

MAY 1979
INTERNATIONAL

Fin
Six Channel! Fully Proportional RADiO CONTROL SYSTEM MA

HEADPHONE AMPLIFIER HOW IT WORKS RADIO STAR CHESS

CHROMATHEQUE 5000

 5 CHANNEL LIGHTING EFFECTS SYSTEM

\qquad

COIAPLETE KIT ONI
£49.5U + VAT!
 hannel handles up to 500 W and as the kit is: qle board design ivirin cuiry which prod ce ome superb randon and sequen by effects Each Kit includes fully finished metzin fibreglass P. CB controls w

COMPLETE KIT

$$
\begin{aligned}
& \text { cidily } \\
& £ 48.90 \text { + VAT! }
\end{aligned}
$$

TRANSCENJERTT CUOO SINGLE EOAKID SYNTHESIZER

LIVE ERFURMANCE SYNTME ZZER DESIGNT CO JCTIONAL ARTI N ELECTRON 3 TODAY INTERNATIONAL

 COMPLETE KIT ONLY

£172.00 + VAT!

ETI goes to warl The model tank shown on our cover is © Temiys 1/16th Leopard A4, kindly supplied by Richard Konstam Ltd who import the kits. See page 62 for marching orders.

Screen check p. 54

Get ahead p. 77

INFORMATION

FEATURES

NEWS DIGEST	9	You saw it here first.
SAWFS	19	Is the IF strip doomed?
RADIO, HOW IT WORKS	35	You'll know by the end of this little lot.
StAR CHESS	54	Great new telly game.
DATA SHEET	70	Something musical this month.
MICROFILE	72	Latest from the world of MPU's.
STANDING WAVES	83	Bye, byes on railway stations?
AUDIOPHILE	94	Some of your letters.
TECHTIPS	99	Your ideas in print.
PROJECTS		
DOUBLE DIE	26	Possibly the best dice yet?
AMBUSH PART2	48	Concluding our contribution to intergalactic peace.
RADIO CONTROL	61	, Do it from a distance.
HEADPHONE AMPLIFIER	77	Get your ears on.
CARIMMOBILISER	89	Don't get taken for a ride.

 PRITIULS

NEWS DIGEST
SAWFS

STAR CHESS DATA SHEET MICROFILE

TECHTIPS

You saw it here first. Is the IF strip doomed? You'll know by the end of this little lot.
Great new telly game Something musical this month. Latest from the world of MPU's. Bye, byes on railway stations?
Some of your letters.
Your ideas in print.

PROJECTS

 AMBUSH PART2 48 Concluding our contribution to intergalactic peace.PHONE AMPLIFIER
77
Get your ears on. Don't get taken for a ride.

Electronics Today International is normally published on the first Friday of the month prior to the cover date

[^0]
SEMICONDUCTORS POTS \& IRONS

GGMI
 (A DIVISION OF GOTHIC ELECTRONIC COMPONENTS LTD)
 PO Box 290 8 Hampton Street

ALL PRICES IN PENCE EACH UNLESS OTHERWISE STATED

ACCESS
 BARCLAYCARD CASH FREEPOST ON ORDERS GMT ELECTRONICS A Freepost CHEQUE ADD 30p P\&P Birmingham B19 1BR 24 HR TELEPHONE ANSWERING SERVICE TEL ORDERS WELCOME

POWERTRAN
PSI 4002 STUDIO MODEL

cabinet size $17.2^{\prime \prime} \times 17.2^{\prime \prime} \times 6.7^{\prime \prime}$
COMPLETE KIT ONLY £196.90 + VAT
READ THE REVIEW IN SOUND INTERNATIONAL DEC. '78

As featured in Electronics Today International

 400 W rms continuous - 800W peak! 0.03% THD at FULL power! PLUS all the following features too!* Each channel totally independent with its own stabilised power supply driven by custom designed TOROIDAL transformers!
* Inherent reliability - monster heat sinks for cool running at the hottest venues - electronic operi and short circuit protection!
* Ultra" low foedback (an incredible low 14 dB overalli), super high slewing rate ($20 \mathrm{~V} / \mu \mathrm{s}$). 200 W rms continuous to 4 ohm from EACH channel, input sensitivity $0.775 \mathrm{~V}(\mathrm{OdB})$.
* Professional quality components, sturdy 19° rack mounting chassis complete with sleove and feet for free standing work too.
* Easy to build - plenty of working space with ready access to all components, minimal wiring. extensive instruction suitable for both experience constructors and newcomers to electronics.
- Value for money - quality and performance comparable with ready-buils amplifiers costing over
E600!

DE LUXE EASY TO BUILD LINSLEY HOOD 75W STEREO AMPLIFIER £99.30 + VAT

This easy to build version of our world-wide acclaimed 75 W amplifier kit based upon circuit boards interconnected with gold plated contacts resulting in minimal wiring and construction features include rumble filter, variable scratch filter Hi -Fi News and Record Review and features include rumble filter, variable scratch filter, versatile tone controls and tape
monitoring whilst distortion is less than 0.01%.

WIRELESS WORLD FM TUNER $£ 70.20$ + VAT

A pre-aligned front-end module makes this Wireless World published design very simple to construct and adjust without special instruments. Features include an excellent a.m. rejection, push-button station selection as well as infinitely variable tuning and a phase locked loop stereo decoder incorporating active filters for "birdy" suppression.

LINSLEY-HOOD CASSETTE DECK £79.60 + VAT

This design, published in Wireless World, although straightforward and relatively low cos provides a very high standard of performance. There are separate record and replay amplifiers and switchable equalisation together with a choice of bias levels are also provided. The mechanism is the Goldring-Lenco CRV with electronic speed control

POWERTRAN SFMT TUNER £35.90 + VAT

This is a simple low cost design which can be constructed easily without special alignment equipment but which still gives a first-class output suitable for feeding any of our very popula amplifiers or any other high quality audio equipment. A phase-locked-loop is used for stereo selection (adjustable by controls on the fro afc, switchable muting and push-button channel selection (adjustable by controls on the front panel). This unit matches well with the $T 20+20$
and $T 30+30$ amplifiers.

WWII TUNER £47.70 + VAT

This cost reduced model of our highly successful Wireless World FM Tuner kit was designed to complement the $T 20+20$ and T30 +30 amplifiers and the cabinet size, front panel format pre-aligned front-end module, switchable afc, adjustable switchable Facilities included are indication and both continuous and push-button channel selection (adjustable by controls on the front panel).

COMPLETE KITS: Our complete kits really are complete. All of the projects shown on this page-are supplied with fully finished metalwork, ready assembled high quality teak veneer
cabinet, cables, nuts, bolts, etc., and full instructions - in fact everything! cabinet, cables, nuts, bolts, etc., and full instructions - in fact everything!
All of the kits shown on this page are available as separate packs (except the Powertran SFMT Tuner) for those customers who wish to spread their purchase or perhaps make their own cabinets or metalwork. Prices are given in our FREE CATALOGUE.

PRICE STABILITY. Order with confidence. Irrespective of any price changes. We will honour all prices in this advertisement until June 30th, 1979. if the May, 1979 issue is mentioned with your order. Errors and VAT rate changes excluded.

EXPORT ORDERS: No VAT. Postage charged at actual cost plus 50 p handting and documentation.
U.K. ORDERS.Subject to $121 / 2 \%$ surcharge for VAT'(i.e. add $1 /$ a to $^{\text {to }}$ the price). No charge is made for carriage. or at current rate if chanyed.
SECURICOR DELIVERY: For this optional service (U.K. mainland only) add £2.50 NAT inclusive) per kit.
SALES COUNTER: If you prefer to collect your kit from the factory, call at Sales Counter (at rear of factory). Open 9 a.m. -4.30 p.m. Monday-Thursday.
our Catalogue is FREE! Write or phone NOW!

POWERTRAN ELECTRONICS

PORTWAY INDUSTRIAL ESTATE
ANDOVER
ANDOVER, HANTS SP10 3NM
(STD 0264) 64455

news digest

BYTE SIZED CHUNKS

Some new expansion kits for the three most popular MPU systems have been announced by Ithaca Audio Ltd. Each pack contains eight 16 K Rams,
packed in anti-static foam and are all 100% guaranteed. The kits are intended for the TRS 80 , Apple 11, and Exidy Sorcerer. UK price and availablility are yet to be announced but for those who can't wait you could contact Ithaca Audio at:- Box 91, New York, 14850.

FRED'S BIG BILLS

Another Electricity Board first 'Fred' is an electronic spokesman and will give advice on how to save energy by using
more economical appliances. Using only 5 KW , it is hoped to supply every home that has a 'white meter' with their own 'Fred.'

PUTTING OUT THE FEELERS

Pointing the way with their new 'cold' light-source boxes Optronic Fort Ltd are introducing a new design incorporating fibre-optic techniques. The Flexible or semi-rigid light guides can be obtained in a choice of thicknesses, and up to 1800 mm long. Because the light is 'cold' it would be ideal for illuminating areas sensitive to heat, particularly microscopic
work. The light sources are available in a variety of ratings, from 50 to 250 Watts. The boxes will work on an AC supply of $110-240 \mathrm{~V}$ (selectable) $50 / 60 \mathrm{~Hz}$. The Tungsten-Halogen lamps are "fully adjustable for brightness and are cooled by fan to prevent over-heating. Prices for the light sources start at around $£ 145$, call Optronic Fort Ltd at Cambridge Science Parl, Cambridge CB44BH for more information.

TROUBLE

LOOMING? . . .

Anyone who has ever had to build up, or fault find a wiring loom will realise how useful the Vero Cablehound promises to be. It works by connecting one end of the loom to the unit and a wrist strap from the Cablehound to the operator. Particular wires can be identified simply by touching each wire in turn. Another feature is the
inclusion of a digital readout to further identify individual wires. Two or more CableHounds can be connected together to increase the loom identification size from 100 to 10000 separate wires (or more if further units are added). Vero Systems Ltd will be only too pleased to supply any more details, contact them at 362 Spring Road, Sholing, Southampton, Hampshire.

GATES ON YOUR DOORS

Two interesting devices to grace your front door have been announced by Optimisation Ltd (45 South Street, Bishops Stortford, Herts). The first is the 'Door Guard', a calculator sized, fifteen digit keyboard. A caller is required to enter a three digit number whereupon a chime will sound. Should an incorrect number be pressed a piercing 96 dB siren will start, enough to deter even the most determined intruder. There are 2730 user pre-settable combinations, so the chances of a 'lucky guess' are almost negligable.

Another useful feature is the possibility of using the Door Guard for signalling departures, a good idea if there are children about. The device should be on sale by the time

you read this, asking price £14.95, installation should take only minutes and is powered by a 9 V alkaline battery, with average use it will last for over one year.

LCD MULTIMETER

It's a fair bet that 1979 will see the digital multimeter make it's long awaited debut into the amateur market. It's true that one or two examples have appeared in the low price bracket, but have rarely been as good as an analogue meter of the same price. Data Precision hope to change all that with the introduction of their model 935 . It features a $3^{1 / 2}$ digit LCD display with a claimed 0.1% basic accuracy. The unit has 29 ranges selectable by what the manufacturers call 'ergonomically designed' pushbutton switches. The device is fully protected over current and voltage and short duration high
viltage transients. A standard 9 V alkaline battery (PP9) should give over 200 hours of useful life, battery and over current fuses are accessible through a removable hatch, a replacement fuse is also located under the hatch.

Optional extras include high voltage, current and temperature probes, the case is claimed to be virtually unbreakable and it's small size puts it into the truely 'pocket size' class. Price is around the $£ 99$ plus VAT mark and includes leads, battery and instruction manual. If you're interested Franell International Instruments Lid at Dandbeck Way, Wetherby, West Yorkshire, should be able to help.

BOOK CORNER

A couple of new books from Babani have just arrived, the first is called Practical Electronic Calculations and Formulae. Just crammed with all those obscure and elusive equations you'll probably only need once, but can never find (it's got plenty of the more mundane ones too). Definitely one for the workshop bookshelf. Order number is: BP 53 and it costs £2.25.
The second new publication is 'Your Electronic Calculator
and your Money', the book, although well written (both books are written by F. A. Wilson) is just a trifle outdated, especially in these days of pre-packaged software for MPU systems. But for the confirmed calculator addict, particularly one who can't afford an MPU this book is a veritable mine of information. It shows in detail calculations for mort gages, profit and loss etc, all of which can be carried out on the most rudimentary of machines. Order code is BP 54 and it will retail for $£ 1.35$.

COMP-U-LOCK

The second piece of equipment rejoices under the name of COMP-U-LOCK. As it's name suggests this is a digital door lock, requiring a four digit combination to be entered on a small waterproof key-pad strategically placed on your front door. Included in the kit is an electric door latch, a transformer for mains operation and a battery pack for back-up in the case of a power cut. We just hope that potential users do not forget their combinations, (numbers we hasten to add) because there are over 10000 possible sequences to try if you are locked out.

YOUR FLEXIBLE FRIEND

Flexible printed circuit boards have been around for some years now, so what's new? Well the one shown is the first to meet stringent new British Standard specifications. Welwyn the resistor people are the first British company to meet with BS 9765 approval. Flexible PCBs offer several advantages over conventional SRBP or glass fibre boards, they are lighter, smaller and allow better heat dissipation and are particularly suitable for wiring loom applications.

FREQUENCY COUNTING BREAKTHROUGHS

ADVANCING THE-STATE-OF-THE-ART IN FREQUENCY COUNTERS - INTRODUCING NEW LSI TECHNOLOGY COUNTERS AT AFFORDABLE PRICES.

MODEL OPTO 70007 Digits AC/DC/Portable MINIATURE 10 Hz to 600 MHz COUNTER ± 1 ppm TCXO ONLY $£ 99.00+63$ p $8 \mathrm{p}+\mathrm{p} \%$ VAT

MODEL OPTO 8000.1A Mains/DC/Portable 8 Digits 10 Hz to 600 MHz FREO. COUNTER t.1 ppm TCXO ONLY £240.00 £5 p\&p+ 8% VAT

The OPTO 80001 A is a no compromise professional quality counter. Thanks to new CMOS LSI technology, size, power and cost have shrunk while performance improved. The OPTO 80001 A combines this new technology with careful circuit design and unique packaging for a state-of-the-art counter that sets the pace.

- Selectable step attenuation $\times 1, \times 10, \times 100$
- 50 ohm and 1 Megohm inputs diode protected against overload
- Amplifier circuits for Super Sensitivity
- Front panel features "Lead Zero Blanking Control" and LED gate period indicator.
- Built-in Ni-Cad rechargeable battery pack \& charger (optional)
- Detachable AC and DC chords included

SPECIFICATIONS
Frequency Range:
10 Hz to 600 MHz in two over-lapping ranges Megohm indut - 10 Hz to 60 MHz 50 Ohm inpul 20 MHz to 600 MHz
Gare Times: (Switch Selectable)
Resolution: Display

TIME BASE
Frequency: Type:

100 milliseconds ($1 / 10$ second) 1 second
1 Hz to $60 \mathrm{MHz}, 10 \mathrm{~Hz}$ to 600 MHz 8 LED digits with floating decimal point Flashing LED gate period indicator

SPECIFICATIONS

Also available trom retailers

 AUDIO ELECTRONICS301 Edgeware Road. London, W2 and
Z \& I AERO SERVICES
85 Tottenham Ct. Road, London. W. 1
Sole Distributors for the U.K. and Eire. Agents Wanted for U.K. and Eire.
Maclin-Zand Electronics Ltd.,
38 Mount Pleasant, London WC1X OAP.
Tel: 01-8371165 or Hemel Hempstead 832966

Frequency Range. (Switch Selectable)

Input Impedance
Input Protection

Gate Times Gate Times
(Switch Selectable) Resolution:

Sensitivity:

Time Base:
Counter Accuracy: Temp Stability:
Aging:
Display:
Decimal Point:
Connectors: Power Requiremen

Batteries:

Size:
Weight: $\quad 14$ oz 117 oz with batteries $\&$ charger $)$
-Oprional - not included with basic unit
10 Hz to 60 MHz (65 MHz Typical) 10 MHz to 600 MHz Guaranteed
(10 MHz to 700 MHz Typical)
1 megohm shunted by 20 pf (60 MHz input) 50 ohm $(600 \mathrm{MHz}$ input)
1 megohm/ 60 MHz input - 100 V up to 10 MHz
50 V up to 60 MHz $2 V$ max.
100 millisecond ($1 / 10$ second) 1 second

- $1 \mathrm{~Hz}(10 \mathrm{~Hz}$ to 6 MHz$)$ with switch (S4) Option $10 \mathrm{~Hz}(10 \mathrm{~Hz}$ to 60 MHz$)$ $100 \mathrm{~Hz}(10 \mathrm{MHz}$ to 600 MHz$)$ $<10 \mathrm{mV}$ to 60 MHz 25 mV to 150 MHz (<75 mV Guaranteed) Quartz Crystal 5 .2428 order linear compensation
${ }^{1} 1$ count, Temperature stability and aging .08PPM/C ${ }^{\circ}$ (± 1 PPM 20° to $40^{\circ} \mathrm{C}$. Typ.)
<2 PPM/year

7. 4* Red LED Digits

Auto Placement
BNC tyrle.
1.5 Watus
75.15 V
$7.5 \cdot 15 \mathrm{~V} \mathrm{AC} / \mathrm{DC}<250 \mathrm{ma}$
4. AA Ni Cad, Constant Current Charger

Ex Stack
Delivery Subject to availability

ILP MODULES 15-240 WATTS

We are now stockists for these world famous fully guaranteed (2 years guarantee on all modules) Pre amps, Amplifiers \& Power Supplies.
HY5 Preamplifier. Input, magnetic pickup 3 mV , ceramic 30 mV . Output: Mains 500 mV RMS, Distortion 0.1% at 1 KHz
HY30 Amplifier Kit. 15 Watts into 8Ω, extremely easy to construct. Output 15 W RMS, Distortion 0.1% at 15 W Freq. $10 \mathrm{~Hz}-16 \mathrm{KHz}$. Supply $\pm 18 \mathrm{~V}$
fier Price E6.27
HY50 Hi-Fi Amplifier Module. 25 Watts 8Ω. Input Sensitivity 500 mV . Output
Distorion 0.04\% at 25 W . Freq. $10 \mathrm{~Hz}-45 \mathrm{KHz}$. Supply $\pm 25 \mathrm{~V}$ Pric: $\mathbf{~} 8.18$
HY120 Amplifier Module - 60 Watts 8Ω. Input sens. 500 mV . Output 60 W RMS. Distortion 0.04%. Freq. $10 \mathrm{~Hz}-45 \mathrm{KHz}$. Power Supply $\pm 35 \mathrm{~V}$
HY200 Hi-Fi/Disco Amplifier Module - 120 Watts 8Ω. Input sens. 500 mV 120W RMS Freq. $10 \mathrm{HZ} \cdot 45 \mathrm{KHz}$. Power Supply $\pm 45 \mathrm{~V}$. Size $114 \times 100 \times 85 \mathrm{~mm}$
-240 W 40 . Ideal for High Price: E27.99 HY400 (Big Daddy) Amplifier Module - 240 Watts 4Ω. Ideal for High Power Disco or P.A. (1) POWER SUPPLIES
PSU36 - Drives $2 \times$ HY30s
PSU50 - Drives $2 \times$ HY50s
PSU70
PSU90 one DYY $2 \times$ H 120 S
PSU $1802 \times$ HY200 or one HY400 £6.44

PSU $1802 \times$ HY200 or one HY400 - ©25.42*

pusf eurron SPST on/oft

 DPDT 6 TagMImLature
 Rotany: Make your own multiway Switch
Adustabie Stop Shafting Assembly. Accom Modate up 106 Wafers
Break Betore Make Wafers. 1 pole $/ 12$ way
$2 p / 6$ way. $3 p / 4$ way $4 p / 3$ way $6 p / 2$ way
47 p
ROTARY. (Adiue
1 pole $/ 2$ to 12 way, $2 \mathrm{p} / 2$ to 6 way. ${ }^{3}$
polef $/ 2$ to 4 way, 4 pole $/ 2$ to 3 way 41 p
240 V

digest

A CASE FOR TREATMENT

Some good looking new boxes from the OK Machine \& Tool (UK) Ltd., there are over 25 sizes available with numerous variations to accommodate printers, terminals, clocks etc. Moulded from tough ABS plastic they are all dust and splashproof. All the cases come in a choice of 3 colours, black, blue, or beige. The range is called 'Pac Tec' and is denoted the C series. OK will be delighted to help you. They live at 48a The Avenue, Southampton, Hants, SOl 2SY.

KEY BAUD?

A new Keyboard Terminal module has just come to our attention, it features all the currently favoured features and will interface with any RS232 computer (SYM-1 etc) up to 9600 Baud. The terminal boasts 128 graphic characters on a 40 character by 24 line format, each character having an 8×8 dot matrix. At £218 it's got to be the bargain of the month as the postage is free. Rostra Electronics can help with any queries - they can be found at: 275-281 aking Street, Hammersmith, London W6.

T.V. GAMES

PROGRAMMABLE - $£ 31.86$

COLOUR CARTRIDGE TV GAME

 \qquad

EXTRA
CARTRIDGES:

Gries mix mier recimy win por chapa.

Mancricio spond dirisis. iverim oistaclos.
 inc. VAT 6 GAME - COLOURSCORE II = £14.59 inc.

10 GAME - COLOUR SPORTSWORLD
£24.30 inc. VAT

 Thitem

8V-A/CMAINSADAPTOR - $£ 3.13$ inc. VAT

CHESS COMPUTERS

STAR CHESS - £55.50 inc. VAT PLAY CHESS AGAINST YOUR PARTNER using your own T.V. to display the board and pieces

CHESS CHAMPION $6-£ 85.50$
PLAY CHESS AGAINST THE COMPUTER - 6 g LEVELS

porad dind

by

 H.

CHESS CHALLENGER 7 - $£ 92.50$
CMESS CHALLENGER $\mathbf{7 - £ 9 2 . 5 0 ~ i n c . ~ V A T ~}$

CHESS CHALLENGER 10-£154.50 inc. VAT

Chess insitenger 10 Eustratiod wova)

BORIS - £178.50 inc. VAT

FOR FREE BROCHURES - SEND S.A.E.

Canlici

AJD DIRECT SUPPLIES LIMITED. Dept. ET 2 102 Bellegrove Road, Wellington, Kent DA 16 3QD Telephone: 01-303 9145 (Day). 01-850 8652 (Evenings)
....... news digest.......

SYM-1

AN ideal companion to the keyboard terminal (see key Baud) is the new SYM-1. MPU system. Intended clearly for the development market it should appeal to both engineers and hobbyists. The board is complete and ready to go, needing
only the addition of a 5 V DC supply. The unit has 4 K onboard software and 1 k of static RAM. Full access is available to important busses and ports. The SYM uses the popular 6502 MPU already a firm favourite with TV games manufacturers, price is $£ 175$, post free. See Rastra Electronics for details.

UNCLE SAMS LATEST

Good to see the American built 'Compucolor II' is at last available in the UK. For $£ 1,390$ you get a very comprehensive sys tem indeed. The integral VDU

8 colour) and Mini-Floppy Disk drive support the on-board 8K RAM which works in Basic. Abacus Computers Ltd will be importing the machines and examples can be seen at the Byte Shop and Trans Am of Chapel Street, London

QUARTZ LCD
 5 Function

Hours, mins., secs. month, date, auto calendar, back-light, quality metal bracelet.
£6.65
Guaranteed same day despatch.
Very slim, only 6 mm thick.

M1

QUARTZ LCD Alarm

 Chronograph with Dual Time Zone Facility
 diate odspory, plus dayy
of the week ond am/om indication
Perperual cal Perperual calendar. dav. date, month and year.
24 hour alarm with ons 24 hour alarm $1 / 10$ second chrono. graph measuring net.
lap and first and second lap and first
place times place tumes
Dual time zone facility Dual time zone
night light.
£24.65

SEIKO Alarm Chrono

SOLAR QUARTZ LCD Chronograph

M9
HANIMEX
Electronic
LED Alarm Clock

Features and Specification:
Hour/minute display. Large LED display with .m and alarm on indicator. 24 Hours alarm with
on/off control. Display flashing for power loss indication Repeatable 9 -minute snooze. Displa uright/dim modes control Size 5.15" x $393^{\prime \prime} \times$ $2.36^{\prime \prime}(131 \mathrm{~mm} \times 11 \mathrm{~mm} \times 60 \mathrm{~mm}$). Werght 1.43 lbs (0.65 kg)
£8.65 Thousands sold

Guaranteed same day despatch

QU ARTZ LCD
7 Function
Hours, mins., secs. month, date, auto calendar, back light, seconds STOP WATCH.
$£ 9.65$
Guaranteed same day despatch. Very slim, only 6 mm thick.

LCD, hours, mins. secs., day of week, month, day and date, 24 hour Alarm, 12 hour chronograph, 1/10th secs., and lap time. Back ligh stainless steel, HARDLEX glass. List Price E 130.00 metac price
£105.00

M10

QUARTZ LCD
 Ladies Slim Bracelet

5 function.
Hours, mins., secs. day, date and back light and auto light and
calendar.
Elegant meta
bracelet in silver or gold.
State preference.
£15.95
Guaranteed same day despatch

M14

Guaranteed same day despatch. M3

QUARTZ LCD Alarm Chrono

QUARTZ LCD
11 Function sцім снвомо
6 digit, 11 functions. Hours, mins., secs., day date, day of week. 10X secs., mins. secs.. Split and lap mod Back-light, auto calendar. Only 8 mm thick.
Stainless steel bracelet
and back.
Adjustable bracelet.
Metac Price
£12.65 Thousands sold!

SEIKO Chrọnograph

M11
SOLAR QUARTZ LCD 5 Function

day despatch.

DIGITAL LED CLOCK

Automatic brightness control. Weekend alarm cancel.
Features and Specification:
Hour'minute display. Large LED display with p.m and alarm on indicator. 24 Hours alarm w
on off control. Display flashing for power loss indicator. Repeatable 9 -mınute snooze. Auto. matic brightiness control, Weekend alarm cancel.

£10.95

Guaranteed same day despatch.

South of England
327 Edgware Road LONDON W. 2
Telephone: (01) 7234753

NON-SUBSCRIBERS START HERE

GIVE UP, GO HOME: POSTAL SUBSCRIPTION TO ETI.

It can be a nuisance can't it, going from newsagent to newsagent? "Sorry squire, don't have it - next one should be out soon.'

Although ETI is monthly, it's very rare to find it available after the first week. If it is available, the newsagent's going to be sure to cut his order for the next issue - but we're glad to say it doesn't happen very often.

Do yourself, your newsagent and us a favour. Place a regular order for ETI; your newsagent will almost certainly be delighted. If not, you can take out a postal subscription so there's nothing for you to remember - we'll do it for you.

For a subscription, send us $£ 7.00$ ($£ 8.00$ overseas) and tell us which issue you want to start with. Plisase make your payment (in sterling please for overseas readers) to ETI Subscriptions and keep it separate from any other services you want at the same time.

> ETI Subscriptions
> Map Publications PO Box 35
> Bridge Street Hemel Hempstead

> Herts

The latest kit innoration from Gparkirite arkite- tur the quickest fitting CLIP ON capacitive discharge electronic ignition in KIT FORM
 8 ㅇ
 Smoother running
 Instant all-weather starting Continual peak performance
 Longer coil/battery/plug life
 Improved acceleration/top speeds Optimum fuel consumption

Sparkrite X 4 is a high performance, high quality capacitive discharge, electronic ignition system in kit form. Tried, tessed, proven, reliable and complete. It can be assembled in two or three hours and fitted in $1 / 3 \mathrm{mins}$
Because of the superb design of the Sparkrite circuit it completely eliminates problems of the contact breaker. There is no misfire due to contact breaker prevents the unit firing it the points bounce open at high R.P.M. Contact breake burn is eliminated by reducing the current to about $1 / 50$ th of the norm. It will perform equally well with new old, or even badly pitted points and is not dependent upon the dwell time of the contact breakers for recharging the system Sparkrite incorporates a short circuit protected inverter which eliminates the problems of SCR lock on and, therefore, eliminates the possibility of blowing the ransistors or the SCR. IMost capacitive discharge ignitions are not completely tootproot in this respect). The circuit incorporates a voltage regulated output for greatly improved cold starting. The circuit includes built in static timing light, systems function light, and security changeover switch. All kits fit vehicles with coil/distributor ignition up to 8 cylinders
THE KIT COMPRISES EVERYTHING NEEDED
Die pressed epoxy coated case. Ready drilled, aluminum extruded base and heat sink, coil mounting clips, and accessories. Top quality 5 year guaranteed transformer and components, cables, connectors, P.C:B., nuts, bolts and silicon grease. Full instructions to assemble kit neg. or pos: earth and fully illustrated installation instructions.
NOTE - Vehicles with current impulse tachometers (Smiths code on dial RV1) will require a tachometer pulse slave unit. Price $£ 3.85 \mathrm{inc}$. VAT, post \& packing

Electronics Design Associates, Dept. ETI5 82 Bath Street, Walsall WS1 3DE. Phone: (9) 614791

Name
Address
Phone your order with Access or Barclaycard

STEVGNSON

Electronic Components

SWITCHES

Subminiature toggle. Rated at 3A 250V SPDT 65p SPDT centre off 70p DPDT 75p DPDT centre off 90 p Standard toggle. SPST 34p DPDT 48p Wavechange switches. 1P12W, 2P6W, 3P4W or 4P3W all 37p each Miniature switches (non-locking)
Push to make 15p Push to break 20p Slide Switches (DPDT)
Miniature 14p Standard 15p

REGULATORS

$78 L 05$	$30 p$	7805	$60 p$	$79 L 05$	$70 p$	7912	$80 p$
$78 L 12$	$30 p$	7812	$60 p$	$79 L 12$	$70 p$	7915	$80 p$

HARDWARE

ERMINALS
Rated at 10A. Accepts 4 mm plug, black, blue, green, brown and red

LOUDSPEAKERS
56 mm dia. 8 ohms 64 mm dia. 8 ohms 64 mm dia. 64 ohms 70 mm dia. 8 ohms 70 mm dia. 80 ohms
MINIATURE TRANSFORMERS
240 Volt Primary
Secondary rated at 100 mA Available with secondaries of: 6-0.9,9-0-9 and $12 \cdot 0 \cdot 12.92 \mathrm{p}$ each

We now have an express telephone order service. We guarantee that all orders received before 5 pm . are shipped first tlass on that day Contact our Sales Office now! Tel: 01-464 2951/5770.

ORDERS DESPATCHED BY RETURN

Quantity discounts on any mix TTL, CMOS, 74LS \& Linear circuits: $25+10 \%$. $100+15 \%$. Prices VATinc. Please add 30p for carriage. Callers welcome. Official orders accepted.

POST

BARCLAYCARD

ACCESS WELCOME
Mat orders to: STEVENSON (Dept ET)

TRANSISTORS

AC127	$17 p$
AC128	$16 p$
AC176	$18 p$
AD161	$38 p$
AD162	$38 p$
BC107	$8 p$
BC108	$8 p$
BC109	$8 p$
BC147	$7 p$
BC148	$7 p$
BC149	$8 p$
BC148	$9 p$
BC177	$14 p$
BC178	$14 p$
BC179	$14 p$
BC182	$10 p$
BC182L	$10 p$
BC184	$10 p$
BC184L	$10 p$
BC212	$10 p$
BC212L	$10 p$
BC214	$10 p$
BC214L	$10 p$
BC477	$19 p$
BC478	$19 p$
BC479	$19 p$
BC548	$10 p$
BCY70	$14 p$

HMEAR		CA3140	700	NE555	25p
THIS IS ONLY A SELECTION!		LM324	50p	NE567	170p
		LM339	50p	SN76003	200p
709	25p	LM380	75p	SN76013	140p
741	22p	LM382	120p	SN76023	140p
747	50p	LM1830	150p	SN76033	200p
748	30p	LM3900	50p	SN76477	220p
CA3046	55p	LM3909	60p	TBA800	70p
CA3080	70p	MC1496	60p	TDA1022	650p
CA3130	90p	MC1458	35p	2N414	75p

CAPACITORS

TANTALUM BEAD
$0.1,0.15,0.22,0.33,0.47,0.68$
$182.2 \mathrm{uF} @ 35 \mathrm{~V}$
4.7 .6 .8 10uF @ 25 v
22 @16V,47@6V,100@3V
MYLAR FILM
$0.001,0.01,0.022,0.033,0.047$
16 p
0.068. 0.1

POLYESTER
Mullard C280 series
$0.01,0.015,0.022,0.033,0.047,0.068,0.1 .5 p$ $0.15,0.22$
$0.33,0.47$
0.33, 0.47
0.68
1.0 uF
$7 p$
100
CERAMIC
Plate type 50V. Available in E12 series from
22pF to 1000 pF and $E 6$ series from 1500 pF to
RADIAL LEAD ELECTROLYTIC
$\begin{array}{llllll}63 V & 0.47 & 1.0 & 2.2 & 4.7 & 10\end{array}$

CONNECTORS
JACK PLUGS AND SOCKETS

	screened	unscreened	socket
2.5 mm	$9 p$	$13 p$	$7 p$
3.5 mm	$9 p$	$14 p$	$8 p$
Standard	$16 p$	$30 p$	$15 p$
Sterec	$23 p$	$36 p$	$18 p$

DIN PLUGS AND SOCKETS

plug	chassis socket	line socket	
2pin	$7 p$	$7 p$	$7 p$
3pin	$11 p$	$9 p$	$14 p$
5pin 180°	$11 p$	$10 p$	$14 p$
5pin 240°	$13 p$	$10 p$	$16 p$

1 mm PLUGS AND SOCKETS
Suitable for low voltage circuits, Red \& black. Plugs: 6p each Sockets: 7p each. 4 mm PLUG்S AND SOCKETS
Available in blue, black, green, brown, red, white and yellow. Plugs: 11p each Sockets: 12p each PHONO PLUGS AND SOCKETS
Insulated plug in red or black
Screened plug
$9 p$
$13 p$
Single socket 7p Double socket 10p

SKTS

Low profile

by Texas

8 pin 10p 16 pin 13p 28 pin 28p 14 pin 12p 24 pin 24p 40 pin 40p Soldercon pins: 100:50p, 1000:370p

OPTO

LEDs $\quad 0.125 \mathrm{in} . \quad 0.2 \mathrm{in}$
Red TIL209. 0.2 in Green TIL211 TIL221 13p Yellow TIL213 TiL223 13p Clips 3p
DISPLAYS
OL704 0.3 in CC 130p
$\begin{array}{lll}\text { OL707 } & 0.3 \text { in CA } & 130 \mathrm{p} \\ \text { FND500 } & 0.5 \text { in CC } & 100 \mathrm{p}\end{array}$

RESISTORS

Carbon film resist ors. High stability, low noise 5\%.
E12 series. 4.7 ohms to 10 M . Any mix
$\begin{array}{llll}0.25 W & \text { each } & 1004 & 1000 \\ 0.5 W & 1 p & 0.9 p & 0.8 p\end{array}$
$\begin{array}{llll}0.5 \mathrm{~W} & 1.5 \mathrm{p} & 1.2 \mathrm{p} & 1 \mathrm{p}\end{array}$
Special development packs consisting of 10 of each value from 4.7 ohms to 1 Megohm $(650$ resl $0.5 \mathrm{~W} £ 7.50$. $0.25 \mathrm{~W} £ 5.70$. METAL FILM RESISTORS
Very high stability. Iow noise rated at $1 / 4 \mathrm{~W}$ 1%. Available from 51 ohms to 330 k in E24 series. Any mix:
$\begin{array}{llll} & \text { each } & 100+ & 1000+ \\ 0.25 W & 4 p & 3.5 p & 3.2 p\end{array}$
FOR YOUR
COPY OF OUR 40 PAGE
CATALOGUE
OF COMPON.
ENTS, SEND
LARGE S.A.E.

SURFACE ACOUSTIC WAVES

Abstract

Surfare - -ustic Wave Filters (SAWFs) are a comparatively recent newcomer to the scene. They promise to revolutionise entire sections of colour TV . Richard Maybury and Peter Haywood* take a look into the workings of

ZODYNE RECEIVER has been with us for now (although opinions vary as to its t time the basic concept has altered very dvent of semiconductors came Varicap ing with it the demise of the mechanical t). As iCs began to appear another bulky perhet shrank dramatically - the audio : however, seems to have resisted any ie good old IF, indeed many a radio lirties and forties would still recognise a stage, possibly even feel quite at home
, on the operation of the IF would not is point, as most of you will realise the
superhet works by mixing the incoming RF (from the aerial through a series of RF amplifiers) with an internally generated oscillator (the 'local' oscillator usually runs at a higher frequency to that of the incoming RF, around 465 or 470 kHz in the case of an AM receiver and 10.7 MHz for FM). The oscillator 'tracks' with the RF when the tuner dial is altered the local oscillators frequency will change accordingly. The result of mixing these two frequencies is to produce a product, sum and difference output. The IF stage will reject all but the difference output, hence it is really nothing more than a highly accurate 'notch' filter, tuned in the case of AM to 465 (or 470) kHz.

conductors Ltd)

Early Days

Development work on SAWFs first began in the late sixties - the theory, however, was known as early as 1940. The SAWF is perhaps unusual in that it uses no silicon in it's construction, instead it relies on a substance called Lithium Niobate, which has very predictable piezoelectric properties. Simply explained that means it has the ability to convert electrical energy into mechanical energy and vice-versa. An electrical signal applied to the interleved Aluminium fingers (see Fig. 1.) of the input transducer sends an 'acoustic' wave across the surface of the filter and is converted back into electrical energy by a similar transducer at the other end of the device. Because the signal is acoustic it will travel slower than an equivalent electrical signal, so there is a significant delay between the input and output transducers.

