

TRANSCENDENT 2000 SINGLE BOARD SYNTHESIZER

LIVE PERFORMANCE SYNTHESIZER DESIGNED BY CONSULTANT TIM ORR (FORMERLY SYNTHESIZER DESIGNER FOR EMS LIMITED) AND FEATURED AS A CONSTRUCTIONAL ARTICLE IN ELECTRONICS TODAY INTERNATIONAL.
The TRANSCENDENT 2000 is a 3 octave instrument transposable 2 octaves up or down giving an effective 7 octave range There sportamento puch bending a VCO with shape and pitch modulation VCF with both low and high pass outputs and a separate dynamic sweep control, a nose generator and an ADSR envelope shaper There is also a slow oscillator. a new pitch detector. ADSR repeat, sample and hold, and special circuitry with precision components to ensure tuning stability amongst its many features

The kit includes fully finished metalwork, solid teak cabinet. filter sweep pedal. professional quality components (all resistors either 2% metal oxide or $1 / 2 \%$ metal fimm and it really is complete - right down to the last nut and bolt and last piece of wire' There is even a 13 A plug in the kit - you need buy absolutely no more parts before plugging in and making great music Virtually all the components are on the one protessional quality fibre glass PCB printed with component locations All the controls mount directly on the niain board all connections to the board are made with connector plugs and construction is so simple it can be bult easily in a few evenings by synthesizer comparable in performance and quality with ready built units selling for between $£ 500$ and $£ 7001$

$200+200$ watt AMPIIFIFR

As featured in Electronics Today International
400W rms continuous - 800W peak!
0.03 \% THD at FULL power!

PLUS all the following features too!

* Each channel totally independent with its own stabilised power supply driven by custom designed TOROIDAL transformers ${ }^{1}$
* Inherent reliability - monster heat sinks for cool running at the hottest venues - electronic open and shor circuit protectionl
* Utra low feedback (an incredible low 14 dB overall) super high slewing rate (20V/ $\mu \mathrm{s}$). 200 W rms continuous to 4 ohm from EACH channel. input sensitivity 0775 V (0 dB)
* Professional quality components. sturdy 19 rack mounting chassis complete with sleeve and feet for free standing work 100

FOR COMPLETE KITS!
Comprehensive handbook suppliad with all comploto kits! This fully describes instruction and tolls you how to set up your synthesizer with nothing pair of ears.

Easy to build - plenty of working space with ready access to all components, minumal wiring Easy to build - plenty of working space with ready access to all components, minimal wind

* Value for money - quality and performance comparable witn ready-built amplifiers costing over E6001

PRICE STABILITY: Order with confidencel irrespective of any price changes we will honour all prices in this advertisement until October 31 st, 1978 if ETI September 1978 issue is mentioned with your order Errors and VAT rate EXPORT ORDERS: No VAT Postage charged at actual cost plus 50 p handing and documentation
U.K. ORDERS: Subject to $121 / 2 \%$ surcharge for VAT (1 e add $1 / 8$ to the price) No charge is made for carriage or at current rate if changed
SECURICOR DELIVERY. For this optional service (U K mainland only) add E2 50 (VAT inclusive) per kit
SALES COUNTER: If you prefer to collect your kit from the factory, call at Sales Counter (at rear of factory) Open 9 a m-4 30 pm Monday-Thursday
our catalogue is FREE! write or phone NOW!
POWERTRAN ELECTRONICS
PORTWAY INDUSTRIAL ESTATE
ANDOVER, HANTS SP 10 3NM
(STD 0264) 64455

Key kit ? p. 27

Tune in and count on p. 21

FEATURES

15
Stat is it - and how good? Stan Curtis unveils some more secrets 50 Full details of Man's first spaceship 87 From you to you via us!

PROJECTS

DIGITAL FM TUNER CROSS-HATCH GENERATOR WHEEL OF FORTUNE

STAC TIMER

71 Versatile and comprehensive

NEWS

NEWS DIGEST DATA SHEET AUDIOPHILE MICROFILE

7 Latest and best news around
65 Stacs of information
76 Choosing amps
79 MPUs for you
85 Get it taped

INFORMATION

COME AND JOIN US! SUB'SCRIPTIONS BOOK SERVICE ETI PRINTS EDITORIAL QUERIES
PANEL TRANSFERS
MARKETPLACE
OCTOBER PREVIEW
BINDERS
SPECIALS
PROJECT BOOK SIX 19 Take a few leaves from us! 37 Why do it any other way? 45 Questions and answers 45 We're stuck on you! 47 Mark time with these offers 59 For our next trick and keep it tidy Full details Our latest and greatest

Electronics Today International is normally published on the first Friday of the month prior to the cover date

[^0]
It's SUMMER SALE time again!

THYRISTORS

Order No
161685 pieces Assorted Ferrite rods
161692 pieces Tuning gangs MW/LW
1617050 metres Single strand wir
16171 10 Reed switches
1617620 Assonted electrolytics Trans 17ypes
16;77 1 pack Assorted hardware nuts/bolis. etc
$16180 \quad 15$ Assorted control knobs
1618415 Assorted Fuses $100 \mathrm{~mA}-5$ a $16188601 / 2 \mathrm{~W}$ resistors mixed valu 1618730 metres stranded wit
assorted colours
S100 120 1/4watt resistors. Pre-formed. 1978 $S 1011201 / 2$ watt resistors. Pre-formed 197 B 5102250 Prod. 1 Mixed values 60p ${ }^{\text {a }}$ S102 250 rewatt resistors. Range 1000 hms $S 103 \quad 220 \frac{1}{2}$ watt resistors. Range 1000 hms . $\$ 10460$ Low ohms $1 / 6$ watt res. $10-100$ ohms S 10540 Low ohm $1 / 2$ watt resistors, $22-82^{60 p}$ ohms
S106 25 Mixed wirewound resistors 6 S107 20 Tantalum bead caps. . $22-100 \mathrm{mF}$ S 108 High quality electrolitics. $10 \mathrm{mF}-500 \mathrm{mF}$. oltage range $15-50 \mathrm{~V}$
16204 C280 Par Our mix 40 for $€ 1.00^{\circ}$ 6204. C280 Pak. Contains 50 metal toil caps Ribbon cable flat standard 15 -way multi-
coloured PVC insulated, stranded tin coloured PVC insulated, stranded tin
copper, 1 m

SILICON POWER TRANS. NPN 400 Case 7092 with heat tab 5 for 60 p $\begin{array}{ll}\mathrm{S} 98 & 2 \mathrm{~N} 5293 \text { RCA } 36 \mathrm{w} 4 \mathrm{amps} 75 \mathrm{Vceo} \mathrm{Hfe} \\ 30-120\end{array}$

SILICON BRIDGE RECTS.

PC BOARD
S110 Mixed Bundle. PCB, Fibreglass/paper single \& double-sided

Fantastic value 75p

I.C. SOCKET PAKS

No. S66 11×8-pin DIL Sockets $\begin{array}{ll}\text { No. S67 } & 10 \times 14 \text {-pin DIL Sockets } \\ \text { No. S68 } & 9 \times 16 \text {-pin DII Sockets }\end{array}$ No. S68 $\quad 9 \times 16$-pin DIL Sockets No. S70 3×28-pin DIL Sockets

MAMMOTH I.C. PAK

K Approx. 200 pieces. Assorted fall-out integrated circuits, including Logic, 74 series, Linear, Audio and D.T.L. Many coded devices, but some unmarked - you to identity.

ZENE氐 PAKS

$$
\begin{array}{ll}
\text { No. S55 } & \begin{array}{l}
\text { 20 mixed values } 400 \mathrm{~mW} \text { Zener } \\
\text { diodes } 3-10 \mathrm{~V}
\end{array} \\
\text { No. } \$ 56 & \begin{array}{l}
\text { 20 mixed values } 400 \mathrm{~mW} \text { Zener } \\
\text { diodes } 11-33 V
\end{array} \\
\text { No. S57 } & \begin{array}{l}
10 \text { mixed values } 1 \mathrm{~W} \text { Zener } \\
\text { diodes } 3-10 \mathrm{~V}
\end{array} \\
\text { No. S58 } & \begin{array}{l}
10 \text { mixed values } 1 \mathrm{~W} \text { Zener } \\
\text { diodes } 11-33 \mathrm{~V}
\end{array} \\
£
\end{array}
$$

TRANSISTORS

RAND NEW - FULLY GUARANTEED								
Typ*	Pric*	Typ*	Price	Type	Price	Type	Pric	
AC107	$25 p$	BC177	12 p	BF194	9 p	TIP32C	$36 p$	2 N 171115 p
AC126	14p	BC178	$12 p$	BF195.	9 p	TIP41A	34 p	2N1893 28p
AC127	16 p	BC179	12p	BF196	12p	r\|p41B	35 p	$2 N 2218$ 15p
AC 128	16 p	BC182	9 p	BF197	.12p	TIP41C	36 p	2N2218A 18p
AC 128 K	24p	BC182L	9 p	BF200	$\cdot 25 p$	TIP42A	$36 p$	2 N 2219 15p
AC176	$16 p$	BC183	-9p	BFX29	22 p	T1P428	37 p	2N2219A 18p
AC 176 K	24p	BC 183 L	9 P	BFX84	18 p	TIP42C	38 p	2N2221 15p
AC 187	16p	BC184	9 P	BFY50	12 p	TiP2955	${ }^{65 p}$	2N2221A 16 p
ACi 187 K	26p	8C184L	9 p	BFY51	12 p	TIP3055	5 42p	2N2222 15p
AC188	16 p	BC212	$\cdot 10 p$	BFY5.2	12p	ZTX107	6 p	2N2222A 16p
AC 188 K	26p	BC212L	-10p	MPSAO5	.22p	21×108	6p	2N2369 10p
AD161		8 C 213	-10p	MPSAOG	22p	ZTX109	7p	2N2904 14p
62 MP	80 p	BC213L	10p	MPSA55	22p	ZTX300	$7 \mathrm{7p}$	2N2904A 15p
AF139	30p	BC214	-10p	MPSA56	22p	2rx301	7p	2N2905 14p
AF239	30p	BC214L	10p	OC44	12 p	2TX302	9 p	2N2905A 15p
BC107	6p	BC251	10 p	OC45	12p	21×500	8 p	2N2906 12p
BC108	6p	BCY70	12p	0 C 71	9 p	$2 T \times 501$	10 p	2N2906A 14p
8C109	6p	BCY71	12p	OC72	12p	2TX502	12p	2N2907 12p
BC118	10 p	BCY72	12p	OC75	10 p	2N696	10 p	2N2907A 13p
BC147	8 p	BD 115	40p	0 CB 1	14p	2N697	10 p	2N2926G 8p
8 C 148	$\cdot 8 \mathrm{p}$	BD131	35 p	TIP29A	$35 p$	2N706	7p	2N2926Y 7p
BC149	8p	80132	37 p	TIP29B	${ }^{36} \mathrm{p}$	2N706A	8 p	2N3053 12p
8 C 154	16 p	BF115	17p	TIP29C	38 p	2N708	8 p	2N3055 35p
BC157	${ }^{9} \mathrm{p}$	BFF167	19 p	TIP30A	36 P	2N1302	12 p	2N3702 :7p
BC158	9 p	BF173	20 p	TIP308	37 p	2N1303	15 p	2N3703 -7p
8C159	9 p	BF18D	25 p	T1P30C	38p	2N1304	15 p	2 N 3704.6 p
BC169C	10 p	bFibi	25 p	TIP31A	32 p	2N1307	18 p	2N3903 11p
BC170	6p	BF182	25p	TIP31B	33 p	2N1308	22p	2N3904 11p
BC179	${ }^{68}$	8F183	25p	TIP3ic	34p	2N1309	22p	2N3905 11p
BC 172	${ }^{6} \mathrm{p}$	BF184	25p	TIP32A	34p	2N1613	15p	2N3906 ${ }^{\text {11p }}$
BC173	7p	8F185	25 p	TIP328	$35 p$			
DIODES								
Type	ice		Price		Price	Type	Price	Type
AAI19	¢0.05	8AX16/		8 8216	¢0.30	OA85	${ }_{60.07}$	IS44
AAZ 13	c0.04	OA202	¢0.05	${ }^{\text {BY217 }}$	¢0.28	OA90	E0.07	
8 A 100	£0.06			BYZ18	£0.28	OA91	¢0.07	1N5400 ¢0.10
8 A115	c0.05	8 Y 100	¢0.15	BYZ19	¢0.28	OA95	¢0.07	1 1N5401 1 ¢ 0.11
8 8144	c0.05	8 YY 27	'E0.10					1 N5402 60.12
8 A148	c0.10	8 8210	¢0.32	OA47	¢0.05	N34	¢0.05	1 15404 ¢0.13
84173	¢0.10	BY211	¢0.32	OA70	¢0.05	IN60A	E0.06	1 N5406 £0.16
BAX13/		BYZ12	¢0.32	OA79	¢0.07	iN914	${ }_{\text {¢ }}$	1 N5407 ¢0.17
OA200	c0.05	8 Y213	¢0.30	OAB1	¢0.07	IN4148	0.04	1 N5408 £0.19

LINEAR I.C.'S

TBAB00 12 pin all "E0.75 T8A810 12 pin QIL' ' 1.00 TBAB20 14 pin QIL 'E0.80 LM380 14 pin DIL E0.80 LM381 14 pin DIL $£ 1.35$ 7270914 pin DIL $£ 0.28$ UA709 TO99 E0.28

UA711C TO (Plastic) (Plasic) 72741 INOIL $\mathbf{E 0 . 1 8}$ UA741CTO9の $\mathbf{E 0 . 2 0}$ 7274714 pin $\mathbf{5 0 . 5 5}$ 748 P 8 pin DIL $\quad \mathbf{~} 0.28$

POTENTIOMETERS

Slider 4

Order No
$161916 \times 470 \mathrm{Ohm}$ 524
525
$161926 \times 10 \mathrm{~K}$
$161936 \times 22 \mathrm{~K}$
$161956 \times 47 \mathrm{~K}$
$161946 \times 47 \mathrm{~K}$
$\begin{array}{ll}128 & 6 \times 170 k \\ \text { S28 } & 6 \times 100 \mathrm{~K}\end{array}$
Slider 60 mm TRAVEL
S30 $6 \times 25 \mathrm{~K}$ LOG Single ${ }^{-} 40$

S33 $6 \times 250 \mathrm{~K}$ LIN Single 40 p
$\begin{array}{lll}\text { S33 } & 6 \times 250 \mathrm{~K} & \text { LOG Single } \\ \text { S34 } & 4 \times 5 \mathrm{p} & \text { LOG Dual } \\ \text { 40p }\end{array}$
$\begin{array}{lll}\text { S33 } & 4 \times 5 \mathrm{~K} & \text { LOG } \\ \text { S36 } & 4 \times 100 \mathrm{~K} & \text { LOG Dual } \\ \text { S37 } & 4 \times 13 \mathrm{MEG} & \text { 40 }\end{array}$
S94 $6 \times 220 \mathrm{~K}$ LIN Single
S95 $6 \times 100 \mathrm{~K}$ LOG Single
S $966 \times 500 \mathrm{~K}$ LIN Single
LIN Single: 40p.

S38 MIXED SLIDER POTS - VARIOUS VALUES AND SIZES - OUR MI

S39 $6 \times$ CHROME SLIDER KNOBS 40p WIREWOUND
S90 Wirewound Pots. Linear iWatt rating Mixed useful values

5 for $£ 1,00^{\circ}$

CARBON TYPES

S91 Car Radio type. Dual Switched Pot PC mounting
100 K Lin
2.5 KLin switched

DUAL POTS PC MOUNTING

6 mm Shaft
S92 $4 \times 100 \mathrm{Li}$
£1.00
$5934 \times 100 \mathrm{KLog} \in 1.00$
$\begin{array}{lll}16173 & 15 & \text { Rotary Pots. Assorted } \\ 16186 & 25 & \text { Pre-sets Assonted Values }\end{array} \quad 40 \mathbf{p o p}^{\circ}$
MULTI-TURN PRE-SETS
S40 $3 \times 100 \mathrm{~K}$ LIN ONLY 50p

VOLTAGE REGULATORS

Positive
 MVR 7805μ A 7805 TO220 $£ 0.85$

MVR7812 μ A 7812 TO220
MVR 7815μ A 7815 TO220
MVR $7818 \mu \mathrm{~A} 7818$ TO220
MVR 7824μ A 7824 TO220

Negrative

MVR7905 μ A 7905 TO220 E1.10
MVR7912 A A 7912 TO220
MVR791B μ A 7918 TO220 E1.10
MVR7924 4 A 7924 TO220 £ 1.10
$\mu A 723 C$ TO99
LM309K TO3
BATTERY HOLDERS
to take $6 \times \mathrm{HP7s}$
Order No. $202 \quad \mathbf{1 0 p}$ each
EX. G.P.O. MICRO-
SWITCHES
Order No. S $51 \quad 4$ for 50 p
2N3819 \quad 15p \quad 2N5458 \quad 18p

AUDIO PLUG AND

SOCKET PAKS

$38 p$
$38 p$
60.85
60.85
$£ 0.85$
$£ 0.85$ C 0.85 E 0.85
 1.10
1.10 £1.20.

Type Price Type Price Type Price CD4000£0.14 CD4022£0.80 CD4046£0.95 CD4001£0.16 CD4023£0.18 CD4047£0.75 CD4002£0.16 CD4024£0.64 CD4049£0.46 CD4006£0.80 CD4025£0.18 CD4050£0.46 CD4007€0.17 CD4026£1.85 CD4008 £0.80 CD4027£0.48
CD4009 0.50
CD4028£0.80 CD4009£0.50 CD4028€0.80 CD4055 £1.60 CD4010£0.50 CD4029£0.95 CD4069£0.32 CD4011€0.18 CD4030£0.46 CD4070£0.32 CD4012£0.17 CD4031£1.80 CD4071£0.20 CD4013£0.42 CD4035£1.40 CD4072£0.20 CD4015 £0.80 CD4037£0.78 CD4081£0.20 CD4016£0.42 CD4040¢0.78 CD4082£0.20 CD4017€0.80 CD4041€0.68 CD4510£1.10 CD4018€0.85 CD4042£0.68 CD4511€1.25 CD4019£0.45 CD4043£0.78 CD4516£1.10 $\begin{array}{llll}\text { CD4020£ } 0.95 & \text { CD4044£0.78 } & \text { CD4518£1.10 } \\ \text { CD4021£0.85 } & \text { CD4045£1.15 } & \text { CO4520£1.10 }\end{array}$

MK14-the only low-cost keyboard-addressable microcomputer!

 The new Science of CambMK14 Microcomputer kit

The MK14 National Semiconductor Scamp based Microcomputer Kit gives you the power and performance of a professional keyboard-addressable unit-for less than half the normal price. It has a specification that makes it perfect for the engineer who needs to keep up to date with digital systems or for use in school science departments. It's ideal for hobbyists and amateur electronics enthusiasts, too.

But the MK14 isn't just a training aid. It's been designedforpractical performance, so you can use it as a working component of, even the heart of, larger electronic systems and equipment.

MK14 Specification

* Hexadecimal keyboard
* 8 -digit, 7 -segment LED display
* 512×8 Prom, containing monitor program and interface instructions
* 256 bytes of RAM
* 4MHzcrystal
* 5V stabiliser
* Single 6V power supply
* Space available for extra 256 byte RAM and 16 port I/O
* Edge connector access to all data lines and I/O ports

Free Manual

Every MK14 Microcomputer kit includes a free Training Manual. It contains

operational instructions and examples for training applications, and numerous programs including mathroutines (square root, etc) digital alarm clock, single-step music box, mastermind and moon landing games, self-replication, general purpose sequencing, etc.
.Designed for fast, easy assembly Each 31-piece kit includes everything you need to make a full-scale working microprocessor, from 14 chips, a 4-part keyboard, display interface components, to PCB, switch and fixings. Further software packages, including serial interface to TY and cassette, are available, and are regularly supplemented.

The MK14 can be assembled by anyone with a fine-tip soldering iron and a few hours' spare time, using the illustrated step-by-step instructions provided.

Tomorrow's technology - today! "It is not unreasonable to assume that within the next five years ... there will be hardly any companies engaged in electronics that are not using microprocessors in one area or another."

Phil Pittman, Wireless World, Nov. 1977.

The low-cost computing power of the microprocessor is already being used to replace other forms of digital, analogue, electro-mechanical, even purely mechanical forms of control systems.

The Science of Cambridge MK14 Standard Microcomputer Kit allows you tolearn more about this exciting and rapidly advancing area of technology. It allows you to use your own microcomputer in practical applications of your own design. And it allows you to do it at a fraction of the price you'd have to pay elsewhere.

Getting your MK 14 Kit is easy. Just fill in the coupon below, and post it to us today, with a cheque or PO made payable to Science of Cambridge. And, of course, it comes to you with a comprehensive guarantee. If for any reason, you're not completely satisfied with your MK14, return it to us within 14 days for a full cash refund.

Science of Cambridge Ltd, 6 Kings Parade,
 Cambridge,

Cambs., CB2 1SN.
Telephone: Cambridge (0223) 311488

To: Science of Cambridge Ltd,
6 Kings Parade, Cambridge,
Cambs., CB2 1SN.
Please send me an MK14 Standard Microcomputer Kit. I enclose cheque/ Money order/PO for $£ 43.55$ ($£ 39.95$ $+8 \%$ VAT and $40 p p \& p$).
Allow 21 days for delivery

DE LUXE EASY TO BUILD LINSLEY-HOOD 75W AMPLIFIER £99.30 + VAT

This easy to build version of our world-wide acclaimed 75 W amplifier kit based upon circuit boards interconnected with gold plated contacts resulting in minimal wiring and construction delightfully straightforward. The design was published in Hi-Fi News and Record Review and eatures include rumble filter, variable scratch filter. versatile tone controls and tape monitoring whilst distortion is less than 0.01%.

WIRELESS WORLD FM TUNER £70.20 + VAT
A pre-aligned front-end module makes this Wireless World published design very simple to construct and adjust without special instruments. Features include an excellent a.m. rejection, push-button station selection as well as infinitely variable tuning and a phase locked loop
stereo decoder incorporating active filters for "birdy" suppression.

$\mathbf{T 2 0} \mathbf{~ + ~} \mathbf{2 0}$ AMPLIFIER $£ 33.10$ + VAT

This kit, based upon a design published in Practical Wireless, uses a single printed circuit board and offers at very low cost, ease of construction and all the normal facilities found on quality amplifiers. A 30 watt version of this kit $(T 30+30)$ is also available for $£ 38.40+$ VAT .

WWII TUNER £47.70 + VAT

This cost reduced model of our highly successful Wireless World FM Tuner kit was designed to complement the $\mathrm{T} 20+20$ and $\mathrm{T} 30+30$ amplifiers and the cabinet size. front panel forma and electrical characteristics make this tuner compatible with either. Facilities included are pre-aligned front-end module, switchable afc. adjustable switchable muting. LED tuning indication and both continuous and push-button channel selection (adjustable by controls on the front panel).

POWERTRAN SFMT TUNER $£ 35.90$ + VAT

This is a simple low cost design which can be constructed easily without special alignment equipment but which still gives a first class output suitable for feeding any of our very popular amplifiers or any other high quality audio equipment. A phase-locked-loop is used for stereo decoding and controls include switchable afc, switchable muting and push-button channel selection (adjustable by controls on the front panel). This unit matches well with the T20 +20 and $\mathrm{T} 30+30$ amplifiers.

COMPLETE KITS: Our complete kits really are complete. All of the projects shown on this page are supplied with fully finished metalwork, ready assembled high quality teak veneer cabinet. cables, nuts, bolts. etc., and full instructions - in fact everything ${ }^{1}$
Ali of the kits shown on this page are available as separate packs (except the Powertran SFMT Tuner) for those customers who wish to spread their purchase or perhaps make their own cabinets or metalwork. Prices are given in our FREE CATALOGUE

PRICE STABILITY: Order with confidence! irrespective of any price changes. We will honour all prices in this advertisement until October 3 1st. 1978 . If ETI September 1978 issue is mentioned with your order. Errors and VAT rate
EXPORTORDERS: No VAT. Postage charged at actual cost plus 50 p handling and documentation
U.K. ORDERS: Subject to $12 \frac{1}{2} \%$ surcharge for VAT (i.e... add $1 / 8$ to the price). No charge is made for carriage or at current rate if changed.
SECURICOR DELIVERY. For this optional service (U.K. mainland only) add E2.50 (NAT inclusive) per kit.
SALES COUNTER: If you prefer to collect your kit from the factory. call at
Sales Counter (at rear of factory). Open $9 \mathrm{a} . \mathrm{m} .-4.30 \mathrm{p} . \mathrm{m}$. Monday-Thursday
our catalogue is FREE! write or phone NOW!
POWERTRAN ELECTRONICS
PORTWAY INDUSTRIAL ESTATE
ANDOVER HANTS SP1O 3NN
ANDOVER
(0264) 64455

news dıgest.

viewdata... prestel...

THE Post Office seems to be having a lot more success outside the U.K. with Viewdata/ Prestel than it is having at home. As well as the negotiations with A.T. \& T in the States the P.O. has sold the Hong Kong Telephone Company the know how to enable it to set up a system. Part of the sales pitch involved making a portable system (it weighed 56 kilos in a rather large case) and taking it to Hong Kong - a successful 'round the world' link was set up via satellite and undersea cable to the P.O. research station at Martlesham.
Meanwhile back at the ranch, the ambitious plans for a U.K. network have suffered some rather embarassing setbacks the expected 1,500 sets by the end of 78 has been revised to 10,000 , and at present only about 100 are installed. Of the presently installed sets the vast majority are with information providers, not customers. Also the department that specified the electronic design parameters forgot to check
with the department that certifies all equipment fit to be connected to the P.O. system. The result was that all the sets have had to be modified in case they tried to send nasty kilovolts down the line.

As well as the mechanical hitch the computer data banks are still not quite ready, all this means that instead of marketing trials the P.O. will have a basic 'test service' until the real public service starts - no definate date has been set for this yet though.
Finally, the reason for a sudden change from Viewdata to Prestel as a name has been discovered. The P.O. application to register Viewdata as a trade mark has been rejected by the trade mark office, the word Prestel has been submitted as an alternative name - but even this has not been accepted, yet. Informed opinion has it that Prestel will also be rejected, as an Italian company has used it since 1968 in the U.K. Any suggestions for a third alternative should be sent to . . . ?

close encounters

Is it a bird? Is it a plane? No, it's a smartie? Everyone seems to like thinking up new acronyms, SMARTIE stands for Submarine Automatic Remote Television Inspection Equipment - probably thought up by a Mr S. Alik! Smartie is a microcomputer controlled sub-، mersible for use in the North Sea, to investigate the murky depths around oil platforms and conduct general surveys.
Equipped with multiple TV cameras, the device uses a submersible pump instead of a propellor to move around.

Benefits brought by MPUing include a simple hold command, which tells Smartie to stay where it is - with automatic compensation for water currents. Unlike conventional submersibles Smartie has a very thin (5 mm diameter) umbilical cord - previous units have used bulky multicore cables.
Smartie has been developed by Marine Unit Technology Ltd, with the support of the Department of Energy via the offshore Energy Technology Board.

french connection

Wonderboards are' a new bread boarding aid manufactured by Orcus International. Unlike normal solderless bread boards, which use metal sockets, the Wonderboards use conductive elastomeric contacts to provide the means for inter-connecting all the components. A benefit of this tech nique is that connections can be made to both sides of the board, giving far denser layouts than possible with conventional bread boards. Contact resist ance is 10 milliohms and insu-
lation resistance 10,000 megohms between contacts.
Two sizes are available Small Wonder ($81 \times 35 \times 4 \mathrm{~mm}$) and Big Wonder ($81 \times 140 \times 4 \mathrm{~mm}$) and naturally enough the contacts are on a 0.1 inch matrix to accommodate DIL packages. They are made in France and are available in the U.K. from Charcroft Electronics Ltd., Charcroft House, Sturmer, Haverhill, Suffolk, CB9 7XR. Price of Small Wonder is $£ 2.80$, and Big Wonder is $£ 11.20$ inclusive.

pocket size

Ever needed to know how to convert furlongs per fortnight into chains per nano second? If you have then you must be a loony! However for the rest of
our devoted readers, we would like to recommend the new Radio and Electronic Engineers Pocket Book. Full of useful information from CMOS data to frequency allocations, this the 15th edition has been updated by the editorial team that put the fun into electronics (you guessed, the ETI staff). We don't get commission and we still think you should buy a copy, so it must be good! Most decent (and some indecent) book shops should stock it, so keep your eyes out and have a look when you get a chance.

buzzbuzz

A new range of solid state buzzers are available from FieldTech Limited. A minimum output of 65 dB (at 3 feet) is buzzed by the 1V5 and 3VO versions while the $6,9,12$ and 24 V versions give a beefier buzz of 70 dB . Each device incorpo-
rates a silicon transistor oscillator, with no mechanical bits to arc or fall apart. Further details from FieldTech Ltd, Components Division, London (Heathrow) Airport, Hounslow, Middlesex.

WATFORD ELECTRONICS

Introducing DM900 - The DIGITAL MULTIMETER with "Hidden Capacity" - It measures Capacitance too!
(as published in E.T.I. August 1978) Away with analogue meters for with some of these circuit measurements instead gaze into to make - not a ball but the $31 / 20.5$ LIQUID CRYSTAL DISPLAY - on our amazingly accurate DMM incorporating.
$5 \mathrm{AC} \& \mathrm{DC}$ Voltage ranges; 6 resistance ranges AC IDC Current ranges; 4 Capacitance ranges sing the latest MOS ICs and due to the
powered by only one PP3 battery. There is also a battery check facility with carrying handle and has been ingeniously designed to simplify assembly

Special introductory offer $£ 49.95 \star$ (p \& p insured add 80 p)
Calibration service charge for working Units $£ 5.75$. Readybuilt Units availa
Order at $£ 74.95$ * (p\&p add 80 p)
xtras. Probes $£ 1.50 *$; Carrying Case $£ 1.50$ *)
(Demonstration on at our Shop)

news

...digest

distorted truth

In the July Oscillators article we mentioned the Intersil 8038 function generator IC - in fact we said that distortion changes with frequency, and frequency is not a linear function of control voltage. Both statements are only true under certain conditions. Jayen Developments have pointed out that within the audio range both
distortion and deviation from linearity are negligible ($<0.1 \%$) the device only goes haywire above approximately 100 kHz and below about 20 Hz . As we said in our July 1977 Data Sheet on the 8038 , it is an inherently versatile device with some drawbacks - but overall it has a lot going for it!
sawn off

Adcola have gone and cut 22 mm off the length of their 101 temperature controlled soldering iron, leaving it with a barrel only 45 mm short. The new model (101TS) is also lighter than its brother (sister?) by 16 per cent at 42 gms . The idea behind the amputation is to give more precise control of the hot end - needed with modern components, which can be easily damaged by excess heat.

The temperature control is provided by a thermocouple feeding an op amp and special power control c, which uses the zero crossing technique to eliminate RF interference. Control is within 2% of the set temperature as shown on the control unit/stand dial. Full details and spec sheets from Adcola Products" Ltd, Adcola House, Gauden Road, London SW4 6LH.

boris slain

Regular readers (aren't you all!) will have seen the item in last months News Digest about Boris the chess machine. Fidelity Electronics who make the Challenger felt that Boris's challenge should be taken up, and arranged a seven game tournament at the recent Chicago Electronics Show.
Boris was set on 3 minute response time and the Challenger set at a similar level. The
result was Boris 0 Challenger 7 a veritable wipeout! The average response time of the Challenger was only 2 minutes 15 seconds. The game of the century would be to pit Boris and Challenger 10 against each other on their largest response times (99 hours and 24 hours respectively) - but a game like that could well take so long it would be the game of next century!

The latest It innovation from Sparlhrite

 the quickest fitting CLIP ON capacitive discharge electronic ignition in KIT FORM
 Smoother running
 Instant all-weather starting
 manual peak performance Improved acceleration/top speeds Optimum fuel consumption

Sparkrite X_{4} is a high performance, high quality capacitive discharge, electronic ignition system in kit form. Tried, tested, proven, reliable and complete. It can be assembled in two or three hours and fitted in $1 / 3$ miss.
Because of the superb design of the Sparkrite circuit it completely eliminates problems of the contact breaker. There is no misfire due to contact breaker bounce which is eliminated electronically by a pulse suppression circuit which prevents the unit firing if the points bounce open at high R.P.M. Contact breaker
burn is eliminated by reducing the current to about $1 / 50$ th of the norm. It will perform equally well with new, old, or even badly pitted points and is not dependent upon the dwell time of the contact breakers for recharging the system. Sparkrite incorporates a short circuit protected inverter which eliminates the problems of SCR lock on and, therefore, eliminates the possibility of blowing the transistors or the SCR. (Most capacitive discharge ignitions are not completely foolproof in this respect). The circuit incorporates a voltage regulated output for greatly improved cold starting. The circuit includes built in static timing light, systems function light, and security changeover switch. Al kits fit vehicles with
coil/distributor ignition up to 8 cylinders.
THE KIT COMPRISES EVERYTHING NEEDED
Die pressed epoxy coated case. Ready drilled, aluminium extruded base and heat sink, coil mounting clips, and accessories. Top quality 5 year guaranteed transformer and components, cables, connectors, P.C.B., nuts, bolts and silicon grease. Full instructions to assemble kit neg. or pos. earth and fully illustrated installation instructions.
NOTE - Vehicles with current impulse tachometers (Smiths code on dial RV 1) will require a tachometer pulse slave unit. Price $£ 3.35$ inc. VAT. post a packing.

Electronics Design Associates, Dept. ET $\dot{8}$ 82 Bath Street, Walsall, WS1 3DE. Phone: (9) 61479।
Name
Address
Phone your order with Access or Barclaycard

Sand SAE it brochure only required. I enclose chequer PO^{\prime} 's for

£

Cheque No.
Access or Barclaycard No.

Airamco Ltd. MICRO COMPUTER PRODUCTS

Distributors for JADE COMPUTER PRODUCTS
All products brand new with full industrial specification

Components

27081024×8 EPROM £6.99
27162048×8 EPROM E29.90
(intel)
25162048×8 EPROM
(equivalent of above) T.I.
$\begin{array}{ll}17044096 \times 1 \text { DRAM } & \text { E3.50 }\end{array}$
8 for £26.00
2107B-4 4096x1 DRAM

8 for	...	$£ 3.50$
1616 Kx 1 DRAM	$£ 26.00$	
8 for	$\ldots .50$	
139.00		

All Prices EXCLUDE VAT @ 8%.
Trade discounts on Quantity
Please add E1.00 P\&P for S 100 items then add VAT @ 8\%.

24-hr. Ansaphone order service with ACCESS or BARCLAY. CARD.
MAIL ORDER ONLY

For components please add 40p P\&P, then add VAT @ 8\%.
ARAMCO LTD.
30 WITCHES LINN
ARDROSSAN
AYRSHIRE
KA22 BR
TEL. 029465530

Semiconductor prices are always changing and the trend is generally downwards. So ring for latest up-to-date details.

junk calls

From the land that brought us Muzak and MPUs comes the Junk call - the same as Junk mail but verbal! A machine is being used to dial up to 1,000 numbers a day and make a prerecorded sales pitch, unlike junk mail there is no way of knowing when the call will be junk or not. By dialing up numbers from 0001 to 9999 the machine annoys everybody who answers on a particular exchange, even if you hang up
it holds the line open until the pitch is finished - this has caused emergency calls to be delayed in some cases.

Ten states are considering legislation to curtail the activities of the machines. However they intend to exempt charities, pollsters and politicians. Some people want an electronic 'no thanks' sign to be developed, although nobody is quite sure how it would work. What next?!
diy dil

A new dil package is available from Erg Components, designed to house "numerous"
components the pack has two rows of 7 linked terminals. The links can be easily broken with wire cutters if required. Uses suggested include hybrid circuits, passive networks and board to board coupling (using ribbon cable out the top). Two versions of the snap on cover are available one 5.7 mm high, the other 8.9 mm , connection links and pins are hard gold plated. Erg Industrial Corporation Ltd, Luton Road, Dunstable, Beds. LU5 4LJ.

bulble memories

AND IBM said 'Let there be light' and there was - but it moved! Boffins at the IBM research labs in San Jose have been investigating microscopic sources of light in a certain electroluminescent thin film, and have discovered that they move about and repulse each other. The effect starts when a high frequency voltage is applied across the films, and reaches a peak of activity at
about 50 kHz .
The anology with magnetic bubbles has given the researches the idea that they should try and find a way of controlling the light bubbles. They still don't know exactly what causes the effect, one suggestion is that the materials are riddled with microscopic defects in crystalline structure. Wonder if they are feeling 'light headed' with their discovery?

odds \& ends

* Polaroid are about to release an automatic focusing camera that uses an ultra-sonic transducer to measure distance.
* Computers stores in the US are opening up literally every day - we have just heard that 700 have been identified by someone preparing an exhibition! In addition to those dedicated to Home computers, office equipment suppliers and camera shops are at the forefront when it comes to jumping on the bandwagon; even Macey's stores have now got a computer department in some of their stores.
* Sanyo have demonstrated a 6 mm thin solid state green and black television. The display is made out of 6,144 green LEDs in an area only 50 mm by 75 mm . They hope to have a commercial set by 1981
* A radar based overspeed detector is in use in the U.S. of A the unit measures your speed and lights up a neon sign saying YOUR SPEED IS REDUCE SPEED. The unit is very effective, only problem was the local hot-rodders using it to check their top speed! Problem solved by limiting display to 75 instead of 99

Advertising Sales

We are looking for someone to assist our Advertisement Manager in selling space in ETI and associated publications soon to be announced; this is a new position

We have a strong preference for someone with an interest in electronics and although experience in selling would be useful, we will consider those wishing to enter the field

ETI's 100\% plus increase in advertising billing in 12 months has not been brought about by hard selling but by offering objective advice and talking facts, not promises; we are looking for a person to continue these traditions. The successful applicant will be based at our Oxford Street offices but a degree of travelling will be involved; a company car will be supplied. The salary is likely to be in the range $£ 3,500-£ 4,000$ p.a. depending on age and experience

Art Editor

ETI has a vacancy for an Art Editor. The job involves design and preparation of artwork of the editorial contents of the magazine. (Camera-ready pages are prepared by our printers so this will not form part of the work but rough layout instructions need to be prepared. Techanical drawings are produced by existing staff.)

Cover design forms a significant part of the work and supervising freelance photographers is also necessary. Essential qualifications are experience of artwork and working to a schedule with a team. Strong preference will be given to someone with magazine experience. The salary is dependent upon experience but will be in the range $£ 3,750$ to $£ 4,750$ p.a

Applications, in writing, should be made before August 31 st to

Haivor Moorshead,
Editor,
ETI Magazine,
25-27 Oxford Street,
London W1R1RF.

OSS One 5tap Terhnolagy 5happing starts hare :

 competetive - the delineation between 100% functional and 95% functionai ans has got a anything less than the very best - so at the OSTS, we have a strict policy to supply parts only from BS9000 approved sources. No nondescript clearance lines of dubious pedigree, only the very best. If you are a designer, or simply a keen hobbyist, you may buy from the OSTS with total confidence
As you may already know, we make a point of backing our products with extensive lab your present supplier can offer - and if it comes fromBS 9000 sources......we lopk forward your present supplie
Please note that OSTS prices exclude VAT at 8% throughout this side of the page. Most ambit items are at $121 / 2 \%$ except those marked * Please keep orders separately totalled

[04000 cm05

mirromarket

R5
 LInERRS
 $50^{\circ} \frac{\text { BIMOS }}{\text { CA3130 }}$

Valtage Regs

7800 series UC TO220 package 1 A all 95 p 7900 series UC TO220 package 1A all £1 | 78MUC series TO220 package $1 / 2 \mathrm{~A}$ | all 90 p |
| :--- | :--- |
| 78 LCP series TO92 100 mA | all 35 p | L200 up to 3A/adjustable V\& A $\quad 195 p$ $\begin{array}{ll}\text { 78MGT2C y/2amp adjustable volts } & 175 p \\ \text { 79MGT2C 1/2amp adjustable volts } & 175 p\end{array}$ 723C precision controller MAINS FILTERS FOR

1 amp in IEC connector 1 amp in IEC connecto
\qquad

| | LM324N |
| :--- | :--- | :--- |
| 20 | LM339N |
| LM348N | | LM348N 18

LM3900N

OPTO
 5082.765 5082. 505 5082
 7 seg displays
 Efficienc

71 p	
66 p	0
$186 p$	50
$60 p$	5
$68 p$	

 $\begin{array}{lll}\text { KB4417 FM nois processor preamp } & 2.5 \\ \text { KB4423 Flanker system } & \\ \text { Audio preamps. }\end{array}$ $\begin{array}{lll}\text { LM381 } & \text { stereo high qainflow THO } & \text { 1.B1 } \\ \text { LM1 } 103 & \text { ste ereo audio optimized OA } & 0.99 \\ \text { TDA1054 } & \text { high quality with alc option } & 1.95\end{array}$

Audio Power amps

 $\begin{array}{ll}\text { TDA2002 } & 8 W / 2 \Omega \text { in pentawatt package } \\ \text { TOA2020 } & 15 \mathrm{~W} \text { MMS hifi power de coupie }\end{array}$ TCA940 10W higher voltage 810 $\begin{array}{lll}\text { LM380N8 } & \text { 1W power } & 1.00 \\ \text { LM380N14 } & 2.5 \mathrm{~W} \text { power } & 1.09 \\ \text { HA1370 } & \text { HiFi } 15 \mathrm{w} \text { in essy heatsink pack } & 2.9\end{array}$\section*{| Sterao Decoder Devices | |
| :--- | :--- |
| MC1310/K84400 original pll decoder - | 2.20 |
| CA3090AO RCA' p pll decoder | 3.25 |
 CA3090AO RCA's pll decoder}

HA1 196 advanced adi.seo pill low thd HA11223 newpilo cancel low thd/imd
 \qquad

 Discrete semiconductors
 UHF T package types etc See price list Mitachi VMOS 100W power devices: power transistor technology val. Ambit has the
new Hitachi VMOS data ($£ 1$ 1) and by the time
you reat stock order. But they aren't cheap.
DISCRETE LEDS - the best value of all:

SN	LSN	UA758 8uffered version of 1310 (310
	74362 \| 375	
	74365 - 49	HA11223 newpilot cancel low thd/imd $\quad 4.35$
	74366 74367	All ambir decoders are supplied with the LEO
92	74367 - 43	
$\begin{aligned} & 180 \\ & 180 \end{aligned}$	74368 49 74373	Discrete semiconductors
87	743745	Some of the biggest stocks of specialist MOS
37	$74375 \quad 60$	FET transistors for radio in the UK.
110	74377 74378 100	$8 \mathrm{F900} 80 \mathrm{p}$ " 40673 55p. 408
10	74378 74379 90	40823 510. MEM680 75p ${ }^{\circ}{ }^{\circ}$ BF256S
	74386	Most types for most RF circuitry, inc. new
74	$74390 \quad 140$	UH
	$74393-140$	Hitachi VMOS 100W power devices:
	110	Start saving now for the biggest break through in
00	74396133	power transistor technology yat. Ambit ha
75	$74398 \quad 200$	new Hitachi VMOS data ($£ 1$) and by the
	743995150	you read this, we should have received our
90	74445	stock order. But they aren't cheap.
	74490	DISCRETE LEDS - the best value of all:
	74668	
295	70	LED size: $2.5 \times 5 \mathrm{~mm}$ 5 mm dia clip RED $17 p$ 14 p $2 p$
	113	$\begin{array}{llll}\text { YELLOW } & 20 p & 15 p & 2 p\end{array}$
120	NE555 ${ }^{\text {N0p }}$	Switch Systems: Check our combinations !
		A very wide selection of 80 TH Alps SUB
	NE558 LM3909	
	LM3909 72p	ature Dialistet units. Available in DIY
	ICM7217.	systems for maximum flexibility and low cost.
	counter ic ICL7106CP.	Further details of these, and many mo
350	$\begin{aligned} & \text { OVM ic } 9550 \\ & \text { KIT } 24800 \end{aligned}$	
		the wonders of the world of wireless in the
$\begin{aligned} & \begin{array}{l} 40 \\ 140 \end{array} \end{aligned}$	ICL7107CP	
	LCD DVM	new Ambit catalogue with magazine supp-
	2065p	lement. $45 p$ inc pp etc.
		Phone (0277) 216029/227050 9am-8pm
	price changes in	callers welcome anytime

2 Gresham Road, Brentwand, E55es.

PHYSICS Force For The Future

From energy conversion . . . lasers . . . holography . . . nuclear physics . magnetic recording . . . medical ultrasonics . . . computer hardware . . to the solution of many problems in industrial, medical and academic research. Physics offers new and exciting fields of study now and the applications of physics will continue to play an important part in our lives in the future.
If you are interested in physics and its applications, you may also be interested in the courses we offer at the Polytechnic of North London.
Our full-time B.Sc.(Hons.) in Physics and Physical Electronics courses is a four-year "sandwich" course including solid-state physics, integrated circuits, microwaves, lasers, nuclear physics, computers and computing. The course provides, in addition, useful industrial or government laboratory experience.
The B.Sc.(Hons.) and B.Sc. in Science courses are three-year fulltime or five-year part-time modular courses offering a wide choice of units, of which up to two-thirds may be in physics (including electronics, and, if desired, astronomy).
The M.Sc. in the Physical Basis of Electronics is available as one-year full-time, two-year part-time and three-year evenings-only courses for graduates in Physics, Electrical Engineering and allied subjects.
The H.N.C. in Applied Physics is a two-year day-release course, including electronics, vacuum physics, physical optics, nuclear and atomic physics and spectroscopy.
Would you like to know more? Then please contact the Secretary (Reg. ETI 1), Physics Department, Polytechnic of North London, Holloway, London N7 8DB. (Tel: 01-607 2789. Ext. 2181).

