

INTERNATIONAL POWERSLAVE 200 + watt AMPIIFIIEB

POWEPTRAN

COMPLETE KIT AS FEATURED IN APRIL ISSUE OF E.T.I.
Super-Fi performance for studio / monitoring / hi-fi use with the inherent reliability and ruggedness for the most demanding group/disco applications.
Features * over 200 W rms continuous from each of $\&$ totally indeperident DC coupled amplifiers - over 800 W peak power

* highty original fully complementary high Inearty o/p stage utilizing the inherent symmetry of no less than 4 ditferential pars ${ }^{\text {a }}$
* ultra low feedback (an incredibly low 14 dB overalll) together with super high slewing rate $(20 / \mu \mathrm{S})$ banish ricochet effects and TIDI
* distortion only 003% at FULL power $1 \mathrm{KHz}_{z}$ IIsing to oniv 007% at 10 KHz (how many high power amplifer producers dare to quote at this frequency")
* independent stabilized power supplies driven by custom designed TOROIDAL transformers
* inherent relability - monster heat sanks for cool running at the hottes: venues - electroncopon and short circuit protection - 4 rugged power transistors/amplifier - each 250 W rating
* Protessional quality - metal oxide resistors cermet adjusters titre glass boards sturdy $19^{\prime \prime}$ rack mounting chassis complete with sleeve and teet tor fret standing work too
* easy to build - plenty of working space with ready access to all components minimal wiring extensive instructions suitable for both expenienced constructors and newcomers to electronics - can be purchased one channel at a tume
* value for money - quality and performance comparable with ready-bult amplitiers costing over $£ 6001$

PSI4001 SLAVE MODEL
Pack Price,

1. Fibre glass printed circuit board lor power amp Sel al capacilars. metal oxide resistors. thermistor, cerinet pre-sels ior power amp
Set ol semiconductors for power amp with mounting hardware. cooling labs Pair of monster black drilled heal sinks, transistor mounting bracket Toroidal transformar: Primary 0-117V-234V. Secondaries 42-0-42V. 0-15V 0 O-5V. Elecirostatic screena
Set of all parts lor slabilised'pawer supply including tibre glass printed circuit board. mounting bracket. semiconductors. resistors. capacitors. etc. Set of ali parts for butter/overdrive unit including libre glass printed circuit board. semiconductors. resistors, capacitors, controls - required tor PSI 4001
勧

78 Sel ol parts for peak power meter including protessional quality meter. fibre glass printed circuit board. componeats. conirol - required for PSI 4002 only Set of all miscellaneous parts including sockets. Illum. mans switches. fuse holders. luses. cut-outs. cable, alc.
Cabunet including chassis. anodised sitver on black panels. lixing parts. eic. Please state whether Slave of Sludio model required
Handbook $£ 0.50$ or Iree on requesi when ordering any of above packs.
2 each of packs 1.7 (A or 8). 1 each 8.9 and 10 are required lar complete 200
Total cost ol individually purchased packs

$$
\begin{aligned}
& \text { PSI } 4001 \\
& \text { PSI Ann? }
\end{aligned}
$$

OVER 800W PEAK POWER!

PSI4002 STUDIO MODEL

SPECIAL OFFER PRICES

Complete
Complete PSI4001 Kit

PSI4002 Kit

$\mathbf{£ 2 0 5 . 0 0}$ + VAT

$\mathbf{£ 2 2 0 . 0 0 ~ + ~ V A T ~}$

DO NOT BUY A SYNTHESIZER

until you have read next month's ETI We are producing a superb kit at an irresistible price. for the latest and most practical design ever published! Sorry - we cannot say any more until plublication

MANY MORE KITS ALSO AVAILABLE - ASK FOR OUR FREE CATALOGUE Amplifiers (20-200W), Tuners, Cassette Deck, Quadraphonics, etc., etc.

$75+75 w$ AMPLIFIER COMPLETE KIT ONLY £99.30 + VAT

De Luxe Linsley-Hood 75w Amplifier

$$
\text { T20 + } 20 \text { AMPLIFIER }
$$

$$
\begin{aligned}
& 20+20 \mathrm{w} \text { AMPLIFIER COMPLETE KIT ONLY } \\
& \text { Based on P.W. TEXAN } £ 33.10 \text { + VAT }
\end{aligned}
$$

PRICE STABILITY: Order with confidencel Irrespective of any price
changes we will honour all prices in this adverisement until July 31 st. 1978
if ETI June, 1978 issue is mentioned with your order Eirors and VAT rate
Changes excluded picel No charge is made for carnage or at current rate if changed
SECURICOR DELIVERY: For this optional service IU K mainland only) add \&2 50 NAT tnclusivel per kil
SALES COUNTER: It you prefer to collect your kit from the factory call at Sales Counter lat rear of factory) Open 9 a m 430 pm Monday Thursday
our catalogue is FREE! write or phone NOW!

Gehtromiss today

Electronics Today International is normally published on the first Friday of the month prior to the cover date

[^0]

High quality audio modules for Stereo and Mono

S450 STEREO FM TUNER Fitted with phase lock-loop 522.30 $+40 p p \& p$ $+121 / \% \mathrm{VAT}$	FREQUENCY RANGE SENSITIVITY BANDWIDTH SPURIOUS REJECTION AUDIO OUTPUT 122.5 kH STEREO SEPARATION SUPPLY REQUIREMENTS DIMENSIONS	55 dB 100 mv 20 to 30 V (90 mA max)
		$\begin{aligned} & 7 \text { Watts RMS } \\ & 8 \text { ohms } \\ & \text { Less than } 5 \% \text { (Typıcally } 3 \% \text {) } \\ & 50 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \pm 3 \mathrm{dBs} \\ & \pm 12 \mathrm{dBs} \text { at } 100 \mathrm{~Hz} \text { and } 10 \mathrm{kHz} \\ & 190 \mathrm{mV} \text { for full output } \\ & 1 \mathrm{M} \text { ohms } \\ & 22 \mathrm{~V} . \mathrm{A} . \mathrm{C} . \text { rated at } 1 \mathrm{~A} \end{aligned}$
PIUIER MDDULE $\mathcal{E} 4.55+25 p p \&$ This high quality sudio amplifier module is for use in auc		
£7.15*		

	MAXIMUM SUPPLY VOLTAGE TOTAL HARMONIC DISTORTION LOAD IMPEDANCE FREQUENCE RESPONSE SENSITIVITY DIMENSIONS	30 V 10 Watts RMS Less than . 25% $8-16$ ohms 100 Kohms $50 \mathrm{~Hz} \mathrm{kHz} \pm 3 \mathrm{~dB}$ $74 \mathrm{~mm} \times 63 \mathrm{~mm} \times 28 \mathrm{~mm}$
Webuen		
SPM80 POWER SUPPLY £4.25	INPUT A.C. VOLTAGE OUTUTD. VOTTGE OUTPUT CRENT OVRLOADRENE OIMENSIONS	

PA100
 PRE-AMPLIFER

£15.80
 +40 p plp

FREQUENCY RESPONSE TOTAL HARMONIC DISTORTION SENSITIVITY゙ 1. TAPE INPUTS I RADIO TUNER EQUALSATION MAGNETIC P.U

BASS CONTROL RANGE TREBLE CONTROL RANGE SIGNAL/NOISE RATIO INPUT OVERLOAD SUPPLY DIMENSIONS

20 Hz to $20 \mathrm{kHz} \times 1 \mathrm{~dB}$ ess than . 1% (Typically 07%) $100 \mathrm{mV} / 100 \mathrm{~K}$ ohms) For an $00 \mathrm{mV} / 100 \mathrm{~K}$ ohms) outpus $3.5 \mathrm{mV} / 50 \mathrm{~K}$ ohms) 250 mV Within $\pm 1 \mathrm{~dB}$ from
20 Hz to 20 kHz $\pm 15 \mathrm{dBs}$ at 75 Hz $+10-20 \mathrm{dBs}$ at 15 kHz Better than 65 dBs (All inputs) Better than 26 dBs (All inputs) 20 to 40 V $300 \times 90 \times 33 \mathrm{~mm}$ (less controls)

THE MOST COMPREHENSIVE RANGE OF TUNER MODULES EVER DISPLAYED

HF 7948 FRONT END

TECHNICAL CHARACTERISTICS:
Output terminal for digital frequency meter; Antenna impedance - 75 to 300 Ohms;
Frequency ranges 87.5 to 104 MHz or to 108 MHz ; Sensitivity -0.9 uV 26 dB signal to noise ratio $\pm 75 \mathrm{kHz}$ deviation; Intermodulation 80 dB Image rejection - 60dB; Tuning voltage . 1 V to 11 V ; Total gain - 33dB; Intermediate frequency - 10.7 MHz ; Power supply voltage +15 V : Power consumption 15 mA ; Dimensions $104 \times 50 \mathrm{~mm}$.

TECHNOLOGY:
Double sided epoxy printed circuit board with plated through holes; Dual gate effect transistors; Silvered coils.

FI 2846
IF AMP AND DECODER

OPTOELECTRONC OPTIONS

ALS 1500
STABILISED POWER SUPPLY

TECHNICAL CHARACTERISTICS:
Output voltage - 15 V ; Max. output current 500 mA ; Thermal coefficient less than $1 \mathrm{mV} /$ C: 15 V power supply for modules HF 7948 and FI 2846; Supply protected against short circuit (power, and current protection); Dimensions - $65 \times 55 \mathrm{~mm}$.

TECHNOLOGY:

Double sided epoxy circuit board; Monolithic integrated circuit.
nc. VAT, P\&P

Epoxy printed circuit board; Monolithic integrated circuits, ceramic fiter. 45 dB ; De-emphasis - 50 to $75 \mu \mathrm{~s}$. Pilot capture at $19 \mathrm{kHz}+4 \%$; Channel matching within less than 0.3 dB ; Output impedance 100 Ohms; Output voltage -500 mV ; Phase locked loop stereo decoder; Output for LED VU-meter; Null indicator; Outputs for AGC AFC and inter-station muting; Consumption 55 mA LEDs extinguished, 100 mA LEDs illuminated; Power supply - 15 V ; Dimensions $.195 \times 76 \mathrm{~mm}$

$195 \times 76 \mathrm{~mm}$.

CIRCUIT TECHNOLOGY:

ILLUMINATED POINTER
Station finder
£22.74
nc. VAT, P\&P
FREQUENCY METER
Digital display of received station frequency

LED VU-METER

Station strength indicator

TOUCH CONTROL PRE-SELECTION UNIT
LED channel indication

[^1]

THERE MAY STLL BE TME!

ETI Magazine and Commodore join forces to bring you the

 seminar you've been waiting for:
PETTING FOR BEEINNERS

An introduction to home computing in two identical all-day seminars

ALREADY WE'VE HAD plenty of applications for this seminar which was announced last month but due to the production schedule of the magazine this issue is prepared only about a week after the last issue appeared.

ETI and Commodore are co-operating to bring you the first seminar in Europe on PET and we ve arranged an irresistable programme. Not only that but one lucky delegate on each day will win a PET and another one will get a KIM!

The venue is easy to reach and the seminar is being held on two days, Friday May 12 th and Saturday May 13th to allow as many people as possible to attend.

If you are very anxious to know if we still have places, phone 01-434 178124 hours a day (after about 6.00 pm our message service will give you the current situation).

VENUE:	CAFE ROYAL Regent Street London W1 Friday 12th May or DATES:
TIMES:	Saturday 13th May Doors open 9.00 am Doors close 5.00 pm

Several PETs and KIMs available all day for hands-on experience!

Attendance limited to give everyone $£ 10$ entrance fee includes VAT, cofa chance of using a home computer!

54×40 inch TV Projection Systems arranged by Canard Productions (UK) Ltd!

Seminar notes are included in the price for you to study afterwards! fee, refreshment and snack lunch!.

Telephone ETI on 01-434 178124 hours a day to find out if we have any vacancies (message service operates from 6.00 pm to 9.00 am).

F---- - - - Registration Form - - - - - - -	PROGRAMME
	9.00 Seminar Opens
\| To: ETI/Commodore Seminar fOR OFFICE USE	9.30 Gary Evans (ETI)
\| ETI Magazine,	10.15 Home Computers
25-27 Oxford Street,	10.15 Derek Rowe (CBM)
L London WIR 1RF	The KIM 1 evaluation
1	unit
Please send me a ticket for your seminar on FRIDAY MAY 12th \square SATURDAY MAY 13th	11.00 Speaker to be confirmed (CBM) PET - what it
\| (Please tick your first choice. If you cannot accept the alternative please cross out the	(CBM) PET - what it can do
date which you find unacceptable. If you will accept the alternative tick your first choice but do not delete the other date).	11.45 Question Time 1
choice but do not delete the other date).	12.30 Break for Lunch
I enclose my cheque/PO for 110 made payable to ETI Magazine.	2.00 Jim Perry (ETI)
\| NAME	2.45 John Miller-Kirkpatrick
	(Bywood)
ADDRESS	Peripherals for the home computer
	3.30 Question Time 2
	4.30 Draw for PET and KIM prizes
Please enclose an SAE in case we have to return	5.00 Seminar closes

news dıgest.

son of u-matic

Not content with swamping civilisation with the U-matic, Sony have now launched their home video recorder - the Betamax. Since being introduced in Japan and America (in 1975) the Betamax system has sold over 500000 units, but none of these used the PAL system found in the UK (and most of Europe). After three years development the European model (SL 8000 UB) will be in selected Sony dealers from June onwards with an expected price tag of $£ 750$ inclusive.

Unlike the U-matic, which uses $3 / 4$-inch tape, the Betamax system records on $1 / 2$-inch tape - at the incredibly slow speed of $15 / 16$ ths of an inch per second! Cassettes are available
to record from 30 minutes to a maximum of 3 hours 15 minutes, tape cost can work out at as little as 7 p per minute.

Some of the many features are: One button record operation; built-in tuner, automatic recording up to three days ahead, pause/still frame facility, etc etc. It's not surprising that so many have been sold of the NSTC version, in fact in America Sony may have been too successful. Universal, Disney Studios and five other major studios are attempting to sue Sony for enabling people to infringe copyright!
For full details contact Betamax Division, Sony (UK) Ltd, Pyrene House, Sunbury-onThames, Middlesex.

better late than never

We must apologise to all our readers for the late appearance of the May issue - this was about one week late in most areas. We're almost fanatical about being on time, and it was our first late issue for three
years. The reason was entirely due to severe printing problems, over which we have no control. We hope it will be at least another three yeas before it happens again.

Titchy init! The LM300 is the latest thing from Non Linear Systems, you name it they make it smaller, and is distributed in the UK by Lawtronics. With 21 ranges it will measure $A C$ and DC voltage up to $1 \mathrm{kV}, \mathrm{AC}$ and DC current up to $1 A$ and resistance in 5 ranges up to 10 M . The display is a high contrast 3 digit LCD, and the whole thing is only $1.9 \times 2.7 \times 4.0$
inches in smallness. AA batteries provide the power and rechargeable cells are available. It has a 'big' brother called LM350 with $31 / 2$ digits in the same size case.

All ranges are protected up to kV DC or AC, prices are $£ 74$ and £87 (plus VAT) respectively.

Lawtronics Limited, 139 High Street, Edenbridge, Kent TN8 5AX.

intelligent golf balls

IBM is investigating the shrinking of large mainframes into 2 -in cubes, including the several megabytes of main memory that go with them.

Shrinking computers is not a new idea. As far back as 20 years ago, physicists conjectured that the only way to increase computer speed, given fast enough logic and memory elements, was to cut the time delay between the elements by shrinking the interconnection distance. Coupled with its logical extreme, this approach was known as the "hairy smoking golf ball." The "hair" came from the myriad of proposed connectors to the computer; the "smoke," from the thousands of watts the "golf ball" computer would presumably try and fail to dissipate. At that time, various cryogenic approaches were tried but none worked because the superconducting logic proved either too
slow or too hard to fabricate or both.

IBM's attempt to revive the "golf ball" is also cryogenic but based on using memory and logic built from Josephson junctions operating at liquidhelium temperature and orders of magnitude faster than previous "golf ball" projects.
Even if the input/output problems can be solved - how do you repair a malfunctioning computer? Because Josephson junctions require several deposition layers with different thermal-expansion coefficients, cycling between room and cryogenic temperatures 'tends to destroy them.

An IBM spokesman, who is optimistic about finding a solution to the repair problem, says, "We wouldn't have begun the research for the computer if we didn't think we could find a way to repair it without damage."

WIFMD EEDTRTLCS MAIL ORDERS, CALLERS WELCOME

 35v: 10, 33, 7p; 330, 470, 32p; 1000, 49p; 25v: 10. 22, 47. 8p; 80, 100, 160, 8p; 220, 250, 13p; 470,
640 25p; 1000, 27p; 1500, 30p; 2000, 34p; 3300, 52p; 4700 54p; 18v: 10, 40, 47, 68, 7p; 100, 125,

TANTALUM BEAD CAPACITORS POTENTIOMETERS (AB or EGEN)
 47 FF. 10040ρ.
3V: $68,100 \mathrm{pFF}, 20 \mathrm{p}$ each. $47.68,100$ MYLAR FILM CAPACITORS
100V: $0001,0002.0005$. $001 \mu \mathrm{~F}$
$0-015,0.02,0-04.005,0.056 \mu \mathrm{~F}$
0 p $0.1 \mu \mathrm{~F}, 0.15,0-29 \mathrm{p} .50 \mathrm{~V}: 0.47 \mu \mathrm{~F}$ 11p Range: $0-5 \mathrm{pF}$ to 10.000 pF
$0.015 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}$. 0.033

 SLIDER POTENTIOMETERS
$0.25 \mathrm{~W} \log$ and linear valus 60
 OPTO
ELECTROWICs
LEDs + clip
TLI

WATFDRD ELECTRONICS (continued from opposite page)

ETI GAS MONITOR
All parts available
Gas Sensors TGS 109, 308
812 \& 813
Sockets for above 20p

DIGITAL PANEL METER

Intersil Evaluation Kit £21.52* plus 30p p\&p.
All parts as per ETI E23.85* plus 30p p\&p.
ICL7106
£9.75*
LCD3901 £9.95*

TANK BATTLE

Build this fantastic T.V. Game with ealistic batle sounds generated from your T.V. speaker, steerable
tanks, controllable shell trajectory tanks, controllable shell trajectory
and minefields to avoid. A really exciting and skillful game simply constructed with our easy to follow instructions. Order now - avoid disappointments
Basic Kit (just add controls) price only $\mathbf{\$ 1 9 . 5 0}$ inc. VAT Complete Kit (including controls) price only £ 26.25 inc . VAT
J. C. AY-3-8710 \& 10.50 inc. VAT.

RHYTHM GENERATOR

Build this PE (Jan. '78) Easibuild Low Cost Rhythm Generator. We are the sole suppliers of the complete Kit including the case, pre-drilled printed front panel and the Printed Circuit Boards send sae for leaflet
Complete Kit price incl
VAT £49.95 only
Plus P\&P £1
For ready built Units add £15.00.
(Demonstration on at our shop)
ETI PROJECTS: Parts available for the following ETI Projects.
Multi-option Clock. House Alarm, Ham Beat Meron, Race Track, Accels Metal Locator Mk. 2. Shutter Speed Timer, Ultrasonic Switch, True RMS Voltmeter, LCD Panel Meter. Gas Monitor PHASER, Star Trek Radio, Helping Hand, Tank Battle, Electronic Ignition. Please send SAE plus 5 p per list.

news digest

terrorists smell?

They certainly reek of explosive. Pye Dynamics hope business will go like a bomb with their PD3 explosives detector. The hand held unit weighs in at 750 gm and works by ionising a continuous stream of air with a high voltage. The continuous air stream is produced by a miniature electric fan, and heavy ions (ie: explosives) are separated from the light air ions. Pye claim that explosive concentrations as low as one part per billion (l per 10^{9}) can
be detected with the unit.
In use the device has only three controls - trigger on/off switch, volume control and set zero control (for the audible warning tone). It comes complete with all the usual sorts of accessories (briefcase, charger etc.), they even give a sample of explosive! At about £1 500 it's probably going to start appearing in a lot of places in the near future. Pye Dynamics Ltd., 459 Park Avenue, Bushey Watford, Herts.

electronic deodour

One of the joys of electronics is the acrid smell from the flux well some people get their kicks in strange ways, Pleasant though it may be in small quantities, the smell can really get up your nose. Vero Systems have introduced an interesting device to help take the nasty bits out of the atmosphere. Called the Komax 77 Soldering

Steam Absorber (a bit of a nosefull) the unit contains a replaceable, chemically impregnated, plastic filter fumes are sucked through it at a rate of 46 litres per second. Vero Systems (Electronic) Limited, 362 Spring Road, Sholing, Southampton SO9 5 QJ

AUDIO AND BRAND NEW TEST EQUIPMENT stocks NO RECONS. CENTRE

Only regular stocks listed - other makes and models available Telephone your order with Access and Barclaycards

MULTI-METERS - GENERAL PURPOSE \& ELECTRONIC Multi-Range Instruments featuring $A C / D C$ volts. $D C$ current. Resistance Ranges all with m
except $T 1 / 1 T 1-2 / T 12 / T M 3 A$ (TM3 $A C$ volts only), some with $A C$ current etc.
$\left.\begin{array}{l}\text { TM } 3 \text { A } 83 \mathrm{~mm} \text { Scale } \\ \text { TM } 3 \text { i27 Scale }\end{array}\right\}$
360TR $100 \mathrm{k} / \mathrm{vol}$
PROE $20 \mathrm{k} / \mathrm{voh}$.
AC Microvatmeter
3MHz. >4 Megohm
$708150 \mathrm{k} / \mathrm{vol}$
3 MHz . >4 Megohm
23 Range (plus transis
26 Range Large scale
TmK $50030 \mathrm{k} /$ volt
$680 \mathrm{~F} 20 \mathrm{k} / \mathrm{voit}$
36 Range Multi-meter
$720020 \mathrm{k} /$ voll
Micro80 $20 \mathrm{k} /$ volt
$1 \mathrm{~T}_{1} .220 \mathrm{k} /$ volt
LT22 $20 \mathrm{k} / \mathrm{vol}$
T1/LT $1011^{1 k} / \mathrm{vol}$
22 Range Multi-meter (plus
52 Range Pocket Muiti-mete.

K200FET
52 Range Pocket Muri-meter
26 Range Pouble Multi-meter
16 Range

K200 FE1	13 Range Pocket Mult-meter
GT101	12 Range Pocket Multi- meter

LEVELL	
OSCILLATORS /	
GENERATORS	
TG̈152 Series RC Oscillators Sine/Square output $3 \mathrm{~Hz} \cdot 300 \mathrm{KHz}$	
Sine/Square output. $3 \mathrm{~Hz} \cdot 300 \mathrm{KHz}$ TG152D	69.95
TG 152 Dm (with meter)	89.95
TG200 Series RC Oncillators	
Sine/Square outpur. $1 \mathrm{~Hz}-1 \mathrm{MHz}$	
TG200 Dm (with meter)	112.50
TG 200 Dmp (Meter \& Fine control)	117.50
LOGIC PROBES MONITORS	
LM1 Monitor	31.00
LP1 Probe LP2 Economy	33.48 19.44

ALL PRICES INCLUDE VAT Correct at time of preparation EXPORTAND E\&OE QUANTITY DISCOUNTS Aak for Now Free

CALL IN AND SEE FOR YOURSELF
aunal iletrinulcs
301 EDGWARE RD., LONDON W2 1BN
01-724-3564. OPEN 9-6, MON-SAT.

FREE catalogue

SEND STAMPEO

 AQDRESSED ENVELOPE FOR YOUR COPY NOW[^2]

watch out! satellite about

General Electric Company of the USA's researchers have demonstrated that space technology could assist narcotics and immigration agents in stemming the flow of contraband drugs and illegal aliens across remote stretches of America's borders.

In field tests ranging across the US GE(USA) communications experts have demonstrated that a geostationary space satellite, orbiting at an altitude of 23000 miles over a fixed spot on the earth's sur-
face, could keep field agents in constant mobile radio contact with a base station - even from isolated points thousands of miles apart.
The tests involved two National Aeronautics and Space Administration experimental communication satellites - ATS-3, hovering above the mouth of the Amazon River, and ATS-1, over the equator south of Hawaii - and a station wagon equipped with a special antenna and radio equipment.
germanium power

Who said Germanium was dead? Available from Wintronics is the World's first 100 amp transistor on a single chip, and it's made from a Germanium junction nearly half an inch in diameter. Called the GPD 100SC series the devices are made by (wait for it) the Germanium Power Devices Corporation. Packaged in a standard TO 68 box, the devices have a typical gain of 120 at -60 A I_{c} and will be available with various operating voltages. Wintronics, Southon House, Edenbridge, Kent.

socket \&e see

Galatrek Engineering have just introduced a new 13A socket tester. Instead of sticking your fingers in the hole, you can now stick a Galatrek in . . . and it lights up rather than you! It uses two neon lights to indicate the condition of the wiring, and can detect faults on the live, neutral or earth. Retail price will be $£ 3.95$. Galatrek Engineering, Scotland Street, Llanrwst, Gwynedd LL26 0AL.

digest

if at first...

One of the most used machines in the ETI office is the Telex, now the PO has come up with a computer controlled international exchange. In the past you had to keep redialling if for some reason (war, flood or act of God) there was no answer. As you can imagine it could become a pain in the finger with up to 13 figures. Now the computer will make the repeat attempts for you, the auto redial stops after 3 unsuccessful attempts though.

Another facility provided by the new exchange is an informative fault message system Instead of an indecipherable +X - spluge, the computer will print a message along the lines "The lines to Neasden are down, try again in 3 weeks", well even though it still is impossible to make a connection - it's nice to know why!

whoops

ETI would like to point out an error which crept into the April and May Maplin advertisements. The Maplin Touch Sensitive Piano is now avail able, the advertisement said that it was not (amazing how gremlins can creep in!). The error has now been corrected, and the typesetter shot.

Tank battle - May 78: ZDi should be $8 \mathrm{~V} 2, \mathrm{Cl}, 4,5,6,16$ 100 n and $\mathrm{C} 2,3,11,12-220 \mathrm{n}$.

listen to

the cracks
Ever felt that you were crack ing up? Unlike an aircraft you can tell somebody - now a company called DuneganEndevco is actually listening to aircraft to detect when there is too much stress about. They call the technique acoustic emission and it is claimed to have advantages over X-ray or ultrasonic systems. It seems that materials under stress emit high frequency sound which when analysed can be used to pin-point areas of corrosion and stress. The system is catching on fast in the States, the US Air Force has used it to check out planes while actually in flight! Dunegan Endevco, United Kingdom Division, Melbourn, Royston, Herts.

new part part

Tamtronik, the PCB people have just started a components division specifically to supply parts for projects published in electronics magazines. Further details from Tamtronik Ltd., 217 Toll End Road, Tipton, West Midlands DY4 0HW. (021-5579144.)

heavy heavy hole

A giant black hole has been discovered in the Virgo constallation. At the centre of the Mersier- 87 galaxy the hole was identified by astronomers at California Institute of Technology and Kitt Peak Observatory in Arizona.
Billions of stars appear to be slowly circling the hole in everdiminishing orbits - the weight of the hole is estimated at about 5000 million of Earth Suns, and growing! Don't worry quite yet, Mersier-87 is 50 million light years away.

breadboard 78

At long last a show for the electronics enthusiast Breadboard 78 will be held at Seymour Hall in London from the 21 st to 25 th of November mark it in your diary now 'cos ETI will be exhibiting! If you are a firm and would like more details contact: Breadboard '78, Abbey Mead House, 23a Plymouth Road, Tavistock Devon PL19 8AU.

r.s.p.c.hi-fi?

We get a huge quantity of press releases at ETI, everybody wants publicity. Well this item we thought was an April spoof - but it's real - so with a straight pen:
Sanyo have sponsored Harvey Smith and Team Sanyo to compete in UK horse jumping and riding shows. The names of Harvey's horses have been changed to the following (old name in brackets): San Mar (Olympic Star), Sanyo Video (Upton), Sanyo Blender (Countdown), Sanyo Microwave (Spooky), Sanyo Cadnica (Salvador), Sanyo Music Centre (Graffiti) and last but by no means least Sanyo Hi-Fi (Graf).
Anyone for 50p each way on Sanyo Hi-Fi?

the quickest fitting $\backslash 111 / 1 /$
CLIP ON
capacitive discharge electronic ignition in KIT FORM

Introductory
 SPECIAL OFFER £2 off kit

8
Smoother running
Instant all-weather starting
Continual peak performance
Longer coil/battery/plug life
Improved acceleration/top speeds Optimum fuel consumption

Sparkio $X 4$ is a high performance, high quality capacitive discharge, electronic ignition system in kit form. Tried, tested, proven, reliable and complete. It can be assembled in two or three hours and fitted in $1 / 3$. mins
Because of the superb design of the Sparkrite circuit it completely eliminates
problems of the contact breaker. There is no misfire due to contact breaker
bounce which is eliminated electronically by a pulse suppression circuit which prevents the unit firing if the points bounce open at high A. P.M. Contact breake burn is eliminated by reducing the current to about $1 / 50$ th of the norm. It will perform equally well with new, old, or even badly pitted points and is not dependent upon the dwell time of the contact breakers for recharging the systern Sparkrite incorporates a short circuit protected inverter which eliminates the problems of SCR lock on and. therefore, eliminates the possibility of blowing the foolproot in this respect). The circuit incorporates a voltage regulated output tor greatly improved cold starting. The circuit includes built in static timing light systems function light, and security changeover switch. All kits fit vehicles with coil / distributor ignition up to 8 cylinders
THE KIT COMPRISES EVERYTHING NEEDED
Die pressed epoxy coated case. Ready drilled, aluminium extruded base and heat sink, coil mounting clips, and accessories. Top quality 5 year guaranteed transformer and components, cables, connectors, P.C.B., nuts, bolts and silicon grease. Full instructions to assemble kit neg. or pos, earth and fully illustrated installation instructions.
NOTE - Vehicles with current impulse tachometers (Smiths code on dial RV1) will require a tachometer pulse slave unit. Price $£ 3.35$ inc. VAT. post \& packing.

NON-SUBSCRIBERS START HERE

GIVE UP, GO HOME
POSTAL SUBSCRIPTION
TOETI.

It can be a nüisance can't it, going from newsagent to newsagent? ' Sorry squire, don't have it - next one should be out soon."

Although ETI is monthly, it's very rare to find it available after the first week. If it is available, the newsagent's going to be sure to cut his order for the next issue - but we're glad to say it doesn't happen very often.

Do yourself, your newsagent and us a favour. Place a regular order for ETI; your newsagent will almost certainly be delighted. If not, you can take out a postal subscription so there's nothing for you to remember - we'll do it for you.

For a subscription, send us $£ 7.00$ ($£ 8.00$ overseas) and tell us which issue you want to start with. Please make your payment (in sterling please for overseas readérs) to ETI Subscriptions and keep it separate from any other services you want at the same time.

ETI Subscription Service,
Electronics Today International, 25-27 Oxford Street, London W1R 1 RF.

...digest

matchbox tv camera

Fairchild have succeeded in producing a CCD camera with 400000 elements. The camera is rugged enough to be built into the tip of a munitions shell and survive the blast when fired. Defence experts in London
were recently shown video tapes made from a shell-borne camera as it descended from 5000 feet with a parachute slowing it down. Weight of the camera is only 2 ounces.

odds \&c ends

* SERT (Society of Electronic and Radio Technicians) are to hold a Hi-Fi seminar on Wednesday, 7th June. The seminar will be held at the Institute of Marine Engineers in London, cost £15 ($£ 10$ for SERT members). Further details from SERT, 8-10 Charing Cross Road, London WC2 0HP.
* Oertling Ltd have supplied the golf ball manufacturers Penfold with electronic weighing machines - next customer IBM?
\star Two new catalogues received this month, first from Technomatic Ltd - 20 pages of part numbers and prices, send large SAE to Technomatic Ltd, 54 Sandhurst Road, London NW9 9LR. Second catalogue costs money (but worth it) - 40 pages from Marshalls for 35 pence sent to A . Marshall (London) Ltd, 42 Cricklewood Broadway, London NW2 3ET. * The Post Office is trying to export Viewdata to the USA, and is having talks with AT\&T to find out how it can be connected to the US phone system.
* Burr-Brown have introduced two interesting operational amplifiers. The 3573 has a power rating of 40 W (100W peak) and the 3528 is a FET input type. The FET device has a typical bias current of 75 femto amps (that's 10^{-15}). BurrBrown International, 17 Exchange Road, Watford, Herts WDl 7EB.
* Visitors to Piccadilly in London will be dazzled by largescale laser light shows. The idea is to replace the farnous Coke signs with a projection screen, and write advertisements with lasers. The scheme is to operate as a trial for a year.
\star For a scoop preview of the Commodore Systems printer see Microfile this month.

barclay electronics

\&e tritron

Will readers please contact ETI before sending any money to the above companies who have advertised in previous editions of the magazine.

Wilmslow Audio

THE firm for speakers!

Send 15p stamp for the world's best catalogue of Speakers, Drive Units, Kits, Crossovers, etc., and discount price list

> ATC AUDAX BAKER BOWERS \& WILKINS CASTLE CELESTION CHARTWELL COLES DALESFORD DECCA EMI EAGLE ELAC FANE GAUSS GOODMANS FAO HELME MTI. F. ISOPHON JR JORDAN WATTS KEF LEAK LOWTHER MCKENZIE MONITORAUDIO PEERLESS RADFORD RAM RICHARD ALLAN SEAS TANNOY VIDEOTONE WHARFEDALE

WILMSLOW AUDIO Dept. ETI

SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE, SK9 1HF
Discount Hifi, etc., at 5 Swan Street and 10 Swan Street
TEL: WILMSLOW 29599 FOR SPEAKERS WILMSLOW 26213 FOR HIFI

Smother yourself in circuits. Send us just $£ 3.00$ and well send off to you ETI Circuits No. 1, the hot-of-the-press Circuits No. 2 and an ETI Car Sticker (full size 90 mm diameter). The circuits books contain well over 400 circuits for you to play with plus a mass of extra data. Go on, treat yourself.

(All inclusive)

