

200 + 200W Dual Channel Amplifier
 COMPLETE KIT AS FEATURED IN APRIL ISSUE OF E.T.I.

PSI 4001 SLAVE MODEL

PSI 4002 STUDIO MODEL
Pack
1 Fibre alass arinted cir cuit baard lor power amp Set of capacilors. meial oxide resistors. thermistor. cormel pre-sets for power
 Pair ol monster black drilled heal sinks. transistor mounting braskel Toroidal Iransformer: Primary $0-117 \mathrm{~V}$-234V. Secondaries $42.0-42 \mathrm{~V}$. $0-15 \mathrm{~V}$ 0-15V. Elecirasialic screen
Sel ol all parts for slabilised power supply including fibre glass printed circuil board. mounting bracket. semiconduclors. resisiors. capacitors. elc
Set of all parts for buffer/overdrive unit including fibre glass printed circuit Set of all parts for buffer/overdrive unit including fibre glass printed circuit
board. semiconductors. resistors. capacitor s. cantrols - required for PSI 4001

Set ol parts for peak power meler including professional quality meter, fibre glass printed circuit boards. companents, control - requir ed for PSI 4002 only E1 1.50 Set of all miscellaneous parts inctuding sockets. illum. mains swilches. fuse
holders, fuses. cul-outs, cabte. etc ... Cabinet including chassis, anodised siver on required Handbook E 0.50 or free on request when ordering any of above packs. 2 each of packs 1.7 |A or B). I each B. 9 and 10 are required for complele $200+200 \mathrm{~W}$ professional amplifier

400W rms continuous - 800W peak! 0.03 \% THD at FULL power! PLUS all the following features too!

* Each channel totally independent with its own stabilised power supply driven by custom designed TOROIDAL transformers
- Inherent reliability - monster heat sinks for cool running at the hottest venues - electronic open and short circuit protection
- Ultra low feedback (an incredibly low 14 dB overalil) super high slewing rate ($20 \mathrm{~V} / \mu \mathrm{s}$) 200 W rms continuous to 4 ohm from EACH channel. input sensitivity $0775 \mathrm{~V}(\mathrm{OdB})$
- Professional quality com instructions suitable for both experienced constructors and newcomers to electronics - Value for money - quality and performance comparable with ready buit amplifiers costing over £600

TRANSCENDENT 2000

As featured in this issue
COMPLETE KIT ONLY £186.50 + VAT

We are producing a superb kit, at an irresistible price, for the latest and most practical design ever published Kit includes fully finished metalwork, solid teak cabinet and really is complete ever published Kit includes fully finished metalwork, solid teak cabinet and really is complete - "ight down to the last nut and bolt it can be buit easily in a few evenings by almost anyone capable of neat soldering When finished you will possess a synthesizer comparable in performance and quality with ready built units selling for between $£ 500-£ 7001$

MANY MORE KITS ALSO AVAILABLE - ASK FOR OUR FREE CATALOGUE
Amplifiers (20-200W), Tuners, Cassette Deck, Quadraphonics, etc., etc

De Luxe Linsley-Hood 75w Amplifier
$75+75 w$ AMPLIFIER
COMPLETE KIT ONLY £99.30 + VAT

T20 + 20 AMPLIFIER

$$
\begin{array}{lc}
20+20 w & \text { AMPLIFIER COMPLETE KIT ONLY } \\
\text { Based on P.W. TEXAN } & £ 33.10 \text { + VAT } \\
30 w \text { VERSION }(\text { T } 30+30) \text { ONLY } £ 38.40 \text { + VAT }
\end{array}
$$

$$
10
$$

PRICE STABILITY: Order with confidencel irrespective of any price change we will honour all prices in this advertisement until August 31st. 1978 if ET July 1978 issue is mentioned with your order Errors and VAT rate changes excluded
N.K. ORDERS: Subject to $12 \frac{1}{2} \%$ surcharge for VAT (i e

SECURICOR DELIVERY. For this optional service (U.K manland only) ad
¢2 50 (VAT inclusive) per kit
SALES COUNTER: It you prefer to collect your kit from the factory, calt at Sales Counter (at rear of factory) Open $9 \mathrm{am-4} 30 \mathrm{pm}$ Monday-Thursday
our catalogue is FREE! Write or phone NOW!
POWERTRAN ELECTRONICS
PORTWAY INDUSTRIAL ESTATE
ANDOVER, HANTS SP 10 3NM
(STD 0264) 64455

DESIGNING OSCILLATORS
VFETS FOR EVERYONE BRAINS AND COMPUTERS MICROFILE
RACE FOR THE BOMB TECH-TIPS

FEATURES

15
25
33
59
69
81

How to make sines Insight into new technology How's your CPU? News for MPUs Atomic development Readers' own ideas

PROJECTS

TEMPERATURE METER
TORCH FINDER MUSIC SYNTHESIZER UFO DETECTOR

LCD module employed A flash in the dark? A revolutionary concept! Magnetic principle unit

NEWS

NEWS DIGEST

DATA SHEET
ETI SEMINAR REPORT
What's on where Memories are made of this! If you missed it Where do we go now?

73 77

INFORMATION

Strike a light p. 31

10 13 36 49
55
57
79

Trouble and strike avoided Details of our other publications Unbelievable amplifier offer!! And for our next issue Finishing Read this fine print Why do it any other way?

Electronics Today International is normally published on the first Friday of the month prior to the cover date

[^0]
Bocks AND COMPONEIUS

BOOKS BY BABANI

BP2	Handbook of Radio. TV \& Industrial \& Transmitting Tube \& V Value Equivalents	60 p 4
BP3	Handbook of Tested Transistor Circuits	40p \dagger
BP6	Engineers and Machinists Reference Tables	40 p 4
$8{ }^{8} 7$	Radio \& Electronic Cotour Codes Data	15pt
BP10	Modern Crystal and Transistor Set Circuits for beginners	$35 \mathrm{p} \uparrow$
BP15	Construction Manual of Electronic Circuits for the Home	50pt
BP16	Handbook of Electronic Circuits for the Amateur Photographer	60p \dagger
BP 18	Boys and Beginners Book of Practical Radio and Electronics	$60 \mathrm{p} \dagger$
BP22	79 Electionic Noveliy Circuits	75pt
8P23	First book of Practical Electronic Projects	$75 p+$
BP24	52 Projects Using IC741 (or equivaients)	75p \dagger
BP25	Radio Antenna Handbook for Long Distance Reception and Transmission	$85 p \dagger$
BP27	Giant Char of Radio Electronic Semiconductor and Logic Symbols	604
BP29	Major Solid Srate Audio Hi.Fi Construction	
BP32	How to Buld Your Own Metal \& Treasure Locators	$85 p 1$
BP34	Pracrical Repair \& Renovation of Colour TV\%	95pt
BP35	Handbook of IC Audio Preamplifier \& Power A Construction	95pt
BP36	50 Circuits Using Germanium, Silicon \& Zener Diodes	75pt
BP37	50 Projects Using Relays, SCRs and TRIACS	1.104
BP39	50 (FET) Field Eftect Transistor Projects	1.254
129	Unversal Gram-motor Speed Indicator	10pt
160	Coil Design and Construction Manus!	75pt
161	Radio, TV and Electronics Data Book	$60 p+$
196	AF-RF Reactance - Frequency Chart tor Constructors	15 pt
202	Handbook of Integrated Clicuits (ICs) Equivalents and Substitutes	75p \dagger
205	First Book ol Hi.Fi Loudspeaker Enclosures	75p 4
213	Electronic Circuits for Model Railways	$85 p+$
214	Audio Enthusiasts Handbook	$85 p \dagger$
216	Electronic Gadgers and Games	$85 p+$
217	Solid State Power Supply Handbook	85 p 4
219	Solid State Novelty Projects	$85 p t$
220	Build Your Own Solid State Hi.Fi and Audio Accessories	85 pt
222	Solid Stare Short Wave Recrivers for Beginners	$95 p \dagger$
223	50 Projects Using IC'CA3130	95p \dagger
224	50 CMOS IC Projects	95p \dagger
225	A Practical Introduction to Digital ICs	95 pt
226	How to Build Advanced Short Wave Receivers	$1.20 \dagger$
RCC	Resistor Colour Code Disc Calculator	10pt

BOOKS BY NEWNES

No	229	Beginners Guide to Electron
No.	230	Beginners Gulde to Television
No.	231	Beginners Guide to Transistors
No.	233	Beginners Guide to Radio
No.	234	Beginners Guide to Colour Televisio
No.	235	Electronic Diagrams
No.	236	Electronic Components
No.	$23^{\prime} 7$	Printed Circuit Assembly
No.	238	Transistor Pocket Book
No.	225	110 Thyristor Projects Using SCRs \&i
No.	227	$110 \mathrm{COS} / \mathrm{MOS}$ Digital IC Projects for the Home Constructor
No.	226	110 Operational Amplifier Projects for th Mome Constructor
No	242	Electronics Pocket Book
No	239	Circuils 8

Price	¢2
Price	E2.25
Price	E2.25 \dagger
Price	E2.75t
ice	E2.25 t
Price	$61.80 \dagger$
Price	¢1.804
Price	E1.80¢
Price	E3.904
Price	¢2.50¢
Price	¢ 2.75
Price	£2.50†
Price	E3.90 \dagger
Price	E1.80¢

NUTS AND BOLTS

BA BOLTS - packs of BA threaded cadmium plated screws slotted, cheese head

Supplied in multiples of 50

Typ.	No.	Price	Type		Price
1 in OBA	839	E. 1.20	1/2in $48 A$	846	¢0.32
1/2in OBA	840	¢0.75	1/ in 4 BA	847	¢0. 25
1 in 2BA	842	¢0.65	In 6BA	848	¢0.40
1/2in 2BA	843	¢0.45	$y / 2 \mathrm{ln} 6 \mathrm{BA}$	849	¢ 0.2
1/4 in 2BA	844	¢0. 62	$3 / 4$ in 6 BA	850	¢ 0.2
1 in 4BA	845				

BA NUTS - packs of cadmium plated full nuts in multiples of 50

BA WASHERS - flat cadmium plated plain stamped washers supplied in multiples of 50 .

SOLDER TAGS - hot tinned, supplied in multiples of 50

Type	No.	Prlce	TYPQ	No.	Price
OBA	851	$£ 0.40$	$48 A$	853	$£ 0.22$
2BA	852	$£ 0.28$	$6 B A$	854	$£ 0.22$

SWITCHES

Description	No.		Price
DPDT miniature stide	1973		¢0.11*
DPOT standard slide	1974		¢0.14.
Toggle switch SPST			
$11 / 2 \mathrm{amp} 250 \mathrm{Va.c}$	1975		¢0.33
Toggle switch DPDT			
$1 \mathrm{amp} 250 \mathrm{Va.c}$	1976		¢0.42.
Rotary on-off mains'swhich	1977		¢0.50
Push switch - Push to make	1978		¢0.13
Push switch - Push to break	1979		co.18
ROCKER SWITCH	Colour	No.	Price
A range of rocker switches	RED	1980	¢0.30
SPST - moulded in high in-	BLACK	1981	$¢ 0.30$
sulation material avaliabie fin a	WHITE	1982	¢0.30
choice of colours, ideal for	blue	1983	¢0.30
small apparatus	yellow	1984	¢0.30
	luminous	1985	¢0.30
Description	No.		Price
Miniature SPST toggle. 2 amp			
250 V a.c	1958		¢0.50*
Miniature SPST toggle. 2 amp 250 V ac.	1959		¢0.55*
Miniature DPDT toggle. 2 amp			
250 Vac .	1960		¢0.70*
Miniature OPDT toggle. centre	1961		¢0.85*
Push button SPST, 2 amp			
250 V a.c.	1962		¢0.78*
Push button SPST. 2 amp			
250 V a.c.	1963		¢0.83*
Push bution DPDT. 2 amp			
$250 \mathrm{Va.c}$.	1964		£0.98

MIOGET WAFER SWITCHES
Single-bank wafer type - suizable for switching at 25 DV a.c. 100 mA o 150V d.c. in non-reactiver loads make-before-break contacts. These
switches have a spindie 0.25 in dia. and 30° indexing.

Description
1 pole 12
12 way
$\begin{array}{lll}2 & \text { pole } & \text { way } \\ 2 & \text { pole } & 6 \\ 3 & \text { wore } \\ 4 & \text { pole } & \text { way } \\ 4 & \text { pole } & 3\end{array}$

$$
\begin{aligned}
& \text { Order No } \\
& 1965 \\
& 1966 \\
& 1967 \\
& 1968
\end{aligned}
$$

$$
\begin{array}{r}
\text { Price } \\
£ 0.48 \\
60.48^{\circ} \\
£ 0.48^{\circ} \\
£ 0.48^{2}
\end{array}
$$

micho switches
Plastic bution gives simple
Rating 10 amp 250 V a.c.
Button gives 1 pole change
over action
Rating 10 amp 250 V a.c

FUSE HOLDERS AND FUSES
Description

Order No.

$$
\begin{aligned}
& \text { 0aseription } \\
& 20 \mathrm{~mm} \times 5 \mathrm{~mm} \text { chassis mounting } \\
& 11 / \mathrm{in} \times 1 / 4 \mathrm{~m} \mathrm{chassis} \mathrm{mounting}
\end{aligned}
$$

$$
\begin{aligned}
& 11 / 4 \mathrm{in} \mathrm{x} \text { V/4 chassis } \mathrm{m} \\
& 1 \text { 1/ain car inline type } \\
& \text { Panel mounting } 20 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1Yan car inline type } \\
& \text { Panel mounting } 220 \mathrm{~mm} \\
& \text { Panel mounting } 11 / 4 \mathrm{in}
\end{aligned}
$$

$$
\text { auick blow } 20 \mathrm{~mm}
$$

Type	No.	Price	Typ	Pric	No.	Type	Price	No
150 mA	611	${ }^{6}$	1 A		615	3 A		619
150 mA	612	5p	1.54	7 p	615	4A	${ }^{6 p}$	620
550 mA	613	5p	2 A	5p	617	5A	5p	
800mA	614	7p	2-5A	${ }^{6 p}$	618			

ANTI-SURGE 20 m

Type	No	type	No.	Type	No.
100 mA	622	1 A	625	2-5A	628
250 mA	623	2A	626	3-15A	629
500 mA	624	1.6 A	627	54	630
		All $7 p$			

$\begin{array}{llllll} & & & & \\ \text { Type } & \text { No } & \text { Type } & \text { No } & \text { Type } & \text { No. } \\ 250 \mathrm{~mA} & 631 & 500 \mathrm{~mA} & 632 & 800 \mathrm{~mA} & 634\end{array}$ | All 7p asch | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Type | No. | Type | No. | Type | No. |
| 1A | 635 | 2.5A | 638 | $4 A$ | 641 |
| 2A | 637 | $3 A$ | 639 | $5 A$ | 642 |
| | | All $6 p$ each | | | |

CASES AND BOXES

INSTRUMENT CASES. In two sections vinyl covered top and

No.	Length	Width	Height	Pric.
155	8 B	51/in	2 in	E1.25*
156	11 in	6 in	3 in	¢2.12*
157	6 in	$43 / \mathrm{in}$	$13 / 1 i^{\text {a }}$	£1.30
158	9 in	51/4in	21/2in	¢1.76

ALUMINIUM BOXES. Made from bright sll., folded construction asch box completo with hath inch deap lid and acrewe.
Longth
Widther

N\%	Length	Width	Helght	Price
159	$51 / 4 \mathrm{in}$	2 k in	$1 / 2 \mathrm{in}$	$62 p^{\circ}$
60	4 in	4 in	$11 / 2 \mathrm{in}$	62p*
161	4 in	21/4in	$11 / 2 \mathrm{in}$	$62 p^{\circ}$
162	5\%/4in	4 in	$11 / 2 \mathrm{in}$	$70{ }^{\circ}$
63	4 in	21/2in	2 in	$64 p^{\circ}$
164	3 in	2in	1 m	$44 \mathrm{p}^{\circ}$
165	7 n	5 in	$21 / 2 \mathrm{in}$	¢1.04.
166	8 in	6 in	3 in	¢1.32'
167	6in	4 in	2 in	$86{ }^{\circ}$

P.C.B. BOARDS

C26 4 pieces $8 \times 3 \frac{1 / 4}{}$ (approx.) Single-sided fibreglass ${ }_{80}$ C273 pieces $7 \times 31 / 4$ (approx.) Double-sided fibreglass 60 p

TRANSFORMERS

MINIATURE MAINS Primary 240 V
No.
2021
2022
2023

Price
900°
900°
$95 p^{\circ}$
MINIATURE MAINS Primary 24 with two independent secondary windings
 1-AMP MAINS Primary 240 V

No.	Secondary		Price	
2026	$6 \mathrm{~V}-0.6 \mathrm{~V}$	1 amp	¢2.50	Pa, P45p
2027	9v.0.9V	1 amp	¢2.00*	P. P 45 p
2028	$12 \mathrm{~V}-0-12 \mathrm{~V}$	1 amp	¢2.60 ${ }^{\circ}$	PEP ${ }^{\text {5 }}$ P
2029	$15 \mathrm{~V}-0.15 \mathrm{~V}$	1 amp	£2.75.	PRAP88p
2030	30v.0.30V	1 amp	¢3.45*	PEP ${ }^{\text {8 }}$ 8p

STANDARD MAINS Primary 240 V
Multi-tapped secondary mains transformers available in amp, 1 amp and 2 amp current rating. Secondary taps are 0.19-25-33-40.50V

Voltages a available by use of taps
$4,7,8,10,14,15,17,19,25,31,33,40,50,25-0-25 \mathrm{~V}$

No.	Rating	Price	
2031	$1 / 2 \mathrm{amp}$	¢5.50 ${ }^{\circ}$	Pr P 8 8p
2032	1 ami	¢6.60	Pat P 86p
2033	2 amp	¢8.40 ${ }^{\circ}$	P\&PE1.1

AUDIO LEADS

107 FM indoor Ribbon Aerial 5 pin DiN plug to 3.5 mm Jack connected to pins 3 \& 5 . 60.75 €0.85

AC mains connectung lead for cassette recorders and
8 radios. 2 metres pin IN phono plug to stereo headphone jack socket
60.68°
$E 1.05^{\circ}$

casserte. 8 -frack carridge and combination units Supplied
with intine tused power lead and instructions
6.6 m Coited Guitar Lead mono jack plug to mono jack

co. 60°

£ 1.50°

plug BLACK
243 pin DIN plug to 3 pin DIN plug Length 15 m
255 pin plug to 5 pin DiN plug Length 15 m
265 pin DIN plug to tinned open end Length 15 m
1275 pin OiN plug to 4 phono plugs All colour coded. Length
1285 pin DiN plug to 5 pin DiN socker Length 15 m
1295 pin DiN plug to 5 . pin DiN plug misror image. Length
1302 pin DIN plug to 2 pin DiN inlune socket Lengin 5 m
315 pin DIN plug to 3 pin DIN plug $\& 4$ and 385 . Length
$\begin{array}{ll}132 & 2 \text { pin DiN plug to } 2 \text { pin DiN socket. Length iom } \\ 133 & 5 \text { pin DIN plug to } 2 \text { phono plugs. Connected pins } 3\end{array} \mathrm{~B}_{1} 5$

Length 23 cm
135 pin DiN socket 102 phono plugs. Connected pins $3 \& 5$
136 Coiled stereo headphone extension lead Black. Length 6 m
178 A.C meins lead for calculators. etc.
FOR THE YOUNG ENTHUSIAST BII-PAK PROJUECTS KIT

2 Octave, 24 Note Electronic Organ. 2 Trans Radió, Burglar Alarm, Quiz Timer, Morse Kit, Metronome. etc. ONLY E8. 50 P $\mathrm{BP}_{\mathrm{P}} 40 \mathrm{p}$

BI-PAK CATALOGUE NEW EDITION NOW AVAILABLE
Send for your copy of our revised caralogue and price list NOW! it群

Only 65p POST FREE

ORDERING. Do not forget 10 state order number and your name and V.A.T. Add $12 \frac{1}{2} \%$ to prices marked". 8% to thase unmarked. items Per P

B/-PA

Dept. ETI 7, P.O. Box 6, Ware, Herts
COMPONENTS SHOP: 18 BALDOCK STREET, WARE, HERTS.

High quality audio modules for Stereo and Mono

S450
stent FM TUNER
phase lock-loop
£22.30
+40 p p\&
$+121 / 2 \%$ Vat

The 450 Tuner provides instant programme selection at the touch of a bution ensuring accurate tuning of 4 pre-selected stations, any of which may
be attered as othen as you choose. simply by changing the settings of the pre-set controls. Features include FET input stage, Vari. Cap diode tüning
Switched AFC ED Stereo Indicator

The Stereo 30 comprises a complete stereo pre-ampitier,
overwind will produce a high quality audio unit suitabie fo overwind will produce a high quality audio unit suitabie for use with
tape deck. ect. Smple to instail, capabie of producing really first-chat
main switch. fuse and fuse holder and universal mountine bracters.

OUTPUT POWER	7 Watts RMS
LOAD IMPEDANCE	8 ohms
TOTAL HARMONIC DISTORTION	Less than 5\% (Typically 3\%)
FREQUENCY RESPONSE	50 Hz to $20 \mathrm{kHz} \pm 3 \mathrm{dBs}$
TONE CONTROL RANGE	$\pm 12 \mathrm{dBs}$ at 100 Hz and 10 kHz
SENSITIVITY	190 mV for full outpur
INPUTIMPEDANCE	1 M ohms
TRANSFORMER REQUIREMENTS	22 V . A.C. rated at 1 A
DIMENSIONS (Less controls and PÄRTS	$200 \mathrm{~mm} \times 130 \mathrm{~mm} \times 33 \mathrm{~mm}$

$88-108 \mathrm{Mh}_{2}$
FREQUENCY RANGE SENSITIVITY BANDWIDTH SPURIOUS REJECTION SELECTIVITY $\pm 400 \mathrm{kHz}$ AUOIO OUTPUT 122.5 k STEREO SEPARATION SUPPLY REQUIREMENTS AERIAL IMPEDANCE
DIMENSIONS 3.0μ 250 kHz
250 kHz
50 dB
55 dB
H_{2} deviation 100 mV 30 dB 20 to 30 V (90 mA max)
75 ohms
2
0 mA max
$10 \mathrm{~mm} \times 32 \mathrm{~mm}$
 $£ 2.95$
Enjoy the quatity of a 25p p8p magnetic cartridge with your existing ceramic equipment using /enabling the MPA 30 which is a high quality preamplifier for the use of ceramic cartridges only

SENSITIVITY
EQUALISATION $\quad 3.5 \mathrm{mV}$ for 100 mV . output INPUT IMPEDANCE SUPPLY
DIMENSIONS Within $\pm 1 \mathrm{~dB}$ from 20 Hz to 20 kHz 50 K ohms
1 B to 30 V -re earth $110 \times 50 \times 25 \mathrm{~mm}$ (inc DIN socket)

PA12

$£ 7.10$
Stereo 30p prp ${ }^{5} 7 \mathrm{~T} 2 \mathrm{~m} / \mathrm{MaT}$

PRE-AMPLIFIER

The PA1 2 Stereo Pre-Amplifier chassis is designed and recommended for use
with the AL $20 / 30$ Audio Amplifier Modules. the PS 12 power supply ana the with the AL $20 / 30$ Audio Amplifier Modules, the PS12 power supply and the
T538 Transformer. Features included on/off volume, Balance, Bass and Treble controls. Complete with tape output.

FREQUENCY RESPONSE BASS CONTROL TREBLE CONTROL $\quad \pm 12 \mathrm{~dB}$ at 60 Mz INPUT IMPEDANCE $\pm 14 \mathrm{~dB}$ at 10 kHz INPUT SENSITIVITY $\quad 1 \mathrm{Meg}$ ohm CROSSTALK

300 mV SIGNAL/NOISE RATIO $\quad-60 \mathrm{~dB}$ OVERLOAD FACTOR $\pm 20 \mathrm{~dB}$ TAPE OUTOUT IMPEDANCE $\pm 20 \mathrm{~dB}$ TAPEOUTOUT $152 \mathrm{~mm} \times \mathrm{B} 4 \mathrm{~mm} \times 35 \mathrm{~mm}$

PS 12 POWER SUPPLY

Designed for use transformer $T 538$.

 OUTPUT CURRENT 800 mA
Size $60 \mathrm{~mm}=43 \mathrm{~mm} \times 26 \mathrm{~mm}$

GE 100 NINE CHANNEL MONO-GRAPHIC EQUALIZER

 The GE 100 has nine 1 octave adjustments using integrated circuit activefilters. 800 ons and Cut limites are ± 12 dB. Max. Votiage handing 2 V RMS.
T.H.O. 0.05%, input impedance 100 K . Output impedance less than 10 K . Frequency response $20 \mathrm{~Hz}-20 \mathrm{KH}$ (30B) The nine gain controts are centred at 50,100,200,400, £22
 the module) See Paks S31 and 16192.
SG30 POWER SUPPLY BOARD FOR GE 100 15-0-15 VOLT
E5.50 $+12 \% \%$ VAT $55.50+12 \% \%$ VAT $\mathrm{P}^{8} \mathrm{p} 25 \mathrm{p}$

Siren Alarm Module

American Police screamer powered from any 12 volt supply into 4 American Police screamer powered from any 12 voli supply into 4
or 8 ohm speaker. Ideal for car burglar atarm. freezer breakdown or 8 ohm speaker. ldeal for car burglar atarm, freezer breakdown
and other security purposes. Order No. S15. Only E3.50
$+8 \%$ VAT p 8 p 25 p

MA60 HI-FI AMPLIFIER KIT

 Build your own reliable top quality amplifier and save yourself pounds. The MA60 kit comprises the following BI-kits modules: $2 \times$ AL60 amps. I PA P 100 pre-amp ix SPM 80 stabilised power supply $1 x$ BMT 80 transformer, thus giving 17 watts RMS, per satisfaction or money back quarantee. Further details of all the above modules are in this advert.PRICE $£ 32.00+12 \frac{1}{2} \%+62 p p \& p$

TC60 KIT

A beautiful designed genuine TEAK WOOD veneered canbinet to put the professional touches to your home buith amplifier. Full set of parts incl. "front Size $425 \mathrm{~mm} \times 290 \mathrm{~mm} \times 95 \mathrm{~mm}$.

TRANSFORMERS

DEPT. ET16, P.O. Box 6, Ware,
Herts

news digest.

at the third stroke

The cost will be . . . wouldn't it be nice if the telephone told you how much money you were spending. Devoted readers will remember the ETI STD timer published in Nov 76, well a firm called Monitel has latched onto a similar idea - and produced a neat unit to sit under the phone and provide the call cost, at a glance. Heart of the unit is a Rockwell MPU from their PPS4/1 range, the standard UK model uses a MM75 which has 600 bytes of ROM and 48 bits of RAM. The international model uses a MM77 with 1300 bytes of ROM and 96 bits of RAM.

In use the unit calculates the cost, accounting for day of the week, time of day, how far you're calling and the current VAT rate. Any variations in the PO charges are fed into RAM via a punched card supplied by the manufacturers, for a nominal sum. The international model can cope with the overseas tariffs, or UK if you feed it a different card. To operate the unit you first touch the appropriate tariff switch (local, medium or long distance on the standard model), then as soon as you are connected touch the start/stop - when finished touch it again. Cost of call is displayed continuously as you
talk, can be quite frightening seeing all that money disappear!
When not in use as a charge calculator it is a digital clock, power from any 13A socket is all that is needed - no extra PO fees are incurred as it is totally isolated from the PO system. Seven colours are available to match all PO standard units. Price for the standard model is about $£ 29$, the international model will be about $£ 39$. Both should be available from most large chain stores W. H. Smith, Rymans etc. Monitel Limited, Berechurch Road, Colchester, Essex.

whoops

In the CCD Phaser R31 and R32 were transposed on the overlay diagram. The ICs were missed out of the Stars and Dots parts list - they are on the circuit diagram, also in this project the gremlins got at the IC labels on the overlay - IC5 should be marked IC1; and add 1 to the marked number of the other ICs ie IC2 becomes IC3 etc.

Lastly in the Chipmonk the
pot values were missed off the parts list RV1 is a $100 \mathrm{k} \log$ type, RV2 a l0k preset and RV3 a 120k preset.

In case you missed our previous announcement we have a recorded message service for errors and other information on 01-434 1781. This service is available outside normal office hours only.
triplets from hp

Hewlett-Packard have just announced a new set of cheap (well relatively) scientific button boxes. The HP-31E is the baby of the litter, and is the lowest priced to ever have emerged from HP at £39 inclusive. As with all their calculators it uses Reverse Polish Notation, so called because it was thought to be as easy as Polish to learn - only backwards? Seriously though RPN is a very easy way to use calculator when performing scientific calculations, once you learn it you like it. Anyway RPN commercial over, the $31 E$ is aimed at the budding scientific student and features include - 4 addressable registers, rectangular to polar co-ordinates, inches to millimetres, pounds to kilograms, degrees and radians plus all the usual math and trig functions.

The 32 E has all the features of
the 31 E , plus an extra 11 registers. Other features include hyperbolic functions, hours to hours - minutes and seconds, US gallons to litres and a whole bunch of statistical functions such as linear regression and x , y estimates. All this for $£ 53$ inclusive.
A 49 line fully-merged keystroke memory programmable completes the trio, it goes by the name 33 E . Keycodes are displayed and 3_levels of subroutine are allowed, it also has maths, trig, log and statistical functions (of course, you say, it's HP after all!). Price for this beauty is $£ 67$. All of them come with detailed manuals, and the 33E has an applications book as well.
Further details from Hewlett-Packard Limited, King Street Lane, Winnersh, Wokinghas, Berkshire RGll 5AR.

problem solved

Lasers were once called the solution without a problem. Now they have lots of problems, the latest one to suffer from the fate of laser solution is that of aerial mapping. The US Geological Survey is using pulsed lasers and silicon photodiodes, with extremely accurate interval timers and delay/ discrimination electronics, to produce a ground profile as an aircraft flies over it. A gallium arsenide laser, with a pulse
duration of 10 nanoseconds, is bounced off the ground and detected when it gets back to the aircraft. As long as the aircraft flies on a level path the distance to ground can be measured. With accurate position fixing and several runs, a 3 dimensional map can be produced. The technique is suited to computer analysis, unlike aerial photography or manual surveying.
ALL DEVICES BRAND NEW, FULL SPEC. AND FULLY GUARANTEED, ORDERS
DESPATCHED BY RETURN OF POST. TERMS OF BUSINESS: CASH/CHEQUE DESPATCHED BY RETURN OF POST. TERMS OF BUSINESS: CASH/CHEQUE/

P.O. OR BANKERS DRAFT WITH ORDER. GOVERNMENT ANDEDUCATIONAL | URS | $A C$ |
| :--- | :--- |
| $A C$ | |
| NAL | A |
| A | |
| A | |
| ERY | $A C$ |
| $A C$ | | -

VAT

\qquad Parking apece available.

 $47 \mu \mathrm{~F} .10040 \mathrm{p}$. 10V: $22 \mu \mathrm{~F}, 33,47.6 \mathrm{~V}: 47$.
$3 \mathrm{~V}: 6 \mathrm{~B}, 100 \mu \mathrm{~F} .20 \mathrm{p}$ each
MVYAR FILM CAPACITORS
 CERAMIC CAPACITORS 50V

JACKSONS VARIABLE CAPACITORS

ES

FERRIC CHLORIDE*

WATFDAD EEEGTRNICS
(continued from opposite page)
ETI GAS MONITOR All parts available.
Gas Sensors TGS 109، 308
812 \& 813
Sockets for above 25p

DIGITAL PANEL METER

Intersil Evaluation Kit £21.52 plus 30p p\&p.
All parts as per ETI $£ 23.85^{\circ}$ plus 30p p\&p

LCD3901 $\mathbf{3}^{1 ⁄ 2}$ digit $\mathbf{E 9 . 9 5 *}^{\text {d }}$

TANK BATTLE

Build this fantastic T.V. Game with realistic battle sounds generated from your TV. speaker, steerable tanks, controllable shell trajectory and minefields to avoid. A really exciting and skillful game simply constructed with our easy to follow instructions. Order now - avoid disappointments.
Basic Kit (just add controls) only £19.50 inc. VAT.
Complete Kit including controls \& Mains Power Supply. No extras required. Only $\mathbb{£ 2 6 . 2 5} \mathbf{i n c}$ VAT
IC AY-3-8710 £10.50 inc. VAT (Demonstration on at our shop)

RHYTHM GENERATOR

Build this PE (Jan. 78) Easibuild Low Cost Rhythm Generator. We are the sole suppliers of the complete Kit including the case, pre-drilled printed front panel and the Printed Circuit Boards send sae for leaflet.
Complete Kit price incl
VAT £49.95 only Plus P\&P£1
For ready built Units add £15.00.
(Demonstration on at our shop)
ETI PROJECTS: Parts available for the following ETI Projects. Multi-option Clock. House Alarm, Ham mer Throw, Race Track, Accentuated Beat Metronome, Porch Light, IB Metal Locator Mk. 2. Shutter Speed Timer Ultrasonic Switch, True RMS Volt meter, LCD Panel Meter, Gas Monitor PHASER, Stár Trek Radio, Tank Battle. Please send SAE plus 5 p per list

NON-SUBSCRIBERS START HERE

GIVE UP, GO HOME:
POSTAL SUBSCRIPTION
POSTAL

It can be a nuisance can't it, going from newsagent to newsagent? ''Sorry squire, don't have it - next one should be out soon."'

Although ETI is monthly, it's very rare to find it available after the first week. If it is available, the newsagent's going to be sure to cut his order for the next issue - but we're glad to say it doesn't happen very often.

Do yourself, your newsagent and us a favour. Place a regular order for ETI; your newsagent will almost certainly be delighted. If not, you can take out a postal subscription so there's nothing for you to remember - we'll do it for you.

For a subscription, send us $£ 7.00$ ($£ 8.00$ overseas) and tell us which issue you want to start with. Please make your payment (in sterling please for overseas readers) to ETI Subscriptions and keep it separate from any other services you want at the same time.

ETI Subscription Service,
Electronics Today International,
25-27 Oxford Street, London W1R 1 RF.
have bench, will travel

Nice idea from Home Radio is this portable workbench, in stead of running riot on the kitchen table you can pack up and move your work bench when finished. Rather than try and make something with everything, they have just given it a 0.20 V at 1 A power supply plus a loudspeaker and mains outlet - so you can cus tomise it to your own particular
needs (built in cigar lighter etc).
Tools and soldering iron can be kept in the sides or lockable compartment and the whole thing comes for $£ 45$ (unwired) or $£ 54$ (Wired) plus 8% VAT and $£ 2.50$ carriage. A vice is also available for $£ 5.50$ plus 8%. Full details from Home Radio, London Road, Mitcham, Surrey.

silent sound

Impectron Limited are now stocking Matsushita (try saying that after a liquid lunch) Ultrasonic Transducers. Three versions are available, the FR CROl range operates at 40 kHz (with a bandwidth of $31 / 2 \mathrm{kHz}$) and is available in different sizes and with alternative mounting methods. Next is the FR CRO2 which has a bandwidth of at least 11 kHz , and is designed for multi-channel remote control applications. A totally sealed model completes the line-up, with a bandwidth of only 2 kHz , called logically enough the FR CRO3. Further information from Impectron Limited, 23-31 King Street, London W3 9LH.

digest.

wanted, probably dead

Advanced Micro Devices have been circulating this photograph of 'counterfeit' 1702A EPROMs. Some sharp operator has been emptying their dustbins and re-marking rejects naturally he then sells them as genuine Al devices ("Just a bit cheap 'cos the lorry was
moving when they fell off guv"). AMD have nicknamed the duff devices 'IIGOs' (information in, garbage out). If the 7 has a slightly curved downstroke then it's an IIGO, and if you bought it then you're an IIGiOt.

than x

WHEN we included a reader survey in ETI we expected a good response, but the response was in fact amazing, more than 3000 of you replied. From the analysis it seems that if you are a 27.9 year old male with an income of $£ 4375$ and let .93 people read your copy of ETI then you are Mr Average ETI. Most of you think ETI is also better than a year ago, thank you. Sorry we could not reward everybody but 60 people have been sent an ETI Tshirt and car stickers - thanks again to all who replied.

deaf teletext

The IBA and BBC are independently helping research into the possibilities of using Teletext for subtitles for the deaf. The BBC is working with Leicester Polytechnic on the possibilities of using a computer to process the output from a Palantype shorthand machine (used a lot in courtrooms) speed is expected to be up to 200 words per minute.
The IBA and ITCA (Independent Television Companies Association) are supporting Southampton University in a 3 year project, expected to cost $£ 50000$. The aims are of a more general nature than those at Leicester, and are to establish the optimum forms of subtitling - with a full study of the human factors involved.

gossip, gossip

Quite a lot of the time we overhear snippets that fall into the plain old fashioned gossip category, some is too good not to publish. Some of the very large semiconductor users are not as ethical as they would have people believe. When a company develops a superdooper new IC, after lots of research and investment, they usually give a few potential volume users samples to evaluate. Well it seems that some of the potential users were shipping the samples to the Far East, where some firms will slice any IC apart and use electron microscopes to produce a set of masks for the IC. They charge about $£ 25000$ and have a turn-round time of 10 days, very cheap compared to possibly a year and a million pounds to design and develop from scratch.

So now the manufacturers that have had imitations flattering their product (sometimes even before it was on the market) are giving out samples on a sale or return (intact of course) basis - oh yes the sale price is usually about $£ 300000$.

Now that Commodore and Tandy have dived into the personal computer lake, we keep hearing that amongst others I*M and T^{*} are in the late stages of putting together their own personal systems - not to mention $\mathrm{N}^{*} \mathrm{C}$ and various others from the land of the rising sun. Going to be a lot of swimmers in the next year!

TECHNALOGICS PROUDLY PRESENT "LOGISCAN Mk. II"
 COLOUR TELETEXT DECODER

WITH
 "NEW FACILITIES"

YOU CAN NOW BUY A TELETEXT DECODER TO THE LATEST BBC/IBA/BREMA JOINT SPEC. (NB. Many other decoders are not full spec. display).
TH'E LOGISCAN Mk. II OFFERS THESE EXTRAS

* Double/Single Height
* Conceal/Reveal Switch
* Discrete Graphics
* Graphics Hold / Release
* Auto Newsflash
* Flash/Steady Display
* 6800 MPU Compatible
* Background Colour Fix
* Unfix (revert to black)
* Contiguous Graphics (Instant Colour Changes)
- Roll Mode
* Sub-title Inserts
- DMA Capability

Kit is complete with case, psu * Header Switch $\begin{aligned} & \text { Freeze switch }\end{aligned}$ FULLTECHNICAL BACKUP SERVICE

- 12 mon̄ths' guarantee on all parts - subject to correct assembly and use.:
- Board fault finding service (boards unpluggable for easy dispatch) Interface included
- Technical advice on installation.

We are also glad to announce that our decoders are available installed in either $26^{\prime \prime}$ or $22^{\prime \prime}$ colour televisions for just over $£ 500^{\circ}$ and are available for view or purchase from Colourvision. Smithdown Road, Liverpool L18.

KIT $£ 205+121 / 2 \%$. BUILIT $£ 265+12 \frac{1}{2} \%$
Details large S.A.E. Mail Order
TECHNALOGICS
8 EGERTON STREET
LIVERPOOL L8 7LY

FACILITIES

- 7 segment display for every register (32 digits!)
- 20 key keypad
- 1/4K RAM, expands to 64 K
- Buffered system bus interfaces with cassette /TV/TTY peripherals etc. via plug-in motherboard. (LCDS/ETI bus compatible)
- Single step, slow step facility
- Operating system allows easy modification of registers and memory, move and copy data blocks and much more
- Set breakpoint register will allow traps on any location, including data and ROM

Complementary to IDES and most other systems is a rapidly increasing range of peripherals including TV and Cassette interfaces, Add on memory, EPROM programmer and 4 K Basic on Prom. Most cards are available with either 64 way (LCDS) or 31 way (ETI BUS) connectors
FOR full details send for Brochure and Price List to

I.E.S. LTD.

35 Purleigh Road, Corsham, Wilts.
(0249) $713515 / 712317$

ELEGTROVALIE

All the many types of components we supply are BRAND NEW and guaranteed and only from manufacturers direct or approved suppliers.
No surplus, no seconds
CMOS - buffered and protected (BE)

4000		4013	51p	4023	23p	4043	100	4081	23p
4001	23 p	4014	1.07	4024	1.04	4044	94 p	4082	26p
4002	23p	4015	1.14	4025	23p	4046	140	4510	1.42
4006	1.14	4016	51 p	4026	1.75	4049	54 p	4511	1.50
4007	23p	4017	114	4027	60 p	4050	53p	4514	3.30 144
4008	99p	4018	132	4028	95 p	4060	140 30	4516 4518	1.44 1.26
4009	62p	4019	62 p	4029	1.23	4069	30 p 50 p	4518	1.26
4010	62 p	4020	132	4030	510	4071	26p	4543	1.30
4011	23p	4021	1.14	4042	84p	4072	26p	4583	1.45
4012	23p	4022	113	4042	$96 p$				

OUR COMPUTER TAKES GOOD CARE OF YOUR ORDERS

SIEMENS CAPACITORS.
 World-famous for quality and dependability

PCB TYPES
-75 mm PCM 0001 to 001 pp each 001510
0.047 6p each 5 mm PCM 0068 . 0.17 p .022 10 p
CERAMIC
25 mm PCM $001.0224 \mathrm{p} \quad 0022 \quad 0033$ $0047.5 p$ each 0
ELECTROLYTICS
$-1 / 100$. $10 / 25.10 / 63,100 / 25$ etc For full
range see our curfent lists.

resistors

1/2. $1 / 2$, $1 /$ watts - $2 p$ each metal film. metal oxide discounts Magnetuc field dependent from \&1 50 Hall Effect trom E1 23

KEEN PRICES GOOD SERVIC

Cash with order ©PO. or cheque payable io Electrovalu
TRADE AND INDUSTRIAL ENQUIRIES INVITED
TRADE AND INDUSTFIAL ENQUIRIES INVITED
ELEGTROALIUE LTD
Dept. ETI7. 28 Judes Rd., Englefield Green, Egham, Surrey TW20 OHB.