NON-SUBSCRIBERS START HERE

It can be a nuisance can't it, going from newsagent to newsagent? ''Sorry squire, don't have it - next one should be out soon."

Although ETI is monthly, it's very rare to find it available after the first week. If it is available, the newsagent's going to be sure to cut his order for the next issue - but we're glad to say it doesn't happen very often.

Do yourself, your newsagent and us a favour. Place a regular order for ETI; your newsagent will almost certainly be delighted. If not, you can take out a postal subscription so there's nothing for you to remember - we'll do it for you.

For a subscription, send us $£ 7.00$ ($£ 8.00$ overseas) and tell us which issue you want to start with. Please make your payment (in sterling please for overseas readers) to ETI Subscriptions and keep it separate from any other services you want at the same time.

ETI Subscription Service
Electronics Today International 25-27 Oxford Street, London W1R1RF

From the representatives in Europe . . . for America's leading Micro-computer magazines and books, for the hobbyist, educationist and professional alike, we bring you a little light browsing!

Reading maketh a full manFrancis Bacon (1561-1626)

Tick or indicate quantity ordered.	
From Adam Osborne Associates	
INTRODUCTION TO MICROCOMPUTERS	
Volume 0: The Beginners Book	$£ 5.95$
Volume 1: Basic Concepts	£5.95
Volume 2: Some Real Products (Revised Late 1977)	$€ 11.95$
6800 Programming for Logic Design	£5.95
8080 Programming for Logic Design	$£ 5.95$
Z80 Programming for Logic Design	$£ 5.95$
8080A/8085 Assembly Language Programming	£6.95
6800 Assembler Language Programming	£6.95
Some Common BASIC Programs	£5.95
BUSINESS PROGRAMS IN BASIC	
Payroll With Cost Accounting	£9.95
Accounts Payable \& Accounts Receivable	
(Available from Midsummer '78)	$¢ 9.95$
General Ledger (Available from late summer 78)	£9.95
From Scelbi Computer Consulting Inc.	
6800 Software Gourmet Guide \& Conk book	£7.95
8080 Software Gourmet Guide \& Cookbook	£7.95
8080 Programmers Pocket Guide	£2.25
8080 Hex Code Card	¢2.25
8080 Octal Code Card	£2.25
8080 Guide and One 8080 Code Card	¢4.20
8080 Guide and Both Code Cards	£6.00
SCELBAL High Level Language for ' $8008 / 8080$ ' Systems	£39.25
SCELBAL String Handling Supplement	£8.00
SCELBAL Extended Maths Supplement	£4.00
Understanding Microcomputers \& Small Computer Systems	¢7.95
SCELBI 'BYTE' Primer	$¢ 9.95$
8080 Standard Assembler (In Book Format)	£I5.95
8080 Standard Editor (In Book Format)	¢9.95
From Peoples Computer Company	
Reference Books of Personal \& Home Computing	£4.95
What to Do After You Hit Return	£7.00
Dr. Dobbs Journal Volume I	£10.00
*From Kilobaud/73 Magazine Inc.	
Hobby Computers Are Here	£3.95
New Hobby Computers	£3.95
From Dymax Inc. 0495	
Instant BASIC by Jerald R. Brown	£4.95
Your Home Computer by James White	£4.95
My Computer Like Me .. .When 1 Speak	
BASIC By Bob Albrecht	£1.65
Games With A Pocket Calculator by	
Thiagarajan \& Stilovitch	£1.75
Games, Tricks and Puzzles For a Hand	
Calculator by W Judd	£2.49
*From BYTE Publications Inc.	
Paperbytes:	
Tiny Assembler for 6800 Systems	¢5.75
Bar Code Loader for 6800, 8080,280 \& 6502 Micros	£1.75
Best of BYTE Volume I	£8.95

Tick or indicate quantity ordered.

From Adam Osborne Associates
INTRODUCTION TO MICROCOMPUTERS
Volume 0: The Beginners Book
Volume 2: Some Real Products (Revised Late 1977)
6800 Programming for Logic Design
8080 Programming for Logic Design
Z80 Programming for Logic Design
8080 A/8085 Assembly Language Programming
6800 Assembler Language Programming

BUSINESS PROGRAMS IN BASIC
Accounts Payable \& Accounts Receivable
(Available from Midsummer '78)
General Ledger (Available from late summer 78)
95

From Scelbi Computer Consulting Inc
6800 Software Gourmet Guide \& Cookbook
8080 Sotware Gourmet Guide \& Cookbook

8080 Hex Code Card
8080 Guide and One 8080 Code Card
8080 Guide and Both Code Cards
SCELBAL String Handling Supplement
SCELBAL Extended Maths Supplement
Understanding Microcomputers \& Small Computer Systems
SCELBI 'BYTE' Primer
8080 Standard Assembler (In Book Format)

From Peoples Computer Company
Reference Books of Personal a Home Computing
$\begin{array}{ll}\text { From Kilobaud/73 Magazine inc. } & £ 3.95 \\ \text { Hobby Computers Are Here } & £ 3.95 \\ \text { New Hobby Computers } & \end{array}$
From Dymax Inc.
Instant BASIC by Jerald R. Brown
Your Home Computer by James White
...When 1 Speak
Games With A Pocket Calculator by
Thiagarajan \& Stilovitch
Calculator by W Judd
From BYTE Publications Inc.
Paperbytes:
Bar Code Loader for 6800, 8080, Z80 \& 6502 Micros
Best of BYTE Volume I

Tick or indicate quantity ordered
Tick or indicate quantity ordered

From Creative Computing Press
Best of Creative Computing Volume
Best of Creative Computing Volume 2
101 BASIC Games (Revised \& Reprinted Feb. 78)
The Colossal Computer Cartoon Book
Computer-Rage (A new Board Game)
Artist and Computer

* From Everyone Else

Magazine storage boxes (hold 12 minimum)
Sybex: Microprocessors from Chips to Systems by R. Zacs
Sybex Microprocessors Interfacing
Techniques by R. Zacs
Dilithium: Home Computers
Volume 1: Hardware
Dilithium: Home Computers
Volume 2: Software
Getting Involved With Your
Own Computer
TV Typewriter Cookbook by Don Lancaster
TTL Cookbook
CMOS Cookbook
IC Timer Cookbook
IC OP-AMP Cookbook
RTL Cookbook
Computer Programs that Work (in Basic)
From Basic Software Library
(from Scientific Research Instruments)
Vol 1: Business and Personal Booking Programs
ol 2: Maths and Engineering Programs
Vol 3: Advanced Business Programs
Vol 4: General Purpose Programs
Vol 5: Experimenters Programs (General Purpose)
fol 6: General Ledger Program
agazines: Back Issuegrams
Personal Computing
Interface Age
Dr. Dobbs Journal
Computer Music Journal
Peoples Computers
Peoples
Creative Computing
Calculators \& Computers
ROM
Kilobaud
Ki
73
MAGAZINES: Subscriptions
Personal Computing (Twelve Issues Yearly)
Interface Age (Twelve Issues Yearly)
Dr Dobbs Journal (Ten Issues Yearly)
Computer Music Journal (Four Issues Yearly)
Peoples Computers (Six Issues Yearly)
Peoples Computers (Six Issues Y
Kilobaud (Twelve Issues Yearly)
*BYTE. (Twelve Issues Yearly) via USA
BYTE (Twelve Issues Yearly) via UK
Creative Computing (Six Issues Yearly)
Calculators \& Computers (Seven Issues Yearly)
73 (Twelve Issues Yearly)

Price UK £6.95 £6.95	Price Overseas If Different
£5.50	
£3.95	
£6.95	
£3.95	
£1.75	
¢7.95	
£7.95	
£6.50	
£5.95	
£4.75	
£7.50	
£7.50	
£7.95	
£7.50	
£9.50	
£4.25	
£2.55	
¢17.50	
£26.95	
£7.95	
£7.95	
£32.50	
£26.95	
£1.75	
£2.25	
E1.75	
£2.50	
£1.75	
£2. 25	
£1.75	
£1.75	
£1.75	
£2. 25	
£2.25	
£16.00	$£ 17.00$
£20.00	£20.50
¢13.00	£13.50
$£ 8.50$	$£ 9.00$
£8.00	£8.50
£20.00	£21.00
£15.00	
£21.00	
£8.50	$£ 9.00$
£10.00	£10.50
£20.00	£21.00

Due to fluctuations of the dollar. prices are subject to change

HOW TO ORDER

Please note our prices include postage and packing, but not insurance, if wanted add 12 p for every $£ 10$ of books ordered. Make cheques, POs etc payable to:
L.P. Enterprises

CREDIT CARDS accepted
BARCLAYCARD VISA/ACCESS/
DINERS CLUB/AMERICANEXPRESS

Phone: 01-553 1001 for Credit Card orders (24-hour service).

Send to address above for the attn. of David, Room ETI/9 Indicate Payment Method:
..... My cheque, P.O., I.M.O. is enclosed in Sterling on U.K. Bank
.... Charge to Barclaycard/Visa/Access/Diners/American Express

Credit Card No.	Expiry date
Name
Address	
	POSTCODE

Signature

CONCERT SOUND SYSTEMS come in many sizes, shapes and forms and I don't think l've ever heard two systems that sound identical in the same hall. The sound engineers have different design philosophies although they share a common objective

Expressions such as 4 way crossovers, front loaded horns, radials, dispersion angles, etc, are bandied about when the crews get together on tour but what really makes a good "state of the art" sound svstem? A system that, given the hundreus of variables such as hall acoustics, mood of audience, time available for set-up and tuning, road damage (that must be taken into account at every concert), will consistently de!iver the best possible sound to the audience.

For some of the answers let's look at a system I designed for the Australian tours of Rod Stewart and Abba The 'Jands No. 1 Touring System weighs 28 tonnes and delivers a power output of 24000 Watts RMS.

Let's follow the sound from its source looking first at microphones The majority of these are made by Shure - type SM 58 for vocals and SM 57 for instruments. On the drums 1 use some other favourites such as Sennheiser MD 421 or AKG D12. The actual set-up depends on taste and the way the kit is tuned. The mics plug into 20 -way multi-core cables leading to the mixer in the hall The multi-core input box also has splitting outputs to feed any mic to the stage monitor mixer located on one side of the stage. The house mixing console is custom designed by myself and Jands consultant electronic genius' Phillip Storey. This is a 24 track in, 16 track out, studio style board made super-rugged for the 'road'. It has many facilities not normally needed on a PA mixer, such as the ability to do a stereo house mix, a separate stereo recording mix, a mono TV mix and an all-up 16 track output all at one time.

Why such extravagance? It is because in Australia (due to the limited audio facilities in TV OB vans) we often get asked if we can do all the above - for a live TV show with an album to be released later, so the extra features can be readily justified.

Tuning Up

The stereo 'house mix' outputs of the board feed to a set of one-third-octave stereo graphic equalisers. These are set up using pink noise and real time analysis to accurately 'tune' the sys-

ROCK

SOUND

The last couple of years have brough bigger and better equipment to the concert stage . . . here Howard Page of Jands Ltd describes the equipment used in presenting artists like Rod Stewart and Abba to Australian audiences exceeding 30,000 and this illustrates the techniques in use today.

This set-up shows the speakers used at the Sydney showground for the Rod Stewart concert.
tem for both the hall and, in some cases, the type of sound required. The stereo signals then feed a set of stereo DBX 160 s (Compressor/Limiter) which are set as a final safeguard on the system to ensure the amplifiers are nọt driven into consistent square waves, one of the primary causes of speaker system failure.

Having been tuned and compressed as necessary the signals feed into a custom-built switchable 3, 4 or 5 way stereo electronic cross-over unit, the design of which is classified information. Also feeding in and out of the mixer are what we call FX devices, ie, echo unit, flanging units, extra compressors for various instruments, digital delay devices, etc. these are used as required

Once the sound has been divided it is sent down a separate multi-core cable called a system feeder which plugs into the amplifiers on stage behind the speaker stacks. The amplifiers we use are the finest available 'state of the art' units: Phaser Linear 700B, Crown DC 300A, SAE 17K111CM, and a new unit we're especially proud of, our own Jands J600S which is proving equal, if not superior to, anything available from overseas.

Each amplifier rack unit contains switching and matching systems to enable complete flexibility and access should a failure occur. Heavy duty speaker cables connect the amplifier outputs to the final link in the chain, the speaker units themselves. These, in the No 1 System, are for the 'Lo Boxes' custom-designed Super 'W's containing $4 \times 15^{\circ} \mathrm{JBL}$ (all components in the system are JBL) speakers; for the 'Hi Bass' or 'Mid Bass' another custom-designed front loaded $2 \times 12^{\prime \prime}$ speaker box tuned reflex porting (for use as the bass unit in a 3-way system); for the 'Mids' JBL 90° and 60° Radial horn units with high powered compression drivers; and for the 'Highs' 2402, JBL 075 radiator units.

Well, that's it, total cost approx. £150000 but it represents where concert sound reinforcement is at now. Certainly a far cry from a column speaker on each side of stage but its worth it when I hear members of the audience muttering as they file out
'They sound just like their record.

Ample Amperes

One of the biggest problems now facing Jands when operating a PA and lighting rig, such as that used on the Rod Stewart tour is to ensure

Above is the tower of speakers used at one of the smaller gigs on the tour! Below, the scene as seen from behind the main control desk - the diminutive figures on stage are ABBA.

JANDS CONCERT SOUND SYSTEM AS USED BY ABBA/ROD STEWART TOURS OF AUSTRALIA

MONITORS

Mixer: Twenty input and six output buses. Each mic can be mixed onto one or all of the six buses, with or without tone control. This gives up to six separate monitor mixes so that each musician can have the extra foldback mix he requires. Each feed then passes through a graphic equalizer and into a Jands J600S to feed a foldback system.

Foldback Speaker System:

Each Side	$1 \times \mathrm{JBL} 4550$ with two JBL 2220.
	$2 \times \mathrm{JBL} 4560$ with one JBL 2220.
	$2 \times \mathrm{JBL} 90$ horns.
	$1 \times \mathrm{JBL} 2390$ horn lens.
Back Monitor	$4 \times \mathrm{JBL} 4560$ bass bins.
Front	$2 \times \mathrm{JBL} 90$ horns.
	$4 \times$ wedge monitor housing one JBL 15
	bass and one JBL horn and driver.

MAIN SYSTEM

2×20-way multicore cables feed the signal from forty microphones to the front of house mixer. A Jands 24 channel in and 16 channel out mixer

The custom-designed 24 track, 16 track out mixer has the following facilities on each module

1. Selectable Input Attenuation
2. Channel Mute
3. Mic Phase Reverse
4. Mic/Line Switch
5. High Pass Filter (250 cycles 18 dB / octave)
6. Equalizer Bypass
7. Lo: Mid; High: 18 dB Boost/Cut at four selectable frequencies
8. Pan Pot
9. Eight Full Stereo Group Select Buttons
10. Solo Prefade Listen Button

There are eight stereo sub groups with two other sets of eight for making separate mixes of the sub group for recordings. TV, etc

At the mixer are two 19° electronics racks
The effects rack and the main system rack housing
One third octave (27 band) stereo graphic DBX 160
$2 \times$ limiters DBX 160
$2 \times$ Jands 4 -way crossover
The signal passes through each item then goes via a separate multicore to the stage to drive the amplifiers

At each side of the stage are built the sound towers. These being $24^{\prime} \times 12^{\prime}$ with three levels. Better dispersion is achieved by stacking $^{\prime}$ high rather than wide. Each stack has the following
$8 \times$ Amplifier Racks each containing 3 amplifiers these being Crown DC300A Phase Linear 700B and Jands J600S

The Speaker System:

12×4130 (Jands designed W Bins with four JBL 15^{*} speaker in each).
$12 \times W$ cabinets containing two JBL $15^{\prime \prime}$ speakers.
$24 \times$ JBL 4560 Bass cabinets with one JBL 15 speaker.
$16 \times$ Double $12^{\prime \prime}$ cabinets (Jands design) containing two JBL 12 speakers.
$16 \times$ Double 12° cabinets (Jands design) containing two JBL 12 speakers.

20xJBL 90 horns
$16 \times J B L 60^{\circ}$ horns.
$8 \times J \mathrm{BL}$, long throw horns.
$48 \times J B L 075$ high frequency.
The total JBL count on the Rod Stewart / Abba main system Sydney Concert was
80×15 speakers.
$32 \times 12^{\prime \prime}$ speakers.
$44 \times$ Horns and drivers
$48 \times H i g h$ frequency.
Total value at your local hi-fi shop approx. £150000
The entire system is equalized before each concert using a pink noise generator and a Real Time Analyzer.
adequate mains supply (240 V). Simple arithmetic gives power consumption: the PA has six amplifier racks per side, and each rack has three stereo amplifiers each drawing four amperes. Total consumption is $2 \times 6 \times 3 \times 4=144$ A. Stage equipment, including special effects, can easily draw 100 amperes. The lighting system comprises 100 lamps, each drawing 4 amperes. This adds another 400 amperes to the total requirement!

Dim View Of Noise

To help eliminate dimmer noise in the PA system using the three phase supplies, the lights are placed across two phases with sound and stage equipment across the third phase.

The power supply Jands now insist on is 300 amperes per phase with a solid neutral. The electrical code permits a much lighter neutral than active in most installations, the assumption being the load can be expected to be balanced across three phases and hence little neutral current flows back to the sub board. With the lights full up and no PA (as occurs at the end of each song) there is a great strain to pull the neutral towards the lighting phases and with a soggy neutral it is possible to get over 300 volts appearing on the PA phase (the neutral drifting 50 volts above earth).

Earth At Stake

Power is run from the sub-board to the dimmer racks and audio equipment via $416 / 0178$ glass-insulated rubber sheathed mining trailing cable (cable rating 320 amperes and the copper core being 14 mm diameter). Each cable is fitted with a 350 ampere connector imported from Switzerland.

Each lighting phase runs direct into a dimmer rack housing 352 kW dimmer modules. The sound phase runs into a 19° electronics rack containing two 150 A breakers, one to feed PA the other the stage gear. Each breaker is connected to an earth leakage detector set to trip when more than 20 $m A^{-}$flows to earth. The current required to cause a fatal electric shock is 50 mA Hence if any person comes sin contact with a live wire on stage they cannot receive a fatal shock.

To avoid dimmer noise in the PA system it is often necessary to get a separate earth for the audio so Jands always carry a 6 foot solid copper earth stake and 10 kg of salt (for making a brine solution for better earth contact).

ET

Only regular stocks listed - other makes and models available Telephone your order with Access and Barclaycard

TE20D
LONDON'S TEST GEAR CENTRE OPEN 6 DAYS A WEEK 9 am- 6 pm SCOPES - IN STOCK
LED AND LCD DIGITAL

$$
\begin{aligned}
& \text { OM235 Sinctair porrable } 31 / 2 \text { digit LED } \\
& \text { POM } 35 \text { Sinclair Pocket } 3 / 2 \text { digit } \\
& \text { IMains andantor }
\end{aligned}
$$ MULTIMETERS

\qquad
LM 3 A 3 Digit Miniature wathors 3 arge IED Displays carycase 8.95)

Minuature batury operated 17 ranges
with $L C D$ display
$1 \mu A / m V$ resolution

79.50

9.50\end{array}\)

MULTI-METERS - GENERAL PURPOSE \& ELECTRONIC

BEGINNERS

Beginners Guide to Electronics Squires $£ 2.65$
Beginners Guide to Transistors Reddihough $£ 2.65$
Electronic Measurement Simplified C. Hallmark $£ 2.20$
Electronics Self Taught Ashe $£ 4.40$
Beginners Guide to Integrated Circuits Sinclar! $£ 3.15$
Principles of Transistor Circuits s. Amos£4.75
Understanding Electronic Circuits Sinclare $£ 4.10$
Understanding Electronic Components Sinclair $£ 4.10$
Beginners Guide to Radio Kang £3.15
Beginners Guide to Audio Sinclar $£ 3.10$
Beginners Guide to Audio L r. Sinclarr $£ 3.20$

COOKBOOKS

TV Typewriters Cookbook $£ 7.40$
CMOS Cookbook $£ 8.00$
TTL Cookbook $£ 7.55$
Active Filters $£ 11.00$
IC Timer Cookbook $£ 7.50$
IC Op-Amp Cookbook $£ 9,40$

APPLICATIONS

Advanced Applications for Pocket Calculators J. Gilber $£ 4.20$
Build Your Own Working Robot D. Heiseman $£ 3.55$
Electronics and Photography r Brown $£ 2.30$
Fire and Theft Security Systems B. Wels $£ 2.00$
How To Build Proximity Detectors and Metal Locators J. Shelds $£ 3.35$
How To Build Electronics Kits Capel $£ 2.10$
Linear Integrated Circuit Applications g. Clayton £5.4U
Function Circuits Design \& Applications Burr Brown $£ 15.95$
110 Electronic Alarm Projects R. M. Marston $£ 3.45$
110 Semiconductor Projects for the Home Constructor R M. Marston £3. 25
110 Integrated Circuit Projects for the Home Constructor R. M Marston $£ 3.25$
110 Thyristor Projects Using SCRs R. M. Marston $£ 2.95$
Handbook of IC Circuit Projects Ashe $£ 2.30$
Practical Electronic Project Building Ans she and Colwell £2.45

TV AND HI-FI

Audio Handbook G. King $£ 6.50$
Cassette Tape Recorders J. Earl £5. 25
Solid State Colour TV Circuits G. R. Widing $£ 6.35$
Hi-Fi Loudspeakers and Enclosures Cohen $£ 8.20$
How To Build Speaker Enclosures Badmueff $£ 3.10$
Master Hi-Fi Installation King $£ 2.80$

- LOGIC

Logic Design Projects Using Standard ICs J. Wakerly $£ 5.10$
Practical Digital Design Using ICs J. Greenfied $£ 12.50$
Designing With TTL Intergrated Circuits Texas Instruments $£ 9.05$
How To Use IC Circuit Logic Elements J. Streater $£ 3.65$
110 COSMOS Digital IC Projects for the Home Constructor r M. Marston $£ 3.20$
Understanding CMOS Integrated Circuits R. Melen $£ 3.90$
Digital Electronic Circuits and Systems R. m Morris $£ 3.50$
MOS DIGITAL ICs g Flynn £4.60

COMPUTING

Microprocessors and Microcomputers B. Sowick $£ 18.00$
Microprocessors D. C. McGiynn $\mathbb{E 8 . 4 0}$
Introduction to Microprocessors Aspinall $£ 5.90$
Modern Guide to Digital Logic (Processors, Memories and Interfaces) $£ 4.30$

Applications of Operational Amplifiers Graeme (Burr Brown) $£ 8.30$ Designing With Operational Amplifiers Burr Brown $£ 13.75$
Experiments With Operational Amplifiers Clayton $£ 3.40$
110 Operational Amplifier Projects for the Home Constructor R. M. Marston $£ 2.95$ Operational Amplifiers Design and Applications G. Tobery (Burr Brown) $£ 7.40$
Op-Amp Circuit Design \& Applications I Carr $£ 4.00$

TEST INSTRUMENTS
The Oscilloscope In Use Sinclair $£ 3.10$
Test Instruments for Electronics m. Clifford $£ 2.40$
Working With the Oscilloscope a Saunders $£ 1.95$
Servicing With the Oscilloscope G. King $£ 5.60$
Radio Television and Audio Test Instruments King $£ 5.90$

SERVICING
 Electronic Fault Diagnosis Sinclair $£ 3.20$
 Rapid Servicing of Transistor Equipment G. King $£ 2.95$
 Tape Recorder servicing Manual Gardner Vol 1: 1968 -70 $£ 8.50$ Vol 2: 1971-74 £8.50
 FM Radio Servicing Handbook King $£ 4.80$
 Basic Electronic Test Procedures I. M. Gottleb £2.45

-COMMUNICATIONS

Communication Systems Intro To Signals \& Noise b. Carlson $£ 7.50$
Digital Signal Processing Theory \& Applications L. R. Rabiner $£ 23.80$
Electronic Communication Systems G. Kennedy $£ 8.50$
Frequency Synthesis. Theory \& Design Mannassewitsch $£ 20.40$
Principles of Communication Systems H. Taub $£ 8.10$

THEORY

Introduction to Digital Filtering Bogner $£ 9.40$
Transistor Circuit Design Texas Instruments $£ 9.35$
Essential Formulae for Electrical and Electronic Engineers N m Morris £1.65
Modern Electronic Maths clifford $£ 6.70$
Semiconductor Circuit Elements T. D. Towers $£ 6.40$
Foundations of Wireless Electronics m. G. Scrogge $£ 4.45$
Colour Television Theory Hudson $£ 6.20$

REFERENC E
 Transistor Tabelle (Includes physical dimensions) $£ 4.10$
 Electronic Engineers Reference Book (Ed. 4) L. W. Turner £27.70
 Solid State Circuit Guide Book B. Ward £2. 25
 Electronic Components M. A. Colwell $£ 2.45$
 Electronic Diagrams M A. Colwell $£ 2.45$
 Indexed Guide to Modern Electronic Circuits Goodman £2.30
 International Transistor Selector T. D. Towers $£ 5.25$
 International FET Selector T. D Towers $£ 4.35$
 Popular Valve/Transistor Substitution Guide $£ 2.25$
 Radio Valve and Semiconductor Data A. M. Bell $£ 2.60$
 Master Transistor/Integrated Circuit Substitution Handbook £5.60
 World Radio TV Handbook 1978 (Station Directory) 88.00
 Radio, TV and Audio Technical Reference amos $£ 24.85$
 TV Technicians Bench Manual (New Ed.) Wilding £5.10

MISCELLANEOUS

Integrated Electronics J. Milman $£ 7.70$
Microelectronics Hallmark $£ 3.90$
Practical Solid State DC Supplies T. D. Towers $£ 6.20$
Practical Triac/SCR Projects for the Experimenter r Fox £2.25
Printed Circuit Assembly Hughes \& Colwell $£ 2.45$

How to order: Make cheques etc payable to ETI Book Service. Payment in sterling only please. Orders should be sent to: ETI Book Service, PO Box 79, Maidenhead, Berks. All prices include P\&P.
(as recommended by ETI) Oscilloscope offer from KRAMER \& CO Sole U.K. Importers

SPECIFICATIONS

ELECTRICAL DATA

VERTICALAXISM
Deflection Sensitivity
Bandwidth (between 3 dB points)
Input Attenuator - (calibrated)
Input Impedance
Input Voitage - Max
Deflection Sensitivity
Bandwidth (between
Bandwidth (between 3 dB points)
Gain Control
Input Voltage - Max
TIME BASE
Sweep Range (calibrated)
FINE Control
Blanking
SYNCHRONIZATION
Selection
Synchronization Level
POWER SUPP
Power Dissipation

```
-100m V/division
-DC - 5MHz
-9 step 0.1,0.2.0.5,1,2,5,10.20.50V/div
-1 Meg/40 pt in shunt
-600V P.P
    -0.400mV/division
    -1Hz-350KHz
    - Continuous: when time base in EXT position
    -1 Meg
    -600V P.P
    - 100msec/div to 1\mu sec/div in 5 steps
    - Variable between steps -- includes time-base calibration position
    - Internal - on all ranges
    - Internal, external
    - Continues from positive to negative
    -115/220V AC }\pm10%\mathrm{ at }50/60H
    - 18W
    - 4in. flat face, single beam
    - Maximum high voltage - 1.5kV
    - Fitted with 8\times10 division blue filter graticule
```

$-100 \mathrm{mV} /$ division
$-\mathrm{DC}-5 \mathrm{MHz}$
-9 step $0.1,0.2,0.5,1,2,5,10,20.50 \mathrm{~V} / \mathrm{div}$

$-0.400 \mathrm{mV} /$ division
$-1 \mathrm{~Hz}-350 \mathrm{KHz}$

- Continuous: when time base in EXT position
-600 V P. P
$-100 \mathrm{msec} /$ div to $1 \mu \mathrm{sec} /$ div in 5 steps
Varable between steps -- includes time-base calibration position
- Internal external
- Continues from positive to negative
$-115 / 220 \mathrm{VAC} \pm 10 \%$ at $50 / 60 \mathrm{~Hz}$

```
- Fitted with \(8 \times 10\) division blue filter graticul
\(=15 \mathrm{~cm}(\mathrm{~h}) \times 20.5 \mathrm{~cm}(\mathrm{w}) \times 28 \mathrm{~cm}(\mathrm{~d})\)
-43 kg (approx)
- 2 position flat and inclined
- Streel, epoxy enamelled
- Aluminium, enamelled epoxy printing
```

PHYSICAL DATA
Dimensions
Weight
Stand
Case
Cront Panel
Cash with order
£99 max

CRT DATA

University, school, company and govt orders accepted at list plus 10% by telex and telephone Tel 01-203 2473. Telex: 888941 Attn. Kramer K7

3" Elmac Oscilloscope also available. Details and price on application

To: Oscilloscope Offer, Kramer \& Co.
9 October Place, Holders Hill Road London NW14 1EJ

Please find enclosed my cheque for $£ 109.00$ (including VAT and carriage) made payable to Kramer \& Co for my 4 oscilloscope

Name
Address
Trade enquiries welcome

SECOND GENERATION
INDUCTION BALANCE METAL DETECTOR

DESIGNED SPECIALLY FOR THE HOME CONSTRUCTOR

- A second generation Induction Balance system with improved Variable-Tone detection.
- Designed by professionals for easy assembly by amateurs but with very good performance.
- The search coils are fully assembled and adjusted for you.
- Coils pre-assembled and tested wedge shaped search field

Uses include:

* Treasure hunting - it's amazing what you can find in the garden or on the beach.
* Finding lost metallic items.
* Locating waterpipes and cables under floorboards on in walls.
* Checking old timber for nails before cutting, etc., etc., etc., etc.

KIT - COMPLETE WITH PRE -
ASSEMBLED SEARCH COILS
flus £4-00p\&p Plus \&1-32 VAT
ASSEMBLED \& TESTED
E 22.50

Send sae for free components stocklist
Communication Measurernent Ltd 15 MALLINSON OVAL, HARROGATE. YORKS.

FM TUNER

Abstract

Bill Poel of Ambit has designed for ETI the International Mk3 FM tuner. Using a modular concept the performance of the Mk3 puts it in the top flight of tuners. With the digital tuning option the design is unequaled in specification at its price.

The Mk 3 will strike most potential constructors with one main feature it has a digital frequency readout. This is a genuine count readout, and is included here as most constructors' big bugbear where radio construction is concerned, is the mechanics of the drive and its calibration. The unit is a complete RFI proof module, and although it is not cheap at around E45, it also incorporates an AM frequency option (fed from a plug at the rear of the unit in this case. Wait for the MW/LW add-on tuner) and the time. And since most listeners will want to know the time of the programmes, this is not an unnecessary extravagance. It further means that the tuner PSU is kept warm and running the whole time the unit is plugged in. Contrary to the beliefs of some, electronic devices left permanantly 'on' do not tend to explode or generally degenerate. In this case, leaving the 12 V PSU running, permits the tunerhead local oscillator to be run constantly, and thus attain a steady state frequency stability that is very useful. For reasons of power economy, the mean amongst you may wish to disable everything but the clock / display module. But that's up to you, and really isn't warranted.

In case there are those amongst you not keen to lay out for the DT 1200 module, an alternative circuit to drive an analogue frequency meter is offered as an alternative. And then the cheaper MA1012/1023 digital clock modules may be incorporated instead
since the chances are that most of your friends will still think you have the very latest in digital FM tuners.

IF Stages

The IF and decoder systems are chosen for very low distortion and very wide separation. There are those in the Hifi fraternity who will insist that two six pole linear phase filters will narrow the bandwidth too severely for proper FM stereo to pass through. However, it can be shown that the 200 kHz of this design is quite sufficient - especially since the HA1196 PLL decoder incorporates a bandwidth/separation optimizer
circuit. Sceptical observers have been shown THD of less than 0.1%, and separations of 60 dB at 1 kHz in this system - which is really the ultimate justification anyway. To achieve these figures, it was necessary to build and align our own stereo encoder generator, using some of the spectrum analyzer exotica that doesn't usually find its way into consumer electronic designs. The system is optimized for about 50% modulation levels in the form shown here. This represents a more realistic approach in terms of UK broadcasting than full 75 kHz . since programme dynamic range

SPECIFICATION

A correctly aligned unit will provide the following level of performance: (Measured at 50\% modulation)

Mono sensitivity	50 dB S/N2/3uV EMF
	30 dB S/N 0.9 uV
Stereo	50 dB S/N 9 uV
	$30 \mathrm{~dB} \mathrm{S/N} 5 \mathrm{uV}$
Stero THD	0.1%
Mono THD	0.1%
Stereo separation at	40 dB
1 kHz	30 dB
10 kHz	
Image/spurious	better than 90dB
rejections	30 dB
adjacent channel	65 dB
alternate channel	
Ultrasonic rejection of	
$19 / 38 \mathrm{kHz}$	
	$60 / 85 \mathrm{~dB}$

HOW IT WORKS

To start at the beingging, all radio receivers have an antenna. This should ideally delive about 1 mV of the desired stereo FM station most is designed to operate with rather less The tunerhead system comprises two similar dual gate MOSFET stages, using low noise types of VHF devices from either the BF900 or MEM680 series. Each stage provides 22 dB of gain, which can be readily controlled along the gate 2 line with AGC from the main IF amplifier system. The interstage coupling is very loose - imparting a narrow peak to the coupling passband for best rejection of the spurious signals encountered in FM band two tunerheads.
By the time the amplified RF signal reaches the mixer, it is processed through five tuned circuits at the RF frequency - and these must be made to match each other in a process known as tracking. It is not much use having 3 circuits at 89.4 and the other two at 89.1 MHz since signal would only be lost in the detuning effects, but the susceptibility to spurious signals will increase as the overall bandpass response
humps in odd places:
humps in odd places
To assure good tracking of the RF - and also the oscillator, at this frequency, the of all frequency determining components so that all circuit strays will be balanced in each individually screened compartment.
At the input to the mixer stage, the ignal is fed into the signal gate of the MOSFET - and the local oscillator is fed into the control gate, producing a multiplicative mixing effect for good dynamic range and isolation of the oscillator frequency from the effects of strong signals that tend to pull the oscillator in some bipolar mixer designs. The products of mixing are signal frequency plus oscillator, and signal frequency minus oscillator. The latter is the desired IF signal, and this is selected out of the drain circuit at 10.7 MHz in a bandpass pair. The drain also provides a wideband derved AGC signal the second RF stage to prevent exceptionally the mixer tuned circuit has volts of RF signal - which may then be rectified in the varicaps and superimposed on the tuning voltage, creating some very undesirable cross modulation effects in the whole front end. This AGC circuit only operates at inputs of more than about 5 mV - when the AGC that is derived after the IF selectivity has is therefore aimed at signals just outside the IF bandpass, but still sufficiently close to the RF bandpass to cause problems.
The IF sections comprise a MOSFET preamp, with AGC from the IF AGC line, fol-
lowed by the first of two linear phase filters Correct termination of the filter leads to a very smooth bandpass characteristic that unhindered or deformed in any way. The full multiplex composite spectrum is an AF ignal bandwidth of 55 kHz - and in the FM system which is too complex to explain here -a transmission bandwidth of around 200 kHz is considered necessary. Ceramic IF filters are a lot better than they used to be - but the coil/capacitor arrangements of linear phase filters have superior stability, and much better skirt and spurious responses in strong signal environments such as the EF5803 will provide. A second MOSFET/Filter stage precedes the main IF element, a rather comprehensive device that performs IF amplification functions, including limiting detection, signal level meter drive, AGC drive, centre tuning drive, noise muting and deviation, muting systems. The IC which performs all these functions is the CA 3189E.
The IF of an FM tuner is probably one of the key areas of the whole tuner specification. It determines just about every audible parameter and so must be given close attention for its effect on sound quality. Of the key subject areas of sound quality as applied to the most important - and so wide dynamic range is necessary. This is ultimately determined by the choice of IF IC, and to lesser extent the stereo decoder - at present the specification of the CA3189E is capable of coping with the broadcaster's specifications. Distortion of the device is largely up to the external circuitry that is used in the detector circuit. Here the transfer characteristic of the discriminator is up to the board layout, and the quadrature components. Ad double tuned circuit, with critical coupling, is used to provide the detector with a THD of less than 0.05% when everything is correctly adjusted. The detector cannot be set up using the transfer curve method very satisfactorily, an audio spectrum analyser is best, with distortion factor meter next best - although a lot slower.
The IF system also provides an accurate muting method, that cuts out interstation two ways - firstly by noting the signal to noise ratio of the incoming signal at the detector stage, and cutting in when the S / N is sufficiently degraded. However although this method has been considered satisfactory for a long time past - there are certain shortcomings when tuning through a strong signal, where the edge of the discriminator curve can provide two additional detection transfer slopes at either edge of the desired passband. This leads to some loud rasping as
only half the signal is being processed in this way.

So the secondary muting technique is employed, whereby the signal is muted after it passes sufficiently off-tune to begin to become distorted. This method is known as readily obtainable from the AFC voltage which is in fact the DC level present at the detector, though decoupled from audio. If this voltage exceeds a predetermined level the mute operates. This feature also assists greatly in fine tuning the unit - since it is no possible to listen to a detuned and thereby distorted signal, when the muting circuit is switched on.

The muting voltage may also be taken to the stereo decoder to prevent chattering of the stereo switching circuits as the unit is tuned through the band

There are also two signal level voltages available - one for driving the tuning meter and one for driving the AGC. The two are preset to operate at any signal level - thus avoiding the tendency of the AGC to operate too suddenly in conjunction with high gain high signal level handling tunerheads such as the EF5803. In this circuit, AGC begins to operate at about 1 mV of antenna signal.

In the stereo decoder, the signal first passes through to the 'birdy filter', which restricts the audio bandwidth to below 55 kHz - preventing an adjacent channel signa from beating with any of the decoder pilot tone frequencies and products creating the faint warbling that can appear on stations in crowded conditions.

This
filter is rather crucial, and an LC arrangement, in the form of the common delay line, is used for the most readily adjustable com-
binations of HF signal attenuation and AF binations of HF signal attenuation and AF signal attenuation. Many IF systems pour forth many millivolts of 10.7 MHz and 21.4 MHz in the audio line - and the 'active' filter arrangement is not as effective in attentuating these frequencies and maintaining good phase response
The decoder IC itself is the HAl196. Most people will know about the MC1310 - the the HAl 196 is similar, except that the distortion is rather better, it possesses an distor able separation facility, and best of all, it provides low distortion AF gain specifically derived to drive the pilot tone filter. Attenu ation of 19 and 38 kHz components of the AF voltage is essential to prevent HF intermodulation in the amplifier - and the BLR3017N unit also provides a steep cutoff after the audio bandwidth of 15 kHz . The HAll 96 drives the conventionalLED beacon - and as mentioned already, has a stereo muting
facility via an external control voltage which may be supplied at high impedance

The Control Sections

Apart from the signal processing, the contro aspects of this tuner require explanation and comment. First and foremost the digital requency readout unit.
The DFM unit is a ready made 'black box. incorporating FM and AM frequency and 12 hour quartz clock functions. It is unique at present - but it should be pointed out that he DT1200 is primarily based on USA mar kets, and so the count resolution is alternat 100 kHz channels in $88-108$, and 10 KHz chan nels in the medium and long wavebands urists will no doubt realise that there are tations in the UK broadcasting in between airly well to the alternate 100 kHz pattern his design can be run with the tunerhead powered continuously wince the clock frequency counter needs continus powe - and so achieve a stability otherwise un heard of. The varicap tunerhead also permit selection of preset stations, through switched multiturn potentiometers.
For those of you not sufficiently enthusiastic about digital tuning, an option is described for an analogue frequency meter indicator - driven from the main tuning volt age line. The accuracy is not overwhel ming - but the narrow spread of the UK FM band means that most listeners quickly appreciate the relative locations of their local transmissions. The meter is driven from an emitter follower circuit to isolate the actua tuning voltage from the dangers of picking up stray hash and noise along the meter lines. If driven directiy from the tuning voltage, mechatal mechanical clunk in the audio.
Finally, the PSU looks straightforward enough, but it must be carefully decoupled to prevent RF noise getting any further around the tuner than essential. Most voltag regulation sources are producers of wide band RF noise - and so careful filtering and decoupling is used as close to the source as prsible. The supply for the audio monito tages of the decoder board ($2 \times L M 380$) is lised - to prevent modulation peaks de tuning the whole thing The supply for thing
The supply for the DT1200 requires careful display of this unit is strobed at about 500 Hz The main tuning voltage to the EF5803 is decoupled at the entry of the shielded can since this relatively high impedance line can be prone to picking up any radiated hash that is floating around.
considerations generally limit the levels used. This approach trades off a little ultimate distortion for a few dB signal to noise ratio. Subjectively. this is more than justified

In fact, the decoder used here incorporates a 2 W per channel monitor amplifier feature for persons requiring the unit to be self supporting as a very classy bedside radio - or as a means of monitoring programmes without upsetting the whole Hi-Fi operation. This is mentioned briefly here, and will not be covered in great detail in the text, but if it is to be incorporated, please follow the directions supplied with the module carefully.

