

TRANSCENDENT 2000 SINGLE BOARD SYNTHESIZER

LIVE PERFORMANCE SYNTHESIZER DESIGNED BY CONSULTANT TIM ORR (FORMERLY SYNTHESIZER DESIGNER FOR EMS LIMITED) AND FEATURED AS A CONSTRUCTIONAL ARTICLE IN ELECTRONICS TODAY INTERNATIONAL
The TRANSCENDENT 2000 is a 3 octave instrument transposable 2 octaves up or down giving an effective 7 octave range There is portamento. pitch bending, a VCO with shape and pitch modulation, a VCF with both low and high pass outputs and a separate dynamic sweep control, a noise generator and an ADSR envelope shaper There is also a slow oscillator, a new pitch detector, ADSR repeat, sample and hold, and special circuitry with precision components to ensure tuning stability amongst its many features.
The kit includes fully finished metalwork, fully assembled solid teak cabinet, filter sweep pedal. professional quality components (all resistors either 2% metal 0×1 ide or $1 / 2 \%$ metal $f i l m!$) and it really is complete - right down to the last nut and bolt and last piece of wirel There is even a 13 A plug in the kit - you need buy absolutely no more parts before plugging in and making great music! Virually ail the components are on the one professional quality fibre glass PCB printed with component locations. All the controls mount directly on the main board. all connections to the board are made with connector plugs and construction is so simple it can be buit easily in a ew even
comparable in performance and quality with ready built units selling for between $£ 500$ and $£ 700$ ।

> COMPLETE KIT ONLY $£ 172.00$ + VAT!

Comprehensive handbook supplied with all complete kits' This fully describes construction and tells you how to set up your synthesizer with nothing more elaborate than a
multi-meter and a pair of ears!

LAST MONTH'S FRONT COVER FEATURE!

COMPLETE KIT

ONLY
$£ 49.50$ + VAT!

PSI 4002 STUDIO MODEL

cabinet size $17.2^{\prime \prime} \times 17.2^{\prime \prime} \times 6.7^{\prime \prime}$
COMPLETE KIT ONLY £196.90 + VAT
The kits shown on this page are also avallable as separate packs (e.g. P.C.B. component sets. hardware sets etc) Prices are given in our free catalogue

PRICE STABILITY: Order with confidence irrespective of any price changes we will honour all prices in this advertisement untul February 28th, 1979. If ETI January. 1979 issue is mentioned with your order Errors and VAT rate changes excluded
EXPORT ORDERS: No VAT Postage charged at actual cost plus 50 p handling and documentation
U.K. ORDERS. Subject to 12% surcharge for VAT' (i.e add $1 / 8$ to the price) No charge is made lor carriage or at current rate if changed
SECURICOR DELIVERY: For this optional service (U.K. mainland only) add £250 (VAT inclusive) per kit
prefer to collect your kit from the factory, call at Sales Counter (at rear of factory). Open 9 a $\mathrm{m}-430 \mathrm{pm}$. Monday-Thursday

$200+200$ watt AMPlIfIFR

As featured in Electronics Today International

 400 V rms continuous - 800W peak!0.03% THD at FULL power!
PLUS all the following features too!

* Each channel totally independent with iss own stabilised power supply driven by custom designed TOROIDAL transformers ${ }^{\prime}$
* Inherent reliability - monster heat sinks for cool running at the hottest venues -- electronic open and shor circuit protection
* Ultra low feedback (an incredible low 14 dB overalli). super high slewing rate ($20 \mathrm{~V} / \mu \mathrm{s}$). 200 W rms continuous to 4 ohm from EACH channel. input sensitivity 0775 V (0 dB).
* Protessional quality components, sturdy 19 rack mounting chassis complete with sleeve and teet for iree standing work too.
* Easy to build - plenty of working space with ready access to all components, minimal wiring. extensive instruction suitable for both experience constructors and newcomers to electronics.
* Value for money - quality and periormance comparable with ready-bult amplifiers costing over
£600! £600!

OUR CATALOGUE IS FREE! WRITE OR PHONE NOW!

POWERTRAN ELECTRONICS

Time we did this p. 84

Check ir out p. 81

De-click de hi-fi p. 73

FEATURES

What goes on with whom and where!
Cone-fident appraisal of all types!
Tim Orr explains how - and why. A history of the electron put to use. This was your idea.
Big news for micro-men
A new chess machine tested
A Shure winner?
A revolutionary new concept! Readers own ideas

PROJECTS

DIGITAL TACHO 23 Going around in the car accurately DIGITAL MODULE 35 Useful four digit design.

DIGITAL DIAL 49 Medium wave high quality.
LOG CONVERTOR 62 Turn your keyboard to use. CLICK SUPPRESSOR 73 Record project!

INFORMATION

ETI BOOK SERVICE SPECIALS FROM ETI PANEL TRANSFERS HOBBY ELECTRONICS BINDERS
ETI PRINTS
FEBRUARY PREVIEW
MARKETPLACE
SUBSCRIPTIONS
T-SHIRTS

47
55
59
61
69
71
79
84
92
98

Fine print this.
All our publication on show.
Finishing touch.
Look out for it!
Keep 'em looking good.
What other way is there?
News of next month's ETI.
A new LADIES' watch! Make it easy on yourself. Good cover!

Electronics Today International is normally published on the first Friday of the month prior to the cover date

[^0] accuracy but ETI cannot be held responsible for it legally. Where errors do occur a correction will be published as soon as possible afterwards.

and

cabinet size $18.3^{\prime \prime} \times 12.7^{\prime \prime} \times 3.1^{\prime \prime}$.

DE LUXE EASY TO BUILD LINSLEY-HOOD 75W AMPLIFIER £99.30 + VAT

This easy to build version of our world-wide acclaimed 75 W amplifier ktt based upon circuit boards interconnected with gold plated contacts resulting in minimal wiring and construction delightfully straightforward. The design was published in Hi-Fi News and Record Review and features include rumble filter, variable scratch filter, versatile tone controls and tape monitoring whilst distortion is less than 0.01%

WIRELESS WORLD FM TUNER $\mathbf{£ 7 0 . 2 0}$ + VAT
A pre-aligned front-end module makes this Wireless World published design very simple to A pre-aligned adjust without special instruments. Features include an excellent a.m. rejection push-button station selection as well as infinitely variable tuning and a phase locked loop stereo decoder incorporating active filters for "birdy" suppression.

cabinet size $18.3^{\prime \prime} \times 12.7^{\prime \prime} \times 3.1^{\prime \prime}$.
$\mathbf{T} 20$ + 20 AMPLIFIER $£ 33.10$ + VAT
This kit, based upon a design published in Practical Wireless, uses a single printed circuit board and offers at very low cost ease of construction and all the normal facilities found on quality amplifiers. A 30 watt version of this kit $(T 30+30)$ is also available for $£ \mathbf{3 8 . 4 0}+$ VAT.

cabinet size $18.3^{\prime \prime} \times 12.7^{\prime \prime} \times 3.1^{\prime \prime}$.

LINSLEY-HOOD CASSETTE DECK £79.60 + VAT
This design, published in Wireless World. although straightforward and relatively low cost provides a very high standard of performance There are separate record and replay amplifiers and switchable equalisation together with a choice of bias levels
mechanism is the Goldring-Lenco CRV with electronic speed control

WWII TUNER £47.70 + VAT

This cost reduced model of our highly successful Wireless World FM Tuner kit was designed to complement the T20 +20 and T30 +30 amplifiers and the cabinet size, front panel format and electrical characteristics make this tuner compatible with either. Facilities included are pre-aligned front-end module, switchable afc, adjustable switchable muting. LED tuning indication and both continuous and push-button channel selection (adjustable by controls on the front panel).
cabinet size $15.5^{\prime \prime} \times 6.7^{\prime \prime} \times 2.8^{\prime \prime}$.

POWERTRAN SFMT TUNER £35.90 + VAT

This is a simple low cost design which can be constructed easily withour special alignment equipment but which still gives a first-class output suitable for feeding any of our very popular amplifiers or any other high quality audio equipment. A phasetocked-loop is used for stereo selection (adjustable by controls on the front panel). This unit matches well with the T20 +20 and $\mathrm{T} 30+30$ amplifiers.

cabinet size $15.5^{\prime \prime} \times 6.7^{\prime \prime} \times 2.8^{\prime \prime}$

COMPLETE KITS: Our complete kits really are complete All of the projects shown on this page-are supplied with fully finished metalwork. ready assembled high quality teak veneer cabinet, cables, nuts, bolts, etc., and full instructions - in fact everything!

All of the kits shown on this page are available as separate packs (except the Powertran SFMT Tuner) for those customers who wish to spread their purchase or pernaps make their ow cabinets or metalwork Prices are given in our FREE CATALOGUE.

PRICE STABILITY: Order with confidence' irrespective of any price changes We will honour all prices in this advertisement until February 28th, 1979. If ET anuary. 1979 issue is mentioned with your order Errors and VAT rate changes excluded
EXPORT ORDERS: No VAT. Postage charged at actual cost plus 50p handling and documentation
No charge is made for carrier, *or at current rate if changed. ECURICOR DELIVERY. F
E2.50 (VAT inclusive) per kit
SALES COUNTER: If you prefer to collect your kit from the factory. Call at Sales Counter (at rear of factory). Open 9 a m-4 $30 \mathrm{p} . \mathrm{m}$. Monday. Thursday
our catalogue is FREE! write or phone NOW!
POWERTRAN ELECTRONICS
PORTWAY INDUSTRIAL ESTATE
(O264) 64455

news digest

FLEET OF FOOT?

For all us kiddies (anyone who isn't - please leave now) this is a good idea. Those nasty sneaky MPUs have invaded our nice little game of Battleships. Based on a TMS 1000 the unit contains enough

RAM to hold the board as seen by both players, and make appropriate noises at time of defeat or victory or whatever. Nice explosion sound effects etc too. And what's more it's British designed - which

is a distinct recommendation and selling well in America - which isn't Price $£ 29$ or thereabouts. AID, 10 RATHBONE PLACE, LONDON WIP 2DN.

NOT A TRACE OF GREED

Two new oscilloscopes for餏 home constructor Woxn the Scopex stable. Called the Calscope 6 and Calscope 10 they are probably indicative of the fact the home market is of growing importance to manufacturers. Specs. below.

Calscope 6: - single trace: sensitivity range 50 mV to 50 V per cm/in 12 ranges: Bandwidth 6 MHz : time base range 1 and to 100 ms per cm . Time base triggering is claimed to be particularly good. Price £162.
Calscope 10:- dual trace: 10 mV sensitivity: bandwidth 10 MHz (display. able across full screen size): time base range 200 ns to 100 ms : accuracy 3% all ranges. Price £219.

Both available from Maplin and Marshall both of whom you should know already.

PEDIGREE CATS

Electronic Brokers superb range of second hand hardware that should interest most small firms and not a few individuals. Much new equipment is also included, and although the cost is high at $£ 1$ to private individuals companies can get it free!

Not fair this world is it? ELECTRON I C BROKERS, 4a PANCRAS ROAD, LONDON NWl 2GB.
Ace Electronics - good range of components. Poorly produced catalogue but it is free, and adequate, and contains some nice little kits amongst other things worth sending for ACE MAILTRONIX TOOTAL STREET, WAKEFIELD, W. YORKS

PUT THESE TO GOOD USE

Some new PUTs (at last), and in different packages too. The MEU2l and 2 N6028 are intended for use in long internal timers and such and have low leakage (100 nA max).
The MEU22 (and 2N6027) are general purpose types. All have specs of: 150 nA peak point current (2N6028), low forward voltage (lV5 for 50 mA $I_{\text {FWD }}$) and high pulse output voltage (6 V minimum) MICRO ELECTRONICS LTD, YORK HOUSE, EMPIRE WAY. WEMBLEY, MIDDX.

ambit internutional

Production of the new catalogue has been held up for a few weeks－since we have just been appointed as distributors for two of the most exciting ranges of radio－ components products yet ：The Micrometals range of iron dust torroids cores and formers，and the OKI range of VLSI for digital frequency displays for receivers． We apologize for any inconvenience，but these two ranges are really worth the wait and include some products you will find hard to believe，like the MSM5523 IC，an IC with less than ten external components that gives $A M$ frequency readout to 1 kHz from LW to 39.999 MHz ，FM frequency readout in 100 kHz steps．（all usual IF offsets programmable by diodes），a 24 hour format clock with 12 hour display， independent on and off timers，time signals on the hours，stopwatch facility and a sleep timer．This costs $£ 14$ with its timebase crystal，and makes all that has gone before an expensive and time wasting excercise．Rather like the way the Intersil ICM7216 has revolutionized the instrument counter market．（See the OSTS ad．） And those of you familiar with Amidon and IG dust torroids，favoured．in many new RF designs，will be pleased to know Ambit will be stocking a broad range of the Micrometals types for applications from EMI filters to RF PA stages． DKI frequency counter ICs：dotails in cat2 MSM5523 for CA LEDs with RHOP such ${ }^{\text {A brief summary of some of our range of ICs：}}$ $\begin{array}{lll}\text { MSM5525 } & \text { as FNO507 } \\ \text { for } 31 / 2 \text { digit LCD AM／FM with }\end{array}$ $\begin{array}{ll}\text { MSM5525 } & \begin{array}{l}\text { for } 31 / 2 \text { digit LCD AM／FM with } \\ \text { direct segment drive．no clock }\end{array}\end{array}$ orect segment drive．no clock
or timers
f11 inc x tal Other types for fluorescent displays etc OA

Other now semiconductor additions：
K84437

K84437

muting stereo preamp

TDA1220 low cost AM／FM	$\mathbf{3 . 3 5}$
1.45	

cheaper． 120 v comp pairs $/ 100 \mathrm{~W}$ for f 10.00 Price reduction on CA3189E ．．．．now £2．20 New varicaps：to add to the biggest range．．．．． KV1211 2：9v bias to tune MW，like the New pilot tone filters from TOKO．．． 208BLR series，individual per channel with a $26 / 38 \mathrm{kHz}$ version for pilot cancel decoder

epplications．Flat to 15 kHz applications．Flat to 15 kHz C0．90 | Now crystal |
| :--- |
| TOVO $10 \mathrm{MAB1}$ |
| with over 90 dB adjacent ch | rejection for $2 \mathrm{~m} \mathrm{NBFM}$.10.7 MHz ． \qquad CFM455H $6 \mathrm{kHz} / 6 \mathrm{~dB}, 15 \mathrm{kHz}$ max $/ 60 \mathrm{~dB}$ ． CFM455H 6kHz／6dB．

ideal for MC3357 etc．
 KB4412／E2．55；KB4413／E2．75：KB4417／f255 MC1495L／E6．86＂：MC1496P／£1． 25 LM381N／E1．81；LM1303／£0．99；ULN2283B／ E1．00；LM380N／E1；TBA810AS／E1．09 TCA940E／E1．80；TDA2002／£ 1.95 ；
ICL8038CC／E4．50．NE566／ ICL8038CC／E4．50：NE566／โ2．50；NE567／
C2．50 ${ }^{\circ}$ NE560B／£3．50；NE5618／£3．50； NE562B／E3．50＊；NES65 A／E2．50＊ SEE THE OSTS ADVERT FOR CMOS／TTL
REGULATORS，OPTO DISPLAYS，and other Some transistors for RF specifically： BF256LB／0．34；40822／0．43＊；40823／0．51 $40673 / 0.55^{*}$ ；BF900／961／0 80 80° ；BF960／1．60＊ BF224／0．22；BF274／0．18；BF 195／0．18；
BF240／0．22；BF241／0．22；BF362／0．70； BF479／0．86；BF679S／0．70；BFY90／0．90．
PIN and other Varicap diodes： BA102／0．30；BA121／0．30；ITT 210／0． 30 B8104B／O．40；MVAM2／E1．48；MVAM115
E1．05；MVAM125／1．05；KV1210／E2．75 BA479／0．35；TDA1061／0．95；BA182／0．21 METER MADE Low cost panel maters ： 3×930 series with blanks and dry transfer
sheet of scales and ledgends for $£ 12.5$

Pt lust，DIV Hi Fi whith Iorks us if it isn＇t．

That＇s not to say it doesn＇t look like HiFi－just that it doesn＇t look like the usual sort of thing you have come to associate with DIY HiFi．The Mk3 outstrips and outperforms al British made HiFi tuners，and most imported ones too．Certainly at the price，there isn＇t one near it．But more than that，it looks superb．A small pic here would be an insult， so send an SAE for details on the kit that looks as if isn＇t．It＇s something else．．

```
* Exceptionally high performance - exceptionally straightforward assembly
    Bxceptionally high periormance - exceptionally straightforward assemb/y
    plug in, to keep the Mklll at the forefront of technical achievement
    Various options and module line-ups possible to enable an instaliment approach
```

 to the system
 and now previewing the matching $60 \mathrm{~W} / \mathrm{ch} a n n e l$ VMOS amplifier
\int^{\star} Matching both the style and design concepts of the MkII HiFi FM tuner Power output readily multiplied by the addition of further MOSFET VU maters on the preamp．not simply dancing according to vol level

The PW Darthester－LU，IIW，5U，\＆FII sterea tuner

In much the same way as we have swapnaway the＇old technology＇in frequency／timer counters－with the OKI and Intersil single IC counters，we now offer a single IC＂All Band＂ radio tuner．Don＇t confuse this one chitp radio with things like the ZN414．for this is a genuine superhet receiver with a mechanical AM IF filter，and ceramic IF filters for FM． The AM section employs a balanced input mixer section，covering all broadcast bands．plus a BFO and MOSFET product decetor for SSB／CW－though at this price，the tuner is not intended as a＂communications receiver＂－although we know of many lesser designs that make that claim．The AM sensitivity is nevertheless better than $5 u \mathrm{~V}$ ．and FM sensitivity is 1.2 uV for $30 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ ．As a multiband broadcast superhet receiver，it is a unique constructor project that fulfills the requests we very frequently get for a general coverage circuit that isn＇t over complicated．The set has CA3089E FM performance，with mute etc．，and a PLL stereo decoder with full pilot tone filtering
The tuner board－with＂on board＂PCB mounted switching，all components etc ：$£ 33.00$ The case／cabinet with PSU，meter and mechanics etc

2 GreshamRoad，Brentwand，E55R4．

Catalogue part 1：45p，part 250 p all inclusive．Postage 25 p par order，carriage on tunar k
E 3 ．Phone Brentwood $102771216 \mathrm{u} 29 / 2270509 \mathrm{am} .7 \mathrm{pm}$ ．Callers welcome inc．Saturdays

0575Since AMBIT introduced the＂One Stop Technology Shop＂to our service，we have been pleased to see just how many users of electronic components appreciate our guarantee to supply goods only from BS9000 approved sources．More than ever，professional and amateur electronics engineers cannot afford to waste time on anything less than perfect pedigree products．
CO4000 cm05

2 CreshamRaad，Brentuand，E5584．

6800 series		$\begin{aligned} & 8216 \\ & 8224 \\ & 8228 \\ & 8251 \\ & 8255 \end{aligned}$	$\begin{array}{r} 1.95 \\ 3.50 \\ 4.78 \\ 6.25 \\ 5.40 \\ \hline \end{array}$	2114 f10 2708 f10．55 Develorment		
6800P	6.50					
6820P	66					
6850P	2.75			MEK6800 £220 TK80 5306 AMI，Signelics． TI．Imt ${ }^{2}$ sil． Harns eyc．Oq		
6810P 6852	$\underline{6.6}$	MEM				
8080 series		 2102 $\varepsilon 1.70$ 2112 $\varepsilon 3.40$ 2513 67.54 4027 65.78				
8080	6.30					
8212	2.30					

Imicromarket
palces TLL ： 5 tandard RND LP 5chattkY

 | 24 | 74126 |
| ---: | :--- | :--- |
| 74128 | |
| | 74132 |
| | 74133 |
| | 74136 |
| | 74138 |
| 38 | 74139 |
| 40 | 74141 |
| | 74142 |
| | 74143 |
| 74144 | |
| | 74145 |
| | 74147 |
| | 74148 |
| 99 | 74150 |

 コロッ

news

digest.......

PROM-IN-AID TIME

Micro-men take note. The Prombix 12 can wipe out twelve PROMs at once with variable erase time with safety interlock. Priced at $£ 59.00$ all inc. Should be of interest to
small firms and rich en thusiasts.
GP INDUSTRIAL ELEC TRONICS, SKARDON WORKS, SKARDON PLACE, NORTH HILL, PLYMOUTH PL4 8EZ.

GETTING INTO PRINT

A low cost printer is an nounced by Kimberley Business Records giving A low cost printer is announced by Kimberley Business Records giving good quality output. This will allow the expansion of many home systems into the extensive field of word processing, and God help you then! A standard lever operated 'typewriter mechanism has been used. driven by 240 V solenoids.
Designed for parallel data input with handshake control. ASCII coding is
accepted for the 88 cha racters available operating at a speed of 8 CAPS from a standard peripheral interface. It is supplied fully built and cased at $£ 200$ (including carriage and VAT). Alternatively as a print mechanism only, requiring all power other than 240 V , case, and TTL logic to be added, the cost is $£ 160$.

KIMBERLEY BUSINESS RECORDS. 2, HARTING TON ROAD, GOSPORT. HANTS, POI 2 3AG.

WATFORD ELEGTRONICS
 incorporating

Introducing DM900 - The DIGITAL MULTIMETER with "Hidden Capacity" - It measures Capacitance too!
(as published in E.T.I. August 1978) Away with analogue meters for with some of these you may often as not use a crysta! ball to make circuit measurements instead gaze into our crystal - not a ball but the $31 / 20.5$ LIQUID CRYSTAL DISPLAY - on our amazingly accurate DMM
$5 A C \& D C$ Voltage ranges; 6 resistance ranges
AC \& DC Current ranges: 4 Capacitance ranges
The prototype accuracy is better than 1%
This is a unique design using the latest MOS ICs and due to the minimal current drain, is powered by only one PP3 battery. There is also a battery check facility
arrying handle and has been ingeniously designed to simplify assembly
Never before have all these features been offered to the electronics entuusiast in a singlo unit Complete Kit Only £54.50* ($p \&$ ip Insured add 80p) Optional Extras Probes $£ 1.50$; Carrying Case $£ 1.50$
Ready-built and tested units only $\mathbf{£ 7 8 . 5 0 * \text { incl. Case } \& \text { probes p } 8 \mathrm { p } \text { p } 8 0 \text { p } \mathrm { p }}$ Demonstration on at our Shop

jack plugs	
Screened	
${ }_{3}^{2.5 m m m}$	${ }^{\text {12p }}$
MONO	${ }^{23}$
Stereo	31p
dIN	
2 PIN Loudspeaker 3. 4. 5 Audin	
co-Axial (TV)	
Phono assoried cotours Melal screened	
banana	${ }^{4 \mathrm{~mm}}$
	$\underset{\substack{2 \mathrm{~mm}}}{\text { mm }}$
WANDER 3 mm DC Type AC 2-pin American	
VOLTAGE*	
REGULATORS	
Plassic (TO92)	
$\begin{aligned} & +v e .1 A \operatorname{5V} 6 v \\ & 8 V \end{aligned}$	
$\begin{aligned} & -\mathrm{vec.5A} 5 \mathrm{~V}, 6 \mathrm{~V} \\ & 8 \mathrm{~V} 12 \mathrm{~V} .15 \mathrm{~V} \quad 86 \end{aligned}$	
-ve 1A 5V 12v	
LM309K 135	
${ }^{\text {LM } 32015} 165$	
LM 323 K M 304 H $\mathbf{5 9 8}$ 180	
EARPHONES	
$2.5 \mathrm{~mm} \quad 18 \mathrm{p}$	
Crystal	33p
Ultrasonic	
TRANSDUCERS	
¢ 3.95 * per pair	

$393 \quad 230$	4018		404	128					
	${ }_{4029}^{4019}$	99	${ }_{4}^{4047}$	58	${ }_{4086}^{4089}$	$\begin{gathered} 73 \\ 150 \\ 150 \end{gathered}$	${ }^{4451} 4$	295	vDU Chip and MODULE for TV
398 399 230	${ }_{4021}^{4021}$	${ }_{88}^{91}$	${ }^{4049}$	${ }_{48}^{48}$	${ }^{4093}$	- 85		95	Conver your Tr nlo a vou by
${ }_{447}^{445}$	${ }^{4023}$	20	${ }^{4055}$	${ }_{72}^{72}$	2094			17	Using
	${ }_{4025}^{4024}$	${ }_{19}^{66}$	${ }_{4053}^{4052}$	72	${ }_{4097}^{4098}$	${ }^{372}$	4502	120	SFF96
$\underset{\substack{182 \\ 182}}{182}$		180	4054	110	4099		453		
			4055	128					
	${ }^{4028} 4$	${ }_{99}^{81}$	${ }_{4}^{405}$	${ }^{2570}$	${ }_{4}^{4161} 4$	109			sysem
	${ }_{4031}$	205	${ }_{\text {4063 }}^{4060}$		Sti63		${ }^{4511}$		
	4032		4066		${ }_{4}^{4175}$				$\xrightarrow[\substack{\text { SF F96364E } \\ \text { AV } 31015}]{\substack{\text { E11.75* } \\ \text { E6.60* }}}$
	403	145	${ }^{4067}$	380	4194	108	4514	265	AV. 5.1
4006 ${ }_{\text {cos }}$	40	1111	40	20	${ }^{44008}$	7720	4515	299	21301
				32					
${ }_{4009}{ }^{40} 5$	403	100	40	21	441	1650		(02	
4010		108		1		1380		55	SN7
		220	40			795		${ }^{108}$	
				5		275	452		Hes
	404	75		O					
4015		${ }^{94}$	4078	21	${ }^{433}$	1099			
45	(0ats	185 18	4088						

POCKET ADVAN. TAGE

A wallet type machine with hold-on memory. The new TI 50 has two memories, some scientific features, some statistical features and will turn itself off after 15 minutes if you aren't using it. Up to 15 levels of parenthesis are allowed. There is even a 'battery low' indicator

Available now, it will cost under $£ 30$ and be in most shops that sell this sort of thing.

SCREEN TEST

The UK is now Hong Kongs largest market for TV games. We absorbed 26% of their export in the field, some 523,506 items if you please, in the first eight months of this year. Germany finished second
on 22% and the USA came third with 13%.

Somewhat of a surprise, and a shame, that we take more than the States of these items. I always thought we had more taste.

SHORTS

- Every Ready - now called Berec - have released four rechargable consumer batteries, in the HP2, HP11, HP7 and PP3 varieties. Chargers are also available. An undoubted reaction to the phenominal loss of dry cell power these days - Direct drive turntables yes. But direct drive MPUs? Also yes - now. The $S 2000$ is a new release from AMI which can drive flouorescent displays directly, with HT drive and 7 -segment decoding on chip. Alsa on board 64×4 RAM and 1 K ROM. Intended for low lost applications.
- Ingersoll - the tick tock people - are into electronics. They have released three TV games, three clock radios, two Door Chimes, and a port able micro cassette player Photo shows one of their new TV games. It must be Christmas.

6airchild are making a big fuss about having their F16K Dynamic 16K RAMs available at last. Access times vary from 150 ns to 300 ns .

news digest. Imperial College decided that they needed a logic hard-

ware teaching lab, they were faced with several alternatives. One was to teach all the students in each year to solder and then let them loose on a handfull of TTL and CMOS chips each. This would have meant a plethora of supply problems, technicians and even minor burns.
What they opted for instead was to use - you guessed it - a computer

The setup works roughly like this: A computer terminal is situated in the centre of the 'lab' and is surrounded by 16 benches, each provided with an oscilloscope, a signal generator and other relevant test equipment and peripherals. Each bench also has a perspex case with several dozen sockets and LEDs in it. The student goes to the central console, tells the machine which bench he wishes to use and which logic elements he requires. He then goes to the bench and sticks labels on the perspex case. Each label is printed with the relevant logic symbol. By connecting patchcords between the sockets on the 'breadboard,' the student can build up a logic network. The LEDs indicate the state of the various outputs. Each of the boards also has various 'utilities' - several clocks, a random logic output and handswitches to provide inputs.
All of these functions are provided by the computer the sockets all lead into it's bus and it is the computer which drives the LEDs. This means that not only is there no possibility of the students damaging ICs which would then have to be replaced, but also that any component can be 'synthesised' - the department has even designed an imaginary CPU for use with the system.
The computer also calculates propagation delays - the students learn the pitfalls of race hazards in digital systems. It is even possible to simulate faulty components - as a fault-finding exercise. Another system (ex perimental as yet) can pretend to be linear components as well. Clearly the teaching possibilities offered by such a system are tremendous - what price blobboards now?

- Phil Cohen

Martin Cripps telling the machine what it's supposed to be!

What the students see. The wires disappear into the table - some conjuring trick!

Our thanks to Roy Francis and Martin Cripps of Imperial College for their time and trouble.

LOUDSPEAKER

PRINCIPIES

ON PAPER most loudspeakers look to be terrible pieces of design. Distortion averaging $1 \%-2 \%$ - and what's worse varying with frequency. Efficiency only rarely exceeding 1% - so that the vast majority of those carefully nurtured, 0.002% THD amplifier watts pumped in down those non-inductive $£ 10$ a metre cables turn into nice, safe, un-musical heat!

The purpose of any loudspeaker is to convert an incoming complex electrical signal into compressions and rarefactions in the air-sound waves - which can be perceived as being as close to the original signal as possible. The different methods now being used to realise this end form the basis of this article.

What Is Left Undone

You will find references throughout this article to frequency divider - crossover - networks. Unfortunately there is too much to be said on that subject to allow a full and proper treatment of it within this article, and we shall return to it in a companion article later.

Forgive us our evasion.
Loudspeakers of whatever variety interact crucially with the surroundings they are used in - the living room, studio or whatever. When judging performance it is vital to remember this, and even moving a speaker around in a room can significantly alter performance. Some manufacturers are becoming sensitive to this themselves - notably AR - and are producing designs specially tailored to a particular location, or allowing adjustment of output to suit varied positioning (AR 10π, AR9).

Such adjustments are generally carried out within the crossover network, and alter the electrical inputs to the units to compensate for specific emphasis placed on certain frequencies - usually the bass - by the loudspeakers position.

And What Is Not

We have concentrated on the major fundamentally different systems in commercial use today, and tried to explain how they operate what their advantages are, and what are their drawbacks. Many minor variations have been left out simply through lack of space. ".

Forgive us our omissions.
The types covered are:

1. Moving coil - and methods of loading
2. Electrostatic
3. Isodynamic
4. Ribbon
5. Piezo-electric
6. Motional Feedback Control

> Every hi-fi must have not one but two. Loudspeakers are perhaps the weakest link in the precarious hi-fi chain. Many methods of improving the sound we hear have been tried. Few have succeeded well enough to reach production. Ron Harris explains the innermost secrets of those that made it!

MOVING COIL

This system dominates the field at present, and is certain to do so for the forseeable future. The principle is an exact reverse of the microphone principle, and takes its being from the fact that a wire carrying a current 1 in a magnetic field of flux density B will experience a force, F. where

$$
F=B . I \cdot k \quad k=a \text { const } .
$$

A coil of wire carrying the audio is sited within an intense magnetic field, and is attached to a 'cone' as shown in the diagram. The cone is held in position by the edge suspension and 'spider'.

When a signal passes through the coil the force produced tries to push it out of the field in one direction or another, and this movement is transferred to the air by the movement of the cone. The suspension system provides a 'return-to-rest' force. This movement is related more or less linearly to the input as long as the coil remains within a constant field.

If it moves out, then the relationship will change, introducing non-linearity or distortion. For this reason large and powerful magnets are employed, which have as great a depth of field as possible.

Another solution is to use very long coils so that the number of turns of wire within the gap between the pole pieces remains relatively constant.

Basic schematic of moving coil loudspeaker. In practice the coil winding would be longer relative to the magnets, so that it did not move out of the field.

Heated Exchange

Heat is generated in the coil and must be conducted away, usually by the magnet assemblies and chassis. AR speakers now incorporate a heat conducting fluid which is present in the gap and the coil is immersed in this. Heat conduction is thus improved and power handling raised. The fluid also acts as a damper to aid movement control

The speaker chassis must be as rigid as possible, since the only reason the coil and cone move and it doesn't is that it weighs more! Any resonances present in the structure will act to transfer energy from the coil movement and hence distort the output.

Close-up of a voice coil. This is a machine wound unit belonging to a Bose driver. Note the winding is but ted very close to the edge of the paper former, and the precise nature of the winding necessary for linearity.

Cone-ventional?

The greatest drawback of this system is the cone itself. This is usually either doped paper or Bexetrene - an erstwhile packing material someone fell over once! It should act as a piston to the air, with the entire surface moving together to produce the required air movement.

However, since it is driven only at the centre, unless the material is possessed of infinite rigidity(!) flexing or

Cutaway photo of a moving coil unit - in this case a Bose driver. If you look carefully you should be able to identify the voice coil, magnet assembly, spider and cone assembly.
rippling will take place - once again deviating from the input signal. The larger the cone the worse the effect as the frequency rises, since the centre driven portion may well be oscillating with a period smaller than the time taken for the energy to be transmitted through the cone material to the outside edge.

Hence the centre of the cone leads the outside by a number of cycles, all of which appear as ripples in the cone. This is the reason for dividing up the incoming electrical signal, and for employing smaller coned drive units for higher, less energetic, frequencies.

To handle the high end of the audio spectrum, dome units have almost entirely replaced the coned variety, as they spread the sound more evenly, giving a better dispersion across the listening area. Also domes can be produced smaller, and a hemispherical dome, edge driven, will tend to act more as an integral surface than a centre driven cone.

Getting A Hangover

Since the cone has mass, and therefore inertia (Dr. Who excepted) it cannot respond instantaneously to changes in direction called for by changes in polarity of the electrical signal. This inability to get back in time is called 'overhang' and is another problem facing designers. To minimise it driver mass has to be as small as possible, while rigidity has to be as high as possible.

This has led over the years to many experiments with metal cones, mylar cones, polyester et etc etc. Anywhere other than bass units most of these have proved successful.

An integral part of a moving coil loudspeaker design is the method of housing the units, and thus putting an acoustic-loading upon the actual units. A brief discussion of the various methods is thus required at this point.

Housing Shortages

There are basically six methods of providing a home for drive units and at the same time augmenting its performance. These are:
(i) Finite Baffle
(ii) Acoustic Suspension (sometimes called Infinite Baffle)
(ii) Bass Reflex
(iv) Auxiliary Bass Radiator
(v) Transmission Line
(vi) Horn Loading

All of these apply primarily to moving coil units with the exception of horn loading which can be used to enhiance efficiency of several types. In order then:-

Finite Baffle

Since the vibrating cone is emitting sound waves in both directions, unless prevented the two waves will interact causing cancellation and reduction in acoustic output. The effect is reduced by placing the speaker in the centre of a large solid board to make it difficult for a compression produced in front to cancel the rarefaction produced behind the speaker.

Obviously an infinitely large piece of wood prevents this entirely, but such things don't grow on (ANY) trees(!?) and so the finite baffle is an attempt to do the best that can be done

Once the sound wavelength approaches the baffle size destructive interference takes place and response rolls off.

This method is responsible for those hardened enthusiasts mounting their bass units flush into walls and sides of houses!

Sinclair marketed a finite baffle speaker some years ago but this seems to have ceased to be.

Acoustic Suspension

Here the rear radiation from the units is (hopefully) entirely suppressed by totally enclosing the unit in a box, and radiating through a hole in that box (sounds odd when phrased like that eh?).

The AR9. Coming from one of the 'founder' manufacturers it represents Acoustic Researches state of the art. The cabinet is treated around the baffle with absorbtion material to prevent diffraction and re-radiation effects that lesser enclosures suffer from. It also stands an endearing 53in high!

Schematic of a Jordan Watts driver module. Numbers refer to: 1. Metal cone contoured to hyperbolic law. 2. Phase correcting dome. 3. Resistive termination to dome centre. 4. Resistive termination to cone edge. 5. Acoustic damping. 6. Direct input signal cable. 7. Coil completely immersed in magnetic field. 8. High efficiency "Feroba" magnet. 9. Resistive termination at junction of cone, coil and suspension. 10. Connections to coil via suspension. 11. Silvered berylium copper suspension cantilevers.

Damping of the cone movement occurs due to the compliance of the trapped air, and the suspension system now consists of both the actual cone suspension plus the air load.

In order to preserve bass response the enclosure should be fairly large and hence present a good air load allowing high levels of energy to be applied. Bass units designed for this type of loading have a high cone mass and high compliance. In addition they are generally of the long voice coil variety. The air load then applies most of the restoring force required by the design. Efficiency is reduced since the cone mass is increased and compliance (total) is low.

Bass Reflex

The aim of this method is to raise efficiency at low frequencies and thus decrease the required enclosure size for a given bass output. This is accomplished by addition of a vent, or port, in the front panel of the enclosure. This allows a controlled movement of air between cabinet and room. The effect of careful design of vent dimensions and placement is to produce an effective addition to bass response below a certain frequency, such that the air moving out of the vent aids the air movement produced by the bass driver.

Above the operating frequency the vent has no effect on performance (they hope).

Auxiliary Bass Radiator

Basically a variation on the above principle, but with the vent 'plugged' with a driverless unit or suspended mass. This is tuned to provide antiphase radiation in the required frequency band. Above this band the unit acts like part of the enclosure wall. Perfected and practised by Celestion, and perhaps epitomised by the Ditton 66 design.

The DQ10. This design makes use of what the makers term a 'phased array'. This means that the driver units are staggered so that their effective radiator 'points' are equi-distant from the listener which eliminates the time delay distortion (phase linear?) flat baffle designs are prone to. In addition each driver is mounted on its own optimum sized baffle to minimise diffraction problems.

Transmission Lines

This is another method of 'losing' the rear radiation of a drive unit, or making it think it is working into an infinitely long column. This is achieved by having a maze of woodwork inside the enclosure which is filled with graduated damping material. In this way total column length can be far greater than enclosure dimensions

If the far end of the column is open then help is afforded to the bass performance in much the same way as bass reflex cabinets

The design is usually for almost total absorption of the rear wave - and this leads to a gradual and smooth fall off in bass response due to the almost constant velocity working conditions for the cone.

Conversely to both acoustic suspension and basis reflex loading methods, transmission line methods lower the bass resonance of the drive units and hence enhance LF performance

IMF have championed this technique for long time passing now, and as exampled in their products transmission line bass possesses a 'solid' quantity totally different to that from the other methods. It is more extended and more realistic. Used in a large enough room there is no better way to replay the lower registers

Oh for a successful combination of transmission line bass and electrostatic HF!

The basic principle behind the transmission line speaker enclosure. The air from the rear of the cone gets 'lost' down the line.

KEFs 105 linear phase design. The upper two enclosures are rotatable to aid stereo imagery. Note the rounded edges to prevent re-radiation and the staggered drivers with respect to the listener.

Horn Loading

A method of designing to considerably reduce required driver excursion for a given acoustic output. The driving element is coupled to its air load by a gradually 'flaring throat - usually exponental in cross section

The horn converts the high pressure, low velocity sound energy present in the region of the driver into low pressure high velocity waves for propogation. The advantages of this type of loading are good damping of the driver, low distortion but a limited frequency response.

The Decca London ribbon unit, loaded by a caternoidal horn. The flare can be clearly seen in this photo leading down to the ribbon itself somewhere in that block at the back!

To design a single horn to cover the entire audio spectrum is a confused exercise, and one yielding impractical results for domestic use, since an exponential horn to reproduce 30 Hz has a mouth of 1.5 m diameter and is some 4 m long! Folding the horn back and forth within an enclosure can reduce dimensions, and the American firm Klipsch market units which employ the room walls as extensions of the horn to reach lower frequencies. Usually though, the system is used to load MF and HF units within a system.

Advantages of this principle are phenomenal efficiency $\approx 10 \%$ compared with 1% for bass reflex for bass reflex and 0.1% for transmission lines, and an attack unmatched by any. other cone driver recipies. -

ELECTROSTATIC

As we have seen the moving coil design suffers because the cone area is unevenly driven by the electrical music signal. The electrostatic principle, developed by both David Tombs and Peter Walker (of the Acoustical Manufacturing Company) is an attempt to produce a unit in which the entire surface of the unit is driven by the input signal.

At its most basic the design consists of two plates as shown in the diagram. The moveable plate is made to have as low a mass as possible and is so suspended that it cannot touch the fixed plate at any point in its travel. The fixed plate will usually in fact take the form of a etal 'mesh'. A high polarising voltage $\approx 5 \mathrm{kV}$ is applied between the plates, and the audio signal superimposed on this.

An electrostatic force-such as that which holds dust on to LPs and LPs onto turntables-is thus generated between the plates and the moveable one vibrates in sympathy with variation in the input signal.

A refinement of this is the push-pull system where the moving plate is situated between two fixed meshes as shown in the drawing. The polarising voltage is DC in nature, from a very high impedance source, and is of the order of 5 kV once again.

The outer plates (meshes) are fed from a step-up transformer connected to load the incoming signal. This applies a high voltage electrical AC signal to these plates (the music signal) and causes the center plate to move in sympathy with this. Distortion is greatly reduced using this push-pull arrangement and can equal 0.5% in a good design.

Scheme of operation for electrostatic loudspeakers. On the top we have the basic single ended design, and below that the commercially employed, much-improved push-pull scheme as employed by Quad and Koss amongst others.

This system first appeared on the market many many years ago in the form of the Quad electrostatic system-which remains largely unsurpassed for lack of colouration and mid-range clarity.

The advantage of driving the plate evenly over its whole area show up as a linear frequency response-no rippling or 'break-up' - very low distortion and a good transient performance due to low driver mass.

However this system does have inherent drawbacks. Consider the Quad system as an example. It is noted for its mid-range clarity and its high frequency accuracybut also for its lack of extreme bass and its beaming of top end signals-poor vertical dispersion.

The reason for this is its physical size. Since the push-pull radiator is by nature a dipole radiator-sound emitted both front and back, some cancellation at frequencies whose wavelength exceeds the plate dimension is inevitable.

The Quad is also very room sensitive for this same reason. Rear radiation can be dumped, but not without acoustically loading the plate-an undesirable excursion into non-linearity. At high frequencies there is low energy in the wave to absorb, and so this is easier to affect without adverse consequences on the drive plate.

KLH made a brave attempt to reach the theoretical size of plate for good bass response with their superb KLH9 full range units. These are almost exactly door sized-and you need two per channel! And they cost $£ 2000$ a pair. And they are probably unbeatable by any speaker on the market for sheer accuracy and delicacy. Their size endows them with a hefty bass punch too. Units to sell your soul for. (Anyone listening down there?)

Loading Problems

Another less serious drawback is that transformer into which the electrical signal is fed: This presents an awkward load to the amplifier, and can produce some nasty effects from transistor amps.

Modern designs however-Lecson, Quad and the rest, can cope perfectly and experience no traumas when presented with the wickedly reactive termination characteristic of electrostatic speakers.

Many attempts have been made to marry together electrostatic mid-high drivers with cone bass units. B\&W DM70 was perhaps the first (and the best!) but not have been entirely successful. Perhaps its simply that the superior distortion and colouration properties of the electrostatics will always show up the bass units!

ISODYNAMIC

With the release of the Stathearn 21000 speakers, and the new Wharfedale series incorporating Isodynamic tweeters, this approach is gaining ground. It certanly has a lot of promise, which we shall undoubtedly see exploited as time goes on.

The principle was pioneered by Wharfedale with their Isodynamic headphones some six years ago or so. It is really an attempt to gain the advantages of the electrostatic system, without the need for high voltages and attendant drawbacks.

A drive unit built to this principle consists of a thin sheet of mylar, or some such material, with a conductive track bonded onto it in a pattern which covers the surface in as symetrical manner as possible. This conductor acts as the voice coil of the speaker, and when an electrical signal is passed through it it responds to nearby magnets by moving the diaphragm in sympathy.

Once again colouration is low, and driver mass small-but also once again to obtain bass means large areas, and conductors capable of handling large currents. Strathearns units are above 500 Hz operators only and are transformer coupled to the input. Wharfedale employ their invention in high frequency units only.

A pity-but one we might see rectified sometime in the future.

Exploded view of the Whardedale Isodynamic tweeker. The driver plane - second from the rear - uses a material 25 microns thick with an etched aluminium circuit.

The $\mathbf{2 1 0 0 0}$ from all angles. At the top we have the full system. Below that the diagram shows the operating principle of the SLC1. The polyester diaphram acts as the speaker cone. Below this caption two internal views of the unit. The radiating areas can be seen in the top diagram, and the lower rear view illustrates the damping material to control rear radiation.

RIBBON

If we take the voice coil of moving coil speakers, and make this the active element, instead of the cone, we would do away with a lot of the causes of colouration in the process. Mass would be much smaller, break-up or rippling would be greatly reduced, if not eliminated and thus transient handling improved.

The ribbon loudspeaker does exactly this. A very thin metal 'ribbon' is suspended between the magnet pole faces and the signal passed through it. It will vibrate with the signal, and thus produce the sound output

Acoustic output is low, and horn loading is usually employed to alleviate this problem.

Once again obtaining bass is a major problem, and moving coil units will take over from the ribbon as the frequency decreases.

Decca market an excellent example of this principle, which operates above 2.5 kHz .

Decca's ribbon loudspeaker. This features a ribbon element one tenth the thickness of human hair, and is horn loaded to increase efficiency. An 'acoustic lens' can also be fitted to aid sound dispersion.

PIEZO-ELECTRIC

In the July 1976 edition of ETI we reviewed the Motrola KN 6006A, the first piezo-electric unit to be released commercially. Since that time many commercial loudspeaker enclosures have employed piezo-electric tweeters for their total insensitivity to crossover networks, phenominal transient response and clean subjective sound quality.

Piezo-electrics have been around in hi-fi for a long time now in the guise of crystal / ceramic cartridges. The principle of operation is based upon the fact that stress a piezo-electric crystal and a voltage proportional to the applied force is produced across its ends.

Conversely therefore if we apply a varying voltage across the ends of the crystal, mechanical deformation occurs, sympathetic to that voltage. No magnets aare required, and no coil is used.

In the Motorola design two thin slices of ceramic material-lead zirconite-lead titante in case it mak your life the fuller for knowng are epoxied onto a brass separator, and nickel electrodes deposited on to a facilitate connection. In order that the discs respond correctly to the input, they are polarised in opposite senses, so that on application of a common signal one disc expands and the other contracts-acting in the same direction therefore on the air load.

Pros

Since the impedence curve for the unit shows a steep rise in value with falling frequency, the unit does not need a crossover to reject low frequencies.

A perfect tweeter.
Since there is no voice coil or cone the driver mass is significantly lower than an equivalent conventional speaker.

Being composed of a ceramic material heat dissipa tion is less of a problem also, and the Motorola can stand 35 V RMS for protracted periods with no signs of distress.

Due to the nature of its impedence, it is difficult to compare efficiency with normal units, suffice it to say that 4V RMS produces 105d BA at 18 ins distance, and that this can be considered efficient!

Motorola's KN 6006 piezo-electric high frequency driver. The actual driver is the small section at the rear, and the horn is to increase acoustic efficiency.

. And Cons.

Some amplifiers may not like the load any more thán electrostatic units, but since these things are normally used with a good deal of attenuation and response shaping circuitry between them and the valued output stages this should not be too great a problem.

Subjectively these units have always sounded a little 'hard' to me, and never as smooth as a good dome unit like the Isophon or Celestion 2000 designs. Still personal taste and all that . .

Once again acoustic efficiency is low, and horn loading is employed.

Philips loudspeaker RH 544 Motional Feedback design. This unit incorporates a separate bass power amplifier, and a lower power amplifier for mid-high frequencies. Bass performance is enceptional for the tiny enclosure size, but other areas of output are undistinguished.

MOTIONAL FEEDBACK

Although this perhaps only a modification of earlier systems, the performance gains at LF are such that it warrants a closer look

Motional feedback is a form of feedback control of the driver cone in moving coil systems. The power amplifier are mounted with in the enclosure, a separate amp for each drive unit, and so signal feed is from a preamplifier. The system is marketed by Philips

The main advantage of this extra complication lies at the bottom end of the range where the output for given enclosure volume is considerably enhanced. The complication lies in the sensor fitted onto the driver

This is mounted on a small PCB and is a ceramic acceleration sensor. This generates a signal proportional to the actual driver output, and this is compared electronically to the incoming audio. Correction is applied to remove any errors present. Cross over is carried out at small signal level, and active filters with all their inherent superiority are applied

There is a 'slave' output which allows the enclosures to be stacked up to increase power handling and effective output.

ETI

This is one-eigth of the perfect speaker! Many experts consider that elusive device to consist of a pulsating sphere operating in free field conditions. Bose built this approximation to test pulse waveform response. From here sprung the excellent.Base 901 series III loudspeaker.

Marshall's
 Come and get a great deal Call in and see us-9-5.30 Mon-Fri 9-5:00 Sat Tel orders on credit sards $£ 10$ min. Trade and export enquiries welcome

A. Marshall (London) Lid., Dept. ETI. Head Office mail order; Kingsgate House, Kingsgate Place, NW6 4TA. Tel. 01 - 624 0805. Retail Sales London: $40-42$ Cricklewood Broadway, NW2 3ET. Tel. 01-452 0161/2. Telex 21492. London: 325 Edgware Road, W2. Tel. O1-723 4242. Glasgow: 85 West Regent Street, G2 20D. Tel 041-332 4133. Bristol: 1 Straits Parade, Fishponds Road, BS 16 2LX. Tel. 0272654201

CAR

tachometer

Abstract

We've been contemplating a digital car tacho, but have been put off by resolution and response speed problems. However this Phase Locked Loop design overcomes these quite neatly - so here it is!

WE HAD OFTEN considered the design of a digital tacho for automobile use, but had rejected several schemes as we were unable to get both good resolution and response time - the two seemed to provide a very good demonstration of Heisenberg's Uncertainty Principle.

Consequently, we were rather pleased when Mike Pratt of SM Electronics came to us with his phase-locked loop based design which got round the problem. Would we like to do it as a project, he asked? Obviously, we said yes, and here it is

This tacho features a fast response time, coupled with 10 Hz resolution, through the use of a phase locked loop frequency multiplier. It can be set up, by means of a single link, to work on 4, 6 or 8 cylinder motors.

Design Features

To measure the revolutions per minute of a motor is simply a matter of counting the number of ignition pulses over a given time. With a four-cylinder, four-stroke motor there is such a pulse twice per revolution. Therefore if we count these pulses for 30 seconds we will have revs / min with a one cycle resolution. Obviously this is much too long a sample period for practical use in a motor car and some compromise has to be made.

The usual solution is to use a 100 rev resolution and a sample time of 0.3 seconds (on 4 cylinders). We considered this inadequate which is why we have not published a design until now.

In this design an oscillator is used which is phase locked to the ignition pulses except at a higher frequency (x8 for 4 cylinder) allowing a short sample time $(0.375 \mathrm{sec})$ with a 10 rev resolution. By using a different multiplication factor compensation for different numbers of cylinders can be made. Unfortunately with the multiplication factors used ($x 8, \times 6$, $x 4$) the sample time for 6 cylinders is not exactly the same as that used for 4 and 8 cylinder motors. Altering the ratios to $\times 12, \times 8$ and $x 6$ would enable a 0.25 sample time to be used for all ranges, but this is not possible with the divider IC utilised in this design.

Construction

Assemble the PCB with the aid of the overlay ensuring the components are
orientated correctly. The tantalum capacitors normally have a + mark indicating the positive load, or a dot on the side. When soldering the CMOS ICs $(4,6,7)$ earth the tip of the soldering iron.

Note that there is one feedthrough or link between the two sides of the board near C10

Calibration

Initially place a link between the point ' C ' and the terminal corresponding to the number of cylinders. Now with the power supply connected feed a 50 Hz signal of between 12 and 30 V into the points input using the 0 V as common. Now adjust RV1 until the display reads 1500 RPM for 4 cylinders, 1000 for 6 or 750 for an eight cylinder car.

Fig. 2. Full circuit diagram for the digital car tacho unit.