To: ETI Circuits Books,
 ETI Magazine,

25-27 Oxford Street,
London W1R 1 RF
I enclose $£ 3.00$ for ETI Circuits No. 1, No. 2 and an ETI Car Sticker.
|

```
Name
Name
Adress
Adress
1
1


\title{
STARS \& DOTS
}

\section*{A. Willcox has ditched dogged reliance on digital devices to come up with a new version of the popular clear thinking game.}

THIS CODEBREAKER game is based on the traditional pencil-and-paper game known variously as 'Stars and Dots', 'Bulls and Cows', or 'Moo', and which has recently become popularised as 'Mastermind', and is usually played as follows. The first player sets down a four-digit code which his opponent must try to duplicate by a series of guesses for which he is awarded points. In one version of the game a star is given for each correct digit in the right position, and a dot for each correct digit in the wrong position.

\section*{Analogue Stars}

In the following illustrative game the hidden code is 1633 :

STARS DOTS
1234
5634
3434
5233
5244
1633
\[
\begin{array}{r}
\star+ \\
\star+k \\
\star+k
\end{array}
\]

The object of the game is to crack the code in the least number of guesses, and in order to achieve this it is necessary to analyse carefully the results of previous tries.

This electronic version of the game sets a random code and awards the appropriate score for each attempt, thus allowing the game to be played solo fashion. A pen and paper record is kept as before, or, if a 'Mastermind' board is used, the switches may be marked with colours rather than numbers. Each attempt is duplicated on the switches and the score is shown on the two meter movements. There is no indication in the score as to which of the digits is correct.

\section*{Construction}

The version of stars and dots that appears here uses analogue circuits techniques rather than the digital methods of ten used to implement the game. This has resulted in a


A look at the inside of our stars and dots game.
number of improvements over other electronic version of the game namely simple circuitry and low power consumption, so low in the idle state that there is no need to fit an on / off switch to the project the overlay shows the arrangement of the onboard components but it can
be seen there is a lot of interwiring to-from and between switches. Study the circuit diagram to familiarise yourself with what is going on and take care with this stage of construction as this is where mistakes are likely to occur.


\section*{HOW IT WORKS}

The random number generator consists of a four stage counter using 4017 decade counte 1Cs, locked by \(1 C 1\) whenever the set-up switch PBI is depressed. The state \(\mathrm{Q} 6=1\), is unstable, resetting the IC to \(\mathrm{Q} 0=1\), and also carrying' to the next stage. Supply current to each stage when the score button is depressed is which means that this 'unit' of current is all that is available at whichever Q output is enabled. Continuity to the ICs other times to enable the code to be stored is provided by the 100 k resistors R5, 8, 11 and 14. The current drawn in this situation is so small as to make an on/off switch unnecessary, and the number remains stored until the set-up switch is again operated.
If any of the switches is in the correc number/correct position situation a unit of current will be available at each relevan switch's 'a' section to be 'added' by M1. This
use of analogue circuitry avoids the need to randomize the score-there is no indicatio of which of the stages is correct. Note also hat when a switch is in this correct number/correct position situation none of his current is available to pass on to the common lines connected to the 'b' sections, because the diode connected to the active 0 unpure the vosta reve biased. This is Q because to little ZDI voltage inciden dlly lowering Vob also, to which it is tied internally. internally.

Trning now the 'b' section of the witches, these deal with the situations where the correct number/incorrect position has been selected. Observe that Q0 - Q5 is connected in each case by diodes to common lines, making its particular unit of current available to the other stages. And so if switch selects the correct number of another
stage, current will flow through its ' b section, this time to M2 via another constant current stage. These extra constant current stages are necessary for if, say, a switch selects a number which corresponds to the code in \(=3456\) ) ren would otherwise flow through M2 instead of the one unit due. If on the other hand two or more switches select a number which only appears once in the code, only one unit will flow because this is all that is available from the IC. The use of analogue circuits in this way, by allowing the IC outputs to be commoned, results in a very simple circuit.
When a switch has selected a correct number of its ' \(a\) ' section, its ' \(b\) ' section must be inhibited, otherwise it will also score on M2 if the same number exists in anothe stage. The voltage drop on VDD mentioned earlier is utilised to achieve this by removing
via a diode, the bias to the lower constan current stage concerned. The base voltages of the lower constant current stages ar series with M2 to facilitate this

The 3V6 Zener diode maintains a reason able working voltage for each IC under all conditions, and without this the Vod connection would not follow closely any fall in a \(Q\) output level as described earlier. Total consumption is so low that the battery requirement is met by a PP3, and if this doesn't last at least a year there's something wrong.
Note that if both buttons are depressed together the input level rating of the 4017 IC 5 is exceeded due to the changing level of VDD so although perhaps this is to be avoided no damage has resulted in practice when this has been done.

( A second generation Induction Balance system with improved Variable-Tone detection.
- Designed by professionals for easy assembly by amateurs but with very good performance.
- The search coils are fully assembled and adjusted for you.
- Coils pre-assembled and tested wedge shaped search field
Uses include:
* Treasure hunting - it's amazing what you can find in the garden or on the beach.
* Finding lost metallic items.
* Locating waterpipes and cables under floorboards on in walls.
* Checking old timber for nails before cutting, etc., etc., etc., etc.
\begin{tabular}{|l|}
\hline KIT - COMPLETE WITH PRE \\
ASSEMBLED SEARCH COILS \\
Plus £1-00p\&p Plus £1-32 VAT \\
\hline ASSEMBLED \& TESTED \\
Flus £1-00p\&p Plus £1-80 VAT \\
Communiciation Measurement Ltd \\
\hline 15 MALLINSON OVAL, HARROGATE, VORKS \\
\hline
\end{tabular}

\section*{MEMORIES}
21.02 £1.15 inc. VAT
(Full spec. \(450 \mathrm{~ns}, 1 \mathrm{~K} \times 1\) static RAM)
2708 \(£ 8.50\) inc. VAT
(Full spec. \(1 \mathrm{~K} \times 8\) UVEPROM)

S100 8K STATIC RAM
Bare Board
Complete Kit (450ns ( 250 ns ) £ 152 inc. VAT
\(\mathbf{S 1 0 0}\) Motherboards \(\quad £ 49\) inc. VAT
18 slot, bare
KIM to S 100 interface kit, complete with 8 -slot motherboard with 2 connectors.
\(£ 122.50 \mathrm{inc}\). VAT
S100 Connectors £ \(\mathbf{3 . 9 0}\) each inc. VAT

\section*{ETI \\ CCD PHASER}


COMPLETE KIT
(Designer Approved)
\(£ 39.75\)
(Inc. VAT \& P\&P)
-70 db signal to noise ratio
This kit comes with silkscreened, prepunched case and is complete down to the last nut and bolt - all you need are a soldering iron, solder, wirecutters and screwdriver plus an evening's work.

Add 30p P\& P orders under £10
(Mail Order only)

\section*{LOTUS \\ SOUND}

\section*{4 MORGAN STREET LONDON E3 5AB}

\title{
AUDIO AMPLIFIERS
}

\begin{abstract}
Designing an amplifier is like re-inventing the wheel. There are thousands of published designs and possibly as many as a 100 different types of monolithic amplifiers as well as lots of off the shelf modules to choose from. If you design the amplifier yourself (or use someone elses design) you will probably encounter problems such as heat, noise, instability, distortion, power rating etc, etc. In this article Tim Orr sets out to help you cope.
\end{abstract}

\section*{Power Rating}

The power rating for an amplifier is generally considered to be the maximum RMS power that a sine wave can deliver to a load (Fig. 1). The RMS power is given by:
\[
P_{(\mathrm{RMS})}=\frac{\mathrm{V}_{\mathrm{PP}}{ }^{2}}{8 R \mathrm{RL}}
\]


Therefore if \(R L=8 R\) and \(V p p\) is \(1 \mathrm{~V}, \mathrm{pP} P_{(R M S)}=\) 15.6 mW .
\[
\begin{aligned}
& \text { For } V_{p p}=10 \mathrm{~V} P_{(\mathrm{RMS})}=1.56 \mathrm{~W} \\
& \text { For } V_{p p}=100 \mathrm{~V} P_{(\mathrm{RMS})}=156 \mathrm{~W} .
\end{aligned}
\]

So the RMS power goes up as a square of the output voltage. However our hearing does not respond linearly to power, and so the difference between a 10 W and 100 W amplifier is always disappointing.

\section*{Heat}

Not surprisingly, power amplifiers get hot. When they are delivering power to a load, the amplifier is also dissapating a considerable amount of heat itself. A reasonable rule of thumb is that both the amplifier and the load dissipate the same power, except when there is no output signal. Then the amplifier is the only thing that
is getting hot. To get a very low crossover distortion it is usually necessary to run the output transistors in an amplifier in class \(A\) or \(A B\). This means that the transistors are biased on (or partly on for AB operation). Thus they consume lots of current and get hot. Therefore designing power amplifiers is a compromise between heat production and distortion. IC power amplifiers, because of their small size, go for low heat generation and hence higher crossover distortion. Discrete component power amplifiers can use large heat sinks sometimes with forced air cooling and thus obtain THD figures from \(0.1 \%\) to \(0.01 \%\).

Some IC power amplifiers get rid of their heat down the IC legs to suitably large areas of copper on the printed circuit board. There are also 'Stick On' heat sinks dor DIL packages. Also, when the going gets a bit hot some amplifiers employ a thermal shutdown mechanism. Generally though, high temperature operation means that the device life time is greatly shortened. Thus it is not surprising that the components that fail most regularly are the power transistors in amplifiers and power supplies.

\section*{Stability}

The only difference between amplifiers and oscillators is the phase of the feedback and so it is hardly surprising that a problem exists. When the phase of the feedback becomes positive then oscillation can occur, if the gain of the amplifier is then greater than unity. The gap between a good amplifier and an oscillator is known as the phase margin. When the phase margin is reduced to zero, oscillations will occur.

More feedback when the phase shift is positive will. increase the risk of instability. Less feedback when the phase shift is positive will make the amplifier more stable.

However, less negative feedback means more distortion. It is a compromise between stability and distortion. It is possible to increase the phase margin and thus stabilise the amplifier with a suitably placed capacitor. However, in the IC (monolithic) design this is not possible because this capacitor would probably occupy.
twice the area as the rest of the integrated circuit. So, the designers of IC power amplifiers usually make this stabilising capacitor small and set the amplifier gain high (less negative feedback).

You end up with a power amplifier that is only stable with high values of gain and which has a relatively high distortion. Even so, most monolithic designs need additional capacitors on their inputs and their outputs to maintain stable operation. Other stability problems are:
1) Amplifier gain and phase margin depend on power supply voltages. Thus, an amplifier may not be stable under varying conditions of supply voltage. During the power up, the amplifier may emit a squeak or a whoosh, due to high frequency instability.
2) Amplifier gain and phase margin depend on temperature. Thus as the amplifier warms up it may then become unstable, oscillate, the output transistors get very hot and the amplifier burn out.

Alternatively, the amplifier may be unstable only when cold. So you switch on and it squeaks (oscillates), warms up, stops oscillating, cools down, oscillates (squeaks), warms up, etc. etc. (Breaks the ice at parties!).
3) The load put on an amplifier will affect the phase margin. Designing an amplifier that will drive any load is difficult. Often a power amplifier will have a capacitor resistor network from its output to ground. This network is used to increase the phase margin.

\section*{Distortion}

If you put a pure sinewave into an amplifier and you get out of it the same sinewave plus some harmonics, then you have got distortion. Any other spurious signals are not distortion products and are not included in the THD calculations.

Crossover distortion is usually generated by the output transistor pair (Fig. 2). This is caused by one of the transistors switching off before the other one can switch on. The result is a 'lump' in the output waveform which gives the sound a 'buzzy' quality. The distortion can be reduced by turning the output transistors on a bit more, by biasing their bases further apart. This increases the quiescent current and thus more power is dissipated: Also, overall negative feedback can be used to iron out the kinks, but this will increase the chance of instability.

Another type of distortion is harmonic distortion. An amplifier, used in open loop is usually fairly non linear. This non-linearity will cause any signal passing through the amplifier to be distorted. Negative feedback is used to iron out the non-linearities and so reduce this source of harmonic distortion.

It is interesting to note that the hi-fi market wants low THD figures of \(0.1 \%\) to \(0.01 \%\) but the music market actually prefers (in some cases) higher figures of about \(2 \%\).


Mains hum is easily picked up with high impedance microphones, particularly if the microphone cable is long. Also, a treble cut occurs when using long cables. The output impedance of the microphone and the capacitance of the cable produces a low pass filter which cuts off the high frequencies, so that a high impedance microphone should only be used on a short cable.

For low impedance types, a low-noise high gain amplifier is needed, as output is much lower, and the circuit above is such an amplifier. The noise generated by transistors is a function of collector.current. The current through \(\mathbf{Q 1}\) has been optimised to give low noise operation.

The amplifier has an open loop gain of more than 60 dB . Negative feedback is applied, via a variable 470 k pot, so that the closed loop gain is controllable from 6 dB to 35 dB . This allows the gain to be tailored to suit different types of microphone and hence get the best overload and S/N ratio conditions. A maximum signal output of 4 V into a 10 k load is obtained and the current drain is 1 mA making it possible to run the amplifier from a PP3 9 V battery.

\section*{Unbalanced Line Driver}


The high open loop gain of an op amp is combined with the power handing capabilities of descrete transistors to produce a line driver amplifier. The output driver stage (01, 2, 3) is included in the overall feedback, and acts as a power booster on the output of the op amp. Transistor 01 is used as a VB \({ }_{\text {RE }}\) multiplier. That is, it sets up a voltage of about 1 V5 between its collector and emitter. The actual voltage can be set by the preset connected to its base. Thus the bases of \(\mathbf{0 2}\) and \(\mathbf{Q 3}\) can be biased apart by a set amount, just sufficient to make them work in class B operation.

If there are any ambient temperature changes, \(\mathbf{Q 1}\) automatically adjusts the bias voltages to \(\mathbf{0 2 , 3}\) to maintain a constant bias current. There is overall negative feedback from the output, providing a voltage gain of \(0 \mathrm{~dB}(\mathrm{x} 1)\). The output is partly shor circuit protected by the \(\mathbf{2 7}\) ohm emitter resistors. This amplifier can deliver high level, low distortion signals into low impedance loads. It could be used as an output driver in an unbalanced audio mixer.


Fig 1 (above) is the classical output pair that produces the equally classical crossover distortion illustrated below. Careful biasing of the output pair can reduce the effect but it is usually present in most amplifiers of this type.


\section*{Noise}

Noise is generally not a problem in power amplifiers but it is in the pre-amplifier stages of an audio system. An overall system signal to noise ratio of \(70 \mathrm{~dB}(3000\) to 1\()\), is quite good and not very difficult to achieve. Better than this is studio or professional quality. When amplifiers are used to reproduce stored signals, such as from a disc, radio or tape recorder, then an overall S/N ratio of 70 dB is quite adequate. This is because the \(\mathrm{S} / \mathrm{N}\) ratio for these storage or transistor systems is quite low.

For example the best disc technology will only give us a \(60 \mathrm{~dB} \mathrm{~S} / \mathrm{N}\) ratio. The best studio quality tape recorder (unprocessed), will give 65 dB . Radio transmissions are about 50 dB on FM , and cheap cassette players only clock up 30 dB 's.

As tapes and discs are used then their \(S / N\) ratio deteriorates. Also, most listening environments have a high background noise level (air conditioning, street noise, jets etc.).
The most demanding situations where the noise of a preamplifier will be important are in amplifying the signals from low impedance microphones, magnetic cartridges for record players and tape recorder pickup heads. In the following sections there are several examples of low noise pre-amplifier designs.

\section*{Balanced Microphone Preamplifier}


Professional audio equipment generally uses balanced inputs and outputs. This means that the inputs and outputs are differential, which is usually obtained by having balancing input and output transformers.

The advantage of using a balanced system is that any unit can be connected to any other unit without any ground loop problems. A balanced system eliminates these problems. Also, mains hum pick up is reduced. A balanced audio cable has an outer screen and a twisted pair of wires in the centre. Any mains hum (or other signal) which is picked up on the twisted pair will have the same amplitude on each of these central wires. This is a common mode signal. The microphone signal applied to these two wires is a differential signal. Thus, when the microphone signal plus mains hum is connected to the transformer, the differential signal appears at the output windings and the common mode signal is rejected. Thus the mains hum is suppressed.

The transformer also provides a voltage gain, and the LM 381 provides a low noise amplification of about \(32 \mathrm{~dB}(x 40)\).

\section*{Active Crossover Unit}


The circuit shown is for a two speaker system having a crossover frequency of 500 Hz . The filter structures are third order Butterworth multiple feedback, low pass and high pass. (Third order implies that roll off slopes of \(\pm 18 \mathrm{~dB} / \mathrm{octave}^{2}\) are obtained.)

\section*{Parametric Equaliser}


This is possibly the equaliser for the amplifier system that has everything. The parametric equaliser has got three controls. It is a bandpass filter which can have variable cut or lift, so that a particular frequency band can be enhanced or rejected. The. resonance can also be controlled so that area of frequency affected can be broad or narrow. Also the centre frequency of the bandpass filter can be varied so that it can be tuned to operate at a particular frequency. The circuit operation is quite simple.

Op amps IC \(1,2,3\) form a state variable filter, the \(Q\) and centre frequency of which can be varied. Op amp IC4 is a virtual earth amplifier. When the equaliser is in the lift position, the signal is fed into the state variable filter. It then comes out of the bandpass output and into IC4. In this feed forward position the equaliser has got a peak (lift) in its response. When the equaliser is in its cut position, the bandpass filter is in the feedback loop of IC4 and so there is a notch in the frequency response.

Care must be taken not to cause overloading and clipping when using high \(\mathbf{Q}\) lifts.

\section*{10 Watt Power Amplifier. (SN6018)}


This is a very simple and inexpensive monolithic power amplifier made by Texas Instruments. It comes in a package that looks like a plastic power transistor with five legs.

Thus it can be screwed down to a heat sink without any problems. The THD specifications for this device are:

10 W at \(10 \%\) THD (R1 \(=8 \mathrm{ohm}\) )
7.5 W at \(1 \%\) THD (R1 \(=80 \mathrm{hm}\) )
0.05 W to 6.5 Watt at \(0.2 \%\) THD (RL=8ohm)

No isolation from the heat sink is required. It should be used in applications where high fidelity is not required. Note that it requires two stabilising capacitors.

\section*{Electronic Balanced Input Microphone Amplifier.}


It is possible to simulate the balanced performance of a transformer electronically with a differential amplifier. By adjusting the presets the resistor ratior can be balanced so that the best CMRR is obtained. It is possible to get a better CMRR than the one you would obtain from a transformer. Also, a transformer can itself pick up mains hum, it is expensive and heavy. So, electronic balancing can be quite competitive. One problem is obtaining a truly differential low noise amplifier. I would suggest a RC4136 which is a quad low noise op amp.

\section*{Record Player - Magnetic Pickup}


If you were to amplify the signal from a magnetic pickup on a record player and listen to it the sound would be terrible. It would be all treble and no bass. This is because the pickup is magnetic and gives an output voltage which is velocity sensitive. That is the faster the needle wiggles in the record groove, the larger the output voltage, or rather the output voltage (for the same amplitude of excursion) is proportional to frequency. To restore the natural sound, the signal must be equalised with a frequency response as specified by the RIAA.

This play back equalisation gives 20 dB lift at low frequencies and 20 dB attenuation at high frequencies and is 0 dB at \(1 \mathbf{k H z}\). No equalisation is required if you use one of the cheaper ceramic pickups, which have a flat response.


Graph illustrating the non-ideal approximation to the ideal RIAA equalisation curve, the response flows smoothly unlike the 'defined' RIAA response.

\section*{50 Ohm Driver}


When you want to buffer a test generator to the outside world it is often very difficult to get an amplifier with sufficient bandwidth and power handling to do the job. The circuit is a very simple unity gain buffer. It has a fairly high input impedance, a 50 ohm output impedance, a wide bandwidth and high slew rate.

The circuit is simply two pairs of emitter followers. The base emitter voltages of \(\mathbf{Q 1}\) and \(\mathbf{Q 2}\) cancel out, and so do those of \(\mathbf{Q 3}\) and 04. The preset is used to zero out any small DC offsets due to mismatching in the transistors.

20 Watt Amplifier


An audio power amplifier can be constructed from a power driver op amp plus a pair of transistors. The power driver is a NE540 made by Signetics. It generates quite a bit of internal heat and so a TO5 heat sink is required. Note that this design uses five stabilising capacitors.
The amplifier works quite well once any stability problems have been sorted out and the power output is quite adequate for a domestic amplifier system.

ㅌI

BIDIRECTIONAL TEE-SHIRTS FROM ETI

(ETI staff conference)

\section*{HOW TO ORDER:}

The new red ETI tee-shirts are available in large, medium or small size for only \(£ 2.00\) inclusive of postage and packing.

Send cheques/POs to:

\author{
ETI Tee Shirts \\ 25-27 Oxford Street
}

London WIR IRF
No, she hasn't got it on backwards - the new ETI tee-shirt has ETI printed on it on both sides! Now you can say ETI in two directions at once!


KEY:
1: The bit of chocolate you thought you'd leave for later.

2: Coffee stains (instant).
3: A useful-sized bit of stiff paper to stop the window from rattling.

4: Rough calculations for your new combined egg timer/laser cannon project.

5: ETI makes a fair soldering iron stand.
6: The dog insisted on carrying your copy to you along with your slippers.

\section*{WHAT A BIND!}

Half our orders for binders are repeats: we think that says a lot for their quality. At \(£ 3.00\) all inc. you get a great deal of peace of mind too!

\section*{ETI Binders}

25-27 Oxford Street, London WIR IRF.


\section*{BARGAIN PARCELS SAVE POUNDS}

Huge quantitues of electronic components must be cleared as space required. 1000 's of capactors, resistors, transistors. Exequipment panels, etc. covered in valuable components. No time to sort. Must sell by weight \(7 \mathrm{lbs}-£ 4.95\). \(14 \mathrm{lbs}-£ 7.95\), \(28 \mathrm{lbs}-£ 12.00,56 \mathrm{lbs}-£ 20.00,112 \mathrm{lbs}-£ 30.00\)

\section*{BARGAIN PACKS}

\section*{Handy Packs}

4 aluminium boxes \(128 \times 44 \times 38 \mathrm{~mm}\) 4 aluminium boxes \(128 \times 44 \times 38 \mathrm{~mm}\).
ideal for signal injectors, etc.
. Self-fluxing enamelled copper wire 22 swg on 20z, reels . . . . . . . 60p ea. 100 miniature reed switches, ideal for burglar alarms. model railways. etc
66 -pole 12 voltred \(£ 330\)
Hig. quality computer pands .... \(£ 2.45\)
in top-grade computer panels smothered
top-grade components 5ibs.
101 bs.
£4 75

Now hathouton type push-button type

E2. 50
E 20
Rotary type with slow motion drive \(E 2.50\) Set of 4 black and chrome knobs for \(\bar{P}, \bar{B}\) tuners above
Aluminum \({ }^{\text {V }}\) coàx plugs ivfor E 1.00 20 mm anti-surge fuses.
800 mA . 1 A. 125 A \(16 \mathrm{~A} .2 \mathrm{~A} \quad 25 \mathrm{~A}\)
3.15 A . Your selection 12 for \(£ 100\)

Miniature mans transtormor \(£ 700\)
shrouded. ex new equipment 240 V in \(6-0.6 \mathrm{~V}\) out at 100 mA equt 240 V in mans lead and pug a Complete with leads on putput plug on input and short Miniature edgewise panel meters \(200 \mu \mathrm{~A}\) FSD.
Component Bargaina

300 mixed resistors \(1 / 2\) \& \(1 / 4\) watt E 150 300 modern mixed caps most types \(\{330\) \(100^{\circ}\) mixed electrolytics ... \(£ 2.20\) 300 muxed printed circuit components
300 mixed printed circuit resistors \(£ 1.00\) 300 mixed printed circuit resistors \(£ 1.0\) 100 gi.... E2. 20
20 assorted UDR's and thermistors
25 assorted presets, skeleton, etc. \(£ 120\)
25 assorted pots and presets \(£ 1.50\)
\(470 \mu \mathrm{~F} 25 \mathrm{v}\) radial, modern type 5 for \(£\) 200 mixed 1- and 2-watt resistors E1.50 100k sliders, mono or stereo

3 for 11,50 ea
\(100 \bar{k}\) v. cap pois, can be banked side by side, very compact
\(160 \mu \mathrm{~F} 25 \mathrm{v}\) axial leads 300 mixed modern caps .. €3 30 100 mixed modern miniatuge ceramic and plate caps . . . . . . . . €1.80

Semiconductor Bargains
100 new and marked silicon and germanium transistors including BC148, 200 new and marked transistors including 2N3055. AC128, BFY50, BD131, etc.

100 mixed diodes IN4 148, etc. 100 mixed diodes including zener, power and bridge types
£3. 30
BR 101 full spec. 5 for . . . . £1.00 TT 25 kV ctv eht triplers for Decca "Bradord" chassis brand new £2.50, 5 for \(£ 10\) BD131 3 for E1 00 SN76115N (equivalent MC1310) E100 TBA120A .. 2 for £ 1.00 MD140 16 ) t00 MV sensitivity S C proof no heat sink req With data and circuits \(£ 1.20\) sink req. With data and circuits
Data and circuits \(\quad \underset{20 p}{\mathcal{E} 1.20}\)

Deluxe Fibre Glay Printed
Circuit Etching Kita
Includes 150 sq. ins copper clad \(1 / \mathrm{g}\) board, 1lb ferric chloride. 1 dalo etch resist pen, abrasive cleaner,

Only E5. 30
Refill Packs for Above
150 sq. ins. fibre glass board
Dalo pen
1lb pen ..... 90 p
51 bs erric chloride to mil spec. Sibs. terric chloride to mil spec

30 p P.\&P ON ALL ABOVE ITEMS. SEND CHEQUE OR POSTAL ORDER WITH ORDER TO SEA ROOK SUPPLY DEPT

ETI. FPTFOPD ONMOL ROA
Callers by appointment only

\section*{SPECTRUM}

\title{
ANAIISER
}


AUDIO SPECTRUM ANALYSERS can be a valuable tool used in the setting up of a room acoustically, with a graphic equalizer such as the ETI design published in September 77, to monitor programme material or just as a gimmick to please yourself and friends.

When setting up rooms pink noise is pumped into the room using an amplifier. A microphone is then used to monitor the sound and its output is the input to the analyser. Now by adjusting the graphic equalizer a flat response can (hopefully) be obtained.

\section*{Design Features}

Spectrum analysis can be done by two main methods. The first is to have a tuneable filter which is swept across the band of interest. The output of the filter when displayed on an oscilloscope, will be a
frequency/amplitude graph of the

\section*{A ten channel unit designed for ETI by Tim Orr, who knows a thing or two about Active Filters and Op Amps.}


Fig. 1. Block diagram of the Spectrum Analyser.


Fig. 2. Circuit diagram of the input amplifier, filters and envelope shapers that provide the required PPM response.

\section*{PROJECT:Spectrum Analyser.}

input. While this gives a well-formated and accurate display it is not 'real time' in that if an event occurs at one frequency while the filter is sweeping elsewhere it will not be recorded. For this reason this method is used normally where the spectral content is constant and the sweep is only over a small
percentage of total frequency (such as the output of a radio transmitter).

For real time analysis the incoming signal is broken into
several frequency bands, just like in a graphic equaliser, and the energy level in each band is displayed on a 'scope or, as in this project, with a vertical column of LEDs. Analysers with anything from ten one octave steps to thirty one third octave steps are available. The display is usually a large matrix of LEDs, frequency along the horizontal axis and amplitude in dB steps vertically. This type of analyser will give a display of the average energy levels that exist and
is not capable of discriminating between individual harmonics, this being due to the frequency spectrum having been indiscriminately broken up into octave chunks. Thus the analysis is grainey but it does enable you to instantaneously determine the average spectrum of a sound.

The spectrum analyser described here has ten frequency bands and ten level steps of 3 dB each. The first prototype constructed used ordinary dual 741 op-amps and gobbled up
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{RESISTORS (all \(1 / 4\) watt \(5 \%\) )} \\
\hline R1, 2, 4, 81, 85 & 10k \\
\hline R3, 30, 66 & 1 M \\
\hline R5 & 100k \\
\hline R6 & 2 M 2 \\
\hline R7, 16, 73 & 4 k 7 \\
\hline R8, 17, 74, 75 & 470k \\
\hline \multicolumn{2}{|l|}{R9, 18, 27, 36, 45,} \\
\hline 63, 72 & 15k \\
\hline R10, 19, 61 & 6k8 \\
\hline R11, 12, 20, 21, 62 & 680k \\
\hline R13, 22, 31, 40, 49, & 58. \\
\hline 67, 76, 86, 90. & 82k \\
\hline R14, 23, 32, 41, 44, & \\
\hline 50, 59, 68, 77, 87. & \\
\hline 95 & 180k \\
\hline \multicolumn{2}{|l|}{R15, 24, 33, 42, 51, 60.} \\
\hline 69, 70, 78, 88, 96 & 3 k 3 \\
\hline R25 & 7k5 \\
\hline R26 & 750k \\
\hline R28 & 11k \\
\hline R29 & \(1 \mathrm{M}+100 \mathrm{k}\) \\
\hline R34 & 3k6 \\
\hline R35 & 360k \\
\hline R37 & 5 k 1 \\
\hline R38, 39 & 510k \\
\hline R43 & 1k8 \\
\hline R46. 118 & 2k7 \\
\hline R47. 48 & 270k \\
\hline R52 & 910 R \\
\hline R53. 54 & 91 k \\
\hline R55 & 1 k 3 \\
\hline R56. 57 & 130k \\
\hline R64 & \(9 \mathrm{k} 1+390 \mathrm{R}\) \\
\hline R65 & \(910 k+39 k\) \\
\hline R71 & 330k \\
\hline R79 & \(1 \mathrm{k} 5+180 \mathrm{R}\) \\
\hline R80 & \(150 k+18 k\) \\
\hline R82 & 2k4 \\
\hline R83, 84 & 240k \\
\hline R89, 126-135 & 820 R \\
\hline R91 & 1 k 2 \\
\hline R92, 93 & 120k \\
\hline R94 & 68k \\
\hline \(R 97\) & 2k2 \\
\hline \multicolumn{2}{|l|}{R98, 100, 102, 104, 106,} \\
\hline \multicolumn{2}{|l|}{108, \(110,112,114,116\).} \\
\hline 119-124, 136-145 & 47k \\
\hline R99 & 1 kO \\
\hline R101 & 680R \\
\hline R103 & 510R \\
\hline R105 & 360R \\
\hline R 107 & 240R \\
\hline R109 & 180 R \\
\hline R111 & 120 R \\
\hline R113 & 91R \\
\hline R115 & 62R \\
\hline R117 & 150R \\
\hline R125 & 18k \\
\hline
\end{tabular}


Fig. 4. Component overlays for the Spectrum Analyser boards. For reas ons of clarity only the top side foil pattern is shown here. The foil patterns are not given here but are available from ETI. SAE please.

150 mA . This meant that it had to be mains powered and was thus not truly portable. The size of the box used was approximately \(71 / 2^{\prime \prime}\) by \(41 / 4^{\prime \prime}\) by \(21 / 4^{\prime \prime}\) and into this space was crowded: 100 LEDs, 70 diodes, 140 resistors, 13 transistors, four 14 -pin ICs, 43 op-amps, 60 capacitors, two switches, a socket, a microphone and two printed circuit boards. This was not too much of a problem, the biggest problem was making the unit battery powered. By using the LM324 the problem was solved. This
component overlays carefully before starting any work on the project. It is wise to insert, and check, all through hole links first, followed by passive and active devices.

Each board, we complete, should be tested before final assembly.

Our photographs show how our unit went together, but the final appearance is very much a matter of personal taste.

\section*{Testing and setting up}

The filter bank may be tested with a
pink noise generator but preferably with a sine wave oscillator or for those lucky people with a swept oscillator (see ETI sweep oscillator, Aug. '77). This is ideal. The envelope follower output should draw out a contour of the filter, you will have to sweep the oscillator slowly to get a realistic impression of the response curve. If there are any substantial sensitivity changes from channel to channel, then by changing resistors R13, 22, 31 etc you can restore the overall flatness of the analyser. The sensitivity tolerance shouldn't be

CAPACITORS

C1
C2, 7, 12, 17, 22,27
\(32,37,42,47,52\)
C3, 4, 5, 6
C8 \(9,10,1\)
C13,14 15, 16
18,19, \(20 \quad 216\)
23, 24, 25, 26
\(28,29,30,31\),
C \(33,34,35,36\)
\(38,39,40,41\)
\(43,44,45,46\)
\(48,49,50,51,54\)
C53
C55, 56
\(10 \mu 16 \mathrm{~V}\) tantalum \(1 \mu 016 \mathrm{~V}\) tantalum 100n polycarbonate \(47 n\) polycarbonate
\(15 n\) polycarbonate

1 n0 polycarbonate \(22 n\) polycarbonate 220 n 16 V electrolytic

SEMI CONDUCTORS
IC1
IC 2-9, 11-13
IC 10
IC14
IC \(15,16,17\)
Q1
Q2-13.4
01.70

LED 1-100

SWITCHES
SW1
SW2
SW2
LM 32
MC 1458
CD 4017
CD 4016
BC 258
BC 169 C
IN 914
2V7400mW
TIL 209

MISCELLANEOUS
PCBs, Electret tie microphone (Eagle), case to suit, display filter, batteries plus holders, 3.5 mm jack socket, screws, bolts etc

\section*{BUYLINES}

All components used in this project should be physically small - hence \(1 / 4 \mathrm{w}\) resistors and polycarbonate capacitors
Try to secure discount prices for the hundred LEDS and possibly for the LM-324S. Watch out for adverts in this issue.

The case we used was from the popular Vero range which is stocked by many local shops nowadays.
is a low power ( 0.8 mA per package) quad op-amp. Thus, this device consumes one-tenth of the current per op-amp compared to the 741. The electronics consume only 20 mA and the LED matrix display, when operating another 10 mA . Therefore if the unit is used for two hours a day, 30 hours of usage will be obtained, as long as HP7s are used If the usage period is only half an hour per day then 60 hours may be obtained

\section*{Construction}

This project is not one to be undertaken lightly in order to keep the size of the unit down to hand held proportions, the two PCBs used have a very dense component layout and much care will be needed during construction

Study the circuit diagram and


\section*{HOW IT WORKS}

\section*{GENERAL SYSTEM}

The general system is shown in Fig. 1. A signal from an electret microphone (this one has quite a good frequency response) is amplified and fed into a filter bank. (An external signal could be plugged in instead of the microphone signal). The filter bank is a set of ten band pass filters, each covering a bandwidth of an octave. Thus a frequency range in excess of 31 Hz to 16 kHz is obtained. The frequencies given are in fact the centre frequencies of the bandpass sections. The filtered signals are then sent to ten peak envelope followers. These units determine the peak signal levels and display a PPM type of response. That is they react quickly to transients and decay relatively slowly. The display that they generate is easier to visually follow than, say, a VU response. The ten envelope signals represent the average signal energy throughout the spectrum. This information must now be displayed on the LED metrix.

To enable a low parts count solution, a multiplexed design was used. That is, the envelope signals are investigated serially in time. A ten-way analogue switch is used to look at each envelope signal in turn. This signal is fed into a set of ten comparators which are logarithmically spaced 3dBs' apart. The comparators drive the LED matrix. The size of the envelope signal determines which LED in the column is lit up. The larger the signal the higher the LED. (However, this machine can be easily modified to give a bar display.)

The comparator that is on tries to light up all the LEDs in its row, but only one LED will light up. This is due to the ten transistor switches that drive the matrix columns. Thus, when the comparators are investigating envelope four, only the switch to column four is on. In this way the information is 'drawn' in the correct frequency column. This multiplexing procedure may seem a little complicated, but had we just used a comparator per LED then 100 comparators would have been needed, this method uses only ten! However you don't get something for nothing and there are a few problems to be encountered. The comparators
used are LM324s. In fact they are op-amps, and tend to be rather slow. Their advantages are low power consumption and the ability to drive the LEDs directly. The speed problem means that when the multiplexer changes to the next channel, there is a short period of time when the comparators try to display 'garbage' because they are changing state. To overcome this, a blanking device turns off the LED matrix for a short period whilst the new information in the next channel is analysed. The multiplexing frequency is 500 Hz . This gives an analysis time of 2 msec per channel and the whole display is repeated fifty times a second. If you shake the display it will strobe. Try the same thing on your pocket calculator!

\section*{INPUT AMPLIFIER}

An electret microphone has been used as this is relatively inexpensive and yet provides a reasonably flat frequency response. It does however require a 1.5 V power supply and this is generated inside the analyser.
A gain selecting switch SW1 gives a 40 dB range of input sensitivities.

\section*{FILTER BANK}

Each channel of the filter bank is made up of two band pass filters. The filters are double tuned, that is they have slightly different centre frequencies. There is a slight dip in the pass band but at either side roll off slopes are very steep indeed. The filters used are single op-amp multiple feed-back bandpass filters with 'Q's of five each. Each filter pair has a very large signal gain in their bandpass of about 50 dB . The tolerance for the resistors and capacitors are \(5 \%\). Any components out of tolerance may significantly change the filter response curve. This will cause the gain of each channel to alter. If the gain change is significantly large then it may be necessary to alter the gain of the following envelope follower stage so that the display is not distorted. The op-amps used for the first 9 channels are LM324. These op-amps require a pulldown resistor on their output if gross crossover distortion is to be avoided. There may be some visible crossover distortion at the filter channels output, but this will prob-
ably not adversely affect the analyser operation.

\section*{PEAK LEVEL DETECTORS}

These devices are simple positive peak envelope detectors. The \(1 \mu \mathrm{~F}\) capacitor is charged up through the 3 k 3 resistor and discharged through the 180 k resistor. Thus the output waveform quickly follows any signal level changes, but then slowly decays, exhibiting a PPM response.

\section*{MATRIX DISPLAY}

IClld is a single op-amp oscillator. It generates a square wave output at 500 Hz which clocks IC14, a CMOS decade counter/ decoder. This has ten outputs, only one of which is high at any point in time. These ten outputs are used to control ten analogue transmission gates (switches), through which one of the ten envelope signals can pass. The switches are contained in ICs 15, 16 and 17. The output of the switches, this is in fact a multiplexer, is buffered by 1 Cllc , and fed to the ten comparators. The comparators have a fixed reference voltage on one of their inputs (spaced at 3 dB increments per device), and the envelope signal on the other. Thus, the comparators with reference voltages lower than the envelope signal try to go high. However, diode logic is used to make sure that only the highest comparator ON is the only one that is on. The logic turns OFF all those comparators below it, so that only one LED is ON at any point in time. The correct column has to be turned ON at the right time and to do this 10 transistors, Q4-13 are used. They are also connected to the counter decoder and are thus synchronous with the multiplexer. To provide the blanking a mono stable period is generated from the counter clock with \(\mathrm{Q} 2,3\). On the positive going edge, Q2 is turned on by the \(1 \mu \mathrm{~F}\) capacitor. However the capacitor quickly discharges and so a short monostable period is generated by Q2. It is inverted by Q3 and used to turn off Q4-13 (and hence the matrix display), for a short period during which the comparators are changing.

By omitting diodes D26-D70 a bar display rather than dot will be obtained.

more than \(\pm 3 \mathrm{~dB}\). If it is in excess of this then there is probably a wrong component somewhere.

By feeding pink noise to the device each column should be approximately the same height. Due to the nature of the noise the top of the columns may jump up and down a bit but this should be averaged out by the eye.

The LED matrix may cause some problems. If certain LEDs won't light up then they are either broken or in the wrong way round. If one LED is unusually dim then change it. If a column is unusually dim, then change the transistor that drives that column. If a row is unusually dim, then change the comparator that drives that row. Check that IC11 d has a square wave of about 500 Hz \(( \pm 30 \%)\) at its output.

\section*{\(4>1\} \rightarrow 1 \times\) Spccialsts in electronic timckceping}

Prices are going up! Sorry but it had to happen. Due to devaluation of the pound against the Japanese yen. Casio have had to increase prices on some watches

\section*{WATCH BATTERIES 65p} Ray-O-Vac long life. Most types D.I.Y. KIT 35p Case opening fool. fits most watches Tweezers, Equiv. list. Instructions. QUALITY AND VALUE


310R-17B (left) RRP \(£ 35.95 £ 29.95\) Stopwatch, Dual Time Zone 8.4 mm thick \(310 R-16 B\) (right) RRP \(£ 44.95 £ 34.95\) Stopwatch, Dual Time Zone. 7.45 mm thick.


310S-12B (left) Stopwatch. Dual
38CS-14B (right)
RRP \(£ 49.95\{39.95\)
RRP \(£ 64.95 £ 49.95\) Chronograph. Normal, net, lap and 1 st-2nd place times to \(1 ; 100\) second 7.9 mm thick.
NEW IBICO 075

\section*{Clock/Calculator}
with calendar
STOPWATCH
\(1 / 10 \mathrm{sec}\) to 10 hrs
NET TIMES
LAP TIMES
Full Memory. \%, \(\sqrt{ }\)
5000 hrs batteries
\(8 \times 65 \times 115 \mathrm{~mm}\)
OPTIM TAC-1
LCD TRAVEL/ALARM CLOCK



For car pocket, travel and home use. Backligh Am/pm indicator. Four-minute alarm (24-hour)
Two silver oxide batteries Leatherette pouch. 2.6 Two silver oxide batteries Leatherette pouch. 2.6 \(\times 1.26 \times 0.45\) inches

\section*{£22.50}

CASIO CALCULATORS
a0. 810 Clock/ Calculutor \(£ 16.95\) DIGITHON SCIENTFICS: ғ×31 £11.95 \(\mathrm{Fx} 39 £ 15.95\) Fx \(140 £ 17.95\) fx120 £19.95 LCD: LC822 £10.95 LC78 £16.95 Fx2000 £19.95 fx3000 £25.95
For car pmene Bandigh

Dept. ETI, 19/21 Fitzroy Street, Cambridge. Tel. 0223312866

\section*{TO CLEAR (FULL SPEC.) LIMITED STOCKS}

Signetics \(2102 £ 1.45,2513\) up per casé £5.50, 1702 A £6, 2708 £10.50,Cannon D type plugs/skts., 25 way skt. 60p, 37 way plug or skt. 80p, 15 way plug or skt. 50p, Micro swt. with button panel mnt. push to make or push to break 20p. Dunco Reed relay 20 v 40 mA coil, 4 make \(32 \times 25 \times 8 \mathrm{~mm} 10\) for \(£ 1\), RL54 submin red LED 15 p , p\&p \(10 p\) on above. New cat. s.a.e. \(8^{\prime \prime} \times 6^{\prime \prime}\)

\section*{POCKET PAGER}

Miniature crystal controlled FM RX Single Superhet around 30 MHZ 450 KHZ IF contains various tone detectors. Ideal for modification to 27 MHZ Radio Control OR 28 MHZ Amateur Band. Complete, without 2.5 v DEAC + circuit of similar type £3.95. P\&P 25p

A1, A2, A3 Boards still available.

\section*{L.B. Electronics 43 Westacott, Hayes Middlesex UBA 8AH}

\section*{ETCH RESIST TRANSFER KIT SIZE 1:1}

Complete kit 13 sheets 6 in \(\times 41 / 2\) in £2.50 with all symbols for direct application to P.C. board. Individual sheets 25p each. (1) Mixed Symbols. (2) Lines 0.05 (3) Pads (4) Fish Plates and Connectors (5) 4 Lead and 3 Lead and Pads (6) DILS (7) BENDS \(90^{\circ}\) and \(130^{\circ}\) (8) \(8-10-12\) T.O. 5 . Cans (9) Edge Connectors 0.15 (10) Edge Connectors 0.1 (11) Lines 0.02 (12) Bends 0.02 (13) Quad in Line.
FRONT AND REAR PANEL TRANSFER SIGNS
All standard symbols and wording Over 250 symbols, signs and words. Also available in reverse for perspex, etc. Choice of colours, red, blue, black, or white. Size of sheet 12 in \(\times 9 \mathrm{in}\). Price E 1.

\section*{GRAPHIC TRANSFERS}

\section*{WITH SPACER}

ACCESSORIES
Available also in reverse lettering, colours red, blue, black or white. Each sheet 12 in . 9 in contains capitals, lower case and numerals \(1 / 8 \mathrm{in}\) kit or \(1 / 4\) in kit . \(£ 1\) complete. State size.

AH orders dispatched promptíy.
All post and VAT paid
Ex U.K. add 50p for air mail Shop and Trade enquiries welcome Special Transfers made to order

\section*{E. R. NICHOLLS}
P.C.B. TRANSFERS

DEPT. ETI/2
46 LOWVIELD ROAD
STOCKPORT, CHES.061-480 2179

\section*{QUARKS}

\title{
Truth is Stranger than Beauty - or was it Up is more Charming than Sideways? A guide to the strange world of Atomic Physics by Robin Moorshead.
}

IT WAS THE GREEK PHILOSOPHERS who coined the term 'atom' as the basic indestructable building brick of all matter. They even realized that matter and energy were closely related when they said all matter was made of the elements fire, water, earth and air. However it was 2000 years before man really began to investigate the subject scientifically.

Modern science began with the parallell developments of physics and chemistry in the seventeenth and eighteenth century. These scientists discovered the true nature of chemical reaction which led to the idea that all matter consisted of a limited number of elements, which they believed were made of indestructable atoms. They thought that all that was necessary was to find out how many elements there were and that part of science was complete. At the same time Newton formulated the "universal law of gravitation" which'was the first "force field" to be understood. '

By the end of the nineteenth century the picture had become more complex. With the discovery of more elements it was found that they could be laid out in patterns and groups, a fact which strongly suggested that they had internal structure.

When the electron was discovered this single picture of the atom was finally shattered. But a new simple picture was developed consisting of electroncs floating in positive charge clouds like currants in a bun. The physicists had added a second force field, the electromagnetic, to the list which helped them to explain the relationships between the positive and negative charges in the atom.

\section*{May The Force Be With You}

The discovery of radioactivity gave the physicists a new technique. As the unstabie nuclei exploded the high velocity debris could be used to shatter other atoms. This soon led to the discovery of the proton, the neutron and two new forces.

There had to be an incredibly powerful force binding the protons together in the nucleus since the electromagnetic force should blow the tightly packed positive charges apart instantly. Secondly it was discovered that the neutron itself was radioactive, it would only live for about 11 minutes outside the nucleus. This suggested that there was another rather weak force which held together the parts of a neutron. They were named the strong nuclear and weak nuclear forces respectively. The disintegration of the neutro caused tremendous problems, since they calculated that apparently energy was lost when the event happened. The only way to explain this without abandoning the law of conservation of energy was to propose a fourth
particle the neutrino. This would carry away the missing energy. So when the neutron disintegrated this happened:
\[
\text { neutron } \rightarrow \text { proton }+ \text { electron }+ \text { neutrino }
\] It was over twenty years before the neutrino was finally discovered.

The nineteenth century concept of a force field had by now given way to the idea that a force was transmitted by an "agent". So when two particles interacted they did so by exchanging the agent of the force. The agent of gravity was called the graviton (which has not yet definitely been detected). The agent of the electromagnetic force was the photon (which is easily detected). This meant that the strong nuclear force needed an agent which was called the 'mesotron'. But there was an important difference between the latter and the first two, since the latter and the first two, since the gravitational and electromagnetic force act over infinite distance but the strong nuclear force only acts over \(10^{-13} \mathrm{~cm}\). The agents of the infinite forces had no mass, but the mesotron had considerable mass. A new particle was discovered with the right mass but it didn't behave as it should, a problem not solved until after World War II.

\section*{May The Laws Be With You}

Also at this time a particle in the 'positron' was dicovered, it was opposite in every respect to the electron, in fact antimatter. Furthermore when it collided with an electron they annihillated one another producing a very energetic photon. This was confirmation of Einstein's equation \(\mathrm{E}=\mathrm{mc}^{2}\) which mathematically relates matter and energy.

So to sum up the situation before World War II we have:
known particles:
Electron
Proton
Neutron
Mesotron (with some wrong qualities)
Photon
Suggested:
Neutrino
Graviton
Forces:
Gravitation
Electromagnetic
Weak nuclear
Strong nuclear
Combined with this they had established several laws which governed particles behaviour when they collided:
(a) Mass-energy is conserved ie: If two particles collide and create two new particles their combined masses may be greater or less than before but this is compensated for by them having more or less kinetic energy.
(a) Electric charge is conserved, ie: an electron cannot collide with a neutron and produce a positive particle, it must produce a negative one (and any number of neutral ones).
(3) Most of these particles spin, which again cannot be lost when they collide - like electric charge it must reappear in the new particles.
(4) At the time they believed also that any particle created through the strong nuclear force must disintegrate by it (likewise the weak nuclear). This was later found to be wrong.

The situation was quite satisfactory at the time, with a manageable number of particles and laws which governed all they had observed. But this simple picture was not to last long. Betwen the wars techniques had been developed to accelerate particles to. immense velocity, so that they no longer needed to rely on radioactive disintegrations but could produce large numbers of very energetic missiles at will. Also they could see there events happening in "cloud chambers" where the particles would leave vapour trails exactly as high flying aircraft do.

It was with these techniques that the conundrum of the misbehaving mesotron was solved soon after World War II. In fact the mesotron they sought was found and it behaved exactly as expected, but it rapidly decayed yielding the particle they found before the war. So it had to be named and became the \(\mu\) meson (the first discovered) and the \(\pi\) meson (the new particle). These are now known as muons and pions.

\section*{Strangely Strange}

Now the trouble really started, most peculiar disintegrations were observed producing new particles which had no place in the scheme of things, and worse than that they broke the law that said if they were created by a strong interaction they must decay by it. They were created strongly and decayed weakly. Another feature of their creation was always being produced in pairs. An example of such a happening is shown in Fig 3, here a pion strikes a proton producing two new particles, a 'kaon' and a 'lamda hyperon', these then subsequently disintegrate to yield various known particles. This strange behaviour could be explained by analogy to the law of conservation of electric change. If matter possessed a new quality like charge which had to be conserved when such a particle was produced so an opposite must also be produced. This quality was termed 'strangeness'. The kaon has a strangen'ess of +1 and the lambda hyperon that of -1 , the net result be zero change in total strangeness. Strangeness is now more commonly known as 'Hypercharge'.

The difficulties did not stop there, particles popped up all over the place and everything was in disarray, clearly it was necessary to classify the particles as the elements had been just 100 years ago.

The hadrons ("hard ones') are so named because they respond to the strong nuclear force. They themselves are divided into two subgroups on the basis of the way they spin, into baryons and mesons. Another


Fig 1 (top left) is what the disintegrations of a neutron would look like, meaningless at first but very meaningful on interpretation. The neutron enters firom the bottom leaving no trail as it is incharged, when it disintegrates it yields a light negatively charged electron which has a curved track due to an applied magnetic field, the proton curves in the opposite direction being positively charged but much less than the electron since it has 2000 times the mass of the electron. So in fact to the physicist it becomes Fig 2 (top right). The hatched lines represent uncharged particles which do nor leave trails.

Fig 3. (below) shows the formation of a kaon and lamda hyperon from a pion striking a proton.

difference is that mesons can be created in any number during a reaction, but the number of baryons is constant like total strangeness, ie if a baryon is created so must an antibaryon, and only a baryon can annihilate an antibaryon. The leptons are the 'small charge', little particles only involved in weak interactions. The photon is in a class of its own at present but would be with the graviton if it was discovered.


Fig. 4. Classification of particles.
As more and more particles appeared (over 100) they were all classified, and subgroups began to appear within the larger groups. The parallell to the classification of the elements 100 years ago is quite remarkable. Of course this immediately once again suggests internal structure.

\section*{Up, Down And Sideways}

In 1963 two independent workers came up with a system which would explain all the hadrons in terms of just three particles, the up, down and sideways (or strange) quarks, and their antiparticles. The leptons did not lend themselves to this explanation and are still regarded as truly elementary.

The baryons are said to be composed of three quarks and two mesons, one quark and one antiquark. (No satisfactory explanation of why there are no groups of one four, five or six quarks has yet been offered). The properties of the quarks are such that their sum would be that of the particle they make up.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & SPIN & ELECTRIC CHARGE & \[
\begin{aligned}
& \text { BARYON } \\
& \text { NO }
\end{aligned}
\] & STRANGENESS \\
\hline \multirow{3}{*}{QUARKS} & U (UP) & 1/2 & +2/3 & 1/3 & 0 \\
\hline & O (00WN) & 1/2 & -1/3 & 1/3 & 0 \\
\hline & S (SIRANGE) & \(1 / 2\) & -1/3 & \(1 / 3\) & -1 \\
\hline
\end{tabular}


Fig. 5

A proton for example consists of one down (d) and two up (u) quarks. So if the properties of the three quarks are summed up we have;
\begin{tabular}{r|ccc} 
& \multicolumn{4}{c}{ OBSERVED QUALITIES } \\
& \(U\) & \(U\) & \(D \quad\) OF PROTON \\
\hline SPIN & \(1 / 2\) & \(1 / 2\) & \(1 / 2=11 / 2\) (FRACTIONAL) \\
CHANGE & \(+2 / 3\) & \(+2 / 3\) & \(-1 / 3=+1\) \\
BARYON NO. & \(+1 / 3\) & \(+1 / 3\) & \(+1 / 3=+1\) \\
STRANGNESS & 0 & 0 & \(0=0\)
\end{tabular}

Fig. 6
The important feature of spin is whether it is fractional or integral, the spin of the baryons is always fractional and that of the mesons integral.

An example of a meson could be the positive pion \((\pi+)\) which consists of one quark and one antiquark, the up (u) and the antidown (d):
\begin{tabular}{l|ll} 
& \(u\) & \(\bar{d} \quad\)\begin{tabular}{l} 
OBSERVED QUALITIES \\
OF PION
\end{tabular} \\
\hline SPIN & \(1 / 2\) & \(1 / 2=1(\) INTEGRAL) \\
\begin{tabular}{l} 
ELECTRIC \\
CHARGE
\end{tabular} & \(+2 / 3\) & \(+2 / 3=+1\) \\
BARYON & \(+1 / 3\) & \(-1 / 3=0\) \\
NO. & 0 & \(0=0\)
\end{tabular}

Fig. 7
The real justification for the quark theory can be seen by examining one of the "subgroups" found in the baryons. If one compares strangeness, electric charge and number of types per grouping ('istopic spin') we get a group thus:
\begin{tabular}{|c|c|c|}
\hline STRANGENESS & NUMBER OF TYPES & \\
\hline 3 ? & \(1 ?\) & ? \\
\hline 2 & 2 & \(\pm- \pm\) \\
\hline 1 & 3 & \(\Sigma \Sigma \Sigma \Sigma^{+}\) \\
\hline 0 & 4 & \[
\begin{array}{ccc}
\therefore- & \wedge^{\circ}- & \wedge^{+}-\wedge^{++} \\
-1 & 0 & +1 \\
+2
\end{array}
\] \\
\hline & & ELECTRIC CHARGE \\
\hline
\end{tabular}

Fig. 8

This suggests another particle which would sit at the apex of the triangle. It would be a baryon, it would have no partners, and it would have three doses of strangeness. In fact it would be a baryon with three strange quarks ( \(\mathrm{S}, \mathrm{S}, \mathrm{S}\) ). And sure enough it was found soon afterwards and is known as the omega minus ( \(\Omega-\) ).

ELECTRONICS TODAY INTERNATIONAL - JUNE 1978

So once again the world was simple consisting of the following:
\begin{tabular}{cc} 
QUARKS & \begin{tabular}{l} 
LEPTONS \\
UP
\end{tabular} \\
DOWN & MUON \\
STRANGE & NEUTRINO (ELECTRON TYPE)** \\
& NEUTRINO (MUON TYFE)
\end{tabular}
" It was realized in 1962 that there were two types of neutrino, one associated with the electron and one with the muon.

Fig. 9

\section*{Charming Colours}

So all particles with mass could be explained by these seven particles (and of course their antiparticles). But it was thought a pity that there was not a fourth quark, so there would be four quarks and four leptons. This was more than just the appeal of four to four symmetry, the leptons were 'paired' into electron plus its neutrino and muon plus its neutrino, so why not the same for quarks. The up and down quarks seemed 'paired' so why not a partner for the strange quark?

However as we progress into the late 1960's despite the fantastic accelerators and other resources, the quarks themselves remained undetected. Some evidence emerged that hadrons behave as a 'bag of bits', but proved impossible to split the bag open. At the same time the fourth quark ceased to hoped for just in terms of symmetry. It was now an essential member of the group of eight, and if it were not found the whole system was in danger of collapse. The reasons for this are very complex, they relate back to an hypothesis put forward as far back as the 1930's. This was that the weak nuclear force was the electromagnetic force 'in disguise'. This would require a new quality like strangeness to exist. Since it was the 'charm' that would ward off the collapse of the quark theory it became known as the charmed quark. It was eventually found in 1976

Since it is obvious some immense force must bind the quarks together in hadrons, physicists were naturally interested in this. This became known as the 'colour force'. The agents of transmission of this force are called 'Gluons'. The reason it is called the colour force is that physicists have always found it offensive to have two or more identical particles confined together. So it was suggested the quarks assumed colour. (The colour is just a label, there is no implication that they are actually coloured). In the \(\Omega\) - for example which has three identical quarks, one is red, one green and one blue, with no net colour since they equal white. The mesons are also 'colourless' since they consist of a quark and an antiquark, and antiquarks have the complimentary colours (cyan, magenta and yellow). So they would always consist of a coloured quark with its complimentary coloured antiquark, again a net colour of white. But pause a moment, we now have four quarks in three colours (and the same number of antiquarks). Life is not as simple as it was in 1964.

\section*{Now You See It?}

As far as the isolation of individual quarks is concerned there are two schools, one who believes they have done it. The other which believes it is impossible.

Those who believe they have done it claim to have done so by suspending minute balls of niobium metal in an oscillating magnetic field. By this technique they can measure the electric charge on the ball to an accuracy of \(1 \%\) of that of one electron! So the fractional charge of \(1 / 3\) or \(2 / 3\) of one electron charge associated with individual quarks should be very apparent, being 33 times greater than the error. This they claim to have done.

There are at least three suggested explanations as to why quarks cannot be isolated. One for example suggests the quarks can be thought of as being on the ends of a piece of string. As energy is fed into the system the string stretches, absorbing energy. So when it breaks it absorbs energy to create a new pair of quarks, so they are never seen in isolation. It is obvious that the validity of the quark theory lies in the isolation of an actual quark, or in a watertight explanation of why they cannot be separated.

However the story does not stop here. In late 1977 it was reported from America that two new quarks appear to be necessary to explain a newly found particle the 'upsilon'. These are named the 'top' and 'bottom' quarks which will have the qualities of 'truth' and 'beauty' (like strangeness and charm). Presumably if we wish to retain the symmetry between leptons and quarks we will expect the appearance of two new leptons!

\section*{But On The Other Hand}

The fact that the search for the 'fundamental particle' seems to go through layer after layer of structure has caused considerable disquiet amongst scientists and philosophers. The Chinese view matters such as this in a rather different way to the West and call such particles 'stratons', implying they are just another layer. Also it has been observed that our approach to the subject may be doomed to failure, since it is in many senses based on the false premises of the original Greek philosophers. Currently there is much discussion about the concept that there is no one way of looking at a subject such as this, nor may there ever be. It may well be that we will always have to use one explanation when we explain one aspect, and another explanation when we wish to explain another. This has been the case for the electron since the 1920's since it is a particle with known mass, but also behaves like a wave. For some purposes it is talked of as a particle and for others as a wave.

The Eastern philosophy that all things are in harmony with one another has not gone unnoticed by the philosophers and scientists, and there have been interesting developments in this field, with respect to forces. Newton unified terrestrial and celestial gravitation, Maxwell unified electricity and magnetism, Einstein at the time of his death was trying to unify these two together. Since then the weak nuclear force and the electromagnetic have been unified, and finally early this year total unification has been proposed with the one force 'supergravity'. Perhaps somebody will come along and unify all matter!

\section*{BUILD THE}

- Genuine 5 silicon transistor circuit, does not need a transistor radio to operate.
- Incorporates unique varicap tuning for extra stability.
- Search head fitted with Faraday screen to eliminate capacitive effects
- Loudspeaker or earphone opera tion (both supplied).
- Britain's best selling metal locator kit. \(4,00 \mathrm{n}\) already sold.
- Kit can be built in two hours using only soldering iron, screwdriver, pliers and side-cutters.
- Excellent sensitivity and stability
- Kit absolutely complete including drilled, tinned, fibreglass p.c. board with components siting printed on
- Complete after sales service.
- Weighs only 2202 .; handle knocks down to 17 " for transport
Send stamped, self-addressed envelope for literature.

\section*{Complete kit} with pre-bu search coil
£15.95
Plus \(£ 1.20\) P\&P
Plus £1.37 VAT (8\%)

Built, tested
and
Guaranteed
\(£ 20.95\)
Plus £1.20 P\&P
Plus £1.77 VAT (8\%)
MINIKITS ELECTRONICS,
6d Cleveland Road, South Woodford.
LONDON E18 2AN
(Mail order only)

\section*{SEMICONDUCTOR OFFERS ALL FULL SPEC.}

BC212. BC 182, BC237, BF197, BC159, 8CY71, all Ap each. RCA 2015 TH200 20 Motorola MRD 3051 Photo Transistors 35p. N. Chennel F.E.TS. similar to 2N3819 18p. Motset Sim to 40673 35 p . 3 N 140 Mosfets 60 p. M203 Dual Matched Parrs Mostets
Single Gate per F.ET 40 . St 301 Dual Marched Pair Single Gate per F.E.T. 40 p . SL301 Dual Matched Pair SIL N.P.N
Power Transistors FT 300 MHz 30 o . Intel 1024 bit MOS Rams Power Transistors FT 300 MHz 30 D . Intel 1024 bit MOS Rams
95 p . Mullard BE1 13 Triple Varicap Diode 35p. MC1310 Stereo Decoder I.C. \(\mathrm{E1.20}\). TBA800 I.C. Amps 90p CD4051 CMOS \(50 \mathrm{p} .7418 . \mathrm{pin}\) D.IL. 23 p .500 v 600 mA Bridge Recs. (ex. equip.)
 E.M.Stic V Reas 95p. Mirt. Nixies ITT \(5870 \mathrm{Si} 13 \times 6 \mathrm{~mm}\) Fig Size 85. Nixies ITT GN \(/ 9\) AA \(13 \times 8 \mathrm{~mm} 65 \mathrm{p}\). O. \(2^{\prime \prime \prime}\) or \(0.125^{\prime \prime}\) Red LEDS 12 p each. MAN 3 A 3 mm LED Displays 50p. Murata 40 KHz transducers
15 mm diam, \(£ 295\) pair. NE555 35p. 741 S (wide bandwidih) 15 mm diam. £2.95 pair, NE555 35p. 741 S (wide bandwidth)
35 p . LM \(38080 \mathrm{p} . \mathrm{LM} 38\). 90 p

Michopmones. Grundig Electret Inserts with built-in FE.T Preamp \(£ 1.50\) Crystal Mike Inserts 37 mm 45 . Elecrrel
Condenser Mikes \(1 \mathrm{~K} \Omega\) Imp, with std. Jack Plug £2.85. Casserte Condenser Mikes \(1 \mathrm{~K} \Omega \mathrm{Imp}\), with std. Jack Plug \(£ 2.85\). Casserle
Condenser Mikes with 2.5 and 3.5 Jack Plugs \(£ 2.85\). Standard Cassertie Mikes 200 ohm Imperd. with 2.5 and 3.5 Jack Plu
E1 20 . A Mikes Mobile Type 50 KO . Thumb Switch, \(£ 4.20\).

MORSE KEYS-Hi-speed Type, all motal. E2.25. SWR/Power Merer yppe SWR 50 , SWR: 1 S-1 I, Power 0. \(1 \mathrm{~kW}, 3.5-150 \mathrm{MHz}\). 52 ohms imped., E12.75. SWR ANDF S. Meter. 15060 . ohms imped,
supplled with
Xal for this coverage, E7.90

CAYSTALS. 300 KHz HC6U 40 p .4 .43 MHz C
\(0.1^{\prime \prime}\) Edge Connectors. 64 way 65 p .32 way 40 p
RELAYS. Min sealed Reiays, 4 pole changeover, \(360(6 \mathrm{v}\) OC) 45p. Min. 220v AC Sealed Relay 2 pole C/O 45 p . 240 vAC Sealed
Relay 3 pole \(\mathrm{C} / \mathrm{O} 5 \mathrm{amp}\) Contacts 11 -pin base BOp. 12 volt 4 pole Rolay Reed Relay 20p. 30 , furn dial mechanism with locking arm, aluminium tinish dial scaied 0.100 , window \(0.29,32 \mathrm{~mm}\) diam
6.3 mm spindie new \(\varepsilon 1.75\) 6.3 mm spindle new \(£ 1.75\)

MOTORS. 15 to \(6 \vee\) DC Modet 20p. 115 VAC mm. 3. R.P. M with Gearboy 30 p 240 VAC Synch Motor
Synch. Motor \(1 / 24\) th R.P M 65 p.

BOXES. Black A.B.S. Plastic with brass inserts and lid. \(75 \times 56 \times\) \(35 \mathrm{~mm} 40 \mathrm{p} 95 \times 71 \times 35 \mathrm{~mm} 49 \mathrm{p} .115 \times 95 \times 16 \mathrm{~mm} 57\) p. Radio pliers. Sin , insubated handles E . 40 . Diagonal side eutters. 5 in

TRANSFORMERS. \(\mathbf{- 6 - 0 - 6 \mathrm { v } \quad 1 0 0 \mathrm { mA } , 9 - 0 . 9 \mathrm { v } 7 5 \mathrm { mA } \text { . } 1 2 - 0 . 1 2 \mathrm { v } ~}\) 50mA 75p each.
Transformer 30 p .
CONOENSER MIKES. EM 506 Condenser Mikes. Uni directional, F. E. Amp, Dual imped,
18 KHz . on/off swith, 11.00 . Miniature Tie Pin Condenser Mike, 1 K imp . omni-directional, uses hearing aid battery (supplied) £4.95.
TIL 305 Aipha-numerical Displays, with data, £2.75.

SWITCHES. Min. Toggle SPST \(8 \times 5 \times 7 \mathrm{~mm} 45 \mathrm{p}\). OPDT \(8 \times 7 \times\) 7 mm 60p. OPDT Centre OH \(12 \times 11 \times 9 \mathrm{~mm} 75 \mathrm{p} 4 \mathrm{P} 2 \mathrm{~W}\) Sliders 20p. DPDT C/O Sliders 20p. R.S. Single Pote C.irches \(13 \times 10 \times\) 4 mm 20 p . G.P.O. Keyswith Assy. 3 Switches \(2-3\) Way. \(1-2\) way 6 mm 15 p . Plessey Winkler Stud Swithes, 2 bank. 1 pole 30 way adi. stop. 75 p. Solder Sucker. Plunger iype. eve protection, eplaceable nozre.

TAPE HEADS-Cassette Stereo \(£ 3.00\). BSR MN \(13301 / 2 \mathrm{rack}\) Dual Impedance Rec./Playback 50p. BSR SRP90 1/ Track Stereo Rec./Playback \(£ 1.95\). TD 10 Assemblies, two heads. pe hack
Rec./Playback Staggered Stereo with built-in erase per head Rec./Playback Staggered Stereo with bu
\(£ 1.20\) Tape Head Demag 240 AC AC \(£ 1.95\).

Buzzers-GPO Type 6.12v 20p. Min. Solid State Buzzers
6-9.12 or 24 v 15 mA 75 p . All Metal Buzzer. 30 mm diam. 6.12 vols. high tone. 25 p
U.M.F TY Tred Push Bution Tuners (not Varicap), new \begin{tabular}{l} 
U.M.F TV Transist \\
and boxed. \\
£2. \\
\hline
\end{tabular}

POT CORES -AdJ. Vinkor 250-370 Micro H 20p. 260 or 500 Milli Henry Cores \(10 p\) each.

METERS-Stereo Tuning Meters \(100 \mu\) a per movement 2.75 Grundig Batt. Level Meter \(1 \mathrm{~mA} 40 \times 40 \mathrm{~mm} £ 1.10\). Min Level

BOARDS. 465 KHz 1.F Panels, 6 I.F.T.s 30 p . Board with 1412 v
N/O Reed Relays \(\mathrm{E2} 40\) soard with \(6 \mathrm{v} \mathrm{C} / \mathrm{O}\) Reed Relay 11.20 BOARDS.
N/O Reed Relays \(£ 2.40\). Soard with 6 v C/O Reed Relay \(£ 1.20\).
Cor Contact cooled sel rect. \(12 \mathrm{v} / 750 \mathrm{~mA}-15 \mathrm{p}\). Cannon
inlay plugs end sockets, free plug \(\rightarrow\) new \(£ 1.50\) pair.

AEROSOLS-Servisol Switch Cleaner + Lubricant 80zs.
freezer 60zs. 50 p . Gear Clieaner \& Tar Remover 14025.85 p . SOLENOIDS-240vAC 45p 12vOC H. Outy 75p

POSTAGE 3OP UNLESS OTHERWISE SHOWN (EXCESS POSTAGE REFUNDED
COST VAT INCLUOED IN ALL PRICES.
S.A.E. FOR LISTS

PROGRESSIVE RADIO
31 CHEAPSIDE, LIVERPOOL 2
051-236 0982

\section*{ELECTRONIC CALCULATORS}
"FORTRAN SYSTEM"
*CASIO PROFXI (as anains charger included \(*\)

\section*{SPECIAL OFFER}

Texas T159 with PC100A £356
(Price includes all items as mfg. specification)
SPECIFICATION LISTS ON REQUEST ;Send S. A. Envelop GOODS FULLY GUARANTEED. PRICES EXCLUDE VAT (ADD 8\%) BUT INC. P\&P CHEQUE WITH ORDER Company. Hospital and Governm

\section*{EXPORT ORDERS ACCEPTED}

Tel. 01-4559855


22 Cowper Street, London, EC2
(Near Old St: Station) Tel. 01-455 9855
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{IN4148 Diodes by ITT/Texas. 100 for £1:50. These are full spec. devices.} \\
\hline \multicolumn{4}{|l|}{Unencoded Hexadecimal 19 keyboard 1-10 ABCDEF. 2 optional keys. Shift key £15.00.} \\
\hline \multicolumn{4}{|l|}{MM2102 AN-4L. \(1024 \times 1\) Bit. 450 nano sec. Static Ram. £1.60 each. \(4 / £ 6.00\). 8/£11.60.} \\
\hline \multicolumn{4}{|l|}{AY5-1013 UAR /T. £6.00.} \\
\hline \multicolumn{4}{|l|}{FND 500 Seven Segment Common Cathode Display. £1.30 each. \(4 / £ 5.00\).} \\
\hline \multicolumn{4}{|l|}{```
Red Leds 0.125"' or 0.2'1.10 for £1.20.
100/£9.00. 1,000/£60.00.
```} \\
\hline \multicolumn{4}{|l|}{Murata Ultrasonic Transducer. £2.50 each. \(£ 4,00\) pair.} \\
\hline \multicolumn{4}{|l|}{741 Op Amp. 25p each. \(10 / £ 2.00\).} \\
\hline \multicolumn{4}{|l|}{555 Timer. 28p each. 10/£2.50.} \\
\hline 4001 & 14p. & 4029 & 110p \\
\hline 4007 & 16 p & 4047 & 100p \\
\hline 4011 & 14 p & 4049 & 40p \\
\hline 4012 & 14p & 4060 & 120p \\
\hline 40.13 & 50p & 4066 & 55p \\
\hline 4015 & 90p & 4069 & 20p \\
\hline 4016 & 40p & 4071 & 16p \\
\hline 4017 & 90p & 4072 & 16p \\
\hline 4020 & 100p & 4081 & 16p \\
\hline 4022 & 90 p & 4082 & 16p \\
\hline 4023 & 16p & 4510 & 120p \\
\hline 4024 & 65p & 4511 & 150p \\
\hline 4025 & 16p & 4516 & 110p \\
\hline 4026 & 160p & 4518 & 130p \\
\hline 4027 & 50p & 4528 & 100p \\
\hline 4028 & 90p & & \\
\hline \multicolumn{4}{|c|}{Prices include Post and VAT} \\
\hline \multicolumn{4}{|r|}{\begin{tabular}{l}
P. PDMELL \(\begin{aligned} & \text { (formerly } \\ & \text { Xeroza Radio) }\end{aligned}\) \\
306.ST'PAUL'S ROAD \\
HIGHBURY CORNER, LONDON N. 1 \\
Tel: 01-226 1489
\end{tabular}} \\
\hline
\end{tabular}

\title{
Alchtronims torta \\ international
}

\section*{What to look for in the July issue: On sale June 2nd}

\section*{ETI Single Board \\ Music Synthesiser \\ ONLY A FEW magazine projects become classics. We be lieve this is one of them. The TRANSCENDENT 2000 is a live performance music synthesiser designed by Tim Orr (who previously designed electronic music equipment for EMS Ltd) as a joint venture for ETI and Powertran Ltd. \\ }

The Transcendent 2000 is a 3-octave unit with portamento, pitch-blending, a VCO with shape modulation, a versatile VCH with both low and high pass outputs and a separate dynamic sweep control, a noise generator and an ADSR envelope shaper. There is also a slow oscillator and new pitch detec-
tor.
It is estimated that the performance is superior to many commercial units up to three times the price of the complete kit that will be available (kit rights are restricted to the co-
sponsors of this project, Powertran Ltd).
Construction is extremely simple as virtually everything is on one PCB - there are in fact only a couple of dozen wires to connect in all!

