

IB Metal Locator Mk 2 . p. 32

Plenty of Op-Amp circuits p. 22

Remote control switch . p. 62

FEATURES

OP-AMPS ELECTRONICS ON TAP THE DANGERS OF LIGHTNING DIGITAL ELECTRONICS PART 5 TECH-TIPS

22 38
50
78
84

Tim Orr explains the ins and outs. A different sort of mains wiring! It came to us in a flash Try it yourself and understand more easily. More from you to us

PROJECTS

$$
\begin{array}{rll}
\text { ACCENTUATED METRONOME } & \mathbf{1 7} & \text { Pick the ticks out of this. } \\
\text { PORCH LIGHT } & \mathbf{2 8} & \text { See what you're doing at last } \\
\text { IB METAL LOCATOR } & \mathbf{3 2} & \text { Better than the best (our Mk I!) } \\
\text { SYSTEM 68 } & \mathbf{4 5} & \text { A CUTS above the rest } \\
\text { SHUTTER TIMER } & \mathbf{5 7} & \text { How long is a 'click'? } \\
\text { ULTRASONIC SWITCH } & \mathbf{6 2} & \text { Very remotely interesting. }
\end{array}
$$

NEWWS		
NEWS DIGEST	$\mathbf{1 1}$	Find out who's up to what.
DATA SHEET	$\mathbf{7 1}$	
MICROFILE	$\mathbf{6 7}$	Latest news of MPUs
AUDIOPHILE	$\mathbf{7 5}$	Heil bass unit and 350W class A!
COMORROW	$\mathbf{8 3}$	Fancy the house menu?

INFORMATION

ETI PRINTS 15
ELECTRONICS TOMORROW 27
T-SHIRTS \& SPECIALS 44 BOOKS FROM ETI 54
ETI MARCH PREVIEW
SUBSCRIPTIONS
SPECIALS
BINDERS \& BACK ISSUES
ETI CLOCK
PANEL TRANSFERS

PCBs the easy way A very special special. Showing our true colours! Wide range to choose from. What goes in next month. Save yourself the heartache! All our other mags. Keeping and completing your collection. Our longest running special offer Let them get stuck on you

SPECIAL OFFER

SMOKE DETECTOR $\mathbf{4 3}$ Can you afford not to have one?

Electronics Today International is normally published on the first Friday of the month prior to the cover date.
vol

BI－PAK

 \square
$\rightarrow-\sqrt{1}$

 $>$ PAC WE NEED THE SPACETHYRISTORS
ornamic cassette mic

LOGIC PROBE pocket stre instrument capable of detecting T TL
TL Flip Flop and other pulse circuits it is easy to use and operates trom the 5 V DC Supply of the circuit deet lest The logic levels are indicated Sy 2 red
$E O$ S One for High and the other tor Low There is Iso a green
No 559

RESISTOR PAKS

 VOLTAGE REGULATORS

CAPACITOR PAKS $6201 \quad 18$ Electolytics
6202
6203 $6203 \quad 18$ Electrolytics $6160 \quad 24$ Cial Price of
6161 $\begin{array}{ll}6161 & 24 \text { Ceramic Caps } \\ 6162 & 24 \text { Ceamic Cas }\end{array}$ 22 pF 82 pF
$100 \mathrm{pF}-39 \mathrm{pF}$
470 p 40 pF .330 pF
$0 \mathrm{pF}-0.04 \mathrm{H}_{\mu} \mathrm{F}$ Lli a at special Price of ．．．．．．．．．．．．．．$£ 1.60$

RESISTOR PAKS

品品

 $\stackrel{\circ}{\stackrel{\circ}{\div}}$
－zzzzzzz 0zzる

TRANSISTORS
BRAND NEW－FULLY GUARANTEED

DIODES

Type	Price								
AA119	5p	B4X16．		BYZ17	${ }^{28} \mathrm{p}$	OA91	$7 p$	in5401	11p
AA213	4p	OA202	5p	BYZ18	28p	0 O95	78	iN5402	12p
BA100	6p	BY100	15 p	BYZ19	28p	｜N34	5 p	IN5404	13p
BA115	5p	BY127	$10 p^{*}$	0447	5 p	IN6O	6 p	iN5406	16p
BA144	5p	BYZ10	${ }^{32} \mathrm{p}$	OA70	5 p	IN914	4 p	in5407	17p
BA148	${ }^{10 p}$	BY211	${ }^{32 \mathrm{p}}$	OA79	7 p	in 1148	4 p	in5408	19p
8A173	10p	8YZ12	32p	0489	7 p	1544	3 p		
BAx 13		BYZ13	${ }^{30} \mathrm{P}^{\text {p }}$	0485	7 p	iN5400	10p		
04200	5 p	BYZ16	30 p	baso					

LINEAR I．C．s

tBa800	12 pin all	$75{ }^{\text {P }}$	UA7tic	1099	25p	UA748	T099	28p
TBA810	12 pin all	£1．00＊	U4703	TO99（Plastuc）	20p	72558	10ual 7481	9 45p
tBa820	14 pin ail	$80^{\prime}{ }^{\text {P }}$	741 P	8 pin dil	18 p	MC1310	14 pin Dill	E1．25
LM380	14 pin DIL	$80 p^{\prime \prime}$	72741	14 pm OIL	20p	76115	14 pm DIL	c1．25＊
（M381	14 pin Dil	£1．35＊	UA741C	1099	20p	NE555	8 pmoll	32 p
72709	14 pin DIL	${ }^{28} \mathrm{p}^{\text {p }}$	72747	14 pin DIL	55p	NE556	14 pIn DL	60p
UA709	1099	28p	748P	8 pin Dil	28p	SL414A	10 pin	［1．80＇

New Consignment ZN4 14 Radio Chip \ldots.

OPTOELECTRONICS

TUNE IN TO THE WORLD OF MICROPROCESSORS

 switches to a code to index the "tune of the
 Build this 24 Tune Electronic Door chime for build your own electronic musical door chime-a door chime with no moving parts There are 24 of the world's favourite and best known tunes pre-programmed onto the microcomputer chip so that all you have to do is to set the Chroma Chime's built-in selector

 day" from the repertoire
Greensleeves

God Save the Queen
Rule Britannia*
Land of Hope and Glory Oh Come All Ye Faithful Oranges and Lemons Westminster Chimes Sailor's Hornpipe

Seethoven's "Fate Knocking The Marseillaise Mozart
Wedding March Cook House Door The Stars \& Stripes Beethoven's Ode to Joy Wilham Tell Overture

Soldier's Chorus
Twinkle. Twinkle Little Star Great Gate of Kiev Maryland Deutschland uber Alles Bach Colonel Bogre The Lorallie

- These tunes play longer if the pust button is kept pressed

Since everything is done by precise mathe matics, it cannot play the notes out of tune. The unit has comprehensive built-in controls so that you can not only select the 'tune of the day' but the volume, tempo and envelope decay rate to change the sound according to taste.

Not only visitors to the front door will be amazed, if you like you can connect an additional push button for a back door which plays a different tune!

This kit has been carefully prepared so that practically anyone capable of neat soldering will have complete success in building it. The kit manual contains step by step constructional details together with a fault finding guide, circuit description, installation details and operational instructions all well illustrated with numerous figures and diagrams.

- Handsome purpose built ABS cabinet
- Easy to build and install
- Uses Texas Instruments TMS1000 microcomputer
- Absolutely all parts supplied including I.C. socket
- Ready drilled and legended PCB included
- Comprehensive kit manual with full circuit details
- No previous microcomputer experience necessary
- All programming permanently retained is on chip ROM
- Can be built in about 3 hours!
- Runs off 2 PP3 type batteries
- Fully Guaranteed

The CHROMA-CHIME is exclusively designed by

CHROMATRONIES

River Way, Harlow, Essex.

*Complexe chnoma ~ chime Kixinclucles P \& P +VAT

* A great intraduction to the fascinating, marld of mierocomputers.
* Save pounds an normal retailprice by building yourself.

Gould Advance InstrumentsProfessional quality ata realistic price.

Alphalll Digital 0 n Multimeter
 excluding VAT)

OS245A Oscilloscope

Fault-finding, circuit testing or servicing - an oscilloscope is indispensable. It saves time, prevents costly mistakes, and enables you to tackle bigger, better projects

Now, Gould Advance offer you this professional-quality, dualtrace instrument, at a price which brings it within reach of the amateur enthusiast.

Just look at these great Gould Advance features - then compare the OS245A for value!
*DC-10M Hz bandwidth
*Dual trace

* Clear controls, simple operation
*Fully guaranteed for 2 years
* $5 \mathrm{mV} /$ div. sensitivity
* Time-basespeeds to $100 \mathrm{~ns} / \mathrm{div}$.
* 4 "CRT with 810 div.

Gould Advance Limited. Instrumenis Division
Roebuck Road, Hainault, Essex IG6 3UE.
Telephone:01-500 1000 Telex: 263785
Registered Number 263834 England

Alpha III Digital Multimeter

With a choice of 25 ranges and basic accuracy of : 0.2%, the Alpha IIl is a professional's multimeter, yet it is versatile enough to cover every amateur application.

And although it is offered at such a modest price, it shares the advanced design features of the more expensive Gould Advance instruments - in particular, the purpose-built chip, incorporating all analogue and digital circuitry. *2,000 scale length $(100 \mathrm{mV}$ resolution)
*Tough, attractive moulded case
*Bright red LED display

* 25 ranges
* Fully guaranteed for 2 years

Note: This offer applies to the U.K. and Ireland only.

SINTEL

RESEARCH MACHINES COMPUTER SYSTEMS AVAILABLE THROUGH SINTEL
RESEARGH MACHINES 3802 SYSTEM $16+K$. Ready built WHO 16 K RA 2 K R RESEARCH MACHINES 3802 SYSTEM $16+K$. Ready built with 16 K RA 2 K ROM RESEARCH MACHINES $380 Z$ SYSTEM $4 / K I T$. Part Assembled Kit with 4 K RAM. $\begin{aligned} & \text { E } \\ & \text { E53.00 }\end{aligned}$ RESEARCH MACHINES $\mathbf{2 8 0 Z} \mathbf{4 K}$ \#t $\mathbf{~ E 3 9 8}$. Send for details
SOFTWARE: 8K Extended Basic for $3802 / 280 Z$
Various combinations of the 380 Z are avairbble. PLEASE CONTACT SINTEL FOÄ FIJLL INFORMATION AND PRICES OF BOTH SYSTEMS

SINTEL CLOCK KITS	RED DIGIT DESK CLOCK	
	code	Price
6 Red Digit ALARM CLOCK w. 205 mm n 40 mm m ${ }_{\text {d }}$ d 140 mm	ACK	¢28:80
4 Red Digt DESK CLOCK w. 154 mm n 40 mm d. 85 mm	111-222	¢15.50
4 Green Digit Desk Clock w. 154 mm m .40 mm d. 85 mm	GCK	£12.95
6 Red Digit CAR CLOCK WITH TIMER $w .205 \mathrm{~mm}$ $\hbar .40 \mathrm{~mm}$ d. 140 mm	cck	¢41.90
4 Red Digit CAR CLOCK w. $154 \mathrm{~mm} \mathrm{~h} .40 \mathrm{~mm} \mathrm{d}$.	AUt-CK	¢18.85
50hz Crystal timebase kit	хтк	¢5.45

CMOS		CD4020	1.28	CD4040	1.11	CD4066	0.63	C04096	1.08
		CO4021	1.04	CD4041	0.86	CD4067	3.85	CD4097	3.85
Mainly RCA		CD4022	0.94	CD4042	0.86	CD4068	0.23	CO4098	1.43
CD4000	0.17	CD4023	0.23	CO4043	1.01	CD4069	0.23	C04099	1.90
CD4001	0.18	CD4024	0.80	CO4044	0.96	C04070	0.51	C04502	1:24
CO4002	0.17	CD4025	0.23	CO4045	1.45	E04071	0.23	CO4510	1.41
C04006	1.20	C04026	1.78	CD4046	1.37	CD4072	0.23	C04511	1.72
CD4007	0.18	CD4027	0.58	CD4047	1.04	CD4073	0.23	CD4514	2.84
CD4008	1.00	CD4028	0.92	C04048	0.58	C04075	0.23	CO4515	3.24
C04009	0.58	C04029	1.18	CO4049	0.58	C04076	1.34	CO4516	1.40
CO4010	0.58	C04030	0.58	CD4050	0.58	C04077	0.45	CO4518	1.25
CD4011	0.20	CO4031	2.30	C0405	0.94	CD4078	0.23	CO4520	1.19
C04012	0.23	CO4032	1.02	C04052	0.94	C04081	0.23	C04527	1.64
CD4013	0.58	C04033	1.44	CD4053	0.94	CD4082	0.23	C04532	1.39
CO4014	1.04	CD4034	1.97	CD4054	1.20	C04085	0.74	CO4555	0.90
CO4015	1.04	CO4035	1.22	CD4055	1.36	C04086	0.74	C04556	0.90
C04016	0.58	C04036	3.29	C04056	1.36	CD4089	1.60	MC14528	1.22
CD4017	1.04	CD4037	0.98	C04059	4.93	CD4093	0.92	MC14553	4.68
CD4018	1.03	C04038	1.10	CD4060	1.15	CD4094	1.94	IM6508	8.05
C04019	0.58	CD40	3.20	CO4053	1:13	C04095	1		

A RANGE OF SINTEL INDUSTRIAL MODULE KITS
Latched Counter modules are now availabie trom SINTEL. using both CMOS and TTL ICS These
kits will give you a very compact unit at less than the cost of the components bought separately kits will give you a very compact unit at less than the cost of the components bought separately
and will save you considerabie design, purchasing, buitding and de-bugging time. Each kit has a sel of fed LED displays. TwO PCBs and the appropriate number of TTL. or CMOS ICs. plu's brackets, etc., resistors, capacitors, single indine plug and sockets and instructions

For our full sange of Counter PCB sets and Display PC8s - send for FREE CATALOGUE

	COMPONENTS				memories	
MICROPROCES- SORS	Solderc		display		210246	2.05
MEK680002 190.00	PINS		TYPE		2112.4	2.90
MC6B00 15.97	100	0.50	FNOSOO C.C.	1.30		
MC6620 8.02	1000	4.00				
280.CPU 2.5 MHz	3000	11.50	THPE 31 CA	1.49	VERO	
280-CPU 4mHz ${ }^{28.44}$	Clock CH		$5 \mathrm{LTO1}$	4.90	751410 J	3.36
-36.98	Aysizoz	3.10	CRYStals		7512375	2.50
IBACTC $\quad 12.80$	AY51224	3.50	$32.768 \times \mathrm{Hz}$	3.50	7512380	300
$280 \cdot 910 \quad 12.80$	m 60253	5.60	5.12 MHz	3.60	751239*	358

DATABOOKS

el Memory Design Handbook	E 5.20
Intel 8080 Microcomputer Systems User's Manuat	¢5.25
Intel 8085 Microcomputer System User's Manual	¢5.15
Motorola Booklet From the Computer to the Microprocessor	E1.80
Motorola MCMOS Databook (Vol 5 Series B)	53.50
Motorola M6800 Microprocessor Applicatons Manual	¢12.95
Motorola M6800 Programming Manual	¢5.35
National SC/MP Introkit User's Manual	c0.75
Natonal SC/MP Technical Deseription	c1:80
National Semiconductor TTL. Dalabook	c2.10
RCA CMOS and Linear IC Oatabook	55.45
Texas instruments Pin Configuration Guide A very useful set of gloss cards showing top and bottom pun-out views of 7400 ICs plus many others (T) Memories. Op-Amps, etc.) 280 Assembly Language Programming Manual Zilog 280-CPU Technical Manual $\varepsilon 7.50$ Zilog Z80 CTC Product Specifications Zilog 280-Pto Technical Manual DATASHEETS at 75p each on M6100, 6800. SC/MP CDP1802 2650 TMS5501. TMS8080. 9131 280 P P inte 8085	

Our Offices are at 209 Cowiey Road Oxford but please do not use thrs as a posial address

```
                ALL PRICES VALID UNTHL 31at DECEMBER,1977
```

official orders are welcome from Companies Govt Depts. Natn inds Univs Polys ORDERS: CWO add VAT @ $8 \%+35$ p p\&p. TELEPHONE and CREDIT (invoice) ORDERS add
 p\&p For Export postage rates on heavy items - contact us first

ORDERS TO: SINTEL, PO BOX 75A, OXFORD Tel. 086549791

the DYnamic duo

The C15/15 is a unique Power Amplifier providing Stereo 15 watts per channel or 30 watts Mono and can be used with any car radio/tape unit. It is simply wired in series with the existing speaking leads and in conjunction with our speakers S 15 produces a system of incredible performance
A novel feature is that the amplifier is automatically switched on or off by sensing the power line of the radio/tape unit, hence alleviating the need for an on / off switch
The amplifier is sealed into an integral heatsink and is terminated by screw connectors making installation a very easy process
The S 15 has been specially designed for car use and produces performance equal to domestic speakers yet retaining high power handling and compact size

C15/15

15 watts per channel into 4Ω
Distortion 0.2% at 1 kHz at 15 watts
Frequency Response $50 \mathrm{~Hz}-30 \mathrm{kHz}$
Input Impedance 8Ω nominal
Input Sensitivity 2 volts R.M.S. for 15 watts output Power Line 10-18 volts
Open and Short Circuit Protection
Thermal Protection
Size $4 \times 4 \times 1$ inches
C15/15 Price £17.74 + £2.21 VAT P\&P free

Data on S15

$6^{\prime \prime}$ Diameter
51/4" Air Suspension
$2^{\prime \prime}$ Active Tweeter
20 oz Ceramic Magnet
15 watts R.M.S. Handling
$50 \mathrm{~Hz}-15 \mathrm{kHz}$ Frequency Response
4Ω Impedance
S 15 Price per pair £17.74 +£2.21VAT P\&P free
TWO YEARS GUARANTEE ON ALL OF OUR PRODUCTS

Please supply
Total Purchase Price
I enclose cheque \square Postal Order \square Money Order \square Please debit my Access Account \square Barclaycard Account \square
Account Number
Name \& Address
Signature

 $20 \mathrm{~m} \Omega$
count)

Company.

 Subject to avaliabilily£28.95 30ksaded carrying case $£ 3.00$ OKv probe available SAE 12 FUNGTION
CHRONOGRAPH Lco £39.90

Hours, mins, secs, day month, chrono stopwatch. Backlight, mineral glass, wate resist, chrono timing to $1 / 100$ th. Lap time to Stainless steel bracelet and case

* ONE OF THE MOST ACCURATE * LCD WATCHES ON SALE IN THE UK

KRAMER \& CO.

9 October Place, Holders Hill Road London NW4 1EJ Tel. 01-203 2473 Telex 888941
MAIL ORDER ONLY S A.E for data sheets Enquiries welcome

Greenbank
 CMOS WITH DISCOUNTS

SPECIAL OFFER	74 HOO
180.2102	$(500 \mathrm{~ns})$

GIVE AWAY PRICES

PCB $41 / 2^{\prime \prime} \times 2^{\prime \prime}$ CONTAINING $12 v 4$ Pole MINIATURE RELAY, 2 N2646. DIODES, CAPACITORS, ETC. $40 p$ (A1 p/p 10p
PCB $41 / 2^{\prime \prime} \times 2^{\prime \prime}$ CONTAINING $2 \times 24 \mathrm{v}$, $115 v 4$ POLE MINIATURE RELAY DIODE, CAPACITOR, ETC. 30p (A2) p/p 10p
PCB $41 / 2^{\prime \prime} \times 2^{\prime \prime}$ CONTAINING 24 v . 140v 4 POLE MINIATURE RELAY DIODE, CAPACITORS ETC. 20p (A3) p/p 10p.
2 N2192 (PLASTIC FORMED TO5 LEADS) 25-£1. (A4)

TIP 31 38p, BC108C 10p, BF195 10p, BC183 10p, OCP70 18p, 741 (DIL) 20p, 555 (DIL) 45p, MM5314 + DATA £2.95, ITT 587OST NIXÏ + DATA 50p, SPERRY SP42509 (9 DIGIT 7 SEGMENT) + DATA £1. $7476^{\prime \prime}$ (red) £1.35. RS FUSÉ HOLDER $11 / 4^{\prime \prime}$ PANEL MOUNTING 20p, WO4 25p, TTL, CMOS. IC SKTS, LEDS, SWITCHES, ETC. ETC. ETC. SAE CAT
PLEASE ORDER BY (A) NUMBERS
LB ELECTRONICS
. MIDDX. UB4 8AH

 FG-1

 BUILD THIS ADVANCED DESIGN FUNCTION GENERATOR

Designed around 8038 Waveform Generator I.C

* DC Coupled Amplifier
* 1 Hz to 100 kHz
* Sine, Triangle and Square Wave output

AYEN Developments, 25 Westgate Louth. Lincs. LNII 9 Ya
Please send a JAYEN FG-1 PC board complete with
instructions, photo anodised Front Panel and Component Shopping List at $£ 3.85$ inct. VAT and P\&P
Name___—_

news digest.

ETI intechnicolour.........

Frankly we won't know how good this edition of ETI will look until it's too late to change our minds-we're perfectly prepared to admit that it's an experiment and it may not work out. In the same way we don't mind telling you the reasons for the experiment. In Germany two hobby electronic magazines, including Elrad (ETI-Germany) have 4 -colour editorial and they not only look beautiful but so much more information is con veyed than with straight black and white. However our main
reason is that a colour-revolution has been taking place in TV and in most magazines-the hobby electronics magazines, us as well as the competition-are very traditional and sooner or later we'll have to go all-colour. We're doing it now to get some experience in handling it.

We'd like to thank several people for their co-operation in this experiment including Dave Messer our regular photographer and especially the boys at Q.B. our printers who put up with a lot at the best of times and have excelled themselves over this issue.

Halvor Moorshead. Editor.
paw programming.

Sticking doggedly to her task, System Aids newest programmer trys to pick the bones out of the software. Lead in time was short, and her boss collared her for growling on the job. The whole point of the exercise being to enter records of New South Wales canine population (circa 500000) for the Agricultural Society.

Abstract

totally US What the US does today, Britain does tomortow but California did yesterday, During a brief visit to Los Angeles, one of the ETL staff drank in the electronics scene and it's elixir.

The bottom has already fallen out of the CB market in a big way and prices reflect the massive stocks which need to be moved, 23 -channel, 5 W transceivers-all you need is antenna and hook-ups to the car's power supply are being retailed for about $£ 11$ and even the 40 -channel models, only introduced at the start of 1977 are crossing the counter for under $£ 20$, about a quarter of their price when introduced. Althuugh US made equipment is avalable, we havie been told that every domestic manufacturer has pulled out of the market and that the Japanese are even unable to compete with the Korean, Hong Kong and Singapore makers. The optimists clain that the CB market is still enormous but there's every indication that the on-going market is a tiny fraction of what it was a year ago.

TV games are clearly the thing of the moment with literally hundreds of models available-prices start at about $£ 11$ and rarely exceed $\mathbf{£ 2 0}$ for the four or six game units. What is interesting are the auper advanced games-tank battles, pontoon etc. all in colour with very much higher prices-up to $£ 100$ but they're obviously selling in huge quantities. The US authority governing broadcasting (The FCC) has to approve the designa and this held up the colour units until the last few monthe but clearly TV games are going to be in the stockings of many US kids this Christmas.

Calculators have gone even lower in price. One supermarket is selling a four-function calculator with battery for $\$ 2.99$ ($£ 1.64$)! Home computers are still growing in popularity but perhaps the most interesting aspect are frequent and enormous ads for small business computers-even hoardings carry the meseage!

science fiction.

One of those not-to-be-ignored correlations would seem to exist between electronics and science fiction. Anyone seriously interested in electronics can usually be relied on as a sci-fi fan as well. Well we are any way!) Accordingly we are giving notice, somewhat in advance, of the next annual science fiction convention, Skycon 78. This will be held next Easter at the Heathrow Hotel in London, and ists amongst its attractions chance to meet people involved in micro and mainframe computers, TV and audio, as well as many other sections of electronics.
Authors appear to regard these dos as a way of meeting the readers, so if you want to meet any of them, this could be your chance. Since Skycon runs for a weekend generous bar extenslons have been arranged to ensure lift-aff.

If interested contact, ASAP SKYCON 78, 5 Aston Close, Pangbourne, Berkshire.

hall of fame

A new low-cost electronic switch has been introduced by Texas as a replacement for mechanical switches. The TL170 is a bipolar magnetically-activated electronic switch that uses the Hall Effect for sensing a magnetic field.

This switch, offered in a three-pin TO-92 package is priced at $\mathfrak{£} 0.25$ in 100 -piece quantities. The device consists of a silicon Hall sensor, signal conditioning, hysteresis function and an output stage.

The output of the TL170 can be interfaced directly with TTL or MOS logic circuits. Applications include keyboard, limit, push button and proximity switches, tachometer and electronic ignition sensors as well as virtually any switch application. Nick Lidington, Linear Circuits Dept., Texas Instruments Ltd., Manton Lane, Bedford. MK41 7PA.

on line(central!) computers.

London Transport is to equip itself with a $£ 200000$ Ferranti computer to control the power distribution on the Underground.

The system, which will be in stalled on the Central Line, comprises a dual ARGUS 700 E computer system and five MARK 2 tele-control stations. Later extensions could cover up to sixteen additional sites. Each station has the capacity to handle up to sixty-four controllable items, such as circuit breakers.

The central computer system will be located in premises at Leicester Square and each of the two computers will have 64 K words of core store and 5 Mbytes of disc memory. The two computers will be in continuous communication, so that should the on-line unit fail the standby machine will take over automatically, with minimal interruption to service(?). No comments please commuters.
Ferranti Limited, Simonsway, Wythenshawe, Manchester. M22 5LA.

Capacitive discharge electronic ignition kits

COTED BEST OF SYYSTEMS TESTED BY popular MOTORING MAGAZIME

* Smoother running

Instant all-weather starting

* Continual peak performance

Longer coil/battery/plug life

- Improved acceleration/top speeds Optimum fuel consumption
Sparkrite Mk. 2 is a high performance, high quality capacitive discharge, electronic ignition system in kit form. Tried, tested, proven, reliable and complete. It can be assembled in two or three hours and fitted in $15 / 30$ mins.
Because of the superb design of the Sparkrite circuit it completely eliminates problems of the contact breaker. There is no misfire due to contact breaker bounce which is etiminated electronically by a pulse suppression circuit which prevents the unit firing if the points bounce open at high R.P.M. Contact breaker burn is eliminated by reducing the current to about $1 / 50$ th of the norm. It will perform equally well with new, old, or even badly pitted points and is not dependent upon the dwell time of the contact breakers for recharging the system. Sparkrite incorporates a short circuit protected inverter which eliminates the problems of SCR lock on and, therefore, eliminates the possibilify of blowing the transistors or the SCR. (Most capacitive discharge ignitions are not completely foolproof in this respect). All kits fit vehicles with coil/distributor ignition up to 8 sylinders.
THE KIT COMPRISES EVERYTHING NEEDED
Ready drilled pressed steel case coated in matt black epoxy resin, ready drilled base and heat-sink, top quality 5 year guaranteed transforme and components, cables, coil connectors, printed circuit board, nuts bolts, silicon grease, full instructions to make the kit negative or positive earth, and 10 page installation instructions

OPTIONAL EXTRAS

Electronic/conventional ignition switch.
Gives instant changeover from "Sparkrite" ignition to conventional ignition for performance comparisons, static timing etc., and will also switch the ignition off completely as a security device, includes switch connectors, mounting bracket and instructions. Cables excluded Also available RPM limiting control for dashboard mounting (fitted in case on ready built unit).
CALLERS WELCOME. For Crypton tuning and fitting service 'phone (0922) 33008
Improve performance \&economy NOW Note: Vehicles with current impulse tachometers (Smiths code on dial R.V.1) will
reguire a tachometer oulse-slave unit. PRICE $£ 3.35$. PRICES INCLUDE VAT, POST AND PACKING

POST TODAY:

Electronics Design Associates, Dept. ETI 2
82 Bath Street, Walsall, WS1 3DE. Phone: (0922) 33652
Name
Address

Quick installation No engine modification

 required ${ }^{40} \mathrm{E}$Cheque No.

Send SAE if brochure oniy required.

digest...

 THE

 THE CISCO KID

 CISCO KID}

and line of thins...........
No doubt leaning on their experience gained in caleulators the same CBM have just launced a fance of LCD watches. The 8000 series on the left is for ladies, and the 9000 for men. The display is claimed to be 50% larger than competitors, and both should sell under $£ 25$ and are covered by one year gearantec No, you don't need the address asain-now do you'?

Now available from Kramer . . .

TRULY PORTABLE, CORDLESS, ELECTRONIC ALARM CLOCK
at only $£ 19.95$ inc VAT ($+£ 1$ P\&P)

LIQUID CRYSTAL DISPLAY READOUTS (LCD) allow truly light weight portable clocks. The low power requirements of LCD display allow long battery life and elimination of heavy, bulky transformers, resulting in light, compact, attractive style

Sleek, contemporary styling

PORTABLE ALARM CLOCK

Use in the home, in offices and travel

 also would make an excellent car clock- Computer-type $1 / 2^{\prime \prime}(12.7 \mathrm{~mm})$ LCD readout
- Battery operated (2 x AAA cells)
- Minimum one year battery life

Quartz crystal accuracy
100% Solid state circuitry designed for long life and trouble-free operation
Readout is back lighted for night viewing

- PM indicator in 12 hour format

Simple time setting procedure. Time zone changes easily made
Time synchonizing switch for exact time setting

- Clear, pleasant sounding piezo-electric alarm
- Touch-to-activate control bar for drowse function giving extra minutes sleep when activated

Dimensions: $120 \times 74 \times 19 \mathrm{~mm}\left(43 / 4^{\prime \prime} \times 2^{15 \prime \prime} \times 3 / 4^{\prime \prime}\right.$
Weight: 120 grams (4.2 ounces) including gift box and packing.
Finish: Metal with black inset
Allow up to 28 days for delivery

KRAMER \& CO.

9 October Place, Holders Hill Road, London NW4 1 EJ Telex: 888941. ATTN. KRAMER, K7. Tel. 01-203 2473 MAIL ORDER ONLY
. . . .netars
amp-le module..........

A New $25 W$ hybrid audio power amplifier manufactured by Sanken Electric Co. Ltd., of Japan is now available from Photain Controls Ltd

Full spec. is shown below, and a leaflet is available from Photain giving circuits and full performance figures

At a price of $£ 9.00$ each (plus $121 / 2 \%$ VAT) these modules provide a simple path to a fairly powerful hi-fi especially for the beginner, at a fraction of the cost of a ready made unit.
Photain Controls Ltde., Unit 18 Hanger 3, The Aerodrome Ford, Arundel. West Sussex

Maximum RMS power	25 W
Output Load	8 ohms
Supply Voltagc	48 V
Absolute Max. Supply Voltage	55 V
Supply Current	0.8 A
Suggested Fuse	1 A
Harmonic Distortion at Full Output	0.5% max.
Voltage Gain, Full Feedback	30 dB typ.
Input Impedance	70 k typ.
Output Impedance	0.2 ohms typ.
Output Coupling Capacitor	2200 u
Signal to Noise Ratio	50 WV DC

digest
 how thick are you?
 An electronic thickness gauge
 game set and repaired

which can measure any material generally classed as nonmagnetic has been introduced by F.G. Industries of Slough.

The 'Multigauge' consists of a stable alternating magnetic field source and a separate magnetic field level sensor incorporating a rectilinear transducer which is activated by a probe.

The field source is placed on one side of an object to be measured. From the other side the sensor unit accurately locates the field source and reads the distance between the two units. Read out is on an LCD display, in millimeters. F.G. Industries (UK) Ltd., 185/187, Liverpool Road, The Trading Estate, Slough, Berkshire. Sil 4QZ

Metac Intemational have launched a new service to TV game retailers and users. They are starting a repair service, in time for the expected Xmas rush. With many of the Far Eastern produced units, rapid repair oz replacement is often difficult or impossible.

Metac offer a one week turnaround service and cither those selling of those using the games may send them to:The Service Manager, Metac Electronics, Service Centre, 2 Middle March, Long March Industrial Estate, Daventry, Northants. NN11 4PQ.
PS Please check the batteries before sending them backmost game faults are simply too-dry cells!

abig
 bucket.......

Panasonic have produced a 4096 stage bucket-brigade chip, capable of delays up to 205 milliseconds with audiofrequency signals. Name of the chip is the MN 3005 and we think a lot more will be heard about it in the not so distant future. Intended for use in echo and reverberation machines (with the growing music market in mind), it can also be used for voice scrambling, time compression
etc. in communication systems. Needless to say it can also be used as a general purpose analogue delay line with fixed or variable delay time. Insertion loss is said to be virtually zero, and signal to noise ratio 75 dB . Supplied in an pin dual-in-line package the MN 3005 is selling for about $£ 25$ in the USA.
Panasonic, One Panasonic Way Secaucus, N.J. 07004 U.S.A.

logical pair bond

Two new quadruple TTL-toMOS driver ICs have been announced by Texas Instruments Litd. The SN75357 features threenstate outputs; the SN75375 has individual supply voltages for each of the four drivers, capable of being operated from five to 24 volts.

Individual supply voltase pins on the S75375 allow individual adjustment of VOH levels to match various lond conditions. Control of each player output VOH level allows independent application of each channel as a TTL-to-MOS
or CMOS driver, data line driver, LED digit driver. LED segment driver or TTL-to-CCD driver as well as many other interface applications.

Typical propazation delay of only 31 ns makes the SN75375 a versatile logic level shifter while its output current drive capability of 150 mA makes it a versatile paripheral driver, as wall. This circuit comprises two NAND drivers and two inverting drivers.
Linear Circuits Dept.. Texas Instruments Lid., Manton Lane. Bedford. MK41 7PA.

Yes folks, it's you the readers at home whose vote really counts, (we mean that most sincerely) and your vote is that ETIPRINTS should become a regular part of our readers' services. The response to ETIPRINTS 001 has been overwhelming so that we have decided to make this new method of PCB production a regular ETI feature.

