

CHROMATHEQUE 5000 5 CHANNEL LIGHTING EFFECTS SYSTEM

All kits also avalable as separate packs (e 9 PCB component sets, hat

COMPLETE KIT ONLY
$£ 49.50$ + VAT!

This versatile system featured as a constructional article in ELECTRONICS TODAY INTERNATIONAL has 5 frequency channets with individual level rontrols on each channel Control of the lights is comprehensive to say the least You can run the unit as a straightforward sound to light or have it strobe all the lights at a channel handles up to 500 W and as the kit is a single board destgn wiring is minimal and construction very straightforward
Kit includes fully finished metatwork fibreglass PCB controls wire etc - Complete right down to the last nut and bolt

THIS MONTH’S FRONT COVER FEATURE!

100 WATT (rms into 852) MIXER / AMPLIFIER

COMPLETE KIT ONLY
£49.90 + VAT!

Parts to build power amp module
only. (PCB, res, caps, s/cs) $\mathbf{£ 1 0 . 6 0}+$ VAT
Custom designed toroidal trans-
former with mounting clamp
$\mathbf{£ 1 0 . 5 0}$ + VAT
Parts for power supply only
(caps, rects, fuses, F. holders)
$£ 3.40$ + VAT

> Kit includes fully finished metalwork, fibreglass PCB, controls, wire, etc. Complete right down to the last nut and bolt!

TRANSCENDENT 2000 SINGLE BOARD SYNTHESIZER

LIVE PERFORMANCE SYNTHESIZER DESIGNED BY CONSULTAINT TIM ORR (FORMERLY SYNTHESIZER DESIGNER FOR EMS LIMITED) AND FEATURED AS A CONSTRUCTIONAL ARTICLE IN ELECTRONICS TODAYINTERNATIONAL
The TRANSCENDENT 2000 is a 3 octave instrument transposable 2 octaves up or down giving an effective 7 octave range There is portamento pitch bending a vCO with shape and pitch modulathon a VCF with both low and high pass outputs and a separate dynamic sweep control a noise generator and an ADSR envelope shaper There is also a slow oscillator a new pitch detector ADSR repeat sample and hold and spectal circuitry with precision components to ensure tuning stability amongst its many features

The kit includes fully trashed metalwork tully assembled solid teak cobinet filter swep pedal in it essional quality components tall resistors either 2 hi metal oxide of last pere p of wife' Thet is is even a 13 A plug "in the down to the last mot and bunt and more pars beture pluquing in and making gleat music virtually all the fomponents All the controls mount duectly on the mall board all connectionc evenimg by almost anyone capoble of neat soldering' Wher tonshed in a tew possess a svither, izer comparable in pertumance and quality with ieady built unt selling tor betwreen 4500 and 41001

COMPI_ETE KIT ONLY
£172.00 + VAT!

Comprehensive handbook supphed with all complete kits This fully describes construction and tells you how to set up your synthesizer with nothing more elaborate than a

ORDERING INFORMATION AND MORE KITS ON PAGE 6

electromes today

FEATURES

p. 19 Speak for yourself

p. 79 Scamp Tunes

p. 45 Old Flame!
 BUILD A VCT A HISTORY OF IGNITION DATA SHEET MICROFILE
AUDIOPHILE TECH-TIPS

9
19 Machines speak for themselves
32 Don't wait for Texas
45 A spark of interest?
55 AY-5-1317. Strike a chord!
61 News for MPUs
73 Battle of the heads (tape!)
87 Four pages of your circuits

PROJECTS

TAPE SLIDE SYNCHRONISER
 TAPE NOISE LIMITER
 27
 41 Less hiss, more shhh!
 50 No contact, 10 RPM resolution 64 Hi-fi quality amp, versatile mixer. 79 Eat your heart out Bach!

DUE TO CONTINUING DEVELOPMENT WORK, AND SOME PROBLEMS ON THE PROTOTYPE WE HAVE HAD TO POSTPONE PART TWO OF THE CLICK ELIMINATOR. OUR APOLOGIES TO READERS

INFORMATION

PANEL TRANSFERS	$\mathbf{7}$	Finishing touches galore
SUBSCRIPTIONS	$\mathbf{1 3}$	Make life easy
HOBBY ELECTRONICS	$\mathbf{1 6}$	Can you afford to miss it?
BOOK SERVICE	$\mathbf{2 5}$	Well worth a read.
ETI SPECIALS	$\mathbf{3 9}$	And very special they are too!
BINDERS	$\mathbf{4 3}$	Look after us well!
EII PRINTS	$\mathbf{5 9}$	The only sensible way
ETI MARCH PREVIEW	$\mathbf{7 1}$	What's coming up next month
MARKET PLACE	$\mathbf{7 6}$	Time for some offers.

[^0][^1]
पदर m mammen

 COMPONENT PAKS

POTENTIOMETERS

Slider 40 mm TRAVEL

Order N		
16191	$6 \times 470 \mathrm{Ohm}$	LIN Single
S24	$6 \times 1 \mathrm{k}$	LIN Single
S25	$6 \times 5 \mathrm{k}$	LiN Single
16193	$6 \times 22 \mathrm{k}$	LIN Single
16195	$6 \times 47 \mathrm{~K}$	LGG Single
16194	$6 \times 47 \mathrm{~K}$	LIN Single
S27	$6 \times 100 \mathrm{~K}$	LiN Single
S28	$6 \times 100 \mathrm{~K}$	LOG Single
S29	$6 \times 500 \mathrm{k}$	LOG Single
Slider 60mm TRAVEL		
S30	$6 x^{\prime 2} 2 \mathrm{k}$	LOG Single
S32	$6 \times 50 \mathrm{~K}$	UN' Single
S34	$4 \times 5 \mathrm{k}$	LOG Dual
S36	$4 \times 100 \mathrm{~K}$	lOG Oual
S37	$4 \times 1.3 \mathrm{MEG}$	LOG Dual
S94	6*220 K	LiN Single
\$95	$6 \times 100 \mathrm{~K}$	LOG Single
S96	$6 \times 500 \mathrm{~K}$	LiN Single
S38 Mined slider pots - various values and sizes. Our mix S39 6 \times Chiome slider knots only' $£ 1.00^{-}$ 40p*		
WIREWOUND		
S90 Wirewound Pors Lineaf ; Wati tapng Mixed-usetul walues 5 tor		
CARBON TYPES		
S91 Car Radio type Dual Switched Pot PC moumting		

DUAL POTS P.C. MOUNTING
$\mathrm{S92} 4 \times 100 \mathrm{KLn}$
$\mathrm{S} 934 \times 100 \mathrm{KLO}$
1617315 foiary Pon Assorted
1618625 Presels A ssored Values
 ${ }^{40 \mathrm{p}^{-}}{ }^{40}$

ZENER PAKS

No 55520 mixed values 400 mW Zener $£ 1.00$
No. S56 mixed values 400 mW Zener $£ 1.00$
No. $557 \quad 10$ diodes $11.33 v$ mixed values iw Zener

SILICON POWER TRANS N.P.N.

S98 2N5293ACA. 36 A. Amps

COMPLETE AMPLIFIER KITS

 STA15 15 watts per channel amplifier kiCONSISTS $2 \times$ AL60 $-1 \times$ PA 100 $2 \times$ coupling capacitors $£ 37.70$ inc V.A.T. +85 p pap.

STA25. 25 watts per channel amplifier k $1 \times$ SPM $120 / 45-1 \times 2040$ transform
 pling capacitors
V.A.T.
E1.16p\&

STA35 35 watts per channel amplifier k it. CONSISTS: $2 \times A L 80-1 \times P A 100$ $1 \times$ SPM1 $20-1 \times 2041$ transtormer -
reservoir capacitor $-2 \times$ coupling capac tors $£ 48.45$ inc. V.A.T. $+£ 1.16 \mathrm{p} \& \mathrm{p}$.
STA 5050 watts per channel amplifier k CONSISTS $2 \times$ ALI $120-1 \times$ PA 200 -1 reservoir capacitor $-2 \times$ coupling capacitors $£ 58.20$ inc. V.A.T. $+£ 1.16$ pRep.

STA125. 125 watts. per channel amplifier kit. CONSISTS $2 \times$ AL $250-1 \times$ PA200 $2 \times$ SPM $120 / 65-2 \times 2041$ transformers capacitors $£ \mathbf{7 2 . 8 5}$ inc. V.A.T. $+£ 1.25$ p\& ${ }^{2}$.

TRANSISTORS

Typ	Price	Type	Price	Type	Price	\%rpe	Price	Type	rice
AC107	$25 p$	BC177	$12 p$	BF194	'9p	TIP32A	34 p	2N1613	$15 p$
AC126	14p	BC 178	12p	BF995	9p	TIP32B	35p	2N1711	15p
AC127	$16 p$	BC179	12p	BF196	$\cdot 12 \mathrm{p}$	TIP32C	36p	2N1893	28p
AC128	$16 p$	BC 182	9p	8F197	$\cdot 12 \mathrm{p}$	TIP41A	34p	2N2218	15p
AC128K	24p	BC182L	'9p	BF200	25p	TIP41B	35p	2N2218A	18p
AC176	16p	BC183	-9p	BFX29	22p	TIP41C	36p	2N2219	15p
AC176K	24p	BC183L	-9p	BFX84	18 p	TIP42A	36p	2N2219A	18p
AC187	$16 p$	BC184	'9p	BFY50	12p	TIP42B	37p	2N2221	15p
AC187K	26p	BC 184 L	*9p	BFY51	12p	TIP42C	38p	2N2221A	16p
AC188	16p	BC2 12	$\cdot 10 p$	BFY52	12p	TIP 2955	65p	2N 2222	$15 p$
AC188K	26p	BC2 12 L	-10p			TIP3055	42p	2N2222A	16p
AD161/		BC213	-10p	MPSA05	22p	2TX 107	-6p	2N2369	10p
162 MP	$80 p$	BC213L	$\cdot 10 p$	PPSA06	-22p	ZTX 108	-6p	2N2904	14p
AF139	30p	BC214	$\cdot 10 \mathrm{p}$	5	-22p	ZTX109	*p	2N2904A	15p
AF239	30p	BC214L	$\cdot 10 p$	6	22p	21 $\times 300$	${ }^{7} \mathrm{p}$	2N2905	14p
BC107	6p	8 C 251	${ }^{10} 0$	0 O 44		2T $\times 301$	${ }^{7} 7$	2N2905A	15p
BC108	6p	BCY70	12p	0 C 45	12 p	ZT $\times 302$	${ }^{9} 9$	2N2906	12p
8C109	$6 p$	BCY7 1	12p	OC71	${ }^{12 \mathrm{p}}$	2TX500	-8p	2N2906A	14p
BC118	10p	BCY72	12p	0 O 72	12p	ZTX501	-10p	2N2907	12p
BC147	-8p	BD115	40p	OC75	$12 \mathrm{p}{ }^{3}$	2TX502	-12p	2N2907A	13p
BC148	-8p	8 D 131	-35p	0 C 81	14 p	2N696	-10p	2N2926G	8 P
BC149	-8p	8D132	37p	0 Cr	14p.	2N697	10p	2N2926Y	-7p
BC 154	$\cdot 16 p$	BF 115	17 p	TIP29A	35p	2N706	7p	2N3053	12p
8C157	9p	BF167	19p	TIP298	$36 p$	2N706A	8p	2N3055	35p
8C158	-9p	BF173	20p	TIP29C	38p	2N708	8p	2N3702	${ }^{7} 7 \mathrm{p}$
BC159	-9p	BF180	25p	TIP30A	36p	2N1302	12p	2N3703	'7p
BC169	-10p	BF181	25p	TIP30B	37p	2N1303	15p	2N3704	6p
BC170	6p	8 F 182	250,	TIP30C	38p	2N1304	$15 p$	2N3903	11p
8C171	* 6 p	BF183	25p	TIP31A	32p	2N1307	18p	2N3904	$11 p$
BC172	-6p	8 F184	25p	TIP31B	33p	2N1308	22p	2N3905	-11p
BC173	7p	BF 185	25p	TIP31C	34p	2N1309	22p	2N3906	-11p
				-	$E S$				
Type	Price								
AA119	5p	BAX16/		8 YZ16	30p	OA85	$7 p$	1S44	3p
AAZ13	4p	OA202	5p	BYZ17	28p	OA90	6p		
BA 100	6 p			BYZ18	28p	OA91	7p	IN5400	10p
BA115	5p	8 Y 100	15p	BYZ19	28p	OA95	7p	IN5401	11p
8 A 144	5p	BY127	-10p	0447	5 p			IN5402	12 p
84148	10p	$8 \mathrm{YZ10}$	32p	OA 70	5 p	IN34	5p	IN5404	13p
BA173	10p	8YZ11	32p	OA79	7p	IN60	6p	IN5406	16p
BAX13/		BYZ12	32p	OA81	$7 p$	IN914	4p	IN5407	17p
OA200	5p	BYZ13	30p			(N148	4p	IN5408	19p

LINEAR I.C.'s

T8A800	- 00.75	UA 709	¢0.20	748 P	¢0. 28
T8A810	- $¢ 0.85$	UA711	£ 0.25	UA748	¢0.28
tBA820	-£0.65	UA703	£0.20	72558	£0.45
LM380	- £0.80	741 P	¢0.18	MC1310P	£1.25
LM381	- $£ 1.25$	72741	¢0. 20	76115	£1.25
72709	£0.20	UA741C	¢0.20	NE555	£0.22
		'72747	¢0.55	SL414A	£1.80

ZN 414 RADIO CHIP 75* OPTOELECTRONICS
 2ND QUALITY LED PAKS

DISPLAYS

| No. 1510.707 LED Display | $£ 0.70$ |
| :--- | :--- | :--- |
| No 1511.747 LED Display | $£ 1.50$ |
| No 1512.727 Dual LED Display | $\mathrm{E1.55}$ |

LED's
No. ${ }^{2} 1$
LED's
No. S120. 125 8right Red
No. S121. 2 BrightRed
No. 1502.125 Green
60.09

2ND QUALITY LED PAKS No 1507. 10 Assorted Colours \& Sizes	
No. S122. $10 \times .125$ Red	Red $\quad £ 0.60$
No S123 10×2 Red	£0.60
LED CLIPS	
No.1508/125 125	125
	5 for £ 0.12
No. 1508/.2 . 2	25 for $£ 0.15$
No S139 Infra-red Emit	Emitter, Fairchild
FP 1000	¢0.50

No 1505.2 Green No 1503.125 Yellow ,
€0. 0
£. 0.0 £0.09 £0.12 $€ 0.12$
$£ 0.12$ No. S82. Clear 2 Illuminating Red
£ 0.12
£0.10

P.O. RELAYS	
S85 - 2 Off Post Office relays	40 p

No 1514	NORP 12	$\mathbf{4 5 p}$ each
No. S76	OCP71	5 for $£ 1.00$
No. S835	NIXIE Tubes ITT 5870 ST	
		$\mathbf{~} \mathbf{2 . 0 0}$

No. 577 (including Data) $£ 2.00$ Neon indicator Lamps 230 AC State Colour (Red. Amber and
Green)

BATTERY HOLDERS

to take 6xHP7's
Order No. $202 \quad 10 p$ each

EX-G.P.O. MICROSWITCHES
Order No. S51

CABLE CLIPS

084-50 2 ? $>$ round single pin fixing $30 p$

MAMMOTH I.C. PAK

Approx 200 Pleces. Assorted fall-out integrated circuits. including: Logic. 74 series, Linear, Audio and D.T.L. Many coded de Order No. $16223 \quad \mathbf{£ 1 . 0 0}$ POWER SUPPLY STABILIZER BOARD
Unused ex-equipment stabilizer board. Input 30 V D. C Output 20 V . Complete with diagram
Order No

ORDERING

Minimum postage and packing for Sale Orders $\mathbf{£ 0 : 5 0}$ PLUS any further postage as stated as per this Sale Advertisement.
Overseas Orders - ADD extra for Air-mail.

V.A.T

Please ADD V.A.T. as follows: $121 / 2 \%$ to items marked • 8% to unmarked items. NO V.A.T on Books

INSERTION

EXTRACTION

TOOL

O/D 2015
30p each

DEPT. E.T.I.2, P.O. Box 6, Ware, Herts. COMPONENTS SHOP: 18 BALDOCK STREET, WARE, HERTS.

SAME AS ETI OFFER 5 FUNCTION LCD Hours. mins. secs. month, date, auto calar. dar. back-light. quality mefal bracelet. $£ 7.65$ Guarahteed same day despatch	POCKET CALCULATOR + ALARM CLOCK PLUS 3-WAY STOPWATCH - Caleulater with \%/r V^{8} mamory. - Centimens clock with * Mrs, mias. sact, tay, menth, day of weok * Aarm * 8 terwatch with $1 / 10$ seas to 10 maurs + lap and sullitim mades, Isi and 2 m . * Batterias last I yerr contimueus oparation * Dimeasiens $14^{\prime \prime} \times 23^{\prime \prime} \times 456^{\prime \prime}$ in. * Complete with leathorstio wallot. UST PRICE $£ 24.95$ metac special exclusive price £18.50 Cannel ha forad cheaper anywhere ala	" QUARTZ LCD ALARM * Snooze + backlight. Batteries last 1 year approx. Includes batteries and travel pouch. Excellent value £17.65 Guaranteed same day despatch	THOUSANDS SOLD 11 FUNCTION SLIN CHRONO fi tigit 11 functions * Hour s. mins. secs. * Day. date. 山ay of week. - 1/100. 1/10. secs. $10 x$ secs, mins. ${ }^{*}$ Split ami lap modes. * Back light. anto calendar. ${ }^{4}$ Only 8 men thick. This same watch is being seld tor $£ 22.00$ in nawspaper and magazine special offer ads. Metac Price £12.65 Guaranteed same day despatch
SEIKO SUPERIOR WATCHES World famous piercing alarm chronograph Please ring for delivery details ALARM CHRONO List price £130 Motac Price $£ 105$	SEIKO S U P ERIOR WATCHES Please ring for delivery details CHRONOGRAPH List price £85 METAC PRICE £68	SEIKO SUPERIOR WATCHES 6 digit, 7 function watch with 4 alarms \& volume control. Please ring for delivery details. MULTIPLE ALARM List price £120 METAC PRICE $\mathbf{\varepsilon} 98$	SEIKO SUPERIOR WATCHES Full spec. calculator +6 function watch. Please ring for delivery details. CALCULATOR WATCH List price $£ 165$ METAC PRICE £127
HANIMEX Electronic LED Alarm Clock Same as ETI offer Thousands sold	genuine SOLAR 5 function LCD - Solar pacel with battery hack-w. back light + anto * Howrs, mins, stes. day. date. * Gucily molal wacelot. $£ 10.95$ Guaranteed same dey despatch	LADIES LCD Oely $25 \times 20 \mathrm{~mm}$ and 6 man thick. 5 farction: haurs. mins, secs. day. date. + back liftht ind anto cal. Elapant metal bracelet in silver or gold. State prefaranco. $£ 9.95$ Guaranteed same day. despatch	ALARM LCD 6 digit 7 functions + penetrating alarm. Hours Mins Secs Day Date Alpha Day Year. Back light +200 year calendar. ONLY £21.95
Feature and Specification * Hour / minute display * Large LEO display with $\rho \mathrm{m}$ and alarm on indicator * 24 Hours alarm with on-off control - Display flashing for power loss indication * Repeatable 9 -minute snooze * Oisplay bright/dim modes control Size $5.15 \times 3.93 \times 2.36(131 \mathrm{~mm} \times 100 \mathrm{~mm}$ $\times 60 \mathrm{~mm}$). Weight: $143 \mathrm{lbs}(065 \mathrm{~kg})$ Guaranteed same day despatch	THE METAC DIGITAL CLOCK * COMPLETE KIT * Masant preen display- $12 / 24$ Howr readout Sitant Synclironeus Accuracy - Futty dectronic Pulsatian colon - Puash-betton settim Builwing time I Ir - Atriactive zerylue case Easy-to-allaw instrutions - Size $10.5 \times 5.7 \times 8 \mathrm{~cm}$ Ready drillad PCS to accepl compenents PRICE e6.65	FLUORESCENT DISPLAY CLOCK RADIO - Mains operated - Soft glow green dispiay - MW/FM \& IW radio * Alarm with 9 min . snooze feature * Programmable play-to-sleep setting - Brightness control METAC PRICE ONLY £19.95	DIGITAL LED CLOCK * Automatic brightness control * Weekend alarm cancel * 9 minute snooze alarm our Price
All products carry full 12 months guarantee. Please add 30 p p\&p with all orders. All prices include VAT. Shops open 9.30 to 6.00 daily. Trade enquiries welcome. Delivery: One week. Except where same day delivery is stated.	ALARM CHRONOGRAPH WITH DUAL TIME ZONE FACILITY - Constant LCO display of hours and minutes, plus optional seconds or date display, plus day of the week and am/pm indication. - Perpetual calendar; day. date, month and year. - 24 hour alarm with on / off indication. -1/10 second chronograph measuring net. lap and first and second plece times. Oual time zone facility. Night light.	GENUINE SOLAR CHRONOGRAPH $£ 15.95$ 6 digit, 11 function. Hours Min Secs $1 / 100 \quad 1 / 10$ Secs Mins Split \& lap modes, Auto cal + back light. Powered from solar panel with battery back-up	PLEASE NOTE All our products carry full money back 10 -day reassurance. Watches are despatched by FIRST-CLASS POST. They are fitted with new batteries, and include guarantee and instructions. Battery fitting service is available at our shops for no extra charge. We stock most watch batteries and this service is available to all. Metac have been selling electronic watches probably longer than anyone else in the UK. We take care of your watch not just this year but next year and the years after that.
Telephone 8 pecial 24-hour phone sarvice Credit-cerd customers are welcome to buy phone-simply phone 1.7234753 with your DAVEN Tel. 103 your order.		GWARE ROAD - Narclay \& Access w N 234753 Phone or Send Card with or	

for Valle \& varieiv in FREQUENCY COUNTERS

```
In addition to our popular 250 MHz and 500 MHz counters we have produced a NEW
200 MHz COUNTER KIT specially for home constructors:
Our new K200 counter. athough small, is a no-compromise design. It offers.
* A full }8\mathrm{ digit LED display
A frequency range of 10Hz to 200MHz
An accuracy of 10Hz at 30MHz,50Hz}\mathrm{ at 150MHz in normal home environments
- 5/6 volt operation from batteries or mains PSU
* Power consumption of only 1W maximum at maximum frequency
* A crystal oscillator at 5MHz which doesn't need any special setting up equipment
*Small size 4" x 2" x < 1". Uses only 4 i.c.s
* Assembly time of about }2\mathrm{ hours
* Fulb tlustrated assembly instructions
The K200 consists of 2 PCB assemblies, one being the complete input and counter unit
the other, the display unit. Both units are available in kit or assembled/rested module
form. Prices (INCLUDING VAT)
Input/Counter Kit £59.00
Input / Counter Module
Display Kit }\quad£12.9
£16.64
E68.50 Add 75p for Post & Pkg
```

This new Catronics model K200 complements our DFM5, a 250 MHz, 7 DIGIT MAINS / 12v HIGH QUALITY Frequency Counter, and the DFM 500 - a REAL 500 MHz - try some of the others actually at this frequency.

Both are absolute value for money and are available now with better than 1 in 10 reference oscillators as /S models Special Prices, INCLUDING VAT

```
DFM5 £148.50 DFM5/S £191.70
DFM500
£177.12
DFM500VS £220.86
```


Carnocics. DISEOUVT PRIEES for VERO CABINETS

All Plastic Range			Metal fronted Range	
Code No	Size (mm)	Price	Code No.	Size (mm)
65.2514 F	$100 \times 50 \times 25$	£1.70	75.1237J	$85 \times 40 \times 154$
65-2516G	$100 \times 50 \times 40$	£. 1.91	75.12380	$85 \times 60 \times 154$
65.2518 H	$120 \times 65 \times 40$	£2.15	75.1239K	$85 \times 80 \times 154$
65-2520J	$150 \times 80 \times 50$	E2.45	75-1411D	$205 \times 140 \times 75$
65.2522K	$188+110 \times 60$	£3.25	75.1412K	$205 \times 140 \times 110$
			75-1410J	$205 \times 140 \times 40$

Aluminium top panel $-65-3851 \mathrm{~A}(120 \times 65 \times 40 \mathrm{~mm})$
Sloping front panel $-75-1798 \mathrm{~K}(171 \times 121 \times 75 / 37.5 \mathrm{~mm})$
64.30 Sloping front panel $-65-2523 E(220 \times 174 \times 100 / 52 \mathrm{~mm})$.

19"' CARD FRAME/CASE SYSTEM

Card Frame / case
Pair end plates
71-3841-L
£20.91
$8^{\prime \prime}$ Module 4" Module Veroboard $2^{\prime \prime}$ Front panel 1" Front panel Veroboards (less Connector) Plain Board (less Connector) D.I.P. Board (less Connector) Connector, plug, 31 way Connector, socket, 31 way VQ D.I.P. Board

A/I prices include VAT at current rates

Please note our minimum U.K. post and packing charge, except where indicated, is 20p. EXPORT SALES welcomed

NEW PLESSEY IC	SL 6640 FM $1 F$

now in stock at $£ 4.85$

GOOD AND PROPER!

or at least your projects. If there is one thing which is impossible to do at home is lettering front panels to professional standards. At least until now. If you cast your eyes right a while you'll see our new panel transfers sheet. which has been carefully designed to allow you to do ex actly that.

The transters are easily rubbed down. and the two sheet set contains a mass of lettering and -uniquely -control scales for both rotary and slider puts

Each sheet measures 180 mm X 240 mm and comes packed that in a stiff cardboard envelope for protection. There should be enough for dozens of projects here - and the longer you wait the worse they"ll look!

Send E1.75 (includes VAT and postage) for the twosheet set to: Panel Markings FTI magazine,
25-27 Oxford Street. London WIR IRF

POWERTRAN

PSI 4002 STUDIO MODEL

cabinet size $17.2^{\prime \prime} \times 17.2^{\prime \prime} \times 6.7^{\prime \prime}$
COMPLETE KIT ONLY £196.90 + VAT
READ THE REVIEW IN SOUND INTERNATIONAL DEC.' 78

FOR ELECTRONIC KITS OF DISTINCTION $200+200$ watt AMPIIFIER

As featured in Electronics Today International 400W rms continuous - 800W peak! 0.03 \% THD at FULL power! PLUS all the following features too!

* Each channel totally independent with its own stabilised power supply driven by custom designed TOROIDAL transformers!
- Inherent reliability - monster heat sinks for cool running at the hottest venues - electronic open and short circuit protection!
* Ultra low feedback (an incredible low 14 dB overall!). super high slewing rate ($20 \mathrm{~V} / \mu \mathrm{s}$). 200 W rms continuous to 4 ohm from EACH channel, input sensitivity 0.775 V (OdB).
* Professional quality components. sturdy 19 rack mounting chassis complete with sleeve and feet for free standing work 100
Easy to build - plenty of working space with ready access to all components, minimal wiring extensive instruction suitable for both experience constructors and newcomers to electronics.
\star Value for money - quality and periormance comparable with ready-built amplifiers costing ove
$£ 600$!

DE LUXE EASY TO BUILD LINSLEY HOOD

 75W STEREO AMPLIFIER £99.30 + VATThis easy to build version of our world-wide acclaimed 75 W amplifier kit based upon circuit boards interconnected with gold plated contacts resulting in minimal wiring and construction delightfully straightforward. The design was published in Hi-Fi News and Record Review and eatures include rumble filter, variable scratch filter, versatile tone controls and tap monitoring whitst distortion is less than 0.01%.

WIRELESS WORLD FM TUNER £70.20 + VAT

A pre-aligned front-end module makes this Wireless World published design very simple to construct and adjust without special instruments. Features include an excellent a.m. rejection ush-button station selection as well as in..ly variable luning and a phase locked loo tereo decoder incorporating active filters for "birdy" suppression.

LINSLEY-HOOD CASSETTE DECK $£ 79.60$ + VAT

This design, published in Wireless World, although straightforward and relatively low cos provides a very high standard of performance. There are separate record and replay amplifiers and switchable equalisation together with a choice of bias levels are also provided. Th
mechanism is the Goldring-Lenco CRV with electronic speed control.

This kit, based upon a design published in Practical Wireless, uses a single printed circuit board and offers at very low cost. ease of construction and all the normal facilities found on quality amplifiers. A 30 watt version of this kit $(T 30+30)$ is also available for $£ 38.40+$ VAT

POWERTRAN SFMT TUNER £35.90 + VAT

This is a simple low cost design which can be constructed easily without special alignmen equipment but which still gives a first-class output suitable for feeding any of our very popula amplifiers or any other high quality audio equipmen. A phase-locked-loop is used for stere selection (adjustable by controls on the front panell This unit matches well with the channel selection (adjustable by cont $30+30$ amplifiers.

WWII TUNER £47.70 + VAT
This cost reduced model of our highly successful Wireless World FM Tuner kit was designed to complement the $\mathrm{T} 20+20$ and $\mathrm{T} 30+30$ amplifiers and the cabinet size. front panot format and electrical characteristics make this tuner compatible with either. Facılities included are re-aliged frontend module, switchable afc, adjustable switchable muting. LED tuning the front panel)

COMPLETE KITS: Our complete kits really are complete. All of the projects shown on this page•are supplied with fully finished metalwork, ready assembled high quality teak veneer cabinet, cables, nuts, bolts, etc., and full instructions -- in fact everything!

All of the kits shown on this page are available as separate packs (except the Powertran SFMT Tuner) for those customers who wish to spread their purchase or perhaps make their own cabinets or metalwork. Prices are given in our FREE CATALOGUE

PRICE STABILITY: Order with confidence irrespective of any price changes we will
honour all prices in this advertisement until March 31 st .1979 if the February 1979 issue is mentioned with your order. Errors and VAT rate changes excluded.
EXPORT ORDERS: No VAT. Postage charged at actual cost plus 50 p handling and documentation
U.K. ORDERS.Subject to $12^{1 / 2 \%} \%$ surcharge for VAT" (i.e. add $1 / 8$ to the price). No charge is made for carriage. or at current rate if changed.
SECURICOR DELIVERY: For this optional service (U.K. mainland only) add £2.50 (VAT inclusive) per kit
SALES COUNTER: If you prefer to collect your kit from the factory, call at Sale Counter (at rear of factory). Open $9 \mathrm{a} . \mathrm{m} .4 .30 \mathrm{p} . \mathrm{m}$. Monday-Thursday.
our catalogue is Free! write or phone Now!

POWERTRAN ELECTRONICS

PORTWAY INDUSTRIAL ESTATE
ANDOVER, HANTS SP10 3NM
(STD 0264) 64455

news digest

Light Emitting Damsels

FINDING a nice young lady on your desk first thing in the morning is a good way to start a day and, it happens, a nice way to start News Digest.

The lady this month is pictured with a new clock radio from Ingersoll Electronics. Featuring MW/FM/LW with a 12 -hour LED display the clock incorpo-
rates the usual alarm, snooze features.
The model XK802 has pushbutton controls along the top of the unit allowing a fast and slow timeset facility.
The clock is available from most larger electrical stores and at a recommended price of $£ 34.00$, is good value

Clubs From Newcastle

The formation of a new society, whose aim is to promote personal computing in the Newcastle area, should be of interest to some of our Northern friends.

Meetings usually comprise of a lecture, informal discussions and the demonstration of a particular
system.
Further details from
Dr. W. G. Allen,
Dept. of Elec. Eng. and Physical Elect.,
Newcastle upon Tyne Polytechnic,
Newcastle upon Tyne,

Raspberries to EMI!!

A fruity tale this. I assure you we are not winding you up. Right? Read on. . . A team of engineers has been disguising acceleration transducers, accelerometers which convert force into electrical energy - as Raspberries. And hanging them out on bushes.

The number of comments one could make at this point is truly staggering, so one will say nothing at all.
As anyone (?) knows picking raspberries is a sticky process. When ripe they are soft and fragile and liable to squash flat at the drop of a basket. Furthermore they hide beneath leaves upon brittle and lethal canes.

Automation is called for.
Automation has arrived.
$\overline{\text { Only }}$ problem is the prototypes smashed the berries to a pulp in no time flat. Slim pickings, and this is where our men in white
coats with the fake raspberries come in. Hang these little fakers out with the real berries and if the machine doesn't smash them to bits too, you know exactly what forces are being produced at the crucial parts, and can adjust your machinery accordingly. Clever eh?

EMI produce the transducers, called Entran, and the Scottish Institute of Agricultural Engineering are the loonies . . . er engineers who produced the model raspberries and went out hanging them - full moon?)

The actual accelerometers are only 3.6 mm square, and give out 1 mV for every ' g ' of acceleration they are subjected to. The false fruits are wired up to both magnetic and pen-recorders to give full details of the fall of the raspberries. (I didn't believe it first time either. . . .)

Projected Index

Now this is one of those ideas that someone should have thought of long ago, and now that someone has the rest of us must hang our heads in shame and wonder why we didn't
A very clever man called M. L. Scaife has compiled a complete index of all electronic projects appearing in all the relevent magazines from 1972-1977. Next year a second listing will appear which will bring the index completely up to the minute.

Some 2500 projects are listed, all with brief description where components where applicable, a list of how many components are
used in each - and what they are - method of construction PCB. Veroboard etc, and source. Our sister magazine ETI is naturally included as are all ETI Specials.

Subjects are sensibly grouped together to make browing easy and the listings clearly and precisely done.

This tryly amazing piece of work costs only $£ 1.50$ a copy from the patient M. L. Scarfe at: Central Library, Northumberland Square, North Shields, Tyne and Wear. Recommended in the strongest possible terms to all who ever intend to build a project again.

Pray Tell Prestel

LONDON'S Portman Hotel has become the first hotel to feature Prestel viewdata as a permanrnt feature at the hotel. The set, a Baird 26 colour model has been specially installed in the lobby where guests can access pages of information.

General Manager, Michel Favre, was first off the mark with Prestel with the help of Radio Rentals Contracts executives who, only eighteen months earlier, gave the Portman the first of 100 commercially installed teletext receivers at the hotel.

Technically Speaking

Computer Speech has come a long way since the Daleks first clanked their way across the TV screen. In the USA add-on devices for home systems (peripherals) can be purchased to make the small system talk in a reasonable - at least recognisable manner.

Microspeech is the first such unit to be released in the UK as far as we are aware. As you can see from the photo it is not a massive system at all. The program for the board converts typed in phonetic speech from the keyboard into sets of data which is then transmitted to the synthesiser.
There are nine parameters controlled by the unit which make possible manipulation of
the frequency, amplitude and resonance of the final sound, and in this manner male speech can be reasonably imitated.
Microspeech also has an external input which enables it to produce 'talking instrument' effects from guitars and the like. The data coming out is converted back to audio form by an 8 -bit digital-to-analogue (DAC) convertor using nine sample and hold circuits which can 'store' information for well over a minute.

Relatively little memory is used up by the system, and any system using BASIC in its language can be adopted to operate with Microspeech. Costronics, 13 Pield Heath Avenue, Hillingdon, Middx.

Here's why you should buy an I.C.E. instead of just any multimeter

* Best Value for money.
*Used by professional engineers, D.I.Y. enthusiasts, hobbyists, service engineers.
* World-wide proven reliability.
* Low servicing costs.
* 20K/volt sensitivity and high accuracy.
* Large mirror scale meter.
\% Fully protected against overload.
* Large range of inexpensive accessories.
* 12 month warranty, backed by a full after sales service at E.B.Sole U.K.Distributors.

digest......

Technical Enquiry

WHEN this photo arrived on our desk it had been parted from the words which, probably, accompanied it when it entered our post
room
We have no idea what it is or does - any suggestions would be gratefully received.

TRAP Transients

A RANGE of mains transient absorbers is now available from Rhopoint Ltd, of Oxted, Surrey Manufactured by MCG Electronics lnc, of USA, these transient absorbers are designed to protect electrical and electronic equipment from mains.borne high energy transients and spurious spikes, etc., on 120, 240 and 480 volts lines $50 / 60 / 400$ Hz single phase and three phase, star or delta.

Operating in parallel with the mains supply, they control unwanted transients that appear on the mains supply to the user and are independent of the load drawn by the equipment from the
supply. All voltages are clamped to just above the peak value of the mains and up to 480 joules of energy can be absorbed. The transients are clamped to a leve where they are unable to cause interference or corruption, for example, of digital logic in difficult control areas. As such these transient absorbers are ideal for use in computer installations, process control instrumentation and with equipment where reliability of data information is critical and random equipment failure due to transients would be serious. Strategically placed MCG transient absorbers can protect this vulnerable equip. ment.

Microcomputers from the world's largest full-line manufacturer

Other systems available include the
Co: Abacus
Computers
62 New Cavendish Street
London W1 Tel: 01-580 8841
Mutelv
Quarry Hill, Box Corsham
Wiltshire SN14 9HT
Tel: 0225-743289 C3 OEM with 32K RAM, 512K of disk storage and BASIC as standard, $£ 2950.00$ + VAT. (FORTRAN and COBOL available as extras.) All dealer enquiries direct to Abacus Computers Limited.

62 New Cavendish Street
London W1 Tel: 01-580 8841
Mutel
Quarry Hill, Box Corsham Tel: 0225-743289

Thames Personal

Computers
13 Wilmot Way Camberley
Surrey Tel: 0276-27860
Linn Products
235 Drakemire Drive
Castlemilk Glasgow

G45 952 Scotland Tel: 041-634 3860 U Microcomputers PO Box 24 Northwich Cheshire CW8 1RS Tel:0606-75627

NON-SUBSCRIBERS START HERE

GIVE UP, GO HOME
POSTAL SUBSCRIPTION
TO ETI.

It can be a nuisance can't it, going from newsagent to bewsagent? "Sorry squire, don't have it - next one should be out soon."

Although ETI is monthly, it's very rare to find it available after the first week. If it is available, the newsagent's going to be sure to cut his order for the next issue - but we're glad to say it doesn't happen very often.

Do yourself, your newsagent and us a favour. Place a regular order for ETI; your newsagent will almost certainly be delighted. If not, you can take out a postal subscription so there's nothing for you to remember - we'll do it for you.

For a subscription, send us $£ 7.00$ ($£ 8.00$ overseas) and tell us which issue you want to start with. Please make your payment (in sterling please for overseas readers) to ETI Subscriptions and keep it separate from any other services you want at the same time.

ETI Subscription Service

 Electronics Today International 25-27 Oxford Street, London W1R 1 RF

Now Hear The Word of VERO

MOST battery powered equipment inevitably has numerous screws connecting the front panel to the circuit board, the circuit board chassis, the chassis to the case - now hear the word of Vero.

No longer is it necessary to dismantle a complete project to get to a poor exhausted battery, with their inspection-moulded battery housing you can provide access to the battery from outside the unit.

The holder accepts a 9 V battery and may be easily fitted to a panel or enclosure with a thickness of 1,5 to 3 mm . All that
is required for fitting is a rectangular cut-out into which the holder is pressed home, where it is firmly held by the clip-type feature.
The cover, with a flip-over type hinge moulded as part of the housing opens easily for battery changing and snaps closed sec urely

Supplied as a kit, the battery holder comes complete with battery connector and lead for less than $£ 1.00$.

Vero Electronics Limited, In dustrial Estate, Chandler's Ford, Eastleigh, Hampshire SO5 3ZR.

Kit Cat

FOR those industries or applications where a standard tool kit is inadequate, or perhaps contains unwanted tools, OK Machine \& Tool (OK) Ltd are offering a tailor-made kit service

OK stock a range of several hundred different hand tools, from pliers and cutters to special wire strippers and screwdrivers. Additionally they offer an ex tremely broad range of electronic production and servicing aids which includes powered and manual terminal wire wrapping guns as well as conventional sol-
dering irons plus the necessary wire and dispensers

From this selection the com pany can assemble kits to order, from simple canvas "rolls" to well-packed executive briefcases, and will quote for packages costing from just a few pounds to several hundred pounds. Furthermore, there is no minimum order requirement.

For further details contact: Michael Gouldsmith, OK Machine \& Tool (UK) Ltd, 48a The Avenue, SOUTHAMPTON, Hants SOl 2SY

ILP MODULES 15-240 WATTS

We are now stockisis for these world famous fully guaranteed (2 years guarantee on at modules) Pre amps. Amplifiers \& Power Suppties.

