
. . . NEWS PROJECTS MICROPROCESSORS AUDIO . . .

200 +200W Dual Channel Amplifier
 COMPLETE KIT AS FEATURED IN APRIL ISSUE OF E.T.I.

PSI 4001 SLAVE MODEL

SPECIAL PRICES
FOR COMPLETE KITS!
PSI 4001 - E205.00 + VAT
PSI 4002 - E220.00 +VAT

Pack

PSI 4002 STUDIO MODEL

1 Fibre olass printed circuil board for dower amp
2 Set of capacilors. metal oxide resisiors. thermist Set of capacilors. metal oxide resistors. thermistor. cormet pre seis lor power
Smp ol semiconductors for power amp with mounting hardware. cooling tabs Pair of manster black drilled heal sinks. transistor mounting brackel Toroidal Iranstormer: Primary 0-117V-234V. Secondaries $42 \cdot 0-42 \mathrm{~V}$. $0-15 \mathrm{~V}$. 0.15 V . Electrosiatic screen

Set ol all parts lor stabilised power supply including tibre glass prinled circuit board. mounling bracket. semiconductors. resislors. capacitors. etc
Set of all parts for butfer/overdrive unit including libre glass printed circuit Sel of all parts for buffer/overdrive unit including iore glass prinied circuil
board, semiconductors. resistors, capaciors. conirols - required tor PSI 4001
 B. Set ol parts tor peak power meen ancils. coniral - requir ed lor PSi 4002 only Set of all miscellaneous parts including sockels. illum. mains switches, luse holders. luses. cul-ouls. cable. etc
Cabinet including chassis, anodised silver an black panels. fixing parts. etc. Please state whether Slave or Sludio model required
10 Handbook $£ 0.50$ or tree on request when ordering any ol above packs. 2 each oi packs I-7 (A or 8). I each 8. 9 and 10 are required for complete $200+200 \mathrm{w}$ protessional amplifier
$\begin{array}{lll}\text { protessional a amplifier } & \text { PS1 } 4001 & £ 216.80 \\ \text { Total cosi of individually purchased packs } & \text { PSI } 4002 & £ 232.20\end{array}$
$\begin{array}{ll}\text { PS1 } 4001 & £ 216.80 \\ \text { PSI } 4002 & \text { £232.20 }\end{array}$

400W rms continuous - 800W peak! 0.03% THD at FULL power! PLUS all the following features too!

* Each channel totally independent with its own stabilised power supply driven by custom designed TOROIDAL transformers'
- Inherent reliability - monster heat sinks for cool funning at the hottest venues - electronic open and
short circuit protection
* Ulira low feedback (an incredibly low 14 dB overall') super high slewing rate (20V/ $\mu \mathrm{s}$) 200 W ms continuous to 4 ohm from EACH channel, input sensitivity 0775 V (OdB)
- Professional quality components sturdy 19 rack mounting chassis complete with sleeve and feet for Eree standing work 100
Easy to buld - plenty of working space with ready access to all components minimal wiring extensive * Value for money - quality and performance comparable with ready bult amplifiers costing over $\mathrm{E} 600^{\prime}$

TRANSCENDENT 2000

As featured in July / August issues
COMPLETE KIT ONLY £186.50 + VAT
We are producing a superb kit. at an irresistible price, for the latest and most practical design ever published Our kit includes fully finished metalwork, pre-assembled solid teak cabinet. fiter sweep pedal, professional quality ccimponents (all resistors either 2% metal oxide or $1 / 2 \%$ There is evend it really is complete - right down to the last nut and bolt and last prece of wing in and even a 13A plug in the kit - you need buy absolutely no more parts before plugging fibre gass PC great music' Virtually all the components are on the one professly on the main board, all connections to the board are made with connector plugs and construction is so simple it can be built easily in a few evenings by almost anyone capable of neat solderingl When finished you will possess a synthesiser comparable in pertormance and quality with ready built units selling for between $£ 500$ and $£ 700^{\prime}$

MANY MORE KITS ALSO AVAILABLE - ASK FOR OUR FREE CATALOGUE
Amplifiers (20-200W). Tuners, Cassette Deck, Quadraphonics, etc., etc.

De Luxe Linsley-Hood 75w Amplifier
$20+20 \mathrm{~W}$ AMPLIFIER COMPLETE KIT ONLY
Based on P.W. TEXAN $£ 33.10$ + VAT $30 w$ VERSION $(T 30+30)$ ONLY $£ 38.40+$ VAT
$75+75 w$ AMPLIFIER COMPLETE KIT ONLY £99.30 + VAT
Kit also available as separate packs T20 + 20 AMPLIFIER

Kit also available as separate packs

[^0]our catalogue is FREE! write or phone NOW! POWERTRAN ELECTRONICS
PORTWAY INDUSTRIAL ESTATE ANDOVER, HANTS SP 10 3NM

ANDOVER
(STD 0264) 64455

WATER!

ELECTRONICS IN MOTORING TRS 80 HOME COMPUTER REVIEW VFETS FOR EVERYONE Pt 2 TECH TIPS
 DESIGNING HIFI AMPS 15

FEATURES

How the best is designed New developments abound Tandys entry into the field Circuits to build and why they work Your ideas for you to use

PROJECTS

LCD DIGITAL MULTIMETER
TRANSCENDENT 2000 Pt 2
AUTO PLANT WATERER
POWER SUPPLY

Compact multirange design Putting the synthesiser together What a drip! Module based general purpose design

NEWS

NEWS DIGEST DATA SHEET AUDIOPHILE 79 MICROFILE
ELECTRONICS TOMORROW

Who's up to what
You can count on this Goldring G900SE Mk 2 - how good? Interfacing to be faced Lens an ear to cameras

Power for all
p. 75

INFORMATION

SPECIALS 10 SUBSCRIPTHONS 11

ETI PRINTS MARKET PLACE ETI BOOK SERVICE SEPTEMBER PREVIEW PROJECT BOOK SIX COMPUTER BOOKS

Our other publications Saves all the trouble Others ways make you board Oscilloscope super-bargain Fine print to be read Next month we have Its new and its the best! Some very-soft wares

Electronics Today International is normally published on the first Friday of the month prior to the cover date

[^1]

High quality audio modules for Stereo and Mono

\$450
STERED
FM TUNER
Fitted with
phase lock-loop
£22.30
$+40 p p \& p$
$+121 \% \%$ yar

the 450 Tuner provides instant programme selection at the touch a The 450 Tuner provides instant programme selection at the touch of a button ensuring accurate luning of 4 pro-selacted stations, any of which may
be altered as often as you choose, simply by changing the settings of the pre-set controls. Features include FET input stage. Vari-Cap diode tuning. be altered as often as you choose, sin
Switched AFC LED Stereo Indicator
FREQUENCY RANGE
SENSITIVITY
BANDWIDTH SPURIOUS REJECTION SPURIOUS REJECTION
SELECTIVITY $\pm 400 \mathrm{kHz}$ AUUIOO OUTPUT (22.5 k STEREO SEPARATION SUPPLY REQUIREMENTS AERIAL IMPEDANCE IMENSIONS
$88-108 \mathrm{Mhz}$ $3.0 \mu \mathrm{~V}$ 250 kHz
50 dB
55 dB
100 mV
30 dB
20 to 30 V (90 mA max)
75 ohms
24m

OUTPUT POWER
OUTPUT POWER
LOAD IMPEDANCE
LOAD IMPEDANCE TOTAL HARMONIC DISTO
FREQUENCY RESPONSE TONE CONTROL RANGE SENSITIVITY INPUT IMPEDANCE
TRANSFORMER REQUIREMENTS DIMENSIONS (Less controls and PARTS

7 Watts RMS

8 ohms
Less than 5% (ypically . 3\%)
50 Hz to $20 \mathrm{kHz} \pm 3 \mathrm{dBs}$
$\pm 12 \mathrm{dBs}$ al 100 Hz and 10 kHz
190 mV for full output
1 M ohms
22 V.A.C. rated at 1 A
$200 \mathrm{~mm} \times 130 \mathrm{~mm} \times 33 \mathrm{~mm}$ overwind will produce a high quality audio unit suitable for use with a wide range of inputs is ie. high quality ceramic pick whe stereo tuner, stereo tape deck, etc. Simple to install, capable of producing really first-class resulta, this unit is supplied with full instructions, black front panel knobs,

AL60
AMPLIFIER MODULE
25 Watts RMS

$£ 4.55+25 p p \& p$

This high quality audio ampll

OUTPUT POWER
 SUPPLY

LOAD IMPEDANCE
TOTAL HARMONIC DISTORTION FREQUENCE RESPONSE SENSITIVITY
MAX HEAT SINK TEMPERATURE DIMENSIONS

25 Wats RMS $30-50 \mathrm{~V}$
$8-16$ ohms
Less than 1% (Typically 06%) 20 Hz to $30 \mathrm{kHz} \times 2 \mathrm{dBs}$ 280 mV for full output 90 C
$103 \mathrm{~mm} \times 64 \mathrm{~mm} \times 15 \mathrm{~mm}$

PA12

STERED

PRE-AMPLIFIER

The PA1 2 Stereo Pre.Amplifier chassis is designed and recommended tor use
with the AL $20 / 30$ Audio Amplifier Modules. the PS12 With the AL $20 / 30$ Audio Amplifier Modules, the PS 12 power supply and the
T 538 Transtormer. Features included on/off volume. Balance, Bass and Treble contols. Complete with tape output.
FREQUENCYRESPONSE $\quad 20 \mathrm{~Hz}-20 \mathrm{kHz}(-3 \mathrm{~dB})$ BASS CONTROL TREBLE CONTROL INPUT IMPEDANCE $\quad \pm 14 \mathrm{~dB}$ at 10 kHz INPUT SENSITIVITY CROSSTALK

1 Meg ohm SIGNAL/NOISE RATIO OVERLOAD FACTOR $-60 \mathrm{~dB}$
$-65 \mathrm{~dB}$ TAPE OUTOUT IMPEDANCE
$\pm 20 \mathrm{~dB}$ DIMENSIONS
$152 \mathrm{~mm} \times 84 \mathrm{~mm} \times 35 \mathrm{~mm}$

PS 12 POWER SUPPLY

Oesigned for use transformer $T 538$.

INPUT VOLTAGE 17200 AC
OUTPUT VOLTAGE 27-30V OC
OUTPUT CUMRENT BOOmA
Sixa $80 \mathrm{~mm} \times 43 \mathrm{~mm} \times 28 \mathrm{~mm}$
£1.30
$121 / 2 \%$ VAI
$25 p \mathrm{pRD}$

GE 100 NINE CHANNEL
 MONO-GRAPHIC EQUALIZER

fiters. Boost and Cur limites are $\pm 12 \mathrm{~dB}$. Max Voltage handling 2 V RMS

 Fiters. Boost and Cul limites are $\pm 12 \mathrm{~dB}$. Max. Voltage handing 2 V RMS.T. HD.. 0.05%. input mpedance 100 K . Output impedance less than 10 K .
Fiequency response $20 \mathrm{~Hz}-20 \mathrm{KH}$ (3dB). The nine gain controls are centred at $50.100,200,400$. £22

SG3O POWFR SUPPLY BOARO FOR GE 100 15-0-15 VOLT
E $5.50+121 / 2 \%$ VAT. $p \& p 25 p$

Siren Alarm Module

American Police screamer powered from any 12 volt supply into 4 or 8 ohm speaker. Ideal for car burglar alarm, freezer breakdown
and other security purposes. Order No S15. Only $£ 3.50$ $+8 \%$ VAT $\rho \& p 25$ p

MA60 HI-FI AMPLIFIER KIT

Build your own reliable top quality amplifier and save yourself pounds. The MA60 kit comprises the following BI-kits modules: $2 \times$ AL6 6 amps, $1 \times$ PA100 pre-amp $1 \times$ SPM 80 stabilised power supply $1 \times$ BMF 80 transformer, thus giving 17 watts RMS per satisfaction or money back guarantee Further details of all the satistaction or money back guarantee. Further detals of all the
above modules are in this advert. PRICE $532.00+121 / 2 \%+62 p$

TC60 KIT

A beautiful designed genuine TEAK WOOD veneered canbinet to put the professional touches to your home built amplifier. Full set of parts incl. Front
and back paneis, knobs, chassis, fuses, sockets. Noen, etc. Ideal for the MA60 Size $425 \mathrm{~mm} \times 290 \mathrm{~mm} \times 95 \mathrm{~mm}$.
PRICE

TRANSFORMERS

BASS CONTROL RANGE TREBLE CONTROL RANGE SIGNAL/NOISE RATIO INPUT OVERLOAD DIMENSIONS

20 Hz to $20 \mathrm{kHz} \times 1 \mathrm{~dB}$ Less than 7% (Typically 07%) $100 \mathrm{mV} / 900 \mathrm{~K}$ ohms) For an $100 \mathrm{mV} / 100 \mathrm{~K}$ ohms) output $3.5 \mathrm{mV} / 50 \mathrm{~K}$ ohms) 250 mV Within $\pm 1 \mathrm{~dB}$ from

20 Hz to 20 kHz $\pm 15 \mathrm{dBs}$ at 75 Hz $+10-20 \mathrm{dBs}$ at 15 kHz Better than 65 dBs (All inputs) Better than 26 dBs (All inputs) 20 to 40 V
$300 \times 90 \times 33 \mathrm{~mm}$ (less controls)

\title{

OSTS
 Ti: Standard Ano LP Schottiky
 bit t international One Stop Technolagy 5happing starts here:

CO4000 cmO

All prime, all guaranteed

news dıgest.

light to sound units

Phillips have demonstrated a new digital sound system, incorporating a solid-state laser mounted in a semiconventional pickup arm. The system uses a 110 mm disc with a playing time of one hour per side, the audio is digitally encoded to provide very high fi. Phillips have christened the system 'Compact Disk', and hope to have it ready for the consumer market in the early 1980s. RCA have also been experimenting with a similar, but
incompatible, system as an offshoot of their video disc developments.
A bit nearer to the present is the Sony digital recording system. This is an add on to their U-matic or Betamax video recorders, which encodes the audio as a signal on the videotape. Quality is said to be orders of magnitude better than conventional recording systems. Price is expected to be around the $£ 700$ range available from late summer

strike detector

An ultra-simple method of determining the force in lightning strikes has been developed at NASA. All it consists of is a 4 foot length of magnetic tape inside a plastic tube! An 9 kHz ne is prerecorded on the tape, id the tube mounted perpencular to an exposed conducr - such as a guy wire. When ghtning strikes a magnetic sld is produced, which erases
part of the signal. The amount of erasure is proportional to the field strength and hence the current in the lightning strike. To find out how strong the strike was, or indeed if there has been any strike, you simply paly the tape. Current as high as 17000 Amps has been measured on a single guy wire with the device. Why is it that all the best ideas are so simple?

mars bars and chips

Mars Money Systems (relation) are starting to take delivery of a new device from AMI Microsystems. The fiendishly clever hunk of silicon is a dedicated one bit (bite?) MPU with onboard PROM, it is to be used in vending machines for coin acceptance and change giving It not only counts how much you feed into the machine, it also works out the correct change and gives you it (if there is not enough money in the change chute it returns all your money).

Coin sensing is done with 3 coil like inductors, embedded in the wall of the coin path, frequency shifts are produced as the coins roll past-and the IC compares them with reference data stored in the PROM. The one bit brain can check far more precisely than any mechanical system, and the PROM can be pre-peed for any currency in use in a particular country. AMI Microsystems, 3800 Homestead Road, Santa Clara, CA 95051, US of A.

alas,poor capek

It seems that we made an omission in the recent Robot issue, as the following from Mr D. B. Pitt points out . . . In analysing the word 'Robot' we forgot to mention Capek, equivalent to analysing the word 'chortle' without Lewis Carroll.

Robot represents the first two syllables of the Czech word for worker, and, allowing for slight vowel shifts, the rule applies to all the other Slavonic languages.

The word officially entered the English language in April 1923 with the first presentation of the play R.U.R. (Rossom's

Universal Robots) by Karel Capek, the famous Czech playwright, at the St. Martin's Theatre, London. The translator, Mr P. Selver, wisely left the word robot unchanged from the original Czech.
In practice, the word was already current in certain circles before that date, as the fame of Capek's political satire had preceded it, thanks to the popular press, which was quick to seize on the sensational aspects of the play's theme, a world taken over by a revolt of man-made factory workers.
boris challenges challenger

Up until recently the computer chess field was dominated by the manufacturers of the Chess Challenger - Fidelity Electronics of Chicago. After the tremendous success of the original model came the improved 3 level version, now they have introduced a 10 level version with lots of new features. The response time varies from 5 seconds on the beginners level, to a 24 hour response (suggested only for postal games!), because you may not notice when the computer makes a move it makes a couple of beeps when it has.

Now another company has entered the chess arena, with a machine called Boris, and they claim that Boris is the King of
the computer chess world. Manufactured by a company called Chafitz in Rockville, Boris can even play with itself (and not go blind!). Other nice features include an 8 digit alpha-numeric display and completely variable response time, the alpha capability is used to display pieces as pictures and also for messages (illegal move, good move, etc) - the response time can be set from 1 second up to 99 hours, so you can program it/him to very specific skill levels.

Price of the Challenger 10 is expected to be in the region of £200; Boris will probably be about the same. Neither machine is expected to be available in the U.K. until 1979.

Introducing DM900 - The DIGITAL MULTIMETER with "Hidden Capacity" - It measures Capacitance too!

(as published in E.T.I. August 1978) Away with analogue meters for with some of these you may often as not use a crystal ball to make - not a ball but the $31 / 20.5$ LIQUID CRYSTAL DISPLAY - on our amazingly accurate DMM incorporating

5 AC \& DC Voltage ranges: 6 resistance ranges AC \& DC Current ranges: 4 Capacitance ranges The prototype accuracy is better than 1%
This is a unique design using the latest MOS ICs and due to the minimal current drain, is The DM900 is an attractive hand-held light battery check facility The DMy th Never before have all these features been offered to the electronics enthusiast in a single

Special introductory price: $£ 49.95 *$ (p\&p insured $80 p$) (probes optional extra). (Demionstration on at our shop)
(additional carrying case £1.50*)

TANK BATTLE

Build this fantastic T.V. Game with realistic battle sounds generated from you T.V. speaker, steerable taniks, controllable shell trajectory and minefields to avoid. A really exciting and skilful game simply constructed with our easy to follow instructions. Order now - avoid disappointments
Basic Kit (just add controls) only $£ 19.50$ inc. VAT (p\&p 45p insured) Complete Kit including controls \& Mains Power Supply. No extras required. Only $\mathbf{£ 2 6 . 2 5}$ inc. VAT (p \& 45 p insured) IC AY-3-8710 £10.50 inc. VAT
(Demonstration on at our shop)

news

...digest

sub ton kit

R E W Audio Visual have been given exclusive distribution rights on a new kit for budding rock \& roll stars in the U.K Called Prokit 62 it is a 6 into 2 audio mixer with features not normally found on mixers in the sub $£ 100$ range (at $£ 99.95$ it just creeps into this bracket). Each input channel has bass and treble equalisation, pan control, echo and cue busses, with choice of line or mike inputs Distortion is claimed to be less
than 0.1% and noise is said to be less than -65 dBm . The unit needs an external power supply to feed it with the + and -15 V at 50 mA it lives on (not sup. plied).

Construction time is estimated to be a couple of evenings, and a 32 page manual is supplied with each kit. Further details from R E W Limited, 10/12 High Street, Colliers Wood, London SW19 2BE.

odds \& ends

* A. Marshall (London) Ltd. are moving their mail-order department from their Crickle wood Broadway premises. The new address for main offices industrial sales, central stores and mail-order will be: Kings gate House, Kingsgate Place, London N.W.6. The telephone number will change to 01-624 $0805 / 6 / 6 / 8$, the old premises at 40 Cricklewood Broadway have been refitted as a new branch. * A Single hand ASCII keyboard, called 'Writehander', has been developed in the States. In use you place 4 fingers on switches representing the lower 4 ASCII bits and the thumb selects the remaining 3 bits, the machine looks like a hedgehog and is said to be both cheap and fast.
* The National Enterprise Board is in the process of funding a new electronics company. Capital of $£ 30-£ 50$ million is to be used in the attempt to bring VLSI technology to the U.K., typical products would be 64 K memories. The brains be hind the scheme include British and American engineers in the States and at home.
\star Visual indication of FM sta tion, automatically, is made possible with a new system developed by Phillips and the Dutch Broadcasting Corporation. A display indicates the result of decoding a signal superimposed on the transmitted signal, the signal is different for each station. Phillips are hoping for international agreement and cooperation to get the system off the ground (into the air)
* The more you cram onto a silicon chip the more pins needed on the package. Up until now manufacturers of MSI and LSI have used modifications of the standard DIL, making it longer and/or wider. Problems produced by this approach include parasitic capacitance, which seriously limits the operating speed, and density of circuitry on PCBs. JEDEC, the organisation that registers all standard packages and specifications, are considering the details on a proposed new standard square package to be used in high density/speed applications.

ETI SPECIALS

light warning, LM380 circuits, temperature alarm, aerial matcher, UHF TV preamp, metal locator, four-input mixer, IC power supply, rumble filter, IC tester, ignition timing light, 50 W stereo amp. plus many more.
3-This issue was so popular that it is now sold out? 4-Includes:
Sweet tixteen stereo amp., waa-waa, audio level meter, expander/compressor, car theft alarm, headlight reminder, dual-tracking power supply, audio misivolt-push-button dimmer exposure meter, photo timer, electronic dice, high-power beacon, electronic one-armed bandit!.
5-Twenty-two complete projects, including:
5 W stereo amp., stage mixer, disco mixer, touch organ, audio limiter, infra-red intruder alarm, model train controller, reaction tester, headphone radio, STD timer, double dice, gen.-purpose power supply, logic tester, power meter, digital voltmeter, universal timer, breakdown beacon, heart rate monitor. IB metal locator. temperature meter.
6-Just published. Includes:
Graphic equaliser, $50-100 \mathrm{~W}$ amp. modules, active crossover, flash trigger, "star and dot" game, burglar alarm. pink noise generator, sweep osciilator, marker generator, audio-visual metronime, LED dice, skeet game,
lie detector, disco light show....

$75 p+25 p$ P\&P

Comprised entirely of new material, the edition covers such diverse subjects as Star Wars and hi-fi! The magazine contains projects for everyone - none of Which, Audio, Calculators and Video. How can you not read it?

$£ 3.00+25 p$ P\&P

This book is rather an unusual reprint from the pages of ETI. The series appeared a couple of years ago in the of New Eng was so highly thought of by the University of New England that they have re-published the series

Our successful beginners series came to an end some time ago now, and the whole series is available from us in reprint form. The three books between them contain a! the information presented in the series (sometimes in more detail!) and together form an excellent starting point for anyone interested in learning the art of electronics. Each volume costs.
$\bar{E} 1.20+25 p$ P\&P
splendidly for use as a standard textbook. Written by Peter Sydenham. M.E., Ph.D., M.Inst.M.C., F.I.I.C.A., this publication covers practically every type of transducer and deals with equipment and techniques not covered in any other book. Enquires bulk supply of this publica universities and colleges should be addressed to H. W Moorshead, Editor.

HOW TO ORDER

Postage and packing also refers to overseas. Send remittance in sterling only.

ETI Specials
ETI Magazine
25-27 Oxford Street
London W1R 1 RF
Please mark the back of your cheque or PO with vour name and address.
Please supply me with the following ETI Specials:
\qquad
\qquad
\qquad
\qquad

Total cheque $/$ PO enclosed $=£ \ldots$ Address:

M \qquad
\qquad
\qquad
(Please allow four weeks for delivery)

NON-SUBSCRIBERS START HERE

GIVE UP, GO HOME:
GAKE OUT AND
POSTAL SUBSCRIPTION
TOETI.

It can be a nuisance can't it, going from newsagent to newsagent? 'Sorry squire, don't have it - next one should be out soon."

Although ETI is monthly, it's very rare to find it available after the first week. If it is available, the newsagent's going to be sure to cut his order for the next issue - but we're glad to say it doesn't happen very often.

Do yourself, your newsagent and us a favour. Place a regular order for ETI; your newsagent will almost certainly be delighted. If not, you can take out a postal subscription so there's nothing for you to remember - we'll do it for you.

For a subscription, send us $£ 7.00$ ($£ 8.00$ overseas) and tell us which issue you want to start with. Please make your payment (in sterling please for overseas readers) to ETI Subscriptions and keep it separate from any other services you want at the same time.

> ETI Subscription Service Electronics Today International 25-27 Oxford Street, London W1R 1 RF

If the latest goodie from Texas Instruments is as successful as we think it will be, the next generation will speak with an American accent! Called "Speak \& Spell" it is a box that talks to the kids (with a 'standard' American accent), and theoretically helps them pronounce new words correctly - it also compares how the kids spell the word with the correct (American) spelling, and indicates whether they gave the right answer.
The 200 words in the machine were selected by educators for the 7 to 12 year old, further sets of words are to be made avail able as plug-in modules. In its main mode of operation it selects a word at random and 'speaks' it. The user then types
in their version of how it is spelt, and the machine either says well done, or please try again (or noises to that effect). After 10 words the 'Speak \& Spell' talks and displays a score. Various other modes of operation are also available, including a version of 'Hangman'.
Heart \& Throat of the machine is a 128 K ROM, the word library is stored as a series of sound values-representing the various word characteristics. Priced at 50 dollars in the States, it will be available from July onwards, although no date has been given for U.K. release. Methinks the ETI office culd use one usfulli. Texas Instruments Inc., Consumer relations, P.O. Box 53, Lubbock, Texas 79408.

national phoenix

National Semiconductor have recently opened the first plant in the world to process 4 inch silicon wafers. The production facility has been built on the ashes of their previous factory in Greenock, which burnt down a year ago. The builders estimated that it would take bet ween 2 and $21 / 2$ years to rebuild, National were determined to do it in 12 months and succeeded. The advantage of 4 inch over the more normal 3 inch wafer is simple - they get a lot more usable ICs in the same time.

A touch of humour was added when Peter Sprague, a director of National and also of Aston Martin, failed to arrive in a brand new Aston Martin Lagondá (yours for $£ 32,000$). The sophisticated electronics in the car were not functioning, or as he remarked to some reporters "The *(©\&\&) () + electronics don't work", the *(®\&\&()" + electronics are made by a company that has just built a rather large factory in Scotland.

From the representatives in Europe . . . for America's leading Micro-computer magazines and books, for the hobbyist, educationist and professional alike, we bring you a little light browsing!

Reading maketh a full manFrancis Bacon (1561-1626)

Tick or indicate quantity ordered.	
From Adam Osborne Associates	
INTRODUCTION TO MICROCOMPUTERS	
Volume 0: The Beginners Book	£5.95
Volume 1: Basic Concepts	¢5.95
Volume 2: Some Real Products (Revised Late 1977)	£11.95
6800 Programming for Logic Design	¢5.95
8080 Programming for Logic Design	¢5.95
Z80 Programming for Logic Design	¢5.95
8080A/8085 Assembly Language Programming	¢6.95
6800 Assembler Language Programming	¢6.95
Some Common BASIC Programs	£5.95
BUSINESS PROGRAMS IN BASIC	
Payroll With Cost Accounting	$¢ 9.95$
Accounts Payable \& Accounts Receivable	
(Available from Midsummer '78)	¢9.95
General Ledger (Available from late summer 78)	£9.95
From Scelbi Computer Consulting Inc.	
6800 Software Gourmet Guide \& Cookbook	¢7.95
8080 Software Gourmet Guide \& Cookbook	¢7.95
8080 Programmers Pocket Guide	¢2. 25
8080 Hex Code Card	£2.25
8080 Octal Code Card	£2.25
8080 Guide and One 8080 Code Card	¢4.20
8080 Guide and Both Code Cards	¢6.00
SCELBAL High Level Language for '8008/8080' Systems	99.
SCELBAL String Handling Supplement	¢8.
SCELBAL Extended Maths Supplement	¢4.00
Understanding Microcomputers \& Small Computer Systems	¢7.95
SCELBI 'BYTE' Primer	${ }_{\text {¢15.95 }}$
8080 Standard Assembler (In Book Format)	
8080 Standard Editor (In Book Format)	¢9.95
From Peoples Computer Company	
Reference Books of Personal \& Home Computing	¢4.95
What to Do After You Hit Return	
Dr. Dobbs Journal Volume 1	£10.00
*From Kilobaud/73 Magazine Inc.	
- Hobby Computers Are Here	£3.95
New Hobby Computers	£3.95
From Dymax Inc.	
Instant BASIC by Jerald R. Brown	¢4.95
Your Home Computer by James White	£4.95
My Computer Like Me . . . When I Speak BASIC By Bob Albrecht	£1.65
.Games With A Pocket Calculator by	
Thiagarajan \& Stilovitch	£1.75
Games, Tricks and Puzzles For a Hand	£2.49
Calculator by W Judd	£2.49
*From BYTE Publications Inc.	
'Paperbytes:	
Tiny Assembler for 6800 Systems	${ }_{\text {¢5. }}{ }^{\text {¢ }} 75$
Bar Code Loader for 6800, 8080, Z80 \& 6502 Micros	£1.75
Best of BYTE Volume 1	£8.95.

Tick or indicate quantity ordered * From Creative Computing Press	Price UK	Price Overseas
Best of Creative Computing Volume 1	£6.95	If Different
Best of Creative Computing Volume 2	£6.95	
101 BASIC Games (Revised \& Reprinted Feb. 78)	£5.50	
The Colossal Computer Cartoon Book	£3.95	
Computer-Rage (A new Board Game)	£6.95	
Artist and Computer	£3.95	
* From Everyone Else		
`Magazine storage boxes (hold 12 minimum)	£1.75	
Sybex: Microprocessors from Chips to Systems by R. Zacs	£7.95	
Sybex Microprocessors Interfacing		
Techniques by R. Zacs	£7.95	
Dilithium: Home Computers		
Volume 1: Hardware	£6.50	
Dilithium: Home Computers Volume 2: Software	¢5.95	
Getting Involved With Your		
Own Computer		
TV Typewriter Cookbook by Don Lancaster	${ }_{\text {¢7 }}$	
${ }^{\text {TTL Cookbook }}$	¢7.95	
IC Timer Cookbook	$£ 7.50$	
IC OP-AMP Cookbook	¢9.50	
RTL Cookbook	£4.25	
Computer Programs that Work (in Basic)	£2.55	
*From Basic Software Library		
(from Scientific Research Instruments)		
Vol 1: Business and Personal Booking Programs	${ }^{\text {¢ } 17.50}$	
Vol 2: Maths and Engineering Programs	£17.50	
Vol 3: Advanced Business Programs	¢26.95	
Vol 4: General Purpose Programs	£7.95	
Vol 5: Experimenters Programs (General		
Purpose)	£7.95	
Vol 6: General Ledger Program	¢32.50	
Vol 7: Professional Programs	£26.95	
Magazines: Back lssues		
Personal Computing	£1.75	
Interface Age	£2.25	
Dr. Dobbs Journal	¢1.75	
Computer Music Journal	£2.50	
Peoples Computers	£1.75	
*BYTE	£2.25	
Creative Computing	£1.75	
Calculators \& Computers	¢1.75	
ROM	£1.75	
Kilobaud	£2.25	
73	£2.25	
MAGAZINES: Subscriptions		
Personal Computing (Twelve Issues Yearly)	£16.00	£17.00
Interface Age (Twelve Issues Yearly)	£20.00	£20.50
Dr. Dobbs Journal (Ten Issues Yearly)	£13.00	¢13.50
Computer Music Journal (Four Issues Y.early)	£8.50	£9.00
Peoples Computers (Six Issues Yearly)	¢8.00	£8.50
Kilobaud (Twelve Issues Yearly)	£20.00	¢21.00
*BYTE (Twelve Issues Yeariy) via USA	£15.00	
BYTE (Twelve Issues Yearly) via UK	£21.00	
Creative Computing (Six Issues Yearly)	¢8.50	¢9.00
Calculators \& Computers (Seven Issues Yearly)	£10.00	£10.50
73 (Twelve Issues Yearly)	£20.00	£21.00

Due to fluctuations of the dollar, prices are subject to change
LPE/578/VC

'HOW TO ORDER

Please note our prices include postage and packing, but not insurance, if wanted add 12 p for every fl 10 of books ordered. Make cheques, POs etc payable to:
L.P. Enterprises

CREDIT CARDS accepted
CREDIT CARDS accepted
BARCLAYCARD VISA/ACCESS/
DINERS CLUB/AMERICAN EXDINER
PRESS

Phone: 01-553 1001 for Credit Card orders (24-hour service).

Send to address above for the attn. of David. Room ETI/8 Indicate Payment Method:

All Orders must be Prepaid Total Enclosed $£$
. My cheque, P.O., I.M.O. is enclosed in Sterling on U.K. Bank
.... Charge to Barclaycard/Visa/Access/Diners/American Express

[^2]Ever feel you need a good rub down before you start one of our projects? Perhaps you need-
ETIPRINTS

ETIPRINTS are a fast new aid for producing high quality printed circuit boards. Each ETIPRINTS sheet contains a set of etch resistant rub down transfers of the printed circuit board designs for several of our projects. ETIPRINTS are made from our original artwork ensuring a neat and accurate board. We thought ETIPRINTS were such a good idea that we have patented the system (patent numbers 1445171 and 1445172). The following are available in the ETIPRINTS series.

From Project Book 6:

010 Bench Amplifier
Freezer Alarm
Marker Generator
LED Dice
Watchdog (2 PCBs)
Stars \& Dots PSU

011 Noise Generator
General Preamp
Flash Trigger
Compander
Active Crossover
(2 PCBs)

012 Disco Lightshow
Stereo Simulator Digital Thermometer
013 Amplifier Module
Amplifier PSU
Equaliser
Equaliser PSU

ORDER TODAY
Send a cheque or P.O. (payable to ETI Magazine) to ETI PRINT
ETI MAGAZINE,
25/27 OXFORD STREET, LONDON W1R1RF.

Each, including
VAT and P\&P.

Lay down the ETIPRINT and rub over with a soft pencil until the pattern is transferred to the board. Peel off the backing sheet carefully making sure that the resist has transferred. If you've been a bit careless there's even a 'repair kit', on the sheet to correct any breaks! Cricklewood Broadway，NW2 3ET．Tel． $01.4520161 / 2$ ．Telex 21492．London： 325 Edgware Road，W
G2 200 Tel 041.3324133 ．Bristol： 1 Straits Parade．Fishponds Road，BS 162 LX．Tel 0272654201

TRANSISTORS				3393	0.17	2 4 4331	0.60	245192	0.80	246124	0.45	BCIOSA	0.16	日C178B	0.35	${ }^{\text {8C2 }} 13 \mathrm{C}$	0.15	вС3ат	0.20	\％	0.49	8 F 160	0.33	8f月 79	0.30	ME4J001	6	d	70
21696	0.39	2×2218	0.35	2N3394	0.17	214058	0.22	235193	0.75	2 W 6125	0.47	BC108B	0.16	8C179	0.25	BC213L	0.17	${ }_{\text {c }} \mathbf{C} 338$	0.23	80240c	0.59	8 EF 161	0.65	日f月50	0.30	ME4002	16	TIP31A	． 54
2 W 697	0.31	2H2218A	0．38	213395	0.19	2 44059	0.17	2 25194	0.80	40361	0.55	BC1086	0.17	8C179a	0.25	8cil3	0.17	${ }^{\text {BC547 }}$	0.13	802414	0.49	8 BF 167	0.37	8F月81	0.30	me 4003	0.16	${ }_{\text {TIP33 }}^{\text {ITP }}$	3.72
24698	0.49	2 n 2219	0.3	2n3396	0.19	2N4060	0.22	2W5195	0.97	40362	0.55	BClos	0.16	8C1798	0.25	${ }_{\text {8C2 }}$	0.17	B6547	0.13	80241C	0.65	BF173	0.37	${ }^{85 \times 29}$	0.34	ME	0.11	TIP32A	0.59
2 W 699	0.58	2M22194	0.39	2 23397	0.19	2 W 4061	0.19	2M5245	0.37	40363	1.45	BC1098	0.17	${ }^{861798}$	0.26	BC213LC	0.17	${ }^{865478}$	0.13	80242A	0.55	8 EF 177	0.27	${ }^{8 \times \times 30}$	0.34	meat 02	0.11	mp32C	0.82
24706	0.30	2\＃2220	0.39	2N3438	0.85	244062	0.20	2 W 5246	0.38	40408	0.82	${ }^{\text {BCIOSC}}$	0.18	${ }_{8 C 182}$	0.12	${ }^{\text {BC214 }}$	0.17	${ }^{\text {BC548 }}$	0.13	${ }^{8024220}$	0.65	${ }^{81} 178$	0.27		${ }_{0.38}^{0.30}$		0.11	TIP4／A	${ }_{0}^{0.76}$
2W706A	0.30	2\＃2221	0.25	2 L 3440	0.75	2 L 4064	1.35	1524	0.44	40409		BC140	0.30	8C1824	12	8 C 2148	0.17	BCS49	0.14	802433	0.65	8F179	0.33	${ }^{85 \times 85}$	－ $\begin{aligned} & 0.38 \\ & 0.30\end{aligned}$	medios	0.22		0.86
2W708	0.30	2M2221A	0.25	2 2 3441	0.92	${ }^{2144774}$	2.65	${ }^{2} 245248$	0.44	40410	82	${ }^{8 C 141}$	0.32	${ }^{\text {日c，} 1828}$	0.13	${ }^{8 C 214 C}$	0.17	${ }^{\text {BC54998 }}$	0.14	8D243C	0.87 0.70	BF180	${ }_{0}^{0.37}$	${ }_{\text {Brx }}^{\text {Brx }}$	${ }_{0}^{0.30}$	${ }_{466102}$	0.22	TIP42C	1.08
2N718	0.30	212222	0.25	2月3442	1.45	2 C 4121	27	5294	0.44	40411	3.10	14］	0.13	${ }^{8 C 182}$	0.15	$88^{\text {8214．}}$	18	${ }^{\text {BC54SC }}$	0.14		0.70		0.37	¢ ${ }_{\text {Brx888 }}$	${ }_{0}^{0.35}$		． 35	IIP2955	0.70
26718A	0.54	2 2 22224	0.25	2 23638	17	2 N 4122	0.27	2 2 5235	0.44	994	87	$8 \mathrm{BC1478}$	13	8С1824	0.15	${ }^{\text {BC21418 }}$	0.18	BC557	0.14	80244	0.69	8F18	0.44	Bfx \times B9	1.37	mJe340	0.62	IIP3055	0.59
207204	0.85	212365	0.27	$2 \sim 36381$	0.17	2 2 4123	0.19	${ }^{245295}$	0.44	595	0.98	${ }^{\text {BCI }} 148$	0.13	${ }^{\text {BC1821B }}$	0.12	${ }_{\text {BC2 } 214148}$	0.18	－ $\begin{aligned} & \text { 日C558 } \\ & \text { BC59 }\end{aligned}$	0.13 0.15	${ }_{\text {BD2 }}$ 80245	${ }_{0}^{0.65}$	${ }_{\text {BFI } 184}^{\text {8F }}$	0.41	${ }_{8 F Y 50}$	0.27		0.62	Tis34	1.05
21722	0.45 0.50	${ }_{2 N 2646}^{202394}$	0.27 0.80	${ }_{2}^{243702}$	0.84 0.14	2M4124 2N4125	0.19 0.19	$2 N 5238$ 2×544	0.44 0.16	${ }^{406573}$	0.80 1.30	8C1488 BC1 18 C	0.13 0.13	${ }_{\text {日CLIB3a }}^{\text {日C183 }}$	0.12 0.12	вс2378 вс23a	0.15 0.13	${ }_{\text {BC5 }}$	0.21	802485	0.72		0.37	${ }^{85 F 5} 51$	0.27	MJE371	0.86	tis42	． 50
219914	0.38	2 N 2647	55	2 23704	0.14	2W4126	19	2 L 5448	D．16	${ }^{1} \mathbf{C 1 2 6}$	0.48	BC149	． 15	вс18зв	0.13	8С2388	0.13	BC771	0.26	802466	0.93	$8 f 194$	0.16	${ }^{8 F Y 5} 5$	0.27	mJE520	0.50	T1543	0.47
2н916	0.33	2 L 2903	1.60	213705	0.14	2 L 4284	38	5449	0.20	127	0.48	C149C	． 15	вС1вЗС	0.13	BC238C	0.13	вС¢72	0.18	${ }^{80433}$	0.44	${ }^{81} 195$	0.16	${ }^{857}$	1.35		0.70	90	0.22
2 M 917	0.38	2 2 2304	0.31	2 2 3706	14	2 L 4286	22	2 2 5457	0.38	128	． 48	BC157a	15	BC1831	0.15	${ }^{8} \mathbf{8} 2398$	0.16	80115	0.88	80434	0.46	${ }_{8 f 1}$	0.1	BHI	0.55	Maf 3 OS5	． 05	Tis92	0.33
$2 \mathrm{NS18}$	0.45	2 L 2904 A	0.31	233707	0.14	2N4287	0.22	2 2 5458	0.35	151		BC158A	15	ac183L	0.15	8c239C	． 17	B0131	0.55	${ }^{808435}$	${ }_{0}^{0.46}$	8 F	0.18	BRS 19	0.35	MPFID2	0.33		${ }_{0}^{0.36}$
2N929	0.37	2 W 2905	0.31	2 2 3708	0.12	2 m 4288	0.22	2 2 5459	0.32	${ }^{\text {aci } 152}$	． 54	BC1588	15	8C1831．	0.15	B6257A	0.18	80132	0.75	8 80436	0.46 0.55	8FF｜98			0.35	MPF． 103	0.44	21×300	0.17
249239	0.37	2 m 2905 S	0.31	${ }^{2} 233709$	0.12	214289	0.22	2 255460	0.65	${ }_{\text {aCl }}$	0．59	${ }^{\text {BCIL59A }}$	17	${ }_{8}^{8 C 18314}$	0.12	${ }^{\text {BC25 }}$ 8 ${ }^{\text {c }}$	． 19	${ }_{801}^{801}$	0.40 0.40	80437 80438	${ }_{0}^{0.55}$	BEFI99 BF224，	0.19	B5x BS	${ }_{0}^{0.35}$	MPF 104	${ }_{0}^{0.44}$	$\underline{11 \times 301}$	0.17
${ }_{2}^{2 N 330}$	0.37	${ }_{2} \mathrm{~N}_{2} 290606$	0.25 0.25	243771 2×3772	2.16	2N434 2N4348	2.20	${ }_{2}^{2 H 54485}$	0.37 0.40	${ }_{\text {aCl }}^{\text {AC176＊}}$	0.59 0.70	BC1598 EC160	${ }_{0}^{0.17}$	8C184 861848	0.12 0.13	BC2598 日C300	0.19 0.43	80136 80137	${ }^{0.461}$	${ }_{80529} 8048$	0.49	${ }^{8822253,}$	0.27	${ }^{\text {BSI }} 104$	1：80	MPSAL5	0.44	271302	0.27
	0.95 0.30	${ }_{\text {2N2907 }} \mathbf{2} 2980$	0．25	2317172 2×3773	2.20	214348 244918	2．65	${ }_{2 N 5485}^{245485}$	0.40 0.40	${ }_{\text {aclife }}$	0.54	${ }_{8 C 151}$	0.38	${ }_{\text {BCIISAC }}$	0.13	${ }_{86} 301$	0.43	${ }^{80138}$	0.41	${ }_{80530}$	0.55	BF244A	0.38		1.55	mpsag	0.27	${ }^{2} 1 \times 303$	0.27
241889	0.30	2 2 29074	0.25	2स31819	0.36	244919	0.70	2 W 4930	0.54	AC187	0.59	BC167	0.13	BC14ad	0.15	BC302	0.37	B0139	0.43	${ }^{10535}$	0.70	8F2448	0.33	aul		MPSALT	0.27	21×304	0.27
2W1890	0.30	$2{ }^{2} 2923$	0.17	2M3820	0.39	2 N 4920	0.83	2 2 5492	0.64	acis7k	0.65	BC1678	0.13	BC1848	0.15	${ }_{8} 8303$	0.54	80140	0.43	${ }^{805535}$	0.70	${ }^{\text {8f } 2454}$	0.4	8UL	2.20 2.40	MPSAI	0.33	21×330 2TM 500	0.16
2／1893	0.30	2 2 2924	0.17	243821	0.96	2149321	0.54	225544	0.65	${ }_{\text {ACI }}$	0.54 0.65	${ }^{\text {BCLICPA}}$	0.13 0.13	${ }_{\text {BCl }}$	0.15	${ }_{\text {BC3 }} \times 307$	0.1	${ }_{801}^{801}$	1.90 2.20		0.74 0.77		${ }_{0}^{0.35}$	时205	2.70	mPSA5S	B． 27	2TX530	
242102 2122192	0．50	${ }_{\text {2N2926 }}$	0.19 0.17	${ }_{2}^{243900}$	0.28 0.30	2144922 214923	0.60 0.75	${ }_{2}^{2 H 56927}$	0.67 0.64	AC188K	0.65 1.00	${ }_{8 C 16888}^{8 C}$	${ }_{0}^{0.13}$	BCL2 BC212	0.15 0.15	BC3074 BC3078	0.16 0.15	BD1 182 80183	2.35	80538 80539	${ }_{0}^{0.60}$	${ }_{\text {Br } 258}^{\text {8P2 }}$	0.35	Bu208	2.70	MPSA5S	0.27	（1）	
${ }_{2 \times 2193}$	0.50	2＾3053	0.25	213903	0.20	244924	1.15	246107	0.45	AD162	1.00	8С1698	0.13	вс212в	0.15	BC308	0.16	80187	0.95	80540	0.60	8 F 259	0.35	me0401	0.22	${ }^{\text {R20088 }}$	2.45		
2W21934	0.52	2N3054	0.72	223904	0.18	2 L 5086	0.30	2M6108	0．55	af106	0.60	${ }_{5 C 169}$	0.13	8 C 2121	0.18	вс308	0.16	B0235	0.46	80×14	1.32	${ }_{87336}$	0.4	me0402	0.22	${ }_{\text {月2010 }}$	15		
2W2194	0.42	2M3055	0.75	233905	0.18	2 C 5087	0.30	246109	0.55	${ }^{\text {afilig }}$	0.52	${ }^{8 C 177}$	0.22	${ }^{862124}$	0.18	${ }^{8 C 30989}$	0.16	${ }^{802363}$	0.44	80x18	1.90 1.10	${ }_{\text {bFF337 }}^{83}$	0.5			${ }_{\text {T1P299 }}$	0.49 0.65	KE	
2 m 21944	0.45	2 2 3390	0.50	2 W 3906	0.18	2155088	0.30	2 N 6111	0.49	${ }_{\text {BCL }} 107$	${ }_{0}^{0.16}$	${ }^{81} 17177$	0.22	${ }_{80}^{8 C 21218}$	0．18	8C3098 BC 309%	0.16	${ }_{8023} 802$	0.44 0.44		1.10		${ }_{0}^{0.30}$			TIP30A	0.54	catal	
${ }_{2 \text { 2n2195 }}^{21954}$	0.40	${ }_{2 \sim}^{2}$ 2339391A	O． 0	${ }_{2}^{2} 24.031$	0．55	${ }_{2}^{245089}$	0.30	${ }_{2}^{246121}$	${ }^{0.41}$	${ }_{\text {BCLIOTA }}^{\text {BCL }}$	0.16 0.16	861778 BCi 78	${ }^{0.25}$	${ }_{\text {ACL2 }}^{\text {日C213 }}$	0.15 0.15	${ }_{86}^{8 C 3027}$	0.16 0.22	${ }_{\text {B0239A }}^{\text {80238 }}$	0.44	${ }^{80755}$	2.10		${ }_{0}^{0.39}$						
242217	0.55	243392	0.17	244036	0.72	2M5191	0.75	2N6123	0.48	8C108	0.16	BC178A	0.25	АСС213B	0.15	BC328	0.20	B02396	0.59	8F115	039	㫙41	0.38						