Phone Egham 3603: Telex 264475
Northern Branch (Personal shoppers only), 680 Burnage Lane, Burnage, Manchester M19 INA.

SIEMENS TRANSISTORS
Slicon non and pho from 8ρ each LEDs, red 19ρ
Sticon non and onp from 8 p each LEDs, red $19 p$
yellow or green 23 p (3 or 5 mm) Photo transistors from 76 p
DISCOUNTS
5% if list value of order over E10 10% if list value or order over $\{25$ - where cash \{P O or cheque) is -
VAT Add 8\% to value of order or $121 / 2 \%$, with tems marked (No VAT on overseas orders) over E5 list value If under, add 27 p per order

MONTHLY BARGAIN LISTS

SA E brings monthly list of bargains
SA E brings monthly list of bargains
quick reference price list of all ranges

news digest

book of the month club

We don't review books very often in ETI, usually so busy that we have no time to read any! Not quite the reason. Anyway, not one but three bits of recommended reading this month - all very good in their particular fields.

Video freaks, or anybody int erested in the ins and outs of low cost portable video, are catered for in a Canadian book by Michael Goldberg. Called 'The Accessible Portapack Manual', it is just that, with a hundred and forty pages of practically orientated information. Everything you always needed to know about video for £6 inclusive from C.A.T.S., 42A Theobalds Road, London WCIX 8 NW
Second choice is a trifle more expensive at $£ 45$, but also value for money. It's a gigantic 2200 page reference manual called 'IC Master', and contains more than 1500 pages of manufacturers' data sheets. More than

40000 ICs are cross-referenced (no we didn't count them!) and it's available from Eurosem International Ltd., Haywood House, Pinner, Middlesex HA5 5QA.
Last and by no means (you guessed) least is not one but eight from Fairchild. Send them £9.90 and they will send you a nice fat juicy data book on low power Schottky. This will be followed by ECL then Optoelectronics and finally by CMOS (probably worth the weight). The mathematicians amongst ETI's readership will leap up at this point and shout "But that adds up to four!" But Fairchild will reply "Ah yes but each copy will be sent with the latest issue of our journal 'Progress', that makes eight". So for eight of the best send your loot to Fairchild Subscription Service, c/o The Evan Steadman Group, 34-36 High Street, Saffron Walden, Essex.

odds \&e ends

* Vero Electronics have introduced 3 more boxes in their familiar two tone, with metal front and back range. Called the type IV, they fill a gap in the existing range, being suitable for hand-held units. Should be available at most stockists in the near future.
* The low cost colour camera is not far away. Fairchild, RCA and Sony all have working prototypes of CCD colour video cameras. As soon as the definition can be improved to match domestic video systems, probably within 9 months, expect the launch of the under $£ 1000$ camera - watch this space.
\star The British Amateur Electronics Club (BAEC) is holding its annual exhibition from the 15th of July to the 22nd of July. It will take place at the Shelter in the centre of the Esplanade, Penarth, South Glamorgan. Projects, games and the BAEC Computer will be on show so if you are in the area drop in and give some support. If you would like more information about the club drop them a line with an SAE - BAEC, 26 Forrest Road, Penarth, South Glamorgan.
* Ever wondered how torpedoes were powered? If not read another item! The Royal Navy has just placed an order with Chloride Industrial Batteries for $£ 3000000$ worth of silverzinc batteries. The batteries are designed to power the Tigerfish wire-guided torpedo. Designed to blow anything afloat to kingdom come, the Tigerfish is designated as a 'heavyweight' torpedo. It is wire-guided from its submarine's central computer, and uses an inbuilt MPU to interpret the signals from its array of sonar transducers. Once a target is spotted its minutes are numbered. Wonder what happens if the wire breaks?
* The OK Machine \& Tool company has introduced a new wire-wrap wire dispenser. It contains 3 separate 15.24 m (50 ft) reels of $30 \mathrm{AWG}(0.25 \mathrm{~mm}$) Kynar wire. The dispenser is pocket sized and has a notch for breaking and stripping the wire as it is dispensed. When sup plied it comes filled with patriotic red, white and blue coloured wire and costs $£ 3.77$, refills are $£ 2.66$ a set. OK Machine \& Tool (UK) Ltd, 48a The Avenue, Southampton SOl 2SY.

light warning, LM380 circuits, temperature alarm, aerial matcher, UHF TV preamp, metal locator, four-input mixer, IC power supply, rumble filter, IC tester, ignition timing light, 50 W stereo amp. plus many more.
3-This issue was so popular that it is now sold out! -Includes:
Sweet tixteen stereo amp., waa-waa, audio level meter, expander/compressor, car theft alarm, headlight meter temperature meter, intruder alarm, auch switch push-buton dimmer exposure meter, phot simer push-butcon hice high-power beacon electronic one-arme
bandit! ...
5-Twenty-two complete projects, including:
5 W sterso amp, stage mixer, disco mixer, touch organ, audio limiter, infra-red intruder alarm, model train controller, reaction tester, headphone radio, STD timer, double dice, gen.-purpose power supply, logic tester, power meter, digital voltmeter, universal timer, breakdown beacon, heart rate monitor, IB metal locator, emperature meter
6-Just published. Includes:
Graphic equaliser, $50-100 \mathrm{~W}$ amp. modules, active crossover, flash trigger, "star and dot" game, burglar larm, pink noise generator, sweep oscillator, marke generator, audio-visual metronime, LED dice, skeet game,
lie detector, disco light show. ...
$1+2-$ Top projects include.
aster mixer, 100 W guitar amp., low power laser

Ni-Cad charger, loudhailer, 'scope calibrator, ielectronic
ignition, car theft alarm, turnindicator canceller, brake

£3.00 + 25p P\&P

This book is ratheran unusual reprint from the pages of ETI. The series appeared a couple of years ago in the magazine, and was so highly thought of by the University
of New England that they have re-published the series

Our successful beginners series came to an end some time ago now, and the whole series is available from us in reprint form. The three books between them contain all more detail!) and prosether form ane sercellent startimes in for anyone interested in learning the art of electronics. Each volume costs. $\mathbf{£ 1 , 2 0}+25 \mathrm{p}$ P\&P
splendidly for use as a standard textbook. Written by Peter Sydenham, M.E., Ph.D., M.Inst.M.C., F.I.I.C.A., this publication covers practically every type of transducer nd deals with equipment and techniques not covered in universities and colleges for bulk supply of this publica, universities and colleges for bulk supply of this publicaMoorshead, Editor.

HOW TO ORDER

Postage and packing also refers to overseas. Send remittance in sterling only.

ETI Specials

ETI Magazine
25-27 Oxford Street
London W1R1RF
Please mark the back of your cheque or PO with your name and address.

Please supply me with the following ETI Specials:
\qquad
\qquad
\qquad
\qquad
\qquad
Total cheque $/$ PO enclosed $=\varepsilon$.
Address:
M \qquad
\qquad
(Please allow four weeks for delivery)

E.T.I. APPROVED FOR ENGINES WITH NORMAL IGNITION SYSTEM
 REVERT TO NORMAL SWITCH
 CAN BE MOUNTED ON DASHBOARD

NO MORE BURNT CONTACT POINTS
REV. LIMITER
NEON LIGHT INDICATOR NEG. EARTH

Better than the 1973 version!

Since we first presented E.T.I's original E.T.I. (Electronic Transistor Ignition) Unit five years ago, we have sold well over 15,000 to the delight of motorists everywhere In that time we have made small modifications and improvements of our own - P.C.B mounted components, for example and circuit and manufacturing adjustments - all adding up to even greater reliability. Now, with E.T.I we present an up-dated unit at prices (kit or ready built) you cannot afford to ignore in these days of ever costlier motoring. This is the unit to give your car the more efficient sparking it needs to give better starting, lower petrol consumption, less engine wear, less strain on batteries, and NO MORE BURNT CONTACT POINTS. ORDER NOW BEFORE JULY 1st AND SAVE £2.80 ON THE KIT ($£ 2.25$ on the ready built model). ORDERS MET IN STRICT ROTATION SO ORDER YOURS NOW WITHOUT DELAY. (Please allow 28 days for delivery.)

Easy to build kit ancluding all components, drilled and titled P.C.B., drilled aluminium case, transtormer. switch, coloured leads. etc. with simple to follow instructions for neg earth cars.
KIT Complete kit ot parts as described and recommended by Electronics Today nternational Inc. V. A. T. and sent post tree in U.K.
$£ 9.95$ |f orcered after June 30 £ 12.75 ,
BUILT AND TESTED inc. V.A.T and sent post free in UK
¢12.75 /ff ordered after June 30 ع15,

It's
"telescopic"!

Assembly	Power Amps	Control	Selector	rower. Suppl:	Price
AUDIO PLAN.A	2×60 wrms	Unit?	Unit 3	bov	c49.95
AUDIO PLAN B	$2 \times 40 \mathrm{wrms}$	(1014	, 1....	- - -	£44.95
AUDIO PLAN C	$2 \times 20 \mathrm{wrms}$	Unit 2	Unit 3	34 V	-38.95

ALL MODULES AVAILABLE SEPARATELY - SEE FREE CATALOGUE SHEETS
ALL PRICES INCLUDE V.A.T. AND NO EXTRA FOR POSTAGE IN U.K.
5tirling
All communications to Dept ET17
37 Vanquard Way, Shoeburyness, Essex
03708) 5543: Shop/Showroom, 222/224 West Road, Westeliff-on-Sea

To order send cheque or money order crossed and made payable to Stirling Sound. (Cash must be sent by regd post only). Prices subject to alteration without notice. Information published in good faith as correct at time of going to press. OR ORDER BY ACCESS OR BARCLAYCARD

COMPLETE MODULE ASSEMBLY PACKS

AUDIO PLAN (Regod.) marks the start of a new phase in the progress of Stirling Sound modules. From a wide, carefully designed range, we have put together three groups which we know from our wide experience, are the preferred choice of most constructors in this field What makes Audio Plan specially attractive is the inclusion of Unit Three, an original Stirling Sound design that's going to add a protessional finish you will be proud to have. The thre assemblies here are from an audio range extending from a remarkable 3 watt .C. amplifien uli-scale disco sound and giv
...AND THE UNIT EVERY CONSTRUCTOR WILL WANT
filter unit providing via three 5 -pin DiN sockets mounted at rear. selection for ceramic p.u. magnetic p.u radio, tape in and tape out with low cut (rumble) fitter and high cut (scratch) inter Size $240 \mathrm{~mm} \times 105 \mathrm{~mm}$ wide. The PCB may be cut across to extend or reduce its onginat length and so suit other layouts as well as Audio Plans Inc. V A.T. and sent post tree in U.K.
UNIT TWO - Stereo pre-amp/control unit for mag.
p.u. (R.1.A. A corrected) radio and aux. inputs with bass $\pm 15 \mathrm{~dB}$, treble -15 dB , balance and volume controls $£ 12.43$
YOUR MŌNEY-SAUVING COUPON

DESIGNING OSCILLATORS

One of the problems in electronics is stopping amplifiers from oscillating, another problem is getting oscillators to oscillate ... Tim Orr explains.

AN OSCILLATOR IS BASICALLY an amplifier with positive feedback applied around it. The feedback must be AC coupled otherwise a DC latch up condition would occur. Having got some sort of oscillation, one of two things can happen. The oscillation can build up in amplitude until clipping occurs due to the power supply voltage levels. At this point a stable, but truncated waveform will be generated. Alternatively if the gain of the amplifier is too low the oscillation will die away. To produce a pure sinusoidal oscillation thelevel of the signal in the system must be accurately controlled. There must be some amplitude limiting or automatic gain control such that when the peak signal level tries to exceed a reference voltage, the amplifiers gain is reduced. This is in fact what limiting does. To maintain stable oscilation, the overall gain of the system must be exactly unity. Any less and the oscillations will never start. If the gain is more than unity, the oscillations will occur, but amplitude limiting will cause gross distortion.

A very common method for stabilising the oscillations, which is often used in Wein bridge oscillators, is to employ a very sensitive thermistor as an AGC. However, the thermal time constant of this component often produces an annoying amplitude bounce which occurs
when changing to a new frequency.
Other methods are diode limiters (which tend to cuase large amounts of distortion) and FET AGC circuits. The latter method can be used to generate super low distortion sinusoids by allowing the system gain to stabilise over tens of seconds.

The oscillation frequency is mainly determined by the feedback around the amplifier. By making the feedback a reactive network, the phase of the feedback will vary as a function of frequency. Oscillations can only occur when the feedback is positive and thus the phase response of the feedback will determine the frequency of oscillation, assuming that the overall gain at this frequency is at least unity. By varying the phase response of the feedback, the oscillation frequency may be altered.

An oscillator should be thought of as being a circuit which continuously generates a waveform, no matter what the shape of the waveform. There are very many circuit techniques for generating these signals which range from relaxation oscillators to piece wise approximations using square waves. Some of these methods will now be illustrated.

Manually Controlled Oscillator

In this circuit there are two feedback paths around an op-amp. One is positive DC feedback which forms a Schmitt trigger, the other is a CR timing network. Imagine that the output voltage is +10 V . The voltage at the non-inverting terminal is +15 V . The voltage at the inverting terminal is a rising voltage with a time constant of $C_{T} R_{T}$. When this voltage exceeds $+5 V$, the op amp's output will go low and the Schmitt trigger action will make it snap into its negative state. Now the output is -10 V and the voltage at the inverting terminal falls with the same time constant as before. By changing this time constant with a variable resistor a variable frequency oscillation may be produced.

Dual Integrator Quadrature VCO

This is a sinusoidal oscillator which uses frequency dependent feedback and zener diode amplitude limiting. IC 1,2,3\&4 form a dual integrator circuit which is an analogue model of a second order differential equation! There is some positive feedback around IC 1, 2 which is analogous to having a zero damping factor in the equation. This means that the oscillations will build up. The positive feedback is controlled by the 10 k preset. IC1,3 are integrators and IC2 and IC4 are voltage followers with high input impedance. The phase shift produced by an integrator is 90° so there is no overall feedback around the lop (IC1 is non-inverting, IC2 inverts). Thus we have all the conditions for oscillation, and in fact oscillations will occur when the preset is adjusted to give the correct phase shift around the IC1,2 stage. Amplitude limiting is produced by the 2V7 zener inside the diode bridge. By placing it inside the bridge the same diode is used for both positive and negative signals and the limiting is symmetrical. The integrators are two quadrant multipliers (CA3080s), so the gain of the loop can be controlled by the current $\mathrm{I}_{\mathrm{ABC}}$. In the solution of this second order differential equation, the gain
of the loop is proportional to the resonant frequency. Thus, by varying $I_{A B C}$ or rather by varying $V_{i N}$, the frequency of oscillation may be altered.

As the integrators produce a 90° phase shift, the two sinusoid outputs are in phase quadrature, i.e. one is a sinewave, the other a cosine wave. The cosine output is lower in distortion than the sinewave, because the amplitude limiting (and hence the distortion) is produced at the IC1,2 stage.

The second stage (IC3,4), acts as a filter and hence produces a purer sinusoid. Using this circuit a 1000 to 1 continuous frequency sweep can be obtained. However, the inaccuracies in the CA3080's will cause some amplitude variations and it may be necessary to set the positive feedback a bit high (and hence attract more distortion), to maintain stable amplitude limiting over the sweep range. This circuit is an oscillating filter and if you turn down the positive feedback and inject a small signal through a 100k resistor into IC1 pin 3, a bandpass and low pass response is obtained from the sine and cosine outputs iespectively.

Simple Triangle Square Wave Oscillator

This circuit generates simultaneously a triangle and a square waveform. The triangle could be 'bent' by a diode function generator to produce a sinewave. The circuit is always self starting and has no latch up problems. IC1 is an integator with a slew rate determined by C_{T} and R_{T} and $I C 2$ is a Schmitt trigger. The output of IC1 ramps up and down between the hsteresis levels of the Schmitt, the output of which drives the integrator. By making \mathbf{R}_{T} variable it is possible to alter the operating frequency over a 100 to 1 range. Three resistors, one capacitor and a dual op amp is all that is needed to make a versatile triangle squarewave oscillator with a possible frequency range of 0.1 Hz to 100 kHz .

CMOS Oscillator

Two CMOS gates can be used to produce a simple oscillator. Imagine that output B is high. Then the input to A is also high due to it being coupled via the capacitor C_{T} to output B. Thus output A is low, input B is low and output B is high, which is as we would expect. However, capacitor C_{T} is being discharged via the 100 k pot and 10 k resistor to a logic 0 . When this voltage reaches the crossover point for A, output A goes high, and thus output B goes low. Now the capacitor is charged up to a logic 1. Thus the process repeats itself. Varying the 100 k pot changes the discharge rate of C_{T} and hence the frequency. A square wave output is generated. The maximum frequency using CMOS is limited to $\mathbf{2 M H z}$.

1/2 CD4011

几

TTL Oscillator

A simple relaxation oscillator can be made using a TTL Schmitt trigger. The circuit ' a ' is the most simple version that can be produced. Imagine that the output is high. Capacitor C_{T} is charged up via R_{T}. When the upper hysteresis level (Hyh) is reached, the output goes low. CT is now discharged until the low hysteresis level (Hyl) is reached whereupon the output goes high. Thus the oscillator generates a square wave, with an uneven mark to space ratio, due to the input current requirements of the 7413. The frequency can be set at any value up to several megahertz by varying C_{T} and R_{T}. C_{T} can be an electrolytic but R_{T} must not be more than about 1 k 5 or it will not be able to pull down the Schmitt trigger inputs. (If you use a CMOS Schmitt this does not apply). The output is a nice fast squarewave capable of directly driving several TTL loads. One problem to be encountered is frequency jitter. Whe n the input is very near to a hysteresis leval, noise in the system may cause the oscillator to prematurely trigger, thus making that period slightly shorter and producing a noise induced frequency jitter. Also using two Schmitt triggers from the same IC is sure to cause interaction and thus jitter. To reduce power supply noise effects the IC should be decoupled with a 1uF tantulum capacitor actually at the \mathbf{V}_{cc} and GND pins of the package.

Diagram ' b ' shows the same oscillator, but with a 10 to 1 manual control of frequency. The timing capacitor is charged up by the 10 k pot and the 1 k resistor. This voltage is then buffered by the emitter follower and fed to the Schmitt trigger. When the upper hysteresis level is reached the output of the Schmitt goes low and the capacitor is rapidly discharged via the diode until the lower level is reached. The process then repeats itself. As the discharge period is so fast, it can be as short as a few hundred nano seconds, the period can be thought of as being determined by the charging time, which is controlled by the 10 k pot.

Walsh Function Generator

The mathematician, Fourier, said that any repeating waveform could be made up out of harmonic components. These components are sinusoids which are integrally related to the fundamental period of the waveform in question. This is a convenient conceptual approach, but as a way of practically. synthesising waveforms it is not on. You would have to generate a whole series of harmonically related sinewaves which might prove a little difficult. However, a man called Walsh said that you could do the same thing as Fourier, but with square waves. So, instead of using sinusoidal Fourier sets, we can use square wave Walsh functions to synthesise waveforms. There are various techniques for calculating the Walsh function co-efficients for generating partiçular waveforms but these are beyond the scope of an article such as this. The diagram shows the circuit for generating a sine and cosine waveforms using 16 steps. Walsh functions are orthogonal functions, just as sine and cosine are orthogonal, and so the generation of these two waveforms is relatively simple using this technique. The 4013 dividers and the exclusive OR gates generate the Waish functions, which in turn are converted into analogue waveforms by use of the correctly weighted resistor networks. Note that you only need 4 resistors to generate a 16 step sinewave approximation.

The resultant outputs can be easily filtered by fixed or tracking filters to produce pure sinusoids. The output frequency is $\mathbf{1 / 1 6}$ th of the input clock frequency. The clock can be stopped and the outputs will remain fixed, try that with analogue techniques!

R-2R Staircase Generator

Waveforms can be constructed by building them up out of separate elements. In this case a linear ramp waveform is generated out of 128 steps. The CD4024 is a seven stage binary counter. It is being driven from a CMOS clock oscillator similar to that already described.

The 01 to 7 outputs divide this clock frequency by

2,4,8,16,32,64 and 128 respectively and the divided outputs are then fed into an R,2R ladder network. This is in fact a Digital to Analogue Converter (DAC) and as the counter is merely counting up, then the converter will generate a linearly rising waveform made out of 128 steps. When the counter overflows, the ramp waveform resets and the process repeats itself.

R-2R Triangle Generator

This circuit is similar to the previous except an up down counter is included. A clock signal is applied to the 4029 counter. When it has counted 16 clocks a Carry signal is generated. This clocks a D type flip-flop (4013), which changes state and reverses the up
down mode of the 4029. Thus the circuit counts up, down, up, etc. The counting is converted via an R,2R ladder into an analogue output, a triangle waveform made up out of several steps.

8038 Function Generator

There are several ICs available which perform some sort of oscillator function. One such is the Intersil 8038 which is a VCO with sine, triangle and squarewave outputs. The basic oscillator is a triangle squarewave device with a function generator to produce the sinewave. The frequency is voltage controllable but is not a linear function. The triangle symmetry and hence sinewave distortion are adjustable with a preset but change when the frequency is altered. Operation up to $\mathbf{1 M H z}$ is possible.

Triangle Squarewave ICO Using CA3080's

This circuit is very similar to that of the simple triangle/square oscillator, except that the operating frequency is controlled by a current IABC. (ICO stands for current controlled oscillator, as opposed to VCO, voltage controlled oscillator). Using this circuit, a sweep range of 10,000 to 1 is possible (for IABC $500 \mu \mathrm{~A}$ to 50 nA). The CA3080 is a two quadrant multiplier and the CA3140 is a MOS FET op-amp. IC1 is used as an integrator. IC2 is a high input impedance voltafe follower and IC3 is a Schmitt trigger. The CA3080 has a current output which in the case of IC1 is used to charge up a capacitor. The voltage on this capacitor is buffered by the CA3140 and fed into the Schmitt IC3. The CA3080 (IC3) forms a very fast Schmitt trigger but as it has a current output, it cannot be loaded in any way without effecting the operating frequency. The output of the Schmitt is used to make the entegrator inverting or non-inverting. Thus the operation is as follows. The integrator ramps upward until the positive hysteresis level is reached. The Schmitt flips over, the integrator then ramps downwards until the negative hysteresis level is reached. The Schmitt flips back and the process is

repeated. The ramp rate is determined by the size of the current IABC is linearly proportional to the oscillation frequency. At very low currents the triangle waveform may become very asymmetrical. This is due to current mirror mismatches inside IC1 and this device may have to be specially selected for continuous symmetry.

Precision Voltage Controlled Oscillator

The RC 4151 is a precision voltage to frequency converter. It generates a pulse train output which is linearly proportional to the input voltage. The linearity for the circuit shown is 0.05%. The IC compares the input voltage with an internally generated one. It dumps controlled pulses of charge into a Parallel RC network and compares this generated voltage with the input. If the input is greater it puts more pulses of charge into the RC network until the two are balanced. To get a larger sustained voltage in the RC network the frequency of the pulses must be increased. Thus the frequency of the pulses generated is made to be proportional to the input voltage.

The output is a pulse waveform and is intended to drive some sort of counting system, the chip being used as simple analogue to digital converter. It can also be used as a frequency to voltage converter. A maximum frequency of 10 kHz has to be observed.

E!

						豆			

HERE IS THE NEWS......

One of the major problems confronting today's electronics designer/enthusiast Much of the satisfaction in our new approach to specialized features, is the fact that you stream of new types of ICs and components. So, where radio is catalogue contains all that is new and worthwhile, plus feature articles describing applications work, providing ideas and suggestions and some radio theory basics - like tuned circuits and impedance matching - that cut through the flannel to give you essential practical details to heip you with your own design work. We also invite customers/readers to submit their own features for our radio magazine supplement on modern RF circuitry and techniques

Featured in our catalogue/magazine supplement
CA3189E The new RCA FM IF systern described in detail, with an 'ultimate hifi' appl ication in our refernce series FM IF unit based on linear phase filters
ULN2204/ The new AM/FM/Audio combination IC that has revolutionized portable
TDA1803 radio design. 2 to 12 v voltage range 10.14 mA total standby
TDA1062 LF/HF/VHF oscillator, balanced mixer, RF stage and pin diode agc drive - a versatile RF processing device that deserves a much wider audience.
HA11219 impulse noise blanker for mobile and fixed radio/audio. It can even clean noisey signal otherwise inaudible! Destined for a big future.
TDA1220 SGS' entry into the AM/FM radio IC battle with a promising approach that
CFM2/LFY $\quad \begin{array}{ll}\text { separates AM and FM functions into separate blocks } \\ \text { The worlds smallest ceramic ladder and mechanical filters from TOKO }\end{array}$ MA1023 Switched 12/24 hour 0.77" LED display alarm cl ck module with no RFI The chances are that our catalogue will be the first place many of you will see these new products. Backed with our extensive R\&D, we aim to provide a regular summary of new products in the radio and assoc
tronics. and we invite alt submissions for consideration.
In the theory section this issue
Tuned circuit impedances and matching - tracking and bandspread - a novel approach to 100 kHz to 30 MHz continuously tuned radio - and the discriminating metal locator, save your money before you buy one, and see how they're made!
n a world of electronics that constantly expands and diversifies into an increasing
number of specialities, we offer you a refuge where we stick to one main theme, and
keep you informed to a standard not possible in publications without direct every-day involvement in project research, development and evaluation

TEMPERATURE

 METER
A simple yet accurate temperature meter based on the LCD panel meter published in our March issue.

THE RELIABILITY of electronic circuits in the days of valves was, to say the least, poor by today's standards. The introduction of transistors and integrated circuits increased reliability dramatically. One of the main reasons for this is the reduction of power dissipation and the resultant lowering of temperature. Devices and circuits are now designed to minimise power dissipation as this allows a higher component density while increasing reliability. However, some circuits by their nature must dissipate high power and the semiconductor devices used must be kept within their temperature limits.

This temperature meter will allow transistor temperatures to be measured and the appropriate heatsink chosen. It is just as useful outside the electronic scene measuring liquid or gas temperature especially where the readout needs to be physically separate from the sensor.

Use and Accuracy

The accuracy of the unit depends on the calibration; provided it has been calibrated around the temperature at which it will be used, accuracy of 0.1 degree should be possible. We could not accurately check linearity but it appeared to be within 1° from 0° to $100^{\circ} \mathrm{C}$.

However, other errors will affect this reading. If measuring the surface temperature i.e. a heatsink temperature, there will be a temperature gradient between the surface and the junction of the diode. Silicon grease should be used to minimise the surface-to-surface temperature difference. Also when measuring small objects, e.g. a TO-18 transistor, the probe will actually cool the device slightly. At high temperatures these effects could give an error of up to 5% (the reading is always less than the true value). If the probe is in a fluid (eg water) or air this problem does not occur.

Construction

Assemble the panel meter as previous!y described but omitting the zener diodes and R6 and R7. The value of R1 has also been changed. The decimal point drive should be connected to the righthand decimal point. The additional components can be assembled on a tag strip as shown.

We mounted our unit on a tag strip as shown in the photo. While iwe have not given any details, knocking up a case should be no problem. For a power supply we used eight penlight Nicad cells giving a 10 V supply. If dry batteries are used six penlight cells are recommended although a 216 -type 9 V transistor battery will give about 300 hours of operation.

The sensor should be mounted in a probe as shown in Fig. 1 if other than air temperature will be measured. This provides the electrical insulation needed for working in liquids etc. It should be noted however that the quick dry epoxies are not normally good near or above $100^{\circ} \mathrm{C}$ and if higher temperatures than this are expected one of the slow dry epoxies should be used.

Calibration

To calibrate this unit two accurately known temperatures are required, one of which is preferably zero degrees and the second in the area
 ball-point casing.

BUYLINES

The original LCD meter was based on the Intersil evaluation kit but since then a number of advertisers have put together kits for our project. Such a kit is probably the best place to start although the ICL7106 and suitable displays, the only components likely to prove difficult to find, are now available from most of the larger mail order firms advertising in ETI.

Fig.2. The external components associated with the panel meter to form the thermometer. For full details of the panel meter (foil pattern etc.) see the March 78 issue of ETI.

The photograph (left) shows the external components, detailed in Fig. 2, in position.

HOW IT WORKS

While the voltage across a silicon diode is nominally about 600 mV it is dependent upon the ambient temperature and current in the device. The temperature coefficient is negative, i.e. the voltage falls with increasing temperature but fortunately is linear in the region of interest. The actual value varies with current and from device to device, but is typically $-2.2 \mathrm{mV} /{ }^{\circ}$ at $250 \mu \mathrm{~A}$.

By measuring the voltage across the diode with a suitable offset voltage to balance the voltage at zero degrees an accurate temperature meter results. The digital panel meter described in October has a stable reference voltage avaliable (between pins 1 and 32) of about 2.9 V ; with the 10 k resistor R11 this provides a constant current for Dl (the sensor). The offset voltage is also derived from this reference voltage by R12, RV2 and RV3. The panel meter is used as a differential voltmeter and measures the potential difference between the offset voltage and the diode. We have used two trimpots in series in the offset adjustment to give better resolution. If desired a 10 -turn trimpot can be used (2 k 2). Adjustment of the three potentiometers allows the meter to be calibrated in either ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$ with the upper limit of $199.9^{\circ} \mathrm{F}$ due to the panel meter over-ranging.

The power supply is simply a 9 V battery, and so the zener diodes and dropping resistors described in the panel meter article should be omitted.

RESISTORS	
R1. 11	10k
R2	47k
R3, 9	100k
R4	not used
R5	1M
R6. 7	not used
R8, 10	4M7
R12	27k
R13	5k6
POTENTIOMETERS	
RV1	1k 10 turn trim
RV2	2 k preset
RV3	200R preset
CAPACITORS	
C1	100n polyester
C2	470 p polyester
C3	220 n polyester
C4	100p ceramic
C5, 6	10 n polyester
SEMICONDUCTORS	
IC1	ICL7106
Q1	BC549
D1	1 N914
MISCELLANEOUS	
PCB as LCD Panel Meter (March 78	
$E T$), tag strip. LCD display, socket for display, box, switch and 9 V battery.	

Sensor silicon diode

Resolution

Power consumption $1.5 \mathrm{~mA} @ 9 \mathrm{~V}$ dc
where the meter will normally be used and highest accuracy is required. For a general-purpose unit $100^{\circ} \mathrm{C}$ is suitable. The easiest way of .obtaining these references is by heating or cooling a container of distilled water. However temperature gradients can cause problems, especially at zero degrees.

One method of obtaining water at exactly zero degrees is to use a test tube of distilled water in a flask of iced water and allowing it to cool to near zero. Now by adding salt to the iced water its temperature can be lowered to below zero. If you are very careful, the test tube water will also drop below zero without freezing (you should be able to get to about $-2^{\circ} \mathrm{C}$). However, the slightest
disturbance at this temperature will instantly cause some of the water to freeze and the remaining water to rise to exactly zero, providing an ideal reference.

For a hot reference the boiling point of distilled water is very close to $100^{\circ} \mathrm{C}$ especially if the container has a solid base and is evenly heated e.g. on an electric hotplate.

The actual calibration is done as follows:

1. In the $\mathrm{O}^{\circ} \mathrm{C}$ reference adjust RV2 and RV3 until the unit reads zero.
2. In the hot reference adjust RV1 to give the correct reading.

This should be all the adjustment required.

If zero degrees is not available, e.g. if setting up for ${ }^{\circ} \mathrm{F}$, the following method can be used:

1. In the cold reference use RV2 and RV3 to adjust reading to zero.
2. In the hot reference use RV1 to adjust the reading to indicate the temperature difference between the two standards. If freezing and boiling points are used, this will be $180^{\circ} \mathrm{F}$.
3. Now, back in the cold bath, adjust RV2 and RV3 to give the correct reading.

No further adjustment should be required.

ETI

SECOND GENERATION INDUCTION BALANCE METAL DETECTOR DESIGNED SPECIALLY /f FOR THE HOME CONSTRUCTOR

- A second generation Induction Balance system with improved Variable-Tone detection.
- Designed by professionals for easy assembly by amateurs but with very good performance.
- The search coils are fully assembled and adjusted for you.
- Coils pre-assembled and tested wedge shaped search field

Uses include:

* Treasure hunting - it's amazing what you can find in the garden or on the beach.
\star Finding lost metallic items.
* Locating waterpipes and cables under floorboards on in walls.
* Checking old timber for nails before cutting, etc., etc., etc., etc.

KIT-COMPLETE WITH PRE-
ASSEMBLED SEARCH COILS
E 16.50
Plus £1-00p\&p Plus £1-32 VAT
ASSEMBLED \& TESTED
E 22.50
Plus £1-00p\&p Plus $£ 1-80$ VAT

Communication Measurement Ltd 15 MALLINSON OVAL. HARROGATE, YORKS.

AIRAMCO LTD.
 MICRO COMPUTER PRODUCTS

555 Timer MDIP	30
AY51013 UART	5.35
AY52376 Keyboard Encoder	13.75
21L02-1 1024×1 SRAM	1.35
SPECIAL OFFER: 21 L02-1 8 for	9.60
21044096×1 DRAM 16 pin 300 ns	3.99
SPECIAL OFFER: 2104's 8 for	30.00
210784096×1 ORAM 22 pin 200 ns	3.99
SPECIA! OFFER: 2107 Bs 8 for	30.00
411616.384×1 DRAM 16 pin	20.00
SPECIAL OFFER: 8 for	144.00
1702A 256×8 UVEPROM	4.85
2708A 1024×8 UVERPROM	10.90
2716A $2048 \times$ UVEPROM TI	21.00

S-100 BUS Mother Boards, Regulated Power Supply (10 AMP or 20 AMP). C.P.U. Power supply Memory Boards (8K Static/8K, 16K Oynamic) PLUS many
Send LARGE S A.E. for details

24 hr . Ansaphone order service with ACCESS or
AIRAMCO LTD.
30 WITCHES LINN. ARDROSSAN
AYRSHIRE KA22 7BR
Tal: 029465530

ETCH RESIST TRANSFER KIT SIZE 1:1

Complete kit 13 sheets 6 in $\times 41 / 2$ in $£ 2.50$ with all symbols for direct application to P.C. board. Individual sheets 25 p each. (1) Mixed Symbols (2) Lines 0.05 (3) Pads (4) Fish Plates and Connectors (5) 4 Lead and 3 Lead and Pads (6) DILS (7) BENDS 90 and 130 (8) 8-10-12 T.O.5. Cans (9) Edge Connectors 0.15 (10) Edge Connectors 0.1 (11) Lines 0.02 (12) Bends 0.02 (13) Quad in Line.
FRONT AND REAR PANEL TRANSFER SIGNS
All standard symbols and wording. Over 250 symbols, signs and words. Also available in reverse for perspex, etc. Choice of colours, red, blue, black, or white. Size of sheet $12 \mathrm{in} \times 9 \mathrm{in}$. Price $£ 1$.

GRAPHIC TRANSFERS

VITH SPACER

ACCESSORIES

Available also in reverse lettering, colours red, blue, black or white. Each sheet $12 \mathrm{in} \times 9$ in contains capitals, lower case and numerals $1 / 8 \mathrm{in}$ kit or $1 / 4 \mathrm{in}$ kit. £1 complete. State size.
$\dot{A} H$ orders dispatched promptiy.
All post and VAT paid
Ex U.K. add 50p for air mail
Shop and Trade enquiries welcome
Special Transfers made to order
E. R. NICHOLLS
P.C.B. TRANSFERS

DEPT. ETI / 2
46 LOWFIELD ROAD
STOCKPORT, CHES.061-480 2179

Save on Calculators

TEXAS (print, display, 10 digits, mem, printing calc
T15040 (P)
PC100B (Print Cradle for 11 prog, calculators)
SR151-11(3 memories/stats engineering notation)
T145 Scientific Green Display 15 sels of ()s
T133 (15 bracket levels) $£ 13.95$. RK 3 (Rech Kit) T157 (Key Prog. 150 Prog steps, 8 M
T 158 (480 Prog steps $/ 60 \mathrm{mem}$)
T158 (480 Prog steps/ 100 mem)
Sotiware for $T 159 \& 58$ (each) (four ava ilable) TI Programmer (Mex 10 Oct conversions) Little Professor (child s calculator)
CAsIO
FX2200 (6 +2 , scientific/iraction. LCO. 1000 hours
FX120(10 digit full sci +6 brkts + Polar FX1
FX $140(8+2$, full sci, , fractions 6 levels 0$)$

EX31 (29 sci /fractions inc degree, rad and grad)
LC78 mini card calc
MO2 (LC C D Clock two Alarms Catendar, Calc.)
CO1 (Clock + Calculator + Stopwateh) CO 1 (Clock + Calculator + Stopwateh)
CO 2 (Larger Clock. Catculator, Stopwatch) CQ2 (Larger Clock. Calculator, Stopwatch)
AQ1000 \& C D. Catc. Timer Clock, Alarm, one vear bat
Casio 31 CS 108 LC.D watch
HEWLETT PACKARD
H P 21 at $4600 / H P 31 E$ at
H. P 21 at $4600 / H P 31 \mathrm{E}$ at
H.P 22 Business/Management Calculator Low Price
$H P$ P33E/supercedes HP2A

HP $33 E$ (supercedes HP2A)
H. P. 25 C (Continuous mentiory programmabie scientilic)
H.P. 29C (new combo H. P. $27+$ H. P. 25C)
H.P. 67 (Mag card programmable, 224 steps)
H. P. 97 (Mag card prog with LED display \& Printer)

CBM
4190 (
4190 R (90 functions $10+2$)
PRO100 ($8+2$ key prog. 72 steps, 10 memories)
M55 (Maths) S 61 (Stats) N 60 (Navigator)
LC5KI (L CD 5.000 hr bat life)
LC4 3SR Scientific $1,000 \mathrm{hr}$
LC4 3SR Scientific $1,000 \mathrm{hrs}$
Sinclair Proqrammáble Calculato
SC Adaptor. $£ 3.00$ Program Library
SHARP ELB 130 . LCD musical calc - great, no keys
EL8029 L. C. D Folding Pen type Calculator with c
CT550 LC Clock Calc 24 time zones (Alarm) CT550 L C D Clock Calc. 24 time zones (Alarm)
SHARP GFsoso Porrable stereo cassette recorde
SHARP GFEOBO PO ($5+2$) (Scientific)
Master Chess
Gemmen
Chellonger (60000 moves)
Gemmon manter if (Computer
Computer Checkers (Draughts)
CBM Per 2001 (8 K) (Company orders only)

THE SINCLAIR MICROVISION

The amazing pocket TV that will
pick up programs throughout the pick up programs throughout the
world. complete with rechargeable batteriss
£202 inc. V.A.T. Sae (or detailed
\square CASIO fx 3000

KRAMER \& CO

- October Place, Moldera Mill Road, London NW 141 EJ

Talex: 888941. ATM. KRAMER, K7. Tol. 01-203 2 MAIL ORDER ONLY. S.A.E. For date elephone andhelex ordors accepred

V•FETS FOR

EVERYONE!

This article, by Wally Parsons, first appeared in our Canadian edition. We think that V-FETs represent a large step forward in power amplifier technology and so we have reprinted it, starting this month.

The first part of 'V-FETs for Everyone’ covers the theory behind V-FETs and what their specifications mean. Next month, part two will describe how VFETs are used at present and how to design V-FET circuitry.

SINCE THE SEMI-CONDUCTOR is precisely that, a battery across the ends of a p-type or an n-type bar will cause current to flow through the material, just as it does through a vacuum tube. If a p-type material is joined to the surface of an n-type bar, located between the battery terminals, a $p n$ junction is formed, and if this junction is reverse biased, a space charge or field is produced of opposite polarity which will inhibit current flow, just as the control grid inhibits current flow in vacuum tube. Changing this reverse voltage causes a large current change, and therefore amplification results.

A simple FET (J-FET) is shown in Fig. 1. With a given drain - source voltage, maximum current flows under zero gate voltage conditions and at some reverse levels, no current will flow. Also, as in the vacuum tube, load characteristics are not reflected to the input circuit, because current is not controlled by carrier injection as in bipolars, but by voltage levels.

Fig 1: \mathbf{N}-channel JFET construction and symbol

Fig 2: \mathbf{N}-channel depletion horizontal MOSFET construction and symbol

A variation is the Metal Oxide Semi-conductor Field Effect Transistor. (MOSFET) (Fig. 2) a far more versatile device whose technology is virtually the cornerstone of modern computer technology,
although it has had less use to date in linear applications such as audio amplification.

MOSFETS come in two basic types. In both types the gate consists of a metal electrode separated from the channel by a thin oxide layer. In the depletion type current flow is controlled by the electrostatic field of the gate when biased. Voltage relationships are the same as for the J-FET, except that when the J-FET is forward biased current will flow through the junction (after all, it is a pn junction). This does not contribute to amplification, and may even destroy the device. When a depletion MOSFET is so biased it may result in increased current flow and, provided current, dissipation, and breakdown ratings are suitable, the device may be driven on both sides of the zero volts point as with vacuum tubes. Unlike vacuum tubes under these conditions, the gate draws no cirrent and therefore does not require the driver to deliver power.