A Notch In Time

Regarding the IF just as a filter can be somewhat misleading, because the accuracy and stability of an IF stage is of a very high order, and up to now could only have been achieved with a series of highly accurate LC networks. The main drawback apart from sheer physical bulk has always been the setting up needed for a conventional IF strip, often involving up to six or more separate tuning operations on sophisticated pieces of test equipment, (wobbulators or sweep-generators). With all these constraints it's not surprising that a search (mostly fruitless) has been going on for many years to find a suitable alternative; the most likely candidate looks like being the Surface Acoustic Wave Filter or SAWF for short.

Pioneering Plessey

Most of the early development work was carried out by Plessey Semiconductors Ltd at their Caswell plant about a decade ago, and in fact within three months of the research department being set up they had a working prototype. This early success led to the department being given a brief to produce a viable TV IF filter, demonstrating what had previously been possible only theoretically.

Early efforts to market SAWFs met with a slow response. This was not so much because of technical performance but because a comparison of costs showed little, if any, cost advantage of the SAWF version at that time over the conventional coil-type of IF most UK TV companies were committed to. Many TV manufacturers had invested a lot of money in coil-winding equipment and were naturally reluctant to scrap such expensive machinery.

The breakthrough came when Spain and Italy started colour TV transmissions. Because the IF is one of the most difficult areas of a TV set to design and build. (Colour TV demands a particularly high standard of IF design), the Spanish and Italian TV setmakers were saved from a difficult design problem by the use of SAWFs and sales of Plessey filters rocketed to around 70000 a month. This naturally led to a rapid reduction in prices and gave Plessey confidence to invest further capital in setting up a high volume SAWF production plant capable of producing 10 million devices per annum.

Fig. 1
Typical SAWF construction, the ridges at the two ends of the substrate act as acoustic absorbers for unwanted signals. The central electrodes serve to guide the acoustic wave from the input transducer to the output transducer.

Fig. 2.
Typical response curve for a TV IF filter (Plessey), note the almost 'square' response, this kind of accuracy is nearly impossible to duplicate by conventional means.

Filtering Through

Technical refinement, and acceptance by the TV setmakers, enabled Plessey to penetrate some of the traditionally difficult markets. In the UK all but one of the TV manufacturers will be in full production with SAWFs by the end of 1979 .

Although most of the initial arguments against the use of SAWF's were on economic grounds. The advantages found by users when in production are very wide ranging.

Perhaps the most commonly cited advantages are the consistently good performance, the simplicity from a production viewpoint due to the lack of adjustments and the small number of components on the IF board. Other advantages are the flexibility to change from UK standard sets to any other standard by changing the SAW filter and a few other components, and the improved reliability since the SAW filter is a robust passive component.

Construction

Basically a Surface Acoustic Wave Filter consists of Two transducers (see Fig 1) on a piezo-electric substrate. An
electrical : causes an : propagated bi.. The transducer : enerates a wave symmetrically across it's surface producing an unwanted output to the left of it's body, this is absorbed by a raised wedge to prevent any spurious reflections crossing the 'chip'. The wave to the right of the transducer is re-directed by the central coupling grid to the output transducer where it is reconverted into an electrical signal (V out). The time taken for the wave to cross the device is typically 1.6 microseconds. The input transducer generates a further unwanted signal called a Bulk Wave this, not being a surface component passes under the central coupler and misses the output transducer.

Material

The substrate material commonly used for SAWF devices is Lithium Niobate (LiNbo3) which has a very high piezo-electric coupling factor, this results in filters with a low insertion loss. Being relatively cheap and having a low temperature co-efficient make it a practical choice, although much research is being carried out at the moment into alternative materials.

Fig. 3.
Block diagram showing diagram of SAWF within receiver design, noise levels are shown. The SL1430 is a purposedesigned SAWF pre-amplifier (Plessey) for use in TV IF filtering.
development sample data

Fig. 4.
Complete Tuner/IF circuit using a Mullard SAWF, the component count is around a quarter that of a conventional IF (Diagram courtesy Mullard Ltd).

Pre-assembled Plessey IF/Tuner units. With the introduction of SAWFs these modules can be made substantially smaller than current IF and Tuner modules.

Transducers

* The Transducers consist of interdigital grids or fingers of electrodes formed from Aluminium. Each grid is around 200 Angstroms thick and 10 micro Meters wide.

Practical Considerations

In practice several other features are incorporated into SAWF design, the use of an acoustic absorber on the back face of the substrate is used to isolate the transducers from any mechanical interference (it also serves to mount the substrate on to the package or encapsulation). The edges of the substrate are 'cut' at an angle to steer any reflections away from the input and output transducers. Double thickness electrodes are also used to further reduce spurious reflections.

Bandwidth

The 'geometry' of the transducers dictates the effective frequency response (fo) and bandwidth of the device. By 'tailoring the shape and sizes of the electrodes a variety of

FEATURE: Surface Acoustic Waves

Simplified Plessey IF filter, it would be difficult to reduce component count further.
devices can be produced to suit different applications, or in the case of TV filtering, for different systems (ie PAL, SECAM, NTSC etc). If the electrodes are evenly spaced with a gap of λ o between electrodes of the same polarity the frequency response of the filter would be $\sin x / x$ where the centre frequency is given by:

(velocity of wave propagation)

$\mathrm{fo}=$
λ_{0}

"Good Morning Miss! You are privileged to be a participant in my new invention - 2-way broadcasting through mirrors. Would you care to say a few words?"
,

The bandwidth (Δf) is given by:

$$
\Delta f / f o=2 / N
$$

Where N is the number of electrode pairs. Such a device would possess a linear phase response.

The central coupling grids consist of uniform strips of isolated electrodes, which effectively re-direct the surface wave to the output transducer.

The Future?

So far, SAW filters have been competing against conventional IF filters and are now recognised as being economic and technically advantageous. Already techniques are emerging from the development laboratory which will give even better response and cheaper filters. Parallel sound filters, which have separate outputs for sound and video signals are now in development. These will make possible TV sets with Hi-Fi quality sound. Professional SAW filters are now also being produced and these filters are very stable and can have response shapes which are almost impossible to produce any other way. For instance the CATV filter from Plessey in virtually square. It has an 8 MHz bandwidth which is flat $\pm 0.2 \mathrm{~dB}$ and then falls off almost vertically to sidelobes which are lower than 55 dB down. The filters have also made new types of pulse compression / expansion radar possible.

Our thanks to Peter Haywood of Plessey Semiconductors Ltd for his help in preparing this article and to Mullard Ltd for additional information.

ET

TRANSFORMERS

Panel Meters, Bridge Rectifiers, Power Supply Units Multimeters - Semi Conductors - Timers - Safebloc
Minimum it Sub Miniature
Milti-
amps

KEY:
1: The bit of chocolate you thought you'd leave for later.

2: Coffee stains (instant).
3: A useful-sized bit of stiff paper to stop the window from rattling.

4: Rough calculations for your new combined egg timer/laser cannon project.

5: ETI makes a fair soldering iron stand.
6: The dog insisted on carrying your copy to you along with your slippers.

WHAT A BIND!

Half our orders for binders are repeats: we think that says a lot for their quality. At $£ 3.00$ all inc. you get a great deal of peace of mind too!

ETI Binders
25-27 Oxford Street,
London WIR 1 RF

tllifor

How to order: Make cheques etc payable to ETI Book Service. Payment in sterling only please. Orders should be sent to: ETI Book Service, PO Box 79, Maidenhead, Berks. All prices include P\&P.

BEGINNERS

Beginners Guide to Electronics Squires $£ 2.65$
Beginners Guide to Transistors Reddihough $\mathfrak{£} 2.65$
Electronic Measurement Simplified C. Hallmark $£ 2.20$
Electronics Self Taught Ashe $£ 4.40$
Beginners Guide to Integrated.Circuits Sinclair £3.15
Principles of Transistor Circuits S. Amos $£ 4.75$
Understanding Electronic Circults Sinclair $£ 4.10$
Understanding Electronic Components Sinclair £4.10
Beginners Guide to Radio King $£ 3.15$
Beginners Guide to Audio Sinclair £3. 10

COOKBOOKS

TV Typewriters Cookbook $£ 7.75$

CMOS Cookbook $£ 8.20$
Active Filters $£ 11.30$
IC Timer Cookbook $£ 7.50$
IC Op-Amp Cookbook $£ 10.00$
Video Cookbook $\mathbf{E 7 . 0 0}$
TTL Cookbook $\mathrm{E7} .55$

APPLICATIONS

Advanced Applications for Pocket Calculators J Gilbert £4.20
Build Your Own Working Robot D Heisman $£ 3.70$
Electronics and Photography R. Brown $£ 2.30$
Fire and Theft Security Systems B weis $£ 2.00$
How To Build Proximity Detectors and Metal Locators J. Shields $£ 3.90$
How To Build Electronic Kits Capel $£ 2.10$
Linear Integrated Circuit Applications G. Clayton $\mathbf{E} 5.40$
Function Circuits Design \& Applications Burr Brown E15.95
110 Electronic Alarm Projects R. M. Marston $£ 3.45$
110 Semiconductor Projects for the Home Constructor R. M. Marston $\mathfrak{E 3} 3.25$
110 Integrated Circuit Projects for the Home Constructor R. M. Marston E3. 25
110 Thyristor Projects Using SCRs R. M. Marston $£ 2.95$
Handbook of IC Circuit Projects Ashe $\mathbb{E} 2.30$
Practical Electronic Prolect Building Ainslie and Colwell $£ 2.45$

TV AND HI-FL

Audio Handbook G. King £6.50

Cassette Tape Recorders J. Earl $£ 5.25$
Solid State Colour TV Circuits G. R. Wilding $£ 6.35$
$\mathrm{Hi}-\mathrm{Fi}$ Loudspeakers and Enclosures Cohen $£ 8.20$
How To Build Speaker Enclosures Badmateff $£ 3.90$
Master Hi-Fi Installation King $£ 2.80$

LOGIC

Logic Design Projects Using Standard ICs J. Wakerly $£ 5.10$
Practical Digital Design Using 1Cs J. Greenfield $£ 12.50$
Designing With TTL Integrated Circults Texas instruments $£ 9.05$
How To Use IC Circuit Logic Elements J. Streater $£ 3.65$
110 COSMOS Digital IC Projects for the Home Constructor R. M. Marston $£ 3.20$
Understanding CMOS Integrated Circuits R. Melen $\mathfrak{E 4 . 0 0}$
Digital Electronic Circuits and Systems R. M. Morris $£ 3.50$
MOS Digital ICs G. Flynn E5.10
COMPUTING

```
Microprocessors and Microcomputers B. Soucek \(£ 18.80\)
Microprocessors D. C. McGlynn \(£ 8.40\)
Introduction to Microprocessors Aspinall \(£ 6.40\)
Beginners Gulde to Microprocessors \(£ 4.70\)
Beginners Basic Gosting \(£ 3.35\)
```


OP-AMPS

Applications of Operational Amplifiers Graeme (Burr Brown) 88.3
110 Operational Amplifier Projects for the Home Constructor R. M. Marston £2.95 Experiments With Operational Amplifiers Clayton $£ 3.40$

Designing with Operational Amplitiers Burr Brown E16.65
Operational Amplifiers Design and Applications G. Tobery (Burr Brown) £7. 40 Op-Amp Circuit Design \& Applications J. Carr $£ 4.00$

TEST INSTRUMENTS

The Oscilloscope in Use Sinclair $£ 3.10$
Test Instruments for Electronics M. Clifford $\mathfrak{£ 2 . 4 0}$
Working With the Oscilloscope A. Saunders $£ 1.95$
Servicing With the Oscilloscope G. King $£ 5.60$
Radio Televislon and Audio Test Instruments King £5.90

SERVICING

Electronic Fault Diagnosis Sinclair $\mathbf{£ 3 . 2 0}$
Rapid Servicing of Transistor Equipment G. King $£ 2.95$
Tape Recorder Servicing Manual Gardner Vol. 1: 1968-70 £8.50
Vol. 2: 1971-74 £8.50
FM Radio Servicing'Handbook King £4.80

COMMUNICATIONS

Communication Systems Intro To Signals \& Noise B. Carlson $\mathbf{£ 7 . 5 0}$ Digital Signal Processing Theory \& Applications L. R. Rabiner £23.80 Electronic Communication Systems G. Kennedy $£ 8.50$
Frequency Synthesis. Theory \& Design Mannassewitsch £23.40
Principles of Communication Systems H. Taub $£ 8.10$

THEORK

Introduction to Digital Filtering Bogner' $£ 10.20$
Transistor Circuit Design Texas Instruments $£ 9.35$
Essential Formulae for Electrical and Electronic Engineers N. M. Morris £1.65
Modern Electronic Maths Clifford $£ 6.70$
Semiconductor Circuit Elements T. D. Towers $\mathbf{£ 6 . 4 0}$
Foundations of Wireless Electronics M. G. Scroggie $£ 4.45$
Colour Television Theory Hudson $£ 6.20$

REFERENCE

Transistor Tabelle (Includes physical dimensions) $£ 4.10$
Electronic Engineers Reference Book (Ed. 4) L. W. Turner £27.70
Solid State Circuit Guide Book B. Ward $£ 2.25$
Electronic Components M. A. Colwell $£ 2.45$
Electronic Diagrams M. A. Colwell $£ 2.45$
Indexed Guide to Modern Electronic Circuits Goodman £2.30
International Transistor Selector T. D. Towers $£ 6.00$
International FET Selector T D. Towers $£ 4.35$
Popular Valve/Transistor Substitution Guide $£ 2.25$
Radio Valve and Semiconductor Data A. M. Bell E2.60
Master Transistor/Integrated Circuit Substitution Handbook £5.60
World Radio TV Handbook 1978 (Station Directory) $£ 8.00$
Radio. TV and Audio Technical Reference Amos $£ 24.85$
TV Technicians Bench Manual (New Ed.) Wilding $£ 5.10$

MISCELLANEOUS

Integrated Electronics J. Milman $£ 7.90$
Microelectronics Hallmark $\mathbb{E 3 . 9 0}$
Practical Solid State DC Supplies T. D. Towers E 6.20
Practical Triac/SCR Projects for the Experimenter R. Fox $£ 2.25$
Printed Circuit Assembly Hughes \& Colwell $\mathfrak{£ 2 . 4 5}$

Fallen behind recent advances?
Just starting out?
Need a decent reference book?
ETI Book Service provides an easy
way of getting your hands
on the right title.

Take a

-

SO WHAT, YOU MAY ASK, is the advantage of an electronic dice over its conventional and inexpensive plastic (solid state?) counterpart? The answer is that, apart from looking better (and being a better conversation piece), the electronic die or dice is very fast: it can be "thrown" and read in a fraction of a second, compared to the several seconds needed for the mechanical item. That enables the rate of play of a game to be speeded up, and consequently makes most games more fun to play. The electric die-dice is a particular boon to the war-games enthusiast.

Our dice has a few unusual features. It has only two panel-mounted controls. One of these is a two-way switch that lets. you select either a single die or a double die (dice) display; the displays are naturally presented in the conventional die format. The other control is a push-button that gives the roll-and-throw action. When the button is pressed the die are rolled and the display is blanked out. The die are thrown and displayed on release of the pushbutton. Once thrown, the die are displayed for about seven seconds, and then black out automatically. When using the device, you can roll-and-throw as fast as you like: you don't have to wait for an autoblanking phase between actions. The unit consumes negligible current when in the standby mode, so no on-off switch is required

The ETI die-dice is designed around readily-available CMOS IC's. It is the most economically die-dice circuit that we've seem so far. It uses only five IC's and eight discrete components, apart from the 14 LED's and 8 limiting resistors associated with the actual display.

Construction

Not much to say here. All the electronics, except the LEDs, are mounted on a single PCB, so cónstruction should present no problems. On our prototype we

gamble:DOUBLE DIE

used red LEDs for the left-hand die display, and orange for the right Not a good idea: the orange LEDs aren't contrasty enough, and are difficult to read. Our advice is use red LEDs for both displays.

Our prototype unit is housed in a sloping-front Verocase. The PCB is held in place by Sellotape sticky fixers. That's a good idea: it saves drilling holes in the case and the PCB.

Fig. 1. The random element in Double Die is comparable to the mechanical version. The table on the right was compiled from extensive practical testa and as you can see it produces identical results to it's 'solid state' counterpart.

Double dice odds

COMBINATION
any double number
a specified double
total of 2 or 12
total of 3 or 11
total of 4 or 10
total of 5 or 9
total of 6 or 8
seven
any two numbers

ODDS

1 in 6
1 in 36
1 in 36
1 in 18
1 in 12
1 in 9
1 in 7.2
1 in 6
1 in 18

Fig. 2. The complete circuit diagram of Double Dice, as you can see the component count is significantly lower than any previously published design. ICs 3 and $£$ are 4017 s arranged as divide by six, counter-dividers.

HOW IT WORKS

The circuit may be divided into three sec-, tions; the clock-control and two identical counter-decoder stages. ICl handles the control fuction and generates the clock pulses to drive the 4017 counters IC 3 and IC5. The output from these in then decoded to provide a conventional die display by IC2 and IC4.

When PBl is depressed the output of ICla goes high. This signal, inverted by IC1c, disables IC1d as long as the switch is closed and Q1 remains off so no LEDs are lit. During this time, C2 is charged to about 9 volts through Dl and the clock oscillator IC1b is enabled.

Clock pulses are input to IC3, a 4017 configured as a divide by 6 counterdecoder. This is achieved by connecting decoded output ' 6 ' to the rest input. As the outputs are numbered from zero, output ' 6 '
goes high on the seventh clock cycle resetting the counter and providing six decoded outputs which go high sequentially. The rest pulse generated is too short to reliably clock the second counter IC5 so one of the decoded outputs from IC3 is used.

When PB1 opens, IC3 and IC5 which have been cycling continuously will stop at a rańdom position as clock oscillator IC1b is disabled. The output of ICl a will go low again and this signal inverted by IC1c enables one input ICld. The other input of IC1d will be at a high level as C2 is still charged and so its output will go low turning on Q1 and the LEDs until the charge on C2 leaks away through R3 after about six seconds when the LEDs will extinguish. One or both displays will be illuminated depending on the position of SW1. If you wish to replace PB1 by a touch contact, R1 may be increased to 4 M 7 .

PARTS LIST

Fig. 4. Layout for the LED display, two are
required.

O.		${ }^{5} \mathrm{O}$
Od	\bigcirc	${ }^{\circ} \mathrm{O}$
O		. 0

BUYLINES

There should be no problem in obtaining any of the components used in this project. The !Cs are common types available from most electronics hobby shops

ambit
 international

The PW Sandbanks Metal Locator: a kit based on this recently published design for this uniquely effective type of metal locator is available for only $£ 35.00+8 \%$ VAT. The kit closely resembles the appearance as published, except that a close fitting the enviromental suitability of the construction. Carriage for complete kits imp The New Catalogue " Tecknowledgey Part 2"
Part 2 of the catalogue: by the time this advert reaches the press, part 2 should be on sale. Sorry it's late, but it contains so many new and interesting things that we felt we had to hold up production to include them. Part three by the autumn and already there are many new items to go in! Part one 45p, part 2 50p. (inc PP etc).

$\frac{\text { Radio ICs }}{\text { TDA1062 }}$
 TDA1062 TDA1083

TDA1083
HF/VHF tunerhead 1.95

HA1197W HiFi AM tuner IC
CA3123E AM tuner IC

| CA3089E Famous FM IF system | 1.40 |
| :--- | :--- | :--- |
| | 1.81 |

CA3189E As 3089+ deviation mute
HA1137W AF preamp, adj, agc
limiting amp+detecto
TBA120S high gain
MC1350P agc'd IF preamp MC1330P sVnch AM/video detecto $\begin{array}{ll}\text { KB4406 } & \begin{array}{l}\text { Cascode IF preamp } \\ \text { limiting FM preamp }\end{array} \\ \text { HA753 }\end{array}$
Communications circuits
SD6000 DMOS RF/Mixer palr
KB4412 Bal mixers, IF Fage

| KB4413 AM/SSB det. squetch,agc | 2.7 |
| :--- | :--- | :--- |
| KB4417 | 2.7 |

$\begin{array}{lll}\text { MC3357 } & \text { mic processor } & \mathbf{2 . 5 5} \\ \text { besf thing in NBFM yet } & \mathbf{3 . 1 2}\end{array}$
MC1496P popular double bal mixer $\mathbf{1 . 2 5}$

Multiplex decoders + noise blanker		
UA758 popular PLL decoder	$\mathbf{2 . 2 0}$	CA3090AO RCA PLL decoder HA1196 improved PLL decode HA11223 with stereo preamps 19k Hz pilot cancel,

distortion. high S / N KB4437 as HA11223 with rem KB4438 stereo MUTING preamp KB4423 impulse noise blanker

At last, DIY Hi Fi whith looks 05 if it isn't.

That's not to say it doesn't look like HiFi just that it doesn't look like the usual sort of thing you have come to associate with DIY HiFi. The Mk3 outstrips and outperforms all British made Hifi tuners, and most imported ones too. Certainly at the price, there isn't one near it. But more than that, it looks superb . A small pic here would be an insult, so send an SAE for details on the kit that looks as if isn't. It's something else

```
* Exceptionally high performance - exceptionally siralghtforward assembly Baseboard and plugg in construction. Future circuit developments will readily Baseboard and plug in construction. Future circuit developments
plug In , to keep the MkII at the forefront of technical achievement Various options and module line-ups possibie to enable an installment approach
to the system
```

and now previewing the matching 60W/channel VMOS amplifier
. Matching both the stvle and design concepts of the MkIII HiFi FM tuner
Hitachi VMOS power fets - characterized especially for HiFi application Power outpul readily multeplied by the addition of further MOSFET VU meters on the preamp - not simply dancing according to vol level Backed with the usual Ambit expertise and technical capacity in audio

The PW Dorchester-LU,Imw, 5w,\& FII stereo tuner
the digital dorchester all band tuner

With styling and dimensions to fi in with the rest of AMBIT's new range of tuner \& audio equipment

When the new range of OKI digital frequency display ICs was announced, the original prototype of the Dorchester had been made - but since so many of you wanted to use the OKI frequency counterdisplay system with the Dorchester, we quickly designed a unit to incorporate the necessary facilities. The Digital Dorchester is designed in 19 inch form and forms a perfect match for the other units in the range. If you don't want to go to the expense of the full Ambit DFM1 module, with AM/FM/Time/Timers, then the MA1023 clock module can be used instead
The Darchester has been described in PW Dec., Jan. and Feb. issues - but for those o you who may have missed it - it is an All Band broadcast tuner, covering LW/MW/SW and FM stereo in 6 switched ranges. Construction is very straight forward, with all the switching being PCB mounted - and the revolutionary TDA1090 IC used for AM/FM The electronics for the radio section of the Dorchester remain unchanged at $£ 33.00$, with 12.5% VAT. The hardware package, of case, meter, PSU now costs $£ 33.00+8 \%$ with the MA1023 available for an extra $£ 5$ only.
For the fully digital version, with Ambit DFM1, the price is $£ 56.50+8 \%$ VAT

TERMS etc: CWO please, VAT on Ambit liems is generally $121 / 2 \%$, except where marked (*)
Catalogue part $1: 45$ p, part 250 p all inclusive. Posiage 25 p per order, carriage on tuner kits Catalogue part 1:45p, part 250 p all inclusive. Postage 25 p per order, carriage on tuner k
E 3 . Phone Erentwood (02777 216029/227050 9am-7pm. Callers wetcome inc. Saturdays.

300w LIEHTING CONTROL KITS TBIAC BARGAINS

tD300K Touch Dimmer.
Dimming and on / off functions are controlled by touch. Features include

* No mains rewiring Switches
brightness
* Can be switched and dimmed from many
locations using TDE/K locations using
kit making 2 -way switching easy ©PRICE TD 300 K E8.99 TDE/K £1.50
Special Offer $\mathbf{1 0 \%}$ discount on any 4 lighting control kits.
TSO 300K TOUCHSWITCH \& DIMMER combined One touch-plate for on /off. Small knob controls TS 300 K TOUCHSW.
OFF £4 30 SWITCH. Two touchplates ON/
TSA300K AUTOMATIC
LD300K LIGHTDIMMER E3.00.
DICITAL VOLTMETE: THERMOWETER KIT Based on the 7106 single IC $31 / 2$ digit DVM the Based on the 7106 single IC $3 / 2$ digit DVM the
kit contains a PCB, res-
 crystal display. Com. cluded to enable the basic DVM kit to be modified to a Digital Thermometer using a Thermometer using a
single transistor as the

O.2" L.E.D.S.
Red 12 p $(10$ for $£ 1.00$) Green or yellow
DL $727.5^{\prime \prime}$ display $£ 1.50$ LCD $.5^{\prime \prime}$ display $3^{1 / 2} / 2$ digit $\mathbf{£ 8 . 1 0}$ LDR $5^{2 \prime}$ dia. 50p 555 24p
74122 p $\cdots\left(\begin{array}{c}4 \text { for } 90 \mathrm{p}) \\ (5 \text { for } 90 \mathrm{p})\end{array}\right.$ 74122 p (5.for 90p)
LM3911 Temperature IC E 1.00 AY-5-1224 ….. $\mathbb{£ 2 . 6 0}$ AY-5-123D ZN 1034E

ICL 7106 DVM IC | E1.80 |
| :---: |
| IN4.50 | IN4001 BC182L

MINI MAINS

TRANSFORMERS

Standard 240 V mains primary
100 mA secondary
$6-0.6 \mathrm{~V}$ 9.0 .9 V$. \quad \mathbf{8 5 p}$
12.

2 Gresham Road, Brentwond, Es5eK.

OSCILLOSCOPE

 FEATURES-Response: DC to 5 MHz - Sensitivity: 100 MV to $50 \mathrm{~V} /$ division.

cuity calibrated time-bas cinc

- 100% solid state
- utilising 13 trans
sistors, 1 FET and 1 specially designed time-base module
- Stabilised power supplies and active
sync circuits.
- Rugged construction together with portability
- Inexpensive - excellent value and performance.

WITH FULL INSTRUCTION MANUAL
 $£ 2.60$
$£ 1.80$ 10p
24. HR. CLOCK / APPLIANCE TMER KIT

FULL INSTRUCTION \& OPERATING MANUAL

SPECIFICATIONS

electaical data

Dothactioe Sansilinity - $100=$ V/alivisien

input impedance-1 Meq/40pt io akuel
inpur Yohago-mar - 600 PP
honizowtere axis (x)
Deflection Sonstivivity - $0-400$ anv/durision
Bandmath berween 3al
Enin Controitheinen 3di points] - $1 \mathrm{kz}-350 \mathrm{KHz}$ Input impedance 1 II in
TIME east
TIME Bags
5 sion
ine control -
clabieration position
symchaomisatiom
Selection - Trtroul. ertural
Synchronisation Levol - Conliness trea gasitive to
mpitive.

Input Vahage - $115 /$ zzow ac
Power Dissipation - 18 .
cat data

- Mnjenimpt miage-750\%
-Fitsut with 10 naetive. bile filtar yritiede
physical data
pursical data
Oimensions $-15 \mathrm{~cm}(\mathrm{~m}|\times 20.5 \mathrm{~cm}| \mathrm{mj} \times 2 \mathrm{sc}=|\mathrm{dd}|$

Stand - 2 iosition: hat and incilit
Colour - Linit uy

Also at 248 Tottenham Court Road, London, W. 1.
301 Edgware Road, London, W. 2

All mail to: Henry's Radio 404 Edgware Rd. London W2 PHONE (01)723 1008

LOOK!
 New Self.Contained 12" Monitor for Your Micro
 Uncased - $£ 60$
 + VAT \& PP

as above
but CASED $£ 85$ +VAT \& P / P

The unbeatable CROFTON 6800 MICRO

 is probably the best value for money todayPOWER SUPPLY £20 EXTRA + VAT \& P/P

* Including Tiny Basic and on board Prom Programmer £2 $220 \overline{0}$
+ VAT \& P/P

Crofton Electronics Ltd.
 35 GROSVENOR ROAD, TWICKENHAM MIDDLESEX - Telephone: 01-8911923

ELECTRONICS TODAY INTERNATIONAL - MAY 1979

IBLYTM LIEHT RERDING RT MICRODIGITAL MERSEYSIDES MICROCOMPUTER SHOP

Microdigital sell the widest range of Microcomputer books in the Country - backed up by a return of post service!
We accept Access and Barclaycard and welcome telephone orders at any time of the day.

BCDमUपRTI

Microcomputer Programming
6502 Zaks - £7.95
A superb introduction to the techniques and tricks' of programming the 6502 micro, used in the APPLE, PET, ACORN, SYM, etc. Completely self-contained, it can be who wants to make more effective use of the 6502

Basic, Basic - J. Coan - ع6.50 and
Advanced Basic - J. Coan - £6.00
These two books give you the complete picture of the lasic language. Both texts begin with short, complete

Basic with Business Applications -
Lott - £8.40.
An excellent introduction to Basic for the small businessman.

The First Book of Kim Butterfield Etal ad $-£ 7.16$
Games system programmes, how to expand your Kim -
essential reading for the KIM freak.

Programming Proverbs

Ledgard - £5.56
An excellent little book. The principles of good pro gramming with numerous examples to improve pro gramming style and proficiency.

The Design of Well-structured and Correct Programs - Alagic and Arbib $-£ 10.24$
This text synthesizes ten years of research in top down program design and verification of program correctness it shows how these techniques may be used in day to day programming with the Pascal language.

57 Practical Programs and games in Basic Tracton - $£ 6.36$
Programs for your APPLE, SORCERER or PET including an excellent Star Wars game

Computer Lib - Nelson - £5.95
The classic work on all computers big or small, it brings the reader through the past ten years and into the next en years of science.

Chess Skill and Machine - Frey £11.84
The classic work on computer chess. Including the intimate details of one of the World's strongest pro grams - Chess 4.7

How to Build a Computer Controlled Robot - J. Loofborrow - £6.36
This book details the step by step directions for building a computer-controlled robot naimed "Mike" controlled by kim. 1 microprocessor, photographs diagrams and tables help to direct you in the construction. Mike in his way. Stops, starts and changes direction on voice commands.
Scientific and Engineering Problems Solving with the Computer - Bennett - £15.96

A superb book - the exercises run the gamut from random process to the dynamics of motion, from entropy in laguage to the Watergate problem, you'll discove and the law!!

Star Ship Simulation - Garret £5.10
Everything you need to program the ultimate star game complete with a control console connected to your computer

The First West Coast Computer Faire

 - $£ 9.56$A mine of hard to find information on such diverse subjects as computer music, bit-slice system to implementing high level languages.

Practical Microcomputer Programming: the Z80 - Weller - £23.96
A much needed rexi on the techniques and tricks of programming the $\mathrm{Z8O}$. Includes complete listings of powerful Editor/Assembler and debugger.

A Guide to SC/MP Programming -

 Drury - £4.00Essential reading for the MK 14 owner! Deals with programming the SC/MP at a level anyone can under stand.

Microcomputer Problems Solving using Pascal - Bowies - $\mathbf{E} 7.84$
Pascal is rapidly becoming the language of the future The author pioneered its implementation on a Micro computer and as such is uniquely qualified to write this text. A superb book
Pascal user Manual and Report Wirth - £5.52
The official reference manual of Pascal.
APL - on Interactive Approach
Gilman - £9.50
An industry text on this powerful, interactive language
SARGON - Z80 Chess Program D and K. Sprackien - E11.96
An excellent, well documented 8K chess program, in won the 1st microcomputer chess championship with 5/5. The book contains a source listing and quite incredibly detaited annotation. Essential reading for anyone planning to write their own program.
Computer Data Directory - £3.98 Hard to find information on the Stateside scene.
Small Computer Systems
Handbook - Sol Libes - £7.16
A practical introduction to the personal computer by one
of American's leading authors

Basic and the Personal Computer
Dwyer - £10.36
andlent introduction to the programming language Basic as it applies to the Personal user

Basic Computer Games - AhI £5.50
102 Games for your APPLE, SORCERER or PET complete with listing and sample runs

Games Playing with Basic

D. Spencer - £5.56

game playing with Basic the author writes in a non echnical style allowing almost everyone 10 understand computerised game playing. He includes the rules o each game, how each game works, illustrative flowcharts. and diagrams, and the output produced by each program.

Game Playing with Computer:

D. Spencer - £13.56

Sharpen your programming skills with this colection of ver 70 games, puzzles and mathematical recreations he book includes over 25 game playing programmes.

The Cheap Video-cook boo

D. Lancaster - £5. 10

Techniques of cheap video with complete hardware designs and debugged software for a 7 chip V.D.U.

TIF Workbooks $\mathbf{1 - 5}$ for PET
The information commodore does not tell you. Abso lutely essential for the PET owne
I. Getting started with your PET
2. PET strings and arrows
3. PET graphics
4. PET cassette

The best of Byte Vol.
€3.00

Reprints from the first year of Byte magazine hardware reviews, hardware designs, and 'how to do it software.

What to do after you hit return £7.00
PCC's first book of computer games in BASIC
The best of Micro Vol. 1 - £6.95
Reprints of the first six issues from MICRO: The 6502
Hard to find information on
KIM
APPLE
AIM - 65, etc

OPENING HOURS: 95.30 moncey to Satunder. Friendly, ex
on hand!

I ENCLOSE
CHEQUEPOSTAL ORDER NO
BARCLAYCARD NO
ACCESS CARD NO
NAME
ADDRESS

COMPLETEAND POST TO
25 BRUNSWICK STREET
LIVERPOOL L2 OBJ Tel: 051.236 0707

HIPRINIS

ETIPRINTS are a fast new aid for producing high quality printed circuit boards. Each ETIPRINTS sheet contains a set of etch resistant rub down transfers of the printed circuit board designs for several of our projects.

ETIPRINTS are made from our original artwork ensuring a neat and accurate board. We thought ETIPRINTS were such a good idea that we have patented the system (patent numbers 1445171 and 1445172).

PARTS LIST

Shown below is the listing for the last year's ETIPRINTS.

Earlier sheets are available ring Tim Salmon for details.

Project Book Six	016	Stac Timer Xhatch Gen Wheel of Fortune	Sept 78
	017	Complex Sound Gen Tele Bell Extender Power Bulge	Oct 78
Project Book Six	018	RF Power Meter Proximity Switch Audio Oscillator (2)	Oct 78 Oct 78 Nov 78
Project Book Six	019	Car Alarm (2) Wine Temp (2) Curve Tracer	Dec 78 Dec 78 Dec 78
Book Six	020	Digítal Tacho Module Digital Dial	$\begin{aligned} & \text { Jan } 79 \\ & \operatorname{Jan} 79 \\ & \operatorname{Jan} 79 \end{aligned}$
Project Book Six	021	Tape Slide Synch Tape Noise Limiter Light Tacho	Feb 79
July 78 July 78 Aug 78	022	Logic Trigger Power Meter Headlight Delay ($\times 2$)	Mar 79

HOW IT WORKS

Lay down the ETIPRINT and rub over with a soft pencil until the pattern is transferred to the board. Peel off the backing sheet carefully making sure that the resist has transferred. If you've been a bit careless there's even a 'repair kit' on the sheet to correct any breaks!

BUY LINES

ORDER TODAY
Send a cheque or PO (payable to ETI Magazine) to
ETI PRINT. ETI MAGAZINE
25/27 OXFORD STREET, LONDON W1R1RF

01110

Microcomputers from the world's largest full-line manufacturer

HOW IT WORKS

 AM \& FM RADIO
Gordon King manages to dispell a few rumours about a very widely misunderstood subject, Radio. Such diverse subjects as Varicap Tuning and Stereo FM are clearly explained.

OF THE TWO sound broadcasting systems the AM (amplitude modulation) system is capable of far greater range of reception than the FM (frequency modulation) system. This has nothing to do with the type of the modulation but is related to the carrier frequencies involved. FM sound radio uses a part of the VHF (very high frequency) spectrum called Band II and covering approximately 88 to 108 MHz , though all of this is not yet. used in the UK specifically for entertainment radio.

