

## INTERNATIONAL POWERSLAVE 200 watt AMPIIFIER

## COMPLETE KIT AS FEATURED IN APRIL ISSUE OF E.T.I.

Super-Fi performance for studio/monitoring / hi-fi use with the inherent reliability and ruggedness for the most demanding group/disco applications.
Features * over 200W rms continuous from each of 2 totally independent DC coupled amplifiers - over 800 W peak powert

* highly original fuily complementary high linearity o/p stage utilizing the inherent symmetry of no less than 4 differential pars
* Uitra low feedback (an incredibly low 14 dB overalli) together with super high slewing rate ( $20 / \mu \mathrm{S}$ ) banish ficochet effects and TIDI
* distortion only $003 \%$ at $F U L L$ power 1 KHz rising to only $007 \%$ at 10 KHz (how many high power amplifier producers dare to quote at this frequency)
* independent stabilized power supplies driven by custom designed TOROIDAL transformers
* inherent reliability - monster heat sinks for cool running at the hottesi venues - electronic open and short circuit protection - 4 rugged power
transistors/amplifier - each 250W rating
Protessional quality - metal oxide resistors. cermet adjusters fibre glass boards sturdy $19^{\prime \prime}$ rack mounting chassis complete with sieeve and feet for free
stand
standing work too
easy to build - plenty of working space with ready access to all components minimal wiring. extensive instructions suitable for both experienced constructors and newcomers to electronics - can be purchased one channel at a time
* value for money - quality and performance comparable with ready-built ampifiers costing over $£ 600$ I


PSI4001 SLAVE MODEL

 Sel of capacitors. metal oxide resistors. thermistor. cermet pre-sets tor
power amp power amp
Set ol semiconductors lor power amp with mounting hardware. cooling labs Pair of manster black drilled heal sinks transisior mounting brackel
Toroidal Iranstormer: Primary $0-177 \mathrm{~V}-234 \mathrm{~V}$ Secondaries $42.0-42 \mathrm{~V}$ Toroidal Iransformer: Primary $0-117 \mathrm{~V}-234 \mathrm{~V}$. Secondaries $42-0-42 \mathrm{~V}, \mathrm{O}$-i 5 V .
$0-15 \mathrm{~V}$. Elecirostatic screen Sel ol all parts for stabilise
Sel ol all parts for stabilised power supply including fibre giass printed circuit
board. mounting bracket. semiconducters. . . . . . board. mounting bracket. semiconductors. resistors, capaciters. etc. board. semiconductors. resistors, capacitiors, controls glass printed circuil porly. semiconduciors. resistors, capacitors. cantrols - required for PSI 4001
78 Set si paris for peak power meter inctuding protessional quality meter, fibre glass printed circuit board, companents, control - required for PSI 4002 only Sel of all miscelianeaus parts including sockets. illum, mains switches fus holders, luses. cut-outs, cable, etc
Cabinet including chassis, anodised silver on black panels. fixing parts. eic. Please state whether Slave of Studia model required
Handhaok 50.50 or
10. Handbook $£ 0.50$ or free on request when ardering any of above packs.

2 zach of packs 1.7 |A or 8 . 1 each 8.9 and 10 are required for complete 200 +200 W professional amplifier
Total cost of individually purchased packs

Transistors used

| in this kit |  |
| :---: | :---: |
| 2N5401 | ¢0.40 |
| $2 N 5832$ | E 0.40 |
| 2 N6052 | £ 2.80 |
| 2 N 6059 | £2.40 |
| BC182L | £ 0.10 |
| BC212L | £0.12 |
| BD419 | £0.70 |
| 80420 | £0.75 |
| BF460 | £0.60 |
| BF463 | E0.65 |
| BFR 41 | E. 0.30 |
| BRF8 1 | E0.30 |
| MJ15003 | £ 3.80 |
| MJ 15004 | £4.10 |

OVER 800W PEAK POWER!


PSI4002 STUDIO MODEL

## SPECIAL OFFER PRICE for

Complete PSI4001 Kit $\mathbf{£ 2 0 5 . 0 0}$ + VAT

Complete PSI4002 Kit $\mathbf{£ 2 2 0 . 0 0}+$ VAT

## MANY MORE KITS ALSO AVAILABLE - ASK FOR OUR FREE CATALOGUE Amplifiers (20-200W), Tuners, Cassette Deck, Quadraphonics, etc., etc.


$75+75 w$ AMPLIFIER
COMPLETE KIT ONLY £99.30 + VAT

T20 + 20 AMPLIFIER
De Luxe Linsley-Hood 75w Amplifier

$$
\begin{array}{lc}
20+20 \mathrm{w} \text { AMPLIFIER COMPLETE KIT ONLY } \\
\text { Based on P.w. TEXAN } & £ 33.10 \text { + VAT } \\
30 \mathrm{w} \text { VERSION }(\mathrm{T} 30+30) \text { ONLY } £ 38.40 \text { + VAT }
\end{array}
$$



PRICE STABILITY: Order with confidencel Irrespective of any price changes we will honour ail prices in this advertisement until June 30th. 1978 if ETI May, 1978 issue is mentioned with your order Errors and VAT
rate changes excluded rate changes excluded
D.K. ORDERS: Subject to $12 \frac{1}{2} \%$ surcharge for VAT is e add $1 / 8$ to the SECURICOR DELIVERY: For this or at curtent rate if changed
add $£ 250$ (VAT inclusive) per kit SALES COUNTER: It you per ki
Sales Counter (at rear of factory) collect your kit from the factory. call at Thursday
our catalogue is FREE! write or phone NOW!
POWERTRAN ELECTRONICS
PORTWAY INDUSTRIAL ESTATE ANDOVER, HANTS SP 10 3NM

## FEATURES

ROBOTS - THE FACTS<br>ROBOTS - BRAIN POWER<br>ROBOTS - BUILDING GUIDE ROBOTS - THE REAL THRING<br>OP AMPS PART 4<br>DIGITAL EXPERIMENTS PART 8<br>TECH-TIPS<br>\section*{22}<br>28<br>32<br>39<br>69<br>74<br>83<br>How far to R2D2?<br>Genius or junk?<br>Get it together<br>The man behind machines Concluding Tim Orr's series Gateway to knowledge Readers own circuits

CCD Phaser, page 57

## PROJECTS



Helping Hand, page 16

Our thanks to the MOD for providing the colour picture of the Cheiftain tank charging about our front cover.

## INFORMATION

| ETI PRINTS | $\mathbf{1 5}$ | PCBs the easy way |
| ---: | :--- | :--- |
| SPECIALS | $\mathbf{4 5}$ | All the details |
| PET SEMINAR | $\mathbf{4 7}$ | Good news for micro-men |
| ETI JUNE PREVIEW | $\mathbf{4 8}$ | Next month this month |
| ETI MARKETPLACE | $\mathbf{5 5}$ | New clock and cheap chips! |
| CIRCUITS BOOK 2 | $\mathbf{5 6}$ | Our newest special |
| SUBSCRIPTIONS | $\mathbf{7 3}$ | Save yourself the trouble |
| BINDERS | $\mathbf{7 6}$ | Go on - be neat! |
| PANEL TRANSFERS | $\mathbf{7 6}$ | The finishing touch |
| ETI BOOK SERVICE | $\mathbf{8 0}$ | While away the hours |

What goes on where DINing it in KIM - queen of the MPU-s? A bit of tape?

Prizewinning Project ETIs bright sparks So you think you're Rommel? A small delay in ETI An enterprising project

NEWS

| NEWS DIGEST | $\mathbf{9}$ | What goes on where |
| ---: | ---: | :--- |
| AUDIOPHILE | $\mathbf{6 7}$ | DINing it in |
| MICROFILE | $\mathbf{7 7}$ | KIM - queen of the MPU-s? |
| CS TOMORROW | $\mathbf{8 1}$ | A bit of tape? |

TI PRINTS
15
45 48 ETI JUNE PREVIEW 55 56 73 76 80

Goodnews formicrome
PCBs the easy way he detalls Next month this month New clock and cheap chips! Our newest special Save yourself the trouble The finishing touch While away the hours

EDITORIAL AND ADVERTISEMENT OFFICE
25-27 Oxford Street, London W1R 1RF. Telephone 01-4341781/2. Telex 8811896

Halvor W. Moorshead<br>Ron Harris B. Sc Gary Evans Steve Ramsahadeo, John Koblanski Jim Perry William King<br>Paul Edwards Margaret Hewitt Andrew Scott Kim Hamlin, Annette Main Tim Salmon, Brenda Goodwin Mark Strathern (Manager). Tom Moloney

> Editor
> Assistant Editor Projects Editor Project Development
> Specials Editor Editorial Assistant Technical Drawing Administration Office Manager Reader Services

Advertising

Electronics Today International is normally published on the first Friday of the month prior to the cover date


# STEREO FMTUNER 

$€ 22.30$

The 450 Tuner provides instant program selection at the touch of a button ensuring accurate tuning of 4 pre-selected stations, any of which may be altered as often as you choose, by simply changing the seftings of the pre-set controls
Used with your existing audio equipment or with the BI-KITS STEREO $\mathbf{3 0}$ or the MK60 Kit etc. Alternatively the PS 12 can be used if no suitable supply is available, together with the Transformer T538
The S450 is supplied fully built, tested and aligned. The unit is easily installed using the simple instructions supplied

## STEREO PRE-AMPLIFIER


'A top quality stereo pre-amplifier and tone control unit. The six push-button selector switch provides a choice of inputs together with two really effective filters for high and low frequencies, plus tape output.
MK. 60 AUDIO KIT: Comprising $2 \times$ AL60's. $1 \times$ SPM80. $1 \times$
BTM80. $1 \times P A 100.1$ front panel and knobs. 1 Kit of parts to include on/off switch, neon indicator, stereo headphone sockets plus instruction booklet. COMPLETE PRICE £ $\mathbf{3 6} .75$ plus 85 p postage. TEAK 60 AUDIO KIT Comprising: Teak veneered cabine size $16^{3 / 4^{\prime \prime}} \times 111 / 2^{\prime \prime} \times 3^{3 / 4^{\prime \prime}}$. other parts include aluminium chassis, heatsink and tront panel and appropriate sockt.1s ect. KIT PRICE £13.25 plus 85p postage.

ONLY £3.75
Frequency Response +1 dB 20 Hz 20 KHz . Sensitivity of inputs Tape Input 100 mV into

## 100 K ohms

Magnetic P.U 3 mV into
50 K ohms

## . Input equalises to RIAA curve with

 1 dB from 20 Hz to 20 KHz Supply $-20-35 \mathrm{~V}$ at 20 mA

Dimensi
299 mm
35 mm. SPECIFICATION

- Load impedance Gahms. outpul.
- FET Input Stage
- VARI-CAP diode tuning
- Switched AFC
- Multi turn pre-sets
* LED Stereo Indicator

Typical Specification:
Sensitivity $3 \mu$ volts
Stereo separation 30db
Supply required 20-30v at 90 Ma max.

# PA100 1212\% <br> OUR PRICE £15.80 

## NEW AL30A <br> 10w R.M.S. AUDIO AMPLIFIER MODULE

The AL30A is a high quality audio amplifier module replacing our AL20 \& 30. The versatility of its design makes it ideal for record players, tape recorders, stereo amps, cassette and cartridge players. A power supply is available comprising a PS 12 together with a transforme T538, also for stereo, the pre-amp PA1 2

- Dutput Powar 10w: Supply 22 io 32 volts
- Sensitivity 90 my far full - Tatal Harmanic Distortion
- Frequency Response Max. Heat Sink Tema
$60 H z$ to $25 \mathrm{KHx}+20 \mathrm{~b}$.
80 c .
- Dimensions $90 \times 64 \times 27 \mathrm{~mm}$


## STEREO 30

COMPLETE AUDIO
CHASSIS
R.M.S mins)

## MPA 30



Enjoy the quality of a magnetic cartridge with your existing ceramic equipment using the new M.P.A. 30, a high quality pre-amplifier enabling magnetic cartridges to be used where facilities exist for the use of ceramic cartidges only It is provided with a standard DIN input socket for ease of connection
Full instructions supplied <br> <br> } <br> \section*{$1 / 2$ <br> \section*{$1 / 2$ <br> <br> $1 / 2$ <br> <br> $1 / 2$ <br> <br> POSTAGE \&
A DACKING <br> <br> POSTAGE \&
A DACKING} <br> <br> POSTAGE \&
A DACKING}


The Stereo 30 comprises a complete stereo pre-amplifier, power amplifiers and power supply. This, with only the addition of a transformer or overwind will produce a high quality audio unit suitable for use with a wide range of inputs i.e. high quality ceramic pick-up stereo tuner. stereo tape deck etc. Simple to install, capable of producing really first class results, this unit is supplied with full instructions, black front panel knobs main swith fuse and fuse holder and universal mounting brackets enabling it to be installed in a record plinth, cabinets of your own construction or the cabinet available. Ideal for the beginner or the advanced constructor who requires Hi -Fi performance with a minimum of installation difficulty (can be installed in 30 ,

TRANSFORMER £3.25 plus 50p p \& p TEAK CASE £5.45 plus 70p p \& $p$

## Stabilised Power Supply Type SPM80

SPM80 is especially designed to power 2 of the AL60 Amplifiers, up to 15 watts (R.M.S.) per channel simultaneously. With the addition of the Mains Transformer BMT80, the unit will provide outputs of up to 1.5 A at 35 V . Size 63 mm . 105 mm . 30 mm . incorporating short circuit protection.
Transformer BMT80
$£ 5.40+86$ p postage


From the representatives in Europe . . . for America's leading Micro-computer magazines and books, for the hobbyist, educationalist and professional alike, we bring you a little light browsing! Reading maketh a full man . . . .Francis Bacon (1561-1626)

| Tick here or indicate quantity ordered. |  |
| :---: | :---: |
| From Adam Osborne Associates |  |
| INTRODUCTION TO MICROCOMPUTERS |  |
| Volume 0: The Beginners Book | $£ 5.95$ |
| Volume 1: Basic Concepts | £5.95 |
| Volume 2: Some Real Products (Revised Late 1977) | £11.95 |
| 6800 Programming for Logic Design | £5.95 |
| 8080 Programming for Logic Design | £5.95 |
| 280 Programming for Logic Design |  |
| (Available May 78 approx) | £5.95 |
| 8080A/8085 Assemnly Language Programming | £6.95 |
| Some Common BASIC Programs | $£ 5.95$ |
| BUSINESS PROGRAMS IN BASIC |  |
| Payroll With Cost Accounting | £9.95 |
| Accounts Payable \& Accounts Receivable |  |
| (Available from June 78) | $¢ 9.95$ |
| General Ledger (Available June 78) | ¢9.95 |
| From Scelbi Computer Consulting Inc. |  |
| 6800 Software Gourmet Guide \& Cookbook | £7.95 |
| 8080 Software Gourmet Guide \& Cookbook | E7.95 |
| 8080 Programmers Pocket Guide | £2.25 |
| 8080 Hex Code Card | £2.25 |
| 8080 Octal Code Card | £2.25 |
| 8080 Guide and One 8080 Code Card | £4.20 |
| 8080 Guide and Both Code Cards | £6.00 |
| SCELBAL High Level Language for '8008/8080' Systems | ¢ 39.25 |
| SCELBAL String Handling Supplement | £8.00 |
| SCELBAL Extended Maths Supplement | $£ 4.00$ |
| Understanding Microcomputers \& Small Computer Systems | £7.95 |
| SCELBI 'BYTE' Primer | ¢9.95 |
| 8080 Standard Assembler (In Block Format) | $£ 15.95$ |
| 8080 Standard Editor (ln Book Format) | £9.95 |
| From Peoples Computer Company |  |
| Reference Books of Personal \& Home Computing | £4.95 |
| What to Do After You Hit Return | £7.00 |
| Dr. Dobbs Journal Volume 1 | £10.00 |
| *From Kilobaud/73 Magazine Inc. |  |
| Hobby Computers Are Here | £3.95 |
| New Hobby Computers | £3.95 |
| From Dymax Inc. |  |
| Instant BASIC by Jerald R. Brown | \&4.95 |
| Your Home Computer by James White | $£ 4.95$ |
| My Computer Like Me...When I Speak |  |
| BASIC By Bob Albrecht | £1.65 |
| Games With A Pocket Calculator by |  |
| Thiagarajan \& Stilovitch | £1.75 |
| Games, Tricks and Puzzles For a Hand |  |
| Calculator by W Judd | £2.49 |
| *From BYTE Publications Inc. |  |
| Paperbytes: |  |
| Tiny Assmbler for 6800 Systems | £5.75 |
| Bar Code Loader for 6800, 8080, Z80 \& 6502 Micros | $£ 1.75$ |
| Best of BYTE Volume 1 | ¢8.95 |


| Tick here or indicate quantity ordered |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Price UK |  | Price verseas Different |
| *From Creative Computing Press |  |  |  |  |
| Best of Creative Computing Volume 1 £ 6.95 |  |  |  |  |
| Best of Creative Computing Volume 2 $£ 6.95$ <br> 101 BASIC Games (Revised \& Reprinted  |  |  |  |  |
|  |  |  |  |  |
| The Colossal Computer Cartoon Book £ 3.95 |  |  |  |  |
| Computer-Rage (A new Board Game) £ ${ }^{\text {e }}$.95 |  |  |  |  |
| Artist and Computer £ 3.95 |  |  |  |  |
| Three Binary Dice $£ 1.00$ |  |  |  |  |
| *From Everyone Else |  |  |  |  |
| TV Typewriter Cookbook by Don Lancaster £ 7.95 |  |  |  |  |
| Magazine storage boxes (Holds 12 minimum) £ 1.75 |  |  |  |  |
| Sybex: Microprocessors |  | £ 7.95 |  |  |
| Sybex: Microprocessors Interfacing |  |  |  |  |
| Techniques |  | £ 7.95 |  |  |
| Dilithium: Home Computers |  |  |  |  |
| Dilithium: Home Computers |  |  |  |  |
|  |  |  |  |  |
| Volume 2: Software £ 5.95 |  |  |  |  |
|  |  |  |  |  |
| Magazines: Back Issues |  |  |  |  |
| Personal Computing £ 1.75 |  |  |  |  |
| Interface Age £ 2.00 |  |  |  |  |
| Dr. Dobbs Journal £ 1.60 |  |  |  |  |
| Computer Music Journal £ 2.50 |  |  |  |  |
| Peoples Computers £ ${ }^{*}$ ¢ 1.50 |  |  |  |  |
| *BYTE £ 2.25 |  |  |  |  |
| Creative Computing $£$ £ 1.75 |  |  |  |  |
| Calculators \& Computers £ 1.75 |  |  |  |  |
| ROM £ 1.75 |  |  |  |  |
| Kilobaud £ 2.25 |  |  |  |  |
| 73 . £ 2.00 |  |  |  |  |
| MAGAZINES: Subscriptions |  |  |  |  |
| Personal Computing | (Twelve Issues Yearly) £16.00 £17.00 |  |  |  |
| Interface Age (Twelve Issues Yearly) £20.00 £20.50 |  |  |  |  |
| Dr. Dobbs Journal (Ten Issues Yearly) $£ 13.00$ $£ 13.50$ <br> Computer Music Journal $(F)$  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
| Kilobaud (Twelve Issues Yearly) |  |  |  |  |
| BYTE (Twelve Issues Yearly) £15.00 £15.00 |  |  |  |  |
| Creative Computing (Six Issues Yearly) $£ 8.50$ $£ 9.00$ <br> Calculators \& Computers   |  |  |  |  |
|  |  |  |  |  |
| $\begin{aligned} & \text { ROM } \\ & 73 \end{aligned}$ | (Seven Issue |  | £10.00 | $£ 10.50$ |
|  | (Twelve Issue | arly) £ | £16.00 | £17.00 |
|  | (Twelve Issue | rly) £ | £20.00 | £21.00 |

ETI/A

## HOW TO ORDER

Please note our prices include postage and packing, but not insurance, if wanted add 12 p for every $£ 10$ of books ordered. Make cheques, PO's etc payable to
L.P. Enterprises

CREDIT CARDS accepted.
BARCLAYCARD /VISA/ACCESS
DINERS CLUB/AMERCIAN EXPRESS
Phone: 01-533 1001 for Credit Card orders (24 hour service).


All publications are published in U.S.A. and shipped air-freight by L.P. Enterprises. In unusual cases. processing may exceed 30 days *BYTE subscriptions are processed ir. USA and is air-freighted \& Posted from Amsterdam and will take 3 months to start.

TRADE ENQUIRIES WELCOME
You may photo copy this page if you wish to leave your magazine intack.

# @ <br> 1 <br> ELECTRONICS LTD 

# THE MOST <br> COMPREHENSIVE RAMGE OF TUNER MODULES EVER DISPLAYED 

HF 7948 FRONT END


TECHNICAL CHARACTERISTICS:
Output terminal for digital frequency meter Antenna impedance - 75 to 300 Ohms;
Frequency ranges 87.5 to 104 MHz or to 108 MHz ; Sensitivity -0.9 uV 26 dB signal to noise ratio $\pm 75 \mathrm{kHz}$ deviation; Intermodulation 80 dB Image rejection - 60 dB ; Tuning voltage -1 V to 11 V ; Total gain -33 dB ; Intermediate frequency -10.7 MHz ; Power supply voltage +15 V ; Power consumption 15 mA ; Dimensions $104 \times 50 \mathrm{~mm}$.

TECHNOLOGY:
Double sided epoxy printed circuit board with plated through holes; Dual gate effect transistors; Silvered coils.

FI 2846
IF AMP AND DECODER


TECHNICAL CHARACTERISTICS:
Intermediate frequency - 10.7 MHz ; IF Bandwidth - 280 kHz ; Signal to noise ratio 70 dB with 1 mV input; Distortion - mono $0.1 \%$, stereo $0.3 \%$; Sensitivity - 30uV up 10 the 3 dB limit; Channel separation -40 dB at 1 kHz ; Pass band - 20 to $15,000 \mathrm{~Hz}$; Rejection at 38 kHz greater than 55 dB ; Am rejection 45 dB ; De-emphasis - 50 to $75 \mu \mathrm{~s}$. Pilot capture at $19 \mathrm{kHz}+4 \%$; Channel matching within less than 0.3 dB ; Output impedance 100 Ohms; Output voltage 500 mV ; Phase locked loop stereo decoder; Output for LED VU-meter; Null indicator; Outputs for AGC AFC and inter-station muting; Consumption 55 mA LEDs extinguished, 100 mA LEDs illuminated; Power supply - 15 V ; Dimensions $195 \times 76 \mathrm{~mm}$.
CIRCUIT TECHNOLOGY:
Epoxy printed circuit board; Monolithic integrated circuits, ceramic fiter.

ALS 1500
STABILISED POWVER SUPPLY


Inc. VAT, P\&P

## TECHNICAL CHARACTERISTICS:

Output voltage - 15 V ; Max. output current 500 mA ; Thermal coefficient less than 1 mV / 'C; 15 V power supply for modules HF 7948 and FI 2846; Supply protected against short circuit (power and current protection), Dimensions - $65 \times 55 \mathrm{~mm}$.

TECHNOLOGY:
Double sided epoxy circuit board; Monolithic integrated circuit.

## OPTOELECTRONIC OPTIONS



Inc. VAT. P\&P
ILLUMINATED POINTER
Station finder
LED VU-METER
Station strength indicator
£8.77
Inc. VAT, P\&P
TOUCH CONTROL
PRE-SELECTION UNIT
LED channel indication



## $2+3=?$

Both SCRUMPI 2 and SCRUMPI 3 are powerful MPU kits in their own rights . . . Together they make one of the most powerful MPU Hardware/ Software development systems available. Please write for details of combined kit/upgrade offer.


Quantity discounts are available to OEM users, Distributors, Retailers and Training Establishments.

SCRUMPI 2 is a single board MPU system based on the SC/MP2 microprocessor chip. Switches allow Single-step/Halt/Run modes with PROM or RAM bootstraps. RAM protect and interruption. Basic kit includes all IC sockets, all ancilliary components, SC/MP2, drivers, decoders, latches and 256 bytes of RAM. Full kit includes additional 512 byte PROM \& 512 byte RAM

SCRUMPI 2B $£ 55.56+$ VAT
SCRUMPI 2F £74.07 + VAT
SCRUMP1 3 is a single board MPU system based on the SC/MP2 microprocessor chip and including Keyboard, VDU interface, UART, two 8 bit parts, 12.8 byte RAM, 1 K PROM and sockets for additional 1 K PROM \& 1 K RAM

SCRUMPI 3 Basic kit £154.92, with case \& PSU £189.75.

## CLOCK CHIPS \& KITS

TYPE SPECIALFEATURES
MM5309 $7 \mathrm{seg}+$ 8CD RESET ZERO
MM53117 seg + BCD
MM53127 seg + BCD 4 DIGIT ONLY
MM5313 $7 \mathrm{seg}+\mathrm{BCD}$
MM53147 7 seg + BÁSIC CLOCK
MM5315 7 seg + BCD RESET ZERO
MM5316 Non-mpx ALARM
MM53i87 seg + BCD External digit select
MM5371 ALARM, 50 Hz
MM5378 CAR Clock. Crystal control LED MM5379 CAR Clock. Crystal control Gas discharge MK5025 ALARM. SNOOZE
MK50395 UP / DOWN Counter - 6 Decade
MK50396 UP / DOWN Counter - HHMMSS MK50397 UP/DOWN Counter - MMSS 99 FCM7001 ALARM. SNZ CALENDAR. 7 seg FCM 7002 ALARM SNZ. CALENDAR. BCD
CT7003 ALARM. SNZ. CALENDAR. Gas discharge FCM7004 ALARM. SNZ. CALENDAR. 7 seg AY5. 12027 seg. 4 digit
AY5. 12307 seg . ON and OFF ALARM
All above clock kits include clock PC board clock chip, socket and CA 3081 driver IC. MH15378 also includes crystal and trimmers. When ordering kit, please use prefix MHI, e.g. MHI 5309

## CLOCK MODULES

LT601 Alarm Clock Module, similar to MA1002
MTX1001 Transformer

## DISPLAYS

| 707, 704, $7010.3^{\prime \prime}$ | 1 off 1.20 | 10 off 10.00 |
| :---: | :---: | :---: |
| 727, 728, $7210.5^{\prime \prime}$ (2 dig.) | 1 off 2.60 | 10 off 11.50 |
| 747, 750, $7460.6^{\prime \prime}$ | 1 off 1.40 | 10 off 12.50 |

MHI DISPLAY KITS

| MHI707/4 digit 0.3" | 6.00 | M $\mathrm{HI} 727 / 6$ | 25 |
| :---: | :---: | :---: | :---: |
| MH1707/6 | 8.00 | MH1747/40.6" | 9.00 |
| MH1727/40.5" | 8.00 | M $\mathrm{HI} 747 / 6$ | 0.00 |

Any one or two of the above M H I display kits will interface directly with any of the MHI clock kits

CASES (with perspex screen)

## BITS 8, BYTES

## MPU SUPPORT

$74 C 00$ Quad NAND 74 CO 4 Hex Inverter 74 C 10 Triple NAND 74 C42 BCD Decoder 74C157 Quad Selector 74C164 PISO register 74 C165 SIPO register 74 C173 35 Quad latch 74C74

## DM74LSOO

DM74LS139 Dual 2-4 Dec
DM81LS95 3S 8 bit buff
DM81LS96 Inv 95
DM81LS97 3S $4+4$ buffer
DM81LS98 Inv 97
DM8095 3S Hex buffer DM8096 Inv 8095 DM8097 3S Hex Buffer DM8678 CAB Char Gen DM8678 BWF Char Gen

## DM7400 Quad NAND

 DM7408 Quad AND DM7475 Quad LATCH DM7486 Quad EXOR CD4017 Counter CD4019 Decoder CD4040 Counter DS8833 Quad B3DI Buffer LM555MC3459

## MEMORIES

| 0.24 | MM $21021 \mathrm{Kx1} \mathrm{RAM} \mathbf{2 . 4 0}$ |
| :---: | :---: |
| 0.24 | MM2112-2 $256 \times 4$ RAM 3.08 |
| 0.24 | MM52040 $512 \times 8$ EPROM 10.95 |
| 0.92 | MM27080 $1024 \times 8$ EPROM |
| 2.21 | 31.15 |
| 1.04 | ER3401 $1024 \times 4$ EAROM $\mathbf{2 8 . 2 5}$ |
| 1.04 | MM5303 (AY-5-1013) UART 6.34 |
| 0.90 |  |
| 0.57 | PROGRAMMED (MM5204) |

0.27 ETIBUG 6800 System 68 Monitor
1.36 25.9
$\begin{array}{rl}\text { 1.36 Monitor } \\ 1.36 & 25.95 \\ \text { NIBL SC/MP BASIC } / 8 \text { prom }\end{array}$
1.36 NIBL SC/MP BASIC (8 proms)
1.62
1.62 MPUCHIPS
1.62 SC
14.30
0.35
0.39
0.74 SC/MPMPUKITS
0.55 SCRUMPI 1 K6.30
$\mathbf{1 . 0 4}$ SCRUMPI $2 B \quad 55.56$
0.54 SCRUMPI 2F … 74.10
1.04 INTROKIT
66.33

KBDKIT
63.65
$\begin{aligned} & 1.99 \text { KBDK } \\ & \mathbf{0 . 5 5} \text { LCDS } \\ & \mathbf{3 3 4 . 3 3}\end{aligned}$
$\begin{array}{rr}\mathbf{0 . 5 5} \\ \mathbf{2 . 0 0} & \text { SC1 System } 68 \quad . \quad 39.84\end{array}$

## PAYMENT TERMS

Cash with order. Access, Barclaycard (simply quote your number). Credit facilities to accredited account holders. $15 \%$ handling charge on goods ordered and paid for then cancelled by customer All prices exclude $8 \%$ VAT PLEASE SEND $30 \rho$ POST AND PACKING

CATALOGUE DATA Please send SAE for catalogue
Xeroxed data, please phone for availability/price
BYHOD =in

# news digest. 

helping hand


Some time ago ETI ran a design competition in conjunction with the Royal National Instutute for the Deaf (RNID). They provided us with three specific problems that the deaf are faced with and for which there may be electronic solutions. The prize to the winners was a silver trophy, especially designed for the competition.

The winning project is presented in this issue and we arranged a presentation ceremony recently at which Jack Ashley M.P. (who, as most people will know, is totally deaf himself) very kindly handed over the trophy to John Howden and Clive Musgrove, whose joint entry was unanimously awarded
the prize by the judges
At the same time ETI handed over a cheque for $£ 250$ to the RNID for their technical department.
Two other trophies were also passed over to the RNID which will be awarded in the autumn for the two best entries to a contest that they are running for Deaf Schools and colleges for the best craftsmanship in the workshops.

More details are given with the article itself. The whole presentation ceremony was filmed by the BBC and shown on News Review on BBC-2 on Sunday February 26 th.
ferranti think tank


More from 'Star Wars' Ferranti - this time a laser system for tanks. The applications of the laser transceiver include automatic ranging and laser target designation (in which a beam fired from the tank is scattered from the target and picked up by a guided missile). The specifications of the system are:
laser type: Neodymium-doped YAG wavelength: 1.064 microns energy output: 100 mJ divergence: 0.15 milli-radians (!) range: 200 to 10000 m ranging accuracy: $\pm 5 \mathrm{~m}$ (!!)

We're beginning to think our tank battle game is unrealistic - it's too difficult!

# 'the secret war' 

By Brian Johnson Published by the BBC<br>Hard cover, £6.50

"A few years ago it wouldn't have occurred to (any of us) that a 'Boffin', a gentleman in grey flannel bags, whose occupation in life had previously been something markedly unmilitary such as biology or physiology, would be able to teach us a great deal about our business." So said one Air Marshall about the work done in WWII by the back room boys.

It has been said that WWI was fought by chemists and WWII by physicists. 'The Secret War' describes just how true this was. The author, Brian Johnson, was the producer of the extraordinarily good BBC-TV series of the same name and has here described in greater detail the material covered.
The work by both British and German scientists has been recognised for some time but much of it has not been disclosed until now and surprisingly some of the work remains classified. It has only just become known - to almost everyones amazement that in 1943 we had the world's first electronic computer - called Colossus and using 1500 valves; it was used in breaking the most secure of the German secret codes.
The chapters cover the same topics as the individual TV programs; The Battle of the Beams (the setting up and jamming of aircraft navigation beams), Radar, Terror Weapons (largely the German rockets), The Battle of the Atlantic, Misfortunes of War (a collection of oddities and failures) and Enigma (the cracking of the German's 'unbreakable, codes).

The whole book is fascinating reading, not only for the military historian, but for anyone interested in technological advance.

HWM

## you win!

About a year ago we started to send postal subscriptions out in a wrapper instead of an envelope - the latter being very expensive. We reckon now that there's some pressure group somewhere organising protests about this. Well, we give in gracefully - subs now go out in envelopes so you can have a crumple-free issue.

## credit where it's due

Smack-Bottoms for the ETI staff. Our main feature last month was the 200 W amp and we already know from the reader questionnaire enclosed that this was the top rated feature. Yet we did not tell you who designed it what's worse is that it sounds as though we did in our own labs - but we owe the credit elsewhere. In fact the amp was designed for us by Richard Becker and he's the man who spent hours at the drawing board and at the workbench. It's naughty of us to steal his thunder.

Powertran are supplying complete kits of this and own the copyright on the PCB, so we are sorry that we can't send out the patterns as we suggested in the article.


# news digest. 


bbc employ full-time pilot

LED-watchers already have noticed that the BBC no longer turn off the VHF stereo pilot tone during mono transmissions. This is because of the loud click this pro-
duces on some receivers The continuous pilot tone transmissions began on 27th February remember those heady days when the LED first lit up?

## offensive caller all hung up

The Post Office has revealed that it made use of a "special device" to trace the source of indecent and threatening calls made to a woman in Lanarkshire - after the caller had hung up.

Mr Alistair Duff, in prosecuting, said: "Post Office: engineers installed a special device on the telephone. When the woman received her next
call from the man she pressed a button on the device which activated it and held open the line, enabling the Post Office to trace the call back to the man's home'

The man had been making the indecent calls over a period of six months and had threatened to harm the woman's seven-year-old daughter

## rca terra tactics

It seems that the SI system will be stretched to its limits by the electronics industry. RCA have an nounced the introduction of a new FET dual op-amp - the CA 3240 - which has an input impedance of 1 T 5 (that's $1.5 \times 10^{12}$ ohms!). Other specs include:

Miniumum sápply vol tage: 4V (useful!)
max. supply voltage: 30 V
unity gain bandwidth: 4.5 MHz
slew-rate: $9 \mathrm{~V} / \mathrm{\mu s}$
common-made input voltage range down to 0.5 V below negative voltage.

We're not sure what the SI for $10^{15}$ is (or even if it exists!), but the chances are it'll be in use sooner or later - perhaps Brussels had better extend the system!


CMOS


| MICROPROCESSORS |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MPU chips and PAA ect |  | RAM - $1 / 0$ tor SC $/$ MP II |  | Slatic Rams |  |
| Sc/mpimas | E12.00 |  |  | ${ }^{1101256 \times 1}$ | rBA |
| Sc/mplimmos (5n | ${ }^{\text {E10.00 }}$ |  | $\times$ \% ${ }^{\text {din }}$ | ${ }^{21012-2256 \times 4}$ | ${ }^{\text {E3.00 }}$ |
| mc. bexic mos | ${ }^{1515.97}$ | Rom thin ind int sc/me it |  | ${ }^{21022.21024 \times 4}$ | ${ }_{\text {c2 }} 10$ |
| Mc 6820 PaA | E8.02 | microutosessar system ion |  | 2112.2,26 $\times 4$ | ${ }^{63.00}$ |
| ${ }^{280}$ - ${ }^{294}$ | ${ }_{5}^{\text {E22.4. }}$ | consircited |  | $2112-2568 \times 4$ $21141024 \times 4$ | (15.00 |
| ${ }_{280}^{280}$ - P10 | ${ }_{\text {E1280 }}$ |  |  |  |  |
| MC. 135000 cmos cu | ${ }_{\text {E5 }}$ | ISP 3N/650 RIM /RI | 87.50 | UM Erasable EP |  |
| UV Eraser |  | H OM Character Generalor |  | $17024256 \times 8$ | c10.30 |
| for ernaing bpoms | ¢99.00 | ma $2302[5 \times 7$ ASCII] |  | $27081024 \times 8$ | E31.15 |
| CATALOGUE. Free on requasi <br> Terms: CWO. Add Wit to all prices at 8*i <br>  Polys. univarsilies. gon. deptas. stc., can tolephone weir orders for immediale despatch |  |  |  |  |  |

cases galore


It's been pointed out that in the April issue Casings Survey we missed out one of the major suppliers in the country-Bi-Pak. As this was neither a service to them, nor the reader, we show their complete range above.
Types A and B are teak cabinets and sleeves, suitable for any project but designed specifically for Bi-Paks own range of
amplifiers and tuners. C and $D$ are general-purpose sloping front types. These are available only from Bi Pak, as is the heavy gauge black plastic box (V).

Bi-Pak also carry a number of other cases ( E U) giving an excellent selection. Prices and dimensions are given in their catalogue.

Bi-Pak, Dept ETI, P.O. Box 6, Ware, Herts.

## viewdata ahead of it's time

Viewdata will now be avilable in early 1979 - a year ahead of schedule. The Post Office is also to spend $£ 5 \mathrm{M}$ on setting up ten additional Viewdata centres - bringing the number to fourteen. Initially, the service will cover parts of London, Birmingham and Norwich, but a further $£ 18 \mathrm{M}$ has been made available to extend it to Cardiff, Leeds, Edinburgh and Manch. ester

Amongst nearly one hundred companies to show an interest in supplying information to the
system are Guinness, IPC, Exchange and Mart Reuters and Fintel (a new organisation formed by the Financial Times and Extel). The charge to information suppliers will be $£ 250+£ 1$ per 'page' per annum. The initial system will allow users access to 60000 pages of information and the system will have a capacity of 250000 pages. The Post Office have said that they expect to make a profit from the system, but do not yet know how large this profit may be.

## radiant about contract

RCA have been awarded a contract to develop a range of CMOS ICs for use in the American space program. The main requirement of the devices is that they should be able to withstand radiation levels of up to one million rads. RCA was already a leading supplier of CMOS for
levels of 100000 rads for use in the voyager series of long-duration space probes, which should pass Jupiter in 1979 and Saturn in 1981. As the effects of radiation on CMOS are cumulative, it seems likely that the US plans to use the new devices on even longer missions.

# digest 

brief news in brief...

NASA have received weak signals from Skylab for the first time in four years. The possibility of sending it deeper into space is being considered.
$\star$ A study by the American National Institute for Occupational Safety and Health (Niosh) has concluded that VDUs in use in the offices of the New York Times are not responsible for cataracts developed by two copy editors working there.
$\star$ A computer system capable of controlling the lighting and heating in up to one hundred buildings has been set up in London by Honeywell. The system, called BOSS, is the first of its kind in the UK
$\star$ What is believed to be the world's first garage for electric vehicles has been opened in Acton, West London. It is sponsored by the GLC and the DOI $\star$ The High Fidelity 78 Spring Exhibition is to be held in the Cunard International Hotel, Hammersmith, London from the 2nd to the 6th of May. Exhibitors include Amstrad, Goldring, Marrantz, ITT, KEF, Shure, Tandberg and Uher. .

* A new generic
specification within BS9000 has been published, dealing with single and double sided PCBs: BS9760, 9761, 9762, and 9763.
* Optimisation Toys Ltd. of Bishop's Stortford have announced a national "Electronic Gamesman of the Year" competition. The organisers hope to gain TV and newspaper coverage. . . .
* The University of Leeds is to hold the 1978 Leeds Electronics Exhibition on the $27 \mathrm{th}, 28 \mathrm{th}$ and 29 th of June. There will be over 180 exhibitors at the exhibition, claimed to be the largest outside London.
* NASA claim that it will be possible to generate microwaves directly from sunlight using a superconducting cavity covered by a flexible piston(?). More details on this when we receive them. . .
$\star$ Goddard Space Flight Centre has proposed that digital signals could be passed through capacitive connectors - two metal films separated by an insulating layer. This would pass digital pulse signals without contact resistance problems....


## lightning-powered radio

During the recent freeze/ flood in southern England, the BBC opened an emergency radio station Radio Taunton - within twenty-four hours of the idea being suggested at the parent station in Bristol. Four reporters and an engineer set up a studio in

Taunton County Hall during an afternoon - the Home Office had given it's approval the same morning.
Radio Taunton operated on 224 m and had reportedly been picked up as far away as Okehampton in west Devon.

## icarus?...

Hughes Aircraft in the US have built a series of solar-powered model aircraft. The Astro Flight Model 7404 is designed to fly at high altitudes where the Sun is unlikely to be obscured. It is controlled by a 72 MHz radio trans-
mitter and carries solar sensors for navigation. The wingspan is 10 m and the upper wing surface is covered with solar cells, producing a total of 450 W . The design target is a fullsized solar-powered aircraft. I'll take a dozen.

THE DYNAMIC DUO


The $\mathrm { C } 1 5 \longdiv { 1 5 }$ is a unique Power Amplifier providing Stereo 15 watts per channel or 30 watts Mono and can be used with any car radio / tape unit. It is simply wired in series with the existing speaking leads and in conjunction with our speakers S15 produces a system of incredible performance.
A novel feature is that the amplifier is automatically switched on or off by sensing the power line of the radio/tape unit, hence alleviating the need for an on / off switch.
The amplifier is sealed into an integral heatsink and is terminated by screw connectors making installation a very easy process.
The S 15 has been specially designed for car use and produces performance equal to domestic speakers yet retaining high power handling and compact size.
C15/15
15 watts per channel into $4 \Omega$
Distortion $0.2 \%$ at 1 kHz at 15 watts
Frequency Response $50 \mathrm{~Hz}-30 \mathrm{kHz}$
Input Impedance $8 \Omega$ nominal
Input Sensitivity 2 volts R.M.S. for 15 watts output Power Line 10-18 volts
Open and Short Circuit Protection
Thermal Protection
Size $4 \times 4 \times 1$ inches
C15/15 Price £17.74 +£2.21 VAT P\&P free
Data on S15

## 6' Diameter

5 ${ }^{1 / 4} 4^{\prime \prime}$ Air Suspension
2" Active Tweeter
20 oz Ceramic Magnet
15 watts R.M.S. Handling
$50 \mathrm{~Hz}-15 \mathrm{kHz}$ Frequency Response
$4 \Omega$ Impedance
S15 Price per pair £17.74 +£2.21 VAT P\&P free
TWO YEARS GUARANTEE ON ALL OF OUR. PRODUCTS

Please supply
Total Purchase Price
I enclose cheque $\square$ Postal Order $\square$ Money Order $\square$ Please debit my Access Account $\square$ Barclaycard Account $\square$
Account Number
Name \& Address
Signature
7

|  |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

BE FIRST WITH COMPUTER CHECKERS
Also available:
3 Level Chess Challenger. Onily ...... $£ 124.95$
Gammon Master II. Only .........
§155.00

## JAGBERRY LTD.

95 Ardwell Avenue Barkingside, Essex Mail order only
Thousands sold
TEAK or PERSPEX cases

## NEW MODULES

BY FAMOUS MANUFACTURERS ON P.C. BOARDS READY TO MOUNT IN PLINTH, ETC.