The enhancement type MOSFET shown in Fig. 3, is more widely used. The source and drain are separated by a substrate of opposite material, and under zero gate volts no current flows. However, when sufficient forward bias is applied to the gate the region under the gate changes to its opposite type (e.g. p-type becomes n-type) and provides a conductive channel between drain and source. Carrier level and conduction are controlled by the magnitude of gate voltage. Although J-FETS, and especially MOSFETS, have certainly delivered on their original promise, in one area they are particularly conspicuous by their absence, and that is in the area of power. Unfortunately, the channel depth available for conduction is limited. by the practical limits on gate voltage. The lower current density has been the primary limitation due to the horizontal current flow.

VMOS

Recent years have seen the introduction and commercial use of Vertical Channel J-FETS, notably by Sony and Yamaha (Fig. 4). The vertical channel permits a very high width-length ratio, permitting a decreased inherent channel resistance and high current density. Unfortunately it exhibits the same disadvantages as the small signal J-FET, plus, in available devices, a very high input capacitance, ranging from 700 pf to around 3000 pf , limiting high frequency response. In addition, since they must be biased into the off condition, bias must be applied before supply voltage and removed after the supply if it is to be operated anywhere near its maximum ratings. This problem doesn't exist with vacuum tubes because of heater warm-up time, although some "instant-on" circuits impose heavy turn-on surges.

This necessitates a complex power supply, an indeed Yamaha, for example, uses more devices in the supply than it does in its amplifier circuits. However, the construction does make possible the design of complementary types and Nippon Electric and Sony both have high power devices available. Unfortunately, neither company seems anxious to make detailed information available, so there is little to disclose here beyond the fact that they are said to have characteristics similar to those of triode tubes.

Fig 3: N-channel enhancement horizontal MOSFET construction and symbol

Fig 4: Vertical junction FET construction

Fig 5: Vertical MOSFET construction (Siliconix)

However, the Vertical MOSFETS by Siliconix are readily available, at reasonable prices, and the manufacturer most generous in providing data. The following information is extracted from their application note AN76-3, Design Aid DA 76-1, plus device. data sheets.

The Device

Notice in Fig. 5 that the substrate and body are opposite type materials separated by an epi layer (similar to high speed bi-polars). The purpose of this structure is to absorb the depletion region from the drain-body junction thus increasing the drain-source breakdown voltage. An alternative would have involved an unacceptable trade-off between increasing the substrate-body depth to increase breakdown voltage but increasing current path resistance and lengthening the channel. In addition, feedback capacitance is reduced by having the gate overlap n-epi material instead of $n+$.

Fig 6: Output characteristics VMP1

Fig 7: Other VMP1 characteristics

In manufacture, the substrate-drain and epi layer are grown, then the p-body and $n+$ source diffused into the epi layer, in a similar manner as the base and emitter of a diffusion type transistor. A V groove is etched through the device and into the epi layer, an oxide layer grown, then etched away to provide for the source contact and an aluminium gate deposited. It is apparent that this type of device allows current flow in one direction only; this is not always so with a similar type of horizontal FET, where source and drain may be identical in structure and of the same material. Therefore, no reverse current flows (we hope!) when used in switching applications, as was also the case with vacuum tubes.

In-circuit operation is refreshingly simple: Supply voltage is applied between source and drain, with the drain positive with respect to the source, under which conditions no current flows, and the device is off. This is an enhancement type device and is turned on by taking the gate positive with respect to the source and body. The electric field induces an n channel on both surfaces of the body facing the gate, and allows electrons to flow from the negative source through the induced channel and epi and through the substrate drain. The magnitude of current flow is controlled almost entirely by the gate voltage, as seen in the family of curves (Fig. 6 and 7) with no change; resulting from supply voltage changes above 10 V .

Advantages

The vertical structure results in several advantages over horizontal MOSFETS.

1) Since diffusion depths are controllable to close tolerances, channel length, which is determined by diffusion depth, is precisely controlled. Thus, width/ length ratio of the channel, which determines current density, can be made quite large. For example, the VMP1 channel length is about 1.5 us, as against a minimum of 5 us in horizontal MOSFETS, due to the lower degree of control of the shadow masking and etching techniques used in such devices.
2) In effect, two parallel devices are formed, with a channel on either side of the V groove, thus doubling current density.
3) Drain metal runs are not required when the substrate forms the drain contact, resulting in reduced chip area, and thus reduced saturation resistance.
4) High current density results in low chip capacitance. Also, unlike horizontal MOSFETS, there is no need to provide extra drain gate overlap to allow for shadow mask inaccuracies, so feedback capacitance is minimized.

In comparison with bi-polars, especially power devices, the advantages are even more impressive.

1) Input impedance is very high, comparable to vacuum tubes, since it is a voltage controlled device, with no base circuit drawing current from the driver stage. A 7 V swing at the gate, at virtually OA , represents almost OW of power, but can produce a swing of 1.8 A in output current. This represents considerable power gain and will interface directly with high impedance voltage drivers.
2) No minority carrier storage time, no injection, extraction, recombination of carriers, resulting in very fast switching and no switching transient in

class B and AB amplifiers. Switching time for a VMP1 is 4 ns for 1 A , easily $10-200$ times faster than bipolars, and even rivalling many vacuum tubes.
3) No secondary breakdown, and no thermal runaway. VMOS devices exhibit a negative temperature coefficient with respect to current, since there is no carrier recombination activity to be speeded up with temperature. Thus, as current increases so does temperature, but the temperature rise reduces current flow. It is still possible to destroy the device by exceeding its maximum ratings, but a brief nearoverload does not result in an uncontrollable runaway condition. Usually, simple fusing and/or thermistor protection is sufficient for maximum safety, and even this may be unnecessary with conservative design. Absence of secondary breakdown means that full dissipation can be realized even at higher supply voltages. In this respect they resemble vacuum tubes.

Available Devices

Seven devices representing three families are avail-: able. Types VMP-1, VMP-11, and VMP-12 are 2 A , 25 W dissipation devices intended for switching and amplifier use and differ only in voltage rating (60 V , $35 \mathrm{~V}, 90 \mathrm{~V}$, respectively). Types VMP-2, VMP-21, VMP-22, are $1.5 \mathrm{~A}, 4 \mathrm{~W}$ devices rated at $60 \mathrm{~V}, 35 \mathrm{~V}$, 90 V respectively, and are intended mainly for high speed switching, but would also be useful for low power amplifiers and as linear drivers for bi-polars, where the latter offer advantages. And finally, type VMP-4, $1.6 \mathrm{~A}, 35 \mathrm{~W}$, specifically intended for VHF amplifier use. All except VMP-4 devices feature gate protection to withstand static discharges and overvoltages, and all are currently available except the VMP-4. All are n-channel. One hesitates to pass premature judgement, but if the millenium hasn't arrived yet, at least it might just be on the way.

Conditions

V-MOS Power FETs like signal MOSFETS, may be used in a variety of circuit arrangements to perform many different functions. However, no matter what the circuit, certain cohditions, common to all applications, must be provided. These are supply power, loading, drive signal, and establishment of appropriate operating points. These are conditions necessary for amplification and since all active devices function as amplifiers, no matter what the total circuit function, the in-circuit performance of any device depends on the establishment of these conditions.
The electrical characteristics of the VMP1, VMP11, and VMP12, are shown in Fig. 8, and Fig. 9 and 10 shows them in graphic form. Since these are unidirectional devices, the source and drain are not interchangeable, and as they are n-channel devices conduction can occur only if the drain is positive with respect to the source, and high enough to ensure operation in the linear region, as with a vacuum tube, bi-polar transistor, or signal FET.

Like the vacuum tube, the absence of secondary breakdown allows realization of the full dissipation at any voltage supply up to maximum voltage and current ratings. Thus, where two different designs require the same dissipation but different voltage/ load current, no derating is required. This is shown in the "safe operating area" curves. The only bi-polar transistor possessing this characteristic is the singlediffused type, which is also the least suitable for any application requiring wide bandwidth and/or high speed.

TO BE CONTINUED
 NEXT MONTH SOME PRACTICAL CIRCUITS, AND HOW TO DESIGN YOUR OWN

TWO NEW SUPERMODULES 170W INTO 4 OR 8 OHMS

8y popular demand we have designed higher powered versions of our well known modules. The CE 1704 which gives 1 IOW into 4 ohms and the CE 1708 which gives 170 W into 8 ohms are physically similar to the original types and have the same combination of compatible performance features which makes CRIMSON amplification audibly superior to the competition and the only choice if you have an ear for music. We have also produced suitable power supplies which again use our superb TOROIDAL TRANSFORMERS, only 50 mm high, with a $120-240$ primary and single bolt fixing. Write of phone for more information and biased opinions.

POWER AMPLIFIER MODULES CE $60860 \mathrm{w} / 8$ ohms $35-0.35 \mathrm{y}$ CE $1004100 \mathrm{~W} / 4$ ahms $35-0-35 \mathrm{~V}$ CE $1008100 \mathrm{w} / 8$ ohms $45-0-45 \mathrm{~V}$ CE 1704 170w/4 ohms 45-0-45V TOROIDAL POWER SUPPIES CPS I for $2 \times$ CE 608 or $1 \times$ CE 100 CPS 2 for $2 \times$ CE $10042 / 4 \times$ CE 608 CPS 3 for $2 \times$ CE 1008 or $1 \times$ CE 170 A CPS 4 for $1 \times$ CR 1008 CPS 5 for $1 \times$ CE 1708 CPS 6 for $2 \times$ CE 1704 or $2 \times$ CE 1708 heatsinks
 Light Duty 50mm 2 C/W Medium Power $100 \mathrm{~mm} 1.4^{\circ} \mathrm{C} / \mathrm{W}$ THERMAL CUT-OUTS Recommended for Improved rolisbility $70^{\circ} \mathrm{C}$ for use with tras wir hatuink

Home prices include V.A.T. and postage C.O.D. 9 pp extra £ 100 limit. Export no problem. European prices include carriage, insurance and handling. payment. in Sterling
by bank draft, P.O., International Giro or Money Order. Outside Europe, please write for specific quote by return. Send SAE or two International Feply Coupons for full literature. Favourable trade quantity price list on request. High quality pre-amp circuit 20p.

TRANSFORMERS

Panel Meters, Bridge Rectifiers, Power Supply Units Multimeters. Semi Conductors - Timers - Safebloc

ELECTRONIC CALCULATORS SCLENTE1C
 tTEXAS PC1008 (Printing Unit for T159, T158) £161.22
 HP \& TEXAS Libraries Accessories avail POA HTEXAS T1-59 (Card Progs. 960 steps of 100 Mem.) plus Applied Statistics Modle $£ 207.00$ £207.00 $£ 74.00$
 -TEXAS SR51 II (3 Mem./Stat Sci.) ... $£ 29.95$ TEXAS T157 (Key Progr. 8 Mem. up to $\$ 50$ Key- strokes) $£ 29.95$ TTEXAS T1 45 (new updated version of T140) $£ 22.40$ \star C8M 4190 (Scient. Pre-prog. 14 -dig/EXP) $£ 25.50$ *CBM PR 100 (100 Mem .72 step prog.) EXP) £29.50 \star CBM S61 (stat plus sci 6 mem M and S div. chisa DIS. HP 19C (continuous mem, key prog. printer) $£ 183.00$ *HP29C (as 19C but no printer) $£ 115.00$ *HP 25A (key prog. 49 steps) $£ 58.00$ tHP 27 (10 mem sci/fin./stat. 8 digit +exp) $£ 104.00$ WHP 97 (card prog. 224 steps 26 mem) ${ }^{2}$) 260.00 and CASIO/CO1 (Cal. Dig. Alarm Clock) CASIO 3000 (LCD Sci-Std. / Div. Polar Rec. etc.)
 CASIO FX201P (sci 11 mem. 127 step prog) FORTRAN SYSTEM
 CASIO PROFXI (as above but card prog)
 FREE Mains charger included

SPECIAL OFFER

Texas T159 with PC $100 B £ 356$
(Price includes all items as mig. specitication)
SPECIFICATION LISTS ON REQUEST (Send S.A. Envelope) GOODS FULLY GUARANTEED. PRICES EXCLUDE VAT (ADD 8\%) BUT INC. P\&P CHEQUE WITH ORDER

ACCEPTED

Tel. 01-455 9855

22 Cowper Street, London, EC2
(Near Old St. Station) Tel. 01-455 9855

TO CLEAR [FULL SPEG.]
 LIMITED STOGKS

Signêtics 2102 E1.45, 2513 up per case £5.50, 1702A £6, 2708 £ 10.50 , Cannon D type plugs/skts., 25 way skt. 60p, 37 way plug or skt. 80p, 15 way plug or skt. 50p, Micro swt. with button panel mnt. push to make or push to break 20p. Dunco Reed relay 20 v 40 mA coil, 4 make $32 \times 25 \times 8 \mathrm{~mm} 10$ for $£ 1$, RL54 submin red LED 15 p , p\&p 10p on above. New cat. s.a.e $8^{\prime \prime} \times 6^{\prime \prime}$

POCKET PAGER

Miniature crystal controlled FM RX Single Superhet around 30 MHZ 450 KHZ IF contains various tone detectors. Ideal for modification to 27 MHZ Radio Control OR 28 MHZ Amateur Band. Complete, without 2.5 v DEAC + circuit of similar type £3.95. P\&P 25p

A1, A2 , A3 Boards still available.

L.B. Electronics 43 Westacott, Hayes Middlesex UB4 8AH

Winner of the Hong Kong Governor's Design Award

BUY A COMPLETE RANGE OF COMPONENTS AND THESE PACKS WILL HELP YOU

－SAVE ON TIME－No delays in waiting for parts to come or shops to open！

SAVE ON MONEY－Bulk buying means lowest prices－just com－ pare with others！
have the right part－No guesswork or substitution necessary！

ALL PACKS CONTAIN FULL SPEC．BRAND NEW MARKED DEVICES－SENT BY RETURN OF POST．VAT INCLUSIVE PRICES
$\mathrm{K00150V}$ ceramic plate capacitors．5\％． 10 of each value 22 pF to 1000 pF ．Total 210 £3．35．
K002．Extended range， 22 pF to $0.1 \mu \mathrm{~F}$ ． 330 values．$£ 4.90$ ．
$K 003$ ．Polyester capacitors． 10 each of these values $0,01,0.015,0.022,0.033$ ， 0.47μ F． 110 altogether for $£ 4.75$ ．

K004 Mylac capacitors min 100 V type． 10 Total 130 for $£ 3.75$.

K005．Polystyrene capacitors． 10 each value from 10 pF to $10,000 \mathrm{pF}$ ．E12 series， $\mathbf{5 \%}, 160 \mathrm{~V}$ ．Total 370 for $£ \mathbf{1 2 . 3 0}$
K006 Tantalum bead capacitors． 10 each of the following $0.1,0.15,0.22,0.33,0.47$ ． $0.68,1,2,6.3,4.7,6.8,1047 / 6$ 100／3．Total 170 tants for $£ 14.20$ ．

K007 Electrolytic capacitors 25 V working， small physical size． 10 each of these popular values $1.2,2,4.7,10,22,47,100 \mu \mathrm{~F}$ Total 70 for $£ \mathbf{3 . 5 0}$ ．
$K 008$ Extended range as above，also including $220 / 470$ and $1000 \mu \mathrm{~F}$ ．Total 100 for $\mathbf{£ 5} \mathbf{5 0}$.
K009．Extended mylar pack．Contains all values from 1000 pF to $0.47 \mu \mathrm{~F}$ total 290 capacitors to £11．25

K021 Miniature carbon film 5\％resistors． CR25 or similar． 10 of each value from 10R to 1 M, E12 series．Total 610 resistors． £6．00．

K022 Extended range，total 850 resistors from 1 R to 10 M £8．30．

K041 Zener diodes． $400 \mathrm{~mW} 5 \%$ BZYB8 etc．TO of each value from 27 V to $36 \mathrm{~V}, \mathrm{E} 24$ series．Total 280 for $£ 15.30$ ．
K042．As above but 5 of each value $£ 8.70$

VEROBOARD

Our packs of vero offcuts are one of our biggest sellers－and no wonder，they are amazing value！！Each pack contains 7 or All packs are the same price $\mathbf{£ 1 . 3 0 \text { each }}$ All packs are he same price， $\mathbf{E 1 . 3 0 \text { each }}$ Pack A all $0.1^{\prime \prime}$ pitch
Pack B，all 0.15 pitch
Pack C．mixed 0.1 \＆ 0.15
Pack D，all 0．1＇plain
Also available by weight ilb E3．95 10 lbs
€ 32.50
Regular size vero
$17 \times 33 / 2 \times 0.1 \cdots £ 2.00,10$ strips $£ 15$
$17 \times 33 / 4 \times 0.15 £ 1.76 ; 0.1$ plain $£ 1.63$
DIP Breadboard size 6.95×4.5 ，can accommodate 20×14 pin ICs $\mathbf{E 2 . 3 5}$
Vo Board，size $148 \times 75 \mathrm{~mm} 0.1$ plich． Copper strips in rows of 4 to facilitate construction with 4 Cs ．Layout sheet provided

VEROCASES

back．		
1237	$154 \times 85 \times 40$	$\mathbf{£ 2 . 5 3}$
1238	$154 \times 85 \times 60$	$\mathbf{£ 2 . 7 9}$
1239	$154 \times 85 \times 80$	$\mathbf{£ 3 . 3 2}$
$\mathbf{3 0 0 7}$	$180 \times 120 \times 40$	$£ 3.30$
3008	$180 \times 120 \times 65$	$£ 3.50$
3009	$180 \times 120 \times 90$	$\mathbf{£ 3 . 7 4}$
1410	$205 \times 140 \times 40$	$£ 3.51$
1411	$205 \times 140 \times 75$	$£ 4.05$
1412	$205 \times 140 \times 110$	$\mathbf{£ 5 . 1 2}$

VERO PLASTIC BOXES

 Professional quality two tone grey poly． styrene withPC boards

2518	$120 \times 65 \times 40$	$£ 2.17$
2520	$150 \times 80 \times 50$	$£ 2.45$

SLOPING FRONT BOXES $798 \quad 171 \times 121 \times 75 / 37.5 \quad$ £4．19

Potting box， $71 \times 49 \times 24 \mathrm{~mm}$ black or white 40p 64p．

VERO PINS AND TOOL

Spot face cutter for 0.1 or 0.15 pitch 75p
0.1 pins single sided 30p／100
0.1 pins double sided 35p／100 0.15 pins single sided 30p／100 0.15 pins double sided 35p／100 We keep a very large range of VERO pro－ ducts－inc，their recently introduced G
range of cases，and Series II boxes．SAE for their catalogue．
LOW COST PLASTIC BOXES Made in high impact ABS．The lids are retained by 4 screws quide slots（except Interior
V219）．
V210 $80 \times 62 \times 40 \mathrm{~mm}$ black V213 $100 \times 75 \times 40 \mathrm{~mm}$ black $\begin{array}{ll}V 216 & 1.20 \times 100 \times 45 \mathrm{~mm} \text { black } \\ \text { V219 } & 120 \times 100 \times 45 \mathrm{~mm} \text { white }\end{array}$

SEMICONDUCTORS

 Diodes，1N4001／2 5p；4004／5 7p； 4006 8p；40079p； $1250 \mathrm{~V} 1 \mathrm{~A} 10 \mathrm{p} ; 1250 \mathrm{~V} 1.5 \mathrm{~A}$ 12p；50V 3A 10p；100V 3A 12p；400V 3A 15p；400 mW Zeners 2 V 7 to 36 V 10 p each 1.3 W Zeners 3 V 3.200 V 20 p ． 10 watt zeners from 4 V 3 to 200 V 93 p OAB1，5p；OA91
$50 \mathrm{~V} 1 \mathrm{~A} 26 \mathrm{p} ; 200 \mathrm{~V} 1 \mathrm{~A} 32 \mathrm{p} ; 400 \mathrm{~V}$ 1A 38p； 100 V 2A 48p；400V 2A 58p； 100 V 4A $65 p ; 400 \mathrm{~V} 4 \mathrm{~A}$ 80p；40V 4A 80p； 100 V 6 A 74p；400V 6A 98p．

74 SERIES

7400		7447	84	74107	
7401	14 p	7450	$15 p$	74121	$36 p$
7402	$14 p$	7451	14p	74122	51p
7404	17p	7453	14p	74123	$64 p$
7405	23p	7454	14p	74132	56p
7406	28p	7460	14 p	74141	63 p
7408	14p	7472	29p	74150	173 p
7410	14 p	7473	29p	74151	79p
7413	28p	7474	29	74154	144p
7414	62p	7475	51 p	74155	730
7420	14p	7476	29p	74157	66p
7427	36p	7483	91 p	74159	200p
7430	14p	7485	132 p	74164	126p
7432	28p	7486	40p	74174	110p
7437	36p	7490	46p	74179	120p
7438	36p	7491	75p	74180	120p
7440	15p	7492	52p	74190	188p
7442	65p	7493	52p	74191	158p
7445	88p	7495	73p	74192	120p
7446	88p	7496	$85 p$	74193	120p
C－MOS					
4000	18p	4018	84 p	4054	100p
4001	$18 p$	4022	90p	4055	110p
4002	18p	4023	18p	4060	96p
4007	$18 p$	4024	64p	4071	18p
4011	18．p	4027	48 p	4081	18p
4012	48p	4028	78p	4510	$132 p$
4013	40p	4040	110p	4511	212p
4016	48 p	4047	78p	4528	124p
4017	$84 p$	4049	48p	4588	256p

LINEAR \＆MUSIC ICs
741 25p．＇MC3302 Quad comp 120p． 555 40p．＇ 710 diff comp（TO99）40p． 556 100p． 7105 LED digit driver 8 for £ 1 ．
LM380 100 p ．ZN 1034 E Precision timer £2．25．M30 30 p．SLD2128 Dual 128 bit static shift register $£ 1.50$ ．

All prices quoted except＂Bulk Buyers Corner include VAT．Just add 25 p on day of receipt．SAE with enquiries please MINIMUM ORDER VALUE E1．Official orders accepted from schools，etc．（Mini－ mum invoice charge $£ 5$ ）．Export／Wholesale nquiries welcome．Wholesale list now
available for bona fide traders．Surplus components always wanted． Our retail shops at 21 Deptiord Bromedway． London，SE8（0．t－692 2009）and 38 Lower Addiacombe Road，Croydon（01－ 688 2950）stock some of the advertised goods for personal callers only．Ring them for details．

TRANSISTORS						
AC127	18p		BC548	10p	8RY56	40p
AC128	18p		ВС549	11p	0 CP71	1.20
AC176	18p		BCY70	15p	TIP41A	56p
AC187	20p		BCY71	15p	TIP42A	66p
AD149	70p		$8 \mathrm{CY72}$	14p	T1P2955	$86 p$
A0161	40p		80131	${ }^{38} \mathrm{p}$	TIP3055	42p
10162	40p		80132	40p	TIS43	35p
AF279	75p		80133	48p	2 N 2646	60p
BC107	12p		80137	40p	2 N 2905	$21 p$
${ }_{6 C 108}$	10p		80138	40p	212926	12p
BC108C	12p		80139	42p	$2 N 3053$	28p
8C109	12p		80140	$44 p$	2N3054	52p
${ }^{8 C 109 C}$	15p		8 F 173	20p	2N3055	50p
8C147	10p		8 F 181	$30 p$	2N3442	1.30
$8 \mathrm{Cl148}$	10p		8F194	10p	2M3702	10p
8 C 149	10p		8 FF 195	10p	2N3703	10p
BC157	$10 p$		8 F 196	$10 p$	2N3704	10p
BC158	10p		8 F 197	12p	2 W 3705	10p
BC182	12p		8F月39	$24 p$	2N3706	10p
BC183	12p		8F月79	$26 p$	2N3708	10p
8 8C184	$12 p$		8 BF 29	$22 p$	2N3710	10p
8C212	14p		BFX48	32	2N3819	28p
BC213	14 p		BFX84	$22 p$	2N3904	15p
8 C 214	14p		BFX88	$22 p$	2 N 3906	$15 p$
BCA41	32p		8FY50	18p	$2 N 6027$	55p
BCA61	32p		BfY51	$18 p$	2N6028	60p
BC547	10p		BFY5？ B月Y39	$\begin{aligned} & 18 p \\ & 40 p \end{aligned}$	40673	60p
VOLTAGE						
REGULATORS						
78.12		tog2	12v		150 mA	75p
723		14dil	$2 \cdot 37$		150 mA	50p
MC1469		T066	21／2－3		500 mA 1	150p
78M05		T05	5 V		500 mA	85p
$78 \mathrm{M12}$		T05	12 V		500 mA	85p
1405		10126	$5 V$		600 mA	85p
1412		T0126	12V		500 ma	95p
1715		70220	15 V		750 mA 1	120p
7805		70220	5 V		14	150p
7812		10220	12 V		14.1	150p
LM309k		103	5		$1.24 \quad 1$	150p
LM323		103	$5 V$		3 A 6	650p
SCRs						
0．8A		609		5092	35p	
1A		400 V		T05	60 p	
4 A		200 N		10220	52p	
4A		400V		10220	70p	
6 6		200V		10220	56 p	
6A		400V		10220	75p	
6A		400V		1066	80 p	
10A		100V		10220	827	
10A		2OOV		10220	87p	
104		400V		10220	120p	
10A		600\％		10220	148p	
Triacs						
6A		400 V		T0220	98p	
明		6009		10220	135p	
15A		200 V		Stud	135p	
15A		400 V		Stud	220 p	
SOLAR CELLS						

These silicon chips size $19 \times 6.5 \mathrm{~mm}$ will give $50 \mu \mathrm{~A} @ 1 / 2 \mathrm{~V}$ in sunlight，and can be banked for greater power．Prices： 3 for £1； 10 for £3， 25 for $£ 7,100$ for $£ 25$ ．Ideal for powering small CMOS projects，etc

S－DECS 8 T－DECS

S－DEC Breadboard
T－DEC Breadboard

POWER PACK

Woodgrained metal case， $90 \times 80 \times 75 \mathrm{~mm}$
containing mains transformer giving 6V＠ $200 \mathrm{~mA}, 2$ co－ax sockets PC board with $11 / 4$ fuseholder A ＇s C＇s，etc．Only 75 p．

SOLDERING IRONS

－Our besiseller at $£ 3.50$

Antex model CCN -15 W element with ceramic shatt．Very low leakage $£ 3.90$ Antex MLX12．This is a 12 V iron，ideal for car and boat use． 25 W rating．Comes complete with large crocodile clips＇fitted + booklet＂How to solder＂and strong PVC carrying case $\mathbf{£ 4 . 2 9}$

DARLINGTON COMP PAIR

What an offerl BD695A + BD696A PNP NPN complimentary pair．Just look at the
spec！－ 45 V 8 A 70 W Gain of 750 at 4 Al All packed into a TO220 case．The pair for

EDGE CONNECTORS
High qualiling at less than $1 / 3$ their origina price．
$\begin{array}{lllr}18 \text { way } & 41 p & 21 \text { way } & \text { 47p } \\ 32 \text { way } & 72 p & 40 \text { way } & 90 p \\ 43 \text { way } & 97 p & 49 \text { wav } & 111 p\end{array}$

ETI MASTERMIND
As featured in this issue．All parts available
As featured in this issue．All parts available from us separately，or buy the complete kit of only $£ 20.50$ inc．VAT and post．

ETI TORCHFINDER
All parts for this project inc．PCB and torch
for only E2 inc post and VAT

COMING SOON

Look out for details of the GREENWELD
100W amplifier kit
and an IC amplifier k
and some incredible component bargainsm！
SPECIAL TRANSISTOR OFFERS
PN108（BC108）
PN109（BC108）
PN109（BC109）
PN 71 （BCY71\}
PN72（BCY72）
PN72（BCY72）
MSPS 1218 （2N3702）
18 for $£ 1$
16 for $£ 1$
14 for $£ 1$

CLOCK CHIPS
MK50253N £3．95．AY－5－1202£2．25

POWER SUPPLY UNIT

A 102 standard mains input．Outputs 3， 6 $71 / 2$ ，or 9VDC＠400mA max． 3 switches， on／off，polarity reversing and voltage colte．regulated to supply exact marke $127 \times 76 \times 57 \mathrm{~mm}$ ．Price：$£ 5.95$

1977／8 CATALOGUE

48 BIG pages packed with over 4,000 tems，many of them illustrated．Discount vouchers worth 50p．PRICE 30p $+15 p$ oost．（Overseas send 60p surface or $\mathbf{E 1}$ List．Send SAE for bargain list alone．

SIRENS

powerful noise will frighten off would－be intruders．Uses 4 HP7 batts．Overall size $100 \times 72 \times 60 \mathrm{~mm}$ ．Only $£ 1.70$ ．

COMPONENT PACKS
200 miniature resistors， $1 / 1,1 / 4,1 / 2 \mathrm{~W} £ 1.00$ 400 assorted resistors， $1 / 4,1 / 2,1 W £ 1.30$ 200 poly，mica，ceramic capacitors $£ 1.20$ 1.00

100 Mullard C280 polyesters，0．01－1uF． £1．00
150 wirewound resistors，2－10W£1．60 200 PC resistors， $1 / 4$ and $1 / 2 \mathrm{~W} 60 \mathrm{p}$ 20 asstd pots，inc．sliders $£ 1.70$ power devices，mostly unmarked，inc

COMPUTER PANELS

A dozen boards with top grade components －transistors，inc power types，zeners， Hundreds of parts for just $£ 2.75$ ．

P．C．ETCHING KIT MK III his latest version of this popular kit now miniature drill bits， 1 lb ．ferric chloride，Dalo etch－resist pen，abrasive cleaner，etching dish and full instructions．

TORCH FINDER

A simple circuit which will help you find your torch in an emergency.

HAVE YOU EVER groped for the light of your life in the dark? Bow before you get any ideas about the type of project this is let's say that the light we refer to is your torch and in the dark this worthy can indeed save life and limb.

However, when the lights go out suddenly, it's often impossible to locate the torch because it's dark but you wouldn't be looking for the torch if it weren't dark . . . If this seems like a vicious circle it's here that ETI can help with our torch finder

The torch tinder is designed to flash a LED that should be fitted within the body of the torch. The circuit consumes a minute amount of power and so can be left operational at all times. Using a high efficiency green LED means that inspite of the low power demanded by the circuit, the light output is quite adequate to locate the torch, quickly, in the dark.

Construction

Our photographs show how our * circuit was fitted to the 'flat' torch we chose for the project.

With so few components construction of the PCB is straightforward, pay attention to the orientation of C1 and IC1.

Tuck the circuit out of the way within the torch, drill a hole to accommodate the LED and epoxy the device in place.

Insert the batteries and start hoping for a power cut so that the device can be put to the test.

ET

The most important aspect of this project is the torch. We used a flat type but any torch providing the 4.5 volts required by the torch finder could be used.

The rest of the components should be available from many local shops.

Fig. 1. Circuit diagram of the Torch Finder.

HOW IT WORKS

With only four components it's obvious that most of the action takes place within IC1. This is an LM 3909, a device specifically designed to flash LEDs.
In operation the IC will supply current to the LED, via an internal 12R current limit resistor, for only 1% of the time.
For the rest of the time the LM3909 draws only about $50 \mu \mathrm{~A}$ while the capacitor Cl charges up via an internal network of resistors.
When the voltage on Cl reaches a preset level (this point can be modified by a resistor between pin 1 and supply), the LM3909 will supply a high current pulse to the LED; C1 is discharged.

For further details of the LM3909 consult the National Semiconductors data sheet on the device or the ETI data sheet in the September 76 issue.

-BUYLINES-
The most important aspect of this project is the torch. We used a flat type but any torch providing the 4.5 volts required by the torch finder could be used. The rest of the components should be available from many local shops.

Fig. 2. Component overlay of the Torch Finder.

The latest hit fnnoretion trom Sparihrite
 the quickest fitting CLIP ON capacitive discharge electronic ignition in KIT FORM
 Smoother running
 Instant all-weather starting Continual peak performance
 Longer coil/battery/plug life
 Improved acceleration/top speeds Optimum fuel consumption
 Sparkrite X_{4} is a high performance, high quality capacitive discharge, electronic ignition system in-kit form. Tried, tested, proven, reliable and complete. It can be assembled in two or three hours and fitted in 3 mins.
 Because of the superb design of the Sparkrite circuit it completely eliminates problems of the contact breaker. There is no misfire due to contact breaker prevents the unit tiring if the points bounce open at high R.P.M. Contact breaker burn is eliminated by reducing the current to about $1 / 50$ th of the norm. It will perform equally well with new, old, op even badly pitted points and is not dependent upon the dwell time of the contact breakers for recharging the syster Sparkrite incorporates a short circuit protected inverter which eliminates the problems of SCR lock on and, therefore, eliminates the possibility of blowing the transistors or the SCR. (Most capacitive discharge ignitions are not completely foolproot in this respect), The circuit incorporates a voltage regulated output for greatly improved cold starting. The circuit includes built in static timing light, systems function light, and security changeover switch. All kits fit vehicles with coil/distributor ignition up to 8 cylinders
 THE KIT COMPRISES EVERYTHING NEEDED
 Die pressed epoxy coated case. Ready drilled, aluminium extruded base and hea sink, coil mounting clips, and accessories. Top quality 5 year guarant eed transformer and components, cables, connectors, P. C.B., nuts, bolts and silico grease. Full instructions 10 assemble kit neg. or pos, earth and fully illustrated installation instructions.
 NOTE - Vehicles with current impulse tachometers (Smiths code on dial RVI)

 Electronics Design Associates, Dept. ET 82 Bath Street, Walsall, WS1 3DE. Phone: (9) 614791
 Name
 Address
 Phone your order with Access or Barclaycard
 Inc. V.AT. and PP. | XUANTITY REO'D | |
| :--- | :--- |
| TACHS PULSE SLAVE UNIT $£ 3.35$ | |
 I enclose chequeif0's for
 f
 Cheque No

Access or Barclaycard No.

AUDIO AND brand new TEST EQUIPMENT ${ }_{\text {No }}^{\text {RECONs }}$, CENTRE
Only regular stocks listed - other makes and models available Telephone your order with Access and Barclaycards

LONDON'S TEST GEAR CENTRE OPEN 6 DAYS A WEEK 9 am-6 pm
SCOPES

ELECTRONICS TODAY INTERNATIONAL - JULY 1978

Abstract

Man is just a machine, or is he? Is his brain the ultimate mechanism or could it be improved by bio-engineering techniques? How can we develop artificial intelligence to match the abilities of our own brains and what do we have to learn from it?

EVEN IF THE HUMAN BRAIN is regarded as being a digital computer it must be considered to be far more complex than anything man can devise - or is likely to devise in the foreseeable future. In a volume of tissue far less than that of a football it packs some 10^{10} (that's 10000000000) active elements, the nerve cells. In computer terms, its capacity to store information must run onto the 10 thousand megabit range at least.

Its organisation matches its abilities - on average in a normal human being it's been estimated that 1 nerve cell dies every 10 seconds throughout our lives. It is never replaced, for brain cells alone in the body cannot reproduce, and yet we never notice the loss since the brain is so well organised that many of its circuits are redundant and can be replaced by alternative channels should they fail - this has been the case even after serious injuries have been inflicted on the brain.

How much power does all this require? It's enough to make an engineer cringe - a meagre few watts!

What about the brain's higher capabilities - such as its capacity for inventiveness or 'original' thought? What was special about Mozart's brain circuits that enabled him to start composing music before he was 5 years old, or in Leonardo da Vinci's case, to design flying machines 500 years ahead of his time?

Sadly as yet we have no idea since so little is known about the brain!

Inputs and Outputs

All this uncertainty has not stopped a growing number of systems engineers and scientists from looking at the brain's organisation and operation (possibly with the idea of wanting to copy techniques in future systems!).

We can certainly find some aspects of central nervous system operation in common with computers. Both systems have of course what might be loosely termed 'input' and 'ouput' peripherals, for example. In the case of the brain the inputs are from the senses of the body, not only the primary ones of sight, hearing, smell and taste but also from many thousand of receptors near the surface of the body for various parameters such as temperatures and pressure.

Its outputs go to activate all the muscles in the body. This flow of information demands an enormous number of nerve fibres to convey it - up to a million nerve fibres are estimated to be associated with each major limb alone.

All of this of course prompts the question: "How does this information transfer take place?" To understand this we have to look at the most basic component of the whole system - the nerve cell itself.

Neurons

If we could remove a typical nerve cell from our bodies and look at it under a high power microscope, it would look something like Fig 1. Remember, this cell is probably only a few micrometres in diameter so what we're about to describe is a microscopic system-within-a-system.

The cell picks up signals from the other cells in its vicinity and these are fed down to the main part of the cell (containing the nucleus) and propogated along the long transmitter branch (axon) to the next cell.

It's along the inside of these long membranous

This is what your CPU looks like with the cover off. Note the I/O bus at the bottom (not $\mathbf{S - 1 0 0}$). The power supply connactions have been omitted for clarity. The case is of a sturdy polymeric material and the main PCB fits it nicely.
branches that the electric impulses (or action potentials) are transmitted by the nerve.

The axon is no mere passive wire, however. If it was, the signals would soon be drastically attenuated by the leakage of the membrane to the outside after a very short travel. The cell membrance instead acts as its own signal booster to maintain the impulse at constant amplitude (about 100 mV) at any point on the axon. The action potential is either there or it isn't - there is no inbetween state. A digital system? Perhaps. In fact, it's the frequency at which the action potentials are signalied that carries the information. We can now see why so many nerve fibres are needed to carry information. Each cell - and probably many others for the sake of redundancy - carries one 'bit' of information. The importance of this information depends on the frequency it is being signalled and it is likely that a high frequency signal establishes a higher priority than a lower frequency signal in a particular context - rather like signalling an 'interrupt' in a computer system.

Simple as it is, a frequency-dependent system carries its own problems. The sense organs must make amplitude-to-frequency code conversions for transmission down the fibre and at the other end, the brain must find a way of coping with a frequency-dependent signal.

A secondary point is that all the nerve cells concerned with a particular function or sub-function work in parallel. The advantages of parallel processing are fairly evident. It's faster than serial and has a higher signal-to-noise ratio (even if it does need more channels).

So we can visualise action potentials - small spikes of voltage - being flicked up and down all the nerve fibres in the body at varying frequency, but not nearly as fast as electrical impulses through cables. However, even in this, nature squeezes all the performance it can out of the human nervous system. Each nerve cell is wrapped in several layers of fatty tissue with 'nicks'
or 'breaks' in the fat at intervals along the axon. The effect of these 'breaks' or 'nodes of Ranvier' as they are known is to increase the speed of transmission of the action potentials down the nerve axon to about 100 metres per second.

Delaying Tactics and Logic Gates

If neurons propagate the action potentials, then its the junctions between neurons (synapses) that route them. It's. the synapses which work out if the incoming signals are of the right type and frequency to trigger the following cell to produce an action potential. From the point of view of the system, the synapses are the delay lines, one-way valves, triggers and gates all rolled into one.

It takes an electron microscope to even see the synapse regions and even then they don't look very special - they're merely bulbous terminations where nerve cells meet each other. Except that they don't meet each other - they're always separated by the absolutely microscopic distance of about $200 \AA$ - so the action potential never gets across even the gap, let alone down the other side.

What actually crosses the gap is not the electric signal itself but very small quantities of hormones which are released from the transmitter bulb. The hormone crosses to the receptor membrane where (by a process that's not fully understood) it causes the generation of another action potential. Even across so small a gap the chemical transmission takes a finite time and is susceptible to interference by foreign chemicals (drug addicts please 'note - your synapse may be switched off!).

Some synapses, instead of generating an action potential in the receptor membrane actually inhibit it from doing so - so we've found the on-off switches for the nervous system. Can we identify Boolean logic gating arrangements in the nervous system? It's possible to speculate in those terms and certainly the basic mechanisms seem to be there, but unfortunately not enough is known about even simple neuron groups to permit an answer to this question.

Don't Believe Your Eyes!

The nervous system can do some very sophisticated things to the input signals it receives by way of data processing. It can, for example, selectivity inhibit the triggering of neurons that carry no useful information in favour of ones that do.

This so-called 'lateral inhibition' not only cleans up potentially noisy channels by making them more 'contrasty' but in some animals is known to help the eye resolve very efficiently the boundaries between dark and light edges in an image. It probably occurs in the human nervous system as well where it is thought to give rise to some of the more common optical illusions as a byproduct.

So much processing sophistication backing up the senses means that the brain can work on far less sensory information than it usually gets. For example, the brain really only requires a few per cent of the data it receives from the eyes in order to form a valid judgement as to the nature of the image. The same applies to the ear speech has to be very badly distorted before the brain cannot recognise it. There is obviously a very close and
complex interaction between the senses and the memory, which is continually generating possible 'bestfit' models to match the latest information received. Each model is discarded until the brain is satisfied with the result.

Our senses show a fantastic sensitivity to the world around us - we can hear a pin drop in a quiet room. More staggering still, the vibration amplitude of the ear drum which the minimum audible sound creates is less than the diameter of one hydrogen atom . . .!

Down Memory Lane

Digital computers have clearly-defined memory locations which are usually addressed under the control of a clocked pointer in the system. The human brain on the other hand seems to have no all-powerful organ of memory - attempts to find one have so far proved inconclusive. Rather, memory is a property of the system as a whole.

Secondly, data storage on a computer tape or disc is permanent until deliberately erased but information flow through the brain is far more dynamic and its retention more selective. Information floods into our brains from our senses at every living moment. Seen in this light it is neither desirable nor even possible to store it all. 'Store only the information that is important' the brain says to itself - but what is counted as being important?

Basically, we pick out the information about the changes in our environment, because it's the changes in it which may be threatening our immediate survival.

On a motivated level, we can store items deliberately. We remember by repetition (e.g. a telephone number). Most importantly we store information which is associated with something which has caused us great pain or pleasure in the past. How do we recall information once stored? It's clear that association plays a critical role. After all, we store not isolated events but connected ones - 'trains of thought' if you like. The memories are recalled when the right key of stimulus is provided. This stimulus may well be a piece of information associated with the group.