-

ALARM-CHRONO WITH DUAL TIME

ONLY £34.95

This incredible watch is probably the most advanced of its kind. It offers the following functions:-
THE TIME gives hour. minute, sec, day, am or pm
THE CALENDAR gives hour, minute, day or date by your selection
DUAL TIME Time of any city of the world at your
choice.
ALARM sounds every day at set time until reset or cancelled.
CHRONO-TIMER up to 12 hrs .59 min .59 .9 secs and LAP TIMES as well
(Available in Stainless Steel or Gold Look)

KRAMER \& CO.

9 October Place, Holders Hill Road London NW4 1EJ, Telex: 888941 Mail order only. Callers by appointment

ETCH RESIST TRANSFER KIT SIZE 1:1

Complete kit 13 sheets 6 in $\times 4 \frac{1}{2}$ in £2.50 with all symbols for direct application to P.C. board. Individual sheets 25 p each. (1) Mixed Symbols (2) Lines 0.05 (3) Pads (4) Fish Plates and Connectors (5) 4 Lead and 3 Lead and Pads (6) DILS (7) BENDS 90* and 130 (8) $8-10-12$ T.O.5. Cans (9) Edge Connectors 0:15 (10) Edge Connectors 0.1 (11) Lines 0.02 (12) Bends 0.02 (13) Quad in Line
FRONT AND REAR PANEL TRANSFER SIGNS
All standard symbols and wording. Over 250 symbols, signs and words. Also available in reverse for perspex, etc Choice of colours, red blue, black, or white. Size of sheet $12 \mathrm{in} \times 9$ in. Price $£ 1$

GRAPHIC TRANSFERS

WITH SPACER

ACCESSORIES
Available also in reverse lettering, colours red, blue, black or white. Each sheet 12 in . $\times 9 \mathrm{in}$ contains capitals, lower case and numerals $1 / 8$ in kit or $1 / 4 \mathrm{in} \mathrm{kit}$. $£ 1$ complete. State size
All orders dispatched promptly. All post paid
Ex U.K. add 50p for air mail
Shop and Trade enquiries welcome Special Transfers made to order

E. R. NICHOLLS

P.C.B. TRANSFERS

Dept. HE/2
46 LOWFIELD ROAD STOCKPORT, CHES.061-480 2179

TAMTRONIK LTD (Deptet)

217 TOLLEND ROAD, TIPTON
WEST MIDLANDS, TEL: 021-557 9144

ONE STOP SHOPPING - P.C.B.E
Components, Hardware Cases. Part Kits, Full Kits. A complete service to the ETI Constructor
All Prices incl VAT, P\&P 30p per order.

POWER SUPPLIES

One more from Tim Orr. This time he takes us through a series of different methods for powering up circuits. On the way he explains the theory behind each.

THE JOB OF producing stable regulated power rails has been much simplified by the introduction (about seven years ago), of three terminal fixed voltage regulators. These devices can make the power supply design problem relatively simple, but even so the designer must be fully aware of a lot of other important details that can cause poor results. Firstly, consider a simple unregulated power supply, fig. 1.

Figure 1. Below: an unregulated power supply. Above: The output (with a load resistor).

The function of a mains isolating transformer is to physically separate the user end of a piece of equipment from the 'potentially' (!) lethal mains voltage. The transformer also provides a suitable voltage which can be rectified and smoothed and connected to a voltage regulator. This is the secondary voltage of a transformer and it is measured in VRMS at a particular loading.

That is, if the transformer is rated at 15 V at 10VA, then the output voltage will be 15 V when the load upon the transformer secondary is 10VA (10 watts).

If the load is removed the output voltage will rise. The percentage change from load to no load is known as the TRANSFORMER REGULATION and is typically of the order of 20%.

To convert the $\mathrm{V}_{\text {RMS }}$ voltage to a DC voltage it must be multiplied by 1.4142. Thus a 15 VRMS (loaded) transformer secondary will generate 21 V 2 DC when full wave rectified and smoothed, which will rise to 25 V 45 DC when the load is removed (assuming 20\% regulation see Fig. 1).

Thus care has to be taken when selecting a transformer such that the smoothing capacitor working voltage is not exceeded. Also, make certain that the polarity on this capacitor is correct, they can LITERALLY explode if wired up backwards!

[^1][^2]

When a load is placed upon the power supply shown above, the output voltage appears as a DC voltage on top of which is a ripple voltage. This can be thought of as two separate periods, a charge period where the capacitor is charged up by the power supply and a discharge period where the load discharges the capacitor.

This charging and discharging generates ripple voltage which has a period of $10 \mathrm{~ms}(100 \mathrm{~Hz})$. A load current of 100 mA , and a 100 U capacitor will result in a ripple voltage (Vpp) of about V7

As a rule of thumb I usually allow 1 to 1 V 5 maximum ripple if a voltage regulator is being used. This will generally result in an output ripple of less than 1 mV . If this ripple were to be obtained by just using a larger capacitor, then a 700,000U-capacitor would be required!

Generally the discharge period is much longer than the charge period. This means that the transformer is only supplying power for short periods, in fact during the charge period. During these periods the smoothing capacitor is rapidly charged, and it is quite common for these current surges to exceed several amps. This can cause mains BUZZ problems when laying out printed circuit board designs for power supplies.

The correct layout is shown below the circuit. If the current surge is $1 \mathbf{A}$ and the track resistance is $\mathbf{2 0}$ milliohms then the voltage developed will be 20 mV Pp.

Voltage regulators

A voltage regulator takes a varying unregulated input voltage and produces a fixed regulated output voltage. There is a wide range of fixed voltage three terminal regulators to choose from, with a choice of maximum current handling, output voltage and positive or negative operation. The data sheets for these devices contąin lots of seemingly complex pieces of information and so a glossary of terms is now included.

Ripple Rejection

The ratio of the ripple voltage at the rez slator input to that at the output, generally expressed in dB. Typically of the order of $60 \mathrm{~dB}(1000$ to 1$)$, that is 1 Vpp of ripple at the input ends up as 1 mVpp at the output.

Temperature Coefficient

The output voltage change for a change in regulator temperature, expressed in $\mathrm{mV} /{ }^{\circ} \mathrm{C}$.

Input Voltage range

The range of voltages over which the regulator will function normally. For example, a 12 V regulator may work from 14 V 5 to 30 V . At 14 V 5 the regulator will 'drop out' and lose its regulation. Regulators generally need 2 to 2 V 5 in excess of their output voltage. At 30 V the regulator will go 'pop' (time to buy a new one).

Output voltage

The voltage at the output terminal with respect to ground. Generally within $\pm 5 \%$ of stated value.

Line Regulation

The ratio of the change in the output voltage caused by a change in the input voltage, typically of the order of 0.2%.

Load Regulation

The output voltage change for a specific change in output load current.

Short Circuit Current

The output current when the output is shorted to ground.

Output Noise Voltage

The RMS noise voltage measured at the regulators output, not including any ripple.

Power Dissipation

The maximum power that the regulator can safely generate on a particular heatsink.

As a rule of thumb the regulator case should not exceed about $80^{\circ} \mathrm{C}$ (which is hot to touch). However, always run the device at as low a temperature as possible. It is thermal ageing that eventually kills electronic devices and for higher temperatures the ageing process is disproportionally faster.

Some applications of voltage regulators are given below.

The table below relates the secondary voltage of a transformer to the peak voltage at rated load and the off load voltage, which will be considerably higher.

TABLE ONE

V secondary at rated load	V peak at rated load	V peak off load transformer regulation 20\%
5 VRMS	7V07	8V48
6 VRMS	8V48	10 V 18
9 VRMS	12V72	15V26
10 VRMS	14V14	16V97
12 VRMS	16V97	20V36
15 VRMS	21 V 21	25V45
20 VRMS	28V28	33 V 93
25 VRMS	35V35	42V42
30 VRMS	42V43	50 V 92
35 VRMS	49V50	59 V 40
40 VRMS	56V57	67V88

T092
plastic
 or TO5 metal

(100mA rating)

TO5

metal

or

(200mA rating)

TO202
 TO220

 (500mA)

TO3
metal
(2A)

TO3
metai
(3A)

A)

This circuit shows a conventional arrangement of a three terminal device. It is advisable to use a decoupling capacitor connected close to the input terminals. This prevents high frequency instability. If this capacitor is left out then regulation can sometimes be greatly reduced. The decoupling capacitor on the output helps reduce the impedance at high frequencies, where the regulator loses its performance. For best results use a tantalum capacitor.

B)

The output voltage of a regulator can be increased by applying a voltage to the common terminal. This can be done by using a zener diode.

The output current can be increased by using a bypass transistor. The output current can be increased by using a bypass the current flowing through the voltage regulator exceeds 100 mA (the voltage across the 5 R6 being 560 mV), the bypass transistor begins to tum on. This transistor takes all currents in excess of 100 mA and yet the output still remains regulated. However a few extra components are needed to get current limiting in the transistor path.

D)

A high voltage unregulated supply can cause problems when using regulators. It may at times exceed the maximum voltage rating of the regulator. A simple voltage regulator D_{2} and 01 can be used to overcome this problem. D, should be chosen so that it is about 6V greater than the regulator output voltage. Inis technique has the added advantage that the power dissipated in the regulator is less (the rest being dissipated in Q1), and the regulator is presented with a semiregulated voltage, so the output will have less ripple.

Dual Power Supply

The circuit shows a complete regulated dual power supply. The unregulated rails are obtained from a split secondary transformer, bridge rectifier and two smoothing capacitors. A positive end a negative regulator have been used to generate the + and - rails. These regulators should be mounted on heat sinks
and they should be insulated. The pin out of the negative regulator is different to that of the positive regulator. The two diodes at the output prevent latching up situations (on load) whereby one side starts up faster than the other and forcibly reverse biases it, preventing it from operating.

Tracking Regulator

Instead of using a negative voltage regulator to obtain the negative rail, en op amp and a power transistor can be used. The resistor ratio, R1, R2 determines the negative rail voltage. The negative rail is not, however, current limited. The internal current limiting of the regulator is shown. When the load curren oxceeds the current limit, the output voltage drops to almost OV. This makes the regulator short circuit protected. Another type of current protection is known as 'FOLD BACK' current limiting (shown dotied). This serves to reduce the short circuit current. These devices protect the power supply from abuse. Another type of protection device is the overvoltage clamp, which

protects the 'non-power supply electronics' from an incresse in the power supply voltage. These are two terminal heavy current devices which are placed across the power supply. When the supply voltage exceeds a certain level a thyristor is triggered on and clamps the rail to ground. This is intended to pop a fuse and so disconnect the faulty power supply (which is better than replacing a $£ 1,000$ worth of IC's).

$$
\text { -ve output }=-(+ \text { ve output } \times R 2 / R 1)
$$

With foldback the short circuit power dissapated in the regulator is less than that with current limiting.

723 Voltage Regulator

The 723 is an industry 'standard' device. Many manufacturers produce it and the device itself is versatile. It comes in a 10 pin TO5 can or a 14 DIL pack. The device contains a precision voltage reference, with a temperature coefficient of $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, an error amplifier, an internal transistor capable of handling 100 mA and a current limiting mechanism. By using a few external resitors, a capacitor and maybe an external power transistor, a wide variety of regulator designs can be realised.

Left is shown the block diagram of the 723 regulator. As pinouts vary depending upon package, no pin numbers are shown.

Adjustable Positive Voltage Regulator

By using a variable feedback path (RVI), a variable regulated output voltage can be generated. The voltage reference is connected to the non-inverting input of the error amplifier and the output voltage (via RVI), to the inverting input. The error amplifier drives the output transistor and hence the output voltage is controHed by the feedback voltage from VR1. A 100pf. capacitor is used to stabilise the device. R1 is used as a current limit control. When the current through R1 (the load current), exceeds 100 mA a voltage of $\mathbf{5 6 0} \mathbf{m V}$ is set up across it. This is just about sufficient to turn on the current limiting transistor which in turn shorts out the regulating transistor, causing the output voltage to collapse towards OV.

Regulated Power Supply
Sometimes it is necessary to make a simple power supply using discrete components when a non-standard voltage is required.

Left: Circuit diagram of discrete component PSU. Voltage measurements are taken with high impedance voltmeter.

The circuit shown uses all the basic elements of a voltage regulator, that is, a reference voltage Z 1 , an error amplifier and a series control Transistor 01. The zener diode, $\mathbf{Z 1}$ sets up a reference voltage of 5V1. This diode has a temperature coefficient of $-1.2 \mathrm{mV} /{ }^{\circ} \mathrm{C}\left(\mathrm{a} 5 \mathrm{~V} 6\right.$ zener is best at $\left.-0.2 \mathrm{mV} /{ }^{\circ} \mathrm{C}\right)$. The resistor ratio of R3 and R2 sets the output voltage and the op amp provides the error correction (the regulation).

C1 is used to reduce the output impedance at high frequencies. The zener diode has a slope resistance of 76Ω, and so any fluctuations in the unregulated rail will be attenuated by the ratio of 76:7:0.016
R1 4700
Therefore a 1 Vpp ripple will end up as 16 mV pp, but will be multiplied by the gain of the R3, R2 network to nearly 50 mV .

Improved Regulated power supply

This power supply has various improvements over that shown. The reference zener $\mathbf{Z 2}$ is run at almost constant current by the R12, $01 \mathrm{Z1}$ network. This makes $\mathrm{Z2}$ much less sensitive to ripple and unregulated supply fluctuations. The filter R3 C1 (7 HZ low pass), further reduces any ripple voltage and noise from the zener diode. The preset VR1 allows the output voltage to be varied.

If a precision power supply is required then a precision voltage reference should be used. These can be obtained with temperature coefficients as low as $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. When using this level of stability, high stability resistors (TC=10ppm/ $/{ }^{\circ} \mathrm{C}$), and a low drift op amp should be used. Also, to reduce mains carried interference (mainly sharp clicks due to electric motors and thyristors turining on), a mains filter should' be used. This is a passive inductor capacitor low pass filter network which attenuates high frequency spikes and clicks.

ㅌT

Hewhrdet in 2 R3 difitiomhimeter.
 3/2digits...6 finctions...fullyportable...

Under 550

The DM 235 incorporates the most important features of a bench-top meter into a rugged yet lightweight instrument for true portability. High accuracy, resolution and input impedance mean superior performance to analogue meters - but at a price significantly lower than many. The DM235's design and specification makes it ideal for all but the most demanding applications.
Big, bright, unambiguous display
Full $31 / 2$ digit display, reading to ± 1999. 8 mm LEDs, ultra wide angle of view.

Six functions, 26 ranges

DC Volts............................ 1 mV to 1000 V AC Volts........................... 1 mV to 750 V DC Current.............................. $\mu \mathrm{A}$ to 1 A
ACCurrent............................... $1 \mu \mathrm{~A}$ to 1 A
Resistance $\ldots .1 \Omega$ to $20 \mathrm{M} \Omega$
Diode test.......................... $0.1 \mu \mathrm{~A}$ to 1 mA
$10 \mathrm{M} \Omega$ input impedance.

High accuracy

Basic accuracy of 0.5% (2V DC range). Other DC ranges and Resistance 1.0\%. AC ranges $1.5 \% 30 \mathrm{HZ}-10 \mathrm{kHz}$
Easy to use, by anyone, anywhere Automatic polarity operation, automatic decimal point placement, automatic out-of-range indication.

Lightweight but strong

High-impact moulded ABS case, size 10 in $\times 5.8 \mathrm{in} \times 1.6 \mathrm{in}$. Weight less than $1^{1 / 2} \mathrm{lb}$. Basic operation from disposable cells, for independence from AC supply.
Line operation available via optional AC charger/adaptor.
A full range of optional accessories DM235 meter complete with test leads and prods.
£ 49.80
AC adaptor/charger $240 \mathrm{~V} 50 \mathrm{HZ} \ldots \ldots . \ldots .50$
Eveready carrying case with lead stowage compartment....................£8. 50
Rechargeable battery units............. $£ 8.00$
30 KV high voltage probe.............. $£ 15.00$
(All prices subject to $8 \% V A T$)
Find out more!
Sinclair Radionics are one of the world's largest producers of digital multimeters the DM235 embodies over seven years' expereince. It comes with a full 12 month guarantee. If you'd like to know more about the DM235, send the coupon below. We'll send all the facts (and a list of distributors) by return.

Sinclair Radionics Ltd,StIves, Huntingdon, Cambs., PE17 4HJ.

World leaders in fingertip electronics

```
To: Sinclair Radionics Ltd, St Ives,
    Huntingdon, Cambs., PE17 4HJ
    Please send me full illustrated
    details of the new Sinclair DM235.
Name
Position
Company
\(\longrightarrow\)
Address
```


The Micro-Digital " own-brand" C15 Cassette means high quality, specially made for your micro-computer.

* Tape made against DIN reference tape 45513/16 C 528 V with anti-static carbon additive.
* Five screw case fixing and transport mechanism using precision stainless steel roller axles.
* Two special graphite impregnated slip shields guide tape edges to prevent pack scramble and dispel residual static.
.. matemem 4.75 mat

MICRODIGITALLTD
 25 Brunswick St., Liverpool L2 0BJ. Tel: 051-2360707

DIGITAL MODULE

*4 digit *up/down counting *drives LEDs directly *latth *presettable *5econd register *equal and zero outputs *DC to 2 mHz *5 V operation

THE THREE DIGIT display we previously published has proved to be one of our most popular projects. We have used it in a number of projects and we know of several commercial companies using it in their own equipment.

Many people have asked us for a 4 digit version and we have been looking round at ICs available. We have chosen this Intersil device because we believe it offers the best versatility at the moment. Apart from being a 4 -digit counter-latch-decoder driver needing no external components except the displays, it also is an up-down counter and can be preset to any number. In addition, it has a separate register which also can be set to any number and comparators which give outputs when the counter is equal to the register and when it is zero - all in one IC!

Mod Build

The unit is built on two small PCBs which are connected together with short links of tinned copper wire. Be careful to orientate the IC correctly as it is expensive!

The preset system is designed to use a 4 digit $B C D$ thumbwheel switch

Fig 1. Full circuit diagram of the counter module. The How It Works section for this is given overleaf - but as this is really. a "How To Use It" section it don't matter - does it?

LSPECIFICATION-	
Number of digits	4
Readout	LED
Maximum frequency	2 MHz
Input impedance	100 k
Output drive Supply voltage	1 TTL load
Supply current low power mode all eights	$4.5-5.5 \mathrm{~V}$
	$500 \mu \mathrm{~A}$.

(closed $=1^{\prime}$) but individual switches can be used if required. Input is in $B C D$, therefore the switches will have the weighted values $8,4,2$ and 1 . If the preset is not needed then the diodes can be left out. If a preset is needed, but always to a fixed number, links can be inserted to replace the "on" switches and the other diodes left out

ETI

Fig. 2. The positioning of the displays and the links which must be installed before the displays.

Fig. 3. The component overlay for the main board. The common connection from each of the thumbwheel switches goes to the track next to the other connections.

Full patterns for the digital module project. Shown full size. B oard C - above is to fit high brightness displays such as employed in our digital dial project.

HOW IT WORKS

Count Input - Pin 8

The counter is incremented or decremented on the leading edge of this input. A schmitt trigger is provided with a 500 mV hysteresis on a 2 V trigger point. For high speed operation, or operation from a digital output, delete R2 and C1 and short out R1. Maximum frequency of operation is about 2 MHz .

Up-Down - Pin 10

If this pin is left open or taken to +5 V the counter will be incremented by the count input. If it is taken to 0 V the counter will be decremented by the count input.

Reset - Pin 14

If this pin is left open or taken to +5 V the counter is free to be incremented or decremented. If it is taken to 0 V the counters will be reset to zero and held there until reset is taken high again

Store - Pin 9

Ig this input is left open or taken to +5 V the latches are "closed" and the information which was in the counters at the time the store input went high will be remembered, decoded and displayed. The counters can be reset, incremented or decremented without affecting the display.

If it is taken to 0 V the counter contents will continuously be displayed for as long as this input is at 0 V . Any change in the counter contents will be shown on the display.

Load Counter - Pin 12

This is a 3 level input. If it is left open the counter works normally. If it is taken to +5 V the counter is loaded with the BCD data which is set on the thumbwheel switches. If the latch is open, this number will also be displayed. If this input is taken to 0 V the BCD I/O pins become high impedance. If a 3 level input is to be controlled by other logic outputs they must be tristate devices.

Load Register - Pin 11

This is also a 3 level input. If it is left open the counter works normally. If it is taken to +5 V the register is loaded with the BCD data. If taken to 0 V the circuit goes to a low power state with the multiplexing oscillator stopped, the display off and the BCD I/O pins in a high impedance state. The operation of the counter is unaffected except that there is no display.

BUYLINES

Since this project is based entirely upon the one chip-ICM 7217A this is all there is to cause problems! Since it appears in most peoples catalogues we cannot foresee any trouble here. Displays can be any type really - but for outdoor work use high brightness types.

PROJECT: Digital Module

Display Control - Pin 20

This is also a 3 level input. If it is left open, leading edge blanking occurs. If all digits are zero then all are blanked. If it is con nected to +5 V the display is completely blanked irrespective of the value. If taken to 0 V all digits are ON irrespective of value.

Scan - Pin 13

The internal multiplexing frequency is nominally 10 kHz giving a digit repetition rate of 2.5 kHz . With a 20 pF capacitor from this point to 0 V the frequency drops to 5 kHz and with 90 pF it is about 1 kHz .

BCD I/O - Pin 4-7

This is a multiplexed data port, normally an output which can drive 1 TTL load. It becomes an input when either LC or LR is at +5 V . Pin 7 is the least significant bit.

Digit Drives - Pins 15-18
These are used both to drive the LEDs and to provide data indicating which digit is being presented at the BCD I/O port. Pin 18 is the least significant digit

Zero - Pin 2

If the value of the counter is zero this output will be at 0 V .

Equal - Pin 3

If the value of the counter is equal to the value of the register this output will be at 0 V

Carry/Borrow - Pin 1

When the counter goes from 9999 to 0000 or from 0000 to 9999 a 500 ns positive pulse occurs on this output. This is connected to the count input of a second unit when an eight digit display is needed.

PARTS LIST

RESISTORS (all $1 / 2$ W 5%)

R1	100 k
R2	1 M

CAPACITORS

C1
C2
$3 n$ polyester
C2 1 u 035 V tantalum

SEMICONDUCTORS

C1-D16
CM 7217A
1N914
DISPLAYS DL704

SAME AS ETI OFFER 5FUNGTION LCO Hours, mins. secs. month. date auto calendar. back-light. quality metal bracelel. $£ 7.65$ Guaranteed same day despatch 6 mm thick.		* QUARTZ LCD ALARM * Snooze + backlight. Batteries last 1 year approx. Includes batteries and travel pouch. Excellent value £17.65 Guaranteed same day despatch	thousands sold 11 FUNCTION SLIM CHRONO 6 diqit 11 functions Heurs, mins. secs. Oay. dale. day ol week. $=1 / 100.1 / 10$. secs. $10 x$ secs. mins. Splii and lap modes. Back light, auto calendar. * Only 8 monn thick. This same watch is being solo tor $£ 22.00$ in newspaper and mapazine special offer ads. Metac Price £12.65 Guaranteed same day despatch
SEIKO SUPERIOR WATCHES World famous piercing alarm chronograph Please ring for delivery details ALARM CHRONO List price £130 Metac Price $£ 98$	SEIKO S U P ER I O R WATCHES Please ring for delivery details CHRONOGRAPH List price £85 METAC PRICE £68	SEIKO SUPERIOR WATCHES 6 digit, 7 function watch with 4 alarms \& volume control. Please ring for delivery details. MULTIPLE ALARM List price £120 METAC PRICE $£ 98$	SEIKO SUPERIOR WATCHES Full spec. calculator +6 function watch Please ring for delivery details. CALCULATOR WATCH List price £165 METAC PRICE £125
HANIMEX Electronic LED Alarm Clock Same as ETI offer Thousánds sold	Guaranteed same day despatch	LADIES LCD Only $25 \times 20 \mathrm{~mm}$ and 6 mm thich. 5 functian: hours. mins. secs. day. date. + back light and auto cal. Elegant motal bracelet in silvar or gold. State pralerence. £10.95 Guaranteed same day despatch	6 digit 7 func tions + penet rating alarm. Hours Mins Secs Day: Date Alpha Day Year. Back light +200 year calendar. ONLY £21.95
Feature and Specification - Hour / minute display * Large LED display with p.m. and alarm on indicator * 24 Hours aiarm with on-off control - Display flashing for power loss indication - Repeatable 9-minute snooze * Display brighi/dim modes control Size $5.15 \times 3.93 \times 2.36(131 \mathrm{~mm} \times 100 \mathrm{~mm}$ $\times 60 \mathrm{~mm}$). Weight: $1.43 \mathrm{lbs}(0.65 \mathrm{~kg})$ Guaranteed same day despatch	THE METAC DIGITAL CLOCK * COMPLETE KIT * Pleisant green display - $12 / 24$ Hour readout Silent Synchronous Accuracy - Fully electronic Pulsating colon - Push-bulton sotting Building time I Hr - Atractive acrylic case Easy-to-follow instructions - Size $10.5 \times 5.7 \times 8 \mathrm{~cm}$ Ready drilled PCB to accept components PRICE £6.65	MICRO CASSETTE megorder Hand heid only $21 / 2 \times 5 x$ 1/e inch. Identical to well known models being sold at $£ 35$ OUR PRICE £24	SINCLAIR SCIENTIFIC PROGRAMMABLE + Iree program library worth $£ 4.00$ only $£ 11.65$ from metac
All products carry full 12 months guarantee. Please add $30 p \mathrm{p} \& \mathrm{p}$ with all orders. All prices include VAT. Shops open 9.30 to 6.00 daily. Irade enquiries welcome. Delivery: One week. Except where same day delivery is stated.	COMPONENTS 2N3055 transistors 50 p . 2 inch LED's, red $12 p$ green $15 p$ yellow 15 p orange $15 p$ $\overline{\mathrm{DL}} \overline{704}$ displays 80 p DL 707 displays 80 p Watch batteries 70p (state type) Mercury tilt switches 50p Crystal mic. inserts 50p Also useful for sonic applications and sound transmitters (buzzers etc)	GENUINE SOLAR CHRONOGRAPH £16.95 6 digit, 11 function. Hours: Min Secs 1/100 1/10 Secs Mins Split \& lap modes, Auto cal + back light. Powered from solar panel with battery back-up.	Black \& white £8.95 Colouri £12.95. 4 games, 2 ball speeds, 2 ball angles, 2 bat sizes.
Buy it with Access ${ }^{\text {Acess }}$ (67 HIG		ronics \& Time Centr GWARE ROAD N W2 Barclay 8 Access 7234753 Phone or Send Card with	(BARCLAYCARO

METAL DETECTOR * Visual meter with * Distinguishes be copper, bronze an bottle toos, etc - Range up to 10 in Three feet for larg - Battery lasts 50 h * Volume \& tuning METAC PRICE	LCD CLOCK RADIO GT-7801 MW/FM earphone gives minimum $15,000 \mathrm{hrs}$. battery life alarm 3×1. Features Wake to music or zones, stop watch function, time lock-on/ oft. back light. $190 \times 97 \times 43 \mathrm{~mm}$. METAC PRICE $£ \mathbf{2 2 . 9 5}$	FLUORESCENT dISPLAY CLOCK RADIO - Mains operated - Soft glow green display - MW/FM radio - Programmath 9 min . snooze feature - Programmable play-to-sleep setting METAC PRICE ONLY £19.95	DIGITAL LED CLOCK * Automatic brightness control \star Weekend alarm cancel * 9 minute snooze alarm our price $£ 10.95$
	military STYLE RADIO Medium wave. Long battery life Good sound reproduction SPECIAL OFFER $£ 2.45$	CASIO SPORTS WATCH Model F-100 Black plastic case. (Epoxy based glass filled nylon.) Stopwatch. 11 functions. METAC DISCOUNT PRICE $£ 23.95$	CASIO CHRONOGRAPH 45CS-22B £49.95 CASIO WORLD TIME WATCH 29cs-11B £59.95
METAL DETECTOR BFO Principal Audiíle indication Telescopic stem Ideal for beginners	CBM ALARM WATCH Superb 6 digit, 8 function alarm watch. with snooze repeater and conference warning bleep. before alarm sounds giving option to cancel). Hours - Mins. - Secs. Dax Date - Month . Back Light Auto Call. Top quality 'CBM finish metac price $£ 29.95$	CBM EXTRA LARGE DIGIT 5 FUNCTION LCD * Hours mins secs - Month date Auto - Back-light * Real leather strap * Big digits in a slim 9 mm * Digits 50\% larger than all other watches. METAC SPECIAL OFFER £9.95	
but also excellent for finding hidden pipes and wires ONLY £11.95	RADIO CONT A fabulous new toy will give hours of fun. Forward and reversing controls. Outdoor range 150 ft Indoor range 50 ft . A scale model of Bertonis famous Lancia sports car. List price as sold in well-known mail order catalogues and top stores. £16. METAC SPECIAL CHRISTMAS PROMOTION OFFER £11.95	ROLLED CAR	AQ-1000 CALCULATING ALARM CLOCK PLUS 3-WAY STOPWATCH * Catculator with \%, y 8 memery. - Cantinuous clock win * His. mins, secs, day, month. day ol week - Alarm Stop-watch with $1 / 10$ secs io 10 mows + lap ad split-time moder. Ist and 2ad. * betteriss issi I yoar contimusus operation - Complete with leatherette wat UST PRICE £21.95 metac special exclusive price £19.95 Cannol be tound cheaper anywhere thas
GOOD QUALITY CALCULATOR MODEL 3000 $x++$ - memory constant, per cent, digits with red display. disla METAC SPECIAL OFFER $£ 3.95$	ALARM CHRONOGRAPH WITH DUAL TIME ZONE FACILITY - Constant LCD display of hours and minutes plus optional seconds or date display, plus day of the week and $\mathrm{am} / \mathrm{pm}$ indication. date, month calendar; day 4 hour alarm with on off indication. 1/100 second chronolap and first and second place times - Dual time zone facility Night light.	Telephone Special 24-hour phone service Credit-card customers are welcome to buy by phone simply phone 01-723 4753 with your credit-card number to place your order. - Fully adjustable bracele1 Please note Metac are probably the only people with this watch in stock. A very good alarm watch. METAC PRICE ONLY $£ 29.95$	PLEASE NOTE All our products carry full money back 10 -day reassurance. Watches are despatched by FIRST-CLASS POST. They are fitted with new batteries, and infitted with new batteries, clude guarantee and instructions. Battery fitting service is available at our shops for no extra charge. We stock most watch batteries and this service is available to all. Metac have been selling electronic watches probably longer than anyone else in the UK. We take care of your watch not just this year but next year and the years after that.
		tronics \& Time Centre gWare road NW W Barclay \& Access w) 7234753 Phone or Send Card with or	(\%ARCLAYCARO)

A HISTORY OF ElECTRONICS \mathbb{N} MEDICINE

THE USE OF ELECTRICITY FOR medical purposes dates back to the Ancient Greeks who used the electric eel to treat various maladies. In 1759 Wesley collected case histories of the use of electricity. The first recorded use of electricity for treatment in a hospital in London was in 1767.

Not quite 200 years ago, in 1786 to be precise, Professor Luigi Galvani - an anatomist at the University of Bologna, Italy - discovered by chance that the muscles of a dead frog contracted under the influence of an electrical quantity.

He wrongly assumed that animal electricity stored with in the muscle caused this to happen. It was, in fact, the result of dissimilar metals forming a primary electric cell which energised the nerves of the muscle. Volta of the University of Paris proved it and subsequently gave the world the voltaic battery, in 1800.

The contribution of these two men provided, in the simple primary cell, a workable basis for using electricity in practical ways not previously possible with the electro-static form of electricity. Galvani's work on "animal fluid" was amongst the earliest electro-medical studies. The apparatus he used was crude by today's standards - see Fig. 1.

Fig". 2. Apparatus used by McKendrick to give lectures on life in motion to Royal Institution, London, audiences around 1890.

Fig. 1. Artist's idea of Galvani experimenting with frogs' legs in the 1780s. Note the friction
electrostatic generator on the left and the Leyden jar on the right (Funk and Wagnells).

Body Electric?

Research into physiological electric quantities gradually became more sophisticated as the 19th century passed. This development, however, had to wait for suitable experimental inventions such as the electromagnetic galvanometer which became available in its crudest form around 1830. A typical laboratory electromedical instrumentation set-up of the 1890s is shown in Fig 2. A smoked glass plate moved steadily across the end of a mechanical pen secured to the end of a frog's leg muscle. The muscle was energised by high-voltage generated from a vibration induction coil which was energised by a chromate primary single cell of the Grenet kind. Smoked screen recorders are still in use today in some medical research measurements, blood flow parameters being one example.

The sphygmometrograph (as a pulse measuring instrument was known in that time) was originated by Marey in 1860. A later design by Verdin is shown in Fig 3. Electronic method was little used in medicine in early times, as powerful electric signal amplification was not obtainable until the beginning of the 20th century -

Electricity has long been used for medical purposes, here's the story of the past and a look into the future. By Peter Sydenham.

Fig. 3. Verdin's apparatus of the $\mathbf{1 8 9 0}$ for recording action of the pulse.

Fig. 4. Schematic of McKendrick's 1891 method for measuring heat generation in muscle.
when the thermionic valve was invented by Fleming (in 1904).

Figure 4 shows experimental equipment for measuring heat production of muscular contraction around 1880. Thermocouples, forming a thermopile, drive the crude galvanometer.

Ion Therapy

Another aspect of medicine where electricity is used is for therapeutic treatment. Since the very early 1800 s output of the various kinds of electric current generator, namely the Faraday induction coil, the galvanic chemical battery, the sinewave rotating generator and the friction statical generator have been applied to appropriate parts of the body to provide a cure for all sorts of ailments.

X-ray equipment was born in $18 \overline{95}$ when Roentgen discovered X-rays in a chance situation using photographic plates. There is probably no case in instrument history where application was more rapid. Edison, and others, had equipment in use in hospitals within months. Figure 5 shows contemporary American X-ray plant of 1899.

Measurement and recording of heart performance also began around 1900. Professor Einthoven of Holland devised a rapid response, high sensitivity detection instrument in 1903 - the string galvanometer. Soon after this was coupled to a photographic recording system, by the Cambridge Instrument Co., to produce an electrocardiograph. The first installation of this was made in 1909. By 1945 cardiographs were available in portable form. Figure 6 shows the interior of a 1930 s . Both Brothers portable electro-cardiograph invented and made in Adelaide, South Australia - possibly one of the first portable units devised anywhere. It used a loud speaker drive unit (right) to mark a rotating smoked disk.

The record was viewed by the physician using an optical magnifier. Amplification to drive the stylus from skin electrode signals was obtained by thermionic tubes.

As with all disciplines, electronic method opened the door to new accomplishments. In medical electronics it happened from the 1920s onward. Equipment for researching physiology at Oxford University, in 1949 is shown in Fig 7 The unit, advanced for its time, incorporated amplifiers, a temperature control unit, stimulators to induce responses, a time base and a cathode ray tube display unit.

Electronic equipment used in medicine has come a long way during the past 50 years. This can be seen by comparing the apparatus pictured above, which covers the 1800s to 1930s period, with modern equipment such as that used in pathological testing and nuclear medicine.

Future

Against this background let me now suggest developments we can expect to experience over the next quarter century.

Fig. 5. Complete X-ray apparatus in use in America around 1900. Note the lack of safety devices and precautions.

Fig. 6. Interior view of a Both portable electro-cardiograph machine made in Adelaide around 1930.

Fig. 7. E Electro-physiological research equipment used by Dickinson at Oxford University in 1949.

Monitoring

The largest proportion of electro-medical equipment is concerned with measurement; for detection of abnormal states. At present comparatively few of the incredibly great range of medical measurements needed can be made in situ on the body and without disturbing its functions. Samples of tissue, blood, urine, etc. are removed for analysis in the pathological laboratory. This process, although performed faster today than ever before, can still take several hours before a diagnosis is available to the physician in order that he or she can decide corrective action. Analysers now exist that handle many measurements of a sample entirely automatically once the sample is loaded into the analyser. But the sample must first be extracted from the body and then be transported to the machine, processes which consume time and in some circumstances alter the sample from its original state

It is realistic to expect the transport step to be eliminated in the future with most local clinics having their own units for analysis of samples. The next stage in progress will come about by the invention of units that measure parameters such as blood count, albumin, etc, by contact externally to a suitable vein or artery. Direct measurement like this would also provide more accurate measurement as the blood would be in its normal working state. Furthermore, it would then be possible rapidly to optimize drug dosage and to investigate changes in parameters as they happen. The concept of in-situ measurement will apply to numerous other tests.

In special cases some people have already been equipped with sensors of critical body parameters. The outputs are telemetered to a remote observer. Examples of this are in space-medicine, in fitness studies and in a few heart disease cases

Microbody

Considering the low-cost data processing power already available, and coupling this with inexpensive micro-miniature sensors we can expect to see developed in the future, it is possible that individuals will one day be able to obtain self-monitors that provide warning when body parameters exceed allowable limits

Better measurements always leads to better control. As an example, respiratory tract problems, such as hay fever and asthma, are hard to combat effectively because of the lack of detailed data about each individual's characteristics in the various circumstances encountered. Not all people are allergic to the same pollens - we could benefit greatly if an easy way existed that determined the allergic pollens involved

At present, a pollen count is usually taken by drawing the ambient air over a sticky surface for many minutes hours sometimes. The surface is then observed with a microscope, the technician counting all pollen grains together to obtain the total pollen count. This process is now sometimes carried out using computer-controlled video TV camera systems, but the systems are still barely able to group the various kinds of pollen grain. (They are typically a micrometre in diameter or smaller - counts of a few grains per cubic metre can cause unwanted symptoms.)

A development that could help is a sensor that provides a virtually instant count of the individual kinds of pollen grain present - a real-time sampling analyser.

With such a device the sufferer could test for the hostile situation before symptoms arise and take remedial action in time. Technologically such an instrument appears feasible. It is, however, cost and physical size that holds up its development and its practical everyday use at present.

A likely parallel already existing is the Coulter counter that analyses the size and number of cells in a blood sample. Blood-cell counting of several years ago required the blood to be smeared on a microscope slide and the cells counted by eye under a microscope. Today the machine makes the measurements in a few seconds by counting particles as they pass a small orifice - but it is neither portable nor inexpensive. Figure 8 shows a Coulter counter installation as used in the larger pathological laboratories.

Development of personal monitors will almost certainly pass first through a telemetry method in which a central computer processes the data, perhaps with the help of the trained physician to begin with. A direct self-contained method will then be developed in which the specific data processing requirements that have emerged from experience, are integrated into the unit.

Sensors

The human body is a vastly complicated chemical process plant. It has sensors feeding information to the brain for central processing. In turn, the brain sends signals to actuators - the muscles which cause the body to function and to do work. Nerves are the hardwired data channels for receiving and sending control information.

Slight deficiencies in the senses of sight and hearing have been aided using instruments - spectacles and hearing aids. The latter began as acoustic horns which provided sound pressure gain without active amplification. The advent of the telephone led to amplifierless hearing aids in the 1900's which used several mouthpieces coupled to the ear pieces (Fig 9). Then came electronic units which provided active signal gain from miniature thermionic tubes. Today we have integrated semi-conductor circuitry. We have still a way to go, however, before we are able to compensate for a failed action of the inner ear mechanism.

Vision, until very recently, was aided only by optical lens compensation. But this applies only where the eye is still largely operative as an optical-to-electrical transducer. Quite recently experiments have been reported in which a miniature video camera provides electronic signals that drive cells in the brain to provide illusion of sight. The method is still crude compared with the performance of natural process. Given time for research it seems reasonable to assume that quite compact and useful artificial eyes will soon be available for blind people. Bionic man is not so fantastic! Interestingly, once the bionic eye is developed it is an easy matter to provide greater than natural visual acuity and to offer sensitivity to other than the visible light band - infra-red for instance.

Providing electronic replacements for the sense of smell will most likely be a much later development. We know too little about the olfactory senses and have no really compact and cheap smell sensors at this time to expect great progress to occur in the near future.

Fig. 8. Coulter counter unit of today that analyses blood sample particles providing a printout (IMUS, Adelaide).

Fig. 9. 1900 's hearing aid. The three receivers, which fit into the case, provide signal to the two earpieces. No active amplifier was involved. (Birdwood Mill Museum, S.A)

Animals, such as dogs, possess a sense of smell vastly much more sensitive than humans. Ants track each other by a scent trail! Yet man has not yet produced small and inexpensive chemical analysers (smell is a largely chemical process) that can meet the complex sensing requirements of smell detection.

Scanners

X-ray and nucleonic diagnostic methods have the valuable feature that certain internal structures of the body can be seen. But all such methods lack the spatial resolution we obtain by visual examination with the unaided eye or through a microscope. A nuclear radiation source set-up within the body privides a rather diffuse output picture. Resolution is improved by increasing the number of individual elements at the sensing stage. The gamma camera, for example, provides two-dimensional pictures using over thirty scintillometers connected in such a way as to provide many more picture elements. The latest development senses the body area by scanning multiple sensors thereby collecting yet more data in a given time. Sophisticated processing is then used to provide video screen outputs which contain much more useful information than ever before. Similar techniques apply to X-ray, nucleonic and ultrasonic signal transmission. Now that vastly more powerful data processing capability exists the future development will be to incorporate many more sensors of the same kind and make more effective use of three-dimensional data. Other variables, such as, say, thermal emission will also be incorporated along with systematic experience gained into the processing, all this to providing data conversion for a more meaningful measurement process.

Surgery

Electrical methods in surgery traditionally include endoscopes with which to see into inaccessible places and cauterizing probes for sealing blood flow, cutting and destroying cells where need be. The recent introduction of the laser as a cutting tool has most valuable properties. Selection of the appropriate wavelength decides which kind of body tissue will be cut. For example, it is possible to weld the retina of the eye through the pupil without need for surgery. The radiation is only absorbed by retinal material, the pupil and fluid of the eye ball being transparent to the wavelength used.

The selective property of narrow-band radiation will enable some highly precise surgical operations in the future. An operation might go as follows: a rigid framework holds the patient fixed with respect to an $x-y-z$ translating pulsed laser operating head. Wired to the control unit of the translator are electrodes fixed to the body. These sense when low-power sensing pulses are energising the specific part of the body required to be operated upon. The unit scans until sensing signals (operated by a non-cutting wavelength source) verify the location of the beam. Once at such a point the laser is switched to full cutting power continuing to cut as the time-multiplexed sensing signals indicate position is satisfactory.

Looking back, electro-medical apparatus has only been with us for a mere 50 years. In the last 10 years of that time we developed inexpensive and very powerful data processing methods. The next 25 years are likely to unfold undreamed of aids to medicine many of which we would regard as miraculous if we heard about them today.

ETI

If you have already bought from tlectrovalue, you will know just how large and varied our stocks are and how well your orders are looked after, whether you be beginner or a computer-minded expert. For those who have yet to know, we have been publishing a series of ads.
month by month to give you up-to-date information and prices on the more important items we carry so that BY DETACHING AND SAVING THESE PAGES, YOU WILL HAVE A VALUABLE AND COMPREHENSIVE MONE Y SAVING CATALOGUE. ALL MERCHANDISE IS BRAND Be safe! Be satisfied! Buy it from Electrovalue Capacitors MONTH FROM ELECTROVALUE

Oscilloscope
AS RECOMMENDED BY ELECTRONICS TODAY INTERNATIONAL
JULY 1978

SUPPLIED WITH FULL COMPREHENSIVE MANUALS FULLY GUARANTEED
fROM STOCK
3" OSCILLOSCOPE

£83.25	from STOCA
AddVAT £6.66	SOME UK
Carriage $£ 1.50$	IMPOKTERS

Add VAT $£ 7.92$
Appointed London Stockist
SPECIFICATIONS (FOR BOTH MODELS)

All mail to:
Henry's Radio
404 Edgware Ro London W2 Phone [01] 7231008

CHESS CHALLENGER"10"
 'It's You Against the Computer"

Are YOU good enough to chal lenge the CHALLENGER in any of the following 10 levels and WIN??

AVERAGE.
RESPONS̄
LEVEL
TIME
Beginner 5 Seconds
Intermediate 15 Seconds
3 Experienced 35 Seconds
Advanced
Superior
2.20 Minutes
Superior Iwo (2 move Puzzlers)
Mate 60 Minutes
Postal Chess (For Games
by mail only) 24 Hours
8 Expen 11 Minutes $\quad 3$ Minutes Chess by mail
Levels changeable during game. Change from level 1 to any level through 10 at any time on any move
Random Computer Responses vary every game
Selection of Legal Offense or Defense Play from the bottom board or the top of
the board. Choose either black or white
5. Does not permit illegal moves. Never makes an illegal move according to all the rules of chess
7. Plays opening defenses from chess books. i.e Sicilian. French, Ruy Lopez Queen Gambit declined
Analyzes as many as $3.024,000$ board positions.
9. Audio Feedback Single tone each time you press a key Double tone when computer responds.
Problem Mode Establish your own chess positions and watch the computer react.
Override key to make multiple moves Make two three, or more moves betore the computer responds.
12. Add or subtract pieces during game Put back the piece you lost by override or
take away the computer's Queen for a more even game
Pawn Prome selected piece. Promote a pawn to a Queen automatically. or select a knight or another piece instead
En Passent
Castling.
Numerous other features, including a solid walnut case, $13 \times 8 \times 1 / \mathrm{z}$ inches high Numerous other meatures, ieather and brushed gold foil playing surface large $1 / 2$-inch LED display and hand carved solid wood, magnetized french Chess Pieces CHESS CHALLENGER "10" available from. KRAMER \& Co., Depr. ET 1 9 OCTOBER PLACE, HOLDERS HILL ROAD, LONDON N
EXPORT ORDERS WELCOME. Access and Barclay by arrangemen PRICE £199, INCL. VAT, P\&P. CWO
Stightly used Master Chess Challengers available. SAE for details
Slightly used Master (checkers available, SAE for brochure)
Computer Draughts Check Order only - Callers by appointment

SUPERBOARD II COMPUTER

8 K basic, 4 K user Ram, built and tested

Only £263.84
$+8 \%$ VAT

- Uses the ultra powerful 6502 microprocessor
- 8K Microsoft BASIC-in-ROM
- Full feature BASIC runs faster than currently available personal computers and all 8080-based business computers
- 4 K RAM on board expandable to 8 K
- Full 53-key keyboard with upper-lower case and user programmability
- Kansas City standard audio cassette interface for high reliability
- Full machine code monitor and $1 / \mathrm{O}$ utilities in ROM
- Direct access video display has 1 K of dedicated memory (besides 4 K user memory). features upper case, lower case, graphics and gaming characters for an effective screen resolution of up to 256 by 256 points. Normal TVs with overscan display about 24 rows of 24 characters, without overscan up to 30×30 characters

Available in mid-December

WATFORD ELECTRONICS

33 Cardiff Road, Watford, Herts
Mail Order
Tel. Watford 40588
Callers welcome

Nascom UK Distributors

Barrow-in-Furness
Camera Centre
Tel: 0229-20473
Torquay
CC Electronics
Tel: 0803-22699
Egham \& Manchester
Electrovalue
Tel: 07843-3603
Glenfield, Leicester
Eley Electronics
Tel: 0533-871522
London W2
Henrys Radio
Tel: 01-723 1008

Nascom Microcomputers

- ETI BOOK

BEGINNERS

Beginners Guide to Electronics Squires $\mathbf{£ 2} .65$
Beginners Gulde to Transistors Reddihough $£ 2.65$
Electronic Measurement Simplified C. Hallmark $£ 2.20$ Electronics Self Taught Ashe $£ 4.40$
Beginners Guide to Integrated Circuits Sinclair $£ 3.15$ Principles of Transistor Circuits S. Amos $£ 4.75$
Understanding Electronic Circuits Sinclair $£ 4.10$
Understanding Electronic Components Sinclair £4.10
Beginners Guide to Radio King $£ 3.15$
Beginners Guide to Audio Sinclair $£ 3.10$
Beginners Guide to Audio L. R. Sinclair $£ 3.20$

COOKBOOKS

TV Typewriters Cookbook $£ 7.75$
CMOS Cookbook $£ 8.20$
Active Filters $£ 11.30$
IC Timer Cookbook $£ 7.50$
IC Op-Amp Cookbook $£ 10.00$
Video Cookbook $£ 7.00$

APPLICATIONS

Advanced Applications for Pocket Calculators J. Gilbert £4. 20
Build Your Own Working Robot D. Heiseman £3.55
Electronics and Photography R. Brown $£ 2.30$
Fire and Theft Security Systems B. Wels $£ 2.00$
How To Build Proximity Detectors and Metal Locators J. Shields $£ 3.90$
How To Build Electronic Kits Capel $£ 2.10$
Linear Integrated Circuit Applications G. Clayton $£ 5.40$
Function Circuits Design \& Applications Burr Brown $£ 15.95$
110 Electronic Alarm Projects R. M. Marston £3.45
110 Semiconductor Projects for the Home Constructor r. M. Marston $£ 3.25$
110 Integrated Circuit Projects for the Home Constructor R. M. Marston $£ 3.25$
110 Thyristor Projects Using SCRs R. M. Marston £2.95
Handhook of IC Circuit Projects Ashe $£ 2.30$
Practical Electronic Project Building Ainslie and Colwell $£ 2.45$

TV AND HI-FI

Audio Hand book G. King $£ 6.50$
Cassette Tape Recorders J. Earl $\mathbf{£ 5 . 2 5}$
Solid State Colour TV Circuits G. R. Wilding $£ 6.35$
Hi-Fi Loudspeakers and Enclosures Cohen $£ 8.20$
How To Build Speaker Enclosures Badmateff $£ 3.90$
Master Hi-Fi Installation King $£ 2.80$

LOGIC

Logic Design Projects Using Standard ICs J. Wakerly $£ 5.10$ Practical Digital Design Using 1Cs J. Greenfied £12.50 Designing With TTL Integrated Circuits Texas instruments $£ 9.05$ How To Use IC Circuit Logic Elements J. Streater £3.65
110 COSMOS Digital IC Projects for the Home Constructor R. M. Marston $£ 3.20$ Understanding CMOS Integrated Circuits R. Melen $£ 4.00$
Digital Electronic Circuits and Systems R. M. Morris $£ 3.50$
MoS Digital ICs G. Flynn $\mathbb{E 5} .10$

COMPUTING

Microprocessors and Microcomputers B Sowick $£ 18.00$
Microprocessors D. C. McGlynn $£ 8.40$
Introduction to Microprocessors Aspina:l $£ 5.90$
Modern Guide to Digital Logic (Processors, Memories and Interfaces) £4.30
Beginners Guide to Mıcroprocessors $£ 4.70$
Beginners Basic Gosling $£ 3.35$

OP-AMPS

Applications of Operational Amplifiers Graeme (Burr Brown) $£ 8.30$
Designing With Operational Amplifiers Burr Brown £16.65
Experiments With Operational Amplifiers Clayton £3.40
1 OO Operational Amplifier Projects for the Home Constructor R. M. Marston $\mathbf{£ 2 . 9 5}$ Operational Amplifiers Design and Applications G. Tobery (Burr Brown) $£ 7.40$ Op-Amp Circuit Design \& Applications J. Carr $£ 4.00$

SERVICE

TEST INSTRUMENTS

The Oscilloscope In Use Sinclair $£ 3.10$
Test Instruments for Electronics M. Clifford $£ 2.40$
Working With the Oscilloscope A. Saunders $£ 1.95$
Servicing With the Oscilloscope G. King $£ 5.60$
Radio Television and Audio Test Instruments King £5.90

SERVICING

Electronic Fault Diagnosis Sinclair £3.20
Rapid Servicing of Transistor Equipment G. King $£ 2.95$
Tape Recorder Servicing Manual Gardner Vol. 1: 1968 -70 $£ 8.50$
Vol. 2: 1971.74 £8.50
FM Radio Servicing Handbook King $£ 4.80$
Basic Electronic Test Procedures J. M. Gotilieb £2.45

COMMUNICATIONS

Communication Systems Intro To Signals \& Noise B. Carlson $£ 7.50$ Digital Signal Processing Theory \& Applications L. R.Rabiner $£ 23.80$ Electronic Communication Svstems G. Kennedy $\mathrm{E8} .50$
Frequency Synthesis. Theory \& Design Mannassewitsch $£ 21.70$
Principles of Communication Systems H. Taub $£ 8.10$

THEORY

Introduction to Digital Filtering Bogner £10.20
Transistor Circuit Design Texas Instruments $£ 9.35$
Essential Formulae for Electrical and Electronic Engineers N. M. Morris $£ 1.65$ Modern Electronic Maths Clifford $£ 6.70$
Semiconductor Circuit Elements T. D. Towers $£ 6.40$
Foundations of Wireless Electronics M. G. Scroggle £4.45
Colour Television Theory Hudson £6.20

REFERENCE

ransistor Tabelle (Includes physical dimensions) £4.10 electronic Engineers Reference Book (Ed. 4) L. W. Turner £27.70 Solid State Circuit Guide Book B. Ward £2.25 Electronic Components M. A. Colwell $£ 2.45$ Electronic Diagrams M. A. Colwell $£ 2.45$
Indexed Guide to Modern Electronic Circuits Goodman £2.30 International Transistor Selector T. D. Towers £6.00 International FET Selector T. D. Towers $£ 4.35$
Popular Valve/Transistor Substitution Guide $£ 2.25$
Radio Valve and Semiconductor Data A. M. Belt $\mathbf{£ 2 . 6 0}$
Master Transistor/Integrated Circuit Substitution Handbook £5.60
World Radio TV Handbook 1978 (Station Directory) E8.00
Radio, TV and Audio Technical Reference Amos $£ 24.85$
TV Technicians Bench Manual (New Ed.) Wilding $£ 5.10$

MISCELLANEOUS

Integrated Electronics J. Milman £7.90
Microelectronics Hallmark $£ 3.90$
Practical Solid State DC Supplies T. D. Towers $£ 6.20$
Practical Triac/SCR Projects for the Experimenter R. Fox $£ 2.25$
Printed Circuit Assembly Hughes \& Colwell $£ 2.45$

Fallen behind recent advances?
Just starting out?
Need a decent reference book?
ETI Book Service provides an easy
way of getting your hands
on the right title.

