

TRANSCENDENT 2000 SINGLE BOARD SYNTHESIZER

LIVE PERFORMANCE SYNTHESIZER DESIGNED BY CONSULTANT TIM ORR (FORMERLY SYNTHESIZER DESIGNER FOR EMS LIMITED) AND FEATURED AS A CONSTRUCTIONAL ARTICLE IN ELECTRONICS TODAY INTERNATIONAL.
The TRANSCENDENT 2000 is a 3 octave instrument transposable 2 octaves up or down giving an effective 7 octave range. There is portamento, pitch bending. a VCO with shape and pitch modulation, a VCF with both low and high pass outputs and a separate dynamic sweep control. a noise generator and an ADSR envelope shaper. There is also a slow oscillator. a new pitch detector. ADSR repeat. sample and hold, and special circuitry with precision components to ensure tuning stability amongst its many features
The kit includes fully finished metalwork, solid teak cabinet, filter sweep pedal, professional quality components (all resistors either 2% metai oxide or $1 / 2 \%$ metal filml) and it really is complete - right down to the last nut and bolt and last piece of wire: There is even a 13 A plug in the kit - you need buy absolutely no more parts before plugging in and making great music board are made with connector plugs and construction is so simple it can be built easily in a few evenings by almost anyone canable of neat solderingl when finished you will possess a bynthesizer comparable in plor synthesizer comparable in performance and quality with ready bult units selling for between $£ 500$ and $£ 7001$

FOR COMPLETE KITS!
Comprehansive handbook supplied Comprehonsive handbook supplied with all complete kits! This fully doscribes instruction and tolls you how to more olaborate than a multi-meter and a pair of ears.

Due to the fantastic success in the launching of this superb new kit, instead of $\mathbf{£ 1 8 6 . 5 0}$ we are able to continue the special introductory offer of $\mathbf{E 1 7 2 . 0 0}+$ VAT ${ }^{\prime}$

$200+200$ watt AMPIIFIFR

As featured in Electronics Today International
400W rms continuous - 800W peak!
0.03% THD at FULL power!
PLUS all the following features too!

* Each channel totally independent with its own stabilised power supply driven by custom designed TOROIDAL transformers
* Inherent reliability - monster heat sinks for cool running at the hottest venues - electronic open and short circuit protection!
* Ultra low feedback (an incredible low 14 dB overalll), super high slewing rate ($20 \mathrm{~V} / \mu \mathrm{s}$). 200 W rms continuous to 4 ohm from EACH channel, input sensitivity 0775 V (OdB)
* Professional quality components, sturdy 19 rack mounting chassis complete with sleeve and teet for free standing work 100

PSI 4001 SLAVE MODEL

* Easy to build - plenty of working space with ready access to all components. minımal wiring. extensive instruction suitable for both experience constructors and newcomers to electronics
* Value for money - quality and performance comparable with ready-built amplifiers costing over £600'

PSI 4002 STUDIO MODEL

COMPLETE KIT ONLY £196.90 + VAT

PRICE STABILITY: Order with confidence irrespective of any price changes we will honour all prices in this advertisement until November 30th, 1978 if ETI October 1978 issue is mentioned with your order Errors and VAT rate changes EXPORT ORDERS: NoVAT Postage charged at actual cost plus 50 p handing and documentation
U.K.ORDERS. Subject to 12% surcharge for VAT* (e add $1 / \mathrm{t}_{\mathrm{a}}$ to the price) No charge is made for carriage. "or at current rate if changed
SECURICOR DELIVERY: For this optional service (U K. mainiand only) add
SALES COUNTER: if
Sales Counter (at rear of factory)
our catalogue is FREE! Write or phone NOW!
POWERTRAN ELECTRONICS
PORTWAY INDUSTRIAL ESTATE
ANDOVER, HANTS SP10 3NM
ANDOVER
(STD 0264) 64455

FEATURES

what a display p. 16

sine of the times p. 71

PROJECTS

ONE BOARD COMPUTER 16 Wow!

TV CHESS PART 244 Full constructional details
AUTOCHORD 57 Play along with the PROMs?
AUDIO OSCILLATOR 71 LCD DFM option too

INFORMATION

SUBSCRIPTIONS	$\mathbf{1 0}$	Make it easy on yourself.
HOBBY ELECTRONICS	$\mathbf{1 2}$	Here it comes!
COME AND JOIN US	$\mathbf{1 3}$	Your ETI needs YOU!
ETI PRINTS	$\mathbf{1 5}$	The only way to board
ETI BOOK SERVICE	$\mathbf{3 5}$	Fine print and proud of it
ETI SPECIALS	$\mathbf{5 4}$	All our wares on show.
MARKET PLACE	$\mathbf{5 5}$	Price reductions here.
DECEMBER PREVIEW	$\mathbf{6 3}$	What goes in next month

COMPUTING TODAY: NEW MAGAZINE FOR SMALL SYSTEMS. FIRST ISSUE INSIDE.

EDITORIAL AND ADVERTISEMENT OFFICE
25-27 Oxford Street, London W1R 1RF. Telephone 01-434 1781/2. Telex 8811896 Halvor W. Moorshead Editor
Ron Harris B.Sc Assistant Editor Gary Evans Projects Editor Jim Perry
Phil Cohen B. Sc, William King John Koblanski
Steve Ramsahadeo
Paul Edwards
Margaret Hewitt Andrew Scott
Kim Hamlin, Bren Goodwin
Tim Salmon, Val Tregidgo Mark Strathern (Manager), Tom Moloney Specials Editor Editorial AssIstants Project Design Project Development Technical Illustrator Administration Office Manager Reader Services Advertising

PUBLISHED BY	Modmags Ltd., 25-27 Oxford Street, London WIR IRF
DISTRIBUTED BY	Argus Distribution Ltd. (British Isles)
	Gordon \& Gotch Lid. (Overseas)
PRINTED BY	OB Limited, Colchester

PUBLISHED BY Modmags Ltd., 25-27 Oxford Street, London WIR IRF
PRINTED BY QB Limited, Colchester
Electronics Today International is normally published on the first Friday of the month prior to the cover date

[^0]| High quality audio modules for | |
| :---: | :---: |
| S450 | |
| | |

The 450 Tuner provides instant programme selection at the touch of a button ensuring accurate tuning of 4 pre-selected stations, any of which may be altered as often as you choose, simply by changing the setting
Features include FET input stage. Vari-Cap diode funing. Switched AFC LED Sineo Indicator.

OUTPUT POWER	7 Watts RMS
LOAD IMPEDANCE	8 ohms
TÖTAL HARMONIC OISTORTION	Less than 5% (Tyoically 3\%
FREQUENCY RESPONSE	50 Hz to $20 \mathrm{kHz} \pm 3 \mathrm{dBs}$
TONE CONTROL RANGE	$\pm 12 \mathrm{dBs}$ at 100 Hz and 10 kHz
SENSITIVITY	190 mV for full output
INPUT IMPEDANCE	1 Mohms
TRANSFORMER REQUIREMENTS	22 V.A.C. rated at 1A
DIMENSIONS (Less controls and panel)	$200 \mathrm{~mm} \times 130 \mathrm{~mm} \times 33 \mathrm{~mm}$

The Stereo 30 comprises a complete stereo pre-amplifier, power amplifiers and power supply. This, with only the addition of a transtormer or overwind will produce a high quality audio unit suitable for use with a wide range of entch class results. quals unit is supplied with full instructions, black front panel, knobs, maln swltch, fuse and fuse holder and universa mounting brackets
AL80
AUDIO
AMPLIFIER
MODULE
25 Watt RMS
$\mathrm{L} 4.55+35 \mathrm{p}$ pap
$+12 \mathrm{i} \%$ VAT
This high quality audio amplifier module is for use
to 25 RMS with distortion levels bolow 0.9%.

A 88	
AuDIO AMPLIFIER MODULE	
21.15	
+ 350p最 +	

The AL80 is similar in design to the AL60 above and distortion levels below 0.1%

OUTPUT POWER	25 Watts RMS
SUPPLY	$30-50 \mathrm{~V}$
LOAD IMPEDANCE	8-16 ohms
TOTAL HARMONIC DISTORTION	Less than 1\% (Typically 06\%)
FREQUENCY RESPONSE	20 Hz to $30 \mathrm{kHz} \times 2 \mathrm{dBs}$
SENSITIVITY	280 mV for full output
MAX MEAT SINK TEMPERATURE	$90^{\circ} \mathrm{C}$
DIMENSIONS	$103 \mathrm{~mm} \times 64 \mathrm{~mm} \times 15 \mathrm{~mm}$
dio equipment and stereo amplifier	and provides output powers up

OUTPUT POWER
SUPPLY
LOAD IMPEDANCE
TOTAL HARMONIC OISTORTION
FREQUENCY RESPONSE
SENSITIVITY
MAX. HEAT SINK TEMPERATURE
DIMENSIONS
Is of the same high quality but provides

35 Watts RMS SUPPLY

8-16 ohms
TOTAL HARMONIC OISTORTION FREQUENCY RESPONSE Less than. Less than $\cdot 1 \%$ (Typically 06% 280 mV for $f u l l$. DIMENSIONS $90^{\circ} \mathrm{C}$ $103 \mathrm{~mm} \times 64 \mathrm{~mm} \times 15 \mathrm{~mm}$

£17-25*
$+8 \%$ VAT

OUTPUT POWER	125 Watts RMS continuous
OPERATING VOLTAGE	$50-80 \mathrm{~V}$
LOADS	$4-160 \mathrm{hms}$
FREQUENCY RESPONSE	$25 \mathrm{~Hz}_{2} 20 \mathrm{kHz}$ measured at 100 W atts
SENSITIVITY FOR 100 WATTS O/PAT 1 kHz	450 mV
INPUT IMPEDANCE	33 K ohms
TOTAL HARMONIC DISTORTION 50 WATTS into 4 ohms 50 WATTS into 8 ohms	$\begin{aligned} & 0.1 \% \\ & 0.06 \% \end{aligned}$

OPERATING VOLTAGE

LOADS
SENSITIVITY FOR 100 WATTS INPUT IMPEDANCE
$\begin{array}{ll}50 \text { WATTS into } 4 \text { ohms } & 0.1 \% \\ 50 \text { WATTS into } 8 \text { ohms } & 0.06 \%\end{array}$

This unit asignated AL250, is a power amplifier providing an output of up to 125 W RMS, into a 4 ohm load

$+\mathbf{t 2 \%} \%$ Vat
Designed to
protection.

PA100

STERED
PRE-AMPLIFIER

£15-80

FREQUENCY RESPONSE
TOTAL HARMONIC DISTORTION SENSITIVITY 1. TAPE INPUTS 2. RADIO TUNER EQUALISATION

BASS CONTROLRANGE TREBLE CONTROL RANGE SIGNALINOISE RATIO INPUT OVERLOAD

DIMENSIO

20 Hz to $20 \mathrm{kHz} \times 1 \mathrm{~dB}$ Less than 1\% (Typically 07% $100 \mathrm{mV} / 100 \mathrm{~K}$ ohms For an $100 \mathrm{mV} / 100 \mathrm{~K}$ ohms
$\mathbf{3 . 5 \mathrm { mV } / 5 0 \mathrm { K } \text { ohms }}\} \begin{aligned} & \text { output } \\ & 250 \mathrm{mV}\end{aligned}$ $.5 \mathrm{mV} / 50 \mathrm{~K}$ ohms 250 mV Within $\pm{ }_{20}{ }^{1} \mathrm{~dB}$ to 20 kHz $\pm 45 \mathrm{dBs}$ at 75 Hz $+10-20 \mathrm{dBs}$ at 15 kHz Better than 65 dBs (All inputs) Better than 26 dBs (All inouts) 20 to 40 V $300 \cdot 90 \cdot 33 \mathrm{~mm}$ (less controls)

Stereo and mono

MPA3O
MAGNETIC CARTRIDGE PRE-AMPLIFIER
Enjoy the quality of a

magnetic cartridge with your

existing ceramic equipment using
amplifier enabling magnetic cartridges to be used where facilities exist for the use of ceramic cartridges only.
SENSITIVITY EQUALISATION INPUTIMPEDAN̄CE SUPPLY DIMENSIONS Within $\pm 1 \mathrm{~dB}$ from 20 Hz to 50 K ohms
18 to 30 V -re earth $110 \times 50 \times 25 \mathrm{~mm}$ (inc DIN
socket)

PA12

STEREO
PRE-AMPLIFIER

£7-10

The PA12 Stereo Pr
Amplifier chassis is designed and recommended for use with the AL $20 / 30$ Audio Amplifier Modules, the PS12 power supply and the
T538 Transformer. Features include on/off volume, Balance, Bass and Treble controls. Complete with tape output

FREQUENCY RESPONSE BASS CONTROL TREBLE CONTROL INPUT IMPEDANCE INPUT SENSITIVITY CROSSTALK SIGNAL/NOISE RATIO OVERLOAD FACTOR TAPE OUTPUT IMPEDANCE DIMENSIONS $20 \mathrm{~Hz}-20 \mathrm{kHz}$ (-3 dB) -

PS12 POWER SUPPLY

Designed for use with the with transformer T538.

with transformer T53
INPUT VOLTAGE
OUTPUT VOLTAGE
OUTPUT VOLTAGE
17-20v $A C$
$27-30 v$
$D C$
£1-30
OUTPU
SIZE

GE 100 NINE CHANNEL MONO-GRAPHIC EQUALIZER

The GE100 has nine 1 octave adjustments using integrated circuit
active filters. Boost and Cut limits are $\pm \mathbf{~} 2 \mathrm{~dB}$. Max. Voltage handling 2 V RMS, T.H.D., 0.05%, input impedence 100 KH . Otpu The nine gain controls are centred at $50,100,200, \mathbf{E 2 2} 00$
$400,800,1,600,3,200,6,400$ and $12,800 \mathrm{~Hz}$. The $\mathbf{2}$ suggested gain controls are 10 K LIN sliders (not $\quad+35 \mathrm{p}$ plp SG30 POWER SUPPLY BOARD for GE100 15-0-15 VOLT $\mathbf{£ 5 . 5 0}+$ $121 / 2 \%$ VAT $+35 p_{\text {pasp }}$

SIREN ALARM MODULE

American Police screamer powered from any 12 volt supply into ar or 8 ohm speaker. Ideal for car burglar alarm, freezer
and other security purposes. Order No. S15. No. BP124. and other security purposes. Order
Only $£ 3.50+8 \%$ VAT +25 p p\&p

MA60 HI-FI AMPLIFIER KIT

Build you own top quality amplifier, save yourself pounds. The MA60 kit comprises the following Bl-kits modules, $2 \times$ AL60 amps,
$1 \times$ PA100 pre-amp, $1 \times$ SPM80 stab. power supply, $1 \times$ BMT80 transf. giving 17 watts RMS per channel STEREO. All modules covered by the BI-PAK satisfaction or money back guarantee.
Details of the above modules are in this ad. Details of the above modules are in this ad
Price $£ 32 \cdot 00+121 \%$ VAT $+\$ 2 p$ p\&p.

TC60 KIT

A beautifully designed genuine TEAK WOOD veneered cabinet to put the professional touches to your home built amplifier. Fult Sot of paris, Noen, etc. Ideal for the MA60. Size: $425 \mathrm{~mm} \times 290 \mathrm{~mm}$

TRANSFORMERS

T538 For use with S. 450 AL30A MPA30 Order No. 2036 Price: $£ \mathbf{~} 3 \cdot 20+55 p$ p\&p $+12 \frac{1}{2} \%$ VAT T2050 For use with Stereo 30 Order No. 2050 Price: $£ 3-25+55 p$ p\&p $+\mathbf{1 2 \%} \%$ VAT BMT80 For use with AL60 SPM80 Order No. 2034 Price: $\mathbf{£ 5} \cdot \mathbf{4 0}+86 p$ pap $+12 \% \%$ VAT	

DEPT. E.T.I. 11, P.O. Box 6, Ware, Herts.

STANDS E2 E3 F2 F3 E10 E11

SHOP Dept. E.T.I.11, P.O. Box 6, Ware, Herts
AT:
OPEN 9 to 5.30 Mon. / Sat.

DE LUXE EASY TO BUILD LINSLEY-HOOD 75W AMPLIFIER £99.30 + VAT

This easy to bulld version of our world-wide acclaimed 75 W amplifier kit based upon circuit boards interconnected with gold plated contacts resulting in minimal wiring and construction delightfully straightforward. The design was published in Hi-Fi News and Record Review and features include rumble filter, variable scratch filter. versatile tone controts and tape monitoring whilst distortion is less than 0.01%.

WIRELESS WORLD FM TUNER £70.20 + VAT
A pre-aligned front-end module makes this Wireless World published design very simple to construct and adjust without special instruments. Features include an excellent a.m. rejection, push-button station selection as well as infinitely variable tuning and a phase locked loop
stereo decoder incorporating active filters for "birdy" suppression.

T20 + $\mathbf{2 0}$ AMPLIFIER $£ 33.10$ + VAT
This kit, based upon a design published in Practical Wireless, uses a single printed circuit board and offers at very low cost, ease of construction and all the normal facilities found on quality amplifiers. A 30 watt version of this kit (T30+30) is also available for $£ 38.40+$ VAT

LINSLEY-HOOD CASSETTE DECK £79.60 + VAT
This design. published in Wireless World, although straightforward and relatively low cost provides a very high standard of performance There are separate reerd and replay amplifiers provides a very nigh standard of pertormance There are separate reard and replay amplifiers mechanism is the Goldring-Lenco CRV with electronic speed control.

WWII TUNER £47.70 + VAT

This cost reduced model of our highly successful Wireless World FM Tuner kit was designed to complement the T20 +20 and T30 +30 amplifiers and the cabinet size, front panel format and electrical characteristics make this tuner compatible with either. Faciltities included are pre-aligned front-end module, switchable afc. adjustable switchable muting. LED tuning the front panel).

戸̄OWERTRAN SFMT TUNER $£ 35.90$ + VAT

This is a simple low cost design which can be constructed easily without special alignmen equipment but which still gives a first class output suitable for feeding any of our very popular amplifiers or any other high quality audio equipment. A phase-locked-loop is used for stereo decoding and controls include switchable afc, switchable muting and push-button channel selection (adjustable by controls on the front panel). This unit matches well with the T20 +20 and $\mathrm{T} 30+30$ amplifiers.

[^1]
news digest

dmm(digital midget meter?)

Guinness take note - the world's smallest DMM it seems. Made by Heuer Time Ltd it measures just 4" x $1.6^{\prime \prime} \times 0.5$ " ($100 \times 40 \times 20 \mathrm{~mm}$ to you Euro-people) with a probe which is $4^{\prime \prime} \times 0.8^{\prime \prime} \times 0.5^{\circ}$ (you mm lot can work that out yourselves). Volts Ohms and Amps either DC or AC can be accommodated between $2 \mathrm{~V}-1 \mathrm{kV}, 2 \mathrm{~mA}-2 \mathrm{~A}$ and $2 \mathrm{k}-20 \mathrm{M}$ although not necessarily in that order. AC measurement is true RMS. Display is $31 / 2$ digit LCD. Input $710 \mathrm{M}+$ Price around $£ 240$. Address: Heuer Ltd, Argyle House, 29/31 Euston Road, London.
the dalek connection

This lot looks like it could give Dr Who a few sleepless nights does it not? It's easy to imagine it lumbering across a smoke-circled hill and intoning "Take me to your leader.

Perhaps fortunately for the human race it is simply a noteworthy new connection system from Pressac Ltd. The PCB mounting plugs and sockets can be got at from either direction, and cable and chassis mounting assemblies are also available. Spacing can be either 2.5 mm or 5.0 mm and up to 40 ways are possible.

Pressac Ltd, Acton Grove, Long Easton, Nottingham NG10 IFW.

eye of the tornado?

Britain and NATO's new aircraft the MRCA Tornado is to be fitted - in its inceptor role - with a Visual Augmentation System developed by Marconi. The system presents the crew with a television picture of what lies ahead of their machine using a newly-developed low-light TV camera system.

Based on an existing Marconi design for a low light camera, the equipment produces an image at ranges far in excess of what the unaided eye can manage, and in light conditions anywhere from daylight to starlight.

Every little helps.

on the face of it

It had to come. Someone somewhere had to go produce an ANALOGUE digital watch. And here we have it. Must confess it looks very nice too. Texas get the credit/blame or whatever.

The display is beautiful. 120 segments are used to produce the illusion of the dial. On normal LCD's up to half the area is used for contacts to the segments, which would mean that with 121 contacts to provide the display would have to be pretty big - a clock yes, but no watch. Texas have gotten this by multiplexing the drive to the segments, which allows 90% of the area to be freed for usage.

The chip is $I \mathrm{~L}$ - and this is unusual. I 2 L is not normally employed in LCD units because of the problem of driving the highly capacitive elements. Bipolar drivers are used to avoid this, and are designed to drive the large capacitance with a (relatively) large $150 \mu \mathrm{~A}$ initial current for about $100 \mu \mathrm{~S}$ and to provide the 100 nA 'su'stan' current thereafter:

Another interesting point is that the material used for the display, a low voltage ester material would not usually be employed in watches because of its negative temp. Coeff. - higher the temp. the lower the drive required - which can lead to 'ghosting' and confusion of the display. The I"L however can compensate for this.
Naturally, since this is the first of its kind, the price of all this invention will be high initially - but the watch will function as a chronograph too and the Jones's will NEVER be able to keep up with this.

In the shops soon we hear.

watt batteries

Here is an amp to really annoy the neighbours with. If they complain about the hi-fi again, pack up the battery cassette recorder, speakers and this PAC 250 MB , drive around the back of the house and when they're least expecting it give 'em 250 W a channel straight in the back door. An outflanking move to warm Napoleon's heart.
The PAC 250 you see will run quite happily from 24 V DC or 250 V AC. Very handy for PA as well as neighbour baiting.
Details from: Millbank Electronics Ltd, Uckfield, Sussex TB22 1PS

Sound of safety?

A car alarm which operates on the ultrasonic area protection principle usually employed in houses is now being imported from the land of pasta and pinched bottoms.

Called the 'Break' it uses four sensors to cover the interior of any vehicle, and has adjustable sensitivity so that spurious triggering can be avoided. Once activated you have 40 secs to clear out before it goes off - so don't get stuck in the seat belt - and coming back in 10 secs to swtich it off.

Once the alarm is in mid sing-song, the removal of the felon will lead to a shutdown 15 secs later. If he persists so will the alarm. Price around $£ 50$ - not including ear plugs - from:
Sofare Ltd, Stoke Heath, Market Drayton, Shropshire.

WATFORD ELELTRONICS

Introducing DM900 - The DIGITAL MULTIMETER with "Hidden Capacity" - It measures Capacitance too!

(as published in E.T.I. August 1978) Away with analogue meters for with some of these you may often as not use a crystal ball to make circuit measurements instead gaze into our crystal - not a ball but the $31 / 20.5$ LIRUID CRYSTAL DISPLAY - on our amazingly accurate DMM incorporating
$5 A C \& D C$ Voltage ranges; 6 resistance ranges
5 AC \& DC Current ranges; 4 Capacitance ranges
The prototype accuracy is better than 1%
This is a unique design using the latest MOS ICs and due to the minimal current drain, is powered by only one PP3 battery. There is also a battery check facility.
The DM 900 is an attractive hand-held, light weight device, built into a high impact case with carrying handle and has been ingeniously designed to simplify assembly.

Special introductory offer $£ 54.50$ (p \& p insured add 80 p)
Calibration service charge for working Units £5.75. Readybuilt Units available by special (Optional extras Probes $£ 1$ 50 ${ }^{\text {E C Corrying C }}$
(Demonstration on at our Shop)

all change

This is the month when the BBC plays hide and seek with the four stations. They are gonna move 'em - you've gotta find 'em again. Fun eh? Radio One goes to 275 m and 285 m ; Radio 2 goes to 433 m and 330 m : Radio 3 goes to 247 m ; and Radio 4 vanishes onto long wave at 1500 m . VHF is unchaged thank God
The Beebs purpose in shuffling dials is to reduce interference from overseas stations. New transmitters are being fitted in some areas, so how it behaves now is no indication of how well you'll get the station once they change it around. Radio 2 will now be better in the day, but worse at night, with Radio 3 generally better.
The movement is to fit in with new European agreements which will allow more stations with better coverage to use the MW and LW bands, so we shouldn't complain.

Oh yes there is one more thing. Up to the switch November 23 will dawn with the new frequencies operating - unscheduled breaks in transmission will occur in MW and LW programmes lasting between a blink and several minutes. Don't smash your set it's the BBC's fault. They're working on the transmitters and aerials now to ready them for the big switch over, and well you never know who might drop a spanner or two.

Details will be plastered all over radio, TV and Radio Times between now and then so don't worry about not hearing what's going on. It's most unlikely.

short stuff

- Gi has released an appliance timer - the AY-3-125』 MPU-based it is, and can be used in such things as cookers to replace nasty mechanical things like clocks. Two versions are available and facilities include keyboard entry, direct display drive, four outputs et al.
- A new digital logic family called FAST (Fairchild Advanced Schottky TTL) is to be released soon. Power consumption is much lower than normal types - about 25% in fact. Typical delays are about 3 nS - hence the name. 66 circuits will be released by the year's'end. Price? Competitive apparently, whatever that means.
- Prom programming overnight is offered by Memec Ltd of Thame Park Industrial Estate, Thame, Oxon. A 24 hr turnaround is quoted and all types of PROM can be handled.
- RCA have a new chip out which a smoke detector unto itself. It requires only an ionisation chamber and horn alarm to begin detecting and alarming. The number is T-A 10451 and it will operate on either battery or line. - Britain has produced a new design of terminal to operate with the European OTS test sattelite. The idea is a joint venture between Marconi, the Post Office and the Department of Industry
- Compe 78 will be held at Olympic this year to allow for more exhibitors. The exhibition deals with small systems, minis and micros, software and hardware and Uncle Tom Cobley and all
- Supervisor is a remote controlled helicopter for use on the modern battlefield. It has been developed by Marconi and Westland. The machine stands about as high as a man and contains cameras and other surveillance equipment. It has just passed its first flight tests successfully and could be of great use to NATO when in service.
- Two books from GI to full up the bookshelves usefully are the 600 p Catalogue and the 300 p Applications Handbook. Both will be of great use indeed to both engineers and serious home dabblers. They cost $£ 3.00$ and $£ 1.80$ respectively from any GI distributors.
Toshiba and Rank have completed an agreement to produce TV sets and audio equipment in Plymouth and Cornwall.
- Texas Instruments new 64 K RAM is at last released. Automation in production means that by 1980 each unit will require only 5 man MINUTES to produce from start to finish, and that a mere 1000 staff will be able to service entire world demand!

It can be a nuisance can't it, going from newsagent to newsagent? "Sorry squire, don't have it - next one should be out soon.'

Although ETI is monthly, it's very rare to find it available after the first week. If it is available, the newsagent's going to be sure to cut his order for the next issue - but we're glad to say it doesn't happen very often.

Do yourself, your newsagent and us a favour. Place a regular order for ETI; your newsagent will almost certainly be delighted. If not, you can take out a postal subscription so there's nothing for you to remember - we'll do it for you.

For a subscription, send us $£ 7.00$ ($£ 8.00$ overseas) and tell us which issue you want to start with. Please make your payment (in sterling please for overseas readers) to ETI Subscriptions and keep it separate from any other services you want at the same time.

ETI Subscription Service Electronics Today International 25-27 Oxford Street, London W1R 1 RF

TANTALUM CAPACITORS. . 1 f 35v.w.. . $47 \mathrm{uf} 35 \mathrm{v} . \mathrm{w}$. $1 \mathrm{uf} 35 \mathrm{v} . \mathrm{w} ., 2.2 \mathrm{uf} 35 \mathrm{v} . \mathrm{w}$
 $16 \mathrm{v} . \mathrm{w} ., 33 \mathrm{uf} 25 \mathrm{v} . \mathrm{w} ., 47 \mathrm{uf} 6 \mathrm{v} . \mathrm{w}$. All at 9 p each.
CLOCK P.C. BOARDS with Buzzer, Mercury Switch, Transistors, Only I.C. and Display missing @ $£ 1$
01 uf $125 \mathrm{v} . \mathrm{w} .+10 \%$ CAPACITORS @ 10p each
JACKSON C801 VARIABLE CAPACITORS 5 pf or 10 pf . Both $75 p$ eah
400 mW UNMARKED GOOD ZENERS $3.6 \mathrm{v}, 6.8 \mathrm{v}, 10 \mathrm{v}, 11 \mathrm{v}, 12 \mathrm{v}, 13 \mathrm{v}, 16 \mathrm{v}, 24 \mathrm{v}, 30 \mathrm{v}$ 33 v 36 volt . All at 10 for 40 p
$33 \mathrm{~V}, 36 \mathrm{v}$ it. All at 10 for 40 p .
X BAND GUNN-DIODES with data $£ 165$
X BAND TUNING VARACTOR DIODES 1 To 2 pf or 3 To 4 pf. Both $£ 1.65$ each
10 AMP S.C.R's 100 PIV @ 25p. 400 PIV @ 50p, B00 PIV @ 60p.
MULLARD PRE-AMP I.C. TAA 435 with data@ 40 p
3 PIN PLUG AND SOCKET like R.S. European type with 2 Metres of Cable at 75 p pair 20 PHOTO TRANSISTORS, DARLINGTONS Assorted Untested @ £.
T.V. S.A.W. FILTERS Untested 3 for 35 p

10 MULTI-TURN TRIM POTENTIOMETERS Assorted @ 60p.
100 MULLARD C280 CAPACITORS @ 57p. Assorted
MULLARD ELECTROLYTICS 2240uf 40v.w. @ 40p, 4500ut 25v.w.@40p, 5000uf
10v.w.@15p.6400uf 25v.w.@250
TAA 661 F.M. I.C. By Cosem @ 50p, RCA CA 30890 @ E1
50 VARI-CAP DIODES LIKE BA 102 Untested @ 57 p.
502 WATT $2 E N E R S$ Untested Assorted for 57 p
ELECTROLYTICS 2200ut 100v.w. @ 60p, 3300uf 64v.w. @ 50p.
MOS PREAMPIFIER HOV.WA 320 with data@35p
MCMURDO P PIN PLUGS © $20 p 8$ PIN SOCKETS
McMURDO 8 PINPLNGTR NSISTORS @ 1 1
2 WWATT ZENER OIODES BTY 93 Types 6 8v 75 v

DUAL GATE MOS FET LIKE 40673 @ 33p. 4 for $£ 1.10$
TEN TURN POTENTIOMETERS 500 ohm. 1K, 2K, 5K, 100K All at $£ 1.50$ each
ERIE RED CAP . 01 uf 100v.w. SUB-MINIATURE CAPACITORS @ $5 p$.
BD 1874 AMP NPN PLASTIC POWER TRANSISTORS @ 25p. 5 tor £ BAW 62 HIGH SPEED DIODES 12 for 35p
OCTAL BASE CATHODEON CRYSTAL OVEN 6 or 12 volt. with Two HC6U HOLDERS and octal Base @ E1.25.
TRANSFORMERS 240 volt Input. Type 1.24 volt Tapped at 14 volt 1 amp @ £1.30 (P\&P 25p). Type 2. 22-0-22volt 500mA @ E1.60 (P\&P 25p). Type 3.50volt 10amp @ E5.50 (P\&P 95p), Type 4. 20volt 2 Amp Twice, 10 volt 1 Amp Twice @ E4. 50 (P\&P 95p) Type 5.45 volt $2 \mathrm{amp} .45 \mathrm{volt} 500 \mathrm{~mA} @ £ 3.50$ ($\mathrm{P} \& P 85 \mathrm{p}$).
HOHT EMITTE
LIGMT EMITTING DIODES 2° Dia Red or Green $15 p$ each
CMOS I.CzCD 4001@15p.CD4011@15p,CD4020@60p, CD $4029 @ 60 p . C D$ 4043@60p
FT 241 CRYSTALS 285 KHz at 20 p each
MYLAR MINIATURECAPACITORS 50 w . 4 way or 1 uf. Both 20 p doz.
MINIATURE ROTARY SWITCHES 2 Pole 4 way 1 Pole 10 way 2 Bank @ 40 p
Please add 20 p for post and packing unless otherwise stated, on U.K. orders under E2 verseas orders at cost.

J. BIRKETT

Radio Component Suppliers, 13 The Strait, Lincoln.

GREAT AUTUMN SALE

High Ripple Current Electrolytics YOU CAN'T MISS THESE

Sprague Powerlytic (Screwed Conns) 33,000 F F 40vdc Sprague Powerlytic (Screwed Conns) $3,000 \mu$ F 100 vdc Plessey Relialytic (Screwed Conns) $15,000 \mu \mathrm{~F} 63 \mathrm{vdc}$ Filmcap (Screwed Conns) $15,000 \mu \mathrm{~F} 40 \mathrm{vdc}$
$£ 2.00$ inc E 1.20 inc f 180 inc £1.80 inc
Tag-lectrolytics
4,700/40v60p 100/150v 40p. 33/450v \& $15 / 450$ v 40p HIGH VOLTAGE POLYESTERS*
$0.1 \mu \mathrm{~F} / 1000 \mathrm{vdc}$
5 for $£ 1.00$
$0.047 \mu \mathrm{~F} / 1000 \mathrm{vdc}$
$0.1 \mu \mathrm{~F} / 600 \mathrm{vdc}$
5 for 60p
$0.1 \mu \mathrm{~F} / 600 \mathrm{vdc}$
5 for 50p
$0.047 / 25 v$ disc Ceramics
.00 for 100
$1 \mu \mathrm{~F} / 400 \mathrm{vdc}$ Polyester Blocks Radial Leads
10 for 60p
OK $1 / 2$ watt by IT
200 for $£ 1,00$
$390 R 21 / 2$ watt
Tantalum Beads ${ }^{\text {e }} 1 \mu \mathrm{~F} / 35 \mathrm{v}$
$1 \mu \mathrm{~F} / 50 \mathrm{v}$
00 for $\mathbf{£ 1 . 0 0}$
$1 \mu \mathrm{~F} / 50 \mathrm{v}$
10 for 75 p
Semiconductors ${ }^{\circ}$
10 for $£ 1.00$
$10 \mathrm{a} / 50 \mathrm{v}$ Bridges
$18 \mathrm{a} / 50 \mathrm{v}$ Diodes Type $1 \mathrm{~N} 1191 \ldots .).$.
Opto Isolators Type OPT601 6 pin D.I.L. 2 for $£ 1.50$ Meters"
Sangamo Weston 60 mm sq. $60-0-60 \mathrm{~mA}$
Taylor $1 / 25^{\prime *} \times 3^{\prime} 500 \mu$ A calibrated in Degrees Tilt The following ltems are not in the Sate Mk 2. Metal Locator Kit
$\varepsilon 19.60$ inc. VAT and P\&P Apollo Logic Tester
$£ 11.75$ inc. VAT and $P \& P$ S.R.B. Miniature Soldering Iron $16 / 18 w$ $£ 3.75$ inc. V.A.T. P\&P

- Please include 35p P\&P on orders for goods where P\&P is not included. All prices include V.A.T

R.F. EQUIPMENT SPARES LTD.

3 Lacy Close, Wimborne, Dorset BH21 1PY
Please note that our stores at Poole Road Works are open to personal shoppers on Friday afternoons and all day Saturday

foiled again

These structures made of chrome-nickel and copper represent an integrated passive circuit with capacitors, coils and resistors, the carrier being a plastic foil. The rectangular, spiral and meandrous shapes largely determine the capacitances, inductances and resistances Using the name "Sicufol" (Siemens copper foil) Siemens is now offering modules for television sets as the first wares in this new technology
Resistances up to 300 R can be fabricated directly, capacitance to $150 \mathrm{pf} / \mathrm{cm}^{\prime}$ and inductances up to $10 \mu \mathrm{H}$. By meandering the track back and forth, an increase of up to 3800 per given area is possible.

The carrier foil is a kind of Teflon so vou shouldn't be stuck for ideas.

eat your heart out colgate

One might question the wisdom of a picture like this, bristling as it is with cunning. At least it's an excuse to brush up on DIL switches. These are made by ERG Components and can switch at up to 10 VA. Fitting a normal DIL format they are numbered in a standard BCD format, and can be very useful in any digital circuitry. Home constructors never seem to make much use of these components for reasons best known to themselves. ERG Components, Luton Road, Dunstable, Bedfordshire.

ooops

Please note that the prices shown on the Gould Advance Ad on Page 14 of the October issue were incorrect. The correct prices are shown on page 14 of this issue. We apologise to Gould Advance and our readers for any inconvenience caused.