For example, the question "What do you remember about November 22 nd 1963?" would probably elicit a blank rely from most people until (as various commentators have pointed out) that they are told its the day when the President John F. Kennedy was assassinated. Many people can recall where they were or what they were doing - it's a memory that persists over 14 years because it is associated with such a traumatic incident.

In this way we can visualise the human memory almost as 'conglomerates' of memories - pieces of information tied together in some fashion only requiring the right input trigger to push it all out.

Some very intriguing hypothesis about how the memory operates have been suggested. One exciting and topical suggestion is that it records information as a hologram records 3-D images in laser light. A particular part of the image is not localised to a particular part of the hologram - in fact even a fragment of the hologram can theoretically recreate the entire image, a property which makes it very similar to the brain.

We must wait for more basic information on the brain to confirm or disprove this.

Figure 1: What a nervel A typical nerve cell examined.

Tuning into Brain Waves

We can get some idea of what all this electrical activity is like by strapping electrodes - connected to a sensitive amplifier and chart recorder - to the skull.

We will obtain a rather confusing output of signals referred to as an electroencephalogram or EEG. The EEG is usually a very weak signal - a few tens of $u \mathrm{~V}$ amplitude at a range of frequencies mostly under 30 Hz , although higher frequency components are present.

The most well-known component of the EEG is the α-wave. Present in about 90% of all individuals, this: signal (with a frequency between 8 Hz and 13 Hz) is at its most active when the subject is relaxed and his eyes closed. It disappears as soon as the subject opens his eyes or starts to concentrate on something like mental arithmetic.

What does it mean? Basically, we don't know. Nor do we know where or how it's generated, although its source (there may be more than one) seems to be located to the upper rear of the brain. Correspondingly little is known about the other EEG components.

Although the EEG doesn't give a great deal of information about the working of the brain (indeed we'll probably have to wait until further studies of the brain explain the EEG!), it has found great use in diagnosis of brain disorders such as epilepsy. But could the EEG have a more fundamental significance than that? My own pure piece of speculation - for what it's worth - is that it's the brain's clock, although it's too low in frequency to cope with many of the fast muscular actions of the body. Even so the 'ticking' of a brain might have a biological significance similar to a digital system's 'clock frequency'!
FURTHER READING: For those who would like to read more fully about the brain, Professor Steven Rose's book "The Conscious Brain" (Penguin paperback edition £1.25) offers a very readable account.

Ein

ETI MAR

Mullard Stereo Amplifier Modules

Currently being sold for over £30. ETI Otfer Price: [inclusive of $121 / 2 \%$ VAT and £1 postage).
£8.45

Offer comprises two LP 1173 10/W modules plus a LP 1184/2 stereo preamp, all made by Mullard.

IT'S BeEN A WHILE since we arranged an offer with such confidence that it will be a winner, a set of Mullard modules which build into 10W stereo amplifier with a very nice performance. When these first were seen by ETI staff, estimates of a really good offer price ranged from £15 minimum up to $£ 30$. In fact these same modules are currently

SPECIFICATION LP1184/2 Stereo Preamp Module

Supply Voltage . $+24 \mathrm{~V}(2.2 \mathrm{~mA})$
Frequency response (at-3dB pts). Sensitivity for 150 mV output

Ceramic pickup 85 mV
Magnetic pickup 2 mV
Mono radio
60 mV
85 mV
Bass and Treble control ranges
$\pm 14 \mathrm{~dB}$
Signal-to-noise ratio
70 dB

To:
 Stereo Amplifier Modules
 ETI Magazine
 25-27 Oxford Street
 London WIR IRF

Please find enclosed my cheque/PO for $£ 8.45$ (including £1.00 postage] made payabie to ETI Magazine for my sel of Mullard Stereo Amplifier Modules.

```
Name
Address
``` \(\qquad\)

Offer closes July 31st 1978

\section*{SPECIFICATION LP1173 10W Amplifier Modules}
\begin{tabular}{|c|c|}
\hline Supply Voltage & +24V \\
\hline Supply Current per channel (10W) & 770 mA \\
\hline Load impedance & \(4 \Omega\) \\
\hline Input Voltage (for 10W out) & 130 mV \\
\hline Input Impedance & 40k \\
\hline Frequency response (0.5 W , to 3 dB pts) & 50 Hz to 16 kHz \\
\hline THD (1 kHz and 0.5W) & 0.2\% \\
\hline THD (1 kHz and 10W) & 2\% \\
\hline
\end{tabular}
being sold for over \(£ 30\) but we have been able to arrange for ETI readers to buy these for \(£ 7.45\) (inc \(121 / 2 \%\) VAT), plus £1.00 postage.

Stocks are limited to 4000 sets so get in early - we don't expect them to last for long!

\section*{making your modules into an amplifier}

OUR OFFER comprises a stereo preamp module and two 10W output modules with integral heatsink

However you will need your own power supply (giving 2 A at 24 V) and four pots a) Dual 500 k linear (bass), b) Dual 250k linear (treble) c) Dual 20k log (Volume) d) Single 50k linear (balance)

A Zobel network is recommended on the output across the speaker. This comprises a 10k resistor in series with a 220 nF capacitor for a 40 hm speakers.

In addition a switch will normally be needed for the inputs. The instructions give details for wiring a pushbutton switch but of course a rotary switch can be used

Comprehensive instructions are supplied with the units

\section*{KET PLACE}

Size: 105 mm wide 115 mm deep \(\times 55 \mathrm{~mm}\) high.
OUR PREVIOUS digital alarm clock offer (which we have run for several years) was a real success - over \(10 \%\) of ETI readers own these. We have been searching around for one of even better value and have come up with a winner - with an equally good spec and at a much reduced price; the Unik Time Digital Alarm.

This clock features a large, bright LED display in a really stylish case. It's really easy to set lift up the hinged panel on the top and all the controls are there including fast and slow setting buttons. The hinged panel, when down, acts as the snooze switch - easily found by that early morning groping hand to give you 9 minutes extra in bed.

Mains operation only \((240 \mathrm{~V} / 50 \mathrm{~Hz})\) with a 12 hour display. "AM /PM" and "Alarm set" indicators are on the front while an internal switch enables you to display the last significant minute and seconds if you wish.

(Inclusive of VAT and Postage)
An example of this clock can be seen and examined in our reception at our Oxford Street offices.

To:
Unik Time Offer
ETI Magazine
25-27 Oxiord Street London WIR IRF

Please find enclosed my cheque PO for \(£ 8.95\) payable to ETI Magazine) for a Unik Time Digital Alarm Clock.

Name
Adress \(\qquad\)
\(\qquad\)

\section*{LCD Watch}

The enormous numbers involved in ETI offers has enabled us to arrange a real bargain - a full spec LCD watch with adjustable metal bracelet for under half the going rate.

This watch gives continuous display of hours and minutes: press the button once and you'll get the date (American style). After a couple of seconds the display automatically reverts to time but if you press again you'll get a continuous seconds display.

Press another button and you get a back light, enabling you to see the display in the dark. Setting, or resetting is simplicity itself and a 'hold' facility allows you to set the watch spot on. The accuracy is magnificent, as with all the current range of digital watches and battery life is well in excess of a year.

(Inclusive of VAT and Postage)
An example of this watch can be seen and examined in our reception at our Oxford Street offices.

To:
LCD Watch Offer
ETI Magazine
25-27 Oxford Street London WIR IRF

Please find enclosed my cheque/Po' for \(£ 9.95\) (made payable to ETI Magazine) Ior my LCD Digital Watch.
Name .
Address .
\(\qquad\)

Please allow 14 days for delivery

THE SYSTEM BLOCK DIAGRAM is show in Fig 1. The system is prepatched, but is capable of generating a vast variety of different effects by virtue of its 9 switch functions, 22 pots and 6 input jacks.

The VCO is the primary sound source. It produces either a ramp or a square waveform. A ramp waveform has both odd and even harmonics, the square wave has only the odd ones.

However, the VCO has a shape modulation circuit which can turn the ramp into a triangle or the square wave into a thin pulse. Thus, a wide range of harmonic structures is available. Also, this shape modulation can be controlled by a sine wave produced by the slow oscillator. By dynamically modulating the shape of this waveform, it is possible to greatly enrich the sound quality of the VCO. (For instance, if the mark space ratio of the squarewave is modulated at about 1 HZ , the output can sound like. two VCO's.)

\section*{Pitch It Well}

The pitch of the VCO can be controlled by several sources. A 'pitchbend' pot enables notes to be bent up or down by about \(1 / 2\) an octave. A dead band in the centre of the motion enables the turning to be restored. An external input socket with a sensivitivy of \(1 \mathrm{~V} /\) octave allows a sequencer to be connected.

A manual tuning pot, (screwdriver adjustment), is provided so that the synthesiser may be tuned to the pitch of other instruments. Vibrato may be added, the speed being that of the slow oscillator. The squarewave also from this oscillator can be used to produce 'two tone' effects.

The VCO pitch can be controlled by the ADSR envelope or by random pitches generated by the noise sample and hold circuit. All these controls can produce a wide variety of interesting sounds but the machine really comes alive when it is controlled by the keyboard. This keyboard is a 3 octave, (37 note), C to \(C\) device

It is monophonic, that is it only plays one note at a time, this being the highest note selected. It generates two outputs, a pitch signal and a gate voltage. The gate controls the AD and ADSR sections, the pitch, the, VCO and the VCF.

The pitch voltage is a transitional piece of information which has to be remembered in an analogue memory, a sample and hold device. The droop rate of this \(S\) \& H is about 15 minutes per semitone. This is quite good.

\section*{MUSIC} SYNTHESIZER

> Designed for ETI by Tim Orr, late of EMS and father of some of their range, our new Transcendent 2000 is a new concept in DIY synthesizers - a single board design! Apart from the PSU all the circuitry is contained on one easily assembled PCB. Ideal as on-stage machine, the 2000 has plenty to offer the experimenter as well.

\section*{Gliding In}

A portamento circuit has also been included into the sample and hold so that glides, as opposed to abrupt changes, between notes can be produced. A transponse switch, \(\pm 2\) octaves operates on the VCO. This gives an effective keyboard control range on the VCO of 7 octaves. The keyboard S \& H can be controlled by either the keyboard gate or by a pulse from the slow oscillator. This latter mode of operation makes the VCO pitch move in a series of exponentially decreasing steps between the notes played on the keyboard.

\section*{iNoisy Output}

The output of the VCO is mixed with a noise signal and an external audio signal and fed into the VCF. This is a voltage controlled state variable filter, with both bandpass and lowpass outputs. The resonance is manually controllable from a Q of 1 to infinity, (self oscillation).

The resonant frequency may be controlled by either a manual pot, a sweep voltage from the slow oscillator, an external footpedal control, the keyboard voltage or a random voltage or an attack decay envelope.

Fig 1. Block diagram for the Transcendent 2000 synthesiser. Each of the separate circuit blocks is described in detail in the appropriate section. The letters in circles correspond to the points where we broke up the circuit to make it easier to
understand. These references are also given on each of the block circuits where appropriate. So if you wish to stick the whole thing together you can do so. All the components which make up this block diagram are assembled on a single PCB.

There are very few musical instruments that have any sort of dynamic filtering. The Attack/Decay envelope can be used to produce a rising or falling frequency sweep in the VCF, and by varying the AD time constants, a wide variety of sounds may be generated.

The output of the VCF passes through a voltage controlled amplifier to the output socket. This can be on all the time, or it can be controlled by an ADSR envelope. This in turn amplitude modulates the VCF signal so that the output has the envelope of the ADSR voltage.

\section*{Sustaining Interest}

The ADSR is a waveform generator, and is initiated by the arrival of a gate voltage. When this arrives it generates a rising RC exponential waveform with a time constant determined by the Attack pot.

When it reaches a predetermined level it then begins a RC decay towards a sustain voltage. The 'decay' rate is controlled by the 'Decay' pot and the sustain level is set by the 'Sustain' pot.

It sits there until the gate voltage is removed, (when the keyboard is released), whereupon it decays towards ground with a release time constant, this being determined by the 'Release' pot.

If at any time the gate is removed the ADSR goes into its release mode. Time constants of 5 mS to 2 S and sustain levels of full on to completely off are obtainable.

\section*{On Key}

The ADSR can be started by the keyboard, or it can be continuously repeated by the slow oscillator, or it can be repeated by the slow oscillator gated by the keyboard, as can the

Attack Decay, (AD), circuit.
This has two modes of operation: single shot, whereby it attacks to a predetermined level and then decays on its own to ground, or HOLD ON, whereby it only decays upon the removal of the gate signal. Sometimes when playing pieces, it may be necessary to release a key before a new note can be generated. If the piece is particularly fast then errors, in the form of missing notes can occur. However, a device called the New Pitch Detector (NPD), can help eliminate this. When a new pitch is detected, it generates an additional gate signal which is used to reset both the AD and the ADSR.

\section*{Repeating?}

Both the AD and ADSR circuits can be controlled by the REPEAT function. This is a single piece of electronics to enable repeating envelopes to be

The voltage regulator is a \(\mu \mathrm{A} 723\). This has an internal voltage reference with a low temperature coefficient of \(\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\), a differential amplifier and an output transistor plus current limiting facility. The circuit operation is as follows.
The secondary voltage is full wave rectified and smoothed by C3 and C4. This provides positive and negative unregulated rails
ICl is the voltage regulator. A reference voltage of about +7 V 5 is fed into the noninverting terminal, pin 5.

An external power transistor Q 1 is used to regulate the positive supply rail so that ICl remains cool. Short circuit current limiting at 200 mA is provided by R4. Either or both output rails may be shorted out without damage.

Negative feedback to the inverting terminal pin 4, IC1 sets the output voltage. C5 reduces noise on the supply, C 7 reduces the impedence at high frequencies. RV1 sets the output voltage and this should be set to +12 V 000 ! (or as near as you can measure) VR1 is a cermet preset, which has a low temperature coefficient.
generated. The outputs from this circuit then drive the AD and ADSR With the repeat switch in the \(O N\) position, the slow oscillator square wave output continuously gates the AD and ADSR.

In the NORM position, the Keyboard gate is the control. In the KB GATE position, the slow oscillator is only allowed through when the keyboard is pressed. Using the REPEAT function it is possible to simulate a fast plucking 'banjo' effect.

\section*{A DeeEssAhh?}

The ADSR is similar in operation to the \(A D\) circuit except that it has two more parameters to play with.

Upon receipt of the keyboard gate the waveform attacks until it reaches a predetermined level. Then it decays to a level known as the sustain level, which is manually controllable. When the keyboard gate is removed, the
release mode occurs. The A, D, R are all time constants, the \(S\) is a level. Whenever the keyboard gate is removed the device goes into its release mode.

This type of envelope is particularly useful and versatile. With the sustain level at 10, there is no DECAY phase and so an ATTACK, HOLD ON, RELEASE envelope is generated When the sustain is set at 4 , there is an attack and a decay to the sustain level, which is held as long as the keyboard is held down and then a release. Using this setting it is possible to simulate a piano sound, by using a fast attack moderately slow decay and a faster release.

The faster release simulates the damping of the strings as the piano keyboard is released. When the sustain level is set at 0 , then the unit becomes an attack decay envelope which can be used to produce short sharp plucked sounds. To get a new
envelope it is necessary to get a new keyboard gate signal. This either means lifting your finger off of one note before pressing the next, or a new gate can be automatically generated by switching to the NPD mode.

\section*{Moving On}

The pre-patched nature of the design is intended to suit stage and other performance applications. The resulting sound from the synthesiser can be quickly and easily modified once the function of the controls aand their effect has been mastered. Take a look at the diagram on page 44 for starters.

Another helpful aid to using a synthesiser is a 'program sheet'-simply a way of recording clearly but instantly a partiçular set of control settings to allow you to reproduce that sound again at a later date. Such sheets will be available for the Transcendent 2000-details next month.

The VCO is a logarithmic relaxation oscillator generating a ramp waveform This waveform is then modified to give a square wave or a triangle wave output. The oscillator section is IC10, Q9, IC11, IC12 and Q8.

The voltage coming out of ICll pin 6 is fed into IC12. This is an LM311, a fast voltage comparator. A voltage of +5 V 43 is set up on its inverting input, (pin 3) and the ramp from IC11 is fed into its non-inverting input, (pin 2). When the ramp voltage exceeds \(+5 \vee 43\), the comparator's output, (which was at -12 V) leaps up to 0 V .

This voltage turns on the FET switch Q8 which shorts out C22 and discharges it to almost 0 V . Q 8 has a very low ON resistance and hence the discharge time is relatively short, about 800 nS .

However, once the discharging has started, you would expect the comparator output to drop back to -12 V . Well it would do if it wasn't for the monostable built around it, (C23, R42). This monostable makes Q8 turn on for a fixed period of time, sufficient for the discharge process to be completed.

Note that the power supply to ICII is locally decoupled to help protect the VCO from pitch jitter caused by fluctuating power supplies. The reset period causes the VCO to go flat at high frequencies.

As the frequency of the VCO increases then so does the C22 charging current. But this current has to flow through R41. This makes the voltage of the ramp, (IC11 pin 6) increase in size as the ramp speed is in-
creased. This in turn means that the ramp is reset prematurely and so the pitch of the VCO will tend to go sharp at high frequencies.
If we get the size of this tendency to sharpness correct, then it can be used to cancel out the reset tendency to flatness. The overall effect will be to maintain the tuning of the keyboard up to a frequency which it could not do without R41.

The current that drives the VCO is sunk by the transistor Q7. This is used to produce the logarithmic law necessary to convert the linear voltage intervals from the keyboard into musical intervals which are logarithmically spaced. A \(V_{b e}\) increase of about 18 mV will cause the collector current to double, (the VCO goes up an octave), so therefore the voltage per semitone is about IV5. This is a very small voltage indeed.

IC10 is a voltage follower and merely buffers the bias voltage to the emitter of Q7. Should IC10 go berserk, during the power up say, it might try to reverse bias the emitter of Q7 and cause it to zener. This process would corrupt the logarithmic characteristic of the transistor and so destroy its ability to produce musical intervals. D12 prevents this zenering. Q7 has to be run at relatively low currents for two reasons.

Firstly, the log law goes flat at high currents, (1 mA). This is due to the effect of the intrinsic emitter bulk resistor in the transistor. The effective voltage drop across this bulk resistor is subtracted from

NOTE
C10,14, 15 ARE 741
IC11'IS 3140
IC11'15 3140
IC12 IS LM3
C12 IS 748
07,9 ARE \(1 / 2\) CA30
D10-18 ARE 1 N4 148

WAVEFORIM

Fig. 3. Our primary sound source, the voltage controlled oscillator. References for the connection points are made with respect to the block diagram, Figure One.

The 'Pitch Bend' control can provide some variation to a solo by allowing the note's pitch to be swung either side or correct during playing.
the \(V_{\text {be }}\) voltage and so the net effect is less collector current than was expected. Therefore to get a good musical performance, the collector current must be kept as low as possible.
Secondly, large currents will cause selfheating, which will make the VCO pitch drift, although in this circuit the collector voltage is a virtual earth and so the power dissipation is relatively small anyway.

Even though the second transistor compensates for the temperature change \(\mathrm{V}_{\mathrm{be}}\) problems there is another temperature effect to be dealt with. The pitch spread, that is the number of millivolts per octave, is temperature dependent. To compensate for this effect, the resistor pair R33, 34 must have a temperature coefficient, (TC) of \(+3400 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\). There is no element with this coefficient, although an alloy could be concocted to produce it.
However, it just so happens that copper has a TC of \(+3900 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\). Therefore a 870R copper wire wound resistor in series with a 130R metal oxide resistor looks like a 1 k resistor with \(\mathrm{a}+3400 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) TC. There is an American company, (Tel Labs) that makes a Q81 resistor, \(1 \mathrm{k} 1 \%\) made just for the job and this could be used instead of \(\mathrm{R} 33,34\), that is if you can obtain them.

This resistor with the special TC is mounted close to the transistor pair so as to be at the same temperature. Some manufacturers actually glue the resistor to the transistor for best thermal contact.

\title{
ADSR \& VCF AD
}

\section*{HOW IT WORKS}

\section*{AD generator:}

The AD waveform is made up out of two simple CR charge and discharge curves, Q15, Q17, Q21, and IC26, 27, 29, 31 form the generator circuit. The AD is started by the arrival of a positive voltage at IC26 pin 1. This is a SET, RESET flip flop made out of two 2 input NOR gates. A high at pin 1 sets pin 3 low and pin 4 high. These two outputs drive two analogue transmission gates, IC27. A high at the control input. (13 and 5) will open the gate, a low will close it. Only one gate is ON at any one time. The event sequence is as follows: IC26 pin 1 goes high, IC26 pin 4 goes high, IC26 pin 3 goes low. C38 is charged up via IC27 pin 1,2,13 and RV26 towards a positive (+8 V 7) reference voltage. RV26 determines the charging up time (ATTACK).

The voltage on C38 is buffered by IC29, a voltage follower. Assuming that the AD generator is in its HOLD ON mode then the capacitor C38 will be charged up towards +8 V 7 until the gate input is removed.
When this happens the flip flop will change state and the capacitor C 38 will be discharged towards 0 V via the other analogue gate and RV23.

The setting of RV23 will determine the discharge time (DECAY). The purpose of Q15 is to generate the HOLD ON by disabling the SINGLE SHOT circuitry, Q17, Q21. Imagine the voltage on C38 is +2 V and charging up. Q17 and Q21 will be turned ON . When the voltage on C38 reaches \(+8 \mathrm{~V} 1, \mathrm{Q} 17\) and Q21 will start to turn OFF.

The voltage at Q 21 collector, which is the RESET control of the flip flop, will try to rise positively (previously it was at 0 V), but it is prevented from doing so by Q15. Only when the gate input is removed can the flip flop be reset and the decay occur.

When the single shot mode is selected only a positive going pulse is delivered to IC26 pin 1, and so Q15 cannot disable the reset. The waveform charges up to +8 V , resets the flip flop and then discharges. If however the keyboard gate is removed before the attack phase has been completed, the circuit is kicked into its decay mode by diode D31 which resets the flip flop. This means that no matter what mode the circuit is in, it always reverts to its decay mode when the keyboard is released (also true for the ADSR).

The AD waveform is inverted by IC31 and these complementary signais are fed to the AD sweep pot RV30. This waveform is only used to sweep the VCF and does not control anything else. Fast ATTACKS and DECAYS are of the order of 4 mS time constant and slow settings are approximately 2 S .

\section*{ADSR:}

The circuit is very similar to that of the AD generator. IC25 is a SET RESET flip flop IC28 and O16 control the ATTACK, DECAY, RELEASE time constants by enabling the three control pots. A keyboard gate voltage generates a positive going pulse

IC25 pin 1, causing IC25 pin 3 to go low. This then turns on Q16 and thus C37 is charged up via RV24, the attack pot. IC30 is a high input impedance voltage follower, which controls the output VCA but which is also linked to Q18 via R100.
When C37 has charged up to 8 V , Q18 begins to turn off and in doing so, turns off Q20. The collector goes high and RESETS the flip flop. Q16 is thus turned off and the analogue transmission gate IC28 pin 1,2,13 is turned on via D27.
Now C37 is connected via the decay pot to the sustain voltage, the wiper of RV29 and so it will discharge to that voltage and remain there until the keyboard gate is removed. When this happens the IC28 pin 1, 2,13 transmission gate is turned off via D28, and IC28 pin \(3,4,5\) is turned on. Now C37 is discharged towards 0 V via the release pot. Also, when the keyboard gate is removed, a RESET is generated by the diode D29, so that the flip flop is ready for another cycle.
The ADSR voltage is used to control the VCO pitch and the signal level at the synthesizer's output. The ADSR is converted into a current by Q19, D30, R102, R99 and is used to drive a CA3080 acting as VCA. The OFF level of this circuit is adjusted using RV28.

The attack, decay, release time constants are variable over a range of 5 mS to 2 S . The sustain QUIET position should provide at least 40 dB attenuation.

\section*{HOW IT WORKS}

\section*{Voltage Controlled Filter}

The VCF is a voltage controlled state variable filter. This particular design generates both low pass and bandpass outputs. It has the same voltage response as the VCO, i.e. it is logarithmic, as opposed to linear. A CA3046 transistor array converts the control voltage into a log current using very similar circuitry to that which was employed in the VCO to minimise temperature effects.

The control current needs to be sourced to the VCF, in fact to pin 5 of IC16 and IC19 which are both at about -llV4. This is accomplished with Q11 and IC18. The current that comes out of the logging transistor flows into the emitter of Q11 and about \(99 \%\) of it comes out of the collector, the other \(1 \%\) flows out of base. As long as the \(\mathrm{h}_{\mathrm{fe}}\) doesn't vary too drastically as a function of the collector current, then this source of error will not be greatly significant.

The tracking accuracy of the VCF is much less of a problem than for the VCO. VCF tracking errors will only result in a slight change in tone, not pitch.

IC18 maintains Q12 at a fixed bias vol*
tage of approximately -0V62. The control current that comes out if Q1l collector splits equally down R68, 74 and into IC16, 19 respectively. These devices are CA3080's, a two quadrant multiplier which is used as a variable gain cell to tune the filter resonance.
In fact they are gain controlled integrators, where C28, 33 are the timing capacitors. The outputs are current outputs and are therefore high impedance. IC 17, 20 are very high input impedance voltage followers and they unload the outputs of the integrators. IC 16, 17, 19, 20, 23 is in fact an analogue model of a second order differential equation, (i.e. a tuned circuit or a mechanical resonator).
The loop gain, which is controlled by IC16, 19, is linearly proportional to the resonant frequency, therefore by varying the current into IC16, IC19 the resonant frequency of the model is controlled. Note that there is both negative and positive feedback around IC16, IC19. The negative feedback is fixed but the positive feedback is variable via the resonance pot RV19.
As more positive feedback is applied the model becomes more resonant, the Q factor increases. Too much feedback and the
circuit will oscillate. In fact stable, low distortion sinewave oscillations can be produced by turning the resonance pot fully clockwise. The diode bridge amplitude limits the signal excursions and will thus stabilise the signal level when the VCF is in its oscillator mode.

The VCF can therefore be used as a low distortion oscillator or as a filter. However, the signal level in the oscillator mode is much louder, (about 10 dB) than in the filter mode.

\section*{VCA}

The CA3080 is used as a two quadrant multiplier. That is the gain of the device is controlled by the current flowing into pin 5 As this current has the same contour as that of the ADSR, then any signal flowing through the VCA will have its amplitude modulated with the ADSR contour. The output is buffered by a voltage follower providing a high level output (typically OdBm) and a low level output (typically -20 dBm). By putting a fixed DC current in, a constant output level is produced (BY-PASS ON), unaffected by the ADSR.

\section*{\(\stackrel{\rightharpoonup}{\perp}\) \\ WHAT DOES WHAT AND WHERE}

Fig. 6. The front panel layout and what to do with it. This drawing should show the newcomer to sound synthesis what to expect from the various circuit blocks, and give the expert an
idea of the versatility of the Transcendent 2000 design. The keyboard, a 37 note unit, is not shown, but reference is made to its control effects where appropriate.

Fig. 7. The digital noise circuit is by C47 by cur, and the ised by \(7 \mathrm{D4}\) as shown right. The external audio signal leval should be about 1 V for best results.

The noise generator is a digital pseudo random shift register circuit. IC35 is an 18 bit shift register and IC34 is a quad exclus ive OR device. IC34, pins 1 to 6 forms a high to clock the shift register. IC 34 pins 8 to 13 provide feedback around the shift register and are so arranged as to jumble up the data that is circulating. What happens is that a continuous repeating sequence of 'O's and l's flows around the register but the sequence is so very long that it only repeats about once every second. This repetition is inaudible. However the output has the characteristics of a noise source with a fairly flat spectrum.
The noise output is mixed into the audio input or the fifter (RV33) and is also taken is the signal that is sampled and the gate is is the signal that is sampled and the gate is
generated by the slow oscillator. The out put is a sampled DC signal of random voltage, the sampling rate being that of the law and VCF.

Fig. 8. Full circuit diagram for the slow oscillator block. Although very simple on paper, this circuit has a great deal of influence on the performance of the machine as a whole. The range is about 300 to 1, and the oscillator exercises control over the voltage controled oscilator pitch, the VCO waveform modulation, the keyboard sample and hold function, the voltage controlled filter sweep rate and the ADSR repeat facility.

\section*{HOW IT WORKS}

IC32 and IC33 form a triangle square wave oscillator. IC32 is an integrator the output of which ramps up and down between the hysterysis thresholds set by the schmitt C33 is fed back to the integrator via RV32 which determines the oscillator frequency providing a range of 0.06 Hz to 20 Hz (300 to
1). The triangle is bent by D32-35 to form a sinewave which is used as a frequency square modulator for the VCO.The repeat function with the AD and ADSR circuits. Also it is used to frequency modulate the VCO and to provide sampling pulses, for the two sample and hold circuits.

\section*{HOW IT WORKS}

The keyboard generates two outputs. A pitch output and a gate voltage. This is then fed via R14, C12 (reduces contact bounce), to a schmitt trigger IC4. When a key is pressed the output of IC4 goes high, when it is released it goes low. This gate voltage is used to operate the keyboard sample and hold and the AD and ADSR units.
The keyboard voltage is generated by passing a constant current through a precision resistor chain. Thus a series of precise voltages is set up along the chain which can be picked off by the keyboard contacts. The constant current is generated by IC3, R9. R9 puts 2.526 mA into the node at IC3 pin 2. This then adjusts its output so that almost exactly 2.526 mA flows down the resistor chain.
When a key is pressed, a voltage appears which tells the synthesiser which key has been pressed. If more than one key is pressed, then the voltage is (\(2.526 \times 27.4 \times \mathrm{N}\)) mV where N is the number of resistors between the top note pressed and IC3 pin 2 .

Thus the keyboard always generates the voltage of the highest note selected, and this is fed viaR13, RV2, Q4 to C13 where it is stored. Q4 is a FET switch which has an on resistance of a few hundred ohms and a Pinch off resistance of a few hundred megohms.
It is turned on and off by the keyboard gate voltage. The sequence of operation is as follows.
The keyboard is pressed. A pitch voltage is selected. A gate voltage is produced. Q4 is turned on and C13 is charged up to that
voltage via R13 RV2. The keyboard is released, the gate voltage dies, Q 4 is turned off, and the voltage on C13 remains where it is. IC6 is a very high input impedance (1000 \(\mathrm{M})\), voltage follower, and so buffers the voltage on C13 to the rest of the electronics.
A PCB guard ring surrounds C13 so that surface leakage droop rate was about 0.1 \(\mathrm{mV} / \mathrm{S}\) which means that it would take 6922 seconds to drift one semitone or 8305 seconds for an octave.

The measured droop rate was about 0.1 \(\mathrm{mV} / \mathrm{S}\) which means that it would take 692 seconds to drift one semitone or 8305 seconds for an octave.
Portamento effects are obtained by varying RV2, anticlockwise the charging time of C 13 is about 0.2 mS , when clockwise this becomes 330 mS , and the effect is to produce a slewing between notes.
If the keyboard contacts are badly out of alignment; a pitch change at the start of notes can be produced. If the first contact to close is the gate pair then this might cause a problem. The sequence of events is as follows:
The gate contacts close. An envelope with the VCO at the previous pitch is produced. Then 10 or 20 mS . later the pitch contact is made and the sample and hold, and hence the VCO jumps to the correct pitch. The result is a pitch 'hiccup' at the start of some notes. If this is noticeable on any notes then the gate contact should be carefully bent so that it doesn't make contact before the pitch contact.

\section*{New Pitch Detector Circuit}

This circuit decides whether or not a new higher note has been played, even though the gate output signal (IC4 pin 6), has remained high all the time. IC5 is a high gain amplifier which looks at the voltage on the pitch contacts. If the pitch changes, the AC component of this change will be amplified by IC5.

If the output goes positive, a pulse is produced which passes through C14, D7 and ends up across R23. If the output of IC5 goes negative, the pulse goes through Cl 4 , D6, is inverted by IC7 and passes through D9 into R23, again as a positive pulse. This pulse then drives IC8 which is a schmitt trigger. Its output is normally low, and the arrival of the pulse makes it go high for a short while and then returns to its low state. Thus an ascending or descending scale of notes will cause a series of short pulses (at IC8, pin 6) to be generated, one per new note. When the last note held down is removed there is no pulse produced. When the same note is repressed, the pitch not actually being any different, a pulse is generated (this is what is wanted) via Cll from IC4 pin 6. This route only generates pulses on +ve edges, that is the start of a new gate voltage The pulse output from IC8 is used to turn Q6 on and off. This in turn is used to momentarily turn off the AD and ADSR circuits. Thus the NPD can be used to provide a retrigger of the \(A D\) and ADSR circuits.

Fig. 9. On the right is shown the circuitry associated with the keyboard functions. Note the resistor chain for the keyboard is mounted remotely to the main PCB and fits into the contact block mounting board. The Ext Trigger input allows a sequencer to be wired to the synthesiser.

Above and right: a denuded synthesiser. Next month we go on to give full construction details of the design, but as you can see from the photos, it really couldn't be easier. The photo on the right shows the keyboard contact block mountings in close-up. This is perhaps the trickiest part of any synthesiser to build yourself, but as you can see ours is very straightforward.

\title{
KEYBOARD CONTROL
}

\section*{BUYLINES}

A complete set of parts for this project, including all woodwork, metalwork, nuts and bolts, PCBs and components will be available from Powertran Electronics.

The machine used to illustrate this article was assembled using this kit, and constructional details will be based upon it. Kits will only be available from'Powertran, as will the PCB. Because the design is based upon a single board construction, we cannot offer advice to people wishing to modify the synthesiser to a 'modular' form.

The price of the complete kit, including keyboard will be \(£ 186.50\) + VAT. However if you're quick and put in your order before July 30th you can take advantage of anintroductory offer at an even lower price of \(£ 172\) + VAT
Powertran Electronics, Portway Industrial Estate, Andover, Hants,

Above: the lid removed to show the main PCB. It is worth noticing that all the controls and switches mount directly onto this, drastically reducing the interwiring necessary

Next month we conclude the article with all the constructional details of the Transcendent 2000 synthesiser, including keyboard fixing and alignment procedures.

From the representatives in Europe . . . for America's leading Micro-computer magazines and books, for the hobbyist, educationist and professional alike, we bring you a little light browsing!
Reading maketh a full man Francis Bacon (1561-1626)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Tick here or indicate quantity ordered.} \\
\hline \multicolumn{2}{|l|}{From Adam Osborne Associates} \\
\hline INTRODUCTION TO MICROCOMPUTERS & \\
\hline Volume 0: The Beginners Book & \(£ 5.95\) \\
\hline Volume 1: Basic Concepts & ¢5.95 \\
\hline Volume 2: Some Real Products (Revised Late 1977) & £11.95 \\
\hline 6800 Programming for Logic Design & \(£ 5.95\) \\
\hline 8080 Programming for Logic Design & £5.95 \\
\hline Z80 Programming for Logic Design (Available May 78 approx) & £5.95 \\
\hline 8080A/8085 Assembly Language Programming & £6.95 \\
\hline Some Common BASIC Programs & £5.95 \\
\hline BUSINESS PROGRAMS IN BASIC & \\
\hline Payroll With Cost Accounting & ¢9.95 \\
\hline Accounts Payable \& Accounts Receivable (Available from June 78) & £9.95 \\
\hline General Ledger (Available August 78) & \(£ 9.95\) \\
\hline From Scelbi Computer Consulting Inc. & \\
\hline 6800 Software Gourmet Guide \& Cookbook & £7.95 \\
\hline 8080 Software Gourmet Guide \& Cookbook & £7.95 \\
\hline 8080 Programmers Pocket Guide & £2.25 \\
\hline 8080 Hex Code Card & £2.25 \\
\hline 8080 Octal Code Card & £2.25 \\
\hline 8080 Guide and One 8080 Code Card & ¢4.20 \\
\hline 8080 Guide and Both Code Cards & £6.00 \\
\hline SCELBAL High Level Language for '8008/8080’ Systems & ¢39.25 \\
\hline SCELBAL String Handling Supplement & £8.00 \\
\hline SCELBAL Extended Maths Supplement & £4.00 \\
\hline Understanding Microcomputers \& Small Computer Systems & £7.95 \\
\hline SCEL BI 'BYTE' Primer & £9.95 \\
\hline 8080 Standard Assembler (In Block Format) & £15.95 \\
\hline 8080 Standard Editor (In Book Format) & \(£ 9.95\) \\
\hline \multicolumn{2}{|l|}{From Peoples Computer Company} \\
\hline Reference Books of Personal \& Home Computing & £4.95 \\
\hline What to Do After You Hit Return & ¢7.00 \\
\hline Dr. Dobbs Journal Volume I & £10.00 \\
\hline \multicolumn{2}{|l|}{*From Kilobaud/73 Magazine Inc.} \\
\hline Hobby Computers Are Here & ¢3.95 \\
\hline New Hobby Computers & £3.95 \\
\hline \multicolumn{2}{|l|}{From Dymax Inc.} \\
\hline Instant BASIC by Jerald R. Brown & \(£ 4.95\) \\
\hline Your Home Computer by James White & £4.95 \\
\hline \multicolumn{2}{|l|}{My Computer Like Me . . When I Speak} \\
\hline BASIC By Bob Albrecht & \(£ 1.65\) \\
\hline \multicolumn{2}{|l|}{Games With A Pocket Calculator by} \\
\hline Thiagarajan \& Stilovitch & £1475 \\
\hline \multicolumn{2}{|l|}{Games, Tricks and Puzzles For a Hand} \\
\hline Calculator by W Judd & £2.49 \\
\hline \multicolumn{2}{|l|}{*From BYTE Publications Inc.} \\
\hline \multicolumn{2}{|l|}{Paperbytes:} \\
\hline Tiny Assmbler for 6800 Systems & ¢5.75 \\
\hline Bar Code Loader for 6800, 8080, Z80 \& 6502 Micros & £1.75 \\
\hline Best of BYTE Volume 1 & £8.95. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Tick here or indicate quantity ordered & \begin{tabular}{l}
Price \\
UK
\end{tabular} & \multirow[t]{10}{*}{Price Overseas If Different} \\
\hline * From Creative Computing Press & & \\
\hline Best of Creative Computing Volume 1 & £6.95 & \\
\hline Best of Creative Computing Volume 2 & £6.95 & \\
\hline 101 BASIC Games (Revised \& Reprinted & & \\
\hline Feb. 78) & £5.50 & \\
\hline The Colossal Computer Cartoon Book & £3.95 & \\
\hline Computer-Rage (A new Board Game) & £6.95 & \\
\hline Artist and Computer & £3.95 & \\
\hline Three Binary Dice & £1. 00 & \\
\hline * From Everyone Else & & \\
\hline TV Typewriter Cookbook by Don Lancaster & £7.95 & \\
\hline Magazine storage boxes (Holds 12 minimum) & £1.75 & \\
\hline Sybex: Microprocessors & £7.95 & \\
\hline Sybex: Microprocessors Interfacing & & \\
\hline Techniques & £7.95 & \\
\hline Dilithium: Home Computers & & \\
\hline Volume 1: Hardware & £6.50 & \\
\hline Dilithium: Home Computers & & \\
\hline Volume 2: Software & \(£ 5.95\) & \\
\hline Getting Involved With Your & & \\
\hline Own Computer & £4.75 & \\
\hline - Computer Programs that Work (in Basic) & ¢2. 55 & , \\
\hline * From Basic Software Library (from Scientific Research Instruments) & & \\
\hline Vol 1: Business and Personal Booking & & \\
\hline Programs & £17.50 & \\
\hline Vol 2: Maths and Engineering Programs & £17.50 & \\
\hline Vol 3: Advanced Business Programs & £26.95 & \\
\hline Vol 4: General Purpose Programs & £7.95 & \\
\hline Vol 5: Experimenters Programs (General & & \\
\hline Purpose) & £7.95 & \\
\hline Vol 6: General Ledger Program & £32.50 & \\
\hline Vol 7: Professional Programs & £26.95 & \\
\hline Magazines: Back Issues & & \\
\hline Personal Computing & ¢1.75 & \\
\hline Interface Age & ¢2.25 & \\
\hline Dr. Dobbs Jounral & £1.60 & \\
\hline Computer Music Journal & £2.50 & \\
\hline Peoples Computers & ¢1.50 & \\
\hline *BYTE & £2.25 & \\
\hline Creative Computing & £1.75 & \\
\hline Calculators \& Computers & £1.75 & \\
\hline ROM & £1.50 & \\
\hline Kilobaud & £2.25 & \\
\hline 73 & £2.00 & \\
\hline MAGAZINES: Subscriptions & & \\
\hline Personal Computing (Twelve Issues Yearly) & £16.00 & £17.00 \\
\hline Interface Age (Twelve Issues Yearly) & £20.00 & £20.50 \\
\hline Dr. Dobbs Journal /Ten Issues Yearly) & £13.00 & £13.50 \\
\hline Computer Music Journal (Four Issues Yearly) & £8.50 & \(£ 9.00\) \\
\hline Peoples Computers (Six Issues Yearly) & £8.00 & ¢8.50 \\
\hline Kilobaud (Twelve Issues Yearly) & ¢20.00 & £21.00 \\
\hline BYTE (Twelve Issues Yearly) & £15.00 & ¢15.00 \\
\hline Creative Computing (Six Issues Yearly) & £8.50 & \(£ 9.00\) \\
\hline Calculators \& Computers (Seven Issues Yearly) & £10.00 & £10.50 \\
\hline ROM (Twelve Issues Yearly) & E16.00 & £17.00 \\
\hline 73 (Twelve Issues Yearly) & ¢20.00 & £21.00 \\
\hline
\end{tabular}

\section*{HOW TO ORDER}

Please note our prices include postage and packing, but not insurance, if wanted add \(12 p\) for every \(£ 10\) of Books ordered. Make cheques. PO's etc payable to:
L.P. Enterprises

CREDIT CARDS accepted.
BARCLAYCARD VISA / ACCESS
DINERS CLUB / AMERICAN EXPRESS
Phone 01-553 1001 for Credit Card orders (24-hour service).

