Artronimitia

DECEMBER 1978
40

How it Works Televison

Electronios in Mocel Ralways

Curve Tracer

Inside:
 computing today nor

. . NEWS PROJECTS. . . . MICROPROCESSORS . . . AUDIO . . .

TRANSCENDENT 2000 SINGLE BOARD SYNTHESIZER

LIVE PERFORMANCE SYNTHESIZER DESIGNED BY CONSULTANT TIM ORR (FORMERLY SYNTHESIZER DESIGNER FOR EMS LIMITED) AND FEATURED AS A CONSTRUCTIONAL ARTICLE IN ELECTRONICS TODAYINTERNATIONAL.
The TRANSCENDENT 2000 is a 3 octave instrument transposable 2 octaves up or down giving an effecteve 7 octave range There is portamento. putch bending, a VCO with shape and pitch modulation, a VCF with both low and high pass outputs and a separate dynamic sweep control, a noise generator and an ADSR envelope shaper There is also a slow oscillator, a new pitch detector. ADSR repeat, sample and hold, and special circuitry with precision components to ensure tuning stability amongst its many features

The kit includes fully finished metalwork. fully assembled solid teak cabinet. filter sweep pedal. professional quality components (all resistors either 2% metal oxide or $1 / 2 \%$ metal filml) and it really is complete - right down to the last nut and bolt and last piece of wire! There is even a 13 A plug in the kit - you need buy absolutely no more parts before plugging in and making great music incoly with components are on the one professional quality fibre glass PCB printed with component locations All the controls mount directly on the matn board. all connections to the
 comparable in performance and quality with ready built units selling for between $£ 500$ and $£ 7001$

COMPLETE KIT ONLY

 $£ 172.00$ + VAT!Comprehensive handbook supplied with all complete kits' This fully describes construction and tells you how to set up your synthesizer with nothing more elaborate than a
mulu-meter and a pair of ears!

Cabinet size $24.6^{\prime \prime \prime} \times 15.7^{\prime \prime \prime} \times 4.8^{\prime \prime}$ (rear) $3.4^{\prime \prime \prime}$ (front)

THIS MONTH'S FRONT COVER FEATURE!

COMPLETE KIT
ONLY
$£ 49.50$ + VAT!

As featured in Electronics Today International

 400W rms continuous -800 W peak!0.03% THD at FULL power!
PLUS all the following features too!

* Each channet totally independent with its own stabilised power supply driven by custom designed TOROIDAL transformers
* Inherent reliability - monster heat sinks for cool running at the hottest venues - electronic open and short circuit protection
* Ultra low feedback (an incredible low 14 dB overalli), super high slewing rate ($20 \mathrm{~V} / \mu \mathrm{s}$) 200 W ms continuous to 4 ohm from EACH channel. input sensitivity 0775 V (OdB)
* Professional quality components sturdy 19 rack mounting chassis complete with sleeve and teet for free standing work too
* Easy to build - plenty of working space with ready access to all components, minimal wiring extensive instruction suitable for both experience constructors and newcomers to electronics
* Value for money - quality and performance comparable with ready-buitt amplifiers costing over £6001
our catalogue is free! write or phone NOW!

POWERTRAN ELECTRONICS

Leave a trace p. 73

Keep your wheels p. 16

A project for a fling p. 44

FEATURES

ST ELECTRONICS IN MODEL RAILWAYS INDEX 78
IONOSPHERE
DATA SHEET
MICROFILE
AUDIOPHILE
TECH TIPS

7 Latest on the latest
21 A new series on circuits
36 Tips for the living room express drivers!
53 A listing of all we've done since April 77
61 An atmospheric article!
69 Amplify at speed
77 Micro-men take note
88 Strathern speak to us, and Sony arm us!
93 All your own work

PROJECTS

CAR ALARM
WINE TEMPERATURE METER LIGHT SHOW CONTROLLER CURVE TRACER AUTOCHORD PART 2

Hang on to what's yours! Don't make them the grapes of wrath! Five channels to run a disco through Not 36-24-36 - but useful nonetheless Full construction details

INFORMATION

SUBSCRIPTIONS
BINDERS
BACK NUMBERS
ETIPRINTS
ETI BOOK SERVICE
COME AND JOIN US MARKETPLACE ETI JANUARY PREVIEWED SPECIALS HOBBY ELECTRONICS

Make it easy on yourself 9 Take care of us!
11 Wot we got and wot we ain't
29 The only boarding card you need
43 Good sound stuff all in fine print
51 ETI needs you - well 3 of you anyway!
57 Timely offers!
59 On its way to you
67 All our wares on show
87 Coming up up in number two

[^0][^1]
Books AND COMPCNENIS

BOOKS BY BABANI

Purchase books to the value of $£ 5.00$ from the list below and choose any 60p paK from this page FREE.

BOOKS BY NEWNES

No. 229 Beginners Guide to Electronics	Price $£ 2.25 \dagger$
No. 230 Beginners Guide to Television	Price $\mathbf{E 2 . 2 5 t}$
No. 231 Beginners Guide to Transistors	Price $£ 2.25 \dagger$
No 233 Beginners Guide to Radio	Price $\mathrm{E2} 275 \dagger$
No. 234 Beginners Guide 10 Colour Television	Price £2.25 \dagger
No. 235 Electronic Diagrams	Price $11.80 \dagger$
No. 236 Electronic Components	Price $£ 1.80 \dagger$
No. 237 Printed Circuit Assembly	Price ¢1.80 \dagger
No. 238 Transistor Pocket Book	Price ¢3.90 \dagger
No. 225110 Thyristor Projects Using SCRs \& Triacs	Price £2.50 \dagger
No. 227110 COS/MOS Digital IC Projects for the Home Constructor	Price $£ 2.75 \dagger$
No. 226110 Operational Amplifier Projects for the Home	
Constructor	Price $£ 2.50 \dagger$
No. 242 Electronics Pocket Book	Price £3.90†
No. 23930 Photoelectric Circuits \& Systems	Price £1.80†

NUTS AND BOLTS

Type	No.	Price	Type	No.	Price
1 in OBA	835	E1. 20	1/3in 4BA	846	¢0.32
Y/2in OBA	840	¢0.75	1/in 4BA	847	c0.25
1 in 2BA	842	60.65	1 in 6BA	848	c0.40
$1 / 2$ in 2BA	843	¢0.45	1/2in 6BA	849	c0.21
1/4in 2BA	844	c. 0.52	1/2in 6BA	850	¢0.25
1 in 4 BA	845	c0.44			
BA NUTS - packs of cadmium plated full nuts in multiples of 50.					
Type OBA	$\begin{aligned} & \text { No. } \\ & 855 \end{aligned}$	$\begin{aligned} & \text { Price } \\ & £ 0.72 \end{aligned}$	Type 4 EA	No. 857	${ }_{\text {Price }}$
2BA	856	C0.48	6BA	858	c0.24
BA WASHERS - flat cadmium plated plain stamped washers supplied in multiples of 50					
		Price	Type	${ }^{\text {No. }}$	Price
CBA	859	¢0.14	4 BA	861	c. 0.12
2BA	860	60.12	6BA	862	c. 0.12
SOLOER TAGS - hot tinned supplied in multiples of 50					
Type	No.	Price	Type	No.	Price
OBA	851	¢0.40	48A	853	c0. 22
2BA	852	¢0. 28	6BA	854	¢0.22

SWITCHES

METAL FOIL CAPACITOR PAK

Containing 50 metel foil Capacitor-like Mulard 280 series. Mixed
values ranging from 0 Lut- 2.2 uf . Complete with identification sheet

TRANSFORMERS

DEPT. ET/10, P.O. Box 6, Ware, Herts
COMPONENTS SHOP: 18 BALDOCK STREET, WARE, HERTS.

SEMICONDUCTORS TRANSISTORS

AUDIO KITS OF DISTINCTION FROM FI|LII M/II

DE LUXE EASY TO BUILD LINSLEY-HOOD 75W AMPLIFIER £99.30 + VAT

This easy to build version of our world-wide acclaimed 75 W amplifier kit based upon circuit boards interconnected with gold plated contacts resulting in minimal wiring and construction delightfully straightforward. The design was published in Hi - Fi News and Record Review and features include rumble filter, variable scratch filter, versatile tone controls and tape monitoring whilst distortion is less than 0.01%

WIRELESS WORLD FM TUNER £70.20 + VAT

A pre-aligned front-end module makes this Wireless World published design very simple to construct and adjust without special instruments. Features include an excelient a.m. rejection push-button station selection as well as infinitely variable tuning and a phase locked loop stereo decoder incorporating active filters for "birdy" suppression

cabinat size $18.3^{\prime \prime} \times 12.7^{\prime \prime} \times 3.1^{\prime \prime}$.

LINSLEY-HOOD CASSETTE DECK £79.60 + VAT
This design, published in Wireless World, although straightforward and relatively low cost provides a very high standard of performance. There are separate record and replay amplifier mechanism is the Goldring-Lenco CRV with electronic speed control
cebinet size $18.3^{\prime \prime} \times 12.7^{\prime \prime} \times 3.1^{\prime \prime}$

T20 + 20 AMPLIFIER $£ 33.10$ + VAT

This kit, based upon a design published in Practical Wireless, uses a single printed circuit his quality amplifiers. A $\mathbf{3 0}$ watt version of this kit $(T 30+30)$ is also available for $\mathbf{£ 3 8 . 4 0}+$ VAT

WWII TUNER £47.70 + VAT

This cost reduced model of our highly successful Wireless World FM Tuner kit was designed to complement the $\mathrm{T} 20+20$ and $\mathrm{T} 30+30$ amplifiers and the cabinet size front panel format and electrical characteristics make this tuner compatible with either. Facilities included are pre-aligned front-end module. switchable afc, adjustable switchable muting. LED tuning indication and both continuious and push-butten channel selection (adjustable by controls on the front panel).
cabinet size $15.5^{\prime \prime} \times 8.7^{\prime \prime} \times 2.8^{\prime \prime}$

POWERTRAN SFMT TUNER £35.90 + VAT

This is a simple low cost design which can be constructed easily without special alignmen equipment but which stif gives a first-ciass output suitable for feeding any of our very popula amplifiers or any other high quality audio equipment. A phase-locked-loop is used for stereo decoding and controls include switchable afc, switchable muting and push-button channel selection (adjustable by controls on the front panel). This unit matches well with the $\mathrm{T} 20+20$ and $T 30+30$ amplifiers.

cabinet size $15.5^{\prime \prime} \times 6.7^{\prime \prime} \times 2.8^{\prime \prime}$.

COMPLETE KITS: Our complete kits really are complete. All of the projects shown on this page-are supplied with fully finished metalwork, ready assembled high quality teak veneer cabinet. cables, nuts, bolts, etc., and full instructions - in fact everything

All of the kits shown on this page are available as separate packs (except the Powertran SFMT Tuner) for those customers who wish to spread their purchase or perhaps make their own cabinets or metalwork. Prices are given in our FREE CATALOGUE.

PRICE STABILITY: Order with confidence! irrespective of any price changes We will honour all prices in this advertisement until January 31st, 1979. If ETi December, 1978
EXPORT ORDERS: No VAT. Postage charged at actual cost plus 50 p handling and documentation.
U.K. ORDERS: Subject to $12 \frac{1}{2} \%$ surcharge for VAT' (i.e. add $1 / 8$ to the price). No charge is made for carrier, "or at current rate if changed
SECURICOR DELIVERY. For this optionat service (U.K. mainland only) add 2.50 (VAT inclusive) per kit.

SALES COUNTER: If you prefer to collect your kit from the factory, Call at Sales Counter (at rear of factory). Open 9 a.m.-4.30 p.m. Monday-Thursday
our catalogue is FREE! write or phone NOW! POWERTRAN ELECTRONICS

news dlgest

Be boring better!

Thi is known as a Bimdrill (Don't blame us - it's their name). It costs $£ 19.50$ + VAT and comes complete as you see it here. It
is mains powered, runs at 7500 RPM, and looks very useful indeed. Any more questions to:
Boss Mouldings Ltd, Higgs Industrial Estate, 2 Herene Hill Road, London SE24 $0 A U$.

Catch these

Two more companies sent us in catalogues this, month. The first was ACE who do a 36 page affair for 30 p . The range they stock is pretty good as are the prices. A nice touch is the new range of new kits fot the beginner. Worth having.

The other was Stevenson. This catalogue is produced superbly and as it's free it's worth a look just to see how these things
should be done. IC's are a strong point here, and a range of books is also included. Some very useful data is given in the back of the booklet which should also be on your book. shelves.
Addresses for these people appear on their ads elsewhere in this issue. Catalogues are things you should collect if you're serious about the hobby, as there is always something you'll want from somewhere at sometime or other!

feet and all fixings. It will house a standard keyboard or individual keys as required - ideal for small desk-top terminals. Vero Electronics Ltd, Industrial Estate, Chandlers Ford, Eastleigh, Hampshire.

Just the thing for Casanova?

Timetrac is a new little helper for people with busy lives and lousy memories. It contains a calendar preprogrammed, and can sound alarms

Time to calculate?
 'Credit card' calculators do have advantages. Here's another one that can tell you how long you took to spend a fortune. Called the ST 24, it is a four-function plus \% and stopwatch calculator. Maximum time to be

 Maximum time to bewhen required. Two stopwatch facilities are also incuded.
Power is normally from AC adaptor, but battery power is provided as standby.
Optimisation Ltd, 45 South Street, Bishop's Stortford, Hertfordshire.
watched - 23hrs 59mins59secs. Lap timing, second place timing normal stop/ start and $1 / 10$ th sec indication are all possible.

The calculator can be used while the timers (with possible repeat option) or stopwatch is being used. The most you'll pay for it is $£ 24.95$ anywhere. Available now.

KEY:
1: The bit of chocolate you thought you'd leave for later.

2: Coffee stains (instant).
3: A useful-sized bit of stiff paper to stop the window from rattling.

4: Rough calculations for your new combined ëgg timer/laser cannon project.

5: ETI makes a fair soldering iron stand.

6: The dog insisted on carrying your copy to you along with your slippers.

WHAT A BIND!

Half our orders for binders are repeats: we think that says a lot for their quality. At $£ 3.00$ all inc. you get a great deal of peace of mind too!

ETI Binders
 25-27 Oxford Street,
 London WIR 1RF.

The image of it

The picture shows images achieved in lousy conditions by EMIs new wonder underwater TV system.
The system has just won the IR100 award in America for its solving of the problems associated
with the quartz and frequency troubles earlier systems experienced.

The whole thing is comparitively simple, and uses 201 lines per frame, 121/2 frames per second. A range of several meters is possible even in atrocious conditions.
data lines have to be switched.

These CD22101 and CD22102 devices consist of $4 \times 4 \times 2$ arrays of crosspoint transmission gates, 4 to 16 line decoders and 16 latch circuits, with any one of the 16 crosspoint pairs being selected by applying the appropriate four-line address and any number of crosspoints being ON simultaneously.

Bandwidth is 10 MHz and low ON resistance is typically 75ohms@12 Volts $V_{D D}$ Other significant features include closely matched switched characteristics, high linearity and standard CMOS noise immunity.
Mogul Electronics Ltd, 272 High Street, Epping, Essex CM16 4DA.

Cross point

Now available from Jermyn are 2 new Crosspoint Switches complete with control memory which are ideally suited where numerous analogue or

digest

Less than (h)armless?

This mechanical arm is controlled by a microcomputer and has been designed to enable even the most severely paralysed patients to fend for themselves. The electronic super-arm of the future was amongst new developments shown for the first time at a two-day 'Aids to Independence' exhibition organised by North Surrey, Community Health Council at Ashford Hospital, Middlesex.

Although the arm is only in its prototype form, Dr. Jackson Todd of Queen Mary College, London (pictured above), demonstrated that it could be programmed to carry out separate or a series of quite delicate movements. A patient only able to move his head could con-
trol it using a stick held in his mouth to activate control buttons.

The so-called bionic arms that are now becom. ing available depend on the patient having some muscle movement. But this microprocessor controlled version can be programmed to carry out any type of function independently of the patient. The project has been underway at Queen Mary College for about a year and the control system, believed to be the first of its kind in the world, is complete. The next step is to produce a properly engineered prototype arm and integrate it with the input devices and the micro. processor control unit.

For further information contact:
Tom West, Director of Public Relations, Surrey Area Health Authority.

It's not all old

 hatA new magazine is to be launched soon - January

- specifically for enthusiasts of vintage sound equipment. It will be bimonthly and on subscrip tion only. Among the areas covered will be wireless equipment, gramophones and cylinders,valves pre-war pioneering exploits and tales of the companies involved.

It will begin life as a 32 page job and sample Nols can be obtained for 65 p all inc. Subs rates will be £5.80.
U.K. Sounds Vintage, 28 Chestwood Close, Billericay, Essex.

NON-SUBSCRIBERS START HERE

GIVE UP, GO HOME:
...AND TAKE OUTA
POSTAL SUB
TO ET:

It can be a nuisance can't it, going from newsagent to newsagent? "Sorry squire, don't have it - next one should be out soon.."

Although ETI is monthly, it's very rare to find it available after the first week. If it is available, the newsagent's going to be sure to cut his order for the next issue - but we're glad to say it doesn't happen very often.

Do yourself, your newsagent and us a favour. Place a regular order for ETI; your newsagent will almost certainly be delighted. If not, you can take out a postal subscription so there's nothing for you to remember - we'll do it for you.

For a subscription, send us $£ 7.00$ ($£ 8.00$ overseas) and tell us which issue you want to start with. Please make your payment (in sterling please for overseas readers) to ETI Subscriptions and keep it separate from any other services you want at the same time.

ETI Subscription Service Electronics Today International 25-27 Oxford Street, London W1R1RF

Whirdid ElEDRULCS

VAT Export orders no VAT. Applicable to U:K. Customers only. Untest atated otherwise, ell prices are exclusive of VAT. Plesse add 8% to devices marked *. To the reat add $121 / 2 \%$.	
Noarost Underground/BR Station: Wetford High Suear. Opon Monday to Purking apace availistio.	
POLYESTER CAPACITORS: Axial lead type (Values are on $\mu \mathrm{F}$). $400 \mathrm{~V}: 0.001,0.0015,0-0022,0-00337 \mathrm{p}: \quad 0.0047,0-0068,0.01,0-015,0.01$ 10p: $\quad 0.047,0.06814 \mathrm{p} ; \quad 0.1 .15 \mathrm{p} ; \quad 0.15 .0-22.22 \mathrm{p}: \quad 0.33 .0-4739 \mathrm{p}$; 160V: 0.039, 0.15. 0-2211p; $\quad 0.33 .0-4719 \mathrm{p} ; \quad 0.68,1.022 \mathrm{p} ; \quad 1.529 \mathrm{p}$; DUBILIER: $1000 \mathrm{~V}: 0.01,0-01520 \mathrm{p}$; 0.02222 p ; 0.04726 p : 0.138 p ;	
13p; 0.4715p; 0-68 18p; 1.0 24p; 1.5 21p; 2.231p	CAPACITORS $1000 \mathrm{pF} / 350 \mathrm{~V}$

TANTALUM BEAD CAPACITORS 35V: $0,3 \mu \mathrm{~F}, 0.22,0.33,0-47,0-68$ 20V: 1-5.16V: 10μ F 13p each $2225 \mathrm{p} .47 \mu \mathrm{~F}, 10040 \mathrm{p}$. 10V: $22 \mu \mathrm{~F}, 33,47,6 \mathrm{~V}: 47,6 \mathrm{~B}, 100$ 3V: $68,100_{\mu} \mathrm{F}, 20$ peach	POTENTIOMETERS (AB or EGEN) Carton Track, $1 / 4 \mathrm{~W}$ Log \& $1 / 2 \mathrm{~W}$ Lineer values $50001 \mathrm{~kg} \& 2 \mathrm{~K} \Omega$ (fin, only) Singie gang $5 \mathrm{KO}-2 \mathrm{MO}$ single gang \quad 27p $5 \mathrm{~K} \Omega-2 \mathrm{M}$ / single gang D / P switch $\mathbf{6 0 p}$ $5 \mathrm{~K} \Omega-2 \mathrm{M} \cap$ dual gang stereo $\quad 70 \mathrm{p}$
MYLAR FILM CAPACITORS 100V: $0001,0002.0005 .001 \mu \mathrm{~F}$ $0.015,0.02,0.04,0.05,0.056 \mu \mathrm{~F}$ 0.7 p $0.1 \mu \mathrm{~F}, 0.15 .0 .29 \mathrm{p} .50 \mathrm{~V}: 0.47 \mu \mathrm{~F}$	SLIDER POTENTIOMETERS $0.25 \mathrm{~W} \log$ and linear values 60 mm $5 \mathrm{~K} \cap .500 \mathrm{~K} \mathrm{~h}$ single gang $\quad 70 \mathrm{p}$ $\begin{array}{ll}\text { 10Kの-500K dual gang } & \text { 80p } \\ \text { Seff Stick Graduated Bezels } & \text { 22p }\end{array}$
Renge: 0.5pF 10 10,000pF 3p $0.015 \mu \mathrm{~F}, 0.022 \mathrm{~F}, 0.033 \mu \mathrm{~F}$ 4p $0.047 \mu \mathrm{~F}$ p: $01 \mu \mathrm{~F}$ 8p.	PRESET POTENTIOMETERS $0.1 \mathrm{~W}^{50 \Omega}-5 \mathrm{M}_{3}$ Miniature Vertical \& Horizontal $0.25 \mathrm{~W} 400 \Omega-3-3 \mathrm{Mg}$ horiz larger 10 p 0-25W 200n-4-7M? Vert 10p
SILVER MHCA (Values in PF) 3-3, 4.7. $6.8,10,12,18,22,33,47,50,68,75$,	
$250,300,330,360,390$ 600,820 $1000,1800,2000,2200$ $16 p$ each $20 p$	RESISTORS - Erie make 5\% Carbon Miniature Migh Stability, Low nuise
polystranne capacitors: 10 pF to 1 nF 8 p ; $\quad 1.5 \mathrm{nF}$ to 47 nF 10 p	
CERAMIC TRIMMER CAPACITORS $2-7 \mathrm{pF}, 4-15 \mathrm{pF}: 6-25 \mathrm{pF}, 8-30 \mathrm{pF}$ 20p	
MINIATURE TYPE TRIMMERS $2.56 \mathrm{pF}, 3.10 \mathrm{pF}: 10.40 \mathrm{pF}$ 2 p	
COMPRESSION TAIMMERS $3.40 \mathrm{pF} / 1080 \mathrm{pFF}$ $25-190 \mathrm{pF}$ $100500 \mathrm{pF}:$ $\mathbf{2 5 p}$ 	THERMISTOAS VA1034. 1039 $1040.1055,1056,1058,1066,1067$ 1098. $1100 \quad 20$ peach

JACKSONS VARIABLE CAPACITORS Dielocrii
$100 / 30$
500 of
$\begin{array}{lllll}100 / 300 \mathrm{pF} & \text { 140p } & \text { motion Drive } & \text { 325p } \\ 500 \mathrm{pF} & 165 \mathrm{p} & \text { 00 } 20 \mathrm{~B} / 176 & \mathbf{2 8 5}\end{array}$

RF CHOKES

VERO WIRING PEN *
Plus Spool $325 p$
Spare spool (wire) 80 p $*$ Combs 7 peach
FERRIC CHLORIDE*
${ }^{\text {DALO }} \mathbf{7 5 p}$ ETCH RESIST PEN* + spare tip
COPPER CLAD BOARDS*
\qquad

$\frac{28 \text { pin } 42 \text { p; } 40 \text { pin } 55 \text { p. }}{\text { SOLDERCr } 1 \text { PINS* }}$

等

WATFORD ELEGTRONGS

Introducing DM900 - The DIGITAL MULTIMETER with "Hidden Capacity" - It measures Capacitance too!
(as published in E.T.I. August 1978)
Away with analogue meters for with some of these you may often as not use a crystal ball to make Circuit measurement instead gaze into our crystal DISPLAY - on our amazingly accurate DMM incorporating incorporating
$5 A C$ \& DC Voltage ranges; 6 resistance ranges 5 AC \& DC Current ranges; 4 Capacitance range The prototype accuracy is better than 1%
This is a unique design using the latest MOS ICs and due to the minimal current drain, is
powered by only one PP3 battery. There is also a battery check facility.
The DM 900 is an attractive hand-held, light weight device, buil into a high impact case
with carrying handle and has been ingeniously designed to simplify assembly.
Never before have all these features been offered to the electronics enthusiast in a single
unit. Special ofter $£ 54.50$ * ($p \&$ p insured add 80p) Calibration service charge for working Units $£ 5.75$
Ready-built and tested units available at $£ 78.50$. ($\mathbf{~} 8 \mathrm{pp}$ 80p)
(Optional extras. Probes $£ 1.50$ *; Carrying Case $£ 1.50$ *)
(Demonstration on at our Shop)

SWITCHES * TOGGLE 2A. 250 V	SLIOE 250V
TOGGLE 2A. 250V	1A DPDT 14p
SPST 28p	1 A DPDT c/over 15p
DPST 34p	1/2ADPDT $13 p$
DPDT 38 p	4 poie 2 way ${ }^{24}{ }^{\text {p }}$
4 pole on/ott 54 p	PUSH BUTTO
SUB-MIN TOGGLE	
	SP
$\begin{array}{ll}\text { SP changeover } \\ \text { SPST on/off } & \text { 54p } \\ \text { S4p }\end{array}$	$\begin{array}{ll}\text { SPDT } \mathrm{c} / \text { /over } & 65 \mathrm{l} \\ \text { DPDT } 6 \text { Tag } & 850\end{array}$
SPST biased 85p	miniature
DPDT 6 lags 70p	Non Locking
DPDT cenire off 79p	Push to Make 15p
DPDT Blased $115 p$	Push Break $\quad 25$ p
HOTARY Make your uwn multway Switch Adjustable Stop Shaiting Assembly. Accom. modate up to 6 Wafers Mains Switch DPST to ith Break Before Make Wafers 1 pote/ 12 way $2 p / 6$ way $3 p / 4$ way $4 p / 3$ way $6 p / 2$ way	
	5p
ROTARY (Adjustable Stop)	
1 pole/2 to 12 way, $20 / 2$ to 6 way. 3	
pole $/ 2$ to 4 way, 4 pole $/ 2$ to 3 wayROTARY Mains $250 \mathrm{VAC}$.4 Amp45 p	

Back numbers

Not all back issues of ETI are available. Indeed more are not than are! The table below shows which copies can be obtained from our offices. Each copy costs 60p inc p\&p and please mark your envelopes 'Back Issues".

| | 1978 | 1977 | 1976 | 1975 | 1974 | 1973 | 1972 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Jan | | | No! | No! | No! | No! | |
| Feb | | | No! | | | No! | |
| March | | No! | No! | | No! | | |
| April | | | No! | | | No! | No! |
| May | No! | No! | | | | No! | No! |
| June | No! | | No! | No! | | | No! |
| July | | No! | | No! | | | No! |
| Aug | | No! | | No! | | No! | No! |
| Sept | | No! | | No! | No! | No! | No! |
| Oct | | | | No! | No! | No! | No! |
| Nov | | No! | No! | No! | No! | No! | No! |
| Dec | | No! | No! | No! | No! | No! | No! |

Photocopies of any article from any one issue are available, and cost 50p regardless of nos. of pages. Copies of series will be charged at article rate per installment. Mark envelope " P ".

WE'RE OUT TO FINISH

YOU OFF!
 Rapitupe 凁 PI PANEL TRANSFERS

GOOD AND PROPER!

or at least your projects. If there is one thing which is impossible to do at home is lettering front panels to professional standards. At least until now. If you cast your eyes right a while you'll see our new panel transfers sheet, which has been carefully designed to allow you to do exactly that.

The transters are casily rubbed down. and the two sheet set contains a mass of lettering and -uniquely-control scales for both rotary and slider puts.

Each sheet incasures $180 \mathrm{~mm} \times 240 \mathrm{~mm}$ and comes packed flat in a stiff cardboard envelope for protection. There should be enough for dozens of projects here - and the longer you wait the worse they'll look!

Send E 1.75 (includes VAT and postage) for the two. sheet set to:
Panel Markings
ETI magazine,
25-27 Oxford Street.
London WIR IRF.

SAME AS ETI OFFER 5 FUNCTION LCD Hours, mins, secs. month, date. auto calẹndar. back-light. quality metal bracelet. $£ 8.65$ \qquad Guaranteed same day Very slim. only despatch 6 mm thick.		* QUARTZ LCD ALARM " Snooze + backlight. Batteries last 1 year approx. Includes batteries and travel pouch. Excellent value £17.65 Guaranteed same day despatch	THOUSANDS SOLD 11 FUNCTION SLIM CHRONO 6 diģil 11 lunctions ${ }^{*}$ Hours, mins, secs. * Day. dale, day of weak. * $1 / 100,1 / 10$. secs. $10 \times$ secs. mins. * Split and lap modes. * Back light, aute calendar. * Only 8 mm lhick. This same walch is being sold for $\$ 22.00$ in newspaper and magazine special offer ads. Metac Price $£ 12.65$ Guaranteed same day despatch
SEIKO SUPERIOR WATCHES World famous piercing alarm chronograph Please ring for delivery details ALARMCHRONO List price £130 Metac Price $£ 98$	SEIKO SUPERIOR WATCHES Please ring for delivery details CHRONOGRAPH List price £85 METAC PRICE £68	SEIKO SUPERIOR WATCHES 6 digit, 7 function watch with 4 alarms \& volume control. Please ring for delivery details. \qquad MULTIPLE ALARM List price £120 METAC PRICE £98	SEIKO SUPERIOR WATCHES Full spec. calculator +6 function watch. Please ring for delivery details. CALCULATOR WATCH List price £165 METAC PRICE £ 125
HANIMEX Electronic LED Alarm Clock Same as ETI offer Thousands-sold	GENUINE SOLAR 5 tunction LCD * Solar panel with battery back-up. Back Iglit + autó calendar. \checkmark Hours mins. secs. day. date. Guaranteed samm, day despatch	LADIES LCD Only 25×20 mm and 6 mm thick. 5 function: hours, mins. secs. day, dale. + back light and aulo cal. Elegant metal bracotet in silver or gold. Slate pre. lerence. $£ 10.95$ Guaranteed same day despatch	ALARM LCD 6 digit 7 functions + penet. rating alarm Hours Mins Secs Day Date Alpha Day Year. Back light +200 year calendar. $\begin{aligned} & \text { ONLY } \\ & £ 22.95 \end{aligned}$
Festure and Specification * Hour/minute display * Large LED display with p.m. and alarm on indicator * 24 Hours alarm with on-off control * Display flashing for power loss indication - Repeatable 9 -minute snooze * Display bright/dim modes control Size $5.15 \times 3.93 \times 2.36(131 \mathrm{~mm} \times 100 \mathrm{~mm}$ $\times 60 \mathrm{~mm}$) Weight: $1.43 \mathrm{lbs}(0.65 \mathrm{~kg})$. Guaranteed same day despatch	THE METAC digital Clock * COMPLETE KIT * Pleas ant green display- 12/24 Hour readout Silent Synchronous Accuracy - Fully etectronic Pulsaling colon. Prish button setting Building timè 1 Hr - Attraclive acrylic totez Easy-fodohlow instructions - Size $10.5 \times 5.7 \times 8 \mathrm{~cm}$ Ready drilled PCB to accept components PRICE E6.65 15:28 Mistrai	micho CASSETTE recorder Hand-heid only $21 / 1 \times 5 \times$ $1 / 2$ inth. Idenitcal to well known models being sold al $£ 35$ OUR PRICE £24	PROGRAMMABLE + free program library worth $£ 4.00$ onty $£ 12.65$ from metac
All products carry full 12 months guarantee. Please add $30 p \mathrm{p} \& \mathrm{p}$ with all orders. All prices include VAT. Shops open 9.30 to 6.00 daily. Trade enquiries welcome. Delivery: One week. Except where same day delivery is stated.	COMPONENTS 2N3055 transistors 50 p 2 inch LED's, red $12 p$ green $15 p$ yellow 15 p orange $15 p$ DL 704 displays 80p DL 707 displays 80 p Watch batteries 70p (state type) Mercury tilt switches 50p Crystal mic inserts 50 p Also useful for sonic applications and sound transmitters (buzzers etc)	GENUINE SOLAR CHRONOGRAPH £16.95 6 digir, 11 function Hours Min Secs $1 / 100 \quad 1 / 10$ Secs Mins Split \& lap modes. Auto cal + back light Powered from solar panel with battery back-up.	TV GAMES Black \& white £8.95 Colour £12.95: 4 games, 2 ball speeds. 2 ball angles, 2 bat sizes.
	STA A Cle	GWARE ROAD NW2 Barclay \& Access w N 7234753 Phose or Send Card with o	

SUPERIOR INDUCTION BALANCE METAL DETECTOR * Visual meler with audible indication. * Distinguishes between gold, silver. and useless metal objects such as bottle tops, etc. - Range up to 10 inches on a single coin. Three feet for large objects. * Battery lasts 50 hours * Telescopic $2-31 / 2$ foot stem METAC PRICE $£ 39.95$	LCD CLOCK RADIO LCD CLOCK RADIO. Radio with earohone and DC pack. from UM 3×1 Features Wake to music or zones, stop watch function time lock-on off, back light. $190 \times 97 \times 43 \mathrm{~mm}$ metac price $£ 22.95$	FLUORESCENT DISPLAY CLOCK RADIO * Mains operated * Soff glow green display - MW/FM radio - Alarm with 9 min. Snooze feature - Programmable play-10-sleep setting METAC PRICE ONLY £19.95	L LED CLOCK tic brightness control d alarm cance! e snooze alarm
	STYLE RADIO Medium wave Long battery life. Good sound reproduc. tion SPECIAL OFFER $£ 2.45$	CASIO SPORTS WATCH Model F-100 Black plastic case. (Epoxy based glass filled nylon.) Stopwatch. 11 functions. METAC DISCOUNT PRICE £23.95	CASIO CHRONOGRAPH 45CS-22B $£ 49.95$ CASIO WORLD TIME WATCH 29cs-11B $£ 59.95$
METAL DETECTOR BFO Principal Audiulle indication Telescopic stem Ideal for beginners but also excellent for finding hidden pipes and wires ONLY £11.95	CBM ALARM WATCH Superb 6 digit. 8 function alarm watch. with snooze repeater and conference warning bleep (It bleeps once 4 seconds belore alarm sounds giving option to cancel). Hours. Mins. Hours - Mins - Secs - Day Date - Month. Back Light Auto Call. Top quality 'CBM' finish metac price $£ 29.95$	CBM EXTRA LARGE DIGIT 5 FUNCTION LCD * Hours mins secs * Month date Auto * Back-light - Real leather strap * Big digits in a slim 9 mm thin case * Digits 50% larger than all other watches. METAC SPECIAL OFFER $£ 9.95$	
	A fabulous new toy will give hours of fun. Forward and reversing controls. Outdoor range 150 ft Indoor range 50 ft A scale model of Bertoni's famous Lancia sports car List price as sold in well-known mail order catalogues and top stores, E16 METAC SPECIAL CHRISTMAS PROMOTION OFFER		AO-1000 CALCULATING ALARM CLOCK PLUS 3-WAY STOPWATCH * Calculator winh \%, y^{8} \& memory. * Continuous click wan * his. mins. seccs. day. month. day of week - Alarm Stap-watch with $1 / 10$ secs to 10 hours + Isp and split-lime modes. Ist and 2nd. - Balteries last 1 year continuous operation - Cimarsions $x^{\prime \prime} \times 2 \%^{\prime \prime} \times 4 \%^{\prime \prime}$ in Complele with leatheretie wallet LIST PAICE £21.95 METAC SPECIAL EXCLUSIVE PRICE £19.95 Cannot be tound cheaper anywhere else
GOOD QUALITY CALCULATOR MODEL 3000 $x \div+$ - memory constant 8 digits with red dis play METAC SPECIAL OFFER $£ 3.95$	ALARM CHRONOGRAPH WITH DUAL TIME ZONE FACILITY - Constant LCD display of hours and minutes, plus optional seconds or date display, plus day of the week and arpetual calendan date, month and year 24 hour alarm with on/ off indication / 100 second chronograph measuring net. second place times. - Dual ume zone facility Night light.	TOILET-ROLL HOLDER Wall mounting reel type. Incorpo-- rates good quality medium-wave transistor radio. $\underset{\substack{\text { OFFER } \\ \text { OPECIAL }}}{\text { S4.90 }}$ - Fully adiustable bracelet. Please note Metac are probably the only people with this watch in stock Avery good alarm watch METAC PRICE ONLY £37.95	PLEASE NOTE All our products carry full money back 10 -day reassurance. Watches are despatched by FIRST-CLASS POST. They are fitted with new batteries, and include guarantee and instructions. Battery fitting service is available at our shops for no extra charge. We stock most watch batteries and this service is available to all. Metac have been selling electronic watches probably longer than anyone else in the UK. We take care of your watch not just this year but next year and the years after that.
67 HIGH STREET			

CAR ALARM

THERE IS ONLY ONE way to ensure that you never have a car stolen and that is not to be stupid enough to buy one in the first place. However accepting the fact that many of us will feel the need to own a car how do we ensure that it remains ours amongst the ever increasing crime levels in this country. Well you could do worse than to fit the alarm system described here. Not only does this system protect the car itself, monitoring all doors and disabling the ignition when set, but also offers protection to the car's accessories.

The alarm provides an entry and exit delay before the horn is sounded, this means that there is no need to fit an external lock switch to the car. When leaving, the concealed alarm switch is activated whereupon the owner has 30 seconds before the alarm is set. On entry a 15 second delay is provided.

When triggered the system will sound the horn intermittantly for two minutes before resetting. However, if the initial cause of the alarm is still present, the alarm will retrigger.

The alarm provides for both active high and active low inputs allowing all types of sensor to be employed.

An additional accessory protection module provides an independent monitor of the car's accessories.

Construction is quite straightforward. The use of Incar connectors will allow the unit to be readily fitted and removed from any

Compu-Tech Systems of 7 Sandhole Lane, Lt Plumstead, Norwich, NR13 5 HZ will supply a complete kit of parts for this project.
car. These connectors should be fitted first. The rest of the components can then be fitted as shown in the appropriate overlay. Note that any polarity sensitive device is mounted in the correct position. The main board's jumper should be fitfed when construction is complete. If your car's horn has one wire coming from it fit jumper A, if it has two wires with one going to earth also fit jumper A. If the horn has two wires neither going to earth, fit jumper B.

With construction complete the PCBs can be glued into the housing chosen for the alarm.

Installation of the alarm in the car must be left up to the constructor. The overall interconnection diagram is shown and it should be clear how to proceed in general. The detailed installation will however vary widely from car to car.

A straightforward, low cost design, with a number of sophisticated features, that should protect your car from unwelcome attention.

PROJECT

pultsest tuE on yellom/maure.

$H \angle 1 A$

To the far left is the foil pattern for the main contris unit while left is the accessory module's PCB layout.

In the quiesent state with the alarm defeated via Sl the following logic levels are present at the outputs of the gates indicated. ICla-0, IClb-1, IClc-0 ICld-0, IC2a-1, IC2b-0, IC2c-0, IC2d-1, transistor Q1 is cut-off, and RY1 is de-energized. R12, ZD1 and C6 form an overvoltage and electrical noise suppression circuit that protects the power supply rail of the circuit from spikes and battery overvoltage. The input of ICla is held at logic 1 by pull-up resistor R1. R2 protects the input of ICla from noise spikes.

If an earth appears at the inputs taken to D2 and D3 the logic 1 normally present at the input of ICla changes to logic 0 which is inverted to a logic 1 by ICla and connected to pin 5 of IC1b. D2 and D3 isolate the two inputs from each other. The input at D2 has a special function which is explained at the end of the text. Pin 6 of IClb is held at Logic 0 by pull-down resist R4. R3 and Cl form a noise suppression circuit for this input. If this input goes to +12 volts a logic 1 will be present at pin 6 of IClb . Thus under normal conditions both inputs of IClb are at logic 0 and in any alarm condition the input (s) will be at logic 1. Any logic 1 at the input of IC1b will force it's output to logic 0 . R5 and C2 form another noise suppression circuit to increase the noise immunity and prevent any noise spikes from reaching pin 13 of IClC .

Whenever Sl is in the DEFEAT position a logic 1 is present at pin 12 of IC1c and pin 1 of IC2b. This logic 1 is buffered by R9 (spike protection). With a logic 1 at pin 12 of IClc the output of this gate will remain logic 0 and ignore the input at pin 13 . The vehicles ignition system works normally with Sl in the DEFEAT position. By placing Sl in the ACTIVATE position an earth is placed across the contact breaker and the vehicles ignition system will be disabled. Also when Sl is in the ACTIVATE position the logic 1 is removed from R9 and C4 will begin to discharge thru R8, D6 prevents C4 from discharging into ICld.

In approximately 30 seconds C 4 will have discharged to the threshold of IC2b pin 1 and IClc pin 12 and a logic 0 will now be present at these points. The logic 0 present at pin 12 of IClc will enable it and any alarm condition sensed by the inputs will be reflected by a logie kibeing present at the output of IClc which is passedsto IC2a pin 5 . The 30 second delay after Sl changes states to the ACTIV ATE position and IClc being enablẹd is the EXIT delay.
IC A and IC2b form a set reset flip-flop with the normal state as a logic 1 at pin 4 of

HOW IT WORKS

IC2a. It is set by a logic 1 at pin 5 of IC2a (alarm condition) and is reset by a logic 1 at pin 1 of IC2b (defeated or timed reset/ validate condition). Once the flip-flop changes states it can only be changed back again by applying a logic 1 to the opposing input. Thus even a momentary logic 1 at pin 5 of IC2a would latch the flip-flop into the alarm status and initiate the alarm sequence. A momentary logic 1 would be generated by opening one of the vehicles doors and then closing it. When the flip-flop senses a logic 1 at pin 5 of IC2a it will change state and lock with a logic 0 at pin 4 of IC2a.
When the logic 0 appears at pin 4 two things happen: First C7 will begin to discharge through R13, D4 prevents C7 from discharging into IC2a. In approximatly 15 seconds C7 will have discharged to the threshold of IC2c and a logic 0 will be present. With a logic 0 at pin 8 of IC2c the 1 Hertz astable multivibrator formed by IC2c, IC2d, R10 and C5 is enabled. Pin 10 of IC2c will alternate between logic and Logic 1 at a 1 Hertz rate driving Q1 in and out of condition via R11. As Q1 goes in and out of conduction RY1 energizes and de-energizes, closing and opening the contacts. These contacts are wired thru jumper "A" or "B" providing a pulsating +12 V or pulsating earth which is connected to the horn circuit sounding the horn and raising the alarm. The 15 second delay between the flip-flop changing states (alarm detected) and the horn beginning to sound is the ENTRY delay.
The second thing that happen when the flip-flop changes states is that C3 will begin to discharge thru R7, D5 prevents C3 from discharging into IC2a. In approximately 2 minutes C3 will have discharged to the threshold potential of ICld and a logic 0 will be present. ICld inverts this to a logic 1 and presents it via D6 to pin 1 of IC2b reseting the flip-flop and to pin 12 of IClc inhibiting the alarm condition (if present) from reaching IC2a. When the flip-ffop resets a regenerative action takes place and beings to recbarge C3 and C7. When C3 has charged past the threshold of IC1d a logic 0 will be present at it's output and IClc will be enable in a few seconds as the small charge placed on C4 prior to the regenerative action will have discharged thru R8. If the alarm is no longer present C 3 and C 7 will completely charge and the alarm will reset and wait for another intrusion. If the alarm condition is still present the flip-flop will again latch and the small charges that developed on C 3 and C 7 will discharge thru R7 and R13 respectively
in a few seconds. Thus every two minutes the alarm witl reset itself for approximately 3 seconds and then start over again.

This cycle is the RESET/VALIDATE cycle and is provided to prevent the battery from being completely dicharged by a momentary intrusion. The input $T(O D) 2$ is a special function input and is for use with the accessory protection module. When this input goes to earth C7 is imnnediately discharged via Dl and the alarm will begin to sound, R6 prevents IC2a from being destroyed by the pull-down action. This earth is sensed by ICla and will latch the alarm (providing the exit delay cycle is complete). This input is verified by the RESET/ VALIDATE cycle in the manner described above. The main ACTIVATE/DEFEAT switch Sl does not affect this input making it completely independent of the main system.

Accessory Protection Module - Theory of Operation

In the quilesent state IC3a output is logic 1 and the output of IC3b iis logic 0. Under normal conditions, i.e. no alarms sensed, all inputs to IC3a will logic 0 (sunk to earth via R14, R16, R18, R20 and the sense wires). The input to IC3b will be open or at +12 volts, R23 being the pull-up resistor for an open circuit, R23-C13 are noise suppression components. C8 by-passes any noise present on the supply rail to earth. If any of the sense wires open R15, R17, R19, or R21 will pull the respective input to logic 1. C9 thru C 12 in conjunction with R14, F16, R18, R20 form a noise suppression circuit for these inputs. Any logic 1 present at IC3a inputs will result in a logic 0 at the outpiut which is connected via buffer resistor R22 to the unit's output. This is connected through ACTIVATE/ DEFEAT switch S2 to the main control unit. S2 has been provided to make the accessory protection system indlependent of the main system and will normally be activated continuously.

An earth at the active low I/P will force the output of IC3b to logic 1. This logic 1 is coupled via D9 to IC?la forcing pin 5 to logio 1 regardless of the status of the sense wire this will result in a logic () at the output of IC3a as explained above. $D 9$ is provided to that IC 3 b can only force pin 5 of IC3a to logic 1, it cannot force it to Logic 0 .

Any time a logic 0 is present at terminal () and $S 2$ is in the activate position the alarm will sound immediately as explained in the description of the main control unit.

