

, antroniostoter international

Features

${ }^{2}$ L EXPLAIINED 19All you ever wanted to know about this new techniqueELECTRONICS 2000 AD - PART 3A look at communications of the future25
THE VALVES THAT WON THE WAR 41
Magnetrons (title applicable only if you supported the Allies)60
COMPONENTS -- PART 10
Cermet and other less common types are covered 53
How to save the cost of this magazine
ELECTRONICS - IT'S EASY - PART 39 64
Coupling electronics stages73
TECH-TIPS
Three pages crammed with circuits
Projects
TV GAMES UNIT 12
Four games using one main chip to plug into your TV31
Hi-Fi speaker enclosures for the handymanERII SPEAKERS37
METRONOME 39
SYSTEM 68 - POWER SUFPLY 55
Getting powered up for your home MPU
Data Sheet
LM 1812
An ultrasonic transceiver chip from NationalTDA102248
49A C.C.D delay line from Mullard
News
NEWS DIGEST 6
ELECTRONICS TOMORROW 69

Information

ETI TOP PROJECTS 1 \& 210
SPECIAL PUBLICATIONS FROM ETI 36
TOWERS TRANSISTOR BOOK 46
ETI BOOK SERVICE47
A LOOK AT ETI JUNE ISSUE 52
TRANSDUCERS IN MEASUREMENT AND CONTROL ETI DIGITAL CLOCK 67
BINDERS72
READERS SERVICES 82
Special offer

EDITORIAL AND ADVERTISEMENT OFFICES
 25-27 Oxford Street London W1R 1 RF
 Telephone 01-434 1781/2

Telex 8811896

HALVOR W. MOORSHEAD Editor

RON HARRIS B.Sc

Assistant Editor
JIM PERRY
Specials Editor
TONY ALSTON
Project Development
JULIAN ZINOVIEFF
Production
MAREE BREEN
Technical Drawing
SANDRA ZAMMIT-MARMARA
Subscriptions
MARGARET HEWITT
Administration
DAVID LAKE (Manager)
BRENDA GOODWIN
KIM HAMBL!N
Reader Services
For Advertising Enquiries ring MARK STRATHERN
on 434 1781/2
INTERNATIONAL EDITIONS
aUSTRALIA Collyn Rivers
Publisher
Steve Braidwood
Assistant Editor
hOLLAND: Anton Kriegsman
Editor-in-chief

CANADA:	Mike Kenward Editor
FRANCE:	Denis Jacob Editor-In-chief

Electronics Today International is normally published on the first Friday of the month prior to the cover date

PUBLISHED BY
Modmags Ltd
25-27 Oxford Street. W1R 1RF
DISTRIBUTED BY
Argus Distribution Lid (British Isles)
Gordon. \& Gotch Ltd. .overseas)
PRINTED BY
QB Newspapers Limited, Colchester
COPYRIGHT: All material is subject to world wide Copyright protection. All reasonable care is taken in the preparation of the magazine to ensure accuracy but ETI cannot be held responsible for it legally. Where errors do occur, a correction will be published as soon as. possible afterwards in the magazine

BI-PAK
 High quality modules for stereo, mono and other audio equipment.

The 450 Tuner provides instant program selection at the touch of a button ensuring accurate tuning of 4 pre-selected stations any of which may be altered as often as you choose, by simply changing the settings of the pre-set controls
Used with your existing audio equipment or with the BI-KITS STEREO $\mathbf{3 0}$ or the MK60 Kit etc. Alternatively the PS 12 can be used if no suitable supply is available. together with the Transformer T538.
The $\$ 450$ is supplied fully built, tested and aligned. The unit is easily installed using the simple instructions supplied

* FET Input Stage - VARI-CAP diode tuning - Switched AFC
* Multi turn pre-sets
* IFD Stereo Indicator

Typical Specification:
Sensitivity 3μ volts
Stereo separation 30 db
Supply required 20-30v at 90 Ma max.

STEREO PRE-AMPLIFIER

PA 100 OUR PRICE £13.75

- Harmonic Distortion Po=3watts $f=1 \mathrm{KHz} 02.5 \%$

Load Impedance 8-16ohm Size: $75 \mathrm{~mm} \times 63 \mathrm{~mm} \times 25 \mathrm{~mm}$ - Frequency response $\pm 3 \mathrm{~dB}$ Po= 2 watts $50 \mathrm{~Hz}-25 \mathrm{~Hz}$

Sensitivity for Rated O/P-Vs=25v. RL=8ohmf=1KHz 75 mV . RMS AL30 10w R.M.S. £3.45

AL60

25 Watts (RMS)

* Max Heat Sink temp 90C. * Frequency respons 20 Hz to 100 KHz * Distortion better than 0.1 af 1 KHz * Supply voltage $15-50 v$ * Thermal Feedback * Latest Design improvements \star Load $-3.4,8$ or 16 ohms \star Signal to noise ratio $80 \mathrm{db} \star$ Overall size 63 mm .105 mm 13 mm .
Especially designed to a strict specification. Only the inest components have been used and the latest amplifier which should satisfy the most critical A.F enthusiast.
Stabilised Power Supply Type SPM80
SPM80 is especially designed to power 2 of the AL60 Amplifiers up to 15 watts (R.M.S.) per channel simultaneously. With the addition of the Mains Transformer BMT80, the unit will provide outputs of up to 1.5 A at 35 V . Size 63 mm . 105 mm . 30 mm . Incorporating short circuit protection
Transformer BMT. 80
£2.60 + 62p postage

nput voltage $15-20 \mathrm{v}$ A.C. Output voltage $22-30 \mathrm{v}$ D C
OUR PRICE Output current 800 mA Max. Size $60 \mathrm{~mm} \times 43 \mathrm{~mm} \times 26 \mathrm{~mm}$. $\mathbf{E 1 . 3 0}$ Transformer T538 £2.30

Looking rather like a toothbrush for 'Jaws', this device is actually a new method of cleaning L.P.s. The method it adopts is a cross between an ant i -

static pistol and a record brush. In fact - it's both!

The piezo-electric cell is mounted in the handle, and ionisation takes place within the head cavity from a needle electrode. The makers say this loosens any dirt present, allowing it to be swept up onto the velvet pad by the brush.

In a field bristling with sweeping claims, this looks ion-clad! It will be shown at the $\mathrm{Hi}-\mathrm{Fi}$ Exhibition at the Heathrow Hotel for the first time, is called the EARC and costs $£ 11.50$. Sounds Professional, 49 Theobald St., Boreham Wood, Herts.

A CHIP OFF THE OLE MPU

Fairchild have developed a one-chip version of their F8 MPU called the 'F8 Micromachine', aimed at low-cost and a wide range of consumer and industrial applications.

The Micromachine 1 will be available in sample quantities in April. Designated as the 3859 , this circuit provides all the functions of the earliec two chip F8 system consisting of the 3850 CPU and the 3851 PSU (Program Storage Unit). The F8 Micromachine is aimed to provide the most effective solution for applications that can be accomplished with 1 -kilobyte of memory. This covers a wide range of equip. ment such as home appliances, television tuning, video games, industrial and home heating, utility meters and thermostatic controls.

CLIPPING CHEATER WINGS (AND TICKETS)

EMI and GEC Elliot have a contract to develop a ticket inspection system for British Rail. Eventually it will be installed in 600 stations, if successful.

A pilot scheme is about to be run between Waterloo and Staines. Five stations will have the equipment installed as a test run. An automatic gate reads the magnetically encoded ticket checking date, type and destination, and decides whether to let you through or not, and whether to give you back the ticket. A Ferranti 16 -bit MPU is around in there somewhere.

Ticket sizes will be standardised and season tickets may well become credit card sized, and even plastic perhaps. With this system BR expect to save the cost of the system eventually out of the £6M now lost to frauds

USING ESP TO BOOST EXPORTS?
Lurking in the wilds or otherwise of Daventry is a new small company called Electronic Services and Products about whom we had heard some disturbing rumours. In these days of almost total British business pessimism they are apparently daring to export (whisper it softly) and export successfully at that.

The firm was started by three electronic enthusiasts who also happen, not coincidentally, to be brothers. Speciality is capacitance measurement, and ESP produce a range of automatic capacitance bridges. The photo below is of their 300 A , which possesses a range of 1 pF to $2000 \mu \mathrm{~F}$. Autorang-

ing. Accuracy of 0.5%. Time taken to arrive at a measurement is about $1 / 10$ th that of the old (well-hated!) ratio bridges.

Exports are by far the largest part of their business, with France and Germany being the main customers.

The firm has plans to expand its field of interest soon, maybe into consumer electronics - although exactly how, they're keeping very much behind a screen at present. Plans on the lab side include an LCR instrument, with the same autoranging and identification facilities as the 300 A , and even a 'smart' component tester

There is an unshakable air of optimism about the whole operation which must send the poker-faced prophets of impending cioom running for their tombs, and provide a welcome fillip for our apparently ailing industry.

741 AND 741 AND 741 AND 741

A new four-in-one op amp is announced by Precision Monolithics Inc. The PM 4136 series provides four 741 -type operational amplifiers in a single 14-pin DIP package. Each of the amp lifiers has the SSS741 advantages of low noise, low drift and excellent long term stability. Bourns (Trimpot) Ltd., Hodford House, 17/27 High Street, Hounslow, Middx., Tw3 1TE.

MOTOROLA A2D

The MC 14433B is a new $31 / 2$ digit $\mathrm{A} \rightarrow \mathrm{D}$ converter from Motorola. Both analogue and digital CMOS circuitry are present on the chip. It is designed to minimise the need for external components.

With two Rs and two Cs and a 14433B you have a dual-slope $A \rightarrow D$ converter with auto zero connection and polarity detection. Motorola Ltd., York House, Empire Way, Wembley, Middx.

A CASE FOR SERVICE?

Measuring $15 \times 12 \frac{3}{4} \times 8$ ins overall, the case is from the Industrial Division of Link-Hampson Ltd., 5 Bone Lane, Newbury, Berks. It is based on the Link-MK storage system.

In addition to space for a selection of tools, the case contains 8 small, 3 medium and 1 large full-width drawers. Each is removable and with provision for dividing into two or more compartments. A strong carrying handle and side-straps are fitted. Price is $£ 24.95$ plus VAT.

...AND ONE 4 MODS?

West Hyde let loose another range of Contil-Mod cases this month, the 'Mod 4' range, starting at $£ 3.33$ inc. p.+p. (and feet!!). Assembly is simple, and follows the well-known Contil style. The cases are black with a white steel front panel. W.H. Developments, Ryefield Crescent, Northwood, Middx.

HP's solution to the problem consists of a clip that encompasses an entire DIP, and an accompanying set of demountable probes, believed the smallest yet commercially offered. The basic part of each probe can be inserted by itself into the DIP clip at any pin position; indeed, 15 of them can be inserted simultaneously into a DIP clip; one position is used with a grounding pin, so any pin on the DIP can be used as probe ground, holding lead inductance to a minimum.

The series includes high-impedance dividing probes suitably compensated for most oscilloscopes with input capacitances of 9 to $14 \mathrm{pF} .1: 1$ probes are also available. Each is offered with a choice of 1 -metre or 2 -metre length cable. The HP miniature divider probes are $£ 70$ each. $1: 1$ probes are $£ 27$. The companion 10024A IC Test Clip is £12.Hewlett-Packard Ltd., King Street Lane, Winnersh, Wokingham, Berkshire RG11 5AR.

We were rightly collared over this. Last month we lead our readers astray by mixing up the photographs in the Metac advertisements. We had the oval clock where the rectangular kit should have been, and the kit where.............. precisely.

We apologise for any misunderstanding and inconvenience this may have caused.

A VACUUM IN CAR LEDS

Chrysler have given the elbow to LED displays in their forthcoming car clocks. Instead Futaba will be supplying them
with flourescent 0.3 in . blue-green displays, some 500,000 in fact, next year. The logical bits will be National.

The first thing to check when a piece of mains equipment dies in its tracks is the fuse. Many an engineer has gone gibbering into a white coat with straps because he can't find the fault on a stubbornly inert heap of apparently perfect circuitry, while lurking in the plug is a burned out un-linking fuse.

Well, there is a very simple way of avoiding the farm, and it's called an
'MP4 Fuse Checker'. As you can see it's really pocket-sized, and gives a good clear indication if the thing is still a fuse as opposed to a piece of ceramic junk. Checks all fuses from 500 mA upward. To get one, write to : Moulds for Plastics Ltd., Watchmead, Welwyn Garden City, Hertfordshire, AL7 1AP. They'll charge you £1.25 all inc. for the privilege

QUARTZ CRYSTAL CRISIS

This time last year U.S. crystal manufacturers were busy ordering yachts and private jets on the strength of the huge shortages prevalent in the field. However, in the past year the worm has spun rather than turned, and sackcloth is now the order of the day. As usual the Japs are the culprits, and stiff imported competition has beached the yachts good and proper.

Prices have hit the bottom so hard, it is threatening to fall out, and watch companies are buying more and more from the land of the rising LCD.

Intriguing eh?

T.V. GAMES DUEL IN THE ROM.

Magnavox, who hold exclusively the Sanders original patent for T.V. games, have made a 'strong suggestion' to Fairchild and RCA that they cough up a license fee for producing their programmable T.V. games. Their claim is that their control extends to these games. So far Magnavox has trampled just about everybody else into the dust - perhaps Fairchild should hire Clint Eastwood to carry out the negotiations ... or play them 'T.V. Tennis' for it.

TAKING THE MAINS
 TEMPERATURE?

Designed for bench- or rack-mounted temperature measurement applications, the Model 7005 digital thermometer from Jenway has an operational temperature range from $-75{ }^{\circ} \mathrm{C}$ to $9990^{\circ} \mathrm{C}$ with an accuracy of 0.1% of reading.

The Model 7005 has automatic cold junction compensation, and incorporates either three or four 14 mm gas discharge displays for clarity of temperature indication. The Model 7005 is housed in a rugged metal 96 mm din standard panel mounting case, and operates from an ac mains power supply at $110 \mathrm{~V} / 240 \mathrm{~V} 50 \mathrm{~Hz}$. Jenway Ltd., 26 Broomhills Industrial Estate, Rayne Road, Braintree, Essex.

BOARD MEETING AT THE POLES?

The new DIP switches are designed for use on printed circuit boards where they should find application in counters, computers, test gear or any situation demanding a simple programming or switching function. Up to 10 single pole switches can be specified in a single module, all with self-cleaning, gold-plated contacts capable of handling 100 mA at 50 V dc.

The pole positions are clearly numbered on the body of the switch to facilitate easy setting. Dust caps and locking mechanisms prevent accidental operation. The switches can be used with sockets or soldered directly to the printed circuit board; the design is such that soldering cannot contaminate the contacts.Contraves Industrial Products Ltd., Times House, Station Approach, Ruislip, Middx.

MULL OVER TELETEXT HARD

Mullard will be shoving four dedicated teletext ICs onto the market in June. The chips are N-MOS, and are now being done in sample quantities. Numbered SAA 5020, 30, 40 and 50, and

when coupled with 7 k of RAM and 3 standard TTL packs, they produce a fully Viewdata compatible decoder

Meanwhile back in Texas...
 SEND NO MONEY
We will invoice you with the clock. Try it out for 7 days then send your payment or return the clock in original condition.

SAME DAY DESPATCH

Clock orders received before 2.00 p.m. are posted on the same day.

2 YEAR GUARANTEE

A commitment by us to repair or replace at our discretion any METAC clock failing to give satisfactory service for two years.

- Precise time-keeping accuracy. Solid-state long life reliability

In choice of orange planar gas or soft green fluorescent digit displays. Green model has 24 -hour readout. Orange model has 12 -hour readout and AM/PM indicator. Both models have flashing second indicator, 24 -hour bleeper alarm, 5 -minute repeater, main failure indicator, $5^{\prime \prime}$ across $\times 31 / 2^{\prime \prime}$ deep. Attractive white case. Thousands sold. Please state choice.
An electronic clock is silent and extremely reliable; because there are no moving parts it is impervious to dust or vibration and will continue to work indefinitely. Timing signals are derived from the 50 or 60 Hz domestic electricity supply which in all the developed countries has to be held to very high levels of accuracy.
A bleeper alarm sounds until the clock is tipped forwards. The "snooze" facility can give you 5 minutes sleep before the alarm sounds again, and then another 5 minutes, etc., until you switch the alarm off.
An indicator on the display tells you if the alarm is set, another indicator tells you if it's in the 'snooze' mode.
This remarkable clock even tells you if the electricity supply has momentarily failed.
STOP PRESS our UXBRIDGE shop is now open. Visit Metac-Electronics, Time Centre
3 NEW ARCADE, HIGH ST., UXBRIDGE, MIDDX.
and see for yourself the full range of top quality watches, clocks and other consumer electronic products
Please send your order to:
METAC, ELECTRONICS AND TIME CENTRE
67 HIGH STREET, DAVENTRY, NORTHANTS.
Tel. Daventry (03272) 76545 Shops open 9-5.30 daily

Join the Digital Revolution

Understand the latest developments in calculators,

 computers, watches, telephories, television, automotive instrumentation . . .Each of the 6 volumes of this self-instruction course measures $11^{3 / 4^{\prime \prime}} \times 8^{1 / 4^{\prime \prime}}$ and contains 60 pages packed with information diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.
Design of Digital Systems.

$£ 6.20$
plus 80 p packing and surtace post anywhere in the world.

Payments may be made in foreign currencies.
Quantity discounts available on request
VAT zero rated

Also available -- a more elementary course assuming no prior knowledge except simple arithmetic.
Digital Computer Logic and Electronics.
in 4 volumes:

1. Basic Computer Logic
2. Logical Circuit Elements
3. Designing Circuits to Carry Out Logical Func tions
4. Flipflops and Registers
$£ 4.20$
plus 80p P. \& H
Offer Order both courses for the bargain price $£ 9.70$, plus $80 p$ P. \& P.

Designer
Manager
Enthusiast
Scientist
Engineer
Student
These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next

Guarantee-no risk to you

If you are not entirely satisfied with Design of Digital Systems or Digital Computer Logic and Electronics, you may return them to us and your money will be refunded in full, no questions asked.

now avallable: special repriot

 TOP PROJECTS $1+2$

ALSO: SIMPLE LOUDHAILER; OSCILLOSCOPE CALIBRATOR; ELECTRONIC TRANSISTORISED IGNITION BATTERY CHARGER; AUTOMATIC CAR THEFT ALARM; TURN INDICATOR CANCELLER; BRAKE LIGHT WARNING: THE REVEALER; METER BEATER; SOUND OPERATED FLASH; TEMPERATURE METER: USINGTHE LM380; TEMPERATUPEALARM; AERIAL MATCHER; UHF TV PREAMP; EARTH RESISTIVITY METER; FOUR INPUT MIXER; LOGIC PROBE; SUPER STEREO; IC POWER SUPPLY; RUMBLE FILTER; IC TESTER; IGNITION TIMING LIGHT: TAPE/SLIDE SYNCHRONISER; THE FAMILY FERRY; HI-POWER STROBE; PLUS TWO ADD-ON DECODER; 100 W GUITAR AMP; 50 W STEREO AMP.

All ETI Top Projects books have sold well - so well that No. 1 and No. 2 are out of print. Me've mentioned the fact many, many times but so many neople have continued to request them that we've combined $\mathrm{No}_{\mathrm{o}} 1$ and $\mathrm{No}_{\mathrm{o}} 2$ in a massive 180 page renrint containing all the original projects. This is ONLY available at present direct from: ETI Specials,

25-27 nxford Street, London W1R 1RF
Price is $£ 2.50+20 p$ postage. sterling only please

MAKE YOUR TELEVISION WORK FOR ITS WATTS WITH OUR

TV GAMES UNIT

This low-cost yet sophisticated TV game contains just one main IC plus a handful of other components yet out-performs virtually all other units currently on the market.

SINCE THE ADVENT OF television games in this country, we have met with a steady tide of requests to produce a project for one ourselves. However, even with the higher integration allowed in CMOS chips, and no-one in their right minds would contemplate using TTL, it was still not viable for the home constructor. We wele waiting for the single control chip to arrive on the open, as opposed to industrial, market.

At long last it has, in the form of the GI AY-3-8500, and so here is our version of a game utilising it. Figure 1 shows the kind of display produced by the chip, with its on-screen scoring facility and all The games playable are:

1. PRACTISE: The ball reflects off the end and side walls, and the player has to stop it passing him. Every time it does, the machine scores a point.
2. SQUASH: A second bat is added to the display, and you play against each other. When it is your opponents turn, your bat will not affect the ball.
3. TENNIS: Television tennis is widely known and played, but see the specification section for the unusual features of our game.
4. FOOTBALL: The ball reflects off all four sides of the court, except the goal-mouth. This must be defended by the goalie to prevent the opposition scoring. In addition, each player has a forward on the screen, who acts as a normal bat when the ball is heading for his own goal, but allows the ball to pass through him, deflecting it in the process, when it is moving
towards the opposite goal.

Rifling the screen

In addition, there are two rifle games included on the chip, but these need a special attachment to operate, which we are not including in this article but will probably 'do up' later - especially if there is sufficient demand).

Some circuitry, additional to the main IC, in the form of two extra ICs, is required to build the basic game unit, but the complexity is still way way down on any other
method of obtaining 'the same display.

Construction

Assemble the pcb, fitting the passive components and links first, along with the socket to the main chip. Leave this in its packing until you need it. Handle the CMOS chips carefully, and when fitting these, either use sockets or solder the power supply pins .7 and 14) first.

The switches will fit directly onto the board, and the rotary is

The finished unit positioned ready for use. The kit available from Maplin contains a ready drilled and printed box very similar although neater, in appearance to this.

Specification

Output
Players ${ }^{\text {C }}$ Controls
Picture: TV signal (can be set up on any channel). Sound: Three audio tones indicate hit, bounce and score. Each player uses a single rotary control to position his bat/men on the screen. In the practice game one control operates; for tennis, soccer and squash two players each have a control. For the rifle games a special rifle is needed (not described in this article).
Game Selection
Basic Games

1) Practice
2) Squash
3) Soccer
4) Tennis
Other Games (these cannot be played without a special rifle):
5) Rifle-1
6) Rifle-2
On-screen scaring up to a maximum of 15 points.
Two ball speeds
Two bat sizes
Two angles $\pm 20^{\circ}$; or four angles $\pm 20^{\circ} \& \pm 40^{\circ}$.
Manual or automatic service

Scoring
Other Features
used to hold the board to the front panel, so check your soldering carefully here. Fit the link to the modulator, and the wires out to the hand-held Vero boxes which contain the control and serve button for each player. Push these out through the ,hopefully grommeted) holes, tying a knot in each to make sure it doesn't strain the joint if pulled, and connect up the control boxes.

Once all the connections to the board are made, attach it to the front panel using the rotary switch, and two spacers on the switches for power and angle change.

If you use our kit from Maplin, the modulator is ready built, and there is no 'tuning up' to do. Simply bolt it in to the box through the hole provided, connect up power and video, and tune in a

ETI PROJECT

spare button on your TV to give a picture. Adjust C2 until the picture locks.

Use UHF cable to link board and modulator and box and TV Screened cable is all that is required to link control boxes and main unit.

Play the game

With the angles switch at ' 2 the ball moves at ± 20 across the screen. When hitting the side boundaries the laws of reflection
are obeyed. When the ball hits the bat this isn't always the case: a ball hitting the top half of the bat will leave with an upward trajectory, and downwards from the bottom half

With the angles switch at ' 4 the game becomes much more awkward! The bat is now divided into four sections. Starting from the top, the ball emerges at an angle of $+40,+20,-20$ -40 . If you think that is easy, try playing with small bats and high speed.

NEW COMPONENTS SERVICE

 2p. Preset Pots subminiature $01 \mathrm{WE} 3100 \Omega 2$ to 4 M 7 4 K 7 to 2 M 2 log or lin. Single 24 p . Oual 75 p . Polystyrene capacitors E12 63 V 22 pt to $8200 \mathrm{pf} 31 / 2 \mathrm{p}$ Ceramic capacitors vert 50 V E6 22 pf to 47000 pf 3 p Mylar capacitors 100 V . 00% 个 002,005 4p 01 $.02 .02541 / 2 \mathrm{p}$. Polyester capacitors 250 V E 6.01 to $1 \mathrm{mf} 51 / 2 \mathrm{p}, .15,22 \mathrm{mf} 7 \mathrm{p}, 47 \mathrm{mf} 11 \mathrm{p}$. Electrolytics 6 p .100 mf 7 p .220 mf 9 p .470 mf 11 p .1000 mf 18 p . Zener diodes 400 mW E 243 V 3 to $33 \mathrm{~V} 81 / 2 \mathrm{p}$.
MAINS TRANSFORMERS
6-0.6V 100mA 94p. 9-0-9V 75 mA 94 p . 18 V 1 A £1.95. 0/12/15/20/24/30V 1A £3.65. 12-0.12V 50mA 94p O/12/15/20/24/30V 2A £4.95.6.3V
 1 A £3 39.

PRINTED CIRCUIT KITS ETC *

Contains etching dish, 100 sq ins of pc board, 1 lb ferric chloride, etch resist pen, drill bit and laminate cutter

S-DECS AND T-DECS *

S-OEC 1.94 T-DeC £3. 67
u-0eCA E3. 97 u-OeC8 £6.97
IC carriers with sockets.

