
. . NEWS PROJECTS MICROPROCESSORS AUDIO . . .

TRANSCENDENT 2000 SINGLE BOARD SYNTHESIZER

LIVE PERFORMANCE SYNTHESIZER DESIGNED BY CONSULTANT TIM ORR (FORMERLY SYNTHESIZER DESIGNER FOR EMS LIMITED) AND FEATURED AS A CONSTRUCTIONAL ARTICLE IN ELECTRONICS TODAYINTERNATIONAL.
The TRANSCENDENT 2000 is a 3 octave instrument transposable 2 octaves up or down giving an effective 7 octave range There is portamento. pitch bending, a VCO with shape and pitch modulation. a VCF with both low and high pass outputs and a separate dynamic sweep control. a noise generator and an ADSR envelope shaper There is also a slow oscillator a new pitch detector. ADSA repeat, sample and hold, and special circuitiy with precision components to ensure tuning stability amongst its many features

The kit includes fuly inished metralwork fully assembled sold teak cabine: tilter sweep pedal protessional quality connponents all resistors ether 2%, metal oxide or las: plece of wire ' There is even a 13 A plug in the ki: - you need buy absotutely nu more pats before pluqqing in and making great musicl Virtually all the components All the controls mount directiy on the mann board all conner, compons to the boatd ars made with connector plugs and contruction ts so simple it can be buili easily in a tew evenings by almost angre capable of neat solderng' when finisher vou wifl
possess a synthestzer comparable in performance and quality with ready built units
selling for hetween $\$ 500$ and 4700 .

COMPLETE KIT ONLY

$£ 172.00$ + VAT!

Comprehensive handbook supplied with all complete kits This fully describes construction and tells you how to set up youlto-metersizer with nothing more elaborate than a mult-meter and a parr of ears

Cabinet sixe $24.6^{\prime \prime} \times 15.7^{\prime \prime} \times 4.8^{\prime \prime}$ (rear) $3.4^{\prime \prime}$ (front)

HARPSICORD HONKY TONK PIANO! STRINGS! BRASS!

Panel size 19.0'×3.5'". Depth 7.3

COMPLETE KIT ONLY £365.00 + VAT! GHROMAE $1 / 4000$ CHANNEL LIGHTING EFFECTS SYSTEM

COMPLETE KIT ONLY $£ 49.50$ + VAT!

Cabinet size $36.3^{\prime \prime} \times 15.0^{\prime \prime} \times 5.0^{\prime \prime}$ (rear) $3.3^{\prime \prime}$ (front)
This versatile system featured as a constructional article in ELECTRONICS TODAV INTERNATIONAL has 5 frequency channels with individual level controls on each channel Control of the lights is comprehensive to say the least You can run the unit as a siraightforward sound-to-light or have it strobe alt the lights at a speed dependent upon music level or front panel control or use the internal digital circuitry which produces some superb randonind sequencing effects Each channel handies up to 500 W and as the kit is a single board design wiring is minimal and construction very straightforward
Kit includes fully finished metalwork fibreglass PCB controls wire etc - Complete right down to the last nut and boit

Make a charge p. 29

FEATURES

NEWS DIGEST CHEAP TRICK MICROSENSE MICROFILE IMPEDANCE \& PHASE ODD ODES
READERS DESIGNS TECH TIPS

9
34

58 73 79 97

47 A ņew series for would-be MPUs!
54 Home on the range
If it matters, it's in! Make the pennies count Well do you understand it? Getting physical!
Plain sailing Readers círcuit notions

PROJECTS

TRANSCENDENT DPX	$\mathbf{1 8}$	Lots of strings to this
Ni-Cd CHARGER	$\mathbf{2 9}$	Don't be flat broke
TELETEXT PART TWO	$\mathbf{4 1}$	Final details
BENCH AMP	$\mathbf{6 7}$	Vital workbench stuff!
AUDIO DISPLAY	$\mathbf{8 7}$	Make a show of Blondie
INFORMATION		

HOBBY ELECTRONICS BINDERS

ETI BOOK SERVICE ETIPRINTS TOP PROJECTS 7 T-SHIRTS MARKETPLACE SPECIALS ETI SEPTEMBER COMPUTING TODAY

17 Next month's happenings
31 Keep it together
33 Read this fine print
40 The only way
45 Now out!
53 Wear our colours
62 Timely offers
64 From us to you
71 A preview of the next ETI
107 Just for micro-men

[^0]COPYRIGHT: All material is subject to world wide Copyright protection. All reasonable care is taken in the preparation of the magazine to ensure accuracy but ETI cannot be held responsible for it legally. Where errors do occur a correction will be published as soon as possible afterwards.

BOOKS BY BABANI

BP6	Engureers \& Machinists Ref. Tables
8.9	2nd Book Transistor Equivs \& Subs
BP22	79 Electronic Novelty Circuits
BP24	52 Projects Using IC741 (or Equiv)
BP26	Radio Antenna Book Long Distance Reception \& T ransmission
BP27	Glant Chist of Radio Electronic Semiconducror \& Logic Symbols
BP32	Build Melal \& Treasure Locators
BP34	Practical Repair/Renovation C/T
BP35	Handbook of IC Audio Preamplifier \& Power Amplifier Construction
BP36	50 Cicls use Germ/SII/Zener Diodes
8P37	50 Projects Using Relays/SCR / Tracs
BP39	50 Field Efleet: Trans Projects
BP40	Digital IC Equivs \& PIN Connection
BP41	Linear IC Equivs \& Pin Connect tion
BP42	50 Simple LEO Circuits
BP43	How to make Walkie-Talkies
BP44	IC 555 Timer Projects
8P45	Projects on Opto-electronics
BP46	Radio Cirtuits Using IC's
BP47	Mobile Discotheque Handbook
BP^{88}	Electronics Projects for Beginners
BP49	Popular Electronic Projects
BP50	IC LM3900 Projects
BP55	Radio Stations Guide
BP 160	Coil Design \& Construction Manual
8 8202	Handbook of Integrated Circuits Equivalent \& Substitutes
8P205	ist Brok Hi-Fi Speaker Enclosures
BP213	Circuits for Model Raitways
8 8215	Shortwave Circuits \& Gear for Experimenters \& Radio Hams
BP216	Electronic Gadgets \& Games
BP217	Solid State Power Supply Handbook
BP221	28 Tested Transistor Projects
BP 222	Shor-wave Receivers for Beginners
BP223	50 Projects using IC CA3130
BP224	50 CMOS IC Projects
BP225	A Practical Intro to Digual IC's
BP226	Build Advanced Short-w
BP227	Beginners Guide to Building
	Electronic Projects

NEWNES BOOKS
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
244
244
20

```
Integrated Cirruits
Radio & Telev: sion
Electronics
20 Solid Ste Proj
    20 Solid Slate Proy for Home
    110 Thyristor Projects
    Operational Amp. Proj, for Home
    Electricity Cloj. for Hom
    Beginners Guide to Electronics
    Beginners Guide to Television
    Beginners Guide to Transistors
    Beginners Guide to Radio
    Guide to Colour TV
    Electronic Components
    Printed Circuit Assembly
    50 Photoelectric Circuits
    Semiconductor Handbook Part Y
    Electronics Pocket Book
Aadio Value & Semiconductor Dara
    BE-PAK TLData Book
```

 OPG - ALL IST OUALITY
 NEW INCREASED RA
LED'S (diffused)
$\begin{array}{llll}\mathbf{O} / \text { no. } & \text { TYpe } & \text { Size } & \text { Colo } \\ 1501 & \text { ARL209 (TIL209) } & \text {. } 3 \mathrm{~mm}(1225) & \text { RED }\end{array}$
1502 MLL 3232 (T1L211) $3 \mathrm{~mm}(.125)$ GREE
$\begin{array}{llll}1503 & \text { MIL3331 (OP212A) } & 3 \mathrm{~mm}(125) & \text { YELLO } \\ 1504 & \text { ARLA850 (FLVI17) } & 5 \mathrm{~mm}(.2) & \text { RED }\end{array}$
1505 MILS251 (TIL222) $5 \mathrm{~mm}(2)$ GREEN
1506 MIL5351 (MV5353) $5 \mathrm{~mm}(2)$ YELLOW
1509 FLV111 $5 \mathrm{~mm}(2)$ CLEAR C0.11
SUPER Hi-Briec Type (ill. Red)
$\begin{array}{lll}152 & 3 \mathrm{~mm}(125) & \text { RED } \\ 1522 \text { MIL52 } & 5 \mathrm{~mm}(2) & \text { RED }\end{array}$
1514 ORP 12 Light dependent resisto
$\begin{array}{lll}\text { LED CLIPS } \\ 1508 / 125 \text { pack of } 5 & 125 \text { clips } \\ 1508 / 2 & \text { pack of } 5 & 2 \text { clips }\end{array}$
oISPLAYS:
DL703 7 segment D.P. left (30^{-1} height)
DL707 7 segment DP left ($03^{\prime \prime}$ height)

RED ${ }^{\text {Two Digt Retleclor }}$
DL727 7 segment D. P. righ ($510^{\prime \prime}$ height)
DL727 7 segment D.P. right
RED Single Digit Light Pipe

GMM(A DIVISION OF GOTHIC ELECTRONIC COMPONENTS LTD) PO Box 290 8 Hampton Street
 MAIL
 TELEPHONE:
 ORDER Birmingham B19 3JR 021-233.2400 ONLY

ALL PRICES IN PENCE EACH UNLESS OTHERWISE STATED

ACCESS FREEPUST ON ORDERS BARCLAYCARD $\square^{\text {D }}$ VAT INCLUSIVE PRICES CASH ADD 30p P\&P
 GMT ELECTRONICS A Freepost Birmingham B19 1BR 24 HR TELEPHONE ANSWERING SERVICE TEL ORDERS WELCOME

POWEFTRAN
PSI 4002 STUDIO MODEL

cabinet size $17.2^{\prime \prime} \times 17.2^{\prime \prime} \times 6.7^{\prime \prime}$
COMPLETE KIT ONLY £196.90 + VAT

FOR ELECTRONIC KITS OF DISTINCTION $200+200$ watt AMPIIIIER

As featured in Electronics Today International 400W rms continuous - 800W peak! 0.03% THD at FULL power! PLUS all the following features too!

* Each channel totally independent with its own stabilised power supply driven by custom designed TOROIDAL transformers!
\star * Inherent reliability - monster heat sinks for cool running at the hottest venues - electronic open and short circuit protectiont
\star Ulira low feedback (an incredible low 14 dB overall!), super high slewing rate ($20 \mathrm{~V} / \mu \mathrm{s}$). 200 W rms continuous to 4 ohm from EACH channel, input sensitivity $0.775 \mathrm{~V}(0 \mathrm{~dB})$.
* Professional quality components, sturdy 19^{*} rack mounting chassis complete with sleeve and feet for free standing work too.
* Easy to build - plenty of working space with ready access 10 all components, minimal wiring extensive instruction suitable for both experience constructors and newcomers to electronics.
* Value for money - quality and performance comparable with ready-built amplifiers costing over E6001

MPA 200100 WATT (rms into 8-) MIXER / AMPLIFIER

COMPLETE KIT ONLY £49.90 + VAT
Featured as a constructional article in ETI, the MPA 200 is an exceptionally low priced - but professionally finished - general purpose high power amplifier. It features adaptable input mixer which accepts a wider range of sources such as microphone, guitar, etc. There are wide range tone controls and a master volume control. Mechanically the MPA 200 is simplicity itself with minimal wiring needed making construction very straigthforward.
The kit includes fully finished metalwork, fibreglass PCBs, controls, wire etc. complete down to the last nut and bolt.
MATCHES THE CHROMATHEQUE 5000
 LIGHTING EFFECTS SYSTEM PERFECTLY!

DE LUXE EASY TO BUILD LINSLEY HOOD 75W STEREO AMPLIFIER £99.30 + VAT

This easy to build version of our world-wide acclaimed 75 W amplifier kit based upon circuit boards interconnected with gold plated contacts resulting in minimal wiring and construction features include rumble filter, variable scratch filter, versatile and Record Review and monitoring whilst distortion is less than 0.01%.

T20 + 20 20W STEREO AMPLIFIER £33.10 + VAT This kit, based upon a design published in Practical Wireless, uses a single printed circuit quality amplifiers. A 30 wat version of this kit ($\mathrm{T} 30+30$) is also aval

MATCHING TUNERS - SEE OUR FREE CATALOGUE

WIRELESS WORLD FM TUNER $£ 70.20$ + VAT

A pre-aligned front-end module makes this Wireless World published design very simple to construct and adjust without special instruments. Features include an excellent a.m. rejection push-button station selection as wall as infinitely variable tuning and a phase locked loop stereo decoder, incorporating active filters for "birdy" suppression

LINSLEY-HOOD CASSETTE DECK £79.60 +VAT

This design, pubished in Wireless World. although straightforward and relatively low cos provides a very high standard of performance. There are separate record and replay amplifiers and switchable equalisation together with a choice of bias levels are also provided. The mechanism is the Goldring-Lenco CRV with electronic speed control

COMPLETE KITS: Our complete kits really are complete. Alt of the projects shown on this page are supplied with fully finished metalwork, ready assembled high quality teak veneer cabinet (last 4 kits on this page), or professional quality rack mounting cabinet (first 2 kits on this page), cables, nuts, bolts, etc., and full instructions - in fact everything!
All of the kits shown on this page are available as separate packs for those customers who wish to spread their purchase or perhaps make their own cabinets or metalwork. Prices are given in our FREE CATALOGUE.
PRICE STABILITY: Order with confidence. Irrespective of any price changes w will honour all prices in this advertisement until September 20th, 1979, if this month's advertisement is mentioned with your order. Errors and VAT rate changes excluded
EXPORT ORDERS; No VAT. Postage charged at actual cost plus $50 p$ handling and documentation
U.K. ORDERS. Subject to $121 / 2 \%$ surcharge for VAT (i.e. add $1 / 8$ to the price). No charge is made for carriage. or at current rate if changed.
SECURICOR DELIVERY: For this optional service (U.K. mainland only) add EA.50 (VAT inclusive) per kit.
er to collect kit from the factory, call at Sales Counter (at rear of factory). Open 9 a.m. $-4.30 \mathrm{p} . \mathrm{m}$. Monday-Thursday.
our catalogue is FREE! write or phone NOW!

POWERTRAN ELECTRONICS

PORTWAY INDUSTRIAL ESTATE ANDOVER, HANTS SP 10 3NM

news

MONITORING SCOPEX

Scopex have announced the introduction of their first purpose-built monitor, the 4MI. At 1175 plus VAT, Scopex claim that the 4 MI is probably less than a quarter of the price of its nearest competitor.
Introduced as a result of market demands, the 4MI has been designed to meet the diverse requirements of the OEM market for an XYZ display unit with a high degree of built-in versatility.
The matched vertical and
horizontal systems both have a sensitivity of $100 \mathrm{mV} / \mathrm{cm}$ (internal preset permits adjustment of $\pm 10 \%$) over a bandwidth of $\mathrm{DC} 1 \mathrm{MHz}(-3 \mathrm{~dB})$ with an accuracy of $\pm 3 \%$ (of the preset sensitivity).
The vertical and horizontal shift controls use plug-in spindle potentiometers so that either front panel or internal preset operation may be selected.
For further details of the 4MI, contact Scopex Sales, Pixmore Avenue, Letchworth, Hertfordshire SG6 1JJ.

Be prepared to have your illusions shattered. ETI does it

JUST ARRIVED

Following on the heels of the film 'Battlestar Galactica' is 'Mattel Electronics' hand held 'Space Alert' game.

Your object is to intercept as many of the Cylon raiders as possible. The further away from your Battlestar you blast them, the more points you score. The game naturally features launch, impact, win and lose sound effects.

What's that? You don't know what a Cylon raider is. You are
sentenced to one evening at the nearest cinema showing Battlestar Galactica.

Also from Mattel and new to the UK is Auto Race. You have to successfully complete four laps of the circuit in the shortest possible time, steering cound obstacles at four speeds. from slow to just-a-blur. Full sound effects are featured.

The games are available at £15.90 each from N.I.C. Models, 27 Sidney Road, London N22 4LT, who will shortly be adding a soccer game to their range. It is expected to sell at $£ 21.30$.

POLYPHONIC KEYBOARD

We made a few errors in this article last month. To start with we credited the design to Tim Orr, when in fact Tony Keene of Arak should have received the accolades.

In addition to this we missed out the Buylines, which contained the details of the all-important designs kit from Arak Sound. Our apologies to them for our omission. For the missing details please consult the Arak ad on page 97 of this issue.

COURSE REGISTER

New from NCR, yes the cash register people, is their 'Basic Electronics Course With Experiments'. The 430 page paperback is a self-study course in both electronics theory and practical application.

The book is intended for use with an equipment kit including something called an op amp designer and, unfortunately, an oscilloscope. Unfortunately, because the sort of person likely to want to use this book is just the person who will not have a scope and probably doesn't know where to borrow one.
Although a scope is
necessary for some experiments, it is possible to cover most of the work without one. Arm yourself with the necessary components, a breadboard, a multimeter and if you can lay your hands on one, a function generator and you're away.
The book is a useful introduction to basic electronics with sections and written tests covering everything from simple atomic structure to transistor amplifiers. Don't cheat by looking up the answers.

The NCR Basic Electronics Course With Experiments costs £6.95.

news digect
 is reversed for flow soldering.

PCB EYE POSTS

You can use Vero Electronics miniature terminal assemblies to attach scope probes to PCBs, or use them as input/output stations.
The unique spring design allows the terminals to be inserted into plated through boards without damage to the hole plating. The terminals will remain in place when the board

Components can be fixed and replaced using the eye at the top of the terminal. The sintered glass bead has a recommended working temperature of $475^{\circ} \mathrm{C}$ and the terminals have a solder tinned finish.
For further details of the miniature terminal assemblies, contact Vero Electronics Ltd, Industrial Estate, Chandler's Ford, Eastleigh, Hampshire SO5 3ZR.

 could help semiconductor manufacturers boost their yields of the latest complex, high component density silicon chips.
Production of the latest generation of semiconductors demands critical handling during diffusion and oxidation processes. The new silicon boats, already in use in America, have several advantages over the conventional quartz boats. These include purity of the metal, four times that of quartz, and the lifetime of silicon, at least ten times that of quartz.

In addition, silicon boats will not devitrify, creating particles which can fuse into oxides causing yield losses. They can also be cleaned in HF solutions without degradation and minimum slot enlargement. As they have the same thermal coefficient of expansion as the slices they carry, warpage problems are eliminated. Rigidity is maintained up to $1400^{\circ} \mathrm{C}$.
For further information contact Micro-Image Technology (Engineering) Ltd, Greenhill Industrial Estate, Riddings, Derby DE55 4DA.

Measure Resistance to 0.01Ω At a Price that has no resistance at all

New, Elescompercsiv Digital Multimeter M1200B USA

(1)

*FULLY GUARANTEED FOR 2 YEARS

THE ULTIMATE IN PERFORMANCE - MEASURES RESISTANCE TO 0.01 OHMS,VOLTAGE TO 100 MICROVOLTS, CURRENT TO 1 MICROAMPS AT LOWEST EVER PRICE!

FEATURES

- $31 / 2$ digits $0.56^{\prime \prime}$ high LED for easy reading
- $100 \mu \mathrm{~V}, 1 \mu \mathrm{~A}, 0.01 \Omega$ resolution
- High input impedance 10 Megohm
- High accuracy achieved with precision resistors, not unstable trimpots
- Input overload protected to 1000 V (except 200 mV scale to 600 V)
- Auto zeroing, autopolarity
- Mains (with adaptors not supplied) or battery operation-built-in charging circuitry for NiCads
- Overrange indication
- Hi Low power ohms, Lo for resistors in circuit, Hi for diodes

	SPECIFICATIONS:
DC Volts	Range $200 \mathrm{mV}, 2 \mathrm{~V}, 20 \mathrm{~V}, 200 \mathrm{~V}, 1000 \mathrm{~V}$
	Accuracy $1 \% \pm 1$ digit, Rasolution .1 mV
	Overload protection 1,000 volts max
AC Volts	Accuracy $1.5 \% \pm 2$ digits, Resolution .1 mV
	Overload protection 1000 V max, 200 mV scale 600 V
dC Current	Range $2 \mathrm{~mA}, 20 \mathrm{~mA}, 200 \mathrm{~mA}, 2 \mathrm{mmp}$.
	Accuracy 1\% ± 1 digit, Resolution 1 Microamp
	Overlogd protection -- 2 amp fuse and diodes
AC Current	Range $2 \mathrm{~mA}, 20 \mathrm{~mA}, 200 \mathrm{~mA}, 2 \mathrm{mmp}$
	Accuracy $1.5 \% \pm 2$ digits, Resolution 1 Microamp
	Overload protection -2 amp fuse and diodes
Resistance	Range 20, 200, 2K, 200K, 2 Meg. 20 Meg .
	Accuracy $1 \% \pm 1$ digit, Resolution .01 ohms
Environmental	Tempp coefficient 0° oto $30^{\circ} \mathrm{C} \pm .025 \%^{\circ} \mathrm{C}$
	Operating Temp 0° to $50^{\circ} \mathrm{C}$ Storage -20° to $60^{\circ} \mathrm{C}$
General	Mains adaptor: 6-9 Voits @ 200 mA (not supplied)
	4C size batteries (not supplied)
	Size $81 / 4 \times 5 \% \times 21 / 4 \quad$ Weight $21 / 2 \mathrm{lbs}$.

SPECIFICATIONS:
Range $200 \mathrm{mV}, 2 \mathrm{~V}, 20 \mathrm{~V}, 200 \mathrm{~V}, 1000 \mathrm{~V}$ Accuracy $1 \% \pm 1$ digit, Resolution .1 mV Overload protection 1,000 volts max Accuracy 1.5\% ± 2 digits, Resolution .1 mV verioad protection 1000 V max, 200 mV scale 600 V Range $2 \mathrm{~mA}, 20 \mathrm{~mA}, 200 \mathrm{~mA}, 2 \mathrm{amp}$.
Accuracy $1 \% \pm 1$ digit, Resolution 1 Microamp Overload protecion 2 amp fuse and diodes verload protection - 2 amp fuse and diodes Range 20, 200, 2K, 200K, 2 Meg. 20 Meg.
Accuracy $1 \% \pm 1$ digit, Resolution .01 ohms
Operating Temp 0° to $50^{\circ} \mathrm{C}$ Storage -20° to $60^{\circ} \mathrm{C}$ Mains adaptor: 6.9 Volts @ 200 mA (not supplied) Size $81 / 4 \times 53 / 4 \times 21 / 4 \quad$ Weight $21 / 2$ Ibs.

At $£ 55, \mathrm{M} 1200 \mathrm{~B}$ is the best buy among DMM’s currently available. Its 0.01 ohms resolution allows you to detect shorted windings in coils, transformers or motors. It is also useful in checking low contact resistance in switches, relays or connectors. Poor solder connections can also be spotted. The low power ohms function permits accurate measurements of in circuit resistance without forward biasing semiconductor junctions.
You have been waiting a long time for a digital multimeter with all these features at a price like this. Now its yours.
Also available from retail shops:
Audio Electronics,301 Edgware Rd,London W2 Z \& I Aero Services, 85 Tottenham Court Road

| To: Maclin-Zand Electronics Ltd | ET18 |
| :--- | :--- | :--- |
| 1st Floor, Unit 10, East Block | | London W. 1

*AGENTS WANTED
Elenco precision Sole UK Distributor

ME

Maclin-Zand Electronics Ltd 38 Mount Pleasant, London WC1XOAP Tel.01-837 1165 or Hemel Hempstead 10442) 832966 Telex. 8953084

WATFORD ELECTRONIGS

ILP MODULES 15-240 WATTS

We are now slockists for these world famous fully guaranteed (2 years guarantee on all modules) Pre amps. Amplifiers \& Power Supplies
HY5 Preamplifier Input, magnetic pickup 3 mV , ceramic 30 mV . Output: Mains 500 mV HY30 Amplifier Kit. 15 Watts into 8Ω, extremely easy to construct. Output 15 W RMS Distortion 0.1% at 15 W Freq. $10 \mathrm{~Hz}-16 \mathrm{KHz}$. Supply $\pm 18 \mathrm{~V}$

HY50 Hi-Fi Amplifier Module. 25 Watts 8Ω. Input Sensitivity 500 mV . Output 25 W RMS Distortion 0.04% at 25 W . Freq. $10 \mathrm{~Hz}-45 \mathrm{KHz}$. Supply $\pm 25 \mathrm{~V}$

Price: $£ 8.18$
HY120 Amplifier Mödule - 60 Watts 8Ω. Input sens. 500 mV . Output 60 W RMS Distortion 0.04%. Freq. $10 \mathrm{~Hz}-45 \mathrm{KHz}$. Power Supply $\pm 35 \mathrm{~V}$
HY200 Hi-Fif Disco Amplifter Module - 120 Watts 8 . Input sens. 500 mV : 218.08 th Freq. $10 \mathrm{HZ}-45 \mathrm{KHz}$. Power Supply $\pm 45 \mathrm{~V}$. Size $114 \times 100 \times 85 \mathrm{~mm}$
HY400 (Big Daddy) Amplifier Módule - 240 Watts 4Ω, Ideal for High Power Disco or P.A.
 Price: E38.60末
P̄OWER SUPPUES
PSU36 - Drives $2 \times$ HY30s $\mathbf{~ P S U . 4 4}$ PSU50 - Drives $2 \times \mathrm{HY} 50 \mathrm{~s} \cdots \ldots . \mathbf{E 8 . 1 8}^{\mathbf{E 8 . 4 4}}$ PSU70 - Drives $2 \times \mathrm{H} 120 \mathrm{~s} \ldots \mathrm{E} 14.58 \star$ PSU90 one HY200

ETI Project Parta availabl for: Click Ambush, Guitar Effect Unit. Sond SAE
5 p for list.

ULTRASO TRANS-

TRANS-
450p亩 per
$\xlongequal[93]{ } \quad \frac{230}{4018}$

PSU180 $2 \times$ HY200 or one HY400 \quad| E25.42 |
| :--- |

3WITCHEE\# TOGGLE: 2A. 250	$\begin{aligned} & \text { SLIOE 2COV: } \\ & \text { YADPDT } \end{aligned}$
SPST 280	1 A DPDT c/over 18p
DPST 34p	1/4A DPOT 13
CDPDT 34p	4 pote 2way 24 p
4 pole on/ OH + 54 p	PUEW EUTTON
SUENIN TOOGLE	\$prosp loend
SP changeover 5ep	SPST on/0tt 60p,
SPST on/oft 86	
SPST biased Emp	bPIMilature
OPDT 6 sags 700	Mon Lockling
OPDT contre oty 780	
DPOT Biesed 115p	$\begin{array}{ll}\text { Push to Maike } & 15 p \\ \text { Push Break } & \\ 250\end{array}$
notalry: Mako your own multiway Siwich.	
Adiustu ble Stop Shatung Assembly. Aocom.	
8 reak Before Make Waters. 1 pole / 12 way $2 p / 6$ way. $3 p / 4$ way. $4 p / 3$ way. $6 p / 2$ way	
Spacer and Screon ${ }^{\text {a }}$	
ROTARY: (Adpurtude stop)	
1 pole $/ 2$ to 12 way, $2 \mathrm{p} / 2$ to 6 way 3	

\section*{vDU Hardware} | AY- 31013 |
| :--- |
| AY- 31015 |
| S. F9936464E | SFFF96364

SFS80

Sio2 | SFS8810 |
| :--- |
| SN |
| SN 75450 | SNT5450

SN7545
SN75452 SN75552
SN 75454
SN SN75454
TMS6011 $\begin{array}{ll}\text { TMS } 6011 \\ \text { UHF Motulator } & \left.\begin{array}{l}\mathbf{6 3 . 5 0} \\ \mathbf{E 2 . 5 0} \\ \hline\end{array}\right)\end{array}$

Wide Bancwidan Moduator
 Full Asciil KEYBOAARD. Lon guart Ready-built, rested full technical de

HAM CRACKLING

If you're into amateur radio and constantly being blamed for every snap, crackle and pop of interference on neighbours television sets, then the Radio Society of Great Britain have just done you a favour. They have published a 'Television Interference Manual,' so that you can tackle the problem without blood pressure (yours or your neighbours) rising.

Spurious-radiation and strong-signal interference are covered, as are problems in transmitter design which may cause interference. If you've spent a small fortune on your $\mathrm{Hi}-\mathrm{Fi}$ and CW or SSB inter ference is making your life a misery, the chapter on audio breakthrough might interest your local radio ham. A useful data and reference section covers filter design.

The RSGB's Television Interference Manual by B. Priestley (80 pages) costs $£ 1.35$

RC CHANGES

If you're thinking of building the radio control transmitter featured in our May issue, these component value changes will interest you.

R15,17 150k
C2,5,14 47n

FALL-OUT BLEEPER

After the next world war, the High Street will probably be slightly more radioactive than it is now. Pocket radiation meters might be the 'in' fashion.

With that in mind, no doubt, Andrex Radiation Products AS of Copenhagen have introduced a new version of their successful personal radiation monitor
The new model is lighter and smaller than its predecessors, without any loss in perfor mance.

The monitor remains on continuously, producing an intermittent reference bleep to confirm operation and battery condition. The more radiation there is about, the faster the little box bleeps. Sensitivity is from $1 \mathrm{mR} / \mathrm{h}$. Power is from a readily available 1.5 V battery lasting 3-6 months.
Weighing in at 80 g , one of the lightest of these units on the market, it can be slipped into a pocket or clipped on to a belt The monitor is aimed at personnel working in and around X -ray or isotope equipment or with on-site radiographic inspection gear.

The Andrex monitor will continue working even after exposure to extremely high and dangerous levels of radiation.

You can find out more about the Andrex pocket radiation monitor from its British suppliers, Andrex NDT Products (UK) Ltd, 12 Trafalgar Way Bar Hill, Cambridge CB3 8SQ

93 SERIES		VERDBDARO 0.1 0.15	TRANSISTORS		$\begin{aligned} & \text { 'BFRBO } \\ & \text { 'BFR81 } \\ & \text { BFX29 } \end{aligned}$	$\begin{aligned} & 30, \\ & 30 p_{0} \\ & 3 \mathbf{3 0} \end{aligned}$	$\begin{aligned} & \text { IIIII } \\ & \text { TII } \end{aligned}$
${ }_{9301}$	180p	21/ (copper clad)	$\begin{array}{ll} A C 126 & 25 p \\ A C 127 / 8 & 20 p \end{array}$				
9302	175p				BFX30	34 p	T110
9308	316p		AC176	${ }_{25 p}$	BFX84/5	30p	
9310	275p	31/4 $\times 5^{\prime \prime}$ 56p 60p	AC287/8	25p	BFX86/7	30p	IP
9311	275p	21/2x $17{ }^{\prime \prime}$ 180p 150p	AF $116 / 7$	300	BFx88	30 p	
9312	1600	$31 / 4 \times 17^{\prime \prime} \quad 2300^{190 p}$	AD149	70p	BFW10	${ }^{90 p}$	TIP
9314	$165 p$	$41 / 4 \times 17^{\prime \prime} \quad 2800-$	AD161/2	45p	BFF50	22p	
9316	225p	Pkl of 35 pins 30p	AUl07 2	200p	BFY51/2	22p	TP1
9321	225p	Spot tace cutter 85p		11p	BFY56	33p	TiP
9322	150p	Pin insertion tool 9 99p	${ }_{\text {BCliog }} \mathrm{BC} 109 \mathrm{C}$	$11 p$	8 FY 90	90 p	
9334	225p	Vero wiring pen	BC109C	$13 p$	BRY39	$45 p$	
9368	200 p	Plus Spool 325p	$\mathrm{BCl}^{8} 117$	20p	$85 \times 19 / 20$		TIS
9370	200p	Spare spoot (wire) sop	-8C147/8	90p		20p	TI
9374	200\%	Combs $7 p$ each.	-8C149	10p	BU104	225p	21
LINEARIC:		M150398 750p	-BC159	11p	- BU105	190\%	z1
AY 1 -0212	600p	NE531 110p	-BC169C	12p	BU109	25p	2
*AY1-1313	668p	NE54OL 3000	- Cl 172	12p	- BU205	200p	2
AYY1-1320	3200	NE543K 225p	BC171/8	17p	- BU208	200p	N
*AY 1-5050	$200 p$	NE555 25p	BC179	18p	-8U406	145p	2 N
AY5-1224A	240p	NE556 70p	-8C182L	10p	MJ481	200p	2
-AY5-1315	600p	NE5618 425p	BC182/3	10p	MJ491	3000	
AY5-1317A	636p	NE5628 425	-BC183L	10p	M 32501	225p	2
CA3019	80 p	NE565 1300	BC184L	11p	M J2955	100p	
CA3046	70p	NE566	BC187	30p	MJ3001	225p	
-ca 3048	225p	NE567 175p	BC212L	11p	-MJE340	65p	
CA3080E	42 p	- NE571 425p	-8C212/3	11p	MJE2955		
CA3086	48 p	SAD1024A ¢14	BC213L	11p	MJE29		
CA3089E	225p	SFF96364 1150p	- $\mathrm{C}^{\text {C214L }}$	12p	MJE305s	700	
-CA3090aO	375	SN 76003N 175p	BC461	36p	-MPF 102	45p	
CA3130E	${ }^{100 p}$	SN76013N 140p	BC471/8	$30 p$	MPF103		
CA3140E	70p	SN76018 1400	BC5 1617	50p			
CA3160E	100p	SN76013NO 1200	-8C5478	16p	MPF105	400	
CA3161E	150%	-SN76023N ${ }^{\text {che }}$	BC548C	16p	MPSA06	30p	
CA3162E	450p	SN76023ND 120p	-BC549C	18p	-MPSA12	50p	
FX209	750p	"SN76131 110p	-BC5578	$18 p$	-MPSA13	50p	
ICL7106	850 p	SN76477 250p	- C $^{\text {C }}$ 5588	16p	MPSA20	60p	
ICL8038	340p	-SP8515 760p	- ${ }^{\text {c }}$ 5599	$18 p$	MPSA56	320	
LF356P	95	TAA621 275p	BCY70	$18 p$	MPSU06	83p	
LF358P	75p	TBA64181 225p	8CY71/2	22p	MPSU56	78p	
Lm301A	30p	TBA651 200p	BC131/2	50p	OC28	130 p	
LM311	120p	TBABOO 90p	BD135/6	$54 p$	OC35	1300	
Lм3318	200p	TBA810 1000	8 C 139	68p	R2008B	200p	
LM319	200p	TBA820 90p	8 C 140	60p	R2010日	200p	
LM324	70p	TCA4500A 250p	BD242	70p	TIP29A	$40 p$	
LM339	75p	TCA940 175p	BOY 56	200p	T1P29C	55 p	
LM 348	95p	TDA1004 3000	8F200	320	$T_{\text {TIP }}$	48 p	
'LM377	$175 p$	TDA 1008 320p	-BF244B	${ }^{35}$	TIP30C	80p	
-LM 380	$75 p$	TDA1022 600	-BF2568	70p	TIP31A	58.	
-LM381AN	160p	TDA1034B 250p	BF257/8	32 p	TIP31C	$52 p$	
[MM389N	1400	TDA2020 320p	BF259	${ }^{36 p}$	TIP32A	csp	
LM 709	${ }^{36} \mathrm{p}$	TL071 70p	-BFR39	30p	TIP32C	8 p	
LM710	500	T1072 95p	-8FR40	30p	TIP33A	$90 p$	
LM725	3600	TL074 150\%	-BFR4 4	30p	TIP33C	114p	
LM 733	$100 p$	TL084 1300	-8FR79	30p	TIP34A	115 p	

-2N3706/7	
$\cdot 2 \mathrm{~N} 3708 / 9$	$3 / 9^{14 p}$
	12p
-2N3713	$300 p$
-2N3819	25p
- 2 N 3820	50\%
2N3823	70p
2N3866	90p
$\cdot 2$ N3903/4 ${ }^{\text {d }}$	
	$6^{18 p}$
'2N3905/6	
-2N4036	65p.
2N4058/9	
	12p
-2N4060	12p
-2N4061/	12
	$18 p$
-2N4123/	/4
	22p
-2N4125/	/6
	22p
-2N4289	200
-2N4401/	
	27p
2N4427	90p
2N4871	600
-2N5087	27p
-2N5089	27p
-2N5172	27p
2 N 5179	${ }^{90 p}$
2 N 5191	${ }^{83 p}$
2N5194	90p
2 N 5245	$5^{40 p}$
2N5296	Sb^{55}
'2N5401	1 50p
-2N5457/8	
	40p
-2N5459	4 40p
-2N5460	40p
2N5485	5 4ap
2N6027	7 48p
2N6247	$7180 p$
2N6254	4 130p
2N6290	85p
2N6292	2 65p
3N128	120p
3N140	100p
3N141	110 p
3N201	1100
40290	250p
40360	$40 p$
40361/2	12 45p
40364	120p
40408	70p
40409	65p

40410	$65 p$
40411	$300 p$
40594	$17 p$
40595	$105 p$
40673	$75 p$
40841	$99 p$
$40871 / 2$	$90 p$
DIODES	

UART
AY-3. 101
AY-5-101

\qquad

ZENERS
$2.7-33 \mathrm{~V}$
400 mW $2.7 \mathrm{~V}-33 \mathrm{~V}$
400 mW
> triacs 150
 AY-5-1013
M6402 500
400
500 CHARACTER GENERAA
$3257 A D C$
MCM 657 PLASTIC
3A 400 V
3A 500 V
6A 400 V
6A 500 V
8A 400 V
8A 500 V
12A 400 V
12A 500 V
16A 400 V
16A 500 V

> THYRISTORS

VDU SYSTEM PARTS

Convert your TV into a VDU using Thompson-CSF TV CRT Controller IC. 16 line by 64 characters, cursor management, on screen, line erasing, com SF CRT Controller IC SFF 963641150 p RO-3-2513 650p. AY-5-1013 400p. 71301 ROM 700p.
PE Memory Mapped VDU System Kit $£ 49$ inc. VAT. (Reprint of PE articles 75p) Elekterminal VDU System Kit $\mathbf{f 6 9}$ inc. VAT COUNTER, CLICK ELIMINATOR, TACHOMETER, 5A VARIABLE POWER SUPPLY. Send SAE for the list. S100 Busboard £12

news

digest.