\section*{incill}

Man is just a machine, or is he? Is his brain the ultimate mechanism or could it be improved by bio-engineering techniques? How can we develop artificial intelligence to match the abilities of our own brains and what do we have to learn from it?

These questions form the basis of an ETI article next month and we hope to show that engineering and biology have more in common than most people think.

\section*{VFETS}

Recent advances in semiconductor technology have produced VFET audio power amplifiers whose specifications are so good that they can be conveniently ignored.

We think that this technology is very much here to stay and well worth 'getting in to'. This article, reprinted from our Canadian edition, gives a comprehensive introduction to the theory and practice of audio VFET technology.

\section*{OSClLLATORS}

One of the problems in electronics is to stop amplifiers from oscillating; another is to get oscillators to oscillate properly, if at all.

In this feature in the July issue, we continue our series of circuit explanations by covering oscillators; previous parts have covered Op-Amps and Amplifiers.
Once again, the feature is littered with practical circuits using all sorts of different techniques and includes a survey of dedicated oscillator IC's.

\section*{How much for a 10W Stereo Amplifier?}
"What do you reckon would be a really good ETI Offer price on this lot?", said ETI's Editor to the staff. The lowest shot was £15, the highest \(£ 25-\) we're going to do it for \(£ 8.45\) (including \(£ 1\) postage and packing)!

The offer is for two Mullard 10W amplifiers and a stereo preamp with equalisation and inputs for magnetic and ceramic pickups (also a Mullard product). All you need is the controls and power supply. Numbers are limited so get in quick next month.

OUR PREVIOUS digital alarm clock offer (which we have run for several years) was a real success - over \(10 \%\) of ETI readers own these. We have been searching around for one of even better value and have come up with a winner - with an equally good spec and at a much reduced price; the Unik Time Digital Alarm.

This clock features a large, bright LED display in a really stylish case. It's really easy to set: lift up the hinged panel on the top and all the controls are there including fast and slow setting buttons. The hinged panel, when down, acts as the snooze switch - easily found by that early morning groping hand to give you 9 minutes extra in bed.

Mains operation only \((240 \mathrm{~V} / 50 \mathrm{~Hz})\) with a 12 hour display. "AM/PM" and "Alarm set" indicators are on the front while an internal switch enables you to display the last significant minute and seconds if you wish.

\section*{(Inclusive of VAT and Postage)}

An example of this clock can be seen and examined in our reception at our Oxford Street offices.

To:
Unik Time Offer
ETI Magazine
25-27 Oxiord Street
London WIR 1RF
Please find enclosed my cheque PO for \(£ 8.95\) (payable to ETI Magazine) for a Unik Time Digital Alarm Clock.

Name
The enormous numbers involved in ETं। offers has enabled us to arrange a real bargain - a full spec LCD watch with adjustable metal bracelet for under half the going rate.

This watch gives continuous display of hours and minutes: press the button once and you'll get the date (American style). After a couple of seconds the display automatically reverts to time but if you press again you'll get a continuous seconds display.

Press another button and you get a back light, enabling you to see the display in the dark. Setting, or resetting is simplicity itself and a 'hold' facility allows you to set the watch spot on. The accuracy is magnificent, as with all the current range of digital watches and battery life is well in excess of a year.

(Inclusive of VAT and Postage)
An example of this watch can be seen and examined in our reception at our Oxford Street offices.

To:
LCD Watch Offer
ETI Magazine
25-27 Oxford Street London W1R IRF

Please find enclosed my cheque/PO for \(£ 9.95\) (made payable to ETI Magazine) for my LCD Digital Watch.
Name . |
Address .
thow 14 days for delivery

\section*{audiophile.}

\begin{abstract}
Gordon King takes over Audiophile this month to explain and review Hitachi's new HMA 7500 MOSFET Power Amplifier, launched amid the Tulips early in March.
\end{abstract}

The HMA-7500 shown with its companion control amplifier. We understand that Hitachi have decided to make production models in black rather than the finish shown above. Still, what's a coat of paint between MOSFETs?

A NEW RANGE OF MOSFET hi-fi power amplifiers made its debut on the Japanese market at a Tokyo press launching during April 1977 and was introduced to the European market in Amsterdam in March. The range includes Model HMA-7500 with \(80+80 \mathrm{~W}\) steady-state power rating into 8 -ohm loads.

\section*{Circuit Details}

The MOSFETs serve as power amplifiers and are driven by bipolars in differential-pair configuration. A brief, overall picture of the amplifier can be gleaned from the block diagram in Fig. 1. As will be seen, the amplifier includes an input high-pass filter (\(\mathrm{f}_{1}\) circa 3 Hz), drive and overload protection and a meter circuit which monitors the power in the left and right channels on a quasi-logarithmic basis. The meters (one for each channel) are scaled from -40 to +4 dB (0 dB ref. 100 W 8 ohms) and the control circuits endow the movements with a kind of peak programme meter response characteristic. Two stabilised power supplies are used, along with two directly-rectified supplies (one for each channel) from a multi-secondary mains transformer.

FETs are not new for audio power amplification Junction power FETs are used, for example, by Yamaha and Sony; but the Hitachi amplifiers are the first to use power MOSFETs. Ordinary small-signal FET designs are
unsuitable for high current working owing to the rise in conduction channel resistance with increasing current and the relatively low breakdown voltages. These problems were resolved by a new type of junction FET which was developed by Professor Jun'inchi Nishazawa and colleagues of the Electronics Communications Research Laboratory of Tohoku University.

These devices were named V-FETs owing to a large capacity vertical conduction channel and they are the type used in the Yamaha and Sony FET power amplifiers.

\section*{MOSST Interesting}

The MOSFETs were developed by Hitachi's Central Research Laboratory at Kokubunji, Tokyo. They are made in complementary \(n\)-channel and p-channel pairs and are designated HS8401B and HS8402B respectively. Both versions are fabricated for a maximum drain current of 7A and a maximum power dissipation of 100 W achieved, as with the junction FETS, by a wide conduction channel of short length. As is well known, carrier mobility of n-channel devices is greater than that of correspondingly dimensioned p-channel counterparts. This dissimilarity is equalised by the Hitachi p-channel device having a greater channel width and smaller length than the complementary n-channel version being approximately \(25 \%\) larger than that of the n-channel version. The on resistance of both types is 1 ohm.

Fig. 1. Block diagram of HMA-7500.

Fig. 2. Circuit diagram of HMA-7500.

The amplifier incorporates very efficient protection circuits rendering it virtually indesctructible regardless of the 'tough' nature of the electrical tests applied! A part of the protection consists of a fast-operating relay for switching the output. The control circuit for the relay also senses the presence of any abnormal rise in DC output off-set and automatically disconnects the speakers in the event of such an aberration. The speakers, of course, are directly coupled to the power amplifiers to minimise low-frequency phase shift.

\section*{Advantage FET}

Power FETs have a number of advantages over bipolar counterparts, and the table below compares some of the primary audio parameters of the bipolar, J-FET, MOSFET and, for interest, the thermionic valve.
\begin{tabular}{lllll}
\begin{tabular}{llll}
Parampter \\
Switching \\
speed
\end{tabular} & Bipolar & J-FET & MOSFET & Valve \\
\begin{tabular}{l}
Upper frea \\
Linearity
\end{tabular} & \(2 \mu \mathrm{~S}\) & \(005 \mu \mathrm{~S}\) & \(005 \mu \mathrm{~S}\) & \(01 \mu \mathrm{~S}\) \\
\begin{tabular}{l}
Input for
\end{tabular} & \begin{tabular}{l}
20 MHz \\
100 W output
\end{tabular} & 1 W & \begin{tabular}{l}
100 MHz \\
good
\end{tabular} & \begin{tabular}{l}
150 MHz \\
good
\end{tabular} \\
\begin{tabular}{l}
Power ripple \\
effect
\end{tabular} & small & 05 mW & 05 Mz \\
\begin{tabular}{l}
Thermal \\
stability
\end{tabular} & lair & large & small & large \\
Circuitry & average & \begin{tabular}{l}
fair \\
very \\
complicated
\end{tabular} & simple & simpie
\end{tabular}

FETs also have a very high input impedance, akin to that of the valve, and with MOSFETs because the oxide layer behaves like a high resistance the gate current is almost proportional to the drain-source voltage. The fast switching of FETs results because they employ single type mobile charge carriers.

Minority carriers of bipolars and their storage effects tend to inhibit the switching speed of amplifiers using these devices in the power stages. The very fast mobile carrier control of MOSFETs and the small input capacitance give these devices the edge on upper-frequency response, leading to small slewing times and the minimisation of slewing-induced non-linearity and attendant transient intermodulation distortion (TID).

These are phenomena which have been well disseminated in recent times and which, in certain areas, appear to be over-stated, particularly relative to ordinary programme signal whose rise-time is rarely faster than \(50 \mu \mathrm{~S}\) and maximum effective slewing-rate not much greater than \(4 V / \mu \mathrm{S}\).
drain current falls with increasing dissipation and hence temperature rise. Protection against breakdown is thus eased. Like thermionic valves, MOSFETs require very much less drive power than bipolars. This is because of the high power gain resulting from the high input impedance. The table shows that while a bipolar power amplifier may require an input drive of 1 W for an output power of 100 W , the same output power from FETs can be achieved from an input drive of a mere 0.5 mW , which greatly simplifies the drive circuits and leads to less drive signal distortion and hence the reduced need for very large amounts of negative feedback.

Another attribute of FETs over bipolars is that their transfer functions approximate a square-law. This means that odd-order distortion is less than that from bipolars while even-order distortion is cancelled by push-pull operation. The transfer functions of bipolars contain more odd-order powers, which means that a relatively high degree of negative feedback is required if the odd-order distortion is to be kept very low.

\section*{Resource Drain?}

The electric field round the gate electrode is reduced by an ion implanted offset striped gate construction, which gives a source-to-gate breakdown as high as \(\pm 14\) V and a drain-to-source breakdown as high as +160 V n-channel and -160 V p-channel. Cut-off frequency is limited by the input capacitance and intrinsic gate resistance, being in the order of 600 p and \(65 \mathrm{ohms} n\) channel and 900 p and 65 ohms p-channel. The cut-off frequency of the \(n\)-channel device is thus a round
3 MHz .

\section*{Down to HMA 7500}

Almost the complete circuit of the HMA-7500 is given in Fig. 2. The complementary power MOSFETs are mounted on substantial heat sinks and the devices are biased for quasi-class-B operation. The MOSFETs are arranged as source-followers, one for each signal halfcycle, and the optimum bias current for the design is conveniently equal to the drain current. Since this is independent of temperature, the temperature compensating circuits found in some bipolar power amplifiers are unnecessary, which cuts the overall circuit complexity by about \(30 \%\). A more powerful model, yielding \(100+100 \mathrm{~W}\) into 8 -ohm loads, uses parallel-connected pairs of MOSFETs, but the front end of the circuit is similar to that of the HMA-7500.

\section*{Class EH?}

The MOSFETs are driven by the class A differential pair \(\mathrm{Q} 3 / \mathrm{Q4}\), which use an active current source consisting of Q5 and D1. It will be seen that both gates are driven together from Q4 collector, so that one MOSFET turns on during the negative half-cycles. The fast switching and optimised bias greatly tame notch and crossover distortion.

The input signal is applied to Q1 of the first differential pair Q1 / Q2, while the negative feedback is applied to the base of Q2, which also defines the centre-voltage point. The collectors of Q1 and Q2 drive the bases of Q4 and Q3. Differential circuits are rendered viable because of the high input impedance of the MOSFETs, as distinct. from the Darlington circuit requirements of bipolar

Fig. 3. Harmonic distortion at \(80+80\) watts into 8 -ohm resistive loads at 200 Hz , also showing ripple components. Scale 100 \(\mathrm{Hz} /\) div. horizontally and \(10 \mathrm{~dB} / \mathrm{div}\). vertically.

Fig. 4. (a) Composite \(15 / 16 \mathrm{kHz}\) signal at output of amplifier across compex load \(Z_{L}\) of 5 ohms modulus of impedance and 60 degrees phase angle, representing a 'difficult' speaker load. Scale \(10 \mathrm{~V} /\) div. (b) Intermodulation distortion resulting from signal at (a) across 4 L at an output of 28 V peak composite signal. Scale \(2 \mathrm{kHz} / \mathrm{div}\). horizontally and 10 dB /div. vertically.

power amplifiers. This means that fairly large amounts of negative feedback can be applied at high-frequency with minimal frequency compensation and without fear of the amplifier going unstable; in other words, a good feedback margin is achieved. The amplifier uses about 40 dB of negative feedback right up to 300 kHz .

Q6 is part of the protection circuit which works in conjunction with a thyristor (not shown). The speaker is connected between the centre-point line and the zero supply line, coupling being made through the 'Zobel' network consisting of L1 and associated components, which improves the total harmonic distortion performance.

\section*{Lab Results}

A large number of parameters were scrutinised in the lab by advanced testing techniques, and the results of some of these will now be looked at. The spectrogram in Fig. 3 shows the harmonic distortion and residual ripple components from a 200 Hz pure sinewave driving both channels to 80 W into 8 -ohm loads. The spectrogram reveals that even under this high drive situation the amplifier is producing a mere -90 dB of 2 nd harmonic (\(0.003 \%\)) and -82 dB 3 rd harmonic (\(0.0079 \%\)), with all ripple components (50 Hz plus harmonics) being less than -82 dB .

As the power is reduced the distortion falls, quickly falling below our noise floor. In quiescent mode the total hum and noise across 8 ohms corresponded to a mere \(1.7 \times 10^{-8} \mathrm{~W}\).

As hi-fi amplifiers rarely drive into pure resistance, we conducted an intermodulation distortion test using equal amplitude signals of 15 and 16 kHz driving into a speaker-simulating load of 5 ohms modulus of impedance and 60 degrees phase-angle at 16 kHz . The two-tone signal at the output of the amplifier is shown at (a) and the result of the test at (b) in Fig. 4. The test was conducted with the composite two-tone signal running at a peak value of 28 V across the complex load, and the spectrogram at (b), scaled at 2 kHz per main division horizontally and 10 dB per main division vertically, shows that the 2 nd order product at 1 kHz is -78 dB \((0.012 \%)\) and the sidebands of the 3 rd order products each about \(-64 \mathrm{~dB}(0.06 \%)\). This is a remarkably good performance at this high output into a loudspeaker-type load.

Again, with reduced output the products quickly dissolve below the noise floor. Most speakers require no more than about 16 V peak for 96 to 100 dBA sound pressure level in the listening room.

Pictured here are some more goodies on the way from Hitachi. These include (top) the unitorque direct drive turntable, two new loudspeakers: the HS 330 (above left) and HS 530 (above right), both using metal coned drivers (a GEC idea back in the '50s) and a "gathered suspension". Finally, below is the D900 cassette deck with three heads, solenoid operated mechanics and servo drive dual capstan.

\section*{Power Width}

The rated power of the amplifier is maintained from at least 5 Hz to 100 kHz , and the small-signal frequency response is a ruler-straight line well below 5 Hz (highpass filter out) up to 250 kHz . The -3 dB point is 358 kHz . In spite of this extended small-signal frequency response, however, TID could not be incited owing to the high slewing-rate of the MOSFETs which was at least \(25 \mathrm{~V} / \mu \mathrm{sec}\)

With the high-pass filter switched in the lowerfrequency -3 dB point was 3.4 Hz

\section*{Subjective Impressions}

The HMA- 7500 requires an output of round 1 V RMS for full drive so any control amplifier delivering this sort of output can be used with it. Hitachi, of course, make and market a suitable control amplifier; but because this was not at hand at the time of our tests we employed both the Redford ZCZ2 and the recent Pioneer C-21

Both of these are very good control amplifiers, the Redford having a number of useful facilities and prodicing a signal that is so pure that the distortion is virtually unmeasurable. The Pioneer is also of very low distortion and includes a pair of pickup input switches all wing the loading to be adjusted in terms of both resistance and capacitance

Left and right signals are accepted by the HMA- 7500 via RCA 'phonon' type sockets. Construction is very substantial and the heat sinks are large enough to allow the amplifier to be driven to sustained high steady-state power without distress. A brushed aluminium fascia accommodates the two meters, press-switches for speaker pairs A and B and a mains on/ off switch.

The amplifier produces an output signal of virtually the same form as the signal applied to it.

Reproduction is thus essentially uncoloured so any distortion on the source signal will also be reproduced without much modification. The amplifier is not adversely affected by the electrical loading of the speakers, and using studio quality programme signals from master tapes in a controlled auditioning test all the listeners agreed that the reproduction was of a very high standard

These initial observations have since been confirmed by using the amplifier for a number of months under typical domestic conditions on disc and FM radio sources. Of course, there are times when the distortion on the programme signals themselves detracts from the listening experience. Such distortion can be very much greater than that produced by the amplifier.

\section*{Conclusion}

Amplifiers which yield a fair amount of distortion notably even-order distortion, can disguise the source signal distortion and render the reproduction more palatable; but in our judgement it is the job of the hi-fi amplifier accurately to reproduce whatever is fed to it. If colouration is required to disguise the source signal distortion, then this should be introduced by a separate 'black box' connected between the control amplifier and power amplifier!

We vote the Hitachi MOSFET power amplifiers an outstanding achievement in state-of-art hi-fi electronics.

\section*{-}

A RANGE OF LINTEL INDUSTRIAL MODULE KITS

ON SPECIAL OFFER

The complete kit will be sent to you by First Class Return Post it includes an attractive, slim
white case with a deep red display filter and features automatic intensity control and a \(h\), white case with a deep red display filler and features automatic intersies control and a high
brightness display. Twelve or twenty-four hour format can be selected during construction or brightness display. Twelve or twenty-four hour format can be selected during construction, or
switch can easily be added between them. This clock has proved a popular and reliable kif.
Order as Acc ๗тои \(£ 25.80\)
This kit is also available with Battery Backup which will maintain timekeeping during This kit is also available with Battery Backup which will maintain timeke
disconnection from mains supply, and with Crystal Control to improve accuracy
ALK + BBL + KKK

£31.50
THE SINTER CAR CLOCK KIT

Order as Aut-CK story now E16.85
SINTEL'S 50 Hz CRYSTAL TIMEBASE KIT Use 10 improve accuracy of your digital clock As a 50 Hz source
- Size h. 14 mm w. 64 mm d. 49 mm . Order as XTM

\section*{SIX JUMBO} DISPLAYS FOR ONLY £6

Common Cathode Type 0.5 in. Character Height FND500/TIL322 \(\times 6\) £7.00 NOW £6.00
now \(£ 3.45\)
SPECIAL OFFER
FROM 56.45

\section*{RCA COS AND} LINEAR IC DATABOOK

ONLY
£1.95 NO VAT

FAST SERVICE for SPECIAL OFFER ORDERS, Orders will be despatched on the same day by 1 st Class Poon (some hairy items by parcel post). Official (credit) orders accepted at our A FREE CATALOGUE requested by post or phone will be sent by'teturn giving full details of our A complete range including other components not listed with same day despatch for dears in of our complete range including other components not listed with same day despatch for goods in stock
Please send for New Catalogue.
SEND YOUR SPECIAL OFFER ORDER plus 8\% VAT plus 35p post and packing
charge to us at:

Includes interface for: Potential:
TVor Monitor-cassette, dump-Teletype-spare, PIO,
Expansion RAMBOARD up to 32K.

High Level Language, Mini Floppy Disk,
Excellent Z80
evaluation kit.
\(£ 197.50+\) VAT.
Write for details or send order to:
NASCO SALES LIMITED, Dept. ETI., 92 BROAD STREET, CHESHAM, BUCKS. Tel:02405 75151, Telex: 837571.

\title{
HOME COMPUTING SUPPLEMENT
}

We would like to thank the Elt ham College Physics Department for the use of their com puter
facilities to produce the print outs used in the supplement.

.

SCRUMPI 2 is a single board MPU system based on the SC/MP2 microprocessor chip. Switches allow Single-step/Halt/Run modes with PROM or RAM bootstraps. RAM protect and interruption. Basic kit includes all IC sockets, all ancilliary components, SC/MP2, drivers, decoders, latches and 256 bytes of RAM. Full kit includes additional 512 byte PROM \& 512 byte RAM

SCRUMPI 2B \(£ 55.56+\) VAT
SCRUMPI 2F £74.07+VAT
SCRUMPI 3 is a single board MPU system based on the SC/MP2 microprocessor chip and including Keyboard, VDU interface, UART, two 8 bit parts, 128 byte RAM, 1 K PROM and sockets for additional 1 K PROM \& 1 K RAM

SCRUMPI 3 Basic kit £154.92, with case \& PSU £189.75.

\section*{CLOCK CHIPS \& KITS}
\begin{tabular}{|c|c|c|}
\hline TYPE SPECIALFEATURES & £CHIP & EKIT \\
\hline MM5309 \(7 \mathrm{seg}+\mathrm{BCD}\). RESET ZERO & 4.26 & 8.00 \\
\hline MM53117 7 seg + BCD & 4.26 & 8.00 \\
\hline MM53127 7 seg + BCD 4 DIGIT ONLY & 5.65 & \\
\hline MM53137 seg + BCD & 6.50 & \\
\hline MM5314 7 seg + BASIC CLOCK & 4.26 & 7.00 \\
\hline MM53157 seg + BCD 'RESET ZERO & 6.50 & \\
\hline MM5316 Non-mpx ALARM & 7.50 & \\
\hline MM53187 seg + BCD External digit select & 4.93 & 8.00 \\
\hline MM5371 ALARM. 50 Hz & 12.19 & \\
\hline MM5378 CAR Clock. Crystal control, LED & 9.86 & 14.00 \\
\hline MM5379 CAR Clock. Crystal control. Gas discharge & 9.86 & \\
\hline MK5025 ALARM SNOOZE & 5.60 & 9.00 \\
\hline MK50395 UP/DOWN Counter - 6 Decade & 12.10 & 15.10 \\
\hline MK50396 UP/DOWN Counter - HHMMSS & 12.10 & 15.10 \\
\hline MK50397 UP/DOWN Counter - MMSS 99 & 12.10 & 15.10 \\
\hline FCM7001 ALARM. SNZ. CALENDAR. 7 seg & 9.00 & 12.50 \\
\hline FCM7002 ALARM. SNZ. CALENDAR. BCD & 9.00 & \\
\hline CT7003 ALARM. SNZ. CALENDAR. Gas discharge & 9.00 & \\
\hline FCM7004 ALARM. SNZ. CALENDAR. 7 seg & 9.00 & 12.50 \\
\hline AY5. 12027 seg. 4 digit & 4.76 & \\
\hline AY5. 12307 seg . ON and OFF ALARM & 5.25 & TBA \\
\hline
\end{tabular}

All above clock kits include clock PC board clock chip socket and CA 3081 driver IC. MH15378 also includes crystal and trimmers. When ordering kit please use prefix MHI, e.g. MHI 5309

\section*{CLOCK MODULES}

LT601 Alarm Clock Module, similar to MA1002

DISPLAYS
\begin{tabular}{|c|c|c|c|}
\hline 707, 704,7010.3" & & 1 off 1.20 & 10 off 10.00 \\
\hline 727.728, \(7210.5^{\prime \prime}\) (2 dig.) & & 1 off \(\mathbf{2 . 6 0}\) & 10 off 11.50 \\
\hline 747, 750,7460.6" & & 1 off 1.40 & 10 off 12.50 \\
\hline \multicolumn{4}{|c|}{MHI DISPLAY KITS} \\
\hline M \(\mathrm{HI} 707 / 4\) digit 0.3" & 6.00 & M HL727/6 & 9.25 \\
\hline MHI707/6 & 8.00 & MH1747/40.6" & 9.00 \\
\hline MHI727/4 0:5" & 8.00 & MHI747/6 & 10.00 \\
\hline
\end{tabular}

Any one or two of the above MHI display kits will interface directly with any of the MHI clock kits

Quantity discounts are available to OEM users, Distributors, Retailers and Training Establishments.

\section*{BITS \& BYTES \\ BITS \& BYTES
MEMORIES}

\section*{MPU SUPPORT}

74COO Quad NAND 74 CO 4 Hex Inverter 74C10 Triple NAND \(74 C 42\) BCD Decoder 74C157 Quad Selecto 74C164 PISO register 74C165 SIPO register 74C173 3S Quad latch 74 C 74

DM74LSOO
DM74LS139 Dual 2-4 Dec
DM81 LS95 3S 8 bit buff
DM81 LS96 Inv 95
DM81 LS97 3S \(4+4\) buffer
DM81 LS98 Inv 97
DM8095 3S Hex butfer
DM8095 3S Hex bu
DM8096 Inv 8095
DM8097 3S Hex Buffer
DM8678 CAB Char Gen DM8678 BWF Char Gen

DM7400 Quad NAND
DM7408 Quad AND DM7475 Quad LATCH DM7486 Quad EXOR CD4017 Counter CD4019 Decoder CD4040 Counter DS8833 Quad B3D Buffer LM555 LM555
MC3459
\begin{tabular}{|c|c|}
\hline 0.24 & MM2102 1 K 1 1 RAM \(\mathbf{2 . 4 0}\) \\
\hline 0.24 & MM2112-2 \(256 \times 4\) RAM \(\quad 3.08\) \\
\hline 0.24 & MM5204Q \(51.2 \times 8\) EPROM \(\mathbf{1 0 . 9 5}\) \\
\hline 0.92 & MM2708Q \(1024 \times 8\) EPROM \\
\hline 2.21 & 31.15 \\
\hline 1.04 & ER3401 \(1024 \times 4\) EAROM \(\mathbf{2 8 . 2 5}\) \\
\hline 1.04 & \multirow[t]{2}{*}{MM5303 (AY-5-1013) UART 6.34} \\
\hline 0.90 & \\
\hline 0.57 & PROGRAMMED (MM5204) \\
\hline 0.27 & ÉTIBUG 6800 System 68 Monitor \\
\hline 1.20 & 25.95 \\
\hline 1.36 & VDUBUG SC/MP System 68 \\
\hline 1.36 & Monitor 25.95 \\
\hline 1.36
1.36 & NIBL SC/MP BASIC (8 proms) \\
\hline 1.36 & \multirow[t]{2}{*}{147.60} \\
\hline 1.62 & \\
\hline 1.62 & \multirow[b]{2}{*}{MPU CHIPS} \\
\hline 1.62 & \\
\hline 14.30 & SC/MP 1 11.89 \\
\hline 14.30 & \begin{tabular}{ll}
SC/MP 11 \\
MC6800
\end{tabular}\(.. .\)\begin{tabular}{l}
10.30 \\
24.00
\end{tabular} \\
\hline 0.35 & \\
\hline 0.39 & \\
\hline 0.74 & SC/MP MPU KITS \\
\hline 0.55 & SCRUMPI 1 46.30 \\
\hline 1.04 & SCRUMPI 2B 55.56 \\
\hline 0.54 & SCRUMPI 2F 74.10 \\
\hline 1.04 & INTROKIT 66.33 \\
\hline 1.99 & KBDKIT 63.65 \\
\hline 0.55 & LCDS 334.33 \\
\hline 2.00 & SC1 System \(68 \ldots 3 . . .3 \mathbf{3 9}^{\mathbf{8}}\) \\
\hline
\end{tabular}

\section*{PAYMENT TERMS}

Cash with order, Access, Barclaycard (simply quote your number). Credit facilities to accredited account holders. 15\% handling charge on goods ordered and paid for then cancelled by customer
All prices exclude 8\% VAT PLEASE SEND 30p POST AND PACKING
CATALOGUE DATA Please send SAE for catalogue
Xeroxed data, please phone for availability/price

\section*{HOME COMPUTING - a crash course}

\section*{INTRODUCTION}

AS MICROPROCESSOR WAS the buzz word of the past few years, personal computing seems to be the in phrase at the moment. A microprocessor will need a lot of additional hardware around it before it becomes a personal computer (just what a personal computer is and what they are capable of we shall look at later). When this glorious array of hardware is finally powered up, what happens? - not a lot. We still have to provide our machine with a language "in which to think" and, incidentally, in which we must train ourselves to think.

This supplement, with its emphasis on personal computing, looks at these extras that our micro needs to make some of those sci-fi dreams of yesterday a reality today.

From the above it might be thought that the microprocessor is not an important part of a home computer but, although its importance is exaggerated by many, for in use its operation is as "transparent" as say the power supply, without the micro the low cost computer of today would not be possible.

So, what are micros and where did they come from.
Like many fields of science, semiconductor physics is one in which, in spite of appearances, patient development rather than spectacular innovation, is the rule rather than the exception. The microprocessor is a fruit of such development.

The number of circuit elements that can be implemented on a single "chip" of semiconductor material has been on the increase for many years - from the single element of a simple transistor through TTL (SSI, MSI and LSI) and CMOS.

At first the number of elements was consistent with the integration of single/multiple standard logic blocks in a single package (AND, OR etc.) but as circuit density was increased as more sophisticated manufacturing techniques were improved, so the functions became more esoteric (presettable, divide by N , up/down counters with overdrive).

Manufacturers were telling their sales staff to go out and find markets that required dedicated devices of a circuit complexity that matched their vastly improved capability.

The answer, apart from the likes of TV games and single chip DMMS, was that nobody wanted gargantuan circuit blocks.

At this point someone came up with the bright idea of making a device that, instead of being dedicated to one particular task, would provide a large range of logic functions, the particular operation from the device's repertoire required at any time being selected by the user by device control signals - the programmable logic gate. This is exactly what - to an electronic engineer - the micro is.
The microprocessor does in fact take some of the design effort in any particular application away from the semiconductor manufacturer and onto the user. This is because for any given task it is the end user that must provide the micro with the instructions necessary to carry out the job. It must be programmed, a skill that was alien to the electronic engineers that were to use micros.

It was then that "dropout" computer programmers became involved in the micro story. These worthys saw the micro, not as a programmable gate, but as the Central Processing Unit (CPU) of a computer. With an accumulator, Arithmetic Logic Unit (ALU), registers program counter, pointers etc., the micro was to many a CPU on a chip, again a natural development in, this time, computer technology.

There then are two views of the microprocessor, adopt which ever appeals to you. But be prepared to think in terms of the other to get the most out of these amazing new components.

At this point we return to our personal computer theme with the question just what is a personal computer? Everybody will have their own idea as to what they want in any system so our ideas should be treated as a starting point rather than a hard and fast specification.

To us a home computer should be able to accept input from an alpha numeric keyboard and of providing output on a VDU or printer. It must be capable of supporting a high level language (e.g. BASIC) which should either be in ROM or readily and quickly capable of being loaded from some form of mass storage device (e.g. cassette recorder) which, together with some RAM, must be part of the system. We would also include the requirement that our personal computer be readily expandable to provide many more facilities.

That then is our brief look at those facilities that the minimum system should have. Each of he sentences above, however, raises more questions than it answers. The best thing is to go along to one of the computer stores that are starting to appear and talk things over with the staff there and to read as much in books and magazines as you can get your hands on.

We thought we'd finish with a look at what these systems will be used for. Most will find themselves playing games for a lot of the time. Storing all manner of data and management information is another area of use. With micros in everything from viewdata terminals to cookers and with every house in charge of a good serial data loop, the mains wiring, the potential control functions are large.

In short, think of what you want to do, the sit down and program the thing to do it.

On now to the rest of the supplement where we take a look at all the sections of our home system from memory to peripherals. We look at languages and at what is currently the most popular use for these machines - game playing. We also look at what is available on the British market, where to go to find help in choosing a system and how much it's likely to cost.

We hope that after reading this supplement you will know what personal computers are all about and will begin to share our excitement in this dynamic new field.

En

\title{
MK14-the only low-cost keyboard-addressable
} microcomputer! MK14 Microcomputer kit

The MK14 National Semiconductor Scamp based Microcomputer Kit gives you the power and performance of a professional keyboard-addressable unit-for less than half the normal price. It has a specification that makes it perfect for the engineer who needs to keep up to date with digital systems or for use in school science departments. It's ideal for hobbyists and amateur electronics enthusiasts, too.

But the MK14 isn't just a training aid. It's been designed for practical performance, so you can use it as a working component of, even the heart of, larger electronic systems and equipment. MK14 Specification * Hexadecimal keyboard * 8 -digit, 7 -segment LED display * \(512 \times 8\) Prom, containing monitor program and interface instructions
* 256 bytes of RAM
* 4MHzcrystal
* 5 V stabiliser
* Single 6V power supply
* Space available for extra 256 byte RAM and 16 port \(1 / 0\)
* Edge connector access to all dafa lines and I/O ports
Free Manual
Every MK14 Microcomputer kit includes a free Training Manual. It contains

The new Science of Cambridge
 operational instructions and examples for training applications, and numerous programs including math routines (square root, etc) digital alarm clock, single-step music box, mastermind and moon landing games, self-replication. general purpose sequencing, etc.

Designed for fast, easy assembly Each 31-piece kit includes everything you need to make a full-scale working microprocessor, from 14 chips, a 4 -part keyboard, display interface components, to PCB, switch and fixings. Further software packages, including serial interface to TTY and cassette, are available, and are regularly supplemented.

The MK14 can be assembled by anyone with a fine-tip soldering iron and a few hours' spare time, using the illustrated step-by-step instructions provided

Tomorrow's technology - today! "It is not unreasonable to assume that within the next five years ... there will be hardly any companies engaged in electronics that are not using microprocessors in one area or another."

Phil Pittman, Wireless World, Nov. 1977.

The low-cost computing power of the microprocessor is already being used to replace other forms of digital, analogue, electro-mechanical, even purely mechanical forms of control systems.

The Science of Cambridge MK14 Standard Microcomputer Kit allows you tolearn more about this exciting and rapidly advancing area of technology. It allows you to use your own microcomputer in practical applications of your own design. And it allows you to do it at a fraction of the price you'd have to pay elsewhere.

Getting your MK14 Kit is easy. Just fill in the coupon below, and post it to us today, with a cheque or PO made payable to Science of Cambridge. And, of course, it comes to you with a comprehensive guarantee If for any reason, you're not completely satisfied with your MK14, return it to us within 14 days for a full cash refund

Science of Cambridge Ltd,
6 Kings Parade,
Cambridge,
Cambs., CB21SN.
Telephone: Cambridge (0223) 311488

\footnotetext{
To: Science of Cambridge Ltd,
6 Kings Parade, Cambridge,
Cambs., CB2 1SN
Please send me an MK14 Standard Microcomputer Kit. I enclose cheque/ Money order/PO for \(£ 43.55\) (\(£ 39.95\)
\(+8 \%\) VAT and 40 p p\&p).
Address (please print) __
}

Allow 21 days for delivery.

\title{
microfile.
}

\section*{Gary Evans, ETI's regular micro person, looks at this month's MPU news}

TO THOSE OF you reading Microfile for the first time - where have you been all my life? - for Microfile is ETI's regular, and indeed the only monthly column in our field, that devotes itself to micros, personal computing and related topics. If the other sections of this special supplement have interested you, stick with us as there will be many more goodies over the next few months.

Advert over - now to the news.

\section*{In T' Facing The World}

Warren Logic Ltd have introduced a new terminal to interface your micro to the world. The 'minitype' terminal (pictured) is a TTY campatible keyboard with full ASCII capabilities plus display. The display is provided by fifteen alphanumeric (sixteen segment) LEDs which provide a sixty-four character ASCII subset.

20 mA and RS232 serial facilities are provided at rates between 50 and 2,400 baud (selected by an eight pin DIL module).

The fact that only one line of data is visible at any one time is an obvious disadvantage and the price tag of about \(£ 300\) might seem high. Bear in mind though, that those "glass teletypes" can be fragile, bulky and by the time control logic costs and monitor prices taken into account, almost as expensive.

The 'minitype' should find applications where its small size, ruggedness and high reliability are at a premium.
Warren Logic Ltd, Hockley Road, Broseley, Salop,

\section*{Sweet Sixteen}

The Heathkit Kit Cat, shades of number crunches, has landed on many doorsteps over the past few weeks. The publication as well as carrying news of the ever flourishing Heathkit range, has a front cover banner announcing Heath's entry into the personal computing field. For twenty pence Heathkit will send you a sixteen-page brochure describing their H8 machine
based on the 8080 , the H9 VDU, the H10 paper tape reader/punch plus the H1l sixteen bit machine that features the PDP-11/40 instruction set.

I'll have more to say about these machines when I've had time to look at them closer but meanwhile that twenty pence will tell you a lot more about these new machines.

Heath (Gloucester) Ltd, Gloucester, GL2 6EE.

\section*{Facts Of Life}

I get invited to a lot of launches which feature professional computing equipment with price tags in the kilo pound range. What's he doing going to things like that? You may well ask (my editor does) - if you don't skip the next paragraph.

Many people, having got their home system up and running, scratch around for things to keep it occupied. Looking at what the professionals are doing with their micros can often stimulate ideas that might take up that spare CPU time. Such a system is the MCS Factfinder.
This is an impressive word processing system that helps manage large fields of data. The system allows the user to, quote, "extract information from a structured or unstructured data base using a convenient query language that assists the user to find the target facts in a quick series of successive focusing steps!"

Jargon for saying if the stuff's there, the machine lets you get at it quickly. No doubt you could find a use for such a system.

\section*{Daily Bread}

I've always wanted to work on a daily national newspaper, moving in the higher stratas of society, boldly reporting what no man has heard before instead I work at ETI.* I enjoy that as well, but do miss the fact that a monthly magazine rarely gets a chance at a scoop because we are printed some time before we get to you.

This month, however, as we went to press, we managed to get pictures of a pieces of equipment that will not be officially launched until after our publication date.
The equipment is the latest from Commodore, the makers of the PET. Two items were shown to me, one a printer for PET and the other a chess game. Let's look at the printer first.

-Employed is more apt term than work - Ed.

\section*{HOME COMPUTING - a crash course}

This plugs directly into PET and provides a very powerful addition to any system. The printer is blessed with intelligence (4 Ks worth) and its own micro. Used as a simple printer the device will output the full ASCII character set plus the graphics generated by PET.

The machine can do far more than this, however. By altering various "status" words within the machine the user can format the output. Number of characters per page, tabs, etc, can be specified in this way, making it possible to provide printed pages to any specification.

These details are sketchy because I only saw the machine for a brief period of time as it was on its way to Hanover. More information after the "official" launch. Price by the way, under \(£ 500\).

The chess machine is much like the one we have featured as a special offer in ETI, only better, say Commodore. You can see what the machine looks like from our picture. The price is not known yet, nor the launch date, but we do know it uses a 6502 MPU (same as PET - I was told a cassette program for PET is well on the way) and 7 K of ROM .

\section*{Price Before The Fall}

Remember you saw them first in ETI.
With the continuing fall in prices associated with MPUs, memories and semiconductor devices in general, products that today are too expensive for the
amateur to play with may soon come within our financial reach.

Such devices are the single chip computers that today are about \(£ 70\) in one off quantities, but by the end of this year should sell for between \(£ 15-£ 20\).

The well known MPU door bell used one of these devices, in fact the Texas TMS 1000, but there are many others about.

The disadvantage with the TMS 1000 was that although CPU, RAM, ROM and I/O was provided on chip, the ROM was of the mask programmed type. The charge for preparing this memory was about £5,000 - no joke.
The new breed of device does however have UV erasable memory on board. This, like the well known 2708, can be programmed and erased at will. Such a chip is the Inter 8048 . We are keeping an eye on this device and as soon as the price drops look for a project based on the 8048 in ETI.

Lastly, I was going to review a number of books dealing with BASIC this month. However, since our commodore PET landed on the doorstep people have taken to this PET that proclaims gaily that it's ready for anything as soon as you touch it.

It was soon realised that this particular PET spoke, not queen's English but something called BASIC. The potential Dolittles needed the Higgins of a book on BASIC. Hence, no sooner do I put together a pile of such books, than they disappear.

Oh well, try for next month.
ETI

MSI 6800
with 8K Ram.
KIT £375

FD8 FLOPPY DISC £935. BFD68 MINI FLOPPY £522 SOROC 10120 TERMINAL £699 ASS. CASSETTE INTERFACE KIT £18.95

Sole distributor for MS/ equipment and main distributor for SSB
Send S.A.E. for full brochure

STRUMECH ENG. ELECTRONICS DIV. BROWNHILLS 4321

\title{
PERSONAL COMPUTERS
}

\section*{Gary Evans, ETIs Micro-man has spent a little time surveying some of the products on the Home Computer market}

IN JUST THREE pages it is not possible to go into great details about any of the systems featured in this survey, instead we give only brief details and an address where further information can be found. Indeed the list of addresses may to many people prove the most useful aspect of this survey for amongst them are some of the many personal computing shops that are beginning to appear in this country.
At these stores you can see the systems, play with them at most and speak to people who will help you choose a system that is likely to meet your needs. The analogy between the " \(\mathrm{Hi}-\mathrm{Fi}\) " scene and the home computer industry, made elsewhere in this supplement, again holds true. If you know exactly what Hi-Fi gear you want and don't expect much back up,

go to one of the discount mail order houses. On the other hand if you need guidance on the choice of system for you and require some technical/moral support along the way, go to a dealer who specialises in audio equipment.

It surprised us just how many shops are at present dealing wholly or mostly in equipment suitable for the home. One of the first such shops was Computer Workshop who have just opened a second branch in Manchester. Since those early days though many more people have moved into this field.

Turning over the page will reveal our survey, the column at the left lists the various systems. This is not meant to be an exhaustive list, we are bound to have missed out some. If you know of, or indeed produce, equipment aimed at the hobbyist which has not been included, please let us know of it.
The next column shows the price tag. This is necessarily rather vague because "specmanship" is just as rife in the computing field as it is elsewhere. Thus while some "minimal systems" are just that, featuring nothing but CPU and control circuitry, others have RAM and ROM as part of such a system. We have tried to estimate a price that includes some memory and I/O, in other words a system that you can do something with when you turn it on.
The other columns should explain themselves, except perhaps the section on software support.
Any system that is to be anything other than a development kit needs some form of high level language support. The most popular such language on the home computer front is BASIC. Most of the equipment featured over has a BASIC interpreter available either in ROM or as a cassette that can be loaded into RAM. Make sure however that such support is available. The amount of RAM needed by the various BASICS will vary but as a general rule, at minimum, it is wise to provide as much space in RAM as that occupied by the BASIC interpreter.

Finally a word about whether to buy a kit or ready built system. A home computer kit, you can take it from us, has a lot of soldered joints, each one of which must be perfect. It is also a difficult thing to test for as a rule it will either work or not - no half way stage. Having said that they are not impossible to build but make sure there is adequate back-up available from the kit supplier. Kits are, after all, cheaper than ready built systems. So if you are confident and want to save money, and may even enjoy building a kit, buy a kit - but if you prefer something built and working there are plenty of ready built designs around.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & COST (Size of RAM supplied) & Kit/ready built & Extras required to get system going & I/O facilities & Software support & Peripherals & Bus & MPU \\
\hline Commodore Pet & \begin{tabular}{l}
£695 \\
(8k static)
\end{tabular} & Ready built & Mains plug & \[
\begin{aligned}
& \text { IEE- } 488+\text { access } \\
& \text { to CPU data, } \\
& \text { address and control } \\
& \text { lines - cassette interface }
\end{aligned}
\] & 8k BASIC + 4k operating system in room & Plans for floppy, printer & CBM & 6502 \\
\hline Tandy TRS-80 & \begin{tabular}{l}
£500 approx. \\
(4k dynamic)
\end{tabular} & Ready built & Mains plug & Access to address, data and control lines - cassette interface & 4k level 1 basic & Plans for floppy, printer & Tandy & 280 \\
\hline Apple & \begin{tabular}{l}
£995 \\
(4k static)
\end{tabular} & Ready built & TV monitor, cassette recorder & \(2 \times\) analogue input channels, cassette interface, audio output, UHF output & 6k BASIC + 2 k operating system & Floppy to be released & - & 6502 \\
\hline Research machines & \begin{tabular}{l}
£1 063 \\
(16k dynamic)
\end{tabular} & Ready built & TV monitor, cassette recorder & Access to control, data + address lines. Cassette interface & 2 k monitor plus various BASICs on tape & Floppy by autumn & RM & 280 \\
\hline Nascom 1 & \begin{tabular}{l}
£197.50 \\
(2k static)
\end{tabular} & Kit & Soldering iron, TV monitor, cassette recorder, power supply & Data, address and control signal access, cassette interface, UHF output & 1 k monitor + 2 k static ram & Memory expansion, CUTS interface floppy all planned & NASCO & 280 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Kim-1 & \[
\begin{aligned}
& £ 145 \\
& \text { (1k static) }
\end{aligned}
\] & Ready built & Cassette recorder power supply & Data, address and control signal access plus signal I/O & 2 k monitor + 1 k static ram & KIM 2/4 memory + Motherboard & - & 6502 \\
\hline SWTPC & \begin{tabular}{l}
£275 kit \\
(4k static)
\end{tabular} & Either & VDU/KBD & 20mA and RS232 & Monitor various BASICs available & Mini floppy, printer, cassette I/O available & SS50 & 6800 \\
\hline Heathkit H8 & \[
\begin{aligned}
& £ 400 \\
& (4 \mathrm{k} \text { static) }
\end{aligned}
\] & Kit & VDU (H9) & Data, address and control signal access & Tiny and extended BASICs, plus operating system & Tape reader/ punch, cassette I/O, printer available & Heath kit & 8080 \\
\hline Cremenco Z2 & \[
\begin{aligned}
& £ 395 \\
& \text { (CPU only) }
\end{aligned}
\] & Kit & Memory, KBD, VDU, interface board & Data, address and control signal access & BASIC, monitor, assembler & Floppies, & S100 & Z80 \\
\hline MSI & \[
\begin{aligned}
& £ 375 \text { (kit) } \\
& \text { £565 (built) } \\
& \text { (8k static) } \\
& \hline
\end{aligned}
\] & Either & KBD/VDU & RS \(232 / 20 \mathrm{~mA}\) plus data, address and control lines & Monitor plus various BASICs & Mini floppy, printer, cassette I/O & SS50 & 6800 \\
\hline SCRUMPI 3 & \[
\begin{aligned}
& £ 189.75 \\
& 128 \text { Bytes }
\end{aligned}
\] & Kit & Monitor TV & 2 eight-bit ports & Monitor PROM & - & - & \[
\begin{aligned}
& \mathrm{SC} / \\
& \mathrm{MP} 2
\end{aligned}
\] \\
\hline
\end{tabular}

HEATH (GLOUCESTER) LTD
Gloucester
GL2 6EE
PERSONAL COMPUTERS LTD
18/19 Fish Street Hill
London
EC3R 6BY
S.E.E.D.

STRUMECH ENGINEERING LTD
Portland House
Coppice Side
Brownhills
Walsall

\section*{TANDY}

Bilston Road
Wednesbury
W. Midlands

COMMODORE SYSTEMS
360 Euston Road London

H 8
H 11
H1

APPLE

SWTPC 6800 MSI 6800

TRS 80

\section*{PET} KIM-1

RESEARCH MACHINES
Sintel
PO Box 75A
Oxford

BYWOOD
68 Ebberns Road
Hemel Hempstead
Herts
HP3 9QRC

NASCO
LYNX ELECTRONICS
92 Broad Street
Chesham
Bucks

\section*{COMART}

PO Box 2
St. Neots
Huntingdon
Cambs.