THL	by TE	8		319	74LS240 175p	40		4543		LM3900	P	TRANS	Tons			T1941C				
7400	13p	74105	65p	4.400p	74LS241 175	4008	${ }^{80 p}$	4553	450p	LM3911	130 p	AC127/8	20p	BFY56	$33 p$	TIP42A	70p	2N4125/6 220	DIODES ${ }^{\text {PY127 }}$	3A
7401	14p	74107	$34 p$	742850000	74LS242 175p	4009	$40 p$	4560	2509	LM4136	120 p	AD149	70 p	8FY90	p	TIP42C	82 p	$2 \mathrm{~N} 401 / 3$ 270	OA47 9p	4A 400 V 100p
7402	14p	74109	55p	74290 150p	744S243 175p	401.	170	4583	90	MC1310P	150 p	AD161/2	45p	BLY83	700p	TiP2955	78 p	2N4427 90p	OA81 15p	6 A 50 V 90 p
7403	$14 p$	74110	55p	74293 150p	74LS244 170	4011	$17 p$	4584	sop	MC1458	P	BC107/8	11p	BRY39	$45 p$	TIP3055	70p	2 N 4871	OA85 15p	6A 100 V 100p
7404	17p	74111	70p	$74294200 p$	74LS245 170p	4013	50p	40014	90p	MC1495	400p	8C109	11p	BS×19/20	20p	T1S43	34 p	2N5087 27	'0a90 9p	6 6 400 V 120 p
7405	18p	74116		74365 150 p	74LS251 200p	4014	84p	40097	200p	-MC3340		- $\mathrm{BC}^{\text {c }} 14718$	9	BU105	190p	TIS93	30 p	2N5089 27	OA91 9p	10A 400V $200 p^{\prime \prime}$
7406	32 D	74118	130	74366 150p	74LS259 175p	4015	24p	14411	c10	-MC3360	120p	${ }^{88}{ }^{8 C 149}$	10 p	- BU108	2500	Z7x 108 2T 300	12 p	$2 N 5172$ 27p	-OA95 9p	25A 400V400p.
7407	32p	74119	210 p	74367 150p	74 LS 298 24\%	4016	$45 p$	14412 V	¢10	-MFC4000B	120p	- BC 151578	10 p	-BU205	2200	- 21×300		2N5179 27p	- 0 a 200	
7408	19p	74120	11	74368 150p	74LS373 200p	4017	80 p	14433	E11	MK50398	750 p	-BC159	11 p	BU208 -BU406	$240 p$	21 $\times 500$		2N5191 ${ }^{\text {a }}$	OA202 10p	TRIACS
7409	18p			74390 z00p	7415374 160e	4018	89p			NE531	100p	-8C169C	12 l		$\begin{aligned} & 145 p \\ & 178 p \end{aligned}$	27×502		2N5194	-1N914	plastic
7410	15p	74122	48 p	74393 200p		4019	$45 p$	INEAR I.C		NE540	2000	${ }_{8 C 17718}^{8 C 17}$	12 p	M M 491	2009			2N5245 40	-1 ${ }^{\text {N9 }} 16$	3A 400V 600
7411	24p	74123	${ }^{55}$	74490225	MEMORIES	4020	100p	Arl-0212	600p	NE543K	225	${ }_{\text {BC179 }}^{\text {BC17 }}$	17 p	MJ493 ${ }^{\text {M }}$	200p	${ }^{\text {2N457A }}$		2N5296 55p	-1N4148	6a 400 V 70p
7412	200	74125	55		2102 100p	4021	110p	AY1.1313		NE555	$25 p$	BC182/3		MJ25055	225p	2N696		2N5401 50p	1 N4001/2	6a 500 V go
7413	30p	74126	80p	74LS SE	2102-1 12	4022	100p	AY1-5050	$1 p$	NE556	70p		10 p	MJ2955 $\mathrm{MJ300} \mathrm{\%}$		2N697 2N697		2N5457/840	$1 \mathrm{~N} 4003 / 4$	6a 400 V 75 7
7414	600	${ }^{74128}$	$75 p$	741500 18p	2102-2 110p	4023	22p			NE561B	425p	-8C187	3 p	MJE340		${ }^{2 N} \mathbf{2 N 7 0 6 A}$	${ }_{25}$	${ }^{2} \mathrm{NS} 559890$	1 N 4005	8A 500V 95p'
7416 7417	${ }^{27 p}$	74132 74136	${ }^{750}$	74LS02 ${ }^{\text {74, }}$	2107	4024	$50 p$	AY5-1317	638 p	NE5628	425	-8C212/3	11 p	MJE2955		2N708A	${ }_{20 p}$	2N5460 2N5485	1N4006/7 7p	12a 400V 85p
7420	17p	74141	70p	74LS08 22	2112-2 300p	${ }_{4}^{4025}$	${ }_{1} 200$	CA3019	800	NE565	1300	-BC214	12	MJE3055	70p	2N918	45	2 N 6027 48	1N5404/7 190	12a 500V 105p
7421	40 p	74142	2000	74 LS 10 24p	2114 1200p	4027	50p	Ca3046	70	NE566\%	175	BC461	${ }^{36 p}$	MPF 102	45	330		2N6247 19	'ZENERS	6A 400V 110 P
7422	22	74145	90 p	74.513 45p	$6810 \quad 400$	4028	84p	'Ca3048	225p		1759	BC477/8	30 p	MPF103/4		2N1131/2	220	2N6254 130		
7423	34	74147	190	$74 L S 14$		4029	1000	Ca3080E	72p	RCA 159	425 p	- BC51617	p	MPF 105/6		2N1673		2N6290 65	400 mW	HYRISTORS
7425	30p	74148	150p	741S20 22p	Interface	4030	55p	CA3089E	225p			'BC5478	18p	MPSA06	30 p	2N1711	25p	2N6292		
7426	400	74150	100p	74LS22 28p	ICs	4031	2000	Ca3090á	375p	- SN76013N		-8C549C	18	MPSA12	50p	2N2102	80	3 N 12812		1A 400 V
7427	34 p	74151A	70p	741527 38p	MC1488 90	4033	80p	ca3130E	78p	-SN76013ND			$16 p$	MPSA56	320	2N2160	${ }^{120}$	3 N 140 O 100p	SPECIAL	1 A 600 V 70 p
7428	36p	74153	700	74L530 22 p		4034	200p	CA3140E		N,	120p	${ }^{\text {BC5599 }}$	${ }_{18 p}^{18 p}$	MPSU06	$\begin{aligned} & \text { 63p } \\ & 78 p \end{aligned}$	2N2219A		3 N 2 O 1110 p	OFFERS	3a 400V
7430 7432	$17 p$ $30 p$	74154 74155	${ }^{100 p}$	74LS32 ${ }^{\text {74tS47 }}$	$\begin{array}{ll}75107 \\ 811595 & 160 p \\ 1200\end{array}$	4035	$110 p$	CA3160E	900	-SN76023N	140p	BCY71/2	22p	OC28	130 p	2N2369A			74	8A 600V 200p
7433	400	74156	90p	74LS55 30p	8115961400	4040	1009 800	${ }_{\text {ICLIT106 }}$	750 p	-SN76023ND		BD131/2	50p	OC35	130p	2N2484	30p	403	00+ 555 £20	2A 400V 160p
7437	35p	74157	70p	74LS73 50p	811597 120p	4042	80 p	ictro3s	${ }^{3400}$		120	BDY56	200p	-R2008B	200p	2N2646	50	40361/2 45		A
7438	${ }^{35} p$	74159	190p	741S74 40p	811598 140p	4043	90	lm301an	300	N8515		BF 200	32p	-20108	200p	2N2904/5		40364 120p	00+ RCA	164
7440	17p	74160	1000	74LS75 50p	8128 250p	4044	90	LM311	120p	TBA64 1811		-8F2448	35 p	TIP29A	$40 p$	2N2906A	24	40408	2N3055	16106 110p
7441	70p	74161	100p	74L583 110p	9602 190p	4046	30p	LM318	200p			-BF256	70	TIP29C	$55 p$	2N2907A	30 p	40409 65p	bridge	C1060 45.
7442A	60p	74162	1000	74LS85		4047	100\%	IM 324	70p	tba800		BF257/8	$32 p$	- IP 30a	$45 p$	-2N2926		40410 65	MECTIFIERS	MCR101 36p
7443	112p	74163	1000	741586 40p	nom/UART	4048	55 p	LM339	75p	Tbab 10		BF259	$36 p$	TIP30C	00p	2N3053		40411300	1 A 50 V 21 p	2N3525 1200
7444	112 p	74164	120p	74LS90 00p	74S188 225p	4049	32	LM348	95p	tbabzo	90p	- BFR R 39	$30 p$	TIP31A	58	2N3054		40594 97p	A 100V 22p	-2N5060 34p
7445	100p	74165	1000	74LS93 90p	AY3-1015 550p	4050	48p	-LM377	$175 p$	TCA940		- $\mathrm{BFR}^{\text {a }}$	30 p	TIP31C	82	2N3055		$40595105 p$	1A 400V 30p	2N5064
7446 A	93p	74166	140p	$74.510745 p$	AY5-1013 400p	4051	80 p	-LM380	75p	TDA 1022	600p	-bFR41	30 p	TIP32A	68p	2 N 3442	1400	40603		
7447A	70p	74167	200p	74LS 112 100p	AY5-2376 £10	4052	$65 p$	[M381AN	150p	TL074		BFR79	30p	TIP32C	42	2N3553	2400	4067375	2A 100V 35p	SEE SEND
7448	80p	74170	240p	$741512375 p$	RO3-2513 600\%	4053	80p	LM389N	40p	tiosa			30 p	TIP33A	90p	-2N3565		40841	2A 400V 45p	SAE FOR FUll
7450	17 p	74172	720p	74LS 124 180p	SN74S262 £14	4055	$125 p$	(M709	36p	TL170		- $\mathrm{BFR81}$	30 p	TiP33C	1149	-2N3643/		40871/2 00	3a 200V60p	
7451	17p	74173	120p	$74 \mathrm{LS125}$ 80p		4056	135p	LM710	50p	XR2206	400p	-		TIP3AA	115	2N3702				Y TEXAS
7453	17p	74174	93p	74LS132 90p		4059	600p	LM725.	350p	XR2207			34 p	TIP34C	180p	-2N3704/5		8 pon $11{ }^{\text {a }}$	- Sockets	rexas
7454	$17 p$	34175	${ }^{85}$	74LS 33300	${ }^{1702 A}$ 600p	4060	116p	LM733	100p	XR2211	500p	${ }_{\text {BFX }}^{\text {BFX84/5 }}$	30 p	TIP35A	2250	-2N3706/7			$18 \mathrm{pIn} 25 p^{\circ}$	24 pin $33 p$
7460	17p	74176	${ }^{90 p}$	$74 \mathrm{LS138}$ 80p	2708 900p	4063	120p	LM741	20p	* \times 2216	675p	$8 \times 86 /$ $B \times 88$	$\begin{aligned} & 30 p \\ & 30 p \end{aligned}$	tip35C tip36a	$\begin{aligned} & 2900 \\ & 270 \mathrm{p} \end{aligned}$	$\left[\begin{array}{l} 2 \mathrm{~N} 3708 / \\ 2 \mathrm{~N} 37773 \end{array}\right.$			20 pin 28 nin	$\begin{array}{ll} 28 \text { pin } & \text { 42p } \\ 40 \text { pin } & 51 p \end{array}$
7470	${ }^{35 p}$	74177			2716	4066	55p	LM747	70p	XR2240	400p			TIP36A TIP36C		$\left[\begin{array}{r} 2 N 3773 \\ \cdot 2 N 3819 \end{array}\right.$		6 pan 13p		40 pin 51 p
7472	30%	74178	180 p	74 S 148140		4068	22p	LM748	35p	N414	90 p	BFY50			659	2×3820		WIRE WRAP	SOCKETS	
7474	340		${ }_{2000}^{900}$	74 LSI53 60p		4069	$20 \mathrm{p}$	voltage	REGU	RS						2N3823		$\begin{array}{ll} 8 \text { pin } & 30 p \\ 4 \text { pin } & 40 p \end{array}$	$16 p$	$\begin{aligned} & 40 \mathrm{pin} \\ & 28 \mathrm{pon} \\ & 2000 \\ & 1000 \end{aligned}$
7475	36p	74182		74LS154 130p	$\begin{array}{ll}6502 & 1200 p \\ 6800 & \text { c9 }\end{array}$	4070	22p	Fixed Plastic	To 22			ML				2N3866				009
7476	35p	74184A	150p	$74 \mathrm{LS157}$ 60p				1 A					ENE	TOR		'2N3903/4	$4{ }^{18}$	Oİsplar		500/507 120\%
7480	50\%	74185	150p	74LS158 120p	8080a 550p	4073	22p	5 V 780	05	- 7905	100p	SN764	(1N		50,	-2N3905/6	20p	3015 F	2000 TH31	600p
7481	100p	74186	700p	74LS160 130p				12 V 781	1290	7912	100p					'2N4036	${ }^{65 p}$	D1704/707	1400 T1L3	(110p
7482	84p	74190	100p	74151611000	OTHERS	4076	107 p	15 V 781	1590	P 7915	100p	TV CR	RT CON	NTR OLLER		2N4058/9	120	${ }^{\text {d N }}$ - 357	2250	1300
7483A	90p	74191	100p	$74 L 5162$ 140p	6820 500p	4081	22p	18 V 781	18	,	100p		VO					FNO357	120p TIL33	140p
7484	1000	74192	100p	7415163 90p	${ }_{8}^{6850}$ 600p	4082	880	24 V 782	24		100p	963	64			-2N4061/		RATE	All , tems at 8\%	rked ${ }^{\text {] }}$
7485	1100	74193	100p	74151641200	8205 320p	4093	107p	${ }_{5}^{100 \mathrm{~mA}}$	TO-9							2N4 123/4	422	are	12\%\%	
7486	34p	74194	100p	$7415165120 p$	8212 $225 p$ 8216 2250	4098	E10					LEDS ${ }^{1}$	125			2				
7489	210p	74195	95p	74 S 1731100	8216 8224 350	4411	$\underline{120}$		$\begin{aligned} & 812 \\ & 8 L 15 \end{aligned} 35 \%$		$\begin{aligned} & 80 p \\ & 80 p \end{aligned}$	Tll321R	75							
7491	80p	74197	80 p	74tS175 110p	8228 450p	4502 4503	120p	THEFRE	EGULAT	ORS		TH209 Red	d 13					-Friday	-5.30	
7492 A	46p	74198	150p	$74 \mathrm{LS181}$ 220p	8251	4507	55p	LM 3096K	135p	LM320T.12	1000	THLL Til2 12 Ve		We	lcor		at	ay 10.3	4.30	
74934.	${ }^{33 p}$	74199	150p	$74 \mathrm{LS190} 100 \mathrm{p}$	8255 550p	4510	99p	LM317\%	200p	LM340T-12	1000	Til216 Red	d							
7496	65p	74259	250	74LS 19314	$4000{ }^{\text {a }}$	4514	${ }_{1100}$	OPTO-ELE	ECTRO	NICS		Th220 Red								
7497	180p	74265	0 \%	74LS 195140	4000 $1017 p$		1100	2N5777		OCPう,		TIL222 2 Rr			Bu	ley Ro	oac	London	W1	
74100	130p	74278	290p	74LS 1961200	4002 17p	4520	1000	ORP12	90 p	ORP60		MV5491		Tel	: 01	-452 15	500		Telex	922800
74104	$65 p$	74279	140p	LS221	4006 95p	4528	100p	ORPG	90p	1118	70 p	Clips	T 12	Only	2 min	is from D	Dollis	Hill Tube	Ample	eet parking

On October 13 th a brand new magazine is launched in the electronics field. It is written and produced by ETI staff and aimed at the newcomer to electronics - not necessarily young people.

We did think of doing an ad which would tell you about the contents in minute detail but instead we have decided to appeal to your curiosity. We don't ask you to buy it; it may be of no interest to you but we hope that some ETI readers at least will pick up a copy and thumb through it. Please put it back neatly if you don't want to buy: the next person may be more interested.

No. 1 will carry a cover date of November and will be available at newsagents on October 13 th. 40p.

 Telephone your order with Access and Barclaycards

TE20D
LONDON'S TEST GEAR CENTRE OPEN 6 DAYS A WEEK 9 am- 6 pm SCOPES - IN STOCK


```
m
```

\qquad

LED AND LCD DIGITAL MULTIMETERS

LM3.5A
MULTI-METERS - GENERAL PURPOSE \& ELECTRONIC

TM3B iM6B

AC Micro voltmeter $3 \mathrm{MHz}>4 \mathrm{Megohm}$
Broadbandvoltmeter $300 \mathrm{KHz}-400 \mathrm{MHz}$
136.00
130.00
196.00

360TR $100 \mathrm{k} /$ volt
PROE 20k/VOlh
$708150 \mathrm{k} / \mathrm{volt}$
$7 \mathrm{mK} 50030 \mathrm{k} / \mathrm{vo}$
TmK
680 R
$20 \mathrm{k} / \mathrm{volt}$
$720020 \mathrm{k} / \mathrm{voit}$
23 Range (plus rransistor checker). Large scale
26 Range Large scale
36 Range Mulimeter
36 Range Multi-meter
22 Range Multi-meter
52 Range Pocki-meter (plus Continuity Buzzer)
52 Range Pocket Mulit-meter
22 Range Doubie Multi-meter
Micro80 $20 \mathrm{k} / \mathrm{v}$
26 Range Doubie Multi-meter
$1 T 1-220 \mathrm{k} / \mathrm{vol}$
$\mathrm{LT} 2220 \mathrm{k} / \mathrm{volt}$
16 Range Popular Multi-meter
19 Range Pocker Multi-meter
19 Range Pocket Muti-meter
13 Range Pocker Multi-meter
T12 $5 \mathrm{k} /$ /vol
$\mathrm{LT} 101 \mathrm{ik} / \mathrm{volt}$
12 Range Pocket Multi-meter
196.00
35.50

Meg input
EM 2000 FET IC VOM $2 D$ Ra
K 200 FET VOM 38 Ranges
ges / Transistor Checker/Continuity Checker \qquad

GENERAL EOUIPMENT

TE 7 Signal Tracer
SWR 50 SWR/ Power Meter
LP 3030 MHz Low Pass Filter
CX3AA 150 watt 3 -way AE Switch
DC25kV 100 Meg HV Probe
9 Valua CAP Subs Box
DRS 1036 Vatue Resis
EX2000 Xtal Marker
TR 1000 Transistor ch
TR 1000 Transistor check
MOD63 Signal injectior
$\pi 169$ In Circuit TR Checker
3101 Clamp Meter $0 / 1 \mathrm{~K}$... 49.1
600 AC Volts $0 / 300 \mathrm{Amp}$
MS319 2×100 Watt Audio War Mate
-500 V Megohmater 500 Megonms 1000 V Megohmeter 1000 Megohm - $21 / 2$ Amp Variable Transtormer -10 Amp Variable Transformer Decede Rozí. Boxes:
1-11, 110 ohm in sleps of 9 ohm
$10-11111100 \mathrm{hm}$ in sies 10 . $10-111,110 \mathrm{ohm}$ in steps of 10 ohm
$1-1,111,110 \mathrm{ohm}$ in steps of 10 hm

MICROPHONES, SPEAKERS AND COMPONENTS

TMK500
CALL IN AND SEE FOR YOURSELF

301 EDGWARE RD., LONDON W2 1BN 01-724-3564. OPEN 9-6, MON-SAT

ALSO AT 248 TOTTENHAM COURT ROAD.W 1

Editorial Assistant for ETI and Hobby Electronics

If YOU have a genuine interest in electronics and project building and an above-average ability to express yourself in writing, you could be the person we're looking for. We are being serious.
We are looking for someone to join the editorial team and reckon that an enthusiastic reader is likely to be the type to join us. Not an uncritical reader - we want to continue to improve. The work will entail dealing with articles and news - licking them into shape - and making them better than anyone else's articles and news. The applicant will work on both ETI and our new sister publication Hobby Electronics. Readers employed in journalism at the moment will be considered but we are not primarily looking for someone with magazine experience

We are flexible about age and experience but imagine that the person who gets the job will be between 21 and 28 .

Salary will depend upon age and experience but will be in the range $£ 3,700$ to $£ 4,100$, possibly more for someone with exceptional qualifications

Experience has told us that people who read ads like this think a) that it doesn't apply to them b) that their own knowledge is far too limited or c) that ads of this type are only put in because we have to fill half a page. None of these is true.

> Apply in writing to:
> Halvor Moorshead,
> Editor,
> Electronics Today International,
> 25-27 Oxford Street,
> London WIR IRF.

[^2]
Gould Advance InstrumentsProfessional quality at a realistic price.

Alphall| Digital 0 nly $\{9\}$ Multimeter
 (excluding VAT)

OS245A Oscilloscope

Fault-finding, circuit testing or servicing - an oscilloscope is indispensable. It saves time, prevents costly mistakes, and enables you to tackle bigger, better projects.

Now, Gould Advance offer you this professional-quality, dualtrace instrument, at a price which brings it within reach of the amateur enthusiast.

Just look at these great Gould Advance features - then compare the OS245A for value!
*DC-10M Hz bandwidth
*Dual trace

* Clear controls, simple operation
* Fully guaranteed for 2 years
*5mV/div. sensitivity
* Time-basespeeds to $100 \mathrm{~ns} / \mathrm{div}$.
* $4^{\prime \prime}$ CRT with 8 , 10 div.

Gould Instruments Division,
Roebuck Road. Hainault, Essex IG6 3UE.
Telephone: 01-500 1000 Telex: 263785.
Registered Number 263834 England.

Alpha III Digital Multimeter
With a choice of 25 ranges and basic accuracy of $\pm 0.2 \%$, the Alpha III is a professional's multimeter, yet it is versatile enough to cover every amateur application.

And although it is offered at such a modest price, it shares the advanced design features of the more expensive Gould Advance instruments - in particular, the purpose-built chip, incorporating all analogue and digital circuitry. $* 2,000$ scale length (100 mV resolution)
*Tough, attractive moulded case
*Bright red LED display *25 ranges *Fully guaranteed for 2 years

Note: This offer applies to the U.K and Ireland only.

ONE BOARD HOME COMPUTER

ETI, Transam and Mike Hughes, who designed the system, present the Triton - a one board computer that includes all the features expected in a machine providing the basis of a really powerful home system.

ADD A STANDARD domestic TV set and a cassette recorder to the TRITON and you have a complete home computing system that is equal to, indeed in some areas superior to, many of the commercial ready built systems now on the market.

The TRITON has been designed on a single board, which means that construction should not pose any problems providing an adequate standard of soldering is maintained throughout. The case, designed specifically for the TRITON, means that the finished unit can safely and attractively be housed. In use, with the TV set on top of the case, the TRITON will be easy and convenient to operate.

The TRITON is based on the 8080

MPU, a device which has proven itself over a number of years. This MPU has a vast amount of software available for it and the TRITON's 1 K monitor system allows for easy entry and subsequent modification of such material.

The 2K TINY BASIC that is also resident in the TRITON, allows this popular, easy to learn, language to be used in conjunction with the TRITON's versatile graphic character set and unique VDU function to develop everything from games to education programs quickly and easily.

The TRITON has space for 3 K of user RAM on board but the machine has been designed in order to make expansion a simple matter. All the

The single board that carries all of the Triton's circuitry with the areas concerned with various parts of the system indicated.
signals necessary to add further memory, I/O devices etc. are broughit out to an edge connector at the back of the board.

It is essential to use a top quality double sided plated through board for the project. Unlike many projects the PCB is likely to be the most expensive single item you have to invest in but it is this component which brings the whole project into scope for the average constructor with no significant theoretical knowledge.

The board has been designed to keep all the most intricate wiring on the top side - in particular the connections that run between IC pins. The latter are the most vulnerable to a heavy hand on the soldering iron but this is not saying that you can afford any carelessness underneath! Use the smallest soldering iron you can lay your hands on and the bit must, certainly, be no greater than $3 / 32$ in diameter. As stated, all soldering operations should be carried out on the underside of the board; the through hole plating will route all necessary connections to the topside.

Wherever possible it is worth trying to re-inforce the through hole plating by getting molten solder to creep through the hole by capilliary action, therefore hold the soldering iron in place long enough for the heat to flow through the hole and take the solder with it. A couple of seconds longer than your usual soldering time should suffice. You will notice that on the underside of the board there are hundreds of IC pin lands that do not appear to be connected to anything. These lands must be soldered in all positions because nearly all of them go somewhere on the top side!

Construction Commences

Take your time with the soldering - even at a slow pace you can complete this project in a couple of days - because it is very easy to miss a connection or produce a dry joint. We recommend that you insert one component at a time and solder it in completely before moving on to the next; a visual check of each joint is essential and if you have any doubt don't be afraid to use a magnifying glass. A few seconds wasted doing this can save hours - if not days trying to find a single missed connection!

All the holes on the board have been pre-drilled to the correct diameters but in the event of you having a device which will not quite go through the hole do not UNDER ANY CIRCUMSTANCES attempt to drill out to size - you will ruin the through hole plating! The ONLY holes you may drill out are the fixing holes for the board and the mounting holes for the extender socket. If you have a stubbern component try scraping down the diameter of its lead with a sharp knife or use a needle file to reduce its dimensions slightly. Probably the only offender you will find in this respect is the modulator which has rather large fixing lugs that sport a taper. These
might vary a little from device to device.

We recommend the use of sockets for all the integrated circuits as it is virtually impossible to remove ICs from a double sided THP board.

Start construction by soldering in all the DIL sockets while the board is flat - it makes life much easier and then insert all resistors and diodes. Next insert the nine board pins which connect to the transformer and IC1 (the off board voltage regulator). Proceed to solder in the in line strip sockets and the extender socket. When the latter is firmly soldered you should carefully drill out the board mounting holes with a drill using the connector's holes as a guide and then bolt it firmly into place.

Switched On System

Insert the three transistors for the tape I/O. Procede then to the capacitors and LEDs. Leave the three large smoothing capacitors till last and be very careful that you insert the LEDs the right way round. You will have to look very careful at the solid tantalum capacitors to find their polarity. You should then insert, and solder in the three preset potentiometers.

Before progressing further check
the polarity of all the diodes and electrolytic capacitors you have inserted.

You can now insert, and solder in the three crystals making sure you have them in the correct positions. The crystals have their frequencies stamped on them (usually in kilohertz).

Continue with construction by putting in the modulator and the two on board regulators. Make sure you have the regulators in the right position. Ensure that you insert them the right way round. The metal fin should be on the face of them furthest away from the main smoothing capacitors.

Temporarily mount IC 1 on its heatsink and run flying leads to the three pins allocated to it.

The great moment is close at rand but before inserting any integrated circuits give the power supply a dry run. Connect up the remaining six board pins to their corresponding terminals of the transformer and apply power. Use a voltmeter to see that you have the correct voltage rails present. You should get +5 V and +12 V at the output pins of ICs 1 and 2 respectively and -12 V at the output of IC3. You should read -5 V

HOW IT WORKS

The heart of the system is the microprocessor (MPU) itself - the faithful oid 8080 A . This MPU has a very simple to understand instruction set which is remarkably versatile for those who like to dabble in work at machine code level and because of its years of experience there is a great variety of software freely available to use with it. In addition it is one of the cheapest MPUs on the market.
The MPU will sequence through a list of

These eight lines are decoded to activate any one of 256 possible external devices through what are called PORTS
Before moving on from the heart of the system it is worth mentioning some of the Single lines depicted on the illustration. When the computer is initially switched on it is necessary to give it the right instruction to start with so that it can sequence on from manner. For this reason it is usual to have the
operation on the VDU screen and to do a re-initialisation without clearing all the memory (which would otherwise happen if one pressed the reset button). There are five remaining lines one of which is brought out the a spare push button on the front panel and the rest are piped down the multiway socket lines have to be encoded and formatted int an eight bit data byte When this is done the interrupt encoder tells the CPU with the the
decoding the least significant eight bits of the address bus) through the Port Select logic and issues a I/OR control signal will data from the keyboard be placed on the data busbar. Working in the opposite direction, the Output Port driving a bank of eight on board LEDs is a set of eight latches which catch and hold whatever data is on the busbar when they receive a coincident pair of signals from the port selector and the I/OW
line of the control bus. These onboard LEDs
instructions held in memory as 8 bit bytes and on receipt of each instruction will carry ou an operation which ranges from getting another byte of data from somewhere memory to carrying out sithe lata is not within the scope of this article to cover ne inner workings of the MPU itself or, for hat matter to explain every operation that the 8080 can offer.
As it operates sequentially the MPU needs clock. In this case the master frequency is MPU every 125 uS . This time is the duration of a microcycle and it takes from 4 to 11 microcycles for the MPU to complete an instruction.
The MPU itself has quite a large number of lines leading to it. The 8 data lines are in the form of a bi-directional busbar (i.e. can carry data to or from the MPU). To cut down on the data busbar serves a secondary purpose. It carries what is called "STATUS" information at a certain point in time within an instruction cycle. This status information is in the form of an 8 bit byte and is decoded by the System Controller. When decoded the Status byte feeds one of 5 lines with a locigal " 0 " which tells the rest of the system what sort of instruction the MPU is executing during that cycle. These lines are grouped together to form the CON (meaning that the computer signated N NA (meaning that the computer "Interrupt Request") MEMR (reading data from a memory location) MEMW (writing or storing - data into an internal memory or storing $\overline{\mathrm{I} 70 \mathrm{R}}$ (inputting data from an external source - such as a keyboard or a tape system) and I/OW (outputting-data to an external destination such as a VDU or a tape system).

The 16 lines which carry a 2 byte WORD which is used to ADDRESS a specific byte of memory form the uni-directional ADDRESS therefore address up to 65,536 (decimal) memory locations. We have limited the capacity of the TRITON to 8 K of memory but the address busbar (in common with the data and control busses) are buffered and can be fed to the outside world through a multiway connector thus allowing easy ex pansion to maximum capacity with add on boards.
The address bus also serves a duplicity of roles depending on whether the instruction cycle is a memory addressing or an I/O addressing cycle. As already stated all six teen lines are used to address memory loca tions but during an I/O read or write cycle the CPU is least significant address lines.
irst instruction at address location zero. We can reset the MPU by depressing a push button or at switch on by the POWER ON RESET
Those that want to can use the line marked HOLD for applications involving DMA means Memory Access). Basically this means that by making this line go to logic解 can isolate the internal CPU from all the buffers) (using the tristate facility of do what it and allow an external device. We have strapped this line to "O" with a remov able link so the facility is there for those who want it. RDYIN is used if any memory of peripheral is incapable of responding as fast as the computer desires. The external device can make this line go to "O" for any period of time (usually set by a monostable) and when his happensthes just that It simply stops perating as long as this line is low and when the RDYIN signal is removed it carries on as if nothing had happened The only thing it does do during this time is issue a signal to the outside world called WAIT. You can see the WAIT line designated as one of the unbuffered outputs. In addition by connecting RDYIN via a push button switch to ground one can halt the computer momentarily in the middle of any operation. Facility for bringing this out to a push button is not made on the board but it is a simple matter to pick up the right point on the top side and take it via a single wire to the front panel see the circuit diagram of this section.
The RESET output goes high momentarily when the rest button is pressed and can be used to carry a synchronous reset on external equipment; the HDLA output tells the outHOLD (or DMA) state - if anyone takes the HOLD Line high; the INTE Line tells the HOLD Line high, the INTE Lise is permitoutside we the be interrupted (the memonic stands for Interrupt Enabled) and the DBIN line indicates which way the computer expects data to be flowing on the bi-directional data bus. It goes high when the CPU is expecting data to flow INTO it.
We are using the $\overline{\text { STSTRB }}$ (STATUS STROBE) signal - to synchronise the memory mapping of the VDU - more is said about this in the relevant section.

As already implied the 8080 will allow itself to be interrupted in mid program provided that the program sets the Interrupt Enable rupts but only seven can really be used on this machine (Interrupt 0 is redundant as it duplicates RESET). An interrupt is entered into the machine on a single interrupt request line. Of the seven usable lines we are using two within the machine to do a clearing
gnal that an interrupt has been received When the CPU is ready to be interrupted it ssues an Interrupt Acknowledge Signal INTA which is used to place the encoded byte to the data bus. This byte enters the MP and directs the computer to operate the desired subroutine. At the end of the routin he computer reverts to the main program rupted.
The memory of TRITON is split into three types on the main board. There are locations for up to 4 K of Read Only Memory (ROM) which is split between four 2708 Erasable OOOOH to OFFFH The standard TRITON uses the first 1 K to hold Monitor and Utility routines necessary to initialise the machine and re-vector interrupts. The next 2 K holds a BASIC INTERPRETER and the fourth IK block is left spare for future expansion
There is 1 K of Random Access Memory dedicated to the VDU. This starts mmediately above the ROM area starting at 1000 H . Normally this RAM is addressed in Synchronism with the VDU line scan by the over addressing under program control (in effect interrupting the VDU). The VDU RAM can only be written into by the computer
The rest of memory is made up of RAM which is both read and write. This area is used to hold the stacks and tables of the MONITOR and BASIC INTERPRETER (512 bytes) and the main work area starts at 1600 H for a further $21 / 2 \mathrm{~K}$ ending at $1 F F F \mathrm{~F}$. This represents the full capacity of the on board memory. There memory should not why further-ead wrom location be added externally starting from location 2000 H
The ROM and VDU RAM areas are blocked into units of 1 K - to fall into line with the types ack and work area RAMs are laid out in blocks of 256 bytes.
The high order lines of the address busbar are used to decode which block is being addressed - this is done by the Chip Select decoder. Note that the ROM chip selects are gated with the MEMR signal from the Control Bus whereas this control signal and MEMW go straight to the RAM chips. This is because the 2111 Random Access Memory ICs used have internal chip select gating and output enables.

With the exception of the VDU which is "hybrid" the rest of the system is made up from a variety of I/O stages. The most important of the latter is the Keyboard Input The keyboard data and strobe lines are fed on to the data busbar via tri-state buffers which form the keyboard input port. Only when the computer's software addresses this port (by
help to make the TRITON system more versatile and can be used for test purposes or in specialised development applications. The LEDS themselves could be discarded and the eight lines brought to the outside
spare general purpose output port.
By making use of a couple of spare latches
By making use of a couple of spare latches on the board it was possible to provide two spare output lines on one port and a spare recorder power control relay

The UART (Universal Asynchronous Receiver/Transmitter) is the device which converts the eight bit wide parallel data on the busbar to a specially formatted serial stream to feed the tape recorder modulator It also carries out the complementary func tion of converting a received serial stream into parallel data bytes. The device operates as if it were two input ports and one outpu port. One of each sort of port would b obvious for a device which receives and ransmits but the requirement for a second innput port may not be so obvious. Because the device operates asynchronously from the main computer (it has its own to make perating ater wait from time to time to allow he slower operating UART to complete a transmission cycle. This is indicated by the UART activating a flag which is regularly monitored by the second input port.
The VDU portion of the computer is based on the Thomson-CFS Control chip and operates in a unique manner for this integrated circuit. Not only can one output to the VDU through an output port (in similar manner to using a teletype) but one can use the computer to write data directly into the VDU's memory at extremely high speeds
A further extension is the way the control chip has been used to handie Graphics. Instead of the usual six bit wide RAM seven bits are used in this of applicaion. This way enables the use or the comples are Asci codes. therefore assed with lower case "alpha" characters and all the control codes. Within the overal context of the computer some of the control codes serve dual purposes and the VDU control ROM inhibits printing a graphic when a control code is issued for genuine control purposes!
The graphic select logic looks at the two most significant bits of the ASCII code, determines whether or not the symbol is graphic or alpha-numeric, then proceeds to select the standard alpha-numeric ROM or the specially programmed graphics ROM There is quite a lot of extra logic associated with this operation as well as the Memory Map/IO changeover but we shall reserve comment on this to the section describing the circuit in detail.

Circuit diagram of the ROM and RAM circuitry. Note that in the basic machine IC 24 is omitted as are ICs 33-48.

HOW IT WORKS'

The circuit diagram of this section has been abbreviated as most of the memory circuitry is a repeat of the same theme. You can clearly see the difference between the ROMs and the Read/Write RAMS. There are four of the former - all 2708s but in the standard machine in which contains 1024 (decimal) bytes of memory each being 8 bits wide boytes of memory each being 8 bits wide. Io access a address and A0 through A9 are used for this purpose. The eight output pins are tri-state which are enabled by a " 0 " on pin 20 (the chip select input). The respective outputs from each of the ROMs can therefore be commoned together on the data bus. The Programming Enable pin (18) is only used when the devices are being programmed and therefore is left disconnected within the system. We use the block select signal gated with MEMR to provide the Chip Select strobe for the ROMs (this is described elsewhere). The Monitor program is located within le21 which starts at address location 000 H a firmware initialisation routine when switched on The Power On Reset ensures that the first instruction the CPU reads will be the one located at 000 H . BASIC is located within ICs 22 and 23 .
The RAM area of memory comprises TMS 2111-2 chips. These each contain 256 locations that are four bits wide. As we need to store eight bit bytes of data two chips are required for each 256 byte block of memory.
The odd number designations IC25 to IC47 The odd number designations IC25 to IC47 correspond to the low order nibble of the byte
while the respective even numbers (IC26 to while the respective even numbers (IC26 to IC48) correspond to the high order. Only
eight address lines (A0 through A7) are eight address lines (A0 through A7) are
required to uniquely select a byte within this required to uniquely select a byisation of a chip pair but we need to specify which pair by means of the Chip Select lines (these have been decoded elsewhere in the system)
The 2111s have internal chip select and Read/Write gating so we are able to drive the MEMR and MEMW inputs direct from the control busbar.

TRITON
 GRAPHICS

at the junction between R1 and the zener diode. If all is well here; systematically check that you have the correct voltages at the sockets of every integrated circuit. Use the schematic diagrams to help you identify the pin numbers.

Finally check that you have inserted the single wire link to the right of the extender socket.

Insert all the integrated circuits making absolutely sure that you have them orientated correctly and have them in the correct locations. Use the dot on the UART to locate pin 1 (the notch can be misleading) Note that the orientation of ICs varies a lot on the board and you must check each one individually. Insert the 2708 EROM chip that is marked MONITOR V4. 1 into the socket for IC21; the one marked BASIC L4. 1 "A" into the socket for IC22 and BASIC L4. $1^{\prime \prime}$ 'B" into IC23. Insert eight TMS 2111-2 devices in IC locations 25 to 32 inclusive. The only gaps you should have on the board are the IC 24 and ICs 33 to 48

Do not bother with a keyboard at the moment but simply make up a coaxial lead to go from the modulator to the aerial socket of a standard 625 line television set. Switch the TV on and allow it to warm up checking that a raster is just visible and tune it to approximately channel 36

Set the three on board potentiometers to their mid way

The table shows the decimal and hex codes associated with the Triton graphics and, where applicable, the key within a BASIC The symbols may be used within a BASic print stat
positions and apply power to the TRITON. You should see some change on the television screen even though you may not be spot on tune. Try adjusting the tuning over the whole range until a strong signal is locked in. You should see the welcome message:

TRITON READY FUNCTION: PGIOLWT

It may respond with INVALID as the keyboard is not fitted - do not worry this is still an indication that everything is working.

Hopefully this will be the case and you can rest assured that your computer is working! Switch the computer off; wait a few seconds and switch it on again. For a fraction of a second you will see a load of rubbish on the screen which will rapidly clear and the previous message will be repeated.

Switch off and make up an umbilical cord of wires to go from the keyboard socket on the board to the keyboard and associated push switches. Use colour coded wire and ensure that you make no mistake when connecting the relevant leads to the keyboard Cinch connector. It is double sided and you must make sure to hold it with the correct
ayvora3х 91

PARTS LIST

orientation or you may have disastrous consequences with the power lines. Different types of keyboards have different
connections. We refer you to the connection details supplied with your keyboard. The only comment we should make is that the specified keyboard, and some others, give you an option for bit 6 of the data. One option gives you upper case
characters only while the other gives both upper and lower case. This application needs the latter. The strobe is the static strobe which goes
to " 1 " as long as a key is depressed.

Procedure

The specified keyboard does not have any built in direct function keys and these have to be provided by separate push buttons. These have to be mounted on the front panel and are used to provide RESET, INT 1 (Clear Screen), INT2 (Reset without clearing memory), INT3 (Spare) and TAPE MANUAL OVERIDE - ganged with PAUSE (see descriptions elsewhere). The first four push switches all have a common ground and are "push to make" with a spring return. Use the Common lead and the respective signal leads to go to each of these switches. The fifth switch must be double pole "push to make - push to break'. One pair of contacts should take the special
'PAUSE" line to ground when it is on. This line does not exist in the umbilical cord coming from the board socket but must be soldered to the end of R3 going to pin 3 of IC4. The other pair of contacts is connected across the tape power control pins of the respective DIN socket.

You can make up all the above on flying leads to test the unit fully before putting it into its cabinet.

Power up again and get the initialisation message. Try pressing any' key on the keyboard EXCEPT PGIOLW or T and the computer should respond by saying INVALID. Press CONTROL C and the screen should clear and re-initialise. Press RESET. When the button is released the same should happen. Try INT 2 and the machine should, again, reinitialise. When you try INT1 the screen should clear without the message appearing. To get
something back on the screen press any keyboard key except those in the "key character" message (P.G.I.O.L.W.T). You should, once more, get INVALID. Depress CONTROL C once more and your computer is re-initialised and ready for test.

Program

We must assume at th is stage that you do not know anything about programming so simply follow the instructions and check that you get what is described.

Depress P on the keyboard. You will get:

P
PROG START $=$
(The computer is asking you to tell it the address of part of memory you wish to inspect)
Type in 0000 followed by carriage return.
The display will now show
P
PROG START $=0000$
000031 (31 is the data in location 0000)

Depress carriage return repeatedly and you will get the following as you step through the Monitor program

P
PROG START $=0000$
000031
000180
000214
0003 FB
etc
Reinitialise with CONTROL C and then type L. The computer will again ask you for a start address but this time will list out the contents of 15 adjacent locations starting from that address. We can use this to test that our memory is there and working in the RAM area.

Answer the computer with the address 1600 and a carriage return (if you make a mistake before you press CR you can backspace with CONTROL H and change an entry but you must then type through the rest of the line on the screen). The computer will list the contents against the memory addresses and then stop and ask for "MORE?". If all is well you should see 00 in all locations. To continue type Y and keep doing this checking all the locations up to the highest order RAM on the board. Above that address the computer will read FF which indicates that there is no memory there. If you see any data above address 15 FF that is anything other than 00 or FF you can be sure you have a bad connection to the RAM IC which contains the data in question. This test only holds true immediately after first initialisation and cannot be used if you have attempted to write programs.

To get out of LIST type any character other than Y and the computer will reinitialise. Carry out this or any of the other reset procedures already described and procede to check the G function. This is to facilitate running a machine code program. The computer will acknowledge

G

RUN
PROG START $=$
(this means it is ready to run but wants you to tell it from where in memory it should get its first instruction). Give it this information by typing 02B9 followed by CR. You will actually be running a re-initialisation program in the Monitor which should just acknowledge with

The Triton's board mounted in its case. Note that the extender'socket is available on the right hand side of the case and that the output of the modulator is brought out to a UHF socket on the back panel. The back panel also carries the DIN sockets and the mains fuse.

FUNCTION? PGIOLWT

You are now back where you started so you can try typing W which turns the computer into nothing more than a video display typewriter. You can type away to your heart's content testing out all the alpha numeric and graphics characters using the keys in unshifted, shifted, and control mode. Do this while inspecting the coding tables shown in the section describing the VDU and get used to the cursor move commands. Type a full line of characters and adjust RV1 for best line length. To get out of this mode of operation use CONTROL C or any of the other methods of resetting.

The next test sees BASIC L4. 1 in action; depress T. The computer acknowledges with

T

BASIC L4. 1
OK
$>$
Type in NEW followed by CR to make sure the memory is cleared and the computer re-acknowledges with the BASIC header. Very carefully
type in the following message line by line with a CR at the end of each line. Remember you can correct by backspacing with CONTROL H before you hit CR.
>10 FOR $A=1$ TO 10
>20 PRINT "HELLO"
>30 NEXT A
$>$ RUN
You should not re-type the "greater than" prompt signs - the computer is prompting YOU with these. When you press CR after typing RUN we hope you will be surprised - you have just written your first program!

You can now be pretty well assured that your computer is working correctly and it only remains to test and adjust the Tape $1 / 0$ circuits. This must be done in stages.

First check the Tape Output software. Connect an audio monitor (simple amplifier or crystal earpiece) between the "Tape Out" socket on the board and ground. You should hear a continuous tone. Call up BASIC by typing T and enter the above program again. Once you have done this get back to the Monitor without erasing your BASIC program
(use CONTROL C). Now press O to call up the Tape Output routine.