BABANI DUO

Two new books from the Bernard Babani stable dropped through our letter box recently. The 'Beginners Guide to Digital Techniques' by G. T. Rubaroe covers everything from an introduction to the binary number system to applications such as digital computers and voltmeters.

As digital techniques spread into the hobby market, versatile and inexpensive digital

SCOPE CUTS

Telequipment have announced price reductions for two of their oscilloscopes. (Don't they have inflation in Harpenden?)
The S61, a single beam 5 MHz general purpose instrument, is down to £156.
The D32, a battery/mains dual trace portable scope with a bandwidth of 10 MHz , is now selling at $£ 406$.

Both scopes are from Tektronix UK Ltd, Beaverton House, PO Box 69, Harpenden, Herts.

ICs are becoming available to the home constructor

This compact paperback's 62 pages pack in chapters on number systems, codes, combinational and sequential logic, analogue to digital and digital to analogue conversion and finally applications.

Next from Bernard Babani we have the 'Second Book of CMOS IC Projects' by R. A. Penfold.

The publication of this second book of CMOS projects was prompted by the success of ' 50 CMOS IC Projects' by R. A. Penfold, published in 1977.

The second book provides a selection of useful, mostly simple, circuits, with the minimum of overlap between the two books.

In 122 pages, four chapters deal with CMOS basics, multivibrator projects, amplifier, trigger and gate projects and special devices.

The Beginners Guide to Digital Techniques is available for 95 p and the Second Book of CMOS IC Projects for $£ 1.50$ both from Bernard Baban (publishing) Ltd.

HOT SPOTS

These tiny, self-adhesive tabs from Carel Components could save your bacon (or your expensive ICs).

Tecknouledgey far sule

ALL TUNER KITS $£ 3$ carriage

Digital Dorchester All Band Broadcast Tuner：LW／MW／SW／SW／SW／FM：stereo

LW／MW／FM LCD Digital Freguency Display－

 Or use it as a servicing aid LCD display reads direct frequency in $\mathrm{kHz} / \mathrm{MHz}$ ，or\qquad
Mark III FM only tuner，employing the same degree of care in
easy construction．MW／LW reception via a ferrite rod antenna．
Electronics onsy（PCB and all components thereon）$£ 33.00+£ 4.12$ VAT
$\begin{array}{lll}\text { Complete with digital frequency readout／clock－timer hardware } & £ 99.00+£ 12.32 \text { VAT } \\ \text { Complete with MA1023 clock／timer module with dial scale } & £ 66.00+£ 8.25 \text { VAT }\end{array}$
Hardware packages are avalable separately if you wish to house your own designs in
professional case structure．Please deduc

PW SANDBANKS PI METAL LOCATOR \quad Radio and Audio Modules：The biggest range／best specs：

home constructor kits，we offer the pulse inductlon＇Sandbanks＇．Now with inject－ ion molded casing for greatly improved VHF MONITOR RX WITH PLESSEY IC 4／9 channel version of the PW design buYO 8 ple crystal filter with matching TOYO 8 pole crystal filter with matching range to cover bands from 40 to 200 MHz Complete module kit $£ 31.25+£ 3.90$ vat ． ETI REMCON RADIO CONTROL full set of supporting hardware from a for details．and watch our ads Yor further
levels of sophistication．New 5804 include pin AGC loop board＇．5801：£17．45＋£2．18vat $5803: £ 19.75+£ 2.47$ vat $5804: £ 24.95+£ 3.18 v a t$ ．Frequencies in $40-180 \mathrm{MHz}$ on appcn． EF5402 4 stage varicap with TDA1062，compound FET／Bipolar worthy successor to the 5400 ．$£ 10.75+£ 1.34$ vat
he 5402 is available centred on a wide range of trequencies from 30 MH
8319 319 RF and mixer stages．New temperature compensated oscillator for wide ranges of ambient temperature $£ 13.45+£ 1.68 \mathrm{vai}$ 252 Complete Larsholt FM tuner less stereo decoder，$£ 26.50+£ 3.31$ 7253 Stereo FM tunerset from Larsholt witl，FET head．（as 7252） 11223 Piperfistereo decoder．The very best．£19．95＋Ez．19val obsolete as it now deserves to be．$£ 12.50+£ 1.56$ vat

news of developments in RC products．
OSTS：Remember all OSTS stocks are obtained from BS9000 approved sources．．your assurance that all devices are very best first quality commercial types．Some LPSN TRL is presently in great demand，so please check by phone before ordering．

חL：Standard AND LP Schottk

ID 4000 with the divide by 100 prescalar．FM resolution is
100 kHz ，AM 1 kHz ．Sensitivities better than 10 mV

м Complete kit $£ 19.50$＋＊$^{+} £ 1.56$ VAT．Built and tested version $£ 24.00{ }^{+\times £ 1.92 \text { VAT }}$ Various other DFM systems described in our catalogue part 2 －including a one chip
solution to providing digital display of $F R G 7 \mathrm{kHz}$ dial，combined with clock／timers etclen
\qquad

\qquad
\qquad
\qquad

※ 2	¢	Ñ	\％	N等去	N	N	N～		
ざびび	WWめ゙m	每出安安	フָ＇：		\because				

COMPONENTS for Radio and Audio ICs，HMOS etc．
The list is too tong to attempt here，but AMBIT specializes in all types o semiconducter for radio reception，including devices operating from DC to 5 GHz New low cost SBL 1 diode ring mixers（equiv case MD108 etc）－first with HMOS fets，now with a PCB for DC amplifier，and offset sense and protection relay for speakers．See catalogue and updates for most info，pse nd an SAE for information on anything you cannot find in catalogu Radio ICs cost＋vat Stereo ICs cost＋vat AF power ICs cost＋va $\begin{array}{lllllllll}\text { CA3089E } & 1.94 & 24 & \text { MC1310P } & 1.50 & 19 & \text { LM380N } & 1.00 & 12 \\ \text { CA3189E } & 2.45 & 30 & \text { LA }\end{array}$ $\begin{array}{lllllllll}\text { CA3189E } & 2.45 & 30 & \text { UA758 } & 2.20 & 27 & \text { TBA810AS } & 1.09 & 14 \\ \text { HA1137W } & 2.20 & 27 & \text { CA3090A } & 2.75 & 34 & \text { TDA2002 } & 1.95 & 24\end{array}$ $\begin{array}{lllllllll}\text { SN76660 } & 0.75 & 9 & \text { HA1196 } & 3.95 & 49 & \text { TBA820M } & 0.75 & 9\end{array}$ TDA1090 3.3542 HA11223 4.3554 from the general list： TDA1083 $1.9524 \quad$ KB4437 $4.35 \quad 54$ LEDs：all colours and TDA1220 $1.4017 \quad$ KB2224 $2.75 \quad 34$ low prices $\begin{array}{lllll}\text { SL6640 } & 2.75 & 34 & \text { Preamp ICs／switches } & \text { 2SJJ48／2SK134 HMOS } \\ \text { MC3357 } & 3.12 & 39 & \text { HDA }\end{array}$ $\begin{array}{lllllll}\text { HA1197W } & 1.40 & 17 & \text { TDA1029 } & 3.50 & 44 & 9.90+f 0.80 \text { vat（Pair）} \\ \text { Signal fets／transistors and }\end{array}$ $\begin{array}{lllllll}\text { MC1496 } & 1.25 & 16 & \text { TDA1074 } & 4.14 & 52 & \text { TOKO COILS \＆FILTERS }\end{array}$

$\frac{5}{2}=\frac{1}{4000}$

 40004001
4002
4006
Current news：Work continues apace on our HMOS PA kit，and by the time this is published we expect to be about to launch the product In a styie that matches the Mark ill systen he unit uses separate transformers and powel supplies，and includes a DC offset sensing circuit combined with slow switch on using a relay．We introduce the HyperFi FM IF with this
dvert－and a separate leaflet is available on request with an SAE．All new pricelist sevision also available with an SAE The Mullard DC controlled tone／volume and swith ICs with a＇more Terms：CWO please．Account facilities for commercial customers OA．Postage 25 p per order．Minimumi credit invoice for account customers $£ 10.00$ ．Please follow instructions on AT．which is usually shown as a separate amount．Overseas customers welcome please allow tor postage etc according to desired shipping method．Access facilities for credit purchases． Hours／phone：We are open from $9 \mathrm{am}-7 \mathrm{pm}$ for phone calls．Callers fiom 10 am to 7 pm ．Administrative enquiries 9 am

Hobby

 Electronics
SATELLITE POWER

Have you ever considered what a wasteful object the Sun is. All that energy going to waste when we're so short of it here on earth. This feature investigates the research that's currently being carried out into using orbital power stations to provide for our future needs.

TOOLS

Back to basics. If you are still considering starting out into electronics for your hobby then, do not miss this feature on tools, what to look' for and what to avoid.

COMPETITION

It's about time we had a competition, so keep an eye open for this one it's a real humdinger.

INJECTOR/TRACER

Another in our series of do-it-yourself test equipment. Anyone who has had to repair audio/radio equipment will testify to its usefulness. A very simple project taking only an hour or so to build but saving many hours of frustrating fault-finding.

HOME SECURITY UNIT

Well, we couldn't call this project a mere burglar alarm. It boasts a 'panic button', fire alarm option and as a further bonus it will drive either a mechanical bell or the electronic siren we're incorporating into the design.

VARIABLE RESISTORS

Concluding our short series on resistors. We take a look at all types of variable resistors, LDRs, VDRs. Thermistors and of course Potentiometers.

CONSTANT VOLUME AMPLIFIER

This natty little unit is primarily intended for tape-recorder, and audio enthusiasts in general. It will accept a wide range of inputs and will preserve the 'dynamic range' of your recordings.

LED TACHOMETER

We're quite proud of this project. It has a range of 0-10 000 RPM shown by the progressive illumination of 30 LEDs. (It won't cost as much as you think.) The circuitry is very advanced but not at the expense of cost or complexity, indeed it will still cost less than most commercial units.

CLEVER DICK

Next month we're trying out a little experimënt. Judging from the response to our Technical Query service it seems like a good idea to have some sort of agony column. Our resident technical expert will attempt to answer any questions or problems that may arise from your hobby. Obviously it doesn't have to be specifically about articles in $H E$, (it would be nice though, we're not that clever). We won't be entering into any personal correspondence, we can't afford the stamps. So mark your letters 'Clever Dick's Problem Page', and we'll see what we can do.
We know its a silly name, perhaps you can suggest a better one).

[^1]
ETI STRING THING TRANSCENDENT DPX

Abstract

This, the latest design from the Tim Orr stable, is a versatile digital polyphonic multi-voice keyboard instrument. Designed to have a minimum of wiring, it does not suffer from the signal breakthrough caused by the wiring jungles which some other instruments demand. The machine features a touch sensitive (dynamic) keyboard action, and the keyboard can be 'split'. It is also polyphonic (chording) and has several voices. Included in the design is a CCD choraliser to give the machine a "several at once" facility.

The machine was designed to be a versatile keyboard instrument with a choice of several voices and characteristic waveform envelopes with a split keyboard and a dynamic option. Most string machines, organs or electric pianos usually involve a large amount of cables which can cause significant signal breakthrough and lots of wiring problems. With this in mind the machine was designed to have a bare minimum of wires, and even so, most of the resultant wiring is accomplished with manufactured 14 way ribbon cable connectors.

Layout

Ease of access is also very important and so the physical layout was given special attention. Merely by removing the lid and the base all the electronics become accessible. A multiplexed system was used, as this kept the wiring to a bare minimum and also enabled a relatively sophisticated dynamic and attack/sustain network to be employed. The note and envelope generation is contained on two

BUYLINES

Powertran Electronics are supplying a complete kit of parts for this project at $£ 365+15 \%$ VAT. Delivery by Securicor is $£ 2.50$ extra. Everything is included in the kit, down to the last nut and bolt. They even give your a plug.
printed circuit boards using a conventional top octave generator and divider network. The envelope generators are programmable so that they will produce either a characteristic string / brass or a piano contour. Five audio outputs, one per octave are produced from these boards which are then routed to the tone control and voicing section. The filtered sound is then processed by the ensemble section which turns the relatively dull electronic signals into interesting 'natural sounding' signals by a process of complex phasing

Multiplexed Keyboard

Multiplexing is a method of conveying several signals down one transmission line. The signals are time division multiplexed, that is each channel of information is sequentially transmitted down the line. The sequence is repeated rapidly so that, at the receiving end, the signal can be unscrambled (demultiplexed), and reconstituted so as to resemble the originally transmitted set of signals.

The keyboard has 61 notes and so a six bit binary code, which has a possible 64 decoded states, is used to address the multiplexer. In this way it is possible to interrogate each key on the keyboard, (this is done every millisecond) and to determine whether the key is released, pressed or in the process of being depressed This generates a lot of information which tells us which keys are being pressed and by doing some timing, how hard they have been pressed. This information can then be used to control the volume of each note in proportion to the key velocity. The harder you play the note the louder it sounds. The advantage of using a multiplexing system is that all the information passes down one wire, so the wiring is relatively simple being one wire plus an address bus rather than 61 wires. It also enables the one piece of electronics to do all the dynamic computation for all the notes. Also, as only one dynamic circuit is involved, the note to note difference in dynamic performance should be greatly reduced and it is practical to use a relatively complex dynamic law.

Playing Computers

As the key-pressed information is in a binary code it should be possible to interface the machine to a microprocessor system, such that a musical sequence can be memorised on say the lower two octaves and then replayed whilst you plan an accompaniment on the top three octaves

The multiplexed signal, once it has passed through whatever processes have been selected, is then demultiplexed on the master note generating board. If, say, you press middle C on the keyboard, a voltage appears at the demultiplexer output that controls the middle C note, thus causing the note to be generated.

Keyboard Multiplexer

The job of the keyboard multiplexer is to look at every note on the keyboard once every millisecond and to convey this information to the dynamic and demultiplexing system When a key is released it is connected to -5 V , when it is pressed it is connected to +5 V and when it is in the process of being depressed, (neither up or down), it is connected to OV . Thus by examining the information from each key it is possible to determine what is happening on the keyboard; which notes are being played and those that
are not. Also, by timing the duration of the OV period for each key, it is possible to determine the key velocity, (how hard the key was played), and to produce a signal whose volume is controlled by this. Loud notes have a timing of about 4 mS , whereas soft notes take 30 to 100 mS . The soft end of the range is very indeterminate and needs to be compressed.

Circuit Operation

A 6 bit code, generated by the dynamic network is used to address the keyboard multiplexer. This 6 bit code has a possible $2^{6}(64)$ decoded outputs which is, therefore, sufficient to fully address the 61 notes of the keyboard. The scan time for the keyboard is approximately 1 mS and so the time taken interrogating each note will be one sixty fourth of this, approximately 16 uS per note. The multiplexer is made up out of 8×8 way multiplexers, the address inputs of which are driven by the three least significant bits of the 6 bit code. The three most significant bits are used to drive a BCD to decimal decoder, the lowest 8 outputs of which are used to sequentially enable the multiplexers. Thus the 6 bit code sequentially interrogates each of the 61 notes and sends the keyboard information (MPI) down to the dynamic network.

Adjusting bias voltage on the delay lines (chorus board). In each case the top trace is the input signal. The lower trace indicates (a) bias too negative (b) bias too positive (c) correct bias, symmetrical clipping.

Power supply, voicing control panel and chorus board

Mechanical Construction

Assemble the two keyboard printed circuit boards with the exception of the key contacts.

Stick these two printed circuit boards onto the keyboard spacer and hold in position with some nuts and bolts whilst the glue dries. There should be a $0.1^{\prime \prime}$ gap separating the two boards. Next thread the-bus bar lengths through the holes in the contact blocks. Make sure that these
bars are clean (give them a rub with a tissue), and try not to handle them as this will make them slightly greasy. Use gloves or tissues to hold them Make certain that the gold plated wire of the contact block is in between the bus bars. Apply some glue to the bases of the contact blocks and position them onto the PCB, making sure that the bent ends of the wire pass through the holes provided. Line up the blocks and
then place a weight on them whilst the glue dries. Next solder in the board to board links, solder the bent ends of the contact blocks, solder together bus bar sections and wire them to +5 and -5 V as shown in Fig. 4. Position the entire keyboard assembly onto the keyboard chassis such that it overhangs the punched holes by $0.2^{\prime \prime}$ (Fig. 5). Mark the fixing holes through the PCB with a pencil and drill them out with a

Fig. 1. General view of the digital polyphonic multivoice synthesiser system.

Keyboard with multiplex boards fitted. These carry the 61 contact assemblies through which the two bus bars pass. Connection to the. dynamics board is made by DIL plug-on ribbon cable (bottom right).
suitable hole diameter for the self tapping screws. Screw the keyboard assembly into position and then check each contact wire and plunger When the key is not pressed there should be about one twentieth of an inch gap between the wire and plunger. The wire can be bent with long nose pliers to obtain this spacing. Make sure that when each note is pressed the contact wire makes a firm contact with the +5 V bus bar. If there are any dirty contact problems, then use a non residue cleaning spray to clean the contact blocks. I usually use Freon T TF1 12 (trichlorotri fluoreothane) which, although I can't pronounce it, seems to work OK.

Chorus-Ensemble Unit

Natural sounds tend to be more interesting than those generated electronically. This is mainly due to the fact that natural sounds have a great many changing parameters that make our 'forever analysing' ears sit up and take notice of them. Electronic sound structures can be given added interest by processing them with an ensemble unit (Fig. 6). This is a complex phasing unit that produces three layers of constantly moving comb frequency responses. The notches in the comb frequency response cancel out any harmonics that occur at that same frequency, but because the notches are continually moving this cancellation is not static. The overall effect of this on the sound structure is similar to the effect of several acoustic instruments trying to play the same piece of music, where a complex process of cancellation and addition is continually in operation. The ensemble unit simulates another parameter in the synthesis of the sound giving one more accoustic clue to its real identity.

Fig. 2. The principle of the multiplexing/

Fig. 3. Wiring and mechanical operation of the keyboard contact block.
 $0.1^{\prime \prime}$.

encemablo unit.

HOW IT WORKS

The Op amps IC1, 2, 3 form a couple of three phase oscillators. Each oscillator is made up out of three integrators wired up in a loop. The overall DC loop phase is inverting, so it will never become latched up, but the circuit is inherently unstable and so will always oscilate. The outpu waveforms are trapezoidal a sycle behind output being one third the oscillators is set to run at 0.6 Hz , the other at 6 Hz Pair of outputs are mixed together and filtered by a simple RC lowpass filter. This removes most of the harmonics of the trapezoids producing reasonably pur sinusoids. The resulting waveform is a large 0.6 Hz sinewave with a smaller 6 Hz sinewave superimposed on top. This is then used to frequency modulate a fas running oscillator which in turn deter mines the position of the comb notches. The larger the modulation depth, the more pronounced is the ensemble effect A milder effect is obtained by reducing the power supply voltage to the thre phase oscillator (by introducing ZD1, mine the supply itudes. litudes.
that (IC4, 7, 10), are based around TL 081 op amps. These
have the same pinout as a 741 but are very fast having a slew rate of $13 \mathrm{~V} / \mathrm{uS}$. This enables them to be used as relaxation oscillators running in this case at requencies of generating pulse waverorm with rast emp device that combines a Schmitt rigger and an integrator in the feedback route. The oscillation frequency is conrolled by the modulation signal because his robs a varying amount of charging current from the 10 p timing capacitor.
Complex phasing is produced by pas ing the audio signal through the three delay lines, the output signals of which are mixed together. The time delay is controlled by the clock frequency which is calculated using the formula,

Time delay $=\frac{512}{\text { Clock frequency }}$
A clock frequency of 100 kHz will give a delay time of 5.12 mS , and 200 kHz gives 56 mS . The delay lines can be thought of every clock pulse the analogue signal is sampled and shifted along one position in
the register. After 512 clock periods, the original input signal appears at the outpu and so it can be correcty claimed that produced The signal is not continuous, but is quantized into time intervals. Thi can result in a phenomena known a aliasing, which sounds rather like rin modulation, whereby the audio signal intermodulates with the clock (sampling) frequency. This generates a new set o signals (sidebands), some of which may fold back into the audio spectrum and cause annoyance. A lowpass fiter (IC 15) is used to prevent these aliasing effects by band limiting the input signal to 7.5 kHz . The signals that appear at the delay line outputs (IC5, 8, 11, pins 3 and 4), are quantized in time and are restored to their former continuous shape by thrd orde). There is a preset control for each delay line that provides a DC bias level. This is adjusted so that the SAD 512 D produce an unclipped signal at its output. The preset has enough range to enable clipping to occur on both positive and negative signal excursions but should be adjusted so that it is intermediate between these two extremes.

The continual modulation of the three me delays and the subsequent mixing of he signals produces a constantly moving oques. This turns a relatively flat elecronic sound into something that has a chorus or ensemble characteristic about which can be used to enhance the tring, brass and even the piano output The ensemble effect can be turned off and the original single only can be heard by use of electronic signal routing on the PCB
This is achieved by using a couple of ET's, (Q4,5) as voltage controlled witches, which obtain their command ignals from the control panel. The output signal level can be controlled by both a manual volume control and by an optioal swell pedal.
This device uses a lamp photo-cell variable optical slit to produce a foot pedal is rotated, more light falls onto the photocell via the slit and this reduces the cell's resistance. The life-time and smoothness of operation of this system is much better than that of a conventional pot with a rack and pinion linkage mechanism.

PROJECT: String Thing

Fig. 7a (above) and 7b (be ofw) show the component overlays for the two boards
which go to make up the keyboard and multiplexer.

PARTS LIST

Keyboard Multiplexer

RESISTORS all ${ }^{1 / 5} \mathrm{~W} 5 \%$
R1-11 2k7
CAPACITORS
C1, 24 u 716 V tantalum
SEMICONDUCTORS
C1-8 4051B
C9 74LS42
MISCELLANEOUS
Keyboard multiplexer PCBs A and B, har-
monics contact assemblies (single pole), 5 monics contact assemblies (single pole), 5
octave length of bus bar 1.4 mm diam., 9 off 16 pin DIL sockets, one off 14 pin DIL socket, cable clamp (8 way

Ensemble Chorus Unit. RESISTORS all $1 /$ W 5 $\%$

R1, 2, 3	1M5
R4-9	680k
R10,11,75,86	150k
R 12,13,14.31	
32,33,49,50	
51	330k
R15, 16,17,23	
34,35,36,42,	
52,53,54,60.	
87	15k
R18,24,37,43,	
55,61	33k
R19,38,56	47R
R20,29,39,48,	

R21,25, 26,40 $44,45,58,62$
63.83
$R 2241$

R22,41,59,68 10
73,74 100k R27,28,46,47, 64,6 64,65
$R 30,70$
R $31,32,33$
R31,32,33,49.
50,51 330k $\begin{array}{ll}\text { R67,72 } & \text { 330k }\end{array}$ R69.71 10M $\begin{array}{llll}\text { R69.71 } & 47 k & \text { C12,21,29 } \\ \text { R } 76.77 & 12 k & \text { C14,23 }\end{array}$

| R76,77 | $12 k$ | C14,23,31 |
| :--- | :--- | :--- | :--- |
| R79 | 27 k | C15 |

$\begin{array}{lll}\text { R80.81 } & 27 \mathrm{k} & \text { C15,24.32 }\end{array}$ R84.85 6k8 R84,85 4R7 R84,85

C4 1,42	100 u 25V electrolytic
C45	47 p polystyrene
C46	1 uO
C47,48,49	220 p ceramic

SEMICONDUCTORS

IC $1,2,3,15$	MC1458
IC4,7,10	TL081
IC5, 11	SAD512D
IC6,9,12,13,14 741C	
Q1-3	BC169C
Q4-5	BF244C
D1-9	1.N4148
ZD1,2	SV1400mW.

MISCELLANEOUS
Chorus board PCB, PC pins, 9 way connector 15 off 8 -pin DIL sockets.

Fig. 5. Block diagram of the ensemble unit.

Frequency response of lowpass filters used in the chorus board.

Clock waveform of the high frequency oscillators usel in the chorus board, sweep the delay frequency $=200 \mathrm{kHz}$.

Frequency response of the chorus unit. This pattern is constantly changing with the notches sweeping up and down.

Two of the three control voltages that sweep the delay lines in the chorus unit.

Cambridge Learning Enterprises

SELF-INSTRUCTION COURSES

UNDERSTANDING DIGITAL ELECTRONICS

 In the years ahead the products of digital electronics technology will play an important part in your life. Calculators and digital watches are already commonplace. Tomorrow a digital display could show your vehicle speed and fuel consumption; you could be 'phoning people by entering their name into a telephone which would automatically look up their number and dial it for you.These courses were written by experts in electronics and learning systems so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being faster and more thorough than classroom learning. You work at your own pace and must respond by answering questions on each new piece of information before proceeding.

After completing these courses you will have broadened your career prospects and increased your fundamental understanding of the rapidly changing technological world around you.

Digital Computer Logic and Electronics is designed for the beginner. No mathematical knowledge other than simple arithmetic is assumed, though the student should have an aptitude for logical thought. it consists of four volumes - each A4 size - and serves as an introduction to the subject of digital electronics. Everyone can learn from it - designer, executive, scientist, student, engineer

Contents include: Binary, octal and decimal number systems; conversion betweem number systems, AND, OR, NOR and NAND gates and inverters; Boolean algebra and truth tables; De Morgans Laws; design of logic circuits using NOR gates; R-S and J-K flip flops; binary counters, shift registers and half adders.

FLOW CHARTS \& ALGORITHMS help you present: safety procedures, government legislation, office procedures, teaching materials and computer programs by means of YES and NO anwsers to questions.

The Algorithm Writer's Guide

explains how to: define the questions, put them in the best order and draw the flow chart, with numerous examples shown. All that students require is an aptitude for logical thought. Size: A5, 130 pages. This book is a MUST for those with things to say.

NEW from Cambridge Learning Enterprises
 O- LEVEL ENGLISH LANGUAGE

More and more jobs require a C-GRADE PASS, and over 250,000 people fail to get this every year. Will one of them be in your family? This new course, written by experts in a style that's serious yet fun to read, shows you how to mark your own work and compare it with the work of other people in their exam year. Set your own pace and assess your results immediately with no postal delays: watch your speed and standards improve. In Book 1 learn how you will be marked on COMPREHENSION, Book 2 covers SUMMARY,
PUNCTUATION \& SPELLING, and Book 3 coaches you in the principles of COMPOSITION, Size: 3 A4 volumes totalling 250 pages.

CAMBRIDGE LEARNING ENTERPRISES, UNIT 11 RIVERMILL SITE, FREEPOST, ST. IVES, HUNTINGDON, CAMBS. PE17 4BR, ENGLAND
TELEPHONE: ST, IVES (0480) 67446.
proprietors: dayridge ltd. reg. office: Rivermill lodge, st. ives
REGD. IN ENGLAND No. 1328762

Design of Digital Systems is written for the engineer seeking to learn more about digital electronics. Its six volumes - each A4 size are packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters and simple arithmetic circuits, and finally to a complete understanding of the design and operation of calculators and computers. Contents include: Book 1 Octal, hexadecimal and binary number systems; conversion between number systerns; representation of negative numbers; complementary systems; binary multiplication and division.
Book 2 OR and AND functions; logic gates; NOT, exclusive-OR, NAND. NOR and exclusive-NOR functions; multiple input gates; truth tables; De Morgans Laws; canonical forms; logic conventions; Karnaugh mapping; three-state and wired logic
Book 3 Half adders and full adders; subtractors; serial and parallel adders; processors and arithmetic logic units (ALUs); multiplication and division systems.
Book 4 Flip flops; shift registers; asynchronous and synchronous counters; ring, Johnson and exclusive-OR feedback counters: random access memories (RAMs) and read only memories (ROMs).
Book 5 Structure of calculators; keyboard encoding; decoding display data; register systems; control unit; program ROM; address decoding; instruction sets; instruction decoding; control programe structure.
Book 6 Central processing unit (CPU); memory organization; character representation; program storage; address modes; input/output systems program interrupts; interrupt priorities; programming; assemblers; computers; executive programs; operating systems and time sharing.

Four volumes Digital Computer Logic \& Electronics at $£ 6.50 \mathrm{inc}$ Six volumes Design of Digital Systems at $£ 10.50$ inc p \& p Three volumes O-Level English Language at $£ 6.50$ inc \mathbf{p} \& p The Algorithm Writer's Guide at $£ 3.40$ inc $p \& p$
If your order exceeds $£ 14$ deduct $£ 2$ from your payment
Price includes surface mail anywhere in the world, airmail extra GUARANTEE If you are not entirely satisfied your money will be refunded

Please allow 21 days for delivery
Cambridge Learning Enterprises, Unit 11 Rivermill Site, I FREEPOST, St. Ives, Huntingdon, Cambs. PE17 4BR, I England.
Please send me the following books:
..... sets Digital Computer Logic \& Electronics at $£ 6.50, \mathrm{p} \& \mathrm{p}$ sets Design of Digital Systems at £10.50, p\& p included . O-Level English Language at $£ 6.50 \mathrm{p} \& \rho$ included The Algorithm Writer's guide at $£ 3.40, \mathrm{p} \& \mathrm{p}$ included
Name
Address
Adde
.
I enclose a * cheque/PO payable to Cambridge Learning Enter- I prises for $£$..
Please charge my *Access/Barclaycard/Visa/Eurocard/
Mastercharge/Interbank account number .
Signature. * delete as appropriate.
Telephone orders from credit card holders accepted on
I 0480-67446 (Ansafone). Overseas customers should send a
I bank draft in sterling drawn on a London Bank, or quote credit I
I card number.

EDITORIAL ENQUIRIES TO ETI

ETI editorial staff will answer readers questions about RECENT articles in any of our publications, either by telephone or through the post.

Telephone enquiries can only be answered on Monday afternoons, after 2.30 pm . This is to avoid confusion with our companion magazines, HE and CT. In addition this gives the editorial department the rest of the week to turn out the magazine! Accordingly this will be strictly adhered to, and we apologise for any trouble you may have in contacting us.

Postal problems are answered as soon as possible, but MUST contain an SAE if you want a reply outside the pages of ETI. Short letters which are phrased so as to lend themselves to YES/NO type answers will probably bring you a faster reply.

There are a lot more of you out there than there are of us in here, so please be patient with us if our service cannot always be return of post. Complaints about this service should be made, in writing, to the editor at the usual address which is (we've moved!):-

145 Charing Cross Road, London WC2H 0EE.

$\mathrm{Ni}-\mathrm{Cd}$ CHARGER

Not content with giving you the best value for money, we now come up with a good method of saving it!

IF YOU OWN OR use battery powered equipment then the price of batteries and the monotonous regularity with which replacements are necessary must surely cause manical depressions as well as burn holes in the proverbial pocket.

One answer is to buy Nicad cells - although you may have to arrange a second mortgage initially, because they are pretty expensive (about three times the cost of yer average cell). Their great advantage is that they are rechargeable and can have a working life of well over 500 recharges. Just think of all that money you could save!!!

Being Constant

Nicads need to be charged with a more or less constant current. This current is derived as a function of the capacity of a cell and the length of time being charged. To clarify this point we can take for an example a cell - size AA (equivalent to U11, HP1 1 etc). Capacities of cells vary from manufacturer to manufacturer but an AA sized nicad has an approximate capacity of 0.5 Ah . Simply speaking, if 500 mA is drawn from the cell it will provide power for one hour. If 50 mA is drawn then the cell will provide power for 10 hours. Similarly, to recharge the cell to full capacity (assuming 100\% efficiency) it would take 500 mA for one hour or 250 mA for two hours, etc.

Problems Problems

This is where the basic problem lies. Because of the make-up of the cell, if an overcharge is given eg 250 mA for 3 hours, then permanent damage can be caused to it.

So, at any given charging current the cell must be disconnected at the time of full charge, or so it would appear. It is, however, a little known fact that at currents less than $\frac{\mathrm{C}}{16}$ (where C is the capacity of the cell . then no permanent damage can occur, no matter how long the cells are connected to the charger. The ETI

nicad charger is designed with this criteria in mind. It will comfortably charge up to six cells in series (of the same type) at a rate of $\frac{c}{16} \mathrm{amps}$

The values given for R2-1 1 were theoretical, derived from Ohm's law. The charging current can be checked easily by connecting an ammeter across the Output (the current remains constant whatever the load)
and take readings with each resistor in circiuit and change if necessary.

Building Up To It

Construction is simple - there are only 6 components in the main part of the circuit (not counting the current setting resistors R2 to R11).

Note the transistors Q2 needs a reasonable heatsink.

HOW IT WORKS

One of the most convenient methods of obtaining a constant current is to use a voltage regulator and a current limiting resistor, as in Fig. 1.

R1 determines the current. If a five volt regulator is in use then a constant 5 V is held across it. From Ohm's law the current $I=\%$. The common connection is essentially a negative feedback loop, acting to maintain a constant current through the resistor and into the load.

A slight disadvantage of this sort of circuit is the power dissipated from the resistor. With 5 V across it and say a current of 500 mA through it, the power P.
$=1 / 2$ watts.
This means the use of a large and quite expensive resistor.

The circuit used in the ETI Nicad Charger uses a fairly standard type voltage regulator, formed by Q1 and Q2, but the current limiting resistor R2 (Fig. 2) only has the V_{BE} of Q 1 across it -0.6 volts for silicon transistors. If the V_{BE} of Q 1 drops then its collector voltage increases, increasing the base voltage of Q2, whose emitter voltage therefore increases (and vice versa if $V_{B E}$ of $Q 1$ increases). A negative feedback loop has been formed, which maintains a relatively constant voltage across R2, of OV6.

The current through R2 is also the current through the load so Ohm's law gives the correct resistance for the required current, identical to that already discussed, but with the advantage that lower power resistors can be used (due to the lower voltage), even at high curtents.

$$
\begin{aligned}
\text { eg. } P=I V & =500 \mathrm{~mA} \times 0.6 \text { volts } \\
& =0.3 \text { watts. }
\end{aligned}
$$

It is simply now, a matter of choosing the required current and calculating the resistance.

	TABLE 1		
Position	Resistor	Current	Type of cell \& Capacity
1	R2	9 mA	150 mA Hour Button cell
2	R3	17 mA	280 mA Hour Button cell
3	R4	5.5 mA	90 mA Hour PP3
4	R5	75 mA	1.2 A Hour PP9
5	R6	11 mA	0.18 A Hour AAA
6	R7	31 mA	0.5 A Hour AA
7	R8	125 mA	2 A Hour C
8	R9	250 mA	4 A Hour D
9	R10	375 mA	6 A Hour
10	R11	625 mA	10 AHour

Table 1. Showing switch SW1 positions related to cells under charge.

Fig. 1. A Standard method of providing a constant current, using a voltage regulator, resistor and feedback.

Fig 2. Improved constant current source.

PARTS LIST

RESISTORS
(all $1 / 4 \mathrm{~W}, 5 \%$ except where shown)

R1	$1 K$
R2	$68 R$
R3	$39 R$
R4	$120 R$
R5	$10 R$
R6	$56 R$
R7	$22 R$
R8	$5 R 6$
R9	$2 R 71 / 2$ wat
R10	1R8 $1 / 2$ wat
R11	1RO $1 / 2$ wat

CAPACITORS
C1
1000u 25 V
SEMICONDUCTORS

Q1	BFY 50
Q2	TP 33A
BR1	1Amp 50V

MISCELLANEOUS
FS 1 + Holder
TR1
12 V 1 Amp mains trans-
former
SW1
1-Pole 10-way Rotary
Switch
Suitable connections to cells
Case to suit.

Fig 3. Circuit cliagram for the ETI Charger. Resistor values are given in the text for the charger resistors.
per hour, therefore enabling them to be constantly trickle charged and kept at full capacity day and night. If the cells are partially discharged on connection they will take up to 16 hours to reach full capacity.

PP3 and PAP9 type nicads can also be charged but only one at a time, unlike the lower voltage types
ETI

Fig. 4. Component overlay for the Ni-Cd Charger design.

WHAT A BIND!

KEY:
I: The bit of chocolate you thought you'd leave for later.

2: Coffee stains (instant).
3: A useful-sized bit of stiff paper to stop the window from rattling.

4: Rough calculations for your new combined egg timer/laser cannon project.

5: ETI makes a fair soldering iron stand.
6: The dog insisted on carrying your copy to you along with your slippers.