HY5 Preamplifier. Input, magnetic pickup 3 mV ceramic 30 mV . Output Mains 500 mv HY30 Amplifier KMS 15 Watts into 8Ω extreamly easy to construct. Output 15 W RMS, Distortion 0% al 15 W Freq 10 Hz . 6 KHz . Supply 18 V Price $\mathbf{2 6 . 2 7}$ 5 HI.FI Amplifier Module 25 wats 8.1 N . 25 W . Freq. $10 \mathrm{~Hz}-45 \mathrm{KHz}$ Supply 25 V Price: £8.18 HY120 Amplifier Module - 60 Watts 80 . Input sens 500 mV Output 60 W RMS HY200 HI.F:/Disco Amplifier Module - 120 Wats 8Ω input sens 500 mV 120 W RMS Freq $10 \mathrm{HZ}-45 \mathrm{KHz}$ Power Supply 45 V . Size $114 \times 100 \times 85 \mathrm{~mm}$
400 (deal for High Power Disco or P A Output 240 Watts RMS $4 \Omega 114 \times 100 \times 85 \mathrm{~mm}$ Distortion 0.1%

Jack plugs			SOCKETS		
Scree ch, 2.5 mm 35 mm MONO STEREO$\|$	$\begin{array}{cc} \text { ened } & \text { Ply } \\ \text { ome } \\ 12 \mathrm{p} \\ 15 \mathrm{p} \\ 23 p \\ 31 p \\ \hline \end{array}$	$\begin{array}{r} \text { Plastic } \\ \text { body } \\ 8 p \\ 10 p \\ 15 p \\ 18 p \end{array}$	$\begin{gathered} \text { open } \\ \text { melal } \\ 8 p \\ 8 p \\ 8 p \\ 13 p \\ 15 p \\ \hline \end{gathered}$		in line couplers $11 p$ $12 p$ $18 p$ $22 p$
DIN		plugs		SOCKETS	In Line
2 PIN Louds peaker$\text { 3. 4. } 5 \text { Audio }$		$\begin{aligned} & 11 p \\ & 13 p \end{aligned}$		$\begin{aligned} & 7 p \\ & 8 p \end{aligned}$	$\begin{aligned} & 18 p \\ & 20 p \end{aligned}$
CO-AXIAL (TV)			14p	14p	14p
phono assorted colours Metal screened			$\begin{array}{r} 9 p \\ 12 p \end{array}$	$5 p$ single 8p doublo 10p 3-way	$\begin{gathered} 15 p \\ - \\ 20 p \end{gathered}$
banana	$\begin{aligned} & 4 \mathrm{~mm} \\ & 2 \mathrm{~mm} \\ & 1 \mathrm{~mm} \\ & \hline \end{aligned}$		$11 p$ $10 p$ $7 p$	$12 p$ $10 p$ $7 p$	-
WANDER OC Type AC 2-pin	3 mm American		8p $15 p$ $15 p$ $15 p$	$8 p$ $20 p$ $15 p$	

POWER SUPPLIES
PSU36 - Drives $2 \times$ HY 30 s
PSU36 - Drives $2 \times$ HY30s
PSU50 - Drives $2 \times$ HY50s
PSU70 - Drives $2 \times$
£14.58*
£25.42*

SWITCHES*	SLIDE 250V IADPDT
TOGGLE 2A. 250 280	1ADPDT c/over 15
DPST	$1 / 24$ DPDT $13 p$
DPDT 38p	${ }^{4}$ pole 2-way ${ }^{2}{ }^{24 p}$
4 pole on/ofl 54 p	
SUB-MIN TOGGLE	SPST on/off
SP changeover	SPDT c/over
SPSTon/oll 54p	DPD
SPST biased	MIN
OPDT 6 tags 70p	Non Locking
DPDT centre oft 790	Push to
DPDT Biased 115p	Push Break 25
ROTARY: Make Your own mutiway Switch.	
Adjustable Siop Shathing Assembly, Accom-	
modate up to 6 Water	69p
Mains Switch DPST to fit 34p	
Break Belore Make Waters. 1 poie/ 12 way	
$2 \mathrm{p} / 6$ way $3 \mathrm{p} / 4$ way. $4 \mathrm{p} / 3$ way $6 \mathrm{p} / 2$ way	
ROTARY (Adjuatnble Stop)	
1 pole/2 to 12 way. $2 p / 2$ io 6 way 3	
ROTARY Mains 250 V AC 4 Amp - 45 p	

VOLTAGE
REGULATORS
TO3 Can Type
14 + ve 5 V .12 V $\begin{array}{ll}14+v e & 5 V \\ 15 V & 12 V \\ 18 \mathrm{~V} & 145\end{array}$ $1 \mathrm{~A}-\mathrm{ve} 5 \mathrm{~V} .12 \mathrm{~V}$
Plastic (TO92) 220
Plastic (T092)

+ ve 0.1 A
5 V .6 V
$8 \mathrm{~V} .12 \mathrm{~V}, 15 \mathrm{~V} \quad 3 \mathrm{~V}$.
+ ve $1 \mathrm{~A}(T \mathrm{O} 220)$

-ve 0.5 A
8 V
8 V
12 V
15 V
86

-vela 5 V .12 V
-veola TrO^{\prime}
5ve $12 v$,
143
IM 309 K
LM $320-12$
LM320-12
M323K

LM317K	$\mathbf{3 5 0}$
LM325N	240

ALUM.	PANEL
BOXES	
WITHL10,	METERS \star
$3 \times 2 \times 1$	

$60 \times 46 \%$
35 mm $60 \times 46 \times$
$35 m m$
$0-50 \mu \mathrm{~A}$

A $\begin{aligned} & 4 \times 51 / 4 \times 1 \\ & 4 \times 21 / 2 \times 2 \\ & 6 \times 2 \times 2\end{aligned}$

\section*{| -2 A | 5 x |
| :--- | :--- |}

3A	8 x
	10

$9 p \quad \begin{aligned} & 21 \\ & 21 \\ & 251 \\ & 251\end{aligned}, ~$

$\stackrel{\star}{*}$

ETI BOOK

BEGINNERS

Beginners Guide to Electronics Squires $£ 2.65$
Beginners Guide to Transistors Reddihough £2.65
Electronic Measurement Simplified C. Hallmark $\mathbf{£} 2.20$ Electronics Self Taught Ashe £4.40
Beginners Guide to Integrated Circuits Sinclair $£ 3.15$ Principles of Transistor Circuits S. Amos £4.75
Understanding Electronic Circuits Sinclair £4.10
Understanding Electronic Components SInclair ©4.10
Beginners Guide to Radio King £ $\mathbf{£} .15$
Beginners Guide to Audio Sinclair $\mathfrak{£ 3 . 1 0}$
Beginners Guide to Audio L. R. Sinclair $£ 3.20$

C00KBOOKS

TV Typewriters Cookbook $£ 7.75$
CMOS Cookbook $£ 8.20$
Active Filters $£ 11.30$
IC Timer Cookbook $£ 7.50$
IC Op-Amp Cookbook $£ 10.00$
Video Cookbook É7.00

APPLICATIONS

Advanced Applications for Pocket Calculators J. Gilbert $£ 4.20$ Build Your Own Working Robot D. Heiseman £3.55 Electronics and Photography R Brown $£ 2.30$
Fire and Theft Security Systems B. Wels $\mathfrak{£ 2 . 0 0}$
How To Build Proximity Detectors and Metal Locators J. Shields £3.90
How To Build Electronic Kits Capel £2.10
Linear Integrated Circuit Applications G. Clayton $\mathbf{E} 5.40$
Function Circuits Design \& Applications Burr Brown €15.95
110 Electronic Alarm Projects R. M. Marston $£ 3.45$
110 Semiconductor Projects for the Home Constructor R. M. Marston $£ 3.25$
110 Integrated Circuit Projects for the Home Constructor R. M. Marston E3. 25
110 Thyristor Projects Using SCRs R. M. Marston $£ 2.95$
Handbook of IC Circuit Projects Ashe $£ 2.30$
Practical Electronic Project Building Ainslie and Colwell $\mathbf{E 2 . 4 5}$

TV AND HI-FI

Audio Handbook G. King £6.50
Cassette Tape Recorders J. Earl $£ 5.25$
Solid State Colour TV Circuits G. R. Wilding $£ 6.35$
Hi -Fi Loudspeakers and Enclosures Cohen $£ 8.20$
How To Build Speaker Enclosures Badmateff $£ 3.90$
Master Hi-Fi Installation King $£ 2.80$

LOGIC

Logic Design Projects Using Standard ICs J Wakerly ©5.10 Practical Digital Design Using ICs J. Greenfield $£ 12.50$ Designing With TTL Integrated Circuits Texas Instruments $£ 9.05$ How To Use IC Circuit Logic Elements J. Streater $£ 3.65$ 110 COSMOS Digital IC Projects for the Home Constructor R. M. Marston £3.20 Understanding CMOS Integrated Circuits R. Melen £4.00 Digital Electronic Circuits and Systems R. M. Morris $£ 3.50$ MOS Digital ICs G. Flynn E5.10

COMPUTING

Microprocessors and Microcomputers B. Sowick $£ 18.00$ Microprocessors D C. McGlynn £8.40
Introduction to Microprocessors Aspinall $£ 5.90$
Modern Guide to Digital Logic (Procoscors, Memories and Interfaces) £4.30
Beginners Gunde to Microprocessors €4.70
Beginners Basic Gosling E3.35

OP-AMPS

Appllcations of Operational Amplifiers Graeme (Burr Brown) $£ 8.30$ Designing With Operational Amplifiers Burr Brown £16.65
Experiments With Operational Amplifiers Clayton £3.40
110 Operational Amplifier Projects for the Home Constructor R. M. Marston $£ 2.95$ Operational Amplifiers Design and Applications G. Tobery (Burr Brown) £7.40 Op-Amp Circuit Design \& Applications J. Carr $£ 4.00$

TEST INSTRUMENTS

The Oscilloscope in Use Sinclair e3.10
Test Instruments for Electronics M. Clifford $£ 2.40$
Working With the Oscilloscope A. Saunders $\mathbf{£ 1 . 9 5}$
Servicing With the Oscilloscope G. King $£ 5.60$
Radio Television and Audio Test Instruments King £5.90

SERVICING

Electronic Fault Diagnosis Sinclair $£ 3.20$
Rapid Servicing of Transistor Equipment G. King $£ 2.95$
Tape Recorder Servicing Manual Gardner Vol. 1: 1968-70 18.50
FM Radio Servicing Handbook King $£ 4.80$
Basic Electronic Test Procedures J. M. Gottlieb $£ 2.45$

Communication Systems Intro To Signals \& Noíse \& Carlson $£ 7.50$ \& Digital Signal Processing Theory \& Applications L. R. Rabiner £23.80

Electronic Communication Systems G. Kennedy $£ 8.50$
Frequency Synthesis. Theory \& Design Mannassewitsch $£ 21.70$
Princlples of Communication Systems H Taub $£ 8.10$

THEORY

Introduction to Digital Filtering Bogner $\mathbb{E 1 0 . 2 0}$
Transistor Circuit Design Texas Instruments $£ 9.35$
Essential Formulae for Electrical and Electronic Engineers N. M. Morris £1.65
Modern Electronic Maths Clifford $\mathbf{£ 6 . 7 0}$
Semiconductor Circuit Elements T. D. Towers $£ 6.40$
Foundations of Wireless Electronics M. G. Scroggle £4.45
Colour Television Theory Hudson $£ 6.20$

REFERENCE

Transistor Tabelle (Includes physical dimensions) £4.10 Electronic Engineers Reference Book (Ed. 4) L. W. Turner £27.70
Solid State Circuit Guide Book B. Ward E2.25
Electronic Components M. A. Colwell £2.45
Electronic Diagrams M. A. Colwell $£ 2.45$
Indexed Guide to Modern Electronic Circuits Goodman £2.30
International Transistor Selector T. D. Towers $£ 6.00$
International FET Selector T. D. Towers £4.35
Popular Valve/Transistor Substitution Guide $£ 2.25$
Radı Valve and Semiconductor Data A. M. Bell 2.60
Master Transistor/Integrated Circuit Substitution Handbook £5.60
World Radio TV Handbook 1978 (Station Directory) £8.00
Radio, TV and Audio Technical Reference Amos $£ 24.85$
TV Technicians Bench Manual (New Ed.) Wilding £5. 10

MISCELLANEOUS

Integrated Electronics J. Milman $£ 7.90$
Microelectronics Hallmark $£ 3.90$
Practical Solid State DC Supplies T. D. Towers $£ 6.20$
Practical Triac/SCR Projects for the Experimenter R. Fox $£ 2.25$
Printed Circuit Assembly Hughes \& Colwell E2.45

Fallen behind recent advances?
Just starting out?
Need a decent reference book?
ETI Book Service provides an easy way of getting your hands on the right title.

How to order: Make cheques etc payable to ETI Book Service. Payment in sterling only please. Orders should be sent to: ETI Book Service, PO Box 79, Maidenhead, Berks. All prices include P\&P.

GREENWVELD SO1 DHX
 Tel:CO703) 772501

All prices quoted include VAT. Add $25 p$ UK/BFPO Postage. Most orders deapatched on day of receipt. SAE with onquiries please. MINIMUM ORDER VALUE £1. Official orders accepted from schools, otc. (Minimum invoice charge £5). Export/Wholesale enquiries welcome. Wholesale list now evailable for bona-fide traders. Surplus componente always wanted.

BUY A COMPLETE RANGE OF COMPONENTS AND THESE PACKS WILL HELP YOU

THE NEW 1978-9 GREENWELD catalogue

FEATURES INCLUDE:

* 50p Discount Vouchers
* Bargain List Supplement
* Reply Paid Envelope
* Priority Order Form
* VAT inclusive prices

Price $30 p+15$ p Post.
HEAT SINK OFFER
Save on time-No dolays in wanen!

* SAVE ON MONEY - Bu/k buying means lowest prices - just compare means lowal
* HAVE THE RIGHT PART - No guesswork or substitution necessary!
ALL PACKS CONTAIN FULL SPEC. BRAND NEW, MARKED DEVICES - SENT BY RETURN OF POST. VAT INCLUSIVE PRICES
K001 50V ceramic plate capacitors. 5\% 10 of each value 22 pF to 1000 pF . Total 210 £ 3.35
K002 Extended range, 22 pF to $0.1 \mu \mathrm{~F} .330$ values $£ 4.90$
$K 003$ Polyester capacitors, 10 each of these values: $0.01,0.015,0.022,0.033,0.047$. $0.068,01,0.15,0.22,033,0.47 \mu \mathrm{~F}$ 110 altogether for $\mathbf{£ 4 . 7 5}$
K004 Mylar capacitors. \min T00V type. 10 each all values from 1000 pF to 10.000 pF . Total 130 for £3.75
K009. Extended mylar pack Contains all values from 1000 pF to $047 \mu \mathrm{~F}$. Total 290 capacitors to £11.25
$K 005$ Polystyrene capacitors. 10 each value from 10 pF to 10.000 pF . E1 2 Series 5% 60 V Total 370 for $£ 12.30$
K006 Tantalum bead capacitors 10 each of the following: $0.1,015,0.22,0.33,047$.
$068,1,2.2,3.3,4.7,6.8$, all 35 V ; $068,1,2.2,16 \quad 22 / 1633 / 1047 / 6$ 100/3. Total 170 tants for $£ 14.20$
$K 007$ Electrolytic capacitors 25 V working. small physical size. 10 each of these popular values: $1,2.2 .4 .7,10,22,47,100 \mu \mathrm{~F}$. Total 70 for $£ 3.50$
$K 008$ Extended range, as above, also including 220. 470 and 1000μ F. Total 100 for E 5.90
K021 Miniature carbon film 5\% resistors. CR25 or similar. 10 of each value from 10R to 6.00
6.00
from $1 R$ to $10 \mathrm{M} \mathbf{£ 8 . 3 0}$
rom 1 R to 10 M £8.30 etc 10 of each value from 27 V to BZY88 series. Total 280 for $£ 15.30$

STEREO AMPLIFIER

CHASSIS £5.50

Complete and ready built Controls. Bass, treble, volume/on-off, balance 8 transisto circuit gives 2 watts per channel output. Jus needs (rans Surand metal cabinet (W374) stereo amp Suitable metal cabinet ($\mathbf{~} 200$ - or buy the ormer for $£ 10,00$ and get DIN speaker sockets and knobs free!!

AMPLIFIER KIT £1.75

 Mono gen purpose amp with tone and above amp. Output 2 W into 8 ohms Input matched for crystal cartridge. 4 transistor circuit. Simple to build on PCB provided. Can be either battery or mains operated. (For mains powered version add £2.20 for suitable transformer). Blue vinyl covered aluminium case to suit (W372) £1.30.
BC182B OFFER

Special Offer for quantity users $1 \mathrm{k} 035+$ VAT: $5 k .032+$ VAT Price negotıable on 10k + approx 80k available

PC ETCHING KIT MK III

Now contains 200 sq ins. copper clad board. 11b Ferric Chloride. DALO etch-resist pen, abrasive cleaner. two miniature drill bits, etching dish and instructions $£ 4.25$

EDGE CONNECTORS

 Special purchase of these $0.1^{\prime \prime}$ pitch double-sided gold-platedect of their original list pricel 18 way 41p; 21 way 47p; 32 way 72p; 40 18 way 90 .Copper TO5 sink 17 mm dia $\times 20 \mathrm{~m}$
$\mathbf{4 0 p} .100$ for $£ \mathbf{3} .1 .000$ for $£ 25$.

74 SERIES PACK Selection of boards containing many dif
ferent 74 series ICs. 20 for $£ 1: 50$ for £2.20; 100 for $£ 4$.

TMS4030 RAM

4096 bit dynamic RAM with 300 ns acces time: 470 n s cycle time. single low capacit ance high evel cocissipation Supplied with ible: Low po
data $\mathbf{£ 2 . 7 5 .}$

MISCELLANEOUS ICs
Supplied with data if requested. MC3302 quad comp. 120p; 710 ditf comp (TO99 40p; ZNT034E precision timer £2.25 LM711 Dual diff comp 65p; LM1303 dua stereo pre-amp 75p; MC1469R voltaga reg £1.50; UPC1025H audio £3.50; 575C audio Ł2.88: TAL SN 75110 dual line driver 70p; MC8500 CRCC gen POA.

OSCILLOSCOPES

We have avallable from stock the following SCOPEX models 4D10A - DC. 10 MHz 10 mV sensitivity. Stab power supplies: Dual beam, 3\% accuracy. Excellent value at E214 inc VAT and carriage. 4S6-6 MHz . Tom sensitivy ll for f 150 inc VAT and carriage

RESISTOR PACK

Carbon film 5% mostly $1 / 4 W$. few $1 / 2 W$ resistors. Brand new but have pre-formed leads. ideal for plumed popular values at the unrepeatable price of $\mathbf{£ 2 . 5 0}$ per 1.000 . $£ 11$ per 5.000

DIN SOCKET OFFER

2 pin switched speaker socket, PC mntg; 5 pin 180° PC mitg or chassis mitg. (clip 25 for $£ 1.60 ; 100$ for $£ 5.50$.

PUSH BUTTON

SWITCH BANKS
Lots of diff types illustrated in 8argain List No. 6 - send SAE for your copy

RELAYS

W847 Low profile PC mntg $10 \times 33 \times 20 \mathrm{~mm}$ 6 V coll. SPCO 3A contacts 93p. W832 Sub min type. $10 \times 19 \times 10 \mathrm{~mm} 12 \mathrm{~V}$ coll DPCO 2A contacts $£ 1.15$.
W701 6V SPCO 1A contacts $20 \times 30 \times$ 25 mm . Only 56 p .
W817 11 pin plug in relay, rated 24 V AC but works well on 6 V DC. Contacts 3 pole c/o rated 10A 95p.
W819 12 V 1250 R DPCO 1 A contacts Size $29 \times 22 \times 18 \mathrm{~mm}$ min plug-in type 72 p . W83950V ac (24V DC) coil 11 pin plugtype 3 pole c/o 10A contacts Only $85 p$. W846 Open construction mains relay. 3 set $10 \mathrm{Ac} / 0$ contacts $£ 1.20$. Send SAE for our relay list - 84 types listed and illustrated.

LOW COST PLASTIC BOXES

 Made in high impact ABS. The lids ar retained by 4 screws ABS, The lids are $\mathrm{terlor}^{\mathrm{t}} \mathrm{V} 219$).V219).
V210
V213 $80 \times 62 \times 40 \mathrm{~mm}$ black
V216 $120 \times 100 \times 45 \mathrm{~mm}$ black
V219 $120 \times 100 \times 45 \mathrm{~mm}$ white 58p
72p

DIODE SCOOP!!!

We have been fortunate to obtain a large quantity of untested. mostly unmarked glass silicon diodes Testing a sample batch revealed about 70% useable devices may all be included These are being offered at the incredibly low price of $£ 1.25 / 1000$ - or a bag of 2.500 for $£ 2.25$. Bag of 10.000 £8. Box of 25,000 £17.50. Box of 100.000 E 60.

digest

IMRC SATCOM For RN

THE Royal Navy has had installed its first shipborne communications ter minal for working via commercial maritime satellites. Supplied by International Marine Radio Company (IMRC) of Croydon, the terminal has been fitted into a Navy ice patrol vessel, HMS Endurance.

About a year ago the Navy, which had been watching the per formance of the Marisat system decided that there might be advan tages in using commercial satellite communications for some of its non-strategic applications. The Navy sees the system being used, initially, on Naval auxiliary craft such as ice patrol vessels and perhaps, hydrographic survey ships. There are at present about 150 Mar isat terminals on board merchant
ships - including one on the QE2. The terminal receives and trans mits via retransmission from a satellite in synchronous orbit. That is, one which maintains its position over a particular point on the globe

At present there are three such satellites, at 22,240 miles altitude over the Atlantic, Pacific and Indian Oceans. Corresponding shore sta tions are in Connecticut and California, with one in Japan serving the Indian Ocean satellite. These shore stations interconnect with the worldwide telephone/data and telex networks. Thus, a ship equipped with an appropriate terminal can exchange messages with any other telephone or telex user. Telex, voice facsimile and data communications are also possible.

Cast Iron Seller

DAVID Griffin Ltd of Blandford Dorset, has produced the Griffin Soldering kit, which includes a 25 -watt soldering iron, a spare fine work bit, a reel of multi-core solder and a pair of tweezers. The

Griffin soldering iron is also available separately

The expected retail price for the kit is $£ 4.50$ and $£ 3.50$ for the soldering iron.

total amplification from CRIMSON ELEKTRIK

WE NOW OFFER THE WIDEST RANGE OF SOUND PRODUCTS

STEREO PRE-AMPLIFIERS

MC 1

CPR 1-THE ADVANCED PRE-AMPLIFIER
 tracking heavily modulated records. Common mode distortion is eliminated by an unusual design. R.I.A. A. is
accurate to 1 dB ; signal to noise ratio is 70 dB relative to 3.5 mV ; distortion < 0005 at 30 dB overload 20 kHz Following this stage is the flat gain /balance stage to bring tape, tuner. etc., up to power amp. signal levels.
Signal on noise ratio 86 dB ; slew-rate $3 \mathrm{~V} / \mathrm{US}$; T.H.D. $20 \mathrm{~Hz}-20 \mathrm{kHz}$. 008% at any level. F.ET muting No conitrols are fitted. There is no provision for tone controls. CPR 1 size is $138 \times 80 \times 20 \mathrm{~mm}$. Supply to be ± 15

MC 1 PRE-PRE-AMPLIFIER

Signats from the now moving-coil cartridges. Sansitivity 70 I 7 Ouv switchable on the p.c.b. This module brings signats trom the now popular low butput moving-coil cartridges up' 103.5 mV (typical signal requifed by mos

REG 1 - POWER SUPPLY
The regulator module. REG 1 provides $15-0-15 \mathrm{v}$ to power the CPR 1 and MC 1 . It can be used with any of our
power amp supplies or our small transtormer TR 6 . The power ampekit will accommodate it.
POWER AMPLIFIERS
it woulishe pointless to ist in so small a space the number of recording studios. educational and government
establishments. etc., who have been using CRIMSON amps satisfactorily for quite some time. We have a
 signal to noise ratio 110 Od ; frequency response $10 \mathrm{~Hz}-35 \mathrm{kHz},-3 \mathrm{~dB}$; stability unconditional: protection drive

POWER SUPPLIES
We produce suitable power supplies which use our superb TOROIDAL transformers only 50 mm high with a

POWER AMPLIFIER KIT

18

BAD NEWS for knob twidiers A 300W Lightdimmer Kit with NO knob Dimming and on/off functions are controlled by touch. Features include: * No mains rewiring * Switches on to preset brightness * Can be switched and dimmed from many locations using TDE/K kit making 2 way switching easy ** PRICE $£ 8.99$ TDE/K£1.50	TR
	Hastic Ca
	6.5 A with trigger
	8 8 12
	16 A -
	SCR (C106D) 5A/400V ${ }_{\text {S }}{ }^{190}$
	Diac 21
	00
LIGHTING CONTROL KITS (300W) TSD 300 K TOUCHSWITCH \& DIMMER COM bined One touch-plate for on/off. Small knob controls brightness ©5.50. TS300K TOUCHSWITCH. Twq tquchplates. ON/OFF. £4.30. TSA3OOK AUTOMATIC. One touchplate Preset time delay off $\mathbf{~} 4.30$. LDЗOOK LIGHTDIMMER £3.00.	0.2" L.E.D.S. 10
	Red 12 p Green 21 p Yellow
	DL727.5 display ¢ £1.50
	LCD 5.4 digit \quad ¢8.10
	LDR $5^{\prime \prime}$ dia . . 50
	NE555 ... (4 for £1.00)
	741 (5 for $£ 1.00$)
	LM3911 temperature IC $£ 1.00$
DIGITAL VOLTMETER THERMONETER KIT	AY-5.1224 AY-5.1230
8ased on the 7106 single IC $31 / 2$ digit DVM the	1N4001
(emmential $\begin{aligned} & \text { kit contains a PCB, res- } \\ & \text { istors capacitors, pre- }\end{aligned}$	
	8C182L 2×3819
-196.6	MINI MANS
modified to a Digital Thermometer using a	Standard 240 V mains primary 100 mA secondary
2.en single transistor as the	6.0 .6 V
ONLY £21.99	$12-0.12 \mathrm{~V}$. ${ }^{\text {a }}$ - 95
24 HR. CLOCK/APPLIANCE TIMER KIT	
Switches any appliance of up to 1 KW on and off at preset times once a day KIT contäins AY-5-1230 Clock/Appliance Timer IC, 0.5 LED display, mains supply, display drivers. switches, LEDs, triac complete with PC8s and full instructions $£ 14.90$ $£ 2.50$ Ready-built £2. 20 $£ 22.50$	
PLEASE ADD 8\% VA.T. ($\ddagger 121 / 2 \%$) TO A8OVE PRICES Quantity discdunts on request add $25 p$ postage a packing. mail order oniy T.K. ELECTRONICS [ETI], 106 Studley Grange Road, London W7 2LX	

COMPUTER SPEECH

Tim Orr takes a rest from his circuit mania this month to explain how speaking machines are moving off the TV screen and into the home computer market.

COMMUNICATION VIA SPEECH is a tremendously efficient way of transmitting information. A computer terminal with just a VDU or a hard copy printer compels the operator to be continually looking at the display. This limits the operator's freedom to do other jobs, such as controlling equipment, reading literature, typing, etc. If the computer had the option of being able to talk how much easier many operations would become. VDU's could also 'talk' their data and computer games could speak their instructions.

Computers have had this 'speech' option for many years, but as technology has improved, the size and cost of the equipment has been reduced to realistic proportions and the speech quality has got better. The microprocessor boom has helped this process and there are now several peripheral plug-ins that can be made to talk and even 'listen and understand'!

ROM For Improvement?

There are many methods by which a computer can generate speech. Some systems use a library of stored spoken text on a disc, just as the speaking clock does. Short phrases and individual words are sequentially selected by the computer programme and strung together to form the desired sentence.

This technique is fine for some applications, where the set of phrases is small or where there will be no need
to change them, because this means changing the disc. However, the unit is physically large and suffers from all the faults of any mechanical system.

An all electronic method of speech storage can be implemented using ROM's. Spoken words can be converted into a digital code (using an ADC), and programed into a ROM. Various words and phrases can then be selected by the computer and used to generate sentences by converting the reassembled data back into analogue information. This technique is the same in concept as the disc method, only the storage medium is electronic.

However, this type of storage would require enormous amounts of memory to generate short pieces of speech, because the unfortunate fact of life is that about 95% of the information stored by this method is redundant. The redundancy problem can be overcome by doing some special coding on the information. Linear predictive coding is one such technique, and this can result in very efficient ways of storing speech.

As A Rule

Yet another method of generating speech, which certainly gives the most versatile output (and is undoubtably the most complicated solution) is SPEECH SYNTHESIS BY RULE, using a speech synthesiser model controlled by data from the computer.

Block Diagram of the digital method of achieving voice storage.

The phonetic code reads almost as if it were written in English (maybe someone will write a program to convert English to phonetic code?). Before discussing the speech program or the synthesiser it is desirable to explain just how human beings generate speech.

The Vocal Tract

Speech production has been studied for centuries and there have been many historical examples of 'mechanical talkers', that is mechanical models that can be manipulated so as to produce synthetic speech. These models generally have employed bellows, reeds and moveable acoustic resonators to synthesise the speech sounds and this is not too dissimilar from the real thing, the vocal tract, Fig. 1.

Air from the lungs is expelled through the vocal cords causing them to vibrate (when you breathe in the vocal cords don't vibrate - try it!). These vibrations produce a buzz which the speaker can control in pitch and volume. This buzz is coloured by a set of acoustic resonators known as the vocal tract.

By opening and closing the mouth, by moving the tongue hump and by connecting or disconnecting the nasal cavity, the resonances of the tract can be manipulated so as to generate speech.

Take, for example some steady state vowels, $A E$ as in HAD, EE as in HEED and OO as in WHO. Fig. 2 shows the acoustic frequency response for various vowels.

The operator types a phrase that is to be spoken. The phrase is spelled phonetically - it usually takes an operator a few hours to come to grips with the new way of spelling - and the computer converts the phrase into a series of parameters which control the speech synthesiser.

For example, the phrase 'Well, it can do with me' would be typed in as 'WEHL IHT KAAN DOO WIHTH MEE' .

Fig 2. Acoustic response of some vowel sounds.

The first three peaks in the response, F1, 2, 3 are known as the first three formants. These are frequencies at which major resonances occur. For example, the ' OO^{\prime} vowel has F1 and 2 close together at a low frequency and so the overall effect is a low frequency resonance. This is obtained by almost closing the mouth and pushing the tongue hump to the bridge of the mouth, whereas the 'AE' vowel is generated by opening the mouth and lowering the tongue hump.

Filter Vowels

It is possible to synthesise vowels by making an electronic model using active filters. If three band-pass filters $(\mathrm{Q}=5$) are cascaded one after the other, set at frequencies of $660 \mathrm{~Hz}, 1720 \mathrm{~Hz}$ and 2410 Hz and a saw-tooth wave form $(100 \mathrm{~Hz})$ is injected into them, the resultant waveform will sound like the 'AE' vowel as in HAD.

A list of vowel resonances is given in Fig. 3. Note that they are for a typical MALE speaker.

A woman's voice is different in two respects. The resonances are about 10% higher because the vocal tract in women is about 10% smaller than that of a man.

Fig 3. Listing of vowel resonances.

		FORMANT (ALL IN Hz)		
		F1	F2	F3
HEED	EE	270	2290	3010
HID	1	390	1990	2550
HEAD	E	530	1840	2480
HAD	AE	660	1720	2410
HOD	AH	730	1090	2440
PAW	AW	570	840	2410
HOOD	U	440	1020	2240
WHO	00	300	870	2240

Fig 4. The vowel triangle!
Second, the pitch of the speech is perhaps an octave higher. These two effects characterise female speech as distinct from male.

Note that the formants 1 and 2 move over quite a wide range, but F3 doesn't move much at all.

However, including F3 in a model does help to improve the intelligibility. If we plot out F1 versus F2, we get what is called the 'vowel triangle', Fig. 4. Try gliding from the PAW vowel to the WHO vowel. The resulting
dipthong is that which is found in HOW. Others are:BAY, BUY, BOY and HOE.

Say Through The Nose?

When the mouth is closed, virtually no sound comes out of it(!) However there is a secondary path via the nasal, cavity, which is available when the velum is open. The group of sounds generated via this route are known as NASALS. They include such sounds as ' M ' as in MAN, ' n ' as in NUT and ' $n g$ ' as in STING. The nasal cavity is virtually a static resonator and so all nasal sounds have an undynamic quality about them.

Vowels, dipthongs and nāsals are all voiced sounds, that is they are all pitched, being generated by the vocal cords. There is a group of sounds called fricatives which are pitchless and are generated by blowing air between the teeth and lips. These sounds are the 'th', ' f ', 's' and 'sh' noises and are very similar to bandpass filtered noise. 'Th' can be modelled by a bandpass filter at 8 kHz whereas at the lowest frequency, 'sh' is modelled by a 2 k 5 Hz filter.

Constantly Talking

There are many other types of sounds but for the purposes of brevity we will consider only one more, the STOP CONSONANT. These sounds are characterised by a sudden opening of the mouth. This produces two effects.

One, there must be a period of silence (if only briefly), before the sound is generated.

Two, as the mouth opens, the formants rapidly move toward temporary target positions.

The stop consonants, 'T', ' P^{\prime}, ' K ', ' D ', ' B^{\prime}, ' G^{\prime} are shown in Fig. 5. The vowel ' AH ' has been used in this

Fig 5. Time domain analysis of the stop constants.

NOISE BURST

NOISE BURST

example and so the stop consonants are ' Ta ', ' Pa ', ' Ka ', ' Da ', ' Ba ', ' Ga^{\prime}. The first group are characterised by having a small noise burst which preceeds the opening of the mouth.

This burst only lasts for about 30 to 50 mS and it has a different resonant frequency for each of the examples. However, it is a very important phonetic element and does much to characterise the sound.

The lower group of stop consonants has no noise burst. This is the major difference between these two sets of sounds.

Verbal Circuits

Well, that's the end of the very rapid phonetics lecture, now for the electronics. The speech synthesiser must be able to model the vocal tract. It needs a voltage controlled oscillator, a noise generator, a controlled fricative formant, a controlled set of formants F1,2,3 and a nasal resonator. There are 9 parameters in this model which need controlling. These are:-

AH - amplitude of aspired sounds.
AV - amplitude of vowels sounds.
AF - amplitude of fricative sounds.
AN - amplitude of nasal sounds.
F1 - frequency of formant 1.
F2 - frequency of formant 2.
F3 - frequency of formant 3.
Ff - frequency of fricative formant.
Fv - frequency of oscillator.
The model is known as a serial 3 formant synthesiser with parallel fricative and nasal formants. The computer delivers data which is converted into 9 voltages which represent the 9 parameters.

It is entirely up to the computer to generate the
parameters correctly, the synthesiser merely does what it is told to do.

Speech Less Latches

The parameter generator is shown in Fig. 7. When the computer decides to deliver a frame of information it sends out an address and a data block. This address is unique to this peripheral device and is decoded by an address decoder inside the synthesiser. This decoded address generates a clock pulse which clocks a 12 bit latch.

Four of these 12 bits of data are another address which decides which of the 9 parameters is being updated. The other 8 bits are data which drive an 8 bit DAC. The analogue output from this DAC is fed to a demultiplexer which drives 9 sample and hold units.

Thus the 8 bit data word is converted into a control voltage and is then steered by the 4 bit address into the correct sample and hold. The whole frame of 9 parameters is updated 50 times a second. This consumes only a small percentage of the computer time, and yet it allows the speech program to be run on a slower time scale without the steps between frames becoming noticeable.

Pitch In

The program was written so as to make the operator's job as easy as possible. There is a listing of about 50 phonemes which can be used to generate speech. Gaps can be typed in and changes to existing sentences can easily be implemented.

The pitch of the speech is controllable so that the correct pitch inflections can be used to stress various words. Also, an external sound source can be used in place of the VCO so that effects such as 'talking music' can be produced.

ET
'Fig 6. Block diagram of a three formant speech synthesiser.

Fig 7. Block diagram of a parameter generator for a speech synthesis machine.

Resumé of Speech Products

The number of speech products that are being produced is rapidly increasing. Here is a list of some of them.
Texas Instruments have brought out a teaching aid called 'speak and spell'. This unit has an alphabetical keyboard plus display. The word that is typed in is spoken by a ROM that uses a linear predecive coding technique, enabling more than 200 words to be stored.
Federal Screw works make a speech synthesiser called Votrax. It generates speech by rule and it can be used as a computer peripheral or as a stand alone unit.

They also make a speech synthesiser which is a bit like a large pocket calculator, except that words are printed next to the buttons. This is intended as a limited talker for people with speech loss.
Telesensory systems make a 'talking' pocket calculator, a 'speaking chip set' and they are also working on a reading tool for the blind. This uses a little hand-held camera which converts the printed text into letters which are then converted into speech.
OVE III made by Fonema is a speech synthesiser similar to that described in this article. However, it uses lots of
parameters and the speech output can be better than the real thing!
Speech Lab made by Heuristics is a microprocessor peripheral. This device recognises the spoken word (after you have trained it to do so). The manufacturers claim real time operation and a 95% correct recognition rate.
Computalker made by Computalker Consultants is a microprocessor peripheral speech synthesiser using the vocal tract analogue as described in this article.
Microspeech made by Richard Monkhouse and Tim Orr. A microprocessor peripheral speech synthesiser designed to run from 6800 orientated systems.
Vocoder and Vocoder 2000. The first commercially available channel vocoders for the music market manufactured by EMS. Enables normally inarticulate sounds to speak. (For example, talking pianos.)
Vocaliser pedal made by Coloursound. A music product, not a Wah-wah pedal but a vowel pedal. Vowels available EE to $A H$ to 00 .
Dipthoniser made by Coloursound. Produces dipthong filter sweeps primarily for bass guitar. Sounds such as BOW, YEH, WAH and YAE are available.

HIGH FREQUENCY COUNTER
 Types HFC60, HFC600 and HFC60-0V, HFC 600-0V

6) Wilmslow Audio

 THE firm for speakers!Send 15 p stamp for the world's best catalogue of
Speakers, Drive Units, Kits, Crossovers, etc., and discount price list.

- AUDAX BAKER BOWERS \& WILKINS CASTLE CELESTION CHARTWELL COLES DALESFORD DECCA EMI EAGLE ELAC

FANE GAUSS GOODMANS I.M.F. ISOPHON JR JORDAN WATTS KEF LEAK * LOWTHER MCKENZIE MONITOR AUDIO PEERLESS RADFORD RAM RICHARD ALLAN - SEAS TANNOY VIDEOTONE WHARFEDALE SHACKMAN AUDIOMASTER TANGENT STAG YAMAHA

WILMSLOW AUDIO Dept. ETI

SWAN WORKS, BANK SQUARE, WILMSLOW CHESHIRE SK9 1 HF
Discount HiFi, etc., at:
5 Swan Street and 10 Swan Street
TEL. WILMSLOW 529599 FOR SPEAKERS
WILMSLOW 526213 FOR HI-FI

Hobby

 ElectronicsShort Wave Receiver

Back in the bad-old-days when there were just valves, and they were expensive, you thought hard before adding another stage of amplification: first you tried to be clever. Our SW radio next month uses just two semiconductors ye! will give surprisingly good performance over the range $55-25 \mathrm{MHz}$ if used with a reasonable aerial.

Instant Circuit Layout

Do you have trouble getting your brain to translate a circuit into a practical layout? If so you're in good company but next month join the elite by overcoming this. We give you practical advice on how to lay out components from practically any circuit diagram.

Scratch / rumble Filter

An add-on circuit to couple to an existing audio system, this project enables you to select the cut-off frequency of the system at both ends of the spectrum.

Radioactivity

Although most people shudder when they think of radioactivity, there's a lot more to it than fallout from nuclear bombs. Radioactivity is widely used in medicine and in industry and our anticle describes some of the uses and traces the history of its development.

Video Tape Recorders

The age of the Video Cassette Recorder has arrived and soon they'll be common. However, they are the most complex, sophisticated, pieces of engineering that have ever crossed the doormat in reasonable numbers. Next month we explain how they work and take a look at the different systems being offered.

OST Rules, OK?
Got the hang of Ohms Law? No problem but the world isn't yours yet - have you ever found a problem it can't cope with? The chances are that you have. However, there are two other approaches to help you solve the nasty ones: Superposition and Thevenin's Theorem. They may sound complex but in reality they make life simpler.

