

WAIFOMD EIEGTROWICS
33 CARDIFF ROAD, WATFORD, HERTS., ENGLAND MAIL ORDER, CALLERS WELCOME. Tol. Watford 37774 ALL DEVICES BRAND NEW, FULL SPEC. AND FULLY GUARANTEED. ORDERS
DESPATCHED BY RETURN OF POST. TERMS OF BUSINESS: CASH/CHEQUE/ DESPATCHED BY RETURN OF POST. TERMS OF BUSINESS: CASH/CHEQUE/
P.O. OR BANKERS DRAFT WITH ORDER. GOVERNMENT AND EDUCATIONAL P.O. OR BANKERS DRAFT WITH ORDER. GOVERNMENT AND EDUCATIONAL
INSTITUTIONS OFFICIAL ORDERS ACCEPTED. TRADE AND EXPORT INQUIRY WELCOME, P\&PADD 25p'TO ALL ORDERS UNDER E10.OO. OVERSEAS ORDERS
POSTAGE AT COST. AIR/SURFACE. SEND S.A.E. FOR OUR FREE LIST.
VAT
We stock many more items. It peys to visit us. We are situasad behind Wartord Football Ground.
Nearest Undorground/BR Rail Station: Watford High Streat. Open Monday to Saturday. Ample Free Car Parking apmce available.

ELECTROLYTIC CAPACITORS: Axial
$250 \mathrm{~V}: 100 \mu \mathrm{FF} .40 \mathrm{p} ; 100 \mathrm{~V}: 20.6 \mathrm{p}: 63 \mathrm{~V}$
3250 .

32 30 V 80 47 D

540 10p: 100. 14p.
TAG-END TPE: 70V: 2500 . 98p: 4700 . 111 p; 64V 3300, 94p; 40V: 10000 145p; 4000 70p: 2500.

TANTALUM BEAD CAPACITORS 35V: $0.1 \mu \mathrm{~F}, 0-22,0.33,0-47,0-68$ 1.0. 2. 2 山F F. 3-3, 4.7. 6-8 25V: 1-5. 10 20V: $1.5 \quad 16 \mathrm{~V}: 10 \mathrm{uF} .22,47$. 10v 4.7. 15, 25, $33 \quad 6 \mathrm{~V}: 47 \mu \mathrm{~F}, 68 \quad \mathbf{3 V}$: 100uF. 12p each MYLAR FILM CAPACITORS 100v: 0.001. 0.002. 0-005.0.01uF 5p $0.015,0.02,0-04,0.05,0.056 u \mathrm{~F}$ 6p \qquad CERAMIC CAPACITORS SOV range $0-5 \mathrm{pF}$ to $10,000 \mathrm{pF}$ $0.015 \mu \mathrm{f}, 0.022 \mu \mathrm{f}, 0.033 \mu \mathrm{f}, 0.047 \mathrm{mp}$

\qquad

> 3.40pF. 8.80pF. 20-140pF

$50-200$ pF, 100.500 pF. 1250 pF \quad| 25p |
| :--- |

SOCKETS	
moulded	in line
with	coupiers
break	$11 p$
contacts	$12 p$
20p	$18 p$
22p	$22 p$

SWITCHES * PUSH BUTTON Push to Make 15p
ROCKER (white) 10A 250

SP changeover centre off ROCKER: (biack) on oft 10A 250 V ROCKER- illuminted

LIghts when on 3 A 240 V
ROTARY: \{ADJUSTABLE

TRANSFORMERS * (Mains Prim) 220.240V) $6.0-6 \mathrm{~V} 100 \mathrm{~mA}$
$9-0.9 \times 75 \mathrm{~mA}$ $12-0-12 V 100 \mathrm{~m}$
$15-0.15 \mathrm{~V} 100 \mathrm{~m}$
0.120 .2 V
$12-12$
0.6
0
0

equtronicsinter
 international

A.PRIL 1977
 Features

VOL. 6 No. 4
741 OP-AMP APPLICATIONS
10
Another supplement containing 35 useful circuits
FIVE YEAR INDEX
Everything we've done in five years!
COMPONENTS PART 9
Wirewound resistors explained
ELECTRONICS ITS-EASY: PART 38
Continuing our beginners series
TECH-TIPS
Three pages of your circuits!

Projects

SYSTEM 68 - ASCII KEYBOARD
The first part of our home MPU system
SHORT CIRCUITS BENCH SUPPLY............... 47
FUZZ BOX
48
BURGLAR ALARM SYSTEM
Protect your home with this comprehensive project.

Data Sheet

MOSTEK MK 50362N
A new 'super-capable' clock chip
HARRIS HDO 165
Keyboard encoder used in System 68 - full technical details

News

NEWS DIGEST
ELECTRONICS TOMORROW

Information

ETI BOOK SERVICE
PREVIEW OF NEXT MONTH'S ETI
36
SUBSCRIPTIONS
36
CLOCK OFFER
52
SPECIALS FROM ETI
READER SERVICES INFORMATION

Competition

5th BIRTHDAY COMPETITION

EDITORIAL AND ADVERTISEMENT OFFICES
 25-27 Oxford Street

London W1R 1RF
Telephone 01-434 1781/2
Telex 8811896

HALVOR W. MOORSHEAD

 EditorRON HARRIS B.Sc
Assistant Editor

JIM PERRY

Specials Editor
TONY ALSTON
Project Development
JULIAN ZINOVIEFF
Production
MAREE BREEN
Technical Drawing
SANDRA ZAMMIT-MARMARA
Subscriptions
MARGARET HEWITT
Administration
DAVID LAKE (Manager)
BRENDA GOODWIN
Reader Services

For Advertising Enquiries ring
MARK STRATHERN
on $4341781 / 2$

INTERNATIONAL EDITIONS

MUSTRALIA: Collyn Rivers
HOLLAND. Anton Kriegsman

CANADA:	Peter Priest Publisher

FRANCE Denis Jacob
Editor-in-chief
Electronics Today International is normally published on the first Friday of the month prior to the cover date

PUBLISHED BY
Modmags Lid.
25-27 Oxford Street, W1R 1RF
DISTRIBUTED BY
Argus Distribution Lid (British Isles)
Gordon. \& Gotch Lid.
PRINTED BY
QB Newspapers Limited, Colchester
COPYRIGHT All material is subject to world nide Copyright protection All reasonable care is taken in the preparation of the magazine to ensure accuracy but ETI cannot be held responsible for it legally. Where errors do occur a correction will be published as soon as. possible afterwards in the magazine

PAKS - PARTS - AUDIO MODULES

PANEL METERS

4'' RANGE
\qquad 0-50V
$2^{\prime \prime}$ RANGE
Size
Value
0.50
$\begin{array}{ll}\text { 0.50UA } & 1307 \\ 0.100 \text { UA } & 1308\end{array}$
$\begin{array}{ll}0-500 \text { UA } & 1308 \\ & 1309\end{array}$
0.1 MA
0.50 V \qquad
MR2P TYPE
Value
Value
$0-50$ UA \qquad $£ 4.80$
$£ 3.20$
EDGEWISE
Value
0.1 MA
\qquad
MINIATURE BALANCE/TUNING METER
 Price
4.50 $\mathbf{£ 4 . 5 0}$
$\mathbf{E 4 . 5 0}$ $£ 6.00$
 ${ }_{\substack{\text { Price } \\ \text { E. } 50 \\ \hline}}$ ${ }_{\text {E3.50 }}^{63.50}$ E3.50

3.50 Price
$\mathbf{E 4 . 0 5}$ $\begin{array}{r}£ 4.05 \\ £ 4.05 \\ \hline\end{array}$ ${ }^{\text {Price }} \mathbf{E 1 . 9 5}$ balance/tuning Sensilivity
100/0/100UA
$\substack{1 / 20}$
\qquad ${ }_{\text {Price }}^{\text {E. }}$
$\underset{\text { Size }}{\text { MIN }} \mathbf{2 3 \times 2 2 \times 2 6 \mathrm { mm }}$ METER Size $3 \times 2 \times 2 \times 26 \mathrm{~mm}$
Sensitivity 200 CA
\qquad $\underbrace{\substack{\text { Price } \\ \text { E1. } \\ \hline}}$
Vu METER
Size $40 \times 40 \times 29 \mathrm{~mm}$
Sensitivity 130 UA

MINI-

MULTI-

METER

HIGH SENSITIVITY TEST METER
 TEST METER

Sensitivity 50.000 orms $/{ }^{\text {S }}$	
AC Volts	$0.1 .5100 / 500$
OC Vots	0 -0. 5 to 0a/500
OC Current	
Resistance	
Dectrels	in 4 Asorges -20 to 62888
	in 10 Ranges
- ${ }_{1324}$	$\begin{gathered} \text { Price } \\ \text { £19.7f } \end{gathered}$

P\&P
P\&P

TRANSISTORS

BRAND NEW - FULLY GUARANTEED

74 SERIES TTL ICs

DIODES

Type	Price	Type	Price	Type	Pric	Type	Typo	Type	Price		
AA129	¢0.08	BA173	¢0.15	BY127	-¢0.16	BYZ13	c0.26	OA85	¢0.09	iN34A	¢0.07
AAY30	c0.09	B8104	¢0.15	9Y128	co. 16	BYZ16	¢0.41	0A90	£0. 07	IN914	c0.06
AAZ13	c0. 10	BAX13	£0.07	BY 130	-¢0.17	BYZ17	c0. 36	0491	60.07	IN916	c0.06
AAZ 17	c0.10	BAX16	c0.08	BY133	- $¢ 0.21$	BYZ18	60.36	OA95	60.07	1N4148	c0.06
8A100	c0.10	BY 100	60.16	BY164	¢0.51	BYZ19	c0. 28	04182	E0.07	1544	c0.05
BA 102	c0. 32	BY 107	¢0.12	BY176	-£0.75	0 O10	60.35	OA200	60.08	15920	¢0.06
BA148	c0.15	BY 105	c0. 18	BY206		$00_{4} 7$	¢0.07	0a202	c0.08		
BA154	c0. 12	BY114	¢0.12	BYz10	¢0.36	OA70	¢0.07	SD10	¢0.06		
8A155	50.14	BY 124	- 0.12	8YZ11	¢0.31	OA79	¢0.07	SD19	$\underline{0.06}$		
BA156	co. 14	8Y126	-¢0.15	BYZ12	¢0.31	OA81	$\underline{60.07}$	\|N34	60.07		

NEWNES TECHNICAL BOOKS

No. 229 BEGINNERS GUIDE TO ELECTRONICS PRICE $22.25 \dagger$	
No. 230 BEGINNERS TELEVISION	
Et2 $25 \dagger$	
mean	
$\begin{aligned} & 33 \text { BEGIN } \\ & 3 \text { UIDE TO } \end{aligned}$	constructior
	-
	Min
Nub TEEVISION	
235 ELECTRONIC DIAGRAMS	
RICEE1.80 36 EIECTRONIC	Cotro
¢Mponers	
No. 237 PRINTED CIRCUIT ASSEMBLY	${ }_{c}{ }^{\text {CIRCU }}$

ORDERING

Please word your orders exactly as printed. not forgetting to include our part number
V.A.T.

Add $12 \frac{1}{2} \%$ to prices marked ${ }^{*}$ Add 8% to others excepting those marked \dagger. These are zero.

SILICON RECTIFIERS

BH-PAK
 High quality modules for stereo, mono and other audio equipment.

£20.45

The 450 Tuner provides instant program selection at the touch of a button ensuring accurate tuning of 4 pre-selected stations any of which may be altered as often as you choose, by simply changing the settings of the pre-set controls
Used with your existing audio equipment or with the BI-KITS STEREO 30 or the MK60 Kit etc. Alternatively the PS 12 can be used if no suitable supply is available, together with the Transformer T538
The S450 is supplied fully built, tested and aligned. The unit is easily installed using the simple instructions supplied

STEREO FMTUNER

Fitted with Phase Lock-loop Decoder

STEREO PRE-AMPLIFIER

FET Input Stage
VARI-CAP diode tuning
Switched AFC

- Multi turn pre-sets
- LED Stereo Indicator

Typical Specification
Sensitivity 3μ volts
Stereo separation 30 db Supply required 20-30v at 90 Ma max.

OUR PRICE £13.75

A top quality stereo pre-amplifier and tone control unit. The six push-button selector switch provides a choice of inputs together vides a choice of hputs together
with two really effective filters for high and low frequencies, plus tape output
MK. 60 AUDIO KIT: Comprising $2 \times$ AL60's. $1 \times$ SPM80. $1 \times$ BTM80. $1 \times$ PA100. 1 front panel and knobs. 1 Kit of parts to include on/off switch, neon indicator stereo headphone sockets plus instruction booklet COMPLETE PRICE £29.55 plus 85 p postage. TEAK 60 AUDIO KIT:
Comprising: Teak veneered cabinet
 parts include aluminium chassis, heatsink and front pane bracket plus back panel and appropriate sockets etc. KIT PRICE $\boldsymbol{c}^{*=}$ plus 85p postage.
requency Response +1 dB 20 Hz
20 KHz . Sensitivity of inputs
Tape Input 100 mV into 100 K ohms
Radio Tuner 100 mV inio
100 K ohms
3 Magnetuc $P \cup 3 \mathrm{mV}$ into
50 K ohms 50 K ohms dB from 20 Hz to 20 KH Supply -20.35 V at
Dimensions
$299 \mathrm{~mm} \times 89 \mathrm{~mm}$

20-30
 AMPLIFIER MODULES

 similar in their appearance and in heir general specification. How ever, careful selection of the plastic power devices has resulted in a range of output powers from 5 to 0 watts R M.SThe versatility of their design makes them ideal for use in record players, tape recorders, stereo amplifiers and cassette and cartridge tape players in the home.

- Harmonic Distortion Po $=$ - Size: $75 \mathrm{~mm} \times 63 \mathrm{~mm} \times 25 \mathrm{~mm}$ Frequency response $\pm 3 \mathrm{~dB}$ Po $=2$ watts $50 \mathrm{~Hz}-25 \mathrm{~Hz}$
Sensitivity for Rated O/P-Vs=25v. RL=8ohmf=1KHz 75 mV .RMS AL20 5w R.M.S. £2.95 AL30 10w R.M.S. £3.25
 30

Enjoy the quality of a magnetic cartridge with your existing ceramic equipment using the new M.P.A. 30, a high quality pre-amplifier enabling magnetic cartridges to be used where facilities exist for the use of ceramic cartridg It is provided with a standard DIN
input socket for ease of connection
$€ 2.85$

YAT
POSTAGE \& PACKING
Postage \& Packing add $25 p$ unless otherwise shown. Add extra for airmail. Min. E1.00

The Stereo 30 comprises a complete stereo pre-amplifier, power amplifiers and power supply. This, with only the addition of a transformer or overwind will produce a high quality audio unit suitable for use with a wide range of inputs i.e high quality ceramic pick-up. stereo tuner, stereo tape deck etc. Simple to install. capable of producing really first class results. this unit is supplied with full instructions, black front panel knobs main switch, fuse and fuse holder and universal mounting brackets enabling it to be installed in a record plinth, cabinets of your own construction or the cabinet available Ideal for the beginner or the advanced constructor who requires $\mathrm{Hi}-\mathrm{Fi}$ performance with minimum of installation difficulty (can be installed in 30 mins)

TRANSFORMER $£ 2.45$ plus $62 p$ p \& TEAK CASE $£ 5.25$ plus $62 p p$ \& p.

\star Max Heat Sink temp 90C. Frequency response
NEW PA12 Stereo Pro-Amplifier com pletely redesigned 20 / use with AL Anplifier Balance, Bass and Treble controls. Complete 20 Hz to 100 KHz . Distortion better than 0.1 af 1 KHz
requency Response $20 \mathrm{H}_{z}-20 \mathrm{KH}$
$(-3 d B)$. Bass and Treble range Supply voltage $15-50 \mathrm{v} \star$ Thermal Feedback \star Latest $\left\lvert\, \begin{aligned} & \text { (-3dB). Bass and Treble range } \\ & 12 d B \text {. Imput Impedence } 1 \text { meg ohm }\end{aligned}\right.$
 Signal to noise ratio 80 db , Overall size 63 mm . 105 mm 13 mm . nput Sensitivity 300 mV . Supply $\times 84 \mathrm{~mm} \times 33 \mathrm{~mm}$.
\times Iinest components have been used and the latest
soldd-state circuitry incorporated in this powerful little amplifier which should satisfy the most critical A.F

Stabilised Power Supply Type SPM80

SPM80 is especially designed to power 2 of the AL60 Amplifiers, up to 15 watts (R.M.S) per channel simultaneously. With the addition of the Mains Transformer BMT80, the unit will provide outputs of up to 1.5 A at 35 V . Size 63 incorporating short circuit protection
Transformer BMT80
£2.60 + 62p postage
PS12
Power supply for AL20/30,
PA12, SA450 etc
input voltage 15.20 v A C Output voltage 22.30 v D C OUR PRICE
 Transformer T538 £2.30

You can set 4 separate alarms and the time is accurate to ± 15 seconds per month ($00^{\circ}-40^{\circ} \mathrm{C}$). The 199 year calender compensates for varying month lengths and leap years.

Finally, in addition to normal mathematical calculations, the CQ1,
allows calculations involving hours, minutes, seconds and elapsed between any two dates (1901-2100) to be computed. Price $£ 35.95$ RRP.

Casio Electronics Co. Ltd.,
28 Scrutton Street, London, EC2.

FOR MEASURING SMALL MULTIS?

Four miniature digital multimeters made by Non Linear Systems Inc., are now available from Lawtronics. Each DMM is powered by internal rechargeable batteries, giving $2-3$ hours operating life and is supplied with a charger unit.

Although each unit uses the same miniature case ($1.9 \times 2.7 \times 4 \mathrm{ins}$.), the
$3,31 / 2$, and 4 digit displays are 0.3 ins. high, and have 25 ranges. The LM3, 3 digit is accurate to 1% of reading and the LM4, 4 digit is 0.03% of reading.

Instruments are normally supplied with a tilt stand. Prices start from $£ 82$, including batteries and charger. Lawtronics, 139 High Street, Edenbridge, Kent TN8 5AX.

GIANTS LETTING CMOS DOWN

Across the pond in the USA there is a nice little session of throat-cutting going on. Texas are really clanging prices down on a range of MSI chips, including counters, multiplexers and registers.

Meanwhile back at the ranch National are reacting to Motorola's slash in January with similar hackings themselves. RCA on the other hand, have quietly taken their levels down without telling anybody.

FED UP SCRATCHING AROUND?

Researchers at University College London, have designed a prototype unit to eliminate completely surface clicks (scratches) from records. Completely different in concept to the usual top-cut filter, this unit detects the scratch (by monitoring the difference signal between the L and R channels), edits it from the output, and replaces it with an extrapolated signal which is indistinguishable from the original music.

The circuitry consists of a highpass filter (200 Hz) automatic level control and amplitude detector.

Upon recognising a scratch signal, the detector turns on a 'cross-fade'. A 6 ms . delay is placed into the line to give the circuit time to do this. Once it finds a scratch, it waits 3 ms . before firing the cross fader such that it edits all the scratch signal.

Don't go rushing down to your local hi-fi store and demand a demo just yet, however. Commercial exploitation of this wonder will depand on the ready supply of an A-D converter, at a price such that the overall circuit can be marketed at less than Britain's G.N.P.

ZILOG SECONDED

Mostek are second sourcing the Z80 MPU from Zilog. The two companies are working in cahoots as regards MPUs to produce this family of chips. Distronic distribute them in Britain.

The n-channel Z80 family includes high performance CPU, programmable parallel controller, programmable I/O controller, versatile counter-timer and high-speed direct memory access controller.
Distronic Ltd., 50/51 Burnt Mill, Elizabeth Way, Harlow, Essex.

MURKOFILES SHIFTING

Signetics will be next with a single chip MPU, this to compete with Intel's 8048. It is an eight-bit system, will have 2 K of ROM on board, and be titled 2645. Amen.

THE WORLD'S BEST SYNTHESISER?

System 700 by Roland Electronics is claimed to be the ultimate in synthesisers. It is certainly quite a machine. The illust rated version costs $£ 9000$, although construction is modular. There just isn't enough room in the magazine to begin to describe

what it will do. One nice touch is the ability to be controlled by a musical instrument or voice. (There are 47 modules in the system.) Anyway if you're in London - go and hear it

yourself. It is on display at Freedmans, 629 High Road, Leytonstone, London E.11. Tell 'em ETI sent you!
P.S. If you know of a better synthesiser - let's hear about it!

WHAT A GAS

Some very clever displays just released from Beckman Instruments Ltd. are these SP101 and 102 GAS DISCHARGE packages! One inch high and looking remarkably like L.E.D.s, they require 160 V DC at 70 uA to operate, being visible at 60 feet + , even in sunlight.

The colour is orange, and the characters are of the 'no gap between segment' type which can look very attractive. They are very slim, and well-suited to 'packed out' housing designs.Beckman Instruments Ltd., Queensway, Glenrothes, Fife, KY7 SPU.

THINK OF HIRE THINGS

It's worth remembering that when you need some particular piece of equipment - be it bionic or electronic - there is usually no need to mortgage the cat in order to buy it.

One very valid alternative exists, and that is to hire it. Most people need test gear for a limited time anyway, and purchase is not really economic. ally justifiable in such cases.

A company called 'Livingstone Hire' will lease you whatever you need from a catalogue containing some 3,000 items. Most of their business is with companies big or small - but even if it's just little ole you, they'll probably be able to help.
Livingstone Hire Ltd., Shirley House, 27 Camden Road, London NW1 9NR.

THE FASTEST DRAW(ER)

 IN THE WESTTektronix's new storage scope, the 7834 , possesses a writing speed of $25000 \mathrm{~mm} / \mathrm{us}$, , which is around $55,000,000 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. , or about $1 / 9$ th. of the speed of light.

Single shot rise times as low as 1.4 ns., and repetitive signals down to 900 pico-seconds, can be displayed as the machine has a 400 MHz mainframe. Plug-in modules extend the capabilities considerably.

Let's hope deliveries are as fast. Tektronix Ltd., Beaverton House, P.O. Box 69, Harpenden, Herts.

5 WATT STEREO - THE CHIPS ARE DOWN!

We believe that some readers may be having difficulties in obtaining the version of the LM379 used in the 5 Watt Stereo project in our January issue.

Maplin Electronics can supply readers with these devices, in the package which fits our PCB. The price is a reduced $£ 4.56$ all inclusive (from £5.43). For the address see the ad on the outside back cover. If you've already got the PCB, the new version of the LM3 $\overline{7} 9$, won't fit - see the mod below.

**

This three terminal, positive voltage regulator, capable of supplying in excess of 1.5 amps , and adjustable over an output range of 1.2 V to 37 V , has recently been announced by Jermyn. Requiring only two external resistors to set the output voltage, the LM317 has typical line and load regulation figures of $0.01 \% \mathrm{~V}$ and 0.1 V respectively, these being superior characteristics to those of most standard
fixed voltage regulators. As this floating regulator sees only the input to cutput differential voltage, supplies of several hundred volts can be regulated providing the maximum differential of 40 V is not exceeded. Current limit, thermal overload, and safe area protection are all incorporated within this regulator which also has 80 dB ripple rejection and 1% temperature stability Jermyn, Sevenoaks, Kent.

WATCH ORDERS AND ORDERS AND ORDERS AND...

We have had so many orders for our LCD watch offer that our original order was used up (twice over!) on the day of arrival. New stocks are available, and we are endevouring to keep any delay to a minimum. We hope to keep to our original 28 -day order period, but if we don't make itplease be patient with us!

NATIONAL AT 10MHZ

This VP5100A is a general purpose DC-10MHz scope of 10 mV maximum sensitivity. It is of reasonable proportions $-148 \times 260 \times 260 \mathrm{~mm}$. - and supposedly easy to lift about the place. Seven sweep rates from 0.1 lus to 0.1 s per division are provided, as is TV mode for viewing video signals. It is being distributed by Telenic Altair, 2 Castle Hill Terrace, Maidenhead, Berks.

A CHIP OFF THE OLD EMPIRE!
A small British firm (aren't they all?) has taken on the might of the American semiconductor complexes in the battlefield of T.V. games. Sportel, as they are called, are producing their own COLOUR chip (30,000 a month in fact).

As well as all the usual party tricks, their 40 pin blob speeds up the ball after 4 bat strikes, automatically, and goes into 'Deuce type scoring in a game of tennis. Score is displayed as huge characters between one point being scored and the next service. The game will initially be offered as a builtin unit by Tyne marketing.

RUSSIAN AROUND WITHOUT PETROL

Soviet research has gotten a good way along the road to electric 'cars for the people'.

One path - taken by Leningrad Technological Institute-leads to a 12 kW air-magnesium storage battery, and employs a Moskvitch 408 as its. base. Their leading contender however, is made in the Ukraine, and is based on a - wait for it - Zaporozhets vehicle which I hope is more driveable than it is pronounceable. Claimed range is 65 miles, and speed 45 m.p.h.

Why couldn't they call it a Mini or something?

RADAR RAIN

Eighty towns in the USA use a computerised radar system to predict local weather. Oslo will be the first European convert to this meteorological microwave methodology.

The idea behind the system is to examine cloud formations and precipitation within a 200 km . radius of the city. The equipment costs about $£ 55,000$ and does the work of 1,000 independent stations.

In this manner the computer provides accurate information of when and for how long rain or snow will fall. Relevant data will be stored on past weather, and all information presented on two V.D.U.s.

CAT OF THE YEAR?

We have just received our copy of the new Maplin Supplies catalogue. Only one word describes the publication superb! Looking rather like a telephone book in appearance, the book contains 216 pages on a very large page format (about the size of an ETI page) and has such a large range of components that Maplin have seen fit to include three indexes!

Six major projects are also included a good range of books is also present A superb job and well and truly worth the 50 p you'll need to claim one.

Metac Digital Clock SEND NO MONEY

We will invoice you with the clock. Try it out for 7 days then send your payment or return the clock in original condition.

SAME DAY DESPATCH

Clock orders received before 2.00 p.m. are posted on the same day.

2 YEAR GUARANTEE

A commitment by us to repair or replace at our discretion any METAC clock failing to give satisfactory service for two years.

Precise time-keeping accuracy. Solid-state long life reliability = $£ 13.95$:
In choice of orange planar gas or soft green fluorescent digit displays. Green model has 24 -hour readout. Orange model has 12 -hour readout and AM/PM indicator. Both models have flashing second indicator, 24 -hour bleeper alarm, 5 -minute repeater, main failure indicator, $5^{\prime \prime}$ across $\times 31 / 2^{\prime \prime}$ deep. Attractive white case. Thousands sold. Please state choice.
An electronic clock is silent and extremely reliable; because there are no moving parts it is impervious to dust or vibration and will continue to work indefinitely. Timing signals are derived from the 50 or 60 Hz domestic electricity supply which in all the developed countries has to be held to very high levels of accuracy.
A bleeper alarm sounds until the clock is tipped forwards. The the "snooze" facility can give you 5 minutes sleep before the alarm sounds again, and then another 5 minutes, etc., until you switch the alarm off.
An indicator on the display tells you if the alarm is set, another indicator tells you if it's in the 'snooze' mode.
This remarkable clock even tells you if the electricity supply has momentarily failed.
STOP PRESS our UXBRIDGE shop is now open. Visit Metac-Electronics, Time Centre

3 NEW ARCADE, HIGH ST., UXBRIDGE, MIDDX.

and see for yourself the full range of top quality watches, clocks and other consumer electronic products.
Please send your order to:
METAC, ELECTRONICS AND TIME CENTRE
67 HIGH STREET, DAVENTRY, NORTHANTS.
Tel. Daventry (0788) 76545 Shaps open 9-5.30 daily

ambit international mene

The Wireless Specialists for components \& modules.