NEWBEAR COMPUTING STORE
7 Bone Lane
Newbury
CROMENCO
Berkshire
SL6 6BN

COMPUTER WORKSHOP
174 Ifield Road
London
SW10 9AG
AND
SWTPC
29 Hanging Ditch
Manchester
M4 3ES

SINTROM
MICROSHOP DIVISION
14 Arkwright Road
SWTPC
Reading
Berks
RG2 0LS

A．Marshall（London）Ltd．Dept：ETI London：40－42 Cricklewood Broadway，NW2 3ET．Tel：01－4520161／2．Telex \(21492 \& 325\) Edgware Rd，W2．Tel：01－723 4242．Glasgow： 85 West Regent St，G2 2QD．Tel；041－3324133．Bristol： 1 Straits Parade，Fishponds Rd，BS 16 2LX Tel： 0272654201
\begin{tabular}{|c|}
\hline \multicolumn{4}{|l|}{TRANSISTORS} & \(2 \sim 3393\) & 0.17 & 244037 & 0.60 & 245 & 0.80 & 246124 & 0.45 & 8C108 & 0.16 & 188 & 0.35 & －1213C & 0.15 & BC397 & 0.20 & 0024 & 0.49 & 日F160 & 0.33 & 86月79 & 0.30 & ME 4001 & 16 & A & ． 5 \\
\hline 2 6 696 & 0.39 & 2 W 2218 & 0.3 & 2123994 & 0.17 & 244058 & 0.22 & 2W5193 & 0.75 & 2 2 6125 & 0.47 & вС1088 & 0.16 & 8c179 & 0.25 & \(8 \mathrm{BC}_{13}\) & 0.17 & вс338 & 0.23 & B240C & 0.59 & \({ }_{\text {ar }} 161\) & 0.65 & BFR\％0 & 0.30 & ME4002 & 16 & TTP31A & 0.54 \\
\hline 2 K 697 & 0.31 & 2N2218 & 0.38 & 243395 & 0.19 & 2 m 4059 & 0.17 & 2 M 194 & 0.80 & 40361 & 0.55 & вClobc & 0.17 & 8С179a & 0.25 & 8с213 & 0.17 & \({ }_{8 C 547}\) & 0.13 & B0241A & 0.49 & \({ }_{8 F 167}\) & 0.37 & & 0.30 & Me4003 & 0.16 & TIP31C & 0.72 \\
\hline 2N699 & 0.49 & 212219 & 0.38 & 213396 & 0.19 & 2 M 4060 & 0.22 & 2M5195 & 0.97 & 40362 & 0.55 & 8C109 & 0.16 & 8С1798 & 0.25 & 8С21318 & 0.17 & BC547A & 0.13 & 80241 C & 0.65 & BFF73 & 0.37 & Bfx29 & 0.34 & ME4101 & 0.11 & T1P324 & 0.59 \\
\hline 216699 & 0.58 & 2M2219 & 0.39 & 213397 & 0.19 & 2M4061 & 0.19 & 2 M 245 & 0.37 & 40363 & 1.45 & вС1098 & 0.17 & －6， 798 & 0.26 & BC213LC & 0.17 & \({ }^{\text {BC5478 }}\) & 0.13 & 80242A & 0.55 & BF17 & 0.27 & 䝠30 & 0.34 & mealice & 0.11 & п1P32L & 0.82 \\
\hline 2 W 706 & 0.30 & 2स2z20 & 0.39 & 2134388 & 0.85 & 240062 & 0.20 & 2M5246 & 0．38 & 40048 & 0.82 & BCliosc & 0.18 & \(\mathrm{BCl}^{8} 82\) & 0.12 & AC214 & 0.17 & gcsa & 0.13 & B02s2C & 0.62 & 85178 & 0.27 & 8F \(\times 84\) & 0.30 & me4103 & 0.11 & IIP91A & 0.76 \\
\hline 217068 & 0.30 & 212221 & 0.25 & 2 T 3440 & 0.75 & 2 m 0054 & 1.35 & 2145247 & 0.4 & 40409 & 0.82 & BC140 & 0.30 & \({ }_{81} 1824\) & 0.12 & 8С2148 & 0.17 & BC549 & 0.14 & 80243A & 0.65 & 8F179 & 0.33 & Bfx \({ }^{\text {P }}\) & 0.38 & MEA 104 & 0.18 & IIP4IC & 0.97 \\
\hline \(2 \mathrm{2H708}\) & 0.30 & \({ }^{2142214}\) & 0.25 & 213441 & 0.92 & \(2 \mathrm{maO74}\) & 2.65 & 2 L 5248 & 0.44 & 40410 & 0.82 & \({ }^{\text {BC1 }} 141\) & 0.32 & \({ }_{8 C 1828}\) & 0.13 & 8C214C & 0.17 & BC549 & 0.14 & 802435 & 0．07 & 8F180 & 0.37 & 8F×86 & 0.30 & ME6101 & 0.22 & T1P424 & 0.86 \\
\hline 21718 & 0.30 & 212232 & 0.25 & 213442 & 1.45 & 2 4 4121 & 0.27 & 2 L 5294 & 0.44 & 40411 & 3.10 & \({ }_{8 C 147}\) & 0.13 & вс182 & 0.15 & 8 82141 & 0.18 & BCSAS & 0.15 & 80244 A & 0.70 & 8F191 & 0.37 & \({ }_{88} \times 87\). & 0.35 & MEE 102 & 0.22 & TiP42C & 1.08 \\
\hline 2 77784 & 0.54 & 2122223 & 0.25 & 2136839 & 0.17 & 2 H 122 & 0.27 & 2 5 5295 & 0.44 & 40594 & 0．87 & 8C1478 & 0.13 & acibzL & 0.15 & 8 C 21418 & 0.18 & 8C55 & 0.14 & B0244C & 0.87 & 4F182 & 0.37 & 日fx & 0.30 & M 229 & 1.35 & T1P2995 & 0.70 \\
\hline 2 \％7204 & 0.85 & 2 2 2369 & 0.27 & 2н36384 & 0.17 & 2 m 123 & 0.19 & 2 Lm 596 & 0.44 & 40595 & 0.98 & 8C148 & 0.13 & вс1821B & 0.15 & BC2141C & 0.18 & BC558 & 0.13 & 802454 & 0.69 & 8F183 & 0.44 & 81889 & 1.37 & MJE540 & 0.62 & TIP3055 & 0.59 \\
\hline 24722 & 0.45 & 2N2369A & 0.27 & 213302 & 0.14 & 2 4 4124 & 0.19 & 2 L 5238 & 0.44 & 40673 & 0.80 & \({ }_{8 C 1488}\) & 0.13 & \({ }_{81183}\) & 0.12 & 8С2378 & 0.15 & BC559 & 0.15 & B0245C & 0.85 & 8F188 & 0.41 & BFF5 & 0.27 & MJez & 0.62 & TIS34 & 1.05 \\
\hline 21727 & 0.50 & 212546 & 0.80 & 213703 & 0.14 & 2 H 4125 & 0.19 & 205447 & 0.16 & 40669 & 1.30 & \({ }^{\text {BC1 }} 148 \mathrm{C}\) & 0.13 & 8С1834 & 0.12 & вс238 & 0.13 & \({ }_{\text {BCY7 }}\) & 0.21 & 802445 & 0.72 & BF185 & 0.37 & 88551 & 0.27 & MJE371 & 0.85 & Tis42 & 0.50 \\
\hline 2 W 914 & 0.38 & 2N2647 & 1.55 & 243704 & 0.14 & 244126 & 0.19 & 2 L 5448 & 0.16 & \({ }^{\text {acl2 }}\) & 0.48 & \(\mathrm{CCL}^{149}\) & 0.15 & \({ }_{81} 1838\) & 0.13 & вС2388 & 0.13 & вс¢7\％ & 0.26 & 8b245C & 0.93 & 8F19 & 0.16 & \(8 \mathrm{Fr52}\) & 0.27 & MJES & 0.50 & TIS43 & 0.47 \\
\hline 2 W 916 & 0.33 & 2 2 2903 & 1.60 & 213705 & 0.14 & 2 L 4284 & 0.38 & 2 L 5449 & 0.20 & AC127 & 0.48 & \({ }^{\text {bcl149 }}\) & 0.15 & вс1836 & 0.13 & \(8 \mathrm{BC238C}\) & 0.13 & BC772 & 0.18 & 80433 & 0.44 & 日F19 & 0.16 & \({ }^{8 F r 90}\) & 1.35 & \(\cdots\) & 0.70 & TIS90 & 0.22 \\
\hline 24917 & 0.38 & 212904 & 0.31 & 2133706 & 0.14 & 2 L 4286 & 0.22 & 2 2 5457 & 0.38 & \(1{ }^{1} 128\) & 0.48 & 8C157A & 0.15 & \({ }_{8} \mathbf{C} 1836\) & 0.15 & 8с2398 & 0.16 & B0115 & 0.86 & 80434 & 0.46 & 8F196 & 0.16 & 日R10 & 0.55 & Muez & 1.65 & T1591 & 0.27 \\
\hline 21918 & 0.45 & 2 2 29044 & 0.31 & 2133707 & 0.14 & 2 H 4287 & 0.22 & 2 L 5458 & 0.35 & AC151 & 0.43 & вcispa & 0.15 & вс183ц & 0.15 & 8．239C & 0.17 & B0131 & 0.55 & B0435 & 0.46 & 8F197 & 0.18 & BEY39 & 0.55 & M \(\quad 3 \mathrm{za65}\) & 1.05 & \({ }_{\text {ITS }}^{4} 92\) & 0.33 \\
\hline 21929 & 0.37 & 212905 & 0.31 & 2143789 & 0.12 & 2 L 4288 & 0.22 & \(2 \pm 5459\) & 0.32 & \(4{ }^{1} 15\) & 0.54 & \({ }^{\text {BC1588 }}\) & 0.15 & вC1831． & 0.15 & 8c257a & 0.18 & 80132 & 0.75 & 80436 & 0.46 & 8F198 & 0.19 & BSII9 & 0.35 & MPFIIT & 0.33 & 11593 & 0.36 \\
\hline 219294 & 0.37 & 272905 & 0.31 & 2143709 & 0.12 & 244289 & 0.22 & 2 L 5460 & 0.65 & acis & 0.59 & вc15sh & 0.17 & вССВаиС & 0.15 & вс259в & 0.19 & 80135 & 0.40 & \({ }^{80437}\) & 0.55 & BF199 & 0：19 & 8Sx20 & 0.35 & MP¢ 1 & 0.44 & \(21 \times 300\) & 0.17 \\
\hline 24930 & 0.37 & 2 W 2906 & 0.25 & 243771 & 216 & 2M4347 & 2.20 & 2 L 5484 & 0.37 & 4C153k & 0.59 & 8 CL 1598 & 0.17 & BC184 & 0.12 & \({ }_{8} 82598\) & 0.19 & 80136 & 0.40 & 80438 & 0.55 & 8F224J & 0.22 & \({ }^{\text {BS }} 121\) & 0.35 & MPF 104 & 0.44 & \(\underline{11 \times 301}\) & 0.17 \\
\hline 2 m 930 A & 0.95 & 2 L 29064 & 0.25 & 213772 & 2.20 & 2＊4348 & 2.65 & 2 L 5485 & 0.40 & ncilfk & 0.70 & \({ }_{8} 160\) & 0.38 & \({ }_{\text {BC }} 1848\) & 0.13 & всззо & 0.43 & 80137 & 0.41 & 80529 & 0.49 & 日f225 & 0.27 & 8ut04 & 1.80 & MPSA & 0.44 & Tx302 & 0.27 \\
\hline 2 L 1711 & 0.30 & 212907 & 0.25 & 2143773 & 3.15 & 244918 & 0.65 & 2 245486 & 0.40 & \({ }^{1} 178\) & 0.54 & \({ }^{\text {BCl }} 161\) & 0.38 & \({ }_{\text {c }}\) & 0.13 & BC301 & 0.43 & B0138 & 0.41 & 80530 & 0.55 & 8F244 & 0.38 & 日U105 & 1.55 & mPSA & 0.27 & ［17303 & 0.27 \\
\hline 211889 & 0.30 & 2\＃2907 & 0.25 & 213819 & 0.36 & 249919 & 0.70 & 2W5490 & 0.54 & AC．187 & 0.59 & BC167 & 0.13 & вC1841 & 0.15 & BC302 & 0.37 & 80139 & 0.43 & 80535 & 0.70 & вF2448 & 0.33 & Bu126 & 1.08 & MPSA & 0.27 & 27x304 & 0.27 \\
\hline 211890 & 0.30 & 2\＃2923 & 0.17 & 2133820 & 0.39 & 244920 & 0.83 & 2 F 5492 & 0.64 & 4ciblk & 0.65 & \({ }^{81} 1678\) & 0.13 & вC1844 & 0.15 & ac303 & 0.54 & B0140 & 0.43 & \({ }_{80536}\) & 0.70 & BF245A & 0.44 & Buz24， & 2.20 & MPSAI？ & 0.44 & \(27 \times 330\) & 0.22 \\
\hline 211893 & 0.30 & \(22^{2924}\) & 0.17 & 2113821 & 0.96 & 244921 & 0.54 & 2 L 5494 & 0.65 & AC188 & 0.54 & вс158 & 0.13 & bcisalc & 0.15 & 8c307 & 0.15 & 8018 & 1.90 & 80537 & 0.74 & BF245B & 0.44 & BU205 & 2.40 & MPSA & 0.33 & 1TX500 & ． 16 \\
\hline 212102 & 0.50 & 242925 & 0.19 & 213900 & 0.28 & 2H4922 & 0.60 & 2 L 5496 & 0.67 & \({ }^{\text {A }}\) C188K & 0.65 & \({ }^{\text {BC1 }} 1688\) & 0.13 & BC212 & 0.15 & 8c3077 & 0.16 & B9182 & 2.20 & \({ }^{80538}\) & 0.71 & 8F257 & 0.35 & \({ }^{\text {Bu206 }}\) & 270 & mpsas5 & 0.27 & 114530 & 0.25 \\
\hline 2012192 & 0.58 & ги2926 & 0.17 & 2133901 & 0.30 & 2 L 4923 & 0.75 & 248027 & 0.64 & 40161 & 1.00 & \(\mathrm{HCL}^{\text {c }}\) & 0.13 & BC212a & 0.15 & всза78 & 0.16 & 80183 & 2.35 & 80539 & 0.60 & 82588 & 0.35 & BU2 & 2.70 & MPSP56 & 0.27 & & \\
\hline 2W2193 & 0.50 & 2 23053 & 0.25 & 2 2 3903 & 0.20 & 2 H 4924 & 1.15 & 246107 & 0.45 & \(N 162\) & 1.00 & BC1698 & 0.13 & BC2128 & 0.15 & \({ }_{\text {¢ }}\) ¢308 & 0.16 & 80187 & 0.95 & 80540 & 0.60 & 82529 & 0.35 & M20401 & 0.22 & \({ }^{\text {月20088 }}\) & 245 & & \\
\hline 2421934 & 0.52 & 233154 & 0.72 & 213904 & 0.18 & 2N5036 & 0.30 & 2M6108 & 0.55 & \({ }^{\text {a }} 108\) & 0.60 & \({ }^{\text {BC169C }}\) & 0.13 & BC212t & 0.18 & вс3788 & 0.16 & 80235 & 0.46 & \({ }_{80 \times 14}\) & 1.32 & \({ }_{8 F 3}{ }^{\text {a }}\) & 0.42 & Mecta & 0.22 & A20100 & 2.15 & & \\
\hline 2n2194 & 0.42 & \(2{ }^{2} 3055\) & 0.75 & 2133905 & 0.18 & 245087 & 0.30 & 2 m 109 & 0.55 & \({ }^{\text {AF }} 1098\) & 0.52 & 8C177 & 0.22 & 8С2124 & 0.18 & всадая & 0.16 & 80236 & 0.44 & 80×18 & 1.90 & 8F33？ & 0.49 & ME04／4 & 0.17 & \({ }_{\text {IIP299 }}\) & 0.49 & & \\
\hline \(22^{219} 948\) & 0.45 & \({ }^{2} \times 3395\) & 0.50 & 213900 & 0.18 & 245088 & 0.30 & \(2 \times 6111\) & 0.49 & \({ }^{\text {BC }} 107\) & 0.16 & 8Cil7a & 0.22 & вC212．8 & 0.18 & \({ }^{8} \mathbf{C z 7 9 9 8}\) & 0.16 & 80237 & 0.44 & \({ }^{3020}\) & 1.10 & \({ }^{85} 5388\) & 0.52 & ME0412 & 0.22 & T1P29C & 0.65 & & \\
\hline 2．22195 & 0.40 & 213391 & 0.40 & 244031 & 0.55 & 245089 & 0.34 & 2\％6121 & 0.41 & 8c107a & 0.16 & 8 c 1778 & 0.25 & \({ }_{\text {8C2 }} 13\) & 0.15 & \({ }^{8} \mathrm{Caz99}\) & 0.16 & 80238 & 0．44 & \({ }^{80 Y 55}\) & 1.90 & & 0.30 & me0al4 & 0.22 & tip30A & & & \\
\hline 2 LW 1954 & 0.40 & 2 z 3391 A & 0.45 & 244032 & 0.65 & \(2 \mathrm{2W5190}\) & 0.65 & 2M6122 & 0.44 & \({ }^{8} 1078\) & 0.16 & \({ }^{\text {BCLI }} 17\) & 0.22 & 8c213 & 0.15 & \({ }^{8 C 327}\) & 0.22 & 8D239A & 0.44 & \({ }^{80 Y 56}\) & 2.10 & 97240 & 0.29 & & & & & & \\
\hline 2w2217 & 0.55 & 2M3392 & 0.17 & 2 m & 0.72 & 2 & 0.75 & 2M6123 & 0.48 － & － 8108 & 0.16 & 8C1784 & 0.2 & BC2138 & 0.15 & BC328 & 0.20 & 802396 & 0.59 & 8 fl 1.15 & 0.39 & Brfa & 0.30 & & & & & & \\
\hline
\end{tabular}

\section*{LINEAR CIRCUITS}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{LINEAR CIRCUITS} \\
\hline CA3018 & 0.75 & Lum79s & 4.25 & Lm7815K & 1.75 & T9a530 & 235 \\
\hline Ca3018A & 1.10 & Lm380．48 & 0．\％ & Lm7824k & 1.75 & тва¢3300 & 2.45 \\
\hline CA3020 & 2.20. & ．1m300114 & 1.08 & Lm78L05Cl & 0.30 & тваS40 & 260 \\
\hline ca3020 & 2.50 & LIm381a & 270 & Lmplis 12 CL & 0.30 & TB65400 & 2.70 \\
\hline Ca3028A & 0.90 & Lun31M & 1.69 & lmpbilici & 0.30 & t8a550 & 3.60 \\
\hline C130288 & 1.25 & Lm382\％ & 1.32 & mm314 & 4.60 & tbas500 & 3.80 \\
\hline саз030 & 1.50 & Lu384m & 1.55 & mms316 & 4.60 & tBa56000 & 3.00 \\
\hline C13030 \({ }^{\text {a }}\) & 2.20 & Lm386\％ & 0.88 & Me555 & 0.33 & твasto & 210 \\
\hline CA3038 & 2.90 & Lim387 & 1.10 & ME556 & 0.85 & tBa5700 & 2.20 \\
\hline саз338， & 4.10 & LM388M & 1.00 & ME558N & 1.98 & tba7000 & 2.20 \\
\hline ca3045 & 1．55 & Lm3894 & 1.00 & He560 & 4.50 & тватгоар & 2.06 \\
\hline C， 3046 & 0.77 & 117020 & 0.81 & Me561 & 4.50 & tea750 & 2.36 \\
\hline CA 3048 & 245 & 14709 & 0.70 & Mes62 & 4.50 & tbat500 & 2.45 \\
\hline Ca3052 & 1.78 & ［m7098 & 0.50 & HE565 & 1.39 & т8ав00 & 1.30 \\
\hline Ca3080 & 0.85 & LM70914 & 0.49 & ME566 & 1.75 & tabios & 1.30 \\
\hline C130804 & 2.10 & Lm710 & 0.67 & Me567 & 1.90 & тваз20 & 0.80 \\
\hline C33086 & 0.50 & Lam7014 & 0.64 & Me571\％ & 4.95 & т8а920 & 2.99 \\
\hline Саз 30888 & 1.87 & Lu7licm & 0.72 & SA\＄560 & 2.70 & TCAI60C & 236 \\
\hline CA30898 & 2.90 & Lu723C & 0.75 & SAS570 & 270 & TCA1608 & 2.55 \\
\hline саза900 & 4.40 & 1 m 723814 & 0.45 & SAJ110 & 2.10 & тса270 & 299 \\
\hline Ca3130 & 1.06 & LM726 & 5.60 & S041P & 1.35 & tcal30 & 4.50 \\
\hline Ca3140 & 1.04 & Lim74IC & 0.70 & S042P & 1.35 & тca740 & 4.50 \\
\hline L \({ }^{3} 301\) & 0.30 & Im741C8 & 0.30 & SH76001M & 1.30 & tca750 & 3.00 \\
\hline L．m307\％ & 0.50 & Lm741C14 & 0.30 & Sn76003\＃ & 238 & тca760 & 2.00 \\
\hline LIM3086 & 0.95 & L1747CM & 0.99 & SM76013M & 1.50 & TCA105 & 1.49 \\
\hline Lm309kc & 1.95 & Lim 7488 & 0.50 & SM76023\％ & 1.50 & тCa440 & 1.65 \\
\hline LM317\％ & 3.35 & ［m74814 & 0.90 & \＄1760334 & 2.35 & toalazz & 7.50 \\
\hline L．m318M & 2.45 & Lim1303M & 1.15 & ти263 & 1.35 & Tomi024 & 1.24 \\
\hline LM32075 & 2.15 & LM1304N & 1.52 & ти300 & 3.70 & toal034 & 4.75 \\
\hline Lm320T1？ & 2.15 & tm1305\％ & 1.52 & т \(\quad\) 3320a & 115 & TDA2020．0 & 4.50 \\
\hline Lm320T 15 & 2.15 & Lm1307\％ & 1.22 & tM350A & 3.00 & umilo & 2.15 \\
\hline Lm320124 & 2.15 & L131310\％ & 2.10 & TM521 & 1.10 & уа180 & 215 \\
\hline LM320p5 & 1.15 & L（m1351M & 1.30 & TM522 & 2.10 & tLOBOCP & 1.25 \\
\hline LM320p12 & 1.15 & IM1458M & 0.45 & т \(\boldsymbol{4} 550\) & 0.48 & тlobicp & 0.90 \\
\hline LME2P15 & 1.15 & LM1496M & 0.97 & tas60 & 2.10 & tLOB2CP & 1.10 \\
\hline Lm3z2P24 & 1．15 & Lm18089 & 210 & IM570 & 2.20 & ILO83cN & 1.40 \\
\hline Lı323\％ & 6.95 & LM1812M & 6.20 & TM370A & 5.45 & TLO84CM & 1.45 \\
\hline Lm339M & 0.60 & LM1820M & 1.16 & ta6630 & 240 & －3559 & 0.80 \\
\hline L 1340 T5 & 0.88 & LIM1828\％ & 1.90 & TM960 & 3.90 & Ľ356K & 0.80 \\
\hline 1 （m340715 & 0.88 & Lmia33\％ & 1.90 & тм970 & 4.20 & － 357 m & 0.80 \\
\hline Lm340124 & 0.88 & Lmlsalm & 1.90 & TMA611B & 2.50 & U132011 & 3.00 \\
\hline LM34195 & 0.80 & LM1845 & 1.50 & т4621 & 2.50 & ［13331／ & 3.00 \\
\hline （M341P12 & 0.80 & Lm184am & 1.98 & TM661A & 1.65 & （13741 & 0.80 \\
\hline Lm341P15 & 0.80 & Lm1850M & 1.90 & 146618 & 7.45 & ［13741\％ & 0.55 \\
\hline （M341P24 & 0.30 & LIm1889M & 4.90 & ти700 & 4.50 & & \\
\hline L＊348M & 0.95 & Lm3301／ & 0.60 & tMa330A & 1.45 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline Lı356\％ & 0.60 & L－m3302 & 0.55 & ти9308 & 1.45 & & \\
\hline LIM3600 & 3.00 & L／m34019 & 0.55 & 140100 & 2.00 & \multicolumn{2}{|l|}{\({ }_{\text {MANY MORE }}^{\text {TYPES }}\)} \\
\hline （m370\％ & 3.30 & Lm3900\％ & 0.68 & тваıг & 0.80 & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
STOCKEO－ \\
SENO FER GUR CATALOGUE
\end{tabular}}} \\
\hline L43714 & 235 & Lm3905N & 1.15 & tBa500 & 224 & & \\
\hline L1m350K & 6.45 & （1m3909\％ & 0.78 & tBaS000 & 2.34 & & \\
\hline L4373／ & 3.35 & Lm3911\％ & 1.10 & tBA510 & 2.35 & & \\
\hline ［m374 & 3.36 & Lm7805K & 1.75 & tbasion & 2.48 & & \\
\hline L4377\％ & 1.80 & LIM7812x & 1.75 & т8月520 & 260 & & \\
\hline LIm378 & 2.40 & Lm324 & 0.75 & teas200 & 2.70 & & \\
\hline
\end{tabular}

\section*{EXP \({ }^{\text {aiND }}\) AND
GROW WITH}

BUTAREADY TO USE AMERICA＇S FASTEST SEIIING 6 BASED SYSTEM－EASILYEXPANDED INTO A PERSONAL HOME COMPUTER

\section*{The basic KIM 2 includes Hex keyboard and display，
audio cassette interface．Telerype interlace Superb documentation， 2 K monitor software in ROM Powertul} extension and versatility，with all the possible future requirements catered
for Up and running in minutes．Any future benefitis from Commodores PET
computer will be sot ware compatible with their KIM system and in fact your
 KIM 1 －Basic board with above features assembled KIM 3－8K static RAM card plugs into motherboard \(\begin{array}{lr}\text { KIM } 4 \text {－Motherboard（takes } 6 \text { K KIM 3）＋power supply } & £ 193.00 \\ \text { KIM } 6 \text {－Protorype board for user designation } & £ 96.00 \\ \text { The Commodare PEI and KIM are boit based on } & £ 42.00\end{array}\) VOU INTERFACE Fully assembled TTY Card Ty ASC 11 keyboard in－converts TV set to cheap
computer terminal via aerial socket．Also standard RS 332 connector miero，computer or modem -16 lines \(x\) 6 64 characters
SEND SAE NOW FOR FULL DETAILS

\section*{LOW COST TELETYPE}

CONVERT TV SET TO TELETYPE
The new Cat control chip irom thomson CSF SFF96364．Convert your in set into an electronic lefeiype－ 6 lines \(x 64\) character teletype．Available as chip or full display card full cur sor control， 5 volts TTL compatible，line erase，full card included UART．Modem，char． gen etc．Comp video out from encoded keyboard

SEND S．A．E．FOR DETAILS

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{TTL \＆CMOS} \\
\hline 74．LSOM & 0.26 & 7415156M & 1.20 & 74C1933 & 1.11 & 7492\＃ & 0.45 \\
\hline 74．S01M & 0.26 & 74．S157M & 0.60 & 74C195 \({ }^{\text {H }}\) & 1.04 & 7493M & 0.4 \\
\hline 74L．502\％ & 0.26 & 7415588 & 0.65 & 7400 W & 0.17 & 749411 & 0.90 \\
\hline 74．S03M & 0.26 & 7415150M & 1.43 & 740111 & 0.17 & 7495K & 0.76 \\
\hline 74．504M & 0.29 & 74LS1611 & 0.85 & 7402 W & 0.17 & 7496\％ & 0.70 \\
\hline 74.508 M & 0.26 & 74．8162M & 1.43 & 7463 m & 0.17 & 7497M & 1.95 \\
\hline 74．5104 & 0.26 & 74．S163 & 0.85 & 740411 & 0.17 & 74100 & 1.40 \\
\hline 74．5124 & 0.26 & 74．5164M & 1.43 & 74054 & 0.22 & 741074 & 0.35 \\
\hline & 0.58 & 74． 1.168 M & 243 & 74051 & 0.56 & 74118 & 0.95 \\
\hline T41514\％ & 1.43 & 74LS169 & 2.43 & 74074 & 0.55 & 74198 & 1.40 \\
\hline 74.52001 & 0.26 & 74．S174 \({ }^{\text {N }}\) & 1.33 & 7408 B & 0.22 & 741214 & 0.28 \\
\hline 74526\％ & 0.39 & 74LS175N & 1.25 & 7409 & 0.22 & 74122 & 0.55 \\
\hline 74S27M & 0.50 & 74LS181M & 3.95 & 7410\％ & 0.20 & 74123 & 0.55 \\
\hline 74528 M & 0.42 & 74LS189\％ & 3.74 & 741111 & 0.26 & 741254 & 0.45 \\
\hline 7453019 & 0.26 & 74LS190\％ & 1.00 & 7412M & 0.20 & 741414 & 0.86 \\
\hline 74532M & 0.27 & 74．51911 & 1.00 & 7413 K & 0.36 & 74148N & 1.35 \\
\hline 741537\％ & 0.32 & 74L192H & 1.88 & 714141 & 0.80 & 74145 & 0.86 \\
\hline 745388 & 0.32 & 74．5193M & 1.98 & 74154 & 0.36 & 74150m & 1.20 \\
\hline THLS404 & 0.29 & 74LS196\％ & 1.28 & 7417m & 0.36 & 741514 & 0.76 \\
\hline 74154221 & 1.07 & 74400\％ & 0.24 & 74204 & 0.22 & 7415311 & 76 \\
\hline 741547\％ & 1.09 & 74C02N & 0.24 & 7423M & 0.32 & 74154＊ & 120 \\
\hline 74.548 M & 1.09 & \({ }^{74 C 04}\) & 0.24 & 7425 \({ }^{\text {N }}\) & 0.32 & \({ }^{7415515}\) & 0.70 \\
\hline 741549 & 1.09 & 74C09\％ & 0.24 & 7427 & 0.32 & 74157M & 0.78 \\
\hline 74．551M & 0.26 & 74 Cl 10 m & 0.24 & 7438 m & 0.22 & 74160N & 1：10 \\
\hline 74.55411 & 0.26 & 74414＊ & 1.41 & 74324 & 0.30 & 74161N & 1.10 \\
\hline 741573m & 0.42 & \({ }^{74} 420 \mathrm{Ca}\) & 0.24 & 7437M & 0.35 & 74162A & 1.10 \\
\hline 7415744 & 0.42 & 74C30 & 0.24 & 7438 & 0.32 & 74163AM & 1.10 \\
\hline 741575N & 0.58 & 14С32 & 0.24 & 74401 & 0.20 & 7416414 & 1.36 \\
\hline 74LS76＊ & 0.42 & 74C42 \({ }^{\text {N }}\) & 0.92 & 7441 AN & 0.34 & 74165\％ & 1.36 \\
\hline 741578 & 0.42 & 74C48 & 1.38 & 7442\％ & 0.76 & 74677 & 2.50 \\
\hline \(74.583 \times M\) & 1.20 & 74C73m & 0.54 & 7445N & 1.40 & 7417414 & 1.60 \\
\hline 741585M & 1.10 & 74C74 & 0.56 & 7446 M & 0.90 & 74175N & 1.00 \\
\hline 74.586 M & 0.44 & \({ }^{74676 *}\) & 0.54 & 74474. & 0.80 & \({ }^{74175 \%}\) & 0.90 \\
\hline 74L590月 & 1.10 & 74c833 & 1.30 & 7443 & 0.80 & 74177M & 0.90 \\
\hline 7415914 & 1.20 & 74C85＊ & 1.30 & 7450m & 0.22 & 7418014 & 1.00 \\
\hline 741．9924 & 0.86 & \(74.686{ }^{\text {\％}}\) & 0.64 & 7451 M & 0.22 & \({ }^{741814}\) & 2.00 \\
\hline 74L1593M & 1.10 & 74С89 & 4.39 & 7453W & 0.22 & 74182． & 0.80 \\
\hline 74．595NH & 1.10 & 74c90m & 0.85 & 745411 & 0.22 & \({ }^{7418414}\) & 1.50 \\
\hline 74．596M & 1.35 & 14c93w & 0.85 & 7450\％ & 0.22 & \({ }^{741855}\) & 1.50 \\
\hline 1415107M & 0.42 & 74695 & 1.04 & 7470N & 0.46 & 74188\％ & 3.25 \\
\hline 74LS 5109 N & 0.42 & 74C107M & 1.22 & \({ }^{7472 \mathrm{~K}}\) & 0.30 & 141899 & 2.60 \\
\hline 74LS1224 & 0.80 & 74C150m & 4.14 & 7473 & 0.44 & 741901 & 1.40 \\
\hline 744．51234 & 0.83 & 74.151 m & 2.47 & 7474 & 0.32 & 741911 & 1.20 \\
\hline 7451244 & 2.70 & \({ }^{\text {J4CLISAN }}\) & 3.68 & 7475N & 0.80 & 741922 & 1.20 \\
\hline 74is125\％ & 0.50 & 74C157\％ & 2.21 & 7476 \({ }^{\text {1 }}\) & 0.45 & 74193m & 1.20 \\
\hline 74．5126m & 0.50 & 74.160 M & 1.11 & 7480\％ & 0.60 & \({ }^{741950]}\) & 1.20 \\
\hline 74LS1324 & 0.85 & 74C16111 & 1.11 & 7481M & 1.00 & 74197\％ & 1.00 \\
\hline 74LS136\％ & 0.44 & 74C162M & 1.11 & 7482N & 0.90 & \({ }^{7419914}\) & 2.00 \\
\hline 74LS 138 & 0.65 & 14C153 & 1.11 & 7483\％ & 1.05 & 74199M & 2.00 \\
\hline 74.5139 m & 0.65 & \(74 C 164 \mathrm{M}\) & 1.04 & 7484M & 1.20 & & \\
\hline 74LS1454 & 1.30 & 74C1654 & 1.04 & 7485 \({ }^{\text {¢ }}\) & 1.36 & \multicolumn{2}{|l|}{\multirow[t]{4}{*}{full hange im OUЯ ME catalogue}} \\
\hline 74．S151M & 1.07 & 74C173M & 0.90 & 7486M & 0.36 & & \\
\hline 7445153m & 0.58 & 74C174m & 0.90 & 7489＊ & 245 & & \\
\hline 74.5154 m & 1.45 & 74C175 & 0.90 & 7490al & 0.45 & & \\
\hline 742155N & 1.20 & 74C192N & 1.11 & 7491aM & 0.85 & & \\
\hline & \multicolumn{7}{|c|}{N 1} \\
\hline & \multicolumn{7}{|c|}{Texas} \\
\hline 22 pin 30p
24 pun 35p & \multicolumn{2}{|r|}{\(4 \mathrm{mmp} \quad 72 \mathrm{p}\)} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{16 amp 20 mmp}} & \multicolumn{3}{|c|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& 93 \mathrm{p} \\
& \text { £1. }
\end{aligned}
\]}} \\
\hline \[
28 \text { pin } 45
\] & & mp 77p & & & & & \\
\hline 40 pin 550 & \multicolumn{2}{|r|}{\({ }^{88 \mathrm{mmp}} \quad 82 \mathrm{p}\)} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{25 mpp}} & \multirow[t]{2}{*}{E2．20} & & \\
\hline & & mp 93 p & & & & & \\
\hline & \multicolumn{5}{|l|}{THYRISTORS plastic powar} & & \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& 4 \text { amps } \\
& 100 \mathrm{v} 0.38
\end{aligned}
\]}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{8 amps}} & \multirow[t]{2}{*}{12 mmps} & & \\
\hline & & & & & & & \\
\hline new & \multicolumn{2}{|l|}{} & \multicolumn{2}{|l|}{200\％ 0.54} & 2000 0.70 & & \\
\hline legue & \multicolumn{2}{|l|}{\(200 \%\)
000.44
40.54} & \multicolumn{2}{|l|}{20040.54
4060
0.68} & 400V 0.90 & & \\
\hline ， & \multicolumn{4}{|l|}{Branced Taxas quality product} & & & \\
\hline
\end{tabular}

TLL \＆CMOS
COMPONENTS
WE STOCK MORE
Stocking distributors officially appointed
ONATIONAL \(\quad\) OVERO
OTEXAS
OMULLARD
OSIEMENS
OELECX
OSCOSEM
MAKES COMPONENTS BUYING EASY

\title{
HIGH LEVEL LANGUAGES
}

\begin{abstract}
English (or any other human language) is much to illogical and unprecise to be used as a computer programming language, so what are the alternatives in use? William King explains the Basics . . .
\end{abstract}

TO THE MANY people who have only a limited knowledge of computers, computer programmers are regarded of as an esoteric cult consisting of super humans with endless mathematics degrees talking in a strange language called jargon.

In the early 1950s there was some truth in this belief. At this time all different makes of computer had their own instruction set. The 'instruction set' of the computers were very basic allowing only simple arithmetic and logic operations to be performed on binary numbers, and making jumps in program execution depending on the results of various tests. In the modern microprocessor which is the heart of all home computers each instruction in the instruction set (there are around 100 different instructions) is identified by a binary code. As an example, in the 6800 microprocessor, the code for the instruction add accumulator B to accumulator A is 00011011. An accumulator is just a store where, in this case, an eight bit binary number (i.e. 10110001) can be stored.

Writing programs down as a series of 1 's and 0 's is very tedious and difficult to correct if an error is made as it is impossible to see instantly what a program section like:

> 10000110
> 10110110
> 10111101
> 01101101
> 10110111
is supposed to be doing.

\section*{Parles-vous binary?}

The first advancement from 'machine code' programming came with assemblers, and assembly languages. Each of the hundred or so instructions of the computer is allocated a mnemonic which is associated with that instruction. Typical mnemonics are LDA for load accumulator, BEQ - branch if equal, JMP - jump.

Programs are written using these mnemonics (the 'assembly language') and fed into the computer. The assembler, which is a program in machiner code takes the mnemonics and substitutes their bunary code.

Fig 1. The spectrum of programming languages from those which are machine orientated to those designed for ease of the user.

Assembly language programs are still not portable, that is then can only be used on computers which have the same instruction set. The time taken to write even simple programs is still high and the language is very machine orientated.

The first 'high-level' language appeared in the late 1950's. This language was FORTRAN (FORmular TRANslator) developed by IBM. FORTRAN was a problem orientated language devised for the convenience of men rather than the machines on which it was used. FORTRAN as a programming language is still in very wide use in scientific applications, but since its creation has undergone many improvements and modifications.

As with most developments, few people were readily going to accept FORTRAN as the universal programming language. Other programming languages in both the scientific and business field developed.

ALGOL (Agorithmic Language) is a programming language intended for use in similar situations to FORTRAN (mainly scientific) and as such can be regarded as a competitor.

COBOL (Common Business-Oriented Language) was developed in the late 1950s to provide a relatively machine-independent language for solving problems in the field of business. Although its applications are virtually nonexistent outside the business community, it still ranks close to Fortran in percentage use.

BASIC (Beginners All-purpose Symbolic Instruction Code), was conceived in the early 1960s as a project at Dartmouth College (in the States) to make the computer more accessible and easy to use by both. students and staff. One of the objectives of Basic was that it should be a language which could be both quickly learned and still powerful enough to solve most small and medium scale problems in a wide field of subjects.

BASIC is particularly important to us in the context 'of home computing as most small machines which support a 'High level' language support BASIC.
Like all programming languages, BASIC is a vehicle for communication with a computer - a way of informing the computer which operations you want to be done in what order. The language consists of a set of characters which are valid in instructions and commands, a series of keywords which initiate particular functions and grammar rules of how to compose 'sentences' of instructions. The way in which commands are put together using these rules is called the 'syntax'.

\section*{Getting Down to Basics}

As we have seen earlier, a computer only accepts instructions in its binary code, commands in BASIC (like PRINT, GOTO, STOP) mean nothing to it at all. In order that the computer can understand these commands, they must be converted into a series of machine code instructions. This function is carried out by a program resident in the computer, in machine code. There are two types of program which perform this translation.

The first, and the type most commonly found in small home computers, is called an interpreter. A program (which is just a sequence of BASIC statements) is keyed into the computer where it is stored. The interpreter program then scans each line of the BASIC program and decides which set of machine code instructions have to be executed to obey the BASIC statement.

The second type of translator program is called a compiler, instead of interpreting a BASIC program line by line, a compiler converts the whole BASIC program into an equivalent program in machine code, and then runs it.

One of the attractions of BASIC (or any other high level language) is that once its rules have been learnt, programs can be written with very little difficulty to run on any computer which has a BASIC interpreter or compiler.

An important concept which has to be grasped before programs can be written, is that in BASIC the sign ' \(=\) ' very rarely means 'equals'. The sign ' \(=\) ' is used mainly in assignment statements. BASIC uses letters to represent numbers which change in value (variables), and changing the value of a variable is accomplished in an assignment statement. We can say ' \(A=5\) ' or 'LET \(A=5\) ' which has an obvious meaning. 'LET \(A=A+5\) ' (using our conventional mathematical ideas) at first seems to be rubbish - if we subtract \(A\) from both sides we have ' \(A-A=A\) -\(-A+5\) ' or ' \(O=5\) '. This is not so, if the ' \(=\) ' sign is read as 'is replaced by', the statement becomes 'LET A be replaced by \(A+5\) ' which means find the value of \(A\), add 5 and call the result A .

BDXES OF THIS TYPE GENERALLY INDICATE INPUT OR OUTPUT OF DATA IN THE FORM OF PUNCHED CARDS, BUT WE SHALL USE THIS CDNVENTION FOR INPUT OF DATA FROM A KEYBOARD

RECTANGULAR BOXES INDICATE COMPUTATIONS OR OPERATIONS DN DATA

DIAMOND-SHAPED BOXES INDICATE DECISION PDINTS

BOXES OF THIS SHAPE INDICATE PRINTED OUTPUT

Fig 2. Flowchart symbols commonly used.

FUGUST 1978
\begin{tabular}{|c|c|c|c|c|c|}
\hline SINROF'T & & 6 & 13 & 20 & 27 \\
\hline & & 7 & 14 & 21 & 25 \\
\hline TUESDF' & 1 & 8 & 15 & 22 & 29 \\
\hline WEDNESDH' & 2 & 9 & 16 & 22 & 30 \\
\hline THILRSCA't' & 3 & 10 & 17 & 24 & 31 \\
\hline FRICHE & 4 & 11 & 18 & 25 & \\
\hline SHTIPELA'T' & 5 & 12 & 19 & 26 & \\
\hline
\end{tabular}

Fig 3. Desired output from computer after month has been selected.
\begin{tabular}{llllll}
& 1st COLUMN BLANK \\
FOR SUNDAY AND MONDAY
\end{tabular}

Fig 4. Output showing 1 st column blank for Sunday and Monday.

As an example of programming we shall look at the task of producing a program to display a calendar of any month in 1978.
Once we have decided exactly what the program should achieve, we must draw a diagram which shows the step by step procedure we must go through in order to produce the result.

Such a procedure is usually called an algorithm and the diagram a flow chart.
. Let us now look at the calender problem. Before we can start we must specify the object, which we shall say is to print the calender for a month of 1978 selected by the user of the program. The way the output should be displayed is shown in Fig 3.

In order to print a calendar of a particular month, the computer must know the name of the month, how many days there are in the month and the day of the week on which the month starts.

This information is contained in a series of data statements at the end of the program, following through the flow chart from the start, the computer stores the names of the days of the week in an array of string variables \(\mathrm{D} \$(1), \mathrm{D} \$(2) \ldots \mathrm{D} \$(7)\) so that when you print ' \(D \$(X)\) ', if \(X=1\) you get, SUNDAY, if \(\Sigma \mathrm{X}=2\) MONDAY and so on.

Next, the screen is cleared and the message "WHICH MONTH" is printed. The computer then expects a month of 1978 to be typed in from the keyboard. The month that is typed in is assigned to the variable \(\mathrm{M} \$\). A counter is initialised and the computer reads the first month from the data, together with its length, and on which day of the week it starts (1 for Sunday, 2 for Monday etc).

The month which was input (\(\mathrm{M} \$\)) is then compared with the month read from the data, if they are the same the computer can go on to print out the calendar. If they are not the same, 1 is added, to the counter, the counter is tested and the computer loops back to read another month. If a non-existant month were input, or the month spelt incorrectly, it will not match any of the months stored in the data statements. Thus, if all twelve months have been read, the counter X , will equal 12 , and the computer will know that the month input is invalid. A message to this extent is printed and the computer jumps back to ask for the required month to be input again. When testing the month only the first three letters are tested, so an input of JANUARY will still give JANUARY.

When the month has been selected (say, August), the screen is cleared and the heading printed on the screen. Before the calendar can be printed, the first date along the first row has to be calculated. Whether or not a date appears in the first column has also to be determined.

If the month selected is August, the first day of the week will be a Wednesday; so the first three rows (Sunday, Monday, Tuesday) to be printed will be blank in the first column. The actual printing routine is contained in a loop which is run through seven times. The variable ' \(X\) ' keeps count of the number of times the loop has been executed. For August. the variable B Which contains the length of the month) will equal 31 and the variable \(C\) (starting day) will equal 3 (Wednesday). The first time round the loop (to print the Sundays), the variable C is compared with the variable X to see if the 'Wednesday' row is to be printed yet. If not, the first column of dates will be blank, so the pointer ' \(Y\) ' is incremented to point to the second column, the day of the week ' \(\mathrm{D} \$(\mathrm{X}\))' is printed; the first time round the loop, \(\mathrm{X}=1\), and \(\mathrm{D} \$(1)=\mathrm{SUN}\) DAY so SUNDAY is printed.

The first day to be printed in the second column is then calculated and printed. 7 is added to the day, the variable \(Y\) is incremented by 4 to point to the next

0001 OIM D \(\$(7)\)
```

B002 DOC(1)="SUNLPFY"
0003 [生(2)="MONLSAY"
G0014 D$(3)="TUESDRY"
Q005 D*(4)="以ELNESDAY"
0日G6 D&(5)="THUFSSNA'T"
0007 [)$(6)="FRI[新"
Q日688 DS(7)="SHTUPDAY"
GE1日 PRINT CHRS(147)
0日20 FRINT "UHIGH MONTH"
0WS日 INPUIT M*
0040 %=1
6050 REF[ R*, B.I

```

```

0170 }x=x+
0йअด IF <<C 1? THEN 159
GN900 FRINT "NO EJUCH MLNTH"

```

```

G110 PRINT CHR車(14?
0115 PRINT
B120 PRINT TRB(11);A"; " 1978"
Q130 PRINT
014品 [)=2゙-L
0150 FIDR }K=1 TO? >
0170 U=11 [HC THEN Y='T+4
0190 FRINT [軫《心;
0190 FRINTT
020日 [1=0
0210 IF %<C THEN DI=0+
Gこ2日 PRINTT TRBC'%;OL;
0230 [ [1 = [1 + 7
9245 Y
0250 IF O1< =8 THEN 226
0260 PRINT
0275 PRINT
0230 0=[%+1
0290 NENT X
03013 END
O4B4 DATA TANURPY, 31, 1, FEBFUHRP'T', 28, 4, MFROH, 31, 4, APRIL, 3., -
0416 [JATA MHY, 31, 2, TIME, 3Q,5, TULY, 31, 7, RUIUUST, 31,3
0420 ORTA SEPTEMEEF, 30, 6, ILTIDBER, 31, 1, NOVEMBER, 30,4
0430 DATA DECEMBER, 31.6

```

Fig 6．Complete listing of calendar program．
column．If the value of the day exceeds \(B\)（number of days in the month）then all the Sundays have been printed and the program loops back，increments \(X\) and prints the next row（MONDAY）．

When printing the＇Wednesday＇row，X（the loop counter）equals 3 ，and this is equal to \(C\)（starting day） so the first column is no longer left blank，and the days are printed from the first column
This then continues until X becomes greater than 7 （all seven rows have been printed）when the whole calendar has been printed and the program ends．
IF LEFT\＄（M\＄，3）\(=\operatorname{LEFT} \$(\mathbf{A} \$, 3)\)－If the first 3 letters of＇ M \＄＇are the same as the first 3 letters of \(A \$\) ．

DIM \(\mathbf{D} \$(7)\)＂Dimension＂ \(\mathrm{D} \$(7)\)－reserves 7 spaces in memory for seven variables， \(\mathrm{D} \$(1)\) to \(\mathrm{D} \$(7)\) ．

IF \(\mathbf{X}<>\mathbf{1 3}\)－If \(\mathbf{X}\) does not equal 13
READ A\＄，B，C looks for the DATA statement， assigns the first data to \(\mathrm{A} \$\) ，the second to B and the third to \(C\) ．If this statement is encountered more than once，READing continues where it left off－i．e．the second time A \(\$\) will be the fourth＇data＇，B the fifth，C the sixth．

PRINT CHR\＄（147）－This is an instruction to the computer to clear the screen．This works on＇PET＇but not necessarily on other machines．

FOR X \(=1\) TO 7 This marks the beginning of a loop which is to be executed 7 times．X starts with the value 1 during the first cycle through the loop．When the instruction NEXT \(\mathbf{X}\) is encountered， X is incre－ mented and execution goes back to the statement after the FOR ．．．TO statement．When X becomes greater than 7 ，the loop ends and execution continues with the statement after the＇NEXT X＇．

ETI

\section*{PETITEVID VDU KIT E85}
\(* 110\) to 1200 band V24
\(* 64\) ch \(\times 16\) line，scrolling
－All on \(8^{*} \times 4^{-1} \mathrm{pcb}\)
Needs TV set．UHF modulator and ASC \(\$\) keyboard

\section*{BOOKS}
p\＆p 50p unless otherwise stated
Comourter deeigns． \(77-68\) a 6800 Microcomputer Comporter deaigns． \(77-68\) ．
Spare diagram set for \(77-68\)
Spare diagram ser for 7p－6
W8． 1 a TIL Microcomputer
Spare diagram set for WB－1
Zlog．2－80 Technical Manual
Z－80 PIO Technical Manual
Motorola．Understanding Microprocessors 130 p M6800 Microprocessor Programming Manual M6800 Microprocesssor Applications Manual（ \(£ 1\) p\＆p） M．O．S．Technotogy．KIM 1 User Manual
6500 Programming Manu
Admen Oaboume．Introduction to Microcomputers
Vol． 0 Beginnars Book
Vol． 1 Basic Concepts
Vol． 2 Some Real Products（ \(\varepsilon 1\) p\＆p）
8080 Programming for Logic Design
6800 Programming tor Logic Design
2－80 Programming for Logic Design
Some Common Basic Programs
Payroll with Cost Accounting in Basic
Syber．Microprocessors from chips 10 systems．Rodnay
Microprocessor Interfacing Techniques．C207
Some Common Basic Programs P． 10
Scelbi． 8080 Software Gourmel Guide Cookbook
S6800＇Soltware Gourmer Guide Cookbook
The Scelti Byte Primer（ \(\subset 1\) 1 \(p \& p\) ）
（PCC First book of Computer Games）
PCC Reference on Home Computers
Instant Basic．
My Computer Likes Me
Games with a Pocket calculator
Games．Tricks \＆Puzzes for a hand calculator
Best of Creative Computing Vol． 1
Best of Creative Computing Vol． 2
Our range of books is constanily expanding．
list plus lutil range of 6800 and \(Z-80\) sotware．

\section*{ONE STOP MAILORDER SHOPPING AT LOW PRICES}

\section*{MEMORY SYSTEMS \\ }

\begin{abstract}
There are a large number of memory types and peripherals on the market, each with its own specifications and specialities, and it is very easy to become snowed under with terminology. In the following article Phil Cohen gives a general view of memory types and uses which should enable the beginner in home computing to find his or her way through the jargon.
\end{abstract}

What does a computer do with its memory? Well, first it has to store the program it has been given to carry out. For this, it uses a section of memory called (not surprisingly) program memory. It must also have a section of memory where it can hold numerical values of various types: data which has been fed in, the intermediate results of calculations, etc. This second type of memory is called core - for historical reasons which will be explained later.

To the computer there is no real difference between the two types of memory, although the programmer sees them as being completely different. As far as the computer is concerned, all it requires of its memory is that, when it 'asks' for a particular part it is 'read' out to it and when the computer wishes to, it can 'write' into a section of memory

The computer sees memory as an homogenous block of 'locations' (the term used to desribe a unit of memory). Each location can be thought of as a pigeon hole, where a small amount of information can be stored The computer takes no notice of what type of memory is used - to it each location is identical. It may seem from this that the choice of memory type is unimportant. This is definitely not the case, as very often the speed of operation of a computer depends solely on the type of memory used.

\section*{Think Fast: Access Time}
'Access time' is the term used to describe the length of the time lag which occurs between the computer's request to read from or write to a location in memory and the transfer actually taking place. This time can be small or large, depending on the memory type. For example, typical access time for a semiconductor integrated circuit memory is 500 ns , while the access time for paper tape may be 5 mins! For this reason the type of memory used for specific tasks must be chosen carefully.

\section*{Think Cheap}

Another important consideration (particularly in domestic systems) is cost. This is usually expressed as a cost per bit. In general, the lower the access time, the higher the cost per bit (unfortunately) and so the choice of memory medium is usually a compromise between cost and speed.

\section*{Think Small}

Also important in some applications is the amount oi space taken up by the memory. This is usually measured in terms of the bit density - the total number of bits of information stored divided by the total volume of the system. In fields such as
computer-controlled weaponry this can be an important factor, although it is usually of no consequence in domestic applications.

\section*{Absent Minded: Reliability}

This is a significant factor in low-speed, low-cost media such as paper tape and a cassette. Anyone who owns a tape recorder will be familiar with the phenomen known as 'drop-out', in which part of the oxide layer falls off the tape. Imagine the consequences if several memory locations fall off with it! However, the reliability of tape systems is usually enhanced by the use of 'coding' and this is described in more detail later.

\section*{Think Again: Volatility}

The types of memory media available fall in general into a pattern of increasing cost in one direction and decreasing speed in the other. There are other considerations, however, such as whether the computer will ever want to write into a particular section of memory. If, for example, a table is required for the calculation of sines, then it is unlikely that the computer will want to write over this table, having been given it. For applications such as this, a 'readonly memory' (ROM) is used.

Read-only memory is characterised by the fact that the information held in it is semi-permanent. ROM will hold its information even after the computer is switched off - the same information will still be available when the machine is turned back on - in other words, this type of memory is 'non-volatile'. This makes ROM very useful for holding 'look-up tables' such as the one mentioned above and, even more important, for holding a computer's 'operating system'. This can be a 1 rogram which the machine will.always be required to obey, as in the case of
a'dedicated'computer-one which can perform only one task such as controlling traffic lights. Another possibility is a 'bootstrap' program which tells the computer to load another program from tape. Operating systems are often very comprehensive, as in the case of the PET BASIC system. This is held in ROM in the PET and is automatically started up on switch-on. This means that, unlike other systems, all you have to do to begin using the PET is to plug it in and switch it on.

\section*{Types of ROM}

Read-only memory comes in many different varieties, differing mainly in how easily they can be written into! Some types of ROM are programmed during their manufacture and cannot be altered by the user. This is all very well for the equipment manufacturer who requires several thousand identical ROMs but is not much use to the amateur who needs a 'one-off'. For purposes such as these, the programmable ROM (PROM) has been developed. These can be bought 'clean' and programmed by the user with whatever information he wishes. This is usually done by subjecting the PROM to voltages higher than the normal operating levels and thus 'burning' the information in one bit at a time. In order to do this, a 'PROM programmer' is required - this consists of the power supply and timing circuits required to do the programming and some sort of interface (usually to a computer) to provide the information.

This leaves another problem: what if you want to change the stored information? The answer is the EPROM - erasable programmable read-only memory. A common type of EPROM is the UVEPROM. This comes in a dual-in-line package with a quartz window in the top. It is programmed in the same way as a PROM, but when ultra-violet light
\begin{tabular}{|c|c|c|c|}
\hline & How programmed & Re-programmable? & How re-programmed \\
\hline Mask-programmed ROM & During manufacacture & no & \\
\hline \begin{tabular}{l}
Programmable \\
PROM
\end{tabular} & By the user - a large voltage (usually in the region of 30 V) is applied to the device while the information is fed in. & no & \\
\hline \begin{tabular}{l}
Erasable \\
EROM \\
UV-EROM
\end{tabular} & as above & yes & \begin{tabular}{l}
Erased by the use of external voltages \\
Erased by the use of UV light
\end{tabular} \\
\hline \begin{tabular}{l}
Electrically alterable \\
EAROM
\end{tabular} & as above & yes & Individual bits changed by the use of external voltages \\
\hline & \begin{tabular}{l}
Memories: \\
A general view of the differences
\end{tabular} & en the main types of \(m\) & \\
\hline
\end{tabular}

(usually in the near X-ray range) is shone through the window (quartz is transparent to UV, glass is not) then something very useful happens - the PROM becomes 'clean' again and ready for re-programming. While this may be sound like ideal technology for the amateur, it should be borne in mind that special UV lamp is required - the type used to make nylon shirts fluoresce at discos will not do!
Having eliminated all the other possibilities for the amateur re-programmable ROM, there remains only one type which is ideally suited - the electrically alterable read-only memory (EAROM). Again, this behaves much like a normal PROM, except that it can be written to (using appropriate voltages) like a random-access memory (RAM). Doesn't this mean that it can be used in place of RAM, but will hold information after the power has been switched off? The answer is no - EAROMs can be re-programmed only a limited number of times. Systems have been developed, however, which contain RAM for normal operation, but which, during emergency power failure (due to a blown fuse for instance), transfer the contents of the RAM into an EAROM of the same size. This information can then be put back into RAM at power-up, preserving the program which was being worked on when the fuse went!
\begin{tabular}{l|llllll}
& \begin{tabular}{l}
access \\
time
\end{tabular} & capacity & cost & \begin{tabular}{l}
cost per \\
bit
\end{tabular} & volatile? & \begin{tabular}{l}
over- \\
writable?
\end{tabular} \\
\hline Random-access (RAM) & low & small & low & high & yes & yes \\
Read-only (ROM) & low & small & low & high & no & no \\
Peripheral & high & large & high & low & no & yes
\end{tabular}

Core memory operation:
(a) The core will only become magnetised when sufficient current is passed through the wire (due to magnetic hysteresis). When half a unit of current passes through the ring, its field remains unaffected.
(b) Insufficient current is passing through rings B, D, F and G to change their magnetism but ring \(E\) is subjected to one unit of current and is therefore magnetised.
The magnetic field of a ring is 'read' by passing similar currents' through the wires and sensing any change in field by means of another wire (not shown) which passes through all of the rings.

\section*{RAM}

The alternative to ROM is 'random-access memory' (RAM). This is usually used to hold the numerical information which the machine is working with and which is constantly changing. The earliest type of RAM consisted of thermionic valve gates which were in one of two states. This was not very satisfactory.

Next came core - this held its own for many years because of its small volume but was finally ousted due to reasons of cost - the cores have to be threaded on to the wires individually!

Core memory is made up of thousands of moulded ferrite rings (of the same material as ferrite aeriels) which are threaded on to a wire matrix. By passing currents down the wires in various combinations, - information can be stored or recalled, one bit per ring. This type of memory was so popular that the name 'core' has passed into the vocabulary of the computer industry and some people can still be heard to use it when referring to more modern semiconductor memory.

The modern alternatives to core memory are split into two basic types: static RAM and dynamic RAM.

\section*{Static RAM}

In direct analogy to the valve gates mentioned earlier, there are TTL and CMOS chips which contain large numbers of semiconductor gates which hold information by being in one of two states. This information is lost, however, when the power is switched off (unlike core memory). The gates are read from or written to by inputting an 'address' to the chip which specifies the memory location. In static RAM the information will remain as long as the power remains. This is not the case with dynamic RAM.

Types of ROM:
A summary of the various types of ROM available.

\section*{Dynamic RAM}

In dynamic \(\mathrm{RAM}^{-}\)the information must be 'refreshed' continuously (in much the same way as a human being 'refreshes his memory'). In other words the memory chip must spend some of its time reading itself and re-writing every location. This is due to the nature of the method used to store the information. The usual way is to arrange for a series of capacitances on the chip to be either charged or not charged depending on the information to be stored. Obviously, the charge on a capacitor will eventually leak away (especially if it is 'read' every so often) and so to counteract this, the chip scanes each location and 'tops up' the charged capacitors as it comes across them.

