

TRANSCENDENT 2000 SINGLE BOARD SYNTHESIZER

CONSTRUCTIONAL ARTICLE IN ELECTRONICS TODAY INTERNATIONAI OR (FORMERLY SYNTHESIZER DESIGNER FOR EMS LIMITED) AND FEATURED AS A
The TRANSCENDENT 2000 is a 3 octave instrument transposable 2 octaves up or down giving an affective 7 octave range There is portamento pitch bending a VCO with shape and pitch modulation, a VCF with both low and high pass outputs and a separate dynamic sweep control, a noise generator and an ADSR envelope shaper. There is aiso a slow oscillator a new pitch The kit includes fully finished metalwork, fully as circuitry with precision components to ensure tuning stability amongst its many features. cabinet. filter sweep pedal protessional quality components tall resistors either 2% metal oxide or $1 / 2 \%$ metal triml) and it really is complete - right down to the last nut and bolt and last piece of wirel There is even a 13 A plug on the kit - you need buy absolutely no more parts before plugging in and making great music' Virtually atl the components are on the one professional quality fibreglass PCB printed with component locations All the controls mount directly on the main board, all connections to the board are made with connector plugs and construction is so simple it can be built easily in a few evenings by almost anyone capable of neat soldering' When finished you will possess a synthesizer comparable in performance and quality with ready-buit units selling for between $£ 500$ and $£ 700$ I

> COMPLETE KIT
> ONLY
> $£ 172.00$ + VAT!

Comprehensive handbook supplied with all complete kits' This fully describes construction and tells you how to set up your synthesizer with nothing more elaborate than a multi-meter and a
pair of ears

NEW!

AS FEATURED IN LAST MONTH'S MAGAZINE Another superb design by synthesizer expert Tim Orr!
 TRANSCENDENT DPX

DIGITALLY CONTROLLED, TOUCH SENSITIVE, POLYPHONIC, MULTI-VOICE SYNTHESIZER
reed sound -- fully polyphonic i e you can play chords with as many notes as you like On tho outpuis which can be used simultaneously On the first there is a beaunfui harpsichord or straghtforward piano or a honky tonk piano or even a mixture of the twol Alternatively you can play strings over the whoie range of the keyboard or brass over the whole range of the keyboard or should you prefer - strings on the top of the keyboard and brass at the lower end (the keyboard is electronically split atter the first two octavest or vice versa or even a combination of strings and brass sounds simultaneously And on all voices you can switch in circuitry to make the keyboard touch sensitivel the first two octaves) or vice versa or even a sounds - just like an acoustic piano The digitally controlled multiplexed system makes practical touch sensitivity with the complex dynamics law necessary for a high degree of realism There is a master volume and tone control, a separate control for the brass sounds and also a viricato circuit with variable depth conplex dynamics law necessary for a high degree of realism
comes in only after waiting a short time after the note is struck for even more realistic string sounds

COMPLETE KIT ONLY £365.00 + VAT!
To add interest to the sounds and make them more natural there is a chorus/ense overall effect of this is similar to that of several acoustic instruments playing the same piece of music The ensemble circuitry can be switched in with either strong or mild effects

As the system is based on digital circuitry digital data can be easily taken to and trom a computer (for storing and playing back accompaniments with or without pitcn or key change, compute composing etc, etc.) and an interface socket (25 way D type) is provided for this purpose

Although the DPX is an advanced design using a very large amount of circuitry, much of it very sophisticated, the kit is mechanically extremely simple with excellent access to all the circuit boards which interconnect with multiway connectors, just four of which are removed to separate the keyboard circuitry and the panel circuitry from the main circuitry in the cabinet

The kit includes fully fimished metalwork, solid teak cabinet, professional quality components (all resistors 2% metal oxide), nuts bolts, etc, even a 13 A plug - you need buy absolutely no more parts before plugging in and making great music' When finished you will possess an instrument comparable in performance and quality with ready-built units selling for over $£ 12001$

All kits also available as separate packs (e g PC. B. component sets hardware sets, etc)
Prices in FREE CATALOGUE

Eight page special of your circuits P. 96

DESIGNERS NOTEBOOK
MICROSENSE OP AMPS AND

TECH-TIPS

FEATURES

NEWS DIGEST	$\mathbf{7}$	If it matters, it's in
RADIO IN CONTROL	$\mathbf{1 8}$	A model article
ANALOGUE DELAY	$\mathbf{2 9}$	Wiat a moment . .
AUDIOPHILE	$\mathbf{3 6}$	Review hat-trick
MICROFILE	$\mathbf{6 0}$	Bits and pieces ...
RAVEN ON	$\mathbf{7 1}$	A little bird tells you ...
DESIGNERS NOTEBOOK	$\mathbf{7 4}$	LED into Robots
MICROSENSE	$\mathbf{8 0}$	Rounding off the subject
OP AMPS AND...	$\mathbf{9 1}$	Integrators and differentiators!
TECH-TIPS	$\mathbf{9 6}$	Eight page special!

PROJECTS

PINBALL WIZARD	$\mathbf{2 4}$	Breakout of boring tele!
TRAIN CONTROLLER	$\mathbf{4 2}$	The ultimate machine.
STRING THING	$\mathbf{6 4}$	Ending on a note
OVEN LEAKAGE	$\mathbf{8 5}$	Check your microwaves

The Beast - and we're not joking P. 42

SEIKO CALCULATOR	$\mathbf{1 0}$	A watch to count on!
HOBBY ELECTRONICS	$\mathbf{2 3}$	Next month for HE-men
BOOK SERVICE	$\mathbf{3 9}$	A load of fine print
SPECIALS	$\mathbf{5 9}$	Wot we does as well
COMPUTING TODAY	$\mathbf{6 3}$	Micro-men arise
ETINEXT MONTH	$\mathbf{7 9}$	Check this for news
SUBSCRIPTIONS	$\mathbf{8 9}$	Get it the easy way
MARKETPLACE	$\mathbf{9 5}$	An offer you can't
ETI PRINTS	$\mathbf{1 1 3}$	The only way to do it!

hnational DITIONS	EDITORIAL AND ADVERTISEMENT OFFICE 145 Charing Cross Road, London WC2H 8DEE. Telephone 01437 1002/3/4/5	
	Ron Harris, B.SC	Editor
	Ian Graham B.Sc.	Editorial Assistant
	Diego M. Rincon	Art Director
(A Collyn Rivers Publisher Roger Harrison Acting Editor	Dee Camilleri	Production
	Paul Edwards, Tony Strakas	Technical llfustrators
	Joanne Barseghian Ray Marston	Project Editor
) Anton Kriegsman Editor-in-Chief	Keith Brindley, John Fitzgerald	Project Engineer
	Steve Ramsahadeo	Project Development
	Margaret Hewitt	Administration
Graham Wideman Editor	Lorraine Stout	Editorial Secretary
	Christopher Surgenor (Manager).	Advertising
Udo Wittig	Sandie Neville	Ad. Production
	Steve Rowe	Ad. Representative
	Halvor Moorshead	Editorial Director
Ny/̈ \triangle	FUBLISHED BY DISTRIBUTED BY	Modmags Ltd, 145 Charing Cross Road
	DISTRIBUTED BY	Argus Distribution Lid (British isles) Gordon \& Gotch Lid (Overseas)
	PRINTED BY	QB Limited. Colchester

INFORMATION

Electronics Ioday International is normally published on the first Friday of the month prio to the cover date

[^0]
GMT
 (A DIVISION OF GOTHIC ELECTRONIC COMPONENTS LTD) PO Box 290 8 Hampton Street
 TELEPHONE: ORDER
 ELECTRONICS Birmingham B193JR 021-233-2400 ONLY

ALL PRICES IN PENCE EACH UNLESS OTHERWISE STATED

DIGEST

A
 L 1 E

Cert X Running Time -1 hr 56 min .

At last! A REAL science fiction film. Sci-fi fans will know what I mean if I classify Star Wars, Battlestar Galactica, Shape of Thir gs to Come etr. etc. as enjoyable space opera. The special efects in these films are practically the story-line in themselves! A) grod fun but not serious SF. Alien on the ather rand, whilest boasting special effects as good \approx any of the aforementioned works, is primarily ε cracking good sci-fi story which uses the effects in the same way a good play uses stage props. An aid to the story, but not as the marr attraction. It is giving nothing away to tel you that the story concerns an interstellar sow ing vehicle (?), returning home with tn unbelievable amount of minerals, whilh is diverted to investigate a non-human distress call. Things naturally go wronc and the alien creature gets loose on the ship. As a horror/thriller Alien is urisalled and as a sci-fi film it is first rate. 1 would advise any addicts of the genre to read the book first, however, it won't spoil the shocks at all and there are geas in the film (which will only bother sci-fi fanatics) from leaving too much on the cutting room floor I think. It could be an hour longer without aver being in canger of being boring and the extra detail mould be welcome. There is one more axpellent reason for seeing Alien - Sigourney Wraver.
Being chased around a starship by a thing with two sets of dentures and a taste for humar flesh a perhaps not the best way to make your film deWht, but she manages beautifully. The lady is a fine ceress - and extremely attractive.
Betine - "Beauty And the Beast"?

In space no one can hear you scream.

CHROMATHEQUE 5000

ONLY

Kit includes fully finished metalwork, fibreglass PCB controls. wire. etc. - Complete right down to the last nut and boltt

MPA 200100 WATT (rms into 8 Ω) MIXER / AMPLIFIER

COMPLETE KIT ONLY
 $£ 49.90$ + VAT!
 MATCHES THE CHROMATHEQUE 5000 PERFECTLY!

Featured as a constructional article in ETI, the MPA 200 is an exceptionally low priced - but professionally finıshed - general purpose high power amplifier. It features adaptable input mixer which accepts a wider range of sources such as microphone. gultar, etc. There are wide range tone controls and a master volume control. Mechanically the MPA 2000 is simplicity The kit includes fully finished med making construction very straightforward.
The kit includes fully finished metalwork, fibreglass PCBs, controls, wire, etc. - complete down to the last nut and bolt.

T20+20 20W STEREO AMPLIFIER £33.10+VAT This kit, based upon a design published in Practical Wireless, uses a single printed circuit board and offers at very low cost, ease of construction and all the normal facilities found on quality amplifiers. A 30 watt version of this kit $(T 30+30)$ is also available for $£ 38.40+$ VAT

MATCHING TUNERS - SEE OUR FREE CATALOGUE

DE LUXE EASY TO BUILD LINSLEY HOOD 75W STEREO AMPLIFIER £99.30 + VAT

This easy to build version of our world-wide acclaimed 75 W amplifier kit based upon circuit boards interconnected with gold plated contacts resulting in minimal wiring and construction deatures incluaghtforward. The design was published in H-Fi News and Record Review and monitoring whilst distonion is less thable scratch filter, versatile tone controls and tape

WIRELESS WORLD FM TUNER £70.20 + VAT

A pre-aligned front-end module makes this Wireless World published design very simple to construct and adjust without special instruments. Features include an excellent a.m. rejection stereo decoder ition selection as well as infinitely variable tuning and a phase locked loop

LINSLEY-HOOD CASSETTE DECK £79.60 + VAT

This design, published in Wireless World, although straightforward and relatively low cost provides a very high standard of performance. There are separate record and replay amplifiers and switchable equalisation together with a choice of bias levels are also provided. The mechanism is the Goldring-Lenco CRV with electronic speed control.

KiFLETE KITS: Our complete kits really are complete. All of the projects shown on this page are supplied with fully finished metalwork, ready assembled high quality teak veneer cabinet (last 4 kits on this page), or professional quality rack mounting cabinet (first 2 kits on this page), cables, nuts, bolts, etc., and full instructions - in fact everything!
All of the kits shown on this page are available as separate packs for those customers who wish to spread their purchase or perhaps make their own cabinets or metalwork. Prices are given in our FREE CATALOGUE.

PRICE STABILITY: Order with confidence. Irrespective of any price changes we will honour all prices in this advertisement until January 31st. 1980. if this month's advertisement is mentioned with your order. Errors and VAT rate changes excluded.
Export ORDERS: No VAT Postage charged at actual cost plus 50 p handing and documentation
U.K. ORDERS. Subject to 15% surcharge for VAT No charge is made for carriage, or at current rate if changed
SECURICOR DELIVERY: For this optional service (U.K mainland only) add E2.50 NAT inclusive) per kit
SALES COUNTER: If you prefer to collect kit from the factory, call at Sales Counter Open 9 a $\mathrm{m} .430 \mathrm{p} . \mathrm{m}$. Monday-Thursday
our catalogue is Free! write or phone Now!
POWERTRAN ELECTRONICS
PORTWAY INDUSTRIAL ESTATE
ANDOVER, HANTS SP 10 3NM
(STD 0264) 64455

Romane Electronics

LOW POWER SCHOTTKY TTL EX STOCK

We are holding substantial stocks of the Devices listed below. All orders, large and small, will be dealt with in strict rotation. Please add 15% V.A.T. to all .orders plus 30p for P\&P. Export orders no VAT but postage at cost air/surface. Prompt delivery on all orders

Device	Price			74LS 173	90p
74LS00	13p	74LS 76	38p	74LS174	90p
74LS01	14p	74LS 78	43p	74LS175	92p
74LS02	13 p	74 LS83	120p	74LS190	120p
74LSO3	14p	74LS85	120p	74LS191	120p
74LSO4	$15 p$	74LS86	40p	74LS 192	120p
74LSO5	$25 p$	74L590	50p	74LS193	110p
74LS08	30p	74LS93	90p	74LS195	110p
74LS09	30p	74 LS95	110p	74LS196	100p
74LS 10	16p	74LS 107	40p	74LS197	120p
74LS 11	23p	74LS 109	50p	74LS221	110p
74LS 12	25p	74LS112	50p	74LS244	250p
74 LS 13	36p	74LS113	50p	74LS245	260p
74LS14	75p	74LS114	50p	74LS247	150p
74LS15	25p	74LS 123	$80 p$	74 LS248	150p
74LS20	17p	74LS125	40p	74LS249	90p
74LS21	24p	74LS126	40p	74LS251	100p
74LS22	25p	74LS 132	70p	74LS273	200p
74LS26	35p	74LS 136	45p	74LS279	85p
74LS27	25p	74LS138	75p	74LS 283	92p
74LS28	40p	74LS139	$80 p$	74LS290	92p
74LS30	19p	74LS151	65p	74LS293	100p
74 LS 32	27p	74LS153	$65 p$	74LS298	100p
74LS37	32p	74LS 155	$96 p$	74 LS352	170p
74LS38	39p	74LS156	96p	74LS353	170p
74 LS 40	23p	74LS 157	65p	74LS365	95p
74LS47	80p	74LS158	83p	74LS366	95p
$74 \mathrm{LS48}$	130 p	74LS160	118p	74LS367	95p
7.4LS49	130p	74LS 161	100p	74L5368	95p
74LS73	40p	74LS 162	130p	74LS374	160p
74LS74	40p	74LS163	130p	74LS386	50p
74L§75	38p	74LS 164	100p	74LS670	200p

LOW PROFILE DIL SOCKETS BY TEXAS

| 8 | Pin 13p | 18 Pin 25p | 24 Pin 33p |
| ---: | :--- | :--- | :--- | :--- |
| 14 Pin 14p | 20 Pin 27p | 28 Pin 43p | |
| 16 Pin 16p | 22 Pin 28p | 40 Pin 53p | |

I.C. TEST CLIPS 10\% Discount for $25+$ clips, 15% Discount for $100+$
 20 Pin $£ 7.0022$ Pin $£ 7.4324$ Pin $£ 8.4128$ Pin $£ 9.24$ 36 Pin $£ 12.0940$ Pin $£ 12.73$

SUPERSTRIP BREADBOARDS 840 solderless plug-in tie points Accommodates up to nine 14 Pin DIPs. Price $£ 10.07$ with 10% Discount for $10+$ superstrips and 15% Discount for $25+$
POWERACE PROTOTYPING LABS Two Superstrip Breadboards plus power supplies

POWERACE $1015-15 \mathrm{VDC}$ supply @ 600mA plus 0-15V meter. Price £68. 55
POWVRACE $102+5 \mathrm{VDC}$ supply @1A plus 3 logic indicators and pulse detector, 2 logic switches, 4 data switches, clock generator and one-shot Price $£ 92.75$
POWERACE $103+5 \mathrm{VDC}$ supply@ 750 mA plus + $15 \mathrm{VDC} @ 250 \mathrm{~mA}$ and-15VDC@250mA. Also meter(15-0-15V). 2 logic indicators, 2 logic switches and 2 data switches. Price £99.80
All orders, large and small, will be dealt with IN STRICT ROTATION. Please add 15% V.A.T to all orders plus 30 p for P\&P ($£ 1$ P\&P for Poweraces). Export orders no V.A. T but postage at cost air/surface. Prompt delivery on all orders A full range of Breadboards, I.C. test clips, ribbon cable assembles available (mostly ex-stock). Please send large S.A.E. for catalogue and price lists.

C-MORE EASILY
How's your car battery standing up to all the motoring projects you built from the September issue of ETI? Thinking of buying a battery charge gauge, but the fitting and wiring puts you off?
The C-More vehicle charge monitor is compact (fits on top the dash), easily installed (sits on adhesive pads) and can be read and understood at a glance (light bar display). There are only two wire connections to be
made to the car
The unit compares the battery circuit voltage to reference voltages and presents the result as coloured bars. If the yellow part of the display is as bright as, or brighter than, the red, you have a healthy battery. All this and a 12 month guarantee!
The C-More charge monitor is made by Harvelec, 1 Formby Avenue, Thatto Heath, St. Helens, Merseyside WA10 3NW

CAGED NUTS?

Vero's unique insertion tool comes to the rescue of your caged nuts (or you can have them seen to on the National Health).
Vero claim that the tool can save up to 50% in the time taken to assemble 19 in racks, cabinets
and enclosures. It is designed to be used with caged nuts to fit a standard 9.5 mm square aper ture.
The caged nut insertion (and extraction) tool is $£ 2.67$ from Vero Electronics Ltd, Industrial Estate, Chandler's Ford, Eastleigh, Hampshire SO5 3ZR.

Never be without an abacus again - wear it on your wrist! We were swamped with orders for the Seiko memory bank calendar watch we offered in September. So, by popular request, here we are again with yet another exclusive, unbeatable bargain offer. No, your eyes don't deceive you. It's a super Seiko combined watch and calculator for only $£ 96.20$. So, as you're strap-hanging your way home, you can work out that you've just saved 46% on you new Seiko calculator watch. Your local timepiece emporium, selling it at full price, will cut your balance down to the tune of (are you sitting down) £178.20. You'll have noticed by now that the keys on the calculator bit are somewhat diddier than the normal run-of-the-mill puddy pushers. Seiko have thought of that. At no extra cost whatsoever you get a free, gratis pointy bit of metal (they call it a stylus) to bash the buttons.' In addition to the usual four functions, the calculator has percentage, square root, memory + and memory - facilities. All for only $£ 96.20$.

SICK MOTOR?

The AA says that 7 out of 10 of us are still not having our cars tuned. Slapped wrists all round. If we all chugged off to the car hospital and came out ship shape and piston fashion (sorry, I couldn't resist that) we'd save around 800 million gallons of. petrol every year.

If you'd like to repent, you might not even have to take the car to the garage soon. Autrac Computerised Tuning Ltd is a mobile service using vans with an on-board computer to check the state of tune and condition of a car's engine and electrics. Each 'Total Health Check'
covers 80 different tests and provides the motorist with a computer print out of the results. A VDU also shows the driver how the tests are progressing.

Cost to you and I? The average price of a full check and tune-up, complete with replacement parts (plugs, points, etc) should be around $£ 20$ incl VAT. That's about $£ 12.50$ for an Escort and $£ 17.50$ for a Rover 3500 plus parts and VAT.
For further information contact Zockoll Group Ltd, Zockoll House, 143 Maple Road, Surbiton, Surrey KT6 4BJ.

GOT BUGS?

No, not creepy crawlies. I'm talking about electronic eavesdroppers. Want to get rid of them? Now you don't have to enlist the special skills of the professional counter espionnage men with their radio experts.

The Tracer M-Auto is a new unit designed to be used by your company's own personnel. It is a scanning radio receiver which activates any bugs in the woodwork and warns of their presence. It will even detect the latest sophisticated sub-carrier
devices. Moreover, bugs 'hiding' near strong public broadcasts can be rooted out by the Tracer, which can also be left on stand-by during meetings. An accessory is available to search for hardwired devices. No technical skill is required to operate the unit.
All you budding 007's can find out more about the Tracer M-Auto bug basher from Bonaventure International (Security) Ltd, Bonaventure House, $18 / 21$ Jermyn Street, London SWIY 6HN.

TELLY-TOT

The first offspring from the Hitachi-GEC marriage is to be a 20 teletext receiver for the UK market. The set has full remote control.

Also available is its first 22 model, with earphone socket and tape socket for recording sound. You can also play back video tape on any of the set's channel selectors.

TECHNICAL QUERIES

We regret that as of this issue ETI cannot accept any more telephone technical enquiries. This is entirely due to the amount of pressure being placed upon the technical staff in attempting to run this service. We have kept going for the last year-just-in the face of mounting adversity but cannot do so any longer.

In future therefore all ques-
tions concerning articles (especially projects) MUST be sent to us by post enclosing an SAE if you want a reply (some people don't!) Address your en velopes to our Editorial offices, and mark the envelope TECHNICAL ENQUIRY.

We apologise for any inconvience this may cause and will do our best to make the postal service as rapid a turnround as we can.

SOLAIR CELLS

Within the next few months the construction of a 283 kW solar cell plant will begin at Phoenix Sky Harbour International Airport in Arizona, USA (Unusual Solar Applications?)
Thirty large arrays of 7,200 photovoltaic concentrators are being supplied by Motorola. Each of the modules, 30 in in diameter and 1 lin deep, is designed to concentrate energy equivalent to 70 times that of the Sun onto a three inch silicon solar cell. Motorola is also supplying a master control system to regulate the output power, steer the arrays and acquire data.
Power from the new solar plant will supply the needs of roughly half of the new airport terminal building.
If you're thinking of knock-
ing up something similar for your back garden you'll need to be able to pick up the bill of about $£ 3.25$ million.

STEVENSON CAT

We've now received a copy of Stevenson's new catalogue an attractive little volume, covering everything from A / D converters to zener diodes.

The comprehensive index covers components, cases, tools and cables. There's even a seven page section packed with books.

The semiconductor section includes data on transistor packages and pin-outs, IC pinouts and even a few suggested circuits.

You can get this new 80 page catalogue FREE from Stevenson, 76 College Road, Bromley, Kent BRI 3BR.

ILP MODULES 15-240 WATTS

We are now stockists for these worid famous fully guaranteed (2 years guarantee on all modules) Pre amps. Amplifiers \& Power Supplies.
HY5 Preamp 500 mV RMS £4.75; HY120 Power Amp. 60W RMS/80 £15.40; HY30 Amplifier. 15 W RMS /8』 $£ 4.95$; HY 200 Power Amp. 120 W RMS/ $8 \Omega £ 18.50$; HY50 Amplifier. $25 W$ RMS / 8Ω £7.25;

TORCH FINDER

There is an error in the circuit diagram of the Torch Finder (Top Projects No.7). The connection between the battery negative, ie ICl pin 4, and LED1 should be deleted. The LED should be connected between ICl pin 8 and pin 6. My thanks to Mr Massey of Boston, Lincolnshire for pointing out this error.

HEADPHONE AMP

We've had a few calls about the headphone amplifier project in the May edition of ETI. If you're having problems, try this - insert a 330k resistor between C6 and the phono pin
of SWla. Put another 330 k resistor between C13 and the phono pin of SW1b. Isolate the output sockets from the metal case, because they are referenced to 11 volts. Hence, the chassis symbol on the right and left outputs is wrong. On the component overlay, take the mains earth to the transformer case, not the PCB track.

MOTOR SPEED CON-

 TROLLER (July)A resistor was omitted from the circuit diagram. Let's call it R15 (why not?). R15, then goes from IC4 pin 2 to the OV line, ie in parallel with C 5 . Its value? 2M2.

RADAR ROOSTER

If you go down to the woods today you're in for a big surprise, 'cos somewhere in Middlesex a man in a white coat is putting the final touches to Dr Who's new sidekick - Mighty Chick. Seen here with its beak open in the baddy-zapping mode, the phenomenal phoul's phinger-licking good drumsticks will be phunctional just as soon as our man in the white coat has completed the vital task of tensioning the powerful poultry's nuts.

Now do you want the true story? It's the new AGA Speckter radar reflector, designed for use principally on light buoys. The 360° cluster of six interlocking aluminium units offers an echo area of about 170 m 2 from the 600 mm diameter unit. A lantern weighing up to 110 kg can be put on top. You can get more information on the SR66 from AGA Navigational Aids Ltd, Beacon Works, Brentford, Middlesex TW8 0AB.

Quartz Melody Multi-Alarm Chrono For 1980 Try this 34 Function

Count-down Timer浐 0000

Can be used for a host of applications from boiling an egg to warning you your parking meter is expired. The timer is presettable to 23 hours 59 mins. 00 secs. in 1 min . steps and counts down in 1 sec . steps. It operates quite independently of the other counters and the watch can be in any other mode whilst it is being used.
At the preset time the musical tone will sound for 1 minute.

Alarm

The alarm can be set at 1 minute intervals to any time within the 24 hour period. A clear firm musical tone sounds for 1 minute at the appointed time. An automatic roll-over to the normal time is a feature after the alarm has been read. A clear indicator displays whether the alarm is set or not.

Time Zone
 2.48 18

The time zone enables you to tell the time in two places at once. It can be useful on holiday or business trips. Just programme the second time zone and it will be permanently recorded for your easy reference.

Chronograph
 0
 andinan

This watch incorporates a sophisticated and very accurate stop/start counter which has many applications in sporting events and timing for recordings etc.
Mode 1: Is the normal stop-watch mode. Stop-Start-Zero.
Mode 2: The lap timer enables first and second pasi the post times to be recorded. The display is frozen but the counter continues to count.
Mode 3: Longer timing intervals, such as journey times, can be recorded whilst the watch is reading its normal time. or the count-down is being used The counter counts to 1 hour in $1 / 100 \mathrm{sec}$. steps in all its modes
for only $£ 26.95$

Display Format (NORMAL TIME DISPLAY)

i) Normal watch
ii) Count down alarm
iv Dual time zone
v) $1 / 100 \mathrm{sec}$. chronograph

Display indicators (not all shown)

A very impressive new watch at a superbly low price from Metac. This super slim watch is only 7 mm thick (that's thinner than most mechanical tick-tocks), but its microprocessor heart packs 34 different features.

In addition to those listed on the left the watch can display the day of the week in French or German or English (just select the one that suits you).

It has fast and slow setting rates for the counter and the alarm as well as the normal time setting.

There are 7 display indicators, 6 digits and a back light for night viewing. The 5 working modes are independent of each other, and the watch can be operated in all 5 modes at once.

[^1][^2]

SEIKO ALARM CHRONOGRAPH

Hours，mins，Secs， month，date，day， am／pm．
Weekly alarm－can be set for every day at designated time，e．g．
6.30 am on Mon．， Wed．and Friday． Alarm set time Alarm set time displayed above time Full sto functions，laptime split，etc．
Price $£ 89.95$

CASIO LADIES 86CL－23B－1

Elegant slim line stainless steel bracelet，fully adjustable．Hours，mins， 10 sec．symbol second by Hash，am／pm．Month， pre－programmed for 28 th pre－programmed for 28th month 15 secs ，batzery lif approx． 15 months．

Price £29．95 M23

MELODY

MULTI－ALARM CHRONOGRAPH

Hours，mins，secs，day，date，countdown alarm，dual time zone． $1 / 100 \mathrm{th}$ sec． place times．Melody test function．
Price £26．95 M30

DUAL

TIME－ALARM CHRONOGRAPH

Incorporating moduls of world－tamous Japanese watch manufacture．Hours． mins，secs，day of week，month，day and
date， 24 hour alarm， 12 hour chrono graph，1／10th secs，lap time chrono－ stainless steel case，and bracel mineral glass，battery hatch，long life batiery．
Price £35．00 M12

SEIKO MELODY ALARM CHRONOGRAPH

Chiming Alarm，plus chrono．Hours，mins
secs，date，day．
24 hour alarm， 12
hour chronograph
1／10th secs．laptime
back light，stainless
steel．mineral glas

Metac Price $£ 92.95$

CASIO ALARM CHRONO 81CS－36B

Hours，mins，secs， day，and also day． month and year perpetual automatic calendar．100th sec． chronograph to 7 hours．Net time／lap time／ 1 st and 2nd place times．User optional 12／24 hr． display． 24 Alarm． User optional，hourly chime．Backlight． mineral glass，stainless steel．Water resistant to 100 h ．Battery life approx． 4 years．	

CASIO
CALENDAR 200

PICOQUARTZ MICROPROCESSOR

 ALARM CHRONOGRAPH

Multi－language－day of the week can be set to English，French，German，Italian or Spanısh．Chime－every full hour com－ bined with a response signal，beebing at
every pressing of the functions．Can be switched off． 12.24 hour format，back－ light．Chrono－ 1 full－scale chrono with lap，counting hours，up to 24 hours． Minutes，secs， $1 / 100 \mathrm{th}$ secs．Two Alarm systems．Two time zones
Price $£ 37.95 \quad$ M32

47Cs－23B－1Btack mins． 10 second symbol second（by flash）． date．Auto calendar set from 1901 to 2009．Full dual time function Accuracy 10 secs．per month．Battery life

Pice $£ 59.95$
M37

SEIKO CHRONOGRAPH

Hours，mins，secs and day of the week． Month，date and day of the week．Stop－ watch display．Hours，mins，secs up to 12 20 minutes）（minutes．secs， $1 / 100$ secs up to measureme．Lap timing，continuous time less steel．mineral glass．
Price $£ 56.00$
M33

South of England 327 Edgware Road LONDON W． 2 Telephone：（01） 7234753

DIGITAL
CLOCK RADIO

Credin Card size
Memory \% ect plus auto power off
$£ 7.95$
M44

TV GAMES

Black \& White or Colour
4 game, 2 ball speed, 2 ball angles, 2 battery sizes. Tennis, Hockey, Football, Hancball, Practice
£11.95 Colour
£8.95 B/W
plus 54 p Post \& Packing
M48

RADIO/CASSETTE

3-Band/LW-MW-FM

Auto stop DC6V. AC Power 220 V Built. in condenser microphone High power
output output

M52

Portable LCD Clock Radio

* Back-lıht.
* Batienes suppled free.
* Quartz crystal controlled
$£ 17.95$
M41

Calculator with \% and memory. Continuous clock with hours, mins.. secs., day, month, day of week, Alarm. Stopwatch, split-time. 1 year battery. Leatherette wallet.
£17.95
M45

TV GAME WITH GUN

Colour. 6 games. Moving target, Football, Target, Tennis, Squash, Practice Battery or man.
$£ 17.95$
plus $£ 125$ Post \& Packıng
M49
RADIO/CASSETTE
1-Band/MW

Condensor microphone. Battery or AC. Pushbution key operation. Auto level control Retractable handle. Eject equip-
£17.95
plus $£ 2.00$ Post \& Packıng
M53

DIGITAL CLOCK LCD Travel

Hours, mins. 24 hour time and Alarm Snooze timer. Large 12.5 mm display. Night light. Size. $120 \mathrm{~mm} \times 74 \mathrm{~mm} \times$ 19 mm .
Weight. 120 grams
£17.65
M42

AIR FRESHENER

Electronic

Timer can be set to emir nice smells when required or running permanently to remove really bad smells. Battery operated.
Price £4.95
M50
MAINS /BATTERY
Portable Radio

4 Bands. LW/MW/SW/FM. Teak finish case.
$£ 19.95$
plus 85 p Post \& Packing
M54

QUARTZ ANALOGUE CLOCK TRAVEL

Mini Quartz Alarm clock. Complete with travel pouch. Features loud alarm and operates from $1 / 2$ valt battery.
$£ 9.95$
M43

LCD CALCULATOR CASIO MELODY 80

Full calculator spec 3 independent musical alarms time, stop-wath, countdown timer
£23.95
M47

DIGITAL CLOCK

LED Display.
Features Hours / mins
Display Alarm with snooze Mains operated excellent value for money. Compact size only 6 in $\times 2 \frac{1}{2}$ in $\times 3$ in.
$£ 6.95$
M51

AIRCRAFT RADIO

ELECTRIC CAR AERIAL

Sonix automatic motor antenna. 5 sections. One meter in length. Excellent value at
$£ 10.95$
M58

CAR RADIO/ CASSETTE

2 band car radio/stereo cassette player. Long and Modum waveband coverage. Rotary controls to
anoff/votume, tone, balance and tuning. Push on-of/ vatumb, tong, balance and tuning. Pushwind Output 2×3 Watts (music) 12 volts.
$£ 34.95$
M59

MODEL CAR RADIO

Scale model car incorporating single band radio. Excellent quality sound with clever design of controls incorporated in the car components.
£5.95
M57

RADIO

CONTROLLED CAR

Formula One Racer
4 function, forward, reverse, steering left to right
No wires, remote control
$£ 19.95$
M56

North \& Midlands
67 High Street, DAVENTRY
Northamptonshire
Telephone: 0327276545

YOU HAVE PROBABLY at some time watched a radio controlled model, the pilot gracefully landing his aircraft after a perfect flight at exactly the right spot or the helmsman taking his boat on a chosen course, or the driver taking his car around a difficult track. Ability of this nature does not come overnight but with time, devotion and practice

Firstly, let's look at the equipment. In proportional control the movement of the remote output device (a servo) follows in strict proportion to the movement of the transmitter control, usually a joystick. This type of control is a must for all but the crudest system. The radio link part of the system must be 100% reliable, the choice of $A M$ or $F M$ is one of personal preference rather than actual performance. It is, however, convenient to be able to change the radio frequency of the system, usually by plug-in crystals, so that several models may be operated in one location each having its own radio frequency denoted by the colour of the pennant on the transmitter arerial

A superior quality radio system (the Strato Transmitter and Receiver), incorporating the above features, has been described in the May and June issues of ETI, giving full details for the home constructor. Now let's discuss the Servo and what follows to control the model.

Prime Mover

Servos typically consist of a high quality electric motor prime mover, a train of gears, to step up the available thrust and drive the feedback device, usually a pot, and an amplifier, usually a special purpose IC plus a few discreets to convert the input signal to a useful power
sufficient to drive the motor. The physical output of the servo may be either semi rotary 80-90 degrees travel total, multi turn rotary as for a winch or linear motion of approximately 12 mm total travel, Servos are available both in kit and ready-made forms. Their power requirements are normally supplied from the receiver battery except in the case of heavy duty servos where a separate battery may be required

The mechanical connection to the servo may be by one of the devices featured here and the thrust transmitted to the control point by push rod or if straight line operation is not possible, by Bowden cable or nylon snake. Whichever system is used, careful planning of the installation is essential so that adjustments can be easily made and geometric errors are avoided. The linkage must be free but not sloppy and, most important, neither lock in any operating position nor reach a solid stop at either end of travel otherwise if the servo is left in this position, stalled, for any length of time it would drain the battery sufficient to cause intermittent failure of the remote system. Remember the receiver is connected to the same battery

Rotary or Linear

Most semi rotary servos have an output device which is symmetrical on at least one axis with a series of holes at various radii to give a choice of travel dimension and thrust and whilst one not only gets linear motion there is a certain amount of unwanted sideways movement also, which when operating distances between servo and control point are short say, 100 mm or less can be very noticeable and cause jamming against adjacent sur-
faces. Linear output servos avoid this problem but neither their travel nor therefore their thrust can be adjusted. The Fleet servo recommended with the Strato system comes as standard with both semi rotary and linear output types of device so that either may be fitted.

R/C Pig Tails

Sometimes it becomes necessary to manufacture a piece of linkage, say an extension to a servo arm to increase the travel beyond that which the servo normally gives. When doing so ensure that a non-conducting material is used (fibre glass PCB with the copper removed is ideal). In any situation metal to metal moving connections must be avoided at all cost once modern model receivers' sensitivity is such that this can cause interference of sufficient level to be decoded and cause the servos to twitch. If metal to metal connection cannot be avoided then a flexible pig tail conductor should be bonded to the two metal parts in question.

In planning an installation the semi-complete model and radio equipment should be available so that a trial run may be carried out before any part is fixed in permanently. At this time the servo travel required should be determined as well as ascertaining that the direction of travel matches the control stick direction and axis - left, right, up, down, fast, slow, etc. Reversal of servo direction of travel may most simply be carried out by transferring the pushrod from one side of the output device to the other, or it may be electrically carried out by reversing the motor and end connections of the pot.

Front Heavy Crashes

In general, installation cannot follow any standard pattern since it is dictated by the form of the model. In models which are known to travel at speeds in excess of 5 mph it is worthwhile trying to arrange the layout so that the equipment is placed in order of descending mass from front to rear so that, in the event of an abrupt stop in the direction of travel, the lighter and generally weaker pieces collide with the heavier pieces in front of them.

An installation the writer has found effective for use in model power boats, where the general layout of all models is similar, namely engine amidships and rudder astern, is a set of equipment permanently installed in a rigid plastic lunch box with an air/water tight lid. The receiver batteries and two servos are installed in the box and short screw adaptors fitted to the servo outputs protruding from diagonally opposite corners. Each boat is then fitted with pushrods of appropriate length to engine throttle and rudder terminating with matching male threads and lock nuts. Thus the box can be transferred from model to model in a few minutes even at the pond side. The box sits on a pad of $1 / 2^{\prime \prime}$ foam rubber (never use plastic) and held down with moderate force by 2 crossed over elastic bands. It should be noted

The impressive 60 inch Chris Craft cruiser.

The Chris Craft cruiser is fitted with a 15cc 4 -stroke petrol engine. The radio control unit is housed in a plastic lunch box.

A radio control model helicopter - not for beginners!

When using a rotary servo with a push-rod, allow for sideways movement when mounting the servo in a tight spot.

RADIO CONTROL GUIDE

The ideal pushrod (top) is straight. Moral: beware of bendy pushrods.

The Marble Head 50 inch yacht has a radio winch and rudder (above). The ideal trainer R/C model aircraft (below) - the 'Super Sixty.

that the on / off switch is always fitted to a vertical face of the box to prevent water lying on the surface of the switch and the aerial is taken from a hole on the vertical face also.

The aerial location must be given some thought at the time of equipment installation. In general one wants to position it away from the machinery as far as possible. On aircraft, the aerial may most conveniently take the form of a stranded wire which emanates from the fuselage somewhere near the wing centre and attaches to the fin, keeping taught by a looped elastic band held in place by a glass headed pin. On boats, a stern sighted whip aerial of 20 gauge piano wire with a simple screw on fixing at the deck and non-eyecatching loop formed at the other makes a practical arrangement.

Protection Racket

At the planning of installation stage consideration must be given to protecting the equipment from both vibration and impact loading in the event of a crash Servos come with this feature built-in in the form of rubber grommets inserted in their fixing lugs, which, providing all screws are fitted and not tightened excessively, is adequate protection. The receiver, possibly the most delicate piece of the equipment, should be packed completely in at least $1 / 2^{\prime \prime}$ thick sponge rubber (not plastic) or alternatively, inside a foam rubber tube now available from model shops. It is also worthwhile making sure that the batteries, the heaviest part of the equipment, are either similarly packed or securely anchored so that in the event of impact they cannot fly around and cause damage to more vulnerable pieces of the equipment or the model itself.

So much for generalities. We now consider the various types of models broadly and point out features of which the newcomer may not be readily aware. Table 1 shows various types of model. It descends in order of skill required to operate together with their environmental nasties. By 'skill to operate' we mean simply the ability to control safely and bring home in one piece!

Buddy Box

This is a useful feature of the Strato system in that two transmitters can be coupled together so that the command may be transferred from one transmitter to the

TABLE 1

\begin{tabular}{|c|c|c|c|c|}
\hline Model Type Helicopter \& \begin{tabular}{l}
No. \\
Servos Four
\end{tabular} \& \begin{tabular}{l}
Comment \\
Much mechanical skill required to install the R/C equipment. Subject to much vibration from engine. Not easy to learn to fly, buddy box required for beginners. If they crash they don't break they explode! Definitely not for the newcomer.
\end{tabular} \& Model Type R/C racing cars I/C engin \& No. Servos Two e \\
\hline Scaled down full size model aircraft \& Four to six depending on complexity \& Very worthwhile to build if this is one's interest but not as a first model. Choice of subject endless, but all important. Generally weight is a problem particularly at tail end. R/C equipment may be subject to some vibration due to having to pack near engine. \& R/C cars electric \& One or two \\
\hline Power model aircraft designed for R/C \& Min three \& The model to start with - high wing monoplane. Wing span \(48^{\prime \prime}\) \(60^{\prime \prime}\). Engine size \(5-8 \mathrm{cc}\). Gloplug with speed control. The simpler the model the better. Roomy fuselage for simpler equipment installation. Essential to be able to control engine speed from tick-over to max rpm. Elevator and either or both rudder and aileron control depending on model. Follow the kitmaker's or designer's instructions precisely. \& Power boats

Yachts \& Two
Two

\hline Gliders-both towline and slope soaring \& Two to four \& Probably the easiest of all flying models. Wing span 60' $-120^{\prime \prime}$. Main controls rudder and elvator; ailerons secondary. Some towline gliders have towline release servo. No vibration problems here - just have to defy gravity for as long as possible! Build accurately and carefully to designer's or kitmaker's instructions. \& Tanks, robots, spaceships \& thingies \& One to six

\hline
\end{tabular}

Abstract

comment Some mechanical ability required to install and maintain R/C equipment. Equipment subject to severe vibration and operational stress. Must be installed inside sealed boxes to prevent the ingress of dust and dirt thrown up from the track. Probably the most punishing environment into which R/C equipment is put. A lot of fun if you are competitive by nature, having learnt to drive not so much fun operating solo. As with above but since they can be operated indoors ie a school hall, do not pick up so much dirt. Vibration much less. Wide choice of scale subjects you may only have dreamt of owning one day. If you are really keen on building a true scale model of a subject this is the place to start. Alternatively, a simpler semi-scale power boat gets you at the helm quicker. See recommended R/C equipment in any boat because get wet it surely will. Weight not too important. Again an ideal beginners' subject, but one of the servos should be some form of winch to control the sail position and winches cost two to three times that of servos. Good size for portability and sailing in varying weather conditions is known as the Marblehead Class, $50^{\prime \prime}$ long. Fits on the car's back seat too! Tanks and other AFVs have their installation normally determined. by the kit manufacturer, so just follow the yellow brick road. Robots and so on are for those who. want to be creative together with the ability so to do.

other. This is helpful when one is learning to operate a difficult model since the tutor can give the pupil control at his instigation and take back control should the pupil be having difficulty. Husbands and wives can have fun this way too!

Slope Soaring

This is where a model glider is launched from a hillside onto the face of which a steady wind of $5-15 \mathrm{mph}$ is blowing, causing an up-current of air in which the glider flies (watch seagulls soar on the cliff top).

Do's and Don'ts

Finally a few obvious do's and dont's for the newcomer to R/C modelling. Do obtain a GPO licence for your K/C equipment. It costs $£ 2.80$ for five years and is obtainable from The Home Office, Radio Regulatory Department, Waterloo Bridge House, London, SE1 8UA. In this way our numbers will swell and when the authorities are reconsidering radio frequency allocation, which they are at this time, then the more licence holders there are the more consideration we shall receive. It is also illegal to operate without a licence.

Do fly a pennant of the appropriate colour of the crystal frequency in your transmitter, eg brown -26.995 MHz , etc.

Don't attempt to operate any model unless you know the equipment is functioning perfectly - remember all models
are potentially dangerous. Initially with new equipment one should carry out a full range check at what is likely to be the greatest distance $+10 \%$ one is going to operate. Thereafter a collapsed transmitter aerial check before each session is advised.

Do enquire of your local Sports Council representative as to his knowledge of the place in your vicinity where you can operate the type of model you wish. Again, the more enquiries, the greater the likelihood of better facilities.

Do seek help from other modellers but don't disturb one while he is performing with his own model, or better still join a club.

Don't carry your transmitter in the boot of the car unless supported on sponge since the vibration on say a motorway journey can play havoc with screw fixings and electronic adjusters.

Do ensure your model creates as little pollution as possible, namely noise, smell and particularly oil on pond water. Remember that what turns you on might be the next fellow's reason for initiating a petition for getting your activity stopped on the grounds of pollution.

For further information.
STRATO R/C system manual, price $£ 2.75$ is available from Remcon Electronics, 1 Church Road, Bexleyheath, Kent.
Radio Control Guide, price $£ 3.95$ is available from Radio Control Publishing Co Ltd, High Street, Sunningdale, Berks.

ET

Measure Resistance to 0.01Ω At a Price that has no resistance at all

New Elenco. precisin Digital Multimeter M1200B

($£ 3$ P8p $+V A T £ 8.70=\mathbf{8 6 6 . 7 0})$

THE ULTIMATE IN PERFORMANCE MEASURES RESISTANCE TO 0.01 OHMS, VOLTAGE TO 100 MICROVOLTS, CURRENT TO 1 MICROAMPS AT LOWEST EVER PRICE!

FEATURES

- $31 / 2$ digits $0.56^{\prime \prime}$ high LED for easy reading
- $100 \mu \mathrm{~V}, 1 \mu \mathrm{~A}, 0.01 \Omega$ resolution
- High input impedance 10 Megohm
- High accuracy achieved with precision resistors not unstable trimpots
- Input overload protected to 1000 V (except 200 mV scale to 600 V)
- Auto zeroing, autopolarity
- Mains (with adaptors not supplied) or battery operation-built-in charging circuitry for NiCads
- Overrange indication
- Hi Low power ohms, Lo for resistors in circuit, Hi for diodes

ME
Maclin-Zand Electronics Ltd
38 Mount Pleasant, London WC1XOAPN Zand
Tel. 01-837 1165
Telex. 8953084 MACLING

CLEF KITS

Designer approved quality kits for Electronic Musical Instrument Construction.
IOANNA 72 \& 88 PIANOS
Six and $71 / 4$ Octave Electronic Pianos with unique Touch Sensitive Action, as used in the P.E.
JOANNA, which electronically simulates piano key inertia - a feature not available in any other design.