The computer will ask you for a TAPE HEADER which can be anything you like written in alpha-numerics. Preferably do not use a title longer than 20 characters as you might run out of input buffer space! We suggest you type in TEST ROUTINE. Follow this with CR while listening to the tone on the ear piece. Nothing will happen on the VDU but after a pause of between 5 and 6 seconds (longer if you are using a master clock crystal lower than the 7.20 MHz as specified) you will hear about 1 second of regular high speed pulses followed by a few seconds of what can best be described as
"burble" (this is your program going out). The burble will stop and you will hear just the continuous tone you heard at the beginning. After a further 5 or 6 seconds the VDU will confirm that the file has finished by displaying END followed by the re-initialisation heading.

On A Plate

Repeat this excercise but this time connect a continuity meter across the tape power control sockets on the board. (The manual overide switch must be open circuit). While you type in the tape header code the meter should show that the relay is open circuit but as soon as you depress the CR to start the operation the relay closes and stays closed until the VDU types END. It is obvious that the 5-6 second delay at each end of the routine is to allow a portion of blank tape to go by to reduce the chance of you overlapping files or missing the start of the active tape at the beginning of a new cassette.

You must now set the Baud rate for your system. The simplest way is to use a frequency meter connected to pin 3 of IC81. Adjust RV2 until the meter reads exactly 4800 Hz . A better way, and probably more viable for most constructors, is to use a standard test tape. It is better because different tape recorders might operate at different speeds which would influence the play back baud rate of your system. This does not matter if you are only recording a playing back your own programs but if you wish to use those from other sources your overall system MUST operate at 300 baud. Using a standard test tape calibrates your overall system to 300 baud as viewed from the outside world.

Monitor Manipulation

To carry out this test properly you must have a master clock crystal having a frequency greater than 4.5 MHz otherwise the VDU may not print out as fast as the data is coming in from the tape. You must also enter and run a special machine code program to facilitate the test. We will not explain how the program operates in this article except say that it accepts any data on the tape and displays it, verbatim, on the VDU. If garbarge is received and decoded garbarge will be printed. The test tape contains the alphabet followed by CR and Line Feed repeated many times over a period of a few minutes. All you have to do when the program is running is set RV3 to its midway position and adjust RV2 until you get the alphabet reliably repeated on the screen. If, at the best setting of RV2 you still get the occasional bit of rubbish try altering RV3 for best sensitivity. You should, of course, be using the phono output from your tape recorder but if you do not have this use the extension speaker socket with the volume set about 2.0% up from minimum.

TRITON Trials

Carry out the following

 instructions TO THE LETTER!Initialise the computer with RESET; type in P and enter the start address for the program as 1600 . For zero always use 0 and not o. Press CR and location 1600 will be shown to contain 00 . Now use the memory change facility to start writing your program. Simply type in the following list of hexadecimal instructions - each pair of digits should be followed by CR. You will end up with a column showing address locations to the right of which is a column showing what was in that location (should have been 00 in all cases) and to the right of that the new data you have just typed in. When you have typed in the complete list of instructions use CONTROL C to re-initialise then type L and list from location 1600 (as previously described). Check that the codes in each location correspond exactly with those in the published program. Use CONTROL C to re-initialise and then type G. Enter 1600 without pressing CR at this stage. Make sure your tape recorder
is properly connected to the board and switch on the recorder in PLAY mode. Press CR and procede to adjust RV2 as previously described. You should see:

ABCDEFGHIJKLMNOPQRSTUVW-

 XYZABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOP etc
until the recording ends or you switch off the tape recorder. While this is happening your computer is locked within a program loop and you will not be able to get out of this with CONTROL C. You will have to use INT2 to re-initialise.

Here is the program you must type in: Address location Data you must enter

1600	$C D$
1601	27
1602	03
1603	$C D$
1604	$1 D$
1605	03
1606	$C D$
1607	13
1608	00
1609	$C 3$
$160 A$	03
$160 B$	16

Your computer is now completely set up and ready for use. You have already been shown how to enter and run simple programs in BASIC and Machine Code. Why not now read the further articles in the Supplement which will show you how to make more full use of the TRITON. You have made an extremely powerful computer whose applications are only limited by your own imagination and the development of more sophisticated software - coupled with extender boards to give you extra I/O functions (Floppy Disks, Line Printers, extra Tape Recorders, more Memory etc). Keep reading ETI for further exciting applications and developments.

The following pages contain the circuit diagrams and descriptions for the complete Triton design. 'How It Works' sections refer to the diagram they accompany.

Computing Today carries an article on using the Triton's BASIC and a review of the machine by John Coll.

A fuller description of the Triton's monitor will follow in next month's Computing Today.

The CPU section of the Triton.

HOW IT WORKS

IC4 is the master clock oscillator which contains divider circuits to provide the two phase clock (1 and 02) for the 8080 . You can use different frequency crystals for X1 but the ideal value is 7.20 MHz and this value should not be exceeded. Lower frequency device are fine but the system will operate propor tionally slower. If you put in a higher frequency crystal not only will you run into memory access time problems but the system will be operating at a rate faster than the $\checkmark D U$ can handle. The Monitor program ha provided the maximum permissable pr ate for a clock frequency of 7.20 MH A TLempatible but not used on the chip also contains hating circuits to synchronise the externally aeng RDYIN Command before feeding his to the CPU An internal Schmitt Trigge on the reset input line (RESIN) allows a ver imple charge up circuit comprising R2 and C20 to provide power on reset. Manual rese s carried out by momentarily taking RESIN 0 volts via a push button. The clock receives a feedback signal (SYNC) from the CPU which is gated with $\phi 1$ to give TTATUS STROBE pulse at the precise mo ment the data busbars are carrying the status byte. The pulse (STSTB) is fed to the System Control chip (IC6) to latch the status byt and is also used by the VDU to enabl Memory Mapping changeover
C19 discourages the crystals from har monic operation. This shifts the operating requency by about 10 Hz but this is of no real significance
A description of the inner workings of the CPU (IC5) is beyond the scope of this article It's general operations will however be Note that certain outputs (namely HDLA DBIN, INTE and WAIT) are taken to the extender socket directly from the CPU These are unbuffered and account should be taken of this if you expand the system. Each Ine will ddequately drive a slngle TTL loau and maybe a handful if you use low power devices.
The HOLD line going to pin 13 of the 8080 is not used within the main board and is used to carry a DMA request which, via the HDLA signal puts all the busbar buffers into a high impedance state. This could facilitate a take over of the complete memory of this system by a peripheral device or, possibly, another computer. Normally this line should be at logic level so we have hard wit with a board link. Tubstituted if use is made of this line!

RDYIN is normally held at level " 1 ". If taken to " 0 " it causes the CPU to stop operating. Nothing happens as long as the registers within the MPU are maintained When the signal returns to "l" the MPU carries on operating as if nothing had happened. By taking pin 3 of IC4 via a push switch to ground we have a ready made "PAUSE" control which will enable the TRITON to stop in mid program; say, th middle of long high speed VDU output to inspect the screen
The chances are very high that you will not need RDYIN for external systems so the feature could be built in permanently. Note should be made that it is bad practice to have a push switch hard wired to ground on this line if at any time in the future you derive the RDYIN signal from a gate. Prss the but nd bang goes the output stage of on nocent gate
IC6 is an 8228 N 8080 System Controlle which gates out the five main control busbar ignals from the status byte at the time of STSTB and holds these on latches. The chip so comprises a set of bi-directional buffers or the data busbar; the direction of these buffers is controlled by DBIN and their outputs are disabled on the receipt of a DMA request by the HDLA signai. We were not happy that this buffer alone would be capable of supporting a fully extended system hence further buffering stage in the shape of IC9 74LS245). Like the System Controller the latter chip is supervised by the HDLA and DBIN signals. Integrity of any DMA request s maintained on the data bus
ICs 7 and 8 are uni-directional tri-state buffers which should allow the address busbar to feed a fully extended system. Note that we have inverted Al5 prior to putting it on the bus. By doing this we have been able to economise on che main board system. This

Photo of the

 underside of a section of the riton's PCB. Note that although it app ears that there are no connec igns to some IC pins - ALL pins must be sold ered as these pins are used on the topside o the board.should present no problems to anyone wor king with extender boards provided that this fact is remembered
Remember, you must disable the push switch in this mode, that is why we have shown it dotted in and why Transam have not built this facility into their PCB in an obvious way. Why not use common sense and make use of this extremely valuable acility - all that is needed is the cost of 20 cms of wire! You do not even need another push switch because you can use a spare pair of contacts on the Tape Control Manual Overide. It does not normally matter if you press this button provided the cassette recorder is switched off with its own control. Cll is the Interupt Encoder wion has eight lines going in to it. These are normally neld high by pur it nible is output at pins 6,7 encod all the in puts are high all the outputs are high and a " 0 " is placed on the Enable Output line at pin 15 (the latter is used to generate the INT signal - Interupt Request - to the CPU). If any single input is pulled to 0 volts, via the push switches or external logic, an equivalent code to describe that line number is output as the Interupt Data Nibble and pin 15 goes high telling the MPU that an interupt has been requested. The MPU will carry on operating until it reaches a perissable point in it's cycle to service the interupt. When this point is reached the MPU outputs an Interupt Acknowledge signal (INTA) through the status byte which is decoded and latched by the System Controller. This signal is used to activate the Output Enable of 12 (an eight wide the the nible ting buffer) which normats the byich is then accepted by the CPU as a RESTART instruction The program counter jumps to one of eight fixed locations in memory - the location is defined by the ID byte - while the STACK preserves all current register data

and status information. The MPU then operates on the interupt routine and returns to its main program when it comes to an RET instruction

Interupt 0 should not be used even though it is available on the PCB. It simply duplicate the manual reset operation but would creat problems if used with the TRITON s Monitor program. INT1 is dedicated by the Monitor to provide a Clear Screen and Reset Curso facility which can be carried out at any time INT2 is also a dedicated function. The Moni tor includes memory test facilites as part o the power up routine and use of the rese problem we are using INT2 as a non problem we are which as far as any pro destructue res like reset and the system will re-initialise hut the memory will not be cleared. ALWAYS use INT2 for reset unless one of your pro grams has corrupted the Monitors stack" Only then should you press manual reset or carry out a Power On Reset by swit switching the machine off and on

HOW IT WORKS

1C61, the Thomson CFS VDU control integrated circuit, has a built in clock which generates standard ion synchronisation putserlace is used and a simplified field sync train is generated as opposed to the full CCIR specification
The chip, synchronously with this train of pulses, generates addresses for the VDU RAM so that the correct code of the character is selected as the TV raster spot is traversing the respective part of the television screen. An external "Picture Point Oscillator" (IC55c and d) in conjunction with a divider chain (IC63) sets the horizontal width of a character and steps the address of the control chip, output from pin 12(IC63) to pin 9 (IC61). The inverted output of IC63 pin 15 is used to latch the data being addressed by the controller into IC68 (a seven wide latch), latch the picture point pattern generated by the (haracter gent pater point divider chain (IC63) at the end of each character width

The picture point width (hence the character width and number of characters per line) is set by the frequency of the oscillator control RV1.
we are using a 7 bit wide RAM to hold the FULL ASCII code - we need this to provide capacity for graphics. The outputs of the latches feed both the standard alpha-numeric character generator (IC69) and a specially programmed ROM (IC70) which contains picture point data for the 64 graphic symbols. We use the EXCLUSIVE OR function (IC62d) on bits 6 and 7 of the ASCII code to select either the graphics or alpha-numeric gating (ICs67a and d) to ensure that the

Three further address lines from the VDU controller (pins 11, 12 and 13) address the picture point data ROWS in both ICs 69 and 70. Due to a limitation caused by the interna operation of IC61 chip the row address code 000 is output for the top row and the bottom four rows of the character cell. Normally rows $0,8,9,10$ and 11 are used to provide inter line gaps for alpha-numeric displays while rows 1 to 7 carry alpha-numeric picture point data. We have had to take this into account when designing the font of graphics symbols - some of which cannot fill the complete character cell rectangle on the screen. Look at the table of graphics cha justed the graphics to suit this restriction
Further graphics to suit this restriction
limitation are that a graphic must not appear on the topmost line of the television screen if that graphic contains picture points in its top row. IC61 requires there to be zeros present here in order to derive field blanking. This problem could be overcome with extra gating but this would have been at the expense of simplicity
A similar problem (involving line blanking) is resolved by gating the video output with the INI function (pin 26 of IC61) in IC71b Without this any graphics symbol having a picture point in its most left hand column would have caused a "wrap around" while a line that interferes with the DC level of the line sync pulse. The only problem that ret a single "ex re" picture point showing the right of the 64th character down a line if you use a graphic in the most left hand position of a line. This does not happen with all graphics - only those that have picture points in their most left hand column
The five outputs from the alpha-numeric ROM are wire ORED with five of the eight integrity of the cursor generating pulse (pin 15 of IC61) is not corrupted
outputs from the graphics ROM and held high via pull up resistors R22-26. They are then fed to the correct positions in the serialiser shift register IC72. Note that the remaining three outputs from the graphics ROM have to be ANDED with a signal de fining whether or not the character is a graphic (done by ics71a, c and d). This is to there is a correct inter-character are printe here is a correct inter-character gap
So far we have avoided talking about how chip. Let's deal with that now.
We are allowing the CPU to memory map the VDU RAM. To do this we have had to allow the MPU to take over addressing control of the VDU RAM. This is done by taking all the address lines from IC61 and their equivalents from the system's busbar to a set of data selectors (ICs64, 65 and 66). I the MPU addresses the VDU memory loca tion (any address between 1000 H and 13 FFH) the block select line (MAP VDU) is activated This of course, could happen if ever the address busbar went into a high impedance state (during HOLD etc) so to prevent any spurious pulses afrecting the operation we gate the 0 block select lie wirn Sis mation is on the busbar We do the gating in D type latch so that during the complet cycle of a VDU memory map the data selec tors are set to allow the computer addres bus to be transmitted to the inputs of the VDU RAM. At the end of that cycle and at all other times the data selectors hand ove address control to IC61
A similar transfer of responsibility takes lace between the normal input data to the DU (which gets to it via an output port) and he main system data bus. In this case the data is selected by ICs59 and 60. These also eceive their changeover instruction from he changeover latch IC53. Note that we als have to do a changeover between the inter nally generated memory write command (pin 7 of IC61) and the MPU's MEMW strobe This is done within IC60
It only remains to describe the gates on the former are used to force the ASCII IC54. Th "Space" on to the data lines when pin 13 (IC61) is at " O " in coincidence with a writing
pulse to the VDU memory. This is to allow for the very useful internal function provided by the IC61 to clear the screen and reset the cursor in one operation.
The VDU controller carries out a number of non writing functions as well as entering and addressing data within its memory. By using some of the ASCII codes as control it is possible to do such things as move the cursor in steps to any position on the screen, reset the cursor, carry out a line feed or do a carriage return clearing only the unused part of the line. There are also a couple of gnore - OOH and 04 H - respectively these are NUL (or no operation) and EOT (end of text) flags. Recognition of all these special codes is carried out by the VDU CONTROL ROM (IC54). This has had to be specially programmed for the TRITON
To get best use from the TRITON and its VDU you need to know hexadecimal and decimal values of all the ASCII codes that are used to generate alpha-numerics, graphics, and control characters. You also need to know which of the keyboard keys correspond to each graphic character. To help you we show all the graphics with their respec tive codes and key names in Fig. 00. Alphanumeric codes are shown in Fig. 00 and the
control codes in Fig. 00 .
Normally you may output a character to the VDU for printing in I/0 mode every 8.3 ms . The standard TRITON monitor errs outputs a character roughly every 9 mS . If ever you write your own software you must ever you write your own software you must thermore there are two $1 / 0$ operations which take a considerably longer time these are "Clear Screen and Home Cursor" and "Home Cursor'". These instructions must be followed by a delay of at least 132 mS . Again the TRITON's monitor makes allowance for this but you can get direct access to these func tions if you use either the PRINT CON TROL" or "VDU" commands which exist in BASIC LA.1. If you use these in BASIC you MUST follow them with a delay loop having a time constant greater than 132 mS . (In practice we found that a 200 step "FOR NEXT" instruction was quite safe ${ }_{2}$)

HOW IT WORKS

During an INPUT or OUTPUT instruction cycle the MPU will generate the address of the $1 / O$ port required on the least 8 significant bits of the address busbar. This has to be decoded to provide a single line sufficient to provide this address on its own because there is no way that the port can tell whether the select signal has come from a genuine port select instruction or whether it is the low order byte of a memory read/write cycle. Furthermore there are times within the machine cycle when the address busbar can be in a transient, or high impedance state which could cause indeterminate address information to be decoded by the port select circuits.
To prevent these problems and also to differentiate between input and output ports the decoded port line is gated with either the $\overline{\mathrm{I} / \mathrm{OR}}$ or $\overline{\mathrm{I}} \mathrm{OW}$ control line. One or other of these lines goes to "O" after the ports select address has been placed on the busbar and terminates BEFORE the address data changes. This pulse is of the correct duration to strebe the in question Take for example the control of the Keyboard INPUT port The port itself is simply an eight wide set of non-inverting tri-state buffers permanently connected to the data bus
Pins 1 and 19 enable the output of the port when they go to level "O". Normally these pins are at " 1 " and held there by the output of IC13b and keyboard data cannot affect the data bus. IC18b and 15, between them allow 16 lines to be uniquely decoded from address bits 0 to 7 . We only use 8 ports on the main board so part of this facility is redundant hence not all the outputs from IC15 are used. ICl8b is a 2 to 4 line decoder operating as a 3 input NAND gate. The reason for this is that the device was one left over in a half used package and its use avoided having to put in an extra ic just for the sake of one 3 -input bus pin l of IC15 goes low which points to Port 0 (the Keyboard) This signal is ORED with IOR by ICl3c d and b so when there is coincidence IC49 receives " 0 " wn pins 1 and 19. Whatever data is coming from the key board is transmitted on to the data bus and then accepted by the CPU as genuine input data. The reason for using three NAND gates
to provide the OR function is again to use spare capacity in partly used ICs.
While on the subject of the keyboard port some might question the use of only ONE port for the keyboard instead of having a second one to check the status. We get Keyboard Input) sub routine of the monitor Interconnections with the keyboard put the 7 bits of ASCII on bits 1 to 7 and instead of parity we are using bit 8 to carry the keyboard strobe. Output port 3 works in similar fashion. IC15 decodes its address on pin 4 and IC14a ORs it with, in this case, l/OW. The resultant pulse is used as a clock to the D type latches within IC50. The data is entered into the latches on the rising (trailing) edge of the pulse. Using the trailing edge does not matter here. There is just sufficient current sinking capacity in a 74LS374 (IC50) to drive a small LED direct through a 1 kO limiting resistor. The byte of data is therefore transferred from the busbar to the latches and displayed in binary fashion on the LEDs. " 0 " " 0 " is output.
The VDU, when operating in I/O mode, is situated at PORT 5. This works in much the same way as the LED port but we are using a pulse Bits 1 to 7 carry ASCII data and bit 8 the VDU strobe which is formatted to have the correct timing characteristics by the OUTCH (VDU Output) sub-routine of the Monitor program.

A further output port was required to switch the relay of the tape recorder power control (to effect automatic starting and stopping of the tape). Theoretically a single bit port was an that was required but as things turned out in the design this would have required a new integrated circuit (there were no spare latches left over anywhere else!). Because of this it was felt sensible to use a latches connected as two pairs. This way we the relay at pin ll (the Qoutput of one latch) by using data bit (and this left a spare line on that port (bit 7) which can be used by the experimenter as an output line The port to call for this line is number 7. At the same time the other pair of latches in IC52 are used as OUTPUT PORT 6 which comprises bits 7 and
8. These are also spare

As we've moved on to the subject of tape control take note that there is a push button switch connected across the relay contacts. This is to allow manual override so that the manual control without rewound etc. Under mame control lead see the relevant section for more details about the serialiser I/O ports or MODEM for the tape recorder
The memory of TRITON compr
blocks of ROM, one IK block of VDU RAM and twelve 256byte blocks of Read/Write RAM. The high order addresses are used to decode individual lines which enable each block while low order addresses point to a specific location within the previously decoded block.

C16 is a 3 to 8 line decoder but we are able o use it to decode, uniquely, eight individual blocks of 1 K from the six most significant address lines. This is made possible by using Al5 in inverted form and the internal gated Select inputs of the 74LSI38. The four lowest order selected lines correspond to memory blocks which start at $0000 \mathrm{H}, 0400 \mathrm{H}, 0800 \mathrm{H}$ and 0 COOH respectively and these hold the MONITOR. BASIC "A", and BASIC "B" read only memories. The block starting at 0 C 00 H is a spare block reserved for ROM expansion. the block of VDU RAM of 16 addresses three lines are fed to three 2 to 4 line decoders Cs 17 and 18 along with 2 ddress bits $A 8$ and ICs 17
A9.

The latter three decoders break down the remaining 1 K blocks into 12 blocks - each containing 256 bytes. Each of these 12 lines goes to a specific pair of random access memory integrated circuits that form the main work area of the compute
Except for the ROMs, gating with MEMR memories themselves The 2708 read the memories only boast a Thip 2708 read only is necessary to gate the MEMR control signal with each of the chip select lines prior to making connection with the appropriate pin. This gating is carried out by the quad 2 input OR gates contained within IC19

INVERT

The tape $1 / 0$ section of the Triton system.

HOW IT WORKS

The AY-5-1013 Universal Asynchronous Receiver transmitter features tri-state out puts for received data and all status bits. Note hat respective bits of the data in and data out terminals of the chip are commoned together before joining the TRITON's data bus. The Status bits of the UART are similarly commoned with the DAV (Data Available) bit tied to bit 1 on the bus; PE (Parity Error) to bit 2; FE (Framing Error) to bit 3; OR (Over Run Error) to bit 4 and TBMT (Transmitter Buffer empty) to bit 5. Note oly samples DAV and TBMT. nly samples DAV and TBMT
The DAV and TBMT flags are used to tell he system when the UART has received and when the UART has finished a current serialising cycle and is ready to accept a new byte for transmission. In actual fact the UART will accept a second byte while it is still transmitting the first due to the double buffering nature of its transmitter buffer.
should be set on a trequency meter
In order to transmit data the TRITON Monitor first checks to see whether the UART transmitter buffer is empty by activating the STATUS WORD ENABLE which is, in effect, PORT 1. This places the status word on the data bus and the MPU checks to see whether bit 5 (TBMT) flag is at " 1 ". If so it indicates that the UART is ready and the Monitor then outputs its data on to the busbar while activating the DATA transmission serialising cycle and the serial data is output to the MODEM (IC82) at pin 25. If the TBMT flag was at "0" the Monitor goes into a loop and waits until the UART is ready.
In order to receive data the MPU asks for status information, again through input port but this time checks bit 1 (the Data Avail able flag). This goes high as soon as a com plete serial byte has been received and formatted into parallel form in the UART's
byte of data is received. Clearly the softwar cycle, which carries out this operation, MUST have a shorter loop period than the period between one received byte and the next otherwise overrun errors will occur.
The Motorola single chip MODEM seemed highly attractive from the word go as it is extremely economical on external com ponents and needs no adjustment.
The MC14412VL is such a versatile chip mode it should be used in decide which order to have a frequed in. Eventualy, give best reliability with most tape recorders and to allow the MODEM to receive at up to 600 baud (not that this is used at present) we opted to go for the USA standard "originate" mode in which the transmitted frequency pair is: \quad MARK (" 1 ") $=1,270 \mathrm{~Hz}$

SPACE ("0") $=1,070 \mathrm{~Hz}$
Clearly we need to be able to demodulate the same pair of frequencies so have to

The MODEM interfaces directly with the UART and only needs a crystal and resisto to lock it to the correct frequency pairs. It is most important that a crystal of exactly 1.0000 MHz is used here otherwise you will not be able to use pre-recorded tapes! The transmitted carrier of the MODEM is an eigh level digitally synthesised sine wave of abou 300 m rms which is buffed by TRI befor being input.

To carry out a demodulation satisfactorily the MODEM IC requires a very precise unity mark/space waveform at pin 1 The tolerance on the mark/space ratio has to be better than $\pm 4 \%$. If the carrier being played back from the recorder carries any harmonic distortion this will result in an asymmetric sinusoid which will be difficult to convert to a square wave of the above specification. To further purify the sine wave it is amplified and filtered by Q3. To some extent the input sensitivity can be adjusted by RV3 but under

The format of serialised data in TRITON is START bit, 8 data bits, a parity bit and 2 STOP bits. These are transmitted at a rate of 300 baud set by the clock comprising IC81 (an NE 555). Baud rate is adjustable by about ± 50 percent by means of $R V 2$ and, of course, it is important thar sources (recorded in
 obtain a rate of 300 baud the oscilator must
output latches. The MPU will toop until this condition is met. When the flag goes to " 1 " he MPU uses port 4 to send a "Received Data Enable" strobe to the UART. This atches the outputs of the receiver buffer system busbar. To prevent the system reacting a second time to the same DAV flag the pulse from port 4 is also used to reset DAV which then stays low until a completely new
perate in Simplex mode hence pins 2,10 and 14 of IC82 are allowed to be " 1 ". Internal pull up resistors within the chip do away with the need for external pull ups hanging on these pins! Pin 2 actually is the "Self Test" control nput which makes the MODEM's receiver being transmitted. Keeping this active prevents any ambiguity as to whether one is originating or answering
ormal circumstances (within the range o input voltages mentioned above) this should always be set in its mid-point position. The high purity sinewave at the collector of Q3 is fed tor IC83 which is a zero crossing compa sine wave to within about 3 mV . With a good input signal this results in a square wave that more than adequately meets the input specification of the MODEM

PSU

The power supply section of the Triton is based on three ter minal regulators.

A close-up photograph of the PSU. Note the orientation of the IC regulators

BARREL TYPE X-Y PLOTTER ASSEMBLY

BARREL TYPE X-Y
 PLOTTER ASSEMBLY

20 V Sepping Motor Provision for

 Pen (Pen not supplied). AS PICTURE £55 ea. With atternative motor for hon-reversible requirements recorder/printer applications etc $£ 18$ e9. With Pen and Paper guides $£ 78$ With Pen. Sprocket and Paper guides £88. Other voltage options available. P\&P all units $£ 2.50$
X-Y PLOTTER ASSEMBLY

Consisting of rame with $X \&$ assemblies. (No pen but provision) Bed size $12^{\prime \prime} \times 9^{\prime \prime}$. Motor options
120 V only $£ 43^{2} 45$ changed to $12 / 24 \mathrm{~V}$. 120 V ican be £51.15 ez. $12 / 24 \mathrm{~V} £ 70.40 \mathrm{ea}$ P\&P all versions $£ 2.50$

X-Y PLOTTER ASSEMBLY

STEPPING MOTORS ONLY
Motors as used in plotters etc. Al motors 200 steps per revolution. 20 or inch torque. 120V 1000.0.1000 ohm Can be changed with care to $12 / 24 \mathrm{~V}$. Data supplied $£ 8$ ea. P\& E1 Supplied for $12 / 24 \mathrm{~V}$ operatio E13 ea P\&P El
Just think about the uses!

OSCILLOSCOPE TUBES

Brand New Boxed - Carriage all tubes $£ 3.25$
Telequipment S52. £ 10 ea; D51. £15 ea, S42. £ 10 ea; D53A £ 20 ea: D52, $£ 15$ ea; S31 $£ 10$ ea; Bradley 200. £ 85 ea Advance $0 S 3000, \mathbf{£ 8 5}$ ear GEC types 924 F . $\mathbf{£ 2 5}$ ea; 924 E £17.50 ea: 14968 , £75 ea; Brimar D13-51GH, £65 ea D10-210GH/32, £40 ea; D13-46GM, £35 ea
NOT BOXED - NEW - WARRANTED. Telefunken D14-131 replacement for Solartron CD1740. Cossor CDU150. S.E labs SM1 12 and GEC/MOV 1474 at $£ 55$ ea

BUILD YOUR OWN BUS

Approx. $11 / 2$ metre multiway ribbon cable terminated each end Approx. $1 / 2$ metre multiway ribbon cable terminated each end
with a 50 -way female edge connector Takes 0.1 printed circuit with a 50 -way female
board $£ 2$ ea. P\&P $75 p$.

NOW - INCREASE AREA GIVEN TO PICK-A-PACK AT 50p per Ib

Large volume of new components you can't afford to miss
TELETYPE ASR 33 with 20 ma loop. Good condition. Special low price $£ 395 \mathrm{ea}$

1/2" MAG TAPE

Pprox 1500 ft Now 20p each P\&P E1

Approx
FOR THE VDU BuILDER tube M $28-13 \mathrm{GH} 23 \times 17 \mathrm{~cm}$ at $£ 12$ Base connections supplied

PLESSEY VDU. No keyboard - welrd electronics $£ 60$ ea TELETYPE KSR 33 from $£ 275$ each
Limited quantity of 35RO - 20 ma loop - can be changed to ASC 11 code (3 hours simple work and E10 parts) OUR PRICE EXCLUDING PARTS REQUIRED £ 70 ea
Ex-Ministry Teletype Punches 8 level 110 char per sec. $\mathbf{£} 50$ each MPEX M7. Nice Condion 225
mal 'QWERTY KEYBOARDS or can be carefully cut to take any size £ 3 each P\&P £1 50

74S00
7401
$74 \mathrm{SO2}$
75325 - Memory Core Drivers. 600 ma capability. Fast Other 5453 - Dutous at £ 1 ea

AUDIO AMPLIFIER BOARD. SIze $4 / 2 \times 21 / 2$. Output pair
TIP31s Circuit supplied $£ 1.50$ ea. P\&P 30 p

DIGITAL 24-hour CLOCK with built in Alarm as used in Braun Digital clocks. Silent running. Large illuminated numerals. AC
mains. Size $63 / 6 \times 2^{3 / 8} \times 2^{3 / 2}$. Only $£ 4.25$ ea P\&P 50 p

ITT-CREED
Punches and Prints on $1 / 8$ paper. Complete with Powe Supply Solid State. Size 1
$113 / 4 \times 22$ deep $£ 13$ ea.

5 LEVEL PAPER TAPE READER Reversible. Small size pprox $5 \times 3 \times 4 \quad \varepsilon 2$ ach P\&P E. 1

* TRANSISTORS/DIODES/

 RECTIFIERS, ETC.
Markings

eac
BC147; 2N3707: BC172B; BC251B: BC348B $\mathrm{BC} 171 \mathrm{~A} / \mathrm{B}, \mathrm{BC} 413$, D10, BAX13: IN937 BA102BE: BZXB3: TIS6 1: 2 N 5040

At 10p each

N4733A: SN7451N: BYX10-15KV 0.36A. BYZ1015p ea TIP34A - 50p ea. BD538-40p ea Heavy Duty Bridge Rectifier - 20p ea
CA3123E-£1 ea BDY55-£1 ea 2 N3055 40p ea:TIP31B 12p
TBA560CO \& 2 ea; 1 N 4436 T -T03 Flat mount 10 A 200piv £1 ea 2N5879 with 2N5881 Motoro 150W Comp, pair £2.
8D535: BD538 Comp pair - 75p.
Linear Amp 709 - 25p ea
P\&P Extra on all items
FINNED HEAT SINK - single TO 3 - size $4 \frac{3}{4}$ in x 3in $\times 11 / 4$ in 50 p ea. P\&P 75p
Texas Bridge Rectifier 5SB05-50V 5A. 60p ea
P\&P 20 p .
MOTOROLA POWER TRANSISTORS TyPE W0993/441. TO3 Min voltage 500. 20p ea. P\&P 15 p
BFY51 BFY51-12p
BU208 £1.20 ea P\&P $15 p$

CABLE NEATERS - neaten up your wire on a chassis with these push-on clips. 10 for 20p. 100 for E1.50. P\&P extra.

TELEPHONES. Post Office style 746 Black or iwo-tone $£ 6.50$ ea Modern style 706 Black or two-tone grey $£ 4.50$ ea, $P \& P £ 1$ each Old black
style £ 1.50 each P\&P £
HANDSETS Only 706 style $\mathbf{£ 1 . 7 5 \text { each. Older }}$
TELEPHONE EXCHANGES. Eg 15 -way automatic exchange only from $£ 95$.

* 1000 F Feed thru Capacitors 10 for 30p. P\&P

HIVAC Miniature NEONS. App 60V Brand New 10 off 20p. P\&P extra
GRATICULES $12 \times 14 \mathrm{~cm}$ high quality plastic 15 p
ea P\&P $10 p$
LARGE RANGE OF ELECTROSTATIC VOLT METERS. From $0.300 \mathrm{~V} 2^{\prime \prime}$ £3, to 20 KV max General guide $5 K V 3^{1 / 2} £ 5$. Thereafter $£ 1$ per KV DON'T FO
DON'T FORGET YOUR MANUALS. S.A.E. with

POWERFUL MINIATURE GERMAN 12 V REVERSIBLE MOTOR. No load current 70MA excessive load 400 MA Size $11 / 2 \times 13 / 16$ dia
Shatt $5 / 16 x$ approx $1 / 16$ dia. 50 p each $P \& P$ 40p.

A MILLION MUST GO

HIGH NOISE IMMUNITY LOGIC.
DUAL IN LINE 16.PIN CERAMIC. 12 V Rail Con ventional TTL package Guaranteed full spec
devices. Full data. $2 p$ ea.
MIXED PACKAGE - £1 P\&P 25p

NEW ITEMS

ALMA MIN. PUSH BUTTON REED SWITCHES. High reliability $18 \times 27 \times 18 \mathrm{~mm}$. Ideal for KEYBOARO 50p ea. P\&P extra.
MOTOROLA MC 4028 60p ea
MOTOROLA MC 7441 40p ea
IC 7402 12D ea
MINIATURE FANS 3 square (like mulfins) $115 \mathrm{~V} £ 5$ ea. P\&P
HONEYWELL HUMIDITY CONTROLLERS 25p ea. P\&P
SPRAGUE $100 \mathrm{mfd}+500 \mathrm{mfd} 210 \mathrm{VDC}$ working. Brand new 5 for 50p. P\&P 50p.
REED SWITCHES. Sub-min Size 20 mm 10 p ea
SMITHS encapsulated transistorised AUDIBLE WARNING DEVICES 4V-12V. Can be driven from TTL 50p ea P\&P 25p. Attractive GRILLS - speaker covers /ventilation. Size approx 4×7 (Size may vary slightly). Plastic 20p ea. Metal 35p ea P\& extra.

BURROUGHS 9 digit PANAPLEX numeric display 7 segme 0.25 digits with red bezel. With data $£ 1.95$ ea. P\&P 30 p MINIATURE NIXIE TUBE type ITT 5870ST. Digit size 0.5 Wire ended 50p each. P\&P 20p 4 for $£ 1.75$ P\&P 35p
RANSFORMERS 50p ea P\&P 50p AC input. Secondary 30 V and 2.6 V OVA. 50p ea
21-WAY SELECTOR SWITCH. Single pole with reset coil $240 V$ AC coils. Additional switch contacts for auto reset etc 1.45 ea. P\&P $75 p$
s ABOVE 240 V relay on base plate and full black plastic cover £2.45 ea, P\&P £1.50
SNAIL BLOWER 110 V AC 500 MA Brand new by Airflow Developments. Quiet and very good looking £2.50 ea. P\&P £1 Duty. Plug-in type with base 50 ea. P\&P 25 p pole C / O. Heavy MINIATURE KEYBOARD. Push contacts, marked 0.9 and A-F and 3 user definable keys $£ 1.75$ ea. P\&iP 35p.
MULLARD CORE LA4245 at 15p ea. P\&P 10p
CLARE REEO RELAYS $24 V$ DC Coil. Single pole make. Size ROTRON $\times 7 / 16 \times 7 / 16$ at 25 p ea. P\&P 10p
ROTRON CENTAUR FANS. Size $4.5^{\prime \prime} \times 4.5^{\prime \prime} \times 1.5^{\prime \prime} 115 \mathrm{~V}$ 5-blade \&4 ea. P\&P 75 p
Min. PLUG-IN type RELAYS. Plastic covers 2-pole c/o 24 V 25p ea P\&P 15p
CROUZET/MUR
CROUZET/MURTEN SCHWEIZ MOTORS. 110 V 50 HZ 4 rpm. Gearbox can be removed. 75p ea. P\&P 75p.
le phase $1 / 12 \mathrm{th}$ PY, 1450 rpm; on silent mount. As new $£ 1$ ea P\&P 1175 supply. Size $19 \times 25 \times 6 \mathrm{~mm}$. Drives one TTL load 72 p ea P 县 15p.
COMPRESSOR UNIT. Compact. 115 V 50 HZ single phase 1.5 continuous 1425 rpm . Outside piston housing approx. 3 £ 18 ea P\&P £2.
MAGNETIC DEVICES. Plug-in RELAYS $240 V$ AC. 3 -pole c/o Heavy duty 10 amp. Complete with base Ex-brand new equipment. NOT USED 3 on sub assembly $£ 2.50$ P\&P £ 1 or £ 1.25 ea P\&P 45 p.
SMALL MAINS TRAN SFORMER 240 V Pri. 12 V 100 MA sec $60 \times 40 \times 42 \mathrm{~mm}$. 50 p ea. P\&P 75 p
G.I. BRIDGE RECTIFIER type W01 (ideal for above) 17p ea. FAIRCHILD FND10 7 segment display 0.15 Red Common cathode 65p ea. P\&P 15p. Into supplied.
LP1171 combined AM/FM IF strip $10.7 \mathrm{MHZ} £ 3.50$ ea
LP1179 FM front end with AM tuning and 87.4 MHZ to 104.5 MHZ tuning. 10.7 MHZ IF $£ 3.50$ ea. P\&P 50 p each unit. The Pair £5.75 P\&P 75p
POWER UNIT MODULE containing 2 small. 3 med \& 1 large ferrite cores: 3.103 power transistors, caps. resistors, high powered diodes. 9 transistors, 3 min fuse holders, etc $£ 1.50$ ea. P\&PE1. 25
GENERAL ELECTRIC OPTO-ISOLATORS type H15VX504 65p ea P\&P $15 p$ p. 10 for £5. P\&P £1
MINIATURE REED SWITCHES 9p ea. P\&P $15 p$
ROTARY SWITCHES. 250 V 10A 10p ea P\&P $15 p$
LEDEX ROTARY SOLENOIDS 115 V DC NO switch assembly 25p ea. P\&P $25 p$
duty dury 2 -pole c / o with 5 secs delay at 48 V increasing with voltage
reduction. Timing can be altered by changing value of resistor capacitance 50p ea. P\&P 250
BROOKE CROMPTON \& PARKINSON extractor fan assem bly 115 V operation. £1 ea. P\&P £2. OR TWO for £1.50. Carr 3.25

LARGE QUALITY OF TEST GEAR ON VIEW

AT LOW COST - CALLERS WELCOME

DON'T FORGET YOUR MANUALS S.A.E. WITH REQUIREMENTS

－ETI BOOK SERVICE

BEGINNERS

Beginners Guide to Electronics squirin $£ 2.65$
Beginners Guide 10 Transistors Reddihough $£ 2.65$
Electronic Measurement Simplified CC Hatmark $£ 2.20$
Electronics Self Taught Ance E4．40
Beginners Guide to Integrated Circuits Sinclair $£ 3.15$
Principles of Transistor Circuits ：Amn $£ 4.75$
Understanding Electronic Circuits senclar $\mathbf{£ 4} 10$
Understanding Elect ronic Components sinctarr £4．10
Beginners Guide to Radio Kiny £3． 15
Beginners Guide to Audio sinclar E3．10
Beginners Guide to Audio I．K Sinclair $£ 3.20$

－COOKBOOKS

TV Typewriters Cookbook $£ 7.40$
CMOS Cookbook 88.00
TTL Cook book $£ 7.55$
Active Filters $£ 11.00$
IC Timer Cookbook $\mathbf{£ 7} 50$
IC Op－Amp Cook book $£ 9.40$

APPLICATIONS

Advanced Applications for Pocket Calculators f（wilhen E4． 20
Build Your Own Working Robot D Heiseman £3．55
Electronics and Photography r Brown $£ 2.30$
Fire and Theft Security Systems B Wrll $£ 2.00$
How To Build Proximity Detectors and Metal Locators I smetd $£ 3.35$
How To Build Electronics Kits（aptl £2．10
Linear Integrated Circuit Applications G Clavion $£ 5.40$
Function Circuits Design \＆Applications Burr Brown ¢15．95
110 Electronic Alarm Projects R M Varsum £3．45
110 Semiconductor Projects for the Home Constructor \＆M．Marston $£ 3.25$
110 Integrated Circuit Projects for the Home Constructor R ： M Marwin $\mathbf{E} 3.25$
110 Thyristor Projects Using SCRs R M Martun £2．95
Handbook of IC Circuit Projects Ashe $£ 2.30$
Practical Electronic Project Building Ainsliw and（i）w ill $£ 2.45$

TV AND HI－FI

Audio Handbook ©i． $\mathrm{K}_{10} £ 6.50$
Cassette Tape Recorders J tarl $£ 5.25$
Solid State Colour TV Circuits \＆R Widdny $£ 6.35$
Hi－Fi Loudspeakers and Enclosures swhen $£ 8.20$
How To Build Speaker Enclosures Badm：nel4 £3．10
Master Hi－Fi Installation kine $£ 2.80$

LOGIC

Logic Design Projects Using Standard ICs ：Wukwli £5．10
Practical Digital Design Using ICs J Gremsietu £12．50
Designing With TTL Intergrated Circuits Texas Instrunemic $\mathbf{£ 9 . 0 5}$
How To Use IC Circuit Logic Elements，sirenter £3．65
110 COSMOS Digital IC Projects for the Home Constructor \＆M Marstun $£ 3.20$ Understanding CMOS Integrated Circuits K Melen $£ 3.90$ Digital Electronic Circuits and Systems R M Murfic £3．50 MOS DIGITAL ICs G．Fisnn $£ 4.60$

COMPUTING

Microprocessors and Microcomputers B 九ишнк £18．00

Microprocessors i）（ vacis nn £8．40
Introduction to Microprocessors Avpinall 55.90
Modern Guide to Digital Logic（Processors，Memories and Interfaces）£4．30

OP－AMPS

Applications of Operational Amplitiers（inant（narp 8.30
Designing With Operational Amplifiers Burr Brown $£ 13.75$
Experiments With Operational Amplifiers Clavtun $£ 3.40$
110 Operational Amplifier Projects for the Home Constructor k m Marstun $£ 2.95$
Operational Amplifiers Design and Applications \＆T（bery（Burr Brown）$£ 7.40$
Op－Amp Circuit Design \＆Applications ：Cirr £4．00

TEST INSTRUMENTS

The Oscilloscope In Use sinctair $£ 3.10$
Test Instruments for Electronics M．Chfford E2．40
Working With the Oscilloscope A Saunders $£ 1.95$
Servicing With the Oscilloscope c．King $£ 5.60$
Radio Television and Audio Test Instruments king $£ 5.90$

－SERVICING

Electronic Fault Diagnosis sinckur $\mathbf{£ 3} 20$
Rapid Servicing of Transistor Equipment（i）kine $£ 2.95$
Tape Recorder servicing Manual 心urdner Vol 1：1968－70 £8．50
Vol 2：1971－74 £8．50
FM Radio Servicing Handbook king £4．80
Basic Electronic Test Procedures I M 心istlith $£ 2.45$

COMMUNICATIONS

Communication Systems Intro To Signals \＆Noise B curtam $\mathfrak{£ 7 . 5 0}$ Digital Signal Processing Theory \＆Applications L．R．Rathinet $£ 23.80$ Electronic Communication Systems Li Kennedy $£ 8.50$
Frequency Synthesis．Theory \＆Design Wannassewitseh $£ 20.40$
Principles of Communication Systems H．Taub $£ 8.10$

THEORY

Introduction to Digital Filtering Butaner $£ 9.40$
Transistor Circuit Design Texas instrumens $£ 9.35$
Essential Formulae for Electrical and Electronic Engineers v ，$\$$ Morrs $\mathbb{E} 1.65$ Modern Electronic Maths Curfurd $£ 6.70$
Semiconductor Circuit Elements T D．Tusurs $£ 6.40$
Foundations of Wireless Electronics m．© scruggu £4．45
Colour Television Theory Hudsin $\mathbf{E 6} .20$

－REFERENC E
 Transistor Tabelle（Includes physical dimensions）£4．10 Electronic Engineers Reference Book（Ed．4）L．W．Turner £27．70 Solid State Circuit Guide Book B Ward $£ 2.25$ Electronic Components M．А．Cinwet｜$£ 2.45$ Electronic Diagrams M．A．Conwell $£ 2.45$
 Indexed Guide to Modern Electronic Circuits Goniman £2．30
 International Transistor Selector T D．Towers $£ 5.25$
 International FET Selector I D Tiwers £4．35
 Popular Valve／Transistor Substitution Guide E2．25
 Radio Valve and Semiconductor Data A．M．Betl $£ 2.60$
 Master Transistor／Integrated Circuit Substitution Handbook £5．60
 World Radio TV Handbook 1978 （Station Directory）$£ 8.00$
 Radio．TV and Audio Technical Reference Amos $\mathbf{E 2 4 . 8 5}$
 TV Technicians Bench Manual（New Ed．）Wilding $£ 5.10$

MISCELLANEOUS

Integrated Electronics J Milmun $£ 7.70$
Microelectronics Hullimark $£ 3.90$
Practical Solid State DC Supplies TD Towseps E6．20
Practical Triac／SCR Projects for the Experimenter R Finx $£ 2.25$
Printed Circuit Assembly Hughes \＆Coivell $£ 2.45$

Fallen behind recent advances？
Just starting out？
Need a decent reference book？
ETI Book Service provides an easy way of getting your hands on the right title．

How to order：Make cheques etc payable to ETI Book Service．Payment in sterling only please．Orders should be sent to：ETI Book Service，PO Box 79，Maidenhead，Berks．All prices include P\＆P

Wilmslow Audio

THE firm for speakers!