LINEAR CIRCUITS

CIRCUITS							
CA3018	0.75	Lm379s	4.25	Lm7815k	75	тва530	5
C 43018 A	1.10	Im38048	0.96	Lm7824k	1.75		2.45
CA302］	2.20	（m38014	1.08	im7ai05Cz	0.30	тtas50	260
с 33020 A	2.50	（m3zian	270	Lm7812Cz	0.30	tem5400	2.70
Ca3028A	0.90	Lu38 ${ }^{\text {t }}$	1.69	Lm78LISCL	0.30	TBas5D	3.60
сазагвв	1.25	Lm382\％	1.32	mm5314	4.50	T8A5500	3．80
ca3030	1.50	Lm384	1.55	MM5316	4.60	tras6000	3.00
Сазоз0а	2.20	Lm3864	0.88	\＃E5 55	0.33	T8A570	2.10
са3038	2.90	Lu387M	1.10	ne556	0.85	TBA5700	2.20
CA3038 ${ }^{\text {a }}$	4.10	Lm388M	1.00	ME558\％	1.98	tbaj000	2.20
ca3045	1.55	Lmabis	1.00	Me560	4.50	trazzano	2.06
ca3046	0.77	LIM702C	0.81	We561	4.50	т8a750	236
C13048	245	Lm709	0.70	ME562	4.50	tah7500	2.45
Ch3052	1.18	Ln7098	0.50	He555	1.39	tbab00	1.30
Ch3080	0.85	Lm70914	0.49	Me566	1.75	tbabios	1.30
Ca30809	2.10	Lm710	0.67	Me567	1.90	твавго	0.80
Ch3086	0.50	LM71014	0.64	ME571M	4.95	тBagz	2.99
Ca30888	1.87	Lm71HCM	0.72	SAS560	270	tcal60c	2.36
C． 313898	2.90	Ln723C	0.75	SA5570	2.70	TCA160B	2.55
Ca30900	4.40	L17723C14	0.45	Sajlio	2.10	tcaz70	2.99
CA3130	1.06	Lm726	5.80	S041P	1.35	tcat30	4.50
Ca3140	1.04	Lm741C	0.70	5042P	1.35	tcal40	4.50
Lm301	0.30	Lm741C8	0.30	SN76001／	1.30	TCA750	3.00
LM307M	0.50	Lm741C14	0.30	SN750033	2.38	TCA760	2.80
LIm3084	D． 95	Lm747CH	0.99	SM76013	1.50	TCA 105	1.49
Lman9k	1.95	Ln7488	0.50	SH76023M	1.50	tcha40	1.65
Lm317k	3.35	Lm74814	0.90	S176033	2.35	tga 1022	7.50
LM318\％	2.45	（M1303／	1.15	tMa263	1.35	taA1024	1.24
Lm32015	215	LIM1304／	1.52	тизоо	3.70	toA 1034	4.75
Lm320112	2.15	L／M1305M	1.52	tma320A	1.15	toazozoala	4.50
LM320115	2.15	Lm1307N	1.22	TM3530A	3.00	ual70	2.15
Lm320124	2.15	Lm1310N	2.10	TM521	1.10	valibo	215
LM320p5	1.15	Lm135in	1.30	iM522	2.10	tlosicp	1.25
LM3209 12	1.15	LM1458\％	0.45	TM550	0.48	TLOAICP	0.90
unseipl	1.15	LM1496M	0.97	TA560	210	Tl0azCP	1.10
LM320P24	1.15	Lm1808	2.10	tM570	220	TLD83CH	1.40
LIm323m	6.95	Lmial2M	6.20	та370a	5.45	TLibesch	1.45
Lm339\％	0.60	LM1820N	1.16	TM630	2.40	$1{ }^{1} 355 \mathrm{SN}$	0.80
Lm34015	0.88	LM1828M	1.90	t 1 ¢ 960	3.90	$\pm 356{ }^{\text {d }}$	0.80
Lma40T15	0.84	Lm1830	1.90	тM970	4.20	¢357M	0.80
Lm340124	0.88	Lmi84IM	1.90	tMa6118	2.50	［13201M	3.00
Lm341P5	0.80	LM1845N	1.50	tM621	2.50	L133314	3.00
LM341P12	0.80	LmIASBM	1.98	Tat6619	1.65	LIP3741H	0.30
LM341P15	0.80	$1 \mathrm{M1950N}$	1.90	tM6618	1.45	L－137411	0.55
Lm341P24	0.80	Lmi889m	4.90	thatod	4.50		
LIm348	0.95	［m3301／	0.60	тM930A	1.45		
Lm358\％	0.60	Lm3302N	0.55	т $\mathrm{mag3ab}$	1.45	manY m	
LIM360N	3.00	Lm34014	0.55	taploo	2.00	IYPES	
（1m370	3.30	Lm3900	0.68	твагz	0．80	STOCKED	
Lı33714	2.35	LM3905M	1.15	tbasoo	2.24	SEMD FOA	Our
LM350k	6.45	Lm3909M	0.78	18A5000	2.34	CATALO	
Lı3373	3.35	LM3911／	1.10	teas 10	235		
LM374M	3.36	Lm7805k	1.75	t8a5100	2.48		
Lm377\％	1.80	LM7812k	1.75	тB4520	260		
LM378M	2.40	Lm324	0.75	taasion	2.70		

NOT A KIT
BUT A REEAOY GROW WITH

AMERICA＇S FASTEST SELLING MOST POPULAR 6502 BASED SYSTEM－EASILY EXPANDED INTO A PERSONAL HOME COMPUTER
The basic KIM 2 includes Hex keyboard and display．
audio cassette intertace．Teletype Intertace Superb
doct documentation， 2 K monitor sofiware in ROM．Powerlu
insticuction set．The beauty of this $\$ \mathrm{ystem}$ is the ease extension and versatility，with all the possible future requitements catered
for Upand funning in minutes．Any future benefits from Commodores PET
computer will be software compatibie with their KIM sysiem and in computer will be sot ware compatibie with their KIM sysiem an
KM system has the design llex．bulity to sun any requitements．
KIM IS EXPANDABLE－Expand as you learn up to 65 K KIM IS EXPANDABLE－Expand as you learn up to 6
KIM 1 －Bastic board with above features assembled KIM 1 －Basic board with above features assembled
KIM 3 －8K static RAM card plugs into motherbard
KIM 4 －Motherboard（1akes $6 \times$ KIM 3 ） KIM 3 － 8 K static RAM card plugs into mother
KIM 4 －Motherboard tiakes $6 \times$ K IM 3 3＋pow
KIM 6 －Prototype board ior user designation
 Fully assembled TY Card－ASC II keyboard in－converts TV selt to cheap
compuler terminal via aerial socket．Also standard RS232 connector for micro，computer or modem 16 lines $\times 64$ characters．
SEND SAE NOW FOR FULL OETALLS

CMOS		4021	1.05	${ }^{40508}$	${ }^{0.85}$	4071	0.70
		40228	1.00	40518	0.85	4078	0.27
40018	0.22	${ }^{40238}$	0.22	${ }^{40528}$	${ }_{0}^{0.88}$	40818	0.24
4002	0.22	${ }_{40258}^{4028}$	0.76	4054	1.48 1.48	4082	0．89
4006	1.25	40278	0.55	4055	1.65	4086	0.89
4007	0.22	40288	0.92	4056	1.65	48898	2.10
${ }^{40088}$	0.99	40298	1.10	4059	6.00	40938	1.00
4009	0.58	4030	0.84	43608	1.15	4094	2.30
4016	0.58	${ }^{40318}$	2.25	4063	1.35	4095	1.30
40118	0.22	4035B	1.30	40668	0.75	4096	1.30
4012	0.22	${ }^{4037}$	1.20	4067	4.85	4097	4.65
40138	0.52	40418	0.85	4068	0.27	4098	1.00
4014	1.00	${ }^{40428}$	0.85	40698	0.24	45108	1.20
4015	1.05	4043	1.05	40708	0.85	4511	1.75
4016	0.52	4034	1.00	40718	0.24	4516	2.10
40178	105	4045	1.76	4072	0.27	45188	1.20
40188	1.05	414568	1.50	40738	0.24	FULL RANGE IM OUR NEW CATALOGUE	
40198	0.52	40478	0.96	40758	0.24		
40203	1.15	4049	0.96	40768	0.99		

CMOS

［10

FULL RANGE＋DATA IN DUR 1978 CATALOGUE

TRIACS plasite pack stow tazzo				
Texas				
4 mmp	72p	16 amp	93 p	
6 dmp	77p	20 amp	¢1．87	
8 gmp	82p	25 mmp	¢2．20	
12 mp	93p			
THYRISTDRS plastic power				
$\begin{aligned} & 4 \text { amps } \\ & 10000.38 \end{aligned}$		8 amps 100v 0.47	12 amps $100 v 0.63$	
2000 0.44		20010.54	2000 0.70	
400×0.54		$400 v 0.68$	400 V 0.90	

LOW COST TELETYPE CONVERT TV SET TO TELETYPE The new CRT control chip from Thomson CSF SFF96364．Convert your TV set into an electronic teletype－ 16 lines $\times 64$ characters －requires RAM，character generator and little else for a basic teletype．Available as chip or full display card． Full cursor control． 5 volts TIL compatible．line erase，full card included UÅRT．Modem，char． gen etc．Comp video out from encoded keyboard in． E151．00 SEND S．A．E．FOR DETAILS	＊MAIL＊ ORDER Express service on all orders－－please add $40 p$ ior p\＆p to all orders on credir cards §1000 minimum

DESIGNING
 HIGH(EST)-FI

AMPS

Audio amplifier design has come a long long way since its move into semiconductors. Stan Curtis, who has been responsible for such excellent examples of the art as the Cambridge Audio and Lecson, explains here the black arts of super-fi designing.

CAREFUL LISTENING TESTS have shown that while an amplifier that measures badly is unlikely to sound good one that measures well cannot be guaranteed to sound good. Thus it is apparent that the traditional measurements of power distortion and frequency response need supplementing by new and more powerful laboratory tests. Such tests should more closely relate to the conditions prevailing when the amplifier is driving realistic loads and using music signals rather than sine-waves, which of course represent only one special case.

Block diagram of the Peter Walker balancing test.

Balancing Act

The first such test was popularised by Peter Walker of Quad. It is a simple nulling system which attempts to cancel the output and input signals of an amplifier. With full cancellation whatever remains must be distortion, i.e. signals added to or subtracted from the original. The ideal, or perfect, amplifier will produce no residual at the . output of the nulling circuit and any imperfections will be monitored during a piece of music.
In practical terms the-balancing of this circuisis yeryan
difficult if p significan gree accuracy is ired
Thermal drifts can agg te 1
it is difficult to sat up fo us̉ually the whole phe re-calculated and reradjustede.iontime. Howew. his simpla circuitirs, useful for showing just how often
of mutic are onping musignamane conod of a
of music and ho
fimit the signal
lecren

However, with such high current capability it is essential that the amplifiers have speaker muting to prevent switch-on "thumps" (or more accurately, earthquakes) and DC offset protection to protect the loudspeakers from the effects of 20 Amps of pure DC !

Offsetting Long Tails!

DC offset has been a major problem with many DC coupled amplifiers (i.e. those having no output capacitor). The offset voltage measured across the output terminals should not be any more than $\pm 50 \mathrm{mV}$. Once this voltage starts to rise the loudspeaker is subjected to a DC bias which moves the coil out of the central position. This in turn causes the coil to heat up and the power-handling capability of the loudspeaker to be restricted.

Eventually (and often sooner) the loudspeaker will blow. Many amplifiers have an offset voltage that is acceptable when the amplifier is first switched on but which starts to increase as the amplifier heats up. Such amplifiers are subject to thermal drift and this drift is normally due to a component mismatch in the circuit. The conventional amplifier, with a long-tailed pair at the input, is "theoretically" free of thermal drift as these will be automatically compensated for by the DC feedback.

However, this is on the assumption that the first two transistors (or FETs), forming the long-tailed pair, are perfectly matched.
The input offset voltage (upon which the output offset voltage is dependent) is related to the base-emitter voltage $V_{B E}$ of each transistor.

$$
\text { e.g. } V_{O S}=V_{B E 1}-V_{B E 2}
$$

This difference can be made almost insignificant by using a dual-transistor or a monolithic integrated-circuit differential stage where matching is provided by the simultaneous adjacent fabrication of the two transistors. With discrete transistors, however, a close match is unlikely.

Similarly unbalanced output loading or mismatch of the collector resistors also increases the offset voltage. These mismatches also worsen the linearity (and hence the distortion) of this stage. Thus well designed amplifiers usually use 1% tolerance resistors in these positions and adopt balanced circuitry throughout.

The offset voltage is considerably reduced by the application of local DC feedback that occurs when emitter resistors are fitted. In this case;

$$
V_{O S}=V_{B E 1}-V_{B E 2}+I_{E 1} R_{\mathrm{E} 1}-I_{E 2} R_{e 2}
$$

and so by adjusting the balance between $R_{e 1}$ and $R_{e 2}$ with a trimpot a balance can be achieved.

Emitting Resistance

Note that $R_{e}=R_{\varepsilon}+r_{e}$ is the total external emitter resistance and r_{a} is the transistor dynamic emitter resistance. Thus it can be seen that in the earlier typical example of a stage without emitter resistors, an inbalance of r_{e} and r_{e} will cause a worsening of the offset voltage. More importantly it can reduce the common mode rejection of the stage. In this case the common mode is the HT lines with their ripple to appear at the output of the amplifier.

Of course the presence of emitter resistors also lowers the $A C$ gain of the stage. For reasons to be discussed later this is not such a bad thing but in some amplifiers, for

Differential pair with variable emitter resistances balanced by variation of the potentiometer.

In this circuit the input offset voltage is related to the baseemitter voltage of this transistor.

Recovering lost gain by use of bypass capacitors across the emitter resistances.

Effect of a sine wave of varying amplitude as signal upon the DC offset voltage at the output.

In the case shown in the diagram (unconditional stability) the open-ioop response of the amplifier is stabilised by rolling it off at a slow 20 dB / decade slope with a single pole at 1 KHz . This amplifier would be stable with any amount of resistive feedback. However it will be seen that at higher audio frequencies the amount of feedback available reduces and so the distortion of the amplifier will increase. For this reason many amplifiers are of the "marginally stable" type.

In this case the amplifier has a fast roll-off which allows an improved closed loop performance at higher frequencies but without careful compensation they are not stable under all conditions of feedback. Once the phase shift reaches 180° the amplifier will become unstable so it can be seen that our example is only marginally stable.
example the GAS Ampzilla. This gain can be recovered by using bypass capacitors.

Clip-on Off Set

Another situation where abnormal DC offset voltages occur is following a clipping overload of the amplifier. When many amplifiers are driven into clipping, the DC voltage of output rises towards one of the HT lines and then when the signal comes out of clipping the amplifier takes a finite time (often several seconds) to recover with the output DC voltage often oscillating between a positive and negative voltage before finally settling back to its nominal zero. Of course, when the amplifier is driven into clipping the normal negative feedback system ceases to control the amplifier.

Thus the DC instability is indicative of poor low frequency stability in the amplifier. Some of the worst (but not all) amplifiers in this respect, have separate AC and DC feedback loops and so have big eletrolytic. capacitors (decoupling the AC loop) which take time to charge and discharge.

The old Cambridge P100 amplifier had this problem and the effect on the reproduction of a loud bass note can be imagined to be as waffley and uncontrolled as it is. Regrettably many amplifiers still suffer from this problem.

Quite often some amplifiers go unstable without their owners becoming aware of the problem. Sometimes the oscillation may be moderate in level and at a very high frequency; the only symptom being that the amplifier seems to run hotter and next-door's electric drill causes more TV interference than before!

Compensation Phase

To know why some amplifiers are potentially unstable it is necessary to understand the principles of phase compensation. Much of the low distortion characteristics of amplifiers are achieved through negative feedback. If the phase shift around the feedback loop reaches 360° at any frequency at which the loop gain (i.e. the overall amplifier gain) is unity the result is a self-sustaining oscillation at that frequency

The phase-inversion to provide negative feedback produces a stabilizing 180 (eg. "out of phase") phase shift, but an additional 180 can be developed in the amplifier.

The phase shift developed through an amplifier is the combined phase shift of its several stages, and it usually develops 180 at higher frequencies. To ensure frequency stability under feedback conditions, phase compensation reduces the amplifier gain at those frequencies for which phase shift is high and it reduces high frequency phase shift by accepting a greater phase shift at low frequencies. This is accomplished by adding response poles and zeros in the form of resistor-capacitor networks (real or inherent in the transistors) in the amplifier circuitry.

Equally important, to the owner of an expensive pair of loudspeakers, is the problem of high-frequency instability. These days very few high quality amplifiers are so unstable that they break into oscillation. However, quite a few respected units are on the edge of instability and so can potentially become unstable following a shift in operating conditions or of output loading.

Sum Theory

The author used another technique at Cambridge Audio to investigate the changes in amplifier performance that are dependent upon the loudspeaker load. The two channels of a stereo amplifier are driven in mono but one channel is converted to become noninverting. The outputs of both channels are summed and the resulting signal is monitored. Theoretically both channels should transmit the signal in the same way and (for a given circuit design) any distortion, time aberrations etc. should be the same for both channels. It is often quite possible to balance the two channels (driving 80 hm resistive loads) so that the residual is inaudible. However when one 80 hm load is replaced by a real

SIMPLIFIED TEST SVSTEM
Using one channel as an inverting amplifier to monitor distortion produced by the design.
"live" loudspeaker the residual betrays problems caused by the new load. In a refined form the test works 'well and it did reveal two interesting things;
i) the two channels of the average amplifiers are rarely identical
ii) some amplifiers work better in the inverting mode than in the non-inverting

These tests serve best to indicate imperfections without generating much data to help the designer. Two simple but useful tests do generate an awful lot of usable data. The first is an HF Intermodulation Test.

IM High

The conventional IM test uses an LF (50 Hz) and an $\mathrm{HF}(7 \mathrm{kHz})$ tone in a 4 to 1 ratio and then measures the sum-total of the sideband (e.g. distortion) components. This is of little practical value unless the amplifier is particularly non-linear.

Intermodulation distortion testing using three frequencies.
Thé HF IM test uses two tones of, say, 15000 Hz and 15100 Hz and the resulting side-bands are viewed on a spectrum analyser. The frequencies can be altered to
suit whatever simulation that is desired, e.g. two sopranos trying to sing the same note.

By repeating the tests at different levels it can be seen that many amplifiers have a performance which varies appreciably with signal level, and the test results correlate very well in identifying amplifiers with an aggressive "top end."

Dynamically Noisy

The second test is similar but attempts to measure the amplifiers' performance under more varying, "dynamic" conditions. A white noise source has a harmonic and amplitude structure which is variable and random and thus provides a better simulation of a music signal than does a sine-wave. The noise signal is passed through a bandpass filter to define its frequency response. The bandwidth and centre-frequency can be altered to suit the investigation as can the overall operating level. The output of the amplifier is fed to a spectrum analyser where the out of band components can be studied. Again this test is very useful for studying the effects of different loudspeaker loads but more significantly for subjecting the amplifier to random momentory "clipping" overloads.

Noiseband testing with a spectrum analyser, the sidebands produced by the amp are clearly visible.

A Channel and A Log

Possibly the most complex type of testing in use is a form of input and output signal comparison used by Analog Engineering Associates in the U.S.A. and, in a simplified form, by Mission Electronics in the U.K. AEA have developed a Transient Distortion measurement system that uses music as a test signal to evaluate circuit performance under dynamic conditions. This system consists of a dual channel analogue to digital convertor which is designed to have a resolution of 1 part in 65536 or 0.0015%.

One channel of this is used to sample the input music signal whilst the second channel samples the output signal via a precision attenuator. The digitally encoded output of the convertors is fed to a computer memory system for later analysis. Instead of trying to compensate for the amplifiers phase and frequency response with a passive circuit (as in the earlier simple nulling circuit) a frequency sweep is made through the amplifier to generate a "transfer function" which the computer can use to correct the data during the subsequent error analysis.

Once a series of measurements have been made in the course of playing a passage of music the resultant data can be subjected to a series of Fourier and Coherence analytical calculations. Put simply, this means that any difference between the input and output

Analog Engineerings Transient Intermodulation Distortion Measurement System, used in Britain by Mission Electronics.
signals can be described in a form that is useful to the engineer and related to the structure of the music signal at that instant. Unfortunately this test show that, as yet, no perfect amplifier exists - each type of amplifier circuit produces its own particular types of "transient error."

Out of The Rut

A few years ago power-amplifier design had settled into a satisfying rut. In the U.K., the Quad 303 and the Cambridge P-Series had achieved very satisfactory performance figures and they were generally considered to be good amplifiers. In the U.S.A. the Crown DC300 hac achieved an almost theoretically perfect specification and was hailed as "State of the Art."

However, the first crack to appear was caused by new loudspeaker designs. Some had very demanding impedance curves which in some cases presented a 2 Ohm load to the amplifier. Such a low value of load (almost a short circuit to some minds!) operated protection circuits in many amplifiers, limiting the current to protect the output transistors.

The operation of these caused a very unpleasant "clipping" sound in some cases and even strange "clicks" and "bangs" in other cases. Thus alerted it became apparent to some designers that conventional protection circuits were turning partly-on quite frequently in the course of a piece of music and so giving a sort of premature clipping action.
Without any doubt the best results are achieved when the output stage is devoid of any protection AT ALL. The output stage should be designed to deliver all the current a load demands without limiting. Consider the reproduction of a bass drum. If the amplifier starts to limit the start of the "thump" the sound pressure will collapse and the bass-drum will appear to have no body and thus sound unrealistic.

A study of the circuit of a conventional V-I protection circuit will show that as the protection transistors turn-on they become a 'non-linear resistor' across the bases of output transistors 03 and 04 and as such create unpleasant distortion. One solution tried by some companies was to slug the bases of 01 and 02 with a capacitor to provide a time-delay to prevent the protection operating except during a sustained short-circuit.

In this protection circuit the FET starts to turn-on when fullpower is delivered into a 2 Ohm load. The main advantage over a conventional protection circuit is that the limiting is "soft" (i.e. very gradual) and thus audibly acceptable and secondly that the distortion is much lower - and still only about 0.1% at limiting.

The output-stage should ideally be able to sink the full energy of the power-supply until its regulation causes the current to limit progressively. So in a good amplifier design the.output-stage and the power-supply must be designed as a single item and not as separate circuits. Several amplifiers are designed like this. The Lecson AP3 Mk II, the BGW models 500 and 750, and the Mission Power Amplifier. The Lecson AP3/11 can, for instance, deliver nearly 20 Amps to the load before the mains fuse blows and the BGW model 750 even more.

Circuit diagram showing a typical circuit which would prove to be prone to DC instability when in use. Note that separate paths exist for AC and DC feedback.

If the amplifier now has to drive a caparitive load eg -electrostatic speakers, or complex crossover networks; another pole is added at the output eg:-

In the case of the inconditionally stable amplifier the only ill-effect will be some "ringing" in the closed loop step response - but in the case of the marginally stable amplifier, it may go completely unstable. The most popular "belt and braces" solution to this problem is to fit a resistor-inductor network at the output to "cancelout' the effect of the capacitive loading, thus

Ever wondered what this circuit in the output of an amplifier is for? Wonder no more - it's to aid the output stage in handling a capacitive loading by partially cancelling the effect.

It is interesting to note that some marginally stable amplifiers omit those components as, in the practise, most speaker cables have sufficient resistance and inductance. However, some of the new "Super-Cables" (Litz and Lucas, etc) have a very low resistance and almost no inductance but some capacitance - and their use with certain amplifiers has caused instability, with the amplifier (or speakers) eventually blowing-up!

Next month Stan Curtis goes on to consider the effects of phase and bandwidth (amongst other odd things) upon amplifier performance and asks what do we want from an amplifier? - The answer may surprise you all!

BARREL TYPE X-Y

 PLOTTER ASSEMBLY
X-Y PLOTTER ASSEMBLY

PAPER TAPE READER ASSEMBLY

BARREL TYPE X-Y PLOTTER ASSEMBLY

120 V Stepping Motors. Provision for (Pen NOT supplied). As Picture $\mathbf{£ 5 5}$ ea. (Pen NOT supplied). As Picture $\mathbf{£ 5 5}$ ea.

 Alternative motor for non-reversible require-ments. Recorder/Printer applications etc ments. Recorder/Printer applications etc
$£ 48$ ea P\&P both versions $£ 250$

X-Y PLOTTER ASSEMBLY

Due to large purchase we have an assembly

 consisting of frame with $X \& Y$ assemblies (no pen - but provision provided). Two high quality STEPPING MOTORS Bed size 12×9 Motor options 120 V only $\mathbf{£ 3 9 . 5 0 \text { ea } 1 2 0 \mathrm { V }}$ (can be changed to $12 / 24 \mathrm{~V}$), data supplied$\mathbf{£ 4 6 . 5 0}$ ea $12 / 24 \mathrm{~V}$ £64 £46.50 ea. $12 / 24 \mathrm{~V}$ £64 ea. P\&P all ver-
sions $£ 2$

PAPER TAPE READER ASSEMBLY

Rigid alloy frame 8 hole. High quality

 stepping motor. Directly driven from 120 V reads 30 char. per sec. Reversible. Can be DC Stepped faster or slower. Steel paper guides.Without Opto-sensor $£ 27.50$ ea With Optics £45 ea. P\&P £2

STEPPING MOTORS ONLY

200 steps per revolution. 20 oz inch torque. $120 \mathrm{~V} 1000-0.1000 \mathrm{ohm}$. Can be changed with care to $12 / 24 \mathrm{~V}$. Data supplied $£ 8$ ea. P\&P E1. Supplied for $12 / 24 \mathrm{~V}$ operation £13 ea P\&P£1
Just think about the uses!

NOW-INCREASE AREA GIVEN TO

PICK-A-PACK AT 50p per Ib
LARGER VOLUME OF NEW COMPONENTS YOU CAN'T AFFORD TO MISS

OSCILLOSCOPE TUBES

Brand New Boxed - Carriage all tubes $\mathbf{£ 3 . 2 5}$
Telequipment $\$ 52, £ 10$ ea; D51, £ 15 ea, $\mathrm{S} 42, £ 10$ ea; D53A £20 ea: D52, £15 ea, S31, £10 ea. Bradley 200 £ 85 ea Advance OS3000, £85 ea GEC types 924F, £25 ea 924 E .

NOT BOXED - NEW - WARRANTED. Telefunken D14-131 replacement for Solartron CD1740, Cossor CDU150, S.E. Labs replacement for Solartron CD1740, Cos
SM112 and GEC/MOV 1474 at $£ 55$ ea

LOOK AT THESE PRICES

ROTRON CENTAUR FANS Size $45 \times 4.5 \times 1.5115 \mathrm{~V} 5$

 blade. £4 ea. P\&P 75Min. PLUG-IN type RELAYS. Plastic covers. 2-pole c/o 24 V 25p ea P\&P 15p.
CROUZET/MURTEN SCHWEIZ MOTORS. 110 V 50 HZ 4 rpm. Gear box can be removed. 75 p ea. P\&P 75 p .
FRAMCO MOTORS. 115 V 50 HZ Input single
FRAMCO MOTORS. 115 V 50 HZ Input single phase $1 / 12 \mathrm{th}$ E1.75 14 rpm ; on silent mount New condition $£ 2.75$ ea. P\&P
PYE DYNAMICS THICK FILM 1 MHZ Clocking Oscillator. 5 V supply. Size $19 \times 25 \times 6 \mathrm{~mm}$. Drives one TTL load. 72p ea. P\&P COMPRESSOR UNIT. Compact. 115 V 50 HZ single phase 1.5 A continuous 1425 rpm . Outside piston housing approx 3 £18 ea. P\&P £12
BROOKE CROMPTON \& PARKINSON extractor fan assembly 240 V operation $£ 2.75$ ea Carr $£ 3.25$.
MAGNETIC DEVICES. Plug-in RELAYS 240 V AC. 3 -pole c/o Heavy duty 10 amp. Complete with base. Ex brand new
 £1.25 ea. P\&P $45 p$
$60 \times 40 \times 42 \mathrm{~mm} 50 \mathrm{p}$.
G.I. BRIDGE RECTIFIER

FAIRCHILD FND10 7 segment display for above) $17 p$ ea cathode 65 p ea P\&P $15 p$.
MULLARD TUNER MODULES - with data
LP1171 combined AM /FM If strip 10.7 MHZ £ 3.50 ea. P\&P 50p.
LP1179 FM front end with AM tuning and 87.4 MHZ to 104.5MHZ tuning, 10.7MHZ IF. £3.50 ea. P\&P 50 p

The Pair 25.75 P\&P 5 p
POWER UNIT MODULE containing 2 small, 3 med $\& 1$ large ferrite cores: $3-$ T03 power transistors, caps, resistors, high
powered diodes. 9 transistors, 3 min fuse holders, etc. $£ 1.50$ ea powered diodes. 9 transistors, 3 min fuse holders, etc. $£ 1.50$ ea
P\&P £ 1.25 .
GENERAL 65 pe. P \& P 15 p. 10 for $£ 5$. P\&P £ 1

* TRANSISTORS/DIODES/

RECTIFIERS, ETC.
Guaranteed all full spec devices Manufacturers Markings.
At 5p each
8 C 147 2N3707. $\mathrm{BC} 172 \mathrm{~B}, \mathrm{BC} 251 \mathrm{~B}, \mathrm{BC} 348 \mathrm{~B}$ BC171A/B: BC413:D10, BC1B2; BAX13 1N937, BA102BE: BZX83. TIS61. 2N5040 At 10p each
BFX85: 1N4733A: SN7451N: BYX $10-15 \mathrm{KV}$ $0.36 A$; BYZ10 15p ea TIP30-20p ea TIP34A - 50p ea. BD53B-40p ea. Heavy Duty Bridge Rectifier - 20p ea. CA3123E-£1 ea. BDY55E1 ea. $2 N 3055-40 \mathrm{p}$ ea; TIP 31 B 12p ea TBA560CO £2 ea; 1N4436T-TO 3 Flat mount 10A 200piv £1 ea 2N5879 with 2 N 58 B 1 Motorola SDOW Comp, pair £2.
BD55; BD5 38 Comp
BD535; BD538 Comp pair - 75 p
Linear Amp 709-25p ea
Linear Amp $709-25 p$ e
High Speed Voltage Comp
High Speed Voltage Comparator 710-15p ea P\&P Extra on all items.
FINNED HEAT SINK
 Texas Bridge Rectifier 5SB05-50V 5A 60p ea P\&P 20p.
MOTOROLA POWER TRANSISTORS type W0993/441. T03 Min voltage 500. 20p ea. P\&P $15 p$.

TELEPHONES. Post Office styie 746 Black or two-tone $£ 6.50$ ea. Modern style 706 Black or iwo-tone grey $\mathbb{E} 4.50$ ea. $P \& P E 1$ each. Old black Style £ 1.50 each, P\&P E
HANDSETS only 706 style $£ 1.75$ each Older Style £1.P\&P 75
automatic exchange $\star 1000$ feed thru Capacitors 10 for 30p. P\&P $15 p$
HIVAC Miniature NEONS App 60 V Brand New 10 off 20p. P\&P extra.
GRATICULES $12 \times 14 \mathrm{~cm}$ high quality plastic $\mathbf{1 5 p}$ ea. P\&P $10 p$
LARGE RANGE OF ELECTROSTATIC VOLTMETERS. From $0-300 \mathrm{~V} 2 \mathrm{£3}$, to 20 KV max General guide $5 \mathrm{KV} 31 / 2 £ 5$. Thereafter $£ 1$ per KV.
P\&P 75 p. DON'T FORGET YOUR MANUALS. S.A.E with requirements.

POWERFUL MINIATURE GERMAN $12 V$ REVERSIBLE MOTOR. NO load current 7OMA excessive load 400 MA Size $11 / 2 \times 13 / 16$ dia
Shaft $5 / 16 \times$ approx $1 / 16$ dia 50 peach. P\&P 40 p

A MILLION MUST GO

HIGH NOISE IMMUNITY LOGIC
DUAL IN LINE $16-$ PIN CERAMIC. 12 V Rail Con devices. Full data. 2p
MIXED PACKAGE - £1 P\&P $25 p$

BUILD YOUR OWN BUS

ted each end with a 50 -way female edge connector. Takes 0.1 printed circuit board $\mathbf{£ 2}$ ea. P\&P 75 p.

LOOK AT THESE PRICES

BURROUGHS 9 digit PANAPLEX numeric display. 7 segment 0.25 digits with red bezel. £1.95 ea. P\&P 30p. MINIATURE NIXIE TUBE type ITT 5870ST. Digit size 0.5 Wire ended. 50 p each P\&P 20 p 4 for $£ 1.75$ P \& P 35 p. TRANSFORMERS 115 V AC input. Secondary 30 V and 2.6 V OVA. 50p ea. P\&P 50p
CALCULATOR CHIP. GENERAL INSTRUMENTS IYPE GIMT4 with Data $£ 1.60$ ea. P\&P 20p 21-WAY SELECTOR SWITCH. Single pole with reset coil $40 V$ AC coils. Additional switch contacts for auto reset etc. 1.75 each P\&P $75 p$.

SNAIL BLOWER 110 V AC 500 MA . Brand new by Aifflow Developments. Quiet and very good looking. $£ 3.50$ ea. P \& P P £ 1 POTTER ER BRUMFIELD 18.48 V DC Relay 3 pole c/o. Heavy Duty. Plug-in type with base 50 p ea. P\&P 25p. MINIATURE KEYBOARD. Push contacts. Marked $0-9$ and A.F and 3 user definable kevs. $£ 1.75$ ea. P\&P $35 p$.
MULLARD CORE LA4245 at 15p ea. P\&P 10p
CLARE REED RELAYS $24 V$ DC Coil. Single pole make Size $11 / 8 \times 7 / 16 \times 7 / 16$ at $25 p$ ea $\mathrm{P} \& \mathrm{P}$ 10p

ITT-CREED Punches and Prints on $1 / 6$ paper Complete with Power Supply Solid State Size $15 \times 113 / 4 \times 22$ deep £13 ea.	TRIPODS WITH PAN AND TILT HEAD will take 56 lb load $£ 22.50$ ea
EX-MINISTRY MARCONI O-6 WATTS Multi Range. Multi 1 mpedance POWER METERS £25 ea.	MARCONI VALVE VOLTMETER TF428B NOW £12.50 ea

$1 / 2^{\prime \prime}$ MAG TAPE

Approx 2.000 f1 NOW 25p each P\&P E1 Or 5 for £1, carr 2.75

FOR THE VDU BUILDER tube M $28-13 \mathrm{GH} 23 \times 17 \mathrm{~cm}$ at $£ 12$ ons supplied Heads for PERTEC 6000/7000 - enquiries.