SINCLAIR CALCULATORS,

WATCHES AND POCKET TV *
Sinclair pocket TV E165. Cambridge Scientific £8.95. Cambridge Memory $£ 5.95$. Oxtord Scientific $£ 13.30$ Mains adaptors (state model) £3.20. Assembled grey watch with free stainless steel bracelet $£ 16.45$. White

watch £13.95

BATTERY ELIMINATOR BARGAINS 3-WAY MODELS
With switched output and 4 -way multi-jack connector Type $13 / 41 / 2 / 6 \mathrm{~V}$ at $100 \mathrm{~mA} £ 2.30$. Type 26 100ma 300 mA E2.90.
With press-stud connectors. $9 \mathrm{~V} £ 3.45 .6 \mathrm{~V} £ 3.45 .9 \mathrm{~V}$ $9 V £ 5.45 .6 V+6 V £ 5.45 .41 / 2 V+41 / 2 V £ 5.45$ CASSETTE MAINS UNIT
F2V with 5 pin ONN plug. $150 \mathrm{~mA} £ 3.65$
fULLY STABILIZED MODEL £5.4.5
Switched output of $3 / 6 / 71 / 2 / 9 \mathrm{~V} 400 \mathrm{~mA}$ stabilized CAR CONVERTORS $£ 5.10$

BATTERY ELIMINATOR KITS

Send sae for free leaflet on range
100 mA radio types with press stud battery terminals $41 / 2 V £ 2.10 .6 V £ 2.109 V £ 2.10 .41 / 2 V+41 / 2 V £ 2.50$

essete typ. Wil ransistor stabilized 8.way type for low hum 65 50/6/7/2/12/15/18V $100 \mathrm{~mA} £ 3.20$. 1 Amp £6.50.
Heary duty 13.way types $41 / 2 / 6 / 7$ model £4.95. 2 Amp model $£ 7.95$
Car convertor kit: Input 12 V DC. Output $6 / 71 / 2 / 9 \mathrm{~V}$ OC 1 A transistor stabilized £ 1.95
Stabilized Laboratory power kit. Switched 1 to 30V

SINCLAIR PROJECT 80 AUDIO

 MODULESP75f4 95740 £5 75 Project $8050 £ 20.95$ BI-PAK AUDIO MODULES
S450 tuner $£ 20.95$. AL60 £4.60 PA 100 £ 14.95 MK60 audio kit £31.95. Stereo 30 £ 16.95 SPM80 $£ 3.65 .8$ MT $80 ~ £ 3.32$. Send sae for free data
SAXON ENTERTAINMENTS MODULE SA1208 £16.95. SA1 204 £ 11.95 . SA608 £ 11.45

SINCLAIR IC20

IC20 10W +10 W stereo integrated circuit amplifier k with printed circuit and data $£ 4.95$.
VP20 Volume, tone-control and preamp kit $£ 8.95$ Send sae for free leaflet on the whole system
JC12 AND JC40 AMPLIFIERS
JC12 6W IC audio
and printed
circuit E1.95
Also new JC40 20W
model with pcb
£3.95. Send sae for free leaflet on both associated power supply and pre-amp kits

FERRANTI ZN414

extra parts and pcb for radio $£ 3.85$

SWANLEY ELECTRONICS
 Dept. ETI, PO Box 68, 32 Goldset Road

 Swanley, KentMail order only. No catiers. Send sae for free data on kits Post 30 p on orders under $£ 4.50$, otherwise free Prices include VAT. Official orders welcome Overseas customers please deduct 7% on items marked \star and

SEE US AT THE ALL ELECTRONIC SHOW GROSVENOR HOUSE 19-21 APRIL
Top 600 Semiconductors from the largest range in the UK - all devices manufacturers' branded stock from, Texas, National, Mullard, Motorola, RCA, Siemens.

MARSHALL'S QUALITY FOR TTL

TTL Integrated Circuits - Quality \& Prices you can't beat - Top manufacturers only

$\mathbf{0 . 5 5}$	$S N$
$\mathbf{0 . 2 1}$	$S N$
$\mathbf{1 . 0 3}$	$S N$
0.78	$S N$
1.23	$S N$
$\mathbf{1 . 1 7}$	$S N$
1.17	$S N$
0.27	$S N$
0.21	$S N$
0.21	$S N$
0.21	$S N$

MICROPROCESSOR SYSTEM

ancaicano SC/MP INTROKIT
 \qquad Q G/MD

KEYBOARD KIT

easty
eaty mates
RCLAYCARD

cPU
 PU chips

ALL PRODUCTS FULLY GUARANTEED TO MANUFACTURER'S SPECIFICATIONS

CLOCK MODULES

Transtomers 81.50

\qquad

SEE MARSHALL'S FOR CMOS
CO4000
CO.24
COOOI
0.24

0.24 \qquad | 1.156 |
| :---: |
| 1.59 |
| 1.50 |

NATIONAL
VOLTAGE REGULATORS

NEW 1977 CATALOGUE WITH 500 NEW LINES TECHNICAL INFORMATION ANO ALL BACKED BY THE USUAL
SUPERLATIVE MARSHALL'S SERVICE - FOR ONLY 55p POST PAIO. Please add VAT to your orde. Postage and packing 30p.

The challenge of

A FEW YEARS AGO THERE WAS one principal technique used in the manufacture of logic circuits, namely TTL or Transistor-Transistor Logic. Devices using this technology have the advantage of being able to switch very quickly, but they are not suitable for applications like electronic watches where, the logic circuits must consume very little power and occupy the minimum possible area on the silicon chip.

The development of the Complementary Metal Oxide Semiconductor technology known as CMOS (or COS/MOS) by RCA about 1970 provided devices which have an extremely high component packing density on the silicon chip and which operate at a very low quiescent current. The complementary MOS field effect transistors used in CMOS devices take appreciable current only for the time taken to switch logic states. Silicon-on-sapphire is a variation of the basic CMOS technology which offers relatively high speeds of operation, but at the present time such.devices are expensive to manufacture.

1^{2} L

Integrated injection logic or $\left.\right|^{2} \mathrm{~L}$ now provides serious competition to. CMOS circuits where minimum current and high component packing density is required. Devices using 12 L circuitry can be produced very economically and the speed of operation rivals that of TTL.

$1^{2} \mathrm{~L}$ is being used for mass production of LSI ICs, but little has been said about the theory behind this new technology.

In this article Brian Dance explains how it works...

This new technology is being used by some of the major semiconductor manufacturers for products ranging from microprocessors to quartz-controlled electronic watch devices. All $I^{2} \mathrm{~L}$ devices are large scale integration LSI products - they contain a very large number of components on a single silicon chip.
$1^{2} \mathrm{~L}$ was developed quite separately (in Europe) by Philips and IBM around 1972. It employs bipolar devices (that is, devices like conventional transistors rather than FETs) in circuits which have been derived from the early DCTL (Direct Coupled Transistor Logic). It is only quite recently that developments
in the $\mathrm{I}^{2 \mathrm{~L}}$ production processes have made this circuit technique economically attractive.

A DCTL circuit is shown in Fig. 1. Three transistors are shown in each of the three NOR gates with the output of Gate 1 feeding one of the inputs of both gates 2 and 3 . Other connections, which are not shown, are made to the other inputs of the gates. Circuits of this type .were used in simple SSI (small scale integration) devices, but suffered from the disadvantage that the current was unequally divided among the transistors in any one gate owing to minor differences in their base-emitter voltages. In addition, the load resistor had to be separated from the transistors and this used up a considerable area of the chip.

Note that in the circuit of Fig. 1 there are direct connections between corresponding regions of the transistors: all of the emitters are joined together, whilst the two bases which are driven from the collectors of gate 1 are common. The current to these bases passes through the load resistor of the gate 1 circuit. In an 12 L circuit, these common electrodes share the same area on the chip.

A cross section through an $I^{2} \mathrm{~L}$ gate is shown in Fig. 2 and the circuit is shown in Fig. 3. A single pnp transistor is employed as a current source to supply current to many transistor bases without the use of a load resistor. The whole of the emitter region is a

Fig.1. A Direct Coupled Transistor Logic circuit (DCTL).

The challenge of $I^{2} L$

common one beneath the surface structure on the chip. This eliminates the need for surface metallisation for each separate ground connection. In addition, the area required per transistor is greatly reduced. IBM initially used the name Merged Transistor Logic (MTL) instead of $\mathrm{I}^{2 \mathrm{~L}}$.

It should be noted that the pnp transistor is formed laterally along the surface of the silicon chip. The other component is a multi-collector npn transistor characteristic of $1^{2} \mathrm{~L}$ devices. However, this npn transistor is formed vertically in the silicon. The n-type epitaxial layer acts as the grounded emitter of the nipn transistor and also as the grounded base of the lateral pnp device. The p-type base of the multicollector transistor also serves as the collector of the pnp device. Thus the two devices do not exist as separate structures.

Injection

The pnp transistor 'injects' current into the base of the multi-collector transistor - hence the name Integrated Injection Logic. Current from a current source (not shown in Fig. 3) passes to the emitter of the pnp transistor and hence to the collector. Switching of the logic state occurs when this current is swithed to or. from the base of the multi-collector transistor.

If the input at the base of the rnulticollector transistor is low (less than about +0.7 V), this potential will be inadequate to overcome the natural forward junction potential of the npn base-emitter junction and the npn device will be non-conducting. The injected current will flow out of the input connection to the collector of the previous circuit (not shown in Fig. 3). The multi-collector transistor outputs will therefore rise to the 'high' logic level, this voltage being determined by the collector circuitry.

If the input voltage now becomes 'high' (that is, over +0.75 V), the npn transistor will be biased to saturation and the output of the collector will be 'low'. This low value can be about 0.02 V . Thus the change of the logic level is represented by a voltage swing of around 0.7 V .

Power Supply

The positive power supply line of 12 L circuits is connected only to the emitters of the pnp injection transistors. The base of these transistors is earthed, so the 12 L circuit as viewed from the

Fig.2. Cross section through an $1^{2} L$ gate.
power supply line is effectively just a forward-biased silicon diode. The total power supply current is therefore the sum of the currents fed to the injection transistor emitters.

The voltage levels in $\left.\right|^{2} \mathrm{~L}$ circuits can be very low; indeed, such circuits can operate from a supply of 0.85 V upwards. The supply current per gate can be very low (about 1 nA), but the injected current can be increased in value up to about 1 mA to permit switching of the circuit at a much higher speed.

Although the $1^{2} \mathrm{~L}$ circuits can operate at such low voltages, the input and output circuits normally included in the same package require a higher supply voltage and their requirements normally determine the operating voltage of the whole device. A series voltage-dropping resistor is used in the power supply line of some $1^{2} \mathrm{~L}$ devices, whilst other devices incorporate a voltage regulator on the chip to eliminate the need for an external resistor.

The use of an internal regulator circuit also enables various injector current levels to be obtained at different points in the circuit so that each part can operate at the minimum power level for the switching speed required by that particular part. For example, the fast frequency dividing circuits of a quartz controlled watch can operate at a high injection current for a satisfactory performance at 32 kHz , whereas the following frequency dividing circuits operating at a low frequency can use lower injection current levels. The increased cost of fabricating such circuits may be well worth while when current consumption must be minimised.

In many applications a single dry cell can be an ideal power source for 12 L circuitry.

A guard ring of $n+$ material (shown in Fig. 2) is required in 12 L devices to reduce cross-talk between adjacent

Fig.3. The circuit represented by the $1^{2} L$ gate shown above in Fig.2.
gates. However, this ring can touch the base of the npn device and it occupies little surface area.

Gates

12 L gates can be made by "wire-ORing" the isolated collector outputs as shown in Fig. 4. Similarly NAND gates can be made by using the multiple collector outputs of the npn transistor connected as shown in Fig. 5.

Input/Output Circuits

12 L is almost always used in conjunction with other circuitry. The voltage change when an 12 L circuit switches is only about 0.7 V at current levels which may be very low. If the inputs and outputs of the 12 L circuits were brought out directly to external connecting pins, any small stray noise pulses or interference picked up by the circuit would be likely to trigger the 12 L circuitry, owing to its great sensitivity to low amplitude pulses.

Buffer interfacing circuits are therefore used between the input and output connections of a device and the 12 L circuitry itself. A typical inputt buffer which can accept TTL input pulses and convert them into pulses suitable for the operation of an $1^{2} \mathrm{~L}$ circuit is shown in Fig. 6. The input buffer circuit used with some of the older logic systems can be even simpler.

Discovery of $I^{2} L$

The discovery of $I^{2} L$ is quite a story in itself. Horst H. Berger and Siegfried K. Wiedmann of the IBM Boeblingen Laboratory in Germany reported on their MTL (or $I^{2} L$) circuitry at the International Solid State Conference in Philadelphia in February 1972. However, the next paper at the Conference was by Cornelius M. Hart and Arie Slob of Philips Research Laboratories of Eindhoven, in which they disclosed details of their $1^{2} L$ circuits.

The IBM workers produced their circuit designs after a long, but rational, effort. On the other hand, the Philips workers evolved their basic ideas within a few days in what was essentially a flash of inspiration. Within three months the Philips Laboratories were producing large scale ${ }^{\prime 2} L$ chips.
Hart and Slob saw $1^{12} L$ from the physicist's point of view in which minority carriers from a p region
were injected into an npn device in order to solve the problem of the high current and large limiting resistors required with conventional bipolar logic. On the other hand, Berger and Wiedmann saw their circuits from the point of view of a circuit designer in which the individual devices on a chip were merged together.

The Philips organisation produced a pocket calculator using $1^{2} L$ technology as early as 1971. It contained over 1000 gates in an area of $4 \times 4 \mathrm{~mm}$. Even in the first $1^{2} L$ chips, the elimination of the physically large resistors and the thermal dissipation in these resistors showed the main advantages of $1^{2} L$ technology. Each logical operation required about one picojoule of energy; this may be compared with the estimated value of 0.2 picojoule required to operate the logic cells (the "neurons") of a human brain.

The Sinclair Black Watch was one of the first commercial applications using I2L.

$\mathbf{I}^{2} \mathrm{~L}$

The symbol 13 is a trade matk used by the Fairchild Company for their Isoplanar Integtated injection Logic technology 7 tis employed in such products as the Fairchild 9408 microprogram sequencer which controls the order in which mieroinstructions are fetched from a
control memory having up to 1024 words; It is tully compotible with TFL devices.

Applications

12 L devices are used in such applications as electronic: games, frequency synthesisers, microprocessors, high speed calculators
computer interfaces, counters timers, telephone switching. tone generators, electronic organs. remote contrel systems for TV sets, analogue to digital converters. digital voltmeters; vehicle anti-skidding, fuet injection control. etc. In Europe it can be used in the "Teletext*" and "Viewdata decoders

An output buffer circuit which can amplify the low voltage pulses from the output of an 12 L circuit and provide enough current and voltage to drive a TTL input is shown in Fig. 7.

Technology Comparison

An $I^{2} \mathrm{~L}$ gate can be made with what is effectively a single component on a chip area about one tenth of that required for a normal three-component CMOS
gate. In addition, 12 L is one of the most economical technologies used in device fabrication, since othe number of masking and diffusion operations on the silicon slices are less than in most comparable techniques.

One of the advantages of $1^{2} \mathrm{~L}$ technology is that it is so very similar to that of other standard linear and Schottky TTL manufacturing processes that it is easy to fabricate other types of
component on the same chip. For example, light emitting diode driver circuits can be built on the same chip as $1^{2} \mathrm{~L}$ circuitry; this enables a single chip to be used to drive the display of a watch or a calculator as well as to carry out the required logic operations. Operational amplifiers, oscillators, voltage regulators, etc. can be fabricated on chips containing ${ }^{2} \mathrm{~L}$ circuitry.

The CMOS process is essentially

The challenge of $\mathbf{I}^{\mathbf{2}} \mathbf{L}$

suitable only for the production of purely digital devices, although simple devices such as transistors and diodes can be fabricated on the chip. In contrast, Schottky TTL devices can be combined with $1^{2} \mathrm{~L}$ circuits on a single chip to produce products which are faster and which have higher component densities than can be achieved in other ways. The Texas Instruments SN74S201 and SN74S301 256 bit random access memories are examples of such products.

The power consumption of $\left.\right|^{2} \mathrm{~L}$ circuits i.ncreases linearly with the speed of operation required and in practice you can use the minimum injection current required for maximum speed at which the circuits will ever operate. CMOS circuits consume very little power in the quiescent state, but the power required increases with the switching speed. Thus no circuit adjustments or settings need be made if
minimum power consumption is important and the maximum operating speed is always available. In other words, CMOS circuits always consume minimum power at low operating speeds, but have a high speed capability "on demand" whereas $1^{2} \mathrm{~L}$ circuits must be adjusted for low power or high speed or some intermediate value of power consumption and speed.

12 L is faster than CMOS, whilst Schottky-clamped 12L is even faster still. The silicon-on-sapphire version of CMOS is another way of obtaining faster logic devices, but emitter coupled logic (ECL) offers the highest speed at the expense of ease of use.

The susceptibility of $\mathrm{I}^{2} \mathrm{~L}$ devices to noise pulses has already been mentioned. CMOS devices require input pulses with an amplitude of about half the supply voltage used and are therefore very resistant to spurious operation by stray

Table 1. A Comparison of TTL, CMOS and 12 L

Type of logic	Packing density (Gates/mm2)	Typical Quiescent dissipation per gate	Typical Dissipation per gate at 1 MHz	Logic voltage swing
I2L	140 to 220	5 nW	$100 \mu \mathrm{~W}$	0.7 V
CMOS	$70-80$	5 nW	$150 \mu \mathrm{~W}$	Varies with supply voltage
TTL	20	10 mW	10 mW	3.5 V

noise pulses. It is difficult to see how future 12 L can be fabricated without input and output buffer circuitry because of the noise problem.

A comparison between the various logic systems is given in Table 1.

Applications

12 L is employed in a wide range of applications which require large scale integration. It is unsuitable for making devices with only a few gates, so it seems most unlikely that simple 12 L logic devices will become available (like those one meets using CMOS and TTL technologies).
$\mathrm{I}^{2} \mathrm{~L}$ devices are expected to have a wide range of applications in the computer field. Although most of the larger semiconductor manufacturers are considering whether to become involved in $1^{2} \mathrm{~L}$ device manufacture, a few (such as Texas Instruments) are already producing devices in quantity. The SBPO400, for example, is Texas 4 -bit parallel binary processor element in ${ }^{2} \mathrm{~L}$. $\mathrm{I}^{2} \mathrm{~L}$ computer and microprocessor devices satisfy fairly high speed requirements, but they meet competition from fast versions of CMOS and silicon-onsapphire devices.
${ }^{2} \mathrm{~L}$ technology is likely to be used in many consumer applications where its relatively low price is a vital factor. ITT are already producing their ITT 7170 device in England for the Sinclair "Black Watch" which is a very economical product. The 7170 chip incorporates over 2000 transistors on a piece of silicon only $3 \mathbf{m m}$ by 3 mm in area. It is used in the first watch to
incorporate all of the circuitry on a single chip, since $1^{2} \mathrm{~L}$ can offer the high drive current for the LED display (whereas CMOS devices must be used with separate display-driver devices). The frequency of the quartz-controlled oscillator used in this watch is 32.678 kHz . Current consumption without the display is $159 \mu \mathrm{~A}$. The display operates on demand and naturally requires a greatly increased current from the batteries to produce the emitted light.

The Exar Company of California also produce a watch using 12 L logic.

Cameras

Another consumer field in which 12 L seems destined to play an important part is in the electronic control of camera shutter speeds. Conventional electronic shutter devices consume a current from the battery in the camera whenever they are switched on, but 12 L devices can be operated on the current from a photocell. Unfortunately a battery is required in such cameras to actually operate the shutter magnets, but the time for which the battery current is required is very small and hence new cameras employing 12 L devices will have a much longer battery life than other types.

One camera circuit is made by Micro Components Corporation in Cranston, Rhode Island, USA. The $1^{2} \mathrm{~L}$ circuit operates as a light to frequency converter to produce an output of 100 Hz to 1 MHz , linearly related to the intensity of the incident light. This signal drives a ring oscillator made from $1^{2} \mathrm{~L}$ transistors which determines the shutter speed. The whole device is mounted in a clear plastic package consuming some tens of nA. The Matsushita Company of Japan are also working in this field using 12 L .

Another consumer example of the use of 12 L , is the Motorola three-chip logic synthesiser for digital tuning of car radios. The devices can scan the band and make the tuning lock the required frequency.

Conclusion

In the end the challenge any new technology must meet if it is to be successful is either (i) it must perform tasks which competitive techniques cannot accomplish or (ii) it must perform a task more economically than other technologies. $I^{2} \mathrm{~L}$ can't do much that can't be done in other ways. However, in certain applications, it can be very cost effective. This criterion will determine in which applications it will be employed in the future.

LYNX ELECTRONICS (LONDON) LTD
relephone (02405) 75154
RETURN
P. \& P. 30p per order - overseas 90p. Matching 20p per pair VAT 8% EXCEPT FOR ITEM ${ }^{*}$ WHICH ARE $12 \frac{1}{2} \%$
PRICES CORRECT AT 28th FEBRUARY 1977
ACCESS WELCOME

> In this third part, we take a look at the communications systems of the future. These may well include systems which are totally new, not simply extensions of our present methods. These include gravity waves and even ESP.

MAJOR CHANGES THAT COME about in our lifestyle and attitudes are usually the result of basic needs being recognised by some agency that has the resources to bring such changes about. We begin to use new products of technology when both the need emerges and the technological availability to fulfil it is available. Progress can come from either direction: either as technology developed to meet a big enough need or a need being exploited because a new technology has become available. In both instances our society has generally, in the past, helped this process where economic or political gains are to be had. Not all developments are as good as they are promoted to be and many excellent concepts fail to catch on because the cost expended cannot be regained. In too many instances the quality of the promotion given to a new device or technique is the key to its acceptance. In numerous instances the inherent quality of the product is not a factor in people's minds when selection - the act of helping the idea gain a hold - is made. Communication and its off-shoot, entertainment, are
aspects of life which are very susceptible to over-promotional effort (what Dorothy Parker once described as worship of the fecund rate).
In order to extrapolate and, perhaps, predict some breakthroughs in communication method in the future century we can and should look at ideas from the two progress motivations above - what we need and what we could be given.

The Role of Communication

Communication is needed to enable information to be imparted from one person to another person (Fig. 1). It is the act of passing information from point to point. An energy medium is always needed for information to pass. Some messages mean more than others, even though they may have the same number of words - a phenomenon not definable in scientific terms. We do have a good idea, however, of the carrying capacity, of a given communication channel. To do this we ignore the meaning of messages and concentrate on their 'bit' content. On this basis - the Shannon concept -
it is easy to see that facts containing many 'bits' of information will need a communication method having the required 'bit'-carrying capacity - this turns out to be the available frequency bandwidth in electronic communication techniques. Increasing the bandwidth usually means an increase in cost, so many potential communication needs are limited by economic reasons, not technological ability to provide bandwidth. As an example, for cost reasons, we make do with telex and telegram messages written in stilted format doing without the facial and tonal expression of face-to-face communication. A better alternative would be to use a videotink (such as may one day be in widespread use) instead of the teleprinter, though such a thing requires around 10000 times more bandwidth. Figure 2 shows a unit that has been on trial since 1971.
The pattern of current civilisation requires people to interact as a living system of coordination, cooperation and coexistence. This means people need to communicate with each other. Usually the closer that a man-made

Electronics 2000

Fig. 3. Solid-state sensing array research is paving the way to tricolour LED panel televisions of the future. This unit has 64×64 photo diodes integrated into 6 mm square.
communication link can approach the real face-to-face case the better. Our awareness is enhanced as the simulation provided by the communication link is made more and more a true image of real contact.
Distances, cost and time often make direct communication unrealistic, so technology is brought to bear to reduce the inconveniences. Communication is needed to make commercial and political decisions, to fulfil social needs, to provide education and to entertain. In each of these the hardware
forms are similar - it is the use to which they are put that may influence improvement.
The telephone grew from commercial needs for faster and more informative communication than was offered by telegraphy (which, in itself, was a vast improvement over hand-carried letters) but by contrast television grew because of its consumer market in the entertainment and news media fields. A few video-links have been established but the great operating cost limits them at present more to mass-audience needs,

Fig. 4. 3-D display from a special CRT - a 1960's invention helping progress into 3-D television (Courtesy Electronics).
such as inter-city television interviews, than to telephone replacement.

Expected Hardware of the Future

The area where greatest development in communications will be seen must be in the forms and use of the domestic television receiver. The receiver itself is sufficiently inexpensive for the majority of people in the developed countries to expect to own a set. We would, therefore, expect little more development on the receiver itself from the point of view of need-induced research.
Styling and operation changes will be prevalent in keeping with promotionallyinduced change brought about by manufacturers who must keep seeking markets. Future receivers will most surely incorporate solid-state screens comprising millions of light emitting diodes giving the three primary colours. These screens will be flat and of insignificant thickness - they will be suitable for wall mounting like a picture. The receiving and processing circuits will be integrated onto the same panel. The concept of a television set as a piece of furniture will vanish. This development is currently at the very small monochrome (black and white system) stage - see Fig. 3 - with cameras, rather than displays, being the point of emphasis. The size will gradually increase to acceptable proportions after or during which colour solid-state systems will emerge. The cost of the technology, not its capability, limits this approach at present. IBM have made a $1 \mathrm{~m} \times 1 \mathrm{~m}$ area of light sensitive diodes that has close to the current television resolution.
At present, however, the cathode-ray tube method is the only economic technique for generating the picture in a television set.
Because visual experience is in three dimensions, not two, development will not rest with the current 2-D systems. A 3-D cathode ray oscilloscope trace representation was demonstrated back in the 60's using a rotating phosphored disc as shown in Fig.4. Holography using coherent light enables 3-D images to be generated in colour as well as in the usual red experienced when using the helium-neon laser source.
Barriers to the introduction of 3-D television are both cost and the lack of a suitable technique. We have no obviously acceptable systems in existence at present. We can expect the usual period of multiple source development which will generate many alternatives

Fig. 6. This Sony cassette gives one hour of colour television with soundtracks using a domestic television receiver to display the output of a special replay tape deck.