From left to right, the EF5800 6 circuit varicap FM tunerhead with the 7030 linear phase IF and the 91196 PLL stereo decoder with integral 55 kHz 'birdy' filter. The system provides afc muting, meter drives, agc, auto stereo switch, \& a specification that exceeds broadcast requirements. Now available with a new EF5801 tunerhead, with FET buffered oscillator output for synthesiser/frequency readout facilities.
EF5801..£17.45; EF5800..£14.00; 7030..£10.95; $91196 . £ 12.99$
Complete FM tuner kits/systems (Carriage £3 extra.)
The Mark 8 Signalmaster - by Larsholt Electronics
This tuner is based on the popular 7252 tunerset, and provides an incomparable combination of style and performance that can be built by even the relatively inexperienced constructor. Complete kit....£85.00; matching $25+25 \mathrm{~W}$ amplifier...£79.00 . International Mark 2 Tuner kits:
Complete tuner kit, based around the 7253 tunerset, £65.00 Or just the chassis, cabinet, heavey aluminium front panel for your own choice of modules- see our new info. leaflet on the International Tuner. (SAE please)

NEW NEW NEW NEW NEW NEW NEW NEW BIONIC FERRET METAL LOCATOR

Ambit has designed a new approach to cost effective sensitive metal locators, and now we proudly present the first of the family of 'Bionic Ferrets'. Details OA, but we can say it will detect a 10 p piece at $8-10$ inches. Coupled with low power consumption and many innovations, this is the first radically advanced detector that can be made from a kit. £37.99

Radio module selection: (Prices forkits in our catalogue \& PL) EF5800 Ambit 6 stage varicap $88-108 \mathrm{MHz}$ tunerhead $£ 14.00$ EF5600 TOKO 5 stage varicap
£12.95
EC3302 TOKO 3 stage varicap
7020 Dual ceramic filter FM IF system module
92310 MPX
93090 MPX decoder, with stereo filter and preamp £6.95
MPX decoder with CA3090AO + filter stage
f7.35
$\begin{array}{lll}91197 & \text { NW/LW varicap AM tuner module E. } 11 \\ 771 & \text { New 'Off-Air' UHF varicap TV sound tunermodule }\end{array}$ with mute, AFC, dual conversion, PSU E27.00 $9014 \mathrm{MW} / \mathrm{LW} /$ Stereo FM tuner chassis. Mech. tuned E26.00 Components: ICs, coils, filters, trimmers diode law pots etc. HAll37W/3089E FM IF 1.94 TOKO AM IFTs:
TBA120 FM IF and demodo.
$10.7 \mathrm{MHztypes} \quad 0.30$ SN76660N FM IF and det. 0.75 (10 mm square, with int, cap.) MC1310/4400 PLL MPX $2.20 \quad 455 \mathrm{kHz}$ Mechanical filters $\begin{array}{lll}\text { CA3090AQ PLL MPX } \\ \text { HA1196 PLL MPX } & 3.75 & 4 \text { or } 7 \mathrm{kHz} \text { bandwidths }\end{array}$ $\begin{array}{lll}\text { HA1196 PLL MPX } & 4.20 & 455 \mathrm{kHz} \text { ceramic IF filters } \\ \text { UA720 AM radio system } & 1.40 & 65\end{array}$ $\begin{array}{llll}\text { TBA65 } & \text { AM radiossystem } & 1.40 & 6 \text { or } 8 \mathrm{kHz} \text { bandwidth CFT } 0.55 \\ \text { TFD } & 555 \text { (Murata) }\end{array}$ HA1197 AM radio system $1.40 \quad 455 \mathrm{kHz}$ dual ceramic CF $\times 1.80$ LM1496 balanced mixer $1.25 \quad 10.7 \mathrm{MHz}$ filters for WBFM $11 C 90600 \mathrm{MHz}$ decade ctr $14.00 \quad 3132 \mathrm{~A} 6$ pole lin phase
LM380N W Audio LM380N 2 W Audio $1.00 \quad 3125 \mathrm{~N} 4$ pole lin phase $\begin{array}{lll}\text { LM381N audio preamp st. } 1.81 & \text { CFS ceramic filters } \\ \text { TDA2020 } 20 \mathrm{~W} \text { audio amp } & 2.99 & \text { Pilot }\end{array}$ TCA940 10W audio amp 1.99 Pilot tone (MPX) filters: $\begin{array}{ll}\text { TCA940 low audio amp } \\ \text { NE723 voltage reg IC } & 0.80 \text { * BLR3107N stereo }\end{array}$ NEA 0.80^{*} BLR2007N $78 \mathrm{M} 2020 \mathrm{~V} 500 \mathrm{~mA} \quad 1.20$ * BLR $3172 / \mathrm{N}$ tape bias trap TAA550B varicap regulatoro.50* 85 or 100 kHz dole NE $560 / 1 / 2 B$ PLL ICs 3.50^{*} various chokes etc. see price list
ICL8038CCfunction gen 4.50^{*}
$22 t u r n ~ l 00 k$ diode law trimpots. with integral knob 270° rotary 100 k diode law tuning Dot
post/packing 22p per order - except where indicated General: All prices shown here exclucle VAT. which is generally $121 / 2 \%$. (Except where marked*). The latest price leaflet is available FOC with an SAE. Please send a (large) SAE with any enquiries. Full catalogue still 40p.

[^0]TELEPHONE (0277) 216029 -after 3 pm if possible please.

ETI SUPPLEMENT

R. M. Marsten describes thirty-five

OPERATIONAL AMPLIFIERS (OP-AMPS) CAN be simply described as high-gain direct-coupled voltage amplifier 'blocks' that have a single output terminal but have both inverting and non-inverting input terminals. Op-amps can readily be used as inverting, non-inverting, and differential amplifiers in both a.c. and d.c. applications, and can easily be made to act as oscillators, tone filters, and level switches, etc

Op-amps are readily available in integrated circuit form, and as such act as one of the most versatile building blocks available in electronics today. One of the most popular, i.e. op-amps presently available is the device that is universally known as the '741' op-amp In this article we shall describe the basic features of this device, and show a wide variety of practical circuits in which it can be used.

BASIC OP-AMP CHARACTERISTICS AND CIRCUITS

In its simplest form, an op-amp consists of a differential amplifier, followed by offset compensation and output stages, as shown in Fig. 1a. The differential amplifier has inverting and non-inverting input terminals, a high-impedance (constant current) tail to

Fig. 1a Simplified op-amp equivalent circuit.
give a high input impedance and a high degree of common mode signal rejection. It also has a high-impedance (constant current) load to give a high degree of signal voltage stage gain.

The output of the differential amplifier is fed to a direct-coupled offset compensation stage, which
effectively reduced the output offset voltage of the differential amplifier to zero volts under quiescent conditions, and the output of the compensation stage is fed to a simple complementary emitter follower output stage, which gives a low output impedance.

Fig. 16 Basic op-amp symbol.

LINES OF SUPPLY

Op-amps are normally powered from split power supplies, providing $+\mathrm{ve},-\mathrm{ve}$, and common (zero volt) supply rails, so that the output of the op-amp can swing either side of the zero volts value, and can be set at a true zero volts (when zero differential voltage is applied to the circuits input terminals.)

The input terminals can be used independently (with the unused terminal grounded) or simultaneously, enabling the device to function as an inverting, non-inverting, or differential amplifier. Since the device is direct-coupled throughout, it can be used to amplify either a.c. and d.c. input signals. Typically, they give basic low-frequency voltage gains of about 100000 between input and output, and have input impedances of 1 M or greater at each input terminal.

Fig. 1 b shows the symbol that is commonly used to represent an op-amp, and 1c shows the basic supply connections that are used with the device. Note that both input and output signals of the op-amp are referenced to the ground or zero volt line.

SIGNAL BOX

The output signal voltage of the op-amp is proportional to the DIFFERENTIAL signal between its two input terminals, and is given by-

$$
e_{\text {out }}=A_{0}\left(e_{1}-e_{2}\right)
$$

where $A_{o}=$ the open-loop voltage gain of the op-amp (typically 100000).

Fig. 1c Basic supply connections of an op-amp.
$e_{1}=$ signal voltage at the non-inverting input terminal.
$e_{2}=$ signal voltage at the inverting input terminal.
Thus, if identical signals are simultaneously applied to both input terminals, the circuit will (ideally) give zero signal output If a signal is applied to the inverting terminal only, the circuit gives an amplified and inverted output If a signal is applied to the non-inverting terminal only, the circuit gives an amplified but non-inverted output.

By using external negative feedback components, the stage gain of the op-amp circuit can be very precisely controlled.

TRANSFER REQUEST

Fig. 2a shows a very simple application of the op-amp. This particular circuit is known as a differential voltage comparator, and has a fixed reference voltage applied to the inverting input terminal, and a variable test or sample voltage applied to the non-inverting terminal. When the sample voltage is more than a few hundred microvolts below the reference voltage the op-amp output is driven to saturation in a positive direction, and when the sample is more than a few hundred mircovolts below the reference voltage the output is driven to saturation in the negative direction.

Fig. 2b shows the voltage transfer characteristics of the above circuit. Note that it is the magnitude of the differential input voltage that dictates the magnitude of the output voltage, and that the absolute values of input voltage are of little importance. Thus, if a 1 V reference is used and a differential voltage of only 200 uV is
needed to switch the output from a negative to a positive saturation level, this change can be caused by a shift of only 0.02% on a 1 V signal applied to the sample input. The circuit thus functions as a precision voltage comparator or balance detector.

GOING TO GROUND

The op-amp can be made to function as a low-level inverting d.c. amplifier by simply grounding the non-inverting terminal and feeding the input signal to

the inverting terminal, as shown in Fig. 3a. The op-amp is used 'open-loop' (without feedback) in this configuration, and thus gives a voltage gain of about 100000 and has an input impedance of about 1 M . The disadvantage of this circuit is that its parameters are dictated by the actual op-amp, and are subject to considerable variation between individual devices.

CLOSING LOOPS

A far more useful way of employing the op-amp is to use it in the closed-loop mode, i.e., with negative feedback. Fig. 3b shows the method of applying negative feedback to make a fixed-gain inverting d.c. amplifier. Here, the parameters of the circuit are controlled by feedback resistors R_{1} and R_{2}. The gain, A of the circuit is dictated by the ratios of R_{1} and R_{2}, and equals R_{2} / R_{1}.

The gain is virtually independent of the op-amp characteristics, provided that the open-loop gain $\left(A_{0}\right)$ is large relative to the closed-loop gain (A). The input impedance of the circuit is equal to R_{1}, and again is virtually independent of the op-amp characteristics.

Fig. 3b Basic closed-loop inverting d.c. amplifier.

VIRTUALLY AT EARTH

It should be noted at this point that although R_{1} and $\mathrm{R}_{2} 0$ control the gain of the complete circuit, they have no effect on the parameters of the actual op-amp, and the full open-loop gain of the op-amp is still available between its inverting input terminal and the output. Similarly, the inverting terminal continues to have a very high input impedance, and negligible signal current flows into the inverting terminal. Consquently, virtually all of the R_{1} signal current also flows in R_{2}, and signal currents i_{1} and i_{2} can be regarded as being equal, as indicated in the diagram.

Since the signal voltage appearing at the output terminal end of R_{2} is A times greater than that appearing at the inverting terminal end, the current flowing in R_{2} is A times greater than that caused by the inverting terminal signal only. Consequently, R_{2} has an apparent value of R_{2} / A when looked at from its inverting terminal end, and the $R_{1}-R_{2}$ junction thus appears as a low-impedance VIRTUAL EARTH point.

Fig. 4a Basic non-inverting d.c. amplifier

INVERT OR NOT TO INVERT . . .

It can be seen from the above description that the Fig. 3b circuit is very versatile. Its gain and input impedance can be very precisely controlled by suitable choice of R_{1} and R_{2}, and are unaffected by variations in the op-amp characteristics. A similar thing is true of the non-inverting d.c. amplifier circuit shown in Fig. 4a. In this case the voltage gain is equal to $\left(R_{1}+R_{2}\right) / R_{2}$ and the input impedance is approximately equal to
$\left(A_{0} / A\right)$ Zin where Zin is the open-loop input impedancw of the op-amp. A great advantage of this circuit is that it has a very high input impedance.

FOLLOW THAT VOLTAGE

The op-amp can be made to function as a precision voltage follower by connecting it as a unity-gain non-inverting d.c. amplifier, as shown in Fig. 4b. In this case the input and output voltages of the circuit are identical, but the input impedance is very high and is roughly equal to $A_{0} \times Z_{i n}$.

The basic op-amp circuits of Figs. 2a to $4 b$ are shown as d.c. amplifiers, but can readily be adapted for a.c. use. Op-amps.also have many applications other than as simple amplifiers. They can easily be made to function as precision phase splitters, as adders or subtractors, as active filters or selective amplifiers, as precision half-wave or full-wave rectifiers, and as oscillators or multivibrators, etc.

Fig. 4b Basic unity-gain d.c. voltage follower

OP-AMP PARAMETERS

An ideal op-amp would have an infinite input impedance, zero output impedance, infinite gain and infinite bandwidth, and would give perfect tracking between input and output. Practical op-amps fall far short of this ideal, and have finite gain, bandwidth, etc., and give tracking errors between the input and output signals. Consequently, various performance paramaters are detailed on op-amp data sheets, and indicate the measure of 'goodness' of the particular device in question. The most importance of these parameters are detailed below.

OPEN-LOOP VOLTAGE GAIN, A_{0}. This is the low-frequency voltage gain occuring directly between the input and output terminals of the op-amp, and may be expressed in direct terms or in terms of dB . Typically, d.c. gain figures of modern op-amps are 100000 , or 100 dB .
INPUT IMPEDANCE, $\mathbf{Z}_{\text {in }}$. This is the impedance looking directly into the input terminals of the op-amp when it is used open-loop, and is usually expressed in terms of resistance only. Values of 1 M are typical of modern op-amps with bi-polar input stages, while F.E.T. input types have impedances of a million Meg or greater.

OUTPUT IMPEDANCE, $\mathbf{Z}_{\boldsymbol{0}}$. This is the output impedance of the basic op-amp when it is used open-loop, and is usually expressed in terms of resistance only. Values of a few hundred ohms are typical of modern op-amps.

INPUT BIAS CURRENT, $I_{\text {b }}$. Many op-amps use bipolar transistor input stages, and draw a small bias current from the input terminals. The magnitude of this current is denoted by I_{b}, and is typically only a fraction of a microamp.

SUPPLY VOLTAGE RANGE, $V_{\text {s. }}$ Op-amps are usually operated from two sets of supply rails, and these supplies must be within maximum and minimum limits. If the supply voltages are too high the op-amp may be damaged, and if the supply voltages are too low the op-amp will not function correctly. Typical supply limits are $\pm 3 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$.

INPUT VOLTAGE RANGE, $\mathbf{V}_{\text {qmax }}$ The input voltage to the op-amp must never be allowed to exceed the supply line voltages, or the op-amp may be damaged. $V_{i(\max)}$ is usually specified as being one or two volts less than v_{s}.
OUTPUT VOLTAGE RANGE, $\mathbf{V}_{\text {omax) }}$ if the opamp is over driven its output will saturate and be limited by the available supply voltages, so $\mathrm{V}_{\mathrm{o}(\max)}$ is usually specified as being one or two volts less than V_{s}.

DIFFERENTIAL INPUT OFFSET VOLTAGE,

 $\mathbf{V}_{\text {io. }}$ In the ideal op-amp perfect tracking would exist between the input and output terminals of the device, and the output would register zero when both in puts were grounded. Actual op-amps are not perfect devices, however, and in practice slight imbalances exist within their input circuitry and effectively cause a small offset or bias potential to be applied to the input terminals of the op-amp. Typically, this DIFFERENTIAL INPUT OFFSET VOLTAGE has a value of only a few millivolts, but when this voltage is amplified by the gain of the circuit in which the op-amp is used it may be sufficient to drive the op-amp output to saturation. Because of this, most op-amps have some facility for externally nulling out the offset voltage.COMMON MODE REJECTION RATION, c.m.r.r. The ideal op-amp produces an output that is proportional to the difference between the two signals applied to its input terminals, and produces zero output when identical signals are applied to both inputs simultaneously, i.e., in common mode. In practical op-amps, common mode signals do not entirely cancel out, and produce a small signal at the op-amps output terminal. The ability of the op-amp to reject common mode signals is usually expressed in terms of common mode rejection ratio, which is the ratio of the op-amps gain with differential signals to the op-amps gain with common mode signals. C.m.r.r. values of 90 dB are typical of modern op-amps.

TRANSITION FREQUENCY, f_{T}. An op-amp typically gives a low-frequency voltage gain of about 100 dB , and in the interest of stability its open-loop frequency response is tailored so that the gain falls off as the frequency rises, and falls to unity at a transition frequency denoted f_{T}. Usually, the response falls off at a rate of 6 dB per octave or 20 dB per decade. Fig. 5

shows the typical response curve of the type 741 op-amp, which has an f_{T} of 1 MHz and a low frequency gain of 100 dB

Note that, when the op-amp is used in a closed-loop amplifier circuit, the bandwidth of the circuit depends on the closed-loop gain If the amplifier is used to give a gain of 60 dB its bandwidth is only 1 kHz , and if it is used to give a gain of 20 dB its bandwidth is 100 kHz . The f_{T} figure can thus be used to represent a gain-bandwidth product.

	PARAMETER	741 VALUE
A_{0}	OPEN-LOOP VOLTAGE GAIN	100 dB
$\mathrm{Z}_{\text {IN }}$	INPUT IMPEDANCE	1 M
z_{0}	OUTPUT IMPEDANCE	150R
b_{b}	INPUT BIAS CURRENT	200nA
$V_{\text {s (MAX) }}$	MAXIMUM SUPPLY VOLTAGE	$\pm 18 \mathrm{~V}$
$V_{\text {I MAX }}$	MAXIMUM INPUT VOLTAGE	$\pm 13 \mathrm{~V}$
V_{0} (MAX)	MAXIMUM OUTPUT VOLTAGE	$\pm 14 \mathrm{~V}$
$v_{i o}$	DIFFERENTIAL INPUT OFFSET VOLTAGE	2 mV
c.m.m.r.	COMMON MODE REJECTION RATIO	90 dB
F_{T}	TRANSITION FREQUENCY	1 MHZ
S	SLEW RATE	1V/us

Table 1 Typical characteristics of the 741 op-amp.

SLEW RATE. As well as being subject to normal bandwidth limitations, op-amps are also subject to a phenomenon known as slew rate limiting, which has the effect of limiting the maximum rate of change of voltage at the output of the device. Slew rate is normally specified in terms of volts per microsecond, and values in the range $1 \mathrm{~V} / \mathrm{uS}$ to $10 \mathrm{~V} / \mathrm{us}$ are common with most popular types of op-amp. One effect of slew rate limiting is to make a greater bandwidth available to small output signals than is available to large output signals

THE 741 OP-AMP.

Early types of i.c. op-amp, such as the well known 709 type, suffered from a number of design weaknesses. In particular, they were prone to a phenomenon known as INPUT LATCH-UP, in which
the input circuitry tended to switch into a locked state if special precautions wre not taken when connecting the input signals to the input terminals, and tended to self-destruct if a short circuit were inadvertently placed across the op-amp output terminals. In addition, the op-amps were prone to bursting into unwanted oscillations when used in the linear amplifier mode, and required the use of external frequency compensation components for stability control.

Fig. 6 Outlines and pin connections of the two most popular 741 packages.

These weaknesses have been eliminated in the type $741 \mathrm{op}-\mathrm{amp}$. This device is immune to input latch-up problems, has built-in output short circuit protection, and does not require the use of external frequency compensation components. The typical performance characteristics of the device are listed in Table 1.

The type 741 op-amp is marketed by most i.c. manufacturers, and is very readily available. Fig. 6 shows the two most commonly used forms of packaging of the device• Throughout this chapter, all practical circuits are based on the standard 8-pin dual-in-line (D.I.L. or DIP) version of the $741 \mathrm{op}-\mathrm{amp}$.

The 741 op-amp can be provided with external offset nulling by wiring a 10 k pot between its two null terminals and taking the pot slider to the negative supply rail, as shown in Fig. 7.

Having cleared up these basic points, let's now go on and look at a range of practical applications of the 741 op-amp.

Fig. 8 a $\times 100$ inverting d.c. amplifier.

BASIC LINEAR AMPLIFIER PROJECTS. (Figs. 8 to 11).

Figs. 8 to 11 show a variety of ways of using the 741 in basic linear amplifier applications.

The 741 can be made to function as an inverting amplifier by grounding the non-inverting input terminal and feeding the input signal to the inverting terminal. The voltage gain of the circuit can be precisely controlled by selecting suitable values of external feedback resistance. Fig. 8a shows the practical connections of an inverting d.c. amplifier with a pre-set gain of $\times 100$. The voltage gain is determined by the ratios of R_{1} and R_{2}, as shown in the diagram.

The gain can be readily altered by using alternative R_{1} and/or R_{2} values. If required, the gain can be made variable by using a series combination of a fixed and a variable resistor in place of R_{2}, as shown in the circuit of Fig. 8b, in which the gain can be varied over the range $\times 1$ to $\times 100$ via R_{2}.

VARIATIONS

A variation of the basic inverting d.c. amplifier is shown in Fig. 9a. Here, the feedback connection to R_{2} is taken from the output of the $R_{3}-R_{4}$ output potential divider, rather than directly from the output of the op-amp, and the voltage gain is determined by the ratios of this divider as well as by the values of R_{1}, and

741 SUPPLEMENT

Fig. 9a High impedance $\times 100$ inverting d.c. amplifier.
R_{2}. The important feature of this circuit is that it enables R_{1}, which determines the input impedance of the circuit, to be given a high value if required, while at the same time enabling high voltage gain to be achieved.

The basic inverting d.c. amplifier can be adapted for a.c. use by simply wiring blocking capacitors in series with its input and output terminals, as shown in the $\times 100$ inverting a.c. amplifier circuit of Fig. 9b.

NON-INVERTING . . .

The amp can be made to function as a non-inverting amplifier by feeding the input signal to its non-inverting terminal and applying negative feedback to the inverting terminal via a resistive potential divider that is connected across the op-amp output. Fig. 10a shows the connections for making a fixed gain ($\times 100$) d.c. amplifier.

The voltage gain of the Fig. 10a circuit is determined by the ratios of R_{1} and R_{2} If R_{2} is given a value of zero the gain falls to unity, 'and if R_{1} is given a value of zero the gain rises towards infinity (but in practice is limited to the open-loop gain of the op-amp). If required, the gain can be made variable by replacing R_{2} with a

Fig. 10a Non-inverting $\times 100$ d.c. amplifier.
potentiometer and connecting the pot slider to the inverting terminal of the op-amp, as shown in the circuit of Fig. 10b. The gain of this circuit can be varied over the range $\times 1$ to $\times 100$ via R_{1}.

... AND RESISTANCE TO INPUTS

A major advantage of the non-inverting d.c. amplifier is that it has a very high input resistance. In theory, the input resistance is equal to the open-loop input resistance (typically 1 M) multiplied by the open-loop voltage gain (typically 100000) divided by the actual circuit voltage gain. In practice, input resistance values of hundreds of megohms can readily be obtained.

Fig. $10 b$ Non-inverting variable gain $(x 1$ to $\times 100)$ d.c. amplifier.

BLOCKING OUT

The basic non-inverting d.c. circuit of Fig. 10 can be modified to operate as a.c. amplifiers in a variety of ways. The most obvious approach here is to simply wire blocking capacitors in series with the inputs and outputs, but in such cases the input terminal must be, d.c. grounded via a suitable resistor, as shown by R_{3} in the non-inverting $\times 100$ a.c. amplifier of Fig. 11 a. If this resistor is not used the op-amp will have no d.c. stability, and its output will rapidly drift into saturation.

Clearly, the input resistance of the Fig. 11a circuit is equal to R_{3}, and R_{3} must have a relatively low value in the interest of d.c. stability. This circuit thus loses the non-inverting amplifier's basic advantage of high input resistance.

DRIFTING INTO STABILITY

A useful development of the Fig. 11a circuit is shown in Fig. 11 b . Here, the values of R_{1} and R_{2} are increased and a blocking capacitor is interposed between them. At practical operating frequencies this capacitor has a negligible impedance, so the voltage gain is still determined by the ratios of the two resistors. Because of the inclusion of the blocking capacitor, however, the inverting terminal of the op-amp is subjected to virtually 100% d.c. negative feedback from the output terminal of the op-amp, and the circuit thus has excellent d.c. stability. The low end of R_{3} is connected to the $C_{3}-R_{1}$ junction, rather than directly to the ground line, and the signal voltage appearing at this point is virtually identical with that appearing at the non-inverting terminal of the op-amp.

Consequently, identical signal voltages appear at both ends of R_{3}, and the apparent impedance of this resistor is increased close to infinity by bootstrap action.

This circuit thus has good d.c. stability and a very high input impedance In practice, this circuit gives a typical input impedance of about 50 M .

VOLTAGE FOLLOWER PROJECTS (Figs. 12 to 13).

A 741 can be made to function as a precision voltage follower by connecting it as a unity-gain non-inverting amplifier. Fig. 12a shows the practical connections for making a d.c. voltage follower. Here, the input signal is applied directly to the non-inverting terminal of the op-amp, and the inverting terminal is connected directly to the output, so the circuit has 100% d.c. negative feedback and acts as a unity-gain non-inverting d.c. amplifier.

The output signal voltage of the circuit is virtually identical to that of the input, so the output is said to 'follow' the input voltage. The great advantage of this circuit is that it has a very high input impedance (as high as hundreds of megohms) and a very low output impedance (as low as a few ohms). The circuit acts effectively as an impedance transformer.

Fig. $12 a$ d.c. voltage follower.

PRACTICE, AND ITS LIMITS

In practice the output of the basic Fig. 12a circuit will follow the input to within a couple of millivolts up to magnitudes within a volt or so of the supply line potentials. If required, the circuit can be made to follow to within a few microvolts by adding the offset null facility to the op-amp.

The d.c. voltage follower can be adapted for a.c. use by wiring blocking capacitors in series with its input and output terminals and by d.c.-coupling the non-inverting terminal of the op-amp to the zero volts line via a suitable resistor, as shown by R_{1} in Fig. 12b. R_{1} should have a value less than a couple of megohms, and restricts the available input impedance of the voltage follower.

LACED UP OHMS

If a very high input-impendance a.c. voltage follower is needed, the circuit of Fig. 12c can be used. Here, R, is boostrapped from the output of the op-amp, and its apparent impedance is greatly increased. This circuit has a typical impedance of hundreds of megohms.

Fig. $12 b$ a.c. voltage follower.

Fig. 12c Very high input-impedance a.c. voltage follower.

DRIVING CIRCUITS AMP-LY

The 741 op-amp is capable of providing output currents up to about 5 mA , and this is consequently the current-driving limit of the three voltage follower circuits that we have looked at so far. The current-driving capabilities of the circuits can readily be increased by wiring simple or complimentary emitter

Fig. 13a Unidirectional d.c. voltage follower with boosted output (variable from OV to +8 V at 50 mA .)
follower booster stages between the op-amp output terminals and the outputs of the actual circuits, as shown in Figs. 13a and 13b respectively.

Note in each case that the base-emitter junction(s) of the output transistor(s) are included in the negative feedback loop of the circuit Consequently, the 600 mV knee voltage of each junction is effectively reduced by a factor equal to the open-loop gain of the op-amp, so the junctions do not adversely effect the voltage-following characteristics of either circuit.

The Fig. 13a circuit is able to source current only, and can be regarded as a unidirectional, positive-going, d.c. voltage follower. The Fig. 13b circuit can both source and sink output currents, and thus gives bidirectional follower action. Each circuit has a current-driving capacity of about 50 mA . This figure is dictated by the limited power rating of the specified output transistors. The drive capability can be increased by using alternative transistors.

MISC AMP PROJECTS (Figs. 14 to 22)

Figs. 14 to 22 show a miscellaneous assortment of 741 amplifier projects, ranging from d.c. adding circuits to frequency-selective amplifiers.