Half our orders for binders are repeats: we think that says a lot for their quality. At $£ 3.20$ all inc. you get a great deal of peace of mind too!

ETI Binders
145 Charing Cross Road, London WC2H 0EE

CALCULATORS

ScIENTIFIC

TEXAS T159 together with PC100B (Complete as manufacturer's specifications)
285.00

TEXAS/HP Accessörities available TJEXAS T159 (New Card prog 960 prog steps of 100 mem) $\underset{£ 156.50}{ }$
 *TEXAS T 157 (Key Proq 8 mem. 150 Keystrakes/50 Prog Steog
 ${ }_{*}^{*}$ TEXAS 42 MBA (10 Oig Fin/ Slat Prog 12 mem 32 keystrakes)

 TEXAS T150LCD (Sci/Suat. 2 Con Mems) £28.30 TEXAS T125 LCD (Sci/Stais) £18.50

- TEXAS T153 with Applied Starishics \#TEXAS 1159 mith PCD 100 C and Applied Statistics $\begin{array}{r}\text { £80.00 } \\ £ 305.00\end{array}$

```
TEXAS T159 Calculator (complete as manufacturer's spec.,
extre set of 40 Blank Preg Cards with wallet, etc.
```

- *CBM 9190R (as 4190 R but with 9 memories) $\$ 27.50$
*CEM Pro 100 (72 Step Prog)
*HP 29 C (as 19 C but no Printer
*HP 29C (as 19C but no Printe

H+1P27 (10 Mem Sci/fin/Stal)
HHP $1 E$ (New Sci replaces HP21)
WHP67A (C. Prog 224 Steps 26 M
WHP97A (Fully prog with Prineer)
CASIO AO200

plus Date Calendar)
CASIO FX3 100 (LCO Sci Sta/OP/Rec.)
CASIO FX8000 (as above + Siop Watch/Alarm)
-CASIO FX202P (127 Step Sci Progs Con Mem) ... $\begin{aligned} & \text { E27.73 } \\ & \text { CASIO FX501P }\end{aligned}$

CASio (.). LCO display Prog 256 Sieps 22 Mem $E 64.00$
CASIO Prog Adapter-perriits Progrs to be recorded on to standard
casserte recorders for replay on to Casio FX501P/FX502P at
later stage

THE COMMODORE PET COMPUTER with 8 K bytes RAM 2001-8 A complate personal computer that operates anywhere by simply plugging into Main supply. Allows communications directly from BASIC to IEEE -488 standard devices - Cassette. Video Display Unit and Keyboard built into PET Fully guaranteed Warranty by CBM complete only $£ ⿷ 50$ PET 2001-T6N £675

MOUNTAINDENE
22 Cowper St., London, EC2

Hello everybody - we're back!

SEIKO 20% OFF!

LATEST MODELS - LOWER PRICES
Japanese versions - similar to UK models listed. GG003 Chronograph (RRP £69.50) . $\mathbf{E 5 5 . 5 0}$ GD007 Chronograph ($£ 92.50$) £74.00 FW007 Alarm/Chronograph (£1 15) . £92.00 GC003 Programmable Alarm / Chrono ($£ 135$) $£ 108.00$ GH001 Solar Alarm / Chrono (£155) £124.00 FX003 Memory Bank (£130) £104.00

LCD PROGRAMMABLES

With non-volatile stores and memories and almost infinite programmability (using FA-1]

CASIO

FX-501P
128 steps
11 memories 5 levels 0 RRP $£ 59.95$
£49.95
FX-502P 256 steps 22 memories 10 levels () RRP $£ 79.95$ £69.95

FA-1 Adapto
£19.95
51 scientific functions. Conditional jumps, etc 1300 hours battery life. $3 / 4^{\prime \prime} \times 23 / 4^{\prime \prime} \times 5 \frac{1 / 2^{\prime \prime}}{}$ Optional FA-1 permits programme/data storage on standard cassette tape recorder for re-entry later. Typical storage / re-entry time 9.16 seconds.

LATEST SGIENTIFIGS

CASIO FX-68

Display
Leatherette wallet

R24.95
£19.95

37 scientific functions including trigs, logs exponentiations, etc. Statistical - standard deviations. Polar to rectangular, R-P and sexagesimal to decimal conversions. Pi, cube root, 6 levels of parenthesis. Full memory. 500 hours battery. A very convenient $3 / 16^{\prime \prime} \times 21 / 8^{\prime \prime} \times 35 / 8^{\prime \prime}$

FX-80 Specification as above pius ENG key. 4000 hour battery life from two AA size batteries.
 FX-48 (£18.95) £14.95.FX-58 (£29.95) £24.95. FX-2500 (£24.95) £19.95. FX-3100 (£28.95) £23.95. FX-8000 (£35.95) £29.95.

CASIO CALCULATING ALARM CLOCKS CQ-81 (£18.95) £14.95. CQ-82 (£24.95) £19.95. AQ-2000 (£20.95) £24.95. Melody 80 (£29.95) £25.95

4-year Lithium battery outlasis most solar watches. Chronograph measures net, lap and 1 s and 2 nd place times from $1 / 100$ second to 6 hours. Constant LC Display of hours, minutes, seconds, am/pm and day. (12 or 24 hour sys tem). Automtic day, date, month and year calendar. Dual time facility (12 or 24 hour system) Stainless steel encased. Mineral glass face. Wate resistant to a depth of 66 feet (2at). Backlight, s / s bracelet with easily removable links.

EXCEPTIONAL YALUE

In our opinion this watch represents the finest value for money available today. At Christmas the $46 C S-27 B$ had a RRP of $£ 89.95$ and you would reasonably expect to pay at least that amount for a reasonably expect to pay at least that a
watch of this quality and specification.

Constant LC Display of hours, minutes, seconds $\mathrm{am} / \mathrm{pm}$ and day (12 or 24 hour system) Automatic day, date, month and year calendar. 24 hour alarm, optional hourly chime facility. Chro nograph measures net, lap and 1 st and 2 nd place times from $1 / 100$ second to 6 hours. Genuine stainless steel case (not "finish") only 7.8 mm thick. Mineral glass face. Guaranteed water resistant to 100 feet ($3^{\circ} \mathrm{at}$). Backlight.

UNBEATABLE QUALITY AND VALUE FOR MONEY FROM JAPAN - WHY SETTLE FOR LESS?

> Most CASIO products available from stock. Send 25 p for illustrated brochures of this superb range of watches or calculators (both on request).

Prices inciude VAT, P\&P. Send cheque/P.O. or phone your ACCESS or BARCLAYCARD number to

THMPUS :mwew wixw

tliboor stl
 How to order: Make cheques etc payable to ETI Book Service. Payment in sterling only please. Orders should be

 sent to: ETI Book Service, PO Box 79, Maidenhead, Berks. All prices include P\&P..

Beginners Guide to Electronics Squires $£ 2.65$
Beginners Guide to Transistors Reddihough £2.65
Electronic Measuremént Simplified C. Hallmark $£ 2.20$
Electronics Sell Taught Ashe, $\overline{\mathbf{E 4}} \mathbf{4 0}$
Beginners Guide to Integrated Circuits Sinclair $£ 3.15$
Principles of Transistor Circuits S. Amos $£ 4.75$
Understanding Electronic Circuits Sinclair $£ 4.10$
Understanding Electronic Components Sinclair $£ 4.10$
Beginners Guide to Radio King $£ 3.15$
Beginners Guide to Audlo Sinclair £3.10

$=$ COOKBOOKS ${ }^{2}$

TV Typewriters Cookbook $£ 7.75$
CMOS Cookbook $£ 8.20$
Active Filters $£ 11.30$
IC Timer Cookbook $£ 7.50$
IC Op-Amp Cookbook $£ 10.00$
Video Cookbook $£ 7.00$
TTL Cookbook $£ 7.55$
The Basic Cookbook $£ 4.00$ inc. p/p

=APPLICATIONS

Advanced Applications for Pocket Caiculators J Gibert £4.20
Build Your Own Working Robot D. Heisman $£ 3.70$
Electronics and Photography R. Brown $£ 2.30$
Fire and Theft Security Systems B. Weis $£ 2.00$
How To. Build Proximity Detectors and Metal Locators J. Shields $£ 3.90$
How To Build Electronic Kits Capel $\mathbf{£ 2 . 1 0}$
Linear Integrated Circuit Applications G. Clayton £5.40
Function Circuits Design \& Applications Burr Brown $£ 15.95$
110 Electronic Alarm Projects R. M. Marston £3.45
110 Semiconductor Projects for the Home Constructor R. M. Marston £3. 25 110 Integrated Circult Projects for the Home Constructor R. M. Marston $£ 3.25$ 110 Thyristor Projects Using SCRs R. M. Marston £2.95
Handbook of IC Circuit Projects Ashe $£ 2.30$
Practical Electronic Project Buildlng Ainslie and Colwell $\mathbb{C 2} .45$

'TV ÁND ḢI-FI

.Audio Handbook G. King $£ 6.50$
Cassette Tape Recorders J. Earl $£ 5.25$
Solid State Colour TV Circuits G. R. Wilding $£ 6.35$. i - -Fi Loudspeakers and Enclosures Cohen $£ 8.20$
How To Build Speaker Enclosures Badmateff $£ 3.90^{\text {n }}$
Master Hi-Fi Installation King £2.80

LOGIC

Logic Design Projects Using Standard IC's J. Wakerly $£ 5.10$ Practical Digital Design Using ICs J. Greenfield $£ 12.50$
Designing With TTL Integrated Circuits Texas Instruments $£ 9.05$
How To Use IC Circuit Logic Elements J . Streater $£ 3.65$
110 COSMOS Digital IC Projects for the Home Constructor R. M. Marston £3.20 Understanding CMOS Integrated Circuits R. Melen £4.00 Digital Electronic Circuits and Systems R. M. Morris $£ 3.50$ MOS Digital ICE G. Flynn $£ 5.10$

COMPUTING

Microprocessors and Microcomputers B. Soucek $£ 18.80$ Microprocessors D. C. McGlynn E8.40
Introduction to Microprocessors Aspinall $£ 6.40$
Beginners Guide to Microprocessors $£ 4.7 \overline{0}$
Beginners Basic Gosling $\mathbf{E 3 . 3 5}$

$=$ OP-AMPS

Applications of Uperational Amplitiers Graeme (Burr Brown) $£ 8.30$
10 Operational Amplifier Projects for the Home Constructor R. M. Marston $\mathbb{E} .95$ Experiments With Operational Amplifiers Clayton $£ 3.40$

Dēsigning With Öperational Ämplifiers Burs Brown $£ 16.65$
Operational Amplifiers Design and Applications G. Tobery (Burr Brown) $£ 7.40$ Op-Amp Circuit Design \& Applications I Carr $£ 4.00$

TEST INSTRUMENTS

The Oscilloscope In Use Sinclair $£ 3.10$
Test Instruments for Electronics M. Clifford $\mathbf{£ 2 . 4 0}$
Working With the Oscilloscope A. Saunders $£ 1.95$
Servicing With the Oscilloscope G. King $£ 5.60$
Radio Televiston and Audio Test Instruments King $£ 5.90$

=SERVICING \bar{G}

Electronic Fault Diagnosis Sinclair $£ 3.20$
Rapid Servicing of Transistor Equipment G. King $£ 2.95$
Tape Recorder Servicing Manual Gardner Vol. 1: 1968-70 £8.50
Vol. 2: 1971-74 £8.50
FM Radio Servicing Handbook King £4.80

COMMUNICATIONS

Communication Systems Intro To Signals \& Noise B. Carlson, £7.50 Digital Signal Processing Theory \& Applications L. R. Rabiner £23.80, Electronic Communication Systems G. Kennedy $£ 8.50$
Frequency Synthesis. Theory \& Design Mannassewitsch E23.40
Principles of Communication Systems H. Taub £8. 10

THEORY

Introduction to Digital Filteling Bogner ' $\mathbf{£ 1 0 . 2 0}$
Transistor Circuit Design Texas Instruments $£ 9.35$
Essentlal Formulae for Electrical and Electronic Engineers N. M. Morris $£ 1.65$
Modern Electronic Maths Clifford $£ 6.70$
Semiconductor Circuit Elements T. D. Towers $£ 6.40$
Foundations of Wireless Electronics M. G. Scroggie £4.45
Colour Television Theory Hudson $£ 6.20$

=REFERENCE

Transistor Tabelle (lncludes physical dimensions) £4.10
Electronic Engineers Reference Book (Ed. 4) L. W. Turner £27.70
Solid State Circuil Guide Book B. Ward Ė2. 25
Electronic Components M. A. Colwell $£ 2.45$
Electronic Diagrams M. A. Colwell $£ 2.45$
Indexed Guide to Modern Electronic Circuits Goodman $£ 2.30$
International Transistor Selector T. D. Towers $£ 6.00$
International FET Selector T. D. Towers £4.35
Popular Valve/Transistor Substitution Guide $£ 2.25$
Radio Valve and Semiconductor Data A. M. Bell £2.60
Master Transistor/Integrated Circuit Substitution Handbook $£ 5.60$
World Radio TV Handbook 1978 (Station Directory) $£ 8.00$
Radio, TV and Audio Technical Reference Amos $£ 24.85$
TV Technicians Bench Manual (New Ed.) Wilding £5.10

-MISCELLANEOUS

Integrated Electronics J. Milman $£ 7.90$
Microelectronics Hallmark $\mathbb{£ 3 . 9 0}$
Practical Solid State DC Supplies T. D. Towers $£ 6.20$
Practical Triac/SCR Projects for the Experimenter R. Fox $£ 2.25$
Printed Circuit Assembly Hughes \& Colwell $\mathbf{\varepsilon 2 . 4 5}$

Fallen behind recent advances?
Just starting out?
Need a decent reference book?
ETI Book Service provides an easy
way of getting your hands on the right title.

A FEW CHEAP

TRICKS!

Want a stable low voltage? Want to fire a thyristor without using unijunctions, or even make a thyristor? Whatever your semiconductor problem there is probably a cheap way round it.

When you look over all the circuits that are published in the time of one month, you might imagine you'd need several rooms just to hold all the semiconductors that are needed. It's not really so and the cunning experimenter can use several dodges to get by with a very limited stock indeed. There are several project designers, for example, who manage to test out their ideas using no more than two transistor types, a 2N2219 and a 2N2905. These are silicon switching transistors which look exactly alike and differ only in polarity - the 2219 is NPN and the 2905 is PNP. How's it done? Read on.

Fig. 1. Structure of a transistor. (a) The semiconductor sandwich, (b) connection of two diodes which gives the same readings when connected to resistance meters, (c) symbol (NPN illustrated).

Basically, a transistor is constructed like two back-toback diodes (Fig. 1), the difference being that both diodes form part of one crystal. We can, therefore, use a transistor to substitute as a diode. Which bit do we use? The collector and base terminals form one diode, a high reverse voltage diode which will pass quite large currents. Transistors of the 2N2219 variety will dissipate 0.8 W at the collector, so that their collector base diodes can be quite happily used in bridge rectifier circuits for up to 30 V supplies, keeping the emitter open circuit or shorted to the base.

A Bit Of Bias

The base-emitter diode, on the other hand, is much more of a small signal diode, more suited to low current, low

Fig. 2. Using the base/emittor junction of a transistor as a detector diode. The 1 M resistor keeps the junction slightly conducting, so increasing the sensitivity.
voltage work. One minor drawback is that you can't approach the small forward voltage of a germanium diode, but there's no law to say you can't apply a bit of bias, as in Fig. 2. This makes the base emitter diode into a good, sensitive detector. While we're on the subject of detectors, why not be different and use an emitter follower detector, as in Fig. 3? It's a darn sight more linear than a straightforward diode, and has a low output impedance and high input impedance as well.

The circuit is a simple one. A capacitor is connected across the emitter resistor of an emitter follower. The size of the capacitor should be such that the time constant of emitter resistor x capacitor is small compared to the time of an audio wave but large compared to the time of the

Fig. 3. The emitter-follower detector.

Fig. 4. Action of the emitter-follower detector. Capacitor C is charged by the current through 01 during the positive part of a cycle, but can discharge only slowly through R. The voltage across C follows audio frequency changes, but not radio frequency changes.

RF wave. Time constants of 10 to 100 uS are usually suitable for $A M$ radio circuits, so that a typical circuit might use 1 k emitter resistance and 20 n (that's 0.02 u capacitance. The action is also straightforward (Fig. 4). The positive RF wave makes the transistor conduct, so that C1 charges up to the positive peak of the wave. Because the time constant is large compared to the time of one RF wave, though, the voltage at the emitter drops only slightly as the wave goes through the remainder of its cycle and the transistor cuts off until around the peak of the next RF wave. The AF modulation, however, makes the peaks of the RF signal occur at different voltages, tracing out the audio waveform, so that the audio signal appears at the emitter, with very little trace of RF so that nothing much in the way of filtering is needed. The emitter-follower detector also has lower distortion than the conventional diode detector.

Transistor Zener

We're not finished with diodes, though. The baseemitter diode of most planar silicon transistors (and that means most 'modern' silicon transistors manufactured in the last 15 years) will act as a zener diode. The circuit of Fig. 5 shows how this can be checked. The voltage across the base-emitter junction will stabilise at anything from 7 V to 18 V , depending on the construction of the transistor, when power is applied. You don't need to keep a drawer full of zener diodes, just make these 2N2219's work for their living.

This zener diode action, incidentally, can cause some odd effects in circuits where a negative pulse is applied

Fig. 6. Conventional multivibrator circuit.
to the base of a transistor. Multivibrator circuits, for example, operating on voltages greater than 7 V , suffer from this. Theory says that the time period of the MV is 1.4CR(Fig. 6), because the capacitor always charges up from $-V$ to about $O V$ whatever the value of V. The reason is that when one transistor conducts its collector voltage shoots down by about V volts, and the capacitor coupling to the next base makes that base move from about $O V$ to $-V$. Since the transistor switches on again at just above OV, the capacitor always charges to half way between $-V$ and $+V$, no matter what the value of V is. That theory doesn't apply if the base-emitter junction zeners, because the voltage at the base will be clipped by the zener action. We find therefore, that the frequency of the MV increases as we increase the voltage, whatever the books say about it!

Want a stable value of low voltage? Try the circuits of Fig. 7. The voltage between collector and emitter of a transistor is always low when the transistor is bottomed, with the base positive (NPN transistor) and a load resistor limiting the amount of current that can pass between collector and emitter. With the transistor the conventional way round, the voltage between collector and emitter can go as low as 0.2 V , but even lower voltages can be obtained if the transistor is inverted, with the emitter connected through the load resistor to the positive line and the collector to the negative rail. This, for example, can be very useful for clamping circuits if a small DC 'offset' is needed, but care should be taken to keep the currents low. Transistors are much more easily damaged when they are operated this way round.

Paint-scraping Saves

A few circuits specify phototransistors, which aren't always easy to obtain and sometimes (shop around!) costly. Now there isn't much you can do to make

Fig. 7. Obtaining very low stabilised voltages (a) conventional method, (b) using an 'inverted' transistor for lower voltage output.

Fig. 8. Using a common-base amplifier. Note that the input capacitor must be of a very large value.
phototransistors out of modern silicon metal or plastic cased transistors, because light just doesn't pass through these materials. The old germanium transistors, like the OC72 series, were packaged in glass cases, however, and the cases then painted over. The reason for the paint is simple - any transistor junction will act as a light detector, so that a transistor in a glass case will be a phototransistor unless it is covered up! Scrape the paint off, and you have the phototransistor you need. Since old OC72's can often be got in lots at pennies, each, and the photo version, the OCP 72, seems to fetch nearly a pound, it certainly saves money to do some paint scraping!

Ever want to drive a transistor amplifier from a really low-impedance source? There aren't many home-made ribbon microphones around, but a moving coil loudspeaker makes a useful microphone apart from its low resistance of $3 R$ or so. Remedy here is to make use of the first type of transistor amplifying circuit that was ever used, the common-base circuit. In a common-base amplifier, the base is decoupled, with no signal input. The signal is fed into the emitter circuit, and taken in the usual way from the collector, using capacitors to keep the bias voltages correct. Advantages? There's voltage gain for a start, but the main advantage is that the input resistance, is very low, offering a better match to the low resistance of the 'microphone'. Incidentally, a transistor operated this way round will amplify and oscillate at higher frequencies than is usually possible in the normal (common emitter) configuration.

Phase Splitting

This is an example of using a transistor to match impedances, like a transformer. The other impedance -

Fig. 9. The transistor phase-splitter.

Fig. 10. Modified phase-splitter with equal output resistances.
transforming circuit is, of course, the well known emitter follower, with a high input impedance and low output impedance. If you need the phase splitter action of a transformer, but don't have a suitable transformer, don't get wound up, just try the circuit of Fig. 9. If you're driving signals into a low impedance of course, you may find that the difference between the impedance level at the collector and at the emitter causes bother (the impedance at the collector is equal to the collector load resistor, the impedance at the emitter is only a few ohms; roughly 25 ohms when the steady bias current is 1 mA). lo that case, another transistor added to the circuit equalises things a bit, as shown in Fig. 10.

You might think that the possibilities of the transistor were about exhausted; but we've only been using them. in ones so far. When we start using transistors in twos and threes, we can substitute a lot more devices.

Unijunctions

Unijunctions, for example. Who's got a set of unijunctions around? Useful little devices. In circuits like Fig. 11 they provide an oscillator which gives a pulse output ideal for firing thyristors. The wiley experimenter doesn't worry if the unijunction drawer is empty, though. He connects up the circuit of Fig 12, which does pretty well all that a single-package unijunction will do, with the additional advantage that the firing voltage can be variable.

The action is like this. Point B, where the base of $Q 1$ is connected to the collector of Q 2 is connected to a potential divider, resistors R1 and R2. For most applications, these resistors will be equal, using (typically) 47 k to 10 k values. The circuit will pass no current while the voltage at point A, the emitter of $Q 1$, is less than the voltage at point B, because Q1 is cut off (PNP.

Fig. 11. A unijunction oscillator. A negative pulse is obtained at A, a positive pulse at B, and sawtooth at C.

Fig. 12. A two-transistor equivalent of a unijunction.
remember), and it holds Q 2 cut off as well. When point A reaches a voltage around 0.5 V higher than the voltage at point B , though, Q 1 starts to conduct, and current starts to flow into the base of Q2, causing Q2 also to conduct. With Q2 conducting, the extra voltage drop across $R 1$ causes the voltage at B to drop, dragging the voltage of point A with it. If the, base current of Q1, is likely to be exceeded (as usually happens if there is a capacitor connected to point A), a small series resistor R4 (about 100R) is a good protective system. Note, by the way, that when a unijunction or this replacement is used in a timebase circuit, the value of the charging resistor, R3, must not be too low, otherwise the circuit can 'stick', not oscillating. A value of around ' 47 k is usually regarded as a safe minimum, so that if the frequency is controlled by a variable, a 47 k should be connected in series. The firing point of the unijunction substitute can be varied to some extent by making the voltage at point B variable, using a preset potentiometer, in place of R1, R2.

There is a limit, however, to the voltage range which can be used - if the voltage is too high, the circuit may not fire, if it's too low the circuit passes current continuously.

Another advantage, of course, of the circuit of Fig. 12 is that power transistors can be used. In this way, higher current pulses can be obtained than we can get from small unijunctions.

DIY Thyristor

You don't have to be stuck for lack of a thyristor, either. The circuit of Fig. 13 simulates the action of a thyristor, with the anode, cathode and gate connections as marked. With the 'gate' at cathode voltage, Q2 is shut off, so that its collector voltage is high. With the collector voltage of Q 2 high, the base voltage of Q 1 is also high. Since Q1 is a PNP type, having the base high means

Fig. 13. Using two transistors in place of a thyristor.

Fig. 14. The Darlington pair circuit - this behaves like one single transistor with a very high value of current gain.
keeping Q1 shut off. Now when the 'gate' lead is made more positive, so that Q 2 starts to draw current, the current through the collector of Q2 is drawn through the base of Q1, ensuring that Q1 conducts. This in turn means that the base of Q 2 is connected to the positive supply through the collector of Q1, keeping the pair of transistors switched on.

Don't expect to replace a large thyristor with this circuit, because the current between 'anode' and 'cathode' all passes through the base-emitter junctions. For medium-power transistors, such as the 2N2219 or BFY50 the absolute maximum base current is about 100 mA , and 50 mA is a safer limit. Power transistors such as the BD131, BD 132 will stand up to 0.5 A through the base-emitter junction. The circuit will, incidentally, switch off if a negative pulse is applied to the 'gate' from a low impedance. In this respect, the circuit is similar to that of a small thyristor, most of which can also be switched off in the same way.

Changing Bias

Transistors in bunches can also be used to solve awkward problems. Suppose you want to substitute a transistor with another type which needs much more bias current. One way round, of course, is to adjust all the bias circuits. A much easier method is to make use of two transistors, with one emitter driving the base of the

Fig. 15. A quasi-complementary output stage. The power transistors can both be NPN types.
next (Fig. 14). If the two share the same collector lead, this circuit is called the Darlington pair, but if the collector of the first transistor is returned directly to the power supply the circuit is simply an emitter follower feeding a common emitter amplifier. The difference between the two is that in the Darlington pair circuit, signal can feedback from the collector of Q2 through Q1 to the base of Q2, so reducing the voltage gain of the circuit considerably

A two-transistor circuit can also be used to 'create' a PNP power transistor from an NPN one. The circuit uses a PNP medium power transistor (such as the 2N2905) coupled to the NPN power transistor, so that the combination behaves like a PNP power transistor. Like all two-transistor circuits, though, there is a penalty in the form of a change in DC levels. When two NPN's (or 2 PNP's) are coupled in a Darlington circuit, the voltage between the first base and the second emitter is more than 1 V , when the circuit is correctly biased, instead of the $0.55-0.6 \mathrm{~V}$ we assume for a single transistor. For the PNP - NPN pair, the voltage is less than that for a single transistor - the base voltage of the power transistor will be 0.7 V or so above its emitter voltage, but the base voltage of the PNP transistor will be 0.6 V or so less, so that the DC input to the base of the PNP - transistor is very close to the DC emitter voltage of the NPN one. The base-emitter voltages of these two will never be identical because the NPN power transistor will always be passing a much larger current than the PNP transistor.

Tapehead Drivers

We're still not finished with the two-transistor arrange-

Fig. 16. A cascade stage. The load \mathbf{Z} can be a tuned circuit or a high-value resistor providing the bias resistors are chosen to suit.
ments. Fig. 16 shows what is called a cascade circuit, with a common-emitter transistor Q 1 driving a common-base stage O 2 directly coupled to it . This arrangement can also be treated as if it were one single transistor with the high gain of a common emitter transistor and the very high output resistance of a common-base transistor. It's an ideal arrangement for driving tuned circuits (because the high output resistance places very little load on the circuit) or tapeheads (because the high output resistance can ensure that the current signal into the tapehead is almost constant over a wide frequency range).

Circuits such as these described here make full use of transistors, exploiting more of their potential than the usual run of common emitter and emitter follower circuits. Make them work harder!

ETI

$7 \mathbb{R} A N D A M$

The exciting new TRITON Personal Computer

TRITON - An easy-to-buy computer

- All components available separately or in packs to suit your budget.
- 118 page manual with all you need to know.
- TV or monitor display.
- Modem tape 1/O or communications interface.

FIRMWARE OPTIONS ON TRITON

SYSTEM

Option 1: L4. 1 with 2 k tiny basic and 1 k monitor on main board £286.00
Option 2: L5. 1 with 2.5 k tiny basic and 1.5 k monitor on main board
£294.00
Option 3: L 6.1 with 7 k scientific basic and 1.5 k monitor. Resides off board and price includes motherboard system plus EPROM card all buffered and 56 k to go $£ 399.00$
Future options include floppy disc interface and controller.
EXPANSION BOARDS - available now!
Motherboard kit with 6 amp power supply, buffering and 2 sockets
£50.00
8k RAM card kit (using 2114 s) £97.00 EPROM card kit (with 2708's) £97.00 (without 2708 's)
£31.00
Motherboard case 13.00
All prices exclude VAT at 8% (currently). 118 page manual $£ 5+70 p$ P.\&P. Full details in Summer 1979 Catalogue available now at 40p.

LOW POWER SCHOTTKY

Hemmo.	Price	Hem mo.	Price	1 tem Mo	Price	Hemmo	Price	1 tem	Price
Sh741500N	18	Sh741554M	21		. 75	SiThis 195 MM	85	Su774LS325N	2.55
SuTalsolm	. 18	SM744855M	21	Sm7atsi39M	75	Smilssigh	1.20	SW7415326M	2.55
SH74LS02N	20	Sin74is63M	1.50	SN74LS145	1.20	SW715197M	1.20	S1774L5327M	2.55
Sm74is03M	. 18	SM741573M	. 35	SW7LLSI48	1.75	SM74LE221\%	1.25	SM7415352M	1.35
S1741504M	20	Sw74is74	40	SN74181511	. 55	SM74is240M	2.20	S1774LS353\%	1.50
SM741505M	26	SW74LS75N	. 46	Sn74LS153]	. 60	Sm7LS241N	1.50		. 6
SN74. SOBM $^{\text {S }}$	20	SW74LS76	35	SMT4LST54	1.80	SW74LS242N	1.50	SN74453664	. 65
SN74SL109\%	22	Sm741578M	. 35	SM74LSL55M	1.25	SM74LS2431	1.55	S177415367\%	65
Sm74ts10M	. 18	s*74L583AM	1.15	SW74LS156M	1.25	SN74L S244N	2.10	S474153683	85
S17741811/	26	. 317445854	1.10	sh7alsis7m	50	SM7415245N	2.00	SM7415373M	1.75
S174LS12M	25	S1674L586M	. 40	SM74LSS158M	.99	SM741524717	125	SN7415374M	1.70
SMTALS313M	55	Sw74 S90\%	65	sm7atsiben	1.15	S1174152481	1.53	SM744 53754	. 72
SW741514M	. 89	Sn74is91m	. 99	Sm74LS161M	1.15	Sw74t\$249n	1.30	SH17415377\%	1.75
SW74LSI5M	25	SW741592M	30	Smpalsicz	1.15	Sm74is251m	1.45	SW7415378M	1.38
Sm74is20	20	Sm74is93日	85	SWT4LSI63N	. 90	91774. 125331	125	SW74LS379\%	1.40
SN74LS21\%	26	SN74LS95an	1.20	SMTALSI64M	1.50	Sn7415257\%	1.40	SW74is331\%	3.55
SN74L522N	26	S1774596m	1.75	SWT4LS165\%	1.70	SM74! 52581	. 95	SW774 5386 H	57
Sm741526N	29	SW74LS107N	39	SW74iS166N	1.75		1.45	S177415390\%	1.50
5N74L527\%	35	Sm74LSLOM	. 39		1.55	SN74L5260M	39	S1774539314	1.50
Smalse8m	35	Sw74isil2w	39	SM7415169	1.95	SM741526114	3.50	SM7415395\%	180
SM7448304	25	Sm74isili3	. 44	SM74LS179\%	2.50	SN74LS266M	. 39	SM7415396\%	1.70
smpats3in	27	STMALSIIAN	4	SM74L5173M	2.20	SWM $4.5273 \mathrm{~N}^{\circ}$	185	5N7415398\%	2.75
SW74L533H	. 39	8N7415122\%	. 79	SM74LS174N	1.15	Sn74LS279\%	. 79	SN7415399\%	1.50
Smitis37M	29	Smpatsi23"	90	SW74LS175	1.05	Sm74LS28an	1.75	SM7415424n	4.50
Sm741538M	29	SM74LS 5124 N	1.50	SIT74LS181N	2.75	SW74LS883\%	1.00	SW74LS445*	125
Sn74isaon	25	SN7415125M	65	SM744.5190M	1.75	SIT74 S290M	1.80	SN7415447\%	125
SM74LS42M	. 79	Sm74isiz6	65	SM74LS191M	1.75	Sn74 LS293n	1.80	shisisagon	1.95
SW74IS474	. 95	SW74isi32	. 75	Sw74LS192M	1.45	SN741/2295an	2.20	S1774 5658 sm	95
Sm74is4ak	95	SM74S13314	. 39	SM74/5193\%	1.75	SM74LS29PK	2.20	S1774is669\%	95
S容4is49\%	1.09	Sm74isi36\%	40	SW74LS194NN	189	Sm74LS324M	1.00	SN74LS670N	2.70
Sm74LS51M	21					*malisbe Juy			

MICROPROCESSORS - see these prices!!
$Z 80 £ 8.8080 \mathrm{~A} £ 6.33$. TMS 9900 £30. SC/MPII £10. 8085 £12.95. $6802 £ 13.95 .6502$ £ $8.6800 £ 10$.
RAMS - see these prices!!
2114 (45ons, low power) £5.50. 4116 (30 ons) £8 EPROMS - Fairchild Top Sellers $£ 9.00$ plus programming facility.

UP GRADE K.ITS FOR TR580, APPLEII AND SORCERER
84116 's $£ 59$ plus jumpers at 65 p each. CMOS UARTS equiv AY-5-1014 £5.00 HOME COMPUTING
Mags, books, data and cassettes. Byte Dr Dobbs, creative computing, ETC direct from USA. Latest Triton software on cassette. Triton user club £4 per annum.

CENTRAL LONDON SHOWROOM

If you're in town, visit our showroom in Chapel Street, next to Edgware Road tube station. We have Tritons on display plus a comprehensive range of components and accessories, specifically for personal computer users. Books, mags, tapes, data, cables plus much more. Showroom open 6 days a week.
 MBOUT NLI OUR MEW PRODUCTS. HOTF AI PRICES EXCLUDE VAT at 8% A Ad 309 Ior P.\&p.

TRANSAM COMPONENTS LTD. 12 CHAPEL STREET LONDON. NWI TEL: 4028137

HIIPRINTS

ETIPRINTS are a fast new aid for producing high quality printed circuit boards. Each ETIPRINTS sheet con-, tains a set of etch resistant rub down transfers of the printed circuit board designs for several of our projects.

ETIPRINTS are made from our original artwork ensuring a neat and accurate board. We thought ETIPRINTS were such a good idea that we have patented the system (patent numbers 1445171 and 1445172).

PARTS LIST

Shown below is the listing for the last year's ETIPRINTS.

007 Star Trek Radio
CD Ignition
CCD Phaser
White Line Follower
008 Tank Battle
Helping Hand
009 AM/FM Radio
Bridge Oscíllator
CMOS Stars \& Dots
010 Bench Amplifier Freezer Alarm Marker Generator
LED Dice
Watchdog (2 PCBs)
Stars \& Dots PSU
011 Noise Generator
General Preamp
Flash Trigger
Compander
Active Crossover
(2 PCBs)
012 Disco Lightshow
Stereo Simulator
Digital Thermometer
wer

Earlier sheets are available, ring Tim Salmon for details.

May 78	013	Amplifier Module
May 78		Amplifier PSU
May 78.		Equaliser
April 78		Equaliser PSU
May 78	014	Skeet Game
		Sweep Oscillator
		Burglar Alarm
		GSR Monitor
Project Book Six	015	UFO Detector
		Torch Finder (twice)
		Etiwet (twice)
	016	Stac Timer
		Xhatch Gen
		Wheel of Fortune
	017	Complex Sound Gen
		Tele Bell Extender
Project Book Six		Power Bulge
	018	RF Power Meter Proximity Switch
		Audio Oscillator (2)
Project Book Six	019	Car Alarm (2)
		Wine Temp (2)
		Curve Tracer

017 Complex Sound Gen
Tele Bell Extender
Power Bulge
Project
Book
Six,
June 78

Project

018 RF Power Meter
Proximity Switch
Audio Oscillator (2)

\square

C

Project
Book
Six
Six

Book Six	020	Digital Tacho Module Digital Dial	Jan 79 Jan 79 Jan 79
	021	Tape Slide Synch Tape Noise Limiter Light Tacho	Feb 79
Book Six	022	Logic Trigger Power Meter Headlight Delay ($\times 2$)	Mar 79
July 78 July 78 Aug 78	023	Click Eliminator Guitar Effects Unit (2 boards)	April 79
Sept 78	023 A	Wind Speed Indicator	April 79
Oct 78	024A	Ambush (Boards 2 \& 3) Car Immobiliser Ambush (Board 1) Headphone Amplifier Double Die	April 79 May 79 May 79
Oct 78 Oct 78 Nov 78	025	Metronome Mains Seeker Triton 8K Eprom Card	June 79
Dec 78 Dec 78 Dec 78	026	Motor Speed Controller (2 Boards For Controller) Battery Indicator	July 79

HOW IT WORKS

Lay down the ETIPRINT and rub over with a soft pencil until the pattern is transferred to the board. Peel off the backing sheet carefully making sure that the resist has transferred. If you've been a bit careless there's even a 'repair kit' on the sheet to correct any breaks!

BUY LINES
 ORDER TODAY

Send a cheque or P.O. (payable 10 ETI Magazine) to ETI PRINT, ETI MAGAZINE
145 Charing Cross Road, London WC2H OEE

TEIETEXT SYSTEM

PART TWO: in this concluding part we give full constructional details for this superb design from GMT Electronics.

Since we published the first part of their design last month, GMT have made some improvements to the kit for the Teletext decoder.

Thre main change is a combining of boards three and four into one. Effectively board four has ceased to exist! This simplifies construction still further and has our endorsement. We are republishing the combined circuits here to make things clear.