Fig. 5. Index page of earlier CEEFAX page system now available on domestic television in the U.K.
in the outset before one or two methods settle-out to become the norm.

Returning to more obvious extras for use with the domestic television set we will very soon see widespread use of the currently developed systems which transmit information over a spare part of the television channel. In the CEEFAX and ORACLE systems the data is stored until a complete single frame of written or pictorial information is ready to show. These are now combined as TELETEXT. Television networks in Britain have systems now well past the prototype test-state. Āny television set owner (who can build or purchase a decoder unit) in Britain can today obtain up to several hundred full 'page' items on the screen. Items such as the weather forecast, share prices, programmes, time and programme reviews are listed. Figure 5 gives just one of the selection. It is not hard to see that this offering logically extends to giving access to an enormous amount of information.

The TV monitor of the future will also become the domestic equivalent of the micro-film/micro-fiche reader now rapidly replacing the book in libraries
and storehouses. Recorded video-tapes can be quite cheap to replay on special purpose replay-only units. Such units have been available for about five years now and it will not be long before the cost will be such that we will be buying video as well as audio cassettes in the music shop. Video discs are also close to being marketed in large volume. Figure 7 shows one market contender for the consumer market - prototype development having been reported three years ago.
One day in the future we will be visited by salesmen selling encyclopaedias in video cassette form instead of as bulky books. The publishers will also be able to offer an exchange service - old cassettes can have their facts updated at minimal expense.
Perhaps, too, the monitor will become the terminal for optimal video-links added to the telephone. For this to occur we would need low-cost very-wide bandwidth telephone channels. Current open wire and cable telephone systems have inadequate bandwidth handling capabilities on a single line so the change to video phones would need an entirely new concept of transmission or a complete replacement of the tele-
phone cable network including the switching and processing plant installed within the telephone system. The bigger the capital invested the longer it can take to change to new technology.

The bi-motional mechanical selector switches (see Fig. 8) used in telephone exchanges were first patented by Strowger in 1891. Many are still in use today.
A spread of the currently introduced cable TV systems - small networks wherein other than broadcast television programmes are 'sold' to clients connected to a specific suburban network of coaxial cables might duplicate all local telephone cables with adequate videobandwidth networks. This would set the scene for a gradual change to videophones. There will still, however, remain the immense task of providing national and international bandwidth capability that is 10000 times its current provision for not much more in cost to the user.

Laser beams sent along fibre-optic paths are often reported to be the answer to bandwidth needs: considerable research and development is being performed today on these technologies. If and

Electronics 2000

Fig. 8. Strowger bi-motional selector switches were first patented in 1891. Today many telephone exchanges still use them because it is uneconomic to change to new technology.
when their price falls enough to be competitive with other wide-band systems the first places of application will most likely be in heavy-traffic telephone and video links between cities. Domestic application, on the other hand, (in the form of cable TV) is an area where developers will be able to influence change more rapidly due to the smaller clientele to satisfy and persuade.

New Forms of Transmission Medium may Emerge

It is instructive to go back in history and try to imagine the attitudes of 18th century people to the likelihood of a communication form other than by message or word of mouth. To people of that era, sending messages over electro-magnetic (EM) waves would have been fantasy indeed. They knew and had some understanding of acoustic waves but knew nothing of radio waves. In the 19th century Maxwell predicted from his mathematical understanding of magnetic fields and their observed local-field behaviour, that it was possible to radiate a field away from a source - the energy literally escapes from the generator. It took about thirty years for this idea to be verified (by Hertz) by a crude experiment (see Fig. 9) and out of this was born radio. Once the concept of the electromagnetic spectrum was realised, EM frequencies other than in the radio region were exploited for communication purposes. Even today we have not completely filled in our use of all EM radiation wavelengths.
Field theory is a generalised theory that handles any kind of effect that can be experienced in space - magnetic, electric, gravity and force fields are examples. The operative word is 'experienced'. Until Hertz demonstrated radio waves no one had experienced them and, therefore, they did not exist as a tool of technology. Perhaps, today there are similarly other methods of radiation, so small in magnitude and so alien to any detectors we possess at present that we do not know of their existence. There is much evidence to suggest this is the case. Theory predicts the existence of gravity waves which are force fields propagated from exploding galaxies. On a closer basis we know that a mass exerts a force on another mass by gravitational attraction (but why is an unknown of science). The force falls off as the square of the distance between the masses. In theory a small mass (the transmitter) vibrating

Fig. 9. Hertz oscillator (upper) and resonator (lower) of 1894. Until Hertz proved radio waves could be generated, transmitted and detected, communication by EM waves was fantasy even though thev existed.
rapidly causes a minute varying attractive force on another mass (the receiver). These forces can be calculated and the sums show that they are exceedingly small if the masses are of reasonably small size. To date many scientific research projects have tried to detect macro gravity - wave effects from the galaxies but now it appears that the current mechanical detectors being used are clouded by their own internal Brownian motion, which appears as a noise source. A new detection principle is needed -- a second Hertz type historical event will occur one day when, and if, the generation and detection of gravity waves is demonstrated providing practical experience of the effect.
Moving on to less theoretically based fields there are the photographs made of energy fields of objects. These are unexplained but it is fact that photographs taken in a special way reveal an 'aura' surrounding the object. Lack of understanding of such phenomena is not an adequate basis for saying they are necessarily fakes.
Extra sensory perception (ESP) also may be part of potential future communication. Perhaps it, too, makes use of an energy field we do not yet recognise. It is sobering to remember we only understand experiences that our physiological senses and brain allow us to observe.

ESP, mental-telepathy, clairvoyance, precognition and parapsychology contribute physical experiences such as levitation, materialization, automatic writing, spirit photographs, psychokinesis, apparitions, poltergeists. miracles and voice recording. These are observed (perhaps apparently observed?) facts. It is quite in order to expect them to have a rational basis, one which we cannot understand as yet. It must be remembered that fantasy is only fact
actions of the body. Progress of understanding these rhythms is positive but slow. No doubt at some time in the future brain rhythms will be used to produce extensive communication as a direct thought process between people and machines - see Fig. 10 . If we could hook up to another person by a wirelink it would be clearly feasible to do so without wires using wireless techniques of today. Typewriters that write directly from thought waves will

unexplained. There is no reason to think all knowledge is known at this point in time.
The brain produces electrical signals one kind is known as alpha rhythms. These can be recorded and a little is known that enables the signals to be associated with certain physiological
emerge to speed up the tedious task of transducing thought into clearly printed text. Here the hold-up is a scientific knowledge barrier for we cannot adequately decode the rhythms to obtain any more than the most simplistic data about the person's functions. Perhaps allied research will
reveal the existence of radiated energy waves which are allied to the brain rhythms.
Assuming another form of energy field were discovered we could surmise that it might have direct person-to-person communication ability over glóbal ranges rather than over the several metres experienced by our acoustic talking and hearing communication system. If this were so then the bandwidth problem of current systems might not be the limitation of the future. We would then have a breakthrough discovery that would completely change our attitude to what is feasible. Attitudes to community participational behaviour would be completely upset by such a finding. For example, consider the experiences arranged in a theatrical show. Instead of having to relay the performance over cable or EM systems we might be able to 'attend' from remote distances. The whole concept of theatre would change. For this to be an adequate experience the "distance attendance" form of participation must fully simulate actual participation in the audience. Such a capability would obviate a vast amount of travel necessity and vastly reduce the need for transport mechanisms.
The live theatre is one form of entertainment that has changed little since its inception - at least until recent times. Lighting has improved beyond the lime-light of the last century to computer-controlled electric lighting of today. Electronic amplification of players' voices is still often avoided but electronic effects are used extensively in musical productions.
Current moves in the industry are to automate set changing. At the command of a mini-computer the several tonne sets will soon trundle out from the wings to their correct positions on stage without the aid of any stagehands. Will the players one day become automatons controlled by computer also?
We have seen in this and the previous part that electronic facility is a major influence on change. The massproduction of integrated circuits by photo replication methods enables many identical parts to be made most cheaply. Cheap data processing will continuously influence the kinds of ideas that are exploited and promoted in the future. One interesting question to ask, however, is whether electronics is the only discipline for powerful information handling. In the 1940s mechanical elements were thought to be the answer; today it is electronics. Could tomorrow see a change to electrochemical or some other system of signalling not yet known?
In the next part we shall investigate likely medical developments and the impact of the computer on our life style.

TRANSIStORS		SF178	30p	$\begin{aligned} & \text { TIP41C } \\ & \text { TIP42A } \end{aligned}$	${ }^{81 p}$	2N4427 2N5089	97p	RECTIFIER	BRIDGE			
			13p	TIP42A	76p	2N5089	34 p	BY100 31p	RECTIF			
AC125	20p	BF 195	11p	TIP42C	88p	2N5296	65	BY126 12p	iA 500	25p		
AC126	20p	BF 196	17p	TIP2955	85p	2N5401	62p	8 Y 127 12p	1a 100	27p		
AC127	20p	BF 197	19p	TiP3055	70p	2N6107	70p	1N4001 ep	iA 400 V	31p		
AC128	18p	$8{ }^{8} 200$	40p	TIS93	30p	2N6247	175p	1N4002 8p	1a 600	37p		
AC176	20p	BF 257	34p	$2 \mathrm{~T} \times 108$	11 p	Comp		1N4004 7p	2a 50V	- 37p		
AC187	20p	BF 258	39p	2×300	${ }^{16} \mathrm{p}$	2N305		1N4005 7p	2A 100	- 44p		
AC187K	25p	BFR39	340	21×500	18p	2N6254	140p	1N4007 8p	24.400	56p		
AC188	20 p	BFR40	349	ZTX504	60p	2N6292	70p	1N5401 15p	3A 200	70p		
AC 188K	25p	BFR79	34 p	2N697	25p	40360	43p	1N5404 20p	3A 600	75p		
A0149	54 p	BFR80	34 p	2N698	$45 p$	40361	43p	iN5407 25p	4a 100	-84p		
AD 161	39p	BFR88	37p	2N706	22p	40362	45p		4 A 400	90p		
AD162	39p	8F×30	${ }^{36 p}$	2N708	22p	40410	75p		6A 50V	\checkmark 90p		
AF115	22p	8F×84	$30 p$	2N918	43p	40409	75p		6 A 100	96p		
AF116	22p	BF×85	30p	2N930	19p	40411	325p	ZENER	6A 200 V	V 108p		
AF117	22p	BF×86	$30 p$	2N1131	$20 p$. 40594	909	27to 33V	6A 400 V	\checkmark 120p		
AF139	43p	$8 \mathrm{~B} \times 87$	30p	2N1132	20p	40595	97p	400 mW 11p				
4 F 239	48 p	$8 \mathrm{BF} \times 88$	30 p	2N1304	$45 p$	FET:		IW 22p	triacs			
${ }^{\text {BC }}$ C107/日	10 p	BFY50	18 p	2N1305	${ }^{45 p}$	BF244	36p		Plantic			
BC108/8	10p	BFY51	$16 p$	2N1306	48p	MPF102	40 p		Amp Vol			
BC109/C	11p	${ }^{\text {BFY522 }}$	18 p	2N1613	27 p	MPF 103	$40 p$		3400	${ }^{85} \mathrm{p}$		
BC147	${ }^{9}$	BRY39	45p	2N1711	27 p	MPFI04	$40 p$		6400	107p		
BC148	9 p	ESx19	${ }^{20}$	2N1893	32 p	MPF 105	40%	NOISE	6500	120p		
BC149	10p	BSX20	20p	2N2219	25 p	2N3819	27p	25J 140p	10400	140p		
BC157	11p	Bu105	175p	2N2222	${ }_{\text {25p }}$	2N3820	50 p		10500	160p		
BC158	13p	Bu108	3120	2 N 2369	15p	2N3823	54 p		15400	200p		
BC159	${ }^{13 p}$	MJE340	49p	2N2484	32p	2N5457	$40 p$		15500	225p		
$8 \mathrm{BC1} 169 \mathrm{C}$	15p	MJ2955	$130 p$	2N2904/A	A 25p	2N5458	40 p	DIAC	40430	130p		
BC171	12p	MJE2955	130p	2N2905/A	A 25p	2N5459		BR100 30p	40669	130p		
BC1 172BC 173	13p	$\begin{aligned} & \text { MJE3055 } \\ & \text { MPSAO6 } \end{aligned}$	${ }_{\text {80p }} 8$			3N128 95p						
						3N140	95p					
BC17	20p	MPSA12	${ }^{62 p}$	2N292606		3N141	95p	1702 A EPROM		E12.00		
BC178	17p	MPSA56	40p	2N3053	20p	40603	63p	2102-2 RAM	c2.70			
BC179	20p	MPSU05	72p	2N3054	54p	40673	70p	2104.4 RAM	£11.00			
BC182	12p	MPSU06	${ }^{78}$	2N3055	54 p			2170 RAM	$E 4.70$			
BC183	12p	MPSU55	90p	2N3442	151p	UJT8						
BC184	14p	MPSU56	98p	2N3702	14 p	TIS43	40p	2513 ROM	18.50¢18.00			
BC187	32p	OC28	90p	2N3703	14p	2N2160	95p	745262 ROM				
8 C 212	14p	OC35	90 p	2N3704	14 p	2 N 2646	48p					
BC213	12p	OC71	${ }^{25} \mathrm{p}$	2N3705	14 p	2N	65p	SCR THYMISTORS				
BC214	17p	TIP 29A	50 p	2N3706	14p	PUJT		IA 50V TO5	43p$45 p$			
BC478 BC547	${ }_{\text {32p }}$	TIP29C	${ }_{60}^{62}$	2N3708 2N3709	14p	2N6027	60p	1a 100 V T05				
BC547	12p	TIP30A	80p	2N3709 2N3707	14p	2NSO27 60p		IA 400V TO5	50p			
BCY70	22p	TIP31A	56	2N3773	270p	DIODES		3 300V STUD 81 p				
BGY71	24p	TIP314	68p	2N3866	97p	SIGNAL 0 O47		12A 400V Plasuc $\quad 190 \mathrm{p}$				
BD124	140p	TIP32a	63 p	2N3904	22p			16 A 400 V Plastic16 A 600 V Plastic				
BD:31	39p	TIP32C	85p	2N3905	$25 p$	$\begin{array}{ll}\text { OA81 } & \text { 15p } \\ 0485 & 15 p\end{array}$		16 A 600 V Plastic 27				
80132	43p	TIP 33A	97p	2N3906	22p	$\begin{array}{ll}\text { OAB } \\ 0490 & \text { 19p } \\ 0490\end{array}$						
BD135	54.	TIP33C	120p	2N4058	19p			$\begin{array}{lll}\text { BT106 } 1 \text { A } 700 \mathrm{~V} \text { STUD } & \text { 130p } \\ \text { C106D } 4 \mathrm{~A} ~ 400 \mathrm{P} \text { Plastic } & 63 \mathrm{p}\end{array}$				
80136	55 p	TIP 34A	124p	2N4060	19p	$\begin{aligned} & \text { OA91 } \\ & \text { OA95 } \end{aligned}$		MCR101 1/2A 15V TO92 27p				
80139	54 p	TIP34C	$180 p$ $243 p$	2N4123 2N4124	22p	$\begin{aligned} & \text { OA95 } \\ & \text { OA200 } \end{aligned}$		MCR101/2A ${ }^{\text {a }}$				
BD 140 BDY 56	${ }_{\text {220p }}^{60}$	TIP35A TIP35C	${ }_{290 p}^{243 p}$	2N4124 2N4125	22p	$\begin{array}{cc} 0 A 202 & 10 p \\ \text { iN914 } & \text { 4p } \end{array}$		2N4444 8A 600V Plastic 200 p				
BF115	225p	TIP36A	297p	2N4126	22p			2N5060 08 A 30V TO922N5062 08 100V TO92		36p		
BF 167	25p	TIP36C	380p	2N4401	34p	$\begin{array}{ll} \text { NO14 } \\ \text { N9 } & \text { 4p } \\ \text { N916 } & 11 p \end{array}$				2N5064 084 A 200 V T092 43p		
BF 173	27p	tip41a	70p	2N4403	34p	1N4148 4p						
VAT INCLUSIVE PRICES. Add 20p P\&P - no other extras MAIL ORDER ONLY. GOVT. COLLEGES ORDERS WELCOME												

THE OPEN DOQR TO CUALITY

Electrovalue Catalogue No. 8
(Issue 4 up-dated) offers items from advanced opto-electronic components to humble (but essential) washers. Many things listed are very difficult to obtain elsewhere The Company's own computer is programmed to expedite delivery and maintain customer satisfaction. Attractive discounts are allowed on many purchases; Access are accepted

PLUS FREE POSTAGE
on all C. W. O mail orders in U.K. over 22.00 list value
fexcluding VAT) If under, add $15 p$ handling charge.

UP-DATED 4th EDITION

Prices stabilised minimu 3-month periods

(3)1977 WATCHES
FAIRCHILD TIMEBAND LCDs BATTERY HATCH FREE REPLACEMENT BATTERY LOWER PRICES Now rou cen changa the Bartary
vourseth - - considermblo seving $5+4$ functions Conunucusly displavs Hours. Minutes and Second
Colon Press command butron for Month Oate press twice tor Second Coadout Setung for aliernitang Time/Date display Automatic 28.30. 30 . 31 day Caiendar Backlight
NEW small round watch on strap NEW1 Chrome plated Round watch on strap
TC4 11 Chrome Plated TC4 10 Gold Plated
On matching adjus TC41 3 Chrome Plated
TC412 Gold Plated

$£ 23.50$
$£ 25.95$
£28.95
$£ 31.00$
$£ 33.05$
$£ 14.95$

NEW

National Semiconductor
Available in Summer. $5+3$ functions. 6 digit display
Watch and Scienufic Calculator Waperated with pencl. ball pen. ote)
NEW 6 digit $6+3$ functions + Chronograph
Full range of CCDS
DAC5 Series strap or bracelet)
DAB5 WB ,llustrated) $\mathbf{E} \mathbf{3 5 . 5 0}$
DAB5 WB, "llustrated) E 35.50
All Stanless Steel and matching Bracelet

1 Ell CASIO CQ. 1 CLOCK. ALARM. STOPWATCH, CALCULATOR NOW ONLY $£ 29.50$ (Black or White). AC Adaptor E3
SUPERB 1977 CASIO CASIORRON WATCHES
Arguably the best watches in the world All stamless steel Meneral glass $7+2$ lunctions inc
backlight) £43.50. RRP E59 95
With STOPWATCH, SECONO CHANNEL TIME MEMORY from $\mathbf{E 5 8 . 5 0}$
NEW. Lower prices for i8ICC $403 \mathrm{NS} £ 38.50 .450 \mathrm{HS} £ 68.50$
NEW MODEL. 4051 LB 12 yI battery $£ 34.50,4051 \mathrm{~S} £ 35.50$
NEW. IBICO ANALOGUE WATCH. Latest technology (3 yr. battery) $£ 34.50$

TEMPUS :w CAMBaIDGE CE1 ${ }^{1}$

THE ETI ER II LOUDSPEAIEER a high-quality design for the home constructor

LOUDSPEAKER ENCLOSURES are perhaps the least understood, and understandable, of hi-fi components for the home constructor. Crossover networks for example look deceptively simple on paper, but can be more complex to design properly than a digital system comprising 100 IC's Enclosures too commonly called "the bloody box," are all too often taken too lightly with the result that a great deal of effort expended in the design of the crossover unit and quality inherent in the units is thrown to the wind.

Our design is a two-unit home system, designed to give a very high quality sound output, allied with the advantages of easy construction and reasonable cost (about $£ 70$ a pair in cash, and whatever blood sweat and tears prove appropriate).

Getting Cross Over Components?

Frequency division networks for loudspeaker use are generally required to overcome six main problems. These are:
(1) Voice coil impedances are very much lower than is usually met in communications theory (for which most standard filter designs were evolved) and this makes
termination difficult.
(2) Power requirements are high, although this is relatively easily overcome by use of high rated components, correct gauge wire etc.
(3) Drive unit impedance varies greatly with frequency, and the reactive component changes very rapidly near resonance. The filter load thus changes appreciably with frequency.
(4) The network will introduce phase shift ie. delay, and if poorly designed this may be significant on transient waveforms, ringing occurring at some frequencies. (5) It is convenient to have the network 'level out' the efficiencies

Specification

FREQUENCY RESPONSE: $50 \mathrm{~Hz}-25 \mathrm{kHz} \pm 4 \mathrm{~dB}$ EFFICIENCY: approx 16 W required to generate 96 dB (test room conditions)
POWER HANDLING: Min. 15W per channel recommended, max 40W programme.
DIMENSIONS: $211 / 4^{\prime \prime} h \times 13^{1 / 4} 4^{\prime \prime} w \times 12^{\prime \prime} \mathrm{d}$. APPROX COST: $£ 70$ a pair.
of the different drive units, and this involves controlled dissipation in the network. Also any variation in the amplitude response should be, if at all possible, minimised.
(6) Reactive elements within the network may well resonate with
loudspeaker motor reactive elements at some frequencies. This could present a much reduced impedance to the power amplifier, which in turn might show its displeasure in some, unpleasant, tangible form or other.

Pointing Things Out

Number four of the preceding is one aspect of the now abating furore that the so-called linear phase loudspeakers caused upon their release.

In every case with these designs, the reason for their audible quality can be more easily ascribed to the fact that they (B\&W DM6, B\&D M70, Leak 3000 range etc) are simply damned good speakers in their own right, rather than to the dubious benefits of a llinear time delay with frequency.

Ours is not a linear-phase design.

Point five is very important indeed, and is one of the main reasons we are recommending, as strongly as the nibs of our pens will stand, that you do not attempt to fabricate the crossovers for this project yourselves. Badger Sound Services can supply the complete unit off the shelf, and you are advised to look thence! (Deliveries are superb.)

Several of the components in the network are chosen to compensate for 'meanderings' in the units. For example the two $5 \mu \mathrm{~F}$ capacitors are selected tolerance components, and the 2 mH coil across the B200 has a very critical impedance to present. Also important is the grade of ferrite employed in the cores, as this will determine saturation level, a nasty parameter to fall foul of!

I hope that has convinced most of you. For those adamant souls still set on the winding path good luck 'cos yer gonna need it!

Closed Shop

And so to the boxes they come in. Ideally a speaker enclosure should do precisely that and no more - it should enclose without reacting. It should do - but naturally doesn't. The volume of air within the enclosure acts as a mechanical resistance to cone movement, especially at bass frequencies. When using the "Infinite Baffle" design, as we are here, the cabinet volume must be set to match the bass unit.

If the mid-range is not a 'sealed-back' or dome unit (a la Celestion which is both!) then this too will be affected by the air load An acceptable solution is to provide a tube within the main cabinet for the mid-range driver to work in. (Both Kef and Wharfedale

adopt this solution in their speakers.)

The type of wood, or more honestly chipboard, that constitutes the cabinet is also an important factor. What you want to hear is the sound from the flapping cones - not from flapping cabinet sides. The denser the better is the rule here. This 'flexing' of panels can be a major source of colouration in a design, and it is surprising commercial firms do not pay more attention to bracing or stressing their enclosures. As you can see from the drawings and 'Construction' text, our enclosure is heavily braced, and if you want the best results from your work don't be tempted to leave any out. The volume of the batten used has been allowed for in the calculation of cabinet air load on the bass units, so don't worry about it!

Specifics

The actual construction design presented here is intended for use in rooms up to about 2000 cu . ft ., with amplifiers of up to 50 W r.m.s output - but be careful with the volume control when using amplifiers of more than 35 W or so. Efficiency is slightly higher than average - see table. The main design criteria throughout was how it sounded, not how it measured or looked, but how musical was the noise eminating from the grille cloth!

Construction

Woodwork is the main problem facing the constructor. When cutting the baffle keep the units themselves in exactly the same place as the drawing shows them. If you change the positioning you'll change the sound, and we cannot guarantee the result!

Perhaps the best way to give constructional details is a list of DO's and DON'T's! Here goes:

DON'T omit any of the enclosure bracing shown.
DON'T attempt to 'bodge up' your own crossover network.
DON'T mount the drive units on the back of the baffle because its easier -- it will show up as soon as you switch on!
DON'T leave any gaps in the joints of the enclosure.
DON'T commit the cardinal sin of using hardboard for the back panel.

DO fit the bracing across the grain of the veneer. It is best to have the grain running vertically on the sides and back panel, and parallel to the baffle on the top and bottom DO leave a small hole in the back panel no larger than $1 / 16$ in diameter, to allow any changes in air pressure within the enclosure due to temperature etc to equalise. This will not affect the sound at all.

Fig 2. Internal shot with the wadding fitted to the sides. The back panel has not yet been lined. The bracing across the panel can be seen, and this continues around the sides

Fig 3. Here the cabinet is complete, and the final wadding has been folded into place. This loosely fills the enclosure. You'll have to attach the wires to the input sockets first though!

3-piece, but it'll sound awful. Gag the missus if need be, but don't give in!