OSTS now from ambit international

911223 ultra low THD IMD mpx decoder module $£ 9.95 \quad 944378$ 'Hyperi' with 2.9v bia

counter httrattions:

New this month from Intersil, the ICM 7216. This is probably the most significant new IC for frequency counter/timer applications ever devised. It drives a full 8 digit display (LED) and operates on inputs of up to 10 MHz minimum. The single 28 pin DIL also has: The IC cost is $£ 19.82$, and the 10 MHz HC18U Xtal $£ 2.50$ (for timebase functions). The circuir data is free with the IC, or $£ 1$ purchased separately. Input preamp board $£ 7.00$. Now from Ambit is the MC3357. 6v, 2mA standby NBFM IF, detector and squelch with 10.7 - 455 kHz balanced mixer, onboard oscillator device, and 5 uV sensitivity, It is Please note that OSTS prices exclude VAT at 8% throughout this side of the page: Most ambit items are at $12 \% \%$ except those marked : Please keep orders seṕarately totalled,

TLL:Standard AND LP Schottk ${ }^{\text {aitaters }}$

From the Warld's leading radia innouation saurce:

low low cost UHF dual gate MOSFET - the BF960 from Siemens. With a gain of 18 dB , and gain is 23 dB , and NF only 1.6 dB . Combine these figures with the famous ease of use of a dual gate MOSFET, and you have the easiest and most effective front end device yet.

Moving Coil Meters

Ambit offers a very wide range of low cost meters, together with the unique 'Meter Made' scale system for professional grade scale customizing:			
Series S	Scale Area	illumination cost ${ }^{\circ}$	cost ${ }^{\text {c }}$
$900 \quad 14$	$14 \times 31 \mathrm{~mm}$	internali 12 v 250p	250p
920 30	$30 \times 50 \mathrm{~mm}$	from behind $275 p$	275p
930 36	$36 \times 63 \mathrm{~mm}$	internal 12v 375p	375p
940 twin 3	$35 \times 45 \mathrm{~mm}$	frombehind 350p	350p
95055	$55 \times 45 \mathrm{~mm}$	from behind 300p	300p
Stock movement $200 \mathrm{uA} / 750 \Omega$. The 930 series is 5% linear. others are 77uA at 50\% FSD. These and many others avallable in quantity for OEMs SAE for full scale details please. (Not in car.!			
Radio; Audio; Comms ICs:			
Only the very bast quality and only types we have used in our own laboratory tests Fadio frequency + mixers + oscillator(s)			
TOA1062 OC to VHF front end system 1.95 TDA1083/ULN2204 $\mathrm{am} / \mathrm{fm} / \mathrm{audio}$ in one IC 1.95			
TDA $090 / \mathrm{L}$ (N2242 $\mathrm{am} / \mathrm{mm}$ hifi tuner system			
HÅ1 197	LF/30MHz	z am receiver system	
CA3123E/UA720 LF/30MHz linear			
TBA651	LF/30MHz	z linear syster	1,8
S06000	OMOS RF/	/Mixer pair	
IF amplifiers			
CA3089E/K 84402 famous FM			
HA1137W/K	K 4420 as 30	$3089+$ deviation	2.
CA3 189 E	update with	th deviation mum	
TBA120a/SN	N76660N FM	M it and detec	0.75
TBA120S	hi gain vers	sion TBA120	
MC1350P	agc If amp		1.20
MC1330P	synch AM	demodulator	1.35
MC1495L	prectsion 4	4 quad multiplier	6.86
MC1496F	popular dou		
Communications circuits			
K84406	differential	amplifier	
K84412	2 bal mixer	ers/agc/gain/doub.conv	
K84413	am/fm/ssb	det. AGC, ANL, mute	
K84417	3 mV mic pr	processor preamp	2.55
K84423	FM noise bl	blanker syste	2.55
Audio preamps			
LM381	stereo high	gain/low THD	1.81
LM4 303	stereo audio	io optimized OA	0.99
TVA1054	high quality	ty with alc option	1.95
KB4417	see above		
Audio Power amps			
TEA810AS	7W RMS ov	overload protected	1.09
TDA2002	$8 \mathrm{~W} / 2 \Omega$ in p	pentawatt package	2.95
TDA2020	15W RMS	hifi power de couple	2.99
TCA940	10w higher	er voltage 810	1,80
ULN2283	1W 2.5 to 1	12 v supply capabilit	1.00
LM380N8	1 W power		1.00
LM380N14	2.5 W powe		1.00
HA	Hifi 15w in	easy heatsink pack	2.99

Sories Scale Area illumination cost ${ }^{\circ}$ $92030 \times 50 \mathrm{~mm}$ from behind 275 p 940 twin $35 \times 45 \mathrm{~mm}$ from behind 350 p $95055 \times 45 \mathrm{~mm}$ from behind 300 p is 5% linear. others are $77 U A$ as 50% FSD. These

UA 758 Buffered version of LM1307/UA707 nen
 LM1 307/uA707 non pil type HA196 advanced adi.sep pll low tha HAll223 newpllot cancel low thd/ima All ambit decoders ore suoplied with the bescon of your choice. Please state colout
 Discrete semiconductors
 $\begin{array}{llllll}\text { BF900 } & 80 p^{\circ} & 40673 & 55 p^{*} & 40822 & 43 p^{\circ} \\ 40823 & 51 p^{*} & \text { MEM680 } 75 p^{*} & \text { BF256S } & 34 p^{\circ}\end{array}$ Most types for most RF circuitry, inc. new UHF Tackage types etc- See price list.... Hitachi VMOS 100 W power devices: Hitachi 2SK $134 / 2 S J 48 \quad 100 \mathrm{~W}$ comp. VMOS. Data and circuit info $£ 1$, and the devices themselves for $£ 14.00$ a pair * OISCRETE LEO, from Telefunken square Orange he high efficiency $L=$ lens end

 $\frac{\text { Switch Systems: Check our combinations ! }}{\text { A very wide selection of BOTH Alps SUB }}$ series units, 'Schadow/AB/Oreor compatiblel \&the minizture Dialistat units. Avsilabla in DIY
systoms for maximum flexibility and low cost.

And Finally

Further details of these, and many more of the wonders of the world of wireless in the
new Ambit catalogue. - with magazine supplement. $45 p$ inc $p p$ etc. Phone (02771 $216029 / 227050,9 \mathrm{am} .7 \mathrm{pm}$,

Coils \& Filters by TOKO please note that some prices are increased as a direct result of the failure of E versus stronger trading currencies. (Mainly Yen)

7 \& 10 mm 1FTs for AM/FM - 1000s es | $755 / 470 \mathrm{kHz}$ | most types of appens | 30 p |
| :--- | :--- | :--- |
| 10.7 MHz | | 33 p | Short Wave Coils sets Now two ranges of impedance/coupting ea 33p TV video and sound IFs/detectors

Another new range in 10 mm
6 MHz ceramic IF sound filter
33 D
80 p
Molded VHF coils full catalogue 15p Utera stable coits for $30 \cdot 200 \mathrm{MHz}$ from 20 p Most E12 values ex stock, any to order
8RB series 100 uH to 33 miH
FM IF FIL TERS caramic 33p FM IF FILTERS ceramic and linear phas

CFSE/SFE10.7 stereo ceramic IF 10.7 MHz \begin{tabular}{ll}

CFSE 10.7 \& filters in 5 groups

monolroofing IF filter \& 50

\hline

 $\begin{array}{lll}\text { B8R3125N } & \text { mpole tinear pahe } 10.7 \mathrm{MHz} & \text { 50p } \\ \text { B8R } \\ \text { B8132 } \\ \text { Gpole tinear phase } 10.7 \mathrm{MHz} & 250 \mathrm{p}\end{array}$ MPX pilot tone filters for 19 \& 38 kHz $\begin{array}{lll}\text { BLR3107N } & \text { Stereo } 4 \mathrm{k} 7 \text { infpedance } & 215 \mathrm{~F} \\ \text { BLR2007 } & \text { Stereo } 3 \mathrm{k} 3 \text { impedance } & 220 \mathrm{~F} \\ \text { BLR3152 } & \text { Mono } 4 \mathrm{k} 7 \text { impedance } & 100 \mathrm{p} \\ & & \end{array}$

BLR3152 \& Mono 4k7 impedance \& 100 p

BLR3157 \& Mono $4 \mathrm{k} 7 / 3 \mathrm{k} 0 \mathrm{imp}$ \& 100 p

\hline AUSH/FSB \&
\end{tabular} AM/FM/SSB IF FILTERS

Tuner Modules
From the biggest and best range. TUNERHEADS for $88-108 \mathrm{MHz}$ band 2 ivaricapl
EF5803 6 cct . 3 MOSFETs, amp. osc. 1975

EF5 $\begin{array}{llll}\text { EF5803 } & 6 \text { cet. } 3 \text { MOSFETs, amp, osc. } & 19.75 \\ \text { EF5801 } & 6 \mathrm{ct}, & 2 \text { MOSFETs. osc op } & 17.45 \\ \text { EF5600 } & 5 \mathrm{cct}, \text { MOSFET RF, by TOKO } & 14.95 \\ \text { EF5400 } & 4 \mathrm{cct} \text {, }\end{array}$ \begin{tabular}{lll}
EF5400 \& 4cct balanced mixet/Din agc \& 9.75

EC3302 \& 3ct $F E T$ input miniature \& 8.25

\hline YUNE ASETS by \&

\hline

 $\begin{array}{llll}7252 & \text { Oual MOS head/low dist IF } & 26.50 \\ 7253 & \text { FET Heal }\end{array}$ $\frac{7253}{\text { IF AMPLIFIERS all with deciation mute, agc. }}$

afc, meter drives etc \&

\hline 7020 \& HiGain dual cerramic filter \& 6.95

7030 \& Mos preamp, Inear phase filter \& 10.95

7020 \& NiGain dual ceramic filter \& \& 6.95

7030 \& Mos preamp, Iliear phase filter \& 10.95

7130 \& 2 mos preammp, 3 Ipfilters \& 16.25

NBFM1 \& $455 / 470 \mathrm{kHz}$ NBFM module \& $\mathbf{9 . 9 5}$

\hline
\end{tabular}

MPX decoders, all with pilot tone fitters and
ouffer amplifiers for min 300 mV RMS
92310 1310 tas. $\begin{array}{lll}92310 & 1310 \text { based system } & 6.95 \\ 93090 & 3090 \text { AO based system } & 8.85 \\ 91106 & \text { HA1196 } & 8.899\end{array}$ 91196 HA HA196 based + birdy filter + 1299 911223 HA11223 based system AM RADIO.
91197 The origlnal MW/LW varicap The origlnal MW/LW varicap
tuner with elactronic switch
The uniband tuner module \qquad AM FM:RADIO UNITS 71083 provides a complete Sing TOA 1083 , provides a complo
MW/LW/FM portable radio chassis 710830 Drive/dial svstem for 71083 SPECIALS: TUNERHEADS in
$40-20 \mathrm{MHZ}$ to sDecial order $40-200 \mathrm{MHz}$ to special order
The EF5803 and EF5400 are availeble 10 The EF5803 and EF5400 are availeble 10
cover bands in the region described. The co cover bands in. The region described, The costs
depend on quantity and actusi mords required
cover the dessired band. Max coverage apopox. 20% of centre frequency selected. Also, please 20% of centre frequency selected. Also, plat
allow $3-5$ weoks delivery for these litems.

2 GreshamRoad, Brentwand, Es5eh.

HOW IT WORKS TELEVIIION RECEIVERS

Abstract

Ever wondered just how your TV actually works - all those cunningly interconnected and interrelated bits of high-voltage circuitry? Gordon King takes a good long look in this, the first of a series of How It Works articles based around consumer electronics products.

THIS FIRST ARTICLE in the 'How It Works' series looks at monochrome television based on a recent mains/ battery chassis from Thorn Consumer. Electronics. In addition to prodiding an insight into modern television technology the article is also styled to give a fair impression of how the picture is developed on the screen of the picture tube. The basic principles are common to all receivers except that for the reception of colour there are circuit additions for the decoding of the colour information (and a tricolour tube for display!)

Sound and vision signals are modulated on to two carrier waves, the former using frequency-modulation (FM) and the latter amplitude-modulation (AM). On the prevailing UK 625-line system the signals are transmitted in Bands IV and V which are located in the UHF spectrum. Each channel occupies a width of 8 MHz with the sound carrier being 6 MHz above the vision carrier. For example, Channel 21 has sound and vision frequencies of 477.25 and 471.25 MHz respectively,

Fig 1. Circuit diagram of UHF varicap tuner, which uses two RF amplifiers and a mixer stage. Resonant lines tuned by capacitor-
while the frequencies for Channel 68 are 853.25 and 847.25 MHz .

Vision modulation is negative-going (see Fig. 3) and is transmitted in 5.5 MHz upper sideband and 1.25 MHz lower sideband. Peak FM deviation is 50 kHz (as distinct from 75 kHz on FM sound radio) based on 50 uS preemphasis. Ratio of peak vision to peak sound power is 5.1. Further information on the signal is given later.

Tuner-Front-End

The start of any television receiver is the 'front-end' or tuner (Fig. 1), whose job it is to select the required channel and to convert the sound and vision carriers to lower frequency ones for subsequent intermediatefrequency (IF) amplification and response tailoring. In Fig. 1 the aerial signals are coupled to an aperiodic RF amplifier, VT1, through an 'isolator' for preventing spurious mains voltages in the receiver from reaching

the aerial at lethal power! The transistor is in commonbase mode so that the input is applied to the lowimpedance emitter. Further input matching is provided by the emitter components and the base is biased either from a constant potential or from an AGC potential (see later)

VT2 is a tuned RF amplifier, also in common-base mode, but the tuning is by resonant lines rather than coils. Any transmission line whose length is adjusted to correspond to a tuned frequency is the equivalent of a tuned LC circuit. An open-circuit line is resonant at $1 / 2$, $3 / 2,5 / 2$, etc. wavelength. Excluding velocity factor,
the, physical length of a line for, say, Channel 33 would be around 280 mm . Happily, it is possible to reduce the physical length while retaining the required electrical length by cutting off the ends of the line and replacing them with capacitance, which reduces the physical length to about 50 mm . Moreover, tuning the channels then becomes a question of varying the capacitance at one end

Looking at line L6 in Fig. 1 shows that the bottom connects to varicap W1 and the top to C8 and VT1 collector capacitance. A varicap is essentially a junction diode. As the reverse bias is increased so the depletion

Fig. 2. Circuit diagram of complete monochrome receiver. This is the Thorn 1690-1691 chassis as used in the latest Ferguson mains / battery portables. See text for full description.
region widens, and as this constitutes the dielectric between the n and p regions. The effect is tantamount to the two plates of a capacitor being moved away from each other, with a consequent reduction in capacitance ${ }^{*}$. The four varicaps in Fig. 1 are biased by a positive potential being applied to the 'tuning volts' input. The potential is obtained form a stabilised (by IC 1) supply in the main chassis (Fig. 2) via tuning potentiometer R39. Thus as this control is tuned so the resonance frequency of the lines alter in step and tune over the UHF channels.

The second RF amplifier stage VT2 starts to give selectivity. Emitter coupling is via low impedance aperiodic line L7. Further selectivity is provided by the bandpass coupling between VT2 collector and VT3 emitter formed by lines L11, L12, L16 and L14, tuned
by varicaps W2 and W3. Common-base VT3 uses collector/emitter feedback for the local oscillator tuned by line L17 and varicap W4. Line L15 couples the RF signal to the oscillator/mixer stage. The circuits are trimmed by L5, L10, L13 and L18 (so they all tune in step), while the closed lines L3, L8 and L21 also assist with the tuning and matching

The oscillator is arranged to operate at the IF frequency above the input frequency, and additive mixing yield's the IF output, which is resonated by L23 and associated components. The IF signal is coupled to the IF input of Fig. 2 via C30. The high degree of selectivity minimises spurious responses such as image, IF, repeat spot, etc., while also providing a good 3rd-order intermodulation rejection ratio. This is further

Oscillograms
These were taken from a typical receiver at the points indicated by corresponding letters in the circuit diagram. The voltage and time figures refer to the sensitivity per division of the graticule. The receiver was set up for normal reception (test card with tone on sound) and the oscillograms were taken via a +10 probe having an input capacitance of 12 pF in parallel with $10 \mathrm{M} \Omega$. The mixed mode timebase facility was used for G and M.

aided by the nature of the transistor and design of the first stage VT 1

The circuit also reveals various signal coupling, decoupling and isolating components, which are essential for the stable performance of this important part of the receiver. The tuner is built into a fully screened box with feed-through capacitors for the inputs and outputs.

IF Channel

Sound and vision signals of the selected channel undergo amplification with bandpass and selectivity tailoring in the IF channel comprising VT1/2/3/4. Tuner signal is applied to VT1 base from the tuned coupling L1/C3, and the amplified and bandpass defined output is yielded by transformer L7a/b. Gain is controlled automatically (AGC) to suit the level of the
input signal by a bias fed to the bases of VT1 and VT2. The four stages are each in common-emitter mode, ànd impedance matching at the couplings is achieved essentially by capacitor divide-down.

The bandpass characteristic is provided in the main by L1/C1/C3/C10/R1 at the input and by L7a/b at the output. Additional selectivity is provided by collector inductors L2/L3/L4, while sound and adjacent channel sound rejections are introduced at 33.5 MHz by L5/ $\mathrm{C} 18 / \mathrm{C} 19 \mathrm{MHz}$ and at 41.5 MHz by $\mathrm{L} 6 / \mathrm{C} 21 / \mathrm{C} 22$.

With the 625 line system (system ' I ' is used in the UK) the sound carrier is 6 MHz above the vision carrier, but because the local oscillator of the tuner is working at the IF above the signal frequencies, the IF appears at 33.5 MHz for sound, which is 6 MHz below the 39.5 MHz vision IF. The sound and vision signals are handled simultaneously by the IF channel, which is possible because frequency modulation (FM) is used for the sound signal. Vision bandwidth of the ' 1 ' system is 5.5 MHz upper sideband, accommodated by the IF bandwidth, and overall channel width 8 MHz .

Vision Detector

Sound and vision signals from L7b are coupled to vision detector W1, which yields a changing amplitude output corresponding to the picture information (Fig. 3) and also an output at 6 MHz resulting from intermodulation of the sound and vision signals by the diode nonlinearity, the difference frequency of the two signals being 6 MHz . The intercarrier sound signal (as it is called) retains the FM of the sound signal because this is one of the components from which it is derived.

If the ratio of the levels of the sound and vision signals is incorrect a buzz occurs on sound - called intercarrier buzz. Hence the reason for the 33.5 MHz trap, which sets the sound signal level below that of the vision carrier while helping to establish one side of the bandpass. The 41.5 MHz trap avoids the sound signal from the next channel causing interference while helping to establish the other side of the bandpass. The vision carrier is set 6 dB down the response to equalise for the single side band signal.

Video Channel

Picture and intercarrier signals from W1 are directly coupled to the base of the video driver VT5 via low-pass filter L8/C27/C28, which removes residual IF signal. VT5 collector is loaded into transformer L10 which tunes the 6 MHz intercarrier signal and couples it to the sound section for FM demodulation and subsequent pre and power amplification for driving the loudspeaker.

VT5 also serves as an emitter-follower for the video signal with network R26/R27/R32 as the load. The signal across this is directly coupled to the base of the video output transistor VT7, which feeds negative-going picture signal to the cathode of the picture tube from its collector. A series rejector L9/C46 tuned to 6 MHz is also active at VT7 base to prevent intercarrier signal from getting into the video output stage, where it would cause picture interference. The level of video signal reaching the tube is adjustable by R47, the contrast control, which is a kind of current feed-back control working by the progressive shunting effect across R47 emitter resistor by R48. C49 is a DC isolator. Video-frequency compensation is also provided by capacitors in. the feedback loop.

Automatic Gain Control (AGC)

VT5 base is biased from a resistive divider complex (R24/R33/R22/etc.) from the supply rail. It is also partly biased from. rectified IF signal at W1 anode, and since direct-coupling is used an increase in IF signal level results in a reduction in positive bias at VT5 base and hence a fall in potential across VT5 emitter load.

The voltage across R32 (the preset contrast control part of the load) is fed to the base of the AGC amplifier VT6 at a level established by the setting of the control. Because VT6 collector is energised via W3 from positive-going 5 V pp pulses derived from a winding on the line output transformer (bottom right-hand corner of Fig. 2, next to the picture tube), the transistor conducts only during the line sync pulses when there is no picture content which the AGC circuit might otherwise falsely read. The degree of conduction and hence the level of the collector potential are determined by the DC level of the line sync pulses at VT6 base. This is called line-gated AGC.

Thus with increase in input signal level (such as when tuning to a stronger channel) VT6 is turned down and the positive potential at its collector rises. This is reflected via forward conducting W10 to the bases of VT1 and VT2 by way of R2/R6 and the filter consisting of C34/C35/C36/R35, which removes line pulses. The small-signal transistors VT1 and VT2 are the type designed for forward AGC; that is, increased gain reduction resulting from positive-going AGC potential.

The preset contract control R32 sets the operating range of the AGC. With a test card signal of average strength the control is adjusted for 1.5 Vpp picture plus sync signal at VT5 base.

Some sets include delayed AGC for the tuner RF amplifier which comes into effect after the gain has been reduced initially on a strong signal by the IF AGC; but for the monochrome portable this is barely necessary as maximum front-end gain is generally necessary for most of the time for the best signal-to-noise ratio when a simple set-top aerial is utilised. It will be seen that the tuner 'block' in Fig. 2 has an AGC input which, in this model, is terminated to a supply potential-divider.

Field Timebase

The electron beam needs to be deflected both vertically and horizontally to build up the raster upon which the picture appears. The vertical deflection is handled by the field timebase which deflects the beam from the top to the bottom (scanning stroke) and then very swiftly back to the top again (retrace) at 50 Hz repetition rate.

This is achieved by a 50 Hz sawtooth current passing through the field scan coils (L15) on the tube neck.' The oscillatory requirements are provided by the freld oscillator VT 18/19, which is an RC multivibrator. The retrace is initiated by the arrival of a field sync pulse at VT18 base (see later), while the repetition rate is determined by the vertical hold control R116 with R117/118 and C102.

Consider the circuit during the scanning stroke when a rising voltage (ramp) occurs at the base of high-gain amplifier VT20 owing to C 104 charging through R127/128. This turns on VT20, VT22 and VT24, and turns of VT21 and VT23. At the conclusion of the stroke VT24 is fully 'bottomed', at which time a positive-going
pulse from VT1 19 collector 'hits' the bases of VT21 and VT22 via the multivibrator isolating diode W19. The pulse is initiated from the field sync action. The retrace is thus triggered by VT2 21 and VT23 turning on, and VT 22 and VT24 turning off.

During the retrace, VT24 collector voltage rises at a rate established by the L / R ratio of the scan coils, and when the supply line voltage is exceeded W21 goes in to reverse conduction and VT23 is isolated. The rate of rise is then defined by C109. After a peak, the retrace voltage falls until W21 goes into forward conduction again. This allows the remainder of the retrace energy to be fed back into the supply line, after which the scanning stroke recommences.

The resulting rise in current through the field scan coils during the scanning stroke produces a magnetic field such that the electron beam is drawn downwards. To avoid vertical non-linearity fo the display the rate of change of current must be linear. Owing to resistive losses in the scan coils and circuit non-linearities, a slight correction to the current waveform is required, and this is achieved by a parabola waveform produced by R138/R137/C106 being added to the ramp via the linearity amplifier VT20. The degree of correction is adjustable by the vertical linearity control R137.

When the retrace is initiated the rapid reversal of scan coil current deflects the beam swiftly upwards to start a new downward scan, and during the retrace diode W20 goes hard into forward conduction so that the base of VT20 is clamped to earth.

Line Timebase

Horizontal deflection of the beam is achieved by the line timebase driving a sawtooth current wave through the line scan coils (L14) during the scanning stroke, Deflection is from left to right, and at the end of the scanning stroke a swift reversal of current deflects the beam back to its starting point again. During the retrace a considerable amount of energy stored in the inductive elements of the line output stage is released to provide the extra high tension (EHT) for the final anode and the high voltage for the first anode (A1) of the picture tube. Boosted voltage is also used to energise the line output transistor VT17 once the line oscillator has started.

Line repetition rate of the 625 line system is 15625 Hz . Thus the horizontal rate is significantly greater than the vertical rate. We have seen that in the UK the vertical rate is 50 Hz . This means, then, that a raster of $3121 / 2$ lines is produced ($15625 / 50$). For a complete picture there are two vertical scans, each producing a raster of $3121 / 2$ lines, so that the complete picture is made up of 615 lines and produced every twenty-fifth of a second (in actual fact not all the lines are used for the picture as some occur during the field sync period when the electron beam is cut off).

A complete full-line-picture is achieved because the scanning lines of one field interlace in the spaces between the lines of the partnering field. To obtain 625 lines without interlacing the line frequency would need to be increased to 31250 Hz . This in turn would call for a greater rate of change in beam intensity and hence spot brightness to trace out the fine detail over each line, and because a greater rate of change of signal amplitude involves a greater bandwidth, more radio space would be needed to accommodate the picture detail of each
channel. With the 5.5 MHz vision bandwidth of the ' 1 ' system good defninition is obtained at the 15625 Hz line rate.

Interlacing could be avoided without using up extra radio space by reducing the field rate to 25 Hz , but then the picture would suffer bad flicker (subjectively apparent up to about 45 Hz). Interlacing thus solves the problems of bandwidth and flicker without unduly detracting from the displayed information

Returning to the circuit in Fig. 2, the line frequency is established by a blocking oscillator incorporating VT 15 Forward base bias through R83 turns the transistor on so that the current through the collector winding of L12 rises. The reversed phase of the other winding puts a negative-going pulse on the base which cuts the transistor off. The on/off cycles are timed by L12/C83/ C84 with the oscillator in the free-running mode, the frequency being set by L 12 core. The oscillator is synchronised to the line pulses of the signal (as will be explained later).

VT16 amplifies and shapes the pulses from VT15 emitter and transformer T3 couples them to the base of output transistor VT1 17 . The pulses switch this transistor on during the scan so that current flows through the upper left-hand windings of the line output transformer (LOT) T1 and scan coils L14. Because the coils are essentially inductive the current rises as a fairly linear ramp. However, because the effective length of the beam changes with scanning stroke owing to the wide scanning-angle and flat screen of a contemporary tube, 'S-correction' is required. This is achieved by C93 which reduces the rate of scan at the start and end of a line with respect to the centre. Further linearity correction and width adjustment are provided by a closed-loop sleeve set under the scan coils. The field produced by the current induced into this counteracts the non-linearity of the field produced by the scan coils themselves.

VT17 switches off at the end of a scan and the swiftly collapsing current through the scan coils and LOT windings returns the beam to its starting point and yields a high voltage pulse owing to the sudden release of the inductively-stored energy. The repetitive pulses are increased in voltage by the overwind at the top righthand side of T1, rectified by W14 and smoothed by a capacitance formed by the inner and outer conductive layers on the tube flare, the inner connetted to the final anode. The result is a potential of 11.5 kV for the final anode. After rectification by W15, pulses from the lower right-hand winding charge C95 to yield a 95 V line for the tube first and third anodes, video output VT7 (to provide about 50 V video swing for the tube) and varicap tuning.

Oscillatory energy is rectified by the booster diode W12 conducting during the retrace to charge C87/ C88. This not only damps the unwanted energy which would otherwise cause vertical lines at the left of the picture, but the potential developed from it is used to energise VT1 7 collector, and contribute to the line scan, thereby improving the efficiency of the line output stage. The stage also adopts 3 rd harmonic tuning of the pulses. This tends to flatten the tops of the pulses, which leads to improved EHT regulation. The tuning capacitor is C89 in parallel with a low-inductance disc capacitor C92 providing flashover protection.

Sync Stages

Video signal at VT5 emitter is coupled to the base of the sync separator transistor VT14 through R72/C72. On the 625 line system the picture signal is negative-going (modulation level falling with increasing brightness), and at the end of each line a line sync pulse occurs whose tip reaches 100\% amplitude, as shown in Fig. 3 a.

Composite video (picture plus sync) from VT5 emitter is fed to the base of VT14 (sync separator) which is biased to conduct only during the sync pulses so that they resolve free from picture signal at the collector. For line sync, coupling is to VT1 1 (sync amplifier/inverter). whose output drives 'flywheel' discriminator W6/W7 etc. The discriminator is also fed positive-going line pulses from the LOT via C94 which, after RC integration,

Fig. 3. BBC 625-line television signals. (a) One line of signal showing sync pulses. These keep the line scan in step with that at the transmitter, while the picture signal causes the deflected scanning spot on the face of the picture tube to change in brightness at a rate determined by the detail of the transmitted picture and by an amount governed by the brightness of the transmitted scene at any instant. (b) Pulses transmitted during the synchronising period at the end of one field scan and the start of the next (upper end of odd fields and beginning of even ones, and lower end of even fields and beginning of odd ones). The pulses provide correct interlacing while keeping the line timebase in sync during the field synchronising period (see text).

form a ramp whose phase is compared with that of the line sync pulses. Phase error results in a potential at the top of R 78 which, after being filtered by C78/C79/R82 to remove pulse residual, is applied to the line oscillator. As this is a VCO, frequency correction and hence line synchronisation are achieved.

From the end of one field scan to the start of the next one, five narrow equalising pulses are followed by five broad field sync pulses and then by another five equalising pulses. The width and spacing of the pulses keep the line synchronised during the field sync period, while the equalising pulses ensure equal blanking on both even and odd fields, and also identify the two fields for accurate interlacing by cutting off the picture half way through a line at the end of odd fields and starting it after a line is half over at the beginning of even fields, as shown in Fig. 3 (b).

It is worth noticing that test signals and certain teletext data are transmitted on blank lines - the latter at a bit rate of 7 megabits per second. The 1.55 and 5.8 us front and back porches to the line sync pulses provide time for the line retrace, and it is the 5.8 us porch which carries colour burst signal.

The positive-going field sync pulses at VT1 4 collector are integrated by C99/R124 and applied to VT 18 base through W18. The integration builds up a composite pulse for triggering the field retrace and attenuates line pulses.

Tube Biasing and Video Feed

During normal working the tube grid is held at chassis potential by W17. When the set is switched off W17 is reverse-biased and the charge held by C96 drives the grid negative, thereby suppressing the beam, while the supply voltages collapse.

Beaming current cut-off is set by 105 (brightness control) which merely adjusts the tube cathode potential. Video signal from VT 7 collector is also applied to the cathode, and as the signal is negative-going the beam current increases with increasing picture brightness. Beam cut-off or black-level is set by the brightness control so that the sync pulses drive the tube below black.

Sound Channel

Intercartier signal from L10 is fed to IC2 which incorporates a 6 MHz limiting amplifier; quadrature coincidence detector tuned by L1 1; voltage-controlled attenuator operated by the volume control R54 and an audio preamplifier for driving the class B push-pull output transistors VT9/VT1 2 via driver VT8. The bases of the output transistors are driven together from VT8 collector, which is possible because VT9 is NPN and VT12 PNP (a complementary pair). Quiescent current is set by R59 at 8 mA . Negative feedback is from the emitters of the output pair via R57 to VT8 base. Since the mains supply is isolated by transformer T2 it is possible to use a headphone set or earphone connected to jack J1

For those not familiar with the quadrature FM detector the following brief description may help. After passing through the limiting amplifier chain, the intercarrier signal is changed to squarewave and the signal fed two ways. one way to a synchronous detector and
the other way to a 90-degree phase shift circuit and thence to the synchronous detector. The synchronous or coincidence detector combines the two inputs vectorially so that the output consists of the vector sum which, relative to the fixed 90 -degree phase shift, changes with the FM deviation. The result is a variable width squarewave (pulse width modulation) which, after integration, yields the audio signal.

Power Supplies

The receiver can be operated from a 12 V car battery or the mains supply. On mains, isolation is provided by transformer T2 and full-wave rectification by W8/W9, with C70 the reservoir. The supply is fed to the emitter of series regulator VT10. VT 13 is the error amplifier which compares a ratio of the collector output voltage with a reference potential provided by zener W5. Starting current is provided by R66 and the base potentiometer R69 sets the output voltage for the correct value of EHT voltage. Stabilisation is effective over a mains input of $220-264 \mathrm{~V}$. The high $\mathrm{V}_{\text {be }}$ rating of VT10 provides automatic protection against reversed battery polarity.

Final Points

Finally, one or two minor points: SP1 at VT7 collector is a spark gap which liberates energy in the event of a flashover inside the tube, directing current away from VT7 collector. The tube is a quick-heat type whose heater is energised from the 11.3 V line and one which is happy with a relatively low focus electrode voltage.

Acknowledgement

I would like to thank Thorn Consumer Electronics and Mr. R. V. Arnaboldi and Mr. D. A. Pike of this Company for permission to use the circuit of the 1690-1691 chassis in this article.

ETIPRINTS are a fast new aid for producing high quality printed circuit boards. Each ETIPRINTS sheet contains a set of etch resistant rub down transfers of the printed circuit board designs for several of our projects. ETIPRINTS are made from our original artwork ensuring a neat and accurate board. We thought ETIPRINTS were such a good idea that we have patented the system (patent numbers 1445171 and 1445172).

ORDER TODAY

Send a cheque or P.O. (payable to ETI Magazine) to -
ETI PRINT
ETI MAGAZINE,
25/27 OXFORD STREET, LONDON W1R1RF.

Tpp...

WINE TEMPERATURE METER

Ensure your wine is at the correct temperature with this little idea from our project team

WINE, WOMEN AND SNOG - no not another misprint but ETI's updated version of that phrase that so aptly describes that which a young man's fancy turns to in spring, or any other time of year for that matter. We at ETI can't do much about the provision of the above items but this project will at least ensure that when you get your hands on one of them it will be in perfect condition. Before going any further let's make it clear that its the wine we're talking about in this connection.

In use the wine temperature meter's sensor is clipped to the plonk of your choice and the condition of the booze, with regard to temperature, read off from the three LEDs on the meter's front panel. To set up the instrument consult our table showing the range of temperatures considered acceptable

Above, the complete unit while below the sensor, a bicycle clip painted black with the sensor epoxied to it.
for the various types of wines. Turn RV2 fully anticlockwise and bring the sensor to a temperature that is in the middle of the desired range. Adjust RV1 until the centre L'ED just lights

Next lower the temperature of the sensor until it is at the lower temperature limit. Adjust RV2 until the lower LED is just extinguished.

Construction of the project is quite straightforward. Assemble all the components according to the overlay shown. Space is at a premium if the case chosen for our prototype is used so keep everything tidy.

Our sensor was made from a bicycle clip. The thermistor was epoxied to the clip - we smeared a small amount of silicon grease on the clip before mounting the sensor this provides a good thermal contact We coated the sensor in a layer of black paint when it was complete leaving the area under the sensor as bare metal.

Insert the battery and start getting your grapes as they should be enjoyed.

Circuit diagram of the wine temperature meter.

HOW IT WORKS

The project is based on the TCA965 window discriminator IC. This device can be used in a number of different modes, the one selected for this application allows the potentiometers RV1 and RV2 to set up a "window height" and "window width" respectively.
R1 and thermistor TH1 for a potential divider connected across the supply lines. The value of Rl is chosen such that at ambient temperature the voltage at the junction of these two components will be approximately half supply.

As the temperature of the sensor changes so the voltage will change and it is the temperature dependent voltage that is input to ICI.

RV1 will set the point which corresponds to the centre voltage of a windoe the width of which is set by RV2. The switching points of the IC feature a Schmitt characteristic with low hysteresis.

The outputs of IC1 indicate whether the input voltage is within the window or outside by virtue of being either too high or too low.

The outputs of IC1 are all open collectors capable of providing up to 50 mA . In our circuit however they are only required to drive a LED via a current limiting resistor.

BUYLINES

All the components for this project should be available from most local shops - no problems.

CHESS CHALLENGER "‘10"

"It's You Against the Computer'

TRANSFORMERS
Panel Meters, Bridge Rectifiers, Power Supply Unita Multimeters - Semi Conductors - Timers - Safebloc

Video games have only been around for a short period of time. The original units were developed by the Magnavox Corporation in America, with these early units you could play any game - as long as it was Tennis! Besides being reasonably boring, they were built from dozens of seperate logic devices and cost a small fortune.
The first major breakthrough, in cost and versatility, came from General Instruments - with their introduction of the AY-8500 game chip. The now famous (and obsolete) AY-8500, allowed you to play upto six games and also produced sound effects.
Since the days of the AY-8500 General Instruments have produced several other dedicated devices, allowing you to race a motorbike, command a tank and even drive a Formula One racing car (to name just a few). By continually introducing new and exciting products General Instruments have become the major T.V. game device manufacturer in the World.
Every time a new game is launched the electronic magazines publish a D.I.Y. version, but you always need a new case and U.H.F. modulator. By the time you have paid for all the bits \& pieces, the $£ 10$ chip has turned into a $£ 30$ project - and probably used up a lot of time.

Teleplay have developed the Programagame as the answer to the D.I.Y. enthusiasts need - for an inexpensive, easy to construct, up-to-the-moment, professional looking, full colour T.V. game system.

£12.90
Road race has two different games inside it. The first is a two player version, with a switchable handicap on the left-hand track. The second game is you against the machine, see if you can score 15 laps without crashing! Uses the normal Joystick.

The latest game from General Instruments, brought to you by Teleplay first! Based on the popular arcade game Breakout, the cartridge has 6 games built into it. On each of the games there are 3 variables - bat size, ball size and ball speed. The device type is an AY-3-8606. The games are single and double Wipeout, single and double Breakout, two player Wipeout with barrier,and solo Wipeout (not the same as single).

£14.90

You too can be a dare-devil Stunt Rider with the AY-3-8765 and special hand controls. With 4 different games, this cartridge is bound to give hours of pleasure over Christmas and the New Year.

Complete with special hand controls but without the Tank chip. Due to extreme supply difficulties we are unable to provide any Tank chips at present. If you have one of these AY. 3-8710 in your workshop why not take advantage of this $£ 6$ off offer.

COLOUR PROCRAMACAME

The Programagame uses a main console to house the U.H.F. colour modulator, and the ancillary electronics needed to play any of the available games - just slot in a game cartridge and pliay a new set of games! Add new cartridges as they become available and your colour game centre will be up to the latest lewel in T.V. game technology. You will save pounds in the long run, and get the extra pleasure from having built it yourself!

All prices are VAT and postage inclusive, order now and beat the Xmas rush! Kit includes full instructions and even the Mains adaptor has a plug fitted - the only tools needed are a small soldering iron, Phillips screwdriver and wire cutters. Assembly can be completed in an evening, with minimal electrical knowledge.
Cheques or Postal Orders should be made payable to TELEPLAY Send your order Freepost (no stamp needed) to: TELEPLAY, FREEPOST, BARNET, EN5 2BR.
Or telephone your order quoting your Visa or Access number. Personal callers welcome at our shop, units on demonstration.

14 Station Road, New Barnet, Herts EN5 10W Telephone : 01-440 7033 or 01-441 2922

EIECTRONICS IN MODEL RAILWAYS

A profile of how electronics is applied to a hobby which is essentially scale modelling. By Peter J. Thorne.

"'PLAYING WITH TRAINS" is probably how most readers would describe Model Railroading, the latter being the much preferred expression. Of course, there's a heck of a lot more who do just "play with trains". Names such as Hornby Dublo or Triang bring back memories of bygone youth to many an adult.

However, the hobby is not just one of running a train around a circle of track under the Christmas tree; the mature model railroader invests a great deal of effort into scale realism of operating models, structures, scenery and track. And if you tie that need for realism into the extensive growth of electronics as a hobby in the last tem years or so, you'll see why the expert on precision scale operation is keenly interested in how electronics can help this hobby.

Or, to look at it another way, there are so many variables possible in controlling several trains on a model railroad-as indeed there is in a real one-that it's not surprising that several companies have used model railroads at trade shows to demonstrate microprocessor versatility. A recent example was discussed in Byte magazine for July 1977.

Apart from computer control, which is really outside the scope of this short article, there are several uses for both digital and analog electronics in the model train empire. Let's discuss them in stages-control, signalling, lightirig and sound.

Control

Most model locomotives use 3,5 or 6 pole DC permanent magnet motors. A few use brushless, ironless rotor motors and a very few AC motors. Power is picked up directly from the two rails, and reversal of track polarity reverses the locomotive direction except in the case of the AC motors, where an extra 'kick" of AC triggers a reversing contact in the locomotive.

The Christmas train set power pack is nothing but a full wave rectifier delivering pulsating unfiltered DC to the track via a 100 ohm variable resistor as speed control. This gives very poor control at low speeds for the simple reason that stall current on a permag motor is much higher than its low speed current. Consequently there's a tendency for jackrabbit starts. Now the dyed-in-the wool hobbyists wants precise control of low speeds because nearly all layouts have miniature freight yards. box-cars and cabooses have couplers operated by magnet remote control so the operator can make up and break down his trains. The more or less ideal speed control-or one approach there to anyway-looks like the circuit of Fig. 1. A simpler version shows on the lead photo. This type of control has several features; the variable DC output has a pulse ripple added at lower speeds to vibrate the motor armature and reduce motor cogging and "stiction", secondly it has a low source

impedance for the motor, thirdly a delayed action can be switched in and out so that the controlled inertia of a heavy train can be simulated together with brake levers; and lastly it's short-circuitproof by virtue of heavy duty transistors and an overload trip. The last is indeed essential because short-circuits abound on the model railroad!

Though the circuit 「've shown uses two darlington transisotrs, commercial versions are available, particularly from the USA, using op amps, SCR control or pulse width modulation. Even the renowned Heathkit has introduced a version. The most important feature is probably that superimposed pulse, for if it's too small in amplitude or too high in frequency, it is not effective; but if it goes too far in the opposite direction, the resulting buzz or rattle from the motor becomes objectionable Anyway, you electronic fans with a dusty train set in your attic, dig it out, build a momentum-pulse-throttle and you just might pick-up an extra hobby!

In terms of current rating, the power pack shown should be capable of about 2 A 5 at 12 V . This is adequate for any HO scale models, which scale 1:87, even with double heading locomotives. As you'd anticipate, the current requirements decrease with scale size-the second most popular scale is $1: 160$ (n for Nine mm , which is the track width) scale. Going up asize to 0 scale (148) many motors will need the full 2 A 5 . By the way, in case you home computer builders are thinking "why waste money on electronics for toys" some of these "toy" locomotives retail for over £500 apiece and lately have been appreciating in value at well over 20%

Signals

A natural for digital IC application is signaling. Model signals in two (red and green) or three aspect (red, yellow, green) with operating miniature 12 V 60 mA lamps are available. Until recently, relays were widely used by modellers to operate these lamps in controlled sequence and often automatically disconnected a section of track ahead of a red signal for automatic train control. The relays used were typically low resistance coils in series with the power supply to the track. When the locomotive entered a particular track section, the relay contacts.closed. All model railroads use track sections from 2 to 20 feet long insulated from each other and switchable to alternate power packs. This facilitates the operation of multiple trains.

Complete model railroads still exist using these series relays for automatic control and signalling; but they're a maintenance nightmare for their intermittently proud owners. Up to date techniques use TTL gates driving red, yellow and green LED's for signals

Relay driver ICs can be added to drive the small 12 V signal lamps if preferred and also to operate good solid 12 V relays for automatic stops and starts

The interface between train and TTL is a little more tricky; you've noticed, of course, that the track has only two rails which are required to conduct power (in either direction) to the locomotive. The requirement to detect locomotive presence led a few years back to a widely used detector circuit known as a "Twin-T

Fig. 3. These components, mounted in locomotive tender reproduces audio signals superimposed on DC motor voltage. Cam switch signals synchronization of "chuff" sound to trackside audio generator.
copper wound coils, depending on which is energised using 16 Volt AC or DC. The armature is linked mechanically to the môvable track section to control the train's alternate paths. These coils of necessity are about 2 to 4 ohms resistance, and hence can draw.a 4 A : if left connected to the supply for more than a second or so, the 50 W of heat show-rapidly. So recently the electronically minded modeller adópted capacitor discharge.

Typically a 220 u capacifor, charged to 25 V stores enough energy to operate a couple of, the low resistance coils and as you can see from the circuit, there's no fire hazard if the power is left on. Also a small transformer can be used. Also shown is a method of discharging the capacitor into the coil via an SCR, which permits the controlling push button to carry only the low SCR gate current, instead of a contact-blowing multiampere current.

Again, this basic control circuit is adaptable to TTL control.

Sound

${ }^{7} \mathrm{C}$ Now you hi-fi fans know it's impossible to reproduce the sound of a gigantic steam locomotive without a 100 W amp and a 4 cubic foot bass reflex enclosure. Except those model railroad nuts don't believe you! Quite expensive, at about US $\$ 350$, is a Pacific Fast Mail sound unit that transmits sound and motor power through just those two rails. The sound is synchronized to the piston position, that is for a two cylinder steam engine there are four "chuffs" per driver wheel revolution. Plus bell sound and the required wailing steam chime can also be sent from the trackside to be nicely reproduced in a miniature speaker located in the locomotive tender.

Fig. 4. Model railroad signals. Normally supplied with 12 V lamps, LED's can be fitted.

The PFM unit synchonizes the "chuff" sounds by transmitting a 2 V 38 kHz (approx). signal superimposed on the DC motor voltage going to the track. The DC voltage source (a transistorized circit, which is a simplified version of the circuit shown in Fig. 1) has a low resistance choke in series with its output: this prevents the 38 kHz and the audio tones from disappearing into the speed circuitry. When the 38 kHz reaches the locomotive, it is intermittently shorted out in a capacitor (see Fig. 3). The capacitor is grounded four times per drive wheel revolution via a phospor-bronze contact, which rubs on the inside of a drive wheel equipped with insulated quarter sections. As the 38 kHz signal shorts out, a relay operates in the track-side unit, sending out transistorized hiss to the locomotive-borne speaker. Being highly inductive, the locomotive motor bypasses neither the 38 kHz nor hiss-nor bell nor steam chime sounds, all of which are solid-state generated in the PFM box with full operator control. And even though the speaker is less than 2 inches in diameter, the sound is very effective.