STEREO AMPLIFIERS $61 / 2 \mathrm{mn} \times 51 / 4 \mathrm{in}$. P.C.B. $10 \mathrm{w}+10 \mathrm{w}$ for 60 mV input requires $20-22$ V.A.C. TO POWER
2. MATCHING PRE-AMP. Normally powered from (1), four push-buttons gram, aux tape in/out, on/off slider controls. Vol., Bal., Treble. Bass $\mathbf{E 6 . 0 0}$
AMP AND PRE-AMP. Ordered together
ELAC L.S. to sult 8ın. 8 Ohm with tweeter cone Pair for
GRAM AMPLIFIER. $12 \mathrm{~mm} \times 1 \frac{1}{2} \mathrm{in}$. P.C.B. $3 w+3 w$ for 100 mV input. Controls. Vol. Bal., Treble, Bass Requires $15 \mathrm{v}-25 \mathrm{~V}$ DC, $\Omega .16 \Omega \mathrm{~L} . \mathrm{S} \quad £ 5.90$
6. MONO VHF-FM Module $91 / 2 \mathrm{in}$. $21 / 2 \mathrm{in}$. VARICAP Tuner, ceramic I.F. CA 3089 I.C amp-demod, AFC-AGC. Audio Op, approx 250 mV . Requires 20 AC or DC. Few only

Prices inc. P\&P and VAT. Cash with order
ELECTRONICAL SUPPLIES CROYDON
40 LOWER ADDISCOMBE ROAD, CROYDON, CRO 6AA 01-688 2950

## news

## ...digest



VCO ic
A recently-announced VCO IC which has the facility of digital switching between specified frequencies could be very useful in the home computing field. The XR-2207 has four connections for timing resistors - two logic inputs determine which resistor is used. This makes the device very suitable for producing frequency shift keying (FSK) signals for the transmission or recording of digital signals. Other specifications include:

Outputs: square and triangular waveforms Frequency range: 0.01 Hz to 1 MHz
External voltage frequency sweep ratio 1000:1
Temperature drift: 20 ppm per deg. C
Duty cycle: $0.1 \%$ to $99.9 \%$
Supply voltage: $\pm 4 \mathrm{~V}$ to $\pm 13 \mathrm{~V}$
Supply voltage/frequency stability: $0.15 \%$ per volt

The XR-2207 is available from: Distronic Ltd., 50/5l Burnt Mill, Elizabeth Way, Harlow, Essex.

## new service from eti

You can now get the latest news about ETl all night (technology permitting). We've installed a message service on 01-434 1781 which will be operating from about 6.00 pm until 9.00 am the next morning - it is not operational at other times.
If there is something which we want to communicate to you, it'll be on the message; we envisage information on project errors (even if there are none, it's nice to be sure) any hold-up on orders (which is rare) plus any other news.
Try it out sometime - what we will have on there within a week of this issue being published is whether there are any vacancies for our seminars on May 12th and 13th.

This is an experimental service at this stage - we'll keep you posted as to whether it becomes permaanent. If you get a ringing tone or engaged signal, try later - the service is connected to an automatic switchboard and if the message service is in use, your call will be routed to another line (you'll get an engaged signal if two people are trying).

Ever feel you need a good rub down before you start one of our projects? Perhaps you need-

## ETIPRINTS

ETIPRINTS are a fast new aid for producing high quality printed circuit boards. Each ETIPRINTS sheet contains a set of etch resistant rub down transfers of the printed circuit board designs for several of our projects. ETIPRINTS are made from our original artwork ensuring a neat and accurate board. We thought ETIPRINTS were such a good idea that we have patented the system (patent numbers 1445171 and 1445172). ETIPRINTS 007 and 008 are the latest in the series and contain the following patterns -

Star Trek Radio CD Ignition CCD Phaser White Line Follower

May 78
May 78
May 78
April 78

008
Tank Battle Helping Hand

May 78
May 78

Also available in the ETIPRINTS series are:

3 Channel Tone Control Spirit Level Clock A Digital Thermometer Skeet Game Compander

002
House Alarm Rev Monitor Clock B

003
Race Track Game Hammer Throw Freezer Alarm

Oct 77
Oct 77
Nov 77
Oct 77
Nov 77
Nov 77
Jan 78
Dec 77
Dec 77
Jan 78
Jan 78
Dec 77

004
Metal Locator Mk II
Ultrasonic Tx/Rx 5 Watt Stereo Amp (modified) Metronome Porch Light Shutter Timer

Op-Amp Supply Frequency Shifter LCD Panelmeter Light Dimmer (3 times)

006

Feb 78
Feb 78
Jan 77
Feb 78
Feb 78
Feb 78
Mar 78
Mar 78
Mar 78
Mar 78
from 'Electronics Tomorrow"

## ORDER TODAY

Send a cheque or P.O. (payable to ETI Magazine) to ETI PRINT
ETI MAGAZINE,
25/27 OXFORD STREET, LONDON W1R1RF。



Lay down the ETIPRINT and rub over with a soft pencil until the pattern is transferred to the board. Peel off the backing sheet carefully making sure that the resist has transferred. If you've been a bit careless there's even a 'repair kit'on the sheet to correct any breaks!

## HELPING HAND <br> THE SOLUTION to the problem

 posed by the competition was to provide the sick person with a small hand-held unit, capable of (in the original prototype) emitting a piercing two-tone note. When the sick person requires attention, by activating the noise generator, they trigger a control unit which is elsewhere in the sick room.The control unit, after picking up the noise via a microphone, superimposes a high frequency signal upon the mains. This high frequency signal is coupled, via the house wiring, to a modified mains adaptor. This detects the signal and switches on the load (usually a lamp) connected to it. This attracts the deaf person's attention.

Because the mains adaptor is small and inexpensive, it is possible to install such devices throughout the house so that the deaf person is always in tnuch with the sick person.

## Different Approach

This then was the first prototype. Its ideas were incorporated in the final design - the major difference being that the final circuit uses an ultrasonic instead of audio link between the control box and hand-held trigger.

The original unit featured a two-tone audio transmitter in order that the control unit did not respond to ambient sounds but only to the specific two-tone note. This however involved some complex filtering and decoding

Ultrasonics had originally been rejected because the sick person would have no confirmation that a signal had been sent. This problem was solved by fitting an audio mimic to the control unit to confirm that a signal has been received

The final system thus comprises an ultrasonic transmitter, receiver and adaptor.

The receiver has two modes of operation. With the latch control out, the unit will be activated only for the duration of the transmitted signal. With the latch in, the unit, once triggered, will continue to send its signal down the mains. The unit also has a local call button that can send out the call signal.

## Construction

The transmitter was mounted in a

In our October 1975 issue we announced a competition which we were holding in conjunction with the Royal National Institute for the Deaf. We presented readers with three problems for which we felt that there may be an electronic solution.

The winning entry, submitted jointly by John Howden and Clive Musgrove of Bristol was for Problem 1:
"A sick person is looked after by a deaf person. The deaf person has no useful hearing and requires to know whether the sick person is all right and above all needs to know if the sick person is in a state of distress anywhere in the sick room".
The competition winners built up a working prototype which has been somewhat modified subsequently though it uses exactly the principles and ideas described by John and Clive.

More details are given in News Digest.

hand held torch case. The ultrasonic transducer replacing the lamp assembly, and the PCB and battery occupying the original battery compartment.

Most of the receiver is mounted on the large PCB. Take care that all the polarity conscious components are mounted correctly.

We used fairly 'expensive switches in our unit, but considerable savings could be made in this area by using cheaper panel lamps and separate switches.

The adaptor components are so
few that it was not thought necessary to design a PCB, the components are "birds nested'

When complete the frequency of the oscillator should be adjusted in order that it oscillates at the resonant frequency of the transducer.

This can be done by monitoring the waveform across the transducer on a scope and adjusting RV1 for maximum output. This adjustment can also be performed by adjusting RV1 to provide for maximum voltage at the D1/C7 junction.


Fig. 1. Overlay of the ultrasonic receiver board.


Fig. 2. The ultrasonic transmitter board.

## BUYLINES

Arrow Electronics at Leader House, Coptford Road, Brentwood, Essex, will be selling a complete kit of parts for the helping hand. Price is $£ 20.97$ excluding case and switches. The switches cost $£ 14.56$, but as mentioned in the text cheaper alternatives could be found.

The ultra sonic transducers are now stocked by most of the larger mail order firms.


To the left we see the ultra sonic receiver from above. We glued the ultrasonic transducer in place but it would be preferable to insulate this from the rest of the case with foam rubber. The picture on the right shows the transmitter out of its shell.



Fig. 3. Circuit diagram of the ultrasonic receiver. Note that C11 is part of the Denco IFT assembly.


Fig. 4. The ultrasonic receiver's power supply.


The board of the ultrasonic receiver is shown above and to the left the modified mains adapter is displayed in all its glory.


Fig. 5. The circuit of the ultrasonic transmitter


Fig. 6. Circuit of the mains adapter circuit.

## PARTS LIST

## 'MAINS ADAPTER

CAPACITORS
C1, 2, 1n 600 V mixed dielectric
SEMI CONDUCTORS
SCRI C106
MISCELLANEOUS
Mains adapter, Denco IFT 14
ULTRASONIC TRANSMITTER
RESISTORS

| R1 | 100 k |
| :--- | :--- |
| R2 | 4 k 7 |
| POTENTIOMETERS | 10 k |
| RV1 |  |
| CAPACITORS |  |
| C1 | 1 n Polystren |
| SEMICONDUCTORS |  |
| IC1 | CD4001 |

MISCELLANEOUS
Ultra sonic transducer, PC8 as pattern.

## PROJECT: Helping Hand

## HOW IT WORKS

The transducer used in this circuit is forme from a piezo-electric crystal element that resonates at a frequency of about 40 kHz .

ICla and IC1b form an oscillator whose frequency can be varied by means of RV1 to provide energy at the resonant frequency of the transducer used.

The oscillator produces two signals that are $180^{\circ}$ out of phase.

These two waveforms are fed to the trans ducer via buffer ICs.

This method of driving the transducer results in an 18 V (twice supply) drive. This increases the amount of energy radiated by the transmitter and provides a large useful range.

## ULTRASONIC RECEIVER

The receiver transducer is matched to the one fitted to the transmitter and produces an EMF when energy at 40 kHz causes its crystal to resonate.
This EMF is fed via a DC isolation capacitor to the input of IC1, the CA 3035 high gain amplifier array.
It can be seen that this IC consists of three amplifiers and in this application the first stage is used as a simple high pass stage, this
response being tailored by the feedback loop formed by R1, R2 and Cl. The 40 kHz signal is coupled from this first stage via C4 and thence to the final stage by C 5 .
C6 and C7 decouple the IC's power supply pin.

The 40 kHz signal appearing at pin 7 of IC1 is rectified and smoothed by D1 and C8 before being fed to IC2a.

The output of this gate, is normally high and thus C 9 is fully charged on receipt of a signal the output will go low and C 9 will be discharged via R6 (D2 reverse biased) when the voltage at the junction of $\mathrm{C} 9 / \mathrm{R} 6$ reaches the transition voltage of IC2b (one half of a flip flop) it will trigger this gate and initiate the sequence of events described below.

Note, however, that when IC2a returns high, C9 is charged up via R6 and R5 in parallel, D2 forward biased. This results in a faster charge than discharge time. This feature was incorporated to provide some protection against spurious triggering, as a brief signal will, although discharging C9 some what, have little effect as the capacitor is soon "ropped up"
SW1 can trigger the circuit by taking IC2b
low simulating an US input.
The flip flop formed by IC $2 \mathrm{~b} /$ IC2C can
either provide a latching or non-latching operation.
Q1 and LP1 indicates the function selected, LPI being lit if the latching option is selected.

Whether latched on not as the output of IC2b goes high it enables the slow running oscillator formed by IC3a/IC3b. The output of this enables the tone generating section formed by IC3c and IC3d that provides an audio output from the speaker LS1 (driven from the Darlington pair Q4, Q5) and drives IC"2d.
When the output of IC2d goes high it enables the Hartley oscillator Q3 via Q2.
This section provides a 470 kHz 40 V peak to peak sine wave that is superimposed on the mains to trigger the remote receiver.
The power supply is a straightforward regulator circuit to provide the 12 V rail with a smoothed 40 V for the Hartley oscillator stage.
The remote receiver consists of a simple tuned circuit formed by C1, C2 and the IF transformer. This circuit resonates at 470 kHz , and any energy at this frequency is rectified by D1 and triggers thyristor SCR1 to light the load placed across the receiver's output.



Above is the foil pattern of the transmitter and to the right that of the receiver, both shown full size.

| IN4148 Diodes by ITT/Texas. 100 for £1.50. These are full spec. devices. |  |  |  |
| :---: | :---: | :---: | :---: |
| Unencoded Hexadecimai 19 keyboard 1-10 ABCDEF. 2 optional keys. Shift key. £15.00. |  |  |  |
| MM2102 AN-4L. $1024 \times 1$ Bit. 450 nano sec. Static Ram. £1.60 each. $4 / \mathbf{£ 6 . 0 0}$. 8/£11.60. |  |  |  |
| AY5-1013 UAR/T. £6.00. |  |  |  |
| FND 500 Seven Segment Common Cathode Display. £1.30 each. $4 / £ 5: 00$. |  |  |  |
| Red Leds $0.125^{\prime \prime}$ or $0.2^{\prime \prime} 10$ for $£ 1.20$. $100 / £ 9.00$. 1.000/£60.00. |  |  |  |
| Murata Ultrasonic Transducer. £3.00 each. £5.50 pair. |  |  |  |
| 741 Op Amp. 25p each. $10 / £ 2.00$. |  |  |  |
| 555 Timer. 28p each. $10 / \mathbf{E} 2.50$. |  |  |  |
| 4001 | 14p | 4029 |  |
| 4007 | 16p | 4047 |  |
| 4011 | 14p | 4049 |  |
| 4012 | 14p | 4060 |  |
| 4013 | 50p | 4066 |  |
| 4015 | 90p | 4069 |  |
| 4016 | 40p | 4071 |  |
| 4020 | 90p 100p | 4072 4081 |  |
| 4022 | 90p | 4082 |  |
| 4023 | 16p | 4510 |  |
| 4024 | 65p | 4511 |  |
| 4025 | 16p | 4516 |  |
| 4026 | 160p | 4518 |  |
| 4027 | 50p | 4528 |  |
| 4028 | 90p |  |  |
| Prices include Post and VAT |  |  |  |
| XEROZA RADIO <br> 306 ST PAUL'S ROAD <br> HIGHBURY CORNER, LONDON N. 1 <br> Tel: 01-226 1489 |  |  |  |
|  |  |  |  |

## TO GLEAR (FULL SPEC.) LIWITED STOGKS

TEXAS INS. 7410N 14p, 7428 N 22p, 7474 N 21p, 74121 N 22p, 74123 34p
SIGNETICS. N8293 (Low Power Binary Counter 2, 4, 8, 16) 50p, 2102 £1.40, 741 ( 8 DIL) 17p 555 (8 DIL) 37p, S4B Min Rocker Switch $14 \mathrm{MM} \times 20 \mathrm{MM}$ push-in fitting 22p, 2N2192 (plastic, formed T05 Leads), 25p-80p.

All above p/p 10p

## POCKET PAGER

Miniature crystal controlled FM RX Single Superhet around 30 MHZ 450 KHZ IF contains various tone detectors. Ideal for modification to 27 MHZ Radio Control OR 28 MHZ Amateur Band. Many complete with built in $2.5 v$ DEAC + circuit of similar type £3.95. P/P 25p.

A1, A2, A3 Boards still available
L.B. Electronics 43 Westacott, Hayes Middlesex UB4 8AH

## 41911 DTS Specialists in cectronic timekeeping

Sorry, no cheap "Hong Kong Wonders". We offer a wide selection of the world's most advanced watches, coupled with superb Japanese quality and value for money


Available April. Details on request SUPERB SPORTS WATCH
Up to 25 functions. 6 digit LCD. Chronograph timing to $1 / 100$ sec, including 1 st-2nd place times. Superb square plastic case and strap. Water resistant to 100 ft . RRP $£ 24.95$
£19.95
METAL COVERED VERSION
With S/S bracelet. RRP $£ 35.95 \quad \mathbf{£ 2 9 . 9 5}$ ALARM WATCH
6 digits. Hours, minutes; optional seconds or date. Day. Loud alarm, on / off indication.

| Round watch RRP $£ 64.95$ | $\mathbf{£ 4 9 . 9 5}$ |
| :--- | :--- |
| Square watch RRP $£ 74.95$ | $\mathbf{£ 5 9 . 9 5}$ |

## SPECIAL OFFER THIS MONTH

FREE spare battery/s with any CASIO product. (On request, with order):

## NEW CASIO MQ-2

Details last month. RRP $£ 39.95 £ 34.95$
NEW LOWER PRICE CASIO


AQ810
Clock / Calculator Alarm (24 hr) Two-Way Timer Full Memory, \%, $\sqrt{ }$ 3000 hrs batteries $1 / 4 \times 23 / 8 \times 45 / 8^{\prime}$ including batteries and wallet
£16.95

## NEW IBICO 075

Clock/Calculator with calendar STOPWATCH $1 / 10$ sec to 10 hrs. NET TIMES LAP TIMES
Full Memory, \%,
5000 hrs batteries
$8 \times 65 \times 115 \mathrm{~mm}$


Including batteries and case $\mathbf{£ 2 3 . 5 0}$

## THE MIND READER

Your electronic computerised secretary Executives and busy engineers improve your efficiency with this pre-programmed memory system. It schedules your day, every day. Files and displays "things to do" daily Stopwatch, bleeper-timer, dual time, zone clock and perpetual calendar. $10 \times 71 / 2 \times 4^{\prime \prime}$ 91b. AC, battery standby
£299 Plus 8\% VAT
CASIO CALCULATORS
ғх31 £11.95 ғхз9 £15.95
FX140 £17.95 FX120 £19.95
Lco: Lc822 £10.95 Lc78 £16.95
F×2200 £19.95 F×3000 £25.95

## WATCH BATTERIES 65p Ray-O-Vac long life. Most types D.I.Y. KIT 35p <br> Wuin bavery orden) Case opening tool, fits most watches Tweezers, Equiv. list, Instructions.

## 31QR-17B

Probably the besi value for money available today

## £26.95

RRP $£ 3095$

$7+2$ functions. Stopwatch. 8.4 mm thick

$7+2$ functions. Stopwatch. 7.45 mm thick


Six digit, $1 / 100$ second. 7.9 mm thick Unless otherwise stated
CASIO watches have a constant LCD dis play of hours, minutes, seconds, am / pm with day, date and month on demand. With night light, automatic 28,30,31 day calendar, mineral glass face and all stainless steel cases they are water resistant to 100 feet One battery lasts approyimately 12 months. Accurate to Jess than $\pm 15$ seconds/month

SPECIAL OFFER 37CR-10B round
6 Digit watch. RRP $£ 54.95$ £29.95
Solar powered LCD. Seiko display £39.95

Send 25 p for our illustrated catalogue. Prices inciude VAT and P\&P. Send your cheque, PO or phone your credit card

Dept. ETI, 19/21 Fitzroy Street, Cambridge. Tel. 0223312866

# DNHL JUNE 30 NEXT ITS EONNETO COST ONLY   FOR THIS MARK 2 VERSION OF ETIP BRILLANT GAB IGNITION UNTI 

## E.T.I. APPROVED FOR ENGINES WITH NORMAL IGNITION SYSTEM

 REVERT TO NORMAL SWITCHCAN BE MOUNTED ON DASHBOARD NO MORE BURNT CONTACT POINTS
REV. LIMITER NEON LIGHT INDICATOR NEG. EARTH

## Better than the 1973 version!

Since we first presented E.T.I's original E.T.I. (Electronic Transistor Ignition) Unit five years ago, we have sold well over 15,000 to the delight of motorists everywhere. In that time we have made small modifications and improvements of our own - P.C.B mounted components, for example and circuit and manufacturing adjustments - all adding up to even greater reliability. Now, with E.T.I we present an up-dated unit at prices (kit or ready built) you cannot afford to ignore in these days of ever costlier motoring. This is the unit to give your car the more efficient sparking it needs to give better starting. lower petrol consumption, less engine wear, less strain on batteries, and NO MORE BURNT CONTACT POINTS. ORDER NOW BEFORE JULY 1st AND SAVE $£ 2.80$ ON THE KIT ( $£ 2.25$ on the ready built model) ORDERS MET $\mathbb{N}$ STRICT ROTATION SO ORDER YOURS NOW WITHOUT DELAY. (Please allow 28 days for delivery.)

Easy to build kit including all components, drilled and titled PC. B. drilled aluminium Easy to build kit including all components,
case, transtormer, switch. coloured leads. elc., with simple to follow instructions for neg, earth cars. KIT Complete kit of parts as described and recommen
$€ 9.95$ (If ordered after June 30 E12.75)
BUILT AND TESTED inc. V.A.T and sent post free in U.K


# ROBOTS-THEFACTS 

## Dr Peter Sydenham, ETI Special Correspondent presents the factual side of Robots and analyses the many seperate factors needed in all Robots.

ROBOT DEVELOPMENT from the Middle Ages onward is simultaneous with the rise of man's ability to devise and build complex mechanical machines which grew once men realised that considerably more advancement was possible by employing experiment with theory. (The result of such men as Roger Bacon of the 13th century.)

The bulk of mechanical ingenuity and skill was expressed in clock-making of great sophistication. The very famous 1354 Strasbourg clock depicted the St. Peter denial of Jesus, a main feature being a cock that moved, stretched and crowed

These skills were occasionally employed to make devices other than clocks. Jacques de Vaucanson, around 1750, constructed a well-documented duck automation toy. It stretched, took grain from the hand, swallowed and seemingly digested its food, leaving deposits behind. It consisted of hundreds of moving parts.

Robot development also has its beginnings in the form of calculating machines, such as the Pascal and Leibnitz instruments of the 17 th century, and the later Babbage engines of the 19th century which included stored program and digital number processing.

We tend to think of the Babbage calculating engines as complete in what is exhibited today in the London Science Museum. In reality, however, they required an energy source of several kilowatts to drive them. A small steam-engine was to have been used by Babbage.

The first electrical digital computer, by Zuse in the late 1930s, used relays to perform logic. The first valve installation was in the middle 40s and it was much too large in size and too small in capacity to provide brain-power for a mobile robot device. Today things are much more favourable. We return to the feasible robots of near modern times at the end.

## What Forms a Robot?

In the first half of the 17 th century Descartes suggested that the physiological animal can be thought of as no more than a vastly complex machine. Intolerance of ideas, especially those that had religious implications, was extreme in those times and no doubt Descartes only spoke and wrote a little of his concept. Pascal, for example, was dangerously close to being the subject of a witch hunt after people saw his simple (to us!) add-andsubtract calculator - after all, it could do the tasks attributed then to a god.

The idea that animals are merely machines is known as the reductionist or mechanistic philosophy. As we cannot prove, by any means whatsoever, that there is more to man than man can ultimately devise, we cannot,
at present, resolve the issue. Nevertheless, there is much about animal systems that is reducible to plain engineering. It is these known facts that suggest that many jobs that were considered as man-suitable in the past could well be done by machines instead. The justification is, to use a well-known quotation, "to make human use of human beings". If an automaton can do the same tediously repetitive task as is done now by a bored and dehumanised human operator, then there is a case to make use of it. This is the story of man's industrialisation, especially since the 18 th century.

The human animal is a fine example of a generalpurpose, mobile, self-repairing, self-reproducing machine, one that can adapt to new tasks and new environments as need arises. It is not perfect for all jobs, but does provide a fine basis for modelling robots of work, even though the materials and strategies used are different in practice.

Animals can be thought of as hardware systems, consisting of several kinds of sub-systems put together to form the whole system. The complete system is capable of many modes of behaviour. A diagrammatic representation is given in Fig. 2. Let us look at the building blocks first.


Fig. 1. Clocks, like this one made in 1512 in Munster, Germany, incosporated great mechanical craft. They provided need for mechanical skills used in robot devices.

Structural framework - This is the mechanical part holding everything together. Bones, skin, tissues in the animal can be equated to metal, wood or plastic frames of machines. The framework is developed to satisfy, as a compromise, requirements of lightness, rigidity, appropriate articulation, protection for vital parts, and correct location of one part with respect to another. Note that robot machines do not use the same materials that are found in animal systems. To date it has been more profitable to use quite different substances because man knows too little about the production of regenerative, self-repairing materials used by nature.
Actuators - On to the frames are added converters that change the available energy form into mechanical work. On animals these are the muscles; on robots they are usually electric, hydraulic or pneumatic motors. Again although muscle-like devices have been made, robot actuators use different principles of conversion and different energy sources from animals. Actuators cause limbs to move, hands to hold, and the whole to translate where needed.
Sensors - Automata that, for instance, play music, are preprogrammed. Regardless of external influences, once set going, they will attempt to keep playing despite changes to their environment. Robots can be much more sophisticated for they possess sensors, or receptors, that observe what is happening around and to the robot. Sensors provide signals that, after data processing, tell the actuators how and when to work in a way that modifies an otherwise hardwired kind of performance.

It seems that many animal senses work on the basis of having a multitude of on-off digital sensors built into each sensing device, the combined, parallel, signal output being a measure of a sensor signal strength. Robot sensors rarely work this way for we are unable to handle so many parallel channels as nature uses. Robots usually incorporate analogue output sensors - the so-called linear signal in integrated circuit jargon. To detect the seat of a fire, an automatic robot fire extinguisher will use a proportional signal infra-red detector homing the robot towards the position of maximum signal output. In some cases man-made robots do use digital output sensors but not so commonly as analogue ones. An example might be a digital shaft encoder sensor mounted to measure an arm's angular position.

We cannot measure every variable that arises in the material world. Even so, literally thousands upon thousands of sensors have been devised so the robot designer of modern times can go a long way with what exists already, especially if one sticks to industrially marketed units in order to keep costs low.
Data Processing Centre - Signals from sensors are routed to DP centres. The brain is the central unit of humans. Not all animals have only one brain. Some early prehistoric animals are believed to have had two brain centres. Signal pre-processing goes on in animals before a stimulus reaches the brain. This can also be the case in robots. Robots can have local brain-power plus a central unit. We cannot make much of a comparison between DP of robots and animals, for we still have only a meagre idea of how the physiological brain operates. Insight that we do have is enough to say that robot brains will be quite different in physical structure from animal brains. We tend to opt for non-redundant data processing methods using a limited number of binary

## Terms

Robot - In Gothic it is akin to a word meaning "inheritance", in German to "work". An old Slavic word that is equivalent is "rabota" and in Czech and Polish "robota" means servitude or forced labour. Professor George's book (see list) says it is 'a machine devised to function in place of a living agent"
Robotics - Gaining rapid acceptance, this term describes the discipline that designs and creates robot device structures and sub-assemblies. The following word is reserved for its system organisation.
Cybernetics - Study of multiple feedback loop, selfgoverning systems, usually of great complexity, as are found in living organisms and advanced man-made control systems.
Automation - Any device that has apparently spontaneous action. (Plural is Automata.)
Humanoid - Robot form of man.
Android - Automaton of man-like form.
Homunculus - Inferior robot form of man.
Prosthesis - Man-made, human body replacement parts.
Ecoskeleton - Robot frame that fits around human to give power to limbs.
Golem - Man-made creature not having man-like form.
Mobile - Robot device having mobility.
Manipulator - Handling device.
Telechiric - Derived from Greek for "distant hand"
locations. The brain appears to make use of massive redundancy and enormous bit storage capaciy (1020 is an estimate).
Communication Links - Sensors feed signals to actuators via DP centres. The links we know and use in automatic machines are electric wires, optical fibres, air and oil tubes. Nature, however, uses the nerve links in which pulse signals are regenerated in mysterious ways by electrochemical methods. We can make use of Nature's concepts but not her hardware methods.
Energy Supply - Animals derive energy converting foodstuffs into energy by chemical means in muscular tissue. Robots cannot do it this way, but make use of the sources known to man at this time. Electricity can be generated by converting fuel to electric current. In mobiles a usual source of energy is electricity from storage cells. Restricted mobility and fixed robots can obtain power by an umbilical supply cable. Hydraulic and pneumatic systems derive energy from their compressor unit - the lines act as energy transmission links to the converter unit.

Robots that perform work will be somewhat inefficient for all energy systems will have losses. The human system consumes around 100 W at a rest condition (of which most is lost as heat) and can provide about three times this power as work for limited periods. This would, by implication, suggest that a robot doing the full tasks of a man needs a 400 W supply capability.

The man machine looks quite puny: 400W is not exactly powerful. Robots are not so limited: For a start, a man begins to tire after a few hours at 200W output -a machine equivalent can go on tirelessly. Robot manipulators can provide whatever power level is desired. They are made to lift huge loads. An example is a framework that a man fits into, giving him arms that follow his own with greatly increased load capability.


Fig. 2. $\bar{R}$ obot systems are made up from sensors, actuators, and data processing power operating together to satisfy a number of operational modes.
Motivational Mode - In-built must be some means that ensures that the robot constantly goes about the business for which it was created. This mode is temporarily given lower priority when circumstances dictate. As a simple example, a mobile designed to cut the grass of a lawn may need to divert its attention from grass cutting toward a battery recharge. After charge it must return to its duty.
Survival Mode - The programming basics must incorporate means to put the robot into behaviour modes that reduce and, hopefully, eliminate damage to the robot. The lawn cutter above must recognise that the concrete edging or stray stone must not be brought into contact with its blades. The survival mode must also extend to preventing the robot doing damage to its environment.
Energy Maintenance Mode - As well as the obvious need for the robot to ensure that it has power enough available for instantaneous load, it should also be able to prepare an energy budget of near future need. If it is a battery-fed mobile, it may well find itself out of energy enough to get back to the recharge point.
Exploratory Mode - Robots can have greater than one purpose. Such purposes may not exist all of the time and all in one place. When no purposeful sensor signals are received, actuators should be set by a sub-programme to cause the robot to go and look for a task. In animals this is seen as inquisitiveness. Without it humans are referred to as lazy and unmotivated, as would appear a robot.
Maintenance and Self-repair - The good robot is one that does not deteriorate in performance. This is not a reality, however, for although wear rates of mechanical implements can be reduced by better design and more expenditure, it usually can only be done at greatly increased cost. It is to be expected that robots, at least for many years yet, will require maintenance like greasing, bearing replacement and sliding surface repair.

The first thing the robot will need to do in this mode is to diagnose its own troubles, deciding what repair action is to be taken. Then it must organise some way to replace parts. This mode is probably more idealistic than real for most robots at present, but the software programmer and robot designer should, at least, give some consideration to this need.


Fig. 3. Underwater a robot manipulator provides an operator with an effective ecoskin and increased ability to do work.

## Robots and People

In 1942 Isaac Asimov put into words three laws of robotics that have become famous in this field. They refer to the relationship between robots and people that designers should bear in mind for obvious reasons. The laws are:
(1) A robot may not injure a human being or, through inaction, allow a human being to come to harm.
(2) A robot must obey the orders given it by human beings except where such orders would conflict with the First Law.
(3) A robot must protect its own existence as long as such protection does not conflict with the First and Second Laws.
Asimov never intended the laws to be the one and only guide to robot designers - far from it, they were the result of science-fiction writing. They are not foolproof and do not extend to all situations, but do remind us of some basic ideals to consider in programming a robot's behaviour pattern.

## Programming the Robot

A fully determined robot performance, that is, one that will obey instructions that are all preset before it begins to work, is little better than a special-purpose machine. It cannot do other than what is expected by its programmer. This basic level of performance is required of many robots, but is not the complete capability. It might be preset by a punched-tape or magnetic tape in the same way as many domestic knitting machines work. Most manipulator robots get these instructions via an initial man-operated run using special controls that allow the operator to run the manipulator through the required manipulative routine. Once done it becomes a stored programme routine.

Far better, if possible, is to servo the output required according to inputs of error. For example, to put a pin in 'a hole is better done by viewing the error between the pin and hole reducing the error to zero rather than presetting an arm to put a pin where the hole is expected to be.

The latter open-loop method assumes that all relative positions of limbs of the robot are held within the final tolerances needed to put the pin into the hole - which


Fig. 4. The Ameise Teletrak driverless tractor train guides itself to follow a guide-wire set into the floor. One day it may be economic to provide the robot with navigational ability that compares with that of humans.
are extremely tight limits in many cases. The former method makes use of feedback and it is a feature of servo systems that actuation components inside the loop can be reasonably inferior in quality. This is a most important system concept - think of the problem of finding a place on a map by dead reckoning from a set of distances and bearings, as opposed to improving one's situation as you go by recognition of error still existing

## Recent Robots

Many authors on robotics include mention of a wide variety of inter-disciplinary automatic devices. This broadens the subject enormously and is a quite reasonable thing to do for robots can take any form. For reasons of space, we restrict ourselves here to mobiles and manipulators.

It is said that the term "robot" gained public acceptance as the result of a 1923 play by Karel Capek. It was at that time in history that ideas about automation began to flourish in earnest because of the favourable technological atmosphere. Electronic amplification was just available, mass production of consumer goods was established, sophisticated industrial control was emergent at a seat-of-the-pants level (theoretical considerations came later in the late 1940s).

Electrical computation began in the late 1930s, resulting in the first working vacuum tube system in the 1940 s. Computer research no doubt stimulated interest in artificial intelligence, Al for short. Things were really happening by the 1950s. Studies of adaptive control, self-organising systems, Al and a new discipline called cybernetics were developing rapidly - research workers became very optimistic that machines would soon be able to design better machines. But they found over the successive years that it was not so easy!

Cybernetics was the term popularised by Norbert Wiener in 1957 for the discipline covering selfgoverning systems of all kind, seeing them basically as all the same thing, regardless of application. The term is derived from the Greek language and means the art of steersmanship. It is of interest to include the fact that Ampere had previously used the term to describe the science of government.

Theory of automata became an established pursuit a


Fig. 5. ROMAN, a recent Harwell mobile, is made for use in hazardous industrial situations. It is electrically powered using cable control.
little later. Pattern recognition was another related area that became fashionable to work on. By the early 1970 s the realisation that these ideas would not blossom so quickly, if ever, to give regenerative machines and robots replacing men in all their faculties, was accepted. Such goals are now seen to be much further away.

Today the past efforts of many people in the above fields have been tidied up, extended, ignored and much has been weeded out as irrelevant or false, leaving today's robot designers with a very useful and full theoretical and practical background to work from.

Mechanical design aspects of robots have advanced through work in prosthesis, in nuclear materials handling, in a relatively few academic engineering departments and within a small number of industrial groups.

Data processing for robotics concentrated on seeing what could be learnt from biological systems - maybe this was not so fruitful considering that designers have to work with different materials than nature uses. Then came the mini computer, almost small enough to build into a reasonable size robot device. Costs at first were prohibitive. Computing power and speed were very limited for operating robots at the motional speeds and precisions needed. Today we now have the quite cheap microprocessor, where the larger part of its sale price is for the market promotion, mechanical packaging and application notes.

## Before Time

Advanced ideas usually meet opposition in a society. Bruno was burnt at the stake in the 1500 s for suggesting astronomical theory was wrong. Pascal nearly went the same way for making his adding machine. Even Ohm had his simple law of the 1830 s opposed by men of learning. The road car was held up in development for over 60 years by the need to walk in front of a vehicle with a red flag. Fear, preservation of the status quo, misplaced motives, politics and the natural and more healthy need for cautious acceptance usually emerge before a new concept finds acceptance.

So it has been with robots. Science fiction writers paint both gloomy and happy scenarios with robots. We tend to remember only the former. Robots are merely


Fig. 6. Four projects of the Warwick University Robot Laboratory. That on the left uses an inboard microprocessor. At the rear is a hand-like short arm manipulator. The tracked vehicle
machines of greater capability and versatility than man has made to date. As with all of man's technology, he has to learn to use them appropriately. We should not fear the robot but look deeply into its value to us.

Returning to earth from the levels of philosophy, it is quite certain that the robots we build over the next decade will not challenge our existence. We know too little at this time to build them with such powers. There are, however, numerous requirements where robot devices can replace men performing tasks too hazardous for men to do. Machines are the extension of man on earth and no force is likely to stop man's use of tools which has been part of his culture from the very beginning.

## University Research

Robots of the future will make use of techniques discovered and developed in research groups working on artificial intelligence, robotics, computing science, electronics, plus many more areas.

The Science Research Council of Britain supports robot research. The main laboratory of the Robot group at Warwick University is shown in Fig 6. In the same room is the computer terminal to which the four projects shown are hooked-up to give them significant data processing ability. Around the walls are placed acoustic transducers used in positioning work.

A group at Edinburgh University work on putting artificial intelligence into robot devices. They have built a servo-controlled, computer-based, handling system.

A prime purpose of University research is to seek
is originally sold as the army bomb-disposal unit - it acts as a ready made vehicle to conduct research on. (Keystone Press Agency)
better ways to achieve goals. Theirs is not really a task of building devices that are totally engineered. For this reason one seldom sees a finished robot but more units in stages of change.

Never before has the field of robotics been so ready for development. Simple robots with quite sophisticated brainpower are in the price range of the nonprofessional. Amateurs can now enter the field knowing that the capability of their effort made now will be improved as efficient and powerful strategies are transferred to the general public domain at low cost via mass-produced integrated circuitry and software packages. A good comparison is seen by remembering that visual display units that write words were wonders of the time ten years ago. Now the equipment is reasonably standardized, far more advanced and within the price range and building capabilities of many teenagers.

## Organisations

British Robot Association
Secretary, Dr. M. Larcombe, Robot Laboratory, Department of Computer Science, University of Warwick, Coventry, U.K. (A professional body with leading manufacturing companies as members.)
Robot Institute of America
20501 Ford Road, Dearborn, Michigan 48128 , U.S.A. (This professional U.S. body has recently inaugurated a medal - the RIA Joseph G. Engleberger Award - for individual outstanding contributions to the science and practice of robotics.)

1) A stone deepest into a pond sends ont circular ripples. If \& the outer ripple icranaes ok $6 \mathrm{ft} / \mathrm{see}$, how fast is: ara growing when be radius $=7 \mathrm{ft}$.
2) A circular porch of oil spreads out on water. the area 6 Sor.cm per mir. Haw fast is be rachius lir radius is 2 cm .
(1)

$$
\begin{array}{rl}
\frac{d A}{d t}=? & A=\pi r^{2} \quad \frac{d A}{d r}=2 \pi r \quad \frac{d r}{d t} \\
& \frac{d A}{d t}=\frac{d A}{d r} \times \frac{d r}{d t}=2 \pi r
\end{array}
$$

fo.
$\stackrel{i}{e}$
when $r=7 \quad \frac{d A}{d t}=8$

$$
\begin{aligned}
& \sum_{k} \text { (2) } \quad \frac{d r}{d t}=? \quad A=\pi \pi r^{2} \quad \frac{d A}{d r}=2 \pi r \quad \frac{t A}{d t} . \\
& \sqrt[5]{160} \\
& \text { रे , s4049=7. } \\
& \frac{d A}{d t}=\frac{d r}{d t} \times \frac{d A}{d r} \\
& 6=\frac{d r}{d t} \times 2 \pi r \\
& \frac{11}{b}=7{ }^{n}=\frac{5 \varepsilon \rho b}{d t}=\frac{3}{\pi r} \text { when } r=2 \\
& \frac{11}{b}=7_{2} \approx 5 \\
& b=7_{2} \text { ns } 11 \\
& \frac{d \mathrm{c}}{d t}=\frac{3}{2 \pi}=0.47 \mathrm{~cm} \\
& \text { Sig }_{2} \quad 7_{2} \because 5 t=7_{2} \because 56-6 \\
& 72 \because 52=(72 n 5-1) b \quad \neq \div 2=(7-06) \backsim 5 \quad \varepsilon \\
& \exists_{2} \cdot \frac{5}{}=7_{2} \operatorname{sen} 6 \quad \Rightarrow n_{s} z=7 \operatorname{sen} \varepsilon \\
& 1 \mathrm{~F}_{2}+{ }_{2} \mathrm{~S}
\end{aligned}
$$




JC12. JC20 AND JC40 AMPLIFIERS

 our rape of metchiny powir mo promp bits.

## FERRANT ZN414



BATTERY ELIMINATOR

## BARGAINS

TV games power with stotlized 7.7 N 100a 53.25


 mons enit $71 / y 100 \mathrm{y}$ with $5 \rightarrow$.



BATTERY ELIMINATOR KITS

 type 7 lity 100 ma wilh dia pling E1. D0. Tramisisior





BULK BUY OFFERS
Miximin murchase $£ 10$ any mix tram mie sution anly.



 $3 \times 3$ 10 $33 \mathrm{~V} 5 \mathrm{y} / \mathrm{y}$.

BI-PAK AUDIO MODULES
 E3.47. BMren E5. Be. Semd sea lor tre lata

## SWANLEY ELECTRONICS

DEPT. ETI, PO Box 68, 32 Goldsel Rd., Swanley, Kent BRB 8 TQ
Mall order only Please add 30 p to the total cost of order for postage Prices include VAT. Overseas customers deduct $7 \%$ on thems marked and $11 \%$ on others Official credit orders welcome

## BARGAIN PARCELS SAVE POUNDS

Huge quantities of electronic components must be cleared as space required. 1000's of capacitors. resistors, transistors. Ex-equipment panels, etc. covered in valuable $28 \mathrm{lbs}-£ 12.00,56 \mathrm{lbs}-£ 20.00$, $112 \mathrm{lbs}-£ 30.00$

## BARGAIN PACKS



DELUXE FIBRE GLASS PRINTED CIRCUIT ETCHING KITS
includes 150 sq . ins. copper clad $\mathrm{f} / \mathrm{g}$ board. 1 lb . feṭric chloride. 1 dalo etch resist pen, abrasive cleaner, 2 mini drill bits, etch tray and instructions - onty £5.30.

REFILL PACKS FOR ABOVE
150 sq ins fibre glass board
$200^{\circ}$
$-90 \mathrm{p}$
11 b . ferric chloride to mll spec
5 lbs ferric chloride to mil spec
Instruction sheet
Op P \&P. ON ALL ABOVEITEMS. SEND CHEQUE OR POSTAL ORDER WITH ORN. SE8 SENTINEL SUPPLY DEPT. ETI, 149a BROOKMILL ROAD.

## TWO NEW SUPERMODULES 170W INTO 4 OR 8 OHMS



By popular dernand we have designed higher powered versions of our well known modutes. The CE 1704 which gives 170 W into 4 ohms and the CE 1708 which gives 170 W into 8 ohms are physically similar to the original types and have the same combination of compatible performance features which makes CRIMSON amplification audibly superior to the competition and the only choice if you have an earerb TOROIDAL TRANSFORMERS, only 50 mm high, with a $120-240$ primary and single bolt fixing. Write of phone for more information and biased opinions.


## TECHNALOGICS PROUDLY PRESENT <br> "LOGISCAN Mk. II" <br> COLOUR TELETEXT DECODER

## WITH "NEW <br> FACILITIES'"



YOU CAN NOW būY A"TELETEXT DECODER TO THE LATEST BBC/IBA/ BREMA JOINT SPEC. (NB. Many other decoders are not full spec. display).
THE LOGISCAN MK. II OFFERS THESE EXTRAS:
« Double/ Single Height

* Background Colour Fix
* Conceal/Reveal Switch
- Unfix (revert to black)
* Discrete Graphics
* Graphics Hold/ Release
* Auto Newsflash
* Contiguous Graphics
* Flash / Steady Display
- Roll Mode
- Sub-title Inserts
* 6800 MPU Compatible * DMA Capability
* Kit is complete with case, psu * Header Switch *Freeze switch FULĪ T̄ECCHNICAL BACK UP SERVICE
- 12 months' guarantee on all parts - subject to correct assembly and use.
- Board fault finding service (boards unpluggable for easy dispatch) Interface included
- Technical advice on installation.

We are also glad to announce that our decoders are available installed in either $26^{\prime \prime}$ or $22^{\prime \prime}$ colour televisions for just over $£ 500$ and are available for view or purchase from Colourvision, Smithdown Road, Liverpool L18

KIT £205 + $12 \frac{1}{2} \%$. BUILT $£ 265+121 / 2 \%$
Details large S.A.E. Mail Order
TECHNALOGICS
8 EGERTON STREET
LIVERPOOL L8 7LY

# ROBOTS 

 BRAIN POWERROBOTS DO NOT HAVE BRÁINS. 'Wet logic' technology - brains to you - is many orders more complex. than the world's most complex machine (which is probably the International Telephone system, not any supercomputer). Robots are however extremely bright - for machines. They are much smarter than computers - which suffer from the so-called GIGO syndrome (Garbage In, Garbage Out). Unlike the dumb computer they answer'back - ask a smart robot to walk through the wall and you will get the robot equivalent of a flea in the ear. Give them a reasonable task and they will carry it out - give an impossible task and they will either a) refuse to do it, b) try to do it for a while and then give up, c) have a seizure (badly designed robots only - as we do not yet really know what makes a good design, this means most of them).