Fig. 14 shows the circuit of a unity-gain inverting d.c. adder, which gives an output voltage that is equal to the sum of the three input voltages. Here, input resistors R_{1} to R_{3} and feedback resistor R_{4} each have the same value, and the circuit thus acts as a unity-gain inverting d.c. amplifier between each input terminal and the output. Since the current flowing in each input resistor also flows in feedback resistor R_{4}, the total current flowing in R_{4} is equal to the sum of the input currents, and the output voltage is equal to the sum of the imput voltages. The circuit shown with only three input connections, but in fact can be provided with any number of input terminals. The circuit can be made to function as a so-called 'audio mixer' by wiring blocking capacitors in series with each input terminal and with the output terminal.

Fig. 14 Unity-gain inverting d.c. adder, or 'audio mixer'.

FIG. 15 shows how two unity-gain inverting d.c. amplifiers can be wired in series to make a precision unity-gain balanced d.c. phase-splitter The output of the first amplifier is an inverted version of the input signal, and the output of the second amplifier is a non-inverted version.

Fig. 15 Unity-gain balanced d.c. phase-splitter.

FIG. 16 shows how a 741 can be used as a unity-gain differential d.c. amplifier. The output of this circuit is equal to the difference between the two input signals or voltages, or to $e_{1}-e_{2} \cdot$ Thus, the circuit can also be used as a subtractor. In this type of circuit the component values are chosen such that $R_{1} / R_{2}=R_{4} / R_{3}$, in which case the voltage gain $A_{v}=R_{2} / R_{1}$. The circuit can thus be made to give voltage gain if required.

Fig. 16 Unity-gain differential d.c. amplifier, or subtractor.

FIG. 17 shows the amp can be made to act as a non-linear (semi-log) a.c. voltage amplifier by using a coúple of ordinary silicon diodes as feedback elements. The voltage gain of the circuit depends on the magnitude of applied input signal, and is high when input signals are low, and low when input signals are. high. The measured performance of the circuit is shown in the table, and can be varied by using alternative R_{1} values.

Fig. 17 Circuit and performance table of non-linear (semi-log) a.c. voltage amplifier.

FIG. 18 shows how the 741 can be used together with a junction-type field-effect transistor (JFET) to make a so-called constant-volume amplifier. The action of this type of circuit is such that its peak output voltage is held sensibly constant, without distortion, over a wide range of input signal levels, and this particular circuit gives a sensibly constant output over a 30 dB range of input signal levels.

The measured performance of the circuit is shown in the table. C_{1} determines the response time of the amplifier, and may be altered to satisfy individual needs.

ACTION TAKEN

The action of the Fig. 18 circuit relies on the fact that the JFET can act as a voltage-controlled resistance which appears as a low value when zero bias is applied to its gate and as a high resistance when its gate is negatively biased. The JFET and R_{3} act as a gain-determining a.c. voltage divider (via C_{2}), and the bias to the JFET gate is derived from the circuits output via the $\mathrm{D}_{1}-\mathrm{C}_{1}$ network. When the circuit output is low the JFET appears as a low resistance, and the op-amp gives high voltage gain.

When the circuit output is high the JFET appears as a high resistance, and the op-amp gives low voltage gain. The output level of the circuit is thus held sensibly constant by negative feedback.

Fig. 191 kHz tuned (acceptor) amplifier (twin-T).

CHOOSE YOUR FREQUENCY

The 741 op-amp can be made to function as a frequency-selective amplifier by connecting frequency-sensitive networks into its feedback loops. Fig. 19 shows how a twin-T network can be connected to the op-amp so that it acts as a tuned (acceptor) amplifier. and Fig. 20 shows how the same twin-T network can be connected so that the op-amp acts as a notch (rejector) filter. The values of the twin- \dagger network are chosen such that $R_{2}=R_{3}=2 \times R_{4}$, and $C_{2}=C_{4} / 2$, in which case its centre (tuned) frequency $=1 / 6.28 \quad R_{2} . C_{2}$. With the component values shown, both circuits are tuned to approximately 1 kHz .

Finally, to complete this section, Figs. 21 and 22 show the circuits of a couple of variable-frequency audio filters. The Fig. 21 circuit is that of a low-pass filter which covers the range 2.2 kHz to 24 kHz , and the Fig. 22 circuit is that of a high-pass filter which covers the range 235 Hz to 2.8 kHz . In each case, the circuit gives unity gain to signals beyond its cut-off frequency, and gives a 2 nd order response (a change of 12 dB per octave) to signals within its range.

Fig. 21 Variable low-pass filter, covering 2.2 kHz to 24 kHz .

INSTRUMENTATION PROJECTS [Figs. 23 to 31]

Figs. 23 to 31 show a variety of instrumentation projects in which the 741 can be used. The circuits range from a simple voltage regulator to a linear-scale ohmmeter.

Fig. 23 Simple variable-voltage supply.

FIG. 23 shows the circuit of a simple variable-voltage power supply, which gives a stable output that is fully adjustable from OV to 12 V at currents up to a maximum of about 50 mA . The operation of the circuit is quite simple. ZD_{1} is a zener diode, and is energised from the positive supply line via R_{1}. A constant reference potential of 12 V is developed across the zener diode, and is fed to variable potential divider RV,

The output of this divider is fully variable from $O V$ to 12 V , and is fed to the non-inverting input of the op-amp. The op-amp is wired as a unity-gain voltage follower, with Q_{1} connected as an emitter follower current-booster stage in series with its output.

This, the output voltage of the circuit follows the voltage set at the op-amp input via $R V_{1}$, and is fully variable from $O V$ to 12 V . Note that the circuit uses an 18 V positive supply and a 9 V negative supply.

Also note that the voltage range of the above circuit can be increased by using higher zener and unregulated supply voltages, and that its current capacity can be increased by using one or more power transistors in place of Q_{1}.

Fig. 24 3V-30V, 0-1 amp stabilised p.s.u.

FIG. 24 shows how a 741 op-amp can be used as the basis of a stabilised power supply unit (P.S.U.) that covers the range 3 V to 30 V at currents up to 1 A . Here, the voltage supply to the op-amp is stabilized at 33 V via ZD_{1}, and a highly temperature-stable reference of 3 V is fed to the input of the op-amp via ZD_{2}.

The op-amp and output transistors $\mathrm{Q}_{1}-\mathrm{O}_{2}$ are wired as a variable-gain non-inverting d.c. amplifier, with gain variable from unity to $\times 10$ via $R V_{1}$, and the output voltage is thus fully variable from $3 V$ to 30 V via $R V_{1}$. The output voltage is fully stabilized by negative feedback.

Fig. 25 3V-30V stabilised p.s.u. with overload protection.

FIG. 25 shows how overload protection can be applied to the above circuit. Here, current-sensing resistor R_{9} is wired in series with the output of the regulator, and cut-out transistor O_{3} is driven from this resistor and is wired so that its base-collector junction is able to short the base-emitter junction of the $\mathrm{Q}_{1}-\mathrm{O}_{2}$ output transistor stage.

Normally, O_{3} is inoperative, and has no effect on the circuit, but when P.S.U. output currents exceed 1 A a potential in excess of 600 mV is developed across R_{9} and biases Q_{3} on, thus causing Q_{3} to shunt the base-emitter junction of the $\mathrm{Q}_{1}-\mathrm{Q}_{2}$ output stage and hence reducing the output current Heavy negative feedback takes place in this action, and the output current is automatically limited to 1 A , even under short-circuit conditions.

FIG. 26a shows how a 741 can be used in conjunction with a couple of silicon diodes as a precision half-wave rectifier. Conventional diodes act as imperfect rectifiers of low-level a.c. signals, because they do not begin to conduct significantly until the applied signal voltage exceeds a 'knee' value of about 600 mV .

When diodes are wired into the negative feedback loop of the circuit as shown the 'knee' voltage is effectively reduced by a factor equal to the open-loop gain of the op-amp, and the circuit thus acts like a near-perfect rectifier.

The overall voltage gain of the Fig. 26a circuit is dictated by the ratios of R_{1} and R_{2} to R_{3}, as in the case of a conventional inverting amplifier, and this circuit thus gives a gain of unity. The circuit can be made to

Fig. 26a Precision unity-gain half-wave rectifier.
act as a precision half-wave a.c./d.c. converter by designing it to give a voltage gain of 2.22 to give form-factor correction, and by integrating its rectifier output, as shown in Fig. 26b.

Note that each of the Fig. 26 circuits has a high output impedance, and the outputs must bot be fed into loads having impedances less than about 1 M .

Fig. 26b Precision half-wave a.c./d.c. converter.

Fig. 27 High-performance d.c. voltmeter converter.

FIG. 27 shows how op-amp can be used as a high-performance d.c. voltmeter converter, which can be used to convert any 1 V f.s.d. meter with a sensitivity better than $1 \mathrm{k} / \mathrm{V}$ into a voltmeter that can read any value in the range 1 mV to 10 V f.s.d. at a sensitivity of $1 \mathrm{M} / \mathrm{V}$. The voltage range is determined by the R_{1} value, and the table shows some suitable values for common voltage ranges

FIG. 28 shows a simple circuit that can be used to convert a 1 mA f.s.d. meter into a d.c. voltmeter with any $\mathrm{f} . \mathrm{s}$. d. value in the range 100 mV to 1000 V , or into a d.c. current meter with any f.s.d. value in the range luA to 1A. Suitable component values for different ranges are shown in the tables.

Fig. 28 Simple d.c. voltage or current meter.

FIG. 29 shows the circuit of a precision d.c. millivoltmeter, which uses a 1 mA f.s.d. meter to read f.s.d. voltages from 1 mV to 1000 mV is seven switch-selected ranges.

FIG. 30 shows the basic circuit of a precision a.c. volt or millivolt meter. This circuit can be used with any moving-coil meter with a full scale current value in the range 100 uA to 5 mA , and can be made to give any full scale a.c. voltage reading in the range 1 mV to 1000 mV . The tables show the alternative values of R_{1} and R_{2} that must be used to satisfy different basic meter sensitivities, and the values of R_{3} and R_{4} that must be used for different f.s.d. voltage sensitivities.

HOME OHM

Finally, to conclude, Fig. 31 shows how the 741 op-amp can be used in conjuncton with a 1 mA f.s.d. meter to make a linear-scale ohmmeter that has five decade ranges from 1 k to 10 M .

The circuit is divided into two parts, and consists of a voltage generator that is used to generate a standard test

Fig. 31 Linear-scale ohmmeter.
voltage, and a readout unit which indicates the value of the resistor under test.

The voltage generator section of the circuit comprises zener diode $2 D_{1}$, transistor Q_{1}, and resistors R_{1} to R_{4}. The action of these components is such that a stable reference potential of 1 V is developed across R_{4}, but is adjustable over a limited range via $R V_{1}$. This voltage is fed to the input of the op-amp readout unit. The op-amp is wired as an inverting d.c. amplifier, with the 1 mA meter and $R V_{3}$ forming a 1 V f.s.d. meter across its output, and with the op-amp gain determined by the
values of ranging resistors R_{5} to R_{9} and by negative feedback resistor R_{x}.

Since the input to the amplifier is fixed at 1 V , the output voltage reading of the meter is directly propertional to the value of $R_{x^{\prime}}$ and equals full scale when R_{x} and the ranging resistor values are equal. Consequently, the circuit functions as a linear-scale ohmmeter.

CALIBRATION

The procedure for intially calibrating the Fig. 1.31 circuit is as follows. First, switch the unit to the $10 \mathrm{k} \Omega$ range and fix an accurage $10 k \Omega$ resistor in the R_{x} position. Now adjust R_{3} to give an accurate 1 V across R_{5}, and then adjust R_{12} to give a precise full scale reading on the meter. All adjustments are then complete, and the circuit is ready for use.

MISCELLANEOUS 741 PROJECTS

The 741 op-amp can be used as the basis of a vast range of miscellaneous projects, including osillators. and sensing circuits. Four such projects are described in this final section.

FIG. 32 shows how the 741 op-amp can be connected as a variable-frequency wien-bridge oscillator, which covers the basic range 150 Hz to 1.5 kHz , and uses a low-current lamp for amplitude stabilisation. The output amplitude of the oscillator is variable via $R V_{4}$ and has a typical maximum value of 2.5 V r.m.s. and a t.h.d. value of 0.1%. The frequency range of the circuit is inversely proportional to the $C_{1}-C_{2}$ values The circuit can give a useful performance up to a maximum frequency of about 25 kHz .

Fig. $32150 \mathrm{~Hz}-1.5 \mathrm{kHz}$ Wien-bridge oscillator.

Fig. 33 shows how either a 741 or a 709 op-amp can be connected as a simple variable-frequency square-wave generator that covers the range 500 Hz to 5 kHz via a single variable resistor. (The circuit produces a good symmetrical waveform.)

The frequency of oscillation is inversely proportional to the C, value, and can be reduced by increasing the C_{1} value, or vice-versa. The amplitude of the square wave output signal can be made variable, if required, by wiring a $10 \mathrm{k} \Omega$ variable potential divider across the output terminals of the circuit and taking the output from between the pot slider and the zero volts line.

FIGS. 34 and 35 show a couple of useful ways of using the 741 op-amp in the open-loop differential voltage comparator mode. In each case, the circuits are powered from single-ended 12 V supplies, and have a fixed half-supply reference voltage applied to the non-inverting op-amp terminal via the $R_{1}-R_{2}$ potential divider and have a variable voltage applied to the inverting op-amp terminal via a variable potential divider.

The circuit action is such that the op-amp output is driven to negative saturation and the relay is driven on when the 'variable input voltage is greater than the reference voltage, and the op-amp output is driven to positive saturation and the relay is cut off when the variable input voltage is less than the reference voltage.

Fig. 34 Precision frost or under temperature switch can be made to act as a fire or over temperature switch by transposing R_{1} and TH_{1} positions.

FROSTY RECEPTION

The Fig. 34 circuit is that of a precision frost or under-temperature switch, which drives the relay on when the temperature sensed by thermistor TH_{1} falls below a value pre-set via RV ${ }_{1}$. The circuit action can be reversed, so that it operates as a fire or over-temperature switch, by simply transposing the RV, and the TH, positions. In either case, TH_{1} can be any negative-tem-perature-coefficient thermistor that presents a resistance in the range 900Ω to $9 \mathrm{k} \Omega$ at the required trip temperature.

Fig. 35 Precision light-activated switch can be made to act as a dark-activated switch by transposing R_{1} and LDR positions.

LIGHT WORK

The Fig. 35 circuit is that of a precision light-activated switch, which turns the relay on when the illumination level sensed by light-dependent resistor LDR exceeds a value pre-set by $R V_{1}$. The circuit action can be reversed so that the relay turns on when the illumination falls below a pre-set level by simply transposing the $R V_{1}$ and LDR positions. In either case; the LDR can be any cadmium-sulphide photocell that presents a resistance in the range 900Ω to $9 k \Omega$ at the desired switch-on level.

		cin						
								\square

Ascli

THIS PROJECT, NUMBER 631, FOBMS THE FIRST PART OF OUR MPU HOME SYSTEM, THE ENCODER BOARD PROVIDES FULL ASCI OUTPUT, AND CAN BE USED WITH MOST COMMERGIAL KEYBOARD UNITS.

TO COMMUNICATE WITH A computer you need some sort of input device and some sort of output reader. The input unit can be a series of switches on which you set up the required code and press a button to enter each character. While this is economical in parts it is not economical in time

This encoder project is designed to allow very easy access to the computer whilst being reasonably economical. It is very flexible and allows for almost any keyboard to be used. Control functions can be activated by a single key if desired and lower case letters can be eliminated at the flick of a switch

The output from the keyboard is in the form of a parallel bus and the data has to be serialised to provide a universal input which will then communicate with any computer designed to work with a teletype

DESIGN FEATURES

When we first looked at a keyboard encoder we intended to
use a single chip device to simplify design. However, looking at the devices available and their limitations (and cost and availability) it was decided to compromise and use the HDO165 keyboard encoder. This IC has been available for many years and we use it to decode the first 4 lines. For the other three lines we decided to use discrete components. The eighth line is not used at this stage (it is used for a parity check after serialisation)

Initially the use of a 16×3 matrix was contemplated. Then we would use the shift and control keys to get the other outputs. However, not all keys with the same three-line code (b5, 6, 7) are upper case (or lower case). On our keyboard $01 \ldots$ are lower case, and $=$? are upper case yet all have an output code 3 . The same applies to other rows and the matrix has thus expanded to $16 \times$ 7. To get the control functions a control and the function key have to be pressed simultaneously, which is inconvenient for commonly-used
functions (such as space or line feed)

Consequently an additional three lines are used and this allows any of the control functions to be activated by a single key

Most VDUs or microcomputer operating systems cannot handle lower-case letters and therefore outputs are provided which can be linked to ensure that a shift command is given automatically when any key from $A-Z$ is pressed

When connecting to the key board we had to decide how to wire the contacts. The easiest and neatest way is to use a double-sided pc board with plated-through holes Using such a board it is hard to solder the other side when it is against the keyboard!

The alternative, and the approach we chose, is to link the underside of the keyboard using "solderable" enamelled wire and normal hookup wire to the control card. This takes a little time to wire but is much cheaper and is universal. Although we used a

How it works

The Harris HDO165 IC is a 16 -line keyboard encoder; if any one of its 16 inputs is taken high (+5 V) an output code appears on the four output lines. At the same time another output (pin 4) goes low and another output (pin 24) goes low to indicate this.

In this project we use this IC to generate the least significant four bits (b1, b2, b3, and b4) of the seven bits we need to represent the complete character.

To decode the other three bits we used discrete transistors and CMOS gates. Each key joins one of the inputs of the HDO165 to one of the points 1117. If the enable line is low (i.e. 0V) Q14 will be hard on and we will have 5 V (less a little) on the emitter of Q2,3,5,6,7,8 and 13. The input of the HDO165 appears as a resistor of about $500-600$ ohms, to 0 V . Therefore connecting (say) point 14 to point 3, we turn on Q6 giving +5 V at its collector and also the HDO165 gives an output corresponding to three (0011).

The high output from Q6 gives a high on the inputs of IC $2 / 2$ and IC3/2 causing the outputs of these gates to be low. The other gates, IC1/1; IC2/1 and IC3/1
have high outputs. If the control or shift key is not pressed, we have a ' 0 ' at the input of IC4/1 and IC4/2 giving a high output from these gates and hence a low output from IC4/3 and IC4/4. This enables IC5/1, IC5/3 and IC6. These ICs are simply electronic switches with a resistance of either 300 ohms (on) or infinity (off).

Therefore Q9 will be on as IC2/1 is high, Q10 will be off as IC2/2 is low and Q12 will also be off as IC3/2 is low. This gives a total output of 1100011 which represents 63 (hex) or lower case c.

We will leave you to work out the other combinations. If the shift key is pressed, IC5/2, IC5/4 and IC6 are enabled selecting a different code (upper case C is 43 hex) and if the control key is pressed, Q10 and 11 are turned on by IC4/3 and Q9 is controlled by IC1/1 and IC2/1 ('control C' is 03 (hex), represent ing ETX).

When a key is pressed the output (pin 4) of the HDO165 goes low and C3 is discharged via R23. After about 10 ms the gates IC1 $/ 2,3$, which are connected as a schmitt trigger, operate and the out-
put $(\mathrm{lCl} / 3)$ goes low. This is coupled via C4. Q17/18 act as a monostable giving a negative-going pulse of about $200 \mu \mathrm{~s}$ wide. When one key is pressed about 0.4 V is developed across R20, not quite enough to turn on Q15. If a second key is pressed in a different row, the additional current in R20 will forward-bias Q15 which will then turn on Q16. This holds C3 charged, independent of. the HDO165. If two keys are pressed in the same row on output (pin 24), the HDO165 detects this and goes low and Q16 is again turned on disabling the strobe pulse.

If the repeat button is pressed IC7 oscillates at about 10 Hz and the pulsing alternately turns Q16 on and off generating strobe pulses at about 10 per sec.

The output of Q6 (A-O) and Q17 ($\mathrm{P}-\mathrm{Z}$) are diode ORed and if the 'upper case only' link or switch is closed it automatically gives a shift command. For the control functions additional inputs are used in Q1, Q4 and Q12. If the input to one of these transistors is connected to one of the HDO165 inputs it still turns on the transistor associated with it and also lifts either the control or shift inputs as required.

Fig.2. Component overlay of the encoder.
double-sided board for the control logic we don't require platedthrough holes, as both sides can be easily soldered.

CONSTRUCTION

Assemble the PCB board with the aid of the overlay in Fig 2. When soldering the components use a small iron and make sure all connections on the component side are soldered as well as those on the copper side. The links on the component side must be insulated where they cross copper tracks, to prevent shorting

Because you have to solder on both sides of the PCB you cannot use ICs sockets (unless they are wire-wrap types). The exception here is the HDO165 where all connections are on the copper side. Note also that the HDO165 is not CMOS or MOS and requires no special handling

To make wiring easier mark the keys on the underside of the keyboard, to indicate what functions they represent. Now using
'solderable" enamelled wire join the points as given in Table 1. The connection from the control board is also given and this should be made

Resistors all $1 / 2 \mathrm{~W} 5 \%$	
R1-R7	1 k
R8-R12	10 k
R13	1 k
R14-R16	2k2
R17	10 k
R18	1 M
R19	220 k
R20	82R
R21-R28	10 k
R29	100 k
R30	220 k
R31	100 k
R32	10 k
R33	2k2
Capacitors	
C1	100 n polyester
C2	$4 \mu 725 \mathrm{~V}$
C3	$1 \mu 25 \mathrm{~V}$
C4	1 nO polyester
Semiconductors	
D1-D3	1 N914
Q1-08	BC558 or BC108
Q9-011	BC548 or BC1 78
Q12-Q14	BC558 or BC108
015	BC548 or BC 178
Q16	BC558 or BC108
Q17, 18	BC178
Integrated Circuits	
IC1	4025 (CMOS)
IC2, 3	4002 (CMOS)
IC4	4001 (CMOS)
IC5, 6	4016 (CMOS)
1 C 7	NE555
IC8	HD0165

using normal hookup wire. The control functions can be wired between the points given either by taking two wires back to the control board or finding the same wire, if previously used, on the keyboard and linking across.

We have not described a housing for the unit as it will probably be mounted along with the VDU and UART (possibly under a TV set).

However, the control card can
mount under the keyboard by spacing it up slightly. It may be necessary to have a piece of metal (Bacofoil, etc) under the keyboard/control card, connected to OV . (To prevent 50 Hz pickup into the wiring to the keyboard.) The effect of this is unwanted outputs from the strobe or non-operation of the strobe output.

To supply the unit 5 V at $50 \mathrm{~m} \dot{\mathrm{~A}}$ is needed. To enable the keyboard a
low (OV) is needed on that input. The data output are positive logic (ie, " 1 " is +5 V) and the strobe output is active low.

Connecting the keyboard to a hex display gives an easy check that all wiring is correct. The list in Table 1 gives the character the access, the ASCII code, and the hex code. Alternatively 7 LEDs can be connected (cathode to OV) across the outputs

Fig.4. Printed circuit layout(both sides) Full size $150 \times 100 \mathrm{~mm}$.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{FUNC TION} \& \& \& \& TA \& 2 \& \& \& \& \& \& \\
\hline \& \multirow[t]{2}{*}{Access} \& \multicolumn{2}{|r|}{ASC II CODE} \& \multirow[t]{2}{*}{\begin{tabular}{l}
HEX \\
code
\end{tabular}} \& \multirow[t]{2}{*}{FUNC iION} \& Access \& \multirow[t]{2}{*}{} \& \multicolumn{3}{|l|}{ASC U CODE} \& HEX \\
\hline \& \& §\% \& 8 ¢ § \& \& \& \& \& 8 \& \(8{ }_{3}^{18}\) \& ก \& code \\
\hline NUL \& CTRL \& 000 \& \(0 \begin{array}{llll}0 \& 0 \& 0 \& 0\end{array}\) \& 00 \& @ \& Q \& 1 \& 00 \& 0 \& 00 \& 40 \\
\hline SOH \& CTRL A \& 000 \& \(\begin{array}{llll}0 \& 0 \& 0 \& 1\end{array}\) \& 0 \& A \& SHIFT A \& 1 \& 0 \& 0 \& 01 \& \\
\hline STX \& CTRL B \& 0 \& 0 \& \({ }_{0}{ }^{1} 2\) \& \({ }^{\text {B }}\) \& SHIFT B \& 1 \& 0 \& 0 \& 10 \& \\
\hline ETX \& CTRL
CTRL
C \& \(\begin{array}{lll}0 \& 0 \& 0 \\ 0 \& 0 \& 0\end{array}\) \& \(\begin{array}{llll}0 \& 0 \& 1 \& 1 \\ 0 \& 1 \& 0 \& 0\end{array}\) \& \(\begin{array}{ll}0 \& 3 \\ 0 \& 4\end{array}\) \& C \& SHIFT C \& 1 \& 0
0
0 \& 0 \& \(\begin{array}{ll}1 \& 1 \\ 0 \& 0\end{array}\) \& 4
4
4
4 \\
\hline ENO \& CTRL
CTRL \& \(\begin{array}{ll}0 \& 0 \\ 0 \& 0 \\ 0 \& 0\end{array}\) \& \(\begin{array}{llll}0 \& 1 \& 0 \& 0 \\ 0 \& 1 \& 0 \& 1\end{array}\) \& 1
0
0 \& E \& SHIFT E \& 1 \& 0 0 \& 0 \& 01 \& \\
\hline ACK \& CTRL \(F\) \& 000 \& 0 0 1110 \& 06 \& F \& SHIFT \(F\) \& 1 \& 00 \& 0 \& 10 \& \\
\hline BEL \& CTRL G \& 000 \& 0 \& 07 \& G \& SHIFT G \& 1 \& 0 \& 0 \& 11 \& \\
\hline BS \& CTRL H \& 000 \& 1000 \& 08 \& \({ }^{\text {H }}\) \& SHIFT H \& 1 \& 0 \& 10 \& 00 \& \\
\hline HT \& CTRL \& 000 \& 10001 \& 09 \& 1 \& SHIFT \& 1 \& 00 \& 1 \& 0 \& 49 \\
\hline LF \& CTRL J \& 000 \& 10010 \& \({ }^{\circ} \mathrm{A}\) \& \(J\) \& SHIFT J \& 1 \& 0 \& 1 \& 1 \& \\
\hline VT \& CTRL K \& \(\begin{array}{lll}0 \& 0 \\ 0 \& 0 \& 0\end{array}\) \& \(\begin{array}{lllll}1 \& 0 \& 1 \& 1 \\ 1 \& 1 \& 0 \& 0\end{array}\) \& \({ }_{0}^{0} \mathrm{~B}\) \& K \& SHIFT K \& 1 \& 0 \& 1 \& \(\begin{array}{ll}1 \& 1 \\ 0 \& 1\end{array}\) \& \(4{ }_{4}^{4} \mathrm{C}\) \\
\hline FF \& CTRL
ctri
ct \& \(\begin{array}{lll}0 \& 0 \& 0 \\ 0 \& 0 \& 0\end{array}\) \& \(\begin{array}{lllll}1 \& 1 \& 0 \& 0 \\ 1 \& 1 \& 0 \& 1\end{array}\) \& \(\begin{array}{ll}0 \& \text { C } \\ 0 \& \text { D }\end{array}\) \& M \& SHIFT L \& 1 \& \(\begin{array}{ll}0 \& 0 \\ 0 \& 0\end{array}\) \& 1 \& \(\begin{array}{ll}0 \& 0 \\ 0 \& 1\end{array}\) \& \(\begin{array}{ll}4 \& \text { C } \\ 4 \& \text { D }\end{array}\) \\
\hline so \& ctrin \({ }^{\text {N }}\) \& 000 \& 1110 \& 0 E \& \(N\) \& SHIFT N \& 1 \& 00 \& 1 \& 10 \& 4 E \\
\hline SI \& CTRL O \& 000 \& \(\begin{array}{llll}1 \& 1 \& 1\end{array}\) \& 0 F \& 0 \& SHIFT O \& 1 \& 0 \& 1 \& 1 \& 4 \\
\hline dLe \& ctrl P \& 001 \& 0 0 0 0 \& 10 \& P \& SHIFT P \& 1 \& 0 \& 0 \& 00 \& \\
\hline DC1 \& CTRL \({ }^{\text {a }}\) \& \(\begin{array}{llll}0 \& 0 \& 1 \\ 0 \& 0\end{array}\) \& \(\begin{array}{lll}0 \& 0 \& 0 \\ 0 \& 1\end{array}\) \& 11 \& R \& SHIFT O \& 1 \& \(\begin{array}{ll}0 \& 1 \\ 0 \& 1\end{array}\) \& 0 \& \(\begin{array}{ll}0 \& 1 \\ 1 \& 1\end{array}\) \& \(\begin{array}{ll}5 \& 1 \\ 5 \& \\ 5\end{array}\) \\
\hline DC2
DC3 \& CTRL
CTRL
R \& \(\begin{array}{lll}0 \& 0 \& 1 \\ 0 \& 0 \& 1\end{array}\) \& \(\begin{array}{llll}0 \& 0 \& 1 \& 0 \\ 0 \& 0 \& 1 \& 1\end{array}\) \& \(\begin{array}{ll}1 \& 2 \\ 1 \& 3\end{array}\) \& R \& SHIFT \({ }_{\text {SHIFT }}\) \& 1 \& \(\begin{array}{ll}0 \\ 0 \& 1 \\ 0 \& 1\end{array}\) \& 0 \& \(\begin{array}{ll}10 \\ 1 \& 1 \\ 1\end{array}\) \& \(\begin{array}{lll}5 \& 2 \\ 5 \& 3\end{array}\) \\
\hline DC3
DC4 \& CTRL S \& \(\begin{array}{lll}0 \& 0 \& 1 \\ 0 \& 0 \& 1\end{array}\) \& \(\begin{array}{llll}0 \& 0 \& 1 \& 1 \\ 0 \& 1 \& 0 \& 0\end{array}\) \& 1
1
1
1 \& S \& SHIFT \({ }^{\text {S }}\) \& 1 \& 01 \& 0 \& 10 \& 5
5
5 \\
\hline NAK \& ctri u \& 001 \& \(\begin{array}{llll}0 \& 1 \& 0 \& 1\end{array}\) \& 15 \& U \& SHIFT U \& 1 \& 0 \& 01 \& 01 \& \\
\hline SYN \& CTRL V \& 0
0 \& \(\begin{array}{llll}0 \& 1 \& 1 \& 0\end{array}\) \& 16 \& v \& SHIFT V \& 1 \& 0 \& 0 \& 10 \& \\
\hline ETB \& CTRL \(W\) \& \(\begin{array}{llll}0 \& 0 \& 1 \\ 0 \& 0 \& 1\end{array}\) \& \(\begin{array}{lllll}0 \& 1 \& 1 \& 1\end{array}\) \& 17 \& w \& SHIFT
SHIFT