Another electronic nimmick in the PFM system is the bridge rectifier of Fig. 3. There's a constant voltage drop of 1 V4 across the bridge, since it's in series with the motor-regardless of the motor/voltage polarity. Connect a miniature 1 V5 headlamp across the bridge and presto-constant brightness, regardless of motor speed.
$\overline{\text { A California based firm - Modeltronics, produces }}$ sound systems that are completely contained in the model - also synchronized for "chuff". The supply voltage for the noise generator and miniature amplifier is derived from the track voltage much as the PFM "constant lighting section". Of course, the Modeltronicics system does not offer bell or chime - yet.

> TuOZ

LED Hazard Flashers

Pop a 3 mm red or yellow LED into the cabin roff of a model diesel, drive it from an internal LM3909 fíashé integrated circuit, oscillating at 0.3 Hz , powered up from 0V5-3V, and you've duplicated real life on the "Atcheson Topeka and the Santa $\mathrm{Fe}^{\prime \prime}$.
Grade crossing flashers in model form are available ready made, with miniature 12 V lamps, just like signals. To flash, take on 555 IC timer, put one pair of lamps from IC output to + rail, another pair from output to-rail, apply 12 V , time at 20 /minute and grade flashers are in business.

Fig. 5. Capacitor discharge system enables solenoids to be thrown with small average energy. System also prevents solenoid burnup if accidentally left powered-up. SCR switch control enables small current push buttons to switch heavy current. The SCR's automatically switch off when capacitor stored charge zeroes.

Lighting

Whole passenger trains can be lit up using a supersonic generator at around $25-40 \mathrm{kHz}$. This can be fairly easily constructed using a 10 W audio power amplifier with the conventional negative feedback rephased to positive. Connected in parallel with the train motor power, with a blocking choke between the two, constant lighting can give a superb visual effect with artificial twilight on a layout. Switch off the generator - and the lights go out. Each train group of lights uses a 220 n capacitor in series to block the otherwise additive lighting power from the DC motor voltage.

Radio Control and Carrier Control

As a purely personal observation, I feel the next and imminent step in electronics with model railroads is radio control. At least one experimental, but practical circuit has already been published. Taken to the ultimate, needed are very low current motors powered by rechargeable NiCd batteries together with the radio receiver, variable speed and direction controls, and sound generator circuit plus amplifier. Of necessity the concept requires extreme miniaturization because for HO scale (the most widely used size), the space available for everything is hardly more than 5 or 6 cubic inches. The entire receiver and motor drive circuit can easily, be derived from model aircraft RC designs, particularly if the new Signetics NE544 motor/servo driver chip is employed. On-board sound - for example a diesel horn sound, can use a 556 IC in the self-oscillating mode generating two tones, each around 250 Hz , amplified by an LM 380 audio chip.

Individual function control is practical using 555 tone generators in the transmitter with phase lock loop decoders in the receiver. The advantage of this type of control is that the modeller has become free of the power-to-the-rails restriction.

In summary, I hope this overview shows how another hobby can adapt techniques of electronics in order to add to the fun. Maybe l've tempted you to pop round to your nearest Model Railroad emporium.

ETI

- B E ELECTRICAL AND MECHANICAL ENGINEERING LTD.

		7492	58p	${ }^{74} 193$	${ }^{99}$	40433-1	100 p		${ }^{14 p^{*}}$	afn39	${ }^{300}{ }^{\text {P0. }}$	${ }_{\text {If }}$	${ }_{3170}^{2760}$		${ }_{2}^{214545950}$		OIOEES	${ }^{\text {cas }}$
${ }_{7}^{7400}$	129 140	7493	${ }^{369}$	74194 74195	${ }_{1}^{160}$		1000	${ }_{8 \mathrm{BCL}}^{817}$	170^{*}		$3 p^{\text {a }}$	${ }_{\text {IIP }}$		${ }_{2 \times 4059}^{24.4}$	${ }_{2}^{21454501}$		1914	
7401	159	74.5	${ }_{75 p}$	71196	1000	${ }_{404}$	${ }^{1000}$	вСС178	$17{ }^{17}$		${ }_{200}$	TIPA1A	649	${ }^{240050} 111 p^{*}$	2116545	sop.		c133130 1200
3402	16	7496	$90 p$.	71:197	1300	49	500	${ }_{\text {BC179 }}$	$18 p^{*}$	${ }_{\text {affirl }}$	${ }^{30}{ }^{0}$	HIPA 1 A	729	$244061112 p^{*}$	3112811	130°	$1140003 / 4$	ch3140 56p
7003	14 p	7497	230p	71198	250p	4050	${ }_{55}$	${ }^{\text {acis2 }}$	10p*	amino	300.	${ }_{\text {HIPAC }}$	${ }_{83}{ }^{89}$	$2140062{ }^{119}$	34201	69p*	${ }^{1414005 / 6 / 6 / 7}$	c.33160 120 p
7404	20%	74190	140%		2509	4051	1100	${ }^{818183}$	100*	\|risi	30%	T1142	64	224123 140*	312204	150*	141414/9 ${ }^{\text {a }}$	Lu30140 309
7405	25	74104		74221	175	4054	${ }^{120}$	${ }_{\text {вcisa }}$	11p*	dexz9	sop	tip ${ }^{\text {2RA }}$	710		40351	48 p	${ }_{01230}$	$1 \mathrm{LM318} 2000$
7405	40 p	7405	75p	0	$15 p$	4055	${ }_{140} 140$	${ }_{8} 8187$	300*	${ }_{86 \times 30}$	4	T1P421	79		40350	45 p	020202	
${ }^{7407}$	p	74107	369	74015	45 p	4055	${ }_{1309}$	${ }^{\text {accil2 }}$	${ }^{119}{ }^{\text {P* }}$	${ }^{818 \times 84}$	30	T1P420	919		${ }_{4}^{43062}$	${ }^{48 p}$	$\mathrm{BaX} \times 13^{\text {a }}$	${ }^{\text {L43339 }}$
7408	22p	74109	${ }^{60 p}$	74110	45	4060	$130 p$	${ }^{362122}$	${ }^{119}{ }^{\text {p }}$	${ }^{\text {brexus }}$	300	TIPP955	74	${ }^{24142365959} 9$	${ }^{404079}$	598		
7409		7119		7441	${ }^{45}$	4086		${ }^{\text {acz23 }}$	${ }^{1 p^{*}}$	${ }_{\text {Efrex }}$	2p	T1P3435	${ }_{31}$		${ }^{404048}$	- ${ }_{\text {239 }}$		
7410	${ }^{\circ}$	74115	${ }^{15}$	74420	95	4067	4309	\%	${ }^{10}{ }^{\text {P** }}$	Hexky	0		co.	${ }_{2751292}^{2142929}$	494212	(2929	ZEELERS	LIm733 100p
1412	${ }_{250}^{285}$	711	220	74510	${ }^{40 \mathrm{P}}$	1069	${ }^{25 p}$		${ }^{130^{*}}$	${ }^{\text {Brx5 }}$	P0	Tis91	${ }^{\text {spp }}$	${ }_{21515}$	${ }^{40673}$	Sp	airuic 400 mm	70 p
			1200	748152	609	4069	27 P	${ }^{3}$	130^{*}	ariso	2	7189	${ }^{219}{ }^{\circ}$		1			${ }^{35}$
74121 7413	209	74119 74120	${ }_{1309}^{2259}$	${ }_{\text {cmon }}$		4070	${ }_{\text {ckp }}^{659}$	${ }_{\substack{\text { gecz37 } \\ \text { B627 }}}$	${ }_{\text {\% }}$	${ }^{\text {PFF55 }}$	29	${ }_{17 \times 108}^{1889}$	${ }_{120}^{20 p^{*}}$		${ }_{40871}$	${ }_{958}$		${ }_{\text {¢P03437 }}$
314	60p	74121	${ }^{32 p}$	4001	$10 p$	4072	${ }_{30 p}$	Bcz27]	$14 p^{*}$	вr990	90p	121502	$15^{\text {ct }}$	245458 38p*	40872	1068	resistors	
${ }_{7} 416$	$4{ }^{40}$	74122	${ }^{54 p}$	4006	95p.	4073	30p	${ }^{81238}$	${ }_{16 p *}$	${ }^{\text {впY39 }}$	${ }^{45 p}$	${ }^{214698}$	${ }^{355}$				*	
7417 7420	40 p	74123 74125	${ }_{\text {c }}^{\text {75p }}$	${ }_{4}^{4007}$	${ }^{189}$	4076	179	- ${ }_{\text {BC2302 }}$	${ }_{18 p^{*}}^{16 p^{*}}$	-8S×19	${ }_{209} 20$		${ }_{209}^{399}$				Sama vilut	
7421	430	,	65p	4009	${ }_{50}$	4082	${ }_{25 p} 2$	${ }_{\text {bczasc }}$	16p	BU105	1800^{*}	2 LH 131	$25 p$					
7422	24	${ }^{71128}$	${ }^{129}$	4010	60p	4093	94p	${ }^{12337}$	${ }^{18 p^{*}}$	${ }^{1} 1108$	250p*	$2 \mathrm{LH1} 132$	${ }^{\text {29p }}$					
${ }_{142} 123$	${ }_{339} 389$	13130	1100	4011	$18 p$	4059	${ }_{120}^{120}$		${ }^{169}{ }^{160}$		${ }_{220 \mathrm{p}}^{230{ }^{\text {a }} \text {. }}$	$c211613241711$	${ }_{278}^{219}$					mн33476 9 90p*
1425 128	${ }_{439}^{339}$	34132 74135	${ }_{\text {ciep }}^{180}$	4012 4013	lsp	${ }_{41509}^{4099}$	1459 1050 10		${ }_{\text {Sopp* }}$	${ }_{\text {cul }}$	${ }_{240 p^{*}}^{2209}$		${ }_{\text {36p }}^{27 p}$					${ }^{\text {mpo33725 }}$
1427	409	74136	${ }^{80} 9$	4014	1100	4161	105	${ }^{\text {B5547 }}$	16p*	${ }_{81} 1006$	$1145 p^{\circ}$	$2 \mathrm{2k21216}$	$34 p$				notr	NE555 30p
7423 140	40p	$\underset{\substack{74137 \\ 7414}}{ }$	${ }^{60 p}$	4015	${ }^{559}$	4182	1059		${ }_{160^{*}}^{160}$	ME0491	18 p	$\underset{212219}{2 \times 218}$	${ }_{31}^{29 p}$	Volta			capactions	(14556
7432	$3{ }^{\text {p }}$	7142	3×0 p	4017	1000	4174	1100	${ }^{8} \mathbf{C 5 4 8}$	$16 p^{*}$		${ }_{2}{ }^{\text {p }}$	2122198	${ }^{32}$		THYAISTOAS			Me561 395p
${ }^{4733}$		74145	${ }^{\text {95p }}$	4018	110p	4175	100 p	${ }^{86549}$	16p*	Mpsam	30p*	242221	23p	${ }^{78055} 50+959$	200014	50p	33uF. 47uF	${ }^{* 55618}$
7437	$3{ }^{3}$	74147	${ }^{2100}$	4019	50p	4194	$105 p$	${ }^{16555}$	$14{ }^{\text {1p* }}$	MPSAIL	45**	${ }^{21222214}$	24	791212+ 959	50033	40 p		M
${ }_{7} 438$	348	74148	$160{ }^{\text {1 }}$	4020	1200	4408	7100	${ }^{865565}$	19**		${ }^{322} \mathrm{p}^{*}$ *	${ }_{2127222}^{2122}$	${ }^{212}$	(1818	${ }^{4000} 34$	${ }^{709}$	180^{*}	
141	\%	14151	130	${ }_{4022}^{402}$	115	4409	${ }_{71100}^{700}$	${ }_{86557}$	14p*	${ }_{\text {R200108 }}$	$200 p^{2}$	${ }_{21232388}^{21223}$	${ }_{20}$	$782424+95 p$		${ }_{\text {sop }}$		ME567 1700
741101	120 p	14.153	${ }^{\text {a }}$	4023	22	4419	2300	${ }^{\text {B } 55578}$	${ }^{165 \%}$	T11293	$3{ }^{\text {app }}$	2123269	15	7805 5v- 955	400074	${ }^{75 p}$	1uF. 1.5uf.	${ }^{85 ¢ 2241}$ 259,
142	${ }^{78 p}$	14154	140p:	4024	sop	4422	550p	${ }^{\text {BC555 }}$	12p**	T1P298	$11 p$	2727246	50p	7912 $12-959$	200 10A	70p	2.2uF. 3.3uF.	
${ }^{4} 13$	1209	71455	$97 p$	4025	20 p	${ }^{4433}$	1250p	${ }^{\text {Bras50}}$	${ }^{16 p}{ }^{\text {p }}$	${ }_{\text {T1P298 }}$	${ }^{469}$	27272004	${ }^{259}$	- $79181515-959$	${ }^{40004} 16 \mathrm{~A}$		10uF, isuf.	317270943.
1445	${ }_{97}$	${ }_{7}^{74159}$	${ }_{909}$	${ }_{4027}$	${ }^{1409}$	4	${ }_{2009}$	${ }_{\text {acs }}$	$18 p^{*}$	T1P30	${ }_{40 p}$		${ }_{24}^{29}$	792424-95p	2000300180 p			
1446	110p	74159	250 p	4027	959	4.45	230%	BCY5	22p	T1p30n	4 p	242055	${ }^{25}$				10006F 25v ${ }^{12 p^{*}}$	S1478008255p*
7447	37	${ }^{71450}$	1109	4029	1200	4501		${ }^{\mathrm{BCY} 53}$	${ }^{22}$	T1P3598	50 p	${ }^{2122006}$	${ }^{209}$		${ }_{\text {SOCKETS }}$			
7450	${ }_{\text {\% }}^{\text {明 }}$	$\xrightarrow{741515}$	1100	4033	S0p	4502	1200	${ }_{\text {ackit }}$	${ }_{22}$	${ }_{\text {TiP3 }}$	${ }_{41}$	2n2006	24p	SRECTIFIER				${ }^{81778013} 1717 p^{*}$
7451	18	74463	110p	4034	${ }_{240} 20$	4500	50	в¢¢72	${ }^{225}$	tip3in	${ }^{45 p}$	2420074	${ }^{265}$	50, 14.200	${ }^{8} \mathrm{pilit} \quad 119$			${ }^{\text {817 }}$
${ }^{7453}$	${ }^{199}$	14154	120 p	41335	1300	4507	5	${ }^{\text {BCY7 }}$	20 p	T113318	$51 p$	${ }^{2122926}$	${ }_{13}{ }^{\text {P }}$	$100018{ }^{18}$				
1404	$1{ }^{19}$	71165	150p	4048	120 p	4508	295p	${ }^{80121}$	95	${ }_{\text {T1P332 }}$	$5{ }^{5}$	${ }_{2}$		coll				
1480	${ }_{3}$	${ }^{71165}$	1609	4042	soo	4510	\%p	${ }^{80131}$	${ }^{509}$		${ }_{45}^{40}$	-	${ }_{\text {54p }}$	${ }^{5002} 20$	${ }_{20}^{20} 9 \mathrm{in}$	${ }^{289}$	ceram	
${ }^{4727}$	${ }^{32 \mathrm{p}}$	74170	250 p	savens				${ }^{\text {cli }} 136$	${ }^{37 p}$	${ }_{\text {tip }}$	55p	2133702	11p*	1000 215	240 m	34 P	mintature	${ }^{14776155} 977^{2}$
${ }^{7473}$	${ }^{35}$	2	650p		/RMps	${ }_{4}^{5100} 8$		${ }^{80137}$	${ }_{35}^{350}$	Tip320	¢	$\underset{\substack{21231303 \\ 213704}}{2}$	${ }^{11 p^{*}}$				${ }_{18}^{\text {caps }}$	
7475	349	$\xrightarrow{141774}$	${ }^{190 p}$	${ }^{5} 55$ Timaty		10 tor Cl		${ }_{8}^{80140}$	${ }^{319}$	${ }_{\text {T11P333 }}$	${ }_{649}$	${ }_{213705}^{2}$	cip*					That 203150
1476	389	175	95p	602 2 mat 480em		20 tor			700		${ }_{129}$							
${ }^{74880}$	${ }^{54}$	24178	130 p			20 for 51			100^{*}		${ }^{\text {31P }}$			tmiacs				
7412	30 P	71180	1120	Transistors		Bcliogn		${ }_{\text {braza }}$	${ }_{20 p}{ }^{129}$	${ }_{\text {T1P34 }}$	$7{ }_{7}$	2137309	${ }^{13 p}{ }^{\text {P/ }}$	10002132 p	(11212/1	${ }_{2}^{23 p p}$		
${ }^{7463}$	1000	14	320p	${ }^{8 C 107}$	10 p	${ }^{86} 1098$	${ }^{12 p}$	${ }^{85240}$	18p*	т1P34	79	24319	22p**	${ }^{2000} 2050$				
7484	$\lim _{1200}$	74182	${ }^{1509}$	${ }_{\text {ctiol }}^{\text {scioin }}$	${ }_{12}^{129}$	${ }_{8}^{\text {BC109 }}$	${ }_{90}^{12 p}$	$\underset{\substack{182414 \\ \hline 18248}}{ }$	${ }_{35 p}^{18 p^{*}}$		${ }^{919}$	(2H3220			Hi220,			TiAnsilos 339\%:
7456	${ }_{36}{ }^{120}$	711485	${ }_{1500}$	${ }_{\text {BCIIO }}$	109	${ }_{\mathrm{BC}} 14 \mathrm{4}$	$9{ }^{\text {p }}$	${ }^{18257}$	${ }_{355}$	п1p35	${ }_{224} 20$	243033	${ }^{19 p}$	20008685				
${ }^{4489}$	3400	71186	990p	${ }^{\text {acı109A }}$	12p	${ }^{8 C 149}$	100^{*}	${ }^{\text {BF25s }}$	${ }^{329}{ }^{\text {P }}$	T1P358	251p	2 233094	${ }^{15 p}{ }^{\text {pos. }}$	${ }^{4000480} 75$	(ill			
7490	\%	$\underset{\substack{71900 \\ 11191}}{ }$	${ }_{1209}^{129}$		129		${ }^{10 p}$	${ }_{\text {cker }}$	${ }^{3}$		${ }_{2248}^{288 p}$	${ }_{2}^{2133905}$	18p.	200\% 109 99\%				
749104	50	14192	${ }_{999}$	${ }_{\text {ctios }}$	109	${ }_{\text {BCI }}$	${ }_{\text {11p }}$	${ }_{\text {IF337 }}$	${ }_{3 \text { ¢ }}{ }^{\text {P/ }}$		${ }_{\text {246p }}$	${ }_{274036}$	${ }_{39}$	40001041209				

TEE-SHIRTS

HOW TO ORDER:
The new red ETI tee-shirts are available in large, medium or small size for only $£ 2.00$ inclusive of postage and packing.
Send cheques/POs to:
ETI Tee Shirts
25-27 Oxford Street
London W1R 1RF

SAME 11 FPRMPIDS	IN4148 Diodes by ITT/Texas. 100 for $\mathbf{£ 1 . 5 0}$. These are full spec. devices.			
TEXAS T15040 (primi, display. 10 digits. mem. printing calc) \&70.00 PC1008 primt cradle 15120 T157 key prog \quad E28.30 T151-3 (10 mems 8+2 32 prog steps) T158 key prog 84.80 T 159 mag, card and progPOA POA Software for T1 59 \& 58 (each) (four available) T1 Programmer (Hex to Oct concersions) Little Professor (child's calculator) CASIO FX2500 £19.80, FX3100 P + 2 LCD sci $£ 24.30$. FX1 $20 £ 19.80$, FX39 £16.60. FX140£17.90.	Unencoded Hexadecimal 19 keyboard 1-10 ABCDEF. 2 optional keys. Shift key. £12.50.			
	MM2102 AN-4L 1024×1 Bit. 450 nano sec. Static Ram. $£ 1.00$ each.			
	FND500 Seven Segment Common Cathode Display £1.30 each. 4/£5.00.			
	AY5-1013 UART/T £6.00.			
	Red Leds 01.125 or $0.2 \quad 10$ for $\mathbf{£ 1 . 2 0}$. 100/£9.00.			
HEWLETT PACKARD				
H.P. 22 Business/Management Calculator. low Price POA	2112256×4 Bit Static Ram 450 nanosec. £2.95 each. $4 / £ 11.60 .8 / £ 22.60$.			
PRO 100 ¢29.95/SR190R	Murata Ultrasonic Transducer £2.50 each. £4.00 pair.			
M55 (Maths) S61 (Stats) N 60 (Navigator) $\mathbf{C l}^{49.69}$				
	741 Op Amp 25p each. $10 / £ 2.00$.			
A.C. Adaptor £3.00. Programme Library E4.70				
SHARP EL8 130 LCD musical calc - great, no keys E18.00	555 Timer. 28p each. $10 / \mathbf{2} \mathbf{2} \mathbf{5 0}$.			
	4001	$14 p$	4029	110 p
Gammon Master Il (Computer backgammon) Low price now with doubling dic*	4007	$16 p$	4047	100 p
Ataw Microprocessor cassette TV game \quad E149.00	4011	14 p	4049	40p
	4012	14 p	4060	120p
Computer Chockers (Draughts 4 levels of play) Cmpon 100 nrint/disploy desklop cale	4013	50p	4066	55 p
Toshibe LCB36MN memo calc Natron (National Electronics NE6297/M68 22 function dual time zone alarm chronograph. Night light, stainless steel strap with matching case (gilt also available) at $£ 39.00$. SA.E for further details	4015	90 p	4069	20p
	4106	40p	4071	$16 p$
	4017	90p	4072	$16 p$
	4020	100p	4081	$16 p$
	4022	90p	4082	$16 p$
detars $\quad=z^{2}-m$	4023	16 p	4510	$120 p$
(Mrs. mins. sec.	4024	$65 p$	4511	$150 p$
(2) Iingertip conirol Men's \& function	4025	16 p	'4516	110 p
for month, day solar assisted and data. Atarm, alarm quartz LCD	4026	160 p	4518	130 p
with one minute set to any time in !	4027	50 p	4528	$100 p$
buzz, essy set- 24 hours. E 23.50 . ling. strap in	4028	90 p		
stainless steel. Only E 25.60 .	Prices include Post and VAT			
Chrono version al $\mathbf{E 2 5 . 5 0}$.	T. POWELL 306 ST'. PAUL'S ROAD, HIGHBURY. CORNER, LONDON N.1. Tel. 01-226 1489			
We supply all Seiko watches				
- October Place. Holdore Hill Road, London, NW14 1EJ Telex: 888941. ATTN. KRAMER, K7 Tel: 01-203 2473 MAIL ORDER ONIY. S.A.E. for date sheete Export enquirioe welcome Telaphone and Telox orders eccepied	Callers welcome			
	24 hr Ansaphone order service with AC̄CESS or BARCLAYCARD No.			

TEKTRONIX OSCILLOSCOPES

Main frames 545 with CA £225; 536, 585 with type 82 £395: $581 \mathrm{~A} ; 661$ with 5 T 1 A \& 4 S 3 £ 325; 555 ; 561 A with Plug-in 10 MHZ £425; 551; 502 High gain, Special £ 160
The prices of main frames will yary enorn
and plug-ins. Hence prices are guides only.
and plug-ins. Hence prices are guides only. mean we don't handle them, only that at our prices they are no normally around long enough to advertise. For example H.P. OSCILLOSCOPE type 183A with 1830A and 1840A 3db $250 \mathrm{MHZ} £ 950$.
TEKTRONIX 453 3db 50 MHZ £ 650 .
TEKTRONIX 454 3db $150 \mathrm{MHZ} £ 1,000$
S. E LABS SM 111 3db 20 MHZ E 325 .

TEKTRONIX SPECTRUM ANALYSER $1 L 40$ Plug-in 9.5 GHZ to 40 GHZ £ 550 .

R\&S RECEIVER 44-210MHZ HUZ BN 15012 Poor $£ \overline{6} 0$.
RONTOON RX METER type 250 A 0.5 to 250 MHZ . Clean $£ 85$. MARCONI Q METER type 1245 with $1246 £ 350$
Optional 1247 E 100 .
Optional 1247 E100. TEKTRONIX Sig. Gen Type 190A 350 KHZ to 50 MHZ and Fixed 50 KHZ freq. $£ 45$ ea
TEKTRONIX TIME MARK GEN type 180 E £ 60 ea
SOLARTRON PULSE GEN GO1101 £30 ea
R\&S SWEEP GEN 50KHZ-12MHZ SWH BN4 $242 / 2$ £100 R\&S ENOGRAPH-G ZSG BN18531 £120.
R\&S AM/FMGEN SMAF BN 41404 4M HZ-300MHZ $£ 300$ ea R\&S AM/FM GEN SDAF BN4 1023/2170-940MHZ £300. R\&S POWER SIG GEN SMLR BN4 1001 O. $1 \mathrm{MHZ}-30 \mathrm{MHZ}$ £80.
R\&\& Z-G DIAGRAPH $30-300 / 420 \mathrm{MHZ}$ type ZDU BN 35610
f140.
R\&S AM GEN $30-300 \mathrm{MHZ}$ SMLM BN4 $105 £ 90$ ea.
R\&S ATTENUATOR DPU BN $18044 / 50003000 \mathrm{MHZ} 0$ 109 db 50 ohm $£ 150$.
MARCONI AM/FM GEN TF1066 10-470MHZ $£ 275$
MARCONI FM GEN TF1077/1 $£ 120$.
PHILIPS AM/FM GEN type 201 道
BONTOON AM/FM GEN type 202 H with Low freq. adaptor £525.
R525. RAM GENERATORS 300-1000MHZ $£ 120$ ea
AIRMEC AM/FM GENERATOR TYPE $365 £ 140$.
HP SAMPLING Oscilloscope type 185B 1000 MHZ complete
with Plug-in, probes, etc. $\mathbf{£ 1 9 5}$ ea
SOLARTRON OScillator CO546 25 HZ - 500 KHZ . Sine wave only. Metered. Good attenuator $£ 25$ ea.
SOLARTRON PRECISION VOLTMETER VF252. Large clear scale. 1.5 mV full scale to 150 V full scale $\mathbf{£ 2 5}$ ea
H.P. Oscilloscope type 140A with sampling plug-in 1425 A and
1410ADC- $1000 \mathrm{MHZ} \mathbf{£ 5 5 0}$. 1410 A DC-1000M HZ 5550.
H.P. Oscilloscope Type 140 A with Sampling plug-in
1411 A and 1432 A Sampling head DC-4GHz $£ 750$.

1411 A and 1432 A Sampling head DC.4GHz $£ 750$.
SOLARTRON DVM type LM $1440 £ 75$ ea. Other Solartron SOLARTRON DVM type LM1
models availiable. Call and see.
models avaliable. Call and see
H H.P. Digital Recorders 11 digit $£ 35$ ea.
H.P. Digital Recorders 11 digit $£ 35$ ea.
AIRMEC AM/FM MODULATION METER type $210 £ 80$ AIRD TERMALINE WATTMETER 67C $30-1000 \mathrm{MHZ} 50$ omh £95.
MARCONI AM/FM MODULATION METER TF2300 with TM8045£450.
R\&S POLYSCOP SWOBI Scruffy, working $£ 250$ ea: Nice condition £ 350 ea
R\&S POLYSCOP SWOB2. Fair condition, working $£ 425$ ea;
Ver Very clean $£ 550$ ea
EX-MINISTMY
EX-MINISTRY American USM 16 AM/FM SWEEP SIG GEN $10 \mathrm{MHZ}-420 \mathrm{MHZ}$. Incremental controls. Auto lock. Crystal calibrator and many other features. In transit case with
accessories and manual $£ 195$ ea. accessories and manual $£ 195$ ea
Can5 a £425 ea
R\&SZ-G DIAGRAPH 300-2400MHZBN3512. Good condition MAR ea. M SIS SIG GEN TF801D/8/S. Very good condition $£ 325$ MARCONI RF POWER METER TF $1152 \mathrm{~A} / 190 \mathrm{ohm} £ 55$ ea PLUG.INS for Telonic Sweeper SM2000 Various form $£ 50$ ea TELONIC SWEEPER SD3M $425-930 \mathrm{MHZ}$ £80 ea
MARCONI TF868 Universal Bridge $£ 70$ ea.
AIRMEC SIG GEN type 204 1.320MHZ $£ 225$.
MARCONI SIG GEN TF801B $£ 160$.
MARCONI SIG GEN TF801B $£ 160$ ea
POLARAD SPECTRUM ANALYSER TSA with STU-1A 10 1000 MHZ E 350 .
POLARAD MICROWAVE RECEIVER MODEL TR 1 GHZ to 2.04GHZ $£ 200$ ea

BRUEL \& KJOER Aulomatic Vibration Ex
Wave sweep from 5 HZ to 10 KHz £75 ea.
GENERAL RADIO Osc Unit 1209 MB 250 -920 $\mathrm{MHZ} £ 50$
GENERAL RADIO OSC Unit 12098 250-920 MHZ E50.
$\pm 125 \mathrm{MHZ}$ Sensitivity 120 dbm . Price $£ 250$.
GENERAD SIGNAL GENERATOR GB2/G-711£250.
GENERAL INSTRUMENTS TRANSFER FUNCTION \& IMMIT ANCE BRIDGE type 1607 A in transit case $£ 425$. MARCONI SIGNAL GENERATOR TF 1060 E. 185.
BRADLEY MUITI METER CT471 £45 ea
H.P. PULSE GEN 212A $£ 55$ ea
H. P. Microwave Freq. Converter type $2590 \mathrm{~B} £ 175$. MARCONI CT44 Watt Meter 0-6 Watts $£ 25$ ea AVO TRANSISTOR \& DIODE TESTER CT $537 £ 50$ ea
AUTO TRANSFORMER 240 V input. 110 V output AUTO TRANSFORMER 240 V input. 110 V output 1.25 KVA E 14 ea
FLUKE
FLUKE AC-DC VOLTMETER Model 8038 £ 75 ea
TELETYPE ASR 33 with 2OMA LOOP GO
Special low price $£ 395$ ea. KSR 33 s from $£ 275$.
DON'T FORGET YOUR MANUALS
S.A.E. WITH REQUIREMENTS

STEPPING MOTORS

1000 ors 200 steps per revolution. 200 z inch torque, 120 V Data supplied $£ 8$ ea
Supplied for $12 / 24 \mathrm{~V}$ operation $£ 13$ ea. P\&P E1.
Just think about the uses ${ }^{1}$

JUST IN

A SUPERIOR KEYBOARD Size $3 \times 21 / 2 \times 2$ high with $1: 2$ ALMA REED SWITCHES. Blue keys marked in green $0-9$ and a star with one blank. ONLY $£ 5$ ea P\&P $75 p$.
Photo Resistor ORP 12-35p ea
Small TELESCOPIC AERIAL extending to $22 \frac{1}{2}$ with swivel base 40p ea. P\&P 20p.
Small Black SUCKER FEET - always useful 10 for 50p.
MERCURY SWITCHES. Heavy duty with lever \& flyleads. 20p

mounted with 4 flyleads - 50 p per pair
TEXAS I.C. type SN1 5862 N 4 p ea.
RESISTORS 680 Ohms 5 Watt - 10 for 50 p .
VIEWLEX INSTRUCTIONAL SUPER VIEWERS MODEL 136 with Headphones, 9 screen. Takes standard cassette. Front
keys. Brand new boxed $\mathbf{£ 5}$ ea. Stightly used $£ 45$ ea Carriage keys Brand
$£ 3.25$ ea

* TRANSISTORS/DIODES/ RECTIFIERS. ETC \star

Guarantee
At $5 p$ ea
BC147: 2N3707: BC172B; BC251B; BC34BB; BC171A/B BC413;
2N5040.

At $10 p$ ea

1N4733A; SN7451N; BYX10-15V 0.36A; BYZ1O 15 p ea TIP34A-50p ea. BD 538-40̂́p ea. Heavy Duty Bridgic Rectifier-20p ea CA3123E-£1 ea. BDY55-£1 ea.
$2 N 3055-40 p$ ea. TIP31B 12 p ea. BFY51-12p és. 2N3055-40p ea
2N5293-16 2N5293-16p ea
TBA560CO £2 ea. YN4436T-TO3 Flat Mount 10A 200piv £'1 ea. 2N5897 with 2 N 5881 Motorola 150 W Comp pair $£ 2$. BU208 £1.20 ea
BD535, BD538 Comp pair - 75p.
Linear Amp 709 25p ea
P\&P extra on all items.
FINNED HEAT SINK
FINNED HEAT SINK
$11 / 4$ in 50p ea P\&P 75 p
Thain 50p ea, P\&P 75p. MOTOROLA POWER TRANSISTORS type W0993/441 TO3 Min. voltage 500 20p ea. P\& P $15 p$.

A MILLION MUST GO

DUAL IN LINE 16-PIN CERAMIC, 12 V Rail. Conventional TTL package Guaranteed spec. devices. Full data. 2p ea.

OSCILLOSCOPE TUBES

Brand New Boxed-Carriage all tubes $£ 3.25$.
Telequipment S52 £10 ea; D51 £15 ea; S42, £10 ea; D53A £ 20 ea; D $52 £ 15$ ea; S31 $£ 10$ ea; Bradley $200 £ 85$ ea; Advance OS $3000 £ 85$ ea, GEC types $924 \mathrm{~F} £ 25$ ea; 924 E £17.50 ea; $14968 £ 75$ ea: Brimar D $13.51 \mathrm{HG} £ 65$ ea; D $10-210 \mathrm{GH} / 32 £ 40$ ea: D $13-46 \mathrm{GM} £ 35$ ea. NOT BOXED - NEW - WARRANTED. Telefunken D14-
131 replacement for Solartron CD 1740 , Cossor CDU150. S. E Labs SM112 and GEC / MOV 1474 at $£ 55$ ea.

BUILD YOUR OWN BUS

Approx. $11 / 2$ metre multiway ribbon cable terminated each end
with a 50 -way female edge connector. Takes 0.1 printed circuit board, $£ 2$ ea. P\&P $75 p$.
TELEPHONES. Post Offıce style 746 Bláck or two-tone $£ 6.50$ ea. Modern style 706 Black or two-tone grey $£ 4.50$ ea. P \& P
$£ 1$.
HANDSETS 706 style $£ 1.75$ each. Older style $£ 1$. P\&P 75 p. TELEPHONE EXCHANGES. EG $: 5$-way automatic exchange
only from $£ 95$.

74500	12p	74510	5 p	74H51	7 p
7401	5p	7417	14 p	7453	5p
74502	12p	74538	10 p	74 H74	12p
74504	12p	7451	5p	74574	12P
MC4028	60p	MC7441	40 p	7402	12 p

75325 - Memory Core Drivers. 600 ma capability. Fast Other uses. RIDICULOUS at $£ 1$ ea.
75453 - Dual Peripheral or Drivers 75p ea
NOW-INCREASE AREA GIVEN TO PICK-A-PACK AT 50p per lb

ALMA Min. PUSHBUTTON REED SWITCHES. High reliability $18 \times 27 \times 18 \mathrm{~mm}$. Ideal for KEYBOARD 50p ea. P\&P extra.
MINIATU
P\&P 75p.
P\&P 75p.

SPRAGUE $100 \mathrm{mfd}+500 \mathrm{mfd} 210 \mathrm{VDC}$ working. Brand new.

 5 for 50p. P\&P 50p.REED SWITCHES. Sub-min. Size 20 mm 10 p ea
SMITHS encapsulated transistorised AUDIBLE WARNING DEVICES $4 V-12 \mathrm{~V}$. Can be driven from TTL. 50p ea. P\&P 25 p . AMPHENOL 17-WAY CHASSIS MOUNT EDGE CONNECTOR. 0.1 spacing 20p ea. P\&P extra.
BURROUGHS 9 digit PANAPLEX numeric display. 7 segment 0.25 digits with red bezel. With date. £1.95 ea P\&P 30p.
TRANSFORMERS 115 V AC input. Secondary 3 QV and 2.6 V 10VA. 50p ea. P\&P 50p.
21-WAY SELECTOR SWITCH. Single pole with reset coil $240 V$ AC coils. Additional switch contacts for auto reset, etc AS ABOVE with add
plastic cover. $£ 2.45$ ea. P\&P E1 50
SNAIL BLOWER 110 V AC 500 MA Brand new by Airflow Developments. Quiet and very good looking. $£ 2.50$ ea. P\&P
POTTER \& BRUMFIELD $18-48 \mathrm{~V}$ DC Relay, 3 pole c/o. Heavy Duty. Plug-in type with base 50p ea. P\&P 25p.
MINIATURE KEYBOARD. Push contacts, marked 0.9 and A.F and 3 user definable keys. $£ 1.75$ ea. P\&P $35 p$.
MULLARD CORE LA4 245 at $15 p$ ea. P\&P $10 p$.

MULLARD CORE LA4245 at $15 p$ ea. P\&P $10 p$.
CLAREREED RELAYS 24 V DC Coil. Single pole make. Size ROTRON CENTAUR FANS. Size $4.5 \times 4.5 \times 1.5115 V 5$ ROTRON CENTAUR F
blade $£ 4$ ea. P\& 75 p.
blade. ©4 ea. P\&P 75 p.
MIN. PLUG-IN type RELAYS. Plastic covers, 2-pole c/o 24 V $25 p$ ea. P\&P $15 p$
CROUZET/MURTEN SCHWEIZ MOTORS. 11.0 V 50 HZ 4 rpm. Gearbox can be removed 75 p ea. P\&P 75 p
FRAMCO MOTORS. 11550 HZ . Input single phase $1 / 12$ th HP $1,450 \mathrm{rpm}$; on silent mount. As new. $\mathbf{£ 2 . 7 5}$ ea. $P \& P$ PYE DYNAMICS THICK FILM. 1 MHZ Clocking Osc 5 V supply. Size $19 \times 25 \times 6 \mathrm{~mm}$. Drives one TTL load. 75p ea. P\&P $15 p$.
COMPRESSOR UNIT. Compact, 115 V 50 HZ single phase 1.5A continuous 1.425 rpm . Outside piston housing approx. MAGNET DEVICES. Plug-in RELAYS 240V AC, 3-pole c/o. Heavy duty 10 amp. Complete with base. BRAND NEW EQUIPMENT NOT USED, 3 on sub assembly $£ 2.50$. P\&P $£ 1$ or £ 1.25 ea. P\&P $45 p$
SMALL MAINS TRANSFORMER 240V Pri, 12V 100MA sec. $60 \times 40 \times 42 \mathrm{~mm}$. 50 p ea. P\&P $75 p$
Gi. BRIDGE RECTIFIER type W01 (ideal for above) 17p ea FAIRCHILD FND 107 segment display
cathode 65p ea. P\&P 15 p . Info supplied
MULLARD TUNER MODULES - with data
LP1171 combined AM/FM IF strip. $10.7 \mathrm{MHZ} £ 3.50$
LP1179 FM front end with AM tuning and 87.4 MHZ to 104.5MHZ tuning. 10.7 MHZ IF $£ 3.50$ ea. P\&P 50 p each unit The Pair £5.75. P\&P 75p
POWER UNIT MODULE containing 2 small, 3 med. \& 1 large ferrite cores; 3-T03 power transistors, caps, resistors high powered diodes, 9 transistors, 3 min fuse holders, etc $£ 1.50$ ea. P\&P E1. 25.
GENERALELECTRIC OPTO-ISOLATORS type H $15 \mathrm{~V} \times 504$ 65p ea. P\&P $15 p .10$ for £5. P\&P $£$
MINIATURE REED SWITCHES 9p ea P\&P 15p
ROTARY SWITCHES 250V 10A 10p ea. P\&P $15 p$
LEDEX ROTARY SOLENOIDS $115 V O C$ NO switch assem
bly 25 p ea. P\&P 25p.
POTTER \& BRUMFIELD TIMER RELAYS. $24 / 48$ V. Heavy duty 2 pole $c / 0$ with 5 secs delay at $48 V$ increasing with voltage reduction. Timing can be attered by changing value of resistor/capacitance. 50p ea. P\&P 25p. CABLE NEATERS - neaten up your wire on a chassis win these push-on clips. 10 for 20 p. 100 for $£ 1.50$. P \& P extra.
AUDIO AMPLIFIER BOARD. Size $41 / 2 \times 21 / 2$. Output pair AUDIO AMPLIFIER BOARD. Size $4 \frac{1}{2} \times 21 / 2$. Output pair o TIP31s. Circuit supplied. £1.50 ea. P\&P 30p.
IDIGITAL 24 -HOUR CLOCK with built-in alarm as used in GRAUN Digital Clocks. Silent running, Large illuminated Numerals. AC Mains. Size $6 \frac{3}{6} \times 23 / 8 \times 2 \frac{3}{4}$. ONLY $£ 4.25$ ea
P'\&P $50 p$.
B:ROOKE CROMPTON \& PARKINSON extractor fan assembly 115 V operation. £1 ea P\&P £2. OR TWO for £1.50.

$1 / 2^{\prime \prime}$ MAG TAPE

Approx 1,500 ft. Now $\mathbf{2 0}$ p oach. P\&P £1, or 7 for $£ 1$, carr FOR THE VDU BUILDER, tube M 28 -13GH $23 \times 17 \mathrm{~cm}$ at £1\%.. Base connections supplied
Limited quantity of 35RO-20ma loop - can be changed to ASC. 11 code (3 hours' simple work and $£ 10$ parts). OUR PRICE EXCLUDING PARTS REQUIRED $£ 70$ ea. Ex-Ministry Teletype Punches B level 110 char per sec. $\mathbf{£ 5 0}$ ea Polished Wooden Cases to take normal 'QWERTY' KEY BOARDS, or can be carefully cut to take any size. $\mathbf{E 3}$ ea. P\&P F150.

TELETYPE ASR 28 with built-in tape reproducer and print
on tape facility, $£ 375$.
TE LETYPE ASR 35 . Nice condition, $£ 425$.
VARHACS - ex-eq. $2 \mathrm{amp} £ 8$ ea: 8 amp old style $£ 18 \mathrm{ea}$, later
style $£ 22$ ea; 15 amp $£ 35$ ea; $20 \mathrm{amp} £ 45$ ea. 3 Phase variacs
available - please enquire.