## Through A Robot's Eyes . . .

It is easy to be patronising while watching a robot at work - especially as their vision is either poor or non-existent. A few minutes attempting to perform the same task using the same robot body under remote control and using the robot's own sensors soon convinces the human that the robot itself is best qualified to control its body. Without direct visual feedback remote control becomes exceedingly difficult - when dealing with feedback from non-human sensors such as sonar or doppler radar, virtually impossible. In its own sensory environment the robot is a master of control. In our laboratory at Warwick where robots use sonar their behaviour in the dark is much superior to that of their designers.

No undisclosed miracle of technology lies hidden within the robot's carapace - no 'positronic brain' is required. Most of the more advanced robots contain or are controlled by - computer, and frequently by multiple computers. With the advent of reasonably powerful micro-computers with 16 bits or more to chew the computer power can now be contained within the robot body. The smaller 8 -bit micro-processors tend to wheeze and groan under the processing load required for even a small robot. The really high 10 robots still tend to cling to the apron strings of a big computer but it

# Dr Mike Larcombe investigates the logic that makes a Robot think it thinks! 

is only a matter of five years or so before they can cut loose.

Now if you had been paying attention you would have noticed that in the first paragraph I was somewhat disparaging about computers. Yet computers control robots - how come the robot is smarter? Well the robot is a lot more than just computer - it has sensors and actuators and perhaps a boxful of specialist processing functions such as motor acceleration-deceleration control or positional servo systems. A small robot will have more input-output channels than many of the larger time-sharing computers. The robot's necessary data handling load may well exceed 10 Megabits/second much too fast for a micro-processor by itself. Fortunately much of this load is trivial - such as limit switch logic and is easily handled by special logic, but nevertheless it must be handled. The road to automatic control is littered with sad and pathetic figures who thought all they had to do was connect the wires into a computer and it would do it all, 10 Megabits/second requires a great deal of computer and a great deal of money!

## Flexibility

A robot program is unlike an ordinary computer program such as a payroll program. A payroll program is a set of sequential steps moving data, making decisions and ultimately stopping. A robot program is attempting to weigh up a continuously changing 'situation' and assess what to do in that situation - much as an analog computer is continuously monitoring both its inputs and its internal state. It is no good having a robot which does not realise it is about to - or has - run into a'wall because the program has not got to the wall bumping bit yet. (I am supposed to be a bit asbent-minded myself, but this is carrying 'thinking about something else' to extremes.)

Further distinctions between the payroll programs and the robot programs may be made. The payroll computer does not require any knowledge of the nature of space and time - indeed it has no 'knowledge' of what it is doing. In fact it is a classic GIGO program input 'BLOGGS, F PAY RATE - 97.5' and poor old Fred, gets a negative pay packet and is unlikely to be


Fig. 1. Sketch of a possible research project under consideration at Warwick University, Robot Laboratory. All the various
sensors have been proven individually, if they get enough money they want to prove them collectively:
few useful facts about it (does it move if pushed? does it move by itself? is it round? how wide is it? can it be circumnavigated? does it emit ultrasound? does it emit light? etc., etc.) these facts may then be entered into the world model by the robot itself. This may seem a small step, but for robot-kind it is a giant wheel-turn. The robot's behaviour is governed by comparing the incoming data with the stored world model data, but the robot itself is modifying this data - therefore the robot is modifying its future behaviour. This is at the very least a form of learning - that is to say, it is to some extent unpredictable.

## Free Will

The robot is deterministically programmed. There is an old saying about computers to the effect that the program is only as good as the programmer. In the case of robots this is no longer true in its original sense since two programmers are at work. In addition to the human programmer the totality of the robot's environment acts as a 'programmer'. Since the mechanics of the world are imprecise this second programmer never repeats is program exactly.

This indeterministic nature becomes clear when during a robot operation something surprising occurs and I am asked what is it doing. I usually have to say I do not know since the only way to find out for sure is to get the robot to explain in some way or to stop it and inspect its memory. Either way can take some time. There is a
well known robot simulation program (illustrated) which deals with manipulations of stacks of geometric solids such as cubes and pyramids - the interest being that while you can stack cubes upon cubes and pyramids on cubes you cannot stack anything on a pyramid. This program has the advantage for the layman of communicating via a computer termina! in a reasonable facsimile of English. Having completed some long sequence of moves to stack a small blue cube on a big red cube (involving clearing everything on top of both cubes out of the way) the computer pauses and the programmer asks it: "Why did you move the green pyramid off the blue cube?': the computer answers 'To reach the blue cube.' The programmer probes further: 'Why did you move the yellow cube off the red cube?': the computer answers 'So that the blue cube may be placed on the red cube.' The programmer in great inquisitorial enthusiasm asks 'Why did you place the blue cube on the red cube?'. With the reserve only computers can muster, it replies 'Because you told me to.' This 'back-tracking' is relatively easy in a simulation program and the computer used was very large. However, in a small mobile robot program space is at a premium and exotic 'chatty' communication impossible. The same space premium forbids the storage of all events - it is necessary to build in methods of selectively removing surplus data - a forgetory if you like. This is akin to the short term memory system we appear to use: important stuff is kept and the junk is forgotten. This selective 'purging' may remove the data required for back-tracking and it may be impossible to determine why the robot behaved as it did in a particular situation.

The robot may be given a bag of problem-solving tricks for using in conjunction with its memory one of these may, for example allow it to solve the problems of getting about a maze-like environment as quickly as possible by 'mentally' finding the route before actually covering it (Fig. 2). There may be other specific strategems for manipulation and so on. At the moment of writing however, the robot is not really capable of learning new tricks for itself. This may require an extension of the world model concept to cover more of the dynamic and sequential aspects of task learning.

## Here, Boy . . .

Robots are not yet capable of the full range of intelligence we expect even from an animal. They cannot learn new tricks, yet they can solve goal-seeking problems which would baffle a dog and can communicate in English with some degree of understanding. Clearly they do not fit in to our usual categories for intelligence. The term 'machine intelligence' should be considered for the moment as standing apart from our normal spectrum of intelligence. When we know where to put it in that spectrum we will have learned much more about intelligence itself. Experiments with robots and in the field of Artificial Intelligence will help to elucidate this age-old puzzle of thinking. I suspect that just as in movement the robot is more likely to use wheels than legs it will use something dissimilar in structure to the brain for its 'thinking.' What is important is that as we understand the dynamic principles which govern both wheel and leg we also find the principles that govern both machine and biological intelligence.

ETI


Fig. 2. An example of what can happen when you tell a robot to travel from Start to Goal.


Fig. 3. The way a robot moves blocks around can lead to biunt replies from the computer:

## C.C.D. PHASER


inc. VAT \& P\&P
-70 db signal to noise ratio
This kit comes with silkscreened, prepunched case and is complete down to the last nut and bolt-all you need are a soldering iron, solder, wirecutters and screwdriver plus an evening's work.
(Maif order only)
LOTUS SOUND
4 Morgan St.
London, E3 5AB

TRANSFORMERS
Panel Meters, Bridge Rectifiers, Power Supply Units Multimeters - Semi Conductors - Timers - Safebloc


## BUILDING THE TANK BATTLE TV GAME? BUY FROM US AND YOU'VE WON HALF THE BATTLE

TANK BATTLES
Based on AY-3-8710
chip
B \& W Kit
Colour Kit
Mini Kit


Now ONLY £19.90 £ 25.90 £13.90

STUNT RIDER
4 GAMES based on the

## AY-3-8760 chip

B \& W Kit
Colour ${ }^{\text {Mit }}$ Mit

SUPER TELESPORTS 10 GAMES
based on the Now AY-3-8600 chip ONLY B \& W Kit . . . . . . . . . . . . . . . $\mathbf{£ 2 0 . 5 0}$ Colour Kit . . . . . . . . . . . . . . $£ 26.50$ Mini Kit . . . . . . . . . . . . . . . $£ 13.90$


* On screen scoring coded to player.
* Triple sounds through TV speaker.
- Auto ball speed-up-mode.
* Controlled by joystick and fire/serve button.
* Single 9v supply.
* Exploding mines and terrain barriers.
* Guided missile shells
* Battle as Pro fessional or Territorial Soldier.
* On screen scoring coded to tanks
* Tanks controlled by toggle switches or joystick and fire button.
* Realistic tank, shell burst and explosion sounds through TV speaker
tingle gv supply.
Mini kits include instructıons LSI, PCB, LSI Skt, CoIl, Kits include full instructions LSI, PCB, pre-tuned UHF and sound modulators, etc. and Sound Modulators, pre-tuned $£ 5.50$ (pair). Joysticks for AY-3-8600 £3.50 (pair). Joysticks for AY-3-8710 (TBA) colour encoder module, pre-tuned £6.60. Regulated mains adaptor $£ 3.50$.

VIDEOTIME PRODUCTS
the video and time products people
Trade enquiries welcome

56 QUEENS ROAD BASINGSTOKE, HANTS RG21 1RE
TEL. (0256) 56417

# ROBOTS BUILDING GUIDE 

# Dr Michael Larcombe of the Robot Laboratory, University of Warwick and ETI Special Correspondent Dr Peter Sydenham give a background into building your own robot. 

PROBABLY THE MOST IMPORTANT thing to realise is that successful robots do not grow as can an electronic circuit development. Mechanical structures and components are vastly more time- and money-consuming to alter as changes are seen to be needed. Because of this the deficiencies of mechanical elements incorporated into a robot tend to be retained. Add a few of these shortcomings together and the device will not perform as expected.

Thus planning is vitally important from the word go. Many decisions must be made before money or time is committed to specific hardware. The ability to imagine and synthesise the finished product before it is built is the skill that humans have over the robot - so use it well.

## Getting Under Way

The imaginative process of design is greatly aided by the use of diagrams, sketches, plans and written results. A tidy report file must be kept going from the start of the project.

After deciding what functions the robot is to fulfil, the next step is to develop a master system diagram of the whole, detailing the various sub-systems and their interaction with other sub-systems. Figure 1 is an example. Wherever practicable, try to develop the overall system as one built from basic system units that can be developed and tested as separate units in isolation.

Keep the master schematic block diagram updated each time major changes are incorporated. For each block, or group of blocks, there should be further diagrams showing more detail of the construction and circuitry. Even the simplest robots can soon become too complex to record as a whole. An orderly hierarchy of records is needed.

When the stage of realisation of adequately basic schematic diagrams is reached, the design can then progress to the creation of the blocks, designing each sub-unit to suit the specifications decided earlier. At this juncture (and later) several earlier decisiorfs may turn out to be inadequate so, once the final change is agreed upon, go back and modify the master system and other blocks as is necessary.

It is always preferable to design the sub-units so that they can be tested easily. It helps build confidence in the design as they can be pre-tested before final assembly of the whole. It also makes good sense to be able to isolate
a unit easily when a fault occurs that must be traced. Pre-testing gives useful test results for later comparison. Assembly should also be designed to allow all major subcomponents to be removed easily for maintenance and repair. There is nothing so frustrating as a fault occuring right down inside the structure where layer upon layer of mechanics and electronics must be removed to get to it. Make use of hinged panels, plug-in circuit boards, easily bolt-on drive and sensor assemblies with removable circuit connections. For one-off prototypes there is good sense in building in far more flexibility of assembly and disassembly than could be tolerated in a mass-produced, well-tested design. Where possible, build the working unit as a second one, retaining all developmental work for possible later comparison.

Always attempt to design sub-units so that they do not interact with other sub-units. For example, a manipulator arm must be sufficiently stiff in bending and torsion to retain its shape when loaded. If it bends, the position of the hand could differ from that indicated by position sensors which, in turn, will try to correct out an error that was not there by the ideal design standards. If the power supply droops when a load comes on to an actuator, this may alter the supply voltage to circuitry, altering the performance of other components. Where interaction results it may alter the fully-assembled units' performance in ways that are not easily discovered at the testing stage of the sub-units.

As sub-units are created their circuit drawings must be laid out neatly with all component values marked. Good mechanical sketches should be made. It is all too easy to forget that a few months later, after working on other aspects of the robot, one does not remember the detail tackled previously.

## Choice of Components

As the sub-systems harden in design so will the specifications of the elements needed. They will generally be of optical, mechanical or electronic nature. At some stage each specific component must be located, if procurable, or made, if not. Circumstances will largely decide the choice. Optimally one chooses the best available unit, but in reality such factors as cost, availability, life and replaceability will force the designer to make compromises. The cheapest may suffice. Usually, but not always, the more expensive mechanical component is the best to use. Mass-produced com-
ponents from construction kits and popular toys, such as aero models and model trains, are good value. Bicycles, domestic appliances and motor car parts are another source of quality low-cost assemblies. Specialised electromechanical construction kits, such as Meccano, Fisher-Technic, FAC and Presto, are easy to employ, but they can be expensive to get started with. They also can lack the rigidity of structure often needed.

One thing to avoid is the use of complex components (such as motors) that you possess already but which cannot be replaced or repaired easily.

Choice of alternatives is less important with electronics as most solid-state devices now have many roughly equivalent alternatives, but, even so, steer well clear of using devices that are not currently marketed at low cost on an extensive basis with double or more sourcing.

## Structural Frames

The robot's functions are made possible through actuators and sensors causing the whole and the limbs to move as desired in a dynamic sense. The structures holding the limbs and the limbs themselves must be adequately stiff - that is, they must not deflect or twist more than is allowable under load. There is no such thing as a totally stiff structure, for no material known to man is inelastic. A basic aim of structural design for a robot is to provide an inelastic structure having minimum mass. This rule especially applies at the extremities of rotating arm-like structures where rotational inertia increases more rapidly than linear elastic deflection as the distance from the centre of rotation increases.

Elasticity of a structure can introduce many unwanted interactive couplings - weak gear train mounts may allow the gears to unmesh as the frame twists with increasing load. Smaller misalignments will usually introduce increased frictional losses.

The principle of triangulation enables rigid light structures to be built. It says that each segment of a panel or beam required to be stiff in the plane of its flatness is made from triangles of connected limbs. Open squares and rectangles must be made into triangles by the addition of a central cross member. Linear rigidity is relatively eacy to achieve; torsional rigidity is much harder to obtain for that mode of flexure requires stiffness at $45^{\circ}$ to the linear axis.

## Stiff and Floppy Members

Solid thin sheets obey the triangle rule and are always theoretically stiffer than a sheet which is lightened with holes or made from elemental bars. However, the solid, thin 2D members are rarely better than the same weight of the material re-arranged as a 3D member which will possess torsional rigidity as well.

Structures can be made incredibly stiff and light if the maker is prepared to put enough work and cunning into their design.

Triangulated structures work on the principle that members are either in direct axial torsion or compression. If in tension they can be as thin as their strength requirements allow, but if in compression a long thin member will buckle and fail well before it collapses through lack of compressive strength. Compression members are, therefore, kept as short as possible and have stiffness to increase their buckling strength. Tubes


Fig. 1. Systems diagrams, like this of a manipulator for a high-temperature gas-cooled reactor in the U.S., must be kept up to date as development proceeds. Keep subsystems as seperate entities as much as possible.
and angles are commonly used. (Think of early aircraft structures using struts and wires.)

## Structural Choice

The choice of materials is not always easy, for light strong materials, such as aluminium alloys, are not easy to join by the amateur - rivets or bolts must be used, as welding and soldering are not possible without special equipment. Avoid pure aluminium for structures - it is too soft. Aluminium does not need a protective coating but looks better if it has one.

Steel is more easily joined by welding and handsoldering or brazing, but, although having the greatest stiffness of common metals, it is one of the heaviest. It corrodes easily - plating or painting is a must for all steel parts of a well-made robot. It is a mistake to think steel parts can always be painted after the robot is finished - there are usually too many wires and components attached to do a good job afterwards. So paint or plate as you proceed before assembly.

Plastics are a relatively new element of structural design. Very respectable jobs can be made using modern adhesives and plastic formulations. The catch is that they are comparatively flexible and heat-sensitive. As they get hotter, they may sag, will certainly get more elastic and, worse still, may deteriorate completely in the long term. Great care must be exercised about the choice of plastics used.

Wooden materials have their place, but always opt for waterproof qualities that are well seasoned or treated to retain shape.

Modern glues, such as instant-epoxy kinds and filler-based epoxy resins, are often an ideal choice for fastening members. But, again, care is needed in their use. If in doubt, conduct tests on test specimens before
embarking on the real job. The simplicity of glues often leads one to make quick joints that are impossible to open when the unit requires disassembly. The easy path is not always the best in the long run.

An important point often overlooked is that the robot frameworks may be subjected to excessive loads and forces during the testing and development stage. Transportation of the whole, or merely picking it up or having limbs moved by external forces such as prying children's hands, can often break assemblies that are well within their design limits of need. If this is the case, try to incorporate safety features, such as clutch drives, that will slip for excessive load.

## Motoring

Most DC motors used are cylindrical in nature and use permanent magnets to supply the field needed. They will have a relatively small number of commutator segments and are best run at quite high speeds. For slow speed shafts a gearbox is needed to reduce the motor speed and increase the drive torque available. High ratio gearboxes, however, introduce backlash and friction problems that reduce the effectiveness of tight servos. Avoid high-ratio gear trains and any other kind of drive with slop in it. Worm drives can also present problems as they cannot be driven by the output shaft. The better systems use anti-backlash gear wheels, but these are expensive. High gear-up ratios amplify the rotational load inertia seen by the motor, so keep high-speed loads light if good response is needed. Fastest energy exchange occurs when the load inertia seen by the motor equals its own value - similar to the energy transfer law for electrics.

The printed armature, radial shape, motor is well suited to robot work as it has many commutator segments, great overdrive capability for use in transients and excellent low-speed performance. Gears are often unnecessary with servos built of these. Inexpensive versions are available (car fans, for example), but they usually lack a second output shaft or an inbuilt tacho. Versions with inbuilt tachos are really satisfying to use but are priced for professional robot designs.

Simple DC motors from toys are rarely adequate for long. They are not designed to last. The extra cost of better motors will be found worthwhile.

## Remote Control

Control from a position away from the robot can be had most easily by using a wire link in the case of fixed manipulator machines and limited movement mobiles. Wires are certainly the cheapest and most reliable link, but in the case of mobiles and some special applications, non-contact telemetry is needed to and from the robot.

Radio control would be the obvious choice as many marketed systems are available at reasonable prices. Model aeroplane control, and more recently model car and boat controls, are easily adapted to form command links. As most robots work at power levels greater than the actuators used in model planes, it will be necessary to add power amplifier stages (relays for simple on-off control, linear amps for proportional controllers) at some convenient output point of the telemetry system.

Acoustic senders working at around 30 KHz can be used for systems needing detection from any direction of robot orientation. Optical beams are restricted as links to situations where the beam remains aligned with the robot receptor.

## See Me, Feel Me . . .

The basic senses of human beings are touch, sight, hearing, smell, taste. These provide many ideas for robot sensors. Other senses exist, such as ultrasound, radio waves, infra-red and ultra-violet radiation, that are not given to humans.

When finalising a sensor stage ensure that its output signal level, impedance and frequency response suit the stage, or stages, it must drive. Most sensor outputs need amplification, and it usually makes best cost sense to use an integrated linear circuit to obtain the gain. IC stages generally have low output impedance and set voltage swing limits. Typical values will be $\pm 10 \mathrm{~V}$ with a zero bus for linear devices (higher are available but are more expensive), zero bus with +5 V for TTL logic and a wide range of choice for CMOS logic. There are few standards so it is not possible to categorically define signal levels. Choice of levels is, however, worth serious study before the design goes too far, as the fewer the bus voltages used the better. They must also match the chosen supply source. Try to avoid the need to create numerous bus voltages from basic supply rails - zener and series regulator units waste power.

The cost of low resolution analogue to digital and digital to analogue converters (low resolution will usually be adequate in robots) is now such that the output form of the basic sensor can easily be converted to the other signal form if it is more appropriate.

Space permits only a brief account of a few typical sensors used in robot devices.

## Touch Me . . .

Simple touch sensing is easily done with a light arm or feeler that operates either a microswitch for on-off control or a linear or rotary potentiometer for proportional control. Whereas virtually instantaneous signal changes can be created in electronic circuits, the same is not true of mechanical systems. A touch-bar moved as warning that the robot must stop immediately should be able to deflect sufficiently as the unit comes to rest. Either make the bar flexible or give it a spring joint where it can bend elastically. The amount of deflection needed depends upon braking effort, speed of robot and its mass. As a guide, a 20 kg unit moving at walking pace and being braked by a reversed connection 100 W motor may require as much as $50-100 \mathrm{~cm}$ of overtravel, depending upon the frictional force existing between its wheels and the surface it is on (decided by coefficient of friction, weight on the wheel and braking force on the wheel axle).

Tactile sensing, such as is needed to control the clamping force of a closing hand, requires proportional measurement of closure force.

A rubber or plastic tube filled with air makes a good protective buffer. Addition of a pressure-sensitive switch into an outlet enables the buffer to cut power supplies or reverse the velocity drive. Obviously, imagination and innovation can produce many more touch sensors.

## See Me

Human sight is sensitive to only a very narrow band of the available electromagnetic radiation spectrum. Robot 'sight' can extend much further to make use of infrared and radio frequencies as well as those in the visible region. Certain infra-red sensors can detect the thermal radiation of room temperature bodies and resolve them


Table 2: Calculations for a hypothetical drive system
against backgrounds at a different temperature. If at the same temperature as the background, however, the object can go undetected. This effect, called 'washout,' exemplifies just one of the many kinds of sight problems that robots need to tackle. Most worthwhile seeing conditions resolve to those of pattern recognition once the 'visual' picture is transduced by appropriate sensors into electrical signals. In robots the higher order seeing problems to be tackled require extensive data processing facility. The microprocessor now promises to provide the kind of power needed at realistic prices for amateur robot projects.

The easiest to invent and build is the photodetector that responds to an increased intensity source using the DC level change as the sensed signal. This kind of sensor is suitable to move the robot toward or away from bright lights or to increase or decrease its activity as the ambient light level changes. It is of little value in applications where the robot has to seek out a certain 'marked' place or beacon or follow a moving light marker.

In these cases, the source light can be coded by amplitude modulating it to at least 10\% depth at some convenient frequency which is not a multiple of mains frequency (or it may well fall in love with all fluorescent and incandescent mains-fed lights).

Similar principles work for infra-red and microwave and also for acoustic methods. Seeing is usually taken to mean line-of-sight working only. Strategies may have to be programmed to ensure the robot obtains a line of sight long enough for it to learn of the direction to move to. (A sample and hold store of position is a must for such applications.) Modulated systems, although generally unresponsive to moderate ambient background illumination, will usually be affected by severe ambient levels, for these may saturate the circuitry. In such cases the output produced should be a fail-safe kind. (Many a robot has been camera-shy when powerful flood lights are turned on for the public debut on television or film.)

At $1 \quad$ Power input $=\mathrm{V} . \mathrm{I}=\mathrm{W}$
At $2 \quad$ Power from motor $=W$. motor efficiency $=W$. Torque at output shaft Tm from data sheets
At 3 Coupling may lose up to $5 \%$ of energy transfer, but not torque unless slip occurs
At $4 \quad$ Torque at gearbox output To $=T m \times n$
Shaft speed $=$ Input shaft speed
$n$
Power available $=$ Power at input $\times$ Gearbox efficiency

Power to move robot $=p$ of belt or cahin drive
Force at wheel perimeter
haft torque
$r_{3}$
Power available is as at 5 unless bearings lossy
Speed of robot translation $=$ wheel speed $\times 2 \pi r_{3} \times$ slippage allowance
Force of translation $=F_{D} \times$ coeff of friction $\times$ load vertically on wheel

## Hear Me . . .

Sound waves behave in much the same way as electromagnetic waves, but with one big exception they travel much slower. For this reason acoustic senses and senders are a popular choice for robot sense of position and for detecting presence. Their use is mostly based on the radar principle of sending a pulse (or continuous wave) and monitoring the time (or phase) delay of its return. Acoustic radars give good positional sensitivity at room and workshop size ranges. Use of ultrasonic (above the 20 kHz limit of human hearing) frequencies help avoid signal-to-npise ratio problems in acoustically noisy environments. Beware, however, of ultrasonic sources produced by machinery.

An array of inexpensive piezo-electric crystal receivers mounted in a pattern across the breadth and width of the robot frame can, after some signal processing, detect the location of a single source. Two units mounted on a tracking robot antenna can be used as a binaural position sensor. A single send-cum-receive unit mounted on the robot is capable of locating obstacles for a survival mode of robot operation.

## Smell Me, Taste Me . . .

Of the human senses these two have barely been developed in hardware form. Both are related to the presence of chemicals and therefore the methods of chemical analytical instrumentation are relevant. However, few analysers exist that are cheap enough for the hobbyist pocket. Certain measurements, such as $\mathrm{CO}_{2}$, CO and $\mathrm{O}_{2}$ detection, can be achieved cheaply by sensing a simple effect of these gases on the tempera-. ture of a heated resistance $\left(\mathrm{CO}_{2}, \mathrm{CO}\right)$ or via the voltage generated by a special cell $\left(\mathrm{O}_{2}\right)$. Smoke is more easily sensed as an attenuator of light than by the presence of its chemicals. An analyser capable of detecting smells such as rotten fruit, individual people, or the finest perfumes requires the use of a mass. spectrum analyser or other sophisticated methods costing huge amounts of
money and weighing many kilograms. In short, smell and taste are not very profitable senses to use as yet. An exception is robots already made commercially that seek out the centre of fires for extinguishing purposes.

## Acting Out a Role

Sensors produce the input signals tell the robot what is happening. To get the robot to act on such commands these signals are processed and used to drive power output devices, called actuators. These convert, in the main, the power source energy into mechanical work. Actuators for robots usually require electrical signal (analogue or digital) inputs providing linear or rotary motion via wheels, gears, belts, tracks and what have you to do work.

Robots require motions that give speeds and positions. Basic motions needed, depending upon use, are continuous linear motion (wheels driven by motors, cables would up by motors, rack and pinion), shortstroke linear motion (solenoids, restricted length rack and pinion), unlimited rotary motion (direct motor output, geared up or down motor motion), and limited angle rotation (rotary solenoids called torquers, pinion and wheel or rack). Chains, belts, pulley and flat flexible strips are elements used to provide various kinds of motion, including converting rotary motion to linear and vice-versa. The commonest and cheapest actuators are solenoids and motors. Where controlled variable torque is needed, DC systems are usually used.

Wheels are predominantly used to move mobiles. Walking is a spectacular method, but is far more difficult to design. Wheeled systems must be able to steer easily - car-like methods require intricate movements to escape a blind corner. Rapid response drives will require as much of the robot's weight on driven wheels as is possible. All wheels supporting weight but not being driven reduce the tractive effort available. The coefficient of friction of drive surfaces must be chosen to suit each application, or else excessive wheel spin will occur.

## Open and Closed Loop

At this point it is worth devoting some time to the concept of closed-loop actuator systems, for all worthwhile robots use these. The reason is as follows Consider a small motor coupled to drive a robot via wheels through a step-down gearbox. To get the robot moving requires more initial power than when it is running under steady load because friction of the static drive is greater than when running. Thus, as soon as it begins to move, the input must be reduced or else it tears away. Also, when the robot comes to a rise, the input voltage setting must be increased to give more power. This kind of controller is called an open-loop case. The real aim is usually to have the robot run at any given time at a steady known speed, over the range from zero to full speed, for all conditions of load

This is done in a closed-loop system by sensing the actual speed of the motor (in electrical terms, by generating a voltage with a separate generator called a tacho coupled to the motor shaft) and comparing this value with that which represents the desired speed. The difference, called the error signal, is used to increase (or decrease) the motor current so as to bring the speed up (or down) to the correct value, where the generator output equals the reference level. Motor speed will,

within available power limits, be held closely at that set by the input reference voltage level, despite changes in load. If the motor current can be reversed by the circuitry, a command for zero speed (zero reference voltage) given at, say, full speed, will attempt to reverse the motor giving quite impressive braking. As the speed approaches zero due to the braking, the error falls to zero and the motor comes to rest.

Good servos can provide tight control with rapid response to new commands. Their slight disadvantages are a need for a more sophisticated (but well worthwhile) system that costs a little more if the right motor is chosen, the chance of instability if it is too highly tuned and the possibility of having too responsive an action that may shear parts and slop liquids (but at least this is easily slugged or smoothed by appropriate integration of the error signal within the control loop). Overall, however, the performance of a closed-loop servo is vastly superior to the open-loop equivalent.

## Position Servo-Systems

Position controls also should be closed-loop in operation. Here the actuator that brings about a positional change is fed an error signal generated from a positionsensitive sensor. An arm elbow joint, for example, would have a potentiometer rotating at its pivot axis. The voltage produced by the potentiometer is compared with the given reference signal providing the error to drive the actuator accordingly. This servo will ensure that the arm goes to the angle desired by the input reference voltage value, regardless of load (within limits of maximum load capability). If the arm overshoots the correct position, the error reverses bringing it back by reversing the actuator. Servos can be adjusted to approach the final value in a quick fashion with overshoots, or slowly without overshoot.


Fig. 2. (left). HORACE, a Warwick University Robot Laboratory mobile, is simple to make and uses commercial parts. Robots like this are well within the scope of amateurs. Note the ease of access to parts.

Position servos benefit by the use of a tachogenerator driven by actuator. The tacho signal is used to feed a rate ot error reduction signal into the closed loop, making it move faster when wildly wrong in position and slower when nearly at the correct place, thereby giving it a chance to stop at the right place. This mechanism is known as damping.

As the gain around the servo loop is increased, the response gets tighter, smartening up. However, a point is eventually reached when the loop will begin to oscillate, first giving small dither around the correct place and then as the gain is further increased, rising to massive oscillations. Reducing the gain is the easiest way to combat this but not the cleverest. Compensation is the technical name used for the process of adding an integration and / or derivative of the error signal to the error so as to obtain higher gain with reasonable stability. The tacho of a position-servo does just that. Explanation of this is beyond this account, but is well treated in many books on linear control systems. The above explanation is somewhat simplistic but adequate as a basis. In reality the velocity servo described will run at slightly lower speeds thian called up, as an error must exist to generate the torque needed to hold the speed.

## Final Testing and Maintenance

The development of the robot should proceed in an orderly manner, each sub-unit being pretested and made as acceptable as thought necessary before final assembly begins. As each unit is added to the final whole, checks should be run to see that it still works as it should. See that the other units still work properly, as unexpected interaction is common in robot development. It is much easier to test for this as you go from stage to stage than to try and find which unit alters what at the end. As defects are detected - bugs always occur - rectify them before moving on. There is a natural

Fig. 3. This working model of RIVET explores an ingenious method of transport. It can go over obstacles twice its own height
tendency to rush on to the apparent end, only to be disappointed because it does not work properly. In other words, be patient; it is worth it.

Once the whole robot is "all systems go", the next stage is to conduct some field-trials. Put it through its paces doing the tasks it was intended to, but in situations where damage is minimized if the behaviour is not as expected.

Monitor the initial hours of work carefully looking for overheating of electronic and mechanical components, and listening for odd mechanical noises that indicate too much slop or friction. These may lead to premature failure if left unmodified. Limbs and other members that appear weak are more easily strengthened before they break than after! Smoothness of operational sound is a good indicator of satisfactory mechanical design.

Unlike electronic circuits that, once made, are initially maintenance-free except for faults, dynamic mechanical systems require regular attention. Lubricate bearings, slides, cables and pivots regularly, but do not overdo the oil or grease. Dry graphite may be better than oil in some applications. Areas of wear will need adjustment with use. Build this into the design to begin with, where possible, as retrofit is always harder.

Too often ignored is the final documentation. When the project is seen as complete, go back to the master diagram and files on the whole system and sub-system modules and update them to the latest stage. If you feel the robot will be used regularly over several years, or if it was built for the use of someone else, it is imperative that the documentation is readable, neat and complete enough to be a good guide to someone else at a time after its details have been forgotten by its builder.

Creating a robot is fascinating and rewarding. How well it operates is a matter of your design sense plus ability to execute the design in a professional manner. We hope the above, albeit brief, introduction will help, and wish all robot constructors rewarding, successful projects.

ET

## BUY A COMPLETE RANGE OF COMPONENTS AND THESE PACKS WILL HELP'YOU

GREENWNELD
443 Millbnook Road Southampton SO1 OHX Tel:(O703) 772501

* SAVE ON TIME-No delays in waiting for parts to come or shops to open!
- SAVE ON MONEY - Bulk buying means lowest prices - just compare with others
- HAVE THE RIGHT PART - No guesswork or substitution necess ary!

ALL PACKS CONTAIN FULL SPEC. BRAND NEW. MARKED DEVICES - SENT BY RETURN OF POST. VAT INCLUSIVE PRICES
K001 50V ceramic plate capacitors. $5 \% \quad 10$ of each value 22 pF to 1000 pF . Total 210 £3.35.

K002, Extended range. $22 \rho F$ to $0.1 \mu \mathrm{~F}$ 330 values, $£ 4.90$

K003. Polyester capacitors, 10 each o these values: $0.01,0.015,0.022,0.033$ $0.47 \mu \mathrm{~F} .110$ altogether for $£ 4.75$
$K 004$ Mylar capacitors. min 100 V type. 10 each all values from 1000 pF to 10.000 pF Total 130 for $£ 3.75$

K005. Polystyrene capacitors. 10 each value from 10 pF to $10,000 \mathrm{pF}$. E1 2 series
$K 006$ Tantalum bead capacitors. 10 each of the following: $0.1,0.15,0.22,0.33,0.47$ $0.68,1,2.2,3.3,4.7,6.8$. all $35 v_{;} 10 / 25$ $15 / 1622 / 1633 / 1047 / 6100 / 3$ Total 170 tants for $£ 14.20$
$K 007$ Electrolytic capacitors 25 V working small physical size. 10 each of these popula values: $1,2.2,4.7,10,22,47.100_{\mu} \mathrm{F}$
Total 70 for $£ 3.50$
$K 008$ Extended range as above also for E5.90

K009. Extended mylar pack. Contains ail capacitors to $01125-0.47 \mu$ F 10 tal 290 -

K021 Miniature carbon film $5 \%$ resistors. CR25 or similar 10 of each value from 10 R f 6.00
$K 022$ Extended range, total 850 resistors from 1 R to 10 M \& 8.30

K041 Zener diodes. $400 \mathrm{~mW} 5 \%$ BZY88 tc. 10 of each value from 27 V to 36 V . E24 series. Total 280 for $\mathbf{£ 1 5 . 3 0}$
$\mathbf{K 0 4 2}$ As above but 5 of each value $\mathbf{£ 8 . 7 0}$

## VEROBOARD

higgest sellers - and no wonder they are amazing value!! Each pack contains 7 or 8 pieces to make up a total area of 100 sq ins. All packs are the same price. $\mathbf{£ 1 . 3 0}$ each Pack A all 1 "
Pack A. allo. 1 pifch
Pack 8 . mixed 0, Pitch
Pack D, all 0.1" plain
Also av
Regular size vero
$17 \times 3^{3 / 4} \times 0.1^{\prime \prime \prime} £ 2.00 .10$ strips $£ 1$ $17 \times 3^{3 / 1 / 4 \times 0.15 £ 1.76 ; 0.1^{\prime \prime}}$ plain $£ 1.63$

OIP Breadboard. size $6.15 \times 45$
accomodate $20 \times 14$ pin IC's $\mathbf{£ 2 . 3 5}$
VO Board, size $148 \times 75 \mathrm{~mm} 01^{\prime \prime}$ pitch Copper strips in rows of 4 to facilitate construction
vided 85 p

## SEMICONDUCTORS

Diodes: 1 N4001/2 5p; 4004/5 7p; 4006 8p; 4007 9p; $400 \mathrm{~V} 3 \mathrm{~A}, 15 \mathrm{p}$; 200 V 10 A stud, 40 p ; 400 V 10 A stud 48p.

400 mW Zeners 2 V 7 to $36 \mathrm{~V}, 10 \mathrm{p}$ each 1.3 W Zeners 3 V 3.200 V 20p. 10 watt zeners from 4 V 3 to 200 V 93 p OA81. 5p; OA91, 8p; 1 N4148, 4p

## Bridge Rectifiers

50V 1A 26p; 200V 1A 32p; 400V 1A 36p 100V 2A 48p; 400V 2A 58p; 100 V 4 A 6 698p.

| SCR's |  |  |  |
| :---: | :---: | :---: | :---: |
| 0.8 A | 60 V | T092 | 35p |
| 1 A | 400 V | T05 | 60p |
| 4A | 200 V | TO220 | 52 p |
| 4A | 400 V | TO220 | 70p |
| 6 A | 200V | TO220 | 56p |
| 6 A | 400 V | T0220 | 75p |
| 6 A | 400 V | T066 | 80p |
| 10A | 100 V | T0220 | 82p |
| 10A | 200V | TO220 | $87 p$ |
| 10A | 400 V | TO220 | 120p |
| 10A | 600 V | TO220 | 148p |
| Triacs |  |  |  |
| 6 6 | 400 V | T0220 | 98p |
| 8 A | 600 V | TO220 | 135p |
| 15 A | 200 V | Stud | 135p |
| 15A | 400 V | Stud | 220p |

## TRANSISTORS

| AC127 | 18p | 8 CS 48 | 10p | 8 8YY56 | 40p |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AC128 | $18 p$ | 8 C549 | 10 p | 0 CP71 | 120p |
| AC176 | 18p | $8 \mathrm{cr70}$ | 15p | IIP4IA | 56 |
| AC187 | 20p | $8 \mathrm{CY71}$ | 15p | TIP42A | 66 p |
| AC188 | 20p | $8 \mathrm{CY72}$ | 14p | TIP2955 | $86 p$ |
| A0149 | 70p | 80131 | 38p | TIP3055 | p |
| 40161 | 40p | 80132 | 40p | TIS43 | $35 p$ |
| A0162 | 40p | 80133 | 48p | 2H2646 | 60p |
| AF279 | $75 p$ | 80137 | 40p | 2R2905 | 21 p |
| 8 8107 | 12p | 80138 | 40p | 2 N 2926 | 12p |
| 8 Cl 108 | 10p | 80139 | 42p | 2M3053 | $28 p$ |
| 8C108C | 12p | 80140 | 44 p | 2*3054 | 52p |
| 8 Cl 109 | 12p | 85173 | $20 p$ | 2N3055 | 50p |
| $8 \mathrm{Cl1096}$ | 15p | 8 Fl 181 | 30p | 2N3442 | 130p |
| 8 C 147 | 10p | 8 Fl 194 | 10p | -2N3702 | 10 p |
| BC148 | 10p | 8 F 195. | 10p | 2N3703 | 10p |
| 8 C 149 | 10p | 8 F 196 | 10p | 2N3704 | 10p |
| 8 Cl 57 | $10 p$ | BF197 | 12p | 2N3705 | 10p |
| 8C158 | 10p | 8 F 200 | 28p | 2 2 3706 | 10p |
| 8 8C159 | 10 p | 8 8f39 | 24p | 2M3708 | 10 p |
| 8C182 | 12p | BFR79 | 26p | 2 N 3710 | 10p |
| 8 Cl 183 | 12p | BFX29 | 22p | 2H3819 | 28p |
| 8 Cl 184 | 12p | 8 FX 48 | 32p | 2 H 3904 | $15 p$ |
| $8{ }^{812}$ | 14p | $8 \mathrm{FX84}$ | 22p | $2 \times 3906$ | 15p |
| $8{ }^{8} 13$ | 14 p | $8 \mathrm{FXB8}$ | 22p | 2146027 | 55p |
| 8 C 214 | 14p | 8 FY 50 | 18p | $2 \mathrm{M6028}$ | 60p |
| $8 \mathrm{C441}$ | 32p | BFY51 | 18p | 40673 | 65p |
| 8 8461 | 32p | 8 F | 18p |  |  |

Corner include VAT. Just add 25 p Corner ${ }^{-1}$ include VAT. Just add $25 p$
UK/BFPO postage Most orders despatched UK/BFPO postage. Most orders despatched MINIMUM DRDER VALUE \&1. Official orders accepted from schools, etc. (Minimum invoice charge \&5). Export $/$ Whole-
available for bona fide tr
Our retail shops at 21 Deptford Broadway owon, SE8 (01-692 2009) and 38 88 Addiscombe Road, Croydon (01. ooo slock some of the advertised goods personal callers only. Ring them for details

| 74 Series TIL |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7400 | 12p | 7447 | 84 p | 74107 | 37p |  |
| 7401 | 14p | 7450 | 15p | 74121 | 37 p |  |
| 7402 | 14p | 7451 | 14 p | 74122 | 51 p |  |
| 7404 | 17p | 745: | 14p | 74123 | 64 p |  |
| 7405 | 23p | 7454 | 14 p | 74132 | 56 p |  |
| 7406 | 28p | 7460 | 14 p | 74141 | 63p |  |
| 7408 | 14 p | 7472 | 29p | 74150 | 173p |  |
| 7410 | 14p | 7473 | 29p | 74151 | 79 p |  |
| 7413 | 28 p | 7474 | 29p | 74154 | 144p |  |
| 7114 | 62p | 7475 | $51 p$ | 74155 | $73 p$ |  |
| 7480 | 14 p | 7476 | 29p | 74157 | 66 p |  |
| 7427 | 36p | 7483 | 91 p | 74159 | 200p |  |
| 7430 | 14 p | 7485 | 132p | 74164 | 126p |  |
| 7432 | ${ }^{28} \mathrm{p}$ | 7486 | 40 p | 74174 | 110p |  |
| 7437 | 36 p | 7490 | 46p | 74179 | 120p |  |
| 7438 | 36 p | 7491 | 75p | 74180 | 120p |  |
| 7440 | 15p | 7492 | 52p | 74190 | 188p |  |
| 7442 | 65p | 7493 | 52p | 74191 | 158p |  |
| 7445 | 88 p | 7495 | 73 p | 74192 | 120p |  |
| 7446 | 88p | 7496 | 85p | 74193 | 120p |  |
|  |  |  |  | 74367 | 120p |  |
| C-MOS |  |  |  |  |  |  |
| 4000 | 18p | 4018 | 84 p | 4054 | 100p |  |
| 4001 | 18p. | 4022 | 90 p | 4055 | 110p |  |
| 4002 | 18p | 4023 | 18p | 4060 | $96 p$ |  |
| 4007 | 18p | 4024 | 64 p | 4071 | 18 p |  |
| 4011 | 18p | 4027 | 48p | 4081 | 18p |  |
| 4012 | 48p | 4028 | 78p | 4510 | 132p |  |
| 4013 | 48p | 4040 | 110p | 4511 | 212p |  |
| 4016 | 48p | 4047 | 78p | 4528 | 124p |  |
| 4017 | 84p | 4049 | 48p | 4588 | 256p |  |
| LINEAR \& MISC IC's |  |  |  |  |  |  |
| $74125 p$. MC3302 Quad comp. 120p. |  |  |  |  |  |  |
| 555 40p. 710 diff comp (TO99) 40p. 556 |  |  |  |  |  |  |
| 100p. 7105 LED digit driver 8 for E1. |  |  |  |  |  |  |
| LM380 100p. CN 1034 E Precision timet, |  |  |  |  |  |  |
| £2.25. LM301 30p. ©SLD2128 Dual 128 |  |  |  |  |  |  |
| bit static shift register $£ 1.50$. |  |  |  |  |  |  |
|  |  |  |  |  |  |  |

## 1977/8 CATALOGUE

48 BIG pages packed with over 4.000 tems, many of them illustrated. Discount ouchers worth 50p. PRICE 30p + 15p post. (Overseas send 60p surface or $\mathbf{E 1}$ ist. Send SAE for bargain list alone

## SIRENS

Jse in cars houses anywhere that a cowerful noise will frighten off would-be $100 \times 72 \times 60 \mathrm{~mm}$. Only $£ 1.70$

## COMPONENT PACKS

200 miniature resistors. 1/0, 1/4. 1/2W E 1.00 200 poly. mica cers. $1 / 4 / 2$. $\mathbf{W}$ £ 1.30 100 Mullard C280 polyesters. 0.01 1 1 £1.00
wirwound resistors. 2.10 W £ 1.60 200 PC resistors. $1 / 4$ and $1 / 2 \mathrm{~W} 60$ p. 200 asstd pots, inc. sliders $£ 1.70$. power devices. About $75 \%$ useable $£ 1.35$.