Use and Abuse

The speakers should really be used on stands if free standing, of no less than 10 in in height. Stand them at least a foot from a wall and not in a corner, as this will introduce 'boom' at the low end that these enclosures don't need to help the bass response

Fig 4. Front panel detail. The h.f level control at the top is set to $+2 d B$. From this the relative position of the drive units can be seen. When attaching these to the front panel, seal them off airtight.

They can be used on a shelt against the wall, and in this mode set the tweeter at 'ear level' (when you're seated of course). Keep the enclosures about $6 \mathrm{ft}-8 \mathrm{ft}$ apart - never further if you want stereo in preference to two sound puddles around the boxes

As with all speakers, damping from the amplifier is best preserved by using as thick a connecting lead as possible, say a minimum of 5 A cable. And no, screened lead is neither suitable nor necessary.

Fig 5. The rear of the front panel. Here the crossover board is shown attached to the left of the Sonaudax. The attenuation resistors are arranged next to the switch, held on in our case by double-sided sticky pads. It is important that none of the wiring or components is attached in such a way that it can 'rattle' in time with the bass'

Last But Not Least!

As we said before the main criteria for the design was how the things sounded. It is hard if not impossible to convey a subjective impression on paper, and a long string of well-nigh standard, albeit strange, adjectives have been developed for the task, such things as 'boxy', 'chesty'. 'wooden' etc etc ad nauseam. And now of course we have 'musical' and 'un-musical'. Forgive us if we use any of these insults to English herein!

For the purpose of final evaluation, the ERII's were wired up next to a known reference speaker, in this case Celestion Ditton 66's, in order to better assess their subjective performance. It is all very well to listen to an unknown design on its own and gain some general impression of its fidelity, but to come to a definite decision, there must be something there to compare it with, and something of known vices at that.

The rest of the reference system comprised a Technics SL1 20 and SME3009 V15III and G900SE record deck, Pioneer SA 9100 and

Parts List

Per pair:
2x pair: HD12-9D25
2x B200
2x CN104/ETIcrossover networks
3 pole 4 way switch recessed flange and matching
knob for switches.
$\begin{array}{ll}2 x & 2 R 4 \\ 2 x & 4 R 7 \\ & \text { RR }\end{array}$
6R8
4 mm banana skt. red
4 mm banana skt. black

Chipboard \& battening to suit method of construction: see text BAF wadding to fill cabinets, approx. 12 yds. at $24^{\prime \prime} \times 1^{\prime \prime}$. Badger Sound Services, of 38A St. Andrews Road South, St. Annes, Lytham St. Annes, Lancs FY8 1PS can supply the crossovers at $£ 4.99$ $+35 p$ p+p each, and just about every thing else for this project too. Ring them on St.Annes 729247 to check prices and availability before ordering.

Our thanks go out to our friend David Pickler of Barnet, who produced the woodwork for the prototype ER II's. We changed the cabinets quite a few times before settling on the final design. We can only say he showed patience! Nice one David.

Quad 22 /ll ,just to keep valve enthusiasts happy!) amplifiers, a Revox A77 Mk IV tape deck and of course the Celestions. A calibrated power output meter (based on our level meter ETI March 1976) was also used to gain some impression of subjective efficiency. Several pairs of hi-fi and concert going ears were assembled at various times to comment on the ERII's, in order to

see if we were pleasing all of the people all of the time, or none of the people none of the time.

Vërdict

Direct comparison with the reference showed the ERII's to be very musical indeed in their output. Naturally, due to the much smaller size of the enclosure, deep bass level was down on that from the reference, but not seriously so, and it was quite possible to advance the bass control on the amplifier without boxes squawking out in protest. Bass quality is good, with notes being well defined and boom conspicous by its absence.

The Sonaudax tweeter showed itself to be a very smooth unit indeed, and gave the speaker a slightly bright sound, which was present on both amplifiers (lest the valve brigade began to nod their heads sagely), although in no way objectionable. Setting the control to $-2 d B$ position tended to remove this anyway. The room in which the tests were carried out was in any case 'hard' in character, with little absorbtion, and doubtless the ERII's are a great deal less guilty than the room'

Considering their price of around $£ 70$ the ERII's produced a remarkable performance, and one that some listeners commented bettered their commercial units, all of which cost in excess of £ 150 a pair.

All in all then a good little speaker, and one well worth considering if you're in the market to upgrade, or even about to set foot on the slippery incline of hi-fi for the first time.

TOP PROJECTS
No. $1+$ No. 2
Tens of thousands of our first two projects books have been sold - finally we ran out No 2 in a massive 180 -page book At present this is only available direct from us. it is a limited print run but we have adequate stocks at the moment. See our ad elsewhere in this issue listing the projects included.

$$
£ 2.50+20 p \mathrm{P} \& \mathrm{P}
$$

TOP PROJECTS No. 3

Originally published in March 1976. Top Projects No 3 contains 27 constructional projects including Graphic Equaliser, Stereo. New Sound for your Guitar, Bass Booster, Line Amplifier. Loudness Controt Electronic Ignition, Tacho Timing Light, Car Alarm, Dual-Beam Adaptor, AF Meter, Impedance Meter Digital Display. Digital Voltmeter, TTL Supertester. Fluorescent Light Dimmer, Radar Intruder Alarm. Light Diminer. FM Tuner. Colour Organ, Drill Speed Controller plus many more
$£ 1.00+20 \mathrm{p}$ P\&

TOP PROJECTS No. 4

Available at your newsagents or from ETI direct, Published October 1976 This includes Sweet-Sixteen Stereo Amp, Compressor Audio Level Meter, Expanderlight Reminder. Dual-Tracking, HeadSupply. Audio Millivoltmeter Thermocoude Meter, Intruder Alarm, Touch Switch Push-Bution Dimmer. Exposure Meter, Photo Timer, Electronic Dice, High Power Beacon. Temperature Controller, Electronic One-Armed Bandit plus many more.

$£ 1.00+20 p$ P\&P

ETI 4600 SYNTHESISER

A complete reprint of our superb synthesise design, published with Mapinn Electronics (sho also supply the parts) This reprint will wo be of interest to those not specifically honting original and is in fact patented by ETII
£1.50 + 20p P\&P

HOW TO ORDER

ETI Circuits No. 1 and Top Projects No 4 are available at newsagents or direct from ETI Others are available only direct from

Postage and packing is 20 p for the first $5 p$ for each subsequent issue Overseas $25 p$ and 20 p respectively). Send remittance in Sterling only) 10 .
ETI Specials,
ETI Magazine
25-27 Oxford Street
London W1R 1 RF.
Please mark the back of your cheque or PO with your name and address.

SHORI CIRCUIS

INJECTOR/TRACER

WE SPENT A LONG TIME trying to think of an excuse to present a signal injector/tracer before realising that since ours is so good (and simple!) we didn't need one!

The unit is built into a Vero handheld box, and has a separate amp and oscillator sections, allowing them to be used separately if need be. The injector turfs out a 1 kHz square wave at 1 V .

WHAT A TURN ON

The output is to a crystal earpiece, and the 3.5 mm jack socket is modified to switch on the amp upon insertion. To inject a signal shove the button on the top down. Everything is mounted onto a single pcb within the box which also contains a PP3 battery.

Access to the amplifier section is provided via the phono socket which is also bolted to the board. The quality of this stage might just surprise you, incidentally.

MOUNTING TROUBLES

The board is held within the box by the pillars (designed for the job!), and to get the PP3 in, you'll have to file these down a bit - have a look at the photograph to see what we mean. Apart from this the project is ridiculously easy to build, and should pose no real problems.

Fig 1. The circuit diagrams for both parts of the injector/tracer. Note that SK4 is used to apply power to the amplifier section

Short Circuits

Fig 2. Pcb foil pattern for the circuit. Shown full size. The large areas of copper are where the sockets fix directly to the board.

Fig 3 Component overlay. Note that SK2 and SK1 are held in place by the Verobox closing around them. SK3 and SK4 are attached directly onto the pcb, and face out of the box on the copper side of the board

In order to get the PP3 to fit into the hand-held box, it will be necessary to file down the pillar within the box. Drop the pcb over the retaining stubs as shown, so that when the other half of the box is clipped onto it, the fins on it will hold the board in place. It is these fins which will need to be filed almost flat.
SK2 and SK 1 can be seen in place on the front of the box. Here also a little filing will help, in as much as the sockets will then be flat and the probe be perpendicular to the verobox body

Percs List	
RESISTORS - all $1 / 4$ W 5%	
R1,4 2k7	
$R 2,3$ 150k	
R5,8 47 k	
R6 5k6	
R9 1 M	
CAPACITORS	
C1.2	$4 \mathrm{n7}$ polyester or ceramic
C3	220 n polyester
	$10 \mu 10 \mathrm{~V}$ electrolytic
SEMICONDUCTORS	
Q1,2,3 BC108 or similar	
SWITCH	
PB1	Push to test type
SOCKETS	
SK1,2	2 mm panel type
SK3	Phono socket (Doram 477-848)
SK4	3.5 mm chassis jack socket (see text)
CASE	
Vero	'Hand Held' type (75/1799E)
MISCELLANEOUS	
PP3 bat phono piece fit Cost \bumpeq	tery, battery clip, 2 mm plugs, probe, lug, screened wire, flex, crystal earted with 3.5 mm jack plug. E3.50.

METRONOME

THE TRADITIONAL metronome is well-known to those who have learnt the piano for beating out the time these mostly operate by clockwork.

A variable beat with a far greater range than the mechanical types is very easily produced electronically, especially if a unijunction transistor is used as a relaxation oscillator.

In our circuit we have opted for a tantalum capacitor for C 1 ; an electrolytic can be used but due to the enormous tolerance spreads (usually $+100 \%$ to -50%) the range can be very different from that of our prototype.

A volume control is hardly necessary but we have included a preset control which can be adjusted from outside the box which can be used to attenuate the level considerably: a low volume is almost essential when using an earphone.

RV1 sets the 'beat' and can be log or lin but a log type wired as reverse log gives a smooth calibration over the range which varies from 30 beats per minute to 400 beats per minute. Calibration can easily be done using a watch.

The normal nominal impedance of small speakers is 8 ohms and that is what we have used but higher impedance types will work.

Construction is very straightforward. We have used a small pcb but there's nothing to prevent other constructional methods from being used.

USES

The use of a metronome for a musician is well-known but there are other applications. People learning to touch-type now sometimes use a regular beat to improve performance.

There are other areas where a metronome may be of use - in curing stammering. We know of someone who was helped enormously by the use of a metronome set at the fairly critical frequency of 50 beats per minute. We have marked this as an asterisk on our calibration.

However we have checked with a qualified speech therapist and it seems that this use of a metronome is not so widely recognised as an aid as it once was. What they would say was that 'In some cases, it could help, but not always.'

Fig 1. Circuit diagram for the metronome. SK 1 switches off the L.S. upon insertion of the earpiece. The connection diagram is for the 2N2646.

How it worls

[^0]
Short Circuits

Fig 2. Overlay for the metronome. RV2 is mounted vertically to allow adjustment. Take care with the semiconductor connections.

RV2, the preset volume control can be clearly seen on the pcb. A hole is drilled in the back panel to allow this to be adjusted by screwdriver when need be, which is surely infrequently. The rate control down on the right works most effectively if a log control wired in 'reverse log' is emploved.

A MINIATURE POWER TOOL
 to speed your building

- Super 30 Kit (30 Toois) (incl. drill without stand). £17.62 plus P\&P 85p
- Mk. II Drill Stand
£ 4.40 plus P\&P 35p
- Mk. II Drill only
£8.79 plus P\&P 35p
- Flexible Drive Shaft
£5.46 plus P\&P 25p
- Transformer 240 V a.c. $/ 12 \mathrm{~V}$ d.c. plus P\&P 70p
- Variable Speed Trans former
£8.25 plus P\&P 70p
Replacement drills, stones, burrs, etc., 40p each. Circular saw blades 50 each. $£ 2$ per set of 4 sizes. P\&P any quantity $20 p$

All VAT inc/usive

PRECISION PETITE LTD.

119a High Street, Teddington. Middlesex TW11 8HG Tel. 01-977 0878
(24-hour answering service) $9^{\prime \prime} \times 4^{\prime \prime}$ S.A.E. please for leaflet and order form

DCYAm kits
 DORAM KITS CONTAIN EVERYTHING DOWN TO THE LAST NUT:

POWER SUPPLY

An invaluable piece of equipment for the enthusiasts workshop. This $3-30 \mathrm{~V}$ d.c. power supply fulfills virtually all experimentation requirements. Avoid frustration and circuit damage with the variable current limit (01 A max)
Regulation typically better than 0.5% (max 3%)
Ripple voltage typically better than $20 \mathrm{mV}(\max 120 \mathrm{mV})$
f19.95 + S VAT (Order 997-027). Subject to availabitity

O'seas orders-add 15% for $P+P$ All tems offered for sale subject to the Terms of Business set out in Doram Edition 3 catalogue. price $60 p$ The Doram Kit brochure is also available price $25 p$. Combined price only $70 p$ which also entitles you to 2×25 p vouchers, each one usable on any order placed to the value of $£ 5.00$ or more (ex. VAT). DORAM ELECIRONICS LTD PO. BOX TR8. WELLINGTON RD IND EST. LEEDS LS 12 2UF

> AS A RECENT TELEVISION SERIES DEMONSTRATED, THE USE OF RADAR BY BOTH SIDES IN WORLD WAR II WAS OF CONSIDERABLE STRATEGIC IMPORTANCE, WITH THE ADVANTAGE SHIFTING FROM ONE SIDE TO THE OTHER WITH EACH NEW DEVELOPMENT. THIS IS THE STORY OF ONE KEY INVENTION WHICH SWUNG THE BALANCE CONSIDERABLY AND WHICH CONTRIBUTED MUCH TO OUR UNDERSTANDING OF ELECTRONICS.

THE VALVES THAT WON THE WAR

THE ESSENCE OF RADAR is that radio signals sent out from a transmitter will reflect from a target which is large compared to the wavelength of the signals, and the reflected signals can be picked up on a receiver.

The time delay between transmission and reception is then a measure of the range of the object which is reflecting the waves. The wavelength which can be used is of considerable importance, since short wavelengths can detect smaller targets and also need smaller aerials. If we want to use reasonably small aerials and to detect objects about the size of an aircraft, then we must use wavelengths of about one metre or less. The methods which we use to generate these wavelengths are therefore of great importance, and the amount of power which can be delivered to the aerial will decide what range is usable, since the received signal can be detected only if it has an amplitude greater than the noise level of the input stage of the receiver.

Thanks to the use of low-noise input stages, pulse gating, and correlation techniques, we can now recover signals which have apparently been lost in noise, but these techniques were not available in the years of the war.

REFLECTIONS AND SHORTENING

Early radar experiments used standard or slightly modified short-wave radio transmitters, with power output stages which were usually large air-cooled triodes with conventional inductor-capacitor tank circuits. In the early experiments, detection was considered more important than range-finding, and the received signal was allowed to beat with a fraction of the transmitted signal to form a slowly changing beat note from a moving target. These arrangements were sufficient to show that the reflected waves could be detected, but the wavelength was too long (frequency too low) and the power too small for radar as we now know it

What was needed was a generator of waves of much higher frequency and much greater power. In addition, if such a generator could be made small enough to be carried in an aircraft, a substantial advantage in night bombing would be obtained

Using conventional triodes, this was impossible. The stray capacitances of a large triode are so large that even the inductance of a short piece of straight wire gives a tuned circuit whose frequency is too low (assuming that oscillation takes place). The power output of such a valve at extremes of frequency is too low in my case.

Fortunately, as so often happens, the foundations for a new type of construction were already laid. These foundations were the magnetron effect on electron beams, and the resonant cavity tuning system.

MAGNETIC SPACES

When electron beams travel from a hot cathode to a positively charged anode, the speed of the electrons is decided by the voltage applied between anode and cathode. Equating the potential energy, eV , with the kinetic energy $1 / 2 \mathrm{mv}^{2}$, for each electron we get:

$$
\begin{aligned}
\mathrm{eV}=1 / 2 m v^{2}, \text { where } & e=\text { electron charge } \\
& V=\text { accelerating voltage } \\
& \mathrm{m}=\text { electron mass } \\
& v=\text { electron speed. }
\end{aligned}
$$

From this equation, the electron speed, $v=\sqrt{\frac{2 e V}{m}}$
Using modern units, the ratio e / m, the specific charge of the electron, is $1.76 \times 10^{11} \mathrm{C} \mathrm{kg}^{-1}$, so that for 5 kV accelerating voltage, the speed of the electron is about $4.2 \times 10^{7} \mathrm{~ms}^{-1}$, some 42 million metres per second. At this speed, an electron will cover a distance of 1 cm in 0.24 ns , so that we should have no trouble in generating oscillations of a comparable wavetime if we can use such a beam in an oscillating system.

Now if we apply a magnetic field to such a beam, and direct the magnetic field so that it is at right angles to the direction of motion of the electrons as they enter the field, the path of the electrons will be an arc of a circle whose axis is the magnetic field direction. Equating the magnetic force, Bev, on a moving electron with the force needed to move an electron in a circular path, $\frac{m v^{2}}{r}$ we have: $\operatorname{Bev}=\frac{m v^{2}}{r}$, so that $r=\frac{m v}{B e}$

BEAM BENDING

Using the value of speed given above, to bend the electron beam into a circle of radius 1 cm needs a 'magnetic field strength of about $2.4 \times 10^{-2} \mathrm{~Wb}$ m^{-2}, about one thousand times the magnetic field strength of the Earth. This is not a particularly large field strength, and it was attainable by either permanent or

Fig 1. The magnetron effect. (a) Simple magnetron valve, magnet not shown. (b) Paths of electrons as the strength of the magnetic field is progressively increased. (c) Graph of anode current against magnetic field.
electro magnets. All of this basic theory has been known since early in the century due to the work of J. J Thomson on the specific charge of the electron

Later work had made use of the magnetron effect to measure the specific charge of the electron in a different way, as shown in Fig. 1. A tubular cathode emits electrons which are accelerated to a circular anode coaxial with the cathode. When a magnetic field is directed along the axis of the tube, the path of the electrons curves, and becomes more curved as the strength of the magnetic field is increased. If we plot a graph of anode current against magnetic field strength, the graph shows current dropping as fewer electrons reach the anode, and then reaching zero when the magnetic field is strong enough to prevent the fastest electrons from reaching the anode. Using such a "magnetron" valve made to accurately known dimensions, the value of e / m for the electron could be found to very close limits. The great breakthrough in radar was to realise that this valve structure could be combined with resonant cavities to enable us to generate oscillations in the GHz region

RESONANCE

In the study of sound waves, any space may have resonances, meaning that sound waves of certain wavelengths, related to the dimensions of the space, will be emphasised; these are resonant frequencies, and designers of loudspeakers go to great lengths to get rid of them. A tube is one type of resonant space, and organ pipes and other wind instruments are examples of resonant tubes used to generate sound waves of various frequencies.

A tube which is resonant to one particular frequency will generate this frequency if the air in the tube is set into oscillation by any disturbance. An example of particular interest in this case is the flute. In this instrument, the player blows air across a small hole in a resonant tube. Air striking the edge of the hole (controlled by the players mouth-shape) builds up a pressure wave which sets the air in the tube into oscillation at its resonant frequency, and the resonant waves in the tube then make the air passing across the hole flutter, keeping up the oscillation. What we have here, translating into familiar electronic terms, is a d c.

The mighty Scharnhorst. One of Germanys new generation of capital ships. As modern as anything then afloat, fast enough to outrun anything which could outgun her, and armed sufficiently to sink anything fast enough to catch her. Yet the Scharnhorst fell victim to the Magnetron!

The battle of North Cape was the battle which proved the importance of radar in surface engagements. Leaving Norway to attack convoy JW 55B the Scharnhorst was dogged by a series of disasters and unfortunate decisions by High Command which led her, on December 26 th 1943 in appalling weather to face the British cruisers Belfast, Norfolk and Sheffield - all radar equipped and using it! Scharnhorst herself had radar equipment, but standing orders prevented its use (as a measure against breaking radio silence!) In the engagement which followed the British ship directed their fire with radar, and by chance destroyed the Scharnhorst radar

They followed her on radar until the battleship Duke of York came up to engage, also using radar, with her superior armament.
Scharnhorst was sunk. Het superior speed and firepower were of no avail
On New Years Day 1944 Admiral Dönitz reported to Hitler "Without serviceable radar equipment it is no longer possible for surface forces to fight the enemy.

THE VALVES

supply (the player's breath), a resonant tuned circuit (the tube of the instrument), and postive feedback (the effect of the resonant waves on the breath stream.

A similar effect can be expected using a beam of electrons. A circular cavity cut into a block of metal will act as a tuned circuit, using the inductance of the conducting material and the stray capacitance between sections at (momentarily) different potentials. This is a resonant cavity, and the wavelength of resonance is related to the size of the cavity. When such a cavity oscillates, both electric and magnetic fields will exist, and these will be rapidly alternating fields, going through a cycle of building up in one direction, dying away, reversing, building up in the reverse direction, dying away and so repeating millions of times per second.

Can we carry the similarity a little further, and imagine a small slot in the cavity? At such a slot, alternating electric and magnetic fields will exist, and these will alternately repel and attract an electron beam which is just skimming past the slot like the breath of the flautist. Would such an arrangement give enough positive feedback to keep a resonant cavity oscillating? At the beginning of the war, only experiment could decide, and it fell to Randall and Boot, working at

Fig 3. A coastal defence tower. Standing some 360 ft high, the apparatus was used to detect low flying intruding aircraft which were flying too low for normal stations to detect them. Lone raiders often adopted this tactic to reach specified targets, or to make photographic records.

Birmingham, 'to perform the crucial experiment, so creating the first cavity magnetron oscillator. This valve was capable of supplying U.H.F. oscillations at power levels greatly in excess of any previously obtained at such frequencies, the perfect answer to the demands of the radar system.

CAVITY MAGNETRON

The cavity magnetron combines the principles of the resonant cavity with the earlier magnetron valve. The cathode is a tube coated with electron emitting material, and with a heater winding inside for starting the electron emission. The anode is metal block, finely machined to a circular profile with a set of resonant cavities breaking into the inner surface of the block. The whole valve is evacuated and sealed, and then mounted between the poles of a strong permanent magnet. Since it would be inconvenient to run the cathode at earth potential and have the metal anode and its cooling fins positive, the anode is earthed (and connected to waveguide through a thin "window") and the cathode run at a negative voltage.

When an accelerating voltage exists between the anode and the cathode, the electrons are ascelerated from the cathode, and the magnet shapes the beam so that its shape is circular, brushing past the ends of the cavities as it tries to reach the anode. For a given strength of magnet, the voltage between anode and cathode would have to be the correct value for the beam to take the correct path, but this value is fortunately not too critical. The movement of the beam excites the cavities into oscillation, and the oscillating cavities in turn will alternately repel and attract the beam.

Fig 4. Cross-section of a cavity magnetron, which in this case uses cavities of cylindrical shape, linked to the anode by slots. The strapping links can also be seen. Other cavity shapes are also used.

The photograph shows a Lancaster bomber dropping 'window. This was shredded aluminium foil, dropped to confuse German ground radar, The beams were scattered by the foil, giving totally erroneous readings upon re-receipt. In the background can be seen some of the other aircraft in the raid, in this case a 1,000 bomber attack on Essen.
The foil is the silvery shimmer to the left of the photograph, scattering as it falls.

COMBINATION LOCK

The combination of these effects causes the beam alternatively to strike and then be repelled from the anode, so that the oscillations in the cavities can have very large voltage amplitude, of the order of the applied voltage. Similarly, by using a large cathode, high beam currents are possible so that the peak power developed in one cycle of oscillation can be very large. At the same time, the size of the magnetron is modest, since the radius of curvature of the electron beam is small, and the power dissipated would melt the anode if the beam were applied continuously. The answer here was to pulse the beam by applying a short (1 $\mu \mathrm{s}$ or less) negative pulse of several kV amplitude to the cathode at a repetition rate of 1000 pulses per second or so. By using this technique, the power developed during a pulse, which could be of thousands of cycles of the microwave frequency, could be many kilowatts, giving excellent range, yet the average power, and hence the heat dissipation, would be only a thousandth of this value, since the valve would be on (in this example) for only one/microsecond in each millisecond

DEVELOPMENTS

Inevitably some development was needed. The early cavity magnetrons were unstable, changing frequency for no apparent reason. This is a problem which also
afflicts those learning to play wind instruments, because all resonant cavities will resonate to harmonics (multiples of frequency) of the lowest note which is possible (the fundamental). The resonant cavities of the magnetron have the further complication that two sets of oscillations are taking place in them, oscillations of magnetic field and oscillations of electric field. The cure was to shape each cavity to make one mode of oscillation dominant, and to use cavities which were interconnected, with alternate cavities "strapped" so as to reinforce the desired frequency of oscillation.

In addition, the tendency of magnetrons to burn out their cathodes too quickly was found to be due to the extra heating caused by the beam current. This could be counteracted by using the heater only for starting the tube, switching it off whenever the magnetron started to oscillate so that the beam current could then provide the heating.

FROM THE NORTH CAPE TO OVENS

Nowadays, the magnetron is still the high power, high frequency microwave signal source, used in radar, in microwave ovens, and in materials research. The advantage which the cavity magnetron gave us during the war was of major importance, and the advantage, unlike so many others before and since, was never quite lost.

UPDATE1: 3,4000 more Transistor Substitutes
 The most comprehensive, low-cost, single volume coverage of transistors you can buy.