S \& 1 \& \& \& \&

\hline CAN \& CTRL ${ }_{\text {CTRL }} \times$ \& $\begin{array}{llll}0 & 0 & 1 \\ 0 & 0 & 1\end{array}$ \& $\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1\end{array}$ \&	18
1	
1	\& $\underset{Y}{ }$ \& ${ }_{\text {SHIFT }}{ }_{\text {SHIFT }}$ \& 1 \& 0

0
0 \& 10 \& $\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}$ \& 58
59

\hline EM \& CTRL ${ }_{\text {CTRL }} \mathbf{z}$ \& $\begin{array}{llll}0 & 0 & 1 \\ 0 & 0 & 1\end{array}$ \& $\begin{array}{llll}1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0\end{array}$ \& | 19 |
| :--- |
| 1 | \& z \& SHIFT 2 \& 1 \& 0 \& 10 \& 10 \&

\hline ESC \& CTRL 1 \& ${ }^{0} 001$ \& 1001 \& 1 B \& 1 \& , \& 1 \& 0 \& 1 \& 11 \&

\hline FS \& CTRL \& $0{ }^{0} 01$ \& 1100 \& 1 C \& i \& ! \& 1 \& ${ }_{0}^{0} 1$ \& 1 \& ${ }_{0}^{0} 0$ \&

\hline GS \& CTRL 1 \& $\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 1\end{array}$ \& $\begin{array}{lllll}1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0\end{array}$ \& 1 D \& \& \& 1 \& ${ }_{0}^{0} 1$ \& 1 \& $1{ }_{1} 1$ \&

\hline RS \& ${ }_{\text {CTRLL }}^{\text {CTRL }}$ OEL \& $\begin{array}{llll}0 & 0 & 1 \\ 0 & 0 & 1\end{array}$ \& $\begin{array}{lllll}1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1\end{array}$ \& \& _ \& Shift del \& , \& 01 \& 1 \& 11 \&

\hline SP \& SHIFT 0 \& 010 \& \& \& \& SHIFT @ \& 1 \& \& 0 \& 0 \&

\hline sprester \& SHIFT 1 \& 010 \& $\begin{array}{llll}0 & 0 & 0 & 1\end{array}$ \& 21 \& a \& A \& \& 10 \& 0 \& 01 \&

\hline \cdots \& SHIFT 2 \& 0 1 0 \& $\begin{array}{llll}0 & 0 & 1 & 0\end{array}$ \& 22 \& b \& ${ }^{\text {B }}$ \& 1 \& \& 0 \& 10 \& $\begin{array}{lll}6 & 2 \\ 6 & 3\end{array}$

\hline s \& SHIFT 3 \& $\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 0\end{array}$ \& $\begin{array}{llll}0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0\end{array}$ \& \& d \& \& 1 \& \& 0 \& 0 \&

\hline \% \& SHIFT 4
SHIFT 5 \& $\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 0\end{array}$ \& $\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1\end{array}$ \& 24
2 \& ${ }_{\text {e }}$ \& E \& 1 \& 10 \& 0 \& 01 \&

\hline ${ }_{8}^{\%}$ \& SHIFT 5 \& $\begin{array}{ll}0 & 1 \\ 0 & 1 \\ 0 & 1\end{array}$ \& $\begin{array}{llll}0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}$ \& 25
26 \& 1 \& F \& 1 \& \& 01 \& 10 \&

\hline \& SHIFT 7 \& 010 \& $\begin{array}{llll}0 & 1 & 1 & 1\end{array}$ \& \& h \& H \& 1 \& 10 \& 0
1
1 \& $\begin{array}{ll}1 \\ 0 & 1 \\ 0\end{array}$ \&

\hline 1 \& SHIFT 8 \& 0 \& 1000 \& \& , \& H \& 1 \& 10 \& 10 \& $\begin{array}{ll}0 \\ 0 \\ 0 & 1\end{array}$ \& 6
6
6

\hline ! \& SHIFT 9
SHIFT \& $\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 0\end{array}$ \& $\begin{array}{llll}1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0\end{array}$ \& ${ }^{2} 9$ \& , \& J \& 1 \& 10 \& 1 0 \& 10 \& 6 A

\hline + \& SHIFT : \& 010 \& 1011 \& \& k \& K \& 1 \& 10 \& 10 \& 11 \& 6 B

\hline \& \& 010 \& 1100 \& 2 C \& 4 \& L \& 1 \& 10 \& 1 \& 0 \&

\hline \& \& 0 \& 11001 \& 2 D \& m \& M \& 1 \& 100 \& 1 \& 0
1
1 \&

\hline , \& 1 \& $\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 0\end{array}$ \& $\begin{array}{llll}1 & 1 & 1 & 0\end{array}$ \& 2 E \& " \& ${ }_{0}^{N}$ \& 1 \& $1{ }_{1} 10$ \& 1 \& | 1 | |
| :--- | :--- |
| 1 | 1 | \& ${ }_{6}^{6} \mathrm{~F}$

\hline \& \& \& \& \& \& \& \& \& \& \&

\hline 0 \& 0 \& 0 1 11 \& 0000 \& \& ${ }_{9}$ \& - \& 1 \& 11 \& 0 \& ${ }_{0} 1$ \& 71

\hline 1 \& 1 \& 0 0 1 \& 00001 \& 31 \& r \& R \& 1 \& 11 \& 0 \& 10 \& 72

\hline 2 \& 2 \& $\begin{array}{llll}0 & 1 \\ 0 & 1 & 1 \\ 0 & 1\end{array}$ \& $\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1\end{array}$ \& $\begin{array}{ll}3 & 2 \\ 3 & 3\end{array}$ \& 5 \& S \& \& 11 \& 0 \& 11 \& 73

\hline 4 \& 4 \& ${ }_{0} 111$ \& 0 1 00 \& 34
3 \& t \& $\stackrel{1}{4}$ \& 1 \& 1 \& 0 \& $\begin{array}{ll}0 \\ 0 \\ 0 & 1\end{array}$ \& $\begin{array}{ll}7 \\ 7 \\ 7 & 5\end{array}$

\hline 5 \& 5 \& 011 \& 0101 \& 35 \& * \& \& 1 \& 1 \& \& 10 \&

\hline 6 \& 6 \& $\begin{array}{llll}0 & 1 & 1 \\ 0 & 1\end{array}$ \& $0 \begin{array}{llll}0 \\ 0 & 1 & 1 & 0\end{array}$ \& 36 \& w \& w \& 1 \& 11 \& 01 \& 11 \& 77

\hline 7 \& 7 \& ${ }_{0}^{0} 111$ \& $\begin{array}{llll}0 & 1 & 1 & 1 \\ 1 & 0 & 0\end{array}$ \& 37 \& * \& \times \& 1 \& 11 \& 10 \& 00 \& 78

\hline 8

9 \& 8 \& $\begin{array}{llll}0 & 1 & 1 \\ 0 & 1 & 1\end{array}$ \& $\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1\end{array}$ \& | 38 |
| :--- |
| 3 | \& Y \& Y \& 1 \& 11 \& 10 \& 01 \& 79

\hline : \& : \& 011 \& 1010 \& 3 A \& \% \& \& 1 \& 1 \& 1 \& 10 \&

\hline $\dot{<}$ \& SHIFT \& ${ }_{0}^{0} 11$ \& $10_{1} 1111$ \& \& \& SHIFT \& 1 \& 11 \& 1 \& 00 \& 7 C

\hline $=$ \& SHIFT \& 011 \& 1101 \& \& $\}$ \& SHIFT J \& 1 \& 11 \& 1 \& 01 \& 7 D

\hline \& SHIFT \& 01 \& $1 \begin{array}{llll}1 & 1 & 0\end{array}$ \& 3 E \& DEL \& DELETE \& \& 11 \& \& \&

\hline
\end{tabular}

[^1]
Wilmslow

Audio
 THE firm for speakers!

Baker Group 2538 or 15 ohm Baker Group 35. 38 or 15 ohm Baker Deluxe 8 or 15 ohm Baker Major. 3. 8 or 15 ohm Baker Regent. 8 or 15 ohm
Baker Superb 8 or 15 ohm Baker Superb 8 or 15 ohm
Celestion MH 1000 horn 8 or 15 ohm Celestion MH 1000 horn 8 or
Coles 4001 G super weeter Coles 4001 K super tweeter EMI $14^{\prime \prime} \times 9^{\prime \prime}$ bass $144 / 7008 \mathrm{ohm}$ EMI 8×5.10 watt. d / c. roll/s 8 ohm Elac 59RM $10915 \mathrm{ohm} .59 R M 1148 \mathrm{ohm}$ Elac $61 / 2^{\prime \prime} \mathrm{d} / \mathrm{c}$ roll /s 8 ohm
Elac 10" 10RM2398 ohm
Fane Pop 15 watt $12^{\prime \prime}$
Fane Pop 55. 12" 60 watt
Fane Pop 60 watt. $15^{\prime \prime}$
Fane Pop 70 watt $15^{\prime \prime}$
Fane Pop 100 watt. $18^{\prime \prime}$, 8 or 15 ohm
Fane Crescendo 12 A or B 8 or 15
Fane Crescendo 15.8 or 15 ohm Fane Crescendo 15.8 or 15 ohm
Fane Crescendo 18.8 or 95 hm Fane Crescendo $801 \mathrm{~T}^{\prime \prime} \mathrm{d} / \mathrm{c}$ roll/s 8 ohm
Fane Goodmans 8 P 8 or 15 ohm Goodmans 10P 8 or 15 ohm Goodmans 12P 8 or 15 ohm Goodmans $12 \mathrm{P}-\mathrm{D} 8$ or 15 ohm Goodmans 12P-G 8 or 15 chm Goodmans Axent 1008 ohm Goodmans Axiom 4028 or 15 ohm Goodmans Twinaxiom $8^{\prime \prime} 8$ or 15 ohm Kef 127
Kef T15
Kef B1 10
Kef B200
Kef B139
Kef DN8
Kef DN 13
Baker Major Module, each
Goodmans Mezzo Twinkit, pair Goodmans DIN 20. 4 ohm , each Helme XLK30. pair Helme XLK 45 pair
Helme XLK40. pair
Keikit I pair
Kefkit III. each
Peerless 20-50. pair
Peerless 20 60. par
Richard Allan Twinkit each Richard Allan Triple 8, each Richard Allan Triple 12 . each Richard Allan Super Triple, each
Richard Allan CG8T $8^{\prime \prime} \mathrm{d} / \mathrm{c}$ roll/s Whard Allan CG8T $8 \mathrm{~d} / \mathrm{cc}$ roll/s Wharfedale Linton $3 \times P$ kit par Wharfedale Glendale $3 \times P$ kit pair Castle Super 8 RS/DD Jordan Watts Module 48 or 15 ohm Tannoy 10" Monitor HPD Tannoy $12^{\prime \prime}$ Monitor HPD Tannoy $15^{\prime \prime}$ Monitor HPD

Prices correct at 2/2/77
ALL PRICES INCLUDE VAT
Cabinets, wadding, Vynair crossovers etc
Send stamp for free 38 page booklet
Choosing a Speaker
FREE with all orders over $£ 10-$
'Hifi Loudspeaker Enclosures' Book
All units are guaranteed new and perfect Prompt despatch
Carriage Speakers up to $12^{\prime \prime} 60$ p $12^{\prime \prime}$ § $115^{\prime \prime} £ 175$ $18^{\prime \prime} £ 250$ Kits $£ 1$ each ($£ 2$ per parri Tweeters and Crossovers 33 p each

WILMSLOW AUDIO
 Dept. ETI

Swan Works, Bank Square, Wilmslow, Cheshire SK9 1HF. Tel. Wilmslow 29599 (Discount HiFi, PA and Radio at 10 Swan Street, Wilmslow)

Access and Barclaycard orders accepted by phone

At Last, A Compact Digital Clock, Calendar, Stopwatch, Calculator, Personal Alarm... All for $£ 29.90$
 Control Your Time with Your Own
 TIME CALCULATIONS

Personal Information Center At last, a space age device that's down to earth and practical The Galaxy 2000 is not a luxury product. but a necessity for today's busy business persons, pressured secretaries, hassled engineers and students . . and. the calendar and timer make it a great aid in tie kitchen Only Casio, a world leader in digital electronics. could have created this compact. 5.02 personal information center.

$12378.29-365=$ 33.913123 Performs ,$- \times$, constan
ciprocals, powers.

IT'S A STOPWATCH
Hi.120. 13 - 33.5

You've talked to Hawaii for 13 min .33 .5 sec . Times hris. min. sec tenths of secs. Elapsed times or Lap tume to 9 his. 59 min. 59.9 sec .

There are 978 days from Feb. 3, ' 77 to Oct. 9, '79 Computer programed from Jan. 1. 1901 to Dec. 31. 2099

IT'S AN ALARM

Set for any 4 separate times, AM or PM Alerts you of your $1: 30$ meeting. no more annoying late wake up calls, medication schedule.
LOOK AT THESE ADVANCED FEATURES. You'll surely wonder how you got along without this remarkable instrument:

DIGITAL ALARM
The alarm can be set to any of four different tımes, AM or PM. Each alarm has distinct tones. No more annoying late wake up calls on your next trip, no more missed appointments. a great reminder for your medication schedule.

TIMEPIECE/CALENDAR

The time, date and day of the week is continuously displayed by using the optional AC adapter. On battery operation, without adapter, a touch of the time button presents the same information.

ADVANCED STOPWATCH

An indispensable tool for timing just about everything. Phone calis, trips, races, production events, radio \& television programming. Records hours, minutes, seconds, tenths of seconds. Both total elapsed time (with timeout feature) or total lap times up to 9 hours, 59 minutes and 59.9 seconds are available.

Special time key calculates in Base 60 for any hours minutes and seconds calculations you need. All time problems are computed directly $1+,-, x,-1$ and automatically without cumbersome conversions. The Galaxy will also convert time to decimal numbers. a must for payroll. time logs and time \& motion studles.

DATE CALCULATOR
The Galaxy 2000 is preprogrammed to indicate times between any dates from January 1. 1901, to December 31. 2099. You can determine days left to complete a contract. number of days into a specific program. It's ideal for interest calculations, and it also indicates the day of the week.

CALCULATOR

Performs + - \times - calculations to 8 digits, also constants. squares. powers and reciprocals Display is ralsed and titted for easy viewing

CASIO ENGINEERING AND QUALITY

Your GALAXY 2000 was designed for years of trouble free operation One year Casio limited warranty Batteries included

Truly a product of the future available today.
Act Now and Order Your Galaxy 2000 Today You'll Be Saving Time and Money Tomorrow!

aIL PRICES INC. vat ANO $P \& P$
[Mail Order Only]
SAE for Brochure - Export Inquiries Invited
KRAMER \& CO.
9 October Place. Holders Hill Road. London. NW4 IEJ

Telex 888941 (attn Kramer) Tel 01-203 2473

UPDATE $1:$ 3,4000 more Transistor Substitutes

> The most comprehensive, low-cost, single volume coverage of transistors you can buy.

Towers' International Transistor Selector

TDTomen wee, wh cos ceng mare

We've got the new one!

COMPLETELY REVISED. 30\% MORE COVERAGE. ONLY £5.00 INC. P \& P.

When the first edition of this excellent book was published in 1975 ETI was the first to offer it.

We are doing it again!
UPDATE 1 increases the coverage of transistors by about 30% on the first edition.

European Proelectron Standard devices increase by 1500 and now ensure a very comprehensive coverage of Philips,
Siemens, Telefunken and Texas Instruments in Europe.

The Japanese 2 S Standard Devices coverage has been increased from 1,850 to 3,000 and a further 800 American 2 N devices have been selected.

The original 10,000 entries have been fully edited and this new production has been clearly printed from new computer setting.

Your order will be processed on the day of receipt.

To: ETI BOOK SERVICE

P.O. BOX 79, MAIDENHEAD, BERKS SL6 2EG

Please send me \qquad copies of
Towers' International Transistor Selector
Revised Edition Up Date 1 at $£ 5.00$ each inc. $p \& p$.
I enclose cheque/postal order forf
made payable to ETI BOOK SERVICE.
NAME
ADDRESS
\qquad

TECHNICAL BOUXS FBOM ETII

CALCULATORS \qquad 99 Wars to know ano use roun fiectromic Calculator	${ }^{4} 4.5$
CIEN TIFIC ANALYSIS ON YOUR POCKET CALCULATOR	
COMPUTERS AND MICROPROCE	
COMPUTER CIRCUITS ANO HOW THEY WORI B. Wells	
COMPUTER TECHNICIANS HANOBOOK B. Werd	
Mctaproocessons	
come	
micmorpoctsons	
MICROPRDCESSORS AND MICRDCDMPUTERS B. Sousek	

ELECTRONICS

ACTIVE FILTER CDDKBOOK

D. Lascesstor
$£ 10.75$

ELECTRDNIC ENGINEERS REFERENCE BDOK - 4th EOITIDN
\qquad L. W. Turner £27.60 students
basic maths course for electronics
H. Jacobowitr
Quick short cul way to leatn the language of niat is as applied to
dectronics
designing with til integrated circuits
Texas instruments
Covers the entife
digtal systems
ELECTRONIC MEASUREMENTS SIMPLIFIED C. Hallmart£2.10
ELECTRONICS POCKET BDDK £4.15
ELECTRDNICS ANO PHOTDGRAPHY £2.20

ESSENTIAL fDRMULAE FDR ELECTRICAL AND ELECTRDNIC ENGINEERS
N.M. Morri*
£1.20

- Handy reterence book inclu
fire amd theft security systems
B. Wels
Selection
£1.90
devices
how to mead electronic circuit diagrams
8 Brown
¢1. 85
Everything you
integrated circuits

a puacical

HOW TO USE IC CIRCUIT LOGIC ELEMENTS
J. Streator

INTEARATED ELECTRONICS
Millman
Using an ic approach the text leacis the reater sien by atep 60
IC OP-AMP COOKBODK
W. Jung
linear integrated circuit applications
G. Clayton
£4.90

INEAR IC PRINCIPIES EXPERIMENTS AND PROJECTS
 E. M. Noll
 f6. 20

t10 OPERATIONAL AMPLIFIER PROJECTS FOR THE HOME CONSTRUCTDR
C2.85
R. M. Marstion
Outines the essential characteristics of on dmins and mresents useful
propects
I10 SEmiCONDUCTOR PROJECTS fOR THE HOME CONSTRUCTOR M. Marston
¢2.85 mintioduces :he reader to FET
(letails of many useful cuicurs
CONSTRUCTOS DIGITAL IC PRDJECTS fOR THE HDME CONSTRUCTOA
£3.10
110 INTEGRATED CIRCUIT PROJECTS FOR THE HDME CONSTRUCTOR
CONSTRUCTOR
R. M. Marston
All the urojects have theen devised huill and tuliv evalualed by the
110 ThYRISTOR PRDJECTS USING SCR's
R. M. Marsion
£2.85
mas digtal ics
G. Fiynn
£4.50
operatidnal amplifiers design ano applications [Burt Brown)
G. Tober
$£ 7.30$
G. Tober

PIN POINT TRANSISTOR TROUBLES IN 12 MInUTES
L. Garner
£2.85
sempice procedures

PRACTIGAL TRIAC/SCR PRDJECTS FOR THE EXPERIMENTER
R Fox f2. 15
R. fo
2.15

Diacs
PRINCIPLES OF TRANSISTOR-CIRCUITS
S Amos
Generally accepted as beinty a standard lexthook on lundamenta
punciples underlying the design of curcults, and using transistors
RAPIO SERVICING OF TRANSISTDR EQUIPMEMT
G. King \quad \&2.85
jur incerne television tape
SEMICONDUCTOR CIRCUIT ELEMENTS
T. D. Towers $\quad \mathbf{6 6 . 3 0}$
wanlabere tors each device a covers a qeneral descyphion croult diagran symbols and woiking patinciples
SOLIO STATE CIRCUIT GUIDE BDOK
B. Ward
E2.15
B. Ward by step instituctions to design cricuits to vout own specitications
transistor circuit oesign $£ 9.25$
TTL COOKBOOK
D. Lancaster
practical applicalions

UNOERSTANDING ELECTRONIC CIRCUITS

R. Sinclair

Bescitbes various cricuits encountered UNOERSTANDING ELECTRDNIC COMPONEMTS
R. Sunclair
£4.00
Explains about components and brietges the gap be
understanding cmos integrated circuits
R. Meden
Begys with

E3.80
CMOS
fabmicaton terhnology and design
understanding solid state circuits
N. Crowhurst

ELECTRONIC ORGAN BOOKS

transistor electronic organs for the amateur A. Douglas

Wimpen in a simple sivle this gives a complete eaplanation of everviting to tow with

THE ELECTRONIC MUSICAL INSTRUMENT MANUAL
A. Douglas

A combrent

SEMICONDUCTOR DATA

POPULAR VALVE/TRANSISTOR SUBSTITUTIDN GUIOE
radio valve and semiconductid data
A. M. Ball
. up to date and uver 450.000 comes have been sold

RADIO AND TELEVISION

FOUNDATIDNS DF WIRELESS AND ELECTRDNICS
M. G. Scroggie
iNew 1975 edilion,

SERVICING TRANSISTDR RADIDS

 Dairo
TEST EQUIPMENT AND OSCILLOSCOPES-

bASIC ELECTRONIC TEST PRDCEDURES

1. M. Gottheb $£ 2.35$

Stlows how
oschluscores
THE OSCILLOSCDPE
G. Zwick
£2.10
PRACTICAL TEST EQUIPMENT YDU CAN BUILD
W. Green
For technicians racho iv service operators and serious expertmenters

TEST INSTRUMENTS FDR ELECTRONICS
M. Clifford

EdSy motidications to vour VOM VTVM and scope with the atid of this
WORKWG WTH THE QSCILIDSCDPE
A. Saunders

SERYICING WITH THE DSCILLDSCOPE
G. King
includes a unique series of phorographs show ing nscilloscope waces 10 circuits sevicing is deali with

HOW TD OADEA All prices are corract at the time ol going to press but are subiect to alitralion wilheul natice. All prices incluta postage. Flense print your name ant addrass clearly and list rach lifle and price saparampy. Chequas and postal ortars should be mata payabte to ETi Gook Service. Booke are sant on soven dapa approval against a full cash remitiance, plus pastige. Boak slack is not hald at ETI's lamden oftices and orders should bo sent to ETI BODK SEAVICE. P.O. BOX 79. MAOENHEAD. BEBKS SL5 $2 E 6$

Our Birthday Cake was made for us by DAVID PITHERS, 89 KENWORTHY ROAD, HACKNEY, LONDON E.9.

VIDEOMASTER SUPERSCORE

SPARKRITE IGNITION

A SIX game unit. It will play football, tennis, squash, solo, A well-proven design this. A very reliable device, and one and two rifle games (with an optional extra). All with that as a kit is easily and quickly constructed. Offers all the variable ball speed, two angle action, and full sound effects. advantages of electronic ignition systems, along with the The kit is very easy to assemble - and even easier to play! fun of building it yourself! (Worth $£ 11.80$) (Worth £24.95)

P.B. ELECTRONICS 'GIFT BOX'

Superbly presented this contains one u-Dec, one T-Dec, their equivalent 'Blob Boards', pin-leads by the hundred, and four IC holders to plug to the Decs. Everything's included, and everything has its place. The case alone is worth winning, never mind the contents! (Worth $£ 25.00$)

NOVUS LCD WATCH

Exactly as featured in our phenomenally successful reader offer. A five function, continuous display electronic watch. Along with the accuracy of the quartz crystal timebase, and the superb contrast of the display, goes a seconds readout, and day date (U.S. style) format. (Worth $£ 16.95$)

VEROWIRE KIT

This is a fairly new venture for the 'board people' - a complete wiring-pen outfit, including pen and wire-reels, magnifier, wiring harnesses, pins, wire-cutters, pin insertion tool, and dil prototyping board. A definite essential if you do a fair bit of digital work, and very useful indeed for prototyping ANY kind of circuit. (Worth $£ 18.15$)

1. Any persons in any way connected with the competition are ineligible to enter. This includes employees of firms manufacturing the prizes, and of Modmags Ltd.
2. The decision of the judges shall be regarded as final.
3. The prizes will be awarded to the first five correct entries drawn after the closing date, which shall be April 30th. No correspondence can be entered into regarding the competition.
4. All entries must be on the coupon from the magazine. Photostats are not acceptable.
5. Results will be published in the July issue of ETI, and winners notified by post.

THDAY COMPETITION

A bit of a change this time. Below are eight photographs of electronic components or equipment. All you have to do is to tell us what they are. Of course we've taken them from as obscure an angle as possible - just for fun. None of the items depicted is as rare as it looks; you will certainly have seen them all many times from many angles. Fill in the answers on the coupon. For instance, if you think A is an atomic tea-strainer and butterfly mincer, write that next to A on the coupon. One hint: A is not an atomic tea-strainer.

Competition closes 30/4/77 and the results will be announced in the July issue of ETI. Good luck - and why didn't you send us a card?

chatronitustoder

What to look for in the May issue-on sale April Ist.

At last a single-chip TV game!

We've done it again! Next month we're presenting a really comprehensive DO-IT-YOURSELF T.V. game design. Our unit plays football, tennis, squash and a practice game. All have two speed action, variable reflection angle, and naturally on screen scoring and full sound effects. Boundaries are clearly shown, and the size of bat can be altered. If you think you can play T.V. tennis try

playing our game with small bats and variable angle!
The game is based on the G.I. AY-3-8500 chip, the retail price of which is $£ 15$. However, for those of you who will be building this project, Maplin Electronics (see back cover for address) are making a special offer of $£ 8.99$ inc. until April 18th. (Trade enquiries are welcomed!) A full kit of parts will be available upon publication of the article.