P.E. STRING ENSEMBLE

Component Kit
Cabinet Kit
$£ 164$
£52

A fantastic sound at an economic price - hear it yourself on a demonstration cassette for $£ 1.00$.

Specialists in all sizes
of square Front Keyboards
Send SAE to:
CLEF PRODUCTS (Dept E.T.I.)
16 Mayfield Road, Bramhall, Cheshire SK7 1JU.

ELECTRONICS TODAY INTERNATIONAL - NOVEMBER 1979
 \section*{Hobby
 \section*{Hobby Electronics}

HAPPY BIRTHDAY TO US

Yes, it's HEs first birthday next month, as a special treat to all our readers we will be featuring an eight page pull-out section containing masses of useful data. How to de-code those colour coded components, how to connect up all those little legs on ICs and transistors, everything in fact (well, nearly everything) you'll ever need to know.

TV BROADCASTING

Even if you can only get two channels (indust rial action notwithstanding) you can still find out all about how those exciting episodes of Crossroads and the Magic Roundabout (no they're not using the same actors) reach the flickering picture box in the corner of your living room. What dramas never reach the watchful eye of the camera, how high is Nicholas Parsons in real life, these are some of the questions that probably won't be answered next month.

WRIGHT FIRST TIME

Congratulations to Mr D. J. Wright of Bodmin Cornwall, and Mr P. R. Cheeseman of Birstall Leicester, for winning the first and second prizes in our August Scope competition - more details next month. In the meantime we'll be contacting all the winners and runners-up by post.

HEBOT

From the darkest corners of the HE workshop comes a new terror to strike fear into the hearts of brave men (and women, if they dare). HEBOT is here, from an original design by the Gonoids of Andromeda it will over the next few months develop into a creature to rid you of the mother-in-law for ever. The first part next month will describe how to assemble the locomotive and propulsory support mechanism (Chassis and drive gear to mere earthlings) and basic sensory perceptors. The basic module will perform evasive manoeuvres and month by month we will attempt to increase its 'intelligence' until it is able to exist on its own. If our plans are fulfilled they will wipe out the human race HEBOTs will control the universe Exterminate, we will exterminate

INTO LINEAR ICs

This month just over half-way through the series, Ian Sinclair takes leave of the 741 to start anew with the famous 555 timer, as usual all of the circuits are practical, tried and tested. For those of you following the series with the Eurobreadboards we will include all of the codings for the board.

KIT REVIEW

Something out of the usual in the way of kits next month, we shall be looking at a rather novel car burglar alarm. This new kit should be of interest to anyone wanting to protect their vehicle, without having to take out a second mortgage to buy the kit.

BREAKER ONE FOUR

Following our disclosure this month you can be sure that next month's Breaker One Four will have some more very interesting revelations. Remember Breaker One-Four is Britain's first and best, regular Citizens Band feature.

MINI-MODULES

We've been promising some Vero-Board based projects. Well, here they are, ten of them, all using a commercially sized piece of strip board All of the Modules can be used either as building blocks for larger, more ambitious projects or used on their own as projects in their own right.

The November issue will be on sale October 12th

[^3]
PINBALL TV GAME

A dedicated chip TV game may seem strange in these days of the programmable? It won't when you consider the unique games and the fact that this EXCLUSIVE ETI PROJECT will only ever be built by $\mathbf{5 0 0}$ people.

THIS TV GAME is a dedicated chip version of a game which has been available on cartridge models for some time - breakout. In addition to this, however, there are four pinball games and two solo 'basketball' type of game which are rare - if not unique. The breakout is highly addictive we warn you - it has amazing potential for stopping all life beyond the paddle control. And as only 500 of the chips are available, the Jones's will have some trouble keeping up! The pinball games are available in both flipper and paddle options - and also a small bat option for inflicting greater frustration upon oneself.

Breakout!

Undoubtedly our favourite game was the breakout. It comes in four options, of which the simplest is the most fun. Each hit knocks a brick out of the wall, until a gap right through is produced, and then the ball can
demolish the wall from the back, but note that the bat goes down to half size as soon as the ball hits the rear wall and the ball speeds up on contact with the back three rows of bricks.

In addition the angle at which the ball deflects from the bat alters radically on the eighth 'hit' - just to keep things interesting. You have seven balls to remove two sets of walls, appearing consecutively, from the screen.

Two other versions provide small bat and only five balls with which to work.

Other Attractions

Rather than iterate every last little detail, we've used screen display photos to show the games and options available around those games. Pinball with a paddle is entertaining - to put it mildly!

Solo basketball requires that you keep the ball bouncing on the bat,

Breakout untouched

Breakout begun - and badly!

and then press the enter flipper button to "fire the ball upward to the targets. The longer the ball has been bounced on the bat, the more energy it possesses on firing.

No PSU is shown here, beyond a suggested circuit, because these 9 V battery eliminators are available commercially at prices that probably make them cheaper to buy than build. If you must go it alone then this is not critical. All that is required is 9 V at about 1.0 mA or thereabouts.

Construction

There is no setting up to be done, apart from tuning your TV to channel 36. All the components mount onto the PCB, including the modulators, so building up the game should pose no problems at all. Use sockets for the ICs as the 'capital cost' is low compared to that for a new set of chips!

Mount up all the 'passives' first, then the modulators and Xtal. Test your 5 V line before plugging in the ICs if possible. If all is well fit a UHF lead and plug into the aerial socket of, the TV set. The signal should appear somewhere around channel 36 , at which point the white noise will vanish and the first pinball game appear on the screen. The brightness and contrast may need adjusting to get the best display - use the breakout game for this. All three tones of brick should be clearly distinguished from one another

Pressing game select should step the display through the range of games available, with Reset getting things under way

HOW IT WORKS

As with all LSI based games, there is little outside the games chip package of which to speak. All the video sound and sync signals are generated within ICl. The 2112 RAM is provided to hold the 'game selected' signal and score. This is refreshed by ICl whenever an increment is added by play. At the end of each game (in breakout and basketball) the final score is loaded for display on the screen during the next game. The pinball game scores would require too much screen space, and too many bits,
o store.
Q1 and associated circuitry regulate the 9 V input from the external PSU to a stable 5 V to drive the units' own circuitry. The clock frequency is set by XTAL1, C9, C11, and R14 forming a standard Xtal oscillator. IC3 is a 4019 Quad and/or multiplexer to interface SWl-SW6 with the select lines of ICl.
Paddle control RV1 is 'padded' by the 27 k resistor to prevent a 'zero resistance' condition between the 5 V line and ICl .

BUYLINES

NIC Models supply all the components for this project.

A complete kit is available for £28.95 all inclusive. Individual components may be purchased as follows:
PCB and Game Chip:
£19.90 all inc.
Modulators: $£ 5.80$ pair Xtal $£ 3.00$ all inc.
The PCB is copyright NIC models and may not be obtained elsewhere. See ad elsewhere in this issue for ordering details. Likewise the chips (all 500 of them!) are initially single sourced.

PARTS LIST

RESISTORS	all $1 / 2$ W 5%
R1	100R
R2	3k3
R3	1 kO
R4	680R
R5, 6, 15	2k2
R7-12	10k
R13	100k
R14	1 k 5
R16	27k
CAPACITORS	
C2, 3	220 u 16 V electrolytic
C4, 10, 12	100 n polyester
C5	10 n polyester
C8	470p polystyrene
Ca	4 p 7 ceramic
Cu	33 p ceramic
SEMICONDUCTORS	
IC1	See text
IC2	2112
IC3	4019
Q1	BC 337
ZD1	5 V 1400 mW
MISCELLANEOUS	
XTAL (3.57 MHz): Modulators	
RV1 (250k linear) Box to suit	
PCB	

Intemal view of the unit, showing the space left to mount a PSU board should you desire to power it this way.

ANALOGUE DELAY LINES

Don't do now what you can put off for a few milliseconds. Need to delay a signal? Tim Orr shows you how to do it and suggests some applications for analogue delay lines.

THERE ARE MANY natural phenomena which are 'caused' by time delays. All acoustic instruments and, in fact, everything in acoustics is time related. It is, therefore, hardly surprising that several manufacturers produce electronic time delay integrated circuits. These are called analogue delay lines or sometimes, 'bucket brigade delay lines' as this accurately describes their operation.

Fig. 1. Bucket Brigade delay lines.

Quantum Buckets

The device can be thought of as being a series of buckets containing water. (Actually it is a series of capacitors containing charge.) The signal presented to the input fills up the first bucket to the level of that signal. This occurs on phase I of a controlling clock signal. On the second clock (phase II), all the odd buckets tip their water into the even buckets. No input sampling occurs on clock phase II. On the next clock phase (phase I) the input is sampled and all the even buckets tip their water into the odd buckets. In this way a signal propogates down the delay line which represents the input signal as a series of 'samples'. The buckets are really analogue sample and hold units and the tipping is done with
electronic switches. This technique is a cross between analogue and digital processes. The cross between analogue and digital processes. The charge stored (which is proportional to the input voltage) is truly analogue, but it is quantised into small units of time and so, in that sense, it is digital. If the delay line is, say, 512 stages long and the clock frequency is 512 Hz , then the delay time will be:

$$
\frac{\text { number of stages }}{2 \times \text { clock frequency }}=0.5 \mathrm{sec}
$$

That is, after 0.5 sec a waveform representing the input signal of 0.5 sec earlier will appear at the output. In the example shown in Fig. 1, this signal would only appear at the output for the duration of clock phase II. To fill in the gaps, a second delay line connected in parallel with the first, but clocked in antiphase, is used, so that a delayed output signal appears on both clock phases.

Delay lines would seem to solve a myriad of electronic problems but with every solution comes a host of new problems. First, the maximum bandwidth of the delayed signal is proportional to the clock frequency. As the signal is sampled, then the 'sampling theorem' says that the signal bandwidth must be less than half the sampling frequency, which, for practical purposes, means about one-third. So, if you want to delay an audio signal of 10 kHz bandwidth by 1 second, then the number of stages delay needed is 60,000 . This will cost you a few hundred pounds in delay lines. If you choose a lower clock frequency requiring fewer delay lines then you will have to make do on a reduced bandwidth. If this bandwidth is not controlled by use of an external lowpass filter, then a phenomenon called aliasing occurs which makes the delayed signal sound as if it has been 'ring modulated'. A typical delay line structure is shown in Fig. 2. A lowpass filter is used to band limit the input signal which prevents the aliasing effects. A second filter is used to recover the quantised output from the delay line by rejecting all the unwanted high harmonics.

The input signal level is always larger than that of the output signal because the buckets are leaky, although the leaks occur in both positive and negative directions. Also, the slower the clock frequency the longer the leakage time is and so the loss is greater. This is a major noise generating mechanism. The noise is broad band, being strong in low frequencies (just the area you are listening to), and becomes louder and more bassy as the

Fig. 2. Block diagram of a typical delay line system.
clock frequency is reduced. This results in signal to noise ratios of about 70 dB for maximum frequencies. To overcome the poor performance at low frequencies a noise reduction system such as a compander can be used. The distortion caused by delay lines is typically about 1% and the overload characteristics are not at all good. Heavy overloads can cause the delay lines to stop producing any output at all. The solution is to limit the input level, with some simple sort of diode limiting. One other gremlin is that the output DC level varies with clock frequency which causes some awkward break-through effects. However, once you are fully aware of the limitations of delay lines, it is possible to design a wide range of interesting devices. Delay lines work surprisingly well when you consider that they move a very small packet of charge through several hundred memory stages with a corruption of only one part in 10,000 to 100,000!

Fig. 3a. A delay line circuit based on the TDA1022.

Some Delay Line Circuits

Two delay line circuits are shown in Fig. 3. The top one uses a delay line made by Mullard/Signetics. A two phase clock is needed. A preset adjusts the input DC bias so that when the device is overloaded, the clipping is symmetrical. A balance control on the output balances the two outputs for a minimum clock breakthrough. This preset is particularly useful when long delay times with audible clock frequencies are used.
The second delay line is the SAD512D made by Reticon. This device has the same two preset controls but only requires a single clock signal. There is a complementary clock generator (a divide by two flip flop) on the actual IC. The input clock must therefore be twice the calculated frequency.

If long delay times are needed, then there is the Reticon R5101 which will give you a 1 second delay at about 500 Hz bandwidth. This device gives a superb automatic double tracking effect $(50 \mathrm{mS}$ at 10 kHz bandwidth) but unfortunately it's rather expensive.

Clock Generators

A selection of clock generator circuits is given in Fig. 4. Circuit A is a standard CMOS relaxation oscillator. The IC costs only about 20p and generates complementary square waves; the minimum frequency of operation is about 1 MHz (with a suitable timing capacitor) and the manual control range is about 50 to 1 . It is not very practical to voltage control the frequency of this oscillator.

Fig. 4a. A standard CMOS relaxation oscillator.

Fig. 4b. The frequency of this clock generator is determined by C1.

Circuit B uses an NE566 which is a voltage controllable oscillator IC. The frequency may be controlled via the capacitor C 1 or by interposing a potentiometer or a controlled current source at point X. The output square wave needs to be level shifted and this is done with Q1. The maximum frequency using this circuit should be limited to about 100 kHz . For higher operation up to 1 MHz , a faster level shifter is needed.

Circuit C uses a CMOS Schmitt trigger and a couple of transistors. This oscillator can readily be controlled by a current generator. The output waveform is a short positive going pulse. A divide by two flip flop converts

Fig. 4c. This clock generator uses a CMOS Schmitt trigger. The flip flop produces a pair of complementary square waves.
 filter.

1. Select the correct length delay line for the job in hand. Decide on the signal bandwidth needed.
2. Design the low pass filters to have a cut-off frequency equal to the signal bandwidth.
3. Select a suitable clock oscillator that will generate the correct output (single or complementary) at a high enough frequency. Select a voltage controlled design if it is needed. Calculate the required clock frequency.
The following examples show delay line systems. The boxes depicting delay lines include suitable filters. slew rate op. amps.

this pulse into a pair of complementary square waves.
Circuits D and E.employ the fast slew rate ($13 \mathrm{~V} / \mathrm{uS}$) of the Texas B1 FET Op Amp range. This enables them to oscillate at high frequencies and to generate square waves with fast edges. Circuit D is a manual control device and circuit E is voltage controllable.

DIY Design

A 'do it yourself' lowpass filter chart is shown in Fig. 5. This filter is a 4th order Butterworth design. The roll-off slope is 24 dB /octave. This means that signals one octave above the cut-off frequency are attentuated by $24 \mathrm{~dB}(\times 0.06)$, at two octaves the attenuation is 48 dB $(\times 0.004)$, etc. Also the filter has a pass band gain of $8.3 \mathrm{~dB}(\times 2.6)$.

The design procedure for constructing delay line systems is as follows.

Fig. 6. By taking the sum and difference between the original and delayed signal, a comb filter response is generated. The notches are spaced at $1 /(J T) H z$, where ΔT is the delay time.

Fig. 7. Note that a long time delay produces lots of notches, a short time delay, only a few. A very popular musical effect is phasing. This uses a slowly sweeping comb filter. That is, the delay time, and hence the notch spacing, are modulated with a slow moving sine wave.

Fig. 8. Flanging is another similar effect, except that feedback is applied around the delay line. When this feedback is in phase with the input, a peak in the frequency response is generated. A pot is used to control the feedback and hence the amount of 'peakyness' of the filter. Flanging produces very strong colouration of the sound.
automatic double tracking (adt)

THE DELAY TIME SLOWLY SWEEPS
a Distinct second image is heard
Fig. 9. Automatic double tracking (ADT) is used to add depth and a chorus quality to solo singers and musicians. The delay time is relatively long so that a distinct second image is heard. This image is slowly swept backwards and forwards in time thus adding to the chorus quality. It is such a useful effect that even my singing sounds good!

Fig. 10 shows a 'true vibrato' system. This produces a real frequency modulation acting upon all of the input signal. By rapidly modulating the clock generator frequency the time delay is similarly modulated. This causes the output signal to be compressed and expanded in time, resulting in vibrato.

Fig. 11. All electronic echo is obtainable using long delay lines, although you generally have to trade off bandwidth for echo time. Electronic echo systems usually have three controls: time delay, echo volume and repeat level. This last control enables you to vary the echo from a single slap back echo to a long series of repeats.

Fig. 12. Electronic string machines nearly always have a chorus/ensemble generator. This is a device that causes complex phasing on the string signal that converts it from a rather flat electronic signal to a rich string-like sound. This is done with three delay lines that have their delay times modulated by three low frequency sine-waves.

Fig. 13. It is possible to remove record scratches and clicks using a delay line. A scratch on a record is a relatively easy signal to discriminate from the music. However, once the scratch has been detected, the sound of the scratch has already left the loudspeakers and so it is too late to do anything about it. However if the sound is delayed then the scratch can be 'snipped out' using a track and hold circuit. The resulting gap is far less objectionable than the original scratch.

CHIPTESTER FOR NASCOM 1

Brand new fantastic product for Nascom 1 owners. Use your Nascom to test all those surplus and suspect ICs and sort out the good ones from the duff ones.
Just clip the IC in to the test clip provided and use the Nascom to examine the logic levels on each input and output. A graphical representation of the chip showing all pins and their logic levels is shown on the screen
Tests all 5 V TTL ICs up to 16 pins. Includes commands for automatic and manual testing of logic levels of all inputs and outputs simultaneously.
All inputs may be changed under keyboard or program control including continuous test mode.
Propagation delays may be calculated using an oscilloscope.
Routines to test ICs may be stored on cassette for later use.
Uses 2 ports on minimum Nascom system. No expansion whatever required.
Comes complete with all parts, full comprehensive instruction book, cassette with program and sample programs for popular ICs.
Send s.a.e. for free descriptive leaflet.
Price inclusive of VAT and postage

$£ 19.50$

Orders will be dealt with by return of post subject to availability of stock. Stockists of Apple Micro Processor and Peripherals Access and Barclaycard welcome

STRATHAND

 44 St. Andrew's Square, Glasgow G15PL

Master Electronics The practical way No maths needed~ Nodull theory-

[^4]

Build the World Famous CHROMA-CHIME

Give your friends a warm welcome
This kit has been carefully prepared so that practically anyone capable of neat soldering will have complete success in building it. The kit manual contains step by step constructional details together with a fault finding guide, circuit description, installation details and operatıonal instructions all well illustrated with.
numerous figures and diagrams.

- Handsome purpose built ABS cabinet
- Easy to build and install
- Uses Texas Instruments TMS1000 microcomputer

Absolutely all parts supplied including I.C. socket

- Ready drilled and legended PCB included
- Comprehensive kit manual with full circuit details
- No prevıous microcomputer experience necessary
- All programming permanently retained is on chip ROM
- Can be builtin about 3 hours'
- Runs off2PP3typebatteries.
- Fully Guaranteed

* Saue poundo an nommal retail price by building yaunself.
TMIS 1000 N - MP0027A Micro-
computer chip available separately if
required Full 24 tune spec device
supplied with data sheet and fully
guaranteed
New low price only 84.95 inc. p\&p

R/C MODELLERS - LISTEN

 FOR THE C.B. MENACE GET A 27MHZ MONITCR* Audibly confirm your channel's clear.
* Tunes over whole 27 mhz model band. (CB)
* Receives normal broadcast AM/FM bands as well.
* Sensitive with telescopic aerial.
* Totally portable.
* Runs on standard batteries.

This neat three band Superhet receiver not only provides an invaluable service, checking your channel and TX, but checking your chancast reception when you need it as well.
Costingless than
cent Servo, you'll
find it cheap and reassuring insurance!
ALL CHROMATRONICS PRODUCTS SUPPLIED WITH MONEY BACK GUARANTEE
Please send me: ETI.11.79
TO: CHROM ATRONICS, RIVER WAY, HARLOW, ESSEX
NAME
ADDRESS

I enclose cheque/PO value $£$
or debit my ACCESS/BARCLAYCARD account no.

Signature
GHROMATRONIES

EXPERIMENTOR BREAD BOARDS FROM

CARBON POTS (Linear Track)
Single gang with wire end terminations, $6 \mathrm{~mm} \times 50 \mathrm{~mm}$ plastic shaff 10 mm bushes supplied with shake proof wash and nut. Tolerance 20% of resistance.

1831 k ohms	1837100 k ohms
18322 k 2 ohms	1838220 k ohms
18334 k 7 ohms	1839470 kohms
183410 kohms	18401 Meg
183522 kohms	18412 M 2
183647 k ohms	All at 30p each

CARBON POTS (Log Track)

18424 k 7 ohms	1847220 k ohms
1843 10k ohms	1848470 k ohms
184422 kohms	18491 Meg
184547 kohms	18502 M 2
1846100 k ohms	All at 30 p each

Designed to fit 2.54 mm pitch board. All tracks are linear law
1816100 ohms $\quad 182447 \mathrm{k}$ ohms $\begin{array}{ll}1817220 \text { ohms } & 1825100 \mathrm{k} \text { ohms } \\ 1818470 \text { ohms } & 1826220 \mathrm{k} \text { ohms }\end{array}$ 1818.470 ohms $\quad 1826220 \mathrm{k}$ ohms 18202 k 2 ohms 18281 Meg ohms 18214 k 7 ohms 18292 M 2 ohms $182210 \mathrm{kohms} \quad 18304 \mathrm{M} 7 \mathrm{ohms}$ 182322 k ohms All at 10 pench

DUAL CARBON POTS (Log Law) $\begin{array}{ll}18604 \mathrm{k} 7 \text { ohms } & 1865220 \mathrm{k} \text { ohms } \\ 186110 \mathrm{k} \text { ohms } & 1866470 \mathrm{kohms}\end{array}$ 186222 k ohms 18671 Meg $\begin{array}{ll}186347 \mathrm{k} \text { ohms } & 18682 \mathrm{M} 2 \\ 1864 & 100 \mathrm{k} \text { ohms }\end{array} \quad$ All at 99peach

SINGLE GANG SWITCHED (Lin Law) These potentiometers are fitted with double pole on-off switches. The switch is incorporated within the rotary action of the pot. Specification of pot is as Switch rating 1.5 amps at 250 V AC .
$18704 \mathrm{k} 7 \mathrm{ohms} \quad 1875220 \mathrm{k}$ ohms $187110 \mathrm{kohms} \quad 1876470 \mathrm{k}$ ohms 187222 k ohms $\quad 18771 \mathrm{Meg}$ $\begin{array}{ll}187347 \mathrm{k} \text { ohms } & 18782 \mathrm{M} 2 \\ 1874 \text { look ohms } & \text { All at } 75 \mathrm{p} \text { each }\end{array}$

DUAL GANG LONG-ANTI-LOG POT 1888 Track specification as dual gang log action 100 k ohms $£ 0.86$

SPECIAL VOLUME CONTROLS
A miniature 16 mm type replacemen volume control, incorporating single pole Toierance $\pm 20 \% 1 / 8$ watt rating. $1889 \quad \mathbf{E 0 . 3 1}$ VCB MINIATURE ROTARY VOLUME CONTROL
5 k ohms log law with on-off switch 20 mm grooved spindle. Tag connections 17 mm dia. Supplied with fixing nut. Used mainly for replacement. $£ 0.62$ VC9
WIRE WOUND POTS
A range of wire wound single gang pots with linear tracks of wart rating. fitted shakeprool washer and nut.
VC6
189110 ohms $\quad 1896470$ ohms 189222 ohms $\quad 18971 \mathrm{kohms}$ 189347 ohms $\quad 18982 \mathrm{k} 2$ ohms 89420 ohms $\quad 18994 \mathrm{k} 7$ ohms SWITCHED POT (Log Track) Specification as VC2 but track having (log)
18794 k 7 ohms $\quad 1884220 \mathrm{k}$ onms 1880 lok ohms $\quad 1885470 \mathrm{k}$ ohms 188122 k ohms $\quad 18861 \mathrm{Meg}$ $\begin{array}{ll}188247 \mathrm{k} \text { ohms } & 18872 \mathrm{M} 2 \\ 1883 & \text { 100k ohms }\end{array}$ All at 75 p gach Príe-SET POTS
HORIZONTAL MOUNTING
Miniature type for transistor circuits. The wiper of the preset is provided with a slot for screw driver adjustment. The tags of the preset will fit printed wiring boards with a pitch of 2.54 mm . All tracks are linear law.

1801100 ohms 1802220 ohms 1803470 ohms 1805 2k2 ohms 1805 2k2 ohms 18064 k 7 ohms 1807 22k ohms PRE-SET POTS PREREET POTS VERTICAL MOUNTING VERTICAL MOUNTING Mintature type for transistor circuits. Wiper adjus
driver slot.

809 47k ohms 810100 k ohms 881 220k ohms 812470 k ohms 8131 M ohms
8142 M 2 ahms 814 2M2 ahms All at 10 p aach ransist uits. ANTEX IRONS

200 ma

1 Amp

in
in 400023
40000

1.5 Amp
15015 s,

ISO27 800 v
I 50291000 v
3 Amp
in 5400
IN5400 50,
IN5401 100
IN5402 200v
iN5405 400v
IN5406 6002
IN5407 800 ,
IN540 1000
10 Amp
$1 S 10 / 50$
50
S10/50 50
S10/100 100 v
IS10/200 200 v
iS $10 / 400400 \mathrm{v}$
$\$ 10 / 600600 \mathrm{~V}$
IS $10 / 800800 \mathrm{v}$
IS $10 / 800800 \mathrm{v}$
IS 1010001000 v
IS $10 / 12001200 \mathrm{v}$
30 Amp
IS30/50
$1530 / 100100 \mathrm{v}$
$1530 / 200200 \mathrm{v}$
$530 / 400400 \mathrm{v}$
$\mathrm{S} 30 / 600600 \mathrm{v}$
$1530 / 800800 \mathrm{v}$
IS30/1000 1000
IS30/1200 1200V
70 Amp
$1570 / 50$
IS70/100 100
1S70/200 200 v
IS70/200 200v
IS70/400 400
$1570 / 600600 \mathrm{v}$
is $70 / 800800 \mathrm{v}$
is $70 / 1000 ~ 9000 \mathrm{v}$ BYx $38 / 30064300 \mathrm{~V}$
$\mathrm{BY} 38 / 6006 \mathrm{~A} 600 \mathrm{~V}$ by38/300 Rev 6A 300
By $38 / 600$ Rev 6A 600

AUDIO MODULES

SPECIAL OFFERS

MINIDRILL 12 v hand held battery-operated mini drill 7.500 r.p.m. Collet chuck ideal for drilling printed circuits or
$£ 7.79$ TRANSFORMER 240v Primary 0-20v@2A Secondary $8 y$ removing 5 turns for each volt from the secondary winding any voltage up to 20v@2A is obtainable ideal for the experimenter No. 2042 Sturdy $\mathbf{2 5}$ watt iron complete ANTEX MLX soldering iron. Sturdy 25 watt iron complete with $41 / 2$ metres of 2 -core 1724 ofr a 12 volt ballery. 5.29

JUST QUOTE YOUR ACCESS OR BARCLAYCARD NO.

1.w.t.5w Plasic and mesal 10w Meial stud ype sol Range of volioges avaliable

Three reviews this month - from speakers to decks via heads. Ron Harris takes up pen and ink to explain...

FELICITY KENDAL. There - that saves you wondering what feeble excuse I can possibly dream up this month to mention the lovely lady. Anyway it's my column and if I want to bring a little beauty into this magazine I shall!

All of which leads on, not at all well, to a new cartridge called the Coral MC81. This is a moving coil unit which will retail at around $£ 90$ in your local emporium. A fairly low price that in these days of the strong pound and weak knees. It arrived here a little late in the magazine month for the last issue and its performance was such that I didn't'want to go making comments until l'd had a better chance to evaluate at length (he said pompously. Well its better than admitting I was afraid of putting my foot in it - isn't it?)

A full review will appear in next month's Audiophile, once the MC81's matching head amp is available. First impressions were gained using a Sony HA55 and were very impressive indeed. It looks as though the MC81 could be the most exciting cartridge release for many a long year.

Slight doubt assails the editorial mind over the bass extension though. Anyway \mid refrain from further eulogising until next issue by which time the head-amp (H 300) it is designed to work with should have been introduced to it (and me!).

SUPEREX CLASSIC HEADPHONES

The Superex .classics caught the ear at a hi-fi show many. moons ago and so many buffalo have crossed the plains since then that it came as a distinct surprise to find them occupying my desk top one cold and foggy morn.

Now I am never fully sentient at the best of times, but pre-tea in the early morning light there is not a hope in Hades of the memory cells functioning - beyond remembering which train to get on. It is as well some clever PR person had marked the box 'Audiophile Review' else some nameless fate might have overcome them . . .

A limited range of Superex headphones are being imported by Goldring Products, and the Classics sit a comfortable second in the range. They originate in America - and it shows! Who else would fit a clip to the lead so that you can anchor the phones to your belt to prevent them being yanked from your head? (The amplifjer does a swan dive off the shelf instead, pulling deck and arm along with it).

Left: the Superex Classics being worn, somewhat dreamily, by ETIs Miss Dee. The headphones are fairly small and light, but the headband needs work.

Right: the Ditton 662 dressed and naked. The sheer size can be appreciated from the twelve inch bass units shown in the second shot.

CELESTION DITTON 662

Most of the air disturbances corresponding to grooves in plastic which have taken flight across my living room in recent years have emanated from the cones of Celestion Ditton 66 s - which is as wierd a way of saying that I am well used to them as you are gonna hear

Any new variation upon this well-loved theme was thus to be treated with a keen interest, honed by a suspicion born of not wishing to see a winning line changed.

The 662 I had heard on the hi-fi show circuits, but always in temperatures in excess of $80^{\circ} \mathrm{F}$ in rooms carpeted with wall-to-wall people. Better conditions were called for, and a pair was kindly provided for review by Celestion themselves.

Like their predecessors the 662 s are BIG speakers and will refuse utterly to blend in the wallpaper. They stand out. However they are nicely finished and of not unattractive appearance either grilled or naked! Their height places both midrange and tweeter above obstucting furnishings and provides a good amount of 'direct sound to the listener which in theory means a good stereo image

Place For Everything

Positioning of the.enclosures is vital to get the best from them - as it is with all speakers really - and Celestions accompanying leaflet provides some sound guidance here and should be well digested. Anyone paying around $£ 450$ for a pair of these speakers should not fear to move grannies favourite armchair if need be. Half a grand buys a lot of sticks of stones

Now came the moment of truth. Having suitably heaved the beasts into place, what sort of sound were they producing? I don't know what I'd expected from my previous listenings but whatever it was they still surprised me! The Ditton 66 is 'forward' in nature and has an excellent bass extension and quality, of which the only possible criticism is that the control could be better at upper-bass frequencies. In addition the mid and top is excellent although totally merciless to poor quality recordings or ancillary equipment.

Against this the 662 s were totally and utterly different. A different pact with the Devil has been struck for this example of the black arts. The bass control is much improved, without sacrifice in quality or extension. (These units can rattle windows with the best of "em!)

The sound is more recessed than the 66, but spaces out the image better. Mid-range is a little recessed in absolute terms but is very detailed and smooth. The treble is best described as simply 'good'. No unusual characteristics at all. The bass response is nothing short of phenominal!

Over a period of time you come to appreciate just how good these big Celestions really are and even at $£ 450$ a pair they must be excellent value for money. The sound balance is a shade too full if anything, and I prefer the HF2000's version of high notes to that provided by the new HF3000 tweeter employed here. However this unit does make the enclosures as a whole much more tolerant of lesser quality records etc.

One can 'listen though' the 622's to the music very easily indeed as they stand the sound out from the boxes, providing good depth and imaging in the process. As you can see from the test results no 'nasties' showed up under scrutiny and all around the 622 can be thoroughly recommended

Manufactured by Celestion Ltd, Ditton Works, Foxhall Road, Ipswich, Suffolk IP3 8JP. Price: circa $£ 450$.

TECHNICS SL 150 II

Turntables continue to cause no end of heated argument. A studious perusal of a typical months magazines might well lead you to believe that only one record turning machine is worth a second look.

However there are in fact a very appreciable number of decks of the highest quality available and for which any order of merit must be based purely on personal preferences. Let the buyer decide.

One such machine concerns me here - the Technics SL 150 II motor unit. Lying second in the range to the awe inspiring SP 10 is no disgrace, and the 150 has much to recommend it. I used one of these units for a month or so a while back and resolved then to devote some lines to it as soon as possible.

The finish is an excellent mettalic grey, with the control panel black and silver (buttons). The turntable itself is a weighty construct which has the motor magnet fixed to the underside. As always for Technics the standard of construction is nothing short of excellent.

Only one complaint so far - the mat (again). This if of the ribbed and grooved variety designed to minimise record support and maximise resonance. Both the Spectra and GA Audio (glass) mats significantly improved the sound quality of the 150 II . All listening tests were done with the latter platter on the deck and the Technics mat still in its box.

Direct Drive Of Quartz!

Quartz locked speed control is employed - almost compulsory these days it seems - and a frequency synthesiser allows speed variation of up to $\pm 9.9 \%$ upon reference. Two sets of seven segment LEDs read out selected speed and pitch variation - in increments of 0.1%. This I don't see the point of. Why not simply read out the speed the deck is actually turning at, and ditch the second set altogether? There is a strobe too - and the line of LEDs is just about visible through the little window in the control panel!

All this to check the speed of just about the most accurate control system there is! Come on Technics, have some confidence in yourselves!

The controls are lined up such that they will be outside the lid once closed and thus easier to get at. Operation is smooth - the switches are superb to operate - and (another) LED inside each verifies the very light action. On switch off electronic braking is applied to slow the deck. The effectiveness of this can be gauged by turning the power off and watching the platter spin to rest itself in what seems like hours - an excellent bearing, no sign of play at all is responsible for this.

Armed And Firing

The arm mounting panel deserves a mention - it is composed of a two inch thick block of wood, into which are set hexangle bolts to hold it securely in place. Nice and massive with little or no chance of anything moving around. Full marks there.

For the purposes of testing the SL 15011 was fitted with an SME Series III which necessitated the fitting of the leg spacers provided with the deck to ensure that the lead out did not foul the shelf.

It is probably a good idea to fit these pads in any event as they are good isolators too and will only assist the deck in ignoring the surrounding universe. Other than fitting the arm and turntable there is no setting up to be done a huge advantage over fiddly belt-drives which have to be optimised for best performance.

The review SL150 set up with an SME 3 and Coral MC81 (more next month on that). The spirit level is not part of the deck!

Above: Close up of the Technics control panel showing the LED readout windows, pitch and speed controls. Note the LEDs on the start/stop switches. These are a positive pleasure to use.

TEST RESULTS

CELESTION DITTON 662

Frquency response:	$50 \mathrm{~Hz}-20 \mathrm{kHz} \mid 4 \mathrm{~dB}$
Distortion:	$1.3 \%(100 \mathrm{~Hz})$
	$<0.4 \%(1 \mathrm{kHz}-20 \mathrm{kHz})$
Minimum impedance:	70 hms
Size:	$1000 \times 400 \times 300 \mathrm{~mm}$
Weight:	75 lbs

TECHNICS SL150 Mk2

Wow and flutter: < 0.02% peak (IEC 98A weighted) Rumble: <-75dB (IEC 98A weighted) $<-50 \mathrm{~dB}$ (IEC 98A unweighted)
Time to full speed: $<1 / 4$ rotation
Long term drift: $<\mid 0.001 \%$

My thanks to Dr Adamson and his department for their assistance in compiling these figures. Cheers lads!

Technics Technically

On the test bench the SL 150 makes you wish you hadn't bothered. It comfortably exceeded spec (and test gear limits) on just about everything. It says if all if I say that rumble, wow and flutter will never bother an SL 15011 owner. Figures given in the Test Report section.

Isolation from acoustic feedback was not as good, however, and the unit has to be used on a solid shelf. A coffee table will not do. With the feet fitted and a good solid mounting, though, feedback did not affect the sound audibly, even at ear compressing volumes.

Ear We Go

So how did sound? In a word - silent! The unit influenced the system sound very little indeed. Switching back and forth between the 150 and an STD 305M showed very little change indeed. Both gave good detailed results with outstanding bass response and a clear mid-range. If anything at all the 150 was the cleaner sounding all round, and I preferred the top end served up on the Technics platter.

Using a range of cartridges; Shure V15 IV, Coral MC81, Goldring G900SE Mk2 and Entré failed to show up any problems with hum etc. and so the unit can be wholeheartedly recommended as being of the highest quality and one which should be included in any shopping list where the aim is quality first. The price is high - about £240 but considering the prices its competitors sell for and the facilities offered the SL 150 II looks like good value for your money.

Technics Sales, 107-109 Whitby Road, Slough, Berks SL 1 3DR. Price. circa £240.

ETI

B.K. ELECTRONICS

AM/FM Stereo Tuner Amplifier chassis foriginally designed for installation into a music cenlres Ready builh. comprising of a tuner/pre-amp. beard. and separale power supply/power amp. buard. Note: Intercionnection wiring diagram supplied. Rotary Controls: Tuning. on/olf volume, balance. Ireble bass. Push-button Controls Mono. Tape. Disc. A.F.C. F.M (NHF). (W, MW. SW.
Power Output: 7 walts RMS per channel, at better than 2%
THO THO into 8 ohms. 10 watts speech and music. Frequency Response: 60 Hz . 20 KHz within $\pm 3 \mathrm{~dB}$. Tape Sensitivity: Output - typically 150 my. Input - 300
my for raled my ior raled output.
Bise Sensitivity: 100 my (ceramic carridge)
Radio: FM (VHF) 87.5 MHz . 108 MHz (Radio: FM NHF] $87.5 \mathrm{MHz}-108 \mathrm{MHz}$ Medium Wave $520 \mathrm{KHz} \cdot 1620 \mathrm{~K}$ Sharl Wave 5.8 MHz .16 MHz Size. Tuner -2^{3} in. x 15in. $x 7^{1}$ inin. Approx. Fower Amp 2in. $x 7$ in. x 4hin. Approx. 240 voll AC operation. Complete with circult diagram Price $-£ 22.00+£ 2.50$ P\&P.

B.K. ELECTRONICS

home computing bargains All of this month's offers have full keyboards, use
your tw as a vdu and wilt read and cassette recorders Ohio Scientitic Superboard II fuly assembled, 8K basic. 4 K ram, $£ 217+$ VAT slandard, includes modulator and psu; with 4 K ram $£ 399+V A T$: with 16 K tam $£ 450$ + VAT . 4 K SINCLAIR PRODUCTS
PFM200 £52.69, case $£ 3.40$, adaptor $£ 3.40$, connector kit $£ 11.27$. Microvision TV $£ 91.44$,
mains adaptor $£ 6.88$. PDM $35 £ 29.78$, adaptor $£ 3.40$, case $£ 3.40$. DM 350 £ 71,82, OM450 £102.17, DM235 £52.86. Accessories, for all 3 models, rachargeable batteries $£ 7.99$, mains adaptor/charger £3.94, case 59 . EnterDos.
COMPUTER GAMES
Chess challenger $7 \mathrm{E91}$. Chess challenger 10 £152.50. Voice challenger $£ 239$. Checker challenger $2 £ 46$. Checker challenger 4 £88. Atari
ndeo computer $£ 147$. Cartuidges $£ 14.32$. Sir

CONTINENTAL SPECIALITIES PRODUCTS EXP300 £6.61. EXP 350 E 3.82 . EXP 325 E1.84 EXP650 £4.14. EXP4B £2.64. LP2 £20.70. TV GAMES
£4.26. Stunt cycle Ay 3 - $878500 \mathrm{chip} £ 5.27$, ki £4.26. 10 -game paddle 2 AY 3.8600 , ki 65.95. kit $\mathbf{6 7 . 0 3}$. Racing car chip AY-3-8603 13.63. Modified shoot kit $£ 5.28$. Rifle £5.27. Colour generator kit $£ 9.05$. Joystuck 220 K
MAINS TRANSFORMERS
6.0.6V 100 ma 76 p , $11 / \mathrm{az}$ £2.80. $9-0.9 \mathrm{~V} 75 \mathrm{ma}$ 76p, 1a $£ 2.22$, 2a $£ 2.89$. 12.0 .12 V 100 ma JC12 ANO
JC12 ANO JC20 AMPLIFIERS
and printed circuits. JC12 6 warts $\mathbb{E 2 . 0 8}$. dC20 10 watts E 3.14 .
FERRANTI IN414
ic radio chip $£ 1.12$
E4. Case $£ 1.06$. Exira parts and $p c b$ for radio
PRINTED CIRCUIT MATERIALS
PC etching kits. economy E2.32, standard E4.36.
40 sq ins pcb 66 . 1 lb FeCl \&1 30 . pens. economy 50p, dalo 84 p . Drill bits $1 / 32{ }^{\prime \prime}$ ist $1 \mathrm{~mm} 2 \mathbf{2 7}^{\circ}$. Eiching dish 89p. Laminate cutter $32 p$.
S-decs and t-decs

BATTERY ELIMINATORS
Way types with switched outpui and 4 -way
mudti-jack. $3 / 4 \% / 6 \mathrm{v} 100 \mathrm{ma} \mathrm{\epsilon} 2.39,6 / 7 \% / 9 \mathrm{v}$ 3 muti-iack. $3 / 41 / 16 \mathrm{v} 100 \mathrm{ma}$ €2.39, $6 / 7 \% / 9 \mathrm{v}$
 $9+9 \mathrm{v}$ E4.79, $6+6 \mathrm{v}$ £4.79, $41 / 2+41 / 2 \mathrm{~V}$ £4.79. Cassette recorder mains unit $71 / 2 v 100 \mathrm{ma}$ with 5.pin din plug £3.57. Fully stabilized iype

$3 / 6 / 71 / 2 / 9 \vee 400$ ma 55.76 . Car convers | dc input. output $9 v 300 \mathrm{ma}$. C1.19, onvertors 12 v |
| :--- |
| $1 / 2 \mathrm{v}$ | $300 \mathrm{ma} \varepsilon 1.19$, output $3 / 41 / 2 / 6 / 71 / 2 / 9 / 1 / 2 v$ 800 ma $£ 2.66$

ATTERY ELIMINATOR KITS
$41 / 2 \mathrm{v} £ 1.49,6 v £ 1.49,9 v £ 1.49,41 / 2+41 / 2$ $1.92,6+6 \mathrm{v} £ 1.92,9+9 \mathrm{f} 1.92$ Cassene $71 / 2 v 100$ ma with din plug $£ 1.49$. Heavy duty 13 way types $41 / 2 / 6 / 7 / 8 / 1 / 2 / 11 / 13 / 14 / 17 / /$
$21 / 25 / 28 / 34 / 42 / 14 / 4$ convertor input 12 V dc. output $6 / 71 / 2 / 9 \mathrm{v}$ iA

stabilized $£ 1.35$.

STABILIZEO POWER KITS

heackered price is for kit without transformer the $3 / 41 / 2 / 6 / 71 / 2 / 9 / 12 / 15$ sformer. 8 -way types
 Variable voltage models 2.18 v 100 ma (26.87) ($£ 2.98$), $1-30 \mathrm{v}$
$£ 4 \mathrm{~A} £ 2.9 \mathrm{~g}(£ 5.95), 1-30 \mathrm{~V} 2 \mathrm{~A}$

BI-PAK AUOIO MOOULE
AL30 £4.04. PA12 £7.77. PS 12 £1.42. T538 £2.70. S450 £24.03. AL60 £4.97. PA100 £17.33. SPM 80 £4.57. BMT 80 £6.08. Stereo
30 £20.57. MA60 £36.23. COMPONENTS
$1 N 41481.4$ p. 1 N 40023.1 p .7418 dil 16 p.
72314 dil 31 p 72314 dil 31 p. NE 5558 dil $25 \mathrm{p} . \mathrm{bc} 183$ dil bc 16p. 13 . bc 547, bc549 4.2p. bc 182 , bc 184 . bc 212 .
bc214, be 548 5p. tip 31 C bc 214, be 548 5p. tip 31C tip 32 c 30 p . tip 41 C 39p. bd 131. bd 13227 p. Plastic equiv bc 1075 p .
Fuses $20 \mathrm{~mm} \times 5 \mathrm{~mm}$ cartridge $15,25,5,1.2$
 tors 5% WW E12 10 R $1010 \mathrm{M} 1 \mathrm{p}, 0.8 \mathrm{P}$ for $50+$ of one value, Polyester capacitors 250 v .015 .
$.068 .1 \mathrm{mf} 1.5 \mathrm{p}, .01, .033 .332 .8 \mathrm{p}, .022$ $.047 \mathrm{mf} 3.3 \mathrm{p}, .22 .047 \mathrm{ml} 4.93 \mathrm{p}$. Polystyrene
 4 p . Caramic capacitors 50 V E6 $22 \mathrm{pf}, 1 \mathrm{n} 2$ to 10 n n n .
Electrolytic capacitors $50 \mathrm{~V} .5,1.2 \mathrm{mf} 5 \mathrm{p} .25 \mathrm{p}$. Electrolytic capacitors $50 \mathrm{v} .5,1.2 \mathrm{mff} 5 \mathrm{p}, 25 \mathrm{v} 5$,
$10 \mathrm{mt} 5 \mathrm{p}, 16 \mathrm{v} 22,33 \mathrm{~ms} 5 \mathrm{p}, 47,68 \mathrm{mf} 3.5 \mathrm{p}$ $100 \mathrm{mf} 6 \mathrm{p}, 220 \mathrm{mi} 7.5 \mathrm{p}, 330,470 \mathrm{mt} 9 \mathrm{p}$, 1000 mf 10p. Zeners 400 mw E24 2 vv to 9 p . 7p. Preset pots subminiature 0.1 W horiz or vert
100 to 4 M 76 p . Potentiometers $1 / \mathrm{W} 4 \mathrm{~K} 7$ to 2 M 2

SWANLEY ELECTRONICS

Lists 24p posit free. Overseas customers deduct 13%. Official credit orders welcome

Microcomputers are coming - ride the wave! Learn to program

Millions of jobs are threatened, but millions more will be created through the microcomputer revolution. Will YOU sink or swim? Be one of the people who welcomes computers and the end of boring jobs.
Learn BASIC - the language of the small computer and the most easy-to-learn computer language in widespread use. Teach yourself with a course which takes you from complete ignorance step-by-step to real proficiency - all you need to start with is a knowledge of simple arithmetic and the use of decimals. And you don't need a computer.
This unique course comes as four A4 books, written by three authors well-known in the fields of microcomputing, selfinstruction and writing clear English. In 60 straightforward lessons you learn the five essentials: problem definition, flowcharting, coding the program, debugging, and preparing clear documentation.
Every lesson has thought-provoking questions and we never ask for mindless drudgery. You will know that you are mastering the material and feel a rare satisfaction. Harder problems are provided with a series of graded hints, a unique and really helpful approach, So you never sit glassy-eyed with your mind blank. First time through, you may need to read most of the hints, but you will soon learn to tackle tough programming tasks - such as writing programs for computer games, preparing graphs on an output printer, calculating compound interest tables and estimating costs.