How to order: Make cheques etc payable to ETI Book Service. Payment in sterling only please. Orders should be sent to: ETI Book Service, PO Box 79, Maidenhead, Berks. All prices include P\&P.

NEWNES RADIO AND ELECTRONICS ENGINEER'S POCKET BOOK

15th Elition

Prepared by the Editorial Staff of ETI
An invaluable compendium of facts, figures and formulae for all interested in electronics and project building.

- Completely revised and updated
- New material covers recent developments in radio and electronics
- New tables include TTL, CMOS and logic.

```
1978 192 pages 82\times123 mm £2.55 $5.25 0408003146
```

11
Newnes-Butterworths
Borough Green, Sevenoaks,
Kent TN15 8PH

DIGITAL DIAL

Most AM radio dials are pretty hopeless - especially portables and car radios. This application of our counter module can be a decided improvement.

WITH MODERN RADIOS which are designed to be operated anywhere in the world, the local station call signs are no longer marked on the dial. Instead the dial is marked with frequencies making it more universal. Unfortunately the scaling on many receivers leaves a little to be desired, with many car radios lucky to have 3 or 4 markings. The use of pushbutton selection helps but when a cassette is fitted or you are out of your local area there is still the problem of knowing to what station you are tuned.

This project gives a direct readout of the station being received allowing for easy identification and selection. The display is remote from the receiver allowing it to be mounted on the dashboard for easy viewing.

Design Features

This project is the first to employ our four digit module presented elsewhere in this issue. We will be using the module again over the next few months so don't lose track of it!

If this device is to be used outdoors i.e. in the car, it is recommended that high brightness displays, such as the Hewlett Packard HDSP 4133, be used. As these have a different pin-out a new display board is presented in this article.

The theory of operation is that we actually measure the frequency of the local oscillator in the radio and subtract the IF frequency. While we could have subtracted this using digital logic we chose to do it by resetting the display not to zero but to 9545 (10 000-455). The first 455 pulses in the timing period are then used getting to zero and in effect, only pulses after this are counted and displayed. This number can be loaded into the counter by

selecting the appropriate diodes and using the "load counter" in put instead of the reset line. The only difference is that as the data is entered into the counter serially the pulse used must be longer than 4 times the internal oscillator period. Also as the LC input is a three state in put it cannot be driven by conventional two-state.

Out of Tune

We initially tried capacitive coupling onto the tuning capacitor of our portable radio (oscillator section!) but the loading detuned the set too much. We then tried a pickup coil and found enough signal with it in the correct place not to require any electrical connection to the set. With
PROJECT: Digital Dial

PARTS LIST

RESISTORS	all $1 / 2$ W, 5\%	'C7	33u tantalum
R1	39k	C8	10 u 25 V electrolytic
R2	8 k 2	SEMICONDUCTORS	
R3	1 M		
R4, 11	10k	IC1	555
R5, 6, 9, 13	1k	IC2	4520
R7, 8	47k	IC4	4520
R10	2M2 220 k	IC5	7805
R12	220 k	01	BC558
POTENTIOMETER		02-04	BC548
RV1	5 k trimmer	D1	1N4004
CAPACITORS		MISCELLANEOUS 'Transformer 240V-12V6, 150 mA	
C1	47 n polystyrene		
C2	1 uO tantalum	"For 12 V operation delete transformer. For 240 V version C 7 should be 220 u 25 V . For use with pickup coil increase C4 to 1 no.	
${ }^{*} \mathrm{C} 4$	2n2 polyester		
C5, 6	10 n polyester		

BUYLINES

Any displays mentioned here are of course suitable and should be easily obtainable. The semiconductors are all available from Technomatic, or indeed from most other mail-order suppliers.

Power Supply

The unit can be powered by an AC or DC voltage of between 7 and 20 volts. If an $A C$ voltage is used the capacitor C7 should be increased to 220 u. A 240 V to $12 \mathrm{~V} 6,150 \mathrm{~mA}$ transformer is recommended. ETi'

SHEVENEON Electronic Components

VEROBOARDS

Size in.	0.1 in.	0.15 in.	Veropins -
2.5×1	$14 p$	$13 p$	single sided
2.5×3.75	$42 p$	$40 p$	per 100
2.5×5	$52 p$	$50 p$	0.1 in $35 p$
3.75×5	$60 p$	$60 p$	0.15 in $40 p$
3.75×17	$195 p$	$180 p$	

TRANSFORMERS

PRIMARY 240 Volts
Code Secondary

A1	$6 \cdot 0-6$ at $0.5 A$	$155 p$
A4	$9-0-9$ at $0.4 A$	$155 p$
B1	$6-0-6$ at 1 A	$205 p$
B4	$12-012$ at $0.5 A$	$205 p$
B8	$15-015$ at $0.4 A$	$205 p$
C4	$9-0-9$ at $1.2 A$	$305 p$
C8	$12-012$ at $1 A$	$305 p$
D12	$0-12-15-20-24-30$ at $1.5 A$	$395 p$
E12	$0-20-25-33-40-50$ at $2 A$	$525 p$

MINIATURE TRANSFORMERS

Secondary rated at 100 mA Available with secondaries
of: 6 -0.6.9.0.9
and $12 \cdot 0 \cdot 12.92 p$ each

CRYSTALS

WIRE ENDED TYPE
Freq. MHz

0.100	$380 p$	4.000	$250 p$	12.000	$250 p$
0.300	$380 p$	5.000	$250 p$	18.000	$300 p$
1.000	$320 p$	6.000	$250 p$	20.000	$300 p$
2.000	$320 p$	8.000	$250 p$	32.000	$300 p$
3.276	$250 p$	10.000	$250 p$	48.000	$300 p$

LOUDSPEAKERS

56 mm dia. 8 ohms
64 mm dia. 8 ohms 64 mm dia. 64 ohms 70 mm dia. 8 ohms 70 mm dia. 80 ohms

We now have an express telephone order service. We guarantee that all orders received before 5 pm . are ship ped first class on that day. Contact our Sales Office now! Telephone: 01-464 2951/5770.

ORDERS
Quantity discounts on any mix TTL, CMOS, 74LS and Linear circuits: $25+10 \% .100+15 \%$. Prices VAT inc. Please add 30 p for carriage. All prices valid to 30th April 1979. Official orders welcome.

\section*{TRANSISTORS
 | | | | | $\text { 3N } 1302$ | $\begin{aligned} & 12 p \\ & 38 p \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AC127 | 17p | BCY71 | 14p | 2N2905 | 22p |
| AC128 | 169 | BCY72 | $14 p$ | 2N2907 | 220 |
| AC176 | $18 p$ | BD131 | 35p | 2N3053 | 180 |
| AD161 | 38p | BD132 | 350 | 2N3055 | 50p |
| AD́162 | 38p | BD135 | 38p | 2N3442 | $135 p$ |
| BC107 | 8 p | BD139 | 35p | 2N3702 | $8 p$ |
| BC108 | 8 p | BD140 | 35p | 2N3704 | 8 p |
| BC109 | $8 p$ | BF244B | 36p | 2N3705 | $9 p$ |
| BC147 | 7 p | BFY50 | 15p | 2N3706 | 9 p |
| BC148 | 7 p | BFY51 | $15 p$ | 2N3707 | 9 p |
| BC149 | 8 p | BFY52 | 15p | 2N3708 | 8 p |
| BC158 | 9 p | MJ2955 | 98p | 2N3819 | 22p |
| BC177 | $14 p$ | MPSA06 | 20p | 2N3904 | 8 p |
| BC178 | 14p | MPSA56 | 20p | 2N3905 | 8 p |
| BC1.79 | 14 p | TIP29C | 60p | 2N3906 | 8 p |
| BC182 | 10p | TIP30C | 70p | 2N4058 | 12p |
| BC182L | 10p | TIP31C | 65p | 2N5457 | 32p |
| BC184 | 10p | TIP32C | 80p | 2N5458 | 30p |
| BC184L | 10p | 2TX107 | $14 p$ | 2N5459 | 32p |
| BC212 | 10p | ZTX108 | 14p | 2N5777 | 50p |
| BC212L | 10p | DIODES | | | |
| BC 214 | 10p | | | | |
| BC214 | 10p | 1 N914 | 4 p | 1 N4148 | 3p |
| BC477 | $19 p$ | 1N4001 | 4 p | 1 N5401 | 13p |
| BC478 | 19p | 1N4002 | 4 p | 1 N5402 | 15p |
| BC479 | 19p | 1 N4004 | 5 p | 1 N5404 | 16p |
| BC548 | 10 p | 1 N4006 | 6 p | 1 N5406 | 18p |
| BCY70 | 14 p | BZY88 series 2 V 7 to $33 \vee 8 p$ each. | | | |
 LNEAR
 A SELECTION ONLY!

DETAILS IN CATALOGUE.}
709 25p LM324 50p NE556 60p

741	22p	LM339	50p	NE565	60p
747	$50 p$	MM380			

50p LM380 75p NE567 170p

LM382 120p SN 76003 200p
SN76013 140p CA3080 70p LM3900 50p SN76023 140p $\begin{array}{lllll}\text { CA3130 } & \text { 90p } & \text { LM3909 } & \text { 60p } & \text { SN76033 200p }\end{array}$ LM301AN 28p MC1458 35p TDA1022650p LM318N 125p NE555 25p ZN414 75p

OPTO
 LEDs $\quad 0.125 \mathrm{in} .0 .2 \mathrm{in}$
 Red TIL209 TIL220 9p
 Green TIL211 TIL221 13p
 $\begin{array}{lll}\text { Yellow } & \text { TIL213 } & \text { TIL2 } \\ \text { Clips } & 3 p & 3 p\end{array}$
 DISPLAYS

OL704 0.3 in CC
FND500 0.5 in CA

RESSTORS

Zarbon film resistors
E12 series. 4.7 ob̧rrıs to 10 M . Any mix:

	each	$100+$	$1000+$
$0.25 W$	$1 p$	$0.9 p$	0.80

0.5 W
1.2 p

Special development packs consisting of 10 of each
value from 4.7 ohms to 1 Megohm (650 res.)
value from 4.7 ohms to 10
$0.5 \mathrm{~W} £ 7.50 . \quad 0.25 \mathrm{~W} £ 5.70$

CAPACTORS

HERE ARE JUST
A FEW OF THE

TANTALUM BEAD
each $4.76 .10 \mathrm{uF} @ 25 \mathrm{~V}$
22 @16V,47@6V,100@3V
MYLAR FILM
$0.001,0.01,0.022,0.033,0.047$
0.068, 0.1

RADIAL LEAD ELECTROLYTIC
$63 V \quad 0.47$
LEC

74LS

LS123

LSOO 16p LS01 16p

 LS03 16p LS03 16p| | | 7493 | 34p |
| :---: | :---: | :---: | :---: |
| | | 7494 | 52p |
| | | 7495 | 52p |
| | | 7496 | 50p |
| 7400 | 12p | 74121 | 25p |
| 7401 | 12p | 74122 | 33p |
| 7402 | 12p | 74123 | 40p |
| 7404 | 12p | 74125 | 35p |
| 7408 | 14p | 74126 | $35 p$ |
| 7410 | 12p | 74132 | 50p |
| 7413 | 25p | 74141 | 56p |
| 7414 | 48p | 74148 | 90p |
| 7420 | 12p | 74150 | 70p |
| 7427 | 24p | 74151 | 50p |
| 7430 | 12p | 74156 | 52p |
| 7442 | 43p | 74157 | 52p |
| 7447 | 55p | 74164 | 70p |
| 7448 | 58p | 74165 | 70p |
| 7454 | 14p | 74170 | 125p |
| 7473 | 25p | 74174 | 68p |
| 7474 | 25p | 74177 | 58p |
| 7475 | 32p | 74190 | 72p |
| 7476 | 28p | 74191 | 72p |
| 7485 | 70p | 74192 | 64p |
| 7489 | $145 p$ | 74193 | 64p |
| 7490 | 32p | 74196 | 55p |
| 7492 | 35p | 74197 | 55p |

cmos

FUll DETAILS
in Catalogue

4029	$60 p$
4040	$68 p$
4042	$54 p$
4046	$100 p$
4049	$28 p$
4050	$28 p$
4066	$40 p$
4068	$20 p$
4069	$16 p$
4071	$16 p$
4075	$16 p$
4093	$48 p$
4510	$70 p$
4511	$70 p$
4518	$70 p$
4520	$65 p$

SKTS

Low profile by Texas
 $\begin{array}{llll}14 & \text { pin } & 12 p & 28 \\ 16 \text { pin } & 13 p & 40 & \text { pin }\end{array}$ Soldercon pins: 100: 50p

AT LAST! OUR
NEW 40 PAGE
CATALOGUE OF COMPON ENTS IS
AVAILABL

Personal Shoppers EDGWARE ROAD LONDON W2 Tel: 01.723 8432. 9.30am-5.30pm. Haft day Thursday. ACTON: Mail Order oniy. No callers GOODS NOT DESPATCHED OUTSIDE UK

computing today nos

 JanuaryTHE NEW MAGAZINE FOR SMALL SYSTEMS WITH BIG IDEAS

Personal Computing~ The Early Years

Softspot
Presented as a supplement to ETI.

Introducing the personal computer you've waited for. THE EXIDY SORCERER.

SORCERER

COMPUTER SYSTEM
Complete with Monitor
The Sorcerer Computer is a completely
Standard configuration includes 63 -key
typewriter style keyboard and 16 -key
numeric pad, 280 processor, dual cassette
I/O with remote computer control at 300 $1 / O$ with remote computer control at 300
and 1200 baud data rates. RS232 serial I/O for communications, parallel port for direct Centronics printer attachment. ROM Operating system, 8 K ROM
Microsoft BASIC in Rom Pac TM, cartridge,
composite video of 64 char/line 30 line composite video of 64 char/line 30 line/
screen, 128 upper/lower case ASCII set screen, 128 upper/ lower case ASCII se
and 128 user defined graphic symbols. operation manual, BASIC programming manual and casserte/video cables, connect ion for s - 100 bus expansion.
only $£ 950$ Credit facilities available.

LOOK!

-32K RAM onboard - CUTS interface "4K MONITOR - KANSAS CITY interface - 5100 BUS - User defined graphic symbols "Z80 cpu

KEY BOARD

756 GEORGE RISK Brand new professional ASCII keyboards (USA) Full technical details included. RRP $\mathbf{£ 6 0 . 0 0}$ Only $£ 49.90$

+ 8\% VAT
Ready built, tested
and guaranteed.

COMPUTER JOYSTICK

Plugs into your Nascom P.I.O. No extras. Software and full documentation supplied. Plus free game cassette. $£ 14.90$ each $£ 28.90$ per pair

COMP PRO Mixer

Professional audio
mixer that you can build yourself and save over $£ 100$.

6 into 2 with full equalization and echo, cue and pan controls.
All you need for your own
recording studio is a stereo tape or cassette , ecorder.
This superb mixer kit has slider fader, level meters and additional auxilliary inputs.

Only $£ 99.90$ plus 8% VAT for
complete kit Plus FREE power
supply valued at $£ 25.00$

Ideal for

DISCOS STAGE MIXING HOME STUDIOS AND MANY OTHER APPLICATIONS

Teleplay presents the
PROGRAMAGAME of all time! : an这

INTERESTED IN HOME COMPUTING?

FREE B BUG valued at $£ 23.00$ plus $10 \times$ C12 cassettes valued at $£ 4.00$ WITH EVERY NASCOM
Start now and don't get left behind THE NASCOM 1 is here Ex-stock with full technical services
Plus the opportunity to join the fastest moving club of personal computer users enabling you to get the most our of your computer. You can OBTAIN and EXCHANGE programs and other software - many now available.
The Powerful $Z 80$
Microprocessor
Professional Keyboard
1 Kbyte Monitor in EPROM 2 Kbyte RAM (expandable) Audio Cassette interface Plugs into your domestic TV Easy construction from straightforward instructions - no drilling or special tools - Just neat soldering required.

Only $£ 197.50+8 \%$ VAT (includes p \& $p+$ insurance)
Manuals seperately $\quad 2.95$ Monitor quality improved Z80 programming Manual 6.90 TV Modulator 2.50 280 Technical Manual 2.95
PIO Technical Manual 2.95 Power supply suitable for (All prices add 8\% VAT) NASCOM
NASCOM AD ONS - Nascom improved monitor B Bug (2K) featuring - "Four times tape speed "Direct text entry without ASCII *Extended keyboard facility *Additional useful
subroutines $£ 23.00$
Nascom Software library. Send SAE for lists and prices.
BLANK C12 Racal Quality CASSETTES $£ 4.00$ for 10

Airamco Ltd. MICRO COMPUTER PRODUCTS
 Distributors for JADE COMPUTER PRODUCTS

All products brand new with full industrial specification

STOP PRESS!

SD SALES Z-80 STARTER KIT

Single card development system - like a K1M or D2 but uses $Z 80$, on board PROM PROG up to $2 K$ RAM 2×5100 sockets provided for on board - plus many new features
KIT PRICE
$£ 159.00$
ASSEMBLED + GUARANTEE £249.95

S100 COMPUTER CARDS KIT	ASSEMBLED	BARE BOARD
Mother Board E71.00	£82.50	£26.25
Desk Top Rack, 12 slot mother board + 15A @8V, 2A @ $\pm 16 \mathrm{~V}$ £199.00		
Jade 8080A CPU BOARD E75.00	£122.50	£22.50
Jade 8 K static RAM BOARD		
450 nS £94.50	£112.50	£19.95
Jade 8 K static RAM BOARD		
350 nS E104.95	£119.96	£19.95
Jade 8 K static RAM BOARD		
250nS E127.50	£142.50	£19.95
S.D. Sales ' EXPANDORAM'		
Dynamic Memory 375 nS access time 8 K £113.25		
Memory 375 nS access time 16 K		
- E18900	£229.00	£189.00
Memory 375 nS access time 32 K		
	$¢ 337.00$	$£ 297.00$
Memory 375 nS access time 64 K	$£ 553.00$	$£ 513.00$
VERSAFLOPPY DISK CONTROLLER (up to 4 drives $5 \frac{1}{4}$ or 8)		
........ E111.75	£165.00	
SHUGART 8* Drive	£385.00	
PERTEC $51 / 4$ Drive	£225.00	
Companents	AY-5-2736	£9.50
27081024×8 EPROM E6.99	21L02-1450nS	E1. 20
25162048×8 EPROM	8 for	£7. 92
£29.90	21 L02 250nS	£1.40
(equivalent of above) T.I.	8 for	¢9.60
1702256×8 EPR$O M ~ £ 4.85$	2112-1256x4 (450)	£2.25
21044096×1 DRAM £3.50	4044 4Kx 1 (450)	£7.45
8 for £26.00	$40451 \mathrm{Kx4}(450)$	£8. 25
2107B-4 4096×1 DRAM	New Device MK4118	8 N4 24
£3. 50	pin) $1 \mathrm{k} \times 8$ bit static	RAM 250
8 for €26.00	NS. Similar pin out	to 2708
	EPROM Price £16	0. Each
Note New Low Prices 16 K Dynamic Memory	data availäble 8212	E2. 49
	8216	¢2.75
	8224-4	E7.46
	8226 3881	£2.95 ¢9.50
	3882	£9.50
AY 51013 UART ... £4.50	S100 Skis.	£3.30
AY51014 UART(5V) E6.50	Textool 24 pin Zero	
AY53600 ENCODER £9.99	force Skt.	€5.60
8080A CPU £8. 99	81 LS95	£1.25
2114 (450ns) £6.75	81 LS97	£1.25

Secondhand ASR 33 Teletype with paper tape £399.00
Shugart Floppy Disc Drive Controllers, 8-inch and 5 -inch
All Prices EXCLUDE VAT @
8%.
Trade discounts on Quantity
Please add £1.00 P\&P for
S100 items then add VAT @
8%.
24-hr. Ansaphone order service
with ACCESS or BARCLA.Y
CARD
MAIL. ORDER ONLY

computing today

No. 3 January 1979

Letters	$\mathbf{4}$	U to us
Small business machine	$\mathbf{6}$	TRS-80 in action
TRITON monitor	$\mathbf{8}$	Make more of TRITON
The early years	$\mathbf{1 8}$	Youthful cornputing
TRS-80 Level II	$\mathbf{2 3}$	One up on one
BASIC explained	$\mathbf{2 7}$	Part 3 of our series
Softspot	$\mathbf{3 0}$	Play the reversal game

[^3]A number of errors that crept into last month's issue have been brought to our attention. Once again Phil Cornes was not credited in connection with the BASIC explained Series. Q1 in the EPROM Programmer should be shown as a 2 N3638 and not PN3638 as in both Parts list and Circuit Diagram. The opto isolator is not a critical component and could be substituted by a more readily available device.

The missile program appearing in Softspot also contained a number of errors. Lines 90,110 and 170 should be altered as follows
$90 \mathrm{Y}=(\mathrm{RND}(16)-1)^{*} 64 ; \mathrm{Z}=1$
110 VDU Z, 32
170 VDU@(I + 2),32

Man's best friends

We would like to hear your views on computers and computing. we'll publish the best views in this. our new letters' page. This month, Mike Hughes - designer of the TRITON - answers a letter drawing attention to certain aspects of the computer design.

Dear Sir,

I am writing to request you to urgently consider the redesign of the Triton Computer, as it suffers from a serious design fault which will make it unreliable as it stands, and which will cause difficulties for expansion. As you may by now be aware I am referring to the data bus buffering. While the 8080a chip set has been buffered by a high drive (and unnecessary) 74LS245, the memory chips must also drive the data bus, and these have a single TTL drive capability. Bits 7 and 8 of the data bus are the most heavily loaded, with 5 LSTTL loads ${ }_{1}=1$ TTL load), plus the UART, which presents 1 TTL load (at least this is what Texas say for the TMS 6011). Hence the memory chips are having to drive twice their rated load. Specifications being what they are this will usually be OK, especially when running so slowly. However usually is just not good enough in this situation, and several constructors are bound to get chips which are close to specification, and will be intermittent errors. The problem will become significantly worse when the bus expansion connector is used, as this will add an extra load, together with a lot of added cross-talk and bus noise.

As many of the people who may be considering the construction of this unit will not have the knowledge or equipment to detect this problem; I must, on their behalf, urge you modify this design as soon as possible.

A second, though less important, potential problem is in the $5 V$ power supply, which is not a minor bias supply for 2708s (at least not according to Texas and Intel specifications). The specification is 30 mA typical, 45 mA max. Hence the power supply should be able to supply 180 mA , which implies a series resistor of about 39-. This will dissipate a lot of power, and an IC regulator would be better.
Yours faithfully,
R. A. Cottis,

Corrosion and Protection Centre
UMIST

I cannot disagree with anything in Mr Cottis' letter. I am, in particular, grateful to him for identifying the -5 V rail problem which was an oversight on my part.

Unfortunately, the values given for R1 and ZD1 were a "hangover" from an early prototype which operated with a single EROM. These should have been changed to accommodate the higher current consumption of the completed system. Mr Cottis is quite correct in saying that Rl should be 39 ohm with a power rating of 1.5 W . At the same time, ZD1 should be upgraded to have a power dissipation of 1W. The latter is necessary in the event of the system being operated with only one EROM in position.

Fortunately (or unfortunately as the case may be) this error will not show itself in cases which operate with 3 EROMS whose current consumption averages just below the "typical" value. Not many people will,
therefore, have experienced any problem. If they had the error would have been discovered earlier. Readers who have their system up and running with 3 Eroms in position need not react to the problem urgently nevertheless, they should upgrade these components in due course prior to inserting a 4th EROM. Constructors just about to start are strongly advised to use the higher rated components from the word go.

The driving capabilities of the 2111 memories on the data bus is a much more difficult question to answer. Mr Cottis is quite correct in every thing he says by taking worst case input loads and output drive capabilities. The worst case conditions he mentions are, however, stated with a 0.4 or 0.45 V maximum "O", level - allowing a 400 mV low level noise margin.

Stretching the loading in the worst case condition will certainly encroach on the noise margin but as V_{oL} rises, as a result, so the input current will decrease. From figures available it would appear that in the worst case condition (including an extra LS load for an external bus driver), the noise margin could reduce to about 200 mV , and this would not be acceptable for stringent applications or in extremely high noise conditions.

As Mr Cottis implies, it is very unlikely that one will be so unlucky as to have all the worst case conditions stacked against him and this is what I was relying on to provide a reasonable noise margin for domestic/ office noise environments. The "Bête Noire" is clearly the UART but I was reluctant to provide extra..on board buffering for this for two reasons:-

1. It would have given rise to difficulties in layout -involving more board area.
2. This would have increased the board cost as well as possibly requiring extra components.

If one accepts that an extreme worst case conditions is unlikely there will be negligible problem at normal ambient temperatures. Even under a worse case situation at temperatures up to $60^{\circ} \mathrm{C}$ the system -will still operate - but with impaired noise margin. It is in the latter situation that one might have problems with busbar noise etc.

I am indebted to Mr Cottis for drawing attention to this potential problem and in view of his comments, would suggest that readers planning expansions should keep their first umbilical cable from the main board to the peripheral mother board (soon to be published) as short as possible. They should also introduce a further bi-directional buffer on the data bus at the earliest position possible. This, incidentally, is already planned on the extension mother board.

To assure readers of the minimal chance of problems arising, we should point out that of the dozens of Tritons already built and working, there has not been one instance of bus noise problems. This includes one system which, already, has been externally expanded for a further 4 k of RAM with no extra buffering.
M. J. Hughes

The exciting new TRITON
 Personal Computer exclusively from:

TRANDAM

Building a better computer wasn't easy -but we did it.

Complete kit of parts available only £286 (tvan)

Basic in Rom: a powerful 2k Tiny basic resident on board, makes Triton unique, easy to use and versatile.
Graphics: 64 Graphic characters as well as full alpha numerics.
Single Board: Holds up to $8 k$ of memory, $4 k$ RAM and $4 k$ ROM, supplied with $3 k$ ROM and $2 k$ RAM.
Memory Mapping: 2 mode VDU, $1 / 0$ or memory mapped for animated graphics.
Cassette Interface: crystal controlled Modem tape I/O with auto start/stop + "named" file search.
UHF TV Interface: On board uhf modulator, plugs into TV aerial socket.
Comes Complete with KEYBOARD, CASE, POWER SUPPLY, THRO-HOLE PLATED QUALITY P.C.B. FULL DOCUMENTATION POWERFUL 1 k MONITOR \& $2 k$ TINY BASIC PLUS ALL COMPONENTS INCL. IC SOCKETS. NOTE TV SET \& CASSETTE NOT INCLUDED.
Expansion: Fully buffered for up to 65 k of memory on expansion busbar.

TRS-80: A Small Business Application

TERRY JOHNSON owns, with a partner, an insurance brokerage firm with twelve branches spread across the country. The firm also has interests in various property. Having used a computer bureau to process various accounting information, the firm are at present installing a TRS-80 to provide all the bureau facilities plus additional services.
How did you start in business? About 20 years ago, after coming out of the RAF, where I was a night fighter pilot, I needed a job. I had no business background but managed to get a job with an insurance company. There I found out there were such things as insurance brokers and after a bit of a late night study, I set myself up as a broker. Things, like topsy, grew from there, at our peak in 1974 we had 18 branches, but have now cut back to 12 - We employ 10 managers and about 40 other staff.
Your first involvement with computers was via a computer bureau? That's right, about five years ago we decided that the volume of accounting work generated by the various branches was getting to a level where some form of automation was necessary. We approached a number of the recognised agencies to see if they could offer us the type of package we wanted, without exception the products they offered would have meant considerable changes to our systems - not at all what we wanted.
At this point we decided on a different approach, we found - through the yellow pages I think-a specialist computer firm which undertook to design programs to customers' requirements. The firm had a scientific background and had never tackled anything along the lines we were asking. They accepted the challenge and a short time later we had a FORTRAN program that did all we wanted - simply keeping track of money in and money out and of our commodity - insurance policies in our case - but it might just as easily have been nuts and bolts or oranges.
Did you encounter any problems with the system? No, everything went very smoothly, we prepared our own program cards on a second hand flexowriter we picked up for $£ 1000$ and 48 hours later we had our batch back. During that first year about the only thing that happened was that the system was improved to μ rovide a profit 'loss statement and balance sheet.

When did the Tandy TRS-80 come onto the scene? About the middle of the year but the first time I realised that an "in house" system might be within our reach was at the DIY computer show at the beginning of this year.

Why even consider a new system when your existing one was working so well? lo save money. We calculated that a system costing around $£ 2500 / £ 3000$ could save us money over a period of 5 years with, of course, all the benefits of in house computing.

Back to the Tandy then? - Yes, in April of this year I went to the States on holiday and after looking around at what was available off the shelf over there at that time I decided to buy a Tandy TRS-80. The machine I bought was a Level 116 K machine.

Any problems getting it through customs? Not after it had been classified as a data recording machine by binary system - no I paid my 7% duty on hardware and 8% VAT and I was through. I'd saved myself a lot of money. The cost in pounds was about $£ 520$. compared to the $£ 700$ odd that Tandy UK wanted assuming there was such a machine in this country.

What about servicing if the machine goes wrong? Tandy have a 90 day warranty on their equipment, which is available to first and subsequent owners in any country where Tandy have outlets - I wasn't worried about servicing.

Have you had any trouble with your machine? Yes, soon after I began using it, the keyboard suffered from an excessive amount of contact bounce. I took it to my local Tandy dealer, and it was back within a week - repaired at no charge under the warranty.
How did you get on with the machine in those early days? I had no experience of programming but found the Tandy manual soon had me familiar with BASIC and frustrated at the limitations of the level 1 machine.
I sent my TRS-80 to Tandy together with $£ 79$ for it to be upgraded to a Level 2 unit.
What was vour next step? Well now came the most frustrating time for me, Level 2 BASIC was just what I wanted, but without a printer, floppy and more
memory the system just could not cope with the work I wanted it to do. Tandy had plans for expansion but no hardware available. I started looking around at other machines. The PET would never be acceptable to any typist with its present keyboard but the APPLE looked promising. I bought an apple this July but returned it about a week later, the reasons were that my machine kept crashing and as the BASIC I was using, Applesoft II was on tape, a five minute restart each time became trying. Add to this the fact that I was promised a number of hardware items that just didn't turn up and the Apple was not working out.
Back to Tandy? Yes. August was a dull month but I'd been promised the first expansion interface to arrive in this country and that arrived in September. The expansion interface contains space for an additional 16 K or 32 K RAM, a dick-controller for up to four disks, dual cassette decks as well as a Centronics parallel port.

After a bit of persuasion Sintrom at Reading having sold me their ex-demonstration printer hooked the printer up to the TRS-80, as the lead supplied did not produce any results this was a great leap forward - hard copy.

Things were moving fast now, as soon after this I discovered that a Micropolis disc drive would plug directly into the Tandy interface. I now had a system that could do all that I demanded of it.

Does this bring us up to date? No, a couple of weeks ago I went to the States again and picked up a couple of Tandy disks, a screen printer, a back up CPU and some extra memory. About $\$ 3000$ worth, again a
considerable saving on buying over here.
What about the software development? Of course that's been going on all the time, I've had no real difficulties with the task. The bulk of the work is done now, it's just a matter of getting the time to sort out the rest of the system for our target start date of January 1st.
Why should a small business man consider using one of these small computer systems? Three main reasons I think. Staff time and skill levels can be cut if a sensible system is devised. Accounting information that is good enough for our auditors to accept can be produced. Thirdly a vast flow of statistical information can be generated that gives the business man a far better idea of the performance of his operation at any point in time. What most people do by feel now can be done far more accurately by the computer. These three things together all add up to cutting costs.
Do you think small business men could cope with setting up a system such as yours without outside help? Most small businessmen are of above average intelligence - they have to be to survive. They also, in general have the drive and energy to get things done. I hadn't any knowledge of computers at the start of this year and reckon that now I have put together a system that will save me time and money. If I can do it I'm sure many other people in my position could. With the various software packages coming on the market at low cost, the business man may only be involved in a very small amount of work to get a low cost system to do exactly what he wants of it.

Hard Copy

This printer puts word processing within the scope of your pocket

TOP QUALITY TYPESCRIPT. SOLENOID DRIVEN FOR TTL CONTROL. ROM DECODED TO ACCEPT ASCII PARALLEL
DATA INPUT. 8 CPS. $11^{\prime \prime}$ CARRIAGE (125 CHARS)

Fully built with psu and case
£182.86
Also supplied as print mech anism only. Includes motor, solenoids and driver circuits. Add your own logic and case . . £144.65

Add $£ 3.50 \mathrm{p} \& \mathrm{p}$, then add VAT.
Other printers available; tally-roll dot matrix printer and low cost teleprinter. Send for details.

KIMBERLEY BUSINESS RECORDS

2, Hartington Road, Gosport, Hants.

TRITON Software -MONITOR

Mike Hughes takes a detailed look at the Tritons monitor and describes some machine code programs that can be run on the computer

If you have built the TRITON computer you will want to get the best out of it and there are several modes in which it can be used. You can write and run programs in BASIC but you may wish to record and recall these to and from tape. To do this you need to know something about the MONITOR. You may wish to use the computer for control purposes for which you need to write machine language instructions. To do this it is essential to go through the Monitor possibly making use of some of its in-built sub routines.

For those learning about computers it is a very good idea to get a grasp of MACHINE CODE. It is not difficult to learn and can make life much more exciting as you will be able to get the computer to respond much more quickly than it will through a BASIC Interpreter. Sometimes you can get several thousand times the sped for certain operations. To do this on the TRITON you must operate through the MONITOR.

TRITON's standard MONITOR is a program written in machine code which is held in ROM starting at address location OOOOH . Its purpose is primarily to initialise the machine and to give it an elementary intelligence so that you can communicate with it. For this reason the machine must start off at the beginning of the monitor program every time it is switched on otherwise it becomes a worthless heap of rather expensive electronic components - unable to do anything. The first machine code instruction that the computer sees in the Monitor sets the STACK without which it would be impossible to do much in the way of decision making via nested sub-routines. It then proceeds to look at the next instruction which, in the case of TRITON, enables the interrupt operation if ever it is needed to be used. The following instruction is a JUMP which leads on to the first of the main routines called SCANMEM. This routine points to address 1600 H and writes FFH into it. It then reads back the value from that address and checks that the FFH was actually stored. Furthermore it writes OOH into the same location and checks that too. This is a check that the memory is there and working which, at the same time leaves the memory location clear (i.e. containing OOH). The monitor routine then steps up one memory byte - to 1601 H and does the same. This process is carried out on every successive location from 1600 H upwards until the computer finds an error. The address of the location where the error occurred is most likely to be the top of the RAM work area but could be the address of a faulty IC. In either event this top address is written into a pair of RAM bytes used by BASIC 14.1 to tell BASIC how much work space is available. The two bytes of memory used for this are 1481 H and 1482 H . As a general rule
whenever two byte instructions or data are written into memory the 8080 microprocessor expects to see the least significant byte in the lower value of the two addresses. Thus if 2000 H was the location where memory ended - as found by SCANMEM, location 1481 H would contain OOH while 1482 H would contain 20 H .

After checking the memory the monitor initialises the computer which acknowledges this on the screen with its standard message:

TRITON READY
 FUNCTION? P G I O L W T

The Monitor then goes into a keyboard loop and the computer effectively waits for you to tell it what to do. This will depend on which key you depress. The letters it expects you to type are those shown in its acknowledgement and are abbreviations for seven different primary operations you can do with the monitor. These are:
$\mathrm{P}=$ Inspect any memory location and, if necessary change, or insert a byte of data. When the data is entered the computer automatically steps to the next address showing what is currently there and waits to see if you wish to change it.
$G=\quad$ Start running a program from any specified starting address location. The computer asks you, within this routine, what start location you want.
$I=\quad$ Input from tape recorder. The computer asks you for the header code of the file and then searches for it. When it has been found the data is written into the computer's memory starting at location 1600 H . When the flag marking the end of the record has been found the computer re-initialises with an abbreviated form of its initial "switch on" message.
$\mathrm{O}=\quad$ Output a program to the tape recorder. This, again asks you to give your recording a header code. The routine automatically outputs programs written in BASIC and stops when it gets to the end of file address (the address written into bytes 1600 H and 1601 H by BASIC). For user written machine code programs you have to manually enter the address immediately following your last instruction into these two bytes. Tapes are ALWAYS loaded and dumped with 1600 H being the start location! When dumping has finished the computer re-initialises.
$\mathrm{L}=\quad$ List the machine code content of all locations starting from any specified address. The
computer asks for the first address then prints out the contents of this and the next 14 . It then asks MORE? and expects you to type Y otherwise it re-initialises.
Typewriter mode. The computer behaves just as if it was a keyboard and VDU. Anything you type is displayed on the screen including graphics. Cursor control and special VDU functions - e.g. Clear Screen, Reset Cursor etc all operate but the computer responds to nothing except CONTROL C which makes it re-initialise.
$T=\quad$ Jump to BASIC L4.1. This command causes the computer to jump out of the control of the Monitor into the control of BASIC. CONTROL C will jump back out of BASIC into the initialisation condition of the Monitor.

Note that CONTROL C will, in nearly all cases, get you out of an operation and back to the initialisation condition. The only times when it fails to do this are when you are locked in a user written machine code program loop; are searching tape for a non-existent header or are outputting to the tape recorder. In these three cases you will have to use Interrupt 2 (which re-initialises without clearing memory) or RESET which goes through the SCANMEM routine and erases any data in memory.

When the computer asks for its initial instruction via one of the above letters you simply have to type the letter. No carriage return is needed. If you type the wrong letter the computer replies "INVALID" and waits for you to try again.

Here are some examples to try with the above functions:

LED PORT TEST ROUTINE

1600	CALL INCH	CD	Input data from keyboard to accumulator		
1601	-	$0 B$			
1602	-	00	$2 F$		
1603	CMA	Complement contents of accumulator.			
1604	OUT PORT 03H	D3	Output contents of accumulator to		
1605	-	03	PORT 3(LED port)		
1606	JMP	1600 H	C 3		Jump back to 1600H for next
:---					
1607					

This program enables you to test out both the LED port and the keyboard by outputting the binary code from the keyboard to the LEDs. The program complements the accumulator to compensate for the fact that on TRITON the LEDs go on for level "O." In this program they will go on if a bit from the keyboard is "1." Because we are going through the monitor's INCH routine you will find that a shift inversion takes place. You get upper case alpha codes when unshifted and lower case alpha codes when shifted. This is designed in to make the keyboard more convenient to use. Numerical keys are not affected by the shift inversion. Again, because we are using INCH you can escape from this program loop with CONTROL C. You will notice that the most significant LED (bit 8) is permanently off; this is because bit 8 is used for the input strobe and this bit is masked off by the monitor as data is entered. Notice also that the data is latched on to the LEDs after the key has been released.

INTERRUPT DEMONSTRATION PROGRAM

1618	LXID	$161 F H$	11	Load start of string saying
1619	-		$1 F$	IAM INTERUPT 3
161 A	-		16	
161 B	CALL	PSTRNGCD	Print carriage return followed	
161 C	-		2 B	by string.
161 D	-		00	
161 E	RET		C9	Return to main program.
161 F	DATA	I	49	String data starts here and
1620	-	SPACE	20	terminates with end of text
1621	-	A	41	marker 04.
1622	-	M	4 D	
1623	-	SPACE	20	
1624	-	I	49	
1625	-	N	$4 E$	
1626	-	T	54	
1627	-	E	45	
1628	-	R	52	
1629	-	R	52	
162 A	-	U	55	
$162 B$	-	P	50	
162 C	-	T	54	
162 D	-	SPACE	20	
162 E	-	3	33	
162 F	-	EOT	04	

An example of a user written interupt routine using INT3 push button. Note that it starts at the re-vectored start address 1618: Load this program then reinitialise and press INT3 button. Next press W and do a bit of screen typing and press INT3 from time to time. The interupt should announce its presence. We hope that this simple example will show you that, contrary to popular belief, interupts are quite easy to write programs for.

VIDEO TYPEWRITER PROGRAM

1600	LXI D	1612 H	11	Load start address of message string
1601	-		12	in DE register pair. This is
1602	-		16	required by PSTRNG sub-routine.
1603	CALL	PSTRNG		Call sub-routine which prints string
1604	-		2B	starting at address held in DE register pair.
1605	-		00	
1606	CALL	PCRLF	CD	Call sub-routine which prints out
1607	-		33	carriage return and line feed. .
1608			00	
1609	CALL	INCH	CD	Call sub-routine which inputs data
160A	-		0B	from keyboard and holds this in
160B	-		00	accumulator.
160 C	CALL	OUTCH	CD	Call sub-routine which prints out ASCII character from
160 D	-		13	data in accumulator.
160E	-		00	
160 F	JMP	1609 H	C3	Jump back to address 1609 H and wait
1610	-		09	for next character from keyboard
1611	-		16	
1612	DATA	0	4F	Start address of message string
1613		/	2 F	
1614		K	4B	
1615		SPACE	20	
1616		T	54	
1617		Y	59	1
1618		P	50	
1619		E	45	
161A		!	21	
161 B		EOT	04	End of text terminator code.

When you run this program it acknowledges with the message O/K TYPE! and you can then use the TRITON as if it were in the W function operating mode (i.e. it becomes nothing more than a video typewriter). You can escape from the program by depressing CONTROL C (this applies to any program which repeatedly goes through the INCH routine).

ALPHABET TWELVE TIMES OVER USING I/O				
1600	RST1		CF	Clear screen via special restart instruction
1601	MVI B			
		0 CH	06	Set decimal value $12(\mathrm{oCH})$ in B to specify number of alphabets required.
1602	-		OC	
1603	MVI A	41H	3E	Set ASCII code for "A" in accumulator.
$\begin{aligned} & 1604 \\ & 1605 \end{aligned}$	CALL	OUTCH	41	Print contents of accumulator.
			CD	
1606			13	
1607	-		00	
1608	INR A		3 C	Increment ASCII code in accumulator by one.
1609				
	CPI	5BH	FE	Compare it with ASCII code which is
160A			5B	one greater than Z .
160B	JNZ	1605H	C2	If not greater than Z jump back to 1605 H
160C	-		05	and repeat until complete alphabet is printed.
160D				
160 E	CALL	PCRLF	CD	If alphabet is completed out put carriage
160 F	-		33	
1610			00	
1611	DCR B		05	Decrement value in B register
		1603H		by one.
1612	JNZ		C2	If it is not zero we do not have 12 alphabets so jump back to 1603 H and repeat.
1613	-		03	
1614	-		16	
1615	JMP	REINIT	C3	If it is zero re-initialise.
1616			B9	
1617	-		02	

This program should be compared with the one following as they both do the same thing - print the alphabet twelve times and then re-initialise. This, first, program uses conventional 1/0 techniques whereas the second makes use of the powerful memory mapped option to the TRITON's VDU. We hope you will recognise the tremendous difference in speed of operation between the two methods. Note that in both programs we make use of the RST1 instruction at the beginning. This is one of 8 special re-start instructions which are fixed destination CALL instructions. Using RST1 will call the sub routine at location 0008H which, in the case of TRITON's MONITOR is then re-vectored with a jump to 0134 H . The routine in question is the one which clears the VDU screen and resets the cursor. The advantage of using an RST instruction is that you do not have to specify the address of the sub routine hence saving two bytes in your program. You should only use RST instructions if the sub routine being called terminates in a RETURN command.

When you run the program try and judge the time it takes to display the 12 alphabets and then go on to the next example.

ALPHABET TWELVE TIMES OVER USING MEMORY MAPPING

1600	RST1	CF	Clear screen with special res- tart instruction Load HL register pair with
1601	LXI H	21	FF
1602	-		address one less than start of VDU RAM.
1603	-	MVIB	$0 C H$
1604	06	Set number of alphabets req- uired in register B.	

1605	-		OC		
1606	MVI A	41H	3E	Set ASCII code for " A " in accumulator.	
1607			41		
1608	INX H		23	Increment HL register pair by one.	
1609	MOV M, A		77	Copy contents of accumulator to memory.	
160A	INR A		3C	Increment contents of accumulator.	
160B	$\overline{\mathrm{CPI}}$	5BH	FE	Compare contents of accumulator with code	
160 C			5B	one greater than Z .	
160D	JNZ	1608H	C2	If it isn't greater than Z jump back to 1608 H and repeat.	
160E	-		08		
160 F			16		
1610	MOV A,L		7D	If it is: copy contents of L to accumulator	
1611	ADI	26H	C6	Add 26 H to this value.	
1612			26		
1613	CC	1629H	DC	If addition causes a carry;	
1614	-		29	increments H register by one	
1615			16		
1616	MOV L,A		6F	Replace new low byte address in register L .	
1617	DCR B		05	Decrement register B by one. If it's not zero we do not have 12 alphabets so jump back to 1606 H and repeat.	
1618	JNZ	1606 H	C2		
1619	-		06		
161.A	-		16		
161B	MVI B	0CH	06	Set decimal value 12 into B register.	
161C			0 C		
161D	MVI A	0AH	3E	Set accumulator to ASCII code for line feed.	
161E	-		0A		
161F	CALL	OUTCH	CD	Output line feed to VDU to step cursor down. (to get it clear of last alphabet).	
1620	-		13		
1621	-		00		
1622	DCR B		05	Decrement register B by one. If it's not zero we have not stepped cursor to below the	
1623	JNZ	161FH	C2		
1624	-		1F	last line of alphabet so jump back to	
1625	-		16 back to		
161 FH and repeat REINIT C3 If it is. re-initialise					
1627			B9		
1628	-		02		
1629	INR H		24	Sub-routine to increment register H in event of a carry.	
162A	RET		C9		

Although this program is longer than the one just described you will see an element of similarity in the way the alphabet is formed (by incrementing the accumulator) and we keep track of the number of alphabets in the B register. Instead of using the I/O OUTCH routine we use the HL register pair to point to memory locations which are within the block of the VDU's RAM. This starts at 1000 H and finishes at 13FFH. We then use the MOV M, A instruction which copies whatever is in the accumulator to the memory location being addressed by the HL register pair. By using the INX H instruction we can increment the latter to display the next character etc. Notice that carriage returns and line feeds are not needed in the main body of the program because we are using addressing to tell the computer exactly where to place each character. When one alphabet is finished we have to compute the address of the start of the next by adding the hex number 26 to the address currently in the HL register pair (this is done at instruction 1611 H). Notice that after this operation we have to make allowances for a carry by calling an INR H sub routine.

When memory mapping the VDU you must remember that the clear screen/reset cursor operations does more than is immediately apparent to the eve. The addresses of different
positions on the VDÜ screen must correspond to specific places on the screen (1000 H is the top left hand comer and 13FFH is the bottom right corner). If, as a result of previous activity, the VDU screen has been scrolling these absolute address values do not correspond to positions in an absolute manner you must carry out a cursor reset operation. This can be on its own or combined with the screen clear operation. A similar operation must be carried out if you use the VDU function when under the control of BASIC L4.1. Note that it takes the VDU 132 mS to carry out a home cursor operation so if every you output the raw instruction in your own software you must introduce a time delay greater than this before outputting anything else to the VDU. The Clear Screen / Reset Cursor utility in the monitor has a delay of about 200 mS built into it so you can call it without introducing any further delay.

Note that when this program runs the cursor stays stationary in its reset position (top left corner of screen). If we allowed it to stay there the re-initialisation message would overprint our alphabets so we have included some extra instructions (starting
at 161 BH) which step the cursor down twelve positions immediately prior to re-initialisation.

To further demonstrate the flexibility of memory mapping you can alter the layout on the screen by altering the value added to the address to get the next line. Alter the data at location 1612H to 29 and re-run the program. The lines should have start points staggered by 3 character positions. Similarly you can alter the start location for the display as a whole by altering the data in locations 1602 H and 1603 H . Try making these 20 and 10 respectively and alter the data at 1612 H to $\mathbf{2 5}$. When you run the program the rows should slant the Other way.

When memory mapping the VDU you must always be careful to ensure that your memory pointer (H L register pair) cannot exceed the highest address of VDU (13FFH) otherwise you will start over-writing the input buffer and stack area of the monitor. If this happens all sorts of strange things will begin to take place and you will probably find you completely lose control through the keyboard. If this should happen you must resort to the RESET button and end up with a cleared memory!

MEMORY MAP AND MONITOR UTILITIES

To help those who wish to get involved in machine code programming at an early stage here are the addresses of memory blocks and ports. It is assumed that you will be operating under the control of the standard Monitor program so we also list the addresses of its main Utilities.
MEMORY START ADDRE
$0000 \mathrm{H}-03 \mathrm{FFH} 1 \mathrm{~K}$ EROM

$0400 \mathrm{H}-07 \mathrm{FFH} 1 \mathrm{~K}$ EROM
$0800 \mathrm{H}-0 \mathrm{BFFH} 1 \mathrm{~K}$ EROM
$0 \mathrm{C} 00 \mathrm{H}-0 \mathrm{FFFH} 1 \mathrm{~K}$ EROM
$1000 \mathrm{H}-13 \mathrm{FFH} 1 \mathrm{~K}$ RAM
$1400 \mathrm{H}-14 \mathrm{FFH} 1 / 4 \mathrm{~K}$ RAM
$1500 \mathrm{H}-15 \mathrm{FFH} 1 / 4 \mathrm{~K}$ RAM

1600H-1FFFH $2 ½ \mathrm{~K}$ RAM
(Holds standard MONITOR)
(Holds BASIC L4.1 "A") (Holds BASIC L4.1 "B") (Spare location)
(VDU memory - can only be written into by computer)
(Holds stack and tables for Monitor from 1400 H to 147 FH ; 1480 H upwards through this block will be used by BASIC L4.1 tables otherwise is free as M/ C code work area)
(Completely reserved for BASIC L4.1 stack otherwise is free for the user)
(Work area for BASIC L4.1 or user programs. NOTE that locations 1600 H and 1601 H are made use of by tape I/O routines to store End of File address - hence user programs for saving/loading to and from tape should always start at 1602 H)

Available for "Off Board" extensions

PORT DESIGNATIONS

MONITOR UTILITIES ETC

 routine is necessary) transmission) OUTPUT "O") (receive data) INPUT ware) are output) output as a spare line)Keyboard INPUT (NOTE special
Tape I/O UART Status INPUT
Tape I/O UART Data Strobe (start
LEDs OUTPUT (NOTE LEDs are on for
Tape I/O UART Receive Data Enable
VDU OUTPUT (NOTE strobe - bit 8 has to be specially formatted by soft-

Spare OUTPUT (NOTE only bits 7 and 8
Relay OUTPUT (NOTE bit 8 is used to drive tape control relay out bit 7 is

Available for "Off Board" extensions

0000 H RST0 Reset address. Enables Interrupt and checks and clears memory writing number of bytes available into locations 1481H (low order byte) and 1482 (high order byte). With full main board memory in place this should read 2000 H . Then goes on to Initialise computer.