Sine / Square Wave

 Generator

An essential part of anybody's test gear and our project next month enables you to add one to your workbench at low cost.
 Projects Using The CA3130

We publish one chapter from R. A. Penfolds ' 50 Circuits using the CA3130' (brought out by Babani) and mighty interesting they are too. The projects include an electronic organ, metronome, alarm and latching circuits.

 Holograms

Today they are only a curiousity, shown as exhibits and as special effects but much work has been going on behind the scenes. Today's Holograms really make you wonder if you can believe your eyes.

MORE SCOPE FOR YOUR MONEY

THE TIME gives hour, minute, sec. day, am or pm
THE CALE NDAR gives hour minute day
THE CALENDAR gives hour, minute, day or date by
Your selection,
DUAL TIME
ChaL TIME Time of any city of the world at your
ALARM
CHRONO-TIMER and LAP TIMES.
TEXAS
PC100B E151 20, T157 £28.30 T151.3 228.40 CASIO
COB?
CBM
COMMODORE Pet Computer 2001/8K £695
Boris Microprocessor chess game $£ 199$
Gammon Master H (computer backgammon) 14995
KRAMER \& CO.
9 October Place, Holders Hill Road
Lond NW4 H. Telex: 88894
Mail order only Callers by appointmen

TAMTRONIK LTD (oept eit)

217 TOLL END ROAD, TIPTON

WEST MIDLANDS, TEL: 021-557 9144

ONE STOP SHOPPING - P.C.B.
Components, Hardware, Cases, Part Kits, Full Kits. A complete service to the ETI Constructor All Prices incl. VAT, P\& P 30p per order

TAPE SLIDE

SYNCHRONISER

This must rate as one of the most requested projects of all time for us! This tape synchroniser uses a notched 100 Hz tone to achieve its ends as neatly as possible.

WHEN PUTTING on a slide show for your friends or a business meeting, it is usually necessary to have some commentary with it. If it is a one-time presentation this is no problem, but if the show is to be repeated or if you simply want to be able to recall good memories a couple of years later then a tape recording of the commentary is ideal. The problem now is to keep the slides changing in synchronization with the commentary, without having to record that obtrusive phrase change slide now' onto the tape.

This unit allows a control tone $(100 \mathrm{~Hz})$ to be recorded on the tape along with the normal voice recording; when replayed the tone will activiate a relay which will change the slide while a notch filter removes the tone so it is not heard through the speaker.

Construction

Assemble the PCB with the aid of the component overlay in Fig. 1. With the 240 V wiring it is better not to use pins but solder the wires directly onto the PCB. A covering of epoxy glue over the tracks leading to the transformer will help to prevent accidental contact.

We built the prototype into a large plastic box with the controls on the front panel and the tape recorder/amplifier connections on the rear. The wiring of the front panel is given in Fig. 3. We used an electret microphone insert mounted just behind the front panel. However the noise of the relay operating could be heard on the tape and therefore an external microphone is

recommended. A socket can be mounted on the front panel in the microphone position.

Using the Unit

With this unit a separate amplifier/speaker system is needed. Also the slide projector must have a remote change button using normally open contacts. Connection has to be made between these contacts and the relay in the unit. Check that these wires are isolated from the 240 V mains and if
not be very careful with the connections.

Connect the unit to the tape recorder and projector, assemble the slides in the correct order and switch on. With the record/playback switch in the record position and the recorder set to record, commence the commentary, changing slides with the button on the unit. The high level input on the recorder should be used and the microphone level pot set to give the correct recording level.

When playing back simply set the record/playback switch to playback and replay the tape.

HOW IT

WORKS

With this unit, unlike our previous design, we record a 100 Hz tone burst on the same channel as the speech whenever we require a slide to be changed. The tone is derived by full wave rectifying the output of the transformer and filtering out the harmonics by R2, 3/C3,4.
Pressing the slide change button mixes this tone with the output from the microphone which is amplified by IC $2 / 1$. This combined output is recorded on the tape.

In the record mode SW2 connects the output of IC2/I to the buffer amplifier IC2/2. In the playback mode it connects the output from the tape recorder to the amplifier. The output of this amplifier is split into two paths. One of these is through a 100 Hz notch filter to IC2; 3 effectively removing the 100 Hz tone without much change to the rest of the spectrum. This is used to drive an amplifier/speaker system.
The other path for the signal after IC $2 / 2$ is via a low pass filter IC2/4. This removes frequencies above 150 Hz and has a response as shown in Fig. 2. When the 100 Hz tone occurs, this filter passes it, rejecting speech frequencies, and it is passed to IC3. This is a phase locked loop tone decoder and its output on pin 8 turns on when the correct frequency tone is received. The output stage of this IC is an open collector npn transistor which can sink but not source current. With no incoming tone this transistor will be off, preventing any emitter current in Q1, hence turning it off also. The voltage on the base of Q1 in this case will be set at 0V6 by LED1. When a tone occurs the output of the IC will saturate to about 0V6, forward biasing Q1, turning it on, and closing the relay. The current in R22 is now bypassed into the base of Q1, giving about lV2 on the base. This is too low for the LED to conduct and it will go out.
The power supply is simply full wave rectified and filtered for IC2, and a 5 V regulator is used for the PLL IC and the microphone amp.

Fig 2. The frequency responses of the notch and low pass filter sections of the circuit.

Adjustments

Set the unit up to record and with all trimpots at the centre of their travel and the microphone level at minimum, hold the slide change button down. Probably some 100 Hz signal will be heard on the output of the amplifier. Alternately adjust RV2 and RV3 to minimise this signal. It should be necessary to wind up the volume of the amplifier to finally adjust for a minimum level

The other adjustment is of the phase locked loop centre frequency. With the push button pressed slowly rotate RV4 until the relay either opens or closes. If it closes, continue to rotate it until it drops out then bring the pot back to the half way point. If the relay opened, reverse the rotation to find the other point at which it opens and leave RV4 midway between these two points

Check the operation of the relay when pressing the button. There should be about haif a second delay before it closes.

ETI

Fig. 3. Component overlay for the slide
synchroniser
POTENTIOMETERS

RESISTORS all $1 / 2$ W, 5%		POTENTI
		RV1
R1, 2	4 k 7	RV2
R3	22 k	RV3
R4	1 M	RV4
R5, 15, 20	1 k	SEMICON
R6	470k	
R7, 14	150k	IC1
R8, 17	100 R	IC2
R9, 10, 19	100k	IC3
R11, 18	220k	Q1
R12	120 k	
R13	33k	D1-D5
R16, 21	10k	D6-D8
R22	2k2	-LED
CAPACITORS		
C1, 2	1000μ	16 V
C3, 7, 13, 14	$41 \mu 0$	25 V
C4	330μ	polyester
C5, 8,9	10μ	polyester
C6	10μ	25 V
C10	22μ	polyester
C11	47μ	polyester
C12	$2 \mu 7$	polyester
C15	22μ	10 V
C16	33μ	10 V

MISCELLANEOUS
Relay 12V $280 \Omega 2$
Transformer $240 \mathrm{~V}-18 \mathrm{~V}$
Two toggle switches
One push button switch N/O
Box to suit
3 core flex and plug
Output sockets etc.
SINCLAAR PRODUCTS*
Mrcrovision TV UK model E89.95. POM35 £27.25. Mains adaptor $£ 3.24$. Case $£ 3.25 .30 \mathrm{kv}$ probe £49.4. Rechargeable batteries E7.50. Marns adaptor/charger 53.70 . Case $\mathbf{£ 8 . 5 0 \text { . 30kv probe }}$
E18. $\$$. Enterprise prog calculator complete with accessories 821.95 . Cambridge prog calculator

> S-OECS ANO T-OECS

CONTINENTAL SPECIALITIES

PRODUCTS*
EXP300 £6.21. EXP 350 £3.40. EXP600 £6.so. EXP650 £3.89. EXP4B £2.48. P86 £9.94. PB 100
£12.74. LM1 £30.99. LP1 £33.48. LP2 £19.44.
TV GAMES
Send se for data. AY-3-8500 + economy kit
 economy kut £4. 10 game paddie 2 chip AY. 3.8600

+ ecconomy ktt $£ 12.50$. Racing car chip AY- 3.8603 + economy kit $£ 12.50$. Racing car chip AY- 3-8603
+ economy kit $£ 19.95$. Modified shoor kit $£ 4.96$. R Afle kit $£ 4,95$. Colour ganerator kit $£ 7.50$. Wipe out chip + ktt E 19.95 .

MAINS TRANSFORMERS

JC12, JC20 ANO JC4O AMPLIFIERS A range of integrated circuit audio amplifiers sunolied
with free data and printed circuits JC12 6 watts with free data and printed circuits JC12 6 walts
£1.80. JC20 10 watts $£ 2.95$. JC40 20 walts e2.95. Send s.a e for froe data on our range of matching power and preamp kits

FERRANTI ZN414

IC radio chip $\mathrm{E1.05}$. Extra parts and pch for radio
£3.85. Case £1. Sends s.e lor free data

PRINTEO CIRCUIT MATERIALS

 pens Economy 45p. dalo 73 p . Small drill buts $1 / 32$ in or 1 mm 20p exch. Etching 01 sh © 8 P . Laminate
cutter 75 f .

SWANLEY ELECTRONICS

DEPT. ETI, 32 GOLDSEL RD., SWANLEY, KENT BRS SEZ
Mal order only. please add 30 p to the total cost of order for postage Prices include VAT Overs
deduct 7% on tems marked "and 11% on others Ofticial credit orders welcome

A New Generation of SOAR Digital Multimeter At An Analog Price!

3122 DIGIT LCD - 6 FUNCTION MULTIMETER FOR UNDER $£ 80!$

JUST SEE THE FEATURES

- Full information field effect LCD display. Displays: Units, Polarity, overrange, Battery Discharge
- Power consumption only 15 mW . Almost 200 hours operation from single 9 v battery. (socket for 9 v manns adaptor provided)
- High Accuracy, $10 \mathrm{M} \Omega$ input resistance, small size $(95 \times 155 \times 45 \mathrm{~mm}$), light weight (300 g Ex. Battery), input overload protection.
- Six functions in 30 ranges!

DC Volts \qquad 100 uv to 1000 v
AC Volts \qquad 100 uv to 600 v
DC Current \qquad 100 nA to 1 A
AC Current \qquad 100 nA to 1 A
Resistance (Low) \qquad $100 \mathrm{mnto} 20 \mathrm{M} \Omega$

* Resistance (High) \qquad $100 \mathrm{mnto} 20 \mathrm{M} \Omega$
* Useful for incircuit diode \& transistor testing
- Supplied complete with test leads, 9 v battery, operator's manual and spare fuse.

JUST SEND $£ 79.95+£ 1.50$ (Postage, Packing \& Insurance) Allow 28 days for delivery
SOAR ELECTRONICS (Mail Order Only)
8 VANE CLOSE, PRESTON HILL, HARROW, MIDDLESEX HA3 9 XD

BUILD A VCT

So far VCT has been the biggest non-event in component history. Two years of blank looks and still not released. In the meanwhile ETI shows you how to build your very own VCT to worry and amaze your friends!

THE CIRCUIT SYMBOL of the voltage-current transactor (VCT) is shown in Fig. 1 with both voltage input and current output terminals floating. In the future it is expected that single chip VCTs (Ron Harris, ETI) will challenge the familiar op-amp as the universal linear circuit building block. At present, however, these have yet to emerge. In the meantime considerable familiarity with the VCT concept and with its circuit applications may be achieved by building a PCB version using readily available IC transistor arrays.

A single-ended VCT (C.A. Holt, "Electronic Circuits: Digital and Analog' p.788) is shown in Fig. 2. The floating output version of Fig. 3 corresponds to the circuit discussed before (J. E. Morris, ETI August 1977). In both figures the unfamiliar symbols (boxes) are intended to represent current mirrors. Ideally, the output from the high impedance current source(s) exactly equals the input current into the low impedance terminal (arrow-head). VCT operation is based upon these current mirrors.

Fig. 2. Single-ended VCT (e.g. CA3080 operational transconductance amplifier.

No attempt will be made here to duplicate the earlier explanation of circuit operation which is expected to be reasonably clear from the diagrams (Figs. 2 and 3) anyway). The essential point is that the differential input voltage $V_{1}-V_{2}$ leads to an imbalance in the currents flowing in the two halves of the symmetrical circuit and that this imbalance is translated into a load current I. The load is driven by constant current sources (high impedance) and the input impedance is high to minimise

Fig. 1. VCT symbol and external connections.
input signal loading. With the system of Fig. 3, load current is given by

$$
I_{L}=2 / 3 z\left(V_{1}-V_{2}\right) / R_{E X T}
$$

up to the point where the bias current is exhausted, i.e. for $I_{L}<2 / 3 I_{B}$.

Transistor Arrays

The original intention of the project described here was to build the current mirrors using perfectly matched transistor arrays in miniature flat IC packages. These were to be mounted on an alumina substrate with printed thick film interconnections in the circuit described in the earlier articles. As is often the case with electronics, however, the realities of the situation dictated a very different course.

In the first place both miniature package arrays and arrays of matched transistors were neither readily available nor acceptably priced! After some searching of the data books, we settled for the RCA arrays CA3084 and CA3086 on the basis of price and availability. (The pin diagrams for these are reproduced in Fig. 4). Not all of the components in these packages are used, in particular, the Darlington transistor D in the CA3084 is not employed in the VCT circuit.

The first point to be determined was the effectiveness of these transistor arrays in current mirror circuits. No claim is made for transistor matching in the CA3086 other than the obvious one of thermal matching. In the CA3084, Q_{3} and Q_{4} are obviously organized as current mirror outputs and Q_{1}, Q_{2} are described as a matched

Fig. 3. VCT with floating input.
pair. The specifications on $\mathrm{Q}_{1}, \mathrm{Q}_{2}$ look impressive and those of $\mathrm{Q}_{3}, \mathrm{Q}_{4}$ seem rather inadequate (Fig. 4) but in fact for current mirror applications the reverse is true in both cases. To put these specifications into perspective, consider two similar base-emitter junctions where $\mathrm{I}_{\mathrm{E}}, \mathrm{I}_{\mathrm{S} 1}$ $\exp \left(e V_{E B 1} / k T\right)$ and $I_{E 2} I_{S 2} \exp \left(e V_{E B 2} / k T\right)$. Suppose these two junctions may be regarded as extremely well matched e.g. to $\pm 1 \mathrm{mV}$ in V_{BE} carrying identical currents I_{E}. Substitution above leads to

$$
\begin{aligned}
I_{E}= & I_{S 1} \exp \left(\mathrm{e} V_{E B} / k T\right) \\
= & 1_{S 2} \exp \left(\mathrm{eV} \mathrm{~V}_{\mathrm{EB}} / \mathrm{kT} \exp \right. \\
& (\mathrm{e} 10.3 / \mathrm{kT})
\end{aligned}
$$

and if equal $\mathrm{V}_{\mathrm{EB} \text { 's }}$ are now specified for the current mirror application

$$
\begin{aligned}
I_{E 2} & =I_{S 2} \exp \left(\mathrm{eV}_{E B} / \mathrm{kT}\right) \\
& =I_{\mathrm{S} 1} \exp \left(-\mathrm{e} 10^{-3} / \mathrm{kT}\right) \\
& \quad \exp \left(\mathrm{e} V_{E B} / \mathrm{kT}\right) \\
& =I_{E 1} \exp -\left(\mathrm{e} 10^{-3} / \mathrm{kT}\right)
\end{aligned}
$$

At room temperature, $\mathrm{kT} 1 / 40 \mathrm{eV}$ and $\mathrm{I}_{\mathrm{E} 2} 0.96 \mathrm{I}_{\mathrm{E} 1}$. So a $\pm 1 \mathrm{mV}$ matching in V_{BE} leads to a $4-5 \%$ error in a current mirror application. In this light, $\mathrm{Q}_{3}-\mathrm{Q}_{4}$ seem to be reasonably matched for the purpose and $Q_{1}-Q_{2}$ less so.

Clearly, the point is best resolved by direct measurement of current mirror performance using the arrays themselves.

Current Mirrors

As a first step, the transistors were checked for matching. For the CA3086, all transistors (except possibly the substrate transistor Q_{5} whose measurements were later deemed to be suspect) were matched to within a 12 mV spread for a given current up to $500 \mu \mathrm{~A}$. This figure reduces to a low 1 mV range at 1 mA and increases again with increasing current to about 9 mV at 10 mA . (All measurements at $V_{C E}=3 \mathrm{~V}$.) It is only possible to
measure terminal characteristics of Q_{1} and Q_{2} in the CA3084 and from $10 \mu \mathrm{~A}$ to $10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{BE}}$ values were matched to within 1 mV .

Fig. 4. 1C transistor arrays - pin connections and C'A3084 specifications. (S - substrate connection to most negative point).

The performance of the CA3084 current mirror is shown in Fig. 5 and that of a more complex system in Fig. 6. Clearly, the extra components of the more complicated circuit (which are all subject to variations from the nominal device parameters), lead to increased discrepancies in the output current. On the other hand, the simple circuit (as found within the CA3084 chip, for example), provides output matching within specification although the absolute level is lower than expected.

With the CA3086 a slightly different measurement technique was employed (Figs. 7 and 8) where transistor gain was permitted to vary with $\mathrm{V}_{\text {CE }}$. This accounts for the curvatures of the output characteristics in Fig. 7. In Fig. 8, the performance of the more complex system is seen to be clearly inadequate. (The transistors in these two diagrams with base and collector shorted together function as diodes, as does Q_{4} in Fig. 6).

The results of this section fed immediately to the decision to use only the basic type of current mirror. Both types were examined in the earlier article (ETI ${ }^{-}$ August, 1977) and the more complicated form is used in the prototype single chip VCT. The advantage of the complex circuit is that it performs better with low gain transistors but the typical $h_{\text {FE }}$ figures of 100 and 40 (for the CA3086 and CA3084 respectively) are expected to be adequate. The problem with the system being developed here is that of poor matching and an elementary worst case analysis demonstrates the superiority of a minimal component count.

'Fig. 5. Elementary current mirror - output matching test.

Fig. 6. Complex current mirror output matching test.

Fig. 7. Elementary current mirror - transistor matching.

Discrete VCT

The actual circuit employed is shown in Fig. 9 and differs markedly from the one discussed in the earlier articles. In the first place, the simple current mirror has been used throughout for reasons given above. Second, there is obviously no opportunity to provide current gain by utilising multiple emitter transistors since these are not provided in the arrays. (This is no disadvantage for the purpose of a familiarisation exercise.) The third discrepancy is apparent by comparison of Fig. 9 with Fig. 3. In recognition of device parameter variations and the asymmetry which these will necessary cause, the bias circuit has been split into two independent sources. In effect, this provides both bias and offset capabilities. Usually one would employ Darlingtons as the input transistors. This step would require an extra CA3086 and has been omitted.

A fifth difference lies with the elimination of any link between the input circuit current mirrors of the two sides. The circuit described in previous articles uses the -complex current mirror with diodes shared between the two sides of the VCT. This set-up has been simulated

Fig. 8. Complex current mirror - output matching.

Fig. 9. Simplified VCT design employing IC transistor arrays
(Fig. 10) and found to be ineffective as a means of compensation for bias imbalance between the two sides. If $I_{\text {IN2 }}$ is increased, for example, the base current of Q_{2} and hence I_{02} increase with a compensating decrease in I_{01}. A link of this type is not possible with the simple mirror system adopted here, but would not have been employed with the more complicated circuit anyway.

A printed circuit board layout is shown in Fig. 11 . No claim is made with regard to the optimal quality of this layout but it seems satisfactory.

Fig. 10. Effect of linking current mirrors within the VCT.

Fig. 11. PCB layout, showing external components, wire links, etc. - view from component side.

VCT Performance

It is not the function of this article to present an exhaustive survey of the circuit's performance in varied applications. Many of these have been proposed elsewhere (ETI, amongst others) and the reader is left to try these individually with his own discrete VCT. There are, however, a few pitfalls which warrant further discussion. Most of these may be classed as limitations of the non-ideal system.

Two VCTs were constructed and these are identified as 'a' and 'b' from here on. In general, they performed similarly, but there were some significant differences. Unless stated otherwise, below, supply voltages of ± 10 volts were employed with $\mathrm{R}_{\mathrm{EXY}}=1 \mathrm{k}$ and only current monitoring as loads. The first test was to establish bias current levels to achieve a null output. $\mathrm{R}_{\mathrm{B} 1}$ was set to 4 k with each unit. For VCTa, $R_{B 2}=5 \mathrm{k} 212$ and for VCTb, $R_{B 2}=5 k 552$ established zero output currents for $V_{1}=$ $V_{2}=0 \mathrm{~V}$. Drifts (of the order of $1 \mu \mathrm{~A}$ for VCTa and $40 \mu \mathrm{~A}$ for VCTb) were noted over the next few minutes and R_{82} was finally set to 5 k 2 for VCTa and 5 k 6 for VCTb. In the test for common mode rejection (Fig. 12) the residual offset and the magnitude of short term drift effects are apparent (output levels must significantly exceed these drifts). As the supply voltages are approached, transistors begin to cut off and this may in turn lead to unpredictable effects depending on the relative parameters of the various devices. The lesson to avoid approaching the supply rails is clear. While the common-mode rejection ratio seems satisfactory for VCTa (Fig. 12), the curve for VCTb clearly indicates an asymmetry in the circuit, i.e. there is at least one transistor mismatched to its counterpart on the other side (this mismatch is most likely in a variation of gain with $V_{C E}$).

Fig. 13 shows the standard transfer characteristics. The slight variations in slope are due to $\mathrm{R}_{\mathrm{EXT}}$ tolerances

Fig. 13. Transfer charecteristics.

Fig. 12. Common mode signal transfer (V1 = V2).

Fig. 14. Transfer characteristics with one end of the load grounded and with corresponding input grounded.

Fig. 16. VCT 'resistors' - positive and negative.
and the measured values (VCTa: $1 \mathrm{~mA} / 12 \mathrm{~V}$ and 6 mA / 7.75 V for $\mathrm{R}_{\mathrm{EXT}} \quad 10 \mathrm{k}, 1 \mathrm{k}$ exceed expectation slightly (c.f. $1 \mathrm{~mA} / 15 \mathrm{~V}, 6 \mathrm{~mA} / 9 \mathrm{~V}$) due to a small current gain cuased by transistor mismatching. This effect also leads to small discrepancies from the expected current limit levels (e.g. $2 / 3 \times 20 \mathrm{~V} / 4 \mathrm{k}$ and $2 / 3 \times 20 \mathrm{~V} / 5 \mathrm{k} 2$).

The results described in the preceding paragraph were obtained with one input grounded as a matter of convenience. There is a dramatic shift in the offset current when one end of the load is also grounded (Fig. 14) and when both these fixed points are switched to the other side of the VCT. It would seem that the concept of 'floating' input and output require re-examination.

It must be noted that while one might expect the two ends of the floating load to sit at approximately zero volts, it does not take a great deal of device variation to produce extreme deviations from this. In both the circuits built here, two output transistors $\left(\mathrm{O}_{4}, \mathrm{Q}_{5}\right.$ of CA3086, see Fig. 9) were saturated at null output. (With different selection of devices, saturation of CA3084 O_{3} and Q_{4} is equally likely). This creates no problems for the floating load unit high frequency or switching applications where performance will be down-graded by transsistor saturation. It does, however, mean that the output must be rezeroed if either end of the load is to be tied to a fixed potential as in Fig. 14.

Fig. 15. Effect of output load resistance.

The four constant current sources which comprise the output circuitry lead inevitably to saturation as soon as there is an imbalance between them. In many cases zeroing the output current aggrevates the problem. If device selection is contemplated, these are the transistors to consider first.

Variation of load current with load impedance (Fig. 15) suggests that the output impedance is about 40 k substiantially below the $60-100 \mathrm{k}$ range expected from the transistor specifications because of saturation. The differential small signal input resistance has been measured at about 35 k which is approximately $h_{\text {FE }} R_{\text {EXT }}$. This figure would be increased by the use of Darlington input transistors.

Applying Exotics

Up until this stage, none of the more exotic circuit applications has been discussed. A few remarks should be made, however, in closing. Ideally the output is a constant current and can be used to linearly charge a capacitor, e.g. to provide integration. The constant current sourcing is not perfect however and integrating applications will be limited to frequencies greater than $\left(2 \pi R_{\text {OUT }} C\right)^{-1}$. A similar limitation will exist for gyrator performance.

A gyrator was built with the two VCTs but oscillated. The oscillation is believed to originate, however, with the use of inadequate power supplies - another point to note in investigating these circuits - rather than with that circuit itself. Gyrators operate on a negative immitance conversion principle so it is instructive to consider the resistance applications of the VCT in Fig. 16 where the terminal resistances are expect to be $\pm 2 / 3_{3} R_{\text {EXT }}$. In the negative resistance case an oscillation region was identified (see inset). If the negative resistance circuit is examined, it clearly provides positive feedback if the driving source $\left(V_{2}\right)$ impedance is not zero.
in closing I wish to acknowledge the assistance of Jock Howie and others with this project.

ETI

Personal Shoppers EDGWARE ROAD LONDON W2 Tel: $01-723$ 8432.9.30am-5.30pm. Half day Thursday. ACTON: Mail Order only. No callers GOODS NOT DESPATCHED OUTSIDE UK

TOP PROJECTS
Book 1 + 2: £2.50 + 25p P\&P.
Master mber, 100W guitar amp., low power laser, printmeter, transistor tester, mixer preamp., logic probe, Ni-Cad charger, loudhailer, 'scope calibrator, electronic ignition, car theft alarm, turn indicator canveler, brake light warning, alarm, aerial matcher, UHF-TV preap. rumble fliter, IC tester, Ignition timing light, 50W stereo amp. and many more.

Book 3: SOLD OUT!
Book 4: $£ 1.00+25 p$ P\&P.
Sweet sirten expander/compressor, car theft Swet sixteen stereo amp., was, dual-tracking power supply, audlo millivoltmeter, alarm, headiamp reminder, dual touch switch, push-button dimmer, exposure meter, photo timer, electronic dice, high-power beacon, electronic one-armed bandit ...

Book 5: E 1.00 + 25p P\&P.
5W stereo amp, stage mixer, disco mixer, touch organ, audio limiter, infra-red intrude alarm, model train controller, reaction tester, headphone radio, STD timer, double dice, general purpose power supply, logic tester, power meter, digital voltmeter, universa timer, breakdown beacon, heart rate monitor, IB metal locator, temperature meter..

Book 6: $£ 1.00+25 p$ P\&P.
Graphic equaliser, 50/100W amp. modules, active crossover, nash trigger, "Star and Dot" game, burglar alarm, pink noise generator, sweep oscillator, marker generator audio-visual metronome, LED dice, skeet game, lie detector, disco light show . .

Graphic Equaliser......Marter Cenerator Power Amplifier Madwes.....E2 Sound CCTV Camera........ Heathane Adaplor Ite Dice......Sound-Light flash Iripyer Expander- Compressar....Skeot na min Tinl: Piat Moise Generator......GSR Monitar Sweep Dscillator..... Steres Simulator

ELECTRONICS TOMORROW Comprised entirely of new material, the edition covers such diverse topics as Scar Wars and Hi-Fi! The magazine contains projects for everyone - none of which have appeared in ETI - and a look at the future of MPUs, audio, calculators and video. How can you not read it?
$75 p+25 p$ P\&P.

ETI CIRCUITS
Books 182.
Each volume contains over 150 circuits mainly drawn from the best of our Tech Tips. The circuits are indexed for rapid selection and an additional section is included which gives transistor specs, and plenty of other useful data. Sales of thi pubrication have been the clrcuits cos under 1p each!
under ip each:
$\mathbf{E 1 . 5 0}+25$ p P\&P each.

TRANSDUCERS IN MEASUREMENT AND CONTROL

This book is rather an unusual reprin from the pages of ETI. The series appeared a couple of years ago in the magazine, and was so highly thought of by the University of New England that they have republished the series splendidly for use as a standard textbook. Written by Peter Sydenham, M.E., Ph.D., M.Inst.M.C., F.I.1.C.A., this publication covers practically every type of transducer and deals with equipment and techniques not covered in any other book. Enquiries from educational authorities, universities and colleges for bulk supply ould be addressed are Welcomed: these Editor.
$£ 3.00+25 p$ P\&P.

TRANSDUCERSIN MEASUREMENT AND CONTROL
bY PETERH BYOENHAM

(1.7.-......................

El CIRCUITS No2

ELECTRONICS - IT'S EASY Books 1, 2 \& 3.

Our successful beginners series came to a end some time ago now, and the whole series is avallable from us in reprint form The three books between them contain al the information presentill and together (sometimes in more ding point for any one interested in learning the art of electronics.
£ 1.50

ORDER FROM

Specials
Modmags Ltd
25-27 Oxford Street London WIR IRF

Postage and packing also refers to overseas. Send remittance in Sterling only.

Please mark the back of your cheque pr PO with your name and address.
$£ 1.20+25 p$ P\&P each.

THEFT! YOU NEXT?

Protect your car, its valuable contents and expensive accessories with the most sophisticated alarm kit on the market

This new system was first introduced in the December, 1978, issue of ETI magazine.

We are offering an absolutely complete kit of parts: housing, components, PCB, switches, wire, connectors and mounting hardware with detailed assembly and installation instructions. You only supply the solder! Our all inclusive prices (UK only) are shown below:

Main control unit: £8.50; Accessory protection add-on unit: £3.50; Both: £10.95; Two boot \& bonnet switches with wire and mounting hardware: £1.25.

COMPU-TECH SYSTEMS, 7 SANDHOLE LANE, LT. PLUMSTEAD, NORWICH NR13 5 HZ

Codespeed electronic mall order

Alf Fulf Spec. Devices

TO3 HEAT SINKS!!! Two types of heat sink, Ex-equipment, but condition as new Most still contain a power transistor (condition unknown) 'Christmas tree' type. $\mathrm{g} 2 \times 66 \times 35 \mathrm{~mm} 20 \mathrm{p}$ each. Rectangular type $130 \times 63 \times 32 \mathrm{~mm}$ 30p each. Please
add 25 p per heat sink post and packing. add 25 per heat sink post and packing.
PACK M1. Contains two brand new m
multifunction calculator keyboards Excellent PACK T2. A high contr
Don't miss out - only $\mathbf{£ 1 . 0 0}$. digit Liquid Crystal wristwatch display with data PACK T3. Back in stock again! MM5396 digital alarm clock chıp Sill only E2.75 including data.
PACK T4. At a new low price, what a bargain A $08^{\prime \prime}$ common cathode, $31 / 2$ digit, 12-hour clock display. Now offered at only $£ 3.95$.
PACK $\$ 1.25$ miniature glass iN 3470 germanium diodes (600 mA .35 v). All brand new (at just $2 p$ each how can you go wrong?). 25 diodes for 50 p
PACK $52.4 \times$ MEU $2 \uparrow$ programmable unyunction transisiors (
PACK \$2. $4 \times$ MEU2 1 programmable unifunction transistors (P.U.T) Lots of uses. long delay timers. oscillators and many more All brand new. With data and usage sheet. 4 for 50p.
PACK S3 $10 \times$
higher P.IV 10 for 35 p high-speed switching diodes Same as 1 N4148. but has higher P. 10 for 35 p
PACK P1. With this MM5330 digital voltmeter I C we include the data sheet and circuit diagram to build a high accuracy digital multimeter. Only £3.95.
0.33". With data only $£ 2.95$.
PACK E3. The same as Pack E2, but has $05^{\prime \prime}$ high digits $\mathbf{£ 4 . 2 5}$.

EVER THOUGHT of using 7 segment gas discharge displays as an alternative to LED's or LCD's? Gives a nice bright orange display and are comparatively very low in pnce Requires 180 v d.c. supply (easily achieved in mains-operated projects) All have right-hand decımal points and are supplied with data
PACK E4.0 $3^{\prime \prime}$ high $11 / 2$ digit display Now only 50 p.

PACK E4. $03^{\prime \prime}$ high $11 / 2$ digit display Now only 50 p .
PACK E5. A $03^{\prime \prime}$ high dual digit display Now only 50p
PACK E. \mathbf{P}. 50 .
PACK DM1. Want to buy 115 quality switching diodes for 50 p" These 14 pin chips each contain 23 matrixed diodes 5 chips for 50p.
PACK M4 CALCULATORS!!! This pack contains a production line reject calculator Either repair them (not much wrong with some of them) or strip them for spares. Lots of accessible goodies inside, approximately 25 transistors. 2 chips. display. case and
detachable keyboard Such a bargain. you can't go wrong Only $\mathbf{E 2 . 5 0}$. PACK MU1 (untested - so no guarantees) $2 \times$ Upper halt of hand held calculator case with integral keyboard Ex-equipment, but believed to be OK A gift at onty 50p
PACK DL. 1 (untested - so no guarantees) A bumper pack of 30 mixed I C 's. You test them and save fees $\$$ Could include anything hnear or digital A snip at only E1.00.
PACK E1 (80% guaranteed good) Contains 5 seven segment LED displays Digit height $0127^{\prime \prime}$ with right-hand decimal. Common cathode. Still only E1.00.
Your satisfaction is guaranteed or retuin the complete pack for replacement or a refund.
For free catalogue send stamped addressed envelope
Postage and packing please add 25 p (overseas orders add 60p)
CODESPEED, P.O. Box 23, 34 Seafield Rosd, Copnor, Portsmouth, Hants,
ELECTRONICSTODAY INTERNATIONAI
ELECTRONICS TODAY INTEERNATIONAL - FEBRUARY 1979

TAPE NOISE

LIMITER
Takes the hiss out of the quiet bits of your music, and does in a way which is simple yet effective, and is a replay only process so it will work on any tape!

DESPITE the small size, the performance obtainable from a cassette tape in a good recording deck is quite remarkable. In fact the latest top quality decks are so good that it is difficult to tell the difference between the recording and the original sound.

Unfortunately this is not true of the cheaper units - in which 'tape hiss' can be very prominent. Tape hiss is caused by random irregularities in a tape's surface coating. The effect is common to all tapes but some are marginally worse than others.

The annoying characteristic of tape hiss delayed the acceptance of cassette tape recorders in hi-fi systems for some years - until the advent of the Dolby system which was primarily developed as a cure for the phenomenon.

The Dolby system is often misunderstood - it only works if the cassette tape itself has been recorded using the Dolby process - and few commercially produced tapes are. Unless the tape cassette says specifically that it is Dolby processed then it's not! You can of course record your own tapes using Dolby if you own a Dolby machine.

Upper Limit

To overcome this limitation a number of cassette recorders are fitted with noise reduction circuitry which reduces the level of hiss on non-Dolby recordings. Most of these noise reducing circuits work by progressively reducing all high frequency signals when the output level falls below a preset minimum. Above that minimum level all sounds are allowed through because tape hiss cannot be heard once the sound

The circuit passes all frequencies (without attenuation) if the incoming signal is above a set minimum level. Signals below the preset minimum are progressively attenuated from 1 kHz upwards. The maximum attenuation of about 10 dB is applied at approx: 10 kHz .
Resistor R4 and capacitor C4 form a filter in which Q2 is used as a variable resistor with the degree of resistance dependant on gate voltage. Thus, if the input voltage is at or near 0 V then Q2 appears as a low resistance and C 4 is in circuit. If on the other hand the input signal is higher than (say)
four volts negative, Q2 has a very high resistance and C 4 is effectively out of circuit.

The voltage applied to the gate of Q2 is that derived from Ql - after rectification by D1 and D2. Transistor Q1 amplifies the input signal and with RV1 in minimum position, input signals above 10 mV or so will cause Q2 to be off.
Increasing RV1 raises the level below which high cut will occur. The change from full to zero cut occurs over a range of approx 5 dB input level change.
level is substantially louder than the hiss. This effect is called 'acoustic masking'.

The circuit described in this project is a simple but very effective unit which may be used with any cassette recorder which is connected to a hi-fi system.

The unit should preferably be connected between the cassette
recorder and the amplifier input using short lengths of screened cable and suitable connecting plugs. If you really know what you're doing it may be actually built into the tape recorder or amplifier. Alternatively it may be connected between the pre-amplifier and power amplifier on those units which are so separated (note that many apparently integral

Fig 2. Above: Component overlay.
amplifiers still have 'pre-amp out and 'power-amp in' connectors on the rear panel. These connectors are normally bridged by 'U' shaped links - which should be removed to enable this unit to be plugged in)

Construction

As with most projects in this series you can use either Veroboard or the special printed circuit board shown here

Take the ususal precautions about inserting components the right way round - taking particular care with the field effect transistor Q2. Note that the cathode lead of the diodes

Foil pattern shown full size
(shown as a horizontal bar on the circuit diagram) will be identified on the component by a black band or similar marking.

Unless the leads between this unit and the tape deck and amplifier are very short it is advisable to connect it via screened cable. Note that the OV line shown on the circuit is also the 'earthy' side of the input / output connections

To set up the unit simply choose a

PARTS LIST

recording with a longish quiet passage and then adjust RV1 for the best compromise between tape hiss reduction and minimum loss of high frequency programme content.

ETI

NOTE: If you listen only to hard rock - where there aren't any quiet passages - then this unit will be of little value to you. Its main effect is to reduce annoying tape hiss during otherwise quiet programme material.

The latest kit innoration: from Gparkrite Fsparknite-ry/ Bulas
 the quickest fitting CLIP ON capacitive discharge electronic ignition in KIT FORM
 !iv
 Smoother running
 Instant all-weather starting
 Continual peak performance
 Longer coil/battery/plug life Improved acceleration/top speeds Optimum fuel consumption

Sparkrite X_{4} is a high performance, high quality capacifive discharge, electronic
ignition system in kit form. Tried, tested, proven, reliable and complete. It can be assembled in two or three hours and fitted in $1 / 3$ mins.
Because of the superb design of the Sparknite circuit it completely eliminates problems of the contact breaker. There is no misfire due to contact breakep bounce which is eliminated electronically by a puise suppression circuit which prevents the unit firing if the points bounce open at high R. P.M. Contact break burn is elimnated by reducing cur her ais dependent upon the dwell time of the contact breakers for recharging the system Sparkrite incorporates a short circuit protected inverter which eliminates the Sparknite incorporates a shon therefore, eliminates the possibility of blowing the transistors or the SCR. (Most capacitive discharge ignitions are not completely foolproof in this respect). The circuit incorporates a voltage regulated output for greatly improved cold starting. The circuit includes built in static timing light systems function light. and security changeover switch. All kits fit vehicles with coil/distributor ignition up to 8 cylinders
THE KIT COMPRISES EVERYTHING NEEDED
Die pressed epoxy coated case. Ready drilled, aluminium extruded base and hear Die pressed epoxy coated case. Ready driled, aluminity exr guaranteed transtormer and components, cables, connectors, P.C.B., nuts, boits and silicon grease. Futh instructions to assemble.kit neg. or pos. earth and fully illustrated installation instructions.
NOTE - Vehicles with current impulse tachometers (Smiths code on dial RV1) will require a tachometer pulse slave unit. Price £3. 85 inc. VAT. post \& packing

KEY:
1: The bit of chocolate you thought you'd leave for later.

2: Coffee stains (instant)
3: A useful-sized bit of stiff paper to stop the window from rattling.

4: Rough calculations for your new combined egg timer/laser cannon project

5: ETI makes a fair soldering iron stand.
6: The dog insisted on carrying your copy to you along with your slippers.

WHAT A BIND!

Half our orders for binders are repeats: we think that says a lot for their quality. At $£ 3.00$ all inc. you get a great deal of peace of mind too!

ETI Binders

25-27 Oxford Street,
London W1R IRF

SERVICE TRADING CO

100 R.P.M. 115 lbs. ins.!!

WHY PAY MORE?!

TRIAC

 application sheet). Suitable Diac 22p.

0 to 60 MINUTES CLOCKWORK TIMER

MERCURY SWITCH

230 VOLT AC FAN ASSEMBLY

21-WAY SELECTOR

CENTRIFUGAL BLOWER

amp D.C. producing 30 cu .t. min. at normal air pressure. Maximum
housing dia 110 mm . Depth inc motor 75 mm . Nozzle length 19 mm
dia. 22 mm . ldeal for cooling moblle equipmènt, car, caravan, etc $£ 4.50$
P\&P 75 p . (E 5.67 inc. VAT \& P).