COMPUTER PROGRAMMING IN BASIC $£ 7.50$

 Book 1 Computers and

 Book 1 Computers and}variable names; LET; errors; coding simple progra,
Book 2 High and low tevel languages; flowcharting; functions; REM and documentation; INPUT, IF...THEN, GO TO; limitations of computers, problem derin.
Book 3 Compilers and interpreters; loops, FOR...NEXT; RESTORE; debugging arrays; bubble sorting; TAB
Book 4 Advanced BASIC; subroutines; string variables; files; complex programming;
examples; glossary,

THE BASIC HANDBOOK £11.50

This best-selling American title usefully supplements our BASIC course with an alphabetical guide to the many variations that occur in BASIC terminology. The dozens of BASIC 'dialects' in use today mean programmers often need to translate instructions so that they can be RUN on their system. The BASIC Handbook is clear, easy to use and should save hours of your time and computer time. A must for all users of BASIC throughout the world.

FORTRAN COLORING BOOK $£ 5.40$

"It you have to learn Fortran (and no one actually wants to assimilate it for the good of the soul) buy this book. Forget the others-this one is so good it will even help you understand the standard, dense, boring, unintelligible texts." New Scientist.
A.N.S. COBOL $£ 4.40$

Covers the most widely used computer language in business today. It teaches how to write a COBOL program and compile it effectively, paying proper attention to spelling, punctuation, and format

THE ALGORITHM WRITER’S GUIDE $£ 3.40$

FLOW CHARTS \& ALGORITHMS help you present: safety procedures, government legislation, office procedures, teaching materials and computer programs by means of YES and NO answers to questions.
The Algorithm Writer's Guide
explains how to: define the questions, put them in the best order and draw the flow chart, with numerous examples shown All that students require is an aptitude for logical thought. Size A5, 130 pages. This book is a MUST for those with things to

Understand Digital Electronics

In the years ahead the products of digital electronics technology will play an important part in your life. Calculators and digital watches are already commonplace. Tomorrow a digital display could show your vehicle speed and fuel consumption; you could be 'phoning people by entering their name into a telephone which would automatically look up their number and dial it for you.
These courses were written by experts in electronics and learning systems so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being faster and more thorough than classroom learning. You work at your own pace and must respond by answering questions on each new piece of information before proceeding.

After completing these courses you will have broadened your career prospects and increased your fundamental understanding of the rapidly changing technological world around you

DIGITAL COMPUTER LOGIC AND ELECTRONICS £6.50

Digital Computer Logic and Electronics is designed for the beginner. No mathematical knowledge other than simple arithmetic is assumed, though the student should have an aptitude for logical thought. It consists of four volumes - each A4 size - and serves as an introduction to the subject of digital electronics. Everyone can learn from it - designer, executive, scientist, student, engineer.
Book 1 Binary, octal and decimal number systems; conversion between number systems.
Book 2 AND, OR, NOR and NAND gates and inverters; Boolean algebra and truth
tables.
Book 3 Positive ECL; De Morgans Laws; designing logic circuits using NOR gates Book 4 R-S and J-K flip flops; binary counters, shift registers and half adders.

DESIGN OF DIGITAL SYSTEMS £10.50

Design of Digital Systems is written for the engineer seeking to learn more about digital electronics. Its six volumes - each A4 size are packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters and simple arithmetic circuits, and finally to a complete understanding of the design and operation of calculators and computers. Contents include:
Book 1 Octal, hexadecimal and binary number systems; conversion between number systems; representation of negative numbers; complementary systems; binary multiplication and division
Book 2 OR and AND functions; logic gates; NOT, exclusive-OR NAND. NOR and exclusive-NOR functions; multiple input gates; truth tables; De Morgans Laws; canonical forms; logic conventions; Karnaugh mapping; three state and wired logic. Book 3 Half adders and full adders; subtractors; serial and parallel adders; processors and arithmetic logic units (ALUs); multiplication and division systems.
Book 4 Flip flops; shift registers; asynchronous and synchronous counters; ring, read only memories (ROMs)
Book 5 Structure of calculators; keyboard encodir.g; decoding display data; register systems; control unit; program ROM; address decoding; instruction sets; instruction decoding; control programme structure.
Book 6 Central processing unit (CPU); memory organization; character representation; program storage; address modes; input/output systems; program interrupts; interrypt priorities; programming; assemblers; computers; executive programs; operating systems and time sharing.

O-LEVEL ENGLISH LANGUAGE £6.50

More and more jobs require a C-GRADE PASS, and over 250,000 people fail to get this every year. Will one of them be in your family? This new course, written by experts in a style that's serious yet fun to read, shows you how to mark your own work and compare it with the work of other people in their exam year. Set your own pace and assess your results immediately with no postal delays: watch your speed and immediately with no In impaok 1 learn how you will be marked on COMPREHENSION, Book 2 covers SUMMARY,
PUNCTUATION \& SPELLING, and Book 3 coaches you in the principles of COMPOSITION. Size: 3 A4 volumes totalling 250 pages.

SELF-INSTRUCTION COURSES
"WE RE JUST CHECKING THE FAULT OUT NOW SIR JOHN

CAMBRIDGE LEARNING ENTERPRISES, UNIT 14 RIVERMILL SITE, FREEPOST, ST.IVES, HUNTINGDON,
CAMBS PE17 4BR, ENGLAND.
TELEPHONE: ST.IVES (0480) 67446
All prices include worldwide postage (airmail extra)
If order comes to $£ 15$ or more, deduct $£ 2$
Please allow 21 days for delivery
GUARANTEE No risk to you.
If you are not completely satisfied your money will be refunded.
Please send me the following books:
...Computer Programming in BASIC (4 books) at $£ 7.50$
......The BASIC Handbook at $£ 11.50$
......FORTRAN Coloring Book at $£ 5.40$
......A.N.S. COBOL at £4.40
. Algorithm Writer's Guide at $£ 3.40$
...Digital Computer Logic \& Electronics (4 books) at £6.50
..Design of Digital Systems (6 books) at $£ 10.50$
. Level English Language (3 books) at $£ 6.50$
I enclose a *cheque/PO payable to Cambridge Learning Enterprises for \mathbf{f}.
Please charge my
*Access/Barclaycard/Visa/Eurocard/Mastercharge/Trustcard
account no.
(* delete where applicable)

Signature

Telephone orders from credit card holders accepted on 0480-67446 (Ansafone). Overseas customers (inc. Eire) should send a bank draft in sterling drawn on a London Bank, or quote credit card number.

Name

Address

Cambridge Learning Enterprises, Unit 14, Rivermill Site,
FREEPOST. St. Ives, Huntingdon, Cambs PE1 7 4BR, England

> ETI proudly presents 'The Beast', the ultimate in model railway control systems. It gives ultra-fine speed control to your locos, has built-in track cleaners, uses capacitor discharge units to control up to sixteen sets of points on each track, has full remote-control facilities, and can drive one to four track layouts.
'The Beast' is a model railway control system that gives a performance vastly superior to any presently-available commercial system, and is at least two years ahead of the microprocessor-based 2-wire control systems presently under development by the industrial giants.
'The Beast' is not microprocessor based. It is not a '2-wire' control system. It IS a sophisticated multi-unit control systrem in which each unit can be used to replace an existing conventional controller without need for alteration of exisiting track wiring and without modification of locomotives. The system can be used on all track gauges froim the diminutive ' N ' to the large scale ' O '

The system contains a train-control unit and a 16 -way points contol unit for each track. The full system can control as many as four track layouts. All units are fed from a common power supply unit, but are otherwise independent and self-contained. All units are provided with remote remote control input connections. The complete system includes a remote control facility that enables the user to select any one of
the four sets of track units and gain full control over the loco and points on that track.

Versatility is a keynote of the systrem. The user can start the system off with a power unit and one simple train-control unit, and then progressively expand the system up to full capability by adding extra train- and points-control units and perhaps the full remote-control facility as cash and inclination allow.

A resume of the features of the individual units of the system is as follows:

The Train Controller

The train control unit uses a unique method of pulse-plus-voltage drive to the track that gives exceptionally fine speed control from 'crawl' to 'full belt' rates, but with no sign of the motor overheating and high noise levels that are associated with normal pulse-width control systems. The control signals are fed to the track via a high-voltage (about 800 V peak-to-peak) track cleaner, which breaks through any oxides or sludge that forms on the track, pick-ups, or motor brushes, etc., and thus ensures excellent track-to-track contact under all running conditions.

In its simplest form, the train contoller speed is adjustable via a pot. In the advanced version of the controller the pot is replaced by electronic circuitry that enables the speed to be selected via an accelerate or decelerate (up/down) switch that also simulates momentum: an emergency brake facility is also

incorporated. Both versions of the controller incorporate full overload protection, and give sufficient output power to run double-headed trains The system is NOT designed to give simultaneous and independent multi-train control on one track

The train controller is provided with remote-control input
connections, which operate in the OR mode with the normal controls

The Points Controller

The points controller is a fast acting (it can activate several times per second) capacitor-discharge unit that is desinged to control up to sixteen sets or points or relays, etc. In it's
simplest form, the unit contains little more than one capacitor, a transistor and a few resistors and diodes, and can use conventional points switches to select and activate the points. In the advanced form of the unit the points can be selected via a switch-driven up/down counter, and the points can be set or reset via a second switch and a bank of Darlington power transistors. In this latter form, the semiconductor count can rise into the hundreds region. This version of the unit has provision for remote-control inputs, and all inputs operate in the OR mode

The Power Supply Unit

The main power supply unit has electronic overload protection on its output, which is rated at 50 VA and is capable of powering four sets of track systems simultaneously. The unit produces a regulated 18 volt DC output only

The Remote Control System

The complete system incorporates an optional 2- or 3-wire remote-control facility that enables any one of the four track control systems to be operated via a free-ranging hand-held control box, thus freeing the operator from the main control panels and enabling him to exercise control from any position around the layout or even, if he wishes, from the comfort of an armchair.

The control system uses a 15 -bit serial code. The first two bits select the desired track system, the next six bits control the train speed, direction, and braking, and the remaining seven bits select and activate the available (up to 16) points and relays on the selected track system. The hand-held controller has a built-in 16-LED indicator unit that identifies the point or relay that has been selected

The signal from the hand-controller is fed via a 2- or 3-wire 'link' to a decoder and data-distributor unit that in turn feeds the control signals to the individual track control units.

A feature of the remote control system is that its outputs operate in the OR mode with the normal system control switches. The operator can thus shift from local to remote operation without having to operate change-over controls, etc.

The System Design Concept

As all model railway enthusiasts will know, Hornby and Airfix are
currently developing
microprocessor-based 2-wire model railway control systems that are capable of independently controlling up to four locomotives on a single track.

In these systems each locomotive is fitted with a small pre-coded electronic control module, and the master control unit sends control signals to these modules along the track, which also carries a 20 V AC power signal. The control signals can be used to pick out a particular locomotive and instruct it to move in either direction at any one of sixteen different speed levels.
Although neither the Hornby or the Airfix systems are currently in
production, they clearly have certain intrinsic advantages to the model railway user. We at ETI are well aware of these developments, yet rejected the 2 -wire control concept when we designed our model railway control system. Why? These are the reasons:
(1). We wanted a system that could be used with any gauge of model locomotive, even an ' N ' gauge Tank. The size of the control modules used in 2-wire systems precludes their use even on some $00 / \mathrm{HO}$ Tanks.
(2). We wanted a system that gives very fine low-speed control of the loco, but without the motor overheating and high noise levels
that are inherent with conventional pulse-width control systems: 2-wire systems use pulse-width motor control. So we devised a completely new motor-drive technique
(3). We reckon that the most important factor in obtaining good low-speed performance from a locomotive is the maintenance of good electrical contact between the power source and the motor. Using exisitng technology, the best way to achieve this is to use a so-called 'track cleaner' system, in which a high-voltage (800 volts peak-to-peak) high impedance (tens or hundreds of kilohms high-frequency (tens or hundreds of kHz) signal is imposed on the power source signal, thus

HOW IT WORKS

THE SYSTEM

THE BLOCK DIAGRAM of the model railway control system is shown in Figure 1. Note that only one of four (maximum) train- and points-controller units are shown in the diagram. All units are powered from a common 50 VA power pack that delivers a stabilized and overloadprotected 18 volt DC output.
Each train controller unit incorporates a voltage-driven speed controller circuit. The voltage drive can be obtained from either a conventional pot, or an electronic 'pot' with momentum and brake simulation. The output of the speed controller is
fed to the track via a high voltage track cleaner circuit. The direction of the train is controlled via a double-latching relay circuit. Each train controller unit has provision for interfacing with an optional remote-control facility. One train controller unit is required for each track of a layout (up to a maximum of four tracks).

The Points Controller unit uses the capacitor-discharge operating principle. Each unit can drive a maximum of sixteen points and/or relays. The points can be selected and set/reset via either conventional points switches or via an allelectronic system that can also be inter-
faced with the optional remote-control facility. A minimum of one Points Controller unit is required for each 16 sets of points used in a complete railway layout.
The remote control facility uses a 15 channel (15 -bit) hand-held encoder/ transmitter. The signals from the transmitter are fed to a decoder via a 2 - or ' 3 -wire flexible link, and are then coupled to the train and points controller units via a data distributor. The system allows the operator to select any one of four track control systems, and exercise full control over the train and points on that track system.

passed on to series regulator Q2-Q3, which has overload protection provided via R4-R7 and Q1, and appears at an 18 volt level across C2. The 18 V output of the unit is made available to the external units via a pair of 8 -way terminal strips.

The circuit of the power pack is shown in Figure 2. Transformer Tl gives a 17 V 3 A output that is bridge rectified by $B R 1$ and
smoothed by $C 1$. The resulting DC is

ensuring that the power signals are unimpaired by oxides and gunge on the track, pick-ups, and motor brushes. The track cleaner system can not be used with 2 -wire controllers.
(4). We wanted a
capacitor-discharge points control system that could be operated either locally or via a full remote-control facility. Similarly, we wanted a facility for remote controlling locomotives, selecting track layouts, etc., via a hand-held unit, thereby freeing the operator from the
confines of the main control panel 2-wire systems offer no advantages in any of these respects.

One final point about the concept of our control system relates to the remote control technology. If you look at the circuit diagrams of the encoder, decoder, and data distributor you'll notice that our system uses rather a large number of components. Some readers may be tempted to ask "Why didn't we base our system on those single chip multi channel coders and decoders that are currently available for remote control
of TV's etc?' The answer is that those single-chip circuits use 6-bit code systems, which potentially give only 6 simultaneous or 64 non-simultaneous decoded output states. Our system needs and uses a 15 -bit code, which potentially gives 15 simultaneous or 32768
non-simultaneous decoded output states.

BUILDING THE 'BEAST"

It is important to appreciate the flexibility of this ETI model railway control system. The Train Controller

TRACK CONTROLLER

DISPLAY BOARDS TABLE
There are three identical display boards employed in this project. The overlay on p. 49 is for the one used in the speed indicator. The table below gives the component changes for the other two boards. Values remain identical, but the numbering alters thus:-

TRACK SPEED INDICATOR
POINTS CONTROLLER
REMOTE ENCODER

R57 - R72
R53-R56
R73

R34 - R49
R29 - R32
LED 3-18
LED 1 - 18
R21-R36
R16-R18
R16
LED 1 - 16

The main track controller board.

HOW IT WORKS

TRAIN SPEED \& DIRECTION

 CONTROLLER (Fig 3).The Train Speed Controller gives excel lent motor control all the way from nearzero to maximum speed, but does so without the usual motor overheating and high noise problems that are associated with conventional pulse-width motor speed control systems. The secret of this performance is a unique 'pulse-plusvoltage motor drive techn by the ETI design team. The system operates as follows
At the 'minimum' speed setting a fixed 3 30 mS and a peak amplitude of 12 V is fed 30 mS and a peak amplitude of 12 V is fed
to the loco motor via the track. This pulse produces high instantaneous but low mean energy and, just like a normal pulse-control system, causes the motor to turn over very slowly but with high torque. Under this condition the locomotive moves at an almost imperceptible 'crawl' speed. Most of the high pulse energy is absorbed in producing the 'start' current for the motor.

As the speed control is moved progressively above the 'minimum' setting a DC voltage is proportionally imposed on this fixed pulse, so the mean power to the increases. This power, however also ensures that the motor remains in the 'started' mode, so the instantaneous energy from the fixed 3 mS pulse progressively decreases as the motor speed rises.

Motor noise and overheating problems are thus eliminated by the system, which still retains the low-speed performance advantages of the conventional pulsewidth control system.
The full circuit of the speed and direction controller is shown in Figure 3. The speed of the train is determined by a be derived from a conventional pot (RV1) be derived from a conventional pot (RV in Figure 4. The ICla to IClC network is a gated non-symmetrical astable multivibrator, and produces the 3 mS pulse at a 30 mS repetition period. At the ZERO speed setting, this circuit is gated off via Ql, but turns on when the control voltage input rises above 600 mV or so. As the input voltage is further increased it is superimposed on the pulse waveform via the D2-D3 network, and the composite waveform is reduced to a very low impedance level via Q5 and Q7 and is then passed on to the track via the contacts of relay RLA and via the track cleaner circuitry.
The speed controller is provided with efficient overload protection via the R16-Q6-ICld-Q4 network. If an overload occurs at the output of Q7, Q6 swits and simultaneously turns Q5 and Q7 off via ICld and Q4 and stores an analogue memory of the overload in C4 via D4. At the end of the 'memory' period Q5 and Q7 again turn on and R16 'samples' the load condition: if the over-
oad still exists, Q5 and Q7 again turn off; if not, they remain on. This 'sampling' system causes Q7 to turn on and off with a suring that Q 7 dissipates very low mean suring that Q7 dissipates 'overload' condition ED 1 illuminates when an overload occurs.
Note that Q3 provides a stabilized 14 V 4 supply to the speed, etc, control circuitry and also to the optional 'electronic pot' o Fig 4. Q2 is used to provide a MAXIMUM of 17 V 4 to part of the Fig 4 circuit: this component is incorporated to ensure tha the electronic pot circuit will not suffe damage if the system is operated from an unauthorised power supply with an excessive output voltage.
The direction of the train is determined by the state of relay RLA, which simply reverses the controller-to-track connections when it is switche) state The relay (forward) to vi (he IC2 bistable circuit which in turn can be set or reset via SWl or via external command signals. The or viar elaborate configuration of the bistable was found to be necessary to ensure fully reliable operation in a highly hostile environment, and to give virtually fool-proof interfacing with external control circuitry.
THE TRACK CLEANER (Fig 3)
The track cleaner is designed around Q8 which is wired as a modified blockin oscillator. The circuit is tuned by the Tl
inductance and by C6 and C8, and oscillates at rougtly 100 kHz . The C8 value is large enough to minimise the effects of track capacitance. Severa loped across Tl secondary, but are produced at a fairly high impedance (harmless) level.

The secondary of Tl is wound with fairly heavy guage (low resistance) wire. The train controller signals are fed to the track via this winding. Consequently when a heavy load (a locomotive motor) is placed across the track the resulting low impedance kills the oscilator out put, and only the train control signal reach the track. When, on the other hand a high impedance appears across the track (due to loss of contact with the locomotive) the oscillator becomes func tionalrol signals are fed to the the resulting high-voltage high-frequency signal is sufficient to break through most thin films of dirt oil, and oxides, and restore contact with the locomotive mo tor.
Capacitor Cll is wired across the 'input' side of the train controller signal line to prevent the high-voltage signal from reaching the electronic control circuitry A neon lamp illuminates when the track cleaner is functional, thus indicating loss of contact with the track. The track cleaner circuitry is protected with a 250 mA fuse.

TRACK CONTROLLER

HOW IT WORKS

The 'electronic pot' circuit of Figure 4 can be used to replace the conventional 3. It has the advantage (RVI) of Figure button' control of speed with aut 'push 'momentum' simulation plus an 'emer gency brake' facility, and is designed to interface with the optional remote control facility. The heart of the unit is binary up/down counter IC5. When an UP (accelerate) or

THE 'ELECTRONIC POT' (Fig 4)

DOWN (decelerate) command is given via SW2 or via the remote control inputs, clock generator IC4a-IC4b is enabled and bistable IC3a-IC3b determines the count direction of IC5. IC5 then slowly counts in the desired direction for the duration of the command, and its binary-coded outIC6 and its associated analogue form via work, to produce and diode-resistor netfrom R52 The binary outputs of Voltage
also decoded by IC7 and used to drive a line of sixteen LEDs, which give a visual indication of the effective output voltage (train speed) level.
The slow operating speed of the clock generator produces a simulation of momentum', since the counter takes about four seconds to run from the empty zero volts output) to the full (maximum volts output) state. The counter can be reset to zero, to give an 'emergency brake'
simulation, by operating PB1 or via one of the remote control input terminals.
Gates IC4c and IC3c are used to prevent the counter over-spilling, and lock out the clock signal when IC5 reaches maximum count in the UP mode or minimum count in the DOWN mode. IC4d and the Q10-C16-D17-D18-C17 network generate a neative supply voltage, which s used to provide one of the supply rails of the IC6 op-amp.

POINTS CONTROLLER

HOW IT WORKS

CAPACITOR DISCHAARGE POINTS CONTROLLER (Fig 5)
Conventional points motors or solenoids typically draw 2 or 3 amps from 16 volt supplies, and are easily burnt out if their operating switches are held in the ON position for more than a few seconds. The capacitor discharge system offers a solu tion to the burn-out problem Here large capacitor (2200u) is charged up to 16 V at a rate of a few hundred milliamps and is discharged into the motor/solenoid when the appropriate points switch is closed: the capacitor provides adequate initial energy to operate the motor/ solenoid, but the available current rapidly falls to a few hundred milliamps as the capacitordischarges, thus eliminating the posibility of burn out.
The full circuit of the capacitor dis charge points controller is shown in Fig 5. Here, Q1 is configured as a constant
current generator that charges Cl at a rate of about 600 mA , typically taking about 30 mS to fully charge the capacitor The capacitor can be discharged into the external points motors/solenoids via conventional points switches (represented by SW1 to SW14) or via (represented by switching circuitry Q29) and electronic Corlingtons Q2 to The circuit is capable of providing signals. solenoid operations per pecond In the diagrams per second.
in the diagram we've shown connectwo sets of relay-driving circuitry, but in practice the unit can be used with any number of solenoids, or any combination of solenoids and relays, up to a maximum total of sixteen.
In the electronically-fired version of the circuit, each solenoid is coupled to a pair of power Darlington transistors. The
solenoid can be SET or RESET by applying a 'high' command voltage to the 2 k 2 base resistor of the appropriate transistor. These command signals are obtained from the Power-Switch Selector \& Trigger circuit of Fig 4.
The two relay-driving circuits shown in Fig 5 are presented as suggestions only They can be omitted, duplicated, or expanded to suit the reader's own particular model railway requirements. The two circuits are designed to interface with the Fig 6 circuit, which in turn is designed to nterface with a remote-control facility. Relay RLA is wired in a bistable or double-latching mode, and can be set or from SW momentary command signal Relays RLB and RLC the Fig 6 circuit. peration and turn on give non-latching tion of a command signal fror the durafrom the Fig 6 circuit

Fig. 5a. Circuit of the capacitor-discharge points controller, with optional powe pus and relay activators.

Fig．5b．Overlay of the basic points controller board．The board can drive four sets of points．

Yu！słeay＇st！un squiod z！ns of sp！ouplos SกOヨNV77ヨJSIW
SW1－SW14 single pole points switches
SW15，16 single pole points switches
y08LEへてし $\varepsilon-L \forall 74$ LL－89＇$+9-6 G O$
L9－G9＇8G－LO Q30－033
D1－58，65－67 $\begin{array}{lr}7281 ว 8 & \text { ととO } \\ \text { してL dI। } & 6 Z 0-20\end{array}$ SEMICONDUCTORS CAPACITORS
C 1 2200 u 63 V electrolytic

ISIT SLIVU

$8 ヵ L \square N L$
$100 t N L$
$7 Z 8108$
$1 Z L$ dlı
$\forall Z \varepsilon$ dlı
R34－37
R4－31
R32，33
Resistors all $1 / 4 \mathrm{~W} 5 \%$
R1，2
긎
$1 \geq 1$
0×1
$z>z$
$z y 1$
$y 091$

Resistors all $1 / 4 \mathrm{~W} 5 \%$ unless marked

R1，2，11，25，28	$12 k$
R3	$2 k 2$
R4	$33 k$
R5	$5 k 6$
R6，29－33	$100 k$
R7	$220 k$
R8	$56 k$
R9，26，27	$22 k$
R10	$1 k 0$
R12	$47 k$
R13，15，21，24	$6 k 8$
R14，16－20，22，23	$27 k$
R34－49	$470 R$

CAPACITORS

C1，3	10 n polyester C2
C4	4 u 725 V electrolytic

C4，7 100n polyester
C5 14025 V electrolytic
C6 10 u 25 V electrolytic

SEMICONDUCTORS	
IC1	4001
IC2	4093
IC3	4029
IC4，5	4066
IC6－8	4514
Q1	BFY50
Q2，3	BC182L
D1－5	1N4148
LED1－16	TIL 209

units can，for example，be built with either conventional or electronic＇pot speed control．The
capacitor－discharge points controller can either be built in very simple form for control via conventional points switches only，or can be built in advanced form for control via press－operated or remote control switches：the unit can be built to control up to 16 sets of points，or any combination（up to 16 maximum）of points or relays．The remote control facility，with its complex encoder． decoder，and data distributor

Similarly，great flexibility is possible in the combination of control units that are used on a practical model railway layout．If，for example． you have a 3－track layout with an average of 5 points per track（or some other total that is less than 16）， you can either allocate one train controller and one points controller unit to each track or，more eeconomically，allocate one train controller to each track but only one points controller to the entire system．

Thus the potential builder is strongly advised to sit down and carefully plan out exactly what he
wants his system to do before he actually contemplates constructional work．Remember，if you start your system off with just one basic train control unit，you can always expand the system up into a more advanced form at a later date when cash and inclination allow．

Once you＇ve decided what you want，note that some of the PCB＇s used in the project are double－sided jobs：if you are reasonably confident of your PCB－production capability． you can try etching these yourself：if not，you cab buy the boards in ready－made form．

CONSTRUCTION：THE POWER PACK
All components except T1，Q2，and 03 are wired up on a single－sided PCB，and construction should present no problems．Note that Q3 needs to be mounted on a fairly hefty heat sink：we bolted ours directly to the rear panel of the power pack case．
Transformer T1 is a＇special＇．Its a 50 VA device，with a 17 Volt， 3 A secondary．We built our prototype from a Radiospares 50 VA
transformer kit（stock number 207－554），using 92 turns of 1 mm －

DATA DISTRIBUTOR

Fig. 7a. Circuit of the Data Distributor. This unit forms part of the remote control facility.

HOW IT WORKS

THE DATA DISTRIBUTOR (Fig. 7)

The purpose of the data distributor is to route the decoded outputs of the remote control system to the appropriate control units on the selected one of four possible track systems. This is achieved by feeding each decoded signal through the electronic equivalent of a single-pole 4 -way switch: all 'switches' are ganged together.
The circuit uses seven CD4052B multiplexer ICs. Each of these ICs can be regarded as a dual single-pole 4 -way switch. The switch positions can be selected via 2-bit binary coded DC levels fed to pins 9 and 10 . The switch outputs can be inhibited by a logic ' 1 ' on pin 6 .

The circuit of the data distributor is shown in Fig. 7. The first two bits of the decoded input signal are used to control the multiplexer switch positions, and thus select the desired track layout. The number of the selected track system is indicated by LEDs 1 to 4 . Note that in the absence of a control signal the multiplexers will always be in the 'select sysem 1 position.
The outputs of all multiplexers are normally inhibited via Q1 and R16. Q1 is a simple time-delay circuit that is driven remembered that BIT 9 is always high when the transmitter/encoder is in use This Q1 circuit ensures that the outputs of
the multiplexers will be enabled only if BIT 9 is present for roughly 30 consecutive frame cycles (typically about one second), thereby eliminating any possibility of false signals reaching the output of the distributor when the transmitter/encoder is turned off, and thus ensuring reliable operation even on units that are connected to output 'system 1 '.
The 'distributed' decoded outputs of the unit are fed to their respective train- or points-control units via multi-way sockets, there being two sockets to each system, and a total of four 'systems' available.

PARTS LIST

Resistors all $1 / 2 \mathrm{~W} 5 \%$

R1-16,21-72	10k
R17,18	100k
R19	$22 k$
R20	$680 R$

100n polyester

Fig. 7b. Overlay of the Data Distributor board.

The remote control decoder and data distributor unit under construction.

UNIT 9
PARK STREET INDUSTRIAL ESTATE,
AYLESBURY, BUCKS HP20 1ET
insulated copper wire for the secondary. We've arranged for an electrically identical transformer (ready-built) to be made available from Watford Electronics (see Buylines).

Construction:

The Train Controller

This unit is built up on two PCBs, and incorporates the full circuits of both Figs 3 and 4. One of the PCBs is double-sided. The other PCB is single sided, and holds only the 16-LED display-driving components: the 16

LEDs are mounted off-board. If you intend to build the manually pot-controlled version of the unit, you can ignore the single-sided PCB, and all components shown in Fig 4

Construction of the unit calls for a good deal of care, but otherwise should present no great problems.

Note that Q8 (in the track-cleaner circuit) needs a clip-on heat sink. Output transistor Q7 needs to be bolted to a large heat sink: we bolted ours to the train-controller case.
The blocking oscillator (track cleaner) transformer is a 'special' that you will have to wind for yourself. The ferrite
core assembly is a Radiospares (stock number 228-242) or Watford Electronics type RM 10-2.50 kit. The 'primary' is wound first, using 77 turns of 22 SWG insulated copper wire. This can then be covered with a thin layer of insulated tape. The 'secondary' comprises 6 centre tapped turns (3-0-3) of 32 SWG insulated copper wire. The completed transformer is fixed to the PCB 'upside-down', with its connection tabs sticking upwards. Note that in use 08 is connected to the 'secondary' of T1, and the output is taken from the 'primary'.

We recommend building the unit in logical sections, fully testing each section before proceeding to the next. Start with the train speed controller circuitry, and then check that it works correctly using a pot (RV1) input. Next, build and check the track cleaner, and then the direction controller. Finally, you can proceed with the construction of the electronic pot.

Once you've built the two boards you can secure them in a manner suited to your own case arrangement. On our prototype we mounted the small board on top of the larger one, using stand-off pillars. We then bolted the assembly into the case; with power transister 07 bolted to the case rear. We then mounted the 16 LEDs into the case top and connected them to the small board.

Power connections to our unit are made via twin flex. Connections to the track are made via a couple of spring-loaded terminals: note that these terminals must have a breakdown rating greater than 800 V. The remote control connections to the unit are made via a multi-way s.ocket on the rear of the unit.

Construction: The Points Controller Unit

You need to give great thought to your own specific 'points control' requirements before starting work on the construction of this unit. If you want to build the ultra-simple version, consisting of a capacitor discharge unit that is fired by conventional points-control switches only, ignore our PCBs, hook up the D1-D2-R1-R2-R3-C1-Q1 section of Fig 5 on a board of your own design, and wire the resulting unit into your points system following the connections shown in Fig. 5.

To allow for maximum flexibility in the system, we've provided two PCB

The track controller display board. An identical board is needed in the points controller, and
another in the remote controller. another in the remote controller.
designs to facilitate implementation of the full Figure 5 circuit. One of these is a Relay Activation board, and incorporates all of the circuitry associated with Q30 to Q33. If you decide to build this board, use only the relay types specified. The board is single sided, and construction should present no problems.
The second PCB is marked as the CD Points Controller. It holds the capacitor discharge circuitry, plus all power transistors and diodes necessary for operating four sets of points electronically. To operate additional sets of points, use the same PCB but ignore the capacitor discharge circuitry. For a 16 -points system, you'll need four of these boards. The boards are single-sided, and construction should present no problems.

The Figure 6 Power Switch Selector and Trigger circuit is implemented on a double-sided PCB with the LED Readout circuitry implemented on an additional single-sided board. Construction of these boards should present few problems, providing the overlays are followed with due care. Test these boards carefully when construction is complete, referring to the 'How It Works' section when necessary.

When construction of the individual boards is complete, fit them in a suitable cabinet, and complete the interwiring. Power connections to the completed unit can be made via twin flex. Connections to the external points solenoids and to the points switches (if used) can be made via multi-way terminal blocks fitted to the rear of
the cabinet. Remote-control connections can be made to the unit via a multi-way socket, also mounted on the rear of the cabinet.

Construction: The Data Distributor

The data distributor (Fig 10) circuit is also built on a double-sided PCB.
Note that this board uses wire-wrap IC holders, to enable solder connections to be made to tracks on either or both sides of the PCB where necessary. Apart from this, construction should present few problems.

When construction is complete, fit the already-tested decoder board and the newly-built data distributor into a suitable cabinet, carefully interwire the two boards, and give the assembly a full functional check When all is well, complete the wiring to the eight multi-way output sockets.

The train control system project will be concluded next month, when we present full details of the remote control encoder and decoder circuitry.

We haven't shown the foil patterns in this issue, but don't despair. Send us a large sae and you'll receive the patterns by

CALCULATORS

INCLUSIVE PRICES!!!

TEXAS

T133 Sci T125 L.C.D. Sci/Stats
T150 L.C.D. Sci/ Stats.
T145 Electronic Slide Rule
T157. Key Prog
T158. Key Prog
T159. Superb Mag Card Prog
PC100C Printer for 58/59
Programme Library
Programme Cards
Special Price £11.95
-including adaptor/charger.
ELECTRONIC LEARNING AIDS LITTLE PROFESSOR
DATAMAN
SPELLING B
SPEAK \& SPELL - Excellent

CASIO

AQ2000 Superb Time / Date Alarm LCD
FX80 L.C.D Long life batter
FX 3100 L.C.D. Sci in wallet
Fx8000 L.C.D. as above plus stop/alarm
X202P 127 step Sci
X501P L.C.D. Prog. 128 step FA 5 PROGRAMME ADAPTOR MELODY 80 Plays tunes!II

DESK TOP PRINT OUT

CALCULATORS

CANON P1014D. The best 10 digit print/display

All prices include postage and packing and dECIMO CALCULATORS. PLUS PHILIPS DICTATION SYSTEMS SUPPLIED AND SERVICED
ALL EQUIPMENT AT DISCOUNT PRICES

CALCULATOR SALES \& SERVICES

ARROW WORKS, ARROW ROAD REDDITCH B98 8NN TEL: REDDITCH (0527) 43169

ETCH RESIST TRANSFER KIT SIZE 1:1

Complete kit 13 sheets 6 in $\times 41 / 2$ in £2.50 with all symbols for direct application to P.C. board. Individual sheets 25 p each. (1) Mixed Symbols (2) Lines 0.05 (3) Pads (4) Fish Plates and Connectors (5) 4 Lead and 3 Lead and Pads (6) DILS (7) BENDS 90° and 130 (8) 8-10-12 T.O.5. Cans (9) Edge Connectors 0.15 (10) Edge Connectors 0.1 (1.1) Lines 0.02 (12) Bends 0.02 (13) Quad in Line.
FRONT AND REAR PANEL TRANSFER SIGNS
All standard symbols and wording. Over 250 symbols, signs and words. Also available in reverse for perspex, etc. Choice of colours, red, blue, black, or white. Size of sheet 12 in $\times 9$ in. Price $£ 1$.

GRAPHIC TRANSFERS

 WITH SPACERACCESSORIES
Available also in reverse lettering, colours red, blue, black or white. Each sheet $12 \mathrm{in} \times 9 \mathrm{in}$ contains capitals, lower case and numerals $1 / 8$ in kit or $1 / 4$ in kit £1 complete. State size
All orders dispatched promptly.
All post paid

Shop and Trade enquiries welcome Special Transfers made to order
E. R. NICHOLLS
P.C.B. TRANSFERS

DEPT. ETI 11 46 LOWFIELD ROAD STOCKPORT, CHES. 061-480 2179

WE'VE MOVED

Special just in full spec. 1702A (intel) $£ 2.50$ each p/p 20p. 74125 (tri-state buffers) 4 for £1.00. P\&P 20p

IS423 STUD MOUNTING RECTIFIERS 1OA 400 V . Silly price, 10 for $£ 2$ P\&P 20p

MC1303L Dual Stereo Preamp, plus data $£ 1$ P\&P 20p.
7in NYLON CABLE TIES 100 for $£ 1.50$ P\&P 20'p. Cannon 25 way (d-type) male or female with cover plus 2 metres 25 way cable assembled $£ 2.50$ each plus P\&P 20p

ML723 (TO100). Monolithic adjustable volage regulator. Plus or minus $2 v-6 v, 6 v-8 v$, $8 \mathrm{v}-37 \mathrm{v}$ to 150 mA plus data 55 p P\&P 20 p .
PCB KEYBOARD $65 \mathrm{~mm} \times 82 \mathrm{~mm} 18 \mathrm{key}$ clickers less key tops, ideal hexadecimal, 35p each, P\&P 20p. Hewitt Packard 4 digit displays 12 pin DIL $0.11^{\prime \prime}$ common cathode (LED red) £1.50 P\&P 20p (few only).

CANNON D-TYPES. Only ones left: 15 way socket 50 p, 37 way plug 80 p, 50 way socket $£ 1.20,50$ way wire wrap socket £1.30,. 25 way ribbon plugs 90 p. Cinch 25 -way plastic cover 60p, Metal cover and retainer 80p. P\&P 20p.

FULL SPEC. SGS2N3055 30p each. 10 for £2.75. P\&P 20p

SUPERSAVER 1 Price smash - 10 K multiturn electatrim panel mounting pots, 6 for $£ 1$. P\&P $20 p$.

SUPERSAVER 2 Hybrid Systems DAC 371-8 (8-bit) DIL packaged + data, ideal MPU users, brand new £2 price smash! now $£ 1.75$ each (fraction of original cost) P\&P 20p

SUPERSAVER 3. LM 323 K Voltage regulator, $5 v$ at 3 -amp, $£ 3.50$ each. P\&P 20p.

MEMORIES $2708 £ 6.85$, Character Generator MM5240 2560 bit. $64 \times 8 \times 5$ plus data £2.95 (full spec.) P\&P 20p. 2112 (200ns) £3.00. P\&P 20p. 21 LO 2 (250ns) E1.15. P\&P 20p.

SUPERSAVER 4. RS338-383 miniature decade thumbwheel switch £1.35 P\&P 20p.

SUPERSAVER 5. SN74116 (dual 4 bit latch) 75 p P\&P 20p. SN74181 Arithmetic logic unit/function generator $80 p$ P\&P 20p SN74194 (4 bit shitt register) 50p P\&P 20p SN74198 (8 bit shift register) 75p P\&P 20p.

SUPERSAVER 6. BC108B 8p 100 for $£ 7.00$ P\&P 20p.

SUPERSAVER 7. 4 digit 7 segment bubble display (NSA $1540 A$) ex-equipment 5 for $£ 1.00$ P\&P 20p
9-WAY MALE/FEMALE connector (EIco 8129) 0.1 inch pitch, PCB mounting ideal for bussing two PCBs together 35 p/pair P\&P 20p.

LEDS (red) TIL 209 10p, 0.2 12p, Vernitron Ceramic filters FM-4 10.7MHz 45 p , BD 236 40p, BC183L 1Op, BC213L 10p, BF195 10p, RS 12-0-12 50 mA subminiature transformer, £1.35, TMS3128NC (statıc shift reg) £1.25. LM71 1 CH TO-99 (Voltage connector) 25 p. FPE 100 intra red emitter + data $15 p$. DIL SWTS 4-way, 60p. TBA810S + DATA 65p P\&P 20p

Al enquiries. SAE please. P\&P same for quantities excep where greater than E 1 .
Due to move we have no catalogue. A new one is being produced. available shorll
Bush orders as some stocks are limited.
New Retail Premises open now. Mon., Thur.. Fr. \& Sat. 9.30-6.00 (lunch 1.00-2.00). Many one-off computer bargains \& components at surplus prices. We are situated at il Hercies Road, Hiltingdon, Middlesex (just off A40) phone Uxbridge 55399. Supplies equipment/components
purchased for cash

L. B. ELECTRONICS 11 hencles hoad HILlinedon
 MPDLESEX UBIO MLS, ENOLAND

Gar Audio

Manual
MW/LW
Full medium and long wave tuning. Complete with speaker and mountings. Suitable for positive or negative chassis. Latest model.

Push-Button

MW/LW

One LW, four MW buttons plus manual tuning. Complete with speaker and moun tings. Latest model, negative chassis only.
£15.95
£1.00
Post

Stereo FM/

Cassette

+ MW
Standard cassettes and FM in stereo plus medium wave. Tone and balance controls. Fast forward facility on tape. Adjustable shafts. Suitable for 4 or 8 ohm speakers (not supplied). This model is discounted elsewhere at 550 ur
$£ 40.95+\begin{aligned} & \text { Post }\end{aligned}$
Stereo
Speaker Set
Suitable for above stereo unit. Good quality in surface mounted casing, 5W nominal 8W peak.

Kelescopic Car Antenna
Multi-section standard type, suitable for angled mounting with locking key.

$£ 1.60+30$ P Post

Metal Detectors

Treasure Tracer Mk III

The original Treasure Tracer. Sales exceed 7,000 . 5 -transistor circuit with Varicap tuning. Sensitive,
stable BFO design. Built-in speaker and earphone. Fitted with Faraday shield. Kit supplied with pre-built search head.
Kit. $£ 18.60+£ 1.00$ Post Buill $£ 23.95+£ 1.00$ Post

A \star Induction Balance Model

Built with sensitivity up to 10 in on single cain; fitted with speaker and meter; PP3 battery; 7 in dia. search head. Telescopic stem. Excellent pin-pointing, positive reaction to non-ferrous, negative reaction to iron. This model's normal price is £39.95!
$£ 24.50+£ 1.00$ Post

All goods guaranteed one year 10-day money-back offer. Goods ex-stock at time of going to press Callers by appointment only please

Minikits Electronics Ltd. 6d Cleveland Road S. Woodtord London E18 2 AN
 with coil/distributor ignition up to 8 cylinders. THE KIT COMPRISESEVERYTHINGNEEDED Die pressed case Ready drillext, alumumum extructed base and heat sink. coll meunting clpss amt accessurues All kit components are çuarantexat for a persoch of 2 years from clate of purchase Fully illustrater assembly and installation mintructions are. included

Electronics Design Associates, Dept. 82 Bath Street, Walsall, WS1 3DE. Phone: (0922) 614791
\qquad

Dept ETI 1128 St. Jude's Road, Englefield Green, Egham, Surrey TW20 OHB Phone: Egham 3603. Telex 264475
Northern Branch (Personal shoppers only), 680 Burnage Lane, Burnage Manchester M19 INA. Phone (061) 4324945.

Microcomputer Mail Order

All your microcomputer requirements can be bought with confidence by mail order from MICRODIGITAL, one of the largest and longest established computer stores.

Most orders are despatched same day as receipt, if not a note explaining what the supply situation is. If we cannot supply within 30 days we will, on request, make an immediate cash refund.

Access and Barclaycard orders are welcome either in writing or over the phone. Your account will not be charged until the goods are despatched

Official orders of over $£ 10$ are also welcome. With normal 30 days trade credit extended to bona fide commercial and government organisations.

If you do not have our brochures, write or phone today for free copies by return.