## COMPUTER PANELS

## dozen boards with top grade component

 transistors, inc power types. zeners Hundreds of parts for just $\mathbf{2 . 7 5}$.
## PCETCHING KIT MkII

## $\star \star \star$ BULK BUYERS CORNERS $\star \star \star$

All prices per 100; all goods full spec. Send sae for current list containing hundreds of bulk offers

$£ 3.20$
$£ 3.80$
$\varepsilon 4.40$
$£ 5.00$
$£ 5.60$
$£ 6.20$
$£ 6.80$
$£ 2.30$
$£ 12.00$
$£ 12.00$
$\varepsilon 13.00$
$£ 14.00$
$\varepsilon 14.00$
67.00
$£ 7.00$
$£ 7.00$
$£ 6.00$


This latest version our popular kit now contains 200 sq ins copper clad board, DALO etch resist pen Ferasive cleane etching dish and full instructions. £3.90.

## voltage

REGULATORS

| 78.12 | T092 | 12 V | 150 mA | 75p |
| :---: | :---: | :---: | :---: | :---: |
| 723 | 14 dil | 2. 37 V | 150 mA | 50p |
| MCI469R | 1066 | 21/2-37 | 500 mA | 150p |
| $78 \mathrm{MO5}$ | T05 | 5 V | $50 \overline{0} \mathrm{~mA}$ | 85p |
| 78 M 12 | T05 | 12V | 500 mA | $85 p$ |
| 1405 | 0126 | $5 V$ | 600 mA | 85 p |
| 1412 | T0126 | 12V | 500 mA | $95 p$ |
| 7715 | T0220 | 15V | 750 mA | 120p |
| 7805 | T0220 | 5V | 1a | 150p |
| 7812 | 10220 | 12V | ja | 150p |
| Lm309K | T03 | 5 V | 1.2A | 150p |
| UM323 | T03 | 5 V | 3 A | 650p |

POWER SUPPLY UNIT


Antex model $C-15 \mathrm{~W}$
Our best seller at $\mathbf{~} 3.50$ Antex model CCN - 15 W element with ceramic shatt Very low leakage $\mathbf{£ 3 . 9 0}$ Antex MLX12 This is a 12 V iron, ideal tor car and boat use 25 W rating comes
comple targe crocodile clips fitted + booklet How to solder and strong PVC carrying case $\mathbf{£ 4 . 2 9}$
DARLINGTON COMP PAIR MPN an orterl BD695A + BD696A PA spec! -45 V 8 A 70 W Gain of 750 at 4 A ! A ! packed into a TO220 case. The pair for

## EDGE CONNECTORS

High quality pitch double sided, gold price. $\begin{array}{lll}18 \text { way } & \mathbf{4 1 p} & 21 \text { way } \\ 32 \text { way } & 72 p & 40 \text { way }\end{array}$

## sOLAR CELLS

 50 A @ 1/2 Chips size $19 \times 6.5 \mathrm{~mm}$ will give for greater power. Prices: 3 for $£ 1 ; 10$ fo £3: 25 for $£ 7,100$ for $£ 25$ Ideal for powering small CMOS projects, elcS-DECS 8 T-DECS DEC Breadboard
$225 p^{\circ}$
POWER PACK
Wood-grained metal case, $90 \times 80 \times 75 \mathrm{~mm}$ containing mains transformer giving 6 V @ $11 / 4^{\prime \prime}$ 'fuseholder R's C's. etc. Drly 75p.

## SOLDERING IRONS

${ }^{10} 1^{\circ} \mathrm{O} 2^{\prime \prime}$ standard mains input Outputs 3. 6 $71 / 2$ or $9 V$ DC @ 400mA max 3 swiches. on/off polarity reversing and voltage change Regulated to supply exact marked $127 \times 76 \times 57 \mathrm{~mm}$. Price $£ 5.95$

* SPECLALS $\star$


N5401 $\mathbf{1 6 0 V} 0.8$ A plasUCSCR £25/100 transistor Darhingion
0. hte 75.000
0


# ROBOTS 

 THE REAL THRING!Could you give ETI readers a short autobiography?
Well, I started life as a combustion expert, concerned with the combustion of coal and other fuels, also furnace design.

Then I became Professor of Fuel Technology and Chemical Engineering at Sheffield University, about twenty years ago. I began to get interested in robots; well, I was, strictly speaking, interested in robots as a small boy! I used to design them when I was quite young - but of course in those days there was no electronics, so they were all mechanical. Complex devices so that vibration into an ear released triggers and things.

Then I came back to it again at Sheffield. I was very concerned with the very real problem of highly trained men having to spend a large part of their lives doing work that did not use their intellectual training to the full. Especially in the case of the housewife, so I tried to design a domestic robot. I thought about it for many years and it has had one or two good applications. The most important of which was the fact that I developed a stair-climbing wheelchair for cripples. This was because I realised that a domestic robot would have to climb stairs!

The more I thought about the idea of a domestic robot, the more 1 decided to go in a different direction, for two reasons - one is that I'm very, very impressed by the incredible skill of the trained human hand/eye/body combination, which takes ten to twenty years to train and then can do sophisticated things. These capabilities are far away from anything we could do with a computer or artificial intelligence. This was a problem too difficult to hope to solve in my lifetime.

Secondly I have become more and more concerned with the unemployment problem. The principle object of robots, at present, is to throw people out of work by replacing them with robots.

I realised that the most important thing I could aim for in my life would be to try and get a method of mining solid coal without men underground.
This being a dangerous task and you having experience in coal technology?

Yes, up to four-fifths of the coal deposits are beyond the reach of conventional mining techniques.

## So this led you to specialise in Telechirics?

Yes, Telechirics - or 'hands at distance' - was a solution that already existed. Although the primary development had been for nuclear work, also in space work and more recently undersea.


#### Abstract

Specials Editor Jim Perry travelled to Queen Mary College, London, to interview one of the pioneers of Robotics - Professor M. W. Thring.




I would say that Telechirics is in the same position that computers were in about 20 years ago. Ultimately they could be of greater value to humanity than computers have been.

## What other uses for Telechiric machines can you envisage? <br> One other use will be for microscopic work. Where

 you would have hands one tenth the size of a mans, with a magnification system, so that the operator would see and feel an object ten times larger than it was.Another very important application will be in the field of surgery. Not only could you have the magnification, you could also have the patient in a sterile room.


Fig. 1. A model of one of Professor Thring's robot coalminers.

## The techniques used in Telechiric machines have applications in the broader field of Robotics, how advarieed is the mechanical side?

A great deal of work has been done on this, although I would say not enough yet. The biggest problem is that hydraulic systems are probably the best way of replacing human muscles - but on the other hand the control system must be electronic. We need much more work on the interface between them.

## Where is research and development being done?

In Telechirics there is not nearly enough research, in S.rt there is practically no research in this country at all, at "..e moment. There is a great deal in France and America with some being done in Japan - most of this issearch is being done in connection with nuclear work.

## What is the main advantage of Telechiric machines over Robotic machines?

Robots and automated machines breakdown, and they always breakdown in unexpected ways. Telechiric machines have the advantage that a human operator is there, at the other end, and can take appropriate corrective action.

## How would you define the various Robotic and

 Telechiric machines?I define all kinds of humaniod machine under three categories. First of all artificial limbs, including exoskpletons which can give great strength, where the human is in a one to on'e relationship with the machine.

The second group is Robotics, where there is a computer as the fundamental brain of the system. The computer carries out programs written by humans. A limitation is that we can never put the emotional brain of a hurיan into a computer, also it will be very difficult to get the visual / mechanical relationship as good as a h. man's

Derhaps most important, Robots will not be able to cons with the unexpected. Human beings have a remarkable ability to improvise in unexpected circums? ances. I do not think that you will ever be able to put this into a computer and therefore into a Robot.

The third group is Telechirics, there may well be a large element of Robotics connected with the Telechiric


Fig. 2. Prototype mechanical hand for use with robots.
machine. For example you may give it a small computer, so that when the man on the surface tells it to go in a certain direction - it will for example count obstacles and possibly even avoid them.

Do you think we will ever be able to use materials similar to the body in construction of machines?

As for as constructional materials are concerned, we have available engineering materials - which are much stronger and capable of exerting much greater forces than the human system.

The human system has some things that we will probably never be able to build. A muscle can carry out chemical reactions in every single cell of it, to produce work without heat - which the engineer can not do.

But it is the brain of the human that is way ahead of anything we can ever do - bybrain I mean both intellectual and emotional brain.

## What do you consider the best example of Telechirics or Robotics?

Well there are many, many what I call 'senseless robots' in use all over the place, the first example was the Unimate. There is a great deal of work on 'sensed Robots', in fact it has been going on for 20 years. I don't know of a 'sensed' Robot that is doing a complete job.

As far as Telechirics are concerned I think the one developed by General Electric in America, and the one which was started by various people in America and now is being developed in Paris are the most advanced.

## What do you think about amateurs

 experimenting in Telechirics and Robotics?I've seen several people who have done remarkable things in this way at home. It is a very fascinating hobby. But it is a bit like say, designing your own computer and making it at home. You cannot really compete with the large organisations because of the rather sophisticated engineering needed. As a hobby for fun yes, but I do not see it as a real solution to the problem.

Thank you for your time, Professor Thring, it has been a most interesting talk.

# ELECTRONIC 

## IN spite of the many advantages of CDI, relatively few cars use this electronic system. Get ahead of the Joneses and fit our electronic box of tricks to your car.

IN SEPTEMBER 1973 we published a design for a capacitor discharge ignition system. Since then over 15,000 units have been built to that basic design - CDI must have something going for it.

The original design did however have a number of disadvantages. It was built on tag strip, which made construction awkward and it could sometimes give trouble on starting from cold.

Stirling Sound have made a few improvements, the major ones being the design of a PCB to ease the task of construction, and a simplification of the switching incorporated in the 1973 design.

## Why CDI?

Much has been written about the advantage / disadvantages of CDI systems. We make no claims about vastly increased performance or of dramatic reductions in petrol consumption although improvements in both these areas will be noted on most cars. What we do say, however, is that plug life will be extended and points will need far less frequent adjustment. These two facts are more than enough to justify the fitting of CDI for a lot of people.

For a full description of the principles behind CDI you should refer to our April 75 or September 73 issues but briefly the battery voltage is no longer applied directly to the coil primary (via contact breaker) to provide the HT spark required by the plugs. Instead a capacitor is used to store energy (provided by an inverter that

produces a high voltage). This energy is then discharged into the coil's primary to produce a spark.

This project has been designed with ease of construction in mind with all the components mounted on the

COPED


Fig 1. Foil pattern for the ignition's PCB.


Fig. 2. Component overlay of the CDI.

THE inverter section of the ignition is based on a two transistor multibrator formed by Q1 and Q2 with the centre tapped primary windings of T1 forming the collector load of each device.

Circuit action is as follows. At switch on the transistor with the highest gain (Ql say) will conduct. Its collector is thus pulled down to the negative rail so ensuring that Q2 receives no base drive.

As the centre tap of $T l$ is connected to the 12 V supply, transformer action will cause the collector of Q2 to rise to a potential of 24 V . This ensures continuing drive for Q1.

Collector current of Q1 will increase at a rate that is dependant on the value of the inductance of the section of Tl that forms its collector load.

At some stage the value of Ql's collector current will exceed the product of its base current and current gain.
At this point the voltage at Ql's collector will start to rise as the transistor comes out of saturation. This will begin to turn on Q2 which will in turn reduce the base drive to Q1. Thus Q1 and Q2 will rapidly drive each other and respectively and the cycle begins again.
This produces a 48 V pp square wave across Tl's primary which is stepped up by transforming action to provide an output of some 300 to 400 volts at the transformer's secondary
Diodes D5 and D6 protect the transistors in the event of reverse power supply connections, ZDl and ZD' against high voltage transients.
The high voltage AC output from the transformer is rectified by diodes D1-D4. The resistor(s) R3 in series with the AC side of the bridge circuit ensure that the inverter does not "look into" a short circuit, as it would do at switch on and every time SCRI were triggered without the resistor. The current is limited to $30-40 \mathrm{~mA}$ with the value of resistor shown.

The DC voltage from the bridge is taken to the energy storage capacitor(s), one side of which is effectively connected to earth via the coil.

A neon with series resistor is connected


The complete unit. As stated in the text the change over switch can be mounted remotely from the unit.

## NORKS

across Cl to provide an indication that the CDI system is operating correctly.
Thyristor SCR1 controls the output of the ignition coil since when it is triggered it effectively discharges the energy stored in $\mathrm{Cla/Clb}$ into the ignition coil primary.
The coil and capacitor now form a parallel tuned circuit so that the primary current increases to a maximum, decreases to zero and then swings back again. Diodes D3 and D4 provide a route for this backswing current to partially recharge Cl ready for the next spark. The back swing also ensures SCR1 turns off enabling C 1 to be charged by the invertor.
Transformer action of the coil provides the high voltage spark required by the plugs.

Note: although it might be thought that the specified 1 A SCR would not be able to cope with the $100-150$ A current pulses encountered in operation, the device is designed to deal with such peaks as long as the Peak Repetition Frequency (PRF) does not lead to an excessive RMS current.
The thyristor must be triggered (by a gate pulse that is positive with respect to its cathode) every time a spark is required, ie when the points open.
When the points are closed current will flow from 12 V via R4 and the points to ground. This current, about 500 mA , is to
"burn off" any minute deposits of dirt or oil film present on the points (contact breakers switching smaller currents will cause problems).

As the points open, R4 pulls the junction of C3, C4 to supply. D7 provides a path for the positive pulse (caused by the differentiating action of $\mathrm{C} 3, \mathrm{R} 6$ ) to trigger SCR1.
The thyristor cannot receive a further trigger pulse until C3 is discharged. This capacitor cannot discharge until the points close and then only via the high resistance path formed by RV1/R7 (D7 is now reverse biased).
This system makes the system immune to contact bounce and, by increasing the value of RV1, can provide a rev limit control.
C4 is also included to prevent contact bounce.

PCB according to the overlay, the board can be mounted in the aluminium box as shown in the photographs.

When complete the system should be mounted in the engine compartment of your car. Mount the unit as near to the coil as possible but not where it would be subject to intense heat.

Connect the unit to the car's electrical system as indicated on the circuit diagram and switch on. The neon should light and should not dim if the engine is revved. The unit will emit a high-pitched whistle when operating normally.

With the system installed why not 'treat your car to a new set of points and plugs? These items will probably not have to be replaced for a long time as the CDI system treats them with care.


Fig. 3. Circuit diagram of the CDI, CB and SW refer to the connections on the car's coil.

## Remote Switching

The switch that changes the system from CDI to conventional operation, although shown mounted on the box containing the circuitry, could well be mounted remotely. If mounted in the car, this would allow comparisons between the electronic and conventional performance to be made on the move.

ET

## BUYLINES

Sterling Sound have arranged to offer ETI readers the electronic ignition at a special introductory price of $£ 9.95$ all in. This offer will last until June 30.

## PARTS LIST



MC:
the stocks and the prices, guaranteed to make the enthusiast even more enthusiastic!

The enormous resources, buying power and organisation guarantees fast reliable service and top quality components at the right price. Send a stamped addressed envelope for your FAEE stock list, now.

## 'Century-Pacs'

- Packs of 100 devices
- the really economical way to buy.


## Carbon Resistors

(mixed values OHMS to MEGOHMS)
PAC R10 Qty $100 \quad 5 \% \quad 1 / 2$ watt $£ 1.13$
R15 $300 \quad 5 \% \quad 1 / 2$ watt $£ 3.04$
$\begin{array}{lllll}\text { R2O } \quad 100 & 10 \% & 1 / 2 \text { watt } & £ 0.79\end{array}$
R25 300 10\% $\quad 1 / 2$ watt $£ 2.03$
$\begin{array}{lllll}\text { R30 } & 100 & 5 \% & 1 \text { watt } & £ 2.36\end{array}$
$\begin{array}{lllll}\text { R35 } & 300 & 5 \% & 1 \text { watt } & \text { £6.24 }\end{array}$
R40 $100 \quad 10 \% \quad 1$ watt $£ 1.13$
R45 $300 \quad 10 \% \quad 1$ watt $£ 3.04$
$\begin{array}{llllll}R 50 & 100 & 5 \% & 1 / 4 & \text { watt } & \text { E2.08 }\end{array}$
R55 $\quad 300 \quad 5 \% \quad 1 / 4$ watt $\quad E 5.40$
R60 $100 \quad 10 \% \quad \%$ watt $£ 1.13$
R65 $300 \quad 10 \% \quad 1 / 4$ watt $£ 3.04$
Capacitors
PAC C10 10010 pf upwards $£ 2.70$ C20 2001 mfd upwards $£ 7.88$

## The Mainline 70

Transistor Amplifier Kit.
(70 Watts into 8 ohms)
The Mainline 70 is a fully transistorised amplifier, in Kit form, for the Home Enthusiast who likes to make his own equipment. It is supplied with printed circuit board, heat sink and component parts ready for assembly. Simple circuit details are given for a suggested suitable AC Power Supply or it can be used with an existing unit giving the required output.
There are many applications for the Mainline 70 including Hi-Fi, Disco, Public Address, Guitar Amplifier, etc.
Specification
Input sensitivity
.700 mV
Output Power . . . . 70 Watts into 8 ohm load at 1 Khz .
Distortion generally.
$\leq 0.05 \%$
(up to $70 \mathrm{~W} \leq 0.15 \%$ )
Supply Voltage required. . . $\pm 42$ volts up to 2.5A D.C
Kit price f 17 each including VAT.
Postage free

Mainline
380 Bath Road, Slough, Berks. Tel. 06286 (Burnham) 63616.

All prices include VAT.
Manufacturers and trade enquiries invited for larger quantities.

TO: MAINLINE, 380 BATH ROAD, SLOUGH, BERKS.
Tel: 06286 (Burnham) / 63616
Please send me your latest
FREE product list. (SAE enclosed.)
Please send me the following devices
I enclose cheque/P.O. £ $€$

Name
Address Offers

## Semiconductors

AA139 £0.11 each AC187P £0.23each ACY39 $£ 1.40$ each AF239 £0.65 each BC147A £0.11 each BC158A £0.17each BC158B £0.19 each BC177 £0.21 each BC182A E0.11 each BC183L £0.11each BC212A £0.11 each BC212L f0.11 each BC237A £0.11 each BC238A £0.11each BC307A £0.11 each BC307VI £0.16each BC317 £0.11 each BF194A £0.17each
BF195 £0.17 each
BYX38 £0.35each
T1C44 £0.39 eaç
1N914 £0.08each
2N708 £0.16each

2N2219A £0.30each
2N2926 £0.11 each
2N3054 £0.56each
2N3416 £0.32 each
2N3702 £0.15 each
2N3706 £0.11 each

2N3707 f0.09 each
2N3711 £0.17 each
2N4058 £0.12 each
2N4061 £0.12each
2N4062 £0.14each
From our standard list.
BC107 £0.21 each
BC108 f0.19 each
BFY51 £0.43 each
BC109 £0.23each
2N1613 £0.62 each
2N914 £0.33each
2N708 £0.25each
2N2905 £0.38each
2N2219 £0.55 each
2N3819 £0.98each

Send a S.A.E. for our
comprehensive
semiconductor list.
Mainline

# ETI SPECIALS 



TOP PROJECTS No. 4
Published October. 1976 This includes Sweet-Sixteen Stereo Amp Waa-Waa. Audio Level Meter. Expander-Compressor Cual Ant-Theft Alarm. Headight Rer Audi Millivoltmeter. Thermocouple Meter Intruder Alarm. Touch Switch, Push-Button Dimmer, Exposure Meter, Photo Timér Electronic Dice High Power Beacon Temperature Contrich On

$$
£ 1.00+25 p \mathrm{P} \& \mathrm{P}
$$



TOP PROJECTS No. 5


LB. METAL LOCATER INFRARED INTRUDER ALARM STAGE MIXER REACTION TESTER DUAL DICE haART RATE MONITOR S.T.D. 0


CNIVERSAL TMMER POWER METER AUDIO LIMITER FLASH TRIGGER FIVE WATI STEREO MEADPHONE RADHO BREAKDOWN BEACON dIgITAL VOUT METER DISCO MIXER TEMPERATURE METER TRAN CONTROLLER TOUCH

ETI CIRCUITS No. 1 Contains nearly 250 circuits largely aken from the best of our Tech-Tips Great care has been taken 10 index each circuit for
rapid selection An additional section at the rapid selection An additional section at the back gives plenty of reference data
including transisior specs and equivalents Sales of this publication have been excellent - hardly surprising when the excelent - hardly surprising

## $£ 1.50+25 p$ P\&P

## CIRCUITS TWO NOW

 AVAILABLE!! SEE AD ON PAGE 60

ELECTRONICS - IT'S EASY
Our successful beginners series came to an
end some time ago now. and the whole end some time ago now and the whole series is available from us in reprint form. The three books between them contain all the information presented in the series (sometimes in more detail) and logether form an excellent stanting point for anyone interested in learning
Each volume costs.

## £1.20 +25 P P\&P

'ETI 4600 SYNTHESISER
A complete reprint of our superb synthesiser design, published with Maplin Electronics also be of interest to those not specifically wanting to build the unit as the circuitry is highly original and is in fact patented by highly
ETH

|  | Postage and packing also refers to overseas. Send remittance in sterling only. <br> ETI Specials <br> ETI Magazine <br> 25-27 Oxford Street <br> London W1R 1RF <br> Please mark the back of your cheque or PO with your name and address. |
| :---: | :---: |



Transoucirs w Masirimint and contiol
~と.
ma.m.mer.m...nce.
$\sigma$

## TRANSDUCERS IN <br> MEASUREMENT AND CONTROL

This book is rather an unusual reprint from the pages of ETI. The series appeared a couple of years ago in the magazine, and was so highly thought of by the University of New England had lor use as a standard the series splendidy for use as a standa Ph.D M Inst M.C. F.I.I.C.A. this publica tion covers practically every type of transducer and deals with equipment and techniques not covered in any other book. En quiries from educational authorities, universities and colleges for bulk supply of this publication are welcomed. These should be

[^0]
## ELECTRONICS TOMORROW

This is our latest special, and one which even we consider very special! Comprised entirely of new material, the edition covers such diverse subjects as Star Wars and hi-fi Th
magazine contains projects for everyone none of which have appeared in ETI - and a look at the future of MPUs, Audio. Calcula tors and Video. How can you not read it?
$75 p+25 p$ P\&P

## 

$\square$

## ETCH RESIST TRANSFER KIT SIZE 1:1

Complete kit 13 sheets 6 in $\times 41 / 2$ in £2.50 with all symbols for direct application to P.C. board. Individual sheets $25 p$ each. (1) Mixed Symbols (2) Lines 0.05 (3) Pads (4) Fish Plates and Connectors (5) 4 Lead and 3 Lead and Pads (6) DILS (7) BENDS $90^{\circ}$ and 130 (8) 8-10-12 T.O.5. Cans (9) Edge Connectors 0.15 (10) Edge Connectors 0.1 (11) Lines 0.02 (12) Bends 0.02 (13) Quad in Line.
FRONT AND REAR PANEL TRANSFER SIGNS
All standard symbols and wording. Over 250 symbols, signs and words. Also available in, reverse for perspex, etc. Choice of colours, red, blue, black, or white. Size of sheet $12 \mathrm{in} \times 9 \mathrm{in}$. Price $£ 1$.

## GRAPHIC TRANSFERS

## WITH SPACER

 ACCESSORIESAvailable also in reverse lettering. colours red, blue, black or white. Each sheet $12 \mathrm{in} . \times 9$ in contains capitals, lower case and numerals $1 / 8$ in kit or $1 / 4$ in kit. £1 complete. State size

All orders dispatched promptly.
All post and VAT paid
Ex U.K. add 50 p for air mail
Shop and Trade enquiries welcome Special Transfers made to order
E. R. NiCholls
P.C.B. TRANSFERS

DEPT. ETI/2 46 LOWFIELD ROAD
STOCKPORT, CHES.061-480 2179

## ANNOUNCEMENT TO THE TRADE

## TELEPLAY

have been appointed as official distributors of General Instruments Television

Game Circuits.

We are also official distributors for:

## A.B. CONTROLS

(Joysticks)

## AZTEC (EUROPE)

(Modulators)
For further information and sup ply details contact

14 Station Road. New Barnet. Herts EN5 ION Tel: 01-440 7033/01-441 2922


- Genuine 5 silicon transistor circuit. does not need a transistor radio to operate.
- Incorporates unique varicap tuning for extra stability.
- Search head fitted with Faraday screen to eliminate capacitive effects.
- Loudspeaker or earphone opera tion (both supplied)
- Britain's best selling metal locator kit. 4.000 already sold.
- Kit can be built in two hours using only soldering iron, screwdriver pliers and side-cutters.
- Excellent sensitivity and stability.
- Kit absolutely complete including drilled, tinned, fïbreglass p.c. board with components siting printed on.
- Complete after sales service.
- Weighs only 220z.: handle knocks down to 17" for transport.
Send stamped, self-addressed envelope for literature.


## Complete kit with pre-built search coil



## Built, tested

 andGuaranteed

## $£ 20.95$ <br> Plus $£ 1.20$ P\&P <br> Plus $£ 1.77$ VAT ( $8 \%$ )

MINIKITS ELECTRONICS,
6d Cleveland Road, South Woodford, LONDON E182AN
(Mail order only)

DRAUGHTS against a computer


The 'Checker Challenger' is a microprocessor based games computer that will really improve your game and provide you with endless hours of fun. It has four levels of play, from beginner to real expert. This is a game you will not outgrow.

## Only $£ 90.00$

KRAMER \& CO.
9 October Place, Molders Hill Road
London, NW14 1EJ
Telex 888941 ATTN. KRAMER, K7
Tel. 01-203 2473
MAIL ORDER ONLY. S.A.E. for data sheets
Export enquiries welcome


## ETI Magazine and Commodore join forces to bring you the seminar you've been waiting for:

# PETTING FOR BEEINNERS 

## An introduction to home computing in two identical all-day seminars

COMMODORE'S PET is here at last and ETI has already purchased one to use on the business side of the magazine! The interest in home and small-business computing is exploding and it's been ETI that has been keeping you up-to-date with the news of the latest developments.

Now ETI and Commodore have joined forces to bring you the first Seminar in Europe on PET, and we've arranged a programme that we know you'll find irresistable if you've any interest at all in this area.

Firstly we're limiting the attendance on each of the days to 500 delegates so each person will have a good chance at getting hands-on experience with one of the PETS and KIMS available. Secondly we've chosen the speakers and the topics carefully - it's not just going to be a lot of people telling you about PETS virtues. Thirdly we've got a large area adjacent to the main hall which will be open all day (even when the lectures aré on) where we'll have at least 5 PETS and 5 KIMS for hands-on experience.

Fourthly one PET and one KIM must be won on each of the two days by one of the delegates - thats nearly $£ 900$ worth of power to be given away on each day! (there will be a draw selecting the winner at random).

Fifthly we're putting together sensible and useful notes for everyone attending so if you miss a point you stand a good chance of picking it up later.

We are expecting a massive response so in order to be fair to those readers whose copies are available late in the delivery schedule we shall not select candidates until the magazine has been distributed nationally.

## Petting for beginners

If YOU WANT to attend, fill in the form, mark your preferred day [Friday 12th May or Saturday 13 th May] and the alternative if this is acceptable and send with your cheque for $£ 10.00$ with an s.a.e. please in case your cheque has to be returned.

The charge is fully inclusive of VAT, coffee and a snack lunch with beer or a soft drink.


## PROGRAMME

9.00 Seminar Opens
9.30 Gary Evans (ETI) Home Computers
10.15 Derek Rowe (CBM)

The KIM 1 evaluation unit
11.00 Speaker to be confirmed (CBM) PET - what it can do.
11.45 Question Time 1
12.30 Break for Lunch
2.00 Jim Perry (ETI) Home Computer Games
2.45 John Miller-Kirkpatrick (Bywood)

Peripherals for the home computer
3.30 Question Time 2.
4.30 Draw for PET and KIM prizes
5.00 Seminar closes

The room adjacent to the lecture theatre will be open throughout the day with machines for hands-on experience.

VENUE: CAFE ROYAL Regent Street London W1 (very close to Piccadilly Underground] Friday 12th May or Saturday 13th May
TIMES: Doors open 9.00 am Doors close 5.00 pm

- Top line speakers
- PETS and KIMS available all-day for hands-on experience
- Price includes VAT, Snack lunch and refreshments
- A PET and a KIM must be won on each of the two days.
- Seminar notes supplied.
- Attendance limited to give everyone a chance.
ADMISSION: £10 payable with application



## Aratroninstotat <br> international

## What to look for in the June issue: On sale May 5th

## HOME COMPUTNG A CRASH COURSE <br> DO YOU HAVE a pretty good grasp of

 electronics but find our features on home computing another language and impossible even to get into?You're in good company. This new aspect of the hobby has left many highly intelligent and up-to-date readers frustrated because they miss something small but vital back along the tracks.
Never mind - next month we've got a real bumper supplement for you. We're starting with the idea that the reader wants to get up-to-date in one crash lesson so you'll be able to follow things from now on.

We tell what a "program" is - and
how to write one, we tell you about the "languages" - especially BASIC and what they'll do for. We won't cut out jargon - we explain it.

Then we'll tell you about memories why they're needed, what types there are and which types are used in the small systems that are appearing. We'll have a look at which systems are now (or will shortly be) available.

Even if you've got a pretty good idea of what we said already its ten to one you'll still get something useful out of this by regarding it as a refresher course.

## 10-CHANNEL Spectrum Analyser <br> 

## QUARKS

We'd have liked to show you a picture of a Quark but they're rather small!

Our knowledge of the basic building blocks of matter is growing month by month. Most of us at school learnt that there were proton, electrons and neutrons - nice and simple and easy. Boy, oh Boy, have things changed - particles are turning up so fast its hard to keep track.

Next month we'll tell you about Quarks in a really up-to-the-minute article - that is unless some more are found in the next week or so!

## Gordon King writes on the

 Hitachi Mosfet PowerAmplifiers

A new generation of power amplifiers are appearing using MOSFETS. We'll show you the complete circuit and it will be looked at from the engineer's point of view. Gordon King has also put the amplifier through its paces and concludes, "we vote the Hitachi MOSFET power amplifiers an outstanding achievement in state-of-the-art electronics." It's worth reading.

## ONE CHIP AM/FM RADIO

Don't things move fast! There's now a complete AM/FM radio with an audio output all on one chip. We describe a project using this next month and even show you how to build the FM front-end (it's not as difficult as you may think). The photograph shows an early prototype.

## Don't miss ETI Commodore's seminars on

PETTIIMG FOR BEGINNERS $\varepsilon 10$
An introduction to home and small system computing, Café Royal, London, 12th and 13th May, 1978

Top project in the next issue is a superb 10-channel spectrum analyser - it's even got a microphone built in!
Whistle a nice pure note (not easy) and a column of LED's light up giving you the relative power at that frequency. We're not putting it forward as a beginner's project but it's beautifully thought out and of a really high standard.

## Tim Orr on

## Amplifier Circuits

If. like most readers, you enjoyed Tim O:r's series on Op-Amps which finished in this issue, next month he goes on to $\therefore$ plain amplitiers in the same way, once again with masses of circuits.

Articles mentioned here are in an advanced state of preparation but circumstances may affect the final contents.

# The Sinclair PDM35. A personal digital multimeter for only $\mathbf{\$ 2 9 . 9 5}$ <br> <br> Technical specification 

 <br> <br> Technical specification}


DC Volts (4 ranges)
Range: 1 mV to 1000 V .
Accuracy of reading $1.0 \% \pm 1$ count.
Note: 10 Mr input impedance.
AC Volts ( $40 \mathrm{~Hz}-5 \mathrm{kHz}$ )
Range: 1 V to 500 V .
Accuracy of reading: $1.0 \% \pm 2$ counts.
DC Current ( 6 ranges)
Range: 1 nA to 200 mA .
Accuracy of reading: $1.0 \% \pm 1$ count.
Note: Max. resolution 0.1 nA .
Resistance (5 ranges)
Range: 1 s to 20 Mn
Accuracy of reading: $1.5 \% \pm 1$ count.
Also provides 5 junction-test ranges.
Dimensions: 6 in $\times 3$ in $\times 11 / 2$ in.
Weight: $61 / 202$.
Power supply: 9 V batiery or Sinclair AC adaptor.
Sockets: Standard 4 mm for resilient plugs.
Options: AC adaptor for 240 V
50 Hz power. De-luxe padded carrying wallet. 30 kV probe.

## The Sinclair credentials

Sinclair have pioneered a whole range of electronic world-firsts - from programmable pocket calculators to miniature TVs. The PDM35 embodies six years' experience in digital multimeter design, in which time Sinclair have become one of the world's largest producers.
Tried, tested, ready to go!
When you buy your PDM35 it comes complete with leads and test prods, carrying wallet and comprehensive operating instructions.

The PDM35 is a new concept in multimeters - but over 20,000 have already been sold! If you'd like to know more about the PDM35, and how to get one, complete the coupon and post it to us. We'll send you detailed information by return. Send the coupon today!
Sinclair Radionics Ltd; London Road, St Ives, Huntingdon, Cambs., PE17 4HJ, England.

## Now everyone can afford to own a digital multimeter

A digital multimeter used to mean an expensive, bulky piece of equipment.

The Sinclair PDM35 changes that. It's got all the functions and features you want in a digital multimeter, yet they're neatly packaged in a rugged but light pocket-size case, ready to go anywhere.

The Sinclair PDM35 gives you all the benefits of an ordinary digital multimeter - quick clear readings, high accuracy and resolution, high input impedence. Yet at $\mathcal{L} 29.95$ ( $+8 \%$ VAT), it costs less than you'd expect to pay for an analogue meter!

The Sinclair PDM35 is tailormade for anyone who needs to make rapid measurements. Development engineers, field service engineers, lab technicians, computer specialists, radio and electronic hobbyists will find it ideal.

With its rugged construction and battery operation, the PDM35 is perfectly suited for hand work in the field, while its angled display and optional AC power facility make it just as useful on the bench.

## What you get with a PDM35

$31 / 2$ digit resolution.
Sharp, bright, easily read L.ED) display, reading to $\pm 1.999$. Automatic polarity selection. Resolution of 1 mV and 0.1 nA (0.00014A).

Direct reading of semiconductor forward voltages at 5 different currents. Resistance measured up to 20 M s. $1 \%$ of reading accuracy.

Operation from replaceable battery or AC adaptor.
Industry standard 10 Mn input impedance.

## Compare it with an analogue meter!

The PDM 35 's $1 \%$ of reading compares with $3 \%$ of full scale for a comparable analogue meter. That makes it around 5 times more accurate on average.

The PDM35 will resolve 1 mV against around 10 mV for a comparable analogue meter - and resolution on current is over 1000 times greater.

The PDM35's DC input impedance of $10 \mathrm{M} \Omega$ is 50 times higher than a $20 \mathrm{k} s /$ volt analogue meter on the 10 V range.

The PDM35 gives precise digital readings. So there's no need to interpret ambiguous scales, no parallax errors. There's no need to reverse leads for negative readings. There's no delicate meter movement to damage. And you can resolve current as low as 0.1 nA and measure transistor and diode junctions over 5 decades of current.

## TANK BATTLE

WHEN it comes to TV games - from now on think tanks because at last the tank battle chip from GI is here

Ball and paddle games (yawn), stunt riders - less than stimulating, but tanks - great

## Tanks A Lot

The tank battle gives each of the participating war mongers control of a tank (there's power for you), each of which can move forwards or backwards at three speeds and be rotated through $360^{\circ}$

To move forwards the appropriate button on the hand-held unit must be pressed. After a short delay the tank will begin to move and if the button is
kept pressed, the tank will select second gear and then top gear. If the control is released at any time the tank will continue to move at the selected speed, it being necessary to engage reverse to stop the beastie

Whether still or in motion the tank may be rotated in an anticlockwise or clockwise direction by means of the rotation controls.

## Mined Where You're Going

Having mastered the motion controls and got under way, you will come across two types of obstacle. The white blocks on screen are fixed
barriers and your tank will not go through them. The black objects arè mines - if you run into one of these fellows your tank will be blown up and your opponent score a point.

## Tanking Up

Now the object of the game - to blast your fellow man into the ground. The means of achieving this aim is your tank's gun. This impressive weapon fires not so much shells but more guided missiles. After leaving the tank the trajectory of these offensive weapons can be changed by means of the tank's rotation controls. The range of the shell is about two thirds of the TV screen.


## ME



Fig 1. A simulated version of the display produced by the tank chip. See text for an explanation of the various obstacles.

ur thanks to the Ministry of Defence for e photographs used throughout this ticle. The AFV illustrated is the Cheftain attle tank, arguably the best in the world,



Fig 2. Circuit diagram of the tank game.

The twenty-eight pins of the AY-3-8710 can conveniently be grouped according to function, i.e.; video output pins (including sync), sound outputs, control inputs and a miscel power supply and a number of pins to which there is no connection.

## VIDEO OUTPUTS

Five video outputs are provided: Sync, white Five video outputs are provided.
video, black video, grey and blanking,
The sync output (pin 18) provides a composite (line and frame) sync signal with equalization pulses to produce a fully interlaced display on the TV screen
The white video output (pin 28) generates the left player's tank, shell, shell burst and score as well as the fixed barriers and borders.
The black output ( pin 27 ) is responsible for the right player's tank, shell, shell burst plus score and for the mines.
The grey background appears at pin 2 while the composite blanking signal is taken from pin 3 .

These video signals are mixed in the appropriate proportions to form a composite
deo signal that is fed to the UHF modulator Note that the UHF transmission standard in his country is such that peak white corres ponds to minimum carrier energy while sync tips correspond to maximum. Hence while the mixed sync signal is fed via Rl (100R) to the summing junction of R24, R25, the white output is attenuated by R13 (3k9) and the greay and black levels are set by resistors between these two extremes

## SOUND OUTPUTS

The sound circuits are responsible for producing the gunfire, explosion and tank movement sounds.
The tank sounds are produced at pin 21 (left tank) and pin' 23 (right tank). Each tank's sound is fed via a frequency shaping network to IC2C which acts as an amplifier.
The gunfire and explosion sounds are produced by gating a available at pin 20
The gunfire envelope appears at pin 25 and is gated with the noise source in IC 2b while and is gated with the noise in IC2a.
The three resulting sound outputs are fed tion
From IC2d's output the sound is fed, via C 8 , to the sound modulator.
In order to reproduce the sound over the TV's loudspeaker we must generate a signal that is a frequency modulated about 6 MHz . This can then be added to the video signal before this is fed to the UHF modulator.
This mixing is done by C 16 .

## CONTROL INPUTS

These inputs control the direction of move ment that each tank adopts, the firing of a tank's gun and the reset at the end of a game. The reset is straightforward. Taking pin 10 low will reset the game. Due to the limis imposed by pin out restrictions, how
These functions are controlled by inputs $A$,
B, C and D (pins $5-8$ ), by the fire gun input at pin 9 and by the two strobe signals (tank 1 at pin 4 and tank 2 at pin 24).
In order to move tank 1 (for example) forward it is necessary to connect strobe 1 to inputs $A$ and $B$, for reverse to inputs $D$ and $C$,
to move counter clockwise $A$ and $C$ are connected to the strobe while $B$ and $D$ will produce clockwise movement. Connecting strobe 1 to the fire input will fire the tank's gun. The dioes D1-D16 ensure that connections appropriate to the action are generated upon pressing
Witches-

Pin 22 (barrier interaction select) is connected to ground. With this pin held high the producing a game that is not very interesting.

## MISCELLANEOUS

The 4 MHz clock required by the game is generated by Q1 and associated components and fed to pin 19 of IC1
Q2 together with ZD1 and R26 form a simple series pass power supply to provide power for the modulators and the 8710 (pin 16 -pin 1 is ground)
No connections should be made to pins 11 12, 13, 14 and 15.
7 The only pin not mentioned thus far is pin is not is not used in our application

The game continues until one person has scored sixteen points, when the score will begin to flash and funny things will begin to happen

All this action on screen is accompanied by various bangs, squeaks and grumbling from the TV's loudspeaker

One word of warning, although not part of Gl's plans, tanks can get stuck in the sand dunes that form the game's borders. The bottom right hand corner is particularly prone to this risk so steer clear of the borders.

## Construction

Construction of the tank game is made easier if the PCB is used (those kinky people amongst you can try it on veroboard - but we would not recommend it). IC 1 - the tank chip is an expensive CMOS chip and it makes sense to use a socket for it.

IC2 is an A series device. A in this
case means its one of the early CMOS designs and does not have any protection diodes on its input. This means that it should be treated with care, earth yourself before touching it, use a socket etc.

Other than that, construction should be an easy matter. Just make sure everything goes in the right way round (eighteen diodes in back to front is no joke).

We used ribbon cable to connect the main input to the hand held controls although any six-way cable would be suitable.

The cost of providing an on-board power supply was not thought to be justified because as the game does not consume much current it can be run from batteries, or perhaps, a calculator's mains unit

When complete, connect up to the ariel input of your TV set, turn on and tune to channel thirty-six. Press reset and let the war begin.


## Top View

## BUYLINES

Complete kits for the tank game are to be produced by Teleplay and Watford. The tank chip itself will be available from a number of different suppliers - look through the ads in this issue. IC2 must be an A series device for correct operation so ensure the device you buy is not a more common B series type.


Fig 4. Tank game overlay.

- PARTS LIST

| RESISTORS |  |
| :--- | :--- |
| R1, 26 | 100 R |
| R2, 6, 16 | 470 R |
| R3, 5 | 3 kg |
| R4, 25, 27 | 1 k |
| R7, 13, 19, 20, 22 | 10 k |
| R8 | 18 k |
| R9, 10 | 1 M |
| R11,12,14 | 10 M |
| R15 | 100 k |
| R17,18,21 | 22 M |
| R23 | 22 k |

CAPACITORS
C1, 4, 5, 6, 16
C2, 3, 11, 12
C7
C8
C9, 1.0
C13, 14
C15
C17
10n polyester
22 n polyester $1 \mu 010 \mathrm{~V}$ tantalum 56 polystyrene 33 p polystyrene $220 \mu 16 \mathrm{~V}$ electrolytic $4 \mu 710 \mathrm{~V}$ tantalum 100p polystyrene

|  |  |
| :--- | :--- |
| IC1 | AY-3-8710 |
| IC2 | CD400.1 AE |
| Q1.2 | BC109 |
| D1-18 | 1N914 |
| ZD1 | $6 V 8400 \mathrm{~mW}$ |

SWITCHES
PB 1-11
push to make
MISCELLANEOUS
UM 1111 E36 (video modulator), UM 1263 (sound modulator), PCB as pattern, cases to suit.


Fig 5. Foil pattern of the tank board. The copyright for this board is held by Teleplay who will supply the board separately as well as in a complete kit of parts.

## ETI MAR Disues Digital Alarm <br> 

Size: 105 mm wide 115 mm deep $\times 55 \mathrm{~mm}$ high.
OUR PREVIOUS digital alarm clock offer (which we have run for several years) was a real success - over $10 \%$ of ETI readers own these. We have been searching around for one of even better value and have come up with a winner - with an equally good spec and at a much reduced price; the Unik Time Digital Alarm.