\section*{Alatronicstoter international}

\section*{Things to look forward to in August: on sale July 7th}

\section*{Amplifier Design}

An excellent feature (well, we think so, anyway) about state-of-the-art amplifier design, by someone who knows: Stan Curtis, designer of the 'Lecson'. In this article he describes how to design \(\mathrm{Hi}-\mathrm{Fi}\) Amplifiers with the emphasis on the Hi - how to generate specifications which will have mandibles hitting floors all over the workshop.

\section*{'ETI-Wet'}

Does your plant have a drink problem? Does it go thirsty when you have a busy week? The 'ETI-Wet' (Unofficial title) plant waterer will look after your greenery with a dedication that even Percy Thrower might envy.

\section*{ELECTRONICS IN MOTORING}

The smart car is coming. It was only a matter of time before it arrived. A brain and nervous system are all that today's cars are missing. Muscles, sinews, a digestive system - they're all present. But automobiles have been relatively simple hydromechanical machines, without the intelligence that powerful electronic systems could provide. That simple era is about to end.

\section*{CD}

That's ETI liquid crystal display digital multi-meter. Designed by Watford Electronics, this unit will, we think, provide for the majority of the test equipment needs of most amateurs. It not only measures resistance and AC and DC voltage and current, but capacitance as well!
The specs. speak for themselves: input impedance: 10 M display: \(31 / 2\) digit, 0.6 inch high LCD DC \& AC volts: 200 mV to 1000 V DC \& AC current: 200 uA to \(2 A\) resistance: 200 R to 20 M

capacitance: 2 n 0 to 2 u 0 accuracy: \(2 \%+1\) digit

A rugged, totally dependable device which will stand even the worst insults felectrically speaking, that is) and still give a rock-steady performance (load regulation: \(0.3 \%\), line regulation: \(0.1 \%\)). Not satisfied with being a mere power supply, this unit will also provide a constant-current source.

\section*{OSCILLOSCOPE OFFER}

In our recent reader survey, \(25 \%\) of you requested an oscilloscope offer or project. Well, we did our best and it looks as if our best is pretty good! A full-specification solid-state scope for under \(£ 100\) !
Features include:
* 3 inch medium-persistence tube
* response: up to \(5 \mathrm{MHz}(-3 \mathrm{~dB})-\) good enough for colour TV work
* adjustable + ve, -ve or external sync
* external x-input
* y-sensitivity down to \(100 \mathrm{mV} / \mathrm{div}\)
* timebase: \(100 \mathrm{~ms} /\) div to \(1 \mathrm{us} / \mathrm{div}\) in 5 steps
dimensions: \(15 \mathrm{~cm} \times 20 \mathrm{~cm} \times 28 \mathrm{~cm}\) weight: \(3.8 \mathrm{~kg}(81 / 2 \mathrm{lbs})\)
More details next month!

Features mentioned here are in an advanced state of preparation but circumstances may affect the final contents.

\section*{DISCO RANDOM LIGHT UNITS}

SPECIAL OFFER -

These units are ideal for a Disco, Group or home party. The lamps are never off, each one is dimmed for a second and then back to full brightness.

500 mm long, designed for \(3 \times 100 \mathrm{~W}\) lamps (not included), complete with 2 metres of cable and 12 months guarantée. Fully suppressed, all electronic (not bi-metal).
£6.25 each +75 p Post or TWO for \(£ 12.50\) post free

Send now to
M. D. MARKETING
P.O. Box 4, Hinckley, Leics.

Reg office: 22 Station Road. Hinckley

FAST SERVICE for SPECIAL OFFER ORDERS. Orders will be deapetched on the eame day by lat Ciase Poot (some hotvy iteme by parcel posit). Official (credit) ordere accepted at our A FREE CATALOGUE requested by post or phone will be sent by return giving full details of our Complete range including other componems not listed, with same day despatch for goods in stock Ptease send for New Catalogue.
SEND YOUR SPECIAL OFFER ORDER plus \(8 \%\) VAT plus \(35 p\) post and packing charge to us at:

\section*{DATA SHEET SPECIAL}

THE ELECTRONICS PRESS is full of articles high-lighting the latest advances in memory technology, and we must plead guilty to this ourselves; it's quite fascinating. But we discovered that a lot of hobbyists who are using memories don't have access to good information on the devices available, and are consequently running into
problems while trying to get their systems up and running.

Here we attempt to give some real nitty-gritty down-to-earth useful information on memories. The data sheets are not complete by any means, but we hope they contain the most important information.

Bear in mind that distributors
deal (in the main) with commercial organisations, and cannot possibly afford to supply hobbyists with heaps of expensive books, brochures and data sheets. If you request information from a manufacturer or distributor, please make life easy for them by enclosing a large stamped addressed envelope and payment, if any is required.

The 2102 is, without doubt, the commonest RAM in use today. It is a static 1024-bit (\(1 \mathrm{~K} \times 1\)) memory and is exceptionally easy to use, as many hobbyists will testify.

read cycle

write cycle

A. C. Characteristics \(T_{A}=0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}, V_{C C}=5 \mathrm{~V} \pm 5 \%\) unless otherwise specified read cycle
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \multirow[b]{2}{*}{Parameter} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { 2102A-2, 2102AL-2 } \\
\text { Limits (ns) }
\end{gathered}
\]} & \multicolumn{2}{|l|}{\begin{tabular}{l}
2102A, 2102AL \\
Limits (ns)
\end{tabular}} & \multicolumn{2}{|l|}{\begin{tabular}{l}
\[
\text { 2102A-4, 2102AL. } 4
\] \\
Limits (ns)
\end{tabular}} \\
\hline Symbol & & Min. & Max & Min. & Max. & Min. & Max. \\
\hline \(\mathrm{t}_{\text {RC }}\) & Read Cycle & 250 & & 350 & & 450 & \\
\hline \({ }_{\text {t }}{ }_{\text {A }}\) & Access Time & & 250 & & 350 & & 450 \\
\hline \({ }^{\text {t }} \mathrm{CO}\) & Chip Enable to Output Time & & 130 & & 180 & & 230 \\
\hline \({ }_{\text {torl }}\) & Previous Read Data Valid with Respect to Address & 40 & & 40 & & 40 & \\
\hline \({ }^{\text {toren }}\) & Previous Read Data Valid with Respect to Chip Enable & 0 & & 0 & & 0 & \\
\hline
\end{tabular}

WRITE CYCLE
\begin{tabular}{|c|c|c|c|c|}
\hline twc & Write Cycle & 250 & 350 & 450 \\
\hline \({ }_{\text {t AW }}\) & Address to Write Setup Time & 20 & 20 & 20 \\
\hline twp & Write Pulse Width & 180 & 250 & 300 \\
\hline \({ }^{\text {I WR }}\) & Write Recovery Time & 0 & 0 & 0 \\
\hline \({ }^{1} \mathrm{DW}\) & Data Setup Time & 180 & 250 & 300 \\
\hline \({ }^{1} \mathrm{DH}\) & Data Hold Time & 0 & 0 & 0 \\
\hline \({ }^{\text {t }} \mathrm{CW}\) & Chip Enable to Write Setup Time & 180 & 250 & 300 \\
\hline
\end{tabular}

\section*{D. C. and Operating Characteristics}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & \multicolumn{3}{|l|}{\[
\begin{aligned}
& \text { 2102A, 2102A-4 } \\
& \text { 2102AL, 2102AL. } 4 \\
& \text { Limits } \\
& \text { Min. Typ. } 11] \text { Max. }
\end{aligned}
\]} & \multicolumn{3}{|l|}{\[
\begin{aligned}
& \text { 2102A-2, } 2102 \mathrm{AL} .2 \\
& \text { Limits } \\
& \text { Min. Typ. }{ }^{[1]} \text { Max. }
\end{aligned}
\]} \\
\hline \({ }_{\text {l }}^{\text {LI }}\) & Input Load Current & & 1 & 10 & & 1 & 10 \\
\hline ILOH & Output Leakage Current & & 1 & 5 & & 1 & 5 \\
\hline ILOL & Output Leakage Current & & -1 & -10 & & -1 & -10 \\
\hline \({ }^{\prime} \mathrm{cc}\) & Power Supply Current & & 33 & Note 2 & & 45 & 65 \\
\hline \(V_{\text {IL }}\) & Input Low Voltage & -0.5 & & 0.8 & -0.5 & & 0.8 \\
\hline \(V_{1 H}\) & Ingut High Voltage & 2.0 & & \(V_{\text {CC }}\) & 2.0 & & VCC \\
\hline \(\mathrm{V}_{\text {OL }}\) & Output Low Vottage & & & 0.4 & & & 0.4 \\
\hline YOH & Ouiput High Voliage & 2.4 & & & 2.4 & & \\
\hline
\end{tabular}

Notes 1. Typical values are for \(T_{A}=25^{\circ} \mathrm{C}\) and nominal supply voltage
2. The maximum ICC vatue is 55 mA tor the 2102 A and \(2102 \mathrm{~A}-4\), and 33 mA to
ine 2102 AL and \(2102 \mathrm{AL}-4\)

POPULAR MEMORIES

The 2112 is a \(256 \times 4\) bit TTLcompatible static RAM which is very popular in small systems where two 2112 s will provide 256 bytes of memory. Memory expansion in 256 byte increments is easy until you reach 1 K , where 82102 s could have done the job slightly more easily. The 2112 is made by Intel, National Semiconductor and many other semiconductor manufacturers.

\section*{ABSOLUTE MAXIMUM RATINGS}

Ambient Temperature Under Bias \(-10^{\circ} \mathrm{C}\) to \(80^{\circ} \mathrm{C}\) Storage Tempersture \(-65^{\circ} \mathrm{C}\) to \(+150^{\circ} \mathrm{C}\) Voltage On Any Pin

With Respecr to Ground -0.5 V to +7 V Power Dissipation 1 Watt

CAPACITANCE \({ }^{[2]} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 1=1 \mathrm{MHz}\)
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Symbol} & \multirow[b]{2}{*}{Test} & \multicolumn{2}{|l|}{Limits (\(\mathrm{p} F\))} \\
\hline & & Typ. [t: & Max. \\
\hline \(\mathrm{CIN}_{1}\) & \begin{tabular}{l}
Input Capacitance \\
(All Input Pins) \(V_{I N}=0 \mathrm{~V}\)
\end{tabular} & 4 & 8 \\
\hline \(\mathrm{Cl}_{1 / 0}\) & \(1 / \mathrm{O}\) Capacitance \(V_{1 / 0}=0 \mathrm{~V}\) & 10 & 15 \\
\hline
\end{tabular}

NOTES:
1. Typical values are for \(T_{A}=25^{\circ} \mathrm{C}\) and nominal supply voltage.

PIN CONFIGURATION

PIN NAMES

LOGIC SYMBOL

D.C. AND OPERATING CHARACTERISTICS
\(T_{A}=0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}, V_{C C}=5 \mathrm{~V} \pm 5 \%\) unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Min. & Typ. \({ }^{(1)}\) & Max. & Unit & Test Conditions \\
\hline \({ }_{\text {LI }}\) & Input Current & & 1 & 10 & \(\mu \mathrm{A}\) & \(\mathrm{V}_{\text {IN }}=0\) to 5.25 V \\
\hline ILOH & I/O Leakage Current & & 1 & - 10 & \(\mu \mathrm{A}\) & Output Disabled, \(V_{1 / 0}=4.0 \mathrm{~V}\) \\
\hline ILOL & 1/O Leakage Current & & -1 & -10 & \(\mu \mathrm{A}\) & Output Disabled, \(\mathrm{V}_{1 / 0}=0.45 \mathrm{~V}\) \\
\hline \({ }^{1} \mathrm{CC1}\) & \begin{tabular}{l}
Power Supply \\
Current
\end{tabular}
\(\frac{2112 A, 2112 A-4}{2112 A-2}\) & & 35 & 55 & mA & \[
\begin{aligned}
& V_{\mathbb{I N}}=5.25 \mathrm{~V}, \mathrm{I}_{1 / 0}=0 \mathrm{~mA} \\
& T_{A}=25^{\circ} \mathrm{C}
\end{aligned}
\] \\
\hline \({ }^{1} \mathrm{cc} 2\) & \begin{tabular}{lr}
\begin{tabular}{l}
Power Supply \\
Current
\end{tabular} & \(2112 \mathrm{~A}, 2112 \mathrm{~A}-4\) \\
\(2112 \mathrm{~A}-2\)
\end{tabular} & & & 60 & mA & \[
\begin{aligned}
& V_{I_{N}}=5.25 \mathrm{~V} .1_{1 / O}=0 \mathrm{~mA} \\
& T_{A}=0^{\circ} \mathrm{C}
\end{aligned}
\] \\
\hline \(\mathrm{V}_{\text {IL }}\) & input "Low" Voltage & -0.5 & & 0.8 & \(v\) & \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) & Input "High" Voltage & 2.0 & & \(V_{\text {cc }}\) & V & \\
\hline Vol & Output "Low" Voltage & & & +0.45 & V & \(1 \mathrm{OL}=2.0 \mathrm{~mA}\) \\
\hline \multirow[t]{2}{*}{VOH} & Output "High"' 2112A, 2112A-2 & 2.4 & & & V & \(\mathrm{IOH}^{1}=-200 \mu \mathrm{~A}\) \\
\hline & Voltage \(\quad 2112 \mathrm{~A}-4\) & 2.4 & & & V & \(\mathrm{IOH}^{\text {O }}=-150 \mu \mathrm{~A}\) \\
\hline
\end{tabular}

\section*{A.C. CHARACTERISTICS FOR 2112A}

READ CYCLE \(T_{A}=0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}, V_{C C}=5 \mathrm{~V} \pm 5 \%\) unless otherwise specified.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Min. & Typ. \({ }^{(1]}\) & Max. & Unit & Test Conditions \\
\hline \({ }_{\text {i }}^{\text {RC }}\) & Read Cycle & 350 & & & ns & \multirow[t]{5}{*}{\[
\begin{aligned}
& \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns} \\
& \text { Input Levels }=0.8 \mathrm{~V} \text { or } 2.0 \mathrm{~V} \\
& \text { Timing Reference }=1.5 \mathrm{~V} \\
& \text { Load }=1 \mathrm{TTL} \text { Gate } \\
& \quad \text { and } C_{L}=100 \mathrm{pF} .
\end{aligned}
\]} \\
\hline \(t_{\text {A }}\) & Access Time & & & 350 & ns & \\
\hline \({ }^{\text {c }} \mathrm{CO}\) & Chip Enable To Output Time & & & 240 & ns & \\
\hline \({ }^{\text {i }}\) CD & Chip Enable To Output Disable Time & 0 & & 200 & ns & \\
\hline \({ }_{\text {tom }}\) & Previous Read Data Valid After Change of Address & 40 & & & ns & \\
\hline
\end{tabular}

\section*{WRITE CYCLE WAVEFORMS}

WRITE CYCLE \#1

NOTE: 1. Typical values are for \(T_{A}=25^{\circ} \mathrm{C}\) and nominal supply voltage
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Symbol & Parameter & Min. & Typ. \({ }^{11}\) & Max. & Unit & Test Conditions \\
\hline twC1 & Write Cycle & 270 & & & ns & \multirow[t]{9}{*}{\[
\begin{aligned}
& t_{r}, t_{\mathrm{f}}=20 \mathrm{~ns} \\
& \text { Input Levels }=0.8 \mathrm{~V} \text { or } 2.0 \mathrm{~V} \\
& \text { Timing Reference }=1.5 \mathrm{~V} \\
& \text { Load }=1 \mathrm{TTL} \text { Gate } \\
& \text { and } \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} .
\end{aligned}
\]} \\
\hline tawl & Address To Write Setup Time & 20 & & & ns & \\
\hline tow 1 & Write Setup Time & 250 & & & ns & \\
\hline \({ }^{\text {twp }} 1\) & Write Pulse Width & 250 & & & ns & \\
\hline \({ }^{\text {C CSI }}\) & Chip Enable Setup Time & 0 & & & ns & \\
\hline \({ }^{\text {C }} \mathrm{CH} 1\) & Chip Enable Hold Time & 0 & & & ns & \\
\hline twR1 & Write Recovery Time & 0 & & & ns & \\
\hline \({ }^{1} \mathrm{DHI}\) & Data Hold Time & 0 & & & ns & \\
\hline \({ }^{\text {t }}\) CW1 & Chip Enable to Write Setup Time & 250 & & & ns & \\
\hline
\end{tabular}

WHEREAS STATIC RAMS basically consist of flip-flops and will retain data for as long as power is applied, with dynamic RAMs, life wasn't meant to be easy. The basic storage element in a dynamic RAM is a capacitor which is subject to leakage and requires data to be read from a cell, amplified and writter' back again in order to avoid total decay of the data.

Because the memory cell in a dynamic RAM is one transistor and a cpacitor as against the six transistors of the static type, the density of dynamic RAMs is around four times higher. Thus, we now have 16 K dynamics, and 64 K types are rumoured to exist in research labs around the world!

The innards of dynamic RAMs, like statics, are organised into rows and columns, 64 rows \(\times 64\) columns for a 4 K RAM, to be precise. All the cells in a single row are refreshed at the same time, and so to fully refresh a 4 K RAM, one need only cycle through all combinations of the low-order six address bits within 2 ms .

The first problem with these chips is that they are not fully TTL-compatible as is the 2102, for example. The chip enable input of the 2107 B requires a high-level signal of at least 11 V to operate, but this can easily be got from a special driver chip, the Intel 3245 , which also provides some selection logic.

Given a 3245 and a handful of external logic, it looks as though the 2107B would be a good choice for hobbyists using the Z-80. The 2107 does not require address strobing, and consequently could run directly off the data bus, with the Z-80 supplying the refresh logic (the Z-80 has an internal refresh counter which is output while the processor decodes instructions).

If you are designing your own memory system, and your processor is not a Z-80, you will have to decide on one of three refresh schemes: Asynchronous, which insists on refresh occurring, even if this interrupts the processor; Synchronous, which runs 'in phase' with the processor, supplying refresh at times when the processor is not accessing memory; and Semisynchronous, which is a combination of these schemes. Your decision will be dependent upon the circuit complexity, processor speed and overhead, and a number of other considerations.
PIN CONFIGURATION
LOGIC SYMBOL

- Aetruan Addrom A. A. A.

BLOCK DIAGRAM

Read and Refresh Cycle \({ }{ }^{11]}\)

D.C. and Operating Characteristics
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Symbol} & \multirow[b]{2}{*}{Parameter} & \multicolumn{3}{|c|}{Limits} & \multirow[t]{2}{*}{Unit} & \multirow[b]{2}{*}{Conditions} \\
\hline & & Mın. & Typ. \({ }^{\text {2] }}\) & Max. & & \\
\hline \(V_{\text {IL }}\) & Inpui Low Voltage & -1.0 & & 0.6 & V & \({ }^{1} \mathrm{~T}=20 \mathrm{~ns}, \mathrm{~V}_{\text {ILC }}-10 \mathrm{~V}\) \\
\hline \(V_{\text {IF }}\) & Input High Voltage & 2.4 & & \(\mathrm{V}_{\mathrm{cc}}+1\) & V & \(\mathrm{I}_{\mathrm{T}} \mathrm{F}=20 \mathrm{~ns}\) \\
\hline \(V_{\text {ILC }}\) & CE Input Low Voltage & -10 & & +1.0 & v & \\
\hline \(\mathrm{V}_{\text {IHC }}\) & CE Input High Voltage & \(V_{D O-1}\) & & \(\mathrm{V}_{00}+1\) & v & \\
\hline \(\mathrm{V}_{\mathrm{OL}}\) & Output Low Voltage & 0.0 & & 0.45 & \(\checkmark\) & \(\mathrm{IOL}=2.0 \mathrm{~mA}\) \\
\hline Voh & Output High Voltage & 24 & & \(V_{C C}\) & \(\checkmark\) & \(1 \mathrm{OH}=-2.0 \mathrm{~mA}\) \\
\hline
\end{tabular}

\section*{Absolute Maximum Ratings*}
\begin{tabular}{|c|c|}
\hline \(T\) mpterature Uncer Bias & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) \\
\hline S'orage Temperature & \(-65^{\circ} \mathrm{C}\) to \(\cdot 150^{\circ} \mathrm{C}\) \\
\hline A.l Input or Output Voltages with Respect to the most Negative Supply Vollage. \(\mathrm{V}_{\text {B }}\) & -25V \(10-03 \mathrm{~V}\) \\
\hline Supply Voltages \(V_{\text {OO }}\). \(V_{C C}\). and \(V_{S S}\) with Respect to \(V_{\text {BB }}\) & +20 V to -0.3V \\
\hline Power Disstpation & 125 w \\
\hline
\end{tabular}

The second problem you will face in using dynamic RAMs is getting your memory system to work. It is a good idea to have some static RAM in the system so that the processor can be checked out without having to worry
too much about the memory. Once this is done, attention can be turned to the dynamic męmories. In general, dynamic memory is a good choice for expanding your memory size, but not for starting a system.

\section*{absolute maximum ratings}

All Input or Output Voltages with
Respect to \(V_{B B}\) Except During Programming
Power Dissipation
Operating Temperature Range
\[
+0.3 \mathrm{~V} \text { to }-20 \mathrm{~V}
\]

750 mW

FIGURE 1. Read Operation

FIGURE 2. Write Operation

The MM5204 is a 4096-bit static Read Only Memory which is electrically programmable and uses silicon gate technology to achieve bipolar compatibility. The device is a non-volatile memory organised as 512 words by 8 bits per word. Programming of the memory is accomplished by storing a charge in a cell location by applying a -50 V pulse. A logic input, "Power Saver," is provided which gives a \(5: 1\) decrease in power when the memory is not being accessed.

\section*{Erasing}

The MM5204Q (The Q suffix indicates the chip has a quartz window and is UV erasable. The other 5204s are not erasable.) may be erased by exposure to short-wave ultraviolet light of 254 nm wavelength. The recommended dosage of ultraviolet light exposure is \(6 \mathrm{~W} \mathrm{sec} / \mathrm{cm}^{2}\), but there is no absolute rule for erasing time or distance from the source. When erasing a worst case time required should be found and any chips then erased for three times this period.
block and connection diagrams

electrical characteristics \(T_{A}\) within operating temperaturé range, \(V_{L L}=O V, V_{B E}=P R O G R A M=V_{S S}\), MM4204: \(V_{S S}=5.0 \mathrm{~V} \pm 10 \%, V_{D O}=-12 \mathrm{~V} \pm 10 \%\), MM5204: \(V_{\text {SS }}=5.0 \mathrm{~V} \pm 5 \%, V_{D D}=-12 \mathrm{~V} \pm 5 \%\), unless otherwise noted.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{PARAMETER} & CONDITIONS & MIN & MAX & UNITS \\
\hline \(\mathrm{V}_{\mathrm{LL}}\) & Input Low Voltage & & \(V_{\text {ss }}-14\) & \(\mathrm{V}_{\text {SS }}-4.2\) & V \\
\hline & Input High Voltage & & \(v_{\text {SS }}{ }^{-1.5}\) & \(\mathrm{V}_{\text {ss }}+0.3\) & \(\checkmark\) \\
\hline & Input Current & \(\mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V}\) & & 1.0 & \(\mu \mathrm{A}\) \\
\hline \(V_{\text {OL }}\) & Output Low Voltage & \(\mathrm{IOL}^{\mathrm{L}}=1.6 \mathrm{~mA}\) & \(V_{\text {LL }}\) & 0.4 & \(v\) \\
\hline & Output High Voltage & \(\mathrm{IOM}=-0.8 \mathrm{~mA}\) & 2.4 - & \(\mathrm{V}_{\text {ss }}\) & \(v\) \\
\hline lo & Output Leakage Current & \(V_{\text {OUT }}=O \mathrm{~V}, \overline{C S}=V_{\text {IH }}\) & & 1.0 & \(\mu \mathrm{A}\) \\
\hline & Access Time & MM5204 \(T_{A}=0^{\circ} \mathrm{C}, \overline{C S}=V_{1 H}\), Power Saver \(=V_{1 L}\) & 0.75 & 1.0 & \(\mu \mathrm{s}\) \\
\hline
\end{tabular}

Programming.
The MM5204 is normally supplied in the unprogrammed state. All 4096-bits at logic " 0 " state. In the program mode the device effectively becomes a RAM with the 512 word locations selected by address inputs A0-A8. Data inputs are B0-B7 and the write operation is controlled by pulsing the program input to -50 V . Since the EROM is initially supplied with all "Os" a \(V\) on any of the data input lines will leave the stored " 0 s" undisturbed and a \(V_{1, ~}\) on any date input \(\mathrm{B} 0-\mathrm{B7}\) will write a logic " 1 " into that location. The program cycle should be repeated until the data reads true, then over programmed five times that number of cycles (denoted \(X+5 X\) programming)
programming electrical characteristics
\begin{tabular}{|c|c|c|c|c|}
\hline PARAMETER & CONDITIONS & MIN & MAX & UNITS \\
\hline ILD, Data Input Load Current & \(V_{i N}=-18 V\) & & -10 & \(m A\) \\
\hline Iacd Address Input Load Current & \(V_{1 N}=-50 \mathrm{~V}\) & & -10 & mA \\
\hline ' \({ }_{\text {Lp }}\) P Program Load Current & \(V_{\text {IN }}=-50 \mathrm{~V}\) & & -10 & \(m A\) \\
\hline \(I_{\text {cbe }} \quad V_{\text {Bb }}\) Load Current & & & 50. & mA \\
\hline ILOO V Oo Load Current & \(V_{\text {OD }}=\) PROGRAM \(=-50 \mathrm{~V}\) & & -200 & \(m A\) \\
\hline \(V_{\text {IMP }} \quad\) Address Data and Power Saver Input High Voitage & & \(-2.0\) & 0.3 & \(\checkmark\) \\
\hline VILP Address Input Low Voltage & & -50 & -11 & V \\
\hline Data Input Low Voitage & & -18 & -11 & \(\checkmark\) \\
\hline VOHP \(V_{O D}\) and Program High Voltage & & -2.0 & 0.5 & V \\
\hline VoLf VOD and Program Low Voltage & & -50 & -48 & V \\
\hline \(V_{B L P} \quad V_{B E}\) Low Voltage & & 0 & 0.4 & V \\
\hline \(\mathrm{V}_{\mathrm{BHP}} \quad \mathrm{V}_{\mathrm{BE}}\) High Voltage & & 11.4 & 12.6 & V \\
\hline \(V_{\text {DO }}{ }^{\text {c }}\) Pulse Dury Cucle & & & 25 & \% \\
\hline tpw Program Pulse Width & & 0.5 & 5.0 & ms \\
\hline tos Data and Address Set-Up Time & & 40 & & \(\mu s\) \\
\hline \(\mathrm{t}_{\mathrm{DH}}\) Data and Address Hold Time & & 0 & & \(\mu s\) \\
\hline \({ }^{\text {ss }}\) (Pulsed \(V_{\text {DO }}\) Set-Up Time & 1 & 40 & 100 & \(\mu \mathrm{s}\) \\
\hline \(t_{\text {SH }} \quad\) Pulsed \(V_{\text {OO }}\) Hold Time & & 1.0 & & \(\mu \mathrm{s}\) \\
\hline \({ }^{\text {r }}\) gs Pulsed \(V_{\text {Be }}\) Set-Up Time & & 1.0 & \(\checkmark\) & \(\mu s\) \\
\hline \(\mathrm{t}_{\mathrm{BH}} \quad\) Pulsed \(\mathrm{V}_{\mathrm{Ba}}\) Hold Time & & 1.0 & & \(\mu \mathrm{s}\) \\
\hline Ipss Power Saver Set.Up Time & & 1.0 & & \(\mu \mathrm{s}\) \\
\hline IPSH Power Saver Hold Time & & 1.0 & & \(\mu s\) \\
\hline th. \(t_{f}: V_{D O}\), Program, Address and Data Rise and Fall Time & & & 1.0 & \(\mu \mathrm{s}\) \\
\hline
\end{tabular}

Rapitupe

\section*{GOOD AND PROPER!}
or at least your projects. If there is one thing which is impossible to do at home is lettering front panels to professional standards. At least until now. If you cast your eyes right a while you'll see our new panel transfers sheet, which has been carefully designed to allow you to do exactly that.

The transfers are easily rubbed down, and the two sheet set contains a mass of lettering and -uniquely-control scales for both rotary and slider puts.

Each sheet measures \(180 \mathrm{~mm} \times 240 \mathrm{~mm}\) and comes packed flat in a stiff cardboard envelope for protection. There should be enough for dozens of projects here - and the longer you wait the worse they'll look!

\section*{NOW - AN X-Y PLOTTER ASSEMBLY THAT EVERYBODY CAN AFFORD \\ Due to a large purchase we have an assembly consisting of frame with \(X \& Y\) assemblies (no pen - but provision provided), pulleys and cords, and YES two high quality STEPPING MOTORS. These alone are worth the asking price for the entire assembly. Two basic sizes are available, with various stepping motor options. All motors 200 steps per rev; 20 oz inch torque. \\ 120 V Stepping Motor \\ \(750-0-750\) ohm will step at 50 V . \\ Bed Size \(\quad 6 \times 4 \frac{1}{2}{ }^{\prime \prime} \quad £ 26.50\) ea. \\ Bed Size \(12 \times 9^{\prime \prime} \quad £ 39.50\) ea. \\ 120 V Stepping Motor \\ 1000-0-1000 ohm. \\ These can be changed with care to 12 or 24 V . Data supplied \\ Bed Size . \(6 \times 41 / 2{ }^{1}\) £33.50 ea. \\ \(\begin{array}{lll}\text { Bed Size } & 12 \times 9 & \mathbf{£ 4 6 . 5 0} \text { ea. }\end{array}\) \\ These are supplied for \(12 / 24 \mathrm{~V}\) operation, but will effectively step at reduced torque down to 5 V . \\ \(\begin{array}{lll}\text { Bed Size } & 6 \times 4 \frac{1}{2} & \text { £51ea. } \\ \text { Bed Size } & 12 \times 9 & \mathbf{6 4} \text { ea. }\end{array}\) \\ STEPPING MOTORS \\ ONLY \\ 1 20V Stepping Moto
\(1000-0-1000\) ohm \\ 1000-0-1000 ohm \\ Can be changed with care to 12/24/48V. Data supplied £8 each P\&P £1 Supplied for \(12 / 24 \mathrm{~V}\) Opera. £ 13 each \(P \& P\) £1 \\ Just think about the uses!}

\section*{DON'T MISS}

THE TELEFUNKEN D14-131 REPLACEMENT TUBES FOR SOLARTRON (SCHLUMBERGER) CD1740 COSSOR CDU 150 S.E. LABS SM112 and the GEC/MOV 1474 TUBE
These tubes were fitted in one of the above oscilloscopes, but were
removed on the authority of the British Ministry because they were not These tubes were fitted in one of the above oscilloscopes, but were
removed on the authority of the British Ministry because they were not of British manufacture. They are warranted by us as being of as new of British
condition.

\section*{PRICE £55 EA. P\&P £2.75}

AlSO bRAND NEW TUBES FOR THE FOLLOWING

\section*{TELEQUIPMENT}

S52 at E10 ea;
D51 at £15 ea;
S42 at £10 ea;
D53A at \(£ 20\) ea;
D52 at \(£ 15\) ea;
BRADLEY 200 at \(£ 85\) ea ADVANCE OS 3000 at \(£ 85\) ea

AND MULLARD \& BRIMAR OSC̄ILLOSCOPE TUBES BRAND NEW-BOXED-ALL RECTANGULAR

D13-46GM P 7 £ 35 ea.
D13-51GH Greén \(£ 65\) ea
D10-210GH / 32 £40 ea

\section*{TRANSISTORS/DIODES/ RECTIFIERS, ETC.}

At 5 p each
BC147; 2N3707;BC172B; BC261; BC251B; BC348B; BC171A/B; BC413; 10 ; BC1B2; BC212; BAX13; 1N937. BA902BE, BZXB3 TIS6 1: \(2 N 5040\).
At 10p each BFXB5; 1N4733A; SN7451N; BYX10-1: 5KVO. 36 ; TIP 30-20p ea TIP34A - 50p ea BD53B - 40p ea. Heavy Duty Bridge Rectifier - 20 p ea CA3123E-£ 1 ea
BDY55-£4 ea. TIP 31B-12p ea. 2N 3055-40p ea.
2N5B79 with 2N5BB1 Motorola 150 W Comp, pair \(£ 2\) ea
BD535; BD53B Comp pair - 75 p pr
BYZ10 10p ea. TBA560CQ E2 ea 1 N 4436 T -TO3 Flat mount 10A
200 piv \(£ 1\) ea
Hinear Amp 709-25p ea
High Speed Voltage Comparator \(710-15 p\) ea
finned heat sink - sing
\(75 p\)
Texas Bridge Recrifier 5SB05-50V 5A. 60p ea. P\&P 20p

\section*{\#POT PACK. All Brand New Modern Single and Ganged. Our choice,} 7 for 25p. P\&P 48p.
Ex-Ministry
E120 each.
E120 each
SOLARTRON CD 1212 SB 40 meg £ 100 . DB 24 meg fwice £ 135.
Many other types availabe
Type TFBO1B3/S \&160 each
MARCONI TFI42F DISTORTION FACTOR METER giving percentage distortion on a directly calibrated dial and includes any spurious components up to \(30 \mathrm{kHZ} £ 29.50\) each
MARCONI PORTABLE FREQUENCY METER TF 1026/11 100 to 160 MHZ . Very fine condition \(£ 25\)
TF \(1026 / 4 \mathrm{M} 2.4 \mathrm{GHZ} £ 35\) each

NOW-INCREASE AREA GIVEN TO

\section*{PICK-A-PACK AT 50p per lb}

LARGER VOLUME OF NEW COMPONENTS YÓU CAN'T AFFORD TO MİSS

\section*{PHOTOMULTIPLIER TYP} 75p Other types available
\&POTENTIOMETERS *POTENTIOMETERS - All \(5 p\) ea P\&P extra Metal bodies AB Linear PCB Mp ea P\&P extra 250 K ganged. 100 K ganged concent, brand new *BEEHIVE TRIMMERS 3 30pt Brand Nits off 40p. P\&P 150100 off 93.50 . P\&P \(75 p 500\) off off 40p. P\&P 15p 100 off \(£ 3.50\). P\&P 75p 500 off
£ 15 . P\& \(£ 1.25,1000\) off \(£ 25\). P\&P £ 50 LARGE RANGE OF ELECTROSTATIC VOLTMETERS. From \(0-300 \mathrm{~V} 2^{\prime \prime} £ 3\), to 20 KV Max. General guide \(5 \mathrm{KV} 31 / 2^{\prime \prime} £ 5\). Thereatter \(£ 1\) per KV P\&P 75 p
DON'T FORGET YOUR MANUALS. S.A.E. with requirements

\section*{Many EHT}

\section*{available}

EX-DYNAMCO Oecilloscopes INVERTORS 30 V Input 6 KV Output. Size \(2^{\prime \prime} \times 41 / 2^{\prime \prime} \times 11 / 2^{\prime \prime}\) Complete with circuir \(£ 10\) ea P\&P £1

\section*{MARCONI R.F. POWER METER \\ Type TF \(1152 \mathrm{~A} / 1\) (CT419) 2 ranges 10 watt} fsd and 25 watts isd. 50 ohms \(£ 65\) each

TELEPHONES. Post OHice style 745 Black or twa-tone \(\mathbf{£ 6 . 5 0}\) ea. Modern style 706. Black or two-tone grey \(£ 4.50\) ea. P\&P \(£ 1\) each. Old black style \(£ 1.50\) ea P\&P \(£ 1\)
HANDSETS only 706 style \(£ 1.75 \mathbf{e a}\). Older style E1. P\&P 75 p
TELEPHONE EXCHANGES. E.g. 15 way automatic (exchange only) from \(£ 95\) MODERN FANS. \(43 / 4 \times 41 / 2 \times 11 / 2110\) volts. Superbly quiet, 6 blades \(£ 4.50\) ea P\&P \(75 p\)
PAPST Fan 240 V available at \(£ 7.50\) ea. P\&P 75 p PAPST Fan 240 V available at \(£\)
ectrostatic deflection
ype GEC \(924 \mathrm{~F} 31 / 2\) dia (Replacement for £25 ea. P\&P £1.50
Type GEC 924E \(3^{1 / 2}\)
Solartron 1015 scope) \(£ 17.50\). (Replacement for \(1000 f\) Feed thru Capacitors ea. P\&P E1. 50 HIVAC Miniature NEONS
App 60 V Brand New 10 off 20p. P\&P extra
GRATICULES \(12 \times 14 \mathrm{~cm}\) high quality plastic \(95 p\) ea. P\&P 10p
MARCONI TF 1041 B Valve Voltmeter \(£ 25\) ea
MARCONI TF338B Attenuator 600 ohms \(£ 12\) ea PHILIPS Casseites Model 2200. Play only \(£ 9 \mathrm{ea}\).
P\&P \(£ 150\) P\&P \(£ 1.50\)

POWERFUL MINIATURE GERMAN 12V REVERSIBLE MOTOR
Size \(11 / 2 \times 13 / 16^{\circ}\) dia. Shaft \(5 / 16 \times\) approx \(1 / 16^{\circ}\). dia 50p each P\&P 40p.

\section*{HIGH NOISE IMMUNITY} LOGIC
Dual in Line 16 pin ceramic packages
(Texas series 15300), 12 V Power rail. Normal polarity
Type 326 dual 2 input dual 3 input Nand Gate Type 332 dual 2 input and with 4 invertors Type 370 Quad Flip Flop.
Mixed package - our sele

10 for 50 5p

MARCONI VALVE
VOLTMETER
NOW£ 12.50 ea.
BURROUGHS 9 digit PANAPLEX numeric display. 7 segment \(0.25^{\circ}\) digits with red bezel. \(£ 2.50\) ea P\&P 30p.
MINIATURE NIXIE TUBE type ITT 5870ST. Digit size \(0.5^{\prime \prime}\). Wire ended. 50p each P\&P 20p
CALCULATOR CHIP. GENERALINSTRU MENTS type GIMT4 £1.60 ea. P\&P 20p TRANSFORMERS 115 V AC input. Secondary 30 V and 2.6 V 10 VA 50p ea. P\&P 50p
HONEYWELL SWVITCH ASSEMBLY. Size \(11 / 2 \times\) \(5 / 8 \times 1^{\text {" }}\) deep. Blue plastic front. Push fit. Can be stacked side by side. 2 pole c/o. Black push/pull centre operation. Very smart. Could be P.C. Board mounted. 15p ea. P\&P 10p
21 WAY SELECTOR SWITCH. Single pole with reset coil 240 V AC coils. Additional switch contacts for auto reset etc. \(£ 3\) each. P\&P 75p
SNAIL BLOWVER 110 V AC 500 MA. Brand new by Airflow Developments. Quiet and very good looking £3.50 ea. P\&P E1
POTTER \& BRUMFIELD \(18-48 \mathrm{~V}\) DC Relay. 3 pole c/o. Heavy Duty. 50p ea. P\&P 25p
MINIATURE KEYBOARD. Push contacts. Marked \(0-9\) and A-F and 3 user definable keys \(£ 1.75\) ea P\&P 35p
MULLARD CORE LA4245 at \(15 p\) ea. P\&P 10p. CLARE REED RELAYS 24V DC Coil. Single pole make Size \(11 / 8 \times 7 / 16\) c 7/16" at 25p ea. P\&P \(10 p\)
```

        ITT-CREED
    Punches and Prints on %/8
paper. Complete with Power
Supply Solid State. Size
Supply Solid State. Size
$15 \times 113 / 4 \times 22$ deep $£ 98$ each

```

TRIPODS WITH PAN
AND TILT HEAD
wilt take 56 lb load \(£ 22.50\) e

\section*{\(1 / 2^{\prime \prime}\) MAG TAPE}

Approx. \(2,000 \mathrm{ft}\). NOW \(\mathbf{2 5}\) p each. P\&P £1. Or 5 for \(£ 1\) carr. \(£ 2.75\)
FOR THE VDU BUILDER tube M2B-13GH-23×17cm at \(£ 12\) ea Base connections supplied.
Heads for PERDEC 6000/7000 - enquiries.
LESSEY VDU. No keyboard - weird electronics. \(£ 60\) ea
Now Available Ex-Stock TELETYPE ASR33 from \(\mathbf{4 5 0} \mathrm{ea}\)
Also available KSR33 from £275 ea.
Odd 33RO not cased - can be demonstrated \(£ 160\) ea.
Limited quantity of 35RO - 20ma loop - can be changed to ASC1 1 code (3 hours simple work and \(£ 10\) parts) OUR PRICE EXCLUDING code (3 hours simple work
PARTS REQUIRED \(£ 70\) ea.

Ex-Ministry TALLY Punches B level 110 char per sec. \(\mathbf{\&} 50\) each AMPEX TM 7 - Nice condition, \(\mathbf{£ 2 5}\).