\section*{Serial Memory}

Another type of Dynamic RAM has become possible due to 'charge-coupled device' (CCD) technology. These are commonly known as 'bucket brigade' devices due to their similarity to a line of people passing buckets to each other down a line! The 'buckets' either contain a charge or not, dependant on the stored information. Inside the device, long lines of gates pass charges to each other in a looped line, the refresh, read and write operations being performed at one location as the relevant information passes it. This type of memory is therefore known as 'serial'. As there is now no need to address each cell separately, the amount of the circuitry which is necessary for the operation of the device but which does not actually store information is cut dramatically. CCD memories can hold very large amounts on information, although they are limited in that their access time depends on the length of the line - the longer this is, the longer the device may have to wait for the right bucket! One method of cutting down the access time is to have more than one read/write/refresh point. Another is to have more than one loop on a chip.

Similar to CCD memories in many ways are magnetic bubble devices. Instead of a charge, as in the case of CCD, these use magnetised areas of the chip to convey information. In fact, they are in some ways similar to core memories, except that the information 'circulates' in much the same way as in CCD devices. While bubble memories are still to some extent in the development stage, they promise enormous bit densities at low cost.

Another possible future memory development is the 'electron-beam accessed memory' (EBAM), which was hailed as the greatest thing since sliced bread a few years ago, but which has since been dropped by General Electric in the States, who were developing it. Some research is still going on, however, and EBAM may yet bring its promised rewards.

\section*{Paper Tape}

Paper tape program storage has one disadvantage when compared to cards: it is almost impossible to 'edit'. In other words, a line cannot be changed in the same way as with cards - if it is required to make a change in the program, then the tape must be scrapped and a new one punched.

Tape punches and readers vary from the highcost, high-speed to the low-cost, low-speed as do most peripherals. In general, punches are more expensive than readers, as most modern readers use cheap optical methods to sense the presence or absence of a hole in the tape.

The IBM 'Diskette':
A soft-sectored floppy disc suitable for domestic use.

\section*{Discs}

A disc system is similar to a tape system in that it consists of a film of mylar passing a 'head' which reads it and writes on it magnetically. There the similarity ends.

The cheapest form of disc system is known as a 'floppy' - because the disc in it is floppy (what else could you call it?!). A floppy disc is made up of a flexible circular piece of mylar, about the size of a 45 rmp gramophone record. One side of the disc is covered with metal oxide, as is one side of a cassette tape. The information is recorded on this side in the following way: As the disc spins around at about 360 rpm , the head moves in and out along the radius of the disc. The disc is enclosed in an envelope to protect it and a slot is cut in the envelope along the line of travel of the magnetic recording head. The inside of
\begin{tabular}{l|l|l|l|l|l}
& \begin{tabular}{l}
access \\
method
\end{tabular} & \begin{tabular}{l}
initial \\
cost
\end{tabular} & \begin{tabular}{l}
read- \\
only? \\
density
\end{tabular} & speed \\
\hline Punched cards & serial & high & low & low & \\
\hline Paper tape & serial & very low & no & low-_ & \\
\hline \begin{tabular}{l}
Magnetic tape/ \\
cassette
\end{tabular} & semi-serial & very high & no & medium & medium \\
\hline Moving-head disc & & & very high & very high
\end{tabular}

Memory peripherals:
A comparison of the types available.
the envelope contains a felt-like material which cleans the disc and traps any foreign particles as it spins.

The head is moved in and out over the surface in increments of \(1 / 48\) inch (in the case of the IBM 3740 standard 'diskette'). Every \(1 / 48\) inch is defined as being a 'track', starting at a predetermined distance from the edge of the disc. Thus data is written on 77 concentric tracks and nowhere else.

At a specific point on the mylar a hole is punched so that light can pass through it. This point is defined as being the start of all the tracks. As the disc spins past this point, no matter which track the head is over, it will be at the beginning of that track.

Each track is further divided into 26 'sectors'. In some disc systems, a hole is punched in the mylar to signal the beginning of each sector. These are known as 'hard-sectored' discs. The IBM 3740 is a 'softsectored' disc, since the start position of each sector is determined by a calculation based on the time interval after the main index hole has passed.

At the beginning of each sector is written a series of identifying marks telling the electronics which controls the disc which track and sector it is at. These are compared with the required sector address to see if there has been any error. Also found at this point is a series of check marks specially encoded to test that the head is decoding the magnetic flux changes properly. Following the above 'preamble' there are 128 locations of data, followed by some more checking marks called the 'postamble'.

The disc thus holds \(2002 \times 128\)-location sectors with an access time of about 0.2 sec .

For applications where shorter access times are required, a 'fixed-head' disc is used. This, as the name implies, uses only one track of the disc, with a consequently shorter time to reach a specific location.

\section*{Coding}

Coding in this context usually means using some sort of 'check-sum' at the end of a sequence of information. This is a number representing the numerical total of the characters sent. On reading the tape, the computer re-calculates the check-sum and compares it with the recorded value. In this way it can tell if any of the characters has been altered by mistake. A simple form of check-sum is the 'parity
bit', which makes up the total 'on' bits of a character to an even number (even parity) or in some systems an odd number (odd parity). This form of coding is used very frequently in paper tape systems.

Another form of coding, as used in the CBM PET system, is to record the entire program twice and compare the two versions on play-back. This is particularly useful in magnetic tape systems, where drop-out may 'lose' several characters at a time.

Coding systems are characterised by the amount of 'redundancy' they provide. The redundancy is the amount of information the system has to carry as check-sums and similar checks. In the case of a parity bit system handling 6 -bit characters, the redundancy would be \(1 / 7\) of the total information-carrying capacity. In the case of the 'read twice' system described above, the redundancy is \(1 / 2\). The greater the redundancy, the less the system will be bothered by 'noise'.

\section*{Cassette}

Cassette memory is the most commonly used peripheral memory system found in domestic computing. Basically, it consists of a normal audio cassette recorder along with sufficient electronics to perform the 'translation' from digital signals to audio which can be recorded on to the cassette and also from audio back to digital. The circuitry needed for this is called a MODEM (for 'modulator/ demodulator') and is, in general, relatively inexpensive, making this type of storage ideally suited for home computing.

Most small MODEMs work on the principle known as FSK (frequency-shift keying) in which a burst of tone at one frequency represents a ' 1 ', while one at another frequency represents a ' 0 '. Special characters mark the start of a new line or the start of a program. By 'special character' we mean a specific pattern of tones which will not occur in the normal course of the recorded text (a sort of 'signature tune'!). Most advanced systems also provide some way of 'labelling' programs, so that if several programs follow one another on a tape, only the required one is read.

The standard domestic computing tape format is known as CUTS (computer users tape system) and uses a tone at 2400 Hz to represent a ' 1 ' and a tone at 1200 Hz to represent a ' 0 '. CUTS is becoming very widespread and is likely to remain the home computing communications standard for some time.

\section*{SINTROM MICROSHOP}

MICROPOLIS MINIFLOPPY DISKS

\(\star \star 143 \mathrm{~K}\) or 315 K bytes per disk.
\(\star\) *Built and lested with PSU and controller card
\(\star \star\) Includes DOS and extended disk BASIC
\(\star \star £ 499\), 143K single disk \(£ 1,999\). 1260K quad disk

LEAR SIEGLER VDU

\(\star \star 24\) lines by 80 characters
\(\star\) *Full cursor control and addressing
\(\star \star\) Teletype compalible. 75 to 19200 Baud \(\star \star £ 620\). Built and Tested.

SOUTHWEST TECHNICAL SYSTEMS

\(\star\) M6800 with 4 K RAM and I/O interface
\(\star\) *Full documentation and MIKBUG ROM
\(\star\) *VDU Controller and 12v Monitor
\(\star\) *COMPUTER £275 Kit. £353 Built VDU \(£ 230 / £ 315\), Monitor \(£ 140\)

DRICO MATRIX PRINTER

\(\star \star 132\) Prinl positions, \(7 \times 7\) matrix
\(\star \star\) Option of Keyboard and forms control
* \(\star 150\) CPS bidirectional
\(\star \star\) \&1687 wilh parallel interface

PLUS MEMORY BOARDS, TAPE INTERFACES, SOFTWARE AND LITERATURE
SINTROM MICROSHOP

14 ARKWRIGHT ROAD READING, BERKS.
073484322 EXCLUDED

SHOP OPEN 9-5 MONDAY TO SATURDAY OR BY APPOINTMENT MAIL ORDER SERVICE free catalogue

\section*{PERIPHERALS}

\begin{abstract}
What are peripherals and how do they connect to computers? William King has been looking at the 'ins' and 'outs' of small computer systems'.
\end{abstract}

JUST AS THE OWNER of a very basic Hi-Fi system soon feels the urge to upgrade his system 'by adding extra units, so too will the owner of a small home computer set-up. Among the many extra devices that can be added are things like printers, modems, extra memory storage in the form of magnetic tape devices, disks, paper tape (and possibly even punched cards!). These extra add-ons are generally classified together under the heading "peripherals".

\section*{Very Interfacing . . .}

In the early days before complete computer systems in one unit all the various 'building blocks' of a computer - processing unit, keyboards and video displays, printers - were all separate and it was easy to see that anything other than the central processor was a 'peripheral device'. With the advent of systems like CBM's PET it is more difficult as cassette storage, VDU and keyboard are all part of the same package.

At the moment prices of a lot of peripherals (printers, disk systems, VDUs) is still prohibitive for the amateur enthusiast, but devices aimed at the hobbyist with hobbyist prices are starting to appear as manufacturers begin to exploit the vast potential of the home computer market.

In order to simplify the problems of adding on extra devices to a small system, it would be if there existed a single convention to which computer outputs and peripheral inputs were standardised. Such a single standard does not exist and a new word is now forced upon us when we think peripheral - INTERFACE.

\section*{ASCII In Control . . .}

The job of an 'interface' between a computer and a peripheral device is simple - to put the computer's output into a form acceptable to the peripheral device and vice-versa.
The complexity of the interface depends on how incompatible the two devices are.
In order to appreciate the need for an interface, we must look at the ways in which computer and peripheral communicate. Each computer system has a way of representing alphabetic characters, numerals and various punctuation signs. There are a few different codes in existence, but the one widely used, particularly in small systems, is the 'ASCII' code (American Standard Code for Information Interchange). The full ASCII alphabet consists of upper and lower case letters, numbers, punctuation symbols (? + ; - *, etc), and some special codes, called 'control characters', which the computer uses to control the function of the peripheral devices (i.e. switching a tape recorder's motor on or marking on the tape the end of a data block).

\section*{HOME COMPUTING - a crash course}

There are 128 ASCII characters and to uniquely define each character we need to have 7 binary digits (\(2^{7}=128\)).

As an example, the code for the letter A is 1000001, a question mark is 0111111 . Quite often an eighth bit is added to the code. This eighth bit (called the parity bit) is used as a simple form of error detection. There are two types of parity used, odd and even. With even parity the parity 'bit' is set (made a 1) or cleared (' 0 ') to make the total number of ' 1 's in the code even. With odd parity the parity bit is used to make the total number of 1s in the code odd.
The ASCII code for ' \(A\) ' is 1000001 , with an extra 'bit' for even parity the code would be 01000001 . For odd parity, the code would be 11000001. The parity bit comes into use when data is recorded or transmitted between units in the computer. The receiving unit counts the number of 1 bits, if it is odd when it should be even the device can detect that there is an error present. The use is very limited; if an even number bits changes, the parity will still be correct and the error not detected.

\section*{Serial or Parallel?}

There are two basic ways in which data can be transmitted between a computer and its peripherals: these are 'serial' and 'parallel' transmission. If we wish to transmit the ASCII letter M (which has a code 101100), we could have seven wires between the computer and peripheral and set up one bit of the ASCII code on each line. This mode of transmission is called 'Parallel' data transmission as all the bits in the code are transmitted at the same time 'in parallel'. In practice, we need one more line than the number of bits to be transmitted. This last line carries the 'data ready' pulse.

Fig 1. Parallel data transmission
The state of the data ready line is changed when a characters code has been correctly set up on the lines. Fig. 1 shows how the states of the lines (whether they are transmitting a 1 or a 0) change when transmitting an ' M '. Parallel data transmission is very fast and speeds several thousand characters a second can be attained. The disadvantage of parallel data transmission is the need for a channel between computer and
peripheral for each bit to be transmitted. If the computer and peripheral (say a remote terminal) are hundreds of miles away the cost of this would be prohibitive.

A way of sending all data along just one 'line' also exists; this is serial data transmission.

When no data is being transmitted, the line is set to either a 1 bit of 0 bit, depending on the system. Figure 1 shows the changes in the line to transmit the code for \(M\) on a typical system.

Fig 2. Pulse train in serial data transmission.
First the line changes from 1 to 0 to signal that data is going to be transmitted. This is the start bit. The next seven bits are the data bits. The next bit is the parity bit, and the following two bits 'stop bits' which signal the end of the data. The line then stays in the ' 1 ' state until another character is sent.

It can be seen that the time taken to transmit a character along a serial channel is about ten times as long as along a parallel channel.

The distance between the computer and remote peripheral units is virtually unlimited. The speed at which data can be transmitted depends on the type of link used and its available bandwidth.

\section*{Computers On The Phone}

Ordinary telephone lines can be used as a link but first it is necessary to be able to convert digital signals from the computer into an audio signal.

The Post Office in this country are, understandably, quite strict as to what people can connect direct to telephone lines, so most of the convertors have a little loudspeaker and induction coil which the telephone handset is placed on, so no electrical connection to the telephone system is necessary.
The devices that actually do the conversion are called Acoustic Coupler or Modems (modulator/ demodulator). The simplest way of transmitting digital information in an audio line is with two audio frequency tones. One frequency is used to transmit a ' 1 ' and the other a ' 0 '. Such a method is called audio frequency shift keying (AFSK).

The speed at which data is transmitted is measured in Bauds, a Baud being the reciprocal of the time taken to transmit one 'bit' of data. If the time taken to transmit 1 bit is 20 ms (as with the Telex system), then the speed is \(1 /\left(2 \times 10^{-2}\right)=50\) Baud.

\section*{Making An Impact}

One of the desirable additions to a small home computing system is a device for producing 'hard copy', i.e. a printer. Small cheap printers suited for the amateur (pricewise) are slowly starting to appear. Printers can be divided into several categories depending on how they function.

Impact Printers are similar to conventional electric typewriters, all the characters are moulded onto individual hammers or a hemispherical ball. The
appropriate character after being selected is knocked against the paper through an inked silk ribbon, thus producing an ink impression of the character.

Impact Dot Matrix Printers work on a different principle. Each character is formed from a matrix of typically 35 dots \((7 \times 5)\). Seven solenoids are mounted vertically on a head in a moving carriage a short distance away from the paper. Between the solenoids and paper is a ribbon. By energising a solenoid a little pin strikes the ribbon which prints a little dot on the paper. By energising various solenoids and then moving the head along, characters can be built up (see Fig. x). If the computer is allowed complete control of the print head, then a wide variety of graphics as well as alphanumeric characters can be printed. At present the cheapest price for a printer of this type is still about \(£ 250\), which includes an interface so that the unit can be easily connected to the parallel output port of a computer system.

Fig 3. Formation of Dot Matrix Characters
Thermal Printers also work on a matrix principle, but instead of using solenoids and pins, they use a semiconductor print head and special paper. The paper is coated with a heat sensitive chemical, which changes colour when heated. To print a dot the appropriate section of the semiconductor is supplied with current and this heats the chemical layer on the paper. Thermal printers can run at higher speeds than their equivalents using solenoids and because they have less mechanical parts are more reliable and quiet in operation. The obvious disadvantage is the cost of paper which is many times more expensive than ordinary paper. Another disadvantage is the inability to produce more than one copy at a time; with an impact printer multiple copies can be obtained by using carbon paper. This cannot be done with thermal printers.

Aluminium Film Printers are a comparatively recent innovation. They again use a dot matrix and special paper. The paper is thin black paper coated with a very thin film of aluminium, only \(0.000001^{\prime \prime}\) thick. The print head consists of a number of fine wires in contact with the paper. To print a dot a low voltage is applied to the appropriate wire causing a discharge which melts the aluminium coating at that point. Although the paper for the printer is more expensive than plain paper, because the printer does not need ink ribbons or toners the actual cost is not much higher - about lp for 100 lines of print.

At the moment the cost of printers is still quite high (about \(£ 300\)) but there is no reason why we can't have a 20 column printer for the amateur at under \(£ 100\) in a few years' time.

Fig 4. Diagramatic representation of Centronics aluminium film printer

VDUs, or Visual Display Units, are at the moment one of the best ways of communicating with a computer. They can receive and display and update information very quickly and also provide continually updating graphics displays, not possible with printers. VDUs which come with complete home computing systems can be one of two types, serial and direct memory access.

The main difference between them is the way in which the computer 'writes' characters to the VDU's memory. A typical small VDU can display about 1,000 characters at a time (say 25 lines of 40 characters). Somewhere there must be an area of memory capable of storing the 1,000 characters, which the VDU can scan to keep a continuous display. If this area of memory is also accessible by the computer directly, in other words the computer can address any of the 1,000 locations and then write the code of a character into it, the VDU is of the direct memory access type. These VDUs can have any character on the screen changed very quickly - in the time it takes the computer to write to a memory location, which is of the order of a few microseconds. This allows simple 'animation' to be performed.

The second type of VDU has its own memory which is totally independent from that of the computer. The computer cannot write directly to the screen memory but do it via the VDU. After a character has been accepted by the VDU it stores it in a memory location, advances the pointer to point to the next memory location. All the functions like clearing the screen, moving the cursor (the cursor is a symbol which indicates where the next character will appear on the screen), or performing a carriage return, are 'hardware' controlled by the circuitry in the VDU as opposed to being 'software' controlled by a program in the computer with a direct memory access VDU. EII

\section*{PERSONAL COMPUTER WORLD 50p}

\section*{Europe's first magazine for Personal Computers for Home and Business Use}

Now published monthly with the latest information on Home, Small Business, Educational and Amateur Computing.
Also make a note in your diary of 21 st and 23rd September, 1978, at the West Centra Hotel, London SW6. Personal Computer World's own show - the exhibition with a difference.

If you do have difficulty getting a copy, please send 65 p to Intra Press, 62A Westbourne Grove, London, W2.

\section*{VALUE FOR MONEY}

In a recent survey by Popular Electronics magazine in the U.S.A., they found that more of their readers said that they own a Southwest Technical System than any other. We believe that the reason for this is simple

OUR GOOD VALUE FOR MONEY AND VERSATILITY

Existing applications include
Text Processing
Teaching
Invoicing
Process Contro
Medical Interviewing
Data Capture
Development Systems
C.A. Design

\section*{Computers \\ Terminals}

Printers

Now available both in kit and assembled form
Tape Systems Disk Systems

\section*{Graphics}

Prom Programmer
Memory-4k, 8k, 16k 8, 32k

Travel Booking Questionnaire Analysis Payroll Management Accounting Mailing Lists Games Stock Control

\title{
COMPUTER \\ GAMES
}
 8 RA .98

Game - a contest for recreation, competitive amusement according to a system of rules. Computers are changing the definition of 'game'. Jim Perry investigates why and how.

TRADITIONALLY, GAMES HAVE BEEN regarded as diversions or pastimes - with very little to do with the education process of Homo Sapiens, usually confined to break periods or outside learning/ working hours. In the last few years there has been a tremendous break with this traditional viewpoint, mostly brought about by the introduction of the computer.

Game programs provide an excellent insight into the methods used to solve problems with computers, also everybody likes to play games - games are fun! The result of any particular game is unimportant, the computer allows us to take outlandish risks when navigating through space or landing a spacecraft, we learn by intuition and develop skill with practice. Because the computer is infinitely patient and honest we can work out the mathematics of Blackjack without 'the Boys' coming around when we lose the bets!

An interesting consequence of the upsurge in computer 'game' playing is the new definition needed for the word 'game' itself. Traditionally the definition has been along the lines of that at the top of the page - no mention of elements of learning or simulation inherent in modern game programs.

\section*{Anyone For Tennis?}

Computer games range from the sublime to the extremely simple - 'Be Galactic Tyrant for a Day' to 'Guess what number' are examples of the range of 'pure' computer games. Pure in this context meaning a game that is virtually impossible to play without a computer. There are basically three categories of game, with all the possible combinations mixed up in some games.

Guessing Games include 'Guess the Number', 'Trap the Number' and all the permutations involved in finding answers that are hidden. This type of game is extremely useful in helping understand the structure of the number system, anyone can find the number eventually but a logical search (with some luck) can find the number more quickly. Virtually all the
number games can be converted into word games, 'Guess the Letter' and 'Hangman' are a couple of good examples.

I HHWE THDIGHT OF A NUMEEF: WHAT IS 'TOUF BUESS ? 10 TOM HIMH WHAT IS YOUE GLIESE ? TOI HIGH WHAT IS TOLIE GLUES \(? 1\) TOO LOM WHAT IS 'TOUF GIIESE \(? 4\) TGI HIGH WHET JS 'r'OUF GUESE \(\because\) TDI HIIBH.
 GDFEET!

Simple printout from a simple 'guessing' game.
Skill Games such as Blackjack and Noughts and Crosses are easy to implement on a computer. There is a specific set of rules with quite limited choice in the playing. Chess is an example of an advanced skill game, although the programs required are usually long and complex - and still not as good as humans in play.

Simulation Games are probably the most popular and are experiencing the most development. Simple simulations include 'Lunar Lander' and 'Duck Shoot', with the real heavyweights being based on economic strategy 'Stock market' or battle 'Star Trek'.

\section*{Want To Play A Game?}

The time taken to play any game can range from as little as thirty seconds to as long as three months (for
```

6010 %=JPTGFNDC0%+10+1%
GOEG FFINT "I HFWE THOHIHT DF F NHMEEF. "
G6SO FFINT "WHFT IE r'UNE GMESE":
G04E THFUTT 'T'
ET50 TF %=T'THEN 1E0
G0EG JF s'Y THEN FFINT "TGUL LO|"
GIGG TF \&%'% THE\& FFTHT "TMO HTGH"
G60 FMTM S0
GIOQ FEINT "COPFEGT!"
时才E FWN

```
some of the sophisticated economic simulations), but a major part of the enjoyment and learning is in the designing and writing of new games.

The first stage is to thoroughly understand the game and list all the rules, regulations and objects. For example it is no use writing a number-guessing program, without specifying the range of numbers involved. If part of the game means the computer must make guesses then a random element must be included for this purpose.

Next step is to develop an algorithm for the game: a systematic procedure that will enable the computer to solve the problem. All possibilities must be allowed for in the algorithm, not much use if an illegal quantity stops the whole computer - or spacecraft continue to fly on empty fuel tanks!

Flowcharting helps to illustrate the way in which you can solve the problems. Ambiguities (such as empty fuel tanks) can be easily seen if a good
flowchart is prepared. Program writing usually flows from the flowchart (ouch!) easily, and with skill or luck will work first time.

Games with simple, known algorithms can usually be programmed easily - examples are 'Nim' and 'Guess the Number'. However, games such as Go or Chess are real brutes as no single algorithm is known for either of them. The strategies involved are immensely complex, not even a Grand Master can explain every move he will make until he is actually playing the particular game.

\section*{Game, Set, Match}

To sum up, games are educational, encourage constructive and imaginative responses - and fun. By using the computer in these ways invaluable experience can be built up rapidly, changing programs, inventing new variations and all the time new ideas are introduced via the output data.

\section*{THE CISCO KID}

"Please believe me dearest, I'm not having an affair at work."

From the representatives in Europe . . . for America's leading Micro-computer magazines and books, for the hobbyist, educationist and professional alike, we bring you a little light browsing!
Reading maketh a full manFrancis Bacon (1561-1626)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Tick here or indicate quantity ordered.} \\
\hline \multicolumn{2}{|l|}{From Adam Osborne Associates} \\
\hline INTRODUCTION TO MICROCOMPUTERS & \\
\hline Volume 0: The Beginners Book & £5.95 \\
\hline Volume 1: Basic Concepts & ¢5.95 \\
\hline Volume 2: Some Real Products (Revised Late 1977) & \(£ 11.95\) \\
\hline 6800 Programming for Logic Design & £5.95 \\
\hline 8080 Programming for Logic Design & \(£ 5.95\) \\
\hline Z80 Programming for Logic Design (Available May 78 approx) & £5.95 \\
\hline 8080A/8085 Assembly Language Programming & £6.95 \\
\hline Some Common BASIC Programs & £5.95 \\
\hline BUSINESS PROGRAMS IN BASIC & \\
\hline Payroll With Cost Accounting & \(£ 9.95\) \\
\hline Accounts Payable \& Accounts Receivable (Available from June 78) & £9.95 \\
\hline General Ledger (Available June 78) & £9.95 \\
\hline From Scelbi Computer Consulting Inc. & \\
\hline 6800 Software Gourmet Guide \& Cookbook & £7.95 \\
\hline 8080 Software Gourmet Guide \& Cookbook & £7.95 \\
\hline 8080 Programmers Pocket Guide & £2.25 \\
\hline 8080 Hex Code Card & £2.25 \\
\hline 8080 Octal Code Card & £2.25 \\
\hline 8080 Guide and One 8080 Code Card & £4.20 \\
\hline 8080 Guide and Both Code Cards & £6.00 \\
\hline SCELBAL High Level Language for '8008/8080' Systems & £39.25 \\
\hline SCELBAL String Handling Supplement & £8.00 \\
\hline SCELBAL Extended Maths Supplement & £4.00 \\
\hline Understanding, Microcomputers \& Small Computer Systems & ¢7.95 \\
\hline SCELBI 'BYTE' Primer & £9.95 \\
\hline 8080 Standard Assembler (In Block Format) & £15.95 \\
\hline 8080 Standard Editor (In Book Format) & \(¢ 9.95\) \\
\hline \multicolumn{2}{|l|}{From Peoples Computer Company} \\
\hline Reference Books of Personal \& Home Computing & £4.95 \\
\hline What to Do After You Hit Return & £7.00 \\
\hline Dr. Dobbs Journal Volume 1 & £10.00 \\
\hline \multicolumn{2}{|l|}{*From Kilobaud/73 Magazine Inc.} \\
\hline Hobby Computers Are Here & £3.95 \\
\hline New Hobby Computers & £3.95 \\
\hline \multicolumn{2}{|l|}{From Dymax Inc.} \\
\hline Instant BASIC by Jerald R. Brown & £4.95 \\
\hline Your Home Computer by James White & £4.95 \\
\hline \multicolumn{2}{|l|}{My Computer Like Me... When I Speak} \\
\hline BASIC By Bob Albrecht & £1.65 \\
\hline \multicolumn{2}{|l|}{Games With A Pocket Calculator by} \\
\hline Thiagarajan \& Stilovitch & £1.75 \\
\hline \multicolumn{2}{|l|}{Games, Tricks and Puzzles For a Hand} \\
\hline Calculator by W Judd & £2.49 \\
\hline \multicolumn{2}{|l|}{*From BYTE Publications Inc.} \\
\hline \multicolumn{2}{|l|}{Paperbytes:} \\
\hline Tiny Assmbler for 6800 Systems & £5.75 \\
\hline Bar Code Loader for 6800, 8080, 280 \& 6502 Micros & £1.75 \\
\hline Best of BYTE Volume 1 & £8.95 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Tick here or indicate quantity ordered & Price UK & Price Overseas If Different \\
\hline * From Creative Computing Press & & \\
\hline Best of Creative Computing Volume 1 & ¢6.95 & \\
\hline Best of Creative Computing Volume 2 & ¢6.95 & \\
\hline 101 BASIC Games (Revised \& Reprinted Feb. 78) & \(£ 5.50\) & \\
\hline The Colossal Computer Cartoon Book & £3.95 & \\
\hline Computer-Rage (A new Board Game) & £6.95 & \\
\hline Artist and Computer & £3.95 & \\
\hline Three Binary Dice & £1.00 & \\
\hline * From Everyone Else & & \\
\hline TV Typewriter Cookbook by Don Lancaster & £7.95 & \\
\hline Magazine storage boxes (Holds 12 minimum) & £1.75 & \\
\hline Sybex: Microprocessors & £7.95 & \\
\hline Sybex: Microprocessors Interfacing Techniques & £7.95 & \\
\hline Dilithium: Home Computers & & \\
\hline Volume 1: Hardware & £6.50 & \\
\hline Dilithium: Home Computers & & \\
\hline Volume 2: Software & \(£ 5.95\) & \\
\hline Getting Involved With Your & & \\
\hline - Own Computer & £4.75 & \\
\hline \begin{tabular}{l}
* From Basic Software Library \\
(from Scientific Research Instruments)
\end{tabular} & & \\
\hline Vol 1: Business and Personal Booking & £17.50 & \\
\hline Vol 2: Maths and Engineering Programs & £17.50 & \\
\hline Vol 3: Advanced Business Programs & £26.50 & \\
\hline Vol 4: General Purpose Programs & £7.95 & \\
\hline Vol 5: Experimenters Programs (General Purpose) & £7.95 & \\
\hline Vol 6: General Ledger Program & £32.50 & \\
\hline Vol 7: Professional Programs & £26.95 & \\
\hline Magazines: Back Issues & & \\
\hline Personal Computing & £1.75 & \\
\hline Interface Age & £2.00 & \\
\hline Dr. Dobbs Journal & £1.60 & \\
\hline Computer Music Journal & £2.50 & \\
\hline Peoples Computers & £1.50 & \\
\hline *BYTE & £2.25 & \\
\hline Creative Computing & £1.75 & \\
\hline Calculators \& Computers & £1.75 & \\
\hline ROM & £1.75 & \\
\hline Kilobaud & £2.25 & \\
\hline 73 & £2.00 & \\
\hline MAGAZINES: Subscriptions & & \\
\hline Personal Computing (Twelve Issues Yearly) & \(£ 16.00\) & £17.00 \\
\hline Interface Age (Twelve Issues Yearly) & £20.00 & £20.50 \\
\hline Dr. Dobbs Journal (Ten Issues Yearly) & \(£ 13.00\) & £13.50 \\
\hline Computer Music Journal (Four Issues Yearly) & ¢8.50 & ¢9.00 \\
\hline Peoples Computers (Six Issues Yearly) & £8.00 & ¢8.50 \\
\hline Kilobaud (Twelve Issues Yearly) & £20.00 & £21.00 \\
\hline BYTE (Twelve Issues Yearly) & £15.00 & £15.00 \\
\hline Creative Computing (Six Issues Yearly) & £8.50 & ¢9.00 \\
\hline Calculators \& Computers (Seven Issues Yearly) & \(£ 10.00\) & \(£ 10.50\) \\
\hline ROM (Twelve Issues Yearly) & £16.00 & £17.00 \\
\hline 73 (Twelve Issues Yearly) & £20.00 & £21.00 \\
\hline
\end{tabular}

\section*{HOW TO ORDER}

Please note our prices include postage and packing, but not insurance, i wanted add 12 p for every \(£ 10\) of books ordered. Make cheques, PO's etc payable to
L.P. Enterprises

CREDIT CARDS accepted
BARCLAYCARD VISA/ACCESS
DINERS CLUB/AMERICAN EXPRESS
Phone 01-553 1001 for Credit Card orders (24-hour service).

Send to address above for the attn. of David, Dept. E.
Indicate Payment Method:

All Orders must be Prepaid Total Enclosed £.

>My cheque, P.O., I.M.O. is enclosed in Sterling on U.K. Bank
......Charge to Barclaycard/Visa/Diners/American Express/Access
Credit Card No. Expiry date
\(\qquad\)
```

                                    POSTCODE
    ```

Signature

All publications are published in U.S.A. and shipped air-freight by L.P. Enterprises. In unusual cases, processing may exceed 30 days. *BYTE subscriptions are processed in USA and are air-freighted \& posted from Amsterdam and will take 3 months to start.

TRADE ENQUIRIES WEL̄COME
You may photocopy this page if you wish to leave your magazine intact. Normal letter orders will be accepted.

\section*{GLOSSARY}

ACCUMULATOR: The register where arith metic or logic results are held. Most MPU instructions manipulate or test the accumulator contents.
ASCII: American Standard Code for Infor mation Interchange. Binary code to represent alphanumeric, special and control characters.
ASSEMBLER: Software which converts assembly language statements into machine code and checks for non-valid statements or incomplete definitions.
ASSEMBLY LANG: Means of representing programme statements in mnemonics and conveniently handling memory addressing by use of symbolic terms.
ASYNCHRONOUS: Operations that initiate a new operation immediately upon completion of current one - not timed by system clock.
BASIC: Beginner's All Purpose Symbolic Instruction Code. An easy to learn, widely used high level language.
BAUD: Measure of speed of transmission line. Number of times a line changes state per second. Equal to bits per second if each line state represents logic 0 or I.
BAUDOT CODE: 5 -bit code used to encode alphanumeric data.
BCD: Binary Coded Decimal. Means of representing decimal numbers where each figure is replaced by a binary equivalent.
BENCHMARK: A common task for the implementation of which programmes can be written for different MPUs in order to determine the efficiency of the different MPUs in the particular application.
BINARY: The two base number system. The digits are 0 or 1 . They are used inside a computer to represent the two states of an electric circuit.
BIT: A single binary digit.
BUFFER: Circuit to provide isolation between sensitive parts of a system and the rest of that system.
BUG: A program error that causes the program to malfunction.
BUS: The interconnections in a system that carry parallel binary data. Several bus users are connected to the bus, but generally only one "sender" and one "receiver" are active at any one instant.
BYTE: A group of bits - the most common byte size is eight bits.
COMPILER: Software which converts high level language statements into either assembly language statements, or into machine code.
CPU: Central processor unit. The part of a system which performs calculation and data manipulation functions.
CRT: Cathode Ray Tube. Often taken to mean complete output device.
CUTS: Computer Users Tape System. Definition of system for storing data on cassette tape as series of tones to represent binary l's and 0's.
DEBUG: The process of checking and correcting any program errors either in writing or in actual function.
DMA: Direct Memory Access.
ENVIRONMENT: The conditions of all registers, flags, etc., at any instant in program. EPROM: Electrically Programmable Read Only Memory. Memory that may be erased (usually by ultra violet iight) and reprogrammed electrically.
EXECUTE: To perform a sequence of program steps.
EXECUTION TIME: The time taken to per-
form an instruction in terms of clock cycles.
FIRMWARE: Instructions or data permanently stored in ROM.
FLOPPY (DISK): Mass storage which makes use of flexible disks made of a material similar to magnetic tape.
FLOW CHART: A diagram representing the logic of a computer program.
HARD COPY: System output that is printed on paper.
HARDWARE: All the electronic and mechanical components making up a system.
HEXADECIMAL: The base 16 number system. Character set is decimal 0 to 9 and letters A to F.
HIGH LEVEL LANGUAGE: Computer language that is easy to use, but which requires compiling into machine code before it can be used by an MPU.
HIGHWAY: As BUS.
INSTRUCTION: Bit pattern which must be supplied to an MPU to cause it to perform a particular function.
INSTRUCTION SET: The repertoire of instructions that a given MPU can perform.
INTERFACE: Circuit which connects different parts of system together and performs any processing of signals in order to make transfer possible (i.e. serial-paralle] conversion).
INTERPRETER: An interpreter is a software routine which accepts and executes a high level language program, but unlike a compiler does not produce intermediate machine code listing but converts each instruction as received.
INTERRUPT: A signal to the MPU which will cause it to change from its present task to another.
1/O: Input/Output.
K: Abbreviation for \(2^{\prime \prime \prime}=1028\).
KANSAS CITY (Format): Definition of a CUTS based cassette interface system.
LANGUAGE: A systematic means of communicating with an MPU.
LATCH: Retains previous input state until overwritten.
LOOPING: Program technique where one section of program (the loop) is performed many times over.
MACHINE LANG: The lowest level of program. The only language an MPU can understand without interpreter.
MASK: Bit pattern used in conjunction with a logic operation to select a particular bit or bits from machine word.
MEMORY: The part of a system which stores data (working data or instruction object code).
MEMORY MAP: Chart showing the memory allocation of a system.
MEMORY MAPPED I/O: A technique of implementing I/O facilities by addressing I/O ports as if they were memory locations.
MICRO CYCLE: Single program step in an MPUs Micro program. The smallest level of machine program step.
MICRO PROCESSOR: A CPU implemented by use of large scale integrated circuits. Frequently implemented on a single chip.
MICRO PROGRAM: Program inside MPU which controls the MPU chip during its basic fetch/execute sequence.
MNEMONIC: A word or phrase which stands for another (longer) phrase and is easier to remember
MODEM: Modulator/demodulator used to
send and receive serial data over an audio link.
NON VOLATIVE: Memory which will retain data content after power supply is removed, e.g. ROM.
OBJECT CODE: Two bit patterns that are presented to the MPU as instructions and data.
OCTAL: Base 8 number system. Character set is decimal 0-8.
OP CODE: Operation Code. A bit pattern which specifies a machine operation in the CPU.
OPERAND: Data used by machine operations.
PARALLEL: Transfer of two or more bits at the same time.
PARITY: Check bit added to data, can be odd or even parity. In odd parity sum of data l's + parity bit is odd.
PERIPHERAL: Equipment for inputting to or outputting from the system (e.g. teletype, VDU, etc.).
PORT: A terminal which the MPU uses to communicate with the outside world.
PROGRAMS: Set of MPU instructions which instruct the MPU to carry out a particular task.
PROGRAM COUNTER: Register which holds the address of next instruction (or data word) of the program being executed.
PROM: Programmable read only memory. Proms are special form of ROM, which can be individually programmed by user.
RAM: Random Access Memory. Read write memory. Data may be written to or read from any location in this type of memory.
REGISTER: General purpose MPU storage location that will hold one MPU word.
RELATIVE ADDRESSING: Mode of addressing whereby address of operand is formed by combining current program count with a displacement value which is part of the instruction.
ROM: Read Only Memory. Memory device which has its data content established as part of manufacture and cannot be changed.
SCRATCH PAD: Memory that has short access time and is used by system for short term data storage.
SERIAL: Transfer of data one bit at a time.
SOFTWARE: Programs stored on any media.
SOURCE CODE: The list of statements that make up a program.
STACK: A last in first out store made up of registers or memory locations used for stack.
SUB ROUTINE: A sequence of instructions which perform an often required function, which can be called from any point in the main program.
SYNTAX: The grammar of a programming language.
TRI STATE: Description of logic devices whose outputs may be disabled by placing them in a high impedance state.
TTY: Teletype.
TWO'S COMPLEMENT ARITHMETIC: System of performing signed arithmetic with binary numbers.
VDU: Video Display Unit.
VECTOR: Memory address provided to the processor to direct it to a new area in memory.
VOLATILE: Memory devices that will lose data content if power supply removed (i.e. RAM).
WORD: Parallel collection of binary digits much as byte.

\section*{HOME COMPUTING - a crash course}

\section*{READ-ONIY FLOPPIES}

\section*{BASIC: A Self Teaching Guide (2nd Edition) \\ by ALBRECHT. R. L}
£4.50
Teach yourself the programming language BASIC. You will learn how to use the computer as a tool in home or office and you will need no special mathsor science
background.

\section*{Illustrating BASIC}

This book presents a popular and widely available language called BASIC and explains how to write simple programs.

\section*{Microprocessors}
£10.65
by ALTMAN
Gives a general overview of the technology design ideas and explains practica applications
Applying Microprocessors \(£ 12.00\)Follow up volume which takes you into the second and third generation devices.
Intro to Microprocessors\(\mathbf{£ 6 . 0 0}\)
Explains the characteristics of the component
How to Buy and Use Minicomputers and Microcomputers £7.50
by BARDEN Wvariety ofDiscusses these smaller computers and shows how they ca
practical and recreational tasks in the home or business.
How to Program Microcomputers
by BARDEN,\(£ 6.75\)This book explains assembly-language programming of microcomputers based on the
lntel 8080 . Motorola MC6800, and MOS Technology MCS6502 microprocsIntroduction to Microcomputers and Microprocessors£7.50
by BARNA. A.
Provides the basic knowledge required to understand microprocessor systems. Presents afundamental discussion of many topics in both hardware and software.
Microprocessors in Instruments and Control
by BIBBERO, R.J.£11.80
Introduces the background elements, paying particular regard to the dynamics andcomputational instrumentation required to accomplish real-time data processing tasks
Basic BASIC\(£ 7.50\)
An introduction to computer programming in BASIC language
Microprocessor Programmingfor Computer Hobbyists\(£ 7.00\)The Computer Book£6.20
by HAVILAND, R. P.
Building super calculators and minicomputer hardware with calculator chip\(£ 14.25\)
Software and Applications Software and
by HILBURN, J. L.1.25

Complete and practical introduction to the design, programming, operation, uses, and maintenance of modern microprocessors. their integrated circuits and other components.

\section*{Microprocessor Systems Design} by KLINGMAN, E.
Outstanding for its information on real microprocessors, this text is both an introduction and a detailed information source treating over a dozen processors, including new third generation devices. No prior knowledge of microprocessors or microelectronics is
required of the reader.

\section*{BASIC Programming \\ by KEMENY, J. G. \\ A basic text \\ Microprocessor and Small Digital Computer Systems for Engineers and Scientists}

This book
processors.

\section*{TV Typewriter Cookbook}

An in-depth coverage of tv typewriters (tvt's)-the only truly low-cost microcomputer and small-sys^em display interface. Covers tvi terminilogy, principles of operation, tv contıgurations, memories, system design, cursor and update circuitry and techniques, hard copy, color graphics, and keyboards and encoders.

Microprocessors - Technology, Architecture,
and Applications and Applications
by MCGLYNN, D. R
This introduction to the "computer-on-a-chip" provides a clear explanation of this
important new device. It describes the computer elements and electronic semiconductor important new device. It describes the computer elements and electronic semiconductor
technologies that characterize microprocessors.

\section*{Programming Microprocessors \\ by McMURRAN}
\(£ 5.50\)
rations,
A practical programming guide that includes architecture, arithmetic/logic operations, fixed and floating-point computations, data exchange with peripheral devices/compilers
and other programming aids. and other programming aids.
Microcomputer Based Design
by PEATMAN. J. B.
This book is intended for undergraduate courses on microprocessors:
Microprocessor and Microprocessor Systems
\(£ 20.50\) by RAO, G. U
A completely up-to-date report on the state of the art of microprocessors and microcomputers, written by one of the leading experts. It thoroughly analyzes currently available equipment, including associated large scale integration hardware and firmware.
The 8080A Bugbook: Microcomputer Interfacing and Programming
The principles, concepts and applications of an 8 .bit microcomputer based on the 8080 microprocessor IC chip. The emphasis is on the computer as a controller.
6800 Software Gourmet Guide and Cookbook

Understanding Microcomputers
Gives the fundamental
concepts of virtually all microcomputers
by sceilbi
Microprocessors and Microcomputers
by SOUCEK, B
common
heres a description of the application, programming, and interacing techniques common microprocessor families and includes explanations of digital codes, logical systems, and microcomputer organization.

Microcomputer Primer
£6.05
by WAITE. M.
Introduces the beginner to the basic principles of the microcomputers. Discusses the five main parts of a computer - central processing unit, memory, input/output interfaces given and a chapter is included on programming your own microcomputer.

Microprocessor/Microprogramming Handbook
by WARD
Authoritative practical guide to microprocessor construction, programming and
applications.

\section*{HOW TO ORDER:}

Make cheques etc payable to ETI Book Service. Payment in sterling only please. Orders should be sent to: ETI Book Service, PO Box 79, Maidenhead, Berks. All prices include P \& P.

\section*{YOU CAN HÁVE BOTH}

S-100 BUS

phonetc spelling
CT-1 parameter data

\title{
ONLY COMPUTALKER GIVES YOU THE CHOICE
}

No other speech synthesizer available offers you the flexibility of the Computalker Model CT-1. The parameter editor program, CTEDIT, allows direct manipulation of all 9 control parameters. CTEDIT and parameter data tapes are furnished with the CT-1 synthesizer board.

The optional CSR1 software package translates ASCII phonetic text strings to speech output. CSR1 is simple to use and is the easiest way to create new speech. CSR1 can also be called as a subroutine from user's code for applications involving program controlled voice output.

The CSR1 phonetic rule system generates control parameters in the same form as used by CTEDIT. Thus, it is possible to further edit the output of the rule system, to achieve natural sounding speech output with minimum effort.

CT-1 assembled \(€\) callbrated
CSR1 phonetic rules software

Software is available on CPM 8" North Star \(5 \mathrm{y} \mathrm{m}^{\prime \prime}\), CUTS, TARBELL, MITS ACR, Paper Tape.

\section*{PROJECT FM - / M RADIO \\ \\ CHIP MONK \\ \\ Bill Poel of Ambit has been beavering about designing the ETI Chip Monk, a single chip}

SINCE THE EARLY 1970s, various attempts have been made at producing a linear IC that performed the functions of AM / FM radio inside one package. Most have not been particularly successful, and those that have found their way into a degree of prominence, quite obviously have not offered any economy or improvement in performance over age-old five and six transistor designs. The Mullard TAD 100 /TAD 110 is an example of this breed of device - and understandably, it never really caught on with volume manufacturers.

Bsic problems were simply those of economy, and when coupled with the notorious instability of combined function radio ICs, with complex switching of live signal paths, the whole idea has been sent back to the drawing board for a re-evaluation. The early euphoria of "ICs for ICs sake" didn't last long in the consumer market.

\section*{Sprague Board To Success}

However, after a long lapse in this particular field, Telefunken and Sprague were commissioned by a large manufacturer to supply an IC
performing the functions of FM IF, AM RF/OSC/IF, and audio power output stage, in one 16 pin IC, the TDA1083. (ULN2204). It is this IC that has presented the long awaited breakthrough in cost effectiveness, since you will see from the circuit diagram (Fig 1) that the component count is quite dramatically cut from a discrete design, in fact, only essentials such as tuned circuits and decoupling capacitors seem to be left, leaving the European manufacturer a chance - at last - to think about competing with the imports from the Far East, since the biggest cost, in the form of labour, is now reduced to a bare minimum. Testing is greatly simplified, since the chances of incorrect assembly are reduced in proportion to the parts count - and thus the TDA 1083 is destined for a sparkling future.

\section*{Supply And Current Demand}

But more than that, the TDA 1083 uses the advantages of IC complexity to reduce \(A M\) / FM switching to DC functions, and to provide an overall circuit that operates with a supply voltage as low as 2 V (in the AM mode, the FM oscillator stops at about 4 V), and has a current drain of some \(8-10 \mathrm{~mA}\), including the audio
output stage! (quiescent current drain conditions). The specifications, whilst not admittedly 'HiFi' are nonetheless quite excellent for this class of radio - which in any case usually finds its scope somewhat limited by an indifferent loudspeaker in a non-ideal enclosure.

What is good for the manufacturer, must also be good for the home constructor/enthusiast. and this article sets out the basic application of the TDA 1083 in an easily made and aligned wireless, based on a DIY tunerhead for the FM range. The coils used are selected from the universally renowned TOKO range, and are sufficiently predictable to enable the constructor to switch on the set in a non-aligned state, and expect to be able to hear a sufficiently wide selection of stations and general 'noises' to permit more accurate alignment without the aid of specialized RF test gear.

\section*{Construction}

If the specified components are used and assembled on the PCB according to our overlay, construction should not pose any problems. The wire links on the underside of the board should be wired last.

\section*{Testing and alignment}

Testing and alignment is delightfully simple, when compared tothe usual AM / FM set. On switch on some noises must be heard on AM if the unit has been correctly assembled and the best start point to check the circuit out is on MW. The local oscillator is set to \(2075 \mathrm{kHz}(470 \mathrm{kHz})\) at the HF end, and with antenna coil flush on the road, the MW is just about optimized already! The LF end should be set for 995 kHz , and the antenna coild peaked on the rod,

\section*{HOW IT WORKS}

In portable applications, selectivity in the FM tunerhead is not put to a very stringent test unless you happen to live within a couple of miles of the transmitter. The circuit adopted here is almost universal (with minor modifications only) amongst manufacturers of portables, table radios - and most 'non- \(\mathrm{HiFi}^{\prime}\) wireless. The input stage is a common base NPN stage, with untuned input via a broadband ferrite transformer, and the output is a single tuned circuit, feeding the mixer/ oscillator stage.

The mixer/oscillator employs the usual emitter/collector feedback to provide the oscillation 10.7 MHz high of the signal input frequency, enabling the IF of 10.7 MHz to be taken off via the IF transformer. You will see the oscillator coil is coupled into the collector (after the \(220 \Omega\) spurii 'stopper' resistor) via 120 pF , which is a low impedence at the oscillation frequency. At 10.7 MHz , this capacitor is used to resonate the primary of the output coupling IF transformer - where the VHF oscillator coil is a low impedance to ground for the IF signal.

The most important spect of this stage is the tracking, which is the term used to describe the way in which the RF tuned circuit and oscillator tuned circuit are made to remain a constant 10.7 MHz apart when tuning the range \(88-108 \mathrm{MHz}\). Much padding capacitance is required in the tuned circuits to enable the tracking to remain reasonably consistant over the range - and if omitted, the tuning range would exceed some 30 MHz due to the reduction in residual capacity with the tuning capacitor at minimum. This technique is used to improve the stability of the circuit, since any errors in the manufacture of the tuning capacitor etc. are less emphasized than if the tuning capacitor were simply made to vary the few pF necessary to cover the range \(88-108 \mathrm{MHz}\) in the case of low residual capacity - say \(5-8 \mathrm{pF}\) since
\[
\text { Frequency }=\frac{1}{2 \pi \sqrt{ } L C}
\]
where at \(108 \mathrm{MHz}, \mathrm{C}\) is residual - say 7 pF (tuning capacitor at minimum)
\[
\text { so } L=\frac{1}{(2 f \pi)^{2} 7 \times 10^{-12}}=0.310 \mathrm{uH}
\]
to tune to 88 MHz with a 0.310 uH requires a capacitor of
\[
\frac{1}{\left(2 \times 88 \times 10^{6} \times \pi\right)^{2} \times .310 \times 10^{-6}}=11 \mathrm{pF}
\]

Thus \(88-108 \mathrm{MHz}\) can be tuned by just 4 pF swing, but that is impracticable due to stability of components, and accurate matching of the stray capacities affecting the RF and oscillator circuits.

The various values used in this design are derived from a combination of calculation and experimentation, and represent a suitable choice for the tuning capacitor specified.

Once out at 10.7 MHz , the signal passes through the IF bandpass filter, which uses two High Q IFTs, coupled in such a manner as to provide adequate selectivity for the IF stage in the TDA 1083. The signal emerges at the detector stage at pin 14 and 15 , to be demodulated in a form of quadrature, and thence passes to the audio amplifier via the volume control. The DC level at the detector output of pin 8 is also proportional to the IF frequency, and thus provides a suitable reference for the AFC to operate. The AFC voltage must be fully decoupled from audio frequencies, otherwise the AFC will simply track the FM of the carrier, and nullify the modulation. If insufficiently decoupled, the
tone will appear excessively treble, as the bass frequencies will be removed by the AFC.
On AM, the procedure is carried out entirely in the TDA1083, with the ferrite rod antenna signal being mixed with the local oscillator 470 kHz above the signal frequency, to produce the 470 kHz IF signal at the input to the AM IF filter.
Tracking considerations also apply to AM, in much the same way as to the FM section. Those of you with scientific calculators can apply the same formulae if you like, but suffice it to say that the values used in the AM tuned circuits are right for the job. The oscillator coil has an inductance of 156 uH , which if tuned with all the available capacity from the tuning condensor, would cover plenty more than the \(525-1605 \mathrm{kHz}\) that comprises the MW. In fact, the values are chosen because of the simplification of LW, where coverage is made possible with the simple. addition of a capacitor across the oscillator tuned circuit although the antenna coils are switched. This is the European convention. and has grown up over the years as being the optimum compremises in sets where both MW and LW are required. Those countries not requiring LW tend to use AM tuning capacitors with 80 pF swing in the oscillator section, and 180 pF in the antenna, providing what is known as parallel tracking - since the oscillator frequency is always 470 kHz above the RF frequency, it requires proportionately less capacity to tune, if the values of the RF and oscillator inductance are chosen to be the same.

The oscillator padding (or 'tracking') capacitor that is placed between the 26 pF swing of the tuning condensor, and the 156 uH oscillator coil in this design, is designed to reduce the effective capacity swing 'seen' by the oscillator inductance, and thereby create a situation where the oscillator and RF stages track together. Those of you with programmable calculators can see that the tracking cannot be entirely accurate in this way, and in fact, the tracking is only spot-one at three points along the tuning scale. However, from FIGURE THREE you will see the actual curve, and by careful design, the tracking error can be kept insignificantly small in the context of this type of receiver.
A word about pin 16- this provides access to the IF gain of the TAD1083, and a 10 k preset here provides adjustment of the maximum gain on AM, which is generally rather too great, causing excessive noise pickup and general hash. The lower the resistance, the lower the gain. A little experimentation after final alignment will select the optimum point for any particular unit.

Finally, a word about the audio stage, since IC AF stages are notorious for RF instability. Early units such as the SN76023 suffered severely from ultrasonic instability, brought about by general positive feedback, poor earth layout or reactive loading. The TDA 1083 has come a long way since then, but still is slightly prone to RF instability when driving into high current loads. The use of the 33 uH choke and famous Zobell network at the speaker output pin are obligatory to prevent RF getting into the IF stages and causing the whole thing to break up and crackle on audio peaks. The instability takes the form of an FM signal at about \(18-20 \mathrm{MHz}\) and so the choke is selected from the TOKO TBA series to be self resonant at those frequencies. Other types of 33uH choke may not necessarily be as effective due to different self capacities.
\(7.5-10 \mathrm{~mm}\) from the rod end in most cases. The IF filter requires virtually no adjustment - only occasionally will peaking the Blue core have an effect.

The detector coil should be set for best AF, and with most devices, the coil does not require a damping resistor, though certain manufacturers data advocates the use of something in the region \(10-22 \mathrm{k}\). If too heavily damped, the audio on strong signals becomes distorted.

FM is slightly more troublesome. A 10.7 MHz signal source is a useful aid to set the IF, but once again, it is possible (with patience) to adjust by ear. The oscillator coil will be approx. \(3-4 \mathrm{~mm}\) above the top of the \(21 / 2\) turn S18, and the RF coil flush with the top of the S 18 . Such is the reliability of the S 18 style, presetting the coils in this fashion has always provided sufficient initial assistance to enable further alignment to continue. It is very difficult to get completely lost in the wastes of MHz using this approach.

The FM detector coil T2 should be set for best \(A F\), on a relatively weak signal - and then the other FM IFs can be adjusted for best quieting. With the IF aligned, the tracking procedure for the RF and oscillator coils is now a great deal easier, and can be carried out with the knowledge of the local transmitter frequencies as your basic datum points. Those of you with signal generators, spectrum analyzers etc. to hand, should not require further instruction on their application to this particular task. Impressive performance should result, with 5 uV or better FM sensitivity, and AM sensitivity to match any other portable radio you can lay your hand on. (In the under £50 region). Familiarity with radio design only comes with long experience. More so than other area of electronics, since there is no real "go/no go" state, as 'go' is very much a matter of degree. 'No go' can be obvious enough, but there will always be conditions of instability where the unit will operate delightfully well at one point, and not at all further along the band. The TDA 1083 brings radio a little closer to the 'Go/no go' wireless, but there are still many areas of degree of 'go', so once you have achieved a satisfactory state of 'go' you continue to try to squeeze a little extra out of the circuit at your peril. The last \(d B\) is always the hardest to achieve.

Fig. 2. Component overlay for the Chip-Monk radio.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{RESISTORS (all \(1 / 4 \mathrm{~W} 5 \%\) unless stated)} \\
\hline R1 & 22k & \\
\hline R2, 7 & 100k & \\
\hline R3 & \(2 \mathrm{R7}\) & \(1 / 2 \mathrm{~W}\) \\
\hline R4. 5 & 4 k 7 & \\
\hline R6 & 2k2 & \\
\hline R8 & 18k & \\
\hline R9, 16 & 1 kO & \\
\hline R10 & 39k & \\
\hline R11 & 820 R & \\
\hline R12 & 3k3 & \\
\hline R13 & 5 k 6 & \\
\hline R14 & 100R & \\
\hline R 15 & 220R & \\
\hline CAPACITORS & & \\
\hline C1, 13, 27, 30 & 4 p7 & ceramic \\
\hline C2 & 30 n & polyester \\
\hline C3 & 270p & ceramic \\
\hline C4 & 220p & ceramic \\
\hline C5 & \(33 n\) & polyester \\
\hline C6 & 68p & ceramic \\
\hline C7 & 1 nO & polyester \\
\hline C8, 19 & \(100 n\) & polyester \\
\hline C9, 24, 26, 29 & 10 n & polyester \\
\hline C10 & \(1 \mu \mathrm{O}\) & 10 V tantalum \\
\hline C11 & 10u & 10 V tantalum \\
\hline C12, 22 & 20 n & polyester \\
\hline C14, 15 & \(100 p\) & ceramic \\
\hline C16 & \(47 n\) & polyester \\
\hline C17. 18 & 100u & 10 V tantalum \\
\hline C 20 & \(220 u\) & 10 V electrolytic \\
\hline C21 & 8p2 & ceramic \\
\hline C23 & 56 p & ceramic \\
\hline C25 & 35 p & ceramic \\
\hline C28 & 470p & ceramic \\
\hline C31 & 15 p & ceramic \\
\hline C32 & 120p & ceramic \\
\hline \multicolumn{3}{|l|}{VARIABLE CAPACITORS} \\
\hline VC1 & CY2-2 & 177 \\
\hline TC1 & 60 p & trimmer \\
\hline \multicolumn{3}{|l|}{SEMICONDUCTORS} \\
\hline IC1 & TDA 1 & \\
\hline D1 & ITT 21 & \\
\hline Q1, 2 & BF 19 & \\
\hline \multicolumn{3}{|l|}{INDUCTORS} \\
\hline T1 & 94AE & 30465 \\
\hline T2 & YMRS & 6726 \\
\hline T3, 4 & KACS & 339 PFV \\
\hline T5 & YJCS & 7105 \\
\hline T6 & FXH 1 & \\
\hline T7 & 94 AE & 30465 \\
\hline L1 & 33 uH & \\
\hline L2, 3 & red 11 & \(21 / 2 t\) \\
\hline 14 & \[
16 \mathrm{t} / 1
\]
core & mm dia 26 SWG air \\
\hline \multicolumn{3}{|l|}{SWITCHES} \\
\hline S1, 3, 4, 5 & 2 pole & hange over \\
\hline S2 & 4 pole & hange over \\
\hline \multicolumn{3}{|l|}{MISCELLANEOUS} \\
\hline \multicolumn{3}{|l|}{PCB as pattern, speaker, case to suit} \\
\hline
\end{tabular}

\section*{BUYLINES}

\section*{Ambit International at 2 Gresham} Road, Brentwood, Essex, are to offer a kit of parts for this project. The kit will include the PCB, electronic components, Ferrite rod and coil but will not cover the speaker, case, mounting hardware etc. For two months ETI readers can buy the kit at a special offer price of \(£ 10.95\), the regular price is \(£ 13.95\).

Getting hold of the hardware for the tuning drive might prove difficult but although not included in the kit Ambit should be able to help in this area as well.

\section*{BIG BARGAIN TV GAMES KITS}

\section*{TANK BATTLES}

Based on AY-3-8710 chip
B \& W Kit
Colour Kit
Mini Kit

* On screen scoring coded to tanks.
* Tanks controlled by toggle switches or joystick and fire button.
* Realistic tank, shell burst and explosion sounds through TV speaker
* Three speed tank control
\(\star\) Exploding mines and terrain barriers.
* Guided missile shells
\(\star\) Single \(9 v\) supply

STUNT RIDER 4 GAMES
based on the ONLY* £18.90
£24.90
E11.50
AY-3.8760 chip
B \& W Kit
Colour Kit

Mini Kit

* On Screen Scoring and Timing
* Realistic throttle and crash sounds through TV speaker.
* Amateur or professional selection mode
* Simple potentiometer throttle control.
* Single 9 v supply

\section*{SUPER TELESPORTS} 10 GAMES
based on the AY-3-8600 chip ONLY'
B \& W Kit 13.00

Colour Kit
Mini Kit

* On screen scoring coded to player
* Triple sounds through TV speaker
* Auto ball speed-up mode
* Controlled by joystick and fire / serve button
\(\star\) Single \(9 v\) supply.

Mini kits include instructions, LSI, PCB, LSI Skt, Coil Kits include full instructions LSI, PCB, modulators etc. (all parts except cases \& controls) Vision and Sound Modulators, pre-tuned, £4.90 (pair). Joysticks for AY-3-8600 £3.50 (pair). Colour encoder module with Vision Modulator £6.60. Regulated mains adaptor with regulator chip \(£ 3.50\).
-All prices include VAT and P\&P 56 QUEENS ROAD
TUNE IN TO A BARGAIN TODAY. Send cheque or P.O. to BASINGSTOKE, HANTS

VIDEOTIME PRODUCTS
the video and time products people
Trade enquiries welcome

RG21 1RE
TEL. (0256) 56417
TELEX 858747

The new Sinclair DM235 is yet another example of outstanding Sinclair valueengineering. Developed from the Sinclair DM2 and world-beating PDM35 (already outselling all other digitial multimeters), the DM235 provides full facilities for every application, including field servicing, testing and laboratory work. At a price no comparable digital meter can approach.

\section*{A new dimension in styling}

Up till now, choosing a meter suitable for use on the bench and in the field hasn't been easy. Either you bought a bulky bench instrument (awkward to carry around) or a hand-held portable (difficult to use on the bench). The
 all the advantages of conventional bench meters, but that packs neatly into any tool kit or brief case.

\section*{A big, bright, unambiguous display}

The DM235 has a full \(31 / 2\) digit display reading to \(\pm 1999\). Large, highbrightness 8 mm LEDs give clear, unambiguous readings with an ultrawide angle of view. And an LED display means proven lifetime reliability.

\section*{Six functions in \(\mathbf{2 6}\) ranges}

DC Volts...................... 1 mV to 1000 V AC Volts........................ 1 mV to 750 V
DC Current....................... \(1 \mu \mathrm{~A}\) to 1 A
AC Current....................... \(1 \mu \mathrm{~A}\) to 1 A
Resistance.......................... \(1 \Omega\) to \(20 \mathrm{M} \Omega\)
Diode test...................... \(0.1 \mu \mathrm{~A}\) to 1 mA
\(10 \mathrm{M} \Omega\) input impedance

\section*{High accuracy}

Basic accuracy of \(0.5 \%\) (2 V DC range), other DC ranges and Resistance \(1.0 \%\), AC ranges \(1.5 \% 30 \mathrm{~Hz}-10 \mathrm{kHz}\).
Temperature coefficient \(<0.05\) of applicable accuracy per \({ }^{\circ} \mathrm{C}\).

\title{
The new Smclair DM235 digital multimeter: \(31 / 2\) digits.o. 6 functions fully poriable.Under \&50!
}

\section*{Easy to use by anyone, anywhere}

Automatic polarity operation, automatic placement of decimal point, and automatic out-of-range indication. Unambiguous reading of function and range selected from a single input terminal pair.

\section*{The Sinclair credentials}

Sinclair have pioneered a whole range of electronic world-firsts from programmable pocket calculators to miniature TVs - holding a world lead in innovative electronics. The DM235 embodies six years' experience in digital multimeter design, in which time Sinclair have become one of the world's largest producers. Like every otherSinclair product, the DM235 comes to you with a full 12 month repair-orreplacement guarantee.

\section*{Find out more!}

If you'd like full details of the DM235, its operation and its performance, and a complete distributor list, just send the coupon below. We'll send you all the facts by return. The DM 235 has all the perfermance you need - at around half the price of its competitors. Send the coupon for the

Sinclair Radionics Ltd, St Ives, 㩄 Huntingdon, Cambs, PE174HJ.

\section*{A rugged construction giving total portability}

Very rugged mechanical construction using all solid-state components.

Protected against accidental overload.

Size only 10 in \(\times 5.8\) in \(\times 1.6\) in, weight less than \(1 / 1 / 2 \mathrm{lb}\).

Basic operation from four standard C size disposable cells, providing complete independence of \(A C\) supply.

Line operation available via optional AC adaptor/charger.

\section*{A full range of optional} accessories
DM235 meter complete with test leads and prods................. \(£ 49.80\)
Eveready carrying case with
lead stowage compartment......... \(£ 8.50\)
Rechargeable battery units......... \(£ 8.00\)
AC adaptor/charger 240 V 50 Hz .. \(£ 3.50\)
30 KV high voltage probe \(£ 15.00\)
(All prices subject to 8\%VAT)

World leaders in fingertip electronics

\title{
THE TEXAS TIF9
}

\section*{REVIEWED}

\begin{abstract}
As technology increases in leaps and bounds, calculators become more powerful and computers more stupid The gap in the middle ever decreasing. Les Bell has taken a look at the new Texas Pocket Programmable (PPC), the latest in calculator technology
\end{abstract}

THE MAJOR DIFFERENCE between the T159 and previous PPCs is its use of 'Solid State Software'. If you flip the calculator over and slide out the panel in its base, you will find a \(0.85^{\prime \prime} \times 0.7^{\prime \prime} \times 0.35^{\prime \prime}\) block of plastic labelled 'Master Library Module'. This is, in fact, a read only memory containing anything up to 5,000 steps of program, which in the case of the Master Module provide 25 programs designed to solve a variety of problems.

The Master Library Module can be changed easily for different modules in the fields of Surveying, Business, Navigation, Aviation and Statistics (no Mathematics or Electrical Engineering modules as, yet). A spare module can be carried in the wallet supplied along with 40 magnetic cards.

Programs are called up from the Module by the keystroke sequence ' 2 nd Pgm nn,' where \(n n\) is the program number, and the user-definable keys can then be used to run the programs. In addition, Module programs can be called as subroutines from user programs by the same sequence of keystrokes since the Module programs do not occupy the same address space as the read/write memory in which the user's program runs. The Solid State Software can also be downloaded into the RAM section for examination or modification, using the keystroke sequence '2nd Pgm nn 2nd Op 09.' The calculator can then be put into the 'Learn' mode and the program modified.

\section*{User Memory}

This leads us naturally into a discussion of the block of memory available to the user in the TI59. Here again TI's semiconductor memory expertise has come to the fore; the P59 is, in terms of memory, way ahead of its competition, with a possible 960 steps of program memory.

Why 'possible'? Well, the TI59 has inherited an organizational hangover (if that's the word!) from its predecessor, the SR52. In that calculator, program memory and data memory are physically the same, and, as many owners discovered, spare program space can be used for data storage. The TI59 employs a similar scheme, but now TI openly admit to it, and partitioned memory has become what PPC owners call a 'supported feature'. Another SR52 unsupported feature which has turned up respectably in the P59 is the ability to store data on magnetic cards.

When initially turned on, the TI59 has 480 steps of program memory and 60 data registers. However, the user can repartition memory, trading off 80 program steps for every 10 data registers, so that one may have 800 steps / 20 data registers or 320 steps / 80 registersor one of several other combinations.

The TI59 has a kid brother, the TI58, which has identical features, including the Solid State Software, but less memory (240 steps / 30 registers on switch-on) and no magnetic card capability. Except where memory size or magnetic cards are concerned, all my remarks apply equally to both PPCs.

\section*{Printing}

The third main area of advance is in the incorporation of printing facilities in the P59. Like the SR52, the TI59 is designed to operate with the PC100A print cradle. The important difference between this and previous PPCs is that the P59/PC100A combination can print alphanumerics. The PC100A can print 20 characters wide, and this can be divided up into 5 -character quarters, with each character being represented by a two digit. code, e.g. A is 13 and (is 55 . Five characters therefore fill a 10 -digit display, and four such displays are successively loaded into a print buffer, which is then completely printed. Alternatively, the current answer can be printed along with four characters on the right to identify it.

This opens up tremendous scope for PPC users. Firstly, alphanumeric printing may be used to prompt untrained operators when using a program - with 960 steps of program memory there is surely some going spare for this! Secondly, complex programs can provide identification of results for the skilled user. Thirdly, error messages can be printed if a program detects errors in data. Fourthly, games programs can be livened up with messages - I could go on and on.

But the printing capabilities of the T159 don't stop there - you can also plot graphs! Admittedly, this is a fairly crude sort of graphical output, but it works, and graphically presented data is much easier to use than tables of results when your're looking for trends or experimental relationships. It works like this: since the PC100A has 20 columns, the command ' 2 nd Op 07' will print an* in the column specified by the display. So if you've produced a result which is a percentage, say \(60 \%\), you divide it by 5 (to scale it) giving 12 and then '2nd Op 07 ' will print an * in the right column (the 12 th, in this example).

The printer even plots curves:

The printer can also be used to produce a listing of the labels in your program, a listing of the program itself, results (obviously), and, in the trace mode, all intermediate results and the instructions that generate them as a program executes.

\section*{Functions}

From the technological advances of the P59, we move on now to the design of the machine, the way it operates, and its ease of use - all functions not of the technology, but of the time, effort and ingenuity/insight of the design team.

A 4k interchangeable programme just plugs in:
The appearance and construction of the P59 are pretty well standard, as you can see from the photographs. The keys have a good 'tactile feedback' feel, and are spaced at what is probably the minimum spacing for convenient, fast and accurate operation. This brings me to the only bugbear I found with the calculator - the visibility angle of the display. A PPC, by the nature of the beast, spends a lot of its time on a desk-top, but I discovered that working with a notepad on the desk in front of me and the P59 to the right of that (say, \(7^{\prime \prime}\) from dead centre), I had to constantly lean over to read the display. Now that's bad - are you listening, TI? Mind you, with the TI59, I could learn to live with it!

As a manual calculator, the TI59 performs very nicely indeed, although the keyboard is perhaps a little crowded for occasional heavy sessions of keybashing; but if you use it a lot, you'll get to know it like the back of your hand and if you use it a little, the busyness won't bother you. I've experienced no difficulties in finding my way around the keyboard, but some colour-coding might have helped.

The TI59 uses TI's 'Algebraic Operatıng System which makes use of parentheses to over-ride the rules of algebraic hierarchy, and enables you to enter calculations as they are written.

The TI59 sports a tremendous array of functions. including all the usual trig, exponential and scientific functions. In addition, there are also two-variable mean and standard deviation, and although there is no sign of it on the keyboard, the statistical capability is further extended by functions accessed by the key sequence '2nd Op \(n n\) ', where \(n n\) is a two-digit code assigned to each function. Other special operations include the print
functions, library program downloading the signum function, memory partitioning, error flagging and a set of operations which can increment or decrement data registers

While this scheme is slightly awkward to use manually, it does give an additional 40 infrequently used functions without cluttering the keyboard. And of course, most of these functions will be used almost exclusively from programs, so their ease of use is not very important. A list of special operations on the back of the calculator would have been handy, though.

\section*{Programming}

As a programmable calculator, the TI59 performs extremely well. Program entry is extremely éasy, and simple programs can be made up as they are entered. For longer programs, it is, of course, advisable to at least sketch out a program on paper before commencing entry.

Programs consist basically of the same set of keystrokes as you would use to solve the problem manually. However, in order to let a program run without the need for human intervention, PPCs have a number of instructions not found on conventional calculators, such as go to (GTO), label (Lbl), and conditional branches (\(x=t\), \(x \geqslant t\), etc.). These instructions are used to structure the program and transfer control between sections.

The TI59 allows the use of 72 labels to identify program sections: these are the usual 'Lbl A,' 'Lbl 2nd A' type as well as others created using virtually any other key as a label, e.g. 'Lbl CLR,' 'Lbl \(\times\) !' This permits the creation of extremely large programs in sections, each with a specific function.

There are four different tests which can be made in order to decide program branching (\(x=t, x \# t, x \geqslant t\), \(x<t\)), which are fairly standard on PPCs. In addition, a Decrement and Skip on Zero (DSZ) instructions can be implemented on registers 0.9 to control program looping, as well as the inverse function. Decrement and Skip on Non-Zero.

The power of most memory referencing instructions can be multiplied by the use of Indirect addressing. For instance, it is possible to branch indirectly, to store and recall data indirectly, to call Library Module programs indirectly, to set flags indirectly, all manner of tricks. A good example is the instruction 'If flg Ind 02 Ind 22', which will recall register 2 , and on finding the value 5 there will test flag 5. If that flag is set, it will recall register 22, giving the value 64 and will then jump to step 64. If flag 5 is not set, the program will continue normally. As you can see, instructions of this type pack real programming power, but only 'STO Ind' and 'RCL Ind' are used often.

Programs can be written as subroutines, so that they can be called by other programs, simply by avoiding the use of \(=\) ' (which completes all pending operations) and terminating the program with a subroutine return, 'INV SBR'. If this technique is used, you can have up to six levels of subroutines, which is probably enough to process three-dimensional arrays in quite complex fashions. (I haven't tried it yet though!)

Editing a program is very easy, as you can over-write, insert or delete steps and can single-step, backstep ci jump about in your examination of the program. If you use the PC100A printer, then its trace mode will let you see what is happening as each instruction is executed, as
well as providing complete program listings (it can't be easy to write down 960 steps!).

\section*{The Card Reader}

Since there are 960 steps of program memory in total (regardless of whether they contain program or data) it is just not possible to put the whole memory onto one magnetic card. To get round this, the memory is divided into four banks, each of which may be separately written onto one side of a magnetic card. The bank number should be in the display, and the key sequence '2nd Write' will then record that bank onto a card. Each card has two sides, consequently two cards are required to store the whole memory.

It the bank number in the display is negative, when the program is subsequently reloaded, it wilh. be found impossible to list it, or to enter the 'learn' mode to examine or modify it. This provides a means of protecting software from accidental (or deliberate) modification, and ensures security of confidential data.

Cards can be read under program control, enabling large amounts of data to be entered for processing.

\section*{Documentation}

The most incredible calculator ever devised would be of: dubious value without the knowledge of how to use it, which is the result of experience and a long session with the owner's manual. The P59 manual is called 'Personal Programming' and is an A4 format book almost \(3 / 4^{\prime \prime}\) thick. This provides plenty of examples to explain both the operation of the various calculator functions, and the rudiments of programming.

The T159 comes with very good instructions and a manual with details of the programs in the software module.
)
With a PPC of this complexity, there is just no way you can sit down and start writing programs - even display control takes two pages of explanation. The only way to do it is to sit down with the manual and start at the beginning, working through every example. Programming is a skill you learn by doing, not by reading, and 'Personal Programming' is well organised for this. In short, the manual doesn't let the machine down.

Also supplied is a programming pad, and a guide to the programs in the Master Library Module. This guides the user through the keystroke sequences needed to enter data and run the programs, as well as explaining the program operation and providing necessary information on registers used, parentheses levels etc. Again familiarity breeds ease of use: you have to sit down and play with the machine to learn how to really use it.

\section*{Summing Up}

The Programmable 59 incorporates several major advances over previous PPCs, specifically in terms of memory. The basic calculator has a more than adequate range of functions, but the addition of the 'Solid State Software' modules converts it into a general- or specialpurpose calculator of extraordinary power.

Probably the greatest compliment I could pay the P59 is to say that as a long time HP and RPN user, I would never have contemplated any othe: kind of calculator. I'll probably still use my HPs (I don't need another calculator), but if I was a first time PPC buyer, the TI Programmable 59 would be top of my list.

Both calculators are available from Texas Instruments retailers. The Programmable 58 retails for around \(£ 80\) inc. tax and the TI59 for £210. These are recommended retail prices - discount prices may be considerably lower. The PC100A is yours for only \(£ 175\) and extra Library Modules are \(£ 25\) each.

ETI

\section*{NOW MASTER CHESS CHALLENGER}
```