This clock features a large, bright LED display in a really stylish case. It's really easy to set: lift up the hinged panel on the top and all the controls are there including fast and slow setting buttons. The hinged panel, when down, acts as the snooze switch - easily found by that early morning groping hand to give you 9 minutes extra in bed.

Mains operation only ( $240 \mathrm{~V} / 50 \mathrm{~Hz}$ ) with a 12 hour display. 'AM/PM" and "Alarm set" indicators are on the front while an internal switch enables you to display the last significant minute and seconds if you wish

$$
\text { cis y } 5 \text { inc Vat Page }
$$

An example of this clock can be seen and examined in our reception at our Oxford Street offices.

## To:

Unik Time Offer
ETI Magazine
25-27 Oxford Street
London WIR 1RF
Please find enclosed my cheque PO for $£ 8.95$ (payable to ETI Magazine) for a Unik Time Digital Alarm Clock.

## Name

Adress

Please allow 28 days for delivery


## CCD PHASER

## Astound your ears with this solid-state phaser using the latest CCD technology. Designed by David (White Noise) Vorhaus, inventor of the musical drainpipe!

PROBABLY THE MOST sought after effect in rock music is 'jet plane' sound - or phasing as it is properly called. The effect is very distinctive, and lots of firms have produced units that imitate it. The reason we say imitate is because of the way 'real' phasing is produced - which up until recently required three tape decks, a lot of skill and even more patience!

## The Real McCoy

To produce phasing in a studio you record a sound onto two tapes, then replay both tapes simultaneously via a mixer onto the third machine. Because of slight variations in playback speed (usually introduced by physical slowing of a spool), the two signals shift slightly relative to each other - this produces phase differences over the entire spectrum of the sound

This gives the 'real' phasing that musicians know and love. Too much slowing of a spool results in echo. Obviously you cannot use this technique in real time on stage, so various other ways have been devised to produce a similar effect. However, none of the imitations are as good as the real McCoy!


Fig 1. Block diagram of the unit, note how it can be broken into signal path and control section.

## To the Rescue

With the advent of analogue delay lines came the opportunity to produce phasing in real time. By feeding the signal through a delay line and mixing the output with the undelayed input you get instant real phasing

By adding various controls, such
as input/output mix and delay length, the versatility of such a unit is increased enormously.

This phaser unit is capable of producing numerous effects - the controls permit variation of all the possible parameters. Phasing, flanging, stereo simulation are just some of the things you can do with it.
$-$



## BUYLINES

Lotus Sound are marketing a complete kit (designer approved) see their advertisement in this issue. For those of you who would prefer to buy all the bits separately, most parts are widely available. The only difficult parts may be the PCB pots - try Electrovalue, and the delay line - Watford and Marshalls should have it




$$
\begin{gathered}
\text { INFUT } \\
\text { RTH7 } \\
\text { RV } \\
100 \\
\text { SIG }
\end{gathered}
$$

The heart of the unit is a 512 stage CCD (Charge Coupled Device) type TDA1022 This particular IC was the subject of our May 1977 data sheet, and the theory of CCDs was covered in the september 1977 edition Reference should be made to these articles for a description of the TDA 1022 operation However, even though the TDA1022 is the heart, the escribed in dail will be described in detail
Figure 1 shows a simplified block diagram an be divided into two section, the circuit path and control circuitry.

## SIGNAL PATH

First the signal path starting with RVI which is a straightforward 100 k logarithmic level control. From its wiper the signal passes into ICla, which is connected as an inverting amplirer with a gain of ten (set by the ratio of R1, \}? RV3 (feedback) is also connected to ICla - the reason will be explained further on.
The output of ICl a is fed into IClb and also to RV4b (direct level). IC1b is connected as a second order Butterworth low pass filter
with its upper -3 dB point at 10 kHz and a gain of approximately 4 dB in its passband. There are two reaons for this configuration. Firstly, if the input to the delay line has a frequency greater than half the delay line's clock frequency, the result is distortion. The delay line willoperate wis 5 lock requencies frequencies to below 25 kHz tradeoff has to be made The clock (described later in the control section) works in the range of 5 kHz to 400 kHz , but as the most useful effects are above $20 \mathrm{kHz}, 10 \mathrm{kHz}$ was chosen as the input cut-off frequency.

The 4 dB gain is required because the delay line has a typical loss of 4 dB - if the gain is introduced before the $C C D$ the signal to noise ratio at the output is improved by 4 dB .
The input of the delay line is pin 5 which IClb feeds via C4. The resistor chain R9, RV2, R10, R11 is to hold pin 13 approximately 1 V above OV which produces maximum dynamic range in the delay line. RV2 is used to set the DC voltage at pin 5 for class A operation, which minimises distortion. Pins 1 and 4 of the CCD are its clock inputs, which output, as the line likes a nice standard load
to ensure consistent operation. The output feeds via C5 to RV3 (feedback) and IC3a
The feedback control (RV3) is to enable recirculation of the delayed signal output fed back to the input, via R2. The output filter is IC3a, which is similar to the IClb filter, in that it is again a second order Butterworth low pass inter, but has unity gain and a is chosen to eliminate any clock frequency that may be present in the output from the delay line and hence prevent HF overload of any subsequent equipment
The output control RV4a,b, enables the user to mix from delayed signal to normal signal, the output from the twin control is resistively mixed by R16, 17. A log/antilog control is used to give a smooth transition with no 'dead band' in the centre of rotation.

## CONTROL CIRCUITRY

All of the second section has one purpose - to alter the clock frequency, and hence the delay time, of the CCD. IC4b is a D flip-flop Which is wired to give the required two phase input to IC4b this is fed a stream of pulses from IC5 via Cl0. IC5 is a 566 voltage con
rolled oscillator, except it is wired as a current controlled oscillator! Pin 5 (the voltage input) is held at 10.5 volts by R31, 32 and pin 6 is fed a variable current provided by Q2. With the values shown the 566 will oscillate over the range 10 kHz to 800 kHz , which produces a clok frequency after the divide by two of IC4b) of 5 kHz to 400 kHz

The current injected by Q2 into the 566 is dependent on the voltage from IC3b, fed to its base. This voltage is controlled in two ways. Firstly from the delay control (RV5). control is useful over most of its thavel therwise the 566 (IC5) could stop oscillating when RV5 was at its positive end.

IC4a and Ql also control the frequency of the 566 via RV6 (modulation depth) and RV7 (modulation speed). They are connected up as a triangle generator, the frequency being controlled by RV7. The timing function is dependent on the rate of charge (and disR22 and of Which is directly controlled by duced is mixed with tha gle averorm proRV6 and hence changes the voltage at Q2 base - and therefore the delay time.

## Construction. 1, 2, 3 . . .

Install the seven links and six terminal pins first. Follow with all the resistors and capacitors - double check polarities on the electrolytic capacitors. Soldercon sockets or moulded sockets should be used for the 4013 and TDA1022, and for the hell of it the other three ICs - ever tried to unsolder one? Put them in now anyway.
Cut the control spindles to length before you mount them.

The six front panel controls can now be mounted on the board one at a time, and after careful alignment soldered in place. If you don't use the specified PCB mounting controls - you have to be accurate and
$\rightarrow$ cunning, or you'll end up with a dog's
hind leg (just like the origina prototype - yes folks, even ETI can make mistakes!).

After the control pots comes the transformer, fuse holder and prese RV2, followed by the diodes

## and transistors

Insert the two standoffs into the base of the box, then spindles first (not women and children) place the board into the box - it should click into place (if you drilled your holes in the right place)

Nearly there now, fit the mains switch, jack sockets and mains cable Make sure you wire the live mains lead into the fused side of the transformer.

The LED, nuts and knobs, ICs and you've done it . . . light the blue touch paper and

Set all the controls fully anti-
clockwise except for the delay control (on the left) which should be fully clockwise. Feed in an audio signal (preferably a sine wave) and put the output through an amplifier.

Rotate the level control (on the extreme right) clockwise, until the signal comes through at the same level it is going in. If all is well rotate the mix control clockwise - as you do so the sound should 'phase'. With the mix control fully clockwise, adjust RV2 for either 5 V at its wiper, or symetrical clipping of the output when viewed on an oscilloscope with 2 V 5 peak to peak going into the delay line.

When RV2 has been set the delay line is operating at its optimum bias point.

The delay control can now be checked, turning it anticlockwise
should alter the output signal and near the end of its range a whistle should break through - and the signal should deteriorate into a very 'crunchy' sound, but not disappear completely. If it does stop increase R18 until it appears again.

The modulation control comes into effect when turned clockwise Modulation speed is increased by clockwise rotation of the speed control. Make sure the delay control s set clockwise initially. With the mix control halfway a regular 'phasing will occur as the modulation depth is increased, faster as the modulation speed is increased.

Now you can play with a real signal - white noise is particularly nice to feed into the system (fuzz guitar has a lot going for it as well).

# STAR TREK RADIO 



To: All Starfleel personel From: Star Fleel Command
Re: Field Equipment item - Radio
The importance of maintaining the integrity of the star fleet command communications network must once again be stressed. Pursuant to this matter details of an approved personal communications system are appended.

This device, capable of being tuned over the section of the electromagnetic spectrum termed medium wave and possesing an audio output that is adjustable to suit local field conditions, will enable approved star fleet data transmissions to be recieved.

Personnel should note that as an aid to security certain wavelengths will carry data in a code that. to the untrained ear. will sound like a series of loud repetitive off key musical notes not unlike 20th century pop music.

The need to keep in contact with your local command station is important at present with the Intergalactic Pirates Corps (IPC) on the increase. Remémber, Irek boldly with your Star Trek Radio.

Star Fleet engineers have designed the communications receiver in such a way that the item of equipment can be built with the parts available in most paris of the galaxy.

After securing all the necessary components assemble same according to the PCB overlay appended. Take care that all polarity sensitive devices are installed correctly.

A small size energy rod (that's soldering iron) with a small bit is essential when constructing the radio in view of the small size of the finished unit.

When the receiver is complete, apply power and tune to the command channel you have been assigned.

## BUYLINES

See ETI Market Place on page fifty-five for a good deal on the "ZN414. The box that "makes" the project is one of a new range from Vero.

The normally closed switch we used was very expensive but there is no reason why a cheaper slide switch cannot be used. But of course, in this case, the radio would not "bleep" automatically as the lid is opened.


Fig. 1. Circuit diagram of the Star Trek radio.

## PARTS LIST

| RESISTORS |  |
| :--- | :--- |
|  |  |
| R1, 2,7 | $56 k$ |
| R3 | $680 R$ |
| R4, 14 | $100 k$ |
| R5 | $2 k 7$ |
| R6 | $33 k$ |
| R8, 13 | $10 k$ |
| R9 | $10 R$ |
| R10 | $1 k$ |
| R11 | 1 M |
| R12 | $470 k$ |
| R15 | $82 k$ |

## POTENTIOMETERS

RV1
. $5 k$

## CAPACITORS

| C1, 6 | 10n Polystyrene |
| :--- | :--- |
| C2, 7 | 47 u 10 V Tantalum |
| C3,5 | 100 n Polyester |
| C4 | 10 u 10 V Tantalum |
| C8 | 100 u 10 V Electrolytic |
| C9 | 2 u 210 V Tantalum |
| C10 | no Polystyrene |
| C11 | 4 u 710 V Tantalum |

## VARIABLE CAPACITOR

VC1
150p

SEMICONDUCTORS

| IC1 | ZN414 |
| :--- | :--- |
| IC2 | 3360 |
| IC3 | 4011 |
| Q1 | BC184 |
| Q2 | BC214 |
| ZD1 | $4 V 7400 \mathrm{~mW}$ |

## MISCELLANEOUS

PCB as pattern, 8R loudspeaker, Vero flip top box, push to break switch, ferrite rod, 32 SWG wire.

## HOW IT WORKS

The radio's "front end" is based on Ferranti's ZN414. This is a ten transistor Tuned Radio Frequency (TRF) circuit that contains a complete RF amplifier, detector and AGC circuit.
The ZN414 operates with a supply of between 1.2 and 1.6 volts. This is provided by Q1.
R3 sets the AGC characteristics of the receiver.
To obtain good selectivity it is essential that the input to the ZN414 is fed from a high $Q$ coil and capacitor combination. This requirement is met by the network formed by Ll and CV1 (tuning control)

C3 decouples the audio output at RF frequencies leaving us with an audio signal that is fed, via volume control RV1, the audio amplifier stage.

The audio amplifier consists of $1 \mathrm{C} 2, \mathrm{Q} 2$ and related components. Q2 provides gain with a response that is shaped by the feedback loop formed by R8, R9, R10 and C7. The output of the amplifier is fed via DC isolating capacitor C8 to the loudspeaker.
The "bleep" effect produced at switch on is generated by IC3. The gates of this package are configured as two oscillators, one running at a high frequency ( lClc and ICld ), the other at a low frequency ( ICla and IClb).
The latter is gated on when the junction of C11 and R15 is high. This is the case at the instant of switch on, however, Cll soon "charges down" inhibiting operation.
The slow running oscillator gates the bleep produced by the IC3c and IC3d oscillator. The bleep is fed to the audio output stage via C5.



Fig: 2. Foil pattern of radio PCB.

Fig. 3. Component overlay of Star Trek radio.

## AUDIO AND BRAND NEW STOCKS NO RECONS. CENTRE

Only regular stocks listed - other makes and models available.


LONDON'S TEST GEAR CENTRE
OPEN 6 DAYS A WEEK $9 \mathrm{am}-6 \mathrm{pm}$

## SCOPES



MULTI-METERS - GENERAL PURPOSE 8, ELECTRONIC Multi-Range instruments feoturing $A C / D C$ volts. $D C$ current. Resistance Ranges all with mirror scales
except $T 1 / T 1-2 / 12 / T M 3 A$ TM $A C$ volts only). some with AC current etc.
TM11 incredible 120 Range Electronic Multi-meter

 CALL IN AND SEE FOR YOURSELF


301 EDGWARE RD., LONDON W2 1BN 01-724-3564. OPEN 9-6, MON-SAT.

| TRANSISTORS |  |  |  | 243393 | 0.17 | 2 N 4 | 0.6 | 2 N | 0.80 | $2 \times 61$ | 0.45 | 日C108 | 0.16 | 8 | 0.35 | ${ }^{\text {BC2 }}$（ 136 | 0.15 | BC3 | 0.20 | 802 | 0.49 | 8 F 160 | 33 | ${ }^{88 f} 79$ | 0.30 | 1 | 0.16 | ， | 70 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 24696 | 0.39 | 2 2 2218 | 0.35 | 2 m 334 | 0.17 | 244058 | 0.22 | 2 5 193 | 0.75 | $2 \mathrm{W6125}$ | 0.47 | ${ }^{\text {BCIIOB6 }}$ | 0.16 | ${ }^{\text {BC179 }}$ | 0.25 | 8 C 213 L | 0.17 | ${ }_{\text {BCa }} \mathbf{3} 38$ | ， | ${ }^{\text {Bid } 240}$ | 9 | ${ }^{816161}$ | 0.65 | 日ז9 | 0.30 0.30 | ME4002 | 0.16 0.16 | T1P31／ | ${ }^{0.54}$ |
| 21697 | 0.31 | 2M22184 | 0.38 | 213395 | 0.19 | 244059 | 0.17 | 251949 | 0.80 | 40361 | 0.55 | ${ }^{\text {BCLIOSC }}$ | 0.17 | BC1794 | 0.25 | BC213LA | 0.1 | BCSS 7 | 0.13 | boz41A |  | 8 F 167 | 0.37 | 8F981 |  | ＊ | a， 11 | т1р32 | 0.59 |
| 21698 | 0.49 | 2 W 2219 | 0.36 | 2133396 | 0.19 | 240150 | 0.22 | 2N5195 | 0.97 | 40362 | 55 | HC109 | 0.16 | 8C179 | 0.25 | AC21318 | 0.17 | BC547 | 0.13 | 80241C | 0.65 | BFI73 | 0.37 | afx ${ }_{\text {ar }}$ | 0.34 | ME4101 | 0.11 | т | 0.82 |
| 24699 | 0.58 | 2．22194 | 0.39 | 2 M3397 | 0.19 | 244061 | 0.19 | 2 L 5245 | 0.37 | 40363 | 1.45 | ${ }^{\text {BC1098 }}$ | 0.17 | ${ }^{\text {AC179 }}$ | 0.26 | ${ }^{\text {日C2 } 213 L}$ | 0.17 | ${ }_{8}^{8 C 54}$ | 0.13 | BD242 | 0.62 | 8F171 | 0.27 | ${ }_{\text {bFX }}^{\text {日fx }}$ | 0．34 | ${ }_{\text {me }}^{\text {me } 4102}$ | 0.11 | TiPa｜h | 0.76 |
| 2 W 706 | 0.30 | 2 W 222 | 0.39 | 2／3338 | 0.85 | 244165 | 0.20 | 2 w 246 | 0.38 | 40408 | 0.82 | 日c109 | 0.18 | 8C182 | ， | BC214 |  | ${ }^{\text {BC54 }}$ | 0.13 |  | 0.62 |  | ${ }_{0}^{0.27}$ | BFX | 0.3 |  | 0.11 |  | 0.97 |
| 21706 A | 0.30 | 2 2 222 | 0.25 | 2 23440 | 0.75 | 2 L 4064 | 4.35 | 2 L 5247 | 0.44 | 40409 | 0.82 | ${ }^{\text {BCL }} 140$ | 0.30 | ${ }^{81182}$ | 0.12 | ${ }^{8 C 2148}$ | 0.17 | BC54 | 0.14 | g024 | 0.65 0.87 | 8 FI | 0.33 | BFX | ${ }_{0}^{0.33}$ | Mestor | 0.22 | TIP42A | 0.86 |
| 2 T 708 | 0.30 | 2 2 22211 | 0.25 | 213441 | 0.92 | ${ }^{244074}$ | 2.65 | 215248 | 0.44 | 40410 | 0.88 | ${ }^{\text {BCI }} 141$ | 0.32 | ${ }^{8 C 1828}$ | 0.15 | BC214 | 0.17 | B654 | 0.15 | ${ }_{8024}^{8024}$ | 0.70 | ${ }_{8618}$ | 0.37 |  | ${ }_{0} .35$ | me6102 | 0.22 | TIP42C | 1.08 |
| ${ }^{2 N 718}$ | 0.30 | ${ }_{2}^{242222}$ | 0.25 | ${ }_{2}^{2 N 3442}$ | 1.45 | ${ }^{244121}$ | 0.27 | ${ }_{2}^{2152929}$ | 0.44 0.44 | ${ }_{40511}^{4054}$ | 3.10 0.87 | ${ }_{8}^{8 \mathrm{Cl} 147}$ | ${ }_{0}^{0.13}$ |  | 0．15 | ${ }_{8 C 2}^{8 C 2144}$ | 0．18 | ${ }^{\text {BC55 }}$ | ${ }_{0}^{0.14}$ | ${ }_{802445}^{80240}$ | 0.87 | ${ }_{8618}^{881}$ | 0.37 | BFX | 0.30 | M $\quad$ 2955 | 1.35 | TIP2955 | 70 |
| 27718 | 0.054 | ${ }_{2 N 3}^{212298}$ | － | ${ }_{2 \times 36384}^{2 / 368}$ | 0.17 0.17 | 244122 244123 | ${ }_{0}^{0.27}$ |  | 0.44 | ${ }_{40595}$ | 0.98 | ${ }^{8} \mathrm{C} 148$ | 0.13 | ${ }_{\text {BC1 }}$ | 0.15 | 8С214LC | 0.18 | 8С55 | 0.13 | 802454 | 0.6 | 8 F 183 | 0.44 | 日fx | 1.37 | MJE3 | 0.62 | I1P3055 | 59 |
| 21472 | 0.45 | 2N2369A | 0.27 | 2 23702 | 0.14 | $2 \times 4124$ | 0.19 | 2 L 5298 | 0.44 | 40673 | 0．801 | $\mathrm{BCLIAB}_{8}$ | 0.13 | вC183 | 0.12 | 8С2378 | 15 | ${ }^{8} \mathrm{C} 5$ | 15 | 802 | 0.85 | Bft | 0.41 |  | 0.27 |  | ${ }_{0}^{0.62}$ |  | 0.50 |
| 2 T 27 | 0.50 | 2646 | 0.80 | 243703 | 0.14 | 244125 | 0.19 | 2 W 547 | 0.16 | ${ }^{40669}$ | 30 | ${ }^{\text {BC1 }} 188$ | 0.13 | ${ }^{8 C 1834}$ | 0.12 | ${ }^{8 C 2384}$ | 0.13 | ${ }^{\text {BCY }}$ | 0.21 | 802 | 0.7 | Bf1 | 0.37 0.16 |  | 0.27 0.27 | Muts ${ }^{\text {m }}$ | 6 | ${ }_{\text {TiS }}$ | 0.47 |
| 2 M 914 | 0.38 | 2 2 264 | 1.55 | 2 M 3704 | 0.14 | 244126 | 0.19 | ${ }^{2} 2 \mathrm{H} 448$ | 0.16 | ${ }_{\text {a }} 126$ | 48 | BC14 | 0.15 | вС1838 | ${ }_{0}^{0.13}$ | ${ }^{8623888}$ | 0.13 0.13 | $8 \mathrm{Cl7}$ $8 \mathrm{CY7} 7$ | 0.2 | 802 <br> 804 | ${ }_{0}^{0.94}$ | ${ }_{8}^{81}$ | 0.16 | BFY | 1.3 | WJE521 | 0.70 | IIS90 | 0.22 |
| 219916 | 0.33 | ${ }_{2}^{2 N 2903}$ | 0.31 | ${ }_{2}^{243775}$ | 14 | ${ }_{2}^{2442848485}$ | 0.38 | ${ }_{2}^{2454495}$ | 0．20 | ${ }_{\text {acle }}^{\text {AC128 }}$ | 0．48 | BC1SS BC157 | 0.15 0.15 | 8C183 | 0.13 0.15 | ${ }_{\text {BC2 }}$ | 0.16 | BL | 0.8 | 804 804 | 0.46 | ${ }_{8}$ | 0.16 |  | 0.55 | MEESS5 | 1.65 | T1591 | 0.27 |
| 2M917 2M918 | 0.38 0.45 | 2122904 | ${ }^{0.31}$ | ${ }_{2}^{2133706}$ | － 0.14 | 2442888 $2 \times 4287$ | － 0.22 | 2 L 5450 | ${ }_{0}^{0.35}$ | ${ }_{\text {actis }}$ | 0.43 | ${ }_{8 C 158}^{81}$ | 0.15 | ${ }_{\text {BCla }}$ | 0.15 | BC239 | 0.17 | 80131 | 0.55 | 8043 | 0.46 | BH19 | 0.18 | 8RY39 | 0.55 | maf305 | 1.05 | 11592 | ${ }^{0.33}$ |
| 2 M 929 | 0.37 | 2 Hz | 0.31 | 2M3708 | 0.12 | 2 4 4288 | 0.22 | 2 L 5459 | 0.32 | ${ }_{\text {ACLI }}$ | 0.54 | ${ }^{8} 15158$ | 0.15 | вс1831 | 0.15 |  | \％ | 132 | 0.75 | 8043 | 0.46 | 8 EF | 0.19 | 8S5 |  |  |  |  | 17 |
| 2M92 | 0.37 |  | 0.31 | 2 L 3709 | 0.12 | 244289 | 0.22 | 2 L 5450 | 0.65 | ${ }^{\text {AC153 }}$ | 59 | 8 C 159 A | 0.17 | BC183LC | 0.15 | BC25 | 0.19 | B01 | 0.40 | ${ }^{804}$ | 0.55 | 8F2 | 22 | B5x | 0.35 | mpf104 | 0.44 | 7TK301 | 0.17 |
| 1930 | 0.37 | 2 2 290 | 0.25 | 2 3 371 | 2.16 | ${ }^{2443474}$ | 2.20 | 2124884 | 0.37 | AC153 | 0．59 | － 115 | 0.17 | ${ }^{\text {BC18 }}$ | 0.13 | ¢3 | 0.19 0.43 | B013 | 0.41 | 8043 805 | － 5 | ${ }_{8} 81822$ | 0.2 | ${ }_{801}$ | 1.80 | MPSA05 | 0.44 | 211302 | 0.27 |
| $2 \mathrm{2m930}$ | 0.95 | 2 L | 0.25 | 2 2N3772 | 2.20 |  | 0.65 | 2154485 245486 | 0.40 0.40 | ${ }_{\text {ACCl }}^{\text {AC6 }}$ | 0．70 | $8 C 150$ $8 C 161$ | 0.38 0 0 | ${ }_{8 C 184}^{8 C 184}$ | 0.13 0.13 | ${ }_{\text {acha }}$ | 0.43 | ${ }_{80138}$ | 0.4 | 805 | 0.55 | 8 F 24 | 0.38 | 8U105 | 1.55 | MPSA05 | 0.27 | 714303 | 0.27 |
| 2141711 $2 \times 1889$ | 0.30 0.30 | ${ }_{21290074}$ | － | 2143773 | 3.15 0.36 | ${ }_{24}^{24919}$ | 0.70 | 2 L 5490 | 0.64 | ${ }^{\text {a }} 1818$ | 0.59 | ${ }_{8 C 167}$ | 0.13 | ${ }_{8 C 1841}$ | 0.15 | ac302 | 0.37 | 80139 | 0.4 | B053 | 0.70 | 8F24 | ． 14 | bul | 1.0 | MPSAN6 | 0.27 | $\underline{27 \times 304}$ |  |
| 211890 | 0.30 | 212923 | 0.17 | 213320 | 0.39 | 244920 | 0.83 | 2\＃5492 | 0.54 | ${ }^{\text {acibik }}$ | 0.65 | BC1678 | 0.13 | ВС18418 | 0.15 | вc303 | 0.54 | 80140 | ． 4 | 8053 | 0. | ${ }^{85245}$ | 0.4 | Bu2 |  | MPSAL2 | 0.43 | $21 \times 330$ |  |
| 189 | 0.30 | 2223 |  | 243821 | 0.96 | 4921 | ． 54 | 15494 | ． 65 | ${ }_{\text {AC188 }}$ | 0.54 | ${ }^{\text {BCL } 1688}$ | 0.13 | ${ }^{\text {BC1 } 18412}$ | 0.15 | ${ }^{16307}$ | 0.16 | ${ }^{80181}$ | 1.90 | 8053 |  | 8 P 245 | 0.3 | ${ }_{\text {Buz20 }}$ | 270 | MPSA5S | 0.27 | 2TX530 |  |
| 242102 | 0.50 | 212925 | 0.19 | 2 23900 | 0.28 | 244922 | 0.60 | 2 L 5498 | 0.67 | ${ }^{\text {cli } 188 \mathrm{~K}}$ | 65 | ${ }^{8 C 158}$ | 0.13 | ${ }_{8}^{81212}$ | 0.15 | 日c30 | 0.16 | ${ }_{8}^{801}$ | 2.3 | ${ }_{805}^{8053}$ | 0.60 | $8{ }_{82} 8$ | 0.35 | BU208 | 2.70 | MPSA56 | 0.27 |  |  |
| $2 \mathrm{2m2192}$ | 0.5 | $2{ }^{2}$ | 0.17 | ${ }^{2143901}$ | 0.30 |  | 0.75 | ${ }_{\text {246027 }}$ | 0.64 | ${ }_{\text {AD }}$ AD161 | 1.00 |  | 0.13 0.13 | 8C2124 BC2128 | 0.15 | ${ }_{\text {acza }}$ | 0.16 | ${ }^{80187}$ | 0.95 | ${ }^{80540}$ | 0.60 | 8F2 | 0.35 | me0401 | 0.22 | 20088 | 2.45 |  |  |
| 2M2193 | 0．50 | 213053 <br> 213054 | 0.72 | ${ }_{243904}^{2}$ | ${ }_{0.18}^{0.20}$ | 2N51936 | 0.30 | ${ }^{2} 46108$ | 0.55 | ${ }_{\text {afl }} 106$ | 0.60 | 8C169C | 0.13 | B62 212 | 0.18 | сз3088 | 0.16 | 80235 | 0.46 | 80×14 | 1.32 | ${ }_{85336}$ | 0.42 | ME0402 | 0.22 | \＄2010 | 215 |  |  |
| 2 m 2194 | 0.42 | 2n3055 | 0.75 | 2M3905 | 0.18 | 245087 | 0.30 | 2M6109 | 0.55 | aflog | 0.52 | ${ }_{8 C 17}$ | 0.22 | вС2124 | 0.1 | ¢г30 | 0.1 | 80236 | ． 4 | 80x19 | 1.9 | 8f33 | 0.45 |  |  | Tipr | 5 |  |  |
| 2194 | 0.45 | 213390 | 0.50 | 2／3906 | 0.18 | 2W5088 | 0.30 | 2w6111 | 0.49 | ${ }_{8} 107$ | 0.16 | acilit | 0.22 | ¢21218 | 0.18 | ${ }^{3} \mathbf{3} 3098$ | 0.16 | 8023 | 0.4 |  | ． 10 | ${ }^{\text {BF3}}$ |  |  |  |  |  |  |  |
| 212195 | 0. | 2 m | 0.40 | 2 | 0.5 | 5089 | 0.36 | 246121 | 0.41 | ${ }^{\text {actiofa }}$ | 0.16 | вс1778 | 0.25 | ${ }^{86213}$ | 0.15 | ¢с30 | 0.1 |  |  |  | 2.10 | ${ }_{8}^{8} \mathrm{BF} 240$ |  |  |  |  |  |  |  |
| 95A | 0.40 | 2n33914 | 0.4 | 2 N 4032 |  |  |  |  |  |  | 0.16 0.15 | 8C178 BCLI78 | ${ }_{0}^{0.22}$ | 8C2134 BC2138 | ${ }_{0}^{0.15}$ | ${ }_{\text {BCa } 28}$ | 0.20 | ${ }_{80239}$ | 0.59 | 8 EF 115 | 0.39 | BFA41 | 0.30 |  |  | nity |  |  |  |



# 15 <br> 240 Watts! 

## HY5

Preamplifier

HY30
15 Watts into $8 \Omega$

HY50

25 Watts into $8 \Omega$
integral heatsink together with the simplicity of no external components During the past three years ntegral heatsink together with the simplicity of no external components Fidelity modules in the World
FEATURES: Low Distonion - Integral Heatsink - Only five connections - 7 Amp output transistors - No external components

APPLICATIONS: Medium Power Hi.Fi systems -- Low power disco - Guitar amplifier
SPECIFICATIONS: INPUT SENSITIVITY 500 mV
OUTPUT POWER 25W RMS in Bs 2 LOAD IMPEDANCE $4.96!2$ DISTORTION $0.04 \%$ at 25 W a 1 kHz .
SIGNAL/NOISE RATIO 75 dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}$ - 3 dB

## Price $6582+85$ PVAT P\&P free

$\square \int$ The HY1 20 is the baby of IL.P's new high power range designed to meet the most exacting requirements including load line and thermal protection. this amplifier sets a new standard in modular design.
FEATURES: Very low distortion -- Integral Heatsink -- Load line protection - Thermal protection
Five connections - No external components organ SPECIFICATIONS:
SPECIFICATIONS:
INPUT SENSITIVITY 500 mV
INPUT SENSITIVITY 500 mV ( OUTPUT POWER GOW RMS into B!2 LOAD IMPEDANCE 4-1612. DISTORTION $0.04 \%$ at 60 W SIGNAL/NOISE RAT̂O 9OdB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE $\pm 35 \mathrm{~V} .14 \times 50 \times 85 \mathrm{~mm}$
Price $£ 15.84+£ 1.27$ VAT P\&PB iree

## HY200

120 Watts into $8 \Omega$
The HY200, now improved to give an output of 120 Watts has been designed to stand the most rugged conditions, such as disco or group while still retaining 'true Hi-Fi pertormance FEATURES: Thermal shutdown - Very tow distortion - Loadiline protection - Integral Heasink $\frac{\text { No }_{\xi} \text { external components }}{\text { APPLICATIONS: }}$ Hi-Fi - Disco - - Monitor - Power Slave - Industrial - Public address SPECIFICATIONS:
INPUT SENSITIVITY 500 mV
OUTPUT POWER 12OW RMS into 812 LOAD IMPEDANCE 4.1612 DISTORTION $0.05 \%$ at 100 W at $\$ \mathrm{kHZ}$
SIGNAL/NOISE RATIO 96 dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE - TVE

STZE $114 \times 100 \times 85 \mathrm{~mm}$
Price £ $23.32+£ 1.87$ VAT P\&P free
HY400
240 Watts into $4 \Omega$
The HY400 is 1.L.P's "Big Daddy. of the range producing 240W into 48! It has been designed for high power disco or public address applications if the amplifier is to be used at continuous high power levels a cooling fan is recommended The amplifier includes all the qualities of the rest of the family to lead the market as a true high power hi-fidelity power module
FEATURES: Thermai shutdown - Very low distortion - Load line protection - No external components.
APPLICATIONS: Public address -- Disco - Power slave - Industrial
SPECIFICATIONS
OUTPUT POWER 24OW RMS into 4? LOAD IMPEDANCE 4-16.2 DISTORTION $0.1 \%$ at 240 W at SIGNAL/NOISE RATIO 94 dB FREQUENCY RESPONSE $\triangle O \mathrm{H}_{\mathrm{z}}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE INPUT SENSITIVITY 500 mV STIZE $114 \times 100 \times 85 \mathrm{~mm}$
Price $\mathbf{C} 32.17+£ 2.57$ VAT P\&P free.
POWER SUPPLIES

The HY5 is a mono hybrid amplifier ideally suited for all applications. All common inpur functions (mag Cartridge, tuner etc.) are catered for internally, the desired function is achieved either by a multi-way switch or direct connection to the appropriate pins. The internal volume and tone circuits merely require connectina to external potentiometers (not included) The HY5 is compatible with all supplied with each pre-amplifier. FEATURES: Complete pre-amplifier in single pack - Multi-fun APPLICATIONS:
INPUTS Magnetic Pick-up 3 mV Céramic Pick-up 30 mV . Tuner 100 mV . Microphone 10 mV Auxiliary $3-100 \mathrm{mV}$ input impedance 47 kl ) at 1 kHz ,
OUTPUTS Tape 100 mV Main output 500 mV R.M.
TACTIVE TONE CONTROLS. Treble $\pm 12 \mathrm{~dB}$ at ${ }^{-1} 10 \mathrm{k}^{2} \mathrm{~Hz}$ : Bass $\pm$ at 100 Hz
DISTORTION $0.1 \%$ at 1 kHz ; Signal/Noise Ratio 68 dB
OVERLOAD 38 dB on Magnetic Pick-up; SUPPLY VOLTAGE $\pm 1650 \mathrm{~V}$
Price $£ 5.22+65 p$ VAT P\& P free
'HY5 mounting board Bī $4 \overline{8} p+6 p$ VAT P\&P free
The HY3O is an exciting New kit from IL.P. it features a virtually indestructibie I.C. with short circuit and thermal protection The kit consists of I.C. heatsink, P.C board, 4 resistors, 6 capacitors, mounting kit, together with easy to follow construction and operating instructions. This amplifier is ideally suited to the beginner in audio who wishes to use the most up-to-date technology available APPLICATIONS: Updating audio equipment -- Gutar practice amplifier - Test amplifier - Audio APPLICATIONS: Updating audio equipment - Guitar practice amplifier - Test amplitier -- Aud oscillator SPECIFICATIONS:
OUTPUT POWER 15W R.M 5 . into 82 DISTORTION $0.1 \%$ at 15 W
INPUT SENSITIVITY 500 mV FREQUENCY RESPONSE $10 \mathrm{~Hz}-16 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE $\pm 18 \mathrm{~V}$
Price $£ 5.22+65 p$ VAT P\& P freo.


TWO YEARS GUARANTEE ON ALL OF OUR PRODUCTS
I.L.P. Electronics Ltd Crossland House
Nackington, Canterbury
Kent CT4 7AD
Tel (0227) 63218

Please Supply
Total Purchase Price
I Enclose Cheque $\square$ Postal Orders $\square$ Money Order $\square$
Please debit my Access account $\square$ Barclaycard account $\square$
Account number
Name \& Address

# audiophile. 

## A standard is a standard is not non-standard - or shouldn't! However, DINs are difficult to pin down! Ron Harris explains.

FROM THE QUESTIONS I've had sent in to the Audiophile service, it is clear that the good ole DIN standard is still far from being all things to men (or plugs) and is still causing widespread confusion. Tape to tape connectors, for instance, have in two cases been responsible for near murder of silent and brooding hi-fi, whilst unbeknownst to all the missing signal was hiding away on different pins of the plug.

Speaking as someone who much prefers the simpler, but more bulky, solution of phono plugs where possible, DIN problems are usually solved with a pair of wire cutters! However, there are times when a five pin DIN is much more convenient (such as when the manufacturer of your equipment just doesn't fit phono sockets at all).

Since the five-pin plug and socket is by far the most popular, it is this we concern ourselves with in the main. DIN speaker plugs are simply not to be considered unless there is no choice, and NEVER with high power amps unless you wish to check the protection circuit.

## Making a DIN

In all cases where a five pin DIN plug is used, the common earth is connected to Pin 2 - the central pin of the five. The earth is carried via the braid (or shield) of the coaxial cable. When making the lead yourself, the earth is connected by making a small nick in the braid and drawing the other signal-carrying leads out through the nick. The braid can then be worked tight and soldered to the pin.

When used for a turntable, twin core coaxial cable may be used rather than the more fragile four core cable. The braid is connected to Pin 2; the signal lead for the right channel is connected to Pin 5; and the signal lead for the left channel is connected to Pin 3. The DIN socket at the amp or at the turntable should be wired in the same way, with the signals going to the same numbered contacts - that is the right channel is fed through Pin 5 and the left through Pin 3.

For tape decks, four core coaxial cable must be used to obtain the full record and replay facilities for both channels. The earthing braid is prepared in the same way as for turntables, and again is connected to Pin 2 . At the tape deck, the standard wiring configuration for the DIN plug is that Pin 1 carries the input lead for the left channel, and Pin 4 carries the input lead for the right channel. The output for the left channel is via Pin 3, and the output for the right channel is carried by Pin 5 .

The left and right channels for a function (record or replay) always occupy adjacent pins, and the functions are separated by the earth pin.

When making up a lead to connect the tape deck to the amplifier the conductors within the coaxial cable are connected to the same pins at each plug - that is Pin 1 is connected to Pin 1 at the second plug. $\operatorname{Pin} 2$ is connected to Pin 2 and so on.

It is important to remember that this lead is only suitable for linking a tape deck to an amplifier; it CANNOT be used between two decks when dubbing is required.

In the dubbing process, the output from one deck must be transferred to the input of the second, so it is necessary to connect Pin 1 at each plug to Pin 3 at the other and, similarly to connect Pin 4 at each plug to Pin at the other.

The table below gives the possible connections to be found lurking inside the plastic outer.

| Pin connections |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Application | 1 | 2 | 3 | 4 | 5 |
| Microphone (balanced) | Left-live | Screen | Lefi-return | Right-live | Right-return |
| Microphane (unbalanced) | Left | Screen | Right | - | - |
| Turntable (mono) | - | Screen | Signal | - | Signal |
| Turntable (stereo) | - | Screen | Left signal | - | Right signal |
| Tape recorder [mono) | Input | Screen | Oulput | Input | Output |
| Tape recorder [stereo] | Left input | Screen | Left output | rom Right input | $\begin{aligned} & \text { Right output } \end{aligned}$ |

Where pins have the same designations, they are commoned together. All DIN plugs the pin numbers written next to the pins. Table numbers are as marked there.

## Reviewing Reviews (and Viewing 'em)

This island fortress of ours is blessed with quite a flock of hi-fi publications of the monthly and 'one-off' variety, and since most people tend to keep magazines longer than is absolutely justifiable, wouldn't it be nice to have some overall index to allow immediate identification of that article a few months ago, the title of which you're not sure of, and the exact issue for which escapes you?

Well such a thing exists (else why would I be rattling on about it?) and is titled Sound Verdict. An annual publication, it lists and classifies all the audio articles, including reviews, which have been set to print in the preceding year from fourteen source publications.

To bring this order into your life will cost you $£ 1$ from the Director of Libraries and Arts, Holborn Library, 32-38 Theobalds Road, London WC 1 .

ETI

[^1]
## "'STOP PRESS"' NEW LOW PRICES



## Tim Orr concludes his series by offering up circuits for some unusual applications.

## Drawing circles on a scope

The circuit is that of a quadrature sine and cosine oscillator. Two integrators are employed and there is overall positive feedback. Thus the system oscillates producing sinusoids. Amplitude stabilisation is obtained with a diode bridge and a zener diode. The process of integration produces a $90^{\circ}$ phase shift. Therefore if there is a sine wave being put into an integrator, a cosine will appear at its output. Quadrature oscillators can be used to generate circular displays on oscilloscopes by connecting the two outputs to the $X$ and $Y$ inputs. Other uses include quadrature panning in voltage controlled audio systems and they are also used in audio frequency shifters

## OP-AMPS PART4




## Turning a Linear Pot into a Log Pot

By using the virtual earth characteristic of an op amp, a linear pot can be made to have the characteristics of a log pot. It seems to be fair to say that low cost linear pots are far more linear than log pots are logarithmic. Thus the linear pot can be turned into a better log pot than the actual $\log$ pot itself. By varying the resistor ratio 5 k 6 to 50 k , other laws can be produced, such as something in between $\log$ and linear or maybe a law that is even more extreme than a log law.

## Controllable Slew Limiter

The current output of a CA3080 can be used to produce a controllable slew limiter. The 3080 is used as a voltage follower, but with a capacitive load. Thus it is possible for this stage to correctly follow small signal variations, but to slew limit when the input signal is larger. The speed of the slew limiting is determined by the current $I_{A}$. A high input impedance voltage follower (CA3140) is used to buffer the signal. This circuit is sometimes used as a non-linear filter to limit fast signals; also, it can be used as a portamento circuit for a music synthesiser.


## All Pass Notch Filter

Sometimes when processing analogue signals there is a constant tone which is causing a nuisance and so an active filter is called upon to 'notch' it out. The filter can be tuned so that its notch is at exactly the same frequency as this signal so that it can be selectively attenuated. This method is sometimes used to remove unwanted mains hum from poor quality recordings. The circuit works as follows. IC1 and 2 are a pair of all pass filters. These filters have a flat frequency response, but their phase changes with frequency. Their overall maximum phase shift is 360 a phase shift of 180 occurring at a frequency of $1 / 2 \mathrm{CR} \mathrm{Hz}$. At this frequency the signals are inverted. Thus, by mixing the phase delayed signal with the original, cancellation can be produced which forms a notch in the frequency response. The preset is used to get the deepesi notch available. The operating frequency can be changed by varying the two resistors $R$. For instance for 50 Hz operation, $R$ should be -
$10.66 k \times \frac{1000}{50}=213.2 k \quad$ Nearest E1 2 fit is $220 k$


## Analogue Linear Segment Drawer

If you want to draw, repeatedly, a complex analogue waveform with up to 9 discrete sections then the circuit shown will enable you to do it. The CD4017 is a decade counter/decoder. A clock is applied to its input and a sequence of decoded outputs is generated. That is, output 0 goes high, then output 1, then output 2 , etc. Only one output is high at any point in time. This is the sequence generator. There is also an inverter (IC) which drives an integrator ( $\mathrm{IC}_{2}$ ) which can be reset to zero by a switch. Thus, if we connect output 1 to A , the integrator's output will ramp upwards, if we connect it to $B$ it will ramp downwards and if we connect it to $C$ the switch will clamp the output to OV. Also, by varying the values of R1 to 9, the integrator's ramp rate can be controlled. Thus by selectively routing the outputs to either A, B, or C and by selecting the resistor values, a complex 9 segment waveform can be drawn out.

## Simple Musical Envelope Generator

A simple generator can be constructed using the CA3080, made by RCA. This circuit will also enable the use of any audio waveform the harmonic structure of which will not be significantly affected as it is modulated. The CA3080 is an op amp with a difference, It has a current output and an extra input into which a current, $I_{A}$ is fed. The output is the product of the input voltage $X I_{A}$. Thus the $I_{A}$ can be used to control the amplifier's gain.

