a hard surface which when exposed inwards makes the reverberation time longer. This arrangement can be made to work reasonably well in studios, but in auditoria a large amount of sound absorption is due to the seats and
audience. Therefore the change in reverberation due to the change in surfaces is limited. Further it is difficult to build reversible panels with different amounts of absorption on either side to deal with low sound-frequencies.

ELECTRONIC CONTROL

Because of the limitations of physical alterations, the idea of using some kind of electronic control in the auditorium has appealed to acousticians for many years. Several attempts have been made to devise an adequate electronic method of altering the reverberation time of an auditorium or, more precisely, to devise an electronic means of lengthening the reverberation time because no such method for shortening it has yet been evolved.
This article describes one of the more recent methods to be employed. It is known as 'assisted resonance' and was tried experimentally in the Royal Festival Hall in London in 1964 before being installed permanently. A simplified system has now been put into the Central Hall of York University
The simple picture of sound travelling round a room is one way of visualising what happens, but another, more accurate, way is to think of the room's acoustic behaviour as a large number of resonances. The air in an organ pipe will resonate at one fundamental frequency with harmonics depending mainly on the length of the pipe. Similarly, the air in a room will resonate at various frequencies. But because a room has breadth and height as well as length, the number of resonances is enormous - several million in a large concert hall - so that they cannot normally be distinguished by ear.
What assisted resonance does is to select a large - but, of course, finite number of these resonances, and 'assist' them as illustrated in the diagram.
A microphone connected by an amplifier to a loudspeaker forms what is known as a 'channel' and for each channel the microphone and the loudspeaker are positioned in the auditorium so that they respond more to one of the room resonances than to any other. Each channel puts some acoustic energy into the room whenever it is excited by the original source of sound, and the amount of that energy depends on the gain of the amplifier.
Obviously, this power compensates to a controllable extent for the power being lost at the room surfaces, and thus the reverberation time can be increased by controlling the gain.

However, each channel is 'assisting' only one frequency, so it is necessary to have a large number of channels to cover the frequency range.
In the Royal Festival Hall there are 172 channels covering the frequency range 58 to 700 Hz . Using these channels it has been possible to increase the reverberation time from, for example, about one and a half seconds at 125 Hz to about two and a half seconds, and this time could be increased still further by increasing the gain of the amplifiers if desired.

OVERCOMING A CONFLICT

As already suggested, a more widespread use of the system could be to overcome conflict between speech and music. A hall would be designed with a reverberation time of about one second for speech and assisted resonance would be switched on to bring the reverberation time up to the region of two seconds for music. The cost of such a system would depend on the number of channels used, and the installation at York University was a development of the Festival Hall system to see (a) how few channels were needed, and (b) how much increase could be obtained in a hall which started off with a short reverberation time.
The York installation in fact consists of 72 channels and at the time of writing, has increased the reverberation time at the lower frequencies from about one second up to about 2.2 seconds and at the medium frequencies from about one second to 1.4 seconds. The number of channels used, and their spacing along the frequency range, was the best guess that could be make at the time of the installation.
Experience so far suggests that either a few more channels, up to a total number of perhaps 100 , will be needed to make the hall really satisfactory for music or that some of the chanriels used for the lower frequencies might be switched to the medium frequencies.
To sum up then, the indication is that a maximum of 100 channels will increase the reverberation time of an auditorium at the lower frequencies by at least 100 per cent and at the medium frequencies by at least 60 per cent. Thus, a multi-purpose auditorium could start with a reverberation time of about 1.2 or 1.3 seconds - which is a little longer than used to be recommended for speech but which is now accepted, and the channel system used to bring the reverberation time at lower frequencies to about two and a half seconds and at medium frequencies to about 1.8 or 1.9 seconds, which should be adequate for music.

TIME CHECK FOR RADIOCARBON DATING.
 Continued from page 22.

conclusion is that either can be used. But as the pine tree calibration is more detailed and covers a greater span of time it is used in preference to the Egyptian data.

SIGNIFICANCE OF RESULT

This result has great significance for archaeology. Our knowledge of European prehistory is being radically changed by radiocarbon dating so the greater confidence which should follow from Clark and Renfrew's work will be widely appreciated in scientific circles. Perhaps the most notable advance is that archaeologists are questioning the view that European culture originated in the ancient civilisations of the Near East, gradually fanned out through Europe and eventually reached the western coasts. This 'diffusion theory' arose long before scientific dating of individual finds became possible, and is founded on factors such as supposed similarities of style between tombs in western Europe and the Near East.
Carbon dating is causing a startling revision of these views. Megalithic structures in western Europe - for example, that remarkable and huge stone circle, Stonehenge, in England are found to be older than structures in the Aegean which are supposed to have influenced them. By showing how the carbon-14 clock can be corrected Clark and Renfrew make these relationships much more distinct. On the 'diffusion' theory, megalithic tombs in western Europe are based on tombs built in Crete about 2500 BC which can be dated from Egyptian artifacts found with them. Yet the carbon-14 dates for the western tombs are 3000 to 3500 BC . Stonehenge was attributed to Aegean influences arriving in Britain around 1500 BC , but now it seems to have been built 500 years earlier.
Perhaps even more important, Clark and Renfrew greatly extend the potential of radiocarbon dating. Although strictly speaking their work applies only from 1800 to 3000 BC , it strongly suggests that the corrected method can be used to the limit of the Bristlecone pine tree data, 5000 BC approximately, with the possibility of going back a few thousand years earlier as even older pieces of wood turn up in California.
In principle the carbon-14 method, can date material as old as 50000 years, but although an accurate calibration for the first 10000 years is now within reach, there is still no way of knowing whether the method is accurate for the earlier period.

ELECTRONIC WINDOW CLEANER

How do you wash a glass roof, canted at 150 , too fragile to walk. on, and several hundred square metres in area?

THE SYDNEY Opera House in Australia, despite some compromises in design and execution, has been acclaimed as one of the most incredible architectural achievements in the World.
As with most major projects of this type, innumerable problems arose during construction - and some extraordinarily ingenious techniques were devised for their solutions.
Typical of such problems was this: How do you wash the glass roof canted as it is at the curious angle of 150, too fragile for a man to walk on, and some hundreds of square metres in area?
Initially, it was planned to use a winch-operated buggy which would run up and down the roof on rubber
tyres. However final stress analysis revealed that the glass roof was insufficiently strong to carry such a load.
Various other methods were considered before, finally, it was decided to use a small self-propelled cleaning vehicle, specifications of which were to be as follows:
All-up weight -43 kg
Brush span - 1 metre
Propulsion - pneumatic
Speed - 10 metres/minute.
Work commenced on the first prototy pe in September, 1972.
Problems soon mounted. The first of these was the bulk of the trailing hoses and control cables. In order to minimise the cost and complication, as well as the weight of these cables,

radio control of the vehicle was considered. An Australian company. Silvertone Electronics, were called in to provide a suitable radio control link, and assist in the electrical installation of all the control solenoids and switches.
Work progressed swiftly and the actual site testing commenced in March 1973. From here on, problems compounded!
The wet, slippery glass roof, canted at even a moderate 150 , caused serious traction problems. The first vehicle was fitted with four large rubber tyred wheels, which slipped and slid all over the wet glass. One of the major causes of sliding was the weight of the water and air hoses, pulling the back wheels sideways, particularly when the vehicle was out in the middle of the roof with a long length of hose trailing. The use of radio control, by eliminating the need for control cables, reduced the magnitude of this problem.
The radio link worked well, considering the number of electronic devices in use on the Opera House site. No serious cases of interference were encountered, and the advantages of the use of radio control were demonstrated time and again, particularly in the freedom of movement of the operator.
The traction problem however, became more serious with each passing week. The little tractor was modified virtually daily, and at one time, the whole floor of the workshop was covered with wheels. Wheels with rubber tyres, plastic tyres, tyres with suction caps, slick tyres, rough tyres, skinny tyres and fat tyres. All to no avail. In desperation more wheels were added and finally even more weight. Nothing seemed to work. The sight of the 40 kg tractor sliding sideways out of control, heading for the harbour became a disconcerting, and all too familiar sight!
The successful solution came from the design engineer's son who pointed out that dragging a wet chamois cloth across a wet car was hard work
The tractor was modified once more, and fitted with nylon caterpillar treads clad in chamois leather. The results
were startling effective. Traction was excellent. Successful cleaning demonstrations resulted in an order for three tractors, (one for each roof and one spare) thus successfully completing a remarkably farsighted and difficult project.
The crawlers are powered by compressed air motors supplied by four separate compressors built onto the Opera House equipment bays. Outlets for air and water are available on the left and right wing of each foyer. The tractor cleans to the halfway point, and is moved across to the other wing to complete the last half of the roof.
Whilst the trailing hoses are a nuisance, weight and size considerations precluded a completely self-contained vehicle, however the final results achieved were more than satisfactory, despite the trailing cables. The prototype radio control link provided by Silvertone Electronics is basically a model aircraft control system especially modified to relay operation, in order to mate with the solenoid-operated air valves. The first unit now under development is a five channel pulse-position modulation system, controlling the four steering solenoids and a master failsafe solenoid. The latter is de-energised upon loss of radio contact or battery power to the receiver, thus placing the crawler into a failsafe mode.
The prototype radio system operated on 26.960 MHz with 900 mW into the PA of the transmitter. No loss of control was evident, even when used on site with the 27 MHz paging system in operation.
Steering is achieved by the standard tracked vehicle method, of independent control over forward and reverse movement of each track.

The failsafe circuit simply shuts off the air supply to the main drive motors, thus preventing the vehicle from moving. The failsafe solenoid is held open by a missing pulse detector. Should the failsafe pulse disappear, or battery power be lost, the solenoid closes immediately. Forward speed is fixed at approximately $30 \mathrm{~cm} /$ second hence no speed control is required.

As anything up to three units may be used simultaneously, each transmitter is tuned to a different carrier frequency. A spacing of 15 kHz is adequate for safe operation, allowing up to 22 units operating simultaneously in the existing industrial control band, on any one site.

The use of P.P.M. results in a very flexible R/C link, capable of simultaneous, and independent control

of up to 50 separate command functions.
These may be either switched or proportional output type commands. The two types can also be mixed, resulting in a system, utilizing both switched and proportional output
functions, however because the tractor moves very slowly, proportional control has not been used.
System resolution is better than $\pm 1 / 20$ for a typical closed loop feedback servo of approximately 8 kg static thrust.

The tractor is driven by compressed air motors controlled by pneumatic air valves via the radio link. A further air motor drives the cleaning roller - mounted on the front of the device.

Now-two fascinating ways to enjoy saving money!

NEW!Sinclair Scientific kit $\frac{\text { sig }}{\text { sis.95 }}$

Britain's most original calculator now in kit form
The Sinclair Scientific is an altogether remarkable calculator.
It offers logs, trig, and true scientific notation over a 200 -decade range features normally found only on calculators costing around $£ 100$ or more.

Yet even ready-built, the Sinclair Scientific costs a mere $£ 32.35$ (Including VAT)
And as a kit it costs under $\mathcal{E 2 0}$!
Forget slide rules and four-figure tables!
With the functions available on the Scientific keyboard, you can handle direct/y
sin and arcsin,
cos and arccos.
tan and arctan,
automatic squaring and doubling.
$\log _{1_{10}, \text { antilog }}^{10}$, giving quick access to x^{y} (including square and other roots).
plus, of course, addition. subtraction, multiplication, division, and any calculations based on them.
In fact, virtually all complex scientific or mathematical calculations can be handled with ease.

So is the Scientific difficult to

 assemble?No. Powerful though it is, the Sinclair Scıentific is a model of tidy engineering.
All parts are supplied - all you need provide is a soldering iron and a pair of cutters. Complete step-by-step instructions are provided and our Service Department will back you throughout if you've any querres or problems.
Of course, we'll happilysupply th Scientific or the Cambridge already built, if you prefer they're still exceptional value.

Components for Scientific kit
(illustrated)

1. Coll
2. LSI chip
3. Interface chips
4. Case mouldings, with buttons, windows and light-up display in position
5. Printed circuit board
6. Keyboard panel
7. Electronic components pack (diodes, resistors, capacitors, etc.)
8. Baitery assembly and on/off switch
9. Soft carrying wallet
10. Comprehensive instructions for use

Assembly time is about 3 hours.

Features of the Sinclair Scientific

(INC. VAT)

At its new low price, the original Sinclair Cambridge kit remains unbeatable value

In less than a year, the Cambridge has become Britain's most popular pocket calculator.
It's not surprising. Check the features below - then ask yourself what other pocket calculator offers such a powerful package at such a reasonable price.

Components for Cambridge kit

1. Coil
2. LSI chip
3. Interface chip
4. Thick film resistor pack
5. Case mouldings, with buttons, window and light-up display in position
6. Printed circuit board
7. Keyboard panel
8. Electronic components pack (diodes, resistors, capacitors, transistor)
9. Battery clips and on/off switch
10. Soft wallet

Assembly time is about 3 hours.

Features of the Sinclair Cambridge

Take advantage of this money-back, no-risk offer today The Sinclair Cambridge and Scientific kits are fully guaranteed. Return either kit within 10 days, and we'll refund your money without question.
All parts are tested and checked before despatch - and we guarantee any correctly-assembled calculator for one year. (This guarantee also applies to calculators supplied in built form.)
Simply fill in the preferential order form below and slip it in the post today

Scientific

Price in kit form $£ 19.95$ inc. VAT. Price built $£ 32.35$ inc. VAT. Cambridge
Price in kit form $\mathbf{£} 14.95$ inc. VAT. Price built $£ 21.55$ inc. VAT.

Sinclair Radionics Ltd,
FREEPOST,St lves,
Huntingdon, Cambs. PE174BR.
Reg. No: 699483 England. VAT Reg. No: 213817088

摆花
Reviewers: Brian Chapman, Andrew Pozniak

THYRISTOR CONTROL by

F.F. Mazda. Published by

Newnes-Butterworth 1973.
Hard cover, 381 pages
$215 \times 135 \mathrm{~mm}$.
Price $£ 7.00$.
Since its discovery in 1957, the thyristor has gained rapid acceptance by engineers as a device for the control of power and of motor speed. But in addition, a wealth of thyristor applications have been found in general electronics that considerable simplify the implementation of many useful, but previously too expensive devices.
In particular, the greater use of frequency converter, invertors, choppers and cycloconverters is directly attributable to the economic savings inherent in the use of thyristors to implement such equipment.
Most previous text books on thyristors have either been slanted towards the home experiment or towards the design engineer. Hence, as far as the student of electrical engineering is concerned, the former have been too basic, and the latter have incorporated mathematical treatments which tended to dismay rather than to illuminate.
This book has been written specifically with the degree or diploma student in mind. It assumes very little and discusses the entire subject in a clear and easily understood
manner. Relevant mathematics are included, but these do not cloud the text as so often happens in the heavier works.
The whole gamut of thyristor applications is covered, including the newer electronics, techniques mentioned earlier. Thus the book is not only suitable for students but should find acceptance by practising engineers. B.C.

THERMISTORS. By Professor F.J.

Hyde, D.Sc., M.Sc., B.Sc. Published
by Illife Books London 1971.
Hard cover, 197 pages
$215 \times 135 \mathrm{~mm}$.

Price $£ 3.45$ p.

This is an elaborately, researched book on thermistor devices. It is not a book for beginners, who would find it very heavy going indeed, nor does it purport to offer ready-designed circuits that can be extracted for a specific application.
It is a comprehensive text book that treats the subject in depth and from basic fundamentals. Mathematics is used extensively. including calculus and vector analysis, in developing design equations and in defining the behaviour of various devices.
In the sections dealing with practical applications, which comprise about half of the text, a very broad range of uses is covered, from the simple Wheatstone-bridge configuration thermometer, to the use of an indirectly-heated NTC thermistor as an ac/dc transfer standard. As elsewhere, design equations and behaviour parameters are given or developed from basic principles.
The long list of references to be found at the end of each chapter, and the comprehensive subject index, only enhance the impression of how thoroughly the late Professor Hyde had researched the subject.
This is a book that will find favour not only with students and engineers but also the research scientist involved with the detection, measurement or control of thermal parameters. A.P.

B. H. COMPONENT FACTORS LTD.

(ETI) 61 CHEDDINGTON ROAD, PITSTONE, NR. LEIGHTON 8UZZARD, BEDS, LU7 9AQ Tel. Cheddinglon 668446 (5td Code 0296)

Sinclair Scientific - full size.

WHAT WILL IT DO?

The uncluttered keyboard of the Scientific may seem misleading. See the two keys in the picture with arrows pointing up and down? Using these give the keys on the right, three functions each.

The instruction book supplied with the Scientific is detailed and clear and describes fully the method of useage and its only possible here to cover some of the facilities.

You can handle directly: $\log _{10}$. Antilog 10. Sine and Arcsine, Cosine and Arcosine, Tan and Arctan, Automatic Squaring, Automatic Doubling, X^{\vee} (any power) $\mathrm{V} \sqrt{x}$ (any root) Addition, Subtraction, Multiplication, Division
By themselves these give you real power - but used together they give you facilities that few other calculators even approach at five times the price!

At ETI we are proud to be able exclusively to offer one of Britain's top technology products in kit form in the month that it becomes available - at a real knock-down price.

A few weeks ago the Sinclair Scientific was only available for about $£ 50$ and that was a bargain. $£ 14.95$ is all you pay including 8% VAT and carriage.

The Sinclair Scientific offers tremendous calculating power in a true pocket-size case ($41 / 3^{\prime \prime} \times 2^{\prime \prime} \times 11 / 16^{\prime \prime}$) It comes with its own protective carrying wallet (you'll want to look after it!)

The chip (exclusive to Sinclair) uses the Polish notation and displays a 5 -digit mantissa and 2 -digit exponent, both signable, it can handle figures from 10^{-99} to 10^{99}.

The Scientific is ideal for engineers, students . . . anyone in fact who uses
mathematical
tables or a slide rule.
In our recent calculator survey we said that Scientific Calculators were in a league of their own and this certainly applies to the Sinclair Scientific. When we first had one to play with the biggest problem was in finding enough complex calculations to do!

The calculator comes with full building instructions and operating booklet.

Nearly all our offers have brought a massive response but we expect this one to top the lot - so order early: we will handle orders in strict rotation but please allow 21 days for delivery.
(We will be carrying only a limited stock of calculators at our offices so readers wishing to pick their's up should telephone first to check for availability.)

We regret the offer only applies to the U.K. and Northern Ireland.

BUILDING THE KIT:

The marvellous facilities of the Scientific may lead you to believe that the kit will be a real challenge ... nothing of the sort; there are only about 25 components to salder and a really experienced constructor should take less than an hour. Only a soldering iron and wiresnips are needed.

Should you fail, there's the famous Sinclair guarantee and full back-up facilities.

What to look for in Novembers ETI

HEATHKIT COMPETITION

Solve our cross-number (like a cross word but with flgures) and you could win for yourself one of the Heathkit range of products: there's a consolation ever every entrant!

READER OFFER-1
Forty 1 N4001 silicon rectifiers: £1.00.
The 1 N 4001 ($50 \mathrm{~V}, 1 \mathrm{~A}$) is the sort of component you are always needing. Next month you can get them tor the equivale
the usual prlce!

NEW SERIES: POCKET-MONEY PROJECT
In June's questionnalre many of you asked for more inexpensive, straight-forward projects. This new series is the result and the approach taken has been carefully thought out and is refreshingly new.

ELECTRONICS IN KNITTING
Sounds dull? Not a bit of it. Today computers are being used in conjunction with knitting machines to produce the complex patterns demanded by current pashlon.

R I.C. TESTER
of the popular linear I.C.'s can be tested on ject including types $301,307,308,709,741$ 7 and 1456.

IMER PROJECT

Im using 555's which can be set to give an alarm for any time in the range $1 / 2-31 / 2$ deal for photographic printing, timing ne calls or even as an egg-timer.

ctronics

1
INTERNATIONAL

P.C.BOREO?
 - not with the

IEPary DALO 33 PC

A unique drafting aid for the electronics engineer enabling him to prepare in minutes a perfect PCB.
A fine-tipped marker charged with a froe-flowing etch-resist ink. Simply draw the desired circuit onto copper laminated board-atchclaan.

The circuit is ready to use.

NO MESS - NO MASKING

$£ 1.10$ for one off $£ 4.40$ for six $£ 8.80$ for twelve VAT and post included. Available now in every country in EUROPE!
The Decon-Dalo 33 PC marker is now available in France, Germany, Italy. Switzerland, Austria and all Scandinavian countries. Send for details of local supplier.

If you have no trouble obtaining ETI from your newsagent, that's the obvious place to get it. However five out of the last six issues have been sell-outs and early analysis of the reader questionnaire has shown that one in three readers has trouble in buying ETI.

If you are one of those having trouble, why not take out a subscription? Normally you receive your copy a few days before our -official publication. Note also that although the cover price of ETI is now 25p, we have not raised our subscription rates for the time being.

THE ADVANCE OS240 is one of two new low cost oscilloscopes designed for general use in laboratories, audio, radio and television production and servicing etc. and is also suitable for educational purposes. The OS240 is a dual trace instrument whereas the OS140, similar in appearance and function, is a single trace model. Each of these oscilloscopes has a 10 MHz bandwidth and maximum input sensitivities of 5 mV per division of the screen graticule.

Timebase speeds are from $1 \mu \mathrm{Sec}$ to a little over 0.1 sec per division. The graticule over the screen has 8×10 divisions of 0.8 cm each. Aside from its dual trace facility, the OS240 has an X - Y mode using the $Y 1$ channel for X deflection and the $Y 2$ channel for Y deflection, otherwise the performance of both models is identical

These 'scopes are compact and very lightweight and therefore ideal for engineers who have to carry their test gear about.