LESSEY VDU. No keyboard - weird electronics. £60 ea TELETYPE KSR33 from $£ 275$ each. Polished Wooden Cases to take normal QWERTY KEYBOARDS or can be carefully cut to take any size. $£ 3$ each. P\&P £1. 50. Odd 33 RO not cased - can be demonstrated $£ 160$ ea Limited quantity of 35 RO - 20 ma loop - can be changed to ASC 11 code (3 hours simple work and $£ 10$ parts) OUR PRICE
EXCLUDING PARTS REQUIRED $£ 70$ ea EXCLUDING PARTS REQUIRED $£ 70$ ea

Ex.Ministry Teletype Punches 8 level 110 char per sec $\mathbf{£ 5 0}$ each. AMPLEX TM7. Nice condition $£ 225$ TELETYPE ASR 33 with 20 ma loop. Good condition Special low price £ $£ 95$ ea

Minimum Mail Order $£ 2$. Excess postage refunded. Unless stated - please add $£ 3.25$ carriage to all units VALUE ADDED TAX not included in prices - Goods marked with $\star 121 / 2 \%$ VAT, otherwise 8% Official Orders Welcomed. Gov./Educational Depts., Authorities, etc., otherwise Cash with Order. Open 9 a.m. to 5.30 p.m. Monday to Saturday
$7 / 9$ ARTHUR ROAD, READING, BERKS (near Technical College, King's Road). Tel: Reading 582605

AUDIO AND
 BRAND NEWTEST EQUIPMENT STOCKS NO RECONS CENTRE

Only regular stocks listed - other makes and models available. Telephone your order with Access and Barclaycards

LONDON'S TEST GEAR CENTRE OPEN 6 DAYS A WEEK 9 am- 6 pm

SCOPES

```
Cl-90 1MHzsingle beam with probes
4S6 Scope x 6MHz single beam
lol
```


PROBES $\times 1 \times 1012.95 \times 109.95 \times 17.95$ For $456 / 4010$ A/4D25 and Gould Advanced

MULTI-METERS - GENERAL PURPOSE \& ELECTRONIC
ul-Range instruments featuring $A C / D C$ volts. $D C$ current. Resistance Ranges all with mirror scales
TM11 incredible ept T1 1/T1-2/TT12/TM3A (TM3 A

TM ${ }^{\text {TM }}$ TM
TM
360 TR $100 \mathrm{k} / \mathrm{volt}$
PROE $20 \mathrm{k} / \mathrm{vol}$
$708150 \mathrm{k} / \mathrm{volt}$
TmK500 $30 \mathrm{k} / \mathrm{kolt}$
$680 \mathrm{R} 20 \mathrm{k} / \mathrm{vol}$
$720020 \mathrm{k} /$ volt Micro 80 20k/volt
IT1-2 $20 \mathrm{k} / \mathrm{volt}$ LT22 $20 \mathrm{k} /$ voll T125k/volt T1/LT101
K200 FET $1^{1 k / v o l t}$
$A C$ Mictovoltmeter $3 \mathrm{MHz}>4 \mathrm{Mogohm}$
Broadband voltmeter $300 \mathrm{KHz}-400 \mathrm{MH}$
23 Range (plus transistor checker). Large scale
36 Range. Large scale
22 Range Multi-meter (plus Continuity Buzzer)
22 Range Pocket Multi-meter
26 Range Double Mult -mete
26 Aange Pocket Multi-meter
16 Range Popular Multi-meter
19 Range Pocket Multi-meter
13 Range Pocket Multi-meter
Muri-meter 38 Ranges 3 MHz
130.00 117.50
178.00 178.00
32.50 32.50
29.95 22.50
19.95 19.95
34.50
16.95 17.90
10.95 10.95
14.50
8.50 14.60
8.50
6.95

GT101, 20K/Volt 23 Ranges / Transistor Checker / Continuity Checker

TWO NEW SUPERMODULES 170W INTO 4 OR 8 OHMS

By popular demand we have designed higher powered versions of our well known modules. The CE 1704 which gives 170 W into 4 ohms and the CE $\$ 708$ which gives 170 W into 8 ohms are physically similar to the original types and have the same combination of compatible performance features which makes CRIMSON amplification have also produced suitable power supplies which again use our superb TOROIDAL TRANSFORMERS, only 50 mm high, with a $120-240$ primary and single bolt fixing Write or phone for more information and biased opinions

	Home	Europe	Т H .0 .	
POWER AMPLIFIER MODULES CE 608 60W/8 ohms $35-0-35 \mathrm{~V}$	£16.30	£16.60		any power. lkhz. B
CE $1004100 \mathrm{~W} / 4$ ohms $35-0-35 \mathrm{~V}$	119.22	£19.30		
CE 1008 100W/8 ohms 45-0-45V	£23.22	£23.00	T.1.0.	Insignific
CE 17704 I79W/4 ohms 45-0-45V	£29.12	£28.46	Slew Rate Lim	25V/山
CE 1708 170W/8 Onms 60-0-60V	£31.90	£31.04	Ralio	110d8
TOROLDAL POWER SUPPLIES				-3d8
CPS 1 tor $2 \times$ CE 608 or $1 \times$ CE 1004	£14.47	£18.40	Stabil	Uncondilional
CPS 2 for $2 \times$ CE $10042 / 4 \times$ CE 608	£16.82	£20.57	Protection	Orivas any load
CPS 3 for $2 \times$ CE 1008 or $1 \times$ CE 1704	[17.66	£21.35		fely
CPS 4 lor $1 \times$ CE 1008	£15.31	£19.18	Sensitivity	775
CPS 5 for $1 \times$ CE 1708	E22.68	£26.50		OmV on Request]
CPS 6 for $2 \times$ CE 1704 or $2 \times$ CE 1708	E23.98	£27.70	Size	$120 \times 80 \times 25 \mathrm{~mm}$
HEATSINKS				
Light Outy 50mm $2 \mathrm{C} / \mathrm{W}$	80.90	£1.30		
Medium Power $100 \mathrm{~mm} 1.4^{\circ} \mathrm{C} / \mathrm{W}$	¢1.60	£2.40		
Oisco/Group 150mm $1.1{ }^{\circ} \mathrm{C} / \mathrm{W}$	£2.30	£3.65		
THERHAL CUT-OUTS			Please nota	new address and
Hecommended for improvad reliabilit			telephone nu	: Stamford House.
70 C for use wilh Iree air haztsink	£1.60	§1.90		Sicester LEI 6ML.
$40^{\circ} \mathrm{C}$ For use with lan cootad heatsink	11.60	£1.90		
Home prices include V.A.T and postage C.O.D. 90 p extra, $£ 100$ limit. Export no problem. European prices include carriage, insurance and handling. payment in Sterling by bank draft. P.O. International Giro or Money Order. Outside Europe, please write for specific quote by return. Send SAE or two International Reply Coupons for full literature. Favourable trade quantity price list on request. High quality pre-amp circuit 20p.				

ALMARC \& VECTOR GRAPHIC
 "Nobody Does /t Better"

INTRODUCING THE VECTOR 1 COMPUTER

- LOW PRICE

Whatever your application Vector Graphic and Almarc have the answer. Mainframes. Memory, 1/O Boards, Disk Systems, Processors, and the unmatched High Resolution Graphics board. Send for our catalogue today.
OTHER PRODUCTS:
Solid State Music, including 8k Static Ram Board £98.95

ALSO:

Cromenco, North Star, Dynabyte, and, our best product. 'Service

Write for details to
ALMARC DATA SYSTEMS LTD. 24 CHESTERFIELD DRIVE BURTON JOYCE, NOTTINGHAM

TEL. 0602248565

LCD DIGITAL MULTIMETER

A Digital Multimeter is, in our opinion, a must in any well equipped electronics workshop and A. S. Webb BSc, of Watford Electronics, has designed just such a meter that can be built for less than half the cost of an equivalent commercial unit.

PSST! - WANT A DMM that has five $D C$ and five $A C$ ranges of both voltage and current as well as six resistance and four capacitance ranges at a price that is far less than any equivalent commercial unit? You'll have to build it yourself of course-but then that's half the fun and if you follow the construction information exactly and make use of the calibration service we have arranged, your meter should perform accurately and reliably for many years.

The basis of the DMM is the Intersil 7106 digital panel meter IC (featured in October/March '77) which has excellent linearity and auto zero facilities and directly drives the $3^{1 / 2}$ digit Liquid Crystal Display. The low current consumption of this device enables the unit to be battery powered and hence completely floating from the circuit under test.

This project is aimed at the more experienced constructor due to the fairly high component density and reasonably intricate switch wiring, and should not be attempted unless a soldering iron bit of less than $1 / 8$ in and small pliers and cutters are available.

Handling Of Components

The usual precautions must be observed when handling the MOS devices used in this project, but it may not be realised that other components are liable to damage through mal-treatment. The 1% precision resistors should be handled with respect, their wires bent with pliers and soldered in as quickly as possible, since excessive heat may permanently alter their resistance values and the switch wafers should be handled with care prior to \quad

Fig. 1. View of the final unit. Note, in order to ensure that the input sockets do not foul the PCB yet allow the probes to be inserted, the sockets should be mounted 10 mm from the bottom of the case.

SPECIFICATION

Input Impedance
Display
DC \& AC volts

DC \& AC current

Resistance

Capacitance

Accuracy
Overrange Indication
Polarity Indication
Autozero
Display Test
Input Protection
Power Consumption

10M
$31 / 2$ digit LCD
200 mV to 1000 V
in 5 ranges, resolution to 0.1 mV
200 uA to 2 A in 5 ranges, resolution to 0.1 uA . Max. voltage drop 200 mV . RMS reading on sine waves only.
200R to 20 M in
6 ranges, resolution
to OR1.
2 nO to 2 uO in
4 ranges, resolution to 10p
$1 \% \pm 1$ digit (on prototype) 1 in MSD, other digits blank

5 mA average, single 9 V supply

HOW IT WORKS

DISPLAY DRIVES

The segments of the LCD display are directly driven by the ICL7106 (pins 2-19 and 22-25) in conjunction with pin 21 (backplane drive). Liquid Crystal Displays will become damaged if a DC voltage is continuously applied to them and must be driven with an AC signal. To turn on a segment a wave form of equal amplitude but 180 degrees out of phase with the square wave backplane drive must be applied to that segment.

The 7106 generates the appropriate segment drives for all digits internally, but the drive signals for the decimal points and polarity indication segments are generated by external circuitry.

The decimal point drives are provided by the components around IC2C,D and IC3D. These are two input exclusive OR gates driven by the backplane square wave and by voltages from the range switch.

Consideration of the truth table of an exclusive OR gate will show that with the backplane square wave applied to one input we can produce an output from the gate that is the inverse of this signal (segment on) by taking the other input to the gate high.

SW2D activates the appropriate decimal point.

Polarity indication is provided by the circuitry around IC 3 A, B and C.

The signal at pin 20 of ICl can be used to drive the minus segment directly, that is its output is a square wave out of phase with the backplane drive when a negative signal is applied to the 7106 , in phase when the input is positive.

However, in this circuit we provide a + sign for positive inputs (formed from - and-: segments) and a - sign for negative inputs. As the output from pin 20 drives the colon it is, usually, necessary to invert it in IC3B.

Outputs from the $A C$ and capacitance stages are negative and in this case IC3D takes care of blanking the polarity display.

The resistance range is arranged to şhow only the colon.
The control inputs of the decimal point gates and the wiper of SWIG are connected to ICl pin 37. This pin is normally held at a voltage 5 V below $\mathrm{V}+$. By taking this pin to "V supply all segments of the display will be "turned on". This display test, enabled by shorting the two pins on the PCB, should only be activated for a few seconds as prolonged operation will drastically reduce display life.
A stable source of reference voltage is required at many points in the DMM circuit. The 7106 provides just such a voltage, PIN 32 (common) being maintained at a voltage 2.8 V below the positive rail.

This reference voltage, as well as being used elsewhere in the circuit, provides the basic reference voltage for the 7106's input circuitry. The 7106 is calibrated to a 200 mV full scale - to accomplish this 100 mV potential difference must be set up between Ref Hi and Ref Lo (pins 36 and 35 respectively).
This voltage is derived from the potential divider formed by RV1 and R26.

C9 and R27 set up the 7016's internal oscillator frequency while C7, 8 and R25 are concerned with the auto zero and polarity circuits.

Having dealt with the components intimately associated with ICl we now move on to deal with the rest of the DMM circuit.
DC Voltage \& Current Ranges.
SW1 is the function switch and when set to DC volts, the five DC voltage ranges are
selected by SW2B, which is connected to the input alternator. The input resistance is always more than 10 M , and exact division is achieved by using precision 1% resistors throughout the chain. The voltage selected by the wiper is fed via SW1F and a 1 M resistor to pin 31. This resistor and a capacitor to ground serve to filter any noise, and also to limit the current fed into the input should an overload voltage be applied. With SW1 set to DC current ranges, the input current is passed through one of the five current measuring resistors. The maximum voltage across one of these is 200 mV at full scale. The 2 A range is connected by a third socket on the front of the case, since a few milli ohms of switch contact resistance would produce a significant error. The unit is protected from excessive currents by a 2 A fuse in the common line.

AC Voltage + Current Ranges

On AC voltage ranges, a 10 n capacitor is switched in series with the input line to remove any DC component present. The signal is fed through the attenuator as before and then via SWIE to the AC convertor. Similarly AC currents are fed via SWIE to the AC convertor. This is a precision rectifier IC4 using a TL081 J-FET input op amp, so that there are no problems with input bias current. The gain of the circuit is set by RV2 and the negative component sampled by the 10 M resistor and filtered by 100 n capacitor C4. The resulting voltage may be RV2 to be equal to the RMS value of a sine wave to the input of the DMM, and is then fed via SWIF to ICI.

Resistance Ranges

A simplified circuit is shown here, the op amp IC6 is another TL081 and will try to maintain the voltage at its input at common voltage.

Hence the output voltage must be:
V out $=$ R Test ${ }^{1} \cdot \underline{\text { V Ref }}{ }^{1}$
R Range
and is proportional to the resistor being measured (R Test ${ }^{1}$).
V Ref ${ }^{1}$ is derived from a potential divider between + Ve and common, and is set by RV3. IC5 is a voltage follower, and is fed via SWID to the bottom of the resistor chain in the attenuator. SW2A selects the range in reverse order to the voltage ranges, and its wiper is connected to the input socket by SW1A and to the input of IC6 by SW1C and another R-C network for filtering and protection. The output of IC6 is boosted by an emitter follower Q1, since the current on the 200 ohms range is quite high, and then fed to the other end of R Test ${ }^{1}$ via SW1B. The offset voltage of the op-amp is zeroed by RV4, but a small offset from zero exists on the 200 ohm range because of the switch contact and the fuse resistances. The voltage output proportional to R Test is attenuated by about ten times and fed to ICl via SW1F.

BATTERY TEST

The unused position of SW2 on the DC voltage range is fed from a potential divider between common and the battery negative (OV) rail so a voltage governed by, though not proportional to the battery voltage is fed to IC1. The resistor values are arranged to
give a reading of 10.00 when the battery voltage has dropped to 7 volts, but at other voltages the readings are meaningless due to the 2.8 V reference voltage.

Capacitance Ranges

Using a simplified circuit, if $V \operatorname{Ref}^{1}$ is joined to V Out ${ }^{1}$, then V Out ${ }^{1}$ will equal the common voltage since the op-amp is acting purely as a voltage follower. Hence C test is

fully discharged. If V ref 1 is now suddenly taken to a positive voltage, the output will begin to ramp negative at a rate determined by R Range ${ }^{1}$ and C Test ${ }^{1}$, and for a given R Range ${ }^{1}$ the time taken to reach a given negative voltage is determined by and is proportional to C Test ${ }^{1}$. In practice, a quad J-FET op amp type TL084 is used for IC9. The first stage IC9A is the integrator just described and in the rest state with Q2 off , the output and input are joined by the range resistor selected by SW2E. IC7 is a hex C MOS invertor which produces the timing control signals. IC7A and B form a monostable, triggered by pressing the READ button SW4. Having connected C Test but before pressing SW4, the op-amp will have discharged C Test ${ }^{1}$ as above. IC8 is a CMOS analogue switch type 4016, which in the rest state has both stages OFF. IC9D is another integrator which due to the very high input impedence of the TL084 and low leakages of the 4016 will hold any voltage on C17 for many seconds. When the button is pressed, the output of IC7B goes low, unaffecting IC7 D and E but making the output of IC7C go high, thus turning on IC8B shorting the capacitor and making the op amp output equal to common voltage. At the end of the monostable period, C17 will be fully discharged and IC7B output goes high, in turn turning off IC8B. Simultaneously IC7D and E are triggered by the positive edge and IC7D output goes low, turning on Q2 and hence connecting the range resistor to the positive rail, causing IC9A output to start ramping negative. IC7E drives IC7F output high, and causes IC9B output (which was previously at the + Ve rail) to go negative from the common rail an amount determined by the two resistors R45 and R46. This voltage is an exact multiplication of the common to +Ve voltage, and is fed to the inverting input of IC9C, a comparator. Since the non-inverting input is fed from IC9A output which is still ramping negative, the output of IC 9 C switches positive, turning IC8A on and hence connecting the input of IC9D to the + Ve rail via a resistance. Hence IC9D output will also start to ramp negative. Remember this has all happened within microseconds of the end of the monostable period.

After a while, IC9A output will go more negative than IC8A and isolates the input of IC9D completely. The voltage on IC9D output is proportional to the value of C Test, and will only be discharged by leakage. This voltage is fed via an attenuator to SW1F and then to IC1. Since IC9 is a quad op amp, no provision is made for offset nulling, so a negative current is fed into the attenuator to counteract any offset. Calibration is achieved by adjusting the current fed into IC9D input during the measuring period by RV5.

BUYLINES

Watford Electronics, 33 Cardiff Road, Watford, can supply a complete kit of parts for this project. The kit, which includes predrilled case and punched and screened front panel, will be sold at a special introductory price of £49.95 plus 8\% VAT and E1 p\&p and ins. Test Leads are available for an additional $£ 1.50$.

Watford are also to offer a calibration service. This service will apply to working units only and will cost £5.75 all inc.

Fig. 2. Full circuit diagram of the DMM excluding the capacitance measuring circuitry. R1 and FS1 are not mounted on the main PCB. Note that although a protection network is incorporated, it is wise to ensure that a high range is selected before the meter is applied to the circuit under test.

Fig. 3. Below, left and right, circuit diagrams of the capacitance section, a patent has been applied for in respect of this design.

assembly and the wipers only rotated to position 1 if necessary since it is possible to bend fixed contacts without noticing, the damage not being discovered until testing of the DMM takes place. To replace a damaged wafer after assembly is complete is an extremely difficult operation.

The most delicate part by far is the display itself. This should be examined carefully for defects in the glass and then kept in its cardboard wrapper until ready for use. It must be pressed into its socket with extreme care, and easing. the soldercon pins with a piece of tinned copper wire before insertion is recommended.

Note the LCD display should not be subject to temperatures greater than about $60^{\circ} \mathrm{C}$ and should not be exposed to strong sunlight for any - period of time.

Construction

If it is hoped that a DMM will result with a similar specification to the prototype, the parts list must be followed closely, as must these instructions. The use of a double sided board makes construction a less onerous task than would have been the case with a single sided design. However, to avoid the considerable expense of plated through holes connections from one side of the board to the other are made with copper wire or, better still, with pins designed for this purpose.

The resistors should be fitted to the PCB first, noting that there are three types specified, carbon film for non critical applications, metal oxide for long term stability and the 1% components. Interchanging of these would cause loss of accuracy. The capacitors and transistors may be fitted next, together with the pots and IC sockets. The use of these is strongly recommended. Do not fit the soldercon pins for the display yet, since subsequent handling of the PCB will almost certainly cause damage to them. Fit the vero pins, noting that the two for the capacitance socket wiring are inserted from the opposite side of the board.

The switches may now be
prepared. The knob shafts should be cut down to 9 mm in length, and then turned fully anti-clockwise to the end stop (viewed from the front). Next the nut and washer are removed and the ring to fix the number of positions set to the six hole. Rotate the shaft five

Fig. 4. Diagram showing the interconnections between the wafers of SW1 and 2.
positions clockwise to check that there are only six positions in all, then rotate back to the original position and replace the nut and crinkle washer. Repeat with the other switch assembly.

Prior to removing the studding carefully pull out the wafer drive shaft and cut to a length of 30 mm , remove any burrs and reinsert. Next unscrew the 8BA nuts from the four lengths of studding, and cut these to a length of 37 mm each. Fit a nut to
one end of each piece of studding, putting the remaining washers and nuts aside for use later. Beware-the centre of the assembly will push out very easily in this state causing a loss of springs, balls and temper.

Place the switch operating mechanism on the non component side of the PCB with the number ' 2 ' on the casting nearest to the display location and pass two studs through, the switch and PCB. It is possible to fit the wafers in any of four positions,

Fig. 5. Component overlay for the DMM circuit board, points marked \quad are through board links and points marked \star are terminal pins. Only one side of the pattern is shown for clarity.

RESISTORS ($\cdot 1 \%$ Hi-stab. $\dagger 1 / 4 \mathrm{~W}$ MO 2%, other $1 / 8$ W 5%)		R35	470k	SEMICONDUCTORS
		R38,51	47k	IC1 ICL7106
		R45	150k	IC2,3 CD4070B
-R1	OR 1	POTENTIOMETERS		IC4,6 TL081
-R2, 40	10 M			1 C 5 741
-R3. 41	1 MO	multi turn $3 / 4$ in cermet RV 1		1 C 7 CD4069B
'R4, 42	100k	RV2,3.5 10k		IC8 CD4016B
'R5, 43	10 k	min. vert		IC9 TLO84
-R6.9	1 kO	RV4 10k		Q1.2 BC214L
-R7	110 R	RV6 100k		D1,2,3 1N914
R8	1 RO			
'R10	100 R	CAPACITORS		
-R11	10R		10 n 2 kV disc ceramic	
-R12	1 RO	$\begin{aligned} & C 2,4,6,10 \\ & 12,14,15,16 \end{aligned}$		SWITCHES
R13, 19, 24, 28			100n 100 V polycarbonate	SW1 8 pole 6 way
29, 30, 31, 32	1 MO			SW2
R14.37	10M	C3. 11	10 u 16 V electrolytic 10 n 100 V polycarbon-	SW3 miniature toggle
R15	10 k	C5		SW4 \quadminiature toggle push button
†R16,18, 21,47,49	10 k		10 n 100 V polycarbonate	
R17,36,39,50	4 M 7	C7	220 n 100 V polycarb-	
$\dagger R 20.48$	100k			
R22	1 kO	C8	470 n 100 V polycarb-onate	MISCELLANEOUS
R23	39k			$31 / 2$ Digit LCD display, PCB, IC sockets, 24
$\dagger \mathrm{R} 25$	47k	C9C 13	100p polystyrene	20mm fuse plus chassis mounting holder,
\dagger R26	24k		1 no polystyrene	
R27,34,44,46	100k	C17	lu0 100 V polycarbon. ate	filter, 4 mm sockets, knobs, wire, 50 link pins,
R33	2k2			12 connecting pins, handle, screened cable.

only one of which is correct. Place the wafers on the bench with the visible wiper contact away from you, ensure the wiper tongue on the centre ring is to the left and that the flats in the centre hole lie parallel to a line joining the fixing holes. Hold the PCB component side uppermost while supporting the switch and studs and with IC1 to the right, slide the wafer over the studs and drive
shaft. SW2 (the left hand switch) has three wafers and SW1 has four wafers. Fig. 7 will clarify this. With the wafers in position, the fibre washers and nuts may be fitted and tightened. The switches should now be tested with an ohmeter before proceeding to ensure no damage has been done during assembly

The switches are now wired, using tinned copper wire and silicone
rubber sleeving, since using PVC insulated wire would promote the possibility of melting due to the close proximity of the switch contacts, and with up to 1 KV around this is hiqhly undesirable. An exploded view of the switch wiring is shown in Fig. 4. and this should be studied very closely

The switches should be wired starting at the wafers nearest the PCB
and working upwards. The end of the tinned copper wire should be soldered to the first tab, a length of silicone rubber sleeving cut to the exact distance between the tags to be joined and slid over the wire, and finally the other end soldered. The signal input to IC1 is brought from the switch by a screened lead, with the braid soldered to the 'common' pin adjacent to the relevant switch tag, and cut off and sleeved at the other end.
-As stated above tracks on opposite sides of the board are joined by tinned copper wire or special pins which are inserted and then broken off short before soldering. The holes next to the display socket must be joined before the soldercon pins are fitted, since soldering close to them on the wrong side of the PCB can cause wicking of solder into the socket making it unusable. Having fitted these, the display socket pins may be fitted in the normal manner.

Having checked the board for assembly and wiring errors, the IC's may be inserted, being especially careful with IC1 which requires quite a high insertion force. Finally poke a piece of 20 SWG wire into each pin of the display socket to ease them and then fit the display. There is normally no indication of which pin is number 1 , but by holding it at an angle to the light and looking for an outline of the digits, the correct way up may be found

The unit is now ready for testing.

Testing and calibration

Connect up a 9 V battery and select the DC voltage range with 20 V FSD. The current consumption should be about 5 mA , and the display should read 0.00 , with the plus and minus signs alternating. Check the voltage between the common and positive rails, which should be $2.8 \mathrm{~V} \pm 0.4$. No measurements should be attempted with the DMM until calibration is complete as these will be meaningless. The accuracy of the whole instrument depends upon the setting of RV1 so this must be set first. It may be adjusted by comparison with a meter of known accuracy or by using a Weston standard cell (1.0186 volts), and it is likely that advertisers will be offering a calibration service. Which ever method is chosen, two wires are attached to SW 1 A and B wipers, positive and negative respectively and connected to the test circuit. Seledt the correct DC range and adjust RV1 until the correct reading

Fig. 6. Above, view of completed circuit, and Fig. 7 below, view of wiring around the range switches.

is obtained. If 1% resistors have been used where specified, changing to the next range should give a reading of exactly one tenth, and the next one hundredth, allowing for . the plus or minus one digit accuracy. Calibration should ideally be done on the 200 mV range since this does not involve the attenuator, but this is not
normally very easy. As many ranges as possible should be checked to ensure overall accuracy. The DC current ranges may be checked also, and should agree to a high accuracy - but remember the 2A range resistor is not yet connected.

The AC voltage ranges may also be calibrated by a comparison
method, preferably starting with a low voltage transformer or a signal generator. The frequency response should be good over the audio spectrum, but this has not been measured accurately. As before, the potentiometer, RV2 this time, is adjusted until the desired reading is obtained. When switching down ranges, the response will probably fall off at reading of 10 or so due to the rectifier, so the instrument should not be used at such low readings. The mains voltage may be checked with care, and mind fingers on the switches. There should be no polarity indication on AC ranges, but the colon may occasionally flash with no input since the minus sign is blanked.

The ohms ranges should be calibrated with a standard 1% resistor, and possibly those in the capacitance circuit may be left out for this purpose. First switch to the 20k range, when the colon to indicate resistance range will be seen and only the left hand 1 and decimal point to indicate overrange, i.e. infinite resistance. This overrange is the same on all ranges incidentally. Shorting the input leads together should give a low reading which may be reduced to 0.00 by adjusting RV4. Now insert the 10K-1\% resistor and adjust VR3 to read 10.00 , switching ranges should read 1.00 and .10. Check with the other resistors that calibration is correct. On the 200R range a small offset from zero will be observed, this being due to the switch wiring and contacts, and should not exceed $0.5 R$ it should be taken into account when measuring low resistances however.

In order to calibrate the capacitance range, it is essential to have an accurate capacitor of value between 1 n and 10 n . This will probably be a polystyrene or silvered mica type. Switch to the $2 n$ capacitance range and short the two read button pins. The reading should be unstable for a second or two and then settle to a low reading. Now connect the test capacitor across the two pins for the capacitance test sockets. Shorting the read pins should now give a much higher reading and by adjusting RV5 and again shorting the pins the reading should be adjusted to the value of the capacitor under test. (If it is more than $2 n$, obviously the $10 n$ range will be used). Now switch up a range and short the pins when a reading of one tenth of the previous one should be achieved by adjusting RV6 and a
reading of one hundredth on the next range.

Re-check the setting of RV5 which may have altered slightly and then re-check RV6. This has set the capacitance ranges for best linearity, but due to stray capacitance, significant on the lowest range, an offset reading of three or four will be shown without a test capacitor. This is purely an offset, and capacitance readings down to 10 pF or so can be made ignoring this offset.

All ranges should be checked as rigorously as possible to catch any faults before the unit is used in earnest. The battery condition may be checked by switching to DC volts and the fully clockwise position of SW1. The resistor network has been arranged to give a reading of 10.00 at 7 volts, below which the instrument will malfunction and the battery should be replaced.

Final assembly

To protect the display, a piece of clear perspex or Darvic approx. $65 \times$ 40 mm and no more than 1.5 mm thick is required. This is stuck to the reverse side of the front panel with Evostick or similar adhesive. Mount the push button with its pins orientated to line up with the holes in the PCB. Similarly mount the on-off switch with only a single lockwasher behind the panel. Fit the two capacitance terminals and line up the solder tags with the vero pins on the reverse of the PCB. Offer the board up to the front panel and with only a lockwasher on each rotary switch, the panel and board should be parallel to each other, with the display just clear of the perspex and central in the window. Now fit the switch nuts and knobs, and wire the toggle and push switches and capacitance terminals to their respective pins. Solder the battery connector leads to the pins adjacent to the on off switch, and three wires to the wipers of SW1A and B and the 2 amp position of SW2C. Mount the three 4 mm sockets in the front of the box and connect the OR 1 ohm resistor and fuse holder as shown on the diagram, then finally connect the wires from SW 1 and 2. The battery may be held in position with a simple aluminium bracket. It is also possible to adapt certain types of battery holder to take six batteries of the HP7 size. Finally screw in the front panel and your digital multimeter is ready for use. Make up a couple of leads using very flexible wire and use probes which will stand the voltages and currents to be measured. ETI

CASIO QUALITY AND VALUE

310R-17B (left)
RRP £ $3595 £ 29.95$ Stopwatch. Dual Time Zone 84 mm thick 310R-16B (right) RRP£44.95 £34.95 Stopwatch. Dual Time Zone 745 mm thick

310S-12B (left) RRP $£ 4995$ £ 39.95
Stopwatch Dual Time Zone 77 mm thick Stopwatch Dual Time Zone 77 mm thick 38Cs-14B (right) RRP E64.95£49.95 Chronograph. Normal, net. lap and 1 st-2nd place times to 1,100 second 7.9 mm thick
Alzo CASIO Sports. Alarm, World Time and Ultra-Slim models. LADIES' WATCHES
SEIKO Calculator Watch (E165)
CASIO CALCULATORS
$£ 135$
$£ 108$
ST. 1 Four-way stopwatch $£ 24.95$ LCD LC822 £10.95. LC78 £16.95. AQ-1000 Clock. Alarm, Stopwatch 119.95.
CASIO SCIENTIFICS
Digitron FX-31 £11.95. FX-39 £15.95. FX-140 £17.95. FX-120 £19.95. FX-360 £49.95. LCD: DX-2200 £19.95. FX-3000 £25.95.
NEWII FX-8000. Available July/August. Scientific similar to FX-3000 plus $1 / 100$ second stopwatch, 5 different timers, etc. £29.95.
Send 25 p for our illustrated catalogue Prices include VAT and P\&P. Send your cheque. PO or phone your credit card no to
TEMPUS
Tolephone (0223) 312866

4" Oscilloscope

SPECIFICATIONS

ELECTRICAL DATA	
Deflection Sensitivity	- 100 mV /division
Bandwidth (between 3 dB points)	$-\mathrm{DC}-5 \mathrm{MHz}$
Input Attenuator - (calibrated)	$\begin{aligned} & -9 \text { step } 0.1,0.2,0.5,1,2,5 \\ & 10,20,50 \mathrm{~V} / \mathrm{div} \end{aligned}$
Input Impedance	- $1 \mathrm{Meg} / 40 \mathrm{pf}$ in shunt
Input Voltage - Max	- 600V P.P
HORIZONTAL AXIS (X)	
Deflection Sensitivity	- $0-400 \mathrm{mV} /$ division
Bandwidth (between 3 dB points)	- $1 \mathrm{~Hz}-350 \mathrm{KHz}$
Gain Control	- Continuous; when time base in EXT position
Input Impedance	- 1 Meg
Input Voltage - Max	- 600V p.p
TIME BASE	
Sweep Range (calibrated)	- $100 \mathrm{msec} /$ div to $1 \mu \mathrm{sec} / \operatorname{div}$ in 5 steps
FINE Control	- Variable between steps - includes time-base calibration posi-
Blanking	- Internal - on all ranges

SYNCHRONIZATION
Selection
Synchronization Level

POWER SUPPLY
Input voltage
Power Dissipation
CRT DATA

PHYSICAL DATA
Dimensions
Weight
Stand
Case
Front Panel

- Internal, external
- Continues from positive to negative
$-115 / 220 \mathrm{VAC} \pm 10 \%$ at $50 /$
60 Hz
$-18 \mathrm{~W}$
- 4in. - flat face, single beam
- Maximum high voltage -
1.5 kV
- Fitted with 8×10 division blue filter graticule
$-14 \mathrm{~cm}(\mathrm{~h}) \times 205 \mathrm{~cm}(\mathrm{w}) \times 28 \mathrm{~cm}$ (d)
-4.3 Kg (approx)
-2 position flat and inclined
- Steel, epoxy enamelled
- Aluminium, enamelled epoxy printing

To:

Oscilloscope Offer ETI Magazine
25-27 Oxford Street London W1R 1RF

Please find enclosed my cheque for $£ 109.00$ (including VAT and carriage) made payable to ETI Magazine for my 4in. oscilloscope.

Name
Address
\qquad

Please allow 14 days for delivery.

In our recent survey, 25\% of readers requested an oscilloscope offer or project. Well, here it is - a full specification 4 in . 'scope for under £100!

An example of this oscilloscope can be seen and examined in our reception at our Oxford Street offices.

KET PLACE

Size: 105 mm wide 115 mm deep $\times 55 \mathrm{~mm}$ high.
OUR PREVIOUS digital alarm clock offer (which we have run for several years) was a real success - over 10% of ETI readers own these. We have been searching around for one of even better value and have come up with a winner - with an equally good spec and at a much reduced price: the Unik Time Digital Alarm

This clock features a large, bright LED display in a really stylish case. It's really easy to set lift up the hinged panel on the top and all the controls are there including fast and slow setting buttons. The hinged panel, when down, acts as the snooze switch - easily found by that early morning groping hand to give you 9 minutes extra in bed.

Mains operation only ($240 \mathrm{~V} / 50 \mathrm{~Hz}$) with a 12 hour display. 'AM/PM" and "Alarm set" indicators are on the front while an internal switch enables you to display the last significant minute and seconds if you wish.

(Inclusive of VAT and Postage)
An example of this clock can be seen and examined in our reception at our Oxford Street offices.

To:
Unik Time Offer
ETI Magazine
25-27 Oxford Street
London WIR IRF
Please find enclosed my cheque PO for $£ 8.95$ (payable to ETI Magazine) for a Unik Time Digital Alarm Clock.

Name
Adress \qquad

	SINCLAIR PRODUCTS* Microvision TV now in slock $£ 200$. PDM35 digital multimeter $£ 25.95$, mains adaptor $£ 3.24$, deluxe padded case £3.25, new DM235 digital multimeter P.O.A., Cambridge programmable calculator £13.15, prog. library $£ 2.45$, mains adaptor £ 3.20 .
	S-DECS AND T-DECS' S.DeC £3.39. T-DeC £4.44, M-DeCA £4.52, μ DeCB E6.73, 16 dil or 10 TO5 adaptors with sockets $£ 2.14$.
	CONTINENTAL SPECIALITIES PRODUCTS* EXP $300 £ 6.21$. EXP $350 \subset 3.40$. EXP $600 £ 6.80$. EXP650 £3.89. EXP4B £2.48. PB6 £9.94. PB100 £12.74. LM1 £30.99. LP1 £33.48. LP2 £ 19.44.
	TV GAMES Send s.a.e. for free data. New racing car tv games chip AY- 3-8603 plus economy kit $£ \mathbf{2 0 . 6 0}$, Tank battle chip AY-3-8710 plus economy kit £17.95, stunt motor cycle chip AY-3.8760-1 plus economy kit $£ 17.95,10$ game paddle 2 chip AY-3-8600 plus economy kit £14.70, AY-3-8500 chip plus kit $£ 4.95$, colour generator kit $£ \mathbf{7 . 5 0}$. Atractively cased assembled iv games 4 game models (tennis, football, squash and pelota) black and white $£ 11.95$. Colouc $£ 14.50$. Deluxe 6 game colour model with pistol attachment 21.95 . TV games mains adapiors £3.10.
	MAINS TRANSFORMERS $6-0.6 \mathrm{~V} 100 \mathrm{ma} 79 \mathrm{p}, 1^{1 / 28}$ £2.35, 6.3V $1 / 1 / 2 \mathrm{a}$ £1.89, 9-0-9v 75 ma 79 p , ไa £1.99, 2a £2.60. $120-12 \mathrm{~V} 50 \mathrm{ma} 79 \mathrm{p}, 100 \mathrm{~ms} 90 \mathrm{p}$, 1a $\mathbb{2} .49$, $13 \mathrm{~V} 1 / \mathrm{xa} 95 \mathrm{p}, 15-0.15 \mathrm{~V}$ 1a £2.79, 30-6.30V 1 a £3.59.
	JC12, JC20 AND JC40 AMPLIFIERS A range of integrated circuit audio amplifiers supplied with free data and printed circuits. JC12 6 watts $£ 1.60$. JC20 10 watts £2.95. JC40 20 watls $\mathbf{E 4 . 2 0}$. Send s.a.e, tor free data on our fange of matching power and preamp kits.
	FERRANTI ZN414 IC radio chip $£ 1.05$. Extra parts and pcb for radio £3.85, case £1. Send 5 a tor tree data
	PRINTED CIRCUIT MATERIALS PCetching kits economy $\mathbb{E} 1.70$, standard $£ 3.82$, 50 sq ins pcb 40p, 1 lb FeC1 $£ 1.05$, etch resist pens economy $\mathbf{4 5}$ p, dalo $\mathbf{7 3}$ p. small drill bits $1 / 32$ ins or 1 mm 20p each, etching dish 68p. taminate cutter 75 p

SINCLAIR PRODUCTS
multimeter $£ 25.95$, mains adaptor $£ 3.24$, deluxe
padded case £3.25, new DM 235 digital mul.
ator E13.15, prog. library E2.45, mains adaptor
S-DECS AND T-DECS'
- DeCB E6.73, 16 dil or 10 OO5 adaptors with
CONTINENTAL SPECIALITIES
PRODUCTS
EXP650 £3.89. EXP4B £2.48. PB6 £9.94
¢ 19.44
TV GAMES
chip AY-3-8603 plus economy kit $£ 20.60$, Tan
sunt moter yhe AY- 3.8760 - 1 plus eronomy
plus economy kit $£ 14.70$. AY-3.8500 chip pi
aconomy kit £8.95, modified shoot kit $£ 4.96$, rit
cased assembled iv games 4 game model
(tennis football, squash and pelota) black and
white $£ 11.95$. Colour $\varepsilon 14.50$. Deluxe 6 gim
colones mains adapiors $£ 3.10$
MAINS TRANSFORMERS
E1.89. 9-0.9V 75 ma 79p, la £ 1.99 , 2a £2.60

JC12, JC20 AND
JC40 AMPLIFIERS
6 watts $£ 1.60$. JC20 10 watts $£ 2.95$. JC40 20
matching po wer and preamp kits.
FERRANTI ZN414
PRINTED CIRCUIT
C etching kits economy $\mathbb{E 1 . 7 0}$, slandard $£ 3.82$,
pens economy 45 p . dalo 73 p . small dril 6 bis
SWANLEY ELECTRONICS

BATTERY ELIMINATOR
BARGAINS
TV 9 mant power unit stabilized 7.7V 100 me 4 -way multi-iack $3 / 41 / 2 / 6 \mathrm{~V} 100 \mathrm{ma}$ ह2.92, same size as a PP9 baitery with press stud conneciors, $9 V £ 2.85$. $6 \vee € 2.85,41 / 2 \vee £ 2.85$

 12 V dc input. output

BATTERY ELIMINATOR KITS Send soe in

 100 ma with din plug $£ 1.80$, hoavy-duty 13 way types $4 / / / 6 / 7 / 81 / 11 / 13 / 14 / 17 / 21 / 25$
$28 / 34 / 42 \mathrm{~V}$ / Amp $£ 4.65,2$ Amp $£ 7.25$.
 tranaistor stabilized B-way treses in $3 / 41 / 2 / 6 / 1 / 2 / 9 / 12 / 15 / 18 \mathrm{~V} 100 \mathrm{ma}$ £3.20, Amp $£ 6.40$. Veriable voltege atabilized models 2A £14.95. Car convertars 12 V dc input, outpu
E 1.50 , output $71 / \mathrm{V} 300 \mathrm{ma} \mathrm{f} 1.50$.

BI-PAK AUDIO MODULES
Send s.a.e. for data. S450 funer £23.51. AL
 M180

BULK BUY OFFERS 3.
 pens 59p. AC76023N exact equiv of SN76023N win improved heat sink 79p. Plastic equivs of
popular transistors BC 1083.8 p . BC109 4.4 p .

BCY71 4.7p,
$20 \mathrm{~mm} \times 5 \mathrm{~mm}$ carridge $25,5,2,3,5 \mathrm{Amp}$

Resistors $5 \% \mathrm{E} 1210 \mathrm{ohm}$ to $10 \mathrm{M}, 1 / 4 \mathrm{WW} 0.8 \mathrm{p} .1 \mathrm{~W}$ 1.9p. Polyester capacitors $250 \mathrm{~V} .01,022,033$ $047 \mathrm{mf} 2.7 \mathrm{p}, 015 \mathrm{mf}, 33 \mathrm{mi} 2.5 \mathrm{p}, 0.47 \mathrm{mi} 4.8 \mathrm{p}$ Polystyrane copacitora E12 63 V 15 to 6800 pt
 47000 pt 2 p . Eloctrolivtic: $50 \mathrm{~V}, 47$. 1.2 mf 5 p . 25 V 5 mf 5 p .10 mf 4 p .16 V 22 mt 5 p .33 .47
100 mf 6 p .220 .330 mf 9 p .470 mf 11 p .1000 mi 100 mf 6p. 220.330 mf 9 p .470 mf tp. 400 mW E 24 VV to 33 V .5 p .
$\mathrm{B} 1 / 2 \mathrm{p}$. Zemors 400 W . Preat potts sub-miniature 0.1 Whoriz or ve f 100
4 M 7 E.8p. Potentiomaters $1 / 4 \mathrm{~W} 4 \mathrm{~K} 7$ to 2 M 2 10 4M7 6.8p. Potentiometers

BRAND NEW COMPONENTS

ELECTRONICS

IN MOTORING

Abstract

It is only a matter of time before the 'smart' car comes along - cars have been relatively simple hydromechanical machines without the intelligence that a powerful electronic system could provide but that simple era is about to end.

THE ELECTRONIC REVOLUTION in the car industry is with us - the level of electronic sophistication in production cars is increasing at a surprising rate, bringing with it improved performance and high reliability.

In the past the electrical system in cars was a well known area for failure, wouldn't complex electronics be even more failure prone?

At first sight it seemed that failures would be inevitable. Cars offered an environment far more hostile to computers than the air-conditioned and dehumidified chambers they had been used to. Temperatures under the bonnet range from $-40^{\circ} \mathrm{C}$ to 140 C . Salt spray, dust and vibration are constant menaces. And the car has a power supply "which, by computer industry standards, has limited capacity, minimal regulation, and is quite noisy," as a General Motors' engineering report put it. The odds against success seemed heavy at first.

Gradually techniques were worked out that promised success. Manufacturing methods became exacting and expensive. When building the 'Lean Burn' electronics package, said Chrysler's Huntsville general manager, Arthur E. Douyard, 'We actually try to make the unit fail during assembly. We expose it to $185-$ degree temperatures three times, including a final period up to 10 hours. We also pass-fail the unit by computer five times. Finally, we audit ten per cent of the units we ship to grade our quality control standards."