Metering facilities are provided both in the DT 1200 module where FM detune is indicated by illumination of the + and - on the display - and separately with moving coil meters if desired. A signal level meter is considered to be a desirable feature in a unit of this sophistication (to make certain you are getting the most local transmission from the multiple relays of the BBC), and the centre zero tuning indication is essential for the very besf fidelity in narrow IF systems. The pedantic may also like to run a pair of PPM/VU audio level -meters driven from the decoder output - but that is something considered unnecessary here.

Construction

The modules are fitted (Fig. 1) in the order shown, and it is desirable to follow the earth path layout shown on the wiring connection diagram (Fig. 2) if the problems of HF and VHF earth loop instability are to be avoided. Such instability is the curse of RF, and the reason why otherwise competent engineers have been known to lock themselves away in the loo when asked to "just debug the VHF frontend" AF instability has the delightful quality that it can be heard, and so progressive fault tracing can be a relatively simple and speedy matter. With RF, the engineer's 'ear' is the spectrum analyser (just as the ear is a reasonably good audio spectrum analyser). Whilst the home constructor is usually blessed with an ear or two, the latter instrument is not as commonplace as it ought to be.

In other words, the unit may sound quite healthy on reasonable signals, but on weaker signals, the

Picture showing the internal layout of the International Mk 3 FM Tuner. The modules can clearly be seen mounted in their edge connectors with the PSU bottom left. The RF shielded DTI is top left.
whole thing oscillates around an unforgiving earth loop and the signal sensitivity appears to be unreasonably impaired. A quick check for stability is to listen to interstation noise with the mute 'off. The noise should be smooth and white, clean and bright etc. (Sung to the tune of Eidelveis) it should not be crackling and broken up, or buzzing with a low level hiss.

When the system is really well set up, generator EMFs of 0.63 uV can provide full limiting on mono. This is very close to the theoretical limit of the system, and whilst some of it may be due to leakage effects, it still illustrates that not only is the nature of the signal VHF -but you are dealing with amplification levels vastly in excess of anything likely in an audio environment.

Edge Connectors

The modules fit into 0.2 in edge connectors for ease of assembly, and it is recommended that the edge connectors should be very carefully wired with the modules in situ outside the case, the whole lot being transferred to the inside when it has been ascertained that the system is 'go.' The Swiftcase lends itself very nicely to this approach, since it comes virtually completely apart into a stack of plates and screws. In fact, it is rather better to solder the units together to avoid the dangers of interconnection degradation, but many people still feel happier if the units can be dismantled easily.
although this is really not necessary (hopefully). The PSU is simple enough, but remember that RF environments call for extra attention to potential RF noise sources such as the regulator device itself. The curse of tuners is frequently next door's fridge thermostat or the slightly noisy fluorescent tube fittings. An IEC type of mains filter is very useful here, and it also doubles for the mains input socket. One of the bolt-on extras envisaged for this unit is a noise blanker system to take out any residual click type interference that inevitably starts up during the quiet passages of Beethoven's 6th.

Interconnection of RF and IF signal paths should be made with RF coax. The antenna input should certainly use good 75/50 ohm coax - though the use of lesser types of screened cable is permissible for the IF connection - and of course the audio connections. Always use stranded cables for the rest of the wiring, since single solid cables will send you completely up the nearest wall it you ever have to manipulate the circuitry in the case. Units wired in this way will also not be eligible for the alignment service that is being offered to the constructor.

The connection of the frequency counter should also be made via coax of an RF nature, but since this is well buffered from the actual tunerhead oscillator, it may not be essential. The take off for the external connection of the AM local oscillator (when your MW/LW tuner is ready) should be made with the same coax.

PARTS LIST

REFERENCE SERIES MODULES

7130	IF Strip
$91196(91196 B)$	Decoder
EF5803	Tuner Head
DTI200	Digital Tuning Indicator

RESISTORS	
R1	
R2	4 k 7
R3, 4.5	27 k
	100 k
R6	
R7	10 k
R8	$1 \mathrm{k5}$
R9, 12	1 k 2
R10	22 k
R11	3 k 9
R13	5 k 6
R14	10 R
R15	$33 R$
	270 R

CAPACITORS

C1	22 n polyester
C2, 3, 4	47 n polyester
C5	1 uO electrolytic
C6, 7	3300 u 35 V electrolytic
C8-13	10 n polyester

SEMI CONDUCTORS

IC1	741
IC2	7815
IC3,4	7812
Q1,2,3	BC108

POTENTIOMETERS

RV1, 10, 11, 12 100k prese
RV2-8 $\quad 100 \mathrm{k}$ diọde law-type AB47

SWITCHES

SW1-7 Double Pole Charge Over
SW8 Single Pole on-off
PBI-4 Fush to make, release to break

MISCELLANEOUS
West Hyde Swift Case, Meters (200uA), edge connectors, transformer (15-0, 015), screened lead etc

BUYLINES

Ambit International of 2 Gresham Road, Brentwood, Essex wili be supplying a complete kit of parts for this project.

The cost of the tuner with DTI-200 will be $£ 139.00$. Without the Digital Tuning option the kit will be £99.00.

Switch On And Test

Never complete a project of this complexity and simply press the mains switch. Always build up gradually, starting with the PSU on its own - ie disconnect the supply feeds to the rest of the works - and check the voltage. Leave the PSU running for an hour in this fashion, since experience has shown that many PSU reservoir capacitors are at their most fragile during this period. The slim chance of 500-1 is sufficient odds to let the PSU have a good soak before endangering the rest of the works. Next, hook up the power to the frequency counter, and check out the time function, following the setting details in Fig. 3. It is quartz referred, so it should be very accurate indeed. If nothing happens, check your switching wiring very carefully and try again.

Now monitor the supply current to the rest of the circuit and connect. Over 150 mA means you have a problem, so then you must methodically disconnect each module's supply in turn, until offending connection is located. The usual trouble is 'frilly' wire terminations, so do not immediately despair that all is blown up and disasterously defunct. Also check that any decoupling electrolytics on the connectors and harnesses are correctly rated and polarized.

It is hoped that the process of test will quickly get you to a state where noises are apparent - and don't forget to set the audio output level pots on the decoder so that they are about hallfway. And remember to leave the mute and AFC buttons in the "off" state until you have started to get recognisable sounds through the system.

The function of the tunerhead can be verified to a certain extent by switching the display to FM frequency readout. You will be able to see the frequency - to the nearest 200 kHz - as the tuining is varied. Unless you live in a really bad location, a degree of sound from a BBC transmission will be readily obtained with a simple piece of wire poked into the antenna socket. If you get the right sort of no-signal 'hiss' but no stations, and the DEM is indicating tuning is going on, check the RF and IF signal leads for shorts and problems at the connectors.

The muting used is a combination of deviation and noise muting -
which means that unless a station is reasonably accurately tuned to start with, the mute cannot open to pass the signal when switched on.
Furthermore, the mute is tied in with the operation of the stereo switching of the decoder, so that stereo is automatically inhibited as the signal goes off tune, preventing the jittering crashes that are sometimes found in such systems. The mute will not always completely kill all background noise, since it is set to lift on the slightest vestige of a signal. Usually 1 uV or so.

ACC Circuitry

The AGC threshold point and operating level are factory set in the IF module, but those of you who know what you are doing may wish to tweak these controls to optimize for a particluar location condition. The unit cannot be seriously detuned with these controls - though most of the others should be left well alone. If you feel it is essential to have a tweak of the coils to get the thing going, then do not under any circumstances do so. The problem will only be worsened by a quick tweak of a trimmer, and must be sought elsewhere.

The AFC function of the tuner is readily confirmed. Slightly detune the transmission, and switch in the AFC. The signal will be pulled closer to the centre of the passband. Some listeners believe that operation of the AFC is detrimental to listening quality. In this tuner it is not so, since AFC controls all the tuned circuits of the VHF tunerhead, and not merely the oscillator. So the tracking of the tuned circuits is not in any way impaired when the AFC is operational.

As mentioned in the 'How it Works' section, the AFC is also programmable in its effect, so you may increase it up to the point at which it becomes overpowerful with respect to ease of tuning.

In Conclusion

An alignment service for tuners constructed according to the contents of this article will be available for approx $£ 10.00$. But the units must be working to a degree where alignment will consist of final trimming and tweaking to optimize the final unit. It cannot encompass trouble shooting of smoking regulators and vapourized ICs at the basic charge.

Our new 1978 catalogue lists circuit board accessories for all your projects - DIP sockets, pins standoffs, cable clips, hand tools. And we've got circuit boards, module systems, cases and boxeseverything you need to give your equipment the quality you demand. Send $25 p$ to cover post and packing, and the catalogue's yours.

VERO ELECTRONICS LTD, RETAIL DEPT. Industrial Estate, Chandlers Ford, Hants. SO5 3ZR Telephone Chandlers Ford (04215) 2956

SPECIAL OFFER
 SPECIAL OFFER RADAR INTRUDER DETECTOR

MODEL S127 DOPPLER MICROWAVE INTRUDER DETECTOR FEATURES:

- Range adjustable out to 43'.
\star Wide flat top beam (120 Horizontal, 70 Vertical).
* Walk test lamp built in.
* Anti-tamper Reed Switch built in
* Meter output (Analogue) shows what unit "sees.
$\star 12 \mathrm{~V}$ DC Operation at 200 mA .
* As used by alarm companies, Armed Forces, etc.
\star Relay C / O contacts, 0.5 amp rating.
$\star 0-40$ C operation.
* Size $19.8 \times 12.6 \times 10 \mathrm{cms}(7.8 \times 5 \times 3.9$ inches $)$.
* Direct mounting to walls, ceilings or corners.
* £64.97 inclusive of $12 \frac{1}{2} \%$ VAT, $P \& P$. etc.

Contacts, foll, bells, sirens, keyswitches, control panels and many other items in stock. SAE for price list. Access and Barclaycard orders welcome. Please supply card and details PLUS address, etc.
Callers welcome STRATMAMD SECJRITM Callers welcome

Tel. order welcome with Access and Barclaycard
 diagram and application notes.
SPECIAL PURCHASE-MITE

BRAND NEW SURPLUS ONLY 775
$+£ 3.50$ P \&P + 8\% VAT (Mail'order total $£ 84.78$)

123P Alphanumeric

 printer mechanismsSolenoid-operated page printer using standard reversible typewriter ribbon. Prints standard 64-ASCII character set on $8 \frac{1}{2}$ " paper $(80$ characters per line, 6 lines to the inchl. Maximum speed 1 cps. Power requirements 115 VDC . Compact, light-weight unit $93 / 4 \mathrm{lbs}$, $12^{\prime \prime} \times 9^{\prime \prime} \times 23 / 4^{\prime \prime}$. Supplied complete with full technical manual.
We also specialise in: DEC minis - PDP8 and PDP11 processors, add-on memory. peripherals and spares. Hard copy terminals - ASR 33 and KSR 33 Tel
Dynamics 390 , Texas Silent 700 . Send for complete lists.

49-53 Pancras Road, London NW1 $20 B$ Tel: 01-837 7781. Telex: 298694.

HAZELTINE VISUAL DISPLAY UNIT

* Teletype Compatible
* 12" Diagonal Screen
* TTY Format Keyboard
* 12 lines of 80 characters
* 64 ASCII Character Set
* 5×7 Dot Matrix

Switch-selectable Transmission Speeds up to 9600 baud
Switch-selectable Parity

* Standard CCITT V. 24 Interface

MODEL H-1000 PR: P : 350 + carriage
 Also available: -

Model H-1200: Specification as for H - 1000 except 24 lines of 80 characters displayed. Price $£ 425.00$ + carriage + VAT.
Model H-2000: Buffered/Editing model with direct cursor addressing, dual intensity video, and detachable keyboard with separate numeric and edit clusters. 27 lines of 74 characters. Price $£ 495.00$ + carriage + VAT.

SCIENCE OF

CAMBRIDGE'S

MK 14 REVIEWED

Gary Evans has built and used Science of Cambridge's MK 14, a kit that seems to offer a true low cost development system for National's SC/MP microprocessor. Here is his report.

The MK14 development kit from Science of Cambridge. The kit show has the optional add-on RAM I/O chip, top of board, and RAMs fitted. The edge connector at the top of brings out the $/ 10$ connections while the connector at bottom right (below reset switch) allows a remote keypad to be added to the system.

THE MK 14 WAS LAUNCHED by Science of Cambridge earlier this year. The product, described as a microcomputer kit, sells for around E40, and features a SC / MP II microprocessor together with keyboard, display, 256 bytes of RAM (two 256×4), 512 byte monitor program (two 512×4) and various other items of hardware, that together provide the means by which machine language programs for the SC / MP may readily be written and debugged. The MK14 will also prove valuable to those who wish to learn more bout the ins and outs of using a typical 8 bit MPU, without having to spend the rather large sums of money associated with the purchase of some other development systems.

At this low price however just what does the MK14 have to offer in terms of performance and what corners, if any, have been cut to meet this low price tag

Demanding Supply

Before going on to describe the kit in detail though, it's as well to mention the supply problems that Science of Cambridge have had in meeting the demand for MK 14 kits over the past few months. Initial problems with supplies of semiconductor devices and later, more acute troubles with production of PCBs, have lead to a large backlog of orders building up.

This situation is slowly being rectified as alternative suppliers are sought where the original has failed to keep to delivery dates and the 21 day delivery time quoted by Science of Cambridge should be met on all new orders and the backlog soon cleared.

Now to the kit itself and first let's
say that we found the MK14 to be a very good product and the comments that follow should be read with this in mind. We remark upon a number of features which in our view detract from the overall performance of the kit, but with these rectified, the Science of Cambridge are looking at some of them at present, we would have no hesitation in recommending the MK14. Suffice it to say that even

The MK 14 is a kit and is supplied as a plated through PCB together with some 14 ICs, a four part keyboard, display, reset switch, crystal and various resistors and capacitors. which must be carefully assembled according to the detailed instructions in the MK14's manual. The only equipment required is a soldering iron, solder and a pair of side cutters.

The manual assumes very little knowledge of electronics providing a guide to the identification and orientation of the various components supplied. The manual does however assume a knowledge of the resistor colour code and a section describing this might be a valuable addition to help those who have little experience of electronics

The kit is not supplied with sockets though the manual "most strongly recommends" that sockets are used, a view we share, the extra cost of sockets proving its worth if any fault finding/system expansion proves necessary.

Assembly Point

Assembly of the kit is straightforward. The only area we thought likely to confuse was around ICs 12 and 13. At first sight it seems that there are 18 DIL holes on the PCB whereas the ICs to be fitted are 16 pin devices. A closer look however reveals that the pair of holes nearest the edge of the PCB are unused, a remnant of some previous layout? A very minor criticism however and if the manual's instructions are carefully followed and a reasonable standard of soldering maintained (notes on soldering technique mean that even those who have not soldered before should be able to tackle this kit) the assembly of the electronic components should pose no problems. With all the electronic work complete the keyboard and display can be fitted. The display is an eight digit calculator type and is connected to the PCB via a short length of ribbon cable. Again a couple of spare

One way around the bad keyboard , of the MK14, a 'cheap calculator is modified to provide the system's input.

The pieces that go to make up the MK14's keyboard.

holes on the - PCB but it is fairly obvious where everything goes.

Key Feature

The keyboard is one of the areas where cost cutting is apparent. It is a sandwich type construction consisting of a metal plate with some 20 holes, corresponding to the 16 hex character and the four command words (more of these later), under which a ledgend sheet is positioned. The next layer consists of a sheet of conductive rubber. The last layer of the construction is a sheet of card with a matrix of holes similar to that of the top plate punched out of it.

The assembly is held together by a set of four plastic pegs. These will prove almost impossible to fit unless they are first "squeezed" with a pair of pliers. Even when fitted they are not really up to the job and, as you can perhaps see in our photograph, on our kit we used four 4BA bolts in place of these pegs with far more satisfactory results.

This arrangement is mounted above an area of the PCB that has a pattern of interlocking "'fingers" etched onto it. The idea is that the conductive rubber, usually seperated from the PCB by the layer of card, will bridge the gaps between the "fingers" when sufficient pressure is exerted on the foam to force it down onto the board through the holes in the separator. That's the theory, in practice the operation is to, say the least, clumsy

Science of Cambridge are aware of the difficulties of using the keyboard and are working on a number of solutions. These include providing plastic buttons to enable a more even pressure to be applied to the conductive foam or, a more expensive proposition, the provision of individual switches for each switch function.

A further solution is to connect an external keyboard to the MK14 via the keyboard edge connector. No details of the connection pattern for this are included in the manual, although

Fig. 1. The manual does not show it, but here is the connection information for that add on keyboard.

Fig. 2. Below, the memory map of the MK14 shows how the partial memory decoding of the kit results in the monitor and RAM I/O appearing all through the lower 4K of memory

it is fairly easy to trace the PCB tracks and work out how the extra keyboard should be wired up.

With assembly of the MK14 complete the manual suggests that you put the kit to one side for 24 hours (to rest the eyes) before inspecting the PCB for signs of solder splashes or of IC pins that have not been soldered. When satisfied that all is well it's time to power up and begin to get to know the machine.

Working Model

As the MK14 features an onboard 5 V regulator, a power supply with a DC output in the range $7-35 \mathrm{~V}$ can be used, although the regulator will require a heat sink if supplies near the upper limit are used. In addition if the supply has a lot of ripple on it an additional capacitor of about 2000 u should be fitted in the space provided on the PCB.

Upon switch on, if all is well, the display should show a series of dashes in the four leftmost positions followed by two blank displays and a further two dashes in the righthand positions. The group of four characters will form the address field, while the group of two digits will become the data field.

If instead of a nice row of dashes you get some other display try pressing reset. If things are still not right, turn off the power and check PCB again. Science of Cambridge tell us that they have had very few kits returned and the faults have been due, in the main to hairline solder splashes or, in some cases to PCBs that have been incompletely etched in some areas. Another reason for return is the apparent faults thrown up by an inadequate power supply. The supply must not drop below 7 V when on load and must not present too much ripple to the MK14 (this latter problem manifesting itself
as apparent keyboard bounce).
If your MK14 will not go after all reasonable attempts to get it up and running Science of Cambridge offer a get you going service at little more than the cost of postage and replacement parts - expect to pay more if you haven't used sockets though.

Routine Example

The monitor program used by the MK14 is the same as that of the National Introkit plus Keyboard kit combination (KITBUG) and as such features four command words: GO, MEM, ABORT, TERM.

The dashes referred to above indicate that the MK14 is awaiting a GO or MEM command. The first of these to be introduced by the manual is the MEM key. This allows the user to display the contents of the MK14's memory. After pressing the MEM key a four digit hex number may be entered via the keyboard, the MK14 echoing this number in the address field as it is entered and displaying the contents of the memory location pointed to by the entry in the data field.

To examine the next memory location all that it is necessary to do is to operate the MEM key again whereupon the number in the address field will be incremented by one and the contents of the corresponding memory location displayed in the data field.

End of Term

The MEM key is also used in conjunction with the TERM key to modify the contents of the MK14's RAM. The location which is to be modified is first pointed to using the MEM instruction as above. The TERM key is now pressed and the two digit hex character we wish to enter can now be input via the keyboard, it being echoed as input in the data field's display. Further operation of the MEM key will increment the address pointer as before, the TERM key preceeding any data input. In this way a program can be built up in the system's RAM.

To execute a program entered in the above manner the GO key is used to set the address pointer to the memory location at which we wish to enter our routine.

The ABORT key will return the system to a condition in which it ex-
pects either a MEM or GO command A reset will have much the same effect except that ABORT will not destroy the contents of the SC / MPs registers.

The manual takes the user through the operation of the command keys by describing the entry and execution of a sample program. The manual however fails to give an exact definition of their use or function and a section expanding on this aspect would be valuable.

The manual also makes no mention of how to input and output data from a user program. This together with the fact that sections on the basic principles of the MK 14 and a section on SC/MP architecture and instruction set would still leave the person with no knowledge of microprocessors a trifle lost is a little disappointing.

Science of Cambrige tell me however that the reason for this state of affairs is that a section covering programing, which will cover some of the above points was inadvertantly omitted from the manual. These details will however be included in all kits sold from now on.

In addition to the addendum covering programming, a section making the use of the various programs listed in the manual a little clearer will also be included with all MK14s. There are some 22 program listings under the headings of Mathematical (multiply, divide etc.), Electronic (pulse delay, random noise etc), system (single step, relocator etc), games (moon landing, mastermind, etc), music (organ, etc) and miscelleaneous (message reaction timer, etc). Together these provide a good way of becoming familiar both with the MK14 and with the SC / MP MPU

For those who start with a little more idea of MPU operation the
complete monitor listing included in the manual will prove a valuable aid in trying to get the most out of the system. There is also a full circuit diagram for those who wish to extend the basic system.

I/O, I/O, It's Off To Work

That then is the basic MK14, but what of expansion? The PCB includes space for the addition of a further 256 bytes of RAM and of the National INS8154 RAM I / O device. This latter IC will greatly extend the scope of the MK14 kit providing as it does a set of 16 lines (configured as two seperate eight bit ports) each of which may be seperately defined as either input of output under program control. The IC also provides a further 128 bytes of RAM. The manual describes the use of the RAM I/O chip's various features including a section of the IC's use in handshaking mode. Connections to this IC are brought out to an edge connector at the top of the board. Again, although the manual describes the device, the explanation is brief, and for those unfamiliar with the IC, will leave questions unanswered.

As well as the extra memory and 1/O chip referred to above, Science of Cambridge plan to introduce a number of other MK14 expansion aids. First on the cards is a cassette I/O using a simple tone burst system together with a new monitor to include the software for this interface and to provide for easier data entry (getting rid of the MEM-TERM-MEM approach) and providing an offset calculation function. The space for these extra routines has been found by tidying up National's original monitor. Note that these new ROMS will be compatible with existing hard-
ware and the cassette I/ O can be used with Mk1 monitors by storing the necessary software in user RAM.
Plans also include a PROM programmer for a fusible link PROM and a low cost VDU.

Last Night Of The PROMS

The basic kit, as a cost saving measure, adopted a system of partial memory decoding and the basic board's maximum RAM complement of 640 bytes cannot be extended without alterations to the board hardly worth bothering with a VDU. However the alterations to the PCB, involving the use of gates, at present used, enable up to 4 K of memory to be addressed are not that major details of such modifications will be made available.

A second volume of programs is also in preparation. This will highlight the MK14's rôle as a control system with programs that should find a wide range of applications.

To sum up, at $£ 40$ the MK 14 while not perhaps a "microcomputer" is an easy to build development kit that provides an excellent way of getting to know about MPUs. The system is let down at present by its poor keyboard and by some ommissions in the kit's manual.

Science of Cambridge are however aware of these faults and are working on them. As for value for money, the MK14 is certainly the cheapest development kit that we know of, and with the cost of components bought individually coming to more than the kit price, its got to be a good buy

The MK14 is not a toy and with the low cost addons planned by Science of Cambridge, should prove a powerful tool to those wanting a versatile MPU development system at under £80.

ETI

AS RECOMMENDED BY E.T.I.

4" Oscilloscope

FROM STOCK £99

Add VAT $£ 7.92$, carriage $£ 2.0 B$ Appointed London Stockis:

SPECIFICATIONS

ELECTRICAL DATA

VERTICAL AXIS (Y)

PHYSICAL DATA
Dimensions
Weight
Stand
Front Panel

- 100 mV / divisio
$\begin{aligned} & \text { - } \mathrm{DC} \text { - }-5 \mathrm{MHz} \\ & \text { - } 9 \text { step } 0.1\end{aligned} 0.2 .0 .5,1.2 .5,10.20$
$50 \mathrm{~V} / \mathrm{div}$
600VP P pf in shunt
$-0-400 \mathrm{mv} /$ division
- Continuou

600V P.P
$-100 \mathrm{msec} /$ div to $1 \mu \mathrm{sec} / \mathrm{div}$ in 5 steps - Variable between steps - includes time - Internal - on all range

- Internal. external
- Continues from positive 10 negative
$-1 B W$

Max mam - Fitted with B x 10 division blue filter
$-14 \mathrm{~cm}(\mathrm{~h}) \times 20.5 \mathrm{~cm}(\mathrm{w}) \times 2 \mathrm{Bcm}$ (d)
-4.3 Kg (approx)

- 2 position, flat and inclined
- Steel, epoxy enamelled

Aluminium, enamelled epoxy printing
Also available from 24B Tottenham Court Road, London W1 301 Edgware Road. London W2

Doram Electronics Ltd PO Box TR8, Leeds LS12 2UF

Overseas orders, except for N. Ireland, please add 35p to cover despatch by air

Fig. 1. The cross hatch generator's overlay is shown left.

PARTS LIST

RESISTIORS		C4. 5	100p ceramic	
R1	1 kO	C6, 7	33 u 16 V tantalum	
R2,7,8,	4 k 7			
R3,4,5,6	10k	SEMICONDUCTORS		
R9	330 R			
R10	110 R	IC1	555	
		IC2,3	4027B	
		IC4	4040B	
POTENTIOMETERS		IC5	4011B	
RV1	5 k miniature preset	IC6	4001 B	
RV2	25k miniature preset	1C7	4012B	
CAPACITORS		MISCELLANEOUS		
C1	180p ceramic	PCB as pattern, case to suit, output socket,		
C2	22p ceramic	single pole toggle switch, 9 V battery, Astec		
C3,8	10 n polyester	UMIII		

BUYLINES

The only component liable to be difficult to obtain is the Astec UHF modulator. These are available from most suppliers of TV game kits. Watford Electronics and Teleplay are examples. Make sure you get a vision modulator, sound modulators look the same but will not work in this application! All the CMOS and other components is widely available. The PCB will be available from usual suppliers who advertise regularly in the magazine.

Fig. 2. The foil pattern of the cross hatch generator is shown full size on the right.

Fig. 3. The full circuit diagram is shown above.

HOW IT WORKS

A TV picture is made up of a series of horizontal lines equally spaced down the screen with the information transmitted in a serial form along with the necessary synchronization pulses. There are 625 lines in each complete picture but these are transmitted as two "frames" each of $3121 / 2$ lines with the second frame interlaced between the first giving a total of 625 lines. This is to reduce flicker of the picture which would otherwise occur.
To simplify our circuit and prevent a double horizontal line we have used 624 lines which eliminates the interlacing. The TV set automatically accepts this change.
To synchronize the TV set we need a $192 \mu \mathrm{~s}$ wide pulse every frame (20 ms) and a $4 \mu \mathrm{~s}$ wide pulse every line ($64 \mu \mathrm{~s}$). All pulses, including the information, are derived from a single 249.6 kHz oscillator ICl. This is divided by 2 in IC2a and then by 2496 by IC4 giving an output of 50 Hz . This IC is a 12 stage ripple counter which, while normally dividing by 4096 , can be forced to divide by 2496 by
decoding (IC7) the outputs from the 7th, 8 th, 9 th and 12 th stages and reseting IC4 back to zero. The output of IC7 toggles the RS flip flop IC5/c, IC5/d which resets IC4 via C5. This flip flop is reset by the decoded output from the 4th and 5th stages of IC4. This occurs 192μ s later; thus the output from IC5/c is the frame sync. pulse.
To generate the line sync. pulse the output from the 3 rd stage of $1 \mathrm{C} 4(15,600 \mathrm{~Hz})$ is used to reset both halves of the dual JK flip flop IC3. This IC is then toggled by the 249.6 kHz clock until, after three pulses, both "Q" routputs are ' 1 ' when IC5/b detects this and idisables IC3/a, IC6/b decodes the second of these clock periods and this becomes the line sync. pulse. These pulses are combined in IC6/4 to give a combined sync. pulse.

The 249.6 kHz is differentiated by C2/R3 and after being quared up by IC6/a is used to generate 16 white spots on each line which results in vertical lines. These pulses are deleted during the frame sync. period to prevent interference to synchronization. Due
to variations in the CMOS a trim potentiometer is provided to give equal width to the vertical and horizontal lines.

The horozontal line is generated by IC2/b (JK flip flop) and this IC is toggled by the 8th output (487.5 Hz) of IC4 and is reset by the output of the 4 th stage (64μ s later). This gives a single white line every 16 lines. To prevent this line interfering with the line sync. pulse the output of IC $2 / \mathrm{b}$ is combined with that of $\bar{I} \bar{C} 5 / \mathrm{b}$ which is high for a period $4 \mu \mathrm{~s}$ before the line sync. pulse to $4 \mu \mathrm{~s}$ after the pulse. This gives a short black region on both ends of the line (normally off the screen). The outputs of $1 \mathrm{C} 6 / \mathrm{b}, \mathrm{IC} 6 / \mathrm{b}$ and IC/c are combined by R6-R8 to give a composite video signal. Note that the video information gives positive pulses while the synchronization pulses are negative.

The video signal is fed to the UHF modulator. This is a ready built unit that is adjusted at the factory to operate on channel 36. R10 and C15 decouple the supply to the modulator.

2112 (256 $\times 4$ Static RAM)	
$2 \mathrm{LLO} 2(450 \mathrm{~ns})$	£1.07
($1 \mathrm{~K} \times 1$ Static RAM)	
21 LO 2 (250ns)	£1.60
2114 (4K $\times 1$ Static RAM)	
	£7.70
4027 (300ns, equiv 2	¢2.02
($4 \mathrm{~K} \times 1,16$ pin, Dynamic RAM)	
5208 (equiv. 2107)	£3.21
($4 \mathrm{~K} \times 1,22 \mathrm{pin}$, Dynamic RAM)	
$\begin{array}{r} 4116 \\ (16 K \times 1 \text {, Dynamis } \end{array}$	$\begin{aligned} & £ 18.00 \\ & A M) \end{aligned}$
2708	£7.87
(1K $\times 8$ UVEPROM)	
8080A (CPU)	£ 7.45
81 LS95 (Buffer TriS)	75p
$81 \mathrm{LS96}$ (Buffer TriS)	75p
35 p for p\&p orders under $£ 5$	
Please write for discounts over 100 pieces	
ALL FULL SPEC AND UNUSED (Mail Order only)	
LOTUS	
SOUND	
4 MORGAN STREET LONDON E3 5AB	

SEPTEMBER OFFERS (ALL FULL SPEC.)

741 (RCA 8DIL) $17 p, 2$ red LED 8p, LM711CH Data (TO 5 Voltage Comparator) 25p. Morganite Cermet Trim Pots 100 ohm 20p, Painton PCB Mounting Multiturn Pots 1 K 20p, TBA8105 65p, 2513 (upper case) £5.50.

Signetics 2102 B (500 ns) £1, 2708 £6.50, TMS3128NC (shift reg) 80p, SN74188AN (few only) $£ 2.50, \mathrm{MC} 10102 \mathrm{P} 25 \mathrm{p}$. (few only) £2.50, MC10102P 25p.
MM5241ABV/J £2.50, MC1034P (MECL D MM5241ABV/J £2.50, MC1034P (MECL D
Flip Flop) $\mathbf{1 5 p}$, MC 1039 P (Quad Level Translator) 20p. N82S126N (Prom $256 \times 4 \mathrm{O} / \mathrm{Col})$ £1.30, 7456440 p . Cannon D Type Plugs/ Skts, 25 Skt 60p, 37 Pluk Orskt 80p, 15 Plug or Skt 50p, Oll Swts, 4 way $55 \mathrm{p}, 7$ way 80 p , LM 340 T Plastic 1 A Voltage Regulators, +5 V 95p, + 12 V 85p, $P / P 10 p$. All enquiries s. please, Cat s.a.e. 8×6 free with goods.
Now distributor for Mutek Products including Ides Micro Systems. In stock Video interface board 16 line. 64 characters, data and control inputs, video output. Ideal for Micro Processor use. With full documentation, £81, P/P plus insurance $£ 1$. Brochure available.s. a.e.

POCKET PAGER

Miniature crystal controlled FM RX Single Superhet around 30 MHZ 450 KHZ IF contains various tone detectors. Ideal for modifications to 27 MHZ Radio Control OR 28 MHZ Amateur Band. Complete, without 2.5 V DEAC + circuit of similar type, £3.95. P\&P 25p

L. B. ELECTRONICS

43 WESTACOTT,'HAYES MIDDLESEX UB4 8AH

CALCULATORS SCIENTIFLC

TEXAS T1 25 (Now LCD Sci/ Stats) \$TEXAS PC100B (Printing Unit for
 \#TEXAS PC100B (Printing Unir for I159, T158) HP \& TEXAS Libraries and Accessories avail

$E 22.50$

 *TEXAS T1-59 (Card Progs. 960 steps of 100 Mem)TTEXAS T1.58 (Key Progs. 480 steps or 60 Mem)
WTEXAS T157 (Key Progr *TEXAS 1157 (Kay Progr. 8 Mem. up to 150
50 Progrt. steps) -TEXAS T1.45 (new updrted version of T140) *TEXAS 42 MBA (10 Dig. Fin/Stat Progr. 12 Mem. 32 Keystrokes)
*TEXAS SR51-11 (New 8 Dig + Exp. 10 Mem *) 32 Progr. Steps Stal/Sci) + Exp. 10 Me TEXAS T1 Programmer (Hexadecimal/Oct) \#TEXAS T1 158 (Complete with Master Module
plus Applied Statisica Module) plus Applied Statistics Module)
HCBM 4190 (Scient. Pre-prog. 14-dig. / EXP.) شCBM 4190 R (Scient. Pre-prog. 14-dig. / EXP
WCBM PRi00 (100 Mer 72 step prog)

(Casserte, VDU Display Unit and Keyboard

ONLY E643.00	
WHP 19C (Continuous mem. key prog. printer)	¢163.00
*HP29C (as 19C but no printer)	¢110.00
WHP27 (10 mem sci./fin / /stat 8 digit + exp)	E73.00
WHP 67 (card prog. 224 steps 26 mem.)	£277.00
*HP 97 (card prog. 224 steps print 26 mem)	E466.50
All HP range available including NEW ' ${ }^{\text {c }}$ ' Range	
CASIO/CO1 (Cal. Dig. Alarm Clock)	£23.00
CASIO L3100 «LCO Sci-Std / Div. Polar Rec. etc	£22.50
*CASIO FX201P isci 11 mem. 127 step prog.)	
FORTRAN SYSTEM	
-CASIO PROFXI (as above but card prog)	¢ 89.00

Texas T159 with PC1OOB E356

MORE BARGAINS FROM METAC

Ever feel you need a good rub down before you start one of our projects? Perhaps you need-

ETIPRINTS

ETIPRINTS are a fast new aid for producing high quality printed circuit boards. Each ETIPRINTS sheet contains a set of etch resistant rub down transfers of the printed circuit board designs for several of our projects. ETIPRINTS are made from our original artwork ensuring a neat and accurate board. We thought ETIPRINTS were such a good idea that we have patented the system (patent numbers 1445171 and 1445172). The following are available in the ETIPRINTS series.

001	3 Channel Tone Control Spirit Level Clock A Digital Thermometer Skeet Game Compander	Oct 77 Oct 77 Nov 77 Oct 77 Nov 77 Nov 77	006	CMOS Switched Preamp From Experimenters P.S.U 555 Boards (twice)	Electronics Tomorrow		Noise Generator General Preamp Flash Trigger Compander Active Crossover (2 PCBs)	Project Book Six
002	House Alarm Rev Monitor Clock B	$\begin{aligned} & \text { Jan } 78 \\ & \text { Dec } 77 \\ & \text { Dec } 77 \end{aligned}$	007	Star Trek Radio CD Ignition CCD Phaser White Line Follower	May 78 May 78 May 78 April 78	012	$\left.\begin{array}{l}\text { Disco Lightshow } \\ \text { Stereo Simulator } \\ \text { Digital Thermometer }\end{array}\right\}$	Project Book Six
003	Race Track Game Hammer Throw Freezer Alarm	$\begin{aligned} & \text { Jan } 78 \\ & \text { Jan } 78 \\ & \text { Dec } 77 \end{aligned}$	008	Tank Battle Helping Hand	May 78 May 78	013	Amplifier Module Amplifier PSU Equaliser Equaliser PSU	Project Book Six
004	Metal Locator Mk II Ultrasonic Tx/Rx 5 Watt Stereo Amp (modified)	$\begin{aligned} & \text { Feb } 78 \\ & \text { Feb } 78 \\ & \text { Jan } 77 \end{aligned}$	009	AM / FM Radio Bridge Oscillator CMOS Stars \& Dots	June 78 June 78 June 78	014	Skeet Game Sweep Oscillator Burglar Alarm GSR Monitor	Project Book Six
	Metronome Porch Light Shutter Timer	Feb 78 Feb 78 Feb 78				015	UFO Detector Torch Finder (twice) Etiwet (twice)	July 78 July 78 Aug 78
005	Op-Amp Supply Frequency Shifter LCD Panelmeter Light Dimmer (3 times)	Mar 78 Mar 78 Mar 78 Mar 78		Bench Amplifier Freezer Alarm Marker Generator LED Dice Watchdog (2 PCBs) Stars \& Dots PSU	Project Book Six	016	Stac Timer Xhatch Gen Wheel of Fortune	Sept 78 Sept 78 Sept 78

ORDER TODAY

Send a cheque or P.O. (payable to ETI Magazine) to ETI PRINT ETI MAGAZINE,
25/27 OXFORD STREET, LONDON W1R1RF.

Lay down the ETIPRINT and rub over with a soft pencil until the pattern is transferred to the board. Peel off the backing sheet carefully making sure that the resist has transferred. If you've been a bit careless there's even a 'repair kit'. on the sheet to correct any breaks!

SINTEL

THE SINTEL SIX DIGIT MAINS CLOCK KIT with BLEEP ALARM and TOUCH SWITCH SNOOZ

- high brightness display
automatic intensity control
oeep red display filter
SLIM WHITE CASE $205 \mathrm{~mm} \times 40 \mathrm{~mm} \times 140 \mathrm{~mm}$ battery backu

- CRYSTAL CONTROL FOR IMPROVED ACCURACY

Order as $A C K+B E K+X T K$
The k it is supplied complete with the excepton of a mans plug. cable and batiery

DATABOOKS	
BEST OF BYTE Volume 1. 380 pages Illustrating Basic	$\begin{aligned} & £ 11.95 \\ & £ 2.45 \\ & \hline \end{aligned}$
Intel Momory Design Handbook	E5.20
Intel 8080 Microcomputer Systems User 's Manual	E. $\mathrm{E}^{50} 5$
Intel 8085 Microcomputer Systems User's Manual	E6.50
Motorola Booklet From the Computer to the Microprocassor	£1.80
Motorola McM ${ }^{\text {c }}$ (${ }^{\text {a }}$ Databook (Vol 5 Series 8)	c3.50
Motorola M6800 Microprocessor Applications Manual	\& 12.95
Motorola M6800 Programming Manual	c. 5.35
National SC/MP Introkit User's Manual	c0.75
National SC/MP Technncal Description	£1.80
National Semucenductor TTL Databook	¢2.10
RCA CMOS and Linear IC Dastabook	C5.45
Texas Instruments Pin Configuration Guide A very useful set of gloss cards showing top and bettom	pin-out
views of 7400 ICs plus many others (I Memories. Op-Amps, etc)	¢2.95
z80 Assembly Language Programming Menual	E7.50
Zilog ZBO-CPU Technical Manual -	¢5.60
Ziog 280 CTC Product Specitications	c0.80
Zilog Z80-P10 Technical Manual	¢3.30
DATASHEETS at 75p each on IM6100. 6800. SC/MP. CDP 1802, 2650 TMS5501. TMS8080	09131
280p $\overline{\mathrm{p}}$ Intel 8085 . Also free data on some components	

Some Popular Memories available from SINTEL (See ETI DATA SHEET SPECIAL July 1978)		
2102450 nsec 1 K STATIC RAM		£1.85
2102650 nsec STATIC RAM		¢1.85
$27081 \mathrm{~K} \times 8 \mathrm{bt}$ UV ERASA8LE ROM		E.8.80
5508600 nsec IK STATIC RAM		E8.05

ASSEMBLED LATCHED COUNTER MODULES

SIX DIGIT TTL COUNTER MODULE Our range of Industrial Latched Counter Module Kits is now avalleble ready-built These counters use both CMOS and TTL se and will save you considerabie design. purchasing, building and de bugging tume Esich
module uses a set of red LED displays, and features a single inline plug and socket Instructions are provided For full detalls please send for Catalogue

	TTL				cmos			
	Pan No	Built	Pan No	Kit	Partino	Bult	Part No	Kit
2 2010	$401-4{ }^{4}$	£13.22	525-12	¢10.52.	945-598	£13.02	540-476	¢10.42
4	715484	22] 31	957-412	¢17.90	512-564	[22.83	369-470	[18.11
6 mon	293-434	c53.78	121-412	E25.68	393-568	E32.31	191-470	£2s. 55

NEW PRICES AND SOME NEW CMOS ADDITIONS

CD4000	0.15	C04027	0.44	$\overline{\text { CD4 }} 051$	0.82	CD4086	0.64	CD40182	1.40
CD4001	0.17	CD4028	0.77	CD4052	0.82	CD4089	1.38	CD40192	1.40
CD4002	0.17	CD4029	1.03	CD4053	0.82	CD4093	0.80	CD40193	1.40
CD4006	1.04	CD4030	0.50	CD4054	1.04	CD4094	1.69	CD40194	1.19
CD4007	0.18	CD403	2.00	CD4055	1.18	CD4095	0.94	CD40257	1.48
CD4008	0.87	CD4032	0.88	CD4056	1.18	C04096	0.94	C04502	0.81
CD4009	0.50	CD4033	1.25	CD4059	4.29	CD4097	3.35	CD4510	1.01
CD4010	0.50	CD4034	1.71	CD4060	1.00	CD4098	0.98	CD4511	1.25
CD40:1	0.18	CD4035	1.08	C04063	0.98	CD4099	1.65	CD4514	2.47
CD4012	0.20	CD4036	2.86	C04066	0.55	CD40100	2.50	CD4515	2.82
CD4013	0.43	CD4037	0.85	CD4067	3.35	CD40101	1.61	CD4516	1.01
CD4014	0.83	CD4038	0.96	CD4068	0.20	CD40102	2.13	CD4518	0.97
CD4015	0.83	CD4039	2.78	C04069	0.20	CD40103	2.13	CD4520	1.04
CD4016	0.48	CD4040	0.97	CD4070	0.45	CD40104	1.10	CD4527	1.43
CD4017	0.79	CD4041	0.75	CD4071	0.20	C040105	1.08	CO4532	1.21
CD4018	0.43	CD4042	0.69	CD4072	0.20	CD40106	0.62	CD4555	0.78
CD4019	0.50	CD4043	0.88	CD4073	0.20	CD40107	0.69	CD4556	0.78
CD4020	1.11	CD4044	0.84	CD4075	0.20	CO40108	5.36	MC14528	0.93
CD4021	0.00	CD4045	1.28	CD4076	1.17	CD40109	1.03	MC14553	4.43
CD4022	0.82	CD4046	1.20	CD4077	0.39	CD40160	1.19	1M6508	8.05
CD4023	0.18	CD4047	0.89	CD4078	0.20	CD40161	1.19		
CD4024	0.70	CD4048	0.50	C04081	0.20	CD40162	1.19		
CD4025	0.20	CD4049	0.50	C04082	0.20	CD40163	1.19		
CD4026	1.55	CD4050	0.43	C04085	0.64	CD40181	3.40		

Our Offices are at 209 Cowley Road, Oxford, but plaase for free Catalogue
Univs. Polys
OROER\&: C.W.O. add VAT © $8 \%+35 p$ psp TELEPHONE And CREOIT Invoice) ORDERS add VAT $8 \%+60$

OR̄DERS TO: SINTEL, PO BOX 754 , OXFORD Tel: 086549791

FABT SERVICE: We guerente that Talephone Ordare for doepatched on the teme dey by 1 let Clase Post (zome have ireme by parcel post) and our stocking is good. Private bercleveerd number, with a minimum ordep value of $£ 5$. officiel ordore, no miniment.