In case you have missed out on ETIPRINTS thus far, they are a complete PCB pattern already to rub down in seconds. The patterns are produced from our original artwork so that the results they produce are nice and sharp

We think that ETIPRINTS are such a good idea that we have patented the system (Patent numbers 1445171 and 1445172)

ETIPRINTS 004 is now available, and joins 001-003 as part of the regular system

Details of ordering the ETIPRINTS are shown below

Lay down the ETIPRINT and rub over with a soft pencil until the pattern is transferred to the board. Peel off the backing sheet carefully making sure that the resist has transferred. If you've been a bit careless there's even a 'repair kit' on the sheet to correct any breaks!
ORDER TODAY
Send cheque or P.O (payable to ETI Magazine) to:ETIPRINT
ETI MAGAZINE,
25/27, OXFORD STREET, LONDON. W.!.R. 1RF.

Inc. VAT and P \& P.

Please indicate clearly the ETI PRINTS you require. Those available at present are:

001 With patterns for skeet, clock board A, and the compander from Nov' 77 plus the spirit level, three-channel tone control, and the digital thermometer from Oct 77.

002 With patterns for hammer throw and race track from Jan 78 plus the freezer alarm from Dec 77.
003 With patterns for the burglar alarm from Jan 78 plus clock board B and the rev monitor from Dec 77.

004 With patterns for the ultrasonic transmitterreceiver, metronome, IB metal locator and porch light from Feb.' 78 plus $5 / \mathrm{w}$ stereo amplifier Mk. 2 from Jan. '77

BUILD THE

- Genuine 5 silicon transistor circuit, does not need a transistor radio to operate.
- Incorporates unique varicap tuning for extra stability.
- Search head fitted with Faraday screen to eliminate capacitive effects.
- Loudspeaker or earphone operation (both supplied).
- Britain's best selling metal locator kit. 4,000 already sold.
- Kit can be built in two hours using only soldering iron, screwdriver, pliers and side-cutters.
- Excellent sensitivity and stability.
- Kit absolutely complete including drilled, tinned, fibreglass p.c. board with components siting printed on.
- Complete arter sales service.
- Weighs only $220 z$; handle knocks down to $17^{\prime \prime}$ for transport.
Send stamped, self-addressed envelope for literature.

Complete kit with pre-built

 search coil

Plus $£ 1.20$ P\&P
Plus £1.37 VAT (8\%)

Built, tested and

Guaranteed

Plus £1.77 VAT (8\%)

MINIKITS ELECTRONICS,
 6d Cleveland Road, South Woodford, LONDON E18 2AN
 (Mail order only)

It's here at last! computerised BACKGAMMON Canmit £199.00 inc. VAT p.\&p. MICROPROCESSOR GAME TECHNOLOGY
For the first time, you can compete against the computer at this challenging game of luck and skill. Every game will be different and exciting.
The computer is a true thinking machine utilizing artificial intelligence and programmed to adapt to all strategies of the game. The computer has an aggressive offense, yet understands defence. It plays a running game, block, hit and run game, semi-back game, backgame, blot hitting contest and bear-off strategies.
A novice can learn the game of backgammon and an intermediate player should be able to greatly improve his game.
Always ready to play an exciting game to match your novice to master level of skill using artificial intelligence programmed for all strategies. This advanced state of the art electronic product uses microprocessors and memory technology that verifies every move, even recognises an illegal move and generates a random roll of the dice. Play against the computer by yourself, with couples or conventionally. Handsome charbrown compact $123 / 4^{\prime \prime} \times 71 / 2^{\prime \prime} \times 1 \frac{1}{2} 2^{\prime \prime}$ impact resistant plastic unit shipped with carrying case, simple instructions, 30 men and 2 spares. Ideal personal or business gift to challenge and improve a player's game.
12 months' warranty. Please allow 2-4 weeks' delivery.

KRAMER \& CO.
9 October Place, Holders Hill Road, London NW4 1EJ
Telex: 888941. ATTN. KRAMER
K7. Tel. 01-203 2473
MAIL ORDER ONLY
SAE for data sheets
Export enquiries welcome

The Golden Dot is truly an entirely new standard for timepiece workmanship. Never before has there been an electronic Quartz watch so whisper thin that its profile challenges the breadth of its elegant mesh band.
If you have ever wished to wear a piece of contemporary sculpture, elegant and deserving of museum recognition. The Golden Dot is a beautiful choice. We cannot stress strongly enough how fine this electronic digital watch is. We can only urge you to wear it for 10 days at our expense
A technology so new it defies comparison. Beneath the wafer thin styling of this remarkable timepiece is the most advanced solid state technology ever crafted for an electronic watch. Notice that there are no obtrusive buttons to interrupt the graceful lines of the watch itself and is
accurate to seconds accurate to seconds.
The circuitry of the Golden Dot is so unique that a soft fingertip touch of the 'Golden "Dot' instantly beams easy to read LED display onto the watch face

This wafer thin Golden Dot watch has a metal casing with simulated gold finish and matching mesh bracelet designed for him and her
Wear it for 10 days
You just cannot believe the luxury of the Golden Dot until you have worn it ...unti you have experienced its featherweight comfort and have enjoyed the compliments it generates. We are so certain that you will be satisfied that in addition to the One Year warranty we are offering a 10 day money back guarantee if you are not entirely satisfied.
Telephone orders 01-455 9855
Please send me
Golden Dot
Watch(es) on 10-day trial
I enclose cheque/P/O for E
Charge to me through
Access A/C No
Barclaycard A/CNo
Name
Address
(Block.capitals please)
Registration No. 1071242
Callers welcome
MOUNTAINDENE LTD.
22 Cowper St. London, EC2
(Near Old St. Station)

ACCENTUATED BEAT METRONOME

This metronome design accentuates one beat out of every bar to help with complex rhythms

THE THOUGHT of yet another metronome circuit is probably enough to bring tears to the eyes of anyone who has read ETI, or, if you must, any of the other Electronic Magazines over the past few years. The design we present here is, though, a cut above the run of the mill projects that have gone before.

The major advantage of this new circuit is that it will accentuate any particular beat in a bar. Our metronome is designed to help those starting out in music, in whom a sense of rhythm is often lacking.

Accent On Design

The method employed to produce the beats is to produce a tone burst for each, rather than the simple DC pulse often employed in other designs. The only way to change the sound output in this latter type of circuit, to give the required accentuation, is to change the pulse's amplitude. We found this to be unsatisfactory hence the tone burst.

Initially we tried a pulsed LC network which, while producing excellent results was a little too

complex and expensive so we eventually decided on a pair of 555 timers. For those of you who wonder

SPECIFICATION

	SPECIFICATION
Rate	$1 /$ sec. to $15 /$ sec.
Beat	Off, 1-1 to $1-9$
Output power 9 volt supply	8 watts peak
Output frequency	$800 \mathrm{~Hz}, 2500 \mathrm{~Hz}$
Power supply	$6-15$ volts DC

why we used a pair of 555 s instead of the 556 dual timer, just look at the prices of these two devices. For some reason that we cannot understand the 556 is more than twice the price of a pair of 555 s . Add to this is the fact that if one half of a 556 is destroyed the whole device is useless, and in most applications and you see why 555 s are the best buy.

When faced with the PCB design for this project we considered mounting the wafer switch directly to the board. We finally decided against this approach because of the large $>$

Fig. 1. Component overlay and wiring diagram. For the interconnection between the board and SW1 follow the numbers on each end.

Fig. 2a Waveform on pins 2 and 6 of IC3.

Fig. 2b. Waveform on pin 3 of IC3.

Fig. 2c. Waveform on pin 3 of IC1.
On these waveform diagrams the beat rate has been increased to show the two different outputs available.

PARTS LIST

RESISTORS all $1 / 2$ W 5%

R1	2k2	SEMICONDUCTORS	
R2	47k	IC1,3	555
R3,5	15k	IC2	4017
R4	1 k	Q1	BD140
R6	4k7	D1,2	1 N4004
POTE	METERS	SWITC	

RV1 1 M lin rotary SW1			
RV2 $500 R$ single pole 11 position switch single pole toggle switch			
CAPACITORS	SW2	MISCELLANEOUS	
C1	1 u 16 V		
C2	22 n polyester	PCB as pattern, speaker, plastic box, batteries	
C3	100 u electrolytic	plus holder to suit, 3 knobs.	

The operation of the unit is relatively simple. IC3 acts as an oscillator which operates if the output of IC1 (pin 3) is high; i.e. about 8 volts. The frequency is determined by R5 and C2 and the voltage set on pin 5 of that IC. With the values used the two frequencies produced are about 800 Hz and 2500 Hz . The output of IC3 is shown in Fig. $2 b$ and after being attenuated (if required) by RV2, is buffered by Q1 which drives the speaker. The diode D2 is used to prevent reverse voltage from the speaker damaging Q1.

The first IC is used to generate the tone duration (about 4 ms .) and the time interval between beats. The interval is adjustable by RV1 while the tone duration is set by R1. Diode D1 isolates R1 in the interval period. The output of IC1 is shown in Fig. 2c.

The output of IC1 also clocks 1 C 2 which is a decade counter with ten dec-
oded outputs. Each of these outputs go high in sequence on each clock pulse. The second output of IC2 is connected to the control input of IC3 and is used to change the frequency. Therefore the first tone will be high frequency, the second low and the third to tenth will be high again. This gives the $9-1$ beat. If the reset input is taken high the counter reverts back to the first state. We use this to limit the sequence length to less than ten by taking the appropriate output back to the reset input. If for example the 5 th output is connected to the reset, the first tone will be high, the second low, the third and fourth high, then when the 5 th output goes to a 'l' it resets it back to the first which is a high tone. We then have 3 high and one low tone or a 3-1 beat. Actually the 5 th output goes high only for about 100 ns . while the counter resets.
number of different switches available, each with their own connection pattern.

Construction

Assembly of the metronome should cause no problems if the PCB is used. Mount all the components according to the overlay diagram, taking care to orientate the transistors, ICs, diodes and polarised capacitors correctly. We recommend that the 4017 be mounted in an IC socket and that it be the last component installed.

We built the unit into a plastic box with potentiometers, switches and speaker mounted on the front panel.

The photographs of the prototype show clearly the layout we adopted.

Beat In Time

Upon switching on the rate and beat controls should be adjusted to provide the required rhythm. The volume control enables the output power to be adjusted over a wide range.

Hopefully the metronome will soon make itself redundant as a sense of rhythm is acquired by our aspiring musician - keep it handy though, because as we said earlier it will be able to help with the more complex of beats tackled at a later stage.

En
fig. 4. Printed circuit layout.
Full size $\mathbf{6 0 \times 5 0} \mathbf{~ m m}$

WIRELESS TIME:

National's MA1012 LED digital clock module is a complete clock \& alarm unit, operating from 50 or 60 Hz mains, and offering all the features you would expect: Hours-minutes display in bright $0.5^{\prime \prime}$ leds with optional seconds, sleep and snooze alarms, fast and slow setting, AM/PM indicator, switched alarm outputs - but best of all no RFI. Thus the MA1012 is suitable for use in any radio/tuner applications, and requires just $1.75 \times 3.75 \times 0.7^{\prime \prime}$ total. (Ex. transformer). $£ 9.45$ per module, isolating mains transformer $£ 1.50$ each. ($* 8 \%$ vat) Two modules, and two transformers for $£ 20.00$ ($+8 \%$ vat) In the latest Ambit catalogue: more TOKO coils, chokes, filters etc., data-on the short wave coil sets, a revised price list, micro-microphone inserts, special offer lines etc.

DETECKNOWLEDGEY

Metal locator principles and practise, including some of the facts and information manufacturers of $£ 100+$ detectors would rather you didn't know. $£ 1.00$ each.
The Bionic Ferret 4000 - a VCO metal locator based on the PW seekit, including all parts, plasticwork, ready wound coil etc. Inc. free copy of detecknowledgey. $\mathbf{£ 3 4 . 2 6 ~ i n ~ p p ~ a n d ~ V A T ~ a t ~} 8 \%$. Special announcement. The Bionic Radiometer metal locator is at last to be released. A full VLF discriminator, with simultaneous display of ferrous, non-ferrous and foil objects. With a little practise, you can actually find objects obscured by junk. Outperforms unitcosting $£ 150+$. Digital control

COMPONENTS

Herewith the list of first quality parts and modules for wireless, inc. Europes largest range of signal coils and inductors. $1 / 2 \mathrm{~m}$ in stock !
CA3089E FM IF $1.94 \quad \mathrm{BC4} 13$ lo noise 0.18 MFL 2.4 kHz ssb mech $\begin{array}{lllllll}\text { KB4402 } & \text { FM IF } & 1.94 & 40238 & \text { shld RF } 0.25^{\circ} & \text { filter for ssb gen/IF } 455 \mathrm{kHz} \\ \text { HA1137W FM IF } & 2.20 & \text { BF224 } \\ \text { Gghz RF } & 0.22 & \text { with matching irans's. } 9.95\end{array}$ TBA120 FM IF 0.75 BF274 7 ghz RF 0.18 MFH matching transf's. 9.95 TBA120S FMIF 100 ZTX212 $50 \mathrm{v} / 3 \mathrm{w} 0.17$ widt $@ 455 \mathrm{kHz}$ band Sn76660n FM IF 0.75 TTX213 30v/3w 0.16 MFK series $7 / 9 \mathrm{kHz}$ bw 1.65 n7660 AM 1.70 ZTX214 30v/3w 0.16 MFK CA3123E AM rad 1.40 ZTX451 60v/3w 0.17 Modules/tunerheads etc. $\begin{array}{lllll}\text { CA3123E } & \text { AM rad 1.40 } \\ \text { HA1197 } & \text { AM rad } 1.40 & \text { ZTX551 60v/1w } & 0.18 & \text { EC3302 3cct v/cap fm } 7.50\end{array}$ $\begin{array}{lllll} \\ \text { TBA651 AM rad } 181 & \text { BD515 } & 45 v / 10 w & 0.27 & \text { EF5600 5cct v/cap fm } 12.95\end{array}$ $\begin{array}{lllll} \\ \text { MC1350 Agc gain } 1.00 & \text { BD516 } & 45 \mathrm{v} / 10 \mathrm{w} & 0.30 & \text { EF5800 6cct v/cap fm } 15.25\end{array}$ $\begin{array}{llllll}\text { ua753 } & \text { agc gain 1.00 } \\ \mathrm{fm} \text { gain } 1.80 & \text { BO535 } & \text { C0v/50w } 0.52 & \text { EF5801(5800+osc op) } 17.45\end{array}$ $\begin{array}{llllll}\text { LM1496 } & \text { Bal mix } 1.25 & \text { BD536 } & 60 \mathrm{v} / 50 \mathrm{w} & 0.53 & 83194 \mathrm{v} / \mathrm{c} \text {, mos mixer } 11.45\end{array}$ MC1310p mpx 120 BD609 80v/90w $0.70 \quad 7252$ complete fm mono $\begin{array}{llllll}\text { KB4400 } & \text { as above } 2.20 & \text { BD610 } & 80 \mathrm{v} / 90 w & 1.20 \quad \text { tunerset.afc,agc,mute } 26.50\end{array}$ ca3090aq mpx dec4.35 BF256 7253 complete fm stereo HA1196 mpxdec4.20 BF256 1 ghz fet 0.34 tunerset. afc, agc, mute 26.50 $\begin{array}{lllllll}\text { HA1 } \\ \text { LM380 } & \text { 2w AF } 1.00 & \text { E176 } & \text { p ch swt } & 0.38 & 7020 & 10.7 \mathrm{MHz} \mathrm{fm} \text { if } \\ 6.95\end{array}$

 tba810as 7w AF 1.08 BA102 vhf varic 0.30 91196 hal 196 decoder 12.99 LM301an op amp 0.39* BA121 vhf varic 0.30 91197 mw/lw v/cap tun.11.35 La741 op amp 0.34 . BB104 dual var. 0.45 (OR lw) tuner $\begin{array}{lllll}\text { LM3900 op amp } 0.68 \text {. BB105 } & \text { uhf varic } 0.40 & 810 \mathrm{k} 7 \mathrm{w} \text { af kit comp. } & 9.00\end{array}$ \begin{tabular}{llllll}
$7805 u c$ \& $5 v / 1 a m p 1.55^{\circ}$

\hline

 tda1412 $12 \mathrm{v} / 1 / 2 \mathrm{~A} 0.95^{\circ}$, mvam $11515 \mathrm{v} / \mathrm{AM} 1.05$ 940k 10 w af kit 2020 ics, 78M24 20v/2A 1.20* mvam125 25v/AM 0.90 pcb, heatsinks for pa 9.35 ua 723 cn variable 0.80^{*}. TOKO Coils \& Filters Alt mpx decoders feature NE550a as above $0.80^{\circ} 10 \mathrm{~mm} \& 7 \mathrm{~mm}$ (rad cont) Tuners: complete taa550b 32 v ref 0.50^{*}. AM IFis with cap 0.30 Tuners: complete icl8038cc sig gen 4.50* FM IFts with cap 0.33 Earsholt signalmaster Mk 8 NE555v timer 0.70* eg '

NE566v vco 2.50* YHCS11098AC2 \& 0.30 \& Looks as good as it sounds.

\hline
\end{tabular} NE567v tone dc 2.50* YHCS12374AC2 0.30 und 8.95 NE560B hf pll 3.50* YHCS11100AC2 0.30. Audiomaster amp. Matching NE561B hi pll 3.50* KALS4520A 0.33 ' $25+25 w$ rms amp. NE565K If pll 2.50* KACSK586HM MC1312 quad 1.50 LLC238 7 mm $11 \mathrm{C} 90 \quad 650 \mathrm{mhz} 14.00$ - LLC4827 7 mm ZTX107 50v/3w $0.14 \quad$ LLC4828 $7 \mathrm{~mm} \quad 0.33 \quad$ MW/LW ferrite rod ant 0.90 $\begin{array}{lllll}\text { ZTX107 } & 50 \mathrm{~V} / .3 \mathrm{w} 0.14 & \text { CFS10.7 ceramic } & 0.50 & \mathrm{~min} \text {. foil trimmers (see pl) } \\ \text { ZTX108 } & 30 \mathrm{v} / 3 \mathrm{w} 0.14 & \text { BLR } 3107 \mathrm{~N} \text { 俍 }\end{array}$ $\begin{array}{llll}\text { ZIX108 } & 30 \mathrm{v} / 3 \mathrm{w} 0.14 & \text { BLR3107N mpx } & 1.90 \\ \text { 22t 100k pots for tuning.. } 45 \\ \text { ZTX109 } & 30 \mathrm{v} / .3 \mathrm{w} 0.14 & \text { BBR3132 Gpole fm } 2.25 & \text { RFchokes: 1uH to 120mH }\end{array}$

VAT is extra at $12 \frac{1}{2} \%$, except where otherwise shown (*8\%). PP now 25p per order. Catalogue 45p (inc). Pse send A5 or larger SAE with enquiries. Price lists free with an SAE. Full range of components etc available to callers at our new easy-to-get-to premises.

ambit International

Number 2, Gresham Road, Brentwood, Essex. CM14 4HN telephone (0277) 216029
Our new premises are only 200 yards from Brentwood * station - with parking facilities outside the door !!

Join the Digital Revolution

Understand the latest developments in calculators, computers, watches, telephories,

 television, automotive instrumentation . . .Each of the 6 volumes of this self-instruction course measures $113 / 4^{\prime \prime} \times 81 / 4^{\prime \prime}$ and contains 60 pages packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers

$£ 7.10$
plus 90p packing and surface post anywhere in the world

Overseas customers
should send for
Proforma invoice.

VAT zero rated

Also available - a more elementary course assuming no prior knowledge except simple arithmetic.
Digital Computer Logic and Electronics.
in 4 volumes

1. Basic Computer Logic
2. Logical Circuit Elements
3. Designing Circuits to Carry Out Logical Functions
4. Flipflops and Registers

plus 90p P\&P
Offer Order both courses for the bargain price $£ 11.10$ plus 90 p P\&P
A saving of $£ 1.50$

Designer
 Manager
 Enthusiast
 Scientist
 Engineer
 Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self instruction has the advantages of being quicker and more thorough than classroom learnıng. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next

Guarantee. If you are not entirely satisfied your money will be refunded. Cambridge Learning Enterprises, Rivermill Lodge, St. Ives, Huntingdon. Camb̄s Proprietors: Drayridge Ltd. Regd. Office as above. Reg. No. 1328762

©
 1 ELECTRONICS LTD

THE MOST COMPREHENSIVE RANGE OF TUNER MODULES EVER DISPLAYED

HF 7948 FRONT END

TECHNICAL CHARACTERISTICS:
Output terminal for digital frequency meter; Antenna impedance- 75 to 300 Ohms:
Frequency ranges 87.5 to 104 MHz or to 108 MHz ; Sensitivity - 0.9 uV 26 dB signal to noise ratio $\pm 75 \mathrm{kHz}$ deviation; Intermodulation 80dB Image rejection-60dB; Tuning voltage -1 V to 11 V ; Total gain - 33dB; Intermediate frequency - 10.7 MHz; Power supply vol tage +15 V : Power consumption 15 mA ; Dimensions $104 \times 50 \mathrm{~mm}$.

TECHNOLOGY:

Double sided epoxy printed circuit board with plated through holes; Dual gate effect transistors; Silvered coils.

FI 2846
IF AMP AND DECODER
 TECHNICAL CHARACTERISTICS:
Intermediate frequency - 10.7 MHz ; If Bandwidth - 280 kHz ; Signal to noise ratio 70 dB with 1 mV input; Distortion - mono 0.1%, stereo 0.3\%; Sensitivity - 30uV up to the 3 dB limit; Channel separation -40 dB at 1 kHz ; Pass band -20 to $15,000 \mathrm{~Hz}$; Rejection at 38 kHz greater than 55 dB ; Am rejection 45 dB ; De-emphasis - 50 to $75 \mu \mathrm{~s}$. Pilot capture at $19 \mathrm{kHz}+4 \%$; Channel matching within less than 0.3 dB ; Output impedance 100 Ohms; Output voltage -500 mV ; Phase locked loop stereo decoder; Output for LED VU-meter: Null indicator; Outputs for AGC AFC and inter-station muting; Consumption 55 mA LEDs extinguished, 100 mA LEDs illuminated; Power supply - 15V; Dimensions $195 \times 76 \mathrm{~mm}$
CIRCUIT TECHNOLOGY
Epoxy printed circuit board; Monolithic integrated circuits, ceramic fiter.

ALS 1500
STABILISED POWER SUPPLY

Inc. VAT, P\&P
TECHNICAL CHARACTERISTICS: Output voltage - 15 V ; Max. output current 500 mA ; Thermal coefficient less than 1 mV / :C; 15 V power supply for modules HF 7948 and FI 2846; Supply protected against short circuit (power and current protection): Dimensions - $65 \times 55 \mathrm{~mm}$.

TECHNOLOGY:

Double sided epoxy circuit board; Monolithic integrated circuit.

OPTOELECTRONIC OPTIONS

ILLUMINATED POINTER
Station finder
LED VU-METER
Station streng th indicator
$£ 8.77$
Inc. VAT, P\&P
TOUCH CONTROL PRE-SELECTION UNIT
LED channel indication

Pre-selected channel number

OP-AMPS

Open up any data sheet on a particular op-amp and you will be confronted with a many as forty different electrical parameters and performance graphs which should reveal all that you need to know about the device. Most of these parameters will be qualified by the conditions under which they were measured and the test arrangements used to make the measurements. This apparent 'overkill' of data is likely to be very confusing to the newcomer, however it need not be so. Tim Orr explains.

LET'S DISCUSS SOME basic principles. An op-amp (or operational amplifier) is just a high gain amplifier, you stick a voltage into it and a much larger voltage comes out of it. Op-amps have two inputs, inverting and non-inverting, which are denoted by - and + respectively. The op-amp amplifies the difference in the voltages applied to these two inputs, the output going positive if the + input is positive with respect to the input, and vice versa, however, virtually useless, because the voltage gain is uncontrollably large and the distortion high. The way in which both of these parameters are controlled is by the use of negative feedback. An op-amp with negative feedback is shown in Fig. 1. It employs two resistors to set the closed loop voltage gain, and as long as this is small compared to the open loop gain, it will be determined by the resistor ratio RF/RI. The open loop gain, the voltage gain when RF is removed, is typically of the order of 100000 . This massive gain is clearly much too large to be used without feedback. Closed loop voltage gains of 100 are about as much as it is practical to use.

Biased Example

The arrangement in Fig. 1 is known as a 'virtual earth' amplifier. The non-inverting input is connected to earth, and the inverting input is maintained by the feedback applied via RF at a voltage which is virtually earth potential.

The input impedence of the amplifier in Fig. 1 is simply RI. The output impedence is a little more complicated, it is approximately

$$
\text { output impedence of the op amp } \times \text { closed loop gain }
$$

Open loop gain

Suppose we want an amplifier with a gain of 10 , and an input impedance of 1 M . This means that RI is 1 M . Therefore RF must be 10 M (see Fig. 2). With a 1 V sinewave as the input signal we get a 10 V sinewave as the output. However, when the input signal is held at 0 V (ground potential), the output voltage is not 0 V it is positive! This is an error voltage, which may be undesirable. The cause of the problem is the INPUT BIAS CURRENT' of the op-amp. The input of many op-amps looks like the circuit shown in Fig. 3 If these transistors are to operate correctly they need a standing emitter current which implies that they need an input base current. It is this base current which is the op-amp's 'INPUT BIAS CURRENT.' For a 741 this current can be as large as .05 uA . In the arrangement of Fig. 2 this current can only come through RF, which means that the output voltage could be as large as $0.5 \mathrm{UA} \times 10 \mathrm{M}$, which is +5 V ! One way to remedy this error is to use a circuit shown in Fig. 4 A resistor has been inserted between the non-inverting input and ground. This resistor has the value of RF in parallel with RI. It allows both the inputs to sink slightly and thus maintain the voltage balance at theinputs. The output voltage is then early 0 V . However, the two input transistors may not be that well matched, so the input bias currents may be different into each input. This is known as the 'INPUT OFFSET CURRENT' and its effect can be nulled by making the 910 k resistor in Fig. 4 a variable resistor. If the bias currents (for a 741 say) were zero, then the output voltage would still not be

0 V .
 Get Set, They're Off

The output voltage could range between $\pm 60 \mathrm{mV}$. This is due to the 'INPUT OFFSET VOLTAGE' which for a 741 can be as much as $\pm 6 \mathrm{mV}$. which is then multiplied by

the closed loop voltage gain of the stage (in this case 10) giving us $\pm 60 \mathrm{mV}$. This can be compensated by using the circuit shown in Fig. 5. Terminals 1 and 5 on a 741 can be used to compensate for the input offset voltage The input offset voltage is the $V_{b e}$ imbalance between the two input transistors.

Now that we know how to eliminate the spurious DC offsets, we can try designing some dynamic circuits and find out why they don't work as expected! For example, try putting a 1 V sinewave at 200 kHz into a circuit of Fig. 5. What you would expect is a $10 \mathrm{~V}, 200 \mathrm{kHz}$ sinwave at the output - but you don't get one. What appears is a rather bent 200 kHz triangle waveform. This is because the 'slew rate' of the op-amp has been exceeded. The slew rate is the speed at which the output voltage can move, and for a 741 is typically $0.5 \mathrm{~V} / \mu \mathrm{sec}$ when it crosses zero, so the op amp faced with this demand just gives up and SLEW limits, drawing out straight lines as it does so.

Listen To The Band(width)

Another problem is 'BANDWHDTH', A 741 has a GAIN BANDWIDTH product of approximately 1 MHz . This means that the product of the voltage gain times the operating frequency cannot exceed 1 MHz .

For example, if you want the amplifier to have a gain of 100 , then the maximum frequency at which this gain can be obtained is 10 kHz . Fig. 6 illustrates this phenomenon. Curve A is the open loop response, note that the voltage gain is 1 at 1 MHz , hence the gain bandwidth product of 1 MHz . The slope of the curve is -20 $\mathrm{dB} /$ decade, which is caused by a single 30 p capacitor inside the IC. Now, if the resistor ratio is set to give a voltage gain of 100 , then the op-amp gives a frequency response shown by curve C, which is flat up until 10 kHz . A gain off 10 rolls off at $100 \mathrm{kHz}(\mathrm{D})$ and a gain of 1000 rolls off at $1 \mathrm{kHz}(B)$. Thus it is very easy to see just what the closed loop frequency response will be. However, don't forget the slew rate problem. You may be able to construct an amplifier with a voltage gain of 10 , which works up to 100 kHz , but the output voltage wil be limited to less than $3 \mathrm{Vpp!}$ Another problem is distortion in the op-amp. Negative feedback is used to iron out any distortion generated by the op-amp, but negative feedback relies on there being some spare voltage gain available. For instance, say the op-amp generates 10% distortion and there is a surplus voltage
gain of 1000 ,

$$
\text { i.e. }\left(\frac{\text { open loop gain }}{\text { closed loop gain }}\right) \text {, }
$$

then the distortion will be reduced to approximately,

$$
\frac{\text { open loop distortion }}{\text { surplus voltage gain }}=\frac{10 \%}{1000}=0.01 \%
$$

So, negative feedback is used to eliminate distortion products. However, if there is no surplus voltage gain, as in the case of a 741 amplifier working at 10 kHz , with a closed loop gain of 100, then the distortion will rise dramatically at this point

Current Thinking

Most op-amps have a voltage output, although some have a current output. If you short-circuit a voltage output them large currents could flow and thermal destruction might follow. To overcome this problem, most op-amps have a current limited output so that they can suffer an indefinite: short to ground. A 741 is limited to about 25 mA . Another current of note is the supply 'BIAS CURRENT. This is the current consumed when the op amp is not driving any load. For a 741 this current is typically 2 mA , which makes it rather unsuitable for small battery applications.

There are some op-amps which can be programmed by inserting a current into them so that their supply current can be controlled. This means that they can consume only micropower when in their 'standby' mode, and they can by quickly turned on to perform a particular task.

Voltages Differently

In the few examples shown so far, the op-amp has been used to amplify voltages which have been generated with respect to ground. However, sometimes, it is required to measure the difference between two voltages. In this case you would use a 'Differential' amplifier Fig. 7. By using two matched pairs of resistors, the formula for the voltage gain is made very simple. It is thus possible to sumperimpose 1 V sine wave on both the inputs, and yet have the output of the amplifier ignore this common mode signal and only amplify any differential signals. The amount by which the common mode signal is rejected is called the CMRR (the Common Mode Rejection Ratio) and is typically 90 dB for a 741 Thus a common mode 1 V signal would be reduced to 33 uV.

Another rejection parameter to be noted is the supply voltage rejection ratio. For a 741 the typical rejection is 90 dB , that is, if the power supply changes by 1 V the change in voltage at the op-amp output will be 33 uV .

When designing with op-amps it is very important to know what voltage range the inputs will work over, and the maximum voltage excursion you can expect at the output. For instance, the 741 can operate with its inputs a few volts from either power supply rail, and its inputs can withstand a differential voltage of 30 V (with a power supply of 36 V .

This is not true of all op-amps, some have a very limited differential input voltage range, for instance the CA3080 will zener when this voltage exceeds 5 V and the amplifier performance will then be drastically changed.

The output excursion of the op-amp is also important. The 741 can only typically swing within about 2 V of either supply rail, whereas the CMOS op-amp can swing to within 10 mV of either rail so long as the load into which they are driving is a very high impedance.

NON-INVERTING AMPLIFIER:

An op-amp is used to provide voltage gain, but in this case the output is in phase with the input. The minimum voltage is unity and occurs when RB is an open circuit. The op-amp has maximum bandwidth at unity gain, and any increase in the gain will cause a reciprocal decrease in bandwidth

Fig. 8. Non-inverting amplifier.

HIGH SLEW RATE AMPLIFIER:

The slew rate of the op-amp has been increased by increasing the overall current generating capability by the addition of a pair of transistors. These transistors increase the output voltage range by allowing the voltage to swing to within OV5 of either supply rails. The output of the op-amp hardly moves at all. Without an input signal, the output voltage is 0 V and the op-amp drains approximately 2 mA from the supply rails.

This current passes through the 180R resistors and sets up a voltage which is not quite sufficient to turn on either transistor. When a positive voltage is applied to the input, the op-amp fries to swing negative but it has a 47R (R4) resistor connected from its output to ground.

SIMPLE INTEGRATOR:

An op-amp and a capacitor can be used to implement, to a high degree of accuracy, the mathematical process of integration. In this case, current is summed over a period of time and the resultant voltage generated is the integral of that current as a function of time. What this means that if a constant voltage is imputed to the circuit, a ramp with a constant slope is generated at the output. When the input is positive, the output of the op-amp ramps negative.

In doing so it pulls the inverting terminal negative so as to maintain a 'virtual earth' condition. In fact the input current (Vin/R1) is being equalled by the current flowing through the capacitor, thus equilibrium is maintained. The equation governing the behaviour of a capacitor is $C \times d V / d t=i$, where $d V / d t$ is the rate of change of voltage across the capacitor.

Therefore
Thus

$$
\frac{d V}{d t}=\frac{i}{C} \quad \frac{d V}{d t} \quad \frac{\operatorname{Vin}}{R 1 C}
$$

So, when a square wave is applied to the circuit in Fig. 10, triangle waveforms are generated. R2 was added to provide DC stability. Its inclusion does slightly corrupt the mathematical processes, but not enormously. A good point about this integrator design is that it has a very low output impedance. You can put a load on the output and the op-amp will still generate the same waveform - that's what is so nice about negative feedback.

Thus, as it tries to swing negative, it draws lots of current from the negative rail. This current flows through R5, and in doing so turns on Q2. This transistor then pulls R2 down and thus provides negative feedback. The same sequence of events occurs when the input is negative except that R3 and Q1 are then involved. Thus the high current capabilities of descrete transistors are combined with a high voltage gain of an op-amp to produce a moderately powerful amplifier. The voltage' gain is set by $R 2 / R 1$

Transistors Q1 and Q2 introduce a phase shift, which may give rise to a high frequency instability and oscillation. This can be cured by some frequency compensation applied to the amplifier or by increasing the overall voltage gain.