* 3 LEVELS
OF PLAY
    * SIMPLE
TO USE
* PLAY ANY
TIME

```


Why look for a "partner" when you want to play chess Now you have the ideal partner, ready to accept your challenge at any time, day of night
Suitable for chess players at all stages, having three levels of skill. Easy to operate - even children can use it within a few minutes. Positions of all pieces can be verified at all stages in game. Castling and en passent. Pieces may be set up in any position, then computer instructed to play on Uses 8080A microprocessor, complete with instructions, pieces, mains adaptor, and packed in protective box £129.95, including VAT, postage and packing. Access and Barclaycard welcome. Just phone your number, name and address and we will do the rest.

\section*{STRATHAND}

44 ST. ANDREW'S SQ. GLASGOW G1 5PL 041-552 6731-2
CALLERS WELCOME

ELECTRONICS TODAY INTERNATIONAL - JUNE 1978

\author{
E.T.I. APPROVED FOR ENGINES WITH NORMAL IGNITION SYSTEM REVERT TO NORMAL SWITCH \\ CAN BE MOUNTED ON DASHBOARD \\ no more burnt contact POINTS
}

\section*{Better than the 1973 version!}

Since we first presented E.T.I's original E.T.I. (Electronic Transistor Ignition) Unit five years ago, we have sold well over 15,000 to the delight of motorists everywhere. In that time we have made small modifications and improvements of our own - P.C.B. mounted components, for example and circuit and manufacturing adjustments - ail adding up to even greater reliability. Now, with E.T.I we present an up-dated unit at prices (kit or ready built) you cannot afford to ignore in these days of ever cosilier motoring. This is the unit to give your car the more efficient sparking it needs to give better starting, lower petrol consumption, less engine wear, less strain on batteries, and NO MORE BURNT CONTACT POINTS. ORDER NOW BEFORE JULY 1st AND SAVE £2.80 ON THE KIT (\(£ 2.25\) on the ready built model). ORDERS MET IN STRICT ROTATION SO ORDER YOURS NOW WITHOUT DELAY. (Please allow 28 days for delivery.)

Easy to build kit including all components, drilled and titled. P.C.B. drilled aluminium case, transformer. switch, coloured leads. etc. with simple to follow instructions for neg. earth cars XTT Complete kit of parts as described and recomm

\title{
WIDE RANGE
}

A LOW COST (cheap is what birdies do) source of sine and / or square waves is an invaluable aid to many an electronic hobbyist. So often when testing anything from grannies old valve job to brother's multi-kilo watt stage warmer a source, any source, of sound is useful - well perhaps using Radio 1 would show a certain desperation.

\section*{Crest Of A Wave}

Our design provides an instrument that, in two ranges, covers the audio spectrum supplying both sine and square waves. The amplitude of the output is continuously variable and can be AC or DC coupled. When generating sine waves in the DEC mode, the DC level of the output can be varied. This latter control alters the mark/space when in a square wave mode.

In order to keep the cost down some compromises have had to be made. The major of these being that
the amplitude of the waveform does not remain constant as the generator's frequency is varied over its range. This effect is caused by mismatch in the dual ganged pot that alters the frequency of oscillation, and the simple nature of the amplitude control network.

The oscillator should, nevertheless, prove a valuable addition to many a test bench and, being battery powered, can be used anywhere.

\section*{Construction}

If the overlay is followed carefully the on board components should present no construction problems. Take care that the ICs are fitted the right way round.

There is a considerable amount of wiring between the PCB and the front panel. Follow the overlay, in conjunction with the circuit diagram, carefully and everything should be OK.

ET

\section*{BUYLINES}

The CA 3019 diode array is an RCA device that, although not seen all that much, should be available from most of the large mail order semiconductor
suppliers.
The other components should all be familiar to you and readily available.

\section*{A source of sine and squar of equipment to have aroun team design}

To explain circuit action, we must, as is often the case, assume that the circuit is operating and that we have a fixed amplitude sine wave at the output of the op-amp. The ratio of this output fed back to the noninverting terminal of the op-amp is given by the ratio:
\[
\begin{gathered}
\frac{Z_{2}}{Z_{1}+Z_{2}} \\
\text { where } Z_{1}=R+\frac{1}{j \omega C} \\
Z_{2}=\frac{R}{I+j \omega R C}
\end{gathered}
\]

The ratio may thus be expressed as
\[
\frac{R}{3 R+j\left(\omega R^{2} C-1 / \omega C\right)}
\]

As the op-amp will maintain zero volts between its input terminals there will be no phase difference between the op-amp's output and the divided down feedback signal, ie the complex part of the above expression must be zero at the frequency of oscillation.

This means that
\[
\omega R^{2} C-\frac{1}{\omega C}=?
\]
or \(\omega=\frac{1}{R C}\) therefore \(\mathrm{f}=\frac{1}{2 \pi \mathrm{RC}}\)
Note also that the attenuation factor of the network - given by the real part - is equal to
\[
\frac{R}{3 R+j\left(\omega R^{2} C-1 / \omega C\right)}
\]

As long as the gain of the amplifier is about three the oscillator will function satisfactorily but if the gain varies from this value performance will be degraded. The gain control network formed from the diode bridge and series diodes keeps the gain at the required value.

The oscillator's output is rectified by the bridge and fed to the diode and zener. As the oscillations increase in amplitude the diodes begin to conduct, lowering their impedance. This tends to increase the amount of negative feedback thus reducing the op-amp's output this stabilising the systems gain.

\title{
OSCILLATOR
}

\section*{waves is always a useful piece \\ - so sign on with this ETI project}

\section*{IT WORKS}

The full circuit diagram of the oscillator is shown in Fig 1. The resistors in the feedback network have been replaced by a ganged potentiometer to allow the frequency of oscillation to be varied. The value of the capacitor \(C\) in the bridge can also be altered, by parallel connection of another capacitor, making the range covered by the circuit encompass the audio spectrum.

Block diagram of the oscillator elements.
RV2 sets the gain if the amplifier IC2 whose gain is then dynamically modified by the matched diodes of ICl.
ihe output of the oscillator is fed, via level control RV4, to a unity gain output buffer. Op-amp action will ensure that the \(D C\) level at the output of IC3 will equal that set at the wiper of RV3.

By removing the feedback resistor, R10, by opening SW2, IC3 will act as a comparator converting the input sine wave to a square wave.

In this mode the potentiometer RV3 acts as a mark space control by varying the reference voltage applied to the comparator.

The buffered signal is taken via R11, to limit any short circuit current, directly to the output terminal if SW3 is closed (DC coupled) and via capacitor C6 (AC coupled) with SW3 open.

Power to the unit is derived from batteries. C7-9 are decoupling.

Fig. 1. Full circuit diagram for the Wien bridge configuration, wide-range oscillator. The power supply and output stages are also shown on the diagram. Components within the dotted line are part of ICI.

Left: Fig. 2. The component overlay for the Wien bridge oscillator PCB. The power supply components too are included on the board. Check the IC orientation carefully before soldering in.
Below: The foil pattern for the oscillator PCB, shown full size at \(86 \mathrm{~mm} \times 88 \mathrm{~mm}\).

\section*{PARTS LIST}

RESISTORS (all \(1 / 4 \mathrm{w} .5 \%\))
\begin{tabular}{ll}
R1,2 & 4 k 7 \\
R3 & \(3 \mathrm{k6}\) \\
R4 & \(8 \mathrm{k2}\) \\
R5, 6 & 2 k 2 \\
R7, \(8,9,10\) & 100 k \\
R11 & 100 R \\
R12 & 1 k \\
CAPACITORS & 1 n Polystyrene \\
C1, 4 & 10 n Polystyene \\
C2, & 47 p Polystyrene \\
C5 & 100 n Polyester \\
C6, 7,8 & 470 u 16 V Electrolytic
\end{tabular} SEMI-CONDUCTORS
\begin{tabular}{ll}
IC1 & CA 3019 \\
IC2, 3 & CA 3140 \\
LED1 & \(0.2{ }^{2}\) type
\end{tabular}

LED1 O. 2 type
POTENTIOMETERS
RV1 \(\quad 100 \mathrm{k}\) lin dual guage
RV2 1k preset

RV3,4 10 klin
SWITCHES
SW1, 4
DPST
SW2, 3
SPST
MISCELLANEOUS
PCB as pattern, case to suit, \(2 \times\) PP3 plus connectors.

A view of the back of the front panel of the completed oscillator project. This gives a good idea of the wiring of these to the PCB components and positioning of the battery within the box.

\section*{GOOD AND PROPER!}
or at least your projects. If there is one thing which is impossible to do at home is lettering front panels to professional standards. At least until now. If you cast your eyes right a while you'll see our new panel transfers sheet, which has been carefully designed to allow you to do exactly that.

Rapitupe di PaNE

The transfers are easily rubbed down, and the two sheet set contains a mass of lettering and -uniquely-control scales for both rotary and slider puts.

Each sheet measures \(180 \mathrm{~mm} \times 240 \mathrm{~mm}\) and comes packed flat in a stiff cardboard envelope for protection. There should be enough for dozens of projects here - and the longer you wait the worse they'll look!

Send E1.75 fincludes VAT and postage) for the twosheal set lo: Pamel Markings ETI Mayazine, 25-27 0xford Street. London WIR IRF.

\section*{TAMTRONIK LTD.}

In addition to our existing P.C.B. service we now offer our ON BOARD COMPONENT SERVICE including component kits for many ETI projects.
\begin{tabular}{|l|c|c|}
\cline { 2 - 3 } \multicolumn{1}{c|}{} & \begin{tabular}{c}
Compenent \\
Kit*
\end{tabular} & P.C.B. \\
\hline Metal Locator II & 5.91 & 0.92 \\
\hline House Alarm A & 11.60 & 1.91 \\
House Alarm B & 2.39 & 0.79 \\
\hline Train Controller & 5.27 & 0.68 \\
\hline
\end{tabular}

Prices above are VAT inclusive. P\&P 20p. Send large SAE for full details of available Component Kits, P.C.B.'s our Component Catalogue and any specified kit list.
*Kits include ONLY Resistors, Potentiometers, capacitors and Semi Conductors

\section*{217 TOLL END ROAD, TIPTON WEST MIDLANDS DY4 OHW TEL, 021-557 9144}

\section*{TANDY PASSTHE TEST}

AC/DC
OSCILLOSCOPE
Great value - 'rock steady' Synch, - fully solid state! With up to 5 MHz) easy to 'read' with to use and easy to 'read' with a very bright,
tine trace 22-0500 £129.00

\section*{TRANSISTORISED SIGNAL TRACER}
shangers cuit troubles FAST on state by stage Chect tuners, receivers signals trom antenna tre, IF and audio \(50 \times 143 \times 38 \mathrm{~mm}\). With speaker. \(22-010 \times 38 \mathrm{~mm}\). With 9 V battery.

\section*{£7.95}

20,000 OHMS/VOLT, 18-RANGE POCKET MULTITESTER
eatures including with 'expensive' selector. Withding handy rotative instruc Win leads, battery, full instructions. 22-20]

\section*{\(\varepsilon_{10}\)}

LOW DISTORTION AF GENERATOR of audio equip design, repair and testing \(0.05 \%\) at lkHz . \(\mathrm{lv}, 100 \mathrm{mV}\). I distortion just available together. Output 10 mV levels clearly in volts and Output levels shown mains with adaptor 22-9510 65-9006 AC adaptocs.00 10 MEGOHMS/VOLT - 28 RANGES

Oval FET's. Mirrored 13 cm scale. Double accuracy 25 utection. Features high accuracy \(25 \mu\) A meter, polarity reverse knob range selecto
fullinstructions. \(22-208\), batteries, 2.95

\section*{55556 \\ ALSO FR}

\section*{DIGITAL}

\section*{MULTITESTER}

At ast -a DVMata sesensible orree \(31 / 2\) digit disolay act, hightweight. Full DC and AC volts \(0.5 \%\) basic accurac Reading to \(\pm 1999\) c current, resistance.

Reg. price \(£ 39.95\). 22 -199

\section*{HANDY}
\({ }^{39.95}\) Now \(£ 9.95\)

\section*{MULTIMETER}

AC/DC. 8 ranges Chop. \(1000 \mathrm{hms} /\) volt 2 colour 5 cm meter. Thum \(89 \times 59 \times 32 \mathrm{~mm}\). adjustment. With leads/batter zero full instructions. 22-027
£6 All offers subject to availability. Total Satisfaction Guarantee

LED DIGITAL ELECTRONIC ALARM CLOCK MODULE

SAVE £ 4.00 !
13 mm display, fast/slow time setting, sleep and snooze timers, brightness soeptrol, 24 -hours and alarm 'on' control, 24 -hours 277-9001 indicators, etc. 2 \(N\) NOW \& 5.958 digit, 276-301 £1.89 Reg. Price fin
12V DC DIGILA SAR 5.00 ! MICRO-PROCESSORIC for wost advanced IC's, +0.5 second/day accuracy, 7.6 mm green display - all you add are the switches! 277-1003.
Reg. Price 515.95 NOW 10.95

\section*{GaAsp Diffused Lens LEDs -}

2 for 69p
SILCON SOLAR CULL
100 times more powerful than selenium cells. Delivers 0.5 V at 60 mA . \&1.49 \(20 \times 20 \mathrm{~mm} .276-128\) RIGIT LED READOUT DISPLAY
DISPLAY

One of the world's most advance new to the Tandy range-3510 '\&l2.95 competitive price. 276
1024-word by one bit static random access read/write memory Inputs and access rears DTL/TTL compatible. 276-2501
276-026 series

Why buy by mail when you can get it off the shelf! check your telephone directory for your nearest store.

\title{
SYSTEM 68 UPDATE
}

Many readers have now got System 68 working well and are very happy with it. Many have pointed out errors and ambiguities. We list here all known errors even those of a very minor nature and those that have appeared previously.

\section*{VDU Board A.}

The system 68 VDU board A contains the main timing counters for the whole of the VDU. Most of the System 68 problems have been found to be on this board. The circuit diagram and the PCB layout contain several errors which can be very difficult to diagnose and correct without the right equipment. Most of these have been printed in later issues as corrections but we will reprint them here together with some other points which have come to our attention.
a. The PCB layout shown omits the ground connection to IC2 and IC4.
b. The LINK from IC 10 pin 1 to IC \(\overline{9}\) pin 6 is omitted on the component overlay.
c. On the circuit diagram the Line Sync output (LS) is shown as being connected to IC5c this should be connected to IC5d. The PCB is correct.
d. The horizontal Display Enable (DISEN) is shown connected to IC7d, this should be connected to IC7c. If this is not done then the first character on each line will be duplicated and the last character lost.
e. The output from the master oscillator (IC1 gates a and b) is sometimes insufficient to drive the two TTL loads connected to it (IC2, IC14). This manifests itself on the screen as a series of lines rather than characters, the lines often look like 'hyphen' or 'underscore' characters. To overcome this it is necessary to buffer the output through the spare gate of IC12. First connect IC12 pin 1 to IC12 pin 14 to ensure that it is always at logic \({ }^{\prime} 1\) ' \(^{\text {. Break the }}\) copper track joining IC1 pin 8 and IC2 pin 14 where it passes RV1. join IC1 pin 8 to IC12 pin 2, join IC2 pin 14 to IC1 2 pin 3. Thus IC1 now only needs to drive the single TTL load presented by IC1 2 pin 2.
f. One of the main problems with the VDU does not become apparent until the CPU card has been installed and tested. Ghost characters will appear at various places across the line, these are usually at 8 , 16 or 32 character locations from the beginning of the line, the ghost character will overwrite any other character at that point. The problem occurs if the CD4040 character counter is not operating fast enough. In our original prototype we used a National Semiconductor device which we found out later is significantly faster than its competitors. Even so, a lot of NS CD4040 devices are not fast enough. The best answer is to replace this CMOS device with the equivalent function in TTL which will thus operate at much faster speeds. Two four-bit binary counters such as 7493 s can be used or there is a single 8 bit binary TTL counter called the 74393 which has been announced in the past few months. Neither option is pin compatible with the CD4040 and so a slight external bodge is required.
g. Of the three extra character options available (invert, grey or flash) only one can be used at a time, not two as stated. This allows full 7 bit ASCII to be stored in the VDU RAM rather than the 6 bit which appears to be sufficient. The 8th data bit can thus be used to enable one of the extra character options to denote a cursor or special message area.
h. Some printing errors make the checkout a bit difficult, June 77 p35. IC2 pin 19.375 MHz should be IC2 pin 14 June 77 p35. The 'Greater Than' and 'Less Than' signs were missed out near the end of column 1. The 'Greater Than sign will appear before the 'Question Mark' and the 'Less Than' sign will appear before the Equals' sign.
i. TTL and CMOS. It was suggested that the 74C devices on the board could be replaced with 74 LS devices, in fact the majority of the 74 and 74C devices could be replaced with 74LS devices. (NB there is no 74LS75).
VDU Board B.
a. The PCB layout does not have a connection under IC28 which should connect IC24 pin 16 to IC28 pin 7.
b. The suggestion in the text that the DM8679 could be used in tandem with the DM8678 to give upper and lower case characters is unfortunately false. National Semiconductors have no plans to produce the 8679 shown in their data book but have produced an 8678 CAH which gives lower case characters. The 8678 CAH can be used with the 8678 CAB but an additional latch (eg 7474) is required to latch the extra data bit and drive the two chip enables.
c. The only other problems with VDU board B appear to have been component shortages. The 74C157 can be replaced with a 74LS 157 but not 74157 . There is no equivalent to the DM81LS95.
The above errors account for most of the problems with the System 68 VDU, Tamtronik Lid offer PCBs with most of the track errors corrected.

\section*{CPU Board}
a. Links DO-D7 are shown incorrectly marked on the component overlay. For D0 read D7, for D1 read D6, for D2 read D5, etc. Note that the error is at both ends of the links, many people misread the correction and changed the links at one end only thus getting into even more trouble. It is not necessary to rewire the links at all, simply relabel the ends.
b. The clock phases from the MPU chip are reversed and should have a 22 R resistor in series with each line. The simplest way to correct this is to break the track between IC1 pin 3 and IC3 pin 9, also that between IC1 pin 37 and IC3 pin 7. Now using a 22R resistor link IC1 pin 3 to IC3 pin 7, using another 22R resistor link IC 1 pin 37 to IC3 pin 9.
c. Link IC2 pin 11 to IC 2 pin 5 and 13.
d. There is a small amount of track missing near IC8 pins 9 and 10 , this track should link IC8 pin 15 to the point marked D7.
e. The NRDS and NWDS strobes shown at IC5b are incorrect and the data buffers IC10 and 11 will not operate correctly as shown. The following modification is required.
Connect IC4 pin 12 to IC3 pin 13, also IC4 pin 7 to IC3 pin 12. Disconnect all connections to \(1 C 5\) pins \(3,4,5,6,7\), and the existing NRDS and NWDS lines to ICs 10 and 11 and ICs 6 and 7. Connect IC3 pin 11 to IC5 pin 3 (seperate pins 2 and 3).
IC5 now decodes as follows -
-
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline pin 1 & pin 2 & pin 3 & pin 4 & pin 5 & pin 6 & pin 7 \\
\hline Enable & A & B & O/PO & P/P 1 & O/P 2 & O/P3 \\
\hline VMAめ2 & R/W & W3d & NWDS & NRDS & INWDS & INRDS \\
\hline 1 & \(x\) & \(x\) & 1 & 1 & 1 & 1 \\
\hline 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
\hline 0 & 1 & 0 & 1 & 0 & 1 & 1 \\
\hline 0 & 0 & 1 & 1 & 1 & 0 & 1 \\
\hline 0 & 1 & 1 & 1 & 1 & 1 & 0 \\
\hline
\end{tabular}

IC3d output (pin 11) will be low whenever both the RAM enable and the PROM enables are high and thus an enable of an off-board device is required, if an on-board enable is required then this output will be high.

The R/W signal from the MPU is applied to IC5 inpu B and with IC5 enabled by VMA \(\varnothing 2\) the outputs on pins \(4-7\) will be as follows -

IC5 pin 4 Low when an external WRITE is required (NMDS).
IC5 pin 5 Low when an external READ is required (NRDS).
IC5 pin 6 Low when and internal WRITE is required to RAM (INWDS)
IC5 pin 7 Low when an internal READ is required
Thus the output on pin 7 is not needed in this system, pin 6 will drive the R/W inputs of the on-board RAMs (ICs 6,7 pins 14), 4 and 5 will be output on the 31 way connector and also drive the direction pins of the buffers (ICs 10, 11).

\section*{TTY Board}

There appears to be a problem which can occur when trying to write data to the UART. The UART spec requires that the data be stable for the complete duration of the DS pulse. This pulse derives from a decode of the address lines and VMA. \(\varnothing 2\) in ICs 1 and 4 (or 7) and should thus occur during NWDS and the data should be static during this time. This problem does not seem to occur on our prototype where we have 74 LS42s in place of 74 C 42 s . The problem has only arisen with one or two readers and it may be that either-
a. the CMOS devices are delaying the DS strobe, or
b. the decode on the CPU card described above has not been done.

To date these are the only errors we have found in System 68, apart from these most problems appear to have been caused by insufficient checking of the completed PCBs to ensure that all through hole links are OK and that there are no short circuits or track breaks.

\section*{ETIBUG2}

An address and data is missing from the listing of ETIBUG2, at address ED8A the data is E5, this is the offset for the jump instruction.

\title{
15 \\ \\ 240 \\ \\ 240 Watts!
} mounting kit, together with easy to follow construction and operating instructions. This amplifier is ideally suited to the beginner in audio who wishes to use the most up-to-date technology available FEATURES: Complete kit - Low Distortion - Short. Open and Thermal Protection - Easy to Build. APPLICATIONS: Updating audio equipment - Guitar practice amplifier - Test amplifier \(\rightarrow\) Audio oscillator.
SPECIFICATIONS
OUTPUT POWER 15 W R.M.S. into 82. DISTORTION \(0.1 \%\) at 15 W
INPUT SENSITIVITY 500 mV FREQUENCY RESPONSE \(10 \mathrm{~Hz}-16 \mathrm{kHz}-3 \mathrm{~dB}\)
SUPPLY VOLTAGE \(+18 V\)
Price £5.22 + 65p VAT P\&P fràe.
HY50
25 Watts into \(8 \Omega\)
The HY50 leads I.L.P's total integration approach to power amplifier design. The amplifier features an integral heatsink together with the simplicity of no external components. During the past three years the amplifier has been refined to the extent that it must be one of the most reliable and robust High FEATURES: Low Distortion
FEATURES: Low Distortion
APPLICATIONS: Medium Power Hi-Fi systems - Low power disco - Guitar amplifier
SPECIFICATIONS: INPUT SENSITIVITY 500 mV
JUTPUT POWER 25W RMS in 82 LOAD IMPEDANCE 4.161 DISTORTION \(0.04 \%\) at 25 W at \({ }_{1} \mathrm{kHz}\)
.SIGNAL/NOISE RATIO 75 dB . FREQUENCY RESPONSE \(10 \mathrm{~Hz}-45 \mathrm{kHz}\) - 3 dB
SUPPLY VOLTAGE \(\pm 25 \mathrm{~V}\) SIZE 105.50 .25 mm
Primef6.82 + 85D VAT P\&P free

\section*{HY120}

60 Watts into \(8 \Omega\)

\section*{HY200}

The HY120 is the baby of IL.P's new high power range, designed to meet the mosi exacting requirements including load line and thermal protection, this amplifier sets a new standard in modula fesign FEATURES: Very low distortion - Integral Heatsink - Load line protection - Thermal protection Five connections - No external components
APPLICATJONS: Hi-Fi - High quality disco - Public address -- Monitor amplifier - Guitar and argan.
SPECIFICATIONS:
INPUT SENSITIVITY 500 mV
OUTPUT POWER 6OW RMS into 8\% LOAD IMPEDANCE A-16! DISTORTION \(0.04 \%\) at 60 W at SIGNAL/NOISÉ RATIO 90 dB . FREQUENCY RESPONSE \(10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}\) SUPPLY VOLTAGE \(\pm 35 \mathrm{~V}\)
Size \(114 \times 50 \times 85 \mathrm{~mm}\)
Prico £ \(15.84+£ 1.27\) VAT P\& P free
The Hy200, now improved to give an output of 120 Watts, has been designed to
rugged conditions, such as disco or group while still retaining true. Hi-Fi performance. FEAKURES: Thermal shytdown - Very low distortion - Loadiline protection \(\rightarrow\) Insegral Hènsink No external components.
APPLICATIONS: Hi.Fi - Disco - Monitor - Power Slave - Industrial - Public address SPECIFICATIONS:
INPUT SENSITIVITY 500 mV .
OUTPUT POWER 120W RMS into 8U. LOAD IMPEDANCE 4-16U DISTORTION \(0.05 \%\) at 100 W at 1 kHz . SIZE \(114 \times 100 \times 85 \mathrm{~mm}\).
Price \(\mathbf{£ 2 3 . 3 2 + £ 1 . 8 7}\) VAT P\&P free
HY400
240 Watts into \(4 \Omega\)
"The HY400 is I.L.P.'s "Big Daddy" of the range producing 240 W into 4 ll it has been designed tor high power disco or public address appacations. If the amplifier is to be used at continuous high powe levels a cooling fan is recommended. The amp ifier includes all he quatities on the rest on hamily to FEATURES: Thermal shutdown - Very iow distorion -
components.
SPECIFICATIONS
OUTPUT POWER 240 W RMS into 4 2 LOAD IMPEDANCE 4-1.612 DISTORTION \(0.1 \%\) at 240 W at
1 kHz . NOISE RATIO 94 dB . FREQUENCY RESPONSE \(10 \mathrm{~Hz}-45 \mathrm{kHz}\) - 3 dB SUPPLY VOLTAGE \(\pm 45 \mathrm{~V}\).
INPUT SENSITIVITY 500 mV SIZE \(1.14 \times 100 \times 85 \mathrm{~mm}\)
Price £ \(32.17+£ 2.57\) VÄT P\&iP free.
POWER SUPPLIES

PSU36 suitable for two HY30's \(\mathbf{5 5 . 2 2}\) plus 650 VAT \(P / P\) free
PSU50 sulable for 1 WO HY50' \(£ 6.82\) plus \(85 p\) VAT P/P free
PSU 70 suitabie for 2 HY 120 's \(£ 13.75\) plus \(£ 1.10\) VAT P/P free
SU 00 suliable for one HY200 \& 12.65 plus \(\& 1.01\) VAT \(P / P\) free
PSU 80 sultable for two HY2000's or one HY 400 £ 23.10 plus E1. 85 VAT P/P free

B1 48ppluss op VÀ

TWO YEARS' GUARANTEE ON ALL OF OUR PRODUCTS
I.L.P. Electronics Ltd

Crossland House
Nackington, Canterbury
Kent CT4 7AD
Tel (0227) 63218

Please Supply
Total Purchase Price.
I Enclose Cheque \(\square\) Postal Orders \(\square\) Money Order \(\square\)
Please debit my Access account Barclaycard account \(\square\)
Account number
Name \& Address

The L911 is a monolithic bipolar-PMOS integrated circuit intended to meet the system requirements of a micropower detector alarm or ON/OFF control system. The circuit will operate from a supply as low as 6 V and is tested for 15 V conditions. The alarm output can source sufficient current to activate an NPN or SCR buzzer alarm driver and can also interface to TTL or CMOS Logic. The L911 can easily operate with a standby supply current of less than \(10 \mu \mathrm{~A}\) from a 9 V battery, and less than \(17 \mu \mathrm{~A}\) and 15 V . The high input impedance MOSFET comparator easily interfaces to high impedance sensor devices.
Low Battery/Threshold Detector (Pin 1). Pulses the output when the voltage at this input falls below the internal reference of \(=2 \mathrm{~V} 2\). An internal comparator turns on the Low Battery Timing Oscillator, which in turn produces 'trouble signal' pulses at the output.

This Low Battery/Threshold detector can be used for any application requiring a pulsed output alarm. To defeat action of this input, tie it to the positive supply
-Input (Pin 4) - This input is connected to the negative (inverting) input of a MOSFET-input comparator. The output (pin 11) is low when this pin is more positive than the +input, (pin 2 or 6). When voltage to this pnput falls below the +input, the output (pin 11) goes high, which can be used to trigger an alarm. External connections can force a system to be either latching or non-latching. This input is protected against static electricity by a zener diode.
+ Input (Pins 2 and 6) - This MOSFET input, which is also zener protected, is connected to the positive (non-inverting) input of the input comparator. Pins 2 and 6 are internally common to allow flexibility in RCB layout. The common mode range of the input comparator is from ground to 4 V below the positive supply.
Bias (Pin 7) - Current flowing into this input determines the standby current drain of the L911 since the internal current sources are multiples of this current. Normally 8 MO is connected between pin 7 and \(\mathrm{V}^{+}\)to provide approximately \(4 \mu 5\) A of standby current for \(V^{+}\) \(=9 \mathrm{~V}\), but any value between 0 M 5 and 10 M will work.
Noise Suppression (Pin 8) - Noise suppression is connected internally to a high impedance point in the comparator. An optional capacitor connected between this pin and Ground (pin 9) effectively gives the system hysteresis by incorporating an input time delay. This capacitor forms a low pass filter, preventing false triggering in RF fields by reducing input noise sensitivity. A \(4 \mu 7\) capacitor acts as 2 second delay (0.5 Hz low pass filter). Under normal operating conditions, however, this capacitor is not needed. The voltage at pin 8 is normally 50 mV above ground; the alarm triggers when this voltage reaches a diode drop \((0.55 \mathrm{~V}\)) above ground. Therefore, the output ON condition (due to a low inverting input) can be inhibited by keeping pin \(8<200 \mathrm{mV}\) above ground. Any switches or circuits connected to this pin should have leakages of less than 100 nA .
Low Battery Timing (Pin 10) - This pin allows timing of the alarm oscillator when the system goes into the 'Low Battery Alarm' condition. In normal standby or output alarm conditions, this pin is open. In the Low Battery Alarm condition, this pin starts sourcing current equal to \(0.4 \times \mathrm{I}_{\mathrm{SET}}\), to begin the Low Battery Timing Period. When a capacitor from Low Battery Timing (pin 10) to Ground is charged to approximately 2 V 6 , the alarm is pulsed ON and

Minimizes System Power Requirements
Supply Current Less Than \(10 \mu \mathrm{~A}\)
\(0 \quad\) Allows Greater Tan 1 Year of 9 V Alkaline Battery Life
- Simple Maintenance of System

O Includes Weak Battery Threshold Vol tage Detection Circuitry Outputs Trouble Alarm Signa!
- Reduces External Component Requirements
O No Buffers Required for High Impedance Transducers (\(\mathrm{R}_{\text {IN }}>1000 \mathrm{M}\)).
O Directly Interfaces to TTL or CMOS'Logic Directly Drives Power SCR's Transistors or VMOS
\(0 \quad\) Built-In Reve Battery Protection
the capacitor is discharged to approximately OV7. The charging current and the value of \(C\) determines the period of the warning (making \(\mathrm{C}_{\uparrow}\) equal to 47 will give a 7.5 ms alarm ON pulse every 30 seconds).
Output (Pin 11) - This output is triggered HIGH by the inverting input (Pin 4) going LOW or by a low battery alarm condition. This alarm output is constantly HIGH for an imput alarm and pulsed HIGH for Low Battery Condition. The output will source at least 05 mA of current (with \(\mathrm{V}^{+}=6 \mathrm{~V}\)) to an external driver during the alarm condition. The output normally returns to LOW when the alarm condition clears, but by rearranging external circuitry, the Input Alarm can be made to latch ON even after the input has cleared. The output (pin 11) can be connected to ground to allow logic to be driven at the output current adjust, pin 12. The output must be kept below 5 V to prevent breakdown to the chip substrate. There is an internal shunt resistor to ground of typically 20 K to 100 K
Output Current Adjust (Pin 12) - Pulling this pin up to \(V^{+}\)through a resistor increases the output source current capability from its minimum 0.5 mA to a maximum of 30 mA . For example, a 2 KO pullup resistor gives an output current of 9 mA for 9 V . The output current adjust can safely be pulled to ground or \(10 \mathrm{~V}^{+}\)if the 30 mA maximum current limit is observed

This pin is connected to the positive supply from 6 to 15 V . The low standby current allows use of a 9 V alkaline transistor radio battery.

Fig 1: A battery Powered Temperature Alarm (Non-Latching). Sounds a Buzzer Whenever the Temperature Rises Above A Preset Level

Dual-In-Line Package
\begin{tabular}{|c|c|}
\hline LUW battery/ THRESMOLD INPUT & 14 ALARM OVERAIDE \\
\hline - input 2 & 13. \(\mathrm{v}^{\text {c }}\) \\
\hline nc 3 & outpur CURRENT AOJUST \\
\hline -input 4 & 11) Outpur \\
\hline NC 5 & 10) Limmang tery \\
\hline - inpution & 9 ground \\
\hline SET 7 & B] SUPPERESSION \\
\hline
\end{tabular}

Reverse battery protecton is built in and no damage will result from reverse battery voltage being applied

Alarm Override (Pin 14) - This pin allows the 'Low Battery Alarm' condition to override a constant 'input condition' alarm when Alarm Override is connected to Ground as shown in Figure 1, when the Alarm Override is connected to \(\mathrm{V}^{+}\), and there is a Low Battery condition during an input alarm, the output will continue to be ON constantly until the condition clears or the battery dies

For full data sheets and price/availability information contact Siliconix Limited, Brook House, Northbrook Street, Newbury. Berks RG131AH

\section*{Arithmetic Units}

SO FAR, THE WORK which we have carried out on the blob-board has covered gating, flip-flops, counter and display stages and the use of a register. Within the limitations of 8 IC's, we cannot, of course, hope to cover every possible principle of digital electronics, and the IC's which were selected for the board were designed to reflect the applications of digital electronics most often seen in published circuits.

The two important topics of arithmetic and memory have not been specifically mentioned, partly because small projects seldom need arithmetic or memory (and 'large projects can make use of the more flexible facilities of a microprocesser, particularly if this incorporates a memory) and partly because the building blocks of arithmetic units (gates) and some types of memory (flip-flop) have been covered.

\begin{tabular}{|l|l|l|l|}
\hline AO & BO & SO & C0 \\
\hline 0 & 0 & 0 & 0 \\
\hline 0 & 1 & 1 & 0 \\
\hline 1 & 0 & 1 & 0 \\
\hline 1 & 1 & 0 & 1 \\
\hline
\end{tabular}

Fig 1. Half-adder symbol and truth table.
Nevertheless, in this last part we shall look at some of the circuitry we have not covered previously, and also at some systems which can be tried out in the board. In addition, it is useful to note that the board can now act as a very useful intermediate unit for experimental work on more advanced systems, since it can provide up to six clock oscillators, four flip-flops, four NAND gates, one register, and a complete circuit-anddisplay for one set of \(B C D\) digits.

\section*{Adding:}

Binary addition can be serial or parallel, of which parallel addition is more common. The half adder has the truth table in Fig. 1 and is used for the least significant digits of two numbers. Its output will be the sum (the digit which will appear in the

\begin{tabular}{|l|l|l|l|l|}
\hline A 1 & B 1 & C 0 & S 1 & C 1 \\
\hline 0 & 0 & 0 & 0 & 0 \\
\hline 1 & 0 & 0 & 1 & 0 \\
\hline 0 & 1 & 0 & 1 & 0 \\
\hline 1 & 1 & 0 & 0 & 1 \\
\hline 0 & 0 & 1 & 1 & 0 \\
\hline 1 & 0 & 1 & 0 & 1 \\
\hline 0 & 1 & 1 & 0 & 1 \\
\hline 1 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}

Fig. 2. Full adder symbol and truth table.
final figure) and the carry which will be added to the next significant figure. The full adder circuit is used for all the next stages of the adder unit and has three inputs and two outputs; its truth table is shown in Fig. 2. The inputs to the full adder are the two digits \(A_{1}, B_{1}\), and the carry \(C_{0}\) from the previous half-adder stage. The outputs once again are the sume and another carry \(\mathrm{C}_{1}\) which is taken to the next stage. The total number of adding stages which will be needed must equal at least the total number of binary digits in the sum of the numbers.

Half-adders and full adders can be made up using gates (Fig. 3) but once the principles have been checked it is easier to use IC's made for the job. The 7482 is a two bit full adder, whose internal circuitry, with truth tables, is shown in Fig. 4. From the diagram, we can see that the inputs are Co from the previous
half-adder (which would be either an integrated full adder with no carry input, or made up from gates) and the second significant digits \(A_{1}\) and' \(B_{1}\). The sumi of this stage is obtained at the terminal marked S1, and the carry is internally connected into the second stage of the adder, whose inputs are \(B_{2}\) and \(A_{2}\) with outputs sum S2 and carry \(\mathrm{C}_{2}\). The next step up is the 7483, which is a four-bit adder and any requirements greater than this is dealt with by arithmetic units of much greater complexity.

In general, if more than a simple addition is needed, it is more economic to use LSI arithmetic units.

\section*{Memories}

Memory units which are used in digital work come in several varieties. One class of memory is the volatile memory, based on flip-flops, which is cleared wherever power is switched off; this type could be used in pocket calculators. Non-volatile memories are the types using pre-set registers (such as read-only memories or ROMs) or which use magnetic tapes or cores or other types of storage which are not erased when power is switched off. A simple type of volatile memory is a SISO shift register with its output connected back to its input so that the information is read back in after one complete set of clock pulses; this type of memory can only deliver its contents in the order in which they are stored. If the register has parallel outputs with gates, however, it becomes possible to find which digit (0 to 1) is stored in each flip-flop, so that, in the language of computing, random access is possible. This is a simple random access memory (RAM).

At this point it is worth pointing out that most memories in general use permit random access. The type of memories which we refer to as RAM are random access memories

\title{
BY EXPERIMENT PART9
}

(b)

Fig. 3. Above: Adders (a) Half-adder circuit, using NAND-gates and inverters. (b) Full adder, using half adders and OR-gate.

(a)

Fig. 4. Right: (a) Schematic of 7482 two-bit full adder. Note again the advantages of medium scale integration. (b) Truth table.

Fig. 5. Below: SISO shift register connected as a memory - the information must be read out in serial form.

which can be written as well as read when suitable inputs are applied.

They should properly be called random access read/write memories. Read only memories are usually also
random access, but the information which is stored has been put there either by the manufacturer (in the design stage) or by the user (as with PROM) when the memory is first used. In the older types of PROM.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{\multirow[t]{2}{*}{InPUTS}} & & \multicolumn{6}{|c|}{OUTPUTS} \\
\hline & & & & \multicolumn{3}{|l|}{\(\mathrm{CO}=0\)} & \multicolumn{3}{|l|}{C0. \(=1\)} \\
\hline A1 & 81 & A2 & B2 & S1 & S2 & C2 & S1 & S2 & C2 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
\hline 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
\hline 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
\hline 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\
\hline 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\
\hline 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\
\hline 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\
\hline 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\
\hline 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\
\hline 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\
\hline 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\
\hline 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\
\hline 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\
\hline 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 \\
\hline 0 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 \\
\hline 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}
using fusible links, the memory cannot be altered once programmed, except by fusing a few more links. The more modern UV erasable PROM's permit complete erasure and re-programming.

Fig. 6. Above left: 7489 RAM schematic, showing addressing system for 16 4-bit words.

Fig. 7. Below left: Pulses for frequency meter. During the measure/blank cycle, the input frequency being measured is gated to the counter, but the display is blanked out. During the hold cycle, the display is on, showing the count, but the display is blanked out. During the hold cycle, the display is on, showing the count, but the input frequency is gated out, so that the reading is steady. On the reset/blank cycle, the counter is reset and the display is Dlanked. If the repetition rate is more than 50 Hz or 80 , there is no flicker.

Fig. 9. Above: Priority traffic lights problem. This scheme gives priority (long term period) to the longer line of traffic, as measured by the pulses from the detector pads.

\section*{RAM and Address}

For either type of memory, the inputs will consist of address lines which locate positions in the memory. We can think of these address lines as grid lines on a map, with each pair of crossing lines locating a point. When a point is addressed by voltages on the lines which 'cross' at the point, then the output will be the digit, 0 or 1 , stored at that point.

As an example of addressing, Fig. 6 shows the arrangement of the 7489 RAM which is a 64 bit memory which uses four rows of 16 columns of storage. The rows are addressed by the inputs \(D_{1}, D_{2}, D_{3}\), \(D_{4}\), so that a four bit word can be read into each of sixteen columns. The columns are addressed by another four-bit word which is decoded (1011 = column 11;0110= column 6) by a decoder stage which then drives the column.

To write, a four-bit word is placed on the \(D\) inputs, and the write gate is
activated, with the appropriate column slected by \(A_{0}-A_{3}\). To read, no signal is present on the \(D\) lines, and selection of a column places a fourbit word on the output \(\mathrm{Q} 1-\mathrm{Q} 4\).

\section*{Suggestions for Future Board Work}

Figure 7 shows the sequence of pulses which are needed by a frequency meter. The system here is that pulses are counted for one unit, count is held on display, then cleared so that the system can be cleared for another (updating) count. The ICs on the board enable you to try this system out for one digit of counter.

Figure 8 shows the pinout of the 74141 BCD-decimal decoder. This IC, not used on our board, can be connected to the BCD output of the 7490 and will give outputs on ten pins, according to the state of the count. The active state is represented by a zero output on a pin, so that a zero output on the ' 7 '

Fig. 8. Pinout of the 74141 BCD-Decimal decoder.
pin (pin 10) represents a count of 7 , and so on. Using this, could you design a ten-note jingle player?

Finally, Fig. 9 shows the operation of priority traffic lights. These lights operate with a longer red phase on one set than on the other, but this can be reversed if more than three vehicles cross a detector strip during the long red period on one set of tights. This scheme needs a clock pulse, counters, register and gates, could you make one?

Ever feel you need a good rub down before you start one of our projects? Perhaps you need-

\section*{ETIPRINTS}

ETIPRINTS are a fast new aid for producing high quality printed circuit boards. Each ETIPRINTS sheet contains a set of etch resistant rub down transfers of the printed circuit board designs for several of our projects. ETIPRINTS are made from our original artwork ensuring a neat and accurate board. We thought ETIPRINTS were such a good idea that we have patented the system (patent numbers 1445171 and 1445172). ETIPRINTS 007 and 008 are the latest in the series and contain the following patterns -

007 Star Trek Radio CD Ignition CCD Phaser White Line Follower

May 78008
May 78
May 78
April 78

Tank Battle
Helping Hand

May 78
May 78

\section*{Also available in the ETIPRINTS series are:}
\begin{tabular}{ll}
3 Channel Tone Control & Oct 77 \\
Spirit Level & Oct 77 \\
Clock A & Nov 77 \\
Digital Thermometer & Oct 77 \\
Skeet Game & Nov 77 \\
Compander & Nov 77 \\
& \\
\begin{tabular}{ll}
House Alarm & Jan 78 \\
Rev Monitor \\
Clock B
\end{tabular} & Dec 77 \\
Race Track Game & Dec 77 \\
Hammer Throw & Jan 78 \\
Freezer Alarm & Jan 78 \\
& Dec 77
\end{tabular}

004
Oct 77
Nov 77
Oct 77
Nov 77
Nov 77
Jan 78
Dec 77

Jan 78
Dec 77
\begin{tabular}{|c|c|}
\hline Metal Locator Mk II & Feb 78 \\
\hline Ultrasonic Tx/Rx & Feb 78 \\
\hline 5 Watt Stereo Amp (modified) & Jan 77 \\
\hline Metronome & Feb 78 \\
\hline Porch Light & Feb 78 \\
\hline Shutter Timer & Feb 78 \\
\hline Op-Amp Supply & Mar 78 \\
\hline Frequency Shifter & Mar 78 \\
\hline LCD Panelmeter & Mar 78 \\
\hline Light Dimmer (3 times) & Mar 78 \\
\hline CMOS Switched Preamp Experimenters PSU 555 Boards (twice) & from ctronic orrow' \\
\hline
\end{tabular}

\section*{ORDER TODAY}

Send a cheque or P.O. (payable to ETI Magazine) to ETI PRINT ETI MAGAZINE, 25/27 OXFORD STREET, LONDON W1R1RF.

Lay down the ETIPRINT and rub over with a soft pencil until the pattern is transferred to the board. Peel off the backing sheet carefully making sure that the resist has transferred. If you've been a bit careless there's even a 'repair kit' on the sheet to correct any breaks!

\title{
ETI BOOK
}

\title{
SERVICE
}

\section*{BEGINNERS}

Beginners Guide to Electronics Squires \(£ 2.65\)
Beginners Guide to Transistors Reddihough £2.55
Electronic Measurement Simplified C. Hailmark \(£ 2.20\)
Electronics Self Taught Ashe \(£ 4.40\)
Beginners Guide to Integrated Circuits sinclair \(£ 3.15\)
Principles of Transistor Circuits s. Amos \(£ 4.75\)
Understanding Electronic Circuits Sinclair \(\mathbf{£ 4 . 1 0}\)
Understanding Electronic Components Sinclair £4.10
Beginners Guide to Radio King \(£ 3.15\)
Beginners Guide to Audio Sincla ir \(£ 3.10\)
Beginners Guide to Audio L. r. Sinclar \(£ 3.20\)

\section*{COOKBOOKS}

TV Typewriters Cookbook \(£ 7.40\)
CMOS Cookbook \(£ 8.00\)
TTL Cookbook \(\mathbf{E} 7.55\)
Active Filters \(£ 11.00\)
IC Timer Cookbook \(£ 7.50\)
IC Op-Amp Cookbook \(£ 9.40\)

\section*{= APPLICATIONS}

Advanced Applications for Pocket Calculators J. Gilbert \(£ 4.20\)
Build Your Own Working Robot d. Heiseman \(£ 3.35\)
Electronics and Photography R. Brown \(£ 2.30\)
Fire and Theft Security Systems b. Wels \(£ 2.00\)
How To Build Proximity Detectors and Metal Locators j. shelds \(£ 3.35\)
How To Build Electronics Kits Capel \(£ 2.10\)
Linear Integrated Circuit Applications G. Clayton \(£ 5.00\)
Function Circuits Design \& /.pplications Burr Brown \(£ 15.95\)
110 Electronic Alarm Projects R. m. Marston \(£ 3.45\)
110 Semiconductor Projects for the Home Constructor r. m. Marston \(£ 2.95\)
110 Integrated Circuit Projects for the Home Constructor к. m. Marston \(£ 3.25\)
110 Thyristor Projects Using SCRs R. m. Marston \(£ 2.95\)
Handbook of IC Circuit Projects Ashe \(£ 2.30\)
Practical Electronic Project Building Ainslie and Colwell \(\mathbf{£ 2 . 4 5}\)

\section*{\(=\) TV AND \(\mathrm{HI}-\mathrm{Fl}\)}

Audio Handbocis G. King \(£ 6.50\)
Cassette Tape Recorders J. Earl \(£ 5.25\)
Solid State Colour TV Circuits G. R. Wilding £6.35
Hi-Fi Loudspeakers and Enclosures Cohen £8.20
How To Build Speaker Enclosures Badmaieff £3.10
Master Hi-Fi Installation King \(£ 2.80\)

\section*{\(=\) LOGIC}

Logic Design Projects Using Standard ICs J. Wanerly £5.10
Practical Digital Design Using ICs J. Greenfield \(£ 12.50\)
Designing With TTL Intergrated Circults Texas Instruments \(\mathbf{£ 9 . 0 5}\)
How To Use IC Circult Logic Elements J. Streater \(£ 3.65\)
110 COSMOS Digital IC Projects for the Home Constructor R M. Marston £ 3.20
Understanding CMOS Integrated Circuits R. Mel.... \(£ 3.90\)
Digital Electronic Circuits and Systems r. M. Morris \(£ 3.50\)
MOS DIGITAL ICs G. Flynn \(£ 4.60\)

\section*{COMPUTING}
\(\qquad\)
Microprocessors and Microcomputers B. Sowick \(\mathbb{£ 1 8 . 0 0}\)
Microprocessor/Microprogramming Handbook B. Ward £4.10
Microprocessors D. C. McGlynn \(£ 8.40\)
Introduction to Microprocessors Aspinall £5. 90
Modern Guide to Digital Logic (Processors, Memories and Interfaces) £4.30

\section*{OP-AMPS}

Applications of Operational Amplifiers Graeme (Burr Brown) 88.30 -
Designing With Operational Amplifiers Burr Brown \(£ 13.75\)
Experiments With Operational Amplifiers Clayton \(£ 3.40\)
110 Operational Amplifier Projects for the Home Constructor r. M. Marston E2. 95 Operational Amplifiers Design and Applications G. Tobery (Burr Brown) \(£ 7.40\) Op-Amp Circuit Design \& Applications I. Carr \(£ 4.00\)

\section*{\(=\) TEST INSTRUMENTS \(=\)}

Build It Book of Minature Test Instruments R. Haviland \(£ 3.55\)
The Oscilloscope In Use Sinclair E 3.10
Test Instruments for Electronics M. Clifford \(\mathbf{£ 2 . 4 0}\)
Working With the Oscllloscope A. Saunders \(£ 1.95\)
Servicing With the Oscilloscope G. King \(£ 5.60\)
Radio Television and Audio Test Instruments King £5.90

\section*{SERVICING}

Electronic Fault Diagnosis Snclair \(£ 3.20\)
Rapid Servicing of Transistor Equipment G. King \(£ 2.95\)
Tape Recorder servicing Manual Gardner Vol 1: 1968-70 £8.50 Vol 2: 1971-74 £8.50
FM Radio Servicing Handbook King \(£ 4.80\)
Basic Electronic Test Procedures 1. M. Gottlieb \(£ 2.45\)

\section*{\(=\) COMMUNICATIONS \(=\)}

Communication Systems Intro To Signals \& Noise b. Carlson \(£ 7.50\)
Digital Signal Processing Theory \& Applications L. r. Rabiner \(£ 23.80\)
Electronic Communication Systems G. Kennedy \(£ 8.50\)
Frequency Synthesis. Theory \& Design Mannassewitsch \(\mathbf{£ 2 0 . 4 0}\)
Principles of Communication Systems H Taub \(£ 8.10\)

\section*{THEORY}

Introduction to Digital Filtering Bogner \(£ 9.40\)
Transistor Circuit Design Texas Instruments \(£ 9.35\)
Essential Formulae for Electrical and Electronic Engineers N M. Morris \(£ 1.65\) Modern Electronic Maths clifford \(£ 6.70\)
Semiconductor Circuit Elements T. D. Towers \(£ 6.40\)
Foundations of Wireless Electronics M. G. Scroggie \(£ 4.45\)
Colour Television Theory Hudson \(£ 6.20\)

\section*{\(=\) REFERENCE}

Transistor Tabelie (Includes physical dimensions) £4.10
Electronic Engineers Reference Book (Ed. 4) L. W. Turner \(£ 27.70\)
Solid State Circuit Guide Book B. Ward \(£ 2.25\)
Electronic Components M A. Colwell £2.45
Electronic Diagrams m a. Colwell \(£ 2.45\)
Indexed Guide to Modern Electronic Circuits Goodman £2.30
International Transistor Selector T. D. Towers \(£ 5.25\)
International FET Selector T. D Towers £4. 35
Popular Valve/Transistor Substitution Guide \(£ 2.25\)
Radio Valve and Semiconductor Data A. M. Bell \(\mathbf{E} 2.60\)
Master Transistor/Integrated Circuit Substitution Handbook £5.60
World Radio TV Handbook 1978 (Station Directory) £8.00
Radio, TV and Audio Technical Reference amos \(£ 24.85\)
TV Technicians Bench Manual (New Ed.) wilding \(£ 5.10\)

\section*{= MISCELLANEOUS}

Integrated Electronics J. Mutman \(\mathbf{£ 7 . 7 0}\)
Microelectronics Halinark \(£ 3.90\)
Practical Solid State DC Supplies T. D. Towers \(£ 6.20\)
Practical Triac/SCR Projects for the Experimenter R. Fox \(£ 2.25\)
Printed Circuit Assembly Hughes \& Colwell \(£ 2.45\)

\section*{Fallen behind recent advances? \\ Just starting out? \\ Need a decent reference book? \\ ETI Book Service provides an easy \\ way of getting your hands \\ on the right title.}

How to order: Make cheques etc payable to ETI Book Service. Payment in sterling only please. Orders should be sent to: ETI Book Service, PO Box 79, Maidenhead, Berks. All prices include P\&P.

develop his own Software which can then be put into PROM and replace the Monitor. Whilst the Monitor is in the unit then the user's program is Software, when the user's program replaces the Monitor then the SCRUMPI 3 becomes a different product with the user's program as Firmware. The user's program could be a control system, a games system or another form of Monitor

\section*{SOCKET TO ME}

Some aspects of Hardware can also be considered as Firmware, take for example a socket provided on the main PCB for expansion by the insertion of an additional PCB or IC. The additional unit plugged into this socket could add to or change the use of the main system, by plugging different units into this socket the use of the main system can be changed from day to day or from one system to another. Is the socket not there for à Firmware feature? Other forms of sockets may enable expansion from the basic system by the simple addition of ICs in the form of extra RAM or PROM. In these cases all of the necessary interfacing and wiring already exists, a simple example is the socket for the ETIBUG 2 PROM on the System 68 CPU card - is this feature Hardware, Firmware or Socketware (or Whatware)?

Why then, if Software is an intangible feature, does Software hurt? If you write your own Software you will find that it hurts your brain when it does not do what you expected it to do. You can look forward to many happy hours spent trying to work out why the program insists on overwriting itself or going into an untraceable loop. If you have your Software written for you then it can hurt your pocket, some of the consultants around are more used to writing software for mainframe or mini computers and the cost of having a very simple system written for a micro can be very high. Other consultants specialise in micro programming - probably specifically for a small range of machines. This type of consultant will know his machine and its capabilities and will thus be in a better position to write Software faster and at a lower cost. One of the advantages of using a consultant is that he may well have a set of software similar to your requirements already in existance - all you have to pay for is the modifications and an overhead to cover your share of the cost of the original Software

Some Software / Firmware recently advertised in an American magazine gives some examples of what is available, in what form and at what price (in USA dollars).
Disk Extended BASIC on disk \(\quad \$ 300.00\)
10 Games in BASIC on CUTS tape \(\$ 20.00\)
Multi-Tasking Operating System \(\$ 175.00\)
Extended BASIC (16 K) in disk \(\quad \$ 95.00\)
in PROM
\(\$ 800.00\)
The last example above shows the difference in cost in PROM Software which in theory reflects the cost of the PROM ICs. When comparing costs of this kind remember that the disk version requires 16 K of RAM to operate in, a typical US cost for this is \$500.00. Software or Firmware in mask programmed ROM is probably going to be cheapest in the long run but this requires high volumes of sales.

Thus Software Hurts your head and / or your pocket, possibly the worst type of Software for pain is the program you use for running your personal budget - it can tell you how long it is going to take you to pay for itself!

EVERY MONTH we put away 500 issues specifically for our back numbers service - they're not unsolds. However, we still sell out very rapidly (a couple of hundred go within a month after publishing date] as you'll see from the list of those available.

\section*{AVAILABLE ISSUES}

1973 June
1974 Feb., Apr., May, June, July 1975 Feb., War., Apr.

1976 May, July, Aug., Sept., Oct. 1977 Jan., Feb., Apr., June, Aug., Oct. 1978 Jan., Feb., Mar., Apr., May

Send 60p (includes postage) to:
ETI Back Numbers. ETI Magazine, 25-27 Oxford Street, London WIR IRF

\section*{PHOTOSTAT SERVICE}

We are prepared to supply photostats of any article (or part number of article) at a flat fee of 50 p (inclusive). Please specily issue as well as article titte. Send to: ETI Photostats, 25-27 Oxford Street, London WIR IRF.

\section*{NEW MODULES}
by famous manufacturers on p.c. Boards beady to mount in PLINTH, ETC.
1. STEREO AMPLIFIERS \(61 / 2 \mathrm{in} \times 51 / \mathrm{in}\). P.C.B. \(10 \mathrm{w}+10 \mathrm{w}\) for 60 mV input requires 20-22VAC TO POWER
2. MATCHING PRE-AMP. Normally powered from (1), four push-buttons gram, aux.. rape in/out. on/otf slider controls. Vol.. Bal., Treble, Bass

E6.00
3. AMP AND PRE-AMP. Ordered together \(£ 10.00\)

4 ELAC L.S. to sult 8 in 8 Ohm with iweeter cone Pan for E8.50
5. GRAM AMPLIFIER. \(12 \mathrm{in} \times 11 / 2 \mathrm{in}\). P.C.B. \(3 w+3 \mathrm{w}\) for 100 mV input. Controis, Vol. Bal., Treble. Bass. Requires \(15 v-25 v \mathrm{DC},-\Omega-16 \Omega \mathrm{~L} . \mathrm{S}\).
6. MONO VMF-FM Module \(91 / 2 \mathrm{in} . \times 21 / 2 \mathrm{in}\). VARICAP Tuner, ceramic I.F. CA3089 I.C. amp-demod, AFC-AGC. Audio Op., approx. 250 mV . Requires 20 AC or DC. Few only

Prices inc. P\&P and VAT Cash with order
ELECTRONICAL SUPPLIES CROYDON
4O LOWER ADDISCOMBE ROAD, CROYDON, CRO GAA 01-6882950

\section*{Cambridge Learning Enterprises}

\section*{SUMMER OFFER}

\section*{Until 1st August, 1978}

Just send this token with your order for a 10\% discount which entitles you to books at the following prices:
Digital Computer Logic and Electronics £4.95
Design of Digital Systems \(£ \mathbf{8 . 1 0}\)
Combined set £11.70
Algorithm Writer's Guide £3.06

\section*{Join the Digital Revolution}

\section*{Understand the latest developments in calculators, computers, watches, telephones,} television, automotive instrumentation . . .
Each of the 6 volumes of this self-instruction course measures \(113 / 4\). \(\times 8 \frac{1}{4} 4^{\prime \prime}\) and contains 60 pages packed with information, diagrams and questions designed to lead you step by step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.
Design of Digital Systems

plus \(£ 1\) packing and surface post anywhere in the world. Overseas customers should send for Proforma invoice. Payment by credit cards accepted.

Also available - a more elementary course assuming no prior knowledge except simple arithmetic.
Digital Computer Logic and Electronics In 4 volumes
\(£ 4.60\)
1. Basic Computer Logic
plus 90 p P \& P
. Logical Circuit Elements
3. Designing Circuits to Carry Out Logical Functions
4. Flipflops and Registers

Offer Order both courses for the bargain price \(£ 13\) plus \(£ 1\) P \& P.
A saving of \(£ 1.50\).

\section*{Designer} Manager Enthusiast Scientist Engineer Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

FLOW CHARTS \& ALGORITHMS - The Algorithm Writer's Guide - Construction, content, form, use, layout of algorithms and flow charts. Vital for computing, £2.95 training, wall charts, ete. Size: A5, 130 pages. plus 45 p P\&P
Guaranteed - If you are not entirely satisfied your money will be refunded.
CAMBRIDGE LEARNING ENTERPRISES, Unit 15 Freepost, RIVERMILL LODGE, ST. IVES, HUNTINGDON, CAMBS. PE17 4BR, ENGLAND. TELEPHONE ST. IVES (O480) 67446. PROPRIETORS DRAYBRIDGE LTD. REG. OFFICE RIVENHALL LODGE, ST. IVES. Giro Ac. No. 278 9815. REGD. IN ENGLAND NO. 1328762
```