From Science of Cambridge: the new MK 14.

Simplest,most advanced, most flexible microcomputer -inkit form.

Manual which deals with procedures from soldering techniques, through programming and use of RAMI/O to interfacing with complex external equipment It contains operational instructions and examples for training applications, and numerous programs including math routines (square root, etc), digital alarm clock, single-step, music box, mastermind and moon landing games, self-replication, general purpose sequencing, etc.

Designed for fast, easy assembly

Each 31-piece kit includes everything you need to make a full-scale working microprocessor, from 15 chips, a 4 -part keyboard, display interface components, to $P^{3} \mathrm{CB}$, switch and fixings

The MK 14 can be assembled by anyone with a fine-tip soldering iron and a few hours' spare time, using the illustrated step-by-step instructions provided

ETI BOOK SERVICE

computing

BASIC: A Self Teaching Guide (2nd Edition)
Teach yourself the programming language BASIC. You will learn how to use the computer as a tool in home or office and you will need no special mathsor science background.

Illustrating BASIC
£2.20
by ALCOCK. B .
by ALCOCK. .

This book presents a popular and widely available language called BASIC and explains how to write simple programs

Microprocessors
by ALTMAN, L.
Gives a general overview of the technology design ideas and explains practical applications.

Applying Microprocessors

£12.00
Follow up volume which takes you into the second and third generation devices.
Intro to Microprocessors
by ASPINALL. D.
Explainsthe

How to Buy and Use Minicomputers and Microcomputers

by BARDEN, W.

iety of practical and recreational tasks in the home how they can

How to Program Microcomputers
£6.75
This book explains assembly-language programming of microcomputers based on the Intel 8080, Motorola MC6800, and MOS Technology MCS6502 microprocessors.

Introduction to Microcomputers and Microprocessors by BARNA, A.
Provides the basic knowledge required to understand microprocessor systems. Presents a fundamental discussion of many topics in both hardware and software.

Microprocessors in Instruments and Control

Introduces the background elements. paying particular regard to the dynamics and computational instrumentation required to accomplish real-time data processing tasks.

Basic BASIC

$\mathbf{£ 7 . 5 0}$
An introduction to computer programming in BASIC language
Microprocessor Programming
for Computer Hobbyists
The Computer Book
by HAVILAND. R. P
Building super calculators and minicomputer hardware with calculator chips.
Microcomputers, Microcomproesors, Hardware
Software and Applications
by HILBURN, J. L.
Complete and practical introduction to the design. programming. operation, uses, and maintenance of modern microprocessors, their integrated circuits and other components.

Microprocessor Systems Design
 by KLINGMAN. E

 and a detailed ins information on real microprocessors, this text is both an introduction and a detailed information source treating over a dozen processors, including new third generation devices. No prior knowledge of microprocessors or microelectronics isrequired of the reader.

BASIC Programming

by KEMENY, J. G.
A basic text.
Microprocessor and Small Digital Computer
Systems for Engineers and Scientists
$£ 19.00$
by KORN, G. A
This book covers the types, languages, design, software and applications of microprocessors.

TV Typewriter Cookbook
$£ 7.40$ by LANCASTER, D.
An in depth coverage of $t v$ typewriters (tvi's) - the only truly low-cost microcomputer and small-system display interface. Covers tvt terminilogy, principles of operation, iv contigurations, memories, system design. cursor and update circuitry and techniques, hard copy, color graphics, and keyboards and encoders.

Microprocessors'- Technology, Architecture, and Applications
This introduction to the "computer-on-a-chip" provides a clear explanation of this important new device. It describes the computer elements and electronic semiconductor technologies that characterize microprocessors.

Programming Microprocessors

A practical programming guide that includes architecture, arithmetic/logic operations, fixed and floating-point computations, data exchange with peripheral devices/compilers and other programming aids.

Microcomputer Based Design
by PEATMAN, J. B.
£19.00

This book is intended for undergraduate courses on microprocessors.
Microprocessor and Microprocessor Systems
£20.50
by RAO. G. U
d
A completely up-to-date report on the state of the art of microprocessors and available equipm, written by one of the leading experts. It thoroughly analyzes currenty

The 8080A Bugbook: Microcomputer Interfacing a nd Programming
£7.60
The principles, concepts and applications of an 8 -bit microcomputer based on the 8080 microprocessor IC chip. The emphasis is on the computer as a controller.
6800 Software Gourmet Guide and Cookbook by SCELBI

8080 Software Gourmet Guide and Cookbook

Understanding Microcomputers
uives the fundamental
concepts of virtually all microcomputers
$\mathbf{£ 7 . 6 0}$
Microprocessors and Microcomputers
£18.00 by SOUCEK. B.
Here's a description of the application. programming. and interacing techniques common to all microprocessors. It concentrates on detailed descriptions of representative microprocessor families and includes explanations of digital codes. logical systems, and microcomputer organization.
Microcomputer Primer

by WAITE. M.

introduces the beginner to the basic principles of the microcomputers. Discusses the five main parts of a computer - central processing unit, memory, input/oup put interfaces and programs. The important characteristics of several well-known microprocessors are given and a chapter is included on programming your own microcomputer.
Microprocessor/Microprogramming Handbook
by WARD
Authoritative practical guide to microprocessor construction, programming and applications.

HOW TO ORDER:

Make cheques etc payable to ETI Book Service. Payment in sterling only please. Orders should be sent to: ETI Book Service, PO Box 79, Maidenhead, Berks. All prices include P \& P.

Softspot
Don Scales has written another game for the TRITON. We would like to expand Softspot over the next few months so please send us any software (machine code. BASIC etc.) which you feel would be of interest to others.

REVERSAL (1K)
 DESCRIPTION

The REVERSAL GAME is a game of skill played with the computer. The computer will arrange the numbers 1 to 9 in a random sequence and your job is to arrange them into ascending order in the minimum number of moves.
For example
The machine might print the following sequence -

$$
837914265
$$

You now have to get these arranged in ascending order. To do this, you are allowed to reverse the order of any number of digits starting at the left hand side. The machine will ask

NUMBER TO REVERSE

If you enter 4 the result will be

$$
973814265
$$

If you now enter 9 you will get

$$
562418379
$$

You now have 9 in the correct place and can set about getting 876 etc. in their correct positions.

```
10 PRINT 'THE REVERSAL GAME'
20 FOR I = 1 TO 9
30 LET A = RND (9)
40 IF I = 1 GOTO 80
50 FOR J = 1 TO I -1
    60 IF @ (J) = A GOTO 30
    70 NEXT J
    80 LET@(I) = A
    90 NEXT I
    95 LET B \(=0\)
200 PRINT \#2, @ (1), @ (2), @ (3), @ (4), @ (5), @
(6), @ (7), @ (8), @ (9)
210 INPUT 'NUMBER TO REVERSE' J
220 IF J <1 GOTO 240
230 IF J < 10 GOTO 260
240 PRINT ‘INVALID - TRY AGAIN'
250 GOTO 210
260 LET K \(=(\mathrm{J}+1) / 2\)
270 FOR I=1 TO K
280 LET A = @ (I), @ (I) = @ (J+1-I), @ (J+1-I)
\(=\mathrm{A}\)
290 NEXT I
295 LET B \(=\mathrm{B}+1\)
300 FOR I = 1 TO 9
310 IF@ (I) \# I GOTO 200
320 NEXT I
330 PRINT ‘TOTAL’, \#3,B
340 GOTO 10
```


THE TOTAL SOLUTION FROM ALMARC

OF COURSE!
Now Almarc \& Vector Graphic offer the complete solution to your computing needs for $£ 2300.00^{\circ}$. The Vector MZ needs only the addition of a V.D.U. and it's ready to go. Completely assembled and fully tested, the Vector MZ offers the following features as standard:-

- S- 100 bus
- 4 MHz Z80A processor
- 158 instructions
- Two quad density Micropolis floppies - over 630k bytes on line
- Serial port
- Two parallel ports
- 32K static ram
- 12 K prom/ram board with extended monitor
- Extended disc Basic

Simply connect your peripherals (Elbit V.D.Us \& Centronics printers are available from Almarc) and you're up and running and, because the MZ uses the $\mathrm{S}-100$ bus, you can plug in a massive range of add-on units.

Ring or write for a demonstration to:-

ALMARC DATA SYSTEMS LTD.

29 Chesterfield Drive Burton Joyce, Nottingham

Tel: 0602248565
*Discount terms available

MEMORY EXPANSION FOR NASCOM I

16 K ready built	£180.00
32 K ready built	£290.00
48 K ready built	£400.00

The above prices include all buffers and address decoding.
Due to limited quantity the above are available to callers only.

KITS

Nascom 1 Microcomputer kit
£197.50
Jade 280 CPU kit 2 Mhz $£ 95.00$
13 slot S100 motherboard
£48.50
Jade 8 K static memory 250 ns
£119.95
KB756 Keyboard kit
$£ 45.00$
$£ 200.00$
£18.95
Kansas City interface
I.C.s

Z80 CPU . . . £13.00. 8X 21 LO2
$£ 7.90$
411616 K dynamic, 8 OFF
£100.00
52704 K dynamic, 8 Off
$£ 25.00$
2107 4K dynamic 8 Off
$£ 25.00$
Please add 40 p postage then 8% VAT

Personal Computing -The Early Years

Tip toe through the early memories of the Personal Computing field

In The Beginning

It all started back in 1974 when Intel introduced the 4004, the first true microprocessor. It developed almost by accident, as a result of Intel's efforts to produce a calculator of unprecedented flexibility. The shock waves of the hand-held calculator revolution were still being felt by every section of society and the back-room boys' eyes lit up with that "You ain't seen nothing yet" look as they drew up the chip-masks for their next product, the 8 -bit 8008 .

Assisted by the lessons learned from the cut-throat calculator business the microprocessor developed with frightening speed and predictability. Frightening not only because of the vast amount of hightechnology and high finance poured into the field, but also because of the dramatic effect extrapolations of such technology can have on a broad spectrum of society. Predictable because everyone knew what was going to develop. The shrinking of calculators from giant cabinets to flip-top packs in the space of just a few years created an extraordinary blase attitude towards electronics. It was a spectacular demonstration of the omnipotence of the new technology of micro-electronics. It was proof that now nothing is impossible - just draw up the specifications, expend x thousand man-hours and y million dollars, and there you have it. So the microprocessor has been born at a time when nothing comes as a surprise any more. But maybe the real surprise is yet to come.

The New "Hams"

Of all the sub-sets of electronics hobbyists the most clearly defined to date has been the radio amateur. Members of this particular sect follow a technological faith which started with the first wireless communication and has since flourished, gaining millions of followers in a relatively short time.

For many hams their hobby almost becomes a life-style within itself, always striving for that rare DX the eternal pursuit of that elusive one-to-one SWR. Is it possible that we are now witnessing the founding of a new faith, one whose god speaks in Is and 0 s rather than 5 s and 9 s?

By making a few comparisons between amateur radio and amateur computing certain patterns can be seen emerging which may be an indication of what course the future of personal computing might take.

Power To The People

Like amateur radio, amateur computing is a hightechnology which makes the latest developments in the science of electronics available to anyone at all who has the time and money to pursue them. The money factor is all important - the lower the cost of the hardware, the more people can afford to pursue the hobby. A reasonably useful microcomputer system might cost in the order of $\$ 1,000$. Hams might spend this sort of money on radio gear, for that matter a radio-controlled aircraft enthusiast, amateur photographer or stamp-collector could easily spend that much on his hobby. So thanks to the microprocessor the cost of your own personal computer is no longer a barrier to most people.

This new accessibility and the free interchange of ideas and information between hobbyists has the effect of distributing "computer power" over a broad spectrum of people. This leads to a breaking down of much of the mystique which has traditionally surrounded the world of computers; they are being de-mystified as the magic is systematically exposed as little more than sleight of hand. As large number of amateurs invade a hitherto sacred field which was once the sole province of a privileged few the elite will inevitably grow in number until it finally becomes plebian.

"Homebrew" vs "Appliance"

As with amateur radio there are two factions within the computer cult, the "homebrewer" who builds his own equipment for the sake of the experience gained, and the "appliance operator" who buys a ready-built, going unit and gets what he wants from operating his instrument, writing programs and experimenting with the performance of the hardware as bought. His investment in the computer itself is more financial and less emotional than in the case of the homebrewer.

There is always some overlap between the two factions, but they can usually be classified by comparing the time spent building, testing and modifying the hardware to the time spent actually using it once it's working.

The Sky's The Limit

Radio equipment has rather unique and interesting characteristics. It can never really be declared "finished". There is always more to add to the station, improvements to be made, better antennas, higher power, lower noise. Computers share this trait which makes them too the ideal subject for a hobby. Today's mass storage is tomorrow's scratch-pad. There is unlimited scope for improvement and expansion of the hardware.
If ever the computer itself should look like having its full complement of RAM, ROM. AND I/O parts, the hobbyist can turn his attention to the vast range of peripherals that are available to him. A radio transmitter can be hooked up to an antenna and a. microphone and that's about it, but nothing can be so insular as to resist interfacing to a computer if the intrepid hobbyist uses a little imagination.

More importantly, once the computer is operative a literally infinite amount of software development waits to be done. Like radio operating, this phase of the hobby is particularly attractive because the operating cost is nothing more than the electricity bill.

The Junk Box

Ever since the tradition of stripping a discarded radio chassis was established by the pioneers of amateur radio, the humble junk box has been the hallmark of the truly worthy hobbyist. In much the same way as one may judge someone's social standing by the way he dresses, how neatly his garden is kept, radio amateurs assess each other's status by the quality and quantity of a bits and pieces which lurk for years in the dark recesses of their junk box until their true worth is finally recognised and they are discarded. Because the microcomputer hobby is so new, junk box computer parts of good vintage are rarer, but there is always the stimulating challenge of pushing a seemingly irredeemable piece of obsolete equipment into service. Radio ham and computer hobbyist alike share the unique pride and joy of operating equipment which the professionals have officially declared worthless.

Doing The Impossible

Besides the resurrection of dead equipment, hams are keen on performing another type of miracle. This involves proving by practical demonstration that something which should by rights not be possible does, in fact, work. With amateur radio this usually entails forging forth into extremes of technology (or bad practice, depending on how you look at it), generally revolving around a successful communication in spite of a red-hot "final", vast distances or an antenna made of wet string.

To the computer ham comparable feats entail successful execution of programs which are eithër
exceptionally short or unbelievably long or so cunningly convoluted that not even the person who wrote it knows how it works. Thanks to the new technology involved there is also a whole new set of miracles which rely on getting a phenomenal number of logic functions into an incredible small space.

Amateurs are in a rather unique position in that they are permitted to exceed manufacturers' ratings to see to what limits they can push a particular component or piece of equipment. This practice gave rise to many novel techniques in the field of radio and a similar thing is bound to happen in computing.

The software bugs seem to come out just before sunrise.

Time Is Not Money

Amateurs make many other contributions to the science to which they are devoted as a result of the enormous amount of time they spend on their hobby. Because of the non-commercial nature of their pursuits, computer hobbyists can afford to undertake time-consuming projects which would not be economical as a professional enterprise.

Like the radio amateur who stays awake all night tuning across the bands looking for a rare contact, the computer ham often burns the midnight oil chasing an elusive bug in his software. Radio propagation never seems to be optimum at a civilized hour; similarly the software bugs only seem to come out just before sunrise.

With both amateur radio and amateur computing the real fun of the hobby lies in setting a goal and then achieving it no matter how long it takes or how inefficient the techniques used may be. The computer ham may devote hundreds of hours to developing a

- program that does nothing more than play a seemingly useless game. But, as with any technical hobby, a lot of valuable techniques are learned in the process.

Spreading The Word

A natural development from any widely followed hobby is the formation of clubs where people with similar interests can meet and exchange ideas. Major amateur radio clubs like the Radio Society of Great Britain, the Amateur Radio Relay League and the Wireless Institute of Australia have been established for many years and cater for hundreds of thousands of enthusiasts.

Even though the do-it-yourself computer hobby is

-The Early Years

so young there are already hundreds of computer hobby clubs. The biggest of these are found on the west coast of America which is where most of the world's microprocessor products originate. The Southern California Computing Society has about 5,000 members. At the moment there are nearly 200 smaller computer clubs in the USA and an estimated 20,000 people have their own personal computer.

Magazines devoted entirely to the computer hobbyist have been established with great success. The most widely read glossy is byte which now circulates over 60,000 copies.

The radio amateurs' "field day" has always provided a means of information exchange between individuals. As communication is the basis of ham radio, publicising such events poses no problems, but computer hams have only their specialist magazines for such promotion. A few conventions have been held by computer hobbyists where the main purpose has been to establish standards so that hobbyists can easily share the software they have developed. Manufacturers of personal computing hardware also take an interest in these gatherings because it is an excellent opportunity to find out what the hobbyist is interested in and therefore which products will sell.

Speaking of Computers

Due to the unusually verbal nature of the hobby itself, radio amateurs have developed a unique vocabulary. The language which results has such a high jargon content and is spoken so fluently that it is quite unintelligible to the outsider. This serves to give the group its own identity and binds its members together.

Although amateur computing is still in its infancy its followers found that the computer industry had already provided them with a highly developed jargon, complete with an impressive range of off-theshelf, buzzwords which have been nutured to perfection by 20 years of professional verbal dazzling. This they have eagerly seized and followers now have a language of their own.

The most telling sign of both radio and computer hams is their often amusing ability to construct seemingly meaningful sentences using all the rules of English grammar except that the keywords are replaced with strings of number of initials. The radio amateur might say, "QRX, I've got to check my SWR", while the computer amateur could hit you with, "I've put a PIA on my 6800 for I/O."

To the uninitiated talking in code like this seems like an awfully anti-social way of passing secret messages between club members - it serves to keep the in-group "in" by providing a feeling of comradeship for members and it keeps ot all but the most determined newcomers.

Future Shock (Electric)

Although personal computing is already well established as a hobby, the real impact of its advent is yet to come.

It is a characteristic of any hobby that those who pursue it develop great expertise in the field. A keen 10 year old stamp collector may know as much about stamps as a professional stamp dealer. Having spent his youth building radio transmitters a ham of 20 might know as much about radio as a Universityqualified electronic engineer.
We are now finding a new breed of hobbyist/ expert, a hobbyist who has spent thousands of hours of leisure time building computers and programming them. He could well know more about computers than many professionals in the field. As the hobby grows there will be more and more people to whom computers are second nature, people who are fully conversant with a broad range of computer concepts and totally up-to-date with the state of the art.

Traditional training and qualifications are already being seriously challenged by these hobbyists who might enroll in a University computer science course already knowing more than they will be taught.

As this flood of expertise hits the workforce we are bound to see dramatic changes in the status of the computer professional. Will there be a sudden surplus of computer engineers and programmers, or will the wave of new technology bring with it expansion of the industry to absorb it?
The remarkable advances in solid state technology which led to the development of microprocessors have made their mark on the electronics industry, but it's the "expertise explosion" which will follow that will have the real impact on society.

There are rumours of an Opto-Pneumatic Power Cue being evaluated by leading players. Integral Laser Theodolite system determines range and angles while Microprocessor backpack computes and controls shot dynamics.

MICRODIGITAL

 OF MERSEYSIDE

 OF MERSEYSIDE}

SUPER SPECIAL PRECHRISTMAS OFFERS

CHESS CHALLENGER Also in stock 10 level $£ 200$, BORIS $£ 199$

TOSHIBA LC-836 MN Calculator

30 memories - Alphanumeric LCD memories retained when calculator switched off, 12,000 hour battery life - 25% off R.R.P

COMPUTER BATTLESHIPS

The Seek and Destroy Computer game
with
live eacion and son sund
29

WE ALSO SELL

Science of Cambridge MK 14
Bearbags
Nascom
Rockwell AIM-65
Apple II
North Star Horizon
CASU
Panda

Chroma Chimes
Monitel
Chess/Draughts/
Backgammon
A superb selection of literature TI Programmer Calculator Multimeters (Digital), Soldering Equipment, Wire Wrap, etc. and much more Demonstrators of most of these on display Opening hours: 9-5.30 Monday to Saturday
Friendly, expert staff always on hand!

Tel: 051-236 0707

Science of Cambridge

```
power supply ..... £5.75
```

Universal microprocessor coding
forms, pads. 100
-
E
Please send me the items ticked
above. I enclose cheque/P.O. for
or
Access No....
Barclaycard No

- Please send me free, complete
- brochure I enclose S.A.E.
(please tick)
Name.
Address.

Tel. No
Address to Microdigital Ltd., 25
Brunswick Street, Liverpool L2 OBJ
Telephone: 051-2360707.
Please allow 14 days for delivery.

Room ETI/J
313 Kingston Road, Ilford
Essex IG1 1PJ, England

From Adam Osborne Associates
NTRODUCTION TO MICROCOMPUTERS
Volume 0: The Beginners Book
Volume 1. Basic Concepts
Volume 2: Some Real Microprocessors (without binder) Volume 3: Some Real Support Devices (without binder) Updating Subscriptions for Vol 2 and 3

Updating subscriptions for Vol 2 and 3
6800 Programming for Logic Design 8080 Programming for Logic Design
280 Programming for Logic Design
8080A / 8085 Assembly Language Programming
6800 Assembler Language Programming
Some Common BASIC Programs
General Ledger (available from late summer 1978)
Payroll with Costing Accounting
Accounts Payable \& Accounts Receivable

From BYTE Publications Inc.
Paperbytes
Tiny Assembler for 6800 Systems
Bar Code Loader for 6800, 8080, 280 \& 6502 Micros

From Scelbi Computer Consulting Inc.

6800 Software Gourmet Guide \& Cookbook

€7.95

8080 Software Gourmet Guide \& Cookbook

C. 95

8080 Programmers Pocket Guide

2.25

8080 Hex Code Card

2.25

8080 Guide and One 8080 Code Card

4.20

8080 Guide and Both Code Cards

Understanding Microcomputers \& Small Computer Systems $€ 7.95$

SCELBI 'BYTE' Primer

€9.95

8080 Standard Monitor (In Book Format)

£9.95

8080 Standard Assembler (In Book Format) £15.95

8080 Standard Editor (In Book Format)

8080 Galaxy Game

From Creative Computing Press:

Best of Creative Computing Volume $1 \quad$ E6.95
Best of Creative Computing Volume 2 Basic Computer Games
The Colossal Computer Cartoon Book
Computer-Rage (a Board Game)
Artist and Computer
E3. 95
6.95

モ3 95

| Sybex Introduction to Personal \& Business Computing | $£ 4.95$ |
| :--- | :--- | :--- |
| Sybex Microprocessors from Chips to Systems by R. Zacs | $£ 7.95$ |
| Sybex. Microprocessors Interfacing Techniques by R. Zacs | $£ 7.95$ |
| Dilithium Home Computers Volume 1 Hardware | $£ 6.50$ |
| Dilithium Home Computers Volume 2 Software | $£ 5.95$ |
| Getting involved with your Own Computer | $£ 4.75$ |
| Best ot MICRO | $£ 6.95$ |

From Basic Software Library
(from Scientific Research Instruments)
Vol 1 Business and Personal Booking Programs
Vol 2. Maths and Engineering Programs
E17.50
Vol 3: Advanced Business Programs £26.95
Vol 5 Generat Purpose Programs
Vol 6: General Ledger Program
E32.50

From Kilobaud/73 Magazine Inc.
Hobby Computers Are Here
£3.95
New Hobby Computers
€3. 95

TV Typewriter Cookbook by Don Lancaster
€7.50
TTL Cookbook
€7.50
CMOS Cookbook
E7.95
C Timer Cookbook
IC OP-AMP Cookbook

€ 9.50

RTL Cookbook
Z80 Microprocessor Handbook \quad £

Magazines: Back Issues	
Personal Computing	$£ 1.75$
Interface Age	$£ 2.25$
Dr. Dobbs Journal	$£ 1.75$
Computer Music Journal	$£ 2.50$
Peoples Computers	$£ 1.75$
BYTE	$£ 2.25$
Creative Computing	$£ 1.75$
Calculators \& Computers	$£ 1.75$
ROM	$£ 1.75$
Kilobaud	$£ 2.25$
73	$£ 2.25$
Micro-6502 Journal	$£ 1.50$

From Dymax Inc.	
Instant BASIC by Jerald R. Brown	$£ 7.95$
Your Home Computer by James White	$£ 7.95$
My Computer Like Me. When I Speak	$£ 2.75$
BASIC by Bob Albrecht	
Games with a Pocket Calculator by Thiagarajan \& Stilovitch	£1.75
Games. Tricks and Puzzles for a Hand Calculator by W. Judd	
	$£ 2.49$

From Peoples Computer Company	
Reference Books of Personal \& Home Computing	$£ 4.95$
What to Do After You Hit Return	$£ 7.00$
Dr. Dobbs Journal Volume 1	$£ 10.00$

HOW TO ORDER	Send to address above All Orders must be Prepaid Indicate Payment Method Total enclosed $£$
Please note our prices include postage and packing, but not insurance, if wanted add 12 p for every E .10 of books ordered. Mảke cheques, POs etc. payable ta	My cheque. P. O. I M O is enclosed in Sterling on U.K. Bank . Charge to Barclaycard / Visa / Access / Diners / American Express
L.P. Enterprises. CREDIT CAROS accepted	Credit Card No. Expiry Date
BARCLAYCARD VISA/ACCESS	Name
	Address
Phone 01.5531001 for Credit Card orders (24-hr service)	POSTCODE
	Signature
All putulications are published in Ư S. A and shipped air-freight by L.P. Enterprises. In unusual cases, processing may exceed 30 dạys. 'At time of going to. Press, price of binders unknown. Telephone enquiries welcome	
	TRADE ENQUIRIES WELCOME

TR5-80 Update

The August issue of ETI carried a reciew of the Tandy's TRS-80. The machine, made available for review, was equipped with the Tandy Level 1 floating point 'Tiny BASIC' ROM and 4 K of dynamic RAM.

Since then Tandy have introduced a number of developments on the BASIC TRS-80 machine - The Level 1 system was made available with 16 K of memory and the more powerful Tandy Level 2 BASIC was introduced into this country supported by both 4 K and, top of the range, 16 K of dynamic RAM. Any machine from the range can be upgraded in performance by returning it to Tandy for internal mods.

This update to the original review deals with the major differences between machines equipped with the Level 1 and Level 2 BASICs. For a general description of the TRS- 80 machine, the comments of the original review are still valid.

Key Improvement

The level 2 BASIC is a 12 K version of the microsoft BASIC used by many machines in the TRS-80's price bracket. Before going on to describe the Level 2 BASIC, which is considerably more powerful than Level 1, in detail, it may be as well to mention two hardware orientated improvements implemented on this upgraded machine.

The TRS-80's keyboard is decoded by the resident software and in the Level 1 machine the decoding system used meant that one had to release one key before the computer would allow the entry of another. This led to such messages as "Plase tye in yor name" - Even those of us who are not touch typists could get up enough speed to defeat the Level 1 keyboard. Level 2 lets you hit the second key before you have released the first key. Even level 2 does not let you get away with too much, however, and if you hold down three or four keys at a time, some keys will then generate several characters as they are pressed.

The other major area of improvement on the hardware/software border is the speed at which programs are dumped to and loaded from the TRS80's cassette recorder.

Level 1 used a data transfer rate of 250 baud - the level 2 rate is twice this at 500 baud. Because of this faster transfer rate it may be found that the volume setting on the recorder that was suitable for use with a Level 1 machine will have to be altered for satisfactory performance with Level 2, in general a lower volume control setting will be needed.

Editing

One of the major differences between Level 1 and Level 2 is the provision of a powerful editing facility in the latter. We do not have enough space to go into a detailed description of the editor but a few examples of what can be accomplished should give an idea of its power.

One can list any line of a program individually, insert material anywhere in a line, delete material anywhere in a line, delete the remainder of a line beyond the cursor and insert new material in its place. Any desired number of characters to the right of the cursor may be deleted or a change may be made to a
specified number of characters. The editor provides a search facility, so that (for example) a line may be searched for the second occurance of the letter G and move the cursor to that position or tell the computer to delete all characters to that point and leave the cursor there.

Other editing features allow you to quit the edit saving all changes, to quit deleting all changes or the cancel all changes made and restart.
All in all a very powerful editor.
Level two basic allows variables to be stored in different forms - single or double precision. A \ddagger (hash) after a calculation will cause the result to be output as a 16 place decimal (print $1 / 3 \#$), an ! (exclamation mark) will keep a variable at single precision (G!) and a \% (percent) symbol will keep the number as an interger.
The system of representation can be selected for the type of work required - Tip, if you can work with whole numbers, store them as integers, your program will run twice as fast and occupy half the memory space as programs without these restrictions.

Print Format

Level 2 BASIC allows some fairly sophisticated formatting of output. It can be used in many applications such as printing report headings, accounting reports etc. Using nine "Field Seperators," one can specify digit positions, cause automatic rounding off, concatentate (join together) multiple strings or string variables, align columns - a comprehensive system that allows any output to be presented in an easily readable form.

Strings

The Level 2 manual states that "Without string handling capabilities, a computer is just a superpowered calculator." What this makes the level 1 machine with it's "String Things" - strings which one was not able to handle - is a question we leave open: Needless to say the Level 2 machine provides a wide range of string handling commands.

The DEFSTR statement allows any valid variable name to contain a string, adding a type declaration character ($\$$) has the same effect.

Each string can contain up to 255 characters and strings can be compared as well as concatented.

Strings can be compared with the same symbols used for comparing numbers - The ASCII codes for the characters being the values compared.

Level 2 features ASC and CHR \$ commands. ASC gives the ASCII numerical code for a string character while CHR \$ performs the reverse operation.

The INKEYS $\$$ function will allow an entry from the keyboard while a program is running - without the use of the return key, useful for "Real Time" games if nothing else. INKEY\$ will strobe the keyboard and return with a one character string - This being a null string if no key is pressetd.

Manipulation of strings can be carried out with the following commands, LEFT\$, MID \$, RIGHT\$, LEN and string $\$$.

LEFT \$ (A \$, 3) will print the first three characters from the left of $A \$$ - Thus if As were TANDY the command would select TAN - MID $\$$ will select characters from the middle of the string and RIGHT\$. not surprisingly, from the right. The formats are the same for LEFT $\$$.

STRING $\$$ provides a string of a specified character for a specified charact4er for a specified length. For example STRING\$ (25, ?) would output 25 question marks.

Trace

Level 2 BASIC provides a trace facility that is very useful for the debugging of programs. The command TRON followed by RUN will output to the screen the exact sequence in which the program lines are executed. To turn off the trace function the command TROFF is used.

Functions

Level 2 adds considerably to the four in- built arithmetic features of level 1.

To MEM (size of used memory), INT (Convert variable to interger), ABS (absolute value of variable) and RND (Random number generator) are added 12 more.

These are the trig functions SIN, COS, TAN and ATAN - The maths functions EXP, LOG, SGN and SQR.

The command RANDOM at the beginning of a
program will ensure a different series of random numbers each time program is run. CDBL and CSNG concern themselves with the format in which a numerical variable is stored. CDBL provides a double-precision value of the expression following CDBL in brackets, even if the operands are single precision or integers, CSNG does the oposite by providing a single precision value of the expression.

Many other functions may be created using the 16 Level 2 functions and Appendix E of the level two manual provides a guide to these.

Error messages

Whereas level 1 BASIC provides three (WHAT? HOW: and SORRY) error messages, Level 2 has 23 two-letter codes providing a far more specific indication of the error. Level l's feature of printing the error code at the exact point at which the error occurs is however lost - The message being printed on the following line.

Another facility present in Level 1 but lost in the more powerful version is that of abbreviated statements and commands.

Tandy, however, produce a conversion-tape which will allow software written for a Level 1 machine to be converted to run a Level 2 machine.

Arrays

Arrays are permitted to Level 2, the number of dimensions being limited by the size of the available memory-string arrays are also allowed.

The new low cost VDU - Tangerine 1648 (See page 16, ETI, Oct. ' 78 for feature details)

ORDERING INFORMATION

The normal KIT price is $£ \mathbf{1 3 9 . 8 6}$, which includes postage, packing and insurance and VAT @ 8%. HOWEVER, as an introductory gesture we are discounting this price by $£ 10$, for all orders received postmarked BEFORE 12 th December, 1978.
If you require further information, send an A4 sized self-addressed envelope. If you wish to purchase a kit please send a cheque or money order made payable to

TANGERINE COMPUTER SYSTEMS LIMITED

RIVERMILL LODGE, LONDON ROAD, ST. IVES, CAMBS. PE17 4BR
Tel. St. Ives (0480) 65666

NASCOM 1 HOBBY COMPUTER

A COMPLETE SYSTEM INCORPORATING THESE OUTSTANDING FEATURES:

Supplied in Kit Form for Self-Assembly.
Full documentation supplied.
Includes Printed Circuit Board.
Full Keyboard included.
Interfaces to Keyboard, Cassette Recorder \& TV.
2K x 8 RAM.
1K x 8 Eprom Monitor Program.
Powerful $Z 80$ CPU, Mostek.
16 line x 48 Character Display Interface to standard, unmodified TV set
On board expansion to $2 \mathrm{~K} \times 8$ Eprom.
On board expansion facility for additional 16 Lines I/O. Total expansion to 256 Input Ports and 256 Output Ports. $1 \mathrm{~K} \times 8$ Nasburg Program in Eprom.
Provides 8 Basic Operator Commands including singe step. Expandable Software System via additional user Programs in Ram of Eprom.

Manuals
Separately £3.50

Complete Kits NOW IN STOCK

Sole Appointed for Bristal

TRS-80 Update

Level 2 BASIC provides the PEEK and POKE commands. Poke allows a specified value to be written into a specific RAM location PEEK allows the value stored at any RAM location to be retrieved.

POKE is particularly useful when producing graphics displays on the screen. Level 1's SET statements for handling screen graphics were rather slow - Level 2 provides 63 special graphics characters that can be speedily manipulated by the POKE command.

The display can also produce double width (same height) characters. By hitting shift key and right arrow the format is changed. Note however that anything on screen at the time only has every other letter enlarged. The clear key will return the display to the normal format.

User Subroutines

Level 2 features the BASIC USR statement that permits the calling of user written subroutines.

File Search

Level 2 allows the user to label files and to search for a the named file. CLOAD "TEST" will ignore all files on tape until the one called "TEST" is found. A useful feature is that as the machine searches for a file, the names of all those on the tape before the specific file is found will be displayed in the upper right hand corner of the display.

A file can be verified after being dumped by entering CLOAD? The machine will then load the program from tape and compare it with that stored in memory. A handy feature that allows one to ensure a program has been faithfully recorded.

Manual

Unlike the level 1 manual, which makes an excellent job of teaching BASIC, the level 2 manual - As the forward says - Is not for the total beginner.

The manual does not go into the detail of the 233 page Level 1 manual. The Level 2 manual for example presents nine subroutines for array/matrix manipulation with very little explanation. 31 function codes are mentioned in one of appendices with little indication of how they are used in a program.

Computer Conclusion

The Level 2 package certainly provides a significant improvement over the Level 1 version of this machine and, in our opinion takes the TRS-80 from the realms of the "Superpowered Calculator" Tandy's words - into the area of real computing.

The number of add-ons available now - floppies, memory, printers etc means that the TRS-80 can form the heart of a flexible system suitable for a wide range of applications.

See the article on a small business application of a TRS-80 system elsewhere in this issue.

A more interesting way to learn

THE MPU MAN

KEY

Teletype unit
2 Punched paper tape reader
3 Floppy disc 'player' unit
4 Home-made floppy disc experimental unit
5 Incompatible systems interface patch-board
6 Skeleton keyboard for manual entry
7 Modulator for feeding display material to domestic magic lantern.
8 Domestic magic lantern showing results of simulated World cup final.
9 Another advanced game in progress
10 Working microprocessor module
11 Well ventilated reprogrammable read only memory

12 Interesting teleprintêr graphics - genuine system check no kid!
13 Early home-made 8-bit processor
14 Power supply with outboard cooling and attractive economy housing.
15 Another development module. Seems to have undergone pre-frontal lobotomy. . . Last Night of the Proms?
16 Junked cassette player with sprinkling of cassette prog rammes. Alternative to papertape or manual entry
17 Primitive one-shot switch input unit
18 Aerosol spray for de-bugging.
19 Mighty de-bugged noughts and crosses programme listing being triumphantly brandished.
20 Attempt to fabricate home brew floppy disc
21 Another teletype unit.
22 Personalised low density punched tape storage system

Beginning BASIC

Phil Cornes resumes his description of BASIC with a look at some of the conditional branching instructions featured in this language

IF THEN

THIS IS THE first of BASIC's really powerful conditional branching statements (we look at the others below) that go into the make-up of BASIC and we will add an IF THEN statement to the previous program segments (last month) to see what it can do.

Consider the following -

This is the same flow chart that we saw earlier except that now there is a two-way branch added which is made dependent upon the answer to the question 'IS $Y=5$ '.

Before we go on to look at the program derived from this flow chart, there is one other thing we need to consider. You will notice from the flowchart that IF Y is 5 when the decision box asks the question THEN we branch to a stop box. The statement in BASIC which causes the execution of a program to terminate is the END statement and you will find one of these in the program.
There is no statement in BASIC which corresponds to the start box on the flow chart (that is just prest $7 t^{\circ}{ }^{-}$for our information) and so the first box we consider contains $Y=1$. The statement needed to
convey this to the computer is-
LET $Y=1$
but remember that every statement in a program must have a line number, and so we have-
. 10 LET Y = 1
We now move on to the next box
$\mathrm{A}(\mathrm{Y})=\mathrm{Y} * \mathrm{Y}$ and produce the statement-

20 LET $A(Y)=Y^{*} Y$

The third box is the new one and we write-
30 IF $Y=5$ THEN
THEN what? Well, we have to branch to the line number which contains the END statement, but we don't yet know which one this will be. So we can either sit and wait until we have written the END statement, or we can say always let the END statement exist on some high numbered line (say 9999) so if we ever need an END statement, we know what line it will appear on. We will do it this way so line 30 will read-

30 IF $Y=5$ THEN 9999
and so if Y does equal 5, then we branch to the END. statement that we will put in line 9999.

If the test (IS $\mathrm{Y}=5$) fails (answer is NO) then line 30 will be ignored and the computer will carry on executing the statements in the normal line number order.

The next box down contains $\mathrm{Y}=\mathrm{Y}+1$, and so line 40 reads-

40 LET $Y=Y+1$
From this we now branch back to the statement $A(Y)=Y^{*} Y$ which is on line 20 and we get-

50 GOTO 20
and lastly
9999 END
If we write this out in line number order, we get-

10 LET $\mathrm{Y}=1$.
20 LET $A(Y)=Y^{*} Y$
30 IF Y $=5$ THEN 9999
$40 \mathrm{Y}=\mathrm{Y}+1$
50 GOTO 20
9999 END
and this is our first complete program.
It does not matter that the line numbers do not follow on in multiples of 10 , they don't have to, but what is more important is the fact that we do leave some numbers spare between our statements so that if we find we have missed out a line, or think of something else that we would like to add, then we have plenty of space to do so.

Consider the following-

5 REM INITIALIZE Y

10 LET Y = 1
15 REM PUT Y*Y IN A(Y)
20 LET A(Y) $=Y^{*}$ Y
25 REM TEST FOR Y $=5$
30 IF $Y=5$ THEN 9999
40 LET $Y=Y+1$
50 GOTO 20
9999 END
REM (I thought REM was an android or something to do with sleep) in BASIC is short for REMark and tells the computer that whatever follows on this line is to be ignored because they are only notes for the programmer as a reminder of what is happening.

REMark statements in a program of this length are unnecessary, but we will soon be writing programs of sufficient length and complexity to justify their use as memory aids.

Returning now to our IF-THEN statement (IF $\mathrm{Y}=5$ THEN 9999) the equals sign used here is not an arithmetic operator, but the first of the comparison operators. Any of the other comparison operators $(<,>,<=,>=,<>)$ could also be used in an IF THEN statement, so that-

30 IF Y>4 THEN 9999
130 IF $\mathrm{Q}<19.2$ THEN 55
$902 \mathrm{IF} \mathrm{A}(17)>=14.9$ THEN LET $\mathrm{P}=\mathrm{P}+1$
are all valid statements.
Notice here the twist in the tail of line 902 . This is also a valid statement on most machines. This is easier to understand if we consider the IF-THEN statement as two separate statements. The first part (the IF part) asks a question (in line $902-$ IS $A(17)>=14.9$) to which the computer can answer either YES or NO. If the answer is NO then this statement is finished with and control passes on to the next higher numbered line. If the answer is YES then the computer passes on to the second statement on the line, the THEN part. THEN what? THEN LET $\mathrm{P}=\mathrm{P}+1$ or THEN END or THEN 900 (this is really an abbreviation of THEN GOTO 900) or THEN any other statement. We can even put another IF THEN statement in.

Consider the following-

200 IF $(\mathrm{A}=1)^{*}(\mathrm{~B}=1)$ THEN 900

The computer encountering this would first ask the question IS $A=1$. If the answer is NO control passes to the next higher numbered line. If, on the other hand, A is equal to 1 , we move on to the statement following the THEN and encounter another IF THEN statement which is treated in exactly the same way as the first. IS $B=1$. If NO then carry on with the next line, if YES THEN GOTO 900 . You will see that using this logic we will only pass control to line 900 if both $\mathrm{A}=1$ AND $\mathrm{B}=1$. At about this point your memory should be stirring to the fact that you have read something about logical operators earlier and indeed this is the place where they fit in. Depending on which machine you are considering, there are two ways of re-writing line 200 above to achieve the same result.

You could use-

200 IF $\mathrm{A}=1 \mathrm{AND} \mathrm{B}=1$ THEN 900

which will normally be the format for machines with standard or extended BASIC, or-
$200 \operatorname{IF}(\mathrm{~A}=11)^{*}(\mathrm{~B}=1)$ THEN 900

for the tiny BASIC machines

Notice the brackets in the second example. These tell the computer where one comparison ends and the other starts, otherwise the computer would attempt the following-

200 IF A $=1$ *B

(multiplication sign!) and then bomb out on the second equals sign.

The other common logical operator (OR) can also be used in a similar manner-

$$
300 \text { IF } \mathrm{Q}>3^{*} \mathrm{H} \text { OR } \mathrm{S}<9 \text { THEN } \mathrm{R}=\mathrm{R}-2
$$

or
300 IF $\left(\mathrm{Q}>3^{*} \mathrm{H}\right)+(\mathrm{S}<9)$ THEN $\mathrm{R}=\mathrm{R}-2$
Notice the brackets again in the second example for similar reasons, and notice also the omission of the optional LET keyword before the $R=R-2$. We will continue to omit the LET from now on.

Finally for this month, we will go on to consider one of the pre-defined functions of BASIC (somewhat out of turn, but we'll see why in a moment) the random number generator.

RND $[\mathrm{X}]$

We will start off by saying that the X within the brackets (the brackets are necessary and must be used whatever we replace X by) may be replaced by

BASIC

any constant, variable name or expression with the proviso that when the computer evaluates the contents of the brackets they must not be negative or the computer will bomb out. When the computer has evaluated the brackets and checked that the answer is not negative, anything after the decimal point is chopped off (so that 0.238 would be truncated to 0 , similarly 8.9 would become 8 and so on) if the result of this operation is zero, then the computer will generate a random decimal number (up to 6 digits) in' the range zero to one, so that when-
$20 \mathrm{R}=\mathrm{RND}(0)$
is executed, R will take a random value between zero and one. If the result after truncating the contents of the brackers is not zero (it must by now be a positive integer) then the computer will generate a random integer between one and the number in the brackets inclusive, so that, for example-
$50 \mathrm{R}=\mathrm{RND}(6.8)$
Would assign a random integer to R with a value between 1 and 6 inclusive (6.8 would be truncated to 6). This is a very useful function for any statistical or games applications and has been included at this time so that we can set you some homework (you need the practice). You will find that you now know enough about BASIC to convert the three card shuffling routines presented in the first part into programs and we would suggest that if you are following this series seriously, you should attempt to do just this. Sample answers will be presented next month.

The answers to the questions posed last month are
1 The expression has a value of 21 , and
2 the expression could be simplified to
$7+7 * 8 / 2 /((12+8) * 2 / 20)$
You cannot remove the brackets round $(12+8) * 2 /$ 20 (if you made this mistake, think about why not).

Next month we go on to look at how we get the computer to print some answers, subroutines and some more conditional branching.

PLEASE MENTION

COMPUTING TODAY
WHEN REPLYING
TO ADVERTISEMENTS

NASCOMI $\underset{\text { ficro-computer the Hobsyist }}{\text { min }}$

As reviewed in E.T.I. Nov. '78:
"Overall the Nascom is an excellent unit"
THE COMPLETE MICRO-COMPUTER AVAILABLE TO THE HOME CONSTRUCTOR

FEATURES

* Supplied in kit form for self-assembly
* Full documentation supplied
* Fully screened double-sided plated through hole printed circuit board
* Full 48 key keyboard included
- $2 \mathrm{~K} \times 8$ Ram
- $1 k \times 8$ monitor program in Eprom
- Powerful Mostek Z80 CPU
- 16×48 character display interface to std un-modified T.V
T.V. display memory mapped for high speed access
* On board expansion to $2 \mathrm{~K} \times 8$ Eprom
* Memory may be expanded to full 60 K (plus 4 K existing on board)

SOFTWARE FEATURES

- $1 \mathrm{~K} \times 8$ monitor program providing
* 8 operating commands, supporting Mem examine/modify, tabulate. copy break, single step execute tape, load, tape dump.
* Reflective monitor addressing for flexible monitor expansion through user programs
* Monitor sub-routines include - delay ASCII coding, binary to hex conversion. clr screen, scroll up. string print, cursor shift and many others.

EXPANSION

* 1/O board with decoders and all hardware except ICS $\mathbf{3 5 . 0 0}$ will accept up to 3 PIOs, 1 CTC and 1 UART
NEW ''B-BUG" extended monitor in 2 K of EPROM. Fully software compatible with
NASBUG, supporting additional features.-
Full keyboard shift for all 128 characters, full cursor movement routines, Read Full keyboard shift for all 128 characters, full cursor movement routines, Read ASCII code directly into programme). Arith. command (for calculating relative jumps). Generate command (for automatic programme start).
Intelligent copy (for non-destructive re-location of DATA), Random, block handling, ASCH to BCD and BCD to ASCII routines and many more. 2 EPROMS + full documehtation - £21.66.
\star S.a.c. for full expension deraile.

OTHER HARDWARE

* 3A power supply for up to 4 K expansion
$£ 19.90$
* BA power supply for larger than $4 K$ expansion

E 60.00
E 29.50

- Expansion card frame

E 29.50

* Hardware \& software manuals (supplied in kit)
83.00

Export Trade, Government and Educational Enquiries Invited
Add VAT at $\mathbf{8} \%$ on all items axcept manuals
Demonstrations Continuous at our Store

Construction
Manuals Separately $£ 3.00$

Complete Kits NOW IN SṬOCK

7

+VAT 8\% POST PAID

Sole Appointed London Stockists

TEE-SHIRTS

HOW TO ORDER:

The new red ETI tee-shirts are available in large, medium or small size for only $£ 2.00$ inclusive of postage and packing.
Send cheques/POs to:
ETI Tee Shirts
25-27 Oxford Street
London W1R 1RF

MICROCOMPUTER BARGAINS

We have a stock of untested microcomputer PCB's which are surplus to our requirement. Each board contains an intel 4040 (CPU), 4201 (Clock), 4289 (Standard Memory Interface), 5 MHz crystal, zero crossover detector cct, power on reset cct, skts for $6 \times 1702 \mathrm{~A}$ PROM and on board power supply containing transformer, rectifier, regulator, heatsink and reservoir capacitor. These PCB's are sold with data on all chips and cct diagram, as untested units at the bargain price of
$£ 19.00$ ea
Also available
1702A memory, used but erased £6.00
1702A memory programmed to your requirement £7.50
6265 gen purpose $i / p-o / p$ device £5.00
Cheque / Postal Order to
VERDURE LTD.
54/64 Morfa Road Strand, Swansea
Mail Order Supplies Only
Tel: (0792) 41241 /462684

HAPPY MEMORIES

ASCII KEYBOARDS £49

£1 p\&p. Cursor Kit £2.50
All 128 ASCII characters, parallel output, 2 key rollover, Alpha lock, Auto-repeat, Two user definable keys, positive and neg. strobe, All on $121 / 2 \times 6$ inch PCB. Add on five key cursor kit for up, down, left, right and home available. Send SAE for data sheet.

Science of Cambridge Mk. 14 Set of 18 Texas low-profile DIL sockets $£ 2.80$ 21L02450ns 89p, 16 up 86p, 64 up 83p
2ILO2 250 ns 110p, 16 up 107p, 64 up 104p 2114450 ns 550p. 4 up 525p 2114300 ns 625p, 4 up 600p 4116 DRAM $1150 \mathrm{p}, 4$ up 1100 p 2708450 ns 725p, 4 up 700p

Texas low-profile DIL sockets:
$\begin{array}{lllllllll}\text { Pins } & 8 & 14 & 16 & 18 & 20 & 22 & 24 & 28 \\ 40\end{array}$ Pence $\begin{array}{llllllllll}10 & 11 & 12 & 17 & 18 & 20 & 22 & 28 & 38\end{array}$ Antex 1 mm bits for CX 17 or CCN irons 45p

Happy Memories, 5 Cranbury Terrace

 Southampton, Hants SO2 OLHAll prices include VAT. Add 20p postage except where shown. COD available at cost

MEMORIES

2112 (256x4 Static RAM) £1.03 21 LO (450 ns) 99p
(1K x 1 Static RAM)
21 LO2 (250ns)
£1.48
2114 (1K $\times 4$ Static RAM)
$£ 7.13$
4027 (300ns, equiv 2104)
£1.87
($4 \mathrm{~K} \times 1,16$ pin, Dynamic RAM)
5208 (equiv. 2107) £2.77
($4 \mathrm{~K} \times 1,22 \mathrm{pin}$, Dynamic RAM)
4116
£12.50
(16K $\times 1$, Dynamic RAM)
2708
£6.50
(1K x 8 UVEPROM)
8080A (CPU) £6.60
81 LS95 (Buffer TriS) .70p
81 LS96 (Buffer TriS) .70p
All chip prices VAT exclusive
Please add 8\% to order
35 p for $\mathrm{p} \& \mathrm{p}$ orders under $£ 5$
Please write for discounts over 100 pieces

PET CORNER

Lotus now carry an exciting range of products for your CBM PET Memory Expansion

* Mounts inside PET
* Runs from PET's own power supply
* Takes 10 minutes to fit
* Includes memory test program
* 6 month warranty

16k $£ 276$ + VAT
24k £377 + VAT
32k £394 + VAT MUSIC BOX
Turns your PET into a programmable musical instrument. You can record and play up to 90 pages, 16 notes per page, change tempo, key, etc
$£ 37.50$ inc. VAT \& P\&P
T.I.S. WORKBOOKS

A set of 5 workbooks to give you a full understanding of all the ins and outs of your PET more fully than any previous manuals
£15.95 per set. inc. P\& P
Dustcover £17.95 inc. VAT \& P\&P
Lots of software and other goodies Send large SAE

The Age of Affordable Personal Computing Has Finally Arrived

Full 8K basic and 4K user RAM Built and tested

Ohio Scientific has made a major breakthrough in small computer technology which dramatically reduces the cost of personal computers. By use of custom LSI micro circuits, we have managed to put a complete ultra high performance computer and all necessary interfaces, including the keyboard and power supply, on a single printed circuit board. This new computer actually has more features and higher performance than some home or personal computers that are selling today for up to $\$ 2000$. It is more powerful than computer systems which cost over $\$ 20,000$ in the early 1970's.