A LARGE QUANTITY OF MISCELLANEOUS TEST GEAR - CHASSIS UNITS. ETC., ON VIEW AT LOW COST
Minimum Mail Order $£ 2$. Excess postage refunded. Unless stated - please add $£ 3.25$ carriage to all units VALUE ADDED TAX not included in prices - Goods marked with $\$ 121 / 2 \%$ VAT, otherwise 8%

LONDON'S TEST GEAR CENTRE OPEN 6 DAYS A WEEK 9 am- 6 pm SCOPES - IN STOCK

$3^{\prime \prime} 5 \mathrm{MHz}$ single bearn 4810. 5 MHz single beam (4) MS 15. 15 MHz Bat/mains. portable ms215. Dual uace version of above Super 6/4S6 Scope $\times 6 \mathrm{MH} 2$ single beam Super 10/4010A. Scope $\times 10 \mathrm{MHz}$ Dual 1 4025. Scope $\times 25 \mathrm{MHz}$ Dual wace

92.50	\%ost
286.00	Now 5 mHz mains
360.00	ortablo scope
149.00	now in tro
229.00	
338.00	

LED AND LCD DIGITAL

MULTIMETERS

> CALL IN AND SEE FOR YOURSELF

301 EDGWARE RD., LONDON W2 1BN 01-724-3564. OPEN 9-6, MON-SAT.

FREE
сатаобuE

send stamped

 ADDRESSED ENVELOPE FOR YOUR COPY NOW

- ETI BOOK SERVICE

BEGINNERS
Beginners Guide to Electronics Squires $£ 2.65$
Beginners Guide to Transistors Reddihough $£ 2.65$
Electronic Measurement Simplified C. Hallmark $£ 2.20$
Electronics Self Taught Ashe $£ 4.40$
Beginners Guide to Integrated Circuits Sinclair £3.15
Principles of Transistor Circuits S. Amos $£ 4.75$
Understanding Electronic Circuits Sinclair £4.10
Understanding Electronic Components Sinclair £4.10
Beginners Guide to Radio King $£ 3.15$
Beginners Guide to Audio Sinclair $\mathbf{£ 3 . 1 0}$
Beginners Guide to Audio L. R. Sinclair $£ 3.20$

COOKBOOKS

TV Typewriters Cookbook $\mathfrak{£ 7 . 7 5}$
CMOS Cookbook $£ 8.20$
Active Filters $£ 11.30$
IC Timer Cookbook $£ 7.50$
IC Op-Amp Cookbook £10.00

APPLICATIONS

Advanced Applications for Pocket Calculators J Gilbert $£ 4.20$
Build Your Own Working Robot D. Heiseman $\mathbf{£ 3 . 5 5}$
Electronics and Photography R. Brown $£ 2.30$
Fire and Theft Security Systems B. Wels $£ 2.00$
How To Build Proximity Detectors and Metal Locators J. Shelds £3.90
How To Build Elect ronic Kits Capel $£ 2.10$
Linear Integrated Circuit Applications G. Clayton $£ 5.40$
Function Circuits Design \& Applications Burr Brown £15.95
110 Electronic Alarm Projects R. M. Marston £3.45
110 Semiconductor Projects for the Home Constructor R. M. Marston $£ 3.25$
110 Integrated Circuit Projects for the Home Constructor R. M. Marsion £3.25 110 Thyristor Projects Using SCRs R. M. Marston $£ 2.95$
Handbook of IC Circuit Projects A she $£ 2.30$
Practical Electronic Project Building Ainslie and Colwell $£ 2.45$

TV AND HI-FI

Audio Handbook G. King £6. 50
Cassette Tape Recorders J. Earl £5.25
Solid State Colour TV Circuits G. R. Wllding e6. 35
Hi-Fi Loudspeakers and Enclosures Cohen $£ 8.20$
How To Build Speaker Enclostres Badmateff $£ 3.90$
Master Hi-Fi Installation King £2.80

LOGIC

Logic Design Projects Using Standard ICs J. Wakerly £5. 10
Practical Digital Design Using ICs J. Greenfield $£ 12.50$
Designing With TTL Integrated Circuits Texas Instruments $£ 9.05$
How To Use IC Circuit Logic Elements J. Streater $£ 3.65$
110 COSMOS Digital IC Projects for the Home Constructor R. M. Marston $£ 3.20$ Understanding CMOS Integrated Circuits R. Melen $£ 4.00$
Digital Electronic Circuits and Systems R. M. Morrıs $£ 3.50$ MOS DIGITAL ICs G Flynn $£ 4.60$

COMPUTING

Microprocessors and Microcomputers B. Sowick £18.00 Microprocessors D. C. McGlynn $£ 8.40$
Introduction to Microprocessors Aspinall $£ 5.90$
Modern Guide to Digital Logic (Processors, Memories and Interfaces) £4.30

OP-AMPS

Applications of Operational Amplifiers Graemie (Burr Brown) 88.30 Designing With Operational Amplifiers Burr Brown £16.65
Experiments With Operational Amplifiers Clayton £3.40
110 Operational Amplifier Projects for the Home Constructor R. M. Marston E2.95 Operational Amplifiers Design and Applications G. Tobery (Burr Brown) £7.40
Op-Amp Circuit Design \& Applications J. Cars £4.00

TEST INSTRUMENTS

The Oscilloscope In Use Sinclair $£ 3.10$
Test Instruments for Electronics M. Clifford $\mathbf{E} 2.40$
Working With the Oscilloscope A. Saunders $£ 1.95$
Servicing With the Oscilloscope G. King £5. 60
Radio Television and Audio Test Instruments King £5.90

SERVICING

Electronic Fault Dlagnosis Sinclair $£ 3.20$
Rapid Servicing of Transistor Equipment G. King £2.95 Tape Recorder Servicing Manual Gardner Vol. 1: 1968-70 $£ 8.50$

Vol. 2: 1971-74 £8.50
FM Radio Servicing Handbook King $£ 4.80$
Basic Electronic Test Procedures I. M. Gottlieb $£ 2.45$

COMMUNICATIONS

Communication Systems Intro To Signals \& Noist B. Carlson £7.50 Digital Signal Processing Theory \& Applications L. R. Rabiner $£ 23.80$ Electronic Communication Systems G. Kennedy $£ 8.50$ Frequency Synthesis. Theory \& Design Mannassewitsch £20.40 Principles of Communication Systems H. Taub £8. 10

THEORY

Introduction to Digital Filtering Bogner £9.40.
Transistor Circuit Design Texas Instruments $£ 9.35$
Essential Formulae for Electrical and Electronic Engineers N. M. Morris £1. 65 Modern Elect ronic Maths Clifford E6. 70
Semiconductor Circuit Elements T. D. Towers $£ 6.40$
Foundations of Wireless Electronics M. G. Scroggie £4.45
Colour Television Theory Hudson £6.20

REFERENCE

Transistor Tabelle (Includes physical dimensions) £4.10 Electronic Engineers Reference Book (Ed. 4) L. W. Turner £27.70 Solid State Circult Guide Book B. Ward $£ 2.25$ Electronic Components M. A. Colwell $£ 2.45$
Electronic Diagrams M. A. Colwell $£ 2.45$
Indexed Guide to Modern Electronic Circuits Goodman £2.30
International Transistor Selector T. D. Towers $£ 6.00$
International FET Selector T. D. Towers $£ 4.35$
Popular Valve/Transistor Substitution Guide $£ 2.25$
Radio Valve and Semiconductor Data A. M. Bell $£ 2.60$
Master Transistor/Integrated Circuit Substitution Handbook £5.60
World Radio TV Handbook 1978 (Station Directory) $£ 8.00$
Radio. TV and Audio Technical Reference Amos $£ 24.85$
TV Technicians Bench Manual (New Ed.) Wilding $£ 5.10$

MISCELLANEOUS

Integrated Electronics J. Milman $£ 7.90$
Microelectronics Hatlmark $£ 3.90$
Practical Solid State DC Supplies T. D. Towers $£ 6.20$
Practical Triac/SCR Projects for the Experimenter R.Fox $£ 2.25$
Printed Clrcuit Assembly Hughes \& Cotwell $£ 2.45$

Fallen behind recent advances?
Just starting out?
Need a decent reference book?
ETI Book Service provides an easy
way of getting your hands
on the right title.

How to order: Make cheques etc payable to ETI Book Service. Payment in sterling only please. Orders should be sent to: ETI Book Service, PO Box 79, Maidenhead, Berks. All prices include P\&P.

SOUND-TO-LIGHT UNIT

Designed by Richard Bekker of Powertran, especially for ETI, this superb light show can act as strobe, linear five channel sound-to-light or random switching unit and can be digitally controlled!

OVER THE YEARS several lighting control units have appeared, some performing switching and others performing modulation of the light output according to the musical input. The Chromatheque combines both of these functions in a most original way. It is capable of controlling five banks of lamps - of up to 500 watts each in either analogue or digital mode. By being a five channel controller not only is the sound to light modulation made more exciting than three or four channel systems by virtue of the extra colours, but linear and random sequencing between the channels gives a tantalizing effect which could not occur with a smaller number of channels.

Singled Out

Being conceived as a single board design wiring is minimal and construction very simple. All components are cheap, readily available items but a complete kit is being made available by Powertran of Andover, including metalwork.

Modes

In the analogue mode the audio signal first passes through an amplifier stage with automatic gain control. This ensures that sound to light modulation occurs smoothly even when the overall sound level changes. After this the signal is split into active filter bands the outputs of which are used to phase control triacs which determine the current in the lamps.

By doing this channel 1 (red) responds to the lowest frequencies varying the light in time with the bass notes in the music. Channel 5 (blue) responds to the highest frequencies. The other 3 channels handle the intermediate frequency bands. separate light level control is provided for each channel to allow for intensity adjustment to personal taste to suit different types of music.

Fingers and Digits

In the digital mode TTL integrated circuits are used to
selectively switch either all the lamps in strobe fashion or alternatively one lamp at a time either sequentially or randomly. The speed at which the switching is carried out is controlled either manually with a potentiometer on the front panel or automatically. In this case the switching rate increases with the level of the audio signal. This is particularly effective in the sequential or random switch positions - a crescendo sets the lights racing whilst they freeze when the music stops.

On music with a heavy beat the lights will step round one position on each beat.

Because of the light level controls, the lamps can be turned just partially on to suit the mood of the occasion.

Construction

Start by assembling the board. This is entirely straightforward - just follow the overlay. All the potentiometers mount directly on the board though the switches are hardwired.

The circuit diagram for the audio input and digital switching sections of the lightshow circuit. The light drivers and filters are shown overleaf.

HOW IT WORKS

Input section:

Audio is applied across RV1. Q1,2 drive a LED which indicates when excess signal is being taken off RV1. ZD1, 2 clip the signal in cases of gross overload. ICI is a variable attenuator, the output of which is amplified by IC2. This feeds a 'diode' pump' setting up a voltage on C5 which rises as the output increases. This voltage is used to control Q3 which in turn controls the attenuation of ICI.

Digital section:

IC3 is a block of 4 Schmidt triggers two of which are used to form oscillators. C9,R17 determine the speed of the fast oscillator and fast clock pulses are produced at pin 8. The slow oscillator rate is determined by the rate at which C10 is charged via Q5, the current through which is either varied by RV2 or else the signal on C6, depending on the position of S1. D2 is a germanium type for the benefit of its low turn-on voltage. In the linear sequencing or strobe mode the low speed clock is applied to IC 4 which is a $\div 2, \div 5$ counter, the outputs of which are applied to decoding ICs $6,7,8$ via 4 bit latch IC5. The outputs of IC6,7,8 are taken via gates in IC9 and half of IC8 to inverters in IC10 to provide negative turn voltages to the triac driver stages. In the linear mode only one of the inverter outputs a,b,c,d,e is negative at any instant whilst in the strobe mode all the outputs are at OV. In the random noode the fast clock is applied to the counter, the output of which is sampled at a low rate by means of the slow clock being applied to IC5. C8 and two trigger sections of IC3 convert the slow clock into narrow pulses suitable for this sampling. As the two clocks are independent the sampling will be at a totally random point of the count by IC 4 thereby making the lamp selection truly random.

Filter section:
The output of IC2 is taken to 5 active filters based round IC11-15. IC11 is the low pass filter, IC15 the high pass and IC12-14 bandpass. The cut-off and centre frequencies are the triac SCR1. At the zero voltage point To generate the 100 Hz sync pulses the 12 V $40 \mathrm{~Hz}, 120 \mathrm{~Hz}, 400 \mathrm{~Hz}, 1200 \mathrm{~Hz}, 4 \mathrm{KHz} . \mathrm{R} 29,30$ of the 50 Hz mains cycle a sync. pulse is AC output of T6 is full wave rectified by D18, are used to bias the filters to give a small generated which discharges C15 via D4. For a 19 and without smoothing is applied to ZD5 negative offset voltage at the outputs which given charging, current C15 will always across which is produced a spikey waveform. are applied to the triac driving. stages. This reach 6 V at the same point in the mains This is then applied via C39 to Q16 which is means that the series diodes are biased on cycle. We therefore have phase control sufficiently turned on by the spikes to sink and control of the lamp can start even when which is dependent on Q6 current which in the charge on C15.C 20 etc. the signal level is very low thereby improving turn is dependent on the audio signal level Power supply:
the smoothness of the modulation. and the setting of RV4. Phase control is used Highly stable voltages are unnecessary and

Triac drivers:

All 5 stages are identical so only the low frequency one will be considered Sinalfrom IC11 charges C4 via R27,D3. The voltage switching surges is performed most effec- Q17.
across C4 causes Q6 to conduct and charge tively by C16,L1 and the RF interference across C4 causes Q 6 to conduct and charge tively by $\mathrm{C} 16, \mathrm{LI}$ and the RF interference
C 15 . When this reaches about 6 volts PUT Q 7 generated is substantially less than that from suddenly conducts discharging C15 through a domestic light dimmer. ransformer Tl generating a pulse to turn on Syncing:

HOW IT WORKS

On the left we have the light drive circuitry for the disco unit. Each driver is identical, but note that the filter configurations change as each operates at a different frequency

Right: Power supply circuit for the light show design. The sync signal is required for the drivers.

PARTS LIST

RESISTORS $1 / 4 \mathrm{~W} 5 \%$ exceptwhere stated

R1, 17, 71, 74, 81
R2, 11, 31, 40, 49, 58, 66
R3, 14
R4, 9
R5, 15
R6, 10, 13, 19-23, 26, 27.
32, 33, 37, 38, 41, 42, 46
47, 50, 51, 55, 56, 59, 60,
63, 64, 67, 68, 73
R7
R8
R12
R16
R18, 30
R24, 25
R28, 39, 48, 57, 65, 72,
76-80
R29
R34-36, 43-45, 52-54
R61
R62
R69
R70
R75
POTENTIOMETERS
RV1
RV2
RV3
RV4-8
CAPACITORS
C1, 3, 6, 14, 19, 24, 29, 34
C2
C4
C5, 11,40
C7
C8, 27, 28
C9, 15, 17, 18,
20, 25, 30, 35, 39, 41
C10
C12
C13
C16, 21, 26, 31, 36
C22, 23
C32, 33
C37, 38

SEMICONDUCTORS

SEMICON $01,2,416$	BC 182L
Q3, 5, 6, 8, 10, 12, 14	BC212L
07, 9, 11, 13, 15	BRY39
017	TIP30A
SCR 1-5	8A Triac
IC1	MC3340p
IC2, 11-15	741
IC3	74132
IC4	7490
IC5	7475
IC6-8	7420
IC9	7400
IC10	7405
D1, 3-19	IN4148 or IN4151
D2	OA95
D20-23	IN4002
ZD1, 2, 6	4V7 zener
ZD3,4	12 V zener
ZD5	2V7 zener
SWITCHES	
SW1-3	4p $3 w$ adjustable stop. rotary
SW4	illuminated mains switch DPDT 10 Amp

TRANSFORMERS

INDUCTORS

100n polycarbonate
220 u 4 V electrolytic 220 n polycarbonate 47 n polycarbonate $47 n 400 \mathrm{~V}$ polycarbon $33 n$ polycarbonate
1n polystyrene
470 u 25 V electrolytic

T1-5
T6

L1-5
1 u 63 V electrolytic 680 p polystyrene or ceramic
$4 n 7$ polystyrene
47 u 10 V electrolytic
22 u 25 V electrolytic
10 n polycarbonate
1 k
100 k
470 k
470 R
$22 k$
$6 k 8$
6 k 8
10 k
$220 k$
$470 k$
470k
82 k
390 R
2k2
3 k 2
39 k
4k7
100 R
18 k
18 k
15 k
56k
$120 \mathrm{R} 1 / 2 \mathrm{~W}$
$220 \mathrm{R}^{1 / 2} \mathrm{~W}$
!
$10 \mathrm{k} \log$
10 k lin PCB mounting
2k5 preset
$22 k$ lin

FUSES
F1.5
F6

Use 3' lengths of coloured wire for these. The switches supplied in Powertrain kits are of the adjustable stop variety. The tag on the stop plate goes in the hole stamped 2 for two way switches and the hole stamped 3 for the 3 way switch.

Mains transformer T6 is bolted onto the board and the 15 V windings connected to the board by means of short wire links from the tags down to the holes directly beneath them.

Pulse transformer T1-5 you wind yourself. Wrap round the ferrite rings 10 turns of 35 g wire for both the primary and secondary. It doesn't matter which you call the start or the finish of the windings as the circuit operates with them either way round. The wire supplied in the kits is self fluxing polyurethene covered and can be soldered directly to the board.

Wind coils L 1-5 with about 35 turns of 25 g wire. A smear of glue on the windings will help them stay in place before
fitting and reduce buzzing when in use. The triacs are kept cool by means of a finned tab bolted to each of them. The outputs to the lamps are taken from the board via connector blocks screwed to the board and linked to.it with short lengths of 18 g wire.

Testing and Setting Up

Plug in the unit between your amplifier and speakers, wire in the lamps securing the cables with the clamps on the rear panel, turn all controls anticlockwise, switch on and set auto level to where the LED only comes on occasionally. Switch SW2 to A and turn up the level controls and watch the lamps operate smoothly in time with the different frequency bands in the music. Switch SW2 to D, SW3 to S, SW1 to A, adjust the level controls for the lamps to be equally turned on by the strobing and set the one and only pre-set (RV3) for a strobe rate as fast as the lamps will follow.

BUYLINES

A complete kit of parts including metalwork is to be made available by Powertran Electronics. Address from the inside front cover. The PCB will be available only from them as it is their design. All components are available separately.

All-in-one p.c. drill systemonly £44.50.

- Fully controlled drill speed up to 15,000 r.p.m. - Smooth torque pick-up with varying loads - Precision collets for exact drill centering - Accepts $1 / 8$ in. and $3 / 32$ in. turbo drill shanks - 42W power consumption - Drill stand takes 10×9 in. boards - Complete with three tung sten carbide drills - Works hand-in-hand with our photolab kit -- still only $£ 49.50$. See us at Breadboard '78, Stand A7; or, enquiries, top speed, to

Mega Electronics Ltd., 9 Radwinter Road, Saffron Walden,
Essex CB11 3HU.
Tel: (0799) 21918

Our new 1978 catalogue lists a card frame system that's ideal for all your module projects - they used it in the ETI System 68 Computer. And we've got circuit boards, accessories, cases and boxes - everything you need to give your equipment the quality you demand. Send 25 p to cover post and packing, and the catalogue's yours

VERO ELECTRONICS LTD. RETAIL DEPT.
Industrial Estate, Chandlers Ford, Hants. SO5 3ZR
Telephone Chandlers Ford (04215) 2956

ETI NEEDS

Last month we advertised for someone to fill the position of Editorial Assistant, and we are still receiving applications for that. However our expansion plans now mean we need three additional recruits!

IF YOU have a genuine interest in electronics and project building and an above-average ability to express yourself in writing, you could be the person we're looking for. We are being serious.

We are looking for someone to join the editorial team and reckon that an enthusiastic reader is likely to be the type to join us. Not an uncritical reader - we want to continue to improve. The work will entail dealing with articles and news - licking them into shape - and making them better than anyone else's articles and news. The applicant will work on both ETI and our new sister publication Hobby Electronics. Readers employed in journalism at the moment will be considered but we are not primarily looking for someone with magazine experience.
We are flexible about age and experience but imagine that the person who gets the job will be between 21 and 28.
Salary will depend upon age and experience but will be in the range $£ 3,700$ to $£ 4,100$, possibly more for someone with exceptional qualifications.
Experience has told us that people who read ads like this think a) that it doesn't apply to them b) that their own knowledge is far too limited or c) that ads of this type are only put in because we have to fill half a page. None of these is true.

Editorial Assistant (Home Computing):- in order to complement and add to our existing staff skills we are looking for someone with a real knowledge of this everexpanding field. Everyone here at ETI is fascinated by the field - PET nearly stopped the magazine dead - but we feel we need a person who has a broad overal knowledge of the systems around today and the principles behind them, in order to assist with the magazine generally and our 'Computing Today' supplement in particular.

Salary in the range $£ 3,700-£ 4,100$. Age flexible.

Project Engineer:- the person who fills this position will be able to design and build up projects to the standard of finish ETI readers are used to seeing in their magazine. This calls for someone with a good knowledge of circuit design, and with the patience to carry the design through to a finished state. Existing staff are available to assist in all aspects of design work. The easiest part of the job will be writing up the project once it is completed. None of the present ETI staff were journalists previous to joining, and no-one has found the writing a difficult task.
One again we have no preconceived notions of age required, and salary will be negotiable upwards from £4,000.

> Apply in writing to:
> Halvor Moorshead,
> Editor,
> Electronics Today International,
> 25-27 Oxford Street, London W1R 1RF.

Applications should reach us as soon as possible with C.V. Prospective applicants may telephone the Editor for further details but this must be followed by written application.
A. Marshall (London) Ltd., Dept. ETI. Head Office mail order; KingsgateHouse, Kingsgate Place, NW6 4TA Tel. 01-624 0805. Retail Sales London: 40-42 Cricklewood Broadway. NW2 3ET. Tel. 01-4520161/2. Telex. 21492 . London: 325 Edgware Road, W2. Tel. 01 - 7234242 . Glasgow: 85 West Regent Street, G2 20D. Tel. 041-3324133. Bristol: I Straits Parade. Fishponds Road. BS 16 2LX. Tel. 0272654201.

NDEX 78

INTRODUCTION

IT WAS APRIL last year when we last provided an index of our own efforts．That one went right back to our first issue in April 1972．This month＇s brings us once more up to date．In future these listings will appear each December issue（there＇s long－term planning！）．

Producing a definitive index is not simply a matter of reading from the contents pages and rearranging to nice neat alphabetical order．There will be some items which can be classified in several ways，and which are usually
entered more than once as a result．All articles here are included just once for simplicity．

All articles，except Tech－Tips and the news features， are included in the index．Projects are simply listed consecutively，whilst the features are divided into categories for ease of reference．

Computing Today is a separate entity from ETI，and articles appearing within it are not eligible for inclusion in our index．

Projects

A

ALARM ALARM
ASC II KEYBOARD
AUDIO AMPLIFIER（200W）
AUTOCHORD
Pt 1
Pt 2

B

BASS ENHANCER
BELL EXTENDER
BENCH SUPPLY
BURGLAR ALARM SYSTEM
BURGLAR ALARM（CMOS）

C

CAR ALARM
CLOCK（LED）
CLOCK（Fluorescent）
COMPUTER（Triton）
COMPANDER
CONTINUITY TESTER
CROSSHATCH GENERATOR CURVE TRACER

D

DRUNKEN SAILOR PUZZLE

E

EGG TIMER
ELECTRONIC BONGOS
ELECTRONIC IGNITION

F

FM／AM RADIO
FM TUNER（Digital）
FREEZER ALARM
FREQUENCY METER（Dïgitail） FREQUENCY SHIFTER FUZZ BOX

JUL77	p． 29
APA77	p．25
APR 78	p．43
NOV 78	p．57
DEC 78	p．80

G

GAS MONITOR GRAPHIC EQUALISER GSR MONITOR

H

HAMMER THROW GAME ．HELPING HAND

JUN 77	p． 53
OCT 78	p． 65
APR 77	p． 47
APA 7．	p．57
JAN 78	p． 16

DEC 78	p． 16
NOV 77	p． 23
DEC 77	p．19
NOV 78	p． 16
NOV 7．7	p． 11
SEP 7．7	p．38
SEP 78	p．33
DEC 78	p． 73

JAN 78 p． 46

AUG－77 p． 26
AUG 77 p． 24
MAY 78
L

LIGHT SHOW
LOUDHAILER
LOUDSPEAKERS（ER II）
M
MASTERMIND

0

JUN 78	p． 79
SEP 78	p． 21
GEE 77	p．41
JUN 77	p． 19
MAR 78	p． 40
APA 77	p． 48

APR 78 p． 32 SEP 77 p． 27 Jリビー7 p． 11

$$
\text { JAN } 78 \text { p. } 29
$$

$$
\text { MAY } 78 \quad \text { p. } 16
$$

$\begin{array}{lll}\text { IB METAL LOCATOR } & \text { FEB 78 } & \text { p．} 32 \\ \text { INJECTOR－TRACER } & \text { MAY 77 } & \text { p．} 37\end{array}$

LED PENDANT NOV－77 p． 41
LCD MULTIMTER A－AUG 78 p． 23
LCD PANEL METER MAR 78 p． 26
LIGHT DIMMER MAR 78 p． 55
DEC 78 p． 44
GEP 77 p． 56
MAY 77 p． 31

JUN 77	p． 41
FEB 78	p． 17
MAY 77	p． 39
HUL 77	p． 30
AUG 77	p． 19

OSCILLATOR（Sweep）
AUG 77 p． 10
OSCILLATOR（LCD）
OSCILLATOR Wide range）
NOV 78 p． 71
JUN 78 p． 90

P

PHASER（CCD）
PHASER
PLANT WATERER（Auto）

MAY 78
p． 57
AUG 78 p． 61

PORCH LIGHT
POWER BULGE POWER METER (R.F.) POWER SUPPLY PROXIMITY SWITCH

FEB 78
p. 28

OCT 78 p. 41
OCT 78 p. 30
AUG 78 p. 75
OCT 78 p. 75

R
RACE TRACK GAME
RAIN ALARM
BEV MONITOR

S

 SHUTTER TIMERSKEET GAME
STAC TIMER
STAR TREK RADIO
STARS \& DOTS
STEREO SIMULATOR
SOUND GENERATOR
SPECTRUM ANALYSER
SPIRITLEVEL
SYNTHESISER (Trandscendent)

```
SYSTEM 68
PSU
VĐU
BUS STRUCTURE
CPUEARD
FFY
INTERFACING
CUTS CARD
ETIBUG
```


T

```
TACHOMETER
TANK BATTLE
TEMPERATURE METER
THERMOMETER (Digital)
TONE CONTROL (3 channel)
TORCH FINDER
TV CHĒSS
PT 1
PT 2
```


U

UFO DETECTOR
ULTRASONIC SWITCH

V

VOLTMETER (True RMS)
W
WATCHDOG
WHEEL OF FORTUNE
WHITE LINE FOLLOWER
WINE TEMP METER

FEATURES
Audio

JAN 78	p. 36
APR 78	p. 62
DEC 77	p. 37

FEB 78 p. 57
NOV 77 p. 34
SEP 78 p. 71
MAY 78 p. 62
JUN 78 p. 17
SEP 77 p. 16
OCT 78 p. 17
JUN 78 p. 27
OCT 77 p. 28
JUL 78 p. 38
AUG 78 p. 45
MAY 77 p. 55
JUN 77 p. 33
and
JUL 77
p. 54

AUG $77 \quad$ p. 45
SEP 77 p. 22
and
NOV 77 p. 45
DEC 77 p.59
JAN 78 p. 61
and
MAR 78

AM STEAEO
CLASSGAMPS ELECTRETS IN AUDIO NOISE REDUCTION

SWITCH IN LINE PHCKUP PRINCIPLES PIRATE RECORDINGS ROCK SOUND
VALVE SOUND
VALVE SOUND ON THE

REBOUND

VOCODERS
(See also AUDIOPHILE)

Circuit design

ACTIVE FILTER
Pt 1
Pt 2
Pt 3
AUDIO AMPS

JUL 77	p. 32
MAY 78	p.50
JUL 78	p.21
OCT 77	p.20
OCT 77	p.34
JUL 78	p.31
OCT 78	p. 48
NOV 78	p.44

JUL 78 p. 63

FEB 78 p. 62

MAR 78 p. 13

OCT 77 p. 10
SEP 78 p. 61
APR 78 p. 23
DEC 78 p. 31
GAIN CONTROL
Pt 1

OCT 77
p. 25

DEC 77 p. 34
DEC 77 p. 24
NOV 77 p. 16
NOV 78 p. 51
AUG 77 p. 56
OCT 78 p. 45
SEP 78 p. 15
JUN 77 p. 57

JUL 77 p. 34
AUG 77 p. 34

JUL 77 p. 23
AUG 77 p. 36
SEP 77 p. 52
JUN 78 p. 21

DIGITAL ELECTRONICS BY		
EXPERIMENT		
Pt 1	OCT 77	p.49
Pt 2	NOV 77	p.58
Pt 3	DEE 77	p.76
Pt 4	JAN 78	p.67
Pt 5	FEB78	p.78
Pt 6	MAR 78	p.66
Pt 7	APR 78	p.38
Pt 8	MAY 78	p.74
Pt 9	JUN 78	p.98

OCT 78 p. 22
NOV 78 p. 65

HOW IT WORKS - TELEVISION RECEIVERS	DEC 78	p. 21
HI-EST FI AMPS		
Pt 1	AUG 78	p. 15
Pt 2	SEP 78	p. 39
OSCILLATORS	JUL 78	p. 15
OP AMPS		
$\mathrm{P}_{4} \mathrm{H}$	FEP-78	p. 22
Patz	- MAR 28	p. 49
Pt 3	APR 78	p. 29
Pt 4	MAY 78	p. 69
OP AMP (741) SUPPLEMENT	-APR-79	p. 10

Components

BATTERIES EXPLAINED
CASINGS SURVEY
CCD-
COMPONENTS

```
P+9
P+10
Pt+1-
P+12
Pt13
```

INSIDE VCT
ECD DISPLAYS
MOSFETS
JRANSFORMERS
V-FETS FOR EVERYONE
Pt 1
Pt 2

Computing

GAMES
 GLOSSARY
 MEMORIES
 ONE ARMED MPU
 PERIPHERALS
 SOFTWARE GAMES
 SYSTEM SURVEY
 SYSTEM 68 UPDATE
 General

HIGH LEVEL LANGUAGES

SOFTWARE FECHNIQUES
(See also 'MICROFILE')

DANGERS OF LIGHTNING

ELECTRONICS-IT'S EASY! Pt 38	APR 77	p. 65
Pr 39.	MAY 77	p. 64
P+40	JUN 77	p. 64
Pt 41	JUL 77	p. 64
Pt 42	AUG 77	. 64
Pi 43	SEP 77	p. 62
ELECTRONICS IN PHOTOGRAPHY	AUG 77	p. 28
ELECTRONICS IN SURVEYING	JAN 78	p. 24
ELECTRONICS 2000	MAY 77	p. 25
ELECTRONICS ON TAP	FEB 78	p. 38
ELECTRONICS IN MODEL		
RAILWAYS	DEC 78	p. 36
ELECTRONICS IN MOTORING	AUG 78	p. 33
ELECTRONIC NEWS GATHERING	DEC 77	p. 14
IONOSPHERE	DEC 78	p. 61
I'L EXPLAINNED	MAY 77	p. 18

KENNEDY SPACE CENTRE	JUN 77	p. 25
LASER LIGHTSHOWS	SEP 77	p.34
QUARKS	JUN 78	p.34
RACE FOR THE BOMB	JUL 78	p.69
ROCKWELL SPACE SHUTTLE	SEP 78	p.50
ROBOTS	MAY 78	p. 22
SOLDERING IRON SURVEY	OCT 77	p.52
ULTRASONICS IN MEDICINE	NOV 78	p.79
VENUS PROBE	NOV 78	p.37

Reviews

AIWA AD 6800	JAN 78	p. 72
BATTLE OF THE KEYS	NOV 77	p. 28
CAMBRIDGE PROGRAMABLE	JUL 77	p. 15
CRIMSON CPR 1	NOV 78	p. 85
COMMODORE PET	APR 78	p. 13
GARRARD MRM 101	OCT 78	p. 70
GOLDRING G900SE-2	AUG 78	p. 79
HITACHI SR 903	DEC 77	p. 34
HITACHI HMA 750	JUN 78	p. 41
HP 67 CALCULATOR	JUN 77	p. 30
KOSS ESP10	MAR 78	p. 63
MK 14 KIT	SEP 78	p. 27
SCRUMPI 3 KIT	OCT 78	p. 35
SOUND GUARD	JAN 78	p. 71
T159 CALCULATOR	JUN 78	p. 85
TRS 80 COMPUTER	AUG 78	p. 39
VIDEOCRAFT TELETEXT	AUG 77	p. 18
WIRELESS SHOW	JAN 78	p. 50

Data Sheet

HD0165 ENCODER	APR 77	p. 40
ICL 8038 VCO	JUL 77	p. 50
ICM 7205 STOPWATCH	JUL 77	p. 52
L911 COMPARATOR	JUN 78	p. 97
LM1812 TRANSCEIVER	MAY 77	p. 48
LM 1830 FLUID DETECTOR	AUG 77	p. 62
LM 2907/17 CONVERTORS	AUG 77	p. 60
LM 3919 TEMP SENSORS	SEP 77	p. 59
MC14490 BOUNCE ELIMINATOR	JUN 77	p.49
MC14433 A-D CONVERTOR	SEP 77	p. 60
MK50362N CLOCK	APR 77	p. 38
MM57160 TIMER	SEP 78	p. 65
MM5837 NOISE SOURCE	FEB 78	p. 71
NE570/1 COMPANDER	OCT 77	p. 59
NSL 4944 LED	NOV 77	p. 55
3-TERMINAL REGULATORS	JUN 77	p. 50
TDA 1023 DELAY LINE	MAY 77	p. 49
TGS 812 GAS SENSOR	APR 78	p. 57
TL080 OP AMPS	JAN 78	p. 53
2102 RAM	JUL 78	p. 51
2112 RAM	JUL 78	p. 52
2107 RAM	JUL 78	p. 54
5204 EPROM	JUL 78	p. 56
7208 COUNTER / DECODER	AUG 78	p. 57

Understanding Digital Electronics New teach-yourself courses

Design of digital Systems is written for the engineer seeking to learn more about digital electronics. Its six volumes - each A4 size - are packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters and simple arithmetic circuits, and finally to a complete understanding of the design and operation of calculators and computers.

The contents of Design of Digital Systems include:

Book 1 Octal, hexadecimal and binary number systems; conversion between number systems; representation of negative n mbers; complementary systems; binary multiplication and division.
Book 2 OR and AND functions; logic gates NOT exlusive UR NAND, NOR and exclusive-NOR functions; multiple input gates; truth tables; De Morgans Laws; canomical forms; logic conventions; Karnaugh mapping; three-state and wired logic
Book 3 Half adders and full adders; subtractors; serial and parallel adders; processors and arithmetic logic units (ALUs); multiplication and division systems.
Book 4 Flip flops; shift registers; asynchronous and synchronous counters; ring, Jơhnson and exclusive-OR feedback counters; random access memories (RAMs) and read only memories (ROMs)
Book 5 Structure of calculators; keyboard encoding; decoding display data; register systems; control unit; program ROM; address decoding; instruction sets; instruction decoding; control program structure.
Book 6 Central processing unit (CPU); memory organisation character representation; progıam storage; address modes; input/ output sysfems; program interrupts; interrupt priarities; programming; assemblers; computers; ex^2utive programs; operating systems and time sharing

Digital Computer logic and Electronics is designed for the beginner. No mathematical knowledge other than simple arithmetic is assumed, though the student shout have an aptitude for logical thought. It consists of four volumes - each A4 size - and serves as an introduction to the subject of digital electronics. Everyone can learn from it - designer, executive, s ientist, student, engineer.

Contents include: Binary octal and decimal number systems; conversion between number systems; AND, OR, NOR and NAND gates and inverters; Boolean algebra and truth tables; De Morgans Laws; design of logic circuits using NOR gates; R-S and J-K flip flops; binary counters, shift registers and half adders
CAMBRIDGE LEARNING ENTERPRISES, UNIT 12, RIVERMILL SITE,
FREEPOST. ST. IVES, HUNTINGDON. CAMBS. PE17 4BR. ENGLAND
TELEPHONE: ST. IVES [0480] 67446 PROPRIETORS DRAYRIDGE [TD. REG. OFFICE: RIVERMILL LODGE, ST. IVES REGD. IN ENGLAND No. 1328762

In the years ahead the products of digital electronics technology will play an important part in your life. Calculators and digital watches are already commonplace. Tomorrow a digital display could show your vehicle speed and petrol consumption; you could be calling people by entering their name into a telephone which would automatically look up their number and dial it for you.

These courses were written by experts in electronics and learning systems so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being faster and more thorough than classroom learning. You work at your own pace and must respond by answering questions on each new piece of information before proceeding.

After completing these courses you will have broadened your career prospects and increased your fundamental understanding of the rapidly changing technological world around you
The six volumes of Design of Digital Systems cost only:

And the four volumes of Digital Computer Logic and Electronics cost only:

But if you buy both courses, the total cost is only:

Price includes surface mail anywhere in the world - Airmail extra

Flow Charts \& Algorithms

HELP YOU PRESENT
safety procedures, government legislation, office procedures, teaching materials and computer programs by means of YES and NO answers to questions.

THE ALGORITHM WRITER'S GUIDE explains how to define the questions, put them in the best order and draw the flow chart, with numerous examples shown. All that students require is an aptitude for logical thought. Size A5, 130 pages. This book is a MUST for those with things to say.

£2.95

+45 p post $\&$ packing by surface mail anywhere in the world. Airmail extra.

GUARANTTEE

If you are not entirely satisfied your money will be refunded.
Cambridge Learning Enterprises, Unit 12 Rivermill Site
Freepost, St. Ives, Huntingdon, Cambs. PE1 7 4BR
England
Please send me the following books
sets Digital Computer Logic \& Electronics @ £5 50. p \& p included
sets Design of Digital Systems @ £9.00, p. \& p. included
Combined sets@ £13.00.p \& p included
The Algorithm Writer's guide @ £3.40.p \& p included
Name
Address

I enclose a cheque/PO payable to Cambridge Learning Enterprises for E
Please charge my Access/Barclaycard/Visa/Eurocard/ Mastercharge / İnterbank account number

Signature

deleted as appropriate
Telephone orders from credit card holders accepted on 048067446 (ansafone). Overseas customers should send a bank draft in sterling drawn on a London Bank.
\qquad

ETI MARKET PLACE

Size: 105 mm wide 115 mm deep $\times 55 \mathrm{~mm}$ high.
THIS IS THE THIRD digital alarm clock that we are offering (we regret the earlier versions are no longer available). We have sold thousands and thousands of these and our buying power enables us to offer a first rate branded product at a really excellent price.

The Hanimex HC-1100 is designed for mains operation only $(240 \mathrm{~V} / 50 \mathrm{~Hz})$ with a 12 hour display, AM / PM and Alarm Set indicators incorporated in the large display. A switch on the top controls a Dim / Bright display function.

Setting up both the time and alarm is simplicity itself as buttons are provided for both fast and slow setting and there's. no problem about knocking these accidentally as a locking. switch is provided under the clock. A 9-minute 'snooze' switch is located at the top.

(Inclusive of VAT and Postage)
An example of this clock can be seen and examined in our reception at our Oxford Street offices.

To:

Hanimex Alarm Offer
ETI Magazine
25-27 Oxford Street London W1R IRF

Please find enclosed my cheque PO for $£ 8.95$ (payable to ETI Magazine) for a Hanimex Digital Alarm Clock.

Name

Adress \qquad

The enormous numbers involved in ETI offers has enabled us to arrange a real bargain - a full spec LCD watch with adjustable metal bracelet for under half the going rate.

This watch gives continuous display of hours and minutes press the button once and you'll get the date (American style). After a couple of seconds the display automatically reverts to time but if you press again you'll get a continuous seconds display.

Press another button and you get a back light, enabling you to see the display in the dark. Setting, or resetting is simplicity itself and a 'hold' facility allows you to set the watch spot on. The accuracy is magnificent, as with all the current range of digital watches and battery life is well in excess of a year.

(Inclusive of VAT and Postage)
An example of this watch can be seen and examined in our reception at our Oxford Street offices.

To:
LCD Watch Offer
ETI Magazine
25-27 Oxford Street London WIR IRF

Please find enclosed my cheque/PO for $£ 8.95$ (made payable to ETI Magazine) for my LCD Digital Watch.
Name |
\qquad

Please allow 14 days for delivery

Electrovalive Buying Guide If you have bought before from Electrovalue, you will know just how large and varied our stocks are. Those who have yet to know are finding our series of monthly ads to give up-to-date information and prices on the most important items we carry. BY DETACHING AND SAVING THESE PAGES, YOU WILL BUILD UP A VALUABLE AND COMPREHENSIVE MONEY-SAVING CATALOGUE. All goods brand new and to published specifications.

Transistors/Zeners

GOODS SENT POST FREE U.K. WITH C.W.O.
orders over $£ 5$ list value. If under, add 27 p orders over $£ 5$ list value. If under, add $27 p$ handling charge.

- ATTRACTIVE DISCOUNTS on C.W.O. mail orders -5% where list value is over £ $10: 10 \%$ where list value is over $£ 25$.
- TOP QUALITY MERCHANDISE-ALL GUARANTEED.
marked . add $121 / 2 \%$
For ACCESS or BARCLAYCARD orders, just phone or write your number.
- No discounts allowable on prices marked NET or
- take good care of this page and REMEMBER TO LOOK OUT FOR NEXT MONTH'S TO ADD TO IT
- OUR COMPUTER-AIDED SERVICE TAKES GOOD CARE OF YOUR ORDER NO MATTER

Alathoniostondey

What to look for in the January issue: On sale Dec 1st

ELIMINATOR

Fed up with low quality records? Had a hard day and dropped your favourite LP? Kiddies used Bach for target practice?

We can help - do not despair.
Next month we present a design to remove the clicks and scratches from records. The system works in a novel manner, and the system can be built at a fraction of the cost of commercial units.

Compact, easy to build, 10 rev resolution, fast response due to PLL technique and a range to 9999 rpm. With all that going for it how can you afford to miss it? Suitable for standard, CDI, and transistor assisted ignition systems.

LOG/EXP

 CONVERTERThis design can be set up for either \log or exponential convertion, and incorporates a neat heater for temperature stability. Has an eight octave range.

LOUDSPEAKERS

 PRINCIPLESAn article to explain what goes on behind the grilies on those large wooden boxes dominating the living room. All the major types will be covered, moving coil electrostatic piezo electric etc, as well as explanations of the different methods of 'loading' the units to do their job better.

computing today no 3

NEWBEAR'S BEARGAGS are an economical way of adding extra power to any small system. Next month we take a look at a typical bag - the petitevid VDU II kit.

BASIC II
Tandy's level two BASIC upgrade for TRS80 machines is now available in this country - what extra power does this conversion provide?

COMPUTERS IN BUSINESS. A look at how one small businessman uses a microcomputer at work

The Sinclair PDM35. A personal digital multimeter for only $£ 29.95$

 Technical specification

 Technical specification}

Now everyone can afford to own a digital multimeter

A digital multimeter used to mean an expensive, bulky piece of equipment.

The Sinclair PIDM 35 changes that. It's got all the functions and features you want in a digital multimeter, yet they're neatly packaged in a rugged but light 'pocket-size case, ready to go anywhere.

The Sinclair Pl)M35 gives you all the benefits of an ordinary digital -multimeter - quick clear readings, .high accuracy and resolution, high input impedence. Yet at $£ 29.95$ ($+8 \%$ VAT), it costs less than you'd expect to pay for an analogue meter!

The Sinclair PIDM35 is tailormade for anyone who needs to make rapid measurements. Development engineers, freld service engineers, lab,technicians, computer specialists, radio and electronic hobbyists will: find it ideal:

W'ith its rugged construction and battery operation, the P1MM35 is perfectly suited for hand work in the field; while its angled display and optional AC power facility make it just as useful on the bench.

What you get with a PDM35

$31 / 2$ digit resolution.

Sharp, bright, easily read LEI) display, reading to ± 1.999.
Automatic polarity selection.
Resolution of 1 mV and 0.1 nA (0.00014A)

Direct reading of semiconductor forward voltages at 5 different currents. Resistance measured up to 20 M 1 . , 1% of reading accuracy.

Operation from replaceable battery or AC adaptor.
Industry standard 10 Ma input impedance.

Compare it with an analogue meter!

The PIDM 35 's 1% of reading compares with 3% of full scale for a comparable analogue meter. That makes it around 5 times more accurate on average.

The PDM35 will resolve 1 mV against around 10 mV for a comparable analogue meter - and resolution on current is over 1000 times greater.

The PIDM35's DC input impedance of $10 \mathrm{M} \Omega$ is 50 times higher than a $20 \mathrm{kn} /$ volt analogue meter on the 10 V range.

The PDM35 gives precise digital readings. So there's no need to interpret ambiguous scales, no parallax errors. There's no need to reverse leads for negative readings. There's no delicate meter movement to damage. And you can resolve current as low as. 0.1 nA and measure transistor and diode junctions over 5 decades of current.
ruce ;

DC Volts (4 ranges)

Range: 1 mV to 1000 V .
Accuracy of reading $1.0 \% \pm 1$ count.
Note: 10 Mr input impedance.
AC Volts ($40 \mathrm{~Hz}-5 \mathrm{kHz}$)
Range: I V' o 500 V .
Accuracy of reading: $1.0 \% \pm 2$ counts.

* DC Current (6 ranges)

Range: 1 nA to 200 mA .
Accuracy of reading: $1.0 \% \pm 1$ count.
Note: Max. resolution 0.1 nA .
Resistance (5 ranges)
Range: 1 s 1 to 20 Mr .
Accuracy of reading: $1.5 \% \pm 1$ count.
Also provides 5 junction-test ranges.
Dimensions: 6 in $\times 3$ in $\times 1 / 2 \mathrm{in}$.
Weight: $61 / 207$.
Power supply: 9 V battery or
Sinclair AC adaptor.
Sockets: Standard 4 mm for resilient plugs.
Options: AC adaptor for 240 V
50 Hz power. De-luxe padded carrying wallet. 30 kV probe.

The Sinclair credentials

Sinclair have pioneered a whole range of electronic world-firsts - from programmable pocket calculators to miniature TVs. The PDM35 embodies six years' experience in digital multimeterdesign, in which time Sinclair have become one of the world's largest producers.

Tried, tested, ready to go!

The Sinclair PIMM35 comes to you fully built, tested, calib rated and guaranteed. It comes complete with leads and test prods, operating instructions and a carrying wallet. And getting one couldn't be easier. Just fill in the coupon, enclose a cheque/ $P^{(}()$ for the correct amount (usual 10-day money-back undertaking, of course), and sendit to us.

Sinclair Radionics Ltd, London Road, St Ives, Huntingdon, Cambs., PE174HJ, England. Regd No: 699483.

[^2]

Radio communications beyond the horizon in the high frequency (HF) spectrum between 3 MHz and 30 MHz are carried on as the result of the bending of the radio waves in the ionosphere, that region of our atmosphere extending from about 60 km to about 1000 km above the earth.

THE IONOSPHERE CAN bend radio waves so that they return to earth from hundreds of kilometres to many thousands of kilometres distant.

Without the existence of the ionosphere, long distance radio communications, shortwave broadcasting, amateur radio 'DX' etc. would not be possible - and one G. Marconi would probably have died an unknown pauper!

The ionosphere enables shortwave radio stations such as Radio Peking. The Voice of America etc to broadcast programmes across the world. It enables radiotelephone communications to ships at sea and contact with international aircraft.

The Solar Prime Mover
The sun, which dominates almost every phase of our lives, influences all HF radio communications beyond the horizon. The sun generates the ionosphere; solar activity has a considerable influence on this area of our atmosphere and thus affects propogation of HF radio waves.

Ionisation of the upper atmosphere is brought about largely by unitraviolet radiation from the sun, along with solar X-ray radiation. This solar radiation strips electrons from the atoms of the rarified atmospheric gases existing in our upper atmosphere.

The result is not a single, thick region of 'band' ionisation, as you may suppose. The ionosphere separates into several readily defined regions having varying densities, located in layers at different heights.

Each layer has a relatively dense region, called the peak of the layer, the ionisation tapering oft above and below this region. The peak is not necessarily located in the centre of the layer, nor does the ionisation always disapper completely between layers.

Figure 1. The ionosphere divides into readily defined regions which have been designated as illustrated here. The amount of ionisation in each layer varies diurnally (i.e.: throughout the day), seasonally (through the yoar) and through the 11 -year sunspot cycle. Disturbances on the sun heve a varioty of effects on the ionosphere and thus on radio communications.

Spotting Good Propagation
The sun's UV radiation output varies over an approximately 11 -year cycle, greatly influencing the behaviour of the ionosphere. For many years this cyclic behaviour of the sun has been monitored by means of sunspots - dark areas which appear on the face of the sun, and over the last two decades, by measurement of the solar flux (RF noise radiation) at $2800 \mathrm{MHz}(10.7 \mathrm{~cm}$ wavelength).