- Cambridge Learning Enterprises, Unit 15 Freepost

```
 Cambridge Learning Enterprises, Unit 15 Freepost
Rivermill Lodge, St. Ives, Huntingdon. Cambs, PE \(1748 R\). England
 Please send me the following books
 sats Digital Computer Logic \& Electronics @ \(£ 5.50\) p \& p included
 sets Design of Digital Systems @ \(£ 9.00\) p\&ip included
 Combined sets @ E 13.00 p \&p included
 The Algorithm Writer's Guide @ £3.40 p\&p included
 Name
 Address
 I enclose a cheque/PO payable to Cambridge Learning Enterprises
for \(\varepsilon\).
Please charge my * Access/Barćlaycard iVisa/Eurocard/Mastercharge/Interbank
I account number
| Signature
- delete as appropriate

Telephone orders from credit holders on 0480-67446 (Ansafone). Overseas customers should send a bank draft in sterling drawn on a Lond Bank
- Should send a bank draft in sterling drawn on a London Bank

So what is a 4320000 counter good for? Well, \(50 \times 60 \times 60 \times 24=\) 4320000 so that if you feed in 50 Hz at the input the counter will give 1 pulse per 24 hours, e.g. it can form the basis of an extremely accurate 24 hour alarm. Such an alarm never requires setting once the counter has been reset to zero at the required time of day and will thereafter give the alarm at exactly the same time every day. It can thus be used for instance to wake oneself up every morning without fail.

Such a circuit is very easily built using just 4 cheap CMOS chips. IC1, a 14 stage binary counter is set to divide by 10000 (binary 10011100010000) by reseting to 0 on the count of 10000. Similarly IC2, a 12 stage binary counter divides by 432 (binary 110110000). IC3 and IC4 provide the necessary decoding to reset the counters (which are reset by a logic ' 1 ' unlike TTL where a logic ' 0 ' is usually required). Additionally the gating allows the counter to be reset to 0 by SW1

\section*{Voltage Stabiliser}

\section*{J. Nicholls}

Here is a voltage stabiliser with good performance and low component count which will operate well, even when \(V_{\text {in }}-V_{\text {out }}\) drops to 2 V . Only a few milliamps are dissipated through the zener, making it suitable for battery operated equipment

Most circuits of this type (but with the FET replaced by a resistor) suffer from zener saturation when \(V_{\text {in }}\) is getting low, or excessive zener current when \(V_{\text {in }}\) is high

Actual component values can be varied to suit individual applications.

\section*{3-way CMOS switch}
G. Warburton.

When the input is switched positive the voltage across the zener is sufficient to bias the junction between R3 and the zener high, producing a high output at C .

With the input unconnected, the junction between R1 and R2 is high while the junction between the zener and R3 is low. This will produce a high output at B

Connecting the input to OV causes output A to go high.

The circuit was primarily designed to be used with quad CMOS switches (i.e. 4016,4066) for audio switching but can be used for a variety of applifcations.

\footnotetext{
Tech-Tips is an ideas forum and is not aimed at the beginner. We regrot we cannot answer queries on thase items.
ETI is prepared to consider circuits or ideas submirted by readers for this page. All items used will be paid for. Drawings should be as clear as possible and the text should preferably be typed. Circuits must not be subjact to copyright. Items for consideration should be sent to ET! TECH-TIPS, Electronics Today International, 25-27 Oxford St., London W1R1RF.
}

\title{
ETI SPECIALS
}

1 + 2-Top projects include: Master mixer, 100 W guitar amp., low power laser, printmeter, transistor tester, mixer preamp, logic probe,

\(£ 1.00+25 p\) P\&P
light warning, LM380 circuits, temperature alarm, aerial matcher, UHF TV preamp, metal locator, four-input mixer, IC power supply, rumble fis timing lisht,
3-This issue was so popular that it is now sold out!
4-Includes:
Sweet tixteen stereo amp., waa-waa, audio level meter expander/compressor, car theft alarm, headligh reminder, dual-tracking power supply, audio millivolt meter, temperature meter, intruder alarm, touch switch electronic dimmer, exposure meter, photo dimer bandit!
5-Twenty-two complete projects, including
5 W stereo amp., stage mixer, disco mixer, touch organ audio limiter, infra-red intruder alarm, model train controller, reaction tester, headphone radio, STD timer, double dice, gen.-purpose power supply, ogic tester, power meter, heart rate monitor IB metal locator down beace meter. temperature meter.
Graphic equaliser, \(50-100 \mathrm{~W}\) amp. modules, active crossover, flash trigger, "star and dot" game, burglar alarm, pink noise generator, sweep oscillator, marker generator, audio-visual metronime, LED dice, skeet game, lie detector, disco light show. . .

Ni -Cad charger, loudhailer, scope calibrator, electronic

\(75 p+25 p\) P\&P
Comprised entirely of new material, the edition covers such diverse subjects as Star Wars and hi-fi! The magazine contains projects for everyone - none of which have appeared in ETI - and a look at the future of MPUS, Audio, Calculators and Video. How can you not read it?

£ 1.50

Each volume contains over 150 circuits, mainly drawn from the best of our Tech-Tips. The circuits are indexed for rapid selection and an additional section is included which gives transistor specs. and plenty of other useful data
Sales of this publication have been phenomenal - hardly surprising wh

\section*{£1.50 + 25p P\&P}

STOP PRESS: See special offer in this issue!

cick
£3.00 + 25p P\&P
This book is ratheran unusual reprint from the pages of ETI. The series appeared a couple of years ago in the magazine, and was so highly thought of by the University
of New England that they have re-published the series

Our successful beginners series came to an end some time ago now, and the whole series is available from us in reprint form. The three books between them contain al more detail!) and together form an excellent starting point for anyone interested in learning the art of electronics. Each volume costs.
splendidily for use as a standard textbook. Written by splendidy for Pydenham, M.E., Ph.D., M.Inst.M.C., F.I.I.C.A., this publication covers practically every type of transducer any other book. Enquiries from educational authorities, universities and colleges for bulk supply of this publication are welcomed. These should be addressed to H. W. Moorshead, Editor.

\section*{HOW TO ORDER}

Postage and packing also refers to overseas. Send remittance in sterling only.

\section*{ETI Specials}

ETI Magazine
25-27 Oxford Street
London W1R1RF
Please mark the back of your cheque or PO with your name and address.

Please supply me with the following ETI Specials:
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
Total cheque/PO enclosed \(=£ \ldots\)
Address:
M
\(\qquad\)
(Please allow four weeks for delivery)

Most model railway controllers have the unfortunate characteristics of giving instant starts and stops to the train which would be very unnerving for the model passengers. The circuit described gives a steady acceleration or deceleration on speed changes, and the speed and acceleration controls do not interact

The power supply is 12 V split by R8 and R9 so it appears to the op amps as \(a \pm 6 \mathrm{~V}\) supply. Voltages in this description are referenced to the 6 V centre tap. IC1 and IC2 together form a unity gain inverting amplifier, with the gain determined by

R1 and R2. The slope of IC2's output, is determined by C 1 and R3/RV2. The output of IC1 will thus take up one of three states: +6 V (hard positive), \(0 \vee\) (balanced), \(-6 \vee\) (hard negative) dependent on the output voltage being more positive that equal to, or more megative than the voltage set by RV1. The output voltage will thus ramp up or down at a constant rate until it is equal in magnitude (but opposite in sign) to the voltage on RV1. This is summarised on the waveform drawing

Voltage \(b\) drives buffer amplifiers IC3 and IC4 to give a push pull 12 V
drive to the motor for forwards and reverse. Note that the feedback resistors R5 and R7 are taken from the transistor emitters to compensate for the transistor \(V_{\text {be }}\) drops. The motor should have some current cut-out or limit connected in series with it to protect the transistors

In use RV1 sets the speed, and RV2 the acceleration:- it gives a very realistic train control, although much more skill is needed to stop a train accurately at a station platform. In this respect it is very close to driving a real train.

Slide Switch
C. Jordan

One of the disadvantages of slide pots is the unavailability of matching slide switches, as with rotary switches and pots, but slide pots can be given switching action by the use of this circuit.

Each analogue switch is only turned on when the comparators driving the respective EX-OR gate are in opposite states, i.e when the voltage on the slider wiper is between the appropriate two preset voltages.

The example is a 4-way, 1 -pole switch with off but any-way, any-pole switches can be made, using 741 s as comparators if economic. A little mechanical ingenuity can provide click stops, if required

\title{
GREENWELD \\ 443 Millonook Road Southampton SO1 DHX Tel:(O703) 772501
}

\section*{BUY A COMPLETE RANGE OF COMPONENTS AND THESE PACKS WILL HELP YOU}
* SAVE ON tIME - No delays in warting for parts to come or shops fo openf
* SAVE ON MONEY - Bulk buying means lowest pri
have the right paft - No guesswork or substifution necessaryI

ALL PACKS CONTAIN FULL SPEC. BRAND NEW MARKED DEVICES - SENT BY RETURN OF POST VAT INCLUSIVE PRICES

K00150V ceramic plate capacitors. 5\%, 10
of each value 22 pF to 1000 pF . Total 210
£3.35.
K002. Extended range, \(22 \rho \mathrm{~F}\) to \(0.1 \mu \mathrm{~F}\) 330 values. £4.90.

K003. Polyester capacitors. 10 each of \(\begin{array}{llllll}\text { these values } 0.01 . & 0.015,0.022, & 0.033 \\ 0.047 & 0.06 B & 0.1 & 0.15 & 0.22 & 0.33\end{array}\) \(0.47 \mu\) F. 110 altogether for \(£ 4.75\).

K004 Mylac capacitors min 100 V type. 10 each all values from 1000 pF to \(10,000 \mathrm{pF}\) Total 130 for \(\mathbf{£ 3 . 7 5}\).

K005. Polystyrene capacitors. 10 each value from 10 pF to \(10,000 \mathrm{pF}\). E1 2 series \(5 \%, 160 \mathrm{~V}\). Total 370 for \(£ 12.30\).

K006 Tantalum bead capacitors. 10 each of the following \(0.1,0.15,0.22,0.33,0.47\) \(0.68,1,2.2,3.3,4.7,6.8\), all \(35 V\). 100/3. Total 170 tants for \(£ 14.20\).

K 007 Electrolytic capacitors 25 V working small physical size. 10 each of these popular values \(1.2,2,4.7,10,22.47 .100 \mu \mathrm{~F}\) Total 70 for \(\mathbf{£ 3 . 5 0}\).
\(K 008\) Extended range, as above, also including \(220 / 470\) and \(1000 \mu \mathrm{~F}\). Total 100 for \(\mathbf{\Sigma 5 . 9 0}\)

K009. Extended mylar pack. Contains all values from 1000 pF to \(0.47 \mu \mathrm{~F}\) total 290 capacitors to \(£ 11.25\).

K021 Miniature carbon film 5\% resistors. CR25 or similar. 10 of each value from 10R £6.00.

K022 Extended range, total 850 resistors from 1 R to \(10 \mathrm{M} \mathbf{~ £ 8 , 3 0 .}\)
K041 Zener diodes. \(400 \mathrm{~mW} 5 \%\) BZY88 atc. 10 of each value from 27 V to 36 V . E24 series. Total 280 for \(\mathbf{1 5 . 3 0}\)
K042. As above but 5 of each value \(\mathbf{£ 8} \mathbf{8} 70\).

VEROBOARD
Our packs of vero offcuts are one of our
biggest sellers - and no wonder they are biggest sellers - and no wonder, they are
amazing vatue!! Each pack contains 7 or 8 pieces to make up a total area of 100 sq ins. All packs are the same price, \(£ 1.30\) each and are available as follows
Pack \(A\), all 0.1 pitch
Pack B, all 0.15 pitch
Pack C. mixed 0.18 \& 0.15
Pack D, all 0.1 plain
Also available by weight 1 lb £ \(\mathbf{3 . 9 5} 10 \mathrm{lbs}\)
£32.50
\(\begin{array}{ll}\text { Regular size vero. } \\ 17 \times 33 / 4 \times 0.1 & \text {. } \\ 17 \times 3.00,10 \text { strips } £ 15\end{array}\)
\(17 \times 3^{3} / 4 \times 0.15 £ 1.76 ; 0.1\) plain £1.63
DIP Breadboard, size \(6.15 \times 4.5\) can accommodate \(20 \times 14\) pin ICs \(\mathbf{£ 2 . 3 5}\)

VQ Board, size \(148 \times 75 \mathrm{~mm} 0.1\) pitch Copper strips in rows of 4 to facilitate 85p

All prices quoted except Bulk Buyers Corner include VAT Just add 25 p on day of receipt. SAE with enquiries please. MINIMUM ORDER VALUE \(£ 1\). Official orders accepted from schools. etc. (Minimum invoice charge £5). Export/ Wholesale
enquiries welcome. Wholesale list now
nd

VERO PLASTIC BOXES
Professional quality iwo tone grey poly-
styrene with threaded inserts for mounting styrene with
PC boards
\(2518 \quad 120 \times 65 \times 40 \quad \mathbf{~} 2.17\)
\(\begin{array}{llr}2520 & 150 \times 80 \times 50 & \mathbf{£ 2 . 4 5} \\ 2522 & 188 \times 110 \times 60 & \text { £3.23 }\end{array}\)
SLOPING FRONT BOXES
\(\begin{array}{lll} & 1798 & 121 \times 75 / 375 \\ 2523 & 220 \times 174 \times 100 / 53 & £ 6.90\end{array}\)
Polting box, \(71 \times 49 \times 24 \mathrm{~mm}\) black or white Hand 64p.

VERO PINS AND TOOL Spot lace cutter for 0.1 or 0.15 pitch 75p 0.1 pins single sided 30p/100 0.1 pins double sided 35p/100 0.15 pins single sided 30p/100 0.15 pins double sided 35p/100

We keep a very large range of VERO products - inc. their recently introduced \(G\)
range of cases, and Series II boxes. SAE for range of cases,
their catalogue.

LOW COST PLASTIC BOXES Made in high impact \(A B S\). The lids are etained by 4 screws into brass inserts V219).
V210 \(80 \times 62 \times 40 \mathrm{~mm}\) black V213 \(100 \times 75 \times 40 \mathrm{~mm}\) black \(\begin{array}{ll}\text { V216 } & 120 \times 100 \times 45 \mathrm{~mm} \text { black } \\ \text { V219 } & 120 \times 100 \times 45 \mathrm{~mm} \text { white }\end{array}\)

\section*{SEMICONDUCTORS}

\section*{Diodes. 1 N4001/2 5p; 4004/5 7p; 4006} 8p; 4007 9p; 1250 V 1A 10p; 1250V 1 5A 15 p ; 200 V 10A stud 40 p ; 400 V 10 A stud 15p;
48p.
400 mW Zeners 2 V 7 to 36 V 10 p each 1.3W Zeners \(3 \mathrm{~V} 3-200 \mathrm{~V} 20 \mathrm{p}\). 9A1.
Bridge Rectifiers
\(50 \mathrm{~V} 1 \mathrm{~A} 26 \mathrm{p} ; 200 \mathrm{~V} 1 \mathrm{~A} 32 \mathrm{p} ; 400 \mathrm{~V} 1 \mathrm{~A} 36 \mathrm{p}\); 100V 2A 48p; 400V 2A 58p; 100V 4A 65p; 400V 4A 80p; 40V 4A 80p; 100 V 6A 74p; 400V 6A 98p

\section*{74 SERIES \\ \begin{tabular}{|c|c|c|c|c|c|}
\hline & & & & & \\
\hline 7400 & 12p & 7447 & \(84 p\) & 74107 & 37p \\
\hline 7401 & 14 p & 7450 & 15p & 74121 & 36p \\
\hline 7402 & 14p & 7451 & 14p & 74122 & 51 p \\
\hline 7404 & 17p & 7453 & 14p & 74123 & 64p \\
\hline 7405 & 23p & 7454 & 14 p & 74132 & 56p \\
\hline 7406 & \(28 p\) & 7450 & 14 p & 74141 & 63p \\
\hline 7408 & 14 p & 7472 & \(29 p\) & 74150 & 173p \\
\hline 7410 & 14 p & 7473 & 29p & 74151 & 79p \\
\hline 7413 & \(28 p\) & 7474 & 29p & 74154 & 144p \\
\hline 7414 & 62p & 7475 & \(51 p\) & 74155 & 73p \\
\hline 7420 & 14 p & 7476 & 29p & 74157 & 66p \\
\hline 7427 & \(36 p\) & 7483 & 91p & 74159 & 200p \\
\hline 7430 & 14p & 7485 & 132p & 74164 & \(126 p\) \\
\hline 7432 & 28p & 7486 & \(40 p\) & 74174 & 110p \\
\hline 7437 & \(36 p\) & 7490 & 46p & 74179 & 120p \\
\hline 7438 & \(36 p\) & 7491 & 75p & 74180 & 120p \\
\hline 7440 & 15p & 7492 & 52p & 74190 & 188p \\
\hline 7442 & 65p & 7493 & 52p & 74191 & 158p \\
\hline 7445 & 88p & 7495 & 73p & 74192 & 120p \\
\hline 7446 & 88 p & 7496 & 85p & 74193 & 120p \\
\hline
\end{tabular}

C-MOS
\begin{tabular}{rrrrrr}
4000 & \(18 p\) & 4018 & \(84 p\) & 4054 & \(100 p\) \\
4001 & \(18 p\) & 4022 & \(90 p\) & 4055 & \(110 p\) \\
4002 & \(18 p\) & 4023 & \(18 p\) & 4060 & \(96 p\) \\
4007 & \(18 p\) & 4024 & \(64 p\) & 4071 & \(18 p\) \\
4011 & \(18 p\) & 4027 & \(48 p\) & 4081 & \(18 p\) \\
4012 & \(48 p\) & 4028 & \(78 p\) & 410 & \(132 p\) \\
4013 & \(48 p\) & 4040 & \(110 p\) & 4511 & \(212 p\) \\
4016 & \(48 p\) & 4047 & \(78 p\) & 4528 & \(124 p\) \\
4017 & \(84 p\) & 4049 & \(48 p\) & 4588 & \(256 p\)
\end{tabular}

LINEAR \& MUSICIC
741 25p. MC3302 Quad comp 120p. 555 40p. 710 dift comp (TO99) 40p. 556 100 p .7105 LED digit driver 8 for E 1 LM380 100p. ZNN1034E Precision timer £2.25. M301 30p.SLD21 28 Dual 128 bis static shift register £1,50.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{TRANSISTORS} \\
\hline AC127 & 18p & & BC548 & 10p & BRY56 & 40p \\
\hline AC128 & 18p & & 8 C 549 & \(11 p\) & 0CP71 & 1.20 \\
\hline AC176 & 18p & & \(8 \mathrm{CY70}\) & 15p & tip 414 & 56p \\
\hline AC187 & 20p & & 8СY71 & 15p & TIP42A & 66p \\
\hline AD149 & 70p & & 8 8¢72 & 14p & TIP2955 & 86p \\
\hline 20161 & 40p & & 80131 & 38p & TIP3055 & 425 \\
\hline A0162 & 40 p & & B0132 & \(40 p\) & TIS43 & \(35 p\) \\
\hline AF279 & \(75 p\) & & 80133 & \(48 p\) & 2 N 2646 & 60, \\
\hline 8C107 & 12p & & B0137 & 40p & 2N2905 & 21p \\
\hline 8 CL 108 & 10p & & 80138 & 40p & 2N2926 & 12p \\
\hline BC108C & 12p & & 80139 & 42p & 2,3053 & 28p \\
\hline 8 8.109 & 12p & & 80140 & 44 p & 2N3054 & 52 \\
\hline 8C109C & 15p & & 8 FF 173 & 20 p & 2N3055 & 50p \\
\hline 8C147 & 10p & & \({ }^{8 F 181}\) & 30 p & 2N3442 & 1.30 \\
\hline BC148 & 10p & & \({ }^{8} \mathrm{~F} 194\) & \(10 p\) & 2H3702 & 10p \\
\hline \(8 \mathrm{CC149}\) & 10p & & BF 195 & 10p & 2N3703 & 10p \\
\hline BC157 & 10p & & \({ }^{\text {BF }} 196\) & 10p & 2N3704 & 10p \\
\hline BC158 & 10p & & BF197 & 12p & 2N3705 & 10p \\
\hline BC1B2 & 12p & & BFR39 & 24p & 2N3706 & 10p \\
\hline BC183 & 12p & & BFR79 & 26p & 2N3708 & 10p \\
\hline BC184 & 12p & & BFX 29 & 22p & 2 N 3710 & 10p \\
\hline BC212 & 14p & & BFX48 & 32p & 2N3819 & 28p \\
\hline BC213 & 14p & & BFX84 & 22p & 2N3904 & 15p \\
\hline 8C214 & 14p & & BFXB8 & 22p & 2N3906 & \(15 p\) \\
\hline 8C441 & 32p & & 8 FY 50 & 18p & \(2 \mathrm{H6027}\) & 550 \\
\hline 8C461 & 32p & & BFY51 & 18p & 2 N 6028 & 600 \\
\hline 8C547 & 10 p & & BFY52 BRY39 & \[
\begin{aligned}
& 18 p \\
& 40 p
\end{aligned}
\] & 40673 & 60p \\
\hline \multicolumn{7}{|l|}{VOLTAGE} \\
\hline \multicolumn{7}{|l|}{REGULATORS} \\
\hline 78.12 & & 1092 & 12 V & & 150 mA & 75p \\
\hline 723 & & 14 dil & 2.37 y & & 150 mA & 50p \\
\hline MC1469R & & 1066 & 21/2-37 & & \(500 \mathrm{~mA} \quad 15\) & 150p \\
\hline 78MO5 & & 105 & 5 V & & 500 mA & 85p \\
\hline 78 M 12 & & T05 & 12 V & & 500 mA & 85p \\
\hline 1405 & & TOI26 & 5 V & & 600 mA & 85p \\
\hline 1412 & & 10126 & 12V & & 500 mA & 95p \\
\hline 7715 & & 10220 & 15V & & 750 ma & 120p \\
\hline 7805 & & 10220 & 5 V & & 14.1 & 150p \\
\hline 7812 & & T0220 & 12V & & \(1 \mathrm{~A} \quad 1\) & 150p \\
\hline (m309K & & 103 & 5 V & & \(1.2 \mathrm{~A} \quad 1\) & 150p \\
\hline LM323 & & T03 & 5 V & & 3 A 兂 & 650p \\
\hline \multicolumn{7}{|l|}{SCRs} \\
\hline 0.8A & & gov & & T092 & 35p & \\
\hline 14 & & 400 V & & 105 & 60 p & \\
\hline 4A & & 2004 & & 10220 & 52p & \\
\hline 41 & & 4004 & & T0220 & 70p & \\
\hline 64 & & 200\% & & \(\underline{0220}\) & 56p & \\
\hline 6A & & 400 V & & T0220 & 75p & \\
\hline 64 & & 400 y & & T066 & 80 p & \\
\hline 10 A & & 100\% & & T0220 & 82 p & \\
\hline 100 & & 200 V & & 10220 & 87p & \\
\hline 10A & & 400 N & & 10220 & 120 p & \\
\hline 10 A & & 600 V & & T0220 & 148p & \\
\hline \multicolumn{7}{|l|}{Triacs} \\
\hline 6 6 & & 400 V & & T0220 & 98 p & \\
\hline BA & & 600 V & & T0220 & 135p & \\
\hline 15A & & 2004 & & Stuid & 135p & \\
\hline 15A & & 400V & & Stud & \(220 p\) & \\
\hline \multicolumn{7}{|c|}{SOLAR CELLS} \\
\hline
\end{tabular}

These silicon chips size \(19 \times 6.5 \mathrm{~mm}\) will give \(50 \mu \mathrm{~A} @ 1 / 2 \mathrm{~V}\) in sunlight, and can be banked
 powering small CMOS projects, etc

S-DECS 8. T-DECS
S-DEC Breadboard 225p

\section*{POWER PACK}

Woodgrained metal case, \(90 \times 80 \times 75 \mathrm{~mm}\) containing mains transformer giving 6 V @ \(11 / 4\) fuseholder R's C's. etc Onily \(75 p\).

SOLDERING IRONS
Antex model C -15 W
Our bestseller at \(£ 3.50\)
Our bestseller at \(£ 3.50\)
Antex model CCN -15 W element with Antex model CCN - 15 W element
ceramic shaft. Very low leakage. \(\mathbf{£ 3 . 9 0}\) Antex MLX12. This is a 12 V iron, ideal for car and boat use 25 W rating. Comes booklet "How to solder" and strong PVC carrying case \(£ 4.29\)

\section*{DARLINGTON COMP PAIR}

What an offer!! BD695A + BD696A PNP NPN complimentary pair. Just look at the packed into a TO220 case. The pair for E1.50
EDGE CONNECTORS
High quality 0.1 pitch double sided, gold plated. Selling at less than \(1 / 3\) their original plated
price
18 way
18 way 41p 21 way \(47 p\)
\(\begin{array}{lllr}32 \text { way } & 72 \mathrm{p} & 40 \text { way } & 90 \mathrm{p} \\ 43 \text { way } & 97 p & 49 \text { way } & \text { 111p }\end{array}\)
available for bona fide traders. Surplus components always wanted.
Lond retail Shops at 21 Deptford Broadway. London, SE8 (01-692 2009) and 38 Lower Addiscombe Road, Croydon (01
6882950) stock 6882950) stock some of the advertised goods for personal callers only. Fing them
for details.

ETI MASTERMIND
As featured in this issue. All parts available from us separately, or buy the complete kit of
components including the case and P,CB for only \(£ 20.50\) inc. VAT and post.

ETI TORCHFINDER
All parts for this project inc. PCB and torch
for only \(£ \mathbf{2}\) inc. posi and VAT

COMING SOON
Look out for details of the GREENWELD 100W amplifier kit
and an IC amplifier kit
SPECIALTRANSISTOR
PN 108 (BC108)

PN 109 (BC 109)
PN70 (BCY70)
PN 71 (8CY71)
PN72 (BCY72)
18 for E 1

PN72 (BCY72)
MSPS 1218
14 for 14
\(\begin{array}{ll}\text { MSPS } 1218(2 \mathrm{~N} 3702) & \mathbf{1 5} \text { for } \mathbf{£ 1} \\ \text { for } \mathbf{\varepsilon 1}\end{array}\)
CLOCK CHIPS
MK50253N £3.95. AY-5-1202 £2.25

POWER SUPPLY UNIT

A102 standard mains input. Outputs 3, 6 \(71 / 2\), or 9 V DC@ 400 mA max. 3 switches on/off, polarity reversing and voltage change Regulated to supply exact marked voltage from no load up to full current. Siz
\(127 \times 76 \times 57 \mathrm{~mm}\). Price \(\$ 5.95\)

\section*{1977/8 CATALOGUE}

48 BIG pages packed with over 4,000 items, many of them illustrated. Discount vouchers worth \(50 p\). PRICE 30p + 15 p post. (Overseas send 60 p surface or \(£ 1\)
airmail.) Also included is our current Bargain airmail.) Also included is our current Bargai List. Send SAE for bargain list alone

\section*{SIRENS}

Use in cars. houses, anywhere that a powerful noise will frighten off would-be intruders. Uses 4 HP7 batts. Overall size
\(100 \times 72 \times 60 \mathrm{~mm}\). Only \(£ 1.70\).

\section*{COMPONENT PACKS}

200 miniature resistors, \(1 / a, 1 / 4,1 / 2 \mathrm{~W}\) \& 1.00 400 assorted resistors, 1/6, 1/2. 1W £1.30 200 poly. mica, ceramic capacitors \(£ 1.20\) 200 electrolytics, but many unmarked
\(\mathbf{E 1 . 0 0}\) 100 M
100 Mullard C280 polyesters. 0.01-1uF € 1.00
150 wirewound resistors, \(2-10 \mathrm{~W}\) £ 1.60 200 PC resistors. \(1 / 4\) and \(1 / 2 \mathrm{~W} 60 \mathrm{p}\) 20 asstd pots, inc. sliders \(£ 1.70\) power devices. About \(75 \%\) usable E 1.35

COMPUTER PANELS
A dozen boards with top grade components transistors, inc power types, zeners Hundreds of parts for just \(\mathbf{E} \mathbf{2 . 7 5}\).
P.C. ETCHING KIT Mk III This latest version of this popular kit now
contains 200 sq . ins copper clad board, 2 miniature drill bits, 1 lt . ferric chloride, Dalo etch-resist pen, abrasive cleaner, etching dish and full instructions.

\title{
Automatic Nicad Charger
}
P. Reynolds
'The problem of ensuring that expensive Nicad cells are not damaged in the recharging process is twofold. First, as the cells have a low internal resistance, they are susceptible to damage by excessive charging currents Second, damage will also occur if the charging process is carried out for too long a period.

The first problem may be overcome by charging at a constant current. The second problem may be overcome by the use of an automatic sensing comparator circuit, which compares the voltage from the cells with a preset voltage, related to the fully charged value. In practical terms, the circuit appears as shown in Fig 1. A red LED supplies the voltage drop to ensure that Q 1 passes a constant current of about 25 mA to the
cells under charge. This charging current may be adjusted, if desired, by changing the value of R1. The 555 runs in the astable mode. However, the duty cycle is adjusted to be less than \(50 \%\), by incorporating a diode and resistor in parallel with R2. How this is accomplished may be easily. understood if one remembers that charging of the capacitor takes place through these paralleled components, whereas, due to the blocking diode, discharging current only flows through R2. The 'off' time is around 15 mins. and the 'on' time less than 0.5 s . The relay coil, RLB, thus receives a positive pulse of short duration every 15 mins. Contact RLB1 opens, disconnecting the charging supply and contact RLB2 closes. A sample of the total voltage across R3 and R4 is applied to the variable
input of the 710 comparator. This input voltage is compared to the preset reference voltage and if found to be greater, the output will drop to \(-0 \vee 5\) (from \(+3 \vee 2\)). The inverting action of Q2 causes the gate of the thyrister to undergo a positive transition, via*R5. The gate causes the device to conduct, causing the contacts RLA 1 \& 2 to open and disconnect the supply from the rest of the circuitry. The green LED is illuminated, indicating the termination of the charging period

This circuit may be used to charge a total of six 1 V 5 cells. Of course \(\mathrm{V}_{\text {rei }}\) may need adjustment so as to be commensurate with the voltage across R4. A manual \(r\) verride switch' is also provided.

\section*{TWO NEW SUPERMODULES 170W INTO 4 OR 8 OHMS}

By popular demand we have designed higher powered versions of our well known modules. The CE 1704 which gives 170 W into 4 ohms and the CE 1708 which gives 170W into 8 ohms are physically similar to the originak CRIMSON amplification combination of compatible performance eatures choice if you have an ear for music. We audibly superior to the compertion and supplies which again use our superb TOROIDAL TRANSFORMERS, only 50 mm high, with a \(120-240\) primary and single bolt fixing
Write of phone for more information and biased opinions.
\begin{tabular}{|c|c|c|c|c|}
\hline & Home & Europe & т \({ }^{\text {\% O. }}\) & Typicaly \(<.02 \%\) \\
\hline \begin{tabular}{l}
POWER AMPLIFIER MODULES \\
CE 608 50w/8 ohms \(35-0-35 y\)
\end{tabular} & 116.30 & £16.60 & & any power. Ikhz. 8 ohms \\
\hline CE \(1004100 \mathrm{~W} / 4\) ohms \(35-0-35 \mathrm{y}\) & \(\underline{19.22}\) & £19.30 & & - Insignificanal \\
\hline CE \(1008100 \mathrm{~W} / 8 \mathrm{dhms} 45-0-45 \mathrm{Y}\) & £23.22 & £23.00 & Slew fata limit & 204/4S \\
\hline CE 1704 170W/4 ohms 45-0.45V & £29.12 & £28.46 & S/M Aatio & - 11048 \\
\hline CE \(1708170 \mathrm{~W} / 8\) Ohms 60-0-604 & £31.90 & [31.04 & Freq. Response & : \(10 \mathrm{~Hz}-35 \mathrm{kHz}\) \\
\hline TOROIDAL POWER SUPPLIES
CPS 1 Ior \(2 \times\) CE 608 OR \(1 \times\) CE 1004 & £14.47 & £18.40 & & Unconditional \\
\hline CPS 1 tor \(2 \times\) CE 608 or \(1 \times\) CE 1004
CPS 2 lor \(2 \times\) CE \(10042 / 4 \times\) CE 608 & £16.82 & ¢20.57 & Prosection & - Drives any load \\
\hline (T) & £17.66 & £21.35 & & salely \\
\hline CPS 4 lor \(1 \times\) CE 1008 . & £15.31 & [19.18 & Sensitivity & \(: 775 \mathrm{mV}\) \{250mY or \\
\hline CPS 5 lor \(1 \times\) CE 1708 & £22.68 & £26.50 & & 100 mV on Requesil] \\
\hline CPS 6 tor \(2 \times\) CE 1704 or \(2 \times\) CE 1708 & E23.98 & £27.70 & Size & \(120 \times 80 \times 25 \mathrm{~mm}\) \\
\hline HEATSINKS & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{CRIMSON}} \\
\hline Light Duty \(50 \mathrm{~mm} 2^{\circ} \mathrm{C} / \mathrm{W}\) & \(\underline{10.90}\) & ¢1.30 & & \\
\hline Medium Power \(100 \mathrm{~mm} 1.4^{\circ} \mathrm{C} / \mathrm{W}\) & \(£ 1.60\) & ¢2.40 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{ELEKTR1K}} \\
\hline Disco/Group 150mm \(1.1^{\circ} \mathrm{C} / \mathrm{W}\) & £2.30 & £3.65 & & \\
\hline THERMAL CUT-OUTS & & & \multicolumn{2}{|l|}{\multirow[t]{4}{*}{Please nota our new address and telephone number: Stamlorí House. Stamlord Street, 'Leicester LE1 6NL. Telephona \(\{0533\} 537722\)}} \\
\hline Recommended lor improved reliability & & & & \\
\hline 70 C for use with irse air heatsink & £1.60 & £1.90 & & \\
\hline \(40^{\circ} \mathrm{C}\) for us8 with fan cooled healsink & 11.60 & £1.90 & & \\
\hline
\end{tabular}

Home prices include V.A.I. and postage. C.O.D. 90 p extra, \(£ 100\) limit. Expor no problem. European prices include carriage, insurance and handling, payment in Sterling by bank draft, P.O., International Giro or Money Order. Outside Europe, please write for specific quote by return. Send SAE or two International Reply Couponsir fin 20 p

\section*{ELEGTROVALIE}

All the many types of components we supply are ARAND NEW and
manufacturers direct or approved suppliers. No surplus, no seconds.
CMOS - buffered and protected (BE)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & 23p & 4015 & 1.14 & 4027 & 60p & 4069 & 300 \\
\hline 4001 & 23 2 & 4016 & 51 p & 4028 & 95p & 4070 & 50p \\
\hline 4002 & 23p & 4017 & 1.14 & 4029 & 1.23 & 4071 & 269 \\
\hline 4006 & 1.14 & 4018 & 1.32 & 4030 & 51p & 4072 & \({ }^{28 p}\) \\
\hline 4007 & \({ }^{23 p}\) & 4019 & 62p & 4041 & \({ }^{84 p}\) & 4082 & 26 p \\
\hline 4008 & 99p & 4020 & 1.32 & 4042 & \(96 p\)
1.00 & 4510 & 1.42 \\
\hline 4009
4010 & 62 p
62 p & 4021
4022 & 1.14
1.13 & 4043
4044 & \({ }^{1.00}\) & 4514 & 1.50 \\
\hline 4011 & \({ }_{23 \mathrm{p}}\) & 4023 & 23p & 4046 & 1.40 & 4516 & 1.44 \\
\hline 4012 & 23p & 4024 & 1.04 & 4049 & 54, & 4518
4520 & 1.26
1.26 \\
\hline 4013 & \(51 p\) & 4025 & 23p & 4050 & 53p & 4520 & 1.26 \\
\hline 4014 & 1.07 & 4026 & 1.75 & 4060 & & & \\
\hline
\end{tabular}

Cash with order \(\{P .0\) or cheque payable 10 Electrovalu
TRAOE AND INDUSTRIAL ENOUIRIES INVITED
THADE AND INOUSTIAL NGUIRIGIN IT ELOM ELECTROVALUE

\section*{ELECTROIALIE LTD}

Dept. ETI.5. 28 Judes Rd., Englefield Green, Egham, Surrey TW20 OHB.

Phone Egham 3603: Telex 264475. Northern Branch (Personal shoppers only), 680 Burnage Lane Burnage, Manchester M19 1NA

Phone (061)4324945

\section*{NASCOM 1 Microcomputer for the Hobbyist}

\section*{THE ONLY COMPLETE MICROCOMPUTER AVAILABLE TO THE HOME CONSTRUCTOR FEATURES:}
* Supplied in Kit Form for Self-Assembly
* Full documentation supplied
* Includes Printed Circuit Board
* Full Keyboard included
* Interfaces to Keyboard. Cassette Recorder \& T.V
- \(2 \mathrm{~K} \times 8\) RAM
* \(1 \mathrm{~K} \times 8\) Eprom Monitor Program
* Powerful 280 CPU, Mostek
* 16 line \(\times 48\) Character Display Interface to standard, unmodifed
T.V. set
\(\star\) On board expansion to \(2 \mathrm{~K} \times 8\) Eprom
* On Board Expansion Facility for Additional 16 Lines I/O
* Total expansion to 256 Input Ports and 256 Output Ports

\section*{SOFTWARE FEATURES}
* \(1 \mathrm{~K} \times 8\) Nasbug Program in Eprom
* Provides 8 Basic Operator Commands including single step
* Expandable Software System via additional user Programs in

Ram of Eprom

Manuals
Separately
\(£ 3.50\)
Complete Kits
NOW IN STOCK
£197.50

After sales service available
Sole Appointed London Stockists

\section*{the DYNamiC duo}

The C15/15 is a unique Power Amplifier providing Stereo 15 watts per channel or 30 watts Mono and can be used with any car radio / tape urit. It is simply wired in series with the existing speaking leads and in conjunction with our speakers S 15 produces a system of incredible performance
A novel feature is that the amplifier is automatically switched on or off by sensing the power line of the radio/tape unit, hence alleviating the need for an on / off switch
The amplifier is sealed into an integral heatsink and is terminated by screw connectors making installation a very easy process
The S 15 has been specially designed for car use and produces performance equal to domestic speakers yet retaining high power handling and compact size

\section*{c15/15}

15 watts per channel into \(4 \Omega\)
Distortion \(0.2 \%\) at 1 kHz at 15 watts
Frequency Response \(50 \mathrm{~Hz}-30 \mathrm{kHz}\)
Input Impedance \(8 \Omega\) nominal
Input Sensitivity 2 volts R.M.S for 15 watts output Power Line 10-18 volts
Open and Short Circuit Protection
Thermal Protection
Size \(4 \times 4 \times 1\) inches
C15/15 Price £17.74 + £2.21 VAT P\&P free

\section*{Data on S15}

6" Diameter
\(5^{1 / 4^{\prime \prime}}\) Air Suspension
\(2^{\prime \prime}\) Active Tweeter
20 z Ceramic Magnet
15 watts R.M.S. Handling
\(50 \mathrm{~Hz}-15 \mathrm{kHz}\) Frequency Response
\(4 \Omega\) Impedance
S15 Price per pair \(£ 17.74+£ 2.21\) VAT P\&P free
tWO years guarantee on all of our PRODUCTS

\section*{Please supply}

Total Purchase Price
I enclose cheque \(\square\) Postal Order \(\square\) Money Order \(\square\) Please debit my Access Account \(\square\) Barclaycard Account \(\square\)