This new machine can entertain your whole family with spectacular video games and cartoons, made possible by its ultra high resolution graphics and fast BASIC. It can help you with your personal finances and budget planning, made possible by its decimal arithmetic ability and cassette data storage capabilities. It can assist you in school or industry as an ultra powerful scientific calculator, made possible by its advanced scientific math functions and built-in "immediate" mode which allows complex problem
solving without programming! This computer can actually entertain your children while it educates them in topics ranging from naming the President of the United States to tutoring trigonometry all possible by its fast extended BASIC graphics and data storage ability.

The machine can be economically expanded to assist in your business, remotely control your home, communicate with other computers and perform many of the other tasks via the broadest lines of expansion accessories in the microcomputer industry.

This machine is super easy to use because it communicates naturally in BASIC, an English-like programming language. So you can easily instruct it or program it to do whatever you want, but you don't have to. You don 't because it comes with a complete software library on cassette including programmes for each application stated above. Ohio Scientific also offers you hundreds of inexpensive programs on ready-to-run cassettes. Program it yourself or just enjoy it, the choice is yours.

-Standard Features

- Uses the ultra powerful 6502 microprocessor
- 8K Microsoft BASIC-in-ROM
- Full feature BASIC runs faster than currently available personal computers and all 8080-based business computesr.
- 4 K static RAM̄ on board expandable to 8 K
- Full 53-key keyboard with upper-lower case and user programmability
- Kansas City standard audio cassette interface for high reliability
- Full machine code monitor and I/O utilities in ROM
- Direct access video display has 1 K of dedicated memory (besides 4 K user memory), features upper case, lower case, graphics and gaming characters for an effective screen resolution of up to 256 by 256 points. Normal TV's with overscan display about 24 rows of 24 characters, without overscan up to 30×30 characters.

Extras

- Available expander board features 24 K static RAM (additional mini-floppy interface, port adapter for printer and modem and OSI 48 line expansion interface.
- Assembler/editor and extended machine code monitor available.

Commands					
CONT	LIST	NEW	NULL	RUN	
Statements					
CLEAR	DATA	DEF	DIM	END	FOR
GOTO	GOSUB	IF...GOTO	IF...THEN	INPUT	LET
NEXT	ON...GOTO	ON...GOSUB	POKE	PRINT	READ
REM	RESTORE	RETURN	STOP		
Expressions					
Operators					
$-,+, *, 1,4$, NOT, AND, OR, $>,<,<>,>=,<==1$					

Functions

$\operatorname{ABS}(X)$	$\operatorname{ATN}(X)$	$\operatorname{COS}(X)$	$\operatorname{EXP}(X)$	$\operatorname{FRE}(X)$	$\operatorname{INT}(X)$
$\operatorname{LOG}(X)$	$\operatorname{PEEK}(I)$	$\operatorname{POS}(I)$	$\operatorname{RND}(X)$	$\operatorname{SGN}(X)$	$\operatorname{SIN}(X)$
$\operatorname{SPC}(I)$	$\operatorname{SQR}(X)$	TAB(I)	$\operatorname{TAN}(X)$	$\operatorname{USR}(I)$	

String Functions
$\operatorname{ASC}(X \$) \quad \operatorname{CHR} \$(1) \quad \operatorname{FRE}(X \$) \quad$ LEFTs(X\$,I) LEN(X\$) MIDS
RIGHT\$(X\$,I)
STR $\$(X)$
($\mathrm{X} \$, 1, J$).
VAL(XS)

Plus variables, arrays and good editing facilities.

To: LOTUS SOUND

Fully built and tested. Requires only +5 V at 3 amps and a videomonitor or TV and RF converter to be up and running.

At this price there is going to be an enormous demand for Superboard II and supplies are going to be extremely limited. Lotus Sound is expecting first deliveries from the States in mid-December and orders will be treated strictly in the order they arrive, so post off today if you want to avoid long delays.

Please send me
Computer(s)
I enclose cheque / PO for $£$
\qquad
Address

SYM-1 \star

(Formally VIM-1)
The new 6502 micro from Synertek. Fully assembled and tested
Ex Slock © £199.00
$+8 \%$ V.A.T.
Carriage £1.00

*SALE ネ

FOR CALLERS ONLY AT BONE LANE, NEWBURY. 1 ONLY V.D.U. £300 + 8\% V.A.T. CASH ONLY.

A LARGE NUMBER OF FULLY POPULATED LOGIC BOARDS, EDGE CONNECTORS, P.C.B.S AND COMPONENTS ALL AT SILLY PRICES. PLUS SPECIAL OFFERS ON CERTAIN I.C.s.

CAN YOU BEAR TO MISS THIS OPPORTUNITY? SAT., 6th JAN. TO SAT., 13 th JAN. INCLUSIVE.

SPECIALS

£2.50 + 25p P\&P

ETI top projects $1+2$ include:
Máster mixer. 100 W guitar amp., low power laser printmeter. transistor tester. mixer preamp. logic probe

Ni-Cad charger, loudhaler. 'scope calibrator, electronic
ignition. car theft alarm. turnindicator canceller. brake
light warning. LM380 circuits. temperature alarm, aerial matcher UHF TV preamp metal locator four-input mıxer. IC power supply. rumble filter, IC tester, ignition timing light. 50 W steren amp. plus many more.
ETI Top Projects 3. This issue was so popular that it is now sold out!
ETI Top Projects 4 includes:
Sweet sixteen stereo amp., waa-waa, audio level meter, expander/compressor, car theft alarm, headight reminder, dual-tracking power supply, audio millivoltmeter, temperature meter, intruder alarm, touch switch. push-button dimmer, exposure meter, photo timer, electronic dice. high-power beacon, electronic one-armed bandit!.
ETI Top Projects 5. Twenty-two complete projects including:
5 W stereo amp.. stage mixer, disco mixer, touch organ. audio limiter. infra-red intruder alarm, model train controller. reaction tester, headphone radio. STD timer,
double dice, gen.-purpose power supply, logic tester power meter, digital voltmeter, universal timer, break. down beacon, heart rate monitor. IB metal locator temperature mcier. ... Graphic equaliser. $50-100 \mathrm{~W}$ amp. modules, active crossover. flash trigger. "star and dot" game, burglar alarm. pink noise generator, sweep oscillator, marker generator, audio-visual metronime. LED dice, skeet game. lie detector, disco light show

Comprised entirely of new material. the edition covers such diverse subjects as Star Wars and hi-fi! The magazine contains projects for everyone - none of which
have appeared in ETI or Hobby Electronics and a look at the future of MPUs. Audio, Calculators and Video. How can you not read it?

£ 1.50

Each volume contains over 150 circuits. mamly drawn from the best of our Tech-Tıps. The circuits are indexed for rapid selection and an additional section is included
dat a. surprising when the circuits cost under lp each! Each volume costs.

TRANSDUCERS N MJASLREMENT AND CONTIROL

a montan nerosmum

5

$£ 3.00$ + 25p P\&P

This book is rather an unusual repint from the pages of ETI. The series appeared a couple of years ago in the of New Fngland that they have re-published the serie of New England that they have re-published the series

ETI's successful beginners series came to an end some time ago now, and the whole series is available from us in reprint form. The three books between them contain all the information presented in the series (sometimes in more detail?) and together forman excellent starting poin for anyone interested in learning the Each volume costs
£1.20 + 25p P\&P
splendidly for use as a standard textbook. Written by Peter Sydenham. M.E., Ph.D.. M.Inst.M.C., F.I.I.C.A., this publication covers practically every type of transducer and deals with equipment and techniques not covered in any other book. Enquiries from educational authorities, universities and colleges for bulk supply of this publication are welcomed. These should be addressed to H.W Moorshead Editor, Hobby Electronics

HOW TO ORDER

Postage and packing also refers 10 overseas. Send remittance in sterling only.

Specials

Modmags Lid 25-27 Oxford Street London W1R1RF

Please mark the back of your cheque or PO with vour name and address.
Please supply me with the following Specials:
\qquad
\qquad
\qquad
\qquad
\qquad

Total cheque $/$ PO enclosed $=£ .$. Address:

M
\qquad
\qquad
\qquad
\square

The latest kit innovation from Sparlhrite

 the quickest fitting CLIP ON
 capacitive discharge electronic ignition in KIT FORM
 Smoot
 Instant all-weather starting Continual peak performance
 Longer coil/battery/plug life
 Improved acceleration/top speeds
 Optimum fuel consumption
 Sparkrite X 4 is a high performance, high quatity capacitive discharge, efectionic ignition system in kit form. Tried, tested, proven, reliable assembled in two or three hours and fitted in $1 / 3 \mathrm{mins}$
 Because of the superb design of the Sparkrite circuit it completely eliminates
 problems of the contact breaker. There is no misfire due to contact breaker
 bounce which is eliminated electronically by a pulse suppression circuit which prevents the unit firing if the points bounce open at high R.P.M. Contact break burn is eliminated by reducing the current to about $1 / 50$ th of the norm. It will burn is eliminated by reducing the current to about $1 / 50$ th of the norm. It with perform equally well with new, old, or even badly pitted points and is not perform equally well with new, old, or even badiv pitted points and in dependent upon the dwell time of the contact breakers for recharging the syste Sparkrite incorporates a short circuit protecled inverter which eliminates the problems of SCR lock on and, therefore, eliminates the possibility of biowing th transistors or the SCR. (Most capacitive discharge ignitions are not compietely toolproof in this respect). The circuit incorporates a voltage regulated output for greatly improved coldstarting. The circuit includes built in static timing light, systems function light, and security changeover switch. All kits fit vehicles with coil/distributor ignition up to 8 cylinders.
 THE KIT COMPRISES EVERYTHING NEEDED
 Die pressed epoxy coated case. Ready drilled, aluminium extruded base and sink, coil mounting clips, and accessories. Top quality 5 year guaranteed sink, coil mounting chips, and accessories. Top quality 5 yesr guaranteed transformer and components, cables, connectors, P.C.B., nuts, bolts and-silicon grease. Full instructions to assemble kit neg. or pos. earth and fully illustrated installation instructions.
 NOTE - Vehicles with current impulse tachometers \{Smiths code on dial RVI)

Electronics Design Associates, Dept. HE2 82 Bath Street, Walsall, WS1 3DE. Phone: (9) 614791

Address

SINCLAIR PRODUCTS *

Microvision TV E172. PDM35 E27.25. Mains
adaptor $£ 3.24$. Case £3.25. 30ky probe $£ 18.95$ OM235 £48 30. Rechargeable battery units $£ 7.95$
 library $£ 3.45$ Mains adaptor $£ 3$
programmable calculator $£ 20.95$

S-DECS AND T-DECS *

CONTINENTAL SPECIALITIES
PRODUCTS *
 EXP650 E3.89. EXP4B E2.48, PB6 £9.94, PB 100
E12.74 LM1 E30.99. LP) £33.48. LP2 £19.44.

TV GAMES

Send sae for data. AY-3.8500 + economy kit $\subset 8.95$ Tank batles AY. 3.8710 chip $£ 6.90$ economy kit
$£ 7.05$. Stunt cycle AY. 3.8760 chip $£ 6.90$.
 AY.3.8603 + economy kit $£ 19.95$. Modified shool
kit $£ 4.96$. Rifle kit $£ 4.95$ Colour generator kit kit 50

MAINS TRANSFORMERS
6.0.6V $100 \mathrm{ma} 74 \mathrm{p} .1 / 1 / \mathrm{z} \varepsilon 2.35 .6 .3 \mathrm{~V} 1 / 2 \mathrm{a} \varepsilon 1.89$ 50 ma 74 p . ${ }^{100 \mathrm{ma}} 90 \mathrm{p}, 1 \mathrm{a} \subset 2.49,13 \mathrm{~V} 1 / \mathrm{ya} 95 \mathrm{p}$
$15-0.15 \mathrm{~V}$

JC12. JC20 AND JC40 AMPLIFIERS

A range of integrated circuit audio amplifiers supplied
with free data and printed circuits. JC12

FERRANTI ZN414
IC radio chip $€ 1$. 05 , Exira parts and
£3. 85 , Case £1 Send sae for free data.
PRINTED CIRCUIT MATERIALS
PC eltching kHs economy $£ 1.85$. standard $£ 3.99 .60$
sq ins. pcb 55 p. 1 lb . FeCl $£ 1.05$. Etch resist pens economy 45 p . dalo 73 p . Smat drill bits $1 / 32$ ins.
1 mm
20 p each . Eching dish 68 p Laminate cutte

SWANLEY ELECTRONICS

Mall order only. Please add 30 p to the fotal cost of order for postage. Prices include

DATA SHEETS EXPLAINED

The data sheets which we publish regularly are very popular, but from time to time we receive requests for a fairly simple explanation of the terms and abbreviations which one finds in semiconductor device data sheets, and so here it is!

THE INFORMATION contained in semiconductor device data sheets is often grossly misunderstood. Great care must be taken to ensure that the exact meaning of a term or abbreviation is clear. As an example, we can quote the following conversation which actually occurred between two people who should both have known better.

A representative of a semiconductor distributor was showing data on a new power device to a lecturer. The lecturer said that the device data was wrong, since the maximum collector current was quoted as 12 A and the maximum collector-emitter voltage $\left(\mathrm{V}_{\text {CEO }}\right)$ as 80 V ; this is a power level of $12 \times 80=960 \mathrm{~W}$, but the maximum permissible dissipation quoted in the data sheet is only 90 W . The representative could provide no answer!

The data was, of course, perfectly correct. The problem arose because neither of the people concerned had appreciated the exact meaning of $V_{\text {ceo }}$ which signifies the collector-emitter voltage with the base open circuited. Under these conditions (with zero base current) the collector current will be very small and the power dissipation in the transistor will also be quite small. Thus there is a great deal of difference between $V_{C E}$ (the collector-emitter voltage under any conditions) and $V_{\text {CEO }}$ (the collector-emitter voltage with the base open circuited). If still more information is required, one must look into the SOAR (Safe Operating ARea) graph to ascertain the regions of the collector voltage / collector current curve where the device can be safely operated for limited or unlimited times.

This is a very simple example of the pitfalls one can encounter if one does not really understand the exact meanings of the terms and abbreviations used in data sheets. Such misunderstandings are very common, but not (we hope!) amongst the devices covered in our data sheets, since it is equally important that our readers understand the exact meanings of abbreviations used in data sheets on relatively simple devices such as ordinary diodes and transistors.

Letter Symbols

Three of the most important symbols used in semi-conductor device data sheets are V, I and P for voltage, current and power respectively. Various subscripts are added to these three letters to indicate the electrode(s) to which the symbol is being applied and possibly certain circuit conditions. Some of the most commonly used subscripts are listed below
anode
average
base
breakover
breakdown
collector
drain or delay
emitter
forward
gate
holding
input
junction
cathode
peak value of a quantity
open circuit or output

R
S T
W W Z
reverse or repetitive
source, short circuit, series or shield
in the on state (that is, triggered)
working
specified circuit
impedance

Order of subscripts

In most cases more than one subscript is needed: the subscripts are usually placed in a definite order governed by the following rules: The first subscript indicates the electrode at which the current or voltage is measured.
The second subscript denotes the reference terminal or circuit mode. (This subscript is often omitted if it is felt no ambiguity will arise.)
The letter O may be used as a third subscript to show that the electrode not indicated by any previous subscript is open circuited. Similarly the letter S can be used as a third subscript to show the third electrode is shorted to the reference electrode of the second subscript, whilst the letter R as a third subscript indicates that a specified resistance is connected between the third electrode and the reference electrode. The supply voltage to a collector is indicated as V_{cc}, the second suffix being a repetition of the first in the case of supply voltages. Similarly. one often meets the symbol $V_{D D}$ for the positive supply to a CMOS (or COS/MOS) device, this being the supply to the drain. The negative supply to CMOS devices is normally represented by the symbol V_{s}.

It should now be clear why $V_{C E O}$ is the steady collector emitter voltage with the base open circuited. Similarly ICER is the collector cut off current with a specified resistance between the base and emitter. It is current with the base and emitter joined, since either the base or emitter can be used as the reference electrode without any change when they are joined.

The parameters of individual devices vary from one device to another of the same type number. The typical value of a parameter such as transistor current gain is often quoted in data sheets by the abbreviation 'typ' after the quantity, but minimum and maximum values are also often quoted. In economical devices no maximum and minimum values may be quoted. In the case of breakdown voltages the minimum value applicable to any device of that type number is usually quoted so that the circuit designer knows that he can apply that value of voltage without danger of the device junction breaking down.

The above discussion gives the general principles of the way in which the symbols for various parameters are chosen. It is not complete, since we have not yet covered such items as current gain of a transistor or thermal characteristics of a device. However, these and other quantities will be covered in the following tables.

Thermal characteristics

The symbols used for the following thermal quantities apply to all types of semiconductor device.
$P_{\text {wot }}$ total power dissipated within the device
$\mathbf{T}^{\text {mib }}$ ambient temperature
$\mathbf{T}^{\mathbf{c}} \quad$ temperature of the case of the device temperature of the junction in the semiconductor material
$\boldsymbol{T}_{\text {mb }}$ temperature of the mounting base of the device ($=T_{c}$)
storage temperature
thermal resistance of heat sink. (Units. $C /$ W)
contact thermal resistance between the case of the device and the heat sink

junction to ambient thermal resistance junction to case thermal resistance

Symbols used mainly with diodes

c. cut off frequency of a varactor
$i_{p}^{\infty} \quad$ total dc forward current
I_{R} continuous reverse leakage current
$\mathbf{i}_{\mathbf{R}} \quad$ instantaneous reverse leakage curren
$I_{\text {RRM }}$
$I_{\text {RSM }}$
I_{z}
I_{zm}
$t_{t_{\text {onf }}}$
t_{r}
t_{n}
$\mathbf{t}_{\text {F }}$
\mathbf{V}_{F}
$\mathbf{V}_{\text {F }}$
$\mathbf{V}_{\text {R }}$
$\mathbf{V}_{\text {RM }}$
$V_{\text {RM }}$
$V_{\text {RRM }}$
$\mathbf{V}_{\text {RSM }}$
instantaneous forward current
average forward current
peak forward current
repetitive peak forward current
non-repetitive peak forward current occurring under surge conditions repetitive peak reverse current
non-repetitive peak reverse current
zener diode continuous operating current
zener diode peak current
turn on time
turn off time
rise time
reverse recovery time
storage time
steady forward voltage
instantaneous forward voltage
steady reverse voltage
instantaneous value of the reverse voltage
peak revierse voltage
repetitive peak reverse voltage
non-repetitive peak reverse voltage (on surges)
zener diode working voltage

Symbols used mainly with transistors

$C_{o b}$	transistor output capacitance in the grounded base circuit
\mathbf{C}_{∞}	transistor output capacitance in the grounded emitter circuit
iransition frequency or gain-bandwidth product in	
common emitter circuit	

collector cut off current with the base open circuited
collector cut off current with a specified value of
resistance between the base and the emitter
emitter cut off current with the collector open circuited
base-emitter saturation voltage
breakdown voltage
collector to base breakdown voltage with emitter open circuited
$\mathbf{V}_{\text {(bR)ceo }}$ collector to emitter breakdown voltage with base open circuited
$V_{c s} \quad$ collector-base voltage
$\mathbf{V}_{\text {ceo }}$ collector to base voltage with emitter open circuited
V cc collector supply voltage
$V_{\text {CE }} \quad$ collector to emitter voltage
$\mathbf{V}_{\text {ceo }} \quad$ collector to emitter voltage with base open circuited collector to emitter rms voltage
collector to emitter saturation voltage
emitter-base voltage
emitter-base voltage with collector open circuited emitter-base rms voltage

Symbols used mainly with FETS

steady value of the drain current
IDss steady value of the drain current with the gate connected to the source
peak drain current
steady gate current
steady source current
drain to source (or channel) resistance
steady drain to source voltage
steady gate to source voltage

Symbols used mainly with thyristors

repetitive peak forward current. non-repetitive peak (surge) current
gate current which does not trigger the device gate trigger current gate turn off current
holding current required to maintain conduction
steady reverse leakage current
reverse gate current
repetitive peak reverse curren
non-repetitive peak reverse current (in surge conditions)
steady anode-cathode 'ON' state current
gate power
gate controlled turn-on time
gate controlled turn-off time
breakover voltage
continuous off state voltage
forward gate voltage
$V_{G r}$ gate trigger voltage
steady reverse voltage

Operational amplifier terms

Bandwidth, $\mathbf{f f}$. The frequency at which the gain falls by a factor of 0.7 relative to the gain at low frequencies

Common mode rejection ratio, CMMR. The gain when a signal is applied to one of the inputs of the amplifier divided by the gain when the signal is applied to both the inverting and non-inverting inputs. It is usually expressed in dB.
Frequency compensation. An operational amplifier requires a capacitor to enable it to be used in circuits which are stable over a wide frequency range. Internally compensated operational amplifiers have this capacitor fabricated on the silicon chip, but an external capacitor must be used with other types of operational amplifier which do not contain an internal capacitor.

Input bias current, $I_{\text {bias. }}$. The mean value of the currents at the two inputs of an operational amplifier
Input offset current, $f_{\text {os. }}$. The difference in the two currents to the inputs of an operational amplifier. Normally much smaller than the input bias current
Input offset voltage, $V_{o s}$. The voltage which must be applied between the two input terminals to obtain zero voltage at the output. Open loop voltage gain, $\mathbf{A}_{\text {vol. }}$. The amplifier gain with no feedback applied.
Output resistance, $\mathbf{R}_{\mathbf{o}}$. The small signal resistance seen at the output when the output voltage is near zero.

Voltage regulator terms

Dropout voltage, $V_{\text {po }}$. When the difference between the input and output voltages falls down below the dropout voltage, the device ceases to provide regulation.
Foldback current limiting. In regulators with foldback current limiting, the current will 'fold back' to a fairly small value when the output is shorted
Line regulation. The change in the output voltage for a specified change in the input voltage.
Load regulation. The change in output voltage for a change in the load current at a constant chip temperature
Quiescent current, $I_{\mathbf{a}}$. The current taken by the regulator device when it is not delivering any output current.
Ripple rejection. The ratio of the peak-to-peak ripple at the input of the regulator to that at the output. Normally expressed in dB

Monolithic timer terms

Comparator input current. The mean current flowing in the comparator input connection during a timing cycle
Timing capacitor, $\mathbf{C}_{\mathbf{t}}$. This capacitor is normally connected between the comparator input and ground. The time taken for it to charge controls the delay time.
Timing resistor, $\mathbf{R}_{\mathbf{r}}$. This is the resistor through which the timing capacitor charges
Trigger current. The current flowing in the trigger input connection, at the specified trigger voltage
Trigger voltage. The voltage required at the trigger pin to initiate a timing cycle

Conclusions

Data sheets must be used intelligently and with much thought. Information on the conditions under which an entry in the data sheet is applicable is often stated in small print, but is of great importance. Data should always be thoroughly studied before a device is used for the first time, only then will you be able to fully understand the potential applications of the device

Thus i_{E} is the instantaneous value of the total emitter current, $i_{\text {g }}$ the instantaneous value of the alternating component of the emitter current, and $\mathrm{I}_{\mathrm{E}(A V)}$ the average (DC) value of the total emitter current. Other subscripts can be used in a similar way, I_{F} being the forward $D \bar{C}$ current with no signal, i_{F} the instantaneous forward current and $I_{F M}$ the peak forward current.

ETI

Rapitupe

GOOD AND PROPER!

or at least your projects. If there is one thing which is impossible to do at home is lettering front panels to professional standards. At least until now. If you cast your eyes right a while you'll see our new panel transfers slieet. which has been carefully designed to allow you to do eractly that.

The transfers are casily rubbed down, and the two shect set contains a mass of lettering and -uniquely-control seales for both rotary and slider puts.

Lach sheet measures 180 mm X 240 mm and comes packed flat in a stiff cardboard envelope for protection. There should be enough for dorens of projects here - and the longer you wait the worse they'll look!

Send E1.75 finchudes VAT and postage) for the twosheet set to: Panel Markings Ell magazine, 25-27 Oxford Street, London WIR IRF.

Design of digital Systems is written for the engineer seeking to learn more about digital electronics. Its six volumes - each A4 size - are packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters and simple arithmetic circuits, and finally to a complete understanding of the design and operation of calculators and computers.

The contents of Design of Digital Systems include:

Book 1 Octal, hexadecimaland binary number systems; conversion between number systems; representation of negative numbers; complementary systems; binary multiplication and division.
Book $\overline{\mathbf{2}}$ OR and AND functions; logic gates. NOT, exlusive OR. NAND. NOR and exclusive-NOR functions; multiple input gates; truth tables; De Morgans Laws; canonical forms; logic conventions; Karnaugh mapping; three-state and wired logic.
Book 3 Half adders and tull adders; subtractors; serial and paraliel adders; processors and arithmetic logic units (ALUs); multiplication and division systems
Book 4 Flip flops; shift registers; asynchronous and synchronous counters; ring, Johnson and exclusive-OR feedback counters; random access memories (RAMs) and read only memories (ROMs)
Book 5 Structure of calculators; keyboard encoding; decoding display data; register systems; control unit; program ROM; address decoding. instruction sets; instruction decoding; control program structure.
Book 6 Central processing unit (CPU); memory organisation character representation; program storage: address modes; input/ output systems; program interrupts; interrupt priorities; programming. assemblers; computers; executive programs; operating systems and time sharing.

Digital Computer Logic and Electronics is designed for the beginner No mathematical knowledge other than simple arithmetic is assumed, though the student should have an aptitude for logical thought. It consists of four volumes - each A4 size - and serves as an introduction to the subject of digital electronics. Everyone can learn from it - designer, executive, scientist, student, engineer.

Contents include: Bınary, octal and decimal number systems; conversion between number systems; AND, OR, NOR and NAND gates and inverters; Boolean algebra and truth tables; De Morgans Laws; design of logic circuits using NOR gates; R-S and J-K flip flops; binary counters, shift registers and half adders.

CAMBRIDGE LEARNING ENTERPRISES; UNIT I, RIVERMILL SITE, FREEPOST, ST. IVES, HUNTINGDON, CAMBS. PE17 4BR, ENGLAND

TELEPHONE: ST. IVES (0480) 67446
PROPRIETORS: DRAYRIDGE LTḊ. RËG. OFFICE: RIVERMTLL LODGE, ST. IVES

REGD. IN ENGLAND No. 1328762

In the years ahead the products of digital electronics technology will play an important part in your life. Calculators and digital watches are already commonplace. Tomorrow a digital display could show your vehicle speed and petrol consumption; you could be calling people by entering their name into a telephone which would automatically look up their number and dial it for you

These courses were written by experts in electronics and learning systems so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being faster and more thorough than classroom learning. You work at your own pace and must respond by answering questions on each new piece of information before proceeding.
After completing these courses you will have broadened your career prospects and increased your fundamental understanding of the rapidly changing technological world around you.

Price includes surface mail anywhere in the world - Airmail extra.

Flow Charts \& Algorithms

HELP YOU PRESENT
safety procedures, government legislation, office procedures, teaching materials and computer programs by means of YES and NO answers to questions.

THE ALGORITHM WRITER'S GUIDE explains how to define the questions, put them in the best order and draw the flow chart, with numerous examples shown. All that students require is an aptitude for logical thought. Size: A5, 130 pages. This book is a MUST for those with things to say.
£2.95
$+45 p$ post $\&$ packing by surface mail anywhere in the world. Airmail extra.

GUARȦṄEE
If you are not entirely satisfied your money will be refunded.
Cambridge Learning Enterprises, Unit 1 Rivermill Site.
Freepost, St. Ives, Huntingdon, Cambs. PE1 7 4BR
England.
Please send me the following books.
sets Digital Computer Logic \& Electronics @ £5.50. p \& p included
sets Design of Digital Systems @ £9.00, p. \& p. included Combined sets@ £13.00. p \& p included
The Algorithm Writer's guide @ $£ 3.40, p$ \& p included
Name
Address

I enclose a *cheque/PO payable to Cambridge Learning Enterprises for $£$
Please charge my *Access/Barclaycard/Visa/Eurocard/ Mastercharge/IInterbank account number
Signature
-deleted as appropriate Telephone orders from credit card holders accepted on 048067446 (ansafone). Overseas customers should send a bank draft in sterling drawn on a London Bank.

Hobby

 Electronics4-Channel Equaliser

A fully-fledged graphic equaliser with four bands, allowing you to adjust the response of your Hi-Fi to suit the room it's in! Alternatively, this unit can be used as a really sophisticated tone control. This project was designed by a professional audio consultant especially for HE. We think it'll be a winner!

|||

Viewdata

One of the most exciting developments in modern TV technology is the advent of data transmission and display. Viewdata is Britain's answer to advances which could mean shopping from the home, a computer terminal in every room or even the abolition of commuting!

Slave Flash

Using one flash gun is fairly straightforward - but how do you use two or more simultaneously?

|||

Touch Switch

A switch with no moving parts! Just touch it and turn on the lights, motors or whatever turns you on. By the way, the above photo is not an illustration of the switch in action, but one of our staff having a bright idea.
|||||||||||||||||||||||||||||||||||||
Holograms
Following on from the LASER article in this issue, we look into (!) holograms - what are they, how are they made and what use are they. This is a fascinating topic and one which is sure to make a big impact on all our lives in the future

Project Daedalus

The British Interplanetary Society has just published a report which shows that interstellar flight by an un-manned vehicle is possible with modern technology. The report is nearly 200 pages of detailed drawings, calculations and specifications. We examine it clearly in detail.

|||||||||||||||||||||||||||||||||||

BASIC Programming

If you've ever wondered exactly what's involved in programming a computer, then this is for you. We look at BASIC - one of the most popular computer languages - and see what it's all about. This article will require no previous knowledge and will be much more than an introduction to the subject.
||||||||||||||||||||||||||||||||||||
Variwiper

Ever been driving in one of those horrible drizzles which is too fine for the wipers to work properly? This circuit makes them repeat one sweep at pre-set time intervals - ideal for those conditions.

January issue will be on sale on December 8th

[^4]
TEMP STABIIISED

LOG CONVERTER

This design can be set up for either logarithmic or exponential operation and incorporates a neat heater circuit for temperature stability.

IN THE CONVENTIONAL musical scale, consecutive notes are not separated by the same frequency, but by the same ratio - the twelfth root of two. This is quite acceptable for most musical instrument manufacturers, except that in electronic music equipment it is easier to make oscillators which have an accurately linear frequency/control voltage characteristic. The keyboards of most music synthesizers give an output voltage of 1 V for each octave on the keyboard. This can easily be generated by a set of equal resistors between the contacts on each key and a voltage applied to each end (normally 5 V). However this means the oscillator is required to have an exponential frequency/control voltage response.

Trouble

This is where the trouble usually starts. An exponential converter is normally used which relies for its operation on the relationship between current and voltage in a silicon diode or transistor. However, unless temperature stabilisation is used the oscillator will not stay in tune for very long. With this unit the transistor used is heated to around $55^{\circ} \mathrm{C}$ and stabilised at this temperature, eliminating the problem of thermal drift.

In the instrumentation field a lot of functions are displayed in dBs which are a logarithmic measurement. As this unit can be connected in either \exp or log modes it is useful for this purpose also.
As the unit will normally be used with some other equipment, we have not described any mechanical housing.

Below: the circuit diagram of the converter section. One channel only is shown here, the second - identical - uses the even components numbers. Above: the oven circuitry.

The photo on the left shows the complete unit with the oven top removed to show IC5. Link 1 is made from a couple of valve socket pins in this prototype.

SPECIFICATION	
Transfer functions exponential log.	Vout $=0.15625 \times 2 \mathrm{Vin}$
Useful dynamic range	Vout $=\mathrm{Ln}(\mathrm{Vin} / 0.15625) / \mathrm{Ln} 2$
Oven temperature	50 dB or 8 octaves
Warm up time	approx. $55^{\circ} \mathrm{C}$
Power supply	about 2 minutes
	± 10 to ± 15 volts

HOW IT WORKS

This unit relies on the fact that the collector current of a transistor is exponentially related to the base voltage.

In the log mode the collector of the transistor is linked back to the input of IC1. In this way the collector current is proportional to the input voltage and therefore the voltage on its emitter is logarithmically related to the input viltage. This voltage is then amplified and level shifted by IC3 to give the desired output.

In the exponential mode the 10 k resistor R 9 is linked back to the input of IC1 and the voltage on the emitter of the transistor is proportional to the input voltage; the collector current is exponentially related to the input voltage. This current is converted to a voltage by IC3.

All this works well provided the transistor is at a constant temperature. Compensation can be made by using other junctions and thermistors, however even the self-heating effect of the transistors can affect linearity. The transistors we have used are part of a transistor array IC which has three individual NPN transistors and a differential pair. We heat the chip up by dissipating heat in the differential pair while measuring the base-emitter voltage of one of the individual transistors. IC8 is used to compare this voltage to one set by the divider R25, 26, 27 and RV7. The baseemitter voltage is normally about 0.67 V at $20^{\circ} \mathrm{C}$ and drops about 2.2 mV per degree above this temperature. IC8 then stabilises the chip temperature to about $35^{\circ} \mathrm{C}$ above the temperature at which it was initially calibrated. As it warms up the current in the transistors will fall and when hot the voltage drop across R3I will be low enough that the LED will extinguish. The transistor array is housed in a polystyrene housing to conserve heat.

Fig. 1b. The power supply section which supplies the stable $\pm 7 \mathrm{~V}$ needed for the bias and adjustment controis.

The only difference between the assembly of this board and any other is the oven and the connections to the transistor array package. The oven is made out of two pieces of polystyrene about $55 \times 35 \times 12 \mathrm{~mm}$. The outside of the oven should be covered with aluminium foil to help reduce heat loss. The aluminium itself should be covered with a layer of adhesive tape where the leads can touch. A piece of thick paper should be used between the oven and the pcb to insulate the tracks.

Half Baked

The centre of the oven should be hollowed slightly to hold the IC (bend the leads out straight as shown in the photo; a hot soldering iron is the easiest method. Do not remove more than necessary. Now solder a 40 mm length of thin copper wire (a single strand of multistrand cable is best) to each pin, then with the base of the oven in position, sit the IC in the oven and connect the leads to the appropriate holes. If a small amount

Component overlay for the complete log converter project.

PARTS LIST

RESISTORS	all 2%, 5 W
R1, 2	470k
R3-R6	see table 1
R7-R10, 22,	3 10k
R11, 12, 24	100k
R13-R18	see text
R19-R21, 28	291 k
R25	2k7
R26	18k
R27	470R
R30	47R
R31	82R

POTENTIOMETERS
RV1-RV4 200k multiturn trimmer RV5, $6 \quad 50 \mathrm{k}$ multiturn trimmer RV7 1 k multiturn trimmer

CAPACITORS	
C1-C4	$33 p$ ceramic
C5, 6	$10 u 25 \mathrm{~V}$ electrolytic
C7	1 n0 polyster
C8	$10 u 25 \mathrm{~V}$ electrolytic
C9	$33 p$ ceramic
C10	10 u 25 V electrolytic
C11	$33 p$ ceramic
C12	100 n polyester
SEMICONDUCTORS	
IC1-IC4	LM308
IC5	CA3046
IC6	723
IC7.8	LM301A
Q1	
	BC558
D1-D3	$1 N 914$
LED	T1L 209

MISCELLANEOUS

PCB
Polystyrene foam for oven

BUYLINES

The project depends upon the CA 3046 device - near equivalents will probably not function. The CA 3046 itself is readily available - we
found it in both the Marshalls and Stevenson catalogues when we looked for it! Initial reaction here had been that it would be difficult to obtain.
of epoxy cement is placed under the oven it will stay in position. Now fit the top of the oven and secure with a piece of adhesive tape until it has been checked out. It finally can be cemented with epoxy adhesive.

The potentiometer valuves chosen are a compromise between ease of adjustment and the ability to compensate different transistors. If the potentiometer does not have enough range then the series resistor will have to be varied. We have
specified 2\% resistors throughout to obtain a better temperature coefficient than is possible with conventional 5\% resistors. It will not help to select out of normal 5% types.

Calibration

The equipment needed comprises an accurate digital voltmeter and a variable power supply with a fine voltage control. The +7 V rail can be used for this with a mutli-turn potentiometer.

CALIbration table

A	B
-3.00 V	19.5 mV
-2.00 V	39 mV
-1.00 V	78 mV
0.00 V	156 mV
+1.00 V	312 mV
+2.00 V	625 mV
+3.00 V	1.25 V
+4.00 V	2.50 V
+5.00 V	5.00 V
+6.00 V	10.00 V

This table shows the relationship between the input and output. In the exponential model A is the input with B the output while in the log mode B is the input and A the output.

Oven Control

1. Before switching on, remove liñk 2 and fit link 1
2. Switch on and monitor the voltage on the output of IC8 (pin 6).
3. Adjust RV7 until the voltage is about -5 V . The potentiometer is sensitive in this area but the actual voltage is not critical.
4. Remove link 1 and fit link 2. The LED should now come on for about two minutes before slowly going out. This indicates that the oven is stable.

Calibration of Log Mode

1. Set 0 V on the input.
2. Monitor the voltage on the junction. of R7 and R9.
3. Adjust RV1 to give a negative voltage on this point. Now adjust RV1 slowly until the voltage just switches positive
4. Set 0.15625 V in the input
5. Adjust RV5 to give 0 V output
6. Set 5.00 V on the input
7. Adjust RV3 to give 5.00 V output. 8. Set 1.25 V on the input and check the output voltage. It should be 3.00 V. If it is higher go back to step 4 except adjust RV5 to give -0.010 V and use RV1 to bring it back to zero. Continue with step 6.7 and 8 . If the output voltage at 1.25 V input is less than 3.00 V adjust $R \vee 5$ to give +0.010 V instead of -0.010 V .

Continue until all three points are correct.

Calibration of Exponential Mode

1. Place a link between the junction of

R7 and R9, and OV.
2. Adjust RV5 to give 0.00 V output Remove the link
3. With 0.00 V input, adjust RV1 to give 0.15625 V output.
4. With 5.00 V input, adjust RV3E to give +5.00 volts output
5. Check output voltage with 3.00 V input. It should be 1.25 V .
6. If high repeat steps $1-5$ except output. If low, repeat steps $1-5$ except adjust RV5 to give about 10 mV output. ETI

Both sides of the PCB shown full size. On the top is the underside and the pattern beneath that is for the topside of the board.

BULK PURCHASE-EXCLUSIUE TO HENRY'S ALLOWS US TO SELL AT SUCH FANTASTIC PRICES! AS USED in 8R? Compare performance and specification with units
costing 3 times as much!

DITHIT,

 24 HOURALARM

- SILENT RUNNING
- LARGE ILLUMINATED NUMERALS
- AC MAINS SIZE $6^{3 / 8} \times 2 \frac{1}{6} \times 2^{3 / 4}$

MECHANISM ONLY
Assemble
it in an eve
it in an evening
MECHANISM \& CASE
COMPLETE UNIT

Inc.assembly instructions
THREE FOR £13.50

DISCOUNT
BOXES INSTRUMENT CASES AND COMPONENTS

Aluminium box with lid and screws.
L W H
$3 \times 2 \times 1$
$4 \times 3 \times 11 / 2$
$4 \times 3 \times 2$
$6 \times 4 \times 2$
$6 \times 4 \times 3$
$8 \times 6 \times 2$
$8 \times 6 \times 3$
AD161/2 MP
OC36
BC 108 A
BC148
BC148
BC149C
BC154
BC. 1718
BC172B
BC183A
BC30B

C 30 B	10 p
Core	

Ceremic Fiters SEF 6. OMA 40p. IV Col 33

Professional black P.V.C. coated case with satin trim.
AXIAL
ELECTROLYTIC

> ELECTROLYTIC

$10 / 25 \mathrm{v}$
$15 / 16 \mathrm{v}$
$15 / 16 \mathrm{v}$
$22 / 10 \mathrm{v}$
$22 / 16 \mathrm{v}$
22/25v
$33 / 35 \mathrm{v}$
$33 / 55 \mathrm{v}$
$47 / 40 \mathrm{v}$
$100 / 10 \mathrm{v}$
$100 / 63 \mathrm{v}$

$\mathbf{5 p}$	
$\mathbf{6 p}$	3
$\mathbf{5 p}$	
$\mathbf{6 p}$	
$\mathbf{7 p}$	10
$\mathbf{8 p}$	2
$\mathbf{9 p}$	
$\mathbf{1 0 p}$	
$\mathbf{8 p}$	1
$\mathbf{1 0 p}$	1

MIXED PACK OF 100 AXIAL AND P.C. ELECTROLYTICS $300 p$ DISCOUNT ON ALL ORDERS OVER $£ 55 \%$ OVER £ 1010% OVER £20 15\%, OVER £30 20\%
All prices include post and packing
All orders under $£ 1$, please add 20 p for handling charge

TOTAL AMPLIFICATION FROM CRIMSON ELEKTRIK

WE NOW OFFER THE WIDEST RANGE OF SOUND PRODUCTS

MC 1

CPR 1

CPR 1-THE ADVANCED PRE-AMPLIFIER
The best pre-amplitier in the $U K$ The supernority of the CPR 1 is protably in tine disc stage The overioad margin
is a supert 40 de, this together with the high slewing rate ensuras clean ton even with high outiout carridges racking heavily modulated records Common-mode distortion is ellominated. by an with high outiput cartuidges

 controls are fitted. There is no provision for tone controls. CPR 1 size is $\mathbf{~} 38 \times 80 \times 20 \mathrm{~mm}$ Supply to be ± 15

MC 1 PRE-PRE-AMPLIFIER

Suitable for nearly all moving-coin carridges Sensitivity $70 / 17$ OuV swichabie on the p.c o This module brings proanals from the now popular low outpur moving-coil cartridgos up to 3.5 mV (typics, signal required by mos

REG 1 - POWER SUPPLY

The reguiator modute. REG I provides $15-\mathrm{-i-15v}$ to power the CPR 1 and MC 1 . It can be used with any of ou
power amp supplues or our small transiormer TR 6 . The power amp kit will accommodate it

POWER AMPLIFIERS

It would be pointiess to list in so smalt a space the number of recording studios, educational and governmen
estabhishments, etc., who have been using CRIMSON amps satisfactorily tor quite some time We have reputation for the highest quality at the lowest prices The power amp is avalable in five types, they atl have the same specification P. H D typically 01% any power 1 kHz 8 ohms: T.I.D. insignificant; slow rate limit $25 \mathrm{~V} / \mathrm{uS}$; any losd safíy, sensitivity $775 \mathrm{mV}(250 \mathrm{mV}$ or 100 mV on request), size $120 \times 80 \times 25 \mathrm{~mm}$.; protection drive

POWER SUPPLIES
We produce suitable power supplies which use our supert TOROIOAL transtormers only 50 mm high with a

POWER AMPLIFIER KIT

The kit includes all metelwork, heatsinks and hardware to house any two of our power amp modules plus a power instructions and full back-up service enables a novice to buld it with confidence in a few hours Comprehensive

CEWER AMPLIFIER MÓOULES CE 608 60W/8 ohms $35-0-35 \mathrm{v}$ CE $1008100 \mathrm{~W} / 8$ ohms $45-0-45 \mathrm{v}$ CE 1704 170W/4 ohms 450-0-45v

TOROIDAL POWER SUPPLIEG CPS 2 for $2 \times$ CE 1004 or $2 / 4 \times$ CE 608
CPS3 for $2 \times$ CE 1008 or $1 \times$ CE 1704
CPS 4 for $1 \times$ CE 1008
CPS5 for $9 \times$ CE 1708
CPS5 for $1 \times$ CE 1708
CPS6 for $2 \times$ CE 1704 or $2 \times$ CE 170 O
heatsinks
Light duty. $50 \mathrm{~mm}, 2 \mathrm{C} / \mathrm{W}$
Medium power, $100 \mathrm{~mm} .1 .4 \mathrm{C} / \mathrm{W}$
Disco/group. $150 \mathrm{~mm} .11 \mathrm{C} / \mathrm{W}$
Fan, 80 mm , state 120 or 240 V
Fan mounted on two drilled 100 mm hatat suniks. Thermal cut-out, 70 C
Oistributor

Minic Teleprodukte
Mox 12035
$\mathrm{~S}-75012$

Box 12035
$\mathrm{~S}-75012$

Uppsela 1
Sweden

CRIMSON ELEKTRIK

All pricer shown ak Uk ond and
write for specitic quote Send large SAE or 3 International Reply Coupons for detailed information

microfile

This month dynamic Gary (mines a pint) Evans goes random, ROMs the seas as a pirate and plays strange games with a T.V., but still finds time to visit North London.

BEING CAUGHT PIRATING software could lead to all sorts of unpleasantness-boys in blue or more likely the boys in black (the legal eagles) looking for a large fee in some test case. At any rate copying, or rather being caught copying, software that someone, somewhere is willing to protect is something to avoid. It's for this reason that the guys at Transam - they who supply kits for the Triton - suffered a few nervous twitches when they heard that someone called Dobbs on the phone and he wanted to have a few words with them.

Now the BASIC that was used in the Triton has been around for some time. When development of the computer started we realised we could not undertake to write an 8080 interpreter from scratch and we looked around for something that was "in the public domain". The listing of an interpreter that appeared in Dr. Dobbs journal seemed to us to be just the thing we wanted had we made a dreadful mistake.

Well gentle reader (I'm an Asimov fan) as it turned out we need not have worried at all. On picking up the phone, instead of some irate, distant American voice a softspoken northerner (north of England that is) greated the ear.

This Dobbs had nothing to do with publishing a software journal working - as it turned out - for British Rail. He wanted to order a Triton.

Relief all round - is there a Mr. Byte in the house. What the manufacturers produce today, industry uses the next day and we, the amateurs, use the day after that and what the manufacturers are producing now are 16 bit MPUs. Intel, Motorola, Zilog Texas - everybody seems to have caught the 16 bit bug

The first small system for the Home Office to use a 16 bit beast is almost certain to be the long awaited, and much talked about, Texas machine. Just what overnight "quantum jump" in performance these 16 bit based systems are going to provide, remains to be seen - but at least we should have something with a bit more to offer in terms of throughput and facilities than the current crop of 8 bitters. At what cost penalty will become evident over the next year or so.

Dynamic RAMs are very cheap, are they not? A couple of systems in use in this country feature such devices - the TRS-80, although here any cost savings do not seem to be passed on to the end user, and the NASCOM.

The more extensive use of dynamic RAM in small systems is probably a hang over from the days when it was all anybody could do to get a dynamic memory card up and running. There is no doubt that a dynamic card
can be a real pig to fault find. So many things have to happen at exactly the right time for the system to work at all. Unless some very sophisticated diagnostic equipment is available, it could prove almost impossible to decide what is wrong.

With the current crop of dynamic RAM controllers, however, hopefully there will be so little margin for error that we shall start to see nice cheap 4 K and 16 K memory expansion systems

One example of a RAM controller that seems to do it all is the Intel 8202 - I have not yet managed to get a data sheet for this device but when I do I'll let you know just what it can do. In the meantime, if any of you have played around with dynamic devices, perhaps you'll let me know how you got on.

The North London Hobby Computer Club seems to be going from strength to strength. I was at their second meeting a while back and there was standing room only in the two rooms occupied by the club for demonstrating on the PET and the Triton. A continuing program of interesting talks and demonstrations is planned and if you live in North London, is recommended that you go along to the North London Poly in the Holloway Road and see what is going on for yourself.

Mine of Information Ltd is a company that is out to contest the high prices charged for many of the American microcomputer books brought over to this country. To quote from their literature "some worthwhile books are distributed by companies with exclusive European or British rights; there is a temptation to capitalize on the monopoly by increasing prices. In these circumstances Mol has to charge its customers more than is reasonable! Mol is taking action to contest the high prices. (When the choice of books is wider there will be no need to buy from such suppliers).'

A freshing attitude, as I can think of at least one outfit which must be making a mint from a number of exclusive titles sold at a high mark up. Some increase in cost from a straight $\$ 70 £ \quad$ conversion is acceptable - to quote Mol again - 'It means extra hassle and expense to bring books to Britain" - but not as much expense and hassle as some would have us believe.

I wish Mol luck in their campaign and if you would like their lists send an SAE to

Mine of Information Ltd
1 Francis Avenue
St. Albans
AL3 6BL
By the way members of the North London Computer Club get 10% off the prices in the list - yet another reason to pay a visit to the club.

NEWS: Microfile

The trend in America at the moment, or at least one of the trends, is for the home computer and the TV games to meet in a sort of common ground. One example of such a product is the Bally Arcade "box". The machine features a calculator style keyboard with slot for a Bally cartridge as well as sockets into which a number of accessories can be plugged, these include the two hand controllers supplied with the basic machine.

The machine features a number of built in games including the excellent gunfight which many of you may have seen in the arcades over here. This game produces good high resolution graphics in colour as well as a repertoire of musical sounds.

By plugging a ROM cartridge into the font panel socket additional games can be played on the machine and if a BASIC cartridge is used the Arcade is converted to a computer running the familiar TINY BASIC as per the.TRITON.

Z80 based, the Arcade is supported by 8 k of ROM to store the resident games and 4 K of RAM which acts mainly as a screen memory.

The Bally Arcade is not the only product to appear in this area. Magnavox has the "Dyssey 2" machine from Interacot and it's rumoured, Atari are ready to launch something into this market.

Burwinkees SEMICONDUCTOR DISTRIBUTORS

PLEASE ADD 8% V.A.T ($* 12 \frac{1}{2} \%$) TO ABOVE PRICES
QUANTITY dISCOUNTS ON REQUEST. AOD 25p POSTAGE \& PACKING. MAIL OROER ONLY
T.K. ELECTRONICS, 106 Studley Grange Road, London W7 2LX

Wilmslow Audio

THE firm for speakers!
Send 15 p stamp for the world's best catalogue of Speakers, Drive Units, Kits, Crossovers, etc., and discount price list

```
AŤC AUUDAX BAKER BOWERS & WILKINS
     CASTLE CELESTION CHARTWELL 
COLES DALESFORD DECCA EMI EAGLE
    ELAC FANE GAUSS GOODMANS 
    HELME I.M.F ISOPHON JR JORDAN
        WATTS KEF LEAK LOWTHER 
    McKENZIE MONITOR AUDIO PEERLESS
RADFORD RAM RICHARD ALLAN SEAS 
    TANNOY VIDEOTONE WHARFEDALE
```


WILMSLOW AUDIO Dept. ETI

SWAN WORKS, BANK SQUARE, WILMSLOW CHESHIRE, SK9 1HF
Discount Hi-Fi, etc., at 5 Swan Street and 10 Swan Street
TEL: WILMSLOW 0625529599 FOR SPEAKERS MAIL ORDER AND EXPORT
WILMSLOW 0625526213 FOR HI-FI

KEY:
1: The bit of chocolate you thought you'd leave for later.

2: Coffee stains (instant).
3: A useful-sized bit of stiff paper to stop the window from rattling.

4: Rough calculations for your new combined egg timer/laser cannon project.

5: ETI makes a fair soldering iron stand.
6: The dog insisted on carrying your eopy to you along with your slippers.

WHAT A BIND!

Half our orders for binders are repeats: we think that says a lot for their quality. At $£ 3.00$ all inc. you get a great deal of peace of mind too!

ETI Binders
25-27 Oxford Street,
London WIR 1RF.