SINCLAIR PRODUCTS" Microvisıon TV now in stock $£ 200$. PDM 35 diguta
multimeter $£ 27.25$, mains adaptor $£ 3.24$, deluxe padded case §3.25, new DM235 digital mu umperer P.O.A., Cambridge programmable calcu lator £13.15, prog library $£ 2.05$, mans adaptor
S-DECS AND T-DECS*
S-Dec E3.39, T-DeC E4.44, μ-DeCA E4.52 \%-DeCB E6.73, 16 dil or 10 TO5 adeptors with sockets E 2.14
CONTINENTAL SPECIALITIES PRODUCTS*
EXP $300 £ 8.21$. EXP350 £3.40. EXP600 £8. 80 EXP650 £3.89. EXP4B E2.48. PB6 E9.84. PB100 £12.74. LM1 £30.99. LP1 £33.48. LP TV GAMES
Send s a.e. for tree date New racing car iv game
chip AY-3-8603 plus economy kit $\mathbf{E 2 0 . 6 0}$. Tant Chittle chip AY-3-8710 plus economy kit £ 13.96 stunt motor cycle chip AY-3.-8760-1 plus economy kt $£ 12.50,10$ game paddle 2 chp AY.3-8600
plus economy ki? $£ 14.70$, AY- 3.8500 chip plus plus economy kit $£ 14.70$, AY-3. 8500 chip plu
economy kit $£ 8.5$, modified shoot kit $£ 4.96$, rifl kit $£ 4.95$, colour generator kit $£ 7.50$. Atractivel cased assembled tv games 4 game model
(tennis. football, squash and palota) black and \{tennis, football. squash and polota) black an colour model with pistol attachment $£ 21.95$. TV games mains adaptors $£ 3.10$.
MAINS TRANSFORMERS
 $12-0.12 \mathrm{~V} 50 \mathrm{ma} 79 \mathrm{p}, 100 \mathrm{ma} 90 \mathrm{p}, 1 \mathrm{~s} £ 2.49$ $13 \mathrm{~V} 12 \mathrm{a} 95 \mathrm{p}, 15-0-15 \mathrm{~V}$ 1a $£ 2.79,30-0-30 \mathrm{~V} 1$ JC12. JC20 AND JC40 AMPLIFIERS
A range of integrated curcuit audio amplifiers supplited with iree data and printed circurts. JC 12
6 watts $£ 1.60$ JC20 10 watts $£ 2.85$. JC40 20 6 watts \&1.60. JC20 10 watts £2.95. JC40 20 watts $£ 4.20$. Sends a.e for iree date on our rang
FERRANTI ZN414
"c radio chip $£ 1.05$. Extra parts and pcb for radio
PRINTED CIRCUIT
MATERIALS
PC etching kits economy £1.70, standard £3.82, 50 sq ins pcb 40p, 1 lb FoC $\$ 1.05$, stch ressis pens aconomy 45 p , dalo 73 p . small difll bits
$1 / 32$ ins or 1 mm 20 each, etching dish $\mathbf{~ S 8 p}$. laminate cutter 75^{2}.

BATTERY ELIMINATOR
BARGAINS
TVmee power unit stabihzed 7.7 V 100 ma 4.way multy-lack $3 / 4 / 2 / 6 \mathrm{~V} 100 \mathrm{ma} ~ £ 2.02$. $6 / 71 / 2 / 9 \mathrm{~V} 300 \mathrm{ma}$ E3.30, 100 me radio modets
 $\mathrm{V}+9 \mathrm{~V} £ 4.50,6 \mathrm{~V}+6 \mathrm{~V} £ 4.50,41 / 2 \mathrm{~V}+41 / 2 \mathrm{~V}$ 4.50, cassarte recorder mains unle $71 / 2 \mathrm{~V}$ 2 ma with 5 in din plug $\mathbf{~ 2 2 . 8 5 , ~ c a r ~ c o n v o r t ~}$ T/2V 300 ma \& 1.50 .

BATTERY ELIMINATOR KITS end sae for free leaflet on range 100 mar redio 1.80 . 9 V $\varepsilon 1.80,41 / 2+41 / 2 \mathrm{~V} £ 2.50,6+6 \mathrm{~V}$
 rpee $4 / 2 / 6 / 7 / 81 / 2 / 11 / 13 / 14 / 17 / 21 / 25$,
 $3 / 41 / 2 / 6 / 71 / 2 / 9 / 12 / 15 / 18 \mathrm{~V}$ 100 ma E .20 . /41/2/6/71/2/9/12/15/ VV 100 ma E3.20, 2.18 V 100 ma £3.60. $2-30 \mathrm{~V} 1 \mathrm{~A}$ £ 9.95 . $2-30 \mathrm{~V}$ 2A E14.95.
err convertors 12 V dc input. output 9 V 300 ma
BI-PAK AUDIO MODULES
end s s of lor data 5450 tuner $£ 23.51$. AL60
4.8s. PA100 £15.71. SPM80 £4.47. BMT80 5.9\% MK $60 £ 38.74$. Stereo 30 £20.12.

BULK BUY OFFERS
 Sens 59 p . AC76023N exact equiv of SN76023N with improved heat sink 79p. Plastic equivs of
 crin 4.7p, BCY72 4.4p. Furse $20 \mathrm{~mm} \times 5 \mathrm{~mm}$ cartidge 25 . 5. 1, 2.3. 5Amp quickblow type ohm to 10 M . $1 / \mathrm{WW} 0.8 \mathrm{sp}$. iW 1.ep. Potyester coppecitors $250 \mathrm{~V} 01.022,033.047 \mathrm{mf} 2.7 \mathrm{p}$,
$015 \mathrm{mf} 1.1 \mathrm{p}, 06 \mathrm{mf} 1.4 \mathrm{p}, 01 \mathrm{mf} 1.5 \mathrm{~m}, 0222 \mathrm{mf}$ $3 \mathrm{p}, 033 \mathrm{mf} 2.5 \mathrm{mf}, 047 \mathrm{mf} 4.8 \mathrm{~m}$. Polytyrene
 Cermic capperhors 50 V E12 22 pf to 1000 pf

 $220.330 \mathrm{mf} 9 \mathrm{p} .470 \mathrm{mf} 11 \mathrm{p}_{\mathrm{M}} 1000 \mathrm{mf} 81 / 2 \mathrm{p}$.
 pots sub-minature
4 M 76.8 P . Potiontionton horiz or vert 100 to 4 K 7 to 2 M 2 log or lin single 26 p , dual 7 fp .

SWANLEY ELECTRONICS

3

 Wilmslow

 Wilmslow Audio

 Audio}

THE firm for speakers!
Send 15p stamp for the world's best catalogue of Speakers, Drive Units, Kits, Crossovers, etc., and discount price list

ATC AUDAX BAKER BOWERS \& WILKINS - CASTLE CELESTION - CHARTWELL COLES DALESFORD DECCA EMI EAGLE - ELAC FANE GAUSS GOODMANS HELME I.M.F. ISOPHON - JR - JORDAN WATTS KEF - LEAK LOWTHER McKENZIE MONITOR AUDIO PEERLESS RADFORD RAM - RICHARD ALLAN O SEAS TANNOY VIDEOTONE WHARFEDALE

WILMSLOW AUDIO Dept. ETI

SWAN WORKS, BANK SQUARE, WILMSLOW CHESHIRE, SK9 1HF
Discount HiFi, etc., at 5 Swan Street and 10 Swan
rel: WILMSLOW 29599 FOR. SPEAKERS WILMSLOW 26213 FOR HIFI

DESIGNING H(EST)~FI
 AMPS PART2

Stan Curtis considers which parameters matter most in super-fi audio, and how they can best be optimised.

FOR MANY YEARS it has been the standard practise to specify and compare amplifiers through their ability to handle a continuous (steady state) sine-wave signal. Thus such a signal is used to measure power-output frequency response, harmonic distortion, crosstalk, input overload capability, intermodulation distortion, damping factor, and gain! Unfortunately many engineers and Hi Fi pundits still believe that such information is ALL that is necessary to quantify an amplifiers performance and to compare it with others. Not so.

Steady-state sine-wave testing can however, tell only part of the story and can often be misleading. Music contains complex wave forms with a spectral content of greater than eight octaves and dynamic ranges of up to 100 dB . Yet such complexity is readily understood by the human brain which, in mastering the subtleties of spoken language, has evolved the ability of extraordinary auditory sensory perception. The music signal, as with all audio signals, can be considered in terms of two variable qualities. - the frequency domain, and the time domain.

Frequently Timely

The frequency domain is the area that has monopolised engineers thought for so long. Even the most complex music signal can be represented by a Fourier Analysis.

This develops mathematical equation which lists separately each frequency making up the signal together with its phase and amplitude. However, a Fourier Analysis is only complete in the case of simple waveforms, with more complex waveforms it becomes only a convenient approximation.

Of course, in order to make a Fourier analysis of a signal the components of that signal have to be analysed over a period of time such that complete cycles of the lowest frequency can occur.

Thus we take consideration of the Time Domain.
Where steady-state signals are concerned the Time Domain is not normally considered as the signal is of a continuous unchanging nature between any two periods. If the "time window", during which the signal is Fourier analysed is reduced progressively it becomes
apparent that an accurate spectral analysis becomes less possible. It can then be seen that the important characteristics of the signal are amplitude and rate of change. In other words it's envelope

What is required is the amplification of an audio waveform in such a way that the ear can detect no degradation.

What Do We Want?

Let us consider ways in which such degradation can occur. The waveform envelope can be distrorted by amplitude changes of any component or by changes in the phase relationship of the component harmonics

Experimental work has established that changes in the relative amplitudes of the harmonic structure of the waveform are readily detectable.

Other work has shown that the qualitative characteristics of a complex sound depend upon the phase relationships of the component harmonics. It would seem that as a phase difference must be interpreted as a time delay between the component parts of the signal then a sufficient phase shift in a system must eventually become audible as these component parts are moved in respect to each other in time. In practise large phase shifts are very audible and indeed telephone lines are often subjected to phase and delay correction to render speech intelligible. However, establishing an acceptable degree of phase shift is extremely difficult.

Following the arrival of the "linear phase" loudspeakers great controversy has raged over whether phase shifts effect sound quality. A study of the experimental work performed to date shows that
i). It seems to be very difficult to repeat someone else's experiment (and get the same results!)
ii). It seems, on balance, that where recurrent waveforms (steady state) such as sine-waves (and instruments producing a "continuous" although decaying tone) are concerned; then quite large phase shitts, between the extremes of the frequency band, have no identifiable effect on sound quality.

However, a phase non-linerarity on the leading edge of a true transient appears to be audibly more perceptible. Particularly on speech and percussive sounds.

Bandwidth and TID

Transient signals cause many problems for amplifiers of which phase lineratity is but one. Other problems are; instability and ringing, clipping, slew-rate limiting, and transient intermodulation distortion. Transient intermodulation distortion (TID or TIM) is an effect that has been much in vogue in the past 3 or 4 years but which is often misunderstood. TID can be predicted mathematically but such a description is out of place here. TID most commonly occurs when an amplifier, with overall negative feedback over several stages, is driven by a large enough signal whose frequency (or equivalent rise time) is above the open loop bandwidth of that amplifier.

Because the feedback loop is fed from the output of the amplifier, it cannot be operating until signal current flows at the output. i.e. during the open-loop rise time of the amplifier.

The outcome is very large signals occuring in the intermediate stages of the amplifier causing those stages to distort or even to clip. With some amplifiers this clipping (which cannot occur with any steady-state signal) can cause the stage to latch-up for a time until the operating conditions restabilise

Thus not only is the leading edge of the signal severly distorted - in some cases it is removed completely.

TID is therefore a form of overloading that is dependent upon both amplitude and time. This is audibly (but at a higher signal level) similar to cross-over distortion, as both effects cause phase and amplitude modulation of the signal due to momentary change in gain. (Remember that at the corss-over point zero, there is a no current flow in the output stage and hence no feedback current and so the amplifier is momentarily open-loop).

Making Big Bands

TID can be avoided by careful design an amplifier whose open-loop bandwidth is greater than the highest freqiency of the input signal. The maximum bandwidth can then be defined at the input by a passive RC Filter. Thus if we decide upon a maximum signal bandwidth of 20 KHz than our filter will limit the signal waveform rise-time to $T=0.35$

$$
\begin{aligned}
& T=\frac{0.35}{20 \mathrm{kHz}} \\
& \text { i.e. } 17.5 \mathrm{uS}
\end{aligned}
$$

Our amplifier's open-loop bandwidth should be designed to be, say 23 kHz , giving it an open-loop rise-time of 15 uS. and freedom from TID. If however, in the interests of a good specification, and possibly better reproduction, we decide upon a closed-loop bandwidth of 100 KHz (i.e. a rise time of 3.5 uS .) then our amplifier will need an open-loop bandwidth of greater than 100 kHz to maintain freedom from TID effects. In a power amplifier such performance is not easy to obtain.

Fast power transistors are notoriously easy to blow-up and are expensive. The common form of lag compensation (used where the open-loop bandwidth is perhaps 2 kHz) has to be replaced by lead compensation.-

Another technique is an extension of the first in that the preceeding stage of the power-amplifier is designed to have a lower open-loop band width than the next.

Fig 1. Circuit diagram of a typical amplifier circuit which employs lag compensation techniques - provided b̄y C.

Fig 2. The other method. Lead compensation illustrated. Components \mathbf{R} and \mathbf{C} provide the time constant.

Fig 3. Third method of avoiding TID. Making each stage in the design have a wider B/W than the preceding one.

Important or not?

Many people now consider that TID is unimportant or that it doesn't exist. This is partly because it is very difficult to measure and only readily visible in the laboratory in the "clipping" stage. To reach this stage with most amplifiers (but not TID - free designs) requires either fast rise-time or high signal levels or both.

Fig 4. This amplifier design has a limited open loop bandwidth and the THD will rise with frequency.

Fig 5. Contrast this with figure four above. The bandwidth here is much wider, resulting in a more linear THD response.

Fig 6. The effects of slew-rate limiting on a signal passing through an amplifier prone to this fault. Top: a squarewave, note the slight overshoot. Below that a sinewave. In both cases the dotted line represents the input.

Conditions that are unlikely to occur in practise.
However, a large degree of non-linearity and hence bad intermodulation will still occur with more realisable input signals. Although this cannot be measured yet (how do you measure say, 5% IM over a period of 5 milliseconds??) it can be predicted mathematically and, just as important, heard. Amplifiers free of TID have a very "open" quality with accuracy of depth.

Benefits Conferred

An amplifier designed with a wide open-loop bandwidth, for low TID often has other, more tangible, benefits. The high frequency THD is usually no higher that at the mid-point; in stark contrast to more traditional designs. This is because gain is still available at high frequencies for negative feedback.

Slew Who?

Such amplifiers also usually have much higher slewrate. Slewing-rate defines the speed with which the amplifier can deliver output voltage to the load. For example, if an amplifier has a maximum output of 100 volts p / p and a rise-time of 10 uS . then the amplifier, if it were perfect, should have an output of about 80 volts after 10 u secs in response to a suitable square wave input. In other words the output voltage would have risen at the rate $8 \mathrm{~V} / \mathrm{uS}$.

However, amplifiers do not generally respond to large changes as fast as their small signal characteristics predict, for circuit and transistor capacitances can be charged only as fast as their driving circuits allow. In its, simplest form the slew-rate of an amplifier defines how fast the output voltage can change for large signal conditions, and it is normally quoted in Volts per micro. second. The maximum slew-rate of an amplifier is usually limited by the slowest stage in its circuit.

That stage will have an operating current I (as set in the design) and a capacitance C (usually a frequency compensation capacitor)

$$
\text { Slew-Rate }=\frac{\mathrm{T}}{\mathrm{C}}
$$

Thus it a transistor stage has a standing current of 100 u A and is compensated by a 43 pF capacitor then its Slew-Rate will be

$$
\frac{100}{33}
$$

$$
\text { i.e } 3 \mathrm{~V} / \mathrm{u} \mathrm{~S} \text {. }
$$

Depending upon the design some circuits have a different Slew-Rate depending upon whether their output is negative-going or positive-going. Slew limiting also defines the full-power bandwidth; a figure more commonly quoted by manufacturers.
$\begin{array}{ll}f p=\frac{S R\left(10^{6}\right)}{2 \pi E \text { op }} & \quad \begin{array}{l}\text { E op }=\text { peak output swing in volts } \\ f p=\text { Full power bandwidth in Hertz }\end{array}\end{array}$
Thus in a 100 Watt (into 8 Ohms) amplifier having full-power bandwidth of 20 kHz the required minimum slew-Rate would be about $5 \mathrm{~V} / \mathrm{uS}$. This is, however, the absolute minimum figure and experience suggests that such an amplifier would have a hard, gritty highfrequency sound. Such an amplifier should have a Slew-Rate of greater than $20 \mathrm{~V} / \mathrm{us}$ to be certainof avoiding the increase in distortion caused by the gradual onset of slew-limiting.

Fig 7. A comparison of the limiting characteristics - in general of both transistor and valve amplifier types. There is a body of opinion which holds these curves to be the whole truth as to why valve amplifiers are preferred by many musicians.

Unfortunately the higher the power output of the amplifier the greater the required slew-rate as more volts are swing at the output in the same period of time and so as our 100 W amp needs a $20 \mathrm{~V} / \mathrm{uS}$ an otherwise identical 50 W amp needs $14 \mathrm{~V} / \mathrm{uS}$ and a 20 W amp needs only $9 \mathrm{~V} / \mathrm{uS}$.

Clip Around The Ear

But these forms of distortion tend to give subtle audible effects compared to the most common amplifier problem - that of clipping. Clipping occurs when an amplifier is overloaded by high level signal peaks. Such peaks occur frequently in much music material and so the manner in which the amplifier clips determines its audibility. A soft, clipping effect where the distortion rises gradually (typical of valve amplifier circuits) is audibly preferable to the hard clipping typical of transistor circuits.

Worse still, some amplifiers tend to suffer saturation

Fig. 8. Illustrating the load line conditions for output stages.
effects on clipping, and take a time to recover; thus artificially extending the length of time the signal is clipped. The use of overall negative feedback to reduce distortion unfortunately makes things worse. Overall feedback effectively linearises the clipping making it hard the distortion changes from 0.01% (say) to 10%, and quite suddenly too.

Designing A Designer

We have covered just a few of the requirements a designer must consider when working upon the design of power-amplifier. There are many more to be considered to even rough out a design specification before thecircuit hardwave is considered. The following sequence is mandatory:

1. What parameters are important to prevent any audible degradation of the signal?
2. Detail a performance specification that meets the requirements of (1).
3. Decide upon the circuit technology necessary; Bipolar; MOSFET; Valve; Class A; Class B; Switching; fact; slow; etc; etc.
4. Perform a development programme to produce a prototype.

At this point the designer has to admit that it's a real world and that his performance specification cannot be achieved in a way that is acceptable to the accountants, salesman, customer, customer's wife or whoever else is around. Trade-offs are necessary and much to the "art" in amplifier design is in the deciding which defects-and degradations are more acceptable than others.

As an illustration of the changes in design approach over the years we will briefly illustrate three designs for which the author has been responsible:

1. Cambridge Audio P60 (P80) (designed 1974)
2. Lecson AP3 Mk II (designed 1976)
3. Mission Electronics Voltage Amplifier
(designed 1977)

HOW IT WORKS-Cambridge P60

The P60 power amplifier is of a conventional design but with care being taken to optimise each stage. Q8 and Q10 form a long-tailed pair with Q9 as their emitter current source. Q8 and Q10 must be very closely matched for minimumDCoffset and for maximum common-mode rejection to avoid H . T. ripple appearing at the output. The next stage is the Q13 voltage amplifier which is loaded by a current source (Q12) instead of the more common "bootstrapped" resistors. Note that Q13 is buffered
from the long-tail pair by an emitter fol lower (Q11) to prevent any loading of that stage worsening the distortion characteristics.

Capacitor C33 gives lag compensation which defines the dominant pole of the amplifiers. The open-loop bandwidth is quite high (for this type of circuit) at 12 kHz but none the less this amplifier is prone to TID effects. The protection circuit is very unusual in that the output is limited by an FET (Q7), Q19 and Q20 each form conven-
tional V-I summing circuits which monitor the loading on the output stage.

If either Q19 or Q20 turns-on, the gate of the FET Q7 (normally biased-off by R54 to the negative HT) is biased positive and it starts to turn-on. It then acts as a potential divider with R52 and thus attenuates the audio signal. This protection only turns on at the equivalent of 50 W into 2 Ohms load and when it turns on it only adds moderate distortion (0.2% typically) as distinct from clipping.

Improvements

The P60 is capable of good mid-band performance (THD 0.01% at 1 kHz 30 W) but its high frequency distortion is poor because of the limited open-loop bandwidth. Generally this amplifier performs well at low and moderate levels but at high levels its sound quality becomes hard and aggressive. Some improvements to this circuit can be quite simply made as follows

1. A resistor is fitted between Q 10 collector and the negative rail to give better balance between 08 and Q10:
2. A cascode transistor is fitted to Q13 collector to reduce "Early effect" distortion due to the collector-base capacitance of Q13.
3. An emitter resistor is fitted to Q13 to provide local negative feedback.
Fig 10 (Right). Showing how some of the improvements mentioned can be added to the P60 basic design.

Here is THE low cost VDU that most people have been waiting for - TANGERINE 16/48

If you are one of them, read on!

Look at these features, and see if you don't over estimate the price -

* Complete kit contains ALL parts required, inc. full spec. i.c's, double-sided pth board, readybuilt UHF modulator, plus supporting assembly and full applications manual.
* Usable with ANY un-modified television.
* Upper \& lower case characters, independent of the type of keyboard used.
* Automatic Scroll-Up.
* 10 different baud rates inc. 110 with RS232 or $20 / 60 \mathrm{~mA}$ loop compatibility, or parallel mode.
* Page Clear \& Cursor Controls, + all display functions, software controllable.
* "Bell" output for direct speaker drive.
* Simple liow-power requirements, less than 5 watts.
* Switchable Cursor, and Auto-Feed.

We have all probably thought at some time or other that it is all very well to be able to buy a micro-processor chip for less than $£ 10$, but to justify these high speed devices, a fast terminal is essential and they can cost in excess of £1,000.

Most of us have access to a television, and this unit will he! p to frovide a low-cost terminal for any computer that is capable of sending \& receiving ASCII in parallel or serial form. All you need is a simple power supply of modest proportions, and of course a $\mathrm{t} . \mathrm{v}$. set that receives UHF on 625 Lîines. [Channel 36] Other extras may include an ASCII keyboard, and a case but they are not essential.

As seen from the list opposite, it has so many features, that we wonder why people are "making do" with all the other units that are currently available. The display quality is superb and most important, does NOT require a single modification to the $\mathrm{t} . \mathrm{v}$. set, so no problems with the Rental Companies. Outputs are also available for all unused characters, for any application you care to implement.
When you have compared all the other kits we think that ours will be the natural choice.

ORDERING INFORMATION.
The normal KIT price is $£ 139-86$, which includes postage, packing \& insurance, and VAT @ 8%. HOWEVER, as an introductory gesture we are discounting this price by $£ 10$, for all orders received postmarked BEFORE 12th, December 1978.

If you require further information, send an A4 sized S. A.E, or should you need a T ANGERINE in your system, please send a cheque or money order made payable to TANGERINE.
RIVERMILL LODGE LONDON RD. St.IVES CAMBS. PE 17-4 BR

ETI MARKET PLACE

15-240 Watts!

- 5 The HYy is a mono hybrid amplifier ideally suited for all applications. All common input functions

 (mag Cartidge, tuner, etc), are catered for internally, the desired function is achieved either by a merely require connectint connection to the appropriate pins. The internal volume and tone circuits I.L.P. power amplifiers and power supplies. To ease construction and mounting a P.C connector is supplied with each pre-amplifierFEATURES: Complete pre-amplifier in single pack - Multi-function equalization - Low noise - Low distortion - High overload - two simply combined for stereo.
APPLICATIONS: Hi-Fi - Mixers - Disco - Guitar and Orgar - Public address
SPECIFICATIONS
INPUTS Magnetic Pick-up,3mV Ceramic Pick up 30 mV ; Tuner 100 mV : Microphone 10 mV OUTPUTS Tape 100 mV : Main output 500 mV R.M.S

DISTORTION 0.1% at 1 kHz : Signal/ Noise Ratio 68 dB

HY5 mounting board B1 48 P C .

15 Watts into 8Ω
The HY30 is an exciting New kit from I.L.P it features a virtually indestructible I.C. with short circuit and thermal protection. The kit consists of IC. heatsink, P.C. board, 4 resistors, 6 capacitors, mounting kit, together with easy to follow construction and operating instructions This amplifier is ideatly suited to the beginner in audio who wishes to use the most up-to-date technology available
FEATURES: Complete kit - Low Distortion - Short Open and Thermal Protectron -- Easy to Build APPLICATIONS: Updating audio equipment - Guitar practice amplifier - Test amplifier - Audio oscillator
SPECIFICATIONS:
OUTPLT POWER 15 W R.M.S. into 80 DISTORTION 0.1% at 15 W
INPUT SENSITIVITY 500 mV FREQUENCY RESPONSE $10 \mathrm{~Hz}-16 \mathrm{kHz}-3 \mathrm{~dB}$
SUPPLY VOLTAGE $\pm 18 \mathrm{~V}$
HY50
25 Watts into 8Ω
The HY 50 leads I.L. P. s total integration approach to power amplifier design. The amplifier features an integral heatsink together with the simplicity of no external components. During the past three years the amplifier has been refined to the extent that it must be one of the most reliable and robust High Fidelity modules in the Wortd
FEATURES: Low Distortion - Integral Heatsink - Only five connections - 7 Amp output transistors applications. Monimm

Hi. Fi systems - Low power disco - Guitar amplifier
OUTPUT POWER 25W RMS in 8Ω LOAD IMPEDANCE $4-16 \Omega$ DISTORTION 0.04% at 25 W at 1 kHz
SIGNAL/NOISE RATIO 75dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE +25 V SIZE 10550.25 mm .
HY120
60 Watts into 8Ω
The HY 120 is the baby of IL.P.s new high power range designed to meet the most exacting requirements including load line and thermal protection, this amplifier sets a new standard in modular design
FEATURES: Very low distortion - Integral Heatsink - Load line protection - Thermal protection APPLICATIONS: Hi-Fi - High quality disco - Public address -- Monitor amplifier - Guitar and organ.
INPUT SENSITIVITY 500 mV
OUTPUT POWER GOW RMS into 80 LOAD IMPEDANCE A-16n. DISTORTION 0.04% at 60 W al SIGNAL/NOISE RATIO 90 dB . FREQUENCY RESPONSE $10 \mathrm{~Hz} .45 \mathrm{kHz}-3 \mathrm{~dB}$ SÚPPLY VOLTAGE $\pm 35 \mathrm{~V}$
Size $114 \times 50 \times 85 \mathrm{~mm}$.
Price £19.01 + £1.52 VAT. P\&P free
HY200
The HY200. now improved to give an output of 120 Watts has been designed to stand the most rugged conditions, such as disco or group while still retaining 'irue Hi-Fi performance FEATURES: Thermal shutdown - Very low distortion - Loadlline protection -- Integral Heassink
120 Watts into 8Ω
APPLICATIONS: Hi.Fi - Disco -- Monitor - Power Slave -- Industrial - Public address SPECIFICATIONS
INPUT SENSITIVITY 500 mV
OUTPUT POWER 120 W RMS into 80 . LOAD IMPEDANCE 4.160 DISTORTION 0.05% at 100 W at 1 kHz . NOISE RATIO 96 dB . FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz} \ldots 3 \mathrm{~dB}$. SUPPLY VOLTAGE
SIGNAL/NOL SIZE $114 \times 100 \times 85 \mathrm{~mm}$

Price $\mathbf{E 2 7 . 9 9 + \mathbf { ~ } 2 . 2 4 \text { VAT. P\&P free }}$

HY400
240 Watts into 4Ω
The HY400 is L.L.P.s "Big Daddy" of the range producing 240 W into 4 2 ! It has been designed for high power disco or public address applications. if the amplifier is to be used at continuous high power levels a cooling fan is recommended the amplifier includes all the qualities of the rest of the family to lead the market as a rue high power hi-fidelitv oower module
FEATURÉS: Thermal shutdown - Very low distortion - Load line protection - No external
coplont
APPLICATIONS: Public address - Disco - Power slave - Industria
SPECIFICATIONS
OUTPUT POWER 240W RMS into 4n. LOAD IMPEDANCE 4-16々 DISTORTION 0.1% at 240 W at
SIGNAL/NOISE RATIO 94 dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kmz}$ - 3 dB SUPPLY VOLTAGE
INPUT SENSITIVITY 500 mV S!ZE $114 \times 100 \times 85 \mathrm{~mm}$
Price $£ 38.61+£ 3.09$ VAT. P\& P free.
POWER SUPPLIES

PSU36 suitable for two HY30's $\mathbf{£ 6 . 4 4 + 8 1 p}$ VAT
SU50 suitable for wo HY50's $£ 8.18+£ 1.02$ VAT
PSU70 suitable for two HY120's $£ 14.58+£ 1.17$ VAT
PSU180 suitable for two HY2000's or one HY $400 £ 25.42+£ 2.03$ VAT

TWO YEARS' GUARANTEE ON ALL OF OUR PRODUCTS

I.L.P. Electronics Ltd. Crossland House Nackington, Canterbury Kent CT4 7AD
Tel. (0227) 64723

Please Supply
Total Purchase Price
I Enclose Cheque \square Postal Orders \square Money Order \square
Please debit my Access account \square Barclaycard account \square
Account number
Name \& Address

THE FIRST FREE-FLIGHT test of the Spacs Shurile, watched by 60,000 people marked the comrercement of the final p a ase of months of resting at Edwands Air Force Base in the Mojave Desert of So uthern Cal formia. At the end of January 1977 the Shuttle was rr oxed from its assembly facility at Palmdale, along 5 Fm of specially widened roacs to Edwards AFB, for the first Appreach and Landing Test (ALT).

The Space Shutte is the irst of a nev bread of spacerraft which is designed to be reused. Previously, the technology available meant that each staceeraft could be used only once, but fer any ongtern program of spase research this is extremely westeful. Everything was built to the highest standards and ther ssad only once The Space Shuttle changes this. The Space Shutde Orbiter vehicle is designed to land intect it the same manner as an aircraft, and the solid roclee bocsters used to provide the eriormouss thrust at takeofl are also reusable. In fact, a Space Shatlle can be latinchey as quickly as 160 hours after anding from the previous mission, although a two-week ground turnaro nd is the goal in actual use.

Up Up And...
The Shutte is launched vertically, attached to an external tank which contains the ascent fuel burnt by the Orbiter's main engines, and iwo solid rocket boosters. At lift-off all the engines fire in parallel, the SRB's each generating $11.800,000$ Newtons of thrust and the three Orbiter engines each generating $2,100.000 \mathrm{~N}$. The two SRB's are jett soned once they burn out and are recov. ered after a parachute descent. The external tank is jettisoned before the Orbiter attains orbit.

The orbital manoeuvring system is used to make any adjustments to the orbit or any manoeuvres that may be

Hidden in the wake of the Apollo's the Shutile Orbiter heralds the beginning of a new age - the age of the true spacecrati. Whit its initial testing completed, we take a detaite, took at the first (proven) spacestip to land on Earth:

required duaing the missior. The jets for this system are mounted near the nose and in peds on the upper sear of the fuselage These jets can pifci, roll ar yaw the O-biter.

The Orbiter is designed to carst a erew of seven (early missions cal for four), including scientific and tec.anical personnel and a parload up 0.8 m long anc 5 m in diameter. Because of the low g tarces at launch, only 3 g and less than 1.5 c on re-emtry, soage fight is $n 3$ tonger limited to irtensively physically trsined astronauts now experienced sccientists and technicians can have access to zers g. vacuum concitions.

Payloads up to $29,500 \mathrm{~kg}$ cen be jlaced into orbit.

These can range trom small satellitzs to fully equipped scientific aborateries, and not only cen the Space Shuttle launch payloads into orbit, it can also retrieve and return them, and service or refurbizh satellites in space. The versati ity of the Shuttie's cargo opens up whole new areas, e. space manufasturing

Down

Upon completion of the various mission duties, the crew will prepare the Obbiter for re-entry - this is when the Space \$hitle reatly flies. The Orbiter, since it moves in the two media of air and vacuum, has two separate manoeuvring systems. One is the oro tal manoeuvring system referred to above, and the other s a set of
aerodynamic control surfaces that act in much the same way as convertional aircraft.

There are sever aerodynamic cortrol si rfaces on the

ORBITAL OPERATIONS
HEIGHI 161.906 kilometers (100.800 miles)
DURAION 730 doys

ATMOSPHERIC ENTRY
HEIGHT 122 isiometers (76 miles)
VE:OCIT $26765 \mathrm{~km} / \mathrm{hr}$ 16.633 mph :

LANDING
SERVICING FOR RELAUNCH
CROSSRANGE 2011 kilomerers
(± 1250 mies)
(from entry path)
VELOCITY $335 \mathrm{~km} / \mathrm{hs}$
(208 mph)

Orbiter. Four of these are on the rear of the wings and are called 'elevons' - they combine the effects of elevators and ailerons. The fifth surface is at the bottom rear of the fuselage between the wings, and assists the elevons in controlling the pitch of the craft. It also protects the rocket engine nozzles from buffeting in the airstream during re-entry. The two remaining panels are on the rear of the vertical tail and can be used as a rudder or spread apart to form a 'speedbrake' by increasing the drag. This is used to limit the airspeed during landing.

At low speeds these surfaces act in a conventional manner. However, at supersonic speeds above Mach 1.5, the effect of some of the control surfaces is reversed, or not the expected one, which makes flying in a conventional manner impossible! To get round this problem, the Space Shuttle, unlike most aircraft, which use mechanical or hydraulic links between pilot and controls, uses a digital 'fly-by-wire' Flight Control System. This is based on three on-board IBM System / 4 Pi AP-101 computers which monitor their own operation to provide a measure of fail-safe redundancy.

SPECIFICATION

LENGTH
SYSTEM: 56.1 merers (184 feet)
ORBITER: 37.1 merers (122 feer)
HEIGHT
SYSTEM: 23.1 meters (70 feet)
ORBITER: 17.4 merers (57 feer)
WINGSPAN
ORBITER: 23.8 merers (78 feer)

WEIGHT

GROSS LIFT-OFF
1.99 million kilograms (4.4 million pounds)

ORBITER LANDING:
84.8 thousand kilograms (187 mousand pounds)

THRUST
SOLID-ROCKET BOOSTERS (2):
11.6 million newtons (2.6 million pounds) of thrust each
ORBIIER MAIN ENGINES (3):
2.1 million newtons (470 thousand pounds) of thrust each

CARGO BAY

DIMENSIONS:
18.3 merers (60 feer) long, 4.0 meters (15 feer) in diometer
ACCOMMODATIONS:
Unmonned spocecroft to fully equipped scientific laborotories

Flight Modes

The Flight Control System (FCS) can be operated in three modes: Direct (DIR), Control Stick Steering (CSS) and AUTO. The mode can be selected separately for pitch, iroll/yaw, speedbrake and body flap controls.

In DIR mode, the pilot grips a small stick called the Rotational Hand Controller and ordinary pedals. Movements of these inputs to the FCS produce movements of the control surfaces in the same way as a conventional
orbital positioning systems

reinforced carbon edge

go and it responds in the correct way
The angle of attack must be carefully controlled to avoid overheating problems during the descent. To accomplish this, the Shuttle banks at up to 80 degrees, and so flies on a curved path. This would take the Shuttle away from its target and so, several times during the re-entry, the bank angle is reversed, and the vehicle starts turning back towards its target. This manoeuvre is complicated by the fact that, because of the high angle of attack, the rudder is virtually in a vacuum, and so these turns are executed by rolling the Shuttle.

Approach

Finally the Orbiter is down to a speed of Mach 1.5, and begins to fly like a conventional aircraft. It is now at a height of $21,000 \mathrm{~m}$ and about 50 km from its landing field. From now on, things are straightforward as the pilot closes in using conventional electronic navigation equipment like TACAN and Microwave Scanning Beam Landing System. As he turns to the final flitepath, the pilot will use the speedbrake on the tail to lose both speed and height. During this phase of the landing, the
special silica tiles over most of the other surfaces to maintain the airframe within acceptable temperature limits.

Unfortunately, because of the high angle of attack, moving the RHC to the left in the DIR mode causes the Orbiter to roll to the right. This is because the right elevon is deflected downward, but this causes drag, and turns the vehicle to the right. This increases the lift on the left wing, so it lifts, causing the right roll. In the Control Stick Steering mode, though, this problem is taken care of by the Flight Control System, and the pilot simply moves the stick the way he wants the vehicle to

solid fuel rocket booster

The Orbiter makes final approach at $540 \mathrm{~km} / \mathrm{hr}$ and at an angle as steep as $24^{\prime \prime}$. At 600 m , the pilot starts to pull up, or 'flare', and at 300 m , the landing gear is pull up, or flare, and at 300 m , the landing gear is
dropped. The vehicle touches down at $350 \mathrm{~km} / \mathrm{hr}$; at this point it is losing $9 \mathrm{~km} / \mathrm{hr}$ of speed every second and stalls at $280 \mathrm{~km} / \mathrm{hr}$, which is why the land is at such high speed. The Approach and Landing Test were designed to check out the performance of the Shuttle during this check out the performance of the Shuttle during this
phase of the mission. They were also designed to check the performance of that now-famous $747 /$ Space Shuttle combination which will continue to fly, delivering Orbiters to the launch site from the production line and landing sites.

First Flights

The first flight of the Space Shuttle took place on 12 th
August last year. At 8 AM the 747 Shuttle Carrier August last year. At 8 AM, the 747 Shuttle Carrier \rightarrow speedbrake the pilot will open the speedbrake and steepen his descent; if low, he will close it and fly a shallower glidepath.

The complete system. The only nonreusable section is the fuel tank for the Orbiter engines. This drawing shows clearly the different types of thermal protection adopted on different parts of the Orbiter. reinforced carbon leading edges

parachutes packed in nose

speedbrake is normally open at 45°. If the Orbiter is

Space Shuttle Orbiter 101 rides '"piggyback' atop NASA's 747 Carrier Airc'aft in the first series of captive approach and landing tests concucted at NASA's Dryden Flight Research Center at Edwards Air Force Base in Californiz. With the Orbiter unmanned and its systems inactive, the highly successful first tests verified the safe operation of the combined venicla configuration, Photo was taken at about $\mathbf{1 6 , 0 0 0} \mathrm{ft}$. above the California desert.

Spacz Squttle can deliver both the materials and the machinery requirec to build large space strustu*es, such as this demonstration satellite solar power station. After being fabricated and assembled in low eartio-bit, a power station wou d be transferred to its permanent place in geosynchronous prlit (about 22,000 miles out in space). There it would bearn a continuous stream of microwave energy to earth rece vers, which would convert the enengy to electricity. When comsleted the station would be 1000) feet square and 25 feet thict.

The Shuttle orbiter cargo bay which is larger (60 by 15 feet) than most freight cars - will accommodate a great variety of payload combinations. Payloads can be installed or removed while the orbiter is either horizontal or in the vertical position on the launch pad, as shown here, which greatly enhances operational flexibility. The payload "changeout" room is located in the white structure on the left.

Aircraft with its piggyback Orbiter took off on time - the only problem had been a fault in one of the AP101 computers, but that unit was quickly replaced

At 8.47 the pair were at 8.539 m , and the Boeing started a 7 dive. At a speed of 280 kts , and a height of 7.346 m, the Boeing pilot informed the Shuttle crew that they were ready for separation. The crew, Haise and Fullerton, fired the separation bolts and lifted away, rolling to the left while the 747 dropped to the right. Following a pair of right and left rolls to put some distance between the two craft, Haise tried a practice flare and some banking manoeuvres. This gave the computers at Johnson Space Centre the opportunity to calculate any deviation from the predicted lift/drag ratios, information which would allow a more accurate landing. In fact, the JSC ground controllers muffed it by assuming that the Orbiter was in level flight, whereas it was actually climbing, so they concluded that the lift / drag ratio was lower than predicted

Haise could not open the speedbrake beyond 45°; this was a mission constraint to avoid steep glideslope angles. Performing a flare at 270 m , Haise touched down 600 m beyond the expected touch down point at a speed just over $360 \mathrm{~km} / \mathrm{hr}$. The overshoot was no problem, as runway 17 at Edwards AFB is 11 km long, but with the wheels on the ground, Haise opened the speedbrake to 90° and the nose wheel came down. The flight had lasted just 5 min 23 sec .