MICRODIGITAL LIMITED
FREEPOST (No stamp required) LIVERPOOL L2 2AB
TEL: 051-236 0707 (MAIL ORDER 24 HOURS A DAY) TEL: 051-227 2535

FIIBOON
 How to order: Make cheques etc payable to ETI Book Service. Payment in sterling only please. Orders should be

 sent to: ETI Book Service, PO Box 79, Maidenhead, Berks. All prices include P\&P.
BEGINNERS

Beginners Guide to Electronics Squires $£ 3.35$
Beginners Guide to Transistors Reddihough £3.35
Electronic Measurement Simplified C. Hallmark $£ 2.20$
Electronics Self Taught Ashe $£ 4.40$
Beginners Guide to Integrated Circuits Sinclair £3.35
Principles of Transistor Circuits S. Amos $£ 5.50$
Understanding Electronic Circuits Sinclair $£ 4.10$
Understanding Electronic Components Sinclair £4.10
Beginners Guide to Radio King £3.35
Beginners Guide to Audio Sinclair £3.35

COOKBOOKS

TV Typewriters Cookbook $£ 7.75$
CMOS Cookbook $£ 8.20$
Active Filters $£ 11.30$
IC Timer Cookbook $£ 7.50$
IC Op-Amp Cookbook £10.00
Video Cookbook $£ 7.00$
TIL Cookbook £7.55
The Basic Cook $£ 4.00$ inc. p/p

IC Converter Cookbook $£ 9.50$

APPLICATIONS

Advanced Applications for Pocket Calculators 1. Gilbert £4.20
Fire and Theft Security Systems B. Weis $£ 2.00$
How To Build Electronic Kits Capel £2. 10
Linear Integrated Circuit Applications G. Clayton $£ 5.40$
Function Circuits Design \& Applications Burr Brown £15.95
110 Electronic Alarm Projects R. M. Marston $£ 3.95$
110 Semic onductor Projects for the Home Constructor R. M. Marston £3.95
110 Integrated Circuit Projects for the Home Constructor R. M. Marston $£ 3.95$
10 Thyristor Projects Using SCRs R. M. Marston $£ 3.95$
Handbook of IC Circuit Projects Ashe $£ 2.30$
Practical Electronic Project Building Ainslie and Colwell $£ 2.60$
110 Wave Form Generator'Projects R. M. Marston £3.95

TV AND HI-FI

Audio Handbook G. King $£ 7.50$
Cassette Tape Recorders J. Earl $£ 5.25$
Solid State Colour TV Circuits G. R. Wilding $£ 7.30$
$\mathrm{Hi}-\mathrm{Fi}$ Loudspeakers and Enclosures Cohen $£ 9.45$
How To Build Speaker Enclosures Badmateff $£ 3.90$
Master Hi-Fi Installation King $£ 3.45$
Colour TV Servicing King $£ 8.40$

LOGIC

Logic Design Projects Using Standard ICs J. Wakerly $£ 5.10$ Practical Digital Design Using ICs J. Greenfield £12.70 Designing With TTL Integrated Circuits rexas instruments $£ 9.05$ How To Use IC Circuit Logic Elements J. Streater $£ 3.65$ 110 COSMOS Digital IC Projects for the Home Constructor R. M. Marston $£ 3.95$

Understanding CMOS Integrated Circuits R. Melen $£ 4.00$
Digital Electronic Circuits and Systems R. M. Morris $£ 3.50$
MOS Digital ICs G. Flynn $£ 5.10$

COMPU'TING

Microprocessors and Microcomputers B. Soucek $£ 19.00$
Microprocessors D. C. McGlynn $£ 9.00$
Introduction to Microprocessors Aspinall $£ 6.40$
Beginners Guide to Microprocessors $£ 4.70$
Beginners Basic Gosling £3.35

OP-AMPS

Applications of Operational Amplifiers Graeme (Burr Brown) €8.30 110 Operational Amplifier Projects for the Home Constructor R. M Masston $£ 3.95$
Experiments With Operational Amplifiers Clayton $\mathfrak{£} 3.40$
Designing With Operational Amplifiers Burr Brown $£ 16.65$
Operational Armplifiers Design and Applications G. Tobery (Burr Brown) $£ 7.40$

Op-Amp Circuit Design \& Applications J. Carr £4.00

TEST INSTRUMENTS

The Oscilloscope In Use Sinclair $£ 3.10$
Test Instruments for Electronics M. Clifford $£ 2.40$
Working with the Oscilloscope A. Saunders $£ 4.10$
Servicing With the Oscilloscope G. King £6.50
Radio Television and Audio Test Instruments King £6.80

SERVICING

Electronic Fault Diagnosis Sinclair $£ 3.20$
Rapid Servicing of Transistor Equipment G. King £3.45
Tape Recorder Servicing Manual Gardner Vol. 1: 1968-70 £9.10
Vol. 2: 1971-74 £9.10
FM Radio Servicing Handbook King £5.45

COMMUNICATIONS

Communication Systems Intro To Signals \& Noise B. Carlson $£ 7.50$ Digital Signal Processing Theory \& Applications L. R. Rabiner $£ 23.80$
Electronic Communication Systems G. Kennedy $£ 8.50$
Frequency Synthesis. Theory \& Design Mannassewitsch $£ 23.40$
Principles of Communication Systems H. Taub £8.10

THEORY

Introduction to Digital Filtering Bogner $£ 10.20$
Transistor Circuit Design Texas Instruments $£ 9.35$
Essential Formulae for Electrical and Electronic Engineers N. M. Morris £1. 65
Modern Electronic Maths Clifford $£ 6.70$
Semiconductor Circuit Elements T. D. Towers $£ 7.40$
Foundations of Wireless Electronics M. G. Scroggie $£ 5.00$
Colour Television Theory Hudson $£ 6.20$

REFERENCE

Transistor Tabelle (Includes physical dimensions) £4.10
Electronic Engineers Reference Book (Ed. 4) L. W. Tumer $£ 34.00$
Solid State Circuit Guide Book B. Ward $£ 2.25$
Electronic Components M. A. Colwell $£ 2.60$
Electronic Diagrams M. A. Colwell $£ 2.60$
Indexed Guide to Modern Electronic Circuits Goodman £2.30
International Transistor Selector T. D. Towers New update $£ 8.70$
International FET Selector T. D. Towers £4.35
International FET Selector I. D. Towers $£ 4.35$
International Op-Amp Linear Popular Valve/Transistor Substitution Guide $£ 2.25$
Popular Valve/Transistor Substitution Guide $£ 2.25$
Radio Valve and Semiconductor Data A. M. Bell £3.45
Master Transistor/Integrated Circuit Substitution Handbo
World Radio TV Handbook 1978 (Station Directory) £8.
Radio. TV and Audio Technical Reference Amos $£ 24.85$
TV Technicians Bench Manual (New Ed.) Wilding $£ 5.10$
$\square_{\text {MISCELLANEOUS }}$
Integrated Electronics J. Milman $£ 7.90$
Microelectronics Hallmark $£ 3.90$
Practical Solid State DC Supplies T. D. Towers £6.20
Practical Triac/SCR Projects for the Experimenter R. Fox $£ 2.25$
Printed Circuit Assembly Hughes \& Colwell £2.60

Fallen behind recent advances?
Just starting out?
Need a decent reference book?
ETI Book Service provides an easy
way of getting your hands on the right title.

MICROFILE

This month micro-man Henry Budgett has a bee in his bonnet about standards and makes the postman redundant by suggesting we link up our home computers by telephone.

IT IS A FAIRLY accepted fact that such computer things as the BASIC language have a standard origin but no two are ever exactly the same because of the way they are implemented on a system. What really bugs me, however, is the way a wide variety of different fundamental standards are misused or even ignored. Bemused? I'll explain. Take a simple example - the size of computer memory.

Any computer engineer worth his character generator knows that, as computers work on the binary system, you can't have exact decimal type numbers. Hence 2 to the power 10 is 1024 , or what we tend to call 1 K . However, certain people always seem to call it 1 k , which means 1000 ohms. Instant confusion. Even more often we find that a micro is quoted as being capable of supporting 64 K of memory, that's 2 to the power of 16 , which is actually 65536 bytes. Some companies say that their computer has 65 K of memory, it looks bigger but of course it's not. Please can we standardise on 1 K being equal to 1024 bytes? You wouldn't believe the number of letters I get from confused people.

The other main moan that I have with computer 'jargon" is the fact that people use it quite glibly without having much knowledge of the real meanings Take for example the acronym VDU. We had a great debate in the office about this one. The actual definition is Visual Display Unit. The dictionary further says "an output device presenting character or graphical data on the face of a cathode ray tube under program control. May also have a keyboard for data input." So your telly doesn't qualify unless it has a character generator built in!

Whilst on the subject of acronyms it often appears to me that a degree of standardisation is needed here as well. For example, you often see a certain computer language written as basic or even Basic. Unfortunately the name of the language is Beginners All-purpose Symbolic Instruction Code, and because this is a bit of a proverbial mouthful we give it an acronym 'BASIC'. The spelling is all in capitals to indicate that it is an acronym! The same problem occurs with Random Access Memory and its many brothers, we give them all acronyms such as RAM and ROM but you wouldn't believe that from the letters and articles that I receive for CT.

Before I bore you all to death I would like to make one other little point, we are all hearing about a new language for home computers called PASCAL. It was named after a certain Blaise Pascal, who was around in the seventeenth century. Unfortunately it is NOT repeat NOT an acronym for anything and (I reckon) should be spelt Pascal. I hope this generates some correspondence as I would like to hear your views, or indeed any suggestions for standardisation in the business. I hope we are not too late to put a little logicality back into what is after all a very logical business.

The Great Tape Rip Off?

I received a letter from a worried reader this month about the proposed levy on cassette tapes. For those of you who did not see the article in the Observer on 26 th August the proposal is as follows. The British Phonographic Industries, the representative of the record companies, is discussing ways of beating the home taping business which is currently costing the recording business about $£ 150$ million a year. If you are wondering how this affects you as a home computer user the answer is this. The proposal is to put a levy on blank cassettes, and computers use cassettes! I contacted the BPI and they are aware that there are cases in which cassette tapes are used legitimately - education, language courses, etc. and it appears that they now know about home computers as well. The spokesman for the BPI said that the proposals will probably not be implemented for at least "a couple of years"' and it is hoped that a way will be found to allow those parties who use cassettes legally to avoid paying the levy. The only suggestion that I could think of, which I passed on to the BPI, was that any cassette under C30 should be free of the levy. They have promised to keep us informed of the situation and I'll let you know if anything happens.

Duped On Tape

Another aspect of the cassette tape market has appeared in my post this month, a copying service. Run by Simon Stable Promotions of 46 West End, Launton, Oxon, it offers cassette duplication of programs at a cost of 33p per tape in quantities of ten or more. This should be ideal for clubs who wish to distribute members software and Mr Stable can cope with any tape system, CUTS, Kansas City, TRS-80, etc. The tapes are supplied without library boxes, although these are available at 10 p each in order' to keep postal costs down. He also offers a 'one-off' test service at 50 p and will replace any faulty cassettes. One point should be noted before you start to send off all your commercial software. You have to sign an indemnity form accepting responsibility for any copyright laws you may break and these penalties could be heavy. You have been warned!

Club Call

Only a couple of items of news this month as I suspect everyone is away on holiday. Firstly there is news of a program exchange newsletter being set up to cover such micro's as Superboard, Nascom and the Sorcerer. A small charge will be made for the service to cover printing costs, etcetera and the publication will be known as Micro News. If anyone has a program they want to share or is otherwise interested in the project they should contact Martin Black at 11 Moorland Avenue, Crumpsall. Manchester 8. The Thames

Can't use the phone, dear, Pet's been chatting to the Smith's Apple all moming.

Valley Amateur Computer Club are very active this Autumn. Their agenda includes presentations on Shugart disks, an 808 homebrew, TRS-80 software and Hewlett Packard systems. The club meets on the first Thursday of each month at the 'Southcote' in Southcote Lane off the Bath Road in Reading at 7 pm . For further information please ring Brian Quarm on Camberly 22186. It looks as though the INMC have finally started with a vengeance, we have just received the third newsletter from them. The quality of the contents has improved with some nice software on offer.

Micro Modem

The other evening I bumped into one of my excolleagues who still works for a certain Government department. He is an avid reader of both Microfile and CT and, whilst being a computer professional, he still has an active interest in home computing. The outcome of our meeting was the basis of a rather interesting project for any home computer owner and I am appealing for help. The idea that he proposed was to interconnect two computers via their cassette ports and the PO telephone lines. Simplicity itself really as I reckon that the phone lines can support the frequencies used by most of the various cassette standards. However, some hardware would be necessary to boost the level of the interface output into a small speaker for transmission and then, at the other end, a circuit to receive the tones and attenuate them to a level suitable for feeding into the interface at the other end. Now if anyone out there has tried this, or is prepared to try it out for us I would be most grateful to know if it can be done. If you have any details details please send them in and I will try to assemble a small project for one of the magazines. Thanks Keith, what will you think of next?

Board Boob

There was a slight mistake in last month's Mercofil (sic), what you didn't notice! The paragraph headed 'Micro Coup' actually belongs to Microdigital and not Petsoft. My apologies to anyone who may have been misled.

Terms. Cash with order (official orders welcomed from colleges etc) $30 p$ postage please unless otherwise shown. VAT inclusive prices. S.A.E. for new illustrated lists.

The NEW Marshall's 79/80 caralogue is just full of components

and that's not all . . .

... Our new catalogue is bigger and better than ever. Within its 60 pages are details and prices of the complete range of components and accessories available from Marshall's
These include Audio Amps, Connectors, Boxes, Cases, Bridge Rectifiers, Cables, Capacitors, Crystals, Diacs, Diodes, Dis* plays, Heatsinks, I. Cs, Knobs, LEDs, Multimeters, Plugs, Sockets, Pots, Publications, Relays, Pesistors. Soldering Equipment, Thyristors, Transistors, Transformers, Voltage fegulators, etc., etc.
Plus details of the NEW Marshall's 'budget Credit Card. We are the first UK component retailer to offer our customers our own credit card facility
Plus - Twin postage paid order forms to facilitate speedy ordering.
Plus - Many new products and date.
Plus 100 s of prices cut on our popular lines including I.Cs, Transistors, Resistors and many more.
If you need components you need the new Marshalls Catalogue.
Available by post $65 p$ post paid from Marshall's, Kingsgate House, Kingsgate Place, London NWG 4TA. Also available om any branch to callers 50p.

Ragent Street, ©2 200. Tel: 041-332 4133. Aud Bristol: 10今A Stokes Crofe, Bristol. Tol: $0272426801 / 2$.

Ohio Scientifics

Full 8K basic and 4K user RAM
Power supply and R.F. Converter P.O.A.

Features

- Uses the ultra powerful 6502 microprocessor
- 8K Microsoft BASIC-in-ROM
- Full feature BASJC runs faster than currently available personal computers and all 8080-based business computers.
- 4 K static RAM on board expandable to 8 K
- Full 53-key keyboard with upper-lower case and user programmability
- Kansas City standard audio cassette interface for high reliability
- Full machine code monitor and I/O utilities in ROM
- Direct access video display has 1 K of dedicated memory (besides $4 K$ user merriory), features uppercase, lower case, graphics and gaming characters for an effective screen resolution of up to 256 by 256 points. Normal TV's with overscan display about 24 rows of 24 characters, without overscan up to 30×30 characters.

Extras

- Available expander board features 24 K static RAM (additional mini-floppy interface, port adapter for printer and modem and OSI 48 line expansion interface.
Assembler/editor and extended machine code monitor available.

Built and tested
(Delivery within 7 days)

Fully built and tested. Requires only +5 V at 3 amps and a videomonitor or TV and RF converter to be up and running.

4 MORGAN STREET LONDON E3 5AB

TELEPHONE:01-9813993

TELEX:261426 ATN. LOTUS SOUND

๔ompurtho

WHAT TO LOOK FOR IN THE NOVEMBER ISSUE. ON SALE 12TH OCTOBER

TURING OVER A NEW LEAF

The famous English mathematician Alan Turing, apart from developing the early ACE computer at the National Physical Laboratories had previously produced a theoretical machine. Called, not surprisingly, a Turing Machine it is a mathematical model of a computer. In this article by Giles Gummer the theory of these machines is explained and a simulation program is presented for the Nascom.

TRS-80 FOR YOU?
Apart from presenting the popular series on microprocessors
 each month lan Sinclair has found time to take a close and critical look at the TRS-80 For anyone considering buying one of these machines this article is not to be missed as it provides a rare insight into a typical beginners problems.

TYPECASTING TRITON
If you want a cheap, low-cost printer for your Triton we present a program and interface unit to allow you to use a GPO style teleprinter. The program also includes a mini letter editor as well as all the necessary code conversions. Print your way in style with this one.

DREADNOUGHT
Blast your way across the oceans of the world, leaving a trail of shattered sinking wrecks in your wake. Next month CT gives you the chance to taste the glory of the days when Britain -ruled the waves and the ultimate weapon was the fleet

STRING THING

String Thing finally bows out of ETI this month (it won't be the same without it!]. with details of the dynamics section and power supply. Tim Orr (String Thing's dad) has also been giving some thought to how you put all the bits together and test the system.

The loudness of a note played on a piano is proportional to how hard the key is pressed. If the key is played rapidly then a loud note is produced. Ás a rule of thumb, the volume of the note should be proportional to the velocity of the key depression. By measuring key velocities it is possible to produce a piece of hardware that will generate notes with volume controlled by the initial keyboard force. Such a system is said to be touch sensitive and allows the player another parameter with which to add expression to the music.

Logic Sequence

When a note is pressed it produces a voltage which goes from - 5 V through OV to +5 V . The duration of the $O V$ period is inversely proportional to the key velocity and by measuring this period it is possible to generate an amplitude voltage for that note. The logic must perform the following sequence of events:

1 Scan the keyboard to determine if any of the keys are being pressed. 2 When a key is being pressed, i.e. sending out a OV signal, time the duration of this period and store it in a memory.
3 When the key is fully depressed i.e. sending out a +5 V signal, produce a signal (CIN) which goes high. CIN is used to enable the dynamic signal so that it will only generate a note when a key has been fully depressed.
4 When the key is released, the memory for that note is reset. All this is done in a time multiplexed system, so that each note is interrogated, (once every millisecond, spending 16 microseconds on each note), in sequence.

The key pressed time varies from about 4 milliseconds for fast playing to between 100 and 200 milliseconds for soft playing. As each key is interrogated every millisecond then fairly accurate timing can be performed.

Controlling it

The input signal from the keyboard (MPI) is connected to two fast comparators, (IC1). The combination of the two outputs tells the logic whether MPI is $+5 \mathrm{~V}, 0 \mathrm{~V}$ or -5 V . This logic, (IC2, 3, 4, 5, 6, 7), then generates various control signals in response to the status of MPI. These include CIN, CIN, OEN, KST', OEL, and MRW.
CIN goes high whenever a note is detected as being fully pressed. This signal is used as a carry for the adder IC11. It is used to generate a 'key-pressed' signal for the hold off vibrato circuit and its inverse CIN is used to enable the output of the DAC.
OEN is a signal that inhibits the demultiplexing network. It is a short pulse that starts just before and finishes slightly after the address changes state. The demultiplexer uses 4051 devices which exhibit some undesirable effects when the address is changed. By using OEN to inhibit them, these effects are greatly reduced. KST is the key status signal that is sent to the memory.
OEL is used to enable the tristate outputs of the latch IC12. Both IC12 and the RAM (IC13) output data onto a common bus and so a tristate control mechanism is needed. MRW controls the memory R/W mode.

Fig. 1. Circuit diagram of the dynamics and address section.

HOW IT WORKS

output shows all the data on the bus, including count down processes. When no keys are pressed the data is all ones and the DAC output is high. However, when keys are pressed, the down count appears as downward going pulses on the DAC output. These have to be selectively removed and this is done using a chopper switch driven by CIN.

When CIN is low, the chopper switch Q2 is off and the DAC output is unaffected. When CIN is high, the DAC output is shortened to 0 V and no output signal (MPO) is produced. So an MPO signal is only produced when CIN (key-pressed) is low. IC 15 is used to buffer and amplify the DAC output and IC16 to further amplify and bend the transfer function making the touch sensitivity more natural. Q3 and O4 buffer the input of IC16 providing a low impedence driver producing up to +10 V of MPO signal. A small part of CIN
is also mixed into the MPO signal via R 26 . This ensures that however lightly a key is played, a small volume note will always be produced. The dynamic operation is disabled by injecting a large DC voltage via R25 into the circuit. This always ensures a large MPO signal irrespective of the DAC output signal.
A key pressed signal is generated by using CIN to clock a retriggerable monostable made out of Q1, C1, R6, R20 and IC7. This produces a low output whenever a key is pressed and is used to initiate the hold off vibrato and squelch functions.

The address generator is a Schmitt trigger oscillator (IC8) and an eight stage binary counter (IC9). This generates the six bit address code and two internal timing waveforms. The addresses are connected to other circuits via preformed DIL connectors, this greatly reducing the wiring.

Fig. 2. Component overlay of the dynamics board.

BUYLINES

Powertran Electronics are supplying a complete kit of parts for this project at $£ 365+15 \%$ VAT. Delivery by Securicor is $£ 2.50$ extra. Everything is included in the kit, down to the last nut and bolt. They even give you a plug

Powertran will also supply components, boards, etc separately. Please send an sae for details.

Output waveforms for honky tonk (left) and string (right).

Fig. 3. Circuit diagram of the power supply.

Fig. 4. Component overlay.

HOW IT WORKS POWER SUPPLY

Four power supply rails are used on this machine, $\pm 12 \mathrm{~V}$ and $\pm 5 \mathrm{~V}$. The current consumption is relatively low and so $1 / 2$ amp plastic voltage regulators mounted on small heatsinks are sufficient. To keep digital noise breakthrough via the ground lines to a minimum, the power supply has separate digital (DIG 0 V) and analogue (ANA 0 V) outputs. When assembling the power supply care must be taken to avoid letting heatsinks touch each other, as this will cause a short.
Output waveforms for brass (left) and piano (right).

PARTS LIST

 DYNAMICS BOARD| RESISTORS all $1 / 5 \%$ | |
| :--- | :---: |
| R1-5, 30 | 1 kO |
| R6, 26 | 47 k |
| R7 | 33 k |
| R8 | 1 k 2 |
| R9-16, 21 | 4 k 7 |
| R17 | 100 k |
| R18 | 6 k 8 |
| R19, 20, 23, 24, 284 k 7 | |
| R22 | 2 k 7 |
| R25 | 3 kg |
| R27 | 220 k |
| R29, 34-39 | 680 R |
| R31 | 2 k 2 |
| R32 | 180 R |
| R33 | $47 R$ |
| R40 | 15 k |

POTENTIOMETER
RV1 100k horiz, preset
CAPACITORS
C1, 7, 9
C 2
C 3
C4, 8
C4,
C5
C6
14035 V tantalum
1 no polystyrene
$2 n 2$ polystyrene
4u7 10V tantalum
10 p ceramic
470p polystyrene

SEMICONDUCTORS

IC1	75107
IC2	74 LS 74
IC3	74LS20
IC4	74LSOO
IC5	74LS08
IC6	74LS04
IC7	74LS 74
IC8	74LS13
IC9	74LS393
IC10, 11	74LS83
IC12	74LS374
IC13	MC6810L
IC14	ZN425SE
IC15, 16	TL081
Q1, 2, 4	BC182L
Q3	BC212L
D1-8	1N4148

POWER SUPPLY

RESISTORS	
R1	$1 \mathrm{kO1/5W} 5 \%$
R2 10R 1W 5\%	
(R2 should not be long)	more than 15 mm
CAPACITORS	
C1. 3, 6	2200u 25 V elec-
	trolytic axi
C2, 4, 5, 7	470n 25 V tantalum
SEMICONDUCTORS	
D1-8	1 N4002
$\checkmark 1$	7812 voltage
	regulator
V2	7912 voltage
	regulator
V3	7905 voltage
	regulator
V4	7805 voltage
MISCELLANEOUS	
0.5 A quick-blow 20 mm fuse and	
holder, illuminated DPDT mains switch,	
former, TV-5 Redpoint heatsinks for	
voltage regulators 4 off), PCB, hard-	

Assembly And Testing

Assemble the power supply and power it up. Test that the output voltages are within their correct values. Use a 1 k resistor as a temporary load. The 12 V rails have a $\pm 0.5 \mathrm{~V}$ tolerance, the 5 V rails a $\pm 0.25 \mathrm{~V}$ tolerance. Power up the dynamics board and the keyboard scan. Check the power rails are still OK. If you have a scope you can look at the MPO, MPI, Cin signals. Next power up the note generator boards. Check the power rails. Test to see that the top octave generator is running and that the dividers are working. It will be possible to see that the individual notes are working. Take care to plug the two DIL connectors in the correct way. Also note that the connector that goes to the keyboard scan is mechanically clamped (with a sticky clip) to that PCB. If it isn't then it may fall out.

If any of the address codes are faulty or missing then errors will occur when the keyboard is played. These will be binary repetitions of notes. For instance, if you run your finger up the keyboard and you get a scale that rises, and then in the middle of the keyboard returns to the bottom note and then produces the same rising scale again then you have lost the MSB of the address code. Connect the voicing board.

Check the power rails. Test to see that the voices are working. There are two presets to adjust.

The brass quality preset (PR2) should be adjusted so that when a brass sound is played there is a wide sweep of the filter. This setting is subjective and can be left to the user to select the required sound.

The mute preset (PR1) should initially be turned fully clockwise. Play a string chord and rotate PR 1 anticlockwise until the output starts to be affected by the muting electronics. Then back off the preset slightly. The muting is not really needed except for chorus / ensemble effects. In this mode the signal to noise ratio is about 50 to 55 dB but this is not subjectively acceptable. With the mute in operation, 70 dB may be expected.

Lastly, connect the chorus/ensemble unit. Check the power rails. The preset alignment details were given in part one of the article. Test that the chorus effects are working and that the mute is functioning correctly.

For those who like experimenting, add a spring line reverberation unit to the system. It will widen the sound structures and also make the piano voice more realistic with its reverberent echo.

ETI

Fig. 5. Keyboard tuning procedure.

MICROPROCESSOR Hand held games

From Casio's New Collection comes one of the most sophisticated executive watches available today.

THE 81CS-36B ALARM CHRONOGRAPH

LC Display of hours, minutes, seconds, day; And with day, date, month and year perpetual automatic calendar

$4-5$ YEAR BATTERY

1/100 second chronograph to 7 hours. Net, lap and first \& 2nd place times. User optional 12 or 24 hour display. 24 hour alarm User optional hourly chime Back light Mineral glass. Stainless steel case. Water resistant to 100 ft (3 at.)

RRP £39.95

£35.95

HONGKONG WATCHES

Most low cost waiches come from Hongkong In our experience these are proving to be extremely unreliable, particularly those with multi-function unrelable, particularly those with multi-function
modulure rates of up to 60% or more Repairs can take as long as three months, and replacement parts are not always available Compare this with Casio, Citizen and Seiko, whose failure rate is typically under 1% and Casio's service time of 2.3 weeks and we ask you
ISN'T IT WORTH PAYING A LITTLE MORE FOR QUALITY AND RELIABILITY? Fully guaranteed for 12 months

GASIO LADIES' WATCHES

Superbly styled stainless steel cases, with mineral glass face, water resistant to 100 feet. LC Display of hours, minutes 10 seconds seconds by flash $\mathrm{am} / \mathrm{pm}$; And with day, date and month

NEW SCIENTIFICS

CASIO FX-2600
Ulitra slim - $5 / 32$ in
$8+2$ digit LC Display 43 scientific functions. Non volatile memory. Auto power off 6 levels parenthesis. Standard deviations R to P, P to R. ENG, FIX, SGI RND and Random number keys. $5 / 32$ in $\times 23 / 4 \times 47 / 8$ in.

$£ 19.95$

CASIO FX-3200
As above but 10 digits

£21.95

CASIO FX-310
As FX- 2600 but 50 scientific functions, $1 / 4 \times 27 / 8 \times 5 \frac{1}{4}$ in

£17.95

CASIO FX-510
0 digit version of above
£19.95

* WE WILL TRY AND BEAT ANY LOWER PRICE *

LC Display of hours minutes and seconds. 8 digit calculator with full memory. \% Two AA batteries give very long life. $3 / 4 \times 3 \times 53 / 8$ in (RRP £12.95)
$£ 10.95$

Price includes VAT, P\&P. Send your
cheque, P.O. or phone your ACGESS or BCARID number to: -

BUYING TIME? Better make sure it's CASIO

New Lithium batteries outlast most solar

GASID CHRONOGRAPHS

CASIO 950S-31B
4 YEAR BATTERY $1 / 100$ sec. chrono to 7 hours. Dual time 12 or 24 hout Stainless steel encased. Water resistant to 66 fee (2 at.) RRP £29.95 £23.95

CASIO 95CS-31B
5-YEAR BATTERY. 1/100 sec chrono to 7 hours. Dual time. 12 or 24 hour. Solid stainless steel case. Water resistant to 100 ft (3 at.) RRP $£ 34.95$

£29.95

Both have new Lithium batteries which outlast most OLAR watches. Constant LCD display of hours. minutes, seconds, am / pm and day. (1 2 or 24 hour) Dual time (12 or 24 hr). Automatic day, date, month and year calendar Mineral glass face. Backlight. High quality s / s bracelets with easily removable inks.

CASIO F-200

Sports chrono
Hours, minutes, seconds, am m and with day, date and month auto calendar. $1 / 100$ sec chrono to 1 hour. Net, lap and 1 st \& 2 nd place times. Resin case and matching strap Mineral glass.
Water resistant to $66 \mathrm{ft}(2 \mathrm{at}$.) Silver oxide battery RRP $£ 17.95$ £15.95

8 DICIIS - TIME/DATE

CASIO F-8C 3-YEAR BATTERY

8 digit display of hours, minutes seconds and date, with day \& $\mathrm{am} / \mathrm{pm}$
Auto calendar
Backlight
Resin case and
matching strap.
Mineral glass.
Water resistant to
$66 \mathrm{fr}(2 \mathrm{at}$.$) .$
RRP £12.95
Real quality and value for money

[^5] on many items.

Depl. ETI, Beaumont Eentre, 164-167 Eas! Rd., Cambridge CB1 IDB. Tel. 0223312866

Here's why you should buy an I.C.E. instead of just any multimeter

* Best Value for money.
* Used by professional engineers, D.I.Y. enthusiasts, hobbyists, service engineers.
* World-wide proven reliability,
* Low servicing costs.
* 20K/volt sensitivity and high accuracy.
* Large mirror scale meter.
* Fully protected against overload.
\% Large range of inexpensive accessories.
* 12 month warranty, backed by a full after sales service at E.B.Sole U.K.Distributors.

Kensar Developments

Satyrus series 1 disco mixer, wired and tested $£ 85.00$ + £2 p\&p. Bi-Pak AL250 Amplifer $£ 19.95+66$ p p\&p. P.S.U. for AL250 wired and tested $-£ 19.05+£ 1.50 \mathrm{p} \& \mathrm{p} .3300 / \mu \mathrm{f} 100 \mathrm{v}$ tubular electrolyte - £3.75 ea $+\mathbf{1 5 p p \& p}$. Motorola Piezo horns - £5.95 + 25p p\&p. Richard Allen HD12T speakers (100 w) $-£ 29.95+£ 1.25 \mathrm{p} \& \mathrm{p}$. Richard Allen Atlas 15 (250w) speaker - £98.50 + $£ 1.75 \mathrm{p} \& \mathrm{p}$.

Mains Transformers

240v Primary 9-0-9 100A - £125.00 + 70p p\&p. 18-0-18 1A - £4.95 + 70p p\&p. 0-55 2.5A 75p p\&p. BSR Manual single play record deck, ideal for home or disco use $£ 11.10+£ 2.50$ p\&p.

Large stocks of resistors, capacitors, knobs, switches, cabinet fittings and coverings.
New disco consoles (125 w) from $£ 199.95$. Disco speakers (65 w) from $£ 5 \mathbf{5 2 . 5 0}$. All prices include VAT Send a $10 p$ stamp for complete stock list. HP available if required. Mail Order only.

Kensar Developments, Bellmans, Checkendon, Oxon. Tel. 0491680487.