Codespeed

WHERE YOU CAN BE SURE OF A BARGAIN
 Full Spec．Devices

wrong with some we checked）of strip them for spares（whichever part is defective the rest must b good value for money－case／keyboard／display／Chip／PCB）．We include all the info．we can find on reparring calculators What a bargain at $£ 2.50$ ．
PACK M2． 1 ₹ 2102．a 1024 bit Static R．A．M．The most pitches．Only E 9.00 Pateur electronics．With full data．$£ 1.25$
PACK M3 Build
PACK E2．An 8 digin calculator style Liquid Crystal display． $\mathbf{0 . 3 3}$ ．high digits with right ． points and overflow indicgtor．With date．$£ 2.95$ ．
PACK $£$ ．Same as Pack E2 but with 0.5 high digits． $\mathbf{~ 4 . 2 5}$ ．
PACK E4．A $1 / 2$ dight 0.3 high 7 segment gas discharge display．Requires 180 V anode volts bu Can make an ex
With inlo 90 ．
PACK ES．Same as Pack E4 but dual digit．90p
PACK E6．Contains a brand new 6 digit Texas Instruments type DIS 436 LED display．Multiplexed with bull．in bubble magniliers．$£ 1.00$ ．
PACK ET．A Genuine Burroughs
PACK E7．A Genuine Burroughs Panapiex 11.180 volt， 12 digit．
$0.3^{\prime \prime}$ digits．We include the special socket FREE．With data $£ 1.50$
PACK T2．Back again by popular demand $A 0.2 \frac{1}{31 / 2}$ digit Liquid $C_{\text {rystal }}$ wristwatch display with
data 11.00 ．
PACK T4．An 0.8 giant red LEO clock display．Common ca
An excellent display for your digital clock proiects at $\mathbf{£ 4 . 9 5}$ ．
An excellient display for your digital clock projects at $£ 4.95$ ．
PACKP1．An MM 5330 Ougrait Volmererer IC．Now build your
using this varsatile chip With data and circuis diagram $£ 3.95$ ．
using this versatile chip．With data and circuit diagram． $\mathbf{£ 3 . 9 5}$ ． data 50 p
PACK C1． 10×12 pin Hybrid circuits each containing 16 resistors／capacitors．Useful values Ideat Ior semiconduclor circuits and PCB miniaturisation．With data． 10 Hybrid circuits for 50 P． O SPECIAL O
85 for the pair

Untested Devices

PACK E1．（ 80% Guaranteed Good）． $5 \times$ MAN3

Excellent value．$£ 1.00$ ．
PACK DL1．（Untested－ so no guarantees．）Fantastic value for money．A iumbo pack of 30 mixeed
I．C． 5 ．There Could be anylhing in this pack，linear，dlgital－who knows．Guaranteed to sell out at only ${ }_{\text {PACK }}^{\mathrm{E} 1.00} \mathbf{~ M}$
PACK MU1．（Untested－so no guaramess．）Another batgain． $2 \times$ Upper half of a catculator cas
with built in keyboard．Most are ex－equipment，bul believed to be O．K．A snip at only $\mathbf{6 0 p}$ the pair． Your satistaction is quaranteed or return the complete pack for replacement or a refund． MAIL ORDEA ONLY－NO CALLERS PLEASE

CODESPEED，P．O．Box 23， 34 Seafield Road Copnor，Portsmouth，Hants．PO3 5BJ

For a merry musical Christmas an electronic musical door chime which can play 24 different tunes！

Plays
Greensleeves
God Sove the Qu
Land of Hope and Glory
Oh Come All Ye Faithtul Oranges and Lemons Westminster Chimes Sallor＇s Hornpipe
Seethoven＇s＂Fareknocking The Marseillarse
Mozar！
Wedding March
Cook House Door
The Stars \＆Stripes＇
Beethoveris Ode to Joy
Beethover＇s Ode to Jo
Willam lell Overture
Soldee＇s Chorus
Ginkle Twinkle Litlie Star
Great Gate
Maryland
Deutschiand uber Alles
Deuts
Bach
Coton
Cotonel Bogie
－These tunes play longer if the
push bution iskept pressed

GHROMATREAICS

Plearse senda \square Chioma Chime kits 15.95
Please send \square Chromid Chime kits af is liseach
including VAT and bust and packing PLEASE USE BLOCK CAPITALS
$\frac{\text { Name }}{\text { Address }}$
Address
Address
Ienclose cheque PO value E
or debil my ACCESS BARCLAYCARD account No
Signature

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline TRANS \& \& BC328 \& 15 p \& 8U208 \& 160 p \& 2N4062 \& 20p \& 7492 \& 35 p \& 74196 \& 55p \& 4510 \& 70 p \& DHDES \& ZENER DIODES 400 mW \& \\
\hline AC126 \& \(18 p\) \& 8 80338 \& 15 p \& OC25 \& 76p \& 2N4123 \& 23p \& 7493 \& 34 p \& 74197 \& 55p \& 4516 \& 64 p \& 8 Y 127 16p \& 2．7V to 33V \& \\
\hline AC127 \& 17p \& BC547 \& 11 p \& OC28 \& 108 p \& \& \& 1494 \& 51 p \& 74198 \& 110 p \& 4518 \& 70p \& 0447 10p \& \& 8 p \\
\hline AC128 \& 16 p \& BC548 \& 10 p \& OC35 \& 1.08 p \& \& \& 7495 \& 52p \& 74199 \& 110 p \& 4519 \& 60p \& 0491 15p \& \& \\
\hline AC 141 \& 24 p \& BC549 \& 11 p \& 0C71 \& 19p \& TTL \& \& 7496 \& 50p \& \& \& 4520 \& 65 p \& \(0 \mathrm{A2OO}\) 6－6p \& VERO BOARDS \(0.1{ }^{\prime \prime}\) copper \& \\
\hline ACl42 \& 24 p \& 8C551 \& 14 p \& OL12 \& 34p \& 7400 \& 12p \& 7497 \& 138p \& \& \& 4528 \& 55p \& \& \(2.5^{\prime \prime} \times 5^{\prime \prime}\) \& \\
\hline AClisi \& 42p \& 8 CY 30 \& 67 p \& OC84 \& \(46 p\) \& 7401 \& 12p \& 14100 \& 88 p \& \& \& 4578 \& 27p \& \begin{tabular}{ll}
IN4148 \& 4 p \\
\hline 18
\end{tabular} \& \(3.5{ }^{2 \prime \prime} \times 5^{\prime \prime} \times{ }^{\prime \prime}\) \& 51p \\
\hline AC152 \& 53 p \& BCY34 \& 74 p \& TIP29 \& 40 p \& 7402 \& 12 p \& 14104 \& 50p \& CMOS \& \& 4583 \& 82p \& 11996 \& \(3.75{ }^{\prime \prime} \times{ }^{\prime \prime}\) \& \\
\hline ACI53 \& 58 p \& BCY59 \& 24 p \& TIP30 \& 40 p \& 7403 \& 12p \& 14105 \& 40p \& 4000 \& 15 p \& 45851 \& 105p \& 114001 4p \& \& \\
\hline AC176 \& 18 p \& 8CY70 \& 14 p \& TIP31 \& 50 p \& 7404 \& 12 p \& 74107 \& 25 p \& 4001 \& 15 p \& \& \& 1 14002 4p \& CERAMUC CAP 50V \& \\
\hline AC187 \& 23 p \& 8CY71 \& 14 p \& TIP32 \& 55 p \& 7405 \& \(13 p\) \& 74109 \& 30 p \& 4002 \& 15 p \& \& \& \(1 \mathrm{N4003} 5 \mathrm{5p}\) \& 22 pF 10 \(50,000 \mathrm{pF}\) \& 2p \\
\hline AC188 \& 23 p \& 80115 \& \(52 \mu\) \& T1P33 \& \(75 p\) \& 7406 \& 24 p \& 14110 \& 46p \& 4006 \& 68 p \& VEGULAGE \& \& IN4004 6p \& \& 2 p \\
\hline A1819 \& 65 p \& 80121 \& 79p \& TIP 34 \& 98p \& 7407 \& 24 p \& 14116 \& 160p \& 4007 \& 15 p \& Regulators \& \& 1\％4005 7p \& \& \\
\hline AC161 \& 38 p \& 80123 \& 79p \& TIP35A \& 253 p \& 7408 \& 14 p \& 14118 \& 82 p \& 4008 \& 64 p \& 7805 \& \(60 p\)
\(60 p\) \& 1 14006 8p \& \& \\
\hline A． 162 \& 38p \& 80124 \& 97p \& TIP36A \& 389 p \& 7409 \& 14 p \& 14120 \& 125p \& 4009 \& 35 p \& 7815 \& \(60 p\)
\(60 p\) \& 1 N 4007 9p \& P01． 015 \& \\
\hline AF114 \& 30p \& 80131 \& 35 p \& IIP41A \& 69 p \& 7410 \& 12 p \& 74121 \& 25 p \& 4010 \& \(35 p\)
\(15 p\) \& 7815
7818 \& \(60 p\)
\(60 p\) \& 1 1 55400 13p \& \& 7p \\
\hline AF118 \& 30p \& 80132 \& 35 p \& TIP42A \& 69 p \& 1411 \& 19 p \& 74122 \& 33 p \& 4011 \& 15 p \& 7818
7824 \& 60 p
60 p \& \(1 \mathrm{NS401}\) 14p \& ．47． 68 uF \& \\
\hline AFI25 \& 27p \& 80135 \& 38 p \& TIP2955 \& 126 p \& 7412 \& 17 p \& 14123 \& 40p \& 4012 \& \(15 p\)
35 \& 7805 \& 60p \& 1 115402 15p \& 1 uf \& 13p \\
\hline AFI26 \& 27p \& 80136 \& 37 p \& IIP3055 \& 64 p \& 7413 \& 25 p \& 74125 \& 35 p \& 4013
4014 \& 35 p
60 p \& 7905
7912 \& 79 p
79 p \& 1 115403 20p \& 2.2 uf \& 17p \\
\hline AF127 \& 27 p \& 80137 \& 38 p \& 210108 \& 14p \& 7414 \& 48 p \& 14126 \& 35 p \& 4014 \& \(60 p\)
\(60 p\) \& 7915 \& 79 p
79 \& \& \& \\
\hline AF139 \& 36 p \& 80138 \& 38 p \& \(27 \times 109\) \& 14p \& 7416 \& 24 p \& 14132 \& 50p． \& 4015 \& \(60 p\)
\(35 p\) \& 7918 \& 79p \& RECTIFIERS \& \& \\
\hline AF186 \& 54 p \& 80139 \& 35 p \& \(27 \times 300\) \& 16 p \& 1417 \& 24p \& 74136 \& 79 p \& 4016 \& \({ }^{35} \mathrm{p}\) \& 7918
7924 \& 79 p
79 p \& \[
\begin{aligned}
\& \text { RECTIFIERS } \\
\& \text { 1/ } 22 \mathrm{p}
\end{aligned}
\] \& ELECTRDLYTIC CAP 250 \& \\
\hline AF239 \& 40p \& 80140 \& 35 p \& 219500 \& 16 p \& 7420 \& 12p \& 74141 \& 56 p \& 4017
4018 \& 55 p
64 p \& 7924 \& 79 P \& 1A／100V 24 p \& 1 uF to 47 uF \& 7p \\
\hline ASY53 \& \(81 p\) \& 8F115 \& 25p \& 2N706 \& 13 p \& 7421 \& 22p \& 74142 \& 200p \& 4018
4019 \& 64 p
40 p \& \& \& 1A／200V 278 \& 68 uF． 100 uF \& 8 p \\
\hline ASY54 \& \(81 p\) \& 8 BF 167 \& 29 p \& 2 N 1131 \& 23 p \& 1422 \& 18p \& 74145 \& 58p \& 4019 \& 40 p
60 p \& THYRISTORS \& \& 1A／400V 30 p \& 150 uf \& 9 p \\
\hline ASY55 \& 69p \& BF173 \& 27p \& 2N1132 \& 23 p \& 7427 \& 24 p \& 74147 \& 110 p \& 4020 \& 60 p \& 1A／50V \& \& 2h／50Y 34p \& 220 uf \& 10p \\
\hline BC107 \& 8 p \& 8 F 178 \& 34 p \& 2N1302 \& \(38 p\)
54 \& 1428
7430 \& 28p
12 p \& 74148 \& 90p \& 4022 \& 60 p
55 \& 1A／100V \& 28 p
30 p \& 2A／100V 36p \& 330 uF \& 12p \\
\hline \({ }^{8 C 108}\) \& 8 P \& 8 F 179 \& 37 p \& 2N1304 \& 54 p \& 1430 \& 12p \& 74150 \& 70 p \& 4023 \& 15 p \& 1A／200v \& 38 p \& 2A／200V 38p \& 470 uF \& 15p \\
\hline 8C109 \& 8 p \& BF180 \& 37 p \& 2N1305 \& \(25 p\) \& 1432 \& 23p \& 74151
74153 \& 50p
50 p \& 4024 \& 45 p \& 1A／400V \& 40 p \& 2A／400V 40 p \& \& \\
\hline 8C113 \& 17p \& BF181 \& 37 p \& 2N1306 \& 39 p \& 7433 \& 24p \& 74153
74154 \& \(50 p\)
\(85 p\) \& 4025 \& 15 p \& 3A／100V \& 36 p \& \& RESISTORS 0.25 W \& \\
\hline BC140 \& 34 p \& 8F184 \& 28p \& 2N1711 \& 21 p \& 7440 \& 13p \& 74156 \& 51 p \& 4028 \& 52 p \& 3A／400V \& 51 p \& 245171 50p \& \& \\
\hline BC142 \& 27p \& 8F185 \& 30 p \& 2N1893 \& 44p \& 7441 \& \(51 p\) \& 74157 \& 51 p \& 4029 \& 60 p \& \& \& OCP \(71 \quad 70 \mathrm{p}\) \& POTENTIOMETERS \& \\
\hline 8 C 143 \& 27p \& BF194 \& 13 p \& 2N2217 \& 27 p \& 7442 \& 42 p \& 74160 \& 60 p \& 4030 \& 35 p \& \& \& ORPI2 70p \& 1 Kohm to 2 mothms log／linzar \& \\
\hline BC147 \& \({ }^{8} \mathrm{p}\) \& 8F196 \& 13 p \& 2 N 2219 \& \(21 p\) \& 1443 \& 74 p \& 74161 \& \(65 p\) \& 4035 \& 60 p \& LINEARS \& \& 01704115 \& 5 Kohm to 1 mohm log swilch \& 58p \\
\hline BC149 \& 8 p \& 8F197 \& 16 p \& 2 N 2369 \& 16p \& 7444 \& 74 p \& 74162 \& 65 p \& 4041 \& 57 p \& 110CM \& 40p \& 01707 115p \& \& \\
\hline BC157 \& 9 p \& 8F198 \& 16 p \& 2 N 2483 \& 26p \& 1445 \& 64 p \& 74163 \& 65 p \& 4042 \& 54 p \& \(741-8\) \& 22 p \& 125＂ \& \& \\
\hline 8C158 \& 9 p \& \(8 F 200\) \& 36 p \& \(2 N 2484\) \& 22p \& 1446 \& 55 p \& 74164 \& 70p \& 4043 \& 54 p \& 747C．14 \& 50p \& LEDs and ． \(2 \cdot\) \& 100 ohm 101 Wohm \& 5p． \\
\hline 8C159 \& 9 p \& 8 F 224 \& 16 p \& 2N2905 \& 22p \& 1447 \& 55 p \& 74165 \& 70 p \& 4044 \& S0p \& 1488－8 \& 30 p \& hed 9p \& \& sp． \\
\hline 日C168 \& 8 p \& BF251 \& 37 p \& 2N2906 \& 22p \& 1448 \& 57 p \& 74166 \& 80 p \& 4047 \& 95 p \& Ca3011 \& 80 p \& Yellow 13p \& \& \\
\hline 8 C 170 \& 9 p \& 8F258 \& 40p \& 2N2907 \& 22p \& 7450 \& 14 p \& 74167 \& 180 p \& 4048 \& 63p \& Ca3018 \& 80 p \& Green 14p \& TRAMSFORMERS 240V primary \& \\
\hline 8C171 \& 9 p \& \(8 F 259\) \& 44 p \& 2N2926 \& 10 p \& 7451 \& 14 p \& 74173 \& 94 p \& 4049 \& 28 p \& CA3028A \& 85p \& Clip \& 6．0．6V 100mA \& 95p \\
\hline \({ }_{8} \mathrm{C} 172\) \& \({ }^{9} \mathrm{p}\) \& 㫙的39 \& 30 p \& 2N3053 \& 18 p \& 7452 \& 13 p \& 74174 \& 70p \& 4050 \& 28 p \& CA3035 \& 140 p \& \& \(0.64 \times 214 \times 2\) \& 360p \\
\hline 8C173 \& 9 p \& BF月40 \& 30 p \& 2N3054 \& 50 p \& 7453 \& 14 p \& 14175 \& \(65 p\) \& 4066 \& 40 p \& CA3036 \& 120p \& \& 9．0．9y 100ma \& 250p \\
\hline 8C182 \& 10 p \& BF月79 \& 30 p \& 2N3055 \& 50 p \& 7454 \& 14 P \& 14176 \& 60 p \& 4068 \& 20 p \& \({ }^{\text {ca3046 }}\) \& 75 p \& DIL SOCKETS \& 9.9091 A \& 290p \\
\hline 8C183 \& 10p \& 8F月80 \& 30 p \& 2N3702 \& 8 p \& 7460 \& 14 p \& 14117 \& 60 p \& 4069 \& 16p \& CA3054 \& 110 p \& 8 pin \({ }^{10}\) \& 9．0．9V 2A \& 400p \\
\hline EC184 \& 10p \& \(85 \times 29\) \& 25 p \& 2N3703 \& 8 p \& 1470 \& 24 p \& 14178 \& 80 p \& 4070 \& 16p \& CA3080 \& 70 p \& \(14 \mathrm{pin} \quad 12 \mathrm{p}\) \& 0－12V 24 \& 370 \\
\hline 8C186 \& 23p \& \(8{ }^{85} \times 80\) \& 38 p

d \& 2N3704 \& 8 p \& 1472 \& 24 p \& 74180 \& 80 p \& 4071 \& 16p \& CA3140E \& 70p \& $16 \mathrm{pin} \quad 13 \mathrm{p}$ \& 0．15Vx2 200 mkx 2 \& 240p

\hline 5C187 \& 26p \& ${ }^{8 F \times 85}$ \& 29 p \& 2N3706 \& 9 p \& 7473 \& 25 p \& 74181 \& 145 p \& 4072 \& $16 p$
$16 p$ \& Lmjobn \& 28 p
64 p \& \& \&

\hline BC201 \& 10 p \& $8 \mathrm{BXB6}$ \& 31 p \& 2N3707 \& ${ }^{9 p}$ \& 7474 \& $25 p$
32 p \& 74182 \& 60p \& 4073 \& 16p \& LM380N \& 64 p
76 p \& Add 25p \& p\＆p All tems new and fuli spe \&

\hline $8 \mathrm{C212}$ \& 10 p \& BFX87 \& 20 p \& 2H3710 \& 8 p \& 7475 \& 32 p
28 p \& 74184 \& 110 p \& 4078 \& 25p \& LM38iN \& $\begin{array}{r}\text { 76p } \\ 120 \mathrm{p} \\ \hline\end{array}$ \& \& \&

\hline BL213
8 C 214 \& 10 p \& BFY50
BFY 51 \& $15 p$
$15 p$ \& 2H3711 \& $8 p$
177 p \& 7476 \& 28 p
46 p \& 74190
74191 \& 72p
72 p \& 4078
4081 \& $16 p$
$16 p$ \& ME555 \& $\begin{array}{r}120 p \\ \mathbf{2 5 p} \\ \hline\end{array}$ \& \& \&

\hline QC237 \& 14p \& BFY53 \& 28p \& 2N3713 \& 290p \& 7485 \& 69 p \& 74192 \& 65 p \& 4082 \& $16 p$ \& NE 556 \& 60 p \& \& \&

\hline BC238 \& 14p \& BS $\times 19$ \& 25 p \& 2H3866 \& 54 p \& 7486 \& 24 p \& 74193 \& 64 p \& 4086 \& 59 p \& T8A641 \& 240 p \& \& \&

\hline 8C301 \& 30p \& 85×20 \& $21 p$ \& 2N3904 \& ${ }^{8 p}$ \& 7490 \& 32p \& 74194 \& 60 p \& 4501 \& 19p \& T8A800 \& 70p \& 62＇NAYLOR \& ROAD，LONDON，N20 \& OHN

\hline BC303 \& 30 p \& By205 \& 140p \& 2N4061 \& 12p \& 7491 \& 45 p \& 74195 \& 55p \& 4507 \& 40 p \& tBablo \& 100p \& \& 10AD，LONDON， 2 \&

\hline
\end{tabular}

-ETIPRINTS

ETIPRINTS are a fast new aid for producing high quality printed circuit boards. Each ETIPRINTS sheet contains a set of etch resistant rub down transfers of the printed circuit board designs for several of our projects. ETIPRINTS are made from our original artwork ensuring a neat and accurate board. We thought ETIPRINTS were such a good idea that we have patented the system (patent numbers 1445171 and 1445172).

Lay down the ETIPRINT and rub over with a soft pencil until the pattern is transferred to the board. Peel off the backing sheet carefully making sure that the resist has transferred. If you've been a bit careless there's even a 'repair kit' on the sheet to correct any breaks!

ELECTRONICS TODAY INTERNATIONAL -

001	3 Channel Tone Control Spirit Level Clock A Digital Thermometer Skeet Game Compander	Oct 77 Oct 77 Nov 77 Oct 77 Nov 77 Nov 77
002	House Alarm Rev Monitor Clock B	Jan 78 Dec 77 Dec 77
003	Race Track Game Hammer Throw Freezer Alarm	Jan 78 Jan 78 Dec 77
004	Metal Locator Mk II Ultrasonic Tx/Rx 5 Watt Stereo Amp (mo Metronome Shutter Time	Feb 78 Feb 78 Jan 77 Feb 78 Feb 78
005	Op-Amp Supply Frequency Shifter LCD Panelmeter Light Dimmer (3 times)	Mar 78
006	CMOS Switched Preamp From Experimenters PS.U 555 Boards (twice	Electronics Tomorrow
007	Star Trek Radio CD Ignition CCD Phaser White Line Follower	May 78 May 78 May 78 April 78
008	Tank Battle Helping Hand	May 78
009	AM/FM Radio Bridge Oscillator CMOS Stars \& Dots	June 78
010	Bench Amplifier Freezer Alarm Marker Generator LED Dice Watchdog (2 PCBs) Stars \& Dots PSU	Project Book Six
011	Noise Generator General Preamp Flash Trigger Compander Active Crossover (2 PCBs)	Project Book Six
012	Disco Lightshow Stereo Simulator Digital Thermometer	Project Book Six
013	Amplifier Module Amplifier PSU Equaliser Equaliser PSU	Project Book Six
014	Skeet Game Sweep Oscillator Burglar Alarm GSR Monitor	Project Book Six
015	UFO Detector Torch Finder (twice) Etiwet (twice)	July 78 July 78 Aug 78
016	Stac Timer Xhatch Gen Wheel of Fortune	Sept 78
017	Complex Sound Gen Tele Bell Extender Power bulge	Oct 78
018	RF Power Meter Proximity Switch Audio Oscillator (2)	Oct 78 Oct 78 Nov 78
019	Car Alarm (2) Wine Temp (2) Curve Tracer	Dec 78 Dec 78 Dec 78

WORE SGOPE FOR YOUR MONEY
 arge $5^{\prime \prime}$ flat CRT. DC to 6 MHz bandwidth. 10 mV to $50 \mathrm{~V} / \mathrm{cm}$ in 12 calibrated steps. $0.5 \mu \mathrm{~S}$ to $0.1 \mathrm{Sec} / \mathrm{cm}$ sweep range $\times 5$. Fully automatic trigger. DC to 1.5 MHz horizontal bandwidth
$£ 120$ (+ $£ 9.60$ VAT). SAE for further delails.

3 inch medium-persistence tube response up to 5 MHz (-3 dB) - adjussahle + ve. --ve or external sync External x-input y-sensitivity down $10100 \mathrm{mV} / \mathrm{di}$ sions $15 \mathrm{~cm} \times 20 \mathrm{~cm} \times 28 \mathrm{~cm}$ Weight $3.8 \mathrm{Kg}(81 / 2 \mathrm{lbs}$)
$£ 83.25$ cost VAT £6.66. Carriage £ $£ .50$ CALCULATOR SALE

PC100B £151.20, T157 £28.30. T151-3 £28.40 T158 £64.80. T159 POA Sofiware £24
T1 Prog. £49.95. Little Prof. $£ 10.80$
CASIO
CX2500 £19.80 FX3100 P + 2 LCD sci £24.30 FX120£21.95.
FX120 £21.95.
FX39 £15.60. FX140 £19.90 FX48 £19.95. FT 24 £19.95
CQ 81 £17.90 PQ7.£19.90.
HEWLETT PACKARD
HP 31E @ £38.9B. HP 33E £69.12. HP 25C £105.05 HP 67 £299.16. HP97 £514.62 HP29C £1 18.90 CBM
PRO 100 £29.95/SRN 1 90R- 28.95 COMMODORE Pet Computer 2001 / 8 K £695 P50 $(8+2) 24$ programmable-steps $£ 17$
Boris Microprocessor chess game $£ 199$. Boris Microprocessor chess game £199.
Gammon Master II (computer backgammon) £149.95 Alaria Microprocessor cassette TV game $£ 149$. LCD Penwatch $£ 29.55$

KRAMER \& CO.
9 October Place, Holders Hilin Road
London NW4 IEJ. Telex: 888941 attn. Kramer k7. Tel: 01-203 2473 Mail order only. Callers by appointment

SEMICONDUCTOR OFFERS ALL FULL SPEC.

Common anode 037 seg displays Tostiba type TLR303 65p

 F.E. Ts. similar to 2 N38 19 18p, Moiser Sim Mosters Single Gate per

 12 p sach. MAN 3 A 3 mm LED Displays 50 p . 7415 (wide
bandwidth 35 p . LM 38080 D LM 38190 ZNA 1475 . TII 305 bandwidht
Alpha-numerical Oisplays. with data. E2. 75 . ORP6
. Mullard, new, boxed 30p. Special OHer. SGS TBAB00 iCs, 10 for $£ 5.00$ MICROPHONES. EM 506 Condenser Mikes, Uni-directional. Fwitch. E11.00. Miniature Tie Pin Condenser mike 1 K imp. swni-directionsi, uses 'hearing aid battery (supplied) $£ 4.95$
Grundig Electrat Inserts with built-in F.E.T. Preamp $£ 1.50$. Crystal Grundig Electrer Miks inserts 37 mm 45 . Electret Condenser Mikes $1 \mathrm{~K} \Omega$ Imp. with std. Jack Plug $\mathrm{E2.85}$. Cassette Condenser Mikes with 2.5 and 3.5 Jack Plugs E2.85. Standard Ca
2.5 and 35 Jack Plugs $£ 1.20$

MORSEKEYS + Hi-speed Type, al metal. E2.25. Plastic Morse
 CRYSTALS 300 KHz HC6U 40p. 0.1 Edge Connectors. 64 way 65 p. 32 way 40 p

RELAVS. Min. 220 v AC Seated Relay 2 pole C $/ 045 \mathrm{p}$. 240 vaC Sealed Relay 3 pole C/O 5 mp Contacts 11 -pin base 80 p .12 volt
4 poie N.O. Reed Relay 20 p Min. $24 \times \mathrm{DC}$ Sealed 2 -pole C $/ 0$ ${ }_{\text {relays }} 3$-amp contacts. New 55 p . $12 \vee \mathrm{DC} 4 \mathrm{pc}$.o, open type, new relays $\begin{aligned} & \text { 3-am } \\ & 50 p \mathrm{each}\end{aligned}$
MOTORS. 1.5 to 6 V OC Model 20 p .115 v AC min. 3 R.P. M. with Gearbox 30p. $240 v$ AC Synch Motor $1 / 54 \mathrm{~h}$ R.P.M. 65 p .240 VAC Synch. Motor $1 / 24 \mathrm{th}$ R.P.M. 65 p .
Motors. new 95p. 12 V DC 5 -pole 35p.
BOXES. Black A.B.S. Plastic with brass inserts and lid. 75×56 $35 \mathrm{~mm} 4 \mathrm{Op} .95 \times 71 \times 35$
$130 \times 84 \mathrm{~mm} \mathrm{E1.95}$
TOOLS. Radio pliers $5+n$, insulated handies £1.40. Diagonal side Thters. Sin, insulated handles E1.40
MAINS TRANSFORMERS, all $240 \mathrm{v}^{\prime A}$ C primary Postage shown
 O-4.6-9 15DmA, no mounting bracket, 55 p (20p). 12-0.

 Amp. E4. 50 (54 p) 20.020 v 2 amp . E3. 50 (54 pp). 25 v 1.5 Amp
 2.5 v 2 Amp toroid, $£ 2.95$ (54 p). 20.

SWITCHES - Min Toggle. SPST $8 \times 5 \times 7 \mathrm{~mm} 45 \mathrm{p}$. OPDT 8×7 7 mm 60 p . OPDT Centre OH $12 \times 11 \times 9 \mathrm{~mm} 75 \mathrm{p}$. DPDT C
 Switches 15 p . Min. Micro. Switches $13 \times 10 \times 4 \mathrm{~mm}$
Push to make or push to break Switches $16 \times 6 \mathrm{~mm} 15 \mathrm{p}$
SOLDER SUCKER. Plunger type. eya protection, replaceable noz2l.
TAPE HEADS - Cassette Sterbo £3.00. 8 SA MN $13301 / 2$ Track

BUZZERS-GPO Type 6-12v 20p. Min. Solid State Surzers
$6.9-12$ or 24 v 15 mA 75 p . All Metal Buzzer, 30 mm diam, 6.12 wolts. high tone. 25p
U.H.F TV Transistorised Push Bution Tuners (not Varicap). new and boxed, £2.50.
MURATA MA401L. $40 \mathrm{kHz} \mathrm{H}^{\prime}$ 'ransducers, rec/send, $£ 3.25$ pair
METERS-Grundig Batt. Level Meter $1 \mathrm{~mA} 40 \times 40 \mathrm{~mm} £ 1.10$
Min. Level Meter 200 n a $25 \times 15 \mathrm{~mm} 75 \mathrm{p}$. Ferrantil 600 v AC Meter E3. 95 EDE METEA -- Large scale 0-100. now E2.75

POT CORE UNIT. Has 6 -pot cores, including 1 FX2243 (45 mm) and 2 FX2242 (35 mm). 3 . 20 mm . Power Transistors on heat sink, panel with various transis
diodes with 5 -amp plastic S.C.R. New $£ 1.75+75 p$ P\&P LA1230 adj core 15 mm dia. $14 \mathrm{mH} \cdot 18 \mathrm{mH}$. HIO. 10 p each 8 TR ACK 12 volt motors new, $£ 1,25$
CASSETTE MOTORS 6 volt new, $£ 1,25$

SOLENOIDS-240v AC 45p. 12v DC H. Duty 75p 240v 2510 puli, 2 ravel E3.95.

12-WAY MOTORISED CAM UNITS. SOV AC IOW TOV 240 driving $12 \mathrm{C} / 0$ micro switches, suppled
AC use Ex. equip. $\mathrm{E} 1.95+35 \mathrm{p}$ P\&P
13 Amp rubber trailer extension sockets. 38p
B Way fibeon-cable. min sold core. $15 p$ metre
POSTAGE 30p UNLESS OTHERWISE SHOWN XEXCESS POSTAGE REFUNDED WITH ORDER)

> S.A.E. FOR LISTS

ORDER ADDRESS

PROGRESSIVE RADIO
31 CHEAPSIDE, LIVERPOOL 2

CALCULATORS

ScIENTIFIC

TEXAS T 159 together with PC100日

\qquad
E285:00
TEXAS/HP Accessories available
*TEXAS T159 (New Card prog 960 prog steps of 100 mem -TEXAS T158 (New Key prog 480 steps or 60 mem) $\begin{array}{r}\text { E156.50 } \\ \text { E6.00 }\end{array}$ *TEXAS PC100B (New updated Printing Unit for T158 *TEXAS T157 (Key Prog 8 mem. 150 Key Strakes/50 Prog Steps) $\begin{array}{llll}\text { TEXAS T1 } \\ \text { TEXAS } T 145 \text { (New - same spec, as T1 } 30, \text { but } 3 \text { mem) } & \mathrm{E13.95} \\ \mathbf{E 1 9 . 9 5}\end{array}$ WTEXAS T145 (New updated version of the Texas T140) 119.95 $\begin{array}{lll}\star T E X A S \\ \text { TI PROG RAMMER (Hexaderimal Oct) } & \mathbf{£ 4 6 . 5 5} \\ \mathbf{E 4 . 5 0}\end{array}$ ${ }^{\text {\#TEXAS TEX }} 1159$ /iin (New 8 Dig+ Exp 10 mem 32 Prog Steps. SEXAS T1 25 (new LCO Sci/Stat) C28.30
E 18.90
TEXAS T125 (new LCO Sci/ Stat) $£ 10.00$


```
AUTUMN SALE
og Cards With
```

```
TEXAS T159 Calculator (complete as manulacturer's spec.,
```

TEXAS T159 Calculator (complete as manulacturer's spec.,
master module. charger, etc.). NLith wallet. etc.

```
master module. charger, etc.). NLith wallet. etc.
```

M 9190R (as 4190 R but with 9 memories)	£27.50
*CBM Pro 100 (72 Step Prog)	
*HP 19C (Cont Mem key Prog Printer)	f118.50
* +1P 29C las \$9C but no P	¢87.50
*HP 33 E (8 mem Pro Sci/ Sta)	£64.00
\#HP32E (Advanced Sci with S	0
WHP27 (10 Mem Sci/fin/Stat)	¢73.50
*HP31E (New Scireplac	¢35.00
\#HP67 (Card Prog 224 Steps 26 Mem	¢242.00
P97 (Fully prog with Printer)	E396.50
All HP range avail. inc. new ' E ' range CASIO FX 360 (New $10 \mathrm{Dig}+$ Exp 7 Mem 8) (St. Div Lin Fegr. etc.)	
	¢20.00
S10 FX3100 [New version of FX3000.LCD Sci/Sed/Div Poles	
	£22.50

NOW IT'S YOU AGAINST COMPUTERS
CHESS CHALLENGER $3 "$ (3 levals of game - beginner
£120.32 CHESS CHALLENGER " 10 (10 levels of game from beginner to, BORRIS the most advanced chess computer ye: BORRIS will even play against itself. Therefore ideal for laarning from COMPUTER-CHECKERS.DRAUGHTS (4 (eveis of play) $\frac{\text { E184. } 26}{E 83.28}$ GAMMON
\qquad BUT INC P\&P CHEQUE WITH ORDER
Tel. 01-4559855

MOUNTAINDENE 22 Cowper St., London, EC2

CLICK

ELIMNATOR

The Cat Sat On The Mat: or was there one of your favourite records on the mat? Never mind - ETI steps in to rescue your valuable vinyl from those evil clicks and pops.

EVEN THE MOST fastidious of record collectors must have some records in his collection which during their career have picked up the odd scratch or two. Perhaps your record collection dates back to the time before you obtained that second mortgage, sold the wife or whatever, to get the latest in laser controlled fluid damped, tangential tracking phonograms, sorry record deck, and the previous system has left it's mark on these early platters.

In The Click Of Time

However the scratches got there, they are bound to be obtrusive on any reasonably Hi - Fi set up and even if you do not qualify for the title $\mathrm{Hi}-\mathrm{Fi}$ purist - someone who listens, not to the music, but to the defects, real or imagined, in the $\mathrm{Hi}-\mathrm{Fi}$ chain - the clicks will detract from your enjoyment.

Enter ETI - we can help. The click suppressor described here will remove or greatly reduce the audible transient sounds - nice phrase resulting from scratches on a record's surface.

Design Decisions

When designing a click suppressor it is fairly obvious that we have to be able to tell the click from the cacophony as it were. Fortunately a click has several unique characteristics which set it apart from a music signal. For instance it will have very fast attack and delay times - even high frequency percussive sounds will delay slowly, although attack will be fast. A click will also be of a very short duration - again musical sounds are in general of a longer duration.

Once we have spotted our click, it is necessary to remove it. In our case we substitute a short period of silence

- subjectively unnoticable - in place of the click.

As our click detection circuit requires a finite time in which to operate, we will also have to provide some sort of delay for the music signal within the system. Our circuit, and all the commercially available units, use a CCD delay line to provide this delay. It is the recent availability of this device that has made the click suppressor possible, or rather brought it within the financial reach of the constructor.

Next month we will be giving the full details for building and setting up the Click Eliminator

HOW IT WORKS

Overall operation of the circuit can best be understood by reference to the block diagram shown in fig 1 . The signal from each of the inputs is fed both to a delay line, with associated low pass filters, and to the "Click Detection" block. This provides a negative going signal at it's output coincident with a click appearing on either input channel.
With the click identified, the next step is to remove it without affecting the subjective quality of the program material. The circuit operates by dramatically attenuating the signal passing through the unit for a brief period of time "Either Side" of the click.
If the attenuation is large enough and it's period accurately synchronised to the occurrence of the click, the effectiveness of the unit is dramatic. The loss of program material during this blanking period which might be thought to be as objectionable as the click itself, seems to produce little subjective disturbance.

It has been shown that periods of attenuation of this nature, up to 10 ms , do not unduly disturb the signal, and the 2 ms or so necessary to "straddle" a click goes entirely" unnoticed.
It is necessary to incorporate a delay line within the circuit as a finite time is necessary for the click detection circuits to operate. The chain of events is shown in fig 2. The click is fed to the input of the delay line and at some time later will emerge from this device where it is passed to the attenuator. Meanwhile the click has been detected and activates two 555 timers acting as monostables. The first provides a click detection indicator for the front panel. As this returns to it's stable state, it triggers the second 555 . It is this IC that causes the 570 IC to suppress the signal.

By careful selection of the timing components associated with the 555's, the signal is blanked during the time when the click is emerging from the delay line.

A detailed description of the various circuit blicks now follows.

Fig. 1. Block diagram of the ETI click eliminator.

Fig. 2. Above are shown the waveforms that illustrate the action of the circuit when a click has been identified and is to be suppressed.

The signal attenuation stage configured around NE 570 dual compandor IC.

clock signal used in controlling the device. If
this precaution is not observed, the result is severe distortion. The clock drive circuitry is described beThe input of the delay line kis pin 5 , the resistor chain R10, R11, R12, R13 and RV2 is
 ensures maximum dynamic range in d operation which minimises distortion. C5, to another Butterworth filter, this stage
being used to remove any high frequency

Pins 1 and 4 of the delay line must be preThe clock signal is generated by the CMOS oscillator based around IClla and b, which after buffering is fed to the two D type flipflops contained within IC12. The Q and Q,
outputs of this device provide the required The pown supply is a straightforward design based on two three-terminal regula-
tors.
click detector described below.
CLOCK AND POWER SUPPLY ' 9ε ' $ร \varepsilon$ ' $\downarrow \varepsilon$ ' ε 'เป - Noべ ∞_{∞} 근근

POTENTIOMETERS
\square

B. BANBEREELEGTRONIGS
 DEPT. ETI, 5 STATION ROAD, LITTLEPORT, CAMBS. GBG 1 IQE Tel. ELY (0353) 860185 (Tues. to Sat.)

 CASH WITH ORDER. (mINMuM ORDER $£ 2.00$) PLEASE ADD VAT AS SHOWN POST PAID (UX ONLY), SAE WITH ENQULRIES CALLERS WELCOME BY APPONTMENT ONLY

Grtroninstota international

What to look for in the February issue: On sale Jan 5th

TODAYS 100 WATT AMPLIFIER AT YESTERDAYS PRICES

ETI, Britain's most ingenious magazine has come up with a 100W mixer amplifier, with distortion below 0.1% at all signal levels, S / N ratio greater than 80 dB , inputs for four sources, including one or two disc inputs as you wish. Somehow or other the design, by Richard Bekker, cost less than $£ 50$ to build
complete with metalwork.
A complete kit of parts will be made available and full constructional details will be given next month. The unit is finished to match the five channel light show presented in the December issue of ETI.

Crowds are expected to throng shops early next month newsagents are preparing.

BUILD YOUR OWN VCT AND FIND OUT WHAT VCT MEANS

The revolutionary device that will replace the op-amp.
We got fed up waiting for it to be released.
We did something about it.
We show you how to construct your very own VCT next month!
Astound your friends!
Confuse your budgie!
Amuse your boss!
No home dare be without its VCT!
ETI brings home the bacon next month!

VOICE SYNTHESIS CRISIS-

Panic in the streets! Women and children unsafe! Machines can speak! Prime Minister to go on steam radio tonight! From our uncover agent - Tim Orr - comes full details of the invention that could cause a bigger stir than the
double breasted jacket! Several methods are in use, and a new unit is soon to be available which promises to confound us all.

Speech synthesis is here to stay, and Special Agent Orr is right
there in the forefront reporting back for ETI readers exclusively next month. If you value your sanity you cannot afford to miss this! Thinking people everywhere will be talking about this - don't be left out at the dinner table!

SLIDING INTO SINCH?

OK you guys youse asked for this and now youse gonna get it, see? Youse bin ringing and hassle us boys down at ETI to do youse a slide synchroniser so long now dat the broad on de phone is going bananas see? So we gotta give it to youse see? Nuffin personal see? OK?

Articles mentioned here are in an advanced state of preparation but circumstances may affect the final contents.

SCILLY SCOPE

Make more use of your tele folks! Here is a unit to make the room pulsate with colour in time to your hi-fi! Hooks into music signals to give an oscilloscope type display on a television screen, in full glorious colour! What will they think of next? Pocket calculating machines?

NEXT MONTH: COMPUTING TODAY GOES TO 48 PAGES! CAN MANKIND SURVIVE? WILL YOU BYTE OFF MORE THAN WE CAN CHEW? FIND OUT IN COMPUTING TODAY NEXT MONTH!

Composer goes SCAMP

> An amazing revelation came to the attention of the British electronics public today. ETI have plans for an MPU composer! Bach and Handel have been heard to revolve in their graves at 2000 RPM at this stunning news! This audacious machine employs a SC/MP processor and an amazingly low component count. All will be finally revealed in the next issue of ETI, and anyone remotely interested in music, synthesisers or electronics is urged not to miss it! A machine that thinks up and plays its own tunes has to be seen to be believed.

－ 		
 发安荋 度 \＆8 容 흧		

BORIS IN CHECK

There are quite a few chess machines lying around the shops these days, and this one has a reputation for being one of the best. Armed with his "Best of Spassky Volume 2" Ron Harris went to check it out.

BORIS is a multi-level chess machine with the disconcerting ability to comment on its opponent's (your) moves. The level of its analysis is set by the user who determines how long BORIS may consider its reply. Thus a tyro may set the machine to minimum time to begin with, and steadily advance the machine as he improves.

Present Arms

The presentation of the machine is excellent. The electronics consist of an F8 based system accessed by a 16 (multi-function) key array and interfaced to the outside world by a display consisting of eight alpha numeric devices. These are packed into a very smart wooden case which also holds the mains adaptor and chess pieces. A board is also provided, but is of a standard which suggests it is included out of duty rather than devotion. Alas, the chess pieces fall into this lamentable category also, but improvements are now being made by the importers, and the quality of replacements is much higher.

On the two units we were able to examine the mains adaptor terminates in a two pin American 'hi-fi' type of plug - which now fails BS of course. This is moulded into the adaptor body and makes lifè very awkward for the buyer. At first glance there is no way of getting mains into BORIS aside from wrapping wires around them. DANGEROUS. The importers must look into this very quickly. We are assured they are doing so - let us hope

In the meanwhile I would advise purchasers to take a trip down to good ole Woolies and make off with one of their shaving adaptor plugs, into which BORIS's adaptor will neatly plug. 240V AC is a poor opening gambit in any game

Getting Rooked . . . and Pawned And . . .

Using this machine is both simple and interesting. The keyboard sets up your move on the display - which is atso showing elapsed time - and the ENTRY key presents it to BORIS for reply

BORIS exposed to the world!

Once he's thinking about, the display flashes at 1 Hz , the timer counts down the time allotted to BORIS and the various moves he's cogitating appear on the display, settling finally at time 00 seconds. The display then counts down your time - but there's no penalty for not playing inside the time limits you've imposed on BORIS.

If for some reason (like cheating) you wish to alter the board at any time during a game, pressing RANK displays the contents of each row of the board using a very ingenious symbols set. The keyboard now creates or destroys pieces as required. Korchnoi could have done with that in his armoury. This makes correcting errors very easy.

Use of the RANK key while BORIS is having a think lets you watch the pieces moving around in his head(!?). Hypnotic.

Alpha-numeric Big Mouth

Undoubtedly the first thing to impress about BORIS has nothing to do with his chess abilities. It's his big mouth. Exactly how many comments his PROMs contains is anyone's guess - the importers Optimisation aren't saying - but we counted 47 in two evenings of chess, and I don't think we got them all!

The comments appear in the eight displays and are clocked along right to left at about 2 Hz . At any position on the board the program limits BORIS to a shortlist of appropriate comments, and a 'random' choice is made amongst them - or indeed not to comment at all. Saying nothing is the most likely choice of all, which means that the sayings do not always appear and so do not become boring with repetition.

Play It Again BORIS

Once in play BORIS is a fair match for most people. On its basic level the machine plays a good beginner's game, and will find most things you leave lying around the board. Responses differ sufficiently even at this level to make 'psyching out' difficult. The biggest drawback of BORIS's chess is his passion for exchanging pieces.

Being cowards we started at this level to see what he could do. The first comment we got was 'AWFUL' to our opening move. Frightening! From here we kept increasing the time BORIS had to think about his answers. At five minutes he was winning consistently, and at two it's a long, long struggle to get him to lie down and die!

The symbols BORIS uses to identify the chess pieces. Shown here is the back rank of the white men. The black appear upside down so you can tell which men are which. Pawns appear as triangles.

Below: BORIS in play at the computer chess championship recently. He finished second to a prflate program.

We're only average chess players ourselves and so passed the infernal pawn-pusher onto a club standard player to get his comments.

On the longer response times, five minutes upwards, he considered BORIS a good opponent - and of course wouldn't admit how often he'd lost! Certainly everyone who had a game against him considered BORIS entertaining - the comments really do seem appropriate at times.

For example, in the middle of a game with BORIS hard pressed and the telephone ringing - I NEED LESS NOISE appears! Coincidence but fun all the same. One move away from being checkmated and he asks READY TO RESIGN? The classic must be after losing a queen to a knight fork - WHOOPS!

Conclusions

All in all then BORIS can be confidently recommended to anyone interested in the game of chess. It can play a good game, and entertain while doing so. It is very difficult indeed not to think of the machine containing an (evil) little elf - a grand master type elf - plotting against your every manoeuvre, and unleashing sarcastic comments where possible. A definite winner

Our thanks to Kramer and Co for their assistance in the preparation of this article - they lent us a BORIS! (They also supply to the public!)

All prices quoted include VAT. Add 25 p UK/BFPO Postege. Most orders despatched on day of receipt. SAE with enquiries please. MINIMUM ORDER VALUE £1. Official orders accepted from schools, etc. (Minimum invoice charge
£5). Export/ Wholesale enquiries welcome. Wholesale list now available for £5). Export/ Wholesale enquiries welcome. Wholes.
bona-fide treders. Surplus components always wanted.

BUY A COMPLETE RANGE OF COMPONENTS AND THESE PACKS WILL HELP YOU
 - SAVE ON TIME-No delays in

 waiting for parts to come or shops to apen!* SAVE ON MONEY - Bu/k buying means lowest prices - just compare with others!
- HAVE THE RIGHT PART - No guesswork or substitution necessary!
ALL PACKS CONTAIN FULL SPEC. BRAND NEW, MARKED DEVICES - SENT BY RETURN OF POST. VAT INCLUSIVE PRICES.
K00150V ceramic plate capacitors, 5\%. 10
of each value 22 pF to 1000 pF . Total 210 , £3.35
K002 Extended range, 22 pF to $0.1 \mu \mathrm{~F} .330$ values $£ 4.90$
$K 003$ Polyester capacitors. 10 each of these $\begin{array}{lllll}\text { values: } & 0.01, & 0.015 & 0.022,0.033,0.047 \\ 0.068 & 0.1 & 0.15 & 0.22, & 0.33,\end{array}$ $0.068,0.1,0.15,0.22$
110 altogether for $\mathbf{E} 4.75$
K004 Mylar capacitors, min 100 V type 10 each all values from 1000 pF to $10,000 \mathrm{pF}$
Total 130 for £ $\mathbf{E} .75$
K009. Extended mylar pack Contains all values from 1000 pF to $0.47 \mu \mathrm{~F}$. Total 290 capacitors to $£ 11.25$
K005 Polysiyrene capacitors, 10 each value from 10 pF to $10,000 \mathrm{pF}$, E1 2 Series 5% 160 V . Total 370 for $£ 12.30$
$K 006$ Tantalum bead capacitors. 10 each of the following: $0.1,0.15,0.22,0.33,0.47$ $\begin{array}{lllll}0.68,1,2.2,3.3,4.7,6.8, ~ a l l ~ 35 V \\ 10 / 25 & 15 / 16 & 22 / 16 & 33 / 10 & 47 / 6\end{array}$ $100 / 3$. Total 170 tants for $£ 14.20$
$K 007$ Electrolytic capacitors 25 V working K007 Electrolytic capacitors
small physical size. 10 each of these popular small physical size 10 each or these popular
values: $1,2.2,4.7,10,22,47,100 \mu \mathrm{~F}$ Total 70 for $£ \mathbf{3 . 5 0}$
KOO8 Extended range, as above, also including 220,470 and 1000μ F. Total 100 for $£ 5.90$
K021 Miniature carbon film 5% resistors CR25 or similar. 10 of each value from 10 R to $1 \mathrm{M}, \mathrm{E} 12$ series. Total 610 resistors £6.00
K022 Extended range, total 850 resistors from $1 R$ to $10 \mathrm{M} £ 8.30$
K041 Zener diodes, $400 \mathrm{~mW} 5 \%$ BZY88
etc 10 of each value from 27 V to 36 V E24 etc 10 of each value from 20
series. Total 280 for $£ 15.30$
K042 As above but 5 of each value $\mathbf{£ 8 . 7 0}$

STEREO AMPLIFIER

 CHASSIS E5.50Complete and ready built. Controls: Bass, treble, volume/on-off, balance. 8 transisto circuit gives 2 watts per channel output. Just needs transformer and spaakers for low cost stereo amp. Suitable metal cabinet W374 $\mathbf{£ 2 . 0 0}$ - or buy the amp, case and transformer for $\mathbf{£ 1 0 , 0 0}$ and
sockets and knobs free!!

AMPLIFIER KIT $£ 1.75$

Mono gen purpose amp with tone and vol. /on-otf controls. Uwines circuitry to above amp. Output circuit. Simple to build on PCB provided Can be either battery or mains operated. (For mains powered version add $£ 2.20$ fo suitable transformer). Blue vinyl covered aiuminium case to suit (W372) $£ 1.30$.

BC182B OFFER

 Special Offer for quantity users. $1 \mathrm{k} .035+$ VAT. $5 k .032$ + VAT. Price negotiable on $10 k+$ approx. $80 k$ available
PC ETCHING KIT MK III

 Now contains 200 sq. ins. copper cladboard, 11b. Ferric Chioride. DALO etch-resist pen, abrasive cleaner two miniature dril bits, etching dish and instructions $\mathbf{£ 4 . 2 5}$

EDGE CONNECTORS

Special purchase of these $0.1^{\text {" }}$ pitch
double-sided gold-plated connectors en ables us to offer them at less than one-third of their original list price!
18 way 41p; 21 way 47p; 32 way 72p; 40 way 90p.

THE NEW 1978-9 GREENWELD CATALOGUE

EATURES INCLUDE:

* 50p Discount Vouchers
- Quantity prices for bulk buyers
- Bargain List Supplemen
- Priarity Order Form
- VAT inclusive price

Price $30 \mathrm{p}+15 \mathrm{p}$ Post

HEAT SINK OFFER

 Copper TO5 sink 17 mm dia $\times 20 \mathrm{~m}$$\mathbf{4 0 p} 100$ for $£ 3: 1,000$ for $£ \mathbf{2 5}$.