The first three flights were made with a streamlined tail fairing covering the dummy rocket engines at the tail. The fourth flight, on 12 th October, was made with the fairing removed, giving a slightly reduced lift/drag ratio. Otherwise, the vechicle did not behave significantly differently

Next Comes Nothing

With all the approach and landing tests completed, the Shuttle programme moves into its next phase which takes it into space. In the middle of 1979 the Orbiter will be lifted from Cape Kennedy for its first real flight. At present the projected date is sometime in June, but this may well change

Rockwell are already selling space in the cargo bays - and doing very well too. One of the first payloads will be the Euro Space Lab, which will use the Orbiter's ability to stay put in space for up to a month or more. Cargos are being accepted from commercial firms tooso if you fancy sending a package into space this is your chance. Move quickly though because space in space(!) is harder to get than Star Wars tickets and bookings stretch out a few years into the future.

Hopeful Sign

Of course the Shuttle gives us the capability to build space stations at last, with all that implies - solar power, weather control, observatories and starships. It may be a long time before Man does reach for the stars, but at least we've taken the first step.

ETI
Our thanks to Rockwell International - Space Division - for their assistance in the preparation of this article.

A key Shuttle payload is Spacelab, center, a multipurpose laboratory that will enable scientists to conduct experiments in the gravity-free environment off space. The lab is being produced by the European Space Agency (ESA), a consortium of European nations, in cooperation with the Naticnal Aeronautics and Space Administration.

international

aLL IN OUR OCTOBER ISSUE: ON SALE 1st SEPTEMBER

CLICK ELIMINATOR

Gordon King explains and reviews Garrards ingenius (but simple in theory) device for removing those annoying 'clicks' caused by scratches on your favourite LPs.
 \section*{\section*{PROXIMITY
 \section*{\section*{PROXIMITY

 SWITCH}

 SWITCH}

This switch, which is activated when an object approaches, will find a multitude of applications ranging from things like burglar alarms to light switches that will activate as someone walks through a door. The switch is a true proximity switch so you do not have to have any hands free to activate it!

IEFH TITS special

Next month we present a bumper 8page special of your circuit ideas.

COMPLEX SOUND

 GENERATORComplete with a simple probe keyboard, this inexpensive unit is really a 'one chip' synthesizer capable of producing a variety of grunts, groans or squeaks. It can be used as a simple sound effects unit or simply as an organ capable of producing an enormous number of sounds.

RF POWER METER

An indispensible tool for the radio amateur or communications serviceman alike. The unit is both an RF power meter and SWR meter which will operate with RF from 100 kHz to 100 MHz , and can be built to cope with powers from 500 mW to 500 W .

Following the popular articles on Op-amps and Oscillators, Tim Orr has once again put pen to paper to reveal the techniques behind the theory and practice of Voltage Control of Gain, and once more gives many circuits, each of which is a project in itself.

[^1]
INTERESTED IN HOME COMPUTING?

Start now and don't get left behind
The NASCOM 1 is here
Ex-stock with full technical services
Plus the opportunity to join the fastest moving club of personal computer users enbling you to get the most out of your computer. You can OBTAIN and EXCHANGE programs and other software - many now available.

The Powerful $Z 80$ Microprocessor
Professional Keyboard
1 Kbyte Monitor in EPROM
2Kbyte RAM (expandable)
Audio Cassette interface
Plugs into your domestic TV
Easy construction from straightforward instructions -- no drilling or special tools - Just neat soldering required.
Manuals separately $£ \mathbf{£ . 5 0}$.
£197.50 + 8\%VAT (incl. P\&P Insurance) Can be supplied ready built, tested and guaranteed. Trade and College enquiries invited

IMPROVED TV MODULATOR AVAILABLE £2.90 incl. VAT

COMPUTER COMPONENTS
MICROPROCESSORS

200 K Baud (5 voli)

All prices include VAT except where shown. Orders over $£ 5$ post and packing free otherwise add $20 p$
Please make cheques and postal orders payable to COMP or phone your order quoting BARCLAYCARD or ACCESS number
For technical information and advice ring JIM WOOD, BSc(Eng), ACGI, MIEEE

SHOP OPEN - 10am to 7pm - Monday to Saturday
CLOSE TO NEW BARNET BR STATION - MOORGATE LINE

WHEEL OF FORTUNE

ETI's project team is in a real spin this month with their Wheel of Fortune game.

ONE ARMED BANDITS with no arms, Pinball tables with an MPU at their centre - the world of electronics has a lot to answer for. Is nothing sacred?

The answer to that last question as far as we at ETI are concerned is not a lot. We've taken the liberty of implementing that traditional fairground attraction, the Wheel Of Fortune in our own electronic fashion. The game usually features a large wooden wheel and ratchet arrangement, the stall either accepting bets on which of the ten numbers will be under the pointer when the wheel stops; or, perhaps, suggesting that a message under the pointer will give an indication of what the future holds in store for you you will meet a tall dark stranger, you will marry young and have 2.4 mortgages, etc.

Will 0 Fortune

Our game accurately apes the real thing, the circle of LEDs simulating the spin of the Wheel getting under way as a pair of touch contacts are crossed with you palm (or more likely finger). The movement of the LEDs will then slow down to, it seems, an excrutiatingly slow speed until it finally stops. All this visual activity is at the same time accompanied by a clicking sound that simulates the ratchet sound of the real game.

Wheel Meet Again

It's easy to become a trifle blase about electrical games, particularly in the face of the never ending stream of things that we see in the shops at present, but even the most hardened people, and we've got some fairly hardened people here at ETI, found

PARTS LIST

None of the components used in the Wheel of Fortune game should prove hard to find as most will be stock items in many component shops. Make sure that the tantalum capacitors specified for C1, 2 and 3 are used as the circuit makes use of the low leakage characteristics of these components.
the Wheel of Fortune to be fun. If you start thinking about building it now it might just get finished for Christmas.

Construction

Start by mounting all the components on the PCB with the exception of the LEDs. Pay attention to the orientation of the polarity sensitive devices and, for choice, mount the ICs in holders. In order to
squeeze everything into the small box we used, the PCB tracks have been made quite fine so be careful when soldering that no excessive amounts of heat are applied to any sections of the board.

As can be seen from the internal photograph of the game, the back of the crystal earpiece is removed before mounting the device in the case. This is to ensure adequate room between the IC and earpiece.

The touch contacts formed by two drawing pins are glued to the front. panel. When the case has been prepared place, but do not solder the LEDs, into the PCB and offer them up to the case. Solder one lead of each LED. At this stage make sure that all the devices are properly seated, then solder the second lead.

That just about completes the construction, just connect up to a battery and place your bets. EII

Fig.3. Full circuit diagram of the Wheel of Fortune game.

HOW IT WORKS

THE Wheel of Fortune circuit can be broken down into a number of distinct sections; the display circuitry, an audio stage, a VCO, and a touch sensitive/monostable configuration.
In the "off" state R1 holds the input of ICla high and hence the output of this gate, wired as an inverter, is low and Cl is discharged. Bridging the touch contacts causes the gate's output to go high and C 1 to be charged up via Dl. When the finger is removed from the touch contacts and the output of ICla returns low, Cl is prevented from discharging into this gate as Dl is now reverse biased, instead C1 discharges slowly via K2.

The VCO is formed by the components associated with IC1b, c and d. The circuit in fact generates a series of constant duration negative going pulses separated by "spaces" whose duration can be varied by the control voltage.

When the control voltage (the voltage on

Cl) is below a threshold level that is equal to half supply voltage the circuit will not oscillate. If we now assume that the voltage on Cl rises to supply, as would be the case when the touch contacts are bridged, C 2 will start to charge up. The voltage avross C2 is applied, via R4, to the schmitt trigger formed by ICla and b . As the voltage applied to the schmitt crosses its upper switching threshold the output of ICld, which inverts and buffers the schmitt's output, will go low. This will cause C2 to be rapidly discharged via the relatively low impedance path offered by R6 and D2. As the voltage on C2 crosses the lower threshold of the schmitt the output of ICld returns high and C2 once more begins to charge. The time taken for the voltage on C2 to reach the schmitt's trigger point is dependent on the voltage across Cl . Thus when the voltage on C1 is large, C2 quickly reaches the trigger point and the VCO pro-
duces a high frequency, this requency reducing as the voltage of Cl falls.
The output from the VCO is fed both to IC3 to drive the ring of LEDs and to IC2a, b and c to produce the audio output.
The crystal earpiece that provides the "clicking" is driven from a bridge circuit. This effectively doubles the voltage applied to the transducer and hence, from $\mathrm{P}=\mathrm{V}^{2} / \mathrm{R}$, doubles the audio output.
The LEDs driven by IC3 have their cathodes connected via R7, to the output of IC2d. The output of this gate will normally be high, going low when the voltage on Cl is above half supply. As IC3 outputs are active high the display is thus enabled for a period of time that is slightly longer than the duration of the VCO's oscillation.

C3 and C4 are included to decouple the supply while C5 is needed to prevent any RF interference affecting the circuit's operation.

Photograph of the game's inards. Note that the back of the crystal earpiece has been removed to ensure sufficient clearance between it the IC directly below when the box is assembled. The drawing pins that form the game's touch contacts are glued to the front panel with an epoxy adeshive, the tips of the pins can be seen at the bottom of the picture.

GREENWVEL 443 Milibrook Poad Southampton SO1 OHX Tel:CO703J 772501

All prices quoted include VAT. Add 25p UK/BFPO Postage. Most orders desparched on day of receipt. SAE with onquiries please. MINIMUM ORDER 5) Exp. Ohfial orders accepted from schools, erc. (Minimum invoice charge bona-fide traders Surplus components always wanted.

DIODE SCOOP!!!

We have been fortunate to obtain a large quantity of untested, mostly unmarked glass silicon diodes. Testing a sample batch revealed about 70% useable devices signal diodes, high voitage rets and zeners may all be included. These are being offered at the incredibly low price of $£ 1.25 / 1,000$ - or a bag of 2.500 for £2.25. Bag of 100000 £ 60 .

SPECIAL SUMMER OFFERS
 $76023 \mathrm{~N} \quad \mathrm{E} 1.00 \quad 76033 \mathrm{~N} \quad \mathrm{E} 140$ LM380 80p TBA810S 90p
$\begin{array}{llll} & \text { Linear ICs etc. } & \\ \mathbf{4 1}(8 \mathrm{DIL}) & \mathbf{1 8 p} & \text { BDi } 31 & \mathbf{2 4 p} \\ \mathbf{5 5} & \mathbf{2 5 p} & \text { BD132 } & \mathbf{2 8 p}\end{array}$ N4148 2p 2N3819 18p
22 logic ICs including 32×74161 (4 bi binary counter) +16 tant bead caps, R 's C's. etc. Over $£ 30$ worth of TTL alone ONLYE3.00.

DISC CERAMIC PACK
Ammazing variety of values and voltages from a tew pF to 2.2uF! 3 V to 3 kV ! $200 \mathrm{£} 1,500$ €2.25, 1.000 £4.00.

PC ETCHING KIT MK III Now contains 200 sq ins. copper clad board. 1lb. Ferric Chioride, DALO etch-resist pen, abrasive cleaner, two miniature drill bits, etching dish and instructions $\mathbf{E 4} .25$

EDGE CONNECTORS
Special purchase of these 0.1 pitch double-sided "gold-plated connectors enables us to offer them at
of their original list price!
8 way 41 p; 21 way 47 p; 32 way 72p; 40 way 90p.

VERO PLASTIC BOXES We keep a very large range of VERO pro ducts - inc. their recently introduced range of cases, and Series II boxes. SAE to

TMS4030 RAM

4096 bit dynamic RAM with 300 ns access time; 470 ns cycle time; single low capaci ance high level clock i/p; Fully TTL compatble; Low power dissipation. Supplied wit data $\mathbf{£ 2 . 7 5}$

MISCELLANEOUS IC's Supplied with data if requested. MC3302 quad comp. 120p; 710 diff comp. (TO99) 40p; ZN1034E precision timer E2.25, LM/11 Dual diff comp 65p; LM 1303 dual stereo pre-amp 75p; MC1469R voltage reg E1.50, U2. TBA810S audio 70p; SN75110 dual line bAver 700: MC8500 CRCC gen POA

EXPERIMENTERS

CALCULATOR

Based on the C500 chip, this pack of parts enables the more experienced constructor to make an B digit 4 function calculator. The size layout of PCB required, types of suitable display and keyboard that can be used etc. Components included in the pack are C500 calculator chip, driver IC, all components for inverter/clock circuits. R's C's etc. All for oniy $£ 3: 50$.

RELAYS

W847 Low profile PC mitg $10 \times 33 \times 20 \mathrm{~mm}$ 6 V coil. SPCO 3A contacts. 93p.
W832 Sub. min type, $10 \times 19 \times 10 \mathrm{~mm} 12 \mathrm{~V}$ coil DPCO 2 A contacts $£ 1.15$.
W701 6V SPCO 1A contacts $20 \times 30 \times$ 25 mm . Only 56p.
W817 11 pin plug in relay, rated 24 V ac, but works well on 6 V DC. Contacts 3 pole c/o rated 10A. 95p
W819 12 V 1250 DPCO 1 A contacts. Size $29 \times 22 \times 18 \mathrm{~mm}$ min, plug in type 72p. type 3 pole $c /$ o 10 A contacts Only 85 p. ype. 3 pole c/o 10A contacts. Only 35 10 A c/o contacts. £1. 20. Send SAE for our relay list - 84 types listed and illustrated.
LOW COST PLASTIC BOXES Made in high impact ABS. The lids are etained by 4 screws into brass inserts Interior of box has PCB guide slots (except V219).
V210 $80 \times 62 \times 40 \mathrm{~mm}$ black
V213 $100 \times 75 \times 40 \mathrm{~mm}$ black
V216 $120 \times 100 \times 45 \mathrm{~mm}$ black
v219 $120 \times 100 \times 45 \mathrm{~mm}$ white

STEREO AMPLIFIER
CHASSIS £5.50
Complete and ready built. Controls Bass treble, volume/on-off, balance. 8 transistor circuit gives 2 watts per channel output. Jus needs transformer and speakers for low cos stereo amp. Suitable metal cabinet (W374) $\mathbf{£ 2 . 0 0}$ - or buy the amp, case and trans former for $£ 10,00$ and get DIN speake sockets and knobs free!!

AMPLIFIER KIT $£ 1.75$

 Mono gen. purpose amp with tone and vilon-ofl controls. Ullizes sim. circuitry to above amp. Output 2 W into 8 ohms Input matched for crystal cartridge. 4 transisto circuit. Simple to build on PCB provided Can be either battery or mains operated. (For mains powered version add $£ 2.20$ for suit able transformer). Blue vinyl covealuminium case to suit (W372) £1.

1977/8

CATALOGUE

48 BIG pages packed wh over 4,000

 items, many of them illustrated. Discoun vouchers worth 50 p. PRICE $30 p+15 p$ post. (Overseas send $\mathbf{6 0 p}$ surtace or List. Send SAE for bargain list alone
SIRENS

Use in cars. houses, anywhere that a powerful noise will frighten off would-be in $100 \times 72 \times 60 \mathrm{~mm}$. Only $£ 1.70$.

BUY A COMPLETE RANGE OF COMPONENTS AND THESE PACKS WILL HELP YOU

- SAVE ON tIME-No delays in waiting for parts to come or shops to opent
* SAVE ON MA prices - just compar means lowest prices - just compare
* have the right part - No guesswork or substitution necessary!
ALL PACKS CONTAIN FULL SPEC. BRAND NEW, MARKED DEVICES - SENT BY RETURN OF POST VAT INCLUSIVE PRICES
K001 50 V ceramic plate capacitors, 5\% 10 of each value 22 pF to 1000 pF Total 210 . $€ 3.35$
K002 Extended range, 22 pF to $0.1 \mu \mathrm{~F} .330$ values $£ 4.90$
$K 003$ Polyester capacitors, 10 each of these values 0.01,0.015 0.022.0.033.0.047 $0.068,0.1,0.15,0.22,0.33,0.47 \mu$ 110 altogether for E4.75
004 Mylar capacitors, min 100 V type. 10 each all values from 1000 pF to 10.000 pF otal 130 for $£ 3.75$
values from 1000 pF to 047 HF Total 290 capacitors to £11.25
$K 005$ Polystyrene capacitors, 10 each value from 10 pF to $10,000 \mathrm{pF}$, E12 Series 5\% 160 V . Total 370 for $£ 12.30$
$K 006$ Tantalum bead capacitors. 10 each of the following $0.1,0.15,0.22,0.33,0.47$ $068,1,2.2,3.3,4.7,6.8$, all 35 V $10 / 25,15 / 16 \quad 22 / 16 \quad 33 / 1047 / 6$ $100 / 3$. Total 170 zants for $£ 14.20$
mall Electrolyic capaciors 25 V working small physical size. 10 each of these popula Total 70 for $£ 3.50$
$K 008$ Extended range, as above, also including 220.470 and $1000 \mu \mathrm{~F}$. Total 100 for $£ 5.90$
0021 Miniature carbon film 5\% resistors. CR25 or similar. 10 of each value from 10 A to 1 M . E12 series Total 610 resistor E6.00
K022 Extended range total 850 resistors from 1 R to 10 M E8. 30
KO41 Zener diodes. $400 \mathrm{~mW} 5 \%$ BZY88
etc. 10 of each value from 27 V to 36 V E2 etc. series. Total 280 for $\mathbf{1 5 . 3 0}$ to 36 V , E2
K042 As above but 5 of each value $£ 8.70$

KEY:

1: The bit of chocolate you thought you'd leave for later.

2: Coffee stains (instant)
3: A useful-sized bit of stiff paper to stop the window from rattling.

4: Rough calculations for your new combined egg timer/laser cannon project.

5: ETI makes a fair soldering iron stand
6: The dog insisted on carrying your copy to you along with your slippers.

WHAT A BIND!

Half our orders for binders are repeats: we think that says a lot for their quality. At $£ 3.00$ all inc. you get a great deal of peace of mind too!

ETI Binders
25-27 Oxford Street,
London WIR 1RF

The standard timer and controller chip is a preprogrammed member of National's Controller Oriented Processor (COP) family. The device is designed for use in repetitive timing application where 1 to 4 outputs are to operate at 4 user-programmed times. Minimal external hardware is needed for complete system implementation due to direct display drive capability and a key-switch interrogation feature. Strap selection for $50 / 60 \mathrm{~Hz}$ input and 7 -day/8-day mode has been included for added versatility.

Initialization

Power for the device is a single power supply of 7V9 to 9V5. Proper initialization will occur internally if the supply rise time is between 11 $\mu \mathrm{s}$ and 1 ms . If the supply rise time to final value exceeds 1 ms , an external RC network with a time constant in excess of the supply turn-on time should be placed on the Power On Reset (POR) pin. This delays initialization until the power supply voltage is within specifications. Initialised conditions are. (a) time (realtime clock) at 00:00, (b) all set point times to 0000 and all outputs off, (c) all days valid, (d) present day counter to day 1 , and, (e) real-time clock mode.

Setting the time is performed in the normal real-time clock mode by depressing the SET HOURS (10) or SET MINUTES (9) keys. Each depression will cause an increment of the hours from 0-23 or minutes from 0-59, respectively, holding the appropriate key depressed will cause the numbers to roll (slew) at a $4 /$ second rate. Normal operation is to slew the value close to the desired setting and then "bump" it to the final value.

OPTION SELECTION

Strap switches can be used to implement key functions. Figure 1 illustrates "strapping" of keyswitch functions 1-5.

Programming

For proper operation, the system must have 1 or more of its set point times loaded. To load (or program) set points, the DATA ENTRY key (5) must be depressed momentarily to take the system from the normal real-time clock mode to the data entry mode. Upon activation, 1 of the set point times will be displayed and its output status will be shown on the decimal points of the display. After power-up, this will be 00.00 and the decimal points will be off. To examine or go to another set point, the ADVANCE SET POINT key (6) is depressed in the data entry mode for each new time. The 4 values are held in a revovling stack (similar to a calculating stack) and each advance causes it to roll 1 position. Four advances returns to the original position.

To activate a set point, the hours and minutes will be loaded with the same SET HOURS (10) and SET MINUTES (9) keys used in setting the real-time clock. In addition the SET STATUS (8) key is activated and is used to load the output(s) to be activated at the programmed time. Depresssion of the SET STATUS key causes the 1 st decimal point to turn on (which will correspond to output 1 turning on at run time). If this output is the only one to be used at this programmed time, one can go to the next set point by using the ADVANCE SET POINT key. If, however, the

Features

- 24-hour real-time clock with 4-digit display
- $60 \mathrm{~Hz}(50 \mathrm{~Hz}$ option) timing derived from the power line
- 4 Control outputs at each set point time
- 4 set point times may be programmed with repeat every 24 hours
- Valid day programming to "skip" certain days
- Manual mode to verify programming
- Transducer input to force to a preset condition
- Time of day reset to ease time setting or to allow use as a sequence timer
- High speed "demonstration" mode for verification of capability 1
- Single 9V power supply

KEVPAD
ISMITCH

FIGURE 1. Typical STAC Connection
desired output is to be either output 2,3 or 4 , the set status key should be pressed again to advance to number 2, 3 or 4 . Each advance turns off the previous decimal point.

If a combination of outputs is designed (such as numbers 2 and 4), the HOLD STATUS key (2) is used to hold the number 2 decimal point on before the SET STATUS key advances through 3 to number 4. With the use of the HOLD STATUS key and the SET STATUS key. any combination of the 4 outputs can be programmed at each set point. If an error in programming occurs, using the SET STATUS key from position 4 will clear all data (including that set by the HOLD STATUS) and the proper information may be re-entered by following the proper sequence.

If conditions permit, the programming can be verified on the actual outputs by using the MANUAL key (1). This key, when depressed in the data entry mode, transfers the decimal point set-status data to the output latches; thus, the motor, solenoid, valve, or whatever is being controlled will be activated. When all 4 times and their respective output conditions have been programmed, the system is returned to the real-time clock mode by another depression of the DATA ENTRY key. If the valid day information is not used, the system is ready to operate.

FIGURE 2: Pinouts

MM57160 STANDARD TIMER AND CONTROLLER (STAC)

		FUNCTION		
O.	NAME	REAL.TIME CLOCK MODE	DATA ENTRY MODE	DAY MODE
1	MANUAL/ REMOTE TRANSDUCER	Remote transducer input; forces oufput 1. ON, outputs 2-4 OFF until next valid set point after switch is off	Manual verification mode; allows date to be transferred to outputs 1-4	(None)
2	HOLD STATUS/ DEMO	Allows rapid demonstration of sequence by advancing clock at rate of $1 \mathrm{hr} / \mathrm{sec}$	Holds output N ON while programming advances to output $N+1, N=1-4$	(None)
3	8 DAY	Specifies 8 day cycle in lieu of 7 day	Specifies 8-day cycle in lieu of $7 \cdot d a y$	Specifies 8-day cycte in lieu of 7 day
4	50 Hz	Specifies 50 Hz line frequenacy input	Specifies 50 Hz line frequency input	Specifies 50 Hz line fie. quency input
5	DATA ENTRY	Places unit in the data entry mode	Returns unit to the real time clock mode	(Nome)
6	ADVANCE SET. POINT/ RESET TIME	Resets time of day to 00:00 without changing set points but resets all days to valid	Advances display to the next set point so that it may be verified or altered	(None)
7	DAY MODE	Places unit in the day mode	(None)	Returns unit to the realtime clock
8	SET STATUS	(None)	Controls programming of outputs, resets output N to " 0 " (unless preceded by HOLD key) and advances to output $N+1$	Alternate action key, changes day from valid ("1") to invalid ("0") and vice-versa
9	SET MINUTES	Advances minutes display of real time clock	Advances mimutes display of selecterd set point	(None)
10	SET HOURS SET DAY	Advances hours display of real-time clock	Advances hours display of selected set point	Advances display to next day-must be set 10 curient day before returning to real-time clock mode-

Programming Example

1. Output 1 should turn on at 2:00 a.m., and turn off at 4:00 a.m. each valid day.
2. Output 2 should turn off at 2.05 a.m. and turn back on at $4: 00 \mathrm{a} . \mathrm{m}$. each valid day
3. Output 3 should turn on at 2:00 a.m. and turn off at 2:05 a.m. each valid day
4. Output 4 should turn off at $3: 01$ a.m. and turn on at 4:00 a.m. each valid day.
5. Monday through Friday are valid days - Saturday and Sunday are invalid.
6. It is now Monday, the time is $1: 00 \mathrm{a} . \mathrm{m}$.

Given these conditions, it is now advisable to construct an "output truth table"

TIME/OUTPUT	O1	O2	O3	O4
2:00 AM	ON	ON	ON	ON
2.05 AM	ON	OFF	OFF	ON
3:01 AM	ON	OFF	OFF	OFF
4:00 AM	OFF	ON	OFF	ON

The following key sequence may be used to load the preceding program into the STAC memory.

KEY DEPRESSED	DISPLAY	NOTES
	0000	Intlat display
Data Entry	0000	
Set Hours	0100	
Set Hours	0200	
Set Status	0200	Set point 1 at 2.00 am.. output 1 ON

Key Depressed	Display	Notes
Hold Status	0200	Hold output 1 ON
Set Status	0200	Output 2 ON
Hold Status	0200	Hold output 2 ON
Set Siatus	0200	Ontput 2 ON out put 3 ON
Hold Status	0200	Hold output 3 ON
Sot Sidus	0.2.0.0.	Output 4 ON
Acivance Sin Point	0000	
Set Hours	0100	
Set Hours	0200	
Set Minutes	0201	
Set Minutes	0202	
Set Minutes	0203	
Set Minutes	0204	
Set Minutes	0205	
Set Status	0205	Set point 2 at 2:05 a.m.; output 1 ON
Hold Status	0.205	Hold output 1 ON
Set Status	0.205	Output 2 ON
Set Status	0.20 .5	Output 2 OFF. out put 3 ON
Set Status	0.205.	Output 3 OFF, out. put 4 ON
Advance Set Potnt	0000	
Set Hours	0100	
Set Hours	0200	
Set Hours	0300	
Set Minutes	0301	
Set Status	0.301	Set point 3 at 3.01 a m . output 1 ON
Advance Set Point	0000	
Set Hours	0100	
Set Hours	0200	
Set Hours	0300	
Set Hours	0400	

Key Depressed	Display	Notes
Set Status	0.400	Set pornt 4 at 4.00 a.m., output 1 ON
Set Status	0400	Output 1 OFF. out put 2 ON
Hold Status	0400	Hold output 2 ON
Set Status	0400	Output 2 UN, out put 3 CFF
Set Status	0400	Output 3 OFF out pit 4 ON
Data Eitiry	0000	Present tume
Day Mode	11	Day 1 valid
Set Day	21	Day 2, val!d
Set Day	31	Day 3, valid
Set Day	41	Day 4, valid
Set Day	51	Day 5, valid
Set Day	$6 \quad 1$	Day 6, vatid
Set Status	60	Day 6, invalid
Set Day	71	Day 7 valid
Set Status	70	Day 7, invalid
Set Day	11	Return to current day
Demo	(Running)	Run thru at least one 24 hour cycle intermittently fuse Hour \& Minute Keys to "nudge" display to set points) to verify output settings. After passing set point just prior to present time, release Demo key
Set Hours	0100	Present tume

Programming of the STAC is now complete. The program will continue in 24 -hour, 7 . day cycle until manually altered.

INCREDIBLE WATCH BARGAINS

All prices include presentation case, 12 month guarantee, instructions, P\&P Vat Money back guarantee Send cheque or P.O. to

VIDEOTIME PRODUCTS

56 Queens Road, Basingstoke Hants RG21 1RE. Tel. (0256) 56417 Telex 858747
Trade \& Export Enquiries Welcome

ETCH RESIST TRANSFER KIT SIZE 1:1

Complete kit 13 sheets 6 in $\times 41 / 2$ in $£ 2.50$ with all symbols for direct application to P.C. board. Individual sheets 25 p each. (1) Mixed Symbols (2) Lines 0.05 (3) Pads (4) Fish Plates and Connectors (5) 4 Lead and 3 Lead and Pads (6) DILS (7) BENDS 90 and 130^{-} (8) 8-10-12 T.O.5. Cans (9) Edge Connectors 0.15 (10) Edge Connectors 0.1 (11) Lines 0.02 (12) Bends 0.02 (13) Quad in Line.

FRONT AND REAR PANEL

 TRANSFER SIGNSAll standard symbols and wording. Over ' 250 symbols, signs and words. Also available in reverse for perspex, etc. Choice of colours, red, blue, black, or white. Size of sheet $12 \mathrm{in} \times 9 \mathrm{in}$. Price $£ 1$.

GRAPHIC TRANSFERS

WITH SPACER

ACCESSORIES

Available also in reverse lettering, colours red, blue, black or white. Each shee $12 \mathrm{in} . \times 9 \mathrm{in}$ contains capitals, lower case and numerals $1 / 8 \mathrm{in} \mathrm{kit}$ or $1 / 4 \mathrm{in} \mathrm{kit}$. £1 complete. State size.

AH orders dispatched promptly. All post and VAT paid
Ex U.K. add 50 p for air mail Shop and Trade enquiries welcome Special Transfers made to order
E. R. NICHOLLS
P.C.B. TRANSFERS

DEPT. ETI/9
46 LOWFIELD ROAD STOCKPORT, CHES.061-480 2179

HAVE YOU DONE IT LATELY:

Full Catalogue 25 p
Please enclose 20p P\&P with order

B24-RP stereo cassette glass/ferrite record/ playback
£9.84
B12-01 mono cass. playbk. £1.60

B24-01 stereo cass. playbk.
$£ 2.80$
A28-05 stereo 8tk cartridge
£1.80
E12-09 stereo/mono cass, erase . . . £1.80

5/7 Church St, Crewkerne, Som. Tel. (0460) 74321

Calculating Alarm Clock CQ-81

 Clock (hr., min., sec., am /pm)

 Alarm (Daily alarm signal at preset time) Calculator (8 digits, 4 basic functions, constants; 4 key memory: \% (Delta); time calculations: 16 digit. approx. 10.000 hrs bat life. LC.D. 42 mm Hx $70 \mathrm{~mm} W \times 128 \mathrm{D}$.블
Onl © £17.95
Alarm-timer, Stopwatch and 8-digit Calc.

ST-24

Water thin card calculator.
Calculator (4 func, with con-
$\%$ \% 16 digit approx.)
Alarm timer (coun
alarm signal at zero)
larm signal at zero)
2.000 hours bat. life. L.C.D.

55 mmD .
Comes with leatherette case

$$
\text { only } £ 24.95
$$

Casio AO 1000

4.

0
I -üas rime hours. Mins: and Alarm Stopwatch Stopw
secs.
Alarm
© ©
 till cleared.
Calculator four functions including constants memory calculations, \%, V
£21.95 inc. VaI
WE SUPPLY SEIKO WATCHES

y telephone and telex

KRAMER \& CO.
9 October Place, Holders Hill Roäd London NW14 IEJ
Telex 888941 Attn Kramer K7 Tol: 01-203 2473
Mail order only SAE for data sheets Export enquiries welcome

BUILD THE
TREASURE TRACER

- Genuine 5 silicon transistor carcuit, does not need a transistor radio to operate.
- Incorporates unique varicap tuning for extra stability
- Search head fitted with Faraday screen to eliminate capacitive effects.
- Loudspeaker or earphone operation (both supplied).
- Britain's best selling metal locator kit. 4,000 already sold.
- Kit can be built in two hours using only soldering iron, screwdriver, pliers and side-cutters.
- Excellent sensitivity and stability.
- Kit absolutely complete including drilled, tinned, fibreglass p.c. board with components siting printed on.
- Complete after sales service
- Weighs only 22oz.; handle knocks down to 17" for transport Send stamped, self-addressed envelope for literature.

Complete kit with pre-buil search coil

Plus $£ 1.20$ P\&P Plus £1.37 VAT (8\%)

Built, tested and
Guaranteed

$£ 20.95$

Plus £1.20 P\&P
Plus £1.77 VAT (8\%)
MINIKITS ELECTRONICS,
6d Cleveland Road, South Woodford,
LONDON E18 2AN
(Mail order only)

$\left\{\begin{array}{l}\text { AADVANCED } \\ \text { PRODUCTS }\end{array}\right.$

THE FIRST TO OFFER PRIME PRODUCTS TO THE HOBBYIST
AT FAIR PRICES NOW LOWERS PRICES EVEN FURTHER!

1. Proven Quality Factory tested products only, no re-tests

S100 PRODUCTS

S-100 32K STATIC RAM

* Address 32 K Boundary
* Nowait state
* Fully
Buffere
* Phantom can be added
* $2114 \pi \mathrm{TMS} 4045$ or 9135

ASSEMBLED \& TESTED

25SES. $\$ 849.00$	250ns. $\$ 790.00$
450 KIT.	
7999.00	450 ris. $\$ 740.00$

Bare PC B Bard
SPECIAL WFER
/Data
Kit without Memory only $\$ 99.95$. Add
PARATRONICS LOCIC
ANALYZER KIT

DC HAYES DATA COMMUNI-

 CATIONS ADAPTER

* Bell 103 trea. * Origlnate 8 answer mode

Assembled \& Tested

Z-80/2-B0A CPU BOARD * On board 2708

* Power on jump
* 2708 included (450 ns .)
* completely socketed
* completely socketed
Assembled and tested

- For 4 MHz Speed Add $\$ 15.00$

TDL COMPATIBLE Z-BO CPU

Assembled and tested
Kit	
Kit	
Bare PC Board	$\$ 39.95$

BYTE USER BK EPROM BOARD
 Bare Pc Board ………........ $\begin{array}{r}64.95 \\ 21.95\end{array}$ Special Offer: Buy 4 kits only $\$ 59.95$ each
NOTE: $2708-6$ oniy $\$ 5.95$

BOBOA CPU BOARD

S100 compatible with 8 level Vector Interrupt
fully socketed. Auly sockered.
$\$ 149.95$
$\$ 99.95$

Kit	
Bare PC Board w/data	……..... $\$ \$ 34.95$
TAPBELI FLOPPY INTERFACE	

TARBELL FLOPPY INTERFACE

* S 100 Compatible

NOTE: For CPM Add $\$ 70.00$

WMC REAL TIME CLOCK

* S100 Compatib
\$Two interrupts
* Software programmable
$\star 1 \mathrm{MHz}$ Crystal Oscillator
Assembled and lested $\$ 179.95$
Kit
Bare PC Board w/data

MICRODESIGN MR-16 2716 EPROM BOARD (MR-8 Also AvaHa

* Individual Prom Address
\star Uses Low cost 16 K TI EPROMS
* Optional IK RAM *Phantom control

Assembled arid Tested …....... 174.9
databooks a manuals

NSC PTL Data		AMIMOSLISIData	395	Mat vola Meci ata	
NSC Linear Dia	+ 495	Gi MOSA 51 Data	4.95	Mot Vol 5 Cmos oata	${ }^{3} 935$
NSC Limaa APpmote !	395	Osborne Intro To Merro val 0	750	Mot vol 6 Linoar Dafa	3.95
NSC CMOS Data	2.95	Osborne into la Merav val	${ }_{7} 7.50$	Mol MPU Apolications	2500
NSC Audro Dita	3.95	Osborne 90080 Programming	${ }^{7.50}$	Mol Mpu Prog Ret Manual	395
NSC Y Voit rea Data	2.95	Ossorne 6800 Program	${ }^{7} 7.50$	Mat Power Dats	295
NSC Mos	395 395	Ofbotre 2800 Progiammung	7.50	Mot fecture Data	95
NSC Powe transisiors	295	T1/ 11.0	695	Mot 2 eners	2.95
miel Darsboon	3.95	T1 Transistors \& Diodes	850	Basce Sormare Sal vol ior Il	2495
notei MCSA5 Mznual	750	Til Memory Dats	395	Elasc Sotmare Shival ill	3995
nter MCSEOOManual	795	H1OMreat	${ }^{3.95}$	Bask Solware SRI Vor Now	9.95 995
AMO Bobo Manabook	595	Tl Bipoiar Memory	395	Baskic Solware SRI Vol VII	3995
AMC Schormy	-495		${ }_{9}^{4.95}$	1978 IC Master	47.50

6800

DESIGNER BOARDS MODULES PROTO BOARDS

	AMI EVK 200 Kit	449.95
\$235.00	AMI EVK 300 Assembled	649.00
495.00	EVK Kluge Board	95.00
175.00	EVK 16K Byte Ram Board	75.00
75.00	EVK 6 Slot Motherboard	35.00
99.00	EVK Extender Board	45.00
250.00	EVK Solid Frame Chassis	129.00
36.00	EVK Connectors	6.50
250.00	AMI 6800 Proto Rom	30.00
375.00	AMI 6800 Micro Assembler Rom	30.00
295.00	6800 Tiny Basic Paper Tape	20.00
225.00	6800 Tiny Basic Eprom	125.00
60.00 395.00	ZILOG COMPATIBLE BOARDS	
395.00	2-80 CPU	395.00
5.95	ZDC Disc Controller	395.00
145.00	MEM 16/65K Memory	595.00
269.95		

2.Same Day Shipment All prepaid orders with cashiers

NEW CTS

DISPLAYS/OPTO

MONTHLY SPECIALS

KEYBOARD EMCOOERS
 UARTS/USRTS

 BAUD RATE GENERATORS

£2.50 + 25p P\&P

£1.00 + 25p P\&P
$1+2-$ Top projects include
Master mixer, 100 W guitar amp., low power laser
printmeter, transistor tester, mixer preamp, logic probe

Ni-Cad charger, loudhailer, 'scope calibrator, electronic ignition, car theft alarm, turnindicator canceller, brake
inght warning, LM380 circuits, temperature alarm, aerial matcher, UHF-TV preamp, metal locator, four-input mixer, C . 3 -This issue was so popular that it is now sold ou
4-Includes:
Sweet tixteen stereo amp., waa-waa, audio level meter expander/compressor, car theft alarm, headlight reminder, dual-tracking power supply, audio millivoltmeter, temperature meter, intruder alarm, touch switch, push-button dimmer, exposure meter, photo timer, electronic dice, high-power beacon, electronic one-armed bandit!
5-Twenty-two complete projects, including
5 W stereo amp., stage mixer, disco mixer, touch organ, audio limiter, infra-red intruder alarm, model train controller, reaction tester, headphone radio, STD timer, double dice, gen.-purpose power supply, logic tester, pown beacon heart rate monitor. IB metal locator, down beacon, heart tempust pubushed
Graphic equaliser, $50-100 \mathrm{~W}$ amp. modules, active crossover, flash trigger, "star and dot" game, burglar alarm, pink noise generator, sweep oscillator, marker alarm, pink noise generator, sweep oscilator, marker lie detector, disco light show.

SEE PAGE 64

$75 p+25 p$ P\&P
Comprised entirely of new matenal, the edition covers such diverse subjects as Star Wars and hi-fi! The have appeared in ETI - and a look at the future of MPUs, Audio, Calculators and Video. How can you not read it?

syom fric aidulishans or
 No2

£ 1.50

Each volume contains over 150 circuits, mainly drawn from the best of our Tech-Tips. The circuits are indexed for rapid selection and an additional section is included which gives transistor specs. and plenty of other useful dat a.
Sales of this publication have been phenomenal - hardly surprising when the circuits cost under lp each! Each volume costs:
£1.50 + 25p P\&P

$£ 3.00$ + 25p P\&P

This book is rather an unusual reprint from the pages of ETI. The series appeared a couple of years ago in the magazine, and was so highly thought of by the University of New England that they have re-published the series

TRANSDUCERS W MEMSIREMENT AD CONTIOL

nat. mis. m mes. me., puc.a

I

Our successful beginners series came to an end some time ago now and the whole series is available from us in reprint form. The three books between them contain all the information presented in the series (sometimes in more detail!) and together form an excellent starting point for anyone interested in learning the art of electronics
Each volume costs.

$$
£ 1.20+25 p \text { P\&P }
$$

splendidly for use as a standard textbook. Written by Peter Sydenham, M.E., Ph.D., M.Inst.M.C., F.I.I.C.A., this peter Sydenham, M.E., Ph.D.i, M.Inst.M.C.. F.I..C.A.. puis and deals with equipment and techniques not covered in any other book. Enquiries from educational authorities. universities and colleges for bulk supply of this publication are welcomed. These should be addressed to H . W. Moorshead, Editor.

HOW TO ORDER

Postage and packing also refers to overseas. Send remittance in sterling only.