AM radio broadcasting occupies the long, medium and short wavebands which range respectively from about 50 $\mathrm{kHz}(6,000$ metres) to 600 kHz (500 metres), 600 kHz to 1.5 MHz (200 metres), and 1.5 MHz to 300 MHz (1 metre). Conversion from frequency to wavelength merely involves dividing the propagation velocity (virtually 300 metres per microsecond) by the frequency, or from wavelength to frequency by dividing the velocity by the wavelength.

With increasing carrier frequency the waves tend more closely to follow the laws of light, and at VHF they emanate from the top of the transmitting aerial in rather the same way as light is radiated from the top of a lighthouse. They are less affected by obstructions, though, and are more prone to diffraction and refraction than light which to some extent allows them to pass round obstacles and penetrate walls, etc, but this accommodation is diminished at even higher frequencies. The reception distance of VHF waves, therefore, is limited to a little in advance of the 'line of sight' distance between the transmitting and receiving aerials, the extra being provided by atmospheric refraction and diffraction round the curved Earth.

On Reflection

However, VHF waves are less reflected back to Earth by the ionosphere, and most wave energy skyward-bound penetrates the ionosphere and vanishes into space which is just as well for space communications! At the lower AM broadcast frequencies the ionosphere acts more like a 'mirror' to the signals, which not only prevents them getting into space but it also reflects them back to Earth over ranges far in advance of the 'line of sight' distance. World-wide reception is thus possible by the waves undergoing a number of 'hops' between ionosphere and Earth.

At certain frequencies ionospheric reflection is enhanced as night falls which means that signals well outside the basic reception range appear and are likely to cause interference with the signals from wanted local

Fig. 1. Impressions of modulation (not to scale). (a) carrier wave, (b) single-tone modulation signal, (c) AM waveform, and (d) FM waveform.
stations. To some extent this is avoided by an international agreement of wavelength spacing; but because there are so many medium-frequency stations to take account of the spacings cannot be very wide, so to reduce the effect of interference the bandwidth of AM receivers is restricted, as this attenuates or deletes the higher-order sidebands the quality of the reception is impaired. This is not necessary at FM because the stations can be adequately separated in Band II without the fear of distant stations producing signals which could interfere with those of the wanted signals. Moreover, FM has a far better immunity than AM so far as this sort of interference is concerned.

The FM system, therefore, is capable of far better audio quality than the AM system as it is currently exploited. It also carries an additional channel of information for stereo reproduction and is thus a 'hi-fi' broadcasting system as will be explained.

Sidebands

Audio information at AM is carried by the carrier wave being caused to change in amplitude in sympathy with the sound. The stronger the sound, the greater the amplitude change; and the higher the audio frequency the faster the rate of amplitude change.

At FM it is the frequency of the carrier that is altered in sympathy with the sound. The stronger the sound, the greater the frequency change; and the higher the audio frequency the faster the rate of frequency change.

It is always instructive to look at a carrier wave modulated by a single-tone audio signal, as in Fig. 1, where at (a) we have the carrier, at (b) the modulation tone, at (c) the resulting AM signal and at (d) the resulting FM signal (not drawn to scale, of course!).
100% AM occurs when the carrier amplitude dissolves to zero at the troughs of the modulation envelope. If the modulation level is increased beyond this point very severe distortion sets in owing to the carrier holding at zero for a period of time. With FM sound broadcasting 100% modulation is said to occur when the change in carrier frequency is $\pm 75 \mathrm{kHz}$ on audio signal peaks. This is called the deviation frequency $\left(f_{d}\right)$. It is noteworthy that with 625 -line TV sound, which is also FM, f_{d} is $\pm 50 \mathrm{kHz}$ for 100% modulation. With stereo the total f_{d} includes both the mono and stereo information, the latter occupying approximately 10% of f_{d}, so that approximately $\pm 67.5 \mathrm{kHz}$ is available for the mono part.

Modulation

When a carrier wave (f_{c}) is modulated sideband signals corresponding to every component frequency of the modulation signal (f_{m}) result. With AM and a pure singletone f_{m} upper and lower sidebands at $f_{c}-f_{m}$ and $f_{c}+f_{m}$ occur, as shown at (a) in Fig. 2. With FM the resulting sideband structure per pure single-tone of f_{m} is far more complicated, as shown at (b). At 100% AM each of the sidebands is 50% greater in amplitude than that of the

adjacent station interference the receiver bandwidth needs to be curtailed to 7 or 8 kHz at best with a consequent attenuation of the upper audio frequencies.

The Capture Effect

With FM channel spacing is 200 kHz (there is much more elbow room at VHF), and local station groups use far greater spacings between transmitters (2.2 MHz) so there is very little danger of interference. Moreover, FM exhibits what is called the capture effect which itself avoids interference provided the wanted signal is a little stronger than the unwanted one, even when the two stations have the same frequency! This results from the insensitivity of an FM receiver to amplitude variations of the carrier. When two signals interact one tends to amplitude modulate the other, which means that on AM the wanted signal needs to be very much stronger than the interfering one to give the same interference immunity as FM.

Receiver Requirements

From Fig. 2 it is dramatically apparent that an FM receiver requires much more bandwidth than an AM counterpart to do full justice to the high quality audio signal. The bandwidth needs to be reasonably phase-linear to ensure the least distortion at high modulation index and for the best stereo performance (channel separation, distortion, etc). Latter-day creations employ phase-linear quartz, ceramic and surface-wave acoustical filters to achieve these requirements, as distinct from the earlier LC transformer couplings, as shown in Fig. 3.

To help maintain a high S / N (signal-to-noise) ratio the VHF front-end must employ low noise-figure transistors, especially for the RF (radio-frequency) amplifier, and have a good coupling match to the VHF aerial. Most of the

Fig. 3. Requirements of FM IF channel. (a) idealised amplitude response over 240 kHz passband having sharply falling side skirts, (b) phase linearity within the passband, and (c) the type of circuit from which these requirements are closely approximated.
selectivity and response tailoring is undertaken in the IF (intermediate-frequency) channel at the standard IF of 10.7 MHz. Even so, a reasonable degree of front-end selectivity is desirable to restrict the amplitude of off-tune VHF signals arriving at the mixer from the aerial. A multiplicity of fairly strong signals here can generate intermodulation products of the 3rd-order variety and hence produce spuriae which might detract from the quality of the wanted signal. RFIM (radio-frequency intermodulation) immunity is achieved by using two or more variable-tuned circuits between the aerial and mixer and VHF transistors of good linearity (e.g., bipolars running at fairly high emitter current or FETs).

One important aspect of 3rd-order RFIM lies in the production of an interfering signal of $f_{2}+f_{4}-f_{3}$ where f_{2}, f_{3} and f_{4} correspond to Radios 2,3 and 4. This interfering signal lies in the f_{3} transmission and is perturbed by the modulation of any of the three transmissions. In bad cases of this interference (stemming from a receiver with a poor RFIM performance) the only solution lies in attenuating the aerial signal.

Most front-ends use an RF amplifier followed by the mixer which may generate its own local oscillator signal $\left(f_{0}\right)$ or call for a separate oscillator stage. Whatever the arrangement, the mixer receives f_{c} and f_{o} and thus delivers $f_{0} \pm f_{c}$. The vast majority of FM front-ends use an f_{o} equal to $f_{c}+I F$, the IF thus corresponding to $f_{o}-f_{c}$, and it is this signal only which is accepted by the IF channel, as shown in Fig. 4.

Thus, if the aerial signal is, say, Radio 2 from Wrotham at 89.1 MHz , the local oscillator will be 10.7 MHz above this at 99.8 MHz , so that $99.8-89.1$ equals the 10.7 MHz IF. Both additive and multiplicative mixing are used, the former generally when the mixer has just one input port,

Fig. 5. Dual-gate MOSFET mixer accepting f_{e} on one gate and $f_{\text {o }}$ on the other gate. The circuit also shows varicap tuning and a capacitively-coupled IF output filter.
and the latter when there are two inputs, such as with a dual-gate FET as shown in Fig. 5. This sort of FET (MOS) may also be used for the RF amplifier, with one gate accepting f_{c} and the other an AGC (automatic gain control) bias via an amplifier as shown in Fig. 6.

Varicap Tuning

Some contemporary receivers, especially of European origin, use varicaps (e.g., capacitor diodes) instead of a mechanical tuning gang. The bandpass section in front of the mixer in Fig. 5 is tuned in this way. The varicaps are diode pairs arranged to neutralise non-linearity which, when biased for reverse conduction, exhibit capacitance of value which decreases as the reverse bias is increased. For continuously variable tuning, therefore, it is necessary merely to bias the diodes together from a potentiometer which is mechanically coupled to the tuning system. To eliminate capacitance change and hence tuning drift the tuning voltage is derived from a stablizer or regulator. The scheme also lends itself to press-button station selection.

Also in Fig. 5 the IF signal is filtered out by a capacitively coupled circuit. The 330 ohm resistor
matches the output to the following ceramic filter in the IF channel, as do the input and output filter resistors in Fig. 3. Unless this matching is correct the filters fail to provide the proper symmetry, selectivity and skirt sharpness.

Bandpass coupling at the output of the RF amplifier is also used in Fig. 6, but the tuning here is by a ganged mechanical capacitor.

Oscillator Stage

To avoid oscillator 'pulling' on strong carriers state-of-art FM receivers use a local oscillator followed by a 'buffer' stage, as shown in Fig. 7. Less elaborate models either use a separate oscillator coupled direct to the mixer or a self-oscillating mixer.

AM Front-Ends

Exactly the same principles apply to AM, but because f_{c} is that much lower the design of the front-end section is less critical. The IF is generally around 455 kHz and, as with $F M, f_{o}$ is often the IF above f_{c}; but some models place f_{o} the IF below f_{c}, though this may reverse on some wavebands.

Fig. 7. FM local oscillator followed by buffer stage for feeding the mixer.

The majority of AM transistor portables employ a ferrite rod aerial which also serves as the input tuning. Only the more elaborate models boast an RF amplifier, and a self-oscillating mixer is commonly adopted, as shown in Fig. 8. Receivers with poor front-end selectivity are relatively prone to spurious responses at frequencies removed from the tuned frequency. A typical one is the 'image' or 'second channel' response where the IF is produced from an input two times the IF above the tuned frequency when the oscillator is running at the IF above the signal frequency. For example, if the receiver is tuned to, say, $1,000 \mathrm{kHz}$ the oscillator will be running at 1,455 kHz , so an incoming signal at $1,910 \mathrm{kHz}$ (two times the IF above the tuned frequency) will heterodyne with the oscillator signal to yield the IF in terms of 1,910-1,455. When the front-end selectivity is sharp a signal two times the IF away from the tuned frequency would be well attenuated and not so likely to cause interference. Another is called the half-IF or 'repeat spot' response which falls half the IF away from the tuned frequency owing to
the 2 nd-harmonic of the oscillator heterodyning with the 2nd-harmonic of the off-tune signal from the RF stage and producing the IF again.

IF Channels

IF channels nowadays use ICs for the gain and resonant filters of the type already mentioned for the selectivity. FM IF channels employ amplitude limiting ICs or ICs deliberately arranged to limit above a certain signal amplitude. Although FM detectors are essentially insensitive to amplitude variations of the IF-converted carrier, especially ratio detectors, additional limiting is desirable in the IF channel further to enhance the AM rejection ratio and to help with the capture effect. A top-flight modern FM receiver will fail to rise in audio output level once the input cartier at the aerial has reached the 2 to 3 microvolt level, the effect then being a progressive improvement in S / N ratio with increasing level of aerial input, as shown by the curves in Fig. 9. Less exacting models will require an input of 100 microvolts or more before full limiting occurs. The

Fig. 8. AM front-end using single bipolar transistor as a selfoscillating mixer. The ferrite rod aerial serves as the input tuning and may have switched windings for long and medium waves, as also the oscillator transformer.

INPUT FOR
30dB MONO S/N
action of the stereo decoder impairs the S / N ratio at the lower signal levels, catching up with though never reaching the mono ratio at higher inputs. There is always an ultimate S / N ratio impairment of about 2 dB on stereo with respect to mono owing to approximately 10% of the available deviation being used for the stereo information and the greater noise power bandwidth of the receiver in stereo mode.

The FM IF channel also provides the AGC bias for the front-end (when used), AFC control voltage (automatic frequency correction potential derived from the FM detector or separate discriminator for application to the oscillator varicap to hold the carrier at the centre of the IF passband), signal strength and tuning metering, and inter-station muting (where the audio output is disabled until the input reaches a predetermined level as a means of cutting the noise when tuning between FM stations).

The most complex of FM IF channels may employ a cascade of ICs (three or four) feeding into a bipolar transistor which in turn drives the FM detector. Additional ICs and bipolar transistors may be used for front-end AGC, AFC, muting and metering. The simplest adopts a complex IC, such as the CA3089E,' which provides IF amplification, limiting, FM detection and audio preamplification for driving the stereo decoder, as shown in Fig. 10. The device contains no fewer than 80 transister

Fig. 9. Limiting and mono/stereo S/N ratio curves of top-flight hi-fi FM receiver.
integrations, and includes sections for delayed front-end AGC, AFC, signal strength meter drive, tuning indication and interstation muting. In the circuit the muting is operated by S5 and the threshold level set by RV7. S4 switches the AFC on and off, while coils L10 and L11 are concerned with the FM detection.

Quadrature FM Detector

The coils, in fact, are a part of a quadrature detector circuit, which is fast finding favour in FM receivers, facilitated by ICs, without which would demand a complex of discrete components. The arrangement is based on a 90-deg. phase shift and synchronous detector, as shown in Fig. 11. FM IF signal is amplified and heavily limited, and the resulting 'clipped' signal is passed to one input of the detector direct and to a second input via the phase shift, which is merely an LC circuit such as L10 / 11 in Fig. 10. The detector is essentially a 'multiplier' which combines the two inputs vectorially. Owing to the relative phase shift and the deviating FM signal the output consists of varying width rectangular pulses, and from these the audio signal is obtained by low-pass filtering.

Ratio Detector

This is another very popular FM detector whose circuit is given in Fig. 12. When the primary and secondary of the

Fig. 10. FM limiting and detection by CA3089E IC (see text).

Fig. 12. FM Ratio detector circuit.

AM Stages

The IF channel is far simplier in AM than FM receivers.
Gain is given by a couple of bipolars or an IC and selectivity is introduced either by two tuned transformers or a ceramic filter (sometimes both). AM IF is around 455 kHz which, with the restricted bandwidth, makes it easier than FM to achieve the required gain with fewer devices. Detection is invariably accomplished by a simple diode circuit as shown in Fig. 13. From the signal point of view this rectifies the AM waveform so that the average value this rectifies the AM waveform so that the average value
varies in sympathy with the modulation. Subsequent filtering deletes the IF component. The rectified DC value
of the carrier is commonly used as an AGC potential filtering deletes the IF component. The rectified DC value
of the carrier is commonly used as an AGC potential automatically to control the gain of the IF amplifier. At the front-end a damping diode may be used to reduce the
mixer output on very strong aerial signals. Such a diode is front-end a damping diode may be used to reduce the
mixer output on very strong aerial signals. Such a diode is shown in Fig. 8. This conducts and thus damps the IF shown in Fig. 8. This conducts and thus damps the 1 output when the signal level rises above the value established by the biasing. Fig. 13 shows alternative biasing for this diode.

The tapped primary of the IF transformer ensures that the tuned circuit is not excessively damped by the output resistance of the transistor. This technique is also used in other sections as will be observed from the circuits.

FM Pre- and De-Emphasis

The S / N ratio of the FM system is further enhanced by the application of treble boost to the modulation signal at the transmitter (pre-emphasis) and compensating treble cut (de-emphasis) at the receiver. These are based on a
steady-state potential across R1 is substantially unaffected by faster occurring amplitude changes of IF signal such as caused by electrical interference, etc. A value around 200 milliseconds is a fair compromise between poor limiting and sluggish tuning.

FM detectors generally have a bandwidth in advance of that of the IF channel to ensure that at maximum deviation the signal remains on the linear parts of the ' S ' characteristic and as an aid to the capture effect.
time-constant which is 50 microseconds UK and 75 microseconds America. It thus refers to the 'turnover frequency (that frequency where the boost or cut occurs) and is equal to $1 / 2 \pi T$, where the frequency is in Hz and the time-constant (T) in seconds, which works out to about $3,184 \mathrm{~Hz}$ at 50 mic roseconds. The ultimate rate of boost or cut approximates 6 dB per octave (e.g., single-pole filter). FM produces a triangular noise output because the output from the detector is proportional to f_{d}. Because f_{d} \max is $\pm 75 \mathrm{kHz}$ and $\mathrm{f}_{\mathrm{m}} \max 15 \mathrm{kHz}$ the noise content is significantly reduced and is reduced by a further 4 dB or so by the pre- and de-emphasis.

The de-emphasis consists of a simple RC time-constant at the detector output in the case of mono and at the decoder output in the case of stereo. It is not possible to apply de-emphasis at the detector when this is followed by a stereo decoder since the effect would be seriously to attenuate the complex stereo multiplex signal. The net result of the $\pm 75 \mathrm{kHz} \mathrm{f}_{\mathrm{d}}$ and the pre- de-emphasis is a weighted S / N ratio of 75 dB or more mono and just over 70 dB stereo, depending on the noise figure and quality of design of the receiver.

Stereo Encoding

After separate pre-emphasis of the left (L) and right (R) audio channels at the transmitter the signals are fed to a combined adder and subtractor (matrix) which yields $L+R$ mono information and L-R stereo information. The mono signal is passed to the transmitter in the usual way

tuned transformer are resonated to the undeviated carrier the two diodes conduct equally and since the diodes are connected in series a potential is developed across R1 which charges C1.

When the input deviates either side of its nominal frequency the balanced phasing condition is destroyed and the diodes fail to conduct equally. This results in current flowing out of the circuit through the 'phasing' or tertiary winding, and because this external current is geared to the deviation the audio signal develops across C2, which is fed out through C3.

An advantage of the ratio detector compared with the Foster-Seeley detector or discriminator (which also uses two diodes but connected back-to-back and is without the tertiary winding) is that it yields amplitude limiting. Provided time-constant R1/C1 is large enough the (allowing receivers not equipped with a stereo decoder to work on the signal without undue loss, which is an aspect of system compatibility), while the stereo signal is separately processed and subsequently 'added' to the mono signal for transmission. It is applied to an amplitude modulator whose carrier frequency is 38 kHz but which is suppressed so that only the lower and upper sidebands of the stereo information remain (in practice the residual 38 kHz subcarrier accounts for no more than 1% of the maximum deviation - e.g., less than $\pm 750 \mathrm{~Hz}$). The stereo information sidebands along with the mono information are then applied to the normal VHF modulator of the transmitter.

For the detection of suppressed carrier AM the carrier needs to be regenerated at the receiver (in the stereo decoder), and to facilitate this a 19 kHz pilot tone using up approximately 9% of the maximum deviation (e.g., about $\pm 6.75 \mathrm{kHz}$) is also applied to the VHF modulator. The total modulation signal thus applied to the VHF carrier has the spectrum shown in Fig. 14. The $L+R$ mono signal occupies the normal audio range from about 30 Hz to 15 kHz , next comes the 19 kHz pilot tone and then the lower and upper stereo sidebands between which is the suppressed 38 kHz sub-carrier. At no time can the total deviation of all these signals exceed $\pm 75 \mathrm{kHz}(\mathrm{e}, \mathrm{g}, 100 \%$ modulation). In Fig. 14 the total modulation consists of $45 \% \mathrm{~L}+\mathrm{R}$ mono, 22.5% L-R stereo in each sideband (45% in all), 9% pilot tone and 1% residual subcarrier, adding up to 100%. This condition would obtain with an

Fig. 13. AM detector circuit with feeds for AGC and damping diode (also see Fig. 8).

Fig. 14. Spectrum of multiplex signal at FM detector output on stereo signal when one channel only is modulated. See text for other modulation levels.
input only to one channel (e.g., L or R 1 unit and R or Li. zero). With both inputs receiving the same intensity of 'in phase' signal (e.g., stage-centre mono condition), the stereo information would be virtually zero so that a full 90% modulation capacity would be available for the $L+R$ mono information (the remaining 10% being used by the pilot tone and residual subcarrier). With both inputs equal but in phase opposition (a very rare happening) all the information would be in the L-R stereo channel. Under normal music conditions, of course, the mono and stereo information is continuously changing, but the balance of 100% maximum is always maintained.

Stereo Decoding

The encoding system just described is based on the Zenith-GE developments which is universally adopted. Various schemes for decoding the signals back to the L and R channels for reproduction have been devised, the earlier ones using discrete components with valves and later transistors, and the latest ones using ICs specially developed for encoding. It is clearly outside the scope of this article to venture back into history, but a phase lock loop (PLL) IC decoder circuit used in many receivers is given in Fig. 15.

Multiplex signal (of Fig. 14 spectral form) is fed to pin 1 input via Q1. Inside the IC the PLL is formed by a 76 kHz voltage controlled oscillator (VCO), two divided-by-two stages yielding first 38 kHz and then 19 kHz , a 19 kHz
 is PLL tuning and RC the de-emphasis. One channel only is shown; the other channel is similar.
phase comparator, low-pass filter and DC amplifier whose : output is fed back to the VCO for control, as shown in Fig. 16.

The multiplex signal is first buffered and then fed to the phase comparator where the pilot tone component is compared with the loop-derived 19 kHz signal. The loop is thus locked and the 38 kHz signal from the first divider constitutes the reclaimed subcarrier which, along with the multiplex direct, is applied to the decoder section. This can be regarded as an 'inverse' of the encode matrix which, after $A M$ demodulation, yields the L audio from $(L+R)+L-R)$ and the R audio from ($L+R)-(L-R)$. Each output is subjected to de-emphasis before being applied to the L and R audio amplifiers for driving the loudspeakers.

The IC is also equipped with automatic stereo switching so that on a non-stereo signal the two outputs deliver mono signal, and a stereo indicator switch which lights a small bulb or light emitting diode (LED) when stereo information (pilot tone) is detected. The circuit connections involved are shown in Fig. 15. The VCO locking is achieved by L1 which is a 2 millihenry inductor. Audio from each channel is 'buffered' by $\mathbf{Q 2}$ (same for the other channel though not shown) and passed through a lowpass filter for attenuating residual pilot tone and subchannel spuriae before arriving at the audio stages of the receiver. Some of the very recent ICs incorporate a pilot tone cancelling circuit so avoiding the need for low-pass filtering and maintaining an excellent response to 15 kHz or more.

Of course, all stereo receivers have two separate audio channels for the Land R signals. Hi-fi receivers employ the latest technology in this area, some models yielding 60W per channel or more at remarkably low distortion. Less exacting receivers have relatively simple audio stages based on push-pull transistor pairs or hybrid power ICs.

There is no doubt that latter-day hi-fi receivers operating from off-air stereo signals (particularly when these correspond to 'live' transmissions) are capable of extremely high audio quality, on par with the best of most other programme sources.

Fig. 16. Block diagram of PLL stereo decoder IC.

ALL PRICES INCLUDE V.A.T.

3½ DIGIT L.C.D. DIGITAL PANEL METERS
2 OR 200 MV FULL SCALE VALUE

ALSO AVAILABLE IN KIT FORM MOUNTING HARDWARE

CLOCK MODULE 605R

12 hr .60 HZ alarm clock module. AM \& PM indicator Requires only a transformer and switch to complete.

LIQUID CRYSTAL DISPLAYS

6 Volt reflective $165431 / 2$ digit for D.P. meters 16574 digit for counters. eic. 16658 digit					$\begin{array}{r} £ 9.00 \\ £ 9.00 \\ \mathbf{£ 1 3 . 0 7} \end{array}$
SEMICONDUCTORS					
Integrated Circuits CA1310E Stereo Decoder					
					E1.08
CA2 111 AE FM-IF Amp. \& Detector					f1.08
4000	E0.25	4020	E1.17	4041	C0.94
4001	¢0. 25	4021	E1.05	4042	¢0.91
4002	¢0.25	4026	¢1.92	4043	¢105
4006	¢1. 20	4029	¢1.28	4044	E1.05
4007	c0.25	4031	£2.56	4046	c1.56
4008	¢ 1.05	4032	¢1.05	4047	$¢ 1.00$
4009	c0.65	4033	¢1.56	4048	¢0.63
4010	¢0.65	4034	¢2.3E	4049	¢0.60
4014	C1.10	4035	¢1.32	4050	¢0.60
4015	¢1.05	4036	¢2.51	4059	$\underline{5} .48$
4016	$¢ 0.60$	4037	£1.18	4066	£0.63
4017	£1.05	4038	¢1.12	40061	£. 7.15
4018	E1.05	4039	¢2.52		
4019	¢0.60	4040	¢1.17		

CONTINUITY TESTER CT2

Operating range 0.1-3.0 25 mV o.c. maximum at probes internal reterence $U .25 \mu$ and 1.00 Audible tone is ommitted when the circuit resistance under is below the present level $\mathbf{E 2 1 . 5 5}+50$ p P\&P. S.a.e. for leaflet

TRANSISTORS

			0.10
BF 273 35V RF 50 MA T016			0.50
BFB80 SI PNP 60 V 1 A TO-92			0.25
			0.20
2N3704 SI NPN 30 V 800 MA TO-92			0.12
C1394 PNP 45 V .625 MW			0.20
C1395	45 V .62		0.20
BF182	¢0.32	BF259	¢0.29
BF183	$¢ 0.27$	BFR39	¢0.27
BF184	¢0.29	BFR40	60.27
BF185	E0. 29	BFR 41	¢0.31
BF257	¢0.27	BFR50	¢0.27
BF258	C0.28	BFR79	£0.27

MINITRONS	$\mathbf{\varepsilon 5 . 4 0}$
3015F BM8 DG 3030L HIGH BRITE 6	$\mathbf{\varepsilon 1 . 0 8}$

LED LAMPS T1 \& T13/4	
RED GEEEN YELIOW	

WIRE ENDED LAMPS

T1 5V 60 MA

5V 60 MA
12 V 60 MA
28 V 24 MA
28 M
T1\%
5 V 60 MA
12V 40 MA
12V 40MA
28 V 40 MA

CERMIT TRIMMERS allvalues $£ 0.60$ each TRIMMERS 10 Asst
CERAMIC FILTER

PANEL MOUNTING POTS
100 K DUAL LINEAR $22 \mathrm{~K} / 25 \mathrm{~K}$ DUAL LINE

C0.15 Singly
©0.10 For Bull

7 SEGMENT DISPLAYS

$1737 R$ C.A. R 8 LDP
1738 RC.C. R. \& L. DP
1775RCC.R.DP
$1735 \mathrm{R} \pm$ UNIVERSAI
$0.6^{\prime \prime}$
172 C.A. R.D.P.
1726RC.C.R.D.P
1804 R C.A L.D.P
1824 - 1 CARDP
1.0^{01}
. 4 - DOUBLE
f780R C.C. R.D.P. £1.99

ALPHANUMERIC DISPLAYS

17045×7 (SIMILAR TIL 305)
1784.54 " DUAL C.C.R.D.P.
$1785.54^{\prime \prime}$ DUAL C.C. R.D.P
MINITRONS
3030L HIGH BRITE 6

LED LAMPS T1 \& TI

$+15 p$ Pa

Back numbers

Not all back issues of ETI are available. Indeed more are not than are! The table below shows which copies can be obtained from our offices. Each copy costs $60 p$ inc $p \& p$ and please mark your envelopes "Back Issues".

1978	1977	1976	1975	1974	1973	1972	
Jan			No!	No!	No!	No!	
Feb			No!			No!	
March		No!	No!		No!		
April			No!	No!		No!	No!
May	No!	No!		No!		No!	No!
June	No!		No!	No!			No!
July		No!		No!			No!
Aug	No!	No!		No!		No!	No!
Sept		No!		No!	No!	No!	No!
Oct		No!		No!	No!	No!	No!
Nov		No!	No!	No!	No!	No!	No!
Dec		No!	No!	No!	No!	No!	No!

Photocopies of any article from any one issue are available, and cost 50 p regardless of nos. of pages. Copies of series will be charged at article rate per installment. Mark envelope " P ".

AMBUSH! PART 2

Abstract

At last the second and final part of our very own space game Ambush. Red blood sweat and tears have gone into the production of the game and we beleive it's all been worthwhile. Virtually guaranteed to provide hours of excitement, not one of those games you easily tire of. So switch it on and prepare to do battle with the forces of evil.

THE MAJOR part of the Ambush circuitry, other than the LED displays, is wired up on a set of three PCB's. Considerable care should be taken over the construction, due to the difficulty that will occur in trouble-shooting the circuitry if it does not work correctly first time. Take special care to ensure that all diodes are fitted in the correct polarity, and that all IC's are correctly located.

On our prototype unit we mounted all IC's in holders. We used Wafercon connectors on each board, rather than solder pins, to facilitate the interwiring. Take great care over the interwiring.

When it comes to fitting the LED's for the Main Display and for the Missile Store indicators, take the precaution of testing each LED individually to confirm its polarity and functioning before finally wiring it in place. Note that silicon diodes D22 to D25 are mounted directly on the Main Display matrix.

Our own Ambush game is mounted in an attractive but rather expensive case that we obtained from Boss Industries. The same company produces an 'economy' range of similarly shaped sloping front cabinets. We have powered our unit from a set of eight HP2 batteries, fitted in two 4 -section holders. Our Attack counter is mounted on a $20 \mathrm{~mm} \times 60 \mathrm{~mm} 0.1$ inch matrix Vero board that is epoxy-glued into position on the front panel of the case.

The finished AMBUSH prototype, it really does look good in its case. The staff of ETI have had great fun over the past few weeks playing with the game. A case similar (or the same) to ours is highly recommended and would look good almost anywhere. case.

SCENARIO

Abstract

Like all good wargames 'Ambush' has a scenario to go with it. This is it. The scout cruiser Eatyeigh is on a vital war mission to the planet Tora. An enemy fleet (Yappanies) is detected closing in on it by long range hyper radar. A message is flashed ahead to the cruiser's captain. The communications officer, white-faced, takes it to the control room wherein the crew are gathered to hear the news.

The Captain read the message he had been handed. A worried frown briefly creased his brow. He looked up again and spoke. "Men, I have just received a message from Command Headquarters. Our intelligence units report that the Yappanies know of our mission. They are determined to stop us at any cost, and will probably attack us with a suicide fleet somewhere in space sector seventeen. We will reach that sector in just over three hours. All units will maintain Battle stations until further notice. Message ends." The screen flickered, and went blank.

Joe Reader sat back thoughtfully in his chair. He glanced at his three fellow gunners. He spoke reassuringly to they. "Don't worry, mates. The Yappanies haven't got a chance against us. We've got masses of Phanton missiles on board, enough to fight off an entire suicide fleet each. All you've got to do is sit there and wait for the little devils to appear on your sector screens, then press your Phanton FIRE buttons and blast 'em to hell.' His three companions laughed. One of them made a rude sign.

Three hours later Joe Reader was sitting in the data viewing room, adjacent to the Fire Control centre, reading up on Yappanie battle techniques. A terrible explosion suddenly blasted through the ship. He was thrown to the floor by the blast. The ships starboard engine had ripped itself apart and hurled great chunks of white hot metal through the hull. The ships self-repair system immediately set to work, sealing the damaged huil. Joe raised himself from the floor, forced open a connecting door, and staggered into the Fire Control centre. A ghastly sight met his eyes.

The control centre was a shambles. His three companions were clearly dead. Blood was spattered on the walls and across the floor. Three of the four Phanton missile magazines had disappeared, blasted into space before the hull had resealed itself. Joe's mind raced. The ship was about to enter space sector seventeen. The Yappanie attack was about to start. Joe would have to fight off the attack alone. Feverishly, he started to patch all four quadrant fire control switches into his own control console. A damage control report could be heard echoing through the ship. All external attack sensors were damaged. Attack warnings would be minimal.

A few moments later the battle attack sirens screamed through the ship. Joe knew that the Yappanies would attack with either a full Century of one-man Kamanzi suicide craft, or a Dekuron of ten heavily armoured Sutzma battle cruisers. Ten fire units of Phanton missiles were needed to destroy a single Sutzma cruiser, whereas a single unit would destroy a Kamanzi. Joe checked the ammunition register, and made a quick calculation. He had just enough ammunition. in the form of Phanton missiles, to destroy either type of attack, so long as he fought off the attacks with fire bursts of no more than one hundred milliseconds each.

Joe knew how the attacks would be delivered. The Yappanies always attacked one at a time, at random intervals and from random directions, until they had either won the battle, or had been totally destroyed. He switched on the attack indicator unit. A cross formation appeared on the screen in front of him, each arm of the cross indicating a possible quadrant of attack. At the centre of the cross a red indicator gleamed, representing the starship Eatyigh. He switched on the attack simulation computer, to check the extent of the sensor damage. The ships sensor system projected a continuous beam that reflected back from the hull of any attacking vessel, and was modulated by the vessel's hull vibrations in the process. The reflected beams were then demodulated to give a visual output of range and an audible output of engine noises.

The computer showed that the Forward sensor was inoperative on sound, and gave only 250 milliseconds of range warning at normal battle speed. Port and Starboard sensors were operating at half strength on sound, and gave 300 milliseconds of range warning. The Aft sensor was fully operational on sound, and gave 350 milliseconds of range warning.

The Commander's voice boomed through the ship again. "All units at Red Alert. A Yappanie century of Kamanzi suicide craft has been detected, closing at high speed. Out. Joe threw the attack mode switch to the CENT position, and the fire control computer automatically adjusted the Phanton missiles into packets suitable for fighting a Kamanzi attack. Almost instantly, the first Kamanzi craft appeared as a rapidly moving spot of light at
the bottom of the attack indicator screen, and the staccato sound of the crafts engine burst from the audio simulator. Joe stabbed his finger at the AFT fire button, heard the screech of a Phanton missle pack leaving its silo, and instantly saw the Kamanzi craft obliterated from his screen. Without hesitation, another attack started in the starboard quadrant, and was rapidly stopped by another pack of missiles. A pause of five seconds, then another attack from the aft quadrant.

The attacks continued relentlessly. Sixty attacks were clocked up on the attack counter within the first five minutes. Joe glanced at the ammunition state indicator. Nearly seventy per cent of his ammo was used up. If he was to survive, he must reduce the fire time on each attack. He glanced back at the screen and saw an attack rushing in silently on the forward quadrant. He groped frantically for the Forward fire button, and hit three buttons at once. Three packets of Phantons screamed from the silo. The attacking craft disappeared from the screen. The ammo store indicator lurched downwards. An attack from the stern. Fire! A three-second pause. A port attack. Fire! Instantly, another attack in the same quadrant. Fire again. The attacks continued.

Part way through the seventh minute Joe noticed that the attack register recorded ninety-five, and that the ammo register was only a notch above the EMPTY state. He wondered if he could ward off the final five attacks. The crew of Eatyigh were depending entirely on him. "It's up to you now, Reader," he thought. Another attack came rushing in on the starboard quarter.

PCB, C. The display drive and sound output sections.

PCB, B. Most of the display functions are carried out on this panel.

BUYLINES

The case we used for the Ambush project is available from Boss Industries. Since panel layout is not critical, inventive ETI readers may be able to come up with their own hardware designs. All the ICs are common types, available from most component mail order firms

If you think you are likely to spend every waking hour zapping the starfleet, it's worthwhile investing in a mains adaptor, available from your local Tranny shop.

PCB, A. This panel holds the ammo register, random multiplex cock generater and most of the amplex switching functions.

Above. Internal view of ambush with top panel removed. The PCBs are mounted within the case on stand-off pillars.

Centre. PCB, B showing the interconnecting plugs removed, the use of plugs or PCB connecting pins makes troubleshooting (we hope you don't have to) simple.

Left. Inside Ambush from the rear, the speaker can be clearly seen, note also the battery pack on the base panel.

ELEGTROVALUE

Your leading direct suppliers for

NASCOM MICROCOMPUTERS AND FULL SUPPORTING RANGE OF ITEMS TO ENABLE YOU TO WORK AT PROPER
PROFESSIONAL LEVELS

* At newest reduced prices
* Widest possible range stocked
\star Information on request
Appointed distributors for:
SIEMENS, ISKRA, RADIOHM, ORYX AND MANY DTHER FAMOUS PRODUCTS

It's a good deal better from

We pay postage

in U.K. on orders list value $27 p$ handling charge.

We give

 discountson C.W.O. orders only, except items marked Netor N. on orders list value Elo er more.
10% ordors list value

We stabilise

 pricesby keeping to our printed price lists which appear but three or four times a year

We guarantee

ll products brand new. lean and to maker's spec. No seconds, no surplus.