Hi-Fi Spea Enclosure

Our first venture into speaker design is a large bookshelf/small, free-standing, high quality enclosure. We avoided the usual 'megalithic monster' syndrome, and paid very special attention to the crossover and enclosure design instead - both sadly neglected areas. The result is an enclosure which has a performance that totally belies its size, and is very simple (and reasonably cheap!) to construct. The crossovers are available ready built off the shelf - so no coil winding - and full woodwork details are given in the article.

SHORT CIRCUITS

SIGNAL INJECTOR/TRACER

A handheld unit with its own amplifier and oscillator. The amp is usable separately from the oscillator, and provides very reasonable quality for circuit checking.

METRONOME

A two-transistor design with a wide range from several seconds to several per second - and we include a fixed position with a beat rate that shows some evidence that stammerers can be helped.

We've heard about I'L, you've heard about it, but until now it has been almost impossible to find out what this new technique is, where it can be used and what advantages it has over TTL and/or CMOS.
In the May issue we tell all.

The Valves that Won the War

The last world war was the first fought using technology and the Allies eventually outstripped the Axis powers and that led to our victory as much as the cheerful Tommy and the resiliant Ivan. Radar was perhaps the one most important development but this only became practical and portable with the development of the klystron.

Features mentioned on this page are in an advanced state of preparation but circumstances, including late developments may affect the final contents.

A. MARSHALL (LONDON) LTD DEPT. ET. GLASGOW - 85 West Regent Street. G2 200 BRISTOL - 1 Straits Parade. Fishponds Rd. BS 162 LX NEW 1977 CATALOGUE
${ }_{5168}^{31}$
¿PAGES

Top 600 Semiconductors from the largest range in the UK - all devices manufacturers' branded stock from RCA, TEXAS, MULLARD, MOTOROLA NATIONAL, SIEMENS, ITT, THOMSON, CSF, SGS, SSDI, FERRANTI, etc

MARSHALL'S QUALITY FOR TTL
TTL Integrated Circuits - Quality \& Prices you can't beat - Top manufacturers only

SNTMAO														
SN7402	0.21	SNTA	0.61	SN7400	-0.21		- $\begin{aligned} & 0.46 \\ & 0.38 \\ & 0.35\end{aligned}$		${ }^{1.85}$	SN74118	0.9.98	¢N74157	${ }_{41}^{98}$	
cis	0.26	SNT420	${ }_{0}^{0.61}$		${ }_{1.23}$	¢	${ }_{0}^{0.43}$	SN7491	${ }_{0}^{0.981}$		${ }_{0.45}^{0.49}$	SN74:62	41	SNA4901
	${ }^{0.726}$		0.39 0.39		1.17		- 0.58	SN749	${ }_{0}^{0.61}$	(in7423,	${ }^{0.58}$	(en74163	${ }_{23}^{41}$	
¢N7407	- 0.74		-0.39	¢ ${ }_{\text {SN7a }}^{\text {SN7a }}$	0.27	SN7	$\stackrel{0}{0.45}$	${ }_{\text {SNN }}^{\text {SN7 }}$	-0.74 0.78 1.	SN	${ }^{1.066}$	SN71165	${ }_{\text {l }}^{1.23}$	- ${ }_{\text {SN74 }}^{\text {SN4 } 196}$
	0.29 0.21	(entis	(e.35		0.21		$\stackrel{0.67}{1.33}$	(inde	1.15	cis	1.11		1.35	

CLOCK MODULES

Buitand
supply.
Easily on

SEE MARSHALL'S FOR CMOS

NATIONAL
voltage regulators

LM309KЕ2.10LM317КЕЗ.00LM 323 КЕ6.40

NEW 1977 CATALOGUE WITH 500 NEW LINES
CRAMMED WITH NEW PRODUCTS TECHNICAL INFORMATION AND ALL BACKED BY THE USUAL VICE - FOR ONLY 55p POST PAID Please add VAT to your order
Postage and packing 30p.

THESE ARE MOS CIRCUITS, using deple-tion-load ion implantation process. Both chips work in 12 or 24 hr mode and will drive displays directly. Features included are$10 \mathrm{~mA} /$ segment LED drive; low voltage backup $(9 \mathrm{v})$; forward or reverse time setting; intensity control; non-MPX display; 24 hr alarm in three modes - tone, radio or tone plus radio; variable 'snooze' (1-59 mins); count hold; summer/winter time switch; clear on switch on; leading zero suppression in 12 hr mode. ON 50362 ONLY Four Year Calendar; choice of date display format; second alarm time.

The snooze inhibits an activated alarm for 10 min periods. The 'sleep' will activate the radio for between $1-59 \mathrm{mins}$ (adjustable).

POWER FAILURE

At the occurrence of power failure, the digits will flash at 1 Hz to indicate incorrect time displayed. Set 2 (forward) switch should be closed (once power is restored). This mode is triggered when the colon output goes to $V_{S S}$ and may occur at initial power-on.

DISPLAY MODE

The input is three state. Operation is as follows.

Display Input	Mode
$V_{S S}$	Alarm time displayed
Open	Time displayed
$V_{D D}$	Seconds displayed

When in alarm mode, the time displayed is that to which the alarm is set. It may be altered by use of the time set procedure, given below.

SETTING

The setting mode allows either a forward setting or reverse setting of the display. The setting inputs are

Set 1 or
Set 2 Input

$$
\begin{aligned}
& V_{\mathrm{SS}} \\
& \text { Open }
\end{aligned}
$$

$V_{D D}$
Mode
Forward Set
Reverse Set
When either the set 1 input or set 2 input is connected to $V_{S S}$ the display will increment. Connecting the input to $V_{D D}$ will decrement the display. When the display is not being set, the inputs should be left open. The set 1 input changes the hours digits at two counts per second. The set 2 input changes the minute digits at two counts per second. Carrys or borrows are not allowed during time setting.

DISPLAY FORMAT

The display format is used to select a 12 hour display, 24 hour display or to blank the display. The connections are
Display Format Input
$V_{\text {SS }}$
Open
$V_{D D}$

Mode

12 Hour

Von
In the 12 hour mode, the hours digits will display time in 12 hour format with a PM output. When the input is connected to $V_{D D}$. the format will be 24 hour time. In the blank mode the segment outputs will float, allowing wire-or conditions.

COLON

In normal operation, the colon flashes at one Hertz rate for an activity indicator. The colon output conducts to $\mathrm{V}_{\text {SS }}$ with a 50% duty cycle in the 60 Hz mode and 40% duty cycle in the 50 Hz mode. The colon is off when displaying calendar, seconds or sleep tıme.

INTENSITY

The intensity input regulates the current of the segment outputs and colon output.

The intensity input regulates the current of the segment outputs and colon output. Over a range from $3 \mathrm{~K} \cdot$ to $30 \mathrm{~K} \cdot{ }^{\prime}$ for the intensity resistor ($\mathrm{R}_{\text {SENSE }}$), the following equation may be used to predict segment current ($\mathrm{I}_{\mathrm{SEG}}$);

$$
\mathrm{I}_{\text {Let, }} 18 \frac{\mathrm{~V}_{\text {FWD LED (in volts) }}}{\mathrm{R}_{\text {SENSE (in Kohms) }}} \mathrm{mA}
$$

Segment current is relatively independent of the voltage on the segment pins, therefore the LED display voltage supply need not be well filtered. For minimum value of $\mathrm{R}_{\text {SENSE }}$ (intensity control resistor), care should be taken to insure total circuit power dissipation does not exceed safe operating limits

AM/PM OUTPUT

When in the 12 hour operating mode, the TH3/PM outpui conducts to $\mathrm{V}_{\text {SS }}$ when active. The indicator will change states when the hours change from 11 to 12 . When in the 24 hour mode this output drives segments $A, D \& G$ on the most significant digit. Consideration must be given to wiring the display to accommodate both 12 hour and 24 hour operation using the same display.

TIME SELECT [Daylight saving time)

Connection of the time select pin to V_{SS} will advance the time by one hour. By opening the connection, the time will return to the original time. Connecting this input to $V_{D D}$ will reset the clock to the Power Up mode.

ALARM ENABLE/WAKE SELECT

The alarm can operate in three modes according to the voltage on the wake select pin. The states are defined as:
Wake Input
$V_{S S}$
Open
$V_{\text {DD }}$
Mode
Tone
Radio
Radio followed
by Tone

The Alarm enable pin enables alarm 1 when connected to $V_{S S}$. If it is left open it will disable the alarm due to an internal resistor. When the alarm occurs it may be disabled and immediately re-enabled and will activate 24 hours later at the alarm time. The alarm will self-disable after one hour of operation. The output tone will be in the range of 200 to 1000 Hz and conducts to $\mathrm{V}_{\mathrm{SS}} 8.3 \%$ of the time at a 1 Hz rate.

Radio out, when activated by either the alarm or sleep function, will conduct to $V_{S S}$.

When the radio followed by tone mode is selected, radio out conducts to $V_{S S}$ at alarm time. Eight minutes later the tone output will be enabled. Both remain on until inhibited by the alarm enable control, snooze, or the automatic alarm reset which occurs after one hour.

SNOOZE/SLEEP INPUT

The snooze and sleep inputs use a single pin to select snooze or sleep. The connections are

Snooze/Sleep	Mode
$V_{S S}$	Snooze
Open	No Change
$V_{D D}$	Sleep

The Snooze feature will temporarily turn off an activated radio and tone outputs to allow an additional 10 minutes' sleep. Momentarily connecting snooze to V_{SS} will activate the snooze. If left open an internal pull-down resistor will maintain the snooze feature inoperative.

Connection of the pin to $V_{D D}$ will display the sleep time in minutes in the minutes digits. The time will start at 10 minutes, and the set 2 input is used to set the sleep time. Radio out will conduct to $V_{S S}$ for the amount of time set. After the time decrements to zero radio out will turn off, provided that the Snooze / Sleep input is not being held at $V_{D O}$.

If the snooze is active, the sleep input will reset the snooze function. The snooze input will reset an active sleep time.


```
THESE CHIPS ARE AVAILABLE FROM PRONTO ELECTRONIC SYSTEMS LTD. 645-647, HIGH ROAD, SEVEN KINGS, ESSEX, IG3 8RA.
PRICE- \(£ 8.00\) inc.
```

RECOMMENDED OPERATING CONDITIONS ($0^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$)			
PARAMETER	Min	Max	Units
Operating Voltage, $V_{\text {DD }}$	-12	-16	Volts
Standby Voltage, VDD	-8.0	-12	Volts
Input Logic Levels: Set 1, Set 2, Display Mode, Snooze/Sleep, $50 / 60 \mathrm{~Hz}$, Display Format, Alarm Enable, Wake Select, Time Select, Time Base Select, Auxiliary	$\begin{aligned} & V_{S S}-1.0 \\ & V_{D D} \end{aligned}$	$\begin{aligned} & V_{S S} \\ & V_{D D}+1.0 \end{aligned}$	Volts Volts
Intensity Control	3	30	$\mathrm{K}-\mathrm{OHMS}$
Segments, Colon		-26	Volts

DISPLAY FONT

FUNCTION SETTING

The displayed function is set using the set inputs while the appropriate function is. displayed using the display mode input and auxiliary input. The set 1 input changes the hours or month digits at two counts per second. The set 2 input changes the minute or date digits at two counts per second. Carrys or borrows are not allowed during setting except for an illegal month date combination.

The MK 50362 N contains an auxiliary input which allows the selection of additional features. All other functions operate like the MK 50361 N

The additional features are selected by using the Display Mode Input and the Auxiliary Input. The selection is.

	Display Mode	Auxiliary Input
Function	Input	Open
Alarm 1 Set	$V_{S S}$	Open
Current Time	Open	Open
Seconds	$V_{D D}$	$V_{S S}$
Month Date	Open	$V_{D D}$
Date Month	Open	$V_{S S}$
Alarm 2 Set	$V_{S S}$	$V_{O D}$
Time Zone	$V_{O D}$	

MONTH-DATE CALENDAR

The calendar is a four year calendar. Connecting the Auxiliary input to $\mathrm{V}_{S S}$ will display a Month-Date format. A Date-Month format can be selected by connecting the Auxiliary input to $V_{0 D}$. The display mode input must remain open.

SECOND ALARM TIME

The second alarm time can be displayed by connecting the Display Mode input and the auxiliary input to $V_{S S}$. To enable the alarm, the Alarm Enable pin should be connected to $\mathrm{V}_{\text {DO }}$. Alarm 2 will not have an automatic shutoff. Disabling either alarm will reset snooze

The HD-0615 Keyboard Encoder is a 16 line to four-bit parallel encoder intended for use with manual data entry devices such as calculator or typewriter keyboards. In addition to the encoding function, there is a Strobe output and a Key Rollover output which energises whenever two or more inputs are energised simultaneously. Any four-bit code can be implemented by proper wiring of the input lines. Inputs are normally wired through the key switches to the +5.0 V power supply. Full typewriter encoding up to eight bits can be accomplished with two Encoder circuits by the use of double pole key switches or single pole switches with two isolation diodes per key. Outputs will interface with all popular DTL and TTL logic families. The circuit is packaged in a bermetic 24 -pin dual in-line package and operates over the temperature range of $0^{\wedge} \mathrm{C}$ to $+75^{\wedge} \mathrm{C}$

truth table																					
								InPu											OUTP		
1	2	3	4	4	6	1	*	9	10	11	12	13	14	15	15	,	2	3	1	5t.	$\overline{K_{R O}}$
t	1	t	L	L	t	$\stackrel{1}{ }$	1	1	L	t	L	L	t	L	1	H	H	H	H	H	${ }^{\text {H }}$
H	1	1	1	1	$\stackrel{1}{6}$	\downarrow	1		b	t	L	\downarrow	t	เ	t	${ }^{\text {H }}$	${ }^{\text {H }}$	$\stackrel{H}{4}$	${ }^{\text {H }}$	1	N
t	H	เ	1	L	1	\llcorner	เ	1	เ	1	し	,	,	เ	,	-	H	H	${ }^{+}$	L	н
t	t	${ }^{*}$	1	1	1	1	t	L	- L	t	L	1	t	1	1	H	L	H	${ }^{\text {H }}$	L	H
t	t	t	H	4	1	\llcorner	1	1	1	t	L	,	L	L	t	L	1	H	H	เ	H
t	1	$\stackrel{1}{ }$	1	N	,	\llcorner	1	1	1	1	,	,	t	เ	,	н	н	\llcorner	H	เ	н
t	t	t	t	L	H	L	t	1	1	t	t	L	t	,	t	-	H	1	H	L	н
t	1	L	t		1	M	1	t	$\stackrel{1}{1}$	t	L	1	t	t	t	H	t		${ }^{\text {H }}$		${ }^{\text {H }}$
t	,	เ	1	1	1	1	H	1	\downarrow	1	\downarrow	\downarrow	t	เ	t	-	1	1	H	เ	н
t	t	\llcorner	1	L	1	L	t	\cdots	1	t	L	t	,	เ	t	н	H	H	t		H
1	1	1	1	1	1	$\stackrel{1}{ }$	1	1	H	1	1	L	t	L	t	1	H	H	1		${ }^{\text {H }}$
t	1	t	t	เ	t	\llcorner	'	1	6	${ }^{\text {H }}$!	t	t	b	t	H	1	H	t	1	${ }^{\prime}$
t	t	เ	1	L	t	L	t	$\stackrel{1}{ }$	1	t	H	L	,	L	1	L	1	${ }_{\text {H }}$	1		H
t	t	1	1	L	1	1	1	1	1	t	1	н	t	L	1	н	H	t	t	,	H
t	,	เ	1	L	t	1	t	\downarrow	$\stackrel{1}{2}$	t	6	t	H	เ	1	1	N	b	t	6	H
	1	6	t	L	$\stackrel{1}{1}$,	t	$\stackrel{1}{1}$	เ	,	L	L	L	H	1	\%	1	1	,	し	н
1	1	1	t	L	1	1	\downarrow	\downarrow	L	,	t	,	1	L	${ }^{*}$	L	t	1	1	t	н
	arta	NO 0	¢ mone	he migh												*	\times	\times	\times	1	,

Figure 2. SWITCH BOUNCE ELIMINATION

THE ENCODER IS AVAILABLE FROM PRONTO ELECTRONICS, ADDRESS PAGE 39, FOR £8.10 inc.

P.B. ELECTRONICS' OFFER TO ETI READERS

BLOB BOARD OFFER

Save over 30% on this new experimenter's product from P.B. Electronics!

Blob Board is a superb new aid to the home constructor, it allows prototypes to be built quickly and accurately, without the need to work out complex component patterns first.

Normally half the price of previously competitive boards, they allow the user to go direct from circuit diagram to completed board in a matter of minutes and without the use of messy chemicals. Component layout can be drawn directly onto the Blob Board, with a felt-tip eliminating many of the errors which can occur in transferring from circuit diagram to ordinary PCBs.

Components can be re-used and re-soldered making circuit prototype modifications and amendments both fast and easy. All Blob Boards are roller-tinned to facilitate easy and reliable soldering, and are reusable. The boards in this months offer have been chosen to make up two packs - one for the I.C. experimenter, and one for discrete users. The savings are at least 30% on RRP - this on a price already very low, for such a useful tool.

Send to:

BLOB BOARD OFFER

P.B. Electronics (Scotland) Ltd.,

57 High Street.
Saffron Walden.
Essex
CB10 1AA
Please supply me with . . . I.C. PACKS (at £1.79 each) and I
DISCRETE PACKS (at £1.64 each). In addition I enclose 30p postage irrespective of the number of packs ordered. I enclose my cheque/P.0.
for £....

Join the Digital Revolution

Understand the latest developments in calculators,
 computers, watches, telephones, television, automotive instrumentation

Each of the 6 volumes of this self-instruction course measures $113 / 4^{\prime \prime} \times 814^{\prime \prime}$ and contains 60 pages packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.
Design of Digital Systems

plus 80 p packing and surtace post anywhere in the world.
Payments may be made in foreign currencies.
Quantity discounts available on request. VAT zero rated

Also available - a more elementary course assuming no prior knowledge except simple arithmetic.
Digital Computer Logic and Electronics
In 4 volumes

1. Basic Computer Logic
2. Logical Circuit Elements
3. Designing Circuits to Carry Out Logical Functions
4. Flipflops and Registers
$£ 4.20$
plus 80p P. \& H
Offer Order both courses for the bargain price $£ 9.70$, plus 80p P. \& P.

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before procpeding to the next.

Designer

Manager
Enthusiast
Scientist
Engineer
Student

Guarantee-no risk to you

If you are not entirely satisfied with Design of Digita، Systems or Digital Computer Logic and Electronics, you may return them to us and your money will be refunded in full, no questions asked.

To Cambridge Learning tnterprises. Uept. COM, FREEPOST

Rivermill House, St. Ives, Huntingdon, Cambs. PE17 4RR

- Please send me . . . set(s) of Design of Digital Systems at $\ddagger 7.00$ each $p \& p$ included
orset(s) of Digital Computer Logic and Electronics at $£ 5.00$ each, p \& p included
or combined set(s) at $£ 10.50$ each, p \& p included

Name

Address
-delete as applicable
No need to use a stamp - just print FREEPOST on the envelope

complete

 NON ALARM \& 10.65 | VAT |
| :--- |
| +20.8 | ALARM $\{13.43$ $+£ 1.07$

"'DELTA"

including P\&P

genuine teak or perspex case

DELTA DATA: 4 Radiant Red $1 / 2$ inch high LEDs. 12 hr display with AM/PM indication. Beautiful Burma Teak Case or Pretty Perspex in White, Black, Blue, Red, Green. Power failure is indicated by flashing display.
MODULES: Kits can be bought without case
Non Alarm £9.00 Alarm £12.50 incl
READY BUILT: Buy a working tested module and fit your own case Non Alarm $\mathfrak{E} 950$. Alarm $£ 13.00$. Or put it with our case parts @ £4.32 and save on complete clock price
Complete Clock ready built. 2 yr. guarantee. Non Alarm $£ 13.50$.
Alarm £16.50
ALARM FEATURES: Pulsed tone. Tilt operated 10 minute 'Snooze' period. Single switch setting. Optional extra mercury switch (45p) allows Alarm reset by tilting clock. Digit.. brightness is automatically controlled to suit lighting level.

Send payment with order. S.a.e. for complete range of clocks, calculators \&
PULSE ELECTRONICS LTD.
DEPT. E4, 202 SHEFFORD ROAD CLIFTON, SHEFFORD, BEDS.
Telephone: Hitchin (0462) 814477

SHORI CIRCUTS

BENCI SUPPLY

A NEW COMPONENT from Fairchild makes this power supply much simpler than other designs of similar capability. The 78MGT2C is a long title, in fact written in our type, the name is longer than the device!

The meter should be looked upon as an optional 'luxury' extra. The design will function perfectly without it, and will be nearly a fiver cheaper to construct. Use a deacent pot, and calibrate it.

CONSTRUCTION

Physically the most difficult part of construction will undoubtedly prove to be drilling the case. Mount all the components to the PCB as shown in the overlay, noting that BR1 and C1 are mounted onto T1, not the board.

The short circuit protection resistor R2 is specified as 0R5 ($1 / 2 \mathrm{ohm}$) at 5 W . You could use two $1 R$ in parallel (at 2.5 W each) if you have trouble obtaining the component.

Q2, the output series pass transistor, must be isolated from the case which functions as its heatsink. Also ensure the connections to C 1 do not short to the case while you're at it! The heatsinks for IC1 can be bent to any convenient shape or size, the minimum size for which may be taken to be that which we used! There is no DC (output) fuse, as the IC can look after itself better than any fuse!

How it worlas

What can we say? ICl does all the work. Cl is provided to smooth out the full wave rectified DC from BRI. The voltage at the output pin 2 of IC1 is varied by varying the control voltage applied to pin 3.

Q2 is used to enable more current to be drawn than ICl could provide. Unaided, it could supply 500 mA . In this circuit loads can draw in excess of 1.5 A
without the supply shutting down. Should the dissipation of the chip exceed safe limits, the output will be limited.

Short circuit protection for the serics pass transistor is provided by R 2 and Q 1 . C 2 and C 3 provide input and output bypassing, and their retention is recommended to ensure stability in all possible conditions.

Short Circuits

ALSO HEAT SINK TABS ARE COMM.

Arrow Electronics Ltd., Leader House, Coptfield Road, Brentwood, Essex, are supplying a COM PLETE kit of parts for this project. Complete here is used in its proper context. The P.C.B. is screen-printed, and everything you need is in there, right down to the case and P.C.B. stand-off pillars! Two versions are available, with or without meter ($0-50 \mathrm{~V}$ not as our prototype, but perfectly compatible) at $£ 12.60$ or $£ 16.60$ inclusive respectively.

PCB Foil Pattern (full size)

RESISTORS	
R1	5R6 1W
R2	OR5 5W (SEE TEXT)
R3	$4 \mathrm{k} 7 \mathrm{1} / 2 \mathrm{~W}$
CAPACITORS	
C1	2,200u 50 V electrolytic
C2	$220 n$ polyester
C3	100n polyester
SEMICONDUCTORS	
Q1	2N2905 or similar
Q2	TIP 32A or similar
IC1	uA78MG T2C (positive voltage regulator)
BR1	200V 1.6A Bridge Rectifier
POTENTIOMETER	
RV1	25k Lin. rotary
SWITCH	
METER M1	0-25V DC panel type
CASE Samos S6	Doram: 984-481
TRANSFO T1	$\begin{aligned} & \text { 2MER } \\ & 240 \mathrm{~V}-24 \mathrm{~V} 2 \mathrm{~A} \text { type } \end{aligned}$
MISCELLA Knob, insu fuse, 4 mm P.C.B. pilla mains flex	NEOUS ting kit for Q2, fuse holder, red and black sockets, grommet , nuts, bolts, etc, flex, 3-core mains neon.

FUZ2 BOX

STRANGE AS IT SOUNDS, by far the most popular and sought after effect these days is distortion. More fuzz boxes have been constructed and purchased than any other of the myriad types of guitar 'modifiers' on the market.

Although the aim is basically very simple, some very high prices are being asked, which would tend to make one think (or hope!) that there is more to the principle th in meets the soldering-iron. We've kept our's simple: the total cost including board, case and footswitch ($£ 1.50$ alone) should be approximately $£ 6.00$.

CONSTRUCTION

The stereo jack SK2 is used to switch the unit on and off; when a mono jack is inserted it shorts two contacts, and completes the supply circuit. The PP6 battery specified

Care has been taken in the mechanical design. The bypass switch and both level and fuzz controls can be foot-operated whilst playing. RV2 can be set so level at fuzz and bypass are equal, however it can be used with RVI to extend the range of effects possible.

How it worlss

Transistors Q1 and Q2 amplify the incoming signal, and the gain is such that the input will 'overload' when used with an electric guitar. RV1 adjusts the amount of feedback present, and hence voltage gain.

The output is therefore a 'squared' version of the input signal, the amount of 'squaring' being variable by RV1.

Parts List

RESISTORS	All $1 / 2 \mathrm{~W} 5 \%$	
R1	39 k	
R2	100 k	
R3	680 R	
R4	5 k 6	
R5	56 R	
CAPACITORS		
C1	10 u 16 V electrolytic	
C2	100 u 16 V electrolytic	
C3	47 n ceramic	
C4	47 u 16 V electrolytic	

SEMICONDUCTORS

Q1,2 BC108 or similar

POTENTIOMETERS

RV1	1k Lin. rotary
RV2	100 k Log. rotary

SWITCH
SW1a,b
Double pole, change over, push on/push off footswitch. Bulgin SM270 type or similar is available from two advertisers: ANCO, 50 Rainsford Rd., Chelmsford - or MAPLIN, P.O.Box 3, Rayleigh, Esses Essex. Approx.price: $£ 1.50$

SOCKETS

SK1
Mono $1 / 4^{\prime \prime}$ jack socket
SK2 Stereo $14^{\prime \prime}$ jack socket

CASE

$6^{\prime \prime} \times 4^{\prime \prime} \times 2^{\prime \prime}$ approx. Metal type from H.L.Smith ($130 \times 103 \times 50 \mathrm{~mm}$.) MISCELLANEOUS
2 large knobs, P.P. 6 battery, battery clip. screened wire, P.C. board pillars, nuts, bolts, etc., P.C. board as shown.
APPROX' COST:
$£ 6.00$ inc. board and battery.

should last a long, long time, as current drain is quite small. Use screened wire where shown on the circuit; to link SW1 and the output, and the 'bypass' signal with the output.

This switch, SW1, not only switches the signal through the circuit, but also takes the output from RV2 to ground
when in the 'non-fuzz' position, preventing breakthrough of the distorted signal onto the line.

Assemble the PCB in the usual manner; watch the orientation of the transistors lest you get a 'fuzzed' junction. Take the case of RV2 to the 'earthy' side of the pot.

UEROWIRE: GET THE COMIECTION

A new and ideal wiring system for prototypes. Breadboards, and limited production. - Achieves a permanent interconnection of components, at high speed, on a very high density.

- Based on the use of Verowire wiring pen with unique spring wire clamp lor wire refention, advancement and retraction.
- Moulded wiring combs fifted to board route the wire from point to point neatly holding and stabilising the wiring layout.
- By using a specially designed tool, I.C. legs are deformed and positively held in the board enabling the wire to be easily wrapped around them.
-Using a self-fluxing polyurethane coated wire. no pre-stripping is required. Connections are completed by soldering, melting the insulation and at the same time making a permanent soldered joint.
A complete introductory Verowire kit is available consisting of a wiring pen, spools of wire, terminal pins and all tools necessary. You only require a temperature controlled soldering iron to Verowire a board. A sample board from the Vero high density D.I.P. baord board is is also included in the introductory kit. range is also included in the introductor
$79 / 1730 \mathrm{~F}$ European Kit £ 16.39 + VAT.
- 79/1730F European Kit $£ 16.39$ + VAT.
- 79/172L International Kit $£ 18.15$ + VAT
- 79/1731A American Kit £17.27 + Var

Available world wide through 3 subisidiary companies and 25 agents.