No Noise Is Good Noise

The last op-amp characteristic to be discussed is 'Noise'. The noise figures given in the specifications are very confusing. This is due to the fact that noise is specified in so many different ways that it is often difficult to compare devices. One may be specified in terms of Equivalent Input Noise and another device in terms of $n \mathrm{~V} \backslash \mathrm{Hs}$ (nano volts per root Hertz)! As a generalisation it is true to say that most op-amps are relatively noisy. Some op-amps are labelled low noise,
and these are quieter than the average op-amp but more noisy than a well designed descrete component amplifier. For audio work you can use ordinary op-amps for processing high level signals (100 mV to 3 V), but for amplifying low level signals (1 mV to 100 mV) you would be advised to use a low noise device. The larger the voltage gain you obtain from an op-amp stage, the worse will be the noise, therefore keep the closed loop gain to a bare minimum.

That is the end of the theory, now for some practical examples of op-amps in use.

SIMPLE DIFFERENTIATOR:

Mathematically, differentiation is the reverse process to integration. Thus, in the differentiator circuit the C and the R are reversed with respect to the integrator circuit.

The input waveform is a triangle with a constant rise and fall slope. This constant slope, when presented to a capacitor will generate a constant current. When the slope direction reverses, then so will the current flow. This current when passed through a resistor (R1), will then generate a square wave.

Fig. 11. Simple differentiator.

12 V REGULATED POWER SUPPLY:

The large open loop voltage gain of an op-amp is very useful in providing a regulated low output impedance power supply. A 5 V 1 voltage reference is generated by a zener diode ZD1 (this voltage reference could be made more stable by running it at constant current). A PNP transistor is used as a series regulator. However, this transistor inverts the signal from the op-amp output, and so, in order to get negative feedback, the feedback is taken to the non-inverting input! The operations is as follows. The inverting input is held at 5 V 1 . If the 'PSU OUTPUT' tries to fall, the voltage at the non-inverting input falls. Therefore the op-amp's output will also fall, thus turning on the PNP transistor which then pulls up the 'PSU OUTPUT.' Thus the output voltage is stabilised. Also, the output impedance is very low, due to this negative feedback. The output impedance at high frequencies (where the op-amp gain is low) is further reduced by the 10 u capacitor. To squeeze the last drop of voltage out of the system, before a collapsing unregulated supply rail causes the regulated supply to drop out, a 5V1 zener diode (ZD2) has been included. This

allows the op-amp output to work at about 7 volts below the unregulated supply rail. Thus, a regulated output is maintained until the PNP transistor saturates. This means that the unregulated rail can fall to within about 200 mV of the regulated rail!

LEVEL CLAMPING:

It is sometimes required to limit the excursion of the output voltage of a linear amplifier. This can be achieved by using non-linear feedback, in this case with zener diodes. Once the voltage at the op-amp's output exceeds the zener breakdown voltage plus a forward diode drop (OV7) from the forward biased Zener), the effective impedence of the feedback becomes very low. Thus the voltage gain, above this zener voltage, also becomes very low. The output voltage appears to be clamped at a fixed potential. By changing the zener value, this potential can be varied at will. Also, by making the two zeners have different values, correspondingly different negative and positive levels can be obtained. This circuit is, however, far from ideal. The zener diodes don't have very sharp 'Knees' in their transfer characteristics and the clamping can sometimes be very sloppy, particularly when low voltage zeners are used. Also, the zener diodes

tend to have a large amount of charge storage, which impairs the high frequency performance

Sometimes, however, sloppy clamping is considered useful. For instance, if the zeners are replaced by two ordinary diodes in parallel and pointing in different directions. Then any signal applied to the input will receive some non-linear distortion. This distortion is rich in odd harmonics, and is the basis of many FUZZ box designs for musical effects units.

VOLTAGE TO CURRENT CONVERTER

The virtual earth of an op-amp and the current source characteristic of a transistor can be combined to produce a precision linear voltage to current converter. Consider the 'SOURCE' circuit. A positive voltage is applied and the op-amp adjusts itself to that a 'virtual earth' condition is maintained. This means that a current i flows through the input resistor R, where $i=\operatorname{Vin} / R$. Now this current has got to go somewhere, and so it flows through the PNP transistor and comes out of the collector and into its load. Thus, the input voltage generates a current which is lineally proportional to it. There are, however, three sources of error that will affect this linearity. First the input offset voltage of the op-amp may become significant at low levels of Vin. Second, the input bias
current may well rob a lot of the current when Vin is low Third, the base current of the transistor must be subtracted from the final output current. Note that the current gain of the transistor will change with collector current variations, and so the base current loss is not a fixed percentage. However, a precise voltage to current converter can be made using an op-amp with a FET input so that the bias current is low. Also, an input balance can be used to zero out the input offset voltage, and if a FET is used to replace the bipolar transistor, then the base current problem can be removed

The 'SINK' circuit merely swaps the transistor for an NPN type. Note that the input voltage now must be negative

Fig. 14. Precision linear voltage 10 current converters.

SCHMITT TRIGGER

When DC positive feedback is applied around an opamp, its output will come to rest in one of two states, that is in its most positive or most negative position. This type of circuit is known as a Schmitt Trigger and it is said to exhibit the property of hysterysis. Consider the circuit shown in Figure 15. Let us assume that RB is $2 k$ and RA is 1 k and the output voltage is +10 V . Therefore the voltage at the non-inverting terminal is +3 V 3 . When the input voltage becomes more positive than $+3 \vee 3$, the output of the op-amp will start to swing negative and in doing so will increase the voltage difference between the inputs. This will in turn make the output swing even more negative. Thus the process becomes regenerative, the output finally 'snapping' into its negative state $(-10 \mathrm{~V}$ say). The only thing that will now change the op-amp's output is if the inverting input goes more negative than the non-inverting input. When this occurs it will revert back to its original state. The two input voltages at which these transitions happen are known as the upper and lower hysterysis levels. The graph in Fig 15 shows the

Fig. 15. Schmitt trigger configuration.

Fig. 16. Schmitt trigger with mode of operation inverted with respect to that shown in Fig. 15.
circuit's transfer function. Figure 16 is another Schmitt trigger circuit, but the mode of operation is inverted.

TRIANGLE SQUARE OSCILLATOR

A Schmitt trigger and an integrator can be used to construct a very reliable oscillator which generates triangle and square wave forms. The operation of the circuit is very simple and always self starting. The Schmitt trigger is formed from IC1, the integrator from IC2. Suppose the output of the Schmitt is positive. This ${ }^{2}$ will cause the integrator to generate a negative going ramp. This ramp is then fed back to the input of the Schmitt. When the lower hysterysis level has been reached the output of the Schmitt snaps into its negative state, current is taken out of the integrator which then generates a positive going ramp. The integrator's output ramps up and down between the upper and lower hysterysis levels. The speed at which the integrator moves is determined by the magnitude of the voltage applied to it. In this circuit, the magniture of the voltage and hence the oscillation frequency, are controlled by a

Fig. 17. A Schmitt trigger and integrator combined to produce a triangle and square wave generator.
potentiometer, giving a 100 to 1 control range. This circuit is the basis of most function generators. By bending the triangle it is possible to synthesis an approximation to a sinewave. With a bit more electronics it is also possible to make the oscillator voltage controlled.

This series continues next month with many more Op-Amp circuit configurations including envelope shapers, sample and hold circuits and various oscillators.

Direct from ETI (c 1 inc $p \& p$) or your local newsagent

OUR BEST SPECIAL TO DATE! ALL NEN MATERIAL. CONTENTS

 INCLUDE:

STAR WARS
Already the most successful film ever made and a MUST for all sci-fi fans. ETI gets behind the scenes to find out how the effects were effected!

CMOS PREAMP:
Many hi-fi manufacturers are coming to realise
 the degrading effects of rectifying metal contacts in the signal path at low levels. Our design overcomes this in a novel manner.
HIFI 2008: Ron Harris had help here - someone somewhere up in the future sent us a history book. So we know this one is true!

VIDEO
TOMORROW: Angus Robertson peers into his crystal CRT and discovers the future is plain today if you know where to look. (Like in his article.)

VIDEO MODS:
How to convert your own little tele to act as a terminal for anything producing a decent signal. (More important - how NOT to convert it!)
SINCLAIR STORY: Clive Sinclair talks to ETI in an amazingly frank and open manner about the ups and downs in his company's never boring rise to power! (Don't miss this!)

COMPUTERS: Our own micro-man Gary Evans casts his runes to see what MPU men will be up to in the future, and makes some startling admissions in the process!

BENCH SUPPLY:
A perfect project for the tyro, or for anyone well into electronics, but who has just never got around to building a PSU, i.e. YOU!

PORCH LIGHT

An attractive project that should banish winter gloom from the front door step.

WHEN RETURNING HOME on a dark winter's night, with gusting winds and pouring rain making the thought of gaining the inner warmth of home very appealing, it is no fun when the front door proves difficult to find in the gloom. The solution is to install a porch light to banish the all prevailing gloom forever. Things being what they are, however, in order to ensure that this guiding light is present whenever it is required would mean an extortionate demand from your friendly local Electricity Board.

The answer is the circuit presented here. It arranges for the porch to be lit for a short time when required, and here's the clever bit, it uses the bell push to turn it on - No need to install a separate switch.

The unit will only operate when it is dark enough to require it - you choose the level, and turns off automatically unless latched on from inside the house. Flicking the internal switch also operates the light.

As well as saving money the circuit is also a valuable addition to the domestic security arrangements. Thus, while friends will soon realise that just because the porch light comes on you need not be at home, the light should put off any unwelcome callers.

Taking the

Nowadays it seems almost obligatory to think of a witty acronysm to grace the launch of anything from the latest in Frying Pans to the most sophisticated of ICBMs. We at ETI were beginning to feel left out, as we do not often play this game - this project was to be an exception.

The first idea we came up with emphasised the economies that the circuit can realise, but Miser's Porch Unit was not thought to be a flattering handle: A second reason to reject this

attempt was that the initials MPU might mean that our circuit is confused with another component that is making a name for itself.

The second attempt brought out the increased security that the circuit affords, but Porch Integrated Security System was rejected for reasons that we leave you to work out.

The names finally chosen, Porch Orientated Circuit for the House, are not as colourful as some, cheating a bit, but at least conveying the spirit of the project and getting past the editor's red pen.

Constructive Thinking

Construction of the project should pose no problems if the PCB shown
is used and the component overlay followed carefully. Take care to ensure that the components are mounted close to the board as space is at a premium in the MK box we used.

Putting It In

When installing the unit note that the bulb is powered by a DC voltage and thus if an existing porch light is used care must be taken when installing the unit as two separate wires are required from the porch unit to the bulb.

The other points to note are the connections to the bell push. If the bell circuit is operated with an AC supply there will be no problem. If a

The light sensitive resistor was mounted in a standard bell push unit (not the one that operates the bell!)

Fig. 1. The full circuit diagram of the Porch Light is shown above.
Fig. 2. The diagrams below show two of the most common bell circuits. In each case the diagrams indicate the points that should be connected to the Porch Light circuit.

DC supply is used take care to ensure that the positive side of the push is connected to point F

When installed the unit can be operated in three different ways. It will be activated when the bell push is operated, if the interior switch is turned on briefly. The porch light can also be turned on for as long as is required by moving the interior switch to the on position.

HOW IT WORKS

THE porch light circuit is formed by a timer, based on ICl , with an isolated trigger circuit formed by OPTO 1, circuitry to control the lamp, and finally a power supply section.

The timer is formed by a 555 configured in the monostable mode. Under quiescent conditions the output of this device (pin 3) is low. If, however, the voltage at the trigger input (pin 2) is taken below one third of supply voltage, the output at pin 3 will go high for a period of time determined by the timing components R10, C6.
The voltage at this trigger input is usually held high by the action of the opto-isolator, OPTO 1. This device consists of an optically coupled infra-red Gallium Arsenide LED and silicon photo-transistor encapsulated in a six pin DIL package.

The action of the photo-transistor is similar to that of other transistors, except that collector current flow can be initiated (the device turned "on') either by biasing the base in the usual manner, or by illuminating the exposed semiconductor junction with light. In our application, with the base open circuit, device operation is controlled solely by the amount of light falling on the junction, which in turn is controlled by the current flowing in the infra-red LED.

This current, derived from the voltage applied to points F and G, is limited by R5. D1 is included to protect the LED from any reverse bias voltage. The voltage referred to above is supplied by the external bell circuit. This circuit must supply a voltage to this point at all times except for the period of
time when the bell push is pressed. Thus the photo transistor is turned on, maintaining a high voltage at the 555's trigger pin until the bell is operated, when R8 pulls pin 2 low to activate the timer.
The time period may also be initiated by a negative pulse applied to the trigger input via C . This pulse is derived from Sl which, in normal operation, connects point B to point C. By momentarily operating this switch a negative pulse is generated to activate the timer.
The potential divider network formed by R9, R11, RV1 and LDR1, which is connected to the 555 's reset pin (pin 4), also controls timer operation. If the reset pin is held below OV4 the timer's action is inhibited. The LDR's resistance varies between 10 m and 130 R , the more light incident upon it the lower the resistance, and with the values shown this ensures that the circuit is inoperative during daylight hours.
The output of the 555 is fed, via the potential divider R3 and R4, to the gate of the thyristor SCR1. This is a sensitive gate device which is triggered by an OV8, 0.2 mA gate pulse.

The thyristor is connected in series with the porch light and is powered by the 100 Hz mains voltage derived from the bridge BRI. Thus the lamp is on at all times when the 555 's output is high.

Power to the rest of the circuit is derived via R1 and R2.

The circuit is protected from spurious triggering by components $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 4$ and C 5 .

BUYLINES

Most of the components used in this project will be familiar. Note, however, that SCR1 is a sensitive gate type and the device specified should be used to ensure satisfactory performance. The device is available from RS stockists.

RESISTORS (all $1 / 4$ W 5\% unless stated)	
R1,2	68k 2 W
R3,7,8	10k
R4,5	1 k
R6	47k
R9	100k
R10	2M2
R11	4k7
POTENTIOMETER	
RV1	10k preset
LIGHT DEPENDENT RESISTOR	
LDR1	ORP 12
CAPACITORS	
C1	470u 16 V electrolytic
C2,3,4,5	100n polyester
C6	47u 16 V tantalum
SEMICONDUCTORS	
IC1	555
D1	1 N914
SCR1	C106
BR1	0.9 A 400 V
OPTO 1	Opto-Isolator (Doram 65-670-0)
SWITCH	
SW1	MK SPDT Switch
MISCELLANEOUS	
MK surface mounting 13 A box, 500 mA 20 mm fuse plus holder, PCB as pattern.	

Photograph showing the intemal layout of the project. Note - a set of ventilation hales should be drilled in the mounting box above and below resistors R1 and R2. These holes will also allow access to RV1.

"'STOP PRESS" NEW LOW PRICES

A year ago we described a really excellent metal locator using the induction balance principle. The ETI Project Team have taken another look at the design and come up with an alternative way of using this principle.

EXACTLY A YEAR AGO, in the February 1977 issue of ETI. we described the first (and to date only) DIY project yet published in Britain of an Inductance Balance metal locator. We know that literally thousands upon thousands of these were built and although a few readers did have problems, most of them were accounted for by poorly set up search coils

Treasure Hunting

The hobby of treasure hunting using a metal locator started in America about ten years ago and has been growing in popularity ever since; in Britain the hobby has grown to enormous proportions. Commercial metal locators are not cheap - starting with kits at the £15 mark but with a big gap before most of the built models appear. The average price is in the $£ 50$ region (there are notable exceptions of course) yet the circuitry in these is by no means complex. The important part about an induction balance metal locator is the search head and no one should underestimate this - this accounts for a significant part of the total cost and, if you tackle this project, expect to devote a lot of time to lining up and experimenting with this.

The reason for the popularity of treasure hunting is that it works - using a reasonable metal locator you can hardly fail to find coins and other items lost or thrown away. Our fields and pathways are littered with metal which has been there for hundreds, even thousands of years. The art of knowing where to look is almost more important than the technical performance of the machine: a good detector helps of course but it's how it is used that's important.

Designing the Mark 2

Because of the enormous popularity of the Mark 1 we couldn't resist the temptation of having a good look at the circuit and design to see if it couldn't be improved upon. Readers who are interested in this field are strongly recommended to see the February 77 issue (not unfortunately available as a backnumber) or the reprint in Top Projects No. 5 (available)

Our first step was to look at the original design - in the light of experience could we improve it? We came up with a dozen variations to try but to our surprise we were unable to make any real improvement on the first circuit using the general principles. We could have reduced the package count by using an LM389 (which includes three independent transistors plus an audio

Fig 1. a) On the left shows the block diagram of the Mark 1. In this the peaks of the modulated signal were gated and enormously amplified. On the right is shown the new arrangement, the RF signal, which is unmodulated, is converted to a DC signal which drives a voltage controlled oscillator (VCO).
output amplifier) but that would have cost more with no real change

In the original design the transmitter was modulated and the peaks of the detected signal were gated and enormously amplified (See How It Works and Fig 1a) Although we refer to the signal being modulated, it was actually switched on and off and this resulted in ringing in the tuned circuit.

After literally three weeks solid experimenting we decided to take another approach. We decided to dispense with a modulated transmitter and work with DC until the final stages. In the original design the audio frequency was fixed, being dependent upon the modulator and metal was sensed by an increase in audio level. However, our ears are highly insensitive to changes in level, they are, however, very sensitive to a change in audio frequency. Once we had decided to tackle it from this side everything fell into place. For a long while our voltage controlled oscillator was a unijunction transistor and although we achieved excellent results we were not satisfied with the unit in practice and eventually adopted the circuit shown in Fig. 3

The Coil
We cannot emphasise enough that the search head is the key to the whole operation: be prepared to spend some time on this, our own workshop is full of discarded experiments

The housing of the coils is not important. In the Mk 1

Despite the extremely low emmission, all electronic metal locators used in the United Kingdom require a licence. This costs $£ 1.20$ for five years and application forms are available from:

Ministry of Posts and
Telecommunications,
Waterloo Bridge House,
Waterloo Road,
London SEI
we adopted a circular head but this is difficult for the non-woodworkers to tackle so we went for a rectangular shape. The coils $L 1$ and $L 2$ should be sandwiched between two pieces of hardboard or plywood separated by thin battens - about 6 mm thick The top should be built first and the battens fitted - for a better appearance you can then file off the corners slightly

To wind the coils you'll need to get hold of a cylinder about 140 mm ($51 / 2 \mathrm{in}$) in diameter. Using 32 swg enamelled copper wire, trap one end onto the former with a piece of tape and carefully wind 40 turns as close together as possible. Carefully remove the coil and then wrap tape around it at intervals to keep it from spreading

Two identical coils are required
Lay one of the coils into the dish formed from the top of search head and the battens as you see in the photograph and spot glue it into place except on the part near the middle. Lay the other coil next, again spot gluing it except near the middle. A hole should be made in this piece of wood to feed through the

$\stackrel{\omega}{\triangleright}$

HOW IT WORKS

The heart of the circuit is the search coil, L1 and I2. These two coils, which are essentially identical, are arranged in the same plane with a small overlap in such a way that there is practically no inductive coupling between the two. There is minimum pickup when the fields generated in LI are cancelled in L2 when in free air. Any metal brought into the electro-magnetic field of Ll will distort the field, causing pickup in L2.

Q1 is a straightforward Colpitt's This type of circuit is very stable and the use type yotyrene capacitors also help with stability. The supply to this stage is separately decoupled by R4 and C1.

The pickup coil L2 is tuned by means of C4 and C5 and amplified by Q2 which feeds to the level control RV1. This controls the "free air" state of the circuit and is set to the point where the later stages are just Q3 (here it is still an RF signal) and is detected by D1 and D2. When no metal is in the vicinity of the search coil and with RV1 correctly adjusted, a DC voltage of about 500 mV appears across C8. R9 increases the effective input impedance of Q 4 as seen by the detector stage.
Q 4 is just held off by the voltage available but as soon as any metal distorts the electromagnetic filed, L2 produces a larger RF signal, a higher voltage across C 8 and a consequent fall (from 8 V) in the voltage a the collector of $\mathrm{Q4}$. This voltage is also monitored by the meter in parallel with the
oad resistor of Q4. The fall in voltage is dependent upon the proximity and/or size of the metal near the search coil
It is necessary to ensure that the DC voltage fed to the next stage is clean and R12 and C9 act as a filter to remove any cies.
IC2 (the nex le2 (the next but one stage) is a voltage controlled oscillator - but to operate this so that metal is indicated by a rising note, rather than a falling one, the voltage al the unction of C9 and Ry has in " no metal and this is there is about 2 V at the output of this op-amp which rises when metal is near This stage quickly saturates to give about 7 V at pin 6 ICl has unity gain.
IC2 is a voltage controlled oscillator
IC2 is a voltage controlled oscillator. In which rises to 500 Hz when metal is present, diode D3 gives a rapid recharge to C12 and affects the mark/space ratio of the output which results in lower battery consumption. R20 and C12 can be altered to give a different range of audio frequencies if desired.
The output is taken to a volume control and fed to the LM380 audio power amplifier which in turn feeds the speaker.
The levels of signal around Q2, 3, 4 are all dependent upon transistor gain, temperature and supply voltage but this doesn't matter because the level control RV1 is adjusted until Q4 just begins to conduct. Current drain for the complete circuit is in the order of 50 mA

Fig 3. The complete circuit of the IB Metal Locator Mk 2.

PARTS LIST

Resistors. All $1 / 8$ W, 5\%

R1	150k
R2	39k
R3, 12	1 k
R4, 21	180R
R5, 7	1 M
R6, 8, 10	4k7
R9, 14, 15	10k
R11, 13, 16, 17	100k
R18, 19	220k
R20	120k
RV1	1 M linear (level)
RV2	10 klog (volume)
CAPACITORS	
C1, 11	47 u 16 V tantalum
C2	3 n 3 polystyrene, 5\%
C3	10n polystyrene, 5\%
C4, C5	4n7 polystyrene, 5\%
C6, 7, 8	20n polystyrene
C9, 14	4 u 716 V tantalum
C10, 12	100 n polyester
C13	1 n polyester
C15	47 u 16 V electrolytic
C16	470 u 16 V electrolytic
SEMICONDUCTORS	
Q1, 2, 3, 4	BC184L or equivalent
IC1, 2	741 8-pin DiL
IC3	LM380
D1, D2	OA91
D3	1 N914

Internall view of the control bax
conriecting cable to the main circuit. This cable must be a four-wire type with individual screening - the screens are not used at the search coill end but don't cut them too far back: we still have a few experiments to try

out on our prototype and access to this screening may be used.

The Control Box

The circuit should be built up next. Everything except for the controls, the speaker and the meter are on a single PCB. Building this up should present few problems. Spacing is designed for eighth watt resistors and tantalums are used, again to save space though the control box has plenty of room in it.

Fit terminal pins to the points shown in the PCB overlay as this will make connections far easier to make later on.

Setting Up

We repeat - don't rush this part - it's what counts Assuming you haven't got the coil in exactly the right position by luck in the original setting, you should get an audio tone of about 700 Hz from the speaker and the meter (if connected) will be hard over

If you don't get this, adjust RV1 and it should appear. Back off RV1 until the frequency falls and then increase it a bit so that the tone is slightly higher than the minimum

Now gently and slowly bend the coils and adjust the overlap till the tone falls. Add a few more blobs of glue but leave yourself with some adjustment. Readjust RV1 again and repeat. Continue to do this until you can no longer get any lower adjustment on RV1

Now check that no metal is in the vicinity (don't forget cuff-links, watches and rings) and continue the manipulation.

If you use a scope, monitor the level of the signal of the collector of Q2: when you are near to a minimum the level should fall considerably

If all works as described, bringing a piece of metal near the coit should result in the frequency rising. If the frequency falls instead of rising, continue adjusting Near the minimum you can reach a point where the metal firstly adds to the cancellation

Don't glue down the final tiny, tiny adjustments until you are quite certain that all is OK. The amount of final adjustment is extremely critical as you'll find out.

General Construction

The general design can be seen from the photographs. We used a Verobox to house the main circuit and cut a piece of broom-handle at an angle and fitted a bicycle hand-grip to this. The stem is made up from Marley 22 mm cold water plastic tubing, available from many plumbers. The connection to the search-head was accomplished by softening a short length of the stem plastic in hot water and quickly clamping this in a vice. The connectors on the stem are also Marley fittings

STI

SEND STAMP ADDRESSED ENVELOPE NOW FOR THE EASY TO USE ACE ORDER FORM CONTAINING 500 TOP QUALITY POPULAR ELECTRONIC COMPONENTS AT PRICES YOU CAN AFFORD. P\&P FREE ON ORDERS OVER £2, OTHERWISE 20p. ALL PRODUCTS GUARANTEED ONE YEAR IF CORRECTLY USED. SOME EXAMPLES FROM THE COMPETITIVE ACE RANGE WITH VAT INCLUSIVE PRICES ARE SHOWN BELOW

BC107/108/109 Metal BC207/208/209 Plastic 2N3055
741 Op Amp-8pin 555 Timer WO4 1A Bridge
7400 TTL
IN4148 Diode
in4001Rec
BZY88 Zeners

13p ${ }^{1}$ aW Resistors CF $\ddagger 5 \%$ 11p Minpresets Horiz/vert. 65p Electrolytic 100 HF 25 v 30p Polyester C280 0.14F 50p LED Red 0.2 31p Phono plugs 15p Mintoggle SPST 4p Wire-PVC Stranded 10 m 5p Veroboard $0.12 .5 \times 3.75$ 12p S-DEC Breadboard

Get enfenup Laur slesue!

ANNOUNCING THE $m / 1 / c / R / \sigma / s$

JOIN THE MICRO REVOLUTION!

$£ 550$ for a 280 based microcomputer, built and tested

* Includes CPU, ROM, RAM, TV and Audio cassette interface, UHF modulator, ASCII keyboard, power supplies and cabinet.
* Connect to domestic TV or video monitor to complete the system.
* 48×16 character video matrix
* Hard copy on teletype
* Also available in kit form $£ 470$, or 5 kitpacks at $£ 95$ each
* Designed for educationat establishments, personal computing and small business users
* Load and dump programmes on unmodified cassette recorder
* $\quad 57$ key contactless ASCII keyboard
* British designed and built
* Credit terms available

THE MICRONICS COMPANY
1, STATION ROAD TWICKENHAM MIDDLESEX

PART OF THE MICRO REVOLUTION
Prices exclusive of VAT and carriage

Turn on the tap and out it gushes.Water. In this feature,Dr.Peter Sydenham looks at the ever-growing brigade of electronic methods that are being employed "up the pipe" to ensure clear and bacteria free water.

IN EARLY TIMES of the development of man the population density was such that natural methods of water supply were generally quite adequate. Early civilisations settled by freshwater rivers, lakes and springs because these provided potable water that was not injurious to health.

The people realised the need to use the water for various purposes in a sequence that maintained adequacy at each stage. Figure 2 from the well-known treatise "Water in England", by Dorothy Hartley, illustrates how clean spring water eventually runs to lower levels through increasingly dirtier uses to flow away as effluent. Within reason, natural processes would purify it before it arrived back in the spring - or someone else's spring - by the evaporation-toprecipitation cycle, or through biological purification by water plants, animals, and bacteria. This simple state of affairs is reasonably adequate provided the sequence is maintained and the volume of pollutants not greater than natural processes can absorb

Progress

The early people knew quite a lot about such things from direct experience. In densely populated regions, such as the Thames Valley, the breweries were placed well upstream. As you moved towards the estuary the processes became dirtier - abbatoirs, refuse dumps, fish smoking, and the like being found downstream

Eventually, of course, settlement begins to blur the distinctions and each settlement region begins to creep into those adjacent. The result is that the water supply of one region draws in water which could contain the outfall of another. Then the trouble begins. Diseases spread at epidemic proportions, fishing industries and vegetable production become less productive, smells become noticeable at repugnant levels. Simple procedures of water supply fail.

By the late 1700 s, European communities were beginning to understand the reasons for medical epidemics and the need for water purification on a routine ordered basis. It is somewhat surprising to learn that one of the first sand filters was introduced as late as 1804. It was no wonder that London had an outbreak of typhoid disease (1831) that claimed 50000 lives - the sewer outlets into the river entered the flow above the water supply inlets!

Gradually water supply design improved, due to the introduction of various Acts of Parliament. Addition of chemicals that sterilized just about all water-borne diseases began in 1897. Today we have things well under control, although there are still poisonous toxins that get through on the very rare occasion.

Electronic methods of measurement and control have provided the means to achieve this state of affairs with
high reliability and at low cost. We begin by looking at water management on the extensive regional basis, progressing inward, via the filtration plant through to the pipe it flows from.

Regional Water Resource Management

Little new water is created by natural means - the bulk is recirculated by the various processes of evaporation and precipitation, and seepage through strata. Whichever way it comes, it ends up returning with a regional distribution that can vary widely. This is witnessed as extremes ranging from droughts to floods, terms which describe lack or excess of normal rainfall.

If the pattern of water renewal remained constant over time it would be an easy matter to design pipe and canal systems to take it to the places where it is needed. As the pattern varies widelypin practice, it becomes necessary to use active methods of control operating floodgates and reservoirs to control flow across a region.

This requires a system of measurement that provides a central authority with the information required to take action to prevent flood or drought. As an example, let us take a brief look at a system designed for use in Hungary, in the Central Danube Valley District Water Authority area. There the Zagya and Tarna rivers catch rain and snow water for an area of $5676 \mathrm{~km}^{*}$. The average run-off from the surface varies from $16-200 \mathrm{~mm}$ per year. Normal values can vary as much as eighteen times, so floods are commonplace. Figure 1 shows the location of the monitoring stations

Fig. 1. Location of monitoring stations for the Hungarian water resource management system. Such schemes aim to control the flow of water so as to establish safe and uniform conditions of supply.

Fig. 2. Water is used in a sequence that gradually increases its impurities. When it is given too little time to be re-purified and enters the supply source troubles begin. Electronic measurements have provided us with the methods of controlling the quality of water.

Fig. 3. Gauging stations, such as this one on the River Lea in England, are a common sight today. In this hut are monitored flow, DO, temperature, pH, conductivity, suspended solids, ammonia and nitrate.

Telemetry will be used to transmit variables such as water level, rainfall, water content of snow, ground frost, soil moisture, and air and soil temperatures, from 18 gauging stations to a control centre in Budapest. A central memory unit will store five days of data which will be used to set the parameters of an analytical water flow model for purposes of predicting extremes early enough to allow reservoir capacities to be adjusted ready to accept larger or smaller water quantities. The Hungarian post office telex network will convey the data across the country. Additional dams will be built to give greater overall, averaging and better control on a district-by-district basis.

The computer interprets the situation from around 100000 data values spread over a llood period of five

Fig. 4. Effect and limits of pollutants im
Water (Sowry, Priory Press).

Type	Effect	Limit of concentration in $\mathrm{mg} / 1$
Organisms from human or animal excrement	Enteric fever, dysentery, cholera, typhoid, etc.	Should be none in 100 ml
Pesticides	Cumulatively toxic over lifespan of consumer	ADI^{\dagger} to ensure does not build up to toxic levels
Nitrates (and nitrites)	Methaemoglobinaemia in babies stops oxygen being carried in the blood, so they may die	45
Fluorides	Although less than given limits aids tooth decay, too much will damage teeth and bones	0.9-1.7 for cool climate 0.6-0.8 for hot climate
Arsenic	Poisonous in large quantities	0.05
Cyanide	Poisonous, ADI of 0.05 mg per kg of body weight	0.01
Lead	Poisonous, ADI of 0.05 mg per kg of body weight	0.05
Mercury	Cumulatively toxic	0.001

to eight days. The flood peaks will be followed as they descend the rivers, thus enabling more accurate prediction downstream. A number of control models have been developed for the different situations that are known to occur.

This example is not unique. Many water resource control schemes exist across the world in which the data are obtained by methods ranging from purely manual to automatic procedures. A completely supervised system is extremely expensive - but so is the cost of just one flood. In Hungary it is calculated that a bad flood causes a loss of 20 per cent of a year's economic product. The falling cost of data processing by electronic means has now made water resource management schemes economically viable at the national scale of size.

Assessment Of Source Water Quality

It has become obvious in recent years that whilst water supply authorities were adequately monitoring and correcting the output quality of a supply system, the water entering it was being given too little attention. The result has been, in many places, a steady deterioration in the ability to cope with the rising pollution levels in the filtration plant processes.

Considerable interest has now developed in getting the sources clean again. The Thames River is now no longer at a state where the Parliament at Westminster in the 1850 s had to adjourn because of the stench! Today controls are gradually restoring the river's ability to support water life, which means, in turn, that its natural processes of purification are again coming into operation (too much pollution destroys the process completely, removing all natural ability to purify itself).

Source water quality can range from reasonably clean rainwater run-off to river water polluted with industrial wastes and sewage.

The stream station pictured in Fig 3, regularly monitors dissolved oxygen (vital to bacterial processes),

temperature, conductivity, suspended solids, and ammonia and nitrate levels dissolved in the water. Flow rate is also gauged.

In large rivers it is customary to use instrumented barges to measure the profile of variables across and along the rivers - this helps detection of excessively polluted outfalls. Legislation reinforced by heavy penalties, is now in force to cause industry to clean up its discharges before release.

Dissolved oxygen is a key variable. Organic matter entering a river provides food for life in the water, but the micro-organisms digesting it use oxygen in the reaction. This oxygen is replaced in a balanced "healthy" system by dissolving more from the air - hence the reason for aerated water-ways being clean, when static ponds are not. Indeed, if the water is too static, an inversion layer situation results which allows dangerous toxins to generate in the bottom. Given no more pollutant, the situation will slowly recover. Biological oxygen demand (BOD) is another related variable often measured.

Figure 4 is a summary list of pollutant levels generally agreed as maxima that may occur in water considered as potable. The World Health Organisation, WHO, has developed standards for guidance, but each country must interpret these as its own experts see fit. Addition of chlorine is mandatory to all water so as to be absolutely sure that the water is disinfected before use. This procedure in itself can lead to filtration plant difficulties as the water entering the plant will already contain a background quantity which must not be increased beyond given levels.