Sunspots are enormous areas on the sun's surface which are cooler, and thus do not appear as bright as the surrounding area, Hence they look like 'spots' on the face of the sun. Their size can range from several hundred kilometres across to greater than $100,000 \mathrm{~km}$. By comparison, the earth's diameter is only $13,000 \mathrm{~km}$.

Figure 2. The sun as viewed in the visible light region showing several small spots, 4 a rolatively large spot and sunspot groups. (Photo courtesy of the Ionospheric Prediction Service.)
Figure 3. The sun as viewed in the red wavelength region emitted by hydrogen - H-alpha emission. Two large active regions can be seen along with associated 'filaments'. (Photo courtesy of the Ionospheric Prediction Service.)

Figure 4. The 11-year solar cycle is clearly evident from this plot of the Sunspot Number from 1700 to 1960.

Rate of production of electrons

Fig. 5. How a layer of electrons is produced when ionising radiation comes from above the atmosphere. The gas concentration increases with decreasing height while the radiation strength decreases. Peak production of alectrons occurs at the height where the curves cross.

(a) per cm^{3} per escond

Fig 6. (a) Theoretical 'Chapman' layers showing how electron production is affected by the angle of the sun's rays best when sun is overhead (0° zenith angle).

(b) normalised
(b) If all curves are 'normalised' about peak height, regardiess of the sun's zenith angle, they all have the same shape.

Records of systematic sunspot observations date back some 300 years. However, reasonably reliable data is only available since about 1850.

The sun is monitored continuously from a number of observatories around the world. Sunspot observations are statistically smoothed to provide a continuous record - this is termed the Zurich Sunspot Number, which is a statistical 'fudge factor' on which ionospheric propagation predictions are based. More of this later.

On the Spot

Sunspot Number does not mean 'numbers of sunspots'. It is a statistical term which allows comparison with past figures and provides an index of sunspot activity.

The sunspot number has a cyclical variation with a mean period of 11 years. Periods between sunspot peaks have been as short as nine years and as long as 13 years. The sunspot number between the peaks and minimums of the cycles also vary greatly. The sunspot cycles have been 'numbered', for the conveneince of reference, back for 200 years. Ccyle 18 peaked in 1947, cycle 19 -the biggest on record - peaked in 1957 with a sunspot number in excess of 200. Cycle 20 peaked in 1969 reaching a sunspot number of about 120, which is about average intensity.

If you thought the DX wasn't anything spectacular in 1969-70, you should have been around in 1907 when the sunspot number barely reached 60 during the peak!

Sunspot cycle minimums don't always reach zero levels. Some minimums however have shown little or no activity for many months.

The sunspot cycle, while having an 11-year mean period as observed between peaks, has been identified in recent years as actually being a roughly 22 -year period based on the magnetic field variations of the sun. Alternate sunspot cycles show a pole reversal in the solar magnetic field.

Solar Disturbances

On occasions, the surface of the sun is disturbed by sudden 'storms'. These disturbances are not normally visible but are readily detected when the sun is viewed at a particular red light wavelength, known as H -alpha, emitted by hydrogen.

These very intense, localised outbursts increase very rapidly to a peak taking a minute or less, and then the intensity of the H -alpha emission decreases to its normal value in about half an hour or so.

This phenomenon is called a solar flare, usually occuring near, or associated with, a sunspot.

Solar flares generate enormous amounts of energy,: and increased solar X-ray radiation from these regions cause disturbances to the ionosphere and to communications. Electrons and protons are also emitted from solar flares, and these travel through solar wind towards the earth. The particles are emitted in a stream and are much more numerous tha move at greater velocities than those particles contained in the normal solar wind

Upon reaching the region near the earth these particles have a considerable influence on the earth's ionosphere and magnetic field, producing sudden and dramatic changes as well as precipitating other events such as aurorae - which will be described in more detail later.

Apart from flares, disturbances not associated with sunspots also cause disturbances to the ionosphere and the earth's magnetic field. Hot Spots - which are 'of longer duration than flares, are emitting regions on the sun's surface that expel streams of particles which affect the ionosphere. These, and other areas on the sun's surface which emit persistent streams of particles, have longer durations than flares but the effects of the particles emitted is less severe.

Formation of the Ionosphere

As mentioned previously, the ionosphere is produced principally by ultraviolet radiation from the sun. The amount of ionisation produced is almost wholly dependent on the strength of the UV radiation and, its wavelength. Different wavelengths of the radiation ionise different gases.

The process of ionisation absorbs energy from the UV wave, and as the radiation proceeds down through the atmosphere, it is almost completely absorbed in this way.

This process of creation of ions and free electrons in the ionosphere is offset by recombination which is continually taking place between the two to form neutral atoms once again

In the lower atmosphere, the molecular density is so great that recombination occurs almost immediately after ionisation, the rate of recombination is very rapid. However, in the upper atmosphere, where the number of molecules is very much smaller, the chances of a free electron meeting up with an ion is very much less. Hence, recombination occurs at a much slower rate

These two opposing mechanisms result in regions in the upper atmosphere where a large amount of ionisation is present, the amount being determined by the balancing forces between the rate of ion production and the recombination rate.

The gases of the upper atmosphere which the solar UV radiation meets first are very rarified, hence little ionisation results and little of the radiation energy is lost. As the radiation penetrates further, the molecular density of the gases increases and hence the ionisation increases.

Height Maximum

More and more energy is extracted from the ionising radiation as it penetrates further and at some stage the amount of ionisation which the radiation can produce begins to decrease. There is thus a certain height at which ionisation is maximised. The region around this height is known as an ionisation layer.

This is how the ionosphere comes to derive its name ${ }^{4}$ It is the region of the upper atmosphere where appreciable ionisation can take place.

The lower limit of the ionosphere is about 50 km and it extends to beyond 1000 km .

Sydney Chapman, a British scientist, investigated the production of ionisation in the early 1930 s and showed that the rate of production of ionisation would vary with height as shown in figure 6. The corresponding layers of electrons have been called Chapman layers.

The height of the 'peak' is determined by the concentration at particular heights of the atmospheric gas and by the ability of the gas to absorb the solar radiation. The less easily absorbed wavelengths of the radiation penetrate lower in the atmosphere before forming a layer of electrons. The height of the layer does not

Fig. 7. Geometry of E-layer propagation. As the layer height is about 100 km , low angle radiation from transmitter will reach distances of about 2000 km maximum.

Fig. 8. The transmitter (TX) radiating RF at several different angles illustrates how signals are propagated by the various layers. A wave radiated at a high angle will be deviated by one or both of the layers, but unless the layer is dense enough, will pass through (A). A ray at a lower angle (B) will skip a relatively short distance and may do so several times (R2-R4 etc). A low angle ray from TX will skip a maximum of 4000 km from the F2 layer (TX to R3) and subsequently further. The ionosonde measures the heights and critical penetration frequencies of the layers vertically.
depend on the strength of the ionising radiation.
The production rate of electrons at the peak of the layer depends on the strength of the ioning radiation and on its direction of arrival. When the radiation is vertically incident on the layer, ionisation is maximum, less when it arrives at an angle.

When curves representing the production rate of electrons of all possible shapes are 'normalised' with respect to the layer peak, they all look the same.

The Three Regions

There are three main regions of the ionosphere. They are designated by the symbols ' D,' ' E,' and ' F.' The F-layer actually divides into two layers, F_{1} and F_{2}, which I will go into shortly.

The structure of the ionosphere varies widely over the earth's surface as the strength of the sun's radiation will obviously vary with geographical latitude.

The D-layer

This is a region of low ionisation density which does not show the well-defined 'peak' of maximum ionisation density associated with the other layers.

The D-layer only appears during daylight hours and extends rather diffusely from about 50 km to about 90 km . The density of electrons in the D region is generally insufficient to cause appreciable bending of radio waves but they do suffer considerable attenuation in passing through this region.

Solar X-ray radiation with wavelengths less than about 20 Angstroms contributes to some of the ionisation in the D-layer. This radiation can ionise all the gases present at these heights in the atmosphere, but this alone does not account for the level of free electrons found in this region.

Fig 9. Illustrating the diurnal and seasonal variations in the various layers.

Nitric oxide (NO) is formed at heights between 60 and 90 km by a photochemical process that diffuses atomic nitrogen down from the E-layer above 100 km . This nitric oxide is ionised by UV radiation from the sun having a wavelength of 1216 Angstroms - the LymanAlpha wavelength.

Hydrogen in the sun radiates very strongly at this wavelength which coincides almost exactly with a 'spectral window' in the atmosphere which allows this radiation to penetrate to very low levels in the atmosphere with little attenuation.

Because it penetrates down to where the nitric oxide is produced there is an abundant supply of electrons which contribute to the general ionisation of the D-layer at a height of around 75 km . Solar X-ray and LymanAlpha radiation contribute in roughly equal proportions to the ionisation of the D region. However, the strength of the X-rays varies by a large factor both daily and through the solar cycle as well as with solar disturbances. There is no appreciable change in the strength of the Lyman-Alpha radiation.

Up the X-rays

Increased X-ray radiation associated with solar flares can increase the ionisation of the D layer thus causing increased absorption of radio waves travelling through the D region. These solar disturbances can be the cause of a complete 'radio blackout' at times.

As cosmic rays are deviated by the earth's magnetic field ionisation of the lower D region is greater near the magnetic poles than it is near the equator.

Since the D-layer absorbs radio waves it affects the propagation of radio signals. During the day signals below about 5 MHz are almost completely absorbed. Only signals radiated at a very high angle, and above a critical frequency where all signals are absorbed, manage to pass through the layer, being subsequently reflected by the E-layer

Communication during daylight hours on the lowest frequencies of the HF spectrum from 3 MHz to about 5 MHz or so is thus limited to short distances, not much beyond ground-wave coverage.

Low angle radiation on these frequencies during the day travels a long way through the D-region and is thus absorbed.

The D-layer of course affects higher frequencies but its attentuation affect lessens as the frequency is increased.

The E-layer

This occurs during daylight hours, the maximum density or peak of the layer lying between about 100 and 140 km . It remains weakly ionised at night.

E-layer ionisation is produced jointly by X-rays having wavelengths less than about 100 Angstroms - this ionising oxygen and nitrogen in the upper atmospherejat heights close to 100 km - as well as UV radiation with wavelengths near 100 Angstroms which ionise oxygen

The atmosphere in the E-region is still dense enough for recombination to take place fairly rapidly. As a consequence, the E-layer can only maintain its signal reflecting ability when it is continuously in sunlight.
lonisation is generally the best around noon, disappearing rapidly some time after local sunset. (The sun sets on the ionosphere at a height of 100 km about half an hour after local sunset.)

The F-layer

The F-layer is that region of the ionosphere above about 150 km extending up to 800 km and beyond.

During daylight hours, two distinct layers appear in the F-region of the ionosphere - the lower is known as the F_{1} layer, the upper as the F_{2} layer

The F, layer generally occurs around a height of 200 km and does not vary greatly in height. Its ionisation density is lower in winter than in summer.

As one would expect, the F_{2} layer, being the uppermost has the considerable variations in density and height

There is only one layer during the night in the F-region which is likewise dependant on atmospheric temperature. The height and density of the nighttime F-layer is also very variable owing to a number of factors.

The principal ionising agent of the F-layer is the extreme ultra-violet region (EUV). Solar UV with wavelength between about 200 and 800 Angstroms does most of the work in this respect. Radiation at these wavelengths ionises molecular nitrogen and atomic oxygen at heights between about 150 and 180 km .

The resulting electronic distribution with height does not always show a peak at this level - when there is a peak it is usually that of the F1 layer.

The shape of the F_{2} layer electron distribution, and thus the height of the peak, is largely determined by the variation with height of the loss process and by diffusion of the electronics to other regions. Ions and electronics diffuse above the peak of the layer, the production and loss ofelectronics(by recombination, etc) below the peak determine both the position of the peak and the shape of the layer. The peak then occurs at a height where the effects of diffusion and loss of electrons reaches an equilibrium

The F-layer will provide communications out to a range of 4000 km on a single 'hop,' multi-hop propogation being used for distances greater than this.

The F_{1} layer will provide communications up to about 9 or 10 MHz during the day. The F_{2} layer will support propagation beyond 30 MHz under favourable conditions, even higher in frequency and for longer durations at lower frequencies, during a sunspot maximum.

The maximum usable frequency of the F-layer varies seasonally, being greater during summer than during winter

Summary So Far

The daytime ionosphere consists of an absorbing region - the D-region - with three reflecting ionised layers above that - the E, F_{1} and F_{2} layers.

The night-time ionosphere consists almost entirely of the F-layer.

It should be noted that the allocation of the letters of these layers above that - the $E, F_{1-52 \text { and } F_{2}}$ layers.

The night-time ionosphere consists almost entirely of the F-layer.

It should be noted that the allocation of the letters of these layers was made by Sir Edward Appleton. It was he who did most of the early investigative work on the ionosphere. The F-layer, which he discovered, is also known as the "Appleton Layer." The E-layer was originally named the "Kennelly-Heaviside Layer" (or just the Heaviside Layer) after the two gentlemen who discovered its existence.

ETI

15
 240 Watts!

HY5

Preamplifier
The HY5 is a mono hybrid amplifier ideally suited for all applications. All common input functions (mag Cartidge, tuner. etc), are catered for internally, the desired function is achieved either by a multi-way switch or direct connection to the appropriate pins The internal volume and tone circuits merely require connecting'to external potentiomesers (not included) The HY5 is compatible with all I.L P power amplifiers and power supplies To ease construction and mounting a P. C. connector is supplied with each pre-amplifier
FEATURES: Complete pre-amplifier in single pack -- Multi-function equalization - Low noise - Low distortion - High overload - iwo simply combined for stereo.
APPLICATIONS: HI-Fi- Mixers -- Disco -- Guitar and Organ - Public address
INPUTS Magnetic Pickup 3 mV Ceramic Pick-up 30 mV : Tuner 100 mV Microphone 10 mV Auxiliary $3-100 \mathrm{mV}$, input impedance $47 \mathrm{k!}$) at 1 kHz .
OUTPUTS Tape 100 mV : Main output 500 mV R.M.S

DISTORTION 0.1% at 1 kHz Signal/ Noise Ratio 68 dB
OVERLOAD; 38 dB on Magnetic Pick-uo: SUPPLY VOLTAGE $\pm 16.50 \mathrm{~V}$
Price £6.27+78p VAT. P\&P free.

HY30

15 Watts into 8Ω
The HY30 is an exciting New kit from I.L.P, it features a virtually indestructible I C with short circuit and thermat protection. The kit consists of C. heatsink. P.C board. 4 resistors, 6 capacitors, mounting kit, together with easy to follow construction and operating instructions. This amplifier is ideally suited to the beginner in audio who wishes to use the most up-10-date ;echnology available
FEATURES: Complete kit - Low Distortion FEATURES: Complete kit - Low Distortion - Short, Open and Thermal Protection -- Easy to Build APPLICATIONS: Updating audio equipment - Guitar practice amplifier - Test amplifier - Audio SPECIFICATIONS:
OUTPUT POWER 15W R.M.S into 8V DISTQRTION 0.1% at 15 W
INPUT SENSITIVITY 500 mV . FREQUENCY RESPONSE $10 \mathrm{~Hz}-16 \mathrm{k} \mathrm{Hz}-3 \mathrm{~dB}$
SUPPLY VOLTAGE $\pm 18 \mathrm{~V}$
Price £6.27+78p VAT. P\&P free.

HY50

25 Watts into 8Ω
The HY50 leads L.L.P s total integration approach to power amplifier design The amplifier features an integral heatsink together with the simplicity of no external components. During the past three years the amplitier has been refined to the extent that it must be one of the most reliable and robust High
Fidelity modules in the World FEATURES: Low Distortion
No external components - Integral Heatsink - Only five connectıons - 7 Amp outpu! transistors No external components
SPECIFICATIONS: Mediumi Power Hi.Fi systems - Low power disco - Guitar amplifier
OUTPUT POWER $25 W$ UT SENSITIVITY 500 mV
1 kHz IGNAL/NOISE RATIO 75 dB FREQUENCY RESPONSE $10 \mathrm{~Hz} .45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE +25 V SIZE 105.50 .25 mm
 Price £8.18 $+£ 1.02$ VAT. P\& \mathbf{P} free.

HY120

60 Watts into 8Ω
The HY120 is the baby of ILP s new high power cange. designed to meet the most exacting requirements including load line and thermal protection, this amplifier sets a new standard in modular FEATURES: Very low distortion - Integral Heatsink - Load line protection - Thermal protection . APPLICATIONS: Hi-F -- High quality disco - Public address - Monitor amplifier -- Guitar and SPECIFICATIONS:
INPUT SENSITIVITY 500 mV
OUTPUT POWER 6OW RMS into 8\% LOAD IMPEDANCE:A-16D DISTORTJON 004% at 60 W at
SIGNAL/NOISE RATIO 90dB FREQUENCY RESPONSE $10 \mathrm{~Hz}, 45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE $\pm 35 \mathrm{~V}$. $114 \times 50 \times 85 \mathrm{~mm}$
Price £ $19.01+£ 1.52$ VAT. P\& ${ }_{1} P$ free.
HY200
120 Watts into 8Ω
The HY200, now improved to give an output of 120 Watts has been designed to stand the most rugged conditions, such as disco or group while still retaining true Hi-Fi pertormance
No external components APPLICATIONS: Hi-Fi - Disco -- Monitor - Power Slave - Industrial - Public address SPECIFICATIONS:
INPUT SENSITIVITY 500 mV
OUTPUT POWER 120W RMS into 8\% LOAD IMPEDANCE 4-16!) DISTORTION 0.05\% al 100 W at SIGNAL/NOISE RATIO 96 dB . FREQUENCY RESPONSE $90 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE SIZE $114 \times 100 \times 85 \mathrm{~mm}$
Price $2 \mathbf{2 7 . 9 9}+£ 2.24$ VAT. P\& P free.
HY400
240 Watts into 4Ω
The MY4UO is I.L.P 's "Big Daddy" of the range producing 240 W into 4Ω ! It has been designed for
high nnwer disco or public address applications if the amplifier is to be used at continuous high power levels a cooling fan is recommended The amplitier includes all the qualities of the rest of the family to FEATURËS: Thermal shigh power hi-fidelitv power module
FEATUREXS: Thermal shutdown - very low distorion - Load line protection - No external
APPLICATIONS: Public address - Disco - Power slave - Industria
SPECIFICATIONS:
OUTPUT POWER 240W RMS into 4! LOAD IMPEOANCE 4:16! DISTORTION 01% at 240 W at
SIGNAL/NOISE RATIO 94dB FREQUĘNCY RESPONSE $10 H^{2} z-45^{\circ} \mathrm{k} h z$ - 3 dB SUPPLY VOLTAGE -45V l V INPUT SENSITIVITY 500 mV SIZE $114 \times 100 \times 85 \mathrm{~mm}$
Price £ $38.61+\mathbf{~} 3.09$ VAT. P\&P free.
POWER
SUPPLIES

PSU36 suitable for two HY30's $\mathbf{£ 6 . 4 4}+81 \mathrm{p}$ VAT
PSU 50 suitable for twa HY50's $£ 8.18+$ E 1.02 VAT
PSU 70 suitable for two. HY 120 s $£ 14.58+£ 1.17$ VAT
PSU 1 BO suitable for two HY2000's or one HY400 £25.42 + £2.03 VAT

I.L.P. Electronics Ltd. Crossland House Nackington, Canterbury Kent CT4 7AD
Tel. (0227) 64723

Please Supply
Total Purchase Price
I Enclose Cheque \square Postal Orders \square Money Order \square
Please debit my Access account \square Barclaycard account \square
Account number
Name \& Address

SPECIALS

£2.50 + 25p P\&P

Master mixer. 100 W guitar printmeter. transistor tester, mixer preamp. logic probe

Ni -Cad charger: loudhailer, 'scope calibrator, etectronic ignition, car theft alarm. turnindicator canceller, brake
light warning, LM380 circuits, temperature alarm, aeria matcher UHF TV preamp metal locator four-inpu mixer, IC power supply, rumble filter, IC tester, ignition timing light. 50 W steren amp. plus many more.
ETI Top Projects 3. This issue was so popular that it is now sold out!
ETI Top Projects 4 includes:
Sweet sixteen stereo amp., waa-waa, audio Tevel meter expander/compressor, car theft alarm, headligh reminder, dual-tracking power supply. audio millivolt meter. temperature meter, intruder alarm. touch switch push-button dimmer, exposure meter, photo timer electronic dice, high-power beacon. electronic one-armed bandit!
ET1 Top Projects 5. Twenty-two complete projects including:
5 W stereo amp., stage mixer, disco mixer, touch organ, audio limiter, infra-red intruder alarm, model train controller, reaction tester, headphone radio, STD timer, dower meter digital voltmeter universal timer breakdown beacon, heart rate monitor IB metal locato down beacon, heart rate mont ETI Top Projects 8 , just published, includes: Graphic equaliser, 50-100 W amp. modules, acuve crossover, flash trigger, "star and dot" game, burglar alarm. pink noise generator, sweep oscillator, marke generator, audio-visual metronime, LED dice, skeet game lie detector, disco light show.
electranics

$75 p+25 p$ P\&P
Comprised entirely of new maternal. the edition covers such diverse subjects as Star Wars and hi-fi! The magazine contains projects for everyone - none of which have appeared in ETI or Hobby Electronics and a look at the future of MPUs. Audio, Calculators and Video. How can you not read it?

£3.00 + 25p P\&P

This book is rather an unusual reprint from the pages of ETI. The series appeared a couple of years ago in the of New England that they have re-published the series

E. 1.50
F.ach volume contains over 150 circuits, mainly drawn from the best of our Tech-Tips. The circuits are indexed for rapid selection and an additional section is included which gives transistor specs. and plenty of other useful
data. surprising when the circutts cost under Ip each! Each volume costs.

ETI's successful beginners series came to an end some time ago now, and the whole series is available from us in reprint form. The three books between them contain al more detail!) and together form an excellent startins point for anyone interested in learning the art of electronics. Each volume costs.

$$
£ 1.20+25 p P \& P
$$

splendidly for use as a standard textbook. Written by Peter Sydenham. M.E., Ph.D., M.Inst.M.C., F.I.I.C.A., this publication covers practically every type of transducer and deals with equipment and techniques not covered in and deals with equipmeries from educational authorities universities and colleges for bulk supply of this publica tion are welcomed. These should be addressed to H . W Moorshead Editor, Hobby Electronics.

HOW TO ORDER

Postage and packing also refers to over seas. Send remittance in sterling only.

Sprciols

Modmege Lid
25-27 Oxford Street
London W1R1RF
Please mark the back of your cheque or po with vour name and address.

Please supply me with the following Specials:
\qquad
\qquad
\qquad
\qquad
\qquad

Total cheque $/$ PO enclosed $=£ .$. Address:

M \qquad
\qquad
\qquad
\qquad
\square

SHUDEHILL SUPPLY COMPANY LTD.
Component Stockist of Electronics -- Hi-fi-Radio and T.V.
53 SHUDEHILE
MANCHESTER

We are now stockists of:
Yaesu-musen-Frgy's (P.L.L.) General S.W coverage and Sony 88009 band receiver

Also for the car we have:

The Alpha 23 channel-transceiver; 4 channel scanner wide (pocket size) sei wa M.R. 2 and MRS 12 channel, selection of Xtals and Standard hand held 2 watt transceivers.

Microwave modules in stock at all times

Anodised instrument cases - Denco coils and radio spares components besides many other makes.

Metal Detectors - TV Games - Hi-fi. You name it, we stock it - SAE for information

Discount available when producing this advert

thadar
 pual volrage TRANSFORMERS

PRIMARY 220-240 50HZ
AL TERNATIVE SECONDARY VOLTAGE AND CURREN

Type	Voltage	Current	\&	P/P	Type	Volisge	Current	£	p / p
06FEO6	6+6	0.51 each	1.50	50 p	$08 F E 24$	$24+24$	0.15A each	1.80	50 p
08FEC6	6+6	0.64 Aach	1.80	50p	12FE24	$24+24$	0.24 each	2.00	60p
12FE06	$6+6$	la esch	2.00	60p	20 FE24	$24+24$	0.41 anch	2.60	700
$20 F E 06$	$6+6$	1.64 each	2.60	70p	50 FE24	$24+24$	0.84 asch	3.10	70 p
50FE06	$\underline{6}+6$	34 each	3.10	70 p	60 FE24	$24+24$	1.24 aach	3.60	${ }^{85 p}$
60FE06		4A each	3.60	85p	30 EE 24	$24+24$	1.54 日ach	4.50	1.00
06FE09	$9+9$	0.34 mach	1.50	50p	50FE28	$28+28$	0.75 A esch	3.10	$70 p$ $85 p$
08FE09	$9+9$	0.5A each	1.80	50p	60FE28	28+28	1.14 eath	3.60 4.50	$85 p$ 1.00
12FE09	$9+9$	0.75 A each	2.00	60p	80FE28	28+28	-1.4n ach	4.50 2.60	1.00
$20 \mathrm{FEO9}$	$9+9$	14 each	2.60	70p	$20 F E 30$	$30+30$	0.35A each	$\begin{aligned} & 2.60 \\ & 3.10 \end{aligned}$	700
50f609	$9+9$	2.5A each	3.10	$70 p$	50FE30 605 F 30	$30+30$ $30+30$	- 1 l each	3.60	85p
60FE09	$9+9$	3 A each	3.60	$85 p$ 50	80	$30+30$	1.2A exen	4.50	1.00
O6FE12	$12+12$	0.254 each	1.50	50p					
08FE12	$12+12$	0.34 each	1.80	50 p	Multi-Tap	ipe. Valla			
12FE12	$12+12$	0.54 each	2.00	60p	Available	5. 6.8.	10.12.15.		
20FE12	$12+12$	0.8 A each	2.60	70p		12-0.1	15.0-15		
505 E 12	$12+12$	24 each	3.10	70 p	30 FE 30	$24+30$	1 A	3.40	
60 FE12	$12+12$	2.54 each	3.60	$85 p$	60FE30	$24+30$	2 A	3.70	85p
80FE12	$12+12$	34 each	4.50	1.00	80FE30	$24+30$	3 A	4.50	1.00
O6FE15	$15+15$	0.24 each	1.50	50 p	100FE30	$24+30$	4A	5.60	1.15
O8FE15	$15+15$	0.254 each	1.80 2.00	50 p 60 p	Centre T	exometary			
12FE15	$15+15$	0.44 each	2.00 260	60p 700	Feab	6.0.6	14 each	2.00	
20 FE 15	$15+15$	0.6 each	2.60	70p	T09	9.0 .9	1A aach	2.60	
50 E15	$15+15$	1.61 asch	3.10	70p			if bach		
60FE15	$15+15$	2A bach	3.60	$85 p$	FE15	15-0.15	if each	3.10	${ }^{70 p}$
80 FE 5		3 A each	4.50	1.00 50	FE20	20-6-20	1A each	3.10	p
06FE20	$20+20$	0.15 A each	1.50	50 p	60FE5?			3.60	1.00
0BFE20	$20+20$	0.24 *ach	1.80	50p	60FE52 60 FE 28	$26.0-26$ $28-0.29$	14 each	3.60	1.00
12FE20	$20+20$	0.25 A each	2.00	60p	$60 \mathrm{FE28}$	28-0-29	14 each	3.60	1.00
20FE20	$20+20$	0.5 A вach	2.60	70p	60FE30	30.0.30	1A each	3.60	1.00
50FE20	$20+20$	1.2A sach	3.10	700	100FE26	26.0.26	2 A each	5.15 5	1.15
60 FE20	$20+20$	1.5 A nach	3.60	85p	100fe30	$30-0.30$	24 each	5.15	1.15
B0FE20	$20+20$	24 each	4.50	1.00	100FE36	36-0-36	24 each	5.15	1.15
		Translormur			Air corl	autio Cros	It colls		
488 E 12 $665 \mathrm{El2}$ 70 FE 12	0.6 .12 0.6 .12 0.6 .12	44 $5 A$ $6 A$	3.19 3.84 4.86	700 850 100	$\begin{aligned} & \text { FEOI } \\ & \text { FE03 } \end{aligned}$	0.1 mH 0.3 mH 0.5 mH		$\begin{aligned} & 0.26 \\ & 0.26 \\ & 0.30 \end{aligned}$	$\begin{aligned} & 20 p \\ & 20 p \\ & 20 p \end{aligned}$
70FE12	0-6.12	64	4.86	190					
FLADAR ELECTRIC P.O. BOX 19 WESTCLIFF-ON-SEA ESSEX, 0702-613314			TRADE ENQUIRIES WELCOME				PAYMENT TERMS C.W.O.. Cheques		
			PLEASEENQUIRE				Please add 8\% VAT After post \& packing		

LINES FROM OUR VAST STOCKS-IMMEDIATE DELIVERY All below manufecturers' prices - all new

etocke. Cumntity diecounte Envitod. Postage \& packing 35p per order CALCULATOR CHIPS General instrumen Gumit 4 on anlu static foam 24 pin D 1 L socket to use win $£ 25$. BOWMAR 9 DIGIT CALCULATOR DISPLAY mith PC connector 02 digits Common cathod | with red betel $£ 1.25$ ea $10-£ 10$. |
| :--- |
| TEXAS | TEXAS 19 gold plated snap key contacts on gold

plated PC board Size $70 \times 80 \times 2 \mathrm{~mm} 75 \mathrm{p}$ ea 10 plated PC board Size $70 \times 80 \times 2 \mathrm{~mm} \mathrm{75p}$ pa 10
for 8 Ef . orpiz 2 for $£ 1,10-£ 4,100-£ 35$.
FAIRCHILD FMD 10015 FAIRCHILD FMD10 0 15 . C cathode 50 p 10 for $\mathbf{£ 4 . 5 0}$ \qquad TBA 120A TV IC amplities 10 -E6, 100 -E50, $1000-\mathrm{E} 350$. \qquad BECKMAN 500 kes Triggerable clockin oscillator for use with calcu
with circuit $£ 110$ for $£ 8$.
BURROUGHS 9 DIGIT Panaplex calculato display 7 segment 025 digits Neon type with red bezel socket and data $\mathbf{£ 2 . 5 0 \text { өa } 1 0 \text { for } £ 2 0 \text { . }} \begin{aligned} & \text { ALMA PUSHBUTTON high reliability teed }\end{aligned}$. switches Push to make $18 \times 27 \times 18 \mathrm{~mm} 40 \mathrm{p}$ ea 10 for $E 3.50$
SMITHESTMTUUSTRIES Audible wazning devices 6.12 volts 2 transistors $30 \times 10 \mathrm{~mm}$ encapsulated 50p ea to for £4 100 for $£ 30$
HONEYWELL
gral amplifier $8 \mathrm{~V} D \mathrm{C}$ E2.50 ea 10 for $£ 20100$ for E 175 .
OSMOR CHANGE OVER REED RELAY 12 v col $20 \mathrm{~m} /$ a operating currem $59 \times 17 \times 13 \mathrm{~mm} 75 \mathrm{p}$
Ea 10 for $£ 5100$ for $£ 45$. Mains trancforme
MAINS TRANSFORMERS <minuaturei alt with $\begin{array}{llll}240 \mathrm{v} \text { primary } & \text { per } & \text { per } \\ 12 \text { voit } 100 \mathrm{~m} / \mathrm{amp} & \text { ea } & 10 & 100\end{array}$ 12 vait
$60 \times 40 \times 42 \mathrm{~m} / \mathrm{m}$$\quad 95 \mathrm{p}$ Es $\mathrm{E60}$ $12012 \times 100 \mathrm{mamp} 28 \times 25 \times 27 \mathrm{~mm}$ £1.20 £10 £80

 SPEAKERS (miniature) \quad ea 10 per pe$\begin{array}{llll}21 / 8 \text { ohms } & 75 p & \text { e6 } & \text { e50 } \\ 21 / 2 & 8 \text { ohms } & 75 p & £ 6 \\ & 75 p & £ 50\end{array}$ ${ }_{2}^{1 / 2} 40$ ohms
 thick film 1 mHZ supply $5 \mathrm{~V} 19 \times 25 \times 6 \mathrm{~mm} 85 \mathrm{p} 10$
for $\varepsilon 7$. T.V. TUNERS by GEC UHF 38
$\mathbf{3} 3 / 4 \times 23 / 4 \times 1 / 4 \mathrm{E} 2.50$ ea 10 for $£ 20$.
T.V. SŌUNO TUNER KIT. Through your F.M. Ready-bult. tested. $£ 7.00$. JOYSTICK CONTROLS. (Ideai for TV Game model control) sturdilv constructed compaci
giving full 360 movement and control Each unit giving full 360 movement and control Each TA/RF LOMG-MEDIUM \& F/M TUNER MCI 310 DECODER * 5-BUTTON SELECTO SWITCHES * INPUT SELECTORS FOR GRAM AND TAPE Supplied complete with FRONT.END CONMECTIONS * SIE $19 \times 13 \times 6 \mathrm{~cm}$ SIE INTE THIS QUALITY AMPLIFIER

CIRCUIT

OWER UNIT KIT FOR ABOVE MODELS 5/28 VOLTS $£ 2.95$
£5. XES 11 erase $£ 1.25$. XRPS $18 £ 3.50$.
MULIARD TUNER MODULES wih
LP 1171 combined AM / FM IF stre - $£ 3.50$. * LP1 79 FM front end with AM tuning gang, used
wilh $L P+171-£ 3.50$. $*$ LP 1171 and 79 pair $-~$ 55.75. \# $L P 1157$ complete AM strip - E2.05. * Eerite Aerial - $95 p$.
EVEN DIGIT MINIATURE COUNTER bY Durant $12-24$ volts DC 3 Watts Size 40×2
55 Lmm E 1 exch. 10 for CQ .100 for EBO .

industrial.	Price	10	$100+$
ByIMUUMRON			
At less than Distributor prices 60.4324 VDC			
${ }^{2}$ 2.Pole Open	£1.10	¢9.00	E85.00
6013 48V AC			
Octal Plug in type enclosed			
	£1.20	£10.00	¢90.00
600212 VaC			
2-Pote C Over Octal			
All relays are 250	6 Amp	C Curren	Rating

TARGET ELECTRONICS FORMERLY "THE RADIO SHOP' 16 Chenty Lane
Bristol BS1 3NG

Offictal orders welcomed Gvi / Educational Depts erc

LH0063/LH0063C DAMN FAST BUFFER
NATIONAL

TYPICAL APPLICATIONS

The LH0063/LHOO63C is a high speed, FET input, voltage follower/ buffer designed to provide high current drive at frequencies from $D C$ to over 100 MHz . It will source or sink 250 mA into 50 ohm loads (500 mA peak) at slew rates of up to $6000 \mathrm{~V} /$ us. In addition, it exhibits excellent phase linearity up to 20 MHz .
It is intended to fulfil a wide range of buffer applications such as high speed line drivers, video impedance transformation and high impedance input buffers for high speed A to Ds and comparators.
It can also be used as a diddle yoke driver for high resolution CRT displays*.

FEATURES

-Damn fast 6000V/us
-Wide power bandwidth DC to 100 MHz

- High output drive
+or - 10 V with 50 ohm load
-Low phase non-linearity
2 degrees
-Fast rise times 2 ns
-High current gain 120 dB
-High input impedance
10000 M
These devices are constructed using specially selected junction FETs and active laser trimming to achieve guaranteed performance specification. The LHOO63 is specified for operation from -55 to +125 C, while the LHOO63C is specified from -25 to +85 C . Both are available in a 5W 8-pin TO-3 package.
*NOTE. In VDUs where the basis of operation is for the beam to be pointed at the start of the character and then 'diddled' by means of a separate set of coils in order to form the shape of the character on the screen, the beam being switched on and off as required.

Gamma Ray Pulse Integrator

IW CW Final Amplifier

Nuclear Particie Detector

DC ELECTRICAL CHARACTERISTICS

LH0063/LH0063C (Note 1)

PARAMETER	CONDITIDNS	LIMITS						UNITS
		LH0063			LH0063C			
		MIN	TYP	MAX	MIN	TYP	Max	
Output Offset Voltage	$\begin{aligned} & R_{\mathrm{S}} \leq 100 \mathrm{k} \Omega, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{s}} \leq 100 \mathrm{k} \Omega \end{aligned}$		10	$\begin{array}{r} 25 \\ 100 \end{array}$		10	$\begin{array}{r} 50 \\ 100 \end{array}$	$\begin{aligned} & m V \\ & m v \end{aligned}$
Average Temperature Coefficient of Outpur Offser Voltage	$\mathrm{A}_{\mathrm{s}} \leq 100 \mathrm{k} \Omega$		300			300		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$. 1	$10^{.2}$. 1	5^{2}	$\begin{aligned} & n A \\ & n A \end{aligned}$
Voltage Gain "	$\begin{aligned} & V_{I N}= \pm 10 \vee, R_{S} \leq 100 \mathrm{k} \Omega . \\ & R_{L}=1 \mathrm{k} \Omega \end{aligned}$. 96	. 98	1	. 96	. 98	1	V/V
Voltage Gain	$\begin{aligned} & V_{I N}= \pm 10 \mathrm{~V}, R_{S} \leq 100 \mathrm{k} \Omega . \\ & R_{\mathrm{L}}=50 \Omega, \mathrm{~T}^{\top} \mathrm{C}=25^{\circ} \mathrm{C} \end{aligned}$. 94	. 96	. 98	92	. 96	. 98	v/v
Input Resistance		10^{10}	10^{11}		10^{10}	$10^{\prime \prime}$		Ω
Input Capacitance	Case Shorted to Output		8			8		pF
Outpur impedance	$V_{\text {OUT }}= \pm 10 \mathrm{~V} . \mathrm{R}_{\text {S }}=100 \mathrm{k} \Omega$		1	4		1	4	Ω
Output Current Swing	$V_{1 N}=210 \mathrm{~V}, \mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega$. 2	. 25		2	. 25		Amps
Output Voltage Swing	$\mathrm{R}_{6}=5012$	± 10	± 13		± 10	± 13		v
Output Voltage Swing	$\begin{aligned} & V_{S}= \pm 5 \mathrm{~V} . \mathrm{R}_{\mathrm{L}}=50 \Omega . \\ & T_{C}=25^{\circ} \mathrm{C} \end{aligned}$	5	7		5	7		$V_{p p}$
Supply Current	$\begin{aligned} & T_{\mathrm{C}}=25^{\circ} \mathrm{C}, R_{\mathrm{L}}=\infty . \\ & V_{S}= \pm 15 \mathrm{~V} \end{aligned}$		60	75		60	80	mA
Supply Current	$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$		50			50		mA
Power Consumption	$\begin{aligned} & T_{C}=25^{\circ} \mathrm{C}, R_{L}=\infty . \\ & V_{S}= \pm 15 \mathrm{~V} \end{aligned}$		1.80	2.25		1.80	2.40	w
Power Consumption	$\mathrm{V}_{\mathrm{s}}= \pm 5 \mathrm{~V}$		500			500		mw

NOTE 1: Unless otherwise specified, these specifications apply for +15 V applied to pins 1 and $2,-15 \mathrm{~V}$ applied to pins 7 and 8 , and pin 5 shorted to pin 6. Unless otherwise
noted, specifications apply over a temperature range of -55 C to 125 C for the LH0063 and -25 C to 85 C for the LH0063C. Typical values shown are for 25 C .

AC ELECTRICAL CHARACTERISTICS

$\mathrm{LH} 0063 / \mathrm{LH} 0063 \mathrm{C}$: $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=50 \Omega\right.$.
$\mathrm{R}_{\mathrm{L}}=50 \Omega$)

LH0063 Output Voltage vs Supply Voltage

Wilmslow Audio

THE firm for speakers!

Send 15 p stamp for the world's best catalogue of Speakers, Drive Units, Kits, Crossovers, etc., and discount price list

> ATC AUDAX BAKER BOWERS \& WILKINS CASTLE CELESTION CHARTWELL COLES DALESFORD DECCA EMI EAGLE ELAC FANE GAUSS GOODMANS HELME I.MF. ISOPHON JR JORDAN WATTS KEF LEAK LOWTHER MCKENZIE MONITOR AUDIO PEERLESS RADFORD RAM RICHARD ALLAN SEAS TANNOY VIDEOTONE WHARFEDALE

WILMSLOW AUDIO Dept. ETI

SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE, SK9 1 HF
Discount HiFi, etc., at 5 Swan Street and 10 Swan Street
TEL: WILMSLOW 29599 FOR SPEAKERS WILMSLOW 26213 FOR HIFI

BUILD-IT-YOURSELF NEW: TEST GEAR KIT
 BASIC SERVICING INSTRUMENTS WITH

 EASY STAGE BY STAGE BUILDING INSTRUCTIONS - IDEAL FOR THE AMATEUR
MULTI RANGE TEST METER

A general purpose meter covering all usual ranges of A.C. and D.C. volts current and resistance measurements

AUDIO SIGNAL GENERATOR

New design covering 10 Hz to 10 KHz and variable output. Distortion less than 0.01% Ideal for HIFI Testing.

OSCILLOSCOPE

A basic $3^{\prime \prime}$ general purpose cathode ray oscilloscope for simple testing and servicing work. Sensitivity 0.3 volts $/ \mathrm{cm}$

ELECTRONICS LTD.

ELECTRONIC COMPONENT CENTRE 58-60 GROVE ROAD, WINDSOR, BERKS SL4 1HS TELEPHONE CREDIT CARD ORDERS WINDSOR (07535) 54525
TRADE, EDUCATIONAL \& EXPORT WELCOME

PLUS LOWER PRIGES AND USUAL NEW FULL SPEC. DEVICES. NOW POST FREE OROERS OVER £3 - CASH OR CHEQUE. OVER £10, 5% OFF.

SANTA'S GOODIES

7409 N 10 p, £8-100,7460N 10p, £8-100 74109 N 15p, £12-100, 74155 35p. Min Order 10 of one type - $100+$ POA p/p 20p
PIHER SLIDER POTS 47 K Log Track. 70 mm Overall 85 mm , Singles 20p, £, $15-100$, Doubles $50 \mathrm{p}, £ 40-100$; Min Order $10.100+\mathrm{POA}, \mathrm{p} / \mathrm{p}$ 20p.
SUPERB STEREO CASSETTE DECKS Brand New Piano Keys, 6 v motor, end of tape stop, digital counter, heads, pulleys, etc., as used in National Panasonic music centres, very high quality $£ 8.75+£ 2 p / p$.

VERO EDGE CONNECTOR 0.1 inch $42+42$
w / w key at 7 , type $1360-2 £ 1+p / p 20 p$.
TRIMPOTS 50 TO TO 20p. 100 Cermet 20p. 100Ω Painton PCB 20p, 200 § ditto 20p, 250Ω ditto $20 \mathrm{p}, 500$ ditto $20 \mathrm{p}, 1 \mathrm{~K}$ ditto $20 \mathrm{p}, 2 \mathrm{~K}$ ditto 20p, 2 K Helitrim 20p, 5 K PCB 20p, 1 M skeleton min vert. 12 p p/p 20 p

CANNON D-TYPES 15 way plugs 50 p, 15 way sockets 50 p, 25 way plug 60 p, 25 way socket 60 p, 37 way plug 80 p, 50 way socket £1.20,50 way w/wrap sockets $£ 1.30,25$ way ribbon plugs 90 p , covers with retainers 15 way 60 p, 25 way 80 p, 37 way $£ 1,25$ way plastic (3M) 50p, all above limited stocks. P/P 20p

TTL 74 SERIES

7400	12p	7401	12p	7402	15p
7404	14p	7407	30p	7409	16p
7410	13p	7412	18p	7414	45p
7416	24p	7417	$25 p$	7420	15p
7427	30 p	7428	32p	7430	15p
7432	26p	7438	30p	7442	50p
7451	15p	7472	76p	7460	15p
7474	28p	7475	30p	7485	95p
7486	30 p	7490	30p	7491	80 p
7495	60p	7496	$55 p$	7497	£1.50
74107	30p	74109	50p	74121	25p
74123	48p	74150	90p	74151	60 p
74153	70p	74154	§1.10	74155	80 p
74157	60p	74162	90p	74163	90p.
74164	£1.00	74165	£ 1.10	74188	£2.50
74190	£1.00	74192	90 p	7495	
74198	£1.30	74279	£1.20	74284	£3.60
74368 £1.35		75450	35p	76660	
					P/P 20

SUPERSAVER 1 cassette recorder motor 9 v Speed governed, brand new, fantastic value g5p p/p 20p

SUPERSAVER 2 Hybrid Systems DAC 371.8 (8-bit) DIL packaged + data, ideal MPU users, brand new £2 (fraction of original cost) p/p 20p.
SUPERSAVER 3 ICL P.S.U. 12 v 1.8 A (7.5v
15 v) in maker's carton $£ 10 \mathrm{p} / \mathrm{p}$ £2.
MEMORIES 2708 £6-85, 2102 (Signetics) £1. 1702A £2.95, 2513 (upper case) £5, p/p 20p.
SUBMIN. TOGGLES (C \& K, USA) spco extended'toggle (1.25 inch) superb quality 75 p . Standard submin. toggle dpco 80p, p/p 20p.
9-WAY MALE/FEMALE connector (Elco 8129) 0.1 inch pitch. PCB mounting ideal for bussing two PCBs together $35 p /$ pair p / p 20p

LEDS (red) TIL 209 8p. 0.2 10p. Vernitron Ceramic filters FM-4 10.7 MHz 45 p , BD 236 40p. 2N3055 (TI) 40p, BC183L 10p, BC213L 10p, BF19590p, 2521 V (Dual 128 bit static shift register 65 p), RS 12-0-12 50 mA subminiature transformer £1.35, 5LTO1 (green phosphor) £4, suitable clock IC £ 3.25 N82S126N (PROM 256×4 bit) $£ 130$ TMS3128NC (static shift reg) £1 25 LM 711 CH T0.99 (Voltage comparator) $25 p$ FPE 100 infra red emitter + data 15 p MM5314 E2.95. DIL SWTS 4 way 60p TBA810S + DATA 65p.