WE WILL SEND YOU OUR 120-PAGE CATALOGUE No. 9 FREE ON REQUEST. Comprehensive, informative, very well procall for your free copy, together with latest price list

Dept ETI.5, 24 St. Judes Road, Englefield Green, Eghem, Surrey TW20 OHB Phone: Egham 3603. Telex 264475.
Northern Branch (Personal shoppers only), 680 Burnage Lane, Burnage. Mancheste M19 INA. Phone (061) 4324945.
AUDIO AND
TETEDT DMENE
GENTRE
RETALL MAIL ORDER EXPORT
ALL PRICES include vat
 or eend cheque with order.
LONDON'S TEST GEAR CENTRE OPEN 6 DAYS A WEEK 9 am- 6 pm SCOPES - IN STOCK (UK P/P E1. 50 ea.)

5" 12 MHz Single Beam
Supper I 6 MHz single beam
Super 1010 MHz Dual trace

$\begin{array}{r} 97.00 \\ 124.20 \\ 189.00 \\ 189.00 \\ 226.00 \\ 339.00 \end{array}$	
mequemer countiens maxite 100 MHz : digil batt eperstiod conntar 83.75 max 580 500 minz Pocter max 50 50 miz Poctul Compory L57.50 Se0 mix Presciter for max inter or [37 0	

[^1]
$7 \mathbb{R}$
 The exciting new

 TRITON

 TRITON} Personal Computer
Basic in Rom: a powerful $2 k$ Tiny basic resident on board, makes Triton unique, easy to use and versatile.
Graphics: 64 Graphic characters as well as full alpha numerics.
Single Board: Holds up to $8 k$ of memory, 4 k RAM and 4 k Rom, supplied with 3 k ROM and 2 k RAM.
Memory Mapping: 2 mode VDU, I/O or memory mapped for animated graphics.
Cassette Interface: crystal controlled modem tape I/O with auto start/stop + "named" file search.
UHF TV Interface: On board uhf modulator, plugs into TV aerial socket.

Comes complete with keyboard, case, full power supply, quality through hole plated PCB, full (118 page) instruction manual. A powerful 1 k monitor \& 2 k tiny basic in Eprom. All IC sockets.

All components can be bought separately, so you can start construction on a low budget. Full details of prices and discounts are shown in our new 1979 catalogue.

EXPANSION BOARDS

Mother Board: 8 slot
A new 8 slot Triton motherboard is now available based on Eurobus, it allows easy expansion \& has its own meaty power supply.

8k Static Ram

Eurocard size ($160 \times 100 \mathrm{~mm}$) 8k Static RAM fully buffered, on board regulation \& decoding. Uses $4 \mathrm{k}(1 \mathrm{k} \times 4)$ Static RAMS. Just plugs into motherboard for memory expansion

8k Eprom Board

Designed to take 8×2708 Eproms on the Triton bus. Don't forget our programming service.

Triton Kit £286 Motherboard Kit £50 8k RAM Card Kit 597 8k EROMCard Kit . TBA and Fab. Full details in Catalogue 30p+SAE

COMPUTER PRODUCTS NEW LOW PRICES

Hemmo.	Price	Item Mo.	Price	Hem Mo.	Pree	nemmo	Price	Hemmo.	Price
SMPLLS500	. 11	SIT741/554	21	SN74LS138	. 75	S174418195an	85	\$117415325N	2.55
STP415011	.11	SM74LS55	21	SM74LSS139N	. 75	SITH4LSI96m	1.20	Sm741 3326 CM	2.55
SW741502\%	20	SH14LS63M	1.50	SN74LS145N	120	Sn741S1974	120	Siv7418327M	2.55
SITP4L503M	. 18	SM1741873M	35	5*74t514818	1.75	\$1774182211	1.25	S177415352M	1,35
SM174is04M	20	SM741574M	40	Sm74isisin	. 3	Sn7415240M	220	\$17463953	1.50
S174ts05\%	28	SMT4LS5 ${ }^{\text {M }}$	45	\$574LS153\%	¢0	SIT741524111	1.50	$\mathrm{SH}_{1 / 2 / 2153355}$. 5
Sm74is0am	20	SM741576\%	35	SM74LE154/4	1.80	S17415242M	1.50	SM7418366I	E5
SM74SLD99	22	Simals 78 M	$3{ }^{3}$	5M174[3155M	1.25	S177418243M	1.85	S177415387M	駺
S174isiom	. 18	Sm74LSE3AM	1.15	sh74[5158H	1.25	SM144224M	2.10	SM744.L3360M	策
S174isilm	28	SNT4LSESM	1.10	3174LS157M	80	Sn7418245	280	Sm7448373/	1.75
S1741812M	25	SM74 5 S36	40	ST74.8158M	. 0	3174415247M	1.25	STM41837in	1.70
STh4isi3m	. 55	SW74LS90W	. 5	sm7atsigan	1.15	Sm74is24am	1.95	SM7415375N	. 72
SM741514M	Et	Sm7415914	. 09	SM7415161/	1.15	SN17445249\%	1.30	3M7415377\%	1.75
SM74LS15M	25	Sm74L392N	0	3174LSIE2M	1.15	S17448251\%	145	SMT4LS3787	1.32
5w741520M	20	Sm7415936M	65	Sm74LS163/	. 90	Sw74LS223M	125	SW74LS379	1.40
SM741521/	28	sminalssam	1.20	shratsisal	1.50	5174415257M	1.40	SMT4LS3814	3.5
SM141522M	26	81774.596/	1.75	Sm7418185M	1.70	$\sin 7482583$. 5	Sk74IE386\%	57
Sin4is26	28	Sm74LS107\%	. 39	SN74LS166M	1.75	\$177418259\%	1.45	SM74483900	1.90
S11741527M	35	Sm7415103M	39	SN'ritisicem	1.85	SN74LS2800	33	SMT4LS3393\%	1.50
\$1744828	35	SH74L5112M	39	SW7aLSI69m	1.95	SN74482011	3.50	31741839595	1.80
SN74418301	25	Sm74LSII3M	. 4	Sm74LSI70M	2.50	SN7442966\%	38	\$107415396\%	1.70
81744832M	27	SW74LS14M	. 4	Smpalsifam	2.20	sw744S273M	1.5	SM74LS3380M	2.75
\$177418333	30	Sm741si22m	. 78	SM7418174M	1.15	S1174152790	79	SM74L15399\%	1.60
\$1774537/	2	SM174Lsizam	. 0	SMTALSITSM	1.05	S174LS280M	1.75	SM7415424M	4.50
	20	SM74is124M	1.50	8M74LS18111	2.75	SN7445283M	180	SM74154454	1.25
SW74LS40\%	25	SM74LS125	. 53	SW74LE1901	1.75	SN74152903	1.00	SM141S477	1.25
SM741542N	. 78	SM74LS126M	. 5	SM74LSI911/	1.75	S1174152931	1.00	SM74LS490M	1.95
SNALSAIM	. 5	S17415132M	. 75	SM74LS192M	1.45	SM744S295Ah	220	SM74/SE6BM	. 5
Sintistam	. 5	Su74LS133\%	. 39	Sm74LS1933	1.75	SN7443298M	220	SIM74, S669\%	. 95
	1.09	Sm7415136m	. 40	smindisigak	1.89	SN74	1.0		2.70
SN744.551M	21								

8080A £6.33		¢23
6800 £10.00	6502	£15
Z80 CPU Ps E15.60	SCMPII	£10
Z80 CPU Ps $£ 21.00$	TMS9900	£30

MEMORY \& SUPPORT

CENTRAL LONDON SHOWROOM

If you're in town, visit our showroom in Chapel Street, next to Edgware Road tube station. We have Tritons on display plus a comprehensive range of components and accessories, specifically for personal computer users. Books, mags, tapes data, cables plus much more NEW 1979 CATALOGUE SEND 30p + SAE

HOME COMPUTING

Books, Mags, Data and Cassettes. We have a good selection, mainly on micros and personal computing with regular shipments of Byte, Dr Dobbs, etc, direct from U.S.A. The latest Triton Software available on cassette or listing Triton User Club membership is $£ 4$ per annum.

VERO

We slock a complete range of Vero products and accessories for the home computer user. S100 cards, Eurocards, Keyboard cases \& consoles, wire wrap tools and sockets, card frames and 64 way DIN connectors $\&$ ribbon cables. Showroom open 6 days a week.

All prices exclude VAT \& P\&P
TRANSAM
COMPONENTS LTD.
12 CHAPEL STREET
LONDON, NWI
TEL: 4028137

STAR CHESS

MOST OF YOU probably think that people who work on electronic magazines spend their days burrowing through mounds of exotic electronic equipment sent into us by eager manufacturers. Well to an extent that's true, we do get to see a fair amount of new stuff but how enthusiastic can you get over a 20 amp power supply or yet another revolutionary device that indicates 'heads or tails' at the flip of a switch?

Perhaps we're being a little unfair, the odd calculator or TV game does catch our jaded eyes but is usually followed by "Oh yeah and how many games does this one play?" It's true that we see more TV games than most people, so it's got to be good to get any kind of reaction, and such a game crept unceremoniously into the ETI offices last week. It had all the odds stacked against it from the beginning, for one thing it only had a one game repertoire, not a very good start for something costing almost sixty quid. It almost didn't get switched
on! Perhaps it would have been better if it hadn't because ETI came to a virtual standstill for nearly three days.

Button boxes

Called STARCHESS it boasts a fine pedigree, coming as it does from Videomaster (now owned by Waddingtons). The game is housed in a fairly un-imposing black/grey box, looking like so many other TV games. The remote control boxes seemed to have more than their fair share of buttons but we're so used to a plethora of 'reset' and 'serve' knobs we didn't think much of it. Duly connected up to the power and TV set, it was switched on. Our ears were immediately assaulted by a shrill warbling sound punctuated by what can only be described as a noise like someone treading on a cat's tail - coming from the built-in speaker. A touch of the re-set

Chess games seem to be a growth area in the electronic games market, so find a mate and switch on the TV - Rick Maybury tells what to expect then....
and clear buttons soon cured that
A quick fiddle with the TV's tuner brought in a sharp well defined chess board (in full colour) with some rather unconventional looking pieces lined up on the back ranks. Alengthy study of the instruction manual (more of that later) is highly recommended before any play commences

At this point it must be said that you've got to be able to play chess but that hurdle over you can forget any ideas you may have about playing ordinary chess with this machine, that's about as likely as the editor of ETI becoming the next Prime Minister. After a game or two it soon becomes abundantly clear that what this game has that others seem to lack is the need to think, rather than a question of who can twiddle their knobs fastest?

A typical game is both noisy and exciting, the manufacturers have seen fit to include as many variables as possible but without making it cumbersome. We take
our hats off to the software engineers who wrote the game.

A lovely mover

Each piece is moved by shifting a cursor with a set of four positional buttons arranged in a cross, when the cursor is over the piece to be moved the 'move' button is pressed, then the cursor is placed on the square to be occupied and the 'activate' button pushed. Every action is accompanied by a virtual symphony of 'squarks, warbles' and other equally strange noises, adding tremendously to the fun of the game. All of the pieces except the 'pawns' move exactly as ordinary chess. The main feature of the game, however, is the ability of each piece to 'fire' missiles in the direction it would normally move, so instead of taking an opponent's man you can take a pot-shot at it, although you're not guaranteed a

(1)

Starchess, naked to the world. It has a surprising amount of parts for a 'dedicated' game, many of the ICs are unknown to us. The modulator deserves a mention: it produces one of the most stable and clear pictures of any TV game we've come across.
(2)

The preliminary stages of a game, the pieces may look rather unusual, particularly the 'queen' which looks a little like the 'Starship Enterprise.
(3)

It's a bit confusing showing a game in black and white, there is an explosion on the screen (square C4). In fact the explosion is in red and accompanied by some very 'Star Wars' like sound effects.
hit, in fact you take a chance of hitting one of your own men if they are too close.

Each direct hit will destroy one of your enemy"s 'shields' which can number from two (pawns) to seven for the King and Queen, and the amount of ammunition each man has is similarly limited. The pieces, however can replenish their ammunition by returning to the 'starbase' which is the squares occupied by the king and queen. When an opponent's shields have all been destroyed a further hit will produce a satisfying 'double explosion' (in red) and obliterate the piece completely.

Warped ideas

The second major feature is the ability to 'warp' any of your pieces from the board, the only danger in doing this is that the piece will return after a random period (from a few seconds to several minutes) and will reappear anywhere on the board, even on top of one of your own men (or your opponent's). The piece coming out of 'warp' makes a banshee like wail and slowly materialises (just like the transporter on the Starship Enterprise), but this is an extremely useful feature lending itself to risky but worthwhile tactics.

Yet another feature is the 'report' facility which apparently gives a readout of shield and weapon status but we found we rarely used it as it counted as one move

All of the pieces are given alternative names which is just as well, because none of them look even remotely like ordinary chessmen, the rook for instance is a starcruiser. The final objective of the game is to destroy your opponent's King, although it can't be taken on its Starbase, it can still be fired upon.

We did find we had one or two small niggles with the machine, it would have been a good idea for it to play ordinary chess, especially when most of the hardware is already there, and the power supply could have been located inside the case.

Taken overall, however it's without doubt the best 'dedicated' game we've ever come across and recommend it highly. By the way ETI Starchess team confidently challenges all comers to a shootout!

Any takers?
ETI

Our thanks to N.I.C. Models for lending us an example of Starchess, just hope they don't want it back. But just in case they do it will cost us (and уои) £59.95.

Here's why you should buy an ICE. instead of fist tary multimeter

* Best Value for money
* Used by professional engineers, D.I.Y. enthusiasts, hobbyists, service engineers.
* World-wide proven reliability.
* Low servicing costs.
* $20 \mathrm{~K} /$ volt sensitivity and high accuracy.
* Large mirror scale meter.
* Fully protected against overload.
* Large range of inexpensive accessories.
* 12 month warranty, backed by a full after sales service at E.B.Sole U.K.Distributors.

[^2]Clef Kits

Designer approved quality kits for Electronic Musical Instrument Construction.

JOANNA 72 \& 88 PIANOS

Six and $71 / 4$ Octave Electronic Pianos with unique Touch Sensitive Action. as used in the P.E. JOANNA, which electronically simulates piano key inertia - a feature not available in any other design.
P.E. STRING ENSEMBLE

The only kit available to the proven A. J. Boothman Design for this versatile String Machine.

Send S.A.E. to
Clef Products (Dept E.T.I.)
16 Mayfield Road, Bramhall, Cheshire SK7 1JU

You probably won't believe usas we' re selling the goods but we're going to tell you anyway! We have rejected eight clock radios for Marketplace, they were all cheap enough but the quality was so poor that we couldn't have lent our name to them. However, we are now able to offer a portable LCD Clock Radio to you which meets our standards

The clock is a 12 -hour one with AM/PM indicated and a back light. The radio is Medium Wave and FM with very nice quality for a small speaker - for FM there's a telescopic aerial. The alarm can be either a 'beep-beep' type or the radio, there's also a snooze facility

The case is sensibly rugged and is printed on the back with a World Time Zones map, a bit of a cheek really, especially as the time is relative to Japan!

We won't even mention the RRP - but just check on comparable prices - you'll find ours a bargain.

An example of this Clock Radio can be seen and examined at our Oxford Street offices.

£20.50
 (Inclusive of VAT and Postage),
 To
 CLOCK RADIO Óffer,
 ETI Magazine,

25-27 Oxford Street, London W1 R 1.RF.
Please find enclosed my cheque/PO for £20.50 (payable to ETI Magazine) for my Clock Radio

Name
Address

and don't you ever say we don tisten to you again' Ever since we first did a gen. teman's watch, we have been dealing with a constant never-ending stream of requests for a ladies' mode:. Well at long last we can claim to have done something about it

It wasn' easy arranging this sort of price on a product this good -.. but ETI's done it again! The watch is small enough to look good on the prettiest wriss, and accurate entought to satisty the most fastudious. Normal display shows time of course. with both date and seconds available on a push of a button. A backlight is also included.

Battery life should be greatly in excess of a year, and the bracelet is a smant stainless steel
An oxample of thas whtch can be sean and examined at our Oxford Street offices.

(Inclusive of VAT and Postage)

To:

Ladies LCD Watch Offer
ETt Magazine
25-27 Oxford Street
London W1R1RF
Please find enclosed my cheque/PO for $£ 9.95$ (made payable to ETI Magazine) for a ladies LCD watch

Name

Address

Please allow 28 days for delivery

DIGITAL ALARM

THIS IS THE THIRD digitak alarm clock that we are offering (we regret the earlier versions are no longer available). We have sold thousands and thousands of these and our buying power enables us to offer a first rate branded product at a really excellent price.

The Hanimex HC-1100 is designed for mains operation only ($240 \mathrm{~V} / 50 \mathrm{~Hz}$) with a 12 hour display. AM/PM and Alarm Set indicators incorporated in the large display. A switch on the top controls a Dim/Bright display function.

Setting up both the time and alarm is simplicity itself as buttons are provided for both fast and slow setting and there's no problem about knocking these accidentally as a 'locking' switch is provided under the clock. A 9 -minute snooze' switch is located at the top.

A example of this clock can be seen and examined at our Oxford Street offices.

GOBCH

(Inclusive of VAT and Postage) To:
Hanimex Alarm Offer
ETI Magazine
25-27 Oxford Street
London W1R1RF
Please find enclosed my cheque PO for $£ 8.95$ (payable to ETI Magazine) for a Hanimex Digital Alarm Clock

Name

Address

Please allow 28 days for delivery

We feel we've got to tell you carefully about this offer which we're introducing for the first time. Why? Because our price is so enormously lower than anywhere else you may suspect the quality

The exact same watch is currently being offered by another magazine as a special at £24.95 - some of the discounters are selling it at $£ 29.95$, the price 10 ETI readers for exactly the same watch is $£ 12.9 .5$.

The display is LCD and shows the seconds as well as the hours - and minutes - press a buttor and you'll get the date and the day of the week.

Press another button for a coujple of seconds and you have a highly accurate stopwatch with hundredths of a second displayed and giving the time up to an hour. There is a lap time facility as well - and of course a back light.

Our Chrono comes complete with a high grade adjustable metal strap and is fuily guaranteed.
A sample of this watch can be seen and examined at our Oxford Street offices.

(Inclusive of VAT and Postage)

To:
LCD Watch Offer
ETI Magazine
25-27 Oxford Street
London W1R1RF
Please find enclosed my cheque / PO for $£ 12.95$ (payable to ETI) for my LCD Chronograph.

Name
Address

DIGITAL ALARM MKK

Both ETI and Hobby Electronics have sold a lot of digital alarm clocks - over 10,000 in fact - maybe that's something to do with the fact that we sell at real bargain prices. Now we can pffer you a truly modern, space age model.

If includes all the facilities expected in a good design - fast, slow setting, snoore facility, etc plus two unusual features automatic brightness control and a weekend alarm cancel.

ALARM -

Currently this watch is being discounted elsewhere for typically $£ 39.95$ (we don't quote RRP as this is meaningless) and the watch is a 'Chinese copy' of a very famous one in the $£ 100$ rangel

The facilities are exceptional

- Normal hours and minutes
- Continuous seconds or data display
- Day of the week
- Stopwatch with 0.1 secs resolution
- Lap time facility with automatic return to stopwatch after 6 seconds
- Different time zone setting with independeht date, day of week settings
- Good bleeping alarm
- Easy time correcting: on the sixth 'pip, press a button and it's reset to 00 seconds as long as watch is plus or minus 29 seconds.
It comes with a full guarantee of course.

An example of this clock can be seen and examined at our Oxford Streat offices.

An example of this watch can be seen and examined at our Oxford Street offices.
£27,95
(Inclusive of VAT and Postage)

To:
ALARM/CHRONO LCD WATCH Offer, ETI Magazine.
25-27 Oxford Street.
London W1R1RF.
Please find enclosed my cheque/PO for £27.95 (payable to ETI Magazine) for my Alarm/Chrono LCD watch.

Name
Address

Please allow 28 days for delivery.

ALL OUR MAIN STOCKS HAVE NOW BEEN SOLD

Stock not stored at our previous address or purchases during or since the closure order was given could not be sold from that address. We now offer the remainder of our stock of oscilloscopes, components, general test gear, etc to the public and dealers. Send for lists. 9 p stamp please. Callers by appointment only

ALL INVOICES, ENQUIRIES, ETC., TO

 OUR TEMPORARY ADDRESS OF CHILTTMEA! LT
RADIO CONTROL SYSTEM PART 1: TRANSMITTER

THERE WERE SEVERAL criteria we considered important in any radio control system before this project came up, and these have been perhaps the main reason for ETI keeping out of this field thus far

However Rencoms design, presented here, satisfys our requirements perfectly and fulfills a few we hadn't thought of. Firstly it is easily constructed and easy to set up - too many systems are marred by their requirements for expensive test gear in the alignment procedures. All that is needed here is a simple voltmeter.

Secondly the transmitter produces a 'clean' output which does not interfere with adjacent channels to any degree worth mentioning. This is an essential requirement since the receiver can handle 10 kHz channel spacing, and interference would render this unusable. In any case this is now a legal requirement in many countries.

The charger for both transmitters and receiver can be built into the transmitter case itself, which any enthusiast will recognise as a decided convenience a five pin socket fitted to the case allows access to the charger circuit for this facility, and the same socket holds the transmitter crystal (normally encased within a DIN plug). This means channels can be changed quickly - or the set disabled - simply by removing the plug.

Tune In

The Strato system can be built as either a four or six channel unit, and is suitable for any kind of model from airplane to boat. Choice of servo will be made according to the vehicle to be controlled.

Publication of the system will be in two parts, transmitters first. Next month there will be full details of the receiver unit along with some hints on installing the radio control. There will also be a follow up article later designed to give some ideas of what can be achieved with a system of this versatility.

We chose an armoured vehicle as the example upon which to base our articles, as this is more general in principle than most and allows easier illustration. The model we used was the excellent Tamiya $1 / 16$ th Leopard kit. This gives a splendid model of the W. German tank with Tamiyas usual superb moulding detail and a drive system desiğned for radio control through an ingenious twin clutch system.

It is an expensive kit, but in our opinion is well worth it, and includes everything right down to the servo rods.

A Case For lt

The transmitter case is designed for four channels to be controlled by joystick and two by either pot or simple switch. The latter could be useful for aircraft undercarriage and the like.

The angled aerial produces a radiation pattern that reduces the risk of an aircraft (in particular) getting itself into an area of low strength and thus passing beyond operator control.

The meter on the front panel is a form of field strength meter and is used initally for setting the only tuning control in the TX circuitry, and thereafter indicates RF output as a check upon performance.

Construction

Building the Tx should pose no problems to the average constructor, but when fitting the joystick and case, follow the photographs carefully otherwise it could cause unnecessary problems.

Assemble the PCB first, and check carefully the polarity of semiconductors etc. Fit the aerial and other sockets initially, then the passives and leave the transistors until last. Note the inductors are labelled.

The small PCB fits aback the meter and carries the components for the FSM.

Above: the Tamiya tank upon which the system is based
Below: the receiver with its DEAC and charger switch

Solder the output wires to the board at this stage as fitting the control pots later will be tricky else. Follow the installation drawings carefully and there should be no trouble. Check everything carefully though.

Power To The Aerial

Once the board is complete and the sticks wired fit the rechargeable cells, screw in the aerial (telescoped) and plug in your crystal. Switch on.

The meter should show a reading.

Rotate Cl using a small insulated screwdriver or better yet a plastic control trimmer the reading will rise and fall as Cl is rotated.

Extend the aerial fully and rotate Cl to get a maximum meter reading. It helps during this operation to keep a finger on the -ve of the cells to provide an earth load.

The reading should be about 80 90% of FSD so move the FSM aerial around slightly to obtain this.

The transmitter is now tuned. Presets PRI-6 are used to set the centres of servo operation and do not interfere with RF output at all.

Above: a denuded transmitter unit. The joysticks mount above the board.

Below: the receiver removed from its case. Note the crystal.

Fit the completed assembly to the case, lining up the aerial bush with the plastic grommet on the case top. For those not fitting the internal charger, cover the holes in the back of the case with some tape or card.

Charge

Remember that the cells used will take 14 hours to charge from flat, and the bulb will light quite brightly at first and then dim as charging progresses. To charge the Tx batteries alone fit the DIN plug with R32 across pins 1 and 2 and plug in the mains lead to the rear socket.

That same DIN socket is utilised many ways. Pins 4 and 5 are the connections for the Tx crystal. Pins 1 (+ve) and pin 2 (-ve) allow charging of both the Tx and Rx cells together. Pins 2 and 3 if strapped together can switch on the Tx so that when removed 'locks off' the unit. Makes unauthorised use a little difficult! Pins 2 (+ve) and pin 5 (-ve) connect an external charger to the Tx cells. 50 mA maximum please.

Crystal Clear

By changing crystal you change channel, and the colour can be used

BUYLINES

With a project of this type the metalwork is more important than for our usual endeavours. For the transmitter in particular, with the joysticks and aerial to be mounted, we cannot imagine anybody enjoying filing away for hours. In consequence we strongly recommend use of the hardware packs offered by the designers, Remcon. Our photographs and text employ these.

Ambit are marketing the components for this project, so between the two a complete kit is to be had. We estimate that, including four servos, the project will cost about £130 in total, which is approximately $£ 60$ less than a commercial set-up of approximately equal performance would cost.

The model we intend to base our installation on is the Tamiya Leopard A4 in $1 / 16$ th scale, which is designed for radio control. The kit is superb in all respects, both as a modél and as a vehicle for radio control, and cannot be recommended highly enough. Beatties chain of stores stock the kit and it will cost around $£ 90$ including the gearbox/clutch/motor assembly for direction control.

Component details

From Remcon
Manual for system (worthwhile step-bystep constructional details) £2.75
£1.00 refundable against purchase of packs over $£ 25$

Transmitter hardware pack (everything except components and batteries):

4 channel
$£ 39.95$
6 channel
£45.00
All components available separately SAE to Remcon for details.

Receiver hardware pack complete (six channels)
£18.50
All components available separately
From Ambit -

$$
\begin{array}{lr}
\text { Transmitter components } & £ 10.95 \\
\text { Two PCB DIN plugs and charging resis- } \\
\text { tors } & £ 1.60 \\
\text { Matched crystals (2) and DIN plug } \\
& £ 4.00 \\
& £ 0.75 \\
\text { Five-pin plug DIN (options) } & £ 0.95 \\
\text { Receiver components (complete) } & £ 8.95
\end{array}
$$

All components available separately. Rechargeable batteries also available. SAE for details.

Any servo will operate with the Strato system. Next month we will give wiring details for the different types.

Addresses:
Ambit International, 2 Gresham Road, Brentwood, Essex.

Remcon Electronics, 1 Church Road, Bexleyheath, Kent.

Add $121 / 2 \%$ VAT to all prices except manual.

PROJECT: Radio Control

HOW IT WORKS

This has been designed to meet the stringent requirements of continental post offices in respect of harmonic radiation and sidebands and has adequate power output to ensure out-of-sight range for model aircraft.

Referring to the transmitter circuit Q6, 7 R14-17, RV1, C16-19 comprise a conven-
tional astable mutivibrator of unity M/S ratio, and period approximately 20 ms . This is the system clock. If we look for a moment at Q8-!1 it will be seen that these initially have their collectors close to the - ve rail potential due to their base bias. Now when the collector of Q7 goes to logic 0 , the step change in voltage at the slider of channel 1 control potentiometer RV1, is passed via C21 to the base of Q8, cutting off its collector current. The collector of Q8 therefore goes to logic 1. The base potential of Q8 slowly rises on a time constant C2 (R19+R20) until the base/emitter diode
again becomes forward biassed At this point the collector goes to logic 0 once again. When this happens, the -ve going tage voltage at the channel 2 control potentiometer RV2 cuts of Q9, followed by the same pattern of events as detalled and Q11 Potentiometers RV1-4 are the operator controls, and R19, 22, 25, 28 per mitsetting of the pulse width with the channel controls centred. These adjust ments are carried out to set the mid-trave position of the servos.

The encoding process is completed by the C, R and diode network at the collectors of Q7-11. Taking as an example, C26, C21, D9 capacitor C26 is normany charged to potential approximately that on C16, When Q9 is cut-off by the pulse from $\mathrm{Q} 8, \mathrm{C} 26$ discharges on a time constant C2 ($\mathrm{R} 21+\mathrm{RV} 3$), which is much less than the
lms minimum duration of channel data. When Q9 is again turned on, D9 and D6 are forward biassed by the current through R12 turns on Q5 which is part of the monostable which modulates the bufer stage $Q 2$. Be fore turned on by base bise current through R9 R6. When triggered by an encoder pulse via D6, Q5 conducts turns off Q4 which reverse biasses D5. C13 then charges through R11, maintaining Q5 in its turned on state for a period determined by C 13 , R11. Since this occurs when Q7-11 collector go to logic 0 then five absolutely identical pulses will be generated by Q4 and Q5 in every 20 ms frame of data.

The RF section is one of elegant simplicity, having only one adjustment, C1, Q3 is the crystal oscillator using 27 MHz 3 rd overtone crystal base to -ve rail 27 MHz output is coupled to the base of buffer/
modulator stage Q12 via C9. As we mentioned in the description of the encoder, Q4 is normally conducting, which means that collector voltage is applied to Q2 via R6 and L5. The amplified RF from Q2 collector passes to the power amplifier Q1 via C6. the power amplifier O1 via C6. Impedance matching from Q1 collector to the aerial is effected by pre-coupler C3, L3 C4, and base loading by the adjustable network Ll, Cl. A simple RF meter circuit is included, comprising the meter, C33, L7, D12, it is used to peak the aerial matching adjustments during initial setting up. Thereafter it constantly indicates the carrier strength.
Before leaving the transmitter it is per haps worth mentioning C2, L2, C5, C11, $\mathrm{C} 14, \mathrm{C} 15, \mathrm{C} 18, \mathrm{C} 22, \mathrm{C} 25, \mathrm{C} 28, \mathrm{C} 31$. They are all there to prevent R.F. from reaching unauthorised, and sensitive parts of the circuit!

Fig 4. the main component overlay for the transmitter. Note that PR1-6 are 50k in value.

PROJECT: Radio Control

Fig 5. (Above) the overiay for the meter PCB. This mounts stop the meter itself

The top of the PCB slips under the flange at the top of the case.

Tuning involves one adjustment only one note thumb on battery earth.
to identify operation easily. The standard system of coding is:-

The Rf end of the PCB.

Fig 6. (Below) Plug wiring for servos and channel line-up.

Tx	Rx	Colour
26.995	26.54	Brown
27.045	26.59	Red
27.095	26.64	Orange
27.145	26.69	Yellow
27.195	26.74	Green
27.255	26.80	Blue

Conclusion

So that's about it for the transmitter, except to remind you that to run a radio control system you NEED A LICENCE. This costs $£ 2.80$ for five years and obtained from:-

The Home Office

Radio Regulatory Dept
Waterloo Bridge House

London

SE1 8UA.
Next month we will be giving full details of the receiver and installation of the system into a model. In the meanwhile for the fleet of soldering iron, or just plain impatient, Remcons manual contains full constructional details of the complete system and will be available shortly.

A. Marshall (London) Ltd. Kingsgate House, Kingsgate Place London NW6 4T4. Tel: 01-624 0805 Telex: 21492
 Retail sales London: 40-42 Cricklewood Broadway, NW2 3ET. Tel: 01-4520161/2. Also 325 Edgware Road, W2 Tel: 01 - 7234242

Glasgow 85 West Regent Street, G2 2OD Tel O41-3324133 and Bristol: 1 Straits Parade. Fishponds Road. BS 162 LX Tel 0272654201

TRIACS
 POWER PRICES AT UNBEATABLE PRICES

nc2060	Plastic	T066	400 V	4A	c0.60
7C2250	Plastic	T066	400	6 6	c0.70
TIC2260	Prastic	T066	400 N	8A	c0.70
TIC2360	Plastc	T066	400 ,	12A	¢1.00
TIC2460	Plastic	T066	400 ,	16A	c1.21
THC253D	Plastic	T03	400 v	204	$\underline{1.87}$
TC263D	Prastic	TO3	400 r	20A	62.20
40576					62.20
40669					E1.30
40842					¢1.25
2N4444					£1.95

TRANSISTORS (See catalogue for full range)

35

| 3 | | |
| ---: | ---: | ---: | ---: |
| .65 | $2 N 5194$ | .90 |
| 1.10 | $2 N 5195$ | |

| .65 | $2 N 5194$ |
| ---: | ---: | ---: |
| 1.10 | $2 N 5195$ |
| 1.20 | $2 N 509$ |

THYRISTORS

trpe	rati		CASE	Price
TIC44\%	0.6 A	30 N	T018	¢0.30
TiC46 \dagger	0.6A	100 v	r018	¢0.50
TIC47 \dagger	0.6 A	200v	T018	¢0.60
2N5060	0.54	25v	T018	¢0.32
2N5061	0.54	50 v	T018	c0.33
2N5062	054	100	T018	60.40
2N5063	0.54	150v	T018	c0.43
2N5064	0.54	200 v	T018	¢0.45
BstB0246	4.7A	700 v	Plastic	£1.48
BY106 Sud Mounting				£1.10
ET120 (XK3139/3158/3132)				¢1.10
BT121 OKK				£1.10

KNOBS for $1 / 4^{\prime \prime}$ spind

(see catalogue for full range)

Alantronitestotey
 international

What to look for in the June i'rue: On sale May 4th

HI-FI RECEIVER

A fifty watt stereo amplifier and a high quality tuner would make two excellent projects in themselves. With specifications such as these boast, we could be sure that the units would soon become widely accepted as the very best in DIY hi-fi. However we've gone one better to combine the two units to produce a receiver of outstanding merit. If you're about to buy, build or borrow a high-class hi-fi - stop it at once until you've read next months ETI.

ECM (Electronic Counter Measures). Without extensive capability in this field a modern fighter aircraft stands about as much chance against its opponents as would a bi-plane. Radar homing missiles can be jammed, locating radar foiled and laser targeting pick out a plane for ground-to-air attack in a fraction of a second. On the ground too, anti-tank missiles, remotely guided, can "take out" highly sophisticated (and expensive) tanks before they get time to retaliate. The principle behind the machinery are fascinating and their implications chilling. Read about them next month in our comprehensive article.

ANYBODY THERE?

That intelligent life exists elsewhere in the Universe is a mathematical certainty Whether or not it rides around in flying saucers we cannot afford to ignore the fact that it is there - somewhere. Steps are being taken to communicate with other worlds by some of this planet's largest observatories, and they may surprise you. Don't blame us if after close reading of this, you encounter more than lights in the sky!

READERS ${ }^{9}$ DESIGNS

Next month's is a remote controlled light dimmer which uses an ingenious voltage control circuit and ultrasonic transmission technique. Can be adapted to give remote

data sheet

Introduction

The TDA 1008 integrated circuit provides frequency-dividing and gating functions for tone signal generation in electronic organs and other electronic musical instruments. An increasing variety of electronic organs has become available in recent years, their popularity having been enhanced by the rapid expansion of the home entertainments market. To provide effects such as sustain, percussion, and fifth coupling, the organ designer has usually needed to add special electronic circuits to the basic organ design, increasing overall cost. However, in a system based on TDA 1008 ICs, these and many other effects can be easily provided without significantly adding to circuit complexity. The reduction in component count and number of key contacts compared with conventional systems results in a significant saving in cost, greater reliability, and easier servicing. With simplified circuits and fewer components organ designs using TDA1008 ICs are also ideal for the home constructor.

The main features of the TDA 1008 are given below.

The IC is a monolithic bipolar device using $I^{2} \mathrm{~L}$ logic, and therefore requires no special handling techniques

Only a single set of contacts is required for each key, because the TDA 1008 provides five octave-related output signals when each of five key inputs is activated. Thus, in a typical system, only one busbar is required for each manual.

An outstanding feature of the TDA 1008 is that the tone-output signals are symmetrical about a fixed DC level, and so no DC jump occurs in the outputs when the keys are operated. Thus 'plopping and scratching' sounds are eliminated from the audio output without the need for the usual additional suppression components.

The amplitudes of the five output signals from the IC are proportional to the DC voltage applied to each key input, and because the nominal impedance of these inputs is high, sustain and percussion effects can be added by using simple RC networks in conjunction with the key circuits

The rate of attack and decay can be adjusted simply by varying a DC voltage applied to a 'sustain control' pin on the IC.

Description of TDA1008

The circuit of the TDA1008 IC with basic peripheral components is shown in Fig. 1 The IC comprises eight divide-by-two circuits and a matrix of gate circuits.

As shown in Fig. 1, the TDA 1008 can be driven directly from a top-octave synthesiser, because only one input signal applied to pin 15 is required to produce nine octave-related notes within the IC. The minimum impedance at pin 15 is 28 k ohm

Up to five keys can be connected to pins 8 to 12 . When a DC voltage is applied to one of these inputs, five of the nine octave-related

Fig. 1. TDA1008 and basic peripheral circuit.
notes are routed by the matrix circuit to the five tone outputs, as shown in the truth table. Although the maximum input frequency of the TDA 1008 is 100 kHz , as can be seen from the truth table the frequency chosen would normally be within the audio range to give the full range of audible tones. If more than one key input is activated, then the signal from each tone output will comprise the sum of all the tones for the activated inputs.