74 SERIES PACK Selection of boards containing many dif erent 74 series ICs. 20 for E1: 50 for

TMS4030 RAM
4096 bit dynamic RAM with 300 ns access time; 470 ns cycle time; single low capacit ance high level clock $1 / \mathrm{p}$; Fuly TTL compat ible: Low power dissipation. Supplied with

MISCELLANEOUS ICs Supplied with data if requested MC3302 quad comp. 120p; 710 diff comp. (1099) LM711 Dual diff comp 65 p; LM1 303 dual stereo pre-amp 75p; MC $\$ 469 \mathrm{R}$ voltage reg £1.50; UPC1025H audio £3.50; 575C2 audio £2.88; TDA2640 audio £2.92; TBA810S audio 70p; SN751 10 dual line driver 70p; MC8500 CRCC gen POA

OSCILLOSCOPES

 We have available from stock the followingSCOPEX models $4 D 10 \mathrm{~A}$ - DC- 10 MHz 10 mV sensitivity; Stab power supplies Dual beam: 3\% accuracy Excellent value a £214 inc. VAT and carriage. 4S6 - DC $6 \mathrm{MHz} ; 10 \mathrm{mV}$ sensitivity. Ideal portable scope. Solid state circuitry. All for $\mathbf{£ 1 5 0} \mathrm{inc}$
VAT and carriage.

RESISTOR PACK
Carbon firm 5\% mostly $1 / 4 \mathrm{~W}$. few $1 / 2 \mathrm{~W}$ resistors. Brand new but have pre-formed leads, ideal for PC mntg. Wide range of mixed popular values at the unrepeata

DIN SOCKET OFFER
2 pin switched speaker socket, PC mnig; 5 pin 180° PC mintg. or chassis mnig. (clip 25 ix Al 60 100 © 50 . 25 for

PUSH BUTTON

SWITCH BANKS
Lots of diff. types illustrated in Bargain Lis

RELAYS

WB47 Low profile PC mntg $10 \times 33 \times 20 \mathrm{~mm}$ 6 V coil SPCO 3A contacts 93p. W832 Sub min type, $10 \times 19 \times 10 \mathrm{~mm} 12 \mathrm{~V}$ coil DPCO 2A contacts £1.15.
W701 6V SPCO 1 A contacts $20 \times 30 \times$ 25 mm Only 56 p .
W817 11 pin plug in relay; rated 24 V AC but works well on 6 V DC. Contacts 3 pole c/o rated 10A. 95p
W819 12V 1250 R DPCO 1 A contacts. Siz $29 \times 22 \times 18 \mathrm{~mm} \mathrm{~min}$, plug-in type 72 p . type 3 pole c/o 10A contacts. Only $\mathbf{8 5 p}$ W846 Open construction mains relay 3 set 10A c/o contacts £1.20.
Send SAE for our relay list - 84 types listed and illustrated
LOW COST PLASTIC BOXES Made in high impact ABS. The lids ar retained by sos PCB ouide slots lexcep terior of
$\vee 219$) V219)
$\vee 21080 \times 62 \times 40 \mathrm{~mm}$ black
$\begin{array}{ll}\text { V213 } & 100 \times 75 \times 40 \mathrm{~mm} \text { black } \\ \text { V2 } 96 & 120 \times 100 \times 45 \mathrm{~mm} \text { black }\end{array}$
58p
72p
V219 1 $20 \times 100 \times 45 \mathrm{~mm}$ white
$86 p$
DIODE SCOOP!!!
We have been fortunate to obtain a larg quantity of untested, mostly unmarked glas silicon diodes. Testing a sample batch signal diodes high voltage rets and zeners may all be included. These are being offered at the incredibly low price of $£ 1.25 / 1.000$ - or a bag of 2.500 for $£ 2.25$. Bag of $10,000 £ 8$. Box of $25,000 £ 17.50$. Box of $100.000 £ 60$.
SIX OIGIT TTL COUNTEM MOOULE Our range of Industrial Latched Counter Module Kits is now available ready-built. These counters use both modula uses a set of red LED dizelays. and features a single in-line plug and socket. Instructions ara provided for full detalls please send for Catalogue.

NEW PRICES AND SOME NEW CMOS ADDITIONS If you need your CMOS by retum - buy is from SINTEL									
CD4000	0.18	CD4027	0.44	CDP051	0.82	CD4086	0.84	CD40182	1.40
CD4001	0.27	CO4028	0.77	CD4052	0.82	CD4089	1.39	CD40192	1.40
CD4002	0.17	CD4029	1.03	CD4053	0.82	CD4093	0.80	CD40193	1.40
CD4006	1.08	CD4030	0.50	CD4054	1.04	CD4094	1.68	CD40194	1.19
CD4007	0.18	CD4031	2.00	CD4055	1.18	CD4095	0.84	CD40257	1.48
CD4008	0.87	CD4032	0.88	CD4056	1.18	CD4096	0.4	CD4502	0.81
CD4009	0.50	CD4033	1.25	CD4059	4.29	CD4097	3.35	CD4510	1.01
CD4010	0.50	CD4034	1.71	CD4060	1.00	CD4098	0.88	CD4511	1.25
CD4011	0.18	CD4035	1.08	CD4063	0.98	C04099	1.85	CD4514	2.47
CD4012	0.20	CD4036	2.88	CD4066	0.55	CO40100	2.50	CD4515	2.82
CD4013	0.43	CD4037	0.85	CD4067	3.38	CO40101	1.61	CD4516	1.01
CD4014	0.33	CD4038	0.98	CD4068	0.20	CD40102	2.13	CD4518	0.97
CD4015	0.83	CD4039	2.78	CD4069	0.20	CD40103	2.13	CD4520	1.04
CD4016	0.48	CD4040	0.97	CD4070	0.46	CD40104	1.10	CD4527	1.43
CD4017	0.7	CD4041	0.75	CD4071	0.20	CO40105	1.08	CD4532	1.21
CD4018	0.83	CD4D42	0.68	CD4072	0.20	CD40106	0.62	CD4555	0.78
CD4019	0.50	CD4043	0.85	CD4073	0.20	CD40107	0.6	CD4556	0.78.
CD4020	1.11	CD4044	0.84	CD4075	0.20	CO40108	5.38	MC14528	0.93
CD4021	0.00	CD4045	1.28	CD4076	1.17	CD40109	1.03	MC14553	4.43
CD4022	0.82	CD4046	1.20	CD4077	0.38	CD40160	1.18	-M6508	8.05
CD4023	0.18	CD4047	0.8	CD4078	0.20	CD40161	1.18		
CD4024	0.70	CD4048	0.50	CD4081	0.20	CD40162	1.18		
CD4025	0.20	CD4049	0.50	CD4082	0.20	CD40163	1.10		
CD4026	1.85	CD4050	0.43	-CD4085	$\mathrm{n} \times 1$	CD4018	3.40		

Our offices are at Chapel Street. Oxford, but please do not use this
Our PRICES VALID UNTIL 31st MARCH. 1979
OFFICIAL ORDERS ARE WELCOME from Companies, Govt. Dopts. Nati. Inds. Univs. Polys.
 p\&p minumum charge (the balance will be charged at cost). Please sed FAST SERVICE EXPORT ORDERS welcome,
no VAT but edd 10% (Europe). I 5% (Oversean) for Air Mail p\& P . For Export persiage rates on heavy items - contact us first.
ORDERS TO: SINTEL, PO BOX 75A, OXFORD Tei: 086549791

FA8I SEDVICE: We guerontee that Telephons Ordert for poods in stock, received by 4.15 p.m. (Mon.-Fr.) wht be thome by percel post) sid our etocking te good. Private cumbonve phould tolephone ond pery by giving thelr Acceeesor Bercloycard number, with in minimum order value of \& 5 .

SINTEL

LISTEN TO THE SECRET WORLD OF PLANTS

As featured on Horizon, Nationwide, Radio and Worldwide Press
FIRST TIME IN THE U.K. IN KIT FORM, THE REVOLUTIONARY CONCEPT OF A BIOLOGICAL AMPLIFIER AND SOUND SYNTHESISER IN ONE UNIT, THE AMAZING

Bio Activity Translator

* Experience the unique musical form of plants
* Hear the beautiful patterns of sound - created by their natural response
- Compare house plants reactions to people - with the distinct tunes of those outside
Easy to operate, internal speaker and batteries

The naturally generated bio electrical potential across a plant leaf is picked up by 2 carbon foam electrodes. When amplified and filtered, a VCO, VCA and other exclusive synthesiser circuits are programmed by the control voltage from the plant to produce tracking sequences of notes. These follow in pitch, rhthym and volume the ever changing signal from the plant.
The Kit includes 6 I.C.s, 3 transistors, all high quality components, tinned and drilled fibreglass p.c.b.. loudspeaker and comprehensive assembly instructions. Also included is a free case, ready punched, with wooden end cheeks and stick-on silk-screened front panel for a really professional finish. Runs on 2 $41 / 2$-volt batteries (not supplied)

SPECIAL INTRODUCTORY OFFER INCLUDES FREE CASE

 Kit $£ 19.90$ ASSEMBLED AND TESTED £27.50 Pricp includee
Ladies LCD Watch

and don't you ever say we don't listen to you again! Ever since we first did a gentlemans watch, we have been dealing with a constant never ending stream of requests for a ladies model. Well at long last we can claim to have done something about it!

It wasn't easy arranging this sort of price on a product this good - but ETls done it again! The watch is small enough to look good on the prettiest wrist, and accurate enough to satisfy the most fastidious. Normal display shows time of course, with both date and seconds available on a push of a button. A backlight is also included.

Battery life should be greatly in excess of a year, and the bracelet is a smart stainless steel.

£9.95

Inclusive of VAT and Postage
An example of this watch can be seen and examined in our reception at our Oxford Street offices.

THIS IS THE THIRD digital alarm clock that we are offering (we regret the earlier versions are no longer available). We have sold thousands and thousands of these and our buying power enables us to offer a first rate branded product at a really excellent price.

The Hanimex HC-1 100 is designed for mains operation only $(240 \mathrm{~V} / 50 \mathrm{~Hz}$) with a 12 hour display, AM/PM and Alarm Set indicators incorporated in the large display. A switch on the top controls a Dim/Bright display function.

Setting up both the time and alarm is simplicity itself as buttons are provided for both fast and slow setting and there's no problem about knocking these accidentally as a 'locking' switch is provided under the clock. A 9 -minute 'snooze' switch is located at the top.

£8-95

Inclusive of VAT and Postage
An example of this clock can be seen and examined in our reception at our Oxford Street offices.

To:
Hanimex Alarm Offer
ETI Magazine
25-27 Oxford Street London W1R IRF

Please find enclosed my cheque PO for $£ 8.95$ [payable to ETI Magazine) for a Hanimex Digital Alarm Clock.

Name
Adress

Please allow 28 days for delivery

LCD Watch

New low price!

The enormous numbers involved in ETI offers has enabled us to arrange a real bargain - a full spec LCD watch with adjustable metal bracelet for under half the going rate.

This watch gives continuous display of hours and minutes: press the button once and you'll get the date (American style). After a ccuple of seconds the display automatically reverts to time but if you press again you'll get a continuous seconds display.

Press another button and you get a back light, enabling you to see the display in the dark. Setting, or resetting is simplicity itself and a 'hold' facility allows you to set the watch spot on. The accuracy is magnificent, as with all the current range of digital watches and battery life is well in excess of a year

(Inclusive of VAT and Postage)
An example of this watch can be seen and examined in our reception at our Oxford Street offices.

To:
LCD Watch Offer
ETI Magazine
25-27 Oxford Street London WIR 1RF
Please find enclosed my chequa/PO for $\mathbf{£ 8 . 9 5}$ (made payable to ETI Magazine) for my LCD Digital Watch.

Name
Address \qquad
\qquad

Please allow 14 days for delivery

CHIOMAROMOTE electronics
your soundest connection in the world of components

DEPT ETI 1, 56 FORTIS GREEN ROAD, MUSWELL HILL, LONDON. NIO 3HN TELEPHONE: 01-883 3705

LOW POWER SCHOTTKY and TTL CMOS BITS and PIECES I.C.'s

	N	LS		${ }^{\mathrm{N}}$	LS.		${ }^{\mathrm{N}}$	LS					Static RAM's 2102A (350ns)	$\stackrel{1+}{1.05}$		$\begin{aligned} & 17.60^{\circ} \\ & .95^{\circ} \end{aligned}$	$84+$								
7400	.13'	18	7476	30	29.	74170	1.85	$1.65{ }^{\text {c }}$	4000	15^{*}	4077	21°	2102A (350ns)	1.05 1.29°			-88**	LM32			2.60° 8.10				
7401	.13*	.19*	7478		29*	74173	1.41°	${ }^{\text {B8 }}$	4001	16^{*}	4081	21°	2102 A .2 (650ns)			1.15.	${ }^{1.08 .}$	LM34			8.10°				
7402	.15*	.19*	7482	.73.		74174	$1.01{ }^{\circ}$	1.05	4002	16.	4082	21.	$2111 \mathrm{~A}-1$ (500ns)	2.46°		$2.19{ }^{\circ}$	${ }^{2.05}{ }^{\text {2 }}$	L129	30/31		85^{8}				
7403	.15*	.19*	7483		75.	74175	. 81	1.05*	4006	92^{*}	4085	.92*	2112 A .2 (250ns)	$2.14{ }^{\circ}$		$1.90{ }^{\circ}$	$1.78{ }^{\circ}$	Ca30			75				
7404	.16'	.21*	7485	1.18.	. 88	74176	$1.01{ }^{\circ}$		4007	18.	4086	.92.	21102 (350ns)	$1.07{ }^{\circ}$		${ }^{.96}{ }^{\text {. }}$.86.	CA31			. 90				
7405	.16*	.21*	7486	25°	29.	74177	$1.01{ }^{-}$		4008	92.	4093	81.	MM5257 (TMS4044)	8.10°		$7.19{ }^{\circ}$	$6.75{ }^{\circ}$	CA31			. 37				
7406	.26*		7489	2.60^{*}		74180	$1.01{ }^{\circ}$		4009	.54.	4099	$1.81{ }^{\circ}$	$2114{ }^{\text {(450ns) }}$ 6810	8.10:		7.190.	${ }^{8.755^{\circ}}$	LM30	${ }_{\text {AN }}$		30.				
7407	.26*		7490	. 34.	. 62	74181	$2.21{ }^{\circ}$	2.99*	4010	$54 *$	4502	.92*						LM32			73°				
7408	.170	19**	7491	.73	1.05	74182	.81.		4011	.18.	4508	$2.4{ }^{\circ}$	Dymamic RAM		8251		5.97 *	LM3			99				
7409	.17*	.19*	7492	. 46	. 75	74184	$1.81{ }^{\circ}$		4012	.18*	4510	1.07	4116	$12.75{ }^{\circ}$	8253		8.910.	LM38			97				
7410	. $15{ }^{\circ}$.19*	7493	34^{*}	. 65°	74185	$1.62{ }^{\circ}$		4013	. 48	4511	.95.	cpu's	12.75	8255		5.51.	LM38			1.73				
7411	.25*	$.19{ }^{\text { }}$	7495	.54*	. 88.	74188	$2.97{ }^{\circ}$		4014	92*	4514	2.70°	8080	$5.95{ }^{\circ}$	825		5.51	LM38			1.33				
3412	.18*	$1{ }^{-}$	7496	67	$1.85{ }^{\circ}$	74189	$3.17{ }^{\circ}$	$2.25{ }^{\circ}$	4015	92.	4515	2.70	6800	8.99°	Regula	100		LM39			${ }^{65}$				
7413	.27*	. 0°	74107	27	. $35^{\text {. }}$	74190	$1.21{ }^{\circ}$	75°	4016	43.	4516	1.07	9900	42.50°	+1POS	100 m		LM39			70°				
7414	.71*	.79*	74109	44°	.35.	74191	$1.21{ }^{\circ}$.75	4017	.81.	4517	4.10	E-Prom's uV		781			SN76			1.02				
7415		$1{ }^{-}$	74112		.35.	74192	$1.21{ }^{\circ}$	${ }^{1.85}{ }^{\circ}$	4018	920.	4518	95	1702 AO	$5.75{ }^{\circ}$	5v. 6 c All 30	8v. 12 c		SN76	13N		2.32 1.55				
7416	.25*	-	14113	-	. 35	74193	$1.21{ }^{\circ}$	$1.85{ }^{\circ}$	4019	56°	4521	$2.54{ }^{\circ}$	27080	7.87	${ }_{\text {Afl }}^{+1 \mathrm{PO}}$	each		SN76	13N		1.55 1.55				
7417	. $34{ }^{\circ}$		74114		.35*	74194	$1.21{ }^{\circ}$		4020	92.	4522	1.89*.	TriStase Buffars		${ }_{\text {PIPM }}$	Sies		SN76	${ }_{\text {OAS }}^{23 \mathrm{~N}}$		1.55 .90				
7420	. 16°	.19*	74121	27		74195	$1.01{ }^{1}$	1.05	4021	92	4526	1.89°	81LS95		78, 6 v	8v, 12v.		tcas			.90 1.75				
7421	-	.19*	74122	. 50	75°	74196	${ }^{1.18}{ }^{\text {18. }}$	${ }^{1.05}{ }^{\circ}$	4022	${ }^{92}{ }^{\circ}$	4528	.920.	811596	75°	All 60	8v, 2 ch	5v. 200 \& 24 v	ICA9			1.75 .90				
7422		.19*	74123	.60	78°	74197 74198	1.18 1.81 1.	1.05	4023	. 18	4534	${ }^{7.12}{ }^{\text {3.74. }}$	81 LS97	75°	${ }_{-}^{\text {AlNEG }}$	each		$2 \mathrm{2N4} 4$							
7423	.25*	-	74124		$1.25{ }^{\circ}$	74198	$1.81 .8{ }^{1.8}$		4024	$6^{6} 5^{\circ}$	4536	3.762*	81 LS98	75°	79 Ms	ries		2N42			1.35 3.78 3.				
7425	. $25{ }^{\circ}$	-	74125	51	. 39	74199 74221	$1.81{ }^{-}$		4025	18	4543	1.62 4.53	74365		5v.6v			2 N 45			3.784 ${ }^{3 .}$				
7426	. 25°	19.	74126	.51.	.39.	74221	-	95*.	402026	${ }^{1.844^{\circ}}$	4553	4.51.	74366 74367	75°	All 85	each	- 20 c a 24	2N10							
7427 7428	.39. ${ }^{3}{ }^{\circ}$.19**	74132 74133	78*	. $65^{\circ}{ }^{\circ}$	74241	-	2.25	4027	. 510°	4566 4583	1.51 1.02	74367 74368	75^{7}	+(POS			2N10			2.03 ${ }_{8}^{2.43}$				
7430	.16	. 19	74136	-	39.	74242	-	$2.25{ }^{\text {2 }}$	4029	$1.1{ }^{-}$	4585	$1.07{ }^{\circ}$	Buffers		78 sen			ZNAI			$6.75{ }^{\circ}$				
7432	.25'	.25*	74138	-	55°	74243		$2.25{ }^{\circ}$	4030	. 56			8126P	$1.655^{\circ}$$1.65^{-}$	5 v Bv. 12v. 15v, 18v \& 24w										
7433		.28*	74139		.55.	74247	-	95°	4032	1.08*	I.C. Sockets Dil TTexss)		8128P		All 85	each									
7437	25*	$25^{\text { }}$	74141	76.		74248		95 ${ }^{\circ}$	4034	1.89*			8195P	1.49°.	$7{ }^{\text {(NEG) }} 1 \mathrm{la}$			The tems shown in this adven are							
7438	.25*	25*	74145	75°	1.05	74249		. $5^{\text {5 }}$	4035	${ }^{1.06}$	8pin	. 10^{-}	8196P		79 se			just a small selection laken fromour new $78 / 79$ Catalogue which							
7440	. 17	.19'	74147	$1.59{ }^{\circ}$	-	74251	-	83.	4040	${ }^{92} 0^{\circ}$	14 pun	${ }^{12}{ }^{\circ}$	81978	$\begin{aligned} & 1.49^{\circ} \\ & 1.49^{\circ} \end{aligned}$		All\| 1.00° each									
7441	.70'		74149	$1.38{ }^{\text {- }}$	-	74253	-	99°	4042	70.	16 pin	13.	8T98P		UA723 (DIL) .40			is now avaitable it contains							
7443	.50	. 55°	74150	$1.08{ }^{\circ}$	-	74257		99*.	4043	.81.		180.	Interis							rything from Resistors to the					
7445 7446	${ }^{.60}$		74151 74153	$6_{67}{ }^{\circ}$.88.	74258 74259		${ }^{\text {1.99 }}$	4049	${ }^{1.06}{ }^{\text {. }}$ -	22 pin	${ }^{20}{ }^{-}$	8212	$2.21{ }^{\circ}$	1200		1.95	est in Micro-processors Don't							
7447	. 60°	.87*	74154	$1.31 \cdot$	1.35	74266	-	35	4050	.43.	24pin	26°	8216	$2.35{ }^{\circ}$	LM304H 2.40°			delay order your copy today. The							
3448	.16*	.87*	74155	67	.78.	74273	-	2.25	4051	.81.	2 ppin	30°	8224	$5.51{ }^{\circ}$	LM323K 6.25			price is only dop (inc 45p							
7449		.87*	74156	. 67	.78.	74279		48°	4052	. 81.	40pin	44°	828		LM325N										
7450	.16*		74157	67	. 55.	74283		${ }^{99}{ }^{\circ}$	4053	.81.	Whre Wrap		opto												
7451	16*	19'	74158		.52**	74290			4054	${ }^{1.29}{ }^{\text {1 }}$.			$125 \quad 1+$	$10+$.10					+						
7453	16.		74160	1.21	.99.	74293 74395	-	.83 ${ }^{.85}$	4056	1.46.	$\begin{array}{r} 8 \mathrm{pin} \\ 14 \mathrm{pin} \end{array}$. $33{ }^{\text {+ }}$	THL209 Red X $1 \mathbf{1 5}^{\text {- }}$					50+							
7454	-	.19.	74161	1.21	. 65.	74395 74298		1.25.	4059 4060	${ }^{5.18}{ }^{\text {1.24 }}$	$\begin{aligned} & 14 \mathrm{pin} \\ & 16 \mathrm{pin} \end{aligned}$		THL212 YelX . 20	18.	$\begin{aligned} & 10^{0} \\ & 16^{\circ} \\ & 16 \end{aligned}$	14**	TIL224 Yel X			125					
7455		19°	74162	1.21	$1.85{ }^{\circ}$	74298 74365		1.25.	4060	${ }^{1.24}{ }^{\text {. }}$	18 pin	${ }_{43}{ }^{3}$	TH216 Red $X .20^{\circ}$	18.				.23	. 21.	. 195°	$\begin{aligned} & 17^{\circ} \\ & 17^{\circ} \\ & \hline \end{aligned}$				
7460 7470	-18.	-	34163 74,164	1.21. 1.08		74365		.51.	4068	. 21.	$20 \mathrm{pin}$	55.	Tli232 Grex. 20°	$18{ }^{\text {\% }}$	(16 ${ }^{16}$										
7472	.23 ${ }^{\circ}$		74,64 74165	1.08	${ }^{1.78}$	74367	-	${ }^{51}$	4069	. 21	24pin	60*	$x=\mathrm{High}$ Brightness					23							
7473	.28.	.29	14166	1.02		74368		51°.	4070	21.	${ }^{28 p p}$	65^{6}	$\begin{gathered} 0.747 \\ 4 \text { for } 85.00 * \end{gathered}$	$\begin{aligned} & \text { NA741 } \\ & 5 \text { for } \mathrm{E} .00 \end{aligned}$		$\begin{array}{r} \text { NE555 } \\ 4 \text { for E1.00* } \end{array}$		$\begin{aligned} & \text { TIL209 } \\ & \text { for } \mathrm{C1} .00^{*} \end{aligned}$		T1L220 8 for E1.00*					
7474	28.	-29'	74168		$1.85{ }^{\circ}$	74386	-	. 380°	4071	21.	${ }^{36 \mathrm{pin}}$	${ }^{95} 5^{\circ}$													
7475	.44*	.43*	74169	-	1.85	74670	\square	$1.85{ }^{\circ}$	4072	21	40pin	$1.05{ }^{\circ}$													

FIDELITY CHESS CHALLENGER" "10" "It's You Against the Computer"

Are YOU good enough to challenge the CHALLENGER* in any of the following 10 levels . . and WIN??

LEVEL	AVERAGE RESPONSE TIME
1. Eleginner	5 Seconds
2. Intermediate	15 Seconds
3. Experienced	35 Seconds
4. Advanced	$1: 20$ Minutes
5. Superior	$2: 20$ Minutes
6. Mate in Two (2 move	
puzzlers)	60 Minutes
7. Postal Chess (For games	
by mail only)	24 Hours
8. Expert	11 Minutes
9. Excellent	6 Minutes
10. Tournament Practice	3 Minutes

In addition to its superb playing ability, look at the se features: 1. Ten Levels of Play: From beginner to expert including "Mate in Two" and Chess by Mail. 2. Levels Changeable During Game: Change from level 1 to any level through 10 at any time on any move. 3. Random Computer Responses Vary Every Game.4. Selection of Legat Offense or Defense: Play from the bottom of the board or the top of the board. Choose either black or white. 5. Does Not Permit Illegal Moves: Never makes an illegal move according to all the rules of Chess. 6. Position Verification by Cormputer Memory Recall.7. Plays Opening Defenses From Chess Books.i.e. Sicilian, French, Ruy Lopez Queen Gambit Declined. 8. Analyzes as many as $3,024,000$ board positions.9. Audio Feedback: SingleTone each time you press a key. DoubleTone when computer responds. 10. Problem Mode: Establish your own chess positions and watch the computer react 11 . Override Key to Make Muttiple Moves: Make two, three,

PRICE £199
inc. VAT P\&P

audiophile

Abstract

What would you say if we told you about a cartridge which has a totally new stylus shape, a new improved magnet structure and revolutionary two part cantilever system - and a new radically different method of controlling operating conditions? It is all true, and its been around a few months too! Ron Harris took his time getting to the V15 Mk. 4 - but found it worth the wait!

IT HAS BEEN some time now since the launch of the V15 IV from Shure, and by now I hope all the fuss has died down. Never has a product been rumoured to appear for so long, and met with such polarised comment when it did. In the meanwhile since the release the cartridge has slowly gained ground, and now would appear to be highly regarded in all but the most partisan anti-moving-magnet circles.

Changes By Design

There is a lot in this design to interest the engineer, so let's consider that aspect first. The criteria to be met were to produce a cartridge which performed as close to perfection as possible under ideal conditions, and which went some way to creating those conditions.

The ambition I applaud!
Naturally these days computer analysis of just about anything numerically expressable was undertaken and quite right too! Everything down to body size and mass were considered, and then more models set up to attempt to blend the whole design successfully. (I don't think it would be an outrageous suggestion to make that the SME Series III was used as the optimum arm in all these cavortings.

The new features to come out of of all this are a dynamic stabiliser - and it's not just a brush, a new cantilever assembly, a new stylus shape, and a static reduction system. In addition the effective mass of the dynamic system has been lowered significantly

Tipped For Shape

Shure have decided, somewhat bravely, to go it alone and produce a new stylus profile. The reason is they wanted lower distortion but without sacrifice of low wear and trackability in the process.

Any design for a stylus must include consideration of such factors as the actual groove itself, tip mass, manufacturing cost, record wear etc etc

As you can see from the diagram the end result of Shures endeavours is a long contact profile, basically a hyperbola from the front, termed a hyperelliptical design. Its actual contact radius is around 38 microns, while its tracing radius (parallel to groove tangent) is smaller than other types. The compromise does appear to offer advantage over other types, right enough.

Magnetic Heart

The cantilever assembly is always the first section to come under scrutiny whenever a cartridge is to be improved, (just shows what improvements could be made if you ask me!) and it has not escaped this time

After much playing with computers and trading off advantages against system requirements, Shure put themselves some prototypes together and carted them off for listening tests. Measurements, mathematical models and ears later a telescopic two element design emerged as the overall best solution, and was duly adopted.

Part of the reason for this is vibration control presumably to supress resonances excited by dynamic stresses - and this is assisted by an elastomer damping device. The earlier M24 featured something like this, but not so sophisticated apparently.

The magnet itself is of a new type, of lower mass but higher strength than its predecessors, allowing the cantilver unit mass as a whole to be lower. Taken together the improvements to the system are claimed to provide better high frequency tracking ability, and the shifting of the HF resonance to beyond 20 kHz .

Brush Up On Damping

Now down to the obvious bit - which I had to do last just to keep you reading. Static on records can be blamed for most of the ills besetting disc reproduction as it now stands. It attracts dust - and holds it - leading to quicker wear of both disc and stylus and higher replay noise.

There are umpteen devices on the market for clearing static charge, most of which resemble gas lighters. But Shure make the valid point that unless you know what polarity the charge is you're trying to clear, you've a 50-50 chance of making if worse by pumping ions at it.

Another nasty well-known to LPs of all age groups is the warp. Warps come free with most records these days and provide such delights as variation in tracking angle, mis-tracking due to effective reduction of applied tracing force and overall disruption of the ideal conditions in which cartridges like to operate

Damping applied at the arm pivots can help with this, but represent a compromise at best. It is better to have the control as close to the tip as possible. The dynamic stabiliser is designed to do exactly that. The carbon fibre brush is mounted to ride just ahead of the stylus, and is equipped with viscous damped pivots. These are designed to absorb the shock produced by a warp, be it gradual or sudden. The optimum distance between cartridge body and record is thus preserved.

Bristling With Pride

That brush is made up of about 10,000 carbon fibre bristles, ten of which would fit nicely into a record groove. Since it is carbon fibre it is conductive and can leak static charges to system earth since it is connected to one channel earth. Shure's research has indicated too that local static charges can increase tracking force by attracting the cartridge to the LP!

Sounds logical once someone tells you doesn't it? The brush does a good job shifting dust and muck out of the way too!

The outrigger carbon-fibre brusih may be set in any one of three positions: 1) in the "Up" position. 2) the dynamic stabiliser in its operating position 3) set down as a quard.

The V15 Type IV's brush with damped pivot is said to aid the tracking of warped discs by matching stylus movement more closely to the motion of the arm

The carbon-fibre brush is in continuous contact with one of the earth pins and leaks static charges to earth.

Having A Fit

Setting up the V15 was very simple indeed. It's a shame to have to take it out of the box at all unfortunately, the packaging is superb indeed! Holding the body into the arm is done by screwing into a small metal block tapped for the bolts. Simpler than using fiddly nuts - if you'll pardon the expression - but probably more massive.

A close-up view of the stabiliser fitted to the V15 Mk-4, reposing in its guard position. The white line tells you where to line up the stylus when at play!

Because of the stabiliser, the stylus sees 0.5 g less than is applied to the arm as a whole. This means that to get 1 g tracking force, you set 1.5 g . It can look confusing at first, and don't forget later and clip up the stabiliser, else the cantilever gets the lot!

Tracing Class

After brief experiments, all our tests were conducted with 1 g applied to the stylus, as the V15 tracked anything at this weight, regardless of how torturous we made our torture tracks. I failed to catch it out even once. Foiled again. One to Shure.

In contrast to the Mk3 the new model is sensibly specified for capacitive loading, and is apparently as insensitive to these things as it can be. Using a Sony TA-88 preamp enabled me to vary the loading while the cartridge was playing - a reviewers delight! No adverse effects can be expected in normal use. Noise seems to be reduced too.

The stabiliser does offer real benefits as it definitely aids tracking and makes the system as a whole very tolerant of record 'flatness'. I tried the cartridge with and without pivot damping on the SME and would suggest it be used with damping - it somehow gains confidence that way!

Sound Stuff?

This is the bit where I lose some 'musical' friends no doubt, because whatever anyone may have said amid the initial rash of reviews you will not find a cartridge better at information retrieval than the $V 15 \mathrm{IV}$. Its sound is incredibibly detailed, a nd free from audible vices. It has a nice confidence about it altogether; and did not mis tracks - or mis-anything - even once.

The sound has an overall smoothness that is perhaps its most 'nameable' feature. The bass quality is good, although I have heard better. In the mid-range and treble the sound stands forward towards the listener presenting a good stable image with all the detail you could wish for, with no trace of hardness or brightness whatsoever.

Conclusions

So there it is - interesting and worth the wait for its appearance. Whether you like the sound of the V15 or not only you can tell, but if you're considering spending around $£ 70$ on a cartridge you'd be ill-advised to miss listening to it.

Main Trouble

One of the most oft repeated queries to Audiophile concerns the problem of mains borne clicks and pops appearing out of loudspeakers.

Unfortunately there is no immediate overall solution. The first thing to try is to move either the hi-fi or the appliance - usually a fridge - causing the clicks to another outlet.

If this doesn't work then there are several suppressors on the market, at varying prices, to deal with the trouble. The most expensive is the QED unit at about $£ 10$. It does work in most cases, but no more so than some others.

The cheapest such unit available is probably the RS mains suppressor. Your local component stockist should be able to order this for you, and fitting it is pretty simple. Its input comes from the mains, and its output feeds the hi-fi in question.

Otherwise

If none of this works then pretty obviously your problem is not mains borne. For radiated problems there's not much you can do except move things around. This is pretty rare though.

Change Of Load

Above is the Sony TA88E preamp I mentioned a couple of months ago. Next month l'll be going through the circuits of this device in detail, as it represents a job done very very properly. At $£ 699$ so it should. The effect of all this engineering on the sound proved to be interesting too.

XMAS AND NEW YEAR BONUS
 10% DISCOUNT ON ALL PURCHASES UNTIL JANUARY 14th, 1979

TEKTRONIX OSCILLOSCOPES

 $10 \mathrm{MHZ} £ 425 ; 551$: $\mathbf{5 0 2}$ High gain. Special $£ 160$. The prices of main frames will vary enormously on condition and plug-ins. Hence prices are guides only.
The fact we don't advertise modern oscilloscopes, etc., doesn't mean we don thandle them, only that at our prices they
normally around long enough to advertise. For example normally around long enough to advertise. For example 1B3A with 1B30A and 1B40A 3db TEKTRONIX 45
TEKTRONIX 453 3db $50 \mathrm{MHZ} £ 650$.
TEKTRONIX 454 3db $150 \mathrm{MHZ} £ 1,000$
S.E LABS SM 111 3db $20 \mathrm{MHZ} \mathbf{8 2 5}$.
S.E LABS SMSIGON SPECTRUM ANAIYSER

4OGHZ £ 550 .
BONTOONRX METER type 250 A 0.5 to 250 MHZ . Clean £85. TEKTRONIX Sig. Gen. Type 190A 350 KHZ to 50 MHZ and Fixed 50 KHZ freq. $£ 45$ ea
TEKTRONIX TIME MARK GEN type 180A 60 ea
SOLARTRON PULSE GEN GO 1101 £ 30 ea.
R\&S SWEEP GEN $50 \mathrm{KHZ}-12 \mathrm{AHHZ}$ SWH BN4 $242 / 2$ £ 100. R\&S ENOGRAPH.G ZSG BN 18531 £ 120.
R\&S AM/FMGEN SMAF BN $414044 \mathrm{MHZ}-300 \mathrm{MHZ} £ 300$ ea R\&S AM/FM GEN SDAF BN4 $1023 / 2170-940 \mathrm{MHZZ} £ 300$.

f 80 .

R\&S Z-G DIAGRAPHं $30-300 / 420 \mathrm{MHZ}$ type ZDU BN35610 £140.
R\&S AM GEN 30.300 MHZ SMLM BN4 $105 £ 90$ ea R 8 A ATTENUATOR
109 db 50 ohm $£ 150$
MARCONI AM/FM GEN TF 1066 10-4 $70 \mathrm{MHZ} £ 275$
MARCONI FM GEN TF $1077 / 1 £ 120$.
PHILIPS AM/FM GEN type $201 £ 160$
PHILIPS AM/FM GEN type 201 £ 160 .
BONTOON AM/FM GEN type 202 H with Low freq. adaptor $£ 525$.
R\&S AM GENERATORS 300.1000 MHZ £ 120 ea
AIRMEC AM/FM GENERATOR TYPE 365 £ 140 .
HP SAMPLING Oscilloscope type 185 B 1000 MHZ complete with Plug-in, probes. etc. $£ 195$ ea,
SOLARTRON Oscillator C0546 $25 \mathrm{HZ} \cdot 500 \mathrm{KHZ}$. Sine wave only. Metered Good attenuator $£ 25$ ea.
SOLARTRON PRECISION VOLTMETER
scale. 1.5 mV full scale to 150 V full scale $£ 25$ ea
scale. 1.5 mV full scale to 150 V full scale $£ 25$ ea
H.P. Oscilloscope type 140 A with sampling plug-in
1410A DC- 1000 MHZ 550.
14 P Osclllo $\$ 411 \mathrm{~A}$ and 1432 A Sampling head DC-4GHz $£ 750$. SOLARTRON DVM type LM $1440 £ 75$ ea. Other Solartion models available. Call and see.
H.P. Digital Recorders 11 digit $£ 35$ ea.
AIRMEC AM/FM MODULATION METE

AIRMEC AM /FM MODULATION ME TER tYpe $210 £ 80$. BIRD TERMALINE WATTMETER 67C $30-1000 \mathrm{MHZ} 50 \mathrm{omh}$ ${ }_{6} 95$.
E.H. PULSE GEN model 122 £140.

MARCONI AM/FM MODULATION METER TF 2300 with TMBO45E450.
condition $£ 350$ ea
condition £350 ea.
R\&S POLYSCOP SWOR2.
Very clean £550 ea
Very clean £550 ea
EX-MINISTRY American USM 16 AM/FM SWEEP SIG GEN $10 \mathrm{MHZ}-420 \mathrm{MHZ}$. Incremental controls. Auto lock Crystal calibrator and many other features In transit case with accessories and manual $£ 195$ ea
COSSOR OSCILLOSCOPE type CDU 150 DB. DC-35MHZ £ 425 ea.
R\&S Z.G DIAGRAPH $300 \cdot 2400 \mathrm{MHZ}$ BN 3512 . Good condition £60 ea
MARCONI SIG GEN TF801D/8/S. Very good condition $£ 325$
MARCONI RF POWER METER TF $1152 \mathrm{~A} / 150 \mathrm{ohm} £ 55$ ea
MARCONI RF POWER METER TF PLUG-INS for Telonic Sweeper SM2000 Various from $£ 50$ ea. TELONIC SWEEPER SD3M $425-930 \mathrm{MHZ}$ £80 ea
MARCONI TF86B Universal Bridge $£ 70$ ea.
AIRMEC SIG GEN type 2041 1-320MHZ £225.
MARCONI SIG GEN TF801B $£ 160$ ea.
POLARAD MICROWAVE RECEIVER MODEL TR 1 GHZ io 2 O4GHZ £200 ea
BRUEL \& KJOER Automatic Vibration Exciter type 1016 Sine Wave sweep from 5 HZ to $10 \mathrm{KHz} £ 75$ ea.
GENERAL RADIO Osc Unit $1209 \mathrm{~B} 250-920 \mathrm{MHZ} £ 50$
POLARAD SPECTRUM SIGNATURE MONITOR 140 HZ
POLARAD SIGNAL GENERATOR GB2/G-711 $£ 250$
GENERAL INSTRUMENTS TRANSFER FUNCTION
ANCE BRIDGE type 1607A in transit case $£ 425$.
NARCONI SIGNAL GENERATOR TF 1060 £ 185.
BRADLEY MULTI METER CT471£45 ea.
H.P PULSE GEN 212A £55 ea
H.P. Microwave Freq. Converter type $2590 \mathrm{~B} £ 175$. MARCONI CT44 Watt Meter 0-6 Watts $£ 25$ ea AVO TRANSISTOR \& DIODE TESTER CT $537 £ 50$ ea AUTO TRANSFORMER 240 V input. 110 V output 1.25 KVA £ 14 ea
FLUKE AC.DC VOLTMETER Model 803 B £ 75 ea

TELETYPE ASR33 with 20MA LOOP. GOO
Special low price $£ 395$ es KSR33s from $\mathbf{£ 2 7 5}$. DON'T FORGET YOUR MANUALS
S A E WITH REQUIREMENTS

STEPPING MOTORS

 Data supplied $£ 8$ ea.
Supplied for $12 / 24 \mathrm{~V}$ operation $£ 13$ ea. $\mathrm{P} \& \mathrm{P}$ § 1
ust think about the uses

JUST IN

VARIAC 0.6 AMP in attractive small modern case with 20 terminals giving vario
$£ 16$ ea. Carr. $£ 3.25$.
ROBAND Square Wave invertors type EPV $50 / 100$. Provides $115 / 230 \mathrm{~V}$ r.m.s. Square Wave from 12 V . Output frequency 50 HZ . Output Power 100 Watts. Size $31 / 2 \times 31 / 2 \times 41 / 4$ approx BRAND NEW at $1 / 2$ Manufacturers" Price.

ONLY $£ 50$ each. P\&P $\subset 2$

VIEWLEX INSTRUCTIONAL SUPER VIEWERS MODEL 136 with Headphones. 9 screen. Takes standard cassette. Front keys. Brand new boxed $£ 55$ ea. Slightly used $£ 45$ ea. Carriage keys.
$〔 .25 \mathrm{ea}$

* TRANSISTORS/DIODES/ RECTIFIERS, ETC \star

Guranteed At 5 pea

BC147; 2N3707; BC172B; BC251B; BC348B; BC171A/B BC413: D10: BAX15: 1 N937: BA102BE: BZX83: TIS6 2N5040 ZENER DIODES 4.7V Sub-min 5p ea. At 10p ea $1 N 4733 A$: SN7451N: BYX10.15V $0.36 A$: TIP34A-50p ea. BD53B-40p ea Heavy Duty Bridge
Rectitier- 20 p ea CA3i23E-£1 ea. BDY55- $£ 1$ ea Rectifier-20p ea.CA3123E-£1 ea. BDY55-£1 ea
$2 N 3055-40 \mathrm{p}$ ea. TIP31B 12p ea. BFY51-12p ea 2N3055-40p ea. TIP31B 12p
2N5293-16p ea. BYZ10 15p ea. 2N5293-16p ea. BYZ10 15p ea.
TBA560CO £2 ea. IN4436T-TO3 Flat Mount 10A 200piv £1 TBA560CO £2 ea. 1N4436T.TO3 Flat Mount 10A 200piv £1
ea. $2 N 5 B 97$ with $2 N 58 B 1$ Motorola $150 W$ Comp pair $£ 2$. ea. 2N5B97 with
BU208 £1.20 ea.
BD535. BD538 Comp pair - 75p.
Linear Amp 70925 pea
FINNED HEAT SINK
FINNED HEAT SINK
Texas Bridge Rectifier 5SB05.50V 5A 60p ea. P\&P 20p.

A MILLION MUST GO

DUAL IN LINE 16 -PIN CERAMIC. 12 V Rail Conventional package. Guaranteed spec devices. Full data 2p ea. MIXED PACK £ 1. P\&P 25p.

OSCILLOSCOPE TUBES

Brand New Boxed - Carriage all tubes $\mathbf{£ 3 . 2 5}$.
Telequipment S52 £10 ea: D51 £15 ea; S42, £ 10 ea, D53A $£ 20$ ea: D52 £ 15 ea; S31 £ 10 ea: Bradley $200 £ 85$ ea. Advance OS300 £85 ea; GEC Iypes 924E £17.50 ea: 14968
f 75 ea; Briniar D $13.51 \mathrm{HG} £ 65$ ea: D $10-210 \mathrm{GH} / 32 £ 40 \mathrm{ea}$ D13-46GM £35 ea.
NOT BOXED - NEW - WARRANTED. Telefunken D 14 131 replacement for Solartron CD 1740. Cossor CDU 150 . S. Labs SM112 and GEC/MOV1474 at $£ 55$ ea.

BUILD YOUR OWN BUS

Approx. $1 \frac{1}{2}$ metre multway ribbon cable terminated each end with a 50 -way temale edge connector Takes 0.1 printed circuit board. £2 ea. P\&P 75 p.

TELEPHONES. Post Ottice style 746 Black or two-tone $£ 6.50$ ea. Modern style 706 Black or two-tone grey $£ 4.50$ ea P\&iP
HANDSETS 706 style $£ 1.75$ each Older style $£ 1$. P\&P $75 p$.
TELEPHONE EXCHANGES. EG 15 -way autonatic exchange
only from $\mathbf{9 5}$.

onlyom 95.

74500	$\mathbf{1 2 p}$	$74 S 10$	$5 p$	$74 H 51$	$7 p$
7401	$5 p$	7417	$\mathbf{1 4 p}$	7453	$\mathbf{5 p}$

74502 12p
$74 S 04 \quad 12 \mathrm{p}$
MC 402 B 60 p
SN15862N 4p ea
75325 - Memory Core Drivers 600 ma capability Fast Other
uses RIDICULOUS at $£ 1$ ea

NOW-INCREASE AREA GIVEN TO PICK-A-PACK AT 50p per lb

A SUPERIOR KEYBOARD Size $3 \times 21 / 2 \times 2$ high with 12 ALMA REED SWITCHES. Blue keys marked in green $0-9$ and a sta with one blank ONLY $£ 5$ ea. P\&P 75p
Photo Resistor ORP 12-35p ea.
Small TELESCOPIC AERIAL extending to $221 / 2$ with swivel
base 40p ea. P\&P 20p.
Small Black SUCKER FEET - always useful 10 for 50 p.
MERCURY SWITCHES Heavy duty with lever \& flyleads 20p
PHOTODIODE DETECTOR \& EMMITTER. Independently mounted with 4 flyleads $-50 p$ per pair.
RESISTORS 680 Ohms 5 Watt - 10 for 50 p .

ALMA MIN. PUSH BUTTON REED SWITCHES. High reliability $1 \mathrm{~B} \times 27 \times 1 \mathrm{Bmm}$. Ifeal for KEYBOARD 50p ea. P\& P

MINIATURE FANS 3 square (like mulfins) 115 V £5 ea P\&P 75p
HONEYWELL HUMIDITY CONTROLLERS 25p ea. P\&P
SPRAGUE $100 \mathrm{mid}+500 \mathrm{mfd} 210$ VDC working. Brand new 5 for 50p. P\&P 50
REED SWITCHES. Sub-min. Size 20 mm 10 p ea
SMITHS encapsulated transistorised AUDIBLE WARNING DEVICES $4 \mathrm{~V}-12 \mathrm{~V}$. Can be driven from TTL. 50p ea. P\& P 25 p NECTOR 1 ITWI 20p PRP NECTOR. 0.1 spacing 20p ea. P\&P extra.
BURROUGHS 9 digit PANAPLEX numeric display, ${ }^{7}$?
segment 0.25 digits with red bezel. With date f 1.95 pat segment 0.25 digits with red bezel. With date. £1.95 ea. P8ip
30p. TRANSFORMERS 11
21 -WAY SELECTOR SWITCH. Single pole with reset coil 240 V AC coils. Additional switch contacts for auto reset, etc £ 1.45 ea P\&P 75p.
As ABOVE with additional 240 V relay on base and full black plastic cover £2.45 ea. P\&P P ©1.50
SNAIL BLOWER 110 V AC 500 MA Brand new by Airflow Developments Quiet and very good looking. $£ 2.50$ ea. P\&P
POTTER \& BRUMFIELD $18-48 \mathrm{~V}$ DC Relay. 3 pole c/o Heavy Duty Plug-in type with base 50p ea. P\&P 25 p.
MINIATURE KEYBOARD. Push contacts, marked $0-9$ and A-F and 3 user definable keys, $£ 1.75$ ea. P\&P $35 p$ p
MULLARD CORE LA4 445 at $15 p$ ea P\&P $10 p$.
MULLARD CORE LA4 245 at $15 p$ ea P\&P $10 p$
CLARE REED RELAYS $24 V$ DC Coil Sing
$11 / 4 \times 7 / 16 \times 7 / 16$ at $\mathbf{2 5 p}$ ea. P\&P $10 p$.
ROTRON CENTAUR FANS. Size $4.5 \times 4.5 \times 1.5115 \mathrm{~V} 5$
blade. £4 ea. P\&P 75p.
25p ea. P\&P 15
CROUZET/MURTEN SCHWEIZ MOTORS. 110 V 50 HZ 4 rpm. Gear box can be removed 75p ea. P\&P 75 p .
FRAMCO MOTORS. 11550 HZ . Input single phase $1 / 12 \mathrm{~h}$

PYE DYNAMICS THICK FILM. 1 MHZ Clocking Ose 5 V supply. Size $19 \times 25 \times 6 \mathrm{~mm}$. Drives one TTL load. 75 p ea. P\&P
15 p .
COMPRESSOR UNIT. Compact 115 V 50 HZ single phase 15 A continuous 1.425 rpm Outside piston housing approx. MAGNET DEVICES. Plug-in RELAYS 240 V AC, 3-pole $\mathrm{c} / 0$. Heavy duty 10 amp. Complete with base. BRAND NEW EQUIPMENT NOT USED. 3 on sub assembly $£ 2.50$. P\& $\mathrm{F}_{\mathrm{I}} 1$ o
$£ 1.25$ ea. P\&P 450 £ 1.25 ea. P\&P 45 p.
SMALL MAINS TRANSFORMER 240 V Pri, 12 V 100 MA $\mathrm{sec} 60 \times 40 \times 42 \mathrm{~mm} .50 \mathrm{p}$ ea. P\&P $75 p$
G.I. BRIDGE RECTIFIER type WOI (id
G.I. BRIDGE RECTIFIER type wo 1 (ideal for above) 17p ea
FAIRCHILD FND10 7 segment display 0.15 . Red, Common cathode 65p ea. P\&P $15 p$. Info supplied
MULLARD TUNER MODULES - with data.
LP 1171 combined AM/FM IF strip. $10.7 \mathrm{MHZ} \mathbf{£ 3 . 5 0}$ ea LP1179 FM front end with AM iuning and 874 MHZ to 1045 MHZ tuning. 10.7 MHZ IF $£ 3.50$ ea P\&P 50 p each unit The Pair £5.75. P\&P 75p
POWER UNIT MODULE containing 2 small, 3 med. \& large ferrite cores, 3 -TO3 power transistors. caps, resistors.
high powered diodes, 9 transistors, 3 min fuse holders, etc I 1.50 ea P \&iP $\subseteq 125$.
GENERALELECTRIC OPTO.ISOLATORS iype H15VX504 65p ea. P\&P $15 p .10$ for £5. P\&P
MINIATURE REED SWITCHES 9p ea P\&P $15 p$.
ROTARY SWITCHES 250 V 10A 10 p ea P\&P 15 p
LEDEX ROTARY SOLENOIDS 115 V DC. No switch assem-
bly 25p ea P\&P $25 p$ p POTTER \& BRUMFIELD TIMER RELAYS. $24 / 48 V$. Heavy
duty 2 pole c/0 with 5 secs. delay at $48 V$ increasing with voltage reduction. Timing can be altered by changing value of resistor/capacitance 50 p ea P\&P 25p
CABLE NEATERS - neaten up your wire on a chassis with these push-on clips 10 for 20p. 100 for $£ 1.50$. P\&P extra.
AUDIO AMPLIFIER BOARD Size $41 / 221 /$ Output AUDIO AMPLIFIER BOARD. Size $41 / 2 \times 21 / 2$ Output pair of
TIP3is. Circuit supplied $£ 1.50$ ea. P $\& P 30 \mathrm{p}$ TIP3is. Circuit supplied $£ 1.50$ ea $P \& P$ 30p
DIGITAL 24 HOUR CLOCK with buittin
DIGITAL 24 HOUR CLOCK with built-in alarm as used in BRAUN Digital Clocks Silent running. Large illuminated
Numerals. AC Marns Size $61 / 8 \times 2^{3 / 8} \times 2^{3 / 4}$ ONLY $£ 4.25$ ea Numerals
P\&P 50p
BROOKE CROMPTON \& PARKINSON extractor fan assembly 115 V operation $£ 1$ ea $\mathrm{P} \& \mathrm{P}$ ¢2 OR TWO for £1.50.