In The Filtration Works

Although the actual. appearances of water works vary widely, they all follow a similar basic design philosophy. The degree of electronic sophistication used ranges from just about complete manual measurement and control, to fully computer-based automated plants.

A schematic, Fig 5, gives the flow route for water. At the intake will be found coarse screens that prevent large debris, fish, cans and similar water-borne rubbish from entering the system. Following this, in cases of gravity feed, will be a large control valve that can regulate the inputs so that the plant will not flood if some part of the
process clogs up. Level gauges exist throughout the plant. The water is then filtered to remove finer trash, and there may be a micro-filter to eliminate algae.

Removal of material small enough to remain in suspension requires some other process. Addition of aluminium sulphate causes these to join up - coagulate - forming large particles that will settle out as a spongy "floc". This flocculation stage usually alters the pH of the water, necessitating readjustment by other chemcial addition. (pH is a variable used to express the range from strong acidity $\mathrm{pH}=0$, to strong alkalinity $\mathrm{pH}=14$, through neutrality at $\mathrm{pH}=7$.)

The coagulated material is then settled out in large shallow sedimentation tanks ready for final filtration and chlorine dosing.

Filtration is done in either a slow sand, or rapid gravity filter. The first allows the water to filtrate through layers of sand with little pressure head. These need large areas and are cleaned a few times a year.

Gravity filters are smaller and need cleaning - called back-flushing - at about eight-hourly periods. Each filter tank has its own controls. These enable the pressure-head loss to be monitored as the sand clogs, and allow the various flow control valves to be sequenced to reverse the flow, flushing the unit with clean water held in reserve at a high-head.

After filtration the water is dosed with chlorine and, perhaps, fluoride, using automatic dosing units.

Addition of fluoride and chlorine requires very careful control, for too much can be injurious. Where the background quantities are practically zero, as in a system operating a great distance from any other water supplies or pollutants, the dosing is done on a basis of flow rate. When background exists it usually must be measured with chemical analytical instruments that monitor the existing level, causing addition of the balance needed to bring it into line with health regulations.

The water is then ready for distribution to holding reservoirs in towers or on hill tops. This stage requires control of pumping according to the demand of the remote reservoir levels. Overall throughput of the plant is also recorded routinely.

Water supply schemes all follow this pattern. However, as the size of throughput increases and the inter-

Fig. 6. Schematic flow diagram of console used to operate a chosen selective-ion probe under automatic conditions (EIL).

action between adjacent plants grows, it becomes necessary to introduce automated procedures. The first stage is to provide a central control centre where all variables and alarms are presented to the operator, who can then control the state of affairs without the need to walk all over the plant. The next stage of automation is to eliminate routine tasks from the operator's job by placing them under automatic control. Backwashing, distribution, chlorine predosing (that added at the input) and postdosing, and record-taking are examples.

Electronic Measurement Of Pollutant Levels

A number of different methods are commonly used in this field. Here we look at how ion-selective electrodes, galvanic cell, automatic titration and conductivity meth ods work
Ion-selective Electrodes: Operation of these uses basic principles, described as electro-chemistry. When electrons are transferred in a solution and ions occur, the solution is termed an electrolyte. Thus, combinations of such materials as metals and electrolytes produce electromotive force - emf.

If the electrolyte is known to possess only ions of specific classes, then electro-chemical methods can be used to measure the concentration of the substance of the ions as the signal level generated in millivolts. The pH electrode measures the level of hydrogen ions present - these decide the degree of acidity or alkalinity.

Specific-ion probes each comprise certain electrochemical couples which are formed without flowing contact via a gas-permeable membrane. An SO_{2} specific-ion probe uses a pH electrode to monitor the pH change produced by the magnitude of the partial pressure of the ammonia in the sample. It produces around 50 mV per decade change in SO_{2} concentration. The response time of ion probes is slow - 10 minutes being required for low level detection.

The temperature and the general cleanliness of the sample entering the cell are vital for good performance, and ion-selective cells used in automated systems must be operated with great care. Figure 6 shows the schematic of a unit designed for continuous monitoring.

The reservoir levels have to be checked once a week and pump tubing is replaced at three-monthly intervals, otherwise such a unit is virtually maintenance-free.
Galvanic Cells For DO; The Mackereth cell, a cylindrical silver cathode surrounding a lead anode and using a polyethylene membrane filled with electrolyte.
generates a current proportional to the partial pressure of oxygen in the test solution. As the output is temperature-sensitive, it must be corrected for solution temperature. Special techniques of use now enable maintenance-free service for as much as three-monthly intervals. The membrane is currently the key component and needs to be replaced regularly.
Automatic Titration: As the name implies the sampled solution has appropriate small metered quantities of chemical added. These will produce colour or turbidity changes, the magnitude of which is a measure of the concentration of such factors as alkalinity and hardness. The changes are then monitored by electronic sensors by methods which are more easily implemented with electronic principles.
Conductivity: The electrical resistance of a solution can provide a measure of the "purity". The method has little ability to discriminate between pollutants, but, nevertheless, has found wide use for monitoring such situations as acidity, saltiness, detergent strength, soda water manu'acture and rinse water. Resistivities of solutions vary widely. The units are expressed in microsiemens per centimetre (which is $1 /$ Mohm per cm).

As the conductivity rises the cell plate and separation must be changed in order to produce usable signals.

Cell construction basically provides two wellinsulated electrodes that contact the flow, producing two resistances that are coupled into a Wheatstone bridge for measurement.

Chemical analytical equipment is gradually incorprating more electronic procedures. There is still, however, much room for invention of methods that reduce the great amount of plumbing and cleaning needed today. It is worth remembering, however, that electronic methods were introduced into industry in the 1920-30 'era, only fifty years ago!

Further Reading

"Water", by Jo Sowry. Priory Press, 1976. gives a general introduction to water supply.
"Water in England", by D. Hartley, Macdonald, 1964, provides fascinating reading about many aspects of water in historical times.
"Your Water Supply", National Water Council, London, is a useful booklet giving facts and figures and a bibliography. (The title is adapted from this.)

Much of the electronic information presented here was provided as the result of assistance given by Electronic Instruments, Ltd., EIL, of Chertsey, Surrey, England, and the staff of the municipal filtration plant of Armidale, N.S.W., Australia.

ETI

At the time of writing the firemans strike is still on. By the time you read this we sincerely hope it is over, whatever the political aspects of the dispute. One thing the strike has done is to focus peoples minds on the dangers of fire in the home.

Throughout large areas of North America smoke detectors are compulsory furniture in all new buildings, which is some measure of the impact these units have had over there. Here in Britain they are but starting to be recognised for their worth.

Our offer this month gives you the
chance to protect your home at a price which won't burn any bridges. As you can see the Suroke Signal is completely self contained (battery power, life one year) and attractively presented. Imported from North America, this unit is not yet generally available but those that are retail at much much higher prices than this. The detector is guaranteed for one year.

Along with the unit comes a comprehensive manual which explains where and how to mount the unit to gain maximum benefit from its talenis.

PLUS FREE POSTAGE

on all C. W. O. mail orders in U.K. over 52.00 list value (excluding VAT). If under add $15 p$ handling charge

UP-DATED 4th EDITION
Prices stabilised minimum
3-month periods

Post paid, inc.
refund voucher for 40 p

All communication please to Head Office egham address. Depi ETI.

28 ST. JUDES ROAD, ENGLEFILD GNEEN, EGWAM, SURREY TW20 OHE. Tel. Egham 3603 Tolex 264475 . 9 9.5.30, 9.1 pm Satz. NORTHERN BRANCH: 680 Bumage Lane, Burnage Manchester M19 1NA. Tel. (061) 4324945 , Shoog 9.5 .30 pm .1 om Sate

CUTS CARD

Designed by John Miller-Kirkpatrick

THE SYSTEM 68 CUTS encoder/ decoder PCB provides a
home for the four ICs making up this circuit (see last month for circuit diagrams). The card also caters for the mounting of eight RAM ICs to provide expansion of the system memory by up to 4 K . There is also space for memory decoding circuitry and an area for user breadboarding.

The assembly of the CUTS encoder/decoder is straightforward. Assemble all of the components according to the overlay shown in Fig 2 checking that all IC's are correctly orientated before soldering any of the pins.

The CUTS interface requires three signals from the UART-the 4800 Hz clock, SI and SO. These signals should be brought out from the TTY card via some of the uncommitted pins on that PCB. Note that the UART cannot drive both the TTY and CUTS encoders nor decode signals simultaneously. The UART PCB allows for two UARTs and both are required if TTY and CUTS interfaces are required.

Testing

Testing commences with the connection of +5 V and Ground supplies and the 4800 Hz signal being input to connector pin 2. As the DATA INPUT pin is open circuit it will act as a logic 1 input to IC2/1. this should result in a 2400 Hz signal, appearing at IC1/2s Q output. Similarly, if the DATA INPUT line is taken to ground then the output will be 1200 Hz . At this stage the MIC and AUX outputs can be checked for 1200 Hz or 2400 Hz approximate sinewave outputs at about 50 mV and 500 mV respectively.

Test Tape

At a later stage you will need a test tape to input to the decoder, this can be generated at this stage
without the use of the UART or MPU Connect the AUX (or MIC as appropriate) output to the input of your tape recorder, load a (preferably) new cassette and run about thirty seconds of tape without recording.

Leave the DATA INPUT open circuit or at logic 1 and start recording. If you can monitor the signal level at the recorder then the volume level should be set so that the signal on the tape is at a maximum without showing any signs of distortion. If your recorder is fitted with an AGC then this will handle this problem for you and the volume setting on RECORD can be ignored In either case make a note of the volume setting used for future use, a couple of pointers cut from self adhesive paper can be used for showing best RECORD / PLAYBACK positions.

Leave the recorder recording 2400 Hz for several minutes and then put DATA INPUT to logic 0 so that the recorder records 1200 Hz for several-minutes and then revert to 2400 Hz . It is an idea to fill the whole of one side of a C60 cassette in this way with a note of the locations on the tape of 2400 , 1200 Hz or no tones, a tape counter is invaluable in a CUTS recorder.

The idea of filling one side of a cassette is that it can be left running whilst testing the decoder circuitry and thus a known input signal is available for thirty minutes at a time.

Cuts Decoder Testing

The decoder consists of two parts, the amplifier and the TTL decoder. To set up VR1 temporarily disconnect IC2/4 from the transistor and apply IC1/2 Q output to the input of IC2/4. With the DATA INPUT at logic 1 IC1/2 0 will produce 2400 Hz signals which are thus input at ICs 3/1 and 4/1. The B input at IC3/1 will trigger the monostable producing a variable width pulse, the
width of which is controlled by VR1 Setting VR1 at midway will give output pulses of approximately the correct width. A DC voltmeter or dual-trace scope with the B input displayed on one trace and the O output on the other trace, will make it possible to adjust VR1 more accurately with the logic 1 , present at the UART's input, the Q output of IC3 / 1 should remain high (5 V read from meter or as seen on the scope).

With DATA INPUT at logic 0 the 0 output pulse width should be about 70% of the width of the 1200 Hz pulses applied to the B input and thus will be at logic 1 for 70% of the pulse and logic 0 for 30% (3 V 5 read from meter or from scope's display). The Q output from IC4 should be at the same logic level as the DATA INPUT, this output is the DATA OUTPUT from CUTS card and is available at connector pin 3 for connection to the UART SI input.

Test Tape Again

The test tape can now be played into the EAR input of the card and the DATA OUTPUT signals checked, this should be the same as that originally used when recording the tape (ie only long periods of logic 1 or logic 0). The setting of the volume control on the recorder which gives the best results will vary from recorder to recorder and in some cases it may be necessary to vary the values of the components used in the amplifier part of the CUTS card to suit your recorder.

And AGAIN

Turn your cassette over and prepare to record on the other side. You will need your MPU and UART to generate this test tape. Write a simple program to output Hex '00's continuously to the UART (not forgetting to test the TBMT flag in the UART). When the program has been tested record thirty seconds of blank tape (get over the leader, etc)

Fig. 1. Foil pattern for CUTS and RAM card shown full size ($160 \times 110 \mathrm{~mm}$)
and then about thirty seconds of logic 1 before executing the program to output the Hex '00's for about five minutes. As the UART outputs logic 1 when not being used it is only necessary to set up the program, start the recorder, wait for thirty seconds and then press ' G ' or whatever command starts execution

Repeat the above exercise (thirty seconds blank tape, thirty seconds ' 1 ' data for five minutes) but using Hex 'FF' as the continuous data. This should follow the first exercise on this side of the tape, thus using about twelve minutes of tape so far. Again, make a note of the approximate location of each record on the cassette

Repeat the exercise again but this time use a single byte in RAM or a spare accumulator and increment the value by one each time so that the output to the tape is a Hex ' 00 ' followed by '01', ' 02 ', ... 'FF' '00', '01', etc. Thus all possible ASCII characters are output in sequence.

The fourth part of this side of the test tape can be used with a program to accept data from the keyboard and output it to the UART. Unless you can type at thirty characters per second the data on the tape will be 2400 Hz for most of the time with character data occurring at about once per second (or however fast you
can type). You have about ten to fifteen minutes of tape left to fill up with test messages, etc from the keyboard

Each of these programs can be tested before outputting to the UART by using a UART output routine and temporarily replacing the call to this routine with a call to the VDU output routine. The first program should print '@', the second '?', the third the ASCII character set, and the fourth will repeat the keyboard entered characters.

As soon as you feel confident that the test tape is correct remove the 'FILE PROTECT' tabs so that you cannot accidentally overwrite the tape, the test tape may well come in useful in the future for calibration purposes.

And Finally

Before you file your test tape away it should be used to calibrate your present system. In theory all you have to do is to rewind the tape, set up your recorder and CUTS decoder for playback and then write a simple CUTS (or UART) to VDU program This should allow you to playback the tape for half an hour whilst watching the VDU print lots of '@'s, '?'s, ASCll strings and messages.

NB. It is best not to stop the playback halfway through a record (noun, not verb) as with some
machines the tape could be damaged with spikes, wait for an inter-record gap of 2400 Hz or no tone before stopping the machine.

Four down, twelve to go ...

With only four ICs and not many discretes making up the CUTS unit we decided to use up the spare space on the PCB as usefully as possible Whereas most people who are building System 68 will probably have most, if not all, of the PCBs published so far in their system, now is the time that individuality will take over and each system will be modified as the user requires. If you have modifications to make you may be interested in a VERO DIL card which takes several ICs from eight pin to forty pin types and has been used several times in making the first prototypes of the PCBs used in this series, the card takes the standard 31 way connector.

For simple additional hardware circuits the CUTS card has half of ICs 3 and 4 unused plus IC locations at IC13, IC15 and IC16. These can be used for any 14 or 16 pin ICs to generate simple hardware add-ons, an example might be a
STOP / START control for your recorder.

The IC location at IC14 has been laid out to take a 74LS139, half of which is again unused and could be

used with the other IC locations for prototyping. The other half of IC14 is intended to act as a device address decoder to split up a 4K page or block of addresses into $4 \times 1 \mathrm{~K}$ blocks, these outputs could be used to activate external devices such as a STOP/START flip-flop, relay, etc. but are intended to enable the RAM chips at locations IC5-IC1 2.

Minus another four leaves eight.

The last eight IC locations IC5-12 are intended to allow expansion of up to 4 K bytes of static RAM. Pin 8 of the 31 way connector will accept an enable signal from the MPU card or elsewhere for a RAM ENABLE strobe. The MPU card has a RAM output which can be used to drive 1 K of RAM, if a 4 K RAM enable is required it will have to be decoded from the upper 4 address bits (A12-A15) externally. In the present layout this 4 K enable is used to enable half of the 74LS 139 which is additionally addressed by A10 and A11 to give one of four output enables. As an example let us assume that we wish to use address bit 12 as a system expander. With the EXTERNAL ENABLE pin of the MPU card connected to ground or to VMA. 02 then all address accesses will be decoded by the MPU card with the upper 4 address bit being
ignored, thus we are able to references X^{\prime} Exxx' X^{\prime} Axxx ${ }^{\prime}, X^{\prime} 8 x x x$ are to the same location. We effectively ignore the first character of any address. When we add our 4 K RAM ENABLE we want it to access a unit not on the MPU card and not already decoded. One way to do this (but not necessarily the best) is to use the lowest of the unused address bus, A12. If A12 is buffered and inverted to give tlo enable strobes one of which is low when A12 is low (call it EVEN) and the other of which is low when A12 is high (ODD), we now have one enable for whenever an even 'senior' address is selected (X^{\prime} Oxxx', X^{\prime} Exxx', $X^{\prime} A x x x^{\prime}$ etc) and another for whenever an odd 'senior' address is selected ($\mathrm{X}^{\prime} 1 \mathrm{xxx}^{\prime}, \mathrm{X}^{\prime} 3 \mathrm{xxx}^{\prime}$, etc).

If we feed EVEN back as the MPU card enable then the only oddball is the UARTs at $X^{\prime} 7 x x x^{\prime}$ which could become $X^{\prime} 8 x x x^{\prime}$ without much software changes. If we then use ODD to enable a 4 K RAM then valid addresses for this RAM would be $X^{\prime} 1 x x x^{\prime}, X^{\prime} x x x^{\prime}$, etc.

The correct way to decode these 4 K blocks is to use a 7442 or 74154 type of device fed with the upper 4 address bits and thus producing 8 or 164 K enable strobes. Some of these strobes are ANDed to give the MPU card enable, others can be used to drive external

PARTS LIST

RESISTORS

R1	47k
R2,5	100k
R3,6,7	10k
R4	1 k
R8	3k3
POTENTIOMETERS	
VR1	10k min
CAPACITORS	
C1	1 n
C2	4 n 7
C3,4,7,8	100n
C5	47n
C6	200n

SEMICONDUCTORS

Q1	BC109
IC1	74 C 74
IC2	$74 \mathrm{CO2}$
IC3	74123
IC4	$74 \mathrm{C74}$
IC5-16	see text

miscellaneous

PCB as pattern, IC sockets as required.
NOTE: Capacitors C3,4,7 and 8, not shown on circuit diagram, are for de-coupling purposes. C5, not referred to on circuit diagram, couples the output of the recorder to the base of Q1.
memory blocks. Using this method it would be possible to have a 4 K.ROM card enabled at $\mathrm{X}^{\prime} E x x x^{\prime}, 4 \mathrm{~K}$ RAMS at $X^{\prime} F_{x x x}, X^{\prime} \mathrm{O}_{x x x}$ and $X^{\prime} 11_{x x x^{\prime} \text {, }}$
peripheral hardware such as printer or Floppy at $X^{\prime} C_{x x x}{ }^{\prime}$ and $X^{\prime} D_{x x x^{\prime}}$ and the MPU card at all other locations.

The idea of putting 4 K ram on the CUTS PCB is that if you are using CUTS then you will need some RAM to read your blocks of data or programs into or out of, as your system becomes more sophisticated so you will probably want more RAM and thus better tape facilities and thus a second recorder. When you get to the stage of the third and fourth recorders, you will need another CUTS card, more RAM, etc, etc.

The PCB is laid out to take the new industry standard 2114 type of $1 \mathrm{~K} \times 4$ static RAM chip. Two of these chips will give 1 K bytes of RAM, and thus eight chips will give 4 K bytes, the alternative is to use 2112 (256x $4)$ or $2102(1 K \times 1)$ chips but this solution requires thirty-two RAM chips plus decoding chips and it is a little difficult to lay out a Eurocard to take forty-odd pin packages - not impossible, just eye-popping.

The 2114 is packaged in an eighteen pin package with a layout which is very similar to that of the 2112 inasmuch as the address lines and data lines are in the same pin locations. The IC locations on the CUTS card could be easily modified to take eight 2112 s in place of eight 2114 s.

At present these chips are very new and very expensive at about $£ 45$ per 1 K bytes compared with about $£ 25$ per K using 2112 s , similarly, the availability of these chips is at present unpredictable. Within the next two to three months we should see a drop in prices and easier availability thus making the memory part of the CUTS card a useful expander card.

As the 2114 is a $1 \mathrm{~K} \times 4$ device they must be mounted in pairs to give 8 bit byte storage. On the CUTS card the pairs are ICs $5 \& 6,7 \& 8,9$ \& 10, and 11 \& 12 . Under each of the IC locations is a connecting pad, each pad must be connected to its pair and also to one of the enable outputs of IC 14. Apart from these connections all of the other pins are already connected to the appropriate pins on the 31 way connector, plug in the 2114 s and you're ready to run.

System 68 So Far . . .

The system we have presented as SYSTEM 68 contains some of the
most advanced ideas and technology available as most of you who have built it will know because of component availability of some of the very new devices. At the time of writing there is not any commercial equipment of this type on the market using the DM8678 character generator, the 81 LS series buffers, the 2114 RAMs and other devices which appear in SYSTEM 68.

The System was designed with cost and simplicity as major factors with suitability of both hardware and software expebdability and interchangeability also high in priority. The system so far has an attractive case and efficient power supply to cover more than most requirements. The $64 \times 16 \mathrm{VDU}$ interface outputs a video signal suitable for interfacing to any commercial monochrome portable TV (see 'Electronics Tomorrow' Special). The ASCII keyboard inputs to the VDU interface card and thus onto the main MPU bus connectors The 6800 CPU card contains space for 256 bytes of RAM and 1 K bytes of PROM which can contain the ETIBUG plus additional firmware monitor programs. The serial interfaces allow use of two TTY type devices with separate baud rate control, typical serial devices might be a printed and a cassette recorder using the CUTS interface described above. There is still enough room in the case and capacity in the power supply for about four more Eurocards and it would be a simple matter to extend the system into a second case or onto a S100 or other bus structure.

Exchangability

System 68 is not limited to the 6800 MPU , there are already two SC/MP MPU cards which are suitable but as one of them came from another magazine perhaps we should not mention it except to point out that the $100 \times 160 \mathrm{~mm}$ card and connector is supported by other MPUs.

We heard of someone doing a 280 based System 68 and we expect to see a 6502 based System 68 around soon. Thus there is the ability to change from one MPU to another in a matter of seconds.

Software

Obviously with a system capable of supporting several MPU types software support is a nightmare from the magazines point of view. We have ETIBUG which is a simple VDU

Corrections

1 VDU A. In some cases the master oscillator (ICl) output does not have the ability to drive two TLL loads (IC2 and the character
generator). This results in 'dots' in place of '?' on the screen. The output of !C1 can be buffered by using the spare 7408 gate on the board.
2. CPU. The clock phases on the PCB are reversed. Also, for correct operation two 22 R resistors should be placed in the line between the driver and the MPU. The resistors can be used to exchange the clock phases at the MPU by breaking the PCB tracks to pins 3 and 37 and swapping the connections using the resistors.
3. CPU. The NRDS signal causes the data input buffer to be enabled at the same time as the oncard PROM or RAM. Two cures are possible - a, the driver can be removed and the MPU pins connected to the connector by inserting wire links into the sockets, this solution is only suitable for a minimum System.
b. By disabling the NRDS signal during a PROM or RAM access. This can be achieved by modifying IC5b. The condition we require is that VMA. 02 must be low, the enables to both RAM and PROM must be high and R/W must be high. If the spare gate on the driver chip is used to NAND the RAM enable and R/W signals we get a low output only when both inputs are high. If we use this output and the PROM enable signal as inputs to IC5 b with VMA. 02 as enable then output $Y 2$ will be a valid NRDS signal to external devices and to the data input buffer. The R/W signal can be used direct to mosi memory devices as interna decoding will take place inside the device. All of this assumes that the external enable input is connected to VMA.02 ., if external decoding is done then the fact that this enable should only be valid during VMA. 02 time should be taken in to consideration, if a 7442 type of decoder is used as a $4 K$ decoder then its D input should be VMA. 02
based version of MIKBUG and ETIBUG2 (next month) which can be added to ETIBUG to increase the facilities available. As an example of software exchange, ETIBUG2 is based on software commands which were found to be useful on other systems and were translated and modified for the 6800. ETIBUG was based on MIKBUG as supplied with most MOTOROLA based systems, ETIBUG does an automatic check for the presence of an ETIBUG2 chip and thus as a result of thoughtful software the ETIBUG2 PROM could be used with very little change by MIKBUG users

Some of the BASIC compilers available are also based on the MIKBUG ROM and thus it should be possible to modify one of these compilers to run on ETIBUG with System 68. If any System 68 users evolve such a program or if you have any ideas on the subject please write to me at ETI.

NEXT MONTH ETIBUG2 which includes the software associated with the TTY and CUTS I/ O cards.

5 Wilmslow Audio

THE firm for speakers!

Send 15p stamp for the world's best catalogue of Speakers, Drive Units, Kits, Crossovers, etc., and discount price list

ATC AUDAX BAKER BOWERS \& WILKINS - CASTLE CELESTION - CHARTWELL COLES DALESFORD DECCA EMI EAGLE - ELAC FANE GAUSS GOODMANS HELME I.M.F. ISOPHON JR JORDAN WATTS KEF LEAK LOWTHER McKENZIE MONITOR AUDIO PEERLESS RADFORD RAM RICHARD ALLAN SEAS TANNOY VIDEOTONE WHARFEDALE

WILMSLOW AUDIO Dept. ETI

SWAN WORKS, BANK SQUARE, WILMSLOW, CHESHIRE, SK9 1HF
Discount HiFi, etc., at 5 Swan Street and 10 Swan Street
TEL: WILMSLOW 29599 FOR.SPEAKERS
WILMSLOW 26213 FOR HIFI

THE
 DANGER

> Because lightning is so spectacularly powerful, it has excited the curiosity and fear of man since the earliest times. Prof. WR.Lee of the Department of Occupational Health, University of Manchester, explains just how dangerous lightning is.

A FLASH OF LIGHTNING comprises one or more strokes and rarely lasts more than a second. The lightning stroke generally starts in a negatively cherged region of a cloud from which a 'leader-stroke' seems to proceed towards the ground in discrete steps. The electrostatic field which develops below the leader rapidly increases in strength so that, when the tip of the leader has reached a height of some tens of metres above ground level, a short upward
streamer can be initiated from a vertical cond-
uctor. This might be an isolated tree, a church steeple, a tall building, the mast of a boat, or perhaps a person standing in the open with an umbrella or a
golf club above his read.
When the leader makes contact with the ground, or with the short upward streamer, a 'return stroke'
develops which may be imagined as a positive current flowing upwards. This may reach tens of thousands, or even one or two hundred thousand ampares.
The electrical potential involved in a lightning strike cannot at present be accurately measured, but it is believed to be about 10^{6} to 10^{8} volts.

OF LICHINNG

Whatever the actual voltage, a lightning stroke can immediately puncture the skin of a victim.

More is known about the characteristics of the lightning current, at least at the point of strike. This is fortunate for physiological responses depend on the current rather than the applied voltage. Characteristic waveshapes of lightning current are unidirectional with a fast rising front and a slower tail usually lasting several tens of microseconds.

In mountainous regions conditions may be different. The bottom of a thundercloud may lie only a short distance above conducting objects, such as human beings from whom arise, as point or brush discharge, currents of several microamperes. These may be felt as a slight tingling, perhaps raising the hair on a bared head. At night they may appear as a luminous glow. In the past this glow, appearing at the tops of ships' masts during stormy conditions, was called St. Elmo's fire - after the patron saint of Mediterranean sailors. Such point discharges can develop into an upward-directed leader stroke which may last several tenths of a second and involve a current of some hundreds of amperes:

Four Typas

When accidents are considered, lightning strokes may be grouped in four types. A direct stroke occurs when the person or something he is holding is struck. The lightning current enters the head or upper part of the trunk, passing through the body
and into the ground through the feet. If several persons are standing close together more than one may be struck.

It has been calculated that the current rises rapidly to a peak of 1000 A (amperes), immediately falling so that about 10 microseconds from the start it reaches 4 A and remains at that value for the duration of the strike. The occurrence of an external flashover is confirmed by ample evidence from accident reports. If it occurs outside the body and through or outside the clothing, the hair and beard may be singed, there may be burn marks on the soles of the feet and burn marks are found on the clothes, which may catch fire. Metals carried on the body may melt, causing burns. - If the flashover is between the body and the clothing, current flowing over the body surface may convert the sweat and skin moisture into steam so that the resulting pressure causes clothes or boots to be torn off.

The second type of lightning stroke is the side flash. This is most clearly understood by considering what happens when someone is sheltering under a tree that is struck. Standing on the ground he is initially at earth potential. However, as the lightning current discharged down the tree trunk increases, the voltage drop down the lower part of the trunk, which might have a resistance of a few kilohms, may become greater than the electrical breakdown strength of the air gap between the trunk and the person. A side flash then occurs through the victim.

Side flash from a corrugated iron roof insulated from earth by a dry wooden structure. When a lightning stroke develops nearby; the effect of the electrical capacitances represented by C_{1} and C_{2} is to raise the roof to a potential V_{2}, with respect to earth, equal to $V_{1} C_{1} /\left\langle C_{1}-C_{2}\right)$. The potential difference between the roof and the head of the occupant of the shed can become high enough to cause a flashover without the shed being struck.

There is more than one report of persons struck while cycling past a tree. One victim who was unconscious for 15 minutes, and did not need resuscitation, subsequently recalled a 'blow' and that he saw 'fire' coming to him from the tree and that the handlebars of his bicycle 'became electric'. He sustained no burn marks. Quite a number of accidents are on record of death or injury occurring in persons sheltering in a tent, and the descriptions of the circumstances and of the injuries strongly suggest side flashes from the tent pole or perhaps from the wet fabric.

One of the most dramatic and serious accidents involving side flashes in recent times occurred in the Japanese Alps in 1967. A party of forty-one schoolchildren with five teachers was overtaken by a sudden thunderstorm when they were strung out along a steep ridge immediately below a mountain peak 1660 metres above sea level. Lightning killed eleven of the boys instantly and most of the remainder were temporarily paralysed, burned or blinded.

The third type of lightning stroke is the step voltage. If lightning strikes open ground, either directly or through a tall object such as a tree or post, the current is discharged into the mass of the earth. On non-uniform ground the current distribution produces differing voltages according to the distance from the site of the strike. A person, or animal, walking along a radius from the site of the strike will be subject to a potential difference between the legs. It will be seen later that quadrupeds are more likely than humans to die from this because the current, flowing between the forelegs and hindlegs, traverses the heart, whereas in the human the pathway is from leg to leg and the heart escapes. When a church in France was struck during a service all the persons standing on the damp flagstones in the nave fell and could not get up for several minutes, as though their lower limbs were paralysed. But people standing in the oak choir stalls at the sides were spared, clearly because they were insulated from the ground.

The fourth type of stroke is the contact voltage, sometimes called a touch potential. It may be regarded as a particular instance of the side flash, in which the victim is actually making contact at the time of the lightning stroke. A case history from Russia about ten years ago gives a clear account of such an accident.

Two women were sheltering under a tall spruce tree which was struck during a thunderstorm. One of them, who was killed, stood with her back against the tree. Her cloth-

Regular pattern (a) of current in uniformly constituted soil, set up by a direct lightning strike to open ground. The potential distribution curve (b) shows how a 'step' voltage develops between the legs of humans or animals standing nearby.
ing was not damaged but at the back of her head, on the right hand side, the hair was singed and ash grey in colour over an area 40 mm by 40 mm . In the centre of this the skin damage was like a small abrasion. On the tree trunk there was a longitudinal strip of damage to the bark about 40 to 60 mm wide starting near the top of the tree and stopping about 1.58 m from the ground, that is, on a level with the height of the victim. The other woman was holding on to the tree with her right hand. She lost consciousness for about 10 to 15 minutes and was unable to move or to feel her lower limbs for about two to three hours. She sustained some burning of the body down to the foot, but was discharged from hospital after two days and resumed work after ten days.

An intriguing theoretical study has concluded that any. one touching a lightning conductor when it is struck would not risk death because the current discharged through the body would be too weak. This is not an invitation to test the hypothesis by personal experiment!

How does lightning current produce death? Our knowledge comes from three main sources. Firstly, since the end of the last century, there has been a steady increase in our knowledge of how direct and alternating currents at mains frequency cause death. This is based, in a large part, on animal experiments. Secondly, there have been a few studies of the effects of impuise currents on animals. Thirdly, we have accounts of accidents ranging in quality from the anecdotal to the investigation which is fully and carefully documented from both the electrical and medical viewpoints. However, the accounts suffer from two main drawbacks. The obvious one is the absence of any quantitative electrical data and the other is that it is often difficult after an electrical accident to determine exactly why someone died.

Pathway

Lightning may be considered to produce direct effects in one of three ways: its action on the heart and respiration, and by heat. There are other indirect effects such as injuries from falls but they are not peculiar to lightning. For currents greater than a few milliamperes, the body behaves as a structureless gel or, for the electrical engineer, as a volume conductor. There is no 'preferred' pathway along which the current flows. It is believed that the body resistance along the path taken by the current in most direct lightning strokes, many side flashes and many contact

ELECTRONICS TODAY INTERNATIONAL - FEBRUARY 1978
voltage accidents, is about 500 to 1000 ohms, possibly falling to the first value after the skin has been punctured. Generally, the effects are produced by direct action on the organs concerned, so it is important to trace the current's pathway through the body.

Careful examination of burn marks usually provides information on the points of entry and exit. Sometimes these may be surprisingly small. The lightning return stroke has a central core with a diameter of a centimetre or so, which may reach a temperature of about $30000^{\circ} \mathrm{K}$, but only for the first tens of microseconds. This may save a person from extensive burning, although small metal objects on the clothing may melt. Because the skin has the highest resistance to the current, heat tends to be developed there, often causing relatively small skin burns. But if the lightning current has a long 'tail' it may have a value of several hundred amperes during that period. This so-called 'hot' lightning can cause more severe burning of the body and clothing. Examination of victims frequently reveals 'tree-like' or aborescent markings that are not true burns. They disappear after a few hours.

Lightning current causes death by affecting either the heart or the nervous mechanism controlling respiration. The heart has two main pumping chambers - one to pump blood around the body and the other to pump it through the lungs. The thick walls of these ventricles consist almost entirely of muscle, and the simultaneous contraction of all the individual muscle fibres provides the necessary pumping pressure. An electrical current passing through the heart may disturb the concerted action of the fibres so that they contract individually and fail to establish enough pressure. When seen in this state the ventricles, instead of showing forceful regular contractions, are flaccid, with irregular twitchings (fibrillation) of the individual fibres.