FEATURES AND FACILITIES

The c.r.t. screen is 4 inches in diameter but the escutcheon provides an $8 \times 6.4 \mathrm{~cm}$ viewing area with the graticule divisions already mentioned. The tube is a short persistence type and as the graticule is tinted (blue) the trace also appears as blue. A long persistence tube is available to order.

AMPLIFIERS

There are two main signal inputs, each taken through identical wideband amplifiers, $Y 1$ and $Y 2$, to which the input signals may be a.c. or d.c. coupled. Each amplifier responds to d.c. inputs and provides trace deflection accordingly. Input signals can be grounded by the input selector switch to enable trace reference to be set with the vertical shift controls. Input sensitivity is switch selected in steps from 5 mV per graticule division $(0.8 \mathrm{~cm})$ through to 20 V per division, the sequence being $5,10,20 \mathrm{mV}$ and so on

BEAM SWITCHING

Dual trace operation is achieved by beam switching in chopped or alternate trace modes which are selected automatically by the timebase switch.

ADVANEE 0 CS240 ISEILILSEDPE

The OS240 shown above with the single trace OS 140 shown below.
At timebase speeds of 1 mS per div- TIMEBASE RANGES ision, or slower, the chopped mode is used at approximately 150 kHz . For 0.1 mS per division, or faster, the trace is displayed alternately. Either trace can be independently shifted up or down or off the screen and operation can be reverted to single trace only with signals from the $Y 1$ inputs. There is also provision for an X - Y mode display for Lissajou patterns etc., for which both amplifiers are brought into operation as described previously i.e., $Y 1$ for X deflection and $Y 2$ for Y deflection.

ADVANCE OS240 PERFORMANCE SPECIFICATION

DISPLAY

$4^{\prime \prime}$ flat faced c.r.t. with 8×10 division
graticule, each division 0.8 cm . EHT 1.5 kV . Phosphor-P31, Long Persistence (P7) available as an option.
VERTICAL DEFLECTION
Two identical input channels, Y1 and Y2
Bandwidth (-3db) d.c. -10 MHz .
Sensitivity $5 \mathrm{mV} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm}$ in $\mathbf{1 - 2 . 5}$
Accuracy $\pm 5 \%$
Input Impedance $1 \mathrm{M} \Omega$ approx. 28pF
Input coupling DC-GND-AC.
Protection 400 V d.c. or pk a.c.
DISPLAY MODES
Single trace - Yl
Dual trace - Chopped or alternate modes automatically selected on timebase switch $1 \mathrm{~ms} /$ div and slower - chopped at approx. $250 \mathrm{kHz} 0.1 \mathrm{~ms} / \mathrm{div}$ and faster - alternate. X. Y Mode with $Y 1$ input giving X deflection γ_{2} input giving Y deflection. Bandwidth d.c. to $500 \mathrm{kHz},<30$ phase shift at 20 kHz HORIZONTAL DEFLECTION
Timebase Ranges $1 \mu_{s}$ per division to 0.15 per division in six decade ranges.
Uncalibrated variable control glve $>10: 1$ reduction in sweep speed Accuracy $\pm 5 \%$
\times Expansion $\times 2$ and $\times 5$ expanslons give intermediate steps between ranges and a fastest speed of 200 ns per division.

Accuracy $\pm 5 \%$

TRIGGER
Variable level control with option of bright line in absence of input.
Source Y1, Y2 or External.
Slope + or
Coupling AC, AC fast, TV frame.
Sensitivity Internal <0.3 division 40 Hz -
2 MHz apgrox. 1 division $8 \mathrm{~Hz}-10 \mathrm{MHz}$. External $<1.5 \mathrm{~V} 40 \mathrm{~Hz}-2 \mathrm{MHz}$ approx. 5 V $8 \mathrm{~Hz}-10 \mathrm{MHz}$. External Input impedance $100 \mathrm{k} \Omega<10 \mathrm{pF}$
ADDITIONAL FACILITIES
Gate Output +20 V Approx from $15 \mathrm{k} \Omega$ z mod input a.c. coupled. Bandwidth 2 Hz . 10 MHz 10 V gives visible modulation.
$115 \mathrm{~V} 220 \mathrm{~V} 240 \mathrm{~V} \pm 10 \%$ a.c. 45.440 Hz

DIMENSIONS

$132 \times 270 \times 317 \mathrm{~mm}\left(5^{1 / 4}{ }^{\prime \prime} \times 1034^{\prime \prime} \times 12^{1 / 2 "}\right)$ WEIGHT 5 kg (1110s) approx.

OPTIONAL ACCESSORIES

Probe Kit PB11. A passive probe kit with $X 1$ and $\times 10$ attenuatlons. With $\times 18$ atten wation the input impedance is $10 \mathrm{M} \Omega / 13.5 \mathrm{pf}$

PRICE UK: OS240 £ 125.00 plus VAT. OS $140 £ 115.00$ plus VAT
Further Details: Advance Electronics Ltd., Roebuck Road, Hainalt, Essex. long standing good reputation for top performance test equipment and with this oscilloscope has certainly met the need for an inexpensive yet versatile and remarkably accurate instrument.

(Upper trace). Step waveform at approximately $0.3 \mu S$. (Lower trace). Waveform at 10 MHz .

Square-wave at 15 Hz via Y 1 d.c. input (lower trace not used).
ing signals and from either the positive or negative going portion of any signal. However there is a panel switch marked 'Bright Line' that operates in conjunction with the triggering circuitry and which has two positions, ON and OFF. In the 'off' position the timebase will only trigger when the input signal passes through a predetermined level (set by the trigger level control). If there is insufficient trigger signal the timebase will not run. The bright line 'ON' condition gives identical performance when the trace is locked but when the trigger is set outside the range of the input signal the timebase frec runs, thus giving a continuous trace under all conditions. The trigger input has coupling 'a.c.' signals (wide band mode for most signals), 'A.C. Fast' (includes a filter to reject unwanted low frequencies) and 'TVF' (includes a filter to reject high frequencies but the cut-off is chosen so that frame sync of a (TV) video waveform is accepted but the line frequency components are rejected.

EXTRA FACILITIES

On the rear panel is an a.c. coupled input for 'Z modulation' i.e., for brilliance modulation of the trace and there is also a 'gate' output (front

Three to one Lissajous pattern using the $X \cdot Y$ mode inputs and display. The $0.8 \mathrm{~cm} /$ division graticule can be seen in this photo.

(Upper trace) $10,000 \mathrm{~Hz}$ square-wave from generator. (Lower trace). Output trom amplifier under test.
panel) which provides a positive going square-wave of approximately 20 V with repetition frequency dependent on the setting of the timebase switch. Provision has also been made for the use of a passive probe with very high input impedance (10Mohm) with 10:1 reduction in sensitivity. This is available as an optional extra, type PB11 at approximately $£ 8.00$. Connecting leads with plugs are provided and also a very comprehensive 26 page instruction and maintenance handbook complete with circuit diagrams and parts list. The carrying handle (supplied) folds under so that the 'scope can be set at a comfortable viewing angle on the bench.

PERFORMANCE

The OS240 supplied for review was checked throughout for performance generally in accordance with that specified and considerable attention was paid to its flexibility in use. It is not intended as a precision laboratory instrument but rather as a general purpose oscilloscope with an otherwise high grade performance, in fact a performance quite remarkable for the relatively low price.

Construction has been greatly simplified by the use of three main

(Upper trace). Output from an audio freqmnoy sweep generator L to R, 10 to 100 Hz O.1dB. (lower trace) Output from amplifier IIIder test with bass and treble controls at maximum.
circuit boards, each connected by multi-pin plugs and sockets mounted directly on the boards so obviating the use of cable forms. The only wiring is that used between the mains transformer and the main circuit board and to the c.r.t., which incidentally is fully screened against magnetic fields.

A few practical applications possible with the OS240 are shown by the oscillograms above. These were taken with a Polaroid camera and these give some idea of the versatility varying from frequency comparison by the Lissajous pattern method to examination of fast step or pulse waveforms and even audio sweep frequency tests with an appropriate generator.

Performance parameters proved to be in accordance with those specified and no deviations of any consequence could be found. Drift on trace position (Y axis) was negligible after reasonable warm up time and triggering in the various modes found to be quite positive. The trace brilliar.ce is good, even in strong light, with focus on dual or single trace displays quite sharp and there was virtually no astigmatism at full display amplitude or at any timebase speed, including expanded timebase. No hum $(50 \mathrm{~Hz})$ modulation or deflection on traces could be detected with the Y amplifiers at full gain and the inputs grounded.

The OS240 would certainly fulfil all normal requirements for television, audio, radio and general electronics applications, particularly in servicing and production testing and it is doubtful whether improvement of any kind could be made without adding to the price.

The largest selection

EX COMPUTER BOARDS

 Packed wht innsidorn, dioden, capacio 3 for ONLY SSD \ddagger P $A D D^{30 D}$ Complete 1 ti

FIBRE-GLASS PRINTED CIRCUIT BOARDS

DECON-DALO 33pC Marker $\underset{\substack{\text { tch } \\ \text { rean } \\ \text { peach }}}{ }$

VEROBOARDS

Prcke contanting approx
al rea, all 0.1 matric 650
REPANCO CHOKES \& COILS

 COILS
DRII
COIL FORMERS \& CORES NORMAN i- Cores \& Pormers 7D SWITCHES
OPIDT ToY

PLEASE NOTE: ALL OUR PRICES INCLUDE V.A.T. MODEL AMTRON KITS
Model No.

```
    Slmple tranimpor teve
    Amplecer.5W
    Blgnal Injector (mplider
    Mike Pre amplifer
    Lchannel Radla Control Trammlue
    Rado Control Recelver
    'OCX2' Channel uplituing unit 1,000 * 2,000 Hz
    *)
    Superhetrodyne Radio Con
    Rello Control Feld Btrenglh Meter
    WIndmereen WFiper Hmer
    *-Channel AF mirior
    Electranice Unit for
    Capeciuve Dlacharge Electrooic Igmilton for Internal Comburtion Englines E17.41
    Henlo uner 120 to 160 MH
```

UK85
UE145
UE 280
VISIT OUR COMPONENT SHOP

De Luxe Groov-Kleen Model 42 £1.84
Chrome Finish Model $60 £ 1.50$

Ref. 36A. Record/Beyluu Cleaning Kit 28p Ret. 43. Record Care Eli 22.35 Ref. 31. Casmet to Head Cleaner 64D Ref. 32. Tape editing \&it $81 \cdot 54$
Model 9. Wire Stripper/Cutter 83 p

ANTEX SOLDERING IRONS

25. 25 watt 81.93 CCN 240.15 watt 88.18 Model O. 18 watt $\& 2 \cdot 15$
SK2. Soldering Kit $£ 2.88$ STANDS: BT1 $81 \cdot 21.8 T 270$
SOLDER: 188 FO Malleore 70 88, 225WG 7os 82p. 188wO 225t 28p 228wG Tube 2 ?
ANTEXBITS and ELEMENTS
102 For model CN240
104 For model CN240 ! 100 For model OCN240 年" 101 For model OCN240 10 1102 For model OCN24n t"
1020 For model O240 I° 1021 For model O240 है 1022 For model 8240 t 50 For model 525 it 81 For model $\times 251^{\prime}$
52 For model $\mathbf{X} 25$

Elements

ANTEX HEAT SINKS 10p

NEW COMPONENT PAK BARGAINS
Pack
No. Oty.

Capacitom mixed values approx
 rub Whemistora mised preferre 0.5
values Plecen aseorted Fertite Rodn 0.58 Tuning Gangs, MF/ LW VHP 0.55 Pack W1
Reed 8witchen
Micto owitches
Anorted Pots a Pre-Sete
Jeck sockets 3 . 9.8 m
orand 8witch Type
mlxed valued
Electrolytics Trans. type
Pack aesorted Hardware-
Nota/Bolts, Grommets
Malns slide 8 witches, 2 Amp 0.5 $\begin{array}{ll}\text { Asworted Tay Strips \& Panela } 0.55 \\ \text { Assorted Control Knobe } & 0.55\end{array}$ Rotany Ware Change Swichea 0.56 Relayi 6-24V Opernting 0.35 Bhects Copper Laminate approx.

BIB HI-FI ACCESSORIES

Re, HERTS. (A10)

WORLD SCOOP!
 JUMBO SEMICONDUCTOR PACK

Transistors-Germ and Silicon
Rectifiers-Diodes-Triacs-Thyristors
I,C's and Zenners ALL NEW AND CODED
APPROX 100 PIECESI
Offering the amateur a fantastic bargain Pak and an enormous saving-identification and data sheet in every Pak
ONLY $\geq 2 p \& p 20 p$

EX-COMPUTER BOAROS

 BY THE BOXFULL II20 Boards packed with Semiconductors and othr Electronic Components. Each board approx. size $8^{\prime \prime} \times 7^{\prime \prime}$. All known type no. and easily recognisable FANTASTIC VALUE AT $\mathbf{E 2 . 2 0}$ per BOX p \& p 52p.

SPECIAL PURCHASE by BI-PAK

2N3055. Silicon Power Transistors NPN Famous manufacturers out-of-spec devices free from open and short defects- 115 watts TO3.

Metal Case.
OUR SPECIAL PRICE 8 for $\mathbf{E 1}$.

LOW COST CAPACITORS
 oi uF 400 V 3 peach 500 up 50 V elect.
 10p each
 RECORD STORAGE/CARRYCASES
 FE EP. $181^{\circ} \times 7^{\circ} \times 8^{*}$. (50 records) 2210 12° LP. $133^{\circ} \times 74^{\circ} \times 124^{*} \cdot(50$ recorda) 22.98
 CASSETTE CASES Holds 1 2130
 8-TRACK CARTRIDGE CASES
 ALL PRICES INCLUDE VAT

CARTRIOGES
ACOS OP91-1BC. 201 mV at 1.2 cm
ACO8 OP93.1. 280 mV at $1 \mathrm{~cm} \mathrm{~cm}^{\mathrm{sec}}$ ACOS OP96-1. 100 mV at $1 \mathrm{~cm} / \mathrm{sec}$ TTC J-20 10C Cryatal Hi Output
TTC J-200 Cs stereo/Hi Output TTC J-2105 Ceramic Med. Output
CARBON FILM RESISTORS
The El2 Kange of Carbon Film Keatutors.
the wate avaliable in PAKS of 50 plecen, sworted lato the following groups:-
121 60 Mlxed 100 ohen- 820 ohms
R2 bo Mired 10 K ohms- 82 K obmo 40 p R3 50 Mired 10 K ohms- 82 K obm 40 p
$\mathrm{K}+\quad$ Bo Mred 100 K ohms -1 Meg . ohms 40 p THEBE ARE UNBEATABLE PRICESLESS THAN ID EACH li'Cl. V.a.t.

BI-PAK SUPERIOR QUALITY LOW-NOISE CASSETTES COU. 32p C90.41p C120,82p

SEE OUR COMPLETE RANGE IN
PRACTICAL ELECTRONICS,
PRACTICAL WIRELESS, RADIO CONSTRUCTOR, EVERYDAY ELECTRONICS,

WIRELESS WORLD
OR SEND 10p. FOR THE FULL LIST OF ALL BI-PAK
PRODUCTS

BOOK BARGAIN

BUNDLE

8 Broks coraprining:
2 Tranaiator Equiralent booke
Redio $\&$ Electronic colour codo and
1 Redlo ralve gulde PLUS
Other conitructional booka on Recelvert. EM Tuners, etc.
AIBO I neneral nondrurinn book
YALUE $£ 3$. OUR PRICE 22p \& p 10p.
BP1 Handbook of Translato
 Equit.
Endbook
slotor Circults Teated Tran. International Fandhook 40 the World' Short Wave Listluse

Handbook of simple Trap
alotor Circuite Radio and Electronica colour codes and Data Chart 15 Bound and Loudipeake? 8 Practical Teated Dlode conatructor
Modern Cryalal and 35 Tran alstor fot beginners
Pracical
Pracucal
Circulta
Electronle Nor Novelt
Second book of Tranalato Equivelents tronlc Circulte for the
home
sop Incllatior
How to make FM and T.V Herlalo Bate Fay
hadio servicing for Amsteur
High Fidelity Loodspente
Tranalator Clrcuita Manual Coil deasm and Conatructio Manual
Radio T.V.
Tranidior
recelvera
Tranaistor Teat Equipment Bervlcing Manua

Manual of

4 comprehenalv

Gulde-Boots $5 \quad 30 \mathrm{p}$
programmes forelgn T.V programmes on your set hy
smple modiacations 33 p AF-RF Rexctance-Frequency
chat for Conatructor Handbook of Practical Eleotronic Yusical Soveltees 50 g
Practical Tranaistorised Nov. Plthes for HI-FI Enebuaisot
Handbook of Integrated Circult Equivalents and
8ubstitutes
Reaintor Colour Code Diac Substltutes
Renimtor Colour Code Diac
Dic

－the lowest prices！

74 Series T．T．L．I．C＇S
bl－paE 8tLL Lowest in price full bpecification goaramted．all fayous manupacturere

NOW WE GIVE YOU 50W PEAK（25W R．M．S．）PLUS THERMAL PROTECTION！
The NEW AL60 Hi－Fi Audio Amplifier
－Max Heat Sink temp 90° －Thermal Feedback
－Frequency Response 20 Hz to 100 kHz
－0．1\％Distortion
－Distortion better than 1% at
1 KHz
－Supply voltage $10-35$ volts

－Overall size $63 \mathrm{~mm} \times 105 \mathrm{~mm}$

－Signal to noise ratio 80 dB Especially designed to a strict specification．Only the finest components have been used and the latest solid state circuitry incorporated in this powerful little amplifier which should satisfy the most critical A．F．，enthusias FULLY BUILT－TESTED and GUARANTEED

DEVICES MAY BE MIXED TO QUALIFY FOR QUANTITY PRICE\＆（TTL 74 SERIES ONLY）DATA IS
AVAILABLE FOR THE ABOVE SERIES OFOR I．C． $\operatorname{INANTITY\text {PRICERBTTL}24\text {SE}}$ SORM．PRICE 35 ．

INTEORATED CRECOTT PAKS

Manviecturers＂Fall Outt＂which Include Functional and Part．Functional Unita．These are clacoel ao＇out－of－

Par Yo，Contanta UIC $00=12 \pm 7400$ ULCO1－12×740 UIC $03=12 \times 740 \mathrm{~s}$ U1004－12×7404 UCOB $-12 \times 740 \mathrm{~B}$ $\mathrm{UIC} 08-8 \times 7408$
$\mathrm{UICO}=8 \times 7407$ UIC10－12 $\times 7410$ U1C20－19 $\mathbf{~ T H 4 2 0}$ U1C80 $=12 \times 7490$ UIC41 $=5 \times 7441$ $\mathrm{UnO}_{2}=8 \times 7462$ $\mathrm{Cl} 48=5 \times 7449$ UlO45 $=5 \times 7446$

> Par No．Contant UTC48－5 $\times 7448$ UIC00 -12×7450 UISN $1-12 \times 7451$ UIC8S $=12 \times 7453$ UICS4 $=12 \times 745$ $\begin{aligned} \mathrm{UI} \mathrm{C} 80 & =12 \times 746 \\ \mathrm{UIC7} & =8 \times 7470\end{aligned}$ UIC72 $=8 \times 7472$ UTC73 $=8 \times 7473$ UIC74 $=8 \times 7474$
UIC70 $=8 \times 7478$ $\begin{array}{r}\text { UIC7 } \\ \text { UTC80 } \\ =8 \times 7478 \\ \hline \times 740\end{array}$ ULC81 $=6 \times 7481$ $\mathrm{UIC82}=5 \times 7482$
$\mathrm{UICAS}=5 \times 7483$

Prow
Pak Mo．Contenta UIC90 $=6 \times 7490$ UC91－5 57491 U1098－8 8×7493 UlC94－5 5×7494 $\begin{array}{ll} \\ 7 C 98 & -5 \times 7495 \\ 5\end{array}$ $010100=5 \times 74100$ VIO121－ 8×74121 $\mathrm{UlC1} 11=8 \times 74141$ Hec15s $=8 \times 7410$
 1019 U10x

3 TERMinal
RECOLLATOR
Rur Latoks

TEAK VENEERED CABINETS for： STEREO， 20 TC $20.53 .95 \mathrm{p} \& \mathrm{p} 30 \mathrm{p}$ ．

MK 50 KIT
TC $100.16 .50 \mathrm{p} \& \mathrm{p} 40 \mathrm{p}$ ．
E．M．I．LEK 350 Loudspeak System Enclosure kit in Teak Receer，including speakers． Ree Retail Price $\mathbb{1} 45.30$ per pr． OUR SPECIAL PRICE £35． 30
per pair p\＆p \＆1．ONLY WHILE
STOCKS LASTI per pair $p \& p$ \＆1．O
$S T O C K S ~ L A S T I$

DTL O30 SERIES LOGIC I．C＇s			
Tıu	1	2．	418，＊
$13+1{ }^{\text {a }}$	0.15	014	0.11
11903：	0.16	0.15	0.14
Мリ｜¢	0.16	0.15	014
119\％12，	016	013	0.14
	$0 \cdot 16$	0.13	0.14
1814＊4	016	a， 13	014
н194．	${ }^{0} 30$	0.3	0.25
	015	014	013
814M，	030	$00^{2 \times 1}$	023
	0．70	0 es	00^{00}
月14＊i＇	013	014	－13
1190404	－4	043	040
119\％ツ！	0 cs	－43	－4
	0 as	0.48	－40
H1＂\％e\％	043	$0{ }^{4}$	0 －
BI－PAK			
CATALOGUE AND LISTS Send S．A．E．and 18p．			

STEREO PRE－AMPLIFIER TYPE PA100

TRANSFORMERS

POWER SUPPLIES

The STEREO 20

AL10／AL20／AL30 AUDIO AMPLIFIER MODULES

The above table relates to the Al10，AL20 and AL30
modulies．The follow ing thble outhines the differeacea
in thelt working condition．

Paramotor	410	Aleo	Also
Maximum Sapply Voltage	25	80	30
Power output for 2\％T．H．D． $(\mathrm{RL}=8 \Omega \mathrm{f}=\mathrm{IKHz})$		$\begin{aligned} & 8 \text { wath } \\ & \text { RME Min. } \end{aligned}$	$\begin{aligned} & 10 \text { watta } \\ & \text { RMS Min. } \end{aligned}$
Price	22．20	52.59	\｛3．3

PA 12．PRE－AMPLIFIER SPECIFICATION The PA 12 pre－amplifter hae been designed to match into AL 10，AL 20 and AL 30 audio power amplitier and it can be supplifed from their mooclated power aupplites． There are two atereo inpula，one hat been dealgned for use oult mont + Magnetlc cartridies．Pull detaila are Elven In the specification table．The four controla are，from left to right：Volume and on／off switeb，balance，bese and treble．
Give $152 \mathrm{~mm} \times 84 \mathrm{~mm} \times 35 \mathrm{~mm}$ ．
PRICE $£ 4.35$ FRONT PANEL FP12 with knobs £1－20．

НеанНеІІ's dilitial Fim TUNER

UNTIL RECENTLY it was the normal practice for state-of-the-art products to appear first from small, specialised companies at a premium price to be followed by the large manufacturers. Only after several years would the product become available as a kit for the enthusiast market.