The signal amplitude at each tone output (pins 2 to 6) is proportional to the DC voltage applied to each key input. Sustain and percussion effects can, therefore, be obtained by connecting simple RC networks to the key inputs. Some practical networks are described later. The networks shown in Fig. 1 (resistors R_{2} to R_{6} and capacitors C_{1} to C_{5}) provide a simple sustain effect. The impedance of the key inputs, and hence the rate of discharge of C_{4} to C_{5}, is determined by the DC voltage applied to pin 7 of the IC. With pin 7 at 0 V , the impedance of each key input is greater than 8 M ohms. When this voltage is increased towards 2.5 V DC, the impedance of each input falls accordingly. Thus the decay of the output waveforms at pins 2 to 6 can be adjusted continuously by simply varying the sustain control voltage at pin 7. The impedance of the tone outputs is deter-
mined mainly by the values of the load resis tors R_{7} to R_{11} (1 k ohms in the circuit shown).

The ungated output from the last divider stage is provided at pin 14. This output is used when the IC is tested during manufacture, but it can also be used by the organ manufacturer for a quick operational check of each TDA1008. (An output signal from pin 14 when an input signal is applied to pin 15 indicates that all the divider stages are operating correctly.) During normal operation, pin 14 should be connected through a resistor to the +6 V supply so that a current of $20 \mu \mathrm{~A}$ is drawn. In a practical circuit, this can be achieved by connecting a 330 k ohms resistor (R_{1} in Fig. 4) between pins 14 and 13.

It is possible to derive a low-frequency output signal for a pedal board from pin 14. Provided that the current drain of $20 \mu \mathrm{~A}$ is maintained, a transistor can be used to amplify the low-frequency signal from this pin.

Practical Circuits for Organs Using TDA1008 ICs
 The number of TDA 1008 ICs required for a

 particular system depends on the number of octaves required by the organ designer. Normally, a minimum of twelve of these ICswould be required for subdivision of the twelve top-octave notes. For example, a master oscillator, a top-octave synthesiser IC, and twelve TDA 1008 ICs would be required for a five-octave single-manual organ. All the ICs, together with the peripheral components, can be mounted on a single compact printedwiring board.

A brief description of a variety of practical circuits for use with TDA 1008 ICs is given below. The five-octave organ has been chosen as a practical example of a system using these circuits.

Master oscillator

The Hartley oscillator is a popular choice for electronic organs because of its inherent high stability. The sinewave output signal from this oscillator must be shaped by a Schmitt trigger to provide a squarewave with the correct slew rate for driving the TOS, as shown in Fig. 2. For TOS circuits that require two input signals of opposite phase, these can be provided as shown.

However, because the TDA 1008 IC requires a stabilised supply, use can be made of this supply to simplify the oscillator circuit greatly, as shown in Fig. 3. Only four NAND gates contained in a single HEF4011P IC, three resistors (one variable), and a capacitor, are required to produce an output signal of the correct shape for the TOS. One of the gates can be used as shown to provide an output signal of opposite phase.

Switching and envelope-shaping circuits

The TDA 1008 IC can be connected as shown in Fig. 4, and will provide five octave-related tones at pins 2 to 6 by operation of a single key contact connected to each key input (pins 8 to 12). The signal obtained from each output, relative to the three supply voltages, is shown in Fig. 5. The amplitude of this signal is dependent on the voltage applied to the key inputs. If any of the output pins remain unused, these pins should be connected to the +9 V supply to avoid intermodulation between the output signals.

Fig. 4. Simplified connection diagram for TDA1008.

Fig. 2. Hartley oscillator and Wave- Shaping circuit.

Fig. 3. Master oscillator using NAND gates.

Sustain

The sustain effect, the continuation of a note or notes for a predetermined period after a key has been released, can be easily obtained in an organ system using TDA 1008 ICs.

To apply sustain to the five tone-output signals simultaneously, it is only necessary to connect a capacitor between each key input of the TDA 1008 and earth, as shown in Fig. 6 With pin 7 either open-circuit or at a low DC voltage, the impedance of each key input is high ($\geqslant 8 \mathrm{M}$ ohms). This impedance, com-
bined with capacitor C_{1}, provides a timeconstant which gives the maximum sustain period (about 4 s with the value shown for C_{1}). Resistor R_{2} is included to reduce this maximum period to a practical value, determined mainly by the time-constant of R_{2} and C_{1}. The time-constant is given by:

$$
t=C_{1} R_{2}
$$

where t is in seconds.
For more details of the device contact Mullard Ltd, at: Mullard House, Torrington Place, London WC1E 7HD.

Fig. 5. Output signal from pin 2, 3, 4, 5 or 6.

Fig. 6. Sustain circuit.

Tone output pin	Key input pin				
	8	9	10	11	12
2	f_{in}	$\mathrm{f}_{\text {in }} / 2$	$\mathrm{f}_{\mathrm{in}} / 4$	$\mathrm{f}_{\mathrm{in}} / 8$	$\mathrm{f}_{\mathrm{in}} / 16$
3	$\mathrm{f}_{\mathrm{in}} / 2$	$\mathrm{f}_{\mathrm{in}} / 4$	$\mathrm{f}_{\mathrm{in}} / 8$	$\mathrm{f}_{\mathrm{in}} / 16$	$\mathrm{f}_{\mathrm{in}} / 32$
4	$\mathrm{f}_{\mathrm{in}} / 4$	$\mathrm{f}_{\mathrm{in}} / 8$	$\mathrm{f}_{\mathrm{in}} / 16$	$\mathrm{f}_{\mathrm{in}} / 32$	$\mathrm{f}_{\mathrm{in}} / 64$
5	$\mathrm{f}_{\mathrm{in}} / 8$	$\mathrm{f}_{\mathrm{in}} / 16$	$\mathrm{f}_{\mathrm{in}} / 32$	$\mathrm{f}_{\mathrm{in}} / 64$	$\mathrm{f}_{\mathrm{in}} / 128$
6	$\mathrm{f}_{\mathrm{in}} / 16$	$\mathrm{f}_{\text {in }} / 32$	$\mathrm{f}_{\mathrm{in}} / 64$	$\mathrm{f}_{\mathrm{in}} / 128$	$\mathrm{f}_{\mathrm{in}} / 256$

TDA1008 Truth Table.

microfile
 Microfile this month has been taken over by Henry Budget, (editorial assistant of Computing Today) during Gary Evans absence.

A slight case of sunstroke

COMMODORE, THOSE WONDERFUL people who gave you a PET, have just taken a great step forward in the true American tradition. Rather than going to the moon they have headed for the Sun. A new solar powered industrial complex has been built in Silicon Valley at Santa Clara and they are moving in. The building was constructed with the help of the United States ERDA and is the first to get a 'solar grant.' The design was chosen out of 80 applications from 35 states.

In the 60000 sq ft Commodore will house their headquarters, the LED and LCD production line, Pet and KIM assembly and warehousing space. The boffins reckon that 90% of all heating requirements will be met by the 6000 sq ft of roof mounted solar panels and a further 3000 sq ft of passive collectors. By using this little lot as a giant heatsink the building will be kept cool in summer and warm in winter.

Two views of the new Commodore plant in Silicon Valley. The picture on the right shows some of the roof-top solar panels used for heating.

Also from Commodore I have just heard the current UK sales figures for the PET. They are selling at 200 a week, with about 10% going to the hobby end of the market - that's about 13000 quid a week. (Who said hobbyists were poor?) Commodore reckon that they are holding up well against the competition as well

The Videomaster Chess Champion, the level of play can be altered to suit your prowess, but be prepared for some slow games on the high levels.

We had a new chess player through the office last week micro based of course, and it nearly bored one of our staff to death. He decided to play it on level 5 and the machine took nearly six hours to make four moves. The device is the new Chess Champion from Videomaster
and can cater for up to six levels so we may never see our colleague again if he tries that one . . .

The machine actually plays a very good game of chess and the response time is a good indication of the amount of thought that the program is putting in to each move. For the average player Level 1 or 2 will provide a reasonable game, Level 6 is strictly for the budding Grand Master .

Teletext comes home at last

On the subject of micro's - the faithful old 6800 is. about to appear in a new home machine, with an added plus. The Liverpool based firm of Technalogics is producing a system that includes full Teletext decoding, allowing you to store information off-line and also to use the full graphics capabilities when running your own programs. The unit is configured for easy expansion and they hope to gain PO approval to connect to Prestel in the not too distant future. The cost of all this is only about $£ 450$ for a basic system and I hope to go and see one in the next couple of weeks. A full report will be published in Computing Today if I can get my hands on one.

Is it, will it . . .?

BUZZ! Down the grapevine came some news of the long awaited Texas micro. Allegedly it will be a 16 bit machine running PASCAL as the main language and a possible date of arrival is June. The last time I spoke to anyone from Texas the reply was 'No Comment' so we will just have to wait and see . . .

Club round-up

We have been getting news from around the country about computing clubs. A couple of recently formed ones have asked me to give a quick plug. This is a service we delight in performing so please keep the information coming in.

The Bristol Computing Club now meets regularly on the third Wednesday of each month and further information may be obtained from the Chairman, Mr L. Wallace, 6 Kilbernie Road, Bridge Farm Estate, Bristol BS 14 OHY. Another new club is the Hull and District TRS 80 Users club. They will be meeting on the second Tuesday of each month and you can write for further information to the Chairman, Mr F. Brown, 421 Endike Lane, Hull, Yorkshire HU6 8AG.

Many thanks to the East London Branch of the ACC for the notice about their third meeting. They meet at the Harrow Green Library in Cathall Road, Leytonstone on the third Tuesday of each month between 7 and 10 pm . Your contact here is Jim Turner at 63 Millais Road, London E11. Please note that when you write to these or any other club we may have mentioned in the past it will greatly help them if you enclose an SAE.

Connect your pet to better things

I've just received an interface adapter for the PET that should provide a solution to the problem of getting printout. The device is a CMC ADA 1200 , such a lovely name, and has been announced by Petsoft in conjunction with their CMC Word Processor. It arrives in a small case that plugs directly onto the IEEE-488 bus port and will drive any RS232 device such as a printer. The unit comes complete with an encapsulated power supply and can be preset to any Baud rate from 110 to 9600 which makes it suitable for any printer around. The parity and stop bits are settable on a DIL switch to your own needs. The output port can be called direct from BASIC to give .program listings or result output from calculations etc. The main use however is that it is directly accessed from the word processor package and will give you the basis of a small office package to handle letters and docu-- ments. The cost of the Word Processor program is $£ 25$ and the interface adaptor is going to set you back about £90.

The BBC and ETI show.

We've had more than our fair share of dealings with the Beeb this month. First the bad bit, we wish to categorically state that the so-called spelling error shown on 'Thats Life,' was deliberate. Honest. Did you see that recent episode of 'Blakes Seven', our old friend Tolinka, the chess displaying MPU based devices was used for a

Another odd-on for PET, this time an interface adapter for a printer.
game of speed-chess. The BBC recently got in touch with us with a view to using yet another of our past projects Twonky, the musical MPU as the basis for some theme music for a new childrens series. Alack and alas the programme was hit by industrial action, so Twonkys golden moment will have to wait.

E!

7400	10p	7460	12		90p		50p	4055	130	ĆA 3140	60p	LM 3909 N			$200{ }^{-1}$
7401	10 p	7470	25p	74138	100p	74196	50p	4056	120p	LF	80 p	MC 131	140p	TBA	$200 \mathrm{p}$
7402	10p	7472	20p	74141	50p	74197	50p	4060	100p	LF 357	80 p .	MC 1312 P	150p	TBA 530	
7403	10p	7473	25p	74142	180p	74198	100p	4066	35p	LM 211 H	250p	MC 1314 P	190p	TBA 540	200 p
7404	12p	7474	25p	74143	270p	74199	100p	4069	12p	LM 300 TR5	170 p	MC 1315 P	230p	TBA 550 O	250p
7405	12p	7475	25p	74144	270p	74293	90p	4070	12 p	LM 301	30p	MK 50398	650p	TBA 641 A12	250p
74	25p	7476	25p	74145	55p	74 L 500	18p	4071	12p	LM 304	200 p	MM 5314	380 p		250p
7407	25p	7480	40p	74147	100p	74511	80p	4072	12p	LM 307	65p		480p 150 p	tba 7200	
7408	12p	7481	85p	74148	90p	CM	S	4081	12p	LM 308 TO	100p	NE 529 K	$150 p$ 250	tba 750 O	$\begin{aligned} & 225 p \\ & 200 p \end{aligned}$
7409	12p	崖	75p	74150	65p	4000	12p	082	12p	LM 308 DIL	100p	NE 555	25p	tba 800	0p
7410	12p	7483	75 p	74151	45p	4001	12 p	4093	70p	LM 310 TO5	100 p 150 p	NE 562 B	400p	tBa 810	100p
7	15 p	7484	70	74153	45p	4002	12p	'4510	60p	LM 311 TO5	150 p	SAD 1024	1500p	tBa 820	100p
7412	15p	7485	60p	74154	70p	4006	80p		70p	LM 317 K	325p	SL917 B	650 p	tBA 9200	280p
7413 7414	25p	$\begin{aligned} & 7486 \\ & 7489 \end{aligned}$	130p	74155	45p	4007	30p	4518	65p	LM 324	70 p	SN 76003 N	150p	TCA 2700	220p
7416	25p	7490	25p	74157	45p	4011	12p	4520	65 p	LM 339	60p	SN 76013 N	110p	-TCA 270 S	220p
7417	25p	7491	40p	74160	55p	4012	12p	4528	80p	LM 348	90 p	SN 76013 N	ND 125p	CA 760	Op
7420	12p	7492	35p	74161	55p	4013	30p.	4583	70p	881	60p			TCA 4500	
7421	20p	7493	30p	74162	55p	4015	50p		EAR	LM 381	90p	SN 76023 N	125p	TDA 1008	Op
742	15p	7494	70p	74163	55p	4016		AY3	450p		180p	SN 76033 N	150 p 160 p	TDA 1034	
742	20p	7495	$45 p$	74164	60p	4017	50	CA 303	70p	LM 351	180p	SN 7627 N	160 p 180 p	TDA 2020	300p
7425		7496	45p		60p	4018	55p	CA 3046	6 60p	LM 709 C		SN 76660 N		TL 084	120 p
7426	22p	7497	120p	74166	75p	4019	40p	CA 3060	0 225p	LM 710 To5	60p	TAA 300	100p	XR 320	250p
7427	22p	74100	80p	74167	160p	4020	50 p	CA 3065	5 200p	LM 710 DIL	65 p	TAA 350	190p	XR 2206	450 p
7428 7430	25p	74104 74105	40p	74170 74173	80p	4023	50p $\mathbf{1 2 p}$	ca	250p	LM 723 TO5	40 p	taa 550	35p	XR 2207	450p
仿2	20p	74107	25p	74174	80p	4024	12p	CA 3080	- 25 75p	LM 723 DIL	40p	taa 570	220p	XR 2208	600p
7433	28p	74108	100p	74175	60p	4025	12p	CA 3085	5-250p	LM 733	120 p	ta 661B	140p	XR 2216	650p
7437	20p	74166	75p	74176	50p	4026	80¢	CA 3086	6 60p	LM 741		taa 700	350 p	XR 2567	P
7438	20p	74109	25p	74177	50p	4027	30p	CA 3088	$8 \quad 190 p$	M 748		ta 790			50 p
74	12p	74118	75p	74178	75p	4028	45p	CA 3089	9 160p	M 1303 N	100p	TAD 100	150p	XR 4202	0p
7441	45p	74120	80p	74179	120p	4029	50p	CA 3090	OAQ360p		100 p	TAD 110		XR 4212	
7442	40p	74121	25p	74180	90p	4030	30p	CA 3123	$3 \mathrm{E}_{\mathrm{i}}^{130 \mathrm{p}}$	M 3080		S		XR 4739	
7443	60p	74122	35p	74181	130p	4032	80p	CA 3130	100p						
7444	60 p	74123	40 p	74182	50p	4033	100p		$N 4148$	Diodes b	ex	100 for $£ 1$			
7445	${ }^{65 p}$	74125	35 p	74184	120p	4040	${ }^{60 p}$		Ram	$021024 \times$	45	no sec, E	0		
7446	50p	74126 74128	35p	74185 74188	100p	4043	60p			256×4 bi		(e),		50,	
7448	50 p	74130	120p	74190	720	4047	80 p		asonic	ic Transduce		$\begin{aligned} & \text { VATI } \end{aligned}$	3.50		
7450	12p.	74131	90p	74191	70p	4048	50p								
7451	12p	74132	45p	74192	60p	44049	25p								
7453	12p	74135	${ }^{90 p}$	74193	60p	4050	25p			OAD, H					
7454	12p	74136	80p	74194	55p	4054	100p					dit cards acceote			

ONE OF THE DIFFERENCES BETWEEN THIS AND THE SUPERBOARD IS: YOU CAN HAVE IT NOW!

OTHER ADVANTAGESINCLUDE:MODEL 500 CPU BOARD

* Prom Resident Microsoft Basic the fastest full function Basic in the Microcomputer Industry
* Prom Resident Machine Code Monitor.
* 4 K of Main Memory for your programs.
* 6502 Processor
* 8 Bit PIA.
* Serial Interface to allow communication with teletype or VDU.

MODEL 540 INTERFACE BOARD

* TV Interface configured for British TV to plug directly into the aerial socket. Screen format 16 lines by 64 characters or 32 extra large characters, Software, Selectable 256 characters including upper and lower alpha, gaming characters, graphics elements.
* Cuts Standard Cassette Interface provides mass storage for programs and data.
\star Keyboard Interface.
8 Slot Motherboard provides 6 slots of expansion for Standard Ohio 48 line bus.
ASCII Keyboard, 53 key full typewriter keyboard.
All the above supplied complete with full documentation. Send large s.a.e. for more details

HEADPHONE AMPLIFIER

Here's a project for the true hi-fi enthusiast, or for the guy who simply likes to 'listen in silence'.

A HEADPHONE AMPLIFIER is a gadget for the true hi-fi stereo enthusiast. It is a low-distortion wide-band low-power amplifier, without built-in tone controls. It lets its owner hear signals virtually 'as recorded', with none of the usual problems from 'processing' distortion, or from room acoustics. Equally important, it lets its owner listen to recordings at full orchestral levels without upsetting the neighbours or causing the pet budgie to shed its feathers.

The ETI headphone amplifier has a couple of special features. It has a low-noise RIAA-equalised preamplifier built into each channel, so it can accept input signals directly from a phono pick-up. It can switch-select either phono, tape, or tuner inputs, and can drive up to four sets of 8 ohm headsets simultaneously at total power levels up to a few hundred milliwatts. The unit can thus be used for both individual and group listening.

Each 'phone output channel of the amplifier has a source impedance of 10 ohms. This impedance provides each 'phone with good damping and transient response, and at the same time makes each output immune to short-circuit damage. The available power at each output is sufficient to drive the ear drums of a 'phone user to the threshold of pain when using a decent 8 ohm headset; you can't ask more than that.

Construction

All of the units electronics components, including the mains transformer, are mounted on a single PCB. The layout is quite compact, so extra care needs to be taken over the construction, particularly with regard

to the polarities of semiconductor devices and electrolytic capacitors.

We fitted our prototype unit in a fairly tight-fitting Verobox, and used a 6-way DIN connector for the inputs, rather than the six individual connectors shown in the circuit diagram. Note that screened lead must be used to connect the two phono inputs to the input of the preamplifiers.

When construction is complete, set RV2 and RV3 to minimum
resistance, insert a DC current meter in series with the test point of the Right channel, and switch the unit on. Check that the unit is functional, and then adjust RV2 so that the meter reads a quiescent current of 15 mA . Repeat the procedure for the Left channel, using RV3 to set the 15 mA quiescent current, and remembering to fit links across the test points after the meter is removed. The unit is then complete and ready for use. Good listening.

HOW IT WORKS

The ETI Headphone Amplifier uses two identical amplifier channels, each comprising an RIAA-equalised preamplifier, an input-selection switch and a volume control, and a main amplifier stage. The design uses two mains-derived stabilised power lines, which are fed to each of the two channels.

Each pre amplifier stage is designed around one half of an LM381 low-noise dual preamplifier IC. In the Right channel, R1 matches the preamp input impedance to that of a standard magnetic pick-up, R2 and R4 set the quiescent output of the pre amplifier at approximately half-supply voltage, and R3 to R5 and C3 to C5 serve as the RIAA equalisation network. The preamplifier stage has a voltage gain of about 41 dB at 1 kHz , and gives an output of about 600 mV from a 5 mV input at this frequency.
Input signals to the main amplifier stage are derived from either the preamplifier output or the tape or tuner inputs via switch SWl and volume control RV1. The amplifiers are standard class-AB types,
with voltage gains of about ten. In the Right channel, the voltage gain is determined by R7 and R10. The quiescent current of the output transistor stages (Q3 and Q5) are controlled by 'amplified diode' transistor Q1, and are adjustable via RV2. Outputs are fed to each channel of each headset via a 10 ohm limiting resistor: R15 and C8 act as a Zobel network across the output, and enhance circuit stability.

Note that the op-amp used in each main amplifier stage is an LF356 high slew-rate type, which enables the amplifier to give a good high-frequency performance. Also note that the input and outputs of the amplifier are referenced to the 11 volt 'half supply' power line, and not to the zero volts grounded line.
The two power supply lines are derived from the mains via $12 \mathrm{~V}-0-12 \mathrm{~V}$ step-down transformer Tl. Each output is controlled by a series-pass transistor and zener diode regulator network. The nominal output voltages of the lines are 11 V and 22 V . The zero-volts line is grounded.

Fig 2. Main circuit. Note that R6 replaces the 18V battery if the pre-amp is mains powered.

PARTS LIST

RESISTORS	
R1,4,20,23	47 k
R2,21	15 k
R3,22	39 R
R5,24	4 k 7
R6	390 R
R7,25	12 k
R8,10,26,28	100 k
R9,27	33 k
R1112,29,30	10 k
R13,14,31,32	2R2
R15,33	33 R
R16,17,18,19,	
$34,35,36,37$	10 R
R38,39	1 k
R40	2k2

POTENTIOMETER

RV1	dual 100k
RV2,3	100k sub-min preset
CAPACITORS	
C1	100~, 25V
C2,9	1μ

PROJECT: Headphone Amp

Fig 3. Component Overlay for the headphone amplifier with R6 in place to mains power the pre-amp. A lower noise figure can be obteined by battery powering the pre-amp. Connect the battery as shown in the circuit, and break the track at point A, Remove R6 from overlay.

$\mathrm{C} 3,10$	220μ
$\mathrm{C} 4,11$	68 n
$\mathrm{C} 5,12$	15 n
$\mathrm{C}, 7,13,14$	100 n
$\mathrm{C} 8,15$	10 n
$\mathrm{C} 16,17$	$470 \mu, 25 \mathrm{~V}$
$\mathrm{C} 18,19$	$10 \mu, 18 \mathrm{~V}$

SEMICONDUCTORS
IC
LM381
IC2,3 LF356
Q1,6 BC109C
Q2,7 BC184B
Q4,9 BC214B
Q3,5,8,10,11 BFY50
Q12 BFX88
D1,2,3,4 IN4001
2D1,2 12V zener
LED1 standard 0.2'
MISCELLANEOUS
SW1 2-pole 3-way
SW2 DPDT
T1 $\quad 12-0-12 \mathrm{~V}, 100 \mathrm{~mA}$
Fuseholder and 250 mA fuse connectors and case to suit.

The Sinclair PFM200 digital frequency meter.

 20 Hz -200 MHz... 8 digitits ... Under $\& 50$.The Sinclair PFM200 brings digital frequency measurement within the reach of every engineer. It has a performance comparable with the very best bench-top instruments, but it's packaged in a compact case which is rugged but light, ready for use anywhere.

The PFM200 out-performs many much more expensive instruments. Its 8 -digit display and variable gate time give highresolution coverage of frequencies from 20 Hz to over 200 MHz . It gives you exceptional sensitivity and simplicity, at a fraction of the price of meters with similar specifications!

The PFM200 is ideal for use with audio, video and radio systems, and all electronic and digital circuitry. Now every development engineer, service technician, student and hobbyist can afford to have a personal digital frequency meter.

The PFM200 embodies Sinclair Radionics' seven-year experience in digital test equipment design and production.

PFM200: features

$20 \mathrm{~Hz}-200 \mathrm{MHz}$ guaranteed range (typically better)
Frequency resolution down to 0.1 Hz
High sensitivity (10 mV typical)
High-accuracy crystal timebase
Full 8-digit capacity
Sharp, bright, easily-read LED display
Built-in attenuator
Variable sampling rate
Low-battery indication
Truly portable

Where to use the new PFM200

The PFM200 is useful in every field of electronics, providing the ultra-precise frequency information that an oscilloscope can't give...
Transmitter checks: mobiles, ham, radio control - check frequency and stability on Low and High band VHF, etc, up to 200 MHz AM and FM . In most applications, the PFM200's optional telescopic aerial avoids the need for direct connections.
Audio testing and design: check oscillator frequencies, bandwidth limits, crossover frequencies, resonances, etc, with resolution down to 0.1 Hz .
Digital testing: check computer clock frequencies, divider ratios and other digital circuitry.
RF circuit checks: test local oscillators, BFOs , test IF and detector performance. Video equipment: check syncronised circuits, scanning frequencies, video bandwidths, etc.

HEX ENCODED KEYBOARD

This HEX keyboard has 19 keys. 16 encodhas 19 keys. 16 encoded with 3 user defin-
able. The encoded TTL able. The encoded TTL outputs, 8-4-2-1 and STROBE are debounced and available in true and complement form. Four onboard LEDs indicate the HEX code generated for each gene depression The key depression. The board requires a single +5 volt supply. Board only $\$ 15.00$ Part No. HEX-3, with parts $\$ 49.95$ Part No. HEX3A. 44 pin edge con-

EsTRS-80 SERIALI/O

- RS-232 compatible - Can be used with or without the expansion bus - On board switch selectable baud rates of $110,150$. 300, 600, 1200, 2400. parity or no parity odd or even, 5 to 8 data bits, and 1 or 2 stop bits. D.T.R. line. Board only \$19.95 Part No 8010, with parts \$59.96 Part No. 8010A, as sembled \$79.95 Part No. 8010C. No connectors provided, see below.

S-100 BUS ACTIVE TERMINATOR

Board only \$14.95 Part No. 900 , with parts \$24.95 Part No. 900 A

9 AND 13 SLOT wmim MOTHER BOARDS

All traces are reflow solder covered and both sides are solder masked. The connectors used on these boards are the IMSAI TM type used on these boards are the $1.125^{\prime \prime}$ between pins, $.250^{\prime \prime}$ between rows).
Spacing between connectors is $750^{\prime \prime}$. All Spacing between connectors is $750^{\prime \prime}$. Al
lines, except power and ground, have a lines, except power and ground, have a
passive RC network termination available. passive RC network termination avalable. two 40 pin sockets and one 36 pin socket. The circuitry for supplying three separate regulated voltages to the kluge area is contained on the board. Part No. QMB-12 $\$ 40$ bare, $\$ 105$ kit, $\$ 120$ assembled. Part No. QMB 9 \$35 bare, $\$ 90$ kit. $\$ 105$ assembled.

4K EPROM wmcime

This board is designed to operate with any speed or power 1702A. Addressable in 4 K byte increments and can be configured to occupy either 2 K or 4 K segments. It can be populated one memory chip at a time. Bare board $\$ 30$, board with parts $\$ 200$, assembled \$230. Part No. EPM-1

16K OR 32K EPROM
WmC/ine.
Oesigned to operate with any speed or power 2708 or single voltage $(+5 \mathrm{~V}) 2716$. Addressable in 4 K increments and can occupy able in $4 K$ increments and can occupy
multiples of 4 K . It can be populated one memory chip at a time. Has bank addressing and Phantom Disable. The board comes with an exclusive software program that can be placed in a 2708 or 2716 that will, when used in conjunction with e RAM memory board, check out every line on the EPM-2. Bare board $\$ 30$, board with parts with 2708 $\$ 455$, assembled $\$ 485$. Board with parts with 2716 \$1,225, assembled $\$ 1,255$. Part No. EPM-2

PIICEDN

65K DYNAMIC RAM

Main memory for microcomputers, intelligent terminals, business systems, medical systems, and DEM systems. High density tems, and random access memory bytes - Fully buffered $\mathrm{S}-100$ bus compatible - Low power (dynamic memory) - Transparent refresh - Digital delay line techniques for reliable operation - Multiple boards allowed using hardware or software controlled bank select • "Phantom" signal for RAM/ ROM overlap - All boards are fully tested prior to shipment. Dperating System test and extensive bit pattern testing. - Works directly in 8080A processors or Z-80 environment at 2 MHz - Currently used by industry - 1 year warranty. Dnly available industry assembled and tested with 48K \$1,250 Part No. 48 K , or with 65 K \$1.475 Part No. 65 K

8080A CPU (with Eight Leval

Victor Interrupt Capability) wōcin
Uses the 8080A and the 8224 clock chip. The crystal frequency used is 18 MHz and the vector interrupt chip is the 82.14. The board will function normally without the interrupt circuitry. When the interrupt circuitry is built up. the board will respond to eight levels of interrupts. Designed to be a plug-in replacement for the IMSAI CPU board and will work in other computers with the appropriate modifications made to the ribbon cable connector pin out from the front panel The board will work in systems without a The board if the system has PROM board roont panel if the system has a PROM board that simulates the functions of the front panel. Bare board $\$ 30$, with parts $\$ 185$ assembled $\$ 220$. Part No. CPU-1

16K STATIC RAM

Wheime
Operates with any speed or power 2114. All input and output lines are fully buffered. Addressable in 4 K byte increments. If the system has a front panel, the board will allow itself to be protected. If there is no front panel, the board will not allow itself to be protected. The board has Bank Address capability. Phantom Disable, MWRITE, and electable wait states. Bare board $\$ 30$ board with parts \$665. Part No. MEM2

8K EPROM pIIcen

Saves programs on PROM permanently (until erased via UV lightl up to BK bytes. Programs may be directly run from the program saver such as fixed routines or assemblers. S100 bus compatible Room for 8 K bytes of EPRDM non-volatile memory (2708's). Dnboard PROM programming Address relocation of each 4 K or memory to any 4 K boundary within 64K - Power on jump and reset jump option for "turnkey" systems and computers without a front panel - Program saver software available - Solder mask both sides . Full silkscreen for easy assembly. sides Full sikscreen saver software in 12708 EPROM Program saver software in
$\$ 25$. Bare board $\$ 35$ including custom coil, board with parts but no EPROMS $\$ 139$, with 4 EPROMS $\$ 179$, with 8 EPROMS $\$ 219$.

10 Order: Mention part number, description, and price. In USA, shipping paid for orders accompanied by check, monay order, or Master Charge, BankAmericard, or VISA Mention part number, description, and price. InUSA, shipping paid tor orders accompanied by check, money order, or Mast
number, expiration date and signature. Shipping charges added to C.O.D. orders. California residents add 6.5% for tax. Dutside USA add 10% for air mail postage and handling, no C.O.D.'s. Checks and money orders must be payable in US dollars. Parts kits inciude sockets for all ICs, components. and circuit
 board. Documentation is included withall products. Prices are in US do

For free catalog including parts lists and schematics, send a self-addressed stamped envelope.
ELECTRONIC SYSTEMS
Dept. ETE, P. O. Box 21638, San Jose, CA USA 95151

M|CRO CHITMES FROM THE INVENTORS OF MICROPROCESSOR MUSICAL CHIMES
 New price for the original
 CHROMACHIME KIT
 24 tune mode!!
 Due to the fantastic success of this product right
 across the World we are able to offer it at
 $$
\text { only } £ 9.95+75 p p \& p
$$
 Comes complete with:
 * TMS 1000 Micro * Fully prepared PCB
 * Superb cabinet * All semiconductors
 * All R's \& C's * Loudspeaker
 * Switches \& pots * Socket \& Hardware
 * Fully detailed kit manual
 TMS 1000N - MP0027A Microcomputer chip available separately if required. Full 24 tune spec device supplied with data sheet and fully guaranteed.
 New low price only $£ 4.95$ inc. p\&p (Only present 24 tune repertoire currently available.)
 A COMPLETE KIT FOR THE
 NEW MICRO CHIME
 This easy to build kit includes:

 * TMS 1000 Custom MPU Chip
 * Special purpose designed case
 * Fully drilled and legended PCB
 * All transistors, Resistors and Capacitors
 * Full set of mechanical parts
 * Smart fascia labels
 * IC Socket and Loudspeaker
 * Really Low Price!
 $$
\text { only } 28.95+55 p p \& p
$$
 ALL CHROMATRONICS PRODUCTS
 SUPPLIED WITH MONEY BACK GUARANTEE
 PLEASE ALLOW 7-21DAYS FOR DELIVERY
 Please send me:
 TO: CHROMATRONICS, RIVER WAY, HARLOW, ESSEX. UK. NAME
 ADDRESS
 I enclose cheque/PO value \mathcal{L}
 or debit my ACCESS/BARCLAYCARD account no.

ELECTRONICS TODAY INTERNATIONAL - MAY 1979

STANDING WAVES

A standing wave has nothing to do with goodbyes on railway stations, but they could just be responsible for the poor quality of 'Crossroads'.

YOU KEEP COMING across that phrase, don't you, and it seems a bit daft. Waves wave, after all, they don't stand about. Or do they? Depends how you look at it and what you're looking at.

Pick a wave, any wave, radiating off an aerial into space. When this happens, the wave is radiating out from the aerial in all directions. The wave is an electromagnetic wave but since we only usually detect the electric part we can forget about the magnetic part for the moment. Let's just remind ourselves of what a wave like this is and does.

Equating With The Problem

A radiated wave of this type is a travelling wave. If we intercept it with an aerial attached to a sensitive oscilloscope what we would see on the screen (Fig. 1) would be the familiar sine wave trace, so that we could measure the time between peaks of the wave. This time between peaks is called the period or periodic time (T) of the wave, and is the quantity we measure by making use of the calibrated time base of the oscilloscope. This time period is related to the frequency of the wave: $f=1 / T$ with T in uS frequency f is in MHz . For example: if the period is 0.4 uS , then the frequency is $1 / 0.4=2.5 \mathrm{MHz}$.

The wave is travelling, though, so that places a distance apart will get a different phase of wave. In the drawing, of Fig. 2. A will receive a peak of the wave earlier than B, simply because A is nearer the transmitter. The distance between two places which receive peaks which are just 360° out of phase is the distance we call the wavelength.

In the time of one complete cycle, the wavelength is the distance that a wavepeak travels, so that the speed of the wave is simply frequency wavelength. For an electromagnetic wave (radio wave) in space, the speed is a constant 300 million metres per second $\left(3 \times 10^{8} \mathrm{~m} / \mathrm{S}\right)$, so that this is the quantity equal to frequency \times wavelength. For a 1 MHz wave, the wavelength is $3 \times 10^{8} / 1 \times 10^{6}=300 \mathrm{~m}$.

For a 1000 MHz wave, though, the wavelength is just $3 \times 10^{8} / 10^{9}=0.3 \mathrm{~m}$ - hence the alternative title of 300 mm wave. This frequency \times wavelength business applies also to sound waves, incidentally, except that sound waves crawl along a lot slower, about $330 \mathrm{~m} / \mathrm{S}$. A 1 kHz sound

Fig. 1. Time period. This can be measured between neighbouring peaks or from one zero-crossing to the next-but-one, as shown.

Fig. 2. Wavelength. Imagine the wavepeaks moving from left to right. At the instant shown, a peak is at point A, and a trough at point B,but the previous peak has reached point C. The distance between points A and C is one wavelength of this wave.
has a wavelength of $330 / 1000$ metres, which is only 330 mm , almost the same as a 1000 MHz radio wave.

If we're in the business of beaming waves into space or testing loudspeakers in open fields, this is as much as we need to know about waves, but we find nearly always that there's some reflections around. Now the effect of a wave reflection meeting a wave is the same as the effect of two waves meeting each other - if the wave and the reflection are in phase, then the result is a large amplitude wave, if they are out of phase the result is a reduced wave. We can expect to find some variations in wave amplitude, then, if a wave meets its own reflection.