ETI Specials

ETI Magazine
25-27 Oxford Street London W1R 1RF
Please mark the back of your cheque or PO with your name and address.
Please supply me with the following ETI Specials:

Total cheque $/$ PO enclosed $=£$ Address:

M
(Please allow four weeks for delivery)

\squareEASY BUILD SPEAKER DIY KITS Specially designed by RT.VC for cost conscious hi-fi enthusiasis. these kit incorporate two teak-simulate enclosures. two EMI $13^{\prime \prime} \times 8^{\prime \prime}$ (approx.) woders. two tweeters and a pair of matching crossovers Supplied complete with an easr 10 .follow 2800 circuit diagram, and crossover components STEREOPAIR Input is walts rms. 30 watts peak. each unit SPEAKERS AVAILABLE WITHDUT CABINETS It's the units which we supply with the enclosures illustrated
 tweeter. and matching crossover components. stereo pair Power handling 15 watts rms. 30 watts peak. + D \& D [3.40

COMPACT FOR TOP VALUE These infinite baffle

enclosures come to you ready mitred and protessionally finished. Each cabinet measures approx. per steteo pair $\begin{array}{ll}12^{\prime \prime} \times 9^{\prime \prime} \times 5^{\prime \prime} \text { deep. and is in wood simulate. } & \mathbf{f} \mathbf{8 0}^{50} \\ \text { Complete with iwo }\end{array}$ maximum power handling of $7 \mathrm{watts} 8 \Omega+\mathrm{p} \& \mathrm{p}-\mathrm{f} 2.20$ SPEAKERS Two models - Duo lib, teak veneer, 12 watts rms, 24 watts peak. $18 \frac{1^{\prime \prime}}{\frac{1}{2}} \times 13 \frac{1}{3} \times 1 \frac{1}{2}$ (approx.).
 Duo IIb $£ 17$ PER PAIR \quad DuO III 552 PER PAIR OECCA 20 WATIS STERE 0 SPEAKER Slereo pair This matching louds peaket system is hand made. kit comprises of two $8^{\prime \prime}$ diameter approx. base drive unit. with heavy die casi chassis laminated cones with rolled P. V.C

PORTABLE Here's the big-value portable disco console from DISCO RT-VC! It features a pair of BSR MP 60 type autu CONSOLE return, single play protessional series record deck with built-in
pre-amp Pus all the controls and features you need to give
abulous disco performances. p\& 66.50 Simply connects into your existing slave or externa! amplifier
${ }^{5} 6400$

AM/FM STEREO TUMER AMPLIFIER CHASSIS COMPLETE Rotary Controls Vol On/Ot1. Bass. Treble. Balance
Push Butions for Gram, Tape VHF, MW. W and 5 button rotary
selection swich
Power Supply Selenium Bridge-350V OC from $210-250 \mathrm{~V}$ AC. 50 H
Aerial ferrite $8^{-\prime}: n^{\prime \prime}$ " built into chassis for LW and MW plus flying lead for FM aetiay
Powar Output 5 watrs per channel Sine at 2% THD into 15 Ohm
watts speech and music
ape Sensitivity Playback $400 \mathrm{mVV} / 30 \mathrm{OH}$ OHM tor max. output Record
 Radio FM sensifivity for JdB below limiting better than 10 WW AM sensitivisty for 20 ob S/N. MW $350 \mathrm{uV} / \mathrm{Metre} \mathrm{LW} 1 \mathrm{mV} /$ Metre Size approx length $16^{\prime \prime} \times$ height $2^{\text {k/ }}$ " x depih $4^{3 / 4}$
£19.95

PERSONAL SHOPPERS
'VIDEOMASTER' Super Score TV Game with Pistol. Mains operated
'viDEOMASTER' Door Tunes
[24 difterent tunes)
$£ 14.95$ $£ 9.95$
16016 V MAINS IRANSFORMER, $2^{1 / 2}$ amp £2.50
BSR Record auto deck on plinth with
stereo cartridge ready wired
LED 5 function men's digital watch
stainless steel finish
f11.95

LCO 5 function men's digital watch
stainless steel finish
£5.95

LCD 8 function CHRONOGRAPH men's digital
watch stainless steel finish
£7.95

STERED CASSETTE record/replay fully built P.
board. Used, without guarantee. (Ex Equipment.)
£12.95
£1.95
MICRO CASSETTE Tape Recorder
100K Multiturn Varicap tuning pots, 6 for
£13.95

MUSIC CENTRE CABINET with hinged smoke acrylic top
finished in natural teak veneers, size $3011^{\prime \prime} x$
$14 / 2^{\prime \prime} \times 71 / 4^{\prime \prime}$ a pprox
f5.95
MULLARO Built power supply
OECCA OC 1000 Stereo Cassette P.C.B
complete with switch oscillator coils and
lape-heads
7" TAPE TRANSPORT Mechanisms
A selection from

Mullard AUDIOMODULESIN bargall packs CURRENT CATALOGUE

 PRICE $£ 2.25$ATOVER

PER PACK SEEOUR PRICES

PACK $1.2 \times$ LP 1173 10w. RMS output power audio
PACK $1.2 \times$ LP 173 10w. RMS output power audi
amp modules, +1 LP1 182/2 Stere 0 pre amp for amp modules, + 1 teric and auxiliary input.
\qquad
Illus.

PACK $2.2 \times$ LP 1173 10w. RMS oul put power audio amp modules +1 LP 1 184/2. Stereo pre amp for magnetic. ceramic and auxiliary inputs.

ACCESSORIES
Suitable power supply parts including mains transformer, rectifier, smoothing and out put capacitors. $\begin{gathered}\substack{1.00 p+p} \\ 11.95\end{gathered}$

Recommended set of rotary stereo controls m prising BASS, TREBLE VOLUME and BALANCE

р+ +50 р $95 p$

PACK 3 , $\mathrm{xLP1179/2}$ FM Tuning head with AM gang, $1 \times$ [P1 165 AM/FM if module. $2 \times$ PPI $3 / 10 \mathrm{w}$. RMs outpul powe and auxiliary input.
(unfact $£ 9.95$
TRADE ENQUIRIES INVITED

50 WATT MON DISCO AMP
 E29.95 p\& D E2.50

Size approx

20×20 WAT STEREO AMPLIFIER
 Silver fascia with aluminium rotary controls and pushbuttons. red mains indicator and stereo jack socket. Function switch for mic. magnetic and crystal pick-ups, tape, tuner, and auxiliary Rear panel features two mains outlets. DIN speaker and input sockets. plus fuse $20+20$ watts Ims. $40+40$ watts peak.

- special offer: package price with 30×30 kit.

Mk II version operates into 41015 ohms speakers
Specially designed by RI VC tor the experienced constuctor. complete in every detail. Same facilities as Viscount IV amplifier $60+60$ peak, supplied with 2 GOODMANS COMPACT $12^{\prime \prime}$ Bass woofers with cropped sides. 14,000 Gauss magnet. 30 watts rms handling $+3 \% /{ }^{\prime \prime}$ approx. tweeters $\quad £ 49.00$ and crossovers $+£ 4.00 p \& p$ now Avail Lable fully built and tested $£ 39^{00}$ Output $30+30$ watts rms. $60+60$ peak. $\quad p \& p £ 2.50$

AOO-ON STEREO CASSETTE TAPE OECK KIT
Designed for the experienced D.I.Y. man. This kit comprises of a tape transport mech ready built and te sted record/re play electronics with twin VU. meters and level control for mating witt mechan Specifications: Sensitivity - Mic. 0.85 mV a 20 K OHMS 0 in 40 mV 400K OHMS Dutput - 300 mV RMS per channel., 1 KHz tom 2 K OHMS source Cross Talk - 30 db Ta 3 Digit. Resettable: Fiequency Response - $40 \mathrm{~Hz}-8 \mathrm{KHz}_{2} \pm 6 \mathrm{db}$ Deck Motor - 9 Volt DC with electronic speed regulations: Key Functions - Record. Rewind: Fast Forward. Play. Stop \& Eject. Opt. extras: Mains transformer to suite $£ 2.50+£ 1 p \& \&$

Order by giving credit card number ONLY

323 EDGWARE ROAD. LONDON W 2IE HIGH STREET. ACTON W3 6NG ALI PRICES WLCUDE VAT AT $121 / 2 \%$ Al items subject Io availsbility. P

subject to change withoul aotict. subject to change withoul aotice.

100 watts peak ourput.
Big features include two di
inputs, both for ceramic cartridges. tape input and microphone inpul.
Level mixin independent bass and treble controls and master valume. SPECIAL OFFER: The above 50 watt amp plus 4 Goodmens Type gf 8 speakers. Package price $£ 45.00+64.00$ pip

Five vertical slide coatsols mastervolume
tape level miclevel deck level. PLUS INTER OECK FABE
for perfect graduated change from record deck No. 1 to
No. 2. or vice versa. Pre fade level controt 70 watt 557
(PFL\} leis YDU hear next disc before fading $\begin{aligned} & 140 \text { wall pead } \\ & \text { o \& } p[4,00\end{aligned}$
Dutput 100 watts RMS 200 watts peak. 100 watt $\mathbf{I} 65$

CHASSIS RECORO BARMARO DECKCCIOA	
PLAYER DECKS	$\mathbf{9 5}$

[^2]Personal Shoppers EDGWARE ROAD LONDON W2 Tel: 01-723 8432. 9.30am-5.30pm. Half day Thursday. ACTON: Mail Order only, No callers GOODS NOT DESPATCHED OUTSIDE UK

STAC TIMER

The odds were STACed against ETI's projects team this month, but once again they've come through with the goods

THE NAME OF this project is derived from that given by the manufacturer to the IC around which it is built. STAC stands for Standard Timer And Controller and the device is part of National's COPS (Calculator Orientated Processor System) group, a series of, what are in effect, dedicated microprocessors.

The STAC provides a 24 -hour clock with four digit display, much as any clock IC, but has four control outputs which may be programmed to turn on, turn off, or to retain their current status at any one of four preset times during the day. STAC also has the facility to "skip" certain selected days within its seven or eight day (selectable) cycle

The IC is thus a perfect basis for many control applications from central heating installations to fish tanks and hi-fi systems. We will not give details of the interfaces between STAC and the outside world, as with so many potential uses, the circuitry will have to be selected with the particular environment in which you wish to use your STAC in mind.

A STAC In Time

Setting up the STAC is quite straightforward and is rather like using one of the programmable calculators with which many of us are familiar.

At switch on the STAC is initialised to a state where the clock is at 0000 , all set points are zero and outputs off, all days are valid with the present day set to one. The display will show the clock output.

Setting up the clock follows the usual procedure adopted with any digital clock. Pressing the SET HOURS or SET MINUTES will advance the appropriate digits at a rate of four per second.

The next task is to enter the four set points, the times at which the outputs will change and the exact manner in which they will change. To program the STAC it must be taken out of the clock mode and put into the data entry mode by pressing the DATA ENTRY key.

At this stage one of the set point times will be displayed. These values are held in a revolving stack and to examine the next the ADVANCE SET POINT key is pressed, after four "advances" the original value is displayed.

Any one of the set point time is set up with the SET HOURS and SET MINUTES keys as with the clock. The conditions that the outputs adopt at the set point are set up with the SET STATUS and HOLD STATU'S keys.

Indication of the condition of the four outputs is provided by the decimal points of the display, if the decimal point is on the corresponding output is on the left-hand point represents output one. At power up all decimal points, thus outputs, are off.

Operation of the SET STATUS key will cause the first decimal point to turn on (output one on at run time). Each subsequent operation will cause

PROJECT : Stac Timer

 next to turn on.If a combination of outputs is required the HOLD STATUS key may be used to hold the current decimal point on when moving to the next. To do this the key must be operated before SET STATUS is used to advance to the next.

Status Symbol

Operating the manual key while in the data entry mode will cause the decimal point status information to be transferred to the outputs for

When all programing is complete, STAC may be returned to the clock mode by a second operation of the DATA ENTRY key.

While in the data entry mode, the valid days may be set up. The DAY MODE key will cause the current day to be displayed (as a number from one to seven) in the left-most digit of the display. The current status " 1 " for valid, " 0 " for invalid, will be
displayed in the right-hand digit. SET DAY will advance to the next day while SET STATUS will change the validity.

DAY MODE will return the system to the clock display.

If the HOLD STATIUS is operated in the clock mode, time is advanced at a rate of one hour per second, this enables program information to be checked

The ADVANCE SET POINT KEY if

Fig. 1. Full circuit diagram of the STAC timer. Resistors R 14-21 are necessary because the segment outputs will not provide logic level swings without pull down resistors. On our prototype, SW2 was replaced by a wire link.
used in the clock mode will reset the clock but leave set point times unaltered although the day information will be reset.

Needle In A STAC

When programming the STAC it is best to draw up a table of set point times and the state of outputs at each of these as an aid to entering the data in a logical fashion.

An example of programming STAC is shown in the ETI data sheet elsewhere in this issue.

HOW IT WORKS

The power supply for the STAC timer is that R14-21 are required to pull down the regulated by Al after having been smoothed and rectified by Cl and BR 1 respectively.
C6 and R6 ensure that the rise time of the voltage on pin 11 is such that proper initia tion of the timer takes place
The unsmoothed output of the transformer is taken to the shaping circuit provided by
IC2a and IC 2 b together with associated components. This acts as both a schmitt, to clean up the wave form, and a monostablee to ensure that any transients on the mains are not counted by the timer's input circuits The operation of the STAC IC is described referred to text, the programming switches is driven via the buffers in ICs 4 and 5 . Note egment outputs of the STAC in order provide a suitable display drive signal.

The outputs of the STAC are active low and drive LEDS 1-4 via the buffer invertors in C3 to provide an indication that a particular output is 'on'. The invertors ensure that a LED is lit when output is active
Output 1 can be applied, via SW1, to the astable formed by IC2 c and d, When the output goes low it enables the oscillator which drives the buzzer via Q2 and Q3. The buzzer produces an audible tone when a DC EMF damage generated by the buzzer causing damage to Q2 or Q3.

BUYLINES

The STAC timer will be available from National Semiconductor suppliers and the rest of the components should be generally available

In case of difficulty a suitable display can be obtained from Audio

Electronics in Edgeware Road for £1.25. They can also supply a suit able buzzer at 25 p

The case can be obtained from Marshall's and Watford, although there are a lot of similar cases around in most loca shops.

Construction

Construction of the STAC timer should not pose any special problems if the overlay shown is followed carefully. Bear in mind, though, that the power supply, due to the size imitation placed upon the
transformer by the case used, is run near its maximum rating. This means that the buzzer, which increases the current drawn by the unit from the 45 mA with the buzzer inactive but display and LEDs on to 90 mA with buzzer active, should only be run for a maximum of about half an hour.

It also means that although the power supply connections are brought out they should only be used, at most, to power an interface circuit that does not draw excessive current from the main unit

The STAC's outputs are capable of sinking 20 mA and if they are to be used to control any devices that require more drive than this, these limitations should be borne in mind and suitable drive circuitry provided

By the way, if you happen to come up with some ingenious application for your completed STAC timer perhaps you would let us here at ETI know about them

Fig. 2. The STAC's overlay is shown left.

RESISTORS	
R1, 2, 10-13	1 kO
R3	150k
R4, 9	100k
R5	470k
R6	47k
R7	5k6
R14-21	15 k
R22-29	470 R
CAPACItors	
C1	1000 u 16 V electrolytic
C2	22 u 35 V tantalum
C3, 6	100 n polyster
C4	100 u 10 V electrolytic
C5	10 n polyester
C7	2 u 235 V tantalum
C8	100u 10 V electrolytic
SEMICONDUCTORS	
IC1	MM57160
IC2, 3	4001B
IC4, 5	40508
01	BD135
02	BFY50
03	BC214
D1	1 N914
201	9 V 1400 mW
BR1	0.9 A 400 V
LED 1-4	TIL 209
SWITCHES	
PB1-8	mush to make release to break
SW1	SPDT
SW2	SPST
MISCELLANEOUS	
PCB as pattern, four digit common cathode display, $240 \mathrm{~V} / 12 \mathrm{~V} 50 \mathrm{~mA}$ transformer, bleeper, case to suit, display filter, connecting wire, etc	

Fig. 3. The full size foil pattern.

TRANSISTORS				2 23393	0.17	2×4037	0.60	245192	0.80	2M6124	0.45	CC1084	0.16	8 Cl 1788	0.35	8 Cz 13 C	0.15	BC337	0.20
21696	0.39	2 2 2218	0.35	2 2 31994	0.17	2 L 4058	0.22	2 W 5193	0.75	246125	0.47	BC！ 1088	0.16	${ }_{\text {aCli }}$	0.25		0.17	вс338	0.23
21697	0.31	2422184	0.38	2113398	0.19	2， 4059	－ 17	2 2 5194	0.80	40361	0.55	вс1限	0.17	вС179 $^{\text {a }}$	0.25	BC2134	0.17	8 C 57	0.13
216698	0.49	2 2 2219	0.38	2133996	0.19	2 2 4060	0.22	2W5195	0.97	40362	0.55	${ }_{\text {bCl0 }}$	0.16	861790	0.25	${ }^{\text {8C21318 }}$	0.17	${ }^{865474}$	0.13
21669	0.58	212219	0.39	213397	0.19	244061	0.19	2 L 5245	0.37	${ }^{40363}$	1.45	日Cl098	0.17	${ }_{8 L 179}$	0.26	bc21uc	0.17	${ }^{865478}$	0.13
24706	0.30	$22^{2} 220$	0.39	2 233438	085	244062	0.20	2 25246	0.38	404818	0.82	$\mathrm{BClOg}^{\text {c }}$	0.18	aciaz	0.12	BC214	0.17	${ }_{8 C 548}$	－
217060	0.30	$2 \mathrm{2m221}$	0.25	213340	0.75	2×4064	1.35	2M5247	0.44	40409	0.82	BC_{140}	0.30	вс182a	0.12	${ }^{8} 22148$	0.17	8 C 549	0.14
24708	0.30	2\％22214	0.25	243441	0.92	2 L 4074	2.65	2 25248	0.44	40410	0.82	${ }_{8 C 141}$	0.32	${ }^{\text {BLC }} 1828$	0.13	BC214C	0.17		0.14
2 W 718	0.30	212222	0.25	213342	1.45	2 C 4121	0.27	2 n 5294	0.44	40411	3.10	BC147	0.13	8С182	0.	$8 \mathrm{BC21}$	0.18	${ }^{\text {BL549C }}$	0.15
247184	0.54	242222a	0.25	2 236338	0.17	244122	0.27	2 2 5295	0.44	40594	0.87	BC1478	0.13	BC1824	0.15	BC214LB	0.18	8655	0.14
247204	0.85	212335	0.27	2436338	0.17	2 2 4123	0.19	${ }^{215} 5296$	0.44	40595	0.98	${ }^{8 C 148}$	0.13	BC182LB	0.15	${ }^{8 C 2142}$	9．18	${ }^{\text {BCF55 }}$	0.13
24722	0.45	212369	0.27	2 W 3702	0.14	$2 \mathrm{CH124}$	0.19	$2 \mathrm{2m} 298 \mathrm{~A}$	0.44	40673	0.80	${ }^{\text {Cl }} 1488$	0.13	${ }_{8 C 183}$	0.12	ас2378	0.15	BC559	15
2 HT 27	0.50	2 2 2645	0.80	2 n 3703	0.14	2M4125	0.19	2 F 5447	0.16	40669	1.30	BCL 18 CB	0.13	вс183а	0.12	вс2384	0.13	$\mathrm{BCY}_{\text {clo }}$	0.21
2 M 914	0.38	2\＃2647	1.55	$22^{3} 704$	0.14	2 2 4126	0.19	${ }^{2} 24448$	0.16	${ }^{\text {acli }} 126$	0.40	${ }^{8 C 149}$	0.15	BC1838	0.13	${ }^{\text {acz388 }}$	0.13	вС¢71	${ }^{0.76}$
2 N 916	0.33	2229013	1.60	243705	0.14	2 2 4234	0.38	215449	0.20	${ }^{\text {a }} 12127$	0.48	BC149C	0.15	BCO_{183}	0.13	${ }^{\text {BL2385 }}$	0.13	BC772	18
$2 \mathrm{m917}$	0.38	2＊2904	0.31	2N3706	0.14	2M4286	0.22	${ }^{2} 54557$	0.38	act 128	0.46	BC157A	0.15	8 BC 1834	0.15	вс2398	0.16	${ }^{80115}$	0.88
2 M 918	0.45	2129048	0.31	2 W 3707	0.14	2 H 4287	0.22	2 L 5458	0.35	${ }_{\text {ACisi }}$	43	BC1584	0.15	всевзи	0.15	${ }^{\text {BC23s }}$	0.17	80131	0.55
$2 \mathrm{H9} 99$	0.37	212905	0.31	213708	0.12	244288	0.22	2 W 5459	0.32	${ }_{\text {AC152 }}$	0.54	BC1588	0.15	8С18318	0.15	BC257A	0.18	${ }^{80132}$	0.75
$2 \mathrm{z9} 934$	0.37	2129054	0.31	2 2 3709	0.12	$2 \mathrm{~L}+289$	0.22	2 L 5480	0.65	${ }_{\text {ACL }} 153$	0.59	BC159a	0.17	${ }^{\text {BC183 }}$	0	${ }^{\text {¢ } 225588 ~}$	0	80135	． 40
21930	0.37	2\＃2906	0.25	2 M 3771	2.16	2 L 4347	2.20	2 L 5484	D． 37	AC153k	0.59	BC1598	0.17	BC184	0.12	${ }^{\text {BC2598 }}$	0.19	80136	40
2км30	0.95	2 220004	0.25	243772	2.20	2 m 4348	2.55	2154885	0.40	AC176\％	0.70	${ }^{\text {BCL }} 160$	0.38	BC184a	0.13	${ }_{\text {ac }} 300$			． 41
201711	0.30	212907	0.25	2 L 3773	3.15	244918	0.65	2 L 5486	0．40	${ }^{\text {acl } 176}$	0.54	${ }^{8 C 161}$	0.38	8 C 1846	0.13	$\mathrm{Ba}_{5} 301$	0.43	\＃0138	0.41
211389	0.30	2 2 29074	0.25	2 23319	0.36	2 W 4919	0.70	2 ± 5490	0.64	${ }^{\text {actib }}$	0.59	${ }^{8} 167$	0.13	BCIB4L	0.15	вc302	0.37	${ }^{80139}$	0.43
211640	0． 30	2 2 2923	0.17	2 n 3820	0.39	244920	0.83	2 W 5492	0.64	${ }^{\text {a }} 1187 \mathrm{~K}$	0.65	8C1678	0.13	BC18418	0.15	${ }_{\text {rca }}$	0.54	80140	${ }^{0.43}$
2N1893	0.30	212924	0.17	2123821	0.96	2 C 4921	0.54	2 L 5494	0.65	${ }_{4} \mathbf{C} 188$	0.54	8C158A	0.13	BC184LC	0.15	BC 307	0.16	80181	1.90
2M2102	0.50	212925	0.19	2 W 3900	0.28	2 HS 92	0.60	2W549\％	0.67	${ }^{\text {ACIBBK }}$	0.65	BC1688	0.13	${ }^{\text {BC212 }}$	0.15	${ }^{8182074}$	0.16	${ }^{80182}$	220
2W2192	0.58	212929	0：17	2 2 3901	0.30	$2 \mathrm{Mag23}$	0.75	246027	0.64	40161	1.00	${ }^{\text {BCL } 1689}$	0．13	$8{ }^{8} 21212$	0.15		${ }_{0}^{0.16}$	${ }_{\text {B0，}}^{80183}$	2.35
2 2 2193	0.50	213053	0.25	2133093	0.20	2 2 4924	1.15	$2 \mathrm{2m6107}$	0.45	${ }^{\text {and } 162}$	1.00	${ }^{88} 16959$	0.13	${ }^{82} 2128$	0.15	8 C 308	0.16	${ }^{80187}$	0.95
2M21934	0.52	213054	0.72	$2 \sim 3904$	0.18	2n5086	0.30	$2 \mathrm{W6108}$	0.55	${ }_{\text {AF }} 106$	0.60	8C169C	0.13	BC212L	0.18	${ }^{\text {¢ }}$ ¢ 31888	0.16	${ }^{\text {B0235 }}$	0.46
2 m 2194	0.42	213655	0.75	2 n 3905	0.18	2 Z 5087	0.30	2 WW 109	0.55	AF109	0.52	${ }^{\text {BCII7 }}$	0.22	8C2124	0.18	${ }^{\text {ac3aga }}$	0.16	${ }^{180236}$	
2M2194a	0.45	2 23390	0.50	2п3906	0.18	2 C 5098	0.30	2W6111	0.49	BC107	0.16	8 Cl 177	0.22	8C21218	0.18	${ }^{\text {8сзаля }}$	0.16	${ }^{80231}$	${ }_{0}^{0.44}$
2N2195	0.40	213391	0.40	244031	0.55	2 W 5099	0.30	$2 \omega 12$	0.41	$8 \mathrm{Cl074}$	0.16	${ }^{\text {BCL }} 1778$	0.25	${ }_{8}^{82} 213$	0.15	$8 \mathrm{BC3OSC}$	0.16	${ }^{80238}$	0.4
2M21954	0.40	2433914	0.45	244032	0.65	2 5 5190	0.65	2W6122	0.44	${ }^{\text {acliof }}$	0.16	BCL^{178}	0.22	BC213	0.15	${ }^{812327}$	0.22		0．44
2 M 2217	0.55	213392	0.17	244036	0.72	2M5191	0.75	2 N 6123	0.48	$8{ }_{8108}$	0.16	日C178	0.25	вC2138	0.1	${ }_{8}$	0.20	80235 C	0.59

audiophile

Abstract

With the vast numbers of amplitiers available today, choosing the one most suitable for your own particular requirements can be a daunting task. Ron Harris explains the steps you can take to make it as easy on the tranquilisers as possible.

AMPLIFIERS are perhaps the mosi extensively specified hi-fi unit, and whereas this could be a good thing it ail the manufacturers ayreed which specifications to quote, (and how to quote them) there seems an ever increasing divergence of opinion and technique.

This of course provides the hardened enthusiast with hours of harmless amusement meandering along the twisted webs spun across the ad pages. Great fun to figure out whether the Xplam 500 with its 2.0 MV (UHF) really is more powerful than the Tinne Special at a mere 800.17 W (KMS at 100.3 Hz). Isn'i it?

When attempting to select yourself an amplifier, eithey as a first system or an upward move, there are a few things you can remember to make life easier for yourself.

Watt to do first

Betore anything else you need to decide how much power you're going to need. This really depends on how hig ynur tistening room is, and how efficient the chosen loudspeakers are at turning electrical power into sound energy.

So, strange as it may seem, the first step in amplifier selection is made with a tape measure - find out the size of the roon in which the amp has to work. Ignore orotesting females and displaced cats during this uperation.

Once you know the volume of the room, a good estimation of how maryy watts are wanted can be gained by allowing 25 W , good old fashioned RMS watts -- but we'll return to that later, for the first $1000 \mathrm{cu} . \mathrm{ft}$. and then 10 W per thousand cubic feet thereafter. For example if vour living room is $10 \mathrm{ft} \times 20 \mathrm{ft} \times 8 \mathrm{ft}=1600$ cr. ft. you need 35 W a channel MINIMUM
this assumes loudspeakers of average efficiency, always a dangerous thing to do I know, but unless you're using horn-loaded units - in which case you'll have far too much power, or transmission lines - for which add 15 W to the estimate, this will generally be O.K. Efficiency varies from manufacturer to manufacturer, with the extremes being represented by the Wharfedale F . series at the high end, down to the KEF 104 and IMFs at the other.

A power of good

Let's go back for a minute to the question of how that powet rating should be quoted. Perhaps the mosi meaningful figure is the half-power bandwidth. This tells yout the frequency range over which the amp will deliver at least HAl.F its rated power into a given load.

This is of more use than even an RMS figure, as these are usually quoted at $1 . \mathrm{kHz}$ only. For example consider these two units

AMP A 50 W RMS 1 kHz Power Bandwidth 40 Hz 10 kHz into 8 ohms.
AMP B 40 W RMS, from 20 Hz to 20 kHz into 8 ohms.
Differently specified, and at first glance Amp A is more povverful. But this is not useful extra power at all. At 40 Hz the unit is only capable of delivering 25 W into the load, and above 10 kHz the power is similarly restricted. Amp B, however, can produce 40 W at both these frequencies, and would thus handle extreme bass and treble much more confidently.

Amp B is thus more honestly specified. Look for the range of frequencies over which power is available, and rernemher the audio spectrum is approx 20 Hz to 20 kHz .

Ample furids?

Having worked out how much power you need, you can scan the ads within your price range to find out which units are suitable. If you're at all serious about hi-fi don't serimp on the ourput to save pennies. Nothing sounds worse thar a 10 W amplifier trying to pretend it's a 50 W and fooling no-one. Reserve power is a necessity, not a luxury.

Most systems incorporate at least two sound sources; tape, records, radio, etc, and so the next stage is to decide what peripheials the unit has to control. Do you need filkers? Tone controls? Three tape deck iniputs? Two

Tinking the first step to choosing an amplifier can be fraught with unexpected perils
record decks? There is a great variety of available combinations to choose from, and only you know which facilities you really need.

However, remember that the more stages you force the signal to travel through on its path to the speaker cones, the more it gets modified. For best reproduction keep things as simple as possible, filters and tone controls in particular should be avoided if possible, as a high quality source will need only minimal equalisation. If your room is particularly bad acoustically, buy a graphic equaliser and do the job properly.

By now the number of models to choose from will have fallen quite considerably, and it's possible that a shortlist can be compiled. (It's probably wise to let the feminine member of staff have a look over the prospective additions to the family - just to make sure that the Pioneer you've set your heart on doesn't clash with the frame around Aunt Nellie's picture, and gets heaved out the first week.)

Specifake shunned?

Every company produces masses of literature on their produce, all loaded with loaded figures. I haven't forgotten these specs at all, 1 just don't regard most of them as particularly useful in selecting hi-fi. Once you've got your shortlist make the final choice on grounds of compatibility with other equipment - and how the amplifier SOUNDS.

Try to hear your choices in a direct comparison against each other if possible, and even more importantly through the type of speakers you will be playing it with at home. All amplifiers are load sensitive to some degree, and the resulting sound can be changed dramatically by this fact.

Different speakers will present a different electrical load to an amplifier's output stages, which will mean that when you take it home the result may be totally different to that produced in the showroom. Most dealers carry a good range of speakers, and some are willing to arrange home demonstrations.

The main trap to avoid though is to start comparing numbers studiously, and conclude that an amp with 0.04% THD will sound better than another with 0.1%. It might do - but it's just as likely to sound worse. Leave the numbers alone, and give your ears a chance.

In summary then
1 Decide how much power is necessary in your room
2 Set your price limit.
3 Decide what facilities you need.
4 Draw up a shortlist.
5 Make the final selection by listening and comparing models through the same speakers - which should also be the type you use at home.

ETI

BARREL TYPE X-Y PLOTTER ASSEMBLY

120 V Stepping Motor. Provision for Pen (Pen not supplied). AS PICTURE £55 ea. With alternative motor for non-reversible requirements recorder / printer applications erc $£ 48$ es. With Pen and Paper guides $£ 78$. Other voltage options available. P\&P all Other voltag
units E2 50 .

X-Y PLOTTER ASSEmbLY

Consisting of frame with $X \& Y$ assemblies. (No pen but provision) Bed size $12^{\prime \prime} \times 9^{\prime \prime}$, Motor options 120 V only $£ 43.45 \mathrm{ea} .120 \mathrm{~V}$
(can be changed to $12 / 24 \mathrm{~V}$, data supolies $£ 51.15$ ea. $12 / 24 \mathrm{~V} £ 70.40$ ea. $\mathrm{P} \& \mathrm{P}$ all versions E2.50.

PAPER TAPE READER ASSEMBLY

 Rigid alloy frame. 8 hole. High qualitystepping motor. Directly driven from 120 V reads 30 char. per sec. Reversible. Can be DC Stepped faster or slower. Steel paper guides.
Without Opto-sensor $£ 27.50$ ea. With Optics $£ 45$ ea. P\&P $£ 2$.

STEPPING MOTORS ONLY

Motors as used in plotters etc. All motors 200 steps per revolution. 20 oz inch torque. with 1000-0-1000 ohm. Can be changed P\&P £1 Supplied $12 / 24 \mathrm{~V}$ operation £13 ea. P\& \& £1
Just think about the uses!

OSCILLOSCOPE TUBES

Brand New Boxed - Carriage all tubes $£ \mathbf{3 . 2 5}$.
Telequipment S52. £10 ea; D51, £15 ea: S42; £10 ea; D53A £20 ea: D52. £15 ea; S31, £10 ea; Bradley 200, £85 ea;
Advance OS3000 £85 ea: GEC types 924 F § 25 ea: 924 E Advance OS3000, £85 ea; GEC types 924F, £25 өа: 924 E ,
$£ 17.50$ ea; $1496 \mathrm{~B} £ 75$ ea; Brimar D13-51GH, £65 ea: £17.50 ea: 1496 B, £ 75 ea; Brimar D13-51GH, £65 ea:
D $10-210 \mathrm{GH} / 32$ £ 40 ea; D $13-46 \mathrm{GM}$ £ 35 ea. NOT BOXED - NEW - WARRANTED. Tele replacement for Solartron CD1740. Cossor CDU150. S. E. Labs SM112 and GEC/MOV 1474 at $£ 55$ ea

BUILD YOUR OWN BUS

Approx. $1 / 2$ metre multiway ribbon cable terminated each end with a 50 -way temale edge connector. Takes 0.1 printed circuit board $£ 2$ ea. P\&P $75 p$
nOW - INCREASE AREA GIVEN TO PICK-A-PACK AT 50p per lb
Large volume of new components you can't atford to miss

TELETYPE ASR 33 with 20 ma loop. Good condition. Special Kow price £ 395 ea

1/2" MAG TAPE

Approx. 2.000 ft . NOW $\mathbf{2 5 p}$ each. P\&P $£ 1$ Or 5 for $£ 1$, carr
$£ 2.75$. E2. 75 .
FOR THE VDU BUILDER tube M28-13GH $23 \times 17 \mathrm{~cm}$ at $£ 12$ Base connections supplied
Heads for PERTEC 6000/7000 - enquiries
PLESSEY VDU. No keyboard - weird electronics. $\mathbf{\& 6 0}$ ea TELETYPE KSR33 from $£ 275$ each.
timited quantity of 35RO - 20 ma loop - can be changed to ASC1 1 code (3 hours simple work and $£ 10$ parts) OUR PRICE EXCLUDING PARTS REQUIRED \&70 ea.

Ex-Ministry Teletype Punches 8 level 110 char per sec. $\mathbf{£ 5 0}$ each. AMPEX TM7. Nice condition $£ 225$. Polished Wooden Cases to take normal OWERTY' KEYBOARDS
or can be carefully cut to take any size 3 . or can be carefully cut to take any size. $\mathbf{3}$ each. P\&P £1. 50

74500	12p	$74 \mathrm{S10}$	5p	74H51	$7 p$
7401	5p	7417	14p	7453	$5 p$
74502	12p	74538	10p	74H74	12p
74504	12p	7451	5p	74S74	12p

75325 - Memory Core Drivers. 600 ma capability. Fast Other uses. RIDICULOUS at $£ 1$ ea.
75453 - Dual Peripheral or Drivers. 75p ea
AUDIO AMPLIFIER BOARD. Size $41 / 2 \times 21 / 2$. Output pair of TIP31s. Circuit supplied. 1.50 es. P\&P 30p.

DIGITAL 24-hour CLOCK with built in Alarm as used in Braun Digital clocks. Silent running. Large illuminated numerals. $A C$ mains. Size $63 / 8 \times 23 / 8 \times 23 / 4$ Only E4.25 ea. P\&P 50p

IrT-CREED

Punches and Prints on $1 / 6$ paper. Complete with Power $113 / 4 \times 22^{\text {deep } £ 13 \text { ea }}$

MARCONI VALVE VOLTMETER TF4288 NOW $\mathbb{E} 12.50$ ea

* TRANSISTORS/DIODES/

 RECTIFIERS, ETC. *Guaranteed all full spec devices. Manufacturers' Markings.
At $5 p$ each
BC147; 2N3707; BC172B; BC251B; BC34BB; BC171A/B; BC413: D10: BAX13: 1N937 BA 102BE; BZX83; TIS61; 2N5040
At 10p each
At 10p each SN7451N: BYX10.15KV 0.36A: BYZ10 15p ea. TIP34A - 50p ea BD538 - 40p ea. Heavy Duty Bridge Rectifier - 20p ea. CA3123E - £1 ea. BDY55-£1 ea. 2N305540p ea; TIP31B 12p ea
TBA560CO £2 ea; 1N4436T-T03 Flat mount 10A 200piv £1 ea. 2N5879 with 2N5881 Motorola 1 50W Comp, pair £2.
BD 535; 8D538 Comp. pair - 75p.
Linear Amp 709-25p ea
FINNED HEAT SINK - - single TO3 - size $4^{3 / 4}$ in x Texas Bridge Rectifier 5SB05-50V 5A. 60p ea Texas Brid
$P \& P 20 p$
MOTOROLA POWER TRANSISTORS type W0993/441. T03 Min voltage 500. 20p ea. P\&P 15 p.
BFY5
BY BU208 E1. 20 ea. P\&P 15p.

CABLE NEATERS - neaten Up your wire on a chassis with these pu
for E1 50 P\&P extra.

TELEPHONES. Post Office style 746 Black or two-rone $£ 6.50$ ea Modern style 706 Black or
 style $£ 1.50$ each. $P \& P$ E 1
HANDSETS only 706 style $£ 1.75$ each. Older style E1. P\&P 75p
TELEPHONE EXCHANGES. Eg 15 -way automatic exchange only from $£ 95$.

* 1000 Feed thru Capacitors 10 for $\mathbf{3 0 p}$. P\&P 15p. off 20p. P\&P extra.
GRATICULES $12 \times 14 \mathrm{~cm}$ high quality plastic $15 p$ ea: Ps, 10 p .
CARGE RANGE OF ELECTROSTATIC VOLTMETERS. From $0-300 \mathrm{~V} 2^{2} £ 3$, to 20 KV max.
General guide $5 \mathrm{KV} 31 / 2^{\circ} £ 5$. Thereafter $£ 1$ per KV . General guide $5 \mathrm{KV} 31 / 2$ \&5. Thereafter $£ 1$ per KV. DON'TFORGET YOUR MANUALS. S.A.E. with requirements.

> REVERSIBLE MOTOR. NO GERMAN $12 V$ excessive load 400MA. Size $11 / 2 \times 13 / 16^{\prime \prime}$ dia Shatt $5 / 16 \times$ approx $1 / 16$ dia. $50 p$ each. P\&P 40 p .

A MILLION MUST GO

HIGH NOISE IMMUNITY LOGIC. DUAL IN LINE 16 .PIN CERAMIC. 12 V Rail Conventional TTL package. Guaranteed full spec. devices. Full data. 2p ea.
MIXED PACKAGE - E1 P\&P 25p.

LOOK AT THESE PRICES

BURROUGHS 9 digit PANAPLEX numeric display 7 segmen

 0.25 digits with red bezel. With data $£ 1.95$ ea. P\&P 30 p MINIATURE NIXIE TUBE type ITT 5870 ST. Digit size 0 Wire ended. 50p each. P\&P 20 p. 4 for $£ 1.75$ P\&P 35 p TRANSFORMERS 115 V AC input. Secondary 30 V and 2.6 V 10VA. 50p ea. P\&P 50pGIMT4 with Data C1.60. GENERAL INSTRUMENTS type GIMT4 with Data. £1.60 ea. P\&P 20p
21-WAY SELECTOR SWITCH Si 240 V AC coils. Additional swith. Single pole with reset coil contacts for auto reset etc. As ABOVE with add plastic cover $£ 2.45$ ea. P\&P E1.50 Developments. Quiet and AC 500 MA. 8 rand new by Aiflow POTTER \& BRUMFIE very good looking. £2.50 ea. P\&P E1 Duty. Plug-in type with base 50 p ea. P\&P $25 p$
MINIATURE KEYBOARD. Push contacts, marked $0-9$ and A-F and 3 user definable keys. £1.75 ea. P\&P 35 p.
MULLARD CORE LA 4245 at 150 .
MULLARD CORE LA
CLARE REED RELAYS 24V DC Coil Single pole make Size $11 / 4$ $x / 16 \times 7 / 16$ at $25 p$ ea. P\&P $10 p$
ROTRON CENTAUR FANS. Size 4
5-blade \&4 Pa P\&P 75 FANS. Size $4.5 \times 4.5 \times 1.5 " 115 \mathrm{~V}$
Min. PLUG-IN type RE
25p ea. P\&P 150
CROUZET/MURTEN SCHWEIZ MOTORS. 110V 50HZ 4 rpm. Gearbox can be removed. 75p ea. P\&P 75p
FRAMCO MOTORS. 115 V 50 HZ Input single phase. $1 / 12$ th HP; 1450 rpm ; on silent mount. New condition $£ 2.75$ ea. P\&P E1. 75
PYE DY PYE DYNAMICS THICK FILM 1 MHZ Clocking Oscillator. 5 V supply. Size $19 \times 25 \times 6 \mathrm{~mm}$. Drives one TLL load. 72p ea. P\&P suppl
15 p
COM
154 COMPRESSOR UNIT. Compact 195 V 50 HZ single phase 1.5 A continuous 1425 rpm . Outside piston housing approx. $3^{\prime \prime}$
£ 18 ea. P\&P 12 EROOKE CROM
BROOKE CROMPTON \& PARKINSON extractor fan assem bly 240 V operation. Get the smell out of the kitchen for only MAGNETIC DEVICES. Plug-in RELAYS 240V AC. 3-pole c/0 Heavy duty 10 amp. Complete with base. Ex brand new equipment. NOT USED. 3 on sub assembly $£ 2.50$. P\&P $£ 1$ or £1. 25 өa. P\&P $45 p$.
SMALL MAINS TRANSFORMER 240V Pri. 12V 100 MA sec $60 \times 40 \times 42 \mathrm{~mm}$. $50 p$ ea. P\&P $75 p$.
G.I. BRIDGE RECTIFIER type W01 (ideal for above) $17 p$ ea
FAIRCHILD FND 10 FAIRCHILD FND10 7 segment display 0.15 Red. Commo MULLARD TUNER MODULES - with data
LP1171 combined AM/FM IF strip 10.7 MHZ \& 3.50 ea P\&P 50p. LP1179 FM front end with AM tuning and 87 The Pair $£ 5.75$ P\&P 750
POWER UNIT MODULE containing 2 small, 3 med \& 1 large ferrite cores: 3 -T03 power transistors, caps, resistors, high powered diodes, 9 transistors, 3 min fuse holders, etc £1.50 ea P\&P \&1. 25.
GENERAL ELECTRIC OPTO-ISOLATORS Type H 15 VK 504 $65 p$ ea. P\&P $15 p$. 10 for $£ 5$. P\&P E1
Miniature REED SWITCHES 9p ea. P\&P $15 p$.
ROTARY SWITCHES. 250 V 10A 10p ea P\&P 15 p
LEDEX ROTARY SOLENOIDS $115 V$ DC. No switch assembly POTTER \& BRU
duty 2-pole c/o with 5 secs delay at 48 V increasing with voliag reduction. Timing can be altered by changing value of resistor capacitance 50p ea P\&P 25p.

Mihimum Mail Order £2. Excess postage refunded. Unless stated - please add $£ 3.25$ carriage to all units. VALUE ADDED TAX not included in prices - Goods marked with $121 / 2 \%$ VAT, otherwise 8%.
Official Orders Welcomed. Gov./Educational Depts., Authorities, etc., otherwise Cash with Order

microfile.

Gary Evans has been trying to do-it-himself this month but only landed in trouble with a COP

THE TITLE Do-it-Yourself Computer Show would have been more apt if, when applied to the event held at the West Centre Hotel between the 22 and 24 of June, it had been preceeded by a negative. Most of the exhibitors required little more of the user than to plug their machines in, insert a disk and hit return, and as such reflected the current US trend towards the slick, glossy, expensive hardware/software package.

In the States the Personal Computing Industry is seen, by the people with the cash, as one of the major growth areas of the next few years. As such it is attracting a lot of the venture capital that is looking for a profitable outlet. At the same time it is realised that the gains that these injections hope to promote are unlikely to come from the low-cost home DIY products, but from the education/small business sector.

HI Finance, Bye DIY

This latter market demands the ready built, cosmetic package of hardware, together with readily available software packages and support and considers the $£ 2,000-£ 5,000$ price bracket of such systems to be far cheaper than any viable alternative.