The Heathkit AJ-1510 Digital FM Tuner has broken these rules: it incorporates so many 'firsts' that it goes right to the top of the list as far as sophistication is concerned and yet is available first as a kit from a large company.

FACILITIES

The various functions of the AJ-1510 can be best described in conjunction with the photograph of the front panel.

Firstly there is no conventional tuning scale: the frequency selected is displayed digitally. There are three methods of selecting a station.

1. Using the keyboard (shown below the readout) you can select the frequency of the station you require. This will be three figures (e.g. 9-3-5 for 93.5 MHz) in the U.K. as our FM band does not yet extend beyond 100 MHz . (Tuning range is $88.1-107.9 \mathrm{MHz}$). You get the station whose frequency you have selected and 93.5 MHz lights up.

Inserting one of preprogrammed cards into its holder. This one represents 97.3 MHz .
2. The tuner can be set for 'AutoSweep'. When this button is pressed, the readout starts at 107.9 MHz and counts down: 107.7, 107.5 etc., and stops automatically on any station with a signal strength above a predetermined level. Stereo only stations can be selected in this mode. If you don't want the station you press a 'By-Pass' button and the count-down continues to the next station. When 88.1 is reached the readout switches to 107.9 MHz and starts again.
3. The three central push-buttons on the dial are used to select one on three pre-programmed stations. Not by altering the varicap tuning diode's applied voltage as is usual but by going right back to the keyboard circuitry. A number of plastic cards are supplied (similar to a credit-card) which are cut for the frequency required. Up to three can be loaded into card-holders and selected.

CIRCUIT OPERATION

The use of digital tuning and frequency synthesiser together with the other techniques we will mention mean that the circuitry is extremely complex - more so than a colour TV set! There are over 50 I.C's - many of them multiple packages - plus about 50 discrete transistors.
The circuit operation is best understood by considering the unit in two sections: the "conventional" tuner part and the digital circuitry.

To refer to the tuner section as conventional is not strictly correct as it uses truly up-to-date techniques. To those who are familiar with modern FM tuner circuitry, many of the techniques will be known but they are rarely all found together.

The FM front end is a preassembled, prealigned unit which requires marginal 'tweaking' by the constructor. FET's are used for high
sensitivity and for low crossmodulation. Tuning is by means of varicaps - now being well established. It is the control voltage applied to these that alters the tuning.

The i.f. requires no alignment such tuned circuits as there are, are sealed units. Similarly the detector used has no conventional tuned circuits: it is a digital frequency discriminator which counts the pulses.

The stereo decoder is a Phase Locked Loop - the only adjustment required for this being a preset potentiometer.

DIGITAL CIRCUITRY

The reference oscillator is a 100 kHz crystal which is fed to a divide-by-four circuit giving 25 kHz . This frequency is highly stable at $\pm 0.005 \%$. This frequency is used as a reference for the digital phase detector.

Going back to the 'front-end', part of the oscillator signal (which is the received frequency plus $10.7 \mathrm{MHz}_{\text {, }}$ thus for 93.5 MHz this equals 104.2 MHz) is connected via a buffer to a divide-by-eight circuit which in turn is fed to a programmable frequency divider. This circuit is controlled by the programming circuitry to divide between 494 and 593, always giving a 25 kHz output which is fed to the other input of the digital phase detector. If there is any frequency difference a voltage is produced which, by being applied to the varicap tuning section, tunes the receiver.

PROGRAMMING SECTION

The various methods of programming described earlier have to be selected and converted into a form suitable for the programmable divider: that's just a simple explanation of what most of the remaining circuitry fulfils.

The AJ-1510 is an American originated kit and has been designed for U.S. conditions and systems. The tuning range goes up to the 107.9 MHz point, much higher than necessary, but it will not tune below 88.1 MHz (the European FM Band starts at

Briect divguth (formitly y mplified) of the circuit.
87.5 MHz). This is no problem as we have no stations in the U.K. below 88.1.

The de-emphasis of the signal is for $75 \mu \mathrm{~S}$, not our $50 \mu \mathrm{~S}$, but when we asked Heathkit about this, they supplied us with two new resistors to get it right.

The major difference is that in the U.K. we have stations on the even frequencies (e.g. 91.6, 93.4) as well as on the odd frequencies used in the U.S. A modification kit is supplied but it is very much of a compromise and operates by capacitively loading
the reference oscillator slightly, allowing odd frequency stations to be received. However the readout will be incorrect and the preprogrammed cards will have to be made up for a different frequency.

The Auto-Sweep is highly justified in the U.S.A. where in many areas there are over 50 stations within reasonable distance. About the maximum number in the U.K. is seven and this far smaller choice means that we all know the likely programmes of each station. However for the small band of FM DXers this facility is

Rear view of the tuner with six of the circuit boards removed.

The completed kit with the cover removed.
perfect. You can arrange for the Autosweep to pick-up stations above any predetermined strength and you can note their frequency immediately (as long as they are on odd channels!).

BUILDING THE KIT

At first sight the kit is formidable. The instruction book alone comprises over 200 pages plus numerous foldouts. Much of this however is a faultfinding section and circuit explanations.

The majority of the components are on computer-style plug-in boards or behind the front panel. A typical building time is not given: we took 20 hours before we got to the checkout stage, the only other person we know who has tackled the kit in this country took about 35 hours all-in.

We did have trouble - two I.C.'s supplied were duds - and the time it took to locate them was enormous. In fairness to Heathkit we have never come across, or heard of such a thing before with their kits, annoying though this was.

The tuning meter doubles as a 3 -range testmeter measuring $15 \mathrm{~V}, 50 \mathrm{~V}$ and Ohms for checking out the circuit as you progress.

PERFORMANCE

We have not yet carried out objective tests but the specification indicates that most test equipment would be stretched to its limits to record such factors as distortion.

Subjectively the performance is superb - by far the best FM we have heard. This even applies using a dangled bit of wire for an aerial. We don't recommend using a tuner of this quality without a good aerial, only that we found it remarkably tolerant to say the least.

The Heathkit AJ-150 is a remark. able design, providing facilities second-to-none but it is not cheap at $£ 300$ for the kit and we did not like the 'even-frequency-stations' compromise bearing in mind the price. However, for those who want perhaps the ultimate FM tuner in kit form, the $\mathrm{AJ}-150$ must leave the rest standing.

GOODMANS' have, over many years, produced some of Britain's finest loudspeaker systems and the company pioneered many types of high-efficiency high-quality loudspeakers.
Fairly recently Goodmans were taken over by Thorn Industries and the Goodwood speaker system is the first new product, that we have had the pleasure of testing, which has been designed and produced by the new company.
The concept of this speaker has been based on the premise that listeners seek above average quality with minimum distortion and colouration but achieved with a price structure below that of true studio monitoring systems.
In appearance, the Goodwood system can best be described as of conservative British design. The enclosure is fabricated from veneered particle board approximately 1.5 cms thick, excepting the top and bottom panels which are made of a heavier board.
The method of fixing the front speaker grill is quite conventional, using four Velcro type fasteners. The grill cloth is a mixture of artificial fibres and wool. It has low flow resistance and an attractive appearance. The enclosure is approximately 46 litres (2.5 cf .) in volume and in theory should be able to provide a good frequency response over the major part of the audible spectrum.
Although conventional in appearance, the enclosures, do in fact have several unusual features. Firstly the woofer looks quite unlike any other Goodmans' woofer we have ever seen. It is 30 cms ($12^{\prime \prime}$) high but only 26 cms ($10^{\prime \prime}$) across. It. should probably be best described as a 25 cm diameter loudspeaker.
Goodmans claim that this driver has been specifically developed to provide high power handling capacity.
Their approach to reducing harmonic distortion, which is generally frequency doubling or cone break up at low frequencies, has been to optimise the geometry of the flux distribution in the magnetic circuit. The woofer has a 3.6 cm diameter voice coil, and has a ceramic magnet
clamped between steel pole pieces which are themselves fitted to a heavy and rather unusual die-cast housing. By making use of a heavy fibrous cone (which provides internal damping and dissipation of energy) together with a plastic coated diaphragm which is extended to provide an integral flexible surround, the manufacturers state that they significantly reduced unwanted resonances.
Goodmans have patented this design and, based on our measurements, have achieved what they claim.
The mid-range driver, which covers the range from 600 Hz to 4 kHz is a 10 cm cone type direct radiator. This speaker also uses a high-flux ceramic magnet and a rather unconventional rigid die-cast chassis. It bears a strong similarity to the woofer and also features a composite cone of plasticised polymer and conventional fibr cone to achieve excellent damping characteristics.
Goodmans claim that the wide angle of radiation of this speaker gives smooth power transfer over the operating range. Our measurements certainly confirm this.

The mid-range unit is located with in its own separate enclosure. This has an internal volume of 3.7 litres and is lined with polyurethane foam.
The tweeter is a dome type radiator (2.5 cm diameter) which is moulded from synthetic fabric with a homogenous plastic coating. Again, it bears a very strong resemblance to the other two speakers. The dome tweeter is the only speaker of the three to bear a type number (DT3) and features a construction technique which is far less expensive than similar speakers Goodmans have produced in the past.

All three speakers are sealed into the enclosure with urethane foam strips, and internal damping is achieved by large blocks of 8 cm thick urethane foam. The speaker connections are unusual terminals at the bottom of the enclosure. These consist of a pair of screw terminals which flank a DIN type speaker socket, and the unit comes equipped with a seven metre long colour coded lead with a DIN plug at one end and a pair of spade lugs at the other.
The cross-over network is screwed

GOODMANS GOODWOOD DOMESIIC MONITOR SPEAKER

Frequency Response	$\pm 8 \mathrm{~dB}$	$35 \mathrm{~Hz}-20 \mathrm{kHz}$
Total Harmonic Distortion		
(for 90 dB at 2 metres on axis)	100 Hz	0.6%
	1 kHz	0.2%
	6.3 kHz	0.3%
Electro-Acoustic Efficiency		
(for 90 dB at 2 metres on axis)	9 W	5Ω
Measured Impedance	100 Hz	7Ω
	1 kHz	8Ω
	6.3 kHz	
Cross-over Frequency	600 Hz and 4000 Hz	
Dimensions	$76 \times 36 \times 27 \mathrm{~cm}$	
Weight	18.3 kg	
Recommended Retail Price $£ 60.50+\mathrm{VAT}$.		

SUMMARY: Our overall subjective impressions of the Goodwood speakers are that they offer a very smooth response and clear uncoloured sound, but the bass end is not as good as we would expect from what is most probably the premium quality speaker system marketed by Goodmans.

The Goodwood speaker system is for purists wtho will primarily be listening to classical music, but will not really suit the man who wants to play heavy rock or some of the more modern styles of music.
into the back of the cabinet. It consists of four inductors and five capacitors connected as a three-way pye filter which proved to work quite well.

MEASURED PERFORMANCE

Our first test was to measure the frequency response on axis, and at 30° to axis, under anechoic conditions. The frequency response by and large (if one is prepared to ignore the predominant dips in the region of 4.5 to 6 kHz), was smooth, being $\pm 8 \mathrm{~dB}$ from 35 Hz to 20 kHz . Surprisingly, the frequency response at 30° off the main axis had fewer dips in the response than directly on axis.
The impedance curve, likewise, was quite smooth with a minimum impedance of 5Ω and a maximum impedance of 15Ω.
The distortion characteristics at high signal levels were reasonably low. Far higher signal levels than we would have expected from this system were tolerated before the onset of frequency doubling.
Performance on music featuring deep bass such as EMI "Music of the Incas" SOXLP 7543, and CBS "Olatunji! Drums of Passion" was good, but not really up to the standards that we would have expected from a speaker system described as a monitor speaker system. In other respects though, the manufacturer's description is fair enough. The sound is definitely smooth and colouration is only very slight.

VIDEO-DISC

 colour tv
Colour TV records this year -Decca-Telefunken's Teldec system now ready for production - here's how it works.

THE gramophone record is now a familiar enough object. So much so, that the technical achievement of translating complex musical sounds into mechanical variations in a groove and back again is taken for granted.
A measure of this achievement is the fact that on the inner grooves of an LP record the recorded wavelength of one cycle, near the upper (frequency) limit of hearing, is approximately 0.01 mm (about $0.005^{\prime \prime}$) in length.
Small wonder then that a stylus has difficulty in tracking a heavily modulated passage, or that pick-up designers are constantly seeking ways of reducing stylus mass and stiffness so that accurate tracking can be ensured with the minimum of wear.
In view of these problems, the thought of putting video signals of high definition on to disc, needing as they do frequencies of several megahertz has always seemed like a wild dream not worthy of serious consideration.
But, incredible though it may seem, it is possible, for a domestic video-disc player will be marketed this year that reproduces a full colour picture with 625 -line definition plus sound.
The device, developed jointly by Decca and Telefunken, plugs into a

Both video and sound signals are in the extremely fine grooves of the video disc. The thin and flexible PVC foil used appears flimsy, but is actually quite tough and is said to be able to withstand 1000 playings without damage. Disc is driven by a high-speed keyed centre spindle; remainder floats on air cushion.
conventional colour TV receiver and is no bigger than most record players.
The electronics involved are fairly complex, but, surprisingly, the mechanical arrangements for playing the discs are quite simple.

THE DISC

Unlike conventional long playing records, the video-disc is flexible. In this respect it is similar to the sampler discs that are sometimes freely distributed. The video-disc is 20 cm in diameter and carries about 5 cm radius

Fig. 1. Photomicro graph compares grooves of (left) standard long-play audio record, and, (right) Teldec video disc.
of groove space. The grooves terminate some 5 cm from the centre.
Playing time is approximately 10 minutes. The video-disc is recorded on one side only, and is made from a specially toughened PVC material which is expected to have a life about the same as an ordinary LP.
The grooves are vertically modulated, in the manner of the old "hill-and-dale" sound recordings, instead of laterally. As there are no side-to-side excursions of the groove, more programme material can be accommodated in a given space.
A playing speed of 1500 rpm is required for the 625 -line disc. This corresponds to 25 revolutions per second which is the same as TV frame frequency - there being two interlaced fields to each frame, thus one complete frame is contained in one revolution.
Video waveforms are not modulated directly on to the record grooves, but for reasons that will become clear later, are frequency modulated on a carrier having a deviation from 2.75 MHz to 3.75 MHz . A 1 MHz carrier is also frequency modulated with the sound channel, and a further sound channel could be accomodated if required to provide stereo, or sound in an alternative language.

THE PLAYING DECK

At first glance something radical seems to be missing from the playing deck, it is the turntable! In its place is a small disc similar to the spool carriers used on open-reei tape-recorders, set into a hole in the deck-plate. The disc is smaller than the hole so that a gap exists around it. There is the normal spindle for the central record hole although it is larger than usual, and in addition there is an offset post on the disc which engages with one of the three holes near the centre of the record.
When stationary, the record just lies on the deck, but as it rotates at speed, air is drawn up through the gap around the centre disc, and is forced outward to escape at the rim of the record. It is thus supported on a cushion of air, the air-flow being maintained by the spinning action of the record.
The pickup arm differs from normal in that is is not pivoted at one end, instead, the cartridge is carried across the record by a transverse carriage.
As the groove spacing is constant the pickup can be driven at constant speed along the carriage, and still correctly track the groove on its inward journey.
The drive is simply effected by means of drive-wire passing over pulley wheels, in the same manner as the dial-drive used in radio receivers. The wire is wound around a drive-drum which is driven through a gear chain from the record-disc spindle. By this means the pickup drive speed is directly related to the record speed.
Because the record is vertically modulated, the cartridge responds to vertical movements rather than lateral ones. It can thus be designed to accomodate lateral stylus displacement without ill-effect. Hence any departure from the mean tracking rate due for example to any eccentricity of the record, will not cause mistracking.
This characteristic has another application: if it is desired to repeat a few frames and thus 'freeze' the action, the drive to the pickup can be disengaged.
The stylus will then follow the groove for one or two revolutions until its compliance is overcome when it will jump the groove. It will keep doing this until the drive is re-engaged, and so as each groove carries one complete frame, a complete number of frames will be displayed at each jump thereby maintaining the sync, pulse timing.
This groove jumping will not damage the record because of its flexibility providing it is only continued for a reasonable time. The normal rate of progress of the pickup along the carriage is a little over 5 mm per minute.

The basic player is thus quite straightforward, but in addition to the single-record player, it is planned to produce an autochanger, which is rather more complicated, A magazine, of up to 12 discs, can be inserted into the machine which feeds them automatically to the player with only a few seconds break between records. Each disc is returned to the magazine, or in the case of a single disc, to its sleeve after playing and the magazine is then ejected when all are finished. A programme of up to two hours can therefore be shown without handling the records, and the short breaks can be timed to coincide with scene-fades
and natural breaks in the recorded material.

THE PICKUP AND STYLUS

It is this part of the equipment which usually arouses the greatest curiosity. Just how can a stylus faithfully follow modulations in the megahertz range? The short answer is that it doesn't! We remember that the modulations consist of a frequency modulated carrier. Now it doesn't really matter with ar f.m. signal, whether the carrier is a pure sinewave, a square wave, saw-tooth or just pulses, as long as the frequency deviations are

VIDEO-DISC COLOUR TV

distinguishable. So as long as each hill-and-dale in the groove produces an electrical wave-form at the right time it matters not how severe the amplitude distortion may be.
This greatly simplifies matters and in fact the diamond stylus, which is shaped rather like the bottom half of a capital D, actually lies across quite a number of modulations as it sits in the groove. Bearing in mind that the record is flexible as it rests on its cushion of air, the stylus causes a depression in the area of contact. The modulations pass under the curved portion of the stylus and are gradually compressed by the curvature. Upon reaching the straight trailing edge, each one is suddenly released whereupon it imparts a flip to the stylus. Thus the modulations produce a series of pulses from the transducer which are frequency modulated in accord with the recorded signal.
Hence the stylus does not, in fact could not, follow the contours of each modulation faithfully as is required of a lateral-cut audio disc.
As a series of pulses is all that is required, the carefully engineered cantilevers and stylus-mounting assemblies of the audio pickup are not needed. The stylus is cemented directly to a slice of ceramic material which has piezo-electric properties, (i.e. pressure applied to the material causes a voltage to be generated across it), and this generates the pulses.
Stylus pressure on the record is 0.2 grams, far lighter than even audio
pickups, yet in spite of the minute size of the modulations, pulses of the order of 20 mV are obtained at the start of a record.

THE ELECTRONICS

The resolution of the video signal once it is demodulated is 250 horizontal lines, which corresponds to a bandwidth of about 3 MHz . This is less than the broadcast definition standard for 625 lines and is not wide enough to accept the normal PAL colour coding information. A further difficulty from the PAL viewpoint is speed stability which although good enough for monochrome video signals is not good enough for colour coding.
For these reasons, a modified colour-coding which is more tolerant of speed variations has been devised. This is known as " 3 -PAL". The colour components are sequentially modulated in a band up to 500 kHz . The luminance information, which requires higher definition - as the eye is more critical of luminance definition than colour, is modulated from 500 kHz to 3 MHz .
In order to achieve the sequential demodulation of the three colour components, two 64μ s line-period delay elements are used. These are connected in series so that a delay of one line for one colour appears at their junction, and a two-line delay for the third colour at their end. One colour is of course un-delayed.
The sound channel is modulated on a

1 MHz carrier, and the audio response extends up to 15 kHz . The sound carrier amplitude is -30 dB compared with that of the vision signal, yet a signal-to-noise ratio of -50 dB is maintained.
If we follow the signal as it leaves the pickup, it is applied first to two filters, one is a band-pass filter tuned to 1 MHz which separates out the sound carrier, and the other is a high-pass filter which allows only the higher-frequency vision carrier through. The two signals then pass through their own limiter, and demodulator stages to the audio and video amplifiers respectively.
The vision signal is then divided by a high and low-pass filter into the luminance and chrominance channels, the luminance signal passing directly to the output mixing and modulator stage. Chrominance information is processed through the delay lines and 3-PAL switch to the RGB matrix from where they are fed to the colour modulator along with a 4.43 MHz indent signal. Thus it emerges as a standard PAL signal and is passed to the UHF modulator along with the luminance and sound signals.
Output is the same as a received UHF colour transmission, so all that is necessary is to plug the unit into the aerial socket of a colour TV receiver, or of course it can be displayed on a monochrome set.