The ten-hour test figure was not casually arrived at. "'Any malfunction with an electronic device should show
up quickly - usually within the first ten hours," says Sidney L. Terry, vice president for public responsibility and consumer affairs of Chrysler. "After that the electronic components should never wear out. Chrysler engineers estimate that for every pound the industry has invested in electronic voltage regulators, the customer has saved nine pounds in replacement costs, and that customers have saved four pounds for every pound we have invested in electronic ignition."'

This is a good record - for relatively simple devices. For more complex systems, serviceability suited to the auto repair shop will have to be worked out. 'Repair of computer-type equipment will of necessity be at the module replacement level to be practical," the SAE was told by Frank P. Caiati and James F. Thompson of GM's Engineering Staff. "Isolation to a failed module will be the technological challenge. It is very necessary that a high percentage of module failures be self-indicating, so the usual vagaries of trial-by-replacement troubleshooting could be avoided
'The MSI and LSI semiconductor technology of today lends itself to modularity," Ciati and Thompson added. Like car radios, the first complex electronic system used in a production car - the Bendix fuel injection for 1957 - used valves. Soon thereafter the valve was replaced by the transistor, much smaller and less power-hungry, while back in the semiconductor labs, the age of the integrated circuit was being ushered in.
'In 1959," explains Chrysler's Terry, "a commer-

cially available chip contained only one component of a circuit. By 1964, the number of components per chip was up to ten. By 1970, the number of components was up to about 1000, and by 1976, up to 82,000. At the same time, the cost per unit dropped sharply

The electronics industry soon discovered that the most efficient way to use those 80,000 components was to organise them into a computer-like general purpose logic chip - the microprocessor. With that much power available in a very small package, the car industry had to pay attention to microprocessors. "These new LSI microprocessor chips, as used in calculators, started the industry looking at applications in which their added cost could be handled," says Donald E. Colvill, staff engineer for electronic engine controls of GM's Delco Electronics Division. "To an engineer," he adds, "a computer is always attractive from a technology standpoint. '

It was one thing to decide to use this know-how of the semi-conductor industry, and quite another to decide exactly how to use it. There are two main types of computer, analogue and digital, and each has its strengths and limitations. The car industry started with analogue computers, but it is moving rapidly and irrevocably towards digital computers today.

The analogue computer was initially the most popular because it is simpler and well suited to doing many of the jobs that the car system requires. As its name hints, it works through the setting up of an electronic circuit that is analogous to the conditions in the mechanism that it's controlling. In an analogue computer, multiplication by a constant, for example, would be done by an amplifier of fixed, pre-set, gain. Analogue circuitry 'mimics' the motions of the machine and/or the mathematical equations that describe what it does. Analogue computers can be quite versatile, but for use in cars they're usually tailored in design to suit just the job they have to do.

Analogue Circuitry

Analogue circuits started strong in cars and are still doing many important jobs in them. The Bosch and Bendix electronic fuel injection systems use analogue
computers, for example. Analogue designs were chosen because they're fairly easy to change and adjust during vehicle development and during the evolution of the fuel injection system. For similar reasons Chrysler chose an analogue computer to control its Lean Burn sparkadjustment system. First launched in the 1976 model year, this functioned with 99.9% reliability on the initial field of 60,000 cars. Now in 1978 it's available on all Chrysler's eight-cylinder engine families.

Analogue circuitry also does the computing in the black boxes used in the closed-loop Lambda-sensing controls that make the so-called three-way catalysts work in the cars now on the US roads. Such systems were first marketed by Volvo and Saab at the end of 1976, using Robert Bosch electronics. Now for 1978 Ford's Pintos and Bobcats with automatic transmissions for the California market have such closed-loop or feedback controls. Both Motorola and Ford's own plant supply their analogue electronics. GM's Delco Electronics Division makes analogue controls for the similar air/fuel ratio control being fitted to some Buick. Oldsmobile and Pontiac subcompact models, also for the California market. Ford uses Bosch exhaust pipe sensors, while GM's come from the AC Spark Plug Division.

Two 1978 GM models have new spark control systems that also have analogue computer circuitry. One is Delco Electronics' Electronic Spark Control, which is called the Turbo Control Centre by its user, Buick, which employs it on its turbo-supercharged V - 6 engines in the Regal and LeSabre sports coupés. This ingenious device uses a Delco Remy vibration sensor mounted on top of the inlet manifold to tell when the engine is detonating. Electronic filters on the sensor's output pass the high vibration peaks in the range of five to seven kilohertz that GM considers to be the signature of pinking or detonation. Analogue circuitry in the Electronic Spark Control modifies the spark dwell, and thus the spark timing, by a signal it sends to a special electronic module in the High Energy Ignition. Working every other crank revolution, it can retard the spark up to 20 degrees in two-degree increments until the detonation stops. It is designed to cope with extreme conditions in the running of the

Fig. 1. Left, a Delco Remy module, part of an electronic controller for the GN 3-way catalyst system.
Fig. 2. Below, the spark control computer, part of the Chrysler Lean Burn System.

sensitive supercharged engine, such as a very heavy load on a very hot day.

This spark control system is a closed-loop device, the first of its kind to be placed in volume production. Delco Electronics' other new spark controller is an open-loop design, the Electronic Spark Selector used on 1978 Cadillac Sevilles (except for the diesels, of course). This has sensors that tell it engine speed, manifold vacuum, coolant temperature and the engine cranking condition. From these, an analogue computer advances or retards the whole spark curve to suit the running conditions. During engine warmup, for example, it retards the spark so the catalyst will reach working temperatures more quickly. Like the detonation sensor, this too allows the engine to be run with a great spark advance under most conditions, favourably affecting mileage. Cadillac expects an overall improvement of about one mile per

Fig. 3. Microprocessor control circuitry allows Chryslers new AM/FM Stereo Search radio to recall ten stations from its internal memory. A LED display shows the frequency and number of the selected station
gallon from its use. And the Electronic Spark Selector is built to "fail soft". Should it stop working, the engine simply keeps running with the last spark curve it was using before the failure

Both Cadillac and Buick offer yet another engineering feature that combines analogue-type electronics with a simple logic chip. The new GM application is in the Automatic Level Control for the rear suspension, developed jointly by Delco Electronics and Delco Products. It uses an Optron diode sensor to measure the distance from the axle to the frame, and then through the analogue and logic circuits, it adds or subtracts compressed air (from a 150 psi supply) in the special shock absorbers to bring the rear of the car to the correct level.

Number Crunching

With all these applications, analogue computation is well established in the electronic systems of today's cars. But it has a strong and promising competitor digital computation. It reaches similar ends in a different way. While the analogue system is computing by making comparisons between different voltage and/or current levels, the digital system is carrying out the various calculations mathematically, just as you would on a scratch pad or calculator. You might say that digital computation is to analogue as a desk calculator is to a

Fig. 4. The Aston Martin Lagonda, below, has the drivers seat computer controlled through servomotors. The seat can be pre-programmed with two sets of adjustments (for husband and wife drivers).

slide rule. Actual physical relationships play a part in the analogue circuit's findings, while the digital computer gets its results by doggedly doing the actual math - very quickly.

While the digital device gives results that are inherently accurate, the electronic components of the analogue device must be "trimmed", during assembly and testing, to make sure that the complete circuit gives the right answers. This seems to show an edge for the digital device, but that's not necessarily so. Many of the inputs to digital computers will begin as analogue signals, such as a varying voltage from a temperature or throttle position sensor, and will need to be converted into digital language that the computer can understand. Such an analogue-to-digital converter will also need to be trimmed, or calibrated, for accuracy. And digital-to-analogue converter will also need to be trimmed, or calibrated, for accuracy. And digital-to-analogue converters for the computer's output will also be needed so it may perform automotive tasks.

Until recently it was simply unthinkable to fit a digital computer into a production car, because it was too big, too expensive, or both. Now, with the arrival of the microprocessor that limitation is beginning to be removed. A digital computer needs a central processing unit (CPU) to do the work. It also needs a fixed or permanent memory (known as ROM for read-only memory) of substantial size to tell it what to do and when to do it, and in addition to that a temporary memory, or RAM (random-access memory), in which it can store data it needs for continuing its calculations. All this can now be etched on one or more small LSI chips, forming a microcomputer.

Small and powerful though it may be, such a microprocessor doesn't come cheaply. It costs tens of thousands of dollars just to tool up to make the special masks needed to etch them in production. Also, to avoid needless waste they must be tailored as closely as possible to the applications for which they're needed. A nervous period of courting between the motor and semi-conductor industries is now ending, as each better understands the needs of the other, and microprocessor uses are increasing rapidly. From one in 1977 the number of applications has jumped to five in 1978, and there'll be many more in 1979, after the technique proves its value and reliability.

MISAR Sparks It Off

The beachhead for microprocessors in cars was established in the ' 77 model year by Oldsmobile and Delco-Remy with their MISAR spark control system used in Toronto. Standing for Microprocessed Sensing and Automatic Regulation, MISAR senses crankshaft rotation, manifold vacuum and coolant temperature, and from these decides which of more than 200 ignition advance points on a "map" of possibilities suits the engine best at that instant. These points are stored in a ROM with a capacity of 1024 ten-bit data words. Two LSI chips are at the heart of the Rockwell CPU that computes which point will be used at any moment. It completes the 335 -odd instructions its program requires in about 12 milliseconds giving a fresh spark timing at that interval. MISAR works by switching the HEI distributor's own electronic module on and off.

Three other microprocessors are used to do jobs that are less vital to the running of the car. One is another Chrysler Huntsville development, an advanced solidstate search-tune radio. It has a ten-digit keyboard that

Fig. 5. Fifth among the digital microprocessors in the 1978 cars is the miles-to-empty system used, as an option, in the Lincoln Continental Mark V. Its LSI chip carries the equivalent of 3600 transistors on a surface less than a quarter-inch square. Picking up indications of car speed and fuel tank level, it calculates the distance travelled, fuel used and the resulting miles per gallon. Then it multiplies fuel mileage by the amount of fuel left in the tank to get the miles-to-empty reading shown on the dash.

Fig. 6. Above, diagram of the Electronic Engine control system featured in the 1978 Lincoln Versaille.

Fig. 7. Below, diagram of the Deico Electronic Spark Control as used on the Buick turbo-charged V-6 engines.

can be used to choose stations directly by their frequency, or from the radio's computer memory by a push of a single button. Automatic searching for other stations, at two sensitivity levels, can be initiated by a foot switch. The frequency chosen is shown by a
light-emitting diode display. This "thinking" AM/FM stereo radio is offered in such top-line models as the Dodge Diplomat and Magnum and the Chrysler LeBaron, Cordoba, Newport and New Yorker Brougham.

The fourth microprocessor available in the ' 78 models is an option on the 1978-1/2 Cadillac Sevilles, those without diesel engines. It's at the heart of a system called Tripmaster, which uses a large LED display made by AC Spark Plugs in place of the conventional speedometer and introduces LED displays for the fuel level and, at the right of the dash, for engine speed, coolant temperature or time of day - whichever the driver selects by pushing a button. A small panel holds a dozen pushbuttons for selecting operating modes or entering data into Tripmaster.

Its CPU, a Motorola 6800 microprocessor, allows the Tripmaster to do many navigational tasks. It can handle time, distance and average speed calculations, and it can relate them to the rate of fuel consumption and the amount of fuel left in the tank. Drawing information from the electronic fuel injection, it can read out the instantaneous fuel mileage and the average mileage for the journey. Its present ROM capacity of 4000 eight-bit words is enough to let the Tripmaster handle these jobs, and it be expanded by several multiples in the future, using the same CPU, to permit it to take over all engine functions and many other control tasks in the car.

Looking Forward

This is a promising array of digitally-controlled auto systems. Many more are waiting on the sidelines. We can expect, for example, that most and perhaps all of the present analogue car computers will be converted to digital operation in the course of the next several years. Speaking to the SAE about electronic fuel injection in 1976, Jerome G. Rivard, then of Bendix and now with Ford, said that "In the interests of cost reduction and higher production volume, the current hybrid analogue design will undoubtedly be replaced ultimately by a design based on digital EFI controller to be in production for the 1979 model year and to be in wide use in 1980 . United Technology's Essex Group has also built and tested a digital injection computer, while Chrysler will use such a controller with its forthcoming Electronic Fuel Metering system. Its key microprocessor suppliers are expected to be the RCA Corp. and Texas Instruments.

The systems on the 1978 cars are the exploratory first wave for the mass invasion of microprocessors that's coming on the 1981 models. To meet the tougher emissions and economy standards then, the tiny LSI chips will take over control of all main engine variables spark timing, EGR valve flow, choke control on carburetted cars, fuel preparation and fuel/air mixture control. The Motorola 6800 microprocessor, used already in Tripmaster, will be the key CPU for General Motors and, apparently, for Ford as well.

Those responsible for developing these new systems make no secret of the fact that the central brain, the CPU, has raced far ahead, in design, of the sensors and actuators that are the eyes and muscles of the brain. These are still relatively primitive, and all too susceptible to inaccuracy or failure under automotive operating conditions. Also many of them produce analogue outputs instead of the digital data that the microprocessor would prefer to receive. This is the area in which the mechanical and electronics engineers will have to cooperate most genially if good results are to be achieved.

ET

THE SINTEL SIX DIGIT MAINS CLOCK KIT with BLEEP ALARM and TOUCH SWITCH SNOOZE

- high brightness display
- automatic intensity control
- deep red display filter
- SLIM White Case $205 \mathrm{~mm} \times 40 \mathrm{~mm} \times 140 \mathrm{~mm}$
- battery backup
- crystal control for improved accuracy

Order as ACK + BBK + XTK

634.50
£28.80

The kit is supplied complete with the exception of a mans plug. cable and battery

DATABOOKS

11 llustrating Basic
Intel
Intel Memory Design Handbook
Intel Bo80 Microcomputer Syst
Intel 8080 Microcompoter Systems User's Manual
Motorola Booklet From the Computer to the Microprocessor
Motorola McMOS Databook Nol 5 Series B)
Motorola M6800 Microprocesssor Applications Manual
Motorota M6800 Programming Manual
National SC/MP Introkit User's Manual
National SC/MP Technical Description
National Semiconductor TTL Databook
RCA CMOS and Linear IC Databook
RCA CMOS and Linear IC Databook
Texas Instruments Pin Configuration Guide A very useful set of gloss cards showing top and bottom views of 7400 ISs plus many others (Π I Memories Op.Amps etc)
v 80 Assembly Lanquage Programming Manual
280 Assembly Language Programming Manual
Z.log $880-C P U$ Technical Manual

Ziog 280 CTC Product Specification
Z.log Z80-P 10 Technical Manuai

P Intel 8005 P
BEST OF BYTE Volume 1 3CO page

Some Popular Memories available from SINTEL
(See ETI DATA SHEET SPECIAL July 1978)
2102450 nsec $1 K$ STATIC RAM
2102650 nsec STATIC RAM
2102650 nsec STATIC RAM
$27081 \mathrm{~K} \times 8$ bit UV ERASABLE ROM
$27081 \mathrm{~K} \times 8$ bit UV ERASABLE RO
$\mathbf{6 5 0 8} 600 \mathrm{nsec} 1 \mathrm{~K}$ STATIC RAM

ASSEMBLED LATCHED COUNTER MODULES

Our range of Industral Latched Counter Module Kits is now avalable ready-bult These counters use both
CMOS and TTLICs and wall save you considerable design, purchasing building and de.bugging time Each CMOS and THL LCs and will save you considerable design, purchasing building and de. bugging time Each
module uses a set of red LED displays, and features a single in-line plug and socket Instructions are provided For full details please send for Catalogue

	TTL				cmos			
	Part No	Bult	Part No	$K 11$	Part No	Bualt	Part No	Kit
2 mill	$4011-484$	113.22	52c-412	£10.52	985-568	£ 13.02	548-47a	\&10.42
4 diph	715-484	t23.38	657-412	¢17.98	512-568	£22.63	869-470	118.11
	293-484	E33.76	721-412	£25.66	393-568	[32.31	$191-470$	£25.85

NEW PRICES AND SOME NEWVCMOS ADDITIONS

	CO4000
	CD400 1
	CD4002
	CD4006
	C04007
	CD4008
	CD4009
	C04010
	CO401 ${ }^{1}$
	CO4012
	CD4013
	CD4014
	CD4015
	CD4016
	CD4017
	CD4018
	CD4019
	CD4020
	CD4021
	CD4022
	CD4023
	CD4024
	CO4025
	CD4026

For our full range of components send for Free Catalogue
Our Offices are at 209 Cowley Road Oxford, but please do not use this as
PRICES VALIO UNTIL 31sI AUGUST 1978
OFFICIAL ORDERS ARE WELCOME from Companiies Govt Depts Natn Inds. Univs Polys
ORDERS: CWO add VAT $@ 8 \%+35$ p p\&p TELEPHONE and CREDIT (Invoice) OROERS add VAT $@ 8 \%+60$ p p\&ipminimum charge (the balance will be charged wh cost) Please see FAST SE RVICE EXPORT ORDERS welcome.
no VAT but add 10% (Europe) 15% (Overseas) lor Air Mail pap For Export postage rates on heavy items - contact no VAT but add 10% (Europe) 15% (Overseas) lor Air Mail p\&p For Export postage rates on heavy items - contact
ORDERS TO: SINTEL, PO BOX 75A, OXFORD
Tel: 086549791
FAST SERVICE: W• gueranteg zher Telephone Ordere for goods in stock, received by 4. 15 p.m. (Mon.-Fri.) will be despatiched on the seme doy by ist Class Post (some heavy items by parcel post) end our stocking is good. Private customera should reephoit and pay by giving their

SINTEL

HOME COMPUTER

Tandy have recently introduced the Radio Shack TRS-80 computer system to this country. Phil Cornes, Gary Evans, Graham Wideman and Mark Czerwinski have been putting the machine (pity it wasn't time sharing) through its paces.

THE NAME TANDY will be familiar to many of you. Of American parentage the company have over the past few years opened up a large number of retail outlets in this country dealing mainly with audio equipment and in most cases, components. Those of you who frequent the larger Tandy stores may well have noted the appearance of a home computer, as Tandy's TRS-80 home computer system has been on demonstration in many since March. So what is the TRS-80 and how does it compare with similar systems?

What You Get

The TRS-80 system comprises of four separate units. The first, a standard 'Realistic' CTR 41 portable mains/ battery cassette recorder, is used for long term storage of programs, information and data files.

The second is a video display unit which provides up to 16 lines of 64 alpha numeric characters. Each of these 1024 character locations can be further sub-divided into a 2×3 matrix giving an overall 128×48 matrix. The 6144 resulting positions on the screen can be individu-
ally lit or dimmed as required, from within a program, to produce all manner of continuous or interrupted graphics

Thirdly we have the power supply unit, which gives a 17 volt AC output, used to power the last item of hardware, the CPU, memory and keyboard package

The CPU is a 280 the memory comprises of level 1 BASIC in 4 K ROM, 4 K of dynamic RAM for program storage and $1 K$ static RAM for the video display. Also included are the voltage regulators, the cassette and video interfaces and the integral standard 'OWERTY' keyboard. Also supplied are a 232 page instruction manual and two cassettes, one blank for retaining your first efforts in programming the other with two games programs - Blackjack and Backgammon. In addition all leads required to connect the four units together and to the mains are provided

Initial set-up is quite easy - simply put all four units on the same table and plug them all together. All three connections to the keyboard/CPU unit are made via five-pin DIN plugs and ARE interchangeable. The
sockets are labelled and we are assured that swapping leads will not cause any damage. Plugging into the cassette recorder is less obvious since two of the plugs can be interchanged with no identification other than being of different colours.

Having said all this though, after setting up the system a couple of times one will be familiar with all these points and in practice we don't see many problems with these connections.

First Impressions

Switching the system on requires the pushing of two on / off switches. The first is on the front of the video display and the second is on the back of the microcomputer itself adjacent to the plug and socket which connect the power to the main unit. With this done it takes only three or four seconds for
READY
to appear in the top left corner of the screen. The $>$ symbol is presented to inform you that the system is in the state in which it can accept entries from the keyboard, the symbol itself is called a 'prompt'. The - is called the cursor and is presented to show you where the next character input will be displayed. A quick flick through the manual revealed on page 225 , the listing of what appeared to be a very useful program, a combined function and RAM test which it is claimed "Puts the. TRS-80 through its paces - All of them" and having looked through the program we could well believe it.

The program starts off by using every statement and function that level 1 BASIC is capable of with checks in the program to make sure that all is as it should be and with error messages printed for a failure. The program then goes on to write numbers into all empty RAM locations, reading then back to check that they were written correctly and finally it displays a sort of simple test card that can be used to check the alignment and centering of the picture on the screen. Care should be taken when typing this program in as there an error in the manual which has to be corrected as you enter the program. (There is a slip of paper included with the manual which corrects the few printing errors that have crept in). It is well worth dumping this program onto tape (see below) as if you are anything like us it takes about half an hour to put it in (using the well tried and trusted single finger poke and hope method).

> WITH A BIT OF
> PLAYING ABOUT WE IISCOVERED THESE BIG LETTERS, ABOUT TWICE REGULAR SIZE.

The TRS-80 passed the test, this was the point at which we considered the system to be well and truly commissioned. The command CSAVE is the one used to dump programs to tape but the one you'll most likely want at first is CLOAD, the magic word for loading one of the programs included with the machine. Having amused ourselves with these for an hour or four we can take a look at the hardware and software in more detail.

Looking at the total system, there are advantages and disadvantages to having four separate units. The main "pro" is the flexibility of being able to move the keyboard, video monitor and cassette recorder to suit your convenience (and making it easier for Tandy to provide machines for different markets), although longer leads would have helped on some units. It might have been better, however, to combine the cassette record and power supply with keyboard thus reducing the packages to two.

Not For Hard Types

The keyboard itself, while not of "professional"' quality is more than adequate being a full QWERTY typewriter style design. One point to watch is that the keyboard will not accept a new key entry until the previous key has been fully released. Even an inexperienced typist, when entering often encountered groups of letters (eg. key words) will notch up speeds that wiil lead to displays such as RN, LST etc. Level II BASIC (see later) will remove this problem.

As mentioned above, the keyboard case also includes the CPU, memory and other assorted circuitry.

We don't feel that this system would be much fun for hardware enthusiasts. It's difficult to manage when taken apart, the keyboard and main board are attached to an easy to break flexible cable with no plug. No $1 / 0$ ports are on board, which rules out simple add-ons, such as switching devices on and off, hooking up a speaker, and other popular experiments and applications. The back connector brings out the address, data and control buses. Thus a separate box with interface adapter could be added. Also on this connector are the keyboard lines, which would presumably facilitate adding more keyboards (possible numeric pad) in parallel with the existing one. The keyboard interface is done not with a Peripheral Interface chip as might be expected, but with ordinary buffers and latches, a cheap but less flexible system.

To summarize, this product does not appear to be aimed at the serious hardware person. Add-ons are difficult, although Radio Shack is coming out with an 1/O unit. In addition, an S-100 interface is in the works, according to Radio Shack literature. The TRS-80 must then be best suited to software type, keyboard plus video and printer applications.

Data may be recorded on cassettes by means of the built in cassette interface which converts the data to. a series of audio tones. Thus, any reasonable quality cassette recorder will do the trick. The cassette itself should also be fairly good since any tape "drop-outs" mean lost data. Tandy will supply five minute-per-side cassettes for this purpose although we have used C60s with no problems.

The recorder supplied with the TRS-80 (the CTR-41) has connections from the keyboard to the "AUX" input, "EAR' output, and also the remote on / off jack. Thus, when recording or playing cassettes, the operator (you) pushes the desired keys on the recorder and the TRS-80 switches the recorder on and off at appropriate times. You also need to set the volume level when playing back tapes. When recording, a dummy plastic plug must be stuck in the MIC jack to deactivate the built-in condenser microphone. The CTR-41 features a tape counter, very handy for finding your programs.

One dislike about the cassette system was the fact that the TRS-80 maintains control of the cassette machine at all times as long as the remote plug is left in you have to keep removing the plug to fast forward or rewind a tape to the desired position (This could easily be overcome by fitting a simple on/off switch in the main unit to short the remote jack and thereby provide a computer control/manual override switch).

Video Display

Designed specifically for the TRS-80 the video monitor accepts the signal from the keyboard unit and displays it on a 12 inch CRT. The video signal is fairly standard with $O \mathrm{~V}$ for sync level, 0.6 V for black level with peak white at 2 V . Impedance is 750 R . The circuitry is isolated from the rest of the system by an opto isolator.

Power Supply

Nothing much to say about this, it converts the mains to a 17V AC unsmoothed output.

The Manual

This item is almost as invaluable as the $Z 80 \mathrm{MPU}$ itself even if you've known BASIC all your life. It starts off by assuming you have never seen a computer before and it takes you easily and clearly through everything that you could ever want to know about BASIC and its implementation on this machine, starting with switching the machine on and ending with how to set up data files.

One thing we particularly liked about the manual was the trouble Tandy have taken to make sure that some of the sample programs don't work so that they can then go on to fully explain the error messages that the TRS-80 can give and how to interpret them and then go on from this to learn how to correct (de-bug) your own programs.

Another very useful section of the manual is an appendix which gives the listings of 11 subroutines to enable the TRS-80 to perform all the scientific and trig. functions that the interpreter can not do directly. These routines are numbered and arranged in such a way that they fit easily into any program you are writing that needs them while at the same time requiring only half a dozen lines of program each so they don't take up too much program memory.

Software

As a home computer system, the TRS 80 is probably the least hardware oriented we have seen. There are two points which support his thinking: you can't get at the internal hardware without voiding the warranty and there is no hardware interface capability other than to the display and the cassette recorder.

In the market at which the TRS-80 is aimed however the potential customer will be influenced by what he sees (ie packaging) and by what he can be led to believe about it (by advertising, by friends, by using the system, and even by reading electronics magazines). That customer's attention will be focused on the keyboard and display not on the internals. It won't matter to him that a Z-80 incorporates efficient machine language instructions for data searching and moving or that it's a microprocessor that can run at a 2 MHz clock rate. He will be more interested in what it can do as opposed to how it does it (he's buying capability, fun and perhaps. even status, not speed).

A Look At What You Get On The Soft Side

The TRS 80 comes with "Radio Shack Level 1 BASIC" in 4 K ROM. Level 1 claims to support "standard BASIC statements". But whose standard? It seems to be Tandy's since some important capabilities are missing (for example exponentiation and array dimensioning). All calculations are performed in floating point with 5 or 6 decimal place accuracy. Twenty-six numeric variables are available (A to Z) along with one numeric array variable. Two 16 -character string variables can also be used. Actually, these are more properly called "string things", since they cannot be compared, manipulated, indexed or used in any but the most mundane ways. You can input and output using them, but that's all folks.

The display produced by the TRS-80's version of backgammon makes use of the (limited) graphics capability of the machine. However, as can be seen, a quite acceptable display can be produced by the system.

Cassettes can be used to handle programs (CSAVE and CLOAD commands) or data (PRINT\# and INPUT\# statements). Since whatever you have in memory will be wiped out if you cut off the power (intentionally or otherwise), having a cassette recorder to store your information permanently is invaluable. And it makes entering of other people's programs (such as the Backgammon and Blackjack games supplied by Tandy) especially convenient.

Speaking of which, the Backgammon game makes extensive use of the TRS 80's rather limited graphics capability: there are virtually no special graphics characters - you've got to construct whatever image you have in mind by turning on some points on the display (48 points vertically by 128 points horizontal). This can be tedious. Mind you, in the low cost home computer system field this is not unusual. To compensate you can write sub-routines which draw vertical and horizontal lines, draw patterns, fill them in etc

You And Your Program

Immediately after powering up your display and keyboard, the following will appear READY
At this point you can:

1) do simple calculator type computations (immediate execution)
2) bring in a program from tape.
3) type NEW and enter a program

Program statements are preceded by line numbers to distinguish them from immediate execution statements and keep them in order. A LIST command is available to display the program. Unfortunately the cursor control keys cannot be used to edit this display, so if you want to change a line in a program, you must retype the entire line.

Output which would otherwise stream by while your program is executing can be frozen by depressing any key. Unfortunately, if you interrupt the program itself, you cannot modify the variables it is using and then return to the point of interruption. So your only alternative is to rerun the program and in many cases, that's a nuisance.

As for error messages, they are confined to. WHAT? HOW? or SORRY (along with an indication of where the problem is). These terse messages are not unexpected when you consider that the interpreter was written to fit into 4 K of ROM. In a tradeoff of readability against the amount of program code you can fit into the standard 4 K of RAM, Level 1 has a "shorthand dialect". For example: $\mathrm{G} .=\mathrm{GO}$ TO, N. $=$ NEXT, and $\mathrm{P} .=\mathrm{PRINT}$ However, REA. seems to be a shortform of dubious value for READ (probably done for consistemcy).

The TRS-80 character set is shown below, note that some minor variations between this set and those on current production machines may be noted. In addition to these characters, the screen is divided into 6144 cells each of which may be lit or dimmed to form graphic characters.

IS A FIK KY SEMA MT HIRX. TIE MHAETE SET LONS

 LIKE TIS:

Make It Fit

The overriding philoso'phy controlling the design of this interpreter seems to have been "make it fit". It's hard to believe that a 4 K interpreter is anything but "stripped down" after you've used this one and it is somewhat unrealistic (no pun intended) for Radio Shack to claim. as they have in their sales literature, that "applications of the TRS 80 are limited only by the imagination and ability to write programs". Try something quite unimaginative like sorting a list of names. Good luck! You'll need it.

Level II

From the sketchy details available on Level II BASIC, an interpreter written by Microsoft, the statements and functions to be available would appear to make this version of BASIC at least as powerful as PET's including many editing features. In fact we would go so far as to say that Level II is the most significant upgrade for the TRS-80. We wonder how logical it is to sell a home computer with such a limited BASIC and then offer the upgrade as an option. Will this turn people off computing, or will most of them jump for BASIC 11 anyway?

Level II BASIC will cost you $£ 79$ when it apears in July. We also understand that a Level 11 machine is to cost $£ 79$ more than a Level I model. This combined with the $£ 229$ pounds Tandy are asking for converting a 4 K system to 16 K seems to indicate that in these areas at any rate expanding your system with Tandy's help will prove expensive. As far as the RAM goes, however, you could buy the devices yourself, conversion involves taking the $4 K \times 1$ devices from their sockets and replacing them with 16 Kx 1 chips. Change a few jumpers and your machine is now a 16 K model. Cost - about $£ 100$.

Other hardware items are planned but there are no firm dates or UK prices fixed yet though we do have some US prices from which we can make an educated + or - 10% guess.

1. SCREEN PRINTER reproduces anything displayed on the screen including graphics at 2200 chars. $/ \mathrm{sec}$ (price about £480)
2. LINE PRINTER 110 chars. $/ \mathrm{sec}, 5 \times 7$ dot matrix commercial standard impact printer (price about £1000)
3. MINI DISK of which the TRS-80 can operate 4. 80 K bytes per disc. 125 K bytes per sec transfer rate. $1 / 2 \mathrm{sec}$ average access time (price each about $£ 400$)

We were not as impressed with the TRS-80 as some of the other machines in this price bracket we have looked at. Lack of hardware access, and software which is primitive, combined to make it a less attractive product to anybody with even a little experience in home (or for that matter any) computers.

The Level II BASIC would make the machine a far more attractive proposition than at present and even with the additional $£ 79$, still an attractive choice on the grounds of cost.

The end result is that if you're in the market for a machine like this you should look very carefully at what you need and what you can get for the money

During the review it was discovered that it was possible to get 32 characters to the line from the display (fat letters) by recording a string onto tape as a data file and then CLOADing this as a program. Sometimes using this method you lose some of the facilities of the TRS-80 and have to remove the power to restore them. (This is a standard facility of level 2 BASIC by the way).

Anyone for a users club?
ETI

15
 240 Watts!

HY5

Preamplifier

HY30
15 Watts into 8Ω
The HY5 is a mono hybrid amplifier ideally suited for all applications All common input functions (mag Cartridge, tuner etc.) are catered for internally, the desired function is achieved etther by a multi-way swith or direc connection requ appropriate pins the internal volume and tone circurts ILP power amplifiers and power supplien. To ease construction and mounting compatible with all supplied with each pre-amplifier FEATURES: Complete pre-amplid
distorion - High overload APPLICATIONS: Hi.Fi .- Mixers simply combined for stereo
isco - Guttar and Organ - Hublic address
INPUTS Magnefic Pick-up 3 mV Ceramic Pick-up 30 miV Tuner $100 \mathrm{~m}, \mathrm{~V}$ Microphone 10 mV Auxtrary $3-100 \mathrm{mV}$, input impedance $47 \mathrm{k}!$) at 1 kHz
OUTPUTS Tape 100 mV Main output 500 mV R M S
〈ACTIVE TONE CONTROLS Treble + 12 dB at 10 kHz ; Bass - at 100 Hz
DISTORTION 01% at 7 kHz . Signal/ Noise Ratio 6BdB
OVERLOAD 38 dB on Magnetic Pick-up SUPPLY VOLTAGE + 16.50 V
Price $£ 5.22+65 p$ VAT P\& P frea

保
The HY30 is an exciting New kit from I LP it features a virtually indestructible I C with short circuit and thermal protection. The kit consisis of I C hearsink. PC board 4 resistors. 6 capacitors. mounting kit, logether with easy to follow construction and operating instructions. This amplifier is Ideally suited to the beginner in audio who wishes to use the most up-to-date technology available APPLICATIONS: Updating audio equipment - Guitar practice amplifier - Test amplifier 10 Build APPLICATIONS: Updating audio equipmen - Guitar practice amplifier -- Test amplifier - Audid SPECIFIC
OUTPUTCATIONS
SPUT POWER 15 W A. M.S into $8:$) DISTORTION 01% at 15 W INPUT SENSITIVITY 500 mV FREQUENCY RESPONSE $10 \mathrm{~Hz}-16 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE +18 V
Price £5.22 + 65p VAT P\&Pfree. integrai heatsink together with the simplicity of no external components Durng the past three years Fidelity modules in the World FEATURES: Low Distortion APP external components.
SPECICICAONS: Medium Power hi-fisystems - Low power disco - Guitar amplifier SPECIFICATIONS: INPUT SENSITIVITY 500 m OUTPUT POWER 25W RMS in 8:) LOAD IMPEDANCE 4-16\% DISTORTION 004% at 25 W at SIGNAL NOISE RATIO 75 dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}$ - 3 dB SUPPLY VOLTAGE 25V SIZE 10550.25 mm
Price $\mathbf{£ . 8 2 + 8 5} \mathbf{~} 6.8 \mathrm{P}$ V\&P free

HY120 mmon requirements including load line and thermal protection this amplifier sets a new standard in modular FEATURES: Very iow distortion -- Integral Heatsink - Load line protection - Thermal protection Five connections - No external components
APPLICATIONS: Hi-Fi - High qualty disco -. Public address .- Monitor amplifier - Guitar and Organ
SPECIFICATIONS
INPUT SENSITIVITY 500 mV
OUTPUT POWER 6OW RMS into 8:) LOAD IMPEDANCE-4-16! DISTORTION 004% at fOW at SIGNAL/NOISE RATIO 90 dB . FREQUENCY RESPONSE $10 \mathrm{~Hz}-4,5 \mathrm{kHz}-3 \mathrm{~dB}$. SUPPLY VOLTAGE Size. $114 \times 50 \times 85 \mathrm{~mm}$
Price $£ 15.84+£ 1.27$ VAT P\&iP free
HY200
120 Watts into 8Ω
The HY200 now improved 10 give an output of 120 Watts has been designed to stand the most FUgger conditions, such as disco or group while stitl retaining true H--Fi performance FEATURES: Thermal shutdown - Very low distortion - Loadiline protection -- Integral heâısink No external components
APPLICATIONS: Hi-Fi -- Disco - Monitor -- Power Slave -- Industrial -- Public address SPECIFICATIONS
OUTPUT POWEA 120W RMS into 8:2 LOAD IMPEDANCE 4-16!) OISTORTION 0.05% at lODW at 1 kHz KOL SIGNAL/NOISE RATIO 96dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}$ - 30 B SUPPLY VOLTAGE SIZE $114 \times 100 \times 85 \mathrm{~mm}$ Price $£ 23.32+£ 1.87$ VAT P\&P free
HY400
The HY400 is I.L.P's "Big Daddy" of the range producing 240 W into 4Ω ! th has been designed to high mower disco or public address applications It the ampliter is to be used at continuous high powe levels a cooling fan is recommended The amplifier includes all the qualities of the rest of the family to FEATURES: Thermal shutdown - Very low distortion FEATURES: Thermal shud - Very low disiorion Load line protection No externat APPLICATIO SPECIFICATIONS
OUTPUT POWER 240W RMS into 4!) LOAD IMPEDANCE 4-16!? DISTORTION 01% a: 240W a
SIGNAL/NOISE RATIO 94dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}$ - 30 B SUPPLY VOLTAGE 45 V
INPUT SENSITIVITY 500 mV SIZE $114 \times 100 \times 85 \mathrm{~mm}$
Price $£ 32.17+£ 2.57$ VAT P\& P free.
POWER
SUPPLIES

PSU36 surtable for two HY 30 S 55.22 plus $65 p$ VAT P, P free

PSU90 surtable lor one HY 200 E1 2.65 plus \& 101 VAT P/P free

TWO YEARS' GUARANTEE ON ALL OF OUR PRODUCTS

I.L.P. Electronics Ltd.	Please Supply
Crossland House	Total Purchase Price
Nackington, Canterbury	I Enclose Cheque \square Postal Orders \square Money Order \square
Kent CT4 7AD	Please debit my Access account \square Barclaycard account \square
Tel. [0227] 64723	Account number

ETI BOOK

BEGINNERS

Beginners Guide to Electronics Squire, $£ 2.65$
Beginners Guide to Transistors Reddinough $£ 2.55$
Electronic Measurement Simplified c Hallmark $£ 2.20$
Electronics Self Taught Ashe $£ 4.40$
Beginners Guide to Integrated Circuits Sinclar $£ 3.15$
Principles of Transistor Circuits s. Amos $£ 4.75$
Understanding Electronic Circuits Sinclarr $£ 4.10$
Understanding Electronic Components sinclar £4.10
Beginners Guide to Radio Kug $£ 3.15$
Beginners Guide to Audio Sinclar $£ 3.10$
Beginners Guide to Audio L. r Sinclarr $£ 3.20$

COOKBOOKS

TV Typewriters Cookbook $£ 7.40$
CMOS Cookbook $£ 8.00$
TTL Cookbook $£ 7.55$
Active Filters $£ 11.00$
IC Timer Cookbook $£ 7.50$
IC Op-Amp Cook book $£ 9.40$

APPLICATIONS

Advanced Applications for Pocket Calculators J Gilbert £4.20
Build Your Own Working Robot D. Hesseman $£ 3.35$
Electronics and Photography r. Brown £2.30
Fire and Theft Security Systems B. Wels $£ 2.00$
How To Build Proximity Detectors and Metal Locators J Shelds £3. 35
How To Build Electronics Kits Capel $£ 2.10$
Linear Integrated Circuit Applications G. Clayton $£ 5.00$
Function Circuits Design \& Applications Burr Brown £15.95
110 Electronic Alarm Projects R. M. Marston $£ 3.45$
110 Semiconductor Projects for the Home Constructor r M Marston £2.95
110 Integrated Circuit Projects for the Home Constructor r M Marston $£ 3.25$
10 Thyristor Projects Using SCRs r m. Marston $£ 2.95$
Handbook of IC Circuit Projects ashe $£ 2.30$
Practical Electronic Project Building Ainslle and Colwell $£ 2.45$

TV AND HI-FI

Audio Handbook G Kıng $£ 6.50$
Cassette Tape Recorders J. Earl $£ 5.25$
Solid State Colour TV Circuits G. R. Widing $£ 6.35$
Hi-Fi Loudspeakers and Enclosures Cohen $£ 8.20$
How To Build Speaker Enclosures Badmaieff $£ 3.10$
Master Hi-Fi Installation King $£ 2.80$

LOGIC

Logic Design Projects Using Standard ICs J Wakerly £5.10 Practical Digital Design Using $1 \mathrm{Cs} J$ Greenfeld $£ 12.50$
Designing With TTL Intergrated Circuits texas Instruments £9.05
How To Use IC Circuit Logic Elements I Streater $£ 3.65$
110 COSMOS Digital IC Projects for the Home Constructor R M Marston $£ 3.20$
Understanding CMOS Integrated Circuits r melen $£ 3.90$
Digital Electronic Circuits and Systems к M Morris £3.50
MOS DIGITAL ICs G Flynn $£ 4,60$

COMPUTING

Microprocessors and Microcomputers B. Sowick $£ 18.00$
Microprocessor/Microprogramming Handbook b. Ward £4.10
Microprocessors D. C. McGlynn $£ 8.40$
Introduction to Microprocessors Aspinall $£ 5.90$
Modern Guide to Digital Logic (Processors, Memories and Interfaces) £4.30

-OP - AMPS
 Applications of Operational Amplifiers Graemm (Burr Brown) $£ 8.30$
 Designing With Operational Amplifiers Burr Brown $£ 13.75$
 Experiments With Operational Amplifiers Clayton $£ 3.40$
 110 Operational Amplifier Projects for the Home Constructor k M. Martum £2.95 Operational Amplifiers Design and Applications G Tobery (Burr Brown) $£ 7.40$ Op-Amp Circuit Design \& Applications 1 . Carr $£ 4.00$

TEST INSTRUMENTS

Build It Book of Minature Test Instruments R Haviland $£ 3.55$
The Oscilloscope In Use sinclar £3.10
Test Instruments for Electronics m. Clifford $£ 2.40$
Working With the Oscilloscope A. Saunders $£ 1.95$
Servicing With the Oscilloscope G. King $£ 5.60$
Radio Television and Audio Test Instruments kıng $£ 5.90$

SERVICING

Electronic Fault Diagnosis sinclar $£ 3.20$
Rapid Servicing of Transistor Equipment G. King £2.95
Tape Recorder servicing Manual Gardner Vol 1: 1968-70 £8.50 Vol 2: 1971-74 £8.50
FM Radio Servicing Handbook king £4.80
Basic Electronic Test Procedures IM Gotlleb £2.45

COMMUNICATIONS
 Communication Systems Intro To Signals \& Noise b Carlson $£ 7.50$
 Digital Signal Processing Theory \& Applications L R Rabiner $£ 23.80$ Electronic Communication Systems © Kennedy $£ 8.50$
 Frequency Synthesis. Theory \& Design Mannassewusch £20.40
 Principles of Communication Systems H [aub $£ 8.10$

THEORY

Introduction to Digital Fiitering Bogner $£ 9.40$
Transistor Circuit Design Texas Instruments $£ 9.35$
Essential Formulae for Electrical and Electronic Engineers ^ M Morrıs $£ 1.65$ Modern Electronic Maths Clifford $£ 6.70$
Semiconductor Circuit Elements T D Towers $£ 6.40$
Foundations of Wireless Electronics m © Scroggle £4.45
Colour Television Theory Huduon $£ 6.20$

REFERENC E

Transistor Tabelle (Includes physical dimensions) £4.10
Electronic Engineers Reference Book (Ed. 4) L. W Turner $£ 27.70$
Solid State Circuit Guide Book B. Ward $£ 2.25$
Electronic Components m. A Colwell $£ 2.45$
Electronic Diagrams M A. Cobwell $£ 2.45$
Indexed Guide to Modern Electronic Circuits Gorodman £2.30
International Transistor Selector T D Towers $£ 5.25$
International FET Selector T D rowers $£ 4.35$
Popular Valve/Transistor Substitution Guide $£ 2.25$
Radio Valve and Semiconductor Data a m bell $£ 2.60$
Master Transistor/Integrated Circuit Substitution Handbook $£ 5.60$
World Radio TV Handbook 1978 (Station Directory) $£ 8.00$
Radio, TV and Audio Technical Reference Amus £24.85
TV Technicians Bench Manual (New Ed.) Wilding £5.10

MISCELLANEOUS

Integrated Electronics J Milman $£ 7.70$
Microelectronics Hallmark $£ 3.90$
Practical Solid State DC Supplies ! D rowern £6.20
Practical Triac/SCR Projects for the Experimenter r rux $£ 2.25$
Printed Circuit Assembly Hughes \& Colwell $£ 2.45$

Fallen behind recent advances?