We shall then soon see a polarisation of the micro computer market Thus at the DIY show we still saw the likes of Bywood, Micros, NASCO, Newbear, and Science of Cambridge with products that require that people do it themselves, but the pleasant "club like" atmosphere of last year's show was missing. The event, instead of being a meeting of keen, often naive. (in terms of computing) hobbyists, was instead of gathering of calculating, if adventurous, businessmen.

It seems that a large section of the DIY computing field has passed through the first few tentative steps of youth and has already reached a, to me, saddening maturity.

Osbourne On Finance

As well as the exhibition, the DIY show also featured a number of lectures throughout the first and second days. One of the first speakers was Adam Osbourne, a well known figure in the States, who has been involved in the development of the Personal Computing Industry right from the early days.

During his talk he put forward the following, if unusual, nevertheless sound advice. He said that when choosing between systems of similar performance, one should not look at the detailed specs. of each product, and make the choice on these grounds, but at the financial stability of the companies marketing the products. In this connection Osbourne highlighted the questionable tactics employed by some of the concerns trading in the US, one of these being the adoption of a scheme that, for want of a better phrase, can be termed forward financing.

The idea is, briefly, this. You have a product for which you feel there would be a ready market but no money to take the idea to the production stage. Approaches to banks and other financial institutions meet with rejection as the venture is seen (by them) to be too risky. Fairy godmothers not being too thick on the ground, even in the States, the solution adopted by some is to advertise the product heavily, this takes supprisingly little cash, gather in the money sent in response to the ad. and use this as your development fund. If all goes well, and it rarely does, you might be able to ship the first units before the customers start screaming for their goods (which may not even be designed) or their money (which you no longer have). Even if you manage this tight-rope act the first few batches of the product are likely to be riddled with faults because of the hurried nature of the development.

Forward financing can, and has, worked but it is at best sharp practice.

I'm not suggesting that these tactics have been employed to any great extent in this country, but at least one company I know of in the personal computer area (marketing low-cost terminals) is in some financial trouble.

Sccch Do You Know Who?

The advertising department of ETI drop the odd clanger or two (spot the error on page 48 of the July issue) but then a certain Project Editor is covered with something other than glory at present. It's nice to know however that we are not the only human beings (less than perfect that is) about, some work at the offices of Commodore's PR agency.

Below we see Kit Spencer and Derek Rowe of Commodore but who's that on the right?

Said agency sent out a photo showing Kit Spencer and Derek Rowe of Commodore extolling the virtues of PET to some, unnamed, customer. It would have been better to name the person however as some might have recognised Chuck Peddle as the man who conceived and designed the PET and who probably knows more about the machine than anyone. He was pictured on a brief visit to London but nobody told the PR people that.

I get a lot of letters detailing the activities of various Computer Clubs around the country and it seems like a good idea to collect all these together and publish the list in ETI. So please if you run such a club, and would welcome new members please drop me a line. If you have already written to me please write again as my filing system is, shall we say, in a mess and your letter is as likely to be filed under "threatening memos from the editor" as anywhere else.

Just to be corny, could you please mark your letters club call.

By the way if your club is in the habit of inviting guest speakers along, I'll be only to happy to come along and say a few words but will probably spend more time listening to what you, the reader, have to say and I mean that most sincerely.

Blue Chip News

The series of single chip MPUs from National that go under the generic title of Calculator Orientated Processor Systems, or COP Systems, include devices that have been programmed by the manufacturers to provide various dedicated control functions, including timers and a number cruncher for general purpose use.

National however hope that design engineers will develop their own programs for the COP series that will suit their own particular needs. Because the memory of a COP is not normally available to the outside world, and is at any rate not alterable it having been masked at the manufacturing stage, some form of development system that can imitate the performance of a COP must be provided to the software engineer.

Had National taken a leaf out of the SC/MP book and called this dedicated series of processors Simple Microprocessors an obvious name for this machine would have been SIMu-

Rockwell's AIM-65 interface module featuring the 6500 MPU, keyboard and thermal printer.
lator. With a name like COP the name is equally obvious but far less repeatable - long live National.

Before leaving this subject area when you next hear someone working with an Intel 8085 exclaim SOD it, technically speaking he's requesting that data be output via the devices Serial Output Device port. Of course if he's not speaking technically then yet another of murphy's laws has probably come to light.

By the way, while not promising to publish all suggestions, if you can come up with any likely ideas for pin description of IC's of the future, send them to me at ETI.

Well Rock On

Rockwell is a company that, as far as the amateur is concerned, seems to have kept a low-profile in the micro/ computing fields. Their calculators are well known however and their products are well known to industry. One of their MPUs is at the heart of the Monitel telephone charge monitor mentioned in News Digest recently for example. Their latest release is also likely to bring the name of Rockwell to the attention of the aforementioned computer hobbyist.

Described as an Advanced Interface Module and designated AIM-65, the machine (pictured) features a full alphanumeric keyboard, 6500 processor with ROM monitor, dual cassette plus TTY interfaces and, the main attraction, a 20 column printer.

The 20 character wide display is formed from 16 segment characters providing the usual 64 character ASCII subset. The printer features
built in memory, decoding and drive circuitry.

Not much to say about the keyboard and the 6500, by now familiar as the device around which the PET and KIM-1 are built.

The cassette interfaces can be switched between two standards, an ASCII KIM-1 standard and a binary blocked file assembler compatible.

The Monitor/Debug commands are too numerous to detail here, suffice it to say they are far more comprehensive than the minimal functions provided by many systems.

The AIM-65 provides on board sockets for a 4 K Assembler or for an 8K BASIC Interpreter thus making the system easily expandable.

For full details of the AIM-65 contact Pelco (Electronics) Ltd. at

Enterprise House
83-85 Western Road
Hove
Sussex
BN3 1JB.

Point Of Scale

One of the many ways in which micros have improved the quality of life is in the area of Point Of Sale (POS) terminals, cash registers to you and I. A few years ago parting with your money would be accompanied by a series of whirrs, groans, clicks, with a final, puny, ting. Nowadays things are almost musical, the entry verification tones providing the melody while the chatter of the thermal printer takes care of the rhythm.

In fact I'd swear that I heard one of the things rendering the song "money money" the other day - well at least the machine was honest.

Save on Calculators

INTRODUCING THE NEW WORLD'S FIRST TV CHESS

- AS USED AT 1978 CHESS WORLD CHAMPIONSHIP IN MANILLA

Records every game step up to 130 moves. Auto en passent queening \& castling. Entire games may be recorded on most domestic cassette recorders. Full kit including all components and full instructions - £109.50

VIDEOTIME PRODUCTS

56 Queens Road. Basingstoke
Hants RG21 1RE. Tel (0256) 56417 Telex 858747
Trade \& Export Enquiries Welcome

BRAND NEW COMPONENTS

C. N. STEVENSON (E2) 236 High Street, Bromley, Kent BR 1 PQ 464 5770/2951

SEMICONDUCTOR OFFERS ALL FULL SPEC.

BC212. BC182. BC237. BF197. BC159, all 8p each, RCA 2015 20 . Motorola MRD 3051 Photo Transistors 35p. N. Channel F.E.Ts. similar io 2N3819 18p. Motser Stim to 4067335 p . 3 N 140 Mosfert. 50 p. M203 Dual Matched Pairs Mosfers Single Gate per
F.E.T. 40 . Intel 1024 bit MOS Rams 95 p. Mullard B8113 Triple
 CMOS 50 p .741 B-pin D.I.L. 23 p . 500 v 600 mA Bridge Recs. (ex equip.) 25 p iN4002 100 v 1 A Diodes 4 p . 14005 B00v 1 A Diodes
7 D E. T. SIL Rec $15 \mathrm{KV} 2.5 \mathrm{~mA} .15 \mathrm{~mm} \times 5 \mathrm{~mm} 30 \mathrm{p} 781212 \mathrm{v}$
 85 . Nixies ITT GN $/ 9 A 13 \times 8 \mathrm{~mm} 65 \mathrm{p} .02$ or 0.125 Red LEDs 12p each MAN $3 A$ 3mm LED Displays 50 p . 741 S (Wide andwidth) 35p. LM 380 80p LM 38190 p . ZN4 4475 p . TIL305 Alpha numerical Displays with data, £2.75. ORP61. Mullard, new
boxed 30 p Special OHter SGS TBA800 C5. 10 for $£ 5$. NE 555 , 10 for £2.90.
MICROPHONES. EM506 Condenser Mikes. Uni- directional F.E.T. Amp. Duáa umped., $50 \mathrm{~K} / 600 \mathrm{ohms}$, $30-18 \mathrm{KHz}$, on $/$ o
wwitch. E1 190 . Miniature Tie Pin Condenser mike 1 K imp mni-directional. uses hearing aid batuery (supplied) E1.95 Grundig Electret inserss with built-in F. E. T. Pramp $£ 1.50$. Crystal Mid. Jack Plug 82.85 . Cas sette Condenser Mikes with 2.5 and 3.5 Jack Plugs E2.85. Slandard Cassette Mikes 200 ohm Imped. with 2.5 and 35 Jack Plugs E1. 20

MORSE KEYS-Hi-speed Type, all metal, $£ 2.25$, Beilling Lee UHF. Only $\mathrm{E7} .50$.
CRYstals. 300 KHz HC6U 40 p. 0.1 Edge Connectors. 64 way 65 p .32 way 40 p

ELAYS. Min, 220v AC Sealed Relay 2 pole C/O 45 p . 240 v A Sealed Reiay 3 pole C/O 5 amp Contacts 11 -pin base 80 p. 12 vo
pote N.O. Reed Retay 20p. Min, 240v DC Sealed 2 -pole C/O relays 3 -amp contacts. New 55 p.
MOTORS. 1.5 to $6 V$ OC Madel 20 p. 1-F $-V A C$ min. 3 A. P.M. with Gearbox 30p. 240 v AC Synch Motor $1 / 5$ th. . . P. M. 65p. 240 v AC Motors, new 95p. 12v DC 5-pole 35p.
soxes. 8lack A.B.S. Plastic with brass inserts and hid. $75 \approx 56 \pi$ $5 \times 16 \mathrm{~mm} 57 \mathrm{p}$ rools. Radio pliers, 5 in, Insulared handles $£ 1,40$. Diagonal side MAINS IRAN SFORMERS, all 240 V AC primary. Postage shown in brackets per transiormer.
 100 mA , 95 p (15 p). 12 v 500 mA . 95 p (22p). 12 v 2 Amp . £ 2.25 (45 p). 12v 4 Amp . $£ 2.75$ (54p). 15-0-15v 1 Amp, E2. 10 (45p) $30-0.30 \mathrm{~V} 1 \mathrm{Amp}$ €2.75 (54p). 0.12-15-20-24-30v tapped at 2 Amp. $£ 4.50(54 \mathrm{p}) .20-0.20 \mathrm{v} 2 \mathrm{amp}$. $£ 3.50(54 \mathrm{p}) .25 \mathrm{v} 1.5 \mathrm{Amp}$.
E 1.4545 p). 18 v 1.5 Amp recutied, $£ 2.00(45 \mathrm{p}) .35 \mathrm{v}, 2 \mathrm{Amp}$.
 Xenon/triac pulse transformer. 30p.
SWITCHES-Min. Toggle, SPST $8 \times 5 \times 7 \mathrm{~mm} 45$ p. DPDT $8 \times 7 \times$ Slders 20 p . Fs S. Single Po $12 \times 11 \times 9 \mathrm{~mm} 75 \mathrm{p}$. DPDT C/O Switches 15 . Min Micro Switches $13 \times 10 \times 4 \mathrm{~mm} 20 \mathrm{p}$. G. P. O
Kerswhich Assy. 3 Switches 2.3 way 1.2 . Kerswlich Assy. 3 Switches $2-3$ way, $1-2$ way multipole
Push to maks or push to break Swlithes $16 \times 6 \mathrm{~mm} 15 \mathrm{p}$

SOLDER SUCKER. Plunger type eye protection, replaceabla nozzle, high'suction, 64.95 Reed switches 28 mm norm open. 6 eac

TAPE HEAOS-Cassette Stereo £3,00. BSR MN $13301 / 2$ Track Rual Impedance Rec./Playback 50 p . BSR SRP 90 1/4 Track Stere Rec. /Playback Stagered Stereo with built-in erase per head Rec. Playback Staggered Stereo With
E1. 20. Tape Head Demag 240 V AC $£ 1.95$.
BUZZERS-GPO Type 6.12 v 20 p . Min. Solid State Buzzers
6.9 .12 or 24 v 15 mA 75 p . All Metal Buzzer. 30 mm diam. 6.12 volts. nigh tone. 25p.
U.M.F TV Transistorised Push Bution Tuners (not Varicap), new and boxed. E2.50
AEROSOL "TOUCH-UP" PAINT. one colour anty. Yellow/Grey. Goz. cart, 35 p

METERS-Stereo Tuning Meters 100μ a per movement E 2.75 Grundig, Bath. Level Merer $1 \mathrm{~mA} 40 \times 40 \mathrm{~mm}$ E1. 10 . Min. Leve POT CORE UNIT. Has 6 -pot cores, including 1 FX2243 $(45 \mathrm{~mm})$ and 2 FX224 (35 mm). 320 mm Panel Fuseholders. 3 ro3 S Power Transistors on heat sink, panel with various transis
diodes withy 5 -amp plastic S. C. Neww $£ 1.75+75 \mathrm{p}$ P\& P

LA1230 adi. core 15 mm dia. $14 \mathrm{mH} \cdot 18 \mathrm{mH}$. HIO. 6 for 50 p
aErosols-Servisol Switch Clazner + Lubricant 8ozs. 55p Freazer 6ozs. 50p. Gear Clesner \& Tar Removar 140zs.85p.

SOLENOIOS-240v AC 45 p . 12 VDCH . Duty 75 p
12-WAY MOTORISED CAM UNITS. 50v AC low rav moto driving $12 \mathrm{C} / 0$ micro switches, supplied
AC use. Ex. equip. $£ 1.95+35 \mathrm{P} \& \mathrm{P}$.
13 Amp fubber trailer extension sockets. 38p.
8 WAY RIBBON-CABLE, min solid core, 15p metre
POSTAGE 30 O UNLESS OTHERWISE SHOWN (EXCESS cost. vat included in all prices.
S.A.E. FOR LISTS

OROER AODRESS
PROGRESSIVE RADIO
31 CHEAPSIDE, LIVERPOOL 2 051-2360982

TNTMDUS Specialisis in electronic timekeeping

FREE spare battery/s with any CASIO product, on request. with order

NEW DRESS WATCHES

53Cs-198
6.6 mm thick
$£ 54.95$

53CGS-17L oid P? 6.0 mm
£69.95

6.5 mm

53CS-18B £54.95

CASIO QUALITY AND VALUE SPORTS WATCHES

p to 25 functions. Net. lap and first and sacond place times to $1 / 100$ th second. F. 100 . Resin case and strap. Water resistant to 2 atmospheres (66 ft).

Stopwatch Dual time zone $+1-10$ secs
SEIKO
F8007/FB009 Alarm - Chronograph (£130) £104. Calculator watch (£ 165). £130
CITIZEN Multi Alarm/Stopwatch/Timer ($£ 1$ 135)
£108
Sportsman's Quartz Analogue. Water'resistant to 300 feet. 5 year battery life (£.99.50) $£ 80$
LADIES WATCHES

THE INCREDIBLE

FX-8000

43 Scientific funct. $1 / 100$ th sac Stopwatch. Five Alarm Timars, sequentional (self clearing) or repeat. 2 level paren
thesis. Memory. Des. Rad Gra thesis. Memory.
Standard dev, had,
Intions. Fractions. Standard deviations. Fractions LCD. 1300 hr batteries. $1 / 4 \times 2^{3 / 4} \times$ $5^{3 / 4} \quad 2.707$
c 29.95
CQ-81 CALCULATING ALARM CLOCK PLUS 2 ALARM/TIMERS
Two AA batteries lasi for $10,000 \mathrm{hrs}$ (1) year) LCD 6 digit clock. large angled display 24 alarm, also two 24 hr Alarm/Timers with countdown (one memory. constants $\%, V 15 \times 23 / 4 x$

FX-48 SCIENTIFIC MINI CARD
Full scientific with 2 level parenthesis. Full memory. Deg, Rad, Grad.Sexagesimal. Standard
deviations. 600 hrs battery life $1 / 8 \times 31 / 2 \times 21 / 81.4 \mathrm{oz}$ £19.95
CALCULATING ALARM CLOCK
MINI CARD. Similar size to FX-48, similar specification £19.95

(1)

MORE POWERFUL LCD
SCIENTIFIC CALCULATORS
(5 - $100 £ 25.95$ CASIO CALCULATORS
ST. 1 Stopwatch (four way) $£ 24.95$
CD LC822 £ 10.95 . LC78 £ 16.95
CASIO SCIENTIFICS
DIGITRON: FX-31 £11.95. FX-39£15.95
FX-140£17.95. FX-1 $20 £ 19.95$. FX-360£49.95

SAVE EEES WITH THE MONITEL

£28.95. Internationat £38.50
Send 25 p for our illustrated catalogue. Prices include VAT and P\&P Send your cheque. PO or phone your credtt card

NEW

12 or 24 hour [optional] 6 DIGIT WATCHES

Unless otherwise stated

CASIO watches have a constant LCD display of hours minutes, seconds am/pm with day, date and month on demand. With night light, automatic 28,30, 31 day calendar, mineral glass face and all stainless steel cases, they are water resistant to 100 feet One battery lasts approximately 12 months. Accurate to less than \pm 15 seconds/month
WATCH BATTERIES $65 p$ each D.I:Y. KIT $35 p$ (with battery order)

Dept. ETI, 19/21 Fitzroy Street,
Cambridge. Tel. 0223312866

OUR
 LATESTSPECIAL

CONTENTS
Graphic Equalizer RF Attenuator ETI Watchdog Sweep Oscillator £2 Sound Improver Stereo Simulator Freezer Alarm General Preamplifier Stars \& Dots Game GSR Monitor Burglar Alarm Headlight Reminder Bench Amplifier CCTV Camera Audio-visual Metronome Expander-Compressor Power Amplifier Modules Digital Thermometer Headphone Adaptor Hear \& Tell unit Led dice Active Crossover Marker Generator Skeet Game Flash Trigger Disco Lightshow Unit Pink Noise Generator

\&1

Eraphic equaliser. Power Amplifier Marker Generator CCTV Camera IFD Dice.....S...... Headohone Adaptor - Light flash Trigger Remah - Mressor......skpat on II IIT B IVM:HC

worylar Alarm... Digita Stars \& Dots Lonic Active Crossover Game.... Lightshow r.... Hear and Tell Unit Sweep Oscillator Sweep Oscillator..... Stereo

Top Projects 6 is the latest special in the 'Top Projects' series, with reprints of 27 projects from past issues of ETI. TP6 is available soon at your local newsagents or direct from ETI now. Send a cheque or PO for $£ 1$ plus 25p p\&p, to:

ETI TP6

25/27 Oxford Street London W1R1RF

Please write your name and address on the reverse of your cheques or POs.

```
                PRESIDENT - ONE OF THE WORLD`S GREAT NAMES
    *)
Hughes Aircraft Company Quartz Module (Made in U.K.)
fè e5 \(\quad \star 786432 \mathrm{~Hz}\) crystal (with trimmer)
* Multi-function. Hours, mins., secs., date., etc
* Gold plated or stainless steel cases - made in Neuchatel, Switzerland
* Threaded battery access hatches for easy battery change
\(\star\) Ruby red mineral crystal time screen
* Shock and water resistan
* Fitted with matching bracelet (adjustable) or fine leather strap
```