GENERAL FEATURES

Unlike tape video-recorders, the video-disc system cannot be used for home recording. It can only play back pre-recorded material. Some of the manufacturers of alternative recording systems regard this as a major drawback. However, in this respect it is no different from the gramophone disc, and no-one will claim that these are lacking in popularity! Obviously, those who wish to record their own video programmes will opt for video-tape just as those wishing to make their own audio recordings use a tape-recorder. There is room for both systems to suit individual requirements.
Cost of the discs compared with tape is well to the advantage of the discs. For a run of 5000 copies, the disc would cost about a fifth of the comparable length of tape. Smaller runs catering for minority interest programme material would cost more, but even then should show a decided advantage over tape. Actual cost should be little more than a top-priced LP record. The record-players should also show a price advantage over video-tape systems, owing to the simplicity of the mechanical section. They should be about twice the cost

VIDEO-DISC COLOUR TV

of a good quality audio record-player. It is of interest to speculate on the nature of the records that may be issued.
It is in the field of instruction that the discs could come into their own. Enrolment in various adult education centres and the variety of subjects that now appear on the syllabus show the tremendous interest that exists in educational subjects. Students of home-decorating, cookery, dress-making, carpentry, golf, and a wide range of other subjects would greatly benefit from being able to see and hear experts give instruction, repeated as often as required, in their own home.
Coming back to technical considerations, the application of the system for purely audio recordings is intriguing. A much slower speed would be ample to record a low-frequency pair of FM carriers for a stereo programme, or even four carriers for discrete quad. If the higher carrier had an upper deviation frequency of 200 kHz which is some 15 times less than the 3 MHz or more upper limit of the video disc, it follows that the speed could be reduced by a similar amount and the playing time extended correspondingly. Thus some $21 / 2$ hours could be accommodated on a single 20 cm disc. Other advantages would be better stereo separation, elimination of tracking and tracing error, turntable rumble and harmonic distortion. There may be problems of maintaining the air cushion at slow speeds, but this could no doubt be overcome by mounting fan blades on the drive spindle beneath the deck.
Without doubt the video disc is a remarkable achievement, and fascinating, proof that one must be wary of dismissing 'impossible' concepts totally out of hand!

COMING SOON

Top

Projects Book

A collection of the most popular ETI Projects published in the last $2 \frac{1}{2}$ years - all in one great volume. More details next month.

BUILD THE

 - Genuine 5-silicon transistor circuit,

 does not need a transistor radio to operate.- Incorporates unique varicap tuning for extra stability.
- Search head fitted with Faraday screen to eliminate capacitive effects.
- Loudspeaker or earphone operation (both supplied).
- Britain's best selling metal locator kit.
- Kit can be built in two hours using only soldering iron, screwdriver, pliers and side-cutters.
- Excellent sensitivity and stability.
- Kit absolutely complete including drilled, tinned, fibreglass p.c. board with components siting printed on.
- Complete after sales service.
- Weighs only 2202; handle knocks down to $17^{\prime \prime}$ for transport.
Send stamped, self-addressed envelope for literature.

Complete kit with pre-built search coil
$£ 9.80$ Plus 480 P\&P

Built, tested
 and
 Guaranteed
 £13.75
 Plus $£ 1.10$ VAT Plus 45p P\&P

> South Africa, Rhodesia etc: Send $\varepsilon 13.00$ for kit, $£ 16.95$ MINIKITS ELECTRONICS, 35d Langley Drive, Wanstead, LONDON E11 2LN (Mail order only)

The firm for speakers!

WILMSLOW AUDIO

Baker Group 25, 3,8 or 15 ohm Baker Group 35, 3,8 or 15 ohm Baker Deluxe 8 or 15 ohm Baker Major 3,8 or 15 ohm. Baker Major 3,8 or 15 ohm
Baker Regent 8 ot 15 ohm Baker Superb 8 or 15 ohm Celestion PST8 (for Unilex) Celestion MH1000 horn 8 or 15 EMI $13 \times 8,3,8$ or 15 ohm EMI $13 \times 8,150 \mathrm{~d} / \mathrm{c} \mathrm{3,8}$ or 15 EMI $13 \times 8,450$ i/tw 3,8 or 15° EMI $13 \times 8,3508$ or 15 ohm EMI 13×820 watt bass EMI $8 \times 5,10$ watt, d/c, roli/s $\dot{8}$ Elac 59PM

lac 59RM109 15 ohm

Elac $61 / 4^{\circ \prime} \mathrm{d} /$ cone, roll/s 8 ohm .
Elac TW4 $4^{\prime \prime}$ tweeter
Fane Pop 15 watt $12^{\prime \prime}$
Fane Pop 25/2 25 watt $12^{\prime \prime}$
Fane Pop 4040 watt $10^{\prime \prime}$
Fane Pop 50 watt $12^{\prime \prime}$
Fane Pop 5560 watt 12
Fane Pop 60 watt 15
Fane Pop 100 watt $18^{\prime \prime}$
Fane Crescendo 12 A or $\mathrm{B}, \dot{8}$ or Fane Crescend
Fane Crescendo $15, \dot{8}$ or 15° ohm Fane 807T $8^{\prime \prime} \mathrm{d} / \mathrm{c}$, roll/s $8 \mathrm{orm}^{\circ}$ Fane $807 \mathrm{ohm}^{\prime \prime} \mathrm{d} / \mathrm{c}$, roll/s 8 or 15 Fane $801 \mathrm{~T} 8^{\circ \prime} \mathrm{d} / \mathrm{c}$, roll/s 8 ohm Goodmans 8P 8 or 15 ohm Goodmans 10P 8 or 15 ohm Goodmans 12P.D. 8 or 15 ohm Goodmans 12 P-G, 8 or 15 ohm Goodmans Audlom 100, 8 or 15 ohm
Goodmans Axent 100,8 ohm Goodmans Axiom 401, 8 or 15° Goodmans ans Twinaxiom $8^{\prime \prime} 8^{\circ}$ or 15 ohm
Goodmans Twinaxiom $10^{\prime \prime} 8$ or Kef T2 15 ohm
Kef T15
Kef B110
Kef B200
Kef B139.
Kef DN8
Kef ON12
Kef DN13
Richard Allan CG 8 T $8^{\prime \prime}$ d/c roll/s STC4001G super tweeter Wharfedale Super 10RS/DO 8
Fane 701 twin rlbbon horn
Baker Major Module
Fane Mode Dne . each £10.75 Goodmans DIN 204 ohm. each $£ 9.90$ Helme XLK25 204 ohm Helme XLK30 Kefklt Kefkit 3
Peerless 3-25 (3 sp.system) Richard Allan Twinkit Richard Allan Triple 8 Rlchard Allan Triple
Rlchard Allan Super Triple Wharfedale Linton 2 kit. Wharfedale Glendale 3 kit Wharfedale Dovedale 3 kit . palr
PRICES INCLUDE VAT
Cabinets for Hi-Fi and PA., wadding, vynair etc. Send stamp for free booklet-"Choosing a Speaker"
FREE with orders over E7-HiFi Loudspeaker enclosures book.
All units guaranteed new and perfect.
Prompt despatch
Carriage and insurance: Speakers 38p each, Kits 75 p each ($£ 1.50$ pair) Tweeters and crossovers 20 p each.

WILMSLOW AUDIO

Swan Worke, Bank Squere, Wilmslow,
Cheahire SK9 IHF.
Tel. Wilmslow 29599
(Discount Hi-Fi, PA and Radio at 10 , Swan Street, Wilmslow).

$£ 7.75$ 8.50 $£ 10.75$ $£ 10.75$ $£$ 8.50 | E |
| :--- |
| E | .80
 £ 6.95 £ 8.50 £ 8.50 £ 11.00 E 12.50 13.00 ε 2
 $£ 29.00$ $£ 36.00$ $\kappa 49.95$
 $\begin{array}{ll}£ & 3.85 \\ £ & 7.00\end{array}$ $\begin{array}{ll}£ & 7.00 \\ £ & 5.00\end{array}$ 5.00 $E \quad 5.30$ $£ 12.95$ $£ 16.75$ £12.75 £ 15.75 $£ 12.00$ $£$ $£ 17.15$

4 Here the tetrahedral microphone array used for ambisonic recording is used to capture the direct and reverberant sound field in St. Giles' Church, in the city of London.

> Worldwide, interest is growing in this effective new way to obtain true 'surround sound'. Andrew Pozniak describes the latest developments.

AMBISONICS

In recent issues, contributors such as Dr. Farrimond and Prof. Fellgett have generally questioned what four-channel is all about and what its actual goals are. With this interest from both academic as well as commercial institutions some exciting developments are coming to light with the promise of more to come.
In this article a broad look is taken at the "Kernel" approach to "'Surround-sound". Since these innovations are yet in their embryonic stages, little in the way of information other than of an academic or peripheral nature is available. Also patents already applied for, preclude much practical technical data being published.
As more information comes to light further articles will be published. A broad list of references is listed at the end of this article. To indicate how current this topic is, the last reference is to a paper given by M.A. Gerzon "Psychoacoustic criteria relative to the conception of matrix and discrete systems in tetraphonics". This was read at the International Festival of Sound in Paris earlier this year.
It is not without some renewed eagerness and anticipation that further developments from various sources are to be looked forward to, after the somewhat meandering start that quadraphonics has had.
"QUADRAPHONICS" has been with. us for some time now, but, unlike the introduction of stereo about two decades ago, its acceptance by the public is far from accomplished.
The major reason for this is that in spite of much work by manufacturers on developing a viable system for this
new dimension, none of these systems comes up with a "convincing" argument or sound in keeping with what is the basic purpose of the whole exercise.
A polyglot of systems has evolved (SO,OS,RM,CD4,UMX etc.) all have a sound technological approach,
however arguments for and against each method have been raging since their inception, especially by their innovators, each wishing to see their system adopted as the standard.
Unfortunately out of this "Babel" little has resulted except confused consumers, slow sales of already manufactured four-channel equipment and suitable records, and perhaps most important, non-emergence of any sort of standard throughout the industry.
Most vivid proof of this state of affairs is the growing number of positions one sees on the "mode" switch of currently manufactured four-channel amplifiers with inbuilt multiple decoders to cover every possible contingency.
A slight polarisation of thought in favour of the CD4 discrete system is in evidence, especially in the USA. However before even the adoption of that system takes place severe re-thinking of the whole approach is definitely merited. This last statement is prompted in the light of recent technical papers on the subject as well as experimental work being done both at academic institutions and by certain companies in various countries.
P. B. Fellgett, Professor of Cybernetics and Instrument Physics at

Reading University has teamed up with John Wright and, under the co-sponsorship of the National Research Development Council of Great Britain and the IMF company has been conducting research into a new concept for multi-channel sound recording and reproduction called "ambisonics".
As a result in 1971 a patent was taken out by NRDC arising from developments carried out at Reading University. At present experiments are mostly being carried out by IMF under Prof. Fellgett, John Wright and a more recent member of the team, Michael Gerzon, an Oxford University mathematician. Considerable help has been forthcoming from many parts of the audio industry from such companies as Dolby Laboratories and Calrec.
The first major public demonstration of Ambisonic sound was given at the recent Sonex '74 exhibition in London.
Unfortunately the demonstrators could hardly have picked a worse spot than the room they had allocated to them.
The acoustics of the room were completely unsuitable for the demonstration. In spite of the handicap one or two selections did give an idea of what an ambisonic system is capable. One particular piece of organ music produced a strong impression of the sound echoing inside a church. Some aspects of what "ambisonic" sound is, did come to light.
Professor Fellgett hopes to arrange a future demonstration in a more suitable location.
The new technique improves on present quadraphonic systems because of its ability to present natural sound images between front and rear pairs of speakers, and to reproduce sounds which seem to arise either between listener and loudspeaker or beyond.
So much so, that Mr. Gerzon believes that "Quadraphonics" as conceived widely at present, is a Dead End.
Unlike conventional quadraphonic approach, the new "ambisonic" system uses information from a multidirectional microphone array encoded onto just two channels. This means that the complexities of surround sound techniques are relegated to the recording studio and not the living room. It is envisaged that apart from two separate loudspeakers suitably in phase only a decoder will be necessary to convert an existing stereo system.
This new approach is not to be confused with the so-called matrix systems to date. In matrixing, information from conventional
microphones is artificially blended to achieve synthetically the approximation of surround sound.
With ambisonics sound trom every direction is picked up by a tetrahedral microphone array and is treated equally until the decoding operation.
In retrospect there have been two approaches to surround sound four-channel reproduction.

1. "Matrix" systems which aim to simulate discrete systems via less than four channels.
2. "Discrete" systems, which use four channels to create phantom inter-speaker images by feeding (panning) sounds only to the two adjacent speakers.

Now, with "Ambisonics" a new approach is emerging. This uses the "harmonic synthesis" or "Kernel" system. This new approach requires some explanation. The aim of a Kernel system is to convey through a finite number of channels an infinite number of directions (and thus an infinite number of channels). The mathematics used is not "Matrix" algebra but what is known as "Kernel" algebra iwhich is the corresponding mathematics used when one has an infinite continuum of variables).
"Kernel" systems start from the observation that the desirable effect is to produce a sound coming from an infinite number of directions around the listener. Such systems imagine a limited number of channels (two, three or four) being used to convey the sound to the listener, but are designed to create a continuous range of directions around the listener thus approximating the original. This re-creation may take place via (say) only four speakers. The signals fed to the speakers do not matter in themselves, only the directional effect of the sound field at the listener matters. (This philosophy is close to that expressed in Blumlein's famous 1931 stereo patent.)
Commercial examples of Kernel systems are the UMX family of systems of Nippon-Columbia, Japanese RM systems excluding Sansui's QS system which is only an approximation to RM., and also the British NRDC "ambisonic" system.
Work along similar lines is being done in Germany by Sennheiser.
All in all, it would appear that at long last some more rationalised approach, as to what four channel surround sound should really be, is being taken. Interestingly enough the impetus for this has come from the academics rather than commercial incentives.
Pop-gimmickry and special-effect records may offer the recording-engineer scope for juggling
the controls. However, it is high time that the record makers realise that in general the serious listener likes music "au naturel" - as close as possible to the original. If this goal can be achieved by quadraphonics then let it be so; but unadulterated by synthetic (stereo or four channel) "pseudophonics".
It is obvious that the whole question of quadraphonics is in a state of ferment and movements in the right direction are being made. This year should see many interesting developments and further articles dealing with the topic will follow as information comes to hand.

References:

1. Farrimond, 'Four-channel psycho-acoustics' Electronics Today International June 1974.
2. T. Mendoza 'Ambisonic Sound' Electronics Today International June 1974.
3. K. de Boer "A remarkable phenomenon with stereophonic sound reproduction" Philips Technical Review Vol. 9 p.8-13 (1947)
4. H.A.M. Clark, G.F. Dutton, P.B. Vanderlyn "The 'stereosonic' recording and reproducing system" I.R.E. trans. on Audio 1957 p.96-111.
5. A.D. Blumlein, U.K. Patent 394325 (14th December, 1931).
6. M.A. Gerzon "The Principles of Quadraphonic Recording" 12 parts). Studio Sound Aug. \& Sept. 1970.
7. O. Kosaka, E. Sato, T. Nakayama, "Sound Image Localisation Multichannel Matrix Reproduction" J. Audio Eng. Soc. Vol. 20 p.542-8 (Sept. 1972).
8. P. Scheiber "Analysing Phase-Amplitude Matrices" J. Audio Eng. Soc. Vol 19 p 835-9 (Nov. 1971).
9. M.A. Gerzon "Periphony: With-Height Sound Reproduction" J. Audio Eng. Soc. Vol. 21 p.2-10 (Jan/Feb. 1973).
10. M.A. Gerzon "Experimental Tetrahedral Recording" (3 parts) Studio Sound Aug. Sept. Oct. 1971
11. M.A. Gerzon "Criteres Psychoacoustiques relatifs a la Conception des Systemes Matriciels et Discrets en Tetraphonie" delivered at The Festival International du Son, Paris, 16th March, 1974 and published in its Journal "Conferences des Journees d'Etudes, Festival International du son, 1974".
GO DIGITAL NOWI BYWOOD have the largest range of digital display devices
in the country - filament, LEDs, gas-discharge, liquid crystal, phosphor diode in the country - filament, LEDs, gas-discharge, liquid crystal, phosphor diode Sizes? - $0.1^{\prime \prime}, 0.2^{\prime \prime}, 0.3^{\prime \prime}, 0.4^{\prime \prime}, 0.5^{\prime \prime}, 0.6^{\prime \prime}, 2.5^{\prime \prime}, 5.0^{\prime \prime} \& 10^{\prime \prime}$. Telephone us with your requirements or problem and let us recommend a digital solution.
CLOCKS and CALCULATORS
In addition to our digits we have 21 different clock chips, 14 calculator chips, interface drivers, MHI kits, complete kits, Digitronic clocks and Imtech calculators.

SERVICE

We offer a complete advisory and technical back-up service, telephone us at any time - if the office is empty our Ansaphone will take your message.
DON'T SHOP AROUND - Ask BYWOOD first, if we can't help you we will tell you who can.

DIGITAL DISPLAYS		Price (VAT exclusive)		
Type No.	Type	Size (ins.)	1.10	100+
3015 F	Filament	0.35	1.25	0.90
3016F		0.47	1.25	0.90
3017F	"	0.6	2.00	1.45
RDS1	"	2.5	8.00	5.50
DM2	"	5.0	24.00	17.50
DL707	LED	0.3	1.70	1.42
DL747	LED	0.6	2.45	1.80
DG10A	Ph diode	0.41	1.10	0.80
DG12H	".	0.53	1.20	0.85
823440	Liq xtal	0.60	16.00	8.89 (4 digits)
201135		0.20	14.23	8.00 (31/2 digits)

DIACON Planar gas-discharge displays available Sepr./Oct.

STPHYNYIIIE MkII

Electronic Ignition... Better on all points

The SPARKRITE MK. 2 is a full capacitive discharge electronic system. Specifically designed to retain the points assembly with all the
advantages and none of the disadvantages. No misfire because contact
breaker bounce is eliminated electronically by a pulse
suppression circuit which prevents the unit firing if the points bounce open at high rpm. Contact breaker burn is
eliminated by reducing the current to about $1 / 50$ th of
norm, thus avoiding arcing. But you can still revert to normal ignition if need be. In seconds. If points go (very unlikely) you can get replacements
anvwhere. All these advantages.

- Fitted in 15 minutes. Up to 20% better fuel consumption. Instant all weather starting. Cleane plugs they last 5 times longer without attention. plugs they laster acceleration. Faster top speeds. - Coil and battery last longer. Efficient fue burning with less air pollution.
The kit comprises everything needed
Ready drilled scratch and rust resistant case, metalwork, cables, coil connectors, printed circuit board, top quality 5 year guaranteed transformer and components, full instructions to make positive or negative earth system, and 6 page installation instruction leaflet.
WE SAY IT IS THE BEST SYSTEM AT ANY PRICEI

Oiv Kil oniy E1162 incl VAT and P \& P
Ready Built Unit E14 85 incl VAT and P \& P
(Both to fit all cars with coil/distributor ignition up to 8 cylinders)
We can supply units for any petrol-engined vehicle fooat. motorcycle etc) with coil/contact breaker ignition
Detans on request Call in and see us for a demonstration

aBASIC POWER SUPPLY

Simple regulated supply provides $4.5-12$ volts at 400 mA maximum.

The power supply shown unmounted. Note the aluminium heat sink for the power transistor.

THIS little power supply provides a range of switch selectable output regulated voltages from 4.5 to 12 volts, selectable by a switch. The supply will provide up to 400 mA
and the output can withstand a short circuit without damage. It is therefore ideal for the experimenter or for use with high drain appliances.

Plece of matrix board.

Fig. 1. Circuit diagram of the regulated power supply.

SPECIFICATION

Nominal output voltage $12 \mathrm{~V}, 9 \mathrm{~V}, 6 \mathrm{~V}$ and 4.5 V
Output current $0-400 \mathrm{~mA}$
Current limit approx. 500 mA

HOW IT WORKS

The 240 V mains voltage is reduced to 15 volts by transformer T1, and this secondary voltage is then fult wave rectified by rectifier bridge D1-D4.
The output of the bridge rectifier is
fltered by Cl to provide
appeorimately 20 volts dc .

The saries combination, of Zener diodo ZD1 fed by resistor R1, provides a stabilized voltage of around 13 volts which is applied aczoss the voltage divider $\mathrm{R} 2, \mathrm{R} 3, \mathrm{R} 4$ and R5. Thus a series of roference voltages are generated for the regulator, where the positive nil is fixed and the negative rail is the one that is variod.
Transistor Q3 is an emitter follower where the output (emitter) is about 0.6 V higher (more positive) than the base. The base voltage is selected by SW2 from one of the tappings on the referenco-roltage divider. Since Q3 cannot handle the required output current, it drives Q2, a power transistor, which can handle the required load.

When the load exceeds 400 mA (approximately), the voltage drop across R6 forward biases Q1 which tums on and shunts current away from the base of Q2. Thes the regulator loses control and the output voltage falls, limiting the current to 400 mA . As the power dissipated in Q2 under short-circuit conditions is around 10 watts, Q2 must be fitted to a heatsink. Additionally, resistor R7 limits the current supplied by Q3 to a safe value (for Q3) under short circuit conditions.
If a fully variable supply is req̣uired, a 10 k potentiometer should be used in place of the voltage divider. The wiper of the potentiometer is then fed directly to the base of Q3.