Reflecting On The Problem

The easiest example to sort out is when a wave meets a reflection of the same size travelling in the opposite direction. Now the mathematicians can do this without drawings, simply by fiddling with equations, and those of us who play with programmable calculators can sort it out that way - the fortunate owners of computers can watch the whole thing - play it out in slow motion. We have to do it the hard way - using imagination with the help of a few drawings. Fig. 3a shows a forward moving wave meeting a reflection - it's a diagram frozen at an instant in time because what is plotted is wave amplitude against distance. Fig. 3b shows the same picture an instant later, both waves have moved an identical distance in their opposite directions. A few more stills from this exclusive movie, and we begin to see glimmerings of something interesting. The combination of the forward wave and its reflection travelling in the opposite direction has produced a new wave pattern. At some points along this pattern, there is always complete cancellation - the forward wave and the reflected wave are always in antiphase so that there is no signal at this place - ever. At other places there are varying amounts of signal right up to a whopping great peak whose amplitude is about twice as much as either of the travelling waves. This pattern is what we call a standing wave (Fig. 4) - there is still a wave present, because a graph of voltage

Fig. 3. Setting up standing waves. The solid line (a) represents a wave moving from left to right, the dotted line represents its reflection moving in the opposite direction. At (b), each wave has moved about $1 / 4$ cycle, and at (c) $1 / 2$ cycle along in its own direction. The positions where the waves cancel (because they are equal and opposite, or both zero) remain fixed though. These positions are called nodes.
plotted against time shows a wave, but there's no movement of phase. In any standing (or stationary) wave like this there will be nodes - places where there's no wave signal at all - which are half a wavelength apart and antinodes where there's a maximum wave signal - which are also half a wavelength apart but out of phase with the nodes.

The Effect On You

What's in it for us? Quite a lot, whether you dabble with high frequency signals or with loudspeaker cabinets Standing waves have a lot of influence whenever a wave can be reflected. For example, there are places where UHF TV reception is terrible. Shifting the aerial slightly, though, makes the world of difference. Why? Because we're sitting in the middle of a standing wave pattern, that's why. Place your aerial at a node and you can forget about Kojak. Shift it by just half a wavelength, and yours is the strongest signal around. At 500 MHz , half a wavelength is just 300 mm not very far to shift.

How To Find Them

Standing waves can exist on a wire as well. One of the old classic methods of measuring the wavelength of a highfrequency radio oscillator is called Lecher Lines. The Lecher lines are two parallel metal bars of thick wires which are connected to the oscillator output. A shorting bar is fitted
with a detector, which might be a neon lamp (for high voltage signals) a small lamp-bulb (for low voltage signals) or a diode/meter circuit Sliding the bar along the lines (Fig. 5) results in the detector indicating points of no signal, the nodes; and points of maximum signal, the antinodes. The distance between two neighbouring nodes, or two neighbouring antinodes, can be measured - this distance is half a wavelength.

The wavelength of a sound wave can be measured in the same way. One classic method of measuring the wavelength of a sound along a pipe was to sprinkle powder on the pipe. When the sound wave set up standing waves, the powder would gather into piles at the nodes of the standing waves, and spray away from the antinodes, so that the half-wave distance between nodes could be measured. It's equally easy to measure the wavelength of standing waves in a room by moving a microphone attached to an AC voltmeter and noting the position of nodes - once again the distance between two neighbouring nodes is equal to half a wavelength.

Leaving Loose Ends

If a length of coaxial cables connected to a circuit is left either open circuit or short circuit, standing waves can be set up in it, with a node at the short circuit or an antinode at the open circuit end. If the length of the cable is just right, that's fine. If it's not, then signals will reflect to and from along the cable, arriving at the circuit and with a time delay equal to the time taken to travel along the cable and back. Because of this effect, we seldom cut cables to a length which will permit standing waves - instead we terminate each end of the cable in a resistance value which will
prevent reflections - this value of resistance has to be equal to a quantity called the characteristic impedance of the cable (calculated from the inductance and capacitance per metre of cable). With an open or shorted cable, on your telly, you can expect to see 'ghost' images - several edges to each object.

Advantages And Disadvantages

We do, however, encourage standing waves in aerials. TV and FM aerials are cut to a total of half a wavelength so that a standing wave is set up on them. This allows us to do two things which would not otherwise be possible. One is to extract the maxintum energy from the signal - the aerial responds like a tuned circuit to the correct wavelength; the other is to match the aerial to its cable. At one end of a half wave aerial we have an antinode - maximum wave amplitude. At this point we have maximum voltage, but no current. At the centre of the aerial there is a node - zero voltage but maximum current. We can select a point along the aerial to connect the cable so that the ratio of voltage to current is just right -75 ohms for most coaxial cables, and

Fig. 4. Representing a standing wave. The standing wave has the same wavelength as the moving waves which cause it, but the nodes and antinodes are at fixed points, quarter of a wavelength apart from one another.

Fig. 5. Using Lecher lines. A high-frequency oscillator attached to parallel wires can display standing waves, using a small light bulb to detect the positions of nodes and antinodes.
in this position there will be the maximum transfer of signal from the aerial to the cable.

At the tuner, standing waves create another sort of problem - the problem of how to earth conductors. Earth one point of a conductor and there will be a node at that point - but there will also be an antinode (maximum signal) just $1 / 4$ wavelength away. The result is that earthing. a conductor may have just the opposite of the effect you expect unless you earth at just the right place. Move any of the conductors in a tuner, and you disturb the standing wave pattern - even a dent in the metal case of a UHF tuner can make a difference.

It's not always such a happy story. The greatest difficulties with standing waves arise when we try to design a loudspeaker cabinet. Each solid surface and cracks or gaps will behave as a short circuit or an open circuit respectively. A loudspeaker cabinet will be a mess of standing waves, therefore, unless we do something to absorb them. The room we use for listening will also have standing waves at some frequencies (depending on its dimensions) and in some directions - this is particularly noticeable in an empty room stripped of all its furniture. All in all, standing waves are all around us - we have to live with them!

GOOD AND PROPER!

or at least your projects. If there is one thing which is impossible to do at home is lettering front panels to professional standards. At least until now. If you cast your eyes right a while you'll see our new panel transfers sheet. which has been carefully designed to allow you to do exactly that.

The transfers are easily rubbed down, and the two sheet set contains a mass of lettering and -uniquely-control scales for both rotary and slider puts.

Each sheet measures 180 mm X 240 mm and comes packed flat in a stiff cardboard envelope for protection. There should be enough for dozens of projects here - and the tonger you wait the worse they'll look!

Send $\mathbf{E} 1.75$ fincludes VAT and postage) for the twosheel set lo: Panel Markings ETI magazine, 25-27 Oxford Street. London WIR IRE.

Understanding Digital Electronics New teach-yourself courses

Design of digital Systems is written for the engineer seeking to learn ṃore about digital electronics. Its six volumes - each A4 size - are packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters and simple arithmetic circuits, and finally to a complete understanding of the design and operation of calculators and computers.

The contents of Design of Digital Systems include:

Book 1 Octal, hexadecımal and binary number systems; conversion between number systems; representation of negative numbers; complementary systems; binary multiplication and division.
Book 2 OR and AND functions; logic gates. NOT, éxlusive OR: NANO, NOR and exclusive-NOR functions; multiple input gates; truth tables; De Morgans Laws; canonical forms; logic conventions; Karnaugh mapping; three-state and wired logic.
Book 3 Half adders and tull adders; subtractors; serial and parallel adders; processors and arithmetic logic units (ALUs); multiplication and division systems.
Book 4 Flip flops; shift registers; asynchronous and synchronous counters; ring, Johnson and exclusive-OR feedback counters; random access memories (RAMs) and read only memories (ROMs).
Book 5 Structure of calculators; keyboard encoding; decoding display data; register systems; control unit; program ROM; address decoding; instruction sets; instruction decoding; control program structure.
Book 6 Central processing unit (CPU); memory organisation; character representation; program storage; address modes; input/ output systems; program interrupts; interrupt priorities; programming; assemblers; computers; executive programs; operating systems and time sharing

Digitat Computer Logic and Electronics is designed for the beginner. No mathematical knowledge other than simple arithmetic is assumed, though the student should have an aptitude for logical thought. It consists ${ }^{\text {t }}$ of four volumes - each A4 size - and serves as an introduction to the subject of digital electronics. Everyone can learn from it - designer, executive, scientist, student, engineer.

Contents include. Binary, octal and decimal number systems: conversion between number systems; AND, OR, NOR and NAND gates and inverters; Boolean algebra and truth tables; De Morgans Laws: design of logic circuits using NOR gates; R-S and J-K flip flops; binary counters, shift registers and half adders.

CAMBRIDGE LEARNING ENTERPRISES. UNIT 18, RIVERMILL. SITE, FREEPOST. ST. IVES, HUNTINGDON, CAMBS. PE17 4BR, ENGLAND

TELEPHONE: ST. IVES (0480) 67446
PROPRIETORS: DRAYRIDGE LTO. REG. OFFICE RIVERMILL -LODGE, ST. IVES REGD. IN ENGLĀNO No. 1328762.

In the years ahead the products of digital electronics technology will play an important part in your life. Calculators and digital watches are already commonplace. Tomorrow a digital display could show your vehicle speed and petrol consumption; you could be calling people by entering their name into a telephone which would automatically look up their number and dial it for you.

These courses were written by experts in electronics and learning systems so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being faster and more thorough than classroom learning. You work at your own pace and must respond by answering questions on each new piece of information before proceeding.

After completing these courses you will have broadened your career prospects and increased your fundamental understanding of the rapidly changing technological world around you.
The six volumes of Design of Digital Systems cost only:

And the four volumes of Digital Computer Logic and Electronics cost only:

But if you buy both courses, the total cost is only:

Price includes surface mail anywhere in the world - Airmail extra.

'Flow Charts \& Algorithms

HELP YOU PRESENT

safety procedures, government legislation, office procedures, teaching materials and computer programs by means of YES and NO answers to questions.

THE ALGORITHM WRITER'S GUIDE explains how to define the questions, put them in the best order and draw the flow chart, with numerous examples shown. All that students require is an aptitude for logical thought. Size: A5, 130 pages. This book is a MUST for those with things to say.

£2.95

+45 p post $\&$ packing by surface mail anywhere in the world. Airmail extra.

GUARANTEE. Please allow 21 days for delivery

If you are not entirely satisfied your money will be refunded.
-Cambridge Learning Enterprises, Unit 18, Rivermill Site
Freepost, St. Ives, Huntingdon, Cambs. PE1 7 4BR England.
Please send me the following books
sets Digital Computer Logic \& Electronics@ £5.50.p \& p included
sets Design of Digital Systems @ £9.00,p. \& p. included
Combined sets@ E13.00,p \& p included
The Algorithm Writer's guide @ £3.40.p \& p included
Name
Address

I enclose a "cheque/PO payable to Cambridge Learning Enter-
prises for $£$. prises for $£$
Please charge my Access/Barclaycard/Visa/Eurocard/ Mastercharge / Interbank account number
Signature
deleted as appropriate
Telephone orders from credit card holders accepted on 048067446 (ansafone). Overseas customers should send a bank draft in, sterling drawn on a London Bank.

SPECIALS

TOP PROJECTS

Book $1+2: £ 2.50$ + 25p P\&P.
Master miver, 100 W guitar amp, low power laser, printmeter, transistor tester, mixer preamp., logle probe, Ni-Cad charger, loudhailer, 'scope calibrator, electronic ignition, car theft alarm, turn indicator canveller, brake light waming, LM 3800 circults, temperature alarm, aerial matcher, UHF-TV preamp., metail locator, four in put mixer, IC power supply, rumble filter, IC tester, ignition timing light, 50 W stereo amp. and many more.
Book 3: SOLD OUT:
Book 4: £1.00 + 25p P\&P.
Sweet slxteen stereo amp., waa-waa, audio level meter, expander/compressor, car theft alarm, headlamp reminder, dual-tracking power supply, audio millivoltmeter, temperature meter, intruder alarm, touch switch, push-button dimmer, exposure met

Book 5: $\mathbf{E 1 . 0 0}+\mathbf{2 5 p}$ P\&P.
5 W stereo amp, stage mixer, disco mixer, touch organ, audio umiter, infra-red intruder alarm, model train controller, reaction tester, headphone radio, STD timer, double dice, general purpose power supply, logic tester, power meter, dlgital voltmeter, universa dimer, breakdown beacon, heart rate monitor, IB metal locator, temperature meter ...
Book 6: $£ 1.00+25 p$ P\&P.
Graphic equaliser, $50 / 100 \mathrm{~W}$ amp. modules, active crossover, fash trigger, "Star and Dot ${ }^{n}$ game, burglar alarm, pink nolse generator, sweep osc lilator, marker generator, audio-visual metronome, LED dice, skeet game, lie detector, disco light show ...

Power Maplifior modrizs.....EZ Sound
 Ifa Dice... Saund-light Flasin Irigger Expander-Compressor..... Sheet enas

urar Alarm...Dipital Thermometer Stars fots logic Bame.... Lightshow Active Crossover.... Hear and Tell Unit Pint Noise Generator...... GSI Maniter Sweep Oscillator.....Sterem Simulater

ELECTRONICS TOMORROW
Comprised entirely of new material, the edition covers such diverse toples as Star proiects for everyone - none of which projects for everyone - none of which future of MPUs, audio, calculators and video. How can you not read it?

75p + 25p P\&P.

ELECTRONICS - IT'S EASY Books 1, 2 \& 3.
Our successful beginners series came to an end some time ago now, and the whole series is availiable irom us in reprint iorm. he information presented in the series the iniormation presented in the sertes (sometimes in more detai!), and together one interested in learning the art of electrqnics.
£1.20 + 25p P\&P each.

Ell CIRCUITS No2

$£ 1.50$

ETI CIRCUITS

Books 1 \& 2.
Each volume contains over 159 circuits, mainly drawn from the best of our TechTips. The circuits are indexed for rapid selection and an additional section is included which gives transistor specs, and plenty of other useful data. Sales of this publication have been phenomenai puardiy surprising when the circuits cost
under Ip each!
£1.50 + 25p P\&P each.

ORDER FROM

Specials Modmags Ltd 25-27 Oxford Street London W1R 1 RF
Postage and packing also refers to overseas. Send remittance in Sterling only.
Please mark the back of your cheque or PO with your name and address.

LOWLR PRINES
 SUPERIOR CASIO WATCHES
 eport on watches which magazine has published a report on watches which supports our opinion that with CASIO offering unbeatable value for money. All CASIO watches have a calendar display, night illumination, mineral glass and stainless steel cases, water resistant to 100t. (except Sports watches and $50 \mathrm{aS}-66$ feet
 DOUTH PRCS-27B

Almost certainly the slimmest and most sophisti

- LC Display of hours, minutes, seconds, day: And with day, date. month and yea Optional 12-hour with am/pm or 24-hour clock display
- Optional hourly chimes
- Chrono measures from $\dot{1 / 10}$ second to 6 hours.
- Net, lap, 1st \& 2nd place.
- Real (mineral) glass face.
- Weter resistant to 100 feet.

£39.95

500S-17B REAL QUALITY Stopwatch, Dual Time, Water Resistant to 66 ft . Displays hours, minutes. ten seconds, seconds flash, $\mathrm{am} / \mathrm{pm}$; And with day, date and month calendar, stopwatch 1 sec to 13 hrs . Stainless steel encased. with oasily removable link £19.95

F-100 eft, 9.45 mm
£19.95

520s-14B
£22.95
SPORTS WATCHES

Up to 25 functions. Net, lap and first and eacond place times to $1 / 100 \mathrm{sec}$ F-100 Resin case and strap 5205.148 Stainless steel encased version with fully adjustable s/s bracelet

6 DICIT watches in
6 DIGIT WATCHES (not Sports). Hours, minutes, seconds and day of week. (Model s40S has an optional
display of hrs, mins, date, day, ten seconds, seconds flash): And day, date, month, year calendar. Selectable 12 hr (with am $/ \mathrm{pm}$) or 24 hr clock.

45CS-22B
Left, Chrono
25CS-16B
Right, 9.25 mm
£34.95

CHRONOGRAPH. 6 digits as above, with chrono measuring net, lap and 1 st \& 2nd place times frem $1 / 100$ second to 6 hours. Dual time facility ALARM. Displays hours, minutes, seconds (or date), day. am/pm. Perpetual calendar. 24 hour ala 25 CR-16B Round alarm as above.

E24.95
your Access or Barclaycard number to

CASIO - FIRST AGAIN!

NEW Mruamanew eloo so

ADVANCE SPECIFICATION: Two separate Alarm Tunes, Calculator with keys 1.8 playing individual notes mini synthesizer! Complete Calendar, Watch, Stopwatch - measuring net and lap times to $1 / 10$ second - Alarm Timer and Calculator with \%, Vfull Memory. Date calculations. RRP E3 1.95
£25.95
NEW MP-100 MATH PET (LCD)
Sophisticated maths teaching aid at four selectable
levels plus clock, two alarms, stopwatch. RRP $£ 24.95$
£19.95

M-811 MICRO CARD
Kay ring calculator
Tiny one-handed catculator with non-volatile memory stores when switched off), automatic power-off,
$3 / 16 \times 13 / 4 \times 25 / 9$ ins. Pouch with key ring. RRP $£ 1795$
£14.95

Specification as AQ-2000 but without $\sqrt{ }$. Memory. $1 / 4 \times$ $45 / 9 \times 11 / 4 \mathrm{ins}$. With "kiss" touch keys. Complete with pouch and neck chain. RRP £39.95

FX-58 SCIENTIFIC MINI CARD ALARM CLOGK AND STOPWATCH

. $\times 31 / 2 \times 21 / 8$ inches. RRP $£ 29.95$
Two Alarms,
Countdown
Alarm Timer
Stopwatch Stopwatch - $1 / 10$ Net , Calculator Fec, Caiculator, Trigs, Pi Sexagesimal to decimal, 2 levels of parenthesis.

£24.95

Most CASIO products in stock. Send 25 p for our illustrated mail order catalogue.

CALCULATORS SCIENTIFIC

SPECIAL OFFER EXAS T 159 qogether with PC 1008 plete us ufacturer's speet

EXAS/HP Accessories availab?

TEXAS/HP Accessories available
*TEXAS T 159 (New Card prog 960 prog steps of 100 mem) *TEXAS T158 (New Key prog 480 steps of 60 mem) $\begin{gathered}\mathbf{¢ 1 5 6 . 5 0} \\ \mathbf{f 8 0 . 0 0}\end{gathered}$ $*$ TEXAS PC 100 B (New updated Printing Unit for T158/T159.
$\mathbf{E 1 4 0 . 0 0}$
\qquad

 TEXAS Ti50 |Scir S:at. 2 Con Mems) $£ 26.30$
$\mathbf{£ 2 3 . 0 0}$

sprimg sale
TEXAS T159 Calculator (complete as manufacturer's spec., master module. charger, etc.). PLUS statistics
extra set of 40 Blank prog Cards with wallet, etc. extra set of 40 Blank Prog Cards with
ONLY E180

(CBM 9190R (as 4190R but with 9 memories)	£27.50
*CBM Pro 100 (72 Step Prog)	¢29.50
* ${ }_{\text {c }}$ P 19C (Cont Mem key Prog Printer)	$¢ 129.00$
* ${ }^{\text {P }}$ 29C (as 19C bur no Printer)	¢93.00
*HP33E (8 mem Pro Sci/ ${ }^{\text {ta }}$)	£64.00
\#HP32E (Advanced Sci with Slatistics)	¢50.00
*HP27 (10 Mem Sci/Fin/Stat)	¢73.50
* HP31E (New Sci replaces HP21)	£35.00
*HP67A1C, Prog 224 Steps 26 Mem)	¢257.75
* HP97A (Fully prog with Printer)	¢422.00
All HP range avail, inc. new ' E ' range. CASIO FX 360 (New 10 Diq + Exp 7 Mem 8) (St. Div Lin Rear. etc.) f40.00	
CASIO A02000 \{updared AQ 1000 Cal 3.Way S	ch/Alarm
plus Date Calender)	c22.00
CASIO FX3100 (LCD Sci/Sid/ DP/Rec)	¢22.50
CASIO FX8000 (as above + Stop Watch/Alarm)	¢27.73
*CASIO FX202P (127 Step Sci Progs Con Mem)	¢44.50
THE COMMODORE PET COMPUTER	
with 8K bytes RAM 2001-8	
operates anywhere by simply plugging	
Cassette, Video Display Unit and	
l guaranteed Warranty by CB	
complete only $\mathbf{E 5 5 0}$	
PET 2001-16NE675	

RRIS deal tot learning and improving computer yet Borris is beginner to master Borris can lay chainst himsell has Alpha-Numeric prompting to help improve play and by simple swicchung you have facility 10 foliow Borris s think ing white he analyses posituon betore making a move Walnut case he analyses position betore making a move Walnut case wooden chess mer, board mains adapter, etc $\mathbf{E 1 8 4 . 0 0}$ CHES

 *FREE - Mains/Charger included GOODS FULLY GUARANTEED. PRICES EXCLUDE VAT (ADD 8\%)BUT INC. P\&P CHEQUE WITH ORDER BUTINC. P\&P CHEQUE WITH ORDER Tel. 01-455 9823

CAR IMMOBILISER

Here's a low-cost project that gives your car good protection against joy riders and a drunken driver.

THE ETI AUTOMATIC
Immobiliser is an inexpensive but highly original car protection device. It has been designed to prevent a car being driven away by the 'joy rider' type of thief, or by a drunken owner-driver. Major features of the design are lack of circuit complexity, low building costs, and simple installation of the unit in any vehicle

The circuit is designed to immobilise a vehicle's ignition system, by shorting out its contact-breaker points via a pair of relay contacts, as soon as the ignition is turned on. The owner then has five seconds to turn the immobiliser off by sequentially operating a set of four push buttons. If the four buttons are not correctly operated within the five second period, the ignition : system remains immobilised and the
vehicle's engine cannot be started. The automatic immobiliser timing sequence restarts each time the ignition is turned on.

There are four basic concepts behind the ETI Automatic Immobiliser system. The first of these is that, since the immobiliser activates automatically as soon as the vehilcle's ignition is turned on, the vehicle is given a good degree of protection against the drive-away car thief, even if the owner leaves the car doors open and leaves the ignition key in its lock.

The second concept is that a thief entering the vehicle will have no idea of the purpose of the four
push-button'switches associated with the immobiliser, so these switches can be quite openly displayed on the vehicle's instrument panel, together
with a LED that tells its legitimate owner the immobiliser circuit state.

Thirdly, because only five seconds are available to de-activate the immobiliser via the four sequentially-operated switches after first turning the ignition on, the system gives a good deal of protection against the fumble-fingered drunken owner-driver.

The final concept is that, because of the three factors already outlined above, the final circuit does not need to be super-sophisticated or to have an unbreakable 'key' sequence network in order to be highly effective in its functioning. Simplicity and effectiveness are thus the key features in the design of this ETI Automatic Immobiliser unit.

Fig. 1. Circuit diagram for immobiliser.

Construction

There should be no problems here
The relay can be any 12 -volt type with a coil resistance greater than 100 ohms, and with one or more sets of normally-open contacts. The PCB and relay can be fitted in a metal box, or can be simply mounted on an aluminium plate that is screwed to the rear of the vehicle's instrument panel.

The unit's 12 -volt rails must be connected to the vehicle's supply via the ignition switch. The normally-open relay contacts should be connected across the vehicle's contact breaker points. The LED and the four push-buttons can be mounted on the vehicle's instrument panel, either directly or via a screw-on panel.

HOW IT WORKS

The circuit is designed around the 4013 D type flip-flop. It derives its power from the car battery via R8 with stabilization provided by ZD1, C3. The chip features direct set and clear inputs and complementary outputs. Data at the D input is transferred to the outputs on the positive going edge of the clock. The clear inputs are not used in this design and are tied to ground, the set inputs are connected together to the junction of R1, Cl. This ensures that on switchon the flip-flops will start up in the same state and a high level, logic 1 , will be present at the output of IC2b. This voltage is fed to the base of Q1 via R7 and will cause the relay to turn on, disabling the car. Q1 and Q2 are connected as a super-alpha pair which effectively produces a super high gain transistor whose gain equals that of Q1 multiplied by Q2. D1 protects the transis-
tors against the back EMF of the relay: System status is indicated by LED1.

To re-enable the system and start the car a logic ' O ' must be present at the output of IC 2 b . This is produced by passing it down the line from the input of ICla by depressing PB1, 2, 3 and 4 in turn. A novel feature is introduced here. At switch-on C2 is discharged and ICla will see a low level logic ' O ' at its input. This must be transferred to the output by depressing PB1 before the voltage rises above the transition level of the D input as C 2 charges via R2. If PB 1 is not depressed until about five seconds after switch-on then the junction of R2, C2 will present a logic ' 1 ' disabling the system until power is removed and re-applied. To make the system really difficult to beat, resistor, capacitor networks could be inserted between stages.

PARTS LIST;
RESISTORS all $1 / 4$ watt 5%

R1	1 MO
R2	$560 k$
R3, R4, R5, R6	100 k
R7.	47k
R8	270 R
R9	680 R

CÁPACITORS

C 1	100 n
C2	10 u 16 V electrolytic
C3	220 u 16 V electrolytic

SEMICONDUCTORS

Q1	BC109
Q2	$2 N 3053$
IC1, IC2	4013
D1	IN4001
ZD1	BZY88 C9V1 400 mW
	9 volt zener

MISCELLANEOUS •
PB1, PB2, PB3, push to make pushbutton PB4 .switches

RLA 12 v relay (see text)

Fig. 2. Component overlay.

BUYLINES

No problems whatsoever with any of the parts for the Car Immobiliser, Maplin.and Watford should be able to supply all the parts. The case is
very much up to the individual, a strong watertight case however is essential to prevent any 'false alarms' due to ingress of water.

The action-packed show for the electronics enthusiast now includes the Midlands among its venues. If hobby electronics is your interest or your business, then Midlands Breadboard is tailor-made for you.

Bingléy Hall, Birmingham, 23-26 Мау, 10 am-6pm Admission: $£ 1$ Adults 75p Students

Crammed with the gear that constructors need. Circuit boards, components, audio kits, d.i.y. computer systems, electronic musical instruments you'll find it all here. And you can buy it on the spot - or browse at your leisure. Demonstrations and competitions (exciting prizes!) keep the show humming with activity.
P.S. There's a London Breadboard too, December 4.8th, Royal Horticultural Halls - come to both!I want to visit the show. Send me more details nearer the date.
\square ' Please send me details now of exhibition space.
Name
Position
Company
Address

Telephone
Telex
Return to: Trident International Exhibitions Limited
Abbey Mead House, 23a Plymouth Road,
Tavistock, Devon. PL19 8AU
Telephone: 08224671 Telex: 45412 TRITAV

1 RF 040

MW/LW/FM/MPX varicap tune RF board as per 78 Nov/Dec'PW Dual gate MOSFET front end. $2 \times F$ gain stages 3189 deviation mute, interstation mute, MPX filters, STab PSU $1 \mu \mathrm{~V}$ sensitivity and 75 dB S/N ratio. AM Section also varicap tuned HA1197 excellent performance. Special price $£ 28.95$

2 Surplus RF Board 020

Complete MW/LW/FM / MPX Tuner uses 3 stage FET front end 2 ceramic filters $3089 \mathrm{E}-1310$ Decoder. AM section built around $3132 \mathrm{E}, 2$ stage tuning comes complete with 4 way switch - ferrite rod aerial $£ 9.99$

3 IF15

Matching IF Strip double conversion $10.7 \mathrm{MHz} / 470 \mathrm{kHz}$ AM / NB FM excellent performance $£ 12.95$

4 IF20 Multimode IF Strip

Switched AM/NB FM/SSB/CW. 10.7 MHz input gain 90 dB Typical sensitivity $10 \mu \mathrm{~V}$. Dual Conversion, will form the basis of a good communications receiver. Selectivity provided by filters at 10.7 MHz and 455 kHz £21.95

5 V.T05. - Medium Wave DX Front End Convertor

Uses Up Conversion Principle to eliminate images. Comprising of an ultra low drift oscillator and Mosfet Front End for wide dynamic range. Freq. range $580 \mathrm{kHz}-1600 \mathrm{kHz}$; Triple Tuning; A.G.C Range 50 dB ; gain 30 dB ; Output 10.7 MHz ; when used with an IF15 or IF20, high gain IF strip a sensitivity of 1.0 UV for $15 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ can be achieved. $£ 13.25$

6VT06 25-30MHz Front End Convertor

Tunable over whole range uses Dual gate Mosfets. Covers European/American CB frequencies and Amateur 10 metre band can be used as a tuneable IF for many 2 metre convertors. Low noise, high performance. Especially designed to go with IF15 and IF20 but compatible with any receiver covering $10.7 \mathrm{MHz}, £ 13.25$

7 VT07

Tunable 2 metre front end converter. Covers 144.146 MHz . Three stage tuning uses bipolar devices for low current consumption can be battered powered for 2 metre direction finding or portable use. Ideal basis for 2 metre monitor. Receiver can be uses with IF 15 . IF20 or comm. rx. Output $10.7 \mathrm{MHz}, £ 9.95$.

8 VT01

- $108-150 \mathrm{MHz}$ MOSFET front end 26 dB gain 10.7 MHz 1 F output. Covers 2 metres. Varicap tuned. Amateurs. Aircraft, etc. $£ 7.99$.

9 AMP 020

Stereo power amp 30W RMS per channel. Class ABI TIP34AxTIP33A. 16 Transistor circuit Fre resp $15 \mathrm{~Hz}-18 \mathrm{kHz}-1 \mathrm{~dB}$. $£ 7.99$

10 Matching HiFi Preamplifier
Four rotary controls - Vol, Bal, Treb, Bass, Treble $\pm-14 \mathrm{~B}$. Bass $+ \pm 14 \mathrm{~B}$ facility for loudness control. $£ 6.99$

total amplification from CRIMSON ELEKTRIK

WE NOW OFFER THE WIDEST RANGE OF SOUND PRODUCTS

MC 1

CPR 1-THE ADVANCED PRE-AMPLIFIER
The best pre-amplifier in the UK The superionty of the CPR 1 is probably in the disc stage The overlosd margin
is a superb 40 OdB . this together with the high slewing rate ensures clean top even with high output cartridoes is a superb 40dB. his together with the high slewing rate ensures clean top. even with high output cartridoes
rracking heavily modulated fecords Cominon-mode distortion is eliminated by an unusual design R I A A accurate to 1 dB , signal to noise ratio is 70 dB relative to 35 mV . distortion $<005 \%$ at 30 dB overioad 20 kHz Following thus stage is the filat gatn/balance stage to bring tape, tuner, etc, up to power amp signal levels
Signal to noise ratio 86 dB . slew-rate $3 \mathrm{~V} / \mathrm{uS}$. THD $20 \mathrm{~Hz}-20 \mathrm{kHz}<008 \%$ at ony level FET muting. No contrals are fitted There is no provision for tone controls CPR 1 size is $138 \times 80 \times 20 \mathrm{~mm}$ Supply to be ± 15

MC 1 PRE-PRE-AMPLIFIER

Suitable for nearly all moving-coll cartridges Sensitivity $70 / 170 \mathrm{VV}$ switchable on the $\rho \in b$ This module brings signals from the now popular low output moving-coll cartridges up to 35 mV (typical signal required by most ,pre-amp disc inpsis) Can be powered from a 9 V battery or from our REG 1 regulator board

X02 : X03 - ACTIVE CROSSOVERS

REG 1 - POWER SUPPLY

The regulator module, REG 1 provides $15-0.15 \mathrm{v}$ to power the CPR 1 and MC 1 It can be used with any of our ,

POWER AMPLIFIERS

It would be pointless to list in so small a space the number of recording studios. educational and government
estabushments etc. who have been using CRIMSON amps satisfactorily for quite some time We have a reputation for the highest qualiy athe lowesi prices amps satisfactorily for quite some time We have a ssme specification PHD H quapity alt the lowest prices The power amp is avaisiale in five types, they all have the signal to noise ratio 110 dB , frequency response $10 \mathrm{~Hz}-35 \mathrm{kHz},-3 \mathrm{~dB}$, stability unconditional, protection dive
any load safely. sensitvity $775 \mathrm{mV}(250 \mathrm{mV}$ or 100 mV on request), sire $120 \times 80 \times 25 \mathrm{~mm}$

POWER AMPLIFIER KIT

The kit includes all meta|work, heatsinks and hardware to house any two of our power amp modules plus a power supply. It is contemporarily styied and its quality is consistent with that of our other products. Comprahensive supply. It is contemporarily styied and its quality is consistent with that of our other products.
instructions and full back-up service enabfes a novice to build it with confidence in a few hours.

OWER AMPLIFIER MODULES $\begin{array}{ll}\text { CE } 608 & 60 \mathrm{~W} / 8 \text { ohms } 35-0-35 \mathrm{~V} \\ \text { CE } 1004 & 100 \mathrm{~W} / 4 \mathrm{ohms} 35-0-35 \mathrm{y}\end{array}$ CE 1008 100W $/ 8$ ohms $4500-45 \mathrm{v}$ CE $1704170 \mathrm{~W} / 4$ ohms $45-0-45 \mathrm{v}$
CE $1708170 \mathrm{~W} / 8 \mathrm{ohms} 60-0.60 \mathrm{v}$
TOROIDAL POWER SUPPLIES
CPS for $2 \times$ CE 608 or $: \times$ CE 1004
CPS 2 for $2 \times$ CE 1004 or $2 / 4 \times$ CE 608
CPS3 for $2 \times$ CE 1008 or $1 \times$ CE 1704
CPS4 for $1 \times$ CE 1008
CPS5 for $1 \times$ CE 1708
CPS 6 for $2 \times$ CE 1704 or $2 \times$ CE 1708

heatsinks

Light duty $50 \mathrm{~mm} .2 \mathrm{C} / \mathrm{W}$
Medium power. 100 mm , i 4 CJW
Disco/group. $150 \mathrm{~mm} .11 \mathrm{C} / \mathrm{W}$
Fan 80 mm state 120 or 240 v
Fan mounted-on iwo drilled 100 mm hearsinks.
2.x $4 \mathrm{C} / \mathrm{W} .65 \mathrm{C}$ max with two 170 W modules

THERMAL CUT-OUT, 70 C

Distributor
Minct Teleprodukte
Box 12035
Box 12035
$\mathrm{~S}-75012$
$\begin{array}{ll}\text { S. } 75012 \\ \text { Uppsala } \\ & 12\end{array}$
Uppsola
Sweden

CRIMSON ELEKTRIK

IA STAMFORD STREET, LEICESTER LE1 GNLL. Tol. (0533) 537722

Write for specific quote Send large SAE or 3 international ReplyeCoupons for detaited informaino

\section*{Car Audio
 Manual MW/LW
 | 96 |
| :---: |
| \%ma |
| ($\begin{array}{r}\text { ¢1.00 } \\ \hline \text { Post }\end{array}$ |

 MW/LW
 One LW, four MW buttons plus manual
tuning Complete with speaker and mountings. Latest model, negative chassis only.
}

Stereo Speaker Set

Suitable for above stereo unit. Good quality in surface mounted casing. 5 W nominal, 8W peak.

£3.95 (pair) + 70p Post

Telescopic Car Antenna
Multi-section standard type, suitable for angled mourting with locking key

£1.60 + 30p Post

Matal Detectors

All goods guaranteed one year 10 -day money-back offer. Goods
ex-stock at time of going to press Callers by appointment only please.

Minikits Electronics Ltd. 6d Gleveland Road S. Woodford

London E18 2AN

audiophile

Abstract

Not strictly news this month. Views. Readers views. Most of the letters to Audiophile are 'upgrading' enquiries. Most but not all - some of the more interesting appear below, presided over by Ron Harris.

THIS MONTH IT'S over to you. With all the letters that have come in to Audiophile since it began I thought it was about time some of them saw the light of print. The selection is taken over about three months, and I hasten to add that all have been answered prior to this public pondering.

As you can see we get quite a varied mailbag to put it mildly, but still not enough of you are writing (to ETI in general) for our liking. Let's have more feedback please. Mind you the two gentlemen who wrote in to ask who this Felicity Kendal is anyway have not been answered. After the
sedatives had calmed my outrage, and the expletives died from the air, it was somehow still not possible for me to compose a reply within Home Office rules.

Time has passed, however, and has healed the wounds in passing. (And wounded the heels I hope.). So gentlemen, let me state the obvious in as calm a manner as possible. Felicity Kendal is quite simply the most beautiful woman in the universe. Write it out 1000 times before one more copy of ETI reaches your unworthy hand.

Anyway onto more sonic matters

BAD START?

Dear Sir,
I own a hi-fi system comprising a Garrard SP25 Mk.5, Goldring G800, and 'home brew' amp and speakers. The loudspeakers are comprised of twin-coned Fane bass units and a pair of EMI drivers for mid and top.

I should like to upgrade this system, and wonder what would be the first thing you'd do?
J. WATERS

FAVERSHAM
Sellit.

STEAM VALVE

Dear Sir,
Some time you (ETI) published a series of articles on the subject of valve sound in amplifiers. A friend recently brought these to my notice and it surprised me that an otherwise modern magazine like what ETI is known for should be backing this old-fashioned nostalgic rubbish. Do you really believe that valves sound better than transistors? Of course they can't! Why did we ever change if they do?