Construction

Putting together the unit should be very straightforward. The PCBs should be carefully assembled, following the overlays shown here. Check IC orientation especially closely as that chip set is very expensive to blow just because you didn't want to spend five more minutes doing that boring bit of re-checking.

When completed the boards should be interconnected following the wiring schedule given in this article. Check this carefully also.

Setting Up

Once the boards are assembled, follow the setting up procedure given in last month's article to complete the unit. It is worth remembering that to be sure of a good Teletext picture, you need a strong signal at the input. In areas of poor reception it is well worth investing in that better aerial wot you never got 'round to getting.

Fig. 1. Board two overlay.

Fig. 2. Component overlay, board one.
PARTS LIST

Board One	
RESISTORS $(1 / 4 W 5 \%)$	
R100,102, 105, 118	1 k
R101, 109, 122	$6 k 8$
R103, 126-129	$10 k$
R104	$47 k$
R106	$100 k$
R107	$680 R$
R108	$1 k 5$
R110	$1 k 2$
R113	$33 k$
R119, 130-133	$4 k 7$
R120,121	$27 k$
R123	$68 k$
R124	$820 k$
R125	1 M
CAPACITORS	
C100-103, $117-130$,	
145	$100 n$

Fig. 3. Component overlay, board three.

PARTS LIS	
Board Three	
RESISTORS all $1 / 4 \mathrm{~W} 5 \%$	
R301, 344	5 k 6
R302, 303	680R
R304, 307,	
320-324, 334	3k3
R305	1 k 8
R306, 314, 316.	
343	10k
R308	820R
R309, 315, 336.	
341	1 kO
R310	220 R
R311,325	68R
R312, 318	4 k 7
R313, 317	56 R
R319	470 R
R326, 331, 332	10 R
R327, 330	180R
R328, 335, 340	100R
R329	150 R
R333	18 k
R337	6k8
R338, 339	2k2
R342	47k
POTENTIOMETER	
RV301	470 Rmin . preset horizontal
CAPACITORS	
C301	2 n 2 ceramic
C302, 304, 308.	
314,339	82 p ceramic
C303	$56 p$ ceramic
C305, 341, 342	27p ceramic
C307, 315, 316,	
318-329	100n polyester
C309, 310, 334	33 u 16 V electrolytic
C311	10 u 25 V electrolytic
C331	18p ceramic
C332, 337, 338,	
$\begin{aligned} & 340,343 \\ & \mathrm{C} 335,336 \end{aligned}$	64825 V tantalum 1 p8 ceramic
	1p8 ceramic
Note C319-329 are decoupling components and are not shown on the circuit diagram.	
VARIABLE CAPACITOR	
CV301	22p

Above: Find out when it is supposed to rain. All you need os Teletext!

Fig. 4. (Left) The renumbered board three circuit.

BUYLINES

The designers of this project GMT - have a complete kit of parts available. This includes all 'metalwork, PCBs and hardware. A manual is also included. Cost is $£ 155$ plus VAT (total $£ 178$ inc p\&p).

As an alternative the teletext decoder board and control system is available separately at $£ 125$ for those who wish to wire into their own television.

PCBs and chip sets are available separately also - but are PoA.

See advert on page 6 for address.

TARGET ELECTRONICS

16 Cherry Lane, Bristol BS1 3NG Telephone: 0272421196
OFFICIAL ORDERS WELCOMED GVT/EDUCȦTIONAL DEPTS, ETC.

ME1 - ME22

Dims:- $50 \times 45 \times 33 \mathrm{~mm}$. Requires 38 mm dia. cut-out

ref.	cat.	F.S.D.	
ME29	MU50	0.50 UA	£3.80 each + VAT
ME30	MU100	0.100 UA	P\&P 25p
ME31	MU1	0.1 MA	10 Plus
ME32	. MUVU	"VU"	10\% discount

ME1	T21	0-50 UA	
ME2	T22	0-100 UA	
ME3	T23	0.500 UA	
ME4	T24	0.1 MA	
ME5	T25	0.5 MA .	
ME6	T26	0.10 MA	
ME7	T27	0.50 MA	
ME8	T28	0-100 MA	
ME9	T29	0. 500 MA	£5.10 each + VAT
ME10	T30	0-1 AMP	P\&P 25p
ME10A	T31	0-2 AMP	10 Plus
ME10B	T32	0.25 Volts	10\% discount
ME11	T33	$0-50 \mathrm{~V}$ AC	
ME12	T34	$0-300 v$ AC	
ME13	T35	"'S"	
ME14	T36	"VU"	
ME15	T40	50-0.50 UA	
ME16	T41	100-0-100 UA	
ME17	T42	500-0-500 UA	
ME17A	T43	0-30v DC	

APPOINTED DISTRIB́UTORS NASCOM 1 MICROPROCESSOR KITS

Z80 Microcomputer kit

Undoubtedly the finest value for money kit available anywhere. Fully socketed.
INTERFACE FOR:
TV (UHF)
TV Monitor
Cassette
Teletype
32k Ram expansion board
NOW AT THE NEW PRICE OF £165 + VAT
Buffer Boards and Memory now available.
Callers welcome
Callers welcome

Tel. order welcome with Access and Barclaycard

MICROSENSE

PART ONE: a short series from John miller Kirkpatrick designed to lead the reader gently into the realms of MPUs. It is designed to be of use to all people of all levels of knowledge. We begin with the hex system of counting ...

Hexadecimal counting Syśtems

THE BINARY COUNTING system uses a set of 1 s and 0 s to indicate a particular number, in our example above 01010111 represents 87 . Obviously it is faster to write 87 than it is to write 01010111 each time. It is not very easy to convert long binary numbers to decimal and vice versa, for example the binary number 101010101010 1010 represents the decimal number 43690 mode up from:

| | | 1010 | 1010 | is ten units of 1 | $=10$ or $2^{4}=8+2^{\prime}=2$ Total 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 1010 | 0000 | is ten tenths of 16 | $=160$ or $2^{7}=128+2^{5}=32$ Total 160 | |
| 1010 | 0000 | is ten units of 256 | $=2560=29+2^{11}$ | | |
| 1010 | 1010 | 1010 | 0000 | is ten units of 4096 | $=4096=2^{13}+2^{15}$ thus the total |
| represents the decimal 43690. | | | | | |

Another way of showing this value is to write down one character for each set of four fingers.
This is obvious for the values from 0-15 which can be exporessed as a single character. The Binary decimal as new codes are -

$0000=0$ Written as 0.	$0100=4$ Written as 4.	$1000=8$ Written as 8.	$1100=12$ Written as C.
$0001=1$ Written as 1.	$0101=5$ Written as 5.	$1001=9$ Written as 9.	$1101=13$ Written as D.
$0010=2$ Written as 2.	$0110=6$ Written as 6.	$1010=10$ Written as A.	$1110=14$ Written as E.
$0011=3$ Written as 3.	$0111=7$ Written as 7.	$1011=11$ Written as B.	$1111=15$ Written as F.

Thus our large binary number can now be expressed as
$1010 \quad 1010 \quad 1010 \quad 1010$ or decimal 43960 or as AAAA in our new format.
The new format is called Hexadecimal from HEX $=$ six and $D E C=10$, which is a counting system based on units of 16 rather than units of 1 or 10 .
The hexadecimal system can be easily converted from the binary system by simply breaking up the binary into groups of four binary digits (one hand full of four fingers) and converting each group into a single hex character. For example the binary 0010001101010111 becomes hexadecimal 2357. Numbers in hex form are usually referred to by putting $\times^{\prime} 2357$ ' to denote that this is Hex 2357 rather than decimal 2357. The binary $1010 \quad 1011 \quad 1100 \quad 1101$ becomes 'ABCD' which does not require any differentiation from decimal

A Cardboard Microprocessor

|Microprocessor jargon includes bits, bytes, registers, RAM, ports, software and hardware. To help you understand all of this here is your own processor made out of paper.
Cut out the PC / MP (Paper and Cardboard MicroProcessor) or copy it and glue it onto a piece of card. Cover the card with something like clear 'Fablon' so that you can write on it with a felt tipped pen and then clean it off again. You are now ready for your first terminology lesson (PCMP is figure 1).

Bits and Bytes

A bit is a very small piece of information which can be in anly one of two states, for example, assuming that there are not alternatives, put a 1 in box 1 over leaf if you are male a zero if you are female.
Thus one Bit can carry a value of 1 or 0 which a microprocessor can look at in two ways -
a) As a numeric value of 1 or 0
b) As a True / False indicator where 1 is True and 0 is False.

Obviously the microprocessor is going to need to deal with numbers other than 1 or 0 and it does this by using a form of Binary arithmetic called Hexadecimal. In this way large numbers can be stored

For example write down your chest measurement in inches on a piece of paper, e.g. 39 inches. Now divide by two and put the remainder (1 or 0) in box 8 , take the answer, and divide by two and put the remainder (1 or 0) in box 7, take the answer and divide by two and put the remainder (1 or 0) in box six, take the answer and divide by two and put the remainder (1 or 0) in box 5 , take the answer and divide by two and put the remainder (1 or 0) in box 4, take the answer and divide by two and put the remainder (1 or 0) in box 3 , take the answer it should be zero (unless you have a chest measurement larger than 63 inches!), write the answer (0 or 1) in box 2

1	2	3	4	5	6	7	8

You should now have filled in all of the boxes and you have thus formed a Byle of data. A Byte is a unit of data which usually consists of 8 bits of data, the byte above defines your sex and chest size.

Note that Bit and Byte refer to the size of the data portion rather than its contents, thus the amount of storage area or memory attached to a microprocessor is counted in Bits and Bytes.

As these areas tend to be quite large they are counted in thousands of bytes or millions of bytes (Kilobytes and

Megabytes). With microprocessors you get an added bonus because 1 K bytes of memory is not 1000 bytes as you would expect but 1024 bytes, an extra 24 for free! Similarly with 1 M byte you get an extra 48,576 bytes free, this is simply because these are the nearest Hexadecimal equivalents to 1000 and $1,000,000$ and the MPU prefers to count in Hex.

Data and Address Buses

A bus is a set of wires or other connectors which carries a set of data between one part of the circuit and another. Each wire can carry a positive voltage to indicate a logic 1 or no voltage to indicate a logic 0

To carry the information in our sample byte from above we would need an 8 bit bus or 8 wires, one of the main buses on a microprocessor carries data from one part of the circuit to another, most microprocessor use an 8 bit data bus. The second main microprocessor bus is needed to inform the system where to send the data or where to get it from, an 8 bit bus can only define 256 addresses which is not much for a microprocessor. Two bytes are used to carry the data for an address thus giving a maximum of 65.536 address locations note that 65.536 is 64×1024 and is thus usually referred to as 64 K .

A third microprocessor bus carries control signals the simplest of which is a signal to indicate whether we are Reading data or Writing data. This is referred to as a Read/Write control line or simply R/W (more nmemonics).

Other controls on a microprocessor include:
RESET restart programm from address location 1.
HOLD Suspend execution as long as this function is enabled.
OSC
Each oscillator pulse performs one machine cycle
(NB several machine cycles make up one operation)
SENSE Inputs to sense buttons or single bit data.
FLAGS Single bit outputs used for driving lamps, buzzer, etc.

The PC/MP Microprocessor

The PC/MP consists of several areas of cardboard (defined as latches). These may be thought of as a form of 'pigeon hole' storage. Any information may be written into these boxes as required in the form of an 8 bit (or 16 bit) byte of data. The information can be copied into any other box (which overwrites any previous information in the second box). Some of the boxes allow communication of data in the box to outside the PC/MP.

As an example of an operation of the PC / MP assume that we instruct the PC/MP to READ our sample byte into its Main Internal Latch. It will do this by setting the R/W line to read data and inputting the data to the INPUT DATA LATCH, the data will then be copied to the MAIN INTERNAL LATCH. A second type of instruction can move data around inside the PC / MP, for example copy the data in the MAIN INTERNAL LATCH to the 2ND INTERNAL LATCH Now enter the byte 00110000 into the MAIN INTERNAL LATCH via the INPUT DATA LATCH. You should now have you data byte in the 2ND LATCH and 00110000 in the MAIN LATCH.

The PC /MP can perform three operation types on these two data bytes
a) LOGICAL operations (AND, OR, NOT, XOR)
b) ARITHMETIC operations (ADD, COMPLEMENT, COMPLEMENT and ADD)
c) SHIFT operations (SHIFT LEFT or RIGHT, ROTATE LEFT or RIGHT).

Firstly lets look at an AND operation, here if there is a 1 in one latch and a 1 in the same location in the second latch then there will be a 1 in that location in the result (the result ends up in the MAIN LATCH). Thus an AND operation means 1 AND 1 gives 1 , otherwise 0 .
AND together the MAIN LATCH and the 2ND LATCH and put the result in the MAIN LATCH, the result should be either $00000000,0010000,00010000$ or 00110000 . Of the two possible locations of a 1 the first represents a unit of 32 inches chest measurement and the second a unit of 16 inches chest measurement. Thus the four possible results tell us:
0000000 Your chest measurement is either less than 16 inches or greater than 63 inches.
00100000 Your chest measurement is at least 32 inches and less than 48 inches:
00010000 Your chest measurement is between 16 inches and 32 inches.
00110000 Your chest measurement is at least 48 inches.
Let us assume that the PC / MP is to be used to define the shelf on which to find an overall in a clothing depot. The shelves are set out as
Top Shelf 7 Gents overalls sizes 48 inches to 63 inches
Shelf 6
Shelf 5
Gents overalls sizes 32 inches to 47 inches
5 Gents overalls sizes under 32 inches
Shelf $4 \quad$ Overalls sizes under 32 inches
Shelf $4 \quad$ Overalls either larger than 63 inches or under 16 inches.
Shelf $3 \quad$ Ladies overalls sizes 48 inches to 63 inches
Shelf 2 Ladies overalls sizes 32 inches to 47 inches.
Shelf 1 Ladies overalls size under 32 inches.

If your results from the AND was all o's, read the following:- (otherwise go to next paragraph)
This is an example of the conditional jump instruction of the PC/MP. If you are still reading this paragraph then your chest size is, I am sure you will agree, somewhat unusual. In such cases it would seem to make very little difference whether you are male or female when ordering an overall! To help make up for this we will teach you what an OR instruction does, the others will have to wait until later. Copy the data in the MAIN LATCH into the right hand half of the DUAL LATCH and then input the byte 10000000 into the MAIN LATCH via the INPUT LATCH. You are now ready to OR. The OR instruction states that if there is a 1 in one latch or a 1 in the other latch then the result will have a 1 in the ensuing location.
THUS: 1 OR 1 gives 1 otherwise 0 . If you OR the MAIN LATCH and the 2ND LATCH and put the result in the MAIN LATCH then the data in the MAIN LATCH should now have a 1 in the first position. After this little detour we need to make sure that you have the same data in the same latches as those people who bypassed this paragraph. Copy the MAIN LATCH into the 2ND LATCH and the copy the right hand half of the DUAL LATCH into the MAIN LATCH

Here we are all together again in this paragraph, those of you who bypassed the instructions in the previous paragraph should read it but not actually do the operations.

Now lets learn about SHIFTs and ROTATES.
A SHIFT causes all of the bits in a byte to change their location by one position, the new empty location will be filled with a 0 and the location at the other end drops off the end and is thus lost. With the ROTATE the data is shifted but in this case the new empty location becomes filled with the data bit from the other end. As an example: SHIFT LEFT 101111010 gives 01110100 and again gives 11101000

ROTATE LEFT 10111010 gives 01110101 and again gives 11101010

SHIFT RIGHT 2ND LATCH seven times to move the Male/Female bit from box 8 to box 1 and fill the rest with zeros Now ROTATE RIGHT 2ND LATCH twice to put this bit at box 7 .
Now OR the MAIN LATCH with 2ND LATCH put result in MAIN LATCH and you should have 0xxx 000 where x can be 0 or 1 . SHIFT RIGHT four times the MAIN LATCH and this should be 000 0xxx.
To get the answer take the bit value in box 3 of the MAIN LATCH, multiply it by two and add it to the value in bit 2 . Multiply this result by two and then add the value in box 1 , the result should be a value in the range 1-7. The result calculation is an example of binary to decimal conversion and is the opposite of the calculation used to calculate your chest size in binary. Normally the MPU would output this RESULT via the OUTPUT DATA LATCH to an address where it would find a device which would display the result to the operator, an example would be a seven segment display plus decoder. All the foregoing is repeated in tabular form with a MALE chest size of 36 inches as follows:-

BYTE OF INFORMATION	1010	0111	SHOWS SEX AND CHEST SIZE
ENTER BYTE	1010	0111	TO IPPUT DATA. LATCH, COPY
TO MAIN INT LATCH	1010	0111	COPY
TO NND INT LATCH	1010	0111	STOP
ENTER	0011	0000	TO INPUT DATA LATCH, COPY
TO MAIN INT LATCH	0011	0000	STOP NOW
AND MAIN INT LATCH	0011	0111	WITH
2ND INT LATCH	1010	0111	RESULT OF ANDNOW IN MAIN LATCH
OO1O OOOO STOP			

DATA IN MAIN LATCH
TO RT. HALF OF DUAL LATCH ENTER
TO MAIN INT LATCH

0000	0000	COPY
0000	0000	STOP
1000	0000	TO INPUT DATA LATCH, COPY
1000	0000	- STOP NOW

OR MAIN INT LATCH	1000	0000	WITH
2NO INT LATCH	0000	0000	RESULT OF OR
NOW NN MAIN LATCH	1000	0000	COPY
TO 2ND INT LATCH	1000	0000	STOP COPY
RT. HALF DUAL LATCH	0000	0000	TO
MAIN LATCH	0000	0000	NOW
AND MAIN LATCH	0000	0000	WITH
2ND INT LATCH	1000	0000	RESULT
NOW IN MAIN LATCH	0000	0000	STOP

Instructions and Program Memory

The above example gives a generalised idea of what goes on inside a microprocessor assuming that it is given the correct instructions in the correct sequence. It must also input these instructions as well as inputting data, the instructions are input as a form of data which is recognised by the microprocessor in a very simple way. The microprocessor first looks on the input data bus for an instruction, this instruction will tell the microprocessor whether it must next get data or another instruction, thus there is a marker inherent in the instruction code which informs the microprocessor what to do next.

SHIFT RT. 2ND INT LATCH	1010	0111	7 TIMES
BECOMES	0000	0001	NOW
ROTATE RIGHT ONCE BECOMES	1000	0000	ROTATE RIGHT AGAIN
BECOMES	0100	0000	(ROTATED TWICE) STOP
DATA IN MAIN LATCH	0010	0000	STOP
DATA IN 2ND LATCH	0100	0000	STOP NEW
OR DATA IN MAIN LATCH	0010	0000	WITH
DATA IN 2ND LATCH	0100	0000	RESULT OF OR
NOW IN MAIN LATCH	0110	0000	STOP NOW
SHIFT RIGHT MAIN LATCH	0110	0000	4 TIMES
BECOMES	0000	0110	$=2^{1}+2^{2}=6$ Size of Male Overall required is on
			shelf No. 6 .

We must define an area of memory addresses which hold the instructions, for this we will reserve the first 256 memory locations on address lines 0000000000000000 to 0000000011111111 (0-255 in decimal, 0000 OOFF in Hex). The first instruction will be fetched from location 1, the next from 2, etc.

We must also define addresses at which we have a set of switches or a keyboard for input of the parameters and an address at which there is a display and decoder. We can use the upper half of the address to define that address An upper byte code of 0000000 will access the program, any address with an upper byte code of 00000001 will access the keyboard and an address with an upper byte code of 00000010 will access the display. Note that in the second two cases the value in the lower address byte does not matter.

We need to define a set of instructions for the PC/MP, such as:

00	0000	00	A
0000	0001	01	Exchange the values in the MAIN LATCH and the 2ND LATCH
0000	0010	02	SHIFT LEFT MAIN LATCH
0000	0011	03	SHIFT RIGHT MAIN LATCH
0000	0100	04	ROTATE LEFT MAIN LATCH
0000	0101	05	ROTATE RIGHT MAIN LATCH
0000	0110	06	Exchange the values in the MAIN LATCH and the DUAL LATCH RIGHT
0000	0111	07	Exchange the values in the MAIN LATCH and the DUAL LATCH LEFT
0000	1000	08	Exchange the values in the ADDRESS OUTPUT LATCH with that in the DUAL INTERNAL LATCH, note this is a 16 bit exchange
0000	1001	09	Exchange address OUTPUT LATCH and DUAL LATCH, copy MAIN LATCH to OUTPUT DATA LATCH and pulse R /W to indicate WRITE, re-exchange ADDRESS OUTPUT LATCH and DUAL LATCH (i.e. WRITE the data in MAIN LATCH to the address in DUAL LATCH).
0000	1010	OA	Exchange ADDRESS OUTPUT LATCH and DUAL LATCH, pulse R/W for a READ, copy the data in the INPUT DATA LATCH into MAIN LATCH, re-exchange ADDRESS LATCH and DUAL LATCH. (i.e. READ from the address in DUAL LATCH into MAIN LATCH).
0000	1011	OB	READ the data at the next address and copy it into MAIN LATCH
0000	1100	OC	AND MAIN LATCH and 2ND LATCH, put result in MAIN
0000	1101	OD	OR MAIN LATCH and 2ND LATCH, put result in MAIN.
0000	1110	OE	The data following this instruction indicates the number of instructions following it which can be ignored.
$\begin{aligned} & 0000 \\ & 0001 \end{aligned}$	$\begin{aligned} & 1111 \\ & 000 \end{aligned}$	OF 10	As OA but only if the value in MAIN is all zeros. As OA but only if the value in MAIN is not all zeros

DPS-1

Introducing the DPS. 1 the full IEEE S100 bus computer system from Ithaca Intersystems - the S100 experts.

FOR EDUCATION, INDUSTRY, RESEARCH and all professional uses, including hardware and software development, low cost OEM systems, teaching applications etc.

A MINI COMPUTER using MICRO technology at a ridiculous MICRO price!! The front panel with a backplane and power supply accepts S 100 bus boards from many manufacturers.

Just look at these professional features!

* FRONT PANEL (we won't ask you to debug our hardware, but we will give you the tools to debug yours!). Includes breakpoints, write or jump to any location, single or slow step (0.1 to 1000 IPS), stop on any data byte or address, scope trigger on breakpoint, repeat instruction (e.g. NOP's) and many other hardware diagnostic facilities.
* 25 Amp power supplies (all rails seperately fused)
* 20 slot IEEE 5100 motherboard
* Full 16 data bit, 24 bit address lines as per IEEE (1979) S100 specification
* Will run 16 bit micro S100 boards when available (e.g. $\mathbf{Z 8 0 0 0}$ and 8086)
* Suitable for $6800,6502,8080,8085,780,280 A$ etc.

The OPS 1 comes as a mainframe with front panel, motherboard and power supply. The system is truly modular allowing the user to build up the system he requires in his own time.
S100 boards from a number of manufacturers will plug into the DPSI IEEE S100 bus.
Just add S100 Memory Boards - S100 cpu board - S100 disk controller boards - S100 I/O boards - S100 video and/or graphics boards - S100 EPROM boards - S100 disk boards etc.

All Ithaca Intersystems OEM products including K2 disk operating system and PASCAL/Z on 8" floppy drives will run in the DPS-1.

DPS 11 with S $100 \mathbf{Z 8 0} \mathbf{c p u}$ board
DPS-1 less S100 $\mathbf{Z 8 0} \mathbf{c p u}$ board
$£ 695$
£645

OEM S100 boards

 from the experts!

Software for your S100 system

K2 operating system

8" disk based operating system - distributed on Shugat compatibie 8" floppy dlsk * TED-52 command text editor with Macros. * PIPFite and directory handler. * ASMBLE-full Z80 2 pass assembler.

* HDT-Hex debug tool. * QCI-Utility overlay/command decoder.
* SYSGEN—System builder. * COPY—disk to disk file copier.
* DUP—disk duplicator.
$£ 56.25$

PASCALIZ The new language for Micros $£ 131.25$

Runs under K2 operating system.

* Compiler that produces direct assembler code - NO NEED for slow run time P-code interpreter. © Comes complete with Macro assembler. \& Produces binary object modules - small and fast.
\star Modules are re-entrant and can be put into ROM. * IMBED, TRACE and ERROR debug facilities.

ASMBLE/Z 280 Macro assembler $£ 37.50$

* Full 2 pass Macro Assembler. 1 IF and ELSE - 255 nesting levels. * Produces symbol table. * Relative jumps.

UP-GRADE KITS

Trying to add computer memory is not much fun if you dont get everything you need.

Receiving unprogrammed jumpers and having to program them yourself is not much better. Most important, that's the place where the problems are introduced.
So Ithaca Audio's better idea is the Simple Up-Grade. Each Simple Up-Grade is specially designed to make adding memory foolproof. We include all the parts you'll need; 8 prime, tested 16K RAMs, along

with concise step by step directions and diagrams. And if a personality jumper is required, it's premade.

The TRS-80* memory expansion was our first Simple Up-Grade. Now there are two more - for owners of Apple 11** and Exidy Sorcerer** computers. Each kit is 100% guaranteed - if a part ever fails, we replace it FREE. Your Ithaca Audio dealer has them in stock, only £99. Now you can afford to add high quality, high density memory to your system for remarkably little far less than you would expect to pay from Radio Shack, Apple, or Exidy directly. These Simple Up-Grades are Ithaca Audio's first step in adding more capability and reliability to your computer at lower cost. Other Up-Grades are on the way to your dealer now. -TRS-80 is a registered trademark of Tandy Corp.
Tandy Corp. Apple II is a registered trademark of Apple Computer, Inc. *. . Sorcerer is a registered trademark of Exidy, Inc.

NEWBEAR COMPUTING STORE - Telephone: Newbury (0635) 30505 AIRAMCO - Telephone: 029457755 Telex: 779808 SIRTON PRODUCTS - Telephone: 01-660 5617 COMPSHOP LTD - Telephone: 01-441 2922 Telex: 298755

Where would you be without an ETI T-shirt? This little lady (she's the one without the moustache) would find herself in an embarrassing predicament.

Why not follow the example set by our typical seven feet tall ETI reader (the one with the moustache) and cover your wives, girlfriends, grannies, pimples and indiscretions with an ETI T-shirt. We'd love to hear from our feminine fans too.
$£ 2.12$, including nasties like VAT, postage and packing, brings the scarlet sackcloth, the rubescent rag, the monogrammed marvel to your door. Orders to:
ETI Shirts,
145 Charing Cross Road,

London WC2H 0EE

Please specify size - S, M or L and allow 14 days for delivery.

microfile

This month the ever present Henry Budgett drools over the finally announced Texas Instruments System. Between time he looks at a more down to earth training system called the Nano-computer.

WELL, IT is here at last, or rather TI is! Launched at the Consumer Electronics Show in Chicago on Sunday June 3rd the Texas Instruments home computer is with us. There are no real surprises unfortunately but the machine will probably provide a real challenge to both Apple and Compucolor. Based on the 990 series 16 bit microprocessor the system is built into a neat desktop console which measures $15^{\prime \prime}$ by $10^{\prime \prime}$ by $2 \frac{1}{2} 2^{\prime \prime}$.

Configured with 16 K of RAM, a sound generator which covers four full octaves, full 16 colour graphics and an extended BASIC. The machine will drive any black and white TV or monitor and any NTSC colour monitor with video input. Hopefully a PAL version will be available for Europe as at the moment it will cost about $£ 400$ for a suitable monitor. The machine uses an extension of the calculator Solid State Software system with up to five ROM chips in a module. A variety of these will be available for the UK launch in September including Pre-school learning, Video Chess, Home Budgeting and Video Games. Prices for the various packages will vary between $£ 15$ and $£ 45$. The main advantages of the Solid State system is the high speed of program loading and interchange.

Peripherals for the system will be announced in due course and should include a printer, disk drive, RS232 interface and a Speech Synthesiser. The synthesiser is based on the Speak and Spell chip set and has a vocabulary of 200 words, these can be called from user programs to give messages, instructions etc. The BASIC on the system is a 13 digit version with full floating point, ANSI compatible and has 24 basic statements, 14 commands and the colour graphics.

The cost of the machine is quoted at $£ 645$ but the change in VAT may mean a slight increase by the Autumn. For further details you should contact Roger Tilbury at Texas Instruments, Manton Lane, Bedford MK41 7PN. We will be reviewing the system as soon as we can lay our hands on one and I will keep you informed of any further developments through both ETI and CT.

New Training System

Newly -arrived in our offices is a new training and educational system called the Nanocomputer. Definitely not to be confused with a popular TV show! Based on the Z80 the system is fully expandable from a single board with a hand held keypad right up to a full system and you can select the level at which you start. The unit is supplied in a case with a power supply and the keypad and a training manual. This takes you through the machine code programming of the Z80 and you can then go on to the experimental kits. For these one plugs onto the end of the board a prototy序ing kit which allows

Above: At lastl The Texas Instruments home computer system. Along time in the making
you to learn about interfacing to the system, amongst other things. The final stage is to upgrade the board to a full system in a card frame with a variety of peripherals such as a full ASCII keyboard, printer, VDU and disks.

A range of software is also available including various monitors, Editor Assemblers and an 8K BASIC. The unit is extremely well constructed on a double sided, plated through PCB and all interconnections are made with high quality header sockets thus eliminating the usual lash ups. A full review of the system will be appearing in the August issue of CT but for more information before then please contact Mr David Watson of the Midwich Computer Company at Hillsborough House, Churchgate Street, Old Harlow, Essex. The price of a basic system is $£ 260$, the full Experimental kit is around $£ 430$.

Club Forum

A varied bunch in this month's mailbag. Micro44 of Woking have formed an Exidy Sorcerer Users Group to be run by Andy Marshall. The group will be run as a division of the US group and will both take and con. tribute material to them. Membership fees are $£ 5$ a year to cover costs and a monthly newsletter will be produced. Contact Andy at Micro44, 44 Arthurs Bridge Road, Woking GU21 4NT or ring 04862-66084. Another club is being formed in the Nottingham area, primarily for Nascom users but anyone will be welcome. Meetings will be monthly, no dates are yet arranged and

Below: The versatile Nanocomputer in its most basic form. The system is configured around the powerful $\mathbf{2 8 0}$ processor.

it is hoped to produce a newsletter and offer program exchange. For those interested please contact Mr K S Swainson at 9 Brayton Crescent, Highbury Vale Estate, Bulwell, Nóttingham NG 6 9DZ

Ware Of The Soft Kind

A TRS 80 software exchange service is being planned by Chris Cain, if anyone is interested. He handles programs and tests them in any TRS 80 format and anyone interested should contact him at ENG Wing, RAF West Drayton, Middlesex. Please enclose an SAE. The final item is a request for our younger readers. If anyone who is into the SCMP micro and BASIC programming would like to help form a young persons computer club would they please get in touch with N. Sutcliffe Esq of 1 Suncliffe Road, Higher Reedley, Nr Burnley, Lancashire BB9 5EP and enclose an SAE.

ETI

LOW COST

AUDIO SIGNAL

GENERATORS

(Sine \& Square Waves) $10 \mathrm{~Hz}-100 \mathrm{KHz}$ Very low distortion (-0015\%) £ $\mathbf{3 6}$ (or in kit form £31) + Tax 8\%

Modet 146/9
Low cost version, A01 13 (02\% dist), $\mathbf{£ 2 7 . 5 0}$ (Kit $\mathbf{E 2 3}$). Other instruments include: Millivoltmeter. Tachometer, Noise level meter, Distortion Analyser, F.M. Sig. Gen. Crystal Frequency Standard. KEF Speaker Units. Send S.A.E. for lists. VAT extra 15%. Post/Pkg. £1.50.

TELERADIO ELECTRONICS
325 Fore Street, Edmonton, N.9. 01-807 3719
Closed all day Thursday

MICROCHIMES FROM THE INVENTORS OF MICROPROCESSOR MUSICALCHIMES
 VAT increases?
 Our prices held! CHROMACHIME KIT
 24 tune model!
 Due to the fantastic success of this product right

 across the World we are able to offer it at only $£ 9.95+75 \mathrm{p}$ p\&p
 Comes complete with
 * TMS1000 Micro
 * Superb cabinet
 Fully prepared PCB
 * All R's \& C's
 * All semiconductors
 * Switches \& pots * Socket \& Hardware
 * Fully detailed kit manual

TMS 1000N - MP0027A Microcomputer chip available separately if required. Full 24 tune spec device supplied with data sheet and fully guaranteed New low price only $\mathbf{\mathcal { L }} \mathbf{4 . 9 5}$ inc. p\&p (Only present 24 tune repertoire currently available.)
A COMPLETE KIT FOR THE
NEW MICRO CHIME

This easy to
build kit includes

* TMS1000 Custom MPU Chip
* Special purpose designed case
* Fully drilled and legended PCB
* All transistors, Resistors and Capacitors
* Full set of mechanical parts
* Smart fascia labels
* IC Socket and Loudspeaker
* Really Low Price!
only £8.95 + 55p p\&p
ALL CHROMATRONICS PRODUCTS
SUPPLIED WITH MONEY BACK GUARANTEE
PLEASE ALLOW 7-21DAYS FOR DELIVERY
Piease sendme
TO: CHROMATRONICS, RIVER WAY, HARLOW, ESSEX. UK
NAME
ADDRESS

I enclose cheque/PO value $£$
or debit my ACCESS/BARCLAYCARD account no.

ETI.8.79
Chiemationles

KITS OR ASSEMBLED LATCHED COUNTER MODULES

Our range of industriat Latoned Counter Module Kits is now available ready-oult. These counters use both
CMOS and ΠL ICs and will save you considerable design, purchasing bilding CMos and sics and wat of red LEO disolays, and features a single in-line plug and socket. Instructions are pre Each For full details please send for Catalogue.

	TTL				CMOs			
	Part No.	Buily	Part No.	Kî	Part No.	Buint	Part No .	Kit
2 mm	401-494	113.22						
1 dipl	$715-44$	E23.31	607-4i2	\&17.	512-582	${ }_{22203}$	30-470	${ }^{1} 11.411$
5 det	283-494	c3s.74	721-412	[2300	31-53	£32.31	191-478	L23.05

NEW PRICES AND SOME NEV CMOS ADDITIONS If you need your CMOS by retum - buy if from simTEL									
$\bigcirc \mathrm{CO} 4000$	0.15	CD4027	0.44	CD405 1	0.82	CD4086	$0.64{ }^{\text { }}$	CDAO182	1.40
CD4001	0.17	CD4028	0.77	CD4052	0.82	CD4089	1.39	CD40192	1.40
CO4002	0.17	CD4029	1.03	CD4053	0.82	CD4093	0.80	CD40193	1.40
C04006	1.04	CD4030	0.50	CD4054	1.04	CD4094	1.69	CD40194	1.19
CD4007	0.18	CD4031	2.00	. C 04055	1.18	C04095	0.94	CD40257	1.48
CD4008	0.87	CD4032	0.89	C04056	1.18	C04096	0.94	CD4502	0.81
C04009	0.50	CD4033	-1.25	C04059	4.29	C04097	3.35	CD4510	1.01
CD4010	0.50	CD4034	1.71	C04060	1.00	CD4098	0.98	CD4511	1.25
CD4011	0.18	CD4035	1.06	CD4D63	0.98	CO4099	1.65	C04514	2.47
CO4012	0.20	CD4036	2.86.	C04066	0.65	CD40100	2.59	CD4515	2.82
CCD4013	0.43	CD4037	0.85°	C04067	3.35	CD40101	1.61	C04516	1.01
CD4014	0.83	CD4038	0.96	C04068	0.20	CD40102	2.13	CD4518	0.97
CD4015	0.83	CD4039	2.78	C04069	0.20	CD40103	2.13	C04520	1.04
C04016	0.48	CD4040	0.97	CD4070	0.46	C040104	1.10	CD4527	1.43
CD4017	0.79	CD4041	0.75	C04071	0.20	CD40105	1.06	CD4532	1.21
CD4018	0.83	CD4042	0.69	CD4072	0.20	CD40106	0.62	CD4555	0.78
CD4019	0.50	C04043	0.8	CD4073	0.20	CD40107	0.69	CD4556	0.78
CD4020	1.11	C04044	0.84	CD4075	0.20	CD40108	E. 36	Mt14528	0.63
CD4021	0.90	C04045	1.26	C04076	1.17	'CD40109	1.03	MC14553	4.43
CD4022	0.82	CD4046	1.20	CD4077	10.39	CD40160	1.19	IM6508	8.05
CD4023	0.18	CO4047	0.89	CD4078	0.20	C040161	1.19		
CO4024	0.70	CO4048	0.50	CD4081	0.20	C040162	1.18		
CD4025	0.20	CO4049	0.50	C04082	0.20	CD40163	1.10		
CD4026	\$.55	C04050	0.43	CD4085	0.64	CD4018	3.40		

Our offices are at Chapal Street, Oxford, but please do not use this as a postal adress.
For tull range of components send for Free Coralogue.
OFFICIAL ORDERS ARE WELCOME From Companies. Gvi. Oaps. Natn. Inds., Univs., Poivs.
ORDERE: CW.O. add VAT © 35p p\&p. TELEPHONE and CREDIT (Jnvoice) ORDERS sad
ORDERE: CW.O. add VAT @ 35p p\&p. TELEPHONE And CREDTT (Invoice) OROERS add VAT © $15 \%+60 \mathrm{p}$ p\&俗

ORDERS TO: SINTEL, $\bar{P} O$ BOX 75A, OXFORD
Tel: 086549791
Goods in stock, received by 4.15 p.m. (Mion.. Fri.) will be
doapetched on the sempe day by 1at Cliace Poat (come hoevy toms by parcel post) and our stocking is good. Private Sarclaycard number, with a mintimum order value of \&s. ortoipleriort po nigimum.