ELECTRONICS it's easy!

The last of the heavy stuff! - the combinations of resistance, inductance and capacitance.

WE HAVE stressed throughout this course that a good solid understanding of basic electronics is essential if one hopes to understand complex devices. It is not at all necessary to understand the extraordinarily complex physics going on inside our electronic black boxes. But we must know how these boxes behave in various circumstances and combination.
Hence the fairly solid material that we have presented so far.
Happily this part of the course is now virtually at an end and we are about to get into the more interesting stuff.
That, as they say, is the good news. Bad news is that this last theoretical
section is fairly heavy. Do plough through it though - it really is important.
This part of the course deals with circuits that contain resistors in parallel with inductors or capacitors. It also covers the effect called resonance that occurs when inductors and capacitors are used together.

RESISTANCE AND INDUCTANCE IN PARALLEL

Vector diagrams may be used to study paralleled resistance and inductance. This is done much in the same way as series combinations.
In Fig. 1, the signal common to both components is the applied voltage (not current, as in series combinations). So
the vector diagram uses a voltage vector as the horizontal reference. The current flowing in the resistor I_{R} is in phase with the voltage so it is drawn as shown, coincident with V. You will remember from previous theory that the current passing through an inductor lags the applied voltage by 90°. The current vector will therefore point downwards at 90° to the voltage vector.
To find the magnitude of the current drawn from the generator the diagram is added vectorially to produce $I_{\text {total }}$. This procedure is exactly the same as we used previously.
The Pythagoras rule also holds allowing us to compute $I_{\text {total }}$ from I_{R} and I_{L} giving:-

$$
I_{\text {total }}=\sqrt{I_{R}{ }^{2}+I_{L}{ }^{2}}
$$

Similarly the phase angle is found from:-

$$
\operatorname{Tan} \theta=\frac{I_{L}}{I_{R}}
$$

A worked example is worth a thousand words, so let us consider the circuit given in Fig. 2a. Here the problem is to work out the current in each component and the magnitude and phase of the current drawn from the 10 V generator. (Remember V is common to both components so we can directly apply Ohm's law to each if we know their reactance values).

$$
\begin{aligned}
\text { Hence } I_{R} & =\frac{V}{R}=\frac{10}{25}=0.4 \mathrm{~A} \\
\text { and } I_{L} & =\frac{V}{X_{L}}=\frac{10}{33.3}=0.3 \mathrm{~A}
\end{aligned}
$$

By calculation we get

$$
I_{\text {total }}=\sqrt{0.4^{2}+0.3^{2}}=0.5 \mathrm{~A}
$$

Alternatively, this result could have been reached by using an accurately drawn vector diagram (see Fig. 2b) in which I_{R} and I_{L} are the knowns that lead to Itotal on completion of the parallelogram.
The tangent of the phase angle is:-

$$
\operatorname{Tan} \theta=\frac{0.3}{0.4}=0.75
$$

$$
\text { Hence } \theta=36^{\circ} 52^{\prime}
$$

and we know it is lagging as there are no capacitive elements present. The phase angle could also have been found by measuring the angle directly from the graphical vector diagram.
Calculation of current magnitudes and phase angle rarely needs better

Fig. 2a. A practical example of parallel L and R.

(b) The vector solution.
than 1% accuracy; often 10% is quite adequate.
Indeed, the majority of electronic calculations require little precision. There is no point in making long and tedious tasks out of these, often arising, sums. What is more important is that the underlying principle is properly understood. Much of the electronic theory needed in practice is a case of mental arithmetic followed by final adjustment once the circuit is wired up.

RESISTANCE ANO CAPACITANCE IN PARALLEL

Figure 3a is the circuit of paralleled resistance and capacitance. The magnitude and phase of the load current may be calculated in exactly the same way as for RL combinations. To check that you have understood the foregoing principles do the figures for yourself and draw the vector diagram as a second check. You should get the values shown in Fig. 3b. Remember, this time, that the current in the capacitor leads that in the resistor.
Now work out the total impedance repiesented by the two paralleled components - it should be 78.1 ohms. Remember Ohm's law applies to ac circuits provided the impedances are added vectorially to obtain the total it is quite invalid to arithmetically add the values unless they are in phase for if 180° out of phase, they can be directly subtracted).
To improve your understanding try it again using firstly, a resistor of 40 ohms with $2 \mu \mathrm{~F}$ of capacitance and secondly, with 40 ohms and $0.1 \mu \mathrm{~F}$. Finally compare the three diagrams and results.

COMBINATIONS OF L AND C

Until now those circuits involving both a capacitor and an inductor have

Fig.3a. Parallel combination of capacitance and resistance.

(3b) Vector solution of circuit.
purposely been ignored, for these can (under certain conditions), exhibit characteristics that are strikingly different to those seen so far in our discussion of storage elements.
With the concepts of the vector diagram and the phase of signals behind us, it is now a reasonably straightforward task to gain an understanding of circuits that contain both inductance and capacitance.

SERIES COMBINATIONS

When two components are in series, the same current must flow through each, but, as we have previously seen, the voitage across an inductor must lead the current by 900 and the voltage across a capacitor always lags the current by 900 . Thus these voltages always oppose each other (1800 out of phase) and the difference between them - is the input voltage! That is, either or both of the voltages across the reactances, may be larger than the input voltage.
To provide a better understanding of what happens in such circuits, let us calculate the current drawn from the supply and the voltages across the reactances in the circuit of Fig. 4a.
Firstly we must find the reactance of each component at the supply frequency of 12 kHz .

Fig.4a. A series inductor and capacitor combination. (4b) Vector solution.
$X_{L}=2 \pi F L=$
$6.28 \times 12 \times 10^{3} \times 1 \times 10^{-3}=75.4 \mathrm{ohms}$

$$
\begin{aligned}
X_{C}=\frac{1}{2 \pi F C} & =\frac{10^{6}}{6.28 \times 12 \times 10^{3} \times 0.1} \\
& =132.7 \mathrm{ohms}
\end{aligned}
$$

To determine what the current through the series combination is, we must find the effective combined reactance. As the reactances have the opposite effect, this is simply obtained by subtracting capacitive from inductive reactance (capacitive reactance is always assumed to be negative by convention).
Thus $X_{\text {comb }}=X_{L}-X_{C}$

$$
=75.4-132.7=-57.3 \mathrm{ohms}
$$

The negative sign indicates that the combined effect is that of a capacitive reactance of 57.3 ohms.

By Ohm's Law the current will thus be:-

$$
I=\frac{E}{X_{\text {comb }}}=\frac{10}{57.3}=174 \mathrm{~mA}
$$

Now that we know the current, we can go back and calculate the voltages across each component

$$
\begin{gathered}
V_{L}=X_{L} I= \\
75.4 \times 174 \times 10^{-3}=13.1 \text { volts } \\
V_{C}=X_{C} I= \\
132.7 \times 174 \times 10^{-3}=23.1 \text { volts }
\end{gathered}
$$

Note particularly the magnitude of these voltages in relation to the input of 10 volts. In fact, due to the subtraction process, the input voltage is always smaller than that across the larger of the two reactances.
The vector diagram for the circuit is as shown in Fig. 4b. We will leave for the moment, the special case where the reactances are equal and study the parallel system.

Parallel Combinations

The parallel combination of L and C is shown in Fig. 5a. In this case the voltage will be common across both components, the current will lag the voltage by 900 in the inductor, and lead the voltage by 900 in the capacitor.
Thus, in this case, it is the two currents which are 1800 out of phase so the total current is the difference between them.

ELECTRONICS -it's easy!

Fig.5a. A parallel combination of L and C.
(5b) The vector solution.
Let us use the same values as for the series case

$$
X_{L}=75.4 \text { ohms, } X_{C}=132.7 \text { ohms }
$$

Thus $I_{L}=\frac{10}{75.4}=132.6 \mathrm{~mA}$

$$
I_{C}=\frac{10}{132.7}=75.4 \mathrm{~mA}
$$

and $I_{\text {comb }}=I_{L}-I_{C}=132.6-75.4 \mathrm{~mA}$

$$
=57.2 \mathrm{~mA}
$$

Compare this current to the previous case. The combined reactance is now:-

$$
X_{\text {comb }}=\frac{E}{1}=\frac{10}{57.2}=174.8 \text { ohms }
$$

From this procedure we can deduce that, as the current from the supply is always smaller than the larger of the two reactive currents, the combined reactance, will always be larger than the larger of the two reactances. think about it for a while and you will see that this is so.
All practical LC circuits contain some resistance which modifies the behaviour of the circuit. The general circuit of a series LCR combination is given in Fig. 6 and a parallel combination in Fig. 7. These are the most common configurations but by no means the only ones.
In the series case the vector diagram shows how the difference between the reactive voltages is vectorially summed with the voltage across the resistor to obtain the magnitude and phase angle of the supply voltage. Alternatively we can use the Pythagoras rule again to find the input voltage:-

$$
\text { Vin }=\sqrt{V_{R}^{2}+\left(V_{L}-V_{C}\right)^{2}}
$$

and the phase angle

$$
\operatorname{Tan} \theta=\frac{V_{L}-V_{c}}{V_{R}}
$$

In the parallel case we look at currents instead of voltages. Remember the voltage must be the

Itotal

Fig.7a. A parallel combination of L, C and R.

(7c) The vector solution - the reactive components having been subtracted.

Thus the power factor in any circuit is equal to the cosine of the phase angle and the power actually dissipated in such a circuit is:-

$$
\mathrm{P}=\mathrm{E} \mid \cos \theta
$$

A PRACTICAL EXAMPLE

An excellent example of the use of reactances is found in fluorescent lights. A basic fluorescent light consists of a gas discharge lamp and a current limiting choke cailed a ballast as shown in Fig. 8.
Once lit, the complete light appears to the mains as an inductive load and, the current drawn from the mains will lag the voltage by a considerable amount.
The typical four-foot long lamp is rated at 40 watts but, when fed via the correct ballast-choke, draws 0.4 amps from the mains. Thus the VA will be $240 \times 0.4=100 \mathrm{VA}$ approximately! As the consumer only pays for real power, this is of little concern to him, but the extra current drawn causes higher losses in the transmission line, which means the electricity supplier loses revenue. The suppliers therefore, in some areas, insist that large installations of fluorescent lights have suitable power-factor correction.
How is power-factor correction done? Quite easily - because all we need to do to cancel an inductive reactance, is add an equivalent

Fig.6a. Series combination of L, C and R.
(6b) Vector diagram of the combination.

Fig.8. The circuit of a basic fluorescent light fitting (not including starting circuitry). This is an excellent industrial example of the uses of inductors and capacitors.
capacitive reactance in parallel (see section on parallel L and C). Thus a capacitor added across the input terminals will not affect the operation of the lamp but keeps the electricity supplier happy by reducing the input current from 400 mA to about 150 mA .

RESONANCE

As we vary the input frequency to an LC circuit the reactances of L and C change in different directions. That is, as frequency goes up, capacitive reactance goes down, (and inductive reactance goes up). At one particular frequency the reactances will be equal and, when this occurs, we find some very interesting effects - as we will see.
The frequency at which the reactances of L and C are equal is called the RESONANT FREQUENCY. and the circuit is said to be RESONANT at that frequency. Let us now look at the characteristics of series and parallel circuits at resonance.

PARALLEL RESONANCE

In a parallel reasonant circuit the individual currents flowing in the
inductor and the capacitor depend upon the frequency at which the ciruit is operated and upon the size of the component (remember $X_{L}=2 \pi f L$ and ${ }^{\prime} X_{C}=1 / 2 \pi f C$. These currents can be plotted as shown in Fig. 9b. The combined current is the direct difference of the two.
At low frequencies the circuit is predominately inductive. As the frequency is raised, more capacitive current flows: at the same time the inductive current reduces. A point is reached where the two are equal and, as they are of opposite sense, the circuit draws no current from the input. It behaves as though the generator is connected to nothing - as would occur if the load was an infinitely high resistance. This happens at the frequency known as the resonant frequency fr, for short. Above resonance the circuit becomes more and more capacitive as the effect of the capacitor becomes more dominant, and the input current gradually increases again.
It is often convenient to consider the impedance of such circuits instead of the currents. Variation of the impedance of a parallel resonant circuit is plotted in Fig. 10. Note the

Fig.9a. Vector representation of the condition at resonance, when inductive and capacitive reactance are equal.

Fig. 10. Variation of the impedance of a paralle/ tuned circuit as the frequency is varied.
theoretical impedance rises to an infinitely high value (zero current flow) at the resonant frequency. However, there is always some resistance in practical resonant circuits and this limits the rise and sharpness of the curve. This resistance is termed the DYNAMIC RESISTANCE.
Circuits capable of resonating in this manner are known as tuned circuits. Tuning is the procedure whereby any of the components is selected or carefully adjusted to achieve the resonant condition.

SERIES RESONANCE

A similar argument to the above can be used in the case where the two storage components are wired in series. The effective characteristics turn out

Fig. 11 a. The dynamic resistance of a series tuned circuit affects the sharpness of the

Fig 9b. Currents in the parallel tuned circuit as the frequency is varied.
resonant effect as shown.

Fig. 11 b. Impedance of a series tuned circuit
drops, at resonance, to a value determined by the dynamic resistance.

ELECTRONICS -it's easy!

to be the reverse of those of the parallel resonance case.
Here the current is common to both components so the typical vector diagram looks like that shown in Fig. 6. The case illustrated has the capactive voltage larger than the voltage across the inductor so the combination appears to be a circuit that has a value of capacitance smaller than that of the component actually in circuit.
It is when the two reactances are equal, at a particular frequency, that interesting things happen for there, the effect of the capacitor cancels that of the inductor and, the source sees only the resistance of the circuit. Ohms law tells us that the current drawn from the source is limited only by the value of the resistance, which in a typical tuned circuit is very small. Consequently the current could well be very large indeed. Fig. 11a shows how the current is limited by various values of dynamic resistance. Impedance variations for a series tuned circuit are given in Fig. 11b. The minimum of the dip is limited by the dynamic resistance.

QUALITY FACTOR OF TUNED CIRCUITS THE 0

In the series tuned circuit the voltage across the resistor can never be greater than the applied voltage. On the other hand the voltage across the reactive components can rise to values many times that of the supply. The V_{L} and V_{C} values in Fig. 6 demonstrate how th is occurs.
Consequently the series resonant circuit can be used to produce voltages considerably larger than those supplied to it. The magnification that occurs in this process is expressed as the ' Q ', or
quality factor of the circuit and is given by
$\mathrm{Q}=\frac{\mathrm{V}_{\mathrm{L}}}{\mathrm{V}}=\frac{\mathrm{V}_{C}}{\mathrm{~V}}$ (at resonance $\mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{C}}$)
As the windings of the inductor are responsible for the majority of the resistance a good approximation for the Q factor is found using the realtionship

$$
\mathrm{Q}=\frac{X_{L}}{R}
$$

introduced earlier in the course.
In parallel tuned circuits it is the current in the reactive components that is magnified, and again the same definition of Q can be used to express the goodness of the tuned circuit. Hence

$$
Q=\frac{I_{C}}{I_{R}}=\frac{I_{L}}{I_{R}}
$$

As currents are related to reactances by Ohms law, the Q can also be found from the ratio of the reactance and resistance as for series resonance.

RESONANT FREQUENCY

As pointed out earlier, the resonant frequency is that frequency where the inductive and capacitive reactances, of a series (or parallel) tuned circuit, are equal. That is:-
$X_{L}=X_{C}$
and hence $2 \pi F L=\frac{1}{2 \pi F C}$
By transposition we obtain resonant frequency $F_{r}=\frac{1}{2 \pi \sqrt{L C}}$
The following examples will assist Given a 100 mH inductor and a $0.4 \mu \mathrm{~F}$ capacitor, find the frequency at which the two resonate.

$$
F_{r}=\frac{1}{2 \pi \sqrt{\frac{100 \times 4}{10^{3} \times 10^{7}}}}=800 \mathrm{~Hz}
$$

This is the frequency for series oi parallel resonance of the two.
Often the need is to produce a resonant condition at a given frequency with one component supplied. For example, we may need a circuit resonant at 4 kHz , using a 160
mH choke. The capacitance needed -will be:

$$
\begin{gathered}
F_{r}=\frac{1}{2 \pi \sqrt{L C}} \\
\text { from which } L C=\left(\frac{1}{2 \pi F_{r}}\right)^{2}
\end{gathered}
$$

$$
\text { or } C=\frac{1}{L} \times\left(\frac{1}{2 \pi F_{r}}\right)^{2}
$$

and putting figures for this example

$$
\begin{aligned}
C & =\frac{1}{160 \times 10^{-3}} \times\left(\frac{1}{2 \pi \times 4 \times 10^{3}}\right)^{2} \\
& =0.1 \mu \mathrm{~F}
\end{aligned}
$$

Tuned circuits with zero resistance have the greatest magnification and the sharpest resonance peak. In practice there will always be some resistance present, for the inductor element needs to be as small and light as possible, these factors dictate that the wire used in the coil must be relatively fine in gauge, and hence will have a resistance value that may need to be taken into consideration. However, in systems-level discussions of electronic devices we can usually ignore the effect of the dynamic resistance, we only need to worry about that when actually designing circuits.
If careful measurements of the resonant frequency of a tuned circuit were made, it would be found that dynamic resistance does vary the resonance value by a small amount. In practice, most resonant combinations have an inbuilt variability that enables the capacitor of the inductor to be finely varied to peak up the response.

WHAT USE IS RESONANCE?

We have seen the series resonant circuit represents a large impedance when away from resonance but a very small resistance when tuned. The parallel configuration provides the reverse effect. These are summarised in Fig. 12. This way of looking at the resonant circuit is relevant to an understanding of how they are used to select certain frequencies out of a multiple frequency signal.

FREQUENCY SELECTION

Often the need arises to select a known frequency signal (or a narrow band of frequencies) from a wide spectrum. The most common example must be that found in radio transmission where many stations broadcast into the same medium, each at a slightly different frequency. The task of the radio receiver is to tune out the unwanted signals leaving only the required one.
The system to do this is depicted in Fig. 13. A series resonant circuit (Fig. 10a) will provide very little

Fig.12. At resonance the two types of tuned circuit become purely resistive. The series circuit becomes a very small resistance and the parallel circuit becomes a very high resistance.

Fig.13. How coupling black boxes with tuned circuits provides frequency selection. (a) coupling by series tuned circuit. (b) coupling by parallel tuned circuit. (c) the input versus frequency compared to the output versus frequency.
attenuation to signals of the required frequency but will act as a larger resistor lactually as an inductive or capacitive reactance) away from the desired frequency. Thus, only those signals near to the resonant frequency

SERIES RESONANCE

PARALLEL RESONANCE
Fig. 14. Summary of responses of the two types of tuned circuit with extremes of Q. (a) Series Resonance. (b) Parallel Resonance.
of the combination are allowed through with any signal strength. Although series systems could be used, they seldom are in practice.
A similar effect can be produced by using the parallel resonant circuit as a shunt across the received output. All frequencies will be attenuated except those required. This form of selection is the one most used in radio work.
The sharpness of this tuning process is dependent upon the Q of the tuned circuit. A coil with a high O will be more selective (better able to separate two close frequencies) but will of course produce a tuned circuit having a narrower bandwidth. If the signal to be selected is a single frequency all is fine, but most signals must cover a small bandwidth in order to convey information on a frequency as well as time basis. Fig. 14 sums up the various responses. To obtain a wider bandwidth the Q must be adequately low - sometimes resistance is added to spoil the O to achieve the required compromise between selectivity and bandwidth
Increased selectivity can be obtained by cascading tuned circuits. Filters used in telephony often consist of many pairs of components. The design of these is very specialised - it is more than merely adding stages one after the other.
When both high selectivity and wide bandwidth are needed, as is the case in radio programme reception, another arrangement is used. Effectively two tuned shunt circuits are used in cascade but with a difference. Each is tuned to a slightly different resonant frequency so that their characteristics
overlap as shown in Fig. 15a. The resultant overall frequency response curve is one that has higher gain and a wider bandwidth. The small dip in the middle is not a problem provided the two central frequencies are not taken too far apart.
Rather than use two separate inductors it is, in practice, better to combine them into one component as a doubly-tuned transformer. A transformer is an inductive-coil assembly that can transform ac currents of voltages to smaller or larger values. This is based on the principle of mutual inductance, that is, windings linked by a common magnetic field have voltages induced in them in proportion to the number of turns in each coil.
In the tuned transformer, used in radios, the two windings are wound on a common former; this may be non-magnetic (ferrite, an iron powder material, is now commonly employed) depending on the frequency of operation. Tuning is achieved by screwing-in slugs of ferrite thus slightly altering the inductance. When the capacitance, rather than inductance, of the tuned circuit is to be varied to peak the circuit performance,

Fig. 15. (a) Two tuned circuits may be used to obtain a better bandwidth/ selectivity compromise. (b) The two separate-tuned circuits may be combined into a single transformer. This construction is used extensively in radio receivers.

ELECTRONICS -it's easy!

small-range variable capacitors are used. If the range needed is large - e.g. tuning across the AM radio band - the capacitor is invariably made of sets of blades that mesh into each other to vary the capacitance. A range of variable capacitors and transformers and chokes commonly encountered in electronics, is shown in the picture on page 54.