Just starting out?
Need a decent reference book?
ETI Book Service provides an easy
way of getting your hands
on the right title.

How to order: Make cheques etc payable to ETI Book Service. Payment in sterling only please. Orders should be sent to: ETI Book Service, PO Box 79, Maidenhead, Berks. All prices include P\&P.

MUSIC SYNTHESIZER

 PART 2-CONSTRUCTION
In this concluding part of the article we cover the assembly procedure for this compact design.

DESPITE the high complexity of this project, its construction should pose no electronic problems to the competent hobbyist. As with any synthesiser however, fitting the keyboard and its associated mechanics will prove the most onerous task.

Getting Board

Since you have to start somewhere, the PCBs are the obvious place. There are five boards all together; power supply, keyboard contact mounting (X3) and main synthesiser. The keyboard we will deal with later.

Above: the finished article all set to be played. This prototype was assembled using the Powertran Electronics kit, which includes the woodwork. Below: an internal view showing the alignment of PCB and keyboard. Note very carefully
the relation of the two as there is not much space to spare. As you can see from this photo, we used IC sockets on all devices as it makes things so much easier if anything untoward should occur.

Assembly of the PSU board is very ,straightforward, but take care fitting the heatsinks to Q1 and Q3. Wire up the board to the transformer, and check that you can obtain the correct voltages at the output. Adjust RV1 until +12 V is obtained on the red output wire.

Set to as close +12 V as you can possibly measure. Check that an accurate -12 V is present on the blue output wire. The power supply is now complete.

Main Line

For the main assembly we're going to assume that you're using the Powertran board. Fitting the components to this is straightforward with the exception of the switches and pots.

In order to line up the switches with the front panel and pots, it is necessary to space these from the board - the kit contains suitable
spacers for this purpose. Non-kit types have to work out the height of their front panels from the board and act accordingly. The switch toggles must come level with the pot spindles, when cut to take the control knobs.

In either event glue the spacer to the board - use some powerful adhesive such as Super-Glue etc.

Cut the pot spindles before you fix them to the PCB: it's just too big to handle and too expensive to crack. The terminals should be top soldered onto the board, as should the chiripins used to mate up with the connector. Take care the solder does not run down the pins, else the plug may not fit at all.

Use insulated wire to link the dual gang pot RV30 and the waveform switch to the board. The PCB cannot be mounted into place until the alignment procedures have been carried out, so there is no excuse for not checking the assembly very carefully indeed, especially the IC orientation and soldering quality. This is a BIG board which means there is more space to be careless:-check it!

Powerfull Mount

Following the rear panel wiring diagram, fit the hardware onto the case, taking care to mount the transformer as low down-away from the main PCB-as possible. This will lessen the chance of hum being induced into the circuit.

Insulate the mains wiring wherever possible, and take careful note of the earth wiring arrangements-lest the demon hum return to plague thee! Anything with mains voltage on should have a rubber sleeve over it.

The photograph shows the arrangement of PSU and transformer on the back panel.

Above: close up of the PSU board mounting within the case. Positioning the transformer is important to reduce the risk of hum. Mount this as low down, away from the board, as possible. In the foreground the resistor chain for the keyboard can be seen. Below: overall
view of the machine, to give an idea of what goes where in the box. Note the three Chiri connectors which fit onto the PCB on the end of these wires snaking across the photo. The black area to the front is the line of keyboard contact blocks.

Keyed Up?

Now for the tricky bit. The keyboard. This has to be mounted in the casing first. For this the front panel should be in position. Fix the brackets to the ends of the keyboard assembly, and lower it into place. Follow the diagram below to adjust the spacing at either end of the keyboard. If the
gap is more than $0.1^{\prime \prime}$, the woodwork underneath the fixing screws will need countersinking.

Set the gap between the black notes and the front panel as shown.

Once the alignment is correct, screw the brackets into the woodwork.

On the left is the diagram you'll need to line up the keyboard assembly with the casing and front panel. Follow this as carefully as you can, as if the keys are not in the right places, the contact blocks will not line up with the plungers, and the keys themselves will probably foul the front panel. Above is shown the alignment of keys and panel.

Onto the contacts. Fit and solder the 27R4 resistors to the three PCBs as shown on the diagram above. One will be full with 12 resistors and the other two have eleven each, one missing at the right end on one PCB, and one missing at the left end of the other. (There are two resistors left over at this stage.)

Close Contacts Of The Key Kind

Solder in the contact assemblies, but make very sure that right angles exist between the block and the PCB. This is important. Graph paper may help in lining up.

Leave out a contact block where the resistors are omitted the diagram may help.

All three PCBs are wired together as shown in the keyboard wiring diagram taking care to place the 'gaps' correctly. Get the spacing correct by lining up the contact blocks with the keyboard plungers. Note the positioning of those two spare resistors.

Sand down one side of the contact strip, and lay some contact adhesive all over it, and the same with the soldered-in contact blocks. Make very sure that before you affix the strip onto the blocks that you have lined it up properly, as once the glue gets hold you've had it.

The contact blocks are very delicate, so handle them carefully, and don't touch the wires with your

Contact blocks and resistors and where to put 'em. Follow the drawing above to fit the block to the PCB, and then line up the angle as shown below. On the lower left is the keyboard wiring diagram which shows the connecting together of the boards and the placing of the two spare resistors. The photograph shows what it all looks alike when you've finished.

fingers. If you do you'll leave a deposit behind which may well cause malfunction. When satisfied that the assembly is O.K. position it over the plungers, and screw it down to the metalwork. Check that every plunger operates a contact, and that both contacts in each block operate when the key is depressed

Keyboard completed - wasn't that bad after all (was it?)

The contact assembly for the key. board should be the -last thing you fit into place before wiring up all the boards as per the interconnection and wiring diagrams. With this in place fit the base plate.

Alignment is best carried out with the front panel removed, and the PCBs fixed in. Before commencing alignment though, check everything very carefully.

When attaching the front panel to the machine, check that it does not foul the keyboard, and that the gap between it and the woodwork is the same at either end

Alignment

This will be dealt with in sections. To aid setting up and alignment procedures, test point waveforms are given for important nodes throughout the design.

VCO Alignment

There are several pitch controls for the VCO. All control voltages are injected via large resistors and are thus suitaby attenuated. The pitch bend pot uses a couple of diodes to produce a dead zone in the middle of its motion. This control voltage is then fed in via a 180k resistor and mixed with all the other control voltages.

Pitch Spread

The keyboard sample and hold produces 830 mV / octave. This has to be attenuated to 18 mV to produce octaves. To do this, a resistor of 46 k is required. R31 and RV3 constitutes a variable resistor (39 k 2 to 49k2) that should enable the keyboard pitch spread to be aligned.

Turn RV6, 7, 8, 9 fully anticlockwise. Put the transpose switch in its central position. Set RV5, 4 to their central position. Play the top note on the keyboard and measure its frequency, using a scope or a frequency meter, or maybe if you are a musician just listen to it! Now play a note one octave below it and adjust RV3 until the interval is one octave below it and adjust RV3 until the internal is one octave. Recheck the top note and then try the tracking for two or three octaves down, making any necessary adjustments to RV3. Note that the top note on the keyboard is not affected by RV3 adjustments. Now put the transpose switch to +2 octaves and adjust RV1 2 for a 2 octave increase. Then switch to -2 octaves and adjust RV13 for a 2 octave decrease.

VCO Shape Modulation

IC14, 13, 15 is the VCO shape modulation circuitry. IC14 is a half wave rectifier, and is used to sum together the manual shape voltage

Above: test point waveforms and voltage measurements for the VCO circuit of the synthesiser. Readings should be taken with as high an impedance meter as possible.
(RV14), and the sine wave voltage from the slow oscillator. The output from this circuit is limited to a range of 0 V to about -10 V . As the manual shape pot is rotated clockwise the waveform at the junction of R57, R59 will change from a ramp into a triangle, this being due to the full wave rectification. With RV14 fully clockwise and RV15 anticlockwise adjust RV 15 so that the waveform is a symmetrical triangle.

The last shape generator is a fast comparator. The ramp waveform plus the modulation voltage are fed into the comparator input. The modulation voltage shifts the DC level of the ramp and in doing so the comparator levels change resulting in a varying markspace ratio output, IC15 pin 6. The diodes limit the voltage excursion to about $\pm 0.5 \mathrm{~V}$.

Set the VCO to +2 octaves, tune the keyboard high and play the highest note. Now set RV10 anticlockwise, RV14 clockwise and monitor
the squarewave output, IC13 pin 6. Adjust RV11 until a very thin pulse is generated. Rotate RV14 anticlockwise and the markspace ratio will revert to 1 to 1 . Now set RV14 to 5 on the dial and slowly rotate RV15. The markspace ratio will be modulated at the speed of the slow oscillator.

There may be some problems with control breakthrough in the VCA but this can be minimised with a preset adjustment, RV22. Turn the VCO and noise levels to 0 . Make sure that the filter is not oscillating. Put the ADSR on a fast repeat with fast attack and decay and no sustain level. Set the BY-PASS switch to ADSR and look at the synthesiser output. There will probably be some control break through caused by the ADSR, which will sound like a series of thumps. By, adjusting RV22 a minimum in the thump level will be found. Just like the 3080 s in the VCF, best performance can be obtained by carefully selecting IC22.

PARTS LIST

RESISTORS (all $1 / 4 \mathrm{~W} 5 \%$ unless stated)

R1, 18,55,58, 120, 127	4 k 7	
R2, 8, 43	10 k	(0.5\%)
R3, 49, 133	12 k	
R4, 7	3 R 3	
R5, 37, 38	6 k 8	(1\%)
R6, 83, 96	1 k 0	
R9	4 k 75	(1\%)
R10, 80, 81	680R	
R11, 78,61	27k	
R12, 16, 22, 23, 70	39k	
R13.84	100R	
R14, 27, 48, 60, 69, 136	220k	
R15	1 k 5	
R17, 28, 29	10 M	
$\begin{aligned} & R 19,51,56,64,75,77,79 \\ & 89,90,93-95,97,101 \\ & 103-108,122,128,137 \end{aligned}$	100k	
R20	470k	
R21, 57, 102, 114, 119, 132	22k	
$\begin{aligned} & \text { R24, } 30,47,86,118,121, \\ & 126,131,134 \end{aligned}$	47 k	
$\begin{gathered} R 25,36,59,85,87,88,91 \\ 109,113115-117 \end{gathered}$	10 k	
$\begin{aligned} & \text { R26, } 35,39,82,92,98 \\ & 100,135 \end{aligned}$	1 MO	
R31,65	39k2	(1\%)
R32	680k	
R33, 66	130R	
R34	870 R	(RTC)
R39	1 M	(0.5\%)
R40, 62, 138	56k	(2\%)
R41	470 R	
R42, 74	15k	
R44	12k 1	(1\%)
R45	2k7	
R46	309k	(0.5\%)
R50, 130	150k	
R52	120k	
R53, 54	7 k 5	
R63, 71	390R	
R67	820R	(RTC)
R68	15k	
R72, 73, 110	2k2	
R99	3k9	
R111	390k	
R112, 123	82k	
R124	330R	
R125	8 k 2	
R129	68 k	
Keyboard chain (37 off)	27R4	(0.5\%)

POTENTIOMETERS
RV1. 3
RV2, 23-27
RV4, 5, 15, 21
RV6-10, 14, 17, 18, 28, 29
RV11 22, 28
RV12, 13
RV16. 32
RV19. 33
RV20
RV30, 31
cermet
cerm
\log
lin
lin
lin preset
cermet
\log
\log
lin preset
lin (ganged)

CAPACITORS

C1, 2, 10, 18, 26, 27, 29, 3		
C34.4	100 n	polyester
		25 electrolytic
${ }^{\text {c }}$	2 u 2	25 V tantalum
C6	330p	polystrene
C9	1 u 0	25 V electrolytic
C11, 14, 15, 17	22 n	polyester
C12, 19-21, 35, 36, 31, 48	10 n	polyester
C13	330n	polystyrene
C16, 28, 33, 46	1 nO	polystyrene
C22. 44	3n3	polystyrene
C23	22p	ceramic
C24	5pO	ceramic
C25, 41, 42, 47	140	25 V tantalum
C39.40	100u	25 V electrolytic

SEMICONDUCTORS

IC1

IC2, $3-5,7,8,10,14,15,18$,
$21,29,31-33$
IC6,9,11, 17,20,30 CA 3140

IC12 LM311
IC13
IC16.19.22 CA3080
IC25,26 CD 4001
$\begin{array}{ll}\text { IC27.28 } & \text { CD } 4016 \\ \text { IC34 } & \text { CD } 4030\end{array}$
$\begin{array}{ll}1 \text { C34 } & \text { CD } 4030 \\ \text { C. } 35 & \text { CD } 4006\end{array}$
Q1 TIP 29A

Q3 TIP 30A
Q4,5 BF 244C
Q6, 13, 15, 20-22 BC 182
Q7,9,10, $12 \quad$ CA 3046
Q8
CA 3046 (2 off)
Q11,14,16-19 BC 212
D1-37 IN4148
ZD1
ZD2, 4
ZD3
BR 1
$\begin{array}{ll}4 \mathrm{~V} 7 & 400 \mathrm{~mW} \\ 5 \mathrm{~V} 6 & 400 \mathrm{~mW} \\ 3 \mathrm{~V} 3 & 400 \mathrm{~mW}\end{array}$
RS 261772 (1A at 400 V)

SWITCHES ${ }^{-}$
SW1
SW2, 3, 6,8 DPDT 250V AC

SW5, 7, 10
changeover
single pole slide changeover
1 pole (2 way) rotary
double pole slide

VCF Alignment

The VCF pitch spread should be set up as follows. Turn off RV16 and RV33. Switch the filter 'CONTROL' to KB, the 'RESONANCE' to 'OSC' and the 'AD SWEEP' to 0 . Play the top note on
the keyboard and adjust the 'FREQUENCY' pot to give a 1 kHz sinewave output. Now play a note, one octave below the top note and adjust the present RV20 for a one octave decrease. Check the lower octaves making any necessary adjustments to RV20.

Turn the Resonance pot anticlockwise until the filter stops oscillating. Turn up the VCO level and insert a ramp waveform at a frequency of about 100 Hz . Now switch the VCF 'Control' to RANDOM. The tone of the filtered signal should now vary randomly.

Main overlay for the Transcendent 2000 synthesiser design. As you may notice only a little over half the board is shown here. The other half you'll find over the page.

The reason for this is simply that with a PCB of this size our pages are too small to hold the diagram and still have it readable.

Foil patterns are not shown here, and the PCB is available from Powertran - see BUYLINES for details.

The two sets of contacts shown are mated with the Chiri connectors from the back panel wiring. Make sure the pins are straight, and that no solder has run down from the board, or the plug will not fit properly.

On the lower right is shown the PSU board overlay. Note that Q3 and Q1 require to be heatsinked for correct operation.

Both the boards should be checked very carefully during assembly, and make sure you use the switch spacers on the main PCB. Cut the pot spindles before mounting them.

Problems?

Any problems in the VCF circuitry are likely to emanate from IC 16 or IC19. If there are any large input offset voltages or current mirror imbalances or output leakage currents, then these will degrade the VCF performance. What will probably occur is that there will be a large DC offset voltage on the outputs that varies as the resonant ifrequency varies. This may cause severe signal dipping at certain frequencies and will only be cured by replacing the errant 3080.

The filter has two outputs, a bandpass and a lowpass. The signal volume will generally be less from the, bandpass output because this output
attenuates all but the harmonics that lie close to its own resonant frequency, whereas the lowpass output has a flat response area which extends from somewhere just below resonance down towards low frequencies, and harmonics in this region are not affected.

Sweeping Statement

The 'synthesiser sound' is generated by sweeping the VCF resonant frequency with an AD waveform. This sweep voltage is variable in both depth and direction. The sweep pot is a dual pot; on one of its tracks there is an $A D$ waveform at one end and the inverse at the other. Thus the wiper
will pan from a sweep going upwards to one going downwards. Two diodes provide a dead zone in the middle so that a pot position of No Sweep can be easily found. The second track on the AD sweep pot is used to provide a compensating DC level shift so that the frequency pot doesn't need to be retuned when the AD sweep depth is altered.

ADSR Alignment

Set up the VCO and VCF so that a ramp waveform at 500 Hz is presented to the VCA. Turn the RELEASE pot fully clockwise and put the BYPASS switch in the ADSR position. Listen to the VCA output

and adjust RV28 so that the signal only just disappears. Now you can play the keyboard and experiment with different sounding envelopes.

This completes the alignment procedures for the design, and the front panel can now be fitted over the main PCB and the control lenobs added.

Take care with the panel and keyboard positioning. See the diagrams where applicable.

Program Sheets

Once your machine is up and running, you will find that if you use it frequently, some method of recording various settings would be useful. This gives the ability to return to a particular sound very quickly and can be particularly useful in stage work.

As an aid to usage ETI is making available Program Sheets for the Transcendent 2000. These allow all control settings to be recorded for any configuration, and each sheet will record three completely independent sound settings. These cost 50 p for six, including postage, from our 2527 Oxford Street address. Mark the envelope " 2000 Program Sheets"

Clearing Points

Play testing since last month's article has shown that the synthesiser works better if. (numbers referred to circuit diagrams and overlay) C17 is changed in value to $4 n 7$, as this increases the NPD sensitivity and C9 is removed entirely from the circuit, this preventing 'clicking' which sometimes arose upon operation of the keyboard.

Two minor gremlins to be laid to rest. Last month we gave (on the circuit) the circuit reference for the Transpose switch as SW3. It should be SW5. Also the undesignated KB/

Above: back panel wiring diagram. The connectors attach to the main PCB as shown on the overlay. The mains switch supplied with the kit contains a neon and the wiring takes account of this If you use a different type of switch, the wiring will be different. Below: an example of the program sheets for the Transcendent 2000. These are used by simply marking on the settings for each

ETI TRANSCENDENT 2000

BUYLINES

A complete set of parts for this pro ject, including all woodwork, metalwork, nuts and bolts, PCBs and components will be available from Powertran Electronics

The machine used to illustrate this article was assembled using this kit, and constructional details will be based upon it. Kits will only be available from Powertran, as will the PCB. Because the design is based upon a single board construction, we cannot
offer advice to people wishing to modify the synthesiser to a 'modular' form.

The price of the complete kit, including keyboard, will be $£ 186.50$ + VAT. However, if you're quick and put in your order before July 30 th you can take advantage of an introductory offer at an even lower price of $£ 172+$ VAT.
Powertran Electronics, Portway in dustrial Estate, Andover, Hants.

Alentronicos tovity

SEPTEMBER ISSUE: ON SALE 4th AUGUST

$\xrightarrow{4}$

THE SHUTTLE

NASA's Shuttle seems to have been hidden in the wake of the Apollos: although it represents the next (and very important) step in the colonisation of space, the details of this dumpy 'space bus' have up till now been somewhat neglected. We take the wraps off the Shuttle and show that there's still plenty of high-technology innovation taking place in the States.

Stage Lighting Unit

A professional-quality unit suitable for a studio theatre: a two-master control desk allows the lighting for the next scene to be set up ready for an instant change-over; 19"-rack modular SCR power handling units allow a choice of 2.5 kW per channel with easy maintenance and the capability to drive flourescent lamps without ballast resistors; a modified control curve gives a subjectively more linear light output response; a minimumoutput control gives extended bulb life. All of these features have been designed into a unit which, without technical compromise, is still very cheap indeed compared to current commercial systems.

CROSS-HATCH GENERATOR

FEATURE: Rock Sound

Concert sound systems come in many different sizes, shapes and forms and we've yet to find two that sound identical. So how much do you go about designing a state-of-the-art system which will stand up to the rigours of the road? We take a look at the 28 ton lyes, ton!! system used by Abba and Rod Stewart when they toured Australia last year.

Wheel of Fortune

An electronic roulette wheel - not just another LED dice unit, but an all-singing, all-dancing sonic and visual wheel of fortune electronic simulation! Step right this way, folks .

THE MK 14 REVIEWED

At under $£ 50$ the Science of Cambridge MK 14 microprocessor evaluation kit must surely be the cheapest on the market how good is it?

> Features mentioned here are in an advanced state of preparatinn but circumstances may affect the final contents.

ADVANCED PRODUCTSUTER

 AT FAIR PRICES NOW LOWERS PRICES EVEN FURTHER!1. Proven Quality
2. Same Day Shipment All prepaid orders with cashiers

S100 PRODUCTS

TDL COMPATIBLE Z-80 CPU	
* Compatible to TDL	* Can be upgrad
sottware \& hardware	for 4 MHz operation
Assembled and tested	\$199.95
	\$139.95
Bare PC Board	\$ 34.95

BYTE USER 8K EPROM BOARD	
* Power on Jump	- Reset Jump
Assembled \& Tested	. 94.95
Kit	64.95
Bare Pc Board	21.95
Special Offer: Buy 4 NOTE: 2708	nly $\$ 59.95$ each $\$ 5.95$

8080A CPU BOARD

TARBELL FLOPPY INTERFACE

* S100 Compatible \quad Uses CPM Assembled and tested …....... $\$ 269.95$ Bare PC Board …......... \$ 39.95
NOTE: For CPM Add $\$ 70.00$
Documentation Add $\$ 20.00$

WMC REAL TIME CLOCK

* S100 Compatiol
* Software programmable
* 1 MHz Crystal Oscillator

Assembled and tested
Bare PC Board w/data
$\$ 179.95$
$\$ 124.95$

MICRODESIGN MR-16 2716 EPROM BOARD (MR-8 Also Availab
■ Individual Prom Address
■ Uses Low cost 16 K TI EPROMS

* Optional K KAM \downarrow Phantom

Assembled and Tested
$\begin{array}{ll}\text { Assembled and Tested } & 174.95 \\ \text { Kit } & 99.50\end{array}$

PARATRONICS
ANALYZER KIT

Trigger Expander Model 10. Baseplate
Model 10 Manua

DC HAYES DATA CO CATIONS ADAPTER

CATIONS ADAPTER
Telephone/TWX S. S. 100 compatible
$\begin{aligned} & \text { Assembled \& Tested } \\ & \text { Bare PC Board w/data }\end{aligned} \begin{aligned} & \$ 279.95 \\ & \$ 99.95\end{aligned}$
$\$ 219.95$ $\begin{array}{r}\$ 229.00 \\ +\quad 9.95 \\ \hline 3.05\end{array}$ 4.95
369.00

N1-

6800
$\$ 235.00$
495.00
17500
75.00
99.00
250.00
36.00
250.00
375.00
295.00
225.00
60.00
395.00
395.00
5.95
145.00
269.95

EVK 16 K Byte Ram Board
EVK 6 SIot Motherboard
EVK Extender Board
EVK Solid Frame Chassis
EVK Connectors
AMI 6800 Proto Rom
AMI 6800 Proto Rom
6800 Tiny Basic Paper Tape
6800 Tiny Basic Paper Tape
ZILOG COMPATIBLE BOARD
Z.80 CPU
ZDC DIsc Controller
269.95
$\begin{array}{lr}80 \text { CPU } & 395.00 \\ \text { EM } 16 / 65 \mathrm{~K} \text { Memory } & 395.00 \\ & \end{array}$
449.95
64900 $\begin{array}{r}95.00 \\ \hline \quad 75.00\end{array}$ $\begin{array}{r}75.00 \\ -\quad 35.00 \\ \hline \quad 129.00\end{array}$
45.00
$\times \quad 129.00$ 29.00
6.50
30.00 30.00
30.00 30.00
20.00 20.00
125.00

RDS

Retail Store Open Mon, - Sat. Located at 1310 " 8 " E. Edinger Santa Ana, CA 92705

GREENNWVELD SO1 OHX Tel:(0703) 772501 All prices quoted include VAT. Add $25 p$ UK/BFPO Postage. Most orders
despatched on day of receipt SAE VALUE £1. Official orders accepted from schools, etc. (Minimum invoice charge £5). Export/Wholesale enquiries welcome. Wholesale list now available for bona-fide traders. Surplus components always wanted.

DIODE SCOOP!!!

 We have been fortunate to obtain a large quantity of untested, mostly unmarked glass silicon diodes. Testing a sample batch revealed about 70% useable devices signal diodes, high voltage rets and zeners may all be included. These are being offered at he incredibly 2500 er $£ 25$. 00 10000 £8. Box of $25,000 £ 1750$. Box of 100,000 £,60.SPECIAL SUMMER OFFERS $76003 \mathrm{NE} 1.40 \quad 76013 \mathrm{~N} £ 1.00$ $76023 \mathrm{NE} 1.00 \quad 76033 \mathrm{~N} £ 140$ LM380 80p TBA8108 90p Linear ICs etc $\begin{array}{lll}555 & \mathbf{2 5 p} & \text { BD } 131 \\ 5 & \text { BD } 132\end{array}$ $\begin{array}{llll}1 N 4148 & 2 p & 2 N 3819 & 18 p\end{array}$ TTLPANEL 52 logic ICs including 32×74161 (4 bit binary counter) +16 tant bead caps, R s. C's, etc. Over E 30 worth of TTL alone!
ONIY \&3 OO ONLY E3.00.

DISC CERAMIC PACK Amazing variety of values and voltages from $£ 2.25,1.000 £ 4.00$.

PC ETCHING KIT MK IH Now contains 1 lb Ferric Chloride. DALO etch-resist pen, abrasive cleaner two miniature drill
bits, etching dish and instructions. $£ 4.25$. EDGE CONNECTORS Special purchase of these 0.1 pitch ables us to offer them at less than one-third of their original list price!
18 way 41 p; 21 way 47 p; 32 way 72 p; 40 way 90p.

VEROCASES
Plastic top and bottom, ally panels front and back.
$\begin{array}{ll}1237 & 154 \times 85 \times 40 \\ 123 B & 154 \times 85 \times 60\end{array}$
$1239 \quad 154 \times 85 \times 80$
$3007 \quad 180 \times 120 \times 40$
$3008 \quad 180 \times 120 \times 65$
$3009 \quad 180 \times 120 \times 90$
$1410 \quad 205 \times 140 \times 40$
$412 \quad 205 \times 140 \times 110$
AMPLIFIER KITE1.75
Mono gen. purpose amp with tone and above amp. Output 2 W into 8 ohms. Input matched for crystal carridge 4 transistor circuit. Simple to buitd on PCB provided Can be either battery or mains operated (For mains powered version add £.2.20 for suitable transformer) Blue vinyl covered atuminium case to suit (W372) $£ 1.30$.

1977/8

CATALOGUE

48 BIG pages packed with over 4,000

 items. many of them illustrated. Discoun vouchers worth 50 p. PRICE 30p $+15 p$ post (Overseas send 60p surface of \mathbf{E} airmail.) Also included is our current Bargai List. Send SAE for bargain list alone
SIRENS

Use in cars, houses, anywhere that a powerful noise will frighten off would-be $100 \times 72 \times 60 \mathrm{~mm}$. Only $£ 1.70$.

BUY A COMPLETE RANGE OF COMPONENTS AND THESE PACKS WILL HELP YOU

- SAVE ON tIME-No delays in waiting for parts to come or shops to open!
Save on moner - Bulk buying means fowest prices - just compare with others!
- have the right part - No guesswork of substitution necessary!
ALL PACKS CONTAIN FULL SPEC BRAND NEW, MARKED DEVICES - SENT BY RETURN OF POST. VAT INCLUSIVE PRICES.

VEASTIC BOXES Protessional quality two tone grey poly-
styrene with threaded inserts for mounting styrene with threaded inserts for mounting
PC boards $2518 \quad 120 \times 65 \times 40$ $\begin{array}{ll}2520 & 150 \times 80 \times 50 \\ 2522 & 188 \times 110 \times 60\end{array}$

SLOPING FRONT BOXES $\begin{array}{lll}1798 & 171 \times 121 \times 75 / 37.5 & \mathbf{£ 4 . 1 9} \\ 2523 & 220 \times 174 \times 100 / 53 & \mathbf{E 6 . 9 0}\end{array}$ Potting box. $71 \times 49 \times 24 \mathrm{~mm}$ black or white 40p
Hand controller box $94 \times 61 \times 23 \mathrm{~mm}$, white 64p

VERO PINS AND TOOL
Spot face cutter for 0.1 or 0.15 pitch 75p
0.1 pins single sided 30p/100
0.1 pins double sided 35p/100 0.15 pins single sided 30p/100 We keep a very large range of VERO pro ducts - inc their recently introduced range of cases. and Series II boxes. SAE fo their catalogue
LOW COST PLASTIC BOXES Made in high impact ABS The lids are
retained by 4 screws into brass inserts. retained by 4 screws into brass inserts.
Interior of box has PCB guide slots (except Interior
V219).
V219)
$\checkmark 210 \quad 80 \times 62 \times 40 \mathrm{~mm}$ black
V213 $\quad 100 \times 75 \times 40 \mathrm{~mm}$ black
V219 $120 \times 100 \times 45 \mathrm{~mm}$ white
STEREO AMPLIFIER CHASSIS £5.50
Complete and ready built. Controts Sass, treble. volume / on-off, balance. 8 transistor needs transformer and speakers for low cost stereo amp. Suitable metal cabinet (W374) $\mathbf{£ 2 . 0 0 ~ - ~ o r ~ b u y ~ t h e ~ a m p . ~ c a s e ~ a n d ~ t r a n s - ~}$ former for £ 10,00 and get DIN speaker58p
72p

K 00150 V ceramic plate capacitors. $5 \% .10$
of each value 22 pF to 1000 pF . Total 210 . £ 3.35
$\kappa 002$ Extended range. 22 pF to $0.1 \mu \mathrm{~F} .330$ values E4.90
$K 003$ Polyester capacitors, 10 each of these values $0.015,02,033.04 \mathrm{~F}$ $0.06,0.0 .37$

K004 Mylar capacitors, min 100 V type. 10 each all values from 1000pF to 10.000 pf Total 130 for $£ 3.75$
K009. Extended mylar pack Contains all values from 1000 pF to $0.47 \mu \mathrm{~F}$ Total 290 capacitors to £11.25
$K 005$ Polystyrene capacitors, 10 each value from 10 pF to 10.000 pF . E12 Series 5\% 160V. Total 370 for £ 12.30
K006 Tantalum bead capacitors. 10 each of the following $0.1,0.15,0.22,0.33,0.47$ $0.68,15,6,221633 / 1047 / 6$ 100/3. Total 170 zants for $£ 14.20$
$K 007$ Electrolytic capacitors 25 V working, small physical size 10 each of these popular values $1,2.2,4.7,10,22,47,100 \mu$ Total 70 for $£ \mathbf{3 . 5 0}$
K008 Extended range, as above, also including 220. 470 and $1000 \mu \mathrm{~F}$. Total 100 for $£ 5.90$
K021 Miniature carbon film 5\% resistors CR25 or similar. 10 of each value from 10 R to 1 M . Ef 2 series Total 610 resistors £. 6.00
K022 Extended range, total 850 resistors from 1 R to $10 \mathrm{M} £ 8.30$
K041 Zener diodes. $400 \mathrm{~mW} 5 \%$ BZY88 etc 10 of each value from 27 V to 36 V . E2 series. Total 280 for $£ 15.30$
K042 As above but 5 of each value $\mathbf{£ 8 . 7 0}$

PET 2001

SOFTWARE

AVAILABLE NOW!

SOPHISTICATED, INTENSELY PRACTICAL AND EASY-TO-USE SOFTWARE, covering:

01 Investment Decisions

 02 Statistics 03 Mathematics 04 Personal Finance Management 05 Small Business Management 06 Appointment Scheduling 07 Stock Exchange Portfolio Management 08 P.A.Y.E.For further details, please apply:

DAVID JAMES EDINSMITH COMPUTER SERVICES 11 STOKE HILL STOKE BISHOP BRISTOL, BS9 1JL

data sheet

The ICM 7208 is available ex stock from Rapid Recall Ltd, 9 Betterton Street, Drury Lane, London, WC2

Features:

- Useful for:
a. Unit counter
b. Frequency counter
c. Period counter
- Low operating power dissipation $<$ 10 mW
- Low quiescent power dissipation < 5 mW
- Counts and displays 7 decades
- Wide operating supply voltage range

$$
2 V \leqslant\left|V_{D D}-V_{S S}\right| \leqslant 6 V
$$

- Drives directly 7 decade multiplexed common cathode LED display
- Internal store capability
- Internal inhibit to counter input
- Test speedup point
- All terminals protected against static discharge

Description

The ICM 7208 is a fully integrated seven decade counter-decoder-driver and is manufactured using the Intersil low voltage metal gate C-MOS process. As such it has applications as either a unit, frequency or period counter. For unit counter applications the only additional components are a 7 digit common cathode display, 3 resistors and a capacitor to generate the miltiplex frequency reference, and the control switches.

Specifically the ICM 7208 provides the following on chip functions: a 7 decade counter, multiplexer, 7 segment decoder, digit \& segment drivers, plus additional logic for display blanking reset, input inhibit, and display on/off.

The ICM 7208 is intended to operate over a supply voltage of 2 to 6 volts as a medium speed counter or over a more restricted voltage range for high frequency applications.

As frequency counter it is recommended that the ICM 7208 be used in conjunction with the ICM 7207 Oscillator Controller which provides a stable HF oscillator, and output signal gating.

Testing Procedures

The ICM 7208 is provided with three input terminals: $7,23,27$ which may be used to accelerate testing. The least two significant decade counters may be tested by applying an input to the 'COUNTER INPUT' terminal 12. 'TEST POINT'
terminal 23 provides an input which bypasses the 2 least significant decade counter. Similarly terminals 7 and 27 permit rapid counter advancing at two points further along the string of decade counters.

Counter Input Definition

The internal counters of the ICM 7208 index on the negative edge of the input signal at terminal \#12.

Format Of Signal

The noise immunity of the Signal Input Terminal is approximately $1 / 3$ the supply voltage. Consequently, the input signal should be at least 50% of the supply in peak to peak amplitude and preferably equal to the supply. NOTE: The amplitude of the input signal should not exceed the supply; otherwise, damage

Fig. 1. Pinout.

Fig. 2. Absolute maximum ratings.

Power Dissipation (Nore 1)	1 watt
Supply voltage $/ \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}} \mid$ (Note 2)	6 V
Output digit drive current (Note 3)	150 mA
Output segment drive current	30 mA
Input voltage range (any input terminal)	Not to exceed the supply voltage
Operating temperature range	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage temperature range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

- Absolute maximum rating define parameter limits that if exceeded may permanently damage the device.

Fig. 3. Typical operating characteristics.

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Quiescent Curent	'DD1	All controls plus terminát 20 connected to $V_{D D}$ No muluplex oscillator		30	100	$\mu \mathrm{A}$
Quiescent Current	TDO2	All contro inpurs plus terminal 20 connected to V_{DD} "xcept store which is connected $10 \mathrm{~V}_{\mathrm{SS}}$		70	150	μA
Operating Supply Current	$\mathrm{I}_{\mathrm{DDS}}$	All inputs comected to V_{DD}. RC multuplexer ose operating $f_{\text {in }} \cdot 25 \mathrm{KHz}$		210	500	$\mu \mathrm{A}$
Operating Supply Current		fin 2 MHz			700	$\mu \mathrm{A}$
Supply Voltage Ronge	$V_{\text {OD }}$	${ }_{\text {in }} 2 \mathrm{MHz}$	3.5		5.5	V
Digit Driver On Resisitance	R_{D}			4	12	ohm
Digit Driver Leakage Current	${ }^{1} \mathrm{D}$				500	$\mu \mathrm{A}$
Segment Driver On Resisłance	${ }^{R}$ S			40		ohm
Segment Driver Leakage Current	'S				500	$\mu \mathrm{A}$
Pullup Resistance of Reset or Store Inputs	Rp		100	400		Kohms
Counter Input Resistance	$\mathrm{R}_{1 \mathrm{~N}}$	Termind $\overline{12}$ either at $V_{\text {DD }}$ or $V^{\text {SS }}$ potentials			100	Kohms
Counter Thput Hysteresis Voltage	$V_{\text {HIN }}$			25	50	mV
NOTE 1 This value of powet dissipatinn releis th that of the package und will not be obtained under normal operating conditions. NOTE 2 The supply valtage musi be applied beture or at the sume time as anv inpuivoltage. This poses no problems with a single power supply system it a multiple porvel supuly system is usad, it is mandatory that the supply for the ICM 7208 is not switched on alter the other supplies owher wisi the device may be permanently damayed NDTE 3 The outpue digit drive cuirent must be limuted to 150 mA : iess under steady state conditions tShort ferm transients up to 250 mA will nut sturdige the device ! Therelure, depending upon the LED display and the supply voltage to be used it may be necessaly to include additional seqment series resisturs 10 limit the digit turrents						

may be done to the circuit.
The optimum input signal is a 50% duty cycle square wave equal in amplitude to the supply. However, as long as the rate of change of voltage is not less than approximately $10^{-4} \mathrm{~V} / \mu \mathrm{sec}$ at 50% of the power supply voltage, the input waveshape can be inusoidal, triangular, etc.

Display Considerations

Any common cathode multiplexable LED display may be used. However, if the peak digit currents exceeds 150 mA for any prolonged time, it is recommended that resistors be included in series with the segment outputs (terminals $2,3,15,17,18,26,28$) to limit current to 150 mA .
The ICM 7208 is specified with $500 \mu \mathrm{~A}$ of possible digit leakage current. With certain new LED displays that are extremely efficient at low currents, it may be necessary to include resistors between the cathode outputs and the positive supply $V_{D D}$ to bleed off this leakage current.

Display Multiplex Rate

The multiplex frequency reference is divided by eight to generate an 8 bit sequencer. Thus the display multiplex rate is one eighth of the multiplex frequency reference.

The ICM 7208 has approximately $0.5 \mu \mathrm{~s}$ overlap between output drive signals. Therefore, if the multiplex rate is very fast, digit ghosting will occur. The ghosting determines the upper limit for the multiplex frequency reference. At very low multiplex rates flicker becomes visible.

It is recommended that the display miltiplex rate be within the range of 50 Hz to 200 Hz which corresponds to 400 Hz to 1600 Hz for the reference frequency.

Control Input Definitions

INPUT	TMNL	VLTG	FUNCTION
1. Display	9	$V_{\text {DD }}$	Display on
		$V_{\text {SS }}$	Display off
2. Store	11	$V_{D D}$	Counter Inform. Stored
		$V_{\text {SS }}$	Counter Inform. Transferring
3. Inhibit	13	VDD	Input to Counter Blocked
		$\mathrm{V}_{\text {SS }}$	Normal Opertn.
4. Reset	14	$V_{\text {DD }}$	Normal Opertn.
		VSS	Counters Reset

MAXIMUM COUNTER INPUT FREQUENCY AS A FUNCTION OF SUPPLY VOLTAGE

SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

SEGMENT OUTPUT CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

SUPPLY CURRENT AS A FUNCTION OF COUNTER INPUT FREQUENCY

Fig. 4. Typical performance charactieristics

Fig. 5. Unit counter schematic.

SUPER SUMMER BARGAINS WITH WATCHES AND T.V. GAMES KITS

ETIWET PLANT WATERER

WATER, WATER, EVERYWHERE and not a drop to drink runs an old poem, well plants need to quench their thirst as well as humans - and during holiday time most are left to wilt. In the interests of flower power we decided to produce a unit that would refresh the plants that owners could not reach, hence the ETI WET.

The unit consists of a sensor, timer and electric water pump. The sensor is embedded in the soil and when dry the electronics operate the water pump for a preset time - thus infusing the plant with thirst quenching water. When the plant has drunk its fill and the sensor is dry again the cycle repeats. In this way you can soak up the sun in the knowledge that your prize plant is getting its fair share at home.

Construction And
 Calibration

The electronics are mounted on the PCB, using a socket for the IC. We used a plastic card filing box for the case and a 5 litre container to hold the water supply. Make sure you drill an extra small hole in the cap of the water container - so that air can replace water when the pump operates.

We used a small 6 V pump (see buy lines) but other pumps can be used. For example a pet shop can probably supply small pumps (used in fish tanks) and pumps are available from most car accessory shops (used for windscreen water). If the pump you use needs 12 V the battery will need changing - the electronics will work at this higher voltage.

The moisture control and water

If your plants suffer from a drink problem let our ETI WET look after them when you are away, ensuring that they get their daily dose of life giving liquid.

Head on view of the completed prototype, the LED can be left out if you want extended battery life.
flow control need careful setting - to ensure that the plant gets enough water, but not too much. When first switched on the ETI WET will pump water for the time set by the water flow control - use this water to wet
the soil around the plant, with the probe in position.

With a properly watered plant, adjust the moisture control until the ETI WET feeds more water - then reduce the setting.

On the left is an internal shot of our prototype, notice how we used screws to give extra 'bite' to the epoxy holding the tube connections on the front panel. Below is the overlay for the PCB.