Towers'International Transistor Selector

We've got the new one!

COMPLETELY REVISED. 30\% MORE COVERAGE. ONLY £5.00 INC. P \& P.

When the first edition of this excellent book was published in 1975 ETI was the first to offer it.

We are doing it again!
UPDATE 1 increases the coverage of transistors by about 30\% on the first edition.

European Proelectron Standard devices increase by 1500 and now ensure a very comprehensive coverage of Philips, Siemens, Telefunken and Texas Instruments in Europe.

The Japanese 2S Standard Devices coverage has been increased from 1,850 to 3,000 and a further 800 American 2 N devices have been selected.

The original 10.000 entries have been fully edited and this new production has been clearly printed from new computer setting.

Your order will be processed on the day of receipt.

To: ETI BOOK SERVICE
P.O. BOX 79, MAIDENHEAD, BERKS SL6 2EG

Please send me \qquad copies of
Towers' International Transistor Selector
Revised Edition Up Date 1 at $£ 5.00$ each inc p \&p
I enclose cheque/postal order fore made payable to ETI BOOK SERVICE.

NAME
ADDRESS

TECHNICAL BOOKS FBOM ETTI

ELECTRONICS

active fil ter cookbook
D. Lancester
$£ 10.75$

ELECTRONIC ENGINEERS REFERENCE BOOK - AIM EOITION
\qquad
A completely
E27.60
sudents
basic maths course for electronics
H. Jacobowitz
Quick shon cut way to earn the language of maths as applied to

Quick shon cut way to learn the language of maths as applied to
electronics
OESIGNING WITH TTL INTEGRATED CIRCUITIS
Texas instruments
Covers the entre famity of TTL and pracical applicatoms of circuits in
dignal systems
ELECTRONIC MEASUREMENTS SIMPLIFIEO
C. Halmark
Covers ;ust about every conceivable test or measurement you will need
C. Hain mast about every conceiva
ELECTROMICS POCKET BOOK
P. McGoldrick

ELECTRONICS POCKET BOOK
P. McGoldrick £ 15
ELECTRONICS AND PHOTOGRAPHY
R. BROWN
ÉSSENTIAL FORMULAE FOR ELEGTRIC̄AL ANO ELECTRONIC ENGINEERS
N. M. Moris
Handy reference book includes a section on S 1 units resistor colour
Handy reference book includes a section on S 1 units resistor colour
codes and preferred values
FiRE AND THEFT SECURITI SYYSTEMS
B. Wals
Selection and thstallation home mantenance and but ness secunty
E1.90
Selection and installation home mantenance and business secunty
devices
HOW TO READ ELECTROMC CIRCUIT DIAGRAMS
nonc Clisult diagrams
Everything you n
integrated Cucuits
HOW TO BULD PROXIMITY DETECTORS AND METAL LOCATORS
J. Stuelds

E3.25
HOW TO USE IC CIRCUIT LOGIC ELEMENTS
J. Strestor

INTEGRATED ELECTRDNICS
J. MIIIman
Using an IC approach the text leads the eader sien ty sien iton
Using an ic approach the texp leads the reader step by ste, fron
semicanductor prysics to devices micdels circuits and sys'emis
IC OP-AMP COOKBOOK
W. Jung
W. Jung
Covers the basic theory of ic op anips in great detall also inciudes 250

TINEAB INTEGRATED CIRCUIT ÁPPITICATIONS
G. Clayton
A practical approach is emphasised throughoul encouraging the reader

LINEAR IC PRINCIPLES EXPERIMENTS AND PROJECTS
E. M. Noll
An introduction to one ol electronics most exciling devices

TIO OPERATIONAL AMPLIFIER PRDJECTS FOR THE HOME
R. M. Marston
£2.85

Outlines the essentrai characteristics of op amps and presents useful

IfO SEMICONDUCTOR PROJECTS FOR THE HOME CONSTRUC-
110
TOR
R. M. Marston
£2.85
110 cosmas digital ic PROJECTS for the home
COMSTRUCTOR DIG
R. M. Marston.
E3.10
110 INTEGRATED CIRCUIT PRDJECTS FOR THE HOME
CONSTRUCTOR
R. M. Marsion $£ 2.85$
A. Mi the propects have been devised butil and fully evaluated by the
author

110 THYRISTOR PROJECTS USING SCR's
R. M. Marston
A companion to
£2. 85
mos digtal ics
G. Fiynn
©4.50
This book contains information about MOS and CMOS trom bastic
conslluction to circuit application
OPERATIONAL AMPLIFIERS DESIGN AND APPLICATIONS (Burr Brown)
G. Tobey
pIn POint Transistor troubles in 12 minutes
C. Garner
$£ 2.85$
service procedures

PRACTICAL TRIAC/SCR PROJEGTS FOR THE EXPERIMENTER
R. Fox
Thyristor theory and practicat circuits with low cost SCR TRIACs.an Dibyristo

PRINCIPLES OF TRANSISTDR_CIRCUITS
S AmOs
\&.40
Generally accepted as being a standard textbook on fundamental
principles underlying the desiqn of curcuits and using trantistors
RAPID SERVICING OF TRANSISIDR EQUIPMENT
G King
A
A systemanic guide to the servicing of lransistor radio television lape
and hitli equipment
SEMICONDUCTOR CIRCUIT ELEMENTS
T. D. Towers
G6es readers an account of all semiconductor devices conimercially
avallabte for each device il covers a general description circull diagram
symbols and working oinciples

Solid state gircuit guide book
B Ward
£2.15
transistor circuit design
Texas
TTL COOK book
TTL COOKBOOK
D. Lancaster
c9.25

Complete and detale

JNOERSTANOING ELECTRONIC CIRCUITS
R. Sunctair
hult finding and servicing proceder
UNDERSTANDING ELECTRONIC COMPDNENTS
R. Sinclair

E4.00
extbooks and unapproachable advanced treatnients
UNDEASTANDING CMOS INTEGRATED CIRCUITS
R. Meton

Begins with basic digital ics co
labrication technology and design
understanolng solio siate circuits
N. Crowhurs:

ELECTRONIC ORGAN BOOKS

transistor electronic organs for the amateur
A Douglas
the electronic musical instrument manual
A. Douglas
£8.00

SEmiconductor data

POPULAR VALVE/TRANSISTOR SUBSTITUTION GUIOE
Substitution data for boin valves and transistors
RAOIO VALVE AND SE MICONDUCTOR DATA
A. M. Ball
A. M. Ball \quad Characteristics of 1000 -valves cathode ray thes 2.50

Characteristics of 1000 -valves calhode ray tubes transistors diodes
rectitiers and optical semi-conductors This new edir
up to date and over 450000 copies have been sold

RADIO AND TELEVISION
foundations df wireless ano electronics
M. G Scroggie
© 4.35
colour television theory
66.10

Hutson

TEST EQUIPMENT AND OSCILLOSCOPES-
basic electronic test prdceoures
6. M. Gottlieb
¢2.35
Shows haw to
oscilloscopes
THE OSCILL OSCOPE
G. Zwick
£2. 10
PRACTICAL TEST EQUIPMENT YOU G AN BULID
w. Green

C2.15
test instruments for electronics
M Clifford
£2.30
Easy m
book
WORKING WITH THE OSCILLOSCOPE
A. Saunders
$£ 1.85$

SERVICING WITK THE OSCILL OSCOPE
G. King
$\S 5.00$
Includers a unique senies of photographs sthowing oscilloscope waces io
be found in normal and fauty equipment stereo radio cotour iV
Cirruits servering is death with

The LM 1812 is a special monolithic IC which consists of a 12 W ultrasonic transmitter circuit, which uses novel circuitry to eliminate costly alignment adjustments, a selective receiver which uses only one external LC network, impulse noise rejection circuitry, a 10W display driver, and a keyed modulator. The system operates from a 12 V battery. drives power into a transducer, receives an echo and drives a display lamp:
A single LC network is time shared between the receiver and the transmitter to reduce external parts, to eliminate alignment labour and to guarantee that the received signal is always of the proper frequency.

TRANSDUCERS

Transducers are available for use either in water or air. The appropriate transducer is important for proper functioning in the intended application; for example, the high frequency attenuation in air usually requires a lower operating frequency. The modifications for a 40 kHz system are shown.

LAYOUT

As the LM1812 contains both a transmitter and a receiver in proximity, PC layouts or breadboarding has to be done with special attention to ground loops and common coupling paths. The use of three ground pins on the IC package helps reduce grounding problems, but at the time of transmission, with the display driver also ON, there can be 1-2A of peak current passed into the ground trace.

INTERFERENCE

Local sources of High energy impulse noise, if not locally shielded, can cause an unwanted display "blip.'
A small valued capacitor (approximately 30 pF) can be connected across the first receive stage (between pins 3 and 4) to reduce the bandwidth and filter out these noise pulses.
Impulse noise is rejected by the combined action of the "Pulse Train Detector" and the "Integrator" circuits. The integrator requires a number of cycles of valid returns to be received before turning $O N$ the display driver. The pulse train detector will dump the integrator if a continuous train of pulses is not received (if 2 or 3 are missing, the integration capacitor is discharged to ground).

POWER LEVELS

For ranging applications, large transmit power levels are necessary due to the two-way path and the resulting received echo power falling as the fourth power of range fadditional external receiver gain can be used to extend the range). One way communication links can use reduced power. Transmit power can be checked by measuring the voltage swing across the transducer (of known impedance) during the transmit mode. The magnitude of the transmitter power depends on the transducer impedance as presented to the transmitter power amplifier (usually a transformer is used to couple the transducer to the power amplifier). A minimum value of 105 causes

approximately 1 A peak current pulses out of this power amplifier. The inductance of the secondary should be designed to resonate with the sum of the capacitance associated with the cable feeding the transducer and that of the transducer. The low Q resonance allows transducer replacement without tuning.
An internal one-shot multivibrator with a fixed time of 1 s is used to drive the transmitter power amplifier into saturation for this time period once for each cycle of the transmit frequency. At a frequency of 200 kHz , this results in a high efficiency class-C type of operation for the power amplifier. The transmit frequency is equal to the natural resonance of the external LC network which is tied to pin 1. This network is also used to establish the centre frequency and the selectivity of the receiver.

DISPLAY CONTROL

The collector of a grounded-emitter NPN transistor can be tied to pin 16 to atrow an auxiliary control of the display driver. This transistor should normally be held OFF and should go ON for a time interval no longer than 1 ms if a neon display is used, due to the rapid current build-up in the primary of the step-up transformer. If a LED is used as a display device with a series limiting resistor, this ON time can be made longer as it is now limited only by the increased dissipation of the IC which results from the saturation voltage at pin 14 and the ON current of the LED.

AUDIO

An IC audio amplifier can be used to amplitude modulate the carrier for an AM commu-

nication link. A high-input impedance detec tor and audio amplifier attach to pin 1 for the receiver. One audio amplifier can be switched between the modulator and the receiver section. FM or pulse modulation techniques can also be used to reduce the modulator power requirements

DIGITAL DISPLAY

A digital depth (or range) readout can be used with the OLM 1812 . This eliminates the requirement for the constant speed de motor The modulator, pin 8, is electronically pulled ON for approximately a 1 ms transmit time at a repetition rate which controls the updating of the displayed information. The "neon driver," pin 14, will provide a negative output pulse (from $V+$ to approximately +1 Vdc) if a load resistor (5.1 ks) is used from pin 14 to $V+$. This pulse is used to latch the output of a counter. This output is decoded and then drives a 7 -segment LED display. The repetition rate of the clock input to the counter provides a direct conversion from elapsed time (total count) to depth (or range)

The LM 1812 is available from A. Marshall (London) Ltd., 42 Cricklewood Broad way, London NW2 3ET. Price is $£ 6.50$ inclusive, delivery time about 3 weeks. Further details of Ultrasonic transducers available from Vernitron Limited, Thornhill, Southampton SO9 50F.

TDA 1022 BUCKET BRIGADE-DELAY LINE

The TDA 1022 is a charge-coupled delay line with 512 stages. The principle of operation is transfer of charge from stage to stage under the control of a two phase clock pulse. The descriptive title of 'Bucket Brigade' sums this up neatly. Just think of it as a line of buckets in fire fighting - the water gets passed along the line by pouring it into the next line, eventually it reaches the end. In the TDA 1022 the input signal is sampled at the rate of the clock pulse and passed along the line at this rate also.

AUDIO

For audio use the sampling .clock) frequency should be at least twice the highest frequency you want to process. This means that for good quality audio with a high of 20 KHz the clock rate is 40 KHz , however, 100 KHz gives far better quality. The delay produced at this rate is 5.12 mS . This may not seem very much but devices can be cascaded to produce longer delays. Also if a reduced bandwidth is acceptable longer delays can be produced, for example with a clock rate of 5 KHz usable bandwidth of 2 KHz) the delay is a healthy 51.2 mS . This can be useful for speech processing.

QUICK REFERENCE DATA			
Supply voltage (pin 9)	$\mathrm{V}_{\text {DD }}$	nom. -15	V
Clock frequency	f_{ϕ}	, 5 to 500	kHz_{7}
Number of buckets		512	
Signal delay range	${ }^{t} d$	51,2 to 0,512	ms
Signal frequency range	f_{s}	0 (d.c.) to 45	kHz
Input voltage at pin 5 (peak-to-peak value)	$\mathrm{v}_{5-16(p-p)}$	typ. 7	V
Line attenuation		typ. 4	dB^{1})

OTHER APPLICATIONS

Other applications for this neat device include variable compression and expansion of speech in tape recorders, speech scrambling in communication systems, vibrato and chorus effects in organs, reverberation units and to equalise delay in public address systems.

PROTECTION AND USE

A couple of things to watch when using the device are that it uses a 'positive earth arrangement - unusual in modern circuits, and is MOS - handle with care. In respect of this it is advisable to use a 741 buffer before the device as well as the 741 output buffer, this makes sure signals can't blow it up if the power is off.

The clock pulses are out of phase and a suggested circuit is shown. In the main circuit the 741 output buffer, also acts as a lowpass filter, to get rid of residual high frequency noise from the clock.

The TDA 1022 is available from \mathbf{A}. Marshall (London) Ltd, 42 Cricklewood Broadway, London NW3 3ET. Price £7.50 inclusive, delivery time about 2 weeks.

ETI READER OFFER

Now you may have seen calculators cheaper, and you WILL have seen machines with more facilities, but you have NEVER seen a rechargeable scientific (with charger) AND such facilities anywhere NEAR this price!

Our price includes p+p, VAT, and the mains unit. No batteries to buy, now or ever, which makes the machine effectively cheaper still! The calculator has all the facilities of the better known CBM SR-1800, but is considerably cheaper.

To obtain your 5R39 fill in the coupon below, add a cheque or P.O. for $£ 15.95$ and send the whole lot to us at the address shown. Then throw away the abacus.

1
 Hent MIICS totata international

What to look for in the June issue: On sale May 6th

THE GAME 'MASTERMIND' - not that on TV but the 'peg' game has caught on like wildfire. If you don't know it, one player sets up a code for the other to break: 'it's a game which really tests your ability to think logically. Next month we
describe an electronic version. Press a button and the circuit sets the problem - it will also reveal to you the necessary clues. It uses umpteen IC's but construction has been enormously simplified by the use of pcb's.

Ssstamb 6 vDU

THE FIRST PART of our System 68 VDU project, covering the Video and Character generation board. Part 2 will cover the Interface and RAM board.

FEATURES include 64 character by 16 line display, parallel $1 / 0$ with less than $1 / 4$ second for full screen from memory. White on Black or Grey or any combination plus character flash. e.g. Black letters on grey flashing background. All built into a 2 in module on two Eurocards!

Valve

AUDIO TECHNOLOGY marches on distortion figures grow ever more negligible with the passing days. Transistor and IC amplifiers are rapidly approaching the frontiers of design possibility on paper). Every now and then problems appear to become significant as their .smaller) contribution to final sound quality becomes the largest remaining.

Yet in the wake of this sweep to

Sound

perfection, professional musician's are hanging on with tooth and nail to their aged and totally outdated VALVE amplifiers. Why? Simple; they say it sounds better.

Why? Has modern technology missed something? What is the vital factor that valve designs possess and solid-state designs don't? Next month we'll tell you - and the answer is very controversial!

tip of

the month!
For some time now a printed circuit resist pen, A in the photograph, has been on sale. The price varies a bit, but 65-75p is typical.

They're good. We've used them; it dries fast, is certainly acid resistant, and is easy to clean off afterwards.

A paper label is wrapped around the barrel and being of a curious disposition, we decided to remove it shown as B. Rather odd, we thought, that someone should go to all the trouble to sand off part of the barrel. Apart from this area, the rest of the barrel carries Japanese wording which happens to be identical to the Pentel Pen (C) sold in stationers, not for 65-75p but for 30-35p - and they're available in many colours. Wishing to take nothing for granted, we tried the Pentels as resists. They're good too!

So far we have been unable to discover the advantages of the paint-free area on the barrel - and 35-40p extra does seem rather a lot, doesn't it? We couldn't resist telling ETI readers about this!

British newsagents are among the best in the world. No, we're not trying to butter them up but we are an international magazine and are in a position to make comparisons. But they've got a tough job - they don't know how many of you want ETI, so they've got to guess, and since they're bound to order conservatively, this leads to shortage. The February, March and April editions of ETI were total sell. outs within a few days in most areas. We don't like it, you don't like it, and your newsagent doesn't like it.

Please help us all, place a regular order; your newsagent will normally be delighted to help.

SINTEL for KITS - GMOS - BOOKS

A NEW RANGE OF
 SINTEL INDUSTRIAL MODULE KITS

kit for single peb cmos counter module with latch A complete kin lor buiding a 2 digit. Single PCB, CMOS Counter Module With Laich. Includes PCB $2 \times$ TILITH22 of FNDSOO. $2 \times 4511.1 \times 4518$. Order as 142-269

TYPE Non-Multiplexed	COMMON ANODE Part No Price		COMMON CATHODE Part No. Price	
2 aign Counter 4 digit Counter 6 digit Counter	574-822 777-822 684-822	63.37 $\mathbf{8 6 . 6 3}$ $\mathbf{6 . 8 9}$	$\begin{aligned} & 446822 \\ & 128-822 \\ & 271-822 \end{aligned}$	$\begin{aligned} & £ 2.97 \\ & £ 5.83 \\ & £ 8.69 \end{aligned}$
Multiplexed				
4 digit Clock 6 digit Clock 8 digit Counter	$\begin{aligned} & 801-822 \\ & 417-822 \\ & 119-822 \end{aligned}$	$\begin{aligned} & \mathbf{E 6 . 6 6} \\ & \mathbf{\varepsilon 1 0 . 1 5} \\ & \mathbf{E 1 3 . 0 9} \end{aligned}$	$\begin{aligned} & 262-822 \\ & 452-822 \\ & 515-822 \end{aligned}$	$\begin{array}{r} £ 5.86 \\ £ 8.95 \\ £ 11.49 \end{array}$

DISPLAYS

 aif electically identical (tbut may have different pin-outs) Simiariy our common anode dignts may be
used in place of any other C.A. types \{DL707. DL747. RS/Doram $586 / 699$, eic)

FND500 C C. E1.30
Red 0.5" by Fairchild

Th322 C.C 1.48
Red $05^{\prime \prime}$ by 1.
5LTOI $£ 5.80$
A very alliaclive four digut display with targe $0.5^{\prime \prime}$ green tiluorescent

12:13

DATABOOKS

RCA CMOS and Linear IC Combined Datatook

 700 series TTL Oatabook. c. 200 pagesIntel Memory Design Handbook, c 280 pages
iniel 8080 Microcompuler Systems
Imel 8080 Microcomputer Systems Users Manual. c. 220 pages
Motorola MCMOS Oatabook Vol 5 Series B. c 500 .
Motorola M6800 Micro Applications Manual e 650 pages
Motorola M6800 Programming Manual c. 200 pages
Motorola a Booklet
Molorola Booklet introducing Microprocessors
Z.log 280 -CPU Technical Manual

Z110g 280-CIC Produet Specilication
Zilog 280-P10 Technical Manual
DATASHEETS on Microprocessora, arc. fusually Xerox Copies

TMS 8080
9131 Memory

Out offices are at Link Property. 209 Cowlay Aoad, Oxford, but please do not use this as a postai addre
FAST SERVICE. We guarantee that Telephone Orders for goods in stock, received by 415 pm (Mon Frf will be despatched on the same day oy ist Class Post (some heavy items by parcel post) and our
stocking is yood. Private customers should telephone and pay by giving their Access or Baclaycard

ORDERS:

- 50p p\&p and ptease see FAST SERVICE EXPORT OIders CREDTT (Invoicel Orders add VAT @ 8% 50p p\& and ptease see FAST SERVICE EXPORT Orders welcome, no VAT but add 10% (Europe)
15% (Overseas) tor Air Mail p\&p For Export postage rates on heavy liems -- contact as lirst

AFREE CATALOGUE requested by post or phone, will be sent by return giving full detals of our range of
CASES KTTS OISPLAYS MPUS MPU KITS and other components not listed here with same

:

Modular supply for the System 68 Computer system. Described by Jim Perry

THE ETI MAINFRAME PSU has four output voltages, +5 for the CPU and TTL, CMOS circuits; this is capable of supplying about $21 / 2$ amps. The other voltages are -7 -12 and -20 volts for various bias requirements in RAM's etc. All the negative voltage rails can supply up to 100 mA less the monitor LED current, which is about 10 mA . The main considerations in the design were size and reliability. The final version is indeed very small, fitting into a 4 in . module! All outputs are overload proof, if a supply rail is short circuited the front panel LED will extinguish
Connections are provided via a
Fig. 1 and 2, Two views of the assembled module, note the use of insulated sleeving and ' p ' clips in figure 1 . The transformer mounting can be seen in both figures, figure 2 also shows the ribbon cable to the front panel LED's
standard 31 way plug and socket which will be used for the rest of the system. The advantage of this is cost, the disadvantage is that with 31 ways all 'bus' wiring will be 'hardwired', meaning that for example the VDU module has to be plugged into a particular position in the rack

Construction

Construction is reasonably straight forward if the sequence outlined is followed. The PCB can be assembled at virtually any time, we did it first, make sure all components are as low in profile as possible. If you leave 1 in . leads on the capacitors, the module won't fit!
Front panel drilling is not shown, but positioning can be seen from the heading photograph.
The drilling of metal work and
fabrication of brackets should be done next. The dimensions are all quite precise, so if a dimension is 13 mm - we mean it! The case can also be assembled at this point, don't forget the end plates -which take $1 / 2 \mathrm{in}$. off the front panel.

Mains Input

Mains input should be fitted to the frame, this uses bracket A and plastic guard B. Also a ' U ' shaped notch should be made in the case back panel. Figures 3, 4, 5 show the mains input in closeup, note that the spare pins in between lon voltage and mains, and LNE are snipped off the 31 -way socket and plug
The base plate, back plate and front panel of the 4 in module, when drilled, can have various compon-

MAINFRAME RS.U.

Fig. 3, 4, 5, the mains input on the back panel, note the positioning of 'p' clips and plastic guard. The sign came from a piece of surplus P.O. equipment
ents attached - before being bolted. together. The back plate is fitted with Reg 1, complete with mica insulating kit, and C3, C7 are soldered in place on the regulator.

Fig. 6, general view of opened out module, again note extensive use of insulating sleeves and transformer mounting.

FS1, SW1 and LED $1-4$ can be mounted on the front panel of the module. Ribbon cable and sleeving should be soldered to the LEDs see figure on page 59). The two mains transformers can be strapped to the base plate, but first their mounting lugs must be bent. One lug is bent down through 90° and the other through 170°, see photographs to see how they mount. The two lugs bent through 170° are strapped under the mounting bracket. Both transformers should be wired up before C1 and C2 are mounted.

Module Assembly

The module can now be assembled by bolting and screwing the base plate, front and back together. Fit the snipped 31 -way plug at the same time as the back plate. The mains wiring from connector to FS 1 and SW1 can now be soldered, use insulating sleeving on all exposed connections. The mains lead from T1, T2 can also be wired into SW 1 The remainder of the wiring can now be installed, including the PCB - which is mounted with two brackets as shown

Fig. 7. Circuit diagram of the P.S.U.

Fig. 8 Component overlay and off board connections.

How it works

The circuit is based around four monolithic regulator IC's. Two types are used, the +5 volt supply is provided by a TO3 cased 3A device, all the negative supplies are provided by TO92 100 mA regulators. Separate transformers and bridge rectifiers are used for positive and negative supplies.

All the regulators work in the same manner, all are fixed voltage with overload and short circuit protection, in addition the TO92 regulators have thermal overload shutdown

To produce a non-standard output voltage Reg 2 and Reg 4 have resistors in their common leads, Reg 2 is raised from -5 to -7 and Reg 4 from -15 to -20 . In addition Reg 2 and Reg 3 have resistors in series with their inputs to reduce to voltage across them, and hence reduce power dissipation in them.

The 220 n capacitors are to help stability by preventing RF oscillation. The 470 n capacitors are to improve transient response.