The Arak VIII is so named because it can handle up to eight' note polyphony, and that means that if you have a large enough synthesizer you can play eight notes at once, and each one can be set to sound totally different
ho you don't waste those precious V.C.O s. You can instance to that tat monophonic sound by flicking the unison switch. Just touch the keys with infinite sustain selected and the Arak VIII brings in a big power chord while you get on with playing another instrument. Memorising a chord is no problem using the memory bank facility. You can even sequence between two chords set in the memory banks and interact with them from the keyboard. We designed the Arak VIII to interiace with just about anything, apart from the gate and control voltage outputs, which incidentaly, can be scaled between zero and two volts per octave, there is an I/O so you can interface it to a computer. This allows a computer to take data from the Arak VIII or feed data in and control the synth.
The case is hand-built out black anodised alumınium and is finished off with solid mahogany end cheeks. Legends are silk screened on the front and back so you know precisely what to twiddle and what to plug into

```
Arak VIII ready-built and tested

PCB set
\(\varepsilon 25.40\)
£1.50
*Four more store / portamento circuits are needed to give the necessary number of control voltages

\author{
ARAK SOUND \\ PRESTON HOUSE, HIGH STREET \\ CROWTHORNE, BERKS.
}

Is it a bird: Is it a plane: No, it's David Raven of Metac Electronics, bringing you news of
a future with speaking dictionaries and cheap VCRs.

CHANGES IN THE TECHNOLOGICAL world occur fast and it is often not realised what type of Society this has created. Regular readers of magazines like ETI are probably aware of the different world they see from the one seen through the eyes of people who are not up to date with the changes occuring in the electronics industry. The classic example of the void that exists was demonstrated by an entire government who last year discovered microprocessors. We now regularly hear politicians, trade union leaders and housewives discussing the inevitable changes which will take place all down to the "silicon chip" (that magic word). Like some modern cure-all, it provides the answers to low productivity, stagnant growth and more leisure time, or so we are told by the recently initiated. ETI readers, and anyone else who has cast an eye in the direction of a current electronics magazine during the last 7 to 10 years will have known what was happening. The effect on the way people respond to change inevitably affects companies and it is interesting to note the changes in our own industry on the firms that have responded easily to quite new products and those that have fallen by the wayside

Examples of established companies that are growing from strength to strength with every change are not difficult to find. Electrocomponents Group better known to us as RS Components (ex Radio Spares), also including Doram and Electroplan, are probably the most successful component distributors in the UK and perhaps Europe. They seem to have handled the change from supplying radio spares in a big way. Other classic examples of traditional companies that ride the waves are Marconi Instruments and the bespoke manufacturers of Multimeters, Avo Ltd. Firms like the manufacturers of Scotch Tape, 3M, are still out there producing cassettes for mini-computers and even more amazing are companies like the Thompson organisation that istraddle newspaper printiong and drilling for oil in the North Sea. Sadly there are others that do not make it and it all depends on how individuals can handle the rapid changes in technology

\section*{The Wind of Change}

Nearer home for me are retailers like Audiotronics, better known as Lasky's who have been fighting for survival for sometime, after a recent take over by chairman Geoffrey Rose who came in to bail the group out after a disastrous \(£ 1.7\) million loss by their subsidiary Lasky's France. The rate of change in the Hi-Fi and associated electronic consumer products must have affected this company and, although they have now turned the corner back to profitability, time will only tell how successful they have been. In direct contrast
companies. like Dixons have blossomed with profits of \(£ 10.7\) million. There is no quick answer as to why some firms are able to survive technological change and others are not. However, I strongly suspect that the day a company director, manager, engineer or technician stops reading and keeping himself well informed is the day that company or person starts the technological slide down hill.


Fig 1. Video recorder in use

\section*{Video Recorders}

All human things are subject to decay, - so said poet John Dryden (who was probably thinking of the phosphor glow on the telly screen) but he didn't know about video recorders. Now the image of Benny on Cross Roads can be restored at a whim and extracts from Stars on Sunday can be spliced with Deep Throat to obtain some pretty bizarre visual effects.

Current copies of the new video magazines have been promising us for some time a revolution in this industry and I have no doubt that it is happening, albeit slower than was at first imagined.

\section*{Chasing Nipon}

American import figures of home entertainment electronics makes interesting reading since they reflect UK buying patterns in the near future. Colour TV imports have dramatically reduced by 1.4 million units as against video cassette recorder imports rising to nearly half a million sets last year and no doubt this figure will be greatly increased for 1979. There is still no domestic manufacturer of VCR's in the USA and, with the big exception of Philips, the UK is in the same situation. Taiwan and South Korea are ranked second and third largest exporters to the States of home entertainment electronics with Japan still firmly in the lead.

Prices of video cassette recorders are predicted to remain at their present quite high levels for some time with inflation causing effective price reductions over the next few years. These predictions are probably based on
the way colour TV's have remained fairly price stable. I am a little sceptical about this, since the only reason for the price stability of TV's in the UK has been the tightly administrated patents protecting the PAL 625 line system. These patents are owned by Telefunken of Germany and are enforced in the UK by EMI. However, this situation can last for only the next year or so when the final patents run out. Restrictions on the size of receiver which may be exported from the Far East to the UK will be over and it remains to be seen what will happen. Taking in to account the drop in sales to the USA and the opening up of a previously protected market I can imagine plane loads of Japanese and other Far Eastern manufacturers descending on London with a force not encountered since those dark days just a few years ago when they removed our motorcycle industry.

Having caused sheer panic among TV manufacturers I feel sure video cassette recorders must also continue to fall in price. The main cause will be the manufacturers themselves who continue to outdate models with new technological changes that result in sales leads for them but leaving last year's model unsold unless the price is reduced. This competition will increase as more manufacturers move into the market with much the same effect as we have seen with other electronic consumer products. Although technically there is a good deal more to VCR's when compared to a TV game, Hong Kong manufacturers must not be ruled out. They have the technical expertise to produce all the engineering necessary for VCR's and it is only a matter of time before we will be seeing quite low cost VCR's here in the UK. You will of course be among the first to know about this since ETI will almost certainly be out there crashing the price as usual for one of their special offers.

\section*{Language Barrier}

For some reason there is a popular misconception that you do not need to speak foreign languages if you are English. It seems that every time I go abroad all the English-speaking natives have left for England. So the introduction of an electronic pocket translation computer is good news for me

The first to appear are being made in the states by the Lexicon Corporation. These small hand held units measure about 6 inches wide and 3.75 inches high and by plugging in various different modules you can alter the languages to those which are required

It is all made possible by the availability of two integrated circuits: the single chip 38708 bit microcomputer from Mostek and a 64 kilobyte read-only memory also from Mostek. The microcomputer intercepts what is punched into a 33-key dual-function keyboard, controls the characters displayed and searches for words stored in memory. Some 1,500 words and phrases are stored in a read-only memory (ROM) in a language for every day use. Lexicon produce modules which will translate English into Spanish, French, Italian, German, Portuguese, and vice versa. It is also intended to increase the language available to include Hebrew, Japanese, Chinese and Russian

\section*{Speaking Translator}

Not to be out done Texas Instruments are first on the scene with their language translater that can talk. TI have produced a single chip speech synthesizer and four 128-kilobit lowspeed read-only memory chips which together with a plug-in ROM module gives the translator
a 1,000 word vocabulary. Of the 1,000 words 500 can be displayed and pronounced, the rest are displayed only. The translator was unveiled at the 1979 International Consumer Electronics Show in Chicago and will retail in the States for about \(£ 125.00\) with language modules costing \(£ 25\) each.

This new area for hand held calculators is intriguing and one wonders what effect it will have when pocket translators take the place of dictionaries? It may become quite unnecessary to learn spelling which will be a relief to many young school leavers of today.


Fig 2. Language translator.

\section*{Grammar - Could do Better}

However, not all the problems are yet solved as was pointed out in a recent article published in the magazine Business Traveller. The writer describes his experiences when he visited restuarants in New York's foreign language areas and it makes hilarious reading. He makes the point that the machines are literal and cannot express the nuances that make language communication an art and not a science. They are not able to distinguish between for example "like" the verb and "like" the conjunction. Grammar just goes out of the window except for a limited number of programmed common phrases. To be absolutely fair to these early models, they are a major breakthrough into a new area for consumer electronics.

It may well be the very early tootsteps to a complete revolution in verbal communications between peoples of different nationalities and could result in better understanding between nations. We only have to point to the early four function calculators and basic video game to realise how fast this technology can change. Discussions are already well advanced on producing a European TV network using satellites positioned to beam programmes from other countries. It may well soon be possible to immediately translate these to different languages at the time programmes are transmitted resulting in truly international communications.

\section*{Britain's Best Breadboard Buy at Breadboard 79}

\section*{FREE
ENTRYTICKET
WORTH £1.00
WITHEVEYY PRCHASE \\ FREE
ENTRYTICKET
WORTH £1.00
WITHEVEYY PRCHASE \\ FREE
ENTRY TICKET
WORTH £1.00
WITHEVERY PURCHASE \\ FREE
ENTRYTICKET
WORTH £1.00
WITHEVEYY PRCHASE}

All over Britain, hobbyists are discovering Britain's Best Breadboard Buys. At the London Breadboard exhibition ' 79 on Stand Nos. F1, F2 and G1, G2, CSC will be exhibiting their full range of breadboards.
Here is your chance to obtain a special ticket for Breadboard '79 worth £ 1.00 absolutely FREE.
Cut out the coupon below and take it along to one of our listed dealers, and make a purchase of any of our breadboards and receive your special FREE ticket - see you at Breadboard ' 79 .
Take the coupon to any of these main dealers: LONDON
Rastra Electronics Lid. . 279-281 King Street, Hammersmith London W6
Cubegate Lid. , Audio Electronics, 301 Edgware Road, London W2 1BN
Technomatic Ltd., 17 Burnley Road, London NW10 1ED
Precision Instrument Labs., Instrument House,
727 Old Kent Road, London SE15
MANCHESTER
Shudehill Supply Co., 53 Shudehill, Manchester M4 4AW BUCKINGHAMSHIRE
West Hyde Development, Unit 9, Park Street Industrial Estate, Aylesbury, Bucks HP20 IET
Best Electronics (Slough) Ltd. . Unit 4 Farnburn Ave., Slough. Bucks SLI 4XU
KENT
Lawtronics, 13a High Street, Edenbrıdge; Kent TN8 5AX NEWCASTLE
Aitken Bros., 35 High Bridge. Newcastle upon Tyne SCOTLAND
Marshalls, 85 West Regent Street, Glasgow G2
F. Brown \& Co., 45 George IV Bridge, Edinburgh EH1 1E3 LEEDS
Leeds Amateur Radıo Club, Cookridge Street, Leeds 1
HERTFORDSHIRE
BI-PAK, 3 Baldock Street, Ware, Herts.
CONTINENTAL SPECIALTIES CORPORATION


EUROPE, AFRICA, MIDEAST: CSC UK LTD.
Shire Hill Industrial Estate Units 1 and 2
Saffron Walden, Essex CB113AO
Telephone: SAFFRON WALDEN (0799) 21682
TLX817477

EXP 650
EXP 325 Built in bus-bars accepts 8, 14, 16 and up to 22 pin ICS. \(\mathbf{£ 1 . 6 0}\)
EXP 350270 contact points, ideal for working with up to \(3 \times 14\) pin DIPS. \(£ 3.15\) EXP 650 For microprocessor chips. \(£ 3.60\) EXP 4B An extra 4 bus-bars in one unit. £2.30
EXP 300 The most widely sold breadboard in the UK; for the serious hobbyist. \(\mathbf{£ 5 . 7 5}\) EXP \(6006^{\prime \prime}\) centre channel makes this the Microprocessor Breadboard. \(\mathbf{£ 6 . 3 0}\) PB6 Professional breadboard in easily assembled kit form. \(£ 9.20\)
PB100 Kit form breadboard recommended for students and educational uses. \(\mathbf{£ 1 1 . 8 0}\)

\section*{The Experimentor System}

4 ways to order Experimentor Systems
1. EXP 300 PC which includes one item

A matchboard pre-drilled PCB - E1.32
2. EXP 302 which includes three items.

Three 50-sheet scratchboard workpads - £1.68
3. EXP 303 which includes three items. Two matchboards and an EXP 300 solderiess breadboard - \(\mathbf{~} 8.60\)
4. EXP 304 which includes four items Two matchboards and EXP 300 breadboard and a scratchboard workpad - £9.30

The above prices do not include PGP and 15\% VAT



In this month's 'Notebook', project editor Ray Marston writes about Robots and LEDs

THE ETI DESIGN TEAM produces projects for both Eelctronics Today International and its sister journal, Hobby Electronics. At the time of writing, we're working on a small Robot, for publication in 'Hobby'. Part 1 of the HEBOT article will appear in the November issue of HE. The electronics of HEBOT are interesting. We in the design team are all particularly proud of HEBOT. You'll see why in the next few paragraphs.

The most difficult and challenging part of any Robot project is the mechanics. A strong and highly mobile chassis is required. It must have a powerful and efficient drive mechanism that will not be clogged by dirt and fluff, yet must be reasonably inexpensive.

The reason for our great pride in HEBOT is that, working in close co-operation with Remcon Electronics Ltd, we have not only evolved such a chassis, but have arranged for a fully engineered version of this basic unit, which has been christened ROBOT 1, to be produced commercially and made available at a reasonable price to the experimenter.

So, if you've ever fancied having a go at robot design or construction, you now have a chance to easily turn your dreams into reality.

\section*{The 'Robot 1' Chassis}

The Robot 1 chassis is made of heavy gauge aluminium. It is hexagonal in form, and measures 10 inches across the flats. It is driven by two independent microdrive units, each comprising a fully-enclosed precision five ohm motor and a 225.1 reduction gearbox giving direct output drive to a three-inch diameter sponge-rubber tyred wheel. The tyres are approximately one inch in width, thus giving a low ground pressure and excellent traction on all surfaces from glass to carpet. The two micro-drive units are mounted on the centre line of the chassis, thus enabling the chassis to turn on its own axis when the units are driven in opposing directions. Forward and rear stability is obtained via ball castor units.

The chassis assembly comes complete with the two micro-drive units and a transparent plastic cover. The cover is 6.5 inches high, and enables 170 square inches of PCBs to be accommodated.

Performance? The chassis can travel at a maximum speed of nine inches per second, and can climb gradients of 1.1. The micro-drive units each consume 100 to 150 mA from a 4V8 supply, thus giving a comfortable three to four
hours continuous running time from a pair of \(500 \mathrm{~mA} / \mathrm{Hr}\) \(\mathrm{Ni}-\mathrm{Cad}\) units.

Cost: about \(£ 35\) plus VAT for a complete chassis unit and clear plastic cover. If you want more details, write to Remcon Electronics Ltd, 1 Church Road, Bexleyheath, Kent. But make sure you enclose a large stamped and addressed envelope, otherwise you won't get a reply.
\begin{tabular}{|l||c|c|c|c|}
\hline COLOUR & RED & ORANGE & YELLOW & GREEN \\
\hline \begin{tabular}{l} 
VF \\
ITYPICALI
\end{tabular} & 1.8 V & 2.0 V & 2.1 V & 2.2 V \\
\hline
\end{tabular}

Fig. 1. Typical forward voltage of standard LEDs \((1,=20 \mathrm{~mA})\).

\section*{More Robots}

If you are really keen on Robots, you'll enjoy reading a new book called 'How to Build a Computer-Controlled Robot' by Tod Loofbourrow. It is probably the best 'build-a-Robot' book yet published. It describes a device called MIKE, which tops the scales at about 200 pounds.

MIKE uses slightly obsolescent technology, but is interesting because he uses an on-board micro-processor


Fig. 2 (above left). Find the resistance you need for a specific current from your supply voltage with this circuit. Fig. 3 (above right) shows how to use an LED as an indicator in an AC circuit.


Fig. 4 (left). A reverse biased LED will behave like a zener.
unit (a Kim-1) to process sensor and other data and control motor movements. He uses ultra-sonics to detect obstacles and can, amongst other things, recognise certain spoken words. All very interesting, particularly if you are into software.

The MIKE book is published by the Hayden Book Company, of America, and is being imported into this country by NIC, 27 Sidney Road, London N22 4LT. It costs about \(£ 6\). If you want more details, give NIC a ring on 01-889 9736.

\section*{Basic LED Charactersitics}

Something that we all know about the LED is that it glows a pretty colour if we shove a bit of current through it. LEDs are presently available in four colours, red, orange, yellow and green. Blue LEDs will also be avaialble in the near future. A voltage is developed across the LED when it is passing a forward current. Figure 1 shows typical forward voltage of different coloured standard LEDs at forward currents of 20 mA .

When you use an LED, you have to wire some form of current-limiting device in series with it. Usually, a resistor can be used for current limiting. Figure 2 shows how to work out the value of resistance to give a particular current from a specific supply voltage: in practice, ' \(R\) ' can be connected in either the anode or cathode side of the LED. The higher the operating current, the brighter the LED will glow. Most LEDs will operate safely up to absolute maxi-. mum currents of 30 to 40 mA .

You can use an LED as an indicator in an AC circuit by wiring a diode in inverse parallel with it, as shown in Figure 3, to prevent the LED being reverse biased. For a given brightness, the value of ' \(R\) ' should be halved relative to that of a DC circuit.

In an LED is reverse biased, it will avalanche of 'zener' at a fairly low voltage, as shown in Figure 4. Most LEDs have maximum reverse-voltage ratings in the range three to five volts. These low ratings present a trap for the unwary user, so take heed.


Fig. 5. Circuit diagram of a \(0-10 \mathrm{~V} 16\) LED voltmeter using a UAA170.

\section*{LED Pitfalls}

The first practical problem that you'll encounter when using an LED is that of identifying its polarity. Most LEDs have their cathode identified by a notch or flat on the package, or by a short lead. This practice is not universal, however, so the only sure way to identify an LED is to test it in the basic circuit of Figure 2. try the LED both ways round.
when it glows, the cathode is the most negative of the two terminals. It is always good practice to test an LED before soldering it into circuit.

The second pitfall concerns the use of those 'cheapo' LEDs that come in Bargain Packs. These are usually advertised as 'second grade' or 'out of spec' devices, but just how out-of-spec they are can sometimes be quite mind blowing. You'll often find that half of the devices in a pack have forward voltages in the range five to eight volts, which makes them virtually useless in many applications.
If you ever need to drive a number of LEDs from a single currently available 'dot' or 'bar' LED-display driver ICs, always check its spec to see if it is sensitive to LED characteristics. The Siemens UAA 170 15-LED 'dot' driver, for example, will only function correctly if all LED forward voltages are matched to within 0.5 volts, and can thus be used with first grade LEDs only. Figure 5 shows the circuit of a 0 to 10 volt 16 -LED voltmeter using this IC.


Fig. 6 (left). LEDs wired in series driven via a single current-limiting resistor. Fig. 7 (right). This circuit can drive an unlimited number of LEDs at the expense of current.

\section*{Driven To It}

If you ever need to drive a number of LEDs from a single source, take notice of the Figure 6 to 9 circuits. Figure 6 shows how a number of LEDs can be wired in series and driven via a single current-limiting resistor. Note that the supply voltage used here must be significantly greater than the sum of the individual LED forward voltages. This circuit thus draws minimal total current, but is limited in the number of LEDs that it can drive.

The Figure 7 circuit, on the other hand, can drive an unlimited number of LEDs, but is very wasteful of current. The total current drawn is equal to the sum of the individual LED currents.

Figure 8 combines the Figure 6 and 7 circuits to give the best of both worlds. The circuit can drive an unlimited number of LEDs, at maximum current economy.

Figure 9 illustrates one of those 'traps for the unwary', or 'what NOT to do' circuits. This circuit will not function correctly, because inevitable differences in the forward voltage characteristics of the LEDs will usually cause one LED to 'hog' most of the available current, leaving little or none for the remaining two.


Fig. 8 (left). This is a combination of the Fig 6 and 7 circuits. Fig. 9 (right). How not to do it. One LED hogs the current.

\section*{LEDs And The CD4017B}
~ The highly popular CD4017B decade counter with 10 decoded outputs is widely used for driving LED displays in chaser or sequencer applications. A certain amount of confusion seems to exist, however, concerning the 'correct' method of connecting the LEDs to the decoded outputs.

The decoded outputs of this CMOS device provide inherent current-limiting under short-circuit conditions. The manufacturers do not quote a maximum short-circuit current value, but practical experience indicates that currents of 10-15 mA are commonly available from the ' \(B\) ' version of the 4017. A maximum device dissipation per output transistor figure of 100 mW is quoted on some data sheets, indicating that a volt drop up to about seven volts can safely be developed across a 4017 output stage under maximum-current conditions.


Fig. 10. An LED chaser circuit.
Thus, the LED chaser circuit of Figure 10, which has each LED connected directly between an output and ground, can safely be used up to maximum supply values of 9 volts. At voltages greater than 9 volts, the circuit of Figure 11, which has a resistor wired in series with each LED, should be used. Note that the main purpose of these resistors is that of reducing the power dissipation of the 401 7B.


Fig. 11. For supplies greater than \(9 \mathbf{V}\), this circuit should be used linstead of Fig. 10.


Fig. 12a. This circuit can be used with supplies up to 12 volts.


Fig. 12b. When one LED is on, the anodes of all the others are effectively grounded.

A variant that is sometimes used is shown in Figure 12a, and can be used with reasonable confidence at supply levels up to 12 volts maximum. Figure \(12 b\) shows a possible equivalent of this circuit when it is powered from a 15 volt supply, and illustrates the defect of the design. The action of the 4017 is such that when a given LED is ON, the anodes of all other LEDs are effectively grounded. R1 thus causes the OFF LEDs to be reverse biased. Because of the low reverse-voltage ratings of LEDs, it will often be found that one of the OFF LEDs will Zener at about five volts, giving the results shown in the diagram an possibly causing a destructive power overload in one of the 4017 B output stages. Figure 12 thus represents a classic 'trap for the unwary' type of LED circuit.

ET


\section*{Wilmslow Audio}

\section*{THE firm for speakers!}

Send 30p stamp for the world's best catalogue of Speakers, Drive Units, Kits, Crossovers, etc., and discount price list.

\section*{WILMSLOW AUDIO Dept. ETI}

SWAN WORKS, BANK SQUARE, WILMSLOW CHESHIRE SK9 1HF
Discount HiFi, etc., at:
5 Swan Street
TEL. WILMSLOW 529599 FOR SPEAKERS WILMSLOW 526213 FOR HI-FI
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{CMOS}} & 4020 & 50p & 40 & \% \\
\hline & & 4022 & 130 & 4060 & \({ }^{80,9}\) \\
\hline & & 4024 & 400 & 4068 & 30
130
13 \\
\hline 4001 & 13p & 4025 & 13 p & 4069 & 138 \\
\hline 4002 & 13p & 4026 & 90p & 4070 & 130 \\
\hline 400 & 13p & 4027 & \(28 p\) & 4071 & 130 \\
\hline 4009 & 30p & 4028 & 45 & 4072 & 130 \\
\hline 4011 & \({ }^{13} \mathrm{p}\) & 4029 & 50p & 4081 & 130 \\
\hline 4012 & 13p & 4040 & 55 & 4093 & 360 \\
\hline 4013 & 280 & 4041 & 55p & 4510 & 60 \\
\hline 015 & & 4042 & 55p & & 600 \\
\hline 016 & 28 & 4043 & 50p & 4518 & 650 \\
\hline 017 & 470 & 4046 & 90. & 4520 & 50 \\
\hline \multicolumn{6}{|c|}{\multirow[t]{2}{*}{55p 4049 250}} \\
\hline & & & & & \\
\hline
\end{tabular}

\section*{-○○○○○○○○○○○○○○ Codespeed Electranics}

PO BOX 23, 34 SEAFIELD ROAD, COPNOR, PORTSMOUTH, P03 5B」 ELECTRONIC MAIL ORDER SPECIALISTS

New, Full Spec. Devices
LEO WAISTWATCH I.C. Super value IC in 24 pin legless flatpack' siyle package for maximum space saving With data. A snip at only 98 p . Cat. No 208
matches the weistwatch IC shown \({ }^{* * * *}\) CASH SAVER \(\boldsymbol{*} \boldsymbol{*}+\boldsymbol{*}\) Purchase one each of catalogue numbers 208 AND 209 for only \(£ 1.50\) POLARLZING FILTER MATERIAL 0 OO6" thick plastic film Any size cut - aven 1 sa inch Max BRIGHT ORANGE DISPLAY 9 digit, 7 segment gas d data 75p. Cat. No 310
DMM CHIP MM5530 dvm chip. Builds into high accuracy dvm or panel meier Requires additiona Mrcuiry Suppled with data and circuit Only E3.95. Cat No 404
multpiexed, whit 01 "'diguts \(£ 1.00\). Cat No. 306
math Cammon cathode 4 DIGIT LCD A high contrast, easy to solder display with four 0 §1.9. With data Cat No 207 EIGITAL ALRM CLOCK MOOULE Complete with giant 0 84" LED display Add transtormer and Swithes tor complete clock Writh data only E6.50. C丹 No 205 GIANT LED DISPLAY Common cathode, non-multiplexed super 4 digit LED clock display Lots of WRISTWATCH LCD'e A high contrast \(31 / 2\) dig
polarizers and data Only E1.00. Cat No 202 . MEMORIES MM2102 statc 1024 bit memories A smip at 99p each With data sheet Cat No 20 KEY KEYBOAROS C
excellent key action 20 keys per board 2 keyboards PROGRAMMABLE UNIJUNCTIONS Four MEU 21 PUT'S (similar io 2N6027) Makes long delay umers, oscillators. elc With data and applicatons sheet 4 for 50 p . Cat. No 402
10 HYBRID CIRCUITS 8 resistors and 8 capaciors buit into semiconductor circuits Excellent for munimizing PCB component space 10 Hybrids for 50 P . Cat No
801 801
25 germanium diodes 50 p. 10 switching doodes 35p. Minislider switches ( 2 pole change-over) 16p sach Momenary switches (sping loaded) with 1 no contact 15p each Mono jack sockers 23p
each Stereo ack sockets 25 peach Slide control knobs (state colour) 12 p each Rolary control knobs (push-on) Black whth coloured cap (state colour) 20p each

REJECT CALCULATORS Production line rejects Yields lots of goodies when stripped down (not
much wrang with some we tested). Only \(£ 2.50\) each Cat No 104
LED DISpLAYs (Untested
common cathode 10 for \(£ 1.00\). Cat No. 311 ( 10 sevanter segment LED displays \(0127^{\prime \prime}\) digits
Postage and Pecking ploase add 35p
(Oversessordors add 90p)
(Overseess ordors add 90 p )
Sutisfaction guaranteed or ratum for replec
Sartisfaction guaranteed or return for replacement or rafund
Send medium sized S.A.E. for your free copy of our new Autumn Cazalogue (lasue No. 6)

LINES FROM OUR VAST STOCKS - IMMEDIATE DELIVERY ALL BELOW MANUFACTURERS' PRICES - LUSTRAPHONE RIBBON MIKE £1.50, pr ALL NEW STOCK S .
Postage \& packong add 50 p per order. CALCULATOR CHIPS General instrument GIMT4 on anti-static foam 24 pin S.I.L. socket for use mith Bownor display \(£ 1.50\) ea Pack of 25
 with PC connector 0.2 digits. Common cathode mith bezel \(£ 1.25\) es 10 for \(£ 10\). ORP 12 light dependent reststance \((E q=R P Y 30)\)
2 ior \(£ 1\), io for \(£ 4,100\) for \(£ 35\) 2 for \(£ 1,10\) for \(£ 4,100\) for \(£ 35\).
TBA 120A T.V. I.C. amplifier for \(£ 5.100\) for \(£ 50,1.000\) for \(\mathbf{\$ 3 5 0}\). BECKMAN 500 kce Triggerable clocking oseillator for use with calculator chips 5 v supply
with circuit \(£ 1,10\) for \(\mathbf{E B}, 100\) for \(£ 65\). BURROUGHS 9 DICIT Panaplex calculator display 7 segment \(0.25^{\prime \prime}\) digts Neon type with
red bezel socket and data. \(£ 1.95\) ea 10 for \(\mathbf{~} 17\). \begin{tabular}{l} 
red bezel socke \\
100 for \(\mathbf{E 1 4 0}\) \\
\hline
\end{tabular}
HONEYWELL PROXIMITY OETECTOR integral amplifier Bv D.C \(£ 3.50\) ea. 10 for \(£ 30.100\) OSMOR CMANGE OVER REED RELAY \(12 v\) coll \(20 \mathrm{~m} /\) a operating current \(59 \times 17 \times 13 \mathrm{~mm} 75 \mathrm{p}\) coll 10 for \(£ 5,100\) for \(£ 45\).
MARRIOTT TAPE HEADS Quarter track
Type
Each
Per 10 \(\begin{array}{llll}\text { Type } \\ \text { XRPS } 18 \text { Record/ } / \begin{array}{c}\text { Replay } \\ \text { E3.00 }\end{array} & \text { Per } 10 & \text { Per } 100 \\ \mathbf{E 2 5 . 0 0} & \mathbf{E 2 0 0 . 0 0}\end{array}\) \(\begin{array}{llll}\text { XRPS } 36 & \text { Record/Replay } \\ \text { E4.00 } & \mathbf{E 3 5 . 0 0} & \mathbf{£ 2 5 0 . 0 0}\end{array}\) \(\begin{array}{lllll}\text { XeS } 11 \text { Erase } & \text { E1.25 } & \text { E11.00 } & £ 100.00\end{array}\) MULLARD AD161-AD 162 Matched pair 1 parr 80 p, 10 pairs \(\mathrm{EB}, 100\) pairs \(£ 50\). CADIATION DETECTORS OUZ Dosimeters Pen type with clip with lens and Fcale O.50R Orignailly OVet \(£ 5\) OUR PRICE \(55_{p}\)
EACH. 10 for \(£ 8.100\) for \(£ 60.1\) OOD for \(£ 500\) EACH. 10 for \(£ 8.100\) for \(£ 60\). 1,000 for \(£ 500\). CLOCKING OSCILLATOR (PVE-DYnamics), Tor ET, 100 for \(£ 80,500\) for \(£ 250\). TV TUNERS by Mullard U.H F 38 mcs size
 NEW SILICON NPN TOB2 BF216/BF 220 (EC207 eq) Packs of \(100 \mathrm{E3.50}\), packs of 1.000 25, packs MP 1171 combined AM/FM IF sult w 3 data P1179 FM front end with AM tuning gang. use with LP \(1171 \mathbf{6 3 . 5 0}\) LP 1171 and 79 parir \(\mathbf{E 5 . 7 5}\),
10 pars for \(£ 50,100\) pars to \(£ 400\) 10 pars for \(£ 50,100\) parss for \(£ 400\). CA3085 RCA POSITIVE VARIABLE REG.
5 vol 100 mamp varible \(18-24 \mathrm{v} 55 \mathrm{sea}\). . 10 for E5. 100 for E35, 1,000 for E300. MULLARD LPP1 157 AM tuner modules with
GrCuit \(£ 2.50\) ea, 10 for \(£ 20,100\) for \(£ 175\),
 built) 500 kc into 2 K input \(4-8\) ohms with data E 3 . \(115 \times 6 \times 3 \mathrm{~cm}\)
AVO-8 METER MOVEMENTS for milhary arsion Precision 375 mic ro-amp ( \(50 \mu \mathrm{a}\) with MINIATURE MAINS TX 240 voli, primary 12 \(100 \mathrm{~m} / \mathrm{mmp} \mathrm{S}_{128} 60 \times 40 \times 42 \mathrm{~mm} 95 \mathrm{pea}\). 10 fo
 ower Cos cell 600 mw for for \(£ 1.25\). Hig rime control circuits. \(1 / 2 x 1 / 2 \mathrm{in}\). 10 for \(£ 11\). 100 for E 100 volt 240 S 120
 DYNAMIC MICROPHONE. Low imp Foster UHF TUNER BY GEC. \(38 \mathrm{mc} / \mathrm{s}\) with slow motion uning Size \(5 \times 3 \times 2 \operatorname{in}\). E 3 ea, 10 for \(£ 25,100\) to 20,500 for \(£ 1,000\).
NO
GANG MINIAT 500 pf with tuming knob , 10 tor \(£ 10,100\) for \(£ 85.3 \times 1 / 2 \times 1 / 210\) £1.25 SES-ATES U14552 AUDIO IC. AMPLIFIER 4 PIN D.I.L. 300 m watts 55 p Aach 10 f ENM NAL for 235 . audo chips with circuil \& data \(£ 1.25\) each 10 io CD4029AE 16 pi D.IU Dres up-down counter 85p each. 25 for \(£ 15.100\) for £50 1000 for \(£ 355\) (in anti stave tubes of 25) U.M.F. TV TUNER (preamp) with BF 180 55p data) 10 for \(£ 4.50\). 100 for \(£ 35\) MARCONI IC Oscillator Daul (TO99 cany 30p each. 10 for \(£ 2.100\) for \(£ 15,1000\) for \(£ 125\).
PLESSEY SL432A IC. PLESSEY SL432A IC. IF amplifier (TO99 can)
55 p each. 10 for \(\mathrm{E4} .100\) for \(£ 29,500\) for \(£ 120\). V.H.F. MODULATORS for Iv gemes 55 sp each 2 transistor - on built P.C. sues \(2 \times 2 \times 1 / 4 \mathrm{in}, 10\) for \(£ 4,100\) for \(£ 35,500\) for \(£ 150\).
\(R F\). Filters for above modulators 20 p eech
 E 125 .
HIGH
VOITAGE TV TRIPLE 1.T.T. stck type per 10 E1.50, per DIOOES BY L.T.T. stck type per \(10 £ 1.50\), per \(100 £ 10\), pe
\(1000 £ 85\). TBA625 ATES voltage regulators 55 p each. 5 vohs \(100 \mathrm{~m} / \mathrm{amps}\) (TO99) per \(10 £ 4.50\), per 100 TBA625C at same price. MAINS LEADS 2 core per \(10 £ 2.50\), per \(100 £ 20\) merres lengits (gray) MM5314 NATIONAL CLOCK CHIPS 161 . IN 14 TYPE DIODES tested uncoded 10 boxe of 1,000 £ \(10,10,000\) for \(£ 75,100,000\) for E500.
ULTRA
ULTRASONIC TRANSDUCERS. 40 KCs , pair


Payment in Sterling.
0000000000.0.8.

Theprofessionalscopes you've always needed.


Super 6


When it comes to oscilloscopes, you'll have to go a long way to equal the reliability and performance of Calscope
Calscope set new standards in their products, as you'll discover when you compare specification and price against the competition The Calscope Super 10, dual trace 10 MHz has probably the highest standard anywhere for a low cost general purpose oscilloscope. A 3\% accuracy is obtaned by the use of stabilised power supples which cope with mains fluctuations

The price \(£ 219\) plus \(£ 17.52\) VAT
The Super 6 is a portable 6 MHz single beam model with easy to use controls and has a time base range of \(1 \mu \mathrm{~s}\) to \(100 \mathrm{~ms} / \mathrm{cm}\) with 10 mV sensitivity. Price \(£ 162\) plus \(£ 12.96\) VAT

\section*{eces correct at unt of gonytr press}

CALSCOPE DISTRIBUTED BY
Maplin Electronics Supplies Ltd. Audio Electronics,
P.O. Box 3

Rayleigh, Essex.
Tel: 0702715155 Mail Order

301 Edgware Road, London W. 2
Tel: 01-724 3564
Access and Barclay card facilities
(Personal Shoppers)

Watford Electronics,
33-35 Cardiff Road,
Watford, Herts.
Tel: 092340588

\section*{Hertronios toitay}

\section*{What to look for in the December Issue: On sale November 2nd}


\title{
MICROSENSE
}

\section*{PART 4}

A very simple example of interfacing to an MPU via a port is the type of hand control used in TV games for bat position. This is a simple potentiometer and as such cannot be understood by a port or any other TTL circuitry. To interface a potentiometer to an MPU we can use a simple monostable such as a 555 timer or a 74123 . With this type of IC a trigger signal causes an output signal to change state, after a time this output will revert to its original state, the time being set by an external capacitor and resistor network. If part of the resistor network contains a variable resistor such as a potentiometer than changes in the position of the potentiometer will change its resistance and will thus change the delay time of the monostable.

Let us take an example of such a circuit where at one end of the travel of the potentiometer the output changes state for 100 mS and at the other end the delay is 200 ms , thus we have a variation of 200 ms . The trigger of the circuit is connected to a port output bit and the delay output is connected to a port input. The MPU can thus trigger the monostable and then delay for a fixed time to make up the first 100 mS . If the MPU now performs program loop which reads the port input bit until the monostable output reverts to its original state we get-
\begin{tabular}{ll} 
START. & Set Trigger \\
& Delay 99 mS \\
LOOP. & Set Count to zero. \\
& Read input bit. \\
& If changed go to END. \\
& Add 1 to count. \\
& Delay reset of 1 mS \\
& Go to LOOP. \\
END. & At this point count contains 0.99 which \\
& represents a setting of the potentiometer.
\end{tabular}

The count at the end can be used as a variable in a program which can thus know the current position of the potentiometer and even its rate of change.

The potentiometer can obviously be changed for any other form of variable resistor (thermistor, LDR, pressure transducer) or in a similar manner with variable capacitance, voltage or current. Thus your MPU can sense variable inputs with an interface which costs about \(£ 1\), several such circuits could be interfaced to an MPU to produce a very complex monitoring system.

\section*{Output Interfacing}

Similar circuits in reverse can be used to allow an MPU to output a variable voltage and thus perform such tasks as heat or speed control or something as simple as playing tunes. The more usual output requirement is as a switched output, either as a pulse train or as a single ON/ OFF switch. The pulsed outpug can be used to input to TTL type circuitry such as a counter chain for use in sluch things as IC testing. Here the CLOCK. RESET and LOAD signals can be simulated by the MPU which can also test the outputs from the counters or other ICs and thus check out a PCB or a single IC much faster than a human being.

Any form of ON/OFF conmtrol which can be driven from TTL type ICs can be driven from an MPU PORT. Examples are relays. SCRs, lamps, bells, solenoids displays knows and whistles with appropnate interfacing and/ or buffering as required

\section*{Summary}

With this type of MPU interfacing plus the interface to numans in the form of a keyboard and a VDU or displays the MPU can perhaps be seen to be similar to a PCB full of TTL type ICs. The main advantage or the MPU over the TTL is that the functions of the MPU can be quickly and easily modified to perform different tasks or the same tasks in a different sequence simply by changing the program controlling it

Take our earlier example of a TTL checker, a totally automatic IC checker made from TTL would be almost impossible to build. With an MPU, two 8 bit \(1 / 0\) ports and a 16 pin socket most IC types can be checked by-

ENTER IC TYPE? 7447
7447 FAULTY AT PINS 4, 10, 14 NEXT- etc

This is a very simple example of the use of an MPU by industry or by the amateur constructor. Of course, five minutes after doing the above the same MPU and PORT could be used to play TV games or dispense petrol.

\section*{Glossary of Terms}

\section*{ABSOLUTE ADDRESS:}

A fixed microprocessor address. The ACTUAL ADDRESS of line two of the SCRUMPI 3 VDU starts at OE20, its address RELATIVE to the start of the VDU is \(+x^{\circ} 20^{\prime}\).
ACCESS TIME:
Time taken for one complete access of a peripheral to the main MPU chip. The time taken to address a RAM chip, the RAM chip to respond and put the data at that address onto the output pins and for the MPU to read this data into the main chip is one complete ACCESS CYCLE, a typical ACCESS TMME for this cycle might be 1000 nS or microsecond. ACCUMULATOR:
A register or latch internal to the MPU where data is stored temporarily before being sent to another location internal or external to the MPU chip.

\section*{ADDRESS:}

The number which represents one unique location external to the MPU chip where data can be read or stored. The MPU handles this address in Binary format but it is usually referred to in Hexadecimal format. ADDRESS BUS:
The set of output pins from the MPU chip and the associated circuitry linking them to other devices for the purpose of addressing those chips or parts of them.

\section*{ALPHANUMERIC:}

A character set which mixes ALPHAbetic characters, NUMERIC characters and usually punctuation characters. The Alphabetic characters may be upper and/or lower case or even in a Japanese or Arabic seript. ALU:
The Arithmetic and Logic Unit internal to the MPU chip. This register handles all arithmetic and logical operations carried out as part of an MPU instruction.

\section*{ASCII:}

American Standard Code for Infor: mation Interchange. A standard which is used to define the meaning of some bit patterns when expressed as an ALPHANUMERIC character ser. SCRUMPI 3 uses the 64 character ASCll set 3 VDU characters. ASSEMBLER:
A simple programming lanyuage which allows the programmer to define labels and fixed values and to then use these labols with a manemonic instruction set to produce a machine code program.
ASYNCHRONOUS:
Refers to an external interface which can be started and stopped by the MPU or other equipment. The opposite is SYNCHRONOUS which means that the data is randonly available.
BAUD RATE:
The number of bits transmitted pasr second in a serial data transmission system. The number of bits per second inay also include control bits

\section*{as well as data bits.}

BCD:
Binary Coded Decimal. A numbering system where each decimal number is ropresented by a pattern of bits which represent a binary number.

\section*{BINARY:}

A counting system where the value of any digit can only be 1 of 0 . As with decimal the right hand digit denotes the number of units of the next value, ete. In Decimal the units can be \(0-9\) and in Binary \(0-1\).

\section*{BIT:}

A single binary unit of data, which has a value of 0 or 1 .

\section*{BREAKPOINT:}

A point in a program where the program flow is interrupted for the purpose of testing the logic of the program up to that point. Usually a breakpoint will transfer control to a routine which will display test data.

\section*{BUG:}

When your MPU doesn't do what you expect it to and you cannot find out what it is doing of why. then you have a BUG running around. It is not advisable to humt this sort of BUG with a foot or insecticide, use BREAKPOINTS.

\section*{BYTE:}

A unit of data which is usually the maximum moumt of data that can be handled or transferred at any one time. With an 8 bit data bus the SC/MP has an 8 bit BYTE. Other computers and microprocessors have bytes of \(4,12,16\) or 24 bits.

\section*{ClOCK:}

A strobe signal which activates a certain sequence of operations.

\section*{COMPILER:}

A high level, Erelish like programming language which converts the instructions into machine code for later execution. Examples of such programing languages are COBOL,

\section*{PORTRAN and PL/1.}

CPU:
Central Processing Unit which decodes instructions and controls other units accordingly.
CUTS:
Computer Users Tape System. A standard method of recording data in serial form on an audio cassette recorder. Data is recorded at 300 baud by recording 8 pulses at 2400 Hz ior a MARK, or 4 pulses of 1200 Hz for a SPACE.

\section*{D.M.A.:}

Direct Memory Access. Direet access to a block of memory by more than one system. For example; in Scrumpi 3 the V.D.U. RAM is usually continuously accessed by the V.D.U. counter circuits, or it can be D.M.A.'d by the microprocessor which temporarily disables these counter circuirs.
DATA BUS:
The output pins of the MPU chip and associated circuitry used for the transmission of data from one point in the system to another.

DEBUG:
A method of fault finding in programs usually using data dumps and breakpoints. This would be handled in soff ware by a DEBUG routine.

\section*{DIRECT:}

A method of expressing an absolute address in an MPU instruction where the actual address vould be specified in Hexadecimal in the instruction.

\section*{DUPLEX:}

Simultaneous transfer of data in two directions.

\section*{EPROM:}

Erasable Programmable Read Only Memory. A type of memory chip which can hold data stored in it without the need for a power supply. Once programmed the data can only be erased by exposing the physical chip to intense UV radiation. Older references to EPROM may refer to the advent of Electrically Programmable ROMs as opposed to the Mask Programmable ROMs where the data is introduced during manufacture, neither of these types of ROM are exasable (except with a large hammez.

\section*{EAROM:}

Electrically Alterable ROM. Similar to the EPROM, the EAROM can be erased by a sort of reyersed programming with a high voltage. The EAROM is thus like a RAM which will not lose its data if power is removed.

\section*{FIRMWIARE:}

Data stored in a nondestructive form such as hard-wired or in a ROM.

\section*{FLAG:}

An output pin which can be used to signal binary status to an external device. Think of it as the 'Flag' on a Taxi denoting whether the taxi is playing for hire or "Hired".

\section*{FLOPPY DISK:}

A medium for recording data on a plastic disk. A floppy disk is a disk of magnetic coated plastic about \(8^{\prime \prime \prime}\) in diameter, data is recorded around the disk as in a gramophone record except that there is not one continuous groove. Data is read or written by a magnetic R/W head which is carried across a radius of the disk to one of 35 'Tracks' by a small motor. By preselecting the position of the motor a certain amount of DIRECT ACCESS of data is achieved.

\section*{MINI FLOPPY:}

\section*{HANDSHAKE:}

As above but a smaller disk is used. A system of transferring data from one device to another. Device A will signal that it has data ready, device \(B\) will accept that data and signal that it has it to device \(A\) which is now released to collect more data. In the meantime device B will set an indicator which will show that it is BUSY with the last data until this
data has been processed. The action of seting and cheeking these various indicators is referred to as HAND. SHAKING:

\section*{HARD COPY:}

Data in a pormanent and tangible form such is printed, punched or even handwritten.

\section*{HAROWARE:}

The physical components of a computer or microprocessor system.

\section*{HEXADECIMAL}

A counting system similat to BCD but allowing representation of numbers from \(10-15\) by the leiters A-1.

\section*{IMMEDIATE ADDRESSING:}

An addressing inode where the datio for an instruction is the next sequential byte in the instruction stream.

\section*{INDEXED ADDRESSING:}

An addressing system where the address of the data is expressed as relative to the uddress stored in an inder or pointer register. To obtain the absolute address the offset address is added 10 the pointer address. this system is useful in processing tables of matrices of data.

\section*{INSTRUCTION:}

A byte of data (or bytes) wheh are docuded by the CPU and ALU wo cause the MPU to perform specifit tasks with data

\section*{INTERFACE:}

The Hardware or Sof ware required 10 be able to commumicate with. sense or comtrol cuternal equipment.

\section*{JUMP:}

Transter of prosram logic thow by bypassing a number of instructons. The Jump can be forward over a positive number of bytex or backwards by expressing a negative number of bytes. The Jump can be conditional upon the status of the accuntutator or other registers.

\section*{KARNT:}

\section*{MACHINE CODE:}

There is no such word.
A programming languase in which the prugram is written in the Hesadecimat equivalent of the MPU inszfuction code.

\section*{MICROCYCLE:}

One intermal APU operation, several microcyctes muke up an instruction.

\section*{MNEMONIC:}

A method or craressumy complicaled words, names or phrases usually by using the first letter of letters of each major sylatale of the oriminal.

\section*{MODEM:}

Modulator/DEModuiator. An inter. lace betweon an MPU and a lrequency shtfing seria transmission sy siem. A CUTS interlace could be considered a MODl:M as it uses fwo main frequencies to record on an audio recorder. The word MODI:M usuatly refers to the peece of equipment which interfaces in this manner to a telephone line.

\section*{PAGE:}

The unt of the largest are of memory
which can be addressed by the available MPU address bus. SCRUMPI 3 has a 12 bit address bus which can thus be used to access a 4096 byte page of memory. The SC/MP chip can hande up to 16 pages of 4 K bytes giving a maximum aucess of \(641^{\circ}\) bytes of memary.

\section*{POINTER REGISTER:}

A register which contams the absolute address of an item of data in memory. Data can be accessed at this address or relative to it via the pointer register. The value of the pointer register can be updated to access a different block of data where the dita can be one or several bytes.

PORT:
A form of 8 bit interface which allows data to be interchanged between the MPU data bus and any other sumilar bus. The interface is in the form of up to 8 signal levels in patallel being switched into or out of the basic MPO system to external logic circuits.

\section*{PROGRAM:}

A sequence of instrictions that will execute a prederermined sequence of operations.

\section*{PROGRAM COUNTER:}

A special form of ponter reyister which points at the addross where the MPU will find the next instruction to be executcd. Normally this address is incremented by the value 1 each time but JUMPs or subroutine accesses will caust the original value to be updated or exchanged.

\section*{PROM:}

Programmable Read Only Memary. A ROM mentory device whieh can be programmed by the user rather than by the mantucturer.

\section*{PROGRAMMER:}

Fither a person who writes programs, of a machine or interface which will allow the programing of PROMs.

\section*{PUSH:}

Storing byte of data on the data STACK. See STACK.

\section*{PULL:}

Retrieving a byte of data from the data STACK. See STACK.

\section*{RAM:}

Randon Access Memory, As ROMs ran be randomly accessed this is a misnomer, and the device should be called a RWM sor Read/Write Memary can be used for storing data of a temposary type for fast, direct aceess retrival. RAMs are a volatile memory form, that is, they lose all data stored in them in the event of a power falure.

\section*{ROM:}

Read Only Memory. An area of memory which will not respond to a WRITE command. The ROM is usually a non-volatile form of memory control of an MPU.

\section*{SCRATCH PAD:}

An area of RAM used for short term storage of data during a process.

\section*{SIMPLEX:}

\section*{SOFTWARE:}

One way transmission of data.
A program which can be in the form of ROM, Moppy disk data, CUTS data of hardecopy (HIRMNARF) of in the form of a machine code or hightevel language in RAM.

\section*{STACK:}

A SCRATCH PAU system whero data is stored in a First In Last Out (1LLO OR LIHO) form. Think of a STACK as a cigarette or chocolate machine where a stack or packets is displayed. A PuLL operation will remove an item from the bottom of the stack and eravity will thus cause the rest of the stack to drop by one location. Fior a PUSH operation you would need to lift the stack by one location and then insert one packet into the stack. The MPU keeps a STACK in a similar manner, the current sack address is clanged by une and then the new data PUSHed into the new location. In must systoms it is standard to decrement the value of the stack pointer for a PUSH as this then means that the newest item on the stack has the lowest address and the first item on the stack has the highest address.