BUYLINES

The electronic parts for this project should present few problems. Sources for tubing and the connectors include chemical equipment suppliers and your local home brewing shops. The pump we used came from Proops Bros. Lid, The Hyde Industrial Estate, Edgeware Road, Hendon, London NW9 6JS and costs $£ 2.30$ inclusive of VAT and postage.

HOW IT WORKS

The circuit is composed of three main sections: Level sensitive Schmitt trigger, variable time monostable and output driver. The level sensitive Schmitt is formed from ICIa and ICIb with the probe and R1, RVI forming a potential divider on its input. When the resistance across the probe increases beyond a set value (ie the soil dries), the Schmitt is triggered. C2 feeds a negative going pulse to the monostable when the Schmitt triggers and R2 acts as feedback, to ensure a fast
switching action.
The monostable (IClc and ICld) time period is determined by the values of C3 and R4, RV2. When triggered by the Schmitt the monostable turns on Q1, Q2 which drive the water pump. The monostable will only trigger with negative going input pulses, and therefore unless the probe has been shorted (by water) the Schmitt cannot retrigger the monostable. This acts as a fail safe to prevent the plant from drowning!

							ENTRE OR, BERKS T WELCOME) CREDIT CARD					ORDERS		IS MONTH] UP PRICE			
QUANTITY DISCOUNT FOR 100 OF ONE TYPE 10\% OFF 1 UP PRICE																	
marked'. Add $12 \mathrm{y} / 2 \%$ VAT so all other prices. Free price lias send $\mathbf{S . A . E}$. All devices to makere apectications. Plesee quote ETI ed as prices may change. E.e. O.E. 1978. Cellers metcome Tuen to sar (Lunch 1-2). CNOS TOP Yalue																	
	PP3 or PP9 Clips. Pair 15p*		Look at our Pak T. Ton Plastic Power , El ALL FULL SPEC BRANDED							CMOS TOP YALUE							
	Plugs. All 19 p	BR100 Diat 25p*									15p*	4067	¢4*	Vo			
	Sockuts. All 10p	C1060 4A 400v SCR 55p*	Or Pak C: 4×2 2M3055			401	9p*	7476	35p*	4002	17p*	4069	22p*				
	Disca Strobe Tute ${ }^{\text {c }}{ }^{\text {* }}$	TAG 1/400 lamp 55p*. ${ }^{\text {che }}$	Matching 20p*. las Kit 10p*			202	10p*	7480	$39 p^{*}$	4006	£! *	4070	32p*	741C Full spac	0118		
	DEVELOPMENT PAR-	$600{ }^{\text {che }}$ 65p*	${ }^{\text {ACL }} 127$	17p* BFY50	16p**	7403	10p*	7481	¢1**	4007	18p*	4071	$21 p^{*}$	8randed Op Amp	19p*		
ICfo	CELS. All 55 each	Switches Mini SPST 55p*	${ }_{\text {ACP }}$ C176	10p* BFY51	16p**	7404	17p *	7482	[1*	4000	92p*	4072	21p*				
	SET 1: 250x50 volt Ceramic	Mini OPDT 69p*. Centre of	AC187	20p* 85×29	28p*	7405	9p*	7483	¢1*	4009	58p*	4073	21p*	NEW LINEARS Oata	10p		
All full spee Grade 1 displa	Capacitors 5\%. 10 each.	89p*	A0161	40p* BSX20	180**	7406	28 p *	7485	[1*	4010	58	4075	23p*	TLI70 Hall effect	69p*		
01704 CC or OL707 CA 0.3	Fram 22pi to 0. lui ef	Slide Switch 25p*	${ }^{\text {AF }} 162$	40p* M. 22955	£1	7407	28p*	7486	$35 p^{*}$ * 3 -4011		15p*	407	£1.29*	TLO71 La moise 741	75p*		
¢1.25	SET 2: Tantalums luf to	Push '0n ${ }^{\text {c }}$	${ }_{4} \mathbf{4} 239$	42p* MJE340	44p**	7408	12p*	7490			18p*	4077	40p*	TLO91 FET 8p. 741	69p*		
FMO500 CC/161 C $0.66^{\prime \prime}$	200 ut 20 v to 35 volt. Total	FULL SPEC PAKS ALL Ei	BC107	8p* MJE2955	£1*	7409	12p*	7491	$36 p *$$75 p^{*}$35040124013		55p*	4078	21p*	TL083 FET 747	[1.49*		
¢1.25*	50 capacitars ¢5	Pak A: $12 \times$ Red LEDS E1*	8C108		80p*	7410	10p*	7492		40154016	93p*	4081	22p*	TLO80 FET 748/308 E	E1.15*		
MAM6A Type/161A 0.6"	SET 3: Eeciralytic 25 volt	Pak B: $6 \times 741 \mathrm{C} 8$ pin	${ }^{8 C 109}$	${ }_{19} \mathrm{pa}^{*}$ mpul31	${ }^{35 p}{ }^{\text {p }}$	7411	${ }^{22 p}{ }^{\text {2p* }}$	7493			52p*	4082	$21 p^{*}$				
£1.25	10 each (80]) $1 / 2 / 5 / 10 /$		${ }^{81} 109 \mathrm{C}$	15p* ORP12	$55^{* *}$	7412	22p*	7494	$\begin{aligned} & 35 p^{*} \\ & 75 p^{*} \end{aligned}$	4017	99p*	4089	£1.50*	IC SUPERMARKET			
0L747 CA or OL 750 CC	47/100/220/1000 55	Pak C: $4 \times 2 \mathrm{MI} 3055.103$	BC147	12p* IPP4iA	600**	7413	28p*	7495	75p ${ }^{\text {\% }}$	4018	99p*	4093	85p ${ }^{\text {* }}$	301 Op Amp	${ }^{30}{ }^{\text {a }}$		
£1.69**	SET 4: $1 / 1 /$ watt Resistors $51 / 4$	£1*	BC148	12p IP42A	65p**	7416	$28{ }^{28}{ }^{\text {a }}$	7496	$\begin{array}{r} 85 p^{*} \\ \qquad 1,15 \end{array}$	4020	E1*	4507	55p*	555 Timar [ME555]			
Clock IC AY51224 E3*	C.F. 10 asth 10 ohem to 10	Pak D: $12 \times \mathrm{BCI} 09 \mathrm{E1*}$	BC149	12p T1P2955	60p*	7417	28p*	74100		4021	£1*	4508	E3*	556 Dual 555			
	meg ohm. Total 500 . 8ulk	Pak E: $13 \times 8 \mathrm{Cl} 182$ E1	BC157	15p TIP3055	50p*	7420	10p*	74107	29p*	4022	90p*	4510	E1.35	710 Comparator	40p*		
LEDS. Bright full spec.	packed in 1 bag £5	Palk F: $13 \times 2 \mathrm{n} 3704 \mathrm{E1}$	BC158	15p T1543	35p	7423	26p*	74121	27p*	4023		45	E1.6	723 Regulator	45p*		
2'0 or 0.125" Red 10p*	SET 5: Zeners 400mm 5	Pah G: $7 \times$ BFY il E1*	BC159	15p 2N2646	39p*	425	$26 p^{*}$	74123	59p*		76 p	45	98p*	741C 8 Pin OIL OPA	19p*		
TIL209 Red \& Clip 12p*	anch. 20 valuas 3 welt to	Pak H: $7 \times 2 \times 3819$ elet	BC167	10p 2N2905	22p*	7426	26p*	74141	$\begin{gathered} 95 p^{*} \\ \text { £3.144* } \end{gathered}$	4025	19p*	4514	E2.65*	74IC 7099 or OIL 14	39p*		
0.2" Dis Hed \& Clip 12p*	33 valt (Total 100) £5	1	BC168	11p 2 N 29264	$10 p$	7430	10p*	74143		4027	55p*	4516	E1.28	748 C [p Amp	33p*		
Yelow or Green Lios	SET 6: -100 Presets £5	New Pak I: $10 \times$ Metal	BC169	12p ${ }^{213} 3053$	$16 p^{*}$	7432	20p*	74145	$\begin{gathered} \text { £3.14* } \\ 85 p^{*} \end{gathered}$	4028	90p*	4518	£1.05	3900 Ouad Op Amp	55p*		
$0.2^{\prime \prime}$ or 0.125" Dia. All20p*	SET 7: Heatsinks. 10 dH.	Trim. Knob 1/i" dia \|sym.	BC177	18p ${ }^{\text {c }}$ 233055	45p	446	$14 \mathrm{P}^{*}$	74147	£1.69*	4029		4520	E1.10*	78051 Amp 5 valt	95p**		
12 vall fluarescent Light	Each T018. T05. TV4	thesiser etc.] [1**	${ }^{8 C 178}$	16p* 2N3614	£1*	1	79p*	74152	$\begin{aligned} & \mathfrak{£ 2 *} \\ & \mathfrak{E} 2^{*} \end{aligned}$		58p*	4521	E2.68*	7805 T03309\%1			
E5*	(T099) and small 103	Pak J: $6 \times 2 \mathrm{l} 3053 \mathrm{fl*}$	8C179	18p* 203702	$9 p$	7442	${ }^{87 p^{*}}$	74155			E1*	4522	12*	7808 or 7812	E1.25*		
Jackson Tuner 370pt E1	¢5*	Pak K: $50 \times 1 \mathrm{l} 4148$ ¢1	BC182	10p 2243704	$9 p$	7445	69p*	74155	$8{ }^{\text {82 }}{ }^{\text {* }}$	4034	¢2*	4528	99p*	781515 vall plastic	69p*		
Trimmer $0-8$ or 5 to 40pi	Passive geat	Pak L: $50 \times 33 \mathrm{uf} 10$ veh	BC183	10p 203706	${ }^{9 p}$	7446	88p*	74156	$80{ }^{\text {8 }}$	4035 £1.20		4534	¢7.88*	7900 Negative Series			
25p	hesistors 1/2 wall 5\% CF 2 p	alectrolytic £1	8C184	10p 213319E	18p	7447	82p**	74157	E1*	4038 £1.08*4040 ¢4		4536	E3.60*		£2.50*		
Coil Former \& Slug 0.3" Dia	Presets Type PR Vert 10p	Pak M: $4 \times$ Pairs Plastic	BC212	12p 203820	38p	7448	¢1*	74164	E1**			454	£1.50*	8038 Sig Generator	E3.55*		
25p	Type 45 Pots Log 8 Lin $25 p$	Power 2 amp 60 volt .	BC213	12p 2N3904	15p	7450	$15 p^{*}$	74174		4040 £1.05*		4543	E1.75**	76013 \& 76023	¢1.35		
Ralay Mini 3 Pote 12 volt	CAPACITORS	MPM/PMP B0131/2 Type	BC214	12p 2N3906	15p	7451	15p*	74176	£1*		$81 \mathrm{p}^{*}$	4553	¢4.49*	CA3130 \& Ca3 140	$94{ }^{\text {p* }}$		
Coil E1*	Ceramic 50v 5\% Hi Slab 22pi	£1	BCY71	20p* 244347	50p*	7453	${ }^{15} p^{*}$	74190	E2*	4043	${ }^{96 p}{ }^{\text {* }}$	4556	78p*	Lm380 I wall Amp	85p		
	to 0.1ut \& .22/47 5 p	Pak N: $50 \times 0 \mathrm{AB1} 1 / 91 \mathrm{El}$	80131	37p* 215457	32p	7454	15p*	74192	$\begin{aligned} & \text { £2* } \\ & \text { £2* } \end{aligned}$		95p*	4558	[1.17*	LM381 Dual Preamp E	£1.55		
£1.50*	Tantalum Caps 12p	Pak P: $20 \times$ Plastic 109	80132	37p* 245777	44p**	7460	15p*	74193		4044	£1.30*	4566	11.59*	LM387 Oual Preamp	E1		
Oalo PCB Pen 2 mils $70 \mathrm{p}^{*}$	LECTROLYTICS 25 volt	£1	80695	69p* ML31	£2*	7470	29p*	74194	$\begin{aligned} & \mathbf{£ 2 *} \mathbf{2}^{*} \\ & \mathbf{2}^{*} \end{aligned}$		99p*	4569	£3.59*	Lm3900 Quad GPA	55p*		
TUB Farric CHL 1/kg.	1/10/47/1000t. All 10 p	Pak Q: $50 \times 220 u f 6.3 v$	80696	69p* TlL63	£1*	7472	26p*	74196	$\begin{array}{r} £ 1.30^{*} \\ £ 1^{*} \end{array}$			$\begin{aligned} & 4583 \\ & 4585 \end{aligned}$	$\begin{aligned} & \text { ع1.10* } \\ & \text { £2.05* } \end{aligned}$	MC1310 0acoder E1			
Decon Board Cleaner Pad	\% voll 20pl 220 or 470uf	Electrolutic 11	diodes a brioge			7473	25p*	74197						MC1460. 1461 \& 1469			
50p*	30p	Pak R: $14 \times$ BC 107 \&1			$22{ }^{*}$	74	29p*	74	$\begin{aligned} & £ 1^{*} \\ & \mathfrak{£} \mathbf{N}^{*} \end{aligned}$	$\begin{aligned} & 4060 \text { £1.15" } \\ & 4063 \text { £1.10 } \end{aligned}$				MCMOS 14433, A/D [5*			
$6 \times 4^{\prime \prime}$ Mylon/Copper Board	Out 25 volt 35p	Pak S: $14 \times 8 \mathrm{Cl}$ C8 El	IM 4148 or IIN914OAB1 orOR91		$\begin{aligned} & 4 p^{*} \\ & 5 p \end{aligned}$									ME536 FET OPA	[4*		
60p*	KNOBS. $1^{\prime \prime}$ dia 8 trim 150	Pak T: Top selling								28 Pin		$\begin{array}{r} £ 1 \\ £ 1.50 \end{array}$	ME555 Timer ${ }^{\text {27 }}$ - ${ }^{\text {* }}$				
ofl	HEAT SINKS. YO5 \& 18	$10 \times$ MPM Plastic Power 60	$04200 \& 202$$1140011450 N$								ME556 Onal 555		70p*				
$3^{3 / 4} \times 5^{\prime \prime} \times 0.1{ }^{10}$ Board	$9{ }^{\text {9** }}$	volt 2 amp BOBI Tүpe			$5 p^{*}$	Low Profile		14 or 16 Pin			15p			TBAB10 7w	E1		
$56 \mathrm{p}^{\star}$	Tv4 25p*. T03 small 25p*	E1	IM4004	7p*. 1 1 4007	15p*									2M414 Radr	65p		

OUR LATEST
 SPECIAL

CONTENTS
Graphic Equalizer
RF Attenuator
ETI Watchdog
Sweep Oscillator £2 Sound Improver Stereo Simulator Freezer Alarm General Preamplifier Stars \& Dots Game GSR Monitor Burglar Alarm Headlight Reminder Bench Amplifier CCTV Camera Audio-visual Metronome Expander-Compressor Power Amplifier Modules Digital Thermometer Headphone Adaptor Hear \& Tell unit Led dice Active Crossover Marker Generator Skeet Game Flash Trigger Disco Lightshow Unit Pink Noise Generator

Power Amplifier Modules.....E2 Sound CLTV Camera....... Headphone Adaptor Expander - Compres light flash Trigger Rennt assor..... Skpat na 41 IITI $1 I_{1} 1$ H FH
 Stars \& Dots Lowic ©.oigital Thermometer Active Crossover Game..... Lightshow Pink Noise Generator. Hear and Tell UnitGSSR Monitor Sweep Oscillator..... Stereo Simulator reprints of 27 projects from past issues of ETI. TP6 is available soon at your local newsagents or direct from ETI now. Send a cheque or PO for $£ 1$ plus 25p p\&p, to:

> ETI TP6
> 25/27 Oxford Street London W1R 1RF

Please write your name and address on the reverse of your cheques or POs.

Join the Digital Revolution

Understand the latest developments in calculators, computers, watches, telephones,

 television, automotive instrumentationEach of the 6 volumes of this self-instruction course measures $113 / 4$ $\times 8 \frac{1 / 4}{}$ and contains 60 pages packed with information, diagrams and questions designed to lead you step by step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers
Design of Digital Systems

FLOW CHARTS \& ALGORITHMS - The Algorithm Writer's Guide - Construction, content, form, use, layout of algorithms and flow charts. Vital for computing, £2.95 training, wall charts, etc. Size: A5, 130 pages plus 45 p P\&P

Guaranteed - If you are not entirely satisfied your money will be refunded.
CAMBRIDGE LEARNING ENTERPRISES, Unit 15 Freepost, RIVERMILL LODGE, ST IVES HUNTINGDON, CAMBS, PE 174 BR, ENGLAND. TELEPHONE ST. IVES (O480) 67446 PROPRIETORS DRAYBRIDGE LTD REG OFFICE RIVENHALL LODGE, ST IVES Giro AC No. 2789815 . REGD. IN ENGLAND NO. 1328762
Cambridge Learning Enterprises. Unit 15 Freepost
Please send me the following books
sets Digital Computer Logic \& Electronics @ £5.50 p\&p included
sets Design of Digital Systems @ $£ 9.00$ p $\& p$ included
Combined sets @ £13.00 p\&p included
The Algorithm Writer's'Guide @ $£ 340$ p\&ip included

Name

Address

[^3]
MK14-the only low-cost keyboard-addressable microcomputer!

 The new Science of Cambridge MK14 Microcomputer kitThe MK14 National Semiconductor Scamp based Microcomputer Kit gives you the power and performance of a professional keyboard-addressable unit-for less than half the normal price. It has a specification that makes it perfect for the engineer who needs to keep up to date with digital systems or for use in school science departments. It's ideal for hobbyists and amateur electronics enthusiasts, too.

But the MK14 isn't just a training aid It's beendesignedforpracticalperformance, so you can use it as a working component of, even the heart of, larger electronic systems and equipment.

MK14 Specification

* Hexadecimal keyboard
* 8 -digit, 7 -segment LED display
* 512×8 Prom, containing monitor program and interface instructions
* 256 bytes of RAM
* 4 MHz crystal
* 5 V stabiliser
* Single 6V power supply
* Space available for extra 256 byte RAM and 16 port I/O
* Edge connector access to all data lines and $/ / O$ ports Free Manual
Every MK14 Microcomputer kit includes a free Training Manual. It contains

 examples for training applications, and numerous programsincludingmath routines (square root, etc) digital alarm clock, single-step music box, mastermind and moon landing games, self-replication, general purpose sequencing, etc.

Designed for fast, easy assembly Each 31-piece kit includes everything you need to make a full-scale working microprocessor, from 14 chips, a 4-part keyboard, display interface components, to PCB, switch and fixings. Further software packages, including serial interface to TTY and cassette, are available, and are regularly supplemented.

The MK14 can be assembled by anyone with a fine-tip soldering iron and a few hours' spare time, using the illustrated step-by-step instructions provided.

Tomorrow's technology - today! "It is not unreasonable to assume that within the next five years . . . there will be hardly any companies engaged in electronics that are not using microprocessors in one area or another."

Phil Pittman, Wireless World, Nov. 1977.

The low-cost computing power of the microprocessor is already being used to replace other forms of digital, analogue, electro-mechanical, even purely mechanical forms of control systems.

The Science of Cambridge MK14 Standard Microcomputer Kit allows you tolearn more about this exciting and rapidly advancing area of technology. It allows you to use your own microcomputer in practical applications of your own design. And it allows you to do it at a fraction of the price you'd have to pay elsewhere.

Getting your MK14 Kit is easy. Just fill in the coupon below, and post it to us today, with a cheque or PO made payable to Science of Cambridge. And, of course, it comes to you with a comprehensive guarantee If for any reason, you're not completely satisfied with your MK14. return it to us within 14 days for a full cash refund.

Science of Cambridge Ltd,
6 Kings Parade,

Cambridge,

Cambs., CB2 1SN.
Telephone: Cambridge (0223) 311488

To: Science of Cambridge Ltd. 6 Kings Parade, Cambridge. Cambs., CB2 1SN.

Please send me an MK14 Standard Microcomputer Kit. I enclose cheque/ Money order/PO for $£ 43.55$ ($£ 39.95$ $+8 \%$ VAT and $40 \mathrm{p} p \& \mathrm{p}$). Allow 21 days for delivery

V.FETS FOR EVERYONE PART 2

In the second half of this article, reprinted from our Canadian edition, the practicalities of VFET circuitry are explained.

In general these devices may use any of the types of output circuits in general use with valves and bipolars, including transformer coupled (Fig. 12) where the benefits of the absence of charge carrier storage become apparent in the absence of severe ringing at the crossover point,' conventional series output such as in Fig. 1 which is a straightforward transformation from a bi-polar circuit (1), and single-ended output with current source, also transposed from an excellent bi-polar circuit (2) (Fig. 2).

Bias and Drive

These series of devices are n-channel, enhancement type MOSFETS, and may be biased and driven using methods appropriate to signal types and bi-polars. The drain is made positive with respect to the source and the gate enables conduction by being forward biased with respect to the source, that is to say it is biased in a positive direction. Unlike bi-polars, however, they are voltage, rather than current controlled, and circuit values are selected to provide the required voltage. Any current drawn is by the bias network itself.

Three bias methods are shown; Fig. 3 shows bias supplied from a fixed bias supply. It is the simplest possible method, allows extremely high input impedances, since $R g$ may be almost any very high value desired, and its stability is limited only by the stability of the bias supply.
The design shown in Fig. 4 has the advantage of requiring no extra supply voltage since it is taken from Vdd. Disadvantages are those of impedance and stability. Input impedance consists of the parallel combination of R1 and R2 (disregarding input capacitance of the MOSFET and the very low input leakage). There are practical limits as to how high this combination can become; if for example, we have a 60 volt supply and require 6 volts bias, we might have some difficulty obtaining higher values than 9 megohms and one megohms for R1 and R2.

Higher values become more difficult to obtain, stability becomes less reliable, internal inductance and distributed capacitance become problems, and overcoming these difficulties usually costs money. In addition, if Vdd is subject to variation, then bias varies. In a class $A B$ amplifier this could be quite

We have just received a note from Siliconix giving the following changes in type number - VMP-11 becomes 2N6656; VMP-1:2N6657; VMP-12:2N6658; VUP21.2N6659; VMP-2:2N6660; VMP-22:2N6661.

Fig. 1. Series output arrangement and Fig. 2 single-ended output with current source.

Fig. 3. High-impedance separate bias supply, Fig. 4 moderate impedance supply and Fig. 5 high-impedance common supply.
serious, since Vdd varies considerably with output level; at high levels, Vdd can be expected to drop, causing a reduction in bias.

While this may reduce the danger of over-driving the device, it will be forced to operate in its non-linear region which may result in unacceptable performance characteristics unless taken into consideration in the overall circuit design (e.g. choice of feedback values). It does provide some degree of overload protection, and with correct choice of values can
provide for class $A B$ operation at low levels, shifting to class B at high levels. With these considerations in mind, and/or where moderate impedances are required, it offers a low cost, simple, and reasonably reliable method of establishing. the operating point.

The method used in Fig. 5 is similar except that with the addition of R3 higher input impedances are possible. Its configuration is similar to a noiseless biasing system frequently used in low-level bi-polar amplifiers and integrated circuits (e.g. National LM381A) but its function is somewhat different. Resistors R1 and R2 form a voltage divider as in Fig. 4 but their junction now forms a fixed bias source as in Fig. 3. Resistor R3 can be quite high since no current flows. Meanwhile, since the parallel combination of R1 and R2 are effectively in series with R3 they can be reduced to more manageable values. Alternatively R2 can be replaced by a zener diode for stability comparable to Fig. 3.

Input Protection

Unlike most signal MOSFETS, the gate of each of these devices, with the exception of the VMP 4, is protected with an internal 15 volt, 10 mA zener diode. Most signal MOSFETS, as well as the VMP 4 are unprotected, or where extremely high impedances are not required, are protected by back to back zeners. I have no information as to why this different technique is used, but it is obvious that a negative signal swing on the gate will result in forward current through the zener. If the device is to be driven beyond cutoff, the driver must be capable of delivering current during its negative swing. Alternatively a constant current source can be used, a series limiting resistor or a driver biased to the same class of operation as the V-MOSFET.

A constant current source (we'll examine an example of its use a little later) will limit current drive to the value of the constant current diode used; a series resistance will drop the drive voltage as the diode draws current. In both cases, diode current must be limited to 10 mA maximum. Higher currents will damage the protective. Higher currents will damage the protective zener diode.

However, if a class B output is used, conduction only occurs during positive half-cycles. Therefore, drive signal is not required during negative halfcycles. If a source or emitter follower driver stage is biased so as to pass no negative drive, the problem does not occur. However, great care must be exercised in the design of such a stage to ensure that drive does not disappear before the output device is cut off.

This is not too difficult with a class B or near class B stage; if the output device is operated at zero bias, then a small amount of bias on the driver will ensure conduction during slightly more than 180 degrees. Class AB operation is a little more tricky. If conduction is to occur for 270 degrees, for example, the driver should conduct for slightly more than this period.

Two types of drive circuits familiar to designers of bi-polar circuits are the Darlington and Super beta, commonly used together to provide a quasicomplementary circuit. Both circuits are current amplifiers designed to provide a compound device with very high hfe and provide base current to the output device. However, similar circuits can be used

Fig. 6. Drain to source resistance against temperature (Siliconix).

-TO PREVENT SPURIOUS OSCILLATIONS. A 500 : : 1 K !! RESISTOR OR FERRITE BEAD IFOR HIGHER SPEED) SHOULD BE CONNECTED IN SERIES WITH

EAC
Fig. 7. Basic circuit for parallel operation.

Fig. 8. Circuit of a high-efficiency light dimmer.
with these devices to provide phase inversion in a series output stage.

Thermal Considerations

As described earlier these devices exhibit a negative temperature coefficient with respect to current, so that as temperature rises, current is reduced, thus providing a self-inhibiting action which provides some protection against overload. However, this is not an unconditional effect. Fig. 6 show the

Fig. 9. Diagram for series operation.

Fig. 10. A DC to DC converter (Siliconix).

Fig. 11. Simple single-ended $\mathbf{\text { ransformer-coupled audio power }}$ amplifier (Siliconix).
relationship between RDS (on) and temperature (3), based on a worst case temperature coefficient of 0.7 per cent per degree C.
Suppose that the device when on passes a current of 1 amp which causes it to heat up. The on resistance increases (which is why current drops), increasing the voltage drop across the device and the device dissipation. Now, if adequate heat sinking is used there is no real problem but if it isn't, the on resistance and junction temperature will rise to the
point where extra charge carriers are generated, thus stabilizing RDS(on). That's great, except for the fact that this doesn't occur until the maximum safe junction temperature of 150 degrees has been exceeded.

You'll remember that we said earlier that the device was free of thermal runaway problems because of its negative temperature coefficient, but it isn't free of thermal destruction problems, and in any case, excessive temperatures will reduce output conductance. Heat-sinking requirements are, therefore, similar to those of bi-polars. The calculations of thermal operating conditions are beyond the scope of this article, but interested readers are referred to the Siliconix literature listed in the references, (4).

Extending The Ratings

The current handling capacity and therefore total dissipation capability may be easily increased by simply connecting several devices in parallel (Fig. 7). No ballast resistors are needed to ensure proper current sharing since if one device draws more current than another it simply gets a little warmer which causes it to draw less (assuming adequate heat sinking, of course). The only major precaution needed is to keep lead inductance in the gate and source connections to a minimum to prevent parasitic oscillations, unless the devices are driven from a low impedance source.

It may be advisable to insert "stoppers" - small resistors (100 to 1000 ohms) in series with each gate, wired directly to the socket, or ferrite beads mounted on the leads close to the socket terminals. An additional plus when paralleling several devices is that the gm is multiplied by the number of devices used. Mutual conductance gm is specified as the ratio of a large change in current to a small change in control voltage. If, for example, a change of 0.4 volts on the gate produces a change of 0.1 amp through one device, connecting two devices in parallel will give us an output swing of 0.2 amps , but it will still require only the original 0.4 volts gate swing. Since voltage gain $A=g m \times R L$, if $g m$ is increased, A is increased.

In real use, of course, the internal resistance of two devices in parallel is less than of one, the optimum load is less, so in amplifier applications, the net amplification A is the same. But notice that the drive requirements have not changed. With bi-polars current would have to be supplied to each base, thus increasing the output requirements of the drivers. Indeed, with many high-power amplifiers using multiple output devices the drivers are also power devices.

We can also extend the voltage ratings by series operation of two or more devices; Fig. 9 shows the technique. Resistors R1 and R2 bias Q2 on while C1 and C2 ensure fast switching. Input control signal is inserted between gate and source of Q1. Ordinarily the bottom of the divider chain is at ground potential for signal frequencies, so that circuit is really a cas̀code.

Maximum current and gm are the same as for one device.

Some Practical Applications

An efficient light dimmer circuit as proposed by Siliconix is shown in Fig. 8. The 4011 acts as a pulse width modulated oscillator whose duty cycle is determined by the ratio of R 1 to R 2 , with R 2 adjusted to control the brightness of the bulb. Of special interest here is the fact that with its fast switching time, the VMP1 is especially suited to pulse width modulation at power levels and suggests it as being suitable for use in switching, or class D linear amplifiers.

A DC to DC converter is outlined in Fig. 10. The VMP1s form an oscillator with positive feedback provided by the additional coil in the gate circuits. In operation the upper V-MOSFET is biased on, and the lower V-MOSFET is off. When power is applied the upper device conducts causing current to flow from Vdd through the upper half of the transformer primary and the upper V-MOSFET to ground. The induced current flow through the feedback coil develops a voltage such as to shift the bias in the upper device off (if the winding is connected with the correct polarity) and the lower device on. This causes current flow from Vdd through the lower half of the transformer primary and the lower V-MOSFET to ground

The secondary circuit consists of a single rectifier and filter. The resistor in the upper gate prevents shorting out of gate bias, and the one in the lower gate keeps both sides balanced. In addition, each resistor limits current through the protective diodes. These are expensive devices for such an application, but the high reliability, the reduced RF radiation (due to reduced switching transients) and the circuit simplicity easily make up for the cost. The very high circuit impedance allows for running frequency to be set by the self resonance of the transformer.
A single ended and push-pull transformer coupled amplifier for audio applications are shown in Figs. 11 and 12. Both designs utilise the biasing system described in Fig. 4. A load-line drawn on the output characteristic will show the optimum load to be 24 ohms. In Fig. 11 gate drive is supplied by a single junction FET, and voltage feedback is taken from the output transformer secondary and series fed to the source of the input device. Distortion is under 2 per cent at full output (try to get that with a single ended valve or bi-polar) and could probably be reduced even further by adopting a source follower output stage.

A push-pull version of Fig. 11 is shown in Fig. l'2 using a differential input to provide phase splitting, drive, and a feedback point. Although the transformer winding ratio implies the use of a low impedance loudspeaker, a step-up ratio could be used for direct coupling to an electrostatic speaker, a balanced transmission line (both with some modification of the feedback circuit) an unbalanced transmission line, or a 70 volt speaker distribution line.

Notice in both circuits, and in the biasing circuits shown that no source resistors have been used, either for local feedback or for bias setting. In valve and bi-polar circuits it's a useful technique, and with bi-polars can be used to stabilize bias and control thermal runaway by using the increased current flow to increase the voltage drop, thus reducing baseemitter voltage. However, if used with these devices, it will actually impair the self-limiting action of its negative temperature co-efficient. If temperature

Fig. 12. Transformer-coupled output.

Fig. 13. Tape recording amplifier.

Fig. 14. A FET as a constant-current source.
rises due to high current, current flow is reduced. This would reduce the voltage drop across a source resistor, lowering the source voltage and increasing the gate-to-source voltage, causing an increase in current flow. The circuit would work great while it lasted which wouldn't be for long.

Power Amp

In Fig. 15 we have a high quality power amplifier designed by Lee Shaeffer of Siliconix Inc. (5) and described in their application notes. Output current capability is increased by using three VMP12s in parallel; providing for 6 amp current, 75 Watt dissipation and optimizing the load at 8 ohms. Q11-13 operate as a source follower, while Q8-10 form a quasi source follower. This is accomplished by applying local feedback from drain to gate via R14, R15, and driving the gate by a modified current source. This consists of a cascode circuit with a constant current diode as the load.

For the benefit of those not familiar with these devices, a constant current diode is really a FET connected internally as shown in Fig. 14. Since current in a FET is controlled essentially by the gate-to-source voltage, changes in load or in applied drain to source voltage have negligible effect since gate-to-source voltage is held constant. This is a current analogue to the zener diode and is described in detail in Siliconix literature (6).

The design is push-pull from input to output, thanks to differential circuitry throughout, prior to the drivers. Open loop distortion is low, bandwidth wide, allowing satisfactory performance with only 22 dB of feedback.

Complete construction plans including PCB layout are available from Siliconix (7). A word of caution, however. Readers accustomed to construction articles in which the writer does everything but hold your soldering iron will find these plans rather sketchy. They consist of a spec sheet, schematic, board and parts layout, two paragraphs of construction suggestions, initial adjustments, and a parts list. Parts, generally, are specified as to value and rating, and that's it. These plans are excellent, but they
assume some knowledge and experience on the part of the constructor. Regular 'eti constructors' should have little difficulty.

Finally, how about something elegant for its simplicity, such as the Tapered Current Voltage Limited battery charger shown in Fig. 16. This is especially useful with Ni-Cad batteries which are intended for stand-by use and are permanently on charge, such as

Fig. 16. Tapered-current voltage-limited battery charger.
electronic clocks. Overnight shut-downs of a few hours are occasionally but irregularly experienced. You know what this can do to clocks. Especially alarm, clocks which are supposed to make noises, turn on radios, start the coffee at a pre-set time in the morning so you can go to work. Battery operation is not too satisfactory if the readout is on continuously, and $\mathrm{Ni}-\mathrm{Cad}$ should not be on permanent floating charge.

With this little device current is supplied to the battery via the VMP-1. Gate voltage is set at a value equal to the desired end of charge voltage. As the battery charges its voltage increases, reducing gate-to-source voltage, thus reducing charging current. When the battery reaches full charge its voltage and that of the source equals gate voltage, and charge is terminated. If a load is placed across the battery it will draw current, and as the battery voltage drops slightly below gate voltage, charging at a trickle rate occurs - automatic.

Experimentation

The various applications shown are intended as suggestions for further experimentation on the part of the reader. They are mainly designed to illustrate various characteristics of the device under consideration, and are not necessarily representative of commercial practice or of finished designs. In some cases this may be just as well. But we would be delighted to hear of any readers' experience with any of these or other circuits.

The author's own feeling is that V-MOS constitutes a genuine breakthrough in semi-conductor technology, as important as the silicon transistor and the FET itself. We'll be seeing more of these devices, with higher ratings (a 10 A 200 V unit is already under development) and specialized characteristics. They are said already to be in use commercially as magnetic core drivers.

Our new 1978 catalogue lists a whole range of plastic boxes to house all your projects. And we've got circuit boards, accessories, module systems, and metal cases - everything you need to give your equipment the quality you demand. Send $25 p$ to cover post and packing, and the catalogue's yours.

VERO ELECTRONICS LTD. RETAIL DEPT. Industrial Estate, Chandlers Ford, Hants. SO5 3ZR Telephone Chandlers Ford (04215) 2956

Digital enthusiasts may be somewhat impatient with the strong emphasis on audio applications in this piece but other literature has placed great emphasis on digital applications, with little attention paid to linear techniques beyond the 40 watt amplifier described here. The serious reader in all areas is referred to the references at the end.

Further literature may be obtained from the manufacturer, Siliconix Inc., 2201 Laurelwood Rd., Santa Clara, CA 95054, California. They have been most helpful in providing information for the preparation of this article.

Have fun.
ET

REFERENCES

1. W. Marshall Leach: "Construct a Wide Bandwidth Preamplifier' Audio, Feb 1977, p. 39
2. Nelson Pas: "Build a Class A Amplifier" Audio, Feb. 1977, P. 29. 3,4. Lee Shaeffer: "VMOS-A Breakthrough in Power MOSFET Technology" Application Note AN76-3, May 1976, Siliconix Inc 5, 7 Lee Shaeffer: "The MOSPOWER FET Audio Amplifier" Design Aid DA76-1, May 1976, Siliconix Inc
3. "The FET Constant Current Source" Design Idea D171-1 January 1976. Siliconix Inc. Also Siliconix Field Effect Transistors Data Book.
4. Ref. 5.
5. Bascom H. King: "Power FETs" Audio, Feb. 1975, p. 42.
6. Ed Oxner: "A New Technology: Application of MOSPOWER FETs For High-Frequency Communications" Tecnhical Article T \leftarrow-76-2, Nov. 1976. Siliconix Inc.

TAMTRONIK LTD.
 PCB AND COMPONENTS FOR ETI PROJECTS

	Componeni Kit**	P.C.B.
Metal Locator II	+	5.91
House Alarm A	11.60	0.92
House Alarm B	2.39	0.91
Frequency Shifter	6.52	1.46
F/S Omp Amp Supply	4.14	0.63
Stars and Dots	5.76	1.83
Spectrum Analyser	36.51	A 4.46

\dagger 2 $1 / 2^{\prime \prime}$ Speaker, 8Ω, for metal locator MK. II 83p each
Prices above are VAT inclusive. P\&P 20p. Send large SAE for full details of available Component Kits, P.C.B.'s our Component Catalogue and any specified kit list

- Kits include ONLY Resistors, Potentiometers, Capacitors and Semi Conductors

Shop: 32 Harket Place, Greatbridge, Tipton, West Midlands Mail Order: 217 Toll End Road, Greatbridge, Tipton, West Midlands

217 TOLL END ROAD, TIPTON WEST MIDLANDS DY4 OHW
 TEL. 021-567 9144

The latest kit innovation: from Gparkirite Fan the quickest fitting CLIP ON
 capacitive discharge electronic ignition in KIT FORM
 8
 Smoother running
 Instant all-weather starting Continual peak performance Longer coil/battery/plug life Improved acceleration/top speeds Optimum fuel consumption

Spark rite X_{4} is a high performance, high quality capacitive discharge, electronic ignition system in kit form. Tried, tested, proven, reliable and complete. It can be assembled in two or three hours and fitted in $1 / 3 \mathrm{mins}$.
Because of the superb design of the Sparkrite circuit it completely eliminates problems of the contact breaker. There is no misfire due to contact breaker
bounce which is eliminated electronically by a pulse suppression circuit which bounce which is eliminated electronically by a pulse suppression circuit which
prevents the unit firing if the points bounce open at high R. P. M Contact breaker prevents the untiring it the points bounce open at high R. F. M Contact breaker perform equally well with new, old, or even badly pitted points and is not dependent upon the dwell time of the contact breakers for recharging the system Sparkrite incorporates a short circuit protected inverter which eliminates the problems of SCR lock on and. therefore. eliminates the possibility of blowing the transistors or the SCR. (Most capacitive discharge ignitions are not completely fool proof in this respect). The circuit incorporates a voltage regulated output for great iv improved cold starting. The circuit includes built in static timing light, systerns function light, and security changeover switch. All kits tit vehicles with
coil/dissributor ignition up 108 cylinders coil/distributor ignition 108 cylinders
THE KIT COMPRISES EVERYTHING NEEDED
Die pressed epoxy coated case. Ready drilled, aluminium extruded base and heat sink, coil mounting clips, and accessories. Top quality 5 year guaranteed transformer and components, cables, connectors, P.C.B., nuts, bolts and silicon grease. Full instructions to assemble kit neg. or pos. earth and fully illustrated installation instructions.
NOTE - Vehicles with current impulse tachometers (Smiths code on dial RVI) will require a tachometer pulse slave unit. Price $£ 3.35$ inc. VAT. post \& packing

Electronics Design Associates, Dept. ET 8 82 Bath Street, Walsall, WS1 3DE. Phone: (9) 614791

Address

Phone your order with Access or Barclaycard
Inc. VA.T. and P. P OUANTITY RED'L
XU KIT $£ 14.95$
TACHE PULSE SLAVE UNIT $£ 3.35$ \qquad
\qquad enclose chequelpo's for
f
Cheque No

ELIOWASOMNE electronics
56 FORTIS GKEEN ROAD, MUSWELL HILL, N10 3HN TELEPHONE: 01-883 3705

OUR LATEST CATALOGUE

CONTAINS FREE
45 pence WORTH
OF VOUCHERS

CONTAINS MICROPROCESSORS + BOARDS, MEMORIES, TTL, CMOS, ISs, PASSIVES, ETC., ETC.

SUPERSAVERS

ALL FULL SPEC DEVICES

TEXAS	TIMER	RED LED
$\mathbf{7 4 1}$	$\mathbf{5 5 5}$	TIL209
5 for	4 for	10 for

£1.00

£1.00
£1.00
VAT INCLUSIVE PRICE $+25 p$ P. \& P.

AU IC BOOKLET

SUPPLIED FREE WITH ORDERS OF ANYICsWORTH $£ 5.00$ OR MORE, CONTAINS CIRCUITS, PIN CONNECTIONS AND DATA (35 p + SAE IF SOLD ALONE).

COMPONENT BARGAINS FROM COMMUNICATIONS MEASUREMENT
Capacitors
50 FF 10 V elect. ... 5 for 50p
64 FF 10 V elect. . . 5 for 50p
150 ff 16 V elect. . 8 for 50p
15uF 16 V elect. . . 8 for 50p
1000uF 16 V elect. . 3 for 50p
1.5 uF 63 V Wima . . 5 for 50 p
0.1 uF 100 V Wima poly 10 for 50 p
$0.033 u F 100 \mathrm{~V}$ Wima 10 for 50 p
1 LF 100 V ITT ... 7 for 50p
.0.33uF 100V ITT . 7 for 50p
0.01 UF 125 V GEC 10 for 50 p
0.1 uF 250 V Mull 3448 for 50p
0.01 uF 250 V Mull 344 8 for 50 p
100pF Lemco 350V 10 for 50p
120pF Lemco 350V 10 for 50p
150pF Lemco 350V 10 for 50p
220pF Lemco 350V 10 for 50p
BNC plugs crimp . 30p ea*
Pre-set pots 68 k Ohms
68 k hms 10 p ea
Dil IC sockets 16-pin 10p ea*
Please add VAT at $121 / 2 \%$ (8%) on all items and 50 p post and package on all orders under $£ 5$ (UK), minimum order $£ 2$ Terms - Cash with order
Send s.a.e. for a list of our large range of components
Enquiries and orders to Communication Measurement Ltd 15 mallinson oval, harrogate yorks.