Also the input voltage range for low distortion operation is very low, of the order of $\pm 25 \mathrm{mV}$

In this circuit, the CA3080 is being used as a two quadrant multiplier. A small voltage, ( $\pm 25 \mathrm{mV}$ ), is applied to its non-inverting input. When the switch S 1 is closed, the capacitor $C$ is charged up and a current of about $150 \mu \mathrm{~A}$ flows into the $\mathrm{I}_{\mathrm{A}}$ input terminal. When S1 is opened, $C$ discharges through the 150 k resistor into the $I_{A}$ input. This current dies away exponentially. As the output is the product of the input voltage $x$ $I_{A}$. then an exponential envelope is generated. Breakthrough after the decay is very good better than $-80 \mathrm{~dB}$


## Simple Schmitt Trigger with Programmable Hysteresis

Again the multiplier qualities of a 3080 can be used to produce a versatile schmitt trigger. DC positive feedback is used and so a schmitt trigger action is produced, although the size of the hysteresis !evels is determined by $I_{A}$. All of the $I_{A}$ current flows out of the amplifier's output and through R2, thus setting up the hysterysis level. Therefore increasing IABC will increase this level and visa versa. The positive and negative hysteresis level. Therefore increasing $I_{A}$ will increase this level and vica versa. The positive and negative hysteresis levels are symmetrical about $\mathrm{O} V$. Take care

## Simple Speech Filter

The telephone system has been designed for speech communication. The bandwidth of the system is 300 Hz to 3400 Hz , which has been arrived at after many years of experimentation. Thus, it is true to say that much of the information in speech is contained between these frequency limits. The circuit shows a filter structure that will simulate the telephone bandwidth. It could have many uses, for instance as a 'speech filter' for noisy radio reception or land line communications, or as a voice detector for a light show.



THE 4016.JS A CMOS
anAlogue transmission
gate

## Cleaning Up Digitally Generated Signals With 2 Sample and Holds and an integrator

The output from a digital to analogue converter (DAC) is composed of a series of steps which have been selected by a series of binary numbers. The output of the DAC may represent the result of some computation done by a microprocessor or the contents of a digital memory. If the number of bits that control the DAC is low (less than 8), then the output will look like a series of descrete steps, plus lots of digital 'glitches'. Therefore, if this signal is to be displayed on an oscilloscope, the overall picture quality will be very poor. One way to clean up things would be to join up all the steps with straight lines and if done successfully a great improvement can be obtained. The only problem is that the distance between steps is continuously varying and so the slope of the straight lines will need to be variable as well. This process is known as linear point interpolation and can be achieved with two sample and holds and an integrator

A delayed gate pulse is generated, so that once the DAC's output has settled the sample and hold switches momentarily open, sample the information and then close. The output of the first sample and hold (IC1) drives an integrator (IC2), the output of which drives the second sample and hold (IC3). The second unit provides negative feedback around the integrator, but it is delayed by one time interval. Thus a momentary positive going signal will pass through the first sample and hold and cause the integrator to ramp in a negative direction. When the next time interval arrives, the first sample and hold returns to OV , and the second obtains a negative voltage. This then makes the integrator ramp positively The size of the integrator's capacitor $C$ should be chosen to suit the clock speed of the DAC. An inverter, IC4 has been included to correct the invertion caused by the integrator

## Digitally Controlled Invert/Non-Invert

The FET is digitally controlled to be either ON fa few hundred ohms shorting the non-inverting input of the IC to ground), or OFF (an open circuit). When the FET is OFF, the circuit is that of a voltage follower. When the FET is ON, the non inverting input is, to all intents and purposes, grounded, and so the circuit is that of a virtual earth amplifier with a voltage gain of -1 , that is, an inverter


## IF CIRCUITS ARE YOUR INTEREST, WHY NOT TAKE A LONG LOOK AT PAGE 56 FOR NEWS OF OVER 100 CIRCUITS WHICH ARE BEING OFFERED AT LESS THAN 2P EACH? (AND THAT INCLUDES POSTAGE!)

# Wilmslow Audio 

## THE firm for speakers!

Send 15p stamp for the world's best catalogue of Speakers, Drive Units, Kits, Crossovers, etc., and discount price list

```
ATC ÁUDAX BAKER BOWERS & WILKINS
    CASTLE CELESTION CHARTWELL 
COLES DALESFORD DECCA EMI EAGLE
    ELAC FANE GAUSS GOODMANS
    HELME I.M.F. ISOPHON JR JORDAN
        WATTS KEF LEAK LOWTHER -
MCKENZIE MONITOR AUDIO PEERLESS 
RADFORD RAM RICHARD ALLAN SEAS
    TANNOY VIDEOTONE WHARFEDALE
```


## WILMSLOW AUDIO Dept. ETI

SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE, SK9 1HF
Discount HiFi, etc., at 5 Swan Street and 10 Swan Street
TEL: WILMSLOW 29599 FOR SPEAKERS WILMSLOW 26213 FOR HIFI


EVERY MONTH we put away 500 issues specifically for our back numbers service - they're not unsolds. However, we still sell out very rapidly (a couple of hundred go within a month after publishing date) as you'll see from the list of those available.

## AVAILABLE ISSUES

1973 Mar., June, July, Sept. 1976 May, July, Aug., Sept., Oct. 1974 Feb., Apr., May, June, July 1977 Jan., Feb., Apr., June, Aug., Oct. 1975 Feb., Mar., Apr., May $\mid 1978$ Jan., Feb., Mar., Apr

Send 60p (includes postage) to:
ETI Back Numbers.
ETI Magazine,
25-27 Oxford Street
London W1R 1RF
PHOTOSTAT SERVICE
We are prepared to supply photostats of any article (or part number of article) at a flat fee of $50 p$ (inclusive). Please speciify issue as well as article title. Send to: ETI Photostats, 25-27 Oxford Street, London W1R 1RF.


If it doesn't then why take the chance that you'll end up with even less? ETI sells out pretty quickly in most places these days, and the best way to ensure you don t miss a single word, let alone an issue, is to let us do the worrying for you and take out a subscription. For the minute sum of $£ 7.00$ ( $£ 8.00$ overseas) we will undertake the troubles and tribulations on your behalf, and drop a copy on your doormat month by month

Fill in the coupon below and we'll take it from there

|  | I enclose cheque / PO for . . . . . . . made payable to E.T.I. |
| :---: | :---: |
| ETI SUBSCRIPTIONS | Please commence subscription with . . . . . . . . . . issue. |
| 25-27 OXFORD STREET LONDON W1R 1RF | Name |
| Payment in sterling only please | Address |

A SHIFT REGISTER is a set of flipflops, each of which can be set by its PRESET terminal to store a 1 or 0 , so that the complete set stores a "word," (complete number). For example, four flip-flops could store numbers such as 0101, 1000, 1101, and so on. In addition, we can apply clock pulses to all of the flip-flops and so cause the stored numbers to shift from one flip-flop to the next in line on each clock pulse; several designs make this possible in either direction (right-left shift).

Fig. 2 shows an example of this in action. We start with the number 1010 stored, so that LEDs on the B and $D$ outputs will be lit. The input of the first flip-flop is connected with $J=0 ; K=1$, so that at the clock pulse its Q output will change to zero. The two outputs of the first flip-flop, however, are connected to the $J$ and $K$ inputs of the next flipflop in line (compare the Johnson counter, which is very simply obtained from a shift register). With $J=1$ and $K=0$ on the second flipflop, from the outputs of the first, the clock pulse will cause the output of flip-flop $C$ to change from 0 to 1 Similarly, with $\mathrm{Jb}=0, \mathrm{~Kb}=1$, flipflop $B$ is forced to change from 1 to 0 , and flip-flop $A$ is forced to change from 0 to 1 . The effect is as if a zero had been forced in at the left-hand side and has caused all of the stored numbers to shift one place along.

## A Simple Shift Register

Use the two $7476 \mathrm{~J}-\mathrm{K}$ flip-flops (Fig. 2) on your blob-board to make up a four-stage shift register. Connect the clock inputs to one of the spare pads of the blob-board, and run a line from this pad to the output of the slow oscillator or the debounced switch. Blob short connecting wires from each Q output to the next J input, and from each Q output to the next $K$ input. Blob a wire from Ja to the earth line, leaving Ka floating. Connect the reset pins to a reset line (a spare blob-pad) and so to the reset switch so that pressing the reset switch will earth the reser


Fig 1. A shift register made up from J-K flip-flops. (a) Arrangement of the flip-flops. (b) Truth table, showing the effect of clock pulses.


Fig 2. Connections of 7476 flip-flop to form a shift register on the 8-IC Blob-board.
pins. Finish off by connecting LEDs and resistors so that the state of each Q output can be read

Now switch on. One or more of the LEDs may light, but can be extinguished by using the reset switch. Now set up a number by using the preset terminals. By temporarily bridging from each preset pin to earth, using a wire bridge, set two of the flip-flops to 1, preferably so that 1010 is stored. Now apply clock
pulses and observe what happens; this is easier to follow if the debounced switch is used.

Now switch off, and disconnect Ja from earth. Connect Ja to Qd and Ka to Qd. Switch on again, reset, and set to a display of 1010 again. Now apply clock pulses. What happens? Can you see the possible applications for storing a sequence of operations, such as a traffic lights sequence?

# BY EXPERIMENT PART8 

## Types of Shift Register

The shift register made up using 7476 s can be used as a PISO or SIPO type. PISO means parallel in, serial out; the information is set up on each flip-flop, perhaps at the same time, and is read out in sequence, one digit for each clock pulse. In a SIPO shift register (serial in, parallel out), a number of clock pulses equal to the number of flipflops is applied at the same time as a varying signal ( 0 or 1 ) applied at the input J-K terminals, starting with an empty register. With the register filled, the voltages at the O terminals can be read (using LEDs for example) in parallel. Each type is important; we need numbers in parallel form for operations such as addition, but in serial form for transmitting down a single wire, or for recording on tape. We can, of course, have SISO (serial in- serial out) and PIPO (parallel inparallel out) shift registers, and a set of flip-flops can be arranged to act in any one of these ways.

## The 7494 Shift Register

This has been chosen as one example (Fig. 3) of the very wide variety of shift registers that are available. Like most integrated shift


Fig. 3. Pinouts of the 7494
registers, it is constructed using the clocked S-R type of flip-flops, but the action is the same as that of our J-K flip-flop model; the schematic of the IC is shown in Fig. 4. Four flip-flops are used, with a common clock to each, and a clear input which will


Fig 4. Schematic diagram of the $\mathbf{7 4 9 4}$ shift register. Compare the number of flip-flops gates and inverters in this single chip with the number pf packages needed to make this from 7400's and 7476's.


Fig 5. Connecting up the 7494 on the blob-board. Note that inverters have to be used on each switched line, as the preset and clear lines must be held at logic 0 for normal operation.
reset each flip-flop. A serial input is also available.

The interesting feature of the 7494, however, is the gated parallel inputs labelled $1 \mathrm{~A}, 2 \mathrm{~A}, 1 \mathrm{~B}, 2 \mathrm{~B}$ and so on. These act through a set of gates on to the preset inputs of the flip-flops, so that they are independent of the clock pulses. The 'gating is arranged so that either one or the other set of inputs can be "read" into the register. For example, imagine that the inputs with the 1 prefix are each connected to a signal input, 0 or 1 , and that the inputs with the prefix 2 are each connected to another set of signals. We. can use the pins marked preset 2 and preset 1 now to select which set of inputs is chosen and placed in the register.

Imagine that preset 1 is at logic 1 and that preset 2 is at logic 0 . Because of the inverters connected to the preset inputs, all the inputs with the 1 prefix are gated through to the OR gates which control the flip-flop. presets. Because all the inputs with the 2 prefix are gated out, there will no no input from these gates. The opposite process takes place if preset 2 is at logic 0 and preset 1 is at logic 1. Note that these inputs must be operated so that both do not enter at the same time. The inputs should remain at logic zero during normal operation.

The output from the register is from pin 9, and will consist of one bit, 0 or 1 for each clock pulse fed in to the clock input, and at the leading edge of the clock.

## Blob-board Work

Connect the supply lines to the $7494,+5 \mathrm{~V}$ to pin 5 and earth to pin 12. Now blob a connecting wire from the output of the debounced switch to the clock input of the 7494 on pin 8. Connect the preset 1 pin (pin 6) to an inverter whose input is from a push-button switch so that this pin can be momentarily earthed; leave the other preset entry pin (pin 15) earthed. Now set up signals to enter on the 1 -set of inputs, $A, B, C$, D on pins , 1, 2, 3 and 4. For example, we can connect pins 1 and 3 to logic 1 , and pins 2 and 4 to logic 0 , so setting up the number 1010 . This will be entered when the PE1 pin is momentarily set to 1 by the inverter and switch, and the flipflops wilt be set up to the number 1010

## Detector Work

We can detect this only at the output, since we cannot connect to the Q outputs of the intermediate flip-flops, by connecting an LED and limiting resistor to the output pin, pin 9. Now blob a connection from the serial input, pin 7, to earth, so
that as each clock pulse arrives a zero is fed into the first stage of the register. This ensures that the register stores 0000 after four clock pulses.

## One Clock

Now switch on, and press the enter switch briefly. Use the clock switch to apply four clock pulses, and note the output on each pulse. The contents of the register should now be 0000, so that further clock pulses will not produce any "1" output. Another entry can be made by pressing the entry switch at any time, By connecting the second set of entry pins, and using the second pre-enter (Pr2) pin, we can enter another number. Connect up the second set of entry pins (16, 14, 13, 11) to give another number, and connect up the Pr2 (pin 15) terminal to the output of another spare inverter. Connect another push-button switch between the inverter input and the earth line, and try out the circuit again, entering the second number (after clearing) by pressing the enter switch momentarily. Check that this number is then read out at the output when the register is clocked.

## what a bind

Losing copies of ETI (your favourite magazine) can be very annoying. Why not take yourself off the ropes and bind them up neatly?

Half our orders for binders are repeats; we think that says a lot for their quality. At £3.00 all inc. you get a great deal of peace of mind too!

ETI Binders
25-27 Oxford Street
London W1R 1RF

## To be continued $=$



## GOOD AND PROPER!

or at least your projects. If there is one thing which is impossible to do at home is lettering front panels to professional standards. At least until now. If you cast your eyes right a while you'll see our new panel transfers sheet, which has been carefully designed to allow you to do exactly that.

The transfers are casily rubbed down, and the two sheet set contains a mass of lettering and -uniquely-control scales for both rotary and slider puts.

Each sheet measures 180 mm X 240 mm and comes packed tlat in a stiff cardboard envelope for protection. There should be enough for dozens of projects here - and the longer you wait the worse they'll look!

Send $\mathbf{5 1 . 7 5}$ fincludes VAT and postage) for the twosheet set to: Panel markings ETI Magazine, 25-27 Oxford Street. London WIR IRF.

# microfile....... 

## Gary Evans, ETIs micronaut, has been looking at the very latest in MPU based TV games, at a development kit for the G302 MPU and looks forward to an event up North.

GENERAL INSTRUMENTS, trail blazers in the dedicated TV games business (8500 - say no more), have recently released details of the work they have been doing in conjunction with EMI over the past few years.

This joint research effort has been aimed at developing a sophisticated microprocessor based TV game. GI have supplied the semiconductor know-how - MPU plus various interface and control devices - while EMI have come up with the means by which programs are loaded into the system.

## ROM Out

Plug in ROM cartridges were rejected at an early stage - too expensive and, at present, limited in size in favour of the standard audio cassette.

Here too current techniques (CUTS et al) were rejected and EMI started work on their own data coding format. The description of what they have come up with is impressive to say the least

The bit density achieved by the system is said to be four times greater than CUTS with 1.2 million bits, together with a necessary 0.4 million control bits, capable of being stored on thirty minutes of tape.

The format is also said to be very tolerant of tape drop outs. Uncorrupted data can still be returned with a small section of tape oxide removed completely

Naturally EMI are not saying a lot about the system as patents are still being sought. Hopefully, though, when the legal side of things is sewn up we may learn more about the exact specifications.

## Watery Grave For Pirates

The recording system has another feature that is note worthy. It incorporates the EMI "watermark." This, as I understand it, is some form of signal superimposed on the tape in such a way that it does not interfere with the storage of data, yet can be detected by the playback system. The watermark will not prevent copying of a tape of software, the hardware of the games unit will, however, not read the data from the copy as it is not watermarked (good word).

This, EMI hope, will prevent the software pirates that have almost become part of the scenery in the computing world.

I saw a system incorporating all of the above features. It was very good.

Loading from the tape means that a (separate) audio track can be reproduced as program data is being loaded. This track can give instructions for playing the game for example. This is another reason for using a tape system rather than ROMs as the audio feature is seen as being a strong selling point.


KIM1 together with the three excellent manuals supplied with the kit, the "wall chart" circuit diagram and the MPU reference guide.

The TV display is impressive - I saw everything from dog fights to crosswords all displayed in high definition colour

GI hope that the system will be on sale towards the end of this year but as GI and EMI will not be manufacturing complete systems but leasing rights, the speed with which this new toy gets into the shops depends on the game manufacturers.

The price is expected to be around the $£ 100$ mark for a simple unit with cassettes selling for $£ 3-4$. At this sort of price it can't fail.

## Personal Games

Before leaving the subject of the games unit it is interesting to note just how similar this system and personal. computers are.

Both have a TV display, control unit, tape retrieval system, keypads for data entry etc. The main difference is in the language the machine "talks.'

GI are, however, marketing their product firmly as a TV game - might be a sound policy considering the competition in the home computing field.

## Kimee Kimee

If you are a regular reader of this column you show a great deal of taste and as well as that might have gathered that I am not too impressed with the various MPU development kits I have so far done battle with. I say done battle with, because, with most of these boards, if you want to do anything other than flash a few LEDs, you're stuck.

Expansion, is made difficult by partial memory decoding, control signals that are not brought anywhere near the edge of the board let alone an edge connector: However, over the past few days I have been playing with a system that shows just how things should be done.

The item in question is the KIM-1 and although it has not made much of an impact in this country to date, in the USA it's a different matter, with KIM being by far the most popular development kit.

This means that there is a lot of software around for KIM as a reader of the American computing mags will testify to. However, before we mention expanding KIM and the available software - we'd better look at the minimal system.

KIM-1 comes ready built to a very high standard KIM is sold to many industrial users and is made to high standards throughout.

To get KIM up and running all that is necessary is a +5 volt $1 \mathrm{amp},+12$ volt 100 mA power supply and a few feet of wire.

KIM-1 is based on the MOS Technology 6502 MPU - again not seen a lot in this country, but it's used in PET so it can't be bad.

KIM, with its 2 K monitor and keypad, enables programs in 6502 machine language to be entered into the 1 K of onboard RAM, debugged (with the aid of a single step capability if required), and run with if not ease (machine code programming is never easy) at least convenience.

## KIM-O-Savee

So far, so good, but what makes KIM so much better than other such systems.

Well, firstly an onboard cassette interface that allows loading and dumping of data to and from RAM. The interface is easy to use and is very reliable.

The board also provides a 20 mA current loop serial output. This is designed for a TTY, but will equally well, with perhaps very slight modifications, drive any other serial orientated devices (printers, Modems, VDUs etc).

Now to, perhaps, KIM's major selling point - it's easy to expand.

All the signals likely to be required in any system expansion are brought out to one of two buses at the side of the board. Partial decoding was not used indeed all the decoding necessary for an additional 4 K memory block is already present.

So here we are, we've got all the signals we want - a versatile 2 K monitor but just how do we go about interfacing and expanding.

Here is where KIM's other major plus comes in - the documentation. None of your badly Xeroxed scruffy bits

## YOUR LETTERS

## Modifications to the ETI System 68.

A few notes on my experiences in constructing the system 68 first the VDU circuit. The clock oscillator needs improving, either use a spare gate on the board as a buffer or make up another using a 7413 on veroboard. I.C. 13 is not counting quick enough, the only proper solution is to make a counter on veroboard with $2 \times 7493$ to replace it. This is very easy because all polarities are the same and the six column wires can be transferred onto the veroboard, so leaving only four wires to fix to the pcb. The brightness of the display can be altered by changing the value of R5. Other mistakes have been pointed out in ETI. But I found the modifications involving I.C. 14 latch pin 4 and the reroute of I.C. 7 to I.C. 12 via a 7474 latch did not work, it was the two 7493s that gave the answer to displays such as ETIBU and ETIBOG.

There is a basic design fault in the CPU board, when the ROM or I.C. $6 / 7$ RAMs were in the read condition the oversimplified decoding also switches on I.C.10/11 so we have the outputs of the on board memory connected to the on board L.S. buffers so the buffers must win and you get garbage on the data lines to the CPU. Simplest way out is to remove I.C.10/11 and replace with 8 wire links. Final solution, rewire I.C.5b to give four outputs, on card read-write and off card read-write. There was a pcb fault; clock pl and 2 were crossed over so that a VMA/pl signal is generated to correct cut lines to the MPU chip and cross them over using 22 ohm resistors, this gives VMA/p2.

To anyone starting from scratch I would say make up a single board for VDU, CPU with plenty of room for decoding and other modifications and leave room for two 31 way connectors. These two parts are not likely to need changing once the bugs have been ironed out and this single board could reduce a lot of interconnections and let you use a "proper" 16 bit address bus which will be needed in a full system.
B. Hewart,

95 Blakelow Road,
Macclesfield,
Cheshire, England
of paper but three thick reference books describing the 6502 MPU plus support devices from both the hardware and software viewpoints and the third dealing with KIM-1 in great detail including a simple interface example that allows KIM to produce 128 different notes in response to a binary code set up on seven switches.

I briefly mentioned the 6502 support devices above and some of these chips are almost as powerful as the MPU. For example, KIM features two 6530 peripheral interface / memory devices. This device includes two eight bit bi-directional ports, a programmable interval timer, 1 K of ROM and 64 bytes of RAM amongst other things. KIM uses the 2 K of ROM provided by the two 6530 s for the monitor and uses the 128 bytes of RAM as a scratchpad.
Well that's the KIM-1 and when you're familiar with it you're bound to want to expand the basic system. To guide you here, as I've said, you have the excellent manual, but I would suggest that before going any further the First Book Of KIM is begged, borrowed or
stealed - save your money for hardware and feeding the dog.

The First Book Of KIM is just one of the many items that appear in print dealing with KIM, but it's one of the best. It deals with machine coding, game programs, utility routines, interfaces and expansion

One can expand memory by obtaining KIM-2 (4K static memory block), KIM-3 ( 8 K block). KIM-4 is a mother board that provides a home for the various extra boards.

With a serial VDU hooked up to KIM, 8K of memory and a basic interpreier (of which there are many about witness PET) you have a personal computer that will perform with the best of them but, if you do it yourself, cheaper than ready built units.

## Marshall Gets Kim

KIM has been available from GR Electronics, Newport, Gwent for some time and is now, in addition, sold by Marshalls of Cricklewood; Edgware Road; Glasgow; tomorrow . . . the world?

Good news as well - the price of KIM is down by £50, from £199 to £149 plus VAT

By the way, if you were wondering why KIM Keyboard Interface Monitor. A name derived from the software - nice to see recognition of the fact that software is, perhaps, the most important feature of any system.

I'm told that there is life to be found north of Watford, in fact a number of ETI's staff come from T'North and while its sometimes difficult to tell whether they're alive or not, presumably there are others living in that hazy area north of the gap. I'm not the only person to share this startling piece of news a Lynx, the people who distribute the NASCOM 1 are to give a seminar in Manchester on April 1st.

It's to follow the pattern set by their very successful Wembley meeting of last year. The subjects covered should interest anyone "into" home computing.

There are still a few tickets left but remember get in quick. Observant readers will notice that this ETI isn't due out until April 7th, however because of Easter a substantial number may be out in time for you to take advantage.

## North Of The Gap

Finally, two quick items - first the Heathkit computers are to be launched on April 1 - much more about them next month.

## Last Word

Second, an apology to the design team responsible for the NASCOM 1. When I reviewed this machine I gave the impression that the design was solely due to Dr Shelton. It was in fact a joint Lovell team effort with Paul Johnson and John McFerran making major contributions - sorry lads.

ET

## THE WORLD'S FINEST FM TUNER MODULES OK? <br> We've said it before, and we'll say it again;

We offer the Largest and the Best range of FM Tuner modules in the UK, Europe and we believe in the World. (Please advise us if you know differently.) We gasp when we read the unsupportable claims of other 'suppliers', describing things like deviation muting, which we have been offering in our 7030 FM IF system for ages. Long before most others gave it a thought To read some adverts, you might imagine somebody had just discovered the wheel. Furthermore, we believe good signal processing is more important than rows of pretty lights and numbers, don't you?

The EF5400, a 4 stage varicap tunerhead, tuning $88-108 \mathrm{MHz}$ with a bias swing of just $2 \cdot 8$ volts DC. A single IC provides all functions, including PIN diode AGC drive, balanced mixer, RF amplifier. All this and edge connection too $!£ 9.75$ built.


ALL NEW CATALOGUE
To celebrate our new range of 1 Cs , components, coils, filters, FM and AM modules etc., we are presenting an entirely new catalogue, which is free if you send an A4 SAE ( $15 p$ stamp on it pse), and the front page from one of our old catalogues. This offer ceases on May 31st 1978, when the normal price of $45 p$ will apply. The new catalogue contains radio and wireless features centred on our new developments with Sprague, Telefunken and RCA, with the TDA 1083 MW/LW/FM/Audio all-in-one IC system, the TDA 10624 stage IC tunerhead, the CA3189E IF system, the Hitachi HA1 1219 FM noise blanking system and otber radical new technology announced in the past few months. We are certain
 this will be of great value and interest to, anyone concerned with radio and RF design.

The rest of our new range includes resistors, capacitors and many items that now complete our range for the electronics enthusiast and designer. We naturally carry the very latest in radio semiconductors, and are pleased to report many new developments in the past six months, that are now readily available, with technical backup, from Ambit. But quite apart from our technical capability, we think you will find our prices attractive, and our product always first quality.
Examples from the range of components, modules etc.:
Resistors $1 / /$ watt types in E12 series, 1 ohm to 10 M ohms (Mullard/lskra/piher) 15p/10 Minimum order 10 per value please. Minimum resisfor-only order $£ 1.50$.
Ceramic plate and disc capacitors: only miniature and compact types eg. 10 nF : 35p/10 CA3189E: RCA's new IF system, $£ 2.75$ inc. detector coil and 22 uH choke.
TDA1083: Sprague/Telefunken AM/FM/Audio IC. 800 mW output max $£ 2.55$
TDA1062: Telefunken FNi tunerhead IC, good for $200 \mathrm{MHz}, £ 2.75$
Modules as previously advertized, plus these new ones; EF5803, 93189, EF5400, MPX decoder 91196 B : The superior HA1196 now with a 2 W monitor amplifier, and optional adjacent or alternate channel notching facility, as well as a 55 kHz low pass filter, pilot tone filters etc. $£ 16.45$ New from TOKO: CFM2 series 4 section ladder filters for $455 \mathrm{kHz} 6 \& 12 \mathrm{kHz}$ versions $£ 1.35$ each, CFM2 2 section mechanical filters for 455 kHz , same size as CFS series filters! Plus others
ambil International 2GRESHAM ROAD BRENTWOOD ESSEX

Always in the leading group, here is Ambit's 73189 IF system. optional 2 or 36 pole linear phase IF filters, $2 \times M O S F E T$ IF AGC stage, with the CA3189E. $£ 16.25$ built and aligned.


The EF5803 here is shown less the inplate shielding can normally supplied The EF5803: the ultimate? $2 x$ low noise MOSFET RF stages with AGC, MOSFET mixer, very loose stage coupling for super high $\alpha$. Amplified local osc output. Used in conjunction with the 73189 system, provides $35 \mathrm{~dB} \mathbf{S} / \mathrm{N}$ with 0.63 uV PD input. And all these modules are British Made. EF5803: $£ 19.75$.
Prices exclude VAT. Postage 25 p per order. 'Catalogue (see text) 45 p. Telephone (0277)216029. Parking outside the front of our building.

| CALCULATORS |  | ELECTRONIC MEASUREMENT SIMPLIFIED | ¢2. 20 |
| :---: | :---: | :---: | :---: |
| agvanced appucations for pocket c. Halmark |  |  |  |
| calculators |  | electronics and photagraphy |  |
| J. Gilber | £4.20 | R. Brown | ¢2.30 |
| COMPUTER \& MICROPROCESSORS |  | electronics self taught |  |
| mCROPROCESSORS AMO MICROCOMPUTERS A A he |  |  |  |
| B. Sowick | £18.00 | essential formulae for electrical and |  |
| BUILD YOUR Own working róbot |  | electrical emgineers |  |
|  |  | N. M. Moris | £1.65 |
| D. Hoireman | £3.35 |  |  |
| digtal electromic circuits and systems |  | EXPERIMENTS WITH OPERATIONAL AMPLIFIERS |  |
|  |  | Clayton | £3.40 |
| intraductionta digital filtering Bogrer |  | FIRE AND Thet Security systems |  |
|  |  | - . Weds | £2.00 |
|  | £9.40 |  |  |
| MICROPROCESSOR/MICROPROGRAMMING |  | how to read electromic girguit olagrams |  |
|  |  | E. Brown |  |
| ${ }_{\text {B. werd }}$ | ¢4.10 | how to build prdximity oetectors amd metal locators |  |
| TRANSISTOR TABELLE <br> Includee phytical dimensienee thuir pin angnmente |  | 1. Snieids | , |
|  | 54.10 |  |  |
|  |  | ${ }^{\text {d. Sereate }}$ ( ${ }^{\text {a }}$ | 3.65 |
| microprocessors |  |  |  |
| b.c. McGlynn | £8.40 | integrated electromics |  |
| INTROOUCTION TO MICROPRDEASSORS |  | J. Milman | c7.70 |
|  | ¢5.35 | How To bull dilictromic kits |  |
|  |  | Capel | £2.10 |
| modern guide to oigital ldgic |  |  |  |
| Processors - Mamories end Intariaces | ¢4.30 | linear integrated circuit applications G. Clayton | ¢5.00 |
| LOGIC DESIGN PROJECTS USING FTIMCTİN CIRCUITS DESIGM \& APPLICATIONS |  |  |  |
|  |  |  |  |
| J. Wetherly | ¢5.10 | Bur Brown | 15.95 |
| practical digital oesign using ics |  | 110 Electronic alarm prouects |  |
| J. Graenfield | £12.50 | R. M M Mention | 3.4 |
| COMMUNICATION |  | 110 operatiomal ampufien PROJECTS for THE HOME CONSTRUCTOR |  |
| COMMUNICATION SYSTEMS INTRO TO SIGMALS \& MOISE |  | R. M. Manion | ¢2.95 |
|  |  |  |  |
| e. Carzon | 67.50 | TME MOME COUSTRUCTER |  |
|  |  |  | ¢2.9 |
|  |  |  |  |
| L. R. Rebinar | £23.80 | 110 Cosmos digital ig projects for the |  |
|  |  | home constructor |  |
| electronic commumication systems |  | R. M. Marston |  |
|  |  | 110 mingegated circuit projects for the |  |
| FREQUENCY SYNTHESIS. THEORY \& OESIGN |  | hame constructar |  |
| Mannaseownisch | £20.40 | R. M. Masion | £3. 25 |
| PRIMCIPIES OF COMMUNICATIN SYSTEMS <br> H. Taub |  | 110 thyristor projects usimg scrs |  |
|  |  | h. M. Mermon | ¢2.9 |
| COOKBOOKS |  | microeiectronics |  |
|  |  | Hutimame |  |
| TV TYPĖWRITERS COOKBOOK $\quad 17.40$ |  | mooern glecthomic maths |  |
| cmos cookrook | ¢8.00 | Cliftord | 86.70 |
|  |  | mos digital ics |  |
| Thl cookbook | E7.55 | G. Fiyn | £4.60 |
| active hlters | £11.00 | operatiomal amplifiers desigh and |  |
| ic timer cookbook | £7.50 | APPIICATONS | ¢7 |
| IC DP-AMP COOKBOOK £9.40 |  |  |  |
|  |  | op-Amp CIRCIIT OESIGM \& APPLICATIONS |  |
|  |  | 1. Can | 4.00 |
| ELECTRONICS |  |  |  |
| beginners guide to electronics |  | Asho | £2.30 |
| Squiras | ¢2.65 |  |  |
| beginmers guide to transistors Reddihough |  | Goedman | £2.30 |
|  | £2.55 |  |  |
|  |  | beginners guioe to integrated circuits |  |
| APPLICATIONS OF OPERATIONAL AMPLIFIERS Greeme (Bur Brown) |  | Sinclar | £3.15 |
|  | ¢8.30 | Practical electrdmic PrDject dulloing |  |
| baSic maths courses for electrdnics <br> H. Jecobowitz |  | Ainstio and Colwat | 2.45 |
|  | £1.85 |  |  |
|  |  | practical solio state d.c. supplies |  |
|  |  |  | 6.20 |
|  |  |  |  |
| R. Havilond | $¢^{\text {¢ }}$.55 | PRAGTIGAL TRIAG/SGR PROJECTS FOR THE |  |
| DESIGNING WTTH TTL INTEGRATED CIRCUITS Texas instruments |  | R. Fox | 5 |
|  | $¢ 9.05$ | PRIMCIPLES OF TRANSISTDR CIRCIITS |  |
| DESIGNING WITH DPERATIDNAL AMPLIFIERS Burt Brown |  | S. Amos | £4.75 |
|  | £13.75 |  |  |
|  |  |  | ¢2.45 |
| ELECTRONIC ENGINEERS REFERENCE BOOK 4th Edition |  |  |  |
| L. W. Tumer | £27.70 | rapid servicing of transistor equipment |  |
|  |  | G. King | £2.95 |
| B. Werd | ¢225 |  |  |
|  | 2..25 | Semiconductor circuit elements |  |
| TRANSISTDR CIRCUIT DESIGN |  | T. D. Towers | ¢6.40 |
| Texes | £9.35 |  |  |
| ELectranic components |  | understanding electranic circuits |  |
|  |  | R. Sincleir | ¢4.10 |
| electronic diagrams |  | understanding electrdnic components |  |
| M. A. Cotwell | £2.45 | R. Sinctair | £4.10 |
| electronic fault diagnosis <br> b. R. Sinctair | £3.20 | umderstanding cmos integrated circuits R. Metan | £3.90 |

Calculat arligations for pocket
J. Gibbert
merRoprocessors amo microcamputers
B. Sowic$£ 3.35$
OIGTAL ELECTRONIC CIRCUITS AND SYSTEMS $£ 3.50$
intraduction To oigital filtering
MICROPROCESSOR/ MICROPROGRAMMANG
handbook
transistor tabelle
andude, phytical dimensiense their pin
aicropracessors
D. C. McGlynt
Aspinal
MODERN GUIDE TO OIGITAL LDGIG
LOGIC DESIGM PROJECTS USING
TAMDARD IGs
practical digital óesign using ics
J. Greenfield
110 OPERATIOMAL AMPLIFIER PROJECTS FOR
HE HOWE CONSTRUCTOR
I 10 SEMICOMOUCTOR PROJECTS FOR
THE HOME CONSTRUCTOR
10 casmos digital ic projects for the
home constructor
110 INTEGRATED CIRCUIT PRDJECTS FDR THE
HOME CONSTRUCTOR
MISTOR PROJECTS USIMG SCRs
miCROELECTRONICS
Hillmarik
GOEERN EIECTHOMIC MATMS
mos DIGITAL ICs
G. Flynn
applicanons
OP-AMP CIRCIIT OESIGN \& APPLIGATIONS
handoook of ic carcur projects
INDEXED GUIDE TO MOUEAN ELECTMONIG CIRCUITS
beginners guide to integrated circuits
Ainglie and Colwat
PRACTICAL SOLIO STATE D.C. SUPPLIES
PRACTICAL TRIAC/SGR PROJEGTS FOR THE
EXPERIMENTER
PRINCIPLES OF TRANSISTDR CIRCUITS
PRINTED CIRCLIT ASSEMBLY
Hughen \& Colwell
SEMICONDUCTOR CIRCUIT ELEMENTS
T. D. Towers
mang cmos integrated circuits
R. Melen
2.45
2.95
£4.10¢5.60
G. King

$$
£ 6.50
$$

        £4.10SUBSTITUTION HANDBOOK
    2.00 RADIO. TELEVISION AND AUDIO
$\qquad$
AUDIO HAMDBOOK
beginners guioe to audio
L. R. Sinclair

CASSETTE TAPE RECORDEAS
J. Earl

FOUMBATIONS OF WIRELESS ANO ELECTRONICS
M. G. Scroggio
basic electronic test procedures
I. M. Goraleb

THE OSCILLOSCOPE IN USE
lan Sinclair
PRACTICAL TEST EQUAPMENT YOU CAN BUILD
W. Green
test instruments for Electronic s M. Clifford

WORKING WITH THE OSCILLOSCOPE
A. Saunders

SERvicing with the oscilloscope G. King
hadio television ano audio test instruments

## HOW TO ORDER

Please note that our prices include postage and packaging. Make, cheques etc payable to ETI Book Service. Payment in sterling only please
Orders should be sent to:
ETI Book Service
P.O. Box 79

Maidenhead
Berks.

# electronics tomorrow. by John Miller-Kirkpatrick <br>  

ONE OF THE PROBLEMS with the use of a standard commercial audio cassette recorder as a data and/or program storage medium for microcomputers, is the slow access time - considering that the data file which you want to access could be at the far end of a C60 cassette. If the MPU is to do its own search then nearly half an hour could elapse before the file is found and loaded. One obvious answer is to use human intervention to wind the tape on at a fast speed until the approximate location is located from a counter or physical marker on the tape or cassette. Another alternative is to have a lot of cassettes with short files on each so that the maximum automatic search time does not exceed five minutes, this idea is expensive in tapes and requires a large manual filing system for the cassettes

The idea of using a standard cassette recorder deck modified for MPU use is a little better. Here the Fast Forward, Rewind, Play/Record features available are run from solenoids and/or relays which in turn are controlled from the MPU. The tapes can now be logically divided into smaller lengths by physically marking the tape every 20 ft or so with reflective tape or some similar system so that a sensor can recognise an 'Inter Record Gap' (IRG). If the first record or records on the tape contain an index to the rest of the cassette then we could assume that the MPU can work out where the required record is relative to the start of the tape. Similarly we would have an identification on each record to denote its relative position on the tape and weican assume that the MPU can thus work out the position of the required record relative to the known present position of the tape

## Basic Operating Requirements.

First we have to modify our tape recorder to operate the speed and direction of the tape from TTL compatible logic signals. We need

1. Stop/Go. A logic 1 is required to initiate any movement, a logic 0 will cause the tape transport to stop as quickly as possible.
2. Fast/Slow. A logic 1 will cause the tape to be passed by the R/W and erase heads at the fastest possible speed, a logic 0 will initiate the normal cassette operating speed.
3. Forward/Reverse. A logic 1 will cause the tape mechanism to be reversed as in a rewind instruction, a logic 0 will initiate forward tape direction
4. Read/Write. A logic 1 will allow data to be written onto the tape and the previous data to be erased, a logic 0 will cause data to be read from the tape into the MPU
5. Data In. When in the Write mode data is input to this point in either digital or audio form for recording onto the tape.
6. Data Out. When in the Read mode the data is available on this output in either digital or audio mode.
7. IRG Sensor. This output will go to logic 0 whenever the sensor finds a reflective marker or transparent tape to indicate an inter-record gap. It would not be difficult to arrange that a half inch reflective strip indicated an IRG and a one inch strip indicated the end or start of the tape. 8. Ready. This output from the cassette deck would only be at a logical 0 if the unit was powered up, had a cassette in it and was otherwise ready to run, a logic 1 would indicate that manual intervention was required for one reason or another

## Operation of the Unit.

When the MPU recognises that a new tape has been loaded, or under other instruction, the tape unit will be wound forward at fast speed for a couple of seconds in case the cassette was positioned right at the beginning of the tape. Fast rewind is now selected until the Start Of Tape one inch strip is recognised by the MPU-even at fast rewind speed the MPU will be able to differentiate between an EOT or SOT one inch marker and the half inch IRG marker. The tape can now be read at the slow forward speed until the SOT marker disappears at which point the tape is stopped and in theory is positioned at the start of the first record on the tape. We will assume that each change of direction or other command requires a stop and a short wait before issuing a new command, these waits and direction changes would be functions of the cassette control software routines as would be the recognition of the SOT / EOT / IRG markers.

Each of our logical records would be sub-divided into 1. Header record of about 40 characters to contain a record position indicator, record name or label and possibly such information as a creation date, password protection, etc

## 2. Data record

Using this approach an old data record can be overwritten with a new version without necessarily having to change the index record. A gap of a couple of seconds between the Header and Data records would allow the MPU to identify the record from the HEADER record, stop the tape and be ready to read the Data record or to write a new Data record in its place

## Initialisation and Indexing.

After a cassette has been modified it can now be loaded into the recorder and have dummy Header records written at the start of each 20 ft unit of tape. Any tape, whether new or having data records on it can be Auto-Indexed by using a simple program which will read all of the Header records on the tape into a RAM area and then rewind the tape and put out this RAM area as the first data record on the tape, ie the Index record. This facility would allow all tapes to be correctly in dexed after use and before removal from the machine. If a printer is available then the index could be printed and stored with the physical cassette

Anyone with ideas or comments please contact me.


# NOW-A VDU BOARD 

## WITHOUT KEYBOARD AND NO DISPLAY

A double-sided board with plated through holes $121^{\prime \prime \prime} \times 8^{\prime \prime}$ ( 4 Eurocard size). 960 Characters in a $40 \times 24$ line format. 64 ASCII characters. Flashing cursor. 32 control functions available. Adjustable bauld rate. Provision for a keyboard. Serial inpút and output. Requires +5 V and -12 V and any modified television or video monitor. Board is crystal controlled to give a rock steady display
Supplied in kit form (all components supplied) £95. P\&P £1.75. Assembled and tested £125. P\&P £1.75.

| MARCONI VALVE | *I.C. BOARD PACK <br> 50 I.C.s and orher useful components <br> for $£ 1$ P\&P 75 p | EX-MINISTRY <br> MARCONI O-6 WATTS <br> Multi Range. Multi Impedance POWER METERS. £25 each |
| :---: | :---: | :---: |
| TF428B <br> NOW£12.50 ea | TRIPODS WITH PAN AND TILT HEAD <br> will take 56 lb load $£ 22.50$ |  |

ITT-CREED
Punches and Prints on $7 / 8^{\prime \prime}$ paper. Complete with Power Supply Solid State. Size $15 \times 113 / 4 \times 22^{\prime \prime}$ deep £18 each.

## DON'T MISS

THE TELEFUNKEN D14-131 REPLACEMENT TUBES FOR

## SOLARTRON

(SCHLUMBERGER) CD1740

## COSSOR CDU 150

S.E. LABS SM 112 and the GEC/MOV 1474 TUBE
These tubes were fitted in one of the ahove oscilloscopes. but were removed on the authority of the British Ministry because they were not of Brtish
condition.

PRICE £55 EA. P\&P £2.75
Also MULLARD REPLACEMENT FOR
THE BRADLEY 200 and ADVANCE OS3000 at £85 EA. P\&P £2.75.

## TRANSISTORS/DIODES/ RECTIFIERS, ETC.

## Guaranteed all full spec. devices. Manufacturers Markings

At $5 p$ each
 BC413: D10; BC182; BC212: BAX13: 1N937: BA102BE: BZX83 TIS61: 2N5040.
At 10p each BFX85; 1N4733A; SN7451N, BYX10-1:5KV 0.36A Bridge Rectifier - 20p ea TBAB10S-75p ea CA3123E- 51 ea

2 N 5879 with 2 N 5881 Motorola 150 W Comp, pait $£ 2$ ea
BD535/BD538 Comp pair - 75p pr
BYZ10 10p ea. TBA560CO \&2 ea. 1N4436T-To3 Flat mount 10A 200 piv $\mathbb{} 1$ ea.