Send $15 p$ stamp for the world's best catalogue of Speakers, Drive Units, Kits, Crossovers, etc., and discount price list

> ATC AUDAX BAKER BOWERS \& WILKINS
> CASTLE CELESTION CHARTWELL COLES DALESFORD DECCA EMI EAGLE ELAC FANE GAUSS GOODMANS HELME I.M.F. ISOPHON JR JORDAN WATTS KEF LEAK LOWTHER MCKENZIE MONITOR AUDIO PEERLESS RADFORD RAM RICHARD ALLAN SEAS TANNOY VIDEOTONE WHARFEDALE

WILMSLOW AUDIO Dept. ETI

SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE, SKG 1HF
Discount Hifi, etc., at 5 Swan Street and 10 Swan Street
TEL: WILMSLOW 29599 FOR SPEAKERS WILMSLOW 26213 FOR HIFI

BONA FIDE UK TRADERS ONLY

A Fast and Easy Profit Message from
THIS IS THE PLAEE FASTER AMD EASIER BEGINS

For hobbyists and home project constructors, Lektrokit have put together the most comprehensive range of breadboarding and testing devices on earth. For you, Lektrokit have display racks, window stickers and catalogues to help you sell the entire range-faster and easier. For you, too, Lektrokit will be advertising to hobbyists and home project construct ors continuously - telling them about the Lektrokit products that you supply If, of course, you have the stocks. And that's up to you.
Launch dates for Lektrokit's exciting new range are November 21-25-at BREADBOARD 1978 - but you can get in on it NOW! Just use the coupon

VENUS PROBE

> Venus, the shrouded planet of Edgar Rice Burroughs and Ray Bradbury, has fascinated men and telescopes for many decades. It was the favourite choice to house monsters and the scientists' choice for life of a more mundane type. Conditions are not that favourable, however, but are still interesting enough to warrant the launch of the Multiprobe which should tidy up some of the mysteries remaining.

THE TWO Pioneer spacecraft should reach Venus around the end of this year, being sceduled to rach orbit on the 4 th December. One of these probes, known as the 'Orbiter', will circle the plant for at least one Venusian year. It will collect data on the upper atmosphere of the planet (including field strengths and the types of particle present) and will also record events occuring on a global scale on or around the planet over a fairly long period of time.

The other spacecraft will consist of a transporting vehicle, known as a 'Bus', which will convey one large probe and three small probes to Venus. All five parts of this spacecraft will enter the Venusian atmosphere at widely separated points and will transmist data back to earth. The four probes will fall to the surface of the planet and should provide much information about the lower atmosphere at four widely separated points.

Although Venus is our closest planetary neighbour, it is always covered in very thick cloud; our knowledge of this planet is the refore very limited, especially as regards its lower atmosphere. The early probes have shown that Venus has a high surface temperature and an atmospheric pressure nearly one hundred times that of the earth, but a great deal of work remains to be carried out. It is expected that the two Pioneer spacecraft will increase our knowledge of this planet by a factor of about ten. They will also greatly increase our knowledge of the solar system and are expected to provide much information which will add to our theories about the origin of the earth

Pioneering Spirit

The Pioneer missions were conceived as long ago as 1970 as a result of recommendations made by the Space Science Board of the US National Academy of

Sciences who decided that there is a need for relatively low cost orbiter and probe landing systems for Venus investigations. Overall responsibility and control of the mission has been given to the National Aeronatuic and Space Administration (NASA) Research Centre at Moffett Field, California

The Hughes Aircraft Company gained a contract to manufacture both space vehicles for the Pioneer mission in February 1974 after a series of competitions which started in 1972. The scientific instrument payloads were selected in June 1974, thirty instruments being included on the list. The spacecraft will be launched on top of Atals SLV-3D Centaur D-1AR rockets from Cape Canaveral, Florida. The vehicle tracking, command signal transmission and data reception will be carried out by the established US Deep Space Network stations in California, Spain and Australia

The Multiprobe Mission

The Bus, the large probe and each of the small probes include payloads of scientific instruments. The Bus will be destroyed by burn-up in the Venusian atmosphere after its two instruments have transmitted data back to earth. It is, perhaps, somewhat surprising that work on the atmosphere and weather on Venus is expected to teach us more about the weather on earth.

The multiprobe vehicle is a circular, spin-stabilised craft with an array of solar cells around its exterior. The large probe will examine the atmosphere surrounding the planet, measuring the clouds, the atmospheric composition, etc. The three identical small probes will separate and enter the atmosphere some 7,000 miles apart two of them on the dark (night) side. They will collect information on the general circulation of the lower atmosphere.

Structure

The structure of the multiprobe unit is shown in the exploded view of Fig. 2. The cylidrical solar panel is 2.54 m (100 inches) in diameter and 1.22 m in length. The equipment shelf if 2.47 m in diamter, the electronic units and the scientific instruments being mounted on this shelf.

The large probe is at the centre of the spacecraft on an inverted conical structure, whilst the three small probes are symetrically placed around the main probe. Each probe is fixed by spring loaded clamps which can be released (pyrotechnically) about 20 days before the craft arrives at Venus so that the five sections move independently.

The probe weight, including the interfacing connection with the launching vehicle, is designed to be 920 kg . Great care has been taken in the thermal design of the craft to ensure that the temperature is kept between suitable limits; heaters and thermal blankets are included and appropriate materials with suitable thermal properties are used.

The control system employs a sun sensor and a solid state sensor which can detect the radiation from 24 stars. The vehicle contains two tanks which will be filled with 32 kg of liquid hydrazine propellant. When this liquid is allowed to pass into a chamber containing a suitable catalyst, it decomposes into nitrogen and provides a thrust of about 0.5 kg as a jet for controlling the spacecraft's trajectory, attitude and spin rate.

The power for the spacecraft is obtained from the cylindrical array of solar cells which has an area of just over 6 square metres. This provides 228 W when the
spacecraft is near the earth, but extra power can be obtained for a limited time from two 7.5A-hr nickelcadmium batteries. The solar cells and batteries provide a 28 Vsupply; overload protection and undervoltage detection circuits are included in the power supply system.

Command signals are transmitted from the Deep Space Network ground stations to the Bus at 4 bits/ second using pulse code modulation or frequency shift keying. The electronic on-board equipment can store command instructions for execution at some later time. Six command output modules on the equipment shelf can distribute 384 pulse commands and 12 quantitative (or analogue) commands to scientific instruments and to the spacefraft units. Commands from the earth stations modulated onto a 2115 MHz carrier wave are received by the spacecraft transporiders.

Data for transmission to the ground is convolutionally encoded, assembled into 8 bit words in a 64 -word frame and modulated into a data stream. Eight data input modules on the equipment shelf can receive the signals and establish up to 253 data channels with the telemetry processor for transmission to ẹarth.

The data is transmitted on a 2300 MHz beam at a power of 10 or 20 W using one of three antennas and a data rate of between 8 and 2048 bits/second. The antennas comprise two omnidirectional types (forward and aft) to provide spherical coverage at both the transmit and receive frequencies together with a . medium gain horn antenna at the aft end of the craft.

Fig. 4. An exploded view of the Orbiter spacecraft

Fig. 5. Trajectory of the Muliprobe unit on its flight to Venus.

To Boldly Go .. .

The launching vehicle will place the multiprobe spacecraft into an earth parking orbit about 167 km above the earth where it will remain for 18 to 23 minutes before adopting the interplanetary trajectory shown. The spacecraft will initially be spinning at 5 RPM, but it is expected that contact with the ground station at Canberra will occur within four hours from launch and the rate of revolution will then be increased to 15 RPM by a command from the ground.

During the passage of the spacecraft towards Venus, the forward antenna will be employed to communicate with the 26 metre diameter dish aerials of the Deep Space Nwtwork. A velocity correctin of up to $12 \mathrm{~m} / \mathrm{s}$ can be made five days after launch and further corrections at 20 days after launch, etc. Command signals for these corrections will be transmitted from one of the huge 64 metre diameter earth station aerials.

The large probe will be separated from the Bus about 24 days befora arrival at Venus. The spacecraft axis will then be precessed so that the medium gain horn can be used for earth communication. A velocity correction of $5.1 \mathrm{~m} / \mathrm{s}$ will be made to achieve the required small probe trajectory and the three small probes will be released about 20 days before reaching Venus. The spin rate will have been previously increased to 48.5 RPM so as to provide a suitable tangential velocity at separation for the small probes to acquire the desired trajectory.

The velocity of the Bus will be corrected 18 days before its arrival at Venus to achieve the desired arrival point and to delay its arrival by 90 minutes so that all of the probes will have impacted on the surface of the planet by the time the Bus arrives in the upper atmosphere. Burn-up will occur at some 120 km above the planet.

All five vehicles will enter the atmosphere in a two hour period and all will be transmitting simultaneously. so the time of entry will be arranged to be one at which two of the Deep Space Network stations can simultaneously receive signals to avoid possible loss of data.

Large Probe Mission

The large probe is to be aimed at a point on the daylight side of Venus, decelerations of up to 400 g being possible at times during entry. The large probe parachute opens at a height of 67 km and for the next 18 minutes the probe descends under the stabilising influence of the parachute to a height of 46 km at which point the parachute is jettisoned. The probe then falls to the surface of the planet over a period of some 38 minutes.

The probe is not required to survive impact with the surface of the planet, but will withstand the pressure and temperature at the surface. This requirement together with the requirement that the probe can withstand the fierce acceleration presents many design problems unique to this mission.

Fig. 6. The interior of the large probe

The large probe and its deceleration module have a total weight of some 316.6 kg . The deceleration module provides thermal protection during atmospheric entry; it consists of a pointed nose cone of 45 angle with a diameter of 1.42 m . The base of the probe is thermally protected by a coated fibreglass aft cover.

The dacron main parachute has a diameter of nearly 5 m and is deployed by a much smaller pilot chute 0.76 m in diameter ejected by a mortar. The pull of the parachute extracts the pressure vessel module from the deceleration module.

Pressure Vessel

This vessel contains nitrogen at a pressure of between about 0.5 and 2 earth atmospheres, but can withstand an external pressure of about 100 atmospheres. The 73 cm diameter titanium pressure vessel is constructed in three pieces and is about 6 mm in thickness. There are 15 apertures and 7.6 m of sealing are required to prevent gas leaks at the high temperature of the Venusian surface. The thermal insulation ensures that the electronics and instruments inside this vessel remain at a temperature not greater than 50 C even when the external temperature reaches 480 C.

A 19 cell 40 A-hr silver-zinc battery supplies power to the pressure vessel assembly. A total of 15 magnetic latching relays provide on/off control, whilst parallel fuses provide overload protection. Four solid state amplifiers, each rated at 10 W , feed a cross dipole antenna mounted on the rear of the pressure vessel which sends the data back to earth. A data rate of 128 or 256 bits/sec in a convolutionally encoded format is used, the system being capable of providing 72 data channels and 2 minor frame formats in an 8-bit word, 64 word frame. A 3072 bit memory provides storage facilities during the entry communications blackout; this blackout will have a duration of about 10 seconds.

The entire sequence of 128 commands is predetermined and programmed prior to the multiprobe launch. A timer with a 24.27 day capacity and a stability of ± 32 seconds turns on the system prior to entry.

Fig. 7. The interior of a small probe

The seven scientific instruments in the large probe weigh a total of 35 kg and require 106 W for their operation. Three of these instruments require inletś for sampling the atmosphere and four require windows for viewing the atmosphere. All of the windows except one are made of sapphire, the exception being the window for the infra-red instruments which is a 13 carat diamond nearly 2 cm in diameter; diamond is the only material able to transmit infra-red in the 10 micron region and to withstand the temperature and pressure at the Venusian surface.

The Small Probes

The three identical small probes are designed to measure the characteristics of the Venusian atmosphere simultaneously at three widely different locations. They are designed to withstand the high temperature and pressure at the surface of the planet, but need not necessarily withstand the impact with the surface During entry into the atmosphere at a speed of about $11.6 \mathrm{~km} / \mathrm{s}$, a deceleration as great as 5652 may be encountered. The time of descent to the aurface will be about 59 minutes.

Each small probe contains a pressure vessel and a deceleration module. The total weight is some 97 kg . Unlike the large probe, there is no parachute with each small probe and the deceleration module is not detached during descent. The cone of the deceleration module has a diameter of some 76 cm .

The small probe pressure vessels which contain the electronics and the instruments are designed to operate with an internal atmosphere of xenon at between 0.25 and 2 earth atmospheres pressure. These vessels consist of a two piece titanium shell of about 46 cm diameter.

The small probes are each powered by a battery containing 20 silver-zinc cells with an 11 A -hr rating. Each probe employs a single, solid state power amplifier rated at 10 W RF output; this amplifier feeds a crossed dipole antenna mounted on the rear of the pressure shell. A stable oscillator maintains the S-band downlink frequency to 1 part in 10^{9}. The data rate used from the small probe to earth is 16 or 64 bits/second, whilst a

Fig. 8. A small probe

3072 bit memory is used for storage during entry blackout and when the bit rate is being changed. A 24.27 day timer turns on the system prior to entry into the Venusian atmosphere.

The 64 bit/second data rate is used initially, but at an altitude of some 30 km above the surface the data rate is reduced to $16 \mathrm{bit} / \mathrm{sec}$ and to allow for the attenuation of the radio frequency signal as it passes through the denser parts of the Venusian atmosphere

The Orbiter craft. Note the long magnetic probe to measure the
magnetic field well away from any interfering field from the craft.

The Orbiter Mission

The main aim of the Orbiter mission is to put 12 scientific instruments in orbit around Venus and to receive informaiton from these instruments. It can be seen that the Orbiter spacecraft has much in common with the multiprobe vehicle, including a rather similar structure. Some of the most noticeable differences are the replacement of the probe structure by a high gain aerial system which can provide communication with the earth at distances of up to $250,000,000 \mathrm{~km}$. A 4.5 m long magnetometer boom is also used in the Orbiter craft.

The size of the Orbiter spacecraft is similar to that of the multiprobe craft. The diameter of the cylinder of solar cells is the same 2.54 m , but the surface area of the cells is greater, being almost $7.2 \mathrm{~m}^{2}$. The Orbiter is lighter than the multiprobe unit, being just under 600 kg and only 372 kg in orbit.

The slightly large solar cell area of the Orbiter provides a little more power than in the case of the Multiprobe Bus, this power being about 325 W in Venus orbit. Two 7.5 A-hr nickel cadmium batteris are also incorporated in the Orbiter spacecraft.

A bearing and power transfer assembly (BAPTA) serves an electrical and mechanical interface between the spinning part of the spacecraft and the despun aerial which must always point towards the earth. As in the case of the multiprobe Bus, 32 kg of liquid Hydrazine propellant is carried in two tanks and can drive seven jets, each with a thrust of about 0.5 kg , for the control of the trajectory, attitude and spin rate.

A solid propellant rocket motor, the Thiokol TEM604 , is to be used to place the Orbiter in Venus orbit. It has a velocity change capability of $1060.6 \mathrm{~m} / \mathrm{s}$ for the maximum design weight.

Conclusion on Cost

A special feature of the Pioneer missions is the relatively low cost for such an ambitious programme. In order to reduce the cost, no experimental prototype craft have been built - only the one multiprobe and the one orbiter will be made, tested and orbited. Economies have also been made by using the same type of components (such as the RF amplifiers) in the Bus, Orbiter and in the probes. Identical command and data handling circuits are used in all of the probes, whilst about 78% of the Bus and Orbiter parts are identical. The cost of developing the probes themselves has been relatively high, since they involve new techniques, whilst special facilities have had to be developed to simulate the hostile Venus atmosphere.

It seems likely that craft similar to the Pioneer type will be useful for relatively economical missions to Mars and for flying through the tails of comets.

Prices are each, net \& excludeV.A.T.

Experimentor Series
EXP300 (6×2.1 in. 5×94 terminals \& 2 bus strips)
$£ 5.75$
EXP350 (3.5 $\times 2.1$ in. 5×46 terminals
$\times 2$ bus strips)
$€ 3.16$
EXP600 $(6 \times 2.4 \mathrm{in} ., 5 \times 94$ terminals $\times 2$ bus strips)
£6.30
EXP650 3.6×2.4 in., 5×46
terminals $\times 2$ bus strips)
£3.60
EXP4B (6×4 in., 2 bus strips only)
£2.30
Quick Test Series

OT. $59 \mathrm{~S}(6.5 \times 6.2 \mathrm{in}$., 118 terminals)
£7.20
£5.75
OT-47S ($5.3 \times 5 \mathrm{in}$., 94 terminals)
£4.90
QT-18S ($2.4 \times 2.1 \mathrm{in} ., 36$ terminals)
QT-12S ($1.8 \times 1.5 \mathrm{in}$., 24 terminals)
£2.75
QT-8S (1.4×1.1 in., 16 terminals)
£1.90
OT. 7 S ($1.3 \times 1 \mathrm{in}$., 14 terminals)
OT-59B (6.5×6.2 in., 20 terminals)
AT 47 B (5.3×5 in., 16 terminals)
£1.75

OT-35B (4.1×3.8 in., 12 terminals)
£ 1.30

Protoboard Series

PB- 6 (630 tie points, 4 binding posts, 4×14 DIL capacity)
PB-100 (760 tie points, 2 binding posts, 10×14 DIL capacity) $£ 11.80$
PB-101 (940 tie points, 1 binding post, 10×14 DIL capacity)
PB-102 (1240 tie points, 1 binding post, 12×14 DIL capacity)
PB-103 (2250 tie points, 4 binding posts. 24×14 DIL capacity)
$£ 34.45$
PB-104 (3060 tie points, 4 binding posts, 32×14 DIL capacity)
PB-203 (2250 tie points, 4 binding posts, 24×14 DIL capacity; built-in regulated 5 V d.c. power unit)
$£ 55.15$
PB-203AlAs PB- 203 with 5 V and
15 V d.c. power supply)
£74.70
Design Mate Instruments
DM. 1 £45.95 DM. $2 £ 57.45$ DM. 3 £57.45 DM-4 $£ 74.70$

IC Test Clips
PC-14(14-pin) £2.60 PC. $16(16$-pin) $£ 2.75$
PC-24 24 -pin) $£ 4.90 \quad$ PC- $40(40$-pin) $£ 7.90$
Logic Probes
Hand held logic probes,
TTL/DTL/CMOS compatible,
from
$£ 18$ to $£ 49.00$
Logic Monitors for
CMOS, HTL, DTL, TTL \& RTL
LM-1 Self-power clip on logic

monitor

£28.70
LM. 2 As LM. 1, with fully isolated
power supply
$£ 68.95$
Postage, Packing and Insurance per shipment $£ 1.25$
Please add 8% VAT to overall total
Export orders: credit cards or international money orders, bank drafts and cheques drawn in Esterling. Please add 10\% (Europe) or $121 / 2 \%$ (all other countries) to total price.

Now, from the breadboard specialistseven better boards!

Since the appearance of the first breadboards back in the ' 40 's, we've really been going places. (The U.K., for one.) So we now have an exceptional range of prototyping products which are outstanding in their simplicity, versatility and reliability. Just see. (And for prices and specs., eyes left!)

Experimentor Series.
Low-cost, interlocking,
solderless breadboard the world's first for 0.3 in . and 0.6 in . pitch DIPs.

The Protoboard Series.
Solderless breadboards with built-in 10% regulated $5 \mathrm{Vd.c}$.1 A power supply; 2,250 solderless tie points; and capacity for DIPs of 14 to 40 pins.

Take a look at our low, low prices and quality specs., and get aboard! (Or if its data you're after, pick up the phone or drop us a line.)
For the best, from the specialists in breadboards.

2
 $\%$
 \rightarrow

Quick Test Series.
Low-cost, snap-locking solderless circuit boards for fast design with discrete components.

5IC Test Clips. Ultra-low cost IC clips in $14,16,24$ and 40 pin versions.
And, much more too: logic monitors, probes, frequency counters and

Continental Specialties Corporation (U.K.) Ltd., Unit 1, Shire Hill Industrial Estate, Dept. 9H Saffron Walden, Essex. CBII 3AQ Telephone (0799) 21682 Telex 817477 Reg. in London: 1303780. VAT No: 2248074 71. *Trade Mark applied for © CSC (UK) Ltd. 1977 Dealer enquiries welcome.

Please supply
Price \qquad Total

Name \qquad Address

My cheque/postal order No \qquad for $£$ \qquad is enclosed

My Access/American Express/Barclaycard no. is \qquad All I want is data, please. \square

TELEVISION

Last month we described the operation of the Tolinka chess recorder - this month we deal with construction.

LAST MONTH WE described the overall principles of the Tolinka Chess Recorder and in this final part of the project we shall describe the circuit from the hardware viewpoint and go on to give constructional details.
First inspect the board on both sides to see if any of the holes have been blocked by tinning. The easy way to clear such holes is to melt the solder and apply the sharp point of a pencil Wipe the iron frequently on a damp sponge or cloth to avoid solder splashes.

A Small Step

The first step in construction is to make the through board links support the board 4 mm approximately away from the bench surface by putting bolts in the corner holes. The side without the IC pads should be uppermost. Each of the small round pads which has a counterpart on the opposite side of the board is a pin-through whereby connection must be made through the board. A piece of wire must be inserted into each of these holes and soldered on both sides of the board.

The board should now be cleaned of flux with a cleaning agent and inspected against a strong light. Look for missed pin-throughs, solder bridges and lifted tracks checking with a continuity meter any suspected opens or shorts. Spend a lot of time at this stage because this is where faults are most likely to exist-it is possible for another observer to find obvious faults on a board which has passed a lengthy examination.

The ICs are inspected next.

Socket It To Me

Use the socket strip provided for any IC with more than 16 pins. The best way of socketing an IC is to push the pins into the socket strip and then trim off the surplus strip. Do not break off the pin carrier part of the strip until you are ready to switch on the power. This will keep the IC pins shorted together during the soldering
and assembly process. If desired socket strip or sockets may be used for the other ICs-and this is a wise precaution.

It is recommended that components be installed in the following sequence - first all discrete parts like resistors, capacitors and diodes; next integrated circuits and last the larger power supply capacitors and voltage regulators. Switches need not be installed until preliminary tests are completed and installation of the PCB behind the front panel has been carried out. The panel then forms a template which aligns the switches correctly.

Remember that the space above the board is limited and solder any bulky components beneath the board: this is certainly necessary for the power supply electrolytics. Leave the output pins of the voltage regulators unsoldered so that supplies may be checked without damage to the circuitry. Note that the power supply components are soldered directly to the tracks on the top of the board and only the wires of the electrolytics pass upwards from the underside of the board through holes. All voltage regulators are 'face down', the main 5 volt supply regulator being bolted to an area of circuit board which acts as a heat sink.

Testing Time

Turn on the mains and test power supply voltages before soldering the regulator output pins down to the supply rails. Remove all ICs from their sockets and break off the pin carriers. Test voltages on supply rails again with the rails connected - do not of course fail to switch off the mains between tests. If all is well then instal the ICs and check the rails again.

Tune the TV set to receive a picture. There will be more than one picture available in the tuning range
and the best one should be found. If the picture has chessmen set up for the start of a game and move status information is correct then the printed circuit board may be installed beneath the lid of the box with the nuts, bolts and spacers provided and the keyboard switches soldered in place. If the device now functions correctly then attention may be turned to the cassette interface.

In an ideal world you could buy audio equipment which had standard sockets using standard signal levels at a standard impedence. This you could connect together with standard leads. The mariufacturers of our world do not see things that way, however, and they make equipment with sockets, signal levels and impedances which are different from those of their rivals.

It will therefore be up to you, to decide upon these things as far as your own tape recorder is concerned. You might become involved in designing an attenuator to get things working properly. If you do not know how to do this and do not feel confident after reading the general remarks which follow, perhaps you really ought to be playing at something else.

The Ins and Outs

Outputs vary from millivolt level for a 5 pin DIN socket, but could be only available on a microphone input and earphone output. If inserting a plug into the socket cuts out the internal speaker the cutout switch should be disabled-try bridging it with a 33 ohm resistor. It is essential to hear the data and commentary.
(Input/ Output can be the same pin)
It may be that volume and tone controls have an effect on the output signal but this is not usual.

Inputs vary from millivolt level for a dynamic mike to a high level-sometimes marked AUX. The high level input should be used if

CHESS PART 2

available. The signal must be attenuated for a low level input to avoid overloading. Most recorders have Automatic Volume Control and this helps. The output from Tolinka is bursts of 3.9 khz at the data rate, which is 300 baud - or 150 Hz maximum. Every high bit generates 12 cycles aapproximately of the carrier. The main source of interference may be regarded as being the data rate itself and some sort of high pass filter is needed at the input and output to remove it. Attenutation may also be required to match the recorder's input characteristics. A series capacitor followed by a shunt resistor will perform both these functions and in some cases even the shunt resistor is not required-it depends upon the recorder's input impedance.

If an oscilloscope is available the recorder's output may be observed and should consist of clean bursts of 3.9 kHz separated by level blank intervals. If the signal swings up and down with the data the recorder is receiving too much signal and the shunt resistor should be reduced until this effect disappears. This process should not be carried to the point where the output level is reduced.

If in doubt use the following rules of thumb:
a) Put a 10 k pot between the output and ground, taking the signal from the slider. Reduce the input level until the sound loses volume on playback.
b) Take the output from the earphone or headphone socket. This will almost certainly cut out the recorder's internal speaker, but the switch should be easy to find and bridge with a 33 ohm resistor as described earlier. Adjust volume on playback to obtain satisfactory RECALL function. Note setting of both controls and check this setting each time.

Pholograph of the circuit board taken during consiruction. The switches are not fitted until the board is ready to be mounted in the case - Initial testing being done without them in position.

One of the exclamations often heard at a Chess Congress is 'J'Adoube' which is not a Russian four-letter-word but a polite way of informing one's opponent that a piece is not situated in the centre of the square it is supposed to be occupying:-and this fact is bugging the exclaimer who intends to adjust it but does not wish to be committed to moving it subsequently according to the rules of the game.

Tolinka has provision for moving
the pieces into the exact centre of their squares. the ' J ' $A D O U B E$ capacitor. This component (C5) loads one of the outputs of a binary counter introducing a propagation delay which is passed down the divider chain. The value mentioned in the parts list is satisfactory for all but the most neurotic. In order that centralization may be optimized provision has also been made to fit a resistor for fine adjustment which will explain two of those redundant holes

Fig. 1 Main circuit diagram of the Tolinka.

IC2 is National Semiconductor's SC/MP II. Its Program memory is stored in a 2708 type EPROM (1024 bytes). The character generator PROM (IC22) is a $74 \mathrm{~S} 471,256 \times 8$ in structure. The RAM chips are 2111 s , two (IC10 and 11) for game memory and one (IC14) for on-screen information. (There are 8 bits in game memory but only 4 in screen memory.) Top locations in game RAM are used as temporary stores for other information and this restricts the number of moves per player to 62 instead of 64 (four bytes are required to store a move).
Screen RAM is normally addressed by the VDU divider chain's outputs but the MPU must be able to address the screen as well to move the pieces around and change the status information. The address lines are multiplexed through a pair of CMOS And/Or gates (IC 12 and 13). The vertical blanking signal is wired to a sense line of the MPU so that the MPU does not access the screen during the VIDEO INTERVAL which would produce annoying flicker.
The three lowest address lines of the MPU are connected to inverter gates (ICXX) which matrix the keyswitches in a three by four arrangement. Pressing any switch connects an inverted address line signal to one of four inputs of a tri-state buffer normally held high by a resistor ($\mathrm{R} 18-21$) to Vcc. When the buffer is selected the inverted address line may be read as data and the switch identified with a unique code by a process already described in the Software: How it Works.

Generation of a Video Signal

All frequencies used are derived from a single MASTER CLOCK which is the MPU's own on-chip oscillator. An L/C combination sets the frequency to 1.92 MHz which defines the shortest horizontal change interval on screen at about half a microsecond. The MASTER CLOCK is divided by ten (IC4a) to give the FILE interval. Eight FILES form the visible board but the FILE interval is divided by twelve in a four-stage binary counter. The A, B \& C outputs of this counter are the LETTER addresses, the D output being the LINE BLANKING interval. Thus two-thirds of linescan are the chessboard.

During LINE BLANKING a R/C monostable (C18, R14) supplies the LINE SYNC pulse. Further division of the line interval by 32 gives the RANK interval which is taken from the 5th stage of a binary ripple counter (IC5): the 2nd, 3rd, 4th \& 5th outputs of this counter being the address lines to the character generator PROM. This PROM supplies the horizontal piece information as eight outputs in parallel and changes this information every other line. The 6th, 7th \& 8th outputs of the ripple counter are the FIGURE addresses. The 9th output is the FIELD BLANKING pulse which is 'Anded' with the 7th stage to reset the counter after 320 counts. 256 counts, or lines, are visible as the chessboard. During FIELD BLANKING monostable (C7, R13) supplies the FIELD SYNC pulse.

LINE BLANKING is also connected to the character generator PROM to select Status/ Figures presentation instead of chess pieces. The same LINE BLANKING signal also permits the 4th output of the Board RAM, which contains the COLOUR BIT during the Chessboard interval, to address the character generator PROM instead of the 2nd output of the vertical binary ripple counter. (The COLOUR BIT is normally 'Exclusive-Or'd' with the pieces during the Chess board interval to control their colour.) This is because the larger character set of Status/ Figures symbols are required than Chesspieces - and loss of vertical resolution (cut by half) is the price which must be paid.
The eight parallel outputs of the character generator PROM are converted to a serial data stream in the Video Shift Register (IC21), driven by the MASTER CLOCK and loaded by the FILE signal.

SQUARE COLOUR is derived from RANK and FILE by Exclusive-Or function. SQUARE COLOUR, LINE BLANKING and COLOUR BIT are aligned with SERIAL VIDEO by a D type Flip Flop clocked by FILE.

LINE SYNC and FIELD SYNC are also passed through an Exclusive OR gate to form MIXED SYNC.

SERIAL VIDEO is combined with COLOUR BIT, LINE BLANKING, FIELD BLANKING, etc, to form two mutually exclusive signals WHITING and BLACKING.

Fig. 2 The Tolinka's power supply is a straightforward design based on three monolithic regulators.

The photograph right shows how the power supply capacitors are mounted beneath the board and the wire link. Note that this photo was taken before the board was complete and not all components are in position.

BUYLINES

A complete kit of parts for this project will be available only from Videotime Products, 56 Queens Road, Basingstoke, Hants, RG21 1REA for the all inclusive price of $£ 109.50$.

Individual parts are also to be made available but Videotime will offer help, advice and a repair service only to readers who purchase the complete kit. Note also that software, piece design PCB pattern, etc, are subject to copyright.

HOW IT WORKS

Forming a Video Composite

The video signal is formed by combining SYNC, SQUARE COLOUR, WHITING and BLACKING at a summing point. SYNC is connected to Q2 which clamps the summing point (junction of R10, 12 and 15) to ground when SYNC is high. BLACKING is a negative going signal connected to the summing point through diode D4: when BLACKING is low the summing point is clamped a diode drop above ground. WHITING pulls the summing point up towards the positive rail through resistor R10. SQUARE COLOUR is connected to the summing point through a higher value resistor R1 and supplies two shades of grey when no other signal is present.

The signal is attenuated and passed through an emitter-follower to form a low impedance standard form video signal of approximately 1 volt peak to peak. This signal is used to drive a UHF modulator.

The reason that the SERIAL VIDEO output of IC21 is passed through a couple of spare inverter gates is to equalize propagation delays. Otherwise the black pieces have white edges.

Cassette Interface

The limited bandwidth available in audio cassette recording equipment does not permit serial data to be recorded directly. Some form of modulation is required.

In Tolinka data is recorded as bursts of a single frequency. On playback other frequencies can be filtered out and the demodulation process performed with a diode.
Three CMOS gates are used as the Modem in the final design. Any CMOS inverter will operate as a linear amplifier if a resistor is used between input and output. In this condition it may be regarded as an Op-Amp which has its non-inverting input connected to ground. A limited voltage gain of about 60 is available. The output data comes from the serial output port of the MPU and is combined with a signal of 3.9 KHz from the VDU divider in an AND gate. This supplies bursts of 3.9 KHz at data rate which can be recorded on tape.

The recovered signal is filtered by a CMOS inverter configured as a high pass filter. This rejects low frequencies at data rate and in the speech band. The output of this inverter, which consists of high amplitude bursts of 3.9 KHz , is connected to the cathode of D5. The anode of D5 is taken to the input of another inverter and a low pass filter, consisting of a resistor (R 26) to the positive rail and a capacitor (C12) to ground. Gates in the same package have similar transistion points - so when there is no input the output remains at ground level. If 3.9 KHz oscillations are present at the input the output is high. The demodulated transmission is fed to the MPU's serial input.

Power-on Reset

The MPU has a Reset input which clears all internal registers and restarts operations with the first instruction after it has been brought low for a specific interval of time. This function occurs when Tolinka is first switched-on and is not required again by the user.

At first sight this circuit seems to be overdesigned. In fact correct initiation of proceedings is vital and reliability suffers if any of the components are omitted. The diode connected across the charging resistor ensures that the capacitor will discharge if the power is interrupted only briefly.

ROM Select Diodes

The ROM occupies the first kilobyte of addressing space and it would seem logical to connect its Chip Select input directly to A10 because no write instructions will be made in this area. Conflict would still take place because the MPU outputs data on the bus at the start of the instruction fetch operation this data consists of flags and upper address bits and none of it is used by Tolinka. The conflict would be harmless but for the fact that a Video Signal is being produced and processed at the same clock rate as the MPU which produces a faint pattern on screen if the Chip Select diodes are omitted.

'TOLINKA’ CHESS REPORTER -FULL KIT OF PARTS

‘ATARI’ VIDEO COMPUTER
- READY BUILT
CARTRIDGE SYSTEM(ROM)

The original unit used in conjunction with the World Chess Championship at Manilla, August ' 78 , by both Chess Champion Viktor Korchnoi and BBC TV news.

Records every game step, auto en passant, queening and castling. Entire games may be recorded on most domestic cassette recorders. Based on 8060 Mk II Scamp. Full kit including all components - No extras required - £109.50*

UNBELIEVABLE WATCH
 BARGAINS

VT03
SOL
SOLAR ALARM
Hour, Min, Sec. Month. Date, Day, alarm any time in 24 hour day.
$4 T 01$
5
FUN
5 FUNCTION LCD. Hour. Min. Ser. Monith. Date, S/S strag. Backlight.

VT04
SOLAR
CHRONOGRAPM panel
$\checkmark 107$ 12 FUNCTION ChRONOGRAPH Hour. Min. Sec.. DATE.
Month. 1/100th Sec. Tim I or 2 Event.

VT05
CHRONOGRAPHY/
ALARM
All the combined fealures
01 alarm \& chronograph
watches
pholo

represents
case siyle anly|
resentation boxes not included. Please add 65p

BARGAIN TV

 GAMES KITS AND COMPONENTS

Stand Alone Kits

Kits - full instructions, all PCB components Mini-kits - instructions, chip. skt, coil. PCB

B\&W Tank Battle (AY-3-8710)
kits minikits
B\&W Stunt Rider (AY-3-8765)
B\&W Road Race (AY-3-8603)
$£ 15.90 \quad £ 9.75$
$£ 15.90$ £9.95
$£ 14.90$ £8.50
B\&W 10 Game B/B (AY-3-8610)
$£ 13.90 \quad £ 8.50$

Astec Modulators \& Encoders

UM 1233 UHF (high quality)
UM1163 Pal Enc + UHF Mod
$£ 4.95$
European Equivalents available

Accessories

AB Joystick controls 200k lin
Crystal 4.4 Mhz E 1.95
Crystal 3.57 Mhz
E 1.00
Crysill 3.5 Mhz . E1.25
Oscilator coll $100 \mu \mathrm{H}$ £0.45
Mains adaptor +150 mA 8 v reg

\star Prices include VAT, packing \& delivery charges and money back guarantee. Send cheque or P.O. to
YDEDTME PROMUGTS 56 Queens Road, Basingstoke, Hants RG21 REA Tel: (0256) 56417 . Telex: 858747.
(Trade \& Export Enquiries welcome)

SWITCH IN LINE SAVES NONE?