\section*{SYNTAX:}

The grammar of a programming language.

\section*{TRISTATE:}

Normally a logic integrated circuit output can be in a logic 0 state (0y) or a lowic 1 state ( +5 v ). TRISTATE is a system where the output can be high impedance to the extent of being almost apen circuit. Imagine two three position switches where the 'poles' of the switches are connected together and where each switch has an open circuit, ground and +5 volts pasition. With both switches in the ground position the logic level at the "poles' is 0 (ground), similarly with both in the \(+5 v\) position the outpu: is logic \(1(+5 v)\). However, if either switch is put into the opposite position than the result is a stort circuit. The third position allows each switch to affect the common 'pole' bus without a possible short circuit.

\section*{UART:}

Universal Asynchronous Receiver/ Transmitter. An integrated circuit designed to handle serial/parallel/ scrial conversion and transmission of data.
vDU:
Visual Display Unit. A method of displaying data to human operators. The ustally accepted output in the form of a cathode ray tube such as a TV set which is why alternative names afe CRT (Cathode Ray Tube). or the American TVT (TV Typewriter). Data is usually displayed as several rows of alphanumeric characters.

\section*{WORD:}

WAITE:
Another name for a BYTE of data.
To fransfer data from the MPU chip to another memory or peripheral device.

\section*{PROOPS BROTHERS LIMITED}

Special purchase of Shinohara's SEW Panel Meters at fantastic low prices
MR RANGE DC MOVING COIL TYPE
(Accuracy \(\pm 2 \%\) )


MR 85P \(110 \mathrm{~mm} \times 120 \mathrm{~mm} \times 47 \mathrm{~mm} \mathbf{£ 3 . 5 0}\)
\begin{tabular}{|c|c|c|c|c|}
\hline \(\pm\) DC 50uA +DC 100 ua DC 500uA + DC 500uA DC 1 mA &  &  & AC 10A
AC 20 A
A C
DC
DC
DC
DC 50 V & \[
\begin{aligned}
& \text { DC } 150 \mathrm{~V} \\
& \text { DC } \\
& \text { AC } 150 \mathrm{~V} \\
& \text { AC } 300 \mathrm{~V} \\
& \text { VU } \\
& \text { S METER }
\end{aligned}
\] \\
\hline \multicolumn{5}{|l|}{MR 45P \(50 \mathrm{~mm} \times 50 \mathrm{~mm} \times 34 \mathrm{~mm} £ 1.50\)} \\
\hline +DC 100uA DC 10 mA d 50 mA & DC 100 mA C 300 mA DC 300 m & \begin{tabular}{l}
DC 500 mA \\
DC 1 A \\
AC 1A
\end{tabular} & AC 15 V AC 300 V & \\
\hline \multicolumn{5}{|l|}{MR 52P \(60 \mathrm{~mm} \times 60 \mathrm{~mm} \times 40 \mathrm{~mm}\) £2.50} \\
\hline \[
\] & + DC 100uA DC 5 mA & \[
\begin{aligned}
& \text { DC } 500 \mathrm{~mA} \\
& \text { DC } 1 \mathrm{~A}
\end{aligned}
\] & \[
\begin{aligned}
& A C 5 A \\
& A C \\
& A C
\end{aligned}
\] & \[
\begin{aligned}
& \text { AC } 30 \\
& \text { DC } 30
\end{aligned}
\] \\
\hline \multicolumn{5}{|l|}{MR 38P \(42 \mathrm{~mm} \times 42 \mathrm{~mm} \times 32 \mathrm{~mm}\) £1.50} \\
\hline \[
\begin{aligned}
& \text { DC } 500 \mathrm{OAA} \\
& + \text { DC } \mathrm{mA} \\
& \text { DC } 50 \mathrm{~mA}
\end{aligned}
\] & DC 150 mA DC 50 m DC 3 V & \[
\begin{aligned}
& \text { DC } 15 \mathrm{~V} \\
& \text { D } 50 \mathrm{~V} \text { O } \\
& \text { DC 500 } 500
\end{aligned}
\] & \[
\begin{aligned}
& \text { DC 75V } \\
& \text { A } 15 \mathrm{~V} \\
& \text { AC } 150 \\
& \text { AC 150V }
\end{aligned}
\] & \[
\begin{aligned}
& \text { AC 300V } \\
& \text { AC 500V } \\
& \text { S METER }
\end{aligned}
\] \\
\hline \multicolumn{5}{|l|}{SW \(10080 \mathrm{~mm} \times 100 \mathrm{~mm} \times 37 \mathrm{~mm}\) £3.00} \\
\hline  & DC 100uA DC 500uA & \[
\begin{aligned}
& \text { DC } 1 A \\
& \text { DC } 5 A
\end{aligned}
\] & \[
\begin{aligned}
& \text { DC } 200 \\
& \text { DC50V }
\end{aligned}
\] & \[
\begin{aligned}
& \text { DC } 30 \\
& A C 15
\end{aligned}
\] \\
\hline \multicolumn{5}{|l|}{MR 65P \(78 \mathrm{~mm} \times 86 \mathrm{~mm} \times 41 \mathrm{~mm} \mathbf{£ 3 . 0 0}\)} \\
\hline +DC 50uA
+ DC DC 5 mA & DC 500 mA AC 200 mA AC 200 m & DC 20A
DC \(30 A\) DC 30A
AC 50 A AC 10 A & \[
\begin{aligned}
& \text { DC } 150 \mathrm{~V} \\
& \text { AC } 15 \mathrm{~V} \\
& \text { AC 50V }
\end{aligned}
\] & AC \({ }_{\substack{\text { AC } \\ \text { S METER }}}\) \\
\hline
\end{tabular}

SD \(83082.5 \mathrm{~mm} \times 110 \mathrm{~mm} \times 36 \mathrm{~mm} £ 3.00\)
\(\begin{array}{lll}\text { OC } 5 \mathrm{~mA} & \mathrm{DC} 500 \mathrm{~mA} & \mathrm{DC} 300 \mathrm{~V} \\ \mathrm{DC} 50 \mathrm{~mA} & \mathrm{DC} 50 \mathrm{~V} & \mathrm{AC} 15 \mathrm{~V}\end{array}\)
S-80 \(80 \mathrm{~mm} \times 80 \mathrm{~mm} \times 39 \mathrm{~mm} £ 3.00\)

SD \(46046 \mathrm{~mm} \times 59.5 \mathrm{~mm} \times 33 \mathrm{~mm} £ 1.50\)
\(\begin{array}{llll}\text { DC } 5 \mathrm{~mA} & \text { DC } 50 \mathrm{~mA} & \text { DC } 300 \mathrm{~V} & \text { AC } 300 \mathrm{~V} \\ \text { DC } 10 \mathrm{~mA} & \text { DC } 500 \mathrm{~mA} & \text { AC } 15 \mathrm{~V} & \end{array}\)
SD \(64063.5 \mathrm{~mm} \times 85 \mathrm{~mm} \times 33.5 \mathrm{~mm} £ 2.50\)
\(\begin{array}{llll}\text { DC } 5 \mathrm{~mA} & D C 1 A & D C 10 V & A C 15 V \\ \text { DC } 10 \mathrm{~mA} & \text { DC } 10 \mathrm{~A} & \text { DC } 300 \mathrm{~V} & \text { AC } 300 \mathrm{~V}\end{array}\)
Prices inclusive of VAT. Plus 30p per item carriage and packing

\section*{recharge your batteries from The sun}

\section*{- A Wank of five milis mature Solar Celis} A bank of five celis complete with a diode that prevents bank \(15 \mathrm{~mm} \times 13 \mathrm{~mm}\). Output is two volts at 1.8 milli amps.
Price \(£ 2.00\) plus 10p for postage and packing
Barclaycard \& Access Accepted - Order by phone or post
Mail Orders to PROOPS BROS. LIMITED, Dept ETI
The Hyde Industrial Estate, Edgware Road, London NW9 6JS. Tel: 01-2058006
Personal Shoppers. 52 Tottenham Court Road, London W1P OBA, 9-6 Mon.-Sat

\section*{LIGHTING \& AMPLIFIER MODULES FROM L\&B}
\begin{tabular}{lll}
\hline SUPERIOR HIGH OUALITY LIGHTING CONTROL MODULES, ALL 1000 WATTS \\
PERCHANNEL. NO POWER SUPPLIES NEEDED, ALL READY TO GO!
\end{tabular}



\section*{LCD DIGITAL MULTIMETER.}

Low-cost hand held digital multimeter with a full \(31 / 2\) digit LCD display. \(0.5 \%\) basic accuracy, auto polarity operation. 10 Mohm DC input impedance


\section*{LOW-COST LCD MULTIMETER COMPONENTS AND PARTS}

\section*{AC/DC 8 MHz OSCILLOSCOPE}

A new approved 8 MHz version of last years' winner! The advance design features of this oscilloscope make it an absolute essential for industrial uses on production lines, in laboratories and schools. Ideal for radio and TV servicing, audio testing, etc

Specifications:
Horizontal axis: Deflection sensltivity better than 250 mV DIV Vertical axis: Deflectuon sensititvity better than 1OmV DIV (1DIV 6 mm ). Bandwidt capacitance 35 pF Time base: Sweep range: \(10 \mathrm{~Hz} \quad 100 \mathrm{kHz}(4\) ranges) Symhronization Internal() Size: \(200 \times 155 \times 300 \mathrm{~mm}\). Supply 220240 -50Hz.22-9501.

You save because we design, manufacture, sell and service Tandy have over 7,000 stores and dealerships worldwide. Over 2.500 products are made
specifically for or by Tandy at 16 factories around the world. The quality of our products has been achieved by over 60 years of continuous technological advancement. KNOWN AS RADIO SHACK IN THEU SA MAKERS OF THE WORLD S BIGGEST SELLING MICROCOMPUTER TRS8O


The largest electronics retailer in the world.
offers subiect to avaiab iility. Instant creedit avalable in most cases.
OVER 170 STORES AND DEALERSHIPS NATIONWIDE.

\title{
MICROWAVE OVEN LEAK DETECTOR
}

While microwave ovens are generally well-designed and safe to use, the human
factor (even Murphy's Law) can thwart the manufacturer's efforts and possible
unsafe levels of microwave energy may be radiated without warning. Simple and
inexpensive to build, this project will indicate if your oven is safe .. or not.

THE MICROWAVE oven is one of the most recent examples of advanced technology finding application in the home. Many thousand such devices are sold for domestic use in Australia alone each year, while commercial units have long been found in restaurants and snack-bars.

The microwave cooking method, while unlikely to usurp conventional cooking methods, has distinct advantages. It is usually quicker, two to five times quicker in fact. Because it heats the foods directly, but does not heat the bowl or container, so the food can be left enclosed. The process is often cleaner and less utensil-consuming as a result. Because the energy penetrates below the surface of a lump of food and does not rely so completely on conduction, it can be used for rapid defrosting of foods. (See "How a microwave oven works'").

Unfortunately, the microwave energy is quite dangerous. It must be carefully contained within the cooking chamber. The window is usually sealed to the radiation by a fine metal grille similar to heavy duty fly-screen. The door fits flush and firm, and the instructions warn against allowing any distortion of the door. All ovens have safety circuits preventing the power being applied with the door open. Some ovens have as many as five interlocks against accidental activation without correct door closure. They do not, unfortunately, incorporate an alarm which warns if a leak occurs. This can happen if the door is slightly bent by being closed on a lump of stray food or if damaged during a domestic
fracas.
In view of these things it seems wise to have some additional method of checking for leakage.

\section*{Leak Detectors}

The output is an analogue. This is set to read full-scale deflection (FSD) for a signal of approximately \(5 \mathrm{~mW} / \mathrm{cm}^{2}\) in the 'test' mode. Hence, as little as \(10 \%\) of the danger level can be read.

When the test button is released, the sensitivity increases by about an order of magnitude. In this condition the unit acts like a signal strength meter, and should show some deflection with the normal residual leakage of an oven. This confirms that it is working. We estimate that it should cost \(£ 10-£ 12\), PCB included, as a kit. If you have upwards of \(£ 300\)
worth of oven, ten quid is not a bad investment to insure the family jewels.

\section*{Construction}

Unless you are very experienced with high frequency work already it is important to use the PCB. The antenna is printed onto the board and so, is inherently tuned sufficiently closely when the correct board is used. It is also convenient as the meter and button are soldered directly on the copper side and the whole assembly is self-contained.

No box at all is actually necessary, but if you choose to use one, ensure that it is not metallic except for the front panel. There are no flying leads, etc, so if need be, one could leave the whole circuit just as is, with no

The device is housed in a 'zippy' box, everything being attached to the front panel, held in place by the four screws. Our prototypes were calibrated through the kind assistance of the Electrical Engineering Department of Sydney University.
. . ... .....................................


Fig. 2. Component overlay, showing both sides of the PCB.
box.
We used a \(25 \mathrm{~mm} \times 50 \mathrm{~mm} \times\) 90 mm jiffy box which was just big enough inside.

Ensure that the diode and meter are soldered in the right way round. Also try to solder the diode neatly, as shown in the overlay. It should be soldered onto the copper side directly, flat against the board in the centre of the dipole. Use of the board and close adherence to our design will ensure that your unit is close to prototype sensitivity and will thus read true.

\section*{Using It}

The meter is moved around the door rim with the oven operating, meter facing away, button depressed, the back parallel to the door and spaced approximately 40 mm from the surface.

When testing, it should be moved over the oven in each polarisation, just to be sure. To check if it is working, simply repeat the procedure without depressing the test button. Some erratic flicker of the needle should be evident, indicating correct operation. It can be left on top of the oven when not specifically being used, so that some drastic leak will cause deflection should that occur.

\section*{How a Microwave Oven Works}

There are several separate sections to a microwave oven. Firstly, there is a Magnetron, which is the heart of the system. This is a thermionic device incorporating a resonant cavity. It is an oscillator and will deliver power at super high frequencies (microwave ovens operate on 2.45 GHz ). The oven has a power supply

\section*{HOW IT WORKS}

Operation is very simple. The device is completely passive and requires no batteries. It uses the radiated energy from the oven to deflect a meter directly.
'The PCB dipole, when exposed to microwave radiation of about 2.5 GHz , develops an AC voltage across D1. When the diode is positively biased the diode conducts, shorting the dipole. When reverse biased it isolates, thus leaving a net voltage on the diode. This DC component is filtered by \(\mathrm{L} 1, \mathrm{~L} 2\) and Cl .
The amplitude of the DC component varies somewhat with the type of radiation from the oven - CW or pulsed, depending upon the supply rectification and filtering used with the magnetron. It will also vary with distance, of course. R1, R2 and R3 define the sensitivity, the values chosen being'suitable to produce FSD for \(5 \mathrm{~mW} / \mathrm{cm}^{2} \mathrm{CW}\) at the board plane with PBl closed.

Some variation should be expected from unit to unit. This should not normally be of any concern, however, as a healthy oven will emit at least one order of magnitude less than the 5 mW level, and so the readout is unambiguous even when the unit is not the exact 5 cm from the oven surface.

incorporating a number of satety interlocks preventing activation in unsafe circumstances.

There is a cooling system for the electronics, usually a fan. The cooking chamber has metal walls and some system of ventilation to remove steam, etc. The one fan is often used to cool the electronics as well as ventilate the cooking chamber. A duct (waveguide) transfers the microwave energy to the chamber from the magnetron. Some form of disperser spreads the energy and prevents standing waves within the chamber. This is either a rotating platform moving the food or a set of vanes in the chamber ceiling reflecting the beam about. (This is often driven by the fan motor or even the stream of cooling-ventilating air).

Finally, a control panel allows varying degrees of automatic control of the RF power. This always includes a timer and a door interlock.

Water is the primary microwave absorbing agent in food. Dry food and glass or plastic containers are substantially unheated by the


Intemal view of the microwave oven leak detector shows the simplicity of construc tion.
radiation. The energy can penetrate to a depth of about 20 mm effectively, though this varies markedly with the food.

Domestic ovens consume about 1200 watts altogether, of which
about half appears as microwave power in the food chamber. This, considering the mode of absorption, is considerably more efficient than an ordinary oven which is why the cooking speed is so rapid.

E 11

\section*{PoRTIETE PRECSDC}

A range of \(31 / 2\) digit LCD multimeters offering high precision and extended battery life. All feature \(0.5^{\prime \prime}\) LCD read-out with 'battery low' warning, inputs protected against overloads and transients, Auto- polarity, Auto-zero, rugged ABS cases and a full 1 -year warranty.

The LMM-200 is a compact handheld multimeter with \(0.5 \%\) basic accuracy and 15 different ranges. It measures voltage from 0.1 mV to 500 V , current from 0.1 AA to 2 Amps , and resistance from \(0.1 \Omega\) to \(2 \mathrm{M} \Omega\)

The LMM-2001 is an identical instrument but with \(0.1 \%\) basic accuracy.

The LMM-100 has an adjustable handle, a 2,000 hour battery life and is ideally suited to field or bench use. It measures voltage from 0.1 mV to 1 KV , current from 0.1 u A to 2 Amps, and resistance from \(0.1 \Omega\) to \(20 \mathrm{M} \Omega .0 .1 \%\) basic accuracy.

To: Lascar Electronics, Unit 1, Thomasin Road, Basildon, Essex.

Please send me Data \(\square\)
LMM-100 £82.17 LMM-200 £41.34 \(\square\) LMM-2001 £52.84 \(\square\) TEST LEADS \(£ 2.53\)

\section*{Name}

Address
 enclose cheque/P.O value

ELECTRONICS TODAY INTERNATIONAL - NOVEMBER 1979

Programming practices and techniques - Dr. M. Beer. I'm Pilot, fly me D. Straker. Letter from America - D. Smith Apple pips C. Phillips.

\section*{Atlast! Britain's very own monthly journal for Microsoftware,the IIVERPOOL SOFTWARE GAZETTE \\ }

First issue includes:
SARGON meets the Nascom-1 - J. Haigh Pascal and the PET - J. Stout.

ELIOMASONTL electranics
DEPT. E.T.I., FORTIS GREEN ROAD MUSWELL HILL, LONDON N10 3HN
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Dynamic RAMs} & \multicolumn{2}{|l|}{Interface} & & LS & \(\stackrel{N}{N}\) & LS & N \\
\hline 4027 & 3.05 & 8212 & 2.13 & 7472 & - & . 20 & \(74190-\) & . 52 \\
\hline 4116 (250ns) & 7.94 & 8224 & 3.51 & 7474 & - & . 23 & \(74191-\) & . 49 \\
\hline 4050 (200ns) & 2.88 & 8228 & 5.24 & 7475 & 34 & . 29 & 74192 90 & . 50 \\
\hline 4050 (350ns) & 2.71 & 8251 & 5.87 & 7476 & 34
34 & . 20 & \(\begin{array}{r}74193 \\ 74194 \\ \hline 74195\end{array}\) & . 51 \\
\hline \multirow[t]{3}{*}{4060 (300ns)} & \multirow[t]{3}{*}{2.88} & 8253 & 7.82 & 7478
7485 & - 34 & 1.04 & 74194
74195.95 & . 44 \\
\hline & & MM 5303 & 5.29 & 7486 & - & . 18 & 74196 - & . 79 \\
\hline & & MM5307 & 9.08 & 7489 & - & 1.50 & 74197.85 & - \\
\hline \multicolumn{2}{|l|}{Static RAMs} & & & 7490 & - & . 28 & 74198 - & . 99 \\
\hline 2102A-2 & 1.21 & & & 7492 & - & . 33 & 74221.95 & 1.05 \\
\hline 4035 (1000ns) & 5)1.14 & & & 7493 & - & . 28 & 74247 - & 1.35 \\
\hline \(2111 \mathrm{~A} \cdot 1\) & 1.96 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{74 Series TTL}} & 7495 & . 72 & . 40 & 74251 - & . 81 \\
\hline 2114 & 6.90 & & & 7496 & - & . 48 & 742531.20 & - \\
\hline 4045 (250ns) & 6.56 & 7400.17 & N & 74107 & - & . 22 & 74273 - & 1.27 \\
\hline \multirow{4}{*}{6810} & \multirow[t]{4}{*}{3.11} & 7401.17 & . 11 & 74121 & - & . 23 & 74279.55 & - \\
\hline & & 7402 - & . 11 & 74122 & - & . 33 & 74283.65 & 1.13 \\
\hline & & 7403 - & . 13 & 74126 & 35 & & 74293 . 80 & - \\
\hline & & 7404.18 & . 14 & 74141 & - & . 46 & 743481.31 & \(-\) \\
\hline C.P.U.s & & 7405.20 & - & 74145 & - & . 46 & 74365.50 & . 57 \\
\hline 6800 & 6.56 & 7408.20 & . 14 & 74150 & 5 & 58 & 74366.50 & . 57 \\
\hline 8080A & 5.70 & 7409 - & . 15 & 74151 & 51 & - & 74367 - & . 57 \\
\hline \multirow[t]{3}{*}{9900 JL} & \multirow[t]{3}{*}{28.75} & 7410 & . 14 & 74153 & - & 43 & 74368.50 & . 57 \\
\hline & & 7411 & . 18 & 74154 & - & 68 & \(74390-\) & . 98 \\
\hline & & 7412 - & . 18 & 74155 & 75 & . 46 & 746681.68 & - \\
\hline EPROMS & & \(7413-\) & . 22 & 74156 & - & .43 & & \\
\hline \[
1702 \mathrm{~A}
\] & 4.71 & 7414.75 & . 46 & 74157
74160 & - & . 40 & & \\
\hline \multirow[t]{2}{*}{2708} & \multirow[t]{2}{*}{7.13} & 7420 & . 12 & 74160
74161 & & 57
.56 & L series & \\
\hline & & 7426 - & . 22 & 74162 & - & . 56 & 74L90J & 1.15 \\
\hline Buffers & & \(\begin{array}{ll}7428 & 30\end{array}\) & . 29 & 73163 & 69 & . 49 & S serias & \\
\hline 74365 & . 48 & \(7430 \quad 20\) & . 12 & 74164 & & . 60 & 74500 & . 30 \\
\hline 74366 & . 48 & 7441 - & . 53 & 74165 & & . 56 & 745387 & 1.44 \\
\hline 74367 & . 48 & 7442 - & . 40 & 74166
74170 & & - & 745474 & 8.28 \\
\hline 74368 & . 48 & 7447 A - & . 46 & 74174 & & & 74S262 & 12.65 \\
\hline 81 LS96 & . 66 & \(7450-\) & . 12 & 74174 & - & . 58 & & \\
\hline 81 LS98 & . 66 & 7451.20 & . 12 & 74175
74180 & - & . 58 & 75 series & \\
\hline 8 8T28 & 1.61 & 7453 - & . 12 & 74181 & & .43
1.44 & 75107 A & 1.15 \\
\hline 8 8795 & 1.44 & 7454 - & . 14 & 74181
74184 & & 1.44 & 75107BJ & 1.15 \\
\hline 8796 & 1.44 & 7460 - & . 12 & 74185 & & 1.14
1.21 & 75108AN & 1.03 \\
\hline 8 ¢98 & 1.44 & 7470 - & . 22 & 74188 & POA & 1.21
2.02 & 754528 & . 29 \\
\hline
\end{tabular}

USE OUR 'ORDER RING" LINES
", 01-883 3705/2289
E.


Thomson-CSF Components and Materials Ltd., Ringway House, Bell Road, Daneshill, Basingstoke RG24 00G Telephone: 025629155 Available from these Thomson-CSF distributors: Barlec Ltd., 219 London Road, East Grinstead. Sussex (0342 24383). Lock Distribution, Nevilie Street, Middleton Road, Oldham, Lancs OL9 6LP. (061652 0431) A. Marshall (London) Ltd., 42 Cricklewood Broadway, London NW2, (01-452 0161). Omni Components Lid., 59 Vastern Road. Reading. Berks (0734 594834). Semiconductor. Specialists (UK) Ltd,, Premier House. Fairfield Road, Yiewsley, West Drayton. Middx. (0895446415).
Woolley Components Ltd., Tudor Road. Broadheath Altrincham. Cheshire (061941 1911).


The answers to these and many other vital questions of today can be found in ETI subscriptions. For only \(£ 7.00\) ( \(£ 8.00\) overseas) you can have twelve issues of ETI (all different) and cunningly spread over the entire year. You'll never again have to pack sandwiches, don haversack and set out on a monthly treck around the newsagents.

Relax in your armchair and wait for the satisfying sound of the best electronics mag in the country (unbiased opinion) dropping onto your welcome mat, delivered by hand to your door.

Send your subscription fee direct to
ETI Subscriptions
Map Publícations PO Box 35
Bridge Street
Hemel Hempstead
Herts.


\section*{Semiconductor Guides.}



\title{
OP AMPS AND INTEGRATORS
}

\section*{Although we're dominantly digital these days, there are some applications where the trusty op amp is cheaper and easier - differentiating and integrating circuits, for instance. A. S. Lipson reveal's all . . . .}

DIGITAL COMPUTERS, folks, are not always fastest or cheapest. No, don't faint. No kidding - those amazing digital circuits we keep hearing about do not always get the job done first! They're fine, of course, as long as we stick to straightforward arithmetic, but unfortunately, there are occasions when we want to do other things (no, not that sort of thing ...), such as integration or differentiation. Circuits performing these functions are not only of use in computers, however; they are of great use to those of us who are just simple mortals, as well. For instance, in function generators, a square wave may be changed to a triangular wave merely by integrating.

Now, while digital circuits can perform these functions, they do tend to get a bit bulky and expensive. It's very much easier to use analogue circuits. As it happens, we have very simple networks that make passable integrators and differentiators for very little money. They're capacitor-resistor series circuits, and their operation is quite easy to understand.

\section*{Differentiators}

We can make quite a serviceable differentiator circuit from the series combination of resistor and capacitor shown in Fig. 1. Now from our original definition of capacitance, the current flowing through a capacitor is given by;
\[
I_{c}=\frac{d V_{c}}{d t}
\]

But, in the case where we are driving a load with very high input impedance, \(I_{\text {out }}\) will be negligible, and \(I_{R}\) will be very close to \(I_{C}\). We can say, without too much inaccuracy, that \(I_{R}=I_{C} . I_{R}\), however, is given by Ohm's law, \(I_{R}=V_{\text {OUT }} / R\). Thus \(V_{\text {OUT }}=R I_{R}\). Since \(I_{R}\) is the same as \(I_{C}\), however, this gives;
\[
V_{\text {OUT }}=R I_{C}=R C \frac{d V_{c}}{d t}
\]
and so the output voltage is effectively the voltage across the capacitor, differentiated and then multiplied by a scale factor RC. If we don't want this scale factor, we can just arrange matters so that \(\mathrm{RC}=1\).

The main problem with this circuit, of course, is that it


Fig. 1. Basic differentiator.


Fig. 2. Basic integrator.
is, indeed, the voltage across the capacitor, and not that across the input, which is differentiated. However, as long as we don't let the output voltage get too large, \(\mathrm{V}_{\mathrm{C}}\) will be very close to \(\mathrm{V}_{1 \mathrm{~N}}\), and this error will not matter too much.

\section*{Integrators}

The basic integrator circuit is very similar to that of the differentiator - the resistor and capacitor just swap positions (Fig. 2). Now we can find the circuit's action in the same way as we did before;
\[
I_{C}=C \frac{d V_{O U T}}{d t}
\]

Integrating both sides of the equation;
\[
\int \mathrm{I}_{\mathrm{C}} \mathrm{dt}=\mathrm{CV} \text { OUT. }
\]

But \(I_{C}\) is the same as \(I_{R}\), provided we are driving a load with high enough input impedance. From Ohm's law, we have \(I_{R}=V_{R} / R\), and thus;
\[
1 / R \int V_{R} d t=C V_{\text {out }}
\]

Dividing both sides by C ;
\[
V_{\text {OUT }}=1 / R C \int V_{R} d t .
\]

Again, the voltage being integrated is the voltage across only one of the components - the resistor - and not that across the entire circuit. However, as long as we again arrange that \(\mathrm{V}_{\text {out }}\), that is, \(\mathrm{V}_{\mathrm{C}}\), never gets too large, \(V_{R}\) is very close to \(V_{\mathbb{N}}\), and we have a fair approximation to an integrating circuit with a gain of \(1 / R C\).

\section*{Bigger and Better}

So far, the circuits we have looked at have had two main disadvantages; they are accurate only when driving circuits which have very high input impedances, and their output voltages cannot be allowed to become very large, or the difference between the input voltage and the voltage actually being acted on becomes too large to be ignored. (This in turn puts resistrictions on the allowable values of RC time constants and thus the components themselves, but we won't go into that.) How can these problems be solved? Did the man at the back mention op-amps? Dead right, friend. To see how they might be useful, however, let's do a quick bit of. revision on them. (Those familiar with op-amps skip the next section.)

\section*{Op-Amps}

Op-amps are famed for three major properties. The first of these is a very high input impedance, the second is a very low output impedance and the third is a gain so high that it may be approximated to infinity without too much innaccuracy for most purposes. It is this last property which leads to the 'virtual earth', a very useful concept in analysis of op-amp circuits.

The voltage gain of an amplifier is, by definition, the ratio of its output voltage to its input voltage. If the gain is \(m\), then the output voltage \(V_{\text {OUT }}\) is \(m V_{I N}\), or, if we are using the inverting input of an amplifier, \(-m V_{\text {in }}\). However, as we have stated, the gain of an op-amp is close to infinity. Thus, its output voltage is infinity times its input voltage, or, putting it another way, the input voltage is equal to the output voltage divided by infinity. Since the output voltage must be finite, the input voltage, or, more accurately, the difference in voltage between the inverting and non-inverting inputs, of an op-amp, must be zero. (Yes, I know it looks as though I've cheated somewhere, but I can assure you that it works.) Since this difference in voltage is zero, it follows that if we ground one input of an op-amp, the other input automatically goes to zero potential. This is not to say that it automatically gets shorted to earth - there is still a very high resistance between the two points - it just means that no voltage will be present; there is a 'virtual earth'. This concept, as has been stated, is a very useful one. Now we can apply it to our integrator and differentiator circuits.

\section*{The New Improved . . .}

We saw in the last section that an op-amp has a very high input impedance and a very low output impedance. It was a very high input impedance, you will remember, that we needed for our basic circuits to drive, so suppose we put some sort of unity gain voltage amplifier on the outputs. It wouldn't affect the signal in any way, but it would mean that we could drive circuits with lower input impedances.

Well, using an op-amp, a unity gain voltage amplifier has a circuit something like that shown in Fig. 3. It's easy enough to understand; the output is shorted to the inverting input and so the voltage present at each is identical. However, the difference in voltage between the two inputs must be zero and so the same voltage is


Fig. 3. Unity gain voltage amplifier.


Fig. 4 a Differentiator with buffer.

b Integrator with buffer.
present at the input to the amplifier as is at the output. In practice, this means that the output voltage follows the input voltage. Amplifiers like this are often used as 'buffers' - allowing high output impedance circuits to drive low input impedance ones.

If we put one of these buffer amplifiers on the output of each of our circuits, we have the circuits shown in Fig. 4, and we have, indeed, solved one of our major problems; the circuits no longer need to drive into high impedances. The other problem is still present, however. Is it possible to improve our circuits again? Well, yes. (See, it was worth reading this far.)


Fig. 5 a (above) Integrator circuit using an op-amp and b (below) differentiator circuit using an op-amp.


\section*{At Last . . .}

We'll look at the integrator first. The circuit is shown in Fig. 5a, and, unlike our last idea, does not use an op-amp tacked onto the end, but as an integral part of the circuit. (Yes, that's right, it's an integrated integrator \(\ldots\) sorry, I just couldn't resist that. . .) It's action is as follows:

Since the input impedance of the op-amp is very high, it follows that the current actually flowing into it is very small, and hence, \(I_{R}=-I_{C}\), to a first approximation, in order to keep the currents flowing into point A sum to zero. (Kirchhoff's first law - the algebraic sum of all the currents flowing into a point of a network is zero. This is the same as saying current in = current out.)

However, Ohm's law tells us that the current flowing through the resistor is given by the voltage across it, divided by the resistance. Now, the voltage at A is zero (virtual earth), so the current through the resistor is \(V_{I N} / R\). The current through the capacitor is given by
\[
\mathrm{I}_{\mathrm{C}}=\mathrm{C} \frac{\mathrm{~d} \mathrm{~V}_{\mathrm{ouT}}}{\mathrm{dt}}
\]

Hence, we have, since current through the resistor equals current through capacitor;
\[
\begin{array}{r}
V_{I N} / R=-C \frac{d V_{O U T}}{d t} \\
\text { and so } V_{I N} / R C=-\frac{d V_{O U T}}{d t}
\end{array}
\]

Integrating both sides of the equation, we obtain;
\[
\frac{V_{\text {IN }}}{R C} d t=-V_{\text {OUT }} \text { or } V_{\text {OUT }}=-1 / R C \int V_{\text {IN }} d t
\]

Since \(R\) and \(C\) are constants, and can thus be moved out of the integration sign.

Hence we have effectively a circuit which integrates input voltage with respect to time, and which has, once again, a gain given by \(-1 / R C\). The integrating action may be seen if we apply a square wave to the input. We obtain a triangular wave as output, and one which compares very favourably with that obtained from our original circuit. (Fig. 6.)



Fig. 6 a Input square wave signal B output from op-amp circuit \(c\) output from original circuit.

\section*{Differentiator Mark 3}

The action of the differentiator circuit (Fig. 5b) can be explained similarly. Again, current through the resistor is equal to that through the capacitor, because of the very high input impedance of the op-amp.
\[
I_{C}=-I_{R}
\]

But \(I_{R}\) is given by \(\left(V_{\text {OuT }}-V_{A}\right) / R\) and \(V_{A}\) is zero (virtual earth again). Similarly, \(I_{C}\) is given by \(\mathrm{CdV}_{\mathrm{IN}} / \mathrm{dt}\). Therefore;
\[
V_{\text {OUT }} / R=-C \frac{d V_{I N}}{d t}
\]
multiplying both sides of the equation by \(R\), we get;
\[
V_{\text {OUT }}=-R C \frac{d V_{I N}}{d t}
\]

And we have a differentiating circuit, the gain of which is given by -RC. We can see the differentiating action if we apply a square wave to the circuit as in Fig. 7.


Fig. 7a (above) Input square wave signal and b (below) output from op-amp circuit.


\section*{Howzat!}

With these two circuits we have overcome the difficulties experienced with our original RC combination series circuits. The voltage being acted on is the input voltage actually and, thanks to the low output impedance of the op-amp, we can use these circuits to drive many more circuits. The output voltage, which we were forced to restrict in our original circuits, for fear of affecting the action of the circuits, is now restricted only by the supply voltage to the op-amps.

The outputs of these circuits are, of course, inverted, as is shown by the minus signs in our equations. This is because of practical difficulties incurred when a noninverting circuit is used, and can easily be solved by tacking a unity gain inverting voltage amplifier onto the output - surely a small price to pay for all the advantages that these circuits give us over the originals.

ETI

\section*{24 TUNE DOOR CHIMES}

\section*{DOOR TUNES \(\{17.13\) + VAT}

Waddrington's Videomaster announce a doorbell that doesin go Brringgg, Ding.Dong of Bzums, Insiead it plays 24 different classical and popular tunes. It will piay the tune
you select tor your mood the season or the visior you are vexpecting to call. Door funes is not. only oreat fun and wondertul ice breaker, but is also very functionaly and beauritully designed to enhance your home. There is bearimily designer to entance your home. There is
something for Christmas, something for your continental visinors or your relations from the siates, and even something for the Oueen. Door wunes is easy to instali and has separate controls for volume, tone and lempo.

\section*{T.V. GAMES}

\section*{PROGRAMMABLE 929.50 + VA}

COLOUR CARTRIDGE T.V. GAME
The TV game can be compared to on audin cassette deck in CDLOUR, using various plug-in cartridges. At ing last a IV game is avaiable which will keep pace with improving echnology by allowing you to extend your library of games with the purchase of additional canringes as new games are developed. Each cantridge consbins up to ten different action gifmes and the first cartridge containing ten sports games is incuded lee with the console. Other canridges are currently available to enable you to play such games as Grand Prix Motor Racing, Super Wipeout and Srint Rider? Fut ther canridges ate to be released later this year, nduding Tank battle, Hunt the Sub and Target. The console comes compiete with two removable foystick luyer confrols to enab:e you to move in alightlefils and builh dinn thections ball serve and target fire buttons. Other features include several difficulty option swiches, automatic on screen severat diticuuty option swinches, automatic on screen
digital scoring and colour coding on scores and balls, Lifelike sounds are transmited through the TV's speaker, simulasing the actual game being piayed Manufactufed by Waddington's Videamaster and 10 Game COLOUR SPORTSWORLD E2250 + VAT guaranteed for one year

\section*{CHESS COMPUTERS}

\section*{STAR CMESS - fE5. 09 + VAT}

PLAY CHESS AGAINST YOUR PARTMER
using your own TV to display the boasd and pieces. Star interess and excite all ages. The unit plugs into the aenial socket of your \(T\) Vee and displays the board and pieces in full colour lor black and whitel on your \(T V\) screen. Based on the moves of chess. 1t adds even more excinement and Surest the the game. For those who have never played, chess. For the experienced chess player there are mol new dimensions of unpredictabilny and chance added to the strategy of the game. Not only can pieces be taken in conventional chess type moves, but each piece can also exchange rocket fire with its opponents. The unit comtes complete with a tree 18V mains adaptor, full instructions and twelve months guarantee.
CHESS CHALLENGER 7 - โ66. \(65+\) VAT PLAY CHESS AGAINST THE COMPUTER
The styish, compact, porable console can be set to play at seven ditlerent levels of ability from beginner to expent nicuuding "Mate in two and "Chess by mall. The comtiputer will only make responses which obey international chess rules. Casting, on passant, and profinoting a pawn are al
included as part of the included as part of the compuler's programme. I:
possible to enter any given problent trom magazines newspapers or alternatively establish your ownt board position and watch the compurer react. The pestrions of all pieces can be verifed by using the computor memory recall brice includes unit with wood grained housing and Price includes unit with wood grained housing, and white and aganst itself and comes complete with a mains adapior and 12 months guarantee
OTHER CHESS COMPUTERS IN OUR RANGE INCLUDE:
CHESS CHAMPION - 6 LEVELS EA3.s5 + VAT
CHESS CHALLENGER - 10 LEVELS - \(£ 138.70\)
BOAIS - MULTI-LEVEL TALKIMG DISPLAY
\(\$ 163.04+\) VAT.

\section*{DRAUGHTS COMPUTERS \\ computens}

CHECKER CHALLENGER 2 LEVELS 543 Sa + VAT
4 LEVELS 830.09 + VAT 4 LEVELS EB0.09 + VAT
The draughis compurer enabies you 10 sharpen your skills, compurer incorporates a sophisticated, reliable, decision making microprocessor as is brain. Its high iew. it athinking ability enables in to respond with its best countes moves like a skitied human opponent you can select otfence or defence and change playing ditficulty levels 81 any lime positions can be verified by compurer nieniony et oroblems Compurer comes monplete with instuctions mains adaparor and welve monmins guaranice

\section*{FOR FREE BROCHURES - SEND S.A.E}

\author{
ar FREE dlustrated brochures and revews on TV and chass paries please send a statuped addressed onveione and sate
}
 oo order by ielephone please quote your namie, atdress and Access Barctaycard numbet

AJD DIRECT SUPPLIES LIMITED, Dept. ET11102 Bellegrove Road, Welling, Kent DA16 30D. Tel: 01-303 9145 (Dayl 01.850 8652 IEvenings)


ELECTRONIC CHESS BOARD TUTOR \(£ 17.17\) + VAT A special bulk purchase of these antazing chess reaching machines enables us to offer them at only 119.75 less than a simple baten real price. The electrofic chess tuor i anyone to play chess and improve their game right up io championsthip level. This machine is not only for tota beginners but also ? or estabished players waning to play better chess Unit conrains the electronic chessboard wit 32 chess pieces, a 54 page explanetory booklet and a set of 32 progressive programme cards including 6 beginnels carcs, 16 check mate positions, 9 minnature gamies, 5
openings, 3 end games, 28 chess problems and 2 master canes.


\section*{MORE SCOPE FOR YOUR MONEY}

\section*{\(\int \frac{\sum_{0}^{2}}{5}\)}

\section*{As}

RECOMMENDED BYE.T
SPECIFICATIONS-ELECTRICAL DA VERTICALAXIS MI Deflection Sensitivity - 100
V/divsion Aandwidh (teiween 3 I \(V\) divsion, Bandwidth (between 3 dB points) -
\(D C=5 M H z\) Input Attenuator - (calibrated) -9 step 0.1, 0.2, 0.5, 1, 2,5, 10, 20, 50 /div. Inpu
 - Max - 600 P P. HORIZONTAL AXIS(X)
Deflection Sensiflity \(-0.400 \mathrm{mV} /\) division
 Gain Control - Continuous when time bases in EXT position. Input Impedance - 1 Meg . Input Voltage - Max \(-500 V\) P. P. TimE BASE. Sweep
Range (callbrated) \(-100 \mathrm{msec} /\) div to \(1 \mu \mathrm{sec} /\) div in 5 steps. FINE Control - Variable berween steps - includes time-base calibration position. Blan king - Internal -on all ranges.
SYNCHRONISATION. Selection - internal exter nal. Synchronisation Level - Continues from positive to negative
POWER SUPPLY Input voltage - \(115 / 200 \mathrm{~V}\)
CRT DATA
CRT OATA - 4 in. - . at face, single beam.
Maximum high voltage -1.5 kV . Fitted with \(8 \times 10\) division blue filter graticule. PHYSICAL \(5 \mathrm{~cm}(\mathrm{w}) \times 28 \mathrm{~cm}(\mathrm{~d})\) Weight -4.3 Kg (approx Stand -2 position flat and inctined Case - Steel. epoxy enamelled. Front panel-Aluminium \((+£ 16.35 \mathrm{VAT})\) Test leads available \(£ 2.00\) Barclay and Access. SINCLAIR SC1/0 Min 10MHz scope \(£ 159.00\) (SAE). PFM 200 Digita Frequency Merte E350 POA. OM 450 POA. Enterprise prog €23.66. Microvision \(\mathbf{£ 9 1 . 7 4 .}\)


\section*{1 CLOCK RADIO}

How about a round clock radio which can double as a very smart desk clock - as we can testify!

TO CLOCK RADIO offer
ETI Magazine, 145 Charing Cross Road London, WC2

To time, rotate one end of the cylinder to display the frequency selected. Most of the functions are controlled by a push-button panel and the display is a large, clear LCD affair.

Name
Address
Made by Hanimex, the battery clock radio comes in white, white or white. It will lull you to sleep and then turn itself off an hour later and waken you to the sound of Radio 1, or music if you prefer.

To: DIGITAL ALARM offer
ETI Magazine, 145 Charing Cross Road London, WC2

\section*{\(£ 10.60\)}

Name
Address

This mains-only Hanimex alarm has a large 12-hour display incorporating AM/PM and alarm set indicators. You can have a dim or bright display at the touch of a switch. Fast and slow setting buttons make time setting simplicity itself. You can forget about knocking these accidentally in the morning scramble to turn off the alarm, as a locking switch is fitted under the clock. A 9 -minute snooze switch completes the list of all mod. clock cons.

\section*{3 LCD CHRONO}

Our Chrono comes complete with a high grade adjustable metal strap and is fully guaranteed.
The LCD display shows seconds as well as hours and minutes. Press a button and you get the date and day of the week.
Press another button and you have an accurate stopwatch with hundredths of seconds displayed, giving the time up to an hour. There's a lap time facility, too - and of course a back light.

To: LCD WATCH offer
ETI Magazine, 145 Charing Cross Road London, WC2
\(£ 11.95\)
Name
Address

\section*{4 LCD ALARM CHRONO}

This is no ordinary watch. It's a slim, multi-function, dual time LCD alarm chronograph.
This model will show hours, minutes, seconds, date, day of the week, stopwatch, split time, alarm and alternate dual time zone not all at once of course. There's a night light, too.
Hours, minutes, seconds and day of the week are displayed continuously, while the date will appear at the touch of a button. The alarm is beefy enough to wake you up in the morning and get you to work on time (or wake you up when it's time to go home).


This circuit is designed to add to the excitement of many board games. Players must make their moves with in a random unknown time. The delays can be adjusted and the circuit uses only four ICs and a few passive components

The 555 (IC1) provides a clock frequency for the 4017 and the 'time up' tone frequency. Normally the 4017 clock is inhibited as the clock inhibit pin 13 is high. However, when the 'reset timer' button is pushed, pin

13 is grounded and counting starts. The high output moves wildly between the outputs until the switch is released. Only one output will then be high, which one being entirely a matter of chance. The resistor connected to this high output determines the charging time of the capacitor. For the 100 u capacitor shown, 10 k should be allowed for each second of delay. When the capacitor has sufficiently charged up, IC3 switches off. This is inverted by G1 and appears high. The
tone from IC1 is gated by this high signal to drive the loudspeaker via Q1.

Pressing the switch at any time clears the monostable and selects a random delay resistor. The delay resistors can be of any value selected by you. G1-3 are any NAND gates from a single \(4011 / 7400\). If the battery voltage is greater than 6 V a 4011 must be used.


\author{
Clock Switching Unit
}

\section*{A. Claughan}

On normal clock modules such as the National MA 1002 or the Liton LT701 six bulky and untidy looking pushbuttons have to be used. This circuit cuts these six to two.

The output of IC 2 is connected to the clock input of IC1. On reception of the first pulse, the first output goes high. Each time the output goes high, a corresponding LED is switched on and the base of the adjoining transistor goes positive. When the correct LED is switched on, pushbutton two is pressed. This switches on the transistor, completing the corresponding function. The rate at which the LEDs light up is adjusted by changing the value of R1. The seventh output of the IC is used as a pause so that the clock can run normally. The eighth output is connected directly to the reset input on IC1. This causes the IC to automatically reset on the eighth pulse. The 9 V supply is obtained by regulating one of the clock inputs.


\section*{Function Generator}

\section*{J. S. Paterson}

IC1 is an integrator which, along with IC2, etc, forms a voltage controlled ramp oscillator, the frequency of which is set by RV1. S1 and diodes D1, 2 control the direction of the ramp. The output of IC2 is taken to IC3, which is a comparator providing a square output at pin 6. RV2 provides control of symmetry. Lastly, this square wave is fed to an integrator, which gives a triangular waveform. If the control voltage is applied via the circuit in Fig. 2 the frequency will vary logarithmically with voltage - useful for synthesizers.

With RV1 slider grounded, a ramp can be fed into the circuit at point \(A\), so the oscillator will sweep through its range - useful for testing filters, etc




SEMICONOUCTORS
At 2 p nach.
in 3063 , is 44
AC 5p each. \begin{tabular}{l}
\(8 C 147\). \\
\(8 A 154\). \\
BA 1433 \\
\hline
\end{tabular}
A: 25p each.
IP31: TIP41A: 2N5296: AF139: ZT 341
YY 127 10p; BF181 20p; BD239 40p; BO241 40p; MJE340AT 40p; BD233 \& BD234 Comp pair 25W-80p per pair or 50p each equalar TBA635 8 to 20 V in - 5 V out 100 MA TO 5 Can 50p ENF 256 C - 20p.
FNO 107 segment display 0.15 in .40 p
TV AMPLIFIER TBA120. 20p esch.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Integrated Circuits} \\
\hline 7453 & 5p & \(74 \mathrm{H74}\) & 12p & 74154 \\
\hline 7451 & 5p & 74S04 & 12p & 75325 \\
\hline 7401 & 5p & \(74 \mathrm{H51}\) & 7 p & SN15862 \\
\hline 7402 & 12p & 74538 & 10 & MC4028 \\
\hline 7476 & 20p & 74502 & 12p & 7417 \\
\hline 7495 & 35p & 74500 & 12p & 7441 \\
\hline 709 & 15p & & & \\
\hline
\end{tabular} MOTOROLA DUAL in
AM9140-4K RAMS STATIC 5 Volh ceramic. E4 each,
TELEPHONES. 706 style. Black or Grey \(£ 5.50\) each. 746 style Blapk frey \(\mathbf{6 7 . 5 0}\) each. Older style Black \(\mathbf{E} \mathbf{2} .50\) each. Postage \(\mathbb{E} 1\) each HONEYWELL Humidity Controllers 50 p each. P\&P 40p.

THYRISTOR TIMERS. Sold State. 15 secs adjustable (preset) in pia relay case. Standard 7 pin base Series delay 50 p oach. P8, \(85 p\)
MINIATURE PC MOUNT SLIDE SWITCH. Single pole 3-way io oigital to analogue convierto
socket. With dota. \(£ 2.50\) each. \(P \&\) P \(25 p\).
VARIACS. 2 amp Standard 240 Volts \(£ 10\) each. P\&P \(£ 1.50\) VARIACS. 2 amp Standard Orher ranges available - please enquire

CALLERS VERY WELCOME STRICTLY BETWEEN 9am-1pm and 2-5 pm Monday to Saturday incl. BARCLAYCARD (VISA) and ACCESS taken. Official orders welcome.


\section*{Active Decoupling Circuit}

\section*{J. P. Macaulay}

What do you do if faced with the problem of running say a tuner which requires \(30 \mathrm{~V} / 100 \mathrm{~mA}\) from a power supply of say 55 V ?

This circuit is designed to drop a predetermined voltage and supply a reasonably large current to its load. The voltage drop between the emitter and collector of Q3 is directly proportional to the setting of PR1. In effect, Q1,2,3 can be considered as a single transistor with high current gain.

C1, between the base of Q1 and earth, performs a vital function, because its filtering action is amplified by the circuit and thus smooths the output voltage. If we assume that each of the transistors has a gain of 30, the circuit will possess an overall gain of 2700 times and an apparent capacitance will appear across O3's emitter and earth of 0.27 F .


The circuit with an input voltage of up to 60 volts, but this must be taken as an absolute maximum due to the breakdown voltages of the devices used. When using fairly low voltage drops, up to say 10 V the maximum current that the circuit can supply will
be limited to the size of heatsink employed

Several amps can be supplied as long as the resultant heat can be safely dissipated. With the component values shown, the circuit can be adjusted by PR 1 between 3-30 V.

\section*{Immersion Heater Protector}

\section*{K. Cooper}

The circuit was designed to cut the power to an immersion heater should the thermostat fail. This stops the water boiling over and all the subsequent damage. The cutout is fitted to a warm part of the tank (not too hot, or it will trip in normal use). Thus, if the water starts to boil, the cutout trips, cutting all power and lighting the neon.

The unit must be fitted in a well insulated box and care should be taken with the wiring to the cutout, which can be fixed and insulated with epoxy resin




\section*{Simple Rhythm Generator}

\section*{J. J. Trinder}

The circuit was designed to be used with a synthesiser to play simple repeating rhythms automatically. All that was required in this case was a trigger signal, although a pitch signal could be added easily by duplicating the switch and resistor networks on the 4017 outputs.

The clock drives the 4017 , which sequentially takes its outputs high. These are used to turn on switches. The output voltage from each switch can be varied by adjusting the pot.

The outputs are added together and fed back to the base of Q 1 , thus varying the speed of the clock depending on the setting of the pot on the output selected. The clock is also used to trigger a monostable formed around an NE555. This circuit provides the gate pulse for the synthesiser. The gate length can be varied by adjusting the 100 k pot.

\section*{External Input For Micros}

\author{
P. F. Tilsley
}

This simple circuit provides a micro with an 8 bit switch/external signal input port. The state of the switches controls the byte read by the micro, but any totem pole TTL signal applied to the external input socket over-rides the signal from the corresponding switch. The value of the resistor is not as critical. The circuit is shown for only one bit.



\section*{Heads Or Tails}

\section*{Steven Snook}

This circuit differs from previous Heads or Tails circuits in that when the switch is released the switch is released the LEDs will continue to flash at a continually decreasing speed, until eventually they stop and one or the other will remain on. When SW1 is depressed C1
charges via the 2 k resistor, when SW1 is released C1 produces a gradually decreasing voltage into the emitter junction of Q1. This produces a slow drop in frequency of oscillation, the oscillation ceases when C 1 is completely discharged. The output of the oscillator
is fed into an inverter, Q2, then into the 7472 flip flop. The 470 R preset must be adjusted to give equal chances of each LED. A novel, untested, modification would be to omit the red LED and drive another 7472 , this would give four combinations instead of two.


\section*{One Chip Logic Probe}
K.D.Hedger

This circuit, although very cheap and with a low componant count, is very effective. When logic 1 is at the input of IC1/1 output goes low causing IC1/2 output to go to logic 1 lighting LED 1. Logic 0 at the input of IC \(1 / 1\) causes the output to go high, IC1/3 goes low and IC1/4 goes to logic 1 lighting LED 2.

SW1 takes the output of the IC1/2 back to the input of IC1/1 so locking LED one on until the push to open switch is released.


\title{
TRANDAM \\ COMPUTER PRODUCTS
}


SINGLE BOARD PERSONAL COMPUTER

Three new exciting expändable systems designed for ease of construction and flexibility. Kits come upply, full keyboard PC All components available separately, see catalogue.
ull hardware and programming