Parts List

Resistors		
R1	120	$2.5 W W / W$
R2	68	$2.5 \mathrm{WW} / \mathrm{W}$
R3	560	
R4	$1 K 5$	
R5	470	
R6	1 K	
R7	$1 K 2$	
R8	$2 K 2$	
R1I	2K2	

All $1 / 2$ W 5\% except R1, 2
Capacitors
4700u 25V
102-774)

C2 - 4700u 63V .103-064)
C3, 4, 5, 6 220n min polyester
C7, 8, 9, 10 470n
Semiconductors
D1-8 1 N5401 (3A 100V)
REG 1 LM323K
REG2 79L05
REG3 79L12
REG4 79L15
LED1 Green (586-481)
LED2, 3, 4 Red (586-475)
Card Frame/Module
71-3841L Card frame/case
$71-3842 \mathrm{~F} \quad$ including guides
pair end plate angles
17-0267H Connector plug 31 way 17-0268C Connector socket 31 way

Miscellaneous

T1 0-6, 0-6@1.6A (207-138)
T2 0-17.5, 0-17.5 @ 0.5A (207-172)
SW1 DPST 250v4A i316-800)
FS1 20 mm fuseholder $412-879$
Mounting clips for C1 + C2 (543-052 $543-383$) 20 mm 500 mA fuse, 18 mm knob mounting kit for Reg 1, Heatshrink sleeving $11.6 \mathrm{~m}+3.2 \mathrm{~mm}$). 4 ' p ' clips (543-355). sleeved grommet, ribbon cable, 6BA + 4BA nuts + bolts, anti-shake washers. Aluminium for brackets, mains cable, etc
All numbers in brackets eg. (207-138) are Doram type numbers.
Card frame/Module numbers are Vero Electronics reference codes.

Fig. 9 Metal work details, front panel is not shown as exact positioning can be varied to allow for different components. See text.

MATERIAL 18 SWG ALUM. UNLESS OTHERINISE SPECEIFIED

ALL DIMENSIONS IN MILLIMETRES UNLESS OTHERWISE SPECEFIED

DRILL 2 HOLES 6BA

Fig. 10 PCB shown full size.

Fig. 11. Method of wiring the front panel LED's, note that LED1 is reversed to all the others.

> ANADUNTING A NIEW SIETI DIF BASIIC ELIECTIRDNAICS

> This 5 volume set contains over 500 pages.
> This 5 volume set contains over 500 pages.
Bound in stiff linen. Cover size 8% in $\times 5 \mathrm{in}$. Brice $\mathbf{8 7 . 5 0}$ per set (we pay the postage).

Book 1. Introducing Electronics Book 4. Meters/Voltage-dividers Book 2. Resistors/Capacitors Book 5. Transistor Project Circuitry Book 3. Inductors/Diodes
The manuals are unquestionaby the finest and most up-to-date available and represent exceptional value.
This series has been written in a fascinating, absorbing and exciting way, providing an approach to acquiring knowledge that is a very enjoyable experience. Suitable for industrial trainees, City and Guilds students, DIY enthusiasts and readers of electronic journals.
Each part explains electronics in an easy-to-follow way, and contains numerous diagrams and half tone blocks with construction details and circuit diagrams for making the following transistor projects: Lamp Flasher, Metronome, Wailer, Photographic/Monostable Timer, Metal Flasher, Metronome, Wailer, Photographic/Monostable Timer, Metal Locator, Geiger Counter, Radio Receiver, Intercom., Intruder Alarm,
Electronic Organ, Battery Eliminator, Anemometer, Sound Switch, Light and Water-aperated Switches, Pressure-operated Switches, wight meter, Radio Thermometer, Ice Alarm, etc., etc.
FREE. A list of components for constructing the projects.
Order now:
Selray Book Company 桨 DUR 100\% GUARANTEE
60 Hayes Hill
Bromloy
OUR Should vou decide to return the sel after to days exam.
ination, your money will be refunded by refurn of post.
,

Amount enclosed: $£$

Name:

Address:
1

THESE RESISTORS ARE MADE BY fusing a suspension of metal and glass particles to a ceramic rod at temperatures between $750^{\circ} \mathrm{C}$ and $930^{\circ} \mathrm{C}$. This forms a thick resistive film, fused with the surface of the ceramic former, resulting in a resistance element that is virtually impervious to environmental extremes of moisture, temperature, shock and vibration.

The fusion of the metal resistive material and the ceramic rod gives rise to the common name 'CERMET' resistor.

The construction of cermet resistors is generally the same as for film resistors: the desired resistance is obtained by spiralling the resistive element.

Owing to the high firing temperatures, these resistors may be rated for higher temperatures and loads than similar sized film resistors. Conduction of heat away from the resistance element is superior, owing to the better thermal contact possible between the resistance element on the rod and the metal end-caps. Body temperature rise is lower than for comparably-sized resistors of other types having similar ratings. As a
result of these characteristics, cermet resistors are generally smaller than other resistors of the same rating.

The temperature coefficient of cermet resistors is generally comparable with most metal-film and metaloxide resistors, common types having a TC of $\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Some types exhibit a TC of $+50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ and may be as low as $\pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. This characteristic shows little variation with the value of the resistor.

Noise level for these resistors is generally higher than for other types, typically ranging from $0.4 \mu \mathrm{~V} / \mathrm{V}$ to $1.0 \mu \mathrm{~V} / \mathrm{V}$, which is worse than other types but far below the level of carbon composition resistors. This level of noise is rarely a problem.

The voltage coefficient is generally better than $100 \mathrm{ppm} / \mathrm{V}$, similar to most other film resistors and is not a consideration in the majority of applications. Generally, the voltage coefficient is only a consideration with carbon composition resistors.

As the construction of cermet resistors is similar to the other types of
film resistors they have similar frequency characteristics. Values below 10k show little variation in value well into the UHF region.

Cermet resistors have excellent stability owing to body temperature being low for the amount of power dissipated. Figures of $0.5-1.0 \%$ are common. Generally, cermet resistors are manufactured in standard tolerances of $\pm 2 \%$ and $\pm 5 \%$. Tolerances of $\pm 1 \%$ are available on special order.

Like the common types of metal film resistors, metal glaze or cermet resistors have a hotspot or zero load temperature rating between $150^{\circ} \mathrm{C}$ and $160^{\circ} \mathrm{C}$. They are derated linearly from $70^{\circ} \mathrm{C}$ as is standard with other film resistors. The derating curve for common types of cermet resistors is given in Figure 1. The miniature 0.5 W type (GLP), and some similar types by other manufacturers, have a hotspot temperature of $155^{\circ} \mathrm{C}$, in common with various styles of metal film resistors and are derated according to the curve in Figure"2. Some styles have a dual rating. These are derated linearly from full power at $70^{\circ} \mathrm{C}$ to half power at $125^{\circ} \mathrm{C}$, and then from there to $160^{\circ} \mathrm{C}$, the hotspot temperature. The curve for these types is given in Figure 3.

Fig. 1. Derating curve for most common metal blaze resistors - common to the majority of film resistors.

Fig. 2. Derating curve for miniature 0.5 W cermet resistor, type GLP; also applicable to some other manufacturers.

Fig. 3. Derating curve for dual-rated styles of cermet resistors.

Metal glaze (cermet) resistors

Cermet resistors are generally available in ratings from 0.1 W to 0.5 W , and some less common types up to 5 W . Cost is comparable to most types of film resistors which makes them very attractive where their small size and high power rating is required or in applications where they are likely to experience moisture and temperature extremes, etc. Trimpots are manufactured having, cermet resistance elements to take advantage of the ruggedness and resistance to environmental extremes that this type of element offers. The general characteristics of metal glaze or cermet resistors are illustrated in Table 1.
envelope or coated in a special varnish. The helical element provides a uniform pitch allowing a uniform voltage gradient between turns throughout the length of the resistor.

They find application in voltagemultiplier probes, high voltage bleeders, CRT circuits, photocell cicuits, ionization equipment etc. They can be obtained in voltage ratings up to 50 kV and wattage ratings from 2 W to 100 W .

Ferrule, terminal lugs and wire lead terminations are available depending on style and application.

Typical temperature coefficients range between $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ and $700 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for low resistance values
resistance contact. Axial-lead, terminal lug or ferrule terminations are attached to the silver bands, as required. A protective coating encapsulates the entire resistive film.

These resistors maintain their value well into the UHF region, mounting usually limiting its performance. Values up to 300 ohms vary less than 20% from their nominal dc value up to 400 MHz . Values up to $3 k 3$ vary less than 20% up to 200 MHz . The nominal value decreases with frequency.

These resistors find extensive application as RF dummy loads, antenna terminating resistors etc, and in radar pulse equipment. They are available in wattage ratings up to 100 W and as low as 1 W ; values from 20 ohms to 130 M (useful at low frequencies to 100 kHz)

TABLE 1. General Characteristics of Metal Glaze (Cermet) Resistors
Rated
Wattage
$@$
$70^{\circ} \mathrm{C}$

$0.125 \mathrm{~W}\left(@ 125^{\circ} \mathrm{C}\right)$
0.25 W
0.33 W
$0.5 \mathrm{~W}^{*}$
0.5 W
0.5 W

Max. Working Voltage	Max. Operating Temp.
250 V	$160^{\circ} \mathrm{C}$
250 V	$160^{\circ} \mathrm{C}$
350 V	$150^{\circ} \mathrm{C}$
250 V	$155^{\circ} \mathrm{C}$
250 V	$150^{\circ} \mathrm{C}$
500 V	150°

Critical Resistance	Typical Sizes Length	Diameter
0.36 M	6.4 mm	2.3 mm
0.36 M	6.4 mm	2.3 mm
0.12 M	10 mm	3 mm
0.36 M	5.5 mm	2 mm
0.36 M	6.4 mm	2.3 mm
82 k	14.3 mm	5.7 mm

Typical
Resistance
Ranges

$10 \Omega-301 \mathrm{k}$
$10 \Omega-301 \mathrm{k}$
$10 \Omega-270 \mathrm{k}$
$2.2 \Omega-470 \mathrm{k}$
$6.2 \Omega-1 \mathrm{M}$
$10 \Omega-270 \mathrm{k}$
*IRC type GLP - see text, miniature 0.5 W resistor.
(1) Wattage fating assumes voltage limit not exceeded.
(2) Max. Working Voltage assumes wattage rating not exceeded.
(3) Max. Operating Temperature is equal to hot-spot temperature.
(4) Sizes given are body sizes for axial-lead types.

Miscellaneous Special Types

Special applications call for resistors having particular characteristics. Special resistors are manufactured, taking advantage of certain properties of different materials or construction techniques, to meet the requirements of applications outside those normally found with ordinary resistors.

High voltage circuitry requires resistors having very high maximum working voltages (up to 50 kV in some cases). RF applications require resistors that substantially maintain their dc value up to quite high frequencies as well as being able to dissipate considerable power. Various special resistors having controlled non-linear temperature or voltage characteristics are also useful in a variety of circuit applications.

High Voltage Resistors

High voltage resistors generally have higher values than the normal range of resistor types. Values up to 1013 ohms are available.

They are constructed of a carboncomposition film applied in helical form to a ceramic tube, resulting in a long conducting path. The element may be mounted in an evacuated glass
and high resistance values respectively.
High voltage resistors generally have a hotspot temperature of $100^{\circ} \mathrm{C}$ although this is much greater for forcedair cooled and oil-cooled types occasionally encountered. Those operated in free air are derated from $25^{\circ} \mathrm{C}$ as indicated in Figure 4. Note that it is non-linear.

These resistors are available in values ranging from 2 k 5 to $10^{5} \mathrm{M}$ generally, higher values by special order.

Dimensions depend on wattage rating and intended application.

High Frequency Resistors

These resistors have a specially designed resistance film which provides optimum performance on all desired characteristics while operating up to quite high frequencies. The cross-sectional are of the resistive element is kept small (less than 0.3 mm !) to assure low inherent capacitance and freedom from skin effect. The resistance element is generally not spiralled in order to reduce inductance effects.

Terminal bands of colloidal silver are deposited over the ends of the resistive element, forming a permanent, low-
and voltage ratings to about 10 kV . They are derated from $25^{\circ} \mathrm{C}$ in free air, as per Figure 4, and have a hotspot temperature of $100^{\circ} \mathrm{C}$ - more if forcedair cooled or oil cooled.

Thermistors

Thermistors belong to a group of resistors made from semiconductor materials and are thermally sensitive, having a controlled temperature co-

Fig. 4. Power derating curve for high voltage and high frequency resistors.
efficient that may be positive (PTC thermistors) or negative (NTC thermistors).

Thermistors are widely used for temperature measurement and control, temperature stabilisation, current surge suppression, and a wide variety of other applications. They are non-reactive and non-polarised and are therefore suitable for use in either ac or dc circuits.

The resistive element consists of barium titanate in PTC thermistors and various metal oxides in NTC thermistors. The compounds are sintered into special shapes, depending on the required application. They are formed into small elements in a variety of shapes -- generally discs, rods, blocks or tubes. They may be encapsulated simply with a varnish or epoxy or inside a glass or metal tube. Some types are not encapsulated at all.

PTC thermistors are available in two basic characteristics. The ' A ' characteristic type exhibits linear change of logarithmic resistance values against temperature. The ' B ' characteristic exhibits abrupt increase of resistance when the temperature increases above a specified value, showing only small change in resistance below this temperature

Some typical PTC thermistors are illustrated in Figure 6. Individual characteristics are best obtained from manufacturers' literature.

NTC thermistors are available covering a wide range of values and temperature ranges. They are available as two basic types - directly heated and indirectly heated. The directly heated types consist simply of the NTC element with two leads (see Figure 7.). Some types have a metal or glass header surrounding the element. A typical

type, made as a water temperature sensor, is alṣo illustrated in Figure 9. Indirectly-heated types consist of an NTC element integrally mounted with a heater.

Voltage Dependent Resistors

These resistors are generally known as 'Varistors' and are another type of semiconductor resistor, They are principally used as voltage surge suppressors, some types being used in voltage stabiliser applications.

The element generally consists of a sintered ceramic material, the most common types zinc oxide as the main ingredient. Other types employ elements containing titanate ceramic (sometimes known as 'variatite') or silicon carbide (SiC varistors). The common types are often referred to as ZNR varistors from Zinc Oxide Nonlinear Resistor.

The general characteristics of varistors is illustrated in Figure 5. They are available in a wide variety of encapsulations, some are illustrated in Figure 8. They are often found as 'spike' suppressors in solid state TV sets, as back-emf suppressors across relays, and in rectifier circuits protecting rectifiers from voltage surges.

Fig. 6. Typical PTC thermistors (actual size).

Fig. 9. NTC element as automative water temperature sensor

Fig. 7. Typical NTC thermistors.
(varnished)

Fig. 8. Various types of varistor encapsulations for different applications.

Take an S-DeC, take a small stock of components, insert into S-DeC, no soldering, make a radio receiver, light operated switch, 3 stage amplifier. When circuit is made unplug components and use them again to make a morse practice oscillator, LC oscillator, binary counter and any other discrete circuitry. See Practical Wireless for new series of S-DeC projects. S-DeC + step by step instructions to build above projects and 3 more + which components to use + free control panel for mounting switches, lamps etc. + free Blob Board. S-DeC only $£ 1.98+$ 37p (VAT + post) send only $£ 2.35$.

DRILL•SAW GRIND•BURR BRUSH POLISH

PB announce a precision British built drill for the home constructor. Works better than most bigger drills and can be used for fine detailed work. Drills through any circuit board, need to break copper strip simply grind it off. 9000 RPM Drill + 20 Assorted tools $£ 11.20$ (+VAT + post) send $£ 13.00$
9000 RPM Drill only $£ 5.22$ + post + VAT send $£ 6.00$
Multi-purpose Drill stand $£ 10.60$ + post + VAT send $£ 12.00$

If you are using IC's to build circuits use T-DeC for 1 chip circuits and U-DeC A for 2 chip circuits. Draw circuit on graph paper, plug IC into Adaptor and plug into DeC. No soldering, no bent leads, no wasted IC chip. Lines on DeC Show contact rails, plug discrete components in. Cross overs, connections are made using different coloured leads. Circuit completed and working unplug components and use for next circuit. No soldering, no damage to components. Use your DeC and small stock of components over and over again. T-DeC send $£ 4.30$. U-DeC
" A " send $£ 4.60$. Adaptor send £2.30.

ELECTRONICS -it's easy!
 Coupling electronic stages

Connection arrangements

As was pointed out in the discussion of meters, electronic subsystems must be cascaded intelligently or loading of the output of a stage by the input impedance of that following may degrade the signal. Output configuration of the various stages involved in instrumentation can take many forms depending on how the earth is connected and if the signal is symmetrical or assymmetrically connected. The six commonly encountered source output schemes are shown at the top of Figure 1. On the left-hand side are seven common kinds of amplifier connection (any other form of black box could be regarded similarly). On the right-hand side are leader lines that show a link between the output of the chosen amplifier and one of
the two most commonly used instrument connections - fully isolated ciruit with case only grounded, or one pole grounded to earth. Using the legend, the chart shows the applicability of connections between chosen combinations of source arrangement, amplifier and output device. Not-possible situations usually arise because the earth connection shorts out one of the source arms.

Fig. 1a. Chart showing common combination possibilities of various output to imput cascaded schemes incorporating amplifier stages of various kinds between the first stage and the two commonly used output recording / monitoring connections. (Courtesy Siemens Industries).

Matching

Three basic matching criteria exist when connecting two stages together. Figure 2 summarizes these.

If the need is for maximum power transfer, as when driving a loudspeaker from an output stage of an amplifier, the output impedance (usually thought of as an average value of resistance) of the driving stage must equal the input of the stage being driven. When maximum voltage transfer is required, as occurs when a pick-up cartridge or other voltage generating transducer is used or when measuring a voltage in a circuit, the rule is to ensure the connecting stage has a much higher input resistance than the output resistance of the stage producing the voltage signal. A factor of ten to one

hundred times is usually sufficient.
The opposite situation, that is, loading a high output impedance stage with a low input impedance, arises when the maximum current transfer is required.

In many cases the appropriate buffer amplifier is required to provide the desired matching condition. In certain ac coupled systems those which do not require a dc patch between stages - a transformer can provide an adequate impedance match in an economic way. Transformers, however, have limited frequency response and must be chosen carefully to suit the signal requirements.

Eliminating noise

In the ideal situation any circuit added after another should add no more noise energy to the signal than is fed to it. We specify the ratio of the two as the signal/noise or S / N ratio. In practice all circuits, including

Fig. 2. Summary of impedance values for various matching requirements.
ion. Observing several basic rules will usually greatly reduce the noise pick-up in wiring between and within stages.

Grounding and Shielding

When wiring circuits and interconnections the circuit diagram shows a signal ground. (Terms ground and earth are used somewhat synonymously). This line is assumed to be at exactly the same potential at all points where a ground symbol is indicated. From the electricity supply authority's viewpoint any good low resistance connection to mother earth is a good ground or earth point. But this is not so for instrument stages operating at millivolt and microvolt signal levels. Signals as large as volts can be induced, or dropped, between two points of a metal chassis! The rule for avoiding this ground loop problem is to attach all circuit points required to be grounded to a substantial size copper bus bar - the circuit ground - that is grounded to earth at one place. Better still, use a single common connection point.

Shields of cables are too often assumed to have the same potential at each end, both ends being presumably at ground potential. This is often incorrect for the shield becomes an earth-loop having a

ELECTRONICS-it's easy!

Fig. 3. Correct and incorrect methods of joining a sensor to a recorder. Most output instruments offer the user the choice of leaving the instrument floating above ground or grounding it.
finite resistance when both ends are grounded. Only one end, the input end, should be earthed and the shield should be insulated against earth at all other points. Figure 3 shows the right and wrong ways to connect two stages together with a shielded two-core lead. Special quality low-level signal cables are available. These incorporate an' inner twisted-pair that is wrapped inside a multi-layer metal foil along with a bare copper drain wire, the whole being well insulated.

Common-mode rejection

Before other aspects of connections with cables can be appreciated we need to study the principle of common-mode signal rejection.

We begin by looking at the noise pickup from supply mains radiation by two open wires used to complete a link, as shown in Fig. 4. If both wires are at the same potential above earth, that is, neither is earthed, the noise pickup in each wire will be closely similar. One wire, however, passes signal currents in the opposite direction to the other so noise induced in each wire will add to the signal in one wire and subtract in the other - the result is that the noise just about balances out. This is known as a common-mode rejection arrangement.

It is a balanced system as far as unwanted signals are concerned because of the use of a differential arrangement.

The same concept is used in lownoise, high gain, dc amplifiers - to eliminate transistor defects. A slight disadvantage of differential configurations is that many testing instruments operate with one grounded input. Connecting an oscilloscope to
probe a differential-mode circuit may short out a line to ground in certain connections. For such work a differential input amplifier is essential in the oscilloscope.

Once the signal level has been amplified well above the ambient noise levels the symmetrical dual output can be converted to a single pole with earth output, using a suitably connected operational amplifier.

For the best low-level signal transfer, wiring between stages should observe the common-mode principle, the aim being to make each wire of the pair appear as identical as is possible to the interfering noise sources present. Figure 5 demonstrates why the twisted pair is better than two separate lines to connect a symmetrically-connected source to a following differential input stage. The distributed capacitances of the two wires are different (with resultant different pickup noise) in the open-wire case than they are in the twisted line.

Shielded two-core cables used with a symmetrical outputs source should have the shield grounded at the source, not at the following stage. The latter option degrades the common-mode rejection capability.

Common-mode principles must be carried through completely in exacting low-level signal applications, even to providing identical terminating conditions at the wire ends - similar length open wire ends, similar, dissimilar-metal, conditions at terminal posts with identical temperature for each to ensure identical thermo-electric currents are generated in each lead.

Active devices, such as amplifiers, have a limit to the commonmode signal levels that they can handle. If the induced signals are too great in amplitude, they may saturate the amplifier, removing its ability to operate correctly. It is, therefore, always best to reduce interference at source rather than attempt to eliminate it by common-mode rejection alone.

RF Shielding

Mains frequency interference (50 Hz) is comparatively easy to eliminate from or retain within equipment by using low conductivity enclosures. RF interference, however, tends to penetrate the best designed enclosure - remember waveguides transmit RF - through apertures of size similar to wavelength. Cracks, where covers'join, may act as waveguides for UHF signals. As modern circuits operate with transition times of nanoseconds they too generate considerable quantities of RF energy. By way of example of what can be achieved by careful mechanical construction Figure 6 compares different instrument enclosure designs of a manufacturer. Slots introduced into frame elements form wave-traps (as opposed to wave guides) when the metal covers are bolted in. Modern instrument enclosure design is as much a case of containing RF radiation inside the unit as it is to prevent it entering.

Fig. 6. Shielding of RF energy by various designs of enclosure used for H.P. instruments. The actual value of a particular unit depends upon the need for holes and shafts through the pane/s.

TRANSDUCERS IN MEASUREMENT AND CONTROL

This book is rather an unusual reprint from the pages of ETI. The series appeared a couple of years ago in the magazine, and was so highly thought of by the University of New England that they have re-published the series splendidly for use as a standard textbook.

Written by Peter Sydenham, M.E., Ph.D. M.Inst.M.C., F.I.I.C.A., this publication covers practically every type of transducer and deals with equipment and techniques not covered in any other book

ETI-UK has obtained a quantity of this fine book, and it is available at present only from us. Send to: Transducers in Measurement and Control, ETI Specials, Electronics Today International, 25-27 Oxford Street, London W1R 1RF.

$£ 2.75$ inc. postage

Enquiries from educational authorities, universities and colleges for bulk supply of this publication are welcomed. These should be addressed to H.W. Moorshead, Editor.

H.

Greenbank

TIME BOX. Digital Clock Case $56 \times 131 \times 71.5 \mathrm{~mm}$ With red acrylic window white, red, orange blue £2.25.
 for even segm
not satistied
DL-704 0.3 n
DL-707E
0.3 nn not satistiad
DL-704 0.3 nn
DL-707E 0.3 n
OL-728E $2 \times 0.51 \mathrm{n}$
SOLDERCON PINS 70p atc
70 p
1.80
 DIL SOCKETS 100
1000 60 p
$\mathrm{E4.00}$
E 8.75 2500
10.000 half price (£30.0

CMOS WITH DISCOUNTSI AnY mix

0.25
0.25
0.25
.25
1.51
0.5
0.25
0.25
1.93
2.37
0.70
0.63
0.70
1.96 \qquad
74C00 Sarie:
 74 C 9070.7
74 C 9082.6 74 COO
74 CO 2
0 $74 C 85$
$74 C 86$
$74 C 89$
$74 C 90$
$74 C 93$
$74 C 95$
$74 C 10$
$74 C 15$
$74 C 15$
$74 C 15$
$74 C 160$
$74 C 16$
$74 C 162$
$74 C 16$
$74 C 16$

 SNONONNONNONNOOOOVVOーOOO -
 40
40
40
4
40
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

40 | 0.24 |
| :--- |
| 0.24 |

GREENBANK ELEGTRONIGS (Dept. TEE) M Nom crmer Rood Now Fany

BUILD THE

TREASURE TRACER ©MK III

METAL
LOCATOR

- Genuine 5 silicon transistor circuit. does not need a transistor radio to operate.
- Incorporates unique varicap tuning for extra stability
- Search head fitted with Faraday screen to elimınate capacitive effects.
- Loudspeaker or earphone opera tion (both supplied).
- Britain's best selling metal locator kit. 4,000 already sold.
- Kit can be built in two hours using only soldering iron, screwdriver piers and side-cutters
- Excellent sensitivity and stability
- Kit absolutely complete including drilled, tinned, fibreglass p.c. board with components siting printed on.
- Complete after sales service.
- Weighs only 22oz.; handle' knocks down to 17" for transport.
Send stamped, self-addressed envelope for literature.