SINTEL

Redundant Equipmant? Why not turn it into capital?

We Urgently Require Oscilloscopes, spectrum analysers, DVM's, signal generators, power supplies. In fact we are interested in buying all types of electronic test equipment, give us a ring and we will give you a price.
Call David Kennedy or Kathy Goodman

Carston Electronics Limited (ㄱ) 01-267-4257

Carston Electronics Limited
Shirley House, 27 Camden Road London NWI 9NR. Telex 23920.

Wilmslow Audio

THE firm for speakers!

Send $15 p$ stamp for the world's best catalogue of Speakers, Drive Units, Kits, Crossovers, etc., and discount price list.
> - AUDAX BAKER BOWERS \& WILKINS CASTLE CELESTION CHARTWELL COLES DALESFORD DECCA EMI EAGLE ELAC FANE GAUSS GOODMANS I.M.F. ISOPHON - JR - JORDAN WATTS KEF LEAK - LOWTHER - McKENZIE MONITOR AUDIO PEERLESS RADFORD RAM OICHARD ALLAN - SEAS TANNOY VIDEOTONE WHARFEDALE SHACKMAN AUDIOMASTER TANGENT STAG YAMAHA

WILMSLOW AUDIO Dept. ETI

S̄WĀ̃̃ WORKS, BANK SQUARE, WILMSLOW CHESHIRE SK9 1 HF

Discount HiFi, etc., at: 5 Swan Street and 10 Swan Street
TEL. WILMSLOW 529599 FOR SPEAKERS WILMSLOW 526213 FOR HI-FI

PROOPS BROTHERS LIMITED

Special purchase of Shinohara's SEW Panel Meters at fantastic low prices

MR RANGE - DC MOVING COIL TYPE
(Accuracy $\pm 2 \%$)

DIMENSIONS:

$110 \times 120 \times 47 \mathrm{~mm}$	Ref 85 P	$£ 3.00$
$78 \times 86 \times 41 \mathrm{~mm}$	Ref 65 P	$£ 2.50$
$60 \times 60 \times 40 \mathrm{~mm}$	Ref $52 P$	$£ 2.50$
$50 \times 50 \times 34 \mathrm{~mm}$	Ref 45 P	$£ 1.50$
$42 \times 42 \times 32 \mathrm{~mm}$	Ref 38 P	$£ 1.50$

Prices inclusive of VAT. Add 25p per item for carriage and packing

Retorsaces:	$\pm 50 \mathrm{ma}$	100mator	1ON-D
	$\pm 100 \mathrm{us}$	200ma-AC	15V-N
	± 5004	500m-MC	15V-DC
	± 1 明	500ma-DC	$50 \mathrm{~V}-\mathrm{NC}$
	50 ma	1A-AC	50 N - $\mathrm{DC}^{\text {C }}$
	20004	1t-ac	150 V - AC
	Imas'	10A-aC	150V-DC
	5 ma	30A-0C	300V-AC
	10 ma	504-AC	300\% - DC
	50] - M ${ }^{\text {c }}$	50A-DC	500\% - AC
	50m - DC	$5 \mathrm{~V}-\mathrm{C}$	

Most values available in most sizes Please state second preference when ordering

ED 107 EDUCATIONAL RANGE

Dimensions: $78(\mathrm{H}) \times 90(\mathrm{D}) \times 100(\mathrm{~W}) \mathrm{mm}$
$\mathbf{3 . 5 0}$ each including VAT. Add 50 p per item carriage and packing

$\pm 1 \mathrm{~mA}$	50 uA	$5 / 50 \mathrm{VDC}$	50 VDC
10 V	100 uA	$20 \mathrm{~V} D \mathrm{DC}$	300 VDC

Mail Orders to PROOPS BROS. LIMITED, Dept ET
The Hyde Industrial Estate, Edgware Road, London NW9 6JS. Tel 01-205 8006

Personal Shoppers: 52 Tottenham Court Road, London W1P OBA, 9-6 Mon.-Sat.

IMPEDANCE AND PHASE

Lite would be a lot easier if all components behaved like resistors. Inductors and capacitors make life difficult by separating voltage and current, so how do you find the voltage or current at any point in a circuit? Phase diagrams to the rescue.

In electronics, one often needs to know what the voltage of current at some part of a circuit will be, without actually building it to find out. When dealing with DC, this is usually pretty straightforward, using Ohm's law and a few rules of thumb, but AC signals in a circuit are a. different matter, often reacting in totally different ways, predictable only by using impedance theory and phase diagrams. It is this type of theory, and the calculations used to find voltages, etc., in circuits, that concern this article.

AC Signals

First let's remind ourselves what an AC signal actually is. Plotting voltage against time for a typical signal would give us a graph like that in Fig. 1. This particular variety of round wave is known as a sine wave and in order to fully describe it, we must outline two quantities: its rms value and its frequency. The former is a measure of the amplitude, or height of the wave, and for reasons that need not be gone into here, is, in the case of a sine wave, 0.707 times the maximum value of the wave. For instance, if, as in Fig. 1, the wave has a maximum value

Fig. 1. A voltager/time graph for a typical AC signal.

of 6 volts, the rms value of the signal is $0.707 \times 6=4.24$ volts. The other measure of the wave is the frequency. Take the interval between, say, A and B on Fig. 1. This interval, from one point to the next point where the voltage is acting in exactly the same way (in this case, from a point where it is zero and decreasing to the next point where it is both zero and decreasing) is called the period of the wave and is measured in seconds. During one period, the wave is said to have gone through one full cycle. The frequency of the wave, we can now say, is the number of cycles per second.

Impedance

Impedance can be described as the opposition to electrical current given by a circuit. Of course, we know about ordinary resistance, but there are other varieties. For instance, a capacitor may have a very high opposition to DC current, but a very low opposition to AC signals of a suitably high frequency. This obviously isn't ordinary resistance, because if it was, it would remain the same for AC and DC. In fact, the amount of opposition given to a signal by a capacitor is measured by the

Fig. 2. Current and voltage plota for a capacitor, showing a phase difference between the two.

ratio of voltage across it to current through it. (V/I). This ratio is called the 'capacitative reactance' of the component, and it is given the symbol X_{c}. Like resistance, reactance is measured in ohms. Capacitative reactance may be calculated from the value of a capacitor by using the formula $X_{c}=1 / 2 \pi f C$, where π is the Greek letter Pi, and represents the number $3.14 \ldots$. f is the frequency of the signal being applied, and C is the value of the capacitor in Farads. Note that, as stated earlier, the opposition (reactance) of the capacitor becomes very small at high frequencies, but to DC (where the frequency is effectively zero) or to very low frequency signals, it becomes effectively infinite.

Inductors, too, have a variable reactance; in this case, the inductive reactance, X_{L}, which may be obtained from the value, L, in Henries of the inductor, from the formula $X_{L}=2 \pi f L$. Note that this reactance also varies with frequency, but here, it becomes greater at high frequencies, approaching zero only when f is very low, or when DC is encountered. Again, X_{L} is the ratio V / I in the inductor, and thus, given either the voltage or the current, it is possible to calculate the other in either a capacitor or an inductor, if we know the frequency at which the circuit is operating.

To conclude this section, we now give a rather more adequate definition of impedance than that which we began with. Impedance is the combined opposition to AC signals in a circuit given by the resistance and reactance of the circuit. If we represent it by Z, the resistance by R, and the reactance by X, then $Z=\sqrt{ } R^{2}+X^{2}$. We find that, in a combination circuit of several components, $Z=V / I$.

Phase Differences

In addition to information about voltages and currents in circuits, phase diagrams also give us information about phase differences in these circuits. What in the world is a phase difference? To answer that, we must return to the capacitor and inductor. Suppose that we are applying an AC voltage across a specimen of the former type of component. If we now look at the current flowing through it, we find that it is 'leading' the voltage by a quarter cycle. That is, although it goes up and down in the same way that the voltage does, the two quantities are not in time with each other. If the voltage has, say, gone up (as from point A to point B in Fig. 2), then the current did so 90^{n}, or a quarter of a cycle earlier. (The figure 90° is used because a full cycle is taken as being divided into 360 degrees, as a circle is, and one quarter of a cycle is, therefore, represented by $1 / 4 \times 360=90$. The reason for dividing a cycle into 360 degrees will

Fig. 3. A series circuit with a resistor and an inductor. Do you use voltage or current as the reference quantity?
become apparent later.) If we superimpose a graph of current against time on top of one voltage against time, we get something like Fig. 2.

In the inductor, a similar effect occurs, but here it is voltage which leads current by 90^{n}, rather than vice versa. The 'phase difference', as it is called, is given both in the case of the capacitor and the inductor, the symbol ϕ - the Greek letter phi - and may also be measured in terms of radians, another unit of angle, rather than degrees.

To help remember that voltage leads current in the indicator, whereas current leads voltage in the capacitor, the mnemonic CIVIL is used. In a capacitor, (C) current (I) leads voltage (V), but voltage leads current, (I) in an inductor (L). Taken in order, the one-letter symbols for the components, voltages and currents spell CIVIL. (All right, . I didn't think of it.)

Phase Diagrams

So far we have seen how voltage and current are related in terms of magnitude (size) and phase, in individual components. What happens, though, if we put two different components - a resistor and inductor, for example, in series or parallel? This is where the phase diagrams step in, folks. Let us suppose that these two components, each of known value, are connected in series, and that we know the current which is flowing through the combination, and this current's frequency. We wish to find the size and phase of the total voltage across the two components, and we might be misled into thinking that it would just be the sum of the two individual voltages across the individual components, but in fact, this will not be so. The current and voltage will be exactly 'in phase' in the resistor, but in the inductor, the voltage will be 90^{n} out of phase; you can't just add voltages unless they are in phase with each other. Of course, we could find the magnitude of the total voltage by finding the total impedance of the circuit and multiplying this by the current, but we still wouldn't know the phase of this voltage with respect to the current, so a phase diagram is really our only option.

'Which Reference

For our diagram, we shall want some quantity, either voltage or current, which will be the same for both components. Well, as we have just seen, the voltages across the individual components are definitely different, so that only leaves current. In fact, current serves as our 'reference quantity' in any series circuit, and voltage is used in parallel circuits. To represent the current, draw an arrow, pointing to the right. Now we

Fig. 4. The voltages across the resistor and inductor can be used to find the total voltage across the two components.

must draw in arrows to represent the voltages across individual components. The lengths of these arrows will be made, using a suitable scale, to represent the rms values of the voltages, and the phase of each voltage with respect to the current will be indicated by the angle, going anti-clockwise, which the voltage's arrow makes with that of the current, when both have their tails at the same place. Thus, the voltage across the resistor, which can be calculated by multiplying the current by the resistance, will be represented by an arrow actually on top of that showing the current, because the voltage and current here are in phase, so that the angle, ϕ, is zero. The voltage across the inductor can be calculated by finding the reactance of the component, and multiplying this by the current. This arrow will be placed at an angle of 90^{n} to that representing the current (i.e. it will point straight up), because the voltage in an inductor leads the current by 90^{\wedge}. Were the component a capacitor, ϕ would be -90^{n}, because the voltage here lags by a quarter cycle, which is equivalent to saying that it leads by -90^{n}. The arrow would, then, point down, rather than up, as it does now.

If we imagine our two voltage arrows to be two sides of a parallelogram (in this case, a rectangle, because we know that one of the angles is 90°), and draw in the other two sides parallel to the ones we have, as in Fig. 4, we find that the diagonal of the rectangle, drawn in as an arrow starting at the same place as do all the others, has a length that, on whatever scale we have used to draw the lengths of our arrows, gives the total voltage across the two components. In addition to this (yes, you guessed it ...), we find that the angle which this diagonal arrow makes with the hprizontal gives the phase of the total voltage across the circuit, with respect to the current!

In fact, if we use Pythagoras' famous theorem about the squares of the lengths of the sides of a right angled triangle (whew!), to find the length of this diagonal, we find that, if we call the voltage across the resistor V_{R}, and that across the inductor V_{L}, then the total voltage, V, is given by the formula:-

$$
V=V V_{R}^{2}+V_{L}^{2}
$$

Looking back to the section on impedance, we notice that this formula bears a remarkable resemblance to the one stated to give the combined impedance of a resistance and reactance; in fact, if we divide both sides of the

Fig. 6. (a) A series L-C circuit, where current is the reference. (b) Phase diagram for the series L-C circuit. Inductor and capacitor voltages are 180° out of phase. (c) A parallel L-C circuit. (d) With voltage as reference, inductor and capacitor currents are 180° out of phase.

Fig. 5. (a) A resistor and an inductor in parallel. In this case voltage is used as the reference quantity. (b) The phase diagram for a parallel L-R circuit.
equation by the current, I, then V becomes $\mathrm{Z}, \mathrm{V}_{\mathrm{R}}$ becomes R and V_{L} becomes X_{L} (since Z, R and X_{L} are all defined to be equal to V / I) and the two equations become one and the same (Howzatt!!!).

The phase of the voltage can also be calculated, rather than measured directly from the diagram. The appropriate formula is:-

$$
\phi=\tan ^{-1} \mathrm{~V}_{\mathrm{L}} / \mathrm{V}_{\mathrm{R}} .
$$

What about parallel circuits? The procedure this time is pretty much the same as for series circuits, but now the 'reference' arrow, pointing to the right, represents the total voltage, not the current. The individual arrows represent the currents through the individual components, rather than the voltages, and the diagonal arrow gives the total current, and the angle by which the current leads the voltage. Note that if this angle is multiplied by -1 , it then gives the angle by which voltage leads the current.

LC Circuits

There are two more circuits, that should really be treated by themselves. These are the combination of capacitor and inductor in series or parallel, and they possess some rather interesting properties. If we draw a phase diagram for either of these two types of circuit, we find that the two arrows representing voltages or currents, as the case may be, in the individual components point in exactly oppsoite directions. To find the arrow that is the combination of these, we place the arrows end to end. That

is, we place the tail of one of them at the head of the other, keeping them pointing in the same directions. An arrow starting at the beginning of the first individual one, and ending where the second arrow does, gives the total voltage, or current. It can be seen from this that if $\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{L}}$, then the two will exactly cancel out, and in a series, circuit, there will be no voltage across the two components, and the circuit will be effectively shorted across. In a parallel circuit, there will be no current flowing, and the total impedance of the circuit will be effectively infinite. Under what circumstances, then we may ask, will the two voltage (or current) arrows be of equal length, and cancel? It turns out that this is so if $X_{c}=X_{L}$, and using the formulae for the reactances of the components, from the section on impedance, we find that $2 \pi f \mathrm{~L}$ must equal $1 / 2 \pi f \mathrm{C}$. Here we notice that for any named combination of values for L and C, it should be possible to find some frequency - the so called resonant frequency - for which the circuits should react in the way described above. Manipulating the equations, we come up with the formula:-

$$
f=1 / 2 \pi v L C
$$

Thus, in a series circuit, signals at this, and only this, frequency, will be able to pass through the circuit unimpeded, whereas in a parallel circuit, any other frequency will be allowed to pass. These circuits are called, respectively, a notch filter and a tuned circuit. The latter is of great use in radio receivers, where it is often used to short all signals at frequencies other than those wanted to earth, thus effectively sorting out wanted signals to be amplified and listened to. The frequency required may be selected by adjusting one or other of the two components, and, in fact, the capacitor in the tuned circuit of a radio is usually a variable type, and forms the tuning control.

Two's Company . . .

Of course, you may want to find voltages or currents in circuits with more than two components, but this isn't as difficult as you might think. Just find the individual arrows of the separate components, and put them all end to end, as in Fig. 7. The final arrow, giving the total voltage or current, starts at the beginning of the first and ends where the last of the separate arrows does. ETI

Fig. 7. In circuits with more than two components, the voltage or current arrows for the individual components can be found, then the final arrow will give the total voltage or current. It's easy when you know how.

More people in Britain buy

 than any other electronics magazine. Why?

Most magazines have their circulations independently audited according to very strict rules and ETI has just taken over as the largest selling magazine in the field in Britain. Starting as a small "also-ran", ETI has now overtaken mags originally selling four times the number of copies.

Find out why ETI is No. 1 for yourself. Could it be something to do that it's better than the competition?

You probably won't believe us as we' re selling the goods but we re going to tell you anyway! We have rejected eight clock radios for Marketplace, they were all cheap enough but the quality was so poor that we couldn't have lent our name to them. However, we are now able to offer a portable LCD Clock Radio to you which meets our standards.

The clock is a 12 -hour one with $A M / P M$ indicated and a back light. The radio is Medium Wave and FM with very nice quality for a small speaker - for FM there's a telescopic aerial. The alarm can be either a 'beep-beep' type or the radio, there's also a snooze facility

The case is sensibly rugged and is printed on the back with a World Time Zones map, a bit of a cheek really, especially as the time is relative to Japan!

We won't even mention the RRP - but just check on comparable prices - you'll find ours a bargain.

An example of this Clock Radio can be seen and examined at our Charing Cross Road offices.

£17.95

(Inclusive of 15% VAT and Postage).

To:

CLOCK RADIO Offer,
ETI Magazine,
145 Charing Cross Road,
London WC2H OEE.
Please find enclosed my cheque/PO for £ 17.95 (payable to ETI Magazine) for my Clock Radio

Name
Address
THIS IS THE THIRD digital alarm clock that we are offering (we regret the earlier versions are no longer available). We have sold thousands and thousands of these and our buying power enables us to offer a first rate branded product at a really excellent price

The Hanimex HC-1100 is designed for mains operation only ($240 \mathrm{~V} / 50 \mathrm{~Hz}$) with a 12 hour display, AM/PM and Alarm Set indicators incorporated in the large display. A switch on the top controls a Dim/Bright display function.

Setting up both the time and alarm is simplicity itself as buttons are provided for both fast and slow setting and there's no problem about knocking these accidentally as a 'locking" switch is provided under the clock. A 9-minute 'snooze' switch is located at the top.

A example of this clock can be seen and examined at our Charing Cross Road offices.

(Inclusive of 15% VAT and Pos. tage).

To:
Hanimex Alarm Offer
ETI Magazine
145 Charing Cross Road,
London WC2H OEE
Please find enclosed my cheque / $P O$ for £10.60 (payable to ETI Magazine) for a Hanimex Digital Alarm Clock.

Name

Address

Please allow 28 days for delivery

TOP PROJECTS
Book $1+2:$: 2.50 + 25p P\&P.
Master mixer, 100 W gultar amp., low power laser, printmeter, transistor tester, mixer preamp, logic probe, NI-Cad charger, loudhailer, scope calibrator, electronic tenpena, car thert alarmh, turn inaicator cancener, brake liglocator, four input mixer, IC power supply, rumble filter, IC tester, ignition tuming ught, 50W stereo amp. and many more.

Book 3: SOLD OUT!
Book 4: $£ 1.00+25 p$ P\&P.
Sweet sixteen stereo ampon wan-waa, audio level meter, expander/compressor, car theft alarm, headiamp reminder, dual-tracking power supply, audio milvolmeter, temperature meter, intruder alarm, touch swtich, push-hutton dimmer, exposure me photo timer, electronic dice, high-power beacon, electronic one-armed bandit.
Book 5: $£ 1.00+25 p$ P\&P.
5W stereo amp., stage mixer, disco mixer, touch organ, audio limiter, infra-red intruder alarm, model train controller, general pur Hmer, breakdown beacon, heart rate monitor, is metal locator, temperature meter ...

Book 6: $\mathbb{E 1 . 0 0}+\mathbf{2 5 p}$ P\&P.
Graphic equaliser, $50 / 100 \mathrm{~W}$ amp. modules, active crossover, flash trigger, "Star and Dot" game, hurglar alarm, pink nolse generator, sweep oscillator, marker generator, audio-visual metronome, LED dice, skeet game, lie detector, disco Hght show . .

Graphic Equaliser.... Morker Benerater Power Amplifier Madules.....E2 Suma ccil Camera........ Headphane Abatter IED Dice.....Sound-light flash Triewer Expander-Compressor.... Sivoat cor Tlili Mill: 76 , minta suryirf Alarm...Digital Thermometer Stars \& Dots Logic Game.... Lightshow Active Crossover.... Hear and Tell Unit Pink Noise Generator......68\% Monitor Sweep Iscillator.....Sterne Simulator

ELECTRONICS TOMORROW
Comprised entirely of new material, the edition covers such diverse topics as star projects for everyone - none of which projects for everyone - none of whe the future of MPUs, audido, calculators and video. How can you not read li?
$75 p+25 p$ P\&P.

ELECTRONICS - IT'S EASY
Books 1, 2 \& 3.
Our successful beginners series came to an end some time ago now, and the whole series is available from us in reprint form. The three books between them contain all the information presented in the series (sometimes in more detall!) and together one interested in learning the art of electronics.
£1.20 +25 p P\&P each.

Ell CIRCUITS No2

ETI CIRCUITS
Books 1 \& 2.
Each volume contains over 150 circuits, mainly drawn from the best of our TechTips. The circuits are indezed for rapld selection and an additional section is included which gives transistor specs, and plenty of other useful data. Sales of this purdiy surprising when the circults cost under $1 p$ each!
$\mathbf{1 1 . 5 0 + 2 5 p}$ P\&P each.

ORDER FROM

Specials Modmags Ltd, 145 Charing Cross Road, London WC2H 0EE
Postage and packing also refer's to overseas. Send remittance in Sterling only. Please mark the back of your cheque or PO with your name and address.

SUMMER SPECIALS

Special just in full spec. 1702A (intel) $£ 2.00$ each p/p 20p. 2526 character generator 9×9 (dual rail) $£ 3.50 \mathrm{D} / \mathrm{D} 20 \mathrm{p}$. Mostek 4116 (200ns) 16 k . Dynamic $\mathrm{C8} .50$ p/p 20p. 74125 (tri-state buffers) 4 for $£ 1.00$. P\&P 20p.

IS423 STUD MOUNTING RECTIFIERS 10A 400 V . Silly price, 10 for $£ 2 \mathrm{p} \& \mathrm{p} 20 \mathrm{p}$
MC1303L Dual Stereo Preamp, plus data $£ 1$ p\&p 20p.

7in NYLON CABLE TIES 100 for $£ 1.50$ p\&p 20p. Cannon 25 way (d-type) male or female with cover plus 2 metres 25 way cable assembled $£ 2.50$ each plus $p \&$ p 20 p.

ML723 (TO100). Manolithic adjustable voltage regulator. Plus or minus $2 \mathrm{v}-6 \mathrm{v}, 6 \mathrm{v}-8 \mathrm{v}$, $8 v-37 v$ to 150 mA plus data 55 p p\&p 20 p

PCB KEYBOARD $65 \mathrm{~mm} \times 82 \mathrm{~mm} 18$ key clickers less key tops, ideal hexadecimal, 35p each, p/p 20p. Hewitt Packard 4 digit displays 12 pin DIL 0.11" common cathode (LED red) $\mathrm{E} 1.50 \mathrm{p} / \mathrm{p} 20 \mathrm{p}$ (few only).

CANNON D-TYPES. Only ones left: 15 way socket 50 p, 37 way plug 80 p, 50 way socket $£ 1.20,50$ way wire wrap socket $£ 1.30,25$ way ribbon plugs 90 p. Cinch 25 -way plastic cover 60 p . Metal cover and retainer 80p. P/P 20p

NEW SN76477 sound generator IC (train, plane, explosion, phaser gun etc.) with data, $£ 2.80+20 \mathrm{p}$ P/P

HONEYWELL 50 station push button keyboard (querty) mounted on PCB 7-bit positive logic. Power requirement +5 v 100 ma . No other information. Good value. $£ 12.00$ each + £1.50 P\&\&

SUPERSAVER 1 Price smash - 10 K multiturn electratrim panel mounting pots. 6 for $£ 1, \mathrm{p} \& \mathrm{p}$ 20p.

SUPERSAVER 2 Hybrid Systems DAC 371-8 (8-bit) DIL packaged + data, ideal MPU users, brand new $£ 2$ price smash! now $£ 1.75$ each (fraction of original cost) p/p 20p.

SUPERSAVER 3. LM 323 K Voltage regulator, 5 v at 3 -amp, £ 3.50 each. P\&P 20.

MEMORIES 2708 £6.85, Character Generator MM5 2402560 bit, $64 \times 8 \times 5$ plus data $£ 2.95$ (full spec.). P\&P 20p. 2112 (200ns) £3.00. P\&P 20p. 21 LO2 (250ns) £1.15. P\&P 20p.

SUPERSAVER 4. RS338-383 miniature decade thumbwheel switch $£ 1.35$ p/p 20p.

9-WAY MALE/FEMALE connector (EIco 8129) 0.1 inch pitch, PCB mounting ideal for bussing two PCBs together 35 p/pair p/p 20p.

LEDS (red) TIL 209 9p, 0.2 10p, Vernitron Ceramic filters FM-4 10.7 MHz 45 p , BD 236 40p, 2N3055 (TI) 40p, BC183L 10p, BC213L 10p, BF195 10p, 2521 V (Dual 128 bit static shift register 65 p). RS $12-0-1250 \mathrm{~mA}$ subminiature transformer £1.35, TMS 3128 NC (static shift reg) £1.25, LM711CH TO-99 (Voltage comparator) 25 p, FPE 100 intra red emitter + data 15p, DIL SWTS 4-way 60p. TBA810S + DATA 65p. P/P 20.

All enquirios, SAE please. P/P same for quantities except where greater than $£ 1$.
Rush orders as some stocks are limited. Exciting nows. Our naw retail premises to open soon at 11 Hercies Road, Hillingdon, Middlesex (just off A40). Phone Uxbridge 55399. More details later.

HOBBYISTS! ENGINEERS! TECHNICIANS! STUDENTS!

SPECAFCATIOM

* RCA 18028 ath aicre. precesser with 255 tyte hall expandatio to 64 k bytas
\star RCA 1881 vitoe ic it display pragran on TV screan wia the RF Modnla. tor
Single Beart with prelosslenal hex keybiard trily tecesed to aliminate the waste of manory for keytorid locediliny circults Load, run acm momery profect switcheos 16 regiaters
Intorriel, DIMA ant All Staile eryatal clock Bnilhtil powar reyulater 5 slof plyy in expansion hes Write and run machine language programs at home, display pess cminctury) video graphics on your TV set and design microprocessor circuits - the very first night - even if you've never used a computer before!

ELF II taaturing RCA COSMAC microprocessor /mini-COM PUTER

£79.95

THE FASTEST WAY TO LEARN COMPUTER FUNDAMENTALSI Owning an ELFII is probably the fastest, easiest, most foolproof way to gain a working knowledge of computers the world has ever known. First of all, you get your hands on your own computer, so you can spend all the time you want with it and use it for anything that turns you on.

Secondly, our Short Course in Microprocessor And Computer Programming makes it impossible for you to fail. We take you inside the RCA 1802 and teach you every instruction it can be given. Everything is explained in plain English. When you're finished, you'll know everything there is to know about using an ELF II. You'Il be able to make ELF II do whatever you want it to do. You won't be limited to predeveloped software.

Third, once you understand ELF II inside and owt, you'll be ready to use its highly sophisticated add-ons intelligently. And, as you expand your ELF II, you'll begin to appreciate just how advanced its technology really is.

Now Available! Taxt Etitor, Assemblor, Disassembler and a new Video Display Eloard:

 mantion hat

 with eill laprowe then whem reqiral.
 64 charscter iny 16 Mm uppor and lower casi display an your TV sereen or wide momiter - 直amatcelly inproviey your manapaidet $£ 79.95$ EIF A .

Ta: MEWTHOWCS, HL AUDNO LTO

In addition to $1 / 0$ monitor memory. ASCII keyboard and BASIC, ELF II offers you exotic add-on features such as the ELF II Light Pen and the ELF II Colour Graphics and Music System.

It's no wonder ELF IIs are being used by schools and universities, factory training programmes, trade schools and R\&D Labs.

ELF II and all ELF II add-ons

 are also available wired and tested. And, as if all that weren't enough, the help that's always available from our Service Department further guarantees your success!PHONE ORDERS ACCEPTED Call 01-739 1582

- Io ranmaris mimel ceirs

MSO AMALABLEF FOM ELE H -

7Klage prount

酸 Es.e. 44 +VIT
 acciply in meall $84+$ VAT med MMIE1S+VAT

 Ceif in Try wisic on eassithe thece commads

Cof in [203.01 + Vat

 +Kat
\square

 E13.50 + Yation

necumin.

 Provel
atmess ...

SERVICE TRADING CO

WHY PAY MORE?!

TRIAC.

Raytheon tag symmetrical Triac. Type Tag 250/500v. 10 amp 500 piv
 application stheot). Suitable Diac 22p.

0 to 60 MINUTES CLOCKWORK TIMER
Double pole 15 amp 230 AC . Contacts (no dial) $£ 1,50$. P\&P 30

MERCURY SWITCH

Sire $27 \mathrm{~m} \times 5 \mathrm{~mm}$. 10 lor \&5.00, P\&P 30p. tot
including VAT EE.72. Min. quanting 10. N.M.

230 VOLT AC FAN
ASSEMBLY
"with 5 blade $61 / 2^{\prime \prime}$ or 4 blade $3^{\prime \prime}$ aluminimum tan Now roduced price $£ 3.000 \mathrm{P}$ \& 6.65 p . ($£ 3.24$ inc
VAT \& P). N.M.S.

21-WAY SELECTOR

SWITCH with reset coil

 wwithed up to eiectro mechanical device can b 21 positions and can be reset fronswithe
any position by energising any position by energising the reset coil
$230 / 240 \mathrm{~V}$. A.C. operation. Unit is mounted srong chassis. Compiete with cover. Price E5.51
P\&P 75 p ($\mathbf{E S . 7 5}$ inc. VAT \& 9) N. M.

VORTEX BLOWER AND

24VDC BLOWER YNIT
 D.P. C/O lever $\mathrm{m} / \mathrm{switch}$, mig. by Cherry Co., USA 10). N.M.S

20LE PULL HEAVY DUTY SOLENOID
Mrg by Magnetic Devices. 240 VA.C.
Operation approx. 1016. pull at shth in
 Ralug intermitent.
(IE5.94 inc. VAT N.M.S.

PYEEYTHER

WESTOOL TYPE MME MODEL 2
240 V AC. Approx. $12 / \mathrm{lb}$ pull at $1 / 2$ inch. Rating 1 Price $£ 1.50 \mathrm{P} \& \mathrm{P} 20 \mathrm{p}$
240 A.C. SOLENOID OPERATED FLUID VALVE

insulation testers

(NEW)

:SAE for leaflet.

YET ANOTHER OUTSTANDING OFFER S2.

VARIABLE VOLTAGE T'RANSFORMERS
INPUT 230 v.A.C. 50/60
 OUTPUT YARIABLE $0 / 260$ v. A.C. BRAND NEW. All types. 200W (1 Amp) fitted A/C 0.5 KVA (Max. $21 / 2 \mathrm{Amp}$) 1 KVA (Mise. 5 Amp) 1 KVA (Max. 5 Amp) 3 KVA (Max. 10 Amp) 3 KVA (Max. 15 Amp) 10 KVA (Max. 50 Amp) 17 KVA (Max. 75 Amp)
£14.50 $E 17.00$ $£ 22.50$ € 37.00 $£ 45.50$
$£ 74.00$ ع168.00 £260.00 LT TRANSFORMERS

 0.6 V 12 V at $20 \mathrm{amp} \mathrm{E14.70} \mathrm{P} \mathrm{\& P}$ \& 50 (ine VAT $£ 17.50$ amp. £ 12.00 P\&P E1. 50 ($£ 14.58 \mathrm{inc}$

ROTARY VACUUM AIR COMPRESSOR ROPAMP
carbon van
Cabon vane oilless. $100 / 115 \mathrm{~V}$ a.c. $1 / 12 \mathrm{~h}$-p.
motor $50 / 60$ cycle $2875 / 3450 \mathrm{rpm}$. $20^{\prime \prime}$
vacuum 125 cfm 10 . Mfr. by Gast Co. Fraction of maker's price $\mathbf{E 1 4 . 0 0}$ P\&P $£ 1.00$ (Total: $£ 16.20$ inc. VAT) Suitable
transtormer $\mathbf{E 3 . 5 0}$ PRP 50 . (Total: $\mathbf{E 3 . 7 8}$ inc

BLOWER /VACUUM PUMP
3 phase A.C. motor $220 / 250 \mathrm{v}$ or $380 / 44 \mathrm{Vv}$. $1.425 \mathrm{rpm} / \mathrm{hh}$ cont
Oirect coupled to William Allday Alcosa carbon vane blower/vacuum

XENON FLASH
GUN TUBES

```
=-4
```


RELAYS Wide range of $A C$ and $D C$ relays available from stock Phone or writa in your

 $230 / 240 \mathrm{~V}$ A.C. Raloye: Arrow, $2 \mathrm{c} / 0.15 \mathrm{smp}$ E1.50 ($£ 1.84 \mathrm{inc}$ VAT T.E.C open type $3 \mathrm{c} / 0.10 \mathrm{amp} £ 1.10(£ 1.40$ inc. VAT \& P). Omoron orKeyswitch $1 \mathrm{c} / 0.7 \mathrm{amp} £ 1.00$ (E . 30 inc. VAT ρ) D.C. Relay: Open fype $9 / 12 \mathrm{~V} 3 \mathrm{c} / 07 \mathrm{amp} \mathrm{E1} 00$ ($\mathcal{E 1 . 3 0}$ inc. VAT \& Soalec $12 \mathrm{~V} 2 \mathrm{c} / 07 \mathrm{amp}$ octal base, $\mathbf{£ 1 . 2 5}$ (E 1.56 inc. VAT \& P). Sealed
 Other types available \qquad

\square AT CURRENT RATE TO ALL ORDERS FOR THE TOTAL VALUE OF GOODS INCLUDING POSTAGE UNLESS OTHERWISE STATED

GEARED MOTORS
 100 R.P.M. 115 lbs. ins.!!

115 lb . ins, 110 volt, $50 \mathrm{~Hz}, 2.8 \mathrm{amp}$ single phase.
split capacitor motor. Immense power, Continuously
rated. Totally enclosed. Fan cooled. In-line gearbox,

rated. Totally enclosed. Fan cooied. In-line gearbix.
Length 250 mm . Dia. 135 mm . Spindle Die. 155 mm

Length 115 mm , ex-equipment tested $£ 12.00$

GEARED MOTORS
8 r.p.m.. 201 b . inch 115 va a.c. Reversble motor
Both types similar to above drawing. Price either type $£ 4.76+75 P$
P\&P. (EE. 94 inc. VAT + P\&P)
(E8.E1 inc. VAT + P\&P)
FRACMO MOTOR
sharplength 35 mm , dia. 16 mm . weight 6 amp kilos
600 grams. Price $£ 15.00 \mathrm{P} \& \mathrm{P} £ 1.50(£ 11.82)$ N.M.S.

PARVALUX MOTOR TYPE S.D. 2
2V DC shunt 1/30th ph motor Continuously fated 4000 rom . Pice
Parvalux 230/250V a.c.
MOTOR

CITENCO

rpm reversible motor. 10rque 14.5 kg . Gear ratio 144:1. Brand new incl. capacitor. Gear ratio
$£ 14.2 \mathrm{~F}+£ 1.25 \mathrm{P} \& \mathrm{P}(\mathrm{E} 16.74$ inc. VAT $\& P$).

CROUZET - $230 / 240 \mathrm{~V}$ AC 2 rpm synchronous geared motor $\mathbf{£ 2}$

REVERSIBLE MOTOR 230V A.C.

12 V DC GEARED MOTOR
$\begin{array}{llll}\text { poweriul for size. } & & 60 \mathrm{rmm} 40 \mathrm{ma} \\ \text { Apprax speed a1 } & 6 \mathrm{~V} & 60 \\ \text { Approx speed at } & 9 \mathrm{~V} & 80 \mathrm{rpm} 50 \mathrm{ma}\end{array}$
Apprax speed at 9 V 80 rpm 50 ma
Approx speed at 12 V 120 rpm 60 ma \qquad

METERS (New) - 90 mm DIAMETER
 + P\&P 50 p (E4.32 incl. VAT). O.50A D.C $\quad 0.100$
'VENNER TYPE' ERD TIME
SWVITCH
manually pre-set time. 36 -hour spring reserve and day manually pre-set time. 36 -hour spring reserve and day
omitting device Built to highest Electricity Board
specification. Pnce $£ 7.75$ P\&P 75 p . ($£ 9.18$). A \& T.

SANGAMO WESTON TIME SWITCH Type $\$ 251200 / 250 \mathrm{~V}$ AC 2 on 2 off every 24 hours. 20 amps contacts
with override swith. diameter $4 \times 3^{\prime \prime}$ price $£ 6.00$ P\& 50ρ ($\mathbf{~ 7 . 0 2}$ AEG TIMESWITCH

$200 / 250 \mathrm{VAC} 1$ on $/ 1$ off every 24 hours. 80 amp contact (ideal storage heaters). Spring reserve $£ 10.00$ P\&P 50 p (Total: $£ 11.34 \mathrm{inc}$ VAT)

FRACNIO MOTOR
ani-vibration cradle mounting. Supplied complete with ransformer for
$230 / 240 \mathrm{~V}$ ACop. $£ 10.00$ P P £1 00 (Total: $\mathrm{E11.88}$ inc. VAT). N.M.S N.M.S - New Manufacturers' Surplus.