* Linear Amp 709 - 25p ea.

High Speed Voliage Comparaior $710-15 p$ ea
P\&P Extra
P\&P Exira on all items.
Finned heat sink - sing
Finned heat sink - single TO3-size $43 / 3$ in $\times \operatorname{3in} \times 1^{1 / 4}$ in 50 p ea P \& P
75p.
MULLARD \& BRIMAR OSCILLOSCOPE TUBES BRAND NEW-BOXED-ALL RECTANGULAR
D $13-46 \mathrm{GM}$ P7 £ 35 ea.
GEC type $1496 \mathrm{~B} £ 75$ ea
D13-51GH Green $£ 65$ ea
Carriage all types $£ 2.75$
D $10-210 \mathrm{GH} / 32 £ 40$ ea

## \#POT PACK. All Brand New Modern Single and Ganzed. Our choice

Ex-Ministry OSCILLoscope. CT436. Double beam. DC 6MHZ £120 each.
SOLARTRON CD 1212 SB 40 meg £100. DB 24 meg iwice $£ 135$. Many other types available.
MARCONI SIGNAL GENERATORS. Freq. range $10-470 \mathrm{MHZ}$ Type TF80 1 B3/S $£ 160$ each
MARCONI TF142F DISTORTION FACTOR METER giving percentage distontion on a directly calibrated dial and includes any spurious components up to $30 \mathrm{kHZ} £ 29.50$ each. MARCONI PORTABLE FREQUENCY METER TF 1026/11 100 to 160 MHZ . Very line cordition £25.
TF $1026 / 4 \mathrm{M} 2.4 \mathrm{GHZ}$ \& 35 each

## FRESH MINISTRY RELEASE

Solartron CT316 oscilloscope
DC -6 megs. Size $81^{\prime \prime} \times 11^{\prime \prime} \times 20^{\prime \prime}$ Sorry, £ $\mathbf{3 7} .50$ this time

## PICK-A-PACK— <br> 50 PENCE A POUND

## From Our Pick-A.Pack area weight up your own components. No restrictions on what

 own comyou take.
PHOTOMULTIPLIER Type 931A £4 ea. P\&P
75p. Other types available.
شPOTENTIOMETERS - All 5p ea. P\&P extra Metal bodies AB Linear - PCB Mount, brand new Metal bodies $A B$ Linear. $A B$ Mount, brand new
250 K ganged. 100 K ganged concentric shatts *BEEHIVETRIMMERS 3 30pt. Brand New 10 OH 40p. P\&P 15p 100 off $£ 3.50$. P\&P 75 p .500 Off $£ 15$. P\&P $£ 1.25 .1,000$ off $£ 25$. P\&P $£ 1.50$
LARGE RANGE OF ELECTROSTATIC VOIT LARGE RANGE OF ELECTROSTATIC VOLT-
METERS. FTom $0-300 \mathrm{~V} 2^{\prime \prime}$ © 3 , to 20 KV Max METERS. From $0-300 \mathrm{~V} 2^{\prime \prime \prime} £ 3$, to 20 KV Max.
General guide $5 \mathrm{KV} 31 / 2^{\prime \prime} £ 5$. Thereater $£ 1$ per KV. General guide $5 \mathrm{KV} 31 / 2^{\prime \prime \prime} £ 5$. Thereafter $£ 1$ per KV P\&P 75
DONT
DON'T FORGET YOUR MANUALS. S.A.E With
TUBE Type DB7 36 - Replacement for Telequip TUBE Type DB7 36 - Replace
ments S 31 \&11 ea P\&P \&1 50
ments transea pap el
240 KV SINGLE PHASE
B5 € 85.
25MA E175.
Many olt5.
and
avalable
EX-DYNAMCO Oscilloscopos INVERTORS
3OV


## MARCONI R.F. POWER METER

Type TF $1152 \mathrm{~A} / 1$ (CT419) 2 ranges 10 watts fsd and 25 watts fsd. 50 ohms £ 75 each

## TELEPHONES. Post Office style 745. Black or

 two-tone $£ 6.50$ ea. Modern siyle 706 Black or two-tone grey $£ 4.50$ ea. $P \& P £ 1$ each Old black style E1.50 ea P\&P E1C1. P\&P 75 p.
TELEPHONE EXCHANGES. E.g. 15 -way automatic (exchange only) from $\mathbf{9 5 5}$. MODERN FANS. $43 / 4 \times 41 / 2 \times 11 / 2110$ voits Superbly quiet. 6 blades $£ 4.50$ ea. P $\& P 75 p$ PAPST Fan 240 V available at $\mathbf{C 7} .50 \mathrm{ea}$ P\&P 75 p TUBES. All Brand New Boxed
Electrostatic deflection
Type GEC 926/F $31 / 2^{\prime \prime}$ dia. (Replacement for Telequipment D33 and Solartron 1016 scopes) Yype GEC 924E
Type GEC $924 \mathrm{E} 31 /{ }^{2}{ }^{\prime \prime}$ dia. (Replacement for olartron 1015 scope) $£ 17.50$ ea. P $\&$ P $£ 1.50$. 1000 Feed thru Capacitors 10 for 30p. P\&P
HIVAC Minalure NEONS
App. 60 V Brand New 10 off 20p. P\&P extra GRATICULES $12 \times 14 \mathrm{~cm}$ high quality plastic $\mathbf{1 5 p}$ ea. P\&F 10p.
MARCONI TF 1041 B Valve Voltmeter $\mathbf{£ 2 5}$ ea MARCONI TF338B Attenuator 600 ohms $£ 12 \mathrm{ea}$ HILIPS Cassettes Model 2200 . Play only $£ 9$ ea P\&P $£ 1.50$
PROGRAMMABLE TIMER 5 decade (Photo
graphy) $\mathbf{1 8}$ ea.

## NEW INTAKE OF TEKTRONIX 545A

Oscilloscope with CA plug-in
(Dual Beam - 24 megs) £220 each

## DEC MODULES

RXV II-BD Doublè Drive Floppy 230 v 50hiz
£2,400 ea.
DRV II Parallef Intericice
$£ 120$
DRV II-B dma interiace Unit
£320 ea.
M 7948 Foundation Module $£ 100$ ea.

MSV IIC $16 \mathrm{~K} \times 16 \mathrm{RAM}$ £650 ea.
KD IIF LSI II - cpu ak ram
KD 11J Lsill-cpu 4k Core £450 ea. £800 ea.

KD IIR LSI II - CPU IGK RAM
£1,000 ea.
KD IIF with DLV II and BACK PLANE |CPu ak ram and Serial

## Interiace]

£750 ea.
KD II with MSV IIC and DLV II and BACK PLANE
[CPU with IGK RAM and Serial Interface]
£1,650 ea.
MMV II 4 - 16 Core memory ….................. $£ 500$ ea.
1.1-03 with KD IIF and DLV II, PU and BACK PLANE
£1,350
11-34 PROCESSOR BOARDS .... £1,000 per pair
11-04 with CORE MEMORY and BACK PLANE no pu and No Case
$£ 900$
Range of PDP II CORE and MEMORY MODULES

Also some PDP 8 MODULES
Your enquiries please
90 days' warranty : Cash discounts available
DESKS with Punch Reader. Print and Keyboard Some ASC 11.
Various models from $£ 200$.
1/2" MAG TAPE
Approx. 2.000 it. NOW 25p each. P\&P fi Or 5 for $£ 1$ carr £ $£ 2.75$. FOR THE VDU BUILDER tube M $28-13 \mathrm{GH} 23 \times 17 \mathrm{~cm}$ at $£ 12 \mathrm{ea}$. Base connections suppled
Heads for PERDEC $6000 / 7000$ - enquiries
LITTON SYSTEM Mustgo-E375 or offer
FOR CALLERS—LOTS
OF COMPUTER 'GROT'
E.g. Core
£ 20 each. prices

## SOLID STATE TIMEBASES

By LARGE BRITISH MANUFACTURERS
These are a Plug-in Modular Timebase covering 0-2 microsecs. per cm to 5 secs per cm in 23 steps . Tunnel Diode triggering 8 front Panel Controls. 37 Transistors/FETs - all plug-in Silver anodised front panet. Size $4 \times 5 \frac{1 / 2 \times 101 / 2^{\prime \prime}}{}$ deep. Guaranteed absolutely brand new in originat manulacturer's packaging. Complete with extremely comprehensive copy of manual $£ 17.50$ ea. P\&P $£ 2$

Minimum Mail Order $£ 2$. Excess postage refunded. Unless stated - please add $£ 2.75$ carriage to all units VALUE ADDED TAX not included in prices - Goods marked with $\star 121 / 2 \%$ VAT, otherwise $8 \%$ Official Orders Welcomed. Gov./Educational Depts., Authorities, etc., otherwise Cash with Order.


7/9 ARTHUR ROAD, READING, BERKS inear Technical College, King's Road) Tel: Reading 582605


This circuit was designed to overcome all the problems associated with resistor ladders and analogue memories normally found in synthesisers. The key depressions cause a diode matrix to set up binary patterns which are memorised on a bank of flip-flops

The main advantages of this method are infinite memory hold more accurate output since there are only six main tuning resistors (it is economical to make them variable). If more than one key is depressed at a time, no "out of tune" notes will be
produced because of a multiple key depression detector. Only one set of single make contacts is required for the keyboard. Octave transpose and portamento is included.

When a key is depressed, the binary code set up by the diodes is clocked into the flip-flop (IC2-IC4) by the monostable (IC6). IC7 along with its associated resistors forms a D/A converter. The 33 K resistors along with Q 1 form the circuit which inhibits further data being clocked into the
flip-flops if more than one key edge to trigger envelope shapers

Up to 63 semitones (over five octaves) can be catered for using six data bits as shown, although more bits can be added.

RV1 to RV6 should be adjusted so that each successive bit causes twice as much change in the output voltage. RV7 adjusts the voltage / frequency relationship. RV8-10 adjust the starting voltage; they should be set to give the required octave shifts on the transpose control

Tach-Tips is an ideas forum and is not aimed at the beginner. We regret we cannot answer queries on thase items.

ETI is prepared to consider circuits or ideas submitred by readers for this page. All items used will be paid for. Drawings should be as clear as possible and the text should preferably be typed. Circuits must not be subjact to copyright. Itams for consideration should be sen
to ETI TECH-TIPS. Electronics Today International, 25-27 Oxford St., London W1R 1 RF.

|  |  |  |
| :---: | :---: | :---: |
| marrar moier ${ }^{\text {a }}$ al |  |  |
|  |  |  |
| $1 \mathrm{max}=\mathrm{za}$ |  |  |
|  |  |  |
| Menumsmen |  |  |
| Covaco |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  | RELAYS Sed |  |
|  | USE |  |
| $=$ |  | masamem |
|  |  |  |
| "wuwar oumo |  |  |
| , and |  |  |
|  |  |  |
|  | $\bar{V} / \boldsymbol{\square} \boldsymbol{T}$ |  |
|  |  |  |
|  |  |  |
|  |  |  |

## Hybrid Mixer

J. Macauley

This circuit shows one channel of a stereo mixer, the other channel being identical. The input signal is applied to the volume controls RV1\&2 and from thence to the nand gates via the blocking capacitors and R1\&2. These gates are first used as inverters by strapping both their inputs together, and are biased into the linear region by the feedback resistors, R3\&4. In this way the gates act as high impedance, high quality, unity gain amplifiers.

The output from the gates are summed by the mixer, IC2. This IC is a dual op-amp of the same specification as the commoner 741, which

could be used instead. As a single power supply is used the noninverting input must be biased at half the supply voltage. This is done by the potential divider, R7\&8, C5 de couples this point to earth

The output impedance of this IC when used in the manner described is less than 1 ohm and so can be fed directly into a line socket. This circuit will only work with 'A' series 401 's as the $B$ series contains protection circuity which will prevent it working in the linear mode

## Fuse Tester

R. Heggie

This circuit can be used for testing fuses, and has the advantage of being much smaller and easier to use than an ohm meter. The circuit is built into a 35 mm aluminium film can, and is powered by two small mercury cells. An old penny glued to the plastic lid of the can forms one of the touch contacts, and the case forms another.

To test a luse, the case is held on one hand and the fuse in the other, the end being touched onto the copper disc, if the fuse is OK a small current will flow through to the first gate of ICla taking the input high and the output low. This is inverted by ICIb, which turns Q1 on, lighting the LED. As current consumption with the LED extinguished is almost negligible, a battery switch is not required.

## Constant Current Source

## S. Callaghan

This circuit uses a standard panel mounting LED to provide a constant reference voltage for a transistor in a constant current generator

The output current 1 , is given by the equation

$$
\frac{I=V_{L E D}-V_{D E}}{R_{E}}
$$



When the circuit is not connected to a visible indication of when the circuit is load, the LED is extinguished, giving a operating

## THIS MONTH'SSPECIALOFFERS!

## THE ETI TANK BATTLE

AY-3.8710

## SPECIAL LOW PRICES AND FREE OFFER

## AY-3-8710-£10.90

Sound and Vision Modulator $£ 4.90$ (Tested and Guaranteed)

07



Fascia Plate. (Actual size: $12.6 \times 21 \mathrm{~cm}$ ) P.C.B. (ETI Project-copyright Teleplay) $£ 2.90$ 28 pin Socket 0.45 p 14 pin Socket 0.30 p $100 \mu H$ Choke 0.45 p
If you purchase all the above items at $£ 19.90$ you will receive $\operatorname{FREE}$ resistors, capacitors, diodes etc. to complete your board.

Stylish Box Set with printed fascia on main box as illustrated $£ 4.95$
Complete Kit including power supply - no extras needed £37.90 £27.90
COLOUR ADD-ON FOR TANK KIT
Blue Tank, Red Tank, Green Background-fits easily to ETI Tank Project - £5.90

## STUNT CYCLE KIT

AY-3-8760.1
BAStC KIT (Just add controls and case) £21.90 £18.90
COMPLETE KIT including mains power unit and case
no extras needed $£ 28.50 £ 25.90$


Super Stunt Cycle


Drag Race


Stunt Cycle


Motocross TEN-GAME PADDLEII AY-3.8600

畨 $X$ - $Y$ axis bat movement sound direct from TV automatic ball speed-up small or large bats for one or both players for handicapping SPECIAL NOTICE to customers who have alreagly purchased this game - two extra games now available send a s.a.e. for free switching diagram

PADDLE II basic b+w kit (just add controls and case) $£ 15.00$ PADDLE 11 basic colour kit (just add controls and case) $£ 20.90$ JOYSTICK CONTROLS suitable for AY-3-8600 and AY-3-8550 ic's $£ 3.50$ pair (or one only for $£ 1.90$ )


SOUND MODULATORS £2.90 VISION MODULATORS £2.90 (or buy botin for just $£ 6.50$ ) $£ 4.90$ suitable for TV games

## BARGAIN OF THE MONTH

$$
\begin{gathered}
\text { AY-3-8710 } \\
£ 14-90 \\
£ 10.90
\end{gathered}, \begin{gathered}
\text { AY-3-8500 } \\
£ 3.50 \\
£ 3.90
\end{gathered}
$$

All prices include VAT. For orders under $£ 10$ add 20 p p\&p. Cheques and postal orders to ve made payable to TELEPLAY; send your order (No stamp needed,) to Teleplay, Freepost, Barnet, EN5 2BR or telephone your order quoting your Barclaycard or Access number

## Barclaxctro bus

## SHOP OPEN - 10am to 7pm - Monday to Saturday

close to new barnet br station - moorgate line


TELETEXT DECODERS - Texas XM11-£99.90 TELETEXT KEYBOARD - £17.00

Digital Die
A. Slimming


ICla and IClb form an oscillator running at a few kilohertz. The output is fed to a 7490 binary counter which is wired to produce an output of 0 to 5 in $B C D$. So that the display is the same
as a dice the display must read 1-6 and not $0-5$, when the output of the 7490 is all ' 0 's, the display must be made to show 6 . IClc, d and IC3 perform this task, and convert an
output of 000 from IC2 to 110 (b) IC4 is a BCD to 7 -segment decoder which drives the display through the current limit resistors R4-R10

## Moving Coil Cartridge Preamp.

J. Macauley

Although moving coil cartridges undoubtedly give better reproduction from disc they usually require an expensive step up transformers to enable them to be used with conventional RIAA equalisation

The reason for this is that most cartridges of this type have outputs of 60-150uV and like to 'see' an input impedance between 60-330R

The circuit shown was developed to cater for a particular cartridge of this type although by modifying the value of one component, R1, it is possible to cater for the complete range of inputs detailed above

Input signals are coupled to the base of 01 via the isolating capacitor C1. R1 damps the input impedance to the correct value to match the particular cartridge in use. R2 and R3 bias Q1 which is employed in the common

emitter mode. Heavy local AC and DC feedback is introduced by R5 and this defines the gain of the stage at 20 dB To minimise noise a BC109C is used here operated with a low collector current, 50uA. The output stage of this amplifier is the darlington pair Q2
and Q3, Output signals being taken from across R7, R8

R1 should be determined by experiment but can be initially found by using a 470R preset in the R 1 possition and adjusting this for optimum sound quality by ear

## hise <br> mamprathile

the quickest fitting $|1| 1 / 1 /$
CLIP ON
capacitive discharge electronic ignition in KIT FORM

## introductory <br> SPECIAL OFFER £2 off kit

## - Smoother running <br> - Instant all-weather starting - Continual peak performance Longer coil/battery/plug life - Improved acceleration/top speeds - Optimum fuel consumption

Sparknte X 4 is a high pertormance. high quality capacitive discharge, elecironic dronstem in kit form Tried, tested, proven, reliable and complete. It can be Because of the siperticdrakin of the Sparkrite circuit it
problems of the contact breatker. These is no misfive due to contact breaker bounce which is elmonated electronimally by a pulse suppression circuit wh prevents the unit fing if the pronts bounce open at high R.P.M. Contact breake purn is riminated by reducing the current to aboutt 1 . 50 th of the norm. It will deerform equally well with new, old, or peven badly intted points and is not
dependent upon the dwell time of the contact breakers for recharging the dopendent upon the dwell time of the contact breakers for recharging the system
Spatkrite incorporates a shotf crrcuit potected menter which elminates the Sparkite incorporates a short crcuit protected invetter which etrminates the
probiems of SCA tock on and, therefore plminates the posstbilty of 1ransistors of the SCR Mosi capacitive discharge ignitions are not completely foolproot in this respect). The circutt incorpmates a voltage regutated output for greatly improved cold stapling. The cercuit includes buitt in static timing light systeins functuon light, and security changeover switch. All kits fit vehicles with coll dist thutor annition up to 8 cylinders.
THE KIT COMPRISES EVERYTHING NEEDED
Die pressed epoxy coated case Ready drilled, aluminium extruded base and heat sihk, coil mounting clips. and accessories. Top quatity 5 year guaranteed
transformer and components, cables, connectors, P C 8 nuts bolt grease full instructions to assemble kit reeg. or pos earth and fullyillustrated installation instructions.
NOTE Vehicies with current impulse tachometers (Smiths code on dial RV1) will require a sachometer pulse slave unit. Price $\int 3.35$ inc. VAT post $\xi$ packing


LINES FROM OUR VAST STOCK Please add post 35 p per ordep
THESE ARE ALL SPECIAL OFFFRS BELOW MANUFCTURERS
THESE ARE ALL SPECIAL OFFERS BELOW MANUFACTURERS PRICES ALL NEW STOCK. FULLY
GUARANTEED EXPORT ENOUIRIES INVITED ON ALLITEMS

TANK BATTLE T.V. GAME. Basic Kit as śpecithed in thrs issue £27.50. Complete Kit including power Thil and case Nothing eise to tuy, $£ 37.90$ ncl. VAT. Post Pard. Sole appointed London stockists of

STUNT RIDER GAME. $\mathbf{£ 2 8 . 5 0} \mathrm{incl}$ VAT Complete kit including power supply and case. No exiras
Sin button edector winch with builh in 100 K pots. Self cancelling butions. Ideal fof use with varica runed FM sets and TVs $120 \times 64 \times 55 \mathrm{~mm} £ 2$. 10 for £ 15 . 100 for $\mathbf{£ 1 2 5}$
BOWMAR 9 digh calculator display with P.C. connector $0.2^{\prime \prime}$ digits, common cathode with red beze
E1.25. 10 for $£ 10$. E1.25. 10 for E10.
TE XAS 19 gold plared snap key contarits on guld plared P.C. Buard - atl kinds ol useful applications. Size ( $\mathbf{£ 5}$. 300 for $\mathbf{E 4 0}$
OSMOR changeorer iod relar with 12 V cail. Approx. 20 mA operating current $59 \times 17 \times 13 \mathrm{~mm} 75 \mathrm{p}$
10. Ior E6, 100 for ESO .
Small mmins trensformars weth 240 V pri 12 V @ $100 \mathrm{~mA} 60 \times 40 \times 42 \mathrm{~mm} 95 \mathrm{p}$. 10 for $£ 7.50 .100$ for
 Clocking oncilletor PYE DYNAMICS thick film 1 MHz 5 V supply $19 \times 25 \times 6 \mathrm{~mm} 85 \mathrm{p}$. 10 for E 7 FAIRCHILD FND $100: 15^{\prime \prime} 7$ segmen! display. Common Cathode 50p. 10 for $\mathbf{£ 4 . 5 0 .} 100$ for $£ 30$
 4/RF LONG-MEDIUM \& F/M TUNER WITH MCI 310 UECOOER \& BUTTON SELECIOR ANO FERRIIE AERIAL SIMPLE INIERCONNECIIONS * SIE $19 \times 13 \mathrm{~cm}$ POWER UNIT KIT FOR ABOVE MODELS $25 / 28$ VOLTS $£ 2.95$.
Buith 5 watr power amplifier Gould-Advance. $4-8$ ohms output. up to 24 V supply. 500 mV info 2 K sulable power supply tor atove in kit form $\mathbf{E 2} 20$
HONEYWELL. Proximity Detector Integral Amplifier BVDC £2.50 om. 10 for $£ 22$
SMITHS INDUSTRIES AUDIBLE TRANSISTORISED WARNING DEVICE $6-12$ volts. Size 30 mm (1mm Polarised 50p on. 10 lor £4. 100 for $\mathbf{£ 3 5}$.
SUPPLY PANEL containing 6 high quality $01 \mu \mathrm{~F} 10 \% 1 \mathrm{KV}$ poly capacitors. $102 \times 19 \times 75 \mathrm{~mm} \cdot \mathbf{3 5}$ p. Y 10 for
ALMA punhburton rned switches, push to make. High relability. 18x $27 \times 18 \mathrm{~mm} 35 \mathrm{p}$. 25 for $£ 7.100$ for £25. 1000 for $£ 225$

TV sound converter through your FM tuner module. Complete with instructions $£ 5.50$.
IC. AIdio Power by TOSHIBA 35 WATT module. 8 ohms $0 / \mathrm{p} 200 \mathrm{mV}$ into 47 K for full output. $0.3 \%$
distortion (max) 60 V power supply required $£ 8.50$. 10 for $£ 75$. $\mathbf{1 0 . 7} \mathbf{M H z}$ crywtel filters. Size $35 \times 25 \times 20 \mathrm{~mm} .25 \mathrm{KHz}$ band width for NBFM $£ 7$. 10 for $\mathbf{£ 6 0}$.

$21 / \mathbf{z}^{\prime \prime} 40$ otrm upeaker $\mathbf{2 5 0} \mathrm{M}$. Wett - Ideal for that small space. $\mathbf{7 5 p}$. 10 for C6. 100 for $\mathbf{E 5 0}$ 3 DIGIT 7 SEGMENT DISPLAVS. C cathode pack ol 2 with data (segments are missing) 60 p pack. TBA 120A 75p. 10 for $£ 7.100$ for $£ 55$. TBA 120S. 75p. 10 for $\mathbf{£ 7} .100$ for $\mathbf{£ 5 5}$ SOLDER at half proce 5 packs of 2 metres 18 gauge Servicol £ 1.20 . 20 packs $£ 10$ AVO moter movemontw for a mititary version of the Avo 8 Precision 37.5 micro Amp ( $50 \mu \mathrm{~A}$ with integral
shuny) movernent Elecronic voltmeter carcuif availabie on request. $\mathbf{E 8 . 5 0}$. 28 pin calendar/clock chip Iype MK5017BB common cathode. LED display (with circuit). $£ 4.49$.

| PACKS OF SEMI CONDUCTOR DEVICES | ALL NEW TESTED, CODED, GUARANTEED |  |  |
| :---: | :---: | :---: | :---: |
|  | Pack | $\begin{aligned} & \text { Ten } \\ & \text { Packs } \\ & \hline \end{aligned}$ | Hundred Packs |
| 10-BC171A Plantic EC 107 trpe | 75p | c6 | C50 |
| TTL 8-Gates 7420, 7430.7451 | 60p | 65 | E40 |
|  | $75 p$ | ${ }^{1} 6$ | C50 |
| 10-10 watt Zeners mixed volunges | 89p ${ }^{\text {99P }}$ | 67.50 E8.50 | 665 675 |
| $10.400 \mathrm{M} / \mathrm{W}$ Zeners $3.3-33$ volts | ${ }_{65}{ }^{\text {P }}$ | ¢5.50 | ${ }_{645}$ |
| 50 Germanium \& Silicon Diodes | $55 \%$ | ¢5 | ¢40 |
| 25 Mixad Tranaistort | 55p | ¢5 | ¢40 |

501212 digit caiculator chip. 4 functions with eirenis arid date $£ 2.50$
Vitality 12 V 0.15 mmp . MES Bulbe. 100 for $\mathbf{\text { E5. } 1 . 0 0 0 \text { for } \mathbf { ~ } 4 0 .}$
BECKMAN $500 \mathrm{KH} \mathrm{H}_{\text {t }}$ triggerable clocking oncillator for use with calculator chips etc. 5 V supply
$25 \times 10 \times 12 \mathrm{~mm}$ £, 10 ior $\mathbf{E 8}$. 100 ior E 65
Resoteabie thermostatic swinch. A pushbution on-ofit swutch which a
ambient termperature exceeds 72 C. $47 \times 29 \times 46 \mathrm{~mm} 75 \mathrm{p}$. 10 for $\mathbf{E 6 . 5 0}$.
FR243 crvatal packs. 10 crystals of mixed trequenes frequenclis) Ideai tor e-grinding.
E1,50 per pack. 10 packs $\mathbf{~} 10.100$ packs $\mathbf{C 8 5}$
€ 1,50 per pack. 10 packs $\mathrm{E10.100}$ packs c85.
Ditto. 10 X packs of 10 civstals. $250 \mathrm{kc} / \mathrm{ss} 50 \mathrm{mc}$
Ditto. 10 X packs of 10 ciystals $250 \mathrm{kc} / \mathrm{s} 50 \mathrm{mc} / \mathrm{s}$. El pack. 12 packs $£ 10.100$ packs $£ 70$.


TAPE HEADS $/ / 4$ track Record Marrioll XRPS36 $\mathbf{E 5}$. XES 11 erase $£ 1.25$. XRPS 18 € $\mathbf{3 . 5 0}$,
MULLARD TUNER MODULES with data

SEVEN DIGIT MINIATURE COUNTER by Durant 12.24 volts D.C. 3 Watts. Size $40 \times 25 \mathrm{HX} 55 \mathrm{~L} \mathrm{~mm}$ E1 each. 10 for $\mathbf{E 9} .100$ for $\mathbf{E 8}$




UNBEATABLE
DIMMER OFFER
from Britain's largest Dimmer Makers.
Complete Kit of Parts for our
VCL 500M, 500W Dimmer Switch.
Only f2.00, plus p. \& $p$. 25p.
(inc. VAT) full instructions supplied.
Send coupon below with your remittance.

## II Fotherby,Willis Electronics Ltd.

GLADSTONE TERRACE,STANNINGLEY,LEEDS, LS28 6 NE Telephone: Leeds(STD O532)563373 Telex 557111 GLYNWED


# PERSONAL COMPUTER WORLD 50p 

## Europe's first magazine for Personal Computers for Home and Business Use

PCW is a publishing success story. Vol 1 No 2 - available at good newsagents during April - sees it leap to the forefront of the world's great magazines.
Some articles Paul Jessup, Typing Without Tears Neil Harrison, Four Easy Pieces Graham J. Trott, Scramble! Robert Johnson, The Computer Is Just What The Doctor Hasn't Ordered
Plus: Famous SF author Harry Harrison on the Computer everyone forgets.
Plus: Beginners' BASIC, Teaching Packages, Evaluations . . . and that's not all!
As for our readers' letters ... intelligent criticism, humour, information and awareness ... PCW is getting the readers it deserves. Join us. Enter the Personal Computer World
If you do have difficulty getting a copy please send 65p to Intra Press, 62A Westbourne Grove, London, W2

## London College of Furniture

## Electronics for Musical Instrument Technology

A full-time three year course is offered in those aspects of electronics related to the design, building and repair of ali types of equipment associated with music.

Students will be encouraged to involve themselves in project work in the fields of acoustics, group amplification, electronic organs, synthesizer design etc.

Prospective students should have some knowledge of electronics or some basic science and mathematics at
'O' level GCE or the equivalent.
For details apply to
Department of Musical Instrumentation

## Technology

London College of Furniture
41.71 Commercial Road, London E1 ILA

Telephone: 01-2471953


## CLOCKS

## A fine range of Electronic Digital Clocks

$\star$ Unik Time Led Alarm Clock
$£ 8.95$

* Cassia LCD Battery Alarm Clock (see Kramer advert for picture)
- Casi CDattery Alarm Clock with stop watch facilities .. £16.95

Casion Calculator with Alarm Clock, Stop Watch, etc
WATCHES
The largest range of exclusive Electronic Watches anywhere
Our
Price

* Solar Watch, superb, 6 function LCD, with Seiko Module £44.00
- Casio 6 digit, LCD Chronograph $£ 26.95$
* Lambda 6 digit, 10 function, LCD Chronograph
* CBM 4 digit, 5 function, LCD with very large clear display
$\star$ Texas \& Fairchild, Tritium, LCD 5F man's S/S
* Unik LCD 6 digit, 5 function, S /S bracelet
* Unik LCD 6 digit, 5 function, leatherette strap
$\star$ Ladies Watches (Timeband, CBM, National, etc.) 4 digit, 5 function, LCD Auto cal, back light, leatherette leather silver gold


## SPECIAL OFFER

Man's 4 digit 5 function LCD, slim with metal bracelet
£12.95
All watches, clocks and calculators carry the full manufacturer's guarantee and are supplied with a 10 -day money back assurance.

## BATTERIES

Metac carry a full range of watch batteries
70p each

## CALCULATORS

Casio
AQ810 LCD Alarm Calculator
$£ 19.95$
( 2 timers, Alarm Clock: 5 functions plus memory, pocket size) 2,000 hrs. batts.
CQ1 Desk Calc, Clock, Stop Watch, green display
£29.95
MQ2 Pocket Watch (size of Combe Case) LCD 5F Calc.: 2 alarms Timer-alarm, 6 function Watch, Auto Cal., 12 months batt. life Superb silver case
£34.95
LC822 LCD Pocket Calc 5F plus mem, 2,000 hrs. batt. ... £10.95
LC87 LCD Pócket Calc., credit card size, $\mathbf{3 / 1 6}$ in thick, $2,000 \mathrm{hrs}$, batt life. 5 F plus mem plus leather case
£16.95

## THE

METAC DIGITAL CLOCKS

\author{

* COMPLETE KIT *
}
$\qquad$ Pleasant green display 12/24 Hour readout
Silent Synchronous Accuracy. Fully electronic Silent Synchronous Accuracy. Fully electronic Pulsating colon . Push-button setting

KIT PRICE $£ 9.75$
Building time 1 Hr . Attractive acrylic case

+ 78p VAT
- Easy-to-follow instructions. Size $10.5 \times 5.7 \times 8 \mathrm{~cm}$

MODEL 100 Ready drilled PCB to accept components

METAC CLOCK KITS are also available from
Henry's, 404 Edgware Road, London. W2
Marshall's, 85 West Regent St., Glasgow
Watford Electronics, 33 Cardiff Rd. Watford, Herts

## C-SCOPE TOP QUALITY METAL DETEGTORS

Plus accessory tems. PRICES £29.65 to £81.Q0
Now available from our Uxbridge \& Daventry shops
Officially franchised C-Scope distributors


## TV GAMES

| 4-game black \& white | £12.95 |
| :---: | :---: |
| * 5-game colour, 4 players \& mains adaptor | £34.50 |
| * 6-game colour with gun | £26.00 |
| * Battery eliminators | £3.25 |

$\star$ Battery eliminators


All games have superb plastic case. Are fully guaranteed, and are beautifully packed in a presentation carton.

Mail order customers please include 90p P\&P


Barclay and access weicome
SHOP

| LONDON |
| :---: |
| 327 EDGWARE RD. |
| LONDON, W2 |
| Tel. 01-723 4753 |
| 10 mins, walk, Marbte Arch, close io |
| Henry's. Lasky s. Marshal's. atc., elc. |

Henry's. Lasky's. Marshal's. alc., etc.

|  | SERVICE CENTRE | SHOP | SHOP |
| :---: | :---: | :---: | :---: |
| MAIL-ORDER |  | DAVENTRY | UXBRIDGE |
| EPT. PB | metac SERVICE CENTRE | 67 HIGH STREET | NEW ARCADE |
| high street | MIDOLE MARCH | DAVENTRY | HIGH STREET |
| daventry | industrialest. | NORTHANTS | UXBRIDGE |
| northants | daventry | TeJ. (032 72) 76545 | $\begin{gathered} \text { MIDDX } \\ (0895) 5696, \end{gathered}$ |



Our new 1978 catalogue lists circuit boards for all your projects, from good old Veroboard through to specialised boards for ICs. And we've got accessories, module systems, cases and boxes everything you need to give your equipment the quality you demand. Send 25 p to cover post and packing, and the catalogue's yours.

VERO ELECTRONICS LTD. RETAIL DEPT. Industrial Estate, Chandlers Ford, Hants. SO5 3ZR Telephone Chandlers Ford (04215) 2956

## NASCOM 1 Microcomputer for the Hobbyist

THE ONLY COMPLETE MICROCOMPUTER AVAILABLE TO THE HOME CONSTRUCTOR

FEATURES:

* Supplied in Kit Form for Self-Assembly
$\star$ Full documentation supplied
$\star$ Includes Printed Circuit Board
* Full Keyboard included
* Interfaces to Keyboard. Cassette Recorder \& T.V
* $2 \mathrm{~K} \times 8$ RAM
* $1 \mathrm{~K} \times 8$ Eprom Monitor Program
* Powerful 280 CPU , Mostek
* 16 line $\times 48$ Character Display Interface to standard, unmodifed T.V. set
* On board expansion to $2 \mathrm{~K} \times 8$ Eprom
* On Board Expansion Facility for Additional 16 Lines I/ 0
* Total expansion to 256 Input Ports and 256 Output Ports


## SOFTWARE FEATURES:

$\star 1 K \times 8$ Nasbug Program in Eprom
$\star$ Provides 8 Basic Operator Commands including single step * Expandable Software System via additional user Programs in Ram of Eprom

| Manuals <br> Separately <br> £3.50 | Complete Kits | $\mathbf{\Sigma 1 9 7 . 5 0}$ <br> + VAT $8 \%$ <br> POST $£ 2.50$ |
| :---: | :---: | :---: |