MINIATURE UNISELECTOR i2v 11 way 4 bank 13 non-bridging. homing) $\mathbb{E} 2.50$ P\&P $35 p$ ($£ 3.08$ inc. VAT \& P)
MIC̈R̄ SWUITCHES Sub min lever $\mathrm{m} /$ switch type MML46, 10 for $\mathbf{£ 2 . 5 0}$. ${ }_{8}^{8}$ P). BF lever operated 20a c/0 mf. Unimax USA 10 for $\mathbf{C 4 . 0 0}$ plus 50p P\&P (min order 10) ($\mathbb{C 4} 86$ ine. VAT \& P P). D.P. C/O lever $\mathrm{m} / \mathrm{swich}$ mig. by Cherry Co. USA. Precious metal. low resistance contacis 1D for $£ 2.50$. P\&P 30 p . Total inc. VAT $£ 3.02$ (min 10) N.M.S
NEW HEAVYY DUTY SOLENOID Mig by Magnetic Devices. 240v A.C. Operation approx 101 b pull at thth in Aating intermitant. Price $£ 4.00 \mathrm{PaP} 60 \mathrm{p}$ ($\mathbf{(4 . 9 6}$ inc VAT)
PYEEYTHER 240v A.C. Solenold. Approx. 1 lb pult. 1/4 in travel, intermitant rating Price e1.00 P\&P 20 p ($\mathbf{E 1 . 3 0}$ inc. VAT \& P), N.M S
ẄESTOOL TVPE MM8 MODEL 2 240 VAC . Approx $13 / 4 \mathrm{lb}$ puli at $1 / 2$ inch. Rating 1 Price $£ 1.50 \mathrm{P} \& \mathrm{P} 20 \mathrm{p}$ ($\mathbf{1} 1.84$ inc. VAT \& P P)
240 A.C. SOLENOID OPERATED FLUID VALVE Rated 1 p.si, will handie un to 7 p.s.i Forged brass body, stainless steel core and spring $1 / 2$ in. b.s.p. inlet outiel. Precision made. British mfg PaICE $\mathbf{£ 3 . 5 0}$ Post 50 p ($\mathbf{~} 4.32$ inc. VAT \& P). N.M.S
INSULATION TESTERS (NEW) Tast to E E Spec. Ruggeu metal construction. sutable for bench or field work, constant speed ciuch Size L in., W. 4 in H 6 in ., weight 6 is 500 VOLTS 500 megohms 649.00 Post 80p (E53.78 inc. VAT \& P) 1000 volts 1000 (1000 VOLTS 1000 megohms E55.00 Post 80 p ($\mathbf{E 6 0 . 2 5}$ inc VAT \& P)

VARIABLE VOLTAGE TRANSFORMERS
 OUTPUT VARIABLE $0 / 260 \mathrm{v}$. A.C. BRAND NEW: All types. $200 \mathrm{~W}(1 \mathrm{Amp})$ fitted A/C 0.5 KVA (Max. $21 / 2$ Amp) 1 KVA (Max. 5 Amp) 2 KVA (Max. 10 Amp) 3 KVA (Max. 15 Amp) 5 KVA (Max. 25 Amp) 17 KVA (Max. 75 Amp)

LT TRANSFORMERS

 VAT \& P) 10 amp. £8. 25 P\&iP £1. 25 (inc. VAT € 10.26)

ROTARY VACUUM AIR COMPRESSOR
PUMP
Carbon vane oil free vacuum pump and compres
sor Approx. 20 inch vacuum, 10 PSI at 79 CFM

Surtable transformer for $230 / 240 \mathrm{~V}$ a.c. operato
E5.00 P\&P E1.00 (E6.48

BLOWER/VACUUM PUMP

Direc: coupled 10 William Allday Alcosa carbon vane blower/vacuum
pump. 09 ctm 8 hg . Price $\mathbf{£ 2 2 . 0 0} \mathrm{P} \mathrm{EaP}_{\mathrm{P}} \mathrm{£2.00}$ ($\mathbf{2 5} .92$ inc val +p)

SQUAD LIGHT

control. Fourction channeis
 of spotights or dozens of small mans lamps. Seven programs alf speed controlied plus tlash modulation, effectively giving 14 different displays

 Makes sound to-light obsolate Completely electrically and mechanically WIDE RANGE OF DISCO LIGHTING EQUIPMENT
XENON FLASH
GUN TUBES
Range of Xenon tubes evailable from
stock S.A. E. tor full delails

RELAYS

 itch $1 \mathrm{c} / 0.7 \mathrm{amp} \mathrm{E} 1.00(\mathbf{f} 1.30 \mathrm{nc}$. VAT \& P)

 P\&P on any Relay 20p (1.67 inc. VAT \& P) (amps $=$ contact rating) H. N.S

split capacitor Tonclosed. Fan cooled In line gearbox
Length 250 mm . Dia. 135 mm . Spindle Dia 15.5 mm Length 115 mm . ex-equipment tested $£ 12.00$ Pos

PARVALUX MOTOR TYPE
S.D. 2
rated 4000 rpm . Price $£ 10.00$ P\&P 75 p (E11.61

REVERSIBLE MOTOR $230 V$ A.C ant-vibration mounting bracket and eapacitor. $0 / 4$ size $110 \mathrm{~mm} \times$
90 mm . Spindle $5 / 16$ dia reversing Ex-equipment tested $£ 3.00$. Post

RODENE UNISET TYPE 71 TIMER $0-60 \mathrm{sec} 230 \mathrm{~V}$ a.c operation. Incorporating a lapsed time indicator and repeat facilities. A precision motorised timer ideal for process timing. photography, welding mexing, etc Price £5 P \& f 60p. (£7 13 inc. VAT \& P) N.M S METERS (New) - 90mm DIAMETER A.C. Amp., Type 62T2 0-1A 0-5A. 0-20A. A.C. Vols. $0.150 \mathrm{~V}, 0.300 \mathrm{~V}$ D.C. Amp.. Type $65 \mathrm{C} 5,0.2 \mathrm{~A}$. $0-10 \mathrm{~A} .0-20 \mathrm{~A}, ~ 0.100 \mathrm{~A}$. D.C. Volt. $0-15 \mathrm{~V}, 0-30 \mathrm{~V}$ All types $£ 3.50$ ea $+P \& P$ 50p. ($\mathbf{£} 4.32$ incl. VAT), except $0-100 \mathrm{~A}$ D C. price $£ 5.00+50 \mathrm{p}$ P\&P ($\mathbf{5} 5.94$ incl. VAT). 'VENNER TYPE' ERD TIME SWITCH 200/250V A C. 30 amp 2 on/2 off every 24 hrs. at any manually pre-set time. 36 -hour spsing reserve and day omitting device. Built to highast Electricity Board specification Price £7.75 P\&P 75p. (E9.18). R \& T SANGAMO WESTON TIME SWITCH Type $\$ 254200 / 250$ V a.c. 2 on 2 off every 24 hours. 20 amps contacts with override swith. diameter $4^{\prime \prime} \times 3^{\prime \prime}$, price $£ 6.00 \mathrm{P} \mathrm{\& P} 50 \mathrm{p}(\mathbb{\mathrm { E }} \mathbf{2} .02$ inc VAT \& P) Aiso avariable with Solar dial, R \& T A.C. MAINS TIMER UNIT Based on an electric clock, with 25 amp , single pote switch, which can be preset for any period up to 12 hrs. ahead to switch on for any length of additional 60 min audible timer is also incorporated Ideal tor Tape Recorders Lights Electric Blankets etc. Attractive satín copper finish. Size $135 \mathrm{~mm} \times 130 \mathrm{~mm} \times 60 \mathrm{~mm}$. Price $£ 2.25$. Post 40p. (Total inc. VAT \& Post $£ 2.87$). N M.S POWER RHEOSTATS New ceramic construction, vitreous enamel embedded winding. heavy duty brush assembly, continuously. rated 25 WATT 10.25, 100. 150.250 .500 , ik. 15 k ohm £2.40 Post 20p (£2.81 inc. VAT \& P). 50 WATT 100.250 ohm £2.90 Post $25 p$ ($£ 3.40$ inc VAT \& P) 100 WATT I /5/10/25/50/100/250 $500 / 1 k / \$ 5 k / 25 k / 5 k$ ohm $£ 5.90$ Post $35 p$ 纪 6.75 inc. VAT 8 P Black Silver Skirted Knob calibrated in Nos $1.9,11 / 2$ in dia brass bush Ideal lor above Rhosats, 24p ee.	

YET ANOTHER OUTSTANDING OFFER (E2.16
N.M.S

ACCOUNT CUSTOMERS MIN. ORDER £10.00

ALL MAIL ORDERS: ALSO CALLERS AT:
57 BRIDGMAN ROAD, CHISWICK,
LONDON, W4 5BB. Phone: 01-995 1560

SERVICE TRADING CO.

GEARED MOTORS

A HISTORY OF

 CAR IGNITION
Ian Sinclair takes us back through the clouds of time [and exhaust!] to the beginnings of ignition, and sparks some interest on the way.

EVER SINCE the first motor car made its first coughing movements, designers have had the problem of ignition. Perhap's that's what encouraged the development of steam cars for so long, it's worth remembering that the Stanley Steamer held several speed records in its day, and was still being manufactured in the twenties.

The petrol engine still works in the same way as it did then. As the piston descends, a valve opens and lets the mixture of petrol vapour and air enter the cylinder. At about the end of this induction stroke, the valve closes and then the piston starts to rise, compressing the mixture (compression stroke). Near the top end of its travel, the mixture has to be fired - and that's the job of the ignition department. Firing the mixture is what provides the power, driving the piston down, and keeping things going. At the next upward movement of the piston another valve opens, letting the exhaust gases escape. This four-stroke scheme has survived pretty well unaltered in principle, though with many improvements in details. The ignition of the mixture is one of the rather important details which has changed quite a lot since the first four stroke petrol engines were tried out.

What A Gas!

The first petrol engines used for ignition a scheme which had been quite acceptable for large gas engines. A small hole is drilled at the top of the cylinder (into the cylinder-head) and a lamp flame is allowed to burn close to the hole. This is easily done in a gas-engine by having a pilot-jet burning near the hole.

On the compression stroke, mixture is driven out of the hole, meets the flame, ignites, and the burning mixture blows back through the hole to ignite the rest of the mixture. Primitive, certainly, but quite effective for a large gas engine as long as you're not looking for high performance. The main problem here is that much of the mixture is lost, and it's very difficult to be sure that ignition won't be too soon.

Hot Tubes

For petrol engines, this was soon replaced by hottube ignition. As the name suggests, the end of the cylinder-head was formed into the shape of a sealed tube

Fig. 1. Diagram of the workings of hot tube ignition.
the end of which was kept hot by a small blowlamp. The timing of the ignition still isn't under much control, but at least no mixture is lost, and the hot tube ignition was used on a lot of famous cars of the veteran period (before 1904).

Modern times start with electric ignition systems, and there are still plenty of cars running around with electrical ignition systems which would have been familiar to a mechanic seventy years ago. Oddly enough, it's not all that well understood so let's take a close look at it.

Highs And Lows

There are two parts to the ignition system, the LT and the HT (sparks). The LT circuit consists of the contact breaker and the primary winding of the ignition coil and the HT of the secondary winding of the coil, the distributor (which ensures that the spark goes to the correct plug) and the plugs themselves.

The contact breaker is a switch operated by a cam which runs at half of engine speed and has as many bumps (lobes) on it as there are cylinders in the engine. The spark occurs just as the switch contacts (the points) open, so that we can alter the timing of the spark by rotating the switch assembly slightly.

When the contact points are closed, current flows in the circuit through the primary of the coil and the points. The primary winding of the coil has a large inductance, and obeys exactly the same laws as any other large inductance-if we want the current through the coil to

Fig 2. Simple electrical ignition
charge rapidly we need a high voltage; if we cause the current to charge rapidly, the coil will generate a very high voltage.

Make A Point Of It

When the points close, the current through the coil increases following the graph of Fig. 3. This time is called the dwell time, and the points must remain closed for long enough to give the current time to reach its final value. When the points open, the current is rapidly broken, causing the coil to generate a high voltage pulse from the collapsing magnet field.

This high voltage pulse is then stepped up by the transformer action of the secondary winding, giving about 20-25 kV to send a good spark cracking across the gap of the spark plug - we hope.

With such a simple system the life of the points can be rather short, and the spark at the plug low in voltage because of sparking at the points. The reason is that the voltage pulse which occurs whenever the points separate is enough to cause a spark at the points. This keeps some current flowing in the coil, so that the change is not so rapid as it should be. We can avoid these problems to some extent by connecting a capacitor (they still call it a condenser in garages) across the

Fig 3. Graph of current through coil.

points. When the points open, the voltage pulse produced by the coil (Fig 4) starts charging the capacitor, giving the points time to open and so avoid the worst of the sparking. Because this also results in a more rapid charge of current, the spark at the plugs is very much better when a capacitor is used.

Bad Points

The whole system works very well indeed, and is remarkably reliable but suffers from two disadvantages. One is that a fast revving engine with a large number of cylinders may not permit enough dwell time to allow current to build up fully before the next opening of the points. The other problem is that there is still some sparking at the points, so that the contacts wear unevenly and have to be reset at intervals, and ultimately replaced.

Electronic ignition systems use the same coil and HT equipment, but a different method of obtaining a quick charge of current through the coil. Most modern systems

use capacitor discharge in which an inverter circuit is used to generate about 400 V DC to charge a capacitor.

When the points open the capacitor is discharged through the primary winding of the coil, and this voltage pulse is stepped up by the transformer action of the coil to provide the high voltage from firing the plugs. Because the capacitor can be recharged quickly, the dwell time that is needed is reduced, and because the contact points only have to cause a thyristor to fire, they need carry only a fairly small current and because they do not carry current to the coil, there is no voltage pulse across them.

The points still need periodic adjustment though, because the rubbing of the cam against the fibre peg which operates the points causes wear, altering the

Fig 5. Typical modern system.
timing. To avoid such mechanical problems the cam can be replaced with a slotted cover rotating around an infra-red source (an LED), and so interrupting a beam which strikes a photocell. This then triggers the thyristor. Using this system, no adjustments are needed to compensate for mechanical wear until the gears on the shaft which drives the ignition system wear down-by which time the rest of the engine will have worn out anyway.

This is the system which enables car manufacturers to offer five year guarantees, and to promise 100,000 miles between adjustments of the ignition system.

Point Of No Return

Unfortunately, all this ingenuity does not ensure reliability, and electronic ignition systems have obtained a very bad name for causing accidents. The most common heart-stopper is that the ignition simply ceases-and if you're overtaking at the time it can be fatal. The other is completely erratic timing, with the engine knocking horribly and the sparks happening at any old time in the cycle-I limped home several miles like this once.

These problems can be solved, and car manufacturers who have gone over to electronic ignition have solved them. Nothing on earth, however, would persu-
ade me to use an electronic ignition system unless each component was marked with a manufacturer's name and the ratings. A lot of DIY systems seem to use Brand X components-and that's asking for trouble.

The components which are critical are the inverter circuit, the transformer for the inverter, the chargedischarge capacitor, and the thyristor itself Fig 6. The inverter circuit must keep oscillating (though the frequency may change) even as the thyristor fires, shortcircuiting the output of the transformer. This is, in turn, possible only if the transformer is correctly designed for the job.

The charge-discharge capacitor has to provide large pulses of current, and must be rated to take much more than the normal 400 V to allow for surges. The thyristor must also be able to withstand the full voltage of the inverter, plus any surges, and to pass the pulses of current to the coil. A 1000 V 10 A thyristor may seem excessive, but is very much more reliable than the usual 600 V 1 A component.

Good Points

Many exaggerated claims are made for electronic ignition system, but the hard facts are that the main advantage is a longer time between ignition setting, particularly if the infra-red beam system is used. Cold starting can be better but only if the inverter uses a voltage regulator, which is rather rare.

Against this, reliability may be less, unless the whole circuit is built from top-grade military-specification components, rated to work at temperatures from well below freezing (you want it to start in the winter) to near boiling point (after it has stood out in the blazing sun for several hours).

However, there's little doubt that the well designed electronic ignition systems now being designed into cars by the manufacturers are quite definitely up to the job, with very great reliability and freedom from adjustment.

ETI

Complete Ignition system. Note the position of critical components.

$05 T 5$Since AMBIT introduced the "One Stop Technology Shop" to our service, we have been pleased to see just how many users of electronic components appreciate our guarantee to supply goods only from BS9000 approved sources. More than ever, professional and amateur electronics engineers cannot afford to waste time on anything less than perfect pedigree products.

004000

2 Cresham Raad, Brentwand, E55RH.

BUILD-IT-YOURSELF

NEW!TEST GEAR KIT
BASIC SERVICING INSTRUMENTS WITH
EASY STAGE BY STAGE BUILDING INSTRUCTIONS - IDEAL FOR THE AMATEUR

MULTI RANGE TEST METER

A general purpose meter covering all usual ranges of A.C. and D.C. volts current and resistance measurements

AUDIO SIGNAL GENERATOR

New design covering 10 Hz to 10 KHz and variable output. Distortion less than 0.01% Ideal for HIFI Testing.

OSCILLOSCOPE

A basic $3^{\prime \prime}$ general purpose cathode ray oscilloscope for simple testing and servicing work. Sensitivity 0.3 volts/cm

ELECTRONICS TODAY INTERNATIONAL - FEBRUARY 1979

ambit

Production of the new catalogue has been held up for a few weeks - since we have just been appointed as distributors for two of the most exciting ranges of radio components products yet: The Micrometals range of wron dust ormers, and the OKI range of VLSI for digital frequency displays for worth the wait We apologize and include some prod IC with less than ten externa components (all usual IF from LW to 39.99 MHz . F 24 hour format clock with 12 hour display. offsets programmable by diodes, time signals on the hours, stopwatch facility and independent on and of timers, time signals anse that has gone a sleep timer. This costs E 14 with its timebase before an expensive and tume wasting excercise. Rather like the way the intersi ICM7216 has revolutionized the instrument counter marke. (See the OSTS ad And those of you familiar with Amidon and Gust new RF designs, will be pleased to know Ambit will be stocking a broad range of the Micrometals types for applications from EMI filters to RF PA stages
OK1 frequency counter ICs: details in cat2 A brief summary of some of our range of ICs: MSM5523 for CA LEDs with RHDP such TDA1062/195. TDA1083/1.95; HA1197/£1.40 MSM5525 for 3% digit LCD AM/FM with CA3123E/E1.40; TBA651/f1.81; CA3089/1.94 $\begin{array}{ll}\text { MSM5525 } & \begin{array}{l}\text { for } 31 / \text { digit LCD AM/FM with } \\ \text { direct segment drive no clock }\end{array}\end{array}$ direct segment drive no clock
or tumers or tumers $£ 11$ inc $\times 1$ ala
for fluorescent displays etc OA HA1137/£2 20: MC1310/£2.20: HA1196/£3.95 KB4424/E2.75: KB4441/E2.75; KB4417/E255 MC1495L/E6.86. MC1496F/€1.25 LM381N/E1.81: LM1303/E0.99; ULN2283B/ E1 O0, LM380N/E1, TBA810AS/E1.09 TCA940E/E1.80; TDA2002/f1 95;
ICL8038CC/E4 50*, NE566/E2.50'. NE56 £2.50*: NE5608/モ3.50, NE561B/E3.50, NE562B/E3.50\% NE565A/E2.50 SEE THE OSTS ADVERT FOR CMOS/TTL REGULATORS, OPTO DISPLAYS, and other Some transis tors for RF specifically: BF256LB/0.34; 40822/0.43** 40823/0.51 $40673 / 0.55^{\circ}$; BF900/961/0 80 ${ }^{\circ}$; BF960/1.60 BF224/0.22; BF $274 / 018, \mathrm{BF} 195 / 018$.
BF240/0 22
BF $241 / 0.22$, BF362/0 70 : BF479/0 86, BF679S/0 70: BFY90/0.90
PIN and other Varicap diodes: BA102/0.30; BA121/0.30. ITT $210 / 0.30$ BE1048/0 40. MVAM2/E1.48. MVAM115 £1.05: MVAM125/1 05; KV1210/£2 75 METER MADE low cost panel meters : METER MADE
3×930 series with blanks and dry trans
sheet of scales and ledgends for $£ 12.5$

Other new semiconductor additions:
Other new semiconductor additions:
KB4437 pilor cancel mpx decod
$\begin{array}{ll}\text { KB4437 } \\ \text { KB4438 } & \text { pilot cancel mpx deco } \\ \text { muting stereo preamp }\end{array}$
KA4370 supercedes TDA2020
$\begin{array}{ll}\text { TDA } 1090 & \text { HIFI AM/FM } \\ \text { TDA1220 } & \text { low Cost AM/FM }\end{array}$
PRICES DOWN ON VMOS:
: as expected this new technology in power transistorsis petting cheaper 120 v comp parrs $/ 100 \mathrm{~W}$ for E 1000 Price reduction on CA3189E now $£ 2.20$ New varicaps: to add to the biggest range $\begin{array}{ll}\text { KV1211 } & 2 \mathrm{gv} \text { bias } 10 \text { tune MW, like the } \\ \text { KV1210 but a double diode } £ 1.75\end{array}$ New pilot tone filters from TOKO.............. $26 / 38 \mathrm{kHz}$ version for pilot cancel decoder applications. Flat to 15 kH \% $\quad £ 0.90$ New crystal filter for amateur NB FM.......... TOYO $10 \mathrm{M4B1}$ with over 90 dB adjacent ch rejection for 2 m NBFM. $\begin{aligned} & \text { New ceramic If filters for } \mathbf{4 5 5 k H z} \text {.... }\end{aligned}$ New ceramic

At lust, DIY Hi Fi whith laoks us if it isn't.
 That's not to say it doesn't look like HiFi - just that it doesn't look like the usual sort of thing you have come to associate with DiY HiFi. The Mk 3 outstrips and outperforms all British made Hifi tuners, and most imported ones too. Certainly at the price, there isn one near it. But more than that, it looks superb . A small pic here would be an insult, send an SAE for details on the kit that looks as if isn't. It's something else
 - Exceptionally high performance - exceptionally straightforward assembly * Baseboard and plug-in construction. Future circuir developments will * Vlug in, to keep the Mkill at the forefront of technical achievement to the system

and now previewing the matching 60W/channel VMOS amplifier
\square^{*} Matching both the style and design concepts of the Mk III HiFi FM wuner

* Hitachi VMOS power fets. characterized especially for HiFi application
* Power output readily multiplied by the addition of further MOSFET VU meters on the preantp not simply dancing actording to vol level
Backed with the usual Ambit expertise and technical capacity in audio

The PW Darchester-LW,IIW, 5W,\&, FIII sterea tuner

In much the same way as we have swepnaway the 'old technology' in frequency/timer In much the same way as we haversil single IC counters, we now offer a single IC "All Band" radio tuner. Don't confuse this one chip radio with things like the ZN414. for this is a radio tuner. Don' confuse this omechanical AM IF filter, and ceramic IF filters for FM. genine superhet receiver with a mect plus BFO and MOSFET prod a BFO and MOSFET product decetor "or SSB/ ". The know of many lesser designs that intended as a communications recerver altheless better than 5 uV , and FM sensitivity make that claim. The AM sensmultiband broadcast superhet receiver, it is a unique constructor is 1.2 uV for $30 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$. As a multiband breadently get for a general coverage circuit that project that fulfills the requests we very frequently get for a general coverage circund a PLL isn t over complicated. The set has calting
The tuner board - with "on board" PCB mounted switching, all components etc : $£ 33.00$ The case/cabinet with PSU, meter and mechanics etc

OSCILLOSCOPE
 WITH FULL
 Instruction manual FEATURES
 -Response: DC to 5 MHz -Sapsitivity: 100 MV
 $50 \mathrm{~V} /$ division
 - Fully calibrated time-base circuit and automatic blanking.
 - 100% solid state
 - utilising 13 trans
 sistors. 1 FET and 1 specially designed time-base module.
 - Stabilised power supplies and active sync circuits
 - Rugged construction together with portability
 - Inexpensive - excellent value and
 performance

FULLINSTRUCTION \& OPERATING MANUAL

SPECIFICATIONS
Elegtrical oata
VERTCA AXIS (9)

Input Anenuator-[c
1.25. $20.20 .50 \mathrm{~V} / \mathrm{liv}$
Input impedance-1 Mes /40prin in sumat
Input Yottage-max - 600 P P. P
Henizouth axis $|x|$
Deflection Sensitivily - 0.400 y/filmian

Gain Control-Conlinuese whan liea bes in Ext mazion

time base
weep Range fcatbrated)-100masc/dive io if suc/fiv
Also at 248 Tottenham Court
Road, London, W. 1
301 Edgware Road, London, W. 2

lanting - marest - an all paness
STMCMAOMISATIOM
Selection - Intrrali. ixlerasi
Synchronisation Leval - Canilanas Iram positivo to
POWER SUPPLT
inpuivorayse - $115 / 2$ 20
CRT DATA
$-3^{3 \prime}$ reynd displar-single baim
moximura mit nilaye-75

- Fittod with Ia saction. Hine miter mraticilia
physecal data
Dinnensions -15 cm 们 $\times 20.5 \mathrm{~cm} \mid \mathrm{mJ} \times 2 \mathrm{ccm}$

Case - stayl. porxy onnmoliced

All mail to: Henry's Radio 404 Edgware Rd. London W2 PHONE (01)723 1008 ENGLAND

2 GreshamRaad, Brentuand,E55RK.

Our new 1978 catalogue lists circuit boards for all your projects, from good old Veroboard through to specialised boards for ICs. And we've got accessories, module systems, cases and boxes everything you need to give your equipment the quality you demand. Send 25 p to cover post and packing, and the catalogue's yours.

VERO ELECTRONICS LTD. RETAIL DEPT. Industrial Estate, Chandlers Ford, Hants. SO5 3ZR Telephone Chandlers Ford (04215) 2956

LIGHT ACTIVATED

 tachometer

 tachometer}

By using optical sensing this unit allows measurement of rotational speed without the need for actual contact!

THE USE OF a non-contact method of measuring RPM is not only convenient but sometimes the only method possible. Some motors used for model aircraft have a capacity of only 0.15 cc yet run at speeds in the 25000 RPM region. The power required to turn a mechanical tacho would be many times the power of such a motor. Also on some machines there is no convenient place a normal tacho can be fitted.

Design Features

As the main application for this unit was to be outdoors it was decided that an LCD display would be preferable to an LED and more easy to read than an analogue meter. Unfortunately LCDs are not yet readily available, and nor are the ICs needed to drive them.

However the Intersil Evaluation kit which we have used in the past is fairly easy to get hold of, and so we based the design around this unit. This meant converting the pulses from the sensor into a voltage. This however has another benefit in that a greater resolution can be obtained more quickly. To have a resolution of 10 RPM with a two bladed propeller a sample time of three seconds would be necessary.

The use of the BPW34 photodiode in the photovoltaic mode, ie actually generating a voltage, simplifies the biasing otherwise needed.

Construction

All the electronic components are mounted on a single card with the exception of the photodiode. To save on real estate the main voltmeter IC is mounted under the display.

Initially, assemble all the components apart from the ICs and the

RPM range	
Low	
High	$0-20000$
Resolution	$10000-30000$
Display	10 RPM
Detection method	12 mm LCD
Power	reflected light
Battery life (216)	9 V @ mA
	about 150 hours

HOW IT WORKS

When using this unit to measure RPM, be the application a model aircraft motor or some other rotating object, the propeller or the white line (see operation section) gives rise to a changing light level. D1 which is a photo diode used in the photovoltaic mode, sees this light level and gives out a voltage proportional to the light. As this is only a small signal it has to be amplified before it can be used. This is done by IC3a. The transistor Q1 is included to provide some gain control allowing the unit to be used in differing light conditions without the need for any adjustment. The output of the amplifier is rectified by D3 to provide a negative
voltage on the gate of Q1. When the output of the amplifier is small the gate to source voltage will be near zero and the FET will appear as a low value resistor giving high gain to the amplifier. If the light change is such that the output of the amplifier is large, the rectified voltage on the gate of Q1 will cause the resistance of the FET to increase decreasing the amplifier gain. In this way the output of the amplifier is held relatively constant irrespective of the light level. Diode D2 is necessary to prevent the amplifier from saturating on the positive swing.

The output is then squared up by IC 3b

Fig 1. Full circuit diagram of the tachometer unit.
where the positive feedback provided by R12 ensures that the output switches quickly. The output from this IC then triggers the monostable formed by Q2. What we have now is a pulse about $50 \mu \mathrm{~s}$ long every time the propeller blade passes the light sensor.

Before continuing, you may have noticed that besides the +9 V and 0 V we also have a line marked Vref. This is derived from IC4 which is a voltmeter chip and is a stable voltage of about 2.8 volts below the +9 V line.

The output of the monostable (Q2) turns on ICla for $50 \mu \mathrm{~s}$, discharging C 2 which is then allowed to recharge to V ref. This voltage is compared (by lC2) to the voltage set by R2 and R3. The output of IC2 is a negative pulse of about $900 \mu \mathrm{~s}$. As it is on a stable voltage supply, variations in battery voltage will have very little effect on the output pulse width. Capacitor C3 is used to force the positive input of IC2 above the negative one for the 50μ s pulse ensuring that this time is not included in the output pulse. IC1b is used to invert this pulse and its output, and the output of 1 C 2 , control $1 \mathrm{C} 2 \mathrm{c} / \mathrm{IC} 2 \mathrm{~d}$. The output of $1 \mathrm{C} 2 \mathrm{c} / \mathrm{IC} 2 \mathrm{~d}$ is a positive pulse switching between Vref. and the +9 V line.

This is then filtered $\bar{b} y$ two 2 pole active low pass filters, IC3c and IC3d. As these have a cutoff frequency of around 10 Hz the output for most applications will be the DC voltage component only. This is measured by IC4 which is a complete voltmeter.

As offset voltages and currents can cause the output of the filters not to be exactly zero with no input, the positive input of IC3d is biased up about 30 mV and then by injecting a current into the negative input (by R19 and RV1) correction can be made. For measuring RPMs above 20000 and below 30000 a current is injected into the negative input via R18 and this subtracts 10000 RPM from the reading.

display, taking care not to bridge between the tracks with solder. Also note that some of the capacitors have to be laid on their side to give a low height.

The ICs can now be added being careful to polarize them correctly. Due to the display being mounted over the main IC it is not posible to use a socket. A socket can be used for the display if desired however it will have to be modified by cutting it into two strips.

As there are no polarity marks on the display it is necessary to hold it at the light and look for the outline of the digits. A link for the decimal point should be added as shown in the diagram.

We mounted our unit in a metal box we made with the photodiode mounted about 25 mm from the end of a 75 mm long tube in front of the box. This narrows the field of view of the diode as well as giving a little more clearance between high speed propellors and the fingers!

Calibration

Switch on the unit and cover the photodiode to prevent any light reaching it. Now adjust RV1 until the display reads zero.

Uncover the diode and point it at a fluorescent light. It will now give a reading and $R V 3$ should be adjusted to indicate 3000 RPM

Again cover the diode, then press the high range button and adjust RV2 to give a reading of -10000 RPM. Under fluorescent light it should read -7000 RPM

Operation

This unit relies on a changing light level for its operation. For use with a model aircraft, holding the unit near the propeller enables detection of the changes in the reflected light level. To measure the speed of other rotating equipment it may be necessary to paint a series of white lines to give the sensur something to 'see'

However the unit cannot be used under fluorescent lights as it will see the 100 cycle flicker (see calibration section). In cases where this has to be done, and places where the ambient light is low, a small incandescent globe can be used to shine on the spot looked at by the sensor.

The unit, as described, is scaled to read up to 20000 RPM with a 10 RPM resolution, assuming two input pulses per revolution. If a different number of

Above: full size foil pattern for the tacho unit.
Below: An assembled pCB. Comparing this with the overlay shown opposite should help with construction.

input pulses is to be used, e.g. a three or four bladed propeller, the value of R1 can be changed. (R1 $\approx 360 \mathrm{k} /$ number of pulses). The use of more than four pulses per revolution is not recommended on this range. If 2000 RPM is more than is needed for your application the value of R1 can be increased by a factor of 10 , preferably with more than ten pulses per revolution.

Unlike a frequency meter, overranging this unit will cause the display to blank and greater resolution cannot be obtained simply by using a lower range. However an offset of a fixed number of RPM can be used as described in the 'How It Works' section. Using the values given, when the high range button is pressed, 10000 RPM must be added to the reading.

ETI

Understanding Digital Electronics New teach-vourself courses

Design of digital Systems is written for the engineer seeking to learn more about digital electronics. Its six volumes - each A4 size - are packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters and simple arithmetic circuits, and finally to a complete understanding of the design and operation of calculators and computers.

The contents of Design of Digital Systems include:

Book 1 Octal, hexadecimal and binary number systems; conversion between number systems; representation of negative numbers; complementary systems; binary multiplication and division.
Book 2 OR and AND functions: logic gates. NOT, exlusive OR NAND. NOR and exclusive-NOR functions; multiple input gates; truth tables; De Morgans Laws; canonical forms; logic conventions; Karnaugh mapping; three-state and wired logic.
Book 3 Half adders and tull adders; subtractors; serial and parallel adders; processors and arithmetic logic units (ALUs); multiplication and division systems
Book 4 Flip flops; shift registers; asynchronous and synchronous counters; ring, Johnson and exclusive-OR feedback counters; random access memories (RAMs) and read only memories (ROMs)
Book 5 Structure of calculators; keyboard encoding; decoding display data; register systems; control unit; program ROM; address decoding; instruction sets; instruction decoding; control program structure.
Book 6 Central processing unit (CPU); memory organisation: character representation; program storage; address modes; input/ output systems; program interrupts; interrupt priorities; programming; assemblers; computers; executive programs; operating systems and time sharing.

Diaitat Computer Loaic and Electronics is designed for the beginner. Ño mathematical knowledge other than simple arithmetic is assumed, though the student should have an aptitude for logical thought. It consists of four volumes - each A4 size -- and serves as an introduction to the subject of digital electronics. Everyone can learn from it - designer, executive, scientist, student, engineer.

Contents include: Binary, octal and decimal number systems: conversion between number systems: AND, OR, NOR and NAND gates and inverters; Boolean algebra and truth tables; De Morgans Laws; design of logic circuits using NOR gates; R-S and J-K flip flops; binary counters, shift registers and half adders.
CAMBRIOGE LEARNING ENTERPRISES, UNIT 15, RIVERMILL SITE,
FREEPOST. ST. IVES. HUNTINGDON. CAMBS. PE17 4BR. ENGLAND
TELEPHONE: ST. IVES (0480) 67446
PROPRIETORS: DRAYRIDGE LTD. REG. OFFICE: RIVERMILÉ
LODGE. ST. IVES

In the years ahead the products of digital electronics technology will play an important part in your life. Calculators and digital watches are already commonplace. Tomorrow a digital display could show your vehicle speed and petrol consumption; you could be calling people by entering their name into a telephone which would automatically look up their number and dial it for you.

These courses were written by experts in electronics and learning; systems so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being faster and more thorough than classroom learning. You work at your own pace and must respond by answering questions on each new piece of information before proceeding.

After completing these courses you will have broadened your career prospects and increased your fundamental understanding of the rapidly changing technological world around you.
The six volumes of Design of
Digital Systems cost only:
And the four volumes of Digital Computer Logic and Electronics cost only:

But if you buy both courses, the total cost is only:

+90 p. post $\&$ packing

Price includes surface mail anywhere in the world - Airmail extra.

Flow Charts \& Algorithms

HELP YOU PRESENT
safety procedures, government legislation, office procedures, teaching materials and computer programs by means of YES and NO answers to questions.
THE ALGORITHM WRITER'S GUIDE explains how to define the questions, put them in the best order and draw the flow chart, with numerous examples shown. All that students require is an aptitude for logical thought. Size A5, 130 pages. This book is a MUST for those with things to say.
£2.95
+45 p post $\&$ packing by surface mail anywhere in the world. Airmail extra.

GUARANTEE

If you are not entirely satisfied your money will be refunded.
Cambridge Learning Enterprises, Unit 15, Rivermill Site

Freepost, St. Ives, Huntingdon, Cambs. PE 17 4BR
England.
Please send me the following books
sets Digital Computer Logic \& Electronıcs@ £5.50. p \& p included
sets Design of Digital Systems @ £9.00.p. \& p. includeä
Combined sets @ £13.00, p \& p included
The Algorithm Writer's guide @ £3.40, p \& p included
Name
Address

I enclose a cheque/PO payable to Cambridge Learning Enterprises for $£$
Please charge my 'Access/Barclaycard/Visa/Eurocard/ "Mïastercharge/Interbank account number
Signature
-deleted as appropriate
Telephone orders from credit card holders accepted on 0480 67446 (ansafone). Overseas customers should send a bank draft in sterling drawn on a London Bank.

data sheet

FEATURES

- ROOT, 3rd, 5th, 7 th Chird Elements
- Additional output for special effects
- Sustain capability
- Top key priority
- Self-contained oscillator circuit
- Operated with single pole, single throw switch matrix

DESCRIPTION

The AY-5-1317A is a P-Channel MOS IC which accepts twelve basic frequencies (one full octave) and outputs the notes necessary to form Major, Minor and Seventh chords. This is the only known standard chord generator IC that performs these functions. The chord elements (ROOT, 3rd, 4th, 5th, 6th and 7th) can be multiplexed internally to perform special effects such as walking bass, rhythm arpegio, laternating bass, etc. The AY-5-1317A will operate in conjunction with and, through the KEY DOWN output, synchronize a rhythm generator such as the General Instrument AY-5-1315. The AY-5-1317A has a keyboard priority system with the C Major chord having the highest priority.
PIN CONFIGURATION
40 LEAD DUAL IN LINE

	tod view		
$v_{55} 0$		40	96
$v_{00}{ }^{2}$	2	39	C5
Cl^{5}	3	38	Pc4
OSC -	4	37	$\square \mathrm{c}_{3}$
RES -5	5	36	$\square \mathrm{C}_{2}$
o Soll ${ }^{\text {c }}$	6	35	g sus
R [$\mathrm{C}^{\text {? }}$	7	34	\square мо
R2 [-8	8	33	\square^{7} Sel
R3 [9	9	32	$\square \mathrm{7th}$ Ouldut
R4 $\square_{1} 1$	10	${ }^{31}$	$\square \mathrm{Root}$
RS $\square^{\text {a }}$	11	30	$\square A K$
R6 -	12	29	\square 3ra Outou!
F1. ${ }^{\text {d }}$	13	28	7 Sth Output
F2 [14	27	P1
F3 ${ }^{-1}$	15	26	\square^{82}
54.1		25	Q83
${ }_{55} \mathrm{C}^{1}$	17	24	\square^{512}
${ }_{66} 1$		23	F11
${ }^{5} 71$		22	-F10
58.2		21	Pf

ELECTRICAL CHARACTERISTICS

Maximum Ratings ${ }^{\text {. }}$

$V_{D D}$ with respect to $V_{s s}$.
Logic Input Voltages with respect to $V_{s s}$
Storage Temperature
Operating Temperature (T_{A}).
-20 V to +0.3 V -20 V to +0.3 V . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$. $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Standard Conditions (unless otherwise noted)
$V_{D D}=-15 \mathrm{~V} \pm 3 \mathrm{~V}$
$V_{s s}=O V$ (substrate voltage)
Operating Temperature $\left(T_{A}\right)=+25^{\circ} \mathrm{C}$
"Exceeding these ratings could cause permanent damage. Functional operation of this device at these conditions is not implied -operating ranges are specified below.