Stan Curtis of Mission Electronics, author of our series on super-fi amp design is back
with us again to explain the faults inherent in many widely used comparative hi-fi
tests. In particular he has a few things to say about switching methods

A SIGNIFICANT RE-APPRAISAL of amplifier design has been seen in the past few years. The revival of serious listening tests (so called "subjective" testing) has shown that laboratory measurements alone are not sufficient to indicate the performance of the amplifier when it is connected to real loudspeakers and pick-up cartridges and fed with a music signal. But it is crucially important that these listening tests be set up with great care. When different amplifiers are compared their gains should be equalised so that their outputs are within 0.1 dB of each other and preferably within 0.05 dB .

Such level changes could be incorrectly interpreted as differences in amplifier performance. The design of the passive attenuators is important to prevent any significant loading of the circuitry or any imbalancing of impedances which could upset passive filter roll-offs and so alter the frequency response of the system. Even the choice of test signal is important when setting levels Traditionally a sine wave of 1 Hz or 400 Hz has been used. However, the author prefers to use a noise source fed via a bandwidth limiting filter (to prevent any error by the different frequency responses of the amplifiers) as this more realistically simulates the dynamic conditions.

Care should also be taken in the interconnection of the different amplifiers. All connections should be as short as possible using very high quality and identical (in length and quality) cables. Wherever con nections have to be made (other than at the amplifier or loudspeaker) high-quality gold-plated instrumentation connectors should be used in preference, to the rather suspect RCA Phono and DIN Connectors

Switch Your Contacts

The next problem area is that of switching. Switching the outputs of the different amplifiers to a loudspeaker can be done using high-current, high-conductivity lever of knife switches. Relays can cause problems unless they have very strong springs; good contact design; highcurrent capability; and are new. The subject of switch contacts is quite complex but can be summed up as follows. A metal to metal contact is rarely a true "short circuit.

An almost invisible layer of oxidation or contamination forms on the contacts. This oxidation increases the contact resistance but more importantly forms a nonlinear junction that can in some ways be considered to be a voltage dependent diode-rectifier. The effect on the

Abstract

Above: equivalent circuit of a mechanical switch. As you can see it is far from simple! Left: a good linear contact involves

 breaking the metal surface.music signal at low levels can be imagined and - more importantly - heard! Even "pure" gold contacts and "self-cleaning" contacts suffer from this problem. A good contact can only be achieved when one contact breaks the surface of, and penetrates, the other contact metal. However, only a limited number of switching actions can occur before the contact material is sufficiently worn or damaged for inconsistent performance. Although this problem is discussed here in relation to testing it has as much significance in the design of the switches used in the amplifier.

When it comes to switching the output of the cartridges the imperfections of the switches have so much effect upon the audible quality of the signal that the listening test ceases to have any real validity.

Test point

The test itself needs further thought. The listening panel should be experienced listeners and yet not be part of a "clique" where views are remarkable for the way they follow the "party line." Testing should be conducted over two or more sessions. Short sessions to perceive the performance of the amplifiers before aural fatigue sets in; and longer sessions with each individual amplifier to judge whether such fatigue is caused by the amplifier and to judge whether the apparent improvement it offered was a "flash in the pan."

STRAIGHT LINE TEST

Fig. 2. The straight wire test. First popularised by Peter Walker of Acoustical Manufacturing (or Quad!) this test method has gained wider acceptance of late. It has its faults however.

During the initial sessions a number of "check" changes should be made to detect cheating (deliberate or involuntary) i.e. running amplifier No. 3 a second time as amplifier No. 7. Between each piece of music the reference numbers should be changed to minimise the effects of pre-conception. For example; if amplifier No. 3 is disliked for its reproduction of a bass drum, it may then be subconciously disliked on other pieces of music. Of course the tests should as far as possible, be conducted blind.

A popular "subjective" test in use is the "Straight Wire Test. " In this test the amplifier under evaluation is fitted with an attenuator at the output and substituted for a straight wire. The resulting signal is fed to a
"'reference" amplifier and loudspeakers of known performance. Such a test is of help in evaluating the dependence of the amplifier on the loading made by different loudspeakers. But otherwise this test must be considered suspect. The "reference" amplifier may be far from perfect and it may well mask subtle changes. The dynamic interactions of two units in series can be quite complex and very difficult to predict in advance.

The foregoing (brief and incomplete) discussion of subjective testing serves only to indicate the difficulties that can be encountered. The reader should only consider seriously those comparative reviews where considerable effort has been expended to eliminate errors due to equipment and human beings.

ET

£2.50 + 25p P\&P

$1+2-\mathrm{Top}$ projects include
Master mixer. 100 W guitar amp., low power 1 aser printmeter, transistor tester, mixer preamp, logic probe.

Ni-Cad charger, loudhaler, scope calbrator, etectronic ignition, car theft alarm, turnindicator canceller, brake
ight warning. LM380 circuits. temperature alarm, aerial matcher. UHF TV preamp, metal locator, four-input mixer. IC prwer supply. rumble filter. IC tester, ignition iming light. 50 W steren amp. plus many more.
3-This issue was so popular that it is now sold out! -Includes
Sweet tixteen stereo amp., waa-waa, audıo level meter, expander/compressor. car theft alarm. headlight eminder, dual-tracking power supply, audio millivolt meter. temperature meter. intruder alarm, touch switch, pectronc dice high power beacon. electronic one armed electronic dice. high-power beacon. electronic one-armed bandt'
-Twenty-two complete projects, tneluding.
W stereo amp stage mixer disco mixer, touch organ audio limiter, infra-red intruder alarm, model train controller, reaction tester, headphone radio, STD timer double dice. gen.-purpose power supply. logic tester power meter. digital voltmeter. universal timer, break. down beacon, heart rate monitor. IB metal locator. emperature máie
6-Just rumbished. Includes.
Graphic equalıser. $50-100 \mathrm{~W}$ amp modules. active crassover. flash trigger, "star and dot" game, burglar arm. pink noise generator, sweep oscillator, marke generator. audio-visual metronime. LED dice, skeet game lie detector. discolight show.
electronics

$75 p+25 p$ P\&P
Comprised entirely of new material. the edition covers such diverse subjects as Star Wars and hi-ft! The magazine contains projects for everyone - none of which have appeared in EII - and a look at the future of MPUs.
 No2

$£ 1.50$

Each volume contains over 150 circuits, mainly drawn for rapid selection and an additional section is included which pives ransistor specs and plenty of other useful dat a. Sales
surprising when the crrcue been phenomenar hach volume costs.

$$
£ 1.50+25 p \mathrm{P} \& \mathrm{P}
$$

£3.00 + 25p P\&P

This book is rather an unusual reprint from the pages of ETI. The senes appeared a couple of years ago in the of New England that they have re-published the series

Our successful beginners series came to an end some time ago now, and the whole series is avalable from us in repnnt form. The three books between them contain in the information presented in the series (sometimes in more detail') and together form an excellent starting point for anyone interested in learning the art of electronics ach volume costs.
£1.20 + 25p P\&P
splendidly for use as a standard textbook. Written by Peter Sydenham. M.E., Ph.D. M.Inst.M.C. F.II.C.A.. this publication covers practically every type of transduce and deals with equipment and techniques not covered in any other book. Enquiries from educational authorities universties and colleges for bulk supply of this publica tuon are welcomed. These should be addressed to H . W Moorshead, Editor.

HOW TO ORDER

Postage and packing also refers to over seas. Send remittance in sterling only.

ETI Specials
ETI Magazine
25-27 Oxford Street
London W1R1RF
Please mark the back of your cheque or po with vour name and address.
Please supply me with the following ETI Specials:

M
\qquad

ETI MARKET PLACE

Size: 105 mm wide 115 mm deep $\times 55 \mathrm{~mm}$ high.

THIS IS THE THIRD digital alarm clock that we are offering (we regret the earlier versions are no longer available). We have sold thousands and thousands of these and our buying power enables us to offer a first rate branded product at a really excellent price.

The Hanimex HC-1 100 is designed for mains operation only $(240 \mathrm{~V} / 50 \mathrm{~Hz})$ with a 12 hour display, $\mathrm{AM} / \mathrm{PM}$ and Alarm Set indicators incorporated in the large display. A switch on the top controls a Dim / Bright display function.

Setting up both the time and alarm is simplicity itself as buttons are provided for both fast and slow setting and there's no problem about knocking these accidentally as a locking switch is provided under the clock. A 9-minute 'snooze' switch is located at the top.

£8-95

(Inclusive of VAT and Postage)
An example of this clock can be seen and examined in our reception at our Oxford Street offices.

To:
Hanimex Alarm Offer
ETI Magazine
25-27 Oxford Street
London WIR IRF
Please find enclosed my cheque PO for $£ 8.95$ (payable to ETI Magazine] for a Hanimex Digital Alarm Clock.

Name
Adress

Please allow 14 days for delivery

LCD Watch

New low price!

The enormous numbers involved in ETI offers has enabled us to arrange a real bargain - a full spec LCD watch with adjustable metal bracelet for under half the going rate

This watch gives continuous display of hours and minutes press the button once and you'll get the date (American style). After a couple of seconds the display automatically reverts to time but if you press again you'll get a continuous seconds display.

Press another button and you get a back light, enabling you to see the display in the dark. Setting, or resetting is simplicity itself and a 'hold' facility allows you to set the watch spot on. The accuracy is magnificent, as with all the current range of digital watches and battery life is well in excess of a year.

ع8-95

(Inclusive of VAT and Postage)
An example of this watch can be seen and examined in our reception at our Oxford Street offices.

To:
LCD Watch Offer
ETI Magazine
25-27 Oxford Street
London WIR IRF
Please find enclosed my cheque/P0 for $£ 8.95$ (made payable to EII Magazine) for my LCD Digital Watch.
\qquad
Address
\qquad

Pease allow 14 days for delivery

AUTOCHORD PART ONE

WHILE NÖT QUITE an instrument in its own right the auto chord is certainly more versatile than the common or garden rhythm generator.

The instrument is designed to be added to the lower two octaves of an organ and will provide a variety of accompaniment controlled by the mode selected.

The specification shows that the eights rhythms provided cover most requirements and gives some idea of the extra facilities offered by the auto chord.

The instrument will offer chords major or minor third, fifth or diminished fifth and sixth of seventh. It will also provide a walking or alternate bass as well as arpeggios.

They say a picture is worth a thousand words, and at this moment we feel that at some time someone must have said much the same about sound. It's difficult to convey all the facilities offered by the auto chord on paper, so if you cannot visit Maplin's shop, where a unit will be on demonstration, you will just have to take our word that the auto chord provides everything that the solo musician could want.

The auto chord is designed to be incorporated within existing organs and is easiest to interface with a DC keyed organ although it is possible to use the auto chord with a direct keyed instrument.

Full constructional details plus a description of the auto chord in use will be presented next month.

SPECIFICATION

8 selectable rhythms

5 instruments

Covering waltz, rock to Latin. Latin American rhythms can be combined. Non-Latin American rhythms can be combined.
Bass. Snare drum. Low bongo. Claves. Cymbals.

CHORD ACCOMPANIMENT (with keyboard)

Three mode selection

1. AUTO

Playing one note produces a chord structured around this note, and will play continuously. SEMI-AUTO
Individual notes or chords played are remembered and played continuously. MANUAL
Notes or chords played only continue whilst the keys are held operated.

AUTO RESET

Variable bass. Delay-auto-stop and over-ride in all 3 modes. On/off. Walking or alternating in modes 2 and 3. A minimum of three notes. Must be played for bass accompaniment.
Auto: On/off.
Chord accompaniment: On/off.
Two octaves progressive in modes 2 and 3. Selectable maj/min 3rd/7th.
Variable tempo Harmonic attack Arpeggio Arpeggio Three selectable pitches
Chord accompaniment volume
Rhythm volume

FRONT PANEL CONTROLS

SW1	Mains on/off	SW18	Auto/semi-auto/ SW2
Suto on/off		manual	
SW3 to 10	Rhythm select	SW19	Auto-sto p / SW11
Chordon/off		continuous	
SW12	Harmonic attack	SW20	Autoreset
SW13	Major/minor3rd	SW21	Arpeggio.Off/1/2/3
SW14	7th	R13	Tempo
SW16	Bass on/off	R26	Auto-stop time delay
SW17	Bass - walking/	R131	Auto-accom. volume
	alternating	R140	Rhythm volume

PARTS LIST	
R107, 112, 119.	
175, 178, 218	1 MO
R196, 213, 228	2M2
R108	4 M 7
1/4W	
R141	39R
R110	100 R
R146, 147	180R
R144	330R
R142, 145	820 R
R148	1 k 5
R194	43k
POTENTIOMETERS	
R111	1 kO
R61, 247	47 k
R164, 190, 202	100k
R109	470k
R68, 84, 97	1 MO
CAPACITORS	
$\text { C68, 72, 79, 86, } 93$$94,95,101,103,$	
$\begin{aligned} & 110 \\ & \mathrm{C} 100,111,85 \end{aligned}$	10 n polyester $22 n$ polyester
C21, 22, 23, 107	33 n polyester
C5, 11, 17, 25, 31.	
35, $70,99,105,10847 \mathrm{n}$ polyester C10, 40, $71 \quad 68$ n polyester	
C1, 12, 20, 28, 30 ,	
47,69, 76, 104, 109 100n polyester	
C75	150 n polyester
C9	220 n polyester
C13-16	27 n polycarbonate
C24	47 n polycarbonate
C6, 7, 8	82 n polycarbonate
C2, 66, 97, 106	1 u 0 polycarbonate
C3 27.3	1 nO ceramic
C19, 27, 29, 33.	
38,43	10 n ceramic
C4	22 p ceramic
C78. 80	$220 n$ mylar
C49, 52, 55	100 p polystyrene.
C44, 74, 88, 96	330p polystyrene
C73, 89	470 p polystyrene
C91, 92	680 p polystyrene
C39, 90	1 n0 polystyrene
C32	1 n 5 polystyrene
C45, 87	2 n 2 polystyrene
C18, 26, 36, 41.	
$\begin{aligned} & 67,82,83,84 \\ & \mathrm{C} 102,77,81 \end{aligned}$	3n3 polystyrene $4 n 7$ polystyrene
C34	6 n 8 polystyrene
C98	lu5 63 V electrolytic

C48, 50, 51, 53, 54, $56,59,60,64,6510 u 25 \mathrm{~V}$ electrolytic	
C37,42	22 u 10 V electrolytic
C58, 63	100u 25 V electroly tic
C61, 62	220u 16 V electrolytic
C57	470 u 25 V electrolytic
C46	1000uV 16 V electrolytic
SEMICONDUCTORS	
IC1	M 254
IC2-5	4011
IC6	M 251
IC7	M087
IC8	4069
IC9-11	741
IC 12	4016
IC13	4013
Q1-4, 7. 8, 10, 11.	
12, 13, 15, 16	BC548
Q9. 14	BC177
Q5	BFY51
Q6	BFX87
D1-86, 94, 105	1N4148
D87-90	1 N4002
D91	12 V 400 mW
D92	5 V 6400 mW
D93	12 V 400 mW
LED 1	TIL209
SWITCHES	
SW1	Mains latchswitch
SW2	2 pole latchswitch
SW3 to 10	8. 2 pole latchswitch interdependent
SW1 1	2 pole latchswitch
SW12	2 pole latchswitch
SW1 3	2 pole latchswitch
SW14	2 pole latchswitch
SW1 6	2 pole latchswitch
SW1 7	2 pole c/over latchswitch
SW1 8	4p. 3W rotary
SW19	2 pole latchswitch
SW20	Push (break) sw
SW21	3 p .4 W rotary

MISCELLANEOUS

PCBs, 15-0-15 250mA transformer, fuse plus holder, sockers, clip on heat sinks, cable, etc.

Production problems have meant that the
circuit diagrams feor this project are without the usual component annotations.

Circuit diagrams of the generator and coder

HOW IT WORKS

PRE AMPLIFIER

The chord and rhythm outputs are amplified and filtered in ICs 9 and 11 respectively. The outputs from these devices are fed, via level control potentiometers to the input of ICIO. This mixes the two signals and provides the final output of the instrument at a level suitable for feeding to a power amplifier.

POWER SUPPLY

The various ICs used in the auto chord require supplies of $+12 \mathrm{~V},+11 \mathrm{~V},-5 \mathrm{~V}$ and -11 V . The +12 V line is derived from the rectified AC output of Tl by the series pass element Q5. The voltage at the emitter of Q5 is determined by D91, a zener diode. The +11 V supply is a simple shunt from the 12 V line.

The -5 V line is again a series pass circuit, this time the output voltage being set by D92.
The -11 V rail is simply stabilised by zener diode D93 as the current demanded from this rail is not enough to warrant the use of another series pass transistor.
The LED supply is taken from the negative voltage rail and is current limited by R148.

GENERATOR AND CODER

The rhythm generator section of the instrument is centered on ICl. This is the M254, a device that contains a ROM that will drive the sound generators with a selection of eight rhythms. To select a desired rhythm, the appropriate input must be taken to ground, via SW3-10, will the other inputs are held high by resistors R1-R9.

The M254 requires a clock signal to operate and this is generated by the CMOS oscillator formed by IC2. The frequency of this oscillator, and ultimately, the tempo of the rhythm, is controlled by R13.

The arpeggio, chord and bass accompaniment are generated by IC6, the M25I

The IC is fed with 12 input frequencies from the tone generator, 1C7. This is clocked by the output of the CMOS astable based on IC 5 c and d .

The M251 is used in conjunction with the M254 which is responsible for the selection of the various notes in the arpeggio/chord/bass accompaniment.

The M251 features a number of different modes of operation, in the automatic mode, when a number of keys in the two available octaves are played, the lowest note will be taken as a reference and memorised.

The memorized key, by means of an internal multiplexer, selects the corresponding tonic and all other notes programmed for arpeggio, chord and bass accompaniment.

In the semi-automatic mode, the M25I will memorise the lowest four keys played together with the top note played. The circuit will then provide accompaniment until the mode is cancelled by selecting automatic mode briefly and returning to semiautomatic while no keys are played.

The semi-automatic mode can also be selected without memorization of keys
Due to the pin out restrictions of the 40 pin package a system of multiplexing has had to be adopted, this explains some of the complexity in this area of the circuit.

Circuit diagram of the preamplifier

Circuit diagram of the power supply

Circuit diagram of the voice generator

HOW IT WORKS

VOICE GENERATOR

THE bass drum, tom-tom and low bongo sounds are generated by the damped sinusoidal oscillators based upon the six invertors of IC8. Each of the oscillators are the same apart from the values of the timing capacitors which set the characteristic frequency of oscillation.
In each oscillator the variable resistor (R68, R84 and R97) will control the rate at which any oscillations will delay once triggered by the M254 rhythm generator.

The square wave output of the M254 is held low by a resistor, necessary because the M254's outputs are open drain, and fed via a differentiating network to the damped oscillator. A pulse from the output of the M254 will trigger the characteristic instrument sound.
In addition to the output of the damped oscillator based on IC8c and d the tom tom, to give it a more realistic sound, contains a white noise component.
The white noise is produced by the reverse biased zener effect of Q4 and after filtering and buffering, by Q1, with further filtering by Q2, is mixed with the oscillators output to provide a realistic tom-tom sound.

The brush sound consists of filtered white noise, the white noise again being generated by Q4 - the filtering this time being performed by Q3 and associated components.

The clave output is generated by the resonant circuit centered around LI and C30.

The outputs from the various voice generating circuits are summed and fed to the instruments pre-amplifier.

BUYLINES

Maplin Electronics will be supplying a Contact Maplin for details of price. complete kit of parts for the auto Full constructional details for the chord, including screened boards. auto chord will follow next month.

Next month - full constructional details plus the auto stop board.

The Sinclair PDM35.

 A personal digital multimeter for only $\mathbf{\text { technical speciication }}$ 294, Var

Now everyone can afford to own a digital multimeter

A digital multimeter used to mean an expensive, bulky piece of equipment.

The Sinclair Pl)M35 changes that. It's got all the functions and features you want in a digital multimeter, yet they're neatly packaged in a rugged but light pocket-size case, ready to go anywhere.

The Sinclair PIDM35 gives you all the benefits of an ordinary digital multimeter - quick clear readings, high accuracy and resolution, high input impedence. Yet at $£ 29.95$ $+8 \%$ VAT, it costs less than you'd expect to pay for an analogue meter!

The Sinclair PIDM135 is tailormade for anyone who needs to make rapid measurements. Development engineers, field service engineers, lab technicians, computer specialists, radio and electronic hobbyists will find it ideal.

With its rugged construction and battery operation, the PIDM135 is perfectly suited for hand work in the field, while its angled display and optional AC power facility make it just as useful on the bench.

What you get with a PDM35

$31 / 2$ digit resolution.
Sharp, bright, easily read LEEI) display, reading to ± 1.999.
Automatic polarity selection.
Resolution of 1 mV and 0.1 nit
0.0001 HA .

Direct reading of semiconductor forward voltages at 5 different currents. Resistance measured up to 20 Mr . 1% of reading accuracy.

Operation from replaceable battery or AC adaptor.
Industry standard 10 Ma anput impedance.

Compare it with an analogue meter!

The PIDM 35 's 1% of reading compares with 3% of full scale for a comparable analogue meter. That makes it around 5 times more accurate on average.

The PIDM 35 will resolve 1 mV against around 10 mV for a comparable analogue meter - and resolution on current is over 1000 times greater.

The PIMM35's DC input impedance of $10 \mathrm{Ms} \Omega$ is 50 times higher than a $20 \mathrm{k} _/$/volt analogue meter on the 10 V range.

The PIDM35 gives precise digital readings. So there's no need to interpret ambiguous scales, no parallax errors. There's no need to reverse leads for negative readings. There's no delicate meter movernent to damage. And you can resolve current as low as 0.1 nA and measure transistor and diode junctions over 5 decades of current.

DC Volts (4 ranges)
Range: 1 mV to 1000 V .
Accuracy of reading $1.0 \% \pm 1$ count.
Note: 10 Mr input impedance.
AC Volts ($40 \mathrm{~Hz}-5 \mathrm{kHz}$)
Kange: I Io 500 V . Accuracy of reading: $1.0 \% \pm 2$ counts. DC Current (6 ranges)
Range: 1 nd to 200 mA .
Accuracy of reading: $1.0 \% \pm 1$ count.
Note: Max. resolution 0.1 nt .

Resistance (5 ranges)

Range: 1 s to 20 Mr .
Accuracy of reading: $1.5 \% \pm 1$ count. Also provides 5 junction-test ranges.
Dimensions: 6 in $\times 3$ in $\times 1^{1 / 2}$ in.
Weight: $6^{1 / 2} \mathrm{oz}$.
Power supply: 9 V battery or
Sinclair AC adaptor.
Sockets: Standard 4 mm for resilient plugs.
Options: AC adaptor for 240 V
50 Hz power. De-luxe padded

carrying wallet. $30 \mathrm{kV}^{\prime}$ probe.

The Sinclair credentials

Sinclair have pioneered a whole range of electronic world-firsts - from programmable pocket calculators to miniature TV's. The PI)M35 embodies six years' experience in digital multimeter design, in which time Sinclair have become one of the world's largest producers.

Tried, tested, ready to go!

The Sinclair PIM 135 comes to you fully built, tested, calibrated and guaranteed. It comes complete with leads and test prods, operating instructions and a carrying wallet. And getting one couldn't be easier. Just fill in the coupon, enclose a cheque/ PO for the correct amount (usual 10-day money-back undertaking, of course , and send it to us.

Sinclair Radionics Itd, Loondon Road, St Ives, Huntingdon, Cambs., PE174HJ, England. Regd No: 699483.

SEIKO 20\% 0FF!

$£ 104$
FB 011 ALARM/ CHRONOGRAPH FH 003 CALCULATOR WATCH

RRPE165 £127.50

FB 018 Gold plated (£150) £ 120
Citizen large reductions
On most quartz analogue and digital models
FAIRCHILD TIMEBAND
C6110 Mains digital alarm clock
STILL THE BESTI
Large LED display 24 -hour alarm 9 minute snooze. concealed controis Black or white
£10.95
FROM CASIO - OF COURSE
BEDSIDE
TRAVEL
ALARM
CLOCK

Okay, genius. so you KNEW Casio would bring one out soon! You were right to wait
Alarm Alarm/Ti. LARGE 6 digit LCD display. Night light.
$£ 19.95$
AQ-1000 CALCULATING ALARM CLOCK PLUS 3-WAY STOPWATCH
Hours. minutes, seconds, am/pm, 24 hour Alarm with sign, Stopwatch: Net from $1 / 10 \mathrm{sec}$. to 10 hrs with ST \& LAF signs. Calculator: 4 key memory. \%, year batteries, \# 20 secs/month.
RRP $\mathrm{E}^{26} .95$

> Our Price £21.95

Ca-81 CALCULATING ALARM CLOCK. Plus 2 Alarm/ Timers. 24 hour alarm and alarm/timers, 6 digit LCD clock One year battery life $1 \frac{1 / 6}{} \times 2 \frac{3 / 4}{4} \times 5$ inches (RRP E22.95)
$£ 17.95$
FX.8000. 41 sc. funct $1 / 200 \mathrm{sec}$ stopwatch 2×5
$£ 29.95$
MINI CARD CALCULATORS $1 / 9 \times 31 / 2 \times 21 / 8$ ins. LC. 78 FUll memory, \%o V K ST-24 Card Time 24 hout stopwatch (or clock) Alarm/Timers. Calc. as LC-78 E19.95
ALL Casio scientifics. Lowest prices $E 19.95$

ST-1. Four way stopwatch

GARTRIDCE T/V GAMES

OPTIM Coronet 600
Cantidges from $£ 9.95$
FAIRCHILD TIMEBAND Grandstand
£119.95 CTAR1 £169.95
ther
Cartidges from $f 14.95$

* SPECIAL INTRODUCTORY OFFER FREE extra carridge worth $£ 14.95$ with Atar
SAVE EEEs WITH THE MONITEL
elephone call charge, calculator and clock UK mode 28.15, International $£ 38.50$. State colour

WATCH BATTERIES 65 p each D.I.Y. KIT 35 p (with battery order)

THIS MONTH'S STAR BUY

TEXAS LCD ANALOCUE

TODAY'S MOST ADVANCED ELECTRONIC WATCH
Hours, minutes, second
Chronograph timing
from $1 / 10$ second to
Dual Time
Mineral glass face

Stainless steet case. bracelet
10 micron gold piated
£179.95
£199.95
SOLAR powered watches - so called
Misrepresentation? We WON'T sell them
LED display warches - we dont sell them. Send us a
PH-ALARM and ALARM CHRONO

Chrono. Measuring net. lap and 1st \& 2 nd place times from All stainless steel, mineral glass $£ 39.95$ CBM, 6 DIGIT'and ALARM WATCHES
 £13.95 ALARM 18×3 (Right) 6 digits 6 functions +
alarm setting. £27.50

ANALOGUE

IBICO 700. Cushion shape Day, Mineral glass face. Water resistant to 100ft.
£ 28.95 ADIES LCD WATCHES
5 functions. Backlight. Gold or silver finish Dress Watch
PH.L2
Matching
bracelet
$£ 14.95$
Cockrail
Internal
bracelet
(4 other
£18.9
CASIO LADIES' LCD WATCHES

$7+2$ function Round (Left) (E35.95) $£ 29.95$

27CL-17B Stopwatch £39.95
Send 250 for our illustrated catalogue. Price include VAT and

CASIO QUALITY

All CASIO watches have a calendar display, night illumina tion. mineral glass and stainless steel cases, water resistant 10

SPORTS WATCHES
F-100
Left, 9.45 mm
(£29.95)
$£ 24.95$
520S-14B
Right 8 mm
$(\mathrm{E} 44.95$)
£34.95

Up to $\mathbf{2 5}$ functions. Net, lap and firt and second place times to $1 / 100$ th sec $\mathrm{F}-100$. Resin case, strap 520S-14B S/S encased version and bracelet.

DIGIT WATCHES (except Word Time). Hours, minutes ten seconds. seconds by flash, am/pm. Day, date, month Stopwatch. Dual time (except 310R.20B)

(f3195)

$£ 26.95$
510R-19B. 6 digit
$£ 29.95$

6 DIGIT WATCHES (except Sports and Alarm). Hours, minutes, seconds. day OR Hours, minutes, date, day, ten seconds, seconds by flash. Day, date, month, year. Seleci able 12 hour (with am/pm) or 24 hour clock

540S-16B (€44.95)
$£ 34.95$

540S-158
6 digit
(E49.95)
$£ 39.95$
CHRONOGRAPH. 6 digits as above, with stopwatch measuring net. lap and 1 st \& 2nd place times from 1/100 \sec to 6 hrs Dual time facility

29CS-118
£59.95
WORLD TIME WATCH. The time in ten capitals plus one secs secs by flash. Perpetual calendar, day, date month. Running digital seconds display.
ALARM WATCHES
25CR-16B
Round (E64.95)
£49.95
25CS-16B
$£ 59.95$

Hours, mins. seconds (or hrs, mins. date) day. am/pm. Day date, month, year 24 hr . alarm. on /off indicator

53CS-18B
eft, 4 digit ($£ 69.9$

E54.95

Not illustrated 53CS.19B, 4 digit, barrel shaped $£ 54.95$ 49CS-24B, 6 digit (£74.95) £59.95 53CGS-17L: Gold

Alationios tondyy

What to look for in the December issue: On sale Nov 3rd

ETI LIGHT SHOW

HANDS UP all those who've never been to a speed dependent upon music level (not disco. None? Good - that means you've all seen sound-to-light units in action, although it's more than likely it was a normal threechannel affair. Usually boring, are they not?
Well ETI plans to change that next month; ours has five frequency channels, with individual level controls on each channel. Control of the lights is comprehensive to say the least. You can run the unit as a straight sound to light, or have it strobe all lights. At a
 volume - the unit is independent of that!) or hand over control to an internal digital circuit which produces some superb random effects. If you fancy a five colour manually controlled strobe unit it can do that as well!

Each channel handles up to 500 W of lighting, and a complete kit of parts will be available from Powertran, who designed this project especially for ETI.

Electronics in Model Railways
 An essential part of the education of any young

 man is his electric train (checking with ETI technical staff shows all eight had one - and five still have). Most of us however remember the controls as crude; today things are changing sophisticated electronic controls are perfectly suited to model railways and the manufacturers are about to announce some dramatic advances. We take a look at what's happening.
CURVE TRACER

Explaining the shape of Voltage-Current charac teristics of diodes, transistors and other non-linear devices is usually dull as it normally involves a tedious plot of static, experimental data
A more elegant solution is available to anyone with a DC coupled scope capable of taking an external X-input. Next month we carry a project with the additional circuitry necessary to do this yourself.

Car Anti-theft System

A simple project to build but sophisticated in its operation. It is a comprehensive system that incorporates several features of large and expensive commercial systems and using state-of-art techniques it is extremely reliable. A kit will be available of the whole project.

How It Works

In the November issue we begin a new type of article. The idea came to us when discussions with experts in one area of electronics admitted to almost total ignorance of other areas - especially commercial circuitry. Mass-produced electronics use techniques which are not widely understood elsewhere - we hope to put that right. In the first of this occasional series we have asked Gordon King to discect a Thorn Monochrome TV; we shall show the complete circuit and explain the function of each stage. It's not done as a beginners series but to give those outside this field the true "Inside Story."

computing today No. 2

Win a IRITON

 Computer

Want to get your hands on a Triton Computer Kit but'can't afford it (yet)? In No. 2 of our new supplement Computing Today, we have a free-entry competition for one to be won. If you've read this far you'll probably know what it's worth - but in case you don't it's about $£ 300$.

Microprocessors

by Experiment

Learn about microprocessors - not from some abstract description of a make believe MPU but by hands on experience with an MPU system. The series, based on the MK14 development kit, will take you through the operation of the SC/MP MPU and show you how to use it to do everything from control your heating system to land on the moon.

I/O for 6800

The microprocessor user rapidly arrives at the need to understand and apply input/output circuitry to interface peripheral equipment to the computer system. A standard choice, when using a 6800 microprocessor, is to employ a Peripheral Interface Adapter (PIA). Many engineers now buy readybuilt systems then wish to utilise the PIA as straightforward outputs and inputs. When data sheets are consulted they are found to give concise yet complete hardware and software information. The user of a ready-built system needs help in simply getting the PIA to act as outputs and inputs without becoming involved in the intricate details needed by designers of microcomputer boards. This article aims to give this help.

Features mentioned here are in an advanced state may affect the final contents of the next issue.

CALCULATORS

SCIENTIFIC

SPECIAL OFFER
TEXAS Ti59 together with PC 1008 (Complete as manulacturer's specifications

-TEXAS T159 (New Card prog 960 prog steps of 10	
-TEXAS T158 (New Key prog 4B0 steps or 60 mem)	
AS 1157 (Key Prog 8 Mem. 150 Key Strokes/ 50 Prog Steps)	
TEXAS T133 (New - same spec as T1	£13.95
EXAS T145 (New undated version of the Texas T140)	E19.95
'TEXAS 42 MBA (10 Dig Fin / Stat Prog 12 Mem 32 key strokes)	
'TEXAS T151/ili (New 8 Dig + Exp 10 Mem 32 Prog Steps	
Stat Scil	¢26.30
25 (new LCD	

-TEXAS T158 with Applied Statistics

AUTUMN SALE
TEXAS T 159 Calculator (complete as manufacturer s spec
master module, charger. tic). PLUS statistics modual and
extra set of 40 Blank Prog Cards with wallet, etc
ONLY $£ 180$

Tel. 01-455 9855

MOUNTAINDENE LTD.
 22 Cowper St., London, EC2

ETCH RESIST TRANSFER KIT SIZE 1:1
Complete kit 13 sheets 6 in $\times 41 / 2$ in £2.50 with all symbols for direct application to P.C. board. Individual sheets $25 p$ each. (1) Mixed Symbols (2) Lines 0.05 (3) Pads (4) Fish Plates and Connectors (5) 4 Lead and 3 Lead and Pads (6) DILS (7) BENDS 90 and 130 (8) 8-10-12 T.O.5. Cans (9) Edge Connectors 0.15 (10) Edge Connectors 0.1 (11) Lines 0.02 (12) Bends 0.02 (13) Quad in Line.
FRONT AND REAR PANEL TRANSFER SIGNS
All standard symbols and wording. Over 250 symbols, signs and words. Also available in reverse for perspex, etc. Choice of colours, red, blue, black, or white. Size of sheet 12 in $\times 9 \mathrm{in}$. Price $£ 1$.

GRAPHIC TRANSFERS

WITH SPACER

ACCESSORIES

Available also in reverse lettering, colours red, blue, black or white. Each sheet 12 in . $\times 9 \mathrm{in}$ contains capitals, lower case and numerals $1 / 8 \mathrm{in} \mathrm{kit}$ or $1 / 4 \mathrm{in}$ kit. £1 omplete. State size

AH orders dispatched promptly
All post and VAT paid
Ex U.K. add 50 p for air mail
Shop and Trade enquiries welcome Special Transfers made to order

E. R. NICHOLLS

P.C.B. TRANSFERS

DEPT. ETI/9
46 LOWFIELD ROAD
STOCKPORT, CHES.061-480 2179

SUPER SAVERS ALL FULL SPEC.

$7490 \mathrm{~N}-10 \mathrm{p}, \mathrm{\varepsilon 8}-100,7460 \mathrm{~N}-10 \mathrm{p}, \mathrm{\varepsilon 8}-100$ 17p. Min order 10 of one type $100+$ POA. P/P 20 p . SLIDER POTS PIHER $47 K$ LOG, TRACK 70 mm OVERALL 85 mm . SINGLES 20p, £15-100, DO UBLES 50p, £40-100. MIN. ORDER 10, $100+$ POA

SUPERB STEREO CASSETTE DECKS, BRAND NEW, PIANO KEYS, GV MOTOR, END OF TAPE STOP DIGITAL COUNTER. HEADS PULLEYS, ETC. AS USED IN NATIONAL PANASONIC MUSIC CENTRES VERY HIGH QUALITY. £8.75p + E2P/P
VERO EDGE CONNECTORS 22×22 TYPE 2245 2-7431 40p, 42×42 ww KEY AT 7 TYPE $1360 / 2$ £ P/P 20p

TRIM POTS 50Ω TO5 20p, 100Ω CERMET 20p. 100Ω PAINTON PCB 20p, 200Ω DITTO 20p, 250Ω DITTO 20p, 500 O DITTO 20p, IK DITTO 20p, $2 K$ DITTO 20p, 2K HELITRIM 20p, 5K PCB 20p, 1MEG SKELETON MIN VERT 12p. P/P 20p
CANNON "D" TYPE PLUGS/ SKTS. 15p-50p SKT.-50p, 25p-60p, SKT 60p, 25 RIBBON PLUGS $\mathbf{9 0 p}$, SKTS $90 p, 37$ PLUG 80p, 50 SKT £1.20 $50-W$ W WRAP COVERS SKTS $£ 1.30$.
COVERS WITH RETAINERS, 15 WAY 60p, 25 WAY 80p, 37 WAY £1, 25 WAY PLASTIC (3M), 50p. ALL ABOVE LIMITED. P/P 20p
All enquiries s.a.e. please Cat. s.a.e. 8×6 free with

goods

Now distributor for Mutek Products including Ides Miero Systems In stock, Video Intertace board, 16 line, 64 characters, data and control inputs, video output Idea P / P plus rocessor use With full documentation,

POCKET PAGER

Miniature crystal controlled FM RX Single Superher around 30 MHZ 450 KHZ IF contains various tone detectors Ideal for modifications to 27 MHZ Radio Control OR 28MHZ Amateur Band. Complete, withou $25 \vee D E A C+$ circuit of similar type, $£ 3.95$. $P / P 25$ p.
L. B. ELECTRONICS 43 WESTACOTT, HAYES MIDDLESEX UB4 8AH

SEMICONDUCTOR OFFERS ALL FULL SPEC.