ACCOUNT CUSTOMERS MIN. ORDER $£ 10,00$
all mail orders, also callers at:
5TBRIDGMAN ROAD, CHISWICK,
LONDON, W4 5BB. Phone: 01-995 1560

SERVICE TRADING CO

SHOWROOMS NOW OPEN
AMPLE PARKING

A useful item of test gear designed with the audio constructor in mind.

BENCH AMPLIFIER

AN ESSENTIAL PIECE of equipment for any electronics workshop is an audio amplifier - useful for testing and checking other audio circuits. Ideally the amplifier should allow for a reasonably wide range of input signals and be adaptable for various outputs. The bench amplifier described here fulfills these criteria.

There are four inputs: (i) a high gain, flat response, intended for use with microphone or guitar, (ii) a phono (disc) input with RIAA equalisation, (iii) a medium gain, flat response for ceramic cartridge or tuner, (iv) an attenuated, flat response, for tape output.

Coupled with the master volume control the preamplifier section should cater for most audio signals.

A pre-amplifier output is obtainable (see case photograph) and

Fig.: 1. Showing the variation of recorded signal with frequency.
also an extension speaker outlet via necessary output sockets on the rear panel. Also provided is a low level power output suitable for headphones.

Construction

The prototype was constructed with various input connectors wired in parallel, 5 pin Din, $1 / 4$ inch Jack and Phono. This means that an input can be accepted from a signal lead with any of those three connector plugs. More can be added to personal preference, but it was felt that the chosen three would cover the majority of input functions.

The PCB is relatively uncluttered, Links I and 2 are provided to cut off the power supply to IC2 and IC3, the pre-amp and power amp stages. This may be useful in setting up and testing which can be done in three

Fig. 2. Recorded playback signal attenuation with frequency.
stages - the power supply, the power amplifier and finally the pre-amplifier.

Note that IC2 and IC3 are inserted into the board in opposite directions.

SW2 consists of four two pole changeover switches soldered directly onto the PCB, thus alleviating wiring-up problems. Different sizes are obtainable so make sure that you obtain the correct ones.

Use screened cable for input and pre-amp output and also for the lead to the volume control, to minimise mains hum.

Our finished amplifier had all input sockets, the selector switch, volume control, power indicator and the headphone socket on the front panel, with the output sockets on the rear.

Fig. 3. Theoretical flat response output after pre-amp stage with associated equalization network.

Fig. 5. Circuit diagram of the power supply.
Fig. 6. Main circuit diagram of the Bench Amplifier.

BUYLINES

There is nothing in the circuit which should present any difficulty in obtaining, except the correct size switches for SW2 a, b. We advise
that you take your circuit board with you when you buy the switch, and then you will be certain of getting the right ones.

PARTS LIST

RESISTORS ALL $1 / 4 \mathrm{~W} 5 \%$	
R1, 7	47 k
R2, 8	220 R
R3,	15 k
R4	2 k 2
R5, 6,9	100 k
R10	10 k
R11	6 k 8
R12	3 k 9
R13	680 k
R14	2 R 7
R15	100 R
R16	680 R

POTENTIOMETERS
RV1 2M Log
CAPACITORS
C2, 4, 8, 9
12,14,16 100 n polyester
Č3,13 1 u 16 V electrolytic
C5, $10 \quad 22 \mathrm{u} 16 \mathrm{~V}$ tantalum
C6 $3 n 3$ polyester
$\begin{array}{ll}\text { C7 } & 1 \mathrm{n} \text { polyester }\end{array}$
$\begin{array}{ll}\text { C11 } & \text { 330p polystyrene } \\ \text { C15 } & 470 \mathrm{u} 16 \mathrm{~V}\end{array}$
SEMICONDUCTORS

IC1	7815
IC2	LM381
IC3	LM380
BR1	1A bridge rectifier
LED 1	TIL 220

MISCELLANEOUS
T1 18 V 1 A nains trans-
former
FS1 and holder 250 mA
$1 / P$ and O / P sockets
8 ohm speaker
SW2
4 off 2 pole changeover push switches and mounting bracket case to suit

Fig: 7. Component overlay.

Two Bytes Are Better Than One TECHNICO
 SUPER STARTER SERIES
 16-BIT MICRO-COMPUTER

SYSTEM CPU OR STAND ALONE MICROCOMPUTER

- 1-8" x 16 " PC Baard

- I19900 16 -hit CPU
- 16 paratibl inalividualy aderassalie inpyl bits
- is prailel jodvilusity addrassabio outpul hils
- ounl 611^{m} buss hackplane odga connector and 10 15 fin ucimat cannectors
- Oporation Dobug Moniter with 12 user commands [IK Byte]

STATIC MEMORY EXPANSION MODULE

- PC Momle with dual $61^{\text {tom }}$ buss edge cennector - Memery Wris Protect to 32 K Bryes on board - Assambled bown includes seckels for 32 K Byles INTELLIGENT FLOPPY DISK CONTROLLER
- Inteligant Controlter which supports up to four Inteligo Si800

T99SS-U £236
T99SS-A £347

- RS232 and 20 ma carrant loop 1/0 port
- 512 Byiss RAM loxpandable to 2 K Bytus]
- Fulhy sockried toe zaditional 1.5 K Bylas of Ram.
and 3K Byas of E-PROM
- avector interrupts
- EPROM Programmer for 2708 E-PROMS

T99ST-32KB-U £629
T99ST-32KB-A £840
T99ST-16KB-U £454
T99ST-16KB-A £586

- Unerssambed baged lacludes zockets for 16 K Bylas

- Sterting addrass is DiP Switch solactable

CRU bil bamk selifet for system memory expansion move 65K Bylas

Another Crofton First Brand New Full Specification 10"Metal Cased Industrial Video Monitor
 Video Bandwidth 8MZ(3db down). Ideal for Computer Terminal or General Video Monitor.
 Complete With Own Power Supply. Input Sensitivity IV Composite.

> The unbeatable CROFTON 6800 MICRO is probably the best value for money today

> POWER SUPPLY £2O EXTRA + VAT \& P/P * Including Tiny Basic and on board Prom Programmer
WHY BUY A MICRO COMPUTER FROM US?

[^2]
Arentroniostotey

What to look for In the September Issue: On sale August 3pi

Made your contribution to Confuse-a-Car Week yet? Jog your jalopy's geriatric innards into thinking it's Christmas by giving it one of our car projects.
Now that the Great British Summer's here again, you'll need our heated rear window controller. Hit the button and the wonderful window warmer heats your hindsight for a respectable screen-clearing interval and then switches off again.
Or there's a warning lamp audible repeater. If you're in the habit of driving with your eyes closed (clunk click every trip) you won't see your oil or ignition warning lamps come on. With our repeater you'll hear them.
We're also planning an LED temperature gauge Watch your radiator blow its top in full technicolour. ... Next month in motoring ETI.

SATELLITE SPECIAL

The satellite age dawned in 1957 with Sputnik 1. Since then thousands of tons of hardware have been blasted into orbit around us

The satellites we have now, a little more sophisticated than Sputnik, monitor our weather, let us look in on a foreign war or the American Open as it happens, take navigation out of the realms of sun and sextant and many more applications, including a few that are distinctly hush-hush.

Next month lan Graham looks skywards and brings the eye-in-the-sky down to earth

LM10? What In The Name Of ETI Is An LM10?

Until last month very few people had even heard of the LM10. In a few more months not having done so will be a bigger disgrace than supporting Chelsea. Ray Marston produces one of his special features to help you out of the second division next month, so don't miss it.

KEEP IT QUIET, DON'T HISS AND GET IT TAPED PROPERLY

[^3]

CABLE ADDRESS: ICUSD
Telex \#697.827 ICUSD SDG

I^{2} L, LINEARS, REGULATORS, ETC.

SPECIAL DISCOUNTS

Total Order	Deduct
$\$ 35-\$ 99$	10%
$\$ 100-\$ 300$	15%
$\$ 301-\$ 1000$	20%

ODD ODES

A diode, the electronic one way street, is a versatile component. This tiny piece of crystal engineering can rectify AC signals, limit voltage, emit light or tune your radio. lan Sinclair explains

IF YOU COMPARE a resistor to a crowded road and a capacitor to a multistory car park, then a diode is the nearest thing electronically to a one-way street. A diode has two terminals (the di-part of the name simply means two) and the current flows only when one of them, the anode, is more positive than the other, the cathode. This direction of current flow, anode to cathode, is called the forward direction and doesn't obey Ohm's Law. That means that we can't calculate how much current will flow simply by measuring the forward voltage and knowing a single figure of resistance of the diode, R. There are two features of the way in which a diode conducts which makes it quite different from a resistor. One is that current doesn't start to flow whenever the anode is positive to the cathode, only when the voltage is greater than about 0.5 V (for silicon diodes) or 0.15 V (for germanium diodes). The other feature is that, once the diode is conducting, its resistance drops as the current increase. The drop in resistance is so great that the voltage across a forward conducting diode is almost constant, around 0.55 V , even if the current changes considerably. For silicon diodes, a very useful rule of thumb is that the voltage changes by only 60 mV for a tenfold change of current. This means, for example, that if the voltage across a diode is 0.55 V when 1 mA is flowing, then increasing the diode current to 10 mA will raise the voltage by only 60 mV to 0.61 V . If the diode obeyed Ohm's Law, then a tenfold increase in current would cause a tenfold increase in voltage. In our example, a resistor which had a voltage of 0.55 V across it with 1 mA flowing (a 550 R resistor) would have 5.5 V across it when 10 mA flowed. Diodes just don't behave that way.

Characteristics

If we can't use Ohm's Law then, what do we do? The answer is that we have to use characteristics, graphs which show how much current flows at each value of voltage. A full set of characteristics for a diode is quite an impressive sheaf of documents, but the two that are of most interest to us are the forward characteristic and the reverse characteristic. The forward characteristic shows how much current will flow at each value of forward voltage and at what voltage current can be expected to start flowing. The reverse characteristic shows how

Fig. 1. Symbol for a diode. The arrowhead on the symbol shows the conventional direction of current $(+$ to -$)$ through the diode.

Fig. 2. Measuring the forward voltage for a conducting diode. This is always around OV5 for a silicon diode. OV2 for a germanium diode.
much reverse or leakage current will flow when the diode is reverse biased (cathode positive, anode negative) to various voltages. This reverse characteristic usually has a turnover (Fig. 3) and in the normal use of a diode we try to avoid applying a reverse voltage large enough to reach this turnover point. Why? Well, unless there's enough resistance in the circuit to make sure that the current which can flow in the reverse direction is very small, enough power, will be dissipated to overheat the diode and destroy it. The power converted to heat (in milliwatts) is given by volts \times milliamps. If the diode can just safely pass 20 mA in the forward direction, when the forward volt is, say, OV6 then the power it can handle

Fig. 3. Forward and reverse characteristics plotted on one graph. (a) Germanium diode, (b) Silicon diode. Notice that the scales for reverse voltage and current are not the same as the scales for forward voltage and current. This has to be done so as to get the two different characteristics on the same graph.
is $0.6 \times 20=12 \mathrm{~mW}$. In the reverse direction, if the turnover is at -20 V , then the power which has to be dissipated at 20 mA is $20 \times 20=400 \mathrm{~mW}$ - and it won't like it!

Why Diodes Do It

That's what a diode does, but why does it do it? The answer to that question is not so easy, because it needs some understanding of how materials are formed from atoms and molecules. Let's try to get by with a simple explanation on the understanding that there's a lot more to it. First of all, the materials that are used for making diodes or transistors are solid crystals. Crystals of a given material always have the same angles between faces, and the reason is that they are formed by the atoms of the material always carrying the themselves in the same pattern. This regular arrangement causes regular shape of crystals, and also makes it possible for a crystal to conduct electricity. For any material to conduct electricity, it must be well supplied with particles smaller than atoms which have an electric charge, positive or negative, and these particles must be able to move freely through the material.

The regular arrangement for atoms in crystals provides plenty of paths between the atoms for the easy movement of these charged particles, so that crystals only need a supply of particles to become conductors. The materials we call metals are crystals which can release about one charged particle from each atom, so they conduct electricity pretty well, though not equally well. Insulators, on the other hand, simply don't have many charged particles lying around and many of them aren't crystals either, making it doubly difficult for them to conduct. In between these two extremes are the curious materials called semiconductors, which form crystals but are not well supplied with the charged particles that are needed to make them into conductors.

These are two ways in which we can supply these particles. One way is to heatthe materials. This causes a few atoms to shed one of their electrons (negatively charged particles), leaving behind a gap in the arrangement of particles in the crystal which we call a hole. The hole behaves like a positively charged particle and can slip from one atom to another. Raising the temperature of a semiconductor, therefore, makes it conduct, but the electrons will slip back into place again when the material cools so the change is not permanent.

Dope Charge

A permanent change can be caused by doping. Doping is adding a small amount of impurity to a semiconductor material. We don't use any old impurity, but materials whose atoms will fit nicely into the arrangement of atoms in the crystal. Some of these materials which fit perfectly into place have one electron more than is needed in the crystal. That electron is released from each impure atom, allowing the crystal to conduct electricity by movement of these electrons. A crystal doped in this way is called N-type. We can also dope with a material which has fewer electrons than its neighbours in the crystal, creating a hole and making the crystal conduct by hole movement. A crystal doped in this way is called P-type. When a semiconductor is made into a conductor by doping, the change is permanent because there are always electrons or holes which don't fit and can't just snap together again (recombine).

This business of doping is quite something, because

Fig. 4. When a junction is formed (a) the electrons and holes separate slightly at the junction. Reverse bias (b) makes the separation much greater so that the material can't conduct there aren't any carriers. Forward bias (c) allows electrons and holes to cross the junction, making the material a conductor.
it allows us to do a bit of engineering on materials, creating crystals which can be fair conductors or good conductors, according to how much doping we use; or which are N -type or P-type according to what type of doping we use.

Attractive Likes

Now we've set the scene for learning why a diode works, and there's only one main point left. Charged particles, whatever their size, obey the laws of electrostatics. Of these laws, the important one for understanding the action of a diode is that two particles with the same sign of charge (two positives or two negatives) will repel each other, but particles with opposite signs (a positive and a negative) will attract each other. It's a simple enough law, but combined with what we now know about doping it's enough to explain what goes on inside a diode.

A diode is a single crystal with P-type doping at one end, or on one face, and N-type doping at the other end or face. Obviously, there's got to be a surface in the middle or thereabouts where these two types of doped material meet, and this surface is called the junction. The important thing about a junction is that it's somewhere inside a crystal with no break in the arrangement of the atoms. You can't make a junction by pressing a lump of P-type material up against a lump of N -type material there's no chance that the rows of atoms would ever line up the way they do inside a crystal.

This arrangement is now a diode - a crystal with P-type material on one side of the junction and N-type material on the other. Remember what these terms mean - N-type material conducts because it has electrons free to move through the crystal. Because the crystal is in one piece, there's no reason why electrons or

Fig. 5. Using diodes (a) for rectification (b) for radio signa detection. Both applications depend on the one-way flow of current through the diode.
holes should not move from one end of the crystal to the other, so the crystal can be made part of an electrical circuit.

Up The Junction

When the junction is formed, though, the free electrons of the N -type material at one side will be placed very close to the free holes in the P-type material on the other side and inevitably there's a bit of shuffling which ends up with some combination of electrons and holes. This leaves the junction without carriers and also causes the carriers to be pulled back a bit from the junction. The carriers are pulled back because the electrons removed from the N-type material leave a positive charge behind - originally there must be a positive charge for every electron - and the holes that are removed from the P-type material leave electrons (negatively charged) behind.

The affect of the remaining charges is to attract electrons and holes (carriers) away from the junction (Fig. 4a). The imbalance of charge also shows up as a voltage and this is what causes the OV5 of so we need before we can make a silicon junction conduct in the forward direction. The bit of crystal around the junction that has no free carriers is called the depletion layer and we'll look at it again when we discuss varicap diodes.

Minority Groups

The action of the diode in a circuit now becomes a bit easier to understand. When the diode is reverse biased, the polarity of the power supply (Fig. 4b) acts to attract carriers away from the junction, making the depletion layer wider. The electrons of the N-type material and holes of the P-type material simply don't cross the junction because they are pulled in the opposite direction. The only carriers that can cross are what are called minority carriers, holes which appear in the N-type material and electrons which appear in the P-type material. These minority carriers come from splitting bits off atoms in the crystal, using energy from the action of temperature or light. The higher the temperature of the diode the faster these minority carriers are formed. If we make the reverse voltage across the depletion layer high enough, the effect will be to accelerate these minority carriers to high speeds, so that they bang into atoms, knock more carriers off, and so cause the whole junction to become conducting. When that happens, the junction has 'broken down', the diode conducts and it can be danaged.

When the bias is in the forward direction (Fig. 4c) the carriers are attracted towards and across the junction. First of all, though, the voltage caused by the depletion process has to be overcome. Once the forward voltage has reached this amount, current starts to flow. Only a few of all the possible carriers cross the junction when the voltage is low, but raising the voltage even by a very small amount is enough to cause a great increase in the number of carriers crossing over the junction, so that the resistance of the junction becomes much less as the voltage and current are increased.

Shedding Light

This picture of what is happening inside a diode explains pretty well the action of signal or rectifier diodes which are used in the circuits such as those shown in Fig. 5. What about some of the other diodes that we use, like photodiodes, varicaps, LED's, and Zeners? Let's start with photodiodes. The main difference between a photodiode and an ordinary signal diode is that we deliberately put a photodiode into a transparent case so that light can reach the junction. Photodiodes are used in circuits where they are reverse-biased, with a fairly wide depletion layer. Now in darkness, the amount of current that can flow is only that caused by minority carriers the few holes and electrons that are split off by the heat of the surroundings. Light, however, is a wave which, like all waves, carries energy. The energy of light falling on the depleted layer around the junction can cause lots more electrons and holes to be split off.

They're still minority carriers, but there's a lot more of them now, and so a layer current flows despite the

Fig. 6. Using a photo-diode as a light detector. The diode is reverse-biased, but will conduct slightly when light separates electrons from holes.

Fig. 7. The LED. When forward current flows, a glow of light is visible. Beware of reverse voltages - anything more than about 3V reverse will destroy the junction.

Fig. 8. The Zener diode used as a simple stabiliser. A load connected across the diode can drew current by reducing the current through the diode. Providing the diode current doesn't drop below about 2 mA , the voltage across the diode will remain constant.
reverse bias. Typically, the reverse current can change from around 0.1 uA in darkness to 100 uA in the light of a desk lamp. If the diode is forward biased, the change caused by light is hardly noticeable.

Togetherness

The LED has an action which is just the reverse of that of the photodiode. Instead of light falling on the junction and causing electrons and holes to split off, as happens in the photodiode, the LED depends on electrons and holes coming together again and giving out light. You can imagine these two processes more clearly when you think of separating two strong magnets. The force which holds them together means that you have difficulty separating them - you have to do some work to separate them. You can get that work back again when the magnets attract each other back; you could even
make the magnetic force do something useful, like picking up a weight.

LED Light

LED's are made from semiconductors (such as Gallium phosphide) which are not heavily doped and don't conduct very well. Something like 2 V is needed across the junction of a typical LED to get current flowing and the movement of holes and electrons causes collisions which separate off more holes and electrons. On their way across the junction in opposite directions, holes and electrons collide - and release the energy it took to split them apart in the first place. The amount of energy is the same as that of a light wave and since the material is transparent a light wave is what we get. The colour of the light wave is decided by how much energy is released. Low energy gives red light, or the invisible infra-red. Higher energy gives yellow, green, blue light (in order of increasing energy), until we reach the invisible ultravoilet radiation. The amount of energy is fixed by the material that is used as a semiconductor, though, and we can't alter it noticably by changing the voltage or current.

Avalanche

Zener diodes make use of the reverse breakdown which has already been described. Oddly enough, two effects cause this reverse breakdown, Zener effect and avalanche effect. The avalanche effect is the one we've described, in which minority carriers are accelerated so much by the reverse bias that they collide with atoms and split electrons and holes apart. This creates more carriers, which are in turn accelerated, splitting off yet more until the whole juntion becomes conducting. The avalanche effect occurs mainly in lightly doped material, at reverse voltages of 6 V or more. The other effect, Zener effect (named after Clarence Zener who discovered it) takes place in heavily doped materials, mainly when the reverse voltage is less than 6 V . Because of the large number of electrons and holes which are present, the depletion layer is very thin and it's comparatively easy for a carrier to shoot straight across. Diodes which made use of either or both of these effects are called

Fig. 9. The varicap diode, D1, is in series with C1 and C2, and is part of the tuning capacitance for L1. Since the diode capaciance is varied by the control voltage from R1, tuning can be carried out by altering this DC voltage.

Zener diodes, and we use them to stabilise voltage. The breakdown, particularly when it is caused by avalanche effect, takes place at a precise value of voltage, so that a Zener diode wired in the circuit of Fig. 8 will have an almost constant voltage across it, even if the current through it varies considerably.

Incidentally, avalanche effect has a positive temperature coefficient, which means that the voltage across the junction increases as the temperature is increased. Zener effect, by contrast, has a negative temperature coefficient, meaning that the voltage across the junction decreases as the temperature is increased. At voltages around 5V6, both effects take place, which means that the voltage is hardly affected by temperature. For this reason, $5 \vee 6$ zener diodes are often specified rather than any other voltage.

Varicaps

Finally, among the diodes that are particularly useful, varicap diodes make use of the width of the depletion layer. The depletion layer, remember, is the part of the crystal around the junction which has had its carriers removed. The greater the reverse bias applied to the diode, the greater the attraction of carriers away from the junction and so the greater the width of the depletion layer.

Now a depletion layer is a chunk of insulating material which is sandwiched between two bits of conductor the P and N materials. This is just the arrangement we know as a capacitor - an insulator between two con-
ductors - so that the reverse-biased diode has a capacitance. It's a variable capacitance, though, because the width of the insulator - the depletion layer can be varied by changing the bias voltage. Like any' other variable capacitor, the capacitance value is greatest when the insulating layer is very thin, and the capacitance value is least when the insulating layer is thick. Now the diode has a thick depletion layer when the reverse voltage is large, so that its capacitance is low; but when the reverse bias is small, the depletion layer is thin and the capacitance is large.

Varicap diodes solve an awkward problem - how to tune radio circuits without having any moving parts. A varicap diode in the oscillator circuit (Fig. 9) arranged in series with a fixed capacitor so that it is only part of the tuning capacitance, has no DC connection to the oscillating circuit and can have its capacitance varied by a voltage supplied from a potentiometer. The potentiometer doesn't have to be anywhere near the tuned circuits, so long as the connecting wires are well decoupled and the tuned circuits can be sealed inside a can, undisturbed by any movements.

That's dealt with the most common diodes, though there are dozens of types we haven't mentioned, ranging from the diodes which generate microwave signals to the breakdown diodes we use in thyristor firing circuits. Once you've grasped the basic principles, though, there aren't many surprises left, and you are better able to understand how to make efficient use of these indispensible components.

ET

SAILING CLUB RACING CLOCK Submitted by Mr K. P. Wood of Wakefield.

The business end of the completed race clock. The state of all clock facilities is repeated on the front panel.

ANY YACHT RACE, whether for the America's Cup, or for the most minor sailing club's weekend dinghy racing, should be started with a definite sequence of signals. At ten minutes before the start, a flag is raised and a sound signal is given, At five minutes, another flap is raised and a further sound signal given, and at the start both flags are lowered and a third sound signal given.

Accurate Handicap

As a few seconds error at the start can make a very substantial difference to a boat's finishing position, far out of proportion to the actual timing error, it is essential that an accurate clock be used to time the signals. In addition, if the racing is on a handicap basis, each boat's finishing time must be taken accurately, for processing to establish a corrected time which sets each boat's final position in the results.

Until recently, the time was taken in minutes and seconds on an ordinary clock or watch, and the corrected time obtained by looking up tables with reference to each class of boat's handicap number.

With the advent of the inexpensive electronic calculator, the tables were dispensed with, and the boat's elapsed time converted to seconds, divided by it's handicap number and multiplied by 100 to obtain the corrected time.

Dne Pair of Hands

A race officer, working alone at the finish of the race, cannot watch both the finishing line and the clock to read the time whilst also giving a sound signal to let the boat's crew know that they have finished. I designed this clock, or more properly, seconds counter to simplify matters. Because it is crystal controlled, it is at least as accurate as any stopwatch which a helmsman may be using, and it counts in seconds to remove one operation from the corrected time calculations. The time can be latched by the race officer without watching the clock, and this can then be read later, up to the next boat finishing.

Top view of the completed unit. The crystal oscillator can be seen, bottom right, and the switch bank, top right.

A preset button sets the clock to count down from 900 seconds, and the race officer gives his signals as the count passes through 600, 300 and zero. When the countdown reaches zero, the clock changes over and starts to count up. There is also a clear switch to set the count to zero, and a display blanking switch to conserve battery charge if this is critical.

Repeated Facilities

The large four digit display gives a straightforward count of over two hours, which is usually enough for a race, and an LED indicator on the front of the clock shows if this has been exceeded. The state of all the clock facilities is repeated on the front of the clock. The battery is maintained with a mains charger, and the clock can be used on either battery or mains. The count is unaffected by the changeover.

The timer was used in the condition described for one full season with complete success, and then the automatic start signal facility was added. Logic was added to the clock on an additional board which carries out the signalling for the race officer at the correct intervals. The CMOS logic operates relays through transistor drivers and a four pin socket on the body of the clock. The relays control two lights and a horn which are visible and audible from anywhere on the sailing water and operate in the same sequence as the more traditional flags and guns. The state of the start signals is repeated on the clock face with LEDs. At this time the low battery indicator was added.

Because the clock was designed and built in two separate stages, there is probably some duplication in the logic, and if it were to be made up complete from a standing start the logic would probably be simpler, particularly in the zero sensing area. As 1 find NAND and NOR gates easier to get, there are a lot of inverters, but as these are all made up from spare gates, and there have to be a lot of spares because of the variety of gates, I do not think that the use of AND and OR gates would reduce the chip count significantly.

readers-destgne

Fig 1. Circuit diagram of the main board. Part one of the How It Works refers to this.

HOW IT WORKS

PART 1 - the output from a 50 Hz crystal ${ }^{\text {' }}$ controlled oscillator-divider chain, made up from a Sintel kit, is further divided in IC1 and 2 to 1 Hz and the resulting pulse train is divided by $\mathrm{IC}, 4,5$ and 6 to provide a four git Bent coune in IC7 8 s decoded to sev segment drive in IC, 8,9 and 10 . The 4511 output to drive the digits direct but the l" displays are connected in common the ormat so the transistor arrays invert and buffer the drivers to suit, whilst R23 to 50 limit the segment drive currents.
The 4510 counters are cleared to a zero count by a high level on pin 9 from SW 1 , and are preset to the BCD count set on pins 4, 12, 13 and 3 by a high level on pin 1 from SW2.
IC 3, 4, 5 and 6 are wired for parallel clocking, and count synchronously when pin 5 of IC3 is held low by the Q output from he toggling flip-flop IC19a which is toggled by a high pin 11 from SW3 via the Schmitt trigger inverter IC20a. IC19a is wired to toggle on each pulse on the clock input pin, pin 1, by wiring the D input and the Q are nog used and are tied low to Vss
The BCD preset inputs to IC3, 4,5 .
re set by hard wiring the appropriate pins to either Vss or Vdd as required With the wiring shown the counters are preset to 900 . Operation of the preset-enable SW also pulls the rest pin of IC 19b high, resetting the Q output low and setting the 4510 counters to count down. Thus the counters always count down from the preset count Cl9a can also be toggled by SW4 at any me independent of the state of the count.
The count shown on the displays can be latched at any time with SW5 which toggles IC2la, further operation of the same switch unlatching the display and showing the updated count. Similarly, SW6 oggles IC21b blanking the display and SW3
whitt trigger inverters with $\mathrm{C} 3,4$ through cutting out contact bounce and the switch outputs are tied high or low as required by R3, 6. SW1, 2 are not subject to contact bounce so are wired direct, with R1 pull-up resistors, and $\mathrm{Cl}, 2$ slow down capacitors.
Because the count is sensitive to operation of SW1, 2, 3 and 4 some protection from inadvertent operation during a count is required and this is provided by SW7a, b These are two separate switches mounted
under one large button so that both close when the button is pressed, enabling th switches SW1, 2, 3 and 4. In this way deliberate action is required to operate any of these switches. SW5 and 6 are not count sensitive and do not require this protection The BCD count is tapped off the outputs of the 4510 counters to four, four input NOR the four digit count is a, 0000 the when from these NOR gates go high to the inputs of a four input NAND gate IC17a. The resulting low on the output of this gate is inverted in a spare NAND gate IC18a, and this output sets the Q output of IC19b high so that the counters change over and commence to count upwards.

LEDs 2-6 are driven from the outputs of the respective flip-flops, buffered in the non-inverting buffers in IC22, with current limiting resistors R8-12, to indicate the state of the various functions on the front of the clock.
The carry out from IC6, pin 7, drops low when the total count reaches 9999 . This low is inverted to a high by the spare Schmitt trigger, IC20f and gated by the NAND gate IC18b, which is held open by a high output on pin 1 of IC19b so that ICI8b is only open when the count is upwards. The output by cross-coupling the tho NA made up IC $18 \mathrm{c}, \mathrm{d}$. The output of this RS drives the LED marked 'add 10000 ' giving an effective $41 / 2$ digit capacity and a total count without ambiguity of 20000 . The RS flip-flop is cleared in the same operation as clearing the four counter ICs from SW1 via the spare Schmitt trigger inverter IC20e.

PART 2 - a 20 -pin plug and socket connects the BCD data to a second board as shown in the drawing. The BCD data for the 10,10 and 1 digits is carried direct to NOR gates 1023 and 2 igits the NOR at a all go high. The 10^{2} digit BCD count goes to two high. The $1{ }^{2}$ digit BCD count goes to 26. Each bit of data goes to one input of an EX-OR gate and the other input of each gate is tied high or low to V or V in accordance with the digit required. The EX-OR gates compare each bit of the 10^{2} digit from the counter with the levels set on the other inputs of the gates and when these are equal the output of the gate
goes low. The gate outputs in IC25 all go low at a count of 600, and those of IC26 at a count of 300 , with the wiring to the inputs as shown.

These outputs are NOR'd in IC24b and IC27a respectively, and the output from IC24b is NAND d with the outputs from IC23 and 24a in IC28a. Thus when the count reaches 600 the output from IC28a goes low, is inverted to a high in IC29b to clock reaches 300 IC 28 b goes low and count reaches IC 30 , through invert and clock flip-flop IC 30a through inverter IC29a.
IC3la, inverted in IC33a and inverted and buffered in the transistor array IC34 to drive the coil for RLY 2. Similarly, the Q output from IC30b is processed in IC 31b 28 c to drive the coil of RLY 3.
The gating inputs of IC3la and b are held high during the down count by the Q output from the flip-flop IC32a which is set high by a pulse on pin 19 of the 20 -pin plug from the preset to 900 switch SW2 and is reset low by a pulse from the zero sensing ogic on the main board from pin 17 of the 20 -pin plug. The outputs from IC29a, b, as well as driving the relay coils, are also main board in IC 33 b count signal from the 555 timer IC 34 which is wired the monostable with a period of approximately two seconds. The output from the 555 is buffered and inverted in IC34 to drive RLY 1 for the horn drive. Operation of the 'clear switch puts pin 4 of the 555 momentarily high and ensures that the timer is always enabled after the initial power-on of the clock. The input to the 555 from IC33b is inverted in IC31c and NAND'd with the 0 output of IC32a so that the horn is disabled after the zero count and no further signals may take place. When the counter was first tested in practice, it was found that, at the zero count, the flip-flop IC 32a was resetting and closing the gate before the 555 was triggered, so that the horn did not sound a the zero count. C14 was added to the rese input of IC32a to delay the reset pulse unti It was also found
It was also found that operation of the during the count-down sequence any time gling the flip-flops in IC 30 and 32 turning the lights on and off at indeterminate moments, presumably due to spikes on the supply lines and C9, 10 were wired across the supply to cure this effect.
A high on the clear line, or a high at the
zero count, both from the main board via pins 17 and 18 of the 20 -pin plug, or NOR'd in IC27b and inverted in IC29c to reset the Q outputs of IC30a,b low disabling the relay imiting resistors R13-15 from the relay drivers to repeat the state of the signals on the face of the clock. SW8 with D1 and R18 was added as an afterthought to allow the horn to be sounded at any time whatever The 6 -volt be count.
charge by the built in maintain charge by the built-in mains charger. The ment of RV2. ment of RV2.
istor BRY 39 (P) unijunction tranlaxation oscillator. As the battery voltage falls the voltage on the PUT gate falls whilst the voltage on the PUT anode is held relatively constant by ZD1, and the PUT starts to oscillate when the gate voltage alls some oV6 below the anode voltage. As the battery voltage falls further, the PUT triggers at lower values of anode voltage and the rate of oscillation increases. With the values shown, RV3 is set so that the first odd flash takes place at about 5 V 2 on the $2 / 3 \mathrm{~Hz}$ and at minutes of useful life left in the battery before the voltage goes to 4 V 5 and the crystal oscillator loses control As the whole clock uses CMOS logic it works perfectly satisfactorily from fully charged o 4 V 8 and no regulation was therefore thought necessary. The cathode gate of the PUT is not used and merely left opencircuit.
The switches are mounted on the board a suitable height so that the buttons poke through a rectangular hole in the front panel.
The power supply regulator is mounted on a home made heat sink on the back of the case and runs very cool. The relays to drive he signals are mounted in a separate box front. The signal from the sockets on the the relay coils from the clock is taken to the relay colls from the four pin socket are rated at 250 volts 5 A AC and the sign lights are powered from the mains with separate mains lead to the relay box.

The horn is an ordinary air-operated car horn, the compressor being driven from a 240/12 volt transformer and a 25 A diode. bridge. Any bright lights may be used for the signals.

Figure 2. The logic board' (left) and PSU and indicator (above).