FREQUENCY GENERATION

If a resonant circuit arrangement is given a short impulse of energy - a
short period of dc signal, for example - the energy put into the circuit oscillates back and forth between the magnetic field of the inductor and the electric field of the capacitor. This exchange of energy between reactances occurs at the resonant frequency. If the Q of the tuned circuit is high, this process will develop a reasonably pure sine-wave. If no more energy is added after the initial impulse the sine-wave will gradually die away as the energy is dissipated as heat in the coil resistance. If, however, an arrangement is made to add energy to the circuit every time the waveform rises to the same level and phase, the sine-wave will continue to run. High-power radio transmitters make
use of this principle to obtain pure signals from highly distorted sources. It is, however, essential that the pulses are delivered to the system at the correct time. Pushing a child on a swing is a good example of pulsed excitation of a resonant system.
Electrically-operated clocks often use the energy pulse concept. The hair-spring and flywheel form the mechanical tuned circuit, and the flywheel rotates it makes a brief electrical contact with a small electromagnet that pulses the flywheel onward with an extra, small amount of energy. Pendulum clocks also often operate this way, gravity providing the restoring force for the mass of the pendulum.

ELECTRONICS -in practice

Fig.15. Circuit diagram of the crystal radio.
the ability to make a compromise between signal strength and signal clarity, for the rest of the circuit acts as an unavoidable spoiling resistor that reduces the Q of the tuned circuit. Placed across the full winding the circuit reduces the Q, thus broadening the bandwidth, but reducing selectivity; placed across only a small part of the coil gives the highest O (the best selectivity) but the smallest signal strength. In use, the taps are tried in turn to find that which gives the clearest signal with the best rejection of unwanted stations.
The diode (virtually any germanium diode can be used) rectifies the amplitude-modulated carrier.
The best headphones to use would be those with high impedance. Impedances of $2-4 \mathrm{k}$ are in the correct region. Crystal earpieces can also be tried if you are in a high signal strength area - you might be lucky.

Although this set is not to be compared with modern radios any experimenter who has not built one has missed out on a basic training exercise. It is a must.

This simple antenna is suitable for the crystal radio and may be used for the one transistor radio if required.

A LITTLE BETTER -
 THE ONE TRANSISTOR RADIO

Since the crystal-set days there have been many changes in radio detection. Apart from more efficient front-end aerials and coils these improvements all involve amplification with active amplifiers. We are not quite to the stage in this course where the operation of transistor amplifiers can be explained, but this simple circuit should present no constructional difficulties.
Note that the input stage is based on a standard modern radio antenna unit. The aerial couples into the tuned circuit by mutual inductance via its own quite separate winding. The resonating signal is taken from the tuned circuit by a second winding, an arrangement that enables a more optimum loading of the circuit to be achieved. It is, in fact, an inductor and transformer combined.
The transistor is used to amplify the signal and the radio frequency choke (R.F. choke) filters out the carrier. We will say no more about the rest of the circuit until the course has proceeded further.
Components for this radio are available from most component suppliers.
If radio receivers are your "thing" a good introductory book covering the practical assembly and operation of the above and more complex models is "Radio" by D. Gibson, Brockhampton Press, 1968. (Illustrated Teach Yourself Series). This inexpensive book is well illustrated and provides the constructional details of sets ranging from a crystal set through to quite advanced receivers.

Fig.16. Circuit diagram.

Fig.17. The receiver may be built on tag strips or a piece of circuit board.

PARTS LIST ETI 406

 ONE TRANSISTOR RADIO1 resistor $2.2 \mathrm{k} 1 / 2$ Watt, 10%
1 resistor $3.30 \mathrm{k} 1 / 2 \mathrm{Watt} .10 \%$
1 resistor $100 \mathrm{~K} 1 / 2 \mathrm{~W}$ Watt, 10%
2 capacitors $5 \mu \mathrm{~F} 10$ Volt electrolytic
1 capacitor $.01 \mu \mathrm{~F}$
1 transistor BC 108, BC 109. 12 r 3565 etc .
1 diode OA 91 etc.
1 medium wave ferrite rod coi
1 medium wave fer rite ro
1 nine volt battery and connectors
1 toggle switch - single pole single throw -
1 RF choke, 2.5 mH
1 crystal earpiece or high Impedance headphones
1 pointer control knob
Rubber grommets, screws, plywood etc.

This month, as promised last time, the compilation consists of Part Two of our survey of African radio, country by country. Last month we took a safari from Algeria through to the Ivory Coast and (as confidently predicted by me!) radio engineers throughout the African continent rushed to change the frequencies of their stations just as soon as they learned the subject of DX MONITOR. If you can't manage to hear Radio Ghana on 4980 kHz then there is nothing at all wrong with your radio or aerial, despite what I said! As I typed 4-9-8-0, GBC, having used that channel for at least 7 years, decided to move to 4825 - you just can't win. An added complication this month is that this round-up is being put together in mid-August and international stations around the world will be making their seasonal changes of trequency at 0100 GMT on 1 st September, so I am mainly quoting "domestic" frequencies since they are rather less likely to change. With that caveat, here we go KENYA: One of the easier African countries to hear! The National Service in Swahili is usually the dominant station on 4915 kHz in early evening, signing-off around 2015. The General Service, in English, occupies 4805 kHz until about the same time.
LIBERIA: The missionary radio station, ELWA, has an External Service in the international bands, with 11940 or 11950 kHz being favourite channels. The English Home Service (HS) is a good signal on 4770 kHz when interference from Communication stations allows it to be heard but most reports are of the service in Liberian vernaculars on 3227 kHz which carries on until about 2245 GMT . LIBYA: If you've been DXing for a few years you will not need reminding that this was an easy-to-hear country, with Tripoli using 100 kW in the 25 metre band. Recently, Libya has curtailed its SW operations and it is now an irregular voice on SW: best prospect is the El Beida MW transmitter on 1124 kHz , where its 1000 kW can be heard most late evenings. If you are exclusively a SW-buff, you might catch it on either 6155 or the strange out-of-band channel of 8630 kHz .
MALAGASY: Best bet is the International Service on 17730 k 1 lz from 1500-1600 daily, in English and French. If you hear Firench here at any other time then it is not Tananarive but ORTI Paris! MALAWI: Not too difficult when the 90 metre band is open: 3380 kHz gives good reception fairly often in the evening hours with programming in both English and Chichewa.
MALI: Radio Mali's HS is in I'rench and local languages and can be located most evenings between 1800 and midnight on 4783,4835 or (less frequently) 3380 kHz .
MAURITANIA: One of the most regular African stations, Nouakchott has recently moved to 4845 kHz where it may be heard in Firench. Arabic and local languages at any time of evening.
MAURITIUS: A really difficult one because the frequency varies from 4850 up to 4875 and back again: also. it is usually heard (in English and French which is some comfort) only between about 1800 and its 1830 sign-off. Last reported on 4871 kHz a few weeks back.
MOROCCO: No real problem this one: usually dominates 11735 kHz , in Arabic. throughout the evening hours.
MOZAMBIQUE: Radio Clube de Mocambique has a number of separate programmes and a wide range of channels - most usually reported are 4855 and 3210 throughout the evening. with the Beira regional station varying around $4890-4895 \mathrm{kHz}$ until about 2000 GMT when it signs-off. The language used on the above channels is Portuguese: English is sometimes heard over the "B" programme on 3265 and 4925 kHz - that programme is all English but the channels are not the best, hence the "sometimes" caution.
NIGER: Not easy due to low-power transmitters (4 kW): give 3260 or 5020 kHz a try but expect to be disappointed! Programming is in French and local languages.
NIGERIA: Unless this one decides to move, 4990 kHz ought to put this one in your log any evening after about 1900, through to 2305! It's mainly in Fnglish. too.
REUNION: You start trying for this island in the Indian Ocean on 4807 kHz around 1800 when it is often audible until its scheduled sign-off at 1845 . However, irregularly, it goes much later in the evening. Has the interesting sign-off ceremony of saying "Goodnight" in half a dozen different languages, sending greetings to passing ships.
RHODESIA: Never casy, the RBC is most usually heard on 3396 kHz during the midevening hours. However, care is needed in identification since Radio Nigeria also uses this channel and which one is received is an indication of propagation conditions at that time.

RWANDA: Deutsche Welle has a relay base at Kigali but that's the casy way to hear the country. More DX-ish, the HS of RRR is often very good in French and local languages on 6055 throughout the evening. Has, since early August, added a parallel channel of 3330 kHz using a medium-power transmitter.
SENEGAL: A nice high-power transmitter uses 11895 kHz until midnight, mainly in French. If you long for the noise of 60 metres, try 4890 kHz .
SEYCHELLES: Until a few years back this one was on the "impossible" list - now, there is no difficulty in hearing the powerful voice of the Far East Broadcasting Association's transmitters if you can find the current channels. Latest recorded here are 15330 and 11890 kHz for an English programme 1745-1800 daily.
SIERRA LEONE: You may be one of those who has tried for Freetown for years and years without any success. The only channel which has a chance of rising through the competing noise is 3316 kHz and it only does so on rare occasions: when it does, it is often very good in the late evening, to 2330 close down. Worth trying for this over holidays, like Christmas, when the utility station which covers the channel is sometimes silent (or, at least, less active).
SOMALIA: One of the very difficult ones! At times when it may be heard in U.K. all programmes are in Somali and the channels used are all busy ones - 9585,7120 and 6095 kHz . Good luck you'll need it.
SOUTH AFRICA: If you can't hear Radio RSA, the External Service, as you tune through the 41,31 or 25 metre bands, around the hour, during the evening (in various European languages), then there is something amiss. The HS set-up has a programme in English, one in Afrikaans and a Commercial Service, as well as various other services carrying special features. Frequencies vary with time of year - try $3250,3285,3997,4875$ and 4965 (amongst others) in the 90 and 60 metre bands.
SUDAN: Winkle this one out of the pile-up on $5040 \mathrm{kHz} \pm 2 \mathrm{kHz}$, if you can! Irregularly has an English news during the evening but the time varies: otherwise in Arabic. Check ycur catch with the parallel 11835 kHz , high-power transmitter.
TANZANIA: Another one where you should be able to do some cross-checks: 15435 and 4785 from $1600-2015$ GMT. Currently, the HS is reported on 5050 kHz until about 2000 GMT. R Tanzania Zanzibar on 3339 kHz is sometimes a fair signal around 1900 GMT, in Swahili.
TOGO: In the fairly easy group, Radio Lome on 5047 has an English new's around 1950 (on most days): other times mostly in French.
TUNISIA: The very powerful station in Arabic on 11970 kHz until about 2200 means you've captured the RTV Tunisienne transmitter at Sfà.
UGANDA: Two separate networks are operated in the HS of Radio Uganda - the Red Network on 4976 is the one most commonly heard in the evening: Blue Network on 5026 is a much rarer catch. UPPER VOLTA: Radio Ouagadougou can sometimes be heard on 4815 kHz in the evening hours but it's not the most powerful transmitter and the channel is a noisy one. The $41 \mathrm{~m} . \mathrm{b}$. outlet on 7230 kHz may be heard in gaps between high-power European transmissions.
ZAIRE: Fairly easy on both 4880 kHz and 15245 kHz (varying up to 15262 at times), of ten with pleasant music programmes: language used is mostly Firench with periods in local languages. ZAMBIA: Not at all an easy one! Best bet is 3346 kHz which is not infrequently heard in the evening hours in English and vernaculars.

And that's the end of our African Safari. There are, as you may have noticed, other African countries which have not been mentioned. A few are "impossible" in the U.K. (e.g. St Helena and Tristan da Cunha); a few more are in the very difficult category and reception of them is really a question of being on the same channel at a favourable time day after day, until you get your catch (examples. Sao Tome, Lesotho and Swaziland).

Next month we shall be taking a look at the intriguing stations of Asia as the low-frequency DX season really gets under way, with (we hope) lots of good Far East openings in late afternoon and, again, in the late evening hours. DXers will be hoping that the winter of 1974-75 will be much better than the rather disappointing winters of the last two years in which good Far Eastern openings have been rare.

Electranirs winnames

NOW THAT WE are on the wrong side of Summer 1974, King Arthur's table is shrinking ('the knights are closing in'?) and it is time to find something to build for those long boring winter evenings. Well, this month shows the start of the new components rush that tends to slow down during the summer months.

The electronics hobby market appears to be splitting into several defined groups: the all-out project where expense and time is no problem such as synthesisers, TV games and gigantic tuners; the mid-range bracket where the finished product has a functional use and the price is reasonable such as this month's Sinclair Scientific offer or last month's Digitronic offer; and the small, cheap project such as small amps or dice games etc. The problem for the constructor is whether it is better to build lots of small projects, thus getting experience over a wide range or to spend several months building a vast, all-singing, alldancing, light-flashing thingamujig.

The first group tend to end up living in a house that visitors are scared to go into, with yodelling door chimes, electronic locks (that don't work during power cuts) and lights that flash whenever the temperature gets high or it rains or the dog wants to go out or even randomly.

The second group tends to take over a room with one corner for soldering, another for testing, a third for metalwork and the fourth for 'the project'. Whatever the project there is usually a small corner of a room from which come human (or semihuman) shrieks groans and grunts; mechanical or electronic ditto; and smells of overheating wire, burning insulation and/or skin. When next April comes around, you end up with either a collection of projects, some unfinished, some not working, or with one monolithic project which never seems to have exactly the same specification as was envisaged.

Very often the fact that the projects do not work is of no consequence, the fact that you have spent many "happy" and "satisfying" hours building it is. With this in mind, when you come to choose your project, do you build from square one or from modules?

Let us think of building a stereo tuner to fit onto your Hi-Fi, do you buy a Sinclair and finish the job in an
hour, do you buy a tuner head, two I.C.'s and a few discretes and take a week, or do you buy FETs, filters, etc and spin the project out over a couple of months.

At one time you had no choice but to build from I.C.'s and modules. Valves have been, come and gone, only a few of the older constructors know how to use them and only a few shops carry a reasonable range (if any).

Even quite a few transistors have disappeared and RTL and DTL logic I.C.'s are now few and far between. I think that we can look forward to the day when BC108's come in fives in a 16 pin DIL or that 7490's are difficult to find in the shops.
I.C. manufacturers are producing new devices with multiple functions to replace several standard packages at the price of one of those packages. This is great for equipment manufacturers but not so good for some groups of amateurs that prefer to build to time or experience specs rather than cost or space. In this column we try to bring these new devices to your attention but don't rush out to buy them until you have decided whether you want to build your project the easy way or the hard way.

An example of this type of I.C. is a new addition to Motorola's rapidly expanding family of CMOS logic circuits. It is the MC14566 time base generator which consists of two pulse shapers, a divide-by-ten ripple counter, a divide-by-5 (or 6) ripple counter and a monostable multivibrator on a single chip. A single MC14566 can be connected to divide by 50 or 60 to produce one output pulse per second when fed with a 50 Hz or 60 Hz input frequency. In addition a BCD output indicating tenths of seconds is available. A second MC14566 can be connected to the first to provide a divide-by-60 with BCD outputs for seconds and tens of seconds. A third MC14566 connected similarly would give $B C D$ outputs for minutes and tens of minutes and one output pulse per hour.

Although the devices can be used to construct digital clocks as shown in Fig 1, their main application is said to be to provide timing signals in industrial process control, data-logging and computing equipment working from 50 or 60 Hz mains supply lines. Voltage requirements are $3-18 \mathrm{~V}$ with a
typical power dissipation of 25 nanowatts at 5 V with a 1 MHz input, package is a standard 16 -pin DIL. Best people to contact for data or devices is likely to be Jermyn Industries, Vestry Estate, Sevenoaks, Kent.

Another useful I.C. from Motorola is the MC14553 which is a CMOS 3 . digit counter/latch/multiplexer. Basically, it appears to be three decade counters with latches to provide a divide-by-1000 function with an output produced once per 1000 input pulses. The BCD outputs from the three counters are passed to the output pins in a multiplexed format together with digit enable outputs. Input pulses are shaped in a circuit which will accomodate extremely slow rising signals; this circuit also allows the input to be disabled by a control signal and prevents pulses from reaching the counters whilst they still retain their last count. The three counters feed three quad latches into which the contents of the counters are transferred when a pulse is fed to the latch enable input. A complete digital instrument for measuring any quantity that can be represented as a dc voltage can be built from one MC14553, one capacitor, a small amount of logic, a BCD to sevensegment decoder, three displays and three driver transistors. Also required is a simple VCO that will convert the voltage being measured into a pulse train. Again try Jermyn for data and devices.

A CALCULATOR/STOPWATCH

A new calculator is equipped with a mathematical stopwatch that is able to count time both forward and backward in continuous and discontinuous time intervals. What it does in fact is to add at $1 / 10$ th second intervals, so by adding 0.1 it will count in seconds. It will also cost telephone calls or business meetings, etc by entering a value per tenth of second (which can be worked out in calculator mode) and adding this each time. The calculator has auto-constant, floating DP, percentage, memory etc. all displayed on eight $0.2^{\prime \prime}$ LEDs. So before you dash off to buy a calculator think about having a digital stopwatch on it as well, for $£ 44$ plus VAT it seems to be quite a good buy. Available from Imtech Products (Dept B), 35 Malden Way, New Malden, Surrey. Tel 01. 949-2354.

NEW NAGRA RECORDER

Kudelski to introduce three-motor recorder soon.

THE SWISS tape recorder manufacturer, Kudelski, has an outstanding reputation for producing high quality products.
Kudelski's Nagra recorder is in fact generally accepted as the best and most reliable machine of its type ever made.
Intended primarily for professional use, Nagra recorders range in price from $\$ 1500$ to $\$ 3000$ and have applications from producing synchronized sound tracks for film and TV productions and radio broadcast recording, to data
aquisition, especially in sound and vibration engineering.
For many years the Nagra 111 tape recorder was the only true battery operated portable "high fidelity" tape recorder available, and it is worthwhile recounting that just after the mid-sixties an American corporation released pre-production information on their new tape recorder which had a specification performance equal to the Nagra III. Within weeks Kudelski unveiled the IV series Nagra - and the American Corporation shelved their production plans virtually overnight.
The Nagra deck is used as the basis

NAGRA PRODUETION

The productiontacilities it the Lausanne factory are as modern as any in the world. F-wnt the production of their recording heads right through the mactine and tool shops one gains a healthy respect for their excinflince of pioduction and quality control. The machine chops feature fully automatic numerically controlled ts thes, and machines which produce the complex parts for the capstam subpents oci the one machine.
The technical staff mevery proud of these facilities, and tell you so!
Each recorder if played with a continuous tape loop for twenty-four hours before final quality control testing is even commenced, anit io sebilamany Nagia tape recorders undergoing this unusual preftestlngethre was really delightful. This run-in for each tape recorder provides not only a check of the quality of the head but also heips to provide a final honing of the head surface which is already mifror shooth from the automatic machining process.
Each machine underdee a complete detailed acceptance test where all (not somil) of thitmajor system parameters are checked out to determine sompliance of the machine with the published specification. This tolst. includes record-to-replay frequency responses, wow and fiutrer, signal noise, channel separation, distortion, a fimuth aligntime and head linearity. All are carefully checked out, is is the dingres of frequency response deviation in the critical $20-200 \mathrm{H} \frac{1}{2}$ tegron.
An enlightening expefitnce.
for a large number of specialised recorders used for space, geophysical, military and scientific purposes, and Kudelski produces special stiffening frames to facilitate the fitting of multi-channel heads and wide tape reels.
The company have not yet entered the field of multi-channel tape recorders themselves (if one ignores the IV-SJ series recorder which is a true three-channel recorder) but it is obvious that they have set their eyes in that direction, for during a recent visit to the company's plant in Lausanne we came across the yet-unreleased Nagra 1S-D
This new recorder is most probably the first three motor machine that Kudelski has produced. It is more than just an innovation or improvement on the basic portable Nagra, for the machine is obviously the first s.ep that Kudelski is taking to develop a multi-track tape recorder system which will be the basis of a future incursion into the studio tape recorder market.
The Nagra 1S-D incorporates a push button operated mechanism which is a significant departure from the operational controls that have been a feature of all previous Kudelski tape recorders.
As can been seen from the illustration, the frontal appearance is typical of the BH-III series Kudelski Nagra with the exclusion of the operational controls in the top and bottom centre of the front panel.
The machine is significantly lighter than the Series IV machine and is claimed to have even better wow and flutter figures than those achieved by the series IV - which are most probably the best available in the industry at present.
Like the BH-1II and early series IV machines, the input connectors are still designed for Cannon plugs, but the drive capstan system appears to be more rugged than that provided by the current series IV machines.
Kudelski is obviously delighted with this machine and although a release date was not available, it is clear that Kudelski will only release this machine because it offers distinct advantages in terms of improved performance from the series III and series IV Nagras.
It is now roughly six years since Kudelski released the series IV machines and excluding the improvements such as the two channel IV-S and IV-SJ released over the past two years, there have been no other new tape recorders released.
We expect that the 1 S-D recorder will be even more in demand than the series IV and will become the obvious replacement for the series BH -III Nagras currently in use.

coming soon... Tu Prialible Bowx

A special bumper issue of ETI containing reprints of some of the most popular projects published by ETI since we started in April 1972. All the projects are updated regarding components and modifications and include many of the articles published in back numbers which are no longer available.

ETI has recently gained very large numbers of new readers and this book will enable these new readers to catch up on projects they have missed.

Publications will be at the end of October and copies will be available from your newsagent.

price 75 p

Tech-Tips

LM381 APPLICATIONS

The LM381N dual op-amp has appeared several times in its usual guise as a low noise stereo audio preamplifier device. Indeed, it requires the very barest minimum of external components, since the function of the feedback resistors and capacitors is simply to determine the audio frequency response and gain.

Because it is a dual op-amp, the LM381N can be used for most op-amp purposes where the many features can be used. The maximum voltage gain is 320,000 times, and the output voltage swing can be as great as the supply voltage less 2 V . (Maximum supply voltage is 30 V).

So the LM381N can be easily employed for instrumentation amplification, and the configuration for a basic DC amplifier is shown in Fig. A.