P/P20p
All enquiries SAE please, Cat. SAE 8×6 or free with goods. P/P same for quantities except where greater than E1.
Merry Christmas to all customers and ETI
L. B. ELECTRONICS

43 WESTACOTT, HAYES. MIDDLESEX US4 8AH, ENGLAND
CALCULATORS

SCIENTIFIC

SPECIAL OFFER
TEXAS T159 together with PC1 OOB Complete as manufacturer's specifications)
$£ 285.00$
TEXAS / HP Accessories available
-TEXAS T159 (New Card prog 960 prog steps of 100 mem)
 EXAS PC100B (New updated Printing Unil for T158/T159)
E140.00 TEXAS 1157 (Key Prog 8 Mem. 150 Key Strokes/ 50 Prog Steps) $\underset{£ 26.20}{ }$ TEXAS Ti33 (New - same spec. as T130, but 3 Mem) $\begin{aligned} & £ 26.20 \\ & £ 13.95\end{aligned}$ TEXAS 42MBA (10 Dig Fin/Stat Prog 12 Mem 32 key sirokes) $\begin{array}{lll}\text {-TEXAS TI PROGRAMMER (Hexadecimal OCt) } & \mathbf{£ 4 2 . 9 5} \\ & \mathbf{~ T E X E . 5 0}\end{array}$ TEXAS T151/iii (New 8 Dig + Exp 10 Mem 32 Prog Steps. TEXAS T125 (new LCD Sci/Stat)

TEXAS T158 with Applied Statistics £80.00
AUTUMN SALE
TEXAS T159 Calculator Complete as manufacturer's spec...
master module. charger, etc). PLUS slatistics modual and
exira set of 40 Blank frog Cards with wadlet, ele.
ONLY E180

$\begin{aligned} & \text { BM } \\ & \text { EIc. } \end{aligned}$	¢46.00
CBM M55	¢46.00
CBM 9190R (as 4190 R but with 9 memorie	£27.50
CBM Pro 100 (72 Step Prog)	¢29.50
HP 19C (Cont Mem Key prog Prin'	£163.00
HP 29C (as 19C but no Printe)	¢110.00
HP33E (8 mem Pro Sci/Sta)	¢64.00
HP25C (Key Prog Con Mem)	¢99.00
-HP27 (10 Mem Sci/Fin/Stat)	£ 73.50
HP31E (New Sci replaces HP21)	£35.00
*HP67 (Card Prog 224 Steps 26 Mem	¢277.00
'HP97 (Fully prog with Peinter)	¢466.50
CAS1O FX201P (Sci, it mem, 127 step Key prog) Forran Sysiem £44.50	
'CASIO PRO FXI(127 Step Card Prog 11 Mem - Fortyan Sysiem)	
CASIO FX360 (New 10 Dig + Exp 7 Mem 8) (St. Div Lin Regr. Eic.)	
CASIO FX5000 EP (Alphanumeric Sci/Stat Desk Printer 10 Dig + Exp 7 Mern, etc.)	
CASIO AO 1000 (LCD Cat 3-way Stop Watch/Alarm)	£20.00
CASIO COl (4 stag alarm/Cal)	
CASIO FX3100 (New version of FX3000-LCD Sci/Sid/div. Poles	
Rec.enc.)	¢22.50
SIO FX8000 (as above + Stop Watch/Alarm)	$¢ 27.73$

CURVE TRACER

Display the dynamic characteristics of a variety of semi conductor devices with
out curve tracer. Design by J. H. Adams.

THE CURVES INVOLVED in this design are not unfortunately those of the Bardots and Welchs of this world but curves that, to some, are just as interesting. The design will allow the dynamic voltage-current characteristics of diodes and transistors to be displayed on the screen of a DC 'scope capable of taking an external X input.

The performance of the unit will not be up to that of a commercial machine but considering such commercial designs are priced in the thousand pound range while our design could be built for around five pounds, we're not doing too badly

View of the internal layout of the prototype version

Construction of the curve tracer is straightforward. Mount all the components on the PCB according to the overlay. The interal layout of our prototype is shown in the photographs. The unit is mains powered and a battery supply is not suitable for this circuit.

Initially try the curve tracer with a high gain nrn transistor, a BC108 will be ideal. Connect it to one of the tracer's sockets and connect the unit to the 'scope. Set the Y gain on the 'scope at maximum and set up the maximum required level of collector voltage by adjusting RV1. RV2 will control the number of steps displayed on the screen. The X sensitivity of the 'scope should be 1 V per division.

The performance of the unit is degraded by the slight drop in the DC potential on C1 during the 10 mS sweep and the slight effect of the 100R sampling resistor, in that its volt drop is included in the observed collector potential. However as stated above the unit will give a good indication of the dynamic performance of a wide range of semiconductor devices (as the photograph shows) at a price that is a fraction of similar commercial equipment.
 tracer.

HOW IT WORKS

The principles of the full circuit can perhaps be best explained by consideration of a simpler form of the circuit. Figs. 2 and 3 show circuits for investigating the dynamic characteristics of a diode and transistor (at fixed base current) respectively.

The 'diode circuit' will, unless an inverter is available, produce a trace that will appear upside down.

Operation of this circuit is quite straight forward. RV1 allows the peak value of the AC supply to be adjusted. This is then applied to the device under test via a current limiting resistor as well as to the X input of the 'scope. The current flow in the device at any time is proportional to the voltage developed across a low value sampling resistor in the current path. This voltage is fed to the Y input of the scope.
The simple transistor tester functions in much the same way. RVI allows the base current to be adjusted within the range 10 aA to 100 aA .

The characteristics of an N-Channel FET (2N3819) may also be examined with this basic building block. The output characteristics are displayed for a gate voltage selected by RV1. Transfer characteristics (gate voltage vs. Drain Current) may be shown by transferring lead X to the gate terminal and mining the $1000 \mu \mathrm{~F}$ capacitor to the 15 V supply (observing the change in polarity).

Moving now to the full circuit of Fig 1 that allows a far more informative display providing, as it does, simultaneous displays of the characteristic curves for several equally spaced values of base current.

The circuit operates as follows. Every 10 ms the collector supply swings up and back over a half cycle of the full-wave rectified supply. At the end of each half cycle, there is a short period during which the supply potential is below about 0.6 V , and during this time, Q3 turns off, sending a pulse from its collector into the charge store C1 C2 D3 D2. Each pulse increases the potential in Cl by approximately 0.2 V . This would go on until the potential on Cl was 20 V were it not for Q2, the little known and much mis-described programmable unijunction transistor, PUT. This device is the semiconductor version of a neon lamp, insulating up to a certain p.d. and conductiong heavily at potentials above this breakdown value, but with the added advantage in that, through a third terminal, this breakdown potential is programmable over quite a wide range. Varying this control potential through the setting of VR2 sets the
number of steps that will occur before the potential on Cl is great enough to make Q2 fire, reducing the capacitor's potential to approximately 0.6 V and so re-starting the sweep sequence.

The tracer can hardly be expected to match all the performance of a commercial curve tracer, the prices of which range into thousands of pounds. There are errors, due to the slight droop in d.c. potential on Cl , and hence in base current, during the 10 ms sweep, and due to the slight effect of the 100 R sampling resistor, in that its volt drop is included in the observed collector potential, but as can be seen, these are quite insignificant as regards the fipal display. The only problem which may arise is the appearance of Radio 4 on the current axis (seen as a thickening of the trace). This is easily cured by placing a 10 n disc capacitor across the actual Y-inputs of the oscilloscope.

A suitable transistor for the device under test is any reasonably high gain npn transistor, e.g. BC108. VR1 controls the maximum collector voltage, whilst VR2 sets the number of sweeps displayed. With the values given, the difference in base current between one step and the next is approximately given by:
$\frac{1}{5 R}$
$\frac{1}{5 R} \mu A$, where R is in megohms.

Fig. 2 simple diode tester

Fig. 3 fixed current transistor tester

Fig. 4 circuit for investigating FET transfor characteristics.

RESISTORS

R1	10 k
R2	100 R
R3	220 k
R4	470 k
R5	1 kO
R6	4 k 7

CAPACITORS	
C1	$5 u 025 \mathrm{~V}$ electrolytic
C2	47 n polyester
C3	100025 V elec－
	trolytic

SEMICONDUCTORS

Q1	BFY50
Q2	$2 N 3904$
PUT1	$2 N 6027$
D1	1 N4001
D2．3	1N4148
BR1	$0.9 A 400 \mathrm{~V}$

POTENTIOMETERS	
RV1	$2 k 51 \mathrm{in}$
RV2	50 k 1 in

MISCELLANEOUS
PCB as pattern，case to suit，sockets， knobs，cable，etc．

BUYLINES

The components used in this project should in the main，be generally available－the only component likely
to cause problems is the PUT，but this should be available from the larger mail order outlets．

产	
	 ヨNーー N－\quad－

32 Dunsvillo Drive，Coventry CV2 2H5

ETCH RESIST TRANSFER KIT SIZE 1：1

Complete kit 13 sheets 6 in $\times 41 / 2 i n$ £2．50 with all symbols for direct application to P．C．board．Individual sheets 25 peach．（1）Mixed Symbols（2） Lines 0.05 （3）Pads（4）Fish Plates and Connectors（5） 4 Lead and 3 Lead and Pads（6）DILS（7）BENDS 90 and 130 （8） $8-10-12$ T．O．5．Cans（9）Edge Connectors 0.15 （10）Edge Connectors 0.1 （11）Lines 0.02 （12）Bends 0.02 （13） Quad in Line．
FRONT AND REAR PANEL TRANSFER SIGNS
All standard symbols and wording．Over 250 symbols，signs and words．Also available in reverse for perspex，etc． Choice of colours，red，blue，black，or white．Size of sheet $12 \mathrm{in} \times 9 \mathrm{in}$ ．Price』\＆1．

GRAPHIC TRANSFERS

WITH SPACER ACCESSORIES
Available also in reverse lettering，colours red，blue，black or white．Each sheet $12 \mathrm{in} . \times 9$ in contains capitals，lower case and numerals $1 / 8$ in kit or $1 / 4$ in kit．£1 complete．State size．

AH orders dispatched promptly．

All post and VAT paid
Ex U．K add 50p for air mail
Shop and Trade enquiries welcome
Special Transfers made to order

E．R．NICHOLLS

P．C．B．TRANSFERS

Dept．HE／1
46 LOWFIELD ROAD STOCKPORT，CHES．061－480 2179

SECOND GENERATION
INDUCTION
BALANCE
METAL
DETECTOR
DESIGNED SPECIALLY FOR THE HOME CONSTRUCTOR

Designed by professionals for easy
assembly by amateurs but with very good assembly by amateurs but with very good performance.

The search coils are fully assembled and adjusted for you.

Coils pre-assembled and tested wedge shaped search field

Uses include:

* Treasure hunting - it's amazing what you can find in the garden or on the beach.
* Finding lost metallic items.
* Locating waterpipes and cables under floorboards on in walls.
* Checking old timber for nails before cutting, etc., etc., etc., etc.

Greenbank

Greenbank Electronics (Dept. T12E), 92 New Chester Road, New Ferry, Wirral, Merseyside L62 5AG. Tel: 051-645 3391.

CMOS

CMO	Thase cut prictij tor Amateur Useris and Export Mole: Indusirial users quantity prices avaluable.						
			mostiy				
4000	$15 p$	${ }^{0051}$	${ }^{72 p}$	40109	${ }^{81.02 .}$	4512	818
4001	178	${ }^{4052}$	724	${ }^{4018181}$	ca. 36	4514	${ }_{\text {c }}^{52.65}$
4002	17 p	${ }^{4053}$	740	40182	${ }_{\text {c1.40 }}$	4515 4515	${ }_{\text {c2 }}^{5198}$
4006	11.05	4054	${ }_{\text {c1. } 10}$	40192	$\underline{16} 40$	${ }^{4515}$	E1.08
4007	$11 p$	4055	${ }^{\text {c1. } 23}$	4093	${ }^{\text {c1.40 }}$	4517	${ }^{\text {c3, }} 1.82$
4008 009	${ }^{\text {87P }}$	3056	${ }_{\text {c1, }}^{1 / 4}$	${ }^{40198}$	${ }^{\text {ci. } 18}$	4518	${ }_{51}^{102}$
${ }_{4010} 0$	50p	${ }_{4059}^{4059}$		4.150	${ }_{\text {ci. }}^{\substack{\text { cos }}}$	4519 4520	${ }_{51} 51.08$
4011	109	${ }^{40650}$	${ }^{\text {c1. } 15}$	1161	[1:08	4521	¢1.at
4012	120	4061	E15.67	4162	¢1.08	4572	${ }_{6} 1.08$
4013	42p	10621	E10.00	1163	1.108	4524	m/s
4014	\%9\%	4033	81.09	1174	61.08	${ }_{458}$	${ }^{11.08}$
4015	${ }^{89}$	4004	\%/s	1775	Sp	4527	41.52
${ }^{016}$	${ }^{45 p}$	${ }^{4065}$	\%/5	${ }^{1199}$	${ }^{11.08}$	4528	999
4017	89	${ }^{4056}$	57p	4403	c8.59	4529	41.14
4018	${ }^{89}$	4087	${ }^{23.80}$	409	${ }^{66.59}$	4530	${ }^{85}$
${ }_{40219}$	${ }_{96}{ }^{469}$	405	${ }^{229}$	4410	${ }^{65.73}$	4531 4532	c1.45
${ }_{4021}$	${ }_{91 p}$	${ }_{4071}$	${ }_{23 p}$	${ }_{41}{ }_{4} 1$	${ }_{\text {cipess }}^{\text {cip }}$	${ }_{453}$	${ }_{55} 13$
4022	00^{9}	4071	21 P	412	[1292	4536	${ }^{\text {c3, }}$. 9
4037	2	4072	21 P	415	L7.50	4533	¢13.23
4024	${ }_{6} 6$	4073	$21 p$	415	M/3	4538	${ }_{61} .25$
4025	$1{ }^{19}$	4075	${ }^{239}$	419	${ }^{\text {c2 }} 808$	4539	919
${ }_{4027}$	${ }_{45 p}$	407	${ }^{23 p}$	4431	Tisa	${ }_{454}$	
4028	$1{ }^{\text {a }}$	4078	$21 p$	4433	£11.32	454	${ }_{\text {cis }}^{6}$. 69
4029	95	4081	20	4435	c7.93	4552	¢10.5s
4030	547	4082	$21 p$	$44 \times$	${ }^{111.58}$	4553	${ }^{\text {c. }}$. 87
4031	$\mathrm{c}_{2} 205$	4035	${ }^{74}$	${ }^{4450}$	${ }^{12} 267$	4554	\& 1.19
1032	¢1.	4089	c150	${ }_{4}$		${ }^{45555}$	$7{ }^{\text {P }}$
${ }_{4034}$	(1.65		c1.50	4461	¢8118	455	\%
${ }_{4033}$	ti.11	4094	¢1.9\%	4462	${ }_{\text {c2 } 212}$	4558	${ }_{\text {c }} 1.14$
4036	¢245	1095	${ }^{\text {c1.05 }}$	4996	E6.54	459	c3.69
4037	51.00	${ }^{1059}$	${ }^{\text {c1.05 }}$	4990	${ }^{\text {c. }}$. 92	4560	c1.en
${ }_{4}^{4038}$	${ }^{\text {c1. }}$ (10)		${ }_{\text {ci, }}$	4700 4500		4561	${ }_{659}$
8040	${ }^{2125}$	4099	$¢_{1.1 .65}$	4501	${ }_{17}{ }_{1}$	4566	${ }_{\text {cis }}$
4041	8.80	40061	w/s	4502	919	4568	[2.36
${ }_{4}^{4042}$	${ }^{759}$	4010101	[12.50	4503 4585	${ }_{55.71}^{69 \%}$	4569 4572	${ }_{625}{ }_{2} 25$
${ }_{404}^{4043}$	${ }^{40}$	${ }_{4010}$	${ }_{12.212}$	${ }_{4} 5000$	${ }_{51}$	4580	65.97
4045	\$1.45	40103	${ }_{5}$	4507	55p	4581	${ }_{6262}$
${ }_{4046}^{4046}$	${ }_{51} 81.28$	${ }^{4} 40104$		4508	${ }_{\text {c2 }}{ }^{\text {c48 }}$	${ }^{45882}$	${ }^{98 p}$
4048	¢8p	\% 40.100	${ }_{6}$	${ }_{4511}$	¢1.38	- ${ }_{4}^{4583}$	${ }^{769}$
4099	$48 p$	40107 40198	${ }_{\text {c5, }}^{68}$			4555	${ }^{10.01}$
4050	48 p	40138	${ }_{55} 5.36$			4598	$\underline{206}$
74 C		${ }^{74689}$	${ }^{4} 4.38$	${ }^{74 C 1493}$	${ }^{\text {E } 1.10}$	${ }_{146921}^{17993}$	${ }^{\text {cil }}$
14.000	$24 p$	${ }_{7} 1463$	${ }_{\text {csp }}$	7452000	E6.78	${ }_{4} 146922$	${ }_{\text {c1. }}^{66}$
14402	$24 p$	7465	cim	14221	${ }^{1.1 .36}$	${ }^{74523}$	E3.73
14604	$24 p$	146107	${ }_{6} 1.12$	74633	E1.73	14692	18A
74088	$24 p$	74150	64.12	746901	54 p	149295	ع4.24
74619 74614	24 p	${ }^{146151}$	c2.46	${ }^{745992}$	54	\% 14985	cis
${ }_{14 c 20}$	¢1.41	$\underset{\substack{146154 \\ 146515}}{ }$		749923 14504	${ }_{54}^{549}$	146989	ciem
14420	249	1416150	¢1.10	144995	${ }_{61.26}$	146929	c11.93
14432	24p	146161	${ }^{\text {c1.10 }}$	745906	54 p	74648	iba
${ }^{71442}$	92	144162	${ }^{1} 1.10$	740207	54	${ }^{\text {80cess }}$	${ }^{\text {sip }}$
${ }_{7}^{74648}$	${ }_{5}^{\text {E1, } 38}$	(74C163			(1.68	${ }_{80097}$	S4p
	56p	${ }_{746165}$	${ }_{\text {c1. }}^{1.04}$	146910	${ }_{6} 6.78$	\%0098	61 p
14476	54 p	141173	S\%	146911	tBA	${ }_{8219}$	84.13
${ }^{744653}$	£1.29	74614	${ }^{1} 1.51$	746812	${ }^{\text {c7. } 13}$	${ }_{8}^{886853}$	${ }_{\text {cise }}$
${ }_{74650}^{74.45}$	${ }_{61.29}$	(744175	ع1.10	146915	${ }_{\text {cki }}$		8.9
DAT							

microfile.

Gary Evans has been out and about this month, taking in a Personal Computer show and visiting a TV studio amongst other things.

THE NUMBER OF shows/seminars concerning themselves with many aspects of Microprocessors and personal computers has, like the hardware itself, shown a dramatic increase over the past few years. Unfortunately not all these events live up to their initial promise and some are not worth the cost of travelling to the venue, let alone the extortinate prices charged for admission to some of these gatherings. The PCW show towards the end of September was a refreshing change.

When it comes to exhibitions, about the only thing to do is to get as many people with products likely to be of interest to visitors to set up a stall. If you can arrange to have some new products launched, a competition and some interesting activity going on in the sidelines - all well and good. PCW did just this and it worked.

I'd have liked to have gone to all three days of the show in order to attend the various seminars held - as it was, last month's ETI was printed at the same time as the show and I was only able to get to the exhibition on the Saturday morning. I suspect the seminars were up to the general high standard of the rest of the event however.

The fact that the exhibition was crowded when I was there, it took me all my time trying to get from one stall to another amongst the multitude of people who see their role in life as standing in the middle of gangways, is not a criticism, more a testament to the show's success.

I look forward to more shows along these lines in the future.

Anita Harris - Pet?

A couple of months ago I went to the recording of a TV show pilot where one of the stars of the show, along with Anita Harris and Roger Elliott, was a Pet Computer.

I'll say more about the show but may I just digress for a couple of lines to tell one of the few after dinner stories I know - this desire having been brought on by the mention of the word pilot above.

If you do certain jobs, being a pilot or trendy journalist are amongst them, when at parties that information, is dragged out of you the same string of inevitable ques:* tions pour out - different questions for different jobs - " but the same questions for the same jobs - if you know what I mean. Very boring. Well, my story concerns a pilot who, being fed up with the situation, in response to the next such interrogation replied "I travel in aluminium tubing" - that a least provened no questions. That's the story then - not very exciting but it's the way I tell 'em

Back to the PET and the TV show however and to why the PET was there. One of the computer's co-stars may have given some of you a clue. Roger Elliott is the TV Times astrologer and - slight groan - the PET was put to the task of flashing Anita's details (astrological). over it's screen.

They say that an actor should never go on stage with animals or small children, for fear of being upstaged. To this list, although for a different reason, should be added small computers. The reason is they very rarely behave for any length of time as Roger Elliott found out when the PET started promising that it was "Time for a song' when Anita obviously was ready for no such thing.

The program was made by HTV who's main claim to fame, or is it eternal damnation, in my book to date is that they produce Mr and Mrs. While not in that league - the pilot was much better - I did not enjoy the show that much but the production team seemed to think it was OK so maybe you'll see it on your screens at some time in the future.

I can't resist just one more tilt at Mr and Mrs - it appears that four of these dreadful things are reeled off in the same day - not all in front of the same audience, who could stand the strain?, especially when you consider that the people who have parted with their hard earned time to watch this entertainment are in the main, old age pensioners, who should really be taking things easier at their age.

I mustn't be too unkind to Mr and Mrs though, after all there is Nicholas Parsons.

Pet Problems

When. Julian Allason of PETSOFT phoned this month to ask if I had any problems I was just about to mention the fact that my car had just fallen to bits, and that my dog had a limp amongst other things when he explained that he was merely reading from the screen of PET which was running a new program called Eliza. Eliza simulates a consulation with a psychiatrist and my encounter with the machine went something like this.

[^3]Well, follow that - Petsoft have probably the widest range of PET software in this country with 70 titles in their current catalogue and aims for 100 'in the next. A recipricol arrangement with Personal Software Inc, whereby Petsoft material will be distributed in the United States and Canada and the best of Personal Software's material sold over here means even more to choose from.-If you have a PET, Petsoft are worth knowing

PETSOFT,
P.O. BOX 9 ,

NEWBURY
BERKSHIRE, RG 13 1PB

Put A Chrysler Sidelight In Your Life

I've been exposing myself this month, but before you get the wrong idea - although I suspect most of you already have. I mean to say that I've been out and about talking to computer clubs.

The meetings ranged in size from the 400 or so at the first meeting of the North London Computer Club.
through a 100 or so at Sussex University to the twenty or so at the Thames Valley group of the ACC's meeting. I enjoyed myself at each event, and picked up some very good ideas from the very high calibre of people that numbered among the audience at each event. Among the handy things I learn't at Sussex was that the exact sequence of operations required to turn the sidelights of a Chrysler Sunbeam on this could not be discovered by your humble reporter, a number of undergraduates and a lecturer in mathematics, but had to be resolved by a call to the car hire firm.

All the clubs would welcome new members - The North London Computing Club is held at the North London Polytechnic, Holloway, LONDON N 7 8DB. Tel. Stephanie Bromley - 01-607 8663 (Office), 01-359 2282 (Home), or Mike O'Reilly, - 01-607 2789 ext 2100.

The Thames Valley ACC group meets on the first Thursday of every month at the Griffin (A pub-good move ACC) 10 Church Road, Caversham, Reading, Berkshire.

For the Sussex University Group - who will welcome outsiders to their meeting with open arms and hands, for the money you know - Contact. Pete Guile, University of Sussex, Falmer, BRIGHTON, Sussex.

WIRE WRAPPING CENTRE

 WIRE-WRAPPING KIT
Contains: Hoboy Wrap
Tool WSU-30 M, Wire Contains: Hoboy Wrap
Tooi WSU.0 M. Wrie
Dispenser WD.

$\begin{array}{l}\text { Wire-wrapding } \\ \text { KIf }\end{array}$	$\begin{array}{l}\text { WK.4 } \\ \text { (Blue) }\end{array}$

E19.22

OK PLIERS AND UTTERS
UNIVERSAL CUTTER Cuts everything. Leather.
wire, plastic, tin-plate. carco poard. Stainless steel
cat just on higt one of the range of
quality plicers, cutters.

IC TEST CLIPS 12.97
FOR OUAL-IN-LINE PACKAGES
PACKAGES - Provide fult accoss to
intograted circuit Dip
leads

- Remove DIP's damage - Avallable in stzas to accommodate all Oip.
TC. TC. 14 fits 14 -pin Dip

FROM 80p DISTRIBUTION STRIPS DISTRILALION SthiPS Bread boarding butloin
bocks with universial
glat blocks with universa
matrices of solderles plug-in tiepoints. solderiess circult build-ud
and eneck-out on ana check-out on
universal.
x.

- Are offered in ten Accent allions. Accept alt components
with leads up to .032 diameter. - Requir cords. Includes integral non-
shortelng instent shoring instant mounting backing.

See us at BREAD BOARD '78 21st-25th November, Seymour Hall, London Stand Nos. A5-A6

OIP SOCKET
Dual-1n-1ine package, 3 phosonor brapme coniac tin inldy firish pins 025
$(0,63 \mathrm{mym}$ sa. . 100
$2,54 \mathrm{~mm}$) centre spacing. $14 P_{1 n}$ DID

Socket | $14 P_{\text {in }}$ Dip |
| :--- |
| Socket |
| St | 16 Pin D_{10}

Socket
FROM 29p

HOBEY WRAP TOOL
Wire-wrapping, strioping Wir-wrapping, stripping,
unwropping tol for AWG 30 on $.02510,63 \mathrm{~mm}$ A £4.74 B 5507

'TOLINKA' CHESS REPORTER -FULL KIT OF PARTS

'MERCURY COMMANDER’

READY BUILT

FITTED
SOUND MgDULATO:

ECONOMY CARTRIDGE SYSTEM (G.I. DEDICATED CHIPS)

> Designed and built in Britain by Teleng, one of Europe's largest TV Games manufacturers. Mercury Commander - Complete with 10 Game Cartridge, 2 joysticks. Mains adaptor - in colour with Videotime TV Sound - No Additional Costs

Plus additional cartridges
Stunt Rider with hand control, 4 games £16.90 Road Race 2 games £10.90 Tank Battles with 2 joystick controls

E21.90*
More to follow Breakthrough, Shooting Gallery

Game / Aerial Switch Box

AUTOCHORD PART TWO

THIS MONTH WE complete the description of the auto chord instrument. Last month's articie covered the circuit descriptions of the various blocks that make up the unit and of the operation of the complete design.

This month we complete the project by describing the construction of the instrument.

Construction

The components should be mounted on the PCBs according to the overlays shown. Pay particular attention to the diodes, capacitors and other polarity sensitive devices.

The project involves a great deal of interwiring between the various boards and switches of the design.

The interconnections are shown in the accompanying diagrams and great care should be taken to ensure that no errors are made at this stage - they will prove difficult to trace at this stage.

We give no details of the housing of the project as this will depend entirely upon the instrument in which the auto chord is to be installed.

The finished unit can be added to most organs, being easiest to fit to a unit that uses DC keying. In use the project should add an extra dimension to even the most limited of musicians efforts.

Above and below interconnection details for the generator and coder boards

$\begin{aligned} & \text { uDбıO } \\ & \text { o+nv } \end{aligned}$	$-\frac{8 x}{2 x \sin }$			
		-10	- 0 -	+

 Part two of the autochord project details

KEYING ARRANGEMENTS

Above, and to the left, circuit diagram of the auto stop module

The overlay for the chord coder is shown below take care that all the diodes are inserted in the right position.

Above the power supply and pre-amp board of the auto organ. The interconnections between this and the rest of the paning drawings.

eft is the overlay for the generator and clock section of the auto organ.

SEIKO 20\% 0FF!

Analogue and digital from stock or to order

FX003
MEMORY BANK
STAR" of the 1979 Seiko range, available NOW from Tempus. Continuous display of hours. minutes, seconds day date month. Displays past and future calendars from 1930
to 2009 . Flashing reminder for important dates in the coming 12 months
R.R.P E130

NEW FBO 11 R.R.P. £135
£104

FK009 R.R.P E55
£44

THIS MONTH'S

Prov price
(RONSON electronic lighters, 10% off)

AQ-1000CALCULATING ALARM CLOCK PLUS 3-WAY STOPWATCH Hours. minutes, seconds, am/pm. 24 hour Alarm with sign. Stopwatch: Ne times, lap times $1 \mathrm{st} \& 2 n d$ place times
from $1 / 10 \mathrm{sec}$ to 10 hrs with ST \& LAP signs Calculator: 4 key memary $\%$, year batteries ± 20 secs $/$ month $\times 23 \times 45$

Our Price £21.95
CQ-81 CALCULATING ALARM CLOCK. Plus 2 Alarm Timers. 24 hour alarm and alarm/timers, 6 (RRP E22.95)

CQ-2. Special Offer. Clock, calendar, 4 alarms, stopwatch Time / Date calculator. (R.R.P. E39.95
RRP $£ 26.95$
2

OL-10 CIGARETTE LIGHTER/CALCULATING ALARM CLOCK

Sott piezoelcctric system gas lighter, 6 -digi

 CDD clock, ± 15 seconds/month. Per manentiy prog. caiendar (arms oliter Duat time zone Calculator with time/date calculations K. $\% .1 / 2 \times 2^{2 / 4} \times 4$ inches 3.60218 monhs battery Pouch stopwatch. 2×5 alarm/timers. (£35.95) MINI CARD CALCULATORS $1 / 631 / 2 \times 21 / 8 \mathrm{ins}$ FX-48 Math. Card. Full Scientific with S.D
CARTRIDGE T/V GAWES

OPTIM Coronet 600

 Cartridges from E9.95FAIRCHILD TIMEBAND Grandstand Cartridges from E12.50
ATARIVideo Computer System
The very best available to date! Cartridges from $£ 14.95$
\star SPECIAL INTRODUCTORY OFFER
TWO FREE extra cartridges worth E29.90 with Atari WATCH BATTERIES $65 p$ each D.I.Y. KIT 35p
£104

TRAVEL ALARM CLOCK
Battery-powered quartz alarm clock with repeat teature C Display. Nightlight. 1 year batteries $43 / 4 \times 11 / 4 \times 1 / 2$ inch 1602 For caravan or boat. ($£ 24.95$) £ 19.95

SOLAR powered watches
so called We wor it them. Send us a S.A.E and we will tell you why not

CBM Giant 4 digit. 5 functions, Light
£22.95

9503 (£15.95)
Chrome
Bracelet
9502 (£14.95)
Gilt
Strap
$£ 9.95$
1803 (right)

PH-ALARM/CHRONO
Hours, minutes seconds or date, day Chrono measuring net. lap and ist and 2nd place times from $1 / 100$ second to 1 hour. Nlass. Not to be confused with cheaper models with chromed case and plastic
£39.95
$£ 39.95$
£17.95
 . sec.
¢48.50

EW FHOO3
£125
$£ 195$
195

LADIES' LCD WATCHES
5 functions, backlight Gold or Silver finish fplease specirs

Round, Milanese bracelet L1£14.95 Cocktail Watches. Integral bracelet. 3 styies

CASIO LADIES' LCD WATCHES

$£ 29.95$
27CL-17B
Stopwatch
$£ 39.95$

[^4] P\&P. Send your cheque. PO or phone your credit card no

CASIO QUALITY

All CASIO watches have a calendar display, night illumination, mineral glass and stainless steel cases, water resistant to
100 ft (except sports watches -66).

SPORTS WATCHES

Up to 25 functions. Net. lap and first and second place times to $1 / 100$ th sec. F-100. Resin case strap 520S-14B S/S encased version and bracelet.
4 DIGIT WATCHES (except World Time). Hours, minutes ten seconds, seconds by flash, am/pm. Day, date, month Stopwatch. Dual time (except $310 \mathrm{R}-20 \mathrm{~B}$)

DIGIT WATCHES (except Sports and Alarm). Hours minutes, seconds, day OR Hours, minutes, date, day, ten seconds, séconds by flash. Day date, month year. Select able 12 hour (with am/pm) or 24 hour clock

CHRONOGRAPM. 6 digits as above, with stopwatch
measuring net, lap-and ist \& 2nd place times from $1 / 10$

WORLD TIME WATCH. The time in ten capitals plus one optional time. Instant summertime correction. Hrs, mins, 10 secs, secs by thash. Perpetual calendar, day. date, month Running digital seconds display

ALARM WATCHES

25CR-16B Round (774.95)
$£ 54.95$
25CS-16B
Square (E84.95)
$£ 69.95$

Hours, mins, seconds (or hrs, mins, date) day, am / pm. Day date, month, year 24 hr . alarm. on/off indicator ULTRA SLIM DRESS WATCHES (Not 24 hour)
53CS-18B eft. 4 digit (E74.95 $£ 59.95$ 49CS-25B 6 digit ($£ 84.95$) $£ 69.95$

Not illustrated 53CS-19B 4 digit barel shaped $£ 64.95$ 9CS-24B 6 digit (E79.95) £64.95. 53CGS-17L Gold plated, on $\operatorname{strap}(\mathrm{E} 84,95) \mathbf{£} 69.95$.

ALL FULL SPEC DEVICES

texas	TIMER	red led
741	555	TIL209
5 for	4 fo	10 for

£1.00

£1.00
£1.00 VAT INCLUSIVE PRICE +25 p P. \& P.

A4 IC BOOKLET
SUPPLIED FREE WITH ORDERS OF ANYICs WORTH £5.00 OR MORE, CONTAINS CIRCUITS, PIN CONNECTIONS AND DATA ($35 p$ + SAE IF SOLD ALONE).

Hobby

Electronics

The December issue will be on sale on November 10th

Light Beam Phone

True wire-less communication for which you don't need a licence! Our project next monthwhich we are calling the 'HE Photon Phone" uses two standard torches which we've converted - all the electronics fit into it beautifully. In our tests we've been able to make our units work over a distance of 50 feet; even if you don't want to build it, you'll be fascinated by the techniques there's even a remote control facility included

Audio Mixer Project

A really neat project designed by a professional audio engineer - that's a quick summary of our mixer, choose your own number of inputs (we've opted for three high level and two low levél ones). There's a bass and treble control and of course a master level control. Building it should be simplicity itself as everything, including the level controls is on a single printed circuit board. Power is supplied by two PP3 batteries; inputs and outputs are via standard jack sockets.

Bias

No - not political, tape. Why do you need a high frequency signal added to a tape recording - you never hear it so why is it necessary? Next month we tell you.

DIY PCB's

The neatest way to build a project is on a PCB few would deny that, yet PCB's are frightening to those who haven't tackled them before. Next month we will be launching Hobbiprints - a really easy way to make the PCB's which we show in HE and we'll show you how to use them.

Calculators

The world of calculators has gone the way of HiFi - the facilities offered often cause confusion. We take alook at the current terminology of the calculator market enabling you to find out if the facilities offered are really the ones you want.

Electronic:Dice

Press the button and one of six LED's comes on at random. From the photograph you can see this is really a straightforward project. The light stays on automatically - there isn't even an on-off switch!

The Tesla Controversy

Nikola Tesla was without doubt a genius - he even has a unit of measurement named after him - but even 35 years after his death there are those who believe that much of his work has been suppressed

Metronome

Using just a single 555 IC, this project can be built on either a PCB or Veroboard - we give you details for both. The beat rate can be varied from 30 to 120 beats a minute.

SPECIAL OFFER

Next month you'll be bble to get a top quality soldering iron, either 240 V or 12 V . through our offer in HE. Today's regular
 this for:
£2.35 inc.

audiophile.

Ron Harris takes to the high seas this month - well the Thames anyway - to discover a remarkable new drive unit from Strathearn. Back on dry land news of a linear motor tone arm

IT WAS ENOUGH to make Nelson spin in his grave. One of Her Majesty's ships, battle-worn from the fire of enemy guns, put to use as an area to hold a press reception! And for something as totally unmaritime as loudspeakers!

Mind you, HMS Belfast can only be considered appropriate, for it was Strathearn Audio (based in Belfast and government owned) who sent me the music echoing through the wardrooms.

The occasion was the launching - for once no pun intended - of their new speaker system, the 21000. This is a 'four box' affair with the base units cast loose from the rest. Frequencies up to 500 Hz are handled by the 8 bass drivers reflex mounted in the enclosures Above 500 Hz everything is produced by the real star of the system, Strathearn's new driver, the SLC2

Film Star?

The principle on which these speakers operate is very similar to that of the Wharfedale Isodynamic headphones. In the SLC2 an aluminium conductor, about a metre long, is bonded onto a polyester film which is stretched inside a moulded frame about $130 \mathrm{~mm} \times 600 \mathrm{~mm}$. Rows of magnets flank the diaphragm creating a high uniform field in the vicinity. When the signal current passes through the conductor it is driven by the force generated due to its being in a magnetic field

Thus the polyester film is the speakers 'cone' if you like. Since this will radiate from both front and back dipole radiation) the unit has damping pads fitted to absorb the anti-phase rear radiation. Mass of the driver is very low, so very little overhang to worry about. As the area is effectively all driven, it should not 'break up' at all on any input signal

The only drawback is the very low impedance of the aluminium strip itself about OR5 in fact. In order to make this usable Strathearn have transformer coupled - which at least makes the unit adaptable to any required input impedance.

To claim, however, that this produces a purely resistive load is at best extremely optimistic, at worst

Sound Track

I'm going to reserve judgement on the 21000 system as a whole until I've had an opportunity to listen under more favourable conditions than HMS Belfast at 100 F with 49 other people crowding me lugholes! It was clear though that the SLC2 is a remarkable unit, and is perhaps worthy of better. We shall see

The system sells for $£ 375$ RRP, and is expected to have appeared in the shops by the time you can get down there

The $\mathbf{2 1 0 0 0}$ from all angles. At the top we have the full system. Below that the diagram shows the operating principle of the SCC1. The polyester diaphram acts as the speaker cone. Below this caption two internal views of the unit. The radiating areas can be seen in the top diagram, and the lower rear view illustrates the damping material to control rear radiation.

Decked Out

At the same demo Strathearn were using their SM 2000 turntable as the sound source. It was a good advert. They had a line of Sonus, Supex, ADC, Shure and Ortofon cartridges all neatly installed in spare carry arms, and all of which tracked very well when asked to. Several people - me included - were surprised at the ease with which the SM 2000 handled these devices and

how well the sound each is capable of was preserved. Indeed on this evidence the SM2000 is a very capable unit indeed - a comparison with some better established machines (including schhh - you know what) might be very interesting indeed. How about it, Strathern?

Details of both from Strathearn Audio Ltd, Kennedy Way Industrial Estate, Kennedy Way, Belfast.

Arms Against The British?

There can be only two basic ways of doing a job simple and complicated. Both can take vast amounts of thoughts to realise (who said simple meant obvious?) and are capable of excellent results. Witness belt and direct drive turntables as represented by the Linn and the Technics SP10

Sony have applied the latter approach to pickup arm design with the result that they end up with two linear motors, two velocity sensors, two position sensors, a deal of electronics and potentiometers to set tracking weight!

Exploded view of the Sony motorised pickup arm. Tracking weight is applied by a potentiometer mounted remotely on the plinth.

In fact the velocity sensors are simply two more linear motors used as generators. Servos drive the motors which take the arm across the record in he proper manner. In the vertical direction too all control of the arm movement is down to a linear motor. Arm resonance is suppressed, by varying the current to the coils - from somewhere around 25 dB in an undamped system to about 3 dB in the Sony system using their XL55 cartridge.
Right: A close up of the linear motors used in the arm design. These double as position sensors by using the same device as a generator, i.e. allowing them to be moved by the arm and measuring the current generated in the coils.

Advantage Complications

Gains from this method are claimed to be insensitivity to external vibration, improved tracking and better definition and imaginery. Bias of course can be forgotten, as the motor controls movement across the vinyl canyons, and tracking weight can be changed while the stylus is in action.

All this sounds well-nigh perfect does it not? On paper the design looks marvellous (so did the Titanic - cynic) but we shall have to wait until they market it in this country to find out how good it is. Meanwhile eat your heart out SME!

From Service to Taste

A little congratulation and a whoopee cushion to finish on. Firstly many thanks to Celestion for some fast excellent service this month. Some nameless person from the pit (no not me - another one!) blew a bass unit in one of our Ditton 66's. One phone-call later I was on me way to pick up a replacement from Ipswich. And that four years after buying the speakers - and it was our fault. Nice to be able to commend a big hi-fi firm for service for a change.

Now Audiophile enquiry service is normally dealing with people with impeccable taste. However it appears there is one exception. So that this person does not have derision heaped upon his unworthy shoulders and be cast from the company of his peers let us refer to him as Mr Smith.

This person wrote in - nothing wrong there you may say - he even dated his letter. Again nothing amiss about that. Trouble was he 'dayed' and timed it too. I quote with shaking head and furrowed brow . . .
'So at 8.05 pm on Thursday evening I am turning off some corny comedy on the television set to write enquiring about

There we have it. The heronious crime is in the open. Thursday eh? 8.05 eh? Corny comedy eh? The only comedy on TV at that time is the 'Good Life' - which any human male with a micro-gram of taste and appreciation of the opposite gender should be watching avidly for the glorious presence of Felicity Kendal!

Oh Mr Smith may your hi-fi forgive you - I cannot!

IT'S FREEI Our monthly Advance Advertising Bargains List gives detaits of bargains arriving of Just arrived - olten bargains which sell out betore our adverisement can appear - It san interesting liss and it's tree send S.A.E. Below are a few of the bargains still available from previous lists. Por Cores. We have now received our delivery of Ferrox pot cores. These are ex unused equipment. They contain the bobbans but of course these have to be wound and vou would haveAo unvind Three pairs available. have to be wound and vou would haveno unwind. Three pairs available Component Panol Rof. 3055. Taken from unused P.S.U.S. these contain $4 \times 2 \mathrm{~N} 3055$ power transistors with mica insulalors all on heat sink and 4 variable pois, preset type with spindle locks Real bargain al Compach Component Board 421. Again trom unused equipment, major items on these are two power silicon transistors. Motor Rola rel. SJ 5433 mounted on a heat sink with mica insulators, also behind the panel are two power recutiers ST NS 1008. Price 96p E.H.T. Mains Trantormer. With inductanter and output voltage apporox 4 kv 3 mA . Vollage can be varied by applying OC to lower bobbin Unused, ex P.S.U's. Price E4.32 Music Centre Dust Cover. Sire $12 \times 10 \times 1 \frac{1 / 2}{}$ with altachments for hinging Price s. 395 Callers only Hi-Fi Contele. Pleasingly design IIdy up your equipment sorry tigned shelving arrangement which could Telephone Answering Machines. Used. but apparently complete and probably in working order However, we are allowed to supply these only for breaking up. they should be vecty suitable for conversion to open ree: tape recorder, background music machine, echo chamber, etc. All untested but we guarantee to replace any major tem in the machine should it be laulty Machines less outer case E7.50 case slighty broken bul substantiafly whole £10.26 Unbroken cases $£ 1245$ and finally with new looking cases $\in 14.50$ Post $\subset 2.50$ per machine Many accessories available for these machines Please enquire Wall Mounting Thermostat. The Satchwell room stat. Mains 20 amp setlabie over normal air temperatures between $30-80$ \& . Suniable al greenhouse control Nicely tinished in white enamel. Price $£ 3.25$. 10 r.p.m. Motor with 230 v mains coil, not like the usual of these geared Rigonda Intermezzo $10+10$. with speed control and strobe check The best hi-fi offered by fideck Original selling price was in excess ol $£ 125$. We have approx. 50 ol these unused but with various laults Uniested. believed complete except for canridge and speakers. Offered at E33.50. Iess than the price of the very high qualty deck incorporated If cannot collect add 53 to cover the special packing and carriage charge Loudspeaker Grill. Good quality tigid plastic. Ideal for use in car or $18 \times 18-£ 1.69$. 6 Digit Counter - Resertable, corl voltage $4 B D C$ or 115 V AC. current 10 DAgit swifch Pad. Made we believe for GPO oushbution Lelephones, each bution operates 2 pole switch which returns when deoressed, panel size $21 / 2 \times 31 / 2 \times 1 / 2$ pushbutrons with clear plastic protected digits 0.9 . price $£ 2,16$ Mains Blower. Real bargain blower made by Smiths. the motor is let Into the turbulator so these can be stacked sideways to give variable air dia $\times 21 / \mathrm{sing}$ and the iir nutiet 1 space. $\times 2 \%$ Pveraice size only $£ 2.50$ - ial Indicator used in 1001 making and precision measuring, the tamous John Bull shows differences of 01 mm A beautifully made precision insirument, price in most tool shops would be $£ 12-\varepsilon 15$ We have a fair quantity. price 51075	ollover protection make this an absolute must for the MPU construction supplied complete with connection diagram and edge connector, at a secondhand "no time to test" grice of only $£ 18.63$, post $£ 1.50$ WHAT COULD YOU BE DOING? in one year's time. if you understood computer and microprocessor technology? Think it over. then foin the "Doing it digitally" enurse which is starting. now. You will learn mainly by doing, nol jusl reading, it's easy to undersiand that way. Pay as you learn - Just $£ 5$ deposit and eleven monthly payments of £ 3 . for £ 35 cash now). $£ 23$ worth of components sent now. more will follow as course requires them. REMEMBED THIS IS YOUR CHAMCE? Interested in Tape Control? American made iype punchess really beautiful units full of sophisticated'parts, designed, we believe 10 automatically opesate typewriters and they can of course be used to operate other reference 115 V 5 HZ in very good condition with tape E16. carriage € C 20 High voltage Mains transtornter Normal mains primary, secondary by our measuring equipment is 8 Kv approx. at 5 mA . We are offering these at a bargain price of $£ 4.50$ Terms, Prices (Except Transformers) include Post \& VAT. But orders under $\mathbb{E} 6.00$ please add 50 p to offset packing. Bulk enquiries - Please phone for Generous Discounts 01-688 7833. J. BULL (ELECTRCAL) LTD 103 TAMWORTH RD. CROYDON CR8 1SG					

'Cold-start' For CD Units

TV Game Resurrection

S. Rice

LED Spotting

A. Kenny

Since the leadout on LED's varies according to the manufacturers preference, leadout diagrams are not always worthy of the trust placed in them. In some cases a reverse connection will destroy the device being used

A simple way to avoid this is to use the following technique

If the LED is held up to the light, the structure can be clearly seen There is a "cup" and an "arm" carrying a fine wire to the LED itself, which is in the "basin" of the cup (see drawing)

The lead with the cup is the cathode, and the other is the anode (of course)

Now that the novelty of TV games has worn thin and most of the units are gathering dust in the corner reserved for other five-minute wonders, here's a chance to add new spice to leisure time. The circuit is an oscillator clocking at about one cycle per 4 seconds. This switches the ball angle "randomly" making the game unpredictable and difficult. Also this prevents
T. Lyons

Many cars are fitted with cold-start coils, which operate at full current only on starting, then are fed via a ballast resistor. This resistor is normally discarded when CD ignition is fitted, and the coil is run at 'full power' all the time. It's a simple matter to arrange for the cold-start circuit to operate a relay inside the CD unit which switches in a second capacitor C2 across the main one, thus increasing the energy of the spark when the engine is starting. After starting, C2 is na longer in circuit and the main capacitor C 1 alone supplied current to the coil, thus alleviating any charging problems with attendant loss of power at high revs.