DEPT．ETI 8， 56 FORTIS GREEN ROAD MUSWELL HILL，LONDON N10 3HN TELEPHONE：01－883 3705／2289

USE OUR＂ORDER
RING＂LINES
VAT INCLUSIVE PRICES．P\＆P 25p

음믐
 55 p 40

50p
$25 p$
$25 p$
$25 p$
35
$12 p$
$12 p$
$12 p$
$12 p$
$16 p$
$14 p$
$14 p$
$60 p$
$60 p$
$70 p$
$65 p$
$65 p$
$65 p$
$80 p$
8
1

 \qquad

8 ZENER DIODES $(400 \mathrm{mw})$

2．7V to 33V			8 p
YERO BOARDS［0．1＂Copper）			
2．5＂			$51 p$
$3.75{ }^{\prime \prime} \times 5^{\prime \prime}$			60p
RESISIORS［ $1 / 4$ wath］ 10 ohm to 1 Mohm			Ip
PRESETS［Horizontal］ 100 ohm to 1 Mohm			5p
POTENTIOMETERS（carbon） 1 Kohm to 2 Mathms lag／inear			22p
CERAMIC CAP［50Y）			
22 pF I			3p
POLYESTER CAP［250V			
．01，．015．．022．．033，．047．．068，． 1 uF ．15．．22，． 33 uF			5p
			6 p
． 47.68 uF			12p
1 uF			15p
2.2 uF			20口
ELECTROLTTIC CAP 25%			
1 uF			6 p
68 \％			7p
150 uF			8 p
220 uF			9 p
330 uF			11p
470 uF			14 p
1000 uF			22p
OIL SOCKETS		BRIDGE	
		RECTIFIER	
8 pin	10p	1A／50V	22 p
14 рип	12p	1a／100y	24 p
16 pln	13p	1A／200V	27P
18 pin	18p	1／1／400V	32 p
22 pin	22p	2A／50V	34 p
24 pin	24p	2A／100Y	38 p
28 pin	28 p	2A／200Y	44 p
40 pin	40p	2A／400V	48 p
		W02m	25p
		W06m	32p

	ーー～N 	\square n 으응응으으ㅇㅡㅡ응으므ㅇㅡㅡ으응 いだった す。

LIMEARS 즈룰
 $8 C 149$
$8 C 157$ 8 F 173

$\stackrel{\circ}{\square}$
TIP33C
TIP34A

Now，like Intel，Motorola and National you can buy Power－One open frame power supplies and enjoy quality and reliability at LOW LOW prices．Over 70 different models to choose from including floppy disc drive supplies as well as single，double，triple and quad output．

Floppy Disc Drive Supplies
－with connectors and cables for Shugart drives if required．
CP－249－drives one mini drive $\mathbf{C 3 3 . 0 0}$ CP－ 323 －drives two mini drives $\mathbf{6} 00.00$ CP－205－drives one Shugart SA800 CP－206－drives two SA800 EET．00

Single Output

5 V at 2.7 A w／OVP	$\mathbf{£ 1 2 . 5 0}$
5 V at 5.4 A w／OVP	$\mathbf{£ 4 1 . 5 0}$
12 V at 6 A	$\mathbf{6 8 7 . 5 0}$
15 V at 5.4 A	$\mathbf{8 8 7 . 6 0}$

Dual Output

± 12 to 15 V at 1.5 A ± 18 to 24 V at 0.4 A $\$ 41.00$ $\pm 5 \mathrm{~V}$ at 5.4 A W／OVP

Triple Output

$5 \mathrm{~V}, 9-15 \mathrm{~V},-5,-12,-15 \mathrm{~V}$ at 1.8 A to 10.8 A From E41．00 to $£ 137.00$

Discount available to bona－fide educational establishments．Quantity discounts start at five units．Trade enquiries welcome． Send large SAE for full catalogue and price list．

Our new catalogue lists circuit boards for all your projects，from good old Veroboard through to specialised boards for ICs．And we＇ve got accessories，module systems，cases and böxes－ everything you need to give your equipment the quality you demand．Send 25 p to cover post and packing，and the catalogue＇s yours．
VERO ELECTRONICS LTD．RETAIL DEPT．
Industrial Estate，Chandlers Ford，Hants．SO5 3ZR
Telephone Chandlers Ford（04215） 2956

Extracts from ourlists，which are now available，of Equipment，Components etc THAT MUST BE SOLD．
TEK scope 545A with H plug－in £125ea． TEK scope 545A with CA plug－in E175 ea． H．P．scopé 175A 50MHZ Dual trace

meler arin

 amork L2 as．Psp $£ 1$ ．

 CHID STAE

ofp 75．

240 M Hen


```
semicomouctons
\(\mathrm{A}_{1} 420 \mathrm{ma}\) ．
143010 ： 184
```



``` I44339：11．3V Znter．
```



```
\({ }^{8525 S 5 C}\) 20p．
```



```
7453
7451
7401
\(\begin{array}{ll}5 p & 72451 \\ 5 p & 74538 \\ 5 p & 74508\end{array}\)

> 7402
7476
7695
> \(\begin{array}{lll}7476 & 20 p & 74154 \\ 7495 & 35 \mathrm{p} & 71325 \\ 709 & 15 \mathrm{p} & 5115862 \\ 74474 & 12 \mathrm{p} & 15542\end{array}\)
74474
74510
74504
```



```
\(7 p\)
\(10 p\)
\(12 p\)
\(12 p\)
\(70 p\)
81
\(4 p\)
\(8 p\)
\(60 p\)
\(14 p\)
\(40 p\)
```

Materali Dus is Line 6 pia Opto Compler 50p es．

Carriage all units $£ 4$ sa．V．A．T．at $15^{\%}$
CALLERS VERY WELCOME STRICTLY BETWEEN 9am－1pm and 2pm－5pm Monday to Saturday incl． BARCLAYCARD（VISA）and ACCESS taken．Official orders weicome．
（2nd left passed Reading Tech College in ．Kings Road then first right－Look on right for door with spoked wheel）

ETCH RESIST TRANSFER

 KIT SIZE 1:1Complete kit 13 sheets 6 in $\times 41 / 2$ in £2.50 with all symbols for direct application to P.C. board. Individual sheets 25 p each. (1) Mixed Symbols (2) Lines 0.05 (3) Pads (4) Fish Plates and Connectors (5) 4 Leed and 3 Leed and Pads (6) DILS (7) BENOS 90° and 130° (8) $8-10-12$ T.O. 5 . Cans (9) Edge Connectors 0.15 (10) Edge Connectors 0.1 (1.1): Lines $0: 02(12)$: Bends 0.02 (13) Quad in Line.
FRONT̈ AND REAR PANEL TRANSFER SIGNS
All standard symbols and wording. Over 250 symbols, signs and words. Also :available in reverse for perspex, etc. Choice of colours, red, blue, black, or white: Size of sheet 12 in $\times 9$ in. Price $£ 1$.

GRAPHIC TRANSFERS

WITH SPACER

ACCESSORIES
Available also in reverse lettering, colours red, blue, black or white. Each sheet $12 \mathrm{in} . x$ lin contains capitals, lower cas and numerals $1 / 8 \mathrm{in}$ kit or $1 / 4 \mathrm{in}$ kit. £1 complete. State size.
All orders dispatched promptly. All post paid

Shop and Trade enquiries welcome Special Transfers made to order
E. R. NICHOLLS
P.C.B. TRANSFERS DEPT. ETI 8 46 LOWFIELD ROAD STOCKPORT, CHES. 061-480 2179

PLEASE

 MENTION ETI WHEN REPLYING T0 ADVERTS
Gar Audio

Manual
MW/LW
Full medium and long wave tuning. Complete with speaker and mountings. Suitable for positive or negative chassis. Latest $£ 9.95+{ }_{\text {Post }}^{\text {E1.00 }}$ Push-Bution \square^{0} MW/LW
One LW, four MW buttons plus manual tuning. Complete with speaker and moun $£ 15.60+{ }_{\text {Post }}^{£ 1.00}$

Stereo FM/

Cassette

+ MW
Standard cassettes and FM in stereo plus medium wave. Tone and balance controls. Fast forward facility on tape. Adjustable shafts. Suitable for 4 or 8 ohm speakers (not supplied). This model is discounted else

$$
£ 39.95+{ }^{\text {filiosion }}
$$

Stereo

Speaker Set
Suitable for above
stereo unit. Good quality in surface mounted casing, 5 W nominal £3.95 [pair) 8W peak. +70 p Post
Telescopic Car Antenna
Multi-section standard type, suitable for angled mounting with locking key.

$\mathbf{E 1 . 6 0 + 3 0 p \text { Post }}$

Metal Detectors

Treasure Tracer Mk III

 The original Treasure Tracer. Sales exceed 7,000. 5 -transistor circuis with Varicap tuning. Sensitive, stable BFO design. Built-in speakerand earphone. Fitted with Faraday shield. Kit supplied with pre-buit search head.
Kit: $£ 17.50+£ 1.00$ Post Built: $£ 22.50+£ 1.00$ Post

\star Induction Balance Model

Built with sensitivity up to 10 in on single coin; fitted with speaker and meter; PP3 battery; 7in dia. search head. Telescopic stem. Excellent pin-pointing, positive reaction to non-ferrous, negative reaction to iron. This model's normal price is £39.95!
$£ 22.95+£ 1.00$ Post
All goods guaranteed one year 10 -day money-back offer. Goods ex-stock at time of going to press Callers by appointment only please Send s.a.e. for illustrated leaflet
Minikits Electronics Ltd. GD Cleveland Road
S. Woodford London E18 2AN

AUDIO DISPLAY

Kinaethetic kicks with scintillating new display which puts your music on show to the world. A superb ETI Project Team design.

SO MANY electronic projects rise phoenix-like from the smoke of the soldering iron and when shown to family and friends are greeted with looks of blank amazement and the inevitable question, 'I'm sure it's very clever, but what does it do?'

It is easy to understand how many projects can be confusing and uninteresting to a non-technical person. This attractive project is simple in operation and yet sophisticated in the effect it produces and will be enjoyed by anyone with an eye and an ear to spare.

Small Is Beautiful

The SCINTALITE LED audio display translates the dynamic flow of sound into a visual analogue. The circuit follows conventional lines with the input signal being amplified and filtered to extract the upper and lower frequencies. The outputs from the filters are then rectified and the peak
and mean DC levels detected and made available at the 'mood' switch Operation of this control allows the relatively fast peaks of the music or the more slowly changing levels of the overall sound to control the display

A novel feature of the display is the ability to produce a moving dot or bar of light. The upper frequencies are displayed using both techniques and the circuit switches between them as the input level rises and falls. The lower bass range is always displayed in bar form

As can be seen in our photos the display is based on a pentagon and is about six inches in diameter. The upper frequencies drive five spiral arms of ten LEDs each and the bass frequencies are displayed on ten shorter straight radiating arms. There is also a circle of ten LEDs whose brilliance is controlled by the overall input signal.

Tripping The Light Fantastic

Scintalite can accept input signals from a wide variety of sources. Its sensitivity is variable from about five millivolts to five volts. Although designed primarily as an audio display, any input voltage within specified limits may be used to control the unit by replacing the input capacitor with a wire link. In this way, Scintilate could for example form the display device for a bio-feedback system. In such an application it should be noted that, except for very quickly changing signals, only the bass section will give a display and, as half-wave rectifiers are used, a negative going input signal is required owing to signal inversion in the first amplifier.

Construction and Use

The unit is assembled on one PCB with a separate power supply. The PCB holds all the signal conditioning

Fig. 1. Bass and treble signals are shown in the graphs, top and above respectively. At point 1 , with a lot of bass and very little treble, pattern 1 of LEDs light (shown left), and so on. Thus the pattern of LEDs changes, with the changing mixture of bass and treble frequencies.
circuits, the LED driver chip and associated multiplexing circuitry and the display itself. Owing to circuit complexity, especially of the display, a double sided PCB has been designed. Use of our PCB will greatly simplify construction.

As the LEDs are wired in series, it is necessary to pre-select them or you may find that some will light very dimly or not at all. Use of a matrix board such as S-DEC or Proto board makes this job very easy and it should present few problems. In any case, the eye is very tolerant of individual differences in LED brilliance when they are assembled into a cohesive display.

The selected LEDs should be mounted on the board first. Note that some will be soldered on the top surface of the board. Then solder all the links in place and mount the IC holders, resistors and capacitors. Flying leads should be taken from the driver chip to the LED display. Check the connections carefully against the
circuit diagram and overlay. Next, insert the display anode driver transistors, Q1, 2, 3, 4, as shown in the overlay. Finally insert IC's 2,5 and the driver chip IC1. ICs 2 and 5 are CMOS chips and the usual handling precautions should be observed. Power can now be applied to the circuit and a voltage of up to five volts applied to the switch sides of resistors R12 and R25 located near the mood switches. The display should now illuminate.

If all is well, disconnect the power supply and insert the remaining components. Then re-connect the supply and apply an audio signal to the input and adjust RV1 until the display operates over its whole area.

That completes construction. A feature of our display which has a very novel appearance is the use of flock paper fixed over the PCB and tinted perspex to cover the completed unit which, used in the right setting, assures complete kinaesthesia.

PARTSUIST

RESISTORS all $1 / 4 W 5 \%$

R1, 5, 15	1 m
R2, 3, 16	47 k
R4	1 k
R6, 13, 19, 20	-15 k
R7	33 k
R8p 10, 21, 23	100 k
R9, 22	100 r
R11, 24	220 k
R12, 17, 18, 25	10 k
R14	10 m
R26	2 k 2
R27	680 r
R28	1 k

POTENTIOMETER
RV1
1 M submin preset

CAPACITORS	
C1	10n polyester
C2	10u electrolyic
C3, 4	3 n 3 polystyrene
C5, 6, 10, 11, 12	10u tantalum
C7	1u tantalum
C8	100n polyester
C9	$47 n$ ployester

SEMICONDUCTORS

IC1	LM3914
IC2	$4016 B$
IC3	LM324
IC4	741
IC5	CA3140
IC6	$3093 B$
Q1,3	BC214L
Q2, 4,	BFX 88

D1, 2, 3, 4, 5, 6, 7 1N4148
LEDs $0.125^{\prime \prime}$
MISCELLANEOUS
PCB
SW1.2 SPDT

Above: Component overlay for the Scintellate Audio Display unit. Note that this PCB is in fact a double sided board, but that for clarity we have only shown one side of the foil pattern.

PSU is shown here. This can be any +12 V supply rated at 250 mA or over. Design of this is not critical, but ripple should be low.

BUYLINES

The LM3914 bargraph display driver should be available from Marshall's Watford or Maplin. All the other components should be readily available from the usual suppliers.

PROJECT: Audio Display

Fig. 2. Circuit diagram of Scintalite.

HOW IT WORKS

The signal is input to IC4, a conventional inverting amplifier, via C2, R4 and RV1 which sets the gain of this stage. The drives filters IC 3 a and IC3c. These are econd-order with a Butterworth res cond-order with a Butterworth response.

IC3a is a highpass circuit and has a turnover point around 2.5 kHz . IC 3 c is lowpass with a turnover point arourd 250 Hz . The output from the filters drives identical half-wave rectifying peak de tector circuits. Two signals are available from these stages; the peak signal from the top of C5 or C10 and a low pass filtered signal from C6 or C11. The signal required
is selected by operation of the mood switches SWl and SW2.
To reduce component count and con serve power the LED displays are multi plex. IC2a and IC2b select the input signa for display driver IC 1 IC 6 a is an oscillato running at a few kHz and around 50% duty cycle Its output is inverted by IC6b. The antiphase signals from this network control the Darlington anode drivers Q1 2, 3, 4 and analogue switches IC2a and IC2b. The remaining gates in these two chips are used to select dot or bar mode in the display driver chip.
The bass display select signal at pin 12 of IC6c forces a bar display. However, the treble display operates according to the
output level of IC5. This is a differen tiating circuit whose output sign follows the slope of the treble peak detector output as the signal rises and falls. Some Schmitt action is provided by R15, 16
IC1 is programmed by R26 and R27 for a full scale input of about five volts and a LEDs for the bass display and yellow for the treble. It is important ye use regulated 12 V positive supply as chip dissipation could otherwise be excessive. The same problem could arise if red LEDs are used owing to their lower forward voltage drop. The negative supply is ow-power and uncritical but should anyway be kept below 15 V
(Below). Two stages in the construction of Scintalite. The spiral arms are fitted (right), and then the straight lines of LEDs (left).

to COLLECTOR OF a1
(Above) The business end of the Scintalite PCB.

Fig. 3. LED oonfiguratione for the baee and treble lines.

Fluke International Corporation, Colonial Way, Watford, Herts. WD2 4TT. Telephone: (0923) 40511. Telex: 934583
Also available from ITT instruments Services. Harlow. Essex
Northern Ireland and Eire contact Euro Electronic Instruments, 32 Brews Hill, Mavan, County Meith, Eire.

8022A Checklist

Whether you are buying your first multimeter or moving up to digital from analogue, check these features against your existing meter.

	8022A
FULL 2 YEAR WARRANTY.	\checkmark
1 YEAR GUARANTEED ACCURACY FROM $18^{\circ} \mathrm{C}$ to $28^{\circ} \mathrm{C}$	\checkmark
DROP PROOF! Meets tough Mil-Spec tests for shock \& vibration.	\checkmark
10 times better Accuracy than most analogue meters.	V
Single handed operation.	V
USER PROTECTION! Recessed input jacks and new Fluke designed safe test leads.	$\sqrt{ }$
PROTECTED THREE WAYS against accidental overvoltage, over-current and transient to 6 kV .	\checkmark
Easily accessible battery and current fuse.	\checkmark
200 Hours continuous operation plus "BT" low battery volt indication.	,
Handy size. Fits easily into pocket, brief-case or toolbox.	\checkmark
Large, readily available range of accessories.	$\sqrt{ }$
Worldwide parts and servicing facilities.	$\sqrt{ }$
Price $£ 89.00$ complete with test probes.	

A no compromise Digital Mullimeter al an analogue price.

Clef Kits

Send SAE to:

Designer approved quality kits to Electronic Musical Instrument Construction.

JÓANNA $72 \& 88$ PIANOS Six and $71 / 4$ Octave Electronic Pianos with unique Touch Sensitive Action, as used in the P.E. JOANNA, which electronically simulates piano key inertia - a feature not available in any other design.
P.E. STRING ENSEMBLE

The only kit available to the proven A. J. Boothman Design for this versatile String Machine.

Specialists in all sizes of square Front Keyboards

Clef Products (Dept E.T.I.)

16 Mayfield Road, Bramhall, Cheshire SK7 1JU

PRINTED CIRCUIT BOARDS and KIIS fon ETI pronects

217 TOLL END ROAD, TIPTON WEST MIDLANDS DY4 OHW

TEL. 021-5579144

ELECTRONICS TODAY INTERNATIONAL - AUGUST 1979

SHCLAIR PRODUCTS

 calculator with accessorios $£ 22 . \operatorname{DB}$. Now 10MHZ

CALSCOPE OSCILLOSCOPES *
 time E17.7. Super 10 - 10 MHz dual trace 35 ms rise
dime 236 COMPUTER GAMES *
 E183.50. Voict challenger p.o... Checker chat benger 2 EM. Checker challenger 4 che A A tori video CONTINENTAL SPECIALITIES PRODUCTS*
XP600 EE. 80 EXP6 $50 \in 3$.

TV GAMES

 E.50. Joysick 220 K £1.6e

MAINS TRANSFORMERS

JC12 AND JC20 AMPLIFIERS
组
FERTANTI ZN4 4
cradio chip $£ 1.05$. Extra parts and peb for radio
S-DECS AND T-DECS *

PRINTED CIRCUIT MATERIALS
40 sco ins 0

BATTERY ELIMINATORS

 $⿷ 4.50,6+6 v \varepsilon 4.50,44+44 \% \varepsilon 4.50$. Cassetto
 c5.30. Car converters $12 v \mathrm{dc}$ input. .output $9 v$

BATTERY ELIMIMATOR KITS
 6+6v $£ 1.80,9+9 v \in 1.80$. Cassettig $£ 1.80$. 00ma with din plug $£ 1.40$. Heavy dury 13 -way

 stabrived E1.35.
BL-PAK AUDIO MODULES
 E16.95. SPM 80 ES.47. BMT80 E5.05. S. PA100 20.12. MA60 35.4 s

COMPONENTS

 bdi31, bodi32 31p. Plastic equiv vc 107 4.:4p. Fusos

SWANLEY ELECTRONICS

DEPT. ETI, 32 GOLDSEL ROAD, SWANLEY, KENT BR8 $8 E Z$
Mail order only. Please add 30 p to the total cost of order for postage. Prices include VAT lists 20p post free. Overseas customers deduct 7% on items marked and 11% on others. Official credit orders welcome If VAT rate is charged in budget please adjust

THE ARAK VIII POLYPHONIC KEYBOARD CONTROLLER

ITIIIIIIIIIIIIIIII

The Arak VIII is so named because it can handle up to eight* note polyphony, and that means that if you have a large enough synthesizer you can play eight notes at once. and each one can be set to sound totally different.
The Arak VIII is a controller in every sense of the word. For instance it has builf in vibrato monophonic sound by flicking the unison switch. Just touch the keys back to that fat selected and the Arak VIII brings in a big pow. Just iouch the keys with intinite sustain another instrument. Memorising a chord is no problem using you get on with playing You can even sequence between two chords set in the memory banks and interact with anything, apart from the We designed the Arak VIII to interface with just about scaled between zero and two volts per octave there is an $1 / 0$ which incidentaliy, can be computer. This allows a computer to take data from the Arak VIll or teed data in and control the synth
The case is hand-built out of black anodised aluminium and is finished off with solid mahogany end cheeks. Legends are silk screened on the front and back so you know precisely what fo twidde and what so plug into

Arak VIII ready-built and tested
Four more store / portamento circuits are needed to give the necessary number of control oltages.

24 TUNE DOOR CHIMES

DOOR TUNES ETG.4 + VAT

ob Brringgg, Oing-Ong or Bume. Instead it plavs 2 different classical and popular tunes. It will piay the tune you select tor your mood, the season or me visitor you are expenderifilu ice breake tunes is not only great fun and a weautifuly desioned to entance your functicnally and something for Christmas, something for vour continenal vistors of your reations from the steles, and even
has separate controis for volume tone and temo

T.V. GAMES

PaOGRAMMABLE $97.50+$ VAT

COLOUR CARTRIDGE T.V. GAME
and and is programmed to play a multitude of ditterent games in cocoun, using various plug-in cantidges. Al long last a IV game is avalable which wil keep pace with improving technology by allowng you to extend your fibray of games
with the purchase ol addrional cantridges as new cames are developed Each cantidene contains up to nen ditterent action gamses and the first carridge centaining ten sports games is included free with the console. Other carridges are curreantly available to enable you to piay such cames as Grand Prix Mour Racing. Super Wipeout and Sulme Rider further carridges are to be released later this year, indudring Tank Battie. Hunt the Sub and Target. The console comes complete with iwo remavable foysick player controls to enable you to move in all tour directions unplowombightiletit and built into these |aystick controk are ball serve and target fire butons. Other teatures include severa! difticulty oplion switches, automatic on screen igral sconng and colour coding on scores and bals. smulaing the actual game being sayed Manulactured by Waddingion's Manulacted or Wadingion's Videomaster and

ROAD RACE - 5.87 + VAT.
Grand Pill motor racing with gear changes. crish noises SUPER WPEOUT - C9.17 + VAT. 10 differeni games of blassing obstacles olf the screen. SIUNT RIDER - $\mathbf{6 1 2 . 1 5}+$ NAT Motorcycia speed inals, jumping ob NUN-PROGRAMMABLE TVGAMES
6 Gome - COLOURSCORE II - $£ 1350+$ VA 10 Game COLOUR SPORTSNORLD $9250+$ VAT.

CHESS COMPUTERS

STAR CHESS - E55. 09 + VAT
pLay chess against your parter.
using your own TV to display the board and pieces. Star
Chess is a new absorbing inlerest and excite all ages. The unit plugs into the aeriat socket of your TV sel and displays the boand and pieces in full colour lor black and whitel on your TV screen. Based on the moves of chess. It adds even more excitement and milerest to the game for those who have never played. Star Chess is a novel introduction to the classic game of chess. For the experienced chess player, there are whole the strateny of the game Not rithy and chance added to Conventionat chess game . Not anly can pieces be taken in exchange rocket fire with is opponents. The unit comes complete with a irge 18 V mains adaptor, tull instructions and twetve months guarantee

CHESS CHALLENGER 7 - £WE. 65 + VAT.
PLAY CHESS AGAINST THE COMPUTER.
The siylish, compact, pornable console can be set to play at sevep difteren: levels of ability from begnner to expert
incuuting"Mate in wo" and "Chess by mal" The compuer will only make responses which obey international chess rules. Casking; on passant, and promoting a pawn are all incluted as part of the computer's programme. it is possible to enter any grven probiem from magazines or newspapers or athernatively estabish your own board
position and waich the computer react. The positions of aff pieces can be verified by using the computor memory tecall button.
Sraice includes unit with wood grained housing, and Staunton design chess pieces Computer plays black of adzotor and 12 months guarantee.
other chess computers in our range incluof: CHESS CHAMPION - 6 LEVELS ER287 + VAT CHESS CHALLENGER - 10 LEVELS - $\mathbf{\$ 1 1 3 3 . 0 6}$ + Vat.
als - multillevel talking display f165. 28

ELECTRONIC CHESS BOARO TUTOR E 19.75 inc. VAT.
A special bulk purchase of these ammazing chess teaching nachires enables us to ofter them at only 119.95 less than hall tecommended retail price. The electronic chess tutor is
a simple battery operated machine that can actually leach aryone to play chess and machorove that can actualy leach aryone io play chess and mprove their garne night up io beginners bur also for essiablished payyers wanting to play berrer chess. Uni containa the electronic chessboard with 32 chess pieces, a 64 page explanatory bookler and a set of 3 progressive programme cards including 6 beginners cards, 16 check mate positions. 9 miniature games, 5 apenings. 3 end games, 27 chess probiems and 2 master games

DRAUGHTS COMPUTERS

CHECKER CHALLEMGER 2 LEVELS E43.98 + VAT.
 set problems Compules romes complere with instructuns.

FOR FREE BROCHURES - SEND S.A.E

For FREF illustrated brochures and reviews an TV and chess games please send a siantped addressed envelope, and state
 to order by relephone please quote your name, address and AccessiBarcaycard number.

AJD DIRECT SUPPLIES LIMITED, Dept. ET5,102 Bellegrove Road, Welling, Kent DA16 30D. Tel: 01-303 9745 (Day) $01-8508652$ (Evenings)

RETAIL
MAIL ORDER EXPORT ALL PRICES
INCLUDE VAT

LOÑDON'S TEST GEAR CENTRE OPEN 6 DAYS A WEEK 9 am-6 pm

SCÖPES - (UK P/P $£ 1.50$ ea.)

$3^{\prime \prime} 5 \mathrm{MHz}$ single beam a $^{\prime \prime} 5 \mathrm{MHz}$ Single beam

Super 6 Scope $x 6 \mathrm{MHz}$ single bear
Supar 10 Scope $x 10 \mathrm{MHz}$ Oual Irac

PROBES $\times 1 \times 1014.50 \times 109.95 \times 17.95$. For Super- $6 / 10 / 4025$
Price to be announced
SINCLAIR 10 MHz Miniscope

$\left.\begin{array}{l}\text { DM350 New Sinclair } 31 / 2 \text { Digit } \\ \text { DM450 New Sinclair } 41 / 2 \text { Digit }\end{array}\right\}$ with 10 amp range
(30Kv Probes 18.25. Mains adaprors 3.75. DM carrycase 8.95) M 1200 Bench Porable $31 / 2$ digit LEO Resolution. $1 \mu \mathrm{~A} / 0.1 \mathrm{mv}$ 0.010 hm .

935 Data Precision $31 / 2$ digit hand-held $L C O 2$
198. Low cost $31 / 2$ digit genesal purpose ICO

106.92
f49.95

MULTI-METERS - GENERAL PURPOSE \& ELECTRONIC

GENTLEMEN the PET OISK Һas landed...

The U.K. designed and manufactured Novapac disk system for Commodore's PET*, first seen at Compec '78, is (after extensive industrial evaluation), now available to the domestic user. Its unique saddle configuration continues the integrated design concept of your PET, with no trailing wires or bulky desktop modules.

- Novapac may be used with any available RAM plane
- Data transfer takes place at 15,000 char/sec - effectively 1000 times faster than cassette!
- Storage capacity is $125 \mathrm{~K} /$ bytes (unformatted) on 40 tracks per diskette side.
- Dual index sensors permit dual side recording for $250 \mathrm{~K} / \mathrm{bytes}$ per diskette
- Easy operation full width doors prevent media damage.
- System expandable to $1 / 2 \mathrm{M} /$ byte on-line storage (4 drives)
- Dual head and 2D versions provide $2 \mathrm{M} /$ bytes on-line.
- Industry Standard IBM 3740 recording format for industry. wide media compatibility only offered by NOVAPAK
- Dedicated Intel 8048 microprocessor and 1771, FDC minimise PET software overhead.
- Local hardware and software support available.

The sophisticated Disk Operating System is disk resident, which allows for future DOS enhancements without hardware alterations. PDOS supports multiple file handling, dynamically allocating disk space to each as and when necessary. Any file may occupy from 1 to 600 sectors as required, at up to 16 noncontiguous locations on the disk, PDOS may be used alone, or within a BASIC program, and offers user-specified password security for any file. Multiple access-modes simplify BASIC program construction.

Novapac dual-disk system complete with PDOS and BASIC demonstration programs on disc $\mathbf{5 9 5 0}+$ VAT.
Available from the manufacturer or selected dealers.
Terms; 50% with order, balance on delivery
Fuil cash with order is subject to 5% discount
VAT-FREE Export arranged (Must be shipped by us)

analug electranics

47A Ridgeway Avenue, Coventry
Tel: 0203417761

Extension Trigger Device for Synthesizers

J. Trinder

The following device is intended to provide a trigger pulse for a synthesizer when using an external input source, e.g. a guitar.

The output from the guitar must first be amplified by a small power amplifier in order to bring the signal to a sufficient level to operate the device

The AC input to the device is converted to DC by the bridge rectifier When the DC level reaches a sufficient level the input of the AND gate is taken high. As the other input is already high its output becomes high.

When this happens the transistor is turned on, thus taking the output voltage to nearly zero. When the DC level at Pin 2 falls below the required level its output goes low thus turning

connections of the external trigger device have to be reversed so that the external trigger input usually sees $-3 \vee 5$ (off) instead of $+3 \vee 5$

The circuit can be easily modified to suit individual needs. An example of its use is to trigger a filter sweep when the input of, e.g. a guitar, reaches a certain level.
the transistor off
The output from the device is approx $3 \vee 5$ (off) and approx $0 V$ (on). The LED is on when the unit is triggered

The synthesizer intended for use with the circuit has an extension trigger input which requires less than -3 V on, thus the common and output

$\sum_{\text {n/77 }} 470 n$

Solid State Tacho Circuit

P. Stephenson

The circuit is designed to give a noncritical display for those who like
(cheap) gadgets.
IC1a/b form an oscillator which drives decade counter IC2. During eight tenths of each cycle of this section, binary counter IC3 is counted up. On count " 8 ", the counting stops and IC4 latches the out-
puts. On count " 9 " IC3 is reset.
The number now on IC4 output is decoded by IC $5 / 6$ to light up one of 16 LEDs corresponding to rpm.

Calibration is by adjusting RV1 whilst inputing a known frequency (e.g. mains frequency 50 Hz)

[^4]
HE

CITIZENS BAND

 The hottest news item in Britain, nay, the Universe. Hobby Electronics was the magazine that started the campaign and Hobby Electronics it is that brings you this 72-page bockbuster. All you ever wanted to know - and more. HE brings you the facts - now.Available in your newsagents NOW - price 60p or direct from us at 145 Charing Cross Road, London WC2H OEE. Add 25p for P\&P.

Mille-power Inverter

J. S. B. Dick

Many home-grown projects require a high voltage, low current source. The simplest and safest means of providing this is by an inverter. The circuit described here is versatile, efficient and easily capable of providing power for portable Geiger counters, dosimeter chargers, high resistance meters, etc.

The 555 timer IC is used in its multivibrator mode, the frequency being adjusted to optimise the transformer characteristics. When the output of the IC is high, current flows through the limiting resistor, the primary coil to charge C3. When the output goes low, the current is reversed. With a suitable choice of frequency and C3 a good symmetric output is obtained

Precision AC to DC Converter

T. K. Tay

The circuit is a precision $A C$ to $D C$ converter (amplitude). The important feature is that the system operates happily with amplitude and frequency of Vin varying (e.g. speech signal).

IC 1 in its inverting mode squares the incoming signal and leading-edge trigger mono 1 which produces a "sample pulse" to the switch. The sample pulse is in turn fed to mono 2 which triggers on the trailing-edge of the sample pulse and produces a pulse to clear or discharge C3.

IC2, the bipolar transistor and C3

LEVEL SHIFTING NETWORK
form the rectifier and first hold circuit. $\mathrm{C4}$ acts as the second hold circuit.

Thus after every $1 / 2$ cycle of Vin, the DC level of the first hold is being transferred to the second hold circuit by the sample pulse before the first
hold is clear again.
A level shifting network is used to shift the reference level to +6 V .

With the components used in the circuit, the system works very well from 25 Hz to 20 kHz

total amplification from CRIMSON ELEKTRIK

WE NOW OFFER THE WIDEST RANGE OF SOUND PRODUCTS POVVER SUPPLIES

STEREO PRE-AMPLIFIER
POWER AMPLIFIER

CPR 1-THE ADVANCED PRE-AMPLIFIER
ne pruvies sutuble power supplies, which use our supert TOROIDAL transformers only 50 mm high with e

bodt tiving (includes capacitors / bridge rectifien

POWER AMPLIFIER KIT

PREAMMLFIER KIT ITHIS INCCLUDEE ALL METAL WORK, POTE, KNOBS, ETC. - TO MAK̄E A PW-AM COMPLETE PREAMP wth CPR 1(3) MODULE AMD THE MC1 (2) ISNEQUIRED.
The kit includas all metalwork, heatsinks and hardware 10 house any two of our power amp modules plus a power supply. If is contemporarily styled and its quality is consistient with that of our other products. Comprenensive
instructions and full back-up service enables a novice to build it with confidence in a few hours.
 tracking heavily modulatod records. Common-mode distortion is eliminaled by an unusual design. R.IA.A. is Following this stage is the fist gain/balance stage to bring tepe, funer, etc.. up to power amp. signal fevels Signal to noise ratio 86 dB ; slew-rate $3 V / \mathrm{VS}$: T.H.D. $20 \mathrm{~Hz}-20 \mathrm{kHz}<008 \%$ at any level. F.E.T. muting. No volts.

MC 1 PRE-PRE-AMPLIFIER

Sutable for neerly ali moving-coil cartridges. Sensitivity $70 / 170 \mathrm{uV}$ switchable on the p.c.b. This madule brings隹

X02: $\times \mathbf{O} 3$ - ACTIVE CROSSOVERS
REG 1 - POWER SUPPLY
The regulator modute, REG 1 provides $15-0.15 v$ to power the CPR 1 and MC 1. It can be
power amp supplies or our small transformer TR 6 . The power amp kit will accommodate it

POVVER AMPLIFIERS

nstauld be pointiess to list in so amall a space the number of fecording studios, educational and government Trepulation tor the etc., who hove been using CRIMSON amps satisfactorily, for quite some time. We have a same specification: H.D. typically. 09% any power 1 kHz 8 ohms; T.I.D. insignificant: slaw rate limit $25 \overline{\mathrm{~V}} / \mathrm{uS}$. signal to noise ratio 110 dB ; frequency response $10 \mathrm{~Hz}-35 \mathrm{kHz},-3 \mathrm{~dB}$: stability unconditional: protection drives any load sately, senstivity $775 \mathrm{mV}(250 \mathrm{mV}$ or 100 mV on request); size $120 \times 80 \times 25 \mathrm{~mm}$

POWER AMPLIFIER MODULES CE $60860 \mathrm{~W} / 8$ ohms $35-0.35 \mathrm{v}$ CE $1004100 \mathrm{~W} / 4$ ohms $35-0.35 \mathrm{v}$ CE $1704170 \mathrm{~W} / 4$ ohms $45-0.45 \mathrm{v}$

TOROIDAL POWER BUPPLIES
CPS I for $2 \times$ CE 608 or TXCE 1004
CPS2 for $2 \times C E 1004$ or $2 / 4 \times C E 608$
CPS 3 for $2 \times C E 1008$ or $1 \times C E 1704$ CPS4 for 1xCE 1008
CPS5 1 for 1xCE 1708
CPS6mk $2 \times$ CE 1704 or $2 \times$ CE 1709
heatsinks

Light duty. $50 \mathrm{~mm}, 2 \mathrm{C} / \mathrm{W}$
Medium power, 100 mm

Disco/group. $150 \mathrm{~mm} .1-1-\mathrm{C} / \mathrm{W}$
Fan. 80 mm , suate 120 or 240 V
Fan mounted on two driled 100 mm
$2 \times 4 \mathrm{C} / \mathrm{W}, 65$ max. with two 170 W
$2 \times 4 \mathrm{C} / \mathrm{W}, 65$ max. with two 170 W THERMAL CUTOFF. $70^{\circ} \mathrm{C}$
Distributors:
Minic Teseprodukter
Box 12035
$\$-75012$

S. 75012
Uposala

Uppsala 12
Sweden
All prices shown wro UK
All prices shown ave UK only and inctude VAT and post. COD Gup extra, $£ 100$ limit. Expont is no prob.
, write for specific quote. Send large SAE or 3 International Reply Coupons for dotailed information.

Auto Select for AY 3-8760 Stunt Cycle

Constructors of the Stunt Cycle TV game may wish to economise on switches and panel space by trying this circuit for game selection. Originally, game selection was by grounding the relevant game select pins. This requires four push switches; extravagant on switches
S. D. Lang
and panel space. In this circuit; three of those switches are made redundant in a novel game selection method. The only switch required is a push switch now entitled 'game select'. Upon depression of this switch, all four games are displayed upon the screen, one a time. When the playfield of the required game is displayed, the game select switch is released and play continues.

The circuit works from the power supply of the AY 3-8760. Circuit operation is straightforward, as follows: The 555 and associated com-
ponents form a pulse generator of period approx. 1 second. This pulse is applied to the input of the 4017 decade counter. Every pulse received advances the high output by one, so the high pin is $3,2,4,7$ in that order. When pin 10 becomes high, the reset circuitry is operated. If the select switch is open, the output of all the NAND gates is high, so the game is played. When the select switch is closed, the selection circuitry may now operate, and the outputs of the NAND gates go low in turn, selecting the appropriate game.

ux 」əd (an!snipul $\perp \forall N$ OG` Z3 ppe
 pabueyp
 - uoneurawnsop pue Bu!puey

 sesıad u! pepriou! zou xe\& peppr enje Λ

 seinduos כ! !! !ue!os ןnцemod peseg 082 "08 duos ISd

A Pocket Digital Frequency Meter

The circuit uses only five ICs and 13 passive components. It is designed to fit into the casing of a pocket calculator and makes use of the calculator's seven segment display

It has a single range measuring up to 10 MHz . The display is updated with anew reading every two seconds. The preceding frequency count is held in the display during this period, thus avoiding a flashing display during the sampling interval.

The 7805 provides the 5 V supply for the logic. The 4045 and the crystal form an oscillator and 21 stage binary counter producing $1 / 32$ second pulses at 1 sec intervals as shown in waveforms 1 and 2. The 7473 flipflop produces the one second gating

Seat Belt Indicator for Vehicles

S. Winder

As a reminder to put the seat belt on, a small opaque panel with the inscription "SEAT BELT" can be fitted to the dashboard with a lamp behind, which lights up for ten seconds after the ignition has been turned on. The new VMOS power FET can be used in a very simple circuit to achieve this. The current between source and drain is dependent upon the gate/source voltage. When the ignition key is turned the +12 volt supply is initially dropped across $R 2$, since the voltage
with a 5 V 1 zener diode providing a clamp and discharge path. The differentiated waveform (5) gates the new frequency reading into the display.
pulse (waveform 3). Waveforms 2 and 3 are NANDed into pin 14 of the, ICM 7208s counter chip to produce the RESET signal. Waveform 3 is also inverted before driving a differentiator
across a capacitor cannot change instantaneously (C1 is discharged by R1 when the supply is removed). As the capacitor charges up the gate potential of Q1 drops and the lamp extinguishes. The current drawn by

the circuit falls to about 50 uA after a minute. The gate resistor R3 is provided to protect the zener diode which is between gate and source of Q1, the input resistance of Q1 is too high to be affected by this resistance normally.