Characteristic	Sym	Min	Typ**	Max	Conditions
Input Logic Levels					
Logic 0	VIL	V_{DD}	-	-8.5	
Logic 1	VIH	-1.0V	-	+0.3V	
input Capacitance	CIN	-	-	10 pF	
Note Outputs					
Logic 0	$\mathrm{R}_{\text {Off }}$	$160 \mathrm{~K} \Omega$	-	-	
Logic 1	$\mathrm{R}_{\text {ON }}$	-	-	500 n	
Row Drivers Output Impedance		-	750Ω	-	$V_{(1)}=-15 \mathrm{~V}$
Control Input		$10 \mathrm{~K} \Omega$	-	$1000 \mathrm{~K} \Omega$	
Keyboard Row Input Impedance		$24 \mathrm{~K} \Omega$	-	100K Ω	
Keyboard Scan Frequency		-	25 KHz	-	$500 \mathrm{pF}, 750 \mathrm{~K}, \mathrm{~V}_{\mathrm{DD}}=-\mathrm{C}^{15 \mathrm{~V}}$

[^2]AY-5-1317A CHORD GENERATOR

Pin No.	Name (Symbol)	Function
1	Ground (Vss)	Ground
2	Power Supply (VDD)	Negative Supply
3,36-40	Column Inputs (Cl-C6)	Column inputs from Keyboard Matrix
4	Oscillator Input (OSC)	R/C network connection for keyboard scan oscillator
5	Reset (RES)	A logic ' 1 ' (ground) will reset the keyboard scanner, and the memorizedkey
6	Minor Select (mSel)	A Ground on this line changes the 3rd output from Major to Minor
7-12	Row Outputs (R1-R6)	Row outputs to Keyboard Matrix
13-24	Frequency Inputs (F1-F12)	These are the input lines for the 12 frequencies (one full octave B thru C) used to generate the chords.
25-27	Control Inputs (B3-B1)	These 3 lines will be internally latched and decoded to select either the ROOT, 3rd, 4th, 5th, 6 th , or 7 th frequency as the special effect output.
		B1 B2 B3 Selection
		0 0 000 No change from last selection.
		$\begin{array}{llll}0 & 0 & 1 & \text { ROOT }\end{array}$
		01050
		011030
		$1 \begin{array}{lll}1 & 1\end{array}$
		1104 th
		10106
28	5th Output (5th)	This line will output the 5 th frequency element of the selected chord.
29	3rd Output (3rd)	This line will output the 3rd frequency element of the selected chord. Minor 3 rd will be provided if a Minor chord is selected. Major 3rd will be provided if a Major or 7 th chord are selected.
30	Any Key Down (AK)	This line goes to a logic ' 1 ' whenever a chord selection key is depressed.
31	Root Output (Root)	This line will output the ROOT irequency element of the selected chord.
32	7th Output (7th)	This line will output the 7 th frequency element of the selected chord if a 7 th chord is selected otherwise the output is logic ' 0 ' (voltage).
33	7 th Select (7 Sel)	A ground on this line turns the 7th output on.
34	Special Effect Output (MO)	This line will output one of the six frequency elements as programmed by the control lines $\mathrm{B} 1-83$. The 7th chard element frequency will be provided independently of the chord selection.
35	Sustain (SUS)	A logic ' 1 ' on this line will activate the memory circuit which memorizes the last key played.

TRUTH TABLE FOR SPECIAL EFFECT OUTPUT

FREQUENCY OUTPUTS

Chord Selection	Root	3rd Minor	3rd Major	4th	5th	6th	7h
C	C ($\div 2$)	D* ($\div 2$)	E ($\div 2$)	$F(\div 2)$	G ($\div 2)$	A $1 \div 2)$	$A^{\#}(\div 2)$
C ${ }^{\text {\# }}$	C\# $(\div 2)$	E $(\div 2)$	F ($\div 2)$	F\# ${ }^{(\div 2)}$	$\mathrm{G} \#(\div 2)$	$A^{\#}(\div 2)$	B ($\mathrm{S}^{\text {) }}$
D	D $(\div 2)$	F $(\div 2)$	F \# ($\div 2$)	G $(\div 2)$	A $(\div 2)$	B $(\div 2)$	C $(\div 1)$
D*	D* ${ }^{(\div 2)}$	F\# $(\div 2)$	G $(\div 2)$	G ($(\div 2)$	A \# ($\div 2)$	C $(\div 1)$	C \# $(\div 1)$
E	E $(\div 2)$	$G \quad(\div 2)$	$\mathrm{G}^{*}(\div 2)$	A $(\div 2)$	B ($\div 2)$	$C^{\#}(\div 1)$	D $(\div 1)$
F	F $(\div 2)$	$\mathrm{G} *(\div 2)$	A $(\div 2)$	A \# ($\div 2$)	C $(\div 1)$	D ($\div 1)$	D * $(\div 1)$
F\#	F\# ($\div 4$)	A $(\div 4)$	$A \#(\div 4)$	B $(\div 4)$	$\mathrm{C}^{(1)} \div$	D* ($\div 2$)	E ($\div 2)$
G	G $(\div 4)$	A\# $(\div 4)$	B $(\div 4)$	C $1 \div 2)$	D ($\div 2)$	E ($\div 2)$	F $(\div 2)$
G ${ }^{\text {\# }}$	$\mathrm{G}^{\#}(\div 4)$	B $(\div 4)$	C $(\div 2)$	C \# ($\div 2$)	$\mathrm{D}^{(1)} \div$	F ($\div 2)$	$\mathrm{F}^{\text {H }}(\div 2)$
A	A $(\div 4)$	C $(\div 2)$	C\# $(\div 2)$	D $(\div 2)$	E $(\div 2)$	F* (-2$)$	G ($\div 2)$
A*	$A^{\#}(\div 4)$	$\mathrm{C}^{*}(\div 2)$	D ($\div 2)$	$\mathrm{D}^{*}(\div 2)$	$F(\div 2)$	G ($\div 2)$	$\mathrm{G}^{*}(\div 2)$
B	B $(\div 4)$	D $(\div 2)$	$\mathrm{DH}^{(1)} \div$	E $(\div 2)$	F\# $\left.{ }^{(} \div 2\right)$	$\mathrm{G}^{*}(\div 2)$	A $(\div 2)$

STANDARD INTERCONNECTION FOR A SINGLE ROW KEYBOARD WITH SEPARATE KEY FOA MINOR AND SEVENTH

ETCH RESIST TRANSFER KIT SIZE 1:1
Complete kit 13 sheets 6 in $\times 41 / 2$ in $^{-i}$ £2.50 with all symbols for direct application to P.C. board. Individual sheets $25 p$ each. (1) Mixed Symbols (2) Lines 0.05 (3) Pads (4) Fish Plates and Connectors (5) 4 Lead and 3 Lead and Pads (6) DILS (7) BENDS 90 and 130 (8) 8-10-12 T.O.5. Cans (9) Edge Connectors 0.15 (10) Edge Connectors 0.1 (11) Lines 0.02 (12) Bends 0.02 (13) Quad in Line
FRONT AND REAR PANEL TRANSFER SIGNS
All standard symbols and wording. Over 250 symbols, signs and words. Also available in reverse for perspex, etc. Choice of colours, red, blue, black, or white. Size of sheet $12 \mathrm{in} \times 9$ in. Price $£ 1$.
GRAPHIC TRANSFERS
WITH SPACER
ACCESSORIES
Available also in reverse lettering, colours red, blue, black or white. Each sheet $12 \mathrm{in} . \times 9 \mathrm{in}$ contains capitals, lower case and numerals $1 / 8$ in kit or $1 / 4 \mathrm{in} \mathrm{kit} £$. complete. State size.
All orders dispatched promptly. All post paid
Ex U.K. add 50 p for air mail
Shop and Trade enquiries welcome Special Transfers made to order

E. R. NICHOLLS

P.C.B. TRANSFERS

Dept. ET1/2
46 LOWFIELD ROAD STOCKPORT, CHES.061-480 2179
 Retail Sales London: 40-42 Cricklewood Broadway, NW2 3ET. Tel: 01-452 0161/2. Telex: 21492. London: 325 Edgware Road, W2. Tel: 01-723 4242 Glasgow: 85 West Regent Street, G2 2QD. Tel: 041-332 4133. Bristol: 1 Straits Parade, Fishponds Road, B516 2LX. Tel: 0272654201.

\qquad

$\begin{array}{llll}8 C 337 & 0.20 & 80240 \mathrm{~A} & 0.49 \\ 8 C 338 & 0.23 & \text { B0240C } & 0.59\end{array}$

\qquad

为

LINEAR CIRCUITS

LINEAR CIRCUITS						
cismer		${ }_{0.96}$	L17824		тa43	${ }_{225}^{238}$
	${ }_{\substack{\text { a }}}^{2.20}$			${ }_{0}^{0.30}$		270
	0,	+1,98		0.30	Tials	${ }_{3}^{3.60}$
${ }^{2938}$			${ }_{\text {max }}^{\text {mis }}$			3.00
		0.88	WEss5	${ }_{0}^{0.335}$		220
	${ }^{2} 50.50$	1.10	Missid			20
433	${ }_{\text {chem }}$	1.00	1 E 560	4.50	тen	206
	2.45 Limos	0.70	${ }_{\text {k } 662}$	4.50	${ }^{18}$	22, 2
cha	1.78		KE555	1.39		1.30
	2.15	${ }_{0}^{0.67}$	567			\%00
${ }^{4}$	0.50	0.4	\%			2.996
	${ }_{2}^{2} .90$		Sks5ic	270		${ }^{55}$
	4.40 .141733114	0.45	SN10	${ }_{2}^{2.10}$		
${ }_{\text {che }}^{\text {ca33 }}$				1.35	Tur 40	
	0.30	0	sult 500	${ }_{2}^{1.30}$		00
	0.95	-99	str601	1.50		49
(Limanc	${ }_{3}^{1,55}$	${ }_{0}^{0.950}$		${ }_{2.35}^{1.35}$	rad	(65
	2	1.52	${ }_{\text {TMuse }}^{\text {TM }}$			${ }_{25}^{24}$
	2.15	1.52	tuaza	1.15		
	2.215	${ }_{2}^{1.22}$	${ }_{\text {TM }}^{2}$	${ }^{3.100}$		15
	1.15	d	${ }^{\text {masis }}$	2.10		25
\%	1.15		14565			10
		6.20	1037			15
	0.80		${ }^{1 / 3} 3$			sos
	Oict mima	90	19970			\% 80
	0.38	. 50	${ }^{\text {mem }}$	2, 20	${ }_{\text {H14 }}^{1132}$	-
	0.50	1.98	M6			
	${ }^{0.80}$	1.90	Mimelid			
	0.95 Lim3314	0.60				
		0.55 0.55		${ }_{2}^{1.45}$		
	${ }_{3} 3.30$	\%	18120	0.20		
	${ }_{6.45}^{2.35}$	${ }^{1.15}$	18500	2, 2.4	EMO	
	${ }_{\text {a }}$	4.75		245	cat	
	, i, ${ }_{20}$		\%	(260		

CMOS		${ }_{4}^{42122}$	${ }_{1}^{1.05}$		0.05	${ }_{4018}^{4078}$	${ }_{0}^{0.70} 0$
${ }_{4}^{4000}$	${ }_{0}^{0.22}$	${ }^{42123}$	0.72		-0,	${ }_{4018}^{4818}$	0.24 0.27
	-		-		1:104	,	-
${ }^{4000} 7$	0.22	${ }^{426858}$	0,922		${ }^{1} 1.65$		21,
(0008	0.58	1303	-i.4	amse	${ }^{1} 1.15$	4099	2200
${ }_{4}^{4011}$	0. 0.5		${ }_{1}^{2,35}$	${ }^{305}$	${ }^{1.355}$	20969	,
	${ }_{0}^{0.22}$	${ }^{2014} 48$	1.205	${ }_{\text {dex }}^{1067}$	${ }_{0}^{4.25}$	${ }_{4098}$	1.00
4014	1.100	4028	${ }^{0.856}$	40698	0.24	45108	1.20
	${ }_{0} 1.05$	404	1.100	${ }_{40718}$	${ }^{2} 20$	${ }_{4}^{565}$	210
colili	${ }_{1}^{1.05}$	${ }^{\text {and }}$	${ }_{1}^{1.256}$	${ }_{\substack{4072 \\ 4073}}$		45188	1.20
		边	(0.0.	ciclis	(090		

EXPAND AND KIM
GROW WITH

Touse
Micbocomputer

AMERICA'S FASTEST SELLING MOST POPULAR 6502 based system - Easily expanded INTO A PERSONAL HOME COMPUTER

The basic KIM 2 includes Hex keyboard and dtsplay.
audic casselto interface. VDU inteelice. Superb
documentan

 instruction set. The beauty of inis system is the ease of
extension and versatitioy with all the possible future requirements catered
tor Up and running in minutes. Any future benefits from Commodoses PET extension and versatility, with all the possible future requirements catered
tof Up and running in minutes. Any future benefits from Commodoses PET computer will be software compatibie with the it $K I M$ system and
$K I M$ system has the design flexibility to suit any requifements.
$K I M$ IS KIM IS EXPANDABLE - Expand as you learn up to 8
KIM 1 - Basic board with above teatures assembled KIM 3 - 8K satic AAM card plugs into motherboard
KIM 4 - Motherboard (lakes $6 \times$ KIM 3) + power supp

```
The Commodore PET and KiM en based on the 6502
``` me Commodore PET and KIM are both based on the 6502
micro VOU INTERFACE - VOU card - t3kes coniral Fully assembled TTY Card - ASC 11 keyboard in-converts TV set io cheap
computer terminal via aerial socket. Also standard RS232 connector for computer terminal via aerial socket. AlSD standard
micro, computer or modem -16 lines \(\times 64\) characters.
SENO SAE NOW FULL DETALLS

\section*{TTL}

\section*{NEW LOW PRICES}

LEOS + DPTO SIEMENS

B
\(\square\)

FULL RANGE + DATA In OUR 1979 Catalogue

1979
CATALOGUE

\section*{LOW COST VDU
CONVERT TV SET TO VOU}

The new CRT control chip from Thamsan CSF SFF96364. Convert your TV set into an electronic VDU - 16 lines \(\times 64\) characters requires RAM. character generator and titte else for a basic VDU requires RAM. character generator and
Available as chip or full display card.
Available as chip or full display card. erase. full card included UART, Modem, char. CHIP £17.20 gen etc. Comp video out from encoded keyboard

SEND S.A.E. FOR DETAILS

COMPONENTS
WE STOCK MORE

ETIPRINTS are a fast new aid for producing high quality printed circuit boards. Each ETIPRINTS sheet contains a set of etch resistant rub down transfers of the printed circuit board designs for several of our projects. ETIPRINTS are made from our original artwork ensuring a neat and accurate board. We thought ETIPRINTS were such a good idea that we have patented the system (patent numbers 1445171 and 1445172).

\section*{PARTS LIST}

Shown below is the listing for the last years ETIPRINTS. Earlier sheets are available, ring Tim Salmon for details.
\begin{tabular}{|c|c|c|}
\hline 003 & Race Track Game Hammer Throw Freezer Alarm & \begin{tabular}{l}
Jan 78 \\
Jan 78 \\
Dec 77
\end{tabular} \\
\hline 004 & \begin{tabular}{l}
Metal Locator Mk II \\
Ultrasonic Tx/Rx \\
5 Watt Stereo Amp (modified)
\end{tabular} & \[
\begin{aligned}
& \text { Feb } 78 \\
& \text { Feb } 78
\end{aligned}
\] \\
\hline & Metronome Shutter Time & \[
\begin{aligned}
& \text { Jan } 77 \\
& \text { Feb } 78 \\
& \text { Feb } 78
\end{aligned}
\] \\
\hline 005 & Op-Amp Supply Frequency Shifter LCD Panelmeter Light Dimmer (3 times) & Mar 78 \\
\hline
\end{tabular}

Light Dimmer (3 times)

Preamp
From Experimenters Electronics
PSU Tomorrow
007 Star Trek Radio May 78
CD Ignition
CCD Phaser
White Line Follower
008 Tank Battle Helping Hand

May 78
May 78
April 78
May 78
009 AM / FM Radio
Bridge Oscillator

010 Bench Amplifier
Freezer Alarm
Marker Generator
LED Dice
Watchdog (2 PCBs)
Stars \& Dots PSU
011 Noise Generator
General Preamp
Flash Trigger
Compander
Active Crossover
(2 PCBs)
012 Disco Lightshow
Stereo Simulator Digital Thermometer
013 Amplifier Module Amplifier PSU
Equaliser
Equaliser PSU
014 Skeet Game
Sweep Oscillator
Burglar Alarm
GSR Monitor
015 UFO Detector
Torch Finder (twice) July 78
Etiwet (fwice) Aug 78
016 Stac Timer
Xhatch Gen
Wheel of Fortune
Sept 78
017 Complex Sound Gen
Tele Bell Extender
Power bulge
018 RF Power Meter Oct 78
Proximity Switch
Audio Oscillator (2)
019 Car Alarm (2)
Wine Temp (2)
Curve Tracer
020 Digital Tacho
Module
Oct 78
Nov 78

Digital Dial

\section*{OBITUARY: John Miller-Kirkpatrick}

I AM probably the worst person to write about John Kirkpatrick: I liked him too much to be objective. But I am going to write about him because John died on December 12th, 1978. I don't remember how old he was; you rarely do know how old good friends are but he was 30 or 31 - it doesn't matter which for it's far too young. John leaves behind a wife, Jane, and two young daughters.

When I first met John I can't quite remember, but it was probably shortly after he had developed the first digital clock that I'd ever seen. This would have been in 1971 or 1972 - way before the chips that make these things so simple today.

The circuit comprised a mass of TTL and the whole thing had been worked out from first principles.

Yes, John was one of the few people I know who could work from first principles.

It was also John who introduced me to ETI - a magazine I'd hardly heard of at the time. When I became editor of this magazine it was natural that the first person I contacted to write for me was John. He, of course, wrote Electronics Tomorrow for us, a series which we carried from mid-1973 until illness prevented him doing it some three months ago.

John's main business was Bywood Electronics which was one of the first companies to bring the new high-technology chips to the general public. It was John who designed System 68 which, although it suffered from a few teething troubles, was miles and away the first DIY computer ever described.

John's latest venture was the Scrumpi Series we reviewed the Mk 3 not too long ago. To emphasise how close John was to me and the magazine we had to get an outsider to review it for objectivity.

John Miller was very nearly a genius but above all he was a damned good chap: I don't think there was an ounce of badness in him. I will miss him but our hobby will miss him as well.

Halvor Moorshead
Editorial Director

\title{
microfile
}

GEORGE DAVIES IS INNOCENT, innocent that is of any blame for my last minute summons to talk to the Croydon branch of the British Computer Society. Mr Davies is chairman of said society and having found himself with no speaker on the subject of Home Computing, drafted myself and another speaker to fill the gap.

My talk was concerned with a descripton of the various items that one has to hang around an MPU in order to produce a system, power supply, input, output, RAM, ROM, control circuitry etc, using an Mk14 as an example of a minimum system and working up to an outline of the likes of the Triton, PET, and TRS 80.

The other speaker, John Sanderson, described a project that he has been working on for some time, a system aimed at the educational market.

A modular concept has been adopted in a system that allows a number of pupil "work stations" to be connected to the main processor card (based on a GI micro). Each work station consists of a VDU, cassette recorder and pair of head phones.

The system is flexible to say the least and a full description of it would take up far more spare time than I
have available here - I shall, however, be reporting in more detail soon. One part of the hardware grabbed my attention immediately however - the keyboard.

This was of very simple construction a formed A 60 station (\(15 \times 4\) matrix) input terminal at a cost of about \(\ddagger 5.00\).

Construction of the keyboard was kept as simple and straightforward as possible by forming the keys from a piece of bent wire as shown in the diagram. Although this sounds like a recipe for trouble, the design has proven itself over the past few months. To make the keyboard more attractive a layer of film, with appropriate ledgenos can be placed over the pcb to keep the cost right down, housing for the terminal is provided by a picture frame.

The finished product is both attractive, robust and above all cheap.

As it stands at present a certain amount of software is necessary to decode the output of the board but this set me thinking along the lines of a keyboard with the same system for providing the keys but with additional, hopefully simple, circuitry to produce an ASCII output with strobe - for more attractive.

The basis of a cheap ASC/I encoder to go with the cheap keyboard mentioned above. This circuit probably won't work - over to you for bright ideas.

How to make a cheap keyboard using only a PCB and bent wire.
My deadline for these words was almost upon me so the diagram below is very much a first attempt at such a scheme and I'm hoping some of you will take the basic idea and see if something can be made of it

The idea is that clock pulses will, via the steering gate be fed to two 4017 ICs such that these devices form a 15 bit shift register, placing a logic ' 1 ' on each of the 15 'vertical' lines of the keyboard matrix. The horizontal lines are taken to a four input data selector that selects the output from one of the four "horizontal" lines and feds this to a mono stable.

The line selected will initially be the top row of switches but at the end of a row scan will advance to the second.

The output from the data selector will be low at all times unless a key has been pressed when it will trigger
the monostable. This will stop the clock for a short time. The output of 7 Hz has also been fed to a couple of binary counters, the outputs of which will form a unique code corresponding to the key that has been pressed.

If the keyboard layout and markings have been chosen carefully. This binary code will be the ASCII code for the key pressed

As the first monostable returns to its stable state it triggers a second device to reset all the counter stages.

In the time available I've not been able to put any detail in the design but hopefully the data selector and steering gate could be easily implemented. Roll over might be a problem - but over to you - If you've any thoughts on this scheme please let me know.

Micro digital of 25 Brunswick Street, Liverpool, L2 OBJ have been busy over the past few months, expanding the range of products available in their Computing Store

They have one of the largest ranges of literature available in the country at present, all on display in the shop. Microdigital are also producing blank, high quality, cassette tapes and coding forms for MPU work.

Paying them a visit or sending an SAE for their latest catalogue could bring to light that book, component, whatever - that you've been searching high and low for
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
\(\Xi\) \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\

\end{tabular}}} \\
\hline & \\
\hline
\end{tabular}

\title{
STEVENEON Electronic Components
}

\section*{VEROBOARDS \\

\section*{MINIATURE TRANSFORMERS}

Secondary rated at 100 mA Available with secondaries of: 6-0-6,9-0-9
and \(12 \cdot 0 \cdot 12.92 \mathrm{p} \mathrm{each}\)
CRYSTALS
WIRE ENDED TYPE
Freq. MHz
\begin{tabular}{rrrrrr}
0.100 & \(380 p\) & 4.000 & \(250 p\) & 12.000 & \(250 p\) \\
0.300 & \(380 p\) & 5.000 & \(250 p\) & 18.000 & \(300 p\) \\
1.000 & \(320 p\) & 6.000 & \(250 p\) & 20.000 & \(300 p\) \\
2.000 & \(320 p\) & 8.000 & \(250 p\) & 32.000 & \(300 p\) \\
3.276 & \(250 p\) & 10.000 & \(250 p\) & 48.000 & \(300 p\)
\end{tabular}

\section*{LOUDSPEAKERS}

56 mm dia. 8 ohms 64 mm dia. 8 ohms 64 mm dia. 64 ohms 70 mm dia. 8 ohms 70 mm dia. 80 ohms

70p
\(75 p\)
75p
100p
110p

We now have an express telephone order service. We guarantee that all orders received before 5 pm . are ship ped first class on that day. Contact our Sales Office
now! Telephone: 01-464 2951/5770.

Quantity discounts on any mix TTL, CMOS, 74LS and Linear circuits: \(25+10 \% .100+15 \%\). Prices VAT inc. Please add 30 p for carriage. All prices valid to 30th April 1979. Official orders welcome.

\section*{AC}

\title{
100 W DISCO MIXER AMPLIFIER
}

Designed by Richard Becker of Powertran this unit can deliver any way you want, and for less than £50!
Build it as a disco amp - it provides four inputs and three tone controls as well as 100W RMS.
Build the power amps for home use - check the spec - for low cost high quality sound.

NOT LONG AGO we published a super-fi 200 W amplifier for the most demanding professional and domestic applications and this circuit is being highly acclaimed (by those who know about amplifiers!)

See for example the review in 'Sound International' December 1978 issue. However, exotic circuitry does not come at a low price.

This project does!
For less than \(£ 50\) you can build a rugged general purpose high power amplifier complete with built in adaptable mixer. Using the newest of Motorola's extra strong power transistors this design pushes out 100 watts (genuine RMS type) and a bit to spare into 8 ohms. Overload protection is built-in and distortion is less than \(0.1 \%\) right up to clipping level.

\section*{Mixing It}

The mixer takes a wide range of inputs such as disc, microphone. guitar or just about anything you fancy as the sensitivities of the buffered input stages can be simply changed. There are three tone controls - bass, middle and treble each having a range of 15 dB boost and 15 dB cut and also a master volume control.

Mechanically the design is simplicity in the extreme with the absolute minimum of wiring. The power transistors fit onto the power
amplifier board so there are no wires to give stability problems and all the controls mount directly onto the mixer board. Even the input jacks are soldered to the board! All the components are cheap and with the possible exception of the power transistors and transformer readily available.

These can all be obtained from Powertran who are supplying this project as a complete kit which incudes fully finished metalwork to give the professional finishing touches.

\section*{Construction}

Assemble the printed circuit boards following the overlays. On the power amplifier board sandwich the cooling bracket between the power transistors and the circuit board as shown in the drawing not forgetting to smear silicon grease onto the mica washers. Fitting Q104 is easier accomplished after the bracket is in position. Smear some grease on this too before sitting it in the hole in the bracket

Even when there is no signal, Q105 is dissipating over 500 mW so get rid of the heat from this with a cooling clip pressed onto it. Wind L1 onto R 128 with 10 turns of 25 g wire before fitting to the board. The wire supplied in the kits is self fluxing polyurethane covered and can be soldered directly to the board Before fitting any components to the mixer board press in pins, from the
component side of the board at the 16 points marked \(x\). These are for connecting to the jack sockets but do not fit them yet. Now fit all the components taking particular care to solder the potentiometers squarely on the board and when complete secure to the front panel with the potentiometer nuts. Remove all but three spacer washers from the jack sockets and bending their tags to fit over the pins on the board screw to the panel and solder in position.

Press capacitors C 115,116 into their mounting clips and connect the rectifier diodes and C113, 114 across them as shown in the diagram then complete the mechanical assembly and wiring noting that ALL ground (OV) connections are made to a stack of solder tags fitted to the chassis near the power supply capacitors.

\section*{Testing and Setting Up}

Without F2, 3 fitted check the power supply. Being off-load the voltage on each rail will be nearer 54 volts than 50 volts. Switch off and discharge the capacitors. No fireworks by using screwdrivers please! Use a resistor of about 100R. Fit the fuses, turn down the master volume control, turn RV101 to its midway position and turn RV102 fully clockwise.

Turn on and set the voltage between the can of Q111 and the amplifier output terminal to 33 mV with RV 102. This corresponds to a

\section*{SPECIFICATION}

\section*{SPECIFICATION (power amplitier)}

Power output: 112 into 8 ohms
Harmonic distortion: \(0.07 \%\) at \(1 \mathrm{KHz}, 8 \mathrm{R}\) at clipping level.
Frequency response: (3dB) \(10 \mathrm{~Hz}-30 \mathrm{KHz}\)
Damping factor: 100
Sensitivity: \(0.775 \mathrm{~V}(0 \mathrm{dBm})\) for 100 W into \(8 \Omega\)
Hum \& Noise: -99 dB
Input impedance: 22 k

\section*{SPECIFICATION (mixer)}
input DISC disc equalization sensitivity 3 mV input impedance 47K
input MIC flat response sensitivity 1 mV input impedance 1 K input LOW flat response sensitivity 10 mV input impedance 10K
input HIGH flat response sensitivity 100 mV input impedance 100K
Bass control \(+15 \mathrm{~dB}-15 \mathrm{~dB}\) at 30 Hz
Middle control \(+15 \mathrm{~dB}-15 \mathrm{~dB}\) at 1 KHz
Treble Control \(+15 \mathrm{~dB}-15 \mathrm{~dB}\) at 15 KHz
By simple component changes all four inputs can have flat response for any sensitivity between 1 mV and 100 mV
current of 100 mA in the output stage. Adjust RV101 for zero off-set voltage at the output terminal. Make re-measurements of these voltages for about 10 minutes or until they stop changing whilst the amplifier is becoming thermally stabilized.

Switch off, fit the cover and your amplifier is now ready for use. ETI

\section*{BUYLINES}

A complete kit of parts for this project, including all metalwork, nuts, bolts, PCBs and components will be available from Powertran Electronics, Portway Industrial Estate, Andover, Hants SP 10 3NM for \(£ 49.90+\) VAT. The PCBs will be available only from them as they are their design.
In addition the parts for both the mixer and power amp boards are available separately at a cost of \(£ 10.40\) and \(£ 10.60\) all inc. respectively.

\section*{HOW IT WORKS}

\section*{Power amplifier.}

To achieve reliable high power delivery at low cost 'Power Base Technology' type power transistors are the obvious choice, offering an excellent safe operating area at a very favourable price. One such device is the well known and readily available 2N3773 which can be used in this design, however Motorola have recently introduced the MJI5015 which will not only handle more power (180 watts) but is cheaper too (only about \(£ 1.50\)). These are driven by Q108, 109 which supply the base current for the output transistors without loading heavily the voltage amplifying stage of Q105. The combination of R125, D103, C111 is used to simulate the input impedance of a power transistor to make similar the impedances at the bases of Q108, 109 so as to increase the symmetry of the output stage which is necessary to achieve low distortion. R122, 126 improve the switching times of the output transistors by removing charge carriers from their bases. This is necessary for smooth transfer in the cross-over region i.e. when the signal changes from positive (delivered by Q110) to negative (accepted by Q111). Bias for the output stage is provided by Q104, the voltage across which is adjusted by RV 102. For thermal stability of quiescent current this transistor is in thermal contact with the cooling bracket. C108 is an AC bypass.

R123, 124 are the resistors which sense the current in the output stage, the voltage across these will be the voltage across TR104 less the voltage of the three baseemitter junctions of TR108, 110, 111 and the junction of D103.

Protection against overload is provided by Q106, 107 with current sensing by R117, 120,123 and R118, 121, 124 and voltage sensing by R116, 117 and R118, 119. R115 limits the current drawn from the load through Q107, 105 during overload. R114 restores symmetry for positive going signals. However, the presence of R114, 115 can, under heavy load conditions, lead to voltages which can turn on the base collector junctions of the protection transistors introducing a discontinuity into the transfer characteristic of the amplifier (that's a posh way of saying distortion!) This is prevented by germanium diodes D101, 102. C110 is a bootstrap capacitor which increases the effective impedance seen at the collector of Q105, thereby increasing the gain of that stage which takes the signal from differential pair Q101, 102, via the emmiter follower buffer Q103. RV101 is used to adjust the output off-set voltage to zero. The overall voltage gain of the amplifier is determined by R106, 109 and is about 36 corresponding to \(0 \mathrm{dBm}(0.775 \mathrm{~V})\) for full power. R101, C101 are an input filter to remove RF interference and prevent
overload by transients. Frequency compensation and stabilization is performed by C105, 107, 109, 112, R127, 128, and L1.

\section*{Power supply}

For economy the supply to the amplifier is unregulated. D104-107 form a full wave rectifier filtered by C115, 116. C113, 114 remove high frequency transients from the power rails. A toroidal transformer is used because the stray magnetic field is very low thereby reducing the hum introduced into the system. The mixer is supplied by zener diode regulators fed from the 50 V power rails. Two stages of regulation are used to prevent low frequency feedback to the input stages. Because of the bass boost of the disc equalization characteristic this is important otherwise low frequency instability of the system could result.

\section*{Mixer}

The actual mixing is carried out by RV1-4, R5, 9, 13, 16, 16 and IC5 but before that the inputs are buffered by ICl-4 stages. ICl stage is RIAA equalized for use with a magnetic pick-up but if this facility is not required it can be built with flat equalization for another purpose such as a guitar pick-up (10 or 15 mV sensitivity being suit-

Above left: the full circuit for the power amplifier section of the mixer amp. This builds onto its own PCB and can be employed to good advantage in other systems. Above right: the mixer circuit itself. Note the provision of a third-midtone control circuit which will be found to be useful in disco applications. Below right: power supply circuit for the whole unit.

able for most pick-ups). For 15 mV sen sitivity omit C3, R4, use wire links in place of \(\mathrm{Cl}, 2\), use \(15 \mathrm{~K}, 18 \mathrm{~K}, 100 \mathrm{~K}\) for \(\mathrm{R} 1,2,3\) respectively and replace link \(A\) with a lu tantalum capacitor. All the buffer stages produce an output of 100 mV for their rated input. Changing the resistor values alters the sensitivity for example IC3 stage could also be built for 15 mV sensitivity, \(15 \mathrm{~K}, 18 \mathrm{~K}\), 100 K then being used for R10, 12, 11 respectively, provision is also made for disc equalisation components on the IC2 stage.

Above: the somewhat protracted overlay for the mixer board of the amplifier unit. This fixes onto the back of the controls to make construction easier. Below: the main power amplifier overlay. Read the setting-up procedures carefully before turning this on!

Component overlays for the boards

Below left is the 100 W amplifier board. Take care when fitting the power transistors to their heatsinks, follow the diagram opposite. Note that RV102 should be set fully clockwise before switch on

Left: the method of mounting the PSU components around the large reservoir capacitors C116 and C117.
Below: fitting the power transistors to the heatsink.

PARTS LIST
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{RESISTORS 1/4W 5\% Carbon Film} \\
\hline R1 & 47 k \\
\hline R2,6.8, & 1 k \\
\hline R3, 5, 9, 13, & \\
\hline 16.28 & 22k \\
\hline R4, 7, 11, 14, 15 & 100k \\
\hline R10.18,19, & 10k \\
\hline R12 & 11 k \\
\hline R17 & 180 k \\
\hline R20,21 & 2k2 \\
\hline R22, 23 & 3k3 \\
\hline R24,26 & 150 R \\
\hline R25,27 & \(1 \mathrm{k} 5(1 \mathrm{~W})\) \\
\hline \multicolumn{2}{|l|}{RESISTORS \(1 / 4 \mathrm{~W}\) 5\% Carbon Film} \\
\hline R101,107,108 & 1 k \\
\hline R102,109 & 22k \\
\hline R103 & 10 k \\
\hline R104 & 39k \\
\hline R105 & 2k4 \\
\hline R106 & 620R \\
\hline R110.111 & 2k2 \\
\hline R112 & 2k 7 \\
\hline R113 & 4k7 \\
\hline R114,115 & 470 R \\
\hline R116.119 & 18k \\
\hline R117.118 & 120R \\
\hline R120.121 & 390R \\
\hline R122.126 & 47 R \\
\hline R123.124 & OR33 (\(21 / 2 \mathrm{~W}\)) \\
\hline R125 & 100R \\
\hline R127 & 8 R 21 W \\
\hline R128 & 4R7 2W \\
\hline
\end{tabular}
\begin{tabular}{ll}
CAPACITORS & \\
C1 & 22 u 16 V tantalum \\
C2 & 10 n polyester \\
C3 & 3 n 9 polystyrene \\
C4,6,8.10,17 & \(4 \mu 716 \mathrm{~V}\) tantalum \\
C5 & \(10 \mu 16 \mathrm{~V}\) tantalum \\
C7,9 & \(1 \mu 16 \mathrm{~V}\) tantalum \\
C11.12 & 47 n polyester \\
C13.14 & 3 n 3 polystyrene \\
C15 & 33 n polyester \\
C16 & 5 n 6 polystyrene \\
C18,19,20.21 & \(220 \mu 16 \mathrm{~V}\) electrolytic \\
C101,105 & 1 n ceramic \\
C102 & \(1 \mu 16 \mathrm{~V}\) tantalum \\
C103,112, & 100 n polyester \\
114 & \(47 \mu 63 \mathrm{~V}\) electrolytic \\
C104 & \(100 \mu 3 \mathrm{~V}\) tantalum \\
C106,108 & 220 p polystyrene \\
C107 & 22 p 100 V polystyrene \\
C109 & \(150 \mu 63 \mathrm{~V}\) electrolytic \\
C110 & 22 n polyester \\
C111 & \(4700 \mu 63 \mathrm{~V}\) electrolytic \\
C115,116, &
\end{tabular}
\begin{tabular}{ll}
\multicolumn{2}{l}{ SEMICONDUCTORS } \\
IC1-6 & 741 \\
ZD 1,3 & \(12 V 400 \mathrm{~mW}\) \\
ZD 2,4 & 15 V 400 mW \\
101,102 & 2 N 5401 \\
103 & BFR 39 \\
104,106 & BC182L \\
105 & BF257
\end{tabular}
\begin{tabular}{ll}
107 & BC212L \\
108 & BD419 \\
109 & BD420 \\
110.111 & MJ15015 or 2N3773 \\
D101.102 & OA95 \\
D103 & 1S920 \\
D104-107 & 1N5402 or BY254 \\
& \\
FUSES & \\
F1 & 4A fast \\
F2.3 & 3A fast \\
F4 & 1A5 anti surge \\
POTENTIOMETERS \\
RV1-4.8 & 4 k 7 log \\
RV5-7 & 100k lin \\
RV101 & 100R pre-set \\
RV102 & 2k2 pre-set
\end{tabular}

\section*{TRANSFORMER}

T1 \(0-117 \mathrm{~V}-234 \mathrm{~V}\) to \(36 \mathrm{~V}-0-36 \mathrm{~V}\) with electrostatic screen

MISCELLANEOUS
Power transistor mounting bracket, two heat sinks 3 in \(\times 3\) in \(\times 1\) in, TO5 cooling clip, six IC sockets, five \(1 / 4\) in mono jack sockets, two chassis mounting fuse holders, PCB mounting fuse holder, panel mounting mains fuse holder, illuminated mains switch DPDT, eight knobs, fibre glass ready drilled PCB's, metalwork and cabinet to suit, two capacitor clips, cable clamp, nuts, bolts, brackets, cable etc.

- Genuine 5 silicon transistor circuit, does not need a transistor radio to operate.
- Incorporates unique varicap tuning for extra stability
- Search head fitted with Faraday screen to eliminate capacitive effects
- Loudspeaker or earphone opera tion (both supplied)
- Britain's best selling metal locator kit. 4,000 already sold
- Kit can be built in two hours using only soldering iron, screwdriver pliers and side-cutters.
- Excellent sensitivity and stability
- Kit absolutely complete including drilled, tinned, fibreglass p.c. board with components siting printed on
- Complete after sales service
- Weighs only 220 .; handle knocks down to \(17^{\prime \prime}\) for transport.
Send stamped, self-addressed envelope for literature
```

Complete kit with pre-buil search coil
$£ 15.95$
Plus $£ 1.20$ P\&P Plus £1.37 VAT ( $8 \%$ )

```

\section*{Built, tested} and
Guaranteed
\(£ 20.95\)
Plus £1.20 P\&P
Plus £ \(£ .77\) VAT (\(8 \%\))
MINIKITS ELECTRONICS,
6d Cleveland Road, South Woodford, LONDON E18 2AN
(Mail order only)

NOW IT'S YOU AGAINST COMPUTERS

MOUNTAINDENE
22 Cowper St., London, EC2

\title{
Seconds away - round one. Two well known tape recorder manufacturers locked in combat! Ron Harris presides over the trial by transconductance.
}

I RECEIVED an Xmas card this morning. No, it wasn't my first ever you irreverent lot, but it was my first and last from Strathearn Audio. Later the very same day a press statement arrived on my ever receptive desk. I quote:
'It is with a great deal of regret that I have to announce the closure of Strathearn Audio. Basically the reasons of this closure can be put into one sentence: the treasury was unwilling to consider providing additional funding until Autumn 1979 - but which time our proposed tie-up with Aiwa would have been in effect."

Unquote.
And so effective December 31, 1978, our natimised hi-fi company ceases to be, five years and \(£ 9,000,000\) later. One question oh ye powers that be - WHY NOW?

Strathearn's past has been one of huge losses, bad press and inadequately researched products. Through all this the government stood by them, while loud indeed the wolves did howl for blood.

In the past months, however, all has begun to change. Their record deck SM2000 and 21000 speaker system are very fine pieces of work. Export orders were growing, and by the end of ' 79 they could probably have been paying their way. At last.

Surely more cash should be made available - advertise the stuff don't kill it - with the excellent original thought evident in the products Strathearn had a future in the hi-fi market, and as we've already lost over \(£ 9,00,000\) tax money it seems sheer lunacy to 'cut losses' at the first sign that those losses are about to end.

There is hope that the 21000 can be saved from all this and marketed separately. I hope so. In the meanwhile if there is anyone reading this out there connected with this decision, I say again WHY NOW?

\section*{Sorry I'll Leave That again!}

DUE to circumstances never entirely within my control I've had to leave the description of Sonys TAE88 FET pre-amp until next issue. Before any of you write in accusing me of whiling away the month with wine, soft music and Felicity Kendal, I assure it ain't true - if it had been '(Ah . . . what a thought . . .) I most definitely would not be here now, and neither would the Sony review.

Since I didn't spend the month with you-know-whó, and there is no TAE88 review - let's call it quits eh? (1 think I lose on this deal by a factor of about six million to one.)

\section*{Gloves on, Record Amps Away}

MUST be the silly season again. Below I reproduce word for word two releases which arrived at ETI on the same day in the same post on the same subject Actilinear.