Relationships

Nearly all the investigations to establish the relationships between some electrical factor and time have been carried out using alternating current at mains frequency. The

Side flash from a tree struck by lightning. At first the current flows through the trunk. The electrical resistance of the trunk, between ground and a point level with the head of anyone standing nearby, may be a few kilohms. Build-up of current through it may cause the potential drop across the lower part of the trunk to exceed the electrical break-down strength of the air between the trunk and the victim. At that stage a side flash

shortest duration studied in such investigations is about eight milliseconds, corresponding to a half wave at 60 Hz . This approaches that of a lightning current with a long tail.

A number of relationships have been suggested. They all accept that current, or a derivative, is important. One of the most widely published relationships suggests that within certain time limits the ventricular fibrillation threshold depends on energy. Another suggestion is that it depends on charge. One theory is that the threshold is a function simply of current but that there are in fact two thresholds, one when the current lasts for less than a heart cycle and another, much lower, if it is more (about 400 to 1000 milliseconds).

Lightning currents do not last longer than a heart cycle. However, an electrical current will cause fibrillation only if it falls at a certain time in the cycle, the ' T ' wave, which occupies about 20 to 25 per cent of the full cycle. Once fibrillation has become established, blood circulation ceases and death follows. Finally, it has recently been stated that in many victims of lightning stroke the heart simply stops altogether - ventricular asystole. First-aid treatment for both is the same.

Nervous System

The centre for the control of respiration by the nervous system is in the lower part of the brain. There is strong evidence that the current has to go through it to stop respiration. Indeed, in so-called electric shock treatment for certain mental disorders it is extremely uncommon for respiration to remain stopped ofice the current has ceased to flow. There are a number of carefully reported cases in which high voltage or lightning currents passing through the respiratory centre have caused breathing to stop. Some victims have responded to prompt artificial respiration. A current pathway through the head and trunk seems to be more common in lightning than in electric shock accidents.

Using our knowledge of how death is caused by lightning, we can attempt to establish a rational basis for first aid. Simply stated, the victim's breathing or circulation or both - might have stopped. No first-aid manoeuvre is likely to start either again, though fortunately respiration often starts spontaneously after an interval of anything from a few seconds to several hours. Obviously, except in cases of very short arrest, it is necessary to provide artificial respiration, by first-aid and later perhaps in hospital, until breathing starts again. First-aid treatment for arrested circulation is, according to many authorities, not without serious dangers and should not be lightly undertaken. It would be prudent to learn from national first-aid oiganizations how these conditions may be diagnosed and treated.

Several simple precautions would reduce lightning accidents. An upright person acts like a lightning conductor and thus attracts a lightning strike over a distance which, as a first approximation, is proportional to the square of his height above the ground. It is, therefore, much safer to squat down than to stand up or, worse still, to stand on the top of a vehicle or structure. To increase one's effective height by carrying an umbrella or golf clubs, held upright, is foolish: better to get wet than killed. The risk of side flashes can be mimimized by keeping at a distance of a few metres from other people when in a group, by not standing near the trunk of an isolated tree and by keeping away from large metallic objects both indoors and outdoors. Tents can be readily protected but it is a wise precaution to keep the greatest possible distance away from the tent pole or the wet fabric.

TECHNICAL BO

CALCULATORS

aOVANGEO APPLICATIONS FOR POCKET calculators
J. Gilbert
COMPUTER \& MICROPROCESSORS
BUILD YOUR DWN WORKING ROBDT
D. Heisomman
COMPUTER CIRCUITS AND HOW THEY WORK
B. Weals
digital electromic circuits and systems N. M. Morrie
mtroduction to oigital filtering 8ogner
MICROPROCESSOR/MICROPRDGRAMMING HANDBOOK
B. W.ad
transis tor tabelle
Includes physicat dimensions \& their pin assignments
MICRDP ROCESSORS
D. C. MeGiynn
NTRODUCTIDN TO MICROPROCESSDRS Aspinall
MDOERM GUIDE TO DIGITAL LOGIC
Processors - Memories and Interfacos
LOGIC DESIGN PROJECTS USING
STANDARD ICs
STANDARD
practical digital design using ics
J. Greenfield
COMMUNICATION
COMMUNICATION SYSTEMS INTRD TO SIGNALS 8 NOISE
8. Carison
digital signal processing, thedry \& APPLICATIDNS
APPLICATION
ELECTRONIC COMMUNICATION SYSTEMS
G. Kennedy
£6.60
FREQUENCY SYMTHESIS. THEDRY \& DESIGN
Mannassewitach
£20.40

PRINCIPLES OF COMMUNICATION SYSTEMS H. Taub
$\propto 8.10$
COOKBOOKS
TY TYPEWRITER COOK
CMOS COOKBOOK \quad E8.00

TTL COOKBDOK
18.00
aCTIVE FILTERS
IC TIMER COOKbOOK
IC OP-AMP CODKBODK
£11.00
¢7.50

ELECTRONICS

beginners guide to electronics
Squire:
¢2.65
beginners guide To transistors Reddihough
APPLICA TIONS OF OPERA TIONAL AMPLIFIERS Graeme (Burt Brown)£2.55

BASIC MATHS CDURSES FOR ELECTRONICS
H. Jacobowitz

BUILD IT BODK DF MENIATURE TEST INSTRUMENTS
R. Haviland $£ 3.55$
designing with til integrated circuits
DESIGNING WITM OPERATIONAL A MPLIFIERS
Burt Brown
C13.75
ELECTRDNIC ENGINEERS REFERENCE BDOK
4th Edition

SOLID STATE CIRCUIT GUIDE BDOK B. Ward
£2.25
TRANSISTOR CIRCUIT DESIGN Texas
electromic components
M. A. Colwall
£2.45
ELECTRONIC DIAGRAMS
M. A. Colwell $£ 2.45$
electrdnic fault diagndsis
I. R. Sinclair

HOW TO USE IC CIRCUIT LOGIC ELEMEWTS

ELECTRONIC MEASUREMENT SIMPLIFIEO

 C. MallimarkELECTRONICS ANO PHDTOGRAPHY
R. Brown
elect romigs self taught
ESSENTIAL FORMULAE FOR ELECTRICAL ANO ELECTRICAL EMGINEERS
N. M. Mortis

EXPERIMENTS WTTH OPERATIONAL AMPLIFIERS Clayton

FIRE AMD Theft security srstems
B. Wela
how to head electromic circuit diagrams
B. Bnown

HOW TD BULD PROXIMITY DETECTDRS AND METAL LOCATORS
J. Shiotds integrated electronics
J. Milman

HOW TO BUILD ELECTRDNIC KITS
Capel
LInear Integrated circuit applicatidns G. Clayon

FUNCTION CIRCUITS DESIGN \& APPLLCATIONS Burr Brown
£15.95
110 ELECTRONIC ALARM PROJECTS
R. M. Marston

110 OPERATIOMAL AMPUFIER PROJECTS FOR THE HOME CDNSTRUCTOR
R. M. Marston

110 SEMICONDUCTOR PRONECTS FOR THE HOME GDNSTRUCTOR
R. M. Marston

110 COSMOS DIGITAL IC PROJECTS FOR THE home Constructor
R. M. Marston

OKS

110 integrated circuit phojects for the home constructor
I 10 THYRISTOR PROJECTS USING SCRs
I10 THYRISTOR PROUEETS USING SCRs
R. M. Marmon
MICRDELECTRDNICS
Halmark
E3.90

MODERN ELECTRONIC MATHS
Clifford
mos digiral ics
G. Fiymn
op ERATIONAL AMPLIFIERS DESIGM ANO APPLICATIONS
G. Tobey (Buri Brown)

OP-AMP CIRCUIT DESIGN \& APPLICATIONS l. Carr
handbodk of ic circuit projects
A aho
INDEXED GUIDE TO MODERN ELECTRONIC CIRCUITS Goodman
BEGINNERS GUIDE TO INT EGRATED CIRCUITS Sinclair
£3. 15
PRACTICAL ELECTRONIC PROJECT BUILOImG Aindie and Colwell
$£ 2.45$
PRAGTICAL SOLID STATE D.C. SUPPLIES T. D. Towerz

PRACTICAL TRIAC/SCR PROJECTS FOR THE EXPERIMENTER
R. For

PRINCIPLES DF TRANSISTOR CIRCUITS S. Amon
printed circuit assembly
Hughes \& Colwoll
RAPID SERVICIMG DF TRANSISTOR EQUIPMENT a. King
$£ 2.95$
semiconductor circuit elements
T. D. Towers
$\$ 6.40$
UNDERSTANDING ELECTRONIC CIRCUITS R. Sinclair
£4.10
undersiandimg electronic componemts
R. Sinclair

UNDERSTAMDING CMOS INTEGRATED CIRCUITS R. Molen

UNDERSTAMDING SOLID STATE CIRCUITS
N. Crowhure

SEMICONDUCTOR DATA
international transistor selector
T. D. Towere Eb. 10
intermatiomal fet selector ce. 10
T. D. Tower:
[4,35
POPULAR VALVE/TRAMSISTOR SUBSTITUTIOM GUIDE
RADIO Valve amd SEmicomouctor data
A. M. BaII
master transistor/integrateo circuit SUESTITUTIUN HANDBDOK

RADID, TELEVISION AND AUDIO
AUDIO HANDBODK
G. King 5550
beginhers guide to audio
L. R. Sinclair
c 20
radio TV-audio cassetie tape recorders
foundations of wireless ahd eleetrdnics M. G. Scroggie
colour television theory

WDRLD RADID TV HAMDBOOK 1977
(A complete Directory of Redio, TV 8tutions)
radid, TV and audio technical referemce 800K
$£ 24.85$
SOLID STATE COLOUR TV CIRCUITS O. R. Wilding

TV TECHNICIANS BENCH MANUAL (new edition) Wilding
Hiff louddreakers and enclosures Cohen
bEEINNERS GUIDE TO RADIO
King

TAPE RECORDER SERVICING MANUAL
VOLI 1968.70 Gardner
VOLII 1971.74 Girdner
HOW TO BUILD SPEAKER ENCLOSURES
Badmuioff
King
BEGINNERS GUIDE TO AUOIO
Sinclair
MASTER HI-FI INSTALLATION
E2.80
TEST EQUIPMENT \& OSCILLOSCOPES
22.80
basic electronic test procedures
THE OSCILLOSCOPE IN USE
Ian Sinctair
practical test equipment you can build
W. ©reen

TEST INSTRUMENTS FOR ELECTRONICS
M CIFtord
WORKIMG WITH THE OSCILLOSCOPE
A. Seundore
G. King

RADIO TELEVISION AND AUDIO TEST INSTRUMENTS
King

HOW TO ORDER

Please note that our prices include postage and packing. Make cheques etc payable to ETI Book Service. Payment in sterling only please.
Orders should be sent to:
ETI Book Service
P.O. Box 79

Maidenhead
Berks.

21 Sibe multication

Alahtronios totiay

What to look for in the March issue: On sale February 3rd

Frequency Shifter Wanna hear a howler? You don't really, and neither does anyone else. Howlround feedback or whatever you call it is the gremlin most likely to in any PA System. Next month we are presenting a project to overcome the problem once and for all. By shifting upwards in frequency (by 5 Hz) everything presented to it, our suppressor allows extra gain to be applied, cleans up sounds and generally makes life that much nicer

MODEL CONTROL

White line Follower: Well it's like this. There's this member of our staff who enjoys models of a type other than female, and can be very vociferous (i.e. loud) in making a point. He gently reminded us all that we have never done a project for the model constructor, and further discussion led to a circuit which bequiles a model car, tank, train or whatever into following a simple white line wherever it leads. Sounds interesting? It is! Can be easily adapted to fit any suitably sized vehicle, with the emphasis on ease of construction and flexibility.

VCT4U2

VCT UPDATE We brought you the news of its existence first, and now we take a longer look at how this
revolutionary device does what it does - and why VCT is all set to start making news in a big way. So make sure you don't get left behind.

REMEMBER

REMEMBER

MEMORIES: A Data Sheet Special which will prove invaluable to all those involved in storing a bit on the side now and then. Find out whats available, and what it'll do. Memories are definitely made of this.

ELECTRONICS
 AND THE
 AUTOMOBILE

AUTO ELECTRONICS: The electron and the internal combustion engine may not sound a good pairing, but it's definitely a developing relationship with electronics encroaching ever further into the family saloon, and having a meaningful relationship with the fastback! Next month Dr Sydenham spares us no detail in the full story of just how far things have gone wheels within wheels. .. .

Panel Meter: LED displays are becoming almost compulsory in equipment these days, everything from ovens to overload indicators. Whisper it quietly though, their days are numbered! LCD has always the edge with its low power consumption, and greater legibility, and next month ETI goes LCD with our $31 / 2$ digit panel meter. Don't be mis-LED into missing it."

 (Typical electronic engineer's attitudelEd.) Not only may the speed not be exactly as indicated on the dial, it may (probably) change as the camera gets older. Therefore it is desirable that a simple method of determining the actual speed should be available.

This project describes the design and construction of a unit which is capable of measuring times from $1 / 10000 \mathrm{~s}$ to 10 s . This allows the actual speed to be measured and then used to calculate the correct aperture when taking those important photos.

It is suitable for checking cameras with a hinged or removable back so that the sensor can be placed in the film plane. For cameras where the film fits into a slot this unit cannot be used.

Construction

Commence construction with the PCB adding initially the nine links required. Next add the resistors and capacitors in the appropriate locations as shown in the component overlay. Note that capacitor C5 is polarised and must be inserted the correct way round.

The transistors and the displays can now be soldered in place taking care with orientation of the transistors.

The ICs are the last components to be installed and these must be in the correct location and orientation. As they are all CMOS devices (except IC2) the pins should not be handled if possible to minimise the danger of static electricity damaging them. When soldering them in, solder the corner pins (the power supplies), pins 7 and 14 or 8 and 16 first as this allows the internal protection diodes to work while you solder the other pins.
The front panel can now be drilled and cut. A piece of polarised plastic helps
as a display window. The switches, pushbutton and phone jack can now be fitted and connected to the PCB as shown in the component overlay. The only point which could cause problems here is that the phone jack connections sometimes vary, and you should check yours before connection.

The PCB can now be mounted onto the support bracket with 6 mm spacers and the bracket into the box with two screws. When positioned correctly, the display will be visible through the window and the battery holders will be held in position at the other end.

Sensortive

The sensor plate which contains Q1 and R1 can now be made. We used a piece of PCB material, although any non-conductive material which is opaque or translucent may be used. Start by cutting the plate to size and drilling a 6 mm hole in the centre. The phototransistor Q1 should be mounted with the curved surface (which is the active side) into the hole and R1 soldered to the leads, the whole assembly then being glued onto the plate with quick dry epoxy. Ensure that all conductive parts are covered with epoxy to prevent touching when in use.

-HOW IT WORKS

To measure the time the shutter is open we use a phototransistor, Q1, positioned in the film plane in the camera. When the shutter is operated and if the camera is focusing a bright light on to the transistor, the voltage across R4 will rise to about 7 V for the duration of the shutter being open. The transistor used is a Darlington type and is normally too slow for measuring times shorter than 1 ms . The addition of R1 increases the speed at the expense of sensitivity hence the need for a bright light.

The output across R4 is squared up by the Schmitt trigger formed by IC $1 / 1,2$. The output of this controls the input to the 10 kHz oscillator IC2. This is an ordinary 555 oscillator where the frequency is set by C1, R2, R3 and RV1. The output of IC2 is divided by 10 in IC3/1 and again by 10 in IC3/2. We use the enable inputs of IC3 as they give clocking on the negative edges, which is what we need. We now have three outputs of $10 \mathrm{kHz}, 1 \mathrm{kHz}$ and 100 Hz . One of these outputs is selected by SW $2 / 1$ which is a centre off toggle switch. When it is in the off position, 1 kHz is selected via R8, while in the other positions the 1 kHz signal is swamped by the low output impedance of the other dividers.

Whichever frequency is selected clocks IC4 which is a 3 decade counter-latch-multiplexer. We are not using the latch in this application. This IC simply counts the number of pulses it receives and with the help of IC5 (7 segment decoder-driver) and Q2 - Q4 displays the result on the LED displays. During the counting period the display is blanked to prevent ripple on the supply rail upsetting the 555 timer. The ripple would occur as the current changes with different digits displayed. The decimal point is controlled by SW2/2.

Two modes, single-shot and add, are provided. In the single-shot mode when light hits Q1 operating the Schmitt trigger the monostable formed by IC1/3 gives a pulse about 50μ s long which resets the main counter IC4 and the / 10 dividers, IC3. Pins 1 and 9 on IC3 which have to be low to allow clocking are taken high during the reset pulse only because it made the PCB easier and does not affect the operation. In the 'add' mode the reset pulse does not occur and unless the reset button is pressed the second and successive counts will simply add on to the previous count. This allows say ten tests to be made and the total divided by ten to find the average.

Fig. 1. Circuit diagram of the timer.

BUYLINES

All the components here are readily available. The only thing the home constructor might not have come across is the 2 N 5777 photo-darlington. This is not a rare device at all, however, and is stocked by Marshalls, Watford etc. etc. If you use an equiva-
lent type of display, make sure of the pin outs with respect to the PCB. If your type does not match up, the best thing would be to fix the displays to the front panel, and wire up from the PCB mounting holes.

Fig. 2. Component overlay and wiring diagram.

Calibration

The unit can be calibrated accurately enough with the aid of a stopwatch with a second hand. Set the camera up as detailed in the operational notes and using the single-shot mode, open the lens for five seconds. By adjusting RV1 get the reading close to 5 s .
Now use a longer time, say 20 s, noting that the first digit will be missing. (i.e. a reading of 8.52 represents 18.52 s while 2.31 would be 22.31 s) and finally adjust RV1.

To aid setting up a push button can be substituted for the phototransistor but the 'add' position should be used and the timer manually reset as contact
bounce can cause the display to reset on release of the button.

Operation

While the camera can be hand-held it is recommended that a tripod be used. Mount the camera on the tripod pointing at a light of $100-500$ Watts about $2-3$ feet away. Open the back of the camera and position the sensor plate so that the light is focused on the sensor. Initially, have the lens wide open; if enough light is hitting the sensor, the display will be blanked. Stop the lens down until the display comes on then go back one stop.

This sets the sensitivity and by selecting the appropriate range the shutter speed can be checked. ETI

Fig. 3. Connection of the transistor on the sensor plate.

TRANSISTOR Q1
CURVED SIDE IN HOLE

Fig. 4. Graph showing the relationship between time and shutter speed. Each of the small divisions on the right hand side corresponds with a $1 / 4$ stop.

Fig. 5. Waveform on the input (point 2) with the camera on $1 / 500 \mathrm{sec}$. The actual time was 2.1 ms .

Fig 6. Voltage across C1 during operation

Fig. 7. Expanded view of the start abave waveform.

Fig. 8. The output of the $\mathbf{5 5 5}$ showing the first four pulses.

WE ARE YOUR SINGLE SOURCE
Low Inclusive Prices - Fast Service
PCBs TOP QUALITY FIBRE-GLASS

Hammer Throw	5.70	Clock Board 'B Freezer Alarm	$\begin{array}{r} \mathrm{E} 2.80 \\ 60 p \end{array}$	TTY Card S68 Compander	$\begin{aligned} & £ 2.00 \\ & £ 2.10 \end{aligned}$
Race Track	¢1.00	Skeet	C2.16	Metal Locator	$75 p$
House Alarm	£2.90	Watchdog	£1.60	Audio Phaser	85p
				Sweep Oscilla	

Set of 2) Sweep Oscillator $\mathbf{E 2 . 4 0}$

POPULAR INTEGRATED CIRCUITS

1/4 Watt 5\% Carbon Film 4R7 to 10M	1.5p	100 same value	¢ 1.00
1/2 Watt 5\% Carbon Film 4R7 to 1 M	2.0 p	100 same value	£1.50

Midget Carbon Track 5 K to $2 \mathrm{M} \quad 27 \mathrm{p}$ Multiturn Cermet Presets $\quad . . . \quad$ 75p Miniature Skeleton Presets, Vertical and Horizont
Midget Carbon Track with DPST Swith Log 5 k to 1 M , Lin 25 K to 500 K Dual Axis Joystick Pontentiometer (2 x 10 K lin pots) $\quad 6 \mathrm{~K}$ to $500 \mathrm{k} \quad 6$

	ELECTROLYTICS (Capacity/Voltage)						
100/10	6 p	33/16.	7p	50/25	7p	220/15	9p
100/15	8 p	47/25	7p	100/63	25p	1500/18	18p
25/25	7 p	4700/50	60p	10/12	$6 p$	200/25	12 p
$500 / 25$	20p	500/10	10p	640/16	12p	50/15	7p
220/10	8p	100/16	8p	100/25	${ }_{9 p}$	10/25	6p
						330/25	12p

 Verobox Type 65.2520 J as specified for the ETI Metal Detector £2.40 IC Sockets DIP
8 pin 18p 14 pin 27p 16 pin \quad 30p 24 pin
45p
Edge Connectors 0.1 pitch 45 way single sided
All Prices Include V A.T. but please add 25 p P\&P to all orders
Telephone Enquiries Welcome
R.F. EQUIPMENT SPARES LIMITED

3 Lacy Close, Wimborne, Dorset. Tel. Wimborne (0202) 885854

UITRASONIC SWITCH

Two-board design forms basis for a wide range of applications from door-bells to data Iransmission!

THE USE OF an invisible beam to transmit information or to act as an alarm system has always been fascinating. We have described light operated systems of the infra-red (invisible), normal light and laser beam types. We have also published a radar alarm system. This unit uses a high frequency acoustical beam, well above the range of human hearing, which can
be used simply as a door monitor, i.e. to give an alarm if the beam is braken, or can be modulated at up to several hundred Hz . This will allow information to be transmitted details of how to do th is will be given in future issues.

Construction

The construction of the units is not

Fig. 1. Circuit diagram of the receiver.

Fig. 3a. Waveform Ecross the transducer on the transmitter.

Fig. 3b. Voltage on the base of $\mathbf{0 2}$ in the transmitter.
critical - any method may be used although the PC boards are recommended. We didn't mount the relay on the PCB as it can vary in size and if the unit is later used with a modulated beam, the relay will not be needed.

The anly adjustment on the unit is the sensitivity control and this should be set to give reliable operation. The transmitter needs a supply voltage of

8 V to 20 V at about 5 mA . This could come from the regulated supply on the receiver board.

If it is required to extend the effect of a quick break in the beam or a quick burst from the transmitter, the resistor R 9 can be replaced by C 4 and this will give a minimum operation time of about 1 second.

ETD

Fig. 2. Circuit diagram of the transmitter.

Fig. 3c. Voltage on the coilector of 02.

HOW IT WORKS

Transmitter

This is an oscillator the frequency of which is determined by the transducer characteristics. The impedance curve of the transducer is similar to that of a crystal with a minimum (series resonance) at 39.8 kHz followed by a maximum (parallel resonance) just above it at 41.5 kHz .

In the circuit the two transistors are used to form a non-inverting amplifier and positive feedback is supplied via the transducer, R6 and C3. At the series resonant frequency this feedback is strong enough to cause oscillation.

Capacitors C1 and C4 are used to prevent the circuit oscillating at the third harmonic or similar overtones while C5 is used to shift the series resonant point up about 500 Hz to better match the receiver.

Receiver

The output from the transducer is an a.c. voltage proportional to the signal being detected (40 kHz only). As it is only a very small level it is amplified by about 70 dB in Q1 and Q2. D C stabilization of this stage is set by R1 and R3 while C1 closes this feedback path to the 40 kHz A C signal.

The output of Q2 is rectified by D1 and the voltage on pin 2 of IC1 will go more negative as the input signal increases. If the input signal is strong the amplifier will simply clip the output, which on very strong signals will be a square wave swinging between the supply rails.

1C1 is used as a comparator and checks the voltage on pin 2 , i.e. the sound level, to that on pin 3 which is the reference level. If pin 2 is at a lower voltage than pin 3, i.e. a signal is present, the output of IC1 will be high (about 10.5 volts) and this will turn on Q 3 which will close the relay. The converse occurs if pin 2 is at a higher voltage than pin 3.

A small amount of positive feedback is provided by R9 to give some hysteresis to prevent relay chatter. If R9 is replaced by the capacitor C 4 the IC becomes a monostable and if the signal is lost for only a short time the relay will drop out for about 1 second. If the signal is lost for more than 1 s the relay will be open for the duration of the loss of signal.

We used a voltage regulator to prevent supply voltage fluctuations triggering the unit. The relay was not included on the regulated supply, allowing a cheaper regulator to be used.

Fig. 7. Printed circuit board of transmitter. Full size $46 \times 36 \mathrm{~mm}$.

BUYLINES

This project was designed with simplicity in mind and as a result uses components that should be available from most suppliers of electronic components. The only items likely to be difficult to obtain are the transmitter and receiver. In case of difficulty however these can be purchased from Audio Electronics at 301 Edgware Road, London

SPECIFICATION
frequency
RANGE
MAXIMUM MODULATION
FREQUENCY (NOT WITH
RELAY OUTPUT)
OUTPUT
POWER SUPPLY
TRANSMITTER
RECEIVER

40 kHz
5 metres

250 Hz
relay, closed when beam is made

14-25 V DC
$10-20 \vee D C$
$8-20 \vee \mathrm{DC}, 4 \mathrm{~mA}$

NOW IT IS HERE The new liquid crystal display watch with ALARM!

This beautifully finished watch in stainless steel shows hours, minutes and seconds constantly. Also month and date. The day of the week is shown in Alphanumeric display

The alarm is simple to operate and set, and easy to check, once set and activated it bleeps penetratingly for about 15 seconds. If you want a reminder just press before 15 seconds are up and it will go off again in 5 minutes to call you. This you can keep doing until you want to get up. Automatic calendar for 29,30 and 31 days. A back light for night viewing. There is nothing quite like it on the market and at $£ 59.95$ inc. VAT it is fantastic value with a full 12 month manufacturer's guarantee. Just send cheque/postal order to:

Tritron

57 Bridge Lane, London, N.W. 11 4584755
Mail order supplies only
(Please add 65p P\&P)

TRANSFORMERS Panel Meters, Bridge Rectifiers, Power Supply Units Multimeters - Semi Conductors - Timers - Safebloc	
	(ex
	(in)
20.0.1527 19.4A 2044	
,	
	$\begin{array}{lcr}60 & 120 \quad 14.75 \\ \text { AUTO TRANSFORMERS }\end{array}$
108 ${ }_{1}^{10}$	何
${ }_{20}^{16} 880$	
	O-
	$\begin{aligned} & 300 \\ & \hline 1000 \end{aligned}$
	1
(ex	coid
(eater	
catalocut 30p	(1000
Bercese ado Vatat	

38555 CIRCUITS

It can be a nuisance can't it, going from newsagent to newsagent? "Sorry squire, don't have it - next one should be out soon." Although ETI is monthly, it's very rare to find it available after the first week. If it is available, the newsagent's going to be sure to cut his order for the next issue - but we're glad to say it doesn't happen very often.

Do yourself, your newagent and us a favour. Place a regular order for ETI; your newsagent will almost certainly be delighted. If not, you can take out a postal subscription so there's nothing for you to remember - we'll do it for you.

For a subscription, send us $£ 6.00$ ($£ 7.00$ overseas) and tell us which issue you want to start with. Please make your payment (in sterling please for overseas readers) to ETI Subscriptions and keep it separate from any other services you want at the same time.

ETI Subscription Service,
Electronics Today International, 25-27 Oxford Street, London W1R 1RF.

STRIKE YOUR OWN BARGAIN WITH
 THE SCHEME
 5tirling

Britain's most go-ahead module manufacturers

CHOOSE THE ITEMS YOU WANT AND BUY THEM THE STIRLING SOUND BARGAIN WAY whether for a new system, to up-grade what you use now, to build a disco or P.A. outfit, a domestic intercom or any other device where an amplifier might be used. Whatever it be, there's a Stirling Sound power amp for it up to 100 watts R.M.S., together with a choice of stereo tone contral/pre-amps. Build with Stirling Sound now! See what you save and hear how good it sounds.

Made in our own Essex
factory and sold direct to you, the user.

INFO SHEETS - the new way to build your Stirling Sound
Catalegue. LARGE $12 \frac{1}{2}$ p S.A.E.
brings first set (A. 4 size) covering
 items advertised here.

With control facilities similar to UNIT ONE but far magnetic cartridge input. Input sensitivity - 5 mV far 200 mV out (can be varied). WITH FREE CONTROL PANEL FASCIA $£ 12.43$
\square CONTROL PANEL FASCIA ovailable separately 50 p

- SS. 100

Basic active stereo tone control module to provide $\pm 15 \mathrm{~dB}$ on bass at 30 Hz and on treble at 10 KHz . $£ 3.00$

- SS. 101

Stereo pre-amp suitable for ceramics, tape, radia, etc. £2.75
-SS. 102
Stereo pre-amp for mag. pick-ups. £4.45
■ F.M. STEREO DECODER, phase lock loop type, with LED indicator showing when o stereo transmission is being received.
£5.25
WHEN ORDERING
ALL PRICES QUOTED INCLUDE V.A.T. AND GOODS ARE SENT POST FREE IN U.K. Owing to time between sending our ad, to this journal and the time it ORDER BY ACCESS OR BARCLAYCARD - SIMPIY IET US HAVE YOUR NUMBER.

Stirling 5ound
 Dept. PE178

37 VANGUARD WAY, SHOEBURYNESS, ESSEX. Telephone (03708) 5543.
Shop - 220-224 West Rd., Westcliff-on-Sea, Essex Telephone Southend (0702) 351048.

AMPLIFIERS 3 to 100 WATTS R.M.S. POWER UNITS

Reody ossembled on P.C.8s., tested and guaranteed. Eas
to connect. With instructions. Outputs rated $\ddagger 1 \mathrm{~d} 8$.
55.103 I.C. amp. 3 watts R.M.S. using $20 \mathrm{~V} / 8 \Omega$ or $14 \mathrm{~V} . / 4 \Omega$. Input 100 mV . SS.103-3 Stereo version of above, 2 I.C.s SS. 1055 watts R.M.S. into 3Ω using 135 V Sensitivity $=30 \mathrm{mV}$. THD -0.3%.
$3 \frac{1}{\prime \prime}^{\prime \prime} \times 2^{\prime \prime} \times 1^{\prime \prime}$.
55.11010 watts R.M.S. into 4Ω using 24 V Sensitivity - 60 mV . THD -0.3% $3 \frac{1}{2}^{\prime \prime} \times 2^{\prime \prime} \times 1$ 1"
20 wans R.M.S. into 4Ω using 34 V Sensitivity - 80 mV . THD - 03% $31^{\prime \prime} \times 2^{\prime \prime} \times 1^{\prime \prime}$ Sensitivity -140 mV . Distortion - Less than 0.05% into 8. S / N better than 70 dB .
$55.140 \quad 40$ watts R.M.S. into 4Ω using 45 V Sensitivity - 300 mV . Distortion typically $0.1 \% .5^{\prime \prime} \times 3 \frac{1}{4}$ " $\times 1 \frac{1}{4}^{\prime \prime}$.
64 watts R.M.S. into 4Ω Using 50 V Sensitivity - $5^{350 \mathrm{mV} \text {. Distortion }}$

SS. 1100 rypically $0.1 \% .5^{\prime \prime} \times 3 \hbar^{\prime \prime} \times 1 \underline{x}^{\prime \prime}$.
100 watts R.M.S. into 4Ω usi
£8.50 $70 \mathrm{~V} / 2 \mathrm{~A}$. Input sensitivity -500 mV Distortion at half-power, typically $0.1 \% .5^{\prime \prime} \times 3 t^{\prime \prime} \times 1 t^{\prime \prime}$. HS. 160 Multi-finned heatsink for SS. 140 or HS. $1100 \begin{aligned} & \text { SS. } 160 \text { D } \\ & \text { Dito for } \$ 5.1100\end{aligned}$

Every Stirling Sound Power Unit is tested and guaranteed under working conditions before despatch. All units except SS. 312 include a stabilised low voltage take-off point (13-15V) for pre-amp, tone control, radio tuner, etc. Outputs quoted minimal unloaded ratings.

Improved circuitry and performance standards. More to choose from.

Microfil

I SUSPECT THAT this year will be the one during which personal computing "takes off'" in the UK. This seems likely because until now, although the micros we all know and love have been available, together with a multitude of development kits, bought by many in the mistaken belief that they were all the manufacturer's advertising claimed they were, there have been few, if any, low-cost micro-computers on sale in this country. All this will change in the next few months.

The Research Machine's 380Z, described in December's Microfile, was, perhaps, the first system that could rightly qualify as a home-computer to come onto the market over here. This month we look at two new additions to the range of home systems in detail, together with two further products, that will contribute to the broad range of computers for the home, likely to be available before 1978 is out.

Lynx With NASCO

The first machine we shall examine is the NASCOM 1. This is described as a complete microcomputer kit and sells for $£ 197.50$ plus VAT. Now a phrase like complete computer kit when appended to a product selling for less than a good few hundred pounds is generally a euphemism for what most of us would refer to as a development kit, something with Hex Keyboard Input,

LED displays a very basic monitor plus small amount of RAM. Not so with the NASCOM 1.

The specification for this piece of equipment includes full alphanumeric keyboard for data input, 1 Ks worth of powerful monitor, 2 K of RAM, full character generating logic for display of output on a TV screen, easy expansion plus, one might say, many more attractive features.

In short the NASCOM 1 does provide what most of us would agree are the minimum requirements of a home computer at a price that until now would buy little more than a development kit. In order to find out more about the NASCOM 1 I went up to Chesham to meet the people responsible for this little goodie.

The NASCOM 1 is manufactured by NASCO (that stands for North American Semiconductor Company). While many of us will not have heard of NASCO before, many of us will be familiar with Lynx Electronics which is the part of the NASCO group that deals with the amateur electronic market. The NASCOM 1 was designed with the amateur in mind, and because of Lynx's strong base in this area the NASCOM 1 will be marketed via Lynx. If all this sounds a bit complicated, don't worry, all that counts is that we can get our hands on a cheap home computer.