```

Single board Holds up to 8k memory
Three firmware options
UHF or Video outpu
Basic in Eprom
Plug in expandable board

```

\section*{Personal Computer \\ £286}

\section*{BI DIRECTIONAL MATRIX PRINTER}
£595 \({ }_{\text {VAT }}\)

The BD80 is a low cost. 80 column line printer with microprocessor control to provide excellent reliability and performance
- \(5 \times 7\) dot matrix 10 char per inch 400 char buff

Full ASCII char set
10 lines \(/\) sec paper advance \(112 \mathrm{char} / \mathrm{sec}\) B4 lines per minute

Self-test Fuliy cased


Switch selectable band rate from 110 to 9500 on a standard V24 and RS232 interface. Send SAE for further details. Ideal printer for Triton or any system requiring high-speed, reliable hard copy. We can supply consumables.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{COMPONENTS 74LSXX} \\
\hline Sm74is00w & . 18 & 5n7als54m & 21 & SNT44S1384 & . \({ }^{\circ}\) & Sh74LSISSNM & 0 & Sm7als325 & 255 \\
\hline \({ }^{5177445014}\) & . 18 & SH74.S551 & 21 & SN74.51390 & 75 & SM744.51986 & 1.20 & Sn74L9326in & 255 \\
\hline S 1744.5024 & 20 & sm7als6an & 1.50 & SW7448145M & 1.20 & Sw144S197\% & 1.20 & 5n74. 3 327w & 295 \\
\hline \$7774.503m & . 18 & SN774.573\% & 35 & Sn74S143m & 1.75 & S\$17452214 & 1.25 & SN7445352N & 1.35 \\
\hline SM744.5044 & 20 & 5n74.574 & 40 & Sn7als 1519 & . 85 & S \(\$ 1741 / 2400 \mathrm{~N}\) & 2.20 & SN74015353N & 1.50 \\
\hline SN744 \(506 \%\) & 25 & SM74.575N & 46 & Sn74isis3m & 80 & S774.5241\% & 1.9 & S474153651 & \({ }_{5}^{5}\) \\
\hline Sh744.588\% & 20 & 5N74.576\% & 35 & Sn7tisisam & 1.60 & 5474452423 & 1.00 & 3014483876 & 65 \\
\hline 54774SI09\% & 28 & 517445780 & 35 & SM7TAS1554 & 1.25 & SW74452433 & 1.9 & \%uT4835 & \% \\
\hline SM174.510w & . 18 & Sn74.5834 & 1.15 & SN74 [51584 & 1.25 & 517745244* & 210 & SN741336 & \({ }_{85}\) \\
\hline SM744 S Lin & 28 & Sn7445855 & 1.10 & Sn74LS157\% & 0 & 5.774.52451 & 20 & Snitis373* & 1.75 \\
\hline SM744.512\% & 25 & SN74.1586m & 40 &  & . 90 & S4741524714 & 1.2 & SN74.53744. & 1.70 \\
\hline SM744S13 & 5 & sh74lssom & . 65 & sm74LS160\% & 1.15 & SM744524 & 1.g刀 & S47445375N & . 72 \\
\hline Sn74isi & . 0 & S474is91\% & 80 & sw74isi6im & 1.15 & Sm74is249\% & 1,00 & SN74LS37\% & 1.75 \\
\hline SN7441515 & 25 & SN744.592N & \$ & SW744162m & 1.15 & SM744.52511 & 1.45 & Sn74.L379\% & 1.32 \\
\hline S.374 520 & 20 & Sn374.Ls33an & 4 & sn7alicar & 90 & Sh74.15253\% & 1.25 & SN74L5379\% & 1.40 \\
\hline Sn744521M & 26 & Sn774595N1 & 120 & SN74.L164 & 1.50 & S4744.52571 & 1.40 & SN74.S3610 & \({ }_{3} .5\) \\
\hline SN744522\% & 26 & Sm74.5s5m & 1.75 & sm74.s165\% & 1.70 & Sm74/2558 & . 9 & 5*74.5389 & . 57 \\
\hline Sm74 Szzin & 29 & SN774L1074 & 30 & Sn74SISEN & 1.75 & Sm74 5259m & 1.45 & SH74. 5390 H & 1.90 \\
\hline S\$774is27\% & 35 & Sm74LS 109 w & 38 & sn7tisiban & 1.55 & Sh74 52880 M & . 30 & SN74153931 & 1.50 \\
\hline Sn7445zan & 35 & Sm744.512\% & 30 & sn7usis9m & 1.55 & SM74L52611 & 3.50 & SM74L3995 & 1.00 \\
\hline SN744530 & 23 & Sn74.5113m & 4 & sm7alifan & 250 & 547415266H & . 30 & SN74LS396N & 1.70 \\
\hline SNT4 S322N & 27 & S. \(17445114 / 4\) & 4 & sn74Lsiz3 & 220 & Sn744.5273m & 1.65 & Sw74iL339\% & 275 \\
\hline SN741533 & . 39 & SM74.S122\% & . 79 & SN74.L1744 & 1.15 & 54744527901 & 79 & 51774L5399\% & 1.00 \\
\hline Sn74 [137\% & 29 & Sm74S \(123 \%\) & . 90 & SN774.5175 & 1.05 & Sm744.5285m & 1.75 & 5177454244 & 4.50 \\
\hline SN744338 & 28 & Sm74.S1244 & 1.90 & Sw74.5181\% & 27 & SM744.58331 & 1.0 & SM74L5445N & 1.25 \\
\hline SN74is40\% & 25 & Sn74.5i2sm & . 65 & Sn744.1sion & 1.75 & Sw74is290\% & 1.00 & SM74/LS4TV & 1.25 \\
\hline \({ }_{5} \mathbf{5 N 7 4 4 5 4 2 N}\) & . 79 & S774LS1264 & 55 & Sn7alsigin & 1.75 & SNiT4 & 1.80 & Sm74. 5480 a & 1.55 \\
\hline SN74S474 & 95 & SN7441323 & . 7 &  & 1.45 & Sh74LS2954n & 220 & 51774.56680 & \\
\hline Sm74is48\% & . 96 & SN774L13331 & 39 & SNT4LL 1933 & 1.75 & Sk74.42939 & 220 & S\#74.L5669\% & . 5 \\
\hline 7454 W & 1.00 & SH74LS136N & 4 & SN74LS 1944 N & 1.9 & SH74is324 & 1.20 & S\#774is670 & 5 \\
\hline
\end{tabular}

TRITON DOCUMENTATION
Available separately as follows. Prices include P\&P
Triton manual - detailed circuit descriptıon + constructional details + user documentation on level 4-1 monitor. Basic 5.1 user documentation on tevel 5 - 1 firmware

51 Lsting + listing of 1.5 k monior and 25 k
6. 1 User documentation on 7 k basic ind 25 k b

Motherboard, 8k Ram and 8k Eprom constructional
User Group Newsletter subscription constructional detail
Triton software. Send SAE for list of programs availater

\section*{EXPANSION MOTHERBOARD}

TRITON. Expand your Triton simply and easily 8 SLOT with our new 8 -slot motherboard complete with its own P.S.U.; takes 8 plug-in Euro cards \begin{tabular}{l} 
Usee standerd \\
64 way \\
din con. \\
\hline
\end{tabular} Plug-in 8k RAM card and Eprom cards now available. Kit complete with P.S.U. +1 set connectors
\(£ 50\)


\section*{8K EPROM} CARD
Triton 8k Eprom card kit , designed to take up 10
\(8 \times 2708\) Eproms ( \(1 \mathrm{k} \times 8\) ). PCB only E15 Kit less Eproms \(\mathrm{E}_{3}\) Eproms (blank) \(£ 9\) Plus VAT


S100 boards
8k Statc RAM board ( 450 ns )
8 k Static RAM board ( 250 ns ) 280 cpu board (2 M Hz) 280 cpu boord ( 4 MHz ) \(2708 / 2716\) EPROM board
Prototype board (bare board) Video display board (64×16. \(128 \mathrm{~L} / \mathrm{L}\) Ascil Onsk controller board K2 disk operatug system
Assombie/ZMacro Assm.

ITHACA
YOUR
Pascal/Z
buid your own
pascal Micro
Pascal Micro
Develop ment.
systern. IEEE.
Deviop IEM,
system. IEE.
Sico bus sytem
SiDO bus system
using DPSI main.
Using DPSI main-
assemble \(/ 2\) and
Passal/2 on \(8^{\prime \prime}\) disk
asolich disk.
e stact the ill it of ithaca producte.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{PCB CONNECTORS} & \multirow[t]{3}{*}{} \\
\hline \multicolumn{4}{|l|}{Edge connectors. gold contact, doublesided PCB connectors.} & \\
\hline .1" & Price & .156 \({ }^{1}\) & Price & \\
\hline 22/44 & [3.20 & 6/12 & \&1.25 & \\
\hline 25/50 & ¢ 3.60 & 10/20 & E1.50 & \\
\hline 28/56 & [3.90 & 12/24 & ¢2.00 & - \\
\hline 30/60 & ¢4.15 & 15/30 & E2.20 & \\
\hline 35/10 & ¢4.60 & 18/36 & E2.30 & \\
\hline 36/12 & E4.75 & 22/44 & E2.65 & \\
\hline 40/80 & c5.00 & 28/56 & [3.30 & \\
\hline 43/88 & ¢5.50 & 36/72 & ¢3.90 & \\
\hline 50/100 & E5. \({ }^{0}\) & 13/82 & £4.60 & 1. \\
\hline & & & & + VAT \\
\hline
\end{tabular}

\section*{TRAP! Tnton resident assembly}

Links wa the L6.1 monitor and new scientific basic to make Triton a stand alone development system. Trap is an 8K package in EPROM documen
EDITOR
ASSEMBLER BREAKPOINT dISASSEMbler
SYMBOL TAB
CREATE
 PROGRAMME LOAD
MONITOR

See catalogue for further details
MEMORY AND SUPPORT CHIPS (PRICES EXCLUDE VAT)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Suppont & 230 & mams & & ernows & & LM555N & 30 & & & Chystals & & & \\
\hline \({ }^{8212}\) & 220 & 2101 & 232 & 170 & 100 & LM550m & . 75 & 7805 & . 50 & licom & 3.109 & 2513 & 750 \\
\hline 8224 & 280 & 210214 & 1.20 & 5am & 800 & Lm7sach & 37 & 7812 & 50 & 200\% & 270 & TM56011 & 5.00 \\
\hline 8226 & 2.20 & 2111 & 238 & 27.15 & 2900 & LMTO9CH & 35 & 7815 & . 90 & 1 mHz & 388 & MC14411 & 1200 \\
\hline 8228 & 4.20 & \({ }_{6818}^{2112}\) & 246 & \({ }^{816}\) & 2000 & \(1 \mathrm{mP3201}\) & 50 & 7824 & 90 & 1068k & 350 & MC14412 & 280 \\
\hline 2238 & 4.20 & \({ }_{8154}\) & 418 & 2. & 200 & LIM 73301 & 13 & 7805k & 1.50 & & & 96364 & 10.96 \\
\hline 8245 & 11.00 & \({ }_{2114}\) & Se & Roms & & LM733CH & 1.30 & \({ }^{7812 \mathrm{~K}}\) & 150 & \(1843 \%\) & 300 & & \\
\hline 8246 & 11.00 & & 150 & 152207 & 370 & Lum \(39 C \mathrm{CH}\) & 1.30 & 7815k & . 50 & \(2{ }^{2}+2\) & 1.50 & CPHz & \\
\hline 8251 & 5.00 & 71.929 & 1.00 & 75872 & 12.6 & Lu74icen 14 & 33 & \({ }^{7824 \mathrm{~K}}\) & 150 & 2457 K & 3.05 & 8080 & 6.33 \\
\hline 8253 & 11.00 & 744921 & 1100 & 15879 & 8.00 & immalor & 25 & 7905 & 1.10 & 3276\% & 270 & 6800 & 10.00 \\
\hline 8255 & 5.00 & 24039 & 110 & 7543 & 124 & LMmaton 14 & 79 & 7912 & 1.10 & \(3 m+2\) & 305 & 280 & 8.00 \\
\hline 8257 & 11.00 & 4027 & 1100 & 153074 & 1248 & Im7470 & 1.15 & 7915 & . 10 & 4mH2 & 210 & 2800 & 15.00 \\
\hline 2258 & 1258 & 42021 & & i/0 & & LM746CN \({ }^{\text {m }}\) & 45 & 7924 & 10 & 443 m & 1.00 & 8095 & 12.905 \\
\hline 8292 & 12.00 & 4045 & 14.7 & 2513 & 7.50 & Im748ca & 46 & 7905k & H0 & 5 mHz & 270 & 6502 & 800 \\
\hline 582201 & 450 & \({ }_{4065}\) & 190 & 96364 & 10.55 & (m145 5 & 72 & 79120 & 0 & (1) \({ }^{\text {a }}\) 2 & 270 & Scmen & 10.00 \\
\hline \({ }^{6821 P}\) & 150 & & & 14412 & 12s0 & IM 148880 & 4 & 79920 & 156 & 7168 M & 270 & \({ }_{0}^{68020}\) & 1345 \\
\hline 6850P & 450 & 1060 & 7.50 & Lmeans & & (M1414890 & \({ }_{85}\) & & & 8MH2 & 270 & & 30.00 \\
\hline \({ }^{6852 P}\) & 1.50 & 2107 & 7.00 & Lm301N & 39 & [m148940 & 125 & & & 10 mH [ & 270 & v/mu & \\
\hline AY.5-2376 & 11.50 & 4116 & 8.00 & Lm3014N-8 & & [m1996\% 14 & 0.0 & 80 il & 14 & 10.7 m & 270 & 801. & \\
\hline MC14411 & 1200 & 4118 & 20.00 & [Mmi Dip] & 30 & Lm3302N & . \({ }^{5}\) & 14011 & 15 & 18 m & 200 & 140 C & 35 \\
\hline M57109 & 1243 & & & Lm3103 & .99 & Im3401/ & 85 & 160 Cl & .17 & 48 m & 25 & 16001 & 4. \\
\hline m57160 & 10.00 & 280910 & 10.00 & LM309\% & & Lm3403 & 1.20 & 18 OL & 24 & & & 19 Mil & 0 \\
\hline m67151 & 1000 & 280 CTC & 10.00 & [1031 & 1.45 & Lm3som & 54 & 20 OH & 27 & cmos & & 240 cm & 52 \\
\hline Tesmil & 500 & 2804810 & 14.00 & LM31IH & 1.29 & TLReticp & 1.49 & 24016 & 30 & C0.4911 & 15 & 28 DL & 74 \\
\hline \({ }^{1115 \%}\) & 1.30 & z80actc & 14.80 & Lm318H & 225 & 108198 & . 09 & 28 al & . 36 & cD4046 & . 10 & 40 DH & . 5 \\
\hline 81.8 & 1.30 & & & Inszaj & 6.00 & H082ce & 129 & 1800 & . 50 & \multicolumn{4}{|l|}{\multirow[t]{3}{*}{+ frill raye}} \\
\hline B1L888 & 1.50 & & & 1 m 399 N & . 54 & TLO830\% & 1.85 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & & & \\
\hline & & & & & & tipb4ay & 1.8 & & & & & & \\
\hline
\end{tabular}

\section*{HOME COMPUTING CATALOGUE}
If you're in town, visit our showroom in
Chapel Street, next to Edgware Road tube
station. We have Tritons on display plus a
comprehensive range of components and
accessories, specifically for personal com-
puter users. Books, mags, tapes, data, cables,
plus much more. Showroom open 6 days a


NEW
A4 size catalogue
filled with our
latest products.
\(40 \mathrm{P}+\) SAE.
ALL
PRICES
EXCLUDE
VAT week (half day Thurs from 1.30 )


\section*{Electronic Capacitor}

\author{
J.P.Macaulay
}

The circuit shown is essentially a gyrator which amplifies the effect of C1 to produce an equivalent capacitance at the output, many times the value of C 1 .

PR1 is used to set the output voltage to the required level whilst C 1 charges through D1. Once the voltage across the diode drops to less than 0.6 V C 1 will continue to charge through R1 until the voltage across \(C 1\) is equal to that on the slider of PR1.

The equivalent capacitance at the output is equal to the product of the current gain of the circuit and the value in Farads of C1. If we assume that the input impedance at the non-inverting input of the 741 is 1 MO and the output impedance is 1 RO then this capacitance will be equal to \(10^{-4}\)

\(\mathrm{FX} 10^{6}=100 \mathrm{~F}\) !
In practice the input impedance at low frequencies is many tens of megohms whilst the output impedance is a small fraction of an ohm, so the above figure is very conservative.

D2 is included to allow the output voltage to be quickly adjusted by allowing C1 to discharge to earth through R2. In practice however the output voltage will only respond rapidly to input voltage changes of more than 600 mV .

\section*{Extra Memories On The T158}

\section*{A. Fleming}

Key code 82 is not used in the users' manual. However, if it is entered into the program (by pressing STO 82 and deleting STO) the registers used for storing data during arithmetical calculations can be used like the calculator's memories. That is, numbers can be stored, recalled added, subtracted, divided or multiplied into these registers. This works on the T158 and may also work on the T159.

Any operation using one of these registers requires two program steps. The first one contains the
keycode 82. The first digit of the second step defines the operation and its second digit defines the register. Table 1 shows how to work out the digits of the second step.

The calculator uses these registers for other operations. It is, therefore, necessary to know which ones the calculator will use. Each time the calculator has to remember a number during calculations, it goes into the next register in the sequence \(A, B, C\). . Table 2 shows the other functions which use these registers.

The blank boxes indicate registers which may contain numbers (which can be recalled using 82) but are now ignored in calculations.

First Digit
\(0 \equiv\) store (STO)
\(1 \equiv\) recall (RCL)
\(3 \equiv\) add into (SUM)
\(4 \equiv\) multiply into (Prd)
\(5 \equiv\) Subtract into (INV
SUM)
\(6,7,8\) or \(9 \equiv\) into (INV Prd) \(7 \equiv\) reg. G
(Words in brackets indicate \(8 \equiv\) reg. H indicate the equivalent memory function)

Examples
keycodes function

8238 add into reg. H
8204 store D
8266
Second Digit \(1 \equiv\) reg. \(A\) \(2 \equiv \mathrm{reg}\). B \(3 \equiv\) reg. C 4 三reg. D 5 三reg. E divide into reg. \(F\)

Example
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\Sigma+\) & uses & G and H & \multicolumn{8}{|l|}{\(\pi+6 \times(\mathrm{RCLO}+1+\mathrm{RCL} 1 \mathrm{P} \rightarrow \mathrm{R}=\)} \\
\hline x & Us & 1st L.A.R. * & & & & & & & & \\
\hline INV x & " & 1st \& 2nd L.A.R. \& H & \multirow[t]{2}{*}{Program execution} & \multirow[b]{2}{*}{A} & & \multicolumn{5}{|l|}{Registers and contents} \\
\hline OP 11 & " & 1st \& 2nd L.A.R. & & & B & C D & E & F & G & H \\
\hline OP 12 & " & 1st, 2nd \& 3rd L.A.R. & & & & & & & & \\
\hline OP 13 & " & 1st, 2nd, 3rd \& 4th L.A.R. & \(\pi+6 \mathrm{x}\) & \(\pi\) & 6 & & & & & \\
\hline OP 14 \& OP 15 & " & 1st, 2nd \& 3rd L.A.R. \& H & & & & & & & & \\
\hline \(\mathrm{P} \rightarrow \mathrm{R}\) & " & 1st L.A.R. and G \& H & (RCL \(1+\) & \(\pi\) & 6 & contents & & & & \\
\hline INVP \(\rightarrow\) R & " & 2nd L.A.R. and G \& H & & & & mem. 0 & & & & \\
\hline DMS \& INV DMS & " & 1st \& 2nd L.A.R. and H & \(1+\mathrm{RCL} 1\) & \(\pi\) & & \begin{tabular}{l}
contents \\
mem. 0
\end{tabular} & & & & \\
\hline *L.A.R. stands for & "low & st available register(s)" & & & & +1 & & & & \\
\hline i.e. the next registe arithmetical calcula & rs aft ations. & those being used for & \(\mathrm{P} \rightarrow \mathrm{R}\) & \(\pi\) & 6 & \begin{tabular}{l}
contents \\
mem. 0 Used
\end{tabular} & & & Used & Used \\
\hline
\end{tabular}

\section*{HIIPRINIS}

ETIPRINTS are a fast new aid for producing high quality printed circuit boards. Each ETIPRINTS sheet contains a set of etch resistant rub down transfers of the printed circuit board designs for several of our projects.

ETIPRINTS are made from our original artwork ensuring a neat and accurate board. We thought ETIPRINTS were such a good idea that we have patented the system (patent numbers 1445171 and 1445172 ).

\section*{PARTS LIST}

Shown below is the listing for the last year's ETIPRINTS.


Amplifier PSU
Amplifier PSU
Equaliser
Equaliser PSU
014 Skeet Game
Sweep Oscillator
Burglar Alarm
GSR Monitor
015 UFO Detector
Torch Finder (twice)
Etiwet (twice)
016 Stac Timer
Xhatch Gen
Wheel of Fortune
017 Complex Sound Gen
Tele Bell Extender
Power Bulge
018 RF Power Meter
Proximity Switch
Audio Oscillator (2)
019 Car Alarm (2)
Wine Temp (2)
Curve Tracer
\begin{tabular}{ccl} 
& \(\mathbf{0 2 0}\) & \begin{tabular}{l} 
Digital Tacho \\
Module
\end{tabular} \\
Book & & \begin{tabular}{l} 
Digital Dial \\
Six
\end{tabular} \\
& \(\mathbf{0 2 1}\) & \begin{tabular}{l} 
Tape Slide Synch \\
Tape Noise Limiter
\end{tabular} \\
Project & & \begin{tabular}{l} 
Light Tacho \\
Book \\
Six
\end{tabular} \\
\(\mathbf{0 2 2}\) & \begin{tabular}{l} 
Logic Trigger \\
Power Meter \\
Headlight Delay ( \(\times 2\) )
\end{tabular}
\end{tabular}

July 78023 Click Eliminator
July 78023 Guitar Effects Unit
Aug 78 (2 boards)
Sept 78
023A Wind Speed Indicator
024A Ambush (Boards 2 \& 3)
Car Immobiliser
024B Ambush (Board 1) Headphone Amplifier Double Die

025 Metronome
Mains Seeker
Triton 8K Eprom Card
026 Motor Speed Controller (2 Boards For Controller)
Battery Indicator

Earlier sheets are available, ring Tim Salmon for details.


HOW IT WORKS


Lay down the ETIPRINT and rub over with a soft pencil until the pattern is transferred to the board. Peef off the backing sheet carefully making sure that the resist has transferred. If you've been a bit careless there's even a 'repair kit' on the sheet to correct any breaks!

\author{
BUY LINES \\ ORDER TODAY
}

Send a cheque or P.O. (pavable to ETI Maqazine) to ETI PRINT, ETI MAGAZINE
145 Charing Cross Road, London WC2H OEE


\section*{Texan Roulette}
J. Blandford

This roulette program has been devised for a Texas TI57 programmable calculator. You choose the number on which you want to bet. The calculator
then generates ten random numbers in the range 0 to 36. A lose deducts one chip from your initial pile of 100 (in memory 4) and a win adds 36 . The winning number also flashes on the display.

After ten random numbers, the calculator stops. Pressing SBR4 displays the amount of chips left in your pile. Press R/S to reload the memories, enter a new number and press R/S to start again.
\begin{tabular}{lll}
\multicolumn{1}{r}{ KEY } & LOC & CODE \\
2nd Lab 1 & 00 & \(86-1\) \\
2nd \(\pi\) & 01 & 30 \\
+ & 02 & 75 \\
RCL 1 & 03 & \(33-1\) \\
\(=\) & 04 & 85 \\
yx & 05 & 35 \\
8 & 06 & 08 \\
- & 07 & 65 \\
2nd INT & 08 & 49 \\
= & 09 & 85 \\
STO 2 & 10 & \(32-2\) \\
1 & 11 & 01 \\
INV SUM 4 & 12 & \(-34-4\) \\
RCL 2 & 13 & \(33-2\) \\
STO 1 & 14 & \(32-1\) \\
x & 15 & 55 \\
3 & 16 & 03 \\
7 & 17 & 07 \\
= & 18 & 85 \\
2nd INT & 19 & 49 \\
2nd PAUSE & 20 & 36 \\
2nd x=+ & 21 & 66 \\
GTO 2 & 22 & \(51-2\) \\
2nd INV DSZ & 23 & -56 \\
R/S & 24 & 81 \\
GTO 1 & 25 & \(51-1\) \\
2nd Lab 2 & 26 & \(86-2\) \\
STO 5 & 27 & \(32-2\) \\
RCL 4 & 28 & \(33-4\) \\
+ & 29 & 75 \\
3 & 30 & 03 \\
6 & 31 & 06 \\
\(=\) & 32 & 85 \\
STO 4 & 33 & \(32-4\) \\
RCL 5 & 34 & \(33-5\) \\
+ & 35 & 75 \\
x & 36 & 55 \\
2nd Lab 4 & 37 & \(86-4\) \\
RCL 4 & 38 & \(33-4\) \\
R/S & 39 & 81 \\
CLR & 40 & 15 \\
1 & 41 & 01 \\
0 & 42 & 00 \\
STO 0 & 43 & \(32-0\) \\
CLR & 44 & 15 \\
R/S & 45 & 81 \\
STO 7 & 46 & \(32-7\) \\
CLR & 47 & 15 \\
GTO 1 & 48 & \(51-1\) \\
& & \\
& & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
PRESS & DISPLAY \\
100 STO 4 & 100 stored for starting score \\
SBR 4 & 100 score \\
R/S & Enter number \((0-36)\) \\
R/S & Start \\
& 10 random numbers \((0-36)\) \\
& \begin{tabular}{l} 
each wrong number \\
subtracts 1 chip from score \\
\\
right number flashes adds
\end{tabular} \\
CLR & 36 to score \\
SBR 4 & Displays score \\
R/S & Enter new number \\
R/S & Re start
\end{tabular}

\section*{Improved CMOS Test Bed}
G. Scott

Having made Mr Anderson's CMOS test bed (March ETI) I found that the LEDs were barely bright enough to

be seen. In this circuit, with the addition of three, one transistor amplifiers, the LEDs are easily viewed and the current drain is only 14 mA .




\section*{tOtal amplification from CRIMSON ELEKTRK}

\section*{WE NOW OFFER THE WIDEST RANGE OF SOUND PRODUCTS \\ STEREO PRE-AMPLIFIER \\ POWER AMPLIFIER}


CPR 1 - THE ADVANCED PRE-AMPLIFIER. The best pre-amplifier in the U.K. The superiority of the CPR 1 is probably the disc stage The overload margin is a superb 40dB. this together with the high slewing rate ensures clean top. even with high output carridges tracking heavily modulated records. Common-mode distortion is eliminated by an unusual design. R.I.A.A. is accurate to 1 dB ; signal to noise ratio is 70 dB relative 103.5 , distortio \(<.005 \%\) at 30 dB overioad 20 kHz

Following this stage is the flat gain/balance stage to bring tape, tuner, etc. up to power amp signal levels. Signal to noise ratio 86 dB , slew-rate \(3 \mathrm{~V} / \mathrm{uS}\). T.H.D. \(20 \mathrm{~Hz}-20 \mathrm{kHz}<.008 \%\) at any level.
F.E.T. muting. No controls are fitted. There is no provision for tone controls. CPR 1 size is \(138 \times 80 \times 20 \mathrm{~mm}\). Supply to be \(\pm 15\) volts.

MC 1 - PRE-PRE-AMPLIFIER. Suitable for nearly all moving-coil cartridges. Sensitivity 70/170uV switchable on the p.c.b. This module brings signals from the now popular low output moving-coil cartridges up to 3.5 mV (typical signal required by most pre-amp dis inputs). Can be powered from a 9 V battery or from our REG 1 regulator board
X02:X03 - ACTIVE CROSSOVERS. X02 - two way, XO3 - three way. Slope \(24 \mathrm{~dB} /\) octave. Crossover points set to order within \(10 \%\)

REG 1 - POWER SUPPLY. The regulator module. REG 1 provides \(15-0-15 \mathrm{v}\) to power the CPR 1 and MC 1. It can be used with any of our power amp supplies or our small transformer TR 6 . The power amp kit will accommodate it.

POWER AMPLIFIERS. It would be pointless to list in so small a space the number of recording studios, educational and government establishments, etc., who have been using CRIMSON amps satisfactorily for quite some time. We have a reputation for the highest quality at the lowest prices. The power amp is availabile in five types, they all have the same specification. T.H.D. typically \(0.1 \%\) any power 1 kHz 8 ohms T.I. insignificant, slew rate limit \(25 \mathrm{~V} / \mathrm{uS}\), signal to noise ratio 110 dB , frequency response \(10 \mathrm{H}_{2}-35 \mathrm{kHz}-3 \mathrm{~dB}\) stability unconditional, protection drives any load safely, sensitivity \(775 \mathrm{mV}(250 \mathrm{mV}\) or 100 mV on request), size \(120 \times 80 \times 25 \mathrm{~mm}\).
POWER SUPPLIES. We produce suitable power supplies which use our superb TOROIDAL transformers only 50 mm high with a \(120-240\) primary and single bolt fixing fincludes capacitors/bridge rectifier).


GSR Meter
D.Chivers

The galvanic skin response meter is probably the easiest both to construct and to use. Fig. 1 uses a single BC108 incidentally, the meter used was simply the 1 mA range of a multimeter. While the circuit shown had the required sensitivity, it was not selective enough and under all sorts of stresses and strains the needle refused to budge from a set position. The darlington pair configuration of Fig. 2 greatly increases sensitivity and the 100 k pot will bring the reading down to a usable level - with. out this, the current passing through the meter would be about 30 mA . This modified circuit proved to be amply selective.

For use as probes, silver foil taped onto the tips of the first and second fingers proved to work well, though for more permanent use steel gauze is recommended. Naturally the hand must be kept as steady as possible during experiments.

First experiments proved highly successful; the meter needle drifted at first and frequent use of the sensitivity control was required, but after a few minutes the needle stabilised.

Since the needle responds to stress within the body or mind, it is easy to make it move; talking, thinking hard or biting a finger all cause the needle to move up, making it go back down by
removing the factor causing the stress Moving the needle below its mean value was far more difficult especially while watching the meter and actually trying to relax - in fact to start with this actually caused tension. The easiest way to do this is to simply close the eyes and relax, while an observer takes note of the results. On opening the eyes the reading would jump up to what it had been before relaxation commenced.

This circuit will of course function as a lie detector but since stress is caused by any question the results are not too reliable and certainly of no significance.

An unexpected use for the circuit of Fig. 1 is that of a transistor tester. If a fixed value resistor of about 2 M 25 is used in place of the pot the gain of the transistor máy quickly be tested; \(\mathrm{FSD}=\) approx. hfe 250. For NPN transistors, polarity of the meter and battery must be reversed.

\section*{Anti - Acoustic Feedback System For Group Or Disco}

\section*{G.T.Edwards}

The directional properties of Line Source Loudspeakers are best for minimising acoustic feedback ("HowlRound "); unfortunately their bass response is usually inadequate for the full musical range. The ideal system would consist of a completely separated amplifier system for microphone inputs
terminating in line-source loudspeakers, the "music" being amplified independently and fed at suitable power levels to less-directional full-range loudspeakers. However, as this is costly and increases transportation problems, a system was evolved in which a fullrange non-directional loudspeaker would respond to "music" inputs only, a line-source being used at the same time responding to both "music" and "mic." inputs.

The principle has been proved in practice using the passive network shown in the diagram. As the microphone input is attenuated successively by three potential dividers before reaching the full-range loudspeaker system, the risk of feedback from this speaker is negligible. Typically there is at least 26 dB reduction in microphone signal voltage between the input to amplifier ' \(A\) ' and the input to amplifier ' \(B\) '.

The circuit is easily adapted to other signal levels and impedances by modifying component values on a proportional basis; a more elaborate "active" system is possible using virtual-earth summing amplifier stages.

Simulated stereo is possible from monophonic programme material by connecting a capacitor (about 2 n 2 ) between point ' \(Z\) ' and earth; another capacitor (about 1 nO ) being connected in series at ' \(W\) '.

An inherent advantage of the system is that a "music" output is obtained even if one of the power amplifiers, or one of the loudspeakers, should go faulty during a performance.



\title{
PCB PATTERNS
}


Right: Microwave oven leakage detector PCB shown full size track side upward Note that the aerial is formed by the lower track 'ams.' Below: Foil pattern for the TV Pinball Wizard. This board is copyright NIC models, and thus only available from them.


CALCULATORS

\section*{SCIENTIFIC}
*SPECIAL OFFER
TEXAS T159 together with PC100C
(Complete as manufacturer's spectications)
TEXAS/HP Accessories available
*TEXAS TI 59 (New Card prog 960 prog steps of 100 mam)
£156.5
 *TEXAS PC 100 C (New updated Printing Unit for T158/T159)
£140.00 *TEXAS T1 157 (Key Prog 8 mem. 150 Keystrokes \(/ 50\) Prog Steps) \(\begin{aligned} & \text { E } 25.00\end{aligned}\) TEXAS T133 (New - same spec.as T130, but 3 mem) \(\quad \mathbf{E 1 3 . 9 5}\) \#TEXAS T145 (New updared version po the rexas 32 keystrokes)
\#TEXAS 42MBA ( 10 Dig Fin/Stat Prog 12 mem
E42.95 *TEXAS TI PROGRAMMER (Hexadecimal Oct) \(£ 46.50\)
 \(\begin{array}{ll}\text { SCy } \\ \text { TEXAS T150 LCD (Sci/Stat. } 2 \text { Con Mems) } & \mathbf{£ 2 3 . 0 0} \\ \text { TEXAS } 1125 \text { (Sals } & \mathbf{E 1 8 . 5 0}\end{array}\)
TEXAS TI25 LCD (SCN Mere of your
Toxas T158/59 Calculstor
MATH/UTILITIES MODULE
If you write your own progrants this liblary is for youl Most programs in this library are designed to be used either on thetr
own or as subroutines of your programs. Applications range from utlity programs such as printer
formatting and large.scale plotting to advanced mathematical routines.
Modute includes
Prompter. Alpha Mossages,
Printer Formatting. Superplorter
Sorting. Dats Arraya.
Sonting. Dats Arrave.
Onta Packing. Prime Factor
Mypertolic Functions.
Gamma/F Fectorial.
Random Numbers.
Nomal Distribution.
merpolation. Roote of a Function
Minimax. Romberg Integration.
Differential Equations
Cizcrete Fourier Serie
Colculator Stetue.
Varisble Arithmetic
Module Chock
*TEXAS T158 with Maths/Utilties
*TEXAS TI 158 with Applied Statistics
590.00
5



MOUNTAINDENE
22 Cowper St., London, EC2

\title{
Simply ahead.. ILP'S NEW GENERATION OF HIGH
}
 quality already so well established, any advances in I.L.P. design are bound to be of outstanding importance
- and this is exactly what we have achieved in our new generation of modular units. I.L.P. professional design principles remain
- the completely
adequate heatsinks, protected sealed circuitry,
rugged construction and excellent performance. These have stood the test of time far longer than normally expected from ordinary commercial modules. So we have concentrated on improvements whereby our products will meet even more stringent demands
such, for example, as those revealed by vastly improved pick-ups, tuners, loudspeakers, etc., all of which can prove merciless to an indifferent amplifier system. I.L.P. modules are for laboratory and other specialised applications too.

\section*{PRODUCTS OF THE WORLD'S FOREMOST SPECIALISTS IN ELECTRONIC MODULAR DESIGN}

\title{
and staying there
}

\section*{PERFORMANCE MODULAR UNITS}


The HY5 pre-amp is compatible with all I.L.P. amplifiers and P.S.U.'s. It is contained within a single pack \(50 \times\) \(40 \times 15 \mathrm{~mm}\). and provides multifunction equalisation for Magnetic/ Ceramic/Tuner/Mic and Aux (Tape) inputs, all with high overload margins. Active tone control circuits; 500 mV out. Distortion at \(1 \mathrm{KHz}-0.01 \%\). Special strips are provided for connecting external pots and switching systems as required. Two HY5's connect easily in stereo. With easy to follow instructions.
\(\mathbf{£ 4 . 6 4 + 7 4 p \vee A T}\)

\section*{THE POWER AMPLIFIERS}



THE POWER SUPPLY UNITS

I.L.P. Power Supply Units are designed specifically for use with our power amplifiers and are in two basic forms - one with circuit panel mounted on conventionally styled transformer the other using toroidal transformer to halve weight and height.
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline Model & \begin{tabular}{l} 
Output \\
Power \\
R.M.S.
\end{tabular} & \begin{tabular}{l} 
Dis- \\
tortion \\
Typical \\
at 1K Hz
\end{tabular} & \begin{tabular}{l} 
Minimum \\
Signal/ \\
Noise \\
Ratio
\end{tabular} & \begin{tabular}{l} 
Power \\
Supply \\
Voltage
\end{tabular} & \begin{tabular}{l} 
Size \\
in mm
\end{tabular} & \begin{tabular}{l} 
Weight \\
in gms
\end{tabular} & \begin{tabular}{l} 
Price + \\
V.A.T.
\end{tabular} \\
\hline HY30 & \begin{tabular}{l}
15 W \\
into \(8 \Omega\)
\end{tabular} & \(0.02 \%\) & 80 dB & \(-20-0-+20\) & \(105 \times 50 \times 25\) & 155 & \begin{tabular}{l}
\(£ 6.34\) \\
\(+95 p\)
\end{tabular} \\
\hline HY50 & \begin{tabular}{l}
30 W \\
into 8 \(\Omega\)
\end{tabular} & \(0.02 \%\) & 90 dB & \(-25-0-+25\) & \(105 \times 50 \times 25\) & 155 & \begin{tabular}{l}
\(£ 7.24\) \\
\(+£ 1.09\)
\end{tabular} \\
\hline HY120 & \begin{tabular}{l}
60 W \\
into 8 \(\Omega\)
\end{tabular} & \(0.01 \%\) & 100 dB & \(-35-0-+35\) & \(114 \times 50 \times 85\) & 575 & \begin{tabular}{l}
\(£ 15.20\) \\
\(+£ 2.28\)
\end{tabular} \\
\hline HY200 & \begin{tabular}{l}
120 W \\
into 8 \(\Omega\)
\end{tabular} & \(0.01 \%\) & 100 dB & \(-45-0-+45\) & \(114 \times 50 \times 85\) & 575 & \begin{tabular}{l}
\(£ 18.44\) \\
\(+£ 2.77\)
\end{tabular} \\
\hline HY400 & \begin{tabular}{l}
240 W \\
into 4 \\
\hline
\end{tabular} & \(0.01 \%\) & 100 dB & \(-45-0-+45\) & \(114 \times 100 \times 85\) & 1.15 Kg & \(£ 27.68\) \\
\(+£ 4.15\) \\
\hline
\end{tabular}

Load impedance - all models 4-16 \(\Omega\)
Input sensitivity - all models 500 mV
Input impedance - all models 1.00 K
Frequency response - all models \(10 \mathrm{~Hz}-45 \mathrm{KHz}-3 \mathrm{~dB}\)

PSU \(\mathbf{3 6}\) for 1 or 2 HY 30 's \(£ 8.10+£ 1.22\) VAT PSU 50 for 1 or 2 HY50's \(£ 8.10+£ 1.27\) VAT PSU 70 with toroidal transformer for 1 or 2 HY120's \(\quad £ 13.61+£ 2.04\) VAT PSU 90 with toroidal transformer for 1 HY200 £13.61 +£2.04 VAT PSU180 with toroidal transformer for 1 HY400 or \(2 \times\) HY200
\(£ 23.02+£ 3.45\) VAT
PSU \(30 \pm 15 \mathrm{~V}\) at 100 mV to drive up to
five HY5 pre-amps
\(£ 4.50+68 p \vee\) AT

NO QUIBBLE 5 YEAR GUARANTEE 7-DAY DESPATCH ON ALL ORDERS BUILT-IN PROTECTIVE CIRCUITRY
BRITISH DESIGN AND MANUFACTURE
FREEPOST SERVICE
- see below

HOW TO ORDER, USING FREEPOST SYSTÉM
Simply fill in order coupon with payment or credit card instructions. Post to address as below but do not stamp envelope - we pay postage on all letters sent to us by readers of this journal.


ELECTRONICS LTD.
FREEPOST 4 Graham Bell House, Roper Close, Canterbury, Kent CT2 7EP.
Telephone (0227) 54778
Telex 905780
```