Vero Electronics Ltd.

Industrial Estate. Chandler's Ford Eastleigh. Hampshire, S05 3Zh Telephone: Chandler's Ford 2956 Telex: 47551

Available to you in kit form at the same moment as its national launch, the brilliant new Videomaster Superscore contains the latest product of MOS technology: a TV game chip.

The logic contained in it had previously to be generated by 100 TTL devices. Now it is condensed into one 28-pin chip.

This all-new Videomaster plugs into your 625-line UHF TV set (for overseas customers having VHF sets we can supply the necessary VHF modulator) to give you four exciting games (including tennis and football) and two future game options. It features on-screen digital scoring, realistic hit sounds, two bat sizes, two
ball speeds, automatic serving and much more. It runs on six $1 \frac{1}{2}$ volt SP11 type batteries (not supplied).

The Videomaster Superscore kit costs only £24.95 including VAT (recommended retail price of the ready built model is over $£ 40.00$) and comes complete with ready-tuned UHF or VHF modulator, circuit board with printed legend, all resistors, transistors and diodes, built-in loudspeaker, socket for mains adaptor, and, of course, the TV game chip itself.

Easy to put together the Superscore has full assembly instructions, circuit diagram and circuit description. Don't miss this chance to own the newest electronic game at such low cost.

POST TODAY TO:

Videomnster Ltd 14/20 Headfort Place, London SW1X 7HN

\qquad
Please send me (insert No. requ'd).................Videomaster Superscore Kits at $£ 24.95$ (inc. VAT \& P\&P in UK) or $£ 23.10+£ 4.00$ for $P \& P$ overseas)
I enclose my cheque/money order* for $£$
VHF modulator required YES/NO*
NAME
ADDRESS

SUBSCRIPTIONS

To: SUBSCRIPTIONS DEPARTMENT ETI MAGAZINE
25-27 Oxford Street London W1R1RF

I enclose $£ 6.00$ ($£ 7.00$ overseas) for the next twelve months of ETI (Air mail rates on application) starting with the . issue
(Please tick if this is a renewal
Help us to help you, please write your name and address on the back of your cheques.
Please make out your cheque to ETI Subs Dept.
(Send separate cheques for orders other than a sub.)

Well, if you stopped reading those comics and took a sub to ETI you might find something worth building for a change

ETI CLOCK:E13.95

THE LONG-RUNNING OFFER ON A DIGITAL ALARM CLOCK HAS BEEN ONE OF OUR MOST SUCCESSFUL EVER! OUR PRICE INCLUDES VAT AND POST \& PACKING

Our clock shows the time 0.7 in . high on bright Planar Gas Discharge displays (there is a brightness control on the back). The dot on the left of the display shows AM/PM, and the flashing $(1 \mathrm{~Hz})$ colon shows that the alarm and clock are working
A bleeper alarm sounds until the clock is tipped forwards. Then the "snooze" facility can give you 5 minutes sleep before the alarm sounds again, and then another 5 minutes, etc., until you switch the alarm off The clock also features a mains-failure indicator, and is 12 hr . - the alarm being 24 hour.

We have a large number of units in stock for this offer but please allow 28 days for delivery.

CLOCK OFFER ETI MAGAZINE 25-27 OXFORD STREET LONDON W1R 1 RF

I enclose cheque/P.O. for £13.95 (payable to ETI) for an Alarm Clock. Please write your name and address on the back of your cheque $t 0$ speed processing of your order.

Name

ADDRESS

Those not wishing to cut their magazine may order on their own notepaper.

This month concerns itself with the usually higher powered wirewound resistor variety

These resistors are made by winding a length of resistance wire on a bobbin (usually of ceramic or fibreglass), the erids being anchored to terminations on the ends of the bobbin. Bobbins are usually cylindrical-shaped or flat. The bobbin and element are generally encapsulated in an impervious coat of vitreous enamel - some styles have the whole bobbin encapsulated in a square ceramic boat, having either axial or radial leads. These are generally the lower power types, up to 20 W .

There are two general types of coating applied to wirewound resistors. One is called Pyrosil D-Coat and consists of a combination of silicone resins and refactory material (which prevents -oxidation) of the wire element) and is designed for high temperature operation. It is capable of withstanding temperatures corresponding to five times rated load. The other encapsulation material is known as Tropical C-Coat, another silicone compound and is designed to protect the element under extreme environmental conditions (particularly humidity). The power rating is different for similar resistors coated with different coatings. Resistors coated with tropical C-Coat can only operate at half the power of similar resistors encapsulated with Pyrosil D-Coat.

Terminations for wirewound resistors come in a wide variety of styles. The smaller, low power, types (particulariy the completely encapsulated types) often have radial or axial leads and sometimes terminal lugs. High power types may have ferrules on each end - and are plugged into large clips; alternatively they may have terminal lugs, Edison screw threads or flying leads.

The resistance element usually consists of nickel - chromium alloy wire (nichrome). Precision wirewound
resistors are usually wound with Eureka wire.

Very high power types and some very low resistance types are sometimes wound with flat-tape element instead of wire. It is usually wound edge-on to the bobbin to improve heat dissipation from the element.

Wirewound resistors are made in

Fig. 1. Typical construction of small, cylindrical style wirewound resistor.
wattage ratings to 250 W , commonly, and up to 1 kW or more for special applications. There are three basic construction styles: cylindrical, flat and encapsulated ceramic-boat style. The first two are also available as adjustable resistors, having portion of the element exposed and a moveable terminal in contact with it.

TEMPERATURE

Wirewound resistors can have excellent temperature characteristics as low as $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, but generally less than $200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for the common types.

These resistors exhibit good stability. usually better than 2%, precision types having stabilities better than 0.05%. Common types are available in tolerances of $\pm 5 \%$ and $\pm 10 \%$ depending on

Fig. 2. Typical flat and cylindrical style wirewound resistors.

WIREWOUND RESISTORS

DERATING CURVE FOR AMBIENT TEMPERATURES ABOVE $25^{\circ} \mathrm{C}$.

AMBIENT TEMPERATURES-DEGREES CENTIGRADE
Fig. 3. Temperature rise and power derating curves for encapsulated (ceramic boat) style wirewound resistors.
construction style. Tolerance down to 1% can be obtained in precision types.

The noise level and voltage coefficient of wirewound resistors is negligible.

Owing to their construction, wirewound resistors are quite inductive and are generally only useful at low frequencies. Their inherent inductance can be decreased with special winding techniques - occasionally found in precision resistors, but as most wirewound resistors are predominantly used in dc and/or low-frequency circuits where their high power rating is required, this does not present much of a problem.

MAXIMUMS

Wirewound resistors may be operated at temperatures up to $350^{\circ} \mathrm{C}$ but most common types have a maximum operating temperature (ambient + temperature rise due to power dissipation) of $290-300^{\circ} \mathrm{C}$ for Pyrosil D-Coat types and $190-200^{\circ} \mathrm{C}$ for Tropical C-Coat types. Temperature rise and power derating curves for the common cylindrical and flat style resistors are given in Figure 4. The power ratings are based on the ability of the resistor to give long service at full irated load up to the nominated ambient temperature. For higher ambient temperatures, the
resistors are derated according to the curve shown. The full rated load is based on a temperature rise of $250^{\circ} \mathrm{C}$ from ambient of $40^{\circ} \mathrm{C}$ for Pyrosil D-Coat and a rise of $150^{\circ} \mathrm{C}$ from the same ambient for Tropical C-Coat. For the encapsulated lower power varieties, typical temperature rise and derating curves are given in Figure 3. These have a maximum recommended operating temperature of $150^{\circ} \mathrm{C}$.

MOUNTING \& SURROUNDING

Care must be taken in the mounting of wirewound resistors to prevent the high operating temperature affecting surrounding components. The cylindri-

Fig. 4. Temperature rise and power derating curves for common cylindrical and flat style wire-
wound resistors.
cal types usually have a hole through the middle through which heat may escape by convection. Mounting these vertically where possible is recommended to keep their operating temperature down. The flat style are mounted using formed 'leaves' which fit into the ends of the former (see Figure 2) which is hollow, these conducting heat away through the mounting bolts. They are designed for either vertical or horizontal mounting, either singly or in stacks. This style is most suited to applications requiring a high power resistor to be mounted in a limited space. Recommended stacking arrangements are illustrated in Figure 5. When stacked, each resistor affects the temperature of the adjoining resistor(s). To limit the temperature rise of the hottest unit it is necessary to limit the power applied to each resistor (depending on the number of resistors in the stack) according to the percentages shown in the table in Figure 5.

It is a wise precaution with the axial or radial-lead types to mount them so that they are clear of any other components, chassis, pc board, etc by at least their diameter or width, to provide sufficient ventilation and to prevent damage to other components.

TABLE 5. General characteristics of Wirewound Resistors.

Rated Wattage (D-Coat)	Typical Sizes (Overall)			Typical Resistance Ranges								
				Fixed Type	Adjustable Type (max.)							
CYLindrical style												
(to $40^{\circ} \mathrm{C}$)	Length	Diameter										
5 W	23 mm	10.3 mm		$0.5 \Omega-5 \mathrm{k}$	--							
10 W	44.5 mm	m $\quad 10.3 \mathrm{~mm}$		$0.75 \Omega-12 \mathrm{k}$								
20 W	50.8 mm	, $\quad 16.7 \mathrm{~mm}$		$1.0 \Omega-25 \mathrm{k}$	5 k							
25 W	63.5 mm	- 16.7 mm		$1.0 \Omega-30 \mathrm{k}$	6 k							
30 W	76.2 mm	, 16.7 mm		$1.5 \Omega-40 \mathrm{k}$	7.5 k							
40 W	89 mm	23 mm		$3 \Omega-60 \mathrm{k}$	12.5 k							
50 W	114.3 mm	23 mm		$3 \Omega-88 \mathrm{k}$	20 k							
75 W	165 mm	23 mm		$5 \Omega-130 \mathrm{k}$	25 k							
50 W	81 mm	33.3 mm		$4 \Omega-80 \mathrm{k}$	16 k							
65 W	114.3 mm	33.3 mm		$4 \Omega-120 \mathrm{k}$	22.5 k							
100 W .	165 mm	33.3 mm		$5 \Omega-200 \mathrm{k}$	37 k							
150 W	216 mm	33.3 mm		$5 \Omega-270 \mathrm{k}$	51 k							
200 W	267 mm	33.3 mm		$5 \Omega-340 \mathrm{k}$	62 k							
FLAT STYLE (Width $=14 \mathrm{~mm}$, Mounting Height $=12.7 \mathrm{~mm}$)												
(to $40^{\circ} \mathrm{C}$)	Length	Mounting Holes (δ to ϕ)										
20 W	31.8 mm	50.8 mm		$0.5 \Omega-10 \mathrm{k}$	-							
30 W	50.8 mm	70 mm		$0.5 \Omega-25 \mathrm{k}$	6 k							
50 w	89 mm	108 mm		$1.5 \Omega-50 \mathrm{k}$	13 k							
65 W	121 mm	140 mm		$2.0 \Omega-20 \mathrm{k}$	19 k							
75 W	153 mm	172	mm	$2.5 \Omega-100 \mathrm{k}$	25 k							
Encapsulated style												
(to $40{ }^{\circ} \mathrm{C}$)	Length	Width	Height		Inductance (typical)							
5 W	22.2 mm	$\begin{aligned} & 9.5 \mathrm{~mm} \\ & 9.5 \mathrm{~mm} \end{aligned}$	8.7 mm	0.5-4.7k	$5.1 \mu \mathrm{H} @ 900 \Omega ; 20 \mu \mathrm{H} @ 3.3 \mathrm{k}$$8 \mu \mathrm{H}$ 2 $2.4 \mathrm{k} ; 33 \mathrm{H}$ @ 9 k							
7 w	35.3 mm		$\begin{aligned} & 8.7 \mathrm{~mm} \\ & 1.0-20 \mathrm{k} \end{aligned}$	$1.0-12 \mathrm{k}$								
(to $25^{\circ} \mathrm{C}$) $4.6 \mathrm{~mm} 9.5 \mathrm{~mm} 1.0-20 \mathrm{k}$												
20 w	63.5 mm	12.7 mm	12.7 mm	$1.0-20 \mathrm{k}$ $1.0-4.7 \mathrm{k}$	$13 \mu \mathrm{H} @ 3.9 \mathrm{k}: 56 \mu \mathrm{H} @ 15 \mathrm{k}$							

FAILURE

Wirewound resistors fail occasionally. This may be due to one of the following reasons. In high value types, the resistance wire is very thin. The slightest blemish creates a weak point which may eventually cause the wire to break. In the coated types, expansion differences between the ceramic bobbin and the enamel coating may cause cracking of either the coating or the bobbin allowing moisture to penetrate and attack the resistance wire. The wire may corrode under constant dc load con-
ditions due to chemical action in the enamel coating of the component. This latter problem is rare.

Precision wirewound resistors are wound on special bobbins, generally using Manganin wire, and encapsulated or covered in an insulating coating. They are sometimes epoxy-moulded. Other styles are hermetically sealed in a ceramic container. Wire leads or solder lugs are used as terminations. Precision wirewound resistors are not generally designed to dissipate power. Power
types are available however, generally consisting of a conventionally constructed wirewound resistor wound to a tight tolerance or selected, and mounted in an extruded aluminium case. This assists heatsinking, allowing precision resistors to be rated up to powers of 200 W .

The general characteristics of the three basic styles of wirewound resistor are illustrated in Table 5. Typical inductance values for the lower power, encapsulated styles are also given for low and high values.

Fig. 5. Recommended method of stacking the flat style of wirewound resistors and the hecessary - power derating. No more than four resistors should be in a stack.

CLOCK CHIPS \& KITS

TYPE SPECIAL FEATURES	ECHIP	£KIT
MM5309 $7 \mathrm{seg}+\mathrm{BCD}$. RESET ZERO	6.50	8.80
MM5311 $7 \mathrm{seg}+\mathrm{BCD}$	6.50	8.80
MM5312 $7 \mathrm{seg}+$ BCD 4 DIGIT ONLY	5.65	
MM53137 seg + BCD	6.50	
MM5314 7 seg + BASIC CLOCK	4.88	7.00
MM53157 seg + BCD REST ZERO	£6.50	
MM5316 Non-mpx ALARM	10.17	
MM5318 $7 \mathrm{seg}+\mathrm{BCD}$ External digit select	4.50	8.00 '
MM5371 ALARM. 50 Hz	10.15	
MM5377 CAR clock. Crystal control. LCD	8.40	
MM5378 CAR clack. Crystal control. LED	7.55	14.00
MM5379 CAR clock. Crystal control. Gas discharge	7.55	
MK5C25 ALARM SNOOZE	5.60	9.00
MK50395UP / DOWN Counter - 6 Decade	12.10	15.10
MK50396UP / DOWN Counter-HHMMSS	12.10	15.10
MK50397UP / DOWN Counter-MMSS. 99	12.10	15.10
FCM 7001 ALARM SNZ CALENDER. 7 seg	9.00	12.50
FCM7002 ALARM SNZ. CALENDER. BCD	9.00	
CT7003 ALARM. SNZ. CALENDER. Gas discharge	9.00	
FCM 7004 ALARM SNZ. CALENDER. 7 seg	9.00	12.50
AY5.1202 7 seg .4 digit	4.76	
AY5. 12307 seg . ON and OFF ALARM	5.25	TBA

AY5. 12307 seg . ON and OFF ALARM
5.25

All above clock kits include clock PC board clock chip. socket and CA3081 driver IC. MH15378 also includes crystal and trimmers. When ordering kit please use prefix MHI, e.g. MHI 5309

OLDE CLOCKS

In kit form or built these clocks are based on designs hundreds of years old Wood stone and iron are used to reproduce authentic "olde worlde" wall clocks in full detail. The kits contain all you need including glue, screws, etc. and very comprehensive instructions. Stones for weights are excluded

prices

Gothic Clock
Rotating Dial
Wrought Iron
Wooden Wheel
Knight Clock
Knight Clock
Oak Foliot

Diam 61/2
Diam 6'
Diam 51/2'
Diam 61/2'
Diam $14^{\prime \prime}$

DISPLAYS

24, 28 or 40 pin 0.30

CLOCK MODULES
MA1002F $(12 \mathrm{Hr})$ or MA1002H $(24 \mathrm{Hr})$ with Alarm
Module only
7.97
0.90

MTX1001 transformer
13.00

Kit including case

PAYMENT TERMS

Cash with order. Access. Barclaycard (simply quote your number). Credit facilities to accredited account holders 15% handling charge on goods ordered and paid for then cancelled by customer
PLEASE SEND 30 p POST AND PACKING

For coloured brochure please send $15 p$ stamps

A simple and versatile control unit, with internal siren and battery

FOLLOWING ON from last month's Burglarproof Your Home article, we present the ETI burglar alarm. The circuit is simple, reliable and versatile Based on a single CMOS chip, the standby current is very low, making a mains power supply non essential Several versions are possible depending on the particular circumstances where it will be used. We built the simplest version, and will describe it fully, with details of possible modifications and additions

BASIC UNIT

The basic unit is self-contained, apart from sensor switches A 12 V HP1 battery is used as the power supply, this battery is capable of powering the system for about a year if the siren is not
activated! When in the alarm condition the HP1 will power the siren for about 6 hours continously. A battery test facility is included in the design, which displays the on load voltage. We used a Carters "Mini-Mite" $12 v$ siren, which is also inside the case. This siren has a sound output of about 93 dB at 3 metres -- quite loud!

Other features of the basic unit are on/off keyswitch on front panel, bell test button and LED fault indication. The box itself is fitted with anti-tamper microswitches, so that it can only be opened in the off position, without sounding the alarm

Another important feature is the 30 second delay facility. This ensures that when you switch the unit on -- the alarm will not sound for 30 seconds but any
fault will light the front panel LED. Also if you have to walk over a pressure mat or open an alarmed door, to leave, you have the delay to do it in

SENSORS AND SIRENS

Three types of sensor can be used with the system. Normally open circuit types, such as pressure mats; and normally closed types such as reed switches biased by magnets. Changeover contacts can also be used, wired to break the normally closed circuit and short the open circuit when operated, this is possible as one wire is common to both circuits. Connection to the unit is via a standard 1805 pin din plug and socket, all the pins are not used, and external bell

Circuit diagram of basic alarm
units can be wired via this connector if required

As shown the unit is suitable for shop display protection, caravan protection or even as a tent alarm - a pressure mat under your ground sheet! For some homes the internal siren will be all that is needed, however, the only way to find out is to try it. If you get lots of complaints from your neighbours or a rapid visit by men dressed in blue -- it's loud enough! Obviously it is best to try it out at a civilised time - not 4 am. If the internal siren is not loud enough, you will need an external alarm. This will be described further on.

INSTALLATION

Bearing in mind the general guide lines given last month, the installation can be worked out. Points to remember are, cover all external doors, and if uneconomical to protect all windows - to cover the internal doors as well, with the odd pressure mat in hallways and on stairs to complete the protection.

Even though single core wire can be used for the closed circuit wiring, we prefer to use 3 or 4 core throughout, as this gives more flexibility in sensors and also creates uncertainty in the mind of a would be by-passer. It also looks like telephone wiring if installed neatly.

If a shunt switch is not fitted to the main exit, the alarm will sound on entry, this can be unpopular with neighbours. So a shunt switch is strongly recommended.

OPERATION

In operation the unit is turned on, by the front panel keyswitch. If the LED lights it means that part of the circuit is either open or closed incorrectly, if this happens switch off and find the open door, or chair on pressure mat etc. To check if you have found the fault switch on again

- the LED should remain unlit. A point to note is that you can test the battery with the unit switched off - this is to prevent the battery being flattened by a burglar keeping the test button depressed (if he managed to get up to the box without setting off the alarm).

Assuming that you have fitted a shunt switch to the exit, you can now leave and lock the door behind you. This is why a shunt switch inside the main lock is preferred to a separate shunt switch, if you forget to operate a separate switch the door is , unprotected.

[^2]
-How it works

The circuit is based around a 4001 CMOS quad NOR gate, with the gates connected as invertors (cheaper than using invertors!'). The input to ICla is derived from the closed circuit sensors and the open circuit sensors. In the normal state the output is low and Q1 is off. When either R2 is shorted or the positive supply from R1 is interrupted the gate changes state. Ql is turned hard on and LED 1 illuminates. R4 and C 1 form a timing circuit, which prevents ICIB from giving a low output for 30 seconds from switch on. After this period, if LEDl is on ICIB and ICIC charge state switching on Q2, which triggers SCR1 which self latches. Rx is to make sure SCR1 passes at least 10 mA if a bell is used which breaks its own circuit. R11 is selected to draw 100 mA to simulate a load for the battery. R10 makes sure that Cl is fully discharged when the alarm is switched off, in order to get consistent timing periods.

General view of the basic unit, note anti-tamper microswitches (SW2 a,b)

Pars LSt		Semiconductors		Miscellaneous	
		IC1	CD4001A	Meter	Panel type 0-15V
		Q1.2	BC108 or similar		(Doram 259-561)
		[1.2.3	IN4 148 or similar	Case	$111 / 2 \times 5 \times 7$ inches
Resistors	all $5 \% 1 / 2 W$	D4	IN4001 or similar		IH. L. Smith type W
R1,3,7.8	1 k	SCR 1	100V 3A thyristor		£459 inclusive)
R2	10 M	LED 1	TIL 209 or similar	Battery	HP1 + connector
R4	1 M	SW1 (a, b)	Lockswitch		'Sesco 28.63.15 and
R5	2k7		'Doram 337-964)		$28.63 .55)$
R6	10 k	SW2 'a.b)	Microswitch	Siren	Carters 'Mini-mite ${ }^{\text {P }}$
R9	100R		'normally open)		(Sesco 24.45.20)
R10	47R	PB1, 2	Push to make.	PCB, nuts, bolts	wire, 5 pin Din plug
R11	120R	PB1,2	release to break	and socket. Insul	ting kit for SCR 1 etc
RX	'see text)			NB: Battery,	onnector and siren
		Sensor switches	see text	available from	esco Security) Ltd.
Capacitors $\mathrm{C} 1$	47 F 16 V tantalum			Chapel Road TW3 1 TX for $£ 9$	ounslow. Middlesex 23 inclusive

ETI BUßGLAR ALABM

On returning open the main door and then switch the unit off.

CONSTRUCTION

Construction is quite straightforward, most of the components are mounted on a PCB. The main point to watch is that CMOS is involved, the usual precautions should be taken. Make sure your iron is earthed and fit the IC last. All bolts must be fitted with two nuts to prevent external removal. The front panel mounted parts should be epoxyed into place, also to prevent external tampering. The two microswitches SW $2 a+b$ should be fitted so that the front panel keeps them depressed when in place. General layout is easily seen from the photographs.

The unit should be screwed in position through the back panel when complete.

EXTERNAL UNITS

If an external siren or bell is needed there are three ways this can be done. The simplest, but least secure is to run it in parallel to the internal siren via twin wires. A 1 A fuse should be placed in each of the leads -- so that a short circuit will not flatten the battery. Obviously the battery life will be reduced when powering two alarm sirens.

The second method is to run a relay in parallel with the internal siren, the external unit then needs its own power supply. The relay should be mounted at the main unit. The external power supply can be another battery or a mains power supply.

The disadvantage of both these methods, is that if the wires are cut the external alarm will not sound. Although if the cable is run inside metal tubing this is not so much of a problem.

BEST METHOD

The best method is to use a sensor circuit with a relay output. This can be obtained from another CMOS circuit similar to the main unit -- only simpler. Again a relay is connected across the siren but if the wires to it are cut the external siren will sound. The standby current is about 1.A so the battery can be left connected permanently. A suggested interwiring diagram is shown.

Top: Simplest external siren circuit.
Middle: Addition of a 12 volt relay (RLA 1) gives another simple external siren circuit. Bottom: Most secure method, involves the use of a CMOS chip, circuit below.

UP AND DOWN

Another possible modification is to add an upstairs / downstairs facility to the main unit. This can be done by duplicating the main board and adding an extra keyswitch to the front panel, together with a second LED. The interconnection for this is also shown.

The batteries should be checked at least once a month, and replaced when on load they register below 11 volts.

Method for interconnecting two modules for up / down circuits.

SINTEL for MEMORIES - MPUs - PGBs

USEFUL PRINTED CIRCUIT BOARDS

Order As Description DISPLAY HOLDING PCBs WIRED FOR MULTIPLEXING
Di digin clock format for FNO500/TIL321/TLL322
6 digit clock format for XAN652/XAN654
6 digit clock format for XAN652 4 digit clock format for FNO 500 /TIL 321 /TIL 322 8 digit counter formar for FND 500 /TIL 321 /TIL322

DISPLAY HOLDING PCB8 NON-MULTIPLEXED
6 digit counter format for FND500 / TIL 321 /TIL322 4 digit counter format for FND 500 / TIL 321 /TIL322

D652.6
D500.4
D500.8

76-001
675-001
472-001

COUNTER PCBs

Set of 2 PCBs, 876.001 and a PCB to hold all the ICs for building a 6 digit COUNTER MODULE WITH LATCH USING TTL. Takes $6 \times$ TIL $321,6 \times 7447,6 \times 7475,6 \times 7490$, R's and C's. etc. (of these components, onty the TiL32 1 s are available from $u s$ - order these separately). Size h. $30 \mathrm{~mm} w .173 \mathrm{~mm}$ d. 109 mm .

246-950
Set of two PCBs, 675-001 and a PCB to hold all the ICs for building a 4 digit COUNTER MODULE WITH LATCH USING TTL. Takes $4 \times$ TlL $321,4 \times 7447.4 \times 7475.4 \times 7490, R$ s and C 's, etc. (of these components, only the TIL 321 s are available from us - order these separately) Size h. $30 \mathrm{~mm} w .126 \mathrm{~mm}$ d. 109 mm
$£ 1.35$
f 0.90
$\mathbf{£ 0 . 9 0}$
$\mathbf{£ 1 . 3 5}$

Set of two PCBs 472-001 and a PCB to hold all the ICs for building a 2 digit COUNTER MODULE WITH LATCH USING C s. etc. fof these components, only the Til 321 s are available from us -- order these separately). Size $\mathrm{h} .30 \mathrm{~mm} w .80 \mathrm{~mm}$ d 109 mm .