There is a dispute. Revox \(v\) Tandberg. Read all aboưt it here, folks. No comments from me, take your pick and make up your own minds

\section*{the gospel according to revox}

\section*{ACTILINEAR or "old wine in new bottles"}

COMPETITION IS HOTTING up and not only against products from the Far East. Even among the "European alternatives" aggressively formulated headlines and the big treatment in advertisements and sales leaflets clamour for attention. Indeed, more and more arguments are being taken over by competitors, even word for word - which not only shows lack of imagination, but confuses the issue, at least for a time.

But it's a different matter when circuit arrangements that have been common property for years are trotted out as a new system and elevated to the status of main support for an advertising campaign.

What we are talking about is the "invention" published by a Norwegian manufacturer (and even put forward for patenting) known as ACTILINEAR. It is perfectly understandable if even test engineers don't

Fig. 1
 Transconductance converter with filter coupling in valve technique. Recording amplifier of the REVOX F36 magnetic tape recorder. Circuit diagram drawn 26.2.62.
know every detail of the circuit by heart. After all, they' ve got other things to do besides concentrating on the subject of voltage-current conversion (transconductance converter) in the output stage of a recording amplifier.

Nor will a filter for decoupling the HF bias make them sit up too sharply, because they've been around for too long as well. A very long time, in fact. To be exact, at least since 1962 when valves were in use and since 1965 in transistorised circuits. We have no intention of making any assertions, for the fact is that the old REVOX F36 tape recorder (Fig. 1), the studio machines STUDER C37 (Fig. 2) and STUDER A62 (Fig. 3) used separate circuits for an equalising -reamplifier, a transconductance converter and a direct supply to the recording head via a filter circuit, with all the known advantages of such an arrangement.

These are well-proven techniques of long standing and are, for instance, still used in the latest REVOX B77 (Fig. 4). Interestingly enough, that machine too has an overload margin of approximately 20 dB and a filter system prevents the bias oscillator voltage from interfering with the wanted signal.

Of course, we have no objections whatsoever if other manufacturers use these circuit details, which we had 16 years ago and did not consider worth partenting, since in the meantime they have become common property.

On the contrary, we assume that we are not the only ones who are prepared for sharpened competition, which benefits us all - as long as it is fair competition.

Fig. 2
Transconductance converter with filter coupling in valve technique. Recording amplifier of STUDER C37 magnetic recorder. Circuit diagram drawn on 3.11.64.

Fig. 3
Transconductance converter with symmetrical output stage, driven active generator and filter coupling in transistorised technique. Recording amplifier of the STUDER A62 magnetic tape recorder. Circuit diagram drawn on 18.6.65.

Fig. 4
Transconductance converter with free active generator and filter coupling. Recording amplifier of magnetic tape recorder B77.

\section*{the tandberg gospel}

\section*{Deeper Into Tandberg Actilinear}

A SWISS MANUFACTURER of reel to reel tape recorders has released a "press information" claiming that the new Tandberg "Actilinear" Recording System, used in our tape recorders TD 20A and TCD 340A has been known to the industry for several years. This we believe is based on an imcomplete understanding of the circuitry. We are, therefore, issuing the following information which will help clarify the matter.

Figure 1 shows the schematic diagram of the Tandberg Actilinear Recording Amplifier chain which consists of three modules, an Equalizer, a Transconductance Converter and a Filter module. A more detailed explanation of the recording chain is given in a technical article "A New Recording System" by Senior Engineer Mr. Herman Lia, Dept. of Magnetic Research and

Development, Tandbergs Radiofabrikk A/S (printed in Audio Magazine, USA, July 1978), which also describes the ability of the Actilinear Recording System to be adjusted to fully exploit the potential of the new high coercivity tapes, such as the new metal particle tapes.

The claim is made that the principle of Transconductance has been well known for quite some time. This is, of course, a fact. Transconductance is the principle action of every transistor. Transconductance amplifiers have been a well known means of converting voltage to current for quite some years. Tandberg has employed such amplifiers before in their instrumentation recorder TIR 100/115 and in their professional portable audio tape recorder Arrivox-Tandberg.

There are, however, an almost infinite number of ways to design transconductance amplifiers, or voltage-to-current converters, of which very few satisfy all the requirements of an optimum tape recording amplifier.

It is the Tranberg application of the transconductance principle which is of interest in the Actilinear System, and which is one of the distinguishing characteristics of the system. In Actilinear, we have used transconductance in such a manner as to create a high output impedance which is symmetrical. This gives minimum even harmonic distortion, which is not only an audible improvement for the consumer, but is also clearly and measureably superior to other applications of the transconductance principle.

\section*{Third World.}

When it is so well known that 3rd harmonic distortion is inherent in all tape recording due to the tape characteristics themselves, it is of principal interest to eliminate other distortion components which will degrade the audible/measurable performance of a tape recorder. This is, of course, one advantage of Actilinear and clearly differentiates it from other known systems.

Figure 2 shows the wiring diagram for the Actilinear transconductance module, and Figure 3 shows a "similar" circuit in another well known reel to reel tape recorder. Common for both circuits is that Q2 is used as a constant current source and there is no feed back loop from the output so that the linearity of the recording signal is only determined by the linearity of Q1 and Q2.

However, the difference lies in the fact that the Actiliner System (Fig. 2) is made symmetrical regarding
output impedance, as the collector of Q 1 is connected to the collector of Q2. Thereby, the circuit produces minimum even harmonic distortion. In fig. 3 the point " \(R\) " is unsymmetrical because the output impedance varies as the output conductance \(h_{\text {oe }}\) of \(Q 1\) varies, and as \(h_{\text {oe }}\) will be different for the positive and negative amplitudes, even harmonic distortion will be produced.

Measurements of the TD 20A and the machine employing circuitry in Figure 3 show that the Tandberg TD 20A gives significantly higher output level in the very

Fig. 2. Actilinear

Fig. 3. Transconductance module by a different manufacturer.
critical segment of the frequency range between 1 kHz and 10 kHz at the same measured distortion level, and consequently gives a better performance.
We suggest that the public before jumping to conclusions about similarity between circuits, realize that we are talking about second and higher order effects in a circuit which is supposed to handle large amplitude audio signals and bias voltage applied to the output at the same time.

In disucssing such matters, we consider a comparison of small-signal equivalents of the various possible applications of transconductance to be a sub-optimal exercise, and of no value.

Our solution is, in so far as is known, unique in the tape recorder industry, can be adjusted to optimally exploit metal particle tape and gives audibly superior results with conventional tape formulations.

ETI

Fig. 1. Circuit diagram of Tandberg recoring'anp employing Actilinear circuitry.

AUDIO AND TEST EQUIPMENT CENTRE MICROCOMPUTERS LEYEL I ANB II TRS8O IN STOCK ALL PRICES
INCLUDE VAT Only regular stocks listed - other makes and models

\section*{LONDON'S TEEST GEAR CENTRE} OPEN 6 DAYS A WEEK 9 am- 6 pm

\section*{SCOPES - IN STOCK}

LED AND LCD DIGITAL MULTIMETERS

\section*{NEW \\ LCD Dmm 3 1/2} DIGIT Only

MULTI-METERS - GENERAL PURPOSE \& ELECTRONIC
 TM11 incredible 120 Range Electronic Multi-meter \(\begin{array}{lll}\text { TM3 Micre } \\ \text { TM }\end{array}\)

\(360 T R 100 \mathrm{k} /\) volt
PROE \(20 \mathrm{k} /\) volt
\(708150 \mathrm{k} /\) volt
TmkK500 \(301 /\) volt
\(680 \mathrm{R} 20 \mathrm{k} /\) volt
\({ }_{36} 26\) Range Large scate
36 Range Mult-meter
22 Range Mult-meter (plus Continurty Buzzer)
680R \(20 \mathrm{k} / \mathrm{volf}\)
\(720020 \mathrm{k} / \mathrm{volt}\)
52 Range Pocket Multi-meter
22 Range Double Multi-meter
\(720020 \mathrm{k} /\) volt
Microso
/
\({ }_{2} 22\) Range Double Multi-meter
16 Range Pocket Multi-meter
19 Range Pocker Multi-meter with carry case
13 Range Pocket Mult-meter
TT22 \(20 \mathrm{k} / \mathrm{volt}\)
\(\mathrm{T} 125 \mathrm{k} / \mathrm{v}^{2}\)
13 Range Pocket Mult.-meter
12 Range Pocket Mult.meter
EM2000 FET IC VOM 20 R
K200 FET VOM 38 Ranges
12 Range Pocket Mult.meter
K200 FET VOM 38 Ranges
GT101, \(20 \mathrm{~K} /\) /Volt 23 Range
GENERAL EQUIPMENT
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{GENERAL EQUIPMENT} \\
\hline TE7 Signal Tracer & 8.95 \\
\hline SWREO SWR/Power Meter & 19.50 \\
\hline LP30 30MHz Low Pass Filter & 4.95 \\
\hline CX3A 150watt 3-way AE Swith & 7.50 \\
\hline DC2skV 100 Meg HV Probe & 11.95 \\
\hline Dh\$ 1036 Value Resis Box & 3.95 \\
\hline EX2000 Xtal Marker & 11.95 \\
\hline TR1000 Transistor chacker in/out circuit & 11.95 \\
\hline MODs3 Signal Injector & 7.50 \\
\hline Ls 1 Transistor/Diode Checker & 19.95 \\
\hline 3101 Clamp Meter 0/1 K ohm 0/150 & \(1300 /\) \\
\hline 600 AC Volts 0/300 Amp & 32.95 \\
\hline C 3042 SWR \& FS Meter & 9.95 \\
\hline MS319 \(2 \times 100\) Watt Audio Watt Meter & 11.95 \\
\hline -500V Megohmeter 500 Megohms & 48.00 \\
\hline -1000V Megohmeter 1000 Megahms & 55.00 \\
\hline -2 \({ }^{1 / 2}\) Amp Variable Transtormer & 19.95 \\
\hline \({ }^{5} 5\) Amp Variable Transformer & 33.00 \\
\hline -10 Amp Variable Transformer & 46.00 \\
\hline Deceade Remis. Bores: & \\
\hline 1-11. 110 ohm in steps of 1 ohm & 33.00 \\
\hline 10.111 .110 ohm in steps of 10 otmm & 33.00 \\
\hline 11,111, 110 ohm in steps of 10 hm & 42.50 \\
\hline 10pi - 111.110pt in steps of 10pt & 33.00 \\
\hline \multicolumn{2}{|l|}{MICROPHONES, SPEAKERS AND COMPONENTS LARGE RANGE IN STOCK} \\
\hline
\end{tabular}

Contunuity Checker
replacement tests trads in stock
130.00
198.00
35.50
32.00
23.50
21.00
34.50
17.95
17.90
10.95
14.50
7.95
6.95
45.00
77.00
17.95

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{LOGIC PROBES AND MONITORS} \\
\hline IT 2000 Economy Probe TOM \(\mathrm{Hz}_{2}\) & 11.85 \\
\hline LM1 Monitor & 31.00 \\
\hline LP1 Probe 10 M \(\mathrm{Hz}^{2}\) & 33.48 \\
\hline LPZ 1.5 MHz & 19.44 \\
\hline 16 Pin IC test clip & 2.20 \\
\hline
\end{tabular}
PIEZOHORN

Up to 100 watts each. No \(x\)-over
read Only
10\% Discount for 10 Plus

TM11

301 EDGWARE RD., LONDON W2 1BN

ALSO AT 248 TOTTENHAM COURT ROAD, W. 1

01-724-3564. OPEN 9-6, MON-SAT.

TM3

\section*{FREE} catalogue

\section*{SEND STAMPED} ADORESSED ENVELOPE FOR YOUR COPY NOW
and don't you ever say we don't listen to you again! Ever since we first did a gentlemans watch, we have been dealing with a constant never ending stream of requests for a ladies model. Well at long last we can claim to have done something about it!

It wasn't easy arranging this sort of price on a product this good - but ETIs done it again! The watch is small enough to look good on the prettiest wrist, and accurate enough to satisfy the most fastidious. Normal display shows time of course, with both date and seconds available on a push of a button. A backlight is also included.

Battery life should be greatly in excess of a year, and the bracelet is a smart stainless steel.

\section*{ع9.95}

\section*{Inclusive of VAT and Postage}

An example of this watch can be seen and examined in our reception at our Oxford Street offices.
To:
Ladies LCD Watch Offer
ETI Magazine
25-27 Oxford Street
London WIR IRF
Please find enclosed my cheque/PO for £9.95 (made payable to ETI Magazine) for a ladies LCD watch

Name
Address

Please allow 14 days for delivery.

\title{
Digital Alarm
}

Size: 105 mm wide 115 mm deep \(\times 55 \mathrm{~mm}\) high.
THIS IS THE THIRD digital alarm clock that we are offering (we regret the earlier versions are no longer available). We have sold thousands and thousands of these and our buying power enables us to offer a first rate branded product at a really excellent price.

The Hanimex HC-1 100 is designed for mains operation only \((240 \mathrm{~V} / 50 \mathrm{~Hz})\) with a 12 hour display. AM / PM and Alarm Set indicators incorporated in the large display. A switch on the top controls a Dim / Bright display function.

Setting up both the time and alarm is simplicity itself as buttons are provided for both fast and slow setting and there's no problem about knocking these accidentally as a 'locking' switch is provided under the clock. A 9 -minute 'snooze' switch is located at the top.

\section*{£8-95}

Inclusive of VAT ànd Postage
An example of this clock can be seen and examined in our reception at our Oxford Street offices.

To:
Hanimex Alarm Offer
ETI Magazine
25-27 Oxford Street
London W1R 1RF
Please find enclosed my cheque PO for £8.95 payable to ETI Magazine) for a Hanimex Digital Alarm Clock.

Name
Adress

Please allow 28 days for delivery

\section*{PLACE}

New low price!

The enormous numbers involved in ETI offers has enabled us to arrange a real bargain - a full spec LCD watch with adjustable metal bracelet for under half the going rate.

This watch gives continuous display of hours and minutes press the button once and you'll get the date (American style). After a couple of seconds the display automatically reverts to time but if you press again you'll get a continuous seconds display.

Press another button and you get a back light enabling you to see the display in the dark. Setting, or resetting is simplicity itself and a 'hold' facility allows you to set the watch spot on. The accuracy is magnificent, as with all the current range of digital watches and battery life is well in excess of a year.

(Inclusive of VAT and Postage)
An example of this watch can be seen and examined in our reception at our Oxford Street offices.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 10p & 7 & 12p & & & & & & & CA 3140 & 60p & LM 3909 & \(65 p\) & tBA 4800 & p \\
\hline 740 & 10p & 7470 & 25p & 74138 & 100p & 74196 & 50p & 4056 & 120p & & 80p & MC 13 & 140p & tBA 52 & p \\
\hline 7402 & 10p & 7472 & 20p & 74141 & 50p & 74197 & 50p & 4060 & 100p & LF 357 & 80 p & MC 1312 P & 150p & tba 530 a & 200p \\
\hline & 10p & 7473 & 25p & 74142 & 180p & 74198 & 100p & 4066 & 35p & LM 211 H & 250p & MC 1314 P & 190p & tBa 540 & 200p \\
\hline 7404 & 12p & 7474 & 25p & 74143 & 270p & 74199 & 100 p & 4069 & 12 p & LM 300 T & 170p & MC 1315 P & 230p & tBA 550 & 250p \\
\hline 7405 & 12p & 7475 & 25p & 7414 & 270p & 74293 & 90p & 4070 & 12 p & LM 301 & 30p & MK 50398 & 650p & TBA 560 C & 250p \\
\hline 7406 & 25p & 7476 & 25p & 74145 & 55p & 74L500 & 18p & 4071 & 12 p & LM & 200p & MM 5314 & 380p & TBA 641 a & 250p \\
\hline 7407 & 25p & 7480 & 40p & 74147 & 100p & 7451 & 80p & 4072 & 12p & LM 307N & 65p & MM 531 & 480p & TBA 700 & 180p \\
\hline 7408 & 12p & 7481 & 85p & 74148 & 90p & & & 4081 & 12 p & M 30 & 100p & NE 529 & 150p & tba 7200 & 225p \\
\hline 7409 & 12p & 7482 & 75p & 74150 & 65p & 4000 & 12p & 4082 & 12p & LM 30 & 100p & NE 555 & 25p & TBA 750 & 200 p \\
\hline 7410 & 12p & 7483 & 75p & 74151 & 45p & 4001 & 12p & 4093 & 70p & M & 100 p & NE 556 & 90p & TBA 800 & 80p \\
\hline 7411 & 15p & 7484 & 70p & 74153 & 45p & 4002 & 12 p & 4510 & 60p & LM 310 TO & 150 p & NE 562 B & 400p & TBA 810 & 100p \\
\hline 7412 & \(15 p\) & 7485 & 60 p & 74154 & 70p & 4006 & 80 p & 4511 & 70p & LM 311 T
LM 317 K & 150 p
325 p & SAD 1024
SL 917 B & 1500p
650 & tba 820 － & 100 p
280 p \\
\hline 7413 & 25p & 7486 & 13 & 74155 & 45p & 4007 & 14p & 4516 & \(65 p\) & LM 317 K & 325p & SN 76003 N & 650p
150 & TCA 270 a & \[
\begin{aligned}
& 280 \mathrm{p} \\
& 220 \mathrm{p}
\end{aligned}
\] \\
\hline 741 & 25p & 7490 & 25p & 74157 & 45p & 40 & p & 520 & 65p & LM 339 & 60p & SN 76013 N & 110p & ＇tca 270 S & 220p \\
\hline 7417 & 25p & 7491 & 40p & 74160 & 55p & 4012 & 12 p & 4528 & 80 p & LM 348 & 90 p & SN 76013 ND & D 125p & TCA 760 & 300p \\
\hline 7420 & 12p & 7492 & 35p & 74161 & 55p & 4013 & 30p & 4583 & 70p & LM 380 & \({ }^{60 p}\) & SN 76023 N & 110p & TCA 4500 & 450p \\
\hline 742 & 20p & 93 & 30p & 74162 & 55p & 4015 & 50p & & NEAR & LM 381 & 90 p & SN 76023 ND & D 125p & TDA 1008 & \\
\hline 7422 & 15p & 94 & 70p & 74163 & 55p & 4016 & 30p & AY 3850 & 450 & LM 382 & 90 p & SN 76033 N & 150p & TDA 1034 & 450p \\
\hline 7423 & 20p & 95 & 45p & 74164 & 60p & 4017 & 50p & Ca 3039 & 9 70p & LM 391 & 180） & SN 7627 N & 160p & TDA 2002 & 300p \\
\hline 7425 & 20p & 7496 & 45p & 74165 & 60p & 4018 & 55p & CA 3046 & & LM 555 & \(25 p\) & SN 76228 N & 180 p & TDA 202 & 300p \\
\hline 742 & 22p & 7497 & 120p & 74166 & 75p & 4019 & 40p & CA 3060 & －225 & LM & 40 p & SN 76660 & 75p & TL 084 & 120p \\
\hline 7427 & 22p & 74100 & 80p & 74167 & 160p & 4020 & 50p & CA 306 & & LM 710 TO & 60 p & taa 300 & 100p & \(\times \mathrm{R} 320\) & 250p \\
\hline 7428 & 25p & 74104 & 40p & 74170 & 100p & 4022 & 50p & CA & & LM 710 DIL & \(65 p\) & TAA 350 & 190p & XR 2206 & 450p \\
\hline 7430 & 12p & 74105 & 40p & 74173 & 80p & 4023 & 12p & CA 3080 & & & 40p & TAA 550 & & XR 2207 & \\
\hline 7432 & 20p & 74107 & 25p & 74174 & 60p & 4024 & 40 p & CA 3084 & 250p & LM 723 & & TAA 570 & 220p & XR 2208
\(\times R 2216\) & 600p \\
\hline 33 & 28 p & 74108 & 100p & 74175 & 60p & 4025 & 12p & CA 3085 & & LM 733 & 120 p
\(\mathbf{2 0 p}\) & TAA 661 l & 140 p
350 p & \[
\begin{aligned}
& \text { XR } 2216 \\
& \text { XR } 2567
\end{aligned}
\] & 650 p
\(\mathbf{2 5 0 p}\) \\
\hline & 20p & 74166
74109 & 25p & 74176
74177 & 50p
50 & 4026 & 30p & CA & 60 p & LM 748 & & TAA 700 & 350 p
\(\mathbf{3 5 0}\) & XR 2567
\(\times R 4136\) & \\
\hline 速 & 12p & 74118 & 75p & 74178 & 75p & 4028 & 45p & & & LM 1303 & 100p & TAD 100 & 150p & XR 4202 & 150p \\
\hline 4 & 45p & 74120 & 80p & & 120p & 4029 & 50 p & CA 3090 & OA360 & LM 1458 & 100 p & tad 110 & 130p & XR 4212 & 50 p \\
\hline 442 & 40p & 74121 & 25p & 74180 & 90p & 4030 & 30p & CA 31 & 3 E 130 & LM 3080 & 75p & TBA 120 S & 60p & XR 4739 & 50p \\
\hline 7443 & 60p & 74122 & 35p & 74181 & 130p & 4032 & 80p & CA 3130 & \(\bigcirc 100\) & & & & & & \\
\hline 7444 & 60p & 74123 & 40 p & 74182 & 50p & 4033 & 100p & & & 8 Dio & & & & & \\
\hline 7445 & 65p & 74125 & 35p & 74184 & 120p & 4040 & 60 p & & & 2102 & ， 4 & na & 00 & & \\
\hline 446 & \(50{ }^{\circ}\) & 74126 & 35p & 74185 & 100p & 4043 & 60 p & & & \(256 \times\) & 50 n & sec， & & & \\
\hline 7447
7448 & 50p
\(\mathbf{5 0 p}\) & 74128
74130 & 60p & 74188 & 320p & 4046 & 90p & & ata Ultra & Trans & & & & & \\
\hline 7450 & 12 p & 74131 & 90 p & 74191 & 70p & 4048 & 50p & & & & & & & & \\
\hline 7451 & 12p & 74132 & 45p & 74192 & 60p & 4049 & 25p & & & & & & & & \\
\hline 7453 & 12p & 74135 & 90p & 193 & 60p & 4050 & 25p & & & & & & & & \\
\hline 7454 & 12 & 74136 & 80 & 74194 & 55 & 54 & 100p & & & Barc & Access cre & cards acce & & & \\
\hline
\end{tabular}

\section*{FLADAR TRANSFORMERS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Type & Voilage & Current & I & P／p & Type & Vohage & Current & § & \(p / \mathrm{P}\) \\
\hline 05 F 6 & \(6+6\) & 0.54 each & 1.50 & 50p & \(08 \mathrm{FE24}\) & \(24+24\) & 0.15 A each & 1.80 & 58 p \\
\hline －8FET6 & \(6+6\) & 0.64 васh & 1.80 & 50 p & 12FE24 & \(24+24\) & 0.24 each & 2.00 & \(60 p\) \\
\hline 12 FEDG & \(6+6\) & la each & 2.00 & 60 p & 20 FE 24 & \(24+24\) & 0.44 each & 2.60 & \({ }^{70 p}\) \\
\hline \(20 \mathrm{FEO6}\) & \(6+6\) & 1.68 each & 2.60 & \(70 p\) & 50 fE 24 & \(24+24\) & 0.8 A each & 3.10 & 70 p \\
\hline 50fE06 & \(6+6\) & 3 A each & 3.10 & 70 p & 60 FE24 & \(24+24\) & 1.24 each & 3.60 & 85p \\
\hline 60FE06 & & 4A each & 3.60 & \({ }^{85 p}\) & 80FE24 & \(24+24\)
\(28+28\) & 1．5A aach & \({ }_{3}^{4} 50\) & 1.00 \\
\hline \(06 \mathrm{FEO9}\) & \(9+9\) & 0.3 A anch & 1.50 & 50 p & 50FE28 & \(28+28\)
\(28+28\) & 0.75 A each & 3.10
3.60 & \({ }^{70 p}\) \\
\hline 08FE09 & \(9+9\) & 0.5 A each & 1.80 & 50 p & 60FE28
80 F 28 & \(28+28\)
\(28+28\) & 1.14 each
1.4 A each & 3.60
4.50 & \(85 p\)
1.00 \\
\hline \(12 \mathrm{FEO9}\) & \(9+9\) & 0.75 A each & 2.00 & 600 & 80FE28
20FE30 & \(28+28\)
\(30+30\) & 1．44 each & 4.50
2.60 & 1.00
708 \\
\hline \(20 f \mathrm{ED9}\) & \(9+9\) & 1 A each & 2.60 & 709 & 20FE30
505 F 30 & \(30+30\)
\(30+30\) & 0．35A вach & \[
\begin{aligned}
& 2.60 \\
& 3.10
\end{aligned}
\] & 70p \\
\hline 50fE09 & \(9+9\) & 2.54 Aach & 3.10 & 70 p & 50FE30
605 F 30 & \(30+30\)
\(30+30\) & 0.75 A each
1 A bach & \[
\begin{aligned}
& 3.10 \\
& 3.60
\end{aligned}
\] & \(70 p\)
850 \\
\hline 60FE09
OFFE12 & \(9+9\)
\(12+12\) & 34 each
0.258
0. & 3.60
1.50 & \(85 p\)
\(50 p\) & 60 FE 30
80 FE 30 & \(30+30\)
\(30+30\) & \[
\begin{aligned}
& 1 \mathrm{~h} \text { each } \\
& 1.2 \mathrm{~A} \text { erch }
\end{aligned}
\] & \[
\begin{aligned}
& 3.60 \\
& 4.50
\end{aligned}
\] & 1.00 \\
\hline 06FE12 & \(12+12\)
\(12+12\) & \(0.25 \AA\) bach 0.31 each & 1.50
1.80 & 50p & \multicolumn{5}{|l|}{\multirow[t]{3}{*}{Mulli－Tap Range．Voltage Availatie 3．4；5．6，8．9．10．12． \(15,18\). 12－0．12 C月 15．0－15 0－12－15}} \\
\hline 12FE12 & \(12+12\) & 0.5 A each & 2.00 & 60p & & & & & \\
\hline 20 FE12 & \(12+12\) & 0．8A each & 2.60 & \(70 p\) & & & & & \\
\hline 50FE12 & \(12+12\) & 24 bach & 3.10 & \({ }^{70 p}\) & 30FE30 & \(24+30\) & 14 & 3.40 & 700 \\
\hline 60FE12 & \(12+12\) & 258 anch & 3.60 & \({ }^{85 p}\) & 60FF30 & \(24+30\) & 24 & 3.70 & \({ }^{850}\) \\
\hline 80 FE 12 & \(12+12\) & 34 each & 4.50 & 1.00 & 80 FE 30 & \(24+30\) & 3 A & 4.50 & 1.00 \\
\hline O6FEE 15 & \(15+15\) & 0.24 sach & 1.50 & 50 p & 100FE30 & \(24+30\) & 44 & 5.60 & 1.15 \\
\hline \(08 F E 15\) & \(15+15\) & 0.258 each & 1.80 & 50p & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Cantre Iap Secondary}} & & & \\
\hline 12FE15 & 15＋15 & 0.48 each & 2.00 & \({ }^{60 p}\) & & & & & \\
\hline & 15＋15 & 0.60 aach & 2.60 & \({ }^{70 p}\) & \[
\begin{aligned}
& \text { FEOG } \\
& \text { FEO9 }
\end{aligned}
\] & \[
\begin{gathered}
6,6-6 \\
0.0 .0
\end{gathered}
\] & 1A each & \[
2.00
\] & 60p \\
\hline S0FE15
605 F 15 & \(15+15\) & 1.6 A ach & 3.10 & 70p & FE09 & \[
\begin{gathered}
9-0-9 \\
120.12
\end{gathered}
\] & 1A each & \[
2.60
\] & 700 \\
\hline 60 FEL 5 & \(15+15\) & \[
2 \mathrm{~A} \text { sach }
\] & 3.60 & \({ }^{85 p}\) & FE12 & 12．0．12 & 1A bach & 2.60 & 70 p \\
\hline 80 FE15 & & 3A aach & 4.50 & 1.00 & FE15 & 15015 & 14 each & 3.10 & \(70 p\) \\
\hline 06FE20 & \(20+20\) & 0.154 asch & 1.50 & 58 p & FE20 & 20－0．20 & 1 A each & 3.10 & 70 p \\
\hline 08FE20 & \(20+20\) & 0.24 each & 1.80 & 50p & 60FE5？ & 26－0－26 & 14 each & 3.60 & 1.00 \\
\hline 12FEZ & \(20+20\) & 0.254 each & 2.00 & 60 p & 60FE28 & 280.29 & 1 A each & 3.60 & 1.00 \\
\hline 20 FE20 & \(20+20\) & 0.51 Amach & 2.60 & 70p & 60FE30 & 30－0．30 & 14 each & 3.60 & 1.00 \\
\hline 50FE20 & \(20+20\) & 1.2 Aeach & 3.10 & 70 p & 100FE26 & \(26.0-26\) & 24 日ach & 5.15 & 1.15 \\
\hline 60FE20 & \(20+20\) & 1.5 Amach & 3.60 & 85p & 100 FE 30 & 30．0．30 & 24 each & 5.15 & 1.15 \\
\hline 80FE20 & \(20+20\) & 2 A each & 4.50 & 1.00 & 109fe 36 & 36－0．36 & 24 Bach & 5.15 ； & 1.15 \\
\hline \multicolumn{5}{|c|}{Charger Translormur} & \multicolumn{3}{|l|}{Air corad Autio Crass Over Coils} & & \\
\hline 48 FE12 66 FE12 70FE12 & \[
\begin{aligned}
& 0-6-12 \\
& 0-6-12 \\
& 0-6-12
\end{aligned}
\] & \[
\begin{aligned}
& 4 \mathrm{~A} \\
& 5 \mathrm{~A} \\
& 6 \mathrm{~A} \\
& \hline
\end{aligned}
\] & 3.17
3.86
4.86 & \[
\begin{array}{r}
70 p \\
850 \\
1.00 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \text { FEOI } \\
& \text { FE03 } \\
& \text { FE05 }
\end{aligned}
\] & \[
\begin{aligned}
& 0.1 \mathrm{mH} \\
& 0.3 \mathrm{HH} \\
& 0.5 \mathrm{HH}
\end{aligned}
\] & & \[
\begin{aligned}
& 0.26 \\
& 0.26 \\
& 0.30
\end{aligned}
\] & \(20 p\)
\(20 p\)
\(20 p\) \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{FLAOAR ELECTRIC P．O．BOX 19 WESTCLIFF－ON－SEA ESSEX，0702－613314}} & \multicolumn{4}{|c|}{TRADE ENOUIRIES WELCOME} & \multicolumn{3}{|l|}{PAYMENT TERMS C．W．O．，Cheques Postal Orders} \\
\hline & & & \multicolumn{3}{|l|}{PLEASE ENOUIRE FOR OTHER TYPES NOT SHOWN} & & \multicolumn{3}{|l|}{\begin{tabular}{l}
Postal Orders \\
Please add \(8 \%\) VAT \\
After post \＆packing
\end{tabular}} \\
\hline
\end{tabular}

\section*{STEREO DYNAMIC RANGE CONTROLLER CP－DR 1}

\section*{＇Noise－free＇Cassette Recordings（with an additional 30 db} dynamic range）；signal expansion（to recover lost dynamics） and compression（for listening in noisy environments）are all achievable with the Magnum CP－DR1．
If you wish to avoid point－to－point wiring，use the newly announced CP－MPC4 interconnection board and build your system within the hour．We can provide suitable pots，etc．，you may require．The CP－MPC4 also has provision for a CP－TM 1 if you wish to monitor signal levels．
CP－DR1－£41．40 incl．（U．K．）\(£ 43.40\) incl．（Export）
CP－MPC4－£6．86 incl．（U．K．）£8．86 incl．（Export）
Also available：Pre－amplifiers，Power Amplifiers，Filters，Peak Programme Monitors，Active Crossovers，Stereo Function Modules，Power Supplies，plus all pots．，switches，etc．
MRGEUTM RUDIL Ltd．
DEPT．ET 2， 13 HAZELBURY CRESCENT
LUTON，BEDS，LU1 1DF
TEL： 058228887
SEND LARGE S．A．E．FOR DETAILS

\section*{TWONKY}

\section*{May Hadley has designed an MPU music box that plays random tunes to the rules laid down by a compositional algorithm.}

EVER SINCE THE computer was invented, whenever that was, there have been people who have sought to apply it in previously untouched fields. Doubtless the same will happen with the microprocessor to a much greater extent because of its vastly lower cost and wider circle of users. Certainly the amateur constructor can do far more than simply make miniature computers. Twonky is one such application in the field of computer music.

\section*{Macro Music}

Music was first applied to computers in the late ' 50 s . Machines of that vintage were often fitted with loudspeakers monitoring a register or address bit, to aid in software and hardware fault tracing. Cunning programmers soon realised how to make such computers play tunes when no-one was around to stop them, and so computer music was born. It grew rapidly.

One of its earliest exponents was Professor Lejaren Hiller of Illinois University who together with his colleague Prof. Leonard M. Isaacson conducted a series of studies which are described in their book 'Experimental Music' (McGraw Hill 1959). They began by using the computer to test the classical compositional rules of species counterpoint, developed in the seventeenth century by J. J. Fux and taught to music students ever since. A program was written which would generate random notes, test them against the rules and insert them where a suitable match was found. Though this sounds simple enough, it took several years to do, as the 'rules' were by no means complete: many things were assumed as being obvious by the musical theorists which had to be explicitly stated for the computer.

\section*{Suite Illiac}

By this time, the original aim, which was to test the compositional

rules in question, had become secondary to the fun of using the computer to generate new music.

Other styles and principles, ranging from the sixteenth to the twentieth centuries, were applied in something of a mixture, and the result served up as the 'Illiac Suite for String Quartet' (named after the famous ILLIAC IV computer on which they were composed.) This proved rather disappointing, sounding almost a
parody of twentieth century chamber music.

Other workers, such as Professor J. K. Randall of Princeton University, developed slightly different lines of approach, including the one used by Twonky. Prof. Randall's work 'Prelude to Mudgett' may be heard on disc (Nonesuch 71245), and is a typical example of this style and approach.

While this effort was going into composition and stylistic analysis,

PROJECT: Twonky.
Full circuit diagram of Twonkey. If a less 'harsh' output from the loudspeaker is required a \(10 n-47 n\) capacitor can be connected between the base of \(\mathbf{Q 1}\) and ground.

\section*{HOW IT WORKS ~ HARDWARE}

The National Semiconductor \(\mathrm{SC} / \mathrm{MP}\) is a simple, cheap, 8 -bit processor designed for use in minimal systems; to this end it has an on-chip clock generator and I/O facilities, and needs no bus buffers in small systems, The instruction set is not large, but contains such useful features as a wide range of addressing modes and the capability of double-indexed memory references.

Internally, the chip has seven main registers; an 8 -bit accumulator, an 8 -bit status register, four 16-bit pointer or index registers (one of which is dedicated as the program counter), an 8 -bit exterision register. All memory references (including jumps) are via
an index register; the second byte of each memory reference instruction is a displacement which is added to the index register and

NWDS, and NRDS high, to prevent spurious memory enables while the MPU outputs are in the high impedance mode between memory accesses.
Components R5, R8, C2, and C3 set the processor clock frequency at about 4 MHz . R5 can be made variable to act as a tuning control, but must be between 100 ohms and 2 kilohms. The MPU is reset on power-up by R3 and Cl , and the first instruction is fetched rom location OOIH
IC6 and IC7 form a PRBS generator. An 18 -stage shift register, clocked by the NADS trobe from the MPU has exclusive OR feed back arranged around it such that produce \({ }^{18}\) sequin 14 bits overall sequence, the bit stream is random
other people were engaged in turning the computer into a new musical instrument, a super synthesiser' (although this work was begun before Dr Moog invented the voltage controlled analogue synthesiser). Several programs have been developed; TEMPO by Glough and Sosman on an IBM 360/44 MUSIGOL at the University of Virginia, and the most widely used, MUSIC 4 (and its derivatives MUSIC's 4B, 4BF, and 5) at Bell labs and Princeton.

This is a program, mainly in
FORTRAN IV but with some assembly language sections, which
play tunes monophonically using squarewaves. The compositional algorithm (due to Prof. Randall) is based on two simply observations:-
1. Every tune has at least one highest note
2. Every tune can be split into two subtunes at least one not long, which may then themselves be regarded as tunes.

To compose a tune using these rules, we assume also that each tune only has one highest note, and that each subtune is half the length of the tune. We take a given note as the highest note in the whole tune and
may be in the range -127 to 127. If th displacement has the value -128 the con displacene to be added (doubly indexed memory reference) There is, however no explicit subroutine call instruction.
The status register contains
fow and interrupt earry, over input bits, and three user definable flags These last five are taken to package pins to provide limited 1/O capability. Twonky use the sense-B input to read random bits from the pseudo-random binary sequence genera or (PRBS generator) and the flags to drive the audio amplifier. Out of the total of 4 instructions, only 17 are used and these ar shown in fig. 1 along with the status register bit allocation.
The program itself is 256 bytes long and lives in a 1702A EPROM at addresses OOOH o OFFH. 256 bytes of RAM in the shape of 2 112-A4 \(256 \times 4\) bit static chips are provided at addresses \(100 H\) to 1 FFH. Address line AO to A7 are common to \(1 \mathrm{C}_{2}, \mathrm{~A}\), and 4, whe At the correct range of addresses. Note that C2 will be enabled by any memory access read or write in the correct address range. I a faulty program goes berserk and tries to write to ROM, two devices will be enabled onto the data bus at the same time. This might be fatal, were it not for R9-R16 which prevent a short circuit. Additionally, in conjunction with D1-D8, they prevent negative oltages from the PMOS ROM appearing a the inputs of the other, NMOS, devices on the bus.
The RAM is enabled by the signal from pin 11 of \(1 C 5\), which will be low (RAM enabled) when A8 is high and either NWDS (not writ data strobe) or NRDS (not read data strobe) s low. The resistors R7, 8, and 18 tie A8
i.e. the probability of the next bit at any point in the sequence being a one is constant at 0.5 This random sequence is fed to sense-B on provide the rand uned by the sortwane
prove the random element in each tune.
Also, since the sense -B input is not sampled by the MPU internal logic during the NADS strobe time, the random bit will ways be read unambiguously.
The power to IC6 and IC7 is not switched they are CMOS devices which when not being clocked draw only about a microamp. be in the all zero state on switch on the generator will stick and produce a confinuous stream of zeros. Logic could be incorporated to force ones into the register on switch-on, but unless it was very devious would result in the dame sequence of pseudo-random bits (and hence tunes) occuring every time
The audio output is taken from the MPU flag O output and amplified by Q1 to drive the speaker. A line level output may also be taken from flag 1 or 2 if desired.

There are two types of SC/MP processor available; this circuit uses the NMOS variety which is cheaper, faster, uses less power and needs only +5 V and ground. The older PMOS type can be used, but not all the control signals are the same, and so the circuitry around IC5 will need to be altered. The pitch will also be about an octave lower. Owners of SC/MP development systems, such as the introkit, MK14, or Scrumpi will be able to hook up a PRBS generator and loudspeaker to their systems with little trouble, and to relocate the code as appropriate. For further details on the SC/MP chip the data sheet, Nat. Semi pub. No. \(426305290-\) \(001 \mathrm{~B}(!)\) may be consulted

Hex dump of the PROM program for he Twonky composer
generates musical sounds as a series of digital samples which are fed to a D / A converter, usually via the intermediate medium of magtape Sounds are described in terms of instruments, which are routine that use stored tables of sinewaves exponentials, ramps and other waveforms to generate complex sound sources. These are coupled via filter, reverberations, stereo position and other modules into an
'orchestra,' which outputs the final sound onto tape. The music to be played is input in the form of note cards. These punched cards carry such details as pitch, rate of rise and fall of the envelopes, start time, and other, user-defined parameters

\section*{One Hundred 'seconds}

In the early days, it took as much as 50 to 100 seconds of compute time to generate a second of music but with modern machines, synthesis can take place in real time or faster The program is not, however, suitable for live performance use The result of such programs can be most impressive, particularly in the hands of a skilled 'player.' Certainly. they are far more flexible and versatile than analogue synthesisers. They have the particular merit that if, for example, 96 oscillators are needed, the function OSCIL is merely called 96 times. This uses more processor time, but does not need any additional hardware.

MUSIC 4B, together with analogue sound synthesisers, is described in Hubert S. Howe's book Electronic Music Synthesis.' The field of digital sound synthesis is certainly an exciting one, but is somewhat beyond the reach of the amateur, although with powerful 16 bit machines such as the LSI 11 and TMS9900 becoming cheaper, it may not remain so for long.