Account Number
Name \& Address
Signature

Become an Electronics Engineer or a Technical Engineer. At PNL we offer two interesting, full-time courses.

\section*{B.Sc. in \\ Electronic and Communications Engineering}

Two " \(A\) " levels, usually Maths and Physics could qualify you for this three-year full-time degree. Specialise in Acoustics. Digital
Electronics and / or Radar and Microwaves in the final year

\section*{Technician \\ Engineer Certificate}

Three "O' levels, usually Maths, Physics and English, are the entry requirements for this two year full-time certificate, specialising in
Computer Engineering, Sound Studio
Engineering and Radar Microwaves

Details from: Secretary, DECE, PNL, Holloway Road, London N7 8DB

The Polytechnic of North London

\section*{Greenbank Electronics}

for erasing EPRoms

LINES FROM OUR VAST STOCK Plase add manl 35 p per ordor
THESE ARE AIL SPFCIAL OFEERS BELOW MANUFACTURERS
GUARANTEED EXPORT ENQUIRIES INVITED ON ALL ITEMS
TANK BATTLE TV GAME. Basic Kit as specified, May edition of ETI £27.50. Complete Kit including power unit and case. Nothing else to buy, \(\mathbf{£ 3 7 . 9 0}\) incl VAT. Post paid. Sole appointed London stockisis of Teleplay TV Games.
STUNT RIDER GAME, £28.50 incl. VAT. Complete kit including power supply and case. No extras.
Six burion selectar switch with bult.in 10 够 pats. Self cancelling butions. Ideal tor use with varicap
BOWMAR 9 digit celculetor diepley with \(P \mathrm{C}\). connecior \(0.2^{\text {N }}\) digrts, common cathode with red bexel £ 1.25. 10 lor \(£ 10\). 100 for \(\mathbf{E 9 0}\).
TEXAS 19 gold platad snap key contacis on gald plated PC. Board - all kinds of uselúl applications. Size
\(70 \times 80 \times 2 \mathrm{~mm}\) high. \(\mathbf{6 5 p}\). 10 ior \(\mathbf{E 5}\). 100 for \(\mathbf{£ 4 0}\). SMOR
OSMOR change-over roed reliny with 12 V copl. Approx 20 mA operating current \(59 \times 17 \times 13 \mathrm{~mm} 75 \mathrm{p}\).

10 tor \(£ 8\).
Clocking oncillator PYE DYNAMICS thick film 1 MHz 5 V supply \(19 \times 25 \times 6 \mathrm{~mm} 85\) p. 10 for \(£ 7\).
FAIRCHILD FNO \(10015^{\prime \prime} 7\) segment display Common Cathorde 50p. 10 for \(\mathbf{£ 4 . 5 0 .} 100\) for \(\mathbf{E 3 0}\)
\(6+6\) WATT STEREO \(24 / 28 \mathrm{VB}\) ohm Indut \(50 / 60 \mathrm{M} / \mathrm{V}\) into 500 K Tone Controls on P/C £4.95. Size
T/RF LONG-MEDIUM \& F

\section*{HIS OUALIIY AMPLIFIF R E10.95 WITM CIRCUIT
POWEA UNIT KIT FOR ABOVE MODELS \(25 / 28\) VOLTS \(\mathbf{2} 2.95\)}

Built 5 watt power amplifier Gould-Advance. 4.8 ohrns output. up to 24 V supply, 500 mV into 2 K
HONEVWELL Proximity Detector Integral Amplitier BV DC \(£ 2.50\) en. 10 for \(£ 22\)
SMITHS INOUSTRIES AUDIBLE TRANSISTORISED WARNING OEVICE \(6-1.2\) volts. SIze \(30 \mathrm{~mm} \times\) 10 mm Polarised. 50 p en. 10 for \(\mathbf{C 4} .100\) for \(£ 35\).
SUPPLY PANEL contaning 6 high qualty \(0.1 \mu \mathrm{~F} \quad 10 \% \quad 1 \mathrm{KV}\) poly capacitors. \(102 \times 19 \times 75 \mathrm{~mm} \quad 10\) tor
ALMA pushbutton roed switches, push to make. Hight reliability \(18 \times 27 \times 18 \mathrm{~mm} 35 \mathrm{p}\). 25 for \(£ 7.100\) for \(£ 25\). 1000 for \(£ 225\).

C. Audio Power by TOSHIBA 35 WATT module. 8 ohms \(0 / \mathrm{p} 200 \mathrm{mV}\) into 47 K for tull output. \(0.3 \%\)
distortion (max) 60 V power supply required E 8.50 . 10 for \(£ 75\). \(\mathbf{1 0 . 7 M H z}\) crvetal filtera. Supe \(35 \times 25 \times 20 \mathrm{~mm} 25 \mathrm{KHz}\) band width for NBFM E7. 10 tor \(\mathbf{E 6 0}\) TEXAS \(4+5\) Digit \(C\). Cathode Display with 16 pin DIL Base \(0.2^{\prime \prime}\) digts
\(21 / 2^{\circ \prime \prime} 40\) ohm apesker \(\mathbf{2 5 0} \mathbf{~ M}\). Watt - ideal lor that small space. 75 p . 10 for \(\mathbf{E 6} .100\) tor \(\mathbf{~} \mathbf{5 0} 0\) 3 DIGIT 7 SEGMENT DISPLAYS. C cathode pack of 2 with data (segments are missing) 60ppack. TBA 1204 75p. 10 for \(£ 7\). 100 for \(£ 55\). TBA 120S. \(\mathbf{7 5 p}\). 10 for \(£ 7\). 100 for \(£ 55\).
SOLDER al half price 5 packs of 2 meltes. 18 gauge Servicol \(£ 1,20.20\) packs \(£ 10\). SOLDER al half price 5 packs of 2 metres. 18 gauge Servicol \(£ 1.20 .20\) packs \(£ 10\).
AVO meter movements for a mhtiary version of tha Avo 8 . Precision 37.5 micro Amp \((50 \mu\) A with integral shunt) movement Electronic voltmeter circuit avaitable on tequest \(\mathbf{E 8 . 5 0}\)
 VITALITY 12V 0.15 amp. MES Bulbe. 100 ler E5. 1.000 for \(\mathbf{£ 4 0}\). BECKMAN 500 KH \& triggerable clockin
\(25 \times 10 \times 12 \mathrm{~mm}\) \&1. 10 for \(\mathbf{E 8} 100\) for \(£ 65\).

FT 243 cryatal packa. 10 crystals of mixed frequencies between 5800 and 8500 KHz . Our choice of trequencies) Ideal lor re-grinding
E1.50 per pack. 10 packs \(£ 10.100\) packs F 85
Ditto. \(10 \times\) packs of \(10 \mathrm{crystals} 250 \mathrm{kc} / \mathrm{s}-50 \mathrm{mc} / \mathrm{s}\). £1 pack. 12 packs £10. 100 packs \(£ 70\)
Colculator chip CT 500212 digit four lunctions lor comman cathode multiplex displays ONLY 1.95
complete with cricuit.

MULLARD TUNER MODULES with dala
 MINIATURE ORP 12 位quvalent = RPY30) 2 lor £
SEVEN DIGIT MINIATURE COUNTER by Durant 12.24 volts D.C

RAORO All mail to: Henry's Rad: 404 Edgware Rd, London W2

ELECTRONICS TODAY INTERNATIONAL - JUNE 1978

\section*{HERE IS THE NEWS}

One of the major problems confronting today's electronics designer/enthusiast is the incessant stream of new types of ICs and components. So, where radio is concerned, our new catalogue is a revelation to the circuit user. The pew Ambit catalogue contains all that is new and worthwhile, plus feature articles describing applications work, providing ideas and suggestions - and some radio theory basics. like tuned circuits and impedance matching - that cut through the flannel to give you essential practical details to help you with your own design work. We also invite customers/readers to submit their own features for our radio magazine supplement on modern RF circuitry and techniques.

\section*{Featured in our catalogue/magazine supplement}

CA3189E The new RCA FM IF system described in detail, with an "ultimate hifi' applcation in our refernce series FM IF unit based on linear phase filters
ULN2204/ The new AM/FM/Audio combination IC that has revolutionized portable
TDA 1803 radio design. 2 to 12 v voitage range 10.14 mA total standby.
TDA1062 LF/HF/VHF oscillator, balanced mixer, RF stage and pin diode agc drive - a HA11219 Impulse noise blanker for moblte and fixed radio/audio. It can even 'clean noisey signal otherwise inaudible! Destined for a big future.
SGS entry into the AM/FM radio IC battle with a promising approach that separates AM and FM Functions imo separate blocks
MA1023 Switched \(12 / 24\) hour 0.77" LED display alarm cllck module with no A The chances are that our catalogue will be the first place many of you will see these new products. Backed with our extensive R\&D, we aim to provide a regular summary of new products in the radio and associated fields of elec tronics - and we invite all submissions for consideration
In the theory section this issue:
Tuned circuit impedances and matching - tracking and bandspread - a novel approach to 100 kHz to 30 MHz continuously tuned radio - and the discriminating metal locator, save your money before you buy one, and see how they're made!
In a world of electronics that constantly expands and diversifies into an increasing number of specialities, we offer you a refuge where we stick \(t 0\) one main theme, and
keep you informed to a standard not possible in publications without direct every-day keep you informed to a standard not possible in publications
involvement in project research. development and evaluation.

Much of the satisfaction in our new approach to specialized features, is the fact that you will also be able to obtain all the necessary parts for your circuit from us, at prices th TOKO coils and filters A bigger than ever range of IFs for \(455-470 \mathrm{kHz}\), A.O. 11 MHz in 7 mm \& 10 mm sutàre styles Now
including \(T V\) video and sound IFs. from \(30-33 \mathrm{p}\). Coils for Shortwave, coils for VHF, coils for MFL455 2.4 kHz SSB filter \(\begin{array}{lll}\text { CFM2 miniature mechanical tilter } & 9.95 \\ 0.65\end{array}\) LFY455 4element ladder filter
CFSE 107 ceramic FM IF filter
 \(\begin{array}{ll}\text { BBR3125 } & \text { 4pole linear phase FM } \\ \text { BLR3107N } \\ \text { 19/38kHz stereo finter }\end{array}\) \(\begin{array}{ll}\text { Ratio discriminators for } 10.7 \mathrm{MHz} & 0.90 \\ \text { Ratio discriminators for } 455.470 \mathrm{kHz} & 0.66\end{array}\) OEMs: We have the most unique stock of RF signal coils ichokes in the world and o
full custom part service for "specials" TOKO chokes
7Ba 1.1000 uH 16 p one-olf
8RE \(100 \mathrm{uH}-33 \mathrm{mH}: 19 \mathrm{p}\) one-of
TORB \(4.7-120 \mathrm{mH}\) : 33 p one off
Also tuneable high value inductors, with over
\(50 \%\) adjustment ranges fiom nom, values
TOKO tunerheads
EC3302 premium fet/vaucas
 Reference series tuner modules for F
As well as ald those previously advertized. EF5803 3 MOSFET verr high gain low nonse
88.1086 stage varican tune wor 88.1086 stage varican tuner with arnpltited /hutfered oscillator output
Soectrum analyzer aligned \(\quad 1975\)
\(3 \times 6\) pole I \(F\) folters. 2 AGC MOSFET \(3 \times 6\) pole IF folters, 2 AGC MOS
IF preamos. CABi 189 E All tuner
functions afc, mute, meters

\title{
PICK-A-PACK AT 50p per lb.
}

LARGER VOLUME OF NEW COMPONENTS YOU CAN'T AFFORD TO MISS
\begin{tabular}{|c|c|c|c|}
\hline MARCONI VALVE & \(\star\) I.C. BOARD PÄCK 50 1.C.s and other useful components for \(£ 1\) P\&P 75 p & \begin{tabular}{l}
EX-MINISTRY \\
MARCONI 0-6 WATTS
\end{tabular} & \begin{tabular}{l}
ITT-CREED \\
Punches and Prints on \(7 / 8^{\prime \prime}\) paper
\end{tabular} \\
\hline TF428B NOW \(£ 12.50\) ea. & TRIPODS WITH PAN AND TILT HEAD will take 561b load \(£ 22.50\) & Multi Range. Multi Impedance POWER METERS. £25 each & Complete with Power Supply Solid State. Size \(15 \times 113 / 4 \times 22^{\prime \prime}\) deep \(£ 18\) each. \\
\hline
\end{tabular}

DON'T MISS
THE TELEFUNKEN D14-131
REPLACEMENT TUBES FOR SOLARTRON (SCHLUMBERGER) CD1740

\section*{COSSOR CDU 150}
S.E. LABS SM112 and the GEC/MOV 1474 TUBE
These tubes were fitted in
removed on the authority of the British Ministry because the but were of British manufacture. They are warranted by us as being of as new condition.

\section*{PRICE £55 EA. P\&P £2.75}

AISO BRAND NEW TUBES FOR THE FOLLOWING

\section*{TELEQUIPMENT}

S52 at £10 ea;
D51 at £ 15 ea;
D53A at \(£ 20\) ea;
S42 at £10 ea;
D5 5 at £ 15 ea;
S31 at \(£ 10\) ea:
BRADLEY 200 at \(£ 85\) ea ADVANCE OS 3000 at \(£ 85\) ea

\section*{AND MULLARD \& BRIMAR OSCILLOSCOPE TUBES}

BRAND NEW-BOXED-ALL RECTANGULAR

D \(13-46 \mathrm{GM}\) P7 \(£ 35\) ea.
D \(13-51 \mathrm{GH}\) Green \(\mathbf{£ 6 5}\) ea
D \(10-210 \mathrm{GH} / 32\) £40 ea.
GEC type 14968 e75 ea Carriage all types \(\mathbf{£ 2 . 7 5}\)

\section*{TRANSISTORS/DIODES/ RECTIFIERS, ETC.}

At 5 p
BC147: 2N3707; BC172B; BC261: BC251B; BC348B; BC171A/B BC413, D10: BC182: BC212. BAX13: 1N937. BA102BE, BZX83. TIS61; 2N5040
At 10p each BFX85; iN4733A; SN7451N; BYX10-1; 5KVO 36A: TIP 30 - 20p ea. TIP \(34 \mathrm{~A}-50\) p ea 30538 - 40p ea Heavy Duty Bridge Rectifier - 20p ea TBA810S - 75p ea CA3123E-£1 ea BDY55-£1 ea TIP31B-12p ea. \(2 N 3055-40\) p ea
2N5879 with 2 N 5881 Motorola 150 W Comp, pair \(£ 2\) ea
BD535; BD538 Comp pair - 75p pr
BYZ10 10p ea. TBA560CO \(£ 2\) ea 1 N 4436 T -T03 Flat mount 10A
\(200 \mathrm{piv} £ 1\) ea
200piv E1 ea
\#Linear Amp \(709-25 p\) ea
High Speed Voltage Comparator \(710-15 p\) ea
P\&P Extra on all items
Finned heat sink - single TO3 - size \(43 / 4\) in \(\times 3 i n \times 1 / 4\) in 50 p ea. P\& P
75p
Texas Bridge Rectifier 5SB05-50V 5A. 60p ea. P\&P 20p
*POT PACK. All Brand New Modern Single and Ganged. Our choice. 7 for 25p. P\& 48 p .
Ex-Ministr
E1 120 each.
SOLARTRON CD 1212 SB \(40 \mathrm{meg} £ 100\). DB 24 meg twice \(\mathbf{E} 135\)
Many other types availabe
MARCONI SIGNAL GENERATORS. Freq. range 90.470 MHZ Type TF801 B3/S \(£ 160\) each
MARCONI TFI42F DISTORTION FACTOR METER giving percentage distortion on a directly calibrated dial and includes any spurious components up to 30 kHz £ 29.50 each
MARCONI PORTABLE FREQUENCY METER TF 1026/11 100 to 160 MHZ Very fine condition \(£ 25\)
TF \(1026 / 4 \mathrm{M} 2.4 \mathrm{GHZ}\) E35 each

\section*{PHOTOMULTIPLIER TyP} 75p. Other types available
\(\star\) POTENTIOMETERS
*POTENTIOMETERS - All \(5 p\) ea P\&\& extra.
Metal bodies \(A B\) Linear PCB Meral bodies AB Linear. PCB Mount, brand na
250 K ganged. 100 K ganged concentric shats *BEEHIVE TRIMMERS 3 30 *BEERIVE TRIMMERS 3 30pt, Brand New 10
off 40p. P\&P 15p 100 off \(£ 3.50\). P\& 750500 off off 40p. P\&P 15 p 100 off \(£ 3.50\). P\&P 75p 500 off
E15. P\&P \(£ 1.25,1.000\) off \(£ 25\). P\&P \(£ 150\) LARGE RANGE OF ELECTROSTATIC VOLT METERS. From \(0-300 \mathrm{~V} 2^{\prime \prime} £ 3\), to 20 KV Max General guide \(5 \mathrm{KV} 31 / 2^{\prime \prime}\) £5. Thereafter \(£ 1\) per KV. P\&P 750
DON'TFORGET YOUR MANUALS. S.A.E. with requirements
Many EHT Transformers and EHT Capacitors
available
EX-DYN
3OV Input 6 KV Output Size \(2^{\prime \prime} \times\) IN \(^{\prime 2}\) 30Vmput 6 KV Output. Sire \(2^{\prime \prime} \times 41 / 2^{\prime \prime} \times 11 / 2^{\prime \prime}\).

\section*{MARCONI R.F. POWER METER}

Type TF 1152A/1 (CT419)
2 ranges 10 watts fsd and 25 watts fsd. 50 ohms E75 each

\section*{TELEPHONES. Post Office style 745. Black or} two-tone \(£ 6.50\) ea. Modern style 706. Black or two-tone grey \(£ 4.50\) ea. P\&P \(£ 1\) each. Old black Style £ 1.50 ea P\&P £1
HANDSETS
HANDSETS only 706 siyle £ 1.75 ea. Older style
£1. P\&P 75 p
TELEPHON
TELEPHONE EXCHANGES. E.g. 15 way automatic (exchange only) from \(£ 95\)
MODERN FANS \(43 / 4 \times 41 / 2 x-1 / 2\)
 PAPST Fan 240 V available at \(£ 750\) P 750 TUBES. All Brand New Boxed 7.50 ea. P\&P \(75 p\) Electrostatic deflection
Type GEC \(924 \mathrm{~F} 31 / 2\) dia (Replacement for
Telequipment D33 and Solartron 1016 scopes) £ 25 ea. P\&P E1. 50
Type GEC \(924 E 31 / 2\) dia. (Replacement for Solartron 1015 scope) £ \(17: 50\) ea. P\&P E E1 50 \(\$ 1000\) Feed thru Capacitors 10 for 30p. P\&P \(15 p\) HIVAC Miniature NEONS
App 60 V Brand New 10 off 20p. P\&P extra
GRATICULES \(12 \times 14 \mathrm{~cm}\) high quality plastic 15 p
Ea. P\&P \(10 p\)
MARCONIT
MARCONI TF 1041 B Valve Voltmeter \(£ 25\) ea PHILIPS Cassettes Model 2200 Piay ons \(£ 12\) ea P\&P £1.50
PROGRAMMABLE TIMER, 5 decade (Photography) \(£ 8\) ea

\section*{AVO VALVE TESTER}

Type CT 160 - The Suitcase £ 32.50 ea Carr \(£ 2.75\)

POWERFUL MINIATURE GERMAN 12 V REVERSIBLE MOTOR No load current 70 MA . excessive load 400 MA . dia 50p each P\&P 40p.

\section*{STEPPING MOTORS -} FAMOUS MANUFACTURE
Centre tapped coil \(750-0.750\) ohms. Can be driven
in a variety of ways. Approx size \(21 / 4\) dia \(\times 21 / 4\) in a variety of ways. Approx size \(21 / 4\) dia \(\times 21 / 1\)
fepth. Flang mount \(17 / \mathbf{l}^{\prime \prime}\) centres. \(1 / 4\) shaft. Jepth. Flang mount \(17 / 2\) centres. \(1 / 4\) shaft.
Manufacturers name removed upon their request. Data with each purchase

> VERY SPECIAL PRICE £ 3 ea p\&p £ 1

\section*{NOW - A VDU BOARD}

WITHOUT KEYBOARD AND NO DISPLAY A double-sided board with plated through holes \(121 / 3 \times 8\) (4 Eurocard size), 960 Characters in a \(40 \times 24\) line format 64 ASCII
characters. Flashing cursor 32 control functions available Adjustable bauld rate. Provision for a keyboard Serial input and output. Requires +5 V and -12 V and any modified television or video monitor. Board Supplied in kit form give a rock steady display Supplied in kit form (all components supplied) £95. P\& P \(£ 1.75\) Assembled and tested £125. P\& P £ 1.75

BURROUGHS 9 digit PANAPLEX numeric display 7 segment \(0.25^{\circ}\) digits with red bezel. £2.50 ea P\&P 30p. MINIATURE NIXIE TUBE type ITT 5870ST. Digit size 0.5". Wire ended. 50p each P\&P 20p.
CALCULATOR CHIP. GENERAL INSTRU MENTS type GIMT4 £ 1.60 ea. P\&iP 20p
TRANSFORMERS 115 V AC input. Secondary 30 V and \(2: 6 \mathrm{~V}\) 10VA. 50p ea. P\&P 50p
HONEYWELL SWITCH ASSEMBLY. Size \(11 / 2 \times\) \(5 / 8 \times 1\) deep. Blue plastic front. Push fit. Can be stacked side by side. 2 pole c/o. Black push/pull centre operation. Very smart. Could be P.C. Board mounted. 15p ea. P\&P 10p
21 WAY SELECTOR SWITCH. Single pole with reset coil 240 V AC coils. Additional switch contacts for auto reset etc. \(£ 3\) each. P\&P 75p
SNAIL BLOWER 110 V AC 500 MA . Brand new by Airflow Developments. Quiet and very good looking. \(£ 3.50\) ea. P\&P E1
POTTER \& BRUMFIELD \(18-48 \mathrm{~V}\) DC Relay. 3 pole c/o. Heavy Duty. 50p ea. P\&P 25p
MINIATURE KEYBOARD. Push contacts. Marked \(0-9\) and \(A-F\) and 3 user definable keys. \(£ 1.75\) ea. P\&P 35p
MULLARD CORE LA4245 at 15p ea. P\&P 10p. CLARE REED RELAYS 24 V DC Coil. Single pole make Size \(11 / 8 \times 7 / 16\) c \(7 / 16^{\prime \prime}\) at \(25 p\) ea. P\&P \(10 p\)

MIXED IC's. Guaranteed Brand New by ITT. TEXAS. FAIRCHILD etc. Some data with each purchase. 10 for \(£ 1\) P\&iP 25 p.

\section*{1/2" MAG TAPE}

Approx 2,000 ft NOW 25p each. P\&P £1. Or 5 for \(£ 1\) carr. \(£ 2.75\).
FOR THE VDU BUILDER tube M28-93GH \(23 \times 17 \mathrm{~cm}\) at \(£ 12\) ea Base connections supplied
Heads for PERD EC 6000

PLESSEY VDU. No keyboard - weird electronics. £60 ea
Now Available Ex-Stock TELETYPE ASR33 from \(£ 450\) ea Also available K \(\$ R 33\) from \(£ 275\) ea,
Odd 33 RO not cased - can be demonstrated \(£ 160\) ea
Limited quantity of 35RO - 20ma loop - can be changed to ASC1 code (3 hours simple work and \(£ 10\) parts) OUR PRICE EXCLUDING
PARTS REQUIRED \(£ 70\) ea PARTS REQUIRED E70 ea.
Ex-Ministry TALLY Punches 8 level 110 char per sec. \(£ 50\) each Miniature Optical READER 8 level Size \(31 / 2 \times 51 / 2 \times 61 / 2\) £50 each O f. 80 the pair
AMPEX TM7

Minimum Mail Order \(£ 2\). Excess postage refunded. Unless stated - please add \(£ 2.75\) carriage to all units VALUE ADDED TAX not included in prices - Goods marked with \(\star 121 / 2 \%\) VAT, otherwise \(8 \%\) Official Orders Welcomed. Gov./Educational Depts., Authorities, etc., otherwise Cash with Order. Open 9 a m to \(5.30 \mathrm{p} . \mathrm{m}\). Monday to Saturday

\section*{Brand New Components}

\section*{C. N. Stevenson 236A High Street, Bromley, Kent BR1 1PQ}

\section*{THIS MONTH'SSPECIAL OFFERS!}

\section*{THE ETI TANK BATTLE}

AY-3-8710

\section*{SPECIAL LOW PRICES AND FREE OFFER}

AY-3-8710-£10.90
Sound and Vision Modulator \(£ 4.90\) (Tested and Guaranteed)
P.C.B. (ETI Project-copyright Teleplay) \(£ 2.90\)

Fascia Plate. (Actual size: \(12.6 \times 21 \mathrm{~cm}\))

28 pin Socket 0.45p 14 pin Socket 0.30p 100 \(\mu\) H Choke 0.45 p
If you purchase all the above items at \(£ 19.90\) you will receive \(F R E E\) resistors, capacitors, diodes etc. to complete your board.

Stylish Box Set with printed fascia on main box as illustrated \(£ 4.95\)
Complete Kit including power supply - no extras needed £37.90 £27.90
COLOUR ADD-ON FOR TANK KIT
Blue Tank, Red Tank, Green Background-fits easily to ETI Tank Project - £5.90

\section*{STUNT CYCLE KIT}

AY-3-8760-1
BASIC KIT (Just add controls and case) £21.90 £18.90
COMPLETE KIT including mains power unit and case
no extras needed \(£ 29.50 \mathrm{£} 25.90\)

Super Stunt Cycle

Drag Race

Stunt Cycle

Motocross

\section*{TEN-GAME PADDLEII AY-38600}

X-Y axis bat movement sound direct from TV auromatic ball speed-up small or large bats for one or boih players for handicapping SPECIAL NOTICE 10 cusiomers who have already purchased this game - two extra games now available send a s.a.e. for free switching diagram

PADDLE II basic b+w kit (just add controls and case) \(£ 15.00\) PADDLE II basic colour kit (just add controls and case) \(£ 20.90\) JOYSTICK CONTROLS suitable for AY-3-8600 and AY-3-8550 ic's \(£ \mathbf{£} .50\) pair (or one only for \(£ 1.90\))

for TV GAMES 9v DC 100 mA . Mouided 13 amp plug. only \(£ 3\).25

SOUND MODULATORS £2.90 VISION MODULATORS \(£ 2.90\) (or buy both for just \(£ 6.50\)) \(£ 4.90\) suitable for TV games

\section*{BARGAIN OF THE MONTH}

AY-3-8710 AY-3-8500 £14-90 £10.90 £5-50 £3.90

All prices include VAT. For orders under \(£ 10\) add 20p p\&p. Cheques and postal orders to be made payable to TELEPLAY; send your order (No stamp needed,) to Teleplay, Freepost, Barnet, EN5 2BR.
or telephone your order quoting your Barclaycard or Access number
Shectarchp SHOP OPEN - 10am to 7pm - Monday to Saturday CLOSE TO NEW BARNET BR STATION - MOORJATE LINE

TELETEXT DECODERS - Texas XM11-£99.90 TELETEXTKEYBOARD - £ 17.00

\section*{MINFADS \& CLASSIFIED}

\section*{MANTELET GAS MONITOR KIT}

IDEAL FOR BOATS CARAVANS - WORKSHOPS, ETC. WILL DETECT MOST INFLAMMABLE GASES AND VAPOURS. SENSITIVITY CAN BE SET FOR VERY SMALL CONCENTRATIONS
Kit includes T.G.S. Head. P.C.B. and all necessary comps. Construction details supplied.
Price kit (less case) \(£ 12.45\) inc. VAT
Case with punched front plate \(\mathbf{£ 3 . 6 0} \mathrm{inc}\) VAT.
Send S.A.E. for full details to:
Mantelet Electronics Ltd.
8 The Square, Horndean, Hants

SPECIAL OFFER: If you can buy the same for less, we will refund the difference. Brand new and full specification pots, switches, transformers, linears, TTL, CMOS, transis tors, and other semiconductors. Send large SAE for catalogue. DELTA TECH (E) \& CO., 62 NAYLOR ROAD. LONDON N20.

EPROM PROGRAMMING SERVICE: \(1 / 2 \mathrm{~K}\) 2704, \(8704 £ 3.50\). 1 K 2708, \(8708 £ 7.00\) S.a.e. for details to: V. YELLAND, 20 THE MILE END, LONDON E1750E.

COMPUTER PROGRAMMING. Whatever your job you need to know about computing Read our book: "A FAST INTRODUCTION TO COMPUTING" send \(£ 2.95\) plus 50 p p\&p total \(£ 3.45\) to Industrial Training Press, Dept. E.T.I., 3 Ringwood Way, Winchmore Hill N21 2RA.

\section*{LOW COST BOXES}

\section*{AND INSTRUMENT CASES}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Aluminium box with lid and screws} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{2 Section case. Black pvc coated top and aluminium}} \\
\hline \(3 \times 2 \times 1\) & 42p & & & \\
\hline \(.4 \times 3 \times 11 / 2\) & 49p & W & H & Price \\
\hline \(4 \times 3 \times 2\) & 56p & \(6 \times 41 / 2 \times 2\) & & £1.25 \\
\hline \(6 \times 4 \times 2\) & 62p & \(6 \times 4 \times 31 / 2\) & & £1.37 \\
\hline \(6 \times 4 \times 3\) & 72p & \(8 \times 51 / 2 \times 21 / 2\) & & £1.50 \\
\hline \(8 \times 6 \times 2\) & 97p & \(10 \times 61 / 2 \times 3\) & & £1.95 \\
\hline Bx6x3 & 1.08p & & & \\
\hline \multicolumn{5}{|c|}{all prices incl. \(p\) \& p} \\
\hline
\end{tabular}

Sheat aluminium standard and cut to size, self-tapping screws, nuts bolts and washers. Pamphlet on our full range of cases supplied with every order or send" a stamped self addressed envelope to HARRISON BROS., P.O. Box 55, Westcliff-on-8en. Essex, Manufacturing service of sheet metal parts for trade;
send drawing and s.s.a.e. for quotation.

\section*{PRINTED CIRCUITS}
and

\section*{HARDWARE}

Comprehensive range Constructors* Hardware and accessories
Selected range of popular components. Full range of ETI printed circuit boards, normally ex-stock, same day despatch at competitive prices
P.C. Boards to individual designs

Resist-coated epoxy glass laminate for the
d.i.y. man with full processing instructions (no unusual chemicals required).
Send 15 p for catalogue.
RAMAR CONSTRUCTOR
SERVICES
MASONS ROAD STRATFORD-ON-AVON WARWICKS. Tel. 4879

\section*{6800}

SINGLE BOARD COMPUTER

Features: crystal controlled V.D.U. C.P.U. with memory decoder, CUTS interface 1 k user RAM, 1 k Mikbug compatible ROM buffered outputs for easy expansion parallel input.
All you need for a working computer is a TV, ASC11 keyboard, tape recorder and P.S.U.
£185 + VAT
\(+£ 3.24\) postage
Mail order only; sae for leaflet Write to:
HEWITT ELECTRONICS LTD.
95 Blakelow Road
Macclesfield Cheshire

\section*{KINGSLEY TV SERVICES}

40/42 Shields Road Newcastle upon Tyne 6

Tel. (0632) 650653
Re-designed ET1.480. 100W Module. Price £16.25 plus £2.10 P/P \& V.A.T.

Power Supply with Low Voltage Pos. and Neg. 15V. Power takeoff (Less Transformer). Price £7.10 plus \(£ 1.57\) P/P \& V.A.T.

Both purchased together£23.35
plus £2.87 P/P and V.A.T.
S.A.E. for further details

\section*{NEW! HOBBY-PACK STICKIES}

Professionals worldwide use STICKIES - for building and debugging prototypes. faultfinding - even designing PCBlayouts. Now. for amateurs. comes the hobby pack - 120 STICKIES for \(\mathbf{8 0 p}\). Make projects less sweat. more fun. Why not try a pack?
Just to remind you - STICKIES are self-adhesive printed labels which immediately identify pin-outs for a carefully-selected range of 4000 - or 7400 -series IC's Also 450-label pack £280. (discounts for quan Tites) CMOS required. Official orders welcome.

\section*{CONCEPT ELECTRONICS}

8 Bayham Road, Sevenomks, Kent 0293514110
1.2N
DINS
NIGADS

\section*{THIS SECTION IS A PRE-PAYMENT SERVICE ONLY}

MINI-ADS: \(31 / 4^{\prime \prime} \times 21 / 8^{\prime \prime}, 1-3 £ 31,4-11 £ 29,12\) or more \(£ 28\) per insertion. CLASSIFIED DISPLAY:
15p per word. Minimum 25 words. No P.O. Box Numbers can be acçepted without full address. Enquiries to: Advertising Department, 01-4375982. 25-27 Oxford Street, London W1R 1RF.

MARCONI SIGNAL GENERATOR. T.F. \(801 \mathrm{D} / \mathrm{I} .10 \mathrm{MHz}\) to 470 MHz . Excellent condition. £120.00. Phone Henlow Camp 695.

\section*{UNIVERSITY OF GLASGOW ELECTRONIC MUSIC STUDIO}

\section*{TECHNICIAN - GRADE V}

This 16-track Studio has an improved Synthi 100 with PDP8 control (EMS Computer Synthi), Ampex MM 1000. various Revox and Teac tape machines, partial Dolby A (to be expanded). Technician's workshop adjacent with good facilities, inc. Tektronix 'scope. Tech nician's duties include responsibility for general maintenance of studio and other Music Department facilities; designing, building and modifying equipment, including digital devices; providing technical support for electronic music courses. Relevant ONC/HNC qualification and minimum of 7 years' experience. Salary range \(£ 3186-£ 3720\). All applications should be addressed to the Personnel Officer, University of Glasgow, Glasgow G12 800.
In reply please quote Ref. No. 4150 GH

ASCII KEYBOARDOS. ROM encoded, upper and lower case. 8 bit ASCII, including parity. Usual refinements, in attractive cases £45.00. S.a.e. for details, Allerby Electronics, 27 Admiralty Road, Mablethorpe, Lincs.

\footnotetext{
TV SOUND kit including drilled PCB to build the HiFi News TV sound isolator. Enables TV sound to be played though a hifi systpm. Only \(£ 3.75\) inc. P\&P. TVS Electronics, 95d Ardwell Avenue, Barkingside. Ilford, Essex.
}

\section*{SPECIAL OFFER \\ SPECIAL OFFER RADAR INTRUDER DETECTOR}

MODEL S127 DOPPLER MICROWAVE INTRUDER DETECTOR FEATURES:
*Range adjustable out to 43'
* Wide flat top beam (120 Horizontal, 70 Vertical) *Walk test lamp built in.
* Anti-tamper Reed Switch buitt in
\(\star\) Meter output (Analogue) shows what unit "sees
\(\star 12 \mathrm{~V}\) DC Operation at 200 mA .
\# As used by alarm companies, Armed Forces, etc.
* Relay \(\mathrm{C} / 0\) contacts, 0.5 amp rating.
\(\star 0-40^{\circ}\) C operation.
*Size \(19.8 \times 12.6 \times 10 \mathrm{cms}(7.8 \times 5 \times 3.9\) inches).
\(\star\) Direct mounting to walls. ceilings or corners.
\(\star\) £64.97 inclusive of \(121 / 2 \%\) VAT, P\&P, etc.
Contacts, foil, bells, sirens, keyswitches, control panels and many other items in stock. SAE for price list. Access and Barclaycard orders welcome. Please supply card and details PLUS address, etc.

24 HR. GLOCK/APPLIANCE TIMER KIT

\section*{ADVERTISEMENT INDEX}
\begin{tabular}{|c|c|c|}
\hline ADVANCED COMP. PROD. P61 & GREENWELD (SOUTHAMPTONI. P108 & SEED P52 \\
\hline AIRAMCO P122 & INTEGRATED CIRC. Pl16 & SERVICE TRADING P16 \\
\hline AMBIT Pl13 & I.L.P. PP6, 96 \& 111 & SINCLAIR RADIONICS P84 \\
\hline ASTRA-PAK Pl13 & JADE P62 & SINTEL P45 \\
\hline AUDIO ELECTRONICS P12 & JAGBERRY P122 & SENTINNEL SUPPLY P26 \\
\hline BAMBER P118 & KRAMER PP20 \& 122 & SINTROM MICROSHOP P68 \\
\hline BAYDIS P83 & L.B. ELECTRONICS P33 & S.W.T.P. P72 \\
\hline BI-PAK PP4\&5 & LOTUS SOUND P20 & STERLING SOUND P89 \\
\hline BREWSTER P83 & L.P. ENTERPRISES P75 & STRATHAND PP88 \& 121 \\
\hline BYWOOD P48 & MAPLIN P124 & SWANLEY P88 \\
\hline CAMbridge learning P104 & MARSHALL'S P56 & TAMTRONIK \({ }^{\text {P93 }}\) \\
\hline CHILTMEAD Pl 17 & METAC P7 & TANDY P94 \\
\hline CHROMOSONICS Pl Pl15 & MINIKITS P38 & TECHNALOGICS P93 \\
\hline CHROMATRONICS P123 & MOUNTAINDENE P38 & TECHNOMATIC P114 \\
\hline C. N. STEVENSON P118 & NASCOM P46 & T.K. ELECTRONICS P121 \\
\hline COMMUNICATIONS MEAS. P20 & NEWBEAR P60 & TELEPLAY P119 \\
\hline COMPUTALKER CONSULT. P78 & NICHOLLS P33 & TEMPUS P33 \\
\hline CRIMSON ELEKTRIK P110 & PERSONAL COMPUTING P72 & TRAMPUS Pl14 \\
\hline DORAM P110 & POLYTECH OF N. LNDN. P111 & VERO P15 \\
\hline EDA & POWERTRAN P8 & VIDEOTIME P83 \\
\hline ELECTROVALUE P110 & P. POWELL (XEROZA) P38 & WATFORD P10 \& 11 \\
\hline HENRY'S RADIO . PP26. 110 \& 112 & PROGRESSIVE RADIO P38 & WILMSLOW P15 \\
\hline GREENWELD (CROYDON) . . . P104 & SCIENCE OF CAMB P50 & \\
\hline
\end{tabular}

\section*{CREATIVE EQUALISATION}
cannot be accurately yet arbitrarily adjusted with a few pre-determined switch positions. There are just too many variables to consider: area resonance, environmental factors, phasing effects, feedback and many others with differing characteristics.

If you need 3 dB of equalisation at \(6,510 \mathrm{~Hz}\), for example, maybe (just maybe), you can switch in 2 or 4 dB at 5.000 Hz since they're preset on your present equaliser
THE PROBLEM IS: YOU ARE NOT SATISFIED BECAUSE WHAT YOU HEAR IS JUST NOT RIGHT.

The solution? Full range equalisation giving you the right The solution? full range equalisation giving you the righ require. This is the capability of JAGBERRY'S new parametric equaliser. The parametric equaliser lets you vary parameters by ear - accurately and effectively. It combines the spectral responses of a \(1 / 3\) rd octave graphic equaliser with the rapid access and economy of "-knob" system. You can continuously vary the frequency from 45 Hz to 18 KHz via 4 range controls, boost or cut any amount at any frequency centre up to 14 dB ; and variation of any one control does not affec performance of any other: so you needn't worry about cross compensation

If you want more than just "good enough" performance start playing it by ear. Our new parametric equaliser gives you exactly what you are listening for.

Parametric equaliser kit EQ-1, \(£ 23.50\) inc
Parametric equaliser ready built and tested EQ-1BT £ 33.50 inc.
Power supply (drives 8EQ-1s) Power Supply Kit PS-1 £ 15.95 inc.
Power supply built and tested PS-18T, £26,80 inc
Trade enquiries welcome

\section*{AIRAMCO LTD. micro computer PRODUCTS}

 achievement brought right to your own front door. Now-you can be among the first enthusiasts in the world to build your own electronic musical door chime-a door chime with no moving parts. There are 24 of the world's favourite and best known tunes pre-programmed onto the microcomputer chip so that all you have to do is to set the Chroma-Chime's built-in selector switches to a code to index the "tune of the day" from the repertoire
Since everything is done by precise mathematics, it cannot play the notes out of tune
The unit has comprehensive built-in controls so that you can not only select the "tune of the day" but the volume tempo and envelope decay rate to change the sound according to taste.
Not only visitors to the front door will be amazed, if you like you can connect an additional push button for a back door which plays a different tune!
This kit has been carefully prepared so that practically anyone capable of neat soldering will have complete success in building i The kit manual contains step-by-step constructional details together with a fault finding guide, circuit description, installation detalls and operational instructions all well illustrated with numrerous figures and diagrams.
The CHROMA-CHIME is exclusively designed by
GHROMATRONICS
River Way, Harlow, Essex.

\section*{}

\section*{everything for the modern D.I.Y. electronics enthusiast and more.}
```


[^0]:    COPYRIGHT: All material is subject to world wide Copyright protection. All reasonable care is taken in the preparation of the magazine to ensure accuracy but.ETI cannot be held responşible for it legally. Where errors do occur a correction will be published as soon as possible afterwards.

[^1]:    CROSSLAND HOLSE • NACKINGTON • CANTERBLRY • KENT Telephone: (0227)63218

[^2]:    ELECTRONIC COMPONENTS AND EQUIPMENT