Largest range of quality components in the U.K. - over $\mathbf{8 , 0 0 0}$ types stocked
 MMarshall's
 Head Office and Mail Order to Dept. ETI A. Marshall (London) Ltd. Kingsgate House, Kingsgate Place London NW6 4TK. Tel: 01-624 0805 Telex 21492
 Retail Sales: London: 40 Cricklewood Broadway, NW2 3ET. Tel: 01-452 0161/2. Also 325 Edgware Road, W2. Tel: 01-723 4242

 Glasgow: 85 West Regent Street, G2 20D. Tel: 041-332 4133. And Bristol: 108A Stokes Croft, Bristol. Tel. 0272 428801/2
ZENER DIODES (full range in cat.)

POTENTIOMETERS-TRIMMERS
PT10 SERIES (FULLY ENCLOSEO)
PTIOn (2.5) vertical mounting 0.15 wain
PTIOV horizontal mounting 015 watt at $40^{\circ} \mathrm{C}$
Tol 20% Please specity horizontal or verical PT15 EERIES (FULLYENCLOSED)

CAPACITORS - 1000^{2} OF TYPES

POLYESTER MULLARO C352 (280) SERI
BOXES AND CASES

plus wide selection of vero \& bazelli cases

MAIL ORDER

Get a great deal from
Marshal/'s
$31 / 22$ DIGIT LCD AND LED PANEL METER KITS
Low-cont,

Interstl's 7106 is the first single-chip CMOS A/D for driving LCO displays -
including backplane - directly. The 7107 is the first single-chip CMOS A/D Including backplane - directiy. The 107 is the first single-chip CMOS A/D
lor driving instrument-size LED displas diecty without buffeeng. Each
provides parallel seven segment outputs, ideal for DVMs. DPMs and anmhere modern digital displays aro needed. Both have invernai referencre and clock.
and both are CMOS so you get low noise (12 to $15 \mu \mathrm{~V}$) comparable with the finest bipolar devices. and lo
Kite provide ell materiel.
\qquad

$\begin{array}{ll}\text { SPECIAL OFFER } & \mathbf{£ 1 9 . 9 0} \\ \text { SPECIAL OFFER } & £ 15.90\end{array}$

L200 - 5 TERMINAL ADJUSTABLE VOLTAGE AND CURRENT REGULATOR
programmable reggulation

- ADJUSTABLE OÜTPUT CURRENT UP TO 2A

ADJUSTABLE OUTPUT VOLTAGE DOWN TO 2.85 V
TRANSISTORS (for full range see catalogue)

 an~~NNNNNNN

 줆

UNIVERSAL VOLTAGE TESTER

 The 2 pole combitester is a universal voltage and continuity tester withincorporated battery This combitester allows testing of de and ac
voitrges trom 4.5 V to 380 V . Continuity tests of electrical connections
between 0 to 20 k a can bo pertormed by pressing the rad button buil between 0 to 20 kR can be performed by pressing the red button, built
into the hancle of the tester. Display is by means of LEDS. The Siernens
combitester has been tested to VDE standard $0425 / 9.73$ and has the combitester h
VDE symbol

HIGH PERFORMANCE MODULAR UNITS BACKED BY NO-QUIBBLE 5 YEAR GUARANTEE

Of all the purpose-built power amplifier modules by I.L.P., the HY50 is understandably the most popular with those wanting to build new or up-grade an existing hi-fi system, run a small high quality P.A. system, amplify a musical instrument (say for practice or small range use) or use it for lab work. Its useful 30 watts RMS output into 8 ohms, its rugged construction and freedom from heatsink worries make it the ideal all-purpose quality power amp - and it is unconditionally guaranteed for five years! Tens of thousands are in regular use throughout the world
... and a spec that means just what it says!
Encapsulated power amp with integral full-rated heatsink
nput - 500 mV
Output 30 watts RMS/8 8 .
Load Impedance - 4 to 16Ω
S/N Ratio 75dB
Distortion -0.02% from 100 mW to 25 watts at 1 KHz into 8Ω
Supply Voltage $\pm 25 \mathrm{~V}$. Size $105 \times 50 \times 25 \mathrm{~mm}$. .
Inc. VAT. and postage in U.K
$£ 8.33$

Nothing has been overlooked in the design and manufacture of I.L.P. Modular Units. Heavy duty heatsinks, encapsulated circuitry, no-compromise production standards and true professional fimish ensure world leadership in their field for I.L.P. Now we have up-graded output ratings and down-graded prices to bring I.L.P. within éasier reach of all who want the best with which to build with. Prices reduced by an average around 20\%

Guaranteed 7-day despatch on all products

FREE POST - No stamp required when sending your order or enquiry for information sheets.

FREEPOST 4, Graham Bell House, Roper Close, CANTERBURY Kent CT2 7EP. Phone (0227) 54778. Telex: 965780

PROMBOX 12 UV PROM ERASER

$£ 63.89$
includes $P \& P$ Add £9.58VAT@15\% Ex-stock

FEATURES:

- SIMPLE OPERATION
- ERASE TIME VARIABLE FROM 5 TO 50 MINUTES
- SLIDING TRAY CAN ACCOMMODATE UP TO 12 UV EPROMS
- SAFETY INTERLOCK PREVENTS ACCIDENTAL EXPOSURE.

Send cheques/officis/ orders 10 :
GP INDUSTRIAL ELECTRONICS LTD.
SKARDON WORKS, SKARDON PLACE, NORTH.HILL PLYMOUTH PL4 8EZ. TEL. 075228627

Here's why you should buy an I.C.E. instead of just any multimeter

* Best Value for money.
* Used by professional engineers, D.I.Y enthusiasts, hobbyists, service engineers.
* World-wide proven reliability.
* Low servicing costs.
* 20K/volt sensitivity and high accuracy.
* Large mirror scale meter.
* Fully protected against overload.
* Large range of inexpensive accessories.
* 12 month warranty, backed by a full after
sales service at E.B. Sole U.K.Distributors.

ELECTRONICS TODAY INTERNATIONAL - AUGUST 1979

CT Systems Reviews

We have two for you next month, the new Acorn 6502 based kit, a super MK 14 (some would say) and an even newer educational and development kit called the

Nanocomputer.

Ancient and Modern

One of the things that we love to hear from you about are your applications for microcomputers. In this tale from the past a PET is being used to collate old parish records. Not

> a bit ghoulish either!

The PET Bus
Computer busses often seem to be misunderstood, the PET's no exception. In this article we delve in and give you the facts.

Dateline 5000 AD

Your chance to colonise the galaxy from the comforts of the armchair. Despatch your fleets to investigate 'target' stars, determine the mineral value etc, and (of course) do battle with the baddies. Star Trek eat your heart out.

PCB FOIL PATTERNS

This month's boards are a little strange in shape! Note the LED Display is double sided, and that both the Teletext and Transcendent are not here!

Pet Expansion

Complete with 4 K disk operating system in ROM, plugs into Expandapet memory. Adds 15 new commands to Pet's Basic to give full disk extended Basic. Loads 8 K in 2.6 seconds. Automatic reorganisation of free space. Utility Disk

$£ 833_{\text {trat }}$

Expandapet memory
Powered by Pet's own powersupply and mounted internally in 5-10 minutes without special tools.

All units are fully built and tested.

Super Board II

NEW

LOW
PRICE
!!!!

This 6502 based microcomputer comes with a full 8 K Microsoft basic in ROM. Full keyboard. 4K static user RAM (on board expandable to 8K). Kansas City standard interface for use with an ordinary cassette recorder. Machine code monitor and $1 / O$ utilities in ROM. Direct Video access with 1 K dedicated RAM (besides 4 K user RAM) and full graphics set.

Fully built and tested only needs a 5 V 3amp power supply and T.V. Monitor or R.F. modulator to be up and running.

Computhink Dual drive minifloppy

Apple II

Apple II was the original with full colour high resolution microcomputer Basic, and it is still the best. With a very wide range of expansion available, including disk drive, interface cards, voice recognition card, light pen and many others.

Apple II has been well tried and approved by the public (over 200,000 sold) because of its thoroughly professional design and high quality engineering. You cannot get better value for money. Please send us a large s.a.e. for further details.

With 16 K user RAM only

5820 + V.A.T.

 (inc. PAL card)New 7 khz 16 channel A to D board p.o.a.

Apple II \& TRS80 Memory Expansion

Save Over $£ 100$

TRS 80 and Apple II memory expansion kits. Fully guaranteed and with full specification 4116 16K RAMs.

Kits come with full instructions and new jumper sets where necessary. Fitting takes $5-10$ minutes, or bring along your Apple or TRS 80 and we will fit it for you for $£ 5$.

16K upgrade kit
885

+ V.A.T.

MIN-ADS \& cLASSIFIED

E114.98 Optional extra manual
BEST OFFER EVER Camera Kit, Lens, Vidicon \& Modulator
CROFTON

ELECTRONIC SERVICING
Manufacturers/Distributors, we have facilities for field or bench service of a wide range of electronic equipment. If you require a service agent in the South West contact: Westbury Technical Services, 121 Barton Street, Gloucester. Telephone: 045276361.

TVH7 TELEVISION SOUND. For high clarity Hi-Fi listening and recording of television programmes. Supplied built and tested on a single board measuring $105 \times 52 \mathrm{~mm}$, for TV internal fitment. $£ 9.80$ inclusive, with wiring and comprehensive instructions. EVE Products. 7 Adel Green, Leeds 16.

CIRCUITVESIGN; Prototype construction Analogue or Digital, Single Circuits or Complete Instruments/Systems. Write A. J. ATTWOOD, C.Eng., MIERE, Heathercote, Heatherton Park, Taunton, Somerset TA4 1ET or Phone Bradford-on-Tone (082-346) 536.

COMTRAYS

Store resistors. capacitors. IC's, screws, etc. Ideal fo arganising your project components - saves all that 6 ang around while constructing. Plastic trays wit $11 / 2$ ins. deep.
£1.60 each, including p.p. and VAT Four for $\mathbf{£ 5 . 9 0}$ (64 compartments) Eight for $\mathbf{£ 1 0 . 9 0}$ ($\mathbf{1 2 8} \mathbf{c o m p a r t m e n t e}$)

> Cheque or P.O. to:

HELISTAR SYSTEMS LTD.
50 WESTON ROAD ASTON CLINTON
AYLESBURY, BUCKS HP22 5EP
Tel. Aylosbury 630364

PRINTED CIRCUITS

 HARDWAREComprehensive range Consiructors Hardware and accessories
Selected range of popular components Full range of HE printed circuit boards normally ex-stock, same day despatch al competitive prices
PC Boards to individual designs
Resist-coated epoxy glass laminate for the di.y. man with full processing instructions (no unusual chemicals required

Alfac range of eich resist transfers and other drawing materials for p c boards

Send 15p for catalogue.
RAMAR CONSTRUCTOR SERVICES MASONS ROAD STRATFORD-ON-AVON WARWICKS. TEA, 4879

BARGAINS FOR THE
 ELECTRONIC HANOYMAN BRANDED LED DIGITAL ALARM CLOCKS

(1)

(3)

Refiurned to Service Department within guarantee period.
(1) With alarm repeat - S.R.S.P. of $\bar{£} 17.00$ offered at 83.95 inc. VAT
(2) With luxury lamp and repeat alarm as featured in most major U.K. Mail Order catalogues, S.R.S.P.
$£ 31.00$-offered at $£ 7.95$ inc. V.A.T
With integral luxury light and repeat alarm also as featured in most major U.K. Mail Order catalogues, S.R.S.P. of $£ 32.00$-offered at $£ 7.45$ inc. V.A.T. These will be sold as received from our customers with the existing fault(s) and without guarantee.

Diacounts available on large bulk purchasez PRESCOTT CLOCK AND
WATCH COMPANY LIMITED

DIGITAL WATCH BATTERIES. Any make or size. Please quote type $60 p+10 p$ P/P. 2 for $£ 1.20,4$ for $£ 2.40,6$ for $£ 3.40$. Discount for large quantity. - F. S. Butler, 511 Fulbridge Road, Peterborough PE 1 6SB

NASCOM USERS, program your 2708's in two minutes. Circuitry to plug into P 10 ports. Send £2. - G. Benson, 2 Saxon Walk, Lichfield, Staffs.

TIRRO's new mail order price list of electronic components now available on receipt of SAE. TIRRO Electronics, Grenfell Place. Maidenhead, Berks.

INTRODUCTION TO MICROPROCES SORS AND COMPUTING. 50 pages of diagrams and explanation to get you started Price $£ 2.30+45$ p postage .
EDUCATIONAL DATA AND TECHNICAL SERVICES
59 Station Road, Cogenhoe, Northampton NN7 1 LU

VIDEO MUSIC

Videagraph II links to the aerial socket of your tv and provides a full colour GIANT oscilloscope display. A must for hi-fi, home entertainment, discos, organs etc.
New - Signal invert control, integral square wave generator. Plus - full details for testing your audio system for transient distortion, crosstalk etc.
Complete 814.05 Luxury cabinet and Kit only ffe'th controls. £9.95

$$
\text { REAOY BUILT UNIT E39.95 }+ \text { E1.00 PÅ P }
$$

WILLIAM ower House, Eilleríiey Road STLIAFT Herongate. Brentwood
SYSTEMS Lto Essex CM13 3SE

COMPONENTS TEEST EQUIPMENT゙. CCT゙ boards, anything electrical/electronic purchased for cash. " Q " Services Electronic (Cambridge) Ltd., 29 Lawford Crescent. Yateley (0252) 87148 , Camberley, Surrey.

PRECISION SHEET METAL work chassis, panels, etc. Steel, stainless or aluminium, long/short runs, good deliveries. E.E.S. Limited, Clifford Road, Monks Road, Exeter 36489. Telex: 42401

FOR COMPUTER OPERATORS. TI Programmer. Hexadecimal, octal, decimal calculator/converter for computer programmers. Performs arithmetic in any of three number bases. 15 sets of parentheses for complex problems. Independent memory and constant. Price £42.12 including VAT and P.\&P. Or s.a.e. for details - R\&E Marketing, Long Acre, The Ride, Ifold, Billingshurst, Sussex

THIS SECTION IS A PRE-PAYMENT SERVICE ONLY

MINI-ADS: $31 / 4^{\prime \prime} \times 21 / 8^{\prime \prime}, 1-3$ £38, 4-11 £36, 12 or more $£ 34$ per insertion. CLASSIFIED DISPLAY: $19 p$ per word. Minimum 25 words. Boxed classifieds are E 6.33 per col. centimetre. No P.O. Box Numbers can be accepted without full address.

Enquiries to: Advertising Department, 01-437 5982. 25-27 Oxford Street, London W1R 1RF

DESIGN AND CONSTRUCTION SERVICE. Prototype audio, digital, RF circuitry or equipment. For professional or amateur applications. Let us translate your ideas into hardware (or software). Contact: Westbury Technical Services, 121 Barton Street, Gloucester. Telephone 045276361

COLOUR MODULATOR KK 95 FOR ALL TV GRAPHICSI inc. UHF TANK TALLS.
 Modutator TAMIS. STUART SYSTEMS
 Dower House. Billericay Road. Herongate. Brentwood. Essex Barchaycard/Acceas welcome

SECURITY PRODUCTS

Designed for the Do-lt-Yourself market. Easily installed. Full instructions supplied. As supplied to the trade.
Magnet and Roed Switch
Flush 85p Surface 85p
Pressure Mats
Large £2.10
$6^{\prime \prime}$ Heavy Duty Bells
Stair £1.35
$\varepsilon 10.50$
Sirens 12 v 84 dB @ 10^{\prime}
Bell Covers
88.05

Window Foil Self-Adhesive
Foil Blocks
Door Loops, complete
Key Switches, top grade
Control Panels from
$20 p$
$\varepsilon 4.00$
Radar, Infra-Red, and many other itoms $\mathbf{E 2 9 . 5 0}$ able. Price list supplied free
Please note that our prices now INCLUDE VAT at $121 / 2 \%+P \& P$
SECURITY CATALOGUE
Giving details of current professional alarm techniques - £1 (retundable on orders over £10)
Access and Barclaycard Sales welcome We also sell Nascom 1
STRATHAND SECURITY
44 St. Andrew's Sq., Glasgow G 1 5PL 041-552 6731 or 2

BRITISH MOTOROLA 6800 SYSTEMS

68005: 16K Dynamic RAM, 1K Mikbug. compatible monitor, room for 8 K gAshlics CUTS'and HI Speed case and graphics, CUTS and HI Speed tape supply components. Price of kit from £275 with out kdb or £299.00 with keyboard.
MIni 6800 MK 2. IK user RAM, CUTS, VDU with u / I case and graphics-with QUERTY keyboard from $£ 152.50$ NCU Board. This number cruncher using the MMS7109 is supplled with our own Basic style program on tape (3K bytes) that will outperform any of the 8 K Basics as a programmable caiculator. Sultable for any 6800 system with Mikbug. Kit price £ 32.00 8K RAM (2114) and 5 or 10K PROM board. This pcb is bus compatible with the above systems and has all the buffering and decoding that you need. PCB only, $£ 13.00$
MICROCASE. A big beautiful grey ABS Moulding with heavy aluminium chassis big enough to house a big system. $£ 29.00$ ALL PRICES WITHOUT VAT AND POST. ALL PRICES WITHOUT VAT AND POST
PLEASE SEND S.A.E. FOR LEAFLETS.
HËWART MICROELECTRICS
95 Blakelow Road; Macclesfield, Cheshire.

LOST THE TIME?

MSF BOKHz TIME RECEIVER, data and audio outputs, built-in antenna, agc, £13.70. SEQUENTIAL DISPLAY of year, month, date, day. hours, minutes, seconds for time receiver, £10.70 (no case or pcb, Veroboard okay). Right time always
 MUSIC-CENTRE? NO RADIO 4 ? 200 KHz to Med Wave Converter, coax and inductive outputs. £11.40 Giro 21-923-4000. Ask overseas prices. Each easy assembly kit includes all parts, printed circuit. case postage, etc. Money-back assurance so SEND off NOW

CAMBRIDGE KITS

45 (TV) OHd School Lene, Mitton, Cembridge

TRITON COMPUTER for sale fully assembled and working full 4 K RAM - Financial difficulty forces sale. Offers in region of $£ 290$, no reasonable offer refused. 62 Kirkstall Avenue, Leeds 5. Phone 782377

ROADRUNNER WIRE THREADING SYSTEM

Introkit £9.88, Wiring Pencil with full Bobbin £2.44, Distribution Strips glue fix 20/pkt. $6^{\prime \prime}$ long $£ 2.80$ pkt., press fix 20/pkt. 2" long fit Vero/RS Bds. £2.92 pkt., Bobbins of "Q.S.E." wire 4 of 1 col./pkt. green, blue, copper, pink $£ 2.12$ pkt.
SPECIAL OFFER: Oryx 50 temp. cont. iron \& stand £1 2.50 (rec. price $£ 13.25$). Microshear Cutters $£ 3.15$ pair, Conductive Paint $£ 2.35$, DIL Breadboards +8 Gnd. Bus, 20 Ic Posns, Decouplers, CFingers £1. 50 ea.
Prices include P\&P. Please add 8\% VAT

> T. J. Brine Associates Blackdown Rural Inds.
> Haste Hill
> Haslemere, Surrey

FOR NASCOM 1 IN SCOTLAND SEE STRATHAND

In stock now: Nascom 1 Buffer Boards 8, 16, 32K Ram Boards Super Tiny Basic Zeap on tape 8K Basic on Tape High speed cassette interface professional T.V. Monitor in kit form and other products arriving daily.

Please note it is not our policy to advertise Nascom products which are not currently ${ }^{\dagger}$ available

STRATHAND
44 St. Andrew's Sq.
Glasgow G15PL
041-552 6731 or 2
Access and Barclaycard sales welcome Callers welcome 9-5 Monday to Friday

DISCO FOR SALE:High quality 100W custom built stereo system with a full lightshow at $£ 950$ ono. Will split up subject to reasonable offers. Phone Henry 01-437 1002 ext 12 daytime.

Complete repair instructions any requested TV $\mathbf{E 5}$ (with diagrams $\mathbf{£ 5 . 5 0}$). Any requested service sheet $\mathrm{E1}+$ s.a.e.
S.a.e. brings free newsletter, details of service sheets from 50p. Unique publications. AUSETI
76 Church Street Larkhall, Lanarkshire

INTENSIVE WEEKEND COURSES IN

BASIC

including hands-on mini computer operation.

This short intensive course is intended to instruct from minimal knowledge to an operational capability of computer programming in BASIC high level language. The course is fully residential from Friday evening to Sunday afternoon.
Option of non-residential weekend, weekday evening and weekday courses available if required.

For further details of dates available, fees, etc.:

Phone (041) 43139, or write to: CLEVELAND BUSINESS SERVICES Cleveland House, ROUTH
Beverley, North Humberside

ADVERTISEMENT INDEX

AJD DIRECT SUPPLIES 95
ALTEK 46
AMBIT 16
ANALOG ELECTRONICS 96
ARAK 95
AUDIO ELECTRONICS 96
BAYDIS 46
BI-PAK 4 \& 5
CAMBRIDGE LEARNING 27
CARSTON ELECTRONICS 57
CHILTMEAD 85
CHROMASONICS 84
CHROMATRONICS 56
CLEF PRODUCTS 94
CODESPEED 77
COMP, COMP, COMP 114 \& 115
CRIMSON ELECKTRIK 100
CROFTON 70
DELTA TECH \& CO 84
E.D.A. 61
ELECTRONIC BROKERS 106
ELECTROVALUE 106
GMT ELECTRONICS $6 \& 7$
GP INDUSTRIAL ELECTRONICS106
GREENBANK 93
HAL COMPUTERS 85
H.L. AUDIO 65
ILP 105
INTEGRATED CIRCUITS 72
ITHACA SYSTEMS 52
KRAMER 86
LB ELECTRONICS 65
L + B ELECTRONICS 77
LOTUS SOUND 110
MACLIN-ZAND 11
MAPLIN 116
MARSHALLS 104
METAC 78
MINIKITS 86
MOUNTAINDENE 32
NICHOLLS 86
NIC MODELS 94
PETALECT 70
PICODYTE 70
POWELL 117
$2 \& 8$
POWERTRAN ELECTRONICS
POWERTRAN ELECTRONICS
POWERTRAN COMPUTERS 02
PROGRESSIVE RADIO 38
PROOPS BROS. 57
ROGER SQUIRES 84
RTVC 83
SERVICE TRADING 66
SINTEL 56
SWANLEY 95
TAMTRONIK 94
TARGET ELECTRONICS 46
TECH BOOK SERVICE 28
TECHNOMATIC 14
TELERADIO 55
TEMPUS 32
TK ELECTRONICS 56
TRANSAM 39
VERO 85
VIDEOTIME 100
WATFORD $12 \& 13$
WILMSLOW 57

7400 10p $\begin{array}{ll}7401 & \text { 10p } \\ 7402 & \text { 10p } \\ 7403 & \text { 10p }\end{array}$ $\begin{array}{ll}7403 & 10 p \\ 7404 & 12 p\end{array}$ $\begin{array}{ll}7404 & 12 p \\ 7405 & 12 p\end{array}$ \begin{tabular}{ll}
7406 \& 25p

\hline 740

7407 \& $\mathbf{2 5 p}$

\hline

 7408 12p $\begin{array}{ll}7409 & 12 p \\ 7410 & 12 p\end{array}$ 7411 15p 7412 15p $\begin{array}{ll}7413 & 25 p \\ 7414 & 45 p\end{array}$ $\begin{array}{ll}7414 & \mathbf{4 5 p} \\ 7416 & \mathbf{2 5 p}\end{array}$

7416 \& $\mathbf{2 5 p}$

7417 \& $\mathbf{2 5 p}$

\hline

 $\begin{array}{ll}7417 & \text { 25p } \\ 7420 & 12 p\end{array}$ $\begin{array}{ll}7420 & \text { 12p } \\ 7421 & 20 p\end{array}$ $\begin{array}{ll}7421 & 20 \mathrm{p} \\ 7422 & 15 \mathrm{p}\end{array}$ $\begin{array}{ll}7423 & \text { 20p } \\ 7\end{array}$ 7425 20p $\begin{array}{ll}7426 & \text { 22p } \\ 7427 & 22 p\end{array}$ $\begin{array}{ll}7427 & 22 p \\ 7428 & 25 p\end{array}$ $7430 \quad 12 \mathrm{p}$ $\begin{array}{ll}7432 & 20 \mathrm{p}\end{array}$ $\begin{array}{ll}7430 & 12 \mathrm{p} \\ 7433 & 28 \mathrm{p}\end{array}$ $\begin{array}{ll}7437 & \text { 20p } \\ 7438 & 20 p\end{array}$ $\begin{array}{ll}7438 & \text { 20p } \\ 7440 & 12 p\end{array}$

7441 \& 12p

\hline 74

 7442 40p 7443 60p $\begin{array}{ll}7444 & 60 p \\ 7445 & 65 p\end{array}$ $7446 \quad 50 \mathrm{p}$ $7447 \quad 50 \mathrm{p}$ 7448 50p $7450 \quad 12 \mathrm{p}$ $\begin{array}{ll}7451 & 12 \mathrm{p} \\ 7\end{array}$ $\begin{array}{ll}7451 \\ 7453 & 12 \mathrm{p}\end{array}$ $\begin{array}{ll}7453 & 12 p \\ 7454 & 12 p\end{array}$ $\begin{array}{ll}7454 & 12 \mathrm{p} \\ 7460 & 12 \mathrm{p}\end{array}$ $\begin{array}{ll}7460 & 12 p \\ 7470 & 25 p\end{array}$ $7472 \quad 20 \mathrm{p}$ $\begin{array}{lll}7473 & 25 p\end{array}$ $\begin{array}{ll}7474 & 25 p \\ 7475 & 25 p\end{array}$

7474

7476 \& $\mathbf{2 5 p}$

\hline
\end{tabular}

4013	30 p
4015	50p
4016	30p
4017	50 p
4018	55 p
4019	40p
4020	50 p
4022	50 p
4023	12 p
4024	40p
4025	12p
4026	80 p
4027	30 p
4028	$45 p$
4029	50 p
4030	30 p
4032	80p
4033	100p
4040	60 p
4043	60 p
4046	90p
4047	$80 p$
4048	50p
4049	25p
4050	$25 p$
4054	100p
4055	130p
4056	$120 p$
4060	100 p
4066	$35 p$
4069	12 p
4070	12 p
4071	12 p
4072	12 p
4081	12 p
4082	12 p
4093	70 p
4510	60p
4511	70 p
4516	$65 p$
4518	65p
4520	65 p
4528	80 p
4583	70 p

LINEAR	
CA39039	70 p
CA3046	60 p
CA3060	225 p
CA3065	200p
CA3076	250 p
CA3080	75 p
CA3084	250p
CA3085	$85 p$
CA3086	60p
CA3088	190p
CA3089	160p
CA3090AQ	360p
CA3123E	130p
CA3130	100p
CA3140	60 p
CA3161E	150p
CA3162E	400p
CA3189E	270p
FX209	800 p
LD 130	460 p
LF356	80 p
LF35 7	80 p
LM211H	250p
LM300T05	170p
LM301AN	30p
LM301T05	45p
LM304	200 p
LM307N	$65 p$
LM308T05	100p
LM308DIL	$100 p$
LM309K	140p
LM310T05	150p
LM311T05	150p
LM317K	$325 p$
LM324	$70 p$
LM339	$60 p$

LM
SAS 660

IN 4148 Diodes by ITT/Texas, 100 for $£ 1.50$
Static Ram 21021024×1 bit 450 nano sec $£ 1.00$ each
2112256×4 bit 450 nano sec $\mathbf{£} \mathbf{2 . 5 0}$
Murata Ultrasonic Transducers $40 \mathrm{kHz} £ 2.00$ each $\mathbf{£ 3 . 5 0}$ pair.

T. POWELL

306 ST. PAULS ROAD, HIGHBURY CORNER, LONDON, N.1. TEL: 01-226 1489

INTERESTED IN HOME COMPUTING?

Start now and don't get left behind THE NASCOM 1 is here Ex-stock with full technical services
Plus the opportunity to join the fastest moving club of personal computer users enabling you to get the most our of your computer. You can OBTAIN and EXCHANGE programs and other software - many now available.
The Powerful $Z 80$
Micreprocessor
Professional Keyboard
1 Kbyte Monitor in EPROM
2 Kbyte RAM (expandable)
Audio Cassette interface
Plugs into your domestic TV
Easy construction from
straightforward instructions
no drilling or special tools
Just neat soldering
required.

Only ET97-50 + 8\% VAT (includes p \& p + insurance)

$$
\begin{array}{ll|c|}
\hline \text { Manuals seperately } & 2.95 & \text { NEW LOW PRICE } \\
\text { Z80 programming Manual } & 6.90 & \text { £165 } \\
\hline 280 \text { Technical Manual } & 2.95 & \\
\hline
\end{array}
$$

PIO Technical Manual 2.95
(All prices add 8\% VAT)
Power sup
19.90

NASCOM AD ONS - Nascom improved monitor B Bug (2K) featuring - "Four times tape speed "Direct text entry without ASCII *Extended keyboard facility *Additional useful subroutines $£ 23.00$

Nascom Vero Case £22.50
Nascom Joy Stick Kit £14.90

Nascom Music Box Kit $£ 9.90$
(write your own tunes and play
them on your Nascom.
Complete with full documentation).
GRAPHICS ADD ON BOARD $£ 9.90$
Complete kit to upgrade your NASCOM for graphics capability
includes full documentation and demonstration program.

NEW! AT LAST 8K BASIC FOR NASCOM 1 Complete on S100 Board

EX-STOCK

MODULATORS UHF Channel 36

Standard 6 meg band width $£ 2.25$
High Quality 8 meg band width $£ 4.90$ EX.STOCK

> VAT AT COMP STILL 8\%—WE PAY THE EXTRA. PLEASE QUOTE "ETI 200" ON ALL ORDERS

PET COSTS LESS

AT COMP and it's a pedigree (anap 5 sso
The No. 1 Personal Computer in the U.K.
Affordable
$\mathbf{4} 49 \mathbf{9}_{8 \mathrm{~K}}$ SAVE for the first time user and the professional check out the PET, the world's most popular personal computer
 Also 16 K big professional keyboard $\mathbf{£ 5 9 0}+$ VAT

 16 K £49
 LOW PRICE
 MEMORY UPGRADE PURCHASED AT TIME OF ORDER
 Full colour - UHF output
 - Audio cassette tape interface - Up to 48K RAM on board - BASIC in

 ROM (graphics commands include COLOUR = VLIN, HLIN, PLOT and SCRN) Built in Loudspeaker 'Buckets of software already available disk system (110 k byte per drive - includes controher) only $£ 425+$ VAT EX.STOCK
THE TRS-80 (SPECIAL SCOOP) Low Priced, Ready to Go!

Use your own cassette
Level-II with 4K RAM
Improved graphics, print formatting, and a faster cassette transfer rate are features of Level.II BASIC.

Level-II with 16 K RAM
A combination of 16K RAM and the powerful Level-I! BASIC produces a system capable of handling most demands.

KEY BOARD ONLY

COMPLETE WITH UHF MODULATOR

UK POWVR SUPPLY INCLUDED

[^5]OPEN - 10am to 7pm - Monday to Saturday CREDIT FACILITIES ARRANGED

COMPUKIT UKIOI

The Compukit UK 101 has
everything a one board 'superboard' should have

- Uses ultra powerful 6502 microprocessor
(U. SA products with 60 Hz frame clear pleture results in jittery displays)
* 48 chars by 16 lines - 1 K memory mapped video system providing high speed access to screen display * Extensive 256 character sel which includes fult upper and lower case alphanumerics. Greek symibols characters enabling you to form almost any graphic desire anywhere on the screen desire anywhere on the screen PET. APPLE SORCERER hence taking the head with out of programming by using simple English

FULL CONSTRUCTION DETAILS IN P.E. AUG 1979 EDITION
statements Much raster than currently available - Professional 52 Key keyboard in 3 colo urs - 5011 ware polled meaning tha all debouncing and key - Videooutput War

Bandwidth) which and UHF Highgrade modulator (8 Mz of your TV wich socket * Fully stabilised 5 V powe supply inclujing trars former on board. * Standard KANSAS city ape interface providing standard domestic tape or cassette - use on any * 4 K user RAM expancatle to 8 K on board $£ 49$ * 40 line expansion miertace socket on board for attachment of extender ca d containing $24<$ RAM a disk controller Ohio Scientitic compatible

* 6502 machine code accessible through powertu 2K Machme code monitor on board. mounted on sockets

> Delivery date June 1979 at the 1979 MicroComputer Show Customer orders in strict rotation cnly

SEND ONLY $£ 10.00$ DEPOSIT TO RESERVE CINE

\square

- RETURN AND GO.

Simple Soldering due to clear and consise instructions compiled by Dr.T. Berk. BSc PhD

COMMANDS

CONT LIST CLEAR DATA DEF DIM END FOR
GOTO GOSUB IF GOTO IF THEN ENT NEXT ON GOTO ON GOSUB POKE PRINT READ EXPRESSIONS

The
Compuk
UK101
FUNCTIONS
ABS (X) ATN(X)
$\begin{array}{ll}\operatorname{LOG}(X) & \text { PEEK }(X) \\ S P C(I) & S O R(X)\end{array}$
STRING FUNCTIONS
STRING FUNCTIONS
ASC $(\times \$) \quad$ CHR $\$$ S
RIGHT\$(X\$.1)
OPERATORS
ANGE $10^{.32}$ to 10^{+32} I. 4 NOT AN
VARIABLES
A.B.C Z and two letter variables

The above
when used in an

an AS

 $\operatorname{COS}(X) \operatorname{EXP}(X) \quad \operatorname{FRE}(X) \quad \operatorname{INT}(X)$ $\begin{array}{llll}\text { POS(I) } & \text { RND }(X) & \text { SGN }(X) & \operatorname{SIN}(X) \\ \text { TAB(I) } & \text { TAN }(X) & \text { USR(I) } & \end{array}$TAB(1) TAN $(X) \quad \operatorname{USR}(1) \quad \operatorname{Sin}(X)$

The fededtay Colour Programagame now back in stock at reduced prices

have produced a new product of easy to assemble carridge games. for you and becomes avallable and your colour vate Just ADD each new cartridge. as it way You will save pounds in the long run Works C.K an Blackm and Whieplay The Teleplay Kit consists ci a Professional Finis ed Inject Mourited Box Football. Tennis. Solo Squashe cartridge which consists of 1 C games holes are pre-drifled - No Special equipment required You'll be surprised how separately at 0.45 p TELEPLA ${ }^{\text {Protessional }}$ kit I Instruction Manual supplied PAYIN GIVES YOU TWICE THE FUN BUILDING AND EIO Electrical knowledge is not a necessity to assemble this project - just simple
soldering. Every
Every 3 months a NEW garrie will become availab e o you and thase already The price of these will vary roma $£ 12$ to Space War Wipe Out and nany more the game All Cartridges fully assembled.
STUNT CYCLE 4 games - Cartridges and Hand Controls

COMP IS AN APPOINTED DEALER FOR COMMODORE, EXIDY, APPLE, NASCOM, OHIO, GI, ATARI, TELEPLAY \& ITHACA.

14 STATION ROAD, NEW BARNET, HERTFORDSHIRE TEL: 01.4412922 (Sales) 21.4496596 CLOSE TO NEW BARNET BR STATION - MOORGATE LINE TELEX: 298755 OPEN - 10am to 7pm - Monday to Saturday CONTINUOUS DEMOVSTRATIONS VISIT OUR NEW SHOP AT 1 WALLCOT BUILDINGS, LONDON ROAD, BATH, AVON

[^0]: Electronics Today international is normally puthshed on the first Friday of the month prior to the cover date

[^1]: The items mentioned here are those planned but circumstances may affect the actual contents

[^2]: Factory: Telephone WOKING 69032/68497/20727. Shop: Telephone: WOKING 23637.

[^3]: No it's not Dolby. It is based on a brand new chip set from National. It has an amazing low component count. It turns in a very respectable 'sound' and is ideal for home usage. It is inexpensive and a very good reason to buy ETI next month

[^4]: Tech-Tips is an ideas forum and is not aimed at the beginner. We regret we cannot answer queries on these items.

 ETI is prepared to consider circuits or ideas submitted by readers for this page. All items used will be paid for. Drawings should be as clear as possible and the text should preferably be typed. Circuits must not be subject to copyright. Items for consideration should be sent to EII TECH-TIPS, Electronics Today International, 145. Charing Cross Road, London WC2H OEE.

[^5]: All prices include VAT except where shown. Orders over $£ 5$ post and packing free otherwise add 20p. Please make cheques and postal-orders payable to COMP, or phone your order quoting BARCLAYCARD or ACCESS nu