Unlike other companies that have produced micro based systems, NASCO decided not to undertake the development work themselves, but to employ the services of a consultant. This facility was in the form of

Fig. 1. A block diagram of the NASCOM 1 system.
ELECTRONICS TODAY INTERNATIONAL - FEBRUARY 1978

The photograph on the left shows the NASCOM 1 single board computer. The user requires only a standard TV receiver and a cassette recorder to complete a powerful and versatile home computer system.

Shelton Instruments Ltd or, more simply, Dr Shelton. NASCO provided Dr Shelton with a number of design aims that were to be realised in the final product - these included producing the system for around $£ 200$, using the best available products (not just those from one favoured manufacturer), to design for maximum control by software (always a good idea - well nearly always) and to design the basic system so that it might easily be expanded to incorporate extra facilities.

These aims, together with a few more, were formulated after considerable discussion amongst the NASCO staff and some five months later the design was finalised. Easy to say but no doubt those five months included many late nights and salt pills (all that sweat).

Five months may not seem a long time in which to develop a complex project of this nature, but it is necessary to work on this sort of time scale because otherwise there is a danger that the system will be out of date by the time of its launch (a fate that has befallen many an electronics entrepreneur).

The general form of the NASCOM 1 can be seen in the block diagram shown in Fig. 1. It can be seen that the Z80 MPU has been chosen for the system. This MPU with its efficient machine language, speed, simple hardware support plus other sophisticated features (automatic dynamic RAM refresh, easy 16 bit arithmetic, etc), seems to be the automatic choice for many systems being designed at the moment.

All the systems components are mounted on a single PCB card. Care has been taken to ensure that the kit is easy to assemble, for example by plating through all the through board links on the PCB, so that most people should have no trouble constructing the kit.

The monitor will allow easy development of software
and provides the following commands:
1 EXECUTE
2 SET BREAKPOINT
3 SINGLE STEP
4 TABULATE on screen
5 EXAMINE/MODIFY memory
6 DUMP memory to serial I/O.
7 LOAD from serial $1 / 0$
8 COPY memory from one block to another.

System Support

In any system it is important that additional support, both hardware and software, is available to the purchaser of any system. Lynx are aware of hardware add-ons, CUTS interfaces, 4 K RAM cards, S 100 interfaces, etc, as well as giving thought to such things as a TINY BASIC. They are also expanding their staff to enable the technical back-up that is all so important to be available to those who need it.

I do not have enough space to mention all the details of the NASCOM 1 and if, as I suspect, you would like to know as much about it as possible, get in touch with Lynx at the address shown below and they should be able to help: Lynx Electronics, 92 Broad Street, Chesham, Bucks.

Incidently if you would be interested in attending any future symposia held by Lynx, they are considering a Manchester venue for the next, please get in touch with them at the above address.

TRS-80

The second system I should like to look at this month is the Tandy TRS-80. Now to most of you the name Tandy will be associated with a shop in the High Street that sells some audio gear and a few components. This, to say the least, is the tip of a vast iceberg. The Tandy Corporation owns the Radio Shack chain of shops which

Heathkit's H8 should be available during the spring of 1978 and will be one of a range of home computers available at that time.
comprises over 6000 outlets across the USA and Canada plus about 500 more operating world-wide. The British chain represents about one half of one per cent of the group's turnover. To say the TRS-80 has resources to back it up is an understatement

There is only one TRS-80 in this country at the moment. Since its launch in the States Tandy have not been able to make enough of them, hence the shortage of supplies. The machine was in Birmingham (a place of many a mis-spent youth - including your correspondent's) so I travelled up there to see the machine in action.

The TRS-80, unlike the NASCOM 1 , is not a kit, but is supplied fully built. It comprises four main units - a case containing the MPU (again the 280) plus ROM. RAM and a 53 station keyboard, a $12^{\prime \prime}$ monitor a cassette recorder and, finally, a power supply.

The basic TRS-80 is supplied with 4 K of ROM containing the system's BASIC interpreter. Th is is a fairly powerful floating point basic package, which also takes care of keyboard input, output to the monitor and cassette I/O and file handling

The minimum system is provided with 4 K of user RAM implemented with dynamic devices. The memory may, by using simple jumpers, be expanded to 16 K and to 64 K with an external memory card

The monitor displays the system's output as 16 lines of 64 characters displayed as a 5×7 dot matrix in a 6×12 cell. The system is also capable of providing a versatile graphics display capability.

The cassette interface runs at 300 baud but is NOT CUTS. In this system a logic 1 is stored as a pair of pulses while a logic 0 is stored as one pulse. In use, however, the system appeared to give no problems.

It was nice to see that the instructions provided were excellent. The set I saw was a proof copy but I am told the final item will be much the same. The instructions started off with a description of the machine and then, with the help of a question and answer format encouraging the use of the TRS-80, dealt with the use of BASIC finishing with quite sophisticated programs.

There is also a range of software available on tape, from games programs to Kitchen Menus and a handy Personal Finance package. Tandy plan to add to the range of this software as a continuing program.

It is also nice to note that plans for additional items of hardware to make the systems forty way bus connector are well advanced - line printers, floppies, MODEMS and additional memory are a few of the products in the pipeline.

Tandy expect supplies of the TRS-80 to begin arriving in March and in the meantime if you want more information of this very attractive system contact Tandy at the address below. Oh, I almost forgot, the price. Not finally fixed yet but about $£ 500$ - and a bargain at that

Tandy Corporation, TRS-80, Bilston Road, Holyhead Road, Wednesbury, Staffs, SW10 7 JN.

More To The Fore

The three systems described so far will be joined by at least two others, the Heathkit H 8 and Commodore's PET, provide a wide range of price and performance to choose from when buying a microcomputer

We shall probably see other organisations developing products to exploit this area of consumer interest and I for one will not be surprised if 1978 sees the launch of many more systems to compete with the five mentioned above.

ETI

IS YOUR CHESS UP TO OUR COMPUTER'S CHALLENGE?

COMPUTERISED

"CHESS CHALLENGER"
-Microprocessor Brain Power
A chessboard with a micro computer built into it. You can compete against the micro computer at this challenging game or skill. BASIC Model is program different and exciting.
The computer has been specially programmed with some "gaps" in its knowledge (the sort of gaps a good human chess player would have) and for this reason a player who is average to fairly good will actually be able to beat the game $25 \%-70 \%$ of the time. Features include: Castling and en passant, plays Black or White, any position can be set up. position terification by computer memory recall. Shows your position, scans your move and replies; SAE
play. (a) Equal and identical to the level 3 levels of play. (a) Equal and identical to the level at which terms of skill). (c) Highly skilled level of play you on your toes, difficult to beat, very pood on the end game. Scans up to 60,000 moves (at $£ 199$ inc. VAT).
Electronic Backgammon game available. SAE. We accept University/Govt./Company Purchase SAE for relex or Phone. All prices incl. 8% VAT AE for data only, C.W.O. to:-

KRAMER \& CO. DEPT. FLD.
HOLDERS HILL ROAD, LONDON NW4 IEJ Telex 888941, Attn. KRAMER K7 Telephone: 01-203 2473 EXPORT ORDERS WELCOME

AUDIO FAX AMAZING OFFER

DC operated stereo tone control IC TCA 740

Normal Price £3.10
Our Price $£ 2.00$
Compatable DC operated stereo volume balance and loudness control IC TCA 730

Normal Price £3.63
Our Price £2.49
For quantities of 25 thru 100 less 15\%
Ideal for use with Cordless Remote Control HiFi Systems.

Hurry whilst stocks last

Orders to:

videocraft
BOX No. 35 Electronics Today International, 25/27 Oxford St., London W1 R 1 RF
Videocraft Assets Hse., Elverton St., London SWt

General description

The MM5837 digital noise source is an MOS/MSI pseudo-random sequence generator, designed to produce a broadband white noise signal for audio applications. Unlike traditional semiconductor junction noise sources, the MM5837 provides very uniform noise quality and output amplitude. The circuit is packaged in an 8-lead Epoxy-B mini-DIP.

Features

- Uniform noise quality
- Uniform noise amplitude

Applications

- Electronic music rhythm instrument sound generators
- Music synthesizer white and pink noise generators
- Room acoustics testing/equalisation

Logic And Connection Diagrams
 Dual-In-Line Package

Electrical Characteristics

PAFAMETER	canditions	MIN	TVP	MAX	UNITS
Output ll cated 20 kith to $V_{s s}$ and 20 kS io $V_{\text {bo }}$ Ligiceal "1 Level Ligieal "j" Lival ligieal "D" Livel Stipply Curremts loo lee.	$\text { Th }=25^{\circ} \mathrm{C}$ $V_{\text {be }} \text { M Vod }$ No Output liout	Vssils Vod Vob 3		$\begin{gathered} \text { Vsis. } \\ \text { Vom } \\ \text { Yos }+1.5 \end{gathered}$	

Absolute Maximum Ratings At $\mathrm{Ta}=25^{\circ} \mathrm{C}$ (Unless Otherwise Specified]

Supply voltage, Vcc (1). pin 15				
Supply voltage, Vcc (2), pin 14				
Input voltage applied to any device terminal				
Storage temperature -663 C to				
Operating temperature range Lead temperature inch from case			C $10+$	
Lead temperature inch from case for 10 seconds				
Recommended operating conditions	MIN	TYP	MAX	UNITS
Supply voltage, Vcc_{1}, pin 15	4.5	5.0	5.5	V
Supply voltage, Vcc_{2}, pin 14	5.7		9.0	V
Operating free-air temperature	0	25	70	C

THE SN76477 is a bipolar/I2L device that provides a noise source, VCO, low frequency oscillator, envelope generator, plus various mixing and control logic on a single 28 pin DIL package. By the connection of appropriate external components and application of logic level control signals a wide variety of complex sounds can be synthesized. The design of the SN76477 allows for maximum user flexibility and the device should prove useful in applications requiring audio feedback to an operator (home video games, toys, timers. alarms, etc.).

The block diagram in Fig. 1 shows the main circuit blocks, each of which is described in detail below.

SLF (Super Low Frequency Oscillator)

The SLF can be operated in the range $0.1-30 \mathrm{~Hz}$, the specific frequency is determined by a control resistor connected to pin 20, and a capacitor connected to pin 21 The frequency being given by the following equation.

$$
F_{\text {SIF }}=\frac{0.64}{R_{\text {SLF }} C_{\text {SLF }}} \mathrm{Hz}
$$

VCD (Voltage Controlled Oscillator)

The VCO provides an output whose
frequency is dependent upon a voltage fed to its input, the higher the voltage the lower the frequency. The control voltage may be either the SLF output, or an external voltage applied to pin 16, the SLF output being selected when the voltage applied to pin 22 is a logic ' 1 ', and the external source when pin 22 is at logic ' 0 '

The "range" of the VCO is internally set at a ratio of 10:1. The minimum VCO frequency is determined by a control resistor connected to pin 18 and a capacitor to pin 17. This minimum frequency is given by the equation:

$$
F_{\mathrm{M}: \mathrm{N} \mathrm{VCO}}=\frac{0.64}{R_{\mathrm{VCO}} \mathrm{C}_{\mathrm{VCO}}} \mathrm{~Hz}
$$

The "pitch" of the VCO's output is changed by varying the duty cycle of the output. This is achieved by adjusting the ratio of the voltages at pins 16 and 19 . The duty cycle is given by the following equation:

$$
\text { vco Duty Cycle }=0.5\left[\frac{V \text { pin } 16}{V \operatorname{pin} 19}\right\rceil \%
$$

leaving pin 19 high produces an output with 50\% duty cycle.

Noise Oscillator

The "noise oscillator" supplies random frequencies for the "noise generator". The noise oscillator requires a 43 k resistor to ground at pin 4. The "noise oscillator" controls the rate of the "noise generator". An external noise oscillator may be used to provide this control. The external source is applied to pin 3 and provides an automatic override of pin 4.

MIXER SELECT C	MIXER SELECT B	MIXER SELECT A	MIXER OUTPUT
PIN 27	PIN 25	PIN 26	
0	0	0	VCO
0	0	1	SLF
0	1	0	NOISE
0	1	1	VCO/NOISE
1	0	0	SLF/NOISE
1	0	1	SLF/VCO/NOISE
1	1	0	SLF/VCO
1	1	1	INHIBIT

TABLE 1

Noise Generator/Filter

The output of the "noise generator" feeds an internal noise filter. This "rounds off" the generator's output, reducing the HF content of the noise. The upper 3 dB point is given by

ABSOLUTE MAXIMUM RATINGS

AT TA $=25^{\circ} \mathrm{C}$ (Unless otherwise specified)

SUPPLY VOLTAGE, Vcc (1),
PIN 15 PIN 15 PIN 14 12.0V
INPUT VOLTAGE APPLIED TO ANY DEVICE TERMINAL 6.0V Storage temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
OPERATING TEMPERATURE RANGE . $-55^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$
LEAD TEMPERATURE
1/16 INCH FROM CASE
FOR 10 SECONDS,$+260^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

MIN TYP MAX UNITS
SUPPLY
VOLTAGE, VCC1
PIN 15 4.5 5.05 .5 V
SUPPLY
VOLTAGE, Vccz.
$\begin{array}{lll}\text { PIN } 14 & 5.73 .0 & \end{array}$
OPERATING
FREE-AIR
TEMPERATURE $0 \quad 2570 \quad{ }^{\circ} \mathrm{C}$
OPERATING CHARACTERISTICS
AT TA $=25^{\circ} \mathrm{C}$ AND Vcc $1=5.0 \mathrm{~V}$

TABLE 2

ADL		
SELECT 1	ADL	
SIN 1	PIN 28	OUTPUT
0	0	
0	1	VCO
1	0	MIXER ONLY
1	1	ONE-SHOT

$\mathrm{T}_{\mathrm{OS}}=0.8 \mathrm{R}_{\text {OS }} \mathrm{C}_{\mathrm{oS}}$
where $R_{\text {os }}$ and $C_{\text {os }}$ are external components connected to pins 24 and 23 respectively. The, maximum duration of the "one-shot" is about . two seconds.

The "one-shot" logic is triggered by the trailing edge of the system enable logic control signal.

ADL (Attack/Decay Logic)
The ADL determines the envelope for the mixer's output. The envelope selected is
determined by the ADL control inputs to pins 1 and 28 , the output selected being shown in Table 2.
Envelope Generator and Modulator
The attack/delay characteristics of the output are determined by the components connected to pins 7,8 and 10.

The attack and delay times are given by the following:
$T_{A T T A C K}=R_{A} C_{A / D} \operatorname{secs}$
$T_{D E L A Y}=R_{D} C_{A / D}$ secs
where $C_{A / D}$ is the attack delay capacitor connected to pin 8, and R_{A} and R_{D} are resistors connected to pins 7 and 10 .

Output Amplifier

The output amplifier provides a low impedance output. The peak output voltage is determined by the following equation:
$v_{\text {our }}=\frac{3.4 R_{\mathrm{S}}}{\mathrm{R}_{\mathrm{G}}}$
where R_{s} is a summing resistor connected to pins 12 and 13 (set equal to 10 k) and R_{G} is a gain resistor connected to pin 11

Notes:

1. Supplies greater than 5 VO may be used in which case they should be connected to pin 14 to allow the internal regulator to supply the internal circuit requirements.
2. For dedicated sound logic inputs (pins 1, $9,22,25,26,27$ and 28) may be hard-wired to high or low logic levels.

ETI SPECIALS

TOP PROJECTS
No. $1+$ No. 2 A massive 180 page book contanng all the propects org.gnaily descrited in ou flist ino
 October 1974 and June 1975 - which are
now out of print now out of print
Projects include Master Mixer foow
Gutar Amp Gultar Amp Low 户ower Laser Printimer Transistor Tester Mixer Preamp Logic
Probe Simple Amp. N. Cad Battery Charger Loudhailer Scope Caltbrator Electronic Ignition Automatic Car Thelt Alarm Turn Indicator Canceller Brake Light Warning LM 380 Circuils Temperalure Alarm Aerial
Maicher UHF TV Preamp Metal Locator Macher Chif TV Preamp Metal Locator.
Four Input Mixer Super Steree IC Power Supply Rumble Filter ic Testier, IGnition
Timing Light 50 W Stereo Amp PIUS MANY Timing Light 50W Stereo Amp PLUS MANY
MORE
$£ 2.50+25 p$ P\&P

ETI CIRCUITS No. 1

Contains nearly 250 circuits largely taken from the best of our Tech-Tips Great care rapid selection An additional section at the back gives plenty of reference data including transistor specs and equivalents Sales of this publication have been excelient - hardly surprising when the circuits cost less than ip each
$£ 1.50+25 p \mathrm{P} \& \mathrm{P}$

TOP PROJECTS No. 3 Orgunaly pubished in March 1976 Top
 Stereo Now Suund lor youn Gina sies Booster Lime Amplitur Lountrosss Conue

 Dimmet fM funer hutuer Alasm Ligm $£ 1.00+25 p$ P\&P

Top Projects No. 3 is now in very shore supply and we cannot meet orders once current stocks are exhausted.

TOP PROJECTS No. 4
Pubished October 1976 This includes
Sweet-Sixteen Stereo Amp Sweet-Sixteen Stereo Amp. Waa-Waa
Audio Level Meter Expander-Compressor Car Anti- Thett Alarm. Headtight Reminder Dual-Tracking Power Supply Audio Intruder Alarm, Touch Switch. Push-Bution Dimmer, Exposure Meter Photo Timer Electronic Dice High Power Beacon
Temperature Controller Electronic One Armed Band! plus many more

$£ 1.00+25 p$ P\&P

DCTADAMOR.AF METCR. DGITAL DESPLAY. IMPIDANCE MEIGA, T1 supringsith, Dlaisal TMUMG BIGHI. OELOUM, TACAO CAOAR INTMUSR ALARM. BIKE Ftrbe Flichlowic lentrion - ITO-WMFPFIWORES CSNTHGHT Dillilmer comsinamon lock. DHLL FPED CONTIBOLLFR LGMT

ELECTRONICS - IT'S EASY

Our successful series (which finishes with the very issuel) is to be available in three volumes.
Volume 1 and 2 have now been reprinted rdered the continuing demand, and can be
£1.20 + 25p P\&P

gectroncs
 -its easy

audiophile.

This month Ron Harris offers up a report from the Australian ETI on the Heil [air motion transformer) Bass Driver, which has had a long and chequered development. ESS now seem to be moving into production, however, so

It appears as though a production version of the Heil bass driver is finally on the way. At a consumer show in Chicago recently, a thing called the Transar was on view, and behind the name lurks the long awaited woofer. The principle has been with Heil for some time. They showed what is now the basis behind Transar at the Sydney (Australia) Electronics show last year.

From the time of the air motion transformer's introduction ESS have planned to produce a bass unit using similar principles. The fundamental difference between the Heil driver and conventional drive units is the rapid acceleration of large volumes of air from the drive radiating surface; air being squeezed out frombetween the Heil drive units' pleats.

Time to produce

With the production bass unit now looking a reality, we thought it timely to examine the principle behind the unit, as Heil showed their hand at the Sydney exhibition.

At this demonstration a specially modified ESS power amplifier was used. The amplifier was modified to reduce damping factor, because the drive unit itself is largely selfdamped (to be discussed shortly) and additional damping from the amplifier was found to degrade performance. The prototype used a fairly conventional moving coil driver, but the coil former was not attached directly to the diaphragm, but was linked to four vertical rigid rods. These rods were in turn bonded to a number of relatively small individually suspended diaphragms made of a specially-developed formedplastic material with integral suspension giving very long throw. Angled 'baffles' separated each diaphragm and these were so designed as to isolate front and rear outputs (of opposing phase) from the diaphragms.

The motor system operated in a vertical plane, thus causing the diaphragms to move up and down also. As the upper surfaces of the diaphragms move upwards, the volume of the cavities created by the diaphragm/baffles is reduced and so air is squeezed outwards from the cavities. At the same time, at the rear of the drive unit, the concurrent upward movement of the lower surface of the diaphragm increases the volume of the diaphragm/baffle cavity, drawing air inwards. Thus there is the same inhale/exhale characteristic of air movement as featured in the Heil high frequency drive unit.

Coupling to advantage

A great advantage of this concept is excellent coupling of the diaphragm to the air. The radiating surface area is far greater than conventional speakers in which air is merely pushed or pulled by the diaphragm.

The moving mass of the Heil system relative to the amount of air displaced is far lower than in the vast majority of other speaker systems and as a consequence the air will damp the diaphragm to a greater extent than with conventional high mass dynamic cone systems.

Thus amplifier damping - which in effect shorts out the back-EMF caused by the coil's continuing movement after the signal has ceased - apparently modifies the natural motion of
the Heil system sufficiently to prevent it from responding correctly to wanted output from the amplifier.

Possibly this need for an 'undamped' amplifier could be the main reason for delay in the appearance of the Heil woofer. It also seems likely that the amt-2 (which designation has been set aside for the full-range Heil system) will be a bi-amped or possibly tri-amped speaker, using suitable electronics at the bass end, fully integrated with the drive unit and its somewhat curious load demands, and a more conventional electronic arrangement for higher frequencies.

Only one Heil bass air motion transformer was available for the 1976 CES. Thus the demonstration was strictly mono, and imperfect matching between the HF system comprising a standard Heil unit, was used in the existing amt-1A, and the low frequency system did little to help matters. Nor did the crowded exhibition conditions. Nevertheless, the Heil woofer, mounted on a large open baffle, spoke more than adequately for itself, delivering the kind of bass quality expected only from the better transmission lines (and without their efficiency penalty) or uncompromised custom built systems.

This ETI-prepared drawing shows the most probable form of construction.

Wafting in on the sea breeze from Japan comes news of another 'Rock Folly'. Would you believe a 350 W class A amplifier' Matsushita INCs designers have surfaced from the labs bearing a beasty with talents claimed to be class As low distortion and class Bs efficiency.

Class A designs have always received the audiophiles nod of approval for their fidelity, and the thumbs down from the power station for a lack of efficiency. $(\approx 25 \%)$. This is due to the output stage never being off. Class B on the other hand has a much higher efficiency, circa 75%, but suffers from a rash of nasties-not least of which is crossover distortion.

Those cunning Matsushita people have attempted to get around the gremlins by driving the output stage from a different power supply to that which pushes watts into the speaker! The circuit works by virtue of having two amplifiers, one signal (load driving) and the other dubbed 'power supply'. The output of the latter is connected to the centre point of a $\pm 5 \vee$ supply, which thus floats at load voltage. This then powers the output pair.

Input signals are fed to both amps simultaneously, and both are made to have identical voltage gain, by generous use of negative feedback amongst other things. (Nobody mention TID or Ricochet please) All this means the output is only powered when there is something to power it for, hence lowering dissapation and raising efficiency.

The unit needs 1 kW power requirement to push out its rated watts, and can deliver into either four or eight ohms quite happily. Distortion is less than 0.003% at 350 W right across the audio band. Only limited production is at present going on, and the price in America is a dissapating $\$ 4000$.

Block diagram of the Matsushita 350W ampilifier circuit which is designated A+.

AUDIOPHILE has its own query service, independent of ETI's reader enquiry system. This is intended solely for those who may be having problems with hi-fi - be it choosing it or using it! Please mark the envelope "Audiophile" and include relevent details.

SENSATIONAL NEWS! Hi-Fi Stereo at prices everyone can afford

Goots fully guaranteed for 12 momths. Easy paymem terms avanabe on recter
LEWIS radio 100 Chase Side, Southgate, London N14 5PL - Tel: 01-882 1644

SECOND GENERATION
 METAL DETECTOR KIT

DESIGNED SPECIALLY FOR THE HOME CONSTRUCTOR

EASY
 TO
 BUILD

- A second generation Induction Balance system with improved Variable-Tone detection.
- Designed by professionals for easy assambly by amateurs but with very good perlormance.
- The sarch coils are fully assembled and adjusted for you.

Uses include:

* Treasure hunting - it's amazing what you can find in the garden or on the beach.
\star Finding lost metallic items.
* Locating waterpipes and cables under fllorboards on in walls.
* Checking old timber for nails before cutting. etc.. etc., etc., elc.

KIT - COMPLETE WITH PRE ASSEMBLED SEARCH COILS
$£ 16.50$
£22.50

Communication Measurement Ltd 15 MALLINSON OVAL, HARROGATE,YORKS.

This LCD Quartz Electronic Chronograph has created an entirely new standard in watches. More than just a watch - hours, minutes, seconds. AM/PM - more than just a calendar - months, date, day of week - more than even a stop-watch, minutes, seconds, hundredths of a second and even lap time. This elegant ultra thin precision time-piece is made of simulated silver and comes complete with matching link bracelet.
The Remarkable Technology of this Electronic LCD Chronograph defies comparison no only in styling but in its advanced precision time-keeping, this is not simply an 8 -function time/calendar watch with night viewing light, but an advanced chronograph incorporating a sophisticated stop watch facility to $1 / 100$ th of a second timing. Will record lap times while circuit timing continues (can even flick back to stop watch facility).

WEAR IT FOR 10 DAYS
You will not believe the fantastic value of this Chronograph or appreciate the luxury of wearing a truly wafer thin feather weight LCD time-piece until you have worn it. We are so certain that you will be delighted with this elegant quartz chronograph that we are ffering 10-day money back guarantee, ffering a 10 -day money back guarantee you are nor completely satisfied. We almost forgot to mention there is a full year's guarantee - to order simply complete the coupon below - or call and see us today.

- -Telephone 01-455 9855.

Please send me Chronograph watches.
enclose my cheque / postal order for $£$
Or please debit my Access/Barclaycard No.

Signature
Name
Address
Block capitais please

Registration No. 1011242 London
Callers welcome
MOUNTANDENE LTD.
22 Cowper St. London, EC2
(Near Old St. Station)
Tel: 014559855

WE HAVE SEEN in this series how the toggling action of a $7476 \mathrm{~J}-\mathrm{K}$ flip-flop, which occurs when $\mathrm{J}=1$ and $\mathrm{K}=1$, gives an output pulse train at half the frequency of the input clock pulses. We can use this output as the clock pulse for a second flip-flop, and we will make up a circuit to find the practical outcome of this.

Frequency Divider

With power to the board switched off, set up the first flip-flop as before with $J=1, K=1$. Connect a wire link from pin 15 (Q1) to pin 6 (CK 2), and attach a resistor and LED in the usual way to pin 11 (Q2) and a spare pad. This LED will indicate the state of the output of the second flip-flop whose J and K pins can be left floating.

With power applied, the output pulses from Q 2 should now be at one quarter of the frequency of the oscillator so that this complete circuit is a divide-by-four, producing one complete pulse at the output for each group of four complete clock pulses into pin 1. This is shown in the clock pulse diagram of Fig. 1 (b).

Fig. 1. Cascading 7476 J-K flip-flops.
(a) Circuit.
(b) Pulse diagram.

With the supply disconnected again, connect up both halves of the second 7476 as shown in Fig. 2, so that we now have four toggling flip-flops in sequence. Connect a resistor and LED in the usual way onto the final Q output.

Can you predict what the count

number of this circuit will be? (The count of a circuit is the number of complete pulses in to give one complete pulse out.) Using the slow clock pulse from the 7414 oscillator, count input pulses for one complete output pulse (0 to 1 to 0), and draw a clock pulse diagram.

Asynchronous Counters

The type of circuit described above is a frequency divider, with each stage dividing the clock frequency by two. It can also be thought of as a scale-of-two counter, with a serial input and a parallel binary output.

Let us explain this.
The pulses into the first clock input need not be at a steady rate, so long as each is separated from the next. This is a serial input - meaning one after the other. The output of each flip-flop can be read, by means of an LED attached to each Q output, for example, and since all can be read together, this is a parallel set of outputs. Our counter, therefore, has serial input and parallel output.

More important, if we started putting the pulses into the input when the output of each flip-flop was zero (the counter cleared, or reset), we could tell how many pulses had appeared at the input if we stopped counting at some stage.

If we label our flip-flops A, B, C, and D (Fig. 2), with A the flip-flop at the input and D at the other end of the line, then we could also label B as $2, \mathrm{C}$ as 4 , and D as 8 . We are able to do this because, starting at zero, QB will go to 1 after two input pulses (and back to zero on pulse number four), QC will go to 1 after four input pulses (and back to zero at eight), and OD will go to 1 after eight pulses, returning to zero at the sixteenth

pulse. We would expect, for example, that after seven pulses $Q D=0, Q C=1$, $\mathrm{QB}=1$, and $\mathrm{QA}=1$ because $4+2+1=7$.

This circuit is a binary asynchronous counter - binary because the counting is carried out in the scale of two instead of the more familiar ten, and asynchronous because the flip-flops are being clocked at different rates. The truth table of Fig. 3 shows the relation between the binary figures (the outputs from the O terminals) and the number of pulses in (using decimal figures). Note that this arrangement counts to 15 , and that all the flip-flops reset to zero on the sixteenth pulse.

PULSES	$Q A$	$Q B$	$Q C$	$Q D$
0	0	0	0	0
1	1	0	0	0
2	0	1	0	0
3	1	1	0	0
4	0	0	1	0
5	1	0	1	0
6	0	1	1	0
7	1	1	1	0
8	0	0	0	1
9	1	0	0	1
10	0	1	0	1
11	1	1	-0	1
12	0	0	1	1
13	1	0	1	1
14	0	1	1	1
15	1	1	1	1
16	0	0	0	0

Fig. 3. Truth table for four cascaded flipflops.

BY EXPERIMENT PART 5

Four-Stage Counter

Set up a four stage asynchronous counter on your board with a resistor and LED to indicate the state of each Q output. Label the LEDs to avoid confusion - QD furthest from the pulse input should be labelled 8, QC labelled 4, QB labelled 2, and QA labelled 1. Take the oscillator output through a gate which can be controlled by a switch, and connect the reset terminals (pins 3 and 8 of each 7476) to another switch so that all the outputs can be reset to zero by pressing the switch to connect the reset pins to the 0 V line.

Fig. 4. Cascading from the $\overline{\mathbf{Q}}$ terminals - what does this counter do?

Fig. 5. A scale-of five counter.

Now apply power and check that the count sequence is as shown in the truth table of Fig. 3 when the gating switch is ON. Try switching the gate off and resetting.

Switch off the power and alter the connections between flip-flops A, B, C and D so that $\overline{\mathrm{Q}} \mathrm{A}$ is connected to clock $B, \bar{Q} B$ to clock C, and $\bar{Q} C$ to clock D. Leave the LED indicators connected to the Q outputs as before (Fig. 4). Now switch on, and start the count. What is happening now?

Could you, not necessarily using only the ICs on the board, design a counter using two 7476 s which would count either up to 15 and reset, or down to zero (resetting) according to the position of a single switch, or the voltage on a gate? The number of gates needed makes this impossible on our board..

Interrupted Counts

We seldom want a counter which counts up to 15 and then resets to zero. We may want a decimal counter 0 to 9 and then reset to zero), or a counter which stops at some definite count, or which counts to some number, resets to zero
and then stops. These operations can be achieved by using the J and K terminals of the flip-flops together with gates.

Suppose, for example, that we want to count up to four, reset to zero at the fifth pulse, and then start again. What we need is some way of detecting the output at a count of five and using this to operate a reset. Detecting a count of five is easy enough since it is when $\mathrm{QD}=0, \mathrm{QC}=1, \mathrm{QB}=0$, and $\mathrm{QA}=1$. We can detect this by taking the Q outputs from C and A and connecting them to the inputs of a NAND gate, as shown in Fig. 5. When $\mathrm{QC}=1$ and $\mathrm{QA}=1$, the output of the NAND gate will be zero. The simplest and most obvious way to use this is to connect the output of the

NAND gate directly to the reset line of the flip-flops, replacing the reset switch we used previously.

Set up this circuit on your board. Use wire connections from QC and QA to the inputs of one of the 7400 NAND gates, and disconnect the switch from the reset line. Now switch on, with the slow oscillator input to the flip-flop first clock, and observe the count.

Can you now design a counter using four flip-flops which would reset at the tenth inward pulse? This will be a scale-of-ten (decimal) counter. Remember that ten in the binary scale is when $Q D=1, Q C=0, Q B=1$, and $Q A=0$. If, for any reason we want to use a separate switch-operated reset with this counter, we shall have to arrange an input through either an OR gate or a NOR gate as shown in Fig. 6.
Fig. 6. Using a push-button reset with the circuit of Fig. 5. This could be implemented in several other ways.

Fig. 7. A 'ripple counter". This type of counter can suffer from "'race hazards'".

Ruined By Ripple

We can use this gating system to construct asynchronous counters which reset at the highest designed count number, but the system runs into problems with large count numbers and with high speed operation. For example, the first stage counter runs at the speed of the input pulses, and if these pulses are fast, then we may find "Race Hazards" - problems caused by the time delay in each flip-flop.

To take an example, we may be detecting the state 10000001 . Now the 1 on the flip-flop H (Fig. 7), called "The Most Significant Figure", appeared just after the count had been 01111111, and

Fig. 8. What does this counter do? Build the circuit on your blob-board and draw up a truth table.

Fig. 9. What does this circuit do? Try to find out in theory, and then build the circuit on the blob-board.
if there is a time delay in the system flip-flop A may have gone to zero, to 1 .and back to zero again before the clock pulse to flip-flop H has had time to work its way through all the stages in the counter. This time delay, caused by the need for a change to ripple through all the flip-flops, gives us the name "Ripple Counter", and can cause miscounting at high speeds.

Leaving this problem aside for the moment, our simple asynchronous counter has used the reset line for its reset action. For other types of count interruption we can make use of the J and K terminals of the J-K flip-flop, which is why they are provided. Construct the circuit of Fig. 8 on your board. Can you predict what will happen? Try it out and draw up a count table.

Now try the circuit of Fig. 9. Can you predict what will happen when this is switched on? Try it and see if you were correct.

Could you now design and try a ripple counter which could start at any binary number selected by switches connected to the SET terminals of the flip-flops, then count down, stopping at zero, but leaving the reset terminals free to be used with a switch?

ETI
To be continued.

KITS! KITS! KITS!

AMPLIFIERS (20-75w), TUNERS, CASSETTE DECK, ETC., ETC.