GEMINI
Original prices $£ 50.00$ to $£ 85.00$ retail, but slight marks on some cases enable us to offer these watches at $£ 12.95$, inc. VAT
THREE ASSORTED available at $£ 11.95$ each
BULK TRADE ENQUIRIES ALSO WELCOME
Offered fully tested, with batteries but without the usual manufacturers guarantee although servicing facilities are available within the U.K An opportunity that cannot be repeated when current stocks are sold
PRESIDENT TIME - AS SEEN ON TV
Do not confuse with the many inferior LED watches currently available.

```
-

\section*{ALSO AVAILABLE ALTHOUGH NOT ILLUSTRATED}

A challenging offer for the D.I.Y. Electronic enthusiast. A small quantity of complete gent's cases and bracelets with contact pushers, ruby red time screens etc. Suitable for Hughes gent's modules ref. 201 A-4 function; 205A-5 function; 209-6 function or one of your own adaptation. Possibly also ideal for encasing other electronic gadgets adapted for wearing on the wrist.
Offered at E2.95 inc. VAT
Special prices available for quantity

\section*{PRESCOTT CLOCK \& WATCH CO. LTD.}

MAINS TRANSFOAMEAS 240 volt Prim. Type 1. 50 volt 10 amp @ \(£ 4.55\) (P\&P \(95 \rho\) ). Type 2. 24 volt tapped at 14 volt 1 amp \(@ £ 1.30\). (P\&P 30p). Type 3. 22-0-22 volt. 500mA @ \(£ 1.60\) (P\&P 25p).
JACK. ON TYPE 5pf VARIABLE CAPACITORS@750
S.L.R. 10 Amp Type 100 PIV @ 25p. 400 PIV @ 50p. 800 PIV @ 60p.

50 ASSORTED 2 WATT ZENERS Untested for \(57 p\).
SUB-MIN TANTALUM CAPACITORS \(4.7 \mu\) f \(10 \mathrm{v} . \mathrm{w}\). @ \(5 \mathrm{p}, 6\) for 25 p
ERIE SUB-MINIATURERED CAP. \(01 \mu \mathrm{f}\) f \(100 \mathrm{v} . w\). . © 5p each.
20 PHOTO TRANSISTORS, DARLINGTONS Untested @ £ 1
50 VARI-CAP DIODES like BA 102 Untested for \(57 p\)
400 mW ZENERS Unmarked Good. 3.6v, 6.8v, 10v, \(11 \mathrm{v}, 12 \mathrm{v}, 13 \mathrm{v}, 16 \mathrm{v}, 24 \mathrm{v}, \mathrm{v}\) \(30 \mathrm{v}, 33 \mathrm{v}, 36\) volt All at 10 for 40 p
MOS LEVEL SENSOR TAA 320A with data @ \(35 p\)
X BAND GUNN DIODES with data \(@ £ 1.65\)
ELECTROLYTICS \(2200 \mu\) f \(100 \mathrm{v} . \mathrm{w}\) @ @ 60p. \(3300 \mu\) f \(64 \mathrm{v} . \mathrm{w}\). @ 50 p .
CLOCK P.C. BOARDS with Buzzar, Mercury Switch. Transistors, only I.C. and Display missing Brand now @ ¢1
CMz STPIPLINE NPN circuits for 800
2 GHz STRIPLINE NPN TRANSISTORS at \(£ 1\) each.
6 WATT WIRE WOUND POTENTIOMETERS 1.2 K at 22 p.
10 MULTI-TURN PRE-SET TRIMPOTS Assorted @ \(57 p\).
WIRE ENDED CRYTALS Assorted 5100 to 7900 KHz Q 1.10
ITT CAPACITORS PMT-2P. \(1 \mu \mathrm{~F} 100 \mathrm{v} . \mathrm{w}\). at 20 p doz
100K DUAL LIN WIRE WOUND POTENTIOMETER\& @ 50p.
\(1000 \mu\) i \(40 \mathrm{v} . \mathrm{w}\). ELECTROLYTICS 3 for 35 p .
STUD DIODES 100 PIV 10 Amp @ 15p. 100 PIV 20 amp @ 25p
SILICON SOLAR CELLS 0.5 volt 5mA @ 35p each.
TEXAS 8.C.R.S TIC 47200 PIV \(300 \mathrm{~mA} @ 18 \mathrm{p}\) each
ELECTRET MIKE INSERT with FET Pre-Amp @ £1.50
100 ASSORTED DISC CERAMICS for 57p
NPN 5 WATT DARLINGTON TRANSISTORS @ 20p, 3 for \(50 \%\)
50. BC 107-8-9 TRANSISTORS Assorted Untested for \(57 p\)

Mc MURDO
SILICON BRIDGEs 200 PIV Q 25p. 400 PIV 1 amp @ 30 p .
ALUMINIUM DIECAST 'BOXES \(4^{\prime \prime} \times 2^{\prime \prime} \times 1^{\prime \prime} @ 55 p, 4.7 / 16^{\circ} \times 2.7 / 16^{\prime \prime} \times 1 / 2 @ 65 p\). \(41 /{ }^{\prime \prime} \times 2.9 / 16^{\prime \prime} \times 1.9 / 16^{\prime \prime} @ 85 p, 6{ }^{\prime \prime} \times 3^{\prime \prime} .3 / 16^{\prime \prime} \times 2^{\prime \prime} @ E 1.15\).
. \(01 \mu\) f \(125 v . w .1 \%\) CAPACITORS @ \(10 p\) each.
MINIATURE SUFFLEX CAPACITORS 12, 15, 20, 25, 30, 50, 56, 100, 120, 300 500, 1000pf All 125 v .w. at 20 p doz.
MULLARD ELECTROLYTICs \(2240 \mu \mathrm{f} 40 \mathrm{v} . \mathrm{w}\). @ 40p, \(4500 \mu \mathrm{f} 25 \mathrm{v} . \mathrm{w}\).. @ 40p. \(500 \mu \mathrm{f}\) \(10 \mathrm{v.w}\) @ \(15 \mathrm{p}, 6400 \mu \mathrm{f} 16 \mathrm{v} . \mathrm{w}\). @ 25p., \(8000 \mu \mathrm{f} 10 \mathrm{v} . \mathrm{w}\). @ 25 p . BAW 62 HIGH SPEED DIODES at 12 for 35p.
50 AC 128 TRANSISTORS Branded but untested for 570
\(3010 X A J\) TYpe CRYSTALS Assorted 5100 to 7900 KHz @ £.1. 10.
PHONO SOCKETS Single 5p
Please add 20p for post and packing, unless otherwise stated, on U.K. orders under £2. Overseas orders at cost.
J. BIRKETT

Radio Component Suppliers, 13 The Strait, LincoIn.

\section*{NASCOM 1 Microcomputer for the Hobbyist}

\section*{THE ONLY COMPLETE MICROCOMPUTER AVAILABLE TO THE HOME CONSTRUCTOR \\ }
* Supplied in Kit Form for Self-Assembly
* Full documentation supplied
\(\star\) Includes Printed Circuit Board
\(\star\) Full Keyboard included
* Interfaces to Keyboard, Cassette Recorder \& T.V
\(\star 2 \mathrm{~K} \times 8\) RAM
* \(1 \mathrm{~K} \times 8\) Eprom Monitor Program
\(\star\) Powerful 780 CPU, Mostek
* 16 line \(\times 48\) Character Display Interface to standard, unmodifed
T.V. set
\(\star\) On board expansion to \(2 \mathrm{~K} \times 8\) Eprom
\(\star\) On Board Expansion Facility for Additional 16 Lines I/ O
* Total expansion to 256 Input Ports and 256 Output Ports

\section*{SOFTWARE FEATURES:}
\(\star 1 \mathrm{~K} \times 8\) Nasbug Program in Eprom
\(\star\) Provides 8 Basic Operator Commands including single step \(\star\) Expandable Software System via additional user Programs in Ram of Eprom


Sole Appointed London Stockists

\title{
electronics tomorrow. by John Miller-Kirkpatrick \\ 
}

A COUPLE OF MONTHS ago I suggested some refinements which would be rather useful in connecting a cassette recorder to a microprocessor.

The intention of the original article was to suggest a standard form for recording files on a cassette tape, regardless of the actual bit recording form (CUTS, Tarbell, etc). One requirement is some form of identification Of Start Of Record, this cannot be a 'special character as any of the 256 possible characters coudl appear on the tape as data, similarly a sequence of characters may exist on some tape somewhere as data. What is required is a marker which is not data and could not appear by accident - a reflective strip is one possible answer, other solutions are a hole, blank tape, a tone or a highspeed signal. Most of these have limitations when applied to the various types of tape machines available including Audio Cassette, digital cassette or even paper tape. The idea of recording and playing back an indication on the tape at high speed is an interesting idea (for which I am indebted to Mr Fielden of Suffolk). On a digital cassette drive, those of the high price and low dropout, the motor speeds are usually the same in both directions which makes this idea perhaps only applicable to these machines. My extension of this idea conforms with the requirements to have a signal which cannot be recognised as data because the data is written at high speed so that it will be ignored by a normal speed read. The tape can be initialised in either of two ways -

\section*{Initial Reaction}
1. A series of tape marks can be written on the tape during a high speed forward write operation, these are intersperced with blank tape of enough duration to allow for a tape stop, transfer to slow speed, read data record and then revert to high speed. Using this method the format of the records must be fixed length, the formatting program will calculate how much blank tape is required from the given record length.
2. The first record written onto the tape is an End Of File indicator written at fast forward speed and containing information about the tape, number of records, units of tape used, etc. An alternative is to record this information twice, once as a tape header record and once as a trailer. In this case the header and trailer could form an index to the contents of the tape and the theoretical space available on the tape.

Each header record would be required to be read in either direction and thus the bit pattern of the fist byte in
the record should be the inverse of the last, usually this bit pattern is used to act as a START byte and thus act as a double check that a record starts here. If a UART or similar device is used within the system it will cuase \(\$ 1\) bits instead of 8 to be recorded on the tape, this system assumes that 8 bits are recorded but coudl be used with inginuity wit an 11 bit system. If we choose the bit pattern x'5A' or 01011010 it can be recognised by reading in either direction, even by a UART. We should also include a direction byte to indicate which direction the tape is reading, I would suggest ' 01 ' for forward and \(x^{\prime} F F^{\prime}\) for reverse (ie +1 and -1 ), this indicates both the direction of bit shifting required and also the byte storage into RAM

\section*{Heading For Use}

Once we have the two ends of the header record defined we can fill up the rest of the header with useful data, eg

Indent or SOR code. Forward Read code. Record Number

Start Address

Length of record
Record Name.
Record type code.
Transfer address

Chain from code

Chain to code.

Header data.
Checksum code

Length of record
End address.

Record Number Two
Reverse read code.
End of Record code.
\(\times A^{\prime}\)
\({ }^{\prime} 01^{\prime}\)
Single byte number of this record in file
Address (2 byte) at which to store record, can be overridden.
2 byte length, in a tape header this would be max size any 6 byte name. eg. HEADER. INDEXb, PAYROL, etc X \(^{\prime} 48^{\prime}\) ( \(=H\) for Header) \(\times{ }^{\prime} 54\) ( \(\mathrm{T}=\) Trailer), \(\mathrm{x}^{\prime} 44^{\prime}(\mathrm{D}=\) Data) A 2 byte address to which execution should be transferred at EOR, can be over-ridden as an option
A single byte record number which is compared with the 'last record' in RAM, if \(\times\) ' 10 ignore.
Single byte record numbel of record which should follow this in chaining sequence, \(x^{\prime} F F^{\prime}=\) end of chain, \(x^{\prime} 00\) ' ignote User header data, eg Index, etc. Length as defined above. A checksum byte which is compared to that computed during the read operation, a difference could indicate a read error.
Duplicate for Reverse read.
IE. Start address for reverse read, can be used for checking during forward read.
Duplicate for reverse read
\(x^{\prime}\) FF'
\(x^{\prime} 5 A^{\prime}\)

Note that the data above is repeated for each record in both fast and slow modes, except that in a fast mode the record length would be zero to indicate a fast header and that the 'Record number' field would indicate the number of the next data record in slow mode which will be encountered in the current direction of travel


\section*{YOU CAN'T BEAT OUR METAL DETECTOR KITS FOR VALUE \\ ETI MK 2 Induction Balance metal Detector Kit}
\(\mathbf{£ 1 9 . 0 0 + 6 0 p P \& P}\)
Plese noto that Kits do noi include Marley Pipe, Cycle Mandgrip, nor Plywood for the construction of the Search Head, but does include Plywood for
overything olse.
Component Paks for Metal Detectors:-
Resistor Pak
Capacitor Pak
Semiconductor Pak
Verobox
PC.B


Mk. 2
\(£ 2.35\)
\(£ 2.40\)
\(\begin{array}{ll}\mathbf{E} .40 & £ 3.15 \\ 1.00 & £ 1.25\end{array}\)
S.R.B. Miniature Soldering Iron \(16 / 18\) watt
\(£ 3.50+25 p P \& P\)
SCOOP!!
We are the SOLE DISTRIBUTORS and STOCKISTS of the 'APOLLO' LOGIC TESTER Ideal for Servicing. Workbench Schools. Industry
The 'APOLLO' is surtable for any logic system using \(5 v\) power supplies CMOS ITL DTL etc. The 'APOLLO' takes its power from the circuit under test and it is protected from the inadvertent connection to reverse polarites
1
 Pin disconnected or Voltage between Iv and \(22 v\)

High Level (Logic 1) more than \(22 v\)
2. 1
3.

4. 5

4 Fast pulses (Mark-Space ratio indicated by relanive
brighiness of centre segments
Special Introductory OHer Price
£11.75 Inclusive of \(P\) \& \(P\) COST All our Prices include V.A T Please include \(25 p\) P \&P. except where stated atherwise Our Stores at 31 POOLE ROAD WORKS. Wimborne are open to personal shoppers on Fridays from 215 pm to 8.00 pm and on Saturdays from 915 am to 600 pm Cross, Wimborne, Dorset

DISCO RANDOM LIGHT UNITS
 a second and then back to full brightness

500 mm long, designed for \(3 \times 100 \mathrm{~W}\) lamps (not included), complete with 2 metres of cable and 12 months guarantee. Fully suppressed, all electronic (not bi-metal).

\section*{£6.25 each +75 p Post or TWO for \(£ 12.50\) post free}

Send now to

\section*{M. D. MARKETING}
P.O. Box 4, Hinckley, Leics.

Reg office 22 Station Road. Hinckley


\section*{Morse Code On The Oscilloscope}

\section*{S. J. Stamps}

This circuit enables morse code to be displayed as dots and dashes on an oscilloscope screen. By speaking into a microphone, saying 'dit' and 'dah as appropriate, short and long pulses appear on the screen in a format similar to that of written morse

One half of an LM381 and a BC109 are used to amplify the signal from the microphone, which is then clipped into digital form by the AND gate. The output from the circuitry is fed to an oscilloscope set to \(2 \mathrm{~V} / \mathrm{cm}\) and \(5 \mathrm{~ms} / \mathrm{cm}\), set to trigger on the
start of a 'dit
Input to the circuit can be from a microphone, or tape recorder. If words are recorded onto the tape with the microphone and then played back via the circuit, practice at reading morse is possible.

\section*{High Current Regulator}

\section*{N. Gray}

This circuit can supply 10 A at 5 V which falls to about 8 A at 15 V , (make sure your transformer can take it!). The circuit is fairly straightfor ward. Most of the output current flows through Rsc and Q1 (less than 1A flows through the regulator), the current being regulated by the current flowing through the e-b junction of Q1. Voltage is regulated by the \(\mu A 7805\) and controlled by RV1 giving a variation from 5 V to 15 V .


Output current is limited by Rsc and can be calculated from

For currents greater than 5A, Q1 should be mounted on a heatsink. Q2 and the regulator should run cold (if not there's something wrong!)


56 FGRTIS GMEEN ROAD, MUSWELL HILL, N10 3HN TELEPHONE: 01-883 3705

\section*{OUR LATEST CATALOGUE}
contains free
45 pence WORTH
OF VOUCHERS
CONTAINS MICROPROCESSORS + BOARDS, MEMORIES, TTL, CMOS, ICs, PASSIVES, ETC., ETC.

\section*{SUPERSAVERS}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{all full spec devices} \\
\hline TEXAS & TIMER & RED LED \\
\hline 741 & 555 & TIL209 \\
\hline 5 for & 4 for & 10 for \\
\hline £1.00 & £1.00 & £1.00 \\
\hline
\end{tabular}

\section*{A4 IC BOOKLET}

SUPPLIED FREE WITH ORDERS OF ANYICSWORTH £5.00 OR MORE, CONTAINS CIRCUITS PIN CONNECTIONS AND DATA ( \(35 p\) + SAE IF SOLD ALONE)

\section*{TWO NEW SUPERMODULES 170W INTO 4 OR 8 OHMS}


By popular demand we have designed higher powered versions of our well known modules. The CE 1704 which gives 170 W into 4 ohms and the CE 1708 which gives 170W into 8 ohms are physically simitar to the original types and have the same combination of compatible performance leatures which makes CRIMSON amplification audibly superior to the competition and the only choice if you have an ear for music.
have also produced suitable power supplies which again use our superb TOROIDAL TRANSFORMERS, only 50 mm high, with a 120.240 primary and single bolt fixing Write or phone for more information and biased opinions.

POWER AMPLIFIER MODULES CE \(60860 \mathrm{~W} / 8\) ohms \(35-0.35 \mathrm{~V}\)
CE \(1004100 \mathrm{~W} / 4\) ohms \(35-0-35 \mathrm{y}\)
CE 1008 100W/8 ohms 45-0-45 CE 1704 170w/4 ohms \(45-0-45 \mathrm{~V}\) CE \(1708170 \mathrm{w} / 8 \mathrm{Dmms} 60-0-60 \mathrm{~V}\) TOROIOAL POWER SUPPLIES CPS 1 Ior \(2 \times\) CE 608 or \(1 \times\) CE 1004 CPS 2 lor \(2 \times\) CE \(10042 / 4 \times\) CE 608 CPS 3 tor \(2 \times\) CE 1008 or \(1 \times\) CE 1704 CPS 4 tor \(1 \times\) CE 1008
CPS 5 for \(1 \times\) CE 1708
CPS 6 for \(2 \times\) CE 1704 or \(2 \times\) CE 1708 HEATSINKS
Light Outy \(50 \mathrm{~mm} 2 \mathrm{C} / \mathrm{W}\)
Medium Power \(100 \mathrm{~mm} 1.4^{\circ} \mathrm{C} / \mathrm{W}\)
Disco/Group \(150 \mathrm{~mm} 1.1^{\circ} \mathrm{C} / \mathrm{W}\)
THERMAL CUT-QUTS
Recommended for improved reliability
\(70^{\prime} \mathrm{G}\) for \(\mu \mathrm{se}\) with free air heatsink
40 C For use with lan cooled heatsink
\begin{tabular}{|c|c|c|c|}
\hline Home & Eurape & ¢\%. & Iypically \(<01 \%\) \\
\hline £16.30 & ¢ 16.60 & & any power. IkHz. 8 \\
\hline £19.22 & £19.30 & TILO. & Ohms Insioniticant \\
\hline £23.22 & £23.00 & Stew Rate Limit & \(25 \mathrm{~V} / \mu \mathrm{S}\) \\
\hline ¢29.12 & ¢28.46 & S/W Ratio & : 110dB \\
\hline £31.90 & £31.04 & Freq. Response & \[
{ }_{-3 \mathrm{dz}}^{110 \mathrm{~Hz}-35 \mathrm{kHz} .}
\] \\
\hline £14.47 & £18.40 & Stability & : Unconditional \\
\hline £16.82 & £20.57 & Protaction & Drives any load \\
\hline \$17.66 & £21.35 & & safely \\
\hline ¢15.31 & £19.18 & Sensitivity & 775 mb [250mV or \\
\hline £22.68 & £26.50 & & 100 mV on Requast \({ }^{\text {j }}\) \\
\hline £23.98 & £27.70 & Size & \(120 \times 80 \times 25 \mathrm{~mm}\) \\
\hline £0.90 & £1.30 & \multicolumn{2}{|l|}{CRMMSOM} \\
\hline £1.60 & £2.40 & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{ELEKTRI}} \\
\hline £2.30 & £3.65 & & \\
\hline
\end{tabular}

Please nole our new address and
Please note our new address and
telephone number: Stamford House. Stamtard Strset. Leicester LEI 6 ML . Telephone [0533| 537722.

Home prices include V.A.T and postage C.O.D. 90 pextra, \(£ 100\) limit Export no problem. European prices include carriage, insurance and handling, payment in Sterling by bank dratt, P. O., International Giro or Money Order. Outside Europe, please write for Favourable trade quantity price list on request. High quality pre-amp circuit 20 p


\section*{Understanding Digital Electronics New teach-yourself courses}


Design of digital Systems is written for the engineer seeking to learn more about digital electronics. Its six volumes - each A4 size - are packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters and simple arithmetic circuits, and finally to a complete understanding of the design and operation of calculators and computers.

\section*{The contents of Design of Digital Systems include:}

Book 1 Octal, hexadecimal and binary number systems; conversion between number systems; representation of negative numbers; complementary systems; binary multiplication and division.
Book 2 OR and AND functions; logic gates. NOT, exlusive OR. 'NAND, NOR and exclusive-NOR functions; multiple input gates; truth tables; De Morgans Laws; canonical forms; logic conventions; Karnaugh mapping; three-state and wired iogic.
Book 3 Half adders and tull adders; subtractors; serial and parallel adders; processors and arithmetic logic units (ALUs); multiplication and division systems.
Book 4 Flip flops; shift registers; asynchronous and synchronous counters; ring, Johnson and exclusive-OR feedback counters; random access memories (RAMs) and read only memories (ROMs).
Book 5 Structure of calculators; keyboard encoding; decoding display data; register systems; control unit; program ROM; address decoding instruction sets; instruction decoding; control program structure.
Book 6 Central processing unit (CPU); memory organisation: character representation; program storage; address modes; input/ output systems; program interrupts; interrupt priorities; programming; assemblers; computers; executive programs; operating systems and time sharing.


Digital Computer Logic and Electronics is designed for the beginner. No mathematical knowledge other than simple arithmetic is assumed, though the student should have an aptitude for logical thought. It consists of four volumes - each A4 size - and serves as an introduction to the subject of digital electronics. Everyone can learn from it - designer, executive, scientist, student, engineer.

Contents include: Binary, octal and decimal number systems; conversion between number systems; AND, OR, NOR and NAND gates and inverters; Boolean algebra and truth tables; De Morgans Laws; desıgn of logic circuits using NOR gates; R-S and J-K flip flops; binary counters, shift registers and half adders.

\section*{CAMBRIDGE LEARNING ENTERPRISES, UNIT 10 RIVERMILL SITE,}

FREEPOST, ST. IVES, HUNTINGDON, CAMBS. PEI7 4BR, ENGLAND
TELEPHONE: ST. IVES [0480] 67446
PROPRIETORS: DRAYRIDGE LTD. REG. OFFICE: RIVERMILL
LODGE, ST. IVES
REGD. IN ENGLAND No. 1328762

In the years ahead the products of digital electronics technology will play an important part in your life. Calculators and digital watches are already commonplace. Tomorrow a digital display could show your vehicle speed and petrol consumption; you could be calling people by entering their name into a telephone which would automatically look up their number and dial it for you.

These courses were written by experts in electronics and learning systems so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being faster and more thorough than classroom learning. You work at your own pace and must respond by answering questions on each new piece of information before proceeding.

After completing these courses you will have broadened your career prospects and increased your fundamental understanding of the rapidly changing technological world around you.


Price includes surface mail anywhere in the world - Airmail extra.

\section*{Flow Charts \& Algorithms}

\author{
HELP YOU PRESENT
}
safety procedures, government legislation, office procedures, teaching materials and computer programs by means of YES and NO answers to questions.

THE ALGORITHM WRITER'S GUIDE explains how to define the questions, put them in the best order and draw the flow chart, with numerous examples shown. All that students require is an aptitude for logical thought. Size: A5, 130 pages. This book is a MUST for those with things to say.
£2.95
+45 p post \(\&\) packing by surface mail anywhere in the world. Airmail extra.

GUARANATEE
Giro Ac. No. 2789159
If you are not entirely satisfied your money will be refunded.
Cambridge Learning Enterprises, Unit 10, Rivermill Site.
Freepost, St. Ives, Huntingdon, Cambs. PE1 7 4BR
England.
Please send me the following books
sets Digital Computer Logic \& Electronics @ £5.50.p \& p included
sets Design of Digital Systems @ £9.00. p. \& p. included
Combined sets@ £13.00, p \& p included
The Algorithm Writer's guide @ £3.40, p \& p included

\section*{Name}

Address

। enclose a "cheque/PO payable to Cambridge Learning Enterprises for \(£\)
Please charge my Access/Barclaycard/Visa/Eurocard/ Miastercharge / İnterbank account number
Signature
-deleted as appropriate Telephone orders from credit card holders accepted on 0480 67446 (ansafone). Overseas customers should send a bank draft in sterling drawn on a London Bank.

\section*{Transistor Tester}

\author{
G. Smith
}

This transistor tester works by injecting a known current into the base of the transistor under test, and measuring the collector current. The values of R1, R2 and R3 give a base current of 10,4 and \(1 u A\) which gives a FSD on the meter for transistors with a gain of 100,250 , and 1000 respectively. Since the gain of the transistor is proportional to its gain, the gain can be easily deduced from the reading on the meter. Leakage current is measured by leaying the base open circuit.

SW2 reverses the polarity of the battery and the meter to allow the testing of both NPN and PNP transistors. R4 and RV1 protect the meter from excessive currents, and do not affect the reading on the meter. RV1 should be adjusted so that the meter

needle just touches the end stop when the collector and emitter terminals are connected together.

A simple transistor socket can be made by mounting three crocodile
 clips as shown in the diagram


\section*{Musical Tone Generator}
P. Reynolds

This circuit provides a means of generating a series of up to ten musical notes

The 7400 oscillator produces pulses at about 1 second intervals. These pulses, after being buffered are fed to a decade counter which produces a BCD output. The output is fed to the 7442 which produces a decimal output. Each output is taken to a preset forming a potential divider. The
\(V C O\) senses the voltage at point ' \(a\) ' and changes the frequency of the output tone. Careful adjustment of the presets can give a reasonable range of notes. The length of each note as well as the time between notes can be varied by changing the timing components in the 7400 oscillator.

\section*{D@1AM}

Quality Range of Products
from The Doram Catalogue include:
Single Semiconductors
Wide range of single diodes fener diodes, rectifiers and general purpose transistors. Integrated Circuits
Quality linear and dic̣ital IC's, regulaturs eic.
Mains Transformers Comprohensive tor quality selection of low voltaye transtormers

\section*{Switches}

A switch for most applications.

Hand Tools
We stock a large range of tools for most electranic projects. Books
We can supply a wide range of books from simple projects to detailed tex t books.
Wire \& Cable
Small or large quantities


Selich nuw for the NI W'78 - '79 edition 5 catalogue
ET4 (Jver 2,000 ithons - 120 waues 75p

\section*{Nalle.}

\section*{Audiess}

\section*{D@rAm}

Durame lectronics Lid.
(1) Box TR8.

Wentmutun Road Estate Wellington Bridqe. Leeds LS12 2UF
( vvirseas urders, ficcept for N. Ireland. Please add 35p to cover despatch by Arr

\section*{HBELECTBONCS TELEPHONE KETTERING 053683922520910}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{I.C.sTTL 7400 series} \\
\hline \multirow[t]{11}{*}{\[
\begin{aligned}
& 7400 \\
& 7401 \\
& 7402 \\
& 7403 \\
& 7404 \\
& 7405 \\
& 7407 \\
& 7408 \\
& 7409 \\
& 7410 \\
& 7413
\end{aligned}
\]} & 14p & 7414 & & 7454 & 14 p & 7485 & 74p & 74107 & 27p \\
\hline & 14p & 7420 & 14p & 7460 & 14p & 7486 & 27p & 74121 & 27p \\
\hline & & 7430 & & 7470 & 24p & 7490 & 40p & 74123 & 51p \\
\hline & 14 p & 7440 & 14p & 7472 & 24p & 7491 & 71p & 74141 & 54p \\
\hline & & 7442 & & 7473 & 23p & 7492 & 46p & 74151 & \(60 p\) \\
\hline & 14p & 7443 & 60p & 7474 & 23p & 7493 & 40 p & 74154 & ¢ 1.60 \\
\hline & & 7444 & & 7475 & 45p & 7494 & 66p & 74190 & 94 p \\
\hline & 18p. & 7447 & 70p & 7476 & 32p & 7495 & 57 p & 74191 & 94p \\
\hline & 18 p & 7450 & & 7480 & 41p & 7496 & 63 p & 74192 & 94p \\
\hline & \(14 p\) & 7451 & 14p & 7482 & 610 & 74100 & 73p & 74193 & 94 p \\
\hline & 22p & 7453 & 14p & 7483 & 58p & 74104 & 40p & & \\
\hline \multicolumn{10}{|c|}{OUR COMPUTER TAKES GOOD CARE OF YOUR ORDERS .} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
SIEMENS CAPACITORS \\
World-famous for quality and dependability exceptionally farge stacks held \\
PCB TYPES: 75 mm PCM 0001 100015p each 0012 to 00686 pea 017 peach CERAMIC. 25 mm PCM 001400022 \(00335 p\) ea.; 10047 U 1686 6p ea.; 5 mm PCM 7p; 62210 p . \\
ELECTROLYTICS. \(1 \quad 100 \quad 10 \quad 25 \quad 1063\) 10025 etc for tull tange see our cullent lisis
\end{tabular}}} & \multicolumn{5}{|l|}{\begin{tabular}{l}
RESISTORS \\
\(1 / 3 \quad 1 / 2 \quad 3 / 4\) watts \(2 p\) ea metal film metal oxide and I watt cartion 5p Magnenc field dependent from \&1.50. Hall Ethect from \& 1.23.
\end{tabular}} \\
\hline & & & & & \multicolumn{5}{|l|}{\begin{tabular}{l}
SIEMENS TRANSISTORS \\
Suticon mpn and pnotrom 8p ea LEDS red 19p ea yellow or green 23p is or 5 mm ) Photo transistors from 76p.
\end{tabular}} \\
\hline \multicolumn{10}{|c|}{KEEN PRICES GOOD SERVICE WIDERANGES} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
DISCOUNTS \\
 PO or cheriwe is sent with orcter \(10 \%\) \\
 \(\qquad\) das \(\mathrm{P}^{\prime}()\) ot eltuet s sent wil order
\end{tabular}}} & \multicolumn{5}{|l|}{\begin{tabular}{l}
V.A.T. \& POSTAGE \\
Add \(8 \%\) to vatue of order or \(12 \% \mathrm{~h}\) wath items matked No VAI on uverseas onderst Goods sent POST FREE on C W O orders in UK. over £5 list value. If under, add 27 p per
\end{tabular}} \\
\hline & & & & & \multicolumn{5}{|l|}{\begin{tabular}{l}
MONTHLY BARGAIN LISTS \\
S A E trings monthly list of bargains \\
Also current quack reterence price list ol all ranges
\end{tabular}} \\
\hline \multicolumn{10}{|c|}{\begin{tabular}{l}
Cash with order iP 0 or theque payable to Electrovalue Lid 1 or your Access or Baclaycard number traoe and industrial enduiries invited \\
for all round satisfaction - be safe - buy it from ELECTROVALUE
\end{tabular}} \\
\hline \multicolumn{10}{|c|}{} \\
\hline
\end{tabular}

Dept. ETI.8. 28 Judes Rd., Englefield Green, Egham, Surrey TW20 OHB.
Northern Bran Burnage, Manchester M19 1NA.
hoppers only), 680 Burnage Lane, A.

Phone (061) 4324945.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{TRANSFORMERS DUAL VOLTAGE} \\
\hline \multicolumn{5}{|c|}{\begin{tabular}{l}
Primary \(220-240 \mathrm{~V} \quad 50 \mathrm{HZ}\) \\
Alternative Secondary Voltage and Current Available \\
By Series or Parallel Connection. Details Enc.
\end{tabular}} \\
\hline Type No. & Voltage & Current & £ & P/P \\
\hline 60 FE 12 & \(12+12\) & 3A each & 4.50 & 75p \\
\hline 60FE 15 & \(15+15\) & 2A each & 4.40 & 75p \\
\hline 60 FE 20 & \(20+20\) & 1.5A each & 4.35 & 75p \\
\hline 60FE28 & \(28+28\) & 1.1A each & 4.30 & 75p \\
\hline 60 FE & \[
\begin{aligned}
& 0-15-20 \\
& 0-15-20
\end{aligned}
\] & 1A each 1A each & 4.60 & 75p \\
\hline 50FE 12 & \(12+12\) & 2A each & 3.50 & 70p \\
\hline 50FE15 & \(15+15\) & 1.6A each & 3.40 & 70p \\
\hline 50FE20 & \(20+20\) & 1.2A each & 3.30 & 70p \\
\hline 20FE06 & \(6+6\) & 1.6A each & 2.30 & 65p \\
\hline 20FE 12 & \(12+12\) & 0.8 A each & 2.75 & 65p \\
\hline 20FE15 & \(15+15\) & 0.6A each & 2.70 & 65p \\
\hline 20FE17 & \(17+17\) & 0.5A each & 2.65 & 65p \\
\hline 12 FE 06 & \(6+6\) & 1.0A each & 2.00 & 60p \\
\hline 12 FE 09 & \(9+9\) & 0.6A each & 2.05 & 60 p \\
\hline 12FE12 & \(12+12\) & 0.5A each & 2.10 & 60 p \\
\hline 12FE15 & \(15+15\) & 0.4 A each & 2.15 & 60 p \\
\hline 12FE20 & \(20+20\) & 0.25 each & 2.20 & 60 p \\
\hline 08FE06 & \(6+6\) & 0.65A each & 1.85 & 50 p \\
\hline 08FE12 & \(12+12\) & 0.3A each & 1.80 & 50p \\
\hline 08FE15 & \(15+15\) & 0.25A each & 1.75 & 50p \\
\hline 30FE30 & 0-12-15-20-24-30 & 1 A & 2.95 & 70 p \\
\hline 60FE30 & 0-12-15-20-24-30 & 2A & 4.70 & 1.00 \\
\hline 100FE30 & 0-12-15-20-24-30 & 3A & 5.60 & 1.00 \\
\hline 100F.E26 & 26-0-26 & 2 A & 4.80 & 1.00 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{5}{*}{\begin{tabular}{l}
FLADAR ELECTRIC P.O. Box 19 \\
25. Southview Drive, Westcliff-en-Sea. \\
Essex 0702-613314
\end{tabular}}} & \multicolumn{3}{|l|}{\multirow[t]{5}{*}{\begin{tabular}{l}
PAYMENT TERMS \\
C.W.O. Cheques \\
Postal Orders \\
Please Add 8\% VAT \\
After Post \& Packing
\end{tabular}}} \\
\hline & & & & \\
\hline
\end{tabular}

\section*{INCREDIBLE TV GAME BARGAINS}


Tennis, Football, Squash, Solo, Remote Controls based on AY-3-8500. Fully Assembled, Boxed \& Guaranteed.

\section*{B\&. W MINI KITS}

PCB. chip skt, osc coil.
Tank - \(£ 10.50\) Road Race \(£ 11.95\)
Stunt Cycle £11.95 10 Game £8 50
Submarine - Avaitable August
-All prices inc. VAT Add £ 30 P\&P

\section*{VIDEOTIME PRODUCTS}

56 Queens Road, Basingstoke Hants RG21 1RE. Tel. (0256) 56417 Telex 858747
Trade \& Export Enquiries Welcome
U.H.F. GREYSCALE AND PATTERN GENERATOR PGGRF


PRODUCES SIX INVALUABLE PATTERNS:-
* CROSSHATCH GRID * HORIZONTALS
* DOT MATRIX * WHITE RASTER
* VERTICAlS * 8 BAR GREYSCALE

ONLY REQUIRES CONNECTION TO U.H.F. AERIAL SOCKET
gV battery Operated
TECHNALOGICS now gives you the opportunity to set up colour television receiver the prolessional way This pocket size, battery powered unit (consumption less than 6 m a 1 based on latest cmos technology. enables you to set up static convergence. dynamic conver gence, picture geometry. colour purity, focus. beam limiting. Greyscale tracking. black level, clamping, etc , by selecting one of the six patterns generated by
PG6RF on channel 36 (for U K 625 -line standard TV PG6R
sets)
sets) Available either ready built and tested or in D I.Y kit form The kit consists of all components, glassfibre pcb tough plastic box with full instructions (modulator pre-bult for ease of construction).
Ready bult and tested guaranteed for 1 year
KIT \(£ 21.50 \quad\) BUILT \(£ 28.00\)
\(+50 p \mathrm{p}\) p all subject to \(8 \%\) VA
Still available
LOGISCAN MK II COLOUR TELETEXT DECODER
YOU CAN NOW BUILD A TELETEXT DECODER TO THE LATEST BBC/IBA/BREMA SPEC (N B Many other decoders are not to full spec.)
Avallable with full technical back-up in easy to build form for £205 Kit. £265 ready built and tested or in module form price on request. all subject to \(12 \frac{1}{2} \%\) VAT
DISCOUNT PRICES FOR TTL LS AND LOCMOS INTEGRATED CIRCUITS ON REQUEST DETAILS LARGE SAE

\section*{MAIL ORDER ONLY}

TECHNALOGICS
GEGERTON STREET, LIVERPOOL L8 7LY


This stylish \(63 / 4 \times 11 / 2 \times 31 / 2\) unvt features an AM/FM radio and a highly accurate LCD clock which controls the unit so that it can
operate as an alarm clock with 4 -minute snoore or you can wake up zo your favourit progrme it an atso the radio oft when you 90 to sleep'
\(£ 27.00\)

Winner of the Hong Kong Governor's Design Awrard thuly portable, cord. LESS, ELECTRONIC ALARM CLOCK
mi Only E 19.80 inc . VAT \((+\mathrm{E} 1\)

 LIQUID CAYSTAL DISPLAY READOUTS (LCD) allow truly
light werght portable clocks The light weught portable clocks The
low power requirements of LCD display alliow long battery life and
elimination of heavy bulky elimination of heavy bulky trans-
formers. resulting in light. com. formers. resultung in
pact. attractive style
rary styling
PORTABLE ALARM CLOCK. Uee in the home, in officee and trovel, ahao would make an oxcellent car clock.

Computer-type \(1 / 2(127 \mathrm{~mm})\) LCD readou
Battery operated ( \(2 \times A A A\) cells
Minumum one year battery lite
Quartz crystal accuracy
\(100 \%\) Solid state circuitry designed for long life and rouble-tree operation Readout is back lighted for night viewing
PM indicator in 12 hour format Simpie ume setting procedure Time zone changes easily made Time synchronising swich for exact ume setting Clear. pleasant sounding piezo-electric alarm
Touch-to-activate control bar for drowse function giving extr mnnutes sleep when activated
Dimensions \(120 \times 14 \times 19 \mathrm{~mm} / 433^{\prime \prime} \times 25 / 16^{\prime \prime} \times 3{ }^{\prime \prime \prime}{ }^{\prime \prime}\)
Werght 120 grams 14.2 ounces \(/\) inctuding giff box and packing Weight 120 groms 14.2 ounces
Finish Meral with black inset

\section*{KRAMER 8 CO}

9 Octobor Places, Holders Hill Road, London NW14 1 J Telex ssagit Attn Kramer K7. Tel: 01-203 2473 Mall order anly SAE for data sheets Export enquiries welcome

\section*{Bean Himcy：0NC HCCHMA：}

Do something PRACTICAL about your future．
Firms all over Britain are crying out for qualified people． With the right training，you could take your pick of these jobs．

Now，the British Institute of Engineering Technology will train you in your spare time to be an Electrical Engineer．

You risk nothing！We promise to get you through your chosen course－or，refund your fee！

So，join the thousands who have built a new future through home study Engineering courses．

\section*{CHOOSE A BRAND NEW FUTURE HERE}
\begin{tabular}{llll} 
& CUT OUT THIS COUPON \\
Tick or state subject of interest．Post to address below． \\
& & \\
ELECTRICAL \＆
\end{tabular}

\section*{THIS MONTH＇S SPECIAL OFFER \\ \section*{＇Motorola Audio Amplifier I watt I．C．＂}}

1 watt plus into \(8-16 \Omega, 9-16 \mathrm{~V}, 10-400 \mathrm{MV}\) sensitivıry．Shont circuit proof，no heatsink required．Only 90p with Data and circuits

Sentind Smoke and Gas Detector．This beautifully made unit uses quality．This ponents on fibreglass board，encased in heavy duty．domed diecast box， \(31 / 2\) diam \(\times 11 / 2\) high．LED．indicator，TGS 105 plug in sensor， 24 v ，or 12 v by altering 3 resistors． will drive relay or lamp．Ideal for caravans． boats，kitchens，etc．，etc．\(£ 6.45\) with circuit and data．
Miniature Vernitron \({ }^{\circ}\) FM4 107 MHz ceramic
filters ilters 50 p each， 3 for \(£\) ？
Crystal earpieces with lead
40p each 3 for E 1
Magnetic earpieces with lead and plug
Ultrasonic trensducers transmither and
receiver． 14 mm diam 40 kcs ．
4 aluminium boxes \(128 \times 44 \times 3.25\) per pair or signal injectors，etc．
100 miniature reed switches，ideal for burglar alarms，model railways，etc \(£ 3.30\) 66 －pole 12 volt reed relays on board \(£ 2.45\) High quality computer panols smothered in op－grade components
10 lbs.
E4．75
New U．H．F．tranaistor TV tuners．Rotary type with slow motion drive，aerial socket
 Aluminium TV coan plus ．．．．． 10 for E .1

Miniature edgewise panel mounting level moters \(\mathbf{2 0 0 \mu}\) a F．S．D．． 90 p 300 mixed resistors \(1 / 2\) \＆ \(1 / 4\) watt ．\(£ 1.50\) 300 modern mixed caps most types £ 330 100 mixed electrolytics ．．．．．．．．
300 mixed printed circuit resistors \(\begin{aligned} & £ 1.00 \\ & £ 1.00\end{aligned}\) 100 high－wattage resistors．W．W．，etc．
20 assonted VDRs and thermistors \(£ 2.20\)
20 assorted VDRs and thermistors \(\begin{aligned} & \text { E．} 20\end{aligned}\)
 25 assorted pots and presets E .50
\(470 \mu \mathrm{~F} 25 \mathrm{v}\) radial，modern type 10 for E 1 200 mixed 1 －and 2 －watt resistors \(£ 1.50\) 100 k varicap pots．can be banked side by side．very compact ．．．．．． 10 for \(£ 1\) 300 mixed modern caps，most types \(£ 330\)
100 mixed modern miniature ceramic and plate caps
£1．20

Don＇t let your envirenment dehvdrate You，BUY OUR＂HONEYWELL HUMIDITY CONTROLLER＂．Membrane actuated，adjustable by \(1 / 4\)＇shaft．Ideal for greenhouses，offices，centrally heated homes，etc．3．75A contacts at 250V．Build Humidifiers or dehydration alarms with this novel gadget at a fraction of original cost． each， 3 for £2 50.

Semiconductor Bargain： Now Super Bargain Diode Pack．Includes zener，power，bridge，varicap，silicon，ger－ nium，marked，unmarked lent value． 300 for \(£ 2.95\) ．
Now Improved Transistor Packs： 100 New and marked transistors including BC and BC 154，BF 274．BC 2
200 transistors as above and including 2N3055，AC128．BD131．BFY50，only € 9.95.
IT 25 kV ctv eht triplers for Decca＂Brad－ lord；chassis brand new £2．50， 5 for \(£ 10\) BD 131
SN76115N（equivalent MC 1310）\(\quad 50 \mathrm{p}\) TBA t 20A
10 assorted convargence ports 2 for 50 p 12 Quil，low protile 14 pin l．c sockets
日F 200
㫙 212
\(\begin{array}{cc}6-£ 1 & \text { 日F } 274 \\ 10-£ 1 & \text { BC } 148\end{array}\) E1 00

BC 154 12－ 11 Varicap tiol

Detuxe Fibre Glase Printed Circuit Etching Kits
includes 150 sq．ins．copper clad f／g board lo．ferric chloride． 1 dalo etch resist pen abrasive cleaner． 2 mini drili bits，etch tray and instructions．．．．．．．．Only \(£ 5.30\) 150 sq．ins．fibre glass board Dalo pen
ib．ferric chloride to mil spec
Llbs．ferric chloride to mil spec
istruction sheo
30p P\＆P ON ALL ABOVE ITEMS．SEND CHEQUE OR POSTAL ORDER WITH ORDER TO SENTINEL SUPPLYDEPT ETI．149A BROOKMILL ROAD DEPTFORD．LONDON，SE8
Callers by appointment only
DIGITAL VOLTMETER／
THERMOWETER KIT




Special Introductory Offer component side Limited in Time

WONDERBOARD solderless circuit boards use ORCUS intl．conductive elastomer multicontacts．Each contact will hold one compenent lead and up to six interconnection wires．The components are plugged into one side of the board，the wires into the other． wires．The components are plugged into one side of the board，the wires into the
Make prototypes of single，double sided，plated hole and multalayer PC boards．
WONDERBOARDS are the most rapid．compact，and economical method available for prototype circuitry．They can be used directly in finished equipment．They are reusable and allow construction of the most complex circuits．Small boards can be joined together to form larger size boards．Distributor inquiries invited．Send cheque or Postal Order to：

\section*{年保 \(7 \mid\) conductive elastomer \\ elastorme
contact}

CHARCROFT ELECTRONICS LTD．
CHARCROFT HOUSE
STURMER．HAVERH
SUFFDLK CB9 \(7 \times R\)


IN4148 Diodes by ITT／Texas． 100 for \(£ 1.50\) These are full spec．devices．

Unencoded Hexadecimal 19 keyboard 1.10 ABCDEF． 2 optional keys．Shift key．£12．50
MM2102 AN－4L \(1024 \times 1\) Bit 450 nano sec Static Ram．\(£ 1.00\) each
\(2112256 \times 4\) Bit Static Ram 450 nanosec £2．95 each． \(4 / £ 11.60\) ．8／£22．60．

AY5．1013 UART／T £6．00
FND 500 Seven Segment Common Cathode Display \(£ 1.30\) each， \(4 / £ 5.00\)
Red Leds 01.125 or 0.2 ． 10 for \(£ 1.20\) ． \(100 / £ 9.00\) ．

Murata Ultrasonic Transducer \(£ 2.50\) each． £4．00 pair

741 Op Amp 25p each． \(10 / £ 2.00\)
555 Timer． 28 p each． \(10 / £ 2.50\) ．
\begin{tabular}{|c|c|c|c|}
\hline 4001 & 14 p & 4029 & 110 p \\
\hline 4007 & 16 p & 4047 & 100p \\
\hline 4011 & 14 p & 4049 & 40p \\
\hline 4012 & 14 p & 4060 & 120 p \\
\hline 4013 & 50 p & 4066 & 55 p \\
\hline 4015 & 90p & 4069 & 20 p \\
\hline 4106 & 40p & 4071 & 16 p \\
\hline 4017 & 90p & 4072 & 16 p \\
\hline 4020 & 100p & 4081 & 16 p \\
\hline 4022 & 90p & 4082 & 16 p \\
\hline 4023 & 16 p & 4510 & 120p \\
\hline 4024 & 65p & 4511 & 150p \\
\hline 4025 & 16 p & 4516 & 110 p \\
\hline 4026 & 160p & 4518 & 130p \\
\hline 4027 & 50 p & 4528 & 100p \\
\hline 4028 & 90p & & \\
\hline
\end{tabular}

\section*{T．POWELL}

306 ST．PAUL＇S ROAD，HIGHBURY CORNER，LONDON N．1．Tel．01－226 1489



\title{
MNL-ADS \& CLASSIFIED
}

\section*{HAPPY \\ MEMORIES!!}

21 L02 RAM (450ns)

8 off ( \(1 \mathrm{~K} \times 8\) bits) \(£ 7.25\) inclusive 16 off ( \(2 \mathrm{~K} \times 8\) bits) \(£ 14\) inclusive 32 off ( \(4 \mathrm{~K} \times 8\) bits) \(£ 27\) inclusive 64 off ( \(8 \mathrm{~K} \times 8\) bits) \(£ 52\) inclusive 128 off ( \(16 \mathrm{~K} \times 8\) bits) E 100 inclusive

Cheque or PO to
G. J. Greaves 5 Cranbury Terrace SOUTHAMPTON
Hants SO2 OLH
Tel: 070320859 for C.O.D. extra

AT LOW COST


\section*{STRATHAND SECURITY}
nd hays coming? Worried about your house? Why not tit an alarm and have a relaxed holiday. We supply the parts - all top quality install, e.g.

phus
```

*)

```

STRATHAND SECURITY 44 St.Androw': Square



AERIAL BOOSTERS improve weak vhf radio and television reception, price \(£ 4.50\) S.a.e. for leaflets. Electronic Mailorder Ltd Ramsbottom, Bury, Lancs., BL9 9AG

CASIO MQ2 CALCULATOR. LCD clock, programmed date, two alarms, timer, time memory, time calculations, date calculations E32.13. Also Casio CQ1 £24.73. Prices inc. VAT and P\&P. Cheque / PO or SAE for further details.
R\&E Marketing, Long Acre, The Ride, Ilford, Billinghurst, Sussex.

TROUBLESHOOTING, PROGRAMMING AND DESIGN. Help offered for 6800 Microcomputers, especially S68. On holiday most of August. Please leave message, evenings, or phone for address, 01-960 2042

\section*{COMPUTER STORE dpening september \\ GREATER MANCHESTER}

Specialising in components and metal enclosures for the D.I.Y. computer hob byist. S100 and Eurocard kits. In house P.C.B. production. Computer Mainframe being designed to suit S100 or Eurobus

\section*{Software \& Systems by}

CONCEPT COMPUTERS

Send 9p stamp for leaflets to ANDOR

\section*{ELECTRONICS LTD}

11 The Precinct Romiley
Stockport SK6 4EA
Greater Mancheste 061-4304770

14 PIN DIL THICK FILM RESISTOR PACKS, each contains \(1 \mathrm{k} 2,1 \mathrm{k} 8,3 \mathrm{k}, 5 \mathrm{k} 6\), \(8 \mathrm{k} 6,13 \mathrm{k}, 16 \mathrm{k}\) and \(2 \times 8 \mathrm{k} 2\). Data supplied, 10 for E1, but please supply SAE. DORE MEMORY PLANES, ex-equip., without drive circuits, \(4 \mathrm{k}(64 \times 64)\) per plane, 99 p each plus, 25 p P\&P. £7.50 post free for 8, £ 12 post free for 16 . G. Langley, 31 Bakers Lane, Woodston, Peterborough

MICROCOMPUTER I.C.s. New, 2708 EPROM, \(1 \mathrm{k} \times 8450 \mathrm{~ns}\), now down to \(£ 7.60\). 21 LO2 low power RAM, \(1 \mathrm{k} \times 1450 \mathrm{~ns}\), £1.00. Prices each, inc, postage, etc. A. C. GIDLOW, 7 Cypress Road, Newport Isle of Wight PO30 1 EY.

8080A. E9. Intel CPUs and Memories. SAE for list. Dept EI, Tortstar Ltd., 14 Robert Rayner Close, Orton Longreville, Peterborough, Cambs. PE2 OAY

\section*{Situations Vacant}

\footnotetext{


MINI-ADS: \(31 / 4^{\prime \prime} \times 21 / 8^{\prime \prime}, 1 \mathrm{~m}\) £ \(31,4-11\) £ 29,12 or more \(£ 28\) per insertion. CLASSIFIED DISPLAY 15p per word. Minimum 25 words. No P.O. Box Numbers can be accepted without full address.

Enquiries to: Advertising Department, 01-4375982. 25-27 Oxford Street, London W1R 1RF.


COMMODORE PET 2001 8K RAM 4K ROM with IEEE 488 to V24/RS232 or 20 ma loop printer interface. Switch selectable parity and baud rates (50/75/110/ \(150 / 300 / 600 / 1200 / 1345\) ) Complete with all reference manuals, 6500 program ming manual, some cassette games and dust cover. All perfect in boxes Can be seen working \(£ 70000\). Tel Ipswich 213169 office hours. Ipswich 210859 evenings.

ELECTRONIC POWER SUPPLY SPLITTER. Divides any power supply or battery voltage ( 4 to \(38 v\) ) into a dual (Center-Zero) voltage accurately. Maximum current one amp at 38 v input. \(£ 7\) including postage Ron P Levy, 55 West Road Shoeburyness Essex.

M6800 OI KIT, tested and assembled in 19 rack. Teletype 35RO ACH fully working 70 key keyboard slighly modified. 8-hole optical tape reader PU's, diagrams manuals, E250. \(40 \times 2 \mathrm{~K}\) bit MM 5262 dynamic ram chips, \(£ 50\) or \(£ 1.50\) each. Viatron DMS comprises VDU, iwin cassettes, ASCII keyboard, faulty but repairable, \(£ 150\). Phone 024241584 evenings.

DUDDELL OSCILLOGRAPH Offers are invited for a 6 element Duddell Oscillograph. Made in 1957 and very little used. Offers should be made in writing addressed to: Head of Department of Electrical and Electronic Engineering, The Polytechnic, Wolverhampton WV1 1LY. Telephone 0902/27371

SIGNETICS LOCMOS ARE FASTER 4001B/7/11B/69 (tp 25nS) 17p 4013B \((25 \mathrm{MHz}) 35 \mathrm{p} .4017 \mathrm{~B}(16 \mathrm{MHz}) 65 \mathrm{p}, 4020 \mathrm{~B}\) ( 25 MHz ) 92p, 4016 B (BW 90MHz) 40p (typical performances at 10V). Brief Data \(5 \mu\). .741 19p. 555 24p. CA3140E 53p. 15923 (200V, 200mA) \(25 \mathrm{p} / 10\). Prices inc. 20 p P\&P. Mail Order only to J. W. Rimmer, 367 Green Lanes, London N4 1DY.


\section*{NOW!}

11 Micro projects
for you to build in
our new micro box
* M.W. Receiver * Signal Injector
* Ultra Sonic Tx * F.M. Tx
* Heads or Tails * Plant Moisture Unit
* Electro Magnet * Insect Repeller
* Metronome * Hunt the Bleep
\(\star\) Audio / visual continuity tester
All these great micro projects will, including batteries fit into our \(60 \times 40 \times 15 \mathrm{~mm}\) box (you can fit two in the space of this advert).
Just 75 p brings all 11 circuits, a Micro Box and a £1 voucher for our kits.
Send to:
M. D. MARKETING
P. 0 Box 4, Hinckley, Leicestershire


BEST OFFER EVER
Camera Kit, Lens, Vidicon \& Modulator

\section*{CROFTON}

Tel: 01 - 8911923 For full

\section*{TEST EQUIPMENT DISPOSAL}

We are disposing of some Good Test Gear including Tektronix Scopes at Silly Prices ! ! !
Telephone or write for details

\section*{Crofton Electronics Limited}

35 GROSVENOR ROAD, TWICKENHAN MIDDLESEX Telephone: 01-891 1923

\section*{Based in Home Counties Small company, trading 7 years, with promising home computer/ microprocessor products, needs financial backing. Product fully developed and already launched other products in pipeline. \\ Capital of £20-25,000 sought and active involvement of investor would be welcome on management side. \\ Replies to Box 7, ETI Magazine, 25-27 Oxford Street, London W1R 1 RF.}

\section*{PRINTED CIRCUITS HARDWARE}

Comprehensive range Constructors Hardware and accesseries
Selected range of popular components. Full range of ETI printed circuit boards, normally ex-stock, same day despatch al competitive prices.
P. C. Boards to individual desigres Resist-coated epory glass laminate for the di.y. man with fuil processing instructions (no unusual chemicals required).

Alfac range of etch resis: transfers, and other drawing materiale for p.c. boards

Send 15 p for catalogue.
RAMAR CONSTRUCTOR SERVICES MASONS ROAD STRATFORD-ON-AYON WARYVICKS. Tel 4879

\section*{ETI PCB's}

Fibre glass P.C.B's. tinned and drilled for ETI projects from August 1976 ex stock Photocopy of a project from any one magazine 20p. Prices are VAT incl. P\&P 30p
\begin{tabular}{|c|c|c|c|c|c|}
\hline Sep 76 & 560 VOU (3x) & 4.60 & Nov 77 & Compander & 1.60 \\
\hline Nov 76 & 541 Trarn Controller & . 75 & Nov 77 & Clock A & 1.05 \\
\hline Jan 77 & 549 Metal Loc I & . 85 & Dec 77 & Clock B & 2.10 \\
\hline Feb 77 & 44B \& 449 (4x) & 3.75 & Jan 78 & Hammer Throw (3x) & 4.80 \\
\hline Feb 77 & Bench Amplifier & 70 & Jan 78 & House Alarm (2x) & 2.85 \\
\hline Mar 77 & Digital Voltmeter (4x) & 3.80 & Feb 78 & Metronome & . 65 \\
\hline May 77 & 804 TV Game & 1.55 & Feb 78 & Metal Loc II & 92 \\
\hline Jun 77 & Dig. Freq. Meter (4x) & 2.90 & Mar 78 & Freq Shifter ( 2 x ) & 2.15 \\
\hline Sep 77 & Graphic Equal ... & 1.60 & Apr 78 & Gas Monitor & 80 \\
\hline Oct 77 & Digital Thermometer & 1.20 & Jun 78 & Spectrum Anal (2x) & 8.32 \\
\hline Oct & 3 Channel Tone C & & Aug 78 & Etiwet & . 90 \\
\hline
\end{tabular}

Special Offer: S68-Set of 7 P.C.B's. (modified) \(£ 12.00\)

\section*{COMPONENTS AND KITS}
Kits include Resistors. Capacitors. Potentiometers and Semi-conductors but not PC B
Prices at VAT incl. P\&P 30p

COMPLETE KIT - ALL PURPOSE POWER SUPPLY Aug. 78 Incl case screen printed and drilled and other components not on ET I List £79.16. P\&P \& Ins. £1.00 Part kits available on request

Send large s.a.e for full list of P.C.B's. component kits and full range of components
Trade enquiries welcome

TAMTRONIK LTD CALL AND SEE US

and lower case. 8 bit ASCII, including parity Usual refinements, in attractive cases
\begin{tabular}{|c|c|}
\hline  & \begin{tabular}{l}
PLEASE \\
MENTION \\
ETI \\
WHEN
\end{tabular} \\
\hline ASCII KEYBOARDS. ROM encoded upper and lower case. 8 bit ASCII, including parity. Usual refinements, in attractive cases & ADVERTS \\
\hline
\end{tabular} 27 Admiralty Road, Mablethorpe, Lincs.

PLEASE MENTION ETI WHEN REPLYING ADVERTS
\(\qquad\)
\(\qquad\)

\section*{PRECISION} POLYCARBONATE CAPACITORS
All high stability - extremely low leakage

440 V AC RANGE ( \(410 \%\) ) 63 V DC RANGE ( \(£\) ) each \(\mu \mathrm{F} \quad \mathrm{L}(\mathrm{mm}) \mathrm{D}\), Eeach \(\mu \mathrm{F}(\mathrm{Tol} \pm \pm \% \pm 2 \% \pm 5 \%\) \(\begin{array}{lllllllllll}0 & 27 & 127 & 1.34 & 0 & 01.0 & 2 & 1 & 80 & 122 & 088 \\ 0 & 22 & 33 & 16 & 1.66 & 022.047 & 182 & 1 & 24 & 0.90\end{array}\)
 \(\begin{array}{llllllll}0.25 & 33 & 16 & 278 & 1.0 & 2 & 260 & 52 \\ 1 & 148 \\ 0.47 & 33 & 19 & 208 & 2 & 2 & 280 & 94 \\ 1 & 42 \\ 0.5 & 33 & 19 & 2.24 & 47 & 400 & 272 & 224\end{array}\) \(\begin{array}{lllllllll}0.5 & 33 & 19 & 2.24 & 47 & 400 & 272 & 2 & 24 \\ 0.68 & 50.8 & 19 & 2.48 & 6.8 & 4.88 & 3 & 36 & 2\end{array} 66\) \(\begin{array}{rllllrlll}1.0 & 50.8 & 19 & 2.64 & 10.0 & 694 & 4.68 & 3 & 56 \\ 20 & 50.8 & 254 & 3.74 & 22.0 & 1332 & 998 & 6 & 80\end{array}\) (Additional values and closer tolerances avall. upon request)
TRANSISTORS, DIODES, I.C.s, Bridge Rectifiers. Capacitors. Plugs + Sockets, Vero. Fuses. etc - a detailed price list which

RESISTORS High stability. Iow noise. carbon film \(+-5 \%\) tol \(1 / 2 \mathrm{~W} @ 40 \mathrm{C} \quad 1 / 3 \mathrm{~W} @ 70 \mathrm{C}\). E12 series only-from 2.2 ohm 10 \(40^{\circ} / 100\) of any one value. f \(435^{\circ} / 500\) (may be mixed in 100 s): £8*/1000 (may be mixed in 100 s )
SPECIAL DEVELOPMENT PACK 10 off each value 2.2 ohm to 22 M ( 730 resistors) - \(\mathrm{E} 6.50^{\circ}\) each 1W. 2 W and wirewound also avallable upon request

PRESETS: 01 W submin skeleton presets - vertical or horromial 100 ohm to \(1 \mathrm{M} 7 \mathrm{p}^{*}\) each \(£ 3^{*} / 50\), £5* 100, £2250\%/500, £40\%/1,000. Values may be mixed
ZENER DIODES: \(1+10+50+100+\) Nalues \(400 \mathrm{~mW}+-5 \% 3 \vee-33 \vee 10 p 91 / 2 \mathrm{p}\) 9p 8 p maybe 1W 3V3-200V \(18 p 17^{1 / 2 p} 161 / 215 p\) mixed)
TANTALUM BEAD CAPACITORS: \(\mu F / V\). \(01022033047068 \quad 1 \mu \mathrm{~F}\) all at 35 V @ \(10 \mathrm{p}^{\circ}\) 15/35, 2.2/25. + \(11 \mathrm{p}^{\circ} \cdot 22 / 35\) @ \(12 \mathrm{p}^{\circ} 47 / 35\) @ 15p* 6 B/35@17p 10/25@17p 10/35@21p 15/20. 22/15, 33/10, 47/63@210 68/3 @ \(17 p^{\circ} 100 / 3 @ 21 p^{\circ}\) (deduct \(1 p\) each for qity of \(10+-\)
values may be mixed)

Please add 25 p P\&P on all orders. Export add cost of air \(/ \mathrm{sea}\) mall. Add 8\% VAT to all items except those marked which are \(12 \frac{1}{2} \%\). Wholesale price lists available to bona-fide companies

\section*{ADVERTISEMENT INDEX}

\begin{tabular}{|c|c|}
\hline Lotus Sound & 36 \\
\hline Maplin & 100 \\
\hline Marshalls & 75 \\
\hline M.D. Marketing & 96 \\
\hline Metac & 36 \\
\hline Minikits & 67 \\
\hline Monolith & 67 \\
\hline Mountiandene & 36 \\
\hline Newbear & 32 \\
\hline Nicholls & 67 \\
\hline North London Poly. & 13 \\
\hline Osmabet & 95 \\
\hline Powertran & 2,6 \\
\hline Powell T . & 95 \\
\hline Presscott & 84 \\
\hline Progressive Radio & 82 \\
\hline R.F. Equipment & 96 \\
\hline R.T.V.C. & 70 \\
\hline Science of Cambridge & 5 \\
\hline Sentinel Supply & 94 \\
\hline Sintel & 38 \\
\hline Stevenson & 81 \\
\hline Strathand Sec. & 26 \\
\hline Swanley & 38 \\
\hline Tamtronik & 98 \\
\hline Tangerine & 46 \\
\hline Technologics & 93 \\
\hline Technomatic & 96 \\
\hline Teleplay & 99 \\
\hline Tempus & 82 \\
\hline T.K. Electronics & 94 \\
\hline Trampus & 93 \\
\hline Vero & \\
\hline Videotime & 1,93 \\
\hline Watford & 8,9 \\
\hline Wilmslow & 38 \\
\hline
\end{tabular}

\section*{A whole library of easy to for you}
 Teleplasents
 PROGRA STAR OFFERS

Electrical knowledge is not a necessity to assemble this project - just simple soldering.
Cheques and Postal Orders to be made payable to TELEPLAY: send your order (No Stamp Needed) to
Teleplay, Freepost, Barnet, EN5 2BR or telephone your order quoting your Barclaycard or Access number. Queries and Technical Advice offered either by phone or by calling at our shop.
\begin{tabular}{|c|c|}
\hline  & SHOP OPEN - 10am to 7pm - Monday to Saturday CLOSE TO NEW BARNET BR STATION - MOORGATE LINE \\
\hline
\end{tabular}

All parts fully guaranteed.

\title{

}
everything for the modern D.I.Y. electronics enthusiast and more.
```


[^0]: COPYRIGHT: All material is subject to world wide Copyright protection. All reasonable care is taken in the preparation of the magazine to ensure accuracy but ETI cannot be held responsible for it legally. Where errors do occur a correction will be published as soon as possible afterwards.

[^1]: Features mentioned here are in an advanced state of preparation but circumstances may affect the final contents.

[^2]: EASY TO BULLO RECORO PLAYER KIT for the O-I.Y man who requires a stereo unit at a budget price. Comprising ready assembled stereo amp. module. Gakard
 auto / manual deck with cueing device auto manual deck with cueing device. put 4 watts per channel, phone
 and record/replay socket. including f1995 o\& \& \&
 2 SPHERICAL
 2 SPHERICAL HIFI, speakers $\mathbf{f} \mathbf{9 9 5} p \& p £ 4.05$