RLA is any 12 volt relay, and C2 can have the same value as the existing capacitor $C 1$, usually 470 n or 140 .

SINTEL

THE SINTEL SIX DIGIT MAINS CLOCK KIT with BLEEP ALARM and TOUCH SWITCH SNOOZE
high brightness display

- automatic intensity control
- oeep reo display filter
- SLIM White Case $205 \mathrm{~mm} \times 40 \mathrm{~mm} \times 140 \mathrm{~mm}$
- battery backup

- caystal control for improved accuracy

Order as ACK + BBK + XTK
$£ 34.50$
$£ 28.80$
The ACK is also avalable without ballery backup and crystal conirol Oider as AC

DATABOOKS
BEST OF BYTE Volume 1380 pages
Intel Memary Design Handbook
Intel 8080 Mitrocomputer Systerns User's Manual
Intel 8085 Microcomputer Systerns User' 's Manual
Motorota Booklet From the Computer to the Microprocessor
Motorola McMOS Databook Nol 5 Series B)
Motorola M6800 Microproces sor Applications Manual
Motorola M 6800 Programming Manual
National SC/MP introkit User's Manual
National SC/MP Technical Description
National Semiconductor TTL Databook
RCA CMOS and Lnear IC Databook
Texas instruments Pin Configuration Guide A very useful sel of glos
views of 7400 ICs plus many others (T) Memories Op-Amps, eic)
280 Assembly Language Programming Manual
Zilog 280 -CPU Technical Manual
Zilog 280 CIC Product Specifications
IM6100. 6800. SC/MP CDP 1802 2650. TMS5501, TMS8080 91 $\overline{Z 20} \overrightarrow{\mathrm{P}}$ Tntel 8085 Also tree dalá on some components

Some Popular Memories available from SINTEL (See ETI DATA SHEET SPECIAL July 1978)
2102450 nsec 1 K STATIC RAM
2102650 nsec STATIC AAM
2708600 nsec 1K STATIC AAM

\section*{| E 1.85 |
| :--- |
| $\mathrm{E1.85}$ |
| ER |
| 8.80 |} E8.80

E8.05

ASSEMBLED LATCHED COUNTER MODULES

Our rane of 1 ndus CMOS and TTL ICs and will save you considerable design purchasing building and de-bugging time Each module uses a set of red LED displays, and features a single in-line plug and socket Instructions are provided For full detarls please send for Catalogue

	TTL				cmos			
	Part No	Bull	Part No	Kıt	Pati No	Built	Pari No	Kı1
2 dijit	401-484	£13.22	526-412	£10.52	945-588	£13.02	548-470	£10.42
4 aill	715-484	E23.38	657-412	E17.98	512-568	£22.63	869-470	E18.11
6 dipit	293-44	¢33.76	$721-112$	£25.66	393-568	¢32.31	191 -470	£25.85

NEW PRICES AND SOME NEW CMOS ADDITIONS

For our full range of components send for free Catalogue
Our offices are at Chapel Street, Oxford. But please do not use this as a postal address OFFICIAL ORDERS ARE WELCOME Prom COMpanies. Govi Oepts Natn Inds ORDERS: CW O add VAT @ $8 \%+35 \rho$ p\&p TELEPHONE and CAEDIT (Invoice) OROERS add VAT @ $8 \%+60 p$ pip minimum charge (the balance will be charged al cost) Please see FAST SERVICE EXPORT OROERS welcom
 ORDERS TO: SII

THIS MONTH'S SPECIAL OFFER
Móorola Audio Amplifier I watt I.C watt plus into $8-16 \Omega, 9.16 \mathrm{~V}, 10-400$
equired Only 90 p with Data and circuits Sentinel Smoke and Gas Detector. This beautifully made unit uses quality com ponents on fibreglass board, encased in heavy duty. domed diecast box, $31 / 2$ diam. $\times 11 / 2 \mathrm{high}$. LED. indicator. TGS 105 plug in sensor. 24 v , or 12 v by altering 3 resistors, will drive relay or lamp. Ideal for caravans, boats. kıtchens, etc., etc. $£ 6.45$ with circuit and data Suitable relay for above E1, state voltage
Miniature Vemitron ${ }^{\circ} \mathrm{M} 4,10.7 \mathrm{MHz}$ cer amic filters Data and circuits 20 p
Crystal earpieces with lead each, 3 for $£ 1$
Magnetic earpieces with lead and plug
lead and plug
Ultrasonic transducers transmitter and
recelver. 14 mm diam 40 kcs
4 aluminum boxes $128 \times 44 \times 38 \mathrm{~mm}$ pair for signal injectors, etc. $£ 1.00$ 100 miniature reed switches, ideal to burglar alarms, model railways, etc $£ 330$ 6.6-pole 12 voff reed relays on boar E2 45.
High quality computer panela smothered in
top-grade components
p-grade components
5ibs
10 lbs. E4 75
New U.H.F. transistor TV tuners. type woth
and leads

E2 50

Miniasure edgewise panel mountig level merer 200μ F F S D
300 mixed resstors $1 / 2$ \& $1 / 4$. 90 p
300 mixed resisis \& 50
100 mixed electrolytics
300 mixed electrolytic
300 mixed printed circuit resistors E1 E 00
100 high -wattage resistors. W W. etc
20 assorted VDRs and thermistors $£ 12$ 25 assoried presets, skeleton, etc. E1 20 25 assorted pots and presets 5 assorted pots and presers 2-watt resistors E1 $\frac{50}{50}$ side, very compacts, can be banked side by 100 mixed modern miniature ceramic and 100 mixed modern minature ceramic and

Don't let vour environment dehydrate YOU. BUY OUR "HONEYWELL "HUMIDITY CONTROLLER". Membrane actuared, adjustable by $1 / 4$ shaft ldeal for greenhouses. offices. centrally heated homes. etc 375 A contacts at 250 V . Build Humdiflers or dehydration alarms with this novet, gadget at a fraction of original cost. $£$

Semiconductor Bargains

1000 Mixed Diodes, mostly unmarked similar to IN 4148 etc. 70% okay E1.50
New Improved Transittor Packs: 100 New and marked transistors including BC 148. BC 154. BF 274. BC 212L. BF 200

200 transistors as above and including 2N3055, AC12B, BD131. BFY50, only E9.95.
ITT 25 kV ctv eht triplers for Decca "Bradford chassis brand new £2 50, 5 for $£ 10$ SN76115N (~qualen 1310) 50p TBA 120A. 50p

BF 200	$6-£ 1$	BF 274	$12-£ 1$
$10-£ 1$	BC 148	$12-£ 1$	

Deluxe Fibre Glass Printed Circuit Etching Kits
Includes 150 sq ins copper clad $/ / 9$ board, 1 lb terric chloride. 1 dalo etch resist pen abrasive cleaner, 2 mini crill bits, etch tray 150 sq. ins fibre giass board $\ldots \frac{1}{£ 200}$ Dalo pen
Hib terric chloride to mil spec 5los ferric chloride to mil spec. op
30p P\&P ON ALL ABOVE ITEMS. SEND CHEQUE OR POSTAL ORDER WITH ORDER TO SENTINEL SUPPLY DEP ETI 149A BROOKMILL ROAD DEPTFORD. LONDON, SE8 Callers by appointment only

UNBEATABLE LOW PRICES

 WE STOCK PARTS TO BUILD MUSICAL PROJECTSAs published by leading magazines Send large s.a.e. for lists
DALSTON ELECTRONICS 40A Dalston Lane Dalston Junction E8 2AZ Tel. 01-249 5624

Rain Alarm/Door Bell

S. Lamb

The circuit shown will automatically tune an FM tuner to stereo broadcasts only. On switch on the indicater pin of the stereo decoder is at 0 V . In consequence Q 1 is biased off and pins 6 and 3 of $I C 1$ are at the positive varicap supply voltage. As this IC, a 4007, is wired as a transmission gate this voltage holds the gate on. The impedance across the gate is in the region of 300 ohms. IC2, a 741 , is used as an integrater, the input voltage from across ZD1 is connected through the gate. The output of this IC therefore is a positive going ramp which is fed to the varicap tuning diodes.

On reception of a stereo broadcast the voltage at the decoder indicater pin goes positive driving Q1. into saturation and closing the transmission gate

Since the closed position of the gate places an impedance of the order of 10^{9} ohms in series with the inggrater the output is "frozen" keeping the station in tune. This state of affairs continues until PB1 is pressed, whereupon the integrater will once again start to ramp positively in search of another station

A second 741, IC 3, is used as a comparator. The varicap voltage is sampled by the inverting input whilst the tuning voltage feeds the non-inverting input. As soon as the tuning voltage reaches the same leve as the varicap voltage the comparator's output swings positive forward biasing Q2 and discharging C1. The circuit will now go through the entire sequence again.

The varicap voltage must not exceed 15 V unless the transmission gate is operated from a stabilised supply of less than 15 V output. The supply line to the op amps should be several volts greater than this.

With S1 open the circuit function as a doorbell. With S1 closed, rain falling on the sensor will turn on Q1, O2 and the thyristor will trigger activating the
bell. R4 provides the holding for the thyristor while D1 prevents any damage to the thyristor from back EMF in the bell coil. The sensor is
made from 3 square inches of copper clad board with a razor cut down the centre. C1 prevents any mains pickup in the sensor leads.

BUY DIRECT FROM THE IMPORTERS AND GET MORE SCOPE FOR YOUR MONEY

SPECIFICATIONS
electrical oat
Datlection Sensitivity $-100 \mathrm{~m} V$ divivision
$3 d B$ points $-D C-5 M H z$ Input Attenuatio
 Input impedance - $1 \mathrm{Meg} / 40 \mathrm{pf}$ in shunt input Voltage - Max
600 VPP
600 V P
HORIZONTAL AXIS (X). Deflection Sensitivity $-0-400 \mathrm{mV}$,
division. Bandwidth (between 3 d 8 points -1 Hz .350 KHz Gain Control - Continuous when time bases in EXT position. Inpu Impedance - 1 Meg. Input Vottage - Max - 600 VPP P TIME BASE. Sweep Range (calibrated) - $100 \mathrm{msec} /$ div to ${ }^{1}$
sec/div in 5 steps. FINE Control - Variable between steps secludes lime-bese calibration position. Bianking - Internal - on all ranges
SYNCHRONISATION Selection - internal, external Synchron

```
isation Level - Continues from positive to negative
ISation Lavel - Conunues from positive to nggative.
POWER SUPPLY Input voltage 
```

CRT DAT
CRT DATA - 4 in - fiat face. single beam. Maximum high
voltage - 1.5 kV - Fitted with 8×10 division blue fiter graticule
PHYSICAL DATA Dimensions $-15 \mathrm{~cm}(\mathrm{~h}) \times 20.5 \mathrm{~cm}(\mathrm{w}) \times 28 \mathrm{~cm}(\mathrm{~d})$
Weight - 43 Kg (approx) Stand -2 position flat and inctined
Case - Steek, epoxy enamelled Front panel - Aluminium
enamelled epoxy prinung.
\qquad
Cash with order
Test leads available £2.00
£99

6 MHz OSCILLOSCOPE
Large 5 flat CRT
DC to 6 MHz bandwidth
10 mV to $50 \mathrm{~V} / \mathrm{cm}$ in 12 calibrated steps $0.5 \mu \mathrm{~S}$ to $0.1 \mathrm{Sec} / \mathrm{cm}$ sweep range in 6 calibrated steps plus 121 vernier
Magnifier $\times 5$
Fully automatic trigger
$£ 120$ (+ V.A.T) S.a.e for further details.

3 inch medium-persistence tube response up to 5 MH (-3 dB) - good enough for colour TV work adjustable +ve, -ve or external sync.
External x-input
y-sensitivity down to $100 \mathrm{mV} / \mathrm{div}$
Timebase $100 \mathrm{~ms} / \mathrm{div}$ to 1 us / div in 5 steps Dimensions $15 \mathrm{~cm} \times 20 \mathrm{~cm} \times 2 \mathrm{Bcm}$
Weight $3.8 \mathrm{Kg}(81 / 2 \mathrm{lbs})$.
Weight $3.8 \mathrm{Kg}(81 / 2 \mathrm{lbs})$

$\mathbf{£ 8 9}$ (inc. V.A.T. \& P \& P

Model 2201. Function Generator. Sine, square triangle + mixed wave forms. $0.02 \mathrm{~Hz}-2 \mathrm{MHz}$, range
1 MV to 10 V pp into 5052 variable symmetry to 201 VCO range of 1000 1, constant duty cycle pulse operation. DC offset to $\pm 10 \mathrm{~V} . £ 138$ (+V.A.T.)
Model 2205. AM/FM Sweep Function Generator Has all the basic specification of the 2201 (above) plus internal or external AM/FM, 400-1000Hz. Internal modulation $0-100 \%$, adjustable AM depth, 10001 . sweep range.
E246
KRAMER \& CO.
9 October Place, Holders Hill Road
London NW4 1EJ. Telex: 888941
attn. Kramer k7. Tel: 01-203 2473 Mail order only Callers by appointment

SEMICONDUCTOR OFFERS ALL FULL SPEC.

Common anode 0.37 seg displays Toshiba type TLR 303 65p FE.Ts. similar to 2 N 38 Ial Marched Pairs Mosfers Single Gate per M.ET. 40 O . Intel 1024 bit MOS Rams 95 p . Mullard 88113 Triple Varicap Diode 35p MC 1310 Stereo Decoder I C.sE1 20. CD4051 CMOS 50 p .741 -pin D I L 23 p . 500 v 600 mA Bridge Recs (ex
equip. 25 p 4 N 4002100 v 1 AD Dodes 4 p .14005800 v IA Diodes equip. 25 p 1N 4002100 v 1 A Diodes 4 p . 14005800 v A Diodes
7 P E.H.T. SIL Rec 15 Kv 2.5 mA . $15 \mathrm{~mm} \times 5 \mathrm{~mm} 30 \mathrm{p}$. 781212 v 1 A Pastic V. Regs 95p. Min. Nixies $1 T T 5870$ Si $13 \times 6 \mathrm{~mm}$ Fig Size
85 Nixies ITT GN/9A $13 \times 8 \mathrm{~mm} 650.2$ or 0125 Red LEDs 85. Nixies ITT GN/9A $13 \times 8 \mathrm{~mm} 65 \mathrm{p} 0.2$ or 0125 Red LEDs
 Alpha-numerical Displays. With data, E2.75 ORP61. Mullard. new, boxed 30p Special Offer SGSTBA800 ICs. 10 for $\mathbb{C} 00$.
MICROPHONES. EM506 Condenser Mikes, Uni-directional, FE.T Amp. Dual imped.. $50 \mathrm{~K} / 6000 \mathrm{Mms}$. 30 . 18 KHz , on/ mp .
switch, $£ 11.00$ Miniature The Pin Condenser mike 1 K imp. omnt-directional. Uses hearing ad batiery (supplied) $\mathrm{E4} 95$
O.
Grundig Electret tosers with builtein FE.T Preamp EI 50 . Crystat Grundig Electret inserts with built-in F.E.T Preamp E1 50 . Crystal
Mike Insents 37 mm 45 p Electret Condenser Mikes $1 \mathrm{~K} \Omega$ Imp with sid Jack Plug E2 85. Cassette Condenser Mikes with 25 and 35 Jack Plugs E2 85 Standard Cassette Mikes 200 ohm Imped with 2.5 and 3.5 Jack Plugs E1. 20

MORSE KEYS - Hospeed Type. all metal, $\mathrm{E2.25}$ Plastic Morse Keys. 95p. 8elling Lee L4305 Masthead
power unit Group A" UHF Only $£ 750$
CRYSTALS. $300 \mathrm{KHz}_{\mathrm{H}} \mathrm{HC6U} 40 \mathrm{p} 01$ Edge Connectors. 64 way 65 p 32 way 40 p
RELAYS. Min 220 v AC Seated Relay 2 pole C/O 45 p 240 v AC Soaled Relay 3 pole C/O 5 amp Contacts 11 -pin base 80 p. 12 volt
4 pole NO Reed Relay 20 p. Min $24 \vee \mathrm{DC}$ Sealed 2 -pole C/O relays 3 -amp conlacts. New 55 p 12 V DC 4 pc . 0 , open type. new 50 p еасh.
MOTORS. 15 to 6 v DC Model 20p 115 VAC min 3 R P. M with Gearbox 30p 240VAC SYuch Motor 1/5th R P.M 65p 240 V AC
Synch Moior $1 / 24$ th R.P.M. 65 . Crouzet $115 v$ AC 4 R.P M Motors, new 95p 12v DC 5-pole 35p.
BOXES. Black A B.S Plastic with brass insens and lid, $75 \times 56 \times$ $35 \mathrm{~mm} 40 \mathrm{p} .95 \times 71$
$130 \times 84 \mathrm{~mm} \mathrm{E1} .95$
tools. Radio pliers. 5in, insulaied handles £1 40 Diagonal side cutters, 5in, insulated handies E1. 40

MAINS TRANSFORMERS, all 240 VAC primary Poslage shown in brackets per transformer.
 100 mA .95 p (15 pp) $12 v 500 \mathrm{~mA}$. 95 p (22 pl). $12 v 2 \mathrm{Amp}$. $\varepsilon 225$
 $\begin{array}{ll}30-0.30 v \\ \text { Amp. } & \text { Amp. } \\ 4.50(54 \mathrm{p}) & 20-0.20 \mathrm{v} 2 \mathrm{amp} \text {. } £ 3.50(54 \mathrm{p}) \\ 25 \mathrm{v}\end{array} 15 \mathrm{Amp}$.
 $25 v 2$ Amp torod, £2 95 (54p) 20 V
Xenon/triac pulse transformer. 30 p

SWITCHES - Min Toggle. SPST $8 \times 5 \times 7 \mathrm{~mm} 45$ D DPDT $8 \times 7 \times$ 7 mm 60 p DPDT Centre OHf $12 \times 11 \times 9 \mathrm{~mm} 75 \mathrm{p}$ DPDT C/O Sliders 20 p. R S Single Pole C/O Push Buttons $45 p$ Roller Micro
Switches $15 p$ Min. Micro Switches $13 \times 10 \times 4 \mathrm{~mm} 20 \mathrm{p}$ Min Switches 15 p Mun. Micro Switches $13 \times 10 \times 4 \mathrm{~mm}$ 20
Push to make or push to break S witches $16 \times 6 \mathrm{~mm} 15 \mathrm{p}$

SOLDER SUCKER. Plunger lype, eye protection. replaceable nozzle, high suction. E4.95 Reed switches 28 mm norm open, $6 p$ each

TAPE HEADS - Casselle Stereo £3 OO. BSR MN $13301 / 2$ Track Oual Impedance Rec /Playback 50 p BSR SRP90 1/4 Track Slereo Rec/Playback C 1.95 T0 10 Assembles. iwo heads. $1 / 4$ Track
Rec/Playback Staggered Stereo with built-in erase per head Rec /Playback Staggered Stereo With
E1 20 Tape Head Demag 240v AC 195.
suzzers-Gpo Type 6.12 v 20 p Min. Solid State Buzzers 6.9 .12 or 24 V 15 m
volts. high tone. 25 p
U.H.F TV Transistorsed Push Button Tuners (nor Varicap). new and boxed. E 250
MURATA MA401L. 40 kHz Transducers. rec/send. €3 25 pair
METERS-Grundig Bstt Level Meter $1 \mathrm{~mA} 40 \times 40 \mathrm{~mm}$ E. 10 Min Level Met

EOGE METER - Large scale 0-100, new E2.75
POT CORE UNIT. Has 6 -pol cores, meluding ; $\mathrm{FX} 2243(45 \mathrm{~mm})$ and 2 FX2242 (35 mm). 320 mm Penel Fuseholders. 3 TO3 SIL diodes with a 5 -amp plastic S C. R. New $£ 175+75 \mathrm{p}$ P\&P
LA1230 adj core 15 mm dia $14 \mathrm{mH}-18 \mathrm{mH}$. HI Q. 10 p each
8 TRACK 12 volt mators new. E1 25
CASSETTE MOTORS 6 voll new, EI 25

SOLENOIDS- $240 \mathrm{~V} A C 45$ 12v OC H Duty 75 p 240 v 251 b
12-WAY MOTORISED CAM UNITS. 50v AC low rev motor driving 12 C/O micro switches, supple.
$A C$ use. Ex oquip $E 195+35 p$ P\&P.
13 Amp rubber traller extension sockets, 38p.
WAY RIBson-cable, min solid core. $15 p$ metre
POSTAGE 30p UNLESS OTHERWISE SHOWN (EXCESS POSTAGE HEP UNED W W PRICES COST VAT INCLUDED IN ALL PRICES
SAE FOR LISTS
order address
PROGRESSIVE RADIO
31 CHEAPSIDE, LIVERPOOL 2 051-2360982

HHPERFORMANCE ELECTRONIC (CAPACITOR DISCHARGE) IENTION UNIT

Good for your car and your pocket

Fit one

to day and

SAVE,SAVE,SAVE!

Why pay more when you can enjoy the advantages of true capacitor discharge ignition (CDI) at virtually pre-inflation prices? The benefits to your car and your pocket are enormous - easy starting in the coldest of cold weather, an end to burnt contacts and arcing problems better engine wear and petrol and arcing probl of course easy and secure fitting consumption and, of course, easy and secure fitting to your vehicle.
HOLD TO THESE PRICES - State if pos. or neg. earth.

INC. V.A.T. AND POST FREEIN U.K.

Unijunction Pulse Stretcher Door Bell Extender

D. Wedlake

The circuit presented is a practical monostable timer which was designed to extend the ringing time of a door bell. It can be useful in cases when the bell push button might not be engaged long enough to attract attention, though it could be used in many other applications

When the push button is closed the thyristor will switch on delivering power to the unijunction transistor timing circuit and energising the relay, the contacts of which are used to control the bell circuit. At the same time, capacitor C2 quickly charges to the load voltage potential via R3 After a time interval given approximately by 0.8 C 1 R 1 (about 6 seconds in this case) the unijunction transistor will fire and the corresponding output pulse which is coupled to

the cathode of the thyristor via C2 will put the thyristor in reverse bias switching it off. With these values the relay will become energised for at least 6 seconds.

2102 Memory Tester

S. Sunderland

This circuit provides for the testing of 1024 Bit X1 memories, such as the 2102 series, in two modes. Mode-1 cycles the memory continuously through write and read, alternately writing zeros and ones then reading to ensure the write was successful. Mode-2 allows the write of a signal onto the memory, then continuously reads it to ensure the data is stable

In both modes, the output from the memory is compared with what should be there, and if there is a difference, an LED flashes, accompanied by a click from the speaker. In mode-2, on powèr on, a continuous noise will be heard from the speaker, on pressing the 'WRITE' button this should vanish, similarly, a brief pulse 'of noise will be heard in mode-1 before the write is completed. The oscillator frequency is about 20 kHz with components shown

In mode- 2 , when the supply voltage drops below 4.5 V memory is not stable for more than a fraction of a second, although this does not show up using mode-1

total amplific ition from CRIMSON ELEKTRIK

WE NOW OFFER THE WIDEST RANGE OF SOUND PRODUCTS

CPR 1-THE ADVANCED PRE-AMPLIFIER
The best pre-amplifiar in the UK The superiority of the CPA 1 is probably in the disc stage The overload margin is a superb 40 dB , this together with the high slewng rate ensures clean top. even with high output carridaes
tracking heavily modulated records Common-mode distortion is elimmated by an unusual design R IA A is accurate to 1 dB ; signal to noise ratio is 70 dB relative to 35 mV . distortion $<005 \%$ at 30 dB overioad 20 kHz .
Following this stage th the flat gain/balance slage 10 bring tape. tuner, etc, up to power amp signal levels. Following this stage is the flat gain /balance stage 10 bring tape. tuner, etc, up to power amp signal levels.
Signal to noise ratio 86 dB , slew-rate $3 \mathrm{~V} / \mathrm{uS}$. T $\mathrm{H} . \mathrm{D} 20 \mathrm{~Hz}-20 \mathrm{~Hz}<008 \%$ at any level. FET muting No Signal to noise ratio 86 dB , slew.rate $3 \mathrm{~V} / \mathrm{uS}$: T H.D $20 \mathrm{~Hz}-20 \mathrm{kHz}<008 \%$ at any level. FET muting No
controls are fitted. There is no provision for tone controls CPA 1 size is $138 \times 80 \times 20 \mathrm{~mm}$ Supply to be ± 15

MC 1 PRE-PRE-AMPLIFIER

Suitable for nearly all moving-coll cartridges. Sensitivity 70/170uV switchable on the p.c b This module brings signals trom the now popular low output moving-coil carridges up to 35 mV (typical signal required by most

REG 1 - POWER SUPPLY
The regulator module. REG 1 provides $15-0-15 v$ to power the CPR 1 and MC 1 it can be
power amp supplies or our small transformer TR 6 The power amp kit will accommodate it

POWER AMPLIFIERS

It would be pointiess to list in so small a space the number of recording studios, educational and governmen establishments. etc, whe have been using CRIMSON amps satisfactordy for quite some tume We have a
 signal to nolse ratio 110 dB . frequency responsa $10 \mathrm{~Hz}-35 \mathrm{kHz},-3 \mathrm{~dB}$. stability unconditional: protection drive any load safely, sensitivity 775 mV (250 mV or 100 mV on request), size $120 \times 80 \times 25 \mathrm{~mm}$

EWER AMPLIFIER MODULES
CE $1004 \quad 60 \mathrm{~W} / 8$ ohms $35-0 \cdot 35 \mathrm{~V}$
$100 \mathrm{~W} / 4$ otms $35 \cdot 0.35 \mathrm{~V}$ CE 1008 loow/ 8 ohms $45 \cdot 0.45 \mathrm{v}$ CE $1704170 \mathrm{~W} / 4$ ohms $45-0.45 \mathrm{~V}$

TOROIOA1 POWER SUPPIES
CPS for $2 \times$ CE 608 or $1 \times$ CE 1004
CPS 2 for $2 \times$ CE 1004 or $2 / 4 \times$ CE 608
CPS3 for $2 \times$ CE 1008 or $1 \times$ CE 1704
CPS4 for $1 \times$ CE 1008
CPS 6 for $2 \times$ CE 1704 or $2 \times$ CE 1708
HEATSINKS
Light duty. $50 \mathrm{~mm}, 2 \mathrm{C} / \mathrm{W}$
Medium power. $100 \mathrm{~mm}, 14 \mathrm{C} / \mathrm{W}$
Disco/group. 150 mm . $11 \mathrm{C} / \mathrm{W}$
Fan. 80 mm , state 120 or 240 V
Fan mounied on iwo drilled 100 mm hearsinks.
THERMAL CUT-OUT, 70 C
¢16.30 E 19.22
E 23.22 E 29.12
$\mathbf{E} 31.90$
$\varepsilon 14.47$ £18.82
£17.88 $£ 17.66$
$£ 15.31$ $\underset{f}{\boldsymbol{E} .1 .30}$
E .2 .80
E .85

15.31 These are avalable in two versions - one
22.68 ses standard components, and ther 22.68 uses standard components. and the other
(the S) uses MO resistors where necessary uses standard components. and the other
ithe S) uses MO resistors where necessary
and tantalum capacitors. $\begin{array}{llll}\text { CPRI } & \text { E29.49 } & \text { CPRIS } & \text { E39.98 } \\ \text { MCI } & \text { E18.50 } & \text { MCIS } & \text { E29.49 }\end{array}$
29.16 BRIDGE DRIVER. BOI

Distributor
CRIMSON ELEKTRIK
IA STAMFORO STREET, LEICESTER LEI BNLL. TOI. (0533) 537722
All prices shown are UK only and Include VAT and post. COO 90p extra. E100 umit. Exporn is no prob
write for specific quote Send large SAE or 3 International Reply Coupons for detailed information

It's crazy to build, unbuild, construct and destruct your circuits on expensive "Breadboards". Now very economically on WONDERBOARD, you plug your components into one side of the board, the wires into the other, and you install the finished circuit in your equipment. They're like PC boards, but no soldering (which is enemy No. 1 of prototypes). Change any wire or component any tume without disturbing others. Up to six interconnecting wires and one component lead into one multicontact. WONDERBOARDS accept all IC's from 4 to 60 pins and discrete components too.

Reliable? They conform to applicable sectuons of USA Military Standard MIL-A 46146 and are used by the US Navy. You can't ask for better WONDERBOARDS the universal board for equivalents of single.sided, double-sided, plated-thro' hole, and multilayer printed circuits.
"Small Wonder"
12 IC DIL- 14 capacity
(Equiv. No. tie points 1302)
$£ 2.80$
48 IC DIL- 14 capacity
(Equiv. No. tie points 5208)

£11.20

All prices include VAT and P\&P. Send cheque or postal order to: CHARCROFT ELECTRONICS LIMITED Charcrofy House. Sturmer. Haverhill. Suffolk CB9 7XR
Telefex 817574
See us at BREADBOARD '78 21 st-25th November '78 Seymour Hall, London W1. Stand F10

SWANLEY ELECTRONICS

as customers deduct 7% an items marked and 11% on others Official credit orders welcome

THE WORLD'S MOST ADVANCED MICROPROCESSOR VIDEO GAME DIRECT FROM THE USA

THE 'ATARI' VIDEO COMPUTER SYSTEM

- READY BUILT CARTRIDGE SYSTEM EX-STOCK

Just look at a few of the numerous games available to you in multi-colour lon colour $T V$'s) with realistic sound effects.

This Video Computer System (based on Signetics 2550) is available complete with the 27 game Combat Cartridge, multi-function joysticks, mains adaptor and aerial switching unit. Fully guaranteed for 12 months.
£135.90
M. At present there are 9 cartridges available - a total of 192 games - plus many more on the way.
£12.95 Price per cartridge)

Full colour brochure available on request

Securicor delivery available - Add $£ 4.00$

Please make cheques and postal orders payable to DISCOUNT COMPUTING, or phone your order quoting BARCLAYCARD or ACCESS number.

14 STATION ROAD • NEW BARNET • HERTS. TEL: 01-441 2922/01.4496596 CLOSE TO NEW BARNET BR STATION - MOORGATE LINE
OPEN - 10 a.m. to 7 p.m. - Monday to Saturday

WHY PAY MORE?! MULTI RANGE METERS TV*, MF15A $\begin{array}{ll}\text { A.C. D.C. volts } 10.50 & 250{ }^{5} \text {, } 1000 \text {. Ma } \\ 0.5 & 0.10 \\ 0.100 & \text { Sensitivity } 2000 \mathrm{~V} \\ 24 \text { ranges }\end{array}$ dimensions $133 \times 93 \times 46 \mathrm{~mm}$. Price f 7.00 olus $50 \mathrm{p} P \& \mathrm{P}(£ 8: 10$ inc. VAT \& P)	VARIABLE VOLTAGE TRANSFORMERS INPUT 230 v. A.C. 50/60 DUTPUT VARIABLE 0/260v. A.C. BRAND NEW. All types. 200W (1 Amp) fiteed A/C 1 KVA (Max. 5 Amp) ….. $£ 22.50$	5 db ins. 110 volt, $50 \mathrm{~Hz}, 2.8 \mathrm{amp}$. single phase, it capacitor motor immense power Continuously ngit 250 mm Dia 135 mm . Spindle Oia 15.5 mm igth 115 mm , ex-equipment tested $\mathbb{C} 12.00$ Post 50 ($£ 14.58 \mathrm{inc}$. VAT \& Pl. Sunable transforme $0 / 240$ yolt $\mathbf{\& 8 . 0 0}$ Post 75 p ($\mathbf{(\mathbf { 9 . 4 5 }} \mathbf{4 5}$ inc VAT \& P)
Glass passival eliablity $£ 1.2$ \qquad		GEARED MOTORS 28 r.p.m., 201b. inch'115va.c. Reversible moror 71 r.p.m. 10 lb . inch 115 va a.c. Reversible moto Both types simular to above drawing Price either type £4.75 - 75p P\&P (5.94 inc. VAT + P\&P)
Do	LT TRANSFORMERS $0-10-15 \mathrm{v}$ at 3 amp . (ex new equip) $£ \mathbf{2 . 5 0} \mathrm{P} \mathrm{\&} \mathrm{P} 50 \mathrm{p}$ ($£ 3.24 \mathrm{in} \mathrm{VAT}$) $13.0-13 \mathrm{v}$ at $1 \mathrm{amp} £ 2.50 \mathrm{P} \& \mathrm{P} 50 \mathrm{p}$ ($£ 3.24 \mathrm{inc}$ VAT) $0-A v / 6 v / 24 v / 32 v a t 12 \mathrm{amp}$ \& 15.00 P\&P E 150 ($\mathcal{1} 17.82$ inc. VAT \& P P) $0.6 \mathrm{v} / 12 \mathrm{v}$ at 10 amp £8.25 P\&P \&1 25 (inc. VAT \&10.26) $0.6 v / 12 v / 17 v / 18 v / 20 v$ at 20 amp f1b.50 P\&P E1 50 (E19.44 unc VAT \& PI 010 v 17 v 18vat $10 \operatorname{amp} \mathrm{£} 10.00$ P\&PEl. 40 (inc VAT £ 12.31 Other types in stock: phone for enquires or send sae for leaflet	
$\underset{\substack{\text { Size } \\ \text { incl }}}{\mathbf{M}}$		FRACMO MOTOR 56 rpm 50 tbs mich 240 vaC reverstble 07 amp sharplength 35 mm . dia, 16 mm weight 6 kilos
230 VOLT AC FAN ASSEMBLY Powertul contunuously fated AC motor complete with 5 blade $6 \frac{1}{2}$ a aluminum fan New reduced price $£ 3.00$ P\&P 65 p ($£ 3.94$ inc VAT \& P) N.M.S		
	rotary vacuum air compressor $\&$ PUMP Carbon vane oil tree vacuum puimp.and compres. titied with additional shatt at rear, sulitabe: light inc $V A T+P B P$. Suitable rranstormer for $230 / 240 \mathrm{~V}$ a.c. operation 	
		CITENCO FHP motor type C 7333/15 220/240V AC 19 rpm reversible monor, torque 14.5 kg Gear ratio $\mathrm{E} 14.25+\mathrm{E} 125$ P\&P (E16.74 inc. VAT price N.M.S
VORTEX BLOWER AND VACUUM UNIT Dynamically batanced totally enclosed 9 rotor with max. air delivery of 1.5 cubic. $.600 \mathrm{~mm} W \mathrm{G}$ Suction or blow from 2 side-by-side 37 mm I.D circular apertures rated 115 va c. moter mounted on alloy base with fixing facilities. Dimensions Length $22 \mathrm{~cm} \times$ widh $25 \mathrm{~cm} \times$ height 25 cm These units are ex-equipment but have had minimum use Fully tested prior to despatch. Pnce $£ 12+C 1.50$ P\&P ($£ 14.58$ inc VAT \& P) P).	HY-LIGHT STROBE KIT Mk. IV Latest type kenon white ight tube Solid state iming and triggering Desir 230120 voli.e operate. Designed for large rooms, halts, etc Light output greater 60 inc \& \& P) Specially designed case and reflector for Hy-Light £8.80 Post $.00(120.58 \mathrm{mc}$. VAT \& P$)$	EVERSIBLE MOTOR 230V A.C.
	- ULTRA VIOLETBLOCK LIGAT - fluorescent tubes * 47. 40 watt 68.70 (cailers oniy). 2 fr .20 watt E 6.20 . Post 75 p 	TYPE 71 TIMER $0-60 \mathrm{sec} 230 \mathrm{~V}$ ac operation Incorporating a lapsed time indicator and repeat facilities. A precision motorised timer ideal for process umn'g photograpty, welding mixing etc Price \& 6 P \& \& $60 p$
CENTRIFUGAL PLOWER Smith type FFB $16060<220 / 240 v$ A.C Aperture $10 \times 41 / 2 \mathrm{~cm}$ overall size $16 \times 14 \mathrm{~cm}$ Drice $\mathbf{£ 3 . 7 5}$ PgP 75p (inc VAT ©4.86). Other types avarlable S A.E. for detaits N.M.S.	- Complete ballast unil Either ε * op. E3.50 plus P\&P 45p (E4.27 inc VAT \& P) - 400 W UV lamp and ballast compiete, E31.50. Post E3 (E337.26 	
		METERS (New) - 90mm DIAMETER A.C. Amp., Type 62T2. 0-1A 0.5A 0.20A. A.C. Voht 0.15 V . 0.300 V D.C. Amp., Type 65C5 $0.2 \mathrm{~A} \quad 0.10 \mathrm{~A}$
miniature UNISELECTOR E2.50 P\&P 35 pank ($\$ 3.08$ non-bridging. 1 homing) 	SQUAD LIGHT A new conception in light control four channets each capable of handling 750 watts of spotights or dozens of small manns lamps Seven programs alt speeg Controlled plus tiash modulation. effectively giving 14 different displays Makes sound-to-light obsolete. Complerely electrically and mechanically noise free. S. A. Efoolscap) for furmer detals. Price onty $\mathbf{C} 60.00$	ENNER TYPE' ERD TIME WITCH 3250 V AC $30 \mathrm{amp} .2 \mathrm{on} / 2$ off every 24 hrs at any nually preset trme 36-hour spring reserve and day lting device Buils to highest Eleciricity Board cilication. Price £7.75 P\&P75p. (£9.18). R\&T
MICRO SWITCHES Sub man lever m / s witch type MML46, 10 for $£ 2.50$. Type 3115 M 906 T 10 for $£ 2.50$ post paid ($£ 2.70$ ine. VAT \& 8 P) BF lever operated 20a c/o. mf. Unimax USA 10 tor E 4.00 plus 50p P\&P (mun. order 10$)(\$ 4.86$ inc. VAT \& P) D.P. C/O lever $m /$ switch mig. by Cherry Co USA Precious metal low essistance contacts. 10 for $£ 2.50$. P\&P 30 p . Total inc VAT $£ 3.02$ (min 10). N.M.S.	WIDE RANGE OF DISCO LIGHTING EQUIPMENT S.A E (Foolscap) lor detals	SANGAMO WESTON TIME SWITCH Also avaliable with Solar diat: R \& I
		A.C. MAINS TIMER UNIT pote switch, which can be pieset for any period up to 12 his. ahead to swilch on for any length of lime from 10 mins. to 6 hrs then swith of An rated Ideal for Tape Recorders Lights Electric $135 \mathrm{~mm} \times 130 \mathrm{~mm} \times 60 \mathrm{~mm}$. Price $¢ 2.25$. Post 40p (Totalinc. VAT \& Post £2.87). N M.S
	XENON FLASH GUN TUBES Range of Xenon tubes available from stock. S.A.E for full detals	
N		
SOLENOID Mfg by Magnellc Devices $240 v$ A C Operation approx 101 b pull at 125 Price 	RELAYS Wide range of $A C$ and $D C$ relays avalable rom stock Phone or write in your en quaries	
240 A.C. SOLENOID OPERATED FLUID VALVE Rated 1 ps.i witl handle up to 7 p.s i. Forged brass body. Stainless steel core and spring $1 / 2$ in b.s.p inlell outlet. Precision made. Britigh mig. PRICE $£ 3.50$ Pos1 50 p ($\mathbf{4} \mathbf{4} 32$ ine VAT \& P)	D.C. Aelays: Open type 9 if $2 \mathrm{~V} 3 \mathrm{c} / \mathrm{o} 7 \mathrm{amp} £ 1.00$ i£ $\mathbf{1 . 3 0} \mathrm{inc}$. VAT \& P). Sealed 12 V 1 Cr 07 7 amip octal base. $\mathbf{E 1 . 0 0}$ ($\mathbf{E} 1.30 \mathrm{inc}$. VAT \& P) c/07amp 11 -pin © P\&P on any Relay 20po N.M.S. N.M.S. Diamond H heavy duty AC telay $230 / 240 \mathrm{Vac}$ a two c/o contacts 25 base 50 p .	
PARVALU MOTOR		Bilack silver Skirtod
Type SD 18 Price $£ 15.00$		600 WATT DIM MER SWITCH
ÍNSULATION TESTERS (NEW)\qquad clutch Size L 8 in W A in H 6 in. weight 6 lb £49.00 Post 80p (E57.78 inc VAT \& P) 1000 vOLTS 1000 megohms £55.00 Po51 80p ($\mathbf{£ 6 0 . 2 6}$ inc VAT \& P) SAE for leatlet	AT CURRENT RATE MUST BE ADDED TO AL OBDERS FOR THE TOTAL VALUE OF gOODS INCLUDING POSTAEE UNLESE OTHERWISE STATED ACCOUNT CUSTOMERS MIN. ORDER $£ 10.00$	Easily fitted Fully guaranteed by makers Will control up to 600 w of lighting except fluorescent at mains vollage Complete with simple instructions $\mathbf{£ 3 . 9 5}$ Post 25 p (f 6.32 . 2 c VAT \& P) 2000 watt model $£ 9.75$ Post 40 p ($£ 10.96 \mathrm{inc}$ VAT \& P)
l mail orders, also	S=iVICE TRADIME C	
57 BRIDGMAN ROAD. CHISWICK, LONDON, W4 588, Phone: $01-9851560$ Closed Sorurdoys.	MS NOW OPEN	9 LITTLE NEWPORT STREET LONDON, WC2H 7.J. Tel.: 01-487 0576

The toast Mt Tnnoretiont from Gporivite
 Kind
 n in
 the quickest fitting CLIP ON
 capacitive discharge electronic ignition in KIT FORM

 Smoother running "
 Instant all-weather starting
 Continual peak performance
 Longer coil/battery/plug life
 Improved acceleration/top speeds
 Optimum fuel consumption
 Sparkrite $X 4$ is a high performance, high quality capacitive discharge, electronic ignition system in kit form. Tried, tested, proven, reliable and complete. It can be ignition system in kit form. Tried, tested, proven.
 Because ot the superb design of the Sparkrite circuit it completely eliminates problems of the contact breaker. There is no misfire due to contact breaker bounce which is eliminated electronically by a pulse suppression circuit which prevents the unit firing if the points bounce open at high R.P.M. Contact breaker burn is eliminated by reducing the current to about $1 / 50$ th of the norm. It perform equally well with new, old, or even badly pitted points and is not dependent upon the dwell time of the contact breakers for recharging the system dependent upon the dwell time of the contact breakers for recharging the syst Sparkrite incorporates a short circuit protected inverter which eliminates the Sparkrite incorporates a short circuit protected inverter which eliminates the problems of SCR lock on and, therefore, eliminates the possibility of blowing the problems of SCR lock on and, therefore, eliminates the possibility of blowing ing transistors or the SCR. (Most capacitive discharge ignitions are not completely transistors or the SCR. (Most capacitive discharge ignitions are not completely greatly improved cold starting. The circuit includes built in static timing light, systems function fight, and security 8 cylinders.
 THE KIT COMPRISES EVERYTHING NEEDED
 Die pressed epoxy coated case. Ready drilled, aluminium extruded base and heat Die pressed epoxy coated case. Ready drilled, aluminium extruded base and sink, coil mounting clips, and accessories. Top quality 5 year guaranteed sink, coil mounting clips, and accessories. Top quality 5 year guaranteed transformer and components, cables, connectors. P.C.B., nuts, bolts and silicon transformer and components, cables, connectors, P.C. B., nuts, bolts and slice grease. Full instructions to assemble kit neg. or pos. earth and fully illustrated grease. Full instructions installation instructions
 NOTE - Vehicles with current impulse tachometers (Smiths code on dial RV1) will require a tachometer pulse slave unit. Price $£ 3.35$ inc. VAT. post $\mathcal{\&}$ packing

82 Bath Street, Walsall. WS1 3DE. Phone: (9) 61479

Address

\square Send SAE if brochure only required.
f
Access or Barclaycard No
\square
\square
\square

All prices quoted include VAT. Add $25 p$ UK/BFPO Postage. Most orders despatched on day of receipt. SAE with enquiries please. MINIMUM ORDER VALUE E1. Official orders accepted from schools, etc. (Minimum invoice charge 5). Export/ Wholesale enquiries welcome. Whet

BUY A COMPLETE RANGE OF COMPONENTS AND THESE PACKS WILL HELP YOU

- SAVE ON time-No delays in open
SAVE ON MONEY - Bulk buying means lowest prices - just compare with others!
have the right part - No guesswork or substitution necessary!
ALL PACKS CONTAIN FULL SPEC. BRAND NEW. MARKED DEVICES - SENT BY RETURN
$\mathbf{K 0 0 1 5 0 V}$ ceramic plate capacitors. $5 \% .10$ of each value 22 pF to 1000 pF . Total 210 , $€ 3.35$
K002 Extended range, 22 pF to $0.1 \mu \mathrm{~F} .330$ values $£ 4.90$
K003 Polyester capacitors, 10 each of these values $0.01,0.015,0.022,0.033,0.047$ $0.068,0.1,0.15,0.22$
110 altogether for $\mathbb{£ 4 . 7 5}$
$\mathrm{KOO4}$ Mylar capacitors. min 100 V type. 10 K004 Mylar capacitors, min
each all values from 1000 pF to 10.000 pF Total 130 for $£ 3.75$ K01ues from $1000 \rho F$ to $0.47 \mu \mathrm{~F}$. Total 290 capacitors to $£ 11.25$
K005 Polystyrene capacitors, 10 each value from 10 pF to 10.000 pF . E12 Series 5% 160 V . Total 370 for $£ 12.30$
K006 Tantalum bead capacitors. 10 each of the following: $0.1,0.15,0.22,0.33,0.47$ $0.68,1,2.2,3.3 .4 .7 .6 .8$, all 35V, $10 / 25,15 / 16 \quad 22 / 1633 / 10$
$100 / 3$. Total 170 tents for $£ 14.20$
$K 007$ Electrolytic capacitors 25 V working. small physical size. 10 each of these popula Total 70 for $£ 3.50$
Total 70 for $£ 3.50$
K 008 Extended range, as above, also including 220,470 and $1000 \mu \mathrm{~F}$. Total 100 for $£ 5.90$
K021 Miniature carbon film 5\% resistors, CR 25 or similar. 10 of each value from 1OR to $9 \mathrm{M}, \mathrm{E} 12$ series. Total 610 resistors $£ 6.00$
$K 022$ Extended range, total 850 resistors from 1 R to $10 \mathrm{M} £ 8.30$
K041 Zener diodes. $400 \mathrm{~mW} 5 \%$ BZY88, etc. 10 of each value from 27 V to 36 V , E24 series. Total 280 for $\mathbf{£ 1 5 . 3 0}$

STEREO AMPLIFIER

CHASSIS £5.50
Complete and ready built. Controls Bass treble, volume/on-off, balance. 8 transistor circuit gives 2 watts per channel output.
needs stereo amp. Suitable metal cabinet (W374) $£ 2.00$ - or buy the amp, case and trans former for $£ 10,00$ and get DIN speaker sockets and knobs free!