\section*{A Little Micro Music}

Twonky is a composing machine which also incorporates sqftware to
assign it randomly to one or other of the subtunes. The highest note in the other subtune must be lower than that in the first: we assume it is the next note down whatever scale we are using. However, each subtune may now itself be regarded as a new tune, provided it is at least two notes long. Hence in each first-level subtune, we take the highest note and assign it randomly to one or other of the second-level subtunes, adding the next lowest note in our scale as the highest note in the other By repeating the process, we double the number of known notes in our tune (each of which is the highest note of some subtune) and increase the number of pitches by one for each level of splitting we indulge in. This process can hence be described as a random tree.

\section*{Seventh Level}

In Twonky, seven levels of division are used to generate 128 subtunes each one note long, with a total range of 8 pitches (one octave of the scale of C major). The random decision at each level is produced by a hardware random number generator.

The rhythmic element in each tune is produced by selecting one of a small number of rhythm units or bars on a random basis and fitting the notes of the tune to that bar. The melodic algorithm weights the distribution of notes binorally, thus there are 2 Fs (one of each octave), 7 G s 21 As, 35 B s, 35 C s, 21 D s, and 7 Es . The tonic or key-note C occurs most frequently, lending a definite key to the melody. However it is usual for the dominant G also to occur frequently, which it does not do. This gives all Twonky's compositions a unique and unusual style, somewhat like Mediaeval music (nothing to do with the use of SC/MPMPU) this is enhanced by the ready tone of the square wave output.

\begin{tabular}{ll}
83 & 06 \\
84 & D 4 \\
86 & 9 C \\
88 & C 4 \\
8 A & 31 \\
8 B & 3 D \\
8 C & 90 \\
8 E & C 4 \\
90 & 31 \\
91 & 3 D \\
92 & C 4 \\
94 & 31 \\
95 & 3 D \\
96 & 90 \\
98 & C 4 \\
9 A & 90 \\
9 C & C 4 \\
9 E & 90 \\
& \\
AO & C 4 \\
A 2 & 35 \\
A 3 & C 7 \\
A 5 & 01 \\
A 6 & C 2 \\
A 8 & CB \\
AA & 01 \\
AB & F 4 \\
AD & 02 \\
AE & 01 \\
AF & C 2 \\
B 1 & 01 \\
B 2 & C \\
BA & 35 \\
B 5 & 19 \\
B 6 & F 4 \\
B 8 & 02 \\
B 9 & 9 C \\
BB & 01 \\
BC & CB \\
BE & 33 \\
BF & 98 \\
C 1 & 33 \\
C 2 & C \\
C 4 & 3 D \\
C 5 & 33 \\
C 6 & C \\
C 8 & 31 \\
C 9 & C \\
CB & 07 \\
CC & C \\
CE & 8 F \\
D 0 & C \\
D 2 & F \\
D 4 & 02 \\
D 5 & 9 C \\
D 7 & C \\
D 9 & 0 \\
DA & C \\
DC & F \\
DE & 02 \\
DF & 9 \\
E 1 & 3 \\
E 2 & F \\
E 4 & 02 \\
& \\
\hline
\end{tabular}

will be stored here)
Set PTR 3=511 = 1 FFH , top of RAM)
Start of note length writing loop
input random bit and either:
rite long note by subroutine at 97 H on return, jump back to NXNOTE
or input random bit and either
Write middle sized note by subroutine at 9BH, on return go to SECPART
or write 2 short notes by 2 calls to subroutine at 9 FH

\begin{tabular}{ll}
& \\
JNZ & POS \\
DLY & 58 \\
LD@ & PTR \(3+2\) \\
XPAL & PTR 3 \\
JNZ & PLAY \\
XPAH & PTR1 \\
XPPC & PTR1 \\
DEFB & 50 \\
DEFB & 53 \\
DEFB & 60 \\
DEFB & 68 \\
DEFB & 72 \\
DEFB & 81 \\
DEFB & 91 \\
DEFB & 103 \\
& \\
DEFB & 254 \\
DEFB & 240 \\
DEFB & 214 \\
DEFB & 189 \\
DEFB & 179 \\
DEFB & 160 \\
DEFB & 143 \\
DEFB & 127
\end{tabular}

Inter note gap
Move note counter to next note If PTR \(3 / 200 \mathrm{H}\) go to play next note)

Else go back to start for another tune!
\begin{tabular}{lll}
F & 350.875 HZ & Pitches at 4 MHZ \\
E & 33.005 HZ & \\
D & 294.985 HZ & \\
C & 261.645 s HZ & \\
B & 247.645 HZ & \\
A & 221.045 HZ & \\
G & 19.47 HZ & \\
F & 175.07 HZ &
\end{tabular}

\author{
0.362 SECS
}
0.361 SECS
0.363 SECS
0.361 SECS
0.361 SECS
0.362 SECS
0.363 SECS

\section*{HOW IT WORKS ~SOFTWARE}

The programme itself falls naturally into four parts, which are shown in the four lowcharts. Of these, three (START, NOTE PLAY) plays it. Before describing the operation of each in more detail, a couple of notes are relevant.
- enclosing an expression in brackets turns it from a number into an address. Thus 510 is a number, but (510) means 'the contents of location 510'
- all variables used in the flowcharts are actual machine registers except for the these \(B\) is introduced only to improve readibility while \(A\) is an argument passed to this subroutine from the main program. It is implemented in object code by calls to 3 different addresses for its 3 possible values.

\section*{START}

This is the program section which implements the random decision tree to select the pitches used in the tune. In this section the notes are numbered from 1 to 8 (highest to lowest). The code for each note consists of two bytes, one for pitch and one for duration, which occupy consecutive locations. Pitches are always in even-numbered locations.
On reset, a 1 is written to the last note pitch location (510), and the loop counter PTR 2 is which each note in the top half of RAM,
starting at the bottom and going up, is tarting at the bottom and going up, is starting at the bottom. of RAM and going up The writing address catches up with the read address at location 510, which is written to 508 and back into 510. At each step one or other of the two locations is incremented depending on the state of the random number generator.
Thus after one complete pass through this loop, our tune, which started out as one note - a one - in location 510, is now twice as long and has two notes, a one and a two, randomly arranged in locations 508 and 510 So far good. We now repeat this loop otal of seven times, each time doubling the ull (128 notes). We will then have 8 different note numbers or pitches. In fact, what we have done is identical to the decision tree method in the text (try it yourself with pencil and paper).
This section occupies addresses 00 H to 60 H . PTR 2 is the loop counter which goes from one to seven. On reaching seven, the program branches to NOTE. Within the section, PTR 1 points to the location being ead, and EXT contains the displacem from this address to that of the location be written into.
SC/MP fanatics may notice that a separate read-increment-write instruction sequence is used (at 2 CH to 33 H and at 3 BH to 41 H) instead of the incremert and load single
tion does not allow doubly-indexed addres sing to be used. This is not made very clear in the databook, and had to be found out the hard way!

\section*{NOTE}

NOTE is the program section concerned with writing the rhythm of the tune. It has three different note lengths to play with, of relative values 4,2 , and 1 . Each bar or rhythm unit can be one of \(4,2+2,2+1+1+1,1+\) \(11+2\), or \(1+1+1+1\), determined by random decisions. The flowchart for this section is more or less self explanatory. The notes of different lenghts are written by calls to the subroutine WRNOTE. This has three different entry points \((98 \mathrm{H}, 9 \mathrm{CG}, \mathrm{AOH})\) medium or short) There is no note (long leaving the loop in this section as this is dor in WRNOTE

\section*{WR NOTE}

On being called, this section reads the value of pitch code from RAM (starting at location 510 and going downwards) and uses it as an index to the table of pitches at locations FOH to F 7 H . The pitch obtained from this table is then stored in the same RAM location from which was read its code. Thus 3 will be replaced by \(3 \mathrm{CH}, 8\) by 67 H etc. These pitches represent the length of a half cycle at the desired frequency in multiples of the time taken to go round the delay loops in LAY

By adding 8 to the pitch code the table of durations (F 8 H to FFH) is accessed in the same way. The duration is then divided by 2 , 4 or 8 to give the required note length in terms of a number of cycles at its particular frequency. This number is then stored in the RAM location immediately above its corresponding pitch. WRNOTE then tests for the ast note in the tune (PTR \(3=255\)); if the last note has not been reached, control is returned tio NOTE, otherwise control passes to PLAY.

\section*{PLAY}

This section is quite simple, consisting of two delay loops for pitch, and counters for duration and number of notes played. For to PTR lator and the output taken high. The output remains high while the accumulator is decremented and tested for equality to zero. This gives a delay dependant on the initial pitch value. When zero is reached, the output is taken low and the pitch again loaded and decremented to zero. At the end of the second half cycle PTR 1, the duration counter, is decremented and tested for quality to zero. If not zero, another cycle of the same note is produced, otherwise the next note is played, after the end of tune test (PTR \(3=512\)). When the end of the tune is reached, control returns to START to write
and play a new tune.

Construction is quite straightforward. Sockets should be used for all IC's and normal MOS handling precautions taken. Begin by installing all through board links and testing them for continuity. Then add the resistors, capacitors, and discrete semiconductors. IC 5 may be fitted and the memory decoding checked IC 6 \& 7 should be added next, and the production of random bits at IC 7 pin 6 as pin 3 is clocked by shorting it to ground verified. Finally, add the LSI chips and switch on. Music should greet your ears within about 0.25 secs. Gaps of about this length occur every 128 notes as a new tune is written. The circuit meets all timing requirements with the 1702A only up to 3.5 MHz . Most 1702As will work happily at 4 MHz , but the odd one may not. Reducing the clock frequency should effect a cure

The PCB is single Eurocard size (\(100 \times 160 \mathrm{~mm}\)) and will fit in one of the larger size veroboxes, which are designed for this standard Batteries, either \(4 \times 1.5 \mathrm{~V}+1 \times 9 \mathrm{~V}\) dry cells or the equivalent nicads, will then fit under the circuit board, or the PCB may be left uncased. The only major problem which may arise is getting the EPROM programmed. Several firms offering such a service advertise on the pages of ETI and one of these should be able to help

\section*{BUYLINES}

Marshalls, see their advert in this issue for addresses, will be supplying an EPROM with the Twonky program burned in. They will also be able to supply all the other parts for this project except the PCB which will be available from Tamtronix, Ramar, Crofton etc

Photograph showing Twonky mounted in the larger sized Vero flip top case. The speaker and batteries are mounted under the PCB. The case is not very deep and a 'shallow' speaker must be used if Twonky is to be built in this case.
\begin{tabular}{|c|c|}
\hline RESISTORS & all \(1 / 2\) W, \(5 \%\) \\
\hline R1. 9 & 4k7 \\
\hline R2 & 100k \\
\hline R3 & 12k \\
\hline R4, 5, 10-17 & 240R \\
\hline R6, 7 & 10k \\
\hline R8 & 2k7 \\
\hline \multicolumn{2}{|l|}{CAPACITORS} \\
\hline C1 & 4 u 716 V electrolytic \\
\hline C2,3 & 180 p 16 V ceramic \\
\hline \multicolumn{2}{|l|}{SEMICONDUCTORS} \\
\hline IC1 & 4030 \\
\hline IC2 & 4006 \\
\hline IC3 & SC/MP \\
\hline IC4 & 4011 \\
\hline IC5, 6 & 2112 \\
\hline IC7 & 1702 \\
\hline Q1 & BC184L \\
\hline D1-8 & 0490 \\
\hline \multicolumn{2}{|l|}{MISCELLANEOUS} \\
\hline PCB, loudspe clips. & ker, case batteries and \\
\hline
\end{tabular}

Component overlay for the ETI Twonky The wire link that is visible on the photo or the prototype's PCB has been replaced with a foil track

PRICES

KB756 mounted on PCB

\section*{ONLY \(£ 49.50\)}
(mail order total \(£ 55.08\))
KB756MF including metal mounting frame for extra rigidity,

SPECIAL PURCHASE OF SHINSHU SEIKI 21-COLUMN ALPHANUMERIC PRINTER MECHANISMS MODEL AN101F

We also specialise in: DEC minis - PDP8 and PDP11 processors, add on memory. peripherals and spares. Hard copy terminals - ASR 33 and KSR 33 Teletypes, Data Dynamics 390, Texas Silent 700. Send for complete lists.

Réconditioned
* Teletype Compatible
* 12" Diagonal Screen
* TTY Format Keyboard * 12 lines of 80 characters * 64 ASCII Character Set
* \(5 \times 7\) Dot Matrix
* Switch-selectable Transinission Speeds up to 9600 baud
* Switch-selectable Parity
* Standard CCITT V. 24 interface

Also available:-

HAZELTINE VISUAL DISPLAY UNIT

\section*{MODEL H-1000 PRICE \(£ 350 \begin{gathered}\text { and } \\ \text { and IVase }\end{gathered}\)}

Model H.2000: Buffered/Editing model with direct cursor addressing, dual intensity video, and detachable keyboard with separate numeric and edit clusters. 27 lines of 74 characters: Price \(£ 495.00\) + carriage + VAT.

A copy of trading conditions supplied on request

\section*{SINTEL SOME 74LSPTL NOW AVAILABLE PLEASE SEND FOR LIST}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{\begin{tabular}{l}
NEW PRICES AND SOME NEW CMOS ADODITIONS \\
If you need your CMOS by netum - buy it from SINTEL
\end{tabular}} \\
\hline CD4000 & 0.15 & CO4027 & 0.44 & C04051 & 0.82 & CO4086 & 0.64 & CO40182 & 1.40 \\
\hline C04001 & 0.17 & CD4028 & 0.77 & C04052 & 0.82 & CD4089 & 1.39 & CD40192 & 1.40 \\
\hline C04002 & 0.17 & CD4029 & 1.03 & C04053 & 0.82 & CO4093 & 0.80 & C040193 & 1.40 \\
\hline C04006 & 1.04 & CD4030 & 0.50 & CO4054 & 1.04 & C04094 & 1.69 & CD40194 & 1.19 \\
\hline C04007 & 0.18
0.87 & CD4031 & 2.00 & C04055 & 1.18 & C04095 & 0.94 & C040257 & 1.48 \\
\hline CD4008 & 0.87 & CO4032 & 0.89 & CD4056 & 1.18 & CD4096 & 0.94 & CD4502 & 0.81 \\
\hline CD4009 & 0.50 & C04033 & 1.25 & C04059 & 4.29 & C04097 & 3.35 & CD4510 & 1.81 \\
\hline CD4010 & 0.50 & C04034 & 1.71 & CD4060 & 1.00 & CD4098 & 0.98 & CD4511 & 1.25 \\
\hline CO4011 & 0.18 & CO4035 & 1.08 & CD4063 & 0.98 & CD4099 & 1.85 & CD4514 & 2.47 \\
\hline CD4012 & 0.20 & C04036 & 2.86 & C04066 & 0.55 & CD40100 & 2.50 & CD4515 & 2.87
2.82 \\
\hline CO4013 & 0.43 & CD4037 & 0.85 & C04067 & 3.35 & C040101 & 1.61 & C04516 & 1.01 \\
\hline CO4014 & 0.83 & CO4038 & 0.96 & C04068 & 0.20 & CD4D102 & 2.13 & CO4518 & 0.97 \\
\hline CO4015 & 0.83 & CO4039 & 2.78 & C04D69 & 0.20 & CO40103 & 2.13 & CO4520 & 1.04 \\
\hline C04016 & 0.48 & CO4040 & 0.97 & CD4070 & 0.48 & CO4D104 & 1.10 & C04527 & 1.43 \\
\hline CD4017 & 0.79 & CO404 1 & 0.75 & CD4071 & 0.20 & CD40105 & 1.06 & C04532 & 1.21 \\
\hline C04018 & 0.83 & CD4042 & 0.69 & CD4072 & 0.20 & CD40106 & 0.62 & CO4555 & 0.78 \\
\hline CD4019 & 0.50 & CD4043 & 0.88 & CD4073 & 0.20 & C040107 & 0.69 & CO4556 & \\
\hline C04020 & 1.11 & CD4044 & 0.84 & CD4075 & 0.20 & CD40108 & 5.36 & MC14528 & \({ }^{0.78} 0\). \\
\hline C04021 & 0.80 & CD4045 & 1.26 & C04076 & 1.17 & CD40109 & 1.03 & MC14528 & 0.93
4.43 \\
\hline C04022 & 0.82 & CO4046 & 1.20 & C04077 & 0.39 & CD40160 & 1.19 & IM6508 & 8.05 \\
\hline C04023 & 0.18 & CL4047 & 0.85 & CD4078 & 0.20 & CD4016 & 1.19 & 1M6508 & 6.05 \\
\hline CD4024 & 0.70 & CD4048 & 0.50 & CD408 1 & 0.20 & C040162 & 1.19 & & \\
\hline C04025 & 0.20 & CO4049 & 0.50 & CD4082 & 0.20 & CD40163 & 1.19 & & \\
\hline C04026 & 1.55 & CO4050 & 0.43 & - CD4085 & 0.64 & C04018 & 3.40 & & \\
\hline
\end{tabular}

Our offices are at Char our full range of components send Ior Free Cotelogue
PRİCES VALIDUNTIL 3 दat MARCH 1979 as a pošal address
OFFICIAL ORDERS ARE WELCOME from Companies. Govt Depts Natn inds
 p\& minumum charge (the balance will be charged at cosi) Please see FAST SERVICE EXPORT OROERS wetcome.
no VAT but add \(10 \%\) (Europe) \(15 \%\) (Overseas) for AII Mail pip For Export pura us tirst

Tel: 086549791
FAST \$ERVICE: We gumantee that Telephone Orders for
goods in stock, received by 4.15 p.m. (Mon.-Fri.) will be iteme by parcel post) and ouf stocking is good. Private customere ahould toiephone ond pay by giving theovin Acceste or Barcleycard numbar, with a minimum order value of \(£ 5\).
Officiel orders, no minimum.

\section*{XMAS AND NEW YEAR BONUS \\ 10 \% DISCOUNT ON ALL PURCHASES UNTIL JANUARY 14th, 1979}

\section*{TEKTRONIX OSCILLOSCOPES}

Main frames 545 with CA \(£ 225 ; 536,585\) with type \(82 £ 395\); 581A: 661 with 5T1A \& 4 S3 E325; 555; 561A with Plug-in 10 MHZ £425; 551: 502 High gain. Special \(£ 160\). and plug-ins. Hence prices are guides only
The fact we don't advertise modern oscilloscopes, etc. doesn' mean we don't handle them, only that at our prices they are not normally around tong enough to advertise. For example: H.P. OSCILLOSCOPE type 183 A with 1830A and 1840A 3db \(250 \mathrm{MHZ} £ 950\).
TEKTRONIX Sig. Gen. Type 190A 350KHZ to 50 MHZ and Fixed 50 KHZ freq. £45 ea
TEKTRONIX TIME MARK GEN type 180A £60 ea
SOLARTRON PULSE GEN GO 1101 £30 ea.
R\& SWEFP GEN 50 KHZ - 12 MHZ SWH BN
R\& S SWEEP GEN 5OKHZ-12MHZ SWH BN \(4242 / 2\) £100 R\&S ENOGRAPH-G ZSG BN 18531 E 120 R\&S AM/FM GEN SMAF BN4 \(14044 \mathrm{MHZ}-300 \mathrm{MHZ}\) £300 R\&S AM /FM GEN SUAF BN4 1023/2 170-940MHZ E300. R\&S POWER SIG GEN SMLR BN41001 O. 1MHZ-30MHZ \&80.
R\&S Z-G DIAGRAPH 30-300/420MHZ type ZDU BN35610
R\&SAM GEN \(30-300 \mathrm{MHZ}\) SMLM BN4 105 £90 ea
R\&S ATTENUATOR DPU BN \(18044 / 50 \cdot 0.3000 \mathrm{MHZ} \mathrm{O}\) 109 db 50 ohm €150.
MARCONI FM GEN TF1077/1 £120.
PHILLIPS AM/FM GEN type 201 £160
E 525 .
R\&S AM GENERATORS \(300-1000 \mathrm{MHZ}\) £ 120 ea
AIRMEC AM/FM GENERATOR TYPE 365 £ 140.
HP SAMPLING Oscilloscope type \(185 \mathrm{~B} \quad 1000 \mathrm{MHZ}\) complete with Plug-in, probes, etc. \(£ 195\) ea
SOLARTRON Oscillator C \(054625 \mathrm{HZ}-500 \mathrm{KHZ}\). Sine wave only. Metered. Good attenuator \(£ 25\) ea.
SOLARTRON PRECISION VOITMETE
SOLARTRON PRECISION VOLTMETER VF252. Large clear scale. 1.5 mV full scale to 150 V tull scale \(£ 25\) ea
H.P. Oscilloscope type 5 . 510 with sampling plug-in 1425A and 1410 A DC- 1000 MHZ £ 550 . H.P. Oscilloscope Type 140A with Sampling plug
1411A and 1432A Sampling head DC-4GHZ E750 SOLARTRON DVM type LM 1440 £ 75 ea. Other Solartron models available. Call and see

\section*{100 OSCILLOSCOPES}

TELEQUIPMENT D33s UP TO TEKTRONIX 545 s ETC. PRICES AS LOW AS £15
THIS OPPORTUNITY. PHONE NOW.
H.P. Digital Recorders 11 digit £35 ea.
AIRMEC AM/FM MOOULATION METER type \(210 £ 80\). AIRMEC AM/FM MOOULATION ME
E.H PULSE GEN model 122 E140.
E.H. PULSE GEN modet 122 E140. TM \(8045 £ 450\)
R\&S POIYSCOP SWOB1 Scruffy, working £250 ea; Nice
condition \(£ 350\) ea.
condition £350 ea.
R\&S POLYSCOP SWOB2 Fair condition, working \(£ 425\) ea; Very ciean \(£ 550\) ea
EX-MINISTRY American USM 16 AM/FM SWEEP SIG GEN \(10 \mathrm{MHZ}-420 \mathrm{MHZ}\) incremental controls. Auto lock Crystal calibrator and many other feat
accessories and manual \(£ 195\) ea.
accessories and manual \(£ 195\) ea.
COSSOR OSCILLOSCOPE iype CDU 150 DB DC. 35 MHZ
COSSOR OSCILLOSCOPE type CDU150 DB DC. 35 MHZ
E425 ea.
C425 ea.
R\&SZ.G D
f60
C60 ea
MARCONI SIG GEN TF801D/8/S. Very good condition
£325.
MARCONI RF POWER METER TF1152A/1 \(50 \mathrm{ohm} £ 55\) ea.
PLUG-INS for Telonic Sweeper SM2000. Various from \(\mathbf{£ 5 0}\) ea TELONIC SWEEPER SO3M \(425.930 \mathrm{MHZ} \mathbf{\mathrm { C }} 80 \mathrm{ea}\).
MARCONI TF 868 Universal Bridge \(£ 70\) ea.
AIRMEC SIG GEN type 204 个-320MHZ £ 225 .
MARCONI SIG GEN TF801B £160 ea.
POLARAD MICROWAVE RECEIVER MODEL TR \(1 G H Z\) to 2 O4GHZ £200 ea.
BRUEL \& KJOER Automatic Vibration Exciter type 1016 Sine
Wave sweep from 5 HZ to 10 KHz E 75 ea.
GENERAL RADIO Osc Unit \(1209 \mathrm{~B} 250-920 \mathrm{MHZ} £ 50\). GENERAL RADIO Osc Unit \(12098250-920 \mathrm{MHZ} £ 50\) -
POLARAD SPECTRUM SIGNATURE MONITOR 140 HZ POLARAD SPECTRUM SIGNATURE MO
+12.5 MHZ Sensitivity 120 dbm . Price \(\mathbf{£ 2 5 0}\). \(+12.5 M H Z\)
POLARAD SIGNAL GENERATOR GB2/G-711
2 250. GENERAL INSTRUMENTS TRANSFER FUNCTION \& IMMIT ANCE BRIDGE type 1607 A in transit case \(£ 425\). AVO MULTI METER CT471 \(£ 45\) ea.
H.P. PULSE GEN 212A £55 ea.
H.P. Microwave Freq. Converter type 2590B £175.

MARCONI CT44 Watt Meter 0-6 Watts \(£ 25\) ea
AVO TRANSISTOR \& DIODE TESTER CT \(537 £ 50\) ea
AUTO TRANSFORMER 240 V input. 110 V output 1.25 KV

\section*{TELETYPE ASR33 with 2OMA LOOP. Good condition. \\ Special low price \(£ 395\) ea KSR33s from \(£ 275\).}

DON'T FORGET YOUR MANUALS
S.A.E. WITH REQUIREMENTS

\section*{STEPPING MOTORS}

All motors 200 steps per revolution. 20oz. inch torque, 120 V 1000-0-1000 ohm.

\section*{JUST IN}

UHF TUNER. Solid State 38 MHZ £1.75 ea P\&P 75p PHOTOMULTIPLIER 931 A assembly with resistive network Original use as smoke detector, £4 P\&P \&1
14 pin DIL EXTENDERS - get \(21 / 2^{\prime \prime}\) up off that board - make life easy -50 p ea.
CRYSTAL 368.640KHZ. Printed circuit mount 50p ea CAPACITORS 8mfd 4 KV Rapid discharge \(£ 5\) ea P\&P \(£ 150\). AIRFLOW 230 V 50 HZ Single Phase EXTRACTOR FAN \(\mathbf{£ 4 . 5 0}\) ea P\&P extra.
TRANSFORMER Min \(0-12 \mathrm{~V}\) \& \(0-12 \mathrm{~V} 100 \mathrm{MA} € 1\) ea P\&P 75 p TRIMMER CAP correct style 3.15 pf 10 for £ 1
OPTO-ISOLATOR TIL 1126 pin DIL 75 p ea
OPTO-ISOLATOR TIL 1126 pín DIL 75p ea
PEARLL 500Watt Bulbs Screw cap 25p ea P\&P extra
TV IC Amplifier TBA1 20A 30p ea Zener 5V6 10p ea SN7415115pea.
VIEWLEX INSTRUCTIONAL SUPER VIEWERS MODEL 136 with Headphones, \(9^{\prime \prime}\) screen. Takes standard cássette. Front
keys. Brand new boxed. NOW ONLY £45 ea Slightly used £35 ea. Carriage \(£ 3.25 \mathrm{ea}\).

\section*{* TRANSISTORS/DIODES/ RECTIFIERS, ETC \(\star\)}

At \(5 p\) ea
BC147; 2N3707; BC172B; BC251B; BC348B; BC 171 A/B BC 413 ; D10; BAX15; 1 N937, BA102BE; BZX83: TIS61; 2N5040. ZENER DIODES 4.7 V Sub-min \(5 p\) ea. At 10p ea; \(1 N 4733 \mathrm{~A}, \mathrm{SN} 7451 \mathrm{~N}\); BYX \(10-15 \mathrm{~V} 0.36 \mathrm{~A}\); TIP \(34 \mathrm{~A}-50 \mathrm{p}\) ea. BD538-40p ea. Heavy Duty Bridge Rectifier-20p ea.CA3123E-£1 ea. BDY55-£1 ea
2N3055-40p ea. TIP31B \(\mathbf{1 2 p}\) ea BFY51-12p ea 2N3055-40p ea. 1Y21B 12p
2N5293-16p ea. BYZ1015p ea
2N5293-16p ea. BY4
TBA560CO £2 ea IN4436T-TO3 Flat Mount 10A 200 piv \(£ 1\) ea. 2N5897 with 2N5881 Motorola 150 W Comp pair £2. BU208 \(£ 1.20\) ea.
BD535, BD538 Comp pair - 75p.
Linear Amp 709 25p ea
P\&P extra on all items.
FINNED HEAT SINK
FINNED HEAT SINK - single TO3 - size \(43 / 4 \mathrm{in} \times 3 \mathrm{in} \times\)
\(11 / 4\) in 50p ea. P\&P 75p.
Texas Bridge Rectifier 5SB05.50V 5A 60p ea. P\&iP 20p.

\section*{A MILLION MUST GO}

HIGH NOISE IMMUNITY LOGIC. DUAL ÍN LINE 16 -PIN CERAMAIC, 12 V Rail. Conventional TTL package. Guaranteed spec. devices Full data.

\section*{OSCILLOSCOPE TUBES}

Brand New 8oxed-Carriage all tubes £3.25.
Telequipment \(\$ 52 £ 10\) ea; D5 1 £ 15 ea; \(\$ 42\) ea: D53A ¢20 ea; D52 £15 ea; S31 £10 ea; Bradiey \(200 £ 85\) ea; Advance OS3000£85 ea; GEC types \(924 \mathrm{E} £ 17.50\) ea; 14968 £75 ea; Brimar D13-5iHG £65 ea, D10-210GH/32 £40 ea; D13-46GM £35 ea.
NOT BOXED - NEW - WARRANTED. Telefunken D 14. 131 replacement for Solartron CD1740, Cossor CDU150. S.E Labs SM 112 and GEC / MOV 1474 at \(£ 55\) ea

\section*{BUILD YOUR OWN BUS}

Approx. \(11 / 2\) metre multiway ribbon cable terminated each end board. £2 ea. P\&P 75p.
TELEPHONES. Post Office style 746 Black or two tone \(£ 6.50\) ea Modern style 706 Black or two-tone grey \(\mathbf{£ 4 . 5 0}\) ea. P\& P
HANDSETS 706 style \(£ 1.75\) each. Older style £1. P\&P 75p. TELEPHONE EXCHANGES. EG 15 -way automatic exchange only from \(£ 95\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline 74500 & 12p & 74510 & 5 p & 74H51 & \(7 p\) \\
\hline 7401 & 5 p & 7417 & 14 p & 7453 & 5p \\
\hline 74502 & 12 p & 74S38 & 10p & 74H74 & 12p \\
\hline 74504 & 12p & 7451 & 5p & 74574 & 12 p \\
\hline MC4028 & 60p & MC7441 & \(40 p\) & 7402 & 12 p \\
\hline \multicolumn{6}{|l|}{SN15862N4p ea.} \\
\hline
\end{tabular}

75325 - Memory Core Dr
uses. RIDICULOUS at \(£ 1\) ea.
\(\mathbf{7 5 4 5 3}\) - Dual Peripheral or Drivers 75p ea
NOW-INCREASE AREA GIVEN TO
PICK-A-PACK AT 50p per lb

VARIACS - ex-eq. \(2 \mathrm{amp} \mathbf{£ 8}\) ea: 8 amp old style \(£ 18\) ea, later style £22 ea; \(15 \mathrm{amp} £ 35\) ea: \(20 \mathrm{amp} £ 45\) ea. 3 Phase variacs style \(\mathbf{£ 2 2}\) ea, \(15 \mathrm{amp} £ 35\)
available - please enquire

REED SWITCHES. Blue keys marked in green \(0-9\) and a sta with one blank. ONLY E5 ea. P\&P 75p
VARIAC O.6 AMP in attractive small modern case with 20 terminals giving various AC \& DC Voltages \& Current Outputs. terminas giving ear. Carr. \(£ 25\).
£16 ea Carr. \(£ 3\). 2 .
ROBAND Square Invertors type EPV 50/100. Provides \(115 / 230 \mathrm{~V}\) r.m.s. Square Wave from 12 V Output frequency 50 HZ . Output Power 100 Watts. Size \(31 / 2 \times 31 / 2\) BRAND NEW at \(1 / 2\) Manufacturers Price.
ONLY \(£ 50\) each. \(\mathrm{P} \& \mathrm{P}\) ¢
Photo Resistor ORP \(\mathbf{1 2 - 3 5 p}\) ea.
Small TELESCOPIC AERIAL extending to \(22^{1 / 2^{\prime \prime}}\) with swive
base 40p ea. P\&P \(20 p\).
Small Black SUCKER FEET - always useful 10 for 50 p. MERCURY SWITCHES. Heavy duty with lever \& flyleads.20p PHOTODIODE DETECTOR \& EMMITTER. Independentiy mounted with \(4^{\prime \prime}\) flyleads - 50p per pair
RESISTORS 680 Ohms 5 Watt - 10 for 50 p.
ALMA Min. PUSH BUTTON REED SWITCHES. High reliability \(18 \times 27 \times 18 \mathrm{~mm}\). Ideal for KEYBOARD 35p ea. P\&iP extra. MINIATURE FANS \(3^{\prime \prime}\) square (like muffins) 115 V £4 ea P\&P 75p.
HONEYWELL HUMIDITY CONTROLLERS 25p ea. P\&P
SPRAGUE \(100 \mathrm{mfd}+500 \mathrm{mid} 210 \mathrm{VDC}\) working. Brand new 5 for 50 p P\&P 50 p

\section*{REED SWITCHES. Sub-min. Size 20 mm 10 p ea}

SMITHS encapsulated transistorised AUDIBLE WARNING DEVICES \(4 V-12 V\). Can be driven from TTL. 50p ea. P\&P \(25 p\) AMPHENOL 17-WAY CHASSIS MOUNT EDGE CONNECTOR. 0 i spacing \(20 p\) ea. P\&P extra.
BURROUGHS 9 digit PANAPLEX numeric display. 7 segment 0.25 digits with red bezel. With date. E1.95 ea. P\&P 30p.
TRANSFORMERS 115 V AC input. Secondary 30 V and 2.6 V 10VA. 50p ea. P\&P 50
21-WAY SELECTOR SWITCH. Single pole with reset coil 240V AC coils. Additional switch contacts for auto reset, etc.
£1.45 ea. P\&P 75p. £1.45 ea, P\&P 75p.
plastic cover. £2.45 ea. P\&P \(£ 1.50\).
SNAIL BLOWER 110 V AC 500 MA Brand new by Airflow SNAIL BLOWER \(10 V\) AC 500 loki Brand \(\mathbf{~} \mathbf{2 . 5 0}\) ea. P\&P \(\mathrm{f}\{\)
 Heavy Duty. Plug-in type with base 50 p ea. P\&P 25 p MINIATURE KEYBOARD. Push contacts, marked 0-9 and A-F and 3 user definable keys. \(£ 1.75\) ea. P\&P \(35 p\)
CLARE REED RELAYS \(24 V\) DC Coil. Single pole make. Size \(11^{\prime \prime} \times 7 / 16^{\prime \prime} \times 7 / 16^{\prime \prime}\) at \(25 p\) ea P\&P 10 p .
ROTRON CENTAUR FANS. Size \(45^{\prime \prime} \times 45^{\prime}\)
ROTRON CENTAUR FANS. Size \(4.5^{\prime \prime} \times 45^{\prime \prime} \times 15^{\prime \prime} 115 \mathrm{~V} 5\) blade. \(£ 4\) ea. P\&P 75p.
MIN. PLUG-IN
MIN. PLUG-IN type RELAYS. Plastic covers, 2-pole c/o 24 V 25p ea. P\&P \(15 p\)
CROUZET MUR
CROUZET/MURTEN SCHWEIZ MOTORS.
rpm. Gear box can be removed 75p ea P\&P \(75 p\)
FRAMCO MOTORS. 11550 Hz . Input single phase \(1 / 12 \mathrm{~h}\) c2.75 ea. P\&P PYE DYNAMICS THICK FILM. 1 MHZ Clocking Osc 5 V 15 p .
COMPRESSOR UNIT. Compact, 115 V 50 HZ single phase 1.5A continuous 1.425 rpm . Outside piston housing approx. \(3^{\prime \prime}\) £ 18 ea. P\&F. \(£ 2\) MAGNET DEVICES. Plug- in RELAYS 24OV AC, 3-pole c/o. Heavy duty 10 amp. Complete with base. BRAND NEW
EQUIPMENT NOT USED 3 on sub assembly \(£ 2.50\). P\&P £1 of EQUIPMENT NOT USED, 3 on sub assembly £2.50. P\&P \(£ 1\) of £ 1.25 ea. P\&P 45 p
SNALL MANS TRANSFORMER 24
"sec. \(60 \times 40 \times 42 \mathrm{~mm}, 50 \mathrm{p}\) ea. P\&P \(75 p\).
G.I.BRIDGE RECTIFIER type W01
G.I. BRIDGE RECTIFIER type W01 (ideal for above) 17p ea
FAIRCHILD FND 107 segment display 0.15 . Red Common cathode 65p ea. P\&P 15p. Info supplied
cathode 65 Pea. P\&P \(15 p\). Into supplied.
MULLARO TUNER MODULES - with data
LP1177 combined AM/FM IF strip. 10.7 MHZ £ 3.50 ea LP1179 FM front end with AM tuning and 87.4 MHZ to 104.5 MHZ tuning. 10.7 MHZ IF \(\mathbf{£ 3 . 5 0}\) ea. P\&P 50 p each unit The Pair £5.75. P\&, P 75p.
POWER UNIT MODULE cont
POWER UNIT MODULE containing \(2 \mathrm{small}, 3\) med. \& 1
large ferrite cores. 3 -TO 3 power wansistors, large ferrite cores; 3-TO3 power transistors, caps, resistors, high powered diodes, 9 transistors, 3 min fuse holders, etc.
\(£ 1.50\) ea. \(\mathrm{P} \mathrm{\& P} £ 1.25\). GENERAL ELECTRIC OPTO-ISOLATORS type H \(15 \mathrm{~V} \times 504\) 65p ea. P\&P \(15 p .10\) for \(£ 5\). P\&P £1.
MINIATURE REED SWITCHES 9p ea P\&P \(15 p\). ROTARY SWITCHES 250 V 10A 10 p ea. P\&P \(15 p\) ROTARY SWITCHES
LEDEX ROTARY SOLENOIOS 115 V DC. No switch assembly \(25 p\) ea. P\&P 25 p.
POTTER \& BRUMFIELD TIMER RELAYS. \(24 / 48 \mathrm{~V}\). Heavy dury 2 pole \(c / 0\) with 5 secs. delay at 48 V increasing with voltage reduction. Timing can be altered by changing value of resistor/capacitance \(50 p\) ea \(P \& P 25 p\).
CABLE NEATERS - neaten up your wire on a chassis with these pushon clips. 10 for 20p. 100 for \(£ 1.50\). P\&iP extra AUDIO AMPLIFIER BOARD. Size \(41 / 2 \times 21 / 2\). Output pair of TIP31s. Circuir supplied. \(£ 1.50\) ea. P\&P 30p. DIGITAL 24 HOUR CLOCK with built-in alarm as used in BRAUN Digital Clocks. Silent running, Large illuminated
Numerals. AC Mains. Size \(6^{3 / 8} \times 2^{1 / 8} \times 2^{3 / 4}\) ONLY \(£ 4.25\) ea Numerals.
P\&P 50p.
BROOKE CROMPTON \& PARKINSON extractor fan BROOKE CROMPTON \& PARKINSON extractor fan
assembly 115 V operation \(\mathbf{£ 1}\) ea. P\&P £2. OR TWO for \(\mathbf{£ 1 . 5 0}\)
P\&P \(£ 3.25\).

A LARGE QUANTITY OF MISCELLANEOUS TEST GEAR - CHASSIS UNITS. ETC.. ON VIEW AT LOW COST
Minimum Mail Order \(£ 2\). Excess postage refunded. Unless stated - please add \(£ 3.25\) carriage to all units VALUE ADDED TAX not included in prices - Goods marked with \(121 / 2 \%\) VAT, otherwise \(8 \%\)

7/9ARTHUR ROAD, READING, BERKS (rear Technicai College, King's Road). Tel: Reading 582605

\section*{Simple Wide Range VCO}
A. J. Richardson

Any section of ICl can be used but all unused inputs must be taken to ground.

This circuit takes advantage of the fact that CMOS gates readily oscillate
in the circuit configuration shown. The control voltage, which ideally is in the range \(1 \vee 5\) to \(3 \vee 5\), is applied to the power supply connection of ICl . IC2 is used to square up and buffer the output of ICl and can be operated from any suitable voltage rail.

With the values shown a frequency
range of approximately \(b \mathrm{HHz}\) to 20 kHz is obtained with almost equal mark to space ratio, but if this is unimportant the lower end can be extended down to approximately 1 Hz . Other frequency ranges can be obtained with suitable values of R1 and C1.