Minimum Mail Order \(£ 2\). Excess postage refunded. Unless stated - please add \(£ 2.75\) carriage to all units VALUE ADDED TAX not included in prices - Goods marked with \(\star 121 / 2 \%\) VAT, otherwise \(8 \%\) Official Orders Welcomed. Gov. / Educational Depts., Authorities, etc., Otherwise Cash with Order. Open 9 a.m. to 5.30 p.m. Monday to Saturday

=ETI BOOK

\section*{BEGINNERS}

Beginners Guide to Electronics Squires \(£ 2.65\)
Beginners Guide to Transistors Reddihough \(£ 2.55\)
Electronic Measurement Simplified C. Hallmark £2.20
Electronics Self Taught Ashe £4.40
Beginners Guide to Integrated Circuits Sinclair \(£ 3.15\)
Principles of Transistor Circuits s. Amos \(£ 4.75\)
Understanding Electronic Circuits Sinclair \(£ 4.10\)
Understanding Electronic Components Sinclair \(£ 4.10\)
Beginners Guide to Radio King £3.15
Beginners Guide to Audio Sinclair \(£ 3.10\)
Beginners Guide to Audio L. r. Sinclair \(£ 3.20\)

\section*{COOKBOOKS}

\section*{TV Typewriters Cookbook \(£ 7.40\)}

CMOS Cookbook \(£ 8.00\)
TTL Cookbook \(£ 7.55\)
Active Filters \(£ 11.00\)
IC Timer Cookbook \(£ 7.50\)
IC Op-Amp Cookbook \(£ 9.40\)

\section*{APPLICATIONS}

Advanced Applications for Pocket Calculators J! Gilbert £4.20
Build Your Own Working Robot D. Heiseman \(£ 3.35\)
Electronics and Photography r Brown \(£ 2.30\)
Fire and Theft Security Systems B. Wels \(£ 2.00\)
How To Build Proximity Detectors and Metal Locators J. Shelds £3.35.
How To Build Electronics Kits Capel \(£ 2.10\)
Linear Integrated Circuit Applications g. Clayton \(£ 5.00\)
Function Circuits Design \& Applications Burr Brown £15.95
110 Electronic Alarm Projécts R. M. Marston \(£ 3.45\)
110 Semiconductor Projects for the Home Constructor R. M. Marston £2.95
110 Integrated Circuit Projects for the Home Constructor r. m. Marston \(£ 3.25\)
110 Thyristor Projects Using SCRs R. M. Marston \(£ 2.95\)
Handbook of IC Circuit Projects Ashe \(£ 2.30\)
Practical Electronic Project Building Anslie and Colwell £2.45

\section*{TV AND HI-FI}

\section*{Audio Handbook G. Kıng \(£ 6.50\)}

Cassette Tape Recorders J. Earl \(£ 5.25\)
Solid State Colour TV Circuits G. R. Wildang £6.35
Hi-Fi Loudspeakers and Enclosures Cohen \(£ 8.20\)
How To Build Speaker Enclosures Badmareff \(£ 3.10\)
Master Hi-Fi Installation King \(£ 2.80\)

\section*{\(=\) LOGIC}

Logic Design Projects Using Standard ICs J. Wakerly \(£ 5.10\)
Practical Digital Design Using ICs J. Greenfield \(£ 12.50\)
Designing With TTL Intergrated Circuits Texas Instruments \(£ 9.05\)
How To Use IC Circuit Logic Elements J. Streater £3.65
110 COSMOS Digital IC Projects for the Home Constructor r. M. Marston \(£ 3.20\)
Understanding CMOS Integrated Circuits R. Melen \(£ 3.90\)
Digital Electronic Circuits and Systems R. M. Morris £3.50
MOS DIGITAL ICs G. Flynn \(£ 4.60\)

\section*{COMPUTING}

Microprocessors and Microcomputers B. Sowick \(£ 18.00\)
Microprocessor/Microprogramming Handboot B. Ward £4.10
Microprocessors D. C. McGlynn \(£ 8.40\)
Introduction'to Microprocessors Aspinall \(£ 5.90\)
Modern Guide to Digital Logic (Processors, Memories and Interfaces) £4,30

\section*{OP - AMPS}

Applications of Operational Amplifiers Graeme (Burn Brown) \(£ 8.30\)
Designing With Operational Amplifiers Burr Brown \(£ 13.75\)
Experiments With Operational Amplifiers Clayton \(£ 3.40\)
110 Operational Amplifier Projects for the Home Constructor r.m. Marston £2.95
Operational Amplifiers Design and Applications c. Tobery (Burr Brown) \(£ 7.40\)
Op-Amp Circuit Design \& Applications I. Carr \(£ 4.00\)

\section*{TEST INSTRUMENTS =}

Build It Book of Minature Test Instruments r. Haviland \(£ 3.55\)
The Oscilloscope In Use Sinclair \(£ 3.10\)
Test Instruments for Electronics m. Clifford £2.40
Working With the Oscilloscope A. Saunders \(£ 1.95\)
Servicing With the Oscilloscope G. King \(£ 5.60\)
Radio Television and Audio Test Instruments king \(£ 5.90\)

\section*{\(=\) SERVICING}

Electronic Fault Diagnosis Sinclar \(£ 3.20\)
Rapid Servicing of Transistor Equipment G. Kıng \(£ 2.95\)
Tape Recorder servicing Manual Gardner Vol 1: 1968-70 \(£ 8.50\) Vol 2: 1971-74 \(£ 8.50\)
FM Radio Servicing Handbook King \(£ 4.80\)
Basic Electronic Test Procedures I. M. Gotlieb \(£ 2.45\)

\section*{COMMUNICATIONS}

Communication Systems Intro To Signals \& Noise b. Carlson \(£ 7.50\)
Digital Signal Processing Theory \& Applications L. R. Rabiner \(£ 23.80\)
Electronic Communication Systems G. Kennedy \(£ 8.50\)
Frequency Synthesis. Theory \& Design Mannassewisch \(£ 20.40\)
Principles of Communication Systems \(\boldsymbol{H}\). Taut \(£ 8.10\)

\section*{THEORY}

Introduction to Digital Filtering Bogner \(£ 9.40\)
Transistor Circuit Design Texas Instruments \(£ 9.35\)
Essential Formulae for Electrical and Electronic Engineers N. M. Morris \(£ 1.65\) Modern Electronic Maths Clifford \(£ 6.70\)
Semiconductor Circuit Elements T. D. Towers \(£ 6.40\)
Foundations of Wireless Electronics M. G. Scroggie £4.45
Colour Television Theory Hudson \(£ 6.20\)

\section*{\(=\) REFERENCE \\ Transistor Tabelle (Includes physical dimensions) \(£ 4.10\) \\ Electronic Engineers Reference Book (Ed. 4) L. W. Turner £27.70 \\ Solid State Circuit Guide Book B. Ward \(£ 2.25\) \\ Electronic Components M. A. Colwell £2.45 \\ Electronic Diagrams M. A. Colwell \(£ 2.45\) \\ Indexed Guide to Modern Élećtronic Circuits Goodman £2.30 \\ International Transistor Selector T. D. Towers \(£ 5.25\) \\ International FET Selector T D. Towers \(£ 4.35\) \\ Popular Valve/Transistor Substitution Guide \(£ 2.25\) \\ Radio Valve and Semiconductor Data A. m. Bell \(£ 2.60\) \\ Master Transistor/Integrated Circuit Substitution Handbook \(£ 5.60\) \\ World Radio TV Handbook 1978 (Station Directory) \(£ 8.00\) \\ Radio, TV and Audio Technical Reference amos \(£ 24.85\) \\ TV Technicians Bench Manual (New Ed.) Wilding \(£ 5.10\)}
```

$=$ MISCELLANEOUS
Integrated Electronics J Mıman $£ 7.70$
Microelectronics Hallmark $£ 3.90$
Practical Solid State DC Supplies T D. Towers $£ 6.20$
Practical Triac/SCR Projects for the Experimenter r. Fox $£ 2.25$
Printed Circuit Assembly Hughes \& Colwell £2.45

```

How to order: Make cheques etc payable to ETI Book Service. Payment in sterling only please. Orders should be sent to: ETI Book Service, PO Box 79, Maidenhead, Berks. All prices include P\&P.
ELECTRONICS TODAY INTERNATIONAL - JULY 1978

\title{
microfile.......
}

\section*{Gary Evans, fresh from a lesson in petting, reports on the world of micros and personal computers.}

A HECTIC MONTH this, as the words you are now reading were penned in between the frantic, on my part anyway, preparations for our Petting for Beginners Seminar. A report on the event appears elsewhere in this issue but I think the two days can be summed up in a very few words - a good and informative time was had by all.

Informative not only in terms of the days lectures but because delegates talked to each other - very unEnglish - and found much in common. I was impressed with the high level of knowledge of most delegates and even those who knew very little of personal computing in the morning, could hold their own in discussions before the end of the day.

\section*{Petting For Softies}

It was at the Saturday event that I talked to Julian Allason of William Hamilton and Allen. The company have in the past specialised in introducing advanced electronic consumer products into this country. They were one of the first to market car stereo systems and VCR equipment. They see Personal Computers as such as product but recognise that the potential is far greater than those products they have dealt with before.

The company have set up a new division which they have named PETSOFT. This section of the group will concern itself with the market that is beginning to appear as more and more people want support for their home computers.

It is interesting to note that the current efforts of the firm are directed toward building a base of good, well tried software.

At present their range includes alien attack which is - guess what - a space war game and Dr. Sinister's Personality Test.

The latter package will ask the user some fifty questions and provide a readout of personality in terms of introvert / extrovert, stable/ unstable, aggression, intelligence, attractiveness (micro, micro on the wall, who's the fairest of them all. This package sounds like fun and I'm not going to tell you what the machine said about me.

The range of programs will be extended to cover small business applications in the near future - VAT, stock control, etc.

If you have any programs which you feel would find a ready market, and/or ideas for programs PETSOFT would like to hear from you - they would publish any suitable material on a royalty basis. As with their own programs, all submitted programs would be subjected to an extensive debugging operation.

At present all material is designed to run on the PET computer and will be sold in the form of cassettes recorded to the PET standard. Future plans include programs for the TRS-80 and, presumably, any other system that finds a mass market.

The cassettes will sell for between \(£ 2.50\) (for small programs) to \(£ 10\) (for the larger packages). This price reflects the high volume, low cost approach to software marketing that, I think, is the only effective way to circumvent software pirating.

Talking of pirating, the firm will have no objection to a few friends copying programs for each other but will pursue, in an alien attack mode, anybody selling their material.

A SAE to the firm at the address below will bring you a catalogue with details of all their programs.

\section*{PETSOFT}

\section*{318 Fulham Road, SW10}

\section*{Texas Soon}

At present the number of personal computer systems on the mass market is not that large - all that will change.

General Instruments are to market a board with CPU, RAM, BASIC in ROM, etc. very soon. Texas are also to enter the market. Details are scarce but we hear of a US launch in June with the system being based on the 9940. This is a 40 pin package version of their (Texas) 16 bit MPU, with, we hear, a 7 K (16 bit 7 K remember) resident BASIC. The machine will be interesting to see. ITT are to market the Apple system under their own name. The machines will be built here and, while initially exactly as Apple, ITT may improve things.

News now of a price reduction in a system that I have mentioned in Microfile before. The MICROS machine from Micronics is now to sell for \(£ 399\) assembled and \(£ 360\) in kit form (it was \(£ 550\) - quite a drop).

A quick recap of the system (pictured) might be it order. Z80 based, the machine provides a 1 K monitor, 2 K of RAM, a 47 key keyboard, serial I/O, two parallel output parts and an output - at UHF, to allow a domestic TV set to display the machines output.

If to you that sounds like a description of the NASCOM 1 you're right. The main outward difference between the systems seems to be that the MICROS is cased and includes a PSU. The only way to make a detailed comparison of the two machines is to get them side by side and take a close look at them. My editor, God, the companies involved (in. that order) willing, I shall try to do just that.

Full details of the Micros and of an impact printer for about \(£ 150\) that the company hope to launch can be obtained, SAE please from "
The Micronics Company
1 Station Road
Twickenham
Middlesex
\(\$=£ ?\)
There have been quite a few comments over the past few weeks about the comparatively, high cost of many computer systems that are appearing on the British market. The general rule for American imports seems to be to take the American price and swop the dollar sign for a pound symbol, saves printing costs maybe.

It has been pointed out that on the higher priced of systems it would be possible to fly over to the states, nice one Fred, buy a system from one of the American computer stores and return to this country for the same price as purchasing the system here. You get a day or so in New York as a bonus. Sounds good doesn't it. But think again!

Many systems are not the most robust of creatures and after your, and their, travels may require attention. What happens when your machine breaks downthe UK organization is not likely to be too'interested in servicing a machine brought over from the States. After all it costs a fair amount of money to set up a marketing organization together with service centres and it is this, in some part, that accounts for the higher UK price.

There is no doubt that many people are making a profit which may, politely, be called excessive: not offering much support or help to their customers and are in the personal computer business for a quick profit. Others, however are here to stay and have invested in setting up an organization that will not leave owners to fend for themselves when the going gets tough.

So, by all means compare US prices with the UK going rate but also look at the backup offered by the UK distributor/agent.

Let the buyer beware especially if he buys from the States.

\section*{CSF VDU}

It probably will not be news to most of you that Thompson CSF have introduced a CRT controller chip into this country (details from Marshall's of Edgware Rd.). This chip will take care of a lot of the timing and control signals required by any VDU. Just hang a crystal, 2513, RAM and about five TTL chips around the device and you have a VDU.

I've been playing around with the thing for the past few weeks and found it to be very easy to use and capable of producing a very good display. I mention the device because you may be interested, not a lot maybe, but maybe a little, in my prototyping method.

Being brought up as I was on a diet of that product that refreshes the bits and veroboard, I find it difficult to come to terms with the new prototype methods, wire wrap-wiring pen etc. However with ICs of forty and even sixty-four legs things can get difficult. I've found a way that combines the old and new which has speeded up my design work. I use DIP vero board to mount the components but to wire the devices together, which take most of the time (cutting wires to length, stripping etc) I use prestripped, standard length wire wrap wire.

Don't bother to cut wires to length - this is where the time is saved. The final result does not look too good, but you've cut the time taken to set up and running in half.

\section*{Kit Bits}

I am interested in gathering information on the problems, or potential problems involved in building and testing the various kits that are on the market at the moment. If you have built up a kit please send me your reports, good or bad, so that I can put together a review of these various products.

\section*{BASIC: A Self Teaching Guide (2nd Edition)}
£4.50
Teach yourself the programming language BASIC. You will learn how to use the computer as a tool in home or office and you will need no special mathsor science computer as
background.

Illustrating BASIC
£2. 20
mustrating
by ALCOC
This book presenss a popular and widely available language called BASIC and explains how to write simple programs.

\section*{Microprocessors \\ by ALTMAN, L.}
£10.65
practical Gives a gener
applications.

\section*{Applying Microprocessors \\ by ALPMAN, L}

E12.00
Follow up volume which takes you into the second and third generation devices.
Intro to Microprocessors
by ASPINALL, D.
Explains the characteristics of the component.
How to Buy and Use Minicomputers and Microcomputers by BARDEN, \(W\).
Discusses these smaller computers and shows how they can be used in a variety of practical and recreational tasks in the home or business.

How to Program Microcomputers
by BARDEN, \(W\).
This book explains assembly-language programming of microcomputers based on the Intel 8080, Motorola MC6800, and MOS Technology MCS6502 microprocessors.
Introduction to Microcomputers and Microprocessors
by BARNA, A.
Provides the basic knowledge required to understand microprocessor systems. Presents a fundamental discussion of many topics in both hardware and software.
Microprocessors in Instruments and Control
£11.80 by BIBBERO, R. J.
Introduces the background elements, paying particular regard to the dynamics and computational instrumentation required to accomplish real-time data processing tasks.

Basic BASIC
£7.50
by COAN, J. S.
An introduction to computer programming in BASIC language.
Microprocessor Programming
for Computer Hobbyists
by GRAHAM, N.
The Computer Book
€6.20
by HAVILAND, R. P.
Building super calculators and minicomputer hardware with calculator chips.
Microcomputers, Microcomproesors, Hardware
Software and Applications
by HILBURN, J. L.
uses, and
Complete and practical introduction to the design, programming, operation, uses, and maintenance of modern microprocessors, their integrated circuits and other components

Microprocessor Systems Design
£14.35
by KLINGMAN, E.
Outstanding for its information on real microprocessors, this text is both an introduction and a detailed information source treating over a dozen processors, including new third generation devices. No prior knowledge of microprocessors or microelectronics is required of the reader. ,
BASIC Programming
by KEMENY, J. G.
A basic text.
Microprocessor and Small Digital Computer Systems for Engineers and Scientists
Systems for
This book covers the types, languages, design, software and applications of microprocessors.

\section*{TV Typewriter Cookbook}
by LANCASTER, D.
An in-depth coverage of tv typewriters (tvt's) - the only truly low-cost microcomputer and smatl-sys*em display interface. Covers tvt terminilogy, principles of operation, tv connguratıons, memories, system design, cursor and update circuitry and techniques, hard copy, color graphics, and keyboards and encoders.
Microprocessors - Technology, Architecture, and Applications
by McGLYNN, D. R.
£8.00
This introduction to the "computer-on-a-chip" provides a clear explanation of this important new device. It describes the computer elements and electronic semiconductor technologies that characterize microprocessors.

\section*{Programming Microprocessors}
£5.50

\section*{Programmin}

A practical programming guide that includes architecture, arithmetic/logic operations, fixed and floating-point computations, data exchange with peripheral devices/compilers and other programming aids.

\section*{Microcomputer Based Design \\ by PEATMAN, J. B.}
£18.00
This book is intended for undergraduate courses on microprocessors.

\section*{Microprocessor and Microprocessor Systems}
£20.50
by RAO, G. U.
A completely up-to-date report on the state of the art of microprocessors and microcomputers, written by one of the leading experts. It thoroughly analyzes currently available equipment, including associated large scale integration hardware and firmware.
The 8080A Bugbook: Microcomputer Interfacing and Programming
£7.60
by RONY, P . H.
The principles, concepts and applications of an 8 -bit microcomputer based on the 8080 microprocessor IC chip. The emphasis is on the computer as a controller.

6800 Software Gourmet Guide and Cookbook \(\quad \mathbf{~} 7.80\) by SCELBI
8080 Software Gourmet Guide and Cookbook \(\quad \mathbf{£ 7 . 8 0}\) by SCELBI
Understanding Microcomputers
Gives the fundamental
concepts of virtually all microcomputers
by SCcLBI

\section*{Microprocessors and Microcomputers}

\section*{by SOUCEK, B.}

Here's a description of the application, programming, and interacing techniques common to all microprocessors. It concentrates on detailed descriptions of representative microprocessor families and includes explanations of digital codes, logical systems, and microcomputer organization.

\section*{Microcomputer Primer}
£6.05
by WAITE, M.
Introduces the beginner to the basic principles of the microcomputers. Discusses the five main parts of a computer - central processing unit, memory, input/output interfaces, and programs. The important characteristics of several well-known microprocessors are given and a chapter is included on programming your own microcomputer.

\section*{Microprocessor/Microprogramming Handbook}
by WARD
Authoritative practical guide to microprocessor construction, programming and applications.

\section*{HOW TO ORDER:}

Make cheques etc payable to ETI Book Service. Payment in sterling only please. Orders should be sent to: ETI Book Service, PO Box 79, Maidenhead, Berks.' All prices include P \& P.

\section*{STRATHAND SECURITY}

PROFESSIONAL alarm equipment for home and office. Owing to popular demand we are offering a complete kit of parts to enable an average house or office to be alarmed to British Standard. Bulk purchase enables us to offer this equipment at a substantial discount. The kit comprises the following quality items:
1) ') 1 Ready built British Standard control panel. Mains powered, standby battery facility (batt, not supplied), L.E.D. indicators, anti-false alarm circuitry. Double pole N/O and N/C circuits, anti-tamper and personal attack 24 -hour circuits, inside and outside bell outputs, relay C/O contacts, fully wired for silent entry/exit. (Requires 12 v buzzer or bleeper - not supplied - if entry / exit discrete warning required
2) 2 Heavy duty 6 " diameter bells.
3) 1 Heavy duty outside bell base and cover, in metal, with thick weatherproof plastic coating.
4) Anti-tamper microswitch for item (3)

1 Keyswitch with mounting plate.
6 Flush magnet and reed switches, with screw connections
3 Large pressure mats
8) 3 Small pressure mats. (Suitable for stairs. etc.)
9) 1100 m drum of 4-core cable - much neater than twin
10) 1 Flexible 4 -wire door loop

The normal price of the above items is \(£ 108\) inclusive of VAT and postage. For a limited period we are offering the above items at \(£ 88.00\) inclusive of VAT and P\&P.

This offer should not be confused with other systems which do no conform to British Standards, and in consequence may offer less protection.

STRATHAND SECURITY

44 ST. ANDREW'S SQUARE
GLASGOW G1 5PL
041-5526731
CALLERS WELCOME

\section*{NEW MODULES}

BY FAMOUS MANUFACTURERS ON P.C. BOARDS READY TO MOUNT IN PLINTH, ETC.
1. STEREO AMPLIFIERS \(61 / 2 \mathrm{in} . \times 51 / 4 \mathrm{in}\). P.C.B. \(10 \mathrm{w}+10 \mathrm{w}\) for 60 mV input requires 20.22 VA C. TO POWER
2. MATCHING PRE-AMP. Normally powered from (1), four push-buttons gram, aux tape in/out, on /off slider controls. Vol., Bal., Treble, Bass 6.00

AMP AND PRE-AMP. Ordered together
£10.00
ELAC L.S. to suit 8 in . 8 Ohm with tweeter cone. Pair for 88.50
GRAḾM AMPLIFIER. \(12 \mathrm{in} \times 11 / 2 \mathrm{in}\). P.C.B. \(3 w+3 w\) for 100 mV input. Controls. Vol. Bal., Treble, Bass. Requires \(15 v-25 v D C\). \(3 w+3 w\)

MONO VHF-FM Module \(91 / 2 \mathrm{in}\). \(\times 21 / 2 \mathrm{in}\). VARICAP Tuner. ceramic I.F. CA3089 1.C amp-demod, AFC-AGC, Audio Op., approx 250 mV Requires 20 AC or DC Fow only

Prices inc. P\&P and VAT. Cash with order
ELECTRONICAL SUPPLIES CROYDON
40 LOWER ADDISCOMBE ROAD, CROYDON, CRO GAA 01-6882950

\section*{Cambridge Learning Enterprises} SUMMER OFFER

\section*{Until 1st August, 1978}

Just send this token with your order for a \(10 \%\) discount which entitles you to books at the fol lowing prices:

Digital Computer Logic and Electronics \(£ 4.95\)
Design of Digital Systems \(\mathbf{£ 8 . 1 0}\)
Combined set £11.70
Algorithm Writer's Guide £3.06

\section*{Join the Digital Revolution}

\section*{Understand the latest developments in calculators, computers, watches, telephones,} television, automotive instrumentation . . .
Each of the 6 volumes of this self-instruction course measures \(113 / 4\) \(\times 81 / 4^{\prime \prime}\) and contains 60 pages packed with information, diagrams and questions designed to lead you step by step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers
Design of Digital Systems

\section*{£8}
plus \(£ 1\) packing and surface post anywhere in the world. Overseas customers should send for Proforma invoice. Payment by credit cards accepted.

Also available - a more elementary course assuming no prior knowledge except simple arithmetic.
Digital Computer Logic and Electronics
In 4 volumes
\(£ 4.60\)
1. Basic Computer Logic
plus 90p P \& P
2. Logical Circuit Elements
3. Designing Circuits to Carry Out Logical Functions
4. Flipflops and Registers

Offer Order both courses for the bargain price \(£ 12\) plus \(£ 1\) P\&P.
A saving of \(£ 1.50\)

Designer
Manager
Enthusiast
Scientist
Engineer
Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next

FLOW CHARTS \& ALGORITHMS - The Algorithm Writer's Guide - Construction, content, form, use, layout of algorithms and flow charts. Vital for computing, \(£ 2.95\) training, wall charts, etc. Size: A5, 130 pages. plus 45 p P\&P

Guaranteed - If you are not entirely satisfied your money will be refunded.
CAMBRIDGE LEARNING ENTERPRISES, Unit 15 Freeposi, RIVERMILL LODGE ST. IVES HUNTINGDON CAMBS, PE17 4BR, ENGLAND. TELEPHONE ST. IVES \((0480) 67446\) PROPRIETORS DRAYBRIDGE LTD. REG. OFFICE RIVENHALL LODGE, ST. IVES. Giro Ac No. 2789815 . REGD. IN ENGLAND NO. 1328762.
No Cabridge Learning Enterprises, Unit 15 Freepos
Rivermill Lodge, St. Ives, Huntingdon, Cambs, PE1 7 4BR. England
Please send me the following books
sets Digital Computer Logic \& Electronics @ \(£ 5.50\) p\&p included
sets Design of Digital Systems @ E9.00 p\&p included
Combined sets @ E13.00 p\&p included
The Algorithm Writer's Guide @ \(£ 3.40\) p\&p included
Name
'Address

I enclose a cheque/PO payable to Cambridge Learning Enterprises
for \(£\)
Please charge my * Access/Barclaycard/Visa/Eurocard/Mastercharge/Interbank account number
Signature
delete as appropriate
Telephone orders from credit holders on 0480-67446 (Ansafone). Overseas customers hould send a bank draft in sterling drawn on a London Bank.

\title{
UFO DETECTOR
}

\begin{abstract}
Making no claims as to the efficacy of the device, we present a circuit that will provide an indication of the magnetic disturbances which much UFO literature associates with UFO activity.
\end{abstract}

EVERY YEAR MANY thousands of people see objects in the sky which they cannot explain in terms of their previous experience. In this sense the existence of unidentified flying objects (UFOs) is not a matter for debate - people see flying things they cannot identify, thus, by definition, these things are unidentified flying objects.

The vast majority of sightings are caused by various objects or phenomena perceived in an unusual manner - cloud formations, meteors, satellites, planets, an unusually bright star, temperature inversions, etc. There are also a substantial number of hoax devices. Most people are satisfied if presented with a rational explanation for what they have seen, but a minority are not - they are 'conspiracy theorists' who deny totally the principle of occam's razor. Faced with 99 probable explanations for an unusual happening - and just one explanation which complies with a previously accepted set of concepts - they will inevitably choose the odd one out.

\section*{Klass Encounters}

No explanation or proof will convince the dedicated conspiracy theorist to think otherwise - a classic example of this is the often repeated story that the results of the USA Department of Air Force UFO investigation 'project blue book' have been suppressed. This is not really true. The blue book project files were declassified in 1970, and the USA department of Air Fọrce Office of Information state that the files are available to all bona-fide researchers and media representatives.

The conspiracy theory was well summed up by Salvador Freixedo at the UFO conference in Acapulco (April 1977). "The basic appeal of Ufology (for the masses) is that it is a belief system rather than a field of scientific investigation'". A further large number of classic cases quoted by Ufologists has been well and truly debunked by Philip Klass (a technical journalist working with Aviation Week and Space Technology magazine).

\section*{Of The Financial Kind}

Klass's book (UFOs explained') thoroughly demolishes the most classic cases and provides evidence which casts major doubt on those few remaining. Consider for example the often quoted 'UFO landing' in Socorro, New Mexico in 1964. It now turns out that the 'landing' was set up as a publicity stunt by the local mayor, who just happened to own that bit of land where the UFO 'landed'.

It is perhaps significant that no serious challenger has ever taken up the USA's National Equirer's offer to pay one million US dollars for proof that UFOs are unnatural phenomena emanating from outer space.

A small minority of ufologists should however be taken more seriously. These are dedicated people who investigate reported sightings as thoroughly as they are able Unfortunately most of their investigations tend to be 'unscientific' in the sense that they lack the rigorous discipline which truly scientific investigation demands. Nevertheless, it is to the movement's great credit that they realise their investigational
limitations and are currently doing their best to check out as thoroughly as they can a number of previously accepted classic sightings. In fact magazines such as the authoritative US official publication 'UFO' currently feature exposes of previously 'proven' situations. In the light of this recent background, ETI was extremely interested to learn of a UFO magnetic anomaly detector recently developed by one of our contributors.

The basis of this device is that many UFO sightings are claimed to have coincided with major magnetic disturbances. In many reported situations, electrical equipment is claimed to have ceased to operate whilst the UFO was in the vicinity.

Thus, claim some ufologists, it may well be possible to sense the approach of a UFO by detecting abnormal perturbations of the earth's magnetic field. The unit described here has been designed by Mr F C Gillespie who has considerable expertise in this field.

\section*{Flux Be With You}

UFO literature indicates that magnetic disturbances associated with some UFO activity are of such a magnitude that they should be detectable by relatively simple equipment. Naturally the more sensitive the equipment the further away a disturbance could be detected - however, an upper practical limit for sensitivity is set in most areas by the generally high level of background noise associated with civilisation - and which. íronically, is often postulated as attracting UFOs to this planet.

It is not at all difficult to detect the magnetic disturbance caused by a

\section*{HOW IT WORKS}

There is anecdotal evidence that the mag netic disturbances associated with UFOs may be transient in nature or may build up and decay over a period of time or may also the magnetic anomally detector has two detecting systems capable of responding to all three types of disturbance.
The simpler of the two systems responds to minor movements of a very sensitive compass. The compass needle is set up so that
when undisturbed it blocks the passage of
light from a flashing LED, the light outpu from which would otherwise fall on a sensitive phototransistor. The phototransistor output is then amplified, latched and passed trigger alarms.
A second and more complex circuit monitors a solenoid (LI) across which a voltage would be generated if it were subjected to a changing magnetic field. A twin-T notch filter is incorporated in this circuit to null ou ambient 50 Hz .

Any voltage output resulting from a changing magnetic field around LI is passed to the two-stage amplifier formed by ICl and IC2. 50 Hz background noise is greatly attenuated by the twin-T notch filter formed by the components between Ll and the amplifier. The frequency of the notch is adjustable by RVI.
The gain of the amolifier IC1/IC2 is varied by RV2. Output signals from the amplifier are passed to Q1/Q2/Q3/Q4 which form tw latching circuits (each functioning depen-
ding on the polarity of the output signal).
The output of the latching circuitry is then The output of the latching circuitry is then flasher. This causes the alarm LED to flash at about 3 Hz . An external alarm output is also provided.
The compass circuitry is quite straightforward. IC3 is used to extend battery life. Any output from the phototransistor Q5 triggers the latching mechanism thus initiating the alarm sequence.

light switched on 20 m away - or a car 100 or more metres distant, but one can rarely find a sufficiently magnetic-noise-free environment in which to set up an instrument of such sensitivity. The detector described here has adjustable sensitivity and in all but the very 'quietest' of areas the sensitivity can be set so that the noise just fails to trigger it. It is only in very rare and remote locations that the detector itself is the limiting factor.

\section*{Construction}

The unit has been designed in such a way that either or both detecting circuits may be used, or indeed
construction is relatively straightforward, especially if the printed circuit board is used. The solenoid is the actuating coil from a Post Office type 3000 relay (\(5 k\)) Many people will have such a device in their junk boxes - otherwise it can be obtained from shops handling post office surplus bits and pieces. The solenoid is located external to the unit and connected to it by a screened cable

The block holding the LED and phototransistor associated with the compass mechanism is a little tricky to make. It may be built up from pieces of wood or plastic - or if you have the facilities it may be milled out of a block of brass or other non-magnetic material. The main requirements are that the LED and
phototransistor must be very rigidly located and that the compass needle should just - but only just - block the light from the LED. The simplest way to make this section is to rebuild an old compass. We suggest that you build the unit in sections checking out each section as it is completed

No matter how you build the device it is absolutely essential to make sure that the compass assembly is mounted very rigidly - if there is any freedom of movement random mechanical disturbances will be registered as alarms

\section*{Setting Up}

The compass circuitry is quite straightforward. Provided it has been made correctly the phototransistor

PARTS LIST

RESISTORS (all \(1 / 4\) W \(5 \%\))
\begin{tabular}{ll}
R1-R4 & 15 k \\
R5 & 3 k 3 \\
R6 & \(22 R\) \\
R7 & 680 k \\
R8, 9 & 2 M 2 \\
R10-R13 & 100 k \\
R14, R15 & 1 M 5 \\
R16 & 1 M \\
R17, 18 & 1 k \\
R19 & 2 k 2 \\
R20 & 4 k 7
\end{tabular}

POTENTIOMETERS
RV1 10k Trimpot RV2 100k Trimpot

CAPACITORS
\begin{tabular}{lll}
C1-C3 & 150 n & polyester \\
C4-C6 & 100 u & 3 V 6 Tantalum \\
C7 & 100 p & polyester \\
C8,9 & 47 u & 6 V 3 Tantalum \\
C10 & 220 u & 10 V Electrolytic \\
C11 & 640 u & 16 V Electrolytic
\end{tabular}

SEMICONDUCTORS
IC1, 2 LM4250CN Op-Amp IC3, 4 LM3909 Flasher
Q1. 4 BC108
0405 BPX 25
D1 OA95, or similar germanium diode LED 1, 2 Red LED with mounting clip

MISCELLANEOUS
L1 Solenoid (eg PO 3000 relay coil) S13p3w switch
Compass (40 mm max. needle length) Connectors
PCB as pattern
Knob Case, Batteries and holder, cable

Fig. 4. Drawing showing the general arrangement of the detection system based on a compass. The block holding the LED and phototransistor may be built from wood, plastic or brases and must provide a rigid housing. The compass needie should just block the light from the LED in the quiescent state.
should be blocked by the compass needle when the complete detector assembly has been aligned precisely along the magnetic north/south line. Bringing a magnet or iron bar near the assembly should cause the needle to move slightly, thus allowing light to pass from the LED to the "phototransistor, triggering Q3 and Q4, actuating the alarm.

The solenoid circuit is slightly more complex in that the twin-T rejection filter must be adjusted to optimise 50 Hz rejection. This may be done by observing the output from IC2 on a 'scope while adjusting RV1 for maximum rejection. If a 'scope is not available, then RV1 must be adjusted so that the circuit is not triggered by 50 Hz - increasing circuit gain via RV2 until the optimum setting is obtained. There is no need to inject 50 Hz into the circuit whilst setting up - in most

\section*{BUYLINES}

The electronic parts should not be too difficult to obtain, indeed a number of our advertisers now offer complete kits of parts for our projects.

If you incorporate the compass based detection system, the pieces for this may prove more illusive, but a raid through your junk box or a surplus component store should produce the goods.
places there's more around than you'll need.

Once the initial adjustments are made there will be little need to change anything except the sensitivity (gain) control RV2. This should be adjusted so that the unit is just short of triggering under normal conditions Local thunderstorms may occasionally trigger the unit but this
is inevitable unless you use the unit on low sensitivities. Well, there it is - the device will detect magnetic anomalies. Whether it will consistently detect UFO's is another matter - we were unable to obtain a DIN standard UFO for calibration purposes. Until we do, we refrain from making any claims as to the efficacy of this device.

\section*{MEMORIES \\ \\ All VAT inclusive \\ 35 p for p \& p orders under \(£ 5\) \\ Please write for discounts over 100 pieces (Mail) Order only) \\ LOTUS SOUND}

\section*{4 MORGAN STREET LONDON ES SAB}

\section*{PLUG INTO THE FUTURE WITH OUR ECONOMY 'PLUG IN' COLOUR TV GAME KITS}

A new simple approach to TV games. Simply construct the main PCB unit and just add as you wish sub PCB containing the different games. With more games to come you can add to your system with no fuss! All game and skill selections are made via common controls All games except tank battles may be controlled by common joysticks

Kits contain all required components (except cases and controls)
MAIN PCB COLOUR KIT - £16.50. Contains full system details and instructions, fibre glass PCB, Colour Encoder Module, Sound and Vision Modulators, PCB connector st etc SUB PCB KIT.S-Contain PCB, Chip and all components to interface with MAIN PCB KIT full instructions

ROAD RACE
2 GAMES
Based on AY-3-8603 chip
Colour Sub PCB £17.50

* On screen scoring
* Realistic engine and crash sounds through TV speaker
* Amateur or professional selection
* Simple potentiometer position control
* Single Mv supply

\section*{STUNT RIDER}

4 GAMES
Based on AY-3-8760 /AY-3-8765 chip
Colour Sub PCB \(-£ 14.90\)

* On Screen Scoring and Timing
* Realistic throttle and crash sound through TV speaker
* Amateur or professional selection mode
* Simple potentiometer throttle control
* Single \(9 v\) battery

TANK BATTLES
Based on AY-3-8710 chip
Colour Sub PCB - £15.90

\(\star\) On screen scoring coded to tanks
* Tanks controlled by toggle switches of joystick and fire button
* Realistic tank, shell burst and explosion sounds through TV speaker
* Three speed tank control
* Exploding mines and terrain barriers
* Guided missile shells
* Single Mv supply

\section*{SUPER TELESPORTS} 10 GAMES
Based on AY-3-8600/AY-3-8610 chip Colour Sub PCB \(-£ 13.50 \quad \begin{gathered}\text { Shoot } \\ 2-n o \text { rifle }\end{gathered}\)

* On screen scoring coded to player
* Triple sounds through TV speaker
* Auto ball speed-up mode
* Controlled by joy-stick and fire/serve button
* Single 9 v supply

Case details on application

\section*{BUDGET 'STAND ALONE' TV GAME KITS}

B\&W Road Race kit B\&W Tank Battle kit B\&W Stunt Rider kit B\&W Super Telesports kit Colour Tank Battle kit
\(£ 20.90\)
Mini kit
Mini kit £13.90 £18.90 Minikit £12.50 £17.90 Mini kit £12.50 £14.90 Mini kit \(£ 9.90\) Kits include instructions and all components - except cases and controls Mini kits include instructions, chip, PCB, chip st coil
Sound and Vision Modulators \(£ 4.90\) (pair). Joysticks for AY-3-8600 £3.50 (pair). Regulated Mains Adaptor with moulded 13A plug and fitted with regulator chip \(£ 3.50\)

ALL PRICES INCLUDE VAT AND P\&P - NO HIDDEN EXTRAS TUNE INTO A BARGAIN TODAY. Send cheque or P.O. to
VIDEOTIME PRODUCTS
56 QUEENS ROAD, BASINGSTOKE, HANS KG 211 RE
TEL. (0256) 56417
Trade and Export enquiries welcome

\title{
SINTROM MICROSHOP
}

AFTER TEN YEARS IN SPECIALIST. MINICOMPUTER ENHANCEMENTS SINTROM INTRODUCES:

\section*{MICROPOLIS MINIFLOPPY DISKS}

\(\star \star 143 \mathrm{~K}\) or 315 K byles per disk.
\(\star\) * Built and tested with PSU and controller card
\(\star \star\) Includes DOS and extended disk BASIC
\(\star \star £ 499\), 143K single disk £1.999. 1260K quad disk

LEAR SIEGLER VDU

\(\star \star 24\) lines by 80 characters
\(\star \star\) Full cursor control and addressing
\(\star\) * Teletype compatible. 75 to 19200 Baud
\(\star \star\) £620. Buill and Tested.

SOUTHWEST TECHNICAL SYSTEMS

\(\star \star\) | M6800 with \(4 K\) RAM and I/D interiace
\(\star \star\) Full documentation and MIKBUG ROM
\(\star \star\) VDU Controller and 12 v Monitor
\(\star \star\) COMPUTER £275 Kit. £353 Built
VDU £230/£315. Monitor \(£ 140\)

DRICO MATRIX PRINTER

\(\star \star 132\) Print positions. \(7 \times 7\) matrix
\(\star \star\) Option of Keyboard and forms control
\(\star \star 150\) CPS bidirectional
* \(\star\) £ 1687 with parallel interface

PLUS MEMORY BOARDS, TȦPE INTERFACES, SOFTWARE AND LITERATURE

\section*{SINTROM MICROSHOP}

VAT AND CARRIAGE
EXCLUDED

SHOP OPEN 9-5 MONDAY TO SATURDAY OR BY APPOINTMENT MAIL ORDER SERVICE FREE CATALOGUE

When Niels Bohr had reported the news from Europe, Enrico Fermi, by then a professor of Columbia University, began lobbying for increased nuclear research, and an attack on the problems of developing the atomic bomb. His campaign against the fatal dangers of delay was unheeded till he gained the support of Albert Einstein.

\section*{Relatively supported}

In July, Bohr and Einstein eventually reached the President, warning that war was imminent (the USA was still then a non-combatant) and that "the Nazis will construct an atom bomb and will not hesitate to use it." Bohr and Einstein thus became the driving forces in atomic research. President Roosevelt realised what was at stake, and he appointed an advisory commission of physicists and forces representatives. Their momentous decision was to make an atomic bomb. The first grant in 1940 was a mere \(\$ 6,000\) but by November a further \(\$ 40,000\) had been advanced, the sums increased like a landslide until by 1945 the sum of two billion dollars had been spent. Adjusted to present-day values this represents about ten billion dollars.

The problem facing both the Germans and the Americans was the same, natural uranium will not make a bomb. The isotope uranium-235 undergoes nuclear fission, while the major isotope, uranium-238, is a hindrance

Uranium-235 is only \(0.7 \%\) of natural uranium, and it must be separated out and concentrated. This is extremely difficult, and expensive, since it must be done using physical means, as the two isotopes have identical chemical properties. However, it is a direct method of making a' bomb. When sufficient pure uranium-235 has been separated out, a bomb can be made. Two subcritical masses of uranium-235 are brought together extremely rapidly, and an uncontrolled chain-reaction results in explosion.

No detonator was required, as once a "critical mass" is reached, the material goes off spontaneously, to release the energy equivalent of 20,000 tonnes of TNT.

\section*{Meanwhile back at the fiord}

Meanwhile the Germans had occupied Norway, thus. ensuring themselves a supply of heavy water from the 'Norsk hydro-plant at Rjukan in the mountains, where hydro-electric power was plentiful and cheap. With the ready supply of pitchblende from Czechoslovakia and heavy water from Norway everything was in favour of German success in constructing a nuclear reactor.

While German scientists did have some success in building a reactor, which could have led to development of nuclear weapons, they appeared to avoid the acquisition of the technology to do this.

On June 6, 1942, a group of scientists met in the great hall of Harnack House in Berlin, also present were the men behind the German war machine, including their chief, Albert Speer.