I suggest you set yourselves a
listening test and then have the courage to publish the results!
W. WITHERS, M.Eng.

PERTH
Hold it a minute mush.
Somewhere amid the prejudices I think you express the opinion that ETI is pro-valve. If this is indeed the message, then it is mistaken. To condemn a whole technology in such sweeping terms, be it valve or transistor, is akin to running down football because the All Blacks beat Liverpool at hockey. (Think about it.)

My own opinion is that the best of the solid state designs give a more accurate representation of the signal than do the top vacuum tube units. Beyond that yer pays yer money and takes yer choice

BARK DISTORTION

Dear Sir,
I am writing to tell you (and your readers if you should choose to print this) and the great fun we used to have in the 'Old Days' of hi-fi. My very first gramophone used to use wooden needles, pine I think, which wore out very quickly, but gave (to me) amazing tone. Somehow nowadays it never sounds as good as I remember it
being then. Are there any of your "more mature" readers who'd care to correspond with this old'un about the early days? Anyone remember shellac?
F. NEWTON

MANCHESTER
I can't resist this:- the pitch in pine sounded fine eh? In apology for that, if any readers care to write to Mr Newton via Audiophile, I will pass on the epistles.

EAT YOUR HEART OUT

Dear Sir,
ETI hi-fi reviews!?! How come? Not a bad idea but stop ignoring the budget end of the business. We also play records who stand and drool (at SME's) you know.

Also let's see yer credentials Mr Harris - wots yer reference system? Reveal all and get rid of these evil thoughts telling me it's a wind-up job from Woolies! Keep up the reviews but more radio? It still exists you know.
D. ALEXANDER

LONDON
You keep your hands off my credentials, they've never hurt anyone and are certainly not to be revealed within the pages of ETI. I didn't get where I am today going
around revealing me credentials.
As for reference system that consists of:- Technics SL150 Mk.2, SME 3009 Mk.3, Goldring G900SE Mk.2, Shure V15 Mk.4, Lecson AC1 and AP3 Mk.2. Pioneer TX9500 Mk.2, Celestion Ditton 66 loudspeakers and Sony EL7 Elcaset (for as long as they let me hang onto it!) Occasional use is also made of Ultimo 20 and Coral' 777 EX moving coil cartridges. The Technics is fitted with a GA Audio glass turntable mat, and for headphones I use Koss Pro 4AAs or ESP10s as the occasion demands. My budgie has a green beak and my plants all died last week.

Revealing enough?

QUADRUPLE QUERY

Dear Sir,

Please could you explain some terms I keep reading in hi-fi magazines (including yours) and that no one has ever explained? These are 1) Selectivity 2) Modulus 3) Dynamic Range 4) Musicality. Also I wish to upgrade my Quad $33 / 303$ set up for more power and would welcome suggestions. Thank you.

> H. COHEN
> STOKE

Easy ones first. A new amplifier to replace a Quad. Since you give very little information as to speakers, cartridge, room size etc etc I'm gonna have to assume that all you seek is a more powerful version of the same thing! In which case why not try the Quad 405 as a starting point? If this fails to appeal, and funds allow, cast an ear over units by Lecson. Meridian and maybe the Sony VFET designs.

Now to the definitions you requested. Quite a mixed bag this little lot. Ah well here goes:1) Selectivity (of tuners):-the ability of the machine to discriminate against signals on adjacent channels ($\pm \mathbf{2 0 0 k H z}$) to the one you're trying to tune to. Good selectivity is a must with sensitive tuners.
2) Modulus:-Presumably you spotted this lying next to the word impedance. Otherwise it must have been a maths book. In literal terms modulus means "size
of"', ignoring positive and negative aspects. Phase differences can make impedance (resistance to passing a signal) difficult to express simply. Non-mathematically it is best just to regard modulus as meaning 'magnitude of' but remember there is more to it!

Mathematicians please don't write in $-z=x+i y=r(\cos \theta+i \sin \theta)$
$\bmod z=/ z /=r=\sqrt{ } x^{2}+y^{2}$
ОК?
3) Dynamic Range:-the difference, in dB, between the softest and loudest sounds reproducible by the hi-fi under discussion. For example a cassette with 20 dB of tape noise, and on which compression sets in at 70 dB , has a dynamic range of 50 dB .
4) Musicality:-oh what a lovely word! Whichever gnomic intellect invented it has my
congratulations. The really nice thing about it is that NO-ONE knows what it means! Currently it is employed (I think) to express the amount of 'information retrieval' a system is capable of. Earlier in its history it was simply a word reviewers used to mean 'nice' with exactly the same amount of precision as the word implies. Next week it could be describing how satisfying a crunch is generated in the destruction of a piece of toast. Musical Mothers Pride?

EH?

Dear Sir,
I strongly feel that transient intermodulation distortion and slew rate limiting together with uneven harmonic distribution are the total reason for the so-called 'transistor sound' in modem amplifiers. Do you agree?

> M. DAWES
> SWANSEA

My answer lies entirely within the negative quadrant of the sphere of communication.

ALL AT SEA

Dear Sir,

As a regular subscriber to ETI, I am writing to express my protest at ETI's hi-fi content. If I wanted to read about hi-fi I would buy hi-fi magazines, God knows there are enough of them.

What ETI should be doing is more articles explaining how circuits work, so that your readers can design them themselves. And how about more circuits for us boating enthusiasts?

S. McGREGOR
 LONDON

How did you get on this page?

[^3]ETCH RESIST TRANSFER KIT SIZE 1:1
Complete kit 13 sheets 6 in $\times 41 / 2 \mathrm{in}$ £2.50 with all symbols for direct application to P.C. board. Individual sheets 25 p each. (1) Mixed Symbols (2) Lines 0.05 (3) Pads (4) Fish Plates and Connectors (5) 4 Lead and 3 Lead and Pads (6) DHLS (7) BENDS 90° and 130° (8) 8-10-12 T.O.5. Cans (9) Edge Connectors 0.15 (10) Edge Connectors. 0.1 (1.1) Lines 0.02 (12). Bends- 0.02 (13) "Quad in Line.
FRONT AND REAR PANEL TRANSFER SIGNS
All standard symbols and wording. Over 250 symbols, signs and words. Also available in reverse for perspex, etc. Choice of colours, red, blue, black, or white. Size of sheet $12 \mathrm{in} \times$ 9in. Price $£ 1$.
GRAPHIC TRANSFERS
WITH SPACER
ACCESSORIES
Available also in reverse lettering, colours red, blue, black or white. Each sheet 12 in . x 9 in contains capitals, lower case and numerals $1 / 8$ in kit or $1 / 4 \mathrm{in} \mathrm{kit}. \mathrm{£1}$ complete. State size.
All orders dispatched promptly.

All post paid

Ex U.K. add 50 p for air mail
Shop and Trade enquiries welcome Special Transfers made to order

E. R. NICHOLLS

P.C.B. TRANSFERS DEPT. ETI 5
46 LOWFIELD ROAD STOCKPORT, CHES. 061-480 2179

FLUKE DIGITAL

MULTIMETERS FROM KRAMER \& CO.
Model 8010A/8012A

8010A/8012A
Both models include: $=31 / 2$ digit LCD readout - True RMS measurements 0.1% Accuracy +1 digit e Current ranges from $200 \mu \mathrm{~A}$ to 2A (8012A) or 10A conductance ranges for leakage test \square Fully overload and transient protected.

Model 8020A HANDYMETER

$£ 112$

inc. P\&P \& VAT

FLUKE 8020A HANDYMETER

- Large easy to read $31 / 2$ digit LCD display
- 26 measurement ranges for $A C / D C$ volts. amps ohms and conductance.
- 0.25% VDC accuracy over 1 year
- High power and low power ohms capability.
- Measure to $10,000 \mathrm{Mn}$ using two conductance ranges
- Fully protected to 250 V on all ranges
- Protected against transients up to 6 KV for 10μ secs

KRAMER \& CO.
 9 October Place, Holders Hill Road

London NW4 1EJ. Telox: 888941 mttn. Kramer k7. Tel: 01-203 2473

THE NORTH'S

 PREMIER
AMATEUR RADIO \& ELECTRONICS EVENT!

Northern Radio Societies Association

RADIO \& ELECTRONICS EXHIBITION

 bELLE VUE MANCHESTERSunday, 22nd April, 1979
Doors open at 11 a.m.
» Inter-Club Quiz
\star Construction Contest
\star RSGB Bookstall
\star Grand Raffle
\star Amateur Computer Club Stand

* Radio Societies Stands
* Home Office \& Raynet Exhibits
\star Club Stand Trophy
* Over 50 trade stands featuring radio equipment, Micro-processors, personal computers and components.
* Ample car parks and funfair for the family!

Talk-in for FM mobiles via GB3NRS and G8NRS / A on 145 MHz chs. S22 R2 and R6 and on 433 MHz chs. SU8 RB4 and RB14.

Enter at rear of Belle Vue, opposite main car park off Hyde Road, A57.

The professional scopes you've always needed.
 When it comes to oscilloscopes, you'll have to go a long way to

Super 6
£162.00 plus VAT

equal the reliability and performance of Calscope
Calscope set new standards in their products, as you'll discover when you compare specification and price against the competition The Calscope Super 10, dual trace 10 MHz has probably the highest standard anywhere for a low cost general purpose oscilloscope. A 3\% accuracy is obtained by the use of stabilised power supplies which cope with mains fluctuations.

The price £ 219 plus VAT
The Super 6 is a portable 6 MHz single beam model with easy to use controls and has a time base range of $1 \mu \mathrm{~s}$ to $100 \mathrm{~ms} / \mathrm{cm}$ with 10 mV sensitivily. Price $£ 162$ plus VAT Prices correct at time of going to Press CALSCOPE DISTRIBUTED BY
Marshalls Electronic Components, Watford Electronics,
Kingsgate House. 33-35 Cardiff Road, Kingsgate Place. Watford, Herts. London. N.W.6. Tel: 092340588

Audio Electronics, 301 Edgware Road, London W. 2. Tel: 01-724 3564 (Personal Shoppers)

Maplin Electronics Supplies Ltd P.O. Box 3

Rayleigh, Essex
Tel: 0702715155
Mail Order
£219.00 plus VAT

Semiconductor Guides.

IC-lin 1
Linear operationa
Data and c
for integrated op amps and
comparators. 2 nd edition. DIN A6 compact format.
288 pages, types.
functions, applicationa
examples, 152 connection
drawings. 48 case
drawings.
Order No. 110-008-8
ISBN 3-88109-0

THT 77
Data and comparisòn table for thyristors, tetrodes trigger diodes, triacs, uniunction transistors (JJTs) and programmable UJTs (PUTs)
2nd edition, 430 pages listing 1,440 types and Order No 20 entries ISBN 3-88109-009-6

```
To Technical Book Services
```



```
\(\left\lvert\, \begin{aligned} & \text { Name } \\ & \text { (Print Please) }\end{aligned}\right.\)
Address
Registered office 21 Mincing Lane. London. EC1 Registered No 12225
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
TYPE \\
TVT78 A.Z \\
TVT782N \\
THT77 \\
LIN 1
\end{tabular} & \[
\begin{aligned}
& \text { PRICE } \\
& £ 4.00 \\
& £ 4.00 \\
& £ 4.00 \\
& £ 360
\end{aligned}
\] & £. & p & \begin{tabular}{l}
ALSO \\
DTE1 \\
DTJ5 \\
DVT \\
DTE2 \\
DIGI
\end{tabular} & \begin{tabular}{l}
AVAILABLE \\
Data book. European Transistors \(\quad\) C2 30 \\
Data books. Japanese Tran- \\
sistors \(\square\) \\
Diode Equivalent Book \\
Diode Data Book \(\quad 1230\) \\
Digital I.C. Equivalent 8 ook
\end{tabular} & 6 & \\
\hline
\end{tabular}
```


a digitizer adds another dimension

The Bit Pad computer digitizer converts graphic information into digital form for direct entry into a computer. By touching a pen like stylus or a cursor, to any position on a drawing, diagram, photograph, or other graphic presentation, the position co-ordinates are converted to digital equivalents.

- Bit Pad interfaces with almost any micro computer.
- Bit Pad consists of a 15" sq. digitizer tablet (11" sq. active area), a stylus, and a controller cabinet.
- Bit Pad costs only f450 (excluding VAT) Fill in the coupon and we will send you full information and details.

Terminal Display Systems Ltd., Hillside, Whitebirk Industrial Estate Blackburn B81 5SM, Lancs, England
「Send 10: Department CP E T, Terminal Display Systems Ltd. Hillside. Whitehirk Industrial Estate -7 | Blackhurn B81 5SM, Lancs, England
Name
| Address

Whistling Switch

R. C. W. Gate

The circuit acts as a remote control switch, activated by whistling a high note and reset by a low note

The input from the microphone is amplified by IC 1 and then processed by two notch filters. The outputs of these are rectified and smoothed and used to fire the Schmitt trigger constructed from two operational amplifiers, IC's 6 and 7. The output points A and B can be used separately to drive other logic functions provided that if high impedance logic is used a 10 k resistor is placed in parallel with the 470 uF capacitor at these points.
 C1 and R1

443A Millbrook Road, Southampton SOI OHX
Tel: (0703) 772501
All prices quoted include VAT. Add 25p UK, BFPO Postege. Most ordera despatched on dey of receipt. SAE with enquiriee ploase. MINIMUM ORDER VALUE E1. Esperial ordara accepted from schools, etc. (Minimum in voice charge £5). treders \$yplut componente sways wamed. Prices in this edvertisement yolid until 31/5/78; 100 + prices are per value and may not be mixed.

RESISTORS

1/4W 5\% Carbon film 1R-1OM E24 series. 1-99 1 1/2p; 100-99 1p; $1000+0.7 p$.
1/2W 2\% Metal Oxide 10R-1M E24 series. 1-99 6p; 100 + 4p. 1/4W 1\% Metal Glaze 1R-1 M E24 series. 1-99 10p: $100+71 / 2 p$. (add 20\% for values under 10R and over 510 k) 1W 5\% Carbon Film 4R7-10M E12 series. 1-99 3p; 100+21/4 p.
WIREWOUND

Watts	Range	$1-99$	$100+$
1	OR22-1k8	$\mathbf{7 p}$	$41 / 2 p$
$21 / 2$	OR22-15k	$9 p$	$6 p$
5	OR47-33k	$12 p$	$9 p$
$7 / 8$	2R-22k	$14 p$	$101 / 2 p$
$9 / 10$	OR4-60k	$16 p$	$121 / 2 p$
15	1R-75k	$18 p$	$141 / 2 p$
(Full list of values in cat)			
POTENTIOMETERS			

Lin or Log less switch 1 k -2M2 26p each. Dual 1 in or log less switch 4k7-2M2 79p each. Log + DPSW trols. $3 \mathrm{~W} \mathrm{w} / \mathrm{w}$ splined shaft: 20 R 50 R 100 R or 200R 37 p each $100+$ 26 p.

CAPACITORS
Value ceramic, 5% up to 1000pF $1.5-1000 \mathrm{pF} \quad 3 \mathrm{p} \quad 100+$ 1500-.047 4p 2.8p
100V MYLAR, E1 2 series Value
$.001-.0082 \mu$ $.01-.1_{\mu}$.15
$.22 \mu$ $.33 \mu$ 250 V polyester Value $.1-.22$
.33 .47
.68 1.0
1.5 $\begin{array}{ll}1.5 & 26 p \\ 2.2 & 32 p\end{array}$ 32p
39p 49p
63p

ELECTROLYTICS

25V: $0.4712 .2,3.3 .4 .7,10.15$ 22. 23. 47μ 7p; 100 μ 8p; 150μ 10p; 220 μ 12p; 330μ 15p; 470μ 19p; 1000 μ 26p; 1500 31 1p: 2200 μ : 38p; 3300 $51 p ; 4700 \mu$ 60p; 10000μ can $87 \mathrm{p} ; 40 \mathrm{~V}: .471 \mu$ 7p; 2.2, 4.7.10.15. 22 1 8p; 47μ 8p; 100 ${ }^{2}$ 11p; 150μ 13p; 220μ 15p; 330μ 20p; 470μ 24p; 1000μ 34p; $1500 \mu 45 \mathrm{p}$; 2200μ 60p; 4700 ${ }^{\mu}$ 72p. 63V: 1. 2.2 μ 8p; 4.7μ 9p; 10μ 10p; 22 $\mu 11 \mathrm{p} ; 47 \mu$ 12p; 100 μ 13p; 220 μ 18p; 470μ 26p; 1000 $\mu^{51 p ; 2200 \mu 78 p ; ~ 4700 \mu}$ can 220p.
$100+$ of any one type, less 25%

TANTBEAD CAPS

				ragrance
Value	volts	1.99	$100+$	This novel kit contains everything you need
0.1-1 μ	35	12p	7p	to make one of the most advanced air
1.5μ	35	12p	$71 / 2 p$	fresheners of its kind. Styled to take its place
2.2μ	35	12p	8 P	in any room in your home and do its job
3.3μ	35	12p	$81 / 2 p$	quietly and unobtrusively. The automatic timing circuit switches on a
4.7μ	35	14p	91/2p	fan for a few seconds at regular intervals to
6.8μ	35	14p	$10^{1 / 2} \mathrm{P}$	send an odour neutralising fragrance into
10.0μ	35	14p	$11^{1 / 2} \mathrm{P}$	every corner of your room
15μ	20	14p	$111 / 2 \mathrm{P}$	The kit includes components for a 4 -minute
22μ	16	14p	$11^{1 / 2} \mathrm{P}$	timing circuit. minıature D.C. motor and
33μ	10	14p	$111 / 2 \mathrm{p}$	moulded parts in high impact styrene to provide an easily maintained, elegant
47μ	6	14 p	$11^{1 / 2} \mathrm{P}$	appearance
68μ	3	14p	$11^{1 / 2} \mathrm{P}$	Initial Gel Freshener provided FREE
100μ	3	14p	$111 / 2 \mathrm{P}$	further fresheners 48p each.

PRESETS

Min 0.1 W vert or horiz mntg 100R 4M7. 1-99 7p; 100 + 41/2 p. Std 1-99 9p; 100 + 6p.

POPULAR SEMICONDUCTORS

Type	1.99	$100+$
741	18p	$14^{1 / 2} \mathrm{p}$
555	25p	$191 / 2 p$
556	55p	49p
BC107	9p	7p
BC108	8p	$61 / 2 \mathrm{P}$
BC109	9p	7p
. 125 Red LED	11p	$81 / 2 p$
. 2 Red LED	14p	10p
76003 N	160p	100p
76013 N	130p	85p
76023N	130p	85p
76033N	160p	100p
1 N4148	2p	1.3p
1 N 4003	4p	2.9p
1 N4007	7p	4.9p

1979 CATALOGUE 64 BIG PAGES!!

FEATURES INCLUDE:

* Quantity prices for bulk buyers onLY * Reply Paid Envelope * Priority Order Form

30p

ELECTRONIC AIR

 FRESHENER KIT

- Battery operated

- Raplaceable fragrance Continuous airfreshening
- Roburt construction Mimple to service fion allows fast easy raplacement of berteries and fragrance

This novel kit contains everything you need to make one of the most advanced air fresheners of its kind. Styled to take its place quietly and unobtrusively fan for a few seconds at regular intervals send an odour neutralising fragrance into every corner of your room timing circuit. miniature D.C. motor and provide an easily maintained, elegan appearance further fresheners $48 p$ each

SINTEL SOME 74LSPTL NOW AVAILABLE PLEASE SEND FOR LIST

NEW PRICES ĀND SOME NEW CMŌS̄ AODDITIONS If you need your CMOS by return - buy it from SINTEL									
C04000	0.15	CD4027	0.44	CD4051	0.82	CO4086	0.44	CD40182	1.40
CD400 1	0.17	CD4028	0.77	CD4052	0.82	CD4089	1.39	CD40192	1.40
CD4002	0.17	CO4029	1.03	cD4053	0.82	CD4093	0.80	CD40193	1.40
CD4006	1.04	CD4030	0.50	CD4054	1.04	C04094	1.69	CD40194	1.10
CD4007	0.18	C04031	2.00	CD4055	1.18	CD4095	0.94	CD40257	1.48
CD4008	0.87	C04032	0.85	CD4056	1.18	CD4096	0.94	CD4502	0.81
CD4009	0.50	CD4033	1.25	CD4059	4.29	CD4097	3.35	CD4510	1.01
CD4010	0.50	CD4034	1.71	CD4060	1.00	CD4098	0.98	CO4511	1.25
CD4011	0.18	CD4035	1.08	CD4063	0.98	CD4099	1.65	CO4514	2.47
CD4012	0.20	C04036	2.85	CD4066	0.55	CD40100	2.50	CD4515	2.82
CD4013	0.43	CD4037	0.85	CD4067	3.35	CO40101	1.61	CD4516	1.01
C04014	0.83	C04038	0.96	CD4068	0.20	C040102	2.13	CD4518	0.97
CD4015	0.83	CD4039	2.78	CD4069	0.20	CD40103	2.13	C04520	1.04
CD4016	0.48	CD4040	0.97	CD4070	0.46	CD40104	1.10	CD4527	1.43
CD4017	0.76	CO404 1	0.75	CD4071	0.20	CD40105	1.06	CD4532	1.21
CD4018	0.83	C04042	0.69	CD4072	0.20	CD40106	0.62	CD4555	0.78
CD4019	0.50	CD4043	0.88	CD4073	0.20	CD40107	0.69	CD4556	0.78.
CD4020	1.11	CD4044	0.84	CD4075	0.20	CD40108	5.38	MC14528	0.83
C04D21	0.80	CD4045	1:28	CD4076	1.17	CD40109	1.03	MC14553	4.43
CD4022	0.82	CD4046	1.20	CD4077	0.39	CD40160	1.18	IM6508	8.05
CD4023	0.18	C04047	$0.8{ }^{\circ}$	CD4078	0.20	CD40161	1.18		
CD4024	0.70	CD4048	0.50	CD4081	0.20	CD40162	1.18		
CD4025	0.20	C04049	0.50	CD4082	0.20	CD40163	1.18		
CD4026	1.5	CD4050	0.43	CD4085	0.64	CD40181	3.40		

For our full range of components send for Free Cetelogue
Our̄offices are at Chapel Street, Oxford, but please do not use this as a postal address offictal orders are welcome from Compenies. Govt. Depts. Natn. Inds
 p\&p minimum charge (the bslance will be charged at cost). Please see FAST SERVICE EXPORT ORDERS welcome,
no VAT but add 10% (Europe). 15% (Overseas) for Air Mail p\& . For Expon portage rates on heavy items - convact no Vat b
ORDERSTO: STNTEL, P̄O BOX 75A, OXFORD Tel: 086549791
AST SERVICE: We guarmitae thant Tolephone Ordore for goods in stock, recsived by $4.15 \mathrm{p} . \mathrm{m}$. (Mon. Fri.) Whi bo remi by percel post) mod, our stocking lo pood. Private austomers should redophone and pay by ofiving their Accese or SINTEL

3
 Wilmslow Audio

THE firm for speakers!

Send 15p stamp for the world's best catalogue of Speakers, Drive Units, Kits, Crossovers, etc., and discount price list.

AUDAX BAKER BOWERS \& WILKINS CASTLE CELESTION CHARTWELL COLES DALESFORD DECCA EMI EAGLE ELAC

FANE GAUSS GOODMANS I.M.F. ISOPHON JR JORDAN WATTS KEF LEAK LOWTHER McKENZIE MONITOR AUDIO PEERLESS RADFORD RAM RICHARD ALLAN SEAS TANNOY VIDEOTONE WHARFEDALE SHACKMAN AUDIOMASTER TANGENT STAG YAMAHA

WILMSLOW AUDIO Dept. ETI

SWAN WORKS, BANK SQUARE, WILMSLOW CHESHIRE SK9 1HF
Discount HiFi, etc., at:
5 Swan Street and 10 Swan Street
TEL. WILMSLOW 529599 FOR SPEAKERS
WILMSLOW 526213 FOR HI-FI

PHOTODIODES
1N2175

Fibre Optic Bass Guitar

J. Smith.

This item is in effect a simple musical instrument. It consists of a number of short lengths of plastic monofilament fibre optic material arranged in such a way that when a fibre is touched then released it vibrates at its own natural resonant frequency (like a ruler twanged on the edge of a desk). When in a light beam supplied from a torch battery the vibrating end sends sine wave impulsed along the fibre, at the fixed end there is a photodiode which with suitable circuitry feeds a signal to a normal audio amplifier. The sound produced is similar to that obtained using a tea chest, piece of string and Broom handle, remember those days? Thickness of the fibres and length are not critical and it is best to experiment to obtain the sound that pleases the constructor. The fibres need be no longer than about $60 \mathrm{~m} / \mathrm{m}$. Remember the shorter they are the higher the note produced.

on orders under $£ 5.00$

H \& S ELECTRONICS

West Norwood, London SE27 OUN Tel: 01-7613614

SECOND

GENERATION INDUCTION BALANCE METAL DETECTOR DESIGNED SPECIALLY FOR THE HOME CONSTRUCTOR EASYTO BUILD EASYTO USE

enifuction

 Variable-Tone detection. - Designed by professional for easy assembly. by ampleurs but with very good performance. The The search coils a anysted for rou. reiects ground refects
effect.

ASSEMBLED \& TESTED

Communication Measurement Ltd 15 MALLINSON OVAL, HARROGATE. YORKS

APRIL FOOL

7409 N 10p, $£ 8-100,7460 \mathrm{~N}$ 10p, £8-100 74109N 15p, £12-100, 74155 35p, Min Order 10 of one type $-100+$ POA p/p 20p

IS423 STUD MOUNTING RECTIFIERS 10A 400 V . Silly price. 19 for $£ 2 \mathrm{p} \& \mathrm{p} 20 \mathrm{p}$

MC1303L. Dual Stereo Preamp, plus data $£ 1$ p\&p 20p.

7in NYLON CABLE TIES 100 for $£ 1.50$ psp 20p. Cannon 25 way male or female with cover plus 2 metres 25 way cable assembled $£ 2.50$ each plus p\&p 20p

ML723 (TO100). Monolithic adjustable vol tage regulator. Plus or minus $2 v-6 v, 6 v-8 v$ $8 v-37 v$ to 150 mA plus data 55 p p\&p 20p

TRIMPOTS 50Ω TO5 20p, 100Ω Cermet 20p. 100Ω Painton PCB 20p, 200』 ditto 20p, 250Ω ditto $20 \mathrm{p}, 500 \Omega$ ditto $20 \mathrm{p}, 1 \mathrm{~K}$ ditto $20 \mathrm{p}, 2 \mathrm{~K}$ ditto 20p, 2K Helitrim 20p, 5K PCB 20p, 1 M skeleton min vert. $12 p \mathrm{p} / \mathrm{p} 20 \mathrm{p}$.

CANNON D-TYPES. Only ones left: 15 way socket 50 p, 37 way plug 80 p, 50 way socket $£ 1.20,50$ way wire wrap socket $£ 1.30,25$ way ribbon plugs 90 p. Cinch 25 -way plastic cover 60p, Metal cover and retainer 80p. P/P 20 p.

NEW SN76477 sound generator IC (train. plane, explosion, phaser gun etc.) with data £2.80 + 20p P/P

MICROSPEECH Speech Synthesiser board (assembled and tested, British made) single PCB, plugs directly into a SWPTc 6800 buss. The package offered consists of PCB MSP software on floppy disc, hardware and software manual. Will interface to other systems - leaflet s.a.e. and details of MPU being used £320 inclusive.

SUPERSAVER 1 Price smash - 10K multiturn electratrim panel mounting pots, 6 for £1, p\&p 20p.

SUPERSAVER 2 Hybrid Systems DAC 371 -8 (8-bit) DIL packaged + data, ideal MPU users, brand new £2 price smash! now £1.75 each (fraction of original cost) p/p 20p.

SUPERSAVER 3 IR Bridge rectifier type 12 T 20T (12 amps 200V) 3 phase or single phase. $95 p$ plus p\&p 20p.

MEMORIES $2708 £ 6-85,2102$ (Signetics) £1. $1702 \mathrm{~A} £ 2.95,2513$ (upper case) $£ 4.65$, Mostek MK4012N (1024 x 1), few only, 68p, $\mathrm{p} / \mathrm{p} 20 \mathrm{p}$.

SUPERSAVER 4. RS338-383 miniature decade thumbwheel switch $£ 1.35 \mathrm{p} / \mathrm{p} 20 \mathrm{p}$

9-WAY MALE/FEMALE connector (Elco 8129) 0.1 inch pitch, PCB mounting ideal for bussing two PCBs together $35 p /$ pair $p / p 20 p$.

LEDS (red) TIL 209 9p, 0.2 10p, Vernitron Ceramic filters FM-4 10.7MHz 45 p, BD 236 40p, 2N3055 (TI) 40p, BC183L 10p, BC213L 10p, BF 195 10p. 2521 V (Dual 128 bit static shift register 65 p), RS 12-0-12 50 mA subminiature transformer £1.35, suitable clock IC £3.25. TMS3128NC (static shift reg) £1.25, LM 711 CH TO-99 (Voltage comparator) 25p FPE 100 infra red emitter + data $15 p$ MM5314 E2.95. DIL SWTS 4 way 60 p TBA810S + DATA $65 p$

P/P 20p

All enquiries, Sae please, Cat. SAE 8×6 or free with goods. P/P same for quantities except where greater than £1.

Rush orders as some stocks are limited
L. B. ELECTRONICS

43 WESTACOTT, HAYES
MIDDLESEX UB4 BAH, ENGLAND

WORE SCOPE FOR YOUR MONEY

ELECTRICAL DATA
VERTICAL AXIS (Y) Deflection Sensitivity - 100 m $V /$ division. Bandwidth (between 3 dB points) - DC 5 MHz . Input Attenuator - (calibrated) - 9 step 0. $0.2,0.5,1,2,5,10,20,50 /$ div. Input impedance -1 Mea / 40 pf in shunt Input Voltage - Max - 600 V P.P. HORIZONTAL AXIS (X). Deflection Sensitivity $0.400 \mathrm{mV} /$ division. Bandwidth (between 3 dB points $1 \mathrm{~Hz}-350 \mathrm{KHz}$. Gain Control - Continuous when time bases in EXT position. Input Impedance - 1 Meg . Input Voltage - Max - 500 V P.P
TIME BASE. Sweep Range (calibrated) $-100 \mathrm{msec} / \mathrm{div}$
to 1μ sec $/ \mathrm{div}$ in 5 steps. FINE Control -Variable to 1μ sec/div in 5 steps. FINE Control - Variable between steps - includes time-base calibration pos tion. Blanking - Internal - on all ranges.
SYNCHRONISATION. Selection - Inte
Synchronisation Level - Continues from positive to
negative.
POWER SUPPLY, Input voltage $-115 / 200 \mathrm{~V}$ AC士 10% at $50 / 60 \mathrm{~Hz}$ Power Dissipation - 18W
CRT DATA - 4 in - flat face, single beam. $\overline{0}$
Maximum high voltage -1.5 kV . - Fitted with 8×10 division blue filter graticule
PHYSICAL DATA Dimensions $-15 \mathrm{~cm}(\mathrm{~h}) \times 20$ $5 \mathrm{~cm}(\mathbf{w}) \times 28 \mathrm{~cm}(\mathrm{~d})$ Weight $-4.3 \mathrm{Kg}($ approx.) Stand -2 position flat and inclined Case - Steel, epoxy ename: led. Front panel - Aluminium enamelled epoxy prin-
ting.
(As recommended by ETt) $\begin{array}{ll}\text { ting. } & \text { (As recommended by ET4) } \\ \text { Cash with onder } & \text { Test leads evailable E2.00 }\end{array}$ c 99 (+ £7.92 VAT + Berciay and Access E1.50 Carriage

. DC to 10 MHz bandwidth
10 mV to $50 \mathrm{~V} / \mathrm{cm}$ in $12^{\text {c }}$ calibrated steps
$0.5 \mu \mathrm{~S}$ to $0.1 \mathrm{Sec} / \mathrm{cm}$ sweep range in 6 calibrated

- Magnifier $\times 5$

Fully automatic trigger

- DC to 1.5 MHz horizontal bandwidth.
- Fastest sweep $10 \mathrm{~ns} / \mathrm{cm}$ with Magnifier

Sensitivity: $<1 \mathrm{~cm}$ deflection 10 Hz to $>15 \mathrm{MHz}$ L.F trigger extends below 5 Hz with 2 cm deflection. Trigger circuit locks to the mean value of the displayed waveform. It will lock to almost any waveshape including sine, square, triangle, pulse and TV video signals. When no signal is present to reperimion rate is below SHz the trace free runs producing a bighex.

6 MHz OSCILLOSCOPE 3106B
Similar in appearance to 10 MHz 'scope.
10 mV to $50 \mathrm{~V} / \mathrm{cm}$ in 12 calibrated steps, $0.5 \mu \mathrm{~S} 10$ $0.1 \mathrm{Sec} / \mathrm{cm}$ sweep range in 6 calibrated steps plus 12.1 Vernier. Magnifier $\times 5$. Fully a
Our 3106 B with 1600 v ,
$\mathrm{mv} / \mathrm{cm}$ sensitivity, auto trigger for the full band width and $\times 5$ magnifier giving $1000 \mathrm{NS} / \mathrm{cm}$. Fastest sweep time (equivalent to 15 MHz oscilloscopes). SAE for brochure.
£132 (+ £10.56 VAT)

£246 + VAT

- Internal or externa 400 Hz and 1000 Hz internal modulation 0.100%, con 1000:1 internal sweep range Sweep boundaries are controlled by main function generator frequency dial setting and the Irequency dial setting and the sweep range
sweep width control setting. Auxiliary outpur of
Sweep rate continuously adjust- modulation function able.
Chess Chess Challenger av
Chess Challenger $10 £ 159$. ${ }^{* 2}$.
Gammon Master II (computer backgammon) £124:95

KRAMER \& CO.

9 October Place, Holders Hill Road London NW4 1EJ. Telex: 888941 Mail order only. Callers by appointme

Telephone Amplifier

J. P. Macaulay

One of the most frustrating things in life must be to wait in line whilst one's wife converses (nags?) on the phone. What makes the matter worse is that only one side of the conversation is heard. The circuit here will at least enable you to hear what's going on at the other end of the line.

The signals are picked up by the coil L1, a 5 mH RF choke taped to the side of the set. Q1 operates in the common base mode with the output signal appearing across the collector resistor, R4. The output stage consists of two complementary transistors fed from the output of IC1 and included in it's feedback loop

The gain provided by the IC is made variable by the inclusion of R6 and this should be adjusted for a comfortable output level. D1, D2 in conjunction with R7 provides the small but necessary bias required by the output pair.

The interstage capacitor provides a 13 db point in the bass end at 300 Hz .

C5 defines the upper frequency limit of the circuit at 3 khz , the best bandwidth for maximum intelligibility

Quiescert current consumption is less than 5 mA so the circuit can be easily run from a pair of PP3's in series.

Each CP2-15/20 contains two identical amplifiers, each of which can give 20 Watts rms into 4 Ohms (15 W into 8 Ohms). Alternatively the module may be connected to give 40 Watts into 8 Ohms. Protection is provided against short and open circuit loads, reverse supply connection (as all Magnum Modules) and thermal overload. Transient performance is virtually unaffected by loading and free from overshoot and TIM distortion. THD is typically 0.03% at 1 kHz , All this adds up to a versatile and robust amplifier of extremely 'clean' and 'musical' performance.
CP2-15/20 £14.46 incl. (U.к.)

$$
\mathbf{£ 1 6 . 4 6} \text { incl. (export) }
$$

Also available: Pre-Amplifiers, Peak Programme Monitors, Filters, Stereo Image Width Control, Compressor/Expander, Active Crossovers, Power Supplies, Interconnection PCBs, plus all pots, switches, etc.

TREGUTM RUDID Ltd.