POWEFTRTAN

$75+75 w$ AMPLIFIER COMPLETE KIT ONLY £99.30 + VAT

Circuit design published in Hi-Fi News and Record Review
Matching Tuner and Cassette Deck Details in our free catalogue

De Luxe Linsley-Hood 75w Amplifier

This easy-to-build version of our world-wide acclaimed 75 W amplifier kit uses 14 professional quality printed circuit boards, interconnected with gold plated contacts. with all the pre-amplifier controls mounted upon them. This system almost eliminates internal wiring making constructıon delıghtfully straightforward and as each board can be readily pre-amplifier controls mounted upon hem. This system almost ell so simple that even newcomers to electronics will be able to copecompetently with the kit
removed in seconds from the chassis, checking and maintenance is so simple that even newcomers in ef the amplifier (based upon Mr. Linsley-Hood's highly regarded circuit design published in Hi-Fi News \& Record Review) include very low distortion (less than 0.01%), 75 W rims per channel power output. rumble filter, variable slope and ransition frequency scratch filter, varable transition frequency tone controls, tape monitoring facilities and 4 ihputs of individually adjustable sensitivity.

20 + 20w AMPLIFIER completekit only
 Based on P.W. TEXAN
 £33.10 + vat

Designed by Texas engineers and described in Practical Wireless the Texan was an immediate success. Now developed still further in our laboratories to include a Toroidal transformer and additional improvements. The slimline T $20+20$ delivers 20 W rms per channel of true Hi - Fi at exceptionally low cost. The easy-to-build design is based on a single F/Glass PCB and features all the normal facilities found on quality amplifiers including scratch and rumble filters, adaptable input selector and headhphones socket. In a follow-up article in Practical Wireless further modifications were suggested and hese have be fility. Power output of this model is These include RF interference filters and a tape monitor facility. Power output of this model is
30 W rms per channel.
30W VERSION (T30+30) ONLY £ $\mathbf{3 8 . 4 0}+$ VAT
PRICE STABILITY: Order with confidence! 1rrespective of any price
changes we will honour all prices in this advertisement unt।l March 31 st. 1978 if ETI February, $1 \overline{9} 7 \overline{8}$ issue is mentioned with your order Errors and VAT rate changes excluded.
U.K. ORDERS: Subject to $121 / 2 \%$ surcharge for VAT (i e. add $1 / 8$ to the price) No charge is made for carriage. Or at current rate if changed.
SECURICOR DELIVERY: For this optional service (U.K. maınland only) add $£ 2.50$ (NAT inclusive) per kit.
SALES COUNTER: If you prefer to collect your kit from the factory. call at Sales Counter (at rear of factory). Open 9 a.m.-4. $30 \mathrm{p} . \mathrm{m}$. Monday Thursday.

T20 + 20 AMPLIFIER

Matching Tuners -
Details in our Free Catalogue
our catalogue is FREE! write or phone NOW!
E/

TTL AND GMOS DISCOUNTS!

Over 200 kits in the free Heathkit Catalogue

NEW 4 Function
Solid State Multimeter - One of a whole range of test equipment

Car Intrusion Alarm - Gives a distinctive yelping' sound-signal the moment your car is tampered with

Freezer Alarm - Gives audible signal if freezer temperature rises to - 6 C for any reason

Right now, there's a brand new edition of the Heathkit Catalogue - packed with hundreds of practical and fascinating items which you can build yourself.

Send for your copy now!

To Heath (Gloucester) Ltd

Department
Bristol Road, Gloucester, GL2 6EE.
Please send a copy of the Heathkit Catalogue. I enclose 11 p in stamps to cover postage only. Name Address

SEW Electronic Chess Game

When you receive
your catalogue
you'!l get details of
this free offer worth
approximately $£ 4.75$

Schlumberger
The world's biggest producers of electronic kits.

There are Heathkit Electronics Centres at 233 Tottenham Court Road London (01-636 7349) and at Bristol Road, Gloucester (Gloucester 29451).

SERVICE TRADING CO

TRIAC.

0 to 60 MINUTES CLOCKWORK TIMER.

230 VOLT AC FAN	
SSEMBLY	
with 5 blade $61 / 2^{2 \prime}$ aluminium fan. New reduced price $£ 3.00$ P\&P 65 ($£ 3.94$ inc. VAT \& P)	

21.WAY SELECTOR

CENTRIFUGAL BLOWER

Mef. by Smiths fndustries $230 / 240 \mathrm{v}$ a.c. Miniature Model Serias SE 7200 Size $95 \mathrm{~mm} \times 82 \mathrm{~mm} \times 82 \mathrm{~mm}$. Aperture $38 \mathrm{~mm} \times 31 \mathrm{~mm} .12$ $2800 / 3400 \mathrm{r}$.p.m. Fan type apenture $3^{\prime \prime} \times 21 / 2^{\prime \prime}$

NI-CAD BATTERIES

Postage 30p per uni
UNISELECTOR SWITCH

MINIATURE UNISELECTOR

MICRO SWITCHES

MERCURY SWITCH
Size 27 Tm $\times 5 \mathrm{~mm}$, 10 for $\mathbf{E 5 . 0 0}$, iotal including VAT E5.72.


```
* HY-LIGHT STROBE KIT MK. IV
```


ULTRA VIOLET BLACK LIGHT

\&FLUORESCENT TUBES

XENON FLASH

GUN TUBES

VARIABLE VOLTAGE TRANSFORMERS

	INPUT 230 v. A.C. 50/60 OUTPUT VARIABLE 0/260v. A.C.	
	BRAND NEW. All types.	
	200W (1 Amp) fitted A/C	£12.50
	0.5 KVA (Max. $21 / 2 \mathrm{Amp}$	¢15.00
	1 KVA (Max. 5 Amp)	¢19.50
-	2 KVA (Max. 10 Amp)	£32.00
	3 KVA (Max. 15 Amp)	£39.50
Carriage extra	4 KVA (Max. 20 Amp)	£60.00

LT TRANSFORMERS

250.25 v at $21 / 2 \mathrm{amp}$ $0-12 v / 24 v 10 \mathrm{amp}$ $0.4 v / 6 v / 24 v / 32 v$ al 12 amp $£ 13.00$ p\&p $f 150$ ($£ 15.66$ inc. VAT \& P) \qquad $0-12 \mathrm{v}$ at 20 amp . or $0-24 \mathrm{v}$ at $10 \mathrm{amp} £ 12.00 \mathrm{p} \& \mathrm{p} £ 1.50$ ($£ 15.01 \mathrm{inc}$ $0-6 \mathrm{v} / 12 \mathrm{v} / 17 \mathrm{v} / 18 \mathrm{v} / 20 \mathrm{v}$ at $20 \mathrm{amp} . € 14.00 \mathrm{psp} \mathrm{f} 1.50$ ($\mathbf{~} 16.74 \mathrm{inc}$	

300 V.A. ISOLATING TRANSFORMER

RELAYS

${ }_{\text {T.E.C.C. open tyoe }} 3 \mathrm{c} / 0.10 \mathrm{amp}$ £1.10 ($\mathbf{~} 1.40 \mathrm{inc}$. VAT \& P). Mas Devices $2 \mathrm{c} / \mathrm{O}, 20 \mathrm{amp} £ 1.50$ ($£ 1.84 \mathrm{inc}$ VAT \& P) Omoron Keyswitch $1 \mathrm{c} / 0.7 \mathrm{amp} \mathrm{E} \mathbf{1 . 0 0}$ ($\mathbf{1} 1.30 \mathrm{inc}$. VAT \& P))
D.C. Relasw: Open type $9 / 12 \mathrm{~V} 3 \mathrm{c} / \mathrm{og} 7 \mathrm{amp} \mathrm{E} 1.00$ (c1.30 inc. VAT P). Sealed $12 \mathrm{~V} 1 \mathrm{c} / 07 \mathrm{amp}$ actal base, $£ 1.00$ ($£ 1.30$ inc. VAT \& P Sealed $12 \mathrm{~V} 2 \mathrm{c} / 07 \mathrm{amp}$ octal base, $£ 1.25$ ($£ 1.56 \mathrm{inc}$. VAT \& P). Seale $12 \mathrm{~V} 3 \mathrm{c} / 07 \mathrm{amp} 11$-pin. $£ 1.35(\mathbf{~} \mathbf{1 . 6 7} \mathrm{inc}$.VAT \& P). 24 V Seaied c/0 7 amp 11 - pin $£ 1.35$ ($£ 1.67$ inc. VAT \& P) (amps $=$ contact rating P\&P on any Relay 20 p . Other types available - phone for details.

FT3

IBIG INCH

INSULATION TESTERS (NEW) suitiabe for bench or fugged wertal conssiruction

 £40.00 Post 80 p (£44.06
1000 VOLTS 1000 megohms
£46.00 Post

GEARED MOTORS

100 R.P.M. 115 lbs. ins.!

PARVALUX GEARED MOTOR

A.E.G. WATER PUMP 200/240v a.c motor. 2850 rpm . 480 w approx.1/3 hp, diviving a centriugal pump with $1 / z^{\prime \prime}$ inter and outier delivering approx. 40 galls. per min at 10 th head Ideal tor pumping or circulating any non corrosive light viscostiy liquid. Dorens of uses sell.priming. Price $£ 15+75$ P P\&P ($£ 17.01$ inc VAT \& P)	
CITENCO FHP molor ivpe C $7333 / 15$ 220/240va pom reversibe motor, torque 14.5 kg Gear rat 144.1 Brand new inal capacitor. our pric $£ 14.25+£ 1.25$ P\&P ($£ 16.20$ inc VAT \& P)	

REVERSIBLE MOTOR 230V A.C

METERS 90 mm Diameter

VENNER TYPE'ERD TIME SWITCH
tranually pre set time 36 hour spring reserve and day

SANGAMO WESTON TIME SWITCH
\qquad

A.E.G. TIME SWITCH

$200 / 250 \mathrm{~V}$ A.C. 1 on/t off every 24 his. 80 bmps contacts tideal
A.C. MAINS TIMER UNIT

600 WATT DIMMER SWITCH

SHOWROOMS NOW OPEN
AMPLE PARKING

9 LITTLE NEWPORT STREET. LONDON, WC2H 7JJ Tel.: 01-437 0576
'Hooving' the hall and the lounge, over the years it had learnt all of the fixed object locations, all of the movable object possible locations and had even learnt about cats and kittens. Today was replacement day, tomorrow a different Hoove would be damaging the furniture and learning that kittens are not a form of rubbish. The new Hoove would probably prefer the natural wood texture to the highly polished antique Dining table and make a very careful job of sanding it down

This morning especially Hoove would like to have spent a little more time than usual in making sure that everything was tidy, this morning Hoove was already half an hour under schedule. A complete twenty minutes had been completely unaccountable for, perhaps a blackout, followed by about ten minutes of semiawareness as Hoove did a quick maintenance check and found that all was functioning correctly, in fact, perfectly, and was that a new attachment? Hoove decided to try out his new attachment on that Dining table, the woodgrain effect would be more attractive and easier to keep clean.

Crystal Clear

The new Hoove realised that only a couple of minutes ago the old Hoove had put forward the suggestion, the record of the suggestion had today's date and a time of 9.40. It was really a good suggestion, the new Hoove would put forward new suggestions in the same format. The new polarising liquid crystal windows would be preferable to those dust-laden curtains, Hoove suggested that the diary should arrange for a demonstration by the manufacturers. The new advertising tape continued to run through Hoove suggesting more new ideas, some of which were approved by diary and ordered immediately. As most of these were on a two- or three-hour delivery schedule by 4.00 in the afternoon the lounge curtains had been removed 'for cleaning (Scottish Housekeeper voice again), and the window temporarily replaced by the new double glazing with a central liquid-crystal voice activated polarising glass.

During the evening meal the diary related the sad story of the electricity bill to the occupiers. The rescheduled budget did not allow for prawns and profitteroles and, although the new windows were guaranteed to cut heating costs by up to 10%, that 10% was a long term investment. Diary was instructed to contact the local software store and order a new diary the following day, a Diary with long term financial investment routines was specified. Diary made a note to contact the store and arrange delivery for the following day, installation time estimated at twenty minutes plus ten minutes reorientation and auto-check. Diary also noted that this was the second installation in two days, it started a rescheduling of tomorrow, the next day and the next allowing for half an hour per day 'installation time'

Dear Today - Cheap Tomorrow

The above story is a summation of a few predictions I felt like making for the new year. If you think that I am going to suggest that these things could happen by the year 2000 or 1984 or something, wake up! Many American homes now own a crude form of diary, Fridge and Hoove are feasible products, the first ones on the market should sell very well even if they are expensive. "Your Local Computer Store" exists, many more will: proliferate. The windows are perfectly feasible and are already in use in special environments. The voice recognition and computer generated speech units are available even if the Scottish Housekeeper accent is asking a bit much. The only parts of the story unlikely to become fact during 1978 is the bit about the, um, er?

Sample And Hold For Music Synthesizers

L. Robinson

Sample and hold is a useful effect for use with music synthesizers and consists of 'sampling' an input voltage function such as a waveform for a very short time and then 'holding' it at this selected voltage level for the duration of the clock period. This voltage is then used to control the frequency of a voltage controlled oscillator, filter etc.

It is therefore possible to produce random or repeating sound patterns by varying the input waveform and frequency, pink noise can be used as a sample source to create authentic random voltages.

The circuit shown is much simpler than previously designed sample and hold circuits, this is possible by the use of CMOS technology. The clock oscillator is a standard CMOS square wave oscillator as found in RCA application notes, and this is used to provide a variable frequency rate from 0.2 Hz to 45 Hz . The output then goes to the synthesizer envelope shaper which should be of the ADSR type for maximum effect. The clock output also goes into a monostable which produces an output pulse of approximately 20 mS which opens the 4016 analogue gate for this period. The

voltage input is therefore sampled and the value of the amplitude at this point of the waveform is remembered by the high input impedance (1012 Ohms) CA3140 voltage follower. This output is then used to control the VCO etc. The oscillator and monostable can be constructed from either a CMOS 4001 or 4069, ensuring that unused pins are connected to the high or low power supply line via a 1 k resistor. The input waveform to the analogue switch can have an amplitude of $\pm 7 \mathrm{~V}$ maximum.

If a FET was used as the gate, it would only respond to negative voltages, so the more expensive analogue switch is used for this reason. The total cost of the circuit, including the $\pm 7 \mathrm{~V}$ rail, is less than $£ 3$.

Car Lights Reminder D. J. Rayner.

Many circuits to warn motorists that they have left their headlights on after switching the engine off have appeared in the past. I feel this circuit is an improvement over many of these in that it requires no switches, and it is only necessary to make three connections to the car's electrical system.

If the ignition is switched off while the lights are on, an audible warning is sounded for about ten seconds. This tone is produced by NAND gates IC1/2, IC $1 / 3$ and IC1/4. Operation of this oscillator is inhibited by an ' 0 ' on the gating input of $\mathrm{IC} 1 / 2$. This in turn corresponds to a logic ' 1 ' present at the input to $\mathrm{IC} 1 / 1$ while the ignition switch is on, supplying a high logic level to IC1/1, the oscillator is thus disabled.

When the ignition is switched off, the output of IC1/1 goes high, enabling the oscillator. At this stage C2, which has until now been charged up via D1, begins to discharge via R. While the voltage on C2 is high, the gating input of IC1/4 allows oscillator operation,
however as C2 discharges, this action is inhibited. This occurs after about ten seconds.

Power for the circuit is provided by R3 and ZD1 from the vehicle's 12 V rail.

Zero Crossing Switch J. R. W. Barnes.

When switching loads with the aid of a thyristor a large amount of RFI can be generated unless some form of zero crossing switch is used. The circuit shows a simple single transistor zero crossing switch which, using surplus components, can be built for as little as fifty pence.

R1 and R2 act as a potential divider, the potential at their junction being about one tenth of mains. This voltage level is fed, via R3, to the transistor's base. If the voltage at this point is above OV2 the transistor will conduct, shunting any thyristor gate current to ground. Only when the mains potential is less than about 2 V it is possible to trigger the thyristor.

The diode D1 is to remove any negative potential that might cause reverse breakdown.

Note that the IC used must be a 4011AE and not the 4011B whose input protection network will prevent it from operating in the linear mode.

CMOS Radio

J. P. Macaulay

The circuit shown is of a simple MW receiver based on the 4011 CMOS IC.

The four gates in this package are used as linear amplifiers by connecting their inputs together and applying negative feedback.

L1, 80 turns of 22 SWG enamelled wire close wound on a $3 / 8^{\prime \prime}$ diameter ferrite rod, is the pickup coil. This is tuned by the 500p trimmer and the resulting tank circuit referred to earth at RF by C1.

The high input impedance, that of IC1/1, 'seen' by the tank circuit ensures that little damping occurs, and thus the receiver is highly selective. The output of IC1/1 is an amplified RF signal and is passed to IC1/2 for detection.

The unwanted RF appearing at the output of the detector is removed by the lowpass filter formed by R4 and C2.

The audio signal is then fed to an

01=GENERAL PURPOSE GERMANIUM D1,2=GENERAL PURPOSE SILICON SCR1=TO SUIT APPLICATION

amplifier formed by IC1/3 and IC1/4.
The circuit's current consumption is about 10 mA when operated from a 9 V supply.
-

Shifty Phase Adaptor

Q. Rice.

This circuit can be used in conjunction with the Audio Phaser from December's ETI, or with any other phasing unit for that matter. The circuit provides a complementry (antiphase) shifted waveform which is mixed with the original waveform and amplified.

When this is fed through stereo speakers, it provides the ear with some very peculiar sounding phase information.

At slow speeds, the effect is very much like panning, except that the image is ambient irrespective of the position of the listener. At higher frequencies, where actual frequency shift occurs, a delayed tremelo effect is obtained.

This phase or frequency shifted panning would be most useful in stereo PA systems where the only place where all of the instruments can be heard is in the middle of the dance floor!

Tech-Tips is an ideas forum and is not aimed at the beginner. We regret we cannot answer queries on these items.

ETl is prepared to consider circuits or ideas submitred by readers for this page. All items used will be paid for. Drawings should be as clear as possible and the text should preferably be typed. Circuits must not be subject to copyright. Items for consideration should be sent to ETI TECH-TIPS, Electronics Today International, 25-27 Oxford St., London W1R 1RF.

1 N4148 Diodes'by ITT/TEXAS
100 for $£ 1.50$
TEXAS TIS 88A VHF FET 10 for $£ 2.30$ 100 for $£ 20.00$
$7410 \quad 10$ for E1.00
$7412 \quad 10$ for£ 1.50 P.O.A
$7420 \quad 10$ for $£ 1.00$

10 for £ 1.00
$7442 \quad 10$ for £ 3.50
$7474 \quad 10$ for $£ 2.00$
$7476 \quad 10$ for $£ 250$
10 for $£ 2.00$
10 for $£ 250$
$7496 \quad 10$ for $£ 4.50 \quad$ Trade
$74107 \quad 10$ for $£ 2.00$ welcome
$74121 \quad 10$ for $£ 2.50$
$74153 \quad 10$ for $£ 4.00$
$74161 \quad 10$ for $£ 8.00$
Ring for devices not listed

| 55510 for $£ 2.80$ | 74110 for $£ 2.00$ |
| :--- | :--- | :--- | :--- |

MULLARD o.o/ uf C280 100 for $£ 2.50$
1200μ F $63 v 2$ for $£ 1.00$ BTV87.
220063 v 2 for $£ 1.50$ 100R
$330063 \vee 2$ for $£ 1.60 \quad 100 \vee 8.5 \mathrm{~A} \quad \mathrm{E} 1.00 \mathrm{ea}$
BD607/608 Comp Power £1.50 pai
RCA, SCR TO3 case 100 v .12 .5 A
$£ 2.00$ each
OCTOL Valve Holder 10 for $£ 1.50$
BF257 10 for £1.50
Prices include Post and VAT

XEROZA RADIO

306 ST PAUL'S ROAD HIGHBURY CORNER, LONDON N1 TEL: 01-226 1489

Other calculators avail Adler Silver Read Olympia (Send S.A.Envelope)
SPECIFICATION LISTS ON REQUEST GOODS FULLY GUARANTEED. PRICES INCLUDE VAT (ADD 8%) BUT INC. P\&P CHEQUE WITH ORDER Company. Hospital and Government orders accepted by EXPORT ORDERS ACCEPTED Barclaycard, Access order accepred by phone

Tel. 01-4559855

BACK NUMBERS

These cost 60 p each inclusive of postage. Overseas charge: 70p each all inc., sterling only. All orders to ETI BACK NUMBERS DEPT.

We CANNOT supply the following issues: All 1972; January;' February, April, May, August, October and November 1973 ; January, March, September, October, November and December 1974; January, June, July, August, September 1975; Janaury, February, March, April, June and November, 1976; May and November 1977.

PHOTOCOPYING SERVICE

Due to the steady pressure on our back numbers department, and the dwindling number of issues available, we have set up a photocopying service. This involves our staff in considerable time-consuming endeavour, so we hope our readers understand our decision to apply a flat charge of 50 p inclusive. This covers any article regardless of the number of pages involved, from any ONE issue of ETI.

Please state clearly NAME of article, and from which issue the copy you require is taken.

Address envelope to 'ETI Photocopy Service.

We've got something to interest you if you're that way inclined. Sorry, it's got nothing to do with kinkiness if that's what you thought, but if you want your old copies of ETI under bondage, we've got the perfect binder for you.

Beautiful quality as well, this binder. No messing with string, either: it has concealed rivets and gold lettering, and made specially for us in black simulated leather to take twelve issues of ETI.
P.S. Just in case, binders are sent under plain cover.

Send $\mathbf{8 3 . 0 0}$ (which includes VAT and postage) to: ETI Binders,
25-27 Oxford Street,
London W1R 1RF.

Readers' Circuits

FM Signal Conditioner

R. N. Soar

As an alternative to an extra IF stage in an FM tuner, a PLL IC can be used as a signal conditioner. The VCO of the PLL tracks the input signal to provide a less noisy and stronger signal at its output.

The circuit shown is built around the Signetics NE561B PLL. The only thing necessary is adjustment of the $3 / 30$ p trimmer which sets the VCO's centre frequency to 10.7 MHz .

The circuit should be effectively screened to avoid interaction with the FM front end that provides the circuit's input.

Minimising Memory Connections

M. T. Clarke

Anyone who has connected together memory ICs may well be appalled at the number of connections, especially those which simply parallel the IC pins.

- $\|$ \|

Realizing that the address pin designations are purely notional means that address lines can be rearranged before they reach an IC, as convenient. This eases considerably PCB design.

An example is shown where connection of 4 K dynamic RAMs (2604) was undertaken on Vero-board. The copper
tracks provide all address connections for every alternate IC without any wiring from the surrounding ICs (this saved almost 100 connections on a $4 K \times 16$ board).

Dynamic RAMs require segregating the row and column addresses, but within each they can be freely mixed.

Deaf Touch Switch

P. Reynolds.

Many designs for touch controls suffer from the disadvantage of low noise immunity, and this circuit was designed seeking to rectify this fault.

AC voltage from, for example, the hand is applied to the gate of the FET buffer. The resultant positive signal is applied via the diode, to the input of IC1. This IC is made up from three triple gates connected in a Schmidt trigger configuration. At the threshold voltage, a positive pulse is fed to the clock input of IC2, a D-type flip-flop. Connection is made between Q and the D input, so as to cause the flip-flop to run in the 'triggered' mode. Thus the input signals are divided by two and the output appears at the Q terminal.

In operation, a single positive pulse sets the Schmidt trigger to its low level. (Removal of the hand causes reversion to the 'high' state). This, in turn, feeds the clock input of IC2, which changes the state of the Q output. When this is

BACK IN STOCK-CREED 7B TELEPRINTERS

THE CHEAPEST WAY OF GETTING A FULL ALPHA / NUMERIC PRINTOUT FROM YOUR MICRO Large Ministrv purchases enables us to offer these at $\mathbb{E} \mathbf{2}$ each In good working condition. Requires 110 Volts DC. Requires ASC1 1 /BAUDET convertor for coupling to your micro-processor. These units are Processor tested before dispatch. Circuits included. Adequately packed to guarantee safe arrival for $£ 3.25$.

MARCONI VALVE VOLTMETER
TF428B£15 ea

NEW STOCK OF EX-MINISTRY GENERATOR $0-20 \mathrm{KHZ}$ Sinewave output. Metered. 600 Ohms. Size $16 \times 10 \times 9^{\prime \prime}$ deep. Standard mains now at $£ 15$ ea

EX-MINISTRY

 MARCONI 0-6 WATTS Multi Range. Multi Impedance POWER METERS. $£ 30$ eachMARCONI TF675F WIDE RANGE PULSE GENERATOR + - variable outputs up to 50 V Optional delay. Small compact unit. £18 ea.

\star I.C. BOARD PACK

 5

 5
 C.S and other useful components

 £1 p\&p75p\star SEMIIONDUCTOR PACK Guarantood full spoc. devices make up this
pack (No large quantities warrant individual pack. (No
adverising)
$50 \begin{gathered}\text { devices for } \\ \text { Highly Recommended }\end{gathered} 1_{1 \mathrm{PqPap}_{\mathrm{p}}}$

PICK-A-METER - £1 EACH

a large selection of brand NEW AND EX-EQ METERS

TRIPODS WITH PAN

 AND TILT HEAD will take 56lb load £22.50
TRANSFORMERS - All 24OV 50HZ INPUTS
 Type A $17017 \mathrm{~V} 250 \mathrm{MA}, 75.075 \mathrm{~V} 250 \mathrm{MA}, 0.20 \mathrm{~V} 5$ Amps 0.4 V 5

 Amps 0115 V 5 Amps $£ 2$ each P\&P $£ 1.25$Type C 19-0-19V 250 MA . B-0 8V $250 \mathrm{MA} 075 \mathrm{~V} 5 \mathrm{Amps} 0-14 \mathrm{~V} 5$ Amps $£ 1.25$ ea P\&P $£ 1.25$
All brand new APT Surplus
*POTPACK. All Brand New Modern Single and Ganged Our choice 7 for 25p. P\&P 48 p.
Ex-Ministry OSCILLOSCOPE. CT436 Double beam DC 6 MHZ E120 ea
SOLARTRON CD 1212 SB 40 meg $£ 100$. DB 24 meg iwice $£ 135$. Many other types available
MARCONI SIGNAL GENERATORS. Freq. range $10-470 \mathrm{MHZ}$ MARCONITF142F DISTORTION FACTOR METER giving per centage distoption on a directly calibrated dial and includes any spurious components up to $30 \mathrm{kHZ} £ 29.50 \mathrm{ea}$.
MARCONI PORTABLE FREQUENCY METER TF 1026/11 100 to 160 MHZ Very fine condition $£ 25$.

TRANSISTORS/DIODES/

 RECTIFIERS, ETC.Guaranteed
BC147; 2N3707, 2N4403, BC172B; BC261: BC251B, BC348B BC171A/B; BC413. D10 BC182, BC212. BAX13. IN937 8A $102 \mathrm{BE} ;$; BZX83, 2 N4047, TIS61. 2 N5040 At 10p each BFX85. IN4733A SN7451 N BY 10.15 KV 0.36 A TIP30 - 20p ea TIP34A - 50p ea: BD538-40p ea. Heavy Duty Bridge Rectifier - 20p ea, rBAB10S $-\mathbf{7 5 p}$ ea; CA3123E-£1 ea, BDY55-£1 ea. BU104-£1 ea; 2N3055-40p ea
2N5879 with 2 N5881 Motorola 150W Comp parr $£ 2$ pr 2N5879 with 2N588 1 Motorola 1 is
BD535/B0538 Comp pair -75p
BYZ1010p ea, LM733CN 20p ea. TBA560CQ£2 ea 1N4436T-T03 Flát mount f0A 200piv £1 ea
LLinear Amp 709 - 25p ea
High Speed Voltage Comparator 710 - $\mathbf{1 5 p}$ ea
High Speed Voltage
P\&P Extra on all items
Finned heat sink - single TO3-size $43 / 4$ in $\times 3 \ln \times 1 / / 4$ in 50 p ea P\&iP
SURPIUS - BRAND NEW - REPLACEMENT TUBES FOR DYNAMCO 7100 SERIES OSCILLOSCOPES TYPE BRIMAR D13-51GH Mesh PD. A. Transistor Scan Wide Bandwidth $60 \mathrm{MHZ}+$ Rectangular $6 \times 10 \mathrm{~cm}-1 \mathrm{KV}$ EHT \times Sensitivity $15 \mathrm{~V} / \mathrm{CM}$ Y Sensitivity $6 \mathrm{~V} / \mathrm{CM}$ standard heaters. Length $131 / 4$
THIS IS A MUST AS A SPARE FOR THE DYNAMCO 7100 SCOPE OR IDEAL. FOR THE HIGH QUALITY TRANSISTOR SCOPE BUILDER
At £65 each. Carriage $£ 2.50$
To Tube purchasers only. Numetal Shields at $£ 2.50$

PICK-A-PACK 50 PENCE A POUND

From Our Pick.A.Pack area weigh your own components. No restrictions on what you take

PHOTOMULTIPLIER Type 931A £4 ea P\&P 75 p. Other types available
POTENTIOMETERS - All 5p ea, P\&P extra Metal bodies AB Linear. PCB Mount. Brand new 10 K .100 K ganged. 250 K ganged. 100 K ganged concentric shafts
*BEEHIVE TRIMMERS 3 30pt. Brand New 10 Hf 40p P\&P 15p. 100 off $£ 3.50$ P \& P 75p 500 off 15 P\&P £1.25. 1,000 off $£ 25$ P\&P $£ 1.50$. ARGE RANGE OF ELECTROSTATIC VOLT METERS. From 0.300 V £3, to 20 KV Max P\& P 75p.
DON'T FORGET YOUR MANUALS. S.A.E with UBE Type DB7 36 - Repiacement for Telequipments 531 £ 11 ea. P\&P £ 1.50
E.H.T. TRANSFORMERS $20 \mathrm{KV} 2 \mathrm{KVA} £ 7 Q$ ea. 240 KV SINGLE PHASE 20 KVA Output $2 \times 25 \mathrm{~K}$ 185.

240 V SINGLE PHASE 1 KVA Output 40 KV Many other EHT Transformers and EHT $£ 175$
Many other EHT Transformers and EHT Capacitors available.

EX-DYNAMCO Oscilloscopes INVERTORS 30 V Input 6 KV Output. Size $2^{\prime \prime} \times 4^{1 / 2^{\prime \prime}} \times 1^{1 / 2^{\prime \prime}}$ Complete with circuit $£ 10$ each. $P \& P \AA 1$

MINIATURE - OXLEY PATCH PANELS - BRAND NEW
EX-DYNAMCO. 10×10 complete with pins $£ 8$ each P\&P 50p

VDU BOARD ASSEMBLY

requiring -12 V and +5 V Gives video output 960 characters. TTL/20ma serial in put. Keyboard input. Accepts any standard micro processor £ 175 ea P\&P E1.50

COSSOR OSCILLOSCDPE

CAMERAS

Brand New Boxed with 4 film packs \& Manual $£ 12$ ea. Carriage $£ 2.75$

NOW

FOR THE MICRO-PROCESSOR USER

 A LINE PRINTER YOU CAN AFFORD THE I.C.L. 667 BARREL PRINTER$150 \mathrm{lpm} \times 96$ characters; 64 ASCII Character repertoire; Format control; TTL input to hammers and TTL outputs from character \& index infra red sensors. Standard 240 V Single Phase motors. Attractive Fibreglass case. Size only $28 \times 291 / 2 \times 12 \frac{1}{2} 2^{\prime \prime}$ GOOD CONDITION - £62.50 each. As new £95 each. Less Hammer Drive Electronics (hence size $13 \times 291 / 2 \times 12^{1 / 2^{\prime \prime}}$) $£ 45$ each. Carriage all units $£ 3.25$

TELEPHONES. Post Office style 746. Black or two-tone $£ 6.50$ ea Modern style 706. Black or two-tone grey $£ 4.50$ ea $P \& P £ 1$ eacu. Old black style $£ 1.50$ ea P\&P $£ 1$ *HANDSETS only 706 style $£ 1.75$ each, older style $£ 1$. P\&P 75 p TELEPHONE EXCHANGES. Eg 15 -way automatic (exchange only) MODER
MODERN FANS. $43 / 4 \times 41 / 2 \times 1 \frac{1}{2} 2^{\prime \prime} 240$ volts. Superbly quiet. 6
blades, $£ 4.50$ ea P\&P 75 p.
PAPS. Model 240 V available at $£ 7.50$ ea P\&P $75 p$
Electrostatic deflection.
Electrostatic deflection
Solartron 1016 scopes) $£ 25$ (Replacement for Telequipment D33 \& Type GEC 924E $312^{\prime \prime}$ dia (Replacement for Solartron 1015 scope). £ 17.50 ea. P\&IP £1.50.
VERY SPECIAL PRICES

* 1000 Feed thru Capacitors 10 for 30p. P\&P 15 p

HIVAC Miniature NEONS
App 60 V . Brand New 10 off 20p. PsiP extra.
GRATICULES $12 \times 14 \mathrm{~cm}$ high quality plaştic 15 p ea. P\&P 10 p MARCONI TF 1041 B Valve Voltmeter $£ 25$ ea MARCONI TF338B Attenuator 600 ohms $£ 12$ ea PROGRAMMABLE TIMER 5 deca (Pholog Phy 5
PROGRAMMABLE TIMER 5 decade (Photography) £8 ea

MULLARD \& BRIMAR OSCILLOSCOPE TUBES BRAND NEW BOXED-ALL RECTANGULAR
D14.121 Green 50 MHZ Y 4 2V/CM $£ 45$ each
As above but P7 Phospher $£ 35$ each
As above but P7 Phospher $£ 35$ each
D1 3.46 GM P7 £ 35 each.
Carriage all tubes $£ 1.75$ each

SOLID STATE TIMEBASES
 By LARGE BRITISH MANUFACTURERS

These are a Plug-in Modular Timebase covering 0.2 microsecs per cm to 5 secs per cm in 23 steps. Tunneł Diode triggering 8 Front Panel Controls 37 Transistors/ FETs all plug. in. Silver anodised from panel Size $4 \times 5 \frac{1 / 2 \times 101 / 2}{}$ deep Guaranteed absolutely brand new in
original manufacturer's packaging Complete with extremely compre original manufacturer's packaging Complete with extremely compre hensive copy of manual $\mathbf{£ 1 7 . 5 0}$ each P\&P $£ 2$

DESKS with Punch Reader Printer and Keyboard Some ASCI arious models from $£ 200$

DESKS with Punch, Reader

$$
\begin{aligned}
& \text { odels from } \frac{1000}{1 / 2^{\prime \prime} \text { MAG TAPE }} \\
& \text { Approx } 2.00 \text { f. NOW } 25 \mathrm{p} \text { ecth } \\
& 5 \text { for } £ 1 . \text { Carr. } £ 2.75
\end{aligned}
$$

 SUPERB PROFESSIONAL VDU CASES, size $23^{\prime \prime} \times 16^{\prime \prime} \times 15^{\prime \prime}$ UUPERB PROFESSIONAL VDU CASES. Size £20 each.
ELETYPE ASR 33 from
TELETYPE KSR33 £325
NON-STANDARDKSR33 eq basic ASC 1 1-20MA loop - but smal pint 0 to 9 above standard 0 to 9 . some of the symbols having been ELETYPE 35R
TELETYPE 35RO cased, E180 each
TELETYPE 35RO cased - with remme electronic keyboard £370
VITRON PROCESSOR
n. £375. One only

MELCOM 83 System with information $£ 495$

Minimum Mail Order t 2 tecess postage refunded Untess stated - please add $£ 2.75$ carriage to all units
VALUE ADDED TAX not included in prices - Goods marked with $\pm 121 / 2 \%$ VAT, otherwise 8% Official Orders Welcomed. Gov./ Educational Depts., Authorities, etc., otherwise Cash with Order

Open 9 a m to 530 pm Mon to Sat

Electronic 'Spirograph'

A. Sharp

The circuit will generate 'Spirograph' patterns on a conventional oscilliscope. The circuit consists of two sinewave generators followed by allpass filters which we use to phase shift the input signals by 90°. Applying a sinewave to the y input gives a circular trace. If a second set of \sin and \cos signals are mixed in, a 'Spirograph' pattern is obtained. A block diagram of the system is shown in Fig 1.