SPECIFICATION LISTS ON REQUEST (Send S.A. Envelope) GOODS FULLY GUARANTEED PRICES EXCLUDE VAT (ADD 8\%) BUT INC P\&P CHEQUE WITH ORDER Company. Hospital and Government orders accepted by EXPORT ORDERS ACCEPTED
Barclaycard, Access order aecepted by phone
Tel. 01-4559855
moUnaluvenilio
22 Cowper Street, London, EC2
(Near Old Sz: Station) Tel. 01 -455 9855

ALL PURPOSE POWER SUPPIY

The ETI project team presents a high performance Power Supply Unit based on an encapsulated regulator block.

THOSE OF YOIJ who threw up various parts of your anatomy at the sight of yet another power supply design probably fall into two groups. One will use batteries, will always have used batteries and won't see why they shouldn't continue to use batteries ad infinitum. There will be others who have a power supply be it ever so humble - and are fed up with four-part articles describing the construction of same.

What is this fetish with PSUs?

Cell Your Batteries

We appeal to those of you in the first category to give batteries the old heave ho if only on financial grounds - batteries really are a very expensive way of buying power They also come in fixed voltages and any current limiting attributes are limited to dying a death at the first sign of the short circuits that are bound to occur in even the most ordered of development work.

Supply And Demand

To those of you who fall into our second group we ask you to take a look at your present Power Supply. Is it up to the job?' Does it have variable current limiting ($0-1 \mathrm{~A}$) ? Can it provide an adjustable output of up to 30 volts?' Does it have a couple of LEDS to indicate its mode of operation (voltage/ current) ! Can you isolate the DC output? Does it provide for remote voltage sensing?

Needless to say our design meets all these criteria.

Meg A Mania

The unit is easy to build as it is based on an encapsulated Power Supply Module. The module itself

takes care of nearly all the work but in its naked form can only provide a 100 m A output, Q1, acting as a series pass element, means that up to 1 A output can be provided.

The photographs show that we did not use a PCB for this project but mounted components directly to the PSIJ module or on a small strip of tag board.

Construction

Construction should be self-explanatory if the circuit diagram is followed through, about the only point to watch is the gauge of wire used in the current carrying sections of the design, make sure it's of adequate rating. Also make sure that the sense wires are taken to a point as near to the output sockets as near to the output sockets as possible. A switch jack socket inserted in the
sense leads will provide a remote voltage sensè option.

The meters are an optional extra, but we felt that these added that extra touch of professionalism to the device.

EП।

BUYLINES

THE regulator module is available from Doram Electronics for $£ \uparrow 3.05$.

The case used in the prototype was an Alson type $23\left(10^{1 / 2} \times 61 / 2 \times 61 / 2\right)$. Alson are at $5 / 7$ Long Street, London.

The other components should be generally available.

FIG. 1. Circuit diagram of the power supply. The components are mounted either on the module itself or on a small tag strip - see photograph below.

The photograph, right, shows clearly the method of construction adopted in our prototype. Ensure that the wires carrying high currents are of adequate rating.

HOW IT WORKS

THE AC mains is stepped down to 30 volts by transformer Tl. This AC signa! is rectified and smoothed by BR1 and Cl. LEDl indicates the unit is on.

The regulator module provides all the control functions associated with a Power Supply.

RV1 and RV2 set the current limit, RV1 setting the maximum output current. RV3 sets the output voltage.
The basic module can provide outputs of up to 100 mA only, Ql increase the module's output capability to 1 A.
LEDs 2 and 3 indicate which mode of
operation the supply is in (LED2 is current mode, LED3 is voltage).
The resistors in series with the meters should be selected to ensure that the meters are calibrated, the values given are for our prototype and.may need slight alteration.
C2 is included to improve the stability of the design.
The output from the module is further smoothed by C3, C4.
SW2 is the DC isolation switch and LED4 indicates that a DC output is present at the unit's output terminals.

ETI BOOK SERVICE

computing

BASIC: A Self Teaching Guide (2nd Edition)
£4.50
Teach yourself the programming language BASIC. You will learn how to use the computer as a tool in home or office and you will need no special maths or science computer as

IMustrating BASIC

£2.20
y ALCOCK, B
This book presents a popular and widely available language called BASIC and explains how to write simple programs.

Microprocessors

£10.65
by ALTMAN. L.
Gives a general overview of the technology design ideas and explains practical applications.

Applying Microprocessors

£12.00
y ALTMAN, L.
Follow up volume which takes you into the second and third generation devices.
Intro to Microprocessors
by ASPINALL. D.
Explains the characteristics of the component.
How to Buy and Use Minicomputers and Microcomputers by BARDEN, W.
Discusses these smaller computers and shows how they can be used in a variety of practical and recreational tasks in the home or business.

How to Program Microcomputers
y BARDEN, W.
This book explains assembly-language programming of microcomputers based on the Intel 8080. Motorola MC6800, and MOS Technology MCS6502 microprocessors.

Introduction to Microcomputers and Microprocessors

£7.50 by BARNA, A.
Provides the basic knowledge required to understand microprocessor systems. Presents a fundamental discussion of many topics in both hardware and software

Microprocessors in Instruments and Control
Introduces the background elements, paying particular regard to the dynamics and computational instrumentation required to accomplish real-time data processing tasks.

Basic BASIC

$£ 7.50$
by COAN, J. S
An introduction to computer programming in BASIC language

Microprocessor Programming

for Computer Hobbyists
by GRAHAM, N.
The Computer Book
by HAVILAND, R. P.
Building super calculators and minicomputer hardware with calculator chips.
Microcomputers, Microcomproesors, Hardware
Software and Applications
by HILBURN, J. L.
Complete and practica! introduction to the design, programming, operation, uses, and maintenance of modern microp rocessors, their integrated circuits and other components.

Microprocessor Systems Design

£14.35

by KLINGMAN. E.

Outstanding for its information on real microprocessors, this text is both an introduction and a detailed information source treating over a dozen processors, including new.third generation devices. No prior knowledge of microprocessors or microelectronics is required of the reader.

BASIC Programming

by KEMENY, J. G.
A basic text.

Microprocessor and Small Digital Computer Systems for Engineers and Scientists processors.

TV Typewriter Cookbook

An in-depth coverage of ty typewriters (tvt's)-the only truly low-cost microcomputer and small-system display interface. Covers tvt terminilogy, principles of operation, iv contigurations, memories, system design, cursor and update circuitry and techniques, hard copy, color graphics, and keyboards and encoders.

Microprocessors - Technology, Architecture,
and Applications
This introduction to the "computer-on-a-chip" provides a clear explanation of this technologies that characterize microprocessors.
Programming Microprocessors
by McMURRAN

by McMURRAN

A practical programming guide that includes architecture, arithmetic/logic operations. fixed and floating-point computations, data exchange with peripheral devices/compilers and other programming aids.

Microcomputer Based Design
$£ 18.00$
by PEATMAN, J. B.
This book is intended for undergraduate courses on microprocessors.
Microprocessor and Microprocessor Systems
£20.50
by RAO, G. U.
-
A completely up-to-date report on the state of the art of microprocessors and microcomputers, written by one of the leading experts. It thoroughly analyzes currently available equipment, including associated large scale integration hardware and firmware.

The 8080A Bugbook: Microcomputer Interfacing and Programming

The principles, concepis and applications of an 8 -bit microcomputer based on the 8080 microprocessor IC chip. The emphasis is on the computer as a controller.
6800 Software Gourmet Guide and Cookbook

8080 Software Gourmet Guide and Cookbook

Uives the fundamental
concepts of virtually all microcomputers
by Scel BI
Microprocessors and Microcomputers
Here's a description of the applicatiof, programming, and interacing techniques common to all microprocessors. It concentrates on detailed descriptions of representative microprocessor families and includes explanations of digital codes. logical systems, and microcomputer organization.

Vicrocomputer Primer

£6.05
by WAITE, M.
Introduces the beginner to the basic principles of the microcomputers. Discusses the five main parts of a computer - central processing unit, memory, input/output interfaces and programs. The important characteristics of several well-known microprocessors are given and a chapter is included on programming your own microcomputer.

Microprocessor/Microprogramming Handbook
by WARD
Authoritative practical guide to microprocessor construction, programming and applications.

HOW TO ORDER:

Make cheques etc payable to ETI Book Service: Payment in sterling only please. Orders should be sent to: ETI Book Service, PO Box 79, Maidenhead, Berks. All prices include \mathbf{P} \& P.

announcing the magrois

JOIN THE MICRO REVOLUTION

£399 for a Z80 based microcomputer, built and tested

Designed for educational establishments, personal computing and small business users

* Includes 1 K monitor Eprom, 47 key solid state keyboard, video. TV, cassette and teletypewriter interfaces,serial ı/o, 2 parallel i/o ports, 2 K bytes RAM, power supplies and instrument housing.
* Connect to domestic TV or video monitor to complete the system
* 48×16 character video matrix
* 47 key contactless ASC11 keyboard
* Hard copy on teletypewriter
* 2 TTL compatible parallel i/o ports
* RS232 serial i/o port

Load and dump programmes on unmodified cassette recorder

* Up to 16 K byte mixed RAM and Eprom in table top housing
* Expandable up to 64 K bytes
* Security locked power switch
* British designed and built
* Available in kit form for E360
* Credit terms available

audiophile.
 Ron Harris examines a top of the range offering from Goldring Products - a new version of the G900SE - and asks whether or not this is the

BEST OF BRITISH?

GOLDRING ARE ONE of the best known names in the hi-fi industry. Most of us have at some time or other undoubtedly possessed one of their G800 series cartridges, sometimes without realising it! (Checked the end of that package deal arm recently?)

In the lower price ranges the company has been more than able to hold its own against all comers, but the higher strata have seemed beyond their reach of late. Last year they launched the G900SE, which sold at a ridiculous $£ 25$ or thereabouts, and produced an excellent sound quality. The unit never received the acclaim it deserved.

One can't help feeling that had one of the American cantilever giants produced the G900, we would be hearing about it still. Goldring, however, had themselves some financial difficulties to overcome - which they now seem to have risen above - and this could not have helped.

This month sees the release of the 900E, a lower priced cartridge, and a Mk 2 of the G900SE itself. It is this we concern ourselves with here

Time To Mark Two?

Basically the unit is a low mass moving magnet design of high compliance, intended for use only in arms of low inertia. The cartridges weigh only 4 g , and the reduction in mass over its predecessor has been achieved by what Goldring describe as "formerless winding" of the coils within the body.

More important still though, tip mass is also low at 0.32 mg . A tie wire is fitted to dampen stylus movement(?) and also to act as a leakage path for static on the record surface. Quite a bit of innovation going on here, and it was to prove interesting to discover what effect, if any, this was going to have on the sound of this new Goldring.

Sound Results

As can be seen from the test results, technically the unit acquitted itself well with good separation, well balanced outputs and a good smooth frequency response. The rising (extreme) top end response may well be engineered to suit the unit to CD-4 usage. In stereo mode the resonance should not prove a problem.

The sample was fitted into an SME Series III for test purposes, and initially the mounting method raised suspicions as to its rigidity. These proved to be unfounded, however - but it still looks wrong!

With a mass of only 4 g , the Goldring would pose no problems to arms capable of doing it justice.

Off The Beaten Track?

Once balanced out, and with no damping applied to the arm, tracking checks were undertaken using the ubiquitous HFS 75 and several of our own torture tracks. At Goldring's stated 1 g , all bands except the highest level were handled with confidence. Band C could just be tracked at around 1.1 g , but only just. No improvement was apparent with increase in excess of this and so we left the tracking weight at 1.1 g throughout the listening tests.

Above: frequency response plot for our sample of the G900SE. Upper trace is the left channel, and the lower the right.

Below: Specification and test results for the same sample of the Goldring cartridge.

Frequency Response: 20 Hz to $20 \mathrm{kHz} \pm 2 \mathrm{~dB}$ see graph Playing Weight Range: 0.75 to 1.5 grams best at 1.1 g Tip Mass: -
Channel Separation: Output at $5 \mathrm{~cm} / \mathrm{sec}, 1 \mathrm{kHz}$: Weight: 0.32 mg

30 dB (L on R 1 kHz)

Inductance (1 kHz): 4.5 mV $\mathrm{L}-5.4 \mathrm{mV} ; \mathrm{R}-5.2 \mathrm{mV}$ 4 grams
570 mH
540 mH
Test conditions - tracking force 1.1 g , load $47 \mathrm{k}, 150 \mathrm{p}$.

This result, while not as good as the best that say a V15 can manage, is still very commendable and a great deal better than the moving coil devices available at present. No change was observed in tracking ability with damping applied to the arm

Resulting Sound

With all the test completed - and no gremlins apparent down to listening. Initially we simply wired it up, switched it on and got on with it! First impressions were of a smooth sound with no obvious vices and a well controlled bass extension. Slight recession of extreme treble perhaps.

Over an extended listening period however we came to appreciate just how good this new Goldring can be. It has depth and it has an open quality which puts you in with the music, without ever being bright or hard

Comparisons were made between the G900 and several other top-flight devices, including an Ultimo 20A, Sonus Blue and the new Entré moving coil unit. These showed without doubt that the G900SE is a match for any of them! At this level of fidelity it comes down more than ever to a case of personal taste. On a subjective level the Goldring was preferred to the Ultimo for its smoother presentation, although the 20A did have greater depth. The Sonus likewise came out second best, for no other reason than that the G900SE sounded better! The bass was tighter and the mid-range less aggressive.

Battle With The Coil

The most interesting comparison was between the Entré and the G900 however. The latter has many of the qualities so beloved by the devotees of the moving coil, but just fails to match the best of them in terms of delicacy of presentation. The Entré did provide a greater sense of detail throughout the frequency spectrum, but its bass response was never as well defined, and the Goldring tracks better. You pays your money and you takes your choice.

What A Load Of ...

Our main reservation concerns the specified loading for the cartridge.

This is 47 k and 150 p , and this was the figure the cartridge was tested at. However most amplifier and pickup lead combinations will exceed this, usually providing around $200 \mathrm{p}-250 \mathrm{p}$. This could have an effect on the top end response of the cartridge, especially if the capacitance offered is higher than the upper specified limit of $200 p$

We varied the load the cartridge saw to gain an idea of its performance on this parameter, and only when we reached about 350 p could we honestly say a subjective difference was present, this manifesting itself most clearly on cymbals.

In practise then anything between 100 p and 300 p should be fine. It is interesting to note that Shure specify a load of 450p for the V15 III, and the fact that this is rarely met may account in some measure for the "bright" reputation that unit has made for itself, since lower values will act to boost hf response

Impact And All That

Overall then the sound of the Goldring can be described as smooth, detailed with plenty of depth and good extension into the bass. It will undoubtedly come

What goes where inside the Goldring G900SE2. The tie wire is claimed to control stylus movement in the 'unwanted modes' whatever they are - and to provide a leakage path for surface static. In practice the G900SE did prove highly insensitive to surface noise, whether this was due to the little wire...
as a surprise to many devotees of the " bright-isbeautiful' school, but extended listening will pay even them dividends. The sound perhaps lacks an immediate nature a little too much, but again that is for you to decide. Impact it has - but only when the music does!!

It is good to see a British manufacturer produce a product of this quality, and be able to retail it at a price less than esoteric. At its expected cost of around £50 the G900SE disposes of similarly priced opposition with a disdaining waggle of the cantilever, and indeed takes its place with the very best moving magnet designs of the day

ETI
the MIGHTY MIDGETS S. R $\cdot \mathrm{B}$ SOLDERING IRONS AND ACCESSORIES $\left\lvert\, \begin{aligned} & \text { RETAIL PRICE } \\ & \text { each inc.v.a.t }\end{aligned} \begin{gathered}\text { POSTAGE } \\ \text { extra. }\end{gathered}\right.$

From your Local Dealer or Direct from Manufacturers S:C. BREMSTERLO
86-88 Union St P Plymouth PLI 3HG
Tel:0752:650II TRADE ENQUIRIES WELCOME

FANTASTIC BARGAINS: SAMEUP SAVE! SAVE! SAVE! £££££££s ${ }_{* * * * * * * * * * * * *}^{*}$ FIRST COME, FIRST SERVED /LIMITED QUANTITIES ALL MUST BE SOLD - TOP QUALITY KITS + PARTS

G.I. INTEGRATED
 CIRCUITS

with application sheet
AY-3-8710 Tank
£10-90 £6.90
AY-3-8600 10 game
$£ 8.90 £ 5.90$
AY-3-8500 6 game
£5 $50 £ 3.90$
AY-3-8760 Motorbike
£ $1+90 £ 6.90$
AY-3-8603 Car Race
New £5.90

TV GAME KITS

ETI Tank complete B\&iW
£27 90 £22.90
ETI Tank colour add on $£ \mathbf{£ 5 . 9 0}$ ETI Tank Basic B\&W
£ $19-90 £ 14.90$
Stunt Cycle complete B\&W £25.90 £19.90
Stunt Cycle Basic B\&W
£ $18.90 £ 12.90$
10 Game complete col £34.90 £25.90
10 Game Basic col £20-90 £14.90
6 Game Basic col £1G-50 $£ 8.90$

Complete Kits include power supply boxes - cables - controls no extras

Basic Kits - PCB and all PCB Components
PRINTED CIRCUIT

BOARDS

10 Game colour E3.90-£1.90 10 Game B\&W £1-90 70p Tank Battle . £ $\mathbf{E}^{-90} £ 1.90$ All ready drilled and tinned

SOUND \& VISION

 MODULATORSBuilt and guaranteed
£5.50 £ 3.90
JOYSTICK CONTROLS
Pair
£2.50 £2.60
(200Klin)

MAINS ADAPTOR
$9 \vee 150 \mathrm{~mA}$. $£ 3.25 £ 2.90$

BOXES

Tank Box Set £4.90-£3.25
10 Game Set $£ 4.90 £ 3.25$ The main box in each set has a printed facia plate

STUNT CYCLE

(4 Games)
Ready made and guaranteed with power supply E29.90
E22.90 JUST PLUG

All prices include VAT. For orders under $£ 10$ add $20 p \mathrm{p} \& \mathrm{p}$. Cheques and postal orders to be
made payable to TELEPLAY; send your order (No stamp needed,) to Teleplay, Freepost, Barnet, EN5 2BR or telephone your order quoting your Barclaycard or Access number

SHOP OPEN - 10am to 7pm - Monday to Saturday
CLOSE TO NEW BARNET BR STATION ... MOORGATE LINE

14 Station Road, New Barnet, Herts EN5 1QW Tei: 01-440 7033/01-441 2922

Greenbank Electronics

GREENBANK ELECTHONICS (Dept. T8E)

microfile.

Gary Evans has been going round in circles this month in search of more MPU news items.

THIS WORLD IS full of vicious things, circles and dogs spring immediately to mind. I've had experience of both. the latter in fhe bundle of fluff that's the nearest I get to a pet and of the former, it seems, in everything I do. At any rate it's an example of the former that I'd like to dwell upon for a moment.

The situation concerns anyone considering the development of a microprocessor based control system. As a first step in any such development program, our likely lad will look around at the various development systems. that most of the major manufacturers produce, to help potential micro users to get to grips with their particular processor.

When It's All Assembled

Having chosen one of the various kits he can now get down to the real business of developing the control algorithms and, finally, the machine code that will drive the completed implementation of his system. That's if all goes well. Many of the basic development kits come supplied with a monitor that can only be described as rudimentary, allowing only a simple memory examine / modify type instructions. The development of any routine over a few hundred bytes with such a system has been know to drive many a hardened engineer to throw down his soldering iron and go for some knitting needles.

Fear not we say to our, by now, disheartened fellow, for we can provide you with an assembler. From now on you will not have to wrestle with machine code, but can deal with mnemonics which at least makes the task of coding much easier, and if you're lucky your assembler will also take care of a few labels in our program. At this point though, our man hears of a marvellous thing called an interpreter, whereby he can program his system in a high level language that is, by all accounts, far easier to pick up than either machine or assembly code. As time is money and personnel with experience in machine/ assembly programming are difficult to come by, the choice seems to lie with a BASIC INTERPRETER. We know the final system will operate slower than a machine language program, but it will be fast enough for most applications.

All is well, the final program is soon written and debugged and the time has come to dump the object code into the PROM that will reside in the final hardware configuration. It's here that we observe the beginnings of our vicious circle (you were starting to wonder weren't you).

Things Looking Up?

The crunch comes when we realise that an interpreter does not in fact produce any object code, instead,
looking at a string of stored instructions line by line, it consults a lookup table within the interpreter which then directs the micro to another area of the interpreter's ROM where the routines to carry out the required instructors are located. It is important to note that this takes place on a line by line basis and at no stage is anything that remotely resembles an object code generated. Thus our poor chap has his BASIC program ready to go, but to run it on any system he will require not only to dump the program itself to ROM but also the entire BASIC interpreter. To add insult to injury, most BASICs require a fair sized stack which will also have to be provided.

So attractive as it may seem in terms of development time an interpreter supporting a high level language is no way to undertake software development in most control systems applications. So it's back to the assembler, or, if you feel like withdrawing from life for a while, machine code.

Heard The One About

Now tor a tew quick news items
A new addition to the ranks of places offering micro systems, along with the advice necessary to help chose between the many products around, is the Byte Shop at 426/428 Cranbrook Rọad, Gants Hill, Ilford, Essex. IG2 6HW. Sounds like an offshoot of the American Byte Shop chain, a franchise operation that has been going in the States for some time now. A SAE to the Byte Shop at the above address should get you details of their product range.

This issue of ETI goes to press on the eve of the DIY Computer show and a report of this event, which follows the successful show held last year, will appear in next month's Microfile. I do hear however that another computer magazine is to be launched at the show. The title I've heard is Practical Computing, but by the time you read this the thing may be on the news stands. I look forward to reading the first issue with interest.

Chip Off The Old

You may recall my mentooning the 8048 single chip MPU from Intel a while back. Well no sooner was that in print than a new product information sheet landed on my desk describing the latest addition to the Intel stable. The 8022 is a derivative of the 8048 being a single chip MPU, but with the important plus of having two on board A-D converters. Add to this an eight bit input port with variable threshold (just right for decoding touch keyboards) and the usual complement of $281 / 0$ lines and onboard memory and you have a product that should find its way into more products than I care to think of over the next year or so.

Why Did The Chicken...

Last month I mentioned a company called PETSOFT that has begun to market software for the PET home computer. The company tell me they have had quite a number of inquiries since then with the interesting fact being that most of you have wanted more information on the various games packages offered -you lot must have a lot of time on your hands as I never get the chance to play games on our machine-honest. Before leaving the subject of PETSOFT and going on to name another company that is to offer much the same service. I must just mention a recent addition to the PETSOFT range. This program is a recipe title that goes under the name of Colonel Evans Kentucky Fried Chicken - a roast by any other name.

In case you missed PETSOFT's address last month they are at 316 Fulham Road, London.

That other company I mentioned is General Software at 16 Sommerford Avenue, Crewe, CW2 8NE. Initially this company is to deal in TRS80 software and a SAE to them at the above address will secure a list of the titles at present in their range.

And Now For Something

Many of you who have ordered either MK 14 or NASCOM kits have told me of the long waits you have had between placing your order and receiving your goods. I am assured by both companys concerned that the supply problems that, in both cases, have been responsible for the delays have.now been sorted out and that the kits are now being dispatched without delay. As
a result of this I have at last managed to sort out reviews of these interesting products and one or other of these should appear in the next issue of ETt.

Many A Slipped (disk) Twixt

The floppy disk untit for the PET computer will appear in Britain but not it seems before the end of the year. Meanwhile the men at Commodore are being inundated with requests for just such a unit and Commodore have asked me to say that if any of you feel able to tackle a PET-floppy interface, they would be only too glad to provide you with all the necessary information.

In One Ear, Out The . . .

I get many enquiries regarding the adaption of TV to accept video signals. With many of the sets on the market this can prove a tricky task but D. Reddington has written to tell me of a £69 Sanyo receiver that could not be simpler to adapt.

With three screws and a phono plug removed and the back comes off, two more screws and the circuitry slides out, and here's the best bit, there is a link wire joining the video stage's input to the sets RF stages. Remove this and replace by a switch and conversion is complete.

As a bonus there is a similar link in the sound stage.

One For The

I live in a place that is a desert in the oasis of life and I'd like to move (this has got nothing to do with MPU's in case you hadn't guessed) so if any of you within the GLF (Greater London Frontiers) know of a room/flat that's going spare please let me know here at ETI.

ET

£6.25 each + 75p Post or TWO for $£ 12.50$ post free
Send now to:

M. D. MARKETING
P.O. Box 4, Hinckley, Leics.

Reg, office: 22 Station Road, Hinckley

NASCOM 1 Microcomputer for the Hobbyist

THE ONLY COMPLETE MICROCOMPUTER AVAILABLE TO THE HOME CONSTRUCTOR FEATURES:

\star Supplied in Kit Form for Self-Assembly
\star Full documentation supplied
\star Includes Printed Circuit Board
\star Full Keyboard included

* Interfaces to Keyboard, Cassette Recorder \& T.V
* $2 \mathrm{~K} \times 8$ RAM
$\star 1 \mathrm{~K} \times 8$ Eprom Monitor Program
* Powerful 280 CPU. Mostek
$\star 16$ line $\times 48$ Character Display Interface to standard, unmodifed T.V. set
\star On board expansion to $2 \mathrm{~K} \times 8$ Eprom
* On Board Expansion Facility for Additional 16 Lines I/O
* Total expansion to 256 Input Ports and 256 Output Ports

SOFTWARE FEATURES:
$\star 1 \mathrm{~K} \times 8$ Nasbug Program in Eprom

* Provides 8 Basic Operator Commands including single step
\star Expandable Software System via additional user Programs in Ram of Eprom

Manuals	
Compleie Kits	
$£ 3.50$	NOW IN STOCK

After sales service available eparate 5

 London w2: 404.6 Edgware Road. Tet: 01-723 1008

MEMORIES

All VAT inclusive

35 p for $p \& p$ orders under $£ 5$
Please write for discounts over 100 pieces
(Mail Order only)

LOTUS SOUND

4 MORGAN STREET LONDON E3 5AB

ETCH RESIST TRANSFER KIT SIZE 1:1
Complete kit 13 sheets 6 in $\times 41 / 2$ in $\mathbf{£ 2 . 5 0}$ with all symbols for direct application to P.C. board. Individual sheets 25p each. (1) Mixed Symbols (2) Lines 0.05 (3) Pads (4) Fish Plates and Connectors (5) 4 Lead and 3 Lead and Pads (6) DILS (7) BENDS 90 and 130 (8) $8-10-12$ T.O.5. Cans (9) Edge Connectors 0.15 (10) Edge Connectors 0.1 (11) Lines 0.02 (12) Bends 0.02 (13) Quad in Line
FRONT AND REAR PANEL TRANSFER SIGNS
All standard symbols and wording. Over 250 symbols, signs and words. Also available in reverse for perspex, etc. Choice of colours, red, blue, black, or white. Size of sheet $12 \mathrm{in} \times 9 \mathrm{in}$. Price $\mathbf{£ 1}$.

GRAPHIC TRANSFERS
 WITH SPACER

ACCESSORIES
Available also in reverse lettering, colours red, blue, black or white. Each sheet 12 in . x 9 in contains capitals, lower case and numerals $1 / 8 \mathrm{in}$ kit or $1 / 4 \mathrm{in} \mathrm{kit}$. £1 complete. State size.

All orders dispatched promptly All post and VAT paid
Ex U.K. add 50 p for air mail Shop and Trade enquiries welcome Special Transfers made to order

E. R. NICHOLLS

P.C.B. TRANSFERS

DEPT. ETI/8
46 LOWFIELD ROAD
STOCKPORT, CHES.061-480 2179

OSMABET LTD | We make rirstomers |
| :---: |
| amongst oner |
| $\substack{\text { thngs }}$ |

LOW VOLTAGE TRANSFORMERS: Prim 240V ac.

 £30; $40 V 3 \mathrm{~A}$ CT £9.75; 50 V 6A £27.00.
TWIN SEC TRANSFORMERS: Prom 240 V a
$6 V 06 \mathrm{~A}+6 \mathrm{~V} 06 \mathrm{~A} .9 \mathrm{~V} 04 \mathrm{~A}+9 \mathrm{~V} 04 \mathrm{~A}, 12 \mathrm{~V} 025 \mathrm{~A}+12 \mathrm{~V}$
 $1 A 66.10 ; 18 V 15 A+18 V 15 A E 7.30 ; 20 V 15 A+20 V 15$ E7.30; $12 \mathrm{~V} 4 \mathrm{~A}+12 \mathrm{~V} 4 \mathrm{~A}$ £8.10; $25 \mathrm{~V} 2 \mathrm{~A}+25 \mathrm{~V} 2 \mathrm{~A}$ £8.10.
MIOGET RECTIFIER TRANSFORMERS: 240 V . $6-0.6 \mathrm{~V} 15 \mathrm{~A}$ or 9.0 .9 V 1A $£ 2.45$ each, $12-0.12 \mathrm{~V} 1 \mathrm{~A}$ or $20-0-20 \mathrm{~V}$ 075 A E2.95 each, 9.0 .9 V 03 A or 12.0 .12 V 025 A or 20-0-20V $015 \mathrm{~A} £ 2.95$ each
TTRANSFORMERS TAPPED SEC: Prim 240 V ac.
.10-12-14.16-18V 2A £4.85; 4A £6.50; 0.12.15-20-24.30V

Ains imanisolmens spirial
50.0250 V 50 Ma 63 V 1A $£ 1.50$: 250 V 100 Ma 63 V 2 V ac
gV 3A £2; 23V O 5A £1.25; 20W Auto $110 / 240 \mathrm{~V} £ 1.75$.
SPEAKER AUTO MATCHING TRANSFORMERS
12W. 3 to 8 or 15 up or down $\mathbf{£ 2 . 5 0}$.
LOUDSPEAKERS
 $£ 1.25 ; 7 \times 4$ in 3.8 .16 .25 or 800 . $£ 1.75 .8 \times 5 \ln 4$. 8 or 25 n £2.50; 8 in 80 E2.50
"INSTANT" BULK CASSETTE/TAPE ERASER
instant erasure of casseltes and tape spools, any diameter
POWER SUPPLY, TWIN OUTPUT: Prim 240V
 stabilised output of 15 V 100 Ma . plus 12 V ac 05 A outpur. CONDENSERS
Electrolytic 1000/50V 30p; 2000/30V 30p; 1200/75V 50p: Electrolvtic
$3900 / 100 \mathrm{~V} \varepsilon 1.25$; paper IUbular W/E $047 / 600 \mathrm{~V}, 22 / 250 \mathrm{~V}$.
$47 / 160 \mathrm{~V}$ $47 / 160 \mathrm{~V}$ all at 25 p each. E15 per 100
EOGWISE LEVEL METER FSO 20
SIZ $19 \times 18 \times 20 \mathrm{~mm} 8009, ~ £ 1.10$.
SYNCHRONOUS GEARED MOTORS, $240 A$ ac
Brand new bull in gearbox, $1,6,8$ or 20 RPH, all at $£ 1.20$ each .
O/P TRANSFORMERS FOR VAL
O/P TRANSFORMERS FOR VALVE POWER AMPLIFIERS
PP sec lapped 3.8.15. A-A 6K 30W
E17.C0; $100 \mathrm{~W}(\mathrm{EL} 34 \mathrm{KTB8}$ etc) $£ 22.00$. G.E.C. MANUAL OF POWER AMPLIFIER Covers valve ampliters 30 W to 400 W 75 p . MULI WAY CABLE, SCREENED PVC COVEREO 36 way $\varepsilon 1.00 ; 25$ way 75 p; 14 way 50 p; 6 way $25 p ; 4$ way 20 p; individually screened 25p per metre, 4 way unscreened mains 30 p per metre
TWIN FIG CAbLE
Polarised, 100 metre E 4.50
Ideal for speakers intercoms telephones etc $£ 4.50100 \mathrm{~m}$
CALI PRICES INCLUDE V.A.T.
Collers by appointmont oniv
46 Konilworth Road, Edgware, Middx HAS BYG

Save on Calculators

Now a digital mult meter at an analogue spec!
D.C. volts 1 mv $1000 v(1 \%-1$ count) 10 mg input. 1 . A.C. VOLTS $1 \mathrm{v}-500 \mathrm{v}$ $40 \mathrm{~Hz}-5 \mathrm{kHz}(1 \%+2$ counts)
D.C. CURRENT $1 \mathrm{inA}-200 \mathrm{~mA} \quad(1 \%$ COUnt)
RESISTANCE 1Ω. 20 ma

£28.80.£29.85
purchase order both inc. VAT
A.C Mains adaptor $£ 3.20$ deluxe padded carrying case $£ \mathbf{3 . 2 0}$ 30 kV probe $£ 18.64$

THE SINCLAIR MICROVISION

The amazing pocket T. . . that will pick up programs throughout the pick up programs whioughour he
world. complete with rechargeable batteries.
£196 inc. V.A.T. Sae (for detailed Brochure ex-stock)

SINCLAIR DM235
Ortable $31 / 2$ digit 6 funclion
Multimater DC volts 1 mV to 1000 V $A C \& D C$ current $1 \mu A$ Resistance 1Ω to 20 M n Orode test $0.1 \mu A$ to 1 mA
10 mQ input. DC acc $10 \mathrm{~m} \Omega$ input. OC act 1
$10 \mathrm{cc} 15 \% 30 \mathrm{~Hz} \cdot 10 \mathrm{KHz}$ $£ 52.80$ inc VAT

CASIO AQ1000

CD Wrath / Stopwatch
CActuletor wid Alarm
Time hours, mins secs. am/pm
Stopwatch urn 9 hrs. 59 mins. 599 secs
cleared
ory calculations. \%
$£_{19.90}$ inc VAT
MODEL MCC-8
CD Chronograph with adjustable bracelet 8 -functions hours minutes. seconds, month. date. day, sion minutes, seconds, tenth and hundrediths ol seconds Pushbutton backlight.

KRAMER \& CO
9 October Place, Holders Hill Road, London NW 141 EJ
. alas. A.N. KLMMA, K7. Tal. 01-203 247 MAIL ORDER ONLY. S.A.E. for ditti wheete

Telephone and Telex ordere accepted

AS YOU SWELTER in the sun this Summer (?) think forward to Christmas 1978 and the never ending task of trying to think of new and original presents for Aunt Mavis and Uncle Eric. If you think that you have problems spare a thought for the manufacturers of gimic presents who have the problem this year of what form to present an electronic goody. Should they come up with a super calculator which calculates, tells the time and date in all 24 time zones, checks your pulse and biorhythm, etc. etc, - bit old hat really! What about a new gadget for the kitchen which slices cucumber, carrots, potatoes, picks up crumbs and nails and checks your pulse and biorhythm?

Auto-focus for cameras and . . .?

Electronic cameras have been with us for some years with automatic light sensors, shutter timers, etc. The latest development is a self-focusing device which is now being fitted to some cameras, the device is from Honeywell and goes under the name of Visitronic. The type of rangefinder or auto-focusser fitted to some cameras at present is based on two mirrors, one fixed and one

EXTERNAL FIXED MIRROR

Fig. 1. External arrangement of mirrors for the Visitronic.
moveable, which reflect the images onto the viewfinder. Adjusting the focus screw moves one of the mirrors until the images relfected from the two mirrors become a single image and at this point the image is assumed to be in focus. A similar system is used in the Visitronic except that the images are reflected onto the surface of an IC with two photosensor arrays, one at each end of the IC. As the mirror is moved the images presented at the two photo arrays are compared and a signal is produced which is relative to the comparative matches in the two arrays with a peak at the best match. The movement of

Fig. 2. The Visitronic module, with prisim, two lenses and linear IC chips.
the mirror is linked to the focussing ring of the camera and thus is capable of continuously adjusting the focus of the camera so that it is centred on the most obvious subject in view. The speed at which this happens is fast enough to operate during the time that the shutter is open for a still camera and thus is capable of 'instant' focus for cine or TV cameras.

The whole unit is packaged in a TO-8 can with a sophisticated plastic over which also incorporates two plastic lenses and a prism to transmit the light from the external mirrors onto the photo arrays, the mirrors, mirror motor, and controls are not included. The actual chip measures 100×250 mils and contains sensors, amplifiers, voltage regulator, reference voltage, peak detector and output driver. The photosensor arrays are each broken down into four parrallel sensors on each side of the chip, the use of four sensors in each array increases the sensitivity of the device and allow for more accurate calculation of the best image match.

Eye Technology

Applications of the Visitronic are not limited to use in cameras. Your average run of the mill Robot uses light or ultrasonics to find its way around obstacles, it might now be possible to use one or more Visitronic devices to give the Robot something approaching the concept of an eye. With an MPU backing up the Visitronic it may be possible to differentiate between similar objects of different sizes, different textures or colours. This might well be a beginning to the answer to one Robot problem which has always fascinated me - unless you know different. If you show a young child a picture of a male lion standing under a tree the child has no difficulty in relating this to your own small tabby kitten and will not mistake it for a dog. The Robot can be persuaded to recogn ise the picture of the lion and can inform you that it is the picture of the lion, and can inform you that it is the picture you have told it is called lion on any sbusequent showing of the picture. If your kitten wanders into the viewing range of the Robot it will not recognise it at all unless the kitten decides to strike up a pose similar to that of the lion under the nearest hat stand. Is the problem of recognising a pattern from a different angle, size, colour, etc really that difficult?

SERVICE TRADING CO		GEarem Motor
	，	
－		边
	20ememam	
	边	
	Siligilision simat	
f		
		reoume
	1．	
		Euasperoro zay
manomex		
	ReL	
		＝
	Pavasmax	
		S
3	䧉	
	v/4y	
	Ster	

NEW FROM BI-KITS!

 (WITH INTEGRAL HEAT SINK)

BETTER THAN 50w RMS!

Supply Voltage Max
Operating voltage rang
Load
Frequency Response $\pm 1 \mathrm{db}$
Sensitivity for 50 watts into 8 ohms Input Impedance
THD at all power levels up to clipping
S/N ratio Max. ambient operational temp S/C Complement
Size overall Size overall

70 volts
70 volts
50.70
8-16ohms
$25 \mathrm{~Hz}-20 \mathrm{kHz}$
500 mV
35 kohms
35 kohms
05% max
05% max
100 dBs
45 deg C
45 deg . C
13 transistors 3 diodes 240 gms

FOR ONLY
£11.95
$+8 \%$ VAT. $25 p$ P\&P

ALSO SPM120 Stabilised Power Supply

AVAILABLE IN THREE ALTERNATIVE VOLTAGES - 45,55, 65 volts TO POWER THE FOLLOWING BI-PAK AMPLIFIERS:

SPM 120/45 Two AL60s up to $25 w$ per channel simultaneously $\mathbf{£ 4 . 9 5 + 1 2 1 / 2 \% \text { VAT }}$ SPM 120/55 Two AL80s up to 35 w per channel simultaneously $£ 4.95+121 / 2 \%$ VAT SPM 120/65 Two AL 120 s up to 50 w per channel simultaneously $\mathbf{£ 5 . 9 5}+12 \frac{1}{2} \%$ VAT SPM $120 / 65$ One AL250 up to $125 w £ 5.95+12 \frac{1}{2} \%$ VAT. Please add $25 p$ P\&P to all orders
AC INPUT
AL $120 / 4540-48 V$ AL $120 / 5550-55 v$ AL $120 / 6560-65 v$ OUTPUTCURRENT $2.5 A$ RIPPLE @ $1 A 100 \mathrm{mV}$ 2A 150 mV
USE YOUR SPM 120 WITH ANY OF THESE!
 AL 80. 35w (RMS) AMPLIFIER £7.15 + 8\% VAT 25p P\&P AL 250. $125 \mathbf{w}$ (RMS) AMPLIFIER $\mathbf{£ 1 7 . 2 5 + 8 \% \text { VAT 40p P\&P }}$
PA200. Pre-amplifier for use with all the above modules $£ 16.30$
$+121 / 2 \%$ VAT 40p P\&P
 STREET, WARE, HERTS.

Constant Current Source

J Macaulay
The circuit shown will provide 3 preset currents which will remain constant despite variations of ambient temperature or line voltage

ZD 1 produces a temperature stable reference voltage which is applied to the non inverting input of IC 1
100% DC feedback is applied from the output to the inverting input holding the voltage at Q2s emitter at the same potential as the non inverting input.

The current flowing into the load therefore is defined solely by the resistor selected by S 1. With the values employed here, a preset current of $10 \mathrm{~mA}, 100 \mathrm{~mA}$ or 1 A can be selected. Q2 should be mounted on a suitable heatsink

Zener Tester M Ibions

This circuit is to provide a cheap and reliable method of testing zener diodes

RV1 can be calibrated in volts, so that when LED 1 just lights, the voltage on pins $2 \& 3$ are nearly equal. Hence the zener voltage can be read directly from the setting of RV1

The supply need only be as high a value as the zener itself. For a more accurate measurement, a precision pot could be added and calibrated

Simple Dual Power Supply

L Swann

This circuit offers a cheap and simple way of obtaining a split power supply (for Op-amps etc.), utilising the quasi-complementary output stage of the popular LM380 audio power IC

The device is internally biased so that with no input the output is held mid-way between the supply rails

R1, which should be initially set to mid-travel, is used to nullify any inbalance in the output. Regulation of $\mathrm{V}_{\text {out }}$ depends upon the circuit feeding the LM380, but the positive and negative outputs will track accurately irrespective of input regulation and unbalanced loads

The free-air dissipation is a little

over 1 watt, and so extra cooling may be required. The device is fully protected and will go into thermal shutdown if its rated dissipation is ex-
ceeded, current limiting occurs if the output current exceeds 1A3.

The input voltage should not exceed 20 V
E.T.I. APPROVED FOR USE WITH NORMAL IGNITION SYSTEMS REVERT TO NORMAL SWITCH $\begin{gathered}\text { can be mounted } \\ \text { on oashboard }\end{gathered}$ no more burnt contact POINTS
REV LIMITER
, NEON LIGHT INDICATOR

NEG EARTH

PRICES INC. VAT \& POST FREE IN U.K. To order send cheque or money order crossed and made payable to Stirling Sound. (Cash must be sent by regd. post only). Allow 28 days delivery.
5ound $\sqrt{3}$
TO ORDER BY ACCESS OR BARCLAYCARD JUST LET US KNOW YOUR NUMBER.
All communications to $\overrightarrow{D e p t ~}^{\text {E }} / 18$
All Commurd Way Shoeburyness, Essex (03708) 5543 Shop 222/224 West Road, Westcliff-on-Sea

Because of the outstanding success of this ETI/STIRLING SOUND project, we are extending this exclusive offer to ETI readers until August 31 next. This gives you the chance to fit your ETI gnition unit during the longer hours of daylight and in time for your holidays. It gives us the opportunity to keep our factory going at full capacity over what is usually a quiet period. This is beneficial (not forgetting the tax our staff. to our suppliers of material and so an (irling Sound ETI Mk. 2 man!). And in case you need reminding, better mileage per gallon of electrol, easier starting in Winter, cleaner plugs and an end to burnt petrol, easier starting
contact points plus instant switching back to normal ignition if required - in fact, it's an investment in better motoring you cannot afford to ignore. And it's so easy to tit. too!