912-950

142:269

COUNTER KIT

A complete kit for building a 2 digit, single PCB, CMOS \times TIL 322 or FND 500 WITH LATCH. Includes PCB 912.950 .2 Size h. $67 \mathrm{~mm} w .71 \mathrm{~mm}$ d 18 mm
$¢ 8.60$

HIGH QUALITY KITS

CRYSTAL CONTROLLED G-DIGIT CAR CLOCK KIT WITH INDEPENDENT JOURNEY TIMER
Runs off 12 v car battery Protected against low voltage drop-out Display comes on with ignition Internal battery backup allows temporary disconnection 6-digit timer, times journeys up to 24 hrs in hours, minutes and seconds a four ACK but with push buttons for setting time, starting. stopping and resetting timer. selecting display push show time or "journey time" All control buttons functional irrespective of display mode selected. Complete including case.
Order as CCK

$£ 38.00$

MEMORIES
 TTL COMPATIBLE STATIC RAMS

4K STATIC RAM

9131
1024×4 bit 500 nsec Access tim
When wiring up a 1024×8 bit memory board, using the 9131 reduces the number of wires between memory /Cs from about 100 to about 18

Order as $\mathbf{9 1 3 1}$. £19.50				

2102A-6	2112A-4		6508	
1024×1 bit	256×4 bit		CMOS 10	
650 nsec	650 nsec		600 nsec	
Order as	Order as		Order as	
2102A-6 ¢3.61	2112A-4	£4.76	6508	£8.05

GM0		CD4025	0.24	CD4050	0.64	CD4086	0.82
		CD4026	1.98	CD4051	1.07	CD4089	1.78
Mainly RCA		CD4027	0.64	CO4052	1.07	CD4093	0.92
CD4000	0.17	CD4028	1.03	CD4053	1.07	CD4094	2.15
CD4001	0.18	CD4029	1.31	CD4054	1.33	CD4095	1.20
CD4002	0.17	C04030	0.64	CD4055	1.51	CD4096	1.20
CD4006	1.35	CO4031	2.55	CD4056	1.51	CD4097	4.28
CD4007	0.18	CD4032	1.23	CD4059	5.48	CD4098	1.26
CD4008	1.11	CD4033	1.60	CD4060	1.28	CD4099	2.11
CD4009	0.64	CD4034	2.19	CD4063	1.26	CD4502	1.43
CD4010	0.64	CD4035	1.35	CD4066	0.71	CD4510	1.57
CD4011	0.20	CD4036	3.65	CD4067	4.28	C04511	1.80
CD4012	0.19	CO4037	1.09	CD4068	0.24	CD4514	3.15
CD4013	0.64	CD4038	1.24	CD4069	0.24	C04515	3.60
CD4014	1.16	CD4039	3.55	CD4070	0.67	CD4516	1.56
CD4015	1.16	CD4040	1.23	C04071	0.24	CD4518	1.25
CD4016	0.64	CD4041	0.96	CD4072	0.24	CD4520	1.43
CD4017	1.16	CO4042	0.96	CD4073	0.24	CD4527	1.82
CD4018	1.16	CD4043	1.16	C04075	0.24	CD4532	1.65
CD4019	0.64	CO4044	1.07	CD4076	1.61	CO4555	1.04
CD4020	1.28	CD4045	1.61	CD4077	0.60	CO4556	1.04
CD4021	1.16	CD4046	1.53	CD4078	0.24	MC14528	1.22
CD4022	1.11	CD4047	1.04	CD4081	0.24	MC14553	4.68
CD4023	0.24	CD4048	0.64	CD4082	0.24	IM6508	8.05
CD4024	0.89	CD4049	0.64	CD4085	0.82		
CLOCK CHIPS		SOLDERCON		MPUs IM6 100CCDL		TRANSFOR-	
AY51202	2.89	I.C. PINS			45.36	MERS	
AY5 1224	3.50	100	0.50	8080 (2 S ${ }^{\text {) }}$	32.25	LEDTRF	1.95
MK50253	5.60	1.000	4.00	MC6800	33.87	5 LTRF	1.95
		10.000	34.00	SC/MP			
flat cable				ISPA/500	18.75		
20w 1m	1.00			2650	27.00	CRYSTALS	
10 m for	8.00					32.768 kHz 5.12 MHz	$\begin{aligned} & 4.50 \\ & 3.60 \end{aligned}$
VEROCASES		DISPLAYS				5.12MHz	
751410 J	3.36	TIL321	1.30	MPU KITS		SUNDRIES	
7514110	3.77	Til322	1,20	MEK68000I	137.00		
7512371	2.15	XAN652	2.45	INTRO KIT		CA3130	1.14
7512380	3.00	XAN654	2.45	ISP8K/200E	93.55	AA7418 pin	0.35
751239 K	3.58	5LTO1	5.80	MCS 80	176.65	78L12WC	0.77

DATABOOKS

RCA CMOS and Linear IC Combined Databook
RCA 'Power and Microwave' Databook
National Semiconductor 7400 series TTL Databook. c 200 pages TTL Pin-Out Card Index
Intel Memory Design Handbook, c. 2 Bo pages
Intel 8080 Microcomputer Systems Users Manual, c 220 pages
Motorola McMOS Databook (Vol: 5 Series B), c. 500 pages
Motorola M6B00 Micro. Applications Manual. c. 650 pages Motorola M6800 Programming Manual, c. 200 pages National SC/MP Introkit Users Manual
National SC/MP Programming and Assembly Manual
National SC/MP Programming and Ass
DATASHEETS on Microprocessors, etc. (usually Xerox Copies)
DATASHEETS on Microprocessors, etc. (usually Xerox Copies) $\begin{array}{lll}\text { Intersil IM6 M100 } \\ \text { National SC/MP bit } & £ 0.75 & \text { RCA CDP } 8028 \text { bit CMOS } \\ & £ 0.75 & \text { Zilog } 280 \text { (enhanced } 8080 \text {) }\end{array}$ National SC/MP 8 bit $\quad \begin{array}{lll}\mathbf{E 0 . 7 5} & \text { Zilog } 280 \text { (enhanced 8080) }\end{array}$
 9131 Memory
FAST SERVICE. We guarantee that Telephone Orders for goods in stock, received by 415 p.m. (Mon. Fri.) will be despatched the same day by 1 st Class Post (some heavy items by parcel post), and our stocking is good. Private customers should telephone and pay by giving their Access or Barclaycard number, with a minimum order value of $£ 5$. Officia orders. no minimum
postal address
Export orders welcome. No VAT but add 10\% (Europe), 15\% (Overseas) for Air Mail p\&p
For export postage rates on heavy items - conlact us first.

IALS FROM

TRANspucissm
Mistimind
MDCONTROL

TRANSDUCERS IN MEASUREMENT AND CONTROL

This book is rather an unusual reprint from the pages of ETI. The series appeared a couple of years ago in the magazine, and was so highly thought of by the University of New England that they have re-published the series splendidiy for use as a standard textbook. Written by Peter Sydenham, M.E., Ph.D.. M.Inst.M.C., F.II.C.A., this publicatlon covers practically every type of transducer and deais with equipment and Enquiries from educational authorities. universities and colleges for bulk supply of this publication are welcomed. These should be addressed to H. W. Moorshead, Editor

TOP PROJECTS No. 3
Originally published in March 1976. Top
Projects No. 3 contains 27 constructional Projects No. 3 contains 27 constructional projects including Graphic Equaliser.
International $25 W$ Stereo Amp. Simple International $25 W$ Stereo Amp, Simple
Stereo. New Sound for your Guitar, Bass Stereo. New Sound for your Guitar, Bass
Booster, Line Amplifier, Loudness Control. Electronic Ignition, Tacho Timing Light. Car Alarm. Dual-Beam Adaptor, AF Meter, Impedance Meter. Digital Display, Digital Voltmeter, TTL Supertester, Fluorescent Light Dimmer, Radar Intruder Alarm, Light Dimimer, FM Tuner. Colour Organ, Drill Speed Controller plus many more
£1.00 +20p P\&P

TOP PROJECTS No. 4 Available at your newsagents or from ETI
direct. Published October 1976 . This includes Sweet-Sixteen Stereo Amp. Waa-Waa, Audio Level Meter, ExpanderCompressor, Car Anti-Theft Alarm. Headlight Reminder, Dual-Tracking Power Supply. Audio Millivoltmeter, Thermocouple Meter, Intruder Alarm, Touch Switch, Photo Timer Electronic Dice High Power Beacon. Temperature Controller, Electronic One-Armed Bandit plus many more.

$$
£ 1.00+20 p \mathrm{P} \mathrm{\& P}
$$

ELECTRONICS - IT'S

EASY. Vol. 2
The "middle-third" of the series introduces the reader to more sophisticated techniques and includes power su
filters and logic systems

E1.20+201 P\&P

ETI 4600 SYNTHESISER
A complete reprint of our superb synthesise design, published with Maplin Electronics (who also supply the parts). This reprint will also be of interest to those not specifically wanting to buidd the unit as the circuitry is highly original and is in fact patented by
£1.50 +20 p P\&P

HOW TO ORDER

ETI Circuits No. 1 and Top Projects No. 4 are available at newsagents or direct from ETI. The others are available only direct from ETI. Postage and packing is $20 p$ for the first, $15 p$ for each subsequent issue (overseas $25 p$ and $20 p$ respectively). Send remittance and order to: ETI SPECIALS, 25-27 OXFORD STREET, LONDON W1R 1 RF
All payments must be in sterling

15-240 Watts!

The HY5 is a mono hybrid amplifier ideatly suited for all applications. All common input functions merely require connectung to external potentiometers (not inctuded). The HY5 is compatible with all
J. P p phwer amplifiers and power supplies To ease construction and mounting a P.C. connector is supplied with each pre-amplifier
FEATURES: Complete pre-amplifier in single pack - Multi-function equalization -- Low noise - Low
distortion - High overload - two simply combined for stereo
APPLICATIONS: Mi-Fi -- Mixers - Disco - Guitar and Organ -- Public address
SPECIFICATIONS:
INPUTS Magnetic Pick-up 3 mV Ceramıc Pick-up 30 mV ; Tuner 100 mV . Microphone 10 mV : Auxiliary $3-100 \mathrm{mV}$ input impedance $47 \mathrm{k}, 2$ at 1 kHz .
OUTPUTS Tape 100 mV . Main
OUTPUTS Tape 100 mV , Main output 500 mV R.M.S
ACTIVE TONE CONTROLS Treble $\pm 12 \mathrm{~dB}$ at 10 kHz , Bass \pm at 100 Hz
DISTORTION 01% at 1 kHz , Signal/Noise Ratıo 68 dB
OVERLAD 38 dB Magne fick- SUPPLY VOLTAGE $\pm 1650 \mathrm{~V}$
Price $£ 4.75+59 \mathrm{p}$ VAT P\& P free
HY30
The HY30 is an exciting New kit from IL.P. it features a virtually indestructible $1 C$. with shorl circuit

15 Watts into 8Ω and thermal protection. The kit consists of IC. heatsink, PC board, 4 resistors, 6 capacitors. mounting kit, together with easy to follow construction and operating instructions. This amplifier is
ideally suited to the beginner in audio who wishes to use the most up-to date technclogy available. FEATURES: Complete kit - Low Distortion - Short, Open and Thermal Protection - Easy to Build APPLICATIONS: Updating audio equipment - Guitar practice amplifier - Test amplifier - Audio SPECIFICATIONS
OUTPUT POWER 15 W R M.S into 80 DISTORTION 0.1% at 15 W
INPUT SENSITIVITY 500 mV FREQUENCY RESPONSE $10 \mathrm{~Hz}-16 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE $\pm 18 \mathrm{~V}$ Price $£ 4.75+59 p$ VAT P\&P Free

HY50

25 Watts into 8Ω The HY50 leads I. ..P s total integration approach to power amplifier design The amplifier features an the amplifier has been refined to the extent that it must be one of the most reliable and robust High
Fidelity modules in the World.
FEATURES: Low Distortion - Integral Heatsink - Only five connections -- 7 Amp output transistors - No external components

APPLICATIONS: Medium Power Hi-Fi systems -- Low power disco - Guitar amplifie
OUTPUT POWER 25W RMS in 80 LOAD IMPEDANCE $4-16 \Omega$ DISTORTION 0.04% at 25 W at
SIGNAL/NOISE RATIO 75dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}$ - 3 dB SUPPLY VOLTAGE $\pm 25 \mathrm{~V}$. SIZE 105.50 .25 mm SUPPLY VOLTAGE $\pm 25 \mathrm{~V}$. SIZE 105
Price $\mathbf{£ 6 . 2 0 + 7 7 p}$ VAT P\& free.

Available Ex-stock

HY120
60 Watts into 8Ω requirements including load line and thermal protection, this amplifier sets a new standard in modular FEATURES: Very low distortion -- Integral Heatsink - Load line protection -- Thermal protection Five connections - No external components
APPLICATIONS: Hi-Fi - High quality disco - Pubtic address -- Monitor amplifier - Guitar and SPECIFICATIONS:
INPUT SENSITIVITY 500 mV
OUTPUT POWER 6OW RMS into 8:2 LOAD IMPEDANCE 4-16? DISTORTION 0.04% at 60 W at SIGNAL/NOISE RATIO 90dB. FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$. SUPPLY VOLTAGE $\stackrel{\star 35}{ }$ Size $114 \times 50 \times 85 \mathrm{~mm}$
Price $£ 14.40$ + £1.16 VAT P\&P free

HY200

120 Watts into 8Ω
The HY200, now improved to give an output of 120 Watts, has been designed to stand the most rugged conditions, such as disco or group while still retaining true Hi-Fi performance rugged conditions, such as disco or group while still retaining true Hi-Fo pertormance
FEATURES: Thermat shutdown -- very low distortion - Load line protection - Integral Heatsink No external components
No external components APPLICATIONS: Hi-Fi - Disco - Monitor - Power Slave - Industrial - Public address
SPECIFICATIONS:
INPUT SENSITIVITY 500 mV
OUTPUT POWER 120 W RMS into 82. LOAD IMPEDANCE 4-162 DISTORTION 0.05% at 100 W at SIGNAL/NOISE RATIO 96dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kH}$? - 3 dB SUPPLY VOLTAGE SIZE $114 \times 100 \times 85 \mathrm{~mm}$.
Price E21.20 + £1.70 VAT P\&P free
HY400
The HY400 is I.L.P.'s "Big Daddy" of the range producing 240 W into $4 \Omega^{\prime}$ It has been designed for high power disco or public address apptications. If the amplitier is to be used at continuous high power devels a cooling fan is recommended The amplifier includes all the qualities of the rest of the family to lead the market as a true high power hi-fidelity power module
FEATURES: Thermal shutdown - Very low distortion - Load line protection - No external
componens.
APPLCATIONS: Public address -- Disco -- Power slave -- Industrial
SPECIFICATIONS
OUTPUT POWER 240W RMS Into $4!2$ LOAD IMPEDANCE $4-16 \%$ DISTORTION 0.1% at 240 W at SIGNAL/NOISE RATIO g4dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kH}$ \% - 3 dB SUPPLY VOLTAGE INPUT SENSITIVITY 500 mV SIZE $114 \times 100 \times 85 \mathrm{~mm}$
Price £29.25 + £2.34 VAT P\&P free.
POWER
SUPPLIES

PSU36 suitable for two HY 30 's $\mathbf{£ 4 . 7 5} \mathbf{~ p l u s ~ 5 9 p ~ V A T ~ P / P ~ t r e e ~}$
PSU50 sultable tor two HY50 $\mathbf{E 6 . 2 0}$ pus 77 P VAT P/P frep
PSU70 suitable for two HY $120 \mathrm{~s} £ 12.50$ plus: 100 VAT P P P
PSU90 sulable for one HY200 $£ 11.50$ plus 920 VATP P P Fre
PSU90 sulable for one HY200 $\mathbf{£ 1 1 . 5 0 \text { plus } 9 2 \text { p VAT P, P Free }}$
PSU 180 suitable for two HY200 sor one HY $400 \mathbf{£ 2 1 . 0 0}$ plus:

TWO YEARS GUARANTEE ON ALL OF OUR PRODUCTS
I.L.P. Electronics Ltd

Crossland House
Nackington, Canterbury
Kent CT4 7AD
Tel (0227) 63218

Please Supply

Total Purchase Price
I Enclose Cheque \square Postal Orders \square Money Order \square
Please debit my Access account \square Barclaycard account \square
Account number
Name \& Address \qquad

E
 LECTRONICS
 -it's easy!

TRANSMISSION LINE THEORY

ELECTRONIC systems consist of basic analogue and digital subsystems interconnected to provide the required overall input-output relationships. It is important for the various subsystems to be interfaced correctly if they are to perform as intended. But with this condition satisfied, one cannot just assume that subsystems merely connect together without need to consider any other parameters in the interconnection process.

In practice the individual circuit assemblies may be geographically apart - such as the remote control of off-shore oil wells by a shorebased computer, the recording of test data from a missile, the control of banking accounts by a central computer centre or the sensors of a refinery which connect to the central control room. Each of these required some form of telemetry system.

When making connections it is also important, especially when noise sources are present that will interfere with the signal, to ensure that the signal is transferred from stage to stage without significant noise pick-up or signal degradation.

TRANSMISSION LINKS

Several different transmission methods exist in which the signal is confined - open wires, coaxial cables and waveguides, optical fibres etc. Alternatively, information can be transferred via open radiation paths - radio, optical or acoustic links. The required signal bandwidth is one of the primary factors deciding which method is used. In radiation methods it is often necessary to use a carrier frequency higher than the signal bandwidth dictates because low frequency carriers will not radiate as well for the same amount of transmitted power.
Confined Signal Links: The simplest links are formed using an open-wire circuit (supported on insulators) or a multicore cable (such as is used in local telephone. distribution).

Although apparently trivial, lines may, in fact, be an important part of the system. They are not as simple as they first appear because they have a frequency response that must be adequate for the signal bandwidth to be transmitted. Open-wire lines would not normally be used beyond 10 MHz . Above that coaxial cables are needed - these are useful to about 5000 MHz .

When current flow in a conducting line, magnetic and electric fields are set up around the wires. Figure 1 shows these plotted for the various kinds of cable. Open configurations radiate energy, the amount increasing with the fre-
quency of the signal. A line is, in reality, a distributed inductance and capacitance component which also has losses due to the resistance of the wire and the resistance to ground. Figure 2 shows how lines can be considered as a lumped-element equivalent circuit which can be analysed more easily. Depending upon the factors that are negligible for a particular case the equivalent can be reduced to simpler circuits see Fig. 3. For example, at very low frequencies (less than say 100 kHz) a medium length line may be represented by the series resistance of the cable shunted by the capacitance of the line. Typical

Fig. 1. Currents flowing in signal wires generate electric and magnetic fields. Enclosed configurations can be used at higher frequencies because these fields are contained.

cables may have a resistance of around 0.05 ohm per metre and a capacitance of 100 pF per metre. Hence a long length of shielded or open cable could provide a considerable shunting effect that attenuates and phase shifts the signal.

APPLY OHMS LAW

When connecting high outputimpedance sensors to lines, as little as one metre of cable may be sufficient to markedly attenuate the
signal. It's a matter of applying Ohms law to the suitable equivalent circuit.

Because of the reactive effects of the cable the higher frequency signals transmitted will be degraded more than the low frequencies - for example, square waves become rounded as well as attenuated. The high-frequency performance of the line may be improved by "loading" it with inductors placed at regular intervals. The inductance value is
chosen to tune out the inherent capacitive reactance at the upper frequency where response begins to fall off, a method that extends the bandwidth some way beyond the inherent, unloaded upper limit. This is used, for example, to broaden the bandwidth of submarine cables.

CO-AXIAL

The coaxial cable, shown in Fig. 4, by virtue of the surrounding external shield (Fig. 1) acting as the second wire, has no, external field and, therefore, does not radiate energy. Because of this a well designed coaxial cable will pass from dc to microwave frequencies - that is. such a cable can have a bandwidth of about 5000 MHz . Coaxial cable is, therefore, potentially able to transfer much more information than open wires. It does however need a common earth connection (asymmetric) and can't be used in a balanced mode (see later). The bandwidth of practical coaxial cables is limited by resistive and dielectric losses. In practice waveguides are generally used at frequencies above 1000 MHz or so.

WAVE GUIDES

Waveguides consist of precise pipework - they look as if they had been made by a precision plumber! Waveguides carry travelling etectromagnetic waves of very high frequency and behave vaguely in the same way that pipes carry water. They cannot however be used for low frequency transmission.

The cross-sectional area of a waveguide is inversely proportional to the design frequency. As a general rule of thumb guide the upper frequency limit of a waveguide is where the wavelength of the signal becomes one quarter of the guide aperture - millimetre wavelength signals (50 GHz or so) being the practical upper limit.

OPTICAL FIBRES

Beyond this, a still wider bandwidth is obtainable ușing optical fibre transmission elements which will pass radiation in the visible lignt region) $10^{14} \mathrm{~Hz}$ to $10^{15} \mathrm{~Hz}$). At our current state of technology, however, scientists have only been able to detect the frequencies of far infra-red signals (around $10^{11} \mathrm{~Hz}$). We cannot, as yet, monitor individual cycles of light with electronic detectors.

LUMPED LINES

When the losses of the line are insignificant ($G=0, R=0$, in Fig. 2b) the lumped-equivalent of the transmission lines reduces to L in series and C shunting, as shown in Fig. 3b. The nett result is, rather surprisingly, that the line exhibits only resistance of a fixed value when looking into the ends. This is called the characteristic impedance, Ẑo, for which Zo = (inductance per unit-length/capacitance per unit length) $1 / 2$. The line appears to be purely resistive and the Zo value is decided by the design of the line or cable, not by its length! Examples are 600 ohm telephone lines, 75 ohm colour TV coaxial feeder cable. This means, in practice, that we can interconnect units on the basis of matching all connections to the Zo of the cable without having to worry about the cable length. If this rule is observed, no high-frequency energy
will be reflected at the termination to change the information being transmitted . (The need for correct matching was also mentioned in the previous discussion about filters). However, if the line is very long matching must still be applied to obtain maximum transfer, but account must now be taken of losses. For example a typical 75 ohm coaxial cable will have losses of the order of 2 to 5 dB per one hundred metres.
Radiation Links: Electrical signals fed into open wires radiate energy out into the surrounding medium. As well as this radiated energy there also exists a "near field" that remains established, storing energy. This is the field we associate with, say, an electromagnet. As the frequency rises the ratio of radiated energy to stored energy increases. For this reason we are
able to build efficient radio systems provided the frequency is kept above 100 kHz or so. Lower frequencies can be used as transmission systems but the power input needs rise enormously for the same distance radiated in free space. (The Omega navigation system uses extremely powerful VLF signals because of their ability to penetrate deep into the waters of the ocean). Beyond the gigahertz frequency region, circuitry becomes impracticable with current technology.

Even though the radiated energy must be at a very high frequency to operate efficiently we may not necessarily need to use the bandwidth available on the carrier, modulation techniques are used to super-impose a relatively narrow bandwidth signal on to the carrier. It might be thought that optical and infra-red links use extremely high carrier frequencies $(330000 \mathrm{GHz}$ for red light) but in these applications the carrier is not modulated on an individual cycle basis but rather as a variation of a continuous dc link. Fig. 6 is a modern link designed to transmit television plus speech commands - a bandwidth of 7.5 MHz . Acoustic links using soundwave propagation operate with frequencies as low as 10 Hz to well above the 10 MHz region. These can be modulated on the individual cycle basis.
Skin Effect: The alternating magnetic field produced around a wire has the effect of causing the current flowing in the wire to flow at a greater density in the outer region of the wire. The higher the frequency the more pronounced this so-called skin-effect. At the very high frequencies so little current flows in the centre of the cable that the centre is often omitted completely, thus a tube is used as a conductor. For example, at 1 MHZ the majority of the current flows in a copper cable to a deoth of only $60 u \mathrm{~m}$ whereas at 60 Hz the distance would be 8.6 mm depth. This also means that the effectivle resistance of a wire rises significantly with frequency - by factors of 100 .
Process Industry Telemetry Links: Process plants such as oil refineries, paper mills, brick kilns, power stations and aluminium refining plants are monitored by using hundreds of sensors connected to the control-room area via instrumentation links. These are invariably wired using shielded wire or coaxial cable. Because of the extreme electrical noise level of

ELECTRONICS-it's easy!

Fig. 5. Waveguides transmit electro-magnetic energy via travelling fields that are conveyed through the pipework.
such plants and low output signal level of the senors these links could pick up significant noise thus degrading the senor information. Over the years process instrument suppliers have standardised the design of the control systems, and their installation and noise pick-up by the cable has been avoided by several methods.

The first strategy is to superimpose the information signal on to a standing current or voltage thus raising the wanted signal level above expected noise levels. The two systems commonly used transmit the signal range of the data through $4-20 \mathrm{~mA} \mathrm{DC}$ or $10-50 \mathrm{mV}$ DC systems. An 0-20 mA system is also common. Current transmission has the advantage that the circuit is of low impedance - a few ohms which reduces the level of induced noise power. Figure 7 is an example of these practices - Honeywell's arrangements used to test the temperature and pressure of natural
gas wells in the Leman Field of the North Sea.

SAFETY PRECAUTIONS

Often the sensor has to be placed at a location where an explosion could result from a spark or excessive overheating of a malfunctioning sensor circuit. The most obvious way of overcoming this is to place the whole unit in an explo-sion-proof enclosure. This, however, has disadvantages the cost is high, and testing and maintenance difficult due to the need to shut off the power when the enclosure is opened

The alternative, more modern, method is known as intrinsic safety. As inflammables require a specific level of energy to ignite them, explosion can be prevented by ensuring that the sensor stage cannot, under any conditions, provide enough ignition energy. No enclosures are needed and the circuit can be maintained whilst it is operating, Originally the concept
was implemented by ensuring the senor circuitry could not draw, or produce via storage, more than a specified power level. This level was found by experiment in a test rig set up for the situation involved.

The more recent idea is to use "safety barriers." At the exit from the declared hazardous area, the cables terminate into a zener-diode and attenuator arrangement which ensures that the current and voltage entering the area are limited to safe values. Figure 8 shows the circuit of a zener barrier. Another safety device uses a solid-state closelycoupled electro-optic link which provides DC electrical isolation between its input and output, the information being transferred from a light-emitting-diode mounted next to a silicon photo-diode detector. These ensure that overvoltage or induced earth-loop currents cannot enter the isolated hazardous area.

MEDICAL MATTERS

In electro-medical instrumentation, safety precautions of another kind are vital to ensure the senor does not act as a pathway for a dangerous level of electric-current into the patient. At 240 VAC the human body's resistance, hand to hand is around 2000 ohms - 100 mA will flow. If totally connected (as by a conducting fluid) the resistance reduces to 200 ohm - 1 A will flow. About 75 mA through the body will produce heart fibrillation; only $150 u \mathrm{~A}$, through the heart itself, is needed to produce this effect. A person can usually hold (with the fingers) and release as much as a $10 \mathrm{~mA}, 240 \mathrm{VAC}$ current - beyond that the muscles become paralysed. Skin moisture largely decides the hand to hand resistance. When dry it will be (at 240 V) 2500 ohms and moist 1000 ohms. Thus a hand-to-hand. 240 V encounter will provide a shock at least double the fibrillation level!

The instrumentation must, where the metal parts are earthed, be wired with the active, neutral and earthing wires connected correctly. Double-insulated systems avoid this problem. Earth-leakage balanced -core breakers are worth using. These defect minute difference currents in the active and neutral, tripping a breaker if they rise above milliamperes.

The sensor attached to the patient must not be capable of providing a lethal level of energy by means of feedback from the instrumentation.

THE METAC DIGITAL CLOCK

\author{

* COMPLETE KIT *
}

- Pleasant green display. 12/24 Hour readout
- Silent Synchronous Accuracy. Fully electronic
- Pulsating colon. Push-button setting

Building time 1 hr. Attractive acrylic case

- Easy to follow instructions. Size $10.5 \times 5.7 \times 8 \mathrm{~cm}$
- Ready drilled PCB to accept components

KIT PRICE £9.60 + 76p vat

SAME DAY DESPATCH ORDERS RECEIVED BEFORE 2.0 . P.M. ARE POSTED ON THE SAME DAY

SEND YOUR ORDER TO

DAVENTRY

UXBRIDGE
METAC ELECTRONIC AND TIME 67 high street CENTRE 3 the new arcade DAVENTRY NORTHANTS HIGH STREET UXBRIDGE
MIDDLESEX
Cash, Cheque or Postal Order or if you wish to use Barclaycard or Access, simply quote name, address and card number when ordering.

Unique full-function 8-digit wrist calculator... available only as a kit.

A wrist calculator is the ultimate in common-sense portable calculating power. Even a pocket calculator goes where your pocket goes - take your jacket off, and you're lost!
But a wrist-calculator is only worth having if it offers a genuinely comprehensive range of functions, with a full-size 8-digit display.
This one does. What's more, because it is a kit, supplied direct from the manufacturer, it costs only a very reasonable $£ 9.95$ (plus 8\%VAT, P\&P). And for that, you get not only a highcalibre calculator, but the fascination of building it yourself

How to make 10 keys do the work of 27

The Sinclair Instrument wrist calculator offers the full range of arithmetic functions. It uses normal algebraic logic ('enter it as you write it'). But in addition, it offers a $\%$ key; plus the convenience functions $\sqrt{x}, 1 / x, x^{2}$; plus a full 5 -function memory.
All this, from just 10 keys! The secret? An ingenious, simple three-position switch. It works like this.