They reported some progress towards harnessing nuclear energy in an atomic pile, but did not give a positive report on the possibilities of developing nuclear weapons as initial efforts to separate out uranium-235 had failed, and it would take an enormous expenditure to find a way to do it. In addition, they did not have any
expertise in particle accelerators, and were therefore not able to research many of the fundamental processes of nuclear physics.

Since the economy was already hard-pressed by the war, the decision was taken to scrap ideas of producing an atomic bomb.

\section*{United we explode}

On the other side of the Atlantic, the American research project developed quickly. At the commencement of the war some twelve particle accelerators of varying power were either in operation or in various stages of construction. These were the experimental tools that enabled the scientists to understand the mechanisms of transmutations and nuclear reactions. Using such as the Berkeley cyclotron, American scientists MacMillan and Seaborg bombarded ordinary: uranium with high energy deuterons and succeeded in producing new elements. Among these were minute quantities of neptunium and plutonium.

The discovery of plutonium-239 in 1941 added a new dimension. Like uranium-235 it is fissile. That is, it will undergo nuclear fission, can take part in a chain reaction, and if purified can be used in an atomic bomb. instead of uranium

Of particular importance is the fact that it is produced in significant amounts in a nuclear reactor, or atomic pile, using natural uranium (often enriched in uranium235). The plutonium then can be separated from theuranium fuel using chemical methods, since plutonium has different chemical properties from uranium. (This separation is much easier than concentrating uranium235 out of natural uranium.)

There were then three ways of releasing atomic energy. The direct way is to separate uranium-235 from natural uranium, and use it in a bomb. Second, natural uranium, possibly enriched in fissile materials, is used in an atomic pile in controlled energy release, and simultaneous production of plutonium. Third, the plutonium from the reactor fuel can be separated and used in a bomb. The Americans pushed ahead with all three aspects. They were co-ordinated under the name "Manhattan Project."

The direct method needed uranium-235. Ernest Lawrence, inventor of the cyclotron, had an idea. In a mass spectrograph, charged atoms (ions) were separated according to their mass. This was done by sending them through a magnetic field. The atoms were deflected variably according to their weight by the field.

\section*{Lawrence of Berkeley}

Lawrence had at his disposal the then most powerfull magnetic fields on earth, generated by the 940 mm electromagnet of the Berkeley cyclotron

His research group converted the cyclotron using the giant magnet as the basic component into a kind of gargantuan mass spectrograph. They called the new apparatus the "calutron" (California University Cyclotron).

By the end of 1941 this machine was capable of separating one microgram of U235 per hour. Whilst this was nowhere near the many kilograms that were required it was not a futile enterprise. It provided the basis
of future technology for separating uranium-235 on a larger scale.

The indirect method, of manufacturing a bomb with plutonium produced in an atomic pile, also had enormous problems. There was then no operating pile, and a chemical plant had to be built to separate the fissile material from the uranium fuel by the time the atomic piles were ready to deliver it.

To make a chemical plant, the chemistry of plutonium would have to be known. At this time it had not yet been produced in observable quantities. A measurable quantity was needed urgently

\section*{Accelerating matters}

Every available accelerator was brought into service and hundreds of kilograms of uranium were bombarded with neutrons for months until about a milligram of plutonium was made and separated. On this tiny amount, chemists used ultra-micro techniques to study its chemistry and design a method for separating it from uranium. By the time the atomic reactors were able to deliver large quantities of uranium fuel containing plutonium, a huge chemical plant was ready to extract it.

Meanwhile, Fermi and Allison had continued their constructions of experimental piles in Chicago. On the ninth attempt a multiplication factor of 1.0007 was achieved, signifying a self-sustaining chain reaction.

Fermi now concentrated on manufacturing a pile in which a chain reaction could be sustained and control-
led. To prevent the system going out of control, a series of cadmium rodswere inserted intothegraphite / uranium pellet structure. The purpose of the rods was to absorb as many neutrons as possible, thus inhibiting their action when necessary. A sustained reaction was achieved in December 1942. Power was kept to a mere half watt whilst measurements were taken. This was increased to 200 watts ten days later. Outputs of one megawatt were being produced two years later.

The bomb could be made.
Development of the bomb was placed at Los Alamos some 50 km from Santa Fe , the state capital of New Mexico. To this place came physicists from all over the United States and other Allied countries, assembled by the eminent physicist Robert Oppenheimer.

\section*{Put to use}

The first atomic bomb was exploded from a tower at Alamagordo in the New Mexican desert at 5.30am on July 16,1945 , at the height of a thunderstorm, and its successful result presented US President Truman with a very difficult decision, whether to defeat Japan by orthodox means - with estimated Allied casualties of 300,000 or whether to use the atomic bomb against Japan's civilian population and by such overwhelming evidence of power force Japan to surrender

Three weeks after the first test, the city of Hiroshima was destroyed with a uranium-235 atomic bomb. ETI

\section*{SOMETHING NEW FROM METAC}

\title{
TV GAMES \\ 4 game B/w £9.95 \\ 4 game colour \(£ 13.50\)
}

IMPORTED FROM THE FAR EAST IN PRESENTATION CARTONS. FULLY GUARANTEED.

NEW DIGITAL ALARM CLOCK
SILENT - ELECTRONIC
\(\star 4\) in. across \(\times 41 / 2 \times 2\) in
\(\star\) Large red digits
\(\star 24\)-hour alarm
\(\star 9\) min. repetition
\(\star\) Switched seconds display
IMMEDIATE DELIVERY

\section*{£8.95}
\begin{tabular}{|c|c|}
\hline & SINCLAIR PCROLCULATOR \\
\hline & \begin{tabular}{l}
+ FREE \\
COMPLETE PROGRAMM \\
IBRARY WORTH £5
\end{tabular} \\
\hline & \({ }_{\text {seman }}^{\text {semen }}\) E12.95 \\
\hline
\end{tabular}

67 HIGH STREET

Our full range of Clocks and Watches, as previously advertised, are always available at our tised, are below. Casio and Buler
shops ber Shops below. Ca
Watches in stock.
Note Our 5 Function LCD Watch (same as ETI offer) only £9.95. Guaranteed.
Also our 6 Function LCD Alarm Watch, incredible value at
£29.95
All our products carry the full manufacturer's guarantee and are supplied with our 10-day money back assurance.

METAL DETECTOR
SPECIALLY IMPORTED FROM THE FAR EAST
* BFO PRINCIPAL
* \(5^{*}\) DEPTH
* 36 STEM adjustable * SINGLE PP3 BATTERY
 DAVEÑTRY, NORTHANTS Tel. (032 72) 76545
 Barclay \& Access welcome Send Card Number with order

COMPLETE \& GUARANTEED SPECIAL OFFER £12.95

\section*{15-240 Watts!}

\section*{HY5}

Preamplifier

The HY5 is a mono hybrid amplifier ideally suited for alt applications. All common input function mag Cartridge, tuner, etc.) are catered for internally, the desired function is achieved either by a mat-way switch or direct connection to the appropriate pins. The internal volume and tone circull merely require connectinqto external potentiometers (not included). The HY5 is compatible with all .L.P, power amplifiers and power supplies. To ease construction and mounting a P.C connector FEATURES: Complete pre-amplifier in-single pack - Multi-function equalization - Low noise - Low distortion - High overload - two simply combined for stereo
APPLICATIONS. HiFi Mivers Disco - Guitar and Organ -- Public address
SPECIFICATIONS
INPUTS Magnetic Pick-up, 3 mV Ceramic Pick-up 30 mV . Tuner 100 mV : Microphone 10 mV Auxiliary \(3-100 \mathrm{mV}\) input impedance 47 kg) at 1 kHz .
(ACTIVE TONE CONTROLS Treble \(\pm 12 \mathrm{~dB}\) ai 10 kHz ; Bass \(\pm\) at 100 Hz
ACTIVE IONE CONTROLS Treble \(\pm\) /Noise Ratio 68 dB .
ISTORIO 38 dB on Magnetic Pick-up: SUPPLY VOLTAGE +16.50 V
Price \(£ 5.22\) + 65p VAT P\& P free
HY 5 mounting board \(B \overline{1} 4 \overline{8 p}+6 \mathrm{p}\) VAT P\&P

15 Watts into \(8 \Omega\)
The HY30 is an exciting New kit from I.L.P... it features a virtually indestructible \(1 . C\) with short circuit and thermal protection. The kit consists of I.C, heatsink, P.C. board, 4 resisiors, 6 capalitors, mounting kit, together with easy to \(i d\) orlio who wishes to use the most up-to-date technology available FEATURES: Complete kit - Low Distortion - Short. Open and Thermal Protection - Easy to Build APPLICATIONS: Updating audio equipment - Guitar practice amplifier - Test amplifier \(\rightarrow\) Audio oscillatior.
SPECIFICATIONS
OUTPUT POWER 15 W R.M.S. into 8 Z . DISTORTION \(0.7 \%\) at 15 W
INPUT SENSITIVITY 500 mV FREQUENCY RESPONSE \(10 \mathrm{~Hz}-16 \mathrm{kHz}-3 \mathrm{~dB}\) SUPPLY VOLTAGE \(\pm 18 \mathrm{~V}\)
HY50
25 Watts into \(8 \Omega\)
The HY50 leads I.L.T. s total integration approach to power amplifier design. The amplifier features an integral heatsink together with the simplicity of no external components. During the past three years the amplifier has been refined to the extent that it must be one of the mosi rehable and robust High Fidelity modules in the World
FEATURES: Low Distortion - Integral Heatsink - Only five connections - 7 Amp output transistors
-No external components
SPELIFICATIONS: INPUT Power Hi.Fi systems - Low power disco - Guitar amplifier
PPECIT PATOR 25W RMS ISITIVITY 500 mV
RMS in 8) LOAD IMPEDANCE \(4-169\) DISTORTION \(0.04 \%\) at 25 W a SIGNAL/ NOISE RATIO 75dB FREQUENCY RESPONSE \(10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}\) SUPPLY VOLTAGE \(\pm 25 \mathrm{~V}\) SIZE 10550.25 mm
HY120
60 Watts into \(8 \Omega\)
The HY120 is the baby of IL.P's new high power range designed to meet the most exacting requirements including load line and thermal protection, this amplifier sets a new standard in modular design.
FEATURES: Very low distortion - Integral Heatsink - Load line protection - Thermal protection Five connections - No external components
APPLICATIONS: Hi-Fi - High quality disco - Public address - Monitor amplifier - Guitar and spgan.
PECIFICATIONS
INPUT SENSITIVITY 500 mV
OUTPUT POWER 6OW RMS into 82. LOAD IMPEDANCE A-161 DISTORTION 0.04\% at 60W at SIGNAL/NOISE RATIO 9OdB. FREQUENCY RESPONSE \(10 \mathrm{~Hz}-4.5 \mathrm{kHz}-3 \mathrm{~dB}\) SUPPLY VOLTAGE \(\pm 35 \mathrm{~V}\).
Size \(114 \times 50 \times 85 \mathrm{~mm}\)
Price \(£ 15.84+£ 1.27\) VAT P\&P free.
HY200
120 Watts into \(8 \Omega\)
The HY200 now improved to give an output of 20 Watts, has been designed to FEAGUR conditions, such as disco or group whice stin retaing true ti-Fi periomatdown - Very low distortion - Loadline protection - integral tieasink Noj external components.
APPLICATIONS: HI-Fi - Disco - Monitor - Power Slave - Industrial - Public address
SPECIFICATIONS:
INPUT SENSITIVITY 500 mV
OUTPUT POWER 120W RMS into 89 LOAD IMPEDANCE \(4-16 \Omega\) DISTORTION \(0.05 \%\) at 100 W : 1 kHz , NOISE RATIO 96 dB FREQUENCY RESPONSE \(10 \mathrm{~Hz}-45 \mathrm{kHz}\)-- 3 dB SUPPLY VOLTAGE \(\stackrel{4}{=}\) SIZE \(114 \times 100 \times 85 \mathrm{~mm}\)
HY400
240 Watts into \(4 \Omega\)

\section*{}

The HY400 is I.L.P. s "Big Daddy" of the range producing 240 W into \(4 \mathrm{Q}^{t}\) it has been designed for high power disco or public address applicätions if the amplitier is to be used at continuous high power levels a cooling fan is recommended. The amplifier includes all the qualities of the rest of the family to lead the market as a true high power hi-fidelity power module
FEATURES: Thermal shutdown - Very Tow distortion - Load line protection - No external
components.
APPLICATIONS: Public address - Disco -- Power slave -- Induserial
SPECIFICATIONS
OUTPUT POWER 240W RMS into 40 LOAD IMPEDANCE 4-160 DISTORTION \(0.1 \%\) at 240 W at SIGNAL/NOISE RATIO 94dB FREQUENCY RESPONSE \(10 \mathrm{H}_{2}-45 \mathrm{kHz}-3 \mathrm{~dB}\) SUPPLY VOLTAGE \(\pm 45 \mathrm{~V}\)
INPUT SENSITIVITY 500 mV SIZE \(114 \times 100 \times 85 \mathrm{~mm}\) Price \(£ 32.17+£ 2.57\) VÄT P\& P free.

POWER
PSU 36 suitable for two HY30's \(£ 5.22\) plus 65 VAT \(P / P\) free
PSU 50 surtable for two HY 50 's \(£ 6.82\) plus 850 VAT \(\rho P\) fre
PSU50 surtable for two HYYO's \(£ 6.82\) plus \(85 p\) VAT \(P\) P \(P\) free

PSU180 sutable for two HY2000 s or one HY400 £23.10 plus E1. 85 VAT P/P free.,

TWO YEARS' GUARANTEE ON ALL OF OUR PRODUCTS
I.L.P. Electronics Ltd

Crossland House
Nackington, Canterbury
Kent CT4 7AD
Tel (0227) 63218

Please Supply
Total Purchase Price
I Enclose Cheque \(\square\) Postal Orders \(\square\) Money Order \(\square\)
Please debit my Access account \(\square\) Barclaycard account \(\square\)
Account number
Name \& Address

\section*{seminar report}

\section*{Judging from the reactions of the 700 delegates an informative and enjoyable time was had by all, Jim Perry reports on 'Petting for Beginners’ the ETI-Commodore seminar.}

THE TWO SEMINARS took place at the Cafe Royal in London, the setting was in the plush splendour of the Empire Napoleon Suite - a veritable hall of mirrors and giit fittings. Halvor Moorshead* introduced and chaired the proceedings each day, using his impressive wit and charm to link the speakers (how about that rise now Halvor?).

The first talk was given by ETIs answer to Vera Lynn, the one and only, Gary Evans. He entralled the audience with his background to Home Computing, outlining the development of MPUs from fledgling TTL to present LSI. Gary was followed by Chris Corbett from the University of Essex (Dept. of Electrical Engineering Science) who gave an introduction to the Kim 1 evaluation kit, with an explanation of its architecture and capabilities.

Derek Rowe from Commodore was the third speaker with 'PET - What it can do'. As Derek probably knows more about PET than anyone else in Europe, he was able to describe its structure and applications very well indeed. After question time and lunch Jim Perry gave some sample program runs in his talk on Computer Games, making use of the video projection equipment supplied by Canard Productions (UK) Ltd. John MillerKirkpatrick followed with his talk on peripherals, basing applications on the Bywood SCRUMPI system.

The draw for a KIM 1 and a PET was run on ETI's PET with a lady (yes folks some were present) winning the KIM 1 on the Friday. All through the day 5 PETs, 3 KIMs, 4 SCRUMPIs plus the ETI and Marshalls stands were available for delegates to practise with and get hands on experience.
-ETI-Editor

John Miller-Kirkpetrick on the Bywood stand explaining the delights of SCRUMPI to \(\varepsilon\) delegate (JMK's the one with the T-shirt).

No, people aren'1 trying to jump out the window, all the computers are on tables round the walls.

Bren, Margaret and William serving at the ETI stand. (William's the one with the tie on.)

Chris Corbitt (standing on left with his back to camera) answering questions during a coffee break.

From left to right: article-writer Mike Hughes, Nigel Stride from Marshalls and Gary Evans snatching a quick cuppa in an interval.

Jim Perry (front right) and Mark Strathern (leit) trying to get their programs debugged at the last minute.

Deret: Rowe snapped in mid-speech.

Prices above are VAT inclusive. P\&P 20p. Send large SAE for full details of available Component Kits, P.C.B.'s our Component Catalogue and any specified kit list.

Kits include ONLY Resistors, Potentiometers, Capacitors and Semi Conductors

\section*{217 TOLLEND ROAD, TIPTON WEST MIDLANDS DYA OHW TEL. 021-5579144}

\section*{Wilmslow Audio}

\section*{THE firm for speakers!}

Send 15 p stamp for the world's best catalogue of Speaksers, Drive Units, Kits, Crossovers, etc., and discount price list
```

ATC AUDAX BAKER BOWERS \& WILKINS
CASTLE CELESTION CHARTWELL *
COLES DALESFORD DECCA EMI EAGLE
- ELAC FANE GAUSS GOODMANS
HELME I.M F. ISOPHON JR JORDAN
WATTS KEF LEAK LOWTHER -
MCKENZIE MONITOR AUDIO PEERLESS *
RADFORD RAM RICHARD ALLAN SEAS -
TANNOY VIDEOTONE WHARFEDALE

```

\section*{WILMSLOW AUDIO Dept. ETI}

SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE, SKS 1 HF
Discount HiFi, etc., at 5 Swan Street and 10 Swan Street
TEL: WILMSLOW 29599 FOR SPEAKERS
WILMSLOW 26213 FOR HIFI

WATCH BATTERIES 65p
Ray-O-Vac long life Most types.
D.I.Y. KIT 35p wirt bateev order)

Case opening tool, fits most watches Tweezers, Equiv. list. Instructions.

FROM CASIO

\section*{A \(\widehat{0}-1000\).}

CALCULATING
ALARM CLOCK PLUS 3-WAY STOPWATCH Hours, minutes, seconds am/pm. 24 hour alarm with sign. Stopwatch. Net, Lap and 1 st and 2 nd place times from \(1 / 10\) th second to 10 hours. Calculator 4 key memory, \%, V. 1 year bateries, \(\pm 20\) secs/ month. \(1 / 4 \times 23 / 8 \times 45\)
RRP \(£ 24.95\), £ 19.95 plus ineroductory offer: 2 spare batteries worth £1.30 FREE.

SPORTS WATCHES

RRP \(£ 24.95 £ 19.95\)
520S-148 (right) . RRP \(£ 44.95\) £ 34.95 p to 25 functions. Hours, minutes, seconds m/pm. day date and month
Chronograph Normal, net (time out), lap (split) and first and second place times to \(1 / 100\) th second.
F 100. Water resistant (100ft) and shock res istant plastic case and matched strap
520S-14B. Metal encased version. Bracelet

\section*{ALAR̄M WATCHES}

25CR-16B (round)
RRP \(£ 64.95\) £ 49.95 25CS-16B (square) RRP £74.95 £59.95 Six digits. Hours, minutes, optional seconds or date, day. Date and month. Loud 24 -hour alarm with on / off indication. Water resistant to 100 ft Unless otherwise stated
CASIO watches have a constant LCD display of hours, minutes, seconds, am/pm with day. date and month on demand. With night light automatic 28, 30, 31 day calendar, mineral glass face and all stainless steel cases, they are water resistant to 100 feet. One battery lasts approximately 12 months. Accurate to less than \(\pm 15\) seconds/month
Seiko Calculator watch £135 (£165). Citizen Multi-Alarm watch £108 (135)). Ladies watches
Send 25 p for our illustrated catalogue. Prices include VAT and P\&P. Send your cheque. PO or phone you credit card no to

\section*{TEMPUS}

\footnotetext{
Dept. ETI, 19/21 Fitzroy Street Cambridge. Tel. 0223312866
}

\section*{SEMICONDUCTOR OFFERS ALL FULL SPEC.}

BC212. BC182. BC 237. BF197. BC159, 8ll 8p Bach RCA 2015 TO3 Power Transstior (Sim 10 2N3055) 35p. ACY 18 18p \({ }_{\text {BF }} 200\) 20p. Motorola MRD 3051 Photo Transistors 35p. N. Channel FE. Ts similar to 2 N 381918 p Motset Sim to 40673 35 p 3 N 140 Mosfets 50 p M203 Dual Matched Parrs Mostets Single Gate per F.E.T. \({ }^{40 \mathrm{p}}\). SL301 Dual Matched Par SLIN.P.N.
Power Transistors FT 300MHz 30 . Intel 1024 bit MOS Rams 95 p Mullard BB113 Triple Varicap Diode 35p. TBA800 C. Amps 90 M . CO4051 CMOS 50 p . 7418 -pin D.ILL. 23 p .500 v B00mA
 cell 4 lead, new. 25p ea. 781212 V 1 A Plastic \(V\) Rees 95 p 02 of 0.125 Red LEDs 12 p each. MAN 3A 3 mm LEO Displays 50 p
NE 555 35p. 741 S (wide bandwidit) 35 p LM 380 80p. LM 381 90p

CONDENSER MIKES. EM506 COndenser Mikes. Unidirectional, FE T. Amp, Dual imped., \(50 \mathrm{~K} / 600\) ohms. 30 18 KHz on /off switch. E11.00. Miniature Tie Pin Condenser Mike. 1 K mp . omnt-directional, uses hearing aid battery (supplied) £4.95

MICROPHONES. Grundig Electret Inseris with built-in F.ET
 Cassette Mikes 200 ohm Imped. with 2.5 and 3.5 Jack Plug 50KO. Thumb Swith E4 20

MORSE KEYS. H1-speed Type, all metal, ©2.25 Bellina Lex L4305 Masthead A
UHF Unly \(\mathrm{L} /\) oU

CRYSTALS. 300 KHz HC6U \(40 \mathrm{p} \quad 4.43 \mathrm{MHz}\) CTV Xtals 45 p O 1" Edge Connectors. 64 way 65 p. 32 way 40 p
helays. Min. 220v AC Sealed Reiay 2 pole C/ 045 p. 240 v AC Sealad Relay 3 -pole C/O 5-amip Contacts 11 -pin base 80p. 12 volt
4 .pole N O Reed Reiay 20 p Min 24 DV O. Sealed 2 -pole C/O Relays, 3 -amp contacts. New 55 p.

MOTORS. 15 to 6 v DC Modet 20p 115 vaC min 3 R \(\mathrm{P} M\) with Gearbox 30 p 240 vAC Synch Moror \(1 / 5 \mathrm{hh}\) R P M. 65 p 240 V AC Synch Motor \(1 / 24\) th RPM 65p Crouzet 115 v AC 4 RP.M
Motors, new. \(95 p\)

BOXES. Black A B.S Plastic with brass inserts and lid, \(75 \times 56\) \(35 \mathrm{~mm} 40 \mathrm{p} .95 \times 71 \times 35 \mathrm{~mm} 49 \mathrm{p}\). \(115 \times 95 \times 16 \mathrm{~mm} 57 \mathrm{p}\)
TOOLS. Radio phiers. 5 in . insulated handies E1 \(40^{\circ}\) Diagona ,
TRANSFORMERS. \(6-0.6 \mathrm{v} \quad 100 \mathrm{~mA}, 9.0 .9 \mathrm{v} 75 \mathrm{~mA}, 12-0-12 \mathrm{v}\) 50 mA 75 p each. \(12-0-12 \mathrm{v} 100 \mathrm{~mA} 95 \mathrm{p} 11\) Triac Xenon Pulse

TIL 305 Alpha-numerical Displays. with data. \(£ 2.75\).
WAY RIBBON-CABLE, min solid core. isp metre.

SWITCHES. MIn. Toggle SPST \(8 \times 5 \times 7 \mathrm{~mm} 45 \mathrm{p}\) OPOT \(8 \times 7 \times\) 7 mm 60p DPDT Centre Off \(12 \times 11 \times 9 \mathrm{~mm} 75 \mathrm{p}\). DPDT \(\mathrm{C} / \mathrm{O}\) Sliders 20p. R S. Single Pole C/O Push Buttons 45 pp . Roller Micro
Switches 15 p Min. Micro Switches \(13 \times 10 \times 4 \mathrm{~mm} 20 \mathrm{p}\). G.PO
 Push to make or push to break Switches \(16 \times 6 \mathrm{~mm} 15 \mathrm{p}\).
SOLDER SUCKER. Plunger tyoe, eye protection. replaceable nozzle. high suction, £4.95. Reed switches 28 mm norm open. \(6 p\) each
TAPE HEADS-Cassette Stereo E3.00 BSR MN \(13301 / 2\) Track Dual Impedance Rec \(/\) Playback 50 p BSR SAP90 \(1 / 4\) rack Stereo
Fec /Playback \(\mathbb{1} 195\). TD 10 Assemblies. two heads, \(1 / 4\) Track Aee /Playback Staggered Stereo with bult-in erase per heac
 BUZ2ERS-GPO Type 6.12 v 20 p Min Sold State Buzzers
6.9 .12 or 24 v 15 mA 75 p . All Metal Buzzer. 30 mm diam. \(6-12\) voits. high tone. 25 p .
U.H.F TiV Transistorised Push Burton Tuners (not Varicap), new and boxed, £2.50

AEROSOL "TOUCH-UP" PAINT. One colour only. Yellow Grey. 602 can. 350

METERS - Stereo Tuning Meters \(100 \mu\) a per movement E2 75 Meter 200 Ha Level Meter \(15 \mathrm{~mA} 40 \times 40 \mathrm{~mm} \mathrm{~K}^{1} .10 \mathrm{Mrn}\) Lev

POT CORE UNIT. Has 6 -pot cores. including I FX \(2243(45 \mathrm{~mm}\) and \(2 \mathrm{FX} 2242(35 \mathrm{~mm})\). 320 mm Panel Fuseholders, 3 TO3 Sit Power Transisutors on heat sink. panel with various transisto

AEROSOLS - Servisol Swich Cleaner + Lubricant 8 ozs
Freezer 6075
50 p Gear Cleaner
SOLENOIDS-240v AC 45p 12v DC H Duty 75p
12. WAY MOTORISED CAM UNITS. 50 V AC Iow rev moto drving 12 C/O micro switches, supphed with a capacitor for \(240 v\)
AC use Ex equip \(\subseteq 195\) (+35 p PRP)

POSTAGE 30p UNLESS OTHERWISE SHOWN (EXCESS POSTAGE REFUNDED WITH OROER
COST VAT INCLUDEO IN ALL PRICES

SAE FORLISTS
ORDER ADDRESS
PROGRESSIVE RADIO
31 CHEAPSIDE, LIVERPOOL 2
051-2360982

\section*{Capacitors}
\begin{tabular}{lll}
50uF 10 V elect. & \(\ldots\) & 5 for 50 p \\
64 uF 10 V elect. & \(\ldots\) & 5 for 50 p \\
150 uF 16 V elect. & \(\ldots\) & 8 for 50 p \\
15 uF 16 V elect. & \(\ldots\) & 8 for 50 p \\
1000 uF 16 V elect. &. & 3 for 50 p
\end{tabular}
1.5uF 63 V Wima

5 for 50p
0.1 uF 100 V Wima poly

10 for 50p
\(0.033 u F 100 \mathrm{~V}\) Wima
10 for 50 p
1uF 100 V ITT
7 for 50p
0.33 uF 100 V ITT

7 for 50p
0.01uF 125V GEC 10 for 50 p
0.1uF 250V Mull 3448 for 50p
0.01 uF 250 V Mull 344

8 for 50p
100pF Lemco 350V 10 for 50p
120pF Lemco 350V 10 for 50p
150pF Lemco 350V 10 for 50p
220pF Lemco 350V 10 for 50p
BNC plugs crimp . . 30p ea'
Pre-set pots
\begin{tabular}{ll}
68 k Ohms & 10 p ea \\
500 Ohms & 10 p ea
\end{tabular}

Dil IC sockets 16-pin 10p ea*

Please add VAT at \(121 / 2 \%\) (" \(8 \%\)) on all items and 50 p post and package on all orders under \(£ 5\) (UK), minimum order \(£ 2\) Terms - Cash with order

Send s.a.e. for a list of our large range of components

Enquiries and orders to:
Communication Measurement Ltd
15 MALLINSON OVAL, HARROGATE, YORKS.

I AM IN THE ENVIOUS position of knowing someone who knows someone who knows a director of a company which is going to have a viewdata terminal (notice the lower case \(v\) as the Post Office now want us to call their viewdata service 'PRESTEL'). As an example of the average electronic engineer who is interested in viewdata and Teletext 1 am somewhat overjoyed to be in this position as there is now a very slight chance that one day I might be able to talk to someone who has used viewdata and thus knows something about it. I avidly read every scrap of information which is published on viewdata and at present I think I could sum up this as follows. Viewdata has the following characteristics -
1. Output is to a \(40 \times 24\) VDU based on a commercial television set using the Teletext display format, control characters and graphics capabilities
2. User input is designed to operate from a simple keyboard and thus all user entries are to be in the form of a choice number to a set of options displayed on the screen.
3. Communication is to be via Post Office telephone links using a PO approved MODEM (rentable from the PO at ridiculous rates).
4. Communication is to a large computer installation which is hidden away in a remote part of the country on an exchange which is a local charge call to only a very small number of people - many of whom will have not yet heard of viewdata,
5. Use of the service is for information exchange in a format which is presumably similar in format to a magazine with articles, information and advertisers all available at the push (or a dozen or so pushes) of a button.

I think that accurately summarises my knowledge of viewdata and I would think that it is possibly more than a lot of electronic engineers know-let alone the majority of the public. Let us look at the potential of a system such as a good telephone network and a few microprocessors can provide

\section*{MPUs Make Connection}

Automatic dialling is very simple to achieve for even a complete beginner. Dialling a number is achieved by picking up the receiver and then using the dial to activate a circuit breaker a preset number of times by twisting the dial to a required position and then releasing it. These two actions are handled by simple contact switches
which in a simple example could be replaced by relays and could thus be driven by electronic counters or microprocessors. A simple SC/MP circuit such as SCRUMPI 2 or the MK14 could handle automatic dialling of about 200 subscriber numbers with only 768 bytes of RAM and could also be persuaded to decode the tones for ringing, engaged, unavailable or the more usual '??????' lack of tone altogether and thus redial or take other appropriate action. Total cost of building your own device would be about £80, in commercial quantities the device could cost under \(£ 10\)

With an automatic dialler we could program our viewdata terminal to search several viewdata libraries on different telephone numbers to find the first available service. At this stage we will also let our microprocessor handle the required keyboard entries, for example, assume you know that the latest information on the price of bananas at the supermarket is available by dialling each of your local supermarket's viewdata systems and then answering 6 questions in the following form

FREDS CORNER DELI
\begin{tabular}{ll}
DO YOU REQUIRE?- & \\
PRICES & 1 \\
AVAILABILITY & 2 \\
DELIVERY & 3 \\
PERSONAL SERVICE & 9 \\
REPLY? 1 &
\end{tabular}

FRED'S CORNER DELI PRICES OF?
GROCERIES 1

VEGETABLES 2
FRUITS 3
MEATS 4
BAKERIES 5
REPLY? 3

FRED'S CORNER DELI
FRUIT PRICES?
PERKILO 1
PER BUNCH 2
PERBAG 3
PER BOX 4
PER JAR/BOTTLE 5
REPLY? 2

FRED'S CORNER DELI
FRUITS
APPLES 1
APRICOTS 2
BANANAS 3
BREADFRUIT 4
MORE 5
REPLY? 3

\section*{FRED'S CORNER DELI}

PRICES OF
BUNCHES OF
BANANAS
E00. 47
THANK YOU FOR YOUR ENQUIRY, WOULD YOU LIKE TO ORDER?
\begin{tabular}{ll}
YES & 1 \\
NO & 2
\end{tabular}

Thus by dialling the local supermarket or delicatessen and then always entering the keyboard entries for 1, 3, 2,3 and you will be presented with the required price on line 4 of the display (ie immediately after the third carriage return/line feed). So now we have a unit with a commercial price of about \(£ 25\) which can order groceries on the basis of price/ availability/delivery.

We have assumed that the unit can read the data on the screen which is no great technical feat but does not seem to be included as a viewdata feature. Can the output be other than a Teletext compatible unit (printer, RAM, Floppy) or is viewdata limited to the \(40 \times 24 \mathrm{VDU}\) format?

We have also assumed that "Fred's Corner Deli" has its own viewdata computer which appears to be a feature of viewdata but also appears to require large and expensive equipment. Surely any MPU system capable of handling Fred's bought and sales, invoicing, stock control and ordering (about \(£ 5,000\) worth) would also be capable of communicating with something as simple as a viewdata terminal. In fact, why can't your home computer system control viewdata enquiries in and out? Let your computer answer your phone after four or five rings and test for a viewdata or vocal caller (a viewdata caller would be recognisable with a tone). The computer can then either take a taped message for a vocal caller or start interrogating a viewdata caller and give out appropriate messages to friends (who know your password codes) or strangers. There is thus even the facility for Fred's Corner Deli to call your computer and leave a viewdata format message as your invoice, statement or this week's special offers.

All the above is a perfectly feasible proposition with today's technology, the amateur constructor could build a viewdata computer for under \(£ 500\). Note that the word used is 'could', because you are in theory not allowed to-BY LAW. It is illegal to 'Permanently' connect unauthorised equipment to the Post Office Telephone or Telecommunications circuits, it is also illegal to 'steal' electricity by making unauthorised or unrecorded use of Post Office electricity. It would also be very difficult to build a viewdata computer because of the lack of specifications published. There are ways round the problem of interfacing 'Permanently' to the telephone line, one is the use of a PO MODEM at about \(£ 300\) per year rental (plus installation), another is well the magazine would not be allowed to publish circuits but ask yourself whether the plug and socket system offered by the PO (Plan 4A?) means that the telephone unit is "Permanently' connected or not?

I don't like to get politics into a column such as this but how can our internal telecommunications industry and services grow to fruition if the cost and complexity of installation of a system such as viewdata is left in the hands of a monopoly protected by the law of the land?

\section*{the MIGHTY MIDGETS \\ \\ MINIATURE SOLDERING IRONS AND \\ ACCESSORIES \\ \begin{tabular}{|c|c|c|}
\hline 18 WATT IRON inc. No. 20 BIT & \[
\begin{gathered}
\text { each inc.v.a.1. } \\
53 \cdot 78
\end{gathered}
\] & \[
\begin{aligned}
& \text { extra. } \\
& 22 p
\end{aligned}
\] \\
\hline SPARE BITS & 44p & - \\
\hline STANDS & ع3. 25 & 65p \\
\hline SOLDER: SAVBIT 20' & 52p & \(9 p\) \\
\hline " 10' & 26p & 4p \\
\hline LOWMELT 10' & \(65 p\) & 9p \\
\hline I.C. DESOLDERING BIT & 88p & 9 p \\
\hline BIT SIZES: No. 19 (1.5m & \multicolumn{2}{|r|}{\begin{tabular}{l}
No. 20 (3 mm) \\
No. 22 (6 mm)
\end{tabular}} \\
\hline
\end{tabular} \\ From your Local Dealer or Direct from Manufacturers}

S:R.BREMSTERTD

\section*{NASCOM 1 Microcomputer for the Hobbyist}

\section*{THE ONLY COMPLETE MICROCOMPUTER AVAILABLE TO THE HOME CONSTRUCTOR FEATURES:}
* Supplied in Kit Form for Self-Assembly
\(\star\) Full documentation supplied
- Includes Printed Circuit Board
* Full Keyboard included
* Interfaces to Keyboard, Cassette Recorder \& T.V
- \(2 \mathrm{~K} \times 8\) RAM
* \(1 \mathrm{~K} \times 8\) Eprom Monitor Program
* Powerful 280 CPU , Mostek
* 16 line \(\times 48\) Character Display Interface to standard, unmodifed
T. V. set
* On board expansion to \(2 \mathrm{~K} \times 8\) Eprom
* On'Board Expansion Facility for Additional 16 Lines \(1 / 0\)
* Total expansion to 256 Input Ports and 256 Output Ports

SOFTWARE FEATURES:
- \(1 \mathrm{~K} \times 8\) Nasbug Program in Eprom
* Provides 8 Basic Operator Commands including single step
- Expandable Software System via additional user Programs in Ram of Eprom

Manuals
Separately £3.50

Complete Kits NOW IN STOCK
£197.50
+ VAT \(8 \%\)
POST E2 50

Sole Appointed London Stockists

After sales service available

Ever feel you need a good rub down before you start one of our projects? Perhaps you need-

\section*{ETIPRINTS}

ETIPRINTS are a fast new aid for producing high quality printed circuit boards. Each ETIPRINTS sheet contains a set of etch resistant rub down transfers of the printed circuit board designs for several of our projects. ETIPRINTS are made from our original artwork ensuring a neat and accurate board. We thought ETIPRINTS were such a good idea that we have patented the system (patent numbers 1445171 and 1445172). The following are available in the ETIPRINTS series.

Bench Amplifier
Freezer Alarm
Marker Generator
LED Dice
Stars \& Dots PSU

011 Noise Generator General Preamp Com Active Crossover (2 PCBs)

012 Fisco Lightshow
Digital Thermometer
Amplifier PSU
Equaliser
Equaliser PSU

\section*{ORDER TODAY}

Send a cheque or P.O. (payable to ETI Magazine) to ETI PRINT
ETI MAGAZINE
25/27 OXFORD STREET, LONDON W1R1RF.

Each, including
VAT and P\&P.

Lay down the ETIPRINT and rub over with a soft pencil until the pattern is transferred to the board. Peel off the backing sheet carefully making sure that the resist has transferred. If you've been a bit careless there's even a 'repair kit', on the sheet to correct any breaks!.

\section*{Hexadecimal Keyboard}

\section*{C. N. Harrison}

Programming a microprocessor can be a time consuming business if instructions are entered in binary using rows of toggle switches. A far more convenient method is to enter the code in hexadecimal notation using an appropriate keyboard. A suitable keyboard should be fully debounced, provide a strobe whenever a key is struck and use standard power supplies. The following circuit provides all these features

The eight by two matrix of keys are scanned sequentially by the 74151 data selector, IC3 and the D output of the 7493 four bit counter, IC2. If no keys are pressed the \(Y\) output of IC3 is always logic 1 since all eight inputs are pulled high by the 4 k 7 resistors. When a key is pressed the \(Y\) output remains high until the counter reaches the inverse of the required 4 bit data. The appropriate input of IC3 is then pulled low and the \(Y\) output changes to logic 0 . This triggers monostable IC4a which disables the
clock input to the counter, enables the data outputs via IC5 and triggers IC4b to provide a data strobe. While the key is closed IC4a is retriggered by the clock so that the data remains stable on the output lines until the key is released

If latched data outputs are required IC5 can be replaced by a 7475 quad latch clocked from the output of IC 4 b The data would be available at the Q outputs of the latch

\section*{"'STOP PRESS' NEW LOW PRICES}

\section*{VLF Sine Generator}

\section*{G. Loveday}

Generating very low frequency sine waves (i.e. less than 0.1 Hz) presents several problems. Timing capacitors usually have to be large valve electrolytics, any amplifier used must be D.C. coupled, and the amplifier's input impedance must be very high One standard method is to first generate low frequency square waves, and then to shape these into an approximation of a sine wave by the use of several non linear devices, such as diodes. The circuit shown in Fig. 1 is a relatively simple approach based on the familiar wien bridge. An n-channel FET and a pnp transistor are arranged in a DC coupled circuit and the voltage gain is determined by the negative feedback R3 and R4 The gain need only be about three, thus if the bias required by the FET is 3 V the output level will be approximately half the supply voltage.

Since R 1 can be a high value resistor the value of the capacitor is only 1 u 5 for sine wave outputs of 0.01 Hz This capacitor is available in polycarbonate. The amplitude of the output can be adjusted by RV1 to give
low harmonic distortion and to be about 10 V peak to peak. As expected, with this wien bridge circuit, frequency stability is good with changes in both supply voltage and temperature

\section*{Balance Circuit For ETI Metal Locator}
C. Bray

This modification is an imimprovement to the ETI IB metal locator Mark 2, as published in the February 1978 issue of ETI. The first two stages of the circuit showing have been redrawn showing the modifications, the additional trimmer capacitor is a Wingrove and Rogers type S60 multiturn tubular \(2-25\) p, although any similar type giving smooth control between 1 and \(8 p\) will do. The function of the trimmer is to balance out coupling between the search head coils L1, L2

In practice, the trimmer is set to approximately \(3 p f\) and the search head coils adjusted as in the original article

Before a search is started, the trimmer should be adjusted for mini-

mum meter reading, with gain control RV1 set as high as possible. This should be done in free air, but if it is found that lowering the head to the ground produces a slight change, this effect can also be trimmed out.

Even if the coils are mounted very substantially, and should not move, the degree of imbalance that occurs over quite short periods of time is surprisingly high and makes the fitting of this device well worthwhile.