Common anode 03.7 seg displays Toshiba type TLR303 65 p
FETs similar to 2 N 38191 gp Molsel Sim to 40673 35p. 3 N 140 Mosfers 50 p M203 Dual Matched Parss Mosiets Single Gate per FET 40p Intel 1024 bit MOS Rams 95p Mullard B8 113 Triple
Varicap Oiode 35 MC1310 Mtereo Decoder I C.s $£ 1.20$ CD4051 CMOS 50 p 741 B -pin D 1 L 23 p 200v 600 mA Bridge Recs (ex equip) 25 p i 1 NAOOL 100 v 1 ADiodes 4 p 14005 BOOv 1 A Diodes

 Alpha-numerical Displays, With data, E2 75 ORP61. Mullard MICROPHONES. EM506 COndenser Mikes. Un-directional F E A Amp Dual mped. Sok 6 oohms. So-18k Hz on/ol omni-directional, uses hearing ald battery (supplied) $£ 495$ Grundig Electret Insers with built-in F E T Preamp $£ 1.50$ Crystal Mike inseris $37 \mathrm{~mm} \mathrm{45p}$ Electret Condenser Mikes $1 \mathrm{~K} \Omega \mathrm{Imp}$ with sid Jack Plug 85 St Cassette Conete Mikes 200 ohm imped with Jack Plugs $£, 285$ Standard Cassette Mikes 200 ont
25 and 35 Jack Plugs $£ 120$

MORSE KEYS - Hi-speed Type, all metal, £2 25 Plastic Morse Keys. 95 p Belling Lee L4305 Masthead Amplifiers and 240 V AC
power unit Group A. UMF Only E 750

CRYSTALS. 300 KHz HC6U 40D 01 Edge Connectors, 64 way $65 p 32$ way 40p
RELAYS. Min 220vaC Sealed Relay 2 pole C/O 45p 240v AC Sealed Relay 3 pole C/O 5 amp Contacts 11 -pin base 80p 12 voli
4 pole NO Reed Relay 20 p Min 24 V DC Sealed 2.pole C/O relays 3 -amp contacts New 55 p 12 V OC 4 pc 0 o. open type. new 500 each

MOTORS. 15 to 6VDC Model 20p 115VAC min. 3RPM win Gearbox 30p 240 v AC Synch Molor $1 / 5$ th R P M 65 p . 240 VAC

BOXES. Black ABS Plastic with brass insers and lid. $75 \times 56 \times$ $35 \mathrm{~mm} 40 \mathrm{p} 95 \times 71 \times 35 \mathrm{~mm} 49 \mathrm{p} 115 \times 95 \times 16 \mathrm{~mm} 57 \mathrm{p} 225$ 130x

TOOLS. Radio pliers 5in, insulated handles £1 40 Diagonat side
cutters. 5 in. insulated handles $£ 140$
MAINS TRANSFORMERS, all 240 v AC primary Postage shown
6.0 .6 100mA, $9-0.975 \mathrm{~mA}, 12-0-1250 \mathrm{~mA}$. 75 p each (15 p) $0.4-6.9150 \mathrm{~mA}$. no mounting bracke1. 65 p (20p) 12.0 .12
 $30-0-30 \mathrm{v} 1 \mathrm{Amp}$. $£ 275$ (54 p) o-12-15-20-24-30v tapped at 2 Amp $£ 450(54 \mathrm{p}) 20-0.20 \mathrm{v} 2 \mathrm{amp}$. $£ 350(54 \mathrm{p}) 25 \mathrm{v}$ i 5 Amp
 xenon/riac pulse transiomer, 3Op
SWITCHES - Min Togile. SPST $8 \times 5 \times 7 \mathrm{~mm} 45 \mathrm{p}$ DPDT $8 \times 7 \times$ 7 mm 60 p . DP B Centre Switches 15 p Min. Miero Switches $13 \times 10 \times 4 \mathrm{~mm} 20 \mathrm{p}$ Min Push to make or push to treak Switches $16 \times 6 \mathrm{~mm} 15$ p

SOLOER SUCKER. Plunger type. eye protection, replaceable nozzle, high suction, £4 95 Reed switches 28 mm norm. open, 6 p

TAPE HEAOS - Cassette Stereo £300 BSA MN $13301 / 2$ Track Dual Impedance Rec /Playback 50 日 BSR SAP90 $1 / 4$ Track Stereo
Rec /Playback E 195 TD 10 Assemblies. Two neads. 4 Track Rec /Playback Staggered Stereo with builton erase per heac E1 20 Tape Head Demag 240v AC £ 195
buzzers-GPO Type 6.12v 20p Min Sold State Buzzers 6.9 .12 or 24 v 15 m
volts high rone. 25 p
U.H.F TV Transis
and boxed
\& 250

MURATA MA401L. 40 kHz Transducers, rec/send £3 25 par
METERS-Grundrg Batt Level Meter $1 \mathrm{~mA} 40 \times 40 \mathrm{~mm} £_{1} 10$
Min Level Meter $200 \mathrm{wa} 25 \times 15 \mathrm{~mm} 75 \mathrm{p}$ Fertanti 600 vAC Meter £3 95
EOGE METER - Large scale 0-100, new E2 75
POT CORE UNIT. Has 6 -pot cores. including 1 FX $2243(45 \mathrm{~mm})$ and 2 FX2242 (35 mm). 320 mm anel fuseholders 3 t03 Si Power ransistors on heat sink. pane win
diodes with a 5 -amp plastic $\$ \mathrm{C}$.R New $£ 175+75 \mathrm{p}$ P\& P

LA1230 adj core 15 mm dia $14 \mathrm{mH}-18 \mathrm{mH}$. HIO. $10 p$ each
8 TRACK 12 volt molors new. E1 25
CASSETTE MOTORS 6 volt new. E1 25

SOLENOTOS-24OV AC 45p 12V DCH Duty 75p 240v 2510 pull. 2 travel E 395

12-WAY MOTORISED CAM UNITS. SOV AC low rev moto driving 12 C/O micro switches. suppled
$A C$ use Ex equip $£ 195+35 \mathrm{p}$ P P

13 Amp rubber traller extension sockets, 38 p
8 WAY RIBBON-CABLE, min solid core, 15 p metre
POSTAGE 30p UNLESS OTHERWISE SHOWN IEXCESS COST VAT INCLUDED IN ALL PRICES

ORDER ADDRESS

PROGRESSIVE RADIO
31 CHEAPSIDE, LIVERPOOL 2 051-236 0982

GAIN CONTROL PART 2

To conclude his survey of electronic gain control methods, Tim Orr presents us with more circuits which vary from a light bulb compressor to a markspace modulated universal filter unit, and a noise gate/expander.

Basic Limiter Circuit

Most professional limiter circuits use a FET as the variable gain element. Relatively low distortion with a reasonable signal to noise rati- can be obtained. A basic limiter circuit is shown this being no c.fferent to previous circuits except for the variable gain element.

When a relatively small voltage (20 mV) is applied to the drain source of a FET, it acts like a fairly linear resistor. As the gate source voltage is varied, this resistor (RDS) also varies.

In fact the channel resistance RDS is inversely proportional to gate source voltage V_{Gs}. When V_{g} is oV , then RDS is at its generally minimum resistance ($R_{\text {ON }}$) which can be as low as 5R, but it is generally more like 100R. When $V_{\text {gs }}$ exceeds the pinch off voltage (Vp or V_{GS} off) the channel resistance goes up to several hundred Megohms. So a junction FET can be used as a voltage controlled resistor, except that $R_{O N}$ and $V_{G S}(O F F)$ tend to vary widely from device to device. However with a bit of perseverance suitable devices can be selected and made to work.

One circuit trick that greatly reduces distortion is shown here. Half of the audio signal at the drain of the FET is presented to the gate. This is superimposed on top of the control voltage and produces a distortion cancelling effect. Distortion levels below 0.1% can be achieved using this technique.

Transistor VCA

A circuit similar in operation to a CA3080 can be constructed with a matched pair of transistors and an op amp. Transistors Q1, 2 form a differential transistor pair which is used to steer whatever current is available between the two collectors, just as in the CA3080. the difference between the collector currents is equal to the product of the input voltage times the current $\overline{\mathrm{I}}_{\mathrm{EE}}$ times a constant. This difference is extracted by the differential amplifier IC1. The current lee is controlled by Qe. As the control voltage goes positive, Qe robs most of the current flowing down the $\mathbf{3 9 k}$ resistor, and hence $I_{E E}$ and the output of IC 1 decrease.

Two Channel Low Level Expander/Noise Gate

Incredibly Simple Compressor

Not all gain control systems need be complicated or indeed active. One product which I saw advertised was a compress or to help prevent loudspeakeroverloads. All it was was a lightbulb in series with the loudspeaker. When the power exceeds a certain level, the lamp will turn on, glow, its resistance increases dramatically and hence a bigger percentage of the power output is dissipated in the lamp. A nice, simple solution, but I think it would require some experimentation to find the right sort of car headlamp bulb!

Switched Frequency Low Pass Filter

In this example the effective resistance is switched by using 4016 gates. The filter is a lowpass Butterworth and by turning gates A or B ON or OFF the cut off frequency can be altered. This allows the filter control to be physically remote or even to be computer controlled. Mark Space modulation of A and B would enable continuous control over the cut off frequency.

Four Quadrant Multiplication

(A)

(B)

By using a few circuit tricks, the CA3080 can be made to perform 4 quadrant multiplication. In fact the CA3080 performs 2 quadrant multiplication and the trick is to move the axis on the multiplying graph. If we ignore the RA resistor chain then we have a 2 quadrant multiplier circuit similar to that shown previously. Imagine that V_{x} is a 1 kHz sine wave. 1 Vptp and V_{y} is at OV. The output of IC2 is a sine wave of fixed amplitude. Now if we connect RA, and adjust the balance control, it will be possible to cancel out the output, because the signal coming from IC1 is out of phase with that from the RA resistor chain. So with V_{y} set at 0 V there is no output for IC2. If V_{y} goes $+v e$, the output of IC1 will become greater than the current via the RA chain and the output if IC2 will grow.

If V_{u} goes-ve the current through the RA chain will exceed that from IC1 and the output of IC2 will grow, the phase being opposite to that when V_{y} was a sinewave from an oscillator, then this circuit could be used to generate ring modulation effects.

When V_{x} is set up OV there may be some V_{y} break through and this can be minimised by adjusting the V_{y} rejection preset.

"No. I thought you were supposed to bring the key!"

"'Forget about RAMS, ROMS AND PROMS, darling . . . we've got to talk about PRAMS!"

Markspace Modulated Universal Filter

It is possible to change the gain of an amplifier by effectively altering the input resistor. This can be done by markspace modulating a voltage controlled switch in series with the resistor.

When the markspace ratio is low, the switch is OFF most of the time and the effective resistance is large. When the markspace ratio is high the switch is ON most of the time and the effective resistance approaches that of the series resistor.

Having generated a markspace control waveform, it is possible to gang up together literally hundreds of voltage controlled switches. This enables large numbers of variables to be simultaneously changed.

The circuit is a markspace modulated universal filter (IC-6) and the markspace generator itself (IC-11).

IC7-10 forms a triangle square wave oscillator. IC7 is an integrator whose outout ramps up and down between OV and a +3 V reference. IC8-10 are all fast comparators. IC8 detects
when the integrator outputs of IC8 \& 9 are used to flip over a schmitt trigger IC10, which then drives the integrator. Thus the integrator output ramps up and down between OV and +3 V at a rate of $\mathbf{2 0 ~ k H z}$.

It is important that the frequency of the markspace oscillator be relatively high. As a rule of thumb it should be $21 / 2$ times the highest frequency components of the signals that you hope to process. The triangle output is fed into IC11's inverting input, the contral voltage into the non inverting input. The output of IC11 is the markspace modulation which is used to drive the switches IC5,6. The filter resonant frequency is directly proportional to the mark space ratio that drives these switches.

The number of IC's used is a quad package, and so is the 4016 and so can be the op amps (use RC4136). Thus the whole circuit can be realised with only 4 IC's. Also the mark space oscillator canbe used to drive other independent comparators.

15-240 Watts!

HY5

Preamplifier

HY30

15 Watts into 8Ω
The HY5 is a mono hybrid amplifier ideally suited for all applications. All common input functions (mag Cartridge, tuner. etc.), are catered for internally the desired function is achieved either by a mult-way switch or direct connection to the appropriate pins. The internal volume and tone circuits merely require connectinq to externa! potentiometers (not included) The HY5 is compatible with al supplied with each pre-amplifier. FEATURES: Complete pre-amplif
distortion - High overload - - inpler in single pack - Multi-function equalization - Low noise - Low APPLICATIONS: Hi-Fi - Mixers .- Disco - Gitar stereo
Applications. hi.Fi - Mixers -- Disco -- Guitar and Organ -- Public address
SPECIFICATIONS
INPUTS Magnetic Pick-up,3mV Ceramic Pick-up 30 mV : Tuner 100 mV Microphone 10 mV Auxiltary $3-100 \mathrm{mV}$: inpur impedance 47 k ! 2 at 1 kHz
OUTPUTS Tape 100 mV : Main output 500 mV RM
ACTIVE TONE CONTROLS Treble $\pm 1 \frac{1}{2} \mathrm{~dB}$ at 10 kHz ; fass \pm at 100 Hz
DISTORTION 01% at 1 kHz : Signal/ Noise Ratio 68 dB
Price $£ 6.27+780$ VAT. P\&Pfres. $\mathbf{~} \mathbf{~ P}$. SUPPLY VOLTAGE $\pm 16.50 \mathrm{~V}$
Price $£ 6.27+78 p$ VAT. P8, P fres.

Pount board B1 48p + 6p VAT P\&P free
The HY30 is an exciting New kit from 1.L.P. it features a virtually indestructible I.C. with short circuit and thermal protection. The kit consists of IC, heatsink. PC board 4 resistors 6 capacitors mounting kit, together with easy to follow construction and operating instructions. This amplifier is FEATURES: Complete kit - Low Distortion - Short use the most up to-date technology available. APPLICATIONS: Updating audio equipment - Guitar practice amplifier - Test amplifier to Build Applications: Updating audio equipment - Guitar practice amplifier - Test amplifier -- Audi scilator

UUTPUT POWER 15W R.M.S into 80 DISTORTION 0.1% at 15 W
INPUT SENSITIVITY 500 mV FREQUENCY RESPONSE $10 \mathrm{~Hz}-16 \mathrm{kHz}-3 \mathrm{~d}$ SUPPLY VOLTAGE $\pm 18 \mathrm{~V}$
Price $£ 6.27+78 p$ VAT. P\&Pfree.

HY50

25 Watts into 8Ω
The HY50 leads I L.P s total integration approach to power amplifier design. The amplifier features an ntegral heatsink together with the simplicity of no external components. During the past three years俍 FEATURES: Low Distortion

- No external components

APPLICATIONS: Medium Power Hi-Fisystems -- Low power disco -- Guitar amplifier
SPECIFICATIONS: INPUT SENSITIVITY 500 mV
OUTPUT POWER 25W RMS in 8 8 LOAD IMPEDANCE $4-16 \mathrm{Q}$ DISTORTION 0.04% at 25 W a 1 kHz
GNAL/NOISE RATIO 75 dB . FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPI Y VOLTAGE + 25 V SIZE 105.5025 mm

HY120
60 Watts into 8Ω
The HY120 is the baby of IL.P s new high power range designed to meet the most exacting requirements including load line and thermal protection, this amplifier sets a new standard in modular
FEATURES: Very low distortion - Integral Heatsink - Load line protection - Thermal protection APPLICATIONS: Ho-F - High quatity disco - Public address - Monitor amplifier - Guitar and SPECIFICATIONS
NPUT SENSITIVITY 500 mV
OUTPUT POWER 6OW RMS into 812 LOAD IMPEDANCE A-16 2 DISTORTION 0.04% al 60 W at kHz
SIGNAL/NOISE RATIO 90dB. FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$. SUPPLY VOLTAGE Size $114 \times 50 \times 85 \mathrm{~mm}$
Price $£ 19.01+\mathbf{£ 1} .52$ VAT. P\& P free
HY200
120 Watts into 8Ω
The HY200, now improved to give an output of 120 Watts, has been designed to stand the most FEATUPES: Ths, such as disco or group while stilf retaining true Hr-Fi performance FEATURES: Thermal shutdown -- Very low distortion -- Loadline protection -- Integral Heaısink APPLICATIONS: MI-ri - UIsco - Monitor - Power Slave - Industrial - Public address ICATIONS
NPUT SENSITIVITY 500 mV
OUTPUT POWER 120 W RMS into 80 LOAD IMPEDANCE 4.161 DISTORTION 0.05% at 100 W at 1 kHz
SIGNAL/NOISE RATIO 96 dB . FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE
-45 V SIZE $114^{\circ} \times 100 \times 85 \mathrm{~mm}$. Price $£ 27.99+£ 2.24$ VAT. P\& \mathbf{P} free.
HY400
240 Watts into 4Ω

POWER SUPPLIES

The HY400 is I.L.P. s "Bia Daddy" of the ranae proaucing 240 W into 4 !! It has been designed to high nower disco or public address applications it the amplitier is to be used at contunuoushigh power levels a cooling fan is recommended The amplifier includes alt the qualities of the rest of the family 10 EEATURES. Thermal shutown Very low distonion
components.
SPECIFICATIONS
OUTPUT POWER 240W RMS into $4!$ LOAD IMPEDANCE $4.16!2$ DISTORTION 0.1% at 240 W a
IGNAL/NOISE RATIO 94dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}$ - 3 dB SUPPLY VOLTAGE -
INPUT SENSITIVITY 500 mV SIZE $114 \times 100 \times 85 \mathrm{~mm}$
Price $£ 38.61+£ 3.09$ VAT. P\& P free.
PSU36 suitable for two HY30's $\mathbf{£ 6 . 4 4 + 8 1 p}$ VAT
PSU 50 suitable tor twG HY50 s $£ 8.18+£ 1.02$ VAT
PSU70 suitable fo two HY 120 s $£ 14.58+$ E.1.17VAT
PSU90 suitable for one HY200 £15.19 + £1.21 VAT
PSU180 suitable for two HY2000's or one HY400£25.42 + f.2 03 VAT

TWO YEARS' GUARANTEE ON ALL OF OUR PRODUCTS

I.L.P. Electronics Ltd.
Crossland House
Nackington, Canterbury
Kent CT4 7AD

Tel. (0227) 64723

Please Supply
Total Purchase Price
I Enclose Cheque \square Postal Orders $\square \square$ Money Order \square
Please debit my Access account \square Barclaycard account \square
Account number
Name \& Address

LEKTROKIT

 completes the circuitSee Lektrokit at one of the Lektrokit dealers near you. There's bound to be one they're springing up everywhere. Send for the name of your nearest - plus FREE fullcolour catalogue-to:

Lektrokit Ltd., Dept. ETII Sutton Industrial Park, Earley, Reading, Berks RG6 1AZ
Telephone 0734669116

AUDIO OSCILLATOR
 WITH LCD DFM OPTION

An audio oscillator combines with a new design in frequency meters that provides accuracy and fast reading rates.

Front view of the audio oscillator. Note that this is an early prototype and the 3 V range has been deleted.

THE WEIN BRIDGE oscillator published in our June issue did not provide a performance of adequate standard for many test applications-one would not have expected so from such a simplified design. Since then we have had many requests to provide a high performance oscillator.

This oscillator started life as another wein bridge, started to evolve as a voltage controlled sweep oscillator but when it became too complex reverted to a simple wein bridge.

One major problem with all home made oscillators is that of scaling the frequency dial. This is not just a problem of positioning the knob but since normally available potentiometers have a tolerance of $\pm 20 \%$, the scale length will also vary. In commercial units the use of an expensive wire wound potentiometer solves most of the problems giving reasonably accurate scaling.

We then decided to build in a frequency meter and the high power consumption and the poor resolution, especially at low frequencies, of previous designs led us to develop a completely new design.

This uses what is literally an analogue computer to convert a period measurement into frequency with some digital electronics controlling it and displaying the results. We based this on the Intersil ICL7106 IC which, due to its liquid crystal display drive circuitry, allows a low power consumption design. Due to the method of conversion from period to frequency the range is limited from about 50 to 1999 counts and therefore automatic range selection is used. As the oscillator itself has less range than this, this limitation is no problem

To simplify wiring we initially used CMOS analogue switches to select the range changing capacitors in the oscillator but this unfortunately increased the second harmonic

LCD FREQUENCY METER

Fig. 1. The circuit diagram of the frequency meter section.

HOW IT WORKS

 using this as the reference voltage for the ntersil voltmeter IC with a fixed voltage on he normal input. This gives the inverse unction isplay herefore is frequency.and IC5/2 will turn on. This discharges C 3 to zero volts. After a short delay to allow C3 to discharge IC5/4 is turned on transferring that voltage level onto C5. After a total of two cycles the process recommences. The voltage difference between the two capaci tors is therefore the voltage change, (pro

To generate the reference voltage we use an integrator (IC6) which is controlled by dischareation is as follows. Initially cu signal IC5/l turns on As the IC7 provides a stable voltage between pin 1 and pin 32 of about 2.8 V the output of IC 6 will fall linearly with time and as IC5 $/ 1$ is on for exactly one cycle the voltage change will be proportional to that period
After IC5/1 turns off the output of IC6 will stay fixed. IC5/3 is then turned on and C4 will change to that voltage. After half a cycle IC5/3 will turn off leaving C4 at that voltage
portional to frequency) thus eliminating any ffset errors in IC6. The pulses which control IC5 are derived from IC 1/1 and IC4.

A reference voltage less than half the input voltage will result in the ICL7106 counting past 2000 (over ranging). The two inputs must also lie within the supply rails (less 1.5V). This limits the range of the instrument from 5 Hz to 200 Hz . For the higher frequency ranges, three decade drivers are provided The orrect decimat is also selected by the other half of this IC

PARTS LIST

Shown on this page are the foil pattern overlay and photo graphency meter sec tion

Fig. 2. The circuit diagram of the oscillator section.

PARTS LIST

Oscillator Board	
RESISTORS all $1 / 2 W 5 \%$	
R1, 2,5	4 k 7
R3, 4, 15, 16	47 k
R6	680 R
R7, 12, 14	10 k
R8	220 R
R9, 10	$68 R$
R11	1 k
R13	100 k
R17	100 R
R18	10 R
R19-R23	1 k 2
R24-R29	1 k 8
R30	820 R

CAPACITORS	
C1, 5	220 n polyester
C2, 6	22 n polyester
C3. 7	2 n 2 polyester
C4. 8	220 p ceramic
C9, 12, 13, 14, 15	10 c 25 V electrolytic
C10	470 u 25 V electrolytic
C11	10 p ceramic
C15	1000u 16 V electrolytic
C17	100u 25 V electrolytic
SEMICONDUCTORS	
IC1	301 A
Q1-04	BC559

HOW IT WORKS

The oscillator is of the conventional Wein bridge type with a differential amplifier made up by Q1-Q5. Gain stabilization is provided by the thermistor TH1. This type of circuit oscillates at the frequency where the impedance of the capacitors equals the resistors in the Wein bridge arms. With this feedback network the attenuation does not vary greatly like that of a twin tee but the phase
hift does. The result is a sine wave oscillator with low distortion
For frequency variation a two gang poten tiometer is used to give a $20 / 1$ continuous variation with switched capacitors giving our ranges each a decade apart.
The sine wave output is converted to quare wave by ICl with the amplitude stabilized by D3-D6.

Fig. 3. Component overlay of the frequency meter board
Insert the LCD such that the +1 digit is on the left.

BUILD-IT-YOURSELF NEW! TEST GEAR KIT
 -BASIC SERVICING INSTRUMENTS WITH

EASY STAGE BY STAGE BUILDING INSTRUCTIONS - IDEAL FOR THE AMATEUR

MULTI RANGE TEST METER
A general purpose meter covering all usual ranges of A.C. and D.C. volts current and resistance measurements

AUDIO SIGNAL GENERATOR

New design covering 10 Hz to 10 KHz and variable output. Distortion less than 0.01% Ideal for HIFI Testing.

OSCILLOSCOPE

A basic 3" general purpose cathode ray oscilloscope for simple testing and servicing work. Sensitivity 0.3 volts/cm

Send Mall Orders to Roger Squire s Maıl Orders. Barnet Trading Estate. Park Road. Barnet. Herts EN5 5SA 014413527 /Hoflinel 01.4411919 ISwitchboardt Open Mon-Fr. 9.530

Personal callers ROGER SOUIRE S OISCO CENTRES
LONDON 176 Junction Road, Tutnell Park, N19 50001.2727474 Dpen from 10.5 Tues.Sat BRISTOL 125 Church Road, Redifeld, Bristol BS5 9JR 0272550550 MANCHESTER 251 Deansgate. Manchester M3 4EN 061.8317676
10.8 Weds Closed Mondays

NSIDE
 ULTRASONICS

Ultrasonic sound at very high frequencies is being used increasingly for medical diagnosis. Dr P. N. T. Wells of Bristol General Hospital reports.

THE IMPORTANCE OF ultrasonic diagnostic methods lies in the fundamental differences between them and other techniques such as radiology and radioisotope scanning. The symptoms of some diseases, and ot natural conditions such as pregnancy, are best investigated by ultrasound. It maps out anatomical crosssections, measures the performance of the heart and the flow of blood, and identifies many kinds of abnormality, including several types of cancer, all without encroaching into the body in any way

Twenty-five years ago, doctors seeking to investigate the structures of the body had no alternative to X -rays and this often involved injections of substances to give better contrast to obtain information about soft tissues. Nowadays, ultrasonic methods have replaced radiology in helping to solve a number of clinical problems doctors depend on ultrasonic diagnosis, and patients demand this kind of investigation. The procedures are rapid and painless and nothing enters the body other than ultrasound waves. Unlike ionizing radiations, ultrasound at diagnostic exposure levels seems to be harmless.

Basic Principles

Most diagnostic applications of ultrasound depend on the reflection of ultrasonic waves at surfaces between tissue structures which differ in their so-called characteristic impedance. The characteristic impedance of a material is equal to the product of its density and the velocity of ultrasound within it. The densities of soft tissues, about $10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$ (kilograms per cubic metre), and the velocities of ultrasound within them, about $1500 \mathrm{~m} \mathrm{~s}^{-1}$ (metres per second), are similar to those for water. When an ultrasonic wave strikes the boundary between tissues that differ in characteristic impedance, a proportion of the energy in the wave is reflected in much the same way that light is reflected when it meets a change in reflectivity at a surface.

The characteristic impedances of soft tissues are similar, so the echoes from their boundaries are very small. For example, only about 0.5 per cent of the

Fig. 1. Basic arrangement of the A-scope system, in use in this instance to show the mid-line structures of the brain in their relative position halfway between the sides of the skull, as indicated by symmetry of the deflections of the cathode-ray tube trace. Asymmetrical spacing of the deflections may mean that disease has brought about a physical change such as a tumour on one side of the brain. The swept-gain generator gradually increases the receiver amplification over each sweep of the time base to compensate for the attentuation of the deeper echoes by intervening tissues.
energy striking the boundary between kidney and fat is reflected. However, such echoes are large enough to be detected by a sensitive receiver, but almost all the energy crosses the boundary and is available for reflection by deeper structures.

Much larger reflections occur at boundaries between soft tissues and either bone or gas, because of large differences in characteristic impedance. These large reflections restrict the use of ultrasound in medical diagnosis. Moreover, it is necessary to exclude air from between the probe and the patient. This may be done either by examining through a water bath or through a film of oil smeared on the patient's skin.

Resolution

Ultrasonic echo-ranging techniques depend on the measurement of the time interval between the transmission of a brief pulse of energy and the reception of its echo, just as in radar. In any imaging system, whether using light, ultrasound or any other kind of radiation, the resolution is limited by the wavelength of the radiation. It is for this reason that ultrasound, as opposed to sound, is used in medical diagnosis. We need to visualise structures of only a few millimetres in size, so that wavelength has to be around a millimetre or less. In soft tissues, it is about 1.5 mm at a frequency of 1 MHz and proportionately less at higher frequencies. The highest audible frequency, about 20 kHz , has a wavelength of 75 mm . In principle, the performance might appear likely to improve as the frequency is increased, but ultrasound is attenuated as it travels through tissues and. the rate of attenuation also increases with the frequency, so we have to compromise between better resolution and reduced penetration.

Pulse-Echo Techniques

In an ultrasonic instrument for diagnosis, a probe containing a piezoelectric transducer converts electrical signal into ultrasound waves for transmission into the patient. It does the opposite for the echoes.

The simplest type of ultrasonic pulse-echo diagnostic system is called the A-scope. (See Fig. 1). The clock triggers the transmitter, which feeds a brief pulse with a large amplitude to the transducer. Echoes return to the probe from those reflecting surfaces inside the patient that lie along the ultrasonic beam. Electrical signals from the echoes are amplified by the receiver and applied to the vertical deflection plates of the cathode-ray tube; the time-base generator, which is triggered into operation by the clock at the instant the ultrasonic pulse is transmitted by the probe, is connected to the horizontal deflection plates to drive the spot on the display at a constant speed from left to right. In this way the beam sweeping across the display is deflected vertically at intervals along the horizontal axis, corresponding in distance from the start of the sweep, to echo-producing surfaces at various distances along the ultrasonic beam. A special circuit in the receiver increases the amplification of the deeper echoes to compensate for theit attentuation by intervening tissues. The clock operates at a repetitin rate fast enough to give a flicker-free trace on the display.

The A-scope has clinical applications in neurology, ophthalmology and internal medicine. It allows the

Fig. 2. Time-position recording system based on the B-scope display, shown in use for echocardiography. The fibre-optic face plate of the cathode-ray tube collects enough light to produce a self-developing trace on ultra-violet recording paper.

Fig. 3. Two-dimensional scanner and B-scope display system studying a foetus. The time-base generators are driven by electrical outputs from a series of resolvers that measure the position of the ultrasonic beam as it moves across the patient. Horizontal and vertical time-bases combine to deflect the spot in such a way that its movement across the display corresponds to the movement of the beam. Echoes received as the probe moves over the patient produce a cross-sectional image in a plane corresponding to that of the scan. In this example, the image is built-up on the screen of an electronic storage tube for direct viewing.
depths of echo-producing surfaces to be measured, and the characteristics of echoes from within structures to be studied.

Echoes from moving structures, such as the valves of the heart, oscillate in position along the horizontal axis, or time base, of the display. In cardiology particularly, patterns of movement can give diagnostic information. They can be studied by making recordings with the aid of a B-scope display (see Fig. 2).

In the B-scope, the time-base sweep is normally visible, but it is brightened by returning echoes to

Fig. 4. A two-dimensional scan reveals twins at about 25 weeks of pregnancy. The placenta on the anterior wall of the uterus is clearly defined while the abdomens of the twins, identified in the explanatory diagram, appear in section.
produce spots of light on the display in places where, on an A-scope, there would be deflections of the beam. The positions of the spots of light correspond to echoproducing structures in the patient, and the pattern of their movement can be permanently recorded.

Cross-Sectional Images

The B-scope forms the basis of another display method, the two-dimensional ultrasonic scanner (see Fig. 3). The ultrasonic probe, instead of being held in the hand, is mounted on a scanner. It can be moved to any position in a two-dimensional plane. In this way it is possible to arrange for the beam to pass through structures lying in a chosen plane within the patient, while the position of
the probe and the direction of the beam are measured continuously by 'resolvers' mounted in the scanner. The electrical signals from the resolvers control two timebase generators, driving the vertical and horizontal beam deflection plates of a cathode-ray tube. The direction and position of the ultrasonic beam across the patient controls the position of the cathode-ray beam showing up on the display, related to the positions of the echo-producing surface.

A cross-sectional image of the surfaces can be built up photographically by a camera with an open shutter that records the bright spots on the display while the patient is being scanned. The echo information can also be stored electronically.

Two-dimensional scanners in which the probe is moved in contact with the patient produce individual images in scanning times of about 10 seconds, images can be produced at a much faster rate by moving the probe mechanically. Images in rapid succession allow physiological movements to be studied; their main importance is in cardiological diagnosis. But although these rapid mechanical scanners produce so-called real-time images, they lack flexibility. This difficulty can be overcome by using ultrasonic probes containing many separate transducer elements, operated separately or in groups, which can produce ultrasonic scans made up of parallel lines or or lines arranged in a fan shape, at frame rates of tens per second.

As well as making it possible to study rapidly moving structures, real-time scanners can also be used to explore large volumes of anatomy in a short time. A doctor using one can examine a patient in about a quarter of the time it takes with a 'conventional' twodimensional scanner.

Doppler Effect

The frequency of an ultrasonic wave reflected from a stationary structure is equal to that of the incident wave. If the beam is reflected by a surface which is moving

Fig. 5. The Doppler effect occurs when a wave is reflected from a moving surface, giving an upward or downward 'shift' in frequency as in (b) and (c).

Fig. 6. One use of the Doppler 'shift' is to monitor the foetal heart. The echoes usually fall in the range of audible frequencies.
towards the ultrasonic source, the reflected wave is compressed into a shorter space. This means that the wavelength is reduced. It shows as an upward 'shift' in its frequency. Reflection by a surface moving away from the source gives a downward shift. This phenomenon, the well-known Doppler effect, conveniently gives shift frequencies that fall in the audible range when ultrasound is reflected by moving structures in the body such as heart valves or flowing blood. A simple instrument based on this makes it possible to detect the movement of the foetal heart. Similar instruments to measure blood flow allow peripheral arterial disease to be assessed

Because Doppler shifted signals are received only from structures that move, two-dimensional maps of them can be built up by using a Doppler probe to scan the patient. In this way the distribution vessels close to the surface can be studied. Such information may obviate the need for X-ray angiography, which is a dangerous and expensive procedure

It can also be combined with other information about structure position obtained by the pulse-echo method, making it possible to map out blood vessels within the body and measure the rate of blood flow at the same time.

The clinical value of ultrasonic techniques has already been proved, but their spread into general, everyday service will depend on the development of instruments that are simple to use. These, paradoxically may be more complicated than the ones we already have. It will also mean training doctors and technicians to obtain and interpret results. But it is clear that ultrasonic diagnosis is, in many instances, the best and most economical way of getting the information essential to proper care of the patient.

ET1

BATTERY ELIMINATORS
3-way madels with swithed output and 4 -way
multi-iack $3 / 4 / 2 / 6 \mathrm{~V} 100 \mathrm{ma}$ £ $£ .51,6 / 7 y_{2} / 9 \mathrm{~V}$ 300 ma £2.75, 100 mea redio modele same size as a PP9 banery with press sud connectors, $9 \mathrm{~V} £ 2.85$.
6 V £2.85, $41 / \mathrm{V} £ 2.85,9 \mathrm{~V}+9 \mathrm{~V} £ 4.50,6 \mathrm{~V}+6 \mathrm{~V}$ ¢4.50, $41 / 2 V+41 / 2 V$ E4.50, cassette recorde maina unit $7 / 1 / V 100 \mathrm{ma}$ with 5 pin din plugg $£ 2.85$, car converters 12 V dc input, output 9 V 300 m $6 / 71 / 219 / 12 \mathrm{~V} 800 \mathrm{ma} £ 2.50$.

BATTERY ELIMINATOR KITS
 ¢1.80.9V $£ 1.80,41 / 2+41 / 2 \vee £ 2.50,6+6 \mathrm{~V} £ 2.50$ $9+$ gV E2.50, cesserte type $71 / 2 \mathrm{~V} 100 \mathrm{ma}$ with d plug E 1.80 , haenv-duty 13 way rypen $41 / 2 / 6 / 7$
$8 / / 2 / 11 / 13 / 14 / 17 / 21 / 25 / 28 / 34 / 42 \mathrm{~V} 1$ Amp £4.65, 2 Amp $£ 7.25$, transintor atabilized 8 -wey types for low hum 3/4/2/6/71/2/9/12/15/18 $100 \mathrm{ma} £ 3.20$, 1 Amp $£ 6.40$. Veriable voltage
stabilized models. $2-18 \mathrm{~V} 100 \mathrm{ma} £ 3.60$. 2 - 30 V 1A E6.95. 2-30V 2 A £ 10.95 . Car convertera 12 V d input, output $9 / 71 / 2 / 6$ V 1 A stabrlized $\mathbb{E} 1.95$.

BI-PAK AUDIO MODULES
Send s.a.e for data. S450 tuner £23.51. AL60
£4.86. PA100 £16.71. SPM80 £4.47. BMT80 £5.95 MK $60 £ 38.74$. Stereo $30 £ 20.12$.

BULK BUY OFFERS
Minimum purchase $£ 3$ any mix from this section
1N4148 154148 1.3p. 1 N 4002 3.6p. BC212 8p. 741 8di exact equiv of SN 76023 N with improved heat sink 79p. Plastic equivs of popular transistors. BC109 $4.4 \mathrm{p}, \mathrm{BCY} 714.7 \mathrm{p}$. BCY 72 4.4p. Fuses 20 mm

 10 ohm to $10 \mathrm{M}, 1 / 2 \mathrm{~W} 0.9 \mathrm{p}$. 1 W 9.9 p . Polyester
capecitors 250 V .01 .022 . 033 . 047 mt 2.7 p . $015 \mathrm{mf} 1.1 \mathrm{p}, 068 \mathrm{mi} 1.4 \mathrm{p}, 0.1 \mathrm{mi} 9.5 \mathrm{p}, 0.22 \mathrm{mt}$
 capocitors E12 $63 V 15108200 \mathrm{pt} 21 / 2$ p. Corramic
capectiors 50 V E12 22 pt to 1000 pt 1.7 p . E6 1500 pf 1033000 pt 1.7 p .47000 pf 2 p . Elice-
 $4 \mathrm{p} .16 \mathrm{~V} 22 \mathrm{mt} 5 \mathrm{p}, 33.47,100 \mathrm{mf} 6 \mathrm{p} .220 .330 \mathrm{mi}$ 9 p .470 mt 11 p .1000 mt 12 p . Zeners 400 mW E2
2 V 7 to 33 V 5.1 p . Preepe pots sub-miniature 01 W
 4 K 7 to 2 M 2 log or lin. single 28p, dual 76 p .

SWANLEY ELECTRONICS
Mail order only Piease add 30 p to the total cost of order for postage. Prices include VAT. Overse
deduct 7% on items marked" and 11% on others. Official credit orders welcome.

THE WORLD'S MOST ADVANCED

 MICROPROCESSOR VIDEO GAME DIRECT FROM THE USA the 'ATARI' VIDEO COMPUTER SYSTEM- READY BUILT CARTRIDGE SYSTEM EX-STOCK
Just look at a few of the numerous games available to you in multi-colour lon colour TV's/ with realistic sound effects.

192
 GAMES

This Video Computer System (based on Signetics 2550) is available complete with the 27 game Combat Cartridge, multi-function joysticks, mains adaptor and aerial switching unit. Fully guaranteed for 12 months.
£169.95 £149.00
(inc. VAT)
At present there are 9 cartridges availabie - a total of 192 games - plus many more on the way.
Price per cartridge)
£14.95
£13.95
(inc. VAT)
Fill colour brochure available on request

Securicor delivery available - Add $£ 4.00$.

Please make cheques and postal orders payable to DISCOUNT COMPUTING, or phone your order quoting BARCLAYCARD or ACCESS number.

LISTEN TO THE SEGRET WORLD OF PLANTS

As featured on Horizon, Nationwide, Radio and Worldwide Press
FIRST TIME IN THE U.K. IN KIT FORM, THE REVOLUTIONARY CONCEPT OF A BIOLOGICAL AMPLIFIER AND SOUND SYNTHESISER IN ONE UNIT, THE AMAZING
 Bio Activity Translator

* Experience the unique musical form of plants
* Hear the beautiful patterns of sound Comeated by their natural response Compare house plants reactions to people - with
* Easy to operate, internal speaker and batteries

The naturally generated bio electrical potential across a plant leaf is picked up by 2 carbon foam electrodes. When amplified and filtered, a VCO, VCA and other ingenious synthesiser circuits are programmed by the control voltage from the plant to produce tracking sequences of notes. These follow in pitch, rhthym and volume the ever changing signal from the plant
The Kit includes 6 I.C.s. 2 transistors, all high quality components, tinned and drilled fibreglass p.c.b., loudspeaker and comprehensive assembly instructions. Also included is a free case, ready punched, with wooden end cheeks and stick-on silk-screened front panel for a really professional finish. Runs on 2 $41 / 2$-volt batteries (not supplied)
SPEGIAL INTRODUGTORY OFFER IUCLUDES FREE CASE
 JEREMY LORD SYNTHESISERS (DEPT. ETI) LONDON STILE, LONDON, W. 4

audiophile

A woeful tale of the pre-amp to make you red in the face this month. Crimsons CPR1 considered by Ron Harris who recovered enough to visit Sony's launching of sixty new models!

MEANWHILE back at the Crimson pre-amp, I shall begin this month by finishing what I began last, and furnishing details of the CPR1 module. To begin with, quoting specs would be largely superfluous in this context, but as I know there are some of you out there high on numbers, try these for size:

SENSITIVITY: $\begin{array}{ll} & 3.4 \mathrm{mVRMS}(1 \mathrm{kHz})-\mathrm{mag} \\ & 70 \mathrm{mVRMS} 1 \mathrm{kHz} \text { all others }\end{array}$
for 770 mV RMS output
SIGNAL/NOISE: -70 dB unweighted 10 kHz bandwidth mag
-86 dB unweighted 10 kHz bandwidth others

CROSSTALK:
THD:
-80dB $20 \mathrm{~Hz}-20 \mathrm{kHz}$
008\% any level below clipping

There are pages of figures in the leaflets Crimson issue for free, so if you've at all interested get after one of those. The nice thing about these specs is their completeness - nothing hidden away here in shrouds of triviality. All the parameters are given as test results under very precise conditions. I could find no reason to argue with any of them and as I'm usually mean and nasty about such things Crimson should take that as praise indeed.

Building Up To It

Power requirements are simply 15-0-15 at under 100 mA , and mine measured in the region of 40 mA per channel while in full flow. Crimson naturally produce a PSU for this, and it is termed not unreasonably REG1

The pre-amp arrives as an assembled PCB with set of: application notes, and as such cannot be considered a kit by any but the most stretched imagination. Not for the beginner this, as a fair bit of experience comes in most handy - although the notes are very good (but poorly produced) and if you're feeling brave by all means get stuck in - I shan't say 'I told you' - not too loud anyway.

After a few minutes fussing around with pen and paper I decided to house pre-amp and PSU in separate boxes - with appropriate nod in direction of Meridian for reason of neatness and hum foiling. Let me say now that these circuits are good enough to merit such attention.

As there are no tone controls, metalwork is simplified I'm glad to say, and for a basic system should be very easy indeed.

Crimson make out a very good case in their design notes for doing things their way, but nonetheless there are a few things I would like to disagree with.

Firstly they feed straight into the volume control with auxiliary inputs via the selector switch. This presents the equipment driving into the amp with a varying load, and I would personally prefer to see a high impedence buffer in there, with a lower sensitivity; than the 70 mV now prevailing, and a higher input impedance. A small point perhaps, but under music conditions a constant load is to be preferred I feel.

Secondly the magnetic input is 'fairly' standard although better than most. I would differ from Crimson philosophy enough to prefer the idea of buffering the cartridge input at a constant value, say $47 \mathrm{k} / / 200 \mathrm{p}$ " with unity gain in the first stage, picking up equalisation over two further stages both run at lower gain than usual. This configuration results in a cleaner sound with better transient performance providing the capacitance of each stage is carefully designed for.