Complete kit
with pre-built
search coil 45
Plus 1.00 P\&R
Plus £1.18 VAT (8\%)
Built, tested
and
Guaranteed
Plus $£ 1.00$ P\&P
Plus $£ 1.58$ VAT (8%)
MINIKITS ELECTRONICS,
6d Cleveland Road, South Woodford, LONDON E18 2AN
(Mail order only)

Wilmslow

 AudioTHE firm
for
speakers!

HiFi Loudspeaker Enclosures" Book
All units are guaranteed new and perfect
Prompt despatch
Carriage Speakers up to $1^{\prime \prime \prime} 60 \mathrm{p} \cdot 12^{\prime \prime} £ 1,15^{\prime \prime} £ 175$;
$18^{\prime \prime} £ 2.50$ Kits $£ 1$ each $\langle ⿷ 2$ per pair). Tweeters and $18^{\prime \prime} £ 2.50$ Kits $£ 1$ each ($£ 2$ per pair). Tweeters and Crossovers 33p each

WILMSLOW AUDIO

Dept. ETI
Swan Works, Bank Square, Wilmslow. Cheshire SK9 1 HF. Tel. Wilmslow 29599 (Discount Hifi, PA and Radio at 10 Swan Street, Wilmslow)

Access and Barclaycard orders accepted by phone

A COUPLE OF YEARS ago I mentioned the time code being transmitted from MSF Rugby on 60 KHz . This gave BCD time of day information each minute in GMT 24 hour format, there is also a very accurate one pulse per second transmission which can be used for seconds counting. The time is based on the official GMT standard and is corrected for changes of millionths of a second per year.

The problem with this system is that the data is recognised by a cut in the 60 KHz carrier and this absolute cut rather than a modulation of the carrier can cause problems in phase locked loop decoders. Changes to allow for BST rather than GMT must be made by the user and this adds further complexity to the circuit. At the time someone sent me a copy of a German magazine with an article on the German DCF 77 system which is a similar system being transmitted from near Frankfurt. This is even more complex as it gives time of day (Central European Time), day of the week, day of the month, day of the year and month number. As the 77.5 KHz carrier is modulated it would seem that a PLL system could be used to decode the data which is transmitted at one bit per second (this also gives you the option of a seconds counter). The circuit obviously contained a plethora of counters, latches and LEDs and was virtually too complex to consider building. Last year at the Watch and Clock fair in Basle I saw a clock working from DCF77 and it was to say the least very effective to see a clock which had just been plugged in come up with time and date and day, etc.

Rugby On Line

It was only recently that someone mentioned that they were going to try to feed MSF Rugby into a SC / MP that it occurred to me that feeding DCF77 in as serial data might be a much better idea. The SC/MP could do all of the decoding and displaying whilst checking each bit of data, and comparing it to the previous minute data, as a double check against rubbish.

Wake me on Thursday

If we now have an MPU with regularly updated, correct time and date (corrected by the MPU for GMT or BST) we can easily add a few alarm features such as:
1 Wake me every morning at 7.30 except Saturdays.

Sundays and Bank or personat hotidays.
2 Remind me of my wife's birthday, anniversaries and more important remind $m y$ wife of my birthday.
3 Don't wake me on April 1 st until after 12.00.
4 Correct yourself for GMT/BST changes on the appropriate days.
Add on a few addition features such as one alarm for you, and one half an hour earlier for your wife, snooze alarms which become louder or faster or operate buckets of water, remote displays to other parts of the house and suddenly you have quite a clock.

I should keep your Mickey Mouse Alarm for old times sake - it might be an antique one day!

Now comes the crunch - I have lost (mis-filed) the original data on DCF77. I have the MPU, the displays, etc but I cannot build the receiver (aerial, PLL, etc) nor can I decode the data as I do not know what sequence it is transmitted in. If anybody has this info I would be very glad of a copy and I will publish said info in a future column. On the other hand, if any one has circuits to make up into an article please let us know at ETI.

Coding distances

One last point on these transmitted time codes, as they are VLF (Very Low Frequency) the reception distance are phenominal. If MSF can be received and decoded in Athens (quote National Physical Laboratory) then there should be no trouble in picking up DCF77 over most of the UK, does anyone have any figures on this?

Same device, but -

One of the most annoying things that can happen is when you remove an IC from a circuit and replace it with a brand new identical component and it just sits there and laughs quietly to itself (or even better, decides to start smoking.)

The MM5311 series of clock chips are not known for smoking but they do have a habit of not liking a circuit in which an identical device from another batch works perfectly. Take the MM5314 for example, out of several thousand devices I have known one literally blow up! and two others to be faulty - one gold star for National. National are also the sort of company that will redesign a product if they think that they can make it better, another gold star for NS.

Unfortunately in designing some of the later chips in this family National decided to change the design of all of the family to make them all as compatible as possible. This means that a three or four-year-old circuit for the early MM5311, 12, 13 or 14 will not necessarily operate with one of the later batches of chips.

The usual problem is that the new chip will only display one digit at a time or will multiplex very slowly giving an unsettling flashing effect. The cure for this is to change the values of the components connected to the multiplexing input from the typical 100 K and 0.01 uF to something more like 470 K and 0.01 uF or even $0.005 u F$. To my knowledge NS have never published this change and their latest data on these devices still refers to the old component values:

It seems a shame that one of the first clock chips on the market which is still probably one of the most popular with amateur constructors should be treated this way I suspect that NS have had some disappointed customers with these devices for the sake of a resistor change, black mark and lose two gold stars NS.

Spiluitamk Capacitive discharge electronic ignition kits

VOTED BEST OF 5 SYSTEMS TESTED BYS POPULAR
MOTORLIG MAGAIME

* Smoother running
* Instant all-weather starting
* Continual peak performance
* Longer coil/battery/plug life
* Improved acceleration/top speeds
* Up to 20% better fuel consumption

Sparkrite Mk. 2 is a high performance, high quality capacitive discharge electronic ignition system in kit form. Tried, tested, proven, reliable and complete. It can be assembled in two or three hours and fitted in $15 / 30$ mins.
Because of the superb design of the Sparkrite circuit it completely eliminates problems of the contact breaker. There is no misfire due to contact breaker bounce which is eliminated efectronically by a pulse suppression circuit which prevents the unit firing if the points bounce open at high R.P.M. Contact breaker burn is eliminated by reducing the current to about $1 / 50$ th of the norm. It will perform equally well with new, ald, or even badly pitted points and is not dependent upon the dwell time of the contact breakers for recharging the system. Sparkrite incorporates a short circuit protected inverter which eliminates the problems of SCR lock on and, therefore, eliminates the possibility of blowing the transistors or the SCR. (Most capacitive discharge ignitions are not completely foolproof in this respect
THE KIT COMPRISES EVERYTHING NEEDED
Ready drilled pressed steel case coated in matt black epoxy resin, ready drilled base and heat-sink , top quality 5 year guaranteed transformer and components, cables, coit connectors, printed circuit board, nuts bolts, silicon grease, full instructions to make the kit negative or positive earth, and 10 page installation instructions. OPTIONAL EXTRAS
Electronic/conventional ignition switch.
Gives instant changeover from "Sparkrite" ignition to conventional ignition for performance comparisons, static timing etc., and will also switch the ignition off completely as a security device, includes: switch connectors, mounting bracket and instructions. Cables excluded Also available RPM limiting control for dashboard mounting (fitted in case on ready built unit)
CALLERS WELCOME. For Crypton tuning and fitting service 'phone (0922) 33008
Improve performance \&economy NOW
Note: Vehicles with current impulse tachorneters (S
require a tachometer pulse-slave unit. PRICE $£ 3.35$
PRICES INCLUDE VAT, POST AND PACKING

POST TODAY!

Quick installation

No engine modification required

Electronics Design Associates, Dept. ET5
82 Bath Street, Walsall, WS 1 3DE. Phone: (0922) 33652

\squareName

Address

THE METAC DIGITAL CLOCK
\star COMPLETE KIT *

- Pleasant green display. 12/24 Hour readout
- Silent Synchronous Accuracy. Fully electronic Pulsating colon. Push-button setting Building time 1 hr. Attractive acrylic case
- Easy to follow instructions. Size $10.5 \times 5.7 \times 8 \mathrm{~cm}$
- Ready drilled PCB to accept components

KIT PRICE £9.60 + 76 p vat
SAME DAY DESPATCH: ORDERS RECEIVED BEFORE 2.00 P.M. ARE POSTED ON THE SAME DAY

SEND YOUR ORDER TO
DAVENTRY
UXBRIDGE
METAC ELECTRONIC AND TIME

Complete Kit to build this 40 watt power amplifier £18.25
Components available separately - PCB £1.25; 2N6084, £13.95; BAVIO, 12p; RG174/U coax, 38p/m.

PLESSEY SLGOO, etc. I.C.S

 SSL1496£1.05 SL78L06 99p|SL301 £2.19|SL3046 80p Frull data sheets on all SL600 Devices are included in our Data Catalogue

NATIONAL / SIGNETICS/TEXAS TTL

Quantity discount: $\mathbf{2 5 - 9 9}$ less $\mathbf{1 0} \%$; 100 or more, $\mathbf{2 0} \%$
Send S.A.E. for full price list or $30 p$ plus large $14 p$ S.A.E. for your copy of our Data Catalogue. A/I prices inc/ude VAT at current rates. Please note our minimum U.K. post and packing charge. except where indicated, is 20p. EXPORT ORDERS welcomed -
COMMUNICATIONS HOUSE Dippr 20 WALLINGTON SQUARE WALLNGTON, suabey, smberac Tol: 01.6697700 (90.m. . 108 p..... 1 p.... sm)

ENGINEERS

Hid:
 YOURSELF FORA BETTER JOB "-"

Do you want promotion, a better job, higher pay? "New opportunities" shows you how to get them through a low-cost, Home Study Course. There are no books to buy and you can pay as you learn

This easy to follow GUIDE TO SUCCESS should be read by every ambitious engineer. Send for this helpful 44-page free book NOW! No obligation, nobody will call on you. It could be the best thing you ever did.

CHOOSE A BRAND NEW FUTURE HERE

Especially designed for general purpose use with guitars, PA systems etc This amp will provide 50 Watts RMS into 8 ohms with harmonic distortion level as low as 0.15% Robust case and load fault protection contribute to the rugged design, which incorporates compensated power amplifier Overall freq. response (-3 dB) is 15 Hz to 100 KHz with sensitivity 30 mV for full output and 52 dB sig to noise ratio
$£ 29.95+$ H VAT (Order 997-011)
O seas orders - add 15\% for P+P. All items offered for sale subject to the Terms of Business set out in Doram Edition 3 catalogue price 60p. The Doram Kit brochure is also available, price 25 p Combined price only 70 p which also entitles you to $2 \times 25 p$ vouchers, each one usable on any order placed to the value of $£ 5.00$ or more (ex. VAT).

DORAM ELECTRONICS LTD P O BOX TR8 WELLINGTON ROAD INDUSTRIAL ESTATE, LEEDS LS 122 UF An Electrocomponents Group Company

Some people say that we would sell you the shirt of our back we guarantee that we haven't worn the T-shirts we mail order!

Be the first on your block with these garish yellow and black beauties!

Send $£ 2.00$, payable to ETI, to:

ETI T-Shirts
 25-27 Oxford Street London W1R 1 RF

P.S.: Say if you want small, medium or large!

THE LONG-RUNNING OFFER ON A DIGITAL ALARM CLOCK HAS BEEN ONE OF OUR MOST SUCCESSFUL EVER! OUR PRICE INCLUDES VAT AND POST \& PACKING

Our clock shows the time 0.7in. high on bright Planar Gas Discharge displays (there is a brightness control on the back). The dot on the left of the display shows AM/PM, and the flashing (1 Hz) colon shows that the alarm and clock are working.
A bleeper alarm sounds untit the clock is tipped forwards. Then the "snooze" facility can give you 5 minutes sleep before the alarm sounds again, and then another 5 minutes, etc., until you switch the alarm off. The clock also features a mains-failure indicator, and is 12 hr . - the alarm being 24 hour.

We have a large number of units in stock for this offer but please allow 28 days for delivery.

CLOCK OFFER

ETI MAGAZINE
25-27 OXFORD STREET LONDON W1R 1RF

I enclose cheque/P.O. for $£ 13.95$ (payable to ETI) for an Alarm Clock. Please write your name and address on the back of your cheque to speed processng of your order.

Name

ADDRESS

Those not wishing to cut their magazine may order on their own notepaper.

'SNOOZE' DELAY UNIT

When the Set switch is depressed the large electrolytic capacitor is charged via the limiting resistor (1k). This charge causes the BC109 to conduct which supplies enough base current to switch on the 2 N1711 space and operate the relay. The relay contacts are wired in parallel with the mains switch so that if the mains switch is now turned off, the equipment will continue.

The supply voltage is taken from the equipment in which the unit is fitted and will determine the choice of relay. The maximum delay being 1.75 hours.

AUDIBLE LOGIC STATE INDICATOR

The indicator will work with either TTL or CMOS circuits. A useful feature is that the unit can be powered by the same supply as the one supplying
the circuit under test. Logic state 1 at the probe will produce an audible tone on the loudspeaker. A switching signal at the probe also activates the loudspeaker.

RV1 sets the threshold level at which IC2 will switch on. This is
normally set at maximum (wiper at the R2 end). RV2 sets the volume of the audible tone, and can be adjusted as required.

IC2 can be substituted by the equivalent LM748, but R3 must be removed first.

TOUCH-SWITCH FOR LOGIC

An n-channel field-effect transistor is the basis of this simple trigger. In its quiescent state the voltage at the output is about 3 V . When the plate is briefly touched with a finger, the minute currents between the body and the plate alter the electric field at the gate of the transistor. The effect is to cause a drop in output voltage. It falls almost to zero and can be used to
trigger a TTL flip-flop. This can be constructed in the usual way, using two NAND gates from a 7400 IC. If several triggering circuits are required, it is more convenient to use the 74118 sextuple bistable latch.

The value of the capacitor is not critical, but 10 uF is convenient. The touch-plate can be an area of copper etched an a circuit-board, a square of aluminium foil, or simply a drawingpin pressed into an insulating support.

complete

 non alarm $£ 10.65$ VAT
$+£ 0.85$ alarm £13.43 $+£ 1.07$

"DELTA"
 genuine teak or perspex case

including P\&P

DELTA DATA: 4 Radiant Red $1 / 2$ inch high LEDs. 12 hr display with AM/PM indication. Beautiful Burma Teak Case or Pretty Perspex in White, Black, Blue, Red, Green. Power failure is indicated by flashing display
MODULES: Kits can be bought without case
Non Alarm £9.00 Alarm $£ 12.50$ incl.
READY BUILT: Buy a working tested module and fit your own case Non Alarm £9.50. Alarm £13.00. Or put it with our case parts@ £4.32 and save on complete clock price.
Complete Clock ready built 2 yr . guarantee. Non Alarm $£ 13.50$.
Alarm £16.50
ALARM FEATURES: Pulsed tone. Tilt operated 10 minute 'Snooze period Single switch setting. Optional extra mercury switch (45 p) allows Alarm reset by tilting clock. Digit.. brightness is automatically controlled to suit lighting level.
"ALPHA". SPECIAL
4 Glowing Green $1 / 2^{\prime \prime}$ High Digits Built \& Tested SPECIAL

OFFER | or 24 hr Non Alarm | $\begin{array}{c}\text { Module - Plus } \\ \text { Perspex Case }\end{array}$ |
| :--- | :--- |

$£ 11.00$ incl
Send payment with order S.a.e for complete range of clocks. calculators \& PUSE Comenact
PULSE ELECTRONICS
LTD.
DEPT. E4, 202 SHEFFORD ROAD CLIFTON, SHEFFORD, BEDS. Telephone: Hitchin (0462) 814477

-1 Sollnvictus Detectors Limited

The makers of the famous Viking and Probe detectors bring you... 프N SID

 DETECTOR KITEnjoy one of the world's most exciting hobbies with this high quality metal detector. Use it to search for gold, silver, coins, jewellery and other valuable articles. The kit is simple to assemble and contains the latest in electronics and clesign features. It's performance is comparable with detectors costing up to twice as much. The kit includes all components, circuit board speaker and aluminium frame incorporating search head with

Circuit diagram \& instructions (included faraday screen.

Mail Orders to:81 Moorgate Stree Blackburn, Lancs. 025462561 \& 664789 Showroom: 3 Sudell Cross, Blackburn, Lancs. 025456917

ambit international

The Wireless Specialists for components \& modules.
EF5800, $7030 \& 91196-.9 \mathrm{uV} / 30 \mathrm{~dB} \mathrm{~S} / \mathrm{N} ., 0.2 \%$ TIID Our top three FM tunermodules. (EF5800 shown with can off).

From left to right, the EF5800 6 circuit varicap FM tunerhead with the 7030 linear phase IF and the 91196 PLL stereo decoder with integral 55 kHz 'birdy' filter. The system provides afc muting, meter drives, agc, auto stereo switch, \& a specification that exceeds broadcast requirements. Now available with a new EF5801 tunerhead, with FET buffered oscillator output for synthesiser/frequency readout facilities.
EF5801..f17.45; EF5800..£14.00; 7030..£10.95; 91196..£\$2.99
Complete FM tuner kits/systems (Carriage $£ 3$ extra.)
The Mark 8 Signalmaster - by Larsholt Electronics
This tuner is based on the popular 7252 tunerset, and provides an incomparable combination of style and performance that can be built by even the relatively inexperienced constructor Complete kit....f85.00; matching $25+25 \mathrm{~W}$ amplifier... $\mathbf{7 7 9 . 0 0}$ International Mark 2 Tuner kits.
Complete tuner kit, based around the 7253 tunerset, $£ 65.00$ Or just the chassis, cabinet, heavey aluminium front panel for your own choice of modules- see our new info. leaflet on the International Tuner. (SAE please)

NEW NEW NEW NEW NEW NEW NEW NEW
 BIONIC FERRET METAL LOCATOR

Ambit has designed a new approach to cost effective sensitive metal locators, and now we proudly present the first of the family of 'Bionic Ferrets'. Details OA, but we can say it will detect a 10 p piece at 8-10 inches. Coupled with low power consumption and many innovations, this is the first radically advanced detector that can be made from a kit. £37.99

Radio module selection: (Prices for kits in our catalogue \& PL) EF5800 Ambit 6 stage varicap $88-108 \mathrm{MHz}$ tunerhead $£ 14.00$ EF5600 TOKO 5 stage varicap
EC3302 TOKO 3 stage varicap
£7.50
92310 £6.95
92310 MPX decoder, with stereo filter and preamp $\mathbf{E 6 . 9 5}$
93090 MPX decoder with CA3090AQ + filter stage $£ 7.35$
$\begin{array}{lll}91197 & \text { MW/LW varicap AM tuner module } & £ 11 . \\ 771 & \text { New'Off-Air' UHF varicap TV sound }\end{array}$ New 'Off-Air' UHF varicap TV sound tunermodule
9014 MW/LW/Siere FM
Componènts: ICs, coils, filters, trimmandigdetomants etc.
HA1137W/3089E FM IF 1.94 FOKO AM IFTS:
TBA120 FM IF and demodo. 75 455/470kHz types
MC1 350 FM IF preamp $0.97 \quad 10.7 \mathrm{MHz}$ types $\quad 0.30$ SN76660N FM IF and det
MC1 $310 / 4400$ PLL MPX
CA 1196 PLL MPX

HA1196 PLL MPX $\quad 3.75$ or 7 kHz bandwiaths
TBA65 A radio system $1.40 \quad 6$ or 8 kHz bandwidth CFT 05
HA1197 AM radio system 1.81 SFD455 (Murata) CFT 0.55
$\begin{array}{lll}\text { LM1 } 496 \text { balancea mixer } & 1.40 & 455 \mathrm{kHz} \text { dual ceramic CFX } 1 .\end{array}$
11 C 90600 MHz decade ctr $14.00 \quad 10.7 \mathrm{MHz}$ filters for WBFM:
LM380N 2 W Audio $1.00 \quad 3132 \mathrm{~A} 6$ pole lin phase
LM 381 N audio preampst. 3125 N 4 pole lin phase
TDA2020 20W audio amp 2.99 CFS ceramic filters
TCA940 10 W audio amp 1.80 Pilot tone (MPX) filters: NE723 voltage reg IC $0.80 *$ BLRR2107N-stereo an TDA1412 $12 \times 600 \mathrm{~mA}$ reg 0.95^{*} BLR3152/mono
$78 \mathrm{M} 2020 \mathrm{v} 500 \mathrm{~mA} \quad 1.20 *$ BLR3152/mono $\quad 1.95$ TAA5508 varicap regulatoro.50* BLR3172N tape bias trap, with $\begin{array}{ll}\text { NE } 560 / 1 / 2 B ~ P L L I C S ~ & 3.50^{*} \\ \text { ICL } 8038 \mathrm{CC} & \text { function gen } \\ 4.50^{*}\end{array}$
22 turn 100 k diode law trimpots, with integral knob 270° rotary 100 k diode law tuning pot
Also....meters for tuners, AM tuning vari
Also....meters for tuners, AM tuning varicaps, MOSFETs etc...
post/packing 22 p per order - except where indicated -
General All pricys shown here exchade VAT, which is
generall $121 / 2 \%$ (Except where maked*). The-tatest price leafletic available FOC with an-GAE. Please-send a (large) SAE with any enquiries. Full catalogue still 40p.
37 High Street, Brentwood, Essex. CM14 4RH. TELEPHONE (0277) 216029-after 3pm if possible please.

techtips

'FREEZING' SEףUENTIAL

 OSCILLATORAfter switch on SW3 (a dpco) is operated and then returned to its normal position. This switches off the first module, and switches on all the others via the diodes. A biased switch may be used.

On the closure of SW2, a number of LEDs will flash in sequence. On the opening of SW2, the circuit will 'freeze' in whatever state it was in, the LED remaining on.

The basic circuit consists of a number of transistor pairs, one for each LED. They are connected in a 'ring' by capacitors from the emitter of one pair to the base of the next. The LED associated with each pair is driven by the inverter-driver transistor Q3.

The rate of oscillation is dependent on R1, a value of 10 k gives a rate just faster than the eye can perceive.

Q1 is a BC212. Q2, Q3 are BC108s. All diodes are 1N4148s.

RANDOM PULSE GENERATOR

The 7413 provides a means of 'squaring up' waveforms before applying them to logic circuits. A reverse biased germanium diode is used to provide random 'sine-wave' type pulses, i.e. white noise. The output from the white noise generator is fed into the input of the 7413. When the output from the generator attains the value of 1.8 V , the output goes low and the output from the hex inverter goes high. This output is then fed to the counter. By making the output from the white noise generator variable, via a potentiometer, some degree of control over the 'randomness' may be obtained.

Stirling QV'MODULES FOR COST-CONSCIOUS CONSTRUCTORS

STIRLING SOUND QV Modules are our own designs manufactured in our own Essex factory. Production standards are carefully controlled and you, the constructor, benefit directly from our many years of experience in meeting demand for components as well as by buying direct from us.

PRE-AMPS \& CONTROL MODULES Unit One
Combined pre-amp with active tone-control circuirs 200 mV output for 50 mV in. Runs on 10 to 16 V supply. reble $\pm 15 \mathrm{~dB}$ at 10 KHz . bass $\pm 15 \mathrm{~dB}$ at 30 Hz Stereo bal., vol., treble \& bass controls.
ss. 100
$£ 7.80$
Active tone control bass \& treble
£1.60
SS. 101
shown in data suppicatridges, etc., passive tone control circuit
£1.60

†THE BUILT-IN QV FACTOR
means Stirling Sound's guarantee of quality and value which gives you today's best
buys all round. That's why you'll do better with QV Modules!

Stirlin Souni

A member of the BI-PRE-PAK Group
220-224 WEST ROAD, WESTCLIFF-ON-SEA, ESSEX SSO 9DF Phone: Southend (0702) 46344.

PERSONAL CALLERS WELCOME

SS. 102 STEREO PRE-AMP R.I A. A corrected for mag p/ups tape radio etc $£ 2.65$

TODAY'S BEST VALUE IN

 POWER SUPPLYPOWER AMPLIFIERS
SS. 103 UNITS

ALL AT 8\% VAT
with 13-15V take-off points
hort circuit protectiong single 1.C. type SL 60745 with built-in SS.103-3. Stereo version (2 |.C.s) of above SS. 105
5 watts R.M.S. into 4 ohms using 12 V supply. Ideal for use in in-car entertainment Size: $89 \times 51 \times 19 \mathrm{~mm}$

SS. 110

Similar in size and design to SS 105, this QV module delivers 10 watts R.M.S into 4 ohms using a 24 V supply. e.g. SS 324 . Of great use in domestic applications

SS. 120

Using a 34 volt supply, such as SS. 334 this amplifier will deliver 20 watts into a 4 ohm load. Same dimensions as above

There are suitable Stirfing Sound power supplies for all the above When ordered with above amplifier VAT becomes $121 / 3 \%$.

FM TUNING

SS. 201
FM Front End with geared slow motion tuning and A.F.C. facility
88.108 MHZ SS. 202
1 F amp A meter and/or A. F.C. can be connected (size $3^{\prime \prime} \times$

SS. 203

stereo decoder (illustrated). For use with Stifling Sound modules or with any other good mono FM tuning section. A LED beacon can be added (Price 18p) to indicate when a stereo signal is luned in ($3^{\prime \prime} \times 2^{\prime \prime}$) $\quad \mathbf{£ 3 . 8 5}$

SS.300. Add-on power supply stabilising unit
 variable from $12 \mathrm{~V} / 2 \mathrm{~A}$ to 50 V max at 8 A . Ideal for

SS.310/350 VARIABLE OUTPUT STABILISED SUPPLY
With continuous variable output at $2 A$ from 10 to 50 V.D.C. With built-in protection against shorting and
fully adequate heat sink Guarantequate heat superb value
at $£ 11.95^{\circ}$.