\section*{NO DISCO SYSTEM IS
COMPLIE WIIHOUT... \\ \\ CITRONIC MM 313 MIXER Ideal for the DIY enthusiast building up a complete disco
system, \(4 / 6 \mathrm{ch}\). mono, inc. LED indicators, connections via phono sockels at rear Bargain price, including PSU £80.46 \(\operatorname{Inc}\) VAT P\&P \(£ 1.50 \mid\) \\ \\ Tweeters for your disco PA system or Hi-Fi, Frequency range \(5 \mathrm{~K}-20 \mathrm{~K}\) No \(x\) over required. They can be used in
any PA sustem up to 100 W . Why pay more? OUR PRICE ONI Y \(£ 4.99\) each (P\&P 35 p each) \\ PROJECTORS \\ SQUIRE MULTIFECT 150 \\ - including rotator and ertects wheel. A ruit versatite projecto
which uses a poweritu! 150 W which uses a powertut
Tungsten bulb, all effets chments simply slot in re A BARGAIN AT \(£ 40.50\) PRPP \(£ 1.00 \mid\)
PLUS MANY DISCO ACCESSORIES \\ BULGIN OCTAL PLUGS AND SOCKETS \\ There's always hundreds of Bulgin \\ octal multiway plugs and sockets in stock at
Roger Squires Each pin rated \(6 A\) Pertect fo Roger Squire s. Each pin rated 6A Perfect to
your Sound to Light System. P 552 SOCKET C(0.65 (P\&P 35p) P551 PLUG £1. 84 (P\&P 35p) Carriage on 10 or more nominal \(£ 1.00\) Also available 6 -way multicore cable (6 Amps per core) ex stock.
\(£ 0.65\) per matre. Please phone for carriage quote. \\ Starlite 250 An exclusive new line 10 Roger Squire's Disco 250 W quartz Sual begen bulb, fan cooled. accepts wide range of multifect attachments. Unique congection slot for artachments. Unique conne \\ \(\mathbf{E 6 5 . 0 0}\) + VAT service depart ment which carries large
stocks of OISCD SPARES \& ACCESSORIE Ocks of OISCD SPARES \& ACCEESORIIES. 12" and \(15^{\prime \prime}\) BSR and Garrard decks Plus sockets, Fuses Plugs, etc etc Boger Squirch disco gear \\ Personal callets: ROGER SQulRe' \(S\) DASCD CENTRES LONDON: 175 Junction Road, Tufall Patk N19 500. \(01-2727474\)
 GLASGOW:
041.9463303 \\ \\ Open from 10.5 Tues-Sat 10-8 Weds. \\ Closed Mondays}

\section*{Audio Harmoniser using Bucket Brigade Analog Delay Lines}
S. Giles

\section*{Object:}

To create an audio signal which is increased in pitch by up to one octave from the original, and sustain it for the duration of the original.

\section*{Applications:}
(a) electric guitar
(b) synthesisers with one VCO
(c) human voice???

Description of Block Diagram (fig. 1)

The input signal is buffered into four

\section*{FHROMAEOMIL electronics}
your soundest connection in the world of components

\section*{DEPT ETI 1, 56 FORTIS GREEN ROAD, MUSWELL HILL, LONDON. NIO 3HN TELEPHONE: 01-883 3705}

\section*{LOW POWER SCHOTTKY and TTL CMOS}

> 74170
74173
74174
74175
74176
74177
74180
74181
74182
74184
74185
74188
74189
74190
74191
74192
74193
74194
74195
74196
74197
74198
74199
74221
74240
74241
74242
74243
74247
74248
74249
74251
74253
74257
74258
74259
74266
74273
74279
74283
774290
74293
74395
74298
77365
74366
74367
74368
74386
74670

Sratic RAM's
2102 A
21350
BITS and PIECES
 Now gwaileble our ORDER-RING line, juat phone

\title{
electroovalue Buying
}

Guide Section 3
With this advertisement we complete our series in which we have presented a wide and useful cross-section of our most demanded lines. We hope it will have encouraged you to have purchased from us and sample our service. We go to great effort to make this as efficient and as personal as possible. NOW WE ANNOUNCE PRODUCTION OF 120-PAGE CATALOGUE NO. 10. Completely revised, enlarged and better than ever - AND IT'S YOURS FOR THE ASKING - FREE.

\section*{I.Cs/Opto/Displays}

Sections which have already appeared in ETI
SECTION ONE Dec. '78
Transistors and diodes. etc.
SECTION TWO Jan. '79
Capacitors of all types
SECTION FOUR Oct. '78
Resistors. Pots. Knobs, etc
SECTION FIVE Nov. ' 78
Pots Core selection. Solder Tools,
Transformers, etc
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Complete price list free on request} \\
\hline \multicolumn{3}{|c|}{BOOKS SELECTION [ZERO RATED FOR VAT)} \\
\hline \multicolumn{3}{|l|}{BERNARO BOOKS (Please order by book number) No TITLE} \\
\hline 8 P 1 & First Book of Transistor Equivalents \& Subsultutes & \\
\hline & Worlds Shor Med \& LW FM \& TV Stations Lusum & \\
\hline BP 14 & Second Book of Transistor Equivalen & \\
\hline BP15 & Constructors Manual ol Electronic Circuits for the Home & \\
\hline BP17 & Radio Recelver Construction using ICs & \\
\hline BP24 & 52 Projects using the 741 & \\
\hline BP25 & How to Buld your own Quarte control. led watches \& clocks & \\
\hline BP27 & Guant Chart of Radio \& Electronic Semi\({ }^{8}\) Logic Symbols & \\
\hline 6P32 & How to Buld your own Metal \& Treasure & \\
\hline & Locators & \\
\hline BP39 & 50 Field-effect Transistor Projects & 1.25 \\
\hline BP40 & Digital IC Equivalents \& Pin Connections & \\
\hline BP45 & Projects in Opto-Electronk & 2.50
1.25 \\
\hline 8 P 46 & Radio Circuits using ICs & 1.35 \\
\hline 8 P 48 & Electronic Projects for Beginners & 1.35 \\
\hline BP50 & IC LM3900 Projects & 4.35 \\
\hline BP5 1 & Electronic Music and Creative Tape Recordings & \\
\hline 211 & First Book of Diode Characteristics Equivs \& Substitutes & \\
\hline 224 & 50 CmOS IC Projects & 95 \\
\hline \[
223
\] & Fifty Projects using IC CA3130
Linear IC Equivatents and Pin & 95p \\
\hline & lions & \\
\hline 225 & A practical Introduction to Digıtal ICs & 95p \\
\hline 227 & Beginners Guide to building Elecronic Propects & \\
\hline \multirow[t]{2}{*}{228} & Essential & \\
\hline & & 1.2 \\
\hline
\end{tabular}

\section*{FOULSHAM TAB ELECTRONIC}
\(\begin{array}{lll}100 & \text { Basic Math Course for Electronics } & 1.40 \\ 528 & \text { Pulse Sutrhin }\end{array}\) 528 Pulte Switching Circuits
553 Electronics Self taught Electronics Self laught with Expert.
ments \(\&\) Propects
and many other tites

ANOTHER
ELECTROVALUE SPECIAL
We are now National Distributors for

\section*{NASCOM 1 \\ MICROCOMPUTER} KITS
for delivery from stock from
\(£ 197.50\) net
\[
+ \text { V.A.T. }
\]

Quantity discounts
Trade Enquiries invited
- GOODS SENT POST FREE UK WITH C.W.O orders over \(£ 5\) list value. If under. add \(27 p\) handling charge
- ATTRACTIVE DISCOUNTS on C WO mal orders- \(5 \%\) where list value is ove
\(£ 10: 10 \%\) where list value is over \(£ 25\)
- TOP QUALITY MERCHANDISE - ALL GUARANTEED
V.A.T.-Add \(8 \%\) to value of order Fo tems marked \({ }^{\circ}\) add \(121 / 2 \%\)

For ACCESS or BARCLAYCARD orders, ust phone or write your number
- No discounts allowable on prices marked NET or N on orders by credit cards.

OUR COMPUTER-AIDED SERVICE TAKES GOOD CARE OF YOUR ORDER NO MAT. TER HOW LARGE OR SMALL
- Comprehensive price list free on requues

Micro-Digi Car Clock
D. lan

With the availability of economical L.CD wristwatches has come a surplus of very cheap LED types which, with a little ingenuity, are eminently suitable for a permanent display installation; one obvious use is a cheap digital car clock

The majority of these timepieces use two silver oxide cells in series to give 3.2 volts; current consumption, with the display on, is rarely more than 30 mA , easily provided by a simple stabiliser circuit.

Remove the back of the watch-case and discard the cells; the contacts of one cell holder are shorted together and the \(3 \vee 2\) supply soldered, noting polarity, to the two remaining contacts: with the 'display on' switch shorted out the result is a highly accurate mini-clock with negligable current drain as long as the vehicle is in regular use; even 35 mA will eventually flatten a car battery that recerves no charge. Most simple LED watches have a brass tag, bearing on the metal case, as a common terminal to the various controls, these generally being spring loaded pins pressed, as required, into contact with clips on the perimeter of the module. These connections can be extended to panel mounting push switches, allowing the unit to be housed in a suitable box.

If the car is used infrequently it is prudent to arrange for the display to automatically extinguish at the end of a fixed amount of time; this also implies the simplest possible 'on' switch to minimise loss of attention when driving. One half of a CD4066 quad bilateral switch is connected as a touch-operated monostable and wired, as shown, across the LED display switch: \(C\) and \(R\) may be selected for a shorter or longer time period, those specified will enable the display for about 15 minutes. The remaining two sections of the 4066 are used to control the other functions, set time, etc. of the watch module.

Note that, in the stabiliser section, LED's are deliberately used to provide the reference voltage at the base of T1

since they 'zener' at appreciably smaller currents than a normal zener diode; total current of the stabiliser
and clock (display off) is about 2 mA - the smallest car battery should be able to supply this for about a year!

\title{
15-240 Watts!
}

\author{
HY5
}

The HY5 is a mono hybrid amplifier ideally suited for all applications. All common input functions Imag Cartridge, tuner. etc \(/\)) are catered for internally, the desired function is achieved either by a multi-way switch or direct connection to the appropriate pins The internal volume and tone circuits merely require connecting'to external potentiometers (not included). The HY5 is compatible with all 1.L.P power amplifiers and power supplies. To ease construction and mounting a P.C connector is supplied with each pre-amplifier
FEATURES: Complete pre-amplifier in single pack - Multi-function equalization - Low noise - Low
distortion -- High overload - two simply combined for stereo
APPLICATIONS: Hi-Fi - Mixers - Disco - Guitar and Organ -- Public address
SPECIFICATIONS
INPUTS Magnetic Pick-up,3mV Ceramic Pick-up 30 mV . Tuner 100 mV . Microphone 10 mV Auxiliary 3.100 mV ; input impedance 47 kI 2 at 1 kHz
OUTPUTS Tape 100 mV Main output 500 mV RM S

IACTIVE TONE CONTROLS Treble \(\pm 12 \mathrm{~dB}\) at 10 kHz , Bass + at 100 Hz
DISTORTION \(01 \%\) at 1 kHz : Signal/Noise Ratıo 68 dB
OVERLOAD 38 AB on Maanetic Pick-us: SUPPLY VOLTAGE \(=16.50 \mathrm{~V}\)
Price \(£ 6.27+78\) p VAT. P\&P free.

HY5 mounting board BI \(48 p+6 p\) VAT P\&P free

\section*{HY30}

The HY30 is an exciting New kit from I.L.P. ir features a virtually indestructible I C with short circuit and thermal protection. The kit consists of I.C. heatsink. P C board. 4 resistors. 6 capacitors mounting kit, logether with easy to follow construction and operating instructions. This amplifier is ideally suited to the beginner in audio who wishes to use the most up-to-date technology available APPLICATIONS: Updating audio equipment Guitar practice amplifier Test amplifier Bud APPLICATIONS: Updating audio equipment - Guitar practice amplifier - Test amplifier - Audia SPECIFICATIONS
OUTPUT POWER 15W RM.S inIo BL DISTORTION \(0.1 \%\) at 15 W INPUT SENSITIVITY 500 mV FREQUENCY RESPONSE \(10 \mathrm{~Hz}-16 \mathrm{kHz}-3 \mathrm{~d}\) SUPPLY VOLTAGE \(\pm 18 \mathrm{~V}\)

\section*{Price £6.27+78p VAT, P\&P free}

\section*{HY50}

25 Watts into \(8 \Omega\)
The HY50 leads I.L.P 's total integration approach to power amplifier design. The amplifier features an the amplifier has been refined to the extent that it must be one of the most reliable and robust High Fidelity modules in the World
FEATURES: Low Distortion - Integral Heatsink - Only five connections - 7 Amp output transistors - No external components

APPLICATIONS: Medium Power Hi-Fi systems - Low power disco - Guitar amplifier
SPECIFICATIONS: INPUT SENSITIVITY 500 mV
OUTPUT POWER 25 W RMS in \(8 \Omega\) LOAD IMPEDANCE \(4-16\) O DISTORTION \(004 \%\) at 25 W a 1 kHz

NOISE RATIO 75 dB FREQUENCY RESPONSE \(10 \mathrm{~Hz}-45 \mathrm{kHz}-\mathrm{-}\) 3d8
SUPPIY VOLTAGI \(=25 \mathrm{~V}\) SIZE 105.50 .25 mm

The HY120 is the baby of I.L.P's new high power range designed to meet the most exacting equirements including load line and thermal protection, this amplifier sets a new standard in modular design
FEATURES: Very low distortion - Integral Heatsink - Load line protection - Thermal protection Five connections -- No external components
APPLICATIONS: Hi.F - High quality disco -- Public address - Monitor amplifier - Guitar and SPECIFICATIONS:
INPUT SENSITIVITY 500 mV
OUTPUT POWER GOW RMS into B LOAD IMPEDANCE A-16! DISTORTION \(0.04 \%\) at 60 W at 1 kHz . SIGNAL/NOISE RATIO \(90 \overline{\mathrm{~d} B}\). FREQUENCV RESPONSE \(10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}\) SÜPPLY VOLTTAGE \(\pm 35 \mathrm{~V}\)
Size \(114 \times 50 \times 85 \mathrm{~mm}\)
Price \(£ 19.01+£ 1.52\) VAT. P\&P frea
The HY200. now improved to give an output of 120 Watts has been designed to stand the most rugged conditions. such as disco or group while still retaining true Hi-Fi performance
FEATURES: Thermal shutdown - Very tow distortion - Loadlline protection -- Integral Heassink
APPLICATIONS: Hi-Fi - Disco - Monitor -- Power Slave - Industrial - Public address SPECIFICATIONS:
INPUT SENSITIVITY 500 mV
OUTPUT POWER 120 W RMS into B: LOAD IMPEDANCE 4.161 DISTORTION \(0.05 \%\) at 100 W a 1 kHz
SIGNAL/NOISE RATIO 96dB. FREQUENCY RESPONSE \(10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}\) SUPPLY VOLTAGE SLZE \(114 \times 100 \times 85 \mathrm{~mm}\)

\section*{HY400}

240 Watts into \(4 \Omega\)
The HY400 is I L.P. "s "Big Daddy". कf the range producing 240 W into \(4 \Omega\) ! It has been designed for high nower disco or public address applicätions if the amplifier is to be used at contunuous high powei high nower disco or public address applications if the amplifier is to be used at contunuous high powei lead the market as a true high power hi-fidelity power module.
FEATURES: Thermal shutdown - Very low distortion - Load line protection - No external
componens.
APPLICATIONS: Public address -- Disco -- Power slave -- Industrial
SPECIFICATIONS:
OUTPUT POWER 240W RMS into 4? LOAD IMPEDANCE 4-16: DISTORTION \(01 \%\) at 240 W at 1 kHz
SIGNAL/NOISE RATIO 94 dB FREQUENCY RESPONSE \(10 \mathrm{H}_{z}-45 \mathrm{kitz}\) - 3 dB SUPPLY VOLTAGE INPUT SENSITIVITY 500 mV SIZE \(114 \times 100 \times 85 \mathrm{~mm}\)
Price \(\mathbf{£ 3 8 . 6 1 + £ 3 . 0 9 \text { VAT. P\& } P \text { free } . ~}\)
POWER
PSU36 sultable for two HY30's \(£ 6.44+81\) p VAT
PSU50 suitable for twG HY50's \(£ 8.18+£ 1.02\) VAT
SUPPLIES
PSU70 suitable for two HY120's£14.58 + £1.17 VAT
PSU90 suitabie for one HY200£15.19 + E1.21 VAT
PSU1 80 suitable for two HY2000's or one HY400 £25.42 + £2.03 VAT

TWO YEARS' GUARANTEE ON ALL OF OUR PRODUCTS
I.L.P. Electronics Ltd.

Crossland House Nackington, Canterbury Kent CT4 7AD
Tel. (0227) 64723

Please Supply
Total Purchase Price
1 Enclose Cheque \(\square\) Postal Orders \(\square\) Money Order \(\square\)
Please debit my Access account \(\square\) Barclaycard account \(\square\)
Account number
Name \& Address

\section*{SEMICONDUCTOR OFFERS ALL FULL SPEC.}

\section*{} Matched Sular to 2 N 381918 p 3 N 140 Mostets 50 p M203 Dual MOS Rams 95 Mullard 56113 Triple Varicap Diode 35 p MC1310 Stereo Oecoder I C S \& 20 C04051 Cm 1 Sor \(14005800 \vee 1 \mathrm{ADiodes} 7 \mathrm{DEHT}\) ESILRec \(15 \mathrm{KV} 25 \mathrm{~mA} 15 \mathrm{~mm} \times\)
 \(90 \mathrm{ZN4} 1475 \mathrm{p}\) TIL305 Alpha-numerical Displays with data \({ }_{2} 75\) ORP61 Mullard, new bozed. 30p Special ofter SGS TBAB 800 ICs, 10 tor E 5007418 -un 6 for C1 NE555 27p each
MICROPhones. EM506 Condenser Mikes, Uni-directional FET. Amp Dual imped. \(50 \mathrm{~K} / 600 \mathrm{ohms}\). \(30-18 \mathrm{KHz}\) on/ol omn-directional, uses hearing aid battery (supplied) E4 95 Grundig Electret Insens with bulit-in FET Preamp E1 50 Crystal
Mike Inserts 37 mm 45 p Electret Condenser Mikes \(1 \mathrm{~K} \Omega\) lmp with std Jack Plug \(£ 285\) Casserte Condenser Mikes with 25 and 35 Jack Plugs \(£ 285\) Standard Cassette Mikes 200 ohm imped with 25 and 35 Jack Plugs \(E 120\)
MORSE KEYS - Hu-speed Type. all metal. £2 25 Plastic morse Keys \(95 p\)
toshiba l.e.d.e. - TLG113 त \(2^{\prime \prime}\) green \(16 p\) TLG1150 2"' green. dift lens i7p TLG 10
TLR \(12002^{\prime \prime}\) clear infra red 20p
NEW LOW COST MULTIMETERS - KRT \(100-1.000\) O P Y 1000 volts \(A C / D C 150 \mathrm{MA}\) (max) D C current 0.100 K Resistance Range Selector Switch \(\{465\)
KRT101 Model. Saame ranges ahuve but range selection by lest
prod insertion E3 75
MOTORS. 15 to \(6 \vee\) DC Model 20p 115 VAC min 3RP.M with Gearbo Mop \(1 / 24\) th RPM 650 Crouzet \(115 v\) AC 4 RPM Synch Motor \(1 / 241 \mathrm{vRPM} 65 \mathrm{p}\)
Motors. new 95p \(12 v \mathrm{VC} 5\) pole 35p
Boxes. Black A BS Plastic with brass inserts and lid. \(75 \times 56 \times\)

TOOLS. Radio pliers. 5 mm , insulated handies \(£ 140\) Diagonal side cutters. 5 in . nsulated handies EI 40

MAINS TRANSFORMERS, all 240 v AC primary Postage show \begin{tabular}{l}
in brackets per translimer \\
\(6.0-6100 \mathrm{~mA}, 9-0.9\) \\
\hline 5 mA \\
\hline
\end{tabular}\(\quad 12.0 .1250 \mathrm{~mA}, 75 \mathrm{p}\) esch (15 pp) \({ }_{0.4-6.9}^{6.0 .6} 150 \mathrm{~mA}\), no mounting bracket. 65 p (20p) \(12 \cdot 0.12\) \(100 \mathrm{~mA} .95 \mathrm{p}(15 \mathrm{p})+2 v 500 \mathrm{~mA}\). \(95 \mathrm{p}(22 \mathrm{p}) 12 \mathrm{v} 2 \mathrm{Amp}\). 2225 \((45 \mathrm{p}) \quad 12 \mathrm{v} 4 \mathrm{Amp}\) E2 75 (54p) \(15-0.15 \mathrm{v} 1\) Amp. E2 \(10(45 \mathrm{sp})\)
\(30-\mathrm{O}-30 \mathrm{v}\) \& Amp E. \(75(54 \mathrm{p}) \mathrm{O}-12-15-20.24-30 \mathrm{v}\) tapped at
 \({ }_{5}^{1}, 145(45 \mathrm{p}) 18 \mathrm{v} 15 \mathrm{Amp}\) rectited. \(\mathrm{E} 200(45 \mathrm{p}) 35 \mathrm{v}\). 2 Amp .

SWITCHES - Min Toggle. SPST \(8 \times 5 \times 7 \mathrm{~mm} 45\) DPDDT \(8 \times 7 \times\) 7 mm 60 p DPDT Centre OHf \(12 \times 11 \times 9 \mathrm{~mm} 75 \mathrm{p}\) OPDT C/O Sliders 20 p R S Single Poie C/ O Push Buttons 45 p . Roller Micro Switches 15 p Min Micro Switches \(13 \times 10 \times 4 \mathrm{~mm} 20\)
Push to make or push to break Switches \(16 \times 6 \mathrm{~mm} 15 \mathrm{p}\)

SOLDER SUCKER. Plunger type, eye protection, replaceable nozzle high suttion each
TAPE HEADS - Cassette Stereo E3 00 BSR MN \(13301 / 2\) Track Dual tmpedance Rec /Playback 50 p BSR SRP90 \(1 / 4\) Track Sterec
Rec./Playback E1 95 TD 10 Assemblies. Two heads. \(1 / 4\) Track Rec./ Playback E1 95 To 10 Assemblies. iwo heads.
Rec /Playback Staggered Stereo with built-in erase per head £1 20 Tape Head Demag 240v AC E1 y5
 Warning Device 30 mm 30p
U.H.F TV Transistorised Push Button Tuners (not Varicap) new Und boxed \& 250

MURATA MA401L. 40 kHz Transducers. rec/send. \(£ 325\) pair
METEAS-Grundig Bart Level Meter \(1 \mathrm{~mA} 40 \times 40 \mathrm{~mm}\) E1 10 Min Level
E3 95
EDGE METER - Large scale 0.100. new \(£ 275\)
POT CORE UNIT. Has 6 .por cores, including 1 FX2243 (45 mmm) and 2 FX 2242 (35 mm). 320 mm Panel Fuseholders 3 T03 SIL Power Transistors on heat sink. panel with various uransistors and diodes with a 1 aiza adi core 15 mm dia \(14 \mathrm{mH}-18 \mathrm{mH}\). HI O. 10 peach

8 TRACK 12 vole motors new E1 25
CASSETTE MOIORS 6 voll new E1 25
NAT. SEM-LM 340 T 6 V 1 A voltage regulators 40 p LM 309 K 5 V ro3 Voltage Regulators 78p 72: 14 pin Voltage Regulator iCs 40 p each
12-WAY MOTORISED CAM UNITS. 5OV AC low rev moror driving \(12 \mathrm{C}, 0\) micro switches supplied with a capacitor for 240 AC use Ex equip E1 \(95+35 \mathrm{p}\) P\& F
TEXAS BY205 800w 6A SIL Recs (Flatback) 18 p
8 WAY RIBBON-CABLE, min solid core \(15 p\) metre
POSTAGE 300 UNLESS OTHERWISE SHOWN (EXCESS POSTAGE REFUNDED WITH ORDER
COST VAT INCLUDED IN ALL PRICES
S.A.E. FOR NEW ILIUSTRATED LISTS

\section*{ORDER ADDRESS}

PROGRESSIVE RADIO
31 CHEAPSIDE, LIVERPOOL 2

\section*{MCDUAS}

TRIACS: TXAL226B, 400V 6A 30p; 400V 1A 20p; Thyristors 600V 1A 20p; Low torque Microswitches (like RS 339207) SPCO 20p; all ex-equipment but guaranteed, P\&P 30p. STIV ELECTRONICS, 23 Southern Dr., Hull.
GRADE 1 semiconductors, passives, hardware + security. Immediate service: Texas 1 N4148 £1.50 per 100. RCA CD4001/11 18p. RCA 7418 pin dil, £1.00 per 5.555 £1.00 per 4. CEH PC housings 60p. Capacitors, resistors, keyswitches, Texas IC sockets, control panels. SAE brings complete catalogue: CEH Audio-Visual (D), 48 Whistler Road. Tonbridge, Kent.

SUPER 3055" R.C.A. 2N6254, 150w, \(15 \mathrm{~A}, 100 \mathrm{~V}\), Hfe 20 at 5A. Only 68p each, 4 for £2.50, P.P. inc. Mark Leese, 56 Comeragh Road, London, W. 14.

\section*{MICROBITS}

\section*{NOW OPEN IN SURREY}

Stockists of a wide range of Micro-Systems and Peripherals including the Exidy Sorcerer, Newbear 77-78, Panda, Nascom and Kim 1. Please telephone for details

Also a wide range of Computer books and Bear Bags in stock

34B London Road
Blackwater
Camberley
SURREY
Tel. 027634044

OP-AMP SALE! 709 15p, 741 19p, 308 25p. 1458 (dual 741) 30p, LF13741N (JFET 741) 35p. MC3401P (18V LM3900) 40p, CA3140E 40p, LM3900 45p, VMOS POWERFET VN67AF 99p, 78LO5 (To92) 29p. FAST LOCMOS, 4013B(25MHz@10V) 35p, 4001B/07/11B/6916p,4016B 40p, 4017B 65p, 4020B 80p. 10\% Discount over \(£ 5\). P\&P 20p. SAE for informative lists to: J. W. RIMMER, 367 GREEN LANES. LONDON N4 1DY

COMPONENTS. LEDS 12 red, 10 green 10 yellow (32) £3: 741 op amp \& socket 5 for £1: NE555 timer \& socket 4 for \(£ 1\); resistors 7 p/10; ceramic cap 18p/10; presets 10 p/ 2; micro's 8080 \& socket \(£ 6 ; \mathrm{Z8O}+\) socket £6: Ferric Chloride 65 plb . C.W.O. S.A.E. for list. \(£ 3 \mathrm{~min}\). R. Machnik, 13 Hopefield Place Blackburn. West Lothian

VIDEO MUSIC

Videograph II links to the aerial socket of your tv and provides a full colour GIANT oscilloscope display. A must for hi-fi, home entertainment, discos, organs etc
New - signal invert controt, integral square wave generator. Plus - full detaiks for testing your autio system for transient distortion, crosstalk etc Complete f19.95 Luxury cabinet and Kit only f/y'd controls. ©9.95 KC post packing vat ready bullit videographe es9 95 WILLIAM Doww Hous" Billen STLAFT \(\begin{gathered}\text { Herongate } \\ \text { ESsix CM } \\ \text { CM } \\ \text { SSO }\end{gathered}\)
SYSTEMS Led Ess+ex CM13350

STICKIES are printed self-adhesive tabels that stick to the top of iCs. They make dull, anonymous plastic blocks into diagrams that come A. .iveldee ar-a-gknce the hassle out of ICs.
STICKIES are great for building and debugging prototypes, faultfinding, experimenting, teaching - even designing PCB layouts.
STICKIES come in packs for 7400 - or 4000 -series ICs. Each pack contains a sensible mix of more than 60 different IC types
120 -label pack \(-\mathbf{8 0 p}\). \(\mathbf{4 8 0}\)-label pack \(-\mathbf{£ 2 . 8 0}\), or \(2-10\) packs at \(£ 2.50\) each, 11 -plus \(£ 2.20\) each. P:ices include VAT and first-class postage Official orders welcome. Please state whether TIL or CMOS required

For your STICKIES by return of post Sevenooks, Kent TN13 3XA Phone: 0293514110

\section*{THIS SECTION IS A PRE-PAYMENT SERVICE ONLY}

MINI-ADS: \(31 / 4^{\prime \prime} \times 21 / 8^{\prime \prime}, 1-3 £ 38,4-11 £ 36,12\) or more \(£ 34\) per insertion. CLASSIFIED DISPLAY: \(19 p\) per word. Minimum 25 words. Boxed classifieds are \(£ 6.33\) per col. centimetre. No P.O. Box Numbers can be accepted without full address.

Enquiries to: Advertising Department, 01-4375982. 25-27 Oxford Street, London W1R1RF

SILICON DIODES (equivalent IN4148) marked full specification (not rejects). 150; \(500 ; 1000\) for \(£ 1 ; £ 3 ; £ 5\) respectively, post paid. D. Johnston, 12 Balgillo Road, Dundee DD5 3LU.

RAINBOW RIBBON CABLE at silly prices. SAE for details. Trading Post, 4 Castle Street, Hastings; Sussex.

GRIMSBY ELECTRONICS
Lambert Road, Grimsby Humberside
100s bargains at shop. components, cases, vero, surplus, etc. List 10 p. Small reed switches 10p. Magnets 6p. Postage 16p.

SEVEN SEGMENT DISPLAYS 95p. New and full spec Fairchild FND500 c.c. \(1 / 2^{\prime \prime}\) same brightness code p/o include 30p p\&p. To: J. Towns, 12 Hilltop Close, Baglan PT, Talbot, W. Glam.

\section*{STRATHAND SECURITY \\ ALARMED?}
il net wa should be. We spacialisa in Alarma trainoment suitabla for hemn. oftice or laciory. All itoms brand new lop quality fully pewrantued.
101 Magart and read switch. Fisas firting. 4 wire, heguires mole 12 nim dinmotor by 34 nimer doup
magait and read atch. Fan miting screw torminals. Raquire:

13 mon m 11 mm
Magat ad read switch. Heary dety. Size 103 min by 20 man by
18mm. Two hale fixint £3.00
05 Pressura pad - stair Iread \(22^{\prime \prime} h^{\prime \prime}\) by \(61^{\prime \prime \prime}\)
06 Pressura pad -barge 29/ \({ }^{\prime \prime} \times 15^{\prime \prime}\)

08 Foil biecks - sali-adhasiva. (Joins feil to cable)
10 Kaysmitches wilh nabunting plate sadd caver
11 Bell haxas hamy duty plastic canted metal
12 Beil \(\mathrm{g}^{\prime \prime}\) heary duty - very lould 12v O.C.
164 care cable 100 mm - white
Control panal to British Standard. Mains/haiory E10.75 miry/bxil. Anil-falan alarm circultry E46.40

PLUS
Padar (microwava) units. aufomatic 999 diailing units with faps massaga. and many ofther items.

STRATHAND SECURITY
St. Andrew's Squar
Glacgow, G1 Glasgow, G1
Tol: 041-5526731
forcher

\section*{PRINTED} CIRCUITS and HARDWARE
Comprehensive range Constructors' Hardware and accessories
Selected range of popular components Full range of HE printed circuit boards. normally ex-stock, same day despatch at competitive prices.
P.C. Boards to individual designs. Resist-coated epoxy glass laminate for the di.i.y. man with full processing instructions (no unusual chemicals required)

Alfac range of etch resist transfers, and other drawing materials for p.c. boards
Send 15 p for catalogue.
RAMAR CONSTRUCTTOR SERVICES MASONS ROAD STRATFORD-ON-AVON WARWICKS. TeI. 4879

\section*{LOST THE TIME?}

MSF RECEIVER, built-in 60 KHz antenna © 13.70 Or with sequentıal YEAR. MONTH, DATE. DAY. HOURS. MINUTES. SECONDS, display parts (no case
 STILL NO RADIO 4? 200 KHz to Medium Wave PROGRAM YOUR OWN tunes on MUSICAL OOORREL DOORBELL, new tune each day, just needs bell transformer and speaker cludes all Gro 21.923 -4000 Each easy-assembly kit includes arts, printed circuit, case, postage. etc. moner-bac assurance so SEND off NOW.

CAMBRIDGE KITS
45 (TP) Old School Lane, Milton, Cambridge

\section*{COLOUR MODULATOR \\ Kht FORALLTVGAMES!
 inc UHF
Modulator TANK B \\ WILLIAM STUART SYSTEMS Dower House, Billericay Road. Herongate, Brentwood. Ess CM13 3so Tel (0277) 810244}

 BEST OFFER EVER Camera Kit, Lens, Vidicon \& Modulator

\section*{CROFTON} Tel 01-891 1923 Eed full BARGAINS FOR THE
ELECTRONIC HANDYMAN
BRANDED LED DIGITAL
ALARM CLOCKS ALARM CLOCKS

Reıurned to Service Department within guarantee period.
(1) With alarm repeat - S.R.S P. of \(£ 1700\) offered at C4.95 inc. VAT
2) With luxury lamp and repeat alarm as featured in most major U.K. Mail Order catalogues, S.R S.P E 31.00 - offered at \(£ 8.95 \mathrm{inc}\). VAT.
(3) With integral luxury fight and repeat alarm also as featured in most major U.K Mail Order catalogues S.R.S.P. of \(£ 32.00\) - offered at \(£ 8.95\) inc. VAT. These will be sold as received from our customers with the existing fault(s) and without guarantee.

PRESCOTT CLOCK AND
WATCH COMPANY LIMITED
Prescott House, Humber Road, London NWZ 6ER

\section*{NASCOM-1 SOFTWARE}

Z80 Software Routines, including:-
- 16 Bit Multiply
- 16 Bit Divide
- ASC II to Binary
- Binary to ASCII
together with:-
- Memory Test Program
- Submarine Chase Game

Listings and explanatory notes supplied. Available on Nasbug format cassette tape @ £3.50p, including VAT. P\&P 25p

ANDREWS COMPUTING LTD 21 LIME TREE DRIVE FARNDON, CHESTER
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{A D D 0 E} \\
\hline ABACUS COMPUTING & 12 \\
\hline ALTEK & 90 \\
\hline AMBIT & 849 \\
\hline ASTRA-PAK & 40 \\
\hline AUDIO ELECTRONICS & 76 \\
\hline BAMBER & 88 \\
\hline BAYDIS & 31 \\
\hline BI-PAK & 85 \\
\hline B.N.R.S. & 48 \\
\hline CAMBRIDGE LEARNING & 54 \\
\hline CATRONICS & 7 \\
\hline CHILTMEAD & 86 \\
\hline CHROMASONICS & 90 \\
\hline CODESPEED & 40 \\
\hline COMMUNICATIONS ME & 70 \\
\hline COMP, COMP, COMP & 99 \\
\hline COMPU-TECH & 40 \\
\hline CRAEL UK & 24 \\
\hline CRIMSON ELECTRIK & 18 \\
\hline DELTA TECH. & 24 \\
\hline E.D.A. & 43 \\
\hline ELECTRONIC BROKERS & 885 \\
\hline ELECTROVALUE & 92 \\
\hline FLADAR & 78 \\
\hline GREENBANK & 70 \\
\hline GREENWELD & 17 \\
\hline HENRYS & 888 \\
\hline IBEK SYSTEMS & 67 \\
\hline I.L.P. & 94 \\
\hline KRAMER & 867 \\
\hline L.B. ELECTRONICS & 72 \\
\hline LEKTROKIT & 95 \\
\hline MAGNUM AUDIO & 78 \\
\hline MAPLIN & 100 \\
\hline MARSHALLS & 58 \\
\hline METAC & . 6 \\
\hline MINIKITS & 72 \\
\hline MOUNTAINDENE & 72 \\
\hline NICHOLLS & 67 \\
\hline NIC MODELS & 24 \\
\hline NORMAN INSKIP & 98 \\
\hline POWELL & 78 \\
\hline POWERTRAN & 2 \\
\hline PROGRESSIVE RADIO & 97 \\
\hline ROGER SQUIRES & 88 \\
\hline R.T.V.C. & 38 \\
\hline SERVICE TRADING & 44 \\
\hline SINTEC & 85 \\
\hline SOAR ELECTRONICS & 31 \\
\hline STEVENSON & 63 \\
\hline STRUTT & 62 \\
\hline SWANLEY & 31 \\
\hline TAMTRONIK & 26 \\
\hline TECHNOMATIC & 10 \\
\hline TK ELECTRONICS & 18 \\
\hline VERO & . 49 \\
\hline VIDEOTIME & 42 \\
\hline WATFORD & 815 \\
\hline WILMSLOW & \\
\hline
\end{tabular}

\section*{Introducing the personal computer you've waited for. THE EXIDY SORCERER.}

\section*{SORCERER}

COMPUTER SYSTEM
Complete with Monitor
The Sorcerer Computer is a completely
assembled and tested computer system assembled and tested computer system
Standard cont figuration moludes 63 key
 numeric pad. 280 processor, dual cassette
\(1 / 0\) with remote computer control at 300 and 1200 baud data rates, RS232 serial I/O Cor communications, paraliel port tor
direct Centronics orintel attachment 4 K direct Centronics stinter artachme
ROM ODelsting system. 8 K ROM
```

Mic Sooth BASIC in Rom Pac ${ }^{\top} M$, cartridge
composite video of 64 char line 3 .

``` Screen, 128 upper /lower case ASCII set
and 128 user defined operation manual. BASIC programming manual and cassetie/video programming
only \(£ 950\)

LOOK!
32K RAM on board
RS232 interface \(-8 K\) BASIC ROM CUTS interface '4K MONITOR KANSAS CITY interface -S100 BUS
User defined graphic symbols

\section*{KEY BOARD}

756 GEORGE RISK Brand new professional ASCII keyboards (USA) Full technical details included. RRP £60.00 Only \(£ 49.90\)
\(+8 \%\) VAT
Ready built, tested
and guaranteed

\section*{COMPUTER JOYSTICK}

Plugs into your Nascom P.I.O. No extras. Software and full documentation supplied. Plus free game cassette. \(£ 14.90\) each \(£ 28.90\) per pair

\section*{COMP PRO Mixer}

Professional audio
mixer that you can build yourself and save over \(£ 100\)

6 into 2 with full equalization and echo, cue and pan controls.
All you need for your own
recording studio is a stereo tape or cassette, recorder
This superb mixer kit has slider fader, level meters and
additional auxiliary inputs
Only \(£ 99.90\) plus \(8 \%\) VAT for complete kit Plus FREE power
supply valued at \(£ 25.00\)

\section*{Ideal for}

\section*{DISCOS STAGE MIXING HOME STUDIOS AND MANY OTHER APPLICATIONS}

\section*{COMPUTER COMPONENTS}

Send for our Spring 1979 catalogue. 0.60p Full of Computer Components, Peripherals and systems

Teleplay presents the
PROGRAMAGAME of all time

\section*{INTERESTED IN HOME COMPUTING?}

Start now and don't get left behind THE NASCOM 1 is here Ex-stock with full technical services
Plus the opportunity to join the fastest moving club of personal computer users enabling you to get the most our of your computer. You can OBTAIN and EXCHANGE programs and other software - many now available
The Powerful Z80
Microprocessor
Professional Keybcard
1 Kbyte Monitor ir EPROM 2 Kbyte RAM (expandable) Audio Cassette interface Plugs into your domestic TV Easy construction from
straightforward instructions no drilling or special tools Just neat soldering

\section*{required}

Only \(£ 197.50+8 \%\) VAT (includes \(p \& p+\) insurance)
Manuals seperately \(\quad 2.95\) Monitor quality improved
Z80 programming Manual 6.90 TV Modulator 2.50
Z80 Technical Manual 2.95
PIO Technical Manual 2.95 Power supply suitable for (All prices add \(8 \%\) 'VAT) NASCOM
NASCOM AD ONS - Nascom improved monitor B Bug (2K) featuring - *F our times tape speed *Direct text entry without ASCII *Extended keyboard facility *Additional useful
\[
\text { subroutines } \quad £ 23.00
\]

Nascom Software library. Send SAE for lists and prices.
BLANK C12 Racal Quality CASSETTES \(£ 4.00\) for 10

\footnotetext{
All prices include VAT except where shown. Orders over \(£ 5\) post and packing free otherwise add 20p. Please make
cheques and postal orders payable to COMP, or phone your order quoting BARCLAYCAFD or ACCESS number
}
```


[^0]:    Electronics Today International is normally published on the first Friday of the month prior to the cover date

[^1]:    COPYRIGHT: All material is subject to world wide Copyright protection. All reasonable care is taken in the preparation of the magazine to ensure accuracy but ETI cannot be held responsible for it legally. Where errors do occur a correction will be published as soon as possible afterwards.

[^2]:    - Typical values are at $+25^{\circ} \mathrm{C}$ and nominal voltages.