I'm offering up these ideas for perusal, not criticising Crimson in particular, its just that the Crimson approach encourages you to drag out your personal theories and give 'em a good airing. I'd be very interested to hear from any of you out there with your ideas on how audio design should be done - we'll print the best we get.

Back To Wires

Anyway to return to the point the CPR1 auditioned very well indeed. Mind you our first sample gave me a hard time for a while. It kept doing things it couldn't do and doing them when I least expected it. After a few bottles of Vallium and several hair pulling sessions with Crimson we discovered I'd been given a non-production board. A quick GPO job and we're back in business. Sanity is saved

I still don't know what the odd sample was up to and don't intend to to find out any further that way lies madness. I suspect Crimson save that board to assassinate reviewers in the most fiendish way possible. Who'd believe it was murder?

The production model has never given the slightest problem and has behaved impeccably throughout. I compliment Crimson on the attentive way they panicked along with me over the rogue PCB, several poor unsuspecting boards now on soak test because of my nervous breakdown.

Inputting Pickups

To use this input, you add a passive network to the input to optimise loading for the particular device in use. Crimson themselves recommend adding several networks and switches to increase flexibility. I don't. Switches at this signal level are a menace - if you don't believe me, see Stan Curtis's article elsewhere in this
issue. Leave out the switches and hardware for your choice of pickup - how often do you change anyway?

With the switches added a thickening of detail occurs, and transients don't transient nearly as well.

Other inputs are straightforward, although perhaps a little low on input impedance. Noise and hum were commendably low on all inputs, and the separate boxes earn their worth on first power-up. The ten second switch-on blank period to eliminate 'clunks' is a great idea, although on both my samples the delay was so long I almost had time to go make a cup of tea before power came through.

It can be most detrimental to confidence to be left standing there, soldering iron still smoking, poised over the completed unit hand on power switch counting off seconds wondering why the b. . . y hell it hasn't come on yet. Smiles fade rapidly like that

Listen In

On magnetic input the Crimson CPR1 produced a very nice sound indeed, of very high quality with good detail and fair extension into the bass registers. On a quick $A-B$ with a very highly priced integrated amp the CPR1 surprised me by showing itself clearly superior! OK wiseguy - wheel out the heavies.

Now my personal idol amongst pre-amps is the Lecson AC1 which I feel has never been approached for quality of reproduction, at any price. As such it makes an excellent reference against which to judge lesser machines. However not everyone agrees, and a champion of the Naim offered up his favourite to give the Crimson a run.

You can see from the opposition how seriously the CPR1 managed to get itself taken. Against the Lecson it was frankly outclassed. The AC1 had better depth, and better bass control. Treble came out smoother from the Lecson showing up the Crimson as slightly hard in this register. Mind you the Lecson costs nearly ten times as much and the Crimson gave a very good account of itself.
Comparing it with the Naim unit nearly lost me a friend. I preferred the CPR1! There was not much in it mind you, and Crimson can be justly proud to have. produced a home build design capable of this level of performance.

grumbles

A few niggles. The balance control is very limited in operation. More so than is even trendy, never mind useful, and a little extra swing would do no harm. I'm not at all happy about those auxiliary inputs really, but they seemed to cause no problems so I'll shut up about them.

In order to obtain the level of performance the design can offer very careful construction is required. All cables screened. All as short as possible. Good soldering. Good earthing. Isolated PSU and sound routing of cables carrying HT -- away from anywhere at signal level. Leave the on-off switch on the PSU box so that mains need not even enter the case.

Also the subjective quality, although of a very high quality, is a little hard, and judged against the best designs around slightly lacking in detail. Still none of this detracts from the fact that here we have a DIY amplifier that can compete with the very best commercial units, and make mincemeat of many far higher priced designs. Highly recommended.

Outlook: Warm and Sony

Sony have gone berserk. Only gone and scrapped practically their entire hi-fi range they have and launched no less than 60 new models if you please. Its enough to give leaflet collectors a heart attack. There is some very clever gadgetry in amongst the flock, and scattered here before you are some of the gems.

The TA-E88 looks very, very interesting indeed, representing as it does the state-of-the-art for Japanese pre-amp design. I'm at present still on my knees to Sony (and my trousers are wearing out fast) to get a closer look so hopefully more details on that one later (Please Mr Sony? . . Sir?).

The G1 and G7 speakers came as a surprise too, they're better than any oriental offering previously to assail my ear drums, and are capable of giving any competitor a good run for its cones

They have divided up the dealers too, creating a new super-fi franchise. This basically means that only the best dealers can sell the best of the range, although the division looks to be a bit unsure in places

ETI

And here we have the TC K8B the new $£ 469$ cassette deck released as part of the super-fi Sony range. It incorporates that magnificent LCD display (details on the right) and on the short listen so far gave an excellent audio account of itself.

Below: the G1 speakers. Very good indeed for the price (circa £190 the pair) and deserving of none of the usual anti-Japanese speaker bias. Give them a listen if you get the chance.

Above: the LCD level meter as used in the TCK8B in close-up. This uses 64 segments to indicate signal lével, and has red settable stops to hold peak values. The colours are nice too!

This is a nice touch. A portable Elcaset machine. Gives really nice reproduction and is quite easy to cart around. All the controls are mounted so as to be accessible when in mid-carry. The format would seem to be ideal for this usage. All the quality of a reel-to-reel and no fiddling about while rapidly unspooling tape in a gale! Priced sensibly at £459 and called the EL. D8 for the wandering rich amongst you.

Not that I'm obsessed with cassette decks or anything, but here's another one. The TC K6B this time. It's main little gimmick is the MPU program selector. That little LED display in the centre can be stepped to read the number of the track you wish to hear. The machine will promptly go and find it and play it for you. Again LCD level meters, although not as good as the TC K8Bs obviously less segments. Below: The incredible TAE8B. The unit has two COMPLETELY separate channels inside its box. Selectable phono load on one input, and one straight in for people who don't like switches in line (Like me) at this low level. Moving coil pre-pre amp is standard of course. Price $£ 699$ (What did you expect?)

KEY:

1: The bit of chocolate you thought you'd leave for later.

2: Coffee stains (instant).
3: A useful-sized bit of stiff paper to stop the window from rattling.

4: Rough calculations for your new combined egg timer/laser cannon project.

5: ETI makes a fair soldering iron stand.

6: The dog insisted on carrying your copy to you along with your slippers.

WHAT A BIND!

Half our orders for binders are repeats: we think that says a lot for their quality. At $£ 3.00$ all inc. you get a great deal of peace of mind too!

ETI Binders

25-27 Oxford Street.
London WIR 1 RF

SINTEL

THE SINTEL SIX DIGIT MAINS CLOCK KIT with BLEEP ALARM and TOUCH SWITCH SNOOZE

- high 8RIGHTNESS OISplay
- automatic intensity contro
- deep red oisplay filter

SLIM WHITE CASE $205 \mathrm{~mm} \times 40 \mathrm{~mm} \times 140 \mathrm{~mm}$

- battery backup

- crystal control for improved accuracy

Order as ACK + BBK + XTK ... £ 34.50 The kit is suoplied complete with the exception of a mans plug cable and batiery

DATABOOKS

BEST OF BYTE Volume 1380 pages
ser's Manua
Intel Memory Design Handbook
Intel 8080 Microcomputer Systems User's Manual
Intel 8085 Microcomputer Systems User s Manual
Motorola Booklet Frorn the Computer to the Microprocesso
Motorola McMOS Databook Nol 5 Series B)
Motorola M6800 Microprocessor Applications Manual
Motorola M6800 Programming Manual
National SC/MP Introktic User s Manua
National Semiconductor TTL Databook
RCA CMOS and Unesr IC Databook
exas instruments Pin Contiguration Guide A very useful set of gloss cards showno $\mathbf{£ 5 , 4 5}$
80 Assembly Language Prograns (T) Memories Op-Amps etc)
Zilog 280 -CPU Technical Manual
21109280 CTC Product Spec.fications
SMEETS at 75p each on IM $6100,6800 \mathrm{SC} / \mathrm{MP}$ COP 180古. 2650. TMS5501 TMS8080 913

Some Popular Memories available from SINTEL

$$
\text { See EII DATA SHEET SPECIAL July } 1978
$$

2102450 nsec 1 K STATIC RAM
$27081 \mathrm{~K} \times 8$ bit UV ERASABLE ROM
$£ 1.85$
£1.85
£.8.80
$27081 K \times 8 \mathrm{bIt}$ UV ERASABLE ROM
$6508600 \mathrm{nsec} 1 K$ STATIC RAM

${ }^{112,45}$

ASSEMBLED LATCHED COUNTER MODULES

位 CMOS and TTLICs and will save you considerable design purchasing building and de-bugging time Each module uses a ser of red tEO disple For tull detans please send for Catalogue

	TTL				cmos			
	Part ${ }^{\text {No }}$	8 culr	Part No	Kıt	Part No	Buili	Part No	Kı1
2 mert	401-454	¢13.22	525-412	$\underline{10.52}$	945-564	£13.02	540.479	£10.42
4 (4011	715-44	£23.38	657-412	E17.98	512-565	c22.03	859-470	¢18.11
5 man	293-44	£33.76	721-412	£25.66	393-564	[32.34	191-470	c25.85

NEW PRICES AND SOME NEW CMOS ĀDDITIONS If you need your CMOS by retum - buy it frem SINTEL									
CD4000	0.15	CO4027	0.44	C0405 1	0.82	CD4086	0.64	CD40182	1.40
CD4001	0.17	CO4028	0.77	C04052	0.82	CD4089	1.39	C040192	1.40
CD4002	0.17	CD4029	1.03	CO4053	0.82	CD4093	0.80	CD40193	1.40
C04006	1.04	CD4030	0.50	CD4054	1.04	CD4094	1.69	CD40194	1.19
C04007	0.18	CD4031	2.00	CD4055	1.18	CO4095	0.94	C040257	1.48
C04008	0.87	CD4032	0.89	CD4056	1.18	C04096	0.94	CD4502	0.81
CD4009	0.50	CD4033	1.25	CD4059	4.29	C04097	3.35	C04510	1.01
CO4010	0.50	CD4034	1.71	CO4060	1.00	CO4098	0.98	C04511	1.25
CO4011	0.18	CO4035	1.06	CO4063	0.98	CD4099	1.65	CO4514	2.47
CD4012	0.20	CO4036	2.86	C04066	0.55	CO40100	2.50	C04515	2.82
CO4013	0.43	CO4037	0.85	CO4067	3.35	CO40101	1.61	CD4516	1.01
CO4014	0.83	CD4038	0.96	CO4068	0.20	CO40102	2.13	C04518	0.97
CO4015	0.83	CO4039	2.78	CO4069	0.20	CO40103	2.13	CD4520	1.04
CO4016	0.48	CD4040	0.97	CO4070	0.46	C040104	1.10	CD4527	1.43
CD4097	0.79	CD404 1	0.75	CO4071	0.20	CO40105	1.06	CD4532	1.21
CO4018	0.83	CO4042	0.69	C04072	0.20	CO40106	0.62	CD4555	0.78
CD4019	0.50	CO4043	0.88	C04073	0.20	C040107	0.68	C04556	0.78
C04020	1.11	CO4044	0.84	CD6075	0.20	CD40108	5.36	MC14528	0.93
CD402 1	0.90	CD4045	1.26	CO4076	1.17	C040109	1.03	MC14553	4.43
CO4022	0.82	CD4046	1.20	CO4077	0.39	CO40160	1.19	IM6508	8.05
CO4023	0.18	CD4047	0.89	C04078	0.20	CD40161	1.19		
CD4024	0.70	CD4048	0.50	CD408	0.20	CDS0162	1.19		
CD4025	0.20	CD4049	0.50	CD4082	0.20	C040163	1.19		
C04026	1.55	CO4050	0.43	CD4085	0.64	CD40181	3.40		

For our fult range of components send for Free Catalogue
For our fult range of components send for free Catalogue
209 Cowley Road Oxford, but please do not use this as a posial address
pRIEES VALIO UNTi
PRICES VALID UNTHL 31 Ist AUGUST 1978
ORDERS: CWO add VAT @ $8 \%+35 \mathrm{p}$ p 8 P T TELEP HONE And CREDT (Invoce) ORDERS add VAT $\$ 8 \%+60 \mathrm{p}$ P\&ip minimum charge the balance will be charged at cost Please see FAST SERVICE EXPORT ORDERS welcome
no VAT but add 10% (Europe) $i 5$ m (Overseasi) tor Air Mail pRp For Export postage rates on heavy items - contact

ORDERS TO: SINTEL, PO BOX 75A, OXFORD
Tel: 086549791
FAST SERVICE: Wo guarented that Tolophons Orders for goods in stock, recesived by 4.15 p.m. (Mon--Fri.) will be dospatched on the same day by 1st Clases Post (some heavy
iteme by percel post) and our stocking is good. Private customers ahould reisphone and pay by giving their Aceess or Barcleycard number. with animum order value of $£ 5$ SINTEL

 56 FORTIS GHEEN ROAD, MUSWELL HILL, N10 3HN

 TELEPHONE: 01-883 3705
OUR LATEST CATALOGUE

 contains Free45 pence WORTH
OF VOUCHERS
CONTAINS MICROPROCESSORS + BOARDS MEMORIES, TTL, CMOS, ICs, PASSIVES, ETC., ETC.

SUPERSAVERS

ALL FULL SPEC DEVICES

TEXAS	TIMER	RED LED
741	555	TIE 209
5 for	4 for	10 for

£1.00
£1.00
£1.00
VAT INCLUSIVE PRICE + 25p P. \& P.

A4 IC BOOKLET

SUPPLIED FREE WITH ORDERS OF ANY ICs WORTH £5.00 OR MORE, CONTAINS CIRCUITS, PIN CONNECTIONS AND DATA $(35 p+$ SAE IF SOLD ALONE).

ALL PRICES INCLUDE VAT

For seance QUALITY \& VALUE
 ALL PRICES INCLUDE VAT

RF POWER METER

(ET/ project 139 - October '78)

Most components in stock including
12.7 mm toroid - F14@16p.F25@28p.PCBE1.00

2 METER POWER AMP

(ET/ project 710 - September '76)
This is a simple-to-build, easily-aligned Class C PA suitable for CW and FM amplification at 2 metres from a nominal 13.5 V (-ve earth) supply (7 amps at ful power). T/R 'switching' is performed by diodes and $1 / 4$ wave lines. A power input of 10 watts is required for the nominal 40 watts output power
Complete with cabinet $-£ 19.50+65 p$ p\&p
1

LOW COST V.D.U.

(ET/ project 560 - Aug/Sept/Oct '76)
All components available for this popular low cosi V.D. U. project. Complete kit at Special Price $\mathbf{5 4 . 0 0}+E 1.00$ p\&p
Separate components
PCB set £ 7.20; 2112 -2, £4.50; 2513. £8.50; 555.47p
A/l prices INCLUDE VAT but please add minimum of $34 p$ for post and packing.
Send SAE for FREE PRICE LIST or $45 p+$ large (A4) $181 / 2 p$ SAE for copV
of our Data-Catalogue.
CATROMICS LTD. (DEPT. 851), COMMUNICATIONS HOUSE, 20 WALLINGTON SQUARE, WALLINGTON SURREY゙ SMG 8RG

The sustain to be described here holds the output at a constant level over a wide range of input levels. It was designed for use with electric guitars and has a maximum effect with the guitar pick-up volume full up.

The principle employed is that of an AGC, whereby the circuit output is monitored by a DC voltage follower which controls the gain of the VCA through which the signal passes. The advantages of this circuit are that, unlike many such devices, it does not use optocoupling which draws too much current for battery powered equipment; it produces no audible distortion; components are easily obtained - and cost is low.

Construction method is not critical.

This unit provides push-bike speed measurement between zero and 100 km hr or 100 mph ! The circuit is based on the Sintel MOS counter block, which counts the pulses from the photo transistor Q1

These pulses are provided by fixing 18 aluminium 'barriers' to the wheels Q1 was an unmarked type in the prototype, in a TO 18 package This mounts in an old felt-tip pen

Digital Bike Speed

B. Lemming

case opposite the lamp so that the barriers interrupt the beam in operation. The counter operates whilst PB1 is pressed, but latches after a time determined by RV1 or RV2. IC1 and associated components. IC1 forms a square-wave oscillator with
variable mark-space ratio. The time for which pin 3 is taken low is determined by RV1 / RV2 - this enables the counter

The speedo accuracy is determined by the accuracy of setting of controls RV1 and/or RV2

HBidecirnonccs

HOME COMPUTING NASCOM 1 Build and tested $£ \mathbf{2 6 7 . 3 0}$		
	Micrioministure Mercury	
All prices include P\&P \& VAT Nic MODELS, 27 Sydncy Rond, London N22 Other chess set available $-15 p$ illustrated lis		
UNBEATABLE LOW PRICES NE STOCK PARTS O BUILD MUSICAL PROJECTS As published by leading magazines Send large s.a.e. for lists DALSTON ELECTRONICS 40A Dalston Lane Dalston Junction E8 2AZ Tel. 01-249 5624		

CMOS Gate Identifier

C. Ching

This circuit can be used to distinguish four types of dual input gates - AND, OR, NAND, NOR - it is also a quick method of checking IC function. If an AND gate is inserted into the socket, an A appears on the LED. An O denotes an OR gate. The decimal point is used to denote in. verted function, i.e. A is an NAND gate.

Electronic Ignition Switch
K. A. Last

NOTE
Q1 is BFY50
Q2,4 are BC108
Q3areBC108C
SCR1-4 5OV, 1 A TYPES
SCR 5 50V, 3A
LED1 is TIL 209
RLA1 is 10V,50R COIL WITH 2p/CO CONTACTS

When used with a calculator type keyboard, this circuit provides a 'combination lock' ignition switch which only activates if the correct sequence of three numbers is keyed in. The keyboard has 14 keys numbered 1 to 12 , 'START' and 'FINISH' To start the car, the 'start' key is pressed and the start LED will light The correct sequence of 3 numbers is
then keyed in. If the sequence is wrong, the cars horn will be sounded If the right sequence is entered, the 'START' LED will extinguish and the ignition will be energised. The correct sequence will be PB1, PB2, PB3, but these can be arranged amongst the other keys in the keyboard, and given any numbers.

IN4148 Diodes by ITT/Texas. 100 for $£ 1.5 \overline{\mathbf{0}}$. These are full spec. devices.			
Unencoded Hexadecimal 19 keyboard 1-10 ABCDEF. 2 optional keys. Shift key. £12.50.			
MM2102 AN-4L 1024×1 Bit. 450 nano sec. Static Ram. $£ 1.00$ each.			
FND500 Seven Segment Common Cathode Display $£ 1.30$ each. $4 / £ 5.00$.			
AY5-1013 UART / T £6.00.			
Red Leds $01.125^{\%}$ or $0.2 \% .10$ for $\mathbf{£ 1 . 2 0}$.$100 / £ 9.00$.			
2112256×4 Bit Static Ram 450 nanosec. £2.95 each. 4/£11.60. 8/£22.60.			
Murata Ultrasonic Transducer $\mathbf{£ 2 . 5 0}$ each. £4.00 pair.			
741 Op Amp 25p each. 10/£2.00.			
555 Timer. 28p each. 10/E2.50			
4001 4007	14 p 16 p	4029 4047	110 p 100 p
4011	14p	4049	40p
4012	14p	4060	120p
4013	$50 p$	4066	55p
4015	$90 p$	4069	20p
4106	40 p	4071	$16 p$
4017	90 p	4072	$16 p$
4020	100 p	4081	16p
4022	9 p	4082	$16 p$
4023	16p	4510	120p
4024	$65 p$. 4511	150p
4025	16p	'4516	110 p
4026	160 p	4518	130p
4027 4028	50 p	4528	100p
4028	90 p		
P Prices include Post and VAT			
T. POWVELL 306 St. PAUL'S RÖÁ, HÍGHBURY CORNER, LONDON N.1. Tel. 01-226 1489 Callers welcome 24 hr . Ansaphone order service with ACCESS or BARCLAYCARD No.			

As supplied to Pesi Olfite. Industry and Government Depls. SINGLE UNITS (1D)
($\left.5 \mathrm{in} . \times 2 \frac{1}{4} \mathrm{in}, \times 21 / 4 \mathrm{in}.\right) £ 3.50$ DOZEN DOUBLE UNITS (2D)
$(5 \mathrm{in} . \times 41 / 2 \mathrm{in} . \times 21 / 4 \mathrm{in}) £$.5.50 DOZEN TREBLE (3D) £5.50 for 8 DOUBLE TREBLE 2 drawers. in one outer case (6D2) $E 7.90$ for 8
EXTRA LARGE SIZE (6D1) £6.90 for 8 PLUS QUANTITY DISCOUNTS Orders over £20. less 5%. Orders over E60 less $71 / 2 \%$ ACKING, POSTAGE, CARRIAGE Add, 10 Orders ${ }^{\text {S }}$ LO and over. please add 10% can ilage
OUTATHONS FOR LARGER QUANTITIES

Modern slim.line power panel countless uses in home office
tactory showrooms Pertectiy safe unbeatable Cen be mounted tactory showrooms Perfectiy safe unbeatable Con bo mounted
on wall or trailed anywhere in room. Neat rubber base. Smarl PVC outer cover Elack $£ 3.10$. White $£ 3.30$. P\&P 60 p each PVC outer cover Blick $\mathrm{E}^{2} .10$. White
State cable length required 20 p per yard
FLAIRLINE SUPPLIES (Dept. ET20)
124 Cricklewood Broadway, London N.W. 2 124 Cricklewood Broadway, Londo
Telephone $01-4504844$

BLOB BOARD BUILDS BETTER BROJECTS BHEAPER, BASTER \& BEAUTIFULLY BLOB-BOARD

Blob-Board is now available in many different layouts and sizes to allow the home constructor to build any project from the most simple to the most complicated without the need of layout drawings or having to work out complex component patterns.
Blob-Boards are normally much cheaper than existing matrix boards and do not need any cutting or breaking of contact rails.
The roller tinned tracks and letter number identification of holes make soldering so much easier than nontinned copper boards and make transferring from circuit diagram to BlobBoard virtually error free.
Components can be re-used and resoldered making circuit project modifications and amendments fast and cheap. All Blob-Board packs contain step-bystep instructions of how to build projects and a project booklet. The "IC' range has a 20 project booklet with easy to follow circuit diagrams and the " D " range has a 9 project booklet including Radio Receiver, Radio Microphone, Light Operation Switch etc.

Bred circuit board BCB4 with project

CODE	SIZE mm	PRICE
ZB5D	92×61	$\mathbf{£ 0 . 4 4}$
ZB6D	61×186	$\mathbf{£ 0 . 8 5}$
ZB7D	125×186	$\mathbf{£ 1 . 6 7}$
ZB8D	165×241	$\mathbf{£ 2 . 8 8}$
ZB1 IC	114×76	$\mathbf{£ 0 . 6 6}$
ZB2 IC	115×78	$\mathbf{£ 0 . 7 1}$
ZB4 IC	127×203	$\mathbf{£ 1 . 9 0}$
ZB8 IC	254×203	$\mathbf{£ 3 . 6 9}$
BCB 1	120×150	$\mathbf{£ 1 . 0 3}$
BCB 2	175×65	$\mathbf{£ 0 . 6 3}$
BCB 3	125×75	$\mathbf{£ 0 . 5 4}$
BCB 4	125×50	$\mathbf{£ 0 . 4 9}$
ZB4V	229×165	$\mathbf{£ 2 . 5 5}$
ZB4V5	229×165	$\mathbf{£ 2 . 5 5}$

PB Electronics (Scotland) Ltd
9 Radwinter Road
Saffron Walden, Essex CB11 3HU

All prices include VAT
Please add 35 p p \& p minimum order $£ 3.00$ Available from all good component stockists

0STS "One Stop Technology Shopping ambit international

Ambit stoppress....news on items available.... KV 911223 ultra low THD/IMD mpx decoder module £9.95

counter attractions:
 New this month from Intersil, the ICM 7216. This is probably the most significant new

for frequency counter/timer applications ever devised, It drives a full 8 digit display (LED) and operates on inputs of up to 10 MHz minimum. The single 28 pin DIL also has:"Leading zero blanking "Frequency ratio "Period "Unit counter "Time Interval "overrang
The IC cost is $£ 19.82$, and the $10 \mathrm{MHz} \mathrm{HC18UX} \times$ tal $£ 2.50$ (for timebase functions). The circuit data is free with the 1 C , or $£ 1$ purchased separately. Input preamp board $£ 7.00$. $\frac{\text { New from Ambit is the MC3357. } 6 \mathrm{v}, 2 \mathrm{~mA} \text { stand by NBFM IF, detector and squelch }}{\text { with } 10.7-455 \mathrm{kHz} \text { balanced mixer onboard oscillator device, and } 5 \mathrm{uV} \text { sensitivity it }}$ ideally suited to our CFM and-LFY filter series, and costs $£ 3.12$ with full data. Xtal $£ 2.50$. Please note that OSTS prices exclude VAT at 8% throughout this side of the page. Most ambit items are at $12 \frac{1}{2} \%$ except those marked ". Please keep orders separately totalled,

Mitromarket stashed

NEW LOW PRICES

7800 series UC TO220 package 1 A all $95 p$ 7900 series UC TO220 package 1A all $£ 1$ 78 MUC series TO220 package $1 / 2 A$ all 90 p 78 LCP series TO92 100 mA all 35 p \begin{tabular}{lll}
L200 up to $3 \mathrm{~A} /$ adjustable V\&A \& 195p

\hline $78 \mathrm{MGT2C} 1 / 2 \mathrm{amp}$ adjustable volts \& 175 p

79MGT2C 1/amp adjustable volt: \& 175 p

\hline 723 C precision controller \& 65 p
\end{tabular} MAINS FILTERS FOR NOISE/RFI EI 1 amp in IEC connector

\qquad
NE550 A

LINERRS

\qquad
$£ 3.87$
$£ 3.87$

TLL:Standard Alli LP

From the Uarld's leading radio innouation saurce:

Apart from the MC3357, mentioned alongside, Ambit has the first easy-to-use low noise,
low cost UHF dual gate MOSFET. the BF960 from Siemens. With a gain of 18 dB , and a noise figure of only $2,8 \mathrm{~dB}$ at 800 MHz , you will see what we mean. At 200 MHz , the
gain is 23 dB , and NF only 1.6 dB . Combine these figures with the famous ease of use of gain is 23 dB , and NF only 1.6 dB . Combine these figures with the famous ease of use of dual gate MO

Moving Coil Meters

A

Ambit offers a very wide range of low cost
meters, together with the unique 'Meter Made' scale system for professional grade

cale customizing

Series Scale Area illumination cost ${ }^{\text {o }}$ $900 \quad 14 \times 31 \mathrm{~mm}$ internal 12v 250p $93036 \times 63 \mathrm{~mm}$ internal $12 \mathrm{v} \quad 375 \mathrm{p}$ 940 twin $35 \times 45 \mathrm{~mm}$ from behind 350 p $950 \quad 55 \times 45 \mathrm{~mm}$ from behind 300 p Slock movement 200 5% linear, others are 77UA at 50\% FSD. These and many others available in quantity for OEM
SAE for full scale derails please. (Not in cat.)
Radio;Audio;Comms ICs: Only the very best quality - and only type
we have used in our own laboratory tests Hadio frequency + mixers + oscillatorls)
TOA1062 DC to VHF frone end system TDA1083/ULN2204 am $/ \mathrm{fm} /$ audio in one IC
TDA1090/ULN2242 $\mathrm{am} / \mathrm{fm}$ hifi $\begin{aligned} & \text { tuner system }\end{aligned}$ HA1197 LF/30MHz am receiver system
CA3123E/UA720 LF/30MHz linear system TBA651 LF/ 30 MHz linear syst SD6000

IF amplifiers

CA3 189E update with deviation mule
TBA120a/SN76660N FM if and detector
TBA120S
MC1350P
MC1350P
MC1330P
MC1330P
MC1495L
MC1495L
MC1496P
Communica
K84406
hi gain versi
agc I I amp
sunch AM
Kommunications circuits
K84406 differential amplifie
K84412
K8413
 $\begin{array}{lll}\text { KB8413 } & \mathrm{am} / \mathrm{mm} / \mathrm{ssb} \text { det. AGC. ANL. mute } & 2.75 \\ \text { KB4417 } & 3 \mathrm{mV} \text { mic processer preamp } & 2.55 \\ \text { KB4423 } & \text { FM noise blanker system } & \end{array}$ Audio preamps
$\begin{array}{ll}\text { LM1303 } & \begin{array}{l}\text { stereo high gain/low THD } \\ \text { stereo audio optimized OA }\end{array} \\ \text { TDA1054 } & \text { hish avality with at }\end{array}$ $\begin{array}{ll}\text { TDA1054 } & \begin{array}{l}\text { high quality with alc option } \\ \text { KBee above }\end{array}\end{array}$
Audio Power amps
TBAB10AS 7W RMS overload protected $\begin{array}{ll}\text { TDA2002 } & \text { 8W/2 } \Omega \text { in pentawatt packag } \\ \text { TDA2020 } & \text { 15W RMS hifi power dc cou }\end{array}$

LM3328N8
LM380N14
1 W power
2.5 W power

Sterbo Decoder Devicen

A A3090A RCA's pll decoder

LM1307/UA707 non pll type
HA11966 advanced adj sep pll low thd
HA11223 newpilot cancel low tha/ima All ambit decoders are suoplied with the LED Discrete semiconductors
Some of the biggest stocks of spacialist MOS and
FET transistors for radio in the UK

Most types for most RF circuitry, inc. new
UHF T package types etc. See price list.
Hitachi VMOS 100W power devices:
Hitachi 2SK $134 / 2 \mathrm{SJ} 48$ 100W comp. VMOS. Data and circuit info $£ 1$, and the devices themselves for E14.00 a pair
DISCRETE LEO; from Telafunken squar

Sided and	$\|\mathrm{mm\mid}\| 2.5 \times 5$	5 dis	$2.5 d i a$
RED	17p	14 p	14p
Yellow	20p	15p	159
Green	20p	16p	16p
Orange	24p the	29p/heL	17p

ha $=$ high

Switch Systems: Check our combinations ! saries units, (Schadow/AB/Orsor compatibles) \&
the miniature Dalistat untrs. Avaiabie in DIY
systems for maximum flexibility and low cost.
And Finally
Further details of these, and many more of the wonders of the world of wireless in the new Ambit catalogue - with magazine supp
lement. 45 p inc pp etc. Phone (0277) 216029/227050 $9 \mathrm{am}-7 \mathrm{pm}$
callers welcome anytime

Coils \& Filters by TOKO please note that some prices are increased as a direct result of the failure of $£$ versu stronger trading currencies. (Mainly Yen) 7810 mm IFTs for AM/FM - 1000 s es $455 / 470 \mathrm{kHz}$
10.7 MHz $30 p$
33 Short Wave Coils sets Now two ranges of impedance/coupling ea 33 p TV video and sound IFs/detectors Another new range in 10 mm

6 MH 2 ceramic IF sound filter | $33 p$ |
| :--- |
| $80 p$ | Molded VHF coils full catalogue 15 Uitra stable coils for $30-200 \mathrm{MHz}$ from 20 p Chokes - biggest range/biggest stock Most E12 values ex stock, any

$78 A$ series $10 H$ to 1 mH
$8 R 8$ series 100 HH to 33 mH $\begin{array}{ll}8 R B \text { series } & 100 u H \text { to } 33 \mathrm{mH} \\ \text { 10RB series } & 33 \mathrm{mH} \text { to } 120 \mathrm{mH}\end{array}$ $16 p$
$19 p$ FM IF FILTERS ceramic and linear phas CFSE/SFE10.7 stereo ceramic IF 10.7 MHz
CFSB10.7 mono/roofing If filler $50 p$
50 p
$+50 p$ B8R3125N 4pole linear pahe $10.7 \mathrm{MHz} \quad 450 \mathrm{p}$ MPX pilot tone filters for 19 \& 38 kHz $\begin{array}{ll}\text { BLR3107N } & \text { Stereo } 4 \mathrm{k} 7 \text { impedance } \\ \text { BLR2007 } & \text { Stereo } 3 \mathrm{k} 3 \text { impedance }\end{array}$ BLR2007. Stereo 3 k 3 impedance
BLR3152 Mono 4 k 7 impedance BLR3157 Mono 4k7/3k0 imp AM/FM/SSB IF FILTERS MFL series 2.4 kHz ssb $/ 455 \mathrm{kHz}$ carrier
MFH series $4 / 5 / 7 \mathrm{kHz} 8 \mathrm{BW}$ on 455 kHz MFK series $7 / 9 \mathrm{k} \mathrm{Hz}$ BW on 455 kHz
LFY455D 12 kHz 4 ele ladder on 455 kHz LFY455D 12 kHz 4 ele ladder on
CFM2455. 6kHz micro mechanical.
SFP4 SFD455/470kHz murata IF filter
CFT $4558 / \mathrm{C} 6 / 8 \mathrm{kHz} \mathrm{min}+21 \mathrm{FT}$ CFU470C 6 kHz on 470 kHz $1 \mathrm{~A} 651 / 7,455 \mathrm{kHz}$ ratio det KAN1508/9 10.7 MHz ratio detactor $\quad 66 \mathrm{p}$ 94ACS15106 detectors for CA3089E etc
\qquad Polyqarícon tuning capacitors + trimmers 2A20ST $72 \times 266 \mathrm{pF}$ AM $\underset{\text { CY222172 }}{2 \times 300 \mathrm{FF}} \mathbf{~ F M}$

Tuner Modules

From the biggest and best range.
$\begin{aligned} & \text { TUNERHEADS for } 88.108 \mathrm{MHz} \text { band } 2 \text { (varicap) } \\ & \text { EF5803 } 6 \mathrm{cct}, 3 \mathrm{MOSFETs} \text {, } \mathrm{mp} \text { ose }\end{aligned}$
$\begin{array}{llll}\text { EF5803 } & 6 \mathrm{cct}, 3 \text { MOSFET, amp, osc. } & 19.75 \\ \text { EF5801 } & 6 \mathrm{cct} \text { 2 MOSFETs, osc op } & 17.45 \\ \text { EF5600 } & \text { Cct } & \text { MOSFET RF, by TOKO } & 14.95\end{array}$
EC3302 3cct FET input miniature 8
$7252 \quad$ Oual MOS head/low dist IF $\quad 26.50$
7253 FET hasd, mpx decodar in
26.50 $\begin{array}{lll}7020 & \text { HiGain dual ceramic filter } & 6.95 \\ 7030 & \text { Mioser }\end{array}$ $\begin{array}{ll}7030 & \text { Mos prearmp, linear phase filter }-10.95 \\ 7130 & 2 \text { mos preamps } 3 \text { lofiters }\end{array}$ $\begin{array}{ll}7130 & 2 \text { mos preamps, } 3 \text { 1pfilters } \\ \text { NBFM1 } \\ 455 / 470 \mathrm{kiHz} \text { NBFM modula }\end{array}$ NBPX decoders, all with pilor tone filters and 9.95 buffer amplifiers for min 300 mV RMS $\begin{array}{lll}\text { 92310 } & 1310 \text { based system } & \mathbf{6 . 9 5} \\ \mathbf{9 3 0 9 0} & 3090 \text { Aa based systom } & \mathbf{8 . 8 5}\end{array}$ $\begin{array}{lll}\mathbf{9 3 0 9 0} & \text { 3090 AO based system } & 8.85 \\ 91196 & \text { HA1196 based + birdy filler } & 1299\end{array}$ $91196 B \quad$ HA1196 based + birdy filter +
$2 \times L M 380$ audio inonitor amps 16.45 911223 HA11223 based system $\quad 12.50$ AM RADIO-
91197 The original MW/LW varicap tuner with electronic switch
The uniband tuner module. 11.85
13.22 AM FM RADIO UNITS
\qquad MW/LW/FM portable radio chassis 12.9 $710830 \begin{array}{lll}\text { for clock radio ete } \\ \text { Drive/dial system for } \\ 71083 & 1.75\end{array}$ SPECIALS: TUNERHEADS in
40-200MHz to special order
\qquad cover bands in the region described. The costs depend on quantity and actual mods required to
cover the desired band. Max coverage approx. 20% of centre freguency selected. Also, please
allow 3.5 weeks delivery for these items.

2 Cresham Raad, Brentwand, E55RH.

total amplification from CRIMSON ELEKTRIK

WE NOW OFFER THE WIDEST RANGE OF SOUND PRODUCTS

MC 1

CPR 1-THE ADVANCED PRE-AMPLIFIER
The best pre-amplifier in the $U K$ The superiorty of the $C P R 1$ is probably in the disc stage The overload margin
is a superb $40 d B$, this together with the high slewing rate ensures clean to tracking heavily modulated records Common-mode distorion is eliminated by an whusual design R I $\mathrm{A} A \mathrm{~A}$ is
accurate to 1 dB , signal to noise ratio is 70 dB relative to 35 mV . distortion $<005 \%$ at 30 dB overload 20 kHz Signal to noise ratio 86 dB , slew-rate $3 \mathrm{~V} / \mathrm{uS}$, $\mathrm{TH} 0 \quad 20 \mathrm{~Hz}-20 \mathrm{kHz}=008 \%$ at to power amp signal levels (gntrols are fitted There is no provision for tone controls CPR 1 size is $138 \times 80 \times 20 \mathrm{~mm}$ Supply to be ± 15

MC 1 PRE-PRE-AMPLIFIER

signals from the now popular low output moving colv $70 / 170 u V$ switchable on the p cb This module brings

REG 1 - POWER SUPPLY

POWER AMPLIFIERS

It would be pointless to list in so small a space the number of recording studios educational and government
 reputation for the highest qualify at the lowest prices The power amp is avastable in five types. they all have the
same specification $P \mathrm{HD}$ typucally 01% any power 1 kHz 8 ohms $T I D$ insignificant, slew rate limit $25 \mathrm{~V} / \mathrm{uS}$, signal to noise ratio 110 dB frequency response $10 \mathrm{H}_{z}-35 \mathrm{kHz}$, 3 dB , stability unconditional. protection drives

POWER SUPPLIES
We produce sutiable power supplies which use our superb TOROIOAL transinermers only 50 mm high with a

POWER AMPLIFIER KIT

The kit includes all metalwork. heatsinks and hardware to house any wo of our power amp modules plus a power supply it is contemporanily styled and its quality is consistent with that of our other products Comprehensive

POWER AMPLIFIER MODULES CE 608 60W/8 ohms $35-0-35 \mathrm{v}$
CE $1004100 \mathrm{~W} / 4$ ohms $35-0.35 \mathrm{v}$ CE 1704 100W $/ 8$ ohms $45.0-45 \mathrm{v}$ $170 \mathrm{~W} / 8$ ahms $60-0-60 \mathrm{~V}$

TOROHDAL POWER SUPPLIES
CPS ITo $2 \times$ CE 608 or $1 \times C E 1004$ CPS3 for $2 \times$ CE $2 \times$ CE 1004 or $2 \times 4 \times$ CE $1 \times$ CE 1704 CPSS for $1 \times$ CE 1008 CPS5 for $1 \times$ CE 1708
heatsinks Gght duty $50 \mathrm{~mm} 2 \mathrm{C} / \mathrm{W}$ Medium power, $100 \mathrm{~mm} 14 \mathrm{C} / \mathrm{W}$
Disco/group 150 mm 11 CW Fan 80 mm . state 120 or 240 v
$£ 16.30$
$E 19.22$ £ 23.22
£29.12
23

E14.47

E18.82 E17.86

£17.66 £ 15.31

CRIMSON ELEKTRIK

Understanding Digital Electronics New teach-yourself courses
 In the years ahead the products of digital electronics technology will play

Design of digital Systems is written for the engineer seeking to learn more about digital electronics. Its six volumes - each A4 size - are packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters and simple arithmetic circuits, and finally to a complete understanding of the design and operation of calculators and computers.

The contents of Design of Digital Systems include:

Book 1 Octal, hexadecimal and binary number systems; conversion between number systems; representation of negative numbers; complementary systems; binary multiplication and division.
Book 2 OR and AND functions; logic gates NOT, exlusive OR. NAND, NOR and exclusive-NOR functions; multiple input gates; truth tables; De Morgans Laws; canonical forms; logic conventions; Karnaugh mapping; three-state and wired logic.
Book 3 Half adders and tull adders; subtractors; serial and parallel adders; processors and arithmetic logic units (ALUs); multiplication and division systems.
Book 4 Flip flops; shift registers; asynchronous and synchronous counters; ring, Johnson and exclusive-OR feedback counters; random access memories (RAMs) and read only memories (ROMs).
Book 5 Structure of calculators; keyboard encoding; decoding display data; register systems; control unit; program ROM; address decoding; instruction sets; instruction decoding; control program structure.
Book 6 Central processing unit (CPU); memory organisation; character representation; program storage: address modes; input/ output systems; program interrupts; interrupt priorities; programming; assemblers; computers; executive programs; operating systems and time sharing.