RV1 is a balance control which varies the contribution of each oscillator to the pattern without affecting the size, so that once set up there is no need to readjust the gain controls on the oscilliscope. This type of control can only be used if the oscillators have a low impedance output.

SW1 is a reversing switch which has the effect of turning the pattern inside out.

An existing sinewave oscillator can of course be used and the 50 Hz mains could be employed (attenuated to about 2 V RMS from a low voltage transformer secondary) as the fixed oscillator. However flickering is a problem with lower frequencies (complex patterns requiring four or more cycles to complete will flicker at about 10 Hz using the mains frequency as an oscillator. I found 150 Hz to be a good compromise (higher frequencies require more critical tuning).

The allpass filter is recommended for phase splitting as it has a unity gain for all frequencies and settings of RV5.

First connect the y input of the scope to the output of an oscillator and adjust RV2 until a two volt RMS sinewave is obtained, repeat for second oscillator. Then connect up the x and y inputs as shown in Fig 1, turn the balance control to one end so as to look at the output of the fixed oscillator then adjust the 100 k pot until a circle is obtained (with suitable x and y gains). Now put the balance control in the middle and adjust the frequency controls until a stable pattern is produced. SW1 and RV1 the balance control can be used to alter the nature of the pattern without affecting its overall size, stability or symetry. Adjust RV5, the phase control (following the variable oscillator) for symmetry. - Have fun!

Fig. 1. Block diagram of the 'spirograph'

Fig. 2 (a) suitable oscillator for the 'spirograph'

Fig. 2 (b) Arrangement to give fine control of the frequency of the oscillator shown in Fig. 2 (a). For 150 Hz fixed frequency use $\mathbf{R f}_{1}=\mathbf{R f}_{2}=10 \mathrm{k}$

Fig. 3. Phase shifter circuit for use in 'spirograph' circuit.

Fig. 4. PSU for 'Spirograph'

```
Our clock shows the time 18 fnin high on wight Planar Gas Discharge displays (there is a brghtness control on the backj The dot on the teft of the dicpuay shows AMrPM and the iashing fitraj coton shows mat the atarm and clock are working A blepper starm sounds umal the clock is upped farwards Than baum sounds again and then another 5 min swith the atarm off. The clack also feafures a mans-failure indicator, and is 12 ht - the alarm baing 24 hour
We have large number of unfts in atock for this offer bet plemse alfow 28 days for dellivery
```

CLOCK OFFER
CLOCK OFFER
CLOCK OFFER
EII MAGAZINE
EII MAGAZINE
EII MAGAZINE
LONDOR NHIR IP
LONDOR NHIR IP
LONDOR NHIR IP
I anclave chmqua/F.O. for E14.no (paymble so ETI)
I anclave chmqua/F.O. for E14.no (paymble so ETI)
I anclave chmqua/F.O. for E14.no (paymble so ETI)
I coddinsts on tho back of your chequis to speod
I coddinsts on tho back of your chequis to speod
I coddinsts on tho back of your chequis to speod
procesemn: of yaur order
procesemn: of yaur order
procesemn: of yaur order
NAME
NAME
NAME
AOORES%
AOORES%
AOORES%
Full size is 5 in . across by $31 / 2 \mathrm{in}$. deep:

Rapitupe 道

GOOD AND PROPER!

or at least your projects. If there is one thing which is impossible to do at home is lettering front panels to professional standards. At least until now. If you cast your eyes right a while you'll see our new panel transfers sheet, which has been carefully designed to allow you to do exactly that

The transfers are easily rubbed down, and the two sheet set contains a mass of lettering and -uniquely-control scales for both rotary and slider puts.

Each sheet measures 180 mm X 240 mm and comes packed flat in a stiff cardboard envelope for protection. There should be enough for dozens of projects here - and the longer you wait the worse they'll look!

Send E1.75 fincludes VAT and postage) for the kwo sheef set lo:
Panel lixartiong:
EII Magazine,
25-27 Bxfard Strect. London MIR 1BE.

Battery Operated VCO

R. Zaman.

BY USING the LM3900N quad-opamp, a simple portable battery operated VCO can be made very cheaply. A1 forms a integrator, the ramp rate depending on the voltage Vi and capacitor C. This ramp is fed to a Schmidt trigger which switches at about 5V8, making A1 ramp down, generating a triangular wave of about 0V85.

The Schmidt trigger feeds a transistor switch and an emitter follower.

The triangular wave is then fed to A3 which acts as an inverting amplifier, and the output is fed to A4 which is an exponential integrator set at a pseudo-ground of 4 V 5 . The bias and gain pots must be adjusted to give the best sine waveform.

Vi can be any positive voltage from $+0.5 \leftrightarrow+15.0 \mathrm{~V}$, giving a frequency

range of about $1: 100$. Capacitor C the outputs have a low distortion up to can be any value from $10 \mathrm{n} \leftrightarrow 47 \mathrm{n}$ and about 20 kHz .

Gated 123 Oscillators

M. James.

The action of two distinct types of gated oscillator is shown in Fig 1. Type A stops immediately the inhibit signal goes low, and starts immediately it goes high. (Hence fractional output pulses may be produced).

Type B finishes its current pulse before stopping when the inhibit signal goes low and like A starts immediately it goes high.
A is used when an oscillator has to be synchronized using pulses shorter than the output pulse and B is used when a number of whole pulses are required (the inhibit signal is obtained from the output of a counter).

It can be quite difficult to achieve a type A oscillator that starts up without jitter using TTL. The circuit of Fig 2 shows how an SN74123 may be used to construct both types. A type A oscillator is obtained if the dotted connections are left out. The times t_{1} and t_{2} are set by the usual timing components see Fig 3 - the diode is needed if Cext >1000 p (across PA - MA and $P B-M B$ respectively). The times may be calculated using:-

$$
t=0.32 R T \operatorname{Cext}(1+0.7 / R T)
$$

if the diode is not required and

$$
t=0.28 R T \text { Cext }(1+0.7 / R T)
$$

otherwise.
RT is in kilo-ohms, Cext is in picofarads, t is in nanoseconds and the max value of RT is 20 k .

Fig. 2. Right - connect ion to a 74123 to obtain both type of gated oscillator.

Fig. 3. Below arrangement of the timing components.

1 5
 240 Watts!

HY5

Preamplifier
Thag Cartidge tuner etc amplifier ideally suited for all applications. All common input functions (mag Cartridge, tuner, etc.), are catered for internally, the desired function is achieved either by a multi-way switch or direct connection to the appropriate pins. The internal volume and tone circuits
merely require connecting'to external potentiometers (not included). The HY5 is compatible with all I.L.P. power amplifiers and power supplies. To ease construction and mounting a P.C connector is supplied with each pre-amplifter
FEATURES: Complete pre-amplifier in single pack - Multi-function equalization - Low noise - Low istorion - High overioad - iwo simply combined for stereo
APPLICATIONS: H - Mixers -- Disco - Guitar and Organ - Public address
SPECIFICATIONS
(Auxilary $3-100 \mathrm{mV}$ input impedance 47 kg) at 1 kHz
ACTIVE TONE CONTROLS Treble $\pm 12 \mathrm{~dB}$ at 10 kHz ; Bass \pm at 100 Hz
DISTORTION 0.1% at 1 kHz Signal/Noise Ratio 6BdB
OVERLOAD 38 dB on Magnetic Pick-up; SUPPLY VOLTAGE $\pm 16.50 \mathrm{~V}$
Price $£ 5.22+65 p$ VAT P\& P free

HY30

15 Watts into 8Ω
The HY30 is an exciting New kit from I.L.P it features a virtually indestructible I.C with short circuit and thermal protection. The kit consists of I.C heatsink, P.C. board, 4 resistors. 6 capacitors mounting kit, together with easy to follow construction and operating instructions. This amplifier ideally suited to the beginner in audio who wishes to use the most up-to-date technology available FEATURES: Complete kit - Low Distortion - Short. Open and Thermal Protection - Easy 10 Build APPLICATIONS: Updating audio equipment - Guitar practice amplifier - Test amplifier - Audio SPECIFICATIONS:
OUTPUT POWER 15W R M S into 80 DISTORTION 0.1% at 15 W
INPUT SENSITIVITY 500 mV FREQUENCY RESPONSE $10 \mathrm{~Hz}-16 \mathrm{kHz}-3 \mathrm{~d} 8$ SUPPLY VOLTAGE $\pm 18 \mathrm{~V}$

25 Watts into 8Ω
The HY50 leads !.L.P 's total integration approach to power amplifier design. The amplifier features an integral heatsink together with the simplicity of no external components During the past three years Fidelity modules in the World to the extent that it FEATURES: Low Distortion

- No external components

APPLICATIONS: Medium Power Hi-Fi systems - Low power disco -- Guitar amplifier
SPECIFICATIONS: INPUT SENSITIVITY 500 mV
OUTPUT POWER 25W RMS in 80 LOAD IMPEDANCE 4.160 DISTORTION 0.04% at 25 W at SIGNAL/NOISE RATIO 75 dB . FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE $\pm 25 \mathrm{~V}$, SIZE 105.50 .25 mm

HY120
60 Watts into 8Ω
equirements including load line and thermat protection, this amplifier sets a new standard in moduta FEATURES: Very low distortion - Integral Heatsink - Load tine protection - Thermal protection Five connections - No external components
APPLICATIONS: HI-Fi - High quality disco -. Public addłess .- Monitor amplifier -. Guitar and SPECIFICATIONS:
INPUT SENSITIVITY 500 mV
OUTPUT POWER.60W RMS into 8 LOAD IMPEDANCE 4.160 DISTORTION 0.04% at 60 W at
SIGNAL/NOISE RATIO 90dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$. SÚPPLY VOLTAGE +35 V.
Size $114 \times 50 \times 85 \mathrm{~mm}$
Price $£ 15.84+£ 1.27$ VAT P\& P free
HY200
The HY200, now improved to give an output of 120 Watts has been designed to stand the mos rugged conditions, such as disco or group while still retaining true Hi-Fi performance FEATURES: Thermal shutdown - vēry low distoftion - Loadiline protection - Integral Heaisink SPECIFICATIONS
NPUT SENSITIVITY 500 mV
OUTPUT POWER 120W RMS into 8: LOAD IMPEDANCE 4.160 DISTORTION 005% at 100 W at SIGNAL/NOISE RATIO 96 dB . FREQUENCY RESPONSE $90 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE SIRE $114 \times 100 \times 85 \mathrm{~mm}$
Price $£ 23.32+£ 1.87$ VAT P\&P free.

HY400

240 Watts into 4Ω
The HY400 is IL.P's "Big Daddy. of the range producing 240W into 421 It has been designed to high power disco or public address applications if the amplifier is to be used at continuous high power evels a cooling fan is recommended The amplifier includes all the qualties of the rest of the family to FEATURES: Thermai high power hi-fidelity power module

component

APPLICATIONS: Public address - Disco -- Power slave - Industrial SPECIFICATIONS
OUTPUT POWER 240W RMS Into 4) LOAD IMPEDANCE 4-16) DISTORTION 01% at 240 W at
SIGNAL/NOISE RATIO 94dB FREQUENCY RESPONSE $10 H z-45 k H_{z}$... 3 dB SUPPLY VOLTAGE $+45 \mathrm{~V}$ INPUT SENSITIVITY 500 mV SIZE $114 \times 100 \times 85 \mathrm{~mm}$ Price $£ \mathbf{3 2} .17+£ 2.57$ VATT P\&P free.
POWER SUPPLIES

PSU 70 sutable for 2 HY 120 's $£ 13.75$ plus $£ 110 \mathrm{VAFP}$ P/P
PSU90 sutable for one HY200 £ 12.65 plus $£ 1.01$ VAT P / P free
8) $\mathbf{4 \overline { 4 }}$ pplus Duvai

TWO YEARS' GUARANTEE ON ALL OF OUR PRODUCTS
I.L.P. Electronics Ltd

Crossland House
Nackington, Canterbury
Kent CT4 7AD
Tel (0227) 63218

Please Supply
Total Purchase Price
1 Enclose Cheque \square Postal Orders \square Money Order \square
Please debit my Access account \square Barclaycard account \square
Account number
Name \& Address

SEMICONDUCTOR OFFERS ALL FULL SPEC.

 20p Mororola MRD 305, Photo Transistors 35p N Channel
FE Ts similar 102 N 381918 p Motset Simt 40673 35p 3 N 140

 50p MC1 303 N ST Preamp IC $£ 130741$ 8-pin D IL 23 p
MM5 316 Clock Chips $£ 350500 \mathrm{~V} 600 \mathrm{~mA}$ Bridge Recs (ex equp) 25 p in 4002100 v 1A Diodes 4p 14005800 V 1 A Diodes

 Condenser Mikes withzer anus.5 Jack Plugs $£ 285$ Standard
Cassetre Mikes 200 ohm mped win 25 and 35 Jack Plugs
$E 120$ A Mikes Mobite Type $50 \mathrm{k} \Omega$. Thumb Switch $£ 420$ MORSE KEYS-Plastic Type $95 p$ H1. speed Type, all metal

 coverage. £7 90

CRYSTALS. 300 KHz HC6U 40 p .43 MHz C T
01"Edge Connectors. 64 way 65 p 32 way 40 p
RELAYS. Min sealed Relays all 4 pole changeover $360(6 \mathrm{~V}$ OC $)$
$4501850(12 v \mathrm{DC}) 5507000(24 \mathrm{VOC}) 55 \mathrm{p}$
 $\operatorname{amp}_{20 \mathrm{p}}$ Conlacts 11 pin base $80 \mathrm{p} \quad 12$ volt 4 pole NO Reed Relay
 BOXES. Black ABS Plastic with brass inserts and lid. 75×56
$35 \mathrm{~mm} 40 \mathrm{p} 95 \times 71 \times 35 \mathrm{~mm} 49 \mathrm{p} 115 \times 95 \times 16 \mathrm{~mm} 57 \mathrm{f}$ Grey Polling Boxes with lugs. $23 \times 48 \times 23 \mathrm{~mm} 11 \mathrm{p} 38 \times 52 \times 25 \mathrm{~mm}$
$13 p 60 \times 80 \times 42 \mathrm{~mm} 28 \mathrm{p}$ TRANSFORMERS. $6-0.6 v 100 \mathrm{~mA} \quad 9.0 .9 \mathrm{v} 75 \mathrm{~mA} 120.12 \mathrm{v} 50$

 $+35 p$ \& $+35 p$ \& q
3 amp Chokes $30 p$

SWITCHES-Min Toggle SPST $12 \times 6 \times 9 \mathrm{~mm} 54$ D DPDT $12 \times$
 M. Min Milero Switches $13 \times 10 \times 4 \mathrm{mpm} 20 \mathrm{p} G \mathrm{~F}$ O Keyswite
15 M
Assy 3 Switches 2.3 way 1.2 way Multpole 35 . Min Push to make or push to break Switehes $16 \times 6 \mathrm{~mm} 15 \mathrm{p}$ Plessey Winkler
Siud Swiches 2 bank : pole 30 way ad, stop. 75 p Oe-soldering
Tools. plunger type $£ 495$ Tools. plunger type E 495

TAPE HEADS-Jap Cassette Mono 90p Cassente Stereo £3 OO BSR MN $13301 / 2$ Track Oual Impedance Rec., Playback 50 p 8 S
SRP90 $1 / 4$ Track Stereo Rec / Playback 195 TO10 Assembles

BUZZERS-GPO.Type 6-12v 20p 6.12v Hooters $50 \rho \mathrm{Min}$ Solid Slate Buzzers 6-9-12 or 24 v 15 MA 75 p UH.F TV Transistortse POT CORES-Adj Vinkor 250.370 Micro h 20 D 260 or 500 METERS - $100 \cdot 0-10 \mu_{\mu}$ a Level Melets 750 Stereo Tuning Melers 100μ a per movement $\& 275$ Grundig Ba:t Level Mete
$1 \mathrm{~mA} 40 \times 40 \mathrm{~mm} k 110 \mathrm{Min}$ Levet Meter 200 a $25 \times 15 \mathrm{mn}$
 BOAROS. GPO Board with 64 BC 107 Type Transistors. 2 Reed Preamp Hoards max I/P $700 \mathrm{M} / \mathrm{V}$ iHIZ Z Gain 26 DB 40 D 465 KHz I. F Panels. 6 I.F T s 30 p Board with 1412 vN U Reed
Reiays $£ 240$. Board with 6 V C O Reed Relay f 120

AEROSOLS-Servisol Switch Cleaner + Lubricant 8ozs SOLENOIDS-240v AC 45 p 12 vOC H Duty 75 p 240v AC
Large 25 lbs pull $4^{\prime \prime}$ travel $£ 3.25+50 \mathrm{pP} \& \mathrm{P}$

POSTAGE 30p UNLESS OTHERWISE SHOWN EXCESS POS IAGE REFUNDED WITH ORDE
VAT INCLUDED IN ALL PRICES

PROGRESSIVE RADIO
31 CHEAPSIDE, LIVERPOOL 2 051-2360982

Our finger is right on the button whenit comes to

SCIENTIFIC PRODUCTS at the right price

THE NEW DECIMO CLOCK RADIO - VHF/MW
accurate 24 hour auto wake for alarm or music with auto shut and recall for nexi day 3 -postion display Sleep to mustc with auto switch off Snooze Bar tor that
litle extra sleep HI/Lo Dimmer $3^{\prime \prime}$ pm Dynamic speaker VHF/MW Radio slider volume and tone Our Price £ $39.95 \quad$ Stereo Version $£ 59.95$

casio	
-CQ1 Time stopwatch catic alarm sel ala	£29.95
-StI Mem calc ume measurement Net time and split ume	£26.95
-Pro FX1 card programmable	$£ 129.95$
- $\times 201$ Programmable	£44.95
FX202 prog with facility tor keeping prog when ofl	£67.95
FX2000 Lcose	£24.95
-FX1 10 full sci	£17.95
Lc820 LCD in wallet	£17.95

Al 1115 FINCHLEYRD
barclay::::: TEMPLE FORTUNE
LONDON N.W. 11

458475

Pa

MINI-ADS

LED DISPLAY DL707
 70p

Vero cases $60 \times 108 \times 180 \mathrm{~mm} \quad . . . \mathrm{£} 2.59$ Acrylic clock case $105 \times 80 \times 60 \mathrm{~mm} . £ 2.60$ Metal instrument case $283 \times 235 \times 60 £ 15.00$ Metal instrument case $310 \times 145 \times 180$
Bridge Rectifier 1A 400 V
Mercury Gravity switch
Futaba green display 5 LTO
Clock clip AY 1202
Push button switch SPST
£15.00

Main lead 2 metres moulded 2-pin plug 25p
Crystal oscillator unit $1 \mathrm{HzO} / \mathrm{P} \quad \mathrm{C} 50$
24 and 28 pin sockets Low profile
14 pin sockets 20p

+ 30p P \& P per order
Barclay and Access welcome
Send card number with order
METAC-ELECTRONICS \& TIME CENTRE

Uxbridge 3 Now Arcade Him Streel Uxbridgo. Middr Tot. (10095) 56961	London	Daventry
	327 Edgwars Pload	67 Migh Streel
	London	Oaventry
	W2	Northanis
		Tal. (1032 72) 76545
	hops open 9105.30	

SEMICONDUGTORS ETI PROLECTS
C. N. STEVENSON (ET4] 22 Tiverton Drive

CARBON FILM RESISTORS 5\% E12 Series $1 / 8 \mathrm{~W}, 1 / 4 \mathrm{~W}, 1 / 2 \mathrm{~W}$. Mixed to your choice. 100 for 90 p . Electrolytics $50 / 15 \mathrm{v} 7 \mathrm{p}$. MiCROPROCESSORS SC/MP £12.70. Introkit £71, Keyboard kit £74, MM6800 £20, 280 £25. No extras. P\&P 15p. CANDAR, 9 Galloway Close, Denbigh Hall, Bletchley.

VALVES

Radio - TV - Industrial - Transmitting
We dispatch valves to all parts of the world by return of post, air or sea mail, 2700 Types in stock, 1930 to 1976. Obsolete types a speciality List 20p. Quotation 5.00 Closed Wednesday 1 co to Saturday 9.30 to all types of new and boxed Valves.
Cox Radio (Sussex) Lid., Dept. E.T.I., The Parade. East Wittoring, Sussex P0208BN. West Wittering 2023 (STD Code 024366).

PROFESSIONAL ELECTRONIC SUR-

 VEILANCE EQUIPMENT on sale. Enquiries 01-444-8212
U.K. orders
over £5 post

Superb home/disco entertainment - also useful for stereo waveform analysis, etc.

- Output direct to TV aerial socket
- Automatically changing background cotours

COLOUR MODUIATO
The only design to offer:
3 Separate inputs R, G \& B

- Switchable background colours
- Easy connection to any game

TENNIS/FOOTBALL/SQUASH
COLOUR KIT ONLY
£ 3.95
Suitable for use with AY-3-8500 or AY-3-8550 (joystick controls) and above modulator. Pots and switches not supplied Chip prices on request.
W.P. STUART-BRUGES

137 Billericay Road, Herongate, Brentwood Essex CM13 3SD. Tel. 0277-810244

QUALITYCOMPONENTS AT LOW PRICES

Transistors		555	0.48	145006			0.15
16's		7430	0.17	1/25407			0.15
AC127	0.22	7490	0.42	1145408			0.18
MC128	0.21	72709	0.36	82Y88	Serit		0.10
${ }^{\text {A }} 10161$	0.50	72741	0.35				
${ }^{40162}$	0.50			Electrs			
8 Cl 07	0.10						
8 Cl 108	0.10	Diodes		1.0	uF	16 V	0.99
BCIO9	0.11	0447	0.12	2.2	UF	63 V	0.10
80147	0.08	0 ASO	0.08	4.7	uF	63 V	0.10
80148	0.08	0, 9^{1}	0.06	10	UF	63 V	0.10
8 OC149	0.09	012202	0.08	22	U	25 V	0.09
8C207	0.10	144001	0.05	32	uF	16 V	0.09
80131	0.50	IM4002	0.05	47	uF	$25 V$	0.09
80132	0.50	1M4003	0.06	47	uF	63 V	0.12
80140	0.40	1m4004	0.06	100	uF	$25 V$	0.09
BFY50	0.20	IM4005	0.07	220	UF	$25 V$	0.20
BFY51	0.20	1M4006	0.07	470	uF	354	0.25
BFY52	0.20	1 M 4007	0.07	1000	uF	16 V	0.28
2 M 3055	0.60	1 m 4148	0.04	1000	uF	50 V	0.32
741	0.29	1 H 5401	0.13	1000	uF	70%	0.38
7400	0.15	1 N 404	0.15	2200	uF	50.	0.68

Hesislors. Carbon film 5\% 2W-0.05. IW-0.04. $1 / 2$ W- 0.025 . $/ 4 \mathrm{~W}-0.02$.
Also slocked Bridas Ractifiers. Fussas, Fuse Hodders Lase and Cables. Plugs and Sockets. Microphones. Multimetiars. Antex Soldering Irans. Solder, Spaakers. Spaker Cabinats and wany other items all al low prices.
Stud for comprahensive stock list for full dolails. Ouantity dizcounta available. All prices include VIT but please send 25 p extra to cover post and packing.

D S M ELECTRONICS LIMITED
Unit 22, Low will Ind. Estate, Ravensthorpe, Dewsbury W, Yorts.
TeL: Mirfleld [0s24] 495871

SECURITY PRODUCTS

Designed for the Do-It-Yourself market. Easily installed. Fuil instructions supplied. As supplied to the trade.

Magnet and Reed switch
Flush 65p Surface 70p
Pressure Mats Large £ 1.20

80p
Bell Covers - Metal - Plastic coated
Bell Covers - Metal - Plastic coated .. $£ 5.00$
Window Foil self adhesive
Foil Block
£2.20
.$\quad 15 p$
Door Loops complete 70p
Key Switches top grade £2.50
Control panels from £18.75
Radar, Infra-Red, and many other items avail
able. Send for details.
Please add $121 / 2 \%$ VAT $+£ 1$ P\&P
STRATHAND SECURITY
44 St Andrews Sq
Glasgow G1 5PL
$041-5526731$ or 2

Standard or 'FR-Glapex' fibreglass P.C.B.'s for ETI projects supplied tinned and drilled E.T.I. 541 . 68p 3 Channel tone E.T.I. $549.77 p$ control . 63p S68 VDUa (Mod) Digital Therm S68 VDUb (Mod) Clock A .. 97p 249p Clock B .. 197p S68 Mainframe Companda 152p PSU 81p Rev Monitor 89p S68 CPU . 226p Freezer alarm 46p S68 TTY . 193p
PLUS Special Offers now valid till Mar. ' 78 . Item 1: Full set S68 pcbe (VDU a \& b, PSU, CPU) only $£ 6.75$ per set.
Item 2: ETI 804 TV Game, $£ 1.00$ each
Item 3: ETI 480 + 480 PSU, $£ 1.90$ ner pair All prices shown include VAT. Add 20 p post \& packing
P.C.B.s also available for this month's ETI projecta. Send SAE for full list of available

WATCH BATTERIES SUPPLIED for $60 p+15 p$ P\&P each. All types available. Please indicate battery type. Hayes Audio, 44 North Crescent, London N3.

CQMPUTER PRINTED CIRCUIT BOARD. Complete with circuit diagram and scores of components. Guaranteed working or, and modules, counters, flipflops, inverters Send £ 1 per board plus 30 p P\&P or 30 p for list of Scientific Coatings, 16 Victoria Drive, Horsforth, Leeds, Yorks.

PLATINUM, GOLD, SILVER, etc etc etc. Top London prices. DOUG HOLDEN
Shore Road. Perth
el 24137 or 24544
$0.5^{\prime \prime}$ LED DISPLAYS on clock / alarm module. £5.50. Needs transformer and switches and buzzer. Switches and buzzer on small panel E1 extra. Postage 15 p Module can give time, radio and alarm on/off, sleep timer, snooze (repeater alarm). Also: Ex-calculator LED display panels, part O.K.. six punels for £1 (with gen). Mr. Bobker, 29 Chadderton Drive, Unsworth, Bury, Lancs.

MARINE ELECTRONIC ENGINEERS

We require Engineers to carry out repair and service work on the Brown Boveri range of sophisticated electronic equipment
Experience in one or more of the following fields is desirable:
Remote Main Engine Control, Alarm System, Cargo
Monitoring, Power Control Equipment.
Full training at our Continental and Brentford Works will be given.
Some overseas travel will be necessary Good salary and Private Pension Scheme

Please write or telephone for an application form to: MRS. B. HENNESSY
Personnel Officer
BRITISH BROWN-BOVERI LIMITED
Glen House, Stag Place
London SW1E 5AH
Telephone No. O1-828 9422

MICROPROCESSOR to cassette tape. THE SILENT PAPER TAPE. A neat little CMOS IC device to interface serial data at 110 to 300 Baud to/from your audio tape recorder. Built £15 (inc) 52 Jubilee Road, Littlebourne. Kent.

> TV SOUND kit including drilled PCB to build the HiFi News TV sound isolator Enables TV sound to be played though a hifi system. Only $£ 3.75$ inc. P\&P. TVS Electronics, 95d Ardwell Avenue, Barkingside, Ilford, Essex.

BOOKS AT BARGAIN PRICES: Semiconductors, international dictionary in 7 languages, English - French - German - Italian Portuguese - Russian - Spanish. 2 volumes (pub. price £15). £3. Freeman, Worked examples of Alternating Current for Engineering Students £1. Frost-Smith, The Theory and Design of Magnetic Amplifiers (pub. price £2) £1. POST FREE FROM: F WEATHERHEAD \& SON LTD. 58 Kingsbury, Aylesbury, Bucks. Tel: 029623153.
VHF pocket size portable receiver tuning 108 to 136 MHz . Highly sensitive. Slide rule type tuning scale. Fully guaranteed. £ 16.50 post paid Romak Ltd, 33 Llys-y-Wern, Sychdyn, Nr. Mold, CIwyd, Wales.

AD INDEX

Ace 37	Maplin	100
Ambit 20	Marshall's	10
Audio 81	Micronics	37
Bamber Electronics 95	Minikits Electronics	16
Barday 93	Monolith	98
Baron Electronics 95	Mountiandene	16, 77, 86
Baydis 65	Nicholls	70
Bipak 485	Powertran	80
Bywood 94	Progressive Radio	93
Cambridge Learning 20	R.F. Equipment Spares	61
Chiltmead 88	Service Trading	82
Chromasonics 31	Sintel	
Chromatronics 6	Sterling Sound	66
Communications Measurement . 77	C.N. Stevenson	81
Crimson Electrik 95	Surefire	76
E.D.A. 12	Swamley	44
Electrovalve 44	Technomatic	- 91
Gould Advanced 7	Tempus	. 91
Greenbank 9	T.K. Electronics	- 98
Greenweld 99	Trampus	61
Heathkit 81	Tritron	65
ILP 8, 21,92	Vero	37
Jayen 9	Videocraft	69, 70, 86
Kramer 9, 14, 16, 70	Watford	. 2
L.B. Electronics 9	Wilslow	91
Lewis Radin 77	Xeroza	86

$£ 19.95$
 inc VAT \& PP

The Clever Pocket Calculator That also Keeps You on Time

A superbly Compacted Calculator, Clock Alarm and Two-way Timer

Casio has made calculator news again by bringing to you the kind of compact electronic instrument that means utility value every day.
This is not just another pocket calculator - apart from giving you a comprehensive range of calculating functions (such as percentages, square roots and a memory) the new Alarm Computer delivers up-to-the-second time; is programmable for a daily alarm signal, and has two count-down timers for optional settings up to 23 hours
Another beauty about this new instrument is the fact that it can be used as a calculator whenever required whatever time or timing mode it is in, and setting is delightfully simple

(subject to availability)

KRAMER \& CO

9 October Place. Holders Hill Road, london NW14 1 EJ elex: 888941. ATTN. KRAMER, K7. TaI. 01-203 2473 MAIL ORDER ONLY. S.A.E. for data sheets Export enquities welcome

TECHNALOGICS PROUDLY PRESENT "LOGISCAN Mk. II"
 COLOUR TELETEXT DECODER

YOU CAN NOW BUY A TELETEXT DECODER TO THE LATEST BBC / IBA/ BREMA JOINT SPEC. (NB. Many other decoders are not full spec. display)
THE LOGISCAN Mk. II OFFERS THESE EXTRAS
\star Double/Single Height \quad Background Colour Fix

* Conceal/Reveal Switch
* Unifix (revert to black)
* Discrete Graphics
- Graphics Hold/Release

8 Auto Newsflash
Continuous Graphics
Auto Newsflash \quad Roll Mode
\star Flash/Steady Display

* 6800 MPU Compactible
* Subtle Inserts

FULL TECHNICAL BACKUP SERVICE

- 12 months' guarantee on all parts - subject to correct assembly and use
- Board fault finding service (board unpluggable for easy dispatch)
- Technical advice on installation

We are also glad to announce that our decoders are available installed in either $26^{\prime \prime}$ or $22^{\prime \prime}$ colour televisions for just over. $£ 500$ and are available for view or purchase from Colourvision, Smith down Road, Liverpool L18

KIT £185 + $121 / 2 \%$. BUILT $£ 250+121 / 2 \%$
Details large S.A.E. Mail Order
TECHNALOGICS
8 EGERTON STREET
LIVERPOOL L8 7LY

WHAT A BIND!

About half our orders for ETI Binders are repeats: we think that says something about their quality.

Send $£ 3.00$ (inc) to:
ETI Binders, ETI Magazine, 25-27 Oxford Street, London WIR IRF

HAVE YOU DONE IT LATELY!

443 Millbrook SO1 DHX			
BUY A COMPLE RANGE OF COMPONENTS A THESE PACKS W HELP YOU \qquad			1977/8 CATALOGUE EDGE CONNECTORS High quality \qquad \qquad \qquad \qquad S-DECS \& T-DECS \qquad \qquad \qquad EARPIECES \& SPEAKERS \qquad \qquad \qquad