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{NN4 148 Diodes by ITT/Texas. 100 for c1 50. These are full spec. devices.} \\
\hline \multicolumn{4}{|l|}{bimoreoded Hexadecimal 19 keyberld 1-10 ABCDEF 20रtional Reys Shiff key. £12.50.} \\
\hline \multicolumn{4}{|l|}{MM2102 AN-4L. \(1024 \times 1\) Bit. 450 nano sec Static Ram. £1.60 each. \(4 / £ 6.00\). 8/£11.60.} \\
\hline \multicolumn{4}{|l|}{\[
\begin{aligned}
& 2112256 \times 4 \text { Bit Static Ram } 450 \text { nanosec } £ 2.95 \\
& \text { aach. } 4 / £ 11.60 .8 / £ 22.60 \text {. }
\end{aligned}
\]} \\
\hline \multicolumn{4}{|l|}{AY5-1013 UAR/T. £6.00.} \\
\hline \multicolumn{4}{|l|}{FND 500 Seven Segment Common Cathode Display. £1.30 each. \(4 / £ 5.00\).} \\
\hline \multicolumn{4}{|l|}{\[
\text { Red Leds } 0.125^{\prime \prime} \text { or } 0.2^{\prime \prime} 10 \text { for } £ 1.20
\]
\[
100 / £ 9.00 .1,000 / £ 60.00
\]} \\
\hline \multicolumn{4}{|l|}{Murata Ultrasonic Transducer. £2.50 each. £4.00 pair.} \\
\hline \multicolumn{4}{|l|}{741 Op Amp. 25p each. 10/£2.00.} \\
\hline \multicolumn{4}{|l|}{555 Timer 28p each. 10/£2.50.} \\
\hline 4001 & 14 p
16 p & 4029
4047 & \(110 p\)
\(100 p\) \\
\hline 4007 & 16p & 4049 & 100p \\
\hline 4012 & 14p & 4060 & 120p \\
\hline 4013 & 50p & 4066 & 55p \\
\hline 4015 & 90p & 4069 & 20p \\
\hline 4016 & 40p & 4071 & 16p \\
\hline 4017 & 90p & 4072 & 16p \\
\hline 4020 & 100p & 4081 & 16p \\
\hline 4022 & 90p & 4082 & 16p \\
\hline 4023 & 16p & 4510 & \(120 p\)
\(150 p\) \\
\hline 4024 & \(65 p\)
\(16 p\) & \[
\begin{aligned}
& 4511 \\
& 4516
\end{aligned}
\] & \\
\hline 4025
4026 & 16p
\(160 p\) & 4516
4518 & 110 p
130 p \\
\hline 4027 & 50p & 4528 & 100p \\
\hline 4028 & 90p & & \\
\hline \multicolumn{4}{|c|}{Prices include Post and VAT} \\
\hline \multicolumn{4}{|r|}{\multirow[t]{2}{*}{}} \\
\hline & & & \\
\hline
\end{tabular}

INTRODUCING OUR wiw BARGAIN LCD WATCH RANGE
 5 FU
DIGIT LCD
displays hours minutes or seconds month and date with 4 year calendar, backlight, metal case and strap
ONLY £9.95*
12 FUNCTION CHRONOGRAPH LCD
hours, minutes, seconds, day, date, month, chrono time 1/100th sec, 2 event timing, 1 st and 2nd place times, non inter rupt between chrono and real time, back light
ONLY £21-95*

ALARM LCD six digit hours minutes optional seconds or date, month, date day, 4 year calendar, alarm programmable for any minute in 24 hours with on/off indication, backlight. ONLY £32.95*

SOLAR POWERED CHRONOGRAPH
LCD
hours, minutes seconds, day, date month, chrono time \(1 / 100\) th sec 2 event timing, 1 st and 2 nd place times, noninterrupt between chrono and real time backlight, standby batteries for dark conditions, s/s case and bracelet.
ONLY £47.95*
SOLAR POWERED ALARM LCD
six digit hours minutes, seconds cr date, month,date, day, alarm programmable for any minute in 24 hours with on / off indication, backlight, standby batteries for dark conditions, s/s case and bracelet
ONLY £49,95
All prices include presentation case, 12 month guarantee, instructions, P\&P, Vat. Money back guarantee Send cheque of P.O. to

\section*{VIDEOTIME PRODUCTS}

56 Queens Road, Basingstoke Hants RG2 1 RE. Tel. (0256) 56417 Telex 858747
Trade \& Export Enquiries Welcome

\section*{NOW MASTER CHESS CHALLENGER}
```

* 3 LEVELS OF PLAY $\star$ SIMPLE TO USE * PLAY ANY TIME

```


Why look for a "partner" when you want to play chess. Now you have the ideal partner, ready to accept your challenge at any time, day of night.
Suitable for chess players at all stages, having three levels of skill. Easy to operate - even children can use it within a few minutes. Positions of all pieces can be verified at all stages in game. Castling and en passent. Pieces may be set up in any position, then computer instructed to play on.
Uses 8080A microprocessor, complete with instructions, pieces, mains adaptor, and packed in protective box. £129.95, including VAT, postage and packing. Access and Barclaycard welcome. Just phone your number, name and address and we will do the rest.

\section*{STRATHAND}

44 ST. ANDREW'S SQ.
GLASGOW G1 5PL
041-552 6731-2
CALLERS WELCOME
 Wellington Road Estate
Wellington Bridge Leeds LS 22 UF

\section*{B. BAMBERELEGTRONICS \\ DEPT. ETL, 5 STATION ROAD, LITTLEPORT, GAMBS. GB6 10E Tel. ELY (0353) 860185 (Tues. to Sat.)} GASH WITH ORDER. (MINIMUM ORDER E2.00) PLEASE ADD VAT AS SHOWN
\begin{tabular}{|c|c|c|c|}
\hline ALL BELOW - ADD \(8 \%\) VAT & & \multirow[t]{2}{*}{\begin{tabular}{l}
ALL BELOW - ADD 8\% VAT \\
All the above valves are untestod, except for heaters
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
ALL BELOW - ADO \(8 \%\) VAT \\
DUAL TO 18 HEATSINKS \(1 \times 1 / 2 \times 1 / 4\) with \\
screw-in clamps. 3 tor 50p.
\end{tabular}} \\
\hline MAINS TQANSFORMERS, TYPE \(15 / 300240 \mathrm{~V}\) & LARGE ELECTROLYTIC PACKS. Contain range of & & \\
\hline \begin{tabular}{l}
input. 15 V at 300 mA output, £ 1.50 each. \\
MAINS TRANSFORMERS TYPE 45/100, 240
\end{tabular} & & & \multirow[t]{3}{*}{GLASS BEAD FEEDTHROUGH INSULATORS; solder-in type, overall dia. 5 mm , pack of dpprox. 50 for 50 p LARGE GLASS BEAD FEEDTHROUGH INSULATORS, as above but 8 mm dia. pack of approx. 50 for 70 p} \\
\hline MAINS TRANSFORMERS, TYPE 45/100, 240 . & VAT) & & \\
\hline each. MECHANICAL COUNTERS, 4 digit Resertable. 60 p & & & \\
\hline MECHANICAL COUNTERS. 4 digit Resertable. 60 p & & & \multirow[t]{2}{*}{12V CONTINENTAL-TYPE PLUG-IN RELAYS, 2 pole change-over. 700 ohm coul. 60 p each. Bases to tit (only supplied with relays), 10p each} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
each \\
AEVOLUTION COUNTERS, 000-999, 1 rev of spindie \(=10,4 \mathrm{~mm}\) spindle. 2 hole fixing, alloy body. good quality, 40 p each.
\end{tabular}} & & & \\
\hline & & & \multirow[t]{2}{*}{\(11 / 2 \vee D C\) MOTORS, smail but powerful (ideal for modelmakers). 50 p each.} \\
\hline \multirow[t]{2}{*}{SLOW-MOTION MOTORS 120 V 50 Hz 1RPM. SIze} & & & \\
\hline & cor & & \begin{tabular}{l}
modelmakers 50 each \\
20 V RELAYS PCB mounting type, single pole changeover, 35p each.
\end{tabular} \\
\hline MOTORS (ldeal for model makers, quite & & & \multirow[t]{4}{*}{BSR AUTOCHANGE RECORO PLAYER OECKS with cUe covice, \(33-45-78 \mathrm{rpm}\), for \(7,10,12\) records Fitted with SC12M Stereo Ceramic cartidge and styli Brand new, E14.00 + \(121 / 2 \%\) VAT} \\
\hline & & & \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
6BWe Valves (brano new), 85 p each or 2 for E150 \\
SUR-MINIATURE ROTARY SWITCHES, \(4 \times 5\) way
\end{tabular}} & & & \\
\hline & et & \(4.3 \times 2.3 \times 1.2111 \times 60 \times 30 \mathrm{~m}\) & \\
\hline & operation) E7.50 each for 2 for (14.00) & \(4.8 \times 2.3 \times 1.51121 \times 60 \times\) & \multirow[t]{3}{*}{GARRARD AUTOCHANGE RECORD PLAYER DECKS, Moded 6.300 with cue device, \(33-45-78\) rpm, for
7.10 .12 records. Fitted with KS 418 . Sterea Ceramic cartridge and styli. Brand new, \(£ 16.00+\)} \\
\hline \multirow[t]{2}{*}{make contacts. Size approx. \(3 / 4\) dia., 1 deep, \(3 / 16\) spindle, 50 p each.} & TYAT & \(4.8 \times 3.8 \times 1121 \times 95 \times 25\)
\(4.8 \times 3.8\)
\(\times 2\) & \\
\hline & lascia 10 squa & \(6.8 \times 4.8 \times 2(171 \times 121 \times 51 \mathrm{~mm})\) & \\
\hline & in 8 dia. 15 ohm full range spe & \(4.8 \times 3.8 \times 3(121 \times 95 \times 76 \mathrm{~mm})\) & \multirow[t]{2}{*}{Please note, record decks sent by Roadine. allow 14 days for de livery.} \\
\hline Wquare, 3 for 50 p . & + 121/2\% VAT. & \(6.8 \times 4.8 \times 4(171 \times 121 \times 101 \mathrm{~mm})\) & \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
5/16, 4 for 50p. \\
SMITHS CLOCK MOTARS. \(200-250 \mathrm{~V} 50 \mathrm{~Hz} 2\) watts, 1 rev. every 2 mins. 3 hole lixing. \(1 / 8\) spindle, \& 1,00 each
\end{tabular}} & TYpe l4 Pohtab & & days for de livery.
10.7 MHz SSB XTAL FILTERS (2.4kHz'Bandwidth) Low \\
\hline & deep & \multirow[t]{2}{*}{SPIRALUX Tools for Electronics enthusiast . SA} & \multirow[t]{3}{*}{imp. type. Carrier and unwanted sideband rejection \(\min\).-40d8 fneed \(10.69835 \& 10.70165 \times\) xals for USB/LSB. NOT SUPPLIEO). Size approx. \(2 \times 1 \times\) 1 E10.00 each.} \\
\hline & & & \\
\hline & & \multirow[t]{3}{*}{4 MHz XTAL PACKS (10 assorted xtals between 4 MHz and 5 MHz). Our selection only \(£ 1,00\) pack. SOLDER SUCKERS (Plunger Type)} & \\
\hline \multirow[t]{2}{*}{full range of bernaros/babini electronics BOOK IN STOCK. S.A.E. FOR LIST} & \multirow[t]{2}{*}{TYPE HTA HOTEL SPEAKER CABINET, WOOD veneered, \(12 \frac{1 / 4}{}\) wids \(\times 51 / 4\) high \(\times 31 / 4\) deep.} & & \multirow[t]{3}{*}{\begin{tabular}{l}
LOW PASS FILTERS fow imp type). 2.9 MHz , small metal encapsulation, size.approx \(1 / 2 \times 3 / 6 \times 1 / 4\) \(75 p\) each. \\
CELESTION \(8 \times 5\) ELIPTICAL SPEAKERS. 20 ohm , 3 watts rated, E 1.50 each \(+121 / 2 \%\) VAT
\end{tabular}} \\
\hline & & & \\
\hline \multirow{4}{*}{A NEW RANGE OF QUALITY BOXES \& INSTRUMENT CASES Aluminium Boxes with Lids} & & & \\
\hline & & & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { ALL BELOW - ADD } 121 / 2 \% \\
\text { VAT }
\end{gathered}
\]} \\
\hline & & & \\
\hline & BYX \(38 / 300\) Stud Rectifiers, 300 V al 2.5A, for 60 p & & \\
\hline 13..... \(6 \times 4 \times 2\) & 8CY 72 Transistors, 4 for 50 & RE TIPS & VARICAP TUNERS, Mullard type ELCI043/05. Br \\
\hline \(814 . . .7 \times 5 \times 2^{1 / 2} \quad \cdots \cdots . . .\). & BClO (metal & & \\
\hline AB15 . \(8 \times 6 \times 3\)............. E1. & BC108 & & TV Plugs (\\
\hline 16 - 10x7x3 & & as 1 pole change over by linking the tw & \\
\hline AB25 6x4x3 £1. 25 & & & \\
\hline & & & \\
\hline & & plox & \\
\hline Blue Top* with Plain Lower vory thert finish & & Type NB2 approx \(31 / 4 \times 21 / 4 \times 1 / / 255 p\) & \\
\hline & & & \\
\hline & SCRS 400 V at 3A, stud type. 2 tor & & \\
\hline \(82 \quad 6 \times 41 / 2 \times 1 / 4 \times 1.15\) & & & \\
\hline W83 \(\quad 8 \times 5 \times 2\). . . . 61.80 & & & \\
\hline & & & \\
\hline W85 . \(11 \times 61 / 4 \times 3\). \({ }^{2} 2.25\) & & & \\
\hline & Quvo3/204 (ex equipment) & & mixed values \\
\hline \(\begin{array}{ll}\text { W87 } \\ \text { WB853 } & 12 \times 6 \times 51 / 4 \\ 8 \times 51 / 2 \times 31 / 2\end{array}\) & 20 & & A RANGE OF CAPACITORS AVAILABLE AT \\
\hline
\end{tabular}
```

SINCLAIR PRODUCTS*
Microvision TV now in stock £200. POM35 digital
padded case £3.25,30kV probe £ £8.38, new
DM235 digizal meter P.O.A., Cambridge pro-
rrammable cacuiator £13.15, prog- library
S-DECS AND T-DECS
DeC £3.39, T.DeC E4.44, н-DeCA E4.52.
DeCB \&6.73. 16 dil or 10T05 adaptors with
TVGAMES KITS
Send 5.a.e.for free date. Tank bathe chip
AY.3.8710 plus economyki. %1.95, stunt motor
cyc.95,10 game paddle 2 chip AY-3.8600 plus
economy kit £14.70, AY-3-8500 chip plus
sconomy kit £8.95, modified shoot kit £4.98, rifle
k
ASSEMBLED TV GAMES
Atractively cassd. Tank batile game $£ 39.95$, (ternis, football, squash and pelota) black and white $£ 11.95$, colour E14.50, deluxe 6 game colour with pistol atrach E21.95, TV game with mains adaptor $£ 3.10$.

```

\section*{MAINS TRANSFORMERS}

``` \(12.89,9 \vee 50 \mathrm{~m} 7 \mathrm{map}, 1 \mathrm{c} £ 1.99,2 \mathrm{E} £ .60\) 3V \(1 / 2 \mathrm{a} 95 \mathrm{p}\), \(15-0-15 \mathrm{~V}\) ta \(£ 2.79,30-0-30 \mathrm{~V} 1 \mathrm{a}\) € 3.59 .
```


C12. JC20 ANO JC4O AMPLIFIERS

```
A range of integrated circuif audio amplifiers 6 watts £1.80. JC20 10 watis \(£ 2.95\). JC40 20 watts \(£ 4.20\). Send s.a.e. for free data on our range of matening power and preamp kits
```


FERRANTI ZNA14

```
C radio chip \(£ 1.05\). Extra parts and pcb for radio
PRINTED CIRCUIT MATERIALS
PC etching kits Economy \(£ 1.70\), standard \(£ 3.82\) 50 sq ins pcb 40 p . 1 ib FeC1 \(£ 1.05\), etch resis pens Economy 45 p , dalo 73 p , small drill bit 20 p
etching dish 68 p , laminate 75 p .
```

BATTERY ELIMINATOR GARGAINS TV. gemes powe unit stabsized 7.7 V 100 m E.10, 3 -way modell with switched output and
4 -way mult itick $3 / 41 / 6 \mathrm{~V} \quad 100 \mathrm{ma}$ \&2.92. $6 / 71 / 2 / 9 \vee 300 \mathrm{ma} £ 3.30,100 \mathrm{ma}$ radio model

 ¢4.50, cassorre rocorder maine unit $7 / 1 / 2 V$ 100 ma with 5 pin din plug $£ 2.85$, car convertars 12 V oc input. oulput
$71 / 2 \mathrm{~V} 300 \mathrm{ma}$ E 1.50.
battery eliminator kits
Send for free lealer on range. 100 ma rndio rype with press and siud connectors. £2.50, $9+9 V$ £2.50, cassette type $71 / 2 \mathrm{~V}$ typma with din plug $£ 1,80$, hasv-durty 13 wivy
typen $41 / / 6 / 6 / 81 / 1 / 13 / 1417 / 21 / 25 /$
$28 / 34 / 42 \mathrm{~V} 1$ Amp E4.65, 2 Amp E7.25. Oransiivtor stabilized 8 -way typen for sow hum
$3 / 41 / 2 / 6 / 7 / / 9 / 12 / 15 / 18 \mathrm{~V} 100$ me $\$ 3.20$. $3 / 41 / 2 / 6 / 71 / 2 / 9 / 12 / 15 / 18 \mathrm{~V} 100 \mathrm{ma}$ \& 3.20 , output $6 / 71 / 2 / 9 \mathrm{~V} 1 \mathrm{~A}$ stabilized $£ 1.95$.

BULK BUY OFFERS
Minimum purchase E10 any mix. $1 / 1 / \mathrm{W}$ resistor 5% E12 1 ohm to $10 \mathrm{M} 0.8 \mathrm{p}, 7418$ dil 20 p
NE 5558 dil 32 p , dalo pens 59 p , plastic equivs of

 $4.2 \mathrm{p}, 250 \mathrm{~V}$ polyester capacitors 015 mf 1.1 p . $068 \mathrm{mf} 1.4 \mathrm{p}, 0.1 \mathrm{mf} 1.5 \mathrm{p}, 0.33 \mathrm{mf} 2$
diodes 400 mV E24 2 V 7 to 33 V ह. 5 p .
BI-PAK AUDIO MODULES
Send s.a.e. for data S450 tuner $£ 23.51$, AL60 E4.86, PA 100 £18.71, SPM80 £4.47. BMT 80

COMPONENTS

 Rosietors 5% carbon E12 10 to 10 M , 1/WW 1p.1 W 2p, polyester capacitors 250 V E6 01 to
 $33,47 \mathrm{mf} 6 \mathrm{p}$, potyotyrene capacitors E 1263 V 15 pf to $6800 \mathrm{pf} 21 / 2 \mathrm{p}$, caramic capacitors 50 V
E 1222 pf to $1000 \mathrm{pt} 21 / 2 \mathrm{p}$. E6 1500 pf to E12 22 pf to $1000 \mathrm{pt} 21 / 2 \mathrm{p}$, E6 1500 pf to
$47000 \mathrm{pt} 21 / 2 \mathrm{p}$, mylar capacitors 100 V .001 . $002,005 \mathrm{mf} 4 \mathrm{p}$. $01.02 \mathrm{my} 41 / 2 \mathrm{p}, .04,05 \mathrm{mi}$ $51 / 2 \mathrm{p}$. olectrolytics $50 \mathrm{~V}, 4,1.2 \mathrm{mt} 5 \mathrm{sp}, 25 \mathrm{~V}$ $2 \mathrm{mf} 5 \mathrm{p}, 10 \mathrm{mf} 4 \mathrm{p}, 16 \mathrm{~V} 22 \mathrm{ml} 5 \mathrm{p}, 33,47,100 \mathrm{mf}$
$6 \mathrm{p}, 220,330 \mathrm{mf} 9 \mathrm{p}, 470 \mathrm{mf} 11 \mathrm{p}, 1000 \mathrm{mf}$ 81/2p,
 pots sub-miniature 0.1 W horiz or vert 100 to
$4 \mathrm{M} 7 \mathrm{~B} / 2 \mathrm{p}$, potentiomaters $1 / 4 \mathrm{~W} 4 K 7$ to 2 M 2 $4 \mathrm{M} 781 / 2 \mathrm{p}$, potantiomatere
log or lin. single 28 p , dual 76 p .

THIS MONTH'S SPECLAL OFFERS!

THE ETI TANK BATTLE

AY-3-8710
SPECIAL LOW PRICES AND FREE OFFER

AY-3-8710-£10.90
Sound and Vision Modulator $£ 4.90$ (Tested and Guaranteed)

07 15

 P.C.B. (ETI Project-copyright Teleplay) $£ 2.90$ 28 pin Socket 0.45 p 14 pin Socket 0.30 p $100 \mu H$ Choke 0.45p

If you purchase all the above items at $£ 19.90$ you will receive FREE resistors, capacitors, diodes etc. to complete your board.

Stylish Box Set with printed fascia on main box as ilfustrated $£ 4.95$
Complete Kit including power supply \rightarrow no extras needed £37.90 £27.90

COLOUR ADD-ON FOR TANK KIT
Blue Tank, Red Tank, Green Background-fits easily to ETI Tank Project - £5.90

Fascia Plate. (Actual size: $12.6 \times 21 \mathrm{~cm}$)

STUNT CYCLE KIT

AY-3-8760-1
BASIC KIT (Just add controls and case) £21.90 £18.90 COMPLETE KIT including mains power unit and case no extras needed $£ 28.50$ £25.90

Super Stunt Cycle

Drag Race

Stunt Cycle

Motocross

TEN-GAME PADDLEII AY.3.860

黄 small or large bats for one or both players for handicapping

SPECIAL NOTICE to customers who have alreagy purchased this game - iwo extra games now available send a s.a.e. for free switching diagram

PADDLE II basic $\mathrm{b}+\mathrm{w}$ kit (just add controls and case) $£ 15.00$ PADDLE Il basic colour kit (just add controls and case) $£ 20.90$ JOYSTICK CONTROLS suitable for AY-38600 and AY-3.8550 ic's $£ 3.50$ pair (or one only for $£ 1.90$)

for TV GAMES 9v DC 100 mA . Moulded 13 amp plug. ${ }_{\text {onl }}$ £3.25

SOUND MODULATORS $£ 2.90$ VISION MODULATORS $£ 2.90$ (or buy both for just $£ 6.50$) $£ 4.90$ suitable for TV games

BARGAIN OF THE MONTH

All prices include VAT. For orders under $£ 10$ add 20 p p\&p. Cheques and postal orders to be made payable to TELEPLAY; send your order (No stamp needed,) to Teleplay, Freepost, Barnet, EN5 2BR. or telephone your order quoting your Barclaycard or Access number

TELETEXT DECODERS - Texas XM11 - $£ 99.90$ TELETEXT KEYBOARD - $£ 17.00$

KINFADS \& classified

1.2 I
 AIIUK orders over 25 posi free, under $£ 5$ add 5% All prices include VAT

BUTTON CELLS

	Dia.	Hgt.	Price $/$ Cell
	225 mAh	25.0	7.5
600 mAh	34.5	10.0	0.65

VENTED CELLS

for fast change)			
0.45 Ah	17.5	28.0	0.80
0.5 Ah	HP7 ${ }^{\text {or }}$	- Size "AA"	1.10
1.2 Ah	225	49.0	1.45
1.8 Ah	HP11 or	Size ${ }^{\circ} \mathrm{C}$	1.95
2.5 Ah	32.5	43.0	2.35
4.0 Ah	HP2 or	Size 0	2.50
10.0 Ah	41.5	90.0	5.00
OV Pack 5x. 2.2 Ah nicads			7.50
4.8V Pack 4×1.2 Ah nicads 6.00			
Tegs available at extra 10p per cell for $\mathbf{1 . 2} \mathbf{~ A h}$ and 1.8 Ah nicads only.			
Charger - Suitable for any of the above vented nicads charges up to twelve similar cells in series at a 50 mA			
Sizes approx.			
Mail order			

NEW! HOBBY-PACK STICKIES

Professionals worldwide use stICKIES - for building and debugging prototypes, faultfinding - everi designing PCB layouts
STICKIES for 80 p. Ma the hobby pack - 120 STICKIES for 80p. Make projects less sweat, more
fun. Why not try a pack? printed labels which immediately identify pin-outs for carefully-selected range of 4000 - or 7400 -series IC's. carefully-selected range of 4000 -or 7400 -series IC s Prices include VAT, p\&ip. Please state whether TIL
icial orders welcome

CONCEPT ELECTRONICS

8 Bayham Road, Sevenoaks, Kent 0293514110

LOW COST BOXES

AND INSTRUMENT CASES

Sheet aluminium standard and cut to size, self-tapping screws, nuts bolts and washers. Pamphlet on our fult range of cases suppled with every order or send a BROS., P.O. Box 55, Westcliff-on-Ses Eseex Manufacturing service of sheet metal parts for trade: send drawing and's s.a.e for quotation
 ONLY £ 18.95 IFREQUIRED $£ 6.95$

* Ready built Videograph now available £39.95

COLOUR MOOULATOR FOR ALL TV GAMES E6.95

- 3 separate inputs R. G and B
- SWITCHABLE background colour

PCB and Parts for AY-3.8500/8550 Game $£ 3.95$
J. M. STUART-BRUGES

37 BILLERICAY ROAD HERONGATE BRENTWOOD
ESSEXCM13 3SO. TEL. 0277810244

THE PROPRIETORS OF BRITISH PATENT NO. 1161222 , for "Electrical Insulators resistant to Creeping Currents and Arcs' wish to negotiate for the sale of the patent, or for the grant of licences thereunder. Particulars from Marks \& Clerk, 57-60 Lincoln's Inn Fields, London WC2A 3LS

SPECIAL OFFER: If you can buy the same for less, we will refund the difference. Brand new and full specification pots, switches, transformers, linears, TTL, CMOS, transis tors, and other semiconductors. Send large SAE for catalogue: DELTA TECH (E) \& CO 62 NAYLOR ROAD, LONDON N20

The TReynard The ${ }^{6}$ Fox

microminiature mercury tilt switch Dosignod for wien
in watches, erc.
$£ 1.00$ inc. Vat/Pbp while stocks Lust
CHEOUE N.I.C. MODELS 27 SIDNEY ROAD, LONDON N 22
OTHER CHESS SETS AMD bOARDS
avallable - 15p ILLUSTRATEO LISTS
I.B.M. 735 INPUT OUTPUT TYPEWRITER. Used demonstration only. Plus technical and service documentation including interface information. Purchaser collects. £295. Telephone 01-868 9794
Ruislip Area

ELECTRONHC KITS. - SAE for new catalogue, and clearance list of obsolete kits. AMTRON UK, 7 Hughenden Road, Hastings, Sx:

MICROCOMPUTER IC.s, new. 21 LO2 low power RAM, $1 \mathrm{~K} \times 1450 \mathrm{~ns}$, £1.00. 2708 EPROM, $1 \mathrm{~K} \times 8450 \mathrm{~ns}, £ 8.50$. Also MC6800P £13.50; MC6820P £5.50 MC6850P £7.00; MC8T97 £1.10; MCM6810AP £3.60; MC6821P £5.50; Buffers: MC8T $26 £ 1.70$; MC8T98 £1.10.

> Prices each, inc postage
A. C. GIDLOW

16 Gainsborough Road, Ipswich
SINGLE SIDED PC BOARD OFFCUTS Approx. 300 sq inch $£ 1.25$ inc. postage. E Steele, 382 Linnet Drive, Chelmsford, Essex.

RESISTORS 1/4W 5\% carbon film E12 series 80 p per 100 any mix, 1 M and greater 10\%, P\&P 15p. J.M.S., 62 Kirkstall Avenue, Leeds 5.

COMPUTER PROGRAMMING. If you need a simple introduction to computing read our new book: "A FAST INTRODUCTION TO COMPUTING." Send $£ 2.95$ plus 50p p\&p or S.A.E. for explanatory leaflet to Industrial Training Press, Dept. ET.I, 3 Ringwood Way, Winchmore Hill, N21 2RA. Money refunded if not satisfied.

COMPONENT BARGAINS

541 I.C.s
7404 !. C.s
7475 I.C.s
7490 I.C.s
74141 I.C.s
Diodes IN4 148
IN4001
IN4004

25p each $£ 1.00 / 5$ 30p each £1.25/5 12 p each 50 p/5 30p each £1.25/5 35p each £1.50/5 50p each £2.00/5

3p each 25 p/10
$4 p$ each 30 p/ 10
$5 p$ each $40 p / 10$
Zeners $400 \mathrm{~mW} 5 v 1,5 v 6,12 v \quad 10 p$ each 5 v 600 mV Voltage regulators . 90 p each 100v 2 Amp Bridge rectifiers . 40p each Transistors BC107 ...9p each 80p/10

2N305550p each 0.2 Red L.E.D.s with holder 10p 1 mH R. F. chokes 10 p each $85 \mathrm{p} / 10$ 10 way ribbon cable $50 \mathrm{p} / \mathrm{m} £ 4.50 / 10 \mathrm{~m}$ 100μ A Meters $23 / 8^{*} \times 13 / 4 \cdots \ldots$ E3.85 DIL Sockets 14 pinE12p 16 pin

13p
FNO500 7 segment L.E.D. displays $£ 1.30$ Soldercon I.C. Socket Pins ...50p/100

Stephen Instrumentation

49 Hucknall Avenue Ashgate, Chesterfield Derbyshire S40 4BZ

CORE MEMORY PLANES, ex-equip, without drive circuits, $4 \mathrm{~K}(64 \times 64)$ per plane, 99 p each plus 25 p p\&p, $£ 7.50$ post free for $8, \mathfrak{£} 12$ post free for 12 . G. Langley, 31 Bakers Lane, Woodston, Peterborough

TROUBLESHOOTING, PROGRAMMING AND DESIGN help offered for 6800 microcomputers especially S68. Also assistance with hardware interfacing and monitor writing (expansion to $Z 80$ soon). 01-960 2042.

OSMABET LTD $\begin{gathered}\text { We make transtormer } \\ \text { amongst other things }\end{gathered}$
LOW VOLTAGE TRANSFORMERS: Prim 240 V ac.

 £30; 40V 3A CT E9.75.
TWIN SEC TRANSFORMERS: Prim 240V DC
$6 V 0.6 A+C A 0.6 A$. $9 V 0.4 A, 12 V 0.25 A+12 V O .25 A .20 V 0.15 A$ $+20 V 0.15 A$; all ai $£ 3.25$ each $15 V 0.75 A+15 V 0.75 A \in 4.85$. $5 A+18 V 1.5 A$ £ 7.30; $20 V 1.5 A+20 V$
$+12 V 4 A E 8.10 ; 25 V 2 A+25 V 2 A E 8.10$.
MIDGET RECTIFIER TRANSFORMERS: 240 V ac
6-0-6V 1.5 A or $9-0.9 \mathrm{~V}$ IA $£ 2.45$ each: 12.0 .12 V 1 A or $20-0.20 \mathrm{~V}$
0.75 A e2.95 each; $9.0-9 \mathrm{~V} 0.3 \mathrm{~A}$ or $12-0.12 \mathrm{~V} 0.25 \mathrm{~A}$ or $20-0.20 \mathrm{~V}$
0.15A 2.95 each.

O-10.12-14-16-18V 2A ©4.B5; 4A EE.50; 0.12-15-20.24.30V ZA E5.65; 4A E8.90; 0.5-20-30.60V $\dagger \mathrm{A}$ £6.75; 2 A £9.75 $0-40-50-60-80-100-1$ OV 1 A $£ 9.70$.

250-0.250V 60Ma 6.3V 1A E1.50; 250 V 100 Ma 6.3V 2 Z SPEAKER AUTO MATCHING TRANSFORMERS
12W 3 to 18 or 15 up or down; $\mathbf{£ 2 . 5 0}$.
LOUDSPEAKERS

"INSTANT" BULK CASSETTE/TAPE ERASER
Instant erasure of cassette and tape spool. any diamete
demagnetises tape heads. $200 / 240 \mathrm{~V}$ ac $\mathbf{E 5} 50$.
demagnetises lape heads. $200 / 240 \mathrm{~V}$ ac © 5.50 .
POWER SUPPLY, TWIN OUTPUT: Prim 240V ac.
New, British manufacture, smoothed d.c. output 20 V
New British manufacture, smoothed d.c. output 20V ${ }^{1} .5 \mathrm{~A}$. plus
stabilised output of 15 V 100 Ma , plus 12 V ac 05 A output. complete with diagram $£ 3.00$.
CONOENSERS
Electrolytic 1000/50V 30p: 2000/30V 30p: 1200/75V 50p; $3900 / 100 \mathrm{~V} \in 1.25$; Paper ubular W/E $0.47 / 600 \mathrm{~V}, 2.2 / 400 \mathrm{~V}$ EDGWISELEVEL METER FSO $200 \mu \mathrm{~A}$
EDGWISE LEVEL METER FSO 200
Size $19 \times 18 \times 20 \mathrm{~mm} 800 \mathrm{D}$ E1.10.
SYNCHRONOUS GEAREO MOTORS, 240 V ec
SYNCHRONOUS GEAREO MOTORS, 240 V ac
Brand new, built in gearbok, $1,6.8$ or 20 RPH all at 1.20 each
O/P TRANSFOAMMERS FOR VALVE POWER AMPLIFIERS P.P sec. tapped 3-8.15, A-A $6 K$ 30W £11.50: A-A $3 K 50 \mathrm{~W}$ £ 17.00; 100 W (EL34, KT88 etc.) $\mathbf{2 2} 2.00$. G.E.C. MANUAL OR POWER AMPLIFIERS Covers valve amplitiers 30 W to 400 W 75 p.
multi way cable. screeneo pvc covered
36 way $£ 1.00 ; 25$ way $75 p ; 14$ way $50 \mathrm{p} ; 6$ way $25 p ; 4$ way 20 p;
2 way $10 p ; 1$ way $8 p ;$ fig 8 stereo $15 p$ per metre, 4 way
then individually screened 20 p per metre. TWIN FIR 8 CABLE
polarised. 100 metre £4.50
MINI 3 CORE CIRCULAR CABLE, 19 x .10 mm
Ideal for speakers, intercoms, telaphones, etc. E 4.50100 m IS, intercoms, ieiaphones, etc EA
ALL PRICES WMCLUDE VAT CARRLAGE EXTRA ON ALL OROERS S.A.E. enquiries lists

Depr. ET 46, Kenilworth Road, Edgware, Middx. HAB BYG Tol: 01-958 9314

24 HR. CLOCK / APPLIANCE TIMER KIT

Switches any appliance of up to 1 KW on and off a1 preset times once a day. KIT contains:
AY-5-1230 Clock/Appliance Timer IC AY-5-1230 Clock/Apphance Timer IC, 0.5 ,
LED display. mains supply, display drivers, LEO display, mains supply, display drivers,
switches, LEDs, triac, complete with PCB and full instructions. $£ 13.75$ Special white box $(56 \times 131 \times 71 \mathrm{~mm})$ with rea Acrylic window - undrilled $£ 2.20$ eady drilled for kit £2.50

TOUCH CONTROLLED LIGHTING KITS.

These KITS replace conventional light switches and control 300 W of lighting. No mains TSDBing required. Insulated touch plates. Complete with easy to follow instructions. TSD300K T OUCHSWITCH and DIMMER combined. ONE touchplate to switch light on or off. Brigheness controlled by small knob $£ 5.20$
TS 300 K - TOUCHSWITCH. TWO touch plates. One for ON one for OFF $\mathbf{6 4 . 0 0}$ TSA300K - AUTOMATIC TOUCHSWITCH. ONE touch plate. Touch for ON and light stays on for preset time (variable from 2 secs to $31 / 2$ mins.). Ideal for stairs and hall $€ 4.00$

LD300K - 300W LIGHT DIMMER KIT Replaces conventional light switches. $£ 2.80$

OPTO ELECTRONICS
C280 Polyster Capacitors $250 \mathrm{~V} \mathrm{d.c}$. . (values in uF)
$014 p^{\circ}: 022, .033,047, .0685 p^{*}: 0.16 p^{*} ; .15$ 7p"; 22 8p"; 33 11p*; 47 12p*; . 68 17p*; 20p: 2.2 36p RESISTORS. 33W 5\% 220 hm to $10 \mathrm{Mohm} 11 / 2 \mathrm{p}^{\circ}$ Push Bution, push to meke 20p QUANTITY DISCOUNTS ON REQUEST
Add $8 \%(121 / 2 \%)$ VAT PlUS $25 p$ P\&P. MAIL ORDER ONLY TO
T.K. ELECTRONICS (ET)
106 STUDLEY GRANGE ROAD, LONDON, W7 $2 L X$

ARE YOU

USING YOUR SPARE TIME PROFITABLY?

If not, you're losing money. Money that you could be making by selling used colour televisions from home in the evenings. Technical knowledge is not required, and provided you start correctly and know exactly how to operate. you can easily earn a substantial CASH INCOME with a starting capital of less than $£ 20$! Our new unique publication "How to Deal Successfully in Used Colour Televisions" enables you to follow in the footsteps of many experts who have a great deal of combined experience in this lucrative home business, and who have 'pooled' their knowledge to help you. After a!l, to follow the advice of someone who has travelled the ground before you, is to be given the best possible start. And the hundreds of valuable trade secrets, hints, tips and suggestions in the guide show exactly how anyone of average intelligence can succeed immediately.
Every aspect, from securing the lirst television right through to rapid expansion of sales, is covered with the detailed knowledge of experts to ensure certain success. Indexed information on particular makes of television is presented in clear tabular form, describing performance. reliability, price and service. In particular, the tips on expanding the business are very practical and are almost automatic when put into practice. Pages of unique advice on advertising ensure that maximum sales are secured, and sources of supply are described in detail - for both televisions and new/used spares. Monochrome sets are also covered, as are invisible cabinet repairs. Plus FREE on-going advice and FREE regular updating service.
You can start tomorrow - but you'll need our quide. Consisting of TWO specially-prepared books in an attractive pack. It costs just £3.95-a small price 10 pay for financial independence!

SAME DAY SERVICE
DEPT. MM, CITY PUBLISHING, 2 NOTTINGHAM ROAD, SPONDON DERBY DE 27 NH
To Depl. MM. City Publishing, 2 Notingham Road, Spondon, Derby DE2 7NH Please send by return post "How to Deal Successfully in Used Colour Televisions
I enclose cheque/p.o. for $\mathbf{£ 3 . 9 5}$.
NAME
ADDRESS

Solve your problemsandours

Plessey Avionics \& Communications and Plessey Marine design and manufacture sonar and communications systems for civil and military use worldwide
Our test engineering personnel use some of the most advanced test equipment in existence
Some experience of testing/trouble shooting eifher sophisticated electronic equipments or UHF/VHF and/or $\mathrm{HF} / \mathrm{SSB}$ radio equipment is essential. A technical qualification would be an advantage. Applications from ex-Service personnel with appropriate experience will be welcomed.

- A is at 14.3 volts. Why?
- RLla contacts fail frequently. Why ?
- Your present job lacks excitement and prospects - and looks downright boring at seven o'clock on a cold morning. Why? If you know the answers to the first two problems, talk to us - and we'll help you to solve problem 3

BRAND NEW COMPONENTS

C. N. STEVENSON (E2) 236 High Street, Bromley, Kent BR1 1PQ

MK14-the only low-cost keyboard-addressable microcomputer!

 The new Science of Cambridge MK14 Microcomputer kitThe MK14 National Semiconductor Scamp based Microcomputer Kit gives you the power and performance of a professional keyboard-addressable unit - for less than half the normal price. It has a specification that makes it perfect for the engineer who needs to keep up to date with digital systems or for use in school science departments. It's ideal for hobbyists and amateur electronics enthusiasts, too.

But the MK14 isn't just a tranning aid. It's been designed for practical performance, so you can use it as a working component of, even the heart of, larger electronic systems and equipment

MK14 Specification

* Hexadecimal keyboard
* 8-digit, 7 -segment LED display
* 512×8 Prom, containing monitor program and interface instructions
* 256 bytes of RAM
* 4 MHzcrystal
* 5V stabiliser
* Single 6 V power supply
* Space available for extra 256 byte RAM and 16 port I/O
* Edge connector access to all data lines and I/O ports Free Manual
Every MK14 Microcomputer kit includes a free Training Manual. It contains

operational instructions and examples for training applications, and numerous programsincludıng math routınes (square root, etc) digital alarm clock. single-step music box, mastermind and moon landıng games, self-replication, general purpose sequencing, etc

Designed for fast, easy assembly Each 31-piece kit includes everything you need to make a full-scale working microprocessor, from 14 chips, a 4-part keyboard, display interface components, to PCB, switch and fixings. Further software packages, including serial interface to TTY and cassette, are available, and are regularly supplemented

The MK14 can be assembled by anyone with a fine-tip soldering iron and a few hours' spare time, using the illustrated step-by-step instructions provided.

Tomorrow's technology - today! "It is not unreasonable to assume that within the next five years... there will be hardly any companies engaged in electronics that are not using microprocessors in one area or another."

Phil Pittman, Wireless World, Nov 1977.

The low-cost computing power of the microprocessor is already being used to replace other forms of digital, analogue, electro-mechanical, even purély mechanical forms of control systems.

The Scıence of Cambridge MK14 Standard' Microcomputer Kit allows you to learnmore about this exciting and rapidly advancing area of technology. It allows you to use your own microcomputer in practical applications of your own design. And it allows you to do it at a fraction of the price you'd have to pay elsewhere

Gettıng your MK 14 Kit is easy. Just fill in the coupon below, arid post it to us today, with a cheque or PO made payable to Science of Cambridge. And, of course, it comes to you with a comprehensive guarantee If for any reason, you're not completely satisfied with your MK14. return it to us within 14 days for a full cash refund.

Science of Cambridge Ltd,
6 Kings Parade,
Cambridge,
Cambs., CB2 1SN.
Telephone: Cambridge (0223) 311488

To: Science of Cambridge Ltd.
6 Kings Parade, Cambridge,
Cambs, CB2 1SN
Please send me an MK14 Standard Microcomputer Kit I enclose cheque/ Money order/PO for $£ 4355$ (£ 39.95 $+8 \%$ VAT and $40 p$ p\&p) Allow 21 days for delivery

everything for the modern D.I.Y. electronics enthusiast and more.

[^0]: COPYRIGHT: All material is subject to world wide Copyright protection. All reasonable care is taken in the preparation of the magazine to ensure accuracy but ETI cannot be held responsible for it legally. Where errors do occur a correction will be published as soon as possible afterwards.