Please supply

```
Total purchase price E
I enclose Cheque \(\square\) Postal Orders \(\square\) International Money Order \(\square\)Please debit my Account/Barclaycard Account No.
NAME
ADDRESS
Signature


\section*{LOW COST}

AUDIO SIGNAL GENERATORS
(Sine \& Square Waves) \(0 \mathrm{H}_{\mathrm{z}}-100 \mathrm{kHz}\)
Very low distortion (-0015\%) £36 (or in kit form \(£ 31\) )
Model 146
Low cost version, A0113 (02\% dist), £27.50 (Kit £23). Other instruments include: Millivoltmeter, Tachometer, Noise level meter, Distortion Analyser, F.M. Sig. Gen. Crystal Frequency Standard KEF Speaker Units Send S.A.E. for lists VAT extra 15\% Post/Pkg. £1.75

TELERADIO ELECTRONICS
325 Fore Street, Edmonton, N.9. 01-807 3719
Closed all day Thursday


SCOPES - (UKP/P 6 D
\begin{tabular}{|c|c|}
\hline \(3^{\prime \prime} 5 \mathrm{MHz}\) single beam & 102.00 \\
\hline \(\mathbf{4}^{\prime \prime} 5 \mathrm{MHz}\) single beam & 125.00 \\
\hline 5" 10 MHz single beam & 170.00 \\
\hline Super 66 MHz single beam & 166.00 \\
\hline Super 1010 MHz dual rrace & 239.00 \\
\hline 14015 Scope x 15 MHz dual trace & ¢325.00 \\
\hline 4D25. Scope x 25 MH 2 dual trace & 414.00 \\
\hline PROBES \(\times 1 \times 1014.50 \times 109.95 \times 17.95\) For Sup & 10/4025. \\
\hline SINCLAIR 10M Hz Miniscope & ¢149.95 \\
\hline \multicolumn{2}{|l|}{DIGITAL MULTMETERS} \\
\hline DM 235 Sinclair portable \(31 / 2\) digit LE0 & 52.95 \\
\hline PDM35 Sirclair Pocket \(31 / 2\) digit LED & 31.90 \\
\hline DM350 New Sinclair 31/2 digit 2 & 74.45 \\
\hline DM 450 New Sinclair \(41 / 2\) digit \(J\) win 10 amp range & 106.45 \\
\hline \multicolumn{2}{|l|}{(30Ky Probes 19.00. Mains adaplors 4.00. DM carrycase 8.95)} \\
\hline M1200 Bench Portable \(31 / 2\) digit LED Resolution 1 & 10.17 \\
\hline 0.01 ohm & 67.50 \\
\hline 935 Data Precision \(31 / 2\) digit hand-held LCD 2 amp AC/OC & 113.85 \\
\hline 198. Low cost \(31 / 2\) digit general putpose LCD & 52.95 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline SPECLIAL OFFEM能C \(10+10\) wat Tunar/Amplifier mw/LW/SW/Sisres fll. Supgliad as lwo masy to connect unils.
\[
24: 95 \mathrm{P} 8
\] 95 P8P £1 & \(\ldots\) \\
\hline  & TM3 \\
\hline CALL IN AND SEE FOR YOURSELF & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { FREE } \\
& \text { CATALOGUE }
\end{aligned}
\]} \\
\hline prices correct at 10.8. 79 & \\
\hline 301 EDGWARE RD., LONDON W2 1BN & SENO STAMPED \\
\hline 01-724-3564. OPEN 9-6, MON-SAT. & aODRESSED ENVEL OPE Ming: xay now \\
\hline ALSO AT 248 TOTTENHAM COURT ROAD. W 1 & \\
\hline
\end{tabular}

ELECTRONICS TODAY INTERNATIONAL - NOVEMBER 1979



\section*{SERVICING BY PROFESSIONALS}

\section*{THE COMPANY}

Kode Services Limited, part of the British owned Kode International Group of Companies, is rapidly becoming a major U.K. service operation specialising on a whole range of equipment from basic terminals to microprocessor based systems Over 100 Field Service Engineers nationwide coupled with full depot and workshop facilities are available to support the following equipments:
Apple II Model 33, 40, 43 TT, Lear Siegler ADM 1A, 2A, 3A, ADM 42 and 31, Microstar V, Anadex D8000 Printer. We have the capability to service new products and are always evaluating new D.P. equipment
Fully comprehensive maintenance contracts or a full depot repair service can be offered.

\section*{THE CAREER}

Opportunities are available for experienced professionals and gifted amateurs who have a full understanding of TTL logic and digital techniques, and wish to move into a service orientated career applying their knowledge to the servicing of sophisticated electronic equipment For further details on maintenance or job prospects, please call or write to Mr. C. Marklew on 0249813771

\section*{KODE SERVICES LTD. \\ Station Road, Calne, Wiltshire}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Piease add 25p for p\&p.} & LM339 & 60p & 7453 & 13p & 74192 & & 4528 & \(85 p\) & BD139 & 35p & ZTX304 & 27p \\
\hline & & & & & & LM348 & 90p & 7454 & 13p & 75193 & 64p & TRANS & ORS & BD140 & 35p & ZTX311 & 19p \\
\hline & & & & & & LM377 & 185p & 7460 & 13p & 74194 & 64p & AC126 & 20p & 8F180 & 24p & 2TX341 & 22p \\
\hline & & & & & & LM380N & 75p & 7470 & 25p & 74195 & 53p & AC127 & 20p & BFi84 & 21p & ZTX500 & 16p \\
\hline & & & & & & LM381N & 140p & 7472 & 21p & 74196 & 53p & AC128 & 20p & BF185 & 25p & 2TX501 & 16 p \\
\hline 62 & 0 & OAD, & NO & N20 0 & & LM382N & 140p & 7473 & 20p & 74197 & 50p & 128/176 & & BF194 & 10p & 2TX502 & 21p \\
\hline \multicolumn{6}{|c|}{\multirow[t]{2}{*}{All prices VAT inclusive}} & LM1310N & 150p & 7474 & 22p & 74198 & 10\%p & MP & 40p & BF195 & 10p & 2TX503 & 17p \\
\hline & & & & & & LM3900N & 55p & 7475 & 26p & 74199 & 107p & AC176 & 20p & BF196 & 10p & ZTX504 & 28p \\
\hline ZENER & Es & mW) & & 1A/400V & 34p & LM3909N & 70p & 7476 & 26p & & & AC187 & 21p & BF 197 & 10p & 2N696 & 35p \\
\hline 2.7V to & & & 8p & 2A/50A & 40p & MC1496P & 85p & 7480 & 40p & 4000 & 14p & AC188 & 21p & BF244B & 19p & 2N697 & 13p \\
\hline VERO B & RDS & Copper) & & 2A/100V & 42p & NE531 & 105p & 7485 & 64p & 4001 & 14p & AD149 & 60p & BF259 & 25p & 2N698 & 30p \\
\hline 25'x 5 & RD & Copper) & & 2A/200V & 48p & NE555 & 25p & 7486 & 20p & 4002 & 14p & AD161
AD162 & 40 p & BFR39 & 32p & 2N706 & 14p \\
\hline \(3.55 \times 5\) & & & 55p & 2A/400V & 55p & NE556 & 60p & 7490 & \(26 p\) & 4006 & 78p & AD162 & 40p & BFR79 & 32p & 2N914 & 34p \\
\hline \(3.75 \times\) & & & 65p & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{voltage REGULATORS}} & NE566 & 140p & 7491 & 30p & 4007 & 15p & AF116
AF117 & 21p & BFX29 & 27p & 2N918 & 33p \\
\hline \multicolumn{4}{|l|}{RESISTORS} & & & TBA641A & 200p & 7492
7493 & 30p & 4008 & 66p
\(\mathbf{3 2 p}\) & AF117
AF124 & 24p & BFX84
BFX87 & 27p & 2N1131
2N1302 & 20p \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{10 hm to 1 Mohm
\[
1.5 p
\]}} & 320H-05 & 45p & TBA641B & 200p & 7493 & 25p & 4009 & \(32 p\)
\(43 p\) & AF124
AF 139 & 34p & BFX87
BFX88 & 27p
27p & 2N1302
2N1303 & \(38 p\)
\(60 p\) \\
\hline & & & & \(320 \mathrm{H}-24\) & 45p & TBAB00 & 75p
110p & 7494
7495 & 45p
35 & 4010
4011 & 43p & AF139
AF239 & \(35 p\)
\(45 p\) & BFX88
BFY50 & 27p
22p & \(2 N 1303\)
\(2 N 1304\) & 60p \\
\hline & & & & 7805 & 70p & ZN414 & 100p & 7496 & 45p & 4012 & 14p & BC107 & 10p & BFY51 & 22p & 2N1613 & 25p \\
\hline PRESET & Horizo & & & 7812 & 70p & ZN1034 & 200p & 7497 & 128p & 4013 & 32p & BC108 & 10p & BFY 52 & 18p & 2N2222A & 21p \\
\hline & 01 Mo & & 5p & 7815 & 70p & \multicolumn{2}{|l|}{TTL} & 74100 & 80 p & 4014 & 85p & BC109 & 10p & BRY39 & 35p & 2N2369 & 17p \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Potentiometers \\
Polystyrene cap 10pt 10 1000pF
\end{tabular}}} & \multirow[t]{2}{*}{\[
\begin{array}{r}
22 p \\
6 p
\end{array}
\]} & 7818 & 70p & 7400 & 11p & 74105 & 43p & 4015 & 54p & BC147 & 8 p & BSX20 & 22p & 2N2484 & 30p \\
\hline & & & & 78205 & 90p & 7401 & 11p & 7.4107 & 20p & 4016 & 32p & BC148 & 10p & BU205 & 140p & 2N2646 & 50p \\
\hline \multicolumn{4}{|l|}{CERAMIC CAP (50V)} & 7912 & 90p & 7402 & 11p & 74109 & 27p & 4017 & 53p & BC149 & 9 p & BU208 & 200p & 2N2904 & 25p \\
\hline 22pF to & & & 3p & 7915 & 90p & 7403 & 11p & 74110 & 42p & 4018 & 59p & BC157 & 10 p & MJ2955 & 110p & 2N2905 & 23p \\
\hline \multicolumn{4}{|l|}{POLYESTER CAP (250V)} & 7918 & 90p & 7404 & 13p & 74118 & 80p & 4019 & 43p & BC158 & 10p & MJE340 & 40p & 2N2906 & 17p \\
\hline 01.015 & 22.033 & 047.068 & UF & 7924 & 90p & 7405 & 13 p & 74121 & 26p & 4020 & 53p & BC159 & 10p & MJE2955 & 104p & 2N2907 & 23p \\
\hline & & & 5p & \multicolumn{2}{|l|}{OPTO DISPLAY} & 7406 & 26p & 74122 & 35p & 4021 & 64p & BC167 & \({ }_{\text {8p }}{ }^{\text {pp }}\) & MJE3055 & 69p & 2N2926 & 11p \\
\hline 15.22 & 394F & & 6p & 2N5777 & 55p & 7407
7408 & 26p & 74123
74125 & 42p
37p & 4022 & 53p & BC 177 & 15 p & MPF103 & 32p
\(40 p\) & 2N3053 & 22p
50p \\
\hline 47.68 & & & 12p & OCP71 & 75p & 7409 & 13 p & 74126 & 37p & 4024 & 43p & BC. 178 & 15p & MPF104 & 40p & 2N3055B & 50p \\
\hline 1 uF & & & 15p & ORP 12 & 70p & 7410 & 13 p & 74132 & 48p & 4025 & 14p & \(\mathrm{BC179B}\) & 18p & MPF105 & 40p & 2N3442 & 150p \\
\hline 2.2 uF & & & 20p & DL704 & 110p & 7411 & \(16 p\) & 74141 & 50p & 4027 & 32p & BC182 & 10p & MPF106 & 46p & 2N3702 & 11p \\
\hline \multicolumn{4}{|l|}{ELECTROLYTIC CAP (25V)} & DL707 & 110p & 7412 & \(16 p\) & 74142 & 192p & 4028 & 48p & BC183 & 10p & MPSA06 & 23p & 2N3703 & 11p \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{1 uF to \(50 \mathrm{uF} / 25 \mathrm{~V}\) \(68 / 50\) 100/25V}} & 6 p & \multicolumn{2}{|l|}{\(125^{\prime \prime}\) \& \(2^{\prime \prime}\)} & 7413 & 27p & 74145 & 55p & 4029 & 54p & BC184 & 10p & MPSA56 & 23p & 2N3704 & 11p \\
\hline & & & \(7 p\) & \multicolumn{2}{|l|}{LEDs} & 7414 & 48p & 74150 & 69p & 4030 & 32p & BC209 & 11p & MPSU06 & \(61 p\) & 2N3705 & 11p \\
\hline 150/40V & & & \(8 p\) & Red & 10p & 7416 & 25p & 74151 & 48p & 4035 & 107p & BC212 & 11p & OC35 & 86p & 2N3706 & 11p \\
\hline 220/25V & & & 9 p & Green & 14p & 7417 & 25p & 74153 & 48p & 4041 & 78p & BC213 & 11p & TIP29 & 35p & 2N3707 & 11p \\
\hline 500/35 & & & 14p & Yellow & 14 p & 7420 & 13p & 74154 & 65p & 4042 & 58p & BC214 & 14p & TIP298 & \(40 p\) & 2N3708 & 11p \\
\hline \multicolumn{2}{|l|}{1000/25V} & \multicolumn{2}{|r|}{22p} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 125 \text { clip } \\
& .2 \text { clip }
\end{aligned}
\]} & \multirow[t]{2}{*}{4p} & 7421 & 21p & 74155 & 48p & 4043 & 64 p & BC461 & 34p & TIP30 & 35p & 2N3709 & 11p \\
\hline \multicolumn{2}{|l|}{DIL SOCKETS} & N4001 & & & & 7422 & \(16 p\) & 74156 & 40p & 4044 & 72p & BC477 & 23p & TIP30B & 40p & 2N3710 & 11p \\
\hline 8 Pin & 11p & 1 N4002 & 4 p & \multicolumn{2}{|l|}{LINEARS} & 7427 & 22p & 74157 & 40p & 4047 & 85p & BC478 & 23p & TIP31 & 35p & 2N3711 & 11p \\
\hline 14 pin & 13p & 1 N 4003 & \(5 p\) & 709 & 40p & 7428 & 26p & 75160 & 59p & 4048 & 48p & BC479 & 23p & TIP32 & 35p & 2N3772 & 180p \\
\hline 16 pin & 14p & 1 N4004 & 6 p & 710 & 33p & 7430 & 13p & 74161 & 50p & 4049 & 27p & BC547 & 12p & TIP33 & 40p & 2N3773 & 330p \\
\hline 18 pin & 18p & 1 N4005 & 7 p & 747-14 & 48p & 7432 & 20p & 74162 & 59p & 4050 & 27p & BC548 & 12p & TIP33C & 60p & 2N3819 & 21p \\
\hline 22pin & 22p & 1 N4006 & 8 p & 748.8 & 44p & 7433 & 30p & 74163 & 50p & 4066 & 38 p & BC549 & 13p & TIP34A & 65p & 2N3820 & 35p \\
\hline 24 pin & 24p & 1 N4007 & 9p & CA3018 & \(86 p\) & 7437 & 19p & 74164 & 64p & 4069 & 13p & BC557 & 13p & TIP35C & 200p & 2N3823 & 70p \\
\hline 2Bpin & .28p & 1N5400 & 13 p & CA3028A & 90p & 7438 & 19p & 74165 & 55p & 4070 & 14p & BC558 & 13p & TIP36A & 220p & 2N3866 & 60p \\
\hline 40pin & 40p & 1 N540 1 & 14 p & CA3046 & 70p & 7440 & 12p & 74166 & \(80 p\) & 4071 & 14p & BC559 & 15p & TIP41A & 60p & 2N3903 & 20p \\
\hline DIODES & & 1 N5402 & \(15 p\) & CA3054 & 120p & 7441 & 49p & 74173 & 86p & 4072 & 14p & BCY70 & 16 p & TIP42A & 60p & 2N3904 & 20p \\
\hline BY127 & & 1N5404 & 20p & CA3080 & 75p & 7442 & 43p & 74174 & 64p & 4073 & 17p & BCY71 & 19p & TIP2955 & 70p & 2N3905 & 20p \\
\hline 0447 & 10p & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{bridge RECTIFIERS}} & CA3130T & 100p & 7443 & 60p & 74175 & 55p & 4081 & 14p & BCY 72 & 18p & TIP3055 & 55p & 2N3906 & \(20 p\) \\
\hline & 8 p & & & CA3140E & 45p & 7444 & 64p & 74176 & 53p & 4082 & 14p & BD115 & 40 p & 2TX107 & 13p & 2N4037 & 33p \\
\hline 0 0491 & 8 p & & & LF351N & 65p & 7445 & 60p & 74177 & 53p & 4086 & \(65 p\) & BD131 & 38 p & \(27 \times 108\) & 13p & 2N4058 & 12p \\
\hline OA200 & 6 p & 75A / 20 & \(\vee 25 p\) & LF356N & 85p & 7446 & 53p & 74180 & 50p & 4510 & 69 p & BD132 & 38p & 2TX109 & 13 p & 2N4059 & 12 p \\
\hline OA202 & 9 p & 75A/60 & V 32p & LM301AN & 32p & 7447 & 53p & 74181 & 130p & 4511 & 75p & BD135 & 35p & \(2 T \times 300\) & \(16 p\) & 2N40601 & \(12 p\) \\
\hline 1N914 & 4 p & \(1 \mathrm{~A} / 50 \mathrm{~V}\) & 22p & LM 308N & 80p & 7448 & 53p & 74182 & 50p & 4516 & 69 p & BD136 & 35p & ZT×301 & 18p & 2N545718 & 35p \\
\hline 1 N916 & \(5 p\) & 1A/100V & 27p & LM318 & 200p & 7450 & 13p & 74190 & 75p & 4518 & 69 p & BD137 & 35p & ZT \(\times 302\) & 20p & 2N5459 & 35p \\
\hline 1 N4148 & 4 p & \(1 \mathrm{~A} / 200 \mathrm{~V}\) & 32p & LM324 & 74p & 7451 & 13p & 74191 & 75p & 4520 & 69p & BD138 & 35p & 2T×303 & 24p. & 2N6027 & 45p \\
\hline
\end{tabular}

8K ON BOARD MEMORY
5 K RAM. 3 K ROM or 4 K RAM. 4 K ROM (link selectable). Kit supplied with 3 K RAM, 3 K ROM System expandable for up to 32 K memory.

2 KEYBOARDS!
56 Key alphanumeric keyboard for entering high level language plus 16 key Hex pad for easy entry of machine code.

GRAPHICS!
64 character graphics option - includes transistor symbols! Only \(£ 18.20\) exural

\section*{MEMORY MAPPED}
high resolution VDU circuitry using discrete TTL for extra flexibility. Has its own 2 K

KANSAS CITY
low error rate tape interface.

\section*{2 MICROPROCESSORS}

Z80 the pown CPU with 158 instruction including all 78 of the 8080 controls the MM57109 number cruncher. Functions include + ,, squares, croots, logs efxponentials, trig functions, inverses etc. Range \(10^{-95}\) to \(9 \times 19^{99}\) to 8 figures plus 2 exponent digits.

EFFICIENT OPERATION
Why waste valuable memory on sub routines for numeric processing? The number cruncher handles everything internally!

RESIDENT BASIC
with extended mathematical capability. Only 2 K memory used but more powertul than most 8K Basics!

IK MONITOR
resident in EPROM.

SINGLE BOARD DESIGN
Even keyboards and power supply circuitry on the superb quality double
sided plated through-hole PCB.

ONLY £275.00 +VAT

Cabinet size \(19.0^{\prime \prime} \times 15.7^{\prime \prime} \times 3.3^{\prime \prime}\). Television by courtesy of Rumblelows Ltd. . price \(£ 58.62\)

\section*{POWEFTRAN}

PSI Comp 80. 280 Based powerful scientific computer Design being published in Wireless World - NOW!

The kit for this outstandingly practical design by John Adams being published in a series of articles in Wireless World really is complete!
included in the PSI COMP 80 scientific computer kit is a professionally finished cabinet. fibre-glass double sided, plated-through-hole printed circuit board. 2 keyboards PCB mounted for ease of construction, IC sockets, high reliability metal oxide resistors, power supply using custom designed toroidal transformer. 2 K Basic and 1 K monitor in EPROMS and. of course, wire, nuts, bolts, etc.
SYSTEM
EXPANSION
COMING
SHORTLY!
E.g.
8K RAM Board
8K ROM Board
Prom Programmer
Printer Interface
etc.
etc.

\title{
SPECIALS
}


TOP PROJECTS
Book \(1+2: £ 2.50+25 p\) P\&P
Master mixer, 100W gultar amp., low power laser, printmeter, transistor tester, mixer preamp., logic probe, Ni-Cad charger, loudhailer, 'scope calibrator, electronic ignition, car theft alarm, turn indicator canceller, brake light warning, LM3800 circuits, temperature alarm, aerial matcher, UHF-TV preamp., metal locator, four input mixer, IC power supply, rumble filter, IC tester, ignition timing light, 50W stereo amp. and many more.
Book 3: SOLD OUT!
Book 4: £1.00 + 25p P\&P.
Sweet sixteen stereo amp., waa-waa, audio level meter, expander/compressor, car theft alarm, headlamp reminder, dual-tracking power supply, audio millivolt meter temperature meter, intruder alarm, touch switch, push-button dimmer, exposure meter photo timer, electronic dice, high-power beacon, electronic one-armed bandit ...
Book 5: \(£ 1.00+25 p\) P\&P.
\(\mathbf{5 W}\) stereo amp., stage mber, disco mixer, touch organ, audio limiter, infra-red intruder alarm, model train controller, reaction tester, headphone radio, STD timer, double dice, general purpose power supply, logic tester, power meter, digital voitmeter, universal timer, breakdown beacon, heart rate monitor, IB metal locator, temperature meter ...
Book 6: £1.00 + 25p P\&P.
Graphic equaliser, 50/100W amp. moduies, active crossover, flash trigger, "Star and Dot" game, burglar alarm, pink noise generator, sweep oscillator, marker generator, audio-visual metronome, LED dice, skeet game, lie detector, disco light show ...

Graphic Equaliser..... Imortur, Cenaratre Power Amplifier Madules..... 62 Sound CEIV Camera.........Headphone Atepter IED Dice.....Sound-Light Flash Trigger Expander- Compressor....shreat or-
 arm....igigital Thermemeter Stars 8 Dots Logic Game.....lightshow Active Crossover.... Hear and Tell Unit Pink Noise Generator...... GSB Monitor Sweep Dscillator.....Stereo Simulator


ELECTRONICS TOMORROW
Comprised entirely of new material, the edition covers such diverse topics as Star Wars and Hi-Fi! The magazine contains projects for everyone - none of which have appeared in ETI - and a look at the future of MPUs, audio, calculators and yideo. How can you not read it?
\(75 p+25 p\) P\&P.


\section*{ELECTRONICS - IT'S EASY} Books 1, 2 \& 3.
Our successful beginners series came to an end some time ago now, and the whole series is available from us in reprint form The three books between them contain al the information presented in the series (sometimes in more detail!) and together :orm an excellent starting point for any--one interested in learning the art of electronics.
\(£ 1.20+25 p\) P\&P each.

HICTROMICS TOOAY INERENAHONAL
 CIRCUITS No2
\(£ 1.50\)

\section*{ETI CIRCUITS}

Books 1 \& 2.
Each volume contains over 150 circuits, mainly drawn from the best of our Techselection and an additlonal sectlon is included which gives transistor specs, and plenty of other useful data. Sales of this pubilication have been phenomenal hardly surprising when the circuits cost under lp each!
£1.50 + 25p P\&P each.

\section*{ORDER FROM}

Specials Modmags Ltd, 145 Charing Cross Road, London WC2
Postage and packing also refers' to overseas. Send remittance in Sterling only. Please mark the back of your cheque or PO with your name and address.

from

\section*{CLASSIFIED INFORMATION}

\section*{Semi-Display:-}
\(1-3\) insertions - \(£ 6.00\) per single column centimetre
\(4-11\) insertions - \(£ 550\) per s.c.c.
12 insertions - \(£ 5.00\) per s.c.c.
Classified:-
23 pence per word (minimum 25 words)
Box number \(£ 1.00\) extra

ALL ADVERTISEMENTS IN THIS SECTION MUST BE PRE-PAID
Closing date 1 st Friday in month preceding publication.
Advertisements are accepted subject to the terms and conditions printed on the advertisement rate card (available on request).
Cheques and postal orders should be crossed and made payable to 'Electronics Tóday International

CLASSIFIED ADS, E.T.I., 145 CHARÍNG CROSS ROAD. LONDON WC2H OEE. (TEL: 01-437 1002).

\section*{FOR NASCOM 1 IN SCOTLAND SEE STRATHAND}

In stock now: Nascom 1 Buffer Boards
8, 16, 32K Ram Boards Super Tiny Basic Zeap on tape

\section*{8K Basic on Tape}

High speed cassette interface professional T.V. Monitor in kit form and other products arriving daily.
Please note it is not our policy to advertise Nascom products which are not currently available.

\section*{STRATHAND \\ 44 St. Andrew's Sq. Glasgow G1 5PL \(041-5526731\) or 2}

Access and Barclaycard sales welcome Callers welcome 9-5 Monday to Friday

COMPONENT BARGAIN 25 each value carbon film \(5 \%\) resistors; \(10 \Omega, 12 \Omega, 18 \Omega\) \(82 \Omega, 180 \Omega, 220 \Omega, 270 \Omega, 390 \Omega, 470 \Omega\), \(1 \mathrm{k} \Omega, 1.8 \mathrm{k} \Omega, 3.3 \mathrm{k} \Omega, 3.9 \mathrm{k} \Omega, 4.7 \mathrm{k} \Omega, 8.2 \mathrm{k} \Omega\), \(12 \mathrm{k} \Omega, 15 \mathrm{k} \Omega, 18 \mathrm{k} \Omega, 20 \mathrm{k} \Omega, 22 \mathrm{k} \Omega, 27 \mathrm{k} \Omega\) \(33 \mathrm{k} \Omega, 47 \mathrm{k} \Omega, 56 \mathrm{k} \Omega, 68 \mathrm{k} \Omega, 82 \mathrm{k} \Omega, 100 \mathrm{k} \Omega\), \(180 \mathrm{k} \Omega, 220 \mathrm{k} \Omega, 270 \mathrm{k} \Omega, 470 \mathrm{k} \Omega, 680 \mathrm{k} \Omega\), 1.5M』 ( 825 resistors) PLUS 50 1N4148 specification diodes on bandolier. \(£ 4\) post paid. DIODES SEPARATELY: 150 for E1, 500 tor £3, 1000 for £5. D. Johnston, 12 Balgillo Road, Dundee DD5 3LU.


\section*{SOUTH WALES \\ FOR}

TTL, CMOS, LINEARS DISCRETES, PASSIVES
HARDWARE, TOOLS
CASES, TRANSFORMERS, ETC.
DIGITAL WATCHES AND CLOCKS
Mail and Official Orders accepted Come to:
STEVE'S ELECTRONICS
15/17 THE BALCONY
CASTLE ARCADE
CARDIFF CF1 2BU
TEL: (0222) 41905

PRECISION SHEET METAL work chassis, panels, etc. Steel, stainless or aluminium, long/short runs, good deliveries. E.E.S Limited, Clifford Road, off Monks Road Exeter 36489. Telex: 42401

TRANSCENDENT 2000 synthesizer. Fully set up and in perfect working order. Hardly used - Offers. Phone 04763477 (Grantham).

\section*{DO YOU WANT A MIXER? DO YOU GET WHAT YOU WANT OR WHAT YOU CAN GET!}

We specialise in custom-built mixers Don't take a second choice - consult THE PROFESSIONALS

\section*{PARTRIDGE ELECTRONICS}

\section*{(Dept. DET), 56 Fleet Road Benfleet, Essex}

Also full range of sub-units and kits available for D.I.Y. For express orders Access \& Barclaycard factlities available. Phone us with your order now (STD 03745) 3256 or for further information and catalogue.


AUDIO FREQUENCY SIGNAL GENERATOR. 15 Hz to 200 kHz . Sine - Square R.I.A.A. phono. Low distortion, thermistor stabilised. Fully assembled and tested P.C.B. ready to use. S.A.E or phone for data. \(£ 16.30\) inclusive. Also, our speciality. P.C.B assembly, large or small quantities. Please enquire QUANTEC ELECTRONICS, 40 AIn Court, Ellingion, Morpeth, Northumberland Phone Morpeth (0670) 860101.

\section*{6800 S50 BUS}

32k dynamic RAM kit available in 16 k form at £130. Only \(£ 200\) for full 32k
6800S. The world's most powerful single board 6800/9 computer kit. 16k version with keyboard £299.
Mini 6800 multi-board system with keyboard £152.50.
All prices exclude VAT \& p\&p. SAE for leaflets

\section*{HEWART}

MICROELECTRONICS
95 Blakelow Road
Macclesfield, Cheshire

\section*{INTENSIVE WEEKEND COURSES IN}

\section*{BASIC}
including hands-on mini computer operation.
This short intensive course is intended to instruct from minimal knowledge to an operational capability of computer programming in BASIC high level language. The course is fully residential from Friday evening to Sunday afternoon.
Option of non-residential weekend, weekday evening and weekday courses available if required.
For further details of dates available, fees, etc.:

Phone (0401) 43139, or write to Dept. ETI
CLEVELAND business services Cleveland House, ROUTH Beverley, North Humberside

\section*{COLOUR YOUR NASCOM!}

dazzling colour graphics for nascom 1
Genuine bit-addressable "pixel" system for straightforward programming of pictorial or mathematical functions.
8 Colour display plus 8 colour independent background facility. Full documentation with FREE SOFTWARE powerful sub-routines for vector generation, demonstration program for animated effects. All runs in Nascom 1 without expansion. Complete with UHF Colour Modulator for operation with normal colour TV set. Superior design allows connection to most other micro processor systems - send us diagrams etc of your b \& w video circuitry for free advice. Don't be fooled by the price: this is a top quality product which will transform your computer.
NOW AVAILABLE FOR 4 inclusive of VA LIMITED PERIOD AT
 STLJAFT Herongate. Bren
Essex CMI 3 3SD
SYSTEMS LE Essex CM13 3SD
Telephone Bren

COMPUTERS, firmware, software. The best for less! Most makes bought, sold, exchanged, constructed. PET, ITT, ELF, New Sharp, Petsoft, Gemsoft, etc. Teletext Decoder £215. Grandstand Games Computer £115. Sharp 10 K £499, 18K £599, 22 K £619, 34K £699. Plus VAT / carriage. Phone: Optelco, Rayleigh 774089.

CIRCUIT DESIGN, Prototype construction, Analogue or Digital, Single Circuits or Complete Instruments / Systems: Write A. J. ATTWOOD, C.Eng., MIERE, Heathercote, Heatherton Park. Taunton, Somerset, TA4 1ET or Phone Bradford-on-Tone (082-346) 536.

\section*{COLOUR MODULATOR} \({ }^{\mathrm{KH}}\)
\(£ 9.95\) FOR ALL TV GRAPHICS! inc. UHF
Modulator Red. Green. Blue inputs (can be mixed) Availabien now: Nascom Col
E45.00 ince Graphics Software. WILLIAM STUART SYSTEMS Dower House. Billericay Road. Herongate. Brentwood, Essex CM1 335 Tet 102771810244


\section*{BARGAINS FOR THE ELECTRONIC HANDYMAN BRANDED LED DIGITAL ALARM CLOCKS}

(1)
(2)
 Reiturn
period. period

With alarm repeat - S.R.S.P. of \(£ 17.00\) offered at E3.95 inc. VAT
(2) With luxury lamp and repeat alarm as featured in most major U.K. Mail Order catalogues, S.R.S.P.
(3) With integral luxury light inc. V.A.T.
featured in most major U.K. Mail Order catalogues. S.R.S.P. of \(£ 32.00\)-offered at \(£ 7.45 \mathrm{inc}\). V.A.T. These will be sold as received from our customers with the existing fault(s) and without guarantee.

Discounts available on large bulk purchases PRESCOTT CLOCK AND
WATCH COMPANY LIMITED
Proscott House. Humber Road, London NW2 GER


INTRODUCTION TO MICROPROCESSORS AND COMPUTING. 50 pages of diagrams and explanation to get you started. Price \(£ 2.30+45\) p postage.
EDUCATIONAL DATA AND TECHNICAL SERVICES
59 Station Road, Cogenhoe, Northampton NN7 1 LU

SCREEN PRINT SYSTEM. Prints panels, labels, circuit boards, dials. Basic system \(£ 200\). Operator training and supplies available. CONEG GRAPHIC SYSTEMS, Dunstable Street, Ampthill, Beds. 0525402279.

TRANSCENDENT 2000. Built and operating. needs setting-up, £250 o.n.o. Must sell quickly. - 92 Holmeroft Road, Kidderminster, Worcs. Telephone 0562741631 after 6 p.m.

\section*{PRINTED CIRCUITS}

\section*{and}

\section*{HARDWARE}

Comprehensive range Constructors Hardware and accessories.
Selected range of popular components Full range of HE printed circuit boards normally ex-stock, same day despatch at competitive prices
PC Boards to individual designs
Resist-coated epoxy glass laminate for the diy. man with full processing instructions (no unusual chemicals required)

Alfac range of etch resist transfers, and othe drawing materials for \(p \mathrm{c}\) boards

Send 15p for catalogue.
RAMAR CONSTRUCTOR SERVICES MASONS ROAD STRATFORD-ON-AVON WARWICKS. Tel. 4879

\section*{SECURITY PRODUCTS}

Designed for the Do-lt-Yourself market. Easily installed. Full instructions supplied. As supplied
to the trade
Magnet and Reed Switch
Flush \(£ 1.00\)
Surface \(£ 1.00\)
Pressure Mats
Large \(\mathbf{£ 2 . 5 0}\)
6" Heavy Duty Bells
Sirens \(12 v 84 \mathrm{~dB} @ 10^{\prime}\)
Bell Covers
Large \(£ 2.50\)
Stair \(£ 1.75\)
Bell Covers 4 dB @10 \(0^{\circ}\). . . . . . . \(£ 7.50\)
Window Foil Self-Adhesive
Foil Blocks
Door Loops, complete
Koy Switches. top grade \(£ 7.50\)

Control Panels from
Rada, Inra-Red, and many other items available. Price list supplied free
Please note that our prices now INCLUDE VAT at \(15 \%+P \& P\)
SECURITY CATALOGUE
Giving details of current professional alarm techniques - £1 (refundable on orders over
£10)
We Barclaycard Sales welcome
We also sell Nascom 1
STRATHAND SECURITY
44 St. Andrew's Sq., Glasgow G 1 5PL
041-5526731 or 2

\section*{Electronic kits for the thrifty! Build 50 Interesting Projects on a P.C. Chassis with surplus components from your "Spares-Box." \\ EXPERIMENTER'S \\ PRINTED CIRCUIT KIT}

Contents: 4 small boards to suit the enclosed designs Etching Powder, Resist Paint, Solvent, Degreaser and Etching Instructions; also 50 Circuit diagrams, Chassis Plans and Layouts for simple Crystal Sets, Transistor Radios, Matal Detector Photoelectric and Ultrasonic Alarms. "Perpetual Motions" Light-Beam Telephone Alarms, "Perpetual Motions.' Light-Beam Telephone
Instruments, Testers, Gadgets, etc., you can build at negligible cost with "Surolus"' or reclaimed parts and transistors you already have.
Price: \(£ 1.70\). Postage and Packing 30p.

\section*{PHOTOELECTRIC KIT} A kit of basic parts to build a simple I.R.-sensitive
Photoelectric Switch. Contents: Phototransistor, Transistors, Diode, Resistors, Connector, Latching Relay, Chassis Board, Case. Screws and full instructions. Price: \(£ 4.50\). Postage and Packing 50 p

\section*{OPTICAL KIT}

A kit of parts to build an I.R. folded-beam Projector and Roceiver to suit the above kit. Contents: 2 Lenses, Mirrors, 245 -deg. blocks, Infra-Red Filter, Lampholder Building Plans. Price: £3.70. Postage and Packing 30p. Both kits together make an Invisible-Beam Alarm.

EXPERIMENTAL ELECTRONICS
335 Battersea Park Road, London SW11 4SL
Send SAE for full details of all kits and circuits

\section*{LAMP STRINGS}

DISCOS DECORATIVE LIGHTING WINDOW DISPLAYS

Kit LS1, Kit of all electrical items with full instructions. Kit contains. 200 Lamps ( 50 each Red, Green, Blue and Yellow), 200 pre-cut and stripped wires, 80 sleeves
\(\mathbf{£ 1 0 . 0 0}\) (VAT and PEP included)
EleCTRONIC CONTROLLER
FOR SEQUENCING OF OUR LS1 LAMP STRING
Kit EC1. PCB plus all components and instruc tions. (No Case).
\(£ 10\) (VAT and Ple P includod)
Terms. Cheque or PO with Order to
J. H. ASSOCIATES LTD. (HC2)

52 SILVER STREET, STANSTED, ESSEX

ORGANISE YOUR COMPONENTS!


COMTRAYS
Store resistors, capacitors, IC's, screws, etc. Ideal for organising your project components - saves all that searching around while constructing. Plastic trays with 16 compartments, each compartment \(31 / 4 \times 21 / 4 \times\) \(11 / 2 \mathrm{ins}\). deep.

E1.90 each, including p.p. and VAT Four for \(\mathbf{£ 6 . 9 5 \text { ( } 6 4 \text { compartments) } ) ~}\) Eight for \(\mathbf{E 1 2 . 6 0}\) (1 26 compartments)
```

Cheque or P.O. to

```

HELISTAR SYSTEMS LTD
150 WESTON ROAD AYLESBURY, BUCKS HP22 5EP Tel. Aylewbury 630364

\section*{\(=-6 r^{2}\) \\ ROADRUNNER WIRE THREADING SYSTEM}

Introkit £9.88, Wiring Pencil with full Bobbin £2.44, Distribution Strips glue fix 20/pkt. \(6^{\prime \prime}\) long \(£ 2.80\) pkt., press fix \(20 /\) pkt. \(2^{\prime \prime}\) long fit Vero/RS Bds. \(£ 2.92\) pkt., Bobbins of "Q.S.E." wire 4 of 1 col. / pkt. green, blue, copper, pink \(£ 2.12\) pkt.
SPECIAL OFFER: Oryx 50 temp. cont. iron \& stand \(£ 12.50\) (rec. price £13.25), Microshear Cutters \(£ 3.15\) pair, Conductive Paint £2.35, DIL Breadboards \(+\&\) Gnd. Bus, 20 lc Posns, Decouplers, CFingers \(£ 1.50\) ea
Prices include P\&P. Please add 15\% VAT
T. J. Brine Associates Blackdown Rural Inds. Haste Hill Haslemere, Surrey

FOR SALE: Linsley Hood 75-watt stereo amplifier, complete but needs attention, £65. Lab Craft sound to lite unit \(£ 24\). Sharp stereo tape deck with new head, £38. Pair Harwell rear loaded horn speakers - very efficient, \(£ 75\). Phone Cardiff 811382 for details.

FOR SALE: SYNTHESISER - Transcendent 2000. \(£ 250\) o.n.o. Needs slight attention. Tel. (08277) 2658.

\section*{50Hz SUPERBOARDS BRITISH MODEL from \(£ 190\) \\ Fully built, sot up and rest}

AUTHORISED dealer back-up Littleberough, Lancs.
Tel. Littieborough 79332 any time

\section*{SITUATION VACANT}

\section*{TEACH IN JAPAN}

Persons with a bachelor's degree in different engineering fields, production manufacturing, quality-control, materials management or procurement wishing to teach full-time for one or two years in Japan should write to

INTERNATIONAL EDUCATION SERVICES
Shin Taiso Building
0-7 Dogenz wa 2-chome
Shibuya-ku, Tokyo 150
Japan
The position involves teaching Japanese businessmen and engineers the basic vocabulary in various fields.
No Japanese tanguage is required for classroom instruction. Teaching experience is not required. An orientation is given in Tokyo

Information on salary, transportation and housing can be obtained by providing International Education Services with a detailed résumé and a letter indicating an interes in the position.

Personal interviews will be held in London in October or November, 1979
Selected applicants would be expected to arrive in Tokyo January to April, 1980

\section*{ADVERTISEMENT INDEX}
AJD Direct Supplies ..... 94
Ambit International ..... 115
Arak Sound ..... 70
Audio Electronics ..... 114
Baydis ..... 83
Bi-Pak ..... 34835
BK Electronics ..... 40
B.N.R.S. ..... 33
Calculator Sales and Service ..... 57
Cambridge Learning ..... 40 \& 41
Chiltmead ..... 98
Chromasonics ..... 88
Chromatronics ..... 33
Clef Products ..... 22
Codespeed ..... 78
Comp, Comp, Comp ..... 122 \& 123
Crimson Elektrik ..... 108
Crofton ..... 108
C.S.C.
116
Delta Tech \& Co
E.D.A ..... 58
Electronic Brokers ..... 70
Electrovalue ..... 58
GMT Electronics ..... 485Greenbank100
Harvelec ..... 114
Henry's Radio ..... 22 \& 78
ILP Electronics ..... 112 \& 113
Integrated Circuits ..... 102
International Education Services
Kensar Developments ..... 121 ..... 70
Kode Services Kode Services ..... 116
Kramer ..... 94
Lascar Electronics ..... 87
LB Electronics ..... 57
L\& B Electronics ..... 83
Lotus Sound ..... 62
Maclin-Zand ..... 22
Maplin ..... 124
Marshalls ..... 62
Menocrest ..... 94
Metac ..... \(14,15,16 \& 17\)
Microdigital ..... \(58 \& 88\)
Minikits ..... 57
Monolith Electronics ..... 114
Mountaindene ..... 111
Nicholls ..... 57
NIC Models ..... 108
Progressive Radio ..... 61

TRS80 EXPANSION
Upgrade your system as your needs increase. Contains sockets for
 casseltes can be used. Features a Centronics parallel port, real time clock, and a connect an RS. 232 C interface or wha
Level-II Basic. \(220 / 240 \mathrm{~V}\) AC.
Complete with 32K RAM \(£ 299\)

ANADEX DP8000
onv £540

\section*{PET Connector - 49}


The DP 8000 printe the 96 -character ASCII set in single or double width at 84 lines per minute. - The unit operates bl. directionally to print a \(x\) matrix on multiple copy, pin-feed plain paper. loop serial data at baud rates switchable from 110 to 9600 and Paraliel Bit data in. put at over 1000 characters per second. - Standard storage capacity of 256 characters - Other features Include Out of Paper Detector, Top of Form Programming and Skip Over Pertoration Control.

\section*{THE NEW ITT APPLE (2020)}

* Full colour - UHF output * Audio cassette tape interface * Up to 48 K RAM on board BASIC in ROM (graphics commands include COLOUR = VLIN, HLIN, PLOT and SCRN) \(\star\) Built in loudspeaker \(\star\) Buckets of software available * Disk System (110K byte per drive - includes controller) only \(£ 425\) + VAT EX•STOCK

HITACHI PROFESSIONAL


- Rellablity Solid state circuitry using an IC and silicon transistors ensures high reliability. - 500 ilnes horizontal resolutlon Horizontal resolution in excess of 500 lines'is achieved at picture center. - Stable picture Even played back pictures of VTR can be displayed without jittering.
termination Looping
video input Video input can be looped through with bullitin
- External sync operation (available as option for \(U\) and \(C\) types)
- Compact construction Two monitors are mountable side by side in a standard

19-inch rack.

\section*{viden \(10 \square\)}

12" BLACK 8 WHITE
LOW COST VIDEO
LOW COST VIDEO
MONITOR
- Ideal for home, personal and business computer systems


THE TRS80 (Special Scoop) Low Priced, Ready to Go!


LEVEL II BASIC WITH 16K USER RAM provides you with possibly the most power ful micro around. All our TRS80s are fully converted to English Television Standard and Include a U.K. Power Supply, Cassette Leads, Sample Tape, Level I \& Level II programming manuals, and special lead that enables you to connect direct into your own television.
Special teatures of Level il Basic enable you to:
- Set or reset any point on the screen - Test for the presence of a point on the screen (these features enable easy animation) - Save or load data from casselte under program control - File handling capabilitles on cassette using named files. - Graphics blocks as standard - design you
many many more features for only \(£ 399+\) VAT

\section*{PET COSTS LESS AT COMP and it's} a pedigree
supplied Powerful 8K Microsofl manuals supplied. Powerful \(8 K\) Microsoft Basic in ROM 16 K - Same as above but with new improved keyboard and cassette supplied
as extra. Machine code monitor on board as extra. Machine code monitor on bo
so you can program in 6502 r .achine so you can program
code \(-\mathbf{5} 590+\) VAT

32K - for a little exira get 32K memory providing greater storage capacity for programs or data - \(6690+\) VAT
16 K or 32 K - 555 + VAT complete with cable and connector
comple wh cable and connector


\section*{Es: SORCERER SPEAKS EVOUR LANGUAGE}
r personal or business use. The
best value for money around. 512 by 256 point screen User RAM * Centron Parallel Port \(\star\) RS232C Serial
Port Composite IV peak to peak video Port \# Comt T.V. output supplied as extra. * 64 programmable graphics + 64 standard PET graphics 79 key keyboard including 16 k
numeric keypad. * Expansion bus for
Word
Processing
Pac and
Development Pac
Word Processing Pac - £70
ing Pac \(\mathbf{\varepsilon 7 0}\) Development Pac \(=£ 70\)

\section*{Break the language barrier \(£ 138\) \\ At a price equivalent to learning on}
 language, LEXICON offers you, English, Spanish, French, German, It alian and Greek. The LK3000 comes to you with the person to person module which contains 6 languages,
de-luxe carrying case and a charger adaptor de-luxe carrying case and a charger adapto
using its own power source which will give using its own power source which wil give
you 4.5 hours continuous use, and can easily be re-charged from the mains supply, wherever you may be in the world. Every additional module carries a concise and understandable instruction book. Your deluxe carrying case has room for two additional modules. computers i.e. Sorcerer, Pet, Apple, TRS80, Nascom, Compukit Our charges are \(£ 7\) per hour plus parts.
Because of the extensive range of spare parts stocked you can usually expect your mlcro to be repaired within 10 days for an average charge of \(£ 14\) labour.
Emergency 24 hour repairs can be handled for a \(£ 10\) surcharge where possible
Compukits and Nascoms unsuccessfully constructed will be charged a standard \(£ 25\)
Maintenance contracts for these machines are available, see your local dealer for a Compucare Maintenance Application
(Part of the Compshop Ltd. Group) Form.
\(\square\) manteno V/SA (1)

USA products with 60 Hz frame refresh always results in jittery displays
* 48 chars by 16 lines - 1 K memory mapped video system providing high speed access to screen display enabling animated games and graphs
* Extensive 256 character set which includes full upper and lower case alphanumerics. Greek symbols for mathematical constants and numerous graphic characlers enabling you to form almost any shape you
desire anywhere on the screen desire anywhere on the screen
Video output and UHF Highgrade modulator 18 Mz Bandwidth) which connects direct to the aerial socket of your TV Channel 36 UHF
* Fully stabilised 5 V power supply including trans. ormef on board
high reliability program stape interface providing standard domestic tape or cassette recorder on any standard domestic tape or casselte recorde
*ra user Ram expandable to 8 K on board \(£ 49\)
* 40 line expansion interface socket on board for attachment of extender card containing 24K RAM and disk controller Ohio Scientitic compatible
* 6502 machine code accessible through powerful
\(2 K\) mach ne code monitor on board
\(\star\) High quality thru plated PCB B with all 1 C :
mounted on sockets mounted on sockets
* Professional 52 Key keyboard in 3 colours - soft. ware polled meaning that all debouncing and key decoding done in software
COMMANDS
NEW NULI RUN
STATEMENTS
CLEAR DATA DEF DIM END FOR NEXT ON GOTO ON GOSUB POKE PRINT REAL REM RESTORE RETURN STOP
EXPRESSIONS
OPERATORS
- NOT.AND.OR \(><\langle \rangle\rangle=<=\) RANGE \(10^{-32}\) to \(10^{+32}\) VARIABLES
A.BC. \(Z\) and iwo letter variables
he above can all be subscripled when used in an array String varables use above names plus \$eg A\$

-8K Microsott Basic means conversion to and from Pet. Apple and Sorcerer easy. Many compatible programs already in print.
SPECIAL CHARACTERS
© Erases line being typed, then provides arriage return, line feed.
Erases last character typed.
CR Carriage Return - must be at the end of each line

Separates statements on a line
CONTROL/C Execution or printing of a list is interrupted at the end of a line.
"BREAK IN LINE XXXX"" is printed, dicating line number of next statement to be executed or printed
CONTROL/O No outputs occur until return made to command mode. If an input state ment is encountered either anothe CONTROL/O is typed, or an error occurs.

Equivalent to PRINT

\section*{EXTRAS AVAILABLE SOON}

COLOUR ADD-ON enables you to choose your foreground and background colour anywhere on the screen. Flash any character on the screen at will. Full documentation and parts in kit form.

AD-A-RAM EXTENDER CARD provides up to 32 K Dynamic RAM Expansion, 8 Eprom sockets for 2708's or 2716's. Parallel Port (centronics compatible) and an RS232C serial port

\section*{WIN YOURSELF AN ANADEX DP8000 LINE PRINTER}

There's never enough good software around. That's why COMPUKIT LTD. are sponsoring a software contest. There are 2 categories
1) Business and Education
2) Fun and Games

One lineprinter will be awarded to the winner of each category Send or bring along to the address shown below the following i) The program on cassette in the format used by the COMPUKIT UK101
2) Any documentation that you have for the program (source listing not necessary)
3) This coupon signed by you accepting the rules and conditions of the competition.

\section*{HULES}
1) Entries, including documentation, must be printed by computer or typed double spaced, with your name on every page
2) Send or bring your entries to the address shown below
3) Entries must be received by midnight on \(29 / 2 / 80\), any received after this time are void
Winners will be notified by post before \(31 / 3 / 80\).
4) You warrant by your signature that all programs and documentation material included is entirely your own creation, and that no rights to it have been given or sold to any other party, and you agree to allow COMPUKIT LTD. to use, publish, distribute, modify, and edit it as it sees fit
5) All entries become the property of COMPUKIT LTD. No entries will be returned nor any questions answered regarding individual entries. 6) Judging will be by a selected panel chosen by, and including representatives of COMPUKIT LTD. Judges may assign programs to any of the categories as they see fit. Decision of the juoges is final. 7) Employees of COMPUKIT LTD, its dealers, distributors advertising agencies and media are not eligible to enter.

Name
Address

I agree to abide by the above mentioned rules

Signature

\footnotetext{
14 STATION ROAD, NEW BARNET, HERTFORDSHIRE TEL: 01.441 2922 (Sales)
CLOSE TO NEW BARNET BR STATION - MOORGATE LINE 01.4496596
OPEN - 10am to 7pm - Monday to Saturday
All Products Ex-Stock Please check availability
(Part of the Compshop Lid Group)
}


A 63-key ASCII keyboard with 625-line TV interface, 4-page memory and microprocessor interface. Details in our catalogue.


Our catalogue even includes some popular car accessories at marvellous prices.


A 10-channel stereo graphic equaliser with a quality specification at an unbeatable price when you build it yourself. Full specification in our catalogue.


These are just some of the metal cases we stock. There are dozens of plastic ones to choose from as well. See pages 52 to 57 of our catalogue.


A nassive new catalogue from Maolin that's even bigger and betler than betore ily you ever buy electronic components. this is the one cataiogue you must tol he
without Over 230 pages - sorne in ful pages-sour - tits a comprehensive comprehensive
guide to electronic guide to electronic componenis
hundreds of photogiaphs and illustrations and page alter page
invaluable data. Our bi monthly news letter contains guaranteed price
special offers and all the latest news tom Maplint.


Mobile amateur radio, TV and FM aerials plus lots of accessories are described in our catalogue.


A digitally controlled stereo synthesiser the 5600 S with more facilities than almost anything up to \(£ 3,000\). Build it yourself for less than £700. Full specification in our catalogue.


A superb range of microphones and accessories at really low prices. Take a look in our catalogue - send the coupon now!


An attractive mains alarm clock with radio switching function and battery back up! Complete kit with case only \(£ 18.38\) (incl. VAT \& p \& p) MA 1023 module only £8.42 (incl. VAT).


A superb technical bookshop in your home! All you need is our catalogue. Post the coupon now!


A hi-fi stereo tuner with medium and long wave, FM stereo and UHF TV sound! Full construction details in our catalogue.


Add-on bass pedal unit for organs. Has excellent bass guitar stop for guitarists accompaniment. Specification in our catalogue.

All mail to:-
P.O. Box 3, Rayleigh, Essex SS6 8LR.

Telephone: Southend (0702) 554155
Shop: 284 London Road, Westcliff-on-Sea, Essex. (Closed on Monday).
Telephone: Southend (0702) 554000.```


[^0]:    COPYRIGHT: All material is subiect to world wide Copyright protection. All reasonable care is taken in the preparation of the magazine to ensure accuracy but ETI cannot be held responsible for it legally. Where errors do occur a correction will be published as soon as possible afterwards.

[^1]:    FOR ORDERING INFORMATION PLEASE SEE OVER

[^2]:    North \& Midlands
    67 High Street, DAVENTRY
    Northamptonshire
    Telephone: 0327276545
    South of England 327 Edgware Road LONDON W. 2 Telephone: (01) 7234753

[^3]:    The items mentioned here are those planned but circumstances may affect the actual contents

[^4]:    Step by step we take you through all the fundamentals of electronics and show you how easily the subject can be mastered.

    1) BUILD AN OSCILLOSCOPE
    2) READ, DRAW AND UNDERSTAND CIRCUIT DIAGRAMS 3) CARRY OUT OVER £) EXPERIMENTS ON BASIC

    ELECTRONIC CIRCUITS AND SEE HOW THEY WORK Also
    We provide practical tuition for:- 3) Digital Electronics

    1) Radio amateurs licence. $\square$ 4) Computer Technology $\square$
    2) City and Guilds certificates. $\square$ 5) Test instrument kits $\square$

    Mark your interest(s) with an x in box provided.
    British National Radio \& Electronics School,
    NAME
    P.O. Box 156, Jersey, Channel Islands

    ADDRESS
    ETOI. $11^{-}$
    (block caps please).

[^5]:    Most CASIO products available from stock. Send 25 p for illustrated brochures and membership of our CHRISTMAS CLUB. EXTRA DISCOUNTS