AMPLIFIER KIT £1.75

 vol Y on-off controls. Utilizes sim. circuitry to above amp. Output $2 W$ into 8 ohms. Input matched for crystal cartridge. 4 transis Caribs either battery or mains operated. (For mains powered version add $£ 2.20$ for suitable transformer). Blue vinyl covered aluminium case to suit (W372) £1.30.
BC 182B OFFER

 Special Otter for quant il users ic 035 VAT: Sk . 032 + Vat. Price negotiable on k + approx , availablePC ETCHING KIT MK II board 1 lb Ferric Chloride. DALO etch-resis pen, abrasive cleaner, two miniature drill bits, etching dish and instructions £4.25.

EDGE CONNECTORS
Special purchase of these 0. 1 pitch doubles us to offer them at less than one-third of their original list price
18 way 41 p; 21 way 47 p; 32 way 72p; 40
way 90 p .

THE NEW 1978-9 GREENWELD CATALOGUE

FEATURES INCLUDE:

* 50p Discount vouchers
* Quantity prices for bulk buyers
* Bargain List Supplement
- Reply Paid Envelope
- VAT inclusive prices

Price $30 \mathrm{p}+15 \mathrm{p}$ Post
HEAT SINK OFFER $40 \mathrm{p}: 100$ for $£ 3 ; 1,000$ for $£ 25$

74 SERIES PACK
Selection of boards containing many dit £2.20; 100 for $£ 4$

TMS4030 RAM

4096 bit dynamic RAM with 300 ns access lance high level clock i/p: Fully TTL comp bible Low power dissipation. Supplied wit data $£ 2.75$

MISCELLANEOUS IC Supplied with data if requested. MC3302 quad comp. 120p; 10 diff comp. (TO99) 40p; ${ }^{2}$ N 1034 e precision timer $£ 2.25$;
LM 7 11 Dual diff comp 65 ; LM 1303 dual stereo preamp 75 p ; MC1469R voltage reg $£ 1.50$; UPC 1025 H audio $£ 3.50$; 575 C 2 audio £2.88; TDA 2640 audio $£ 2.92$ TBA810S audio 70p; SN75110 dual line driver 70p; MC8500 CRCC gen POA

EXPERIMENTERS

CALCULATOR
Based on the C500 chip, this pack of parts enables the more experienced constructor to make an 8 digit 4 function calculator. The comprehensive data supplied includes fullsize layout of PCB required, types of suitable display and keyboard that can be used en Components included in the pack are CSOO calerter/clock circuits Rs Cs etc. All for only f3.50.

RELAYS

W847 Low profile PC mints $10 \times 33 \times 20 \mathrm{~mm}$ 6 V coll, SPCO 3A contacts 93 p
W832 Sub. min type, $10 \times 19 \times 10 \mathrm{~mm} 12 \mathrm{~V}$
coil DPCO 2A contacts $£ 1.15$. 25 mm . Only 56 p
W817 11 pin plug in relay: rated 24 V AC but works well on 6 V DC. Contacts 3 pole Coo rated 10A. 95p
0×18 IMCO 1 A contacts. Size $29 \times 22 \times 18 \mathrm{~mm}$ min plugin type 72 p type. 3 pole coo 10A contacts. Only 85 p. N846 Open construction mains relay. 3 se 10A c/o contacts. E1.20 Send SAE for our relay list - 84 types listed and illustrated
LOW COST PLASTIC BOXES retained by 4 screws into brass inserts. Interior of box has PCB guide slots (except V219)
$21080 \times 62 \times 40 \mathrm{~mm}$ black $\begin{array}{ll}\mathrm{V} 216 & 100 \times 75 \times 40 \mathrm{~mm} \text { black } \\ \mathrm{V} 20 \times 100 \times 45 \mathrm{~mm} \text { black }\end{array}$ $219-120 \times 100 \times 45 \mathrm{~mm}$ white $\quad 86 p$ SPECIAL SUMMER OFFERS $76003 \mathrm{~N} \quad £ 1.40 \quad 760$ $76023 \mathrm{~N} \quad £ 1.00 \quad 76013 \mathrm{~N} \quad £ 1.00$ $\begin{array}{lrrr}\text { LM380 } & \text { £1.0p TBA810S } & \text { gOp }\end{array}$ 741 (8DIL) Linear ICes etc. $\begin{array}{lrll} & \text { 18p } & \text { BD 131 } & \text { 24p } \\ 555 & \mathbf{2 5 p} & \text { BD 132 } & \text { 28p } \\ \text { 1N4148 } & \text { pp } & 2 \text { N3819 } & \mathbf{1 8 p}\end{array}$ DIODE SCOOP!! bu fortunate ko obtain a large quantity of untested, mostly unmarked glass silicon diodes. Testing a sample batch signal diodes, high voltage rets and zener may all be included. These are being offered at the incredibly low price of $£ 1.25 / 1,000$ 10,000 £8. Box of $25,000 £ 17.50$. Box of $100,000 £ 60$.

STEVENSON Electronic Components

SWITCHES

Subminiature toggle. Rated at 3 A 250 V
SPDT 65p SPDT centre off 70p DPDT 75p DPDT centre off 90p
Standard Toggle
SPST $34 p$ DPDT $48 p$
Wavechange switches
1P12W, 2P6W, 3P4W or 4P3W all 37p each

TRANSISTORS

				3N1302	38p
AC127	17p	BCY71	14p	2N2905	22p
AC128	16p	ВСу72	14ip	2N2907	22,
AC176	18p	8 B 131	35p	2N3053	180
AD161	38p	BP132	35p	2 N 3055	50p
AD162	38p	BD135	380	2 N3442	
BC107	8 p	BD139	35p	2 N3702	8 p
BC108	8 p	BD140	35	2 N 3704	
BC109	8 p	BF244B	36p	2 N 3705	${ }_{9 p}$
BC147	7p	BFY50	15p	2 N 3706	
BC148	7 p	$\bigcirc \mathrm{BFY51}$	15 p	2N3707	
BC149	8 p	BFY52	150	2N3708	
BC158		MJ2955	98p	2N3819	
BC177	${ }_{14}{ }^{\text {p }}$	MPSA06	20 p	2 N 3904	,
${ }^{8 C 178}$	14 p	MPSA56	20p	2N3905	
BC179	14p	TIP29C	60p	2N3906	
BC182	${ }^{10} \mathrm{p}^{18}$	TiP30C	70p	2N4058	12p
BC182L	$10^{\text {p }}$	TIP31C	65p	2N5457	32p
BC184	10 p	Tip32C	80p	2 N 5458	30p
BC184L	10p	2TX107	14p	2N5459	32p
${ }^{\text {BC212 }}$	100	2TX108	14p	2N5777	50p
${ }_{\text {BC2 }}{ }_{\text {BC214 }}$	10 p 10 p		DIO	ES	
BC214	10 p	1 N 914	4 p	1 N4148	
BC477	19 p	1N4001	4 p	1 N5401	13p
BC478	$19 p$	21 N 4002	4 p	iN5402	15p
${ }^{\text {BC479 }}$	19p	1N4004	${ }^{5 p}$	1 N 5404	$16 p$
BC548	10p	1 N4006	6p	1 N5406	18p
70	14p	Y88	es 2 V	1o 33 V	

POTENTIOMETERS
$5 K-2 M 2$ single
26p ea
$100 \Omega-2 \mathrm{M} 2$ horizontal
$5 \mathrm{~K}-2 \mathrm{M} 2$ stereo (dual) 75 pea
$5 K-2 M 2$ DP switched 60pea

KNOBS

Ideal for use on mixers, etc. Push on type with coloured cap in red, black, green, blue, yellow and grey.
Position line marked
14 p each.

MICROPROCESSORS

6800	$670 p$	6820	$350 p$	$21 L 02$	$110 p$
$8080 A$	$525 p$	6850	$360 p$	2112	$175 p$

$6810 \quad 300 p \quad$ AY5-1013 380p $2114 \quad 700 p$

REGULATORS

78LO5	$30 p$	79LO5	70p	LM309K	110p
78L12	$30 p$	$79 L 12$	$70 p$	LM317	220p
78L15	$30 p$	$79 L 15$	$70 p$	LM323K	530p
7805	$60 p$	7905	$80 p$	LM723	35p
7812	$60 p$	7912	$80 p$		
7815	$60 p$	7915	$80 p$		

THYRISTORS AND TRIACS

Plastic cased Thyristors. Texas.

	4 A	8 A	12 A
100 V	36 p	45 p	-62 p
200 V	42 p	$53 p$	$68 p$
400 V	51 p	$66 p$	86 p

Plastic cased Triacs. Texas.
All rated at 400 V
4 A
70p
12A
$90 p$
$95 p$
20A 185p

8A 80 p $16 A$ 95p 25A 215p

We now have an express telephone order service. We guarantee that all orders received before 5pm. are ship ped first class on that day. Contact our Sales Office now! Telephone: 01-464 2951/5770.

ORDERS
ORED
DESPTCHED
BY PETURN
POST
Quantity discounts on any mix TTL CMOS, 74LS and Linear circuits: $25+10 \% .100+15 \%$. Prices VAT inc. Please add 30 p for carriage. All prices valid to 30th April 1979 Official orders welcome.

LINEAR A AELECTION ONLY!

 709 25p LM324 50p NE556 60p $\begin{array}{lllllr}741 & \text { 22p } & \text { LM339 } & 50 \mathrm{p} & \text { NE565 } & \text { 120p }\end{array}$ $747 \quad$ 50p LM380 75p NE567 170p 748 30p LM382 120p SN76003 200p CA3046 55p LM1830 150p CA3130 90p LM3909 60p SN76033 200p $\begin{array}{llllll}\text { CA3140 } & 70 \mathrm{p} & \text { MC1496 } & \text { 60p } & \text { TBA800 70p } \\ \text { LM301AN } & 28 p & \text { MC1458 } & \text { 35p } & \text { TDA1022 650p }\end{array}$LM318N 125p

OPTO

LEDs $\quad 0.125 \mathrm{in} .0 .2 \mathrm{in}$
Red TIL209 oTIL220 9p Green TiL21.1 TIL221 13p Yellow TIL213 TIL223 13p Clips 3p
DISPLAYS

DL704 0.3 in CC
L707 0.3 in CA
130p
FND500 0.5 in CC 100 p

RESISTORS

Carbon film resistors.
High stability, Iow noise 5\%.
$\left.100,1 \boldsymbol{K}^{2}, 3\right\}_{\text {Eeach }}^{\text {E12 series. 4.7ohms to } 10 \mathrm{M} \text {. Any mix }}$
$0.25 w-22$
$0.25 W$
$0.5 W$
Special development packs consisting of 10 of each
value from 4.7 ohms to 1 Megohm (650 res.)
$0.5 W £ 7.50$. $0.25 \mathrm{~W} £ 5.70$

0.68.1 \& 2.2uF @ 35 V 9p $476.810 \mathrm{uF} @ 25 \mathrm{~V}$
22 @16V,47@6V.100@3V 13p

MYLAR FILM
$0.001,0.01,0.022,0.033,0.047$
0.068, 0.1

RADIAL LEAD ELECTROLYTIC

SKTS

FULL DETAILS
IN CATALOGUE
4029 60p

		4029	60p
		4040	68p
4001	15p	4042	54p
4002	15p	4046	100p
4007	15p	4049	28p
4011	15p	4050	28p
4013	35p	4066	40p
4015	60p	4068	20p
4016	35p	4069	16p
4017	55p	4071	16p
4018	65p	4075	16p
4023	15p	4093	48p
4024	45p	4510	70p
4026	95p	4511	70p
4027	35p	4518	70p
4028	52p	4520	65p

$34 p$
$52 p$
$52 p$
$50 p$
$25 p$
$33 p$
$40 p$
$35 p$
$35 p$
$50 p$
$56 p$
$90 p$
$70 p$
$50 p$
$52 p$
$52 p$
$70 p$
$70 p$
$25 p$
$68 p$
$58 p$
$72 p$
$72 p$
$64 p$
$64 p$
$55 p$
$55 p$

\rightarrow

Low profile by Texas

$\begin{array}{llll}8 \text { pin } & 10 p & 24 \text { pin } & 24 p \\ 14 \text { pin } & 12 p & 28 \text { pin } & 28 p \\ 16 \text { pin } & 13 p & 40 \text { pin } & 40 p\end{array}$ 16 pin 13p 40 pin

Soldercon pins: 100: 50p

AT LAST! OUR
NEW 40 PAGE CATALOGUE OF COMPON. ENTS IS
AVAILABLE
SEND SAE

74LS

		LS125	40p
		LS126	40p
LSOO	16p	L\$132	60p
LSO1	$16 p$	LS136	36p
LSO2	$16 p$	LS138	54p
L\$03	$16 p$	LS139	500
LSO4	16p	LS151	50p
LS08	$16 p$	LS153	50p
LS10	16 p	LS155	80p
LS13	30p	LS156	80p
LS14	70p	LS157	450
LS20	$16 p$	LS164	90p
LS30	$16 p$	LS174	60p
LS32	24p	LS175	60p
LS37	26 p	LS190	80p
LS40	22p	LS192	70p
LS42	53p	LS193	70p
LS47	700	LS196	80p
LS48	48p	LS251	60p
LS54	16 p	LS257	55p
LS73	29p	-S258	55p
L\$74	29p	LS266	40p
LS75	44p	!S283	60p
LS76	35p	- 2290	55p
LS'78	35p	LS365	45p
LS83	60p	LS366	45p
LS85	70p	LS367	45p
LS86	33p	LS368	45p
LS90	$45 p$	LS386	35p
LS93	45p	LS670	180p

TTL

7493 7494
7495

\begin{tabular}{|c|c|}
\hline \multirow[t]{10}{*}{\begin{tabular}{l}
BAD NEWS for knob íwiddleks A 300W Lightdimmer with NO knob. Dimming and on/off functions are controlled by touch. Featúres include \\
* No mains rewiring \\
* Switches on 10 preset brightness \\
* Can he switched and dimmed from many locations using TDE/K kit making
switching easy \\
* * PRICE £8.99 TDE/K £1.00
\end{tabular}} \& TRIAC BARGAINS \\
\hline \& 400 V Plastic Case \\
\hline \& 3A 58p \\
\hline \& \({ }^{6.5 A}\) with trigger \(\quad . \quad 880 \mathrm{p}\) \\
\hline \& \({ }_{12 \mathrm{~A}}^{8 \mathrm{~A}} \ldots \ldots \cdots{ }^{\text {a }}\) \\
\hline \& \\
\hline \& 20 A . \({ }^{\text {2 }}\) 165p \\
\hline \& \\
\hline \& Diac \\
\hline \& GOMPONENTS \\
\hline \multirow[t]{7}{*}{\begin{tabular}{l}
LIGHTING CONTROL KITS (300W) \\
TSD 300 K TOUCHSWITCH \& DIMMER com bined. One touch-plate for on/off. Small
knob controis brightiness.
\(\mathbf{£ 5 . 5 0}\) \\
TS 300 K TOUCHSWITCH. Two touchplates. ON/OFF E4.00 \\
TSA 300 K AUTOMATIC. One touchplate. \\
Preset time delay off. \(£ 4.00\) \\
LD300K LIGHTDIMMER: \(£ 2.80\)
\end{tabular}} \& 0.2'1.E.D \\
\hline \& Red 120
Green 21p Yellow
2 \\
\hline \& \\
\hline \& LCD 5.4 digit ... \(£ 9.00\) \\
\hline \& LDR \(5{ }^{\text {c dia }}\) \\
\hline \& \({ }_{741} \mathbf{N E 5 5 5} \cdots\left(\begin{array}{l}4 \text { for } £ 1.00) \\ (5 \text { for } £ 1.00\end{array}\right.\) \\
\hline \& \\
\hline \& AY.5-1224 \(£ 3.25\) \\
\hline DIGITAL YOLTMETEK \& AY-5-1230 £4.85 \\
\hline THERMOMETER KIT \& ZN1034E

1C17106 DVM

\hline Based on the 7106 single IC $31 / 2$ digit DVM the \& 1N40016p.

\hline (thermuximy $\left\lvert\, \begin{aligned} & \text { kit contains a PCB, res- } \\ & \text { istors, capacitors, pre- }\end{aligned}\right.$ \&

\hline istors, capacitors. pre- \& BC182L
2N3819

\hline + -195.9 crystal display com \& MINI MAINS

\hline ponents are also in \&

\hline , \& TRANSTORMERS

\hline DVM kit to.bel \& Standard 240 V mains pri

\hline Thermometer using a \& 100 mA seconda

\hline nsistor as the \& $6-0.6 \mathrm{~V}$. ${ }^{\text {c }}$

\hline \& -0.9V 90

\hline Only E21.99 \& 12.0 .12 V 95

\hline
\end{tabular}

24 HR. CLOCK / APPLIANCE TIMER KIT

Switcmes any appliance of up to 1 KW on and off at preset times once a day KIT contains AY-5-1230 Clock/Appliance Timer IC 05 LED display, mains supply. display drivers, switches. LEDs, triac, complete with PCBs and full instructions $£ 13.75$
PLEASE ADD 8% VA.T. $(\star 121 / 2 \%)$ TO ABÓVE PRICES QUANTITY DISCOUNTS ON REQUEST. ADD 25P POOSTAGGE \& PACKING. MAIL ORDER ONLY TO t. K. ELECTRONICS, 106 Studley Grange Road, London w7 2 LX

217 Toll Weat Mi	NA End Road, Tipron diands DY4 OHW.	557		(DEPT:	ETI)			ONE STOP SHOPPING Components. Hardware, C ETI Constructor All Prices ind! VAT. P\&P 3	. 8.5 Part K orde	s, Full Kits A complete s	to the
Mag.	PROJECT	Ref.	PC ${ }^{\text {B }}$	$\underset{\text { Pack }}{\text { Component }}$	Hardware Pack	$\begin{gathered} \text { Case } \\ (\text { 'Screened }) \\ \hline \end{gathered}$	Total	Except where copyright restrictio and include	st PCB	re available for all projects from	1976.
	Graphic EqualiserGraphic Equaliser PSU	601	1.60	14.23	4.30		20.13				
TOP		602 603	55	1.29 .26	${ }_{1.54}$	1.35	1.84 3.15	$560 \mathrm{~A}, \mathrm{~B}, \mathrm{C}$ (set 3) 7102 m Power Amp	4.60 .90	Bongos Loudhailer	. 65
	R.F. Attenuator Watchdog Watchdog PSU	603 604	. 85	4.69	7.68	5.53	18.75	lio ${ }^{\text {d }}$ D Power Amp	1.35	Countinuty Tester	- 50
		605	65	1.49	3.95		6.09	152A. B TV Patter Gen (set 2)	2.85	Spirit Level	85
PROJECTS	Wweep Oscillator	606	2.60	21.07	8.16	4.28 2.84	36.11 5.67	Meart Rate Monitor	1.00	3-channel Tone Control	70
		607	${ }_{5} 6$	2.30	3.85	1.65 1.65	5.67	Reaction Tester	1.45	Clock A	1.05
		608	55	.92 313	3.85		3.78	Metal Locator 549	. 85	Experimenters Power Supply	. 90
No	General Purpose Pre-Amp G.S.9 Monitor Burglar Alarm	609	65 70	3.13 4.70	7.10	3.95	16.45	Door Bell Drill Controtler	. 65	555 Tamer Board Hammer Throw (set 3)	4.60 4.80
		613	60	2.15	6.15	-	8.90	Drill Controller 630	. 60	Rammer Porch Light	. 70
	Headlight Reminder	614		. 55	1.65 295	3.95	2.20	Digital Frequency Meter (set 4)	2.90	RMS Meter	. 95
6	HeadughtreminderBench Amplifier(Audio Visual Metronome	615 616	$\xrightarrow{70}$	$3: 40$ 7 1	2.65 1.62	3.95	$\underline{2.93}$	Digitail Thermomater	1.20	Rain Alarm	
		616 617	1.60	1010	8.30	3.15	23.15				
	Compander 50 watt High Power Amp 100 watt High Power Amp High Power Amp PSU LED Dice	618	1.30	646	-		7.76		SYSt	M 68	
		619 620	1.30 1.10	9.16 5.66	$7 \cdot \stackrel{89}{9}$		14.65	M/FPSU .90	A	2.70 VDU ' ${ }^{\text {' }}$	
		624	. 50	2.92	66	1.65	5.73	CPU 2.35		2.50 TTY	2.00
	Marker Generator Skeet	626 627	80 1.60	3.68 11.12	1.49 .97	. 4 4.53	6.87 18.22	Cuts \& Ram $\quad 2.25$	are m	itied)	
	Skeet	628	. 65	3.48	84	1.65	6.62				
	Disco LighishowPink Nowse Gieneratoit	629 630	$\begin{array}{r}3.05 \\ \hline .60\end{array}$	12.79 1.00	5.85	$1 . \overline{653}$	21.69 3.25	Discounts on any 3 PC85 5\%, $\mathbf{5 6 8}$ any 5 PCBs $121 / 2 \%$,	85	Set	
		630	60	1.00			3.25				
Now 7641 Trin Coitroler		Toor	75	5.27	5.84	3.95	95:81				
Jan 77 Feb 77	541 Train Controller 444 5-wath Stereo 448 Stereo Disco Mixer	T002	2.00 160	14.03 13.74	684 87	3.45	26,32 16,21	'SON OFET			
Feb 77 Dec 77		T003 $T 004$	1.60 2.10	13.74 11.31 10.39	87	-	13.41			THIS MONT	
Jan 78	Clock B House Alarm A	$\underline{1005}$	2.00	10.93 3 3	3.05	950	29.37	HOBBY		BARGAIN	
Jan 78 Feb 78	House Alarm B Metal Locator Mk	T006 T007	85 92	3.04 .5 5.91	8.76	3.3 (1)	, 168.97	CCTPON			
Yeb 78 Mar 78	(\%equency Shiter PSU	T008	65	4.14	-		4.79	ELECTRON		$100 \times 1 / 2 \mathrm{~W} 1 \mathrm{~K}$ carbon resisto	30p
Mar 78		T009	1.50	16.99	-	2.40	20.89				
Mar 78	Frequency Shitter	1010	1.00	24:62	312	-	25.62 7.07	PCBs and Kits availa	from		
Mar 78	Light DimmerGas Moniter	T01.1	55	3.40 10.14	3.12 1.10	1.35	13.07	TAMTRONIK.		plug-un mains PSU $3 \mathrm{~V} / 6 \mathrm{~V}$	2v DC
Apr 78 May 78		T012	88	6.19	83		7.86			300MA suitable for calc	ad TV
Jun 78	Star Trek Radio Stars \& Dots	T014	1.83	5.33	11.49	3.46	22.11	PCBs and Kits also av	e for	Games Oniy	£2.99
Jun 78	Spectrum Analyser	To15	8.32	35.76	16.02	5.00	65.10 14.45	everyday electronics. send	E for		
June 78		T016 T017	89 45	6.36 10.18	4.80 80	240	14.45	details.			
Jui 788^{\prime} Jul 78	UFO Detector Torch Finder	T017	$\begin{array}{r}1.45 \\ \hline 45\end{array}$	10.18 127		-	1.42 1.72				
Jut 78	Teinperature MeterEfinet	T019	1.00	24.41		-	25.41				
Aug 78		1020	90	2.87	1.76 3.65		4.93 12.64	For a lew kits it is not posssible	pply A	componenss. To avoid disap	nent we
Sep 78	Crivers Hatch GeneratorSlac Timer	1021	1.40	5.93	3.66	1.65 1.65	12.64	recommend you send SAE re	kit	ails. Piease quote project and	terence
Sep 78		T022	2.30 1.35	$\begin{array}{r}14.27 \\ 4.34 \\ \hline\end{array}$	11.04 43	1.65 2.24	29.26 8.36	number when derails of a speci	equ	SAE automatically brings tre	gue.
Sep 78	Wheel of Fortune	1023 T024	1.35 2.95	4.34 10.15	¢ 8 888		21.88		0 KITS	Now available	
Oct 78	Complex Sound Generator	T025	1.90	2.24	7.12	2.38	12.84				
Oct 78	R.F. Power Melér Power 8ulge	1026	60	71	78	. 79	2.88	de AN	Ario	al enouiries welcom	
Oc: 78		T027	95	3.48 7.91	3.02 3.25	215	9.60 13.11				
Oct 788	Ultra Sonic Recemer Ultrá Sonic Transmituter	+028	$\begin{aligned} & 60 \\ & 45 \end{aligned}$	3.38	4.95	-					
Feb 78		T030		+82	3.20		$\begin{aligned} & 8.93 \\ & 4.47 \end{aligned}$	Visit our thop at: 32 MARKET PLACE, GREAT BRIDGE, TIPTON, WEST MIDLANDS		Mail Order or Telephone	
										Access	

MIN-ADS \& CLASSIFIED

MICROPROCESSORS AND MEMORIES

STATIC RAMS

$1 \mathrm{~K} \times 121 \mathrm{LO2}(250 \mathrm{nS})$	£1.23
256×42112 (450nS)	£2.07
$1 \mathrm{k}-42114$ (450 nS)	£7.00
MPUs	
Z80	$£ 15.00$
6800	£15.00
8080A	£10.00
WIRE WRAP SOCKETS	
16 pin	45p
18 pin	50p
24 pin	60p
40 pin	£1.12

IMPS
Box 131, Reading RG6 2DR

STRATHAND SECURITY
 ALARMED?

In not you should be. We sogcialise in Alarm aquipment suilabie lo home, office or factory. Ail items brand naw lop quality lully guar antead.
01 Magnet and roed swilch. Flush fitting. 4 wire. Requirts hols
12 mm diameter by 34 mm deep
hole 15 mm diameter by 14 mm deep screw ler minals. haquifes
hole 15 mm diameter by 14 mm deep £1.05
5 mm by
13 mm by 11 mm
Magnol and reted switch. Heavy duty. Siza 103 mm by 20 mm by
18 mm . Two hole fixime £3.00
Pressure pad - slair trand $22^{\prime} / 2^{\prime \prime}$ by $61 / z^{\prime \prime}$
 $E 1.35$
07 Window toil - self adhesive - top quality. $70^{\prime \prime \prime}$ roll by $1 / 2$
108 Foil blocks - sall-admesive. (Joins loil to cablef
10 Keyswitches with mounling plate and cover
111 Bell bexes heary duty plastic coaled meta
112 Bell $\mathrm{G}^{\prime \prime}$ hoavy duty - very loud 12v D.C.
16 core cable 100 mm - white
entry/exil. Anti-lake as circuit
All prices include VAT and postage
plus
Lus
message, and many olher titms.
STRATHAND SECURITY 44 St. Andrew's Square
Glasgow, G1
Tel: $041-5526731 / 2$
Callers Welcome

PRINTED CIRCUITS HARDWARE

Comprehensive range Constructors' Hardware and accessories
Selected range or popular components Full range of ETI printed circuit boards. normally ex-stock, same day despatch at competitive prices
P.C. Boards to individual designs

Resist-coated epoxy glass laminate for the d.i.y. man with full processing instructions (no unusual chemicals required)

Alfac range of etch resist transfers, and othe drawing materials for p.c. boards

Send 15 p for catalogue.
RAMAR CONSTRUCTOR SERVICES MASONS ROAD STRATFORD-ON-AVON
WARWICKS. Tel. 4879

SPECIAL OFFERS

VDU 80 characters 13 lines. ASCII/Baudo TTL or loop inputs/outputs video and UHF outputs. Keyboard serializer. complete cased unit new $£ 250$

COMPONENTS

DIGITEX ELECTRONICS
238 Stamford Rd., Brierly Hill
West Midlands DY5 2QE

Sound to Light Fantastic

Videograph II links to the aerial socket of your tv and provides a full colour oscilloscope display! A must for hi-fi, home entertainment, discos, organs etc.
New - signal invert control, integral square wave generator. Plus - full details for testing your audio system for transient distortion, crosstalk etc
Complete 19.95 Luxury cabinet and Kit only fid.dy controls. $\mathbf{5} 9.95$ C. POST. PACKING VAT READY BUILT VIDEOGRAPH 559.95 WILLIAN Dower Mouse, Billericay Road.
STLJART Erongate. Breniwoc

MINI-ADS: $31 / 4^{\prime \prime} \times 21 / 8^{\prime \prime}, 1-3 £ 38,4-11 £ 36,12$ or more $£ 34$ per insertion. CLASSIFIED DISPLAY: $19 p$ per word. Minimum 25 words. Boxed classifieds are $£ 6.33$ per col. centimetre. No P.O. Box Numbers can be accepted without full address.

Enquiries to: Advertising Department, 01-437 5982. 25-27 Oxford Street, London W1R1RF

NEW QUALITY STEREO AMP CHASSIS 60W (RMS). Protected $3 \Omega \mathrm{~min}, 0.03 \%$ TAD $12 / 30 \mathrm{~V}$ Wkg 20 Trans, din socks controls: select, V/C etc. Boxed data £9.95 (inc.) K. Lawrence, 1 Regent Road, Ilkley, W. Yorks
L.C.D. WATCHES. 22 function £13.00. Solar 22 function £18.50. LCD portable alarm clock $£ 15.00$. All post free 1 yr . guarantee. Powditch, 5, De Vere Gardens, Ilford, Essex. Mail order only. SAE for info.

LINSLEY-HOOD 75 Watt Power Amp modules, built and tested, from £12.50. Complete module kit $£ 10.50$ inclusive. Lindsey-Hood 75 watt amplifiers constructed and repaired, comprehensive range of spares in stock. Details and list free. 1. G. Bowman (Dept. ETI), 59 Fowey Avenue, Torquay, S . Devon.

MC6800P E8.90. MC6802P improved 6800 MPU with clock and RAM £13.60. 6810 £4.10. 6820 £4.95. Static RAM boards $1 \mathrm{Kx8}$ £21.20 4Kx8 £62.60. VAT. P\&P included. Data sheets, $9 p+$ SAE. JK ELECTRONICS, 11-15 Salters Lane North, Darlington, County Durham.

	PRECISION POLYCARBONATE CAPACITORS All high stability - extremely low leakage
	RANGE (10%) 63 V DC RANGE (E) each
0.25	$\begin{array}{llllllll}33 & 16 & 1.78 & 1.0 & 2.26 & 1.52 & 1.08\end{array}$
	$\begin{array}{llllllll}33 & 19 & 2.08 & 2.2 & 2.80 & 1.94 & 1.42\end{array}$
	$\begin{array}{llllllll}33 & 19 & 2.24 & 4.7 & 4.00 & 2.72 & 2.24\end{array}$
	$\begin{array}{lllllll}50.8 & 19 & 2.48 & 6.8 & 4.88 & 3.36 & 2.66\end{array}$
1.0	$\begin{array}{llllllllll}50.8 & 19 & 2.64 & 10.0 & 6.94 & 4.68 & 3.56\end{array}$
2.0	$\begin{array}{llllllll}50.8 & 25.4 & 3.74 & 22.0 & 13.32 & 9.98 & 6.80\end{array}$
(Additional values and closer tolerances avail. upon request.)	
TRANSISTORS, DIODES, I.C.s, Bridge Rectifiers, Capacitors, Plugs + Sockets. Vero. Fuses, etc. - a complete range is carried. please send for our free detailed price list which will be sent by return of mail.	
RESISTORS High stability. low noise, carbon fitm $+-5 \%$ tol $1 / 2 \mathrm{~W}$ @ $40 \mathrm{C} 1 / 3 \mathrm{~W} @ 70 \mathrm{C}$ E12 series only - from 2.2 ohm to 4.7 M . All $2 p^{\prime}$ each; $15 p^{\prime} / 10$ of any one value: $95 p^{*} / 100$ of any one value: $£ 4.35^{\circ} / 500$ (may be mixed in 100 s): £8"/ 1000 (may be mixed in 100s). SPECIAL DEVELOPMENT PACK: 10 of each value 2.2 ohm to 2.2 M (730 resistors) - $£ 650^{\circ}$ each. $1 \mathrm{Wc} / \mathrm{f} 5 \% 2.2 \mathrm{ohm}$ to $10 \mathrm{M}-50^{\circ}$ each: $2 \mathrm{Wc} \mathrm{c} / \mathrm{f}$ $5 \% 10$ ohm to $10 \mathrm{M}-8 \mathrm{p}^{\text {" each. }}$	
PRESETS: 01.W submin. skeleton presets - vertical or horizontal. 100 ohm to 1 M . $7 \mathrm{p}^{\circ}$ each, $£ 3^{*} / 50$. E5 $5^{\circ} /$ 100. $£ 22.50^{\circ} / 500$. $£ 40^{\circ} / 1,000$. Values may be mixed.	
$\begin{aligned} & \text { ZENE } \\ & 400 \mathrm{~m} \\ & 1 \mathrm{~W} 3 \end{aligned}$	
TANTALUM BEAD CAPACITOAS: $\mu F / V$. $0.10 .220 .330 .470 .68 .1 \mu F$ all at 35 V @ $10 \mathrm{p}^{\circ}$$1.5 / 35,2.2 / 25+10^{\prime} 2.2 / 35 @ 120^{\circ} .4 .7 / 35 @$ 15p*.6.8/35@17p". 10/25@17p". 10/35@21p". 15/20, 22/15, 33/10.47/6.3@210.68/3@ 17p". 100/3@ 21 p" (deduct 1 p each for aty. of $10+$ values may be mixed).	
25p P\&P - UK /Export add cost air/sea mail. Ádd 8\% VAT except those marked "add $121 / 2 \%$ Wholesale price lists available to bona fide companies. Shop open 900 am- 5.00 pm , Mon.-Fri.	
MARCO TRADING (Dopt. T10) The Old School, Edstaston, WEM, Shropshire el. WHIXALL 464 (STD: 094872) (Props.: Minicost Trading Lid.)	

FIFTEEN CMOS PROJECTS - e.g. $70 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. Alarm; Mini-'trombone'; Mystery Maze; Micro-power Indicator. Only £1 inc. brings FIFTEEN detailed circuits PLUS 14-pin socket and kits voucher, from DAVID IAN DESIGNS, 47 Hampton Court Parade, East Molesey, Surrey.

GOOD PRICES PAID for electronics/ computing books and magazines of recent publication, eg projects, theory, reference etc. Send details to Hart, 41 Lutton PI. Edinburgh.

MEMORY IC's: 2 K dynamic RAMs, type MM5262-90p each. Data sheets 20p; free with order. Jarvis, 150 Weston Road, Aston Clinton, Aylesbury, Bucks. HP22 5EP

6800 D2 MICROPROCESSOR. Development system. Fully assembled and tested. Consists of processor board with user $1 / 0$ interface and keyboard/display board with cassette interface. Full documentation. Offers around £150. Ring 01-398 7146.

SWTPC 6800 MICROCOMPUTER. At a bargain price. Guaranteed in full working order and hardly used. 28 K CPU with 3 serial interfaces. Twin mini-floppy disc drives and controller. Cassette interface. Soroc IQ 120 VDU. Teletype 43 printer. Full documentation. Offers around £2,800. Individual units available at pro rata prices. Ring 01-398 7146.

LOCMOC LOGIC SWITCHES 2A AT GOV IN 20nS! Using VMOS VN67AF Power FET 99p. FAST LOCMOS: (Brief Data 5p) $4001 \mathrm{~B} / 7 / 11 \mathrm{~B} / 6917 \mathrm{p}, 4013 \mathrm{~B} 35 \mathrm{p}$. 4016B 40p, 4017B 65p, 4020B 80p. CHEAP LINEAR: $74119 p$, CA3140E 40p. LF13741N (JFET 741) 35p, MC3401P (18V LM3900) 45p, 555 24p, 2N3819 14p. 15923 (200V 200 mA) $10 / 15 \mathrm{p} .10 \%$ Discount over E5. P\&P 20p. Mail Order Only. More bargains in new spec / price list. SAE to J. W. RIMMER, 367 GREEN LANES, LONDON NA 1 DY.

C̄ÉH manufacture top Home Office approved security gear. Boost your projects with our grade 1 semiconductors, components. modules. Boards/kits soon. E.g. Waterproof vehicle alarm keyswitch/immobiliser. $2 \mathrm{n} / \mathrm{o}, 2 \mathrm{n} / \mathrm{c}$ contacts E3. 68
Commercial pre-drilled, oil-resistant project cases $106 \times 60 \times 50 \mathrm{~mm}$. internal -75 p
Upgrade with list. 18p (9p stamp + S.A.E.) to. CEH Audio-Visual, 48 Whistler Road, Tonbridge, Kent.

SPECIAL CLEARANCE - BRIDGE RECTIFIERS. WSO 4-1 amp 400V - Pack of 6 - E0.90, includes VAT \& PAP - Videotime. 56 Queens Road, Basingstoke, Hants.

RESISTORS ($5 \% 1 / 4 \mathrm{~W}$ Carbon Film). 25 of each value. $220 \Omega, 270 \Omega, 390 \Omega, 1 \mathrm{k} \Omega$ $2.7 \mathrm{k} \Omega-3.9 \mathrm{k} \Omega .4 .7 \mathrm{k} \Omega \quad 10 \mathrm{k} \Omega, 15 \mathrm{k} \Omega$ $27 \mathrm{k} \Omega, 33 \mathrm{k} \Omega, 47 \mathrm{k} \Omega, 100 \mathrm{k} \Omega, 220 \mathrm{k} \Omega$ $470 \mathrm{~K} \Omega, 1 \mathrm{M} \Omega$. (400 resistors) Only $£ 2$ Post Paid
D. Johnston, 12 Balgillo Road, Dundee DD5 3LU

INTERNATIONAL 4600 SYNTHESISER, with switched patching (eliminates fiddly plugboard), all IC's in sockets. Requires additional construction work. Parts originally cost £530, will accept £390 or offers. Telephone Aylesbury (0296) 630364

Safety fast! Shows: 1, If all wires correct, 2, Live wire faulty, 3, Live and Neutral wires reversed, 4, Earth faulty, 5, Neutral faulty. Shows exact fault instantly. British made. £3.95 post free. Save time. Be sure. Be safe.

PERSONAL SAFETY CO.
Dept. ETI, P.O. Box 2 LLANRWST
Gwynedd, North Wales

LOW FREQUENCY GENERATOR

TYPE 203
4 Ranges
$10 \mathrm{~Hz}-100 \mathrm{KHz}$
Square and Sine Wave 2.5 Volts Max

80 db variable Attenuator
Amplitude Stability - 0.1%
Harmonics - Less than 0.03\%

Manufacturers of Frequency Counters - Frequency Standards - Off Air Receivers.
R.C.S. ELECTRONICS

6 Wolsey Road, Ashford, Mìddx.
Tel: Ashford 53661 [Postal Code Tw15 2RB]

MICROCOMPUTER IC.S 21 LO2 IOW power RAM. 1 Kx 1450 ns , E1. 00 each. 8 for £7.25, 16 for $£ 13.50 .32$ for $£ 27.00$. Also 2708 EPROM, $1 \mathrm{Kx8}$ 450ns. $£ 7.25$ each. Inclusive prices. A. C. Gidlow 7 Cypress Road, Newport, isle of Wight, PO3O 1 EY .

PLEASE MENTION ETI

 WHEN REPLYING TO ADVERTS
HIGH QUALITY 3 POLE DRIVE MOTOR

with variable pulse width controller and information

Only £1.75

including VAT and postage
ELECTRONIC CENTRE Stockport Ltd 45 Lower Hillgate Stockport

Tel: 4809791

THE SORCERER HAS ARRIVED

Introducing the personal computer you've waited for. The Exidy Sorcerer.

I didn't buy my personal computer until I found the one that had all the features I was looking for.
The Exidy Sorcerer does everything I wanted to do and a few things I never dreamed of.
It isn't magic. Exidy started with the best features of other computers, added some tricks of their own, and put it all together with more flexibility than ever before available. Presto! My reasons for waiting just disappeared.

I wanted pre-packed programs. Software on inexpensive cassette tapes for the Sorcerer is available from Exidy and many other software makers.
I wanted user programmability
The Sorcerer's unique plug-in ROM
PAC ${ }^{\text {TM }}$ Cartridges contain programming languages such as Standard (Altair $8 \mathrm{k}^{*}$) BASIC, Assembler and Editor (so I can develop system software), operating systems such as DOS (so I can also use FORTRAN and COBOL) and applications packages such as Word Processor.

* Altair is a trademark of

Pertec Computer Corp.

I wanted Graphics, and the Sorcerer is super. Its 256 character set - more than any other personal computer includes 128 graphic symbols that I can define.
I wanted high resolution video.
With 122,880 points in a 512×240 format, I get the most detailed illustrations.

I wanted to display more information. The Sorcerer displays 1920 characters in 30 liries of 64 characters - equal to a double-spaced typed page.
I wanted a full, professional keyboard. The Sorcerer's 79 -key data processing keyboard provides designated graphics, the complete ASCII character set in upper and lower case, and a 16 -key numeric pad.
I wanted memory. The $12 k$ of ROM holds a Power-On Monitor and Stand ard BASIC; 32k of RAM is supplied on board.
I wanted expandability. Serial and parallel I/Os are built in, and the op
tional 6-slot S-100 expansion unit lets my system grow.

I wanted a computer that's easy enough for children to use. I just connect my Sorcerer to a video display and a cassette tape recorder, and if I have any questions the easy-to-understand Operation and BASIC Programming manuals have the answers.
I wanted to buy from an experienced Manufacturer. In five years Exidy has become the third largest producer of microprocessor-based video arcade games.
I wanted to spend less than $£ 1,000$. (This is where COMP. does a little magic). My Sorcerer cost me £950!. Now, what are you waiting for?
Call COMP. on 01-441 2922 or write to

14 Station Road,
New Barnet, Herts. EN5 1QW.
(Price shown ex. VAT)

everything for the modern D.I.Y. electronics enthusiast and more.

[^0]: Electronics Today International is normally published on the first Friday of the month prior to the cover date

[^1]: COPYRIGHT: All material is subject to world wide Copyright protection. All reasonable care is taken in the preparation of the magazine to ensure accuracy but ETI cannot be held responsible for it legally. Where errors do occur a correction will be published as soon as possible aftelwards.

[^2]: To: Sinclair Radionics Ltd, Londp冗̃ Road, St Ives, Huntingdon, Cambs., PE17 4HJ.
 Please send me__(qty) RDM 35(s)
 (11) $\{32.35$ (incl. VAT) each...................
 (qty) De-Luxe carrying cases
 (1t $£ 3.24$ (incl. VAT) each.................. power (\$1 L3. 24 (incl. VAT) each.... Post and packing (please add
 I enclose cheque/PO made payable
 to Sinclair Radionics L.td for
 (indicate total amount)
 I understand that if I am not completely satisfied with my PDM 35, I may return it within ten davs for full cash refund.

[^3]: PET What is your problem?
 ME Emotional insecurity
 PET Do you have any psychiatric problems? \quad
 ME Yes
 PET Are you sure?
 ME Yes
 PET: Do not repeat yourself.
 ME Oh God!
 PET What does that suggest to you?
 ME I'm not sure
 PET. Did you come to be because you're not sure?
 ME Yes
 PET. I see
 ME Where do we go from here?
 PET. Why do you ask?
 ME Because I'm not sure
 PET How long have you been not sure?
 ME Five years
 PET. I see

[^4]: Send 25 p tor our illustrated catalogue. Price include VAT and