Figs. B and C are for a telephone pickup and speech amplifier. The pickup coil is placed near the earpiece while the speaker in C is placed adjacent to the mouth piece. No electrical connections are made to the telephone.

The LM381N is available from Ambit International, 37 High Street, Brentwood, Essex CM14 4RH for $£ 2.15$ including VAT and postage and packing.

ACTIVE TONE CONTROL

The input signal is applied to the non-inverting input of the IC which is a Siemens TAA861 operational amplifier. Bass and treble boost and cut are controlled by the potentiometers RV1 and RV2 respectively.
Control range is 20 dB of boost or cut at 50 Hz and 15 dB boost or 20 dB of cut at 12 kHz .
The overall gain of the circuit at 1 kHz is 15 dB and the input impedance is greater than 80 k ohm. Total harmonic distortion for 2.4 volts output is less than 0.5% and remains below 4% for up to 3.5 volts output.
Correct law for the potentiometer is antilog. This may be obtained by using slide potentiometers which are mounted in reverse (end-for-end) to normal.
Note that equalization is not incorporated in this preamplifier.

ACTIVE BAND PASS FILTER

This active filter has a gain of unity (0 dB) and is useful over the range 0.01 Hz to 3 kHz . The centre frequency of the passband is set by potentiometer RV1 and the bandwidth is determined by the values of R1, C1 and C2. The values shown in the circuit provide a bandwidth of about 15 Hz . With RV1 set to mid-position the ceritre frequency is approximately 220 Hz .

ETI is prepared to consider circuits or ideas submitted by readers for this page. All items used will be paid for. Drawings should be as clear as possible and the text should preferably be typed. Circuits must not be subject to copyright. Items for consideration should be sent to the Editor, Electronics Today International 36 Ebury Street, London SWIW OLW.

FLASH SLAVE DRIVER

In photography, a separate flash, triggered by the light of a master flash light, is often required to provide more light, fill-in shadows etc.

The sensitivity of this circuit depends on the proximity of the master flash and the value of R1. Increasing R1 gives increased sensitivity.

SIMPLE TRANSISTOR/SCR TESTER

The 6.3-0.6.3V winding of T 1 is bridge rectified by D1.D4, the two ac arms of the bridge being connected through L1 and L2 (75 mA maximum). The rectified waveform is applied to the collector of the transistor (or anode of SCR) under test.
The diodes D5 and D6 provide the correct drive polarity for the transistor base or SCR gate.
When testing a pnp transistor, for example, the collector and base are both driven negative when point A of the transformer swings negative. With a good transistor both functions will conduct, the transistor will saturate and L1 will be lit. If the base-collector junction is open circuit LI will be off and if there is a collector-emitter short both lamps will be on.

ELECTRONIC CAPACITOR

The value of capacitance existing between points 1 and 2 may be varied over a 1000 to 1 range by RV1.
The lower value of capacitance is due to C1, the transistor stages effectively multiply this capacitance, thus the total capacitance available from the circuit, as given, is $100 \mu \mathrm{~F}$.
It is possible to replace RV1 by a NTC or PTC resistor and thus the value of capacitance will depend on ambient temperature.

A negative temperature coefficient (NTC) resistor is used to sense temperature. Transistors Q 1 and Q 2 form a Schmitt trigger which switches when the voltage at the base of Q 1 increases above 1.4 volts. Thus when the temperature falls below that set by RV1 the Schmitt changes state and the relay opens switching the heater 'ON'. Regulation accuracy is 1° to $2^{\circ} \mathrm{C}$.

NEW RADIOTELEPHONE SYSTEM
A new radiotelephone system made by GEC-Marconi has recently started operating for the London Taxi Drivers' Association.

Until now the central station would put out a general call which could be answered by a number of drivers, often causing confusion. With the new system, the Taxi first sends automatically a sequential tone code which is picked up at the central station and displayed visually. If more than one cab replies the first caller can be identified and the message is passed to him.

The transmitter, near Marble Arch, has a 20 -mile radius and is currently serving 250 Taxis but within 18 months a further 750 are hoped to be added.

Ernie Keates of the London Taxi Drivers' Association said the new system had cut down the wasted communications time by a half and that other radiotelephone users were showing interest due to the success of the scheme.

D.A.T.A. SEMICONDUCTOR APPLICATION NOTES BOOK

The latest edition of the Semiconductor Application Notes D.A.T.A. Book is now available from London Information (Rouse Muir) Ltd., Index House, Ascot, Berks, SL5 7EU. The cost is $£ 16.00$ annual subscription (2 editions).

The publishers have extracted and tabulated in standardized format nearly 3500 circuit and device descriptions from manufacturers' literature. This is designed to give an overall picture for selection from existing designs. Notes from 55 international makers are set out in analogue and digital categories with sub-categories giving application details. Reader reply coupons are included so that the actual application notes can be ordered.

The book is available on a 30 -day free trial offer, a refund will be made if returned within that period.

FLUORESCENT NUMERIC DISPLAY ONLY 5MM THICK

Incorporating all the advantages of fluorescent displays without the disadvantage of a large tubular glass envelope, a new fluorescent numerical readout only 5 mm thick (10 mm over connecting pins) is available from Walmore Electronics Ltd. The display, which is manufactured in America by Tung Sol, is fully compatible with modern MOS LSI

CABLE TRACER

Metrawatt (U.K.) Ltd. has introduced a battery-operated cable tracer designed to aid electrical engineers and D.I.Y. enthusiasts in the location of cables concealed under plastered walls and similar coverings and in troubleshooting for cable breaks and short circuits. The LS2 - which is priced at $£ 27.50$ - can also be used as a voltmeter for measuring a.c. voltages up to 400 V .

In its cable tracing function, the LS2 has both capacitive and inductive search ranges. The capacitive search range permits the detection of cables connected to an a.c. voltage at 30 cm while the inductive range indicates a.c. current carrying lines at 15 cm . It has a $3^{\prime \prime}$ meter scale and a rotary range switch and sensitivity control. Plug-in and clip-on probes are provided for voltmeter applications.
integrated circuits and may be driven directly by them without any additional interface circuits.

Running from the nominal 25 V d.c. (12 to 50 V) often required for MOS devices, the displays need an additional winding on the mains transformer to supply the 45 mA at 1.5 V required by the filament. Filament supply can be either a.c. or d.c.

Peak output occurs in the bluegreen region although the output bandwidth embraces the whole visible spectrum. Many colours can be obtained with the use of filters.

With a 25 V supply, a current per segment of $270 \mu \mathrm{~A}$ is typical. The displays are available in single digit $(22.3 \times 12.7 \times 5.1 \mathrm{~mm})$ packages or in multiple digit units, e.g. a 12 hour clock with a.m. and p.m. indication. Single character packages can be mounted side by side to provide the same inter-digit spacing as the multiple digit units. The displayed characters, which measure $6.2 \times 9.8 \mathrm{~mm}$, are intended for mounting at 12.5 mm centres.

Walmore Electronics Ltd., 11-15 Betterton Street, London, WC2H 9BS.

CASE-HARDENING TESTS USING EDDY CURRENTS

One of the problems of case-hardening is the measurement of the depth of the case produced by the case-
hardening process. This measurement is usually carried out by taking one or two sample products from each batch of work and, after sectioning, the depth of the case is physically measured.

During the past three years, Teledictor Limited have been investigating a method using a technique which will give a rapid and accurate indication of the depth of case without having to destroy products under test.

The method employs the Teledictor Type 936 Ferrous Segregator which can be used to measure the depth of case produced by any of the existing methods of case-hardening up to a maximum depth of $6 \mathrm{~mm}\left(1 / 4{ }^{\prime \prime}\right)$. The system utilises the eddy current magnetic bridge principle and relates increases in case depth to decreases in magnetic permeability. These permeability differences are monitored to show as differences of scan on an oscilloscope.

Electronic thresholds are

 incorporated in the Segregator which can be pre-set to indicate satisfactory products by a green lamp signal, undercased products by a red lamp, and overcased by a yellow lamp signal. In a fully automated system using a Teledictor Type 940 Conveyor these signals are used to initiate the operation of a three-way sorting gate to channel products into their respective case depth groups. Teledictor Ltd., Groveland Road, Tipton, West Midlands DY4 7XH.
COMPUTERS SUPERVISE TRAIN RUNNING

The railway network in the Munich area includes 400 route kilometers of S-Bahn and lines to the local towns and cities. Often the area has to cope with up to 150 moving trains simultaneously. In the face of such traffic volumes the previously used methods are no longer adequate. Almost all of the interlocking towers within a radius of 40 km round Munich are of the modern pushbutton-operated type which lend themselves to data acquisition. Hence it was possible to build up a computerized system capable of handling this huge amount of data automatically and processing it for supervisory and control purposes.

The heart of the new control
radio link between the station train controllers and the train drivers or speak to the train drivers themselves to ask them, for instance, to try to make up lost time when delays occur.

Since the c.r.t. displays cannot show all the 36 tracks of the main station, an information board 7.5 m long and 2 m high with 400 number displays is arranged in front of the controllers. This permits the train numbers and location to be given for all trains in the inner area of Munich. It operates independently of the computers.

The computer system also makes possible the issue of spoken information on deviations from time tables. The station train controllers make their enquiries in digital form via telephones with twelve-number dials. First of all the system is rung up as a normal number on the railway tele-

office at Munich is a data processing system incorporating Siemens process computers. All the timetables of trains running in the Munich area and the actual deviations from the scheduled times are fed in to this system via ten data channels, six Siemens 304 computers, combined to form three duplex systems to improve reliability, receive from over 100 stations a continous flow of information on all important train movements. The system knows where any train is at any instant. By comparing the information for train supervision and later for train control.

The control office is subdivided into five zones each under a traffic controller with c.r.t. displays which enable him to call in sections up to 50 km long from the computer. The screen shows line and station tracks, train numbers and time delays.

In the event of any irregularities, the traffic controllers can set up a
phone network, followed by the twelve as authorization code, the number of the train to which the enquiry is related and finally by the eleven to indicate the end of the enquiry. The computer then works out the answer, calls up corresponding speech syllables from a magnetic disc, composes a spoken announcement from them and switches them through to the caller.

Even the first stage of the new system has improved train services and made them more efficient. Fully automatic train operation will soon become a reality.

UNIQUE WEIGHING SYSTEM

Details of an ingenious conveyor belt weighing system have been released by Courtaulds who developed the system recently.

The basic problem was to measure the weight of a 'wild' feed of solid pulpy material so that it could be exactly ratioed with a controlled liquid feed to produce a mixture of
precisely proportioned constitutents. The weighing system forms part of a continuous manufacturing process and already three installations are operational in a Courtaulds' factory.

One unusual feature of the weighing system is that two separate signals are derived from the output of the load cell (made by Transducers (CEL) Ltd). The first is a conventional 4.20 mA current signal that at any given moment is proportional to the weight of solid pulp (in either layered sheet or 'crumb' form) being fed onto the constant-speed conveyor belt and then into the mixer. This signal is compared with the analogue current signal derived from a flowmeter measuring the rate of liquid feed, so that the ratio of the two feed rates can be computed immediately. Any difference between this computed ratio value and the desired pre-set value generates a corrective feedback signal, which is used to adjust a liquid flow control valve and thus restore the solid/liquid proportion to the correct value at all times.

The second signal derived from the output of the load cell is a series of pulses, the total number of which is directly proportional to the weight of solid material that has been fed into the mixer. The system is calibrated so that one pulse is equivalent to 1 kg of solid feed, and the sequence of pulses is fed to an electromechanical totaliser in order that the total weight of solid feed delivered can be displayed digitally.

The signal conditioning and amplifier units provide three levels of damping to filter out unwanted noise from the system and thus ensure accuracy.

NEW ELECTRONIC TRANSMISSION CONTROL

A new electronically controlled transmission system, developed jointly by the Ford Motor Company and Ferranti for public service vehicles, is expected to make a significant contribution to road safety by reducing driver fatigue.

The system makes gear changing a finger-tip operation. Using a conventional gear lever in miniature the driver simply selects the gear he wants, the rest is left to the automatic system.

The control unit will eventually be much smaller than the prototype shown here.

The system is based on the use of a non-synchromesh ('crash') gearbox with a conventional clutch, but with hydraulic actuators controlled by electrically operated valves.

These valves are controlled by digital electronic circuits, so avoiding the drift problems of analogue controls. Once the driver has selected a gear, movements of clutch, gear shift mechanism, exhaust brake (to slow engine) and accelerator take place automatically, smoothly and in correct sequence.

Safety features are built into the control system to guard against the effects of driver error such as engagement of a low gear while travelling at high speeds.

The electronic equipment is light and can be located behind a seat. The Ferranti pre-production equipment, demonstrated recently at a motoring Press preview for the system at Ford's Dunton facility, comprises two small units - one being a power supply and the other the main control unit measuring some $11^{\prime \prime} \times 9^{\prime \prime} \times 512^{\prime \prime}$ and housing approximately 300 IC's and other components. The final version will be even more compact; circuitry based on Ferranti CDI integrated circuits will be housed in a single unit weighing less than 5 lb .

Tests of the new system have shown that wear on gearboxes and
clutches is much reduced whilst gear changes can be made more quickly than can be achieved by skilled drivers using conventional controls. The system is much less expensive than hydraulic automatic transmissions using torque converters and is not subject to the associated power losses.

LASER DRY-CLEANERS NOW!

Many of Venice's medieval and renaissance buildings have been blackened and eroded by industrial smog. Even works of art housed within the public buildings and palazzi are under attack.

Conventional cleaning methods, such as chemical solvents or sandblasting cause more damage than the disease itself.

Recent experiments show, however, that a laser beam can be used to remove pollutants and reveal the original natural beauty of the stone or wood beneath.

The work has been researched jointly by Dr. Ralph Wuerker of TRW (One Space Park, Redondo Beach,

California, USA) and Dr. John Asmus of the University of California, San Diego.

A further, vaguely allied, project of the two research workers was to create holographic images of Venetian sculptures so that three-dimensional images of the works of art could be recreated anywhere in the world.

NEW STORAGE MEDIUM

A new information storage effect has just been announced by IBM. The effect, can handle phase and amplitude data over a band-width of $10^{8}-10^{10}$ Hz or higher.

The data is stored as a stable pattern of electrons trapped in a photosensitive piezo-electric crystal. The storage pattern is produced by interaction between two input signals one electrical and one acoustical.

Read-out is obtained by applying a signal of the same frequency as the original input - this caused the stored data to radiate an 'echo'. Data is erased by shining a light onto the material.

5-400 MHZ AMPLIFIER USING FOUR COMPONENTS

This wideband r.f. amplifier will provide a gain (within 2 dB) of 35 dB from 5 to 400 MHz . The noise figure will be about 4.7 dB and the power output (into 50Ω) will be +14 dBm .

Avantek have designed this universal r.f. amplifier for applications where it would be uneconomic for a company to design and develop their own. The result is the GPD 400 series - three basic r.f. amplifiers housed in transistor-style TO-12 packages. The three basic types are shown connected in cascade in the drawing. A suitable printed circuit board layout for the triple cascade amplifier is shown in the drawing at
(b). The printed circuit board should be double-sided and have a low loss at the frequency of interest. The exact width of the input and output lines will depend on the dielectric constant of the board and should be such that the lines have a characteristic impedance of 50 ohms. For best performance in cascaded systems GPD amplifiers should not be mounted further than 5 mm apart. The amplifiers themselves are held in physical contact with the ground place by a special clamp which is provided with each device (c).
The devices are available from Walmore Electronics Ltd, 11-15 Betterton Street, Drury Lane, Lóndon WC2.

AUTOMATIC TICKET BARRIER

A new electronic ticket barrier system has been introduced by Automatic Revenue Controls Limited.

The system consists of a basic twoway or one-way-only entry/exit gate to which can be added a series of facilities to suit exactly its application. In its simplest form, the gate accepts a magnetically encoded ticket from the passenger, checks it electronically and returns it to the passenger, releasing the barrier at the same time.

The gate will 'remember' up to four tickets in a row so that tickets presented by passengers before an earlier passenger has operated the barrier will not be rejected. (This has been found useful when a parent feeds. in tickets for the family to pass through.)

The gate can be equipped to update multi-journey tickets each time they are presented, by deducting one journey from those recorded on the ticket's magnetic surface. A light shows the passenger how many journeys he has left. Exit gates can be programmed to retain multi-journey tickets reading nil.

Season tickets are similarly allowed for, although here only the validity of the date has to be checked and no amending of the ticket is necessary. If an expired season ticket is presented, the gate is normally designed to return it to the passenger without unlocking the barrier.

NEW SOUND ABSORBER

A new wall lining material, having the appearance of sandstone, has sound absorbing properties similar to acoustic lines.

AUDIO-VIDEO LINKAGE

The picture shows the setting up of an audio-video linkage between buildings at HMS Mercury, the navy's signal school near Petersfield. This new opto-electronic linkage transmits across obstacles such âs roads, railways and waterways using modulated infrared radiation (900 nanometers). It
carries picture and sound with a duplex telephone service channel.

There are applications in education, surveillance, heavy industry, civil engineering, radio-active areas and for relaying closed circuit television at conferences and exhibitions.

The material based on resin coated foundry sand has been developed by British Industrial Sand in association with Sound Research Laboratories (Holbrook Hall, Sudbury, Suffolk).

Prototype material tested at SRL's laboratories show that the material has mid-frequency absorption of 0.8. This is similar to that obtained from a luxury-grade deep pile carpet laid on thick underfelt.

NOW THE VIDEO-CARD

A flat chromium oxide card no longer than a page from an average book can provide 10 minutes playback in colour plus full stereo sound.

The new video-card, devised by the Sony Corporation, was demonstrated at a recent International Magnetic Conference (May 16, 1974) in Toronto ant also a few days earlier in Tokyo.

The technique - to be known as MAVICA - has substantial advantages over more conventional video-tape systems.

The Mavicard consists of two rectangular sheets of videotape-like material measuring about 16 cm by 22 cm . One sheet carries the audio signal, and has a claimed 38 dB signal/
noise ratio. The second sheet provides the video signal - resolution of this, Sony claim, is almost as good as the U-Matic VTR. The sheets are automatically separated as they are fed into the player.

Recording costs should be a mere fraction of the cost of normal videotape systems. The blank Mavicards cost only a few pence each in volume and recording is virtually a massduplicating process similar to printing - except that the programme material is transferred thermally.

'LOW.TEMPERATURE' LITHIUM CHLORINE BATTERY

A rechargeable lithium/chlorine battery that operates at $425^{\circ} \mathrm{C}$ $225^{\circ} \mathrm{C}$ lower than previous lithium/ chlorine batteries - has been developed by General Motors Research Laboratory.

The improvement is due to a special eutectic $\mathrm{LiF} / \mathrm{LiCl} / \mathrm{KCl}$ mixture that forms the electrolyte. Although the power of the battery (624 watts per kg) is satisfactory for vehicle propulsion, high-temperature corrosion problems must be solved for the battery to be commercially useful.