After sales service available


| TT | XAS |  |  | C-MO |  | OP. AMPS |  | NE53IV |  | $\begin{aligned} & 140 p \\ & 225 p \end{aligned}$ | MEMORY | . |  |  | MJE2955 MJ3001 | $\begin{aligned} & 130 p \\ & 250 p \end{aligned}$ | $\begin{aligned} & \text { 2N2905/A } \\ & 2 \mathrm{~N} 2906 / \mathrm{A} \end{aligned}$ |  | $\begin{aligned} & \text { DIODES } \\ & 8 \vee 127 \text { 12p } \end{aligned}$ | $\begin{aligned} & \text { BRIDGE } \\ & \text { RECTIFI } \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7400 | 14p | 74107 | $3{ }^{3} \mathrm{p}$ | $4000$ | 21p |  |  | NE543K |  | $\begin{array}{r} 225 p \\ 40 p \end{array}$ |  |  |  |  | MJ3001 <br> MJE3055 | $\begin{gathered} 250 p \\ 90 p \end{gathered}$ | 2N2906/A | $\begin{gathered} 22 p p \end{gathered}$ | $\begin{array}{ll} 8 \times 127 & 12 p \\ 0 A 47 & 9 p \end{array}$ |  |  |
| 7401 | 18p | 74 | 60p | 4001 | 21p | CA3130 | 108p | 709 |  | $40 p$ | 1702A |  | PRO | 650p | MJE3055 |  | 2N2907/A |  |  | 1 A 100 |  |
| 7402 | 18p | 74110 | ${ }^{60 p}$ | 4002 | 21p | ca3140 | $108 p$ | 733 |  | 1500 | 2102.2 |  | AM | 1600 | MPF 102/3 | 40p | 2N2926RB |  |  | 1 A 400 |  |
| 74 CO 2 | 25p | 74111 | 75p | 4006 | 127p | CA3160 | 120 p | 741 |  | 25p | 2112-2 |  | AM, | 300p | MPF104/5 | 40p | 2N29260G |  | OA85 615 pr |  |  |
| 7403 | 18p | 74112 | 96p | 4007 | 21p | LM301A | $4{ }^{4} 9$ | 747 |  | 75 p | 2114 |  | AM | ¢15 | MPSA06 | 37p | 2N3053 | 220 | OA90 ${ }^{\text {Op }}$ | 2 A 100 |  |
| 7404 | 24p | 74116 | $216 p$ | 4008 | 180p | LM318N | $175 p$ | 748 |  | $40 p$ | 2708 |  | PROM | £20 | MPSA12 | 62 | 2N3054 | ${ }^{68}$ | 0A95 \%p | 2 A |  |
| 7405 | 259 | 74118 | 180p | 4009 | 67p | LM324N | 130 P | 776 |  | 216 p | 2716 |  | PROM | £40 | MPSA56 | 40p | 2N3055 | ${ }^{6515}$ | OA200 op | 3 A 200 |  |
| 7406 | 43p | 74119 | 2250 | 4010 | ${ }^{67}$ | LM348N | 130 p | 3900 |  | 70p | 8080 |  | PU | $\underline{11}$ | MPSU05 | 72 | 2N3442 | ${ }^{151 p}$ | ${ }_{04202}{ }^{0} 10 \mathrm{p}$ | 3A 600 |  |
| 7407 | 43p | 74120 | 130p | 4011 | 21p | MC1458P | 609 | 4136 |  | 130p | AY- 51013 |  | atat | 6009 | MPSU06 | 78 | 2N3643 | 54 |  | -4A 100 |  |
| 7408 | 22P |  | 53 | 4012 | 23p | LIMEAR |  | NE5628 |  | 450 p | AY-5-2376 |  | Kbenc | ¢13 | MPSU55 | 000 | 2N3644 | $14 p$ | \|N916 7p | 4 A 400 |  |
| 7409 7410 | 22p | 74122 74123 | 52p | 4013 | 55p | AY 1.0212 A. 3.8500 | 850 7750 | NE565 |  | ${ }_{180 p}$ | MC6800 MC6810 |  | PU | ${ }_{4320}$ | MPSU56 | 80 | 2N3704/5 | $14 p$ | 1N4001, 26 p | 6A 50 |  |
| 7411 | 26p | 74125 | 70 | 4014 | 90p | Ca3028a | 1712 | NE566 NE567 |  | ${ }_{180}$ | MC6820 |  | AM | 648p | ${ }^{0} \mathbf{C} 35$ | 909 | 2N3706/7 | 14p | 1 N 400347 P | 6 A 100 | 08p |
| 7412 | 25p | 74126 | ${ }^{65 p}$ | 4016 | 54p | CA3046 | 85 p | RC41510N |  | 432p | MC6850 |  | AM | 756p | $0 \times 71$ | $35 p$ | 2N3708/9 | 14p | 1 N 400578 s | 6A 400 | 120p |
| 7413 | 40p | 74128 | 82 p | 4017 | 100p | CA3048 | 250p | SN72710N |  | 54p | R0-3-2513 |  | OM | 650p | A2008B | 225p | 2N3773 | 3200 | ) N4148 4P | - 4 |  |
| 7414 | 85 |  | P | 4018 | 110p | ca3053 | 75p | SN76003N |  | 275p |  |  |  |  | R20108 | 2250 | 2N3819 | 27 p |  | 25A 418 | 432 |
| 7416 | 40p | 74136 | $81 p$ | 4019 | $57 p$ | CA3065 | 200\% | SN76013N |  | 175p | TRANSIS | 20, | BOI40 | 2250 | TIP29A | 509 | 2N3820 | 500 |  |  |  |
| 7417 | $40 p$ | 74141 | $85 p$ | 40 | 140p | CA3080E | 97 P | SN76013ND |  | $180 p$ | AC127/8 | 20p | 8F 115 | 240 | T1P29C | 629 | 2N3823 |  | ZENERS |  |  |
| 7420 | 18p | 74142 | 300, | 4021 | 120p | Ca3089E | 250p | SN76023N |  | 175p | ${ }_{\text {AC176 }}$ | 200 | 8 8167 | 259 | TIP30A | ${ }^{609}$ | 2N3866 |  | $27 \mathrm{~V}-33 \mathrm{~V}$ |  |  |
| 7421 | $43 p$ | 74145 74147 | 205p | 4022 | 140p | ca3090a | $425 p$ | SN76023NO |  | 180 p | ${ }^{\text {AC187/8 }}$ | 200 | $\text { BF } 170$ | $25 p$ | TIP30C | 72 p | 2N3903/4 | 220 | 400 mW 11p |  |  |
| 7422 | 28p | 74147 | 2059 | 4023 | ${ }^{23 p}$ | 1CL7106 | $\underline{10}$ | SP8515 |  | 750p | AD149 | 80p | BF 173 | 27 p | TiP31A | 58 | 2N3905/6 | $220$ | 1w 22p |  |  |
| 7423 | 30 p | 74450 | 1300 | 4024 | ${ }^{3} 29$ | ICL8038 | 4000 | tas621a |  | 310p | AD161 | 45p |  | p | TIP32A |  |  |  |  |  |  |
| 7425 | 33p | 74151 | 130\% | 4025 | 23p | LM339N | 175 | tas661a |  | 150p | ${ }_{\text {A }}{ }^{\text {A }} 16162$ | 48 | 8F 179 | 35p | TIP32A | ${ }_{850}^{639}$ | 2N4058 | $1{ }^{1}$ | rriacs |  |  |
| 7426 | $43 p$ | $\begin{aligned} & 74151 \\ & 74153 \end{aligned}$ | 881 p | 4026 | 200p | LM377N | 2000 | TBA120 |  | 97p | AF114/5 | 30p | BF180/9 | -35p | TIP32C | ${ }_{87 p}^{85 p}$ | 2N4060 |  | Plastic 3 A 400 V 85p | OA |  |
| 7428 | $40 p$ | 74154 | ${ }_{1609}^{81 p}$ | 4027 | 110p | LM3881N | 1125 | t8a6418 |  | 3260 | AF116/7 | 30p | BF184/5 | 24 p | TIP33C | 1200 | 2N4125/6 | 22p | bA 400 V | 1544 |  |
| 7430 | $18 p$ | 74155 | 97 p | 4029 | 120\% | M389N | 160p | t8a800. |  | 112 p | AF127 | 40p | BF194 | 13p | tip 344 | 124p | 2N4401 | $34 p$ | 107p |  | 200p |
| 7432 | 37p | 74156 | 97p | 4030 | 67p | LM391IN | 150p | tbabio |  | 125p | AF 239 | 40 | BF195 | P | TIP34C | 180p | 2N4427 | 97p | 6 A 500 V | 15 A |  |
| 7433 | 43p | 4157 | 85p | 4040 | 150 | MC1310P | 190p | tba820 |  | 100p | ${ }_{\text {BC }}$ A $107 / 8$ | 10p |  |  | TIP35A | 243p | 2N4871 |  | 120 |  | 225p |
| 437 | 37p | 74159 | 250p | 4042 | 97p | MC1495 | 4900 | tDA 1022 |  | 675p | BC108/B | 10p | BF 200 | 40 | 5C | 2900 | 2 2N5172 | 250 |  |  |  |
| 7438 | ${ }^{37 p}$ | 74160 | 130p | 4043 | 1000 | MC1496L | 1120 | tDaz2020 |  | 405 p | BC109 | 10p | 8F2448 | 34p | TIP36A | 297p | ${ }^{2 N 5245}$ | 58p | ELECTRONICS |  |  |
| 7440 | 18p | $74162$ | 130p | 4046 | 1500 1500 | MC3340P | 1800 | XR2206C |  | 432p | BC109/C | $11 p$ | BF2568 | 60\% | TIP36C | ${ }^{360 p}$ | 2N5401 | 62p |  | T/L209 R |  |
| 7442 | 75 p | 74163 | ${ }^{130 p}$ | 4047 | 1509 649 | MC3360P NE540 | ${ }_{225}^{130}$ | XR2216C |  | 7560 1100 | SC117 | 27p | 8F257 | 34 p | rip 41 C | $84 p$ | 2N5457/8 | 409 | ORP 12 100p | T1211 G |  |
| 7442 7443 | 1200 | 74164 | 120p | 4050 | 58p | NE555 | ${ }_{40} 225$ | ${ }_{\text {2 }}$ 2N414 4 E |  | $145 p$ | BC 147 | 9 | BF258 | $38 p$ | TIP42A | 70p | 2N5459 | 40p | ORP 6090 | Tll 32 | 81p |
| 7444 | $120 p$ | 74165 | 150p | 4054 | 120p | NE556 | 97 p | 2N425E |  | 432 p | BC148 | ${ }_{11}{ }^{\text {p }}$ | BF259 | 32p | IIP422 | 96p | 2N5485 | $45 p$ | 2N5777* 4\% | O2'1 | 16p |
|  |  | 74166 | 160p | 4055 | 140p | E561B | 450p | ZN 1034E |  | 2160 | BC157 | 11 p | BF337 |  | tIP2955 | 76p | N6107 | 70p |  | 02" |  |
| 7446 | 108p | 74167 | 320p | 4056 | 145p |  |  |  |  |  | ${ }_{\text {BC1 }}$ B69C | 150 | BER40 | 34 | TIP3055 | 600 | 2N6027 | cop | SCR THYRISTO | s |  |
| 7447 | 90p | 74170 | 260p |  |  | $\begin{aligned} & \text { VOLTAGE RE } \\ & \text { Plastic-TO220-3 } \end{aligned}$ | ermina | - 12 V |  |  | ${ }_{\text {BC }}{ }^{\text {BC172 }}$ |  |  |  | T1543 | 400 | 2 N 6247 | 2000 | 1a 50V TO5 |  | p |
| 7448 | 85 | 74172 | 7500 | 4068 | 300 | $\begin{aligned} & \text { Plastc-To220 } \\ & 1 \text { Amp }+\mathrm{ve} \end{aligned}$ | 砣mais | 15 V | 78 L 15 | 70p | ${ }_{\text {BC }} \mathrm{BC} 177$ | 11 p | BFR 8 BR $/ 1$ | 34 p | 2N697 | 250 | 2N6254 | 140p | 1a 400V TO5 |  | 85 |
| 7450 | ${ }^{18 p}$ | 74173 | 1300 | 4069 | 300 |  | $115 p$ | 15 V |  | 7op | ${ }_{\text {BC }}{ }^{\text {B }} 78$ | 17 p | BFRB88 BFR88 | 37p | 2N698 | 43p | 2N6292 | 70 p | 3a 400V STUD |  | 120p |
| 7451 | 18p | 74174 | 130 p | 4071 | 300 | $6 \mathrm{~V} \quad 7806$ | 115p |  |  |  | ${ }_{\text {BC }} \times 179$ | 20p | BFW 10 | 30p | 2N706/8 | 22p | 3N128 | 97p | 16a 400V Plastu |  | 220 p |
| 7453 | 12p | 74175 | ${ }^{97 p}$ | 4072 |  | 8 V 78808 | 115p | 5 V ( | $79 \mathrm{LO5}$ | ${ }^{80 p}$ | ${ }_{\text {BC1 }}$ 82/3 | 12 | $8 \mathrm{~B} \times 29$ |  | 2N918 | 43p | 3N140 | 97 p | 16 A 600V Plast |  | 270p |
| 7454 | 18p | 74176 | 130p | 4073 | 45 | $12 \mathrm{~V} \quad 7812$ | 115p | 5 | 79.05 | 80 p | ${ }_{\text {BC184 }}$ | 140 | $85 \times 29$ $8 \times \times 30$ | 30p | 2N930 | 1\% | 3N141 | 97p | BT108 1a 700V | STUD | 130p |
| 7460 | 18 | 74177 | 1000 | 4078 |  | 15 V 7815 | 115p | 12 V |  | 80 p | ${ }_{\text {BC } 187}$ | 329 | 8FX84/5 | 330 | 2N1131/2 | 25p | 3N187 | 200p | C108D 4A 400V | Plastıc | ${ }^{63} \mathrm{p}$ |
| 7470 | 38p | 74180 | 160p | 4081 | 30 p | $18 \mathrm{~V} \quad 7818$ | 115p | 15 V | 79.15 | 800 | ${ }_{\text {BC } 212}$ | 14 p | 8FX886/7 | 330 | 2N1304/5 |  | 3N201 | 1200 | MCR101 1/2A 15 | V T092 | 40p |
| 7472 | 32 | 74181 | 3240 | 4082 |  | 24 V 7824 | 115p |  | , | 80 | ${ }_{\text {BC2 }}$ | 12 p | BFX88 | 30 p | $2 \mathrm{~N} 1306 /$ | $75 p$ | 3N204 |  | 2N3525 5A 400 | V 1066 | 120p |
| 7473 | 36p | 74182 | 150p | 4093 | 104p |  |  |  |  |  | ${ }_{\text {BC2 }}$ |  | BFX88 BFY50 | 220 | 2N1613 | 229 | 40360 | 43p | 2N4A44 8A 600 | Plasuc ${ }^{\circ}$ | 2000 |
| 7474 | 37 p | 77184 | 260 | 4510 | 140p |  |  | LM323K | TO3 | 6009 | BC461 | $40 p$ | BFY51 |  | 2N1711 | 22 p | $40361 / 2$ |  | 2N5060 0.8A 3 | VV 1092 | 36 p |
| 74674 | 70p | 74185 74186 | ${ }_{9900}^{1900}$ | 4511 | 1400 | $\begin{aligned} & 1 \text { Amp -ve } \\ & 5 \mathrm{VV} \end{aligned}$ |  | LM327N | DIL | ${ }^{275 p}$ | ${ }^{\text {BC4 }} 478$ | 32p | $\begin{aligned} & \text { BFF51 } \\ & \text { BFY52 } \end{aligned}$ | 22p | 2 N 1893 | 320 | 40409/10 | 75p | 2NS044 0.8A 2 | 00V ro9 | 430 |
| 7475 | 48p | 74186 | ${ }_{1300}$ | 4516 |  | $\begin{array}{ll} 5 \mathrm{~V} & 7905 \\ 12 \mathrm{~V} & 7912 \end{array}$ | 1600 | LM32 |  | 21. | BC547/8 | 16p | BF52 | 90p | 2N2102 |  | 40411 | $325 p$ |  |  |  |
| 7476 | 37p | 74190 | 1300 130 | 4518 | 110p | 15 V 7915 | 160p |  |  |  | ${ }_{\text {BC549 }}$ | 14 p | BrF90 88 rag | 48p | 2N2160 | 120 | 40594 |  | F12 |  |  |
| 7480 | 54p | 74191 | 1300 | 4528 | 110p | $24 \mathrm{~V} \quad 7924$ | 160 p |  | TO5 | 120p |  |  | ${ }_{85 \times 19 / 20}$ |  | 2N2219 | 22p | 40595 | 97p | SOCKETS ©Y T | Ka |  |
| 7481 | 108p | 74192 | 110p | 14433 | 114 |  |  | ${ }_{7805 \mathrm{~K}}^{\text {T8A258 }}$ | T03 | 150\% | BC559/C | 20 | MJE340 | 70p | 2N2222 | 27 | 40636 | 1400 | $8 \mathrm{pm} \quad 12 \mathrm{p}$ |  |  |
| 7482 | 90p | 74193 74194 | 1100 | 14533 | 5400 |  |  |  |  | 150p |  |  |  |  | 2N2369 | 15p | 40673 |  | $14 \mathrm{pm} \quad 13 \mathrm{p}$ | 24 pin | $0 p$ |
| 7483 | 109p |  |  | 14583 | 150p | Heat sink sutable | T0220 |  |  |  | $B C \gamma 1$ | 24 p | MJ491 |  | 2N2484 | 32p |  |  | 16 pin 14p | 28 pin | ${ }_{\text {ap }}$ |
| 7484 7485 | $108 p$ $120 p$ | 774196 | 130 p | Othes 9301 | 160p |  |  | $723$ | $\mathrm{DHL}$ | $44^{45}$ | 80131/2 | ${ }_{65 p}$ | $\text { M } 2501$ | 250p | 2N2646 |  | $\begin{aligned} & 40871 \\ & 40872 \end{aligned}$ | 800 |  | 边 |  |
| 7486 | 36p | 74197 | 1300 | 9302 | 175p | $92 \mathrm{78MGT2C} \mathrm{DLL} \mathrm{145p}$ |  |  |  |  | S9 M. 2955 130p. |  |  |  | 2N2904, |  |  |  |  |  |  |
| 7489 | 340 p | 74198 | ${ }_{216 p}^{270 p}$ | 9308 9310 | 3275 | $\begin{array}{lll} 5 \mathrm{~V} & 78 \mathrm{~L} 05 & 700 \\ 62 \mathrm{~V} & 78162 & 70 \mathrm{p} \\ \hline \end{array}$ |  | $\begin{array}{ll} \text { LM } 317 & \text { TO220 } \\ \text { TL430 } & \text { TO92 } \\ \hline \end{array}$ |  | $\begin{gathered} 325 p \\ 70 p \\ \hline \end{gathered}$ | VAT inclusive prices - add 25p P\&P - no other extras |  |  |  |  |  |  |  |  |  |  |
| 7490 7491 | 30p 90p | 75107 | 175p | 9311 | 275 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7492 | 58p | 75182 | 250p | 9312 | 160p | Eisplays |  |  |  |  | MAIL |  | Govt., Colleges etc Orders Accepted |  |  |  |  |  |  |  |  |
| 7493 | 36p | 75 | 40 | 9314 | 175p | 3015 F | Minatron | 200p | 75491 |  |  |  |  |  |  |  | $\Delta$ | - |  |  |  |
| 7494 | 909 | 75325 | ${ }_{175 p}$ | 9316 | 250 p | FND 500/507 | Fied | 130 p |  | 84p |  |  |  |  |  |  |  |  |  |  |  |
| 7495 7496 | $75 p$ | ${ }_{9602} 9601$ | 175 | 9318 | 275 | DL704/01707 | Red Red Green | 1600 | 9368 |  | ONLY |  |  |  |  |  |  |  |  |  |  |
| 7496 -7497 | -90p | 9602 |  | 9321 9322 | 1600 150 | $\begin{aligned} & \text { di747 } \\ & \text { TIL.312/313 } \end{aligned}$ | Red / Gree Red |  | $9370$ | $200 p$ |  |  | Telex: 922800 |  |  |  |  |  |  |
| 74100 | 140p |  |  | 9324 | 2500 | T11321/322 | Red | 130p | 9374 | 200p |  |  | 54 Sandhurst Road, London NW9 |  |  |  |  |

## SECOND GENERATION INDUCTION BALANCE METAL DETECTOR

 DESIGNED SPECIALLY FOR THE HOME CONSTRUCTOR- A second generation Induction Balance system with improved Variable-Tone detection.

Designed by professionals for easy assembly by amateurs but with very good performance.

The search coils are fully assembled and adjusted for you.

Coils pre-assembled and tested wedge shaped search field

## Uses include:

* Treasure hunting - it's amazing what you can find in the garden or on the beach.
* Finding lost metallic items.
* Locating waterpipes and cables under floorboards on in walls.
* Checking old timber for nails before cutting, etc., etc., etc., etc.
KIT - COMPLETE WITH PREASSEMBLED SEARCH COILS
$£ 16.50$
Plus $£ 1-00 p \& p$ Plus $£ 1-32$ VAT
ASSEMBLED \& TESTED
$£ 22.50$
Plus £i-00p\&p Plus $£ 1-80$ Vat
Communication Measurement Ltd 15 MALLINSON OVAL, HARROGATE,YORKS.


## Save on Calculators


bject to availability
$£ 29.85$ inc. VAT (E1 P\&P) A.C Mains adaptor $£ 3.00$ 30 kV probe available SAE


12 FUNCTION CHRONOGRAPH LCD
Hours. mins secs day
month. chrono stopwatch, backighting, mineral glass water resist, chrono timung
to $1 / 100$ th, tap tume to to $1 / 100 \mathrm{th}$. lap time to
max of 5999 tout function still contunued)
Slainless steel lracelet Stannless steel bracele and case THE MOST ACCURATE LCD WATCHES ON
IN THE UK NE6290/18

## £37.95

$\qquad$
The Now M02, the tiny alarm clock, timer calculator with day date year, valid uilt past 2000 A D. a.m. pm hour. minute. 2
alarm clock settings Time zone memory and fut lunction calcuiator
 battery life for only $£ 34.90$.

WE SUPPLY ALI SEIKO WATCHES
KRAMER \& CO
9 October Place, Holdere Hill Road, London NW14 1EJ MAIL ORDER ONLY. S.A.E. for dint theets

## SEMICONDUCTOR OFFERS ALL FULL SPEC.

 $\mathrm{BC} 212 \mathrm{BC} 182 . \mathrm{BC} 237$, $\mathrm{BF} 197, \mathrm{BC} 159, \mathrm{BCY} 71$, all 8p esch RCA2015 TO Power Transistor (Sim to 2N3055) 35 A ACY18 18 p . BF 200 20p Motorola MRD 3051 Photo Transistors 35p N
Channel FE Ts. sumiar to 2 N 3819 18p Mofset Sim to 40673 Channel FETs.s.milar to 2 N 381918 p Mofset Sim to 40673
35p 3N 140 Mostets 50 p . M203 Dual Matched Pars Mosfets 35p 3 N 40 Mosfets 50 p . M203 Dual Matched Parrs Mostets
Single Gate per FET. 40 p SL301 Dual Matched Par SIL N P N. Power Transistors FI 300 MHz 30 p Intel 1024 bit MOS Rams
95 p Mullard 68113 Triple Varicap Diode 350 MC 1310 Stergo
 50 . 7418 -pin 0.1 L 23 p 500 v 600 mA Bridge Recs (ex. equip.)
 EHT SIL Rec 15 KV 2.5 mA . $15 \mathrm{~mm} \times 5 \mathrm{~mm} 85 \mathrm{p} .781212 \mathrm{~V} 1 \mathrm{~A}$
Plastic $V$ Reas 95 p Min Nuxies $1 T \mathrm{~T} 5870 \mathrm{~S}, 13 \times 6 \mathrm{~mm}$ Frg Sue 85 Plastic V Reas $95 p$ Min Nixies IT 5870SA $13 \times 6 \mathrm{~mm}$ Frg Size 85
Nixies ITT GN/9A $13 \times 8 \mathrm{~mm} 65 \mathrm{p} 0.2^{\prime \prime}$ or O $125^{\prime \prime}$ Red LEDs 12 p each MAN3A 3 mm LED Displays 50 p Murata 40 KHz transducers 15 mm diam $\mathrm{C2} 95$ pair NE555 35p. 741 S (wide bandwidth)
35 L LM 38080 p . LM 38190 p
MICROPMONES. Grundig Electrat Inserts with built-in FE.T. Preamp £ 150 Ciysiai Mike Inserts 37 mm 450 Electret
Condenser Mikes 1 K imp with std Jack Plug \&2 85. Cassette Condenser Mikes with 2.5 and 35 Jack Plugs $£ 285$ Standard Cassette Mikes 200 ohm Imped with 2.5 and 35 Jack Plugs
$£ 120$ P. A. Mikes Mobile Type 50 k . Thumb Swich, $£ 420$

MORSE KEYS-Plastic Type 95p Hi-speed Type, all metal,
 Meter, 3.150 MHz .50 ohms imped $£ 950$ Marker Gen. 300 KH steps to 60 MHz , suppled with Xial for this coverage, $£ 790$

CRYSTALS. 300 KHz HC6U 40 p 443 MHz C.T.V Xtals 45 p .
0.1 "Edge Connectors. 64 way 65 p 32 way 40 p
RELAYS. Min sealed Relays. 4 pote changeover, 360 ( $6 v \mathrm{VC}$ ) 45 p Min 220 V AC Sealed Relay 2 pole C/O 45 p 240 vaC Seated Relay 3 pole
NO R Reed Relay 20 mp 30 turn dial mechanism with locking arm aluminium finish dial scaled 0.100 , window $0.29,32 \mathrm{~mm}$ diam. 63 mm spindle new $£ 175$
MOTORS. 15 to 6 v DC Model 20p 12 v DC 5 pole 35 p 115 VAC $\min 3$ RPM with Gearbox 30 p 240 AC Synch Motor $1 / 5$ th
RPM 65 p 240 AC A Synch Motor $1 / 24 \mathrm{th}$ R P. M 65 p

BOXES. Black ABS Plastic with brass inserts and lid. $75 \times 56 \times$ $35 \mathrm{~mm} 40 \mathrm{p} 95 \times 71 \times 35 \mathrm{~mm} 49_{\mathrm{p}} 115 \times 95 \times 16 \mathrm{~mm} 57 \mathrm{p}$ Radio
pliers. 5 in insulated handies $£ 1.40$. Diagonal side cutters. 5 in. insulated handles $£ 140$

TRANSFORMERS, $6.0-6 \mathrm{v} \quad 100 \mathrm{~mA}, 9-0.9 \mathrm{v} 75 \mathrm{~mA}, 12-0-12 \mathrm{v}$ 50 mA 75 p each
Transtormer 30 p

CONDENSER MIKES. EM 506 Condenser Mikes. Unidirectional. F E T Amp. Dual imped. $50 \mathrm{~K} / 600$ ohms. $30-$
18 KHz . on/off switch. E 1100 Minature Tie Pin Condenser Mike 1 K imp , omni-dreectional, uses hearing aid battery (supplied) £495
TIL 305 Alpha-numerical Displays. with data, $£ 275$
8 WAY RIBB
SWITCHES-Min Toggle. SPST $8 \times 5 \times 7 \mathrm{~mm} 30 \mathrm{p}$ DPDT $8 \times 7 \times$ 7 mm 60 o OPDT Centre Off $12 \times 11 \times 9 \mathrm{~mm} 75 \mathrm{p} 4 \mathrm{P} 2 \mathrm{~W}$ Sliders
20 p DPOT C/O Sliders 20 p SPST 10 amp Rockers 12 p . R S Single Pole C/O Push Buttons 45 p Roliter Micro Swithes 15 p Min Micro Switches $13 \times 10 \times 4 \mathrm{~mm} 20 \mathrm{p}$. G PO Keyswiten Assy
3 Switches $2-3$ way, 1.2 way Multupole 35 p. Min. Push to make or
 Swiches, 2 bank 1 pole 30 way ad, stop. 75 p Solder Sucker. Plunger fype eye protection, replaceable nozzle. high suction TARE

TAPE HEADS -Cassette Stereo $£ 300$ BSR MN $13301 / 2$ Track Dual Impedance Rec/Playback 50p BSR SRP90 $1 / 4$ Track Stereo
Rec $/$ Playback $£ 195$ TD10 Assembles two heads. $1 / 4$ Track Rec /Playback Staggered Stereo with bult-in erase per head

BUZZERS_GPO Type 6.12v20p Min Solid State Buzzers volts. high tone. 25p U.H.F $N$ Transistorised Push Button Tuners inot Varicap). new
and boxed. $£ 250$

POT CORES-Adj Vinkor $250-370$ Micro H 20p. 260 or 500
Mill Henry Cores 10 peach
METERS-Steteo Tuning Meters $100 \mu$ a per movement $£ 2.75$


BOARDS. 465 KHz If Panels. 6 IFTs 30 p Board with 1412 v R/O Reed Relays $£ 240$ Board with 6 v C/O Reed Relay $£ 120$
Contact cooled set reel. $12 \mathrm{v} / 750 \mathrm{~mA}-15 \mathrm{p}$ Carnon 50 way gold Contact cooled set reel. $12 v / 750 \mathrm{~mA}-15 \mathrm{p}$ Carinon
inlay plugs and sockets, free plug - new $\mathbb{1} 150$ pair.

AEROSOLS-Servisol Swith Cleaner + Lubricant 802s 55p
Freezer 6ozs 50 Gear Cleaner \& Tar Remover 1402 p 85p SOLENOIDS - 240 VAC 45 p 12 V DCH Duly 75 p

POSTAGE 30p UNLESS OTHERWISE SHOWN EEXCESS POSTAGE REFUNDED WITH ORDER) OVERSEAS POST AT
COST VAT INCLUDED INALL PRICES

## ROER ADORESS

PROGRESSIVE RADIO
31 CHEAPSIDE, LIVERPOOL 2 051-236 0982

24 HR. CLOCK/APPLIANCE TIMERKIT


Switches any appliance of up to 1 KW on and Off at preset times once a day KIT contains, AY-5-1230 Clock/Appliance Timer IC, $0.5^{\prime \prime}$
LED display. mains suoply display drivers, LED display. mains supply. display drivers. full instructions. $£ 13.75$ Special white bo $(56 \times 131 \times 71 \mathrm{~mm})$ wim Acrylic window - undrilled $£ 2.20$

## TOUCH CONTROLLED LIGHTING KITS

These KITS replace conventional light switches and control 300 W of lighting. No main rewirng req or off. Brightness controllied by small knob $£ 5.20$
TS 300 K - TOUCHSWITCH. TWO touch plates. One for ON one for OFF £4.00 TSABOOK - AUTOMATIC TOUCHSWITCH. ONE touch plate. Touch for ON and light
stays on for preset time (variable from 2 secs to $31 / 2 \mathrm{mins}$.) Ideal for stairs and hall E .00




A RANGE OF SINTEL INDUSTRIAL MODULE KITS Latched Counter moduies are now avaluable fiom SINTEL. using both CMOS and TTiL ICs. These
kits wiil give you a very compact unil at less than the cosi of the componentis bought separately and will save you considerable design, , burchasing. buiding and de-bugging lime
Each kil has a sel of red LEO displeys. Iwo PCss and ine appropriate number of TLL or CMOS KITS FOR LATCHEO COUNTER MODULES


|  | COMPONENTS |  |  |  | memohiles |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mickeproces. sons | soldercoa |  | displays |  | 210245 | 2.05 |
| MEE688002 190.00 |  |  | THP |  | 21124.4 |  |
|  | 100 | ${ }^{0.50}$ | Ew0500 c.C. | 1.30 |  |  |
|  | ${ }_{3000}^{1000}$ | ${ }^{40.50}$ |  |  |  |  |
|  |  |  |  | 1.49 4.90 |  | ${ }_{3.36}$ |
| 288. CPu 4MHz | Cleck chir |  |  | 4.90 | 7514110 | 4.10 |
|  | $\xrightarrow{\text { ars }}$ arsi20 | 3.10 3.50 | Crystals |  | ${ }^{7512377}$ | 2.50 |
|  | Mk5025 | 5.60 | 5.12Mt2 | 3.50 3.60 |  | 3.00 3.58 |


| DATABOOKS |  |
| :---: | :---: |
| Intel Memory Desisn Handbook | ¢5.20 |
| -Intel 8080 Microcomputer Systems User's M Manual |  |
| Motorota Booklet From the Computer to the Microprocessor | E1.80 |
| Motorola McMOS Darabook Nol 5 Series B) ${ }^{\text {M }}$ ( Matal |  |
| Moterola M6880 Mcroprocessor Appicalions Manual | ¢5.35 |
| National SC/MP introkit User's Manual |  |
| Natonal SC/MP Technieal Description |  |
| National Semiconductor TTL Databook |  |
| Texas Instruments Pin Configuration Guide. A very useful sel of gloss cards showin | ing top and |
| botiom pin-out yews of 7400 ICs plus many others (T.1. Memories. Op-Amps. etc ) |  |
| 280 Assembly Language Programming Manuel |  |
| Zilog z80. CPU Techrical Manual | E5.60 |
| Z 210 z80.-CTC Product Sper itications | ¢0.80 |
| CATASHEETS at 75p each on im6ioo 6800. SC/MP CDP 1802. 2650 |  |
| TMS8080. 9131 , $280 \mathrm{\mu}$ P Intel 8085 Also free data on some componenis. |  |
| BEST OF brye volume 1. 380 pages | ¢11.95 |

[^2] ORDERS: CW O. add VAT © 8\% + 35p pēp TELEPHONE and CREDIT (invoices) ORDERS add
 ORDERS TO: SINTEL, PO BOX 75A, OXFORD Tel. 086549791

FAST SERVICE We guarantes that Telephona Orders for goodz in srock, received by 4.15 p.m. (Mon-Fi) will
be despatched on the same day by is Class Pozt (Isome heavy trems by percel pozt) pnd our-stocking is good. privnt customars should talpphone and pay by giving
their Access or azrecievcard number, wish a minimum SINTEL

## MINFADS \& CLASSIFIED



## NEW! HOBBY-PACK STICKIES

Professionals worldwide use STICKIES - for building and debugging prototypes, faultinding - even de signing PCs layouts
omes the hobby pack - 120 STICKIES for $\mathbf{8 0 p}$. Make projects less sweat, more fun. Why not try a pack?
Just to remind you - STICKIES are self-adhesive printed labels which immediately identify pin-outs for a carefully-selected range of 4000 - or 7400 -series IC"s Also 450-label pack $£ \mathbf{2 8 0}$. (discounts for quantities) CMO

## CONCEPT ELECTRONICS <br> 8 Bayham Road, Sevenoaks, Kent 0293514110

## HAVE YOU GOT ELECTRONIC DESIGN PROBLEMS?

IS THERE A PRODUCT THAT YOU WANT DESIGNED?

If the answer is yes, then why not contact me and perhaps I can help. I can produce engineering drawings, circuits, working prototypes with a speed that might surprise you

## TIM ORR

Design Consultant

## 277 PUTNEY BRIDGE ROAD

 LONDON SW15 2PTTEL. 01-731 2077


COMPONENTS FOR E.T.I. PROJECTS. Component lists with prices available for E.T.I. projects from January, 1978, onwards. Send SAE stating project and month of publication (Maximum four projects per SAE). Lists sent by return together with ACE order orm/catalogue. ACE MAILTRONIX, Tootal Street Wakefield, W. Yorks WF1 5JR

## PRINTED CIRCUITS <br> and <br> HARDWARE <br> Comprehensive range Constructiors' Hardware and accessories <br> Selected range of popular components. full range of ETI printed circuit boards normally ex-stock, same day despatch at comperitive prices <br> P.C. Boards to individual designs <br> Resist-coated epoxy glass laminate for the di.y man with full processing instructions (no unusual chemicals required) <br> Send 15 p for catalogue. <br> RAMAR CONSTRUCTOR SERVICES MASONS ROAD STRATFORD-ON-AVON WARWICKS. Tel. 4879

US Type Ni-cad Batteries, $£ 269$ each Electrolytic capacitors of assorted values and voltages, 50 for $99 \mathrm{p}, 741 \mathrm{~s} 18 \mathrm{p}$ each. All prices inc. VAT P\&P 15p. Electronic Supplies, 588 Ashton Road, Hathershaw. Oldham Lancs. Tel. 061-6529879

SAVE POUNDS on test equipment with MLC modules and kits. Free data sheets MLC(E), 116 College Road, Southwater, Horsham, Sussex

FIGARO GAS AND SMOKE DETECTORS, TYPE 812. £3 including postage and data sheet. SKAD Electronics, 12 Chalgrove End, Stoke Mandeville, Aylesbury, Bucks.

## BR. BAR BGAINS FOR THE ELECTRONIC HANDYMAN BRANDED LED DIGITAL ALARM CLOCKS

Returned to Service Department within guaran tee period

1) With alarm repeat - S.R.S.P. of £23.00 offered at $£ 4.95$ inc. VAT
(2) With luxury lamp and repeat alarm as featured in most major U.K. Mail Order catalogues, S.R.S.P. £35 offered at £7.95 inc. VAT

These will be sold as recelved from our cus tomers with the existing fautt(s) and withou guarantee
Oftered subject to being unsold Prescott Clock \& Watch Co. Ltd.
Prescott House, Humber Road Prescott House, Humber Road Telephone: 01-4529871

## KINGSLEY TV SERVICES

40/42 Shields Road Newcastle upon Tyne 6 Tel. (0632) 650653

Re-designed ET1.480. 100W Module. Price £ 16.25 plus £2.10 P/P \& V.A.T

Power Supply with Low Voltage Pos. and Neg. 15V. Power takeoff (Less Transformer). Price £7.10 plus£1.57 P/P \& V.A.T

Both purchased together£23.35
plus $£ 2.87 \mathrm{P} / \mathrm{P}$ and V.A.T.
S.A.E. for further details

EXPORT OPPORTUNITY. Dutch wholesale / distributor seeks British companies in the electronic components, electric devices and audio field for marketing products. For additional information: Hamelton Parks, P.O. Box 3067, Arnhem, Holland.

BIASED TOGGLE SWITCHES dp 25p. 5 watt I.C. audio amps, leads/h.s. £ 1.00 Relays 10 p ohms to 2000 ohms coil-STATE 2/3 pole $12 / 240 v$ AC/DC coil/contacts ENAMÉL wire 5 LB reel $24 \mathrm{swg} £ 10$. 3LB swg £5 (P/P 30p) K Lawrence. 1 Regent Road, Itkley. W. Yorks.

TRANSFORMERS. Sub-min 240 or 220 V 6-0-06V @ 200mA. Brand new special price 98 p only $+8 \%$ VAT. P\&P 35p each Pitech \& Co., The Old School, Shincliffe, Durham DH 1 2PD

AERIAL BOOSTERS improve weak vhf radio and television reception, price $£ 4.50$ S.a.e. for leaflets. Electronic Mailorder Ltd. Ramsbottom, Bury, Lancs., BL9 9AG


## Now available

## from Kramer .

truly portable, cordless, electronic alarm CLOCK
at only E 19.80 inc . VAT (+ E 1 P\&P).
LIOUID CRYSTAL DISPLAY READOUTS LCD) allow truly light weight portable clocks The low powet requirements of LCD display
allow tong battery life and elimination of heavy, Bulky transtormers resulting in ight compact altractive style


PORTABLE ALARM CLOCK
Use in the home, in offices and traval also would make an oxcellont car clock.

- Compulet-type $1 / s^{\prime \prime} 1127 \mathrm{~mm}$ LCD readout

Battery operated $12 \times A A A$ cerss
Minimum one year battery
Ouartz crystal accuracy
$100 \%$ Solid
operation
Readoul is tack lignted for nugh
PM indicalor in 12 hour tormat
Sinvole time selting procedure time zone changes easily made
Ttme synchronizing swich for exar : lime setting
Touch-to activate control bar tot drowse function giving extra
minutes sleep when aclivaled
Dimensions $120 \times 74 \times 19 \mathrm{~mm}\left(4^{\prime \prime} 4^{\prime \prime} \times 25 / 16^{\prime \prime} \times 44^{\prime \prime}\right)$
Werght 120 grams 442 ounces) 10 ding got Fmish Metal with black insut

KRAMER \& CO
90ctober Place, Halders Hill Rand, London NW4 1EJ
Telex: B88941. ATTN. KRAMER. K7. Tel. $01-2032473$ MAIL ORDER ONL

## LOW COST BOXES



## AND INSTRUMENT CASES

| Aluminium box with lid and screws |  | 2 Section case Black pvc coated top and aluminium base |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $3 \times 2 \times 1$ | 42p |  |  |  |
| $4 \times 3 \times 11 / 2$ | 49p | L W | H | Price |
| $4 \times 3 \times 2$ | 56p | $6 \times 41 / 2 \times 2$ |  | £1.25 |
| $6 \times 4 \times 2$ | 62 p | $6 \times 4 \times 31 / 2$ |  | £1.37 |
| $6 \times 4 \times 3$ | 72p | $8 \times 51 / 7 \times 2^{1 / 2}$ |  | £1.50 |
| $8 \times 6 \times 2$ | $97 p$ | $10 \times 61 / 2 \times 3$ |  | £1.95 |
| $8 \times 6 \times 3$ | 1.08p |  |  |  |
| all prices incl. p\&p |  |  |  |  |

Sheet aluminium standard and cut to size self-tapping screws, nuts bolts and washers Pamphlet on our fuil range of cases supplied with every order or send a stamped sell addressed envelope to HARRISON BROs., P.O. Manufacturing service of sheer metal
send drawing and s s a e for quotation

## Please mention EṪI when replying to Adverts

 SOLITRING IRON for HOBBY or TRADE

MAIL ORDER PRICES:
(including VAT and $P$ and $P$ )


(Bit type 20 fitted as standard).

f3. 90 each
Solder 28. 56
I8watts of power at 240 v . straight to the bit
BIT SIZES
$19(1.5 \mathrm{~mm}) \quad 20(3.0 \mathrm{~mm})$ $21(4.5 \mathrm{~mm}) \quad 22(6.0 \mathrm{~mm})$ Trade Enquiries Welcome


The Proprietor of British Patent No. 1435904, for "Radıo and Cassette replay device" , desires to negotate for the sale of the patent, or for the grant of licences thereunder. Particuiars from Marks \& Clerk. 57-60 Lincoln's Inn Fields, London WC2A 3L.S

|  |  |
| :---: | :---: |
| 1 | EY |
| Audio Electronics . .... p64 | Lotus Sound . . . . . . . . p31 |
| Airamco . . . . . . . . . . ${ }^{\text {d }} 46$ | Marshalls ........... 65 |
| Ambit . . . . . . . . . . . p79 | Maplin . . . . . . . . . pl00 |
| Bi-Pak ......... pp 4 \& 5 | Minikits . . . . . . . . . . . ${ }^{46}$ |
| Bywood ............ p8 | Metac . . . . . . . . . . . . p92 |
| Bamber . . . . . . . . . . . p90 | Mainline . . . . . . . . . . 44 |
| Baron ..............pl4 | Nicholls . . . . . . . . . . . p46 |
| Baydis .............p31 | Powertran . . . . . . . . p2 |
| S \& R Brewster .......p97 | Progressive ..........p94 |
| Cambridge Learning . . . p98 | Personal Comp World . . p91 |
| Chiltmead . . . . . . . . . 882 | Sentinnel Supply . . . . . . 227 |
| Crimson Electrik ...... p27 | Service Trading ....... 884 |
| Chromasonics ........p76 | Sinclair . . . . . . . . . . p 49 |
| Chromatronics ........p99 | Sintel . . . . . . . . . . . . p95 |
| Communications Mea. . . p9 | Swanley ............ ${ }^{27}$ |
| EDA . . . . . . . . . . . . ${ }^{\text {888 }}$ | Sterling Sound ........p21 |
| Electrovlaue . . . . . . . . ${ }^{9} 9$ | Teleplay ..... pp 46 \& 86 |
| Fothery Willis . . . . . . p90 | TK Electronics . . . . . . p95 |
| Greenbank ...........pl2 | Tempus .... . . . . . . p20 |
| Greenweld .... pp 14 \& 38 | Technomatic . .......pp9 |
| Henry's . . . pp 88. 90 \& 93 | Trampus . . . . . . . . . p95 |
| Integrated Circ. Unl. . . . ${ }^{89}$ | Technalogics . ........p27 |
| ILP . . . . . . . pp 7.13 \& 66 | Vero ............... . ${ }^{\text {933 }}$ |
| Jagberry ............ pl | Videotime . .........p ${ }^{31}$ |
| Kramer ... . pp 46. 94 \& 97 | Wilmslow ..........p73 |
| LP Enterprises . . . . . . p6 | Watiord ..... pp 10 \& 11 |
| LB Electconics . . . . . . . 20 | Xeroza . . . . . . . . . . p20 |
| London Col of Furn . . . . p8 |  |



Design of Digital Systems is written for the engineer seeking to learn more about digital electronics. Its six volumes - each A4 size - are packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra to memories, counters and simple arithmetic circuits, and finally to a complete understanding of the design and operation of calculators and computers.

## The contents of Design of Digital Systems include:

Book 1 Octal, hexadecimal and binary number systems; conversion between number systems; representation of negative numbers: complementary systems; binary multiplication and division.
Book 2 OR and AND functions: logic gates. NOT, exlusive OR. NAND, NOR and exclusive-NOR functions; multiple input gates; truth tables; De Morgans Laws; canonical forms; logic conventions; Karnaugh mapping; three-state and wired iogic.
Book 3 Half adders and tull adders; subtractors; serial and parallel adders; processors and arithmetic logic units (ALUs); multiplication and division systems.
Book 4 Flip flops; shift registers; asynchronous and synchronous counters; ring, Johnson and exclusive-OR feedback counters; random access memories (RAMs) and read only memories (ROMs).
Book 5 Structure of calculators; keyboard encoding; decoding display data; register systems; control unit; program ROM; address decoding; instruction sets; instruction decoding; control program structure.
Book 6 Central processing unit (CPU); memory organisation character representation; program storage; address modes; input/ output systems; program interrupts; interrupt priorities; programming; assemblers; computers; executive programs; operating systems and time sharing.


Digital Computer Logic and Electronics is designed for the beginner. No mathematical knowledge other than simple arithmetic is assumed, though the student should have an aptitude for logical thought. It consists of four volumes - each A4 size - and serves as an introduction to the subject of digital electronics. Everyone can learn from it - designer, executive, scientist, student, engineer.

Contents include: Binary, octal and decimal number systems; conversion between number systems; AND, OR, NOR and NAND gates and inverters; Boolean algebra and truth tables; De Morgans Laws; design of logic circuits using NOR gates; R-S and J-K flip flops; binary counters, shift registers and half adders.

CAMBRIDGE LEARNING ENTERPRISES. UNIT 3, FREEPOST, RIVERMILL LODGE, ST. IVES, HUNTINGDON, CAMBS. PEI7 4BR, ENGLAND.

TELEPHONE: ST. IVES (0480) 67446 PROPRIETORS: DAYRIDGE LTO. REG. OFFICE: RIVERMILL LODGE, ST. IVES

REGD. IN ENGLAND No. 1328762

In the years ahead the products of digital electronics technology will play an important part in your life. Calculators and digital watches are already commonplace. Tomorrow a digital display could show your vehicle speed and petrol consumption; you could be calling people by entering their name into a telephone which would automatically look up their number and dial it for you.

These courses were written by experts in electronics and learning systems so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being faster and more thorough than classroom learning. You work at your own pace and must respond by answering questions on each new piece of information before proceeding.

After completing these courses you will have broadened your career prospects and increased your fundamental understanding of the rapidly changing technological world around you.

| The six volumes of Design of |
| :--- |
| Digital Systems cost only: |


| And the four volumes of |
| :--- |
| Digital Computer Logic and |
| Electronics cost only: |
| But if you buy both courses, |
| the total cost is only: |

# Flow Charts \& Algorithms 

## HELP YOU PRESENT

safety procedures, government legislation, office procedures, teaching materials and computer programs by means of YES and NO answers to questions.

THE ALGORITHM WRITER'S GUIDE explains how to define the questions, put them in the best order and draw the flow chart, with numerous examples shown. All that students require is an aptitude for logical thought. Size: A5, 130 pages. This book is a MUST for those with things to say.

## £2.95

$+45 p$ post $\&$ packing by surface mail anywhere in the world. Airmail extra.

## GUARANTEE

Giro Ac. No. 2789159
If you are not entirely satisified your money will be refunded.
「 Cambridge Learning Enterprises, Unit 3, Freepost.
Rivermill Lodge, St. Ives, Huntingdon, Cambs, PE174BR, England.
Please send me the following books
sets Digital Computer Logic \& Electronics @ £5.50. p \& p included
sets Design of Digital Systems @ £8.00. p \& p included
Combined sets@£12.00, p \& p included
The Algorithm Writer's guide @ £3.40.p \& p included

## Name

Address

I enclose a 'cheque/PO payable to Cambridge Learning Enterprises for $£$
Please charge my * Access/Barclaycard/Visa/Eurocard/ Mastercharge/Interbank account number Signature
-deleted as appropriate Telephone orders from credit card holders accepted on 048067446 (ansafone). Overseas customers should send a bank draft in sterling drawn on a London Bank.


The Chroma Chime is the world's first electronic musical door chime to use a pre programmed microcomputer chip to generate tunes

Now you can replace your old boring buzz, zing or ding with the sound of this remarkable feat of British engineering * capable of playing 24 well known melodies

Really enjoyable to build. this kit will give you the satisfaction of assembling a first class professional product for yourself and give you and your callers ontertainment for years to come as well as enhancing your home

Buy your Chroma-Chime Kit now and get a free large poster (size approx $23^{1 / 2^{\prime \prime}} \times 16^{\left.1 / 2^{\prime \prime}\right)}$ of the original circuit diagram as above, which incidentally measures 36-24-36
*This one was not done by our bird-brained designer on the back of a cigarette packet as you can see'

The CHROMA CHIME is exclusively designed by
CHROMATRENLES
River Way, Harlow, Es:sex

Greensleeves • God Save the Queen * Rule Britannia Land of Hope and Glory o 0 Come All Ye Faithful Oranges and Lemons• Wesmins:er Chimes • Sailor's'Hornpipe Beethosen's "Fate Knocking' • The Marseillaise © Mozaf Wedding March • Cook House Door • Star Spangled Banner Beethoven's Ode to Joy - William Tell Overture Saldier's Chorus o Twinkle. Twinkle Little Star Great Gate of Kiev - Marvland * Deutschland uber Alles Bach • Colonel Bogie - The Lorallie

To CHROMATRONICS, River Way, Harlow Essex, UK
Please send $\square$ Chroma Chime Kits at $£ 18 \cdot 00$ each including VAT and post and packing PLEASE USE BIOCK CAPITALS

Name
Address

I enclose cheque/PO value f
or debit my ACCESS/BARCLAYCARD account No
$\square$

## Signature

N.B. The CHROMA-CHIME is also available, fully assembled, price £ 19.95 incVAT and post and packing.
$\qquad$烙

## 

everything for the modern D.I.Y. electronics enthusiast and more.


## IT'S A FANTASTIC BESTSELLER!

216 big ( $11^{\prime \prime} \times 8^{\prime \prime}$ ) pages! Over a thousand illustrations! Over 30 pages of complete projects to build! Thousands and thousands of useful components described and illustrated! No wonder it's a bestseller!
DON'T MISS OUT! SEND GOp NOW! MAPLIN ELECTRONIC SUPPLIES
P.O. BOX 3 RAYLEIGH ESSEX SS6 8LR

Telephone: Southend [0702) 715155
NAME
POST THIS COUPON NOW FOR YOUR COPY OF OUZ CATALOGUE PRICE EOp

Please rush me a copy of your 216 page catalogue I enclose 60p, but understand that if I am not completely satisfied I may return the catalogue to you within 14 days and have my 00 p refunded immediately.

Shop: 284, London Road, Westcliff-on-Sea, Essex


[^0]:    £3.00 + 25p P\&P

[^1]:    AUDIOPHILE has its own query service, independent of ETl's reader enquiry system. This is intended solely for those who may be having problems with hi-fi - be it choosing it or using it! Please mark the envelope "Audiophile" and include relevent details.

[^2]:    official orders are welcome trom Companies Gove Dents Natn inds. Univs.. Polys.