VARIACS

VARIACS - ex-eq
style $£ 22$ ea. 15 amp $£ 35$ ea: 20 amp $£ \mathbf{4 5}$ ea. 3 Phase variacs

A LARGE QUANTITY OF MISCELLANEOUS TEST GEAR - CHASSIS UNITS. ETC.. ON VIEW AT LOW COST
Minimum Mail Order £2. Excess postage refunded. Unless stated - please ad ${ }^{2}-3.25$ carriage to all units
VALUE ADDED TAX not included in prices - Goods marked with $\# 121 / 2 \%$ VAT, otherwise 8%
Official Orders Walcomed. Gov./ Educational Depts., Authorities, etc., otherwise Cash with Order.

A TECHNICAL MEMORANDUM

By Simian

DURING THE LAST FEW weeks some valuable research work has been incorporated into BSI and MIL standards, and this will greatly ease the specification of equipment. These standards help to combat a hitherto neglected environmental hazard; the users of equipment. A range of Standard Idiots (SIDs) has been defined, and these will be useful additions to any development laboratory.

Using Standard Idiots

Standard Idiots are useful both for acceptance testing of incoming equipment, and for developing foolproof electronics. The latter is of particular value to manufacturers producing consumer goods. In general the technique of using SIDs is very simple: it consists merely of letting them come into contact with the equipment to be tested. Any flaws will be quickly shown up.

SIDs locate ergonomic faults very rapidly. It is instructive to watch them at work sometimes. If something is weak, they will break it; if no-one in their right minds would dry-off a poodle in a microwave oven, they will do just that.

Almost all old-style quality-control testing can be abolished. If SIDs are allowed to get at all products before they leave the factory, it will be found that only the perfect get through. This reduces the number of complaints received from users, but the cost of disposing of the rejects (in bulk) can be rather high.

Types of Standard Idiot

Several specialist schools have been set up to train SIDs since these students are not well received at normal colleges. The coursework is intensive, and there are rigorous examinations to maintain standards. Over 600 people have received a Diploma in Idiocy (Dip. I) to date.

Many people have been found to have a natural aptitude for this work.

There are various grades of SID, ranging from the merely incompetent to those capable of sinking the Titanic, and there are many specialist fields:
(1) The 'non-technical' person (BS 91000-FOOL). This type normally panics when faced with more than two control knobs simultaneously. She (sometimes he) always mis-tunes radios, and would be hard put to it to recognise the difference between a watch and an oil refinery.
(2) Fiddler, or fidgeter (M|L-ID-99436/010). This
type is rapidly becoming an industry standard; the real word is full of them. If, for example, there is a switch controlling a lamp, the fiddler will flick it on and off for hours until either if breaks, or he spots something more exciting to play with. He will also use calculators to divide numbers by zero or to find $\arcsin (-10)$.
(3) The Ph.D (MIL-ID-12345/678) never reads instruction manuals. 'Of course, it's obvious that this piece of equipment works like so ...' It is only when clouds of blue smoke issue from a new t 2,000 oscilloscope that he scuttles back to his desk to read in the unused handbook that this model is for 110 V , not 240 V .

Ph. Ds are often quite intelligent.
(4) Dismantler. A member of this species is guaranteed to dismember any piece of equipment which he owns or uses. However, it is very rare for the article ever to be re-assembled. (They are usually foxed by the new child-proof pill boxes).

There are a few other specialist categories: for example, the 'jonah', whose mere presence in a room is enough to make clocks stop and television sets neurotic; י, for the Standard Irishman with fourteen fingers.

Disadvantages

One major problem with SIDs is that of storage when they are not in use. Obviously they cannot be left to roam freely around the lab.! Normal work under these conditions is difficult. Even when they are stored in cupboards the voluble and plaintive cries of 'let me out' are disruptive.

There is another hazard which should not be overlooked: there have been a few unfortunate cases where standard idiots have been mistaken for engineers. Most of the companies where this has happened have now ceased trading

Conclusions

Standard idiots, in their present form, can be useful development tools, but there are associated hazards; on no account should they be left alone to amuse themselves. The new specifications are a major advance in a naturally chaotic field and standard idiots are adding a new dimension to destructive testing. This technological advance is helping to provide jobs for those people whose natural talents previously made them unemployable.

- A second generation Induction Balancé, system with improved Variable-Tone detection.
- Designed by professionals for easy assembly by amateurs but with very good performance.
- The search coils are fully assembled and adjusted for you.
- Automatically rejects ground effect

Uses include:

* Treasure hunting - it's amazing what you can find in the garden or on the beach.
* Finding lost metallic items.
* Locating waterpipes and cables under floorboards on in walls.
* Checking old timber for nails before cutting, etc., etc., etc.. etc.

Send sae for free components siocklist
Communication Measurement Ltd 15 MALLINSON OVAL. HARROGATE. YORKS.

NON-SUBSCRIBERS START HERE

GIVE UP, GO HOME
POSTAND TAKE OUT A
TO ETI SUBSCRIPTION

It can be a nuisance can't it, going from newsagent to newsagent? "Sorry squire, don't have it - next one should be out soon."

Although ETI is monthly, it's very rare to find it available after the first week. If it is available, the newsagent's going to be sure to cut his order for the next issue - but we're glad to say it doesn't happen very often.

Do yourself, your newsagent and us a favour. Place a regułar order for ETł; your newsagent will almost certainly be delighted. If not, you can take out a postal subscription so there's nothing for you to remember - we'll do it for you.

For a subscription, send us $£ 7.00$ ($£ 8.00$ overseas) and tell us which issue you want to start with. Please make your payment (in sterling please for overseas readers) to ETI Subscriptions and keep it separate from any other services you want at the same time.

ETI Subscription Service
Electronics Today International 25-27 Oxford Street, London W1 R 1 RF

J. Smith

What do you do if you need a microphone in a hurry - the shops are closed and your friends are on holiday? Or you are just a little short of money? The answer is to build the following circuit from your odds and ends box. This circuit uses a small speaker as a microphone, one transistor and only four other parts, draws only about 2 mA of current from a 9 volt battery so an on / off switch is not really necessary

The transistor shown is 2N1184 and is a PNP germanium medium power type but is not critical - try the ones you have first before buying this new type. The components too are not critical and the prototype was found to work OK with 20% variation in values. The output is high impedance and is fed into the mic input of a tape recorder or pick-up input of an amplifier

Speed Alarm

D. Ian

It is all too easy, during a long journey on a motorway, to allow one's speed to gradually creep beyond that point which the boys in blue take an unwelcome interest; this alarm gives an audible nudge whenever you drift over a pre-set speed

Pulses from the distributor points (due to the ignition coil up to 400 V may be developed as the points open) are passed through a current limiting resistor, rectified and clipped at $4 \vee 7$. Via Q1 and the diode pump a DC voltage, which is proportional to engine revs, is presented to RV1; the sharp transfer characteristic of a CMOS gate, assisted by feedback, is used to enable the oscillator formed by the remaining half of the 4011

At the pre-set 'speed' (revs) a'non-
ignorable tone emits from the speaker, and disappears as soon as the speed drops by three or four mph .

Calibration of Ca may be conducted with an accurate pulse generator remembering that, for a four stroke engine, frequency $=$ revs per minute times the number of cylinders divided by 120; for a car with a specification of $17 \frac{1}{2} \mathrm{MPH}$ per 1000 revs, in top gear, $f=133 \mathrm{~Hz}$ at $70 \mathrm{MPH}, 124 \mathrm{~Hz}$ at $65 \mathrm{MPH}(4000$ RPM and 3714 RPM). The necessary frequency should be fed to Q1 and VR1 set so that the alarm is just off Reliable switching occurs on the prototypes with a change of only 5 Hz (150 RPM), ie less than 3 MPH for the above example

Direct calibration 'on the road' while covering discrepancies due to tyre size, etc, will only be as good as the speedometer and obviously should be carried out by a passenger rather than the driver.

7400	10p	7460	12p	74137	p	74195	50p	4055	130p	CA 3140	60p	LM 3909 N	65p	TBA	200p
7401	10p	7470	25p	74138	100p	74196	50p	4056	120p	LF 356	80p	MC 1310 P	140p	TBA 520 Q	200p
7402	10p	7472	20p	74141	50p	74197	50p	4060	100p	LF 357	80p	MC 1312 P	150p	TBA 530 Q	00p
7403	10p	7473	25p	74142	180p	74198	100p	4066	35p	LM 211 H	250p	MC $1314{ }^{\text {P }}$	190p	TBA 540	200p
7404	12p	7474	25p	74143	270p	74199	100p	4069	12p	LM 300 TR5	170p	MC 1315 P	230p	TBA 550 O	250p
7405	12p	7475	25p	74144	270p	74293	90p	4070	12p	LM 301 AN	30p	MK 50398	650p	TBA 560 C	250p
7406	25p	7476	25p	74145	55p	74L500	18p	4071	12p	LM 304	200p	M	380p	TBA 6	250p
7407	25p	7480	40p	74147	100p	745112	80p	4072	12p	LM 307N	65p	MM 5316	480p	TBA 700	180p
7408	12p	7481	85p	74148	90p		8	081	12p	LM 308 T05	100p	NE 529 K	150p	7200	225p
7409	12p	7482	75p	74150	65p	4000	12p	4082	12p	LM 308 DIL	100p		p	TBA 800	
7410	12p	7483	75p	74151	45p	4001	12p	4093	70p	LM 309 K	100p	NE 556	90p $400 p$	TBA 810	
7411	15p	7484	70p	74153	45p	4002	12p	4510	60p	LM 310 TO5 LM 311 TO5	150p	NE 562 B	400p 1500 p	TBA 820	$\begin{aligned} & \text { 100p } \\ & \text { 100p } \end{aligned}$
7412	15 p	7485	60 p	74154	70p	4006	80 p	4511	70p	LM 311 TO5 LM 317 K	$150 p$ $325 p$	SAD 1024 SL 917 B	1500p 650	TBA 920 Q	100p
74	25p	7486	25p	74155	45p	4007	14p	4516	65p	LM 324	325p	SN 76003 N	650p	TCA 270 Q	220p
7414	45p	7489	130p	74156	45p	4009	30p	4518	65p	LM 324	0 p	SN $76013 N$	110p	'tCa 270 S	220p
7416	25p	7490	25p	74157	45p	4011	12p	4520	65p	LM 348 N	60p $90 p$	SN $76013 N$	125p	TCA 760	300p
741	25p	7491	40p	74160	55p	4012	12p	4528	80p	LM 348 N	90p 600	SN 76023	110p	TCA 4500 a	
7420	12p	7492	35p	74161	55p	4013	30p	4583	70p	LM 381 N	90p	SN 76023	125p	TDA 1008	350p
7421	20p	7493	30p	74162	55p	4015	50p	LIN	EAR	LM 382	p	SN 76033 N	150 p	TDA 1034	450p
7422	15p	7494	70p	74163	55p	4016	30p	AY3 850	450p	LM 382	90p 180 p	SN 7627 N	160p	TDA 2002	300p
7423	20p	7495	45p	74164	60p	4017	50p	CA 3039	-70p	LM 555	180p 25p	SN 76228 N	180p	TDA 2020	300p
7425	20p	7496	45p	74165	60p	4018	55p	CA 3046	6 60p	LM 709 C	40p	SN 76660 N	75p	TL 084	120p
7426	22p	7497	120p	74166	75p	4019 4020	40p	CA 3060	225p	LM 710 TO5	60p	TAA 300	100p	XR 320	250p
7427	22p	74100 74104	80p $40 p$		160p	4020	50p	CA 3065	200p	LM 710 DIL	65p	taa 350	190p	XR 2206	450p
7430	12p	74105	40p	74173	80p	4023	12p	CA 3080		LM 723 TO5	40p	TAA 550	35p	XR 2207	450p
7432	20p	74107	25p	74174	60p	4024	40p	CA 3084	250p	LM 723 DIL	40p	TAA 570	220p	XR 2208	600p
7433	28p	74108	100p	74175	60p	4025	12p	CA 3085	-85	M 733	120p	TAA 661 B	140p	XR 2216	650p
7437	20p	74166	75p	74176	50p	4026	80p	CA 3086		LM 741	20p	TAA 700	350p	XR 2567	250p
7438	20p	74109	25p	74177	50p	4027	30p	CA 3088	190p	LM 748	40p	TAA 790	350p	XR 4136	0p
7440	12p	74118	75p	74178	75p	4028	45p	CA 3089		LM 1303 N	100p	TAD 100	150p	XR 4202	150p
7441	45p	74120	80p	74179	120p	4029	50p	Ca 3090	AO360p	LM 1458	100p	TAD 110	130p	XR 4212	150p
7442	40p	74121	25p	74180	90p	4030	30p	CA 3123	3 E 130	LM 30	75p	TBA 120 S	60p	XR 4739	Op
7443	60p	74122	35p	74181	130p	4032	80p	CA 3130	- 100p		55	\|TBA 120 T	85p	ZN 414	
7444	60p	74123	40p	74182	50p	4033	100p			48 D	b	/Texa	for		
7445	65p	74125	35p	74184	120p	4040	60p			m 2102	24	bit 450 na	,	e	
7446	50 p	74126	35p	74185	100p	4043	60p			21122	$\times 4$ bit	1450 nano sec	c, $£ 2$		
7447	50p	74128	60p	74188	320p	4046	90p			asonic T	sducer	rs $40 \mathrm{kHz}, £ 2$.	00 each	E3.50 pair	
7448	50p	74130	$120 p$	74190	70p	4047	80p				prices incl	ude post and			
7450	12p	74131	90p	74191	70p	4048	50p					-15			
7451	12p	74132	45p	74192	60p	4049	25 p					RNER, LON			
7453	12p	74135	90p	74193	60p	4050	25p					credit cards ac			
7454	12p	74136	80p	74194	55p	4054	100p			Shop c	sed from	21/12/78 to 2/	179		

FIRST GRADE DEVICES by WNOR MANUFFAGTURERS * Special Xmas Cifer. offoryuahtrus sitcres

TEXAS TTLs

TEXAS TTLs				CMOS	
7400	10p	74123	32p	4009	30p
7402	11p	74141	45p	4011	13p
7404	12p	74151	36p	4013	30p
7408	13p	74153	36p	4016	28p
7410	11p	74154	60p	4017	48p
7413	22p	74157	36p	4024	40p
7414	36p	74160	45p	4046	85p
7420	11p	74164	45p	4049	27p
7430	11p	74190	45p	4510	59p
7441	45p	74192	45p	4518	58p
7442	32p	74193	45p	. 4528	52p
7447	40p	74196	48p		
7474	22p				
7475	25p	Full 74, 74LS, CMOS \& Memories on offer list.			
7486	20p				
7490	24p			450 ns 350 ns UART	$\begin{aligned} & \text { 100p } \\ & \text { 110p } \\ & \text { 350p } \end{aligned}$
7493	24p	$\begin{aligned} & 2102-2 \\ & 2102 L F \\ & \text { AY-5-1013 } \end{aligned}$			
7496	36p				
74121	24p				

We stress the fact that we are totally quality conscious and do not offer sub-standard or rebranded products for sale.

STAR OFFER

LOW PROFILE SOCKETS

$\begin{array}{rrrrrr}8 \mathrm{Pin} & .9 p & 18 \mathrm{Pin} & 20 p & 24 \mathrm{Pin} & 27 p \\ 14 \mathrm{Pin} & 10 p & 20 \mathrm{Pin} & 22 p & 28 \mathrm{Pin} & 35 p \\ 16 \mathrm{Pin} & 11 p & 22 \mathrm{Pin} & 25 p & .40 \mathrm{Pin} & 43 p\end{array}$

VOLTAGE REGULATORS PLASTIC TO-220

1 Amp	ve	1 Amp -ve			
5 V	7805	55p	5 V	7905	55p
12 V	7812	55p	12 V	7912	55p
15 V	7815	55p	15 V	7915	55p
100 mA -TO92 (+ve) $5 \mathrm{~V}, 12 \mathrm{~V}, 15 \mathrm{~V}$ 100 mA -T092 (-ve) 5 V .15 V 78 HO 5 KC 5Amp/5Volts TO-3					25p
					50p
					550 p

Geiger Counter

A. Wheatley

Although the circuit is imexpensive and simple it is just as sensitive as many commercial devices. The important part is the geiger tube and this will probably cost about $£ 1.90$. It needs a high voltage supply which, in this case consists of Q1 and its associated components. The transformer is a low current 250 V 9-0-9 and is connected in reverse. The secondary is connected into a Hartley oscillator, the base bias being provided by R1. RV1 is connected to control the voltage to the Geiger tube. A device to double the voltage is included because otherwise the voltage would still be insufficient to drive the tube. This comprises D1, D2, C4 and C5. This also rectifies it and smooths it. It is very important that C4 and especially C5 are of good quality and have low leakage. RV1 should be set so that each click heard is a nice clean one because over a certain voltage all that will be heard is a continuous buzz. The high voltage section is perfectly safe although if touched it will give a slight shock. This is unpleasant but quite harmless

Cuts Above

B. Houseley

The circuit here is an improved version of the original cuts encoder. If Q1 is preceded by a high impedance buffer, quite low signal levels can be accommodated successfully - and still trigger the 74123. A 74C02 or a 7402 was found to trigger only unreliably in this circuit

COST EFFECTIVE FREQUENCY COUNTERS

Frequency range $4 \mathrm{~Hz}-32 \mathrm{MHz}$ Sensitivity 10 my
Stability 1 in 10^{6} [unovened] Neon numerical indicators Average or standard period facility Two Tone Blue Case Start/Stop option

TYPE 401 A £ 138 plus VAT

Full range of 6 and 8 digit Counters with neon and 7 segment LED indicators covering frequency range $4 \mathrm{~Hz}-1,2 \mathrm{GHz}$. Literature avalable Manufacturers of Frequency Standards and Generators.

(ETl staff conference)

HOW TO ORDER:
The new red ETI tee-shirts are available in large, medium or small size for only $£ 2.00$ inclusive of postage and packing.

Send cheques/POs to:
No, she hasn't got it on backwards - the new ETI tee-shirt has ETI printed on it on both sides! Now you can say ETI in two directions at once!

ETI Tee Shirts
25-27 Oxford Street
London W1R 1RF

SERVICE TRADING CO

MINIATURE UNISELECTOR

VARIABLE VOLTAGE TRANSFORMERS

LT TRANSFORMERS

Rotary vacuum air compressor ${ }_{8}^{8}$ PUMP

BLOWER/VACUUM PUMP

Drect coupled to William Allday Alcosa carbon vein blower vacuum
pump 09 ctm 8 hg Price $£ 22.00$ P\&P 200 ($\mathbf{E} 25.92$ inc vat +p)

SQUAD LIGHT

on spotights or dozens of small mans lamps. Seven programs all speed Makes sound to-tight obsolete Completely electrically and mechanically
noise free

WIDE RANGE OF DISCO
LIGHTING EQUIPMENT

XENON FLASH
GUN TUBES
RELAYS

 Other I ypes avaibble -

GEARED MOTORS

100 R.P.M. 115 Ibs. ins.!!

Supplied with transformer for 240 V a.c operation $£ 7.25+P \&$
(E8.91 inc VAT $+P \& P$)
FRACMO MOTOR
56 ppm 50 ibs inch 240 vAC revers ble. 0.7 amp
sharplength 35 mm dia. 16 mm weight 6 kitos 600 grams. Price $£ 15.00$ P\&P $¢ 1.50$ ($£ 17.82$).
N.

PARVALUX MOTOR TYPE S.D. 2
VVOC shunt 1 30th ph mator Continuously

CROUZET 230V A.C

REVERSIBLE MOTOR 230V A.C
 500 (E 3.78

RODENE UNISET
TYPE 71 TiMER

METERS (New) - 90 mm
DIAMETER

0.204 O. 100 A . D.C. Volt. 0.15 V . 0.30 V All types
$£ 3.50$ ea + P\&P 50 p ($\mathbf{I S} .32$ incl. VAT), except 0.100 A
DC
'VENNERTYPE' ERD TIME
SWITCH
manually pre-sel time. 26 an 2 off every 24 hrs, at any
omitur spring reserve and day
omitur device. Buill to hiphest Electicity

SANGAMO WESTON TIME SWITCH
Type $5251200: 250 \mathrm{~V}$ a.c. 2 on 2 off every 24 hours 20 amps

A.C. MAINSTIMER UNIT

600 WATT DIMMER SWITCH

YET ANOTHER OUTSTANDING OFFER £ 2.16 inc VAT + P\&P) (Min 10))

MINIKITS ELECTRONICS,

6d Cleveland Road, South Woodford. LONDON E18 2AN
(Mail order only)

SANTA'S GOODIES

7409 N 10 p . € $8-100,7460 \mathrm{~N} 10 \mathrm{p}$. £ $8-100$ 74109 N 15p. £12-100, 7415535 p . Min
Order 10 of one type - $100+$ POA p/p 20p

PIHER SLIDER POTS 47 K Log Track 70 mm Overall 85 mm , Singles 20 p , £15.100. Doubles 50p, £40-100; Min Order 10. $100+$ POA, p/p 20p.
MAINS TRANSFORMER
$250 v$ Prim 0.10v-18v 2 amp $51.00+50 p$ p/p. Octal Cable fitting plug, 20 way. 20p Chassis mounting plug, 20 way, 20 p. Cable mounting socket. 20 way $20 \mathrm{p} p / \mathrm{p} 20 \mathrm{p}$.
74 S 40 25p, $74 \mathrm{S64} 30 \mathrm{p}, \mathrm{MC} 1488 \mathrm{~L}$ 75p. $\mathrm{MC} 1489 \mathrm{AL} 75 \mathrm{p}+20 \mathrm{p} \mathrm{p} / \mathrm{p}$.
TRIMPOTS 50Q TO5 20p, 1002 Cermet 20 p . 100Ω Painton PCB 20p, 200』 ditto 20p, 250Ω ditto $20 \mathrm{p}, 500 \Omega$ ditto $20 \mathrm{p}, 1 \mathrm{~K}$ ditto $20 \mathrm{p}, 2 \mathrm{~K}$ ditto 20p, 2K Helitrim 20p, 5 K PCB 20p. 1M skeleton min vert. $12 \mathrm{p} p / \mathrm{p} 20 \mathrm{p}$
CANNON D-TYPES 15 way plugs $50 \mathrm{p}, 15$ way sockets 50 p, 25 way plug 60 p, 25 way socket 60 p, 37 way plug $80 \mathrm{p}, 50$ way sockel 1. 20,50 wey w/ wrap sockets E1.30. 25 way 60 p, 25 way 80 p, 37 way £ 1,25 way plastic (3M) 50p, all above limited stocks P/P 20p

TTL 74 SERIES

SUPERSAVER 1 cassette recorder motor 9 V Speed govern

SUPERSAVER 2 Hybrid Systems DAC 371-8 (8-bit) DIL packaged + data, ideal MPU users. brand new E2 (fraction of original cost) p/p $20 p$.
SUPERSAVER 3 ICL P.S.U. 12v 1.8 A (7.5v 15 v) in maker's carton $£ 10 \mathrm{p} / \mathrm{p} £ ?$
MEMORIES 2708 £6-85, 2102 (Signetics) £1. 1702A £2.95, 2513 (upper case) E5 p/p 20p

SUBMIN. TOGGLES (C \& K, USA) SpCO extended toggle (1.25 inch) superb quality $75 p$ Standard submin. toggle dpco 80p, p/p 20p.
9-WAY MALE/FEMALE connecior (Elco 8129) 0.1 inch pitch, PCB mounting ideal for bussing two PCBs together 35p/pair p/p 20p.

LEDS (red) TiL $2098 p, 0.210 p$. Vernitron Ceramic filters FM-4 $1-0.7 \mathrm{MHz} 45 \mathrm{p}$. BD 236 40p. 2N3055 (TI) 40p. BC183L 10p. BC213L 10p. BF 195 10p, 2521 V (Dual 128 bit static shift register 65 p), RS $12 \cdot 0 \cdot 1250 \mathrm{~mA}$ subminiature transformer E1.35. 5LTO1 \&green phosphor) £4, suitable clock IC £3 25 N82S 126 N (PROM 256×4 bit) E1:30 TMS3128NC (static shift reg) £1.25,
LM 711 CH TO-g9 (Voltage comparator) 25 p . FPE 100 infra red emitter + data $15 p$ MM5314 £2.95. DIL SWTS 4 way $60 p$ TBAB10S + DATA 65 p

P/P 20p
All enquiries SAE please, Cat. SAE 8×6 or free with goods. P/P same for quantities except where greater than £1.
Merry Christmas to all customers and ETI
L. B. ELECTRONICS

43 WESTACOTT, HAYES.
MIDDLESEX UB4 8AH, ENGLAND

15-240 Watts!

HY5
Preamplifier
The HY5 is a mono hybrid amplifier ideally suited for all applications All common input functions (mag Canridge, iuner etc.), are catered for internally the desired function is achieved either by a merely swith or direct connection to the appropriate pins The internal volume and tone circuits LP. power amplifiers and external potentiometers (not included) The HY5 is compatible with a upplied with each pre-amplifie
FEATURES: Complete pre-amplifier in single pack - Multi-function equalization -- Low noise - Low distortion - High overload - two simply combined for stereo
APPLICATIONS: Hi-Fi -- Mixers -- Disco -- Gtitar and Organ -- Public address
SPECIFICATIONS
INPUTS Magnetic Pick-up. 3 mV Ceramic Pick-up 30 mV Tuner 100 mV Microphone 10 mV Auxilary ${ }^{3.100 \mathrm{mV} \text { input impedance } 47 \mathrm{kc} \text {) at } 1 \mathrm{kHz}}$
UTPUTS Tape 100 m Main outpu 500 mV M S
ACTIVE TONE CONTROLS Teeble - 12 dB at 10 kHz Bass - at 100 Hz
DISTORTION 01% at ikHz Signal/ Noise Ratio 68dB
Pricad 38dB on Macipe fek SUPFLV VOLTAGE $=16.50 \mathrm{~V}$
Price £6.
HY30
15 Watts into 8Ω
The HY30 is an exciting New kit from I LP it features a virtually indestructible IC with short circuit and thermal prorection The kit consists of I C heatsink PC. board 4 resistors. 6 capacitors mounting kit, together with easy to follow construction and operating tnstructions. ideally suited to the beginner in audio who wishes to use the most up-to-date technology available Ideally suted FEATURES: Completekit -- Low Distortion .- Short Open and Thermal Protection -.. Easy to Build APPLICATIONS: Updating audio equipment -- Guitar practice amplifier -- Test amplifier - Audio SPECIFICATIONS
OUTPUT POWER 15 W R.M S into 8:) DISTORTION O 1% at 15 W
NPUT SENSITIVITY 500 mV FREQUENCY RESPONSE $10 \mathrm{~Hz}-16 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE $\div 18 \mathrm{~V}$
HY50
25 Watts into 8Ω

HY120
60 Watts into 8Ω

HY200
120 Watts into 8Ω
The HY200 now improved to give an output of 120 Watts has been designed to stand the most FEATURES: Thermat shutdown - Very low distortion - Loadiline protection - Integral tipaisink
APPLICATIONS: HiFi - Disco -- Monitor - Power Stave - Industrial -- Pubtic address SPECIFICATIONS:
INPUT SENSITIVITY 500 mV
OUTPUT POWER 120W RMS into 8!) LOAD IMPEDANCE 4.16\% DISTORTION 005% al 100 W at 1 kH 7 Z
SIGNAL/NOISE RATIO 96 AB FREQUENCY RESPONSE $10 \mathrm{H}_{7}-45 \mathrm{kH} 7 \ldots 3 \mathrm{HB}$ SUPPLY VOLTAGE SIZE $114 \times 100 \times 85 \mathrm{~mm}$
Price £27.99 + £2.24 VAT. Pg P free
HY400
240 Watts into 4Ω
The HY400 is I.L.P.s "Big Daddy" of the range producing 240 W into 40 ' it has been designed to
high mower disen or puitlic address applisations It the amplitier is io he used at continuous high nowe
levels, conling fan is recommended The amplifier includes all the qualities of the rest of the family in
FEATURES: Thermal shutdown -- Very low distortion - Load line protection - No external
APPLICATIONS: Public address - Disco - Power slave - Industrial
SPECIFICATIONS
SPECIFICATIONS
OUTPUT POWER 24UW RMS into 4:) LOAD IMPEDANCE 4-16:) DISTORTION 01 . al 240 W a
SIGNAL/NOISE RATIO 94הB FREQUENCY RESPONSE 10H7-45kriz - 3dB SUPPIY VOLTAGE INPUT SENSITIVITY 500 mV SIRE $114 \times 100 \times 85 \mathrm{~mm}$
Price $£ \mathbf{3 8 . 6 1 + £ 3 . 0 9} \mathbf{V A T}$. P\&P free
POWER SUPPLIES

PSU36 suitable for two HY30's $\mathbf{6 . 4 4}+81 \mathrm{p}$ VAT
PSU50 suitable for twa HY50's $\mathbf{£ 8 . 1 8}+£ 102$ VAT
PSU70 suitable for two HY $120 \mathbf{s} \mathbf{£ 1 4 . 5 8}+\mathrm{E}_{1} 17$ VAT
PSU90 suitabie for one HY $200 \mathbf{£ 1 5 . 1 9}+\mathrm{E}_{1} 21$ VAT
PSU 180 suitable for two HY2000's or one HY $400 £ 25.42+r ? n 3$ VAT

The HY50 leads I L.P s sotal integration approsch to power amplifier design The amplifier features an integral heatsink together with the simplicity of no external components During the past three years the amplifier has been refined to the extent that it must be one of the mosi reliable and robust High Fidelity modules in the World
FEATURES: Low Distortion - Integral Heatsink - Only five connections - 7 Amp output transistors - No externa components.

APPLICACANS
OUTPUT POWER 25W RMS in 8! LOAD IMPEDANCE 4-16!) DISTORTION 004% at 25 W at
SIGNAL $/$ NOISE RATIO 75 dB FREQUENCY RESPONSE 10 Hz .45 kH 7 -- 3 CB
SUPPLY VOLTAGE * 25 V SIZE 105.50 .25 mm
Price $\mathbf{£ 8 . 1 8 + £ 1 . 0 2 \text { VAT. P\& } \mathbf { P } \text { free } . ~}$
The HY120 is the baby of I.L.P's new high power range designed to meet the most exacting requirements including load line and thermal protection this amplitier sets a new standard in modular FEATURES: Very low distortion - Integral Heatsink - Load line protection - Thermal protection Five connections - No external components .- Public address .- Monitor amplifier .- Guitar and SPECIFICATIONS:
INPUT SENSITIVITY 500 mV
OUTPUT POWER 6OW RMS into 8:? LOAD IMPEDANCE , 4-16:2 DISTORTION 004% al 60 W at
SIGNAL/NOISE RATIO 90dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE Size
Size $114 \times 50 \times 85 \mathrm{~mm}$
Price $£ 19.01+£ 1.52 \mathrm{VAT}$ P\& f free

FEATURES: Thermat shytdown -- Very low distortion - Load ine protection
\qquad

TWO YEARS' GUARANTEE ON ALL OF OUR PRODUCTS
I.L.P. Electronics Ltd.

Crossland House
Nackington, Canterbury
Kent CT4 7AD
Tel. (0227) 64723

Please Supply
Total Purchase Price
I Enclose Cheque \square Postal Orders \square Money Order \square
Please debit my Access account \square Barclaycard account \square
Account number
Name \& Address

FROM £3.25, inc p \& p and VAT
Hole for hole, top value! Lektrokit breadboards are modular, so they can be linked together to form any size. With a pitch of $0.1^{\prime \prime}$, even the smallest breadboard-217L-can accept 8, 14, 16 or 18 pin Dil sockets. You just take a component, choose a hole, and push it in.

Model No. Contacts Price, each

217
217L
$234 L$
248L
264R
264R

264L

$\begin{array}{ll}\text { Price, each } \\ £ 3.25 & \square \\ £ 5.75 & \square \\ £ 6.65 & \square \\ £ 6.65 & \square \\ £ 8.32 & \square\end{array}$

Contacts
170
170
340
480
512
640
(All prices include packing, postage and VAT).

Lektrokit

 Super Strip SS2ONLY £11.05 inc p \& p and VAT
Super Strip accepts all DIP's-as many as nine 14-pin at a time-and/or TO-5's and discrete components. With interconnections of any solid wire up to 20 AWG.

Super Strip has 840 contact points, combining a power/signal distribution system with a matrix of 640 contacts in groups oi 5 . Distribution system has eight bus-bars, each with 25 contact points.

Lektrokit's policy, as you know, is the right product, whatever the project, at the right price. And it's backed by a nationwide network of retailers.

But it could be that, whoever you get to complete your Christmas, doesn't know where the Lektrokit retailers are. So we've included an order coupon to help them-and you out!

All I want for Christmas is what I've marked aboive.
To Lektrokit Limited, London Road, Reading, Berks, RG6 1AZ.
Telephone Reading (0734) 669116/7.
Please supply the above (tick items required)-IMMEDIATELY
CUT OUT THE COMPLETE ADVERTISEMENT AND SEND TO LEKTROKIT
(All prices include packing, postage and VAT. All deliveries include name of nearest Lekitrokit dealer-plus a FREE catalogue!)
I enclose P.O./cheque for $£$
Name
Address

MIIN-ADS \& CLASSIFIED

babgain packs

TTL
7 Thnn 01. 02, 03, 04, 08, 10, 20.30,51 ANY MIX 10.
7433. 48.10

00/£ 18.00
445, 46. 92, 95, 151 . ANY MIX 4/£1.00
$744,83,96,156,160,162,163$,
$74165,180,193.194$, ANY MIX 3/£1.30, 10
5.20.

E5.20. 2 N711, 12/£1.00. OCP70 5/£1.00
SIMILAR TO 2N2192 20/£1.00. MAN 101.27 4/£3.00
BAX13, IN4151 100/£1.50. TBA 120A $2 /$ / 1.00° IN5400 10/E0.80.74S1020/£1.00
PANAPLEX 9 DIGIT 7 SEG. DISPLAY $2 / £ 2.50$
THYRISTOR 3A $25 \mathrm{~V} 3 / £ 0.50$
RESISTORS 10/£0.09. 100/£0.8
RESISTORS $10 / £ 0.09$.
E1'2- 10 OHMS TO 1 MEG
'CAPACITORS
CERAMIC 27P to 8,700P E 12 Series $10 / £ 0.30$ POLYESTER 0.01 to $110 / £ 0.50$. ANY MIX 1 M 10/£1.00
ELECTROLYTIC 63 V 1 MF TO 1OMF $10 / £ 0.70 .16 \mathrm{~V}$ 10MF TO 100MF 10/£0.70
TELEPHONE ORDERS: COV, (0203) 611597 USING ACCESS CARD NO
V.A.T. add $121 / 2 \%$ TO ITEMS MARKED TO ALL OTHERS ADD 8%

IBEK 32 dunsville drive
 SYSTEMS CV2 2 Hs

MICROBITS

NOW OPEN IN SURREY

Stockists of a wide range of Micro-Systems and Peripherals including the Exidy Sorcerer, Newbear 77-78, Panda, Nascom and Kim 1. Please telephone for details.

Also a wide range of Computer books and Bear Bags in stock

34B London Road
Blackwater
Camberley
SURREY
Tel 027634044

VIDEO MUSIC

Videograph II links to the aerial socket of your iv and provides a full colour GIANT oscilloscope display A must for hi-fi, home entertainment, discos, organs eic.
New - signal invert control, integral square wave generator Plus - full delails for testing your audio system for wansient distortion, crosstalk etc. Complete f19.45 Luxury cabinet and Kit only $\mathbf{~} 1 \mathbf{4} \mathbf{4 t}$ controls. $£ 9.95$ KC POSI PACKING. VAT READY BUITT VIDEOGRAPH E59.95 WILLIAM
STUART
\qquad
SYSTEMS Led EssincM 133 SD

Recurned
period
With alarm repea
With luxury lamp and repeat alarm as featured in most major U.K. Mail Order catalogues. S.R.S.P C31.00-offered at $\mathbf{E 8 . 9 5 \mathrm { inc } . V A T}$
(3) With integral luxury light and repeat alarm also as teatured in most major U.K. Mail Order catalogues S.R.S.P. of $₹ 32.00$-onered at the existing fault(s) and without guarantee

PRESCOTT CLOCK AND
WATCH COMPANY LIMITED
ascott House, Humber Road, London NW2 6ER

STRATHAND SECURITY ALARMED?

If not you should be. We saecialise in Alarmiequigment suitagle for home. othic
101 Mapnet and reed switch. Flush titting, 4 wire. Requiras hole 12 mm diameter by 34 mm deep
Magnet and red 3 wich. Flush thtisg screw ierminais. Aequiras
hole 15 mm diameler by 14 mm dzep
03 Magnel and read switch. Surface fitting. 4 wire. Size 65 mm by 13 mm by 11 mm
Magnet and reed switch. Heavy duly. Size 103 mm by 20 mm by 18 mm . Two hole lixing
SPressure pad - slair tras 22 $21 / /^{\prime \prime}$ by $6^{1 / 2 "}$
07 Wi bit
E1.35
07 Window loil - $581 /$ athasive - lop qualily. $70^{\prime \prime}$ roll by $1 / 10$ wide
108 foil blocks - sell-adheswe. (Joins loil to cable) 110 Kerswitches with maunting plate and cover 11 Bell boxes heary duty piastic coaied meal 16 Bell 6 " heavy duly - very 4 core cable 100 mm - white
entry/Exit. Anti-talse alarm circuitry

Al prices jiflude VAT and poslage

cius

dodar (microwave) units, automatic 999 dialing units with tape message. and many other items

STRATHAND SECURITY
Stasgow, G1
Glas Glasgow, G1
$041-5526731 / 2$ el: 041-5526731/
Callers Welcome

PRINTED CIRCUITS

 HARDWAREComprehensive range Constructors' Hardware and accessories

Selected range of popular components Full range of HE printed circuit boards. normally ex-stock, same day despatch at competitive prices
P.C. Boards to individual designs

Resist-coated epoxy glass laminate for the di.y. man with full processing instructions (no unusuat chemicals required)

Alfac range of etch resist transfers, and other drawing materials for p.c. boards.

Send $15 p$ for catalogue.

RAMAR CONSTRUCTOR SERVICES MASONS ROAD STRATFORD-ON-AVON WARWICKS. Tel. 4879

LIVING LOGIC!
STICKIES are printed self-adhesive labels that stick to the top of ICs. They make dull anonymous plastic blocks into diagrams that come ALIVE' See at-a-glance where to place your test probe or soldering iron -take
the hassle out of ICs STICKIES are great for building and debugging prototypes, faultinding, experimenting, teaching - even designing PCB layouts.
STICKIES come in packs for 7400 - or 4000 -series ICs Each pack contains a sensible mix of more than 60 different IC types.
120 -label pack -80 p. 480 -label pack $-£ 2.80$, or 2.10 packs at $£ 2.50$ each, 11 .plus $£ 2.20$ each Prices include VAT and first-class postage Official orders w
required

For your STICKIES by return of post
CONCEPT ELECTRONICS, 8 Bayham Road Sevenosks, Kent TN13 3 XA Phone: 0293514110

THIS SECTION IS A PRE-PAYMENT SERVICE ONLY

MINI-ADS: $31 / 4^{\prime \prime} \times 21 / 8^{\prime \prime}, 1-3 £ 38,4-11 £ 36,12$ or more $£ 34$ per insertion. CLASSIFIED DISPLAY: $19 p$ per word. Minimum 25 words. Boxed classifieds are $£ 6.33$ per col. centimetre. No P.O. Box Numbers can be accepted without full address.

Enquiries to: Advertising Department, 01-4375982. 25-27 Oxford Street, London W1R1RF

VMOS POWERFET VN67AF (2A, 60V 15W) 99p. Regulator 78L05 (TO-92) 29p. Fast LOCMOS, $4001 \mathrm{~B} / 07 / 11 \mathrm{~B} / 6917 \mathrm{p}$. 4013 B 35 p .4016 B 40p. 4017B65p. 4020B 80p. Cheap Linear. $74119 p$. CA3140E 40p. LF13741N (JFET 741) 35p. MC3401P (18V LM3900) 45p. 555 24p. 2N3819 14p. 10\% discount over E5. P \& P 20p. Mail Order only. More in informative lists. SAE to J. W. RIMMER, 367 GREEN LANES, LONDON N4 1 DY.

NASCOM 1

Complete with power supply, improved television modulator, updated monitor, full documentation and several useful programmes on cassette. Price £239. Tel. 0296712097.

COMMODORE PET HOME COMPUTER.

Six months old, as new. Plus books, manuals, games, tapes, and membership to users' club. $£ 620$. Write to A. Swenson, 'Lyndale,' Grange Road, Bowdon, Cheshire

MICROPROCESSORS 6800/280 CREED TELEPRINTERS

Consultancy, Stock Manufacture, Maintenance

EPED
189 Hadlow Road Tonbridge, Kent

DIGITAL TACHOMETER in kit form

Join the digital revolution Buy a Digitac rev. counter Features
Readable in direct sunlight Zero blanking
Stable two digit reading
Excellent resolution and linearity Suits all neg. earth ign. systems

Low cast. £16.65 fully inclusive Please state system voltage. 2 or 4 stroke, number of cylinders and ign coils.

ELECTRONEQUIP

36, Merton Avenue, Portchester, Hants. PO16 9NE 0701873455

MICROPROCESSORS AND

 COMPUTINGA book to give you a start
Contents. Binary Arithmetic. Principle of Operation, Programming, Glossary of Terms. 50 pages of explanation and diagrams. Price £2.30 plus $45 p$ p\&p (cheques, crossed P.O. only).
Educational Data and Technical Services 59 Station Road, Cogenhoe. Northampton NN7 1 LU

NEW QUALITY STEREO AMP CHASSIS. 60W (RMS). Protected $3 \Omega \mathrm{~min}, 0.03 \%$ THD $12 / 30 \mathrm{~V}$ Wkg 20 Trans, din socks controls: select. V/C, etc. Boxed data £9.95 (inc.) K. Lawrence, 1 Regent Road, Ilkley. W. Yorks.

RAINBOW RIBBON CABLE at silly prices. SAE for details. Trading Post, 4 Castle Street. Hastings, Sussex.

HEWLETT-PACKARD HP-67. As new, little used. Com. plete with: Case. recharger, battery, programme cards. blank cards, user's manual. E190. P. Burton. 10 Knowsley Close, Hoghton. Preston, 0254852136

VALVE SOUND. 16 - and 30 -watt Amplifiers by Parmeko. Excellent condition. Ex services. £18. - EPED 189 Hadlow Road, Tonbridge, Kent.

FIFTEEN CMOS PROJECTS - e.g. $70 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. Alarm; Mini-'trombone'; Mystery Maze: Micro-power Indicator. Only E1 inc. brings FIFTEEN detailed circuits PLUS 14-pin socket and kits voucher, from DAVID IAN DESIGNS, 47 Hampton Court Parade, East Molesey, Surrey

CAR BATTERY MONITOR all electronic with LED readout. PCB, IC and instructions only E2.75 inc. SAE for details. TRITECH ELECTRONICS, 190 RODING ROAD. LOUGHTON, ESSEX.

TVH7 TELEVISION SOUND. For high clarity HiFi listening and recording of Television programmes. Supplied built and tested on a single board measuring $105 \times 52 \mathrm{~mm}$, for TV internal fitment, $£ 9.80$ inclusive, with wiring and comprehensive instructions. Eve Products, 7 Adel Heights, Leeds 16.

20 INTO 2 E.T.I. MIXER SLIGHTLY CUSTOMISED. Consisting of front panel and boards, sliders with pan, monitor, vol., gain, bass, treble, ETC. £220 ono, no pots. Must sell. Tel. (40) 64456.

PLEASE

 MENTIONETI WHEN REPLYING

TO
ADVERTS

ASSISTANT FILM RECORDISTS \&TRAINEES

Would you like to specialise in sound with BBC TV's Film Department?
There are vacancies in West London

ASSISTANT FILM RECORDISTS work initially in sound transfer and dubbing areas operating sound recording and reproduction equipment for a wide range of programmes. There are prospects of progressing to mobile Film Recording work in due course. If you have professional experience in this field, the starting salary would be $£ 3440$ p.a. perhaps higher if exceptionally qualified, rising to $£ 4140$ p.a. An additional allowance is paid for shift work (not nights). Normal hearing is essential.
EXCELLENT TRAINING is given if you have ambitions to do this type of work but lack experience. You will need
'O' level standard of education, a básic knowledge of electronics and should be able to demonstrate a practical interest in sound and recording. Trainees will start at a salary of $£ 3130$ p.a. in Spring 1979 and should qualify for promotion tọ Assistant Film Recordists about a year later.
Conditions of Service are good and relocation expenses will be considered. Telephone or write immediately for an application form, enclosing addressed envelope and quoting reference number 78.G.2614/ET, to Appointments Department, BBC London WIA IAA. Telephone 01-580 4468 Ext. 4619.

AD INDEX

ALTEK 80
AMBIT 8
ASTRA-PAK 80
AUDIO ELECTRONICS 48
BAMBER 78
BAYDIS 34
BI-PAK 485
B.N.R.S. 78
CAMBRIDGE LEARNING 60
CATRONICS 9
CHILTMEAD 90
CHROMASONICS 86
CHROMATRONICS 70
CRIMSON ELECTRIK 66
CODESPEED 70
COMMUNICATIONS MEAS 92
COMP, COMP, COMP 107
DELTA TECH 70
DORAM 13
E.D.A. 56
ELECTROVALUE 45 37
GREENBANKGREENWELD83
HARRISON BROS 66
H.B. COMPUTERS 78
HENRY'S $21,32,46 \& 66$
IBEK SYSTEMS 100
I.L.P. 102
JEREMY LORD
SYNTHESISERS 84
KRAMER 26, 46, 72 \& 100
LB ELECTRONICS 100
LEKTROKIT 103
MAPLIN 108
MARSHALLS 22
METAC 38 \& 39
MICRODIGITAL 34
MINIKITS 100
MOUNTAINDENE 72
NASCOM 46
NEWNES-BUTTERWORTH 48
NICHOLLS 26
NIC MODELS 98
NORMAN INSKIP 101
POWELL 94
POWERTRAN $2 \& 6$
PROGRESSIVE RADIO 72
R.C.S. 106
ROGER SQUIRES 56
R.T.V.C. 54
SENTINEL SUPPLY 98
SERVICE TRADING 99
SINCLAIR 33
SINTEL 84
STEVENSON 53
STRATHAND 86
STRUTT 44
SWANLEY 56
TAMTRONIK 26
TECHNOMATIC $12 \& 94$
TEMPUS 96
T.K. ELECTRONICS 69
TRAMPUS 68
VERO 48
VIDEOTIME 34
WATFORD $10,11 \& 46$
WILMSLOW 69

THE SORCERER HAS ARRIVED

Introducing the personal computer you've waited for. The Exidy Sorcerer.

I didn't buy my personal computer until I found the one that had all the features I was looking for.
The Exidy Sorcerer does everything I wanted to do and a few things I never dreamed of
It isn't magic. Exidy started with the best features of other computers, added some tricks of their own, and put it all together with more flexibility than ever before available. Presto! My reasons for waiting just disappeared.
I wanted pre-packed programs. Software on inexpensive cassette tapes for the Sorcerer is available from Exidy and many other software makers.
I wanted user programmability
The Sorcerer's unique plug-in ROM PAC ${ }^{\text {rM }}$ Cartridges contain programming languages such as Standard (Altair $8 \mathrm{k}^{*}$) BASIC, Assembler and Editor (so 1 can develop system software), operating systems such as DOS (so I can also use FORTRAN and COBOL) and applications packages such as Word Processor.
*Altair is a trademark of
Pertec Computer Corp.

I wanted Graphics, and the Sorcerer is super. Its 256 character set - more than any other personal computer includes 128 graphic symbols that I can define.
I wanted high resolution video.
With 122,880 points in a 512×240 format, I get the most detailed illustrations.
I wanted to display more information. The Sorcerer displays 1920 characters in 30 liries of 64 characters - equal to a double-spaced typed page.
I wanted a full, professional keyboard. The Sorcerer's $79-\mathrm{key}$ data processing keyboard provides designated graphics, the complete ASCII character set in upper and lower case, and a 16 -key numeric pad.
I wanted memory. The $12 k$ of ROM holds a Power-On Monitor and Stand. ard BASIC; 32k of RAM is supplied on board.

I wanted expandability. Serial and parallel I/Os are built in, and the op-
tional 6-slot S-100 expansion unit lets my system grow.
I wanted a computer that's easy enough for children to use. I just connect my Sorcerer to a video display and a cassette tape recorder, and if I have any questions the easy-to-understand Operation and BASIC Programming manuals have the answers.
I wanted to buy from an experienced Manufacturer. In five years Exidy has become the third largest producer of microprocessor-based video arcade games.
I wanted to spend less than $£ 1,000$. (This is where COMP. does a little magic). My Sorcerer cost me $£ 950$!. Now, what are you waiting for?
Call COMP. on 01-441 2922 or write to

14 Station Road,
New Barnet, Herts. EN5 10W.
(Price shown ex. VAT)

กiสplun lounch their new \& calalogue... *
 A massive new catalogue from Maplin that's even bigger and better than before. If you ever buy electronic components, this is the one catalogue you must not be without. Over 240 pages - some in full colour-it's a comprehensive guide to electronic components with hundreds of photographs and illustrations and page after page of invaluable data.
 We stock just about every useful component you can think of. In fact some 5,000 different lines, many of them hard to get from anywhere else. Over 1000 new lines in our new catalogue. And with the service only Maplin provides, you won't regret sending for a copy of our fantastic catalogue Orders paid before publication date will receive a set of 10 special offer coupons. Big Discounts on popular lines.

 Post this coupon now for your copy of our

 Post this coupon now for your copy of our}
ELECTRONIC SUPPLIES

PO. Box 3. Rayleigh, Essex SS6 8LR
Telephone: Southend (0702) 715155
"Shop: 284 London Road, Westcliffe-on-Sea, Essex 1979-80 catalogue price 75p.
Please send me a copy of your 280 page catalogue as soon as it is published (8th Jan. 1979). I enclose 75 p but understand that if I am not completely satisfied I may return the catalogue to you within 14 days and have my 75 p refunded immediately. If you live outside U.K. send £1 or ten International Coupons
NAME
ADDRESS

[^0]: COPYRIGHT: All materiat is subject to world wide Copyright protection. All reasonable care is taken in the preparation of the magazine to ensure

[^1]: This piece of har dware has three sections, a step down, isolating transformer, a diode bridge and a smoothing capacitor. The transformer is driven from the mains, the voltage of which varies depending on where you live (it's 250V/RMS in Fulham). Some transformers have got a copper screen which isolates the primary winding from the secondary windings. For the purpose of safety, this should be connected to earth.

 Also, for maximum safety, connect the 220/240/250 tapping to mains LIVE. Another type of mains transformer uses what is known as a split bobbin, the primary is wound on one bobbin, the secondary on another. Thus the two windings are inherently physically isolated, and so no safety screen is included. These two transformer types are generally constructed on what is known as an ' E ' core; take one to bits and you will find that it is

[^2]: constructed out of lots of 'E' shaped laminations. These 'E' Iaminations are butted into 'I' laminations, and clamped together. This butting together of the laminations can cause magnetic field problems. The wider the gap between the 'E' and 'I' laminations, the larger the magnetic field around the transformer.

 The magnetic field generates a significant amount of induced hum in naarby electronics, this can be overcome by using a low leakage torroidal transformer which is constructed from circular laminations. The primary and secondary windings are wound through the centre of the torroid (see if you can imagine how). The torroidal transformer, by virtue of its "continuous" laminations results in a low stray field and a low profile design, making it ideally suited for audio amplifier applications.

[^3]: Editor: Gary Evans
 Production: Pete Howells
 Advertising: Mark Strathern, David Sinfield, Joy Cheshire

[^4]: The items mentioned here are those planned for the next issue but circumstances may affect the actual content.