Easy to build complete kit inc drilied and titled P.C.B aluminium case, leads, etc., and simple instructions KTT Complete kit as recommended by (After Aug. 31 st, £15)

The BETTER catalogue

Modules - power amps 3 to 100 watts R.M. S. power supplies, control units, etc - D.I.Y disco/P.A - bargain disco assembles plenty to choose from with technical gen, diagrams and good instructions Send only 20p for postage and handling for your copy by return You carf t be without it!

STRATHAND SECURITY

Holidays coming? Worried about your house? Why not fit an alarm and have a relaxed holiday. We supply the parts - all top quality professional items as used by major alarm companies. Easy to install, e.g.

	Magnet and reed switch. Flush fitting, 4 wire. Requires hole 12 mm diameter by 34 mm deep
102.	Magnet and reed switch. Flush fitting screw terminals. Requires hole 15 mm diameter by 14 mm deep
103.	
104.	Magnet and reed swach Heavy duty Size 103 mm by 20 mm by 18 mm . Two hole
105. 106.	
107.	Window foil - self adhesive - top quality. 70 roll $1 / 4$ wide ¢3.17
10B	Foil blocks - self adhesive. (Joins foil to cable) £3.70
110.	
111	Bell boxes heavy duty plastic coated metal 10.25
112	Bell 6 " heavy duty - very loud 12v D.C. §10.75
116	
123	
	es include VAT and postage

plus
Radar (microwave) units, automatic 999 dailling unts with tape message, and many other items.
This month's Special Offer:
Completely self-contained Smoke Detector for house or caravan. Loud penetrating sounder. Battery included Our Price while stocks last - $£ 19.95$ including VAT and P\&P.

STRATHAND SECURITY

44 St. Andrew's Square Glasgow, G 1
Tel: 041-552 6731/2

Callers Welcome

Don'tlot your enviromment dehydrate you, BUY OUR "HONEYWELL HUMIDITY Don tot Your environment actuated, adjustable by $1 / 4$ shaft. Ideal for greenhouses, offices. centrally heated homes. etc. 3.75A contacts at 250 . Burd Et each. 3 for dehydration alarms with this novel gadget at a traction of
$\S 2.50$.
BARGAIN PACKS
Miniature transformer F.M. frunt enid with 100 k varicap pots, can be banked side by
Miniature transformer F.M. front-end with
integral tuning gang BB- 10 BMHz . 10.7 MHz . I.F output $\ldots . . . \mathrm{E} 2.50$ Miniature Vernitron FM4 io 7 MHz Minature vernitron
ceramictitters $\quad 50 \mathrm{p}$ each, 3 for E1 Crystal earpieces with iead

40p each 3 for ह1
Magnetic earpieces with lead and plug $25 p$ each 5 for E1
Ultrasonic transducers transmitter and eceiver, 14 mm diam 40 kcs
4 aluminum boxes $1 \overline{2} 8 \times 44 \times 38 \mathrm{~mm}$
4 aluminum boxes $128 \times 44 \times 38 \mathrm{~mm}$, ideal for signal injectors, etc
Self-fluxing enamelled copper wire
E
22
Self-fluxing enamelled copper wire 22
$\$ w g$ on 2ozare read switches, ideal for burglar alarms, model railways. etc

66 -pole 12 volt reed relays on board
High quality computer panels sm 45
in top-grade components
5 lbs
10 lbs
side. very compac
5 for E1.
$160 \mu \mathrm{~F} 25 \mathrm{v}$ axial leads ... 10 for
300 mixed modern caps, most types 30
100 mixed modern minıature ceramic
and plate caps

Semiconductor Bargains

100 new and marked silicon and germanium transistors including BC 14 B , BF 9 94, BC183, etc. $£ 3.95$ 200 new and marked transistors including 2N3055. AC128, BFY50, BD131, etc.
100 mixed diodes iN4 148 , etc. $£ 1.20$ 100 mixed diodes including zener. power and bridge types
BR 101 full spec. 5 for £1.00
ITT 25 kV ctv eht triplers for Decca "Bradford chassıs brand new $£ 250,5$ for $£ 10$
 SN 76115 N (equivalent MC1310) £1.00 TBA120A

2 for E1.00
3 for E1 00
BD140 A $\quad \begin{aligned} & 3 \text { for E1 } 00 \\ & 1 \text { watt }+ \text { into } B\end{aligned}$ Motorola Audio I.C. 1 watt + into B 16Ω. Operates between $9-16 \mathrm{~V}$ het
400 MV sensitivity S.C proof, no heat400MV sensitivity S.C proit, $£ 120$ $\begin{aligned} & \text { sink req With data and circuits } \\ & \text { Data and circuits }\end{aligned} \quad 20 \mathrm{E} . \mathrm{S} . \mathrm{A} \mathrm{E}$
New U.HF transistor TV tuners. Rotary type with slow motion drive . E2 50 Áluminium TV coāx plugs $1(0$ tor $£ 100$ Miniature mains transformers, fully shrouded, ex new equipment 240 with $6-0.6 \mathrm{v}$ out at 100 mA Complete with mains lead and plug on input and shor leads on output
Miniars 200μ AF S panel mounting level
meters 200 AFs $1 / 2$ \& $1 / 4$ watt EI 50
300 modern mixed caps most types
100 mixed electrolytics . £2.20
300 mixed printed circuit components 50
300 mixed printed circuit resistors $£ 1.00$
100 high-wattage resistors. W W. . etc
20 assorted VDR's and thermistors
25 assorted presets, skeieton, eic E1. 20 25 assorted pots and presets . E1. 50 .
$470 \mu \mathrm{~F} 25 \mathrm{v}$ radial modern type 5 for $£ 1$ 200 mixed 1 - and 2 -watt resistors $£ 1.50$
100k sliders, mono or stereo
Deluxe Fibre Glass Printed Circuit Etching Kits Includes 150 sq ins. Copper clad \uparrow / g board, 116 . ferric chloride, 1 dalo etch resist pen, abrasive cleaner, 2 bits, etch tray and instructions Only $£ 5.30$ 150 sq ins. fibre glass board ${ }^{-}$. £2 00 Dalo pen
1 lb ferric chloride to mil spec . E 125 5 lbs . ferric chloride to $\mathrm{mil} \mathrm{spec} \quad \mathrm{E} 5.00$ Instruction sheet

30p P \& P ON ALL ABOVE ITEMS SEND CHEQUE OR POSTAL ORDER WITH CHEQR TO SENTINEL SUPPIY DEPT ETI, 149A BROOKMILL ROAD DEPTFORD, LONDON. SE8

Callers by appointment only

Wilmslow Audio

off off at preset times once a day KIT contains AY-5-1230 Clock/Appliance Timer IC. 0.5
LED display, mains supply display drivers LED display, mains supply, display drivers Eul instructions £13.75 Special white box $(56 \times 131 \times 71 \mathrm{~m})$
Acrylic window - undrilled $£ 2.20$
ready drilled for kut $£ 2.50$

TOUCH CONTROLLED LIGHTING KITS

These KITS replace conventional light switches and control 300W of lighting No mains rewiring required. Insulated touch plates. Complete with easy to follow instructions TSD300K TOUCHSWITCH and DIMMER combined ONE touchplate to swith light on or off. Brightness controlled by small knob £5.20 TS300K - TOUCHSWITCH. TWO touch plates One for ON one for OFF £4.00 TSA300K - AUTOMATIC TOUCHSWITCH. ONE touch plate. Touch for ON and light stays on for preset time (variable from 2 secs $1031 / 2$ mins.) Ideal for stairs and hall $£ 4.00$		
LD300K - 300W LIGHT DIMMER KIT Replaces conventional light switches. $\mathbb{E 2} \mathbf{8 0}$		
AY-5-1230 Clock Appliance Timer I.C. LM3911 Thermometer/Temperature Control 1.C. (with data) E1.00 NE555 Timer I.C. 8 pin dil $\quad \mathbf{3 6 p}(3$ for $£ 100)$ 741 Op. Ampl.C. 8 pin dif 24p (5 for E 1.00)	Tillar :aphatis	
	400V Plastic isolated tab 3 A $\mathbf{6 3 p}$ 6.5 A with trigger" $\mathbf{8 0 p}$ 8.5 A $\mathbf{7 9 p}$ 12 A $\mathbf{8 4} \mathbf{p}$	
	16	165p
	20 A	165p $190 p$
BC182L 8p" TIP32 50p 1N4004 4p	DIAC	21p
$\text { C } 10605 A / 400 V \text { SCR }$		

OPTOELEGTROCICS

C 280 Polyster Capacitors 250 V d.c. (values in uF)

 RESISTORS 33W $5 \% 22 \mathrm{ohm}$ to $10 \mathrm{Mohm} 11 / 2 \mathrm{p}$ Push Button push to make 20p
ATC AUDAX BAKER BOWERS \& WILKINS
- CASTLE CELESTION CHARTWELL
COLES DALESFORD DECCA EMI EAGLE - ELAC - FANE GAUSS - GOODMANS HELME I.M.F. ISOPHON JR JORDAN WATTS KEF LEAK LOWTHER McKENZIE MONITOR AUDIO PEERLESS RADFORD RAM RICHARD ALLAN SEAS TANNOY VIDEOTONE WHARFEDALE

WILMSLOW AUDIO Dept. ETI

SWAN WORKS, BANK SOUARE, WILMSLOW, CHESHIRE, SK9 1HF
Discount HiFi, etc., at 5 Swan Street and 10 Swan Street
TEL: WILMSLOW 29599 FOR SPEAKERS WILMSLOW 26213 FOR HIFI

QUANTITY DISCOUNTS ON REQUEST
dd $8 \%(121 / 2)$ V T Plus 25 p P\&P MAIL ORDER ONLY TO
T.K. ELECTRONICS (ETI)

iN4148 Diodes by ITT/Texas. 100 for E1.50. These are full spec. devices.			
Unencoded Hexadecimal 19 keyboard 1-10 ABCDEF 2 optional keys. Shift key £12.50.			
MM2102 AN-4L. 1024×1 Bit. 450 nano sec Static Ram. £1.60 each. $4 / £ 6.00$. 8/£11.60.			
2112256×4 Bit Static Ram 450 nanosec. $£ 2.95$each. $4 £ 11.60 .8 / £ 22.60$.			
AY5-1013 UAR/T £6.00.			
FND 500 Seven Segment Common Cathode Display $£ 1.30$ each. $4 / £ 5.00$.			
$\begin{aligned} & \text { Red Leds } 0.125^{\prime \prime} \text { or } 0.2^{\prime \prime} 10 \text { for } £ 1.20 \text {. } \\ & 100 / £ 9.00 .1 .000 / £ 60.00 \text {. } \end{aligned}$			
Murata Ultrasonic Transducer $£ 2.50$ each $£ 4.00$ pair			
741 Op Amp. 25p each 10/£2.00.			
555 Timer. 28p each 10/£2.50.			
4001	14p	4029	11
4007	$16 p$	4047	100p
4011	14p	4049	40 p
4012 4013	14 p 50 p	${ }_{4060}$	$120 p$ 55 50
4015	90 p	4069	20 p
${ }_{4016} 4017$	40 p	4071	${ }^{16 p}$
4020	100p	4072 4081	$16 p$ $16 p$
4022	90p	4082	16p
4023	16p	4510	120 p
4024	65 p	4511	150 p
4025 4026	16p	4516	110 p 130 p
4027	$\begin{array}{r}\text { 50p } \\ \hline\end{array}$	4528	100 p
4028	90p		
Prices include Post and VAT			
T. POWELL Access/ Barclaycard 306 ST PAUL'S ROAD HIGHBURY CORNER, LONDON N. 1 Tel: 01-226 1489			

For high-quality electronic watches and calculators a substantially discounted prices. See our
Send cheque
-
NBMPUS C 121 Fitacy Stren Tcurinom (0223) 312898

DESIGNED SPECIALLY FOR THE HOME CONSTRUCTOR

- A second generation Induction Balance system with improved Variable-Tone detection.
- Designed by professionals for easy assembly by amateurs but with very good performance.
- The search coils are fully assembled and adjusted for you.

Coils pre-assembled and tested wedge shaped search field

Uses include:

* Treasure hunting - it's amazing what you can find in the garden or on the beach.
* Finding lost metallic items.
* Locating waterpipes and cables under floorboards on in walls.
* Checking old timber for nails before cutting, etc., etc., etc., etc.

Communication Measurement Ltd 15 MALLINSON OVAL. HARROGATE, YORKS.

LCD PORTABLE CLOCK/RADIO ALARM

This stylish $63 / 4^{\prime \prime} \times 13 / 4^{\prime \prime} \times 31 / 2^{\prime \prime}$ unit features an $A M / F M$ radio and a highly accurate LCD clock which controls the unit so that it can operate as an alarm clock with 4-minute snooze, or you can wake up to your favourite programme. It can also turn the radio off when you go to sleep!
$£ 27.00+\varepsilon 1$ p. \& p. inc. V.A.T.

KRAMER \& CO.

g October Place. Holders Mill Road London, NW14 1EJ
Telex: B88941. ATTN. KRAMER, K7. Tw. 01-203 2473 MAIL ORDER ONLY. S.A.E. for deta sheot: Export enquiries welcome

PRICE SMASH

741 (RCA 8 DIL full spec), 17p. LM711CH + Data (to5, voltage comparator), 25p. TBA 810 O 65p.

Penny and Giles, 5k Slider Faders, £4.50. Signetics 2102 B (500 s) 1.202708. £8. Cannon D type plugs/skts. 25-way skit., 60p. 37-way plug or skt, 80p. 15 -way plug or skt, 50p. Lambda LX S-A-5-OV-RV1, modular regulated, power supply 5 v DC $4 \mathrm{amps}, 240 \mathrm{~V}$ input, brand new, cased, $160 \mathrm{mmL} \times 90 \mathrm{~mm}$ WX 80 mmH, £15. TMS3128NC (shift reg.), 80p. SN74188AN (few only), £2.50. MC10102P, 25p; MM5241ABV/J, £2.50. DIL switches, 4 -way, 55p. 7 -way, 80p. Red Led . $\mathbf{2}^{*}$, 9p. LM340T plastic 1 A voltage regulators, $+5 \mathrm{~V}, 95 p+12 v$, 85p.

P\&P on above $10 p$

POCKET PAGER

Miniature crystal controlled FM RX Single Superhet around 30 MHZ 450 KHZ If contains various tone detectors. Ideal for modification to 27 MHZ Radio Control OR 28 MHZ Amateur Band. Complete, without $2.5 v$ DEAC + circuit of similar type, £3.95. P\&P 25p

L.B. ELECTRONICS 43 WESTACOTT, hayEs middLesex uba 8ah

SEMICONDUCTOR OFFERS ALL FULL SPEC.

BC212. BC 182, BC 237, BF 197. BC159. BCY71, all 8p each. RCA 2015 TO3 Power Transistor (Sim to 2N3055) 35p. ACY 18 18p. BF 200 20p. Motorola MRD 3051 Photo Transistors 35p. N. Channel F.E.Ts. similar to 2 N 381918 pp . Motset Sim to 40673
35 p 3 N 140 Mostets 50 p . M203 Dual Matched Pairs Mosfets Single Gate per F.E.T. 40 p . Intel 1024 bit MOS Rams 95 p. Mullard B8113 Triple Vericap Diode 35p. MC 1310 Stereo Oecoder I.C. 3 D.I.L. 23p. 500 v 600 mA Bridge Recs. (ex. equip.) 25p. 1 N 4002 100 LA Diodes 4p. 14005800 V 1A Diodes 7p. E.H T. SIL. Rec
 GN/9A $13 \times 8 \mathrm{~mm} 65 \mathrm{p}$. O. 2 or 0.125 Red LEDs 12 p each. MAN 3 A 3 mm LED Displays 50 p . Murata 4 OKHz transducers 15 mm diam. €2.95 pair, NE555 35 p . 74.
35 p . LM 38080 p . LM 38 i 90 p 2 N 41475 p.
COMDENSER MIKES. EM506 Condenser Mikes. Uni- directional. F.E.T. Amp Dual imped., $50 \mathrm{~K} / 6000 \mathrm{hms}$, $30-18 \mathrm{KHz}$, on /off switch, $£ 11.00$. Miniature Tre Pin Condenser mike
omnı-drrectonal, uses hearing aid batrery (suppliod) $£ 4.95$.

MICROPMONES. Grundig Elactret Insers with built-in FE.T. Preamp E1 50. Crystal Mike Inserts 37 mm 45 p . Electret
Condenser Mikes KQ tmp. with std. Jack Plug E2.85. Cassette Condenser Mikes 1 KM tmp. with std. Jack Plug
Condenser Mikes with 2.5 and 3.5 Jack Plugs E2.85. Standard Condenser Mikes with
Cassette Mikes 200 ohm Imperd with 2.5 and 3.5 Jack Plugg
E1 20 . Min E.H T. Sil. Recs. 115 KV 2.5 MA 30 p .

MORSE KEYS-Hi-spoed Type, all metal. E2.25. Belling Lee 14305 Masthead Amplifiers and 240 V AC power unit Group ' UHF. Only $£ 7.50$.
CRYSTALS. 300 KHz HC6U 40 p. 443 MHz C.TV. Xials 45 p . 01 Edge Connectors. 64 way 65 p. 32 way 40 p.
RELAYs. Min. 220v AC Sealed Relay 2 pole C/O45p. 240v AC Sealed Relay 3 pola C/O 5 amp Contecis 1 -pin base 80 p . 1 voil relays 3 -amp contacts New 55 p.
MOTORs. 15 to 6 V DC Model 20 p . 115 V AC min. 3 R.P. M. with Gearbox 30 p 240 VAC Synch Motor $1 / 5 \mathrm{th}$ R.P.M 65 p .240 VAC
Synch. Motor $1 / 24 \mathrm{th}$ RPM. 65 p . Crouzet $115 v$ AC 4 R.P.M. Synch. Motor $1 / 24$ th
Motors. new $95 p$. 12v OC 5 -pole $35 p$.
BOXES. Black A.8.S Plastic with brass inserts and lid, $75 \times 56 \times$ $35 \mathrm{~mm} 40 \mathrm{p} .95 \times 71 \times 35 \mathrm{~mm} 49 \mathrm{p} .145 \times 95 \times 16 \mathrm{~mm} 570$.
TOOLs. Radio pliers. Sin, insulatad handles $£ 1,40$. Diagonal side cutters. Sin, insulated handies $£ 1.40$
TRANSFORMERS. $-6.0-6 \mathrm{v} \quad 100 \mathrm{~mA}, 9-0.9 \mathrm{v} 75 \mathrm{~mA}$. $12-0-12 \mathrm{v}$ 50 mA 75 p emch $12.0-12 \mathrm{v} 100 \mathrm{~mA} 95 \mathrm{p}$. 11 Triac Xenon Pulse Transiormer 30p
TIL305 Alpha-numerical Displays. with data, $£ 2.75$.
8 WAY RIBEOM-CABLE, min solid core, 15 p matre.

SWITCMES—Min Toggle, SPST $8 \times 5 \times 7 \mathrm{~mm} 45$ p DPDT $8 \times 7 \times$ SWITCHES-DOT Coggle, OH $12 \times 11 \times 9 \mathrm{~mm} 75 \mathrm{p}$. DPDT C/ 10 Sliders 20p. R.S. Single Pole C/O Push Buttons 45 p . Poller Micro Swithes 15 p Min. Micro Switches $13 \times 10 \times 4 \mathrm{~mm} 20 \mathrm{p}$. G.P.O. Keyswitch Assy. 3 Switches 2.3 way, 1.2 way multpole
Push to make or push to break Switches $16 \times 6 \mathrm{~mm} 15 \mathrm{p}$.

SOLDER SUCKER. Plunger type, eve protection. replaceable noxzle, hugh suction, £4 95. Reed switchos 28 mm norm. open, $6 p$ each

TAPE HEADS-Cassette Stereo E3.00 BSR MN $13301 / 2$ Track Dual Impedance Rec / Playback 50p. 8SR SRP90 $1 / 4$ Track Starec
Rec./Playback $£ 1.95$. TO 10 Assemblies. two heads. $1 / 4$ Track Rec./Playback $£ 1,95$. TO 10 Assemblies. iwo heads. $1 / 4$ Track
Rec./Playback Staggered Stereo with built-1n erase per head Rec. IPlayback
E 1.20 Tape Mead Demag 240 v AC ह1 195.
BUZZERS-GPO Type 6.12v 20p. Min. Solid State Buzzers $6.9-12$ or $24 v 15 \mathrm{~mA}$
volts, high tone, 25 p
U.H.F TV Transer push Bution Tuners (not Varicap), new and boxed. E2 50

AEROSOL "TOUCH-UP" PAINT. One colour only. Yellow/ Grey, 6oz can. 35p.
METERS-Sterro Tuning Maters 100μ a per movement $£ 2.75$. Grudt \oint Batt Level Meter $1 \mathrm{~mA} 40 \times 40 \mathrm{~mm} £ 1,10$. Min Level
Merer 200μ a $25 \times 15 \mathrm{~mm} 75 \mathrm{p}$. Ferrant, 600 v AC Meter $£ 3.95$.
POT CORE UNIT. Has 6 -por cores, including $1 \mathrm{~F} \times 2243(45 \mathrm{~mm})$ and 2 FX 2242 (35 mm). 320 mm Panel Fuseholders, 3 TO SIL Power Transistiors on heat sink, panet with various transist
diodes with a 5 -amp plastic SC R. New $\varepsilon 1,75+75 \mathrm{p}$ P\&P
AEROSOLS-Servisol Switch Clesner + Lubricant 8ozs 55p Freazer 6ozs 50p. Gear Cleaner \& Tar Remover $140 z 5$
SOLENOIDS-240VAC 45p 12V DCH Duty 75 p
12-WAY MOTORISED CAM UNITS. 50V AC low rov. motor driving 12 C/O micro switches. supplied
$A C$ use Ex. equip. $£ 1.95+35 p$ P\&P

POSTAGE 30p UNLESS OTHERWISE SHOWN (EXCESS POSTAGE REFUNDED WITH ORDER) OVERSEAS POST AT COST VAT INCLUDED IN ALL PRICES
SAE. FOR LISTS

ORDER ADDRESS

PROGRESSIVE RADIO
31 CHEAPSIDE, LIVERPOOL 2 051-236 0982

MORE BARGAINS FROM METAC

MIN
 \section*{LOW COST BOXES}

AND INSTRUMENT CASES

PRINTED CIRCUITS

and

HARDWARE

Comprehensive range Constructoss' Hardware and accessories.
Selected range of popular components. Full range of ETI printed circuit boards. normally ex-stock, same day despatch at competitive prices
P.C. Boards to individual designs. Resist-coated epoxy glass laminate for the di.y. man with full processing instructions (no unusual chemicals required).
Send 15 p for catalogue.
RAMAR CONSTRUCTOR SERVICES MASONS ROAD Stratfordoon-avon WARWICKS. Tel. 4879

TRANSFORMERS

Twin Primaries $115 / 230 \mathrm{~V}$
Twin Isolated Secondaries
0-4.5-0-4.5
0-6-0-6
6VA
0-15-0-15
British made - Great Value

Try us for all your Component Requirements
T.D. COMPONENTS

Unit Four, Staincliffe Mills Dewsbury, W. Yorks. 0924409040

OUR LATEST NOVELTY!

The first LCD Ballpen Ëronograph. A clip-on ball point pen with chronograph watch incorporated. A useful gift in an attractive presentation case.

Only $£ 29.95$ + VAT (in chrome or gilt)

* 6 Digir display
* 8 functions hour, minute second month date, day of week, stop watch, lap time with backlight
runs on Ever-feady 393 or equivalent
battery (year's life under typical use)
* accurate to 5 seconds a month
* simple to use
with 12 month guarantee
Contact KRAMER \& CO. for details
WE SUPPLY ALL SEIKO WATCHES
We accept govt. / company purchase orders on all goods.

KRAMER \& CO.

9 October Place. Holders Hill Road London NW14 1EJ Telex 888941 Artn Kramer K7 Tel: 01-203 2473 Mail order only SAE for data sheets Export enquiries selcome

LOW-PRICE CALCULATORS

TEXAS

TI-45 Loǧs; Trig: 1 memory £23.50 SR-5i-III Prog-20 steps: Hyperbolic; Rect/ Polar; Conversion; Statistics; 10 Memories © 31.75 TI-57 Prog-50 steps; Logs: Trig Statistics; 8 TI-58 Prog -480 steps or 60 mems, software module of 25 progs58.50 TI- 59 Prog- 960 steps or 100 mems; software module; mag card prog $\mathbf{E} \mathbf{2 1 5 . 4 5}$ PC-100A Mains printer unit for T1-58/59. Alphanumeric: data plotting ... £170.75

* All prices include VAT and postage
* Calculators complete with AC Adaptor/ Charger
MAIL ORDER ONLY
SKAD ELECTRONICS
12 Chalgrove End, Stoke Mandeville Aylesbury, Bucks.

NOW!

11 Mirco projects for you to build in our new micro box

```
* M.W. Receiver * Signal Injector
* Ultra SonicTx * F.M. Tx
* Heads or Tails * Plant Moisture Unit
\star Electro Magnet \ Insect Repeller
* Metronome * Hunt the Bleep
```

All these great micro projects will, including batteries into our $60 \times 40 \times 15 \mathrm{~mm}$ box (you can fit two in this advert). Just 75 p brings all 11 circuits, a Micro Box and a $£ 1$ voucher for our lists.

Send to

M. D. MARKETING

P.O. Box 4, Hinckley, Leicestershire

SPECIAL OFFER

If you can buy the same for less, we will refund the difference. Brand new and full specification pots, transformers, switches, linears, TTL, CMOS, transistors, opto electronics and other semiconductors. Send large SAE for catalogue.

> DELTA TECH (E) \& CO. 62 NAYLOR ROAD LONDON N20 OHN

HEXADECIMAL KEYBOARD. High quality keys on fibreglass board, TTL encoded with strobe, £17.50 inc. Individual keys 70p. 2 digit Hex display with latch $£ 9$ inc. Sinclair scientific calculators $£ 3.75$ inc. SAE for details. Mail order only. LINTRONICS, 313 Green Lane, IIford, Essex.

SOLARTRON CT436 OSCILLOSCOPE, double beam, DC $6 \mathrm{MHZ}, 10 \mathrm{mv}, 240 \mathrm{v}$ mains. Full documentation. Telephone (0793) 37461 (Swindon). Offers around $£ 100$.

Please mention ETI when replying to Adverts

[^4]
THIS SECTION IS A PRE-PAYMENT SERVICE ONLY

MINI-ADS: $31 / 4^{\prime \prime} \times 21 / 8^{\prime \prime}, 1-3 £ 31,4-11 £ 29,12$ or more $£ 28$ per insertion. CLASSIFIED DISPLAY: 15p per word. Minimum 25 words. No P.O. Box Numbers can be acçepted without full address. Enquiries to: Advertising Department, 01-4375982. 25-27 Oxford Street, London W1R1RF.

```
DELTA DISTRIBUTION CO.
75 WILLOWTREE AVENUE, GILESGATE MOOR
DURHAM DH 1 1DZ. Tol: ( 0385 ) 82760 or \(\$ 1785\) TRANSFORMERS (P/P 35p eech)
240 V 12 V (or 6-0.6) 200 mA
240 V 12 V . 12 V (or 24 ) both 250 mA
VOLTAGEREGULATORS
LM 342 P- \(5+5 V 3\) Din TO. 202200 mA
LM \(342 \mathrm{P}-12+12 \mathrm{~V} 3\) Pin TO-202/200MA
LM 34 P- \(24+24 \mathrm{~V} 3\) pinTO \(202-200 \mathrm{~mA}\)
LM 317 MP Adjustable 3 pin ro-202 500 mA
IC:
IM 555 CN Tumer 8 DIL
M 741 CN-8 80 Amp 8 DIL
M 348 N Ouad 74114 OL
HEF 4001 P Quad NOR 140
HEF 4011 P Quad NAND 14 DIL
RESISTORS
/3W 100 R to 10 M
CSC BREADBOARD ANO TEST EQUIPMENT
xperimenter 300
xperiementer 600 (accepts wide chips)
ogic Proble LP 1
Protoboard 6
Protoboard 100
Protoboard PB 203 i
Protoboard PB \(203 A\)
Max 100 (Digital Fre
VEROBoX
\(11 \times 49 \times 19 \mathrm{~mm}\)-Black
mm-Black
Cheques/Orafts/P OS/ACCESS No. accepted c.
0.98
0.88
1.95 0.98
0.88
1.85
3.95 0.79
0.79 0.79
0.79
1.48
```

```
0.33
0.27
1.13
1.13
0.19
0.19
0.02 6.20
6.55
28.40 28.40
30.55
9.45 \begin{tabular}{l}
9.45 \\
11.95 \\
\hline 12.22
\end{tabular} 72.22
74.95 0.44
us with your ACCESS No Ior really fast service
Post/Packing 25p unless otherwise stated \(+\dot{+}\) VAT \(8 \%\)
```

ephone

``` (except
Expon Orders:
trade ano export enquiries welcome mail order
```

SAVE POUNDS on test equipment with MLC modules and kits. Free data sheets MLC(E), 116 College Road, Southwater Horsham, Sussex.
PERSONAL COMPUTING MAGAZINES FOR HOBBYIST AND BUSINESS: Dr. Dobbs, Personal Computing. Creative Computing, ROM - £1.50 (some back issues E1.25). Byte, Interface Age, Kilobaud $£ 2.00$ (some back issues - £1.50). P\&P on any one MAGAZINE - 45p. Microcomputing books also in stock. INTERAM Computer Systems Ltd., 59 Moreton Street London. SW1 (01-8340261/2733).
P.C. BOARD OFFCUTS. No small pieces Approx. 400 sq. in. (2lbs.), E 1.60 inc. postage. T.S.E., 6 Ainsworth Road. Swindon SN3 2DJ

ELECTRONIC KITS.-SAE for new cataloque, and clearance list of obsolete kits. AMTRON UK, 7 Hughenden Road, Hastings, Sx.

6800 SINGLE BOARD COMPUTER

Features crystal controlled V.D.U. C.P.U. with memory decoder, CUTS interface 1 k user RAM, 1 k Mikbug compatible ROM buffered outputs for easy expansion paraliel input.
All you need for a working computer is a TV, ASC11 keyboard, tape recorder and P.S.U.

£185 + VAT

$+£ 3.24$ postage
Mail order only; sae for leaflet

Write to:
HEWITT ELECTRONICS LTD. 95 Blakelow Road Macciesfield Cheshire

MANTELET GAS MONITOR

 KITIDEAL FOR BOATS CARAVANS - WORKSHOPS, ETC. WILL DETECT MOST INFLAMMABLE GASES AND VAPOURS. SENSITIVITY CAN BE SET FOR VERY SMALL CONCENTRATIONS
Kit includes T.G.S. Head. P.C.B. and ali necessary comps. Construction details supplied.
Price kit (less case) $£ 12.45$ inc. VAT.
Case with punched front plate $\mathbf{£ 3 . 6 0}$ inc. VAT.
Send S.A.E. for full details to:

Mantelet Electronics Ltd.
8 The Square, Horndean, Hants

TRS-80? If you have the machine, we have the SOFTWARE. BUSINESS/FINANCE/ SCIENTIFIC GAMES, etc. Send SAE for list to GENERAL SOFTWARE, 15 ROCKWOOD AVENUE, CREWE CW2 8LU.

PART BUILT 16 CHANNEL E.T.I. MASTER MIXER, cabinet, pots, 20 meters, 5 band e.g., PCBs, power amp, some wiring, coils, knobs, plans: NEEDED TO FINISH: components for 8 pre-amps, 2 mixer PCBs, input sockets. Materials cost $£ 330$ will accept £260 o.n.o. 76 GEORGE ROAD, NEW MALDEN, SURREY. 01-942 9034 after 2000 hrs.
MICROCOMPUTER I.C.s. New, 2708 EPROM. $1 \mathrm{k} \times 8450$ ns, now down to 7.60 . 21102 low power RAM. $1 \mathrm{k} \times 1450 \mathrm{~ns}$, £1.00. Prices each, inc, postage, etc. A. C. GIDLOW, 7 Cypress Road, Newport, Isle of Wight PO30 1 EY.

NEW! HOBBY-PACK STICKIES

Professionals worldwide use STICKIES - for building and debugging prototypes, faultfinding - even de. signing PCB layouts.
Now, for amateurs. comes the hobby pack - 120
STICKIES for $\mathbf{8 0 p}$. Mas proje STICKIES for 80 p. Make projects less sweat. more fun. Why not try a pack?
Just to remind you - STICKIES are self-adhesive printed labels which immediately identify pin-outs for carefuly-selected range of 4000 -or 7400 -series ic's.
Also $\mathbf{4 8 0}$-label pack $£ 2.80$ (Discounts for quentities) Prices include VAT, p\&ip. Please state whether TTL or CMOS required. Official orders welcome.

CONCEPT ELECTRONICS

8 Bayham Road, Sevanoaks, Kent 0283514110
100 WATT GUITAR/PANUSIC AMPLIFIER
With superb treble. bass. Overdrive, slimlins. 12 months guarantee. Unbeatable offer at $£ 39$. Also twin chennel with absolutely delighted within 7 days. Also fuzz boxes great sound robust constuction E6.80. Also 100 watt 12 in . speakers $£ 22.50$.
All inclusive of P.P. Send cheque or P.O. to: WILLIAMSON AMPLIFICATION
62. THORNCLIFFE AVENUE, DUKINFIELD. CHESHIRE. TEL: 061-3445007

TROUBLESHOOTING, PROGRAMMING AND DESIGN help offered for 6800 microcomputers especially S68. Also assistance with hardware interfacing and monitor writing (expansion to 280 soon). 01-960 2042.

CORE MEMORY PLANES, ex-equip. without drive circuits, $4 K(64 \times 64)$ per plane, 99 p each plus $25 p$ p\&p, $£ 7.50$ post free for $8, ~ £ 12$ post free for 12. G. Langley, 31 Bakers Lane, Woodston,
Peterborough.

COMPONENT. BARGAINS

741 I.C.s 25p each	25p each £ $£ 1.00 / 5$
555 I.C.s 30p each	30 peach ¢1.25/5
7404 I.C.s 12p	12p each 50p/5
7475 I.C.s 30p each	30p each £1.25/5
7490 I.C.s 35p eac	35 peach £1.50/5
74141 I.C.s 50p eac	50p each £2.00/5
Diodes IN4148 3p ea	$3 \mathrm{peach} 25 \mathrm{p} / 10$
IN4001 ... 4p ea	4 p each $30 \mathrm{p} / 10$
IN4004 5p ea	$5 p$ each 40p/10
Zeners $400 \mathrm{~mW} 5 \mathrm{v} 1.5 \mathrm{v} 6,12 \mathrm{v}$	5v6. 12 v 10p each
5 v 600 mV Voitage regulators	ulators . 90p each
100v 2 Amp Bridge rectifiers	ctifiers . 40p each
Transistors 8C107 ... 9p ea	$9 \mathrm{peach} 80 \mathrm{p} / 10$
2N3055	50p each
0.2* Red L.E.D.s with holder	holder 10p
ImH R. F. chokes . . . 10p ea	10p each $85 p / 10$
10 way ribbon cable $50 \mathrm{p} / \mathrm{m}$	50p/m € 4.50/10m
100μ A Meters $23 /{ }^{\prime \prime} \times 13 / 4^{\prime \prime}$.	$13 / 4^{\prime}$. . . $£ 3.85$
DIL Sockets 14 pin	£12p
16 pin	13p
FND500 7 segment L.E.D. displas	E.D. displays £1. 30
Soldercon I.C. Socket Pins .	Pins . . 50p/100
Prices include VAT. P\&P 20p	P\&P 20p per ord
Stephen Instrumen	rumentation
49 Hucknall Aven	Il Avenue
Ashgate, Cheste	hesterfield
Derbyshire S40 4	S40 4BZ

Situations Vacant

COMMODORE SYSTEMS DIVISION need an experienced digital engineer to be fesponsible for the service of their 6502 based PET Computer. The position is London based, conditions are excellent and salary is negotiable. Please contact Mr. Roe on 013885702 . We will also require a technician to assist the above on the same equipment. Salary for this position is dependent on age and experience.

FIELD SERVICE ENGINEERS

Enthusiastic people with knowledge of electronics required to service Video Games.

We are a nationwide Company looking for people capable of working on their own initiative within a small team. In return we offer good prospects, private use of company vehicle (a clean driving licence is essential) and a salary circa $£ 3000$ p.a. depending on age and experience
There is an immediate vacancy in Central London, but, as we are expanding very rapidly we would be interested in hearing from applicants in all areas.

[^5]
ADVERTISEMENT INDEX

Ace 65
Advanced Computer Products 55
Airamco 74
Almarc 22
Ambit 6
Astra-Pak 85
Audio Electronics 22

94

94

94

94

94

Marshalls

Marshalls

Marshalls

Marshalls 100 100 100 100 100

MD Marketing

MD Marketing

MD Marketing

MD Marketing

MD Marketing 14 14 14 14

Metac

Metac

Metac

Metac 85 85 85 85 85 95 95 95 95
Minikils
Minikils
Minikils
Minikils 74 74 74 74
Electronics
Electronics
Electronics
Electronics 13 13 13 13 13
Lotus Sound
Lotus Sound
Lotus Sound
Lotus Sound
Lotus Sound 86 86 86 86 86
Mountaindene
Mountaindene
Mountaindene
Mountaindene
Mountaindene 74 74 74 74 74
Bamber 90
Micronics
Micronics
Micronics
Micronics
Micronics
Baydis 65Bi-Pak4. 5. 90
Brewster S\&R 80
Cambridge Learning 65
Chiltmead 21
Chromasonics 73
C. N. Stevenson 32
Powertran 2
Communications Mea 74. 94
Progressive Radio 94
Computer Marketing 81
Crimson Elektrik 22
RE Equipment 84
Nicholls 86
Osmabet 86
Doram 38, 73. 95
EDA 73
Edinsmith Computer Services 56
Electrovalue 84
Fladar 95
Flairline 93
Greenbank 82
Greenweld 56
Henrys 32. 82.85
ILP 43
Integrated Circuils Ltd 59
Jayen 86
Kramer 86, 94
Science of Cambridge 66
Service Trading 88
Suntel 37
Sterling Sound 92
Strathand Sec 92
Swanley 32
Tamtronik 72
Technomatic 60
Teleplay 81, 99
Tempus 29. 93
TK Electronics 93
T. Powell 93
Trampus 62
Vero Electronics 72
Videotime 60
Watford B. 9
Wilmslow Audio 93

Mini-Ads pages 96, 97 and 98

Teleplay now present 5 Sis - will save you

 COLOURSTARERS
ก꺠|ㄴㄴㅣㅔ

everything for the modern D.I.Y. electronics enthusiast and more.

216 big (11" $\times 8^{\prime \prime}$) pages! Over a thousand illustrations! Over 30 pages of complete projects to build! Thousands and thousands of useful components described and illustrated! No wonder it's a bestseller!
DON'T MISS OUT! SEND GOp NOW! MAPLIN ELECTRONIC SUPPLIES
P.O. BOX 3 RAYLEIGH ESSEX SS6 8LR CATALOGUE PRICE 6Op

Shop: 284, London Road, Westcliff-on-Sea, Essex

[^0]: PRICE STABILITY: Order with confidencel irrespective of any price changes We will honour all prices in this advertisement until September 30th, 1978. If ETI August 1978 issue is mentioned with your order. Errors and VAT rate changes excluded
 U.K. ORDERS: Subject to $12 \frac{1}{2} \%$ surcharge for VAT (i e add $1 / a$ to the price) No charge is made for carriage or at current rate if changed
 SECURICOR DELIVERY. For this optional service (U K mainland only) add
 E2 50 (VAT inclusive) per kit
 SALES COUNTER: If you prefer to collect your kit from the factory. call a Sales Counter (at rear of factory) Open 9 a $\mathrm{m}-430 \mathrm{pm}$ Monday Thursday

[^1]: COPYRIGHT: All material is subject to world wide Copyright protection. All reasonable care is taken in the preparation of the magazine to ensure accuracy but ETI cannot be held responsible for it legally. Where errors do occur a correction will be published as soon as possible afterwards.

[^2]: All publications are published in U.S.A. and shipped air-freight by L.P. Enterprises. In unusual cases, processing may exceed 30 days
 *BYTE subscriptions are processed in USA and are air-freighted \& posted from Amsterdam and will take 3 months to start.
 $\overline{\mathrm{U}} . \overline{\mathrm{K}}$. subscriptions start within three weeks
 TRADE ENOUIRIES WELCOME

[^3]: 1 enclose a cheque; PO payable to Cambridge Learning Enterprises
 for $£$
 Please charge my Access/Barclaycard/Visa/Eurocard/Mastercharge / Interbank
 account numbe

 ## Signature

 Telephone orders from creditholders on delete as appropriate should send a bank dratt in sterling drawn on a London Bank

[^4]: SPECIAL OFFER: if you can buy the same for less, we will refund the difference. Brand new and full specification pots, switches, transformers, linears, TTL, CMOS, transistors, and other semiconductors. Send large SAE for catalogue. DELTA TECH (E) \& CO. 62 NAYLOR ROAD, LONDON N20.
 OPPORTUNITY to take over profitable established radio component business due to retirement. A capital of only $£ 5,000$ required for basic stock. Busy No. London main road. Box No. 61.
 AERIAL BOOSTERS improve weak vhf radio and television reception, price $£ 4.50$, S.a.e for leaflets. Electronic Mailorder Ltd. Ramsbottom, Bury, Lancs., BL9 9AG.

[^5]: Phone Derrick Morgan or John Brown on 01-459 2236, or write to: Cherry Leisure (UK) Ltd., 387 High Road, Willesden, London NW10 2JR.