Digital Computer Logic and Electronics is designed for the beginner. No mathematical knowledge other than simple arithmetic is assumed, though the student should have an aptitude for logical thought. It consists of four volumes - each A4 size - and serves as an introduction to the subject of digital electronics. Everyone can learn from it - designer, executive, scientist, student, engineer.

Contents include: Binary, octal and decimal number systems; conversion between number systems; AND, OR, NOR and NAND gates and inverters; Boolean algebra and truth tables; De Morgans Laws; design of logic circuits using NOR gates; R-S and J-K flip flops; binary counters, shift registers and half adders.
CAMBRIDGE LEARNING ENTERPRISES, UNIT 12, RIVERMILL SITE,
FREEPOST. ST. IVES, HUNTINGDON, CAMBS. PE 17 4BR, ENGLAND
TELEPHONE: ST. IVES (0480) 67446
PROPRIETORS: DRAYRIDGE LTD. REG. OFFICE: RIVERMILL LODGE, ST. IVES REGD. IN ENGLAND No. 1328762
an important part in your life. Calculators and digital watches are already commonplace. Tomorrow a digital display could show your vehicle speed and petrol consumption; you could be calling people by entering their name into a telephone which would automatically look up their number and dial it for you.

These courses were written by experts in electronics and learning systems so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being faster and more thorough than classroom learning. You work at your own pace and must respond by answering questions on each new piece of information before proceeding.

After completing these courses you will have broadened your career prospects and increased your fundamental understanding of the rapidly changing technological world around you.

The six volumes of Design of Digital Systems cost only:	88.11	
And the four volumes of Digital Computer Logic and Electronics cost only:	24.0	packing
But if you buy both courses, the total cost is only:	12.00	$+£ 1$ post \& packing

Price includes surface mail anywhere in the world - Airmail extra.

Flow Charts \& Algorithms

HELP YOU PRESENT
safety procedures, government legislation, office procedures, teaching materials and computer programs by means of YES and NO answers to questions.
THE ALGORITHM WRITER'S GUIDE explains how to define the questions, put them in the best order and draw the flow chart, with numerous examples shown. All that students require is an aptitude for logical thought. Size: A5, 130 pages. This book is a MUST for those with things to say.

$$
\text { 22-95 } \begin{aligned}
& +45 p \text { post \& packing by surface } \\
& \text { mail anywhere in the world. Airmail } \\
& \text { extra. }
\end{aligned}
$$

GUARAṄ추E

If you are not entirely satisfied your money will be refunded.
Cambridge Learning Enterprises, Unit $1 \overline{2}$, Rivermill Site, Freepost, St. Ives,. Huntingdon, Cambs. PE1 7 4BR
England.
Please send me the following books.
sets.Digital Computer Logic \& Electronics @ £5.50, p \& p included
included
sets Design of Digital Systems @ £9.00, p. \& p. included
Combined sets@£13.00, p \& p included
The Algorithm Writer's guide @ £3.40, p \& p included
Name
Address

I enclose a cheque/PO payable to Cambridge Learning Enterprises for $£$
prises for E Access/Barclaycard/Visa/Eurocard/ Mastercharge/İnterbank account number
Signaturedeleted as appropriate Telephone orders from credit card holders accepted on 0480 67446 (ansafone). Overseas customers should send a bank draft in sterling drawn on a London Bank.

GREENWVED 443 Ailibrook Road Southernpton SO1 OHX Tel:(07033 772501
 All prices quoted include VAT. Add 25p UK/BFPO Postage. Most ordert

 deaparched on day of receips. SAE with enquiries please. MINIMUM ORDER VALUE £1. Official orders accepted from achools, otc. (Minimum invoice charge £5). Export/Wholessle enquiries welcome. Wholes
BUY A COMPLETE RANGE OF COMPONENTS AND THESE PACKS WILL HELP YOU

* SAVE ON T/ME-No delavs in waiting
SAVE ON MONEY - Bulk buying means lowest prices - just compare with others!
HAVE THE RIGHT PART - NO guesswork
necessary!
ALL PACKS CONTAIN FULL SPEC. BRAND NEW, MARKED DEVICES - SENT BY RETURN OF POST VAT INCLUSIVE PRICES.
K001 50V ceramic plate capacitors. 5\%. 10
of each value 22 pF to 1000 pF . Total 210
$£ 3.35$
K002 Extended range, 22pF to $0.1 \mu \mathrm{FF} 330$
values $£ 4.90$
K003 Polyester capacitors, 10 each of these values 0.01, 0.015. 0.022,0.033, 0.047 $0.068,0.1,0.15,0.22,0.33,0.47 \mu \mathrm{~F}$ 110 altogether for $£ 4.75$
K004 Mylar capacitors. min 100V type. 10 each all values 3.75 pF to $10,000 \mathrm{pF}$ Yotal
values from 1000 pF to $047 \mu \mathrm{~F}$ Total 290 capacitors to $£ 11.25$
K 005 Polystyrene capacitors. 10 each value 160 V . Total 370 for $£ 12.30$
K 006 Tantalum bead capacitors. 10 each or the following $0.1,0.15,0.22,0.33,0.47$ $0.68,1,2.2,3.3,4,6.8$, all 35 V $100 / 3$. Total 170 tants for $\mathbf{E 1 4 . 2 0}$
$K 007$ Electrolytic capacitors 25 V working small physical size 10 each of these popula Total 70 for $£ 3.50$
K 008 Extonded range, as above also K008 Extended range, as above als Including
for $£ 5.90$
K021 Miniature carbon film 5\% resistors, 1 M E12 series Total 610 resistor
£6.00
K022 Extended range total 850 resistors
from $1 R$ to $10 \mathrm{M} £ 8.30$
K041 Zener diodes, $400 \mathrm{~mW} 5 \%$ BZY88 etc. 10 of each value from 2 V to 36 V . E2 series. Total 280 for $£ 15.30$
(042 As above but 5 of each value $£ 8.70$

STEREO AMPLIFIER

CHASSIS £5.50
Complete and ready built. Controls Bass circuitaives 2 watts per channel outpul, Jus needs transformer and speakers for low cos stereo amp. Suitable metal cabinet (W374) £2.00 - or buy the amp, case and trans former for $£ 10,00$ and get DIN speake sackets and knobs tyee!!

AMPLIFIER KIT $£ 1.75$ vol 100 -ff controls Utilizes sim tone and bove amp Output 2 W into 8 ohms input matched for crystal cartridge 4 ransistor circuit. Simple to build on PCB provided. Can be either battery of mains operated. (For mains powered version add £2.20 for suitable transformer). Blue vinyl covered aluminium case to suit (W372) £1.30.

BC182B OFFER
Special Offer quar quat Pricers $1 \mathrm{l} .035+$ VAT: 5k . $032+$ VAT Price

PC ETCHING KIT MK III board. 11b. Ferric Chloride. DALO etch-resis pen, abrasive cleaner, iwo miniature drif eiching dish and instructions. £4.25.

EDGE CONNECTORS double-sided gold-plated connectors en ables us to offer them at less than one-third 18 way 41p; 21 way 47p; 32 way 72p; 40 way 90p.

THE NEW 1978-9 GREENWELD CATALOGUE

FEATURES INCLUDE

- 50p Discount Vouch
- Quantity prices for bulk buyers
- Reply Paid Envelope
- Reply Paid Envelope
- VAT inclusive prices

Price 30p +15 p Post
HEAT SINK OFFER Copper TO5 sink 17 mm dia $\times 20 \mathrm{~m}$
$40 \mathrm{p}: 100$ for $£ 3: 1,000$ for $£ 25$.

74 SERIES PACK

Selection of boards containing many dif ferent 74 series ICs 20 for £1. 50 for £2.20: 100 for $£ 4$.

TMS4030 RAM

4096 bit dynamic RAM with 300 ns access time; 470 ns cycle time, single low capaci ible data $\mathbf{£ 2 . 7 5}$.

MISCELLANEOUS ICS Suppliad wit data if requested MC330 quad comp. 120p; 710 diff comp. (TOg9) LM711 Dual dift comp 65 p . LM 1303 dua stereo pre-amp 75. MC1469R voltage £150: UPC1025H audi ©350.575C2 audio £2.88; TDA2640 audio £292 TBA810S audio 70p; SN75110 dual line driver 70 p ; MC8500 CRCC gen POA.

EXPERIMENTERS

CALCULATOR
pack of parts enables the more experienced constructor to make an 8 digit 4 function calculator. The comprehensive data supplied includes full size layour of PC8 required. rypes of suitabie Components included in the pack are C500 calculatorchip driver IC all components for inverter / clock circuits. Rs Cs etc. Ali for only £3.50.

RELAYS

6 V coil SPCO 3 A contacts 93 W832 Sub min $10 \times 19 \times 10 \mathrm{mp}$. coil DPCO 2A contacts $£ 1.15$
W701 6V SPCO TA contacts 20×30 25 mm . Only 56 p .
W8 1711 pin plug in relay: rated 24 V AC but works well on GV DC Contacts 3 pole c/o rated 10A. 95p.
W819 12V 1250 R DPCO 1A contacts. Size $29 \times 22 \times 18 \mathrm{~mm}$ min plug-in type 72p. wope 3 pole C (10 A contacts Only 85 p rype. 3 pole cro $10 \mathrm{Ac} / 0$ contacts. $£ 1.20$ Send SAE for our relay list and illustrated.
LOW COST PLASTIC BOXES Made in high impact ABS. The lids are terior of box has PCB guide slots (excep V219).
V210 $80 \times 62 \times 40 \mathrm{~mm}$ black $\begin{array}{ll}\mathrm{V} 213 & 100 \times 75 \times 40 \mathrm{~mm} \text { black } \\ \mathrm{V} 216 & 120 \times 100 \times 45 \mathrm{~mm}\end{array}$ V21.9 $120 \times 100 \times 45 \mathrm{~mm}$ white

SPECIAL SUMMER OFFERS
76003N £1.40 76013N E1.00 $76023 \mathrm{~N} \quad £ 1.00 \quad 76033 \mathrm{~N}$ £ 1.40 - 90p

741 (8DIL)
555 Linear ICs etc. 1N4 148

DIODE SCOOP!!!
We have been fortunate to oblain a large silicon diodes. Testing a sample batch revealed about 70\% useable devices signal diodes, high voltage rets and zeners may all be included. These are being offered at the incredibly low price of $£ 1.25 / 1.000$ - or a bag of 2.500 for $£ 2.25$. Bag of 100,000 £ 60

\title{

electrovalue
 If you have bought from us before, you will know just how large are publishing aseries of five advertisements month by month to give up-to-date information and prices on the most important items we carry. These advertizementa will appear in stepped
 Practical Electronics and Everyday Electronics, so that the complete series will be available each month. In this way, no natter which journile you read, BY DETACHING AND SAVING PREHENSIVE MONEY SAVING CATALOGUE. Noxt month -

Section One.
}

HARDWARE/SOLDER TOOLS

POT CORES
FERRITES
BOOKS
list of all ranges free on reques

TERMINAL PINS
Not made by Vero)
10035 matrix per 052.? por 15. . 10040 p (Both types double 100 40p (Both types double
veros
High Impact polystyrene light grey top, dark grey bottom section. top, da
Type
$2514 F$
$\begin{array}{lllll}\text { Type } & \text { L } & \text { W } & \text { H } & \\ 2514 \mathrm{~F} & 100 & 50 & 25 & £ 1.64 \\ 2516 \mathrm{G} & 100 & 50 & 40 & £ 1.86\end{array}$ $\begin{array}{lllll}\mathbf{2 5 1 6 G} & 100 & 50 & 40 & \mathbf{£ 1 . 8 4} \\ \mathbf{2 5 1 8 H} & 120 & 65 & 40 & \mathbf{£ 2 . 0 7}\end{array}$ $\begin{array}{llrr}2520 \mathrm{~J} & 150 & 80 & 50 \\ \mathbf{2 5} & \mathbf{£ 2 . 3 5}\end{array}$ 2522K $188 \quad 11060$
Constructed from
Constructed from ABS material light grey top \& dark grey bottom section Anodised ali. front and boards
PIN INSERTION TOOLS No. PIT 1 for 0.040° pins
($0.1^{\prime \prime}$ matrix)
No. PIT 5 for $0.052^{\prime \prime}$ pins
SPOT FACE CUTTER
Suitable for any matrix

SLOPING FRONT PLASTIC CASES The 1798 k has white top and grey bottom ection, the 2523 E has light grey top and dark grey bottom section.
Both have anodised aluminium panels.
$\begin{array}{lllccc}\text { Type } & \text { W } & \text { H1 } & \text { H2 } & \text { D } & \text { Price } \\ 1798 K & 171 & 38 & 75 & 121 & £ 4.19\end{array}$ $\begin{array}{lllrlr}1798 K & 171 & 38 & 75 & 121 & £ 4.19 \\ 2523 E & 220 & 52 & 100 & 156 & £ 6.36\end{array}$ $19^{\prime \prime}$ CARD/FRAME CASE SYSTEM ccepts plug•in modules and standard European size circuit boards.

ight blue

an be rack-mounted
Type Item
3841 L Case \quad Price
2F End plate angles (pr.)
$3844 \mathrm{G} 4^{\prime \prime}$ Module
345B 2. Module
3846 H 1. Front panel
3979K Board for module
034E Veroboard clad
1041, DIP-board
0258 C 31 -way socket
EUROCARD CONNECTORS
2876 D 64-way plug
2874 C 64 -way socke

NEW ANOTHER SPECIAL FROM ELECTROVALUE
WE ARE NOW NATIONAL DISTRIBUTORS FOR
NASCOM 1
MICROCOMPUTER KITS
FOR DELIVERY FROM STOCK
NETT PRICES FROM $197.50+$
QUANTITY DISCOUNTS
TRADE ENQUIRIES INVITED

TRANSFORMERS All mains iransformer primaries sultable for 240 V input except for 50TS2A GP302 30V 2A tapped at $12,1520,24 \mathrm{~V} \quad £ 4.60$ GP501 50V 1A tapped 19.25.33.40V E4.30 GP502 50V 2A tapped 19.25.33.40V £6.30 GP601 60V 1 A tapped 24,30.40.48V £4.60 GP602 50V 2A tapped 24.30,40.48V £6.70 $50 T S 50 V 2 A$ tapped $25,45 \mathrm{~V}$ Pri/sec shield	50TS2A 50V 2A (110/120V pri) tapped 25.45 V Pri/sec shield $\quad \mathbf{E 6 . 5 5}$ $28 T 0512 \mathrm{~V}, 12 \mathrm{~V}, 2-0-2 \mathrm{~V} 0.5 \mathrm{~A}$ $28 \mathrm{T1} 12 \mathrm{~V} .12 \mathrm{~V}, 2-0-2 \mathrm{~V} 1 \mathrm{~A}$ E4.90 $28 T 2$ 12V.12V.2-0.2V 2A E5.30 $12 \mathrm{TO5}$ 6V.6V.0.5A (Split primary 120. 120V) E3.30 CT1 17V 1A charger duty tapped	
PRINTED CIRCUIT MATERIALS COPPER CLAD BOARD $300 \times$ 150 mm Single Sided SRBP 85p; Fibreglass $£ 1.65$ Double sided SRBP £1.00 UNCLAD SRBP $300 \times 150 \mathrm{~mm}$ 56p FERRIC CHLORIDE, Lab. grade 100 gm pack 47p; 500gm jar E2.30 POSITIV-20 Aerosol, 75 cc with instructions $£ 1.30$	RELAYS MINIATURE CONTINENTAL TYPE Type R42 12V 185n 2 C/O£1.80 Type R44 12V 185n 4 C/O£2.00 PC socket type P40 97p Ordinary wiring skt. W40 . . 88p Mounting strip 6 posn R40. 26p PIGMY MAINS RELAY 3 C/O $10 \mathrm{amp} 6 \mathrm{~V} 29 \mathrm{n}, 12 \mathrm{~V} 110 \mathrm{n} .24 \mathrm{~V}$ $475 n$ all d.c 240 V a.c 8200 n coll $\quad \mathrm{E2.30}$	REED RELAYS open construction 5V 106 CSA5 single n/o 90p 12V645n CSA 12 single $\mathrm{n} / 090 \mathrm{p}$ $5 V 57 n$ CDA 5 double n / o £1.28 12V320n CDA 12 double n / o £1.19 REED RELAYS enclosed type n/o LPS 12 single 590n98p LPD 12 double 355 n . $£ 1.32$ LATCHING RELAYS enclosed n/o CLA5. 5V 400 n £2.30 CLA12, 12V 225n £2.30
Decon with spare tip 85p 73.0063 .00 SILVER CONDUCTIVE PAINT 3 gm vial Elecolit 340 £ $1.92 £ 1.68$ £ 2.20	MEET US AT BREADBOA	- 78 STAND D. 8

SWITCHES
ERG Dual in Line One pole change over SOC1
Two-SDC2, $78 p 3-$ SDC3, 1.08 On Off 2 pole SOC2 4204 pole SDS4 75p. 6p SDS6 £1.08.8pSDS8. £1.32.
Multiple - 1p/B way DS 16 A1-B
99p 2p/4WDS $16 A 2-4 £ 1.08$
ROTARY MAINS
Lorlin MS 4 amp
WAVECHANGE
Lorlin CK series, MBB contacts
$\begin{array}{rrr}12 W & 37 p & 1 p \\ 6 W & 37 p & 2 p\end{array}$
$\begin{array}{lll}6 W & 37 p & 2 p \\ 4 W & 37 p & 3 p\end{array}$
$\begin{array}{cc}3 W & 37 p \\ \text { 37 }\end{array}$
ROTARY SWITCH KIT Type RA
6 wafers60p

RA Wofers MBB
1P IW or 2P 5W
RA Wofors BBM
$1 P 12 W, 2 P 6 W$
$304 W, 4 P 3 W$
3p 4W, 4P 3W. 66p
6 P 2 W
RA Shorting wafer, MBB
PUSH BUTTONS
Standard Size
SSP10, 250V 3A a.c.
push on, push off
panel hole $0.5^{\prime \prime}$
SSP11, as SSP10 59p
SSP11, as SSP10
push to make \quad 52p
8531 push to make...$A^{2} .62 p$ 8533 push to break 62 2p (Panel hole 0.25")

CASTELCO RANGE 250V 1A
a.c.
$0.375^{\prime \prime}$
hole with long white fixing ring unless otherwise ordered.
No. 2644 SP make
No. 3244 DP make
No. 2648 SP break
No. 324 B DP break
No. 2634 SP on/off
No. 3234 DP on/off30p
No. 4434 as 3234 but switch
No. 4444 as 3244 but switch
sections reversed rings in black, red, yellow
green. blue, white or pink aach 1p
TOGGLE 250V 9.5 A a.
Chrome finish
1011 C SPST

1011 C SPST 1016C SPDT 1019C SPDT centre-off 409 DPDT

409 DPDT
Sub-Miniature 250 V 2 V a.c
anel hole 0.25
S7101 SPDT
S7201 DPDT
S7201 DPDT
S7203 DPDT

S7205 OPDT biased
57207 DPDT biased
one side
S7211 SP 3-way
S7301 3PDT
S7401 4PDT
MICROSWITCHES SPDT
SSU01 button. lever or roller 85
TIME SWITCHES (Smith's)
For electrical use, 13A rat
IMERSET for wired-in
situations. 2 on \& 2 off actions per
day AUTOSET $13 A$ socket outlet.
Otherwise as Imerset $\quad £ 10.95 \mathrm{~N}$

[^3]V.A.T. -8% to value of order
*FOR ACCESS OR BARCLAY CARD orders, just phone or write your number.
No disccunts allowable on prices marked Net or N

TEAR OUT AND TAKE GOOD CARE OF THIS PAGE AND REMEMBER TO LOOK OUT FOR NEXT MONTH'S ADVERTISE MENT TO ADD TO IT
OUR COMPUTER-AIDED SERVICE TAKES GOOD CARE OF YOUR ORDER NO MATTER HOW LARGE
OR SMALL

ELEGTROALIUE LTD
28, ST. JUDES ROAD, ENGLEFIELD GREEN. EGHAM, SURREY TW2O OHB Telephone Egham 3603 Telex 264475
Northern Branch - 680, BURNAGE LANE,
BURNAGE, MANCHESTER M19 1NA(061)432 4945

©3 WIRE WRAPPING CENTRE

A\{26.75 B 31.95 C \&2.82 D 77.44

FROM 80 D
TERMINAL AND
OISRIBUTION STRIPS
Bread
Bread boaraling builiaing
brocks with universal
matrices or solderless
olug. in tiepoints.
Facherate aucul
and check-out on

- Are ofterea in ten
conniqurations configuration
 diameter.
Roquire no spectal patch
coras.
Includiss integral non.
shorting
backing intant mounting

RIBBON CABLE ASSEMBLY

With 14 Pin Dip Plug-8"Long
OE 14.8
With 16 Pin Dip Pug
With 16 Pan

See us at BREAD BOARD ' 78 21 st-25th November. Seymour Hall, London Seymour Hall, L5-A6

OK Machine\&ToolU.K. Limited
483 The Avenue Southampton SO12SY
Telephone Southampton(0703) 389667 Telex 477222 Cablegram OKMAC

SAME AS ETI OFFER 5 FUNGTION LCD Hours. mins. secs. month. date. auto calendar, back-light. quality metal bracelet. $£ 8.95$		- OUARTZ LCD ALARM - Snooze + baçklight. Batteries last 1 year approx. Includes batteries and travel pouch. Excellent value £17.65	THOUSANDS SOLO 11 FUNCTION SLIM CHRONO 6 dipil 11 tunctions - Hours, mins. secs. - Day, date. day of woak. * $1 / 100,1 / 10$, sacs. $10 x$ secs. mins. - Spact and lap mooes. - Only 8 mm lhick. This same watch is being sold for $£ 22.00$ in newspaper ads. Metac Price £12.65
SEIKO The Seiko Quartz Collection encompasses a wide and exciting range of quartz watches for men and women. Day/Date quartz. Ultra-thin quartz. Digital quartz watches with liquid crystal display for continuous readout. Even a digital quartz alarm chronograph. It's what you'd expect of Seiko. The first quartz watch ever sold was a Seiko. And Seiko's expertise in every phase of the watchmaking process makes it possible for Seiko to make any part of any Seiko watch, and to exercise a unique quality control system through every step from design to completion. Whichever Seiko Quartz model you select, you get more than just a technologically advanced timepiece.			
LED Alarm Clock NWM Dimforigh \qquad \qquad		LADIES LCD Only $25 \times 20 \mathrm{~mm}$ and 6 mm thick. 5 lunction: hours mins, secs, day, date. + Elegant metal braceler" in silver or gold. Stale pre. lerence. $£ 10.95$	ALARM LCD 6 digit 7 function hours. mins. secs, day. dale. day raling alarm. Back lighl +2 ule calendar Uniy E24.95
Femiture and Specilicetion - Houf minute desplay - Oisplay tla shing for powez loss indicalion - Repeatable 9 minute snooze Size $515 \times 393 \times 236 \quad(131 \mathrm{~mm} \times 100 \mathrm{~mm} \times 60 \mathrm{~mm})$ Welphti 143 lbs 1065 kg$)$ £8.95	THE METAC DIGITAL CLOCKS COMPLETE KIT * Pleasant green display - 12/24 Hour readout Sileni Synchronous Accuracy. Fully elecironic Pulsating colon - Push-button selling Building time I Hr. Altractive acrylic Easy-to-follow insiructions. Size $10.5 \times 5.7 \times 8 \mathrm{~cm}$ Ready driiled PCB to accept components PRICE £6.65	MICRO cassette RECORDER Hand-heid only $21 / 2 \times 5 \times$ $1 / 2$ inch. denical to weil awn models being sold at $\{35$ OUR PRICE £24	SINCLAIR SCIENTIFIC PROGRAMMABLE + free program library worth $£ 4.00$ onty £12.95 from metac
add 30 p P\&P with all orders. All prices include VAT. Shops open 9.30 to 6.00 daily. Trade enquiries welcome	COMPONENTS 2N3055 transistors 50p 2 inch LED's, red 12 p green 15p yellow $15 p$ orange $15 p$ DL 704 displays 80 p DL 707 displays 80 p Watch batteries 70p (state type) Mercury tilt switches 50 p Crystal mic inserts 50p Also useful for sonic applications and sound transmitters (buzzers etc)	metac EXCLUSIVE calculator WATCH + STOP-WATCH SEIKO STYLE Calculator: X, Y, \ldots Time: hours. mins, secs, day, date. day ol week PRICE $£ 49$	Black \& white $£ 9.95$ Colour $£ 12.95$ 4 games. 2 ball speeds. 2ball'angles 2 bat sizes

MIN-ADS \& CLASSIFIED

Safety fast! Shows: 1, If all wires correct, 2, Live wire faulty, 3, Live and Neutral wires reversed, 4, Earth faulty, 5, Neutral faulty. Shows exact fault instantly. British made. $£ 3.95$ post free. Save time. Be sure. Be safe.

PERSONAL SAFETY CO.
Dept. ETI, P.O. Box 1 LLANRWST
Gwynedd, North Wales

HAPPY MEMORIES

21LO2 RAM (450ns)
1-15@95p.16-63@92p.64 up@89p $2114 E M M$ RAM (300ns)
1-3@£6.25.4 up@ £6
2708 EPROM (450ns)
1-3@£7.25, 4up@E7
16 PIN DIL SOCKETS
Gold 22p, 100 up 21p
Tin 12p. 100 up 11p
RAMS LIKE A SPARE BIT -1.2 mm
bits for Antex CX17 and CCN soldering irons $45 p$
Cheque or P.O. to G. J. Greaves

5 Cranbury Terrace Southampton Hants. SO2 OLH
C.O.D. available at cost

All prices include V.A.T Add 20 p postage

AT LOW COST

MICROCOMPUTER VIM-1

Use the VIM by itself with its on board
28 double function keypad and 6 character ED
display
Then expand to full mainframe via 3-44 way edge
connectors
It comes to you assembled and tested
Just connect your + SV D 1 5A power supply and
VIM- 1 is operational in minutes
hree manuals provided enable you to
MASTER MICROPROCESSOR TECHNOLOGY Plus features include
Hispeed cassette interface 185 bytes/sec ROK ROM ets for additional 3 K Sockets for 20 K ROM expansion
ASIl alpha/numerics direct to an oscilloscope.
4K SUPERMON MONITOR includes

- Single siep with variable trace speed
- Register modify/inspect whilst in program
- Hex displacement calculator
£199 plus 8\% VAT $=$ £15.92
TOTAL $=£ 214.92$

and demonstrations from

 ANDOR ELECTRONICS LTD.11 The Pracinct, Romilay, Stockport SK6 4AE Tel: (061) 430-4770

E.T.I. P.C.B.s

Epoxy glass laminate - drilled and tinned Complex Sound Gen 2.05 R.F. Power Meter 0.54 Power Bulge 0.30 Bell Extender STAC Timer Wheel of Fortune Cross Hatch Gen
ETIWET
Metal Loc
Metronome
House Alarm A \& B
Hammer Throw (3 of)
Clock A \& B
3 ch . Tone Con
Dig Thermometer
Graphic Equal
TV Game
Many more avalable including this mon 1.25
S.A.E. for full list Prices include VAT. Please add 20 p post and packıng Orders over $£ 5$ post

- free

PCB.s from your own artwork - write for quote
T.S.I. (St. Ives) Ltd. 37 Telegraph Street
Cottenham, Cambridge, CB4 $40 U$ Tel. (0954) 51177

Illustration shows low distortion Audio Oscillator type A0146 Distortion 0015% Range 100 hz to 900 Khz Output Iv Sine \& Square Price $£ \mathbf{3 5}$ (or in kit form $£ \mathbf{3 0}$) Tax extra 8\% P.P. E1. 50.

TELERADIO ELECTRONICS 325 FORE STREET, EDMONTON, LONDON, N9 OPE $01-8073719$
Closed on Thursdays

DIGITAC DIGITAL REV. COUNTER

The Digitac is a voltage impulse digital tachometer, which is suitable for all negative earth ignition systems. It has a 2 digit 7 segment display housed in a black case. Please specify no. of cylinders and if 6 or 12 volt system.

Ready built $£ 19.78$
Kit form £14.96
Prices are fully inclusive
(Quantity discounts)

ELECTRONEQUIP

36 Merton Avenue, Portchester Hants PO16 9NE. 0701873455

Linsley-Hood 75 watt Power Amp modules, built and tested, from $£ 12.50$. Complete module kit $£ 10.50$ inclusive. Linsley-Hood 75 watt amplifiers constructed and repaired, comprehensive range of spares in stock. Details and list free. I. G. Bowman (Dept. ETI), 59 Fowey Avenue, Torquay, S. Devon.

BARGAINS FOR THE ELECTRONIC HANDYMAN BRANDED LED DIGITAL ALARM CLOCKS

Capacitors. Tantalum Bead (ITT Union Carbide, NCC). $50 \mathrm{v} .33 \mathrm{uf}, 68,35 \mathrm{v}, .22 .33 .47$ $1-01-54.7,6.816 \mathrm{v} 2.24 .7=10 \mathrm{p} .10 \mathrm{v}$ 22 uf $3368=18 \mathrm{p} .63 \mathrm{v} 100 \mathrm{uf}=20 \mathrm{p} .10 \mathrm{v}$ 100uf $=30$ p. Electrolytic 250v 10uf CEIO .08P. 1000 uf 63 v erie. $50 \mathrm{p} 50 \mathrm{v}, 4.7 \mathrm{uf}$ CEW 80.06 p , 10 uf CRO4W .07p, 35v 33 uf ITT . 0747 uf CEO\&W $.0830 \mathrm{v}, 4700$ uf Plessy 50, 25v 100 uf Mullard . 09,470 uf Mullard 17 p 10 v 1000 uf CE04W. 15 . Price breaks 50-199 less $10 \% 199-500$ less 15%. 500 + less 20%. Same type components obtained to order. Min. order £2:00, .35p P\&P all orders below $£ 10.00$. Larkswood Electronics, 25 Larkswood Road, Chingford, London E4 9DS. 01-529 8255.

THE ROYAL FREE HOSPITAL HAMPSTEAD
 MEDICAL PHYSICS TECHNICIAN IV [ELECTRONICS]

An Electronics Technician is required for the Electronics Workshop of this major teaching hospital to assist with the development and maintenance of electronic circuits and equipment.
Applicants should hold the City and Guilds Final Certificate in appropriate subjects or an equivalent qualification. Some practical experience in the use of analogue and digital circuit techniques is desirable
Salary on scale. £3,423-£4,488 per annum, including all allowances. The starting point depending on qualifications and experience and the successful candidate will be encouraged to study for a higher qualification, by means of Day Release.
Application Form (to be returned by 3 rd November, 1978) and Job Description from the Personnel Department, The Royal Free Hospital, Pond Street, Hampstead, London NW3 20C. Tel: 01-794 0500. Please quote ref: 0761.
Camden and Islington Area Health Authority (T)
L.C.D. CHRONOGRAPHS, 6 digit display, stopwatch to 100 th seconds. Lap timer, P.M. indicator, S/S bracelet, display backlight, £16.96 . L.C.D. Solar watch £16.95. Ladies L.C.D. watch S/S or gilt bracelet $£ 13.95$. L.C.D. watch/stopwatch to seconds E13.95. Prices fully inclusive. Cheques, P / Os to RAM ELECTRONICS, 49 Avondale Road, Fleet. Hampshire.

ETI
 ADVERTISEMENT INDEX

Ace 90
Ambit 97
Astra-Pak 98
Audio Electronics 13
Bamber 84
Baydis 53
Bi-Pak 4 \& 5
Birkett 10
B.N.R.S 78
Bull 53
Cambridge Learning 99
Catronics 90
Chittmead 34
Chromasonics 90
Crimson Elektrik 98
C.S.C. 42 \& 43
Dalston Electronics 92
Delta Tech. \& Co. 94
Discount Computing 82
Doram 49, 53
E.D.A. 100
Electrovalve 101
Fladar 92
Flairline 96
Gould Advance 14
Greenbank 88
Greenweld 100
H.B. Electronics 92
Henry's 78, 88, 92
lbek Systems 42
I.L.P. 69
Integrated Circuits 95
Jeremy Lord 84
Kramer 42, 84, 96
L.B. Electronics 64
Lektrakit 36, 70
Maplin 108
Marshalls 77
Metac 103
Minikits 42
Mountiandene 64
Nicholls 64
Nic Models 92
O.K. Machine 102
P.B. Electronics 96
Powell 96
Powertran 2, 6
Progressive Radio 64
R.F. Equipment 10
Roger Squires 78
R.T.V.C 83
Sentinel Supply 78
Sintel 89
Stevenson 12
Sinclair Radionics 61
Swanley 82
Tamtronik 102
Target 36
Technomatic 11
Teleplay 107
Tempus 62
Trampus 70
T.K. 94
Trident 52
Vero 94
Videotime 50
Watford 8, 9
Wilmslow Audio 36

PRINTED CIRCUITS HARDWARE

Comprehensive range Constructors' Hardware and accessories

Selected range of popular components. Full range of ETI printed circuit boards, normally ex-stock, same day despatch at competitive prices
P.C. Boards to individual designs

Resist-coated epoxy glass laminate for the d.i.y. man with full processing instructions (no unusual chemicals required).
Alfac range of etch resist transfers, and other drawing materials for p.c. boards.

Send 15p for catalogue.
RAMAR CONSTRUCTOR SERVICES
MASONS ROAD STRATFORD-ON-AVON WARWICKS. Tel. 4879

COMPUTER HOBBIST, components at lowest prices. Write for free price list, stating your specific interests. PACS, 12 Alma Road, Monkstown, Co. Dublin, Eire.

PLEASE MENTION ETI WHEN REPLYING TO ADVERTS

COLOUR MODULATOR
 Kh FOR ALL TV GAMES!

 Complete details for tank baties - lifelike effects WILLIAM STUART SYSTEMS
 137 Gillericay Rood, Herongate, Brentwood. Esser CM13 3SD

STRATHAND SECURITY
 ALARMED?

If not rou should bo. Wi specialise in Narme enulement suitable lor home. oftite ar fattory. All items brand naw top quality fully gulurantaed.
101 Mennet and raed switct. Flush litting. 4 wire. Roquires hole 102 Hemat and red byitct depp
mole 55 mm diact switci. Fiush fitting scrow tormiants. Requir ts

13 mine thy 11 teed swith. Surface fitting. 4 wire. Size 65 man by

18 mm . Two hole fixing
105 Pressure pad - Bair triad $221 / 2^{\prime \prime}$ by $61 / 2^{2}$
100 Prassura pad $-\operatorname{large} 291 /{ }^{" *} \times 15^{\prime \prime}$
.................. $£ 2.05$

108 foil hlock - ail atherva. Wais tell
108 foil blocks - salf-adidesive. (Joins foll to cabla)
110 Koyswitchas with mountimg fite and cover 111 Kofl poxes wayn mountime plate and cever 112 Bell $6^{\prime \prime}$ hamy muty pastic coaied anial 1164 cara cable 100 - rory - white entry/erit. Anti-talat alarm circuitry. Mains/battery, stlent Whry/exit. Amth-atita alarm circuitry
PLUS
hadar (microwaya) units, automatic 999 dialling units with lapt messepe. and many other items.

STRATHAND SECURITY
 Tol: 041 Callers Welcome

MOTOROLA 6800 COMPUTERS

Single board 6800.17 command 1 K Mikbug compatible Monitor, 1 K user RAM. 1 K Crystal Controlled VDU. CUTS, fully buffered, room for extra 3×2708 PROMS
$£ 175.00$
Single board 2. Similar to above but with QWERTY keyboard £ 205.00 NEW Mini 6800 . Two p.c.b. kit, 1 K monitor, 1 K VDU, RAM, CUTS, QWERTY keyboard £145.00 VDU kit. 1 K Crystal controlled, memory mapped, parallel input video output. Should suit most processors . . $\mathbf{£ 6 0 . 0 0}$

All prices include VAT and post. Please send SAE for leaflets. Mail Order only.

HEWART MICROELECTRONICS

95 Blakelow Road

Macclesfield, Cheshire
LED PPM Single chip Peak Programme Meter (SN16880N) drives 5 LED's directly, easily cascaded to increase range/ resolution. £3-50 ea. inclusive. Applications sheets alone $18 p$. Peter Francis, 34 Ashley Dr., Twickenham TW2 6HW.

DIGITAL WATCHES. See my range of high quality L.C.D. watches and clocks all with 12 month guarantee from as little as £9.50. Send S.A.E. for colour brochure. D. HULLAH (Watches), 14 Willow Grove, Harrogate. N / Yorks.

Videograph II links to the aerial socket of your tvand provides a full colour
oscilloscope display! A must for hi-fi, home entertainment, discos, organs etc.
New - signal invert control, integral square wave generator. Plus - full details for testing your audio system for transient distortion, crosstalk etc.
Complete f14.95 Luxury cabinet and Kit only f14.I4 controls. £9.95 inc. POSt, PACKING, VAT READY BULLT VIDEOGRAPM E 59.95 WILLIAM Dower House, Billericay Road NILLANT Herongate, Brentwood. STLART Essex cmi33so
SYSTEMS LEd Telephone Brentwood (0277) 810244

Abstract

A GENUINE BARGAIN OFFER. LCD Twenty Function Square Slim Chronograph. CONSTANT DISPLAY: Hours, Minutes Seconds, A.M., P.M., Month, Date, Day, Roll-over. Backlight. CHRONOGRAPH:Minutes, Seconds, 10th., 100 th ., Lap Time, Lap Indicator, Total Time, Return Ordinary Time, Freeze Time, Memory, Stainless Steel Locking Bracelet. 12 Month Guarantee. Money Back Guarantee. ONLY £18.50. Without Chronograph £14.50. To J. RAMINGER, 1 St. Laurence Way, Stanwick, Northants, NN9 60s.

Teleplay

 PROGRAMAGAA
 Joystick Hand Controls
Joysional
 Every 3 months a NEW game will become available to you
Ender production include Submarines, Wanly
Wipe Out and mall

 up the complexity of the game. Additional cartridges NOW

$90+£ 1.14$ VAT $\left\{\begin{array}{l}\text { Fully } \\ \text { assembled }\end{array}\right.$ £1.51 VAT. $£ 12.90 \underbrace{2} \begin{array}{r}\text { asickit } \\ \text { add } \\ £ 300\end{array}$ with basic kit $\quad \mathrm{E} 1.03 \mathrm{VAT}$.
+Cartridges come complete with Cartridges come com to follov/

Electrical knowlecige is not a necessity to assemble this project - just simple soldering.

Cheques and Postal Orders to be made payable to TELEPLAY; send your order (No Stamp Needed) to Teleplay, Freepost, Earnet, EN5 2BR or telephone your order quoting your Barclaycard or Access number. Queries and Technical Advice offered either by phone or by calling at our shop.

BAnclavcario WSA

SHOP OPEN-10am to 7pm - Monday to Saturday

everything for the modern D.I.Y. electronics enthusiast and more.

[^0]: COPYRIGHT: All material is subject to world wide Copyright protection. All reasonable care is taken in the preparation of the magazine to ensure accuracy but.ETI cannot be held responsible for it legally. Where errors do occur a corŕection will be published as soon as possible afterwards.

[^1]: COMPLETE KITS: Our complete kits really are complete All of the projects shown on this page are supplied with fully finished metalwork, ready assembled high quality teak veneer cabinet. cables. nuts, bolts, etc., and full instructions - in fact everything.
 All of the kits shown on this page are available as separate packs (except the Powertran SFMT Tuner) for those customers who wish to spread their purchase or perhaps make their own cabinets or metalwork. Prices are given in our FREE CATALOGUE.

 PRICE STABILITY: Order with confidence! irrespective of any price" changes We will honour all prices in this advertisement until November 30th, 1978 . It ETI October, 1978 issue is mentioned with your order. Errors and VAT rate
 changes excluded. No VAT Postage charged at actual cost plus 50 p handling and documentation
 U.K. ORDERS: Subject to 12% surcharge for VAT' (i.e add $1 / 3$ to the price). No charge is made for carriage. "or at current rate it changed.
 our catalogue is FREE! write or phone NOW!

 PORTWAY INDUS̄TRIAL ESTATE ANDOVER HANTS SP 10 3NM

[^2]: Applications should reach us as soon as possible with C.V Prospective applicants may telephone the Editor for further details but this must be followed by written application.

[^3]: GOODS SENT POST FREE U.K. on C.W O. orders over £5 list value If under, add 27 p , handling charge
 *ATTRACTIVE DISCOUNTS On
 C.W.O orders -5% where list value is over E10 10% where list value is of E 25
 *TOP QUALITY MERCHANDISE -ALL BRAND NEV
 GUARANTEED.