WHEN ORDERING

Add 35 p to your order for P\&P for mail orders. VAT add 8%. Make cheques, etc payable to Bi.PRE. PAK the rate is effort is made to ensure correctness of information ar time of going to press Prices subject to change without notice

techtips

HEXADECIMAL TO 7.SEGMENT DECODER.

D	C	B	A		b	c	d	e	f	g
0	0	0	0	\square	0	D	\emptyset	\emptyset	\emptyset	\emptyset
0	\emptyset	0	1	\emptyset	\emptyset	\square	\emptyset	\emptyset	\emptyset	\emptyset
0	0	1	\emptyset							
\emptyset	\varnothing	1	1	\emptyset	\emptyset	\emptyset	\varnothing	\emptyset	D	0
* \emptyset	1	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset	0	0	0	0
\emptyset	1	\emptyset	1	\emptyset	0	\emptyset	0	0	0	0
\emptyset	1	1	\emptyset	1	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset
\emptyset	1	1	1	\emptyset						
1	\emptyset	\emptyset	\emptyset	1	1	1	1	1	1	1
1	\emptyset	D	1	1	1	1	1	\emptyset	1	1
1	\emptyset	1	\emptyset	1	1	1	\emptyset	1	1	1
1	\emptyset	1	1	\emptyset	0	1	1	1	1	1
1	1	\emptyset	0	1	\emptyset	\emptyset	1	1	1	0
1	1	\emptyset	1	\emptyset	1	1	1	1	0	1
1	1	1	\emptyset	1	\emptyset	\emptyset	1	1	1	1
1	1	1	1	1	0	0	0	1	1	1

TRUTH TABLE for the 'add-on' decoder. Note that when the input is $\mathrm{D}_{1} 10_{2}(61 \emptyset)$ a logical one is inserted in the 'a' column to provide the resulting seven-segment ' 6 ' with a cap, thus differentiating it from a ' B '.

The circuit described below provides an extension to the 7448 BCD to seven-segment decoder, converting it into a hexadecimal to seven-segment decoder which will give the numerals $0-9$ and the characters A, B, C, D, E, and F as output for a four bit binary input.

SCHMITT TRIGGER

A very useful schmitt trigger can be made by utilising a single 555 timer with its trigger and threshold inputs connected together. The schmitt has a very low input current (1.5 uA) and can directly drive a relay taking up to 200 mA of current.

The circuit shows a 555 schmitt being used to energise a relay when the
(Inputs of $A, \bar{A}, B, \bar{B}, C, \bar{C}, \bar{D}$ are needed with an inverting buffer - fan out 30 on the \bar{D} input.)

The 7448 is disabled by bringing the blanking input low when the input is greater than 0111_{2} (i.e. \bar{D} is connected to $\mathrm{B} 1 / \mathrm{RB} \emptyset$ on the 7448.) Outputs from the 7448 and the add-on decoder are OR-ed together creating a single seven-segment output.

light level on a photoconductive cell falls below a preset value; the relay energises when the voltage on pins 2 and 6 is greater than $2 / 3 \mathrm{Vcc}$ and de-energises when the voltage falls below $1 / 3 \mathrm{Vcc}$. This gives a hysteresis of $1 / 3 \mathrm{Vcc}$. The circuit can be used in many other similar applications where a high input impedance and low output impedance are required with the minimum component count.

15-240 Watts!

5 The HY5 is a mono hybrid amplifier ideally sulted for all applications. All common input functions multi-way switch or direct connection to the appropriate pins The internal volume and either by a

Preamplifier

HY30

15 Watts into 8Ω merely require connecting to external potentiometers (not included) The HY5 is compatible with all L.P. power amplifiers and power supplies. To ease construction and mounting a P.C connector is supplied with each pre-amplifier
FEATURES: Complete pre amplifier in single pack - Multi-function equalization -- Low noise - Low distortion - High overload - iwo simply combined for stereo
APPLICATIONS: Hi-Fi - Mixers -- Disco - Guitar and Organ - Public address
PPECIFICATIONS
INPUTS Magnetic Pick-up 3 mV Ceramic Pick-up 30 mV , Tuner 100 mV : Microphone 10 mV OUTPUTS Tape 100 mV : Main output 500 mV R M S
ACTIVE TONE CONTROIS Treble +12 dB ar 10 kHz
ACTIVE TONE CONTROLS Treble 12 dB at 10 kH ; ; Bass \pm at 100 Hz
OVERLOAD 38 dB On Mari Sick SUPPLY VOLT
Price $£ 5.22+65 p$ VAT P\&P free

HY5 mounting board B1 $48 p+6 p$ VAT P\&P free.
The HY3O is an exciting New kit from I.L.P.. it features a virtually indestructible I.C with short circuit and thermal protection. The kit consisis of IC., heatsink. PC board, 4 resistors. 6 capacitors, ideally suited to the beginner in audio who wishes to use the most up-to-date :echnology available FEATURES: Complete kit - Low Distortion - Short. Open and Thermal Protection - Easy to Build APPLICATIONS: Updating audio equipment -- Guitar practice amplifier -- Test amplifier -- Audio oscillator.
SPECIFICATIONS
OUTPUT POWER $15 W$ RMS into BQ DISTORTION 0.1% at 15 W
NPUT SENSITIVITY 500 mV FREQUENCY RESPONSE $10 \mathrm{~Hz}-16 \mathrm{kHz}-3 \mathrm{~dB}$ Price $£ 5.22+65$ p VAT P\&P free

HY50

25 Watts into 8Ω
The HY50 leads I.L.P s totat integration approach to power amplifier design. The amplttier features an integral heatsink together with the simplicity of no external components. During the past three years the amplifier has been refined to the extent that it must be one of the most reliable and robust High FEATURES: Low Distortion

- No external components

APPLICATIONS: Medium
APPCIFICATIONS: INP Power Hi-Fi systems - Low power disco -- Guitar amplifier
OUTPUT POWER. 25 W RMS in 8 IVITY 500 mV
(I) 8Ω LOAD IMPEDANCE 4-169. DISTORTION 0.04\% at 25 W a SIGNAL/NOISE RATIO 75 dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE $\pm 25 \mathrm{~V}$ SIZE 10550.25 mm .
Price $\mathbf{£ 6 . 8 2 + 8 5 p}$ VAT P\&P free

HY120
60 Watts into 8Ω
is the baby of I.L.P's new high power range designed to meet the most exacting equirements including load line and thermal protection, this amplifier sets a new standard in modular
FEATURES: Very low distortion - Integral Heatsink - Load line protection - Thermal protection , Ne connections - No external components
APPLICATIONS: Hi-F1 - High quality disco -- Public address -- Monitor amplifier -- Guitar and SPECIFICATIONS
INPUT SENSITIVITY 500 mV
OUTPUT POWER 6OW RMS into 8 I2 LOAD IMPEDANCE 4-16日 DISTORTION 0.04% at 60 W at SIGNAL/NOISE RATIO 9OdB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE Size $114 \times 50 \times 85 \mathrm{~mm}$
Price $£ 15.84+£ 1.27$ VAT P\& P free
HY200
The HY200, now improved to give an output of 120 Watts has been designed to stand the mos rugged conditions, such as disco or group while still retaining true Hi-Fi performance FEATURES: Thermal shutdown - very low distortion - Load!tine protection - Integral Hieatsink
120 Watts into $8 \Omega \begin{gathered}\text { No external components } \\ \text { APLLICATINS:HiFi } \\ \text { SPELIICAL }\end{gathered}$ Disco - Monitor -- Power Slave - Industrial -- Public address
No external components SPECIFICATIONS
OUTPUT POWER 120 W RMS into 8 LOAD IMPEDANCE 4-160 DISTORTION 0.05% at 100W at
1 kHz .
SIGNAL/NOISE RATIO 96 dB . FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}$-- 3 dB SUPPLY VOLTAGE SIZE $114 \times 100 \times 85 \mathrm{~mm}$
Price £23.32 + £1.87 VAT P\&P free
HY400
The HY400 is IL.P's "Big Daddy" of the range producing 240 W into 4Ω ! It has been designed for high power disco or public address applications. If the amplitier is to be uspd at continuous high power lead the market as a true high oower hi-fidelity power module
FEATURES: Thermal shutdown - Very low distortion -
APPLICATIONS: Public address - Disco - Power slave - Industrial
SPECIFICATIONS
OUTPUT POWER 240W RMS into 40 LOAD IMPEDANCE 4-160 DISTORTION 0 ; \% at 240W a 1 kHz
SIGNAL/NOISE RATIO 94dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}$ - 3 dB SUPPLY VOLTAGE NPUT
NPUT SENSITIVITY 500 mV SIZE $114 \times 100 \times 85 \mathrm{~mm}$
Price $£ 32.17+£ 2.57$ VAT P\&P free
POWER
PSU36 surtabie for :wo HY30's $\mathbf{6 5 . 2 2}$ plus $\mathbf{6 5 p}$ VAT P / P free
PSU50 suitabie for wo HY 50 ' $\mathbf{~} \mathbf{6 . 9 2}$ plus 85 VAT P / P free
SUPPLIES

PSU90 suntable for one HY 200 £ 12.65 plus $£ 1$ O: VAT P/P free

TWO YEARS GUARANTEE ON ALL OF OUR PRODUCTS
I.L.P. Electronics Ltd

Crossland House
Nackington, Canterbury
Kent CT4 7AD
Tel (0227) 63218

Please Supply
Total Purchase Price
1 Enclose Cheque \square Postal Orders \square Money Order \square
Please debit my Access account \square Barclaycard account \square
Account number
Name \& Address

TV-Computersystem 6800 8080 SC/MP

ROTْEX-EMMEN - HOLLAND

The microcomputersystem specially for:

Education	schools
	- selfistudy
Industry	- program - development - systems - development - terminal
Hobby	- entertainment - games

$\mathrm{MOT-aDS}$C CLASSIFIED

THIS SECTION IS A PRE-PAYMENT SERVICE ONLY
MINIADS: $\left.31 / 4^{\prime \prime} \times 21 / 8^{\prime \prime}, 1-3\right) £ 26,4-11$) $£ 23,12$ or more) £22 per insertion. CLASSIFIED DISPLAY: £3.50 per single column centimetre. No P.O. Box Numbers can be accepted without full address
INQUIRIES TO: Mark Strathern, Advertising Department .01-4375982), 25-27 Oxford Street, London W1R 1 RF

PRECISION POLYCARBONATE CAPACITORS

All High Stability - Extremely Low Leakage 440 V AC

Wholesale price hists available to bona fide companies
MARCO TRADING
(Dept: P3)
The Old School. Edstasion. Wem. Shropshire Tel. Whixall (Shropshire) [STD 094872| 464/5
(Proprs: Mincosos Trading Ltad.)

FULL SPEC. COMPONENTS

ITT 5870ST NIXI + Data 50p. MM5314 + Data £3.25. Sperry SP425-09 (9-digit 7-Seg.) + Data £1. SKT 50p. $55545 p .741$ 20p N4 148 3p. BC108C 10p. TIL209 + Clip 15p. BYX49 (1200V 2.5 amps) 35p. $747.6^{\prime \prime} \mathrm{E} 1.35$. P/P $10 p$
L.B. ELECTRONICS, 43 WESTACOTT HAYES. MIDDX. UB4 8AH (ETI)

Wire Threading (separates). W/D/Pencil £1.71, DIL Board £1.62, Wire Guides (W/D/Strip) 'press' 2 inches long, 30 per pkt., £1.30. 'Glue" 6 inches long, 10 per pkt., £1.30, Spare Bobbin of wire 50p. Please add 35 p P\&P for every $£ 10$ of goods. or buy complete wire threading kit (W/D/System) for £5.95 inc. VAT and P\&P. Zartronix, 115 Lion Lane, Haslemere, Surrey GU27 1JL.

DIGIT COUNTERS, Perfect spec./data, British made, engineered in steel. 5 digits, reset button. 12-110-240V. State $£ 2.75$ (inc.) + presetting all digits, solenoid reset, microswitch output, zero trip $£ 3.85$ (inc.). Submin. integrated 1W amps @ 9V (72x38x 20 mm) + Data $£ 1.10$ (inc.). KLIFCO ELECTRONICS, 1 REGENT ROAD, ILKLEY, W. YORKS.

Prototype wireman/woman or keen home constructor wanted for interesting well-paid part-time work with a small electronics company. Phone Mr Baker at Leatherhead 76642.

VALVES Radio - TV - Industrial - Transmitting We dispatch Valves to all parts of the world by return of post, air or sea mail, 2700 Types in stock, 1930 to 1976 Obsolete types a speciality List 20p. Quotation S AE Open to callers Monday to Saturday 9.30 to 500 . Closed Wednesday 100 We wish to purchase all types of new and boxed Valves Cox Radio (Sussex) Led., Dept. E.T.I., The Parade, East Wittering, Suseex PO208BN. West Wittering 2023 (STD Code 024366).
SHORT CIRCUITS Drill Controlier 51p PSU ETI FNC Generator Alarm $\mathbf{6 2 p}$ Fuzz
All prices shown include VAT. Add 20p post \& packing P.C.B.s also available for this month's ETI projects. Send SAE for full list of available boards
Also a comprehensive service from Artwork and layout design to assembled P.C.B. for batch quantities or one-off prototypes - Contact
AWTRONTK LMWTE 217 TOLL END ROAD, TIPTON, WEST MIDLANDS DY4 OHW Telephone 021-557 9144
Available for every E.T.I. Project. Send s.a.e. for details or telephone your order using Barclaycard or Access. Alternatively send Postal Orders with written order.
CROFTON ELECTRONICS LIMITED 35 Grosvenor Road, Twickenham Middlesex TW1 4AD Tel. No. 01-891 1923

P.C.B.s FOR ETI PROJECTS

CARBON FILM RESISTORS. 5\% E1 2 Series. $1 / 8 \mathrm{~W}, 1 / 4 \mathrm{~W}, 1 / 2 \mathrm{~W}$. Mixed to your choice, 100 for 90 p Efeetrotytios $50 / 45 \mathrm{~V}, 7 \mathrm{p}$. MiCRO popeesSpRS SC/MP £18. MM6800 £33 (P\&P 15p. Mail Order Only. CANDAR, 8 Almond Drive, Caversham Park, Reading.

VHF pocket portable radio tuning 108 to 138 MHz . Very sensitive. Easily adjusted to tune over the 144 MHz band. $£ 16.50$ (inc. post and VAT). Romak Eng. Ltd., 10 Hibel Road, Macclesfield, Cheshire.

TURN YOUR SURPLUS capacitors, transistors, etc., into cash. Contact COLESHARDING \& CO., 103 South Brink, Wisbech, Cambs. 0945-4188. Immediate settlement.

MPU BUILDERS. Where else can you get an 8 -track, 150 chara/sec. self-contained tape reader like the GEC 66 1A? (Power requirements $235 \mathrm{v} 50 \mathrm{c} / \mathrm{s})$. Order yours now whilst stocks last!
£25 plus $£ 2$ carr. plus 8% VAT. Data sheets only 50 p. T. M. 8 C. Services, 89 Grove Road, South Benfleet, Essex SS7 1JH.

WANTED

 BYMARSHALL
A. MARSHALL (LONDON) LTD 42 Cricklewood Broadway LONDON NW2

A young deputy to help our buyer. Methodical, numerate, accurate and conscientious. Maintain law and order in our stock control.

REWARD £2,500 per annum (a.a.e.)

RING G. CLIFTON on

 01-452 0161
TOUCH CONTROLLED LIGHTING KITS

These KITS replace conventional light switches and control 300W of lighting No mains rewiring required Insulated Touch Plates All with easy to follow insiructions.
NEW! TSD 300K - TOUCHSWITCH and DIMMER combined. ONE touchplate to switch light on or off. Brightness controlled by small knob. ONLY - £5.95. TS300K - TOUCHSWITCH. Tw rouch plates ON and OFF. ONLY - £3.67.
TSA3OOK - AUTOMATIC. One touch plate. Light lurns off after preset delay. ONLY - £3.67.
LD300K - LIGHT DIMMER KIT - £2.45.
SPECIAL OFFER
SPECIAL OFFE
3-555 TIMER ICS for ONLY £1.00

Uxbridge
3 New Arc TME CENTRE

Add 8% VAT $+25 p$ P\&P. Mail Order O

T. K. ELECTRONICS (ETI)
 106 Studley Grange Road, London W7 2LX

ADVERTISEMENT INDEX

Henry's Radio 11
HiFi Care 70
ILP 78
Kramer 67 \& 82
Island Devices Mini ad
Lynx 23
Maplin 84
Marco Mini ad
Marshall's 18 \& Mini ad
Metac 9. $70 \&$ Mini ad
Minikits 68
P. B. Electronics 63
Pulse 74
Radio Rotex 79
Ramar Mini ad
R.F. Equipment 59
Selray 59
Sintel 54
Sol Invictus 74
Sterling Sound 76
Swanley 16
Tamtronik Mini ad
Technomatic 30
Tempus 30
T.K. Electronics Mini ad
Watford 2
Wilmslow 68

Alaphoningstatey reader sevices

BACK NUMBERS

These cost $40 p$ each. Postage and packing costs 15 p for the first. and 10 p for each subsequent issue. Orders to ETI BACK ISSUES Dept. please. We CANNOT supply the following issues: All 1972; January, February, April, August, October and November 1973; January, Warch, September, October, November and December 1974; January, June, July, August, September. November and December 1975: January, March 1976.

PHOTOCOPYING SERVICE

Due to the steady pressure on our back numbers department. and the dwindling number of issues available, we have set up a photocopying service. This involves our staff in considerable time consuming endeavour. so we hope our readers understand our decision to apply a flat charge of $50 p$ inclusive. This covers any article. regardless of the number of pages involved, from any ONE issue of ETI.
Please state clearly NAME of article, and from which issue the copy you require is taken.
Address envelope to 'ETI Photocopy Service'

EDITORIAL QUERIES

Written queries can only be answered when accompanied by an SAE, and the reply can take up to three weeks. These must relate to recent articles and not involve ETI staft in any research. Mark your envelope ETI QUERY ... Telephone queries can only be answered when technical stafl are free, and NEVER before 4 p.m.

BINDERS

Binders. for up to 13 issues, are available for £2.50 including VAT and carriage. Send orders to ETI BINDERS DEPT.

SPECIAL ISSUES

Presently we produce six specials. See our ads on pages 10 and 36.

T-SHIRTS

ETI T-shirts are available in Large, Medium, or Small sizes. They are yellow cotton with black printing and cost $£ 2.00$ each. Send orders to ETI T-SHIRTS Dept. .

800KS

EII Book Service sells books to our readers by mail order. The prices advertised in the magazine include postage and packing. Send orders to ETI Book Service, P.0. Box 79, Maidenhead, Berks.

NON-FUNCTIONING PROJECTS
We cannot solve the problems faced by inidividual readers building our projects uniess they are concerning interpretation of our articles. When we know of any error we print a correction as soon as possible at the end of News Digest. Any useful addenda to a project will: be similarly dealt with. We cannot advise readers on modifications to our projects.

SUBSCRIPTIONS

The annual subscription to ETI for UK readers is £6. The current rate for readers overseas is E7. Send orders to ETI SUBS Dept. PAYMENT IN STERLING ONLY PLEASE.
PCBS
PCBs are available for our projects from companies advertising in the magazine.

WTH NAME \& ADDRESS AND ITEMS AEQUIAFD.

STAFF POST ON ETI
 CIRCUIT TRACER/ DETAILER

We require someone to prepare the circuits, pcb patterns and other drawings for ETI. Examples of the type of work can of course be seen in the magazine. A knowledge of pcbs would be useful but not essential.

The successful candidate is likely to have had at least two years' experience and preference will be shown to someone in their mid-20's.

This position has to be filled as soon as possible in order to give a minimum of two month's overlap with Maree Breen who's returning to Australia via a 'walkabout' on the continent.

Salary is negotiable. Apply as soon as possible in writing to: Halvor Moorshead - Editor 25-27 Oxford Street, London WIR 1 RF

We reckon ETI is worth keeping and our surveys indicate that a staggering 97% of readers keep their copies for at least three months. Now we can offer you a binder which holds 12 issues whose quality befits the magazine: excellent Send $£ 2.50$, which includes VAT and postage) to: ETI Binders, 25-27 Oxford Street, London, W1R 1 RF.

Save on Calculators

SR52 (mag card. prog. 20 memories) (1)	£194.37
SR56 (key prog. 100 steps! @	¢55.40
PC100 (Printing Unit tor SR52/SR56) (e)	£177.00
SR51-11 (3 memories/stals) (i)	¢ 44.40
SH4: (Financial/ Business) @	E28.40
SR40 (successor to SR50A) (1)	£24.40
T130 (15 bracket leveis)	¢15.93
T12550-17 (sq mem rech) (e)	¢ 20.40
T15040PD (Prini/Display)	E84.00
Card Libraries for SR52@	¢27.00
RK2 (eech kits for T130)@	c8.10
CASIO:	
Fx202P (Key proy., contunuous memory	669.95
FX201P (Key proģ 127 sleps. 11 mems.)	E49.95
Fx1000 ($6+2$. sci./fraction LCD)	N0.40
FX102 (8-2. sc) /fraction)	¢17.95
FX21, 6+2 Scientific)@	¢15.94
LC820 (LCD 1500 hr bat hile) (e)	E17.95
Micromemory (LCD matenbox size) ©	E19.95
Personal M1 ${ }^{\text {a memory }}$, \%) @	c7.95
MR121 (12 digil)	¢25.95
MR103 (10 digil	E18.00
WE OFFER ALL CASIO LCD WATCHES S.A.E.	
HEWLETT PACKARD:	
$\left.{ }_{21}^{27} 88+2\right)$ Scientific/management@	660.00 E129.00
29 (prog). Key programmable 48 steps) @	¢105.27
25C , Continuous memory programmable scientfic\} @	(e) $£ 142.00$
67 (mas card prog) @	¢322.00
97 (mag. card + Printer @	c580.00
55 , Programmable scientitic with timer)	${ }^{\text {c200.00 }}$
CBM:	
4 5190R@	¢ 30.40
4148 R @	¢22.40
PRO100 $18+2$. key prog. 72 steps. 10 mems) SA	SAE for price
N60 , Nav+gator) M55 , Maths) S6 , Stats) (e) SA	SAE for price
ROCKWELL: 64RO	¢21.50
REALTONE: SC60 $\left.{ }^{3} \mathrm{mem} / \mathrm{stal} 10+2\right) @$	¢24.00
REALTONE: SC6010 113 mem stai) We can match any calculator price in ETI	

 \title{
Still soldering on?
}
 \title{
Still soldering on?
}

You may be that rare person who gets his circuit designs right first time, everytime.

But it's much more likely that you experiment to see what works, and what doesn't.

In which case you ought to know about Bandridge Decs.

Bandridge Decs enable you to try almost any number of possible circuits, without having to use your soldering iron.

You simply push the wires of your circuit components into the holes in the Dec to make a perfect solderless contact.

Which means that you can use the components over and over again.

And, of course, we don't have to tell you how much time it will save you. There are four Decs available
to suit every possible circuitry requirement.
From simple discrete work to $2 x$ DIL or $4 \times T O 5$ Station work.

And for larger or more complex circuits you can use any number of Decs linked together.

Eventually of course, you'll need that soldering iron to make up the permanent version of your circuit design.

And when you do you'll probably want to use one of the matching Bandridge Blob boards, to make your job that much easier.

But until then we suggest you put your soldering iron aside and get yourself a Bandridge Dec.

Our bi-monthly newsiefter keeps you up to date with latest guaranteed prices - our latest special offers (theysave you pounde) - detsils of new projects and new lines. Send 30p for the next six is of nes $(5$ projects discount voucher with each copy).

MÁPLIN ELECTRONIC SUPPLIES
P.O. BOX 3 RAYLEIGH ESSEX SS6 8LR

Telephone: Southend (0702) 715155
Shop: 284, London Road, Westcliff-on-Sea, Essex (Closed or Mondayl Yelephone 5 Southend 0702147379

IT'S A FANTASTIC BESTSELLER!

216 big (11" $\times 8^{\prime \prime}$) pages! Over a thousand illustrations!
Over 30 pages of complete projects to buld!
Thousands and thousands of useful components described and illustrated! No wonder it's a bestseller! DON'T MISS OUT! SEND 50p NOW!

POST THIS COUPON NOW FOR YOUR COPY OF OUR CATALOGUE

 PRICE 50pPlease rush me a copy of your 216 page catalogue by return of post I enclose 50p, but understand that if I am not completely satisfied i may return the catalogue to you within 14 days and have my 50p ref unded immediately.
NAME
ADDRESS

[^0]: The circuit makes use of the special prop- the junction of $\mathrm{R} 3 / \mathrm{KV} 2$ brietly and Cl is erties of a unijunction transistor, Q1. When discharged through R3 enabling the cycle to voltage is applied to the circuit, (C1 charges start again. The waveform across R3 appears up through RV1 and R1, the rate at which as a series of short spikes. it charges depending on the setting of RV1.

 RV2 acts as a crude volume control as it passes these spikes to Q2 which is switched When the voltage is at the emitter of Q 1 on and off in sympathy in turn passing the reaches a certain level, this effectively shorts burst of voltage to the speaker or the out the two bases. This raises the voltage at earphone.