DEPT. ET4, 13 HAZELBURY CRESCENT
LUTON, BEDS. LU1 1.DF
TEL: 058228887
SEND LARGE S.A.E. FOR DETAILS

T.C. "BIAS" STABILISED
 POWER SUPPLIES

BIAS 1:
An ideal microcomputer supply
$+5 \mathrm{~V} @ 10 \mathrm{~A},-5 \mathrm{~V} @ 1 \mathrm{~A}, \pm 12 \mathrm{~V} @ 2 \mathrm{~A} . £ 37.04$ BIAS 2:
For all audio and analogue applications
± 12 to $25 \mathrm{~V} @ 3.5 \mathrm{~A}$. £32.41

BIAS 3:

Specifically designed for S 100 systems $\pm 18 \mathrm{~V} @ 5 \mathrm{~A},+8 \mathrm{~V} @ 10 \mathrm{~A} . £ 35.19$ Units supplied in kit form with drilled PCB and all the necessary components, heatsinks, etc All outputs current limited. 240 V a.c. input
Cased, assembled and guaranteed, add $£ 22$
Suitable pre-drilled case, includes switches, indicators, connectors, etc., add £12
Overvoltage protection on all rails, available for kits or assembled units.
BIAS 1 : add $£ 12$, BIAS 2 : add $£ 7$, BIAS 3: add $£ 9$ Tooting Computing 157 Robinson Road London, SW17
Tel. 01-543 1398
P\&P £2.50
(evenings)

PRTA 1 楚象T ELECTRONIC SERVICING LTD.
 PET

WHY BUY A MICRO COMPUTER FROM US? BECAUSE:

1) Established Company trading since 1971
2) Electronic servicing is our speciality.
3) We have in house programmers / systems analysts.
4) We have our own service engineers.
5) We will demonstrate the PET at your premises.
6) We can customise the PET to your requirements.
7) We can arrange finance.
8) We offer, after the three month warranty, an annual service contract from $£ 69.50$.
9) You benefit from our experience of having sold over 150 Micro Computers to industrial, educational and business, personal users.

VISIT OUR SHOWROOM AT:
 34 Chertsey Road, Woking, Surrey

We supply the full range of C.B.M. PET Microcomputers. We also supply:
Dual Floppy Disks
$£ 820$
24 K Memory Boards $£ 320$
All types of Printers
from $£ 450$
All types of Printer Interfaces, Electronic balance Interfaces, Programs from C.B.M., Petsoft, Gemsoft. We also offer a full consultancy and programming service.
We are developing a number of our own business packages for all applications.
Books on Basic, Programming, Interfacing, etc.
Full range of KIMs available.
Tandy and ITT 2020 available.
Maintenance, Hire Purchase facilities as well as ACCESS and BARCLAYCARD available.

Factory: Telephone WOKING 69032/68497/20727. Shop: Telephone: WOKING 23637.

QUESTION?

1. Is your hobby home computing or electronics?
2. Do you understand the application of IC's. Transistors, Diodes, etc?
3. Have you used or applied analogue or digital techniques?
4. Are you applying TTL Logic to your home computer?
5. Are you programming your home computer using simple software techniques?

If the answer is YES to any of these questions then why not consider turning your hobby into a career - applying your knowledge to servicing electronic equipment ranging from basic terminals and data processing machines through to advanced micro-processor systems.
We will train you through to advanced technology at the company training school, fitting the individual in at their own level.
We have vacancies over the whole of the U.K. with the successful applicants working from home, usually in a radius of no more than 60-70 miles.
We supply all tools and test equipment, plus a company car which is available for private use.
If you are interested, then why not contact Mr. C. Mark lew or Mr. D. Simmonds on 0249813771 to discuss your own career opportunities in confidence, or write to:

SUPER-STRIP
 THE UNIVERSAL BREADBOARD

Lektrokit Super Strip SS2

Super Strip accepts all DIP's-as many as nine 14 -pin at a time-and/or TO-5's and discrete components. With interconnections of any solid wire up to 20 AWG. And no soldering. Super Strip has 840 contact points, combining a power/signal distribution system with a matrix of 640 contacts in groups of 5 . Distribution system has 8 bus-bars, each with 25 contact points. Lektrokit's policy is the right product. whatever the project. at the right price. And is s backed by a nationwide network of relailers.
Send for the name of the dealer nearest you-plus'a FREE full-colour catalogue Write to:

LEKTROKIT LTD

ARK, LONDON ROAD FS RG6 IAZ' FARLEY.READ KS RG

01

18430

 $08 \times 080 d$
S．INヨWd07ヨA30 SXUVdS

－әәцuesen6
 pue $\perp \forall \wedge$ to an！snjou！aje saכ！Jd＇aכ！＾Jas lelsod isej Jol Odianboup puas

S6＊カレ

 ulw＇sunoy to ke｜ds！p ılilp g snonulbuoう SIN39 WYYTY 097 II

S6．623

 to kep pue elep so spuoses＇suiw＇sinoy

euxe doc pasinbas 11 xoq 415 deus ןoels ssejuiels alqeasnipe גll $_{4}$ pue asn ıubiu 10）bybiןyoeq oney sjapour ylog

uollesado suiew \wedge Oヤて＇oipes fo pearsui sezznq

OIOVy
y 10070 1VIIIO

әшоэәм sseןle〕
өшоэөм stoןej

$\perp \forall \wedge \% 8+$
9913 JO ヨクI 4 d $M \exists N \exists H \perp \perp \forall M O N$
pıeoq uoisuedxə mey 丬己E ədイıəəノ əれəsseว
10！！uOW へ1 （ $\lrcorner \mathrm{H} \cap) \wedge \perp$ yO」 ヨコVปタヨ⿺NI

！！» loındmojoı！！W $08 Z$
SIIY
yOSS3ગ0чdOyכIw L WOJSVN SHOINGIYISIO OFINIOdA

PCB

This months project boards. Note that the radio control transmitter PCB is copyright Rencom and hence is not shown here.

15 240 Watts!

HY5
Preamplifier

HY30

15 Watts into 8Ω

HY50
25 Watts into 8Ω integral heatsink together with the simplicity of no external components. During the past three years Fidelity modules in the World
FEATURES: Low Distortion - Integral Heatsink - Only five connections - 7 Amp output transistors

- No external components.

APPLICATIONS: Medium Power Hi-Fi systems - Low power disco - Guitar amplifier
SPECIFICATIONS: INPUT SENSITIVITY 500 mV .
OUTPUT POWER 25W RMS in 8』 LOAD IMPEDANCE 4.160. DISTORTION 0.04% at 25 W at
SIGNAL/NOISE RATIO 75 dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$
SUPPLY VOLTAGE $\pm 25 V$ SIZE 105.50 .25 mm
HY120
60 Watts into 8Ω
The HY120 is the baby of I.L.P."s new high power range, designed to meet the most exacting requirements including load line and thermal protection, this amplifier sets a new standard in modular
FEATURES: Very low distortion - Integral Heatsink - Load line protection - Thermal protection Five connections - No external components.
APPLICATIONS: Hi-F. - High quality disco - Public address - Monitor amplifier - Guitar and SPECIFICATIONS:
INPUT SENSITIVITY 500 mV
OUTPUT POWER GOW RMS into 8Q LOAD IMPEDANCE A-16 1 D DISTORTION 0.04% at 60 W at;
1 kHz . +35 V
S .
,
Price $19.01+£ 1.52 \mathrm{VAT}$. P\& P frec
HY200
120 Watts into 8Ω
The HY200, now improved to give an output of 120 Watts, has been designed 10 stand the mos rugged conditions, such as disco or group while still retaining 'rue Hi-Fi performance
FEATURES: Thermal shutdown - Very low distortion - Loadline protection - Integral Heaisink
APPLICATIONS: Hi.Fi - Disco - Monitor - Power Slave - Industrial - Public address SPECIFICATIONS:
NPUT SENSITIVITY 500mV into 82. LOAD IMPEDANCE 4-160. DISTORTIUN 0.05% at 100 W a
 SIGNAL
+45 V SIZE $114 \times 50 \times 85 \mathrm{~mm}$
HY400
240 Watts into 4Ω Price E27.99 + E2.24 VAT. P\&P Treo
 high onwer disco or public address applications if the amplifier is io be used at continuous high power lead the market as a true high power hi-fidelity power module
FEATURES: Thermal shutdown - Very low distortion - Load line protection - No external mponents.
APPLICATIONS: Public address - Disco - Power slave - Industria
SPECIFICATIONS
2 240 W RMS into 412 . LOAD IMPEDANCE 4.960 DISTORTION 01% at 240 W a SIGNAL/NOISE RATIO 94dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE
$\pm 45 \mathrm{~V}$. SENSITIVITY 500 mV . SIZE $114 \times 100 \times 85 \mathrm{~mm}$
Price $£ 38.61+£ 3.09$ VAT. PEP free
POWER
SUPPLIES
The HY5 is a mono hybrid amplifier ideally suited for all applications. All common input functions (mag Cartridge, tuner, etc.); are catered for internally, the desired function is achieved either by a multi-way switch or direct connection to the appropriate pins. The internal volume and tone circuits merely require fonnect, to external potentiometers (not included). The HY5 is compatibre with all L.P. power amplifiers and power supplies. To ease construction and mounting a P.C. connector is FEATURES.
FEATURES: Complete pre-amplifier in single pack - Multi-function equalization - Low noise - Low APPLICATIONS: HiFi - Mixers - Disco
SPECIFICATIONS:
INPUTS Magnetic Pick-up, 3 mV Ceramic Pick-up 30 mV ; Tuner 100 mV ; Microphone 10 mV . Auxiliary $3-100 \mathrm{mV}$: input impedance 47 kg at 1 kHz .
ACTIVE TONE CONTROIS Treble $\pm 1 \overline{2} \mathrm{~d}$ B at $10 \overline{\mathrm{KHz}}$: Bass \pm at 100 Hz
DISTORTION-0.1\% at 1 kHz ; Signal/ Noise Ratio 68 dB
JVERLOAD: 38dB on Magnetic Pick-up; SUPPLY VOLTAGE $\pm 16.50 \mathrm{~V}$
Price E6.27 + 78p VAT. P\&P free.
The HY30 is an exciting New kit from I.L.P., it features a virtually indestructible I.C. with short circuit and thermal protection. The kit consists of I.C., heatsink, P.C. board, 4 resistors. 6 capacitors, mounting kit, together with easy to follow construction and operating instructions. This amplifier is ideally suited to the beginner in audio who wishes to use the most up-to-date technology available APPLICATIONS: Updating audio tuipment - Guitar practice amplifier - Test amplifier - Audio oscillator

FICATIONS:
OUTPUT POWER 15 W R M S into 80 . DISTORTION 0.1% at 15 W
INPUT SENSITIVITY 500 mV FREQUENCY RESPONSE $10 \mathrm{~Hz}-16 \mathrm{kHz}-3 \mathrm{~dB}$
SUPPLY VOLTAGE $\pm 18 \mathrm{~V}$
Price $£ 627+78 \mathrm{p}$ VAT P\&P free
?SU36 suitable for two HY30's $\mathbf{£ 6 . 4 4 + 8 1 p \text { VAT }}$
PSU50 suitable for two HY50's $£ 8.18+£ 1.02$ VAT
PSU70 suitable for two HY120's $£ 14.58+£ 1.17$ VAT
PSU90 suitable for one HY200 £15.19 + £1.21 VAT

DSU180 suitable for two HY2000's or one HY400 £25.42 + Ł2.03 VAT

I.L.P. Electronics Ltd.

Graham Bell House
Roper Close Canterbury Kent CT2 7EP Tel [0227] 54778

TWO YEARS' GUARANTEE ON ALL OF OUR PRODUCTS
Please Supply
Total Purchase Price
I Enclose Cheque \square Postal Orders \square Money Order \square
Please debit my Access account \square Barclaycard account \square
Account number
Name \& Address

MIN-ADS \& cLASSIFIED

S100 BARE BOARDS

FP8-1 Front panel, Hex displays, Imsai replacement
£35
$2708 / 2716(5 v), 16 / 32 K £ 26$
18 slot motherbound with active termination
£26
,280A 4 MHz (kit) provision for on-board $2708+$ power on jump
£105
16 K static $\mathrm{ram}(A+T) /($ kit $)$, fully buffered £220/200
Extender board with logic probe (kit)
$£ 33$
British I/O mapped VDU board, uses 96364 (available May)

POA
2114 1K x 4 £6 I.H.L. (S100) Anstiebury Farm
Coldharbour, Dorking, Surrey

NEW MINI POWERFET, VN1OKM (1W, 60V, TO-92) 69p, VN67AF (15W) 95p, both with data. 741 18p, 709 15p, 308 25p, 1458 (House Numbered) 30p, CA 3140 E 40p, LF13741N (JFET 741) 33p. Quad Nortons, LM3900 45p, MC3401 40p, 78 LO5 29p, LOCMOS (fast CMOS), $4001 \mathrm{~B} / 01 / 11 \mathrm{~B} / 6916 \mathrm{p}, 4013 \mathrm{~B} 35 \mathrm{p}$. 4016 B 40p, 4017 B 65p, 4020B 80p. 10% Discount over £5. P\&P 20p. SAE for details to J. W. Rimmer, 367 Green Lanes, London N4 10Y.

[^4]
PRINTED CIRCUITS
 and HARDWARE

Comprehensive range Constructors' Hardware and accessories
Selected range of popular components Full range of HE printed circuil boards normally ex-stock, same day despatch at competitive prices
P.C. Boards to individual designs

Resist-coated epoxy glass laminate for the diy man with full processing instructions (no unusual chemicals required)

Alfac range of etch resist transfers and other drawing materials for p c boards

Send 15 p for catalogue.

RAMAR CONSTRUCTOR SERVICES

MASONS ROAD STRATFORD-ON-AVON WARWICKS. Tol. 4879

NEW SHOP in East Kent. Vast range of electronic components, equipment, hardware, Technocraft, 143 Tankerton Road, Whitstable 265097. Open Tuesday to Saturday. Easy parking.
SILICON DIODES (Equivalent 1N4148), 500 for $£ 3,1.000$ for $£ 5$. Carbon film resistors, 5% tolerance, 10 each of 40 different values, plus sample 10 of above diodes for $£ 2$. All post paid from D. Johnston, 12 Balgillo Road, Dundee DD5 3LU.

TVH7 TELEVISION SOUND. For high clarity Hi-Fi listening and recording of television programmes. Supplied built and tested 'on a single board measuring $105 \times 52 \mathrm{~mm}$, for TV internal fitment. $£ 9.80$ inclusive, with wiring and comprehensive instructions, Eve Products, 7 Adel Green, Leeds 16.
SMALL REED SWITCHES 10p, magnets $6 p$, TIL209 RED LEDS $16 p$ ea, postage $16 p$. Grimsby Electronics, Lambert Road, Grimsby, Humberside. 100s bargains at shop. Components, vero, surplus, etc. List $10 p$.
TRS-80 $16 K$ LEVEL BASIC MICROCOMPUTER complete with documentation as supplied on purchase, plus conversion cassettes. £600 o.n.o. Cheltenham 29135 (0830-1630) Monday to Thursday (inclusive).
MAINS BORNE INTERFERENCE FILTERS for HiFi, and computing. Hunts 3 amp high performance six element professional quality, meeting BS613. £3.25 inclusive. LTE, 80 Lime Grove, Ruislip, Middx.
TIRRO's new mail order price list of electronic components now available on receipt of SAE. TIRRO Electronics, Grenfell Place, Maidenhead, Berks.

COLOUR MODULATOR

${ }^{\text {min }} 6.95$
FOR ALL TV GRAPHICS!
ine UHF
Red, Green, Blue inputs (can be mixed),
SUPER EXPLOSION FLASH EFFECT FOR SUPER EXPLOSION FLASH EFFECT FOA
TANK BATTLE. FREE INTERFACE DETANK BA
TAILS
WILLIAM STUART SYSTEMS Dower House Billericay Road, Herongate. Brentwood, Essex CM133SO Tel (0277) 810244

SECURITY

PRODUCTS
Designed for the Do-lt-Yourself market. Easily installed. Full instructions supplied. As supplied to the trade.
Magnet and Reed Switch
Flush 85p
Pressure Mats
$6^{\prime \prime}$ Heavy Duty Bells Sirens 12v84dB @ 10' Bell Covers
Window Foil Self-Adhesive Foil Blocks
Door Loops, complete
Key Switches, top grade Surface 85p Large £2.10 Large $£ 2.10$
Stair $£ 1.35$
$£ 10.50$
$£ 10.50$
$+\quad £ 7.05$
$£ 7.05$
$£ 8.05$
£3.20
$+\quad 20 p$
$20 p$
E 1.10
$£ 1.10$
$£ 4.00$
Radar Infra-Red and many other .. £29.50
able. Price list supplied free
Please note that our prices now INCLUDE VAT
SECURITY CATALOGUE
Giving details of current professional alarm techniques - $\mathbf{E 1}$ (refundable on orders over E10)
Access and Barclaycard Sales welcome
We also sell Nascom 1
STRATHAND SECURITY
44 St. Andrew's Sq., Glasgow G 1 5PL 041-5526731 or 2

ATARI VIDEO COMPUTER GAME including extra cartridges, cost $£ 200$. Boxed, mint condition, $£ 100$, or deal on quad 405 or similar. Phone Redditch (0527) 65151 Midlands.

COMPONENT PACKS

100 Mixed Resistors 70p. 25 Polyester Capacitors 60p. 10 Micro-switches, ex-equip. 80p. 100 Components (mixed) 100p. 10 Mains Neons 50p. 10 Cable Ties 15p. 100 Connectors, Spades, Tags, Eyelets, etc. 100 p .10 BC108 95p. C60 Cassettes 49p. 10 BC109 95p. C90 Cassettes 59p.

Add 20p P. \& P
DURRANTS (COMPONENTS)
9 St. Mary's Street
Shrewsbury
P.E. MINISONIC 2 SYNTH with many extras, working but needs some attention hence $£ 150$. - Details: 1 The Maples, Ottershaw, Surrey, or ring Ottershaw 2522.

R1AA MAGNETIC STEREO PREAMPLIFIERS battery powered with twin VUmeters output $100 \mathrm{n} . \mathrm{V}$, black vinyl cased L . $6^{\prime \prime} \times$ W. $4^{\prime \prime} \times \mathrm{H}, 31 / 2^{\prime \prime}$. £15.00 complete post free. B. House, 57 College Road, Barry, S. Glamorgan.
L.C.D. CHRONOGRAPHS. $1 / 100 \mathrm{sec}, 11$ function $£ 12.50$. LCD alarm watch 7 function £17.50. LCD ladies' dual time 3 alarms £29.50. Plus many more. Triton MC14412 $£ 6.00$. Send cheque/PO to: P. Shoebridge, 108 Farnaby Road, Bromley, Kent.
SHACK CLEARANCE, components, FT202R transceiver, parobolic antenna, Pocketfone (RB4), aeronautical charts, VDU cases, much more, s.a.e. lists. WANTED: Triton components, ASCII keyboard, G8IYK: 120 Birmingham Road, Redditch, Worcs.

PRINTED CIRCUITS EASILY MADE.

Full range of ALFAC etch-resistant transfers for application to boards or simple photographic process for copying magazine layouts. Large S.A.E for lists and Alfac sample. Fast service
P.K.G. ELECTRONICS (Dept. 2)

Oak Lodge, Tansley, Derbyshire

MIN-ADS \& CLASSIFIED

\section*{STOCK CLEARANCE OF 7400 AND 74LS00 SERIES
 | | | TTL | | 7415153 | 45p |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7416 | 18 p | 7410 | $45 p$ | 7415157 | 37 p |
| 7442 | 45p | 741504 | 12 p | 7415165 | 135\% |
| 7446 | $75 p$ | 741542 | 709 | $74 \mathrm{LS174}$ | $90 p$ |
| 7476 | $20 p$ | 74.575 | $33 p$ | 7418175 | 90p |
| 7483 | 70p | 74.576 | $31 p$ | 74L\$191 | $75 p$ |
| 7485 | s0p | 74.886 | 30 p | 7415193 | 105 p |
| 7486 | 20 p | 7415122 | 60p | 74LS221 | $105 p$ |
| 7490 | 20 p | 7415123 | $55 p$ | 7418248 | 70p |
| 7493 | $20 p$ | 74L\$148 | 105p | 1418253 | 105p |
| 7495 | 50 p | 74.5151 | 75p | 14L\$366 | 105p |
| 74118 74120 | $90 p$ $80 p$ | Prices include P/P | | | |
| 74136 | $53 p$ | \& Vat | | | |
| 74145 | 70p | 10-49 Deduct | | | 10\% |
| 74147 | 140p | | | | |
| 74151 | 50 p | 50-99 Deduct 20\% 100 Plus Deduct 25% | | | |
| 74153 74155 | 50p | | | | | |
| 74157 | 50 p | | | | |
| 74161 | 75p | | | | | |
| 74163 | 75p | Trade enquiries | | | |
| 74164 | $85 p$ | welcome | | | |
| 74173 74179 | $85 p$ $37 p$ | | | | | |
| 74179 74180 | $37 p$ $93 p$ | 1. B. DGAES | | | |
| 74185 | 150p | | | | | |
| 74191 | 100p | | | | |
| 74193 | 100p | 238 Grenville Road | | | |
| 74195 74197 | 95p $80 p$ | | | | | |
| 74290 | 150p | Plymouth, Devon | | | |
| 74393 | 240p | PL4 90E | | | |

BARGAINS FOR THE ELECTRONIC HANDYMAN BRANDED LED DIGITAL ALARM CLOCKS

(1)
(2)

(3) period.

1) With alarm repeat - S.R S.P. of $£ 1700$ offered at $£ 3.95$ inc VAT
With luxury lamp and repeat alarm as featured in most major U.K. Mail Order catalogues, S.R.S.P With 00 - offered at $£ 6.95 \mathrm{Inc}$ VAT.
With integral luxury light and repeat alarm also as Rean in most major U.K. Mail Order cataiogues. S.R.S P. of $£ 32.00$ - offered at $£ 6.95$ inc. VAT These will be sold as received from our customers with the existing faul((s) and without guarantee.

Discounts available on large bulk purchases PRESCOTT CLOCK AND WATCH COMPANY LIMITED
retcott House. Humber Road, London NW2 6ER

Videograph Il links to the aerial socket of your tv and provides a full colour GIANT oscilloscope display. A must for hi-fi, home entertainment, discos, organs etc.
New - signal invert control, integral square wave generator Plus - full detats for testing your audio system for transient distortion, crosstalk etc. Complete $\boldsymbol{4} 17,75$ Luxury cabinet and Kit only $5 / 4.14$ controls. $\mathbf{8 9 . 9 5}$ READY BUILT UNIT $£ 3995+£ 100$ P\&P VILLIAM Dower House Billericay Road STLIART $\begin{gathered}\text { Nerongate Brentwo } \\ \text { Essex CM133SD }\end{gathered}$ SYSTEMS Lv SYSTEMS Lced Teleph

6800 S

It's British. It's the most powerful single board 6800-9 computer kit in the world and it costs from £2.75. You get u/l case, graphics, VDU, 1 or 2 K monitor, CUTS interface, power supply components and 16 K Bytes of RAM.
S.A.E. for leaflets of this and our other kits and PCBs.

All prices without VAT and post.

HEWART
MICROELECTRONICS
95 blakelow road macclesfielo, cheshire

FOR NASCOM 1 IN SCOTLAND SEE STRATHAND

In stock now: Nascom 1 Buffer Boards

8, 16, 32K Ram Boards Super Tiny Basic Zeap on tape

Please note it is not our policy to advertise Nascom products which are not currently available.

STRATHAND
44 St. Andrew's Sq. Glasgow G15PL.
041-552 6731 or 2
Access and Barclaycard sales welcome Callers welcome 9-5 Monday to Friday

SOUTH WALES

FOR

TTL CMOS, LINEARS DISCRETES, PASSIVES HARDWARE, TOOLS CASES, TRANSFORMERS, ETC.

DIGITAL WATCHES AND CLOCKS

SEND 20p FOR CATALOGUE
Mail and Official Orders accepted
Come to:
STEVE'S ELECTRONICS
15/17 THE BALCONY
CASTLE ARCADE
CARDIFF CF1 2BU
TEL: (0222) 41905

P \& R TEST

The Tek Scope 545/A/B, 581,661, many other plug-ins
$£ 99$
Marconi SIG/GEN from
Deviation Meters
$£ 35$
Advanced timer counter from £80
... $£ 30$
Marconi Millivoltnieters from
£20
Bridges from
£30
Transmitter receivers
Paper Tape Punches
Paper Tape Readers from
E18 to £125
Teletypes KSR 33 from
£90 to £100
Teletypes ASR 33 from
$£ 180$ to £210
All equipment sold as seen.

Come and look round, no obligation. Around 2,000 items.

Salcott Mill
Goldhanger Road, Heybridge
Near Maldon, Essex
Phone: 062157440

THIS SECTION IS A PRE-PAYMENT SERVICE ONLY

MINI-ADS: $31 / 4^{\prime \prime} \times 21 / 8^{\prime \prime}, 1-3$ £38, 4-11 £36, 12 or more $£ 34$ per insertion. CLASSIFIED DISPLAY: $19 p$ per word. Minimum 25 words. Boxed classifieds are $£ 6.33$ per col. centimetre. No P.O. Box Numbers can be accepted without full address.

Enquiries to: Advertising Department, 01-437 5982. 25-27 Oxford Street, London W1R 1RF

VACANCY PART-TIME CONSULTANT Design Engineer required N.W. London/ Herts. area for design of superior quality equipment for music trade. Knowledge of requirements by musicians preferable. Suit someone looking for extra remuneration. Box No. 100, Advertisement Dept. ETI, 25/27 Oxford Street, London, W. 1
USEFUL DIAGNOSTIC and Educational programmes for TRITON (8080) in Cassette and Listings form. Send s.a.e. for details. Andover Software Kits, 15 Winchester Road, Andover, Hants.

ELECTRONICS TODAY INTERNATIONAL

and

HOBBY ELECTRONICS

require an

ADVERTISEMENT SALES REPRESENTATIVE

to assist in the rapid development of these two successful and fast-growing magazines.

A background of advertising sales is desirable and a knowledge of electronics would be an advantage but all applicants will be considered.

We are a young company with strong ambitions and we need someone who wants to fit into this environment.

For the right person we are prepared to pay a generous salary and, as a degree of travelling is involved, a company car will be provided.

Applications will be treated in strictest confidence and should be made, in writing, to:

CHRISTOPHER SURGENOR ADVERTISEMENT MANAGER MODMAGS LIMITED
 25-27 OXFORD STREET LONDON W1R 1RF

A.J.D. DIRECT SUPPLIES	15	ELECTRONIC SYSTEMS	81	MUTEK	74
ALTEK	44	ELECTROVALUE	52	NICHOLLS	96
AMBIT	30831	E.S.E.	92	NIC MODELS	82
ASTRA-PAK	44	FLADAR	57	NORTHERN RADIO	96
AUDIO ELECTRONICS	52	GMT ELECTRONICS	$6 \& 7$	OHIO SCIENTIFIC	34
BAYDIS	23	GREENBANK	93	PETALECT	106 74
BI-PAK	4 t	GREENWELD	100	POWERTRAN	288
BREWSTER	44	HENRY'S	, 82 \& 107	PROGRESSIVE RADIO	73
CAMBRIDGE COLLEGE OF		H\& S ELECTRONICS	102	ROGER SQUIRES ..	47
AND TECHNOLOGY.	96	ILP	110	R.T.V.C.	75
CAMBRIDGE LEARNING	86	INTEGRATED CIRCUITS	105	SCOPEX	97
CHILTMEAD	60	K \& A DISTRIBUTORS	47	SINCLAIR SINTEL	80 100
CHROMASONICS	60	KODE SERVICES	106	SPARKS DEXVELOPMEXEX	107
CHROMATRONICS	82	KRAMER	968102	STEVENSON	18
CLEF PRODUCTS	57	LBELECTRONICS	102	SWANLEY	107
CODESPEED	31	LEKTROKIT	106	TAMTRONIK ${ }^{\text {TARGET ELECTRONICO }}$	98 107
COMMUNICATIONS MEAS	102	LOTUS SOUND	76	TECNOMATIC	14
COMP, COMP, COMP	14 \& 115	MACLIN-ZAND	11	TECHNICAL BOOK SERVICE	97
COUGAR	52	Magnum audio	. 104	TERMINAL DISPLAY SYSTEMS	98 88
CRIMSON ELEKTRIK	92	MAPLIN	.. 116	TK ELECTRONICS	88 30
CROFTON .	31	MARSHALLS METAC		TRANSAM	53
DELTA TECH	24	MICRODIGITAL	16 32	TRIDENT EXHIBITIONS TOOTING COMPUTING	91 104
E.D.A.	17	minikits	93	VERO	47
ELBAR ELECTRONICS	46	MONOLITH	47	VIDEOTIME WATFORD	-12 104
ELECTRONIC BROKERS	24857	MOUNTAINDENE	88	WILMsLow $\quad . .$.	$\ldots \quad 100$

For electronic buifs. Fully assembled and tested. Requires +5 V at 3 Amps and a video monitor or TV with RF converter to be up and running.

What mume
orevtifititi
fremilmiak

STANDARD FEATURES
Uses the ultra powerful 6502 microprocessor 8K Microsoff BASIC-in-ROM
Full feature BASIC runs faster than currently available personal computers and all
8080 -based business computers.
4 K static RAM on board expandable to 8 K
Full 53-keyboard with upper/lower case and user programmability
Karsas City standard audio cassette interface for high reliability
Full machine code monitor and IIO utilities in ROM
Direct access video display has 1 K of dedicated memory (besides 4 K user memory), features upper case, lower case, graphics and gaming characters for an effective screen resolution of up to 256 by 256 points. Normal TV's with overscan display about 24 rows of 24 characters; without overscan up to 30×30 characters.

EX-STOCK - £263

Please phone to check availability or send £10 to reserve one and pay the balance on delivery

INTERESTED IN HOME COMPUTING?

FREE B BUG
valued at £23.00
plus $10 \times$ C12 cassettes valued at $£ 4.00$ plus Standard Modulator valued at £2.25 WITH EVERY NASCOM

Start now and don't get left behind THE NASCOM 1 is here Ex-stock with full technical services
Plus the opportunity to join the fastest moving club of personal computer users enabling you to get the most our of your computer. You can OBTAIN and EXCHANGE programs andi other software - many now available.
The Powerful $Z 80$
Microprocessor
Professional Keyboard
1 Kbyte Monitor in EPROM 2 Kbyte RAM (expandable) Audio Cassette interface Plugs into your domestic TV Easy construction from straightforward instructions - no drilling or special tools Just neat soldering required

Only 519 -50 $+8 \%$ VAT (includes p \& $p+i n s u r a n c e)$ Manuals seperately 2.95
$Z 80$ programming Manual 6.90
Z80 Technical Manual PIO Technical Manual
. 95 (All prices add 8\% VAT)

Power supply suitable for
NASCOM AD ONS - Nascom improved monitor B Bug (2K) featuring - *Four times tape speed *Direct text'entry without ASCII *Extended keyboard facility *Additional useful subroutines $£ 23.00$

Nascom Vero Case
Nascom Music Box Kit $£ 9.90$
£22.50
Nascom Joy Stick Kit £14.90
(write your own tunes and play
them on your Nascom Complete with full documentation).

GRAPHICS ADD ON BOARD $£ 9.90$
Complete kit to upgrade your NASCOM for graphics capability
includes full documentation and demonstration program.

MODULATORS UHF Channel 36

Standard 6 meg band width £2.25 High Quality 8 meg band width $£ 4.90$

SHORT C12 CASSETTES 10 for $£ 4.00$

 FOR COMPUTER PROGRAMMES
KEY BOARD

756 GEORGE RISK
Brand new professional ASCII keyboards (USA)
Full technical details included. RRP $£ 60.00$ Only $£ 49.90$
$+8 \%$ VAT
Ready built, tested
and guaranteed.

TRS 80 SOFTWARE NEW $£ 39.00$ 100 MIXED PROGRAMMES on cassette Educational Games, Graphics, Finance, etc. on 5 cassettes plus

Full Documentation.

COMP PRO Mixer

Professional audio
mixer that you can build yourself and save over $£ 100$.

6 into 2 with full equalization and echo, cve and pan controls.
All you need for your own recording studio is a stereo tape or cassette recorder.
This superb mixer kit has slider faders, level meters and additional auxilliary inputs Only $£ 99.90$ plus 8% VAT for complete kit Plus FREE power supply valued at $£ 25.00$ Ideal for
DISCOS STAGE MIXING HOME STUDIOS AND MANY OTHER APPLICATIONS

Orders over $£ 5$ post and packing free otherwise add 20 p. Please make cheques and postal orders payable to COMP, or phone your order quoting BARCLAYCARO or ACCESS number.

展 - SORCERER COMPUTER SPEAKS YOUR LANGUAGE

PERSONAL or SMALL BUSINESS Computer? Look at these features for only $£ 850$. .

BоOK SHELF

Vol 0 The Beginner's Book $\frac{\text { Vol } 1 \text { Basic Concepts + }}{}$ $\frac{\text { 4977) }}{\text { Microprocessor }}$ Microprocessor serles, by Rodney Zaks C201 From Chips to Systems C207 Interlacing Techniques $\quad \mathbf{E 7 . 5 0}$ Microprocessor Systems Design by
Edwin Klingman ISBN 0.135-81413.8 Edwin Klingman ISBN 0-1 $135-814$

(9977) ABO pages hard cover | CMOS Cookbook by Don Lancaster | $\frac{16.40}{8690}$ |
| :--- | :--- | | CMOS Cookbook by Don Lancaster | |
| :--- | :--- |
| 6800 | Assembly |
| $\mathbf{8 6 . 9 0}$ | | 6800 Assembly language

Programming 6800 Soltware Guide $\&$ Cookbook 8080 Software Guide $\overline{8}$ Cookbook from Scelbi
8080 A/8085 Assembly Language
Pfogramming

8080A Bugbook Interfacing \&
Programming by Rony. Larsen \& Programming by Rony Larsen \&
Titus (1977) 416 pages...
780 Progiamming tor 280 Programming for Logic Design by Adam Osborne 280 Microcomputer Handbook by Willam Barden Structured Programming \& Problem
Solving with Pascal ISBN 0.138-54869-2 (1978) 365 pages by Kieburtz When will your al

$$
\begin{aligned}
& \text { microcompuler speak Pass } \\
& \hline \text { BASIC Computer Games }
\end{aligned}
$$

\qquad Best of BYIE Vol: $:(1977) 376$ page Vol 1 (1977) 326 pages $\frac{\text { Vol } 2 \text { (1977) } 323 \text { pages }}{\text { MOI OTHELLO Garne for } 2 \text { players }}$ On NASCOM 1 casselte. MOI MINO PILOT powerful text $\varepsilon 6.50$

THE TRS-80 (SPECIAL SCOOP) Low Priced, Ready to Go!

Use your own cassette

Level-II with 4K RAM Improved graphics, print formatting, and a faster cassette £399

PLUGS INTO YOUR OWN TV
Level.ll with 16K RAM A combination of 16 K RAM and the powerful Level-II BASIC produces a system capable of handling most demands.

£499

UK POWER SUPPLY - £9.90 + vat

ATTENTION! SAVE £90
 Simple tofit TRS 80 \& APPLE II USERS

ITHACA AUDIO

S. 100 bus products from the experts.
80 cpu board. Featuring

* On board 2708 EPROM
* 8080 or $Z .80110$ addressing modes.
* 2.0 MHz or 4 MHz . DMA
Bare printed circuit board $\$ 26.25$
Assembled and tested $2 \mathrm{MHz} ₹ 130.00$
Assembled and tested $4 \mathrm{MHz} £ 150.00$
8K Static RAM board
Featuring: $*$ Mernory protect $*$ Power on clear
\star Selectable wait states $\$$ Two independent 4 K nalves $*$ Futly buffered \star Uses 2102L-1. * Power requirements: + 8volts 1.4 Amps.
Bare printed circuit board $£ 17.90$
Assembled and tested (450nS) $£ 110.00$
Assembled and lested (250 Ns) $£ 130.00$

NASCOM IMMEDIATE EXPANSION S100 from COMP - strongly recommended

The only available S100 motherboard kit (fully buffered) that plugs directly into your Nascom. Designed for the insertion of S100 boards (e.g. Static RAM, EPROM and discs etc.). S100 Motherboard/Buffer $£ 47.50$ Motherboard (Complete kit + documentation) $\quad \begin{gathered}\text { comes comple: } \\ \text { with 2K Tiny }\end{gathered}$ Suitable 8K Static RAM Memory $£ 5110$ Basic On cassette.

[^0]: COPYRIGHT: All material is subject to world wide Copyright protection. All reasonable care is taken in the preparation of the magazine to ensure accuracy but ETI cannot be held responsible for it legally. Where errors do occur a correction will be published as soon as possible aftérwards.

[^1]: ELECTRONICS TODAY INTERNATIONAL - MAY 1979

[^2]:
 -2 - E LEECTRONIC BROKERS LIMITED Tel: 018377781 . Telex: 298694.
 Please send me full colour leaflet and prices on whole ICE range including accessories.

 ## Name

 Address

[^3]: "According to this, there's a submarine approaching through the living room!?"

[^4]: MAINS TRANSFORMERS 240 V Pri two separate secs. Each 7 V at 500 mA . $£ 1.10$ each +35 p P\&P. P.C.B. with LM300 2-20 V Precision voltage regulator, 74114 pin, 1 amp bridge rect. $/ X$ med. power transistors, * X SJE 5039+6 other transistors, 2N5061 Thyristor +7 caps, 35 res. $90 p$ each $+15 p$ P\&P. D. Nicholls, Lyndale, Church Lane, Flax Bourton, Bristol.