MITHADS
 FOR FURTHER INFORMATION PHONE: BOB EVANS 01-730-2139

MANUFACTURERS PRINTED CIRCUIT BOARDS

 74 on 74 on, one price, 65p each. Any set where more than one in project in an per PCB.```
per PCB. PRODUCTION SERVICES
```

Full production facillties for PCB, man ufacture, from your Masters or Art-work or designed by us from your diagrams, or matter how rough. Full service for Design and Artwork. Also Electroplat ing, (contact connectors, etc) in Gold Rhodium, TIn or Sllver. Tinning, by
raller or Immersion. Silk.Screening. Component layouts etc.
Return Post ESTIMATES
service requir Service or Phone, state W.K.F.ELECTRONICS, Welbeck Street, Whitwell, Worksop, Nott's. S80 4TW

The Proprietors of British Patent No. 992666 for "Discharge chamber with current lead-in" desire to enter into negotiatlons for the sale of the patent, or for the grant of licences thereunder. Further particulars may be obtained from MARKS \& CLERK, 57-60 Lincoln's Inn Fields, London WC2A 3LS.

## FERRIC CHLORIDE

Anhydrous to Mil-spec in doublesealed packs. 1lb 55p (22p) 31b £ 1.32 ( 30 p) 10 (b £ 3.85 ( $60 p$ ).

## 71b BARGAIN PARCELS

Contain hundreds of resistors, switches, capacitors, pot (all new) + crystals, transistor panels and loads of odds and ends. Only $£ 1.82$ (40p).

## VERSATLLE POWER UNIT

Contains double insulated mains transformer, 2 amp thermal cut-out and bridge rectifier. Will give 1.7 V 10.5 V output with two extra capacitors (provided). Ideal for NickelCad charger, 5V TTL supply, cassettes, radios, etc. Supplied complete with information $95 p$ (20p). Also available as model garage woth lamp. switch, jack plug, etc. £1.35 (30p).

## 3W TAPE AMPLIFIERS

Polished wood cabinet $14 \times 13 \times 9^{\prime \prime}$ containing a sensitive $(20 \mu \mathrm{~V}) 4$ valve amplifier with tone and volume controls, 3 watts output to the $7 \times 4^{\prime \prime} 3$ speaker. Also included is a nonstandard tape deck. Supplied in good working condition with circuit Mains operated. £3.30 (£1.25). Amplifier chassis complete and tested ( $2 x$ ECC83, EL84, EZ80) and speaker £2.20 (45p).

## COMPUTER PANELS

3lbs assorted panels $£ 1.10$ ( 30 p) 7lbs £2.20 (40p). Pack containing at least 500 components including at least 50 transistors 66p (20p). 12 high quality panels with power tran. sistors, trimpots, $1 C^{\prime}$ s, etc. $£ 2.20$ (30p) 100 for $£ 13.00$ ( $£ 1.00$ ). Trade supplied.
ALL PRICES INCLUDE VAT; Carriage in brackets, SAE list, enquiries.
GREENWELD (ET2), 51 Shirley Park Road, Southampton, New Retail/Wholesale/Mail Order Premises. Tel. 0703 772501. Also Retail shop at 38 Lower Addis. combe Road, Croydon.


The smallest Transmitter available in the U.K., only $2 \times 1$. Can pick up and transmit minute voices and sounds, very sensitive. Range 500 yds at least. Many applications. Works almost anywhere in a drawer on a shelf etc. To operate connect PP3 battery and tune in V.H.F radio. Completely self-contained, transistorised printed circuit. Battery life 40 hours continuous use. Fully guaranteed. Latest model now supplied.
ASSEMBLED UNIT . . . £15.50
Kit with step-by-step
assembly instructions. . . $£ 11.50$
If required Pocket Radio $£ 13.25$ 5 Band Portable MW,
FM, VHF, SW 144/146 . £17.80

$$
\begin{aligned}
& \text { MAIL ORDER ONLY } \\
& \text { Insurance/P \& P 45p. } \\
& \text { MULHALL ELECTRONICS, } \\
& \text { (E.T) } \\
& \text { Ardglass, Co. Dow.s, } \\
& \text { UK, B730 7SF, } \\
& \text { Tel: } 039684461 \\
& \text { (Licence not available in the U.K) }
\end{aligned}
$$

Electronics men. You are worth more than a measly $£ 40$ or $£ 50$ a week. Last year I earned $£ 3600$ for six months work. The other six I had off. You could do similar. My booklet explains how. It's 65p from ALBEN, MILL LANE, ACLE, NORWICH NOR 602.
D67 Oscilliscope 8 months ald good reason for sale $£ 275$. Ediswan Stabilized Power Unit R2001 £25. Tech TE200 Signał Generator £8. Box No. 23.
Two 'Harmonics' keyboards, five octaves F-F, Contact assemblies, Six pitches; Oscillators and dividers. Cost $£ 90$. Best offer over $£ 50$. Hemel Hemostead 53732. Eves.

BUILDING and PURCHASING an AUDIO MIXER pre-amp, autofade, V.U. or audio monitor, V.E. mixer, driver or power supply etc. First consult

PARTRIDGE ELECTRONICS ref. ETI. 21-25, Hart Road, Benfleet,
Essex. established 23 years.
FOR SALE large quantity of LM380N and LM381N I.C.'s; New, first quality devices. 20-off 100 -off
LM380N 50p each 49p each LM381N 100p each 84p each Minimum order 20-off. VAT extra. Further Details from Box No. 51, c/o Electronics Today International, 36 Ebury Street, London SW1W OLW.

RESETTABLE COUNTERS: 5 Figure $18 /$ STEPPING SWITCH: 22 way with reset a.c. mains operated $\varepsilon 1$ post 25 p. d.c. mains operated
NEONS WIRE ENDED: Bank of 5 with
$5-C 407$ driver transistors 550 post 100 . 5-C407 driver transistors 55 p post 10 p .
COUNTING UNIT With $10-\mathrm{DM} 160 \mathrm{~min}$. magic eyes, ferrite pot core three transistors etc. in smart black case with plug and socket $£ 2$ post 250 .
SINGLE SIDED COPPER CLAD PAXOLIN PANELS: $6 \times 9$ ins, 3-50p, $111 / 2 \times 9$ ins. $3-f 1.12^{1 / 2 x 12}$ ins. $2-E 1$ all post paid. SMALL PANELS: Three transistor audio
amp, transistors equiv. to AC 128 . OC 72 amp, transistors equiv. to AC128. 5 electrolytics diodes etc. with circuit 40p each 3-2N. F our transistor pantier 30 V 300 mA . Electrolytics $3-10 \mathrm{MFD} 50 \mathrm{~V}$ 250 MFD 35 V and 1000 MFD 35 V .6 .8 MFD tantalum 35 V signal diodes and resistors 45 D . Twelve transistor panel 2 $2 N 930,10-\mathrm{CS} 4 / \mathrm{BC} 108,5 \times 0.1$ caps $2-10$ MFD 20 V tantalum caps, diodes and hi stabs 25p. Post on these iop any number. POLYSTVRENE CAPACITORS 125 V $50,100,120,150,180,220,330,390$, $470,560,680,800,820,1200,1500$ 1800. 2200, 2700, 3300, 3900, 5600 $6800,8200,0.01,0.012$. Price 2p each 100 assorted less $10 \%$ Post 10 p. +LBS HIGH QUALITY COMPUTER PANELS E1.SO POST VAID. Send 10p for lists of Valupaks. Refund on purchase.
J.W.B. RADIO

2 BARNFIELD CRESCENT, SALE, CHESHIRE M33 1NL.

Prices include VAT.

## LABORATORY CLEARANCE

 Oscilloscopes, AF/RF Oscillators, Audio and General Test Equipment, Tape Heads, Decks, Millivoltmeters, Bridges, Sweep Generators, Etc. Etc. Tel. Lower Beeding 236.
## PRECIS:ON <br> POLYCARBONATE CAPACITORS <br> 63 V

|  |  | Range | $\pm 1 \%$ | +2\% | +5\% |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $0.1 \mu \mathrm{~F}$ | (1) 1/8"**') $50 p$ | $0.47 \mu \mathrm{~F}$ | 56p | 46p | 36p |
| $0.22 \mu$ | (1 3/8 $\left.8^{\circ \times} \times 5 / 8^{\prime \prime}\right) 59 p$ | 1.0 $\mu \mathrm{F}$ | 66p | 56p | pp |
| $0.25 \mu$ | (113/8**5/8") 62p | $2.2 \mu \mathrm{~F}$ | 80p | 65p | 55p |
| $0.47 \mu \mathrm{~F}$ | $\left(113 / 8{ }^{\prime \prime} *^{\prime \prime \prime}\right.$ ) 71p | 4.7 $\mu \mathrm{F}$ | £1.30 | ¢1.05 | 85p |
| $05 \mu \mathrm{~F}$ | $\left(13 / 8^{\prime \prime} x^{* \prime \prime}\right.$ ) 750 | 6.8u | E1.64 | £1.29 | ¢1.09 |
| $0.68 \mu \mathrm{~F}$ | (2"x*/3) | 10.0 | , 0 | £1.60 | ¢1.40 |
| $1.0 \mu \mathrm{~F}$ | (2"x\%") 910 | 15.0 | £2.75 | $\underline{22.15}$ | £1.90 |
| $2.0 \mu \mathrm{~F}$ | (2'x1") [1 | $22.0 \mu$ | ¢ $£ 3.50$ | E2.90 | ¢2.55 |

Ald hability-extremely row leakage.
ANTALUM 0.47 CAPACITORS 15 V avilabie: $0.1,0.22,0.47,1.0,2.2,4.7 .6 .8 u \mathrm{~F}$ at $15 \mathrm{~V} / 25 \mathrm{~V}$ or 35 V . $0.0 \mu \mathrm{~F} .6 \mathrm{~V}$ or 10 V .47 OuF at 3 V or $100 \mathrm{O} \mathrm{\mu F}$ it 3 V . All at 10 p each: 10 for 95 p ; 50 for $\mathrm{£4.00}$. TRANSISTORS. BC107/8/9 9p BC212/212L 14p BFY50 20 $\begin{array}{llllll}\text { BC147/8/9 } & 10 p & \text { BC547 } & 12 p & \text { BFY51 } & 200 \\ \text { BC157/8 } & 12 p & \text { BC558A } & 12 p & \text { BFY52 } & 20\end{array}$ $\begin{array}{llllll} & 12 p & \text { BC558A } & 12 \mathrm{p} & \text { BFY52 } \\ \text { BC182/182L } & 110 & \text { BF } 194 & 12 \mathrm{p} & \text { OC71 } & 120\end{array}$ BC183/183L 11p BF197 13p 2N3055 50 BC184/184L 12p AF178 30 p 2N3702/411p POPULAR DIODES: All brand new and marked: 1N914 6p; 8 for $45 \mathrm{p} ; 18$ for 90 p . IN916 Bp; 6 for 45 p ; 14 for $90 \mathrm{p}, 1 \mathrm{~S} 445 \mathrm{p} ; 11$ for $50 \mathrm{p} ; 24$ for E 1.00 . 1 N4 148 5 p .6 for 27 p : 12 for 4 Bp . LOW PRICE ZENER DIODES 400 mW : Tol, $55 \%$ at 5 mA . Values avalable $3 \mathrm{~V} ; 3.6 \mathrm{~V}$ 4.7V. 5.1V; $5.6 \mathrm{~V} ; 6.2 \mathrm{~V} ; 6.8 \mathrm{~V}, 7.5 \mathrm{~V} ; 8.2 \mathrm{~V} ; 9.1 \mathrm{~V}, 10 \mathrm{~V}$ $11 \mathrm{~V}, 12 \mathrm{~V} ; 13 \mathrm{~V} ; 13.5 \mathrm{~V} ; 15 \mathrm{~V}, 16 \mathrm{~V}, 18 \mathrm{~V} ; 20 \mathrm{~V} ; 22 \mathrm{~V} .24 \mathrm{~V}$ 27V: 30V. All at 7p each; 6 for 39p; 14 for 84 p . Special Offer: 100 Zeners for $£ 5.50$. RESISTORS. High stabil. ity. low noise carbon film 5\%, XW at $40^{\circ} \mathrm{C}$. $1 / 3 \mathrm{~W}$ at $70{ }^{\circ}$ C. E12 series only - from $2.2 \Omega$ to $2.2 \mathrm{M} \Omega$. All at lp each 8 p for 10 of any one value; 70 D for 100 of any one value. Speoial Pack: 10 of each value $2.2 \Omega$ to $2.2 \mathrm{M} \Omega(730$ resistors) $£ 5.00$. SILICON PLASTIC RECTIFIERS • $1.5 A$ Brand new wire ended DO27-100 P.I.V. 7 D (4/26p) 400 P.I.V. $-8 p$ ( $4 / 30$ p) 800 P.I.V. $-11 p(442 p$ ) 8RIDGE AECTIFIERS: $2 \mathrm{YA} 200 \mathrm{~V}-40 \mathrm{p} 350 \mathrm{~V}-45 \mathrm{p} 600 \mathrm{~V}-55 \mathrm{p}$. SUBMINIATURE VERTICAL PRESETS - 0.1 W onlv All at $5 p$ each: $56 \Omega, 220 \Omega, 470 \Omega, 680 \Omega, 1 \mathrm{k}, 2.2 \mathrm{k}$ $4.7 \mathrm{k}, 6.8 \mathrm{k}, 10 \mathrm{k}, 15 \mathrm{k}, 22 \mathrm{k}, 47 \mathrm{k}, 100 \mathrm{k}, 250 \mathrm{k}, 680 \mathrm{k}$ $1 \mathrm{M}, 2.5 \mathrm{M}, 5 \mathrm{M}$.
Please add 10 p Post and Packing on all orders below 55.00. All export orders add cost of Sea/Airmail. Please add B\% VAT 10 orders. Send SAE for lisis of additional ex-stock items. Wholesale price lists available to bona fide companies.
Dept. T10, The Old School, Edstaston, Near WEM.
Salop. Tel: WHIXHALL 464 (STD 094872) (Props: Minicost Trading Lid.)

## MARCONI INSTRUMENTS LIMITED

## ELECTRONIC TECHNICIANS

are required to work on calibration, fault-finding and testing of telecommunications measuring instruments. The work is varied and will enable technicians with experience of r.f. circuits to and will enable techniclans with experience of r.f. circuits to
broaden their knowledge of the latest techniques employed in the electronics and telecommunications industries by bringing them into contact with a wide range of the most advanced measuring instruments embracing all frequencies up to u.h.f.

Entrants may be graded as Test Technicians. Senior Test Technicians or Technician Engineers according to experience and qualifications. Our production and servicing programme, geared to our recognised export achievement, provides employ. ment combined with prospects of advancement, not only within these grades, but into other technical and supervisory posts within the Company at St. Albans and Luton.

Salaries are attractive and conditions excellent. A Pension Scheme includes substantial life assurance cover provided by the Company. Assistance with removal may also be given in appropriate cases. Please write or telephone. quoting reference ET7410, for application form to


## HARDWARE

Screws, nuts, washers etc. Sheet aluminium cut to size or in standard packs, plain or punched/ drilled to spec.
Printed circuit boards for published designs or individual requirements, one-off or small runs. Facia panels, dials, nameplates etc. in etched aluminium. $6 p$ for details.

> RAMAR CONSTRUCTOR SERVICES 29 Shelbourne Road,
> Stratford on Avon, Warwicks.

## and now.

## THE COMPLETE CLASSIFIED SECTION

For the smaller advertiser, we have introduced a new SALES and WANTS section offering a lineage rate. If you wish to sell new, surplus or used equipment - nuts, bolts, switches, valves or you are seeking to fill that extra work capacity USE OUR NEW CLASSIFIED FACILITY.

ALL YOU HAVE TO DO IS FILL OU: THE FORM BELOW FOLLOWING OUR TERMS

* RATE: 45p PER LINE. Average Six * Single column inch DISPLAY BOX $55 . \mathrm{sci}$. words per line. Minimum three lines.
* Name and address count as lineage if used in advertisement.
* BOX No. allow 25 p extra and indicate on form below if required.
* Single column inch SEMI-DISPLAY £3.sci.
* MINI-AD 1/9th page and multiples thereof each $£ 11$. (Minimum of THREE insertions)
PLEASE MAKE CHEQUE/POSTAL ORDER payable to:
"ELECTRONICS TODAY INTERNATIONAL" and crossed "\& Co."

$\square$

$\square$
Ambit ..... 23
B. H. Component Factors ..... 34
B.I.E.T. ..... 76
Bi-Pak ..... 40/41
Bi-Pre-Pak ..... 2
B.N.R.S. ..... 23
Bywood ..... 9/52
Chiltmead ..... 65
Consumer's Association ..... Insert
Dart Electro Services ..... 9
Decon Laboratories ..... 37
Doran Electronics ..... 16/17
Eagle International ..... 75
Electronic Design Associates ..... 52/73
Greenweld ..... 72
Heathkit ..... 27
J.W.B. Radio ..... 72
Laboratories ..... 72
Marconi ..... 73
Marco Trading ..... 72
A Marshall \& Son ..... 27
Maplin Electronics ..... 36
Minikits ..... 49
Mulhall Electronics ..... 72
Ramar Construction Services ..... 73
Richard Electrics ..... 74
Sintel ..... 9
Trampus Electronics ..... 74
Wilmslow Audio . ..... 49
W.K.F. Electronics


## RICHARDS ELECTRICS ex-stock components

full data on all oevices - sae or 'phone us GUARANTEED SEMICONDUCTORS - FULL SPECE. BCIO7 13p BFY5I 18p 2 2N3702 12p|2S3O3 25p \begin{tabular}{ll|ll|llll}
BCIO8 \& $12 p$ \& BSY95A $9 p$ \& 2N3704 \& $12 p$ \& OA91 \& $9 p$

 

BCIO9 \& $13 p$ \& C444 \& $13 p$ \& $2 N 3819$ \& $34 p$ \& IN914 \& $6 p$ <br>
BC182LB \& $12 p$ \& OCP71 \& $15 p$ \& $2 N 3866$ \& $25 p$ \& $1 N 4004$ \& $7 p$
\end{tabular} BC2I2LB 13p 12 NI7II 30p 2N4O58 14p/1N4007 IIp, $40871 / 2^{p}$ RCA $1 O O V$ COMP. POWER IN FLAT PACK 75 pea TIC44-TEXAS 60 PIV -6A SCR IN TO-18 PACKAGE 37p 40486-RCA 400 PIV 4A TRIAC IN TO-5 PACKAGE 60p Bridaes $\left\{\begin{array}{l}\text { N60O2 } 100 \text { PIV 2.2A 49p } \\ \text { N7012 }\end{array}\right.$


We strongly advise use of our 28 pin dil socker-chip is MOS CT7OOI $+4 x \cdot 3^{\prime \prime}$ LITRONIX DISPLAYS $£ 18 ;+6$ DISPLAYS $£ 20$ Automatic $28 \cdot 30 \cdot 31$ day calendar; noise \& radio alarm; snooze facility; battery standby; 12 or $24 \mathrm{hr} ; 4$ or 6 digit: interface for led display; this must be the most versatile digiclock chip available. SAE or phone for further data. LITRONIX - 3" 7 seq. Display 51.50 TIL209 -125" LED 26p(Red)
 MIN. TOGGLES 12 molollySPST-35p;SPDT-38p; DPDT-42p 50W RMS Power Module•superb spec. $£ 9.25$ or SAE 4 data.

ALL ORDERS INCLUDING 11p POST \& PACKING TO
16 FRIAR STREET, WORCESTER WRI 2LZtel 0905-28550 Callers welcome at our shop


## Toboost theviolins, slide the fourth knob from the left upwards.

To boost the bass trombones, slide the first knob upwards

To get Gigli or Sinatra to sing out, slide the third knob upwards. It gives the human voice more 'presence'

We could go on, but by now you'll take the point.
With the Eagle AA6 amplifier, you have complete control over the sound you hear

Much more than you ever had with normal Bass and Treble controls.

Why?
Because the five slide controllers allow you to boost or cut five separate sectors across the whole frequency range, around $40,200,1,200,6,000$ and $15,000 \mathrm{~Hz}$.

As opposed to ordinary Bass and Treble controls which simply give you 'blanket' cut or boost, generally around 100 and $10,000 \mathrm{~Hz}$.

The difference is amazing.
With the AA6, you can literally pick and choose what you hear.

You can create entirely new balance by'mixing.'
Or youcancompensate for poor room acoustics.
Or poor recordings.
Or quirks in your other hi-fi components.
And when you're not listening so critically, you can revert to simple Bass and Treble controls merely by pushing a button.


Graph shows degree of control throughout frequency range with Sound Effect Controllers in maximum and minımum positions

Now there's something you must do. Visit your Eagle dealer and ask for a demonstration

More than any other amplifier, you need to have the Eagle AA6 demonstrated.

To hear it. And to experiment with the controllers

Alternatively, you could send for our free instruction booklet. (For this or any other Eagle amplifier or tuner.)

That way, you'll be able to see exactly what you're getting.

Not what the salesman chooses to tell you you're getting.

## Fagke International

Eagle International Precision Centre Heather Park Drive Wembley HAO ISU Telephone 01.9030144

Please send me instruction books including full specification details on the models I have ticked. Plus your latest colour catalogue


Eagle International Precision Centre Heather Park Drive Wembley HAO ISU Telephone 01-9030144 ET]


Practical Radio \& Electronics Certificate course includes a learn while you build 3 transistor radio kit. Everything you need to know
engineer better future HIGHER PAY

## SECURITY

## find out how in just 2 minutes

That's how long it will take you to fill in the coupon. Mail it today and we'll send you full details and a free book. We have successfully trained thousands of men at home - equipped them for higher pay and better, more interesting jobs. We can do as much for YOU. A lowcost home study course gets results fast - makes learning easier and something to look forward to. There are no books to buy and you can pay-as-you-learn.
Why not do the thing that really interests you? Without losing a day's pay, you could quietly turn yourself into something of an expert. Complete the coupon (or write if you prefer not to cut the page). No obligation and nobody will call on you . . . but it could be the best thing you ever did.

## Others have done it, so can you

"Yesterday 1 received a letter from the institution informing that my application for Associate Membership had been approved. I can honestly say that this has been the best value for money I have ever obtained, a view echoed by two colleagues who recently commenced the course". - Student D.I.B., Yorks.
"Completing your course, meant going from a job I detested to a job that I love, with unlimited prospects"' - Student J.A.O. Dublin.
"My training quickly changed my earning capacity and, in the next few years, my earnings increased fourfold'". - Student C.C.P., Bucks.

## FIND OUT FOR YOURSELF

These letters, and there are many more on file at Aldermaston College, speak of the rewards that come to the man who has given himself the specialised knowhow employers seek. There's no surer way of getting ahead or of opening up new opportunities for yourself. It will cost you a stamp to find out how we can help you. Write to Aldermaston College, Dept. BE180, Reading RG7 4PF, Home of B.I.E.T.
about Radio \& Electronics maintenance and repairs for a spare time income and a career for a a career for a
better future.


Tick or state subject of interest.

Post to address below.
MECHANICA
Society of
Engineers.
Man. Piod.-cont.
Storekeeping
Management
Skills
Quality Control
ORAUGHTSMANSHIP
Institute of
Engineering
Designers
(A.M.I.E.D)
General
Draughtsmanship
Elec. Draughtsman-
ship
Architectural
Draughtsmanship
Technical
Drawing nstitute of
Engineer \& Engineer \&
Technicians Technicians
(A.M.I.E.) CITY \& GUILOS Gen Mech. Eng Maintena
Welding Wen. Diesel Eng. Sheet Metal Work Eng. Inspection Eng. Metallurgy ELECTRICAL \& ELECTRONIC CITY \& GUILD Engineering - Instalları Electrical Maths - Computer Electronics Practical Radio \& Electronics (with kit)

MANAGEMENT \& PROOUCTIO - Institute of Cost Accnts. Computer Programming Works M'ment Work Study Gen. Prod Eng. Estimating 8 Estimating 8 Planning ClTY \& GUILOS
Auto Eng.
Gen. Auto Eng. Coaching for many major exams.


BE1 80 To Aldermaston College, Dept. BE180 Reading RG7 4PF.
NAME
Block Capitals Please
ADDRESS

## POST TODAY FOR A BETTERTOMORROW

$\qquad$

OTHER SUBJECTS $\qquad$
Accrediled hy C.A.C.C: Mंember of A.B.C.C: BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY


[^0]:    "It should be noted here that the monochrome print does not show as marked contrast as the original colour print.