Dimensions
$1^{13 / 16^{\prime \prime}}(46 \mathrm{~mm})$ wide $1^{7 / 16^{11}}(37 \mathrm{~mm})$ deep. Weight less than 1 oz (28 g)

1. The switch in its normal, central position. With the switch centred, numbers - which make up the vast majority of key-strokes - are tapped in the normal way 2. Hold the switch to the left to use the functions to the left above the keys.
2. and hold it to the right to use the functions to the right above the keys.
The display uses 8 full-size red LED digits, and the calculator runs on readilyavailable hearing-aid batteries to give weeks of normal use.

Greenbank

TIME BOX. Digital Clock Case $56 \times 131 \times 71.5 \mathrm{~mm}$ with red acrylic window Choice of case colour E2.25.

GREENBANK ELECTRONICS (Dept. T4E)

PRINTED CIRCUIT KIT £4.95
Make your own printed circuits. Contains etching dish, 100 sq ins of pc board, 1 lb ferric chloride etch resist pen. drill bit and instructions.
JC12 AMPLIFIER
6W IC audio amp
printed circuir
printed
E2. 25 .
DELUXE KIT FOR JC12

Contains extra parts except JC1 2 needed to complete the controls. Mono E2.39. Stereo $£ 5.25$.
JC12 POWER KIT
Supplies 25V 1 Amp £3.95
JC12 PREAMP KITS
Type 1 for magnetic pickups, mics and tuners. Mono E1.50. Stereo $£ 3.00$. Type 2 for ceramic or crystal pickups. Mono 88p. Stereo £1.76.

SINCLAIR IC20

C20 10W +10 W stereo integrated circuit amplifier kit with printed circuit and data $£ 4.95$.
P220 Power supply kit for above $£ 3.95$
VP20 Volume, tone-control and preamp kit $£ 895$

JC40 AMPLIFIER

New integrated circuit 20 W ampifier kit, complete with chip. printed circuit and data £4.45

FERRANTI ZN414

C radio chip $\mathrm{E1.44}$. Exira parts and pcb for radio £3.85. Case £1.00. Send sae for free data

BATTERY ELIMINATOR BARGAINS
 RADIO MODELS

50mA with press-stud battery connectors, $9 \mathrm{~V} £ 3.75$ $6 \mathrm{~V} £ 375.9 \mathrm{~V}+9 \mathrm{~V} £ 5.45 .6 \mathrm{~V}+6 \mathrm{~V} £ 5.45 .41 / 2 \mathrm{~V}+$ CASSETTE MAINS UNITS
$71 / 2 \mathrm{~V}$ with 5 pin DIN plug. $150 \mathrm{~mA} £ 3.95$.
$71 / 2 V$ with 5 pin DIN
3-WAY MODELS
With switched output and 4 -way multi-jack connector
With switched output and 4-way multi-jack connector
Type $1: 3 / 41 / 2 / 6 \mathrm{~V}$ at $100 \mathrm{~mA} £ 3.20$. Type 266
$71 / 2$ / 9 V at 150 mA £3. 30.
FULLY STABILIZED MODEL $£ 5.45$
Switched output of $3 / 6 / 71 / 2 / 9 \mathrm{~V}$ stablized at 400 mA .
CAR CONVERTORS E5.10
Input 12V DC. Output $6 / 71 / 2 / 9 \mathrm{~V} D C 1$ Amp stabilized.
BATTERY ELIMINATOR KITS
Send sae for free leaflet on range.
100 mA radio typos with press stud battery terminals
$41 / 2 V £ 2.10 .6 V £ 2.10 .9 V £ 2.10 .41 / 2 V+41 / 2 V £ 2.80$.
$6 V+6 V £ 280.9 V+9 V £ 2.80$
$6 \mathrm{~V}+6 \mathrm{~V} £ 2.80 .9 \mathrm{~V}+9 \mathrm{~V} £ 2.80$
100 mA cassette type: $71 / 2 \mathrm{~V}$ with 5 pin DIN plug
£2.10.
Transistor stabilized 8-way type for low hum $3 / 41 / 2 / 6 / 71 / 2 / 9 / 12 / 15 / 18 \mathrm{~V} 100 \mathrm{~mA} £ 3.50$ I Amp E6. 50 .
Heavy dury 13-way rypes $41 / 2 / 6 / 7 /$
model $£ 4.95$. 2 Amp model $£ 7.95$
Car convertor kit: Input 12 V DC. Outpuf $6 / 7 \frac{1}{2} / 9 \mathrm{~V}$ DC 1 A ransistor stabilized $£ 1.95$. MILLENIA KITS
5 Transistor highly stabilized power units Swithed 1 1030 V in 0.1 V steps. Send sae for free leaflet. 1 Amp kit $£ 12.45$. 2 Amp kit $£ 14.95$. Case $£ 2.95$ extra

MAINS TRANSFORMERS

6-0.6V 100mA £1. $9.0-9 \mathrm{~V} 75 \mathrm{~mA} \mathrm{E} 1$. 18 V 1A £ 195.
$0 / 12 / 15 / 20 / 24 / 30 \mathrm{~V} 1 \mathrm{~A}$ £ 4.30 . $12-0.12 \mathrm{~V} 50 \mathrm{~mA}$ £1. $0 / 12 / 15 / 20 / 24 / 30 \mathrm{~V} 2 \mathrm{~A} £ 5.95 .6 .3 \mathrm{~V} 11 / 2 \mathrm{~A}$ $\begin{array}{lllllll}£ 2.45 . & 6-0.6 \mathrm{~V} & 11 / 2 \mathrm{~A} & £ 2.85 . & 9-0-9 \mathrm{~V} \quad 1 \mathrm{~A} & £ 2.55 \\ 12-0.12 \mathrm{~V} & 1 \mathrm{~A} £ 2.95 & 15-0.15 \mathrm{~V} & 1 \mathrm{~A} \mathrm{f3.20} & 30-0.30 \mathrm{~V}\end{array}$ 12-0.12V 1A £2.95. 15-0.15V 1A £3.20. 30-0.30V

S-DECS AND T-DECS
S-DeC E1 94. T-DeC £3.86 u-DeCA £4.21 u-DeC8 £7 21 IC carriers with sockets

SINCLAIR CALCULATORS,

 WATCHES AND POCKET TVSinclair pocket TV £165 Cambridge Sciemific £8.95. Cambridge Memory $£ 5.95$. Oxford Scientific $£ 13.30$ Mains adaptors (state model) $£ 3.20$. Assembled grey watch with free stanless steel bracelet $£ 16.45$ White watch £13.95
SINCLAIR PROJECT 80 AUDIO MODULES
PZ5 £4.95. 240 £5.75. Pro. B050 £18.95
BI-PAK AUDIO MODULES
S450 tuner $£ 20.95$. AL60 £4.60. PA100 £ 14.95 MK60 audio kıt $£ 31.95$. Teak $60 £ 12.95$. Stereo 30 £1695. SPMBO £3.95. BMT80 £3.62. Send sae for free data.
SAXON ENTERTAINMENTS MODULES
SA1208 £20.50. SA1204 £14. SA608 £13 PM1201/8 £12. PM1202/8 £ 1
PM1202/4 £19 PM601/8 £12.

SWANLEY ELECTRONICS

Dept. ETI, PO Box 68, 32 Goldsel Road, Swanley

Mail order only. We will not serve callers under any crrcumstances. Post 30p on orders under £2.23 otherwise free. Prices include VAT. Official orders welcome. Overseas customers please deduct VAT. Send
sae for free leaflet on kits.

"SORRY WE HAVE SOLD OUT'

That's what newsagents have to say to potential ETI readers every month. You local newsagent may not carry ETI for display but he may well have some for regular customers. A newsagent will always be happy to obtain ETI if you place a regular order.

ETI Readers are Ten-a-Penny

With advertisements at fuil page rate ETI readers will be reached at ten-a-penny, and with our rising circulation they are cheaper every month. Of course under a full page they cost even less. And with ETI's already demonstrated selling effectiveness that gives you real proven value for your Ad money, which means a lot these days

For more information contact Mark Strathern, Electronics Today International, 25-27 Oxford St, London W1R 1RF. Telephone 01-434 1781.
Telex 8811896.

STEREO ONLY

This circuit allows only stereo broad casts to be outputed by a tuner using either a 1310 or 3090 type stereo decoder chip. In both cases the stereo beacon driver is used to switch the audio output of the tuner. When a stereo signal is being received the beacon driver output is low which turns the Q 1 and energises reed relay RL1. The two contacts which switch the output lines are closed and the stereo signal is available at the tuner output sockets. RL1 can be any reed relay with a coil resistance greater than 120 ohms and two normally open contacts.

BASIC MIXER

This simple mixer circuit will work with two or three channels, providing excellent input isolation and exceptional frequency response, extending well over the top end of the audio spectrum.

It is usable by one or more instruments plus microphone, or with special effects, such as mixing an input with pink noise, to give 'surf'.

The unit will give 8 db gain, and since low-level signals are involved, should be housed in an aluminium box. If a mains supply is used, the usual anti-hum precautions must be taken.

It is useful to use scaled slider potentiometers, so that effects may be re-created.

PROTECTION FROM TTL PSU FAILURE

With this circuit, a fault in the sophisticated PSU might cause the output voltage to rise above about 5.5 V , (the maximum allowable) and thus cause damage to the ICs.

A simple zener regulator across the output as in Fig. 2 with a zener voltage of about 5.5 V , means that at normal voltage, the zener is effectively open circuit. The effect of the load resistor R , would be to eliminate all the regulation of the main PSU.

In the circuit shown in Fig. 3, there is no load resistor to cause regulation problems, and the zener normally appears as an open circuit. But as soon as the voltage rises above about 5.5 V the zener tries to draw a great deal of current and the fuse blows, cutting off the supply from the load.

SPECIAL OFFER
 CREED 7B TELEPRINTER LATE MODEL WITH PERFORATOR, £60 FREE WITH ALL PURCHASES PLESSEY READER

MARCONI TF675F WIDE RANGE
PULSE GENERATOR

Small compact uni
£ 22.50 each

PRECISION EX-MINISTRY SIGNAL GENERATOR
type 62 by DECCA 95 to 160 MHZ . Two front panel switches connected to a motor driven system also be operated manually). Precision attenuator system. Internal/External AM Modulation. Carrier level meter \& \% Modulation meter. 1 MHZ \& 10 MHZ Crystal Markers Provision for external crystal as marker, this equipment was used for aligning service type Aircrath recervers ency $\mathbf{E} 15$ each.

AVO VALVE TESTER CT160 "THE SUITCASE"

Size approx $15^{\prime \prime}$ wide $\times 10^{\prime \prime}$ high $\times 11^{\prime \prime}$ deep limited quantity $£ 25$ each.

MARCONI NOISE GENERATOR TF987/1

4 Ranges 0-5; 0-10.
0-15:0.30
ONLY £15 each

TRANSFORMERS - All 240 V 50 HZ Inputs
Type A. 170-17V 250MA. 7.5-0-7.5V 250MA 0-20V 5 Amps. 0-4V 5 Amps. Type B 17-0.17V 250 MA ; B-0-8V 250 MA $0-125-13.5 \mathrm{~V} 5 \mathrm{Amps}$ 0.1.5-2V 5 Amps $£ 1.50$ ea. P\&P £ 1
Type C. 19-0-19V 250 MA : B-0-8V 250 MA $0-7.5 \vee 5$ Amps: $0-1.4 \vee 5$ Amps $\mathbb{E} 1.25$ ea P\&P E1. 25.
Type E. 3 V 1 Amp 25p ea. P\&P 50p. Type G 20-0-20V 200 MA ; 0-6V 100 MA $\mathbf{7 5 p}$ ea. $P \& P 75 \mathrm{p}$. Atlantic series. All brand new (APT surplus types A. 8 C Series type G)
*POT PACK. All 8rand New Modern Single and Ganged Our choice 7 for $\mathbf{2 5 p}$ P\&P 4 Bp .

SEMICONDUCTORS - Now all at 5p ea. \quad P\&P extra. Guaranteed all full spec devices. Manufacturer's markings. BC147: BC158; 2N3707: BC107; BF 197 BC327; 2N4403: BC1728; BC261B $\mathrm{BC} 251 \mathrm{~B}, \mathrm{BC} 34$
BF 183 : BC 10 B.
BF 183: BC10B.
Comp pair £2 pr P\&P 15p
*Linear Amp 709 25p ea. P\&P $8 p$
\$TL 7475 15p ea
VARIACS 240 V input $0-230 \mathrm{~V}$ output 8 amp $£ 18$ ea $20 \mathrm{amp} £ 30$ ea. Carr extra BNC Plug to BNC Plug lead, assembled ready to use 75p ea. P\&P 20p. Ex-eq. BNC Socket 15p. BNC Plug 25p

TUBES. All Brand New Boxed
Electrostatic deflection
Type 408A $11 / 2^{\prime \prime}$ dia
 Type DB7/36 $3^{\prime \prime \prime}$ dia, (Replacement
Telequipment S31) 12 ea P\&P $£ 1.50$ Type GEC 924F $31 / 2^{\prime \prime}$ dia (Replacement for Telequipment D33 \& Solartron 1016 scopes) £30 ea. P\&P £ 1.50 Type GEC $924 \mathrm{E} 31 / 2^{\prime \prime}$ dia. (Replacement for Solarrion 1015 scope). £20 ea. P\&P £1.50
NEW - UPGRADED CONTENTS - FOR LESS MONEY
*3lb Electronic Goodies $\mathbf{£ 1 . 6 0}$ posi pard *High Value Printed Board Pack - no flat to the board transistors $£ 1.65$ post paid.

VERY SPECIAL PRICES
$\star 1000$ f Feed thru Capacitors 10 for 30p. P\&P $15 p$

CREED 8 Level READER
CREED 8 Level PUNCH
TALLY READER
TALLY PUNCH
ASC11 coded KEYBOARD with PUNCH \& READER IBM Coded Golfball in table with PUNCH \& READER OLIVETTI ASC11 PRINTER ONLY

£ 35

$£ 45$
$£ 95$
£85
$£ 140$
£ 200
£160

Items constantly changing - Phone or call

MARCONI TF142F DISTORTION FACTOR METER giving percentage distortion on aR a direcily calibrated dial and includes all spurious components up to $30 \mathrm{KHZ} £ 32.50$ ea MARCONI PORTABLE FREQUENCY METER TF 1026 fine condition. Sorry now $£ 27.50 \mathrm{ea}$. fine condition. Sorry now £27.50 ea. size $7 \times 9 \times 14$ in approx. ideal for colour TV servicing Superbiy reliable. FANTASTIC VALUE at $£ \mathbf{8 5}$ ea.

```
*BEEHIVE TRIMMERS \(3 / 30 \mathrm{pf}\). BRAND
NEW 10 off \(\mathbf{4 0 p}\) P\&P 15 p ; 100 off \(\mathbf{£ 3 . 5 0}\) P\&P 75p: 500 off £15 P\&P £1.25: 1.000 off \(£ \mathbf{2 5}\) P\&P \(£ 1.50\)
PHOTOMULTIPLIER Type 931A \(\mathbf{E 4}\) ea.
P\&P 75p. Other types available
HIVAC Miniature NEONS App 60 V Brand New. 10 off 20p. P\&iP extra.
\&Meler PACKS - 3 different meters \(£ 2\). P\&PE1
DON'T FORGET YOUR MANUALS S.A.E. with requirements.
GRATICULES \(12 \times 14 \mathrm{~cm}\), high quality plastic 15p ea. P\&P \(10 p\)
*CAPACITOR Pack 50 Brand New components only 50 p. P\&P 48 p .
*TRIMMER PACK. All Brand New 2 Twin 50/200pf ceramic. 2 Twin 10/60p ceramic. 2 min. strips with 4 preset \(5 / 20 \mathrm{pt}\) on each: 3 alr spaced presel \(30 / 100\) pf on ceramic base 25p the lot. P\&P 15p
*POTENTIOMETERS - All 5p ea. P\&P extra. Metal bodied AB Linear. PCB Mount Brand New 10 K single: 100 K ganged. 250 K ganged: 100 K ganged. concentric shatts
```

FIBREGLASS BOARD PACK. More board - less money larger pieces. Not less than 25 sq fi for $\mathbf{9 5 p}$. P\&P 65 p . Not les Double or single sided cut to any size New Lower Price 1p per sq. in. P\&P extra.
LARGE RANGE ELECTROSTATIC VOLTMETERS, from 0.300 V £3: 20 KV Max.
General guide 5 KV $31 / 2$ £5; thereafter $£ 1$ General Guide 5 KV
per KV. P\&P 75 p
MARCONI TF1101 Audio Oscillator $20 \mathrm{c} / \mathrm{s}$ to $200 \mathrm{ks} /$. Low distortion. 60 dB 50 each

* SPECIAL OFFER

Guaranteed full spec. devices. Manu
facturers markings.
POWER TRANSISTOR 2 N3055 40p ea P\&P 8p.

* TELEPHONES

Post Office Style 746 black or two-tone
Grey $£ 6.50$ ea
$£ 4.60$ ea
older BLACK Style $£ 1.50$ ea
All telephones complete with siandard dial and bells. P\&P all styles $75 p$ ea handsets complete with 2 inserts and lead $\mathbf{£ 1 . 7 5}$ ea P\&P 65p.
OLDER STYLE HANDSET £1 ea P\&
65p.
ROYAL INVERTORS manufactured USA 28 V DC input. Output 115 V AC 400 HZ 10 2KVA. Brand new Crated $\mathbf{£ 1 2 . 5 0 \text { ea }}$

HONEYWELL MAGNETIC TAPE UNITS

Self-contained, complete with heads, magnetic tape, leads, etc
Tested. Carriage paid $£ 57.50$.

FOR THE VDU BUILDER

New stock of Large Rectangular Screen $30 \times 20 \mathrm{~cm}$ tube. Type M38 at the ridiculous price of $£ 4$ ea And also still available the CME1220, $24 \times 15 \mathrm{~cm}$ at $£ 9$ ea. Base connections for both tubes supplied.

Minimum Mail Order $£ 2$. Excess postage refunded
Unless stated - please add $£ 2.50$ carriage to all units
VALUE ADDED TAX not included in prices - Goods marked with $\star 121 / 2 \%$ VAT, otherwise 8% Official Orders Welcomed. Gov./Educational Depts., Authorities etc., otherwise Cash with Order

Open 9 a.m. to 5.30 p.m., Mon. to Sat.

7/9 ARTHUR ROAD, READING, BERKS. (rear Tech. College, King's Road). Tel. Reading 582605

techtips

3 CHIP DIE

This differs from previously published circuits in that decoding, count and drive LED is achieved by a single 7 segment decoder/driver chip.

JOYSTICK

Shown is an idea used successfully to provide a 'joystick' type of control with a television football game, by mounting an ordinary rotary type potentiometer on the tang of a slider potentiometer. The rotary control is attached to the circuit board via flying leads.

Radio control enthusiasts could use the idea in conjunction with a proportional system, giving a very cheap alternative to 'joysticks'.
bonnet. If thieves cut the normal horn wires the alarm is unaffected; also any attempt to lift the bonnet to disconnect the battery will trigger it. The sensor leads are multistrand flexible cable with only one strand connected to the equipment, therefore easily broken while trying to remove it from the dashboard.

The transistors used are not critical and most NPN. general purpose transistors should suffice. The stand-by current is very low (typ. 13 mA), and therefore is designed to be left switched on. The owner can never forget to switch on the alarm when leaving the vehicle. He must, however, switch off before lifting the bonnet.

TV-Computersystem 6800 8080 SC/MP

ROTEX-EMMEN-HOLLAND

The microcomputersystem specially for:
Education - schools

- selístudy

Industry - program - development

- systems - development
- terminal

Hobby - entertairment

- games

techtips

HEY DISPLAY

THERE ARE MANY SITUATIONS in which the computer enthusiast wants to see the data on a parallel binary data bus (such as the one carrying the output from the terminal keyboard in this issue). Certain conventions have arisen to provide standard ways of displaying and manipulating large binary data words - because we are not equipped to handle information in the form of words like 00000000 or 11111111 (or words from 0000000000000000
1111111111111111
Conventionally parallel buses are organised in multiples of four lines, and in microcomputing the most common bus-width is eight lines.

Binary display is easily achieved data on the bus is strobed into a latch and the contents of this latch are used to set up a display on eight LEDs. This project provides a small board with two displays to read an eight-bit word. If one display is all that is needed (to read a four-bit word) half of the design can be used - just saw the PCB in half

The data is loaded into a latch on the 9368 IC when the strobe line is taken low. This IC also contains the display drivers and all the electronics for decoding. The inputs are standard TTL-level and positive-logic (${ }^{\prime} \mathrm{O}<0.4 \mathrm{~V},{ }^{\prime} 1^{\prime}>2.4 \mathrm{~V}$)

The power-supply requirement is a single +5 V .

BINARY INPUTS

The circuit diagram of ane half of the display.

Component overlay for the ET/ 630 board shown below.

SPECIFICATION ETI 630

No of digits
Number system
Display format
Data input level
Strobe input level
Power supply

Two
Hexadecimal (base 16).
$0,1,2,3,4,5,6,7,8,9, A, b, C, d, E, F$.
TTL positive logic.
TTL active low.
$5 \mathrm{~V}, \pm 0.25 \mathrm{~V}$.
Current consumption depends on display.

suddenly losing you half of your supply and you have the makings of a rather good game.

COUNTER MOVES

The basis of the game is a set of digital counters giving the results from a simple algorithmic calculation based on changing input 'parameters. Sound complex? If you assume that your rocket passes into manual control at 5,000 feet up you have 100 units of fuel left and your present rate of fall is 150 feet per second it is relatively simple to work out the situation one second later.

If you do not fire your retrorockets then gravity will increase your speed by about 5 feet second to $155 \mathrm{ft} / \mathrm{sec}$, also you have travelled for one second at 150 $\mathrm{ft} / \mathrm{sec}$ (ignore increase in speed at present) and thus your new height is 4,850 feet. With no fuel burn, after ten seconds you will be at 3,275 feet and going down at $200 \mathrm{ft} / \mathrm{sec}$, carry on at that rate and there won't be much left of you or your rocket.

BURNING BOATS

Let us assume that your retrorockets give you $10 \mathrm{ft} / \mathrm{sec}$ speed change in one second, thus if you now burn your fuel your speed is going to reduce by $10 \mathrm{ft} / \mathrm{sec}$ to 190 $\mathrm{ft} / \mathrm{sec}$ and then to 180,170 , etc. Thus after another ten seconds your status is height $=1,725$ feet, speed $=100 \mathrm{ft} / \mathrm{sec}$ and fuel $=90$ units, the next ten seconds reduce these to 80 units of fuel at 1,175 feet with a speed of zero, if you continue to burn your fuel you will start going up and so you had better turn off the rockets.

After 15 seconds of free fall and five seconds of burn you will be down to 375 feet and going at 25

Seconds	Height	Speed	Fuel
0	5000	150	100
10	3275	200	100
20	1725	100	90
30	1175	0	80
40	950	50	80
50	375	25	75
51	350	30	75
52	320	35	75
53	285	25	74
54	260	30	74
55	230	35	74
56	195	25	73
57	170	30	73
58	140	35	73
59	105	25	72
60	80	15	71
61	65	20	71
62	45	10	70
63	35	15	70
64	20	5	69
65	15	10	69
66	5	0	68
67	5	5	68
68	0	10	68

LAST MONTH I mentioned the new GI TV games chip which allows you to play up to six games on your TV by adding a few simple controls and components. This chip will only play "Ball and Paddle" games such as tennis, hockey and pelota, although the two Rifle games included on the chip allow shooting with a photo-sensor at the target (otherwise known as the ball).

GI have now released further details of their second generation of TV games including volleyball, tank warfare and a road race. Essentially the latest additions fall into two categories: multigame chips which mate with other chips to increase the variety of games and cartridge programmable chip sets which use any or all of Gls lines of 16, 8 and 4 bit MPUs.

All of the dedicated circuits are designed round a few basic chips, and with these you can build home TV games similar to those which are now becoming popular in arcades. In upgrading the standard "Ball and Paddle" games GI have added some interesting but basically useless gimmicks. These include differently coloured scores for each player, dual axis paddle control, and for squash, a ball which changes colour to indicate whose turn it is to hit it!

With the new multigame chips the user can choose from four chips, one with the six basic paddle games, one with the simple games plus colour options, one with eight games or one with the tank battle alone.

With the add-on circuits you can add three variations of volleyball, a road race, a chase game or a battle between surface ships and submarines.

One of the other chips in this range is a five game chip which plays a set of games in which players have 16 directions to move
a vehicle or fire a missile, to make things as simple as possible GI have used simple squares to denote a player's pieces rather than using a tank shape or car shape.

For the higher priced game GI have a selection of games which use one of their MPUs to do a lot of the work, some of these games include blackjack, a slot machine, Noughts and Crosses and a Lunar Landing game. For further info you can write to Gl at 63 Mortimer St, London W1.

LANDED IN LUNAR-CY

A game such as Lunar Lander can be played in three ways, as a picture game with a small rocket controlled by a joystick, as a numbers game with pictures given for height, speed, fuel, etc, or as a combination of the two. The "pretty pictures" version need a graphics generator whereas the alphanumeric only version relies wholly on your ability to read and understand the digital instrument readings given on a VDU. This second approach to TV games is more interesting for the home user as more brainpower is needed as opposed to the paddle game where skill and manual dexterity are of prime importance.

The object of a lunar landing game is to judge your landing speed and the amount of decelleration required at any given height. Decellerating uses fuel and only counteracts the effects of gravity. which causes acceleration, if you use too much fuel too soon you have none left for final manouvering and you land with a bump. If you do not use enough fuel early on then you cannot reduce your speed enough before impact, burn too much fuel when you are going slowly and you can end up going upwards. Add a few unseen calamities randomly such as fuel leak
$\mathrm{ft} / \mathrm{sec}$. The table shows the final approach from this point onwards.

A landing at $10 \mathrm{ft} / \mathrm{sec}$ is like jumping off a ten foot wall, a lot better than landing at several hundreds of feet per second. By changing the parameters slightly and adding random fuel losses the game can become very exciting. The game is based on an algorithm (calculation) based on the changes in speed and fuel usage.

If you started out with only 30 units of fuel then the game would be more of a contest in fuel management, in the above example the 30 units would have run out after 63 seconds and you would have landed two seconds later but at $20 \mathrm{ft} / \mathrm{sec}$.

GAME AT MANAGING

Other types of simple or complex management games of this type can be played with a MPU simply by programming it to do the calculations which can thus become more complex and have more random factors. For those of you who find the idea interesting there is a book by Hewlett-Packard called "What you do after you hit Return" (part no HP 36000-91005) obtainable from Hewlett-Packard Ltd.,

King St. Lane, Widdersh, Wokingham, Berks at $£ 4.45$ (Quote part number).

This book details the logic and a 'BASIC" listing of about 50 games ranging from simple word and number games up to "Star Trader,": Civil War and Stockmarket games. Comparing these games to the "Ball and Paddle" games is like comparing a spinning top to Monopoly, one is a short bit of fun suitable for pubs and arcades and the other is a multi-person competitive thinking game. Both types will be coming onto the consumer market later this year so start saving your pennies now!

DON'T SWEAR TO IT!

Some months ago we mentioned the problem of seven-segment, to BCD conversion and several people came up with 3 or 4 chip solutions and even the idea of using a 74188 PROM. NatSemi have now announced (re-announced?) the DM86L25, "The one commercially available device specifically designed to do the job." It has two output enables, the ability to accept either positive or negative logic and the ability to recognise four letters, a minus sign and a blank - 1 wonder what the four letters are?

it'S A QUARTZ DIGital Clock. Shows Hours, Minutes, Seconds AM /PM, Date, Day of Week
IT'S AN ALARM. Can be set to sound 4 times a day, AM or PM every day until reset.
IT'S A STOPWATCH. Hours, Minutes, Seconds to 9 Hrs 59 Mins 59.9 Secs.
IT'S A CALCULATOR. Computerized for Time \& Date calculations IT'S ANOTHER WORLD FIRST FROM CASIO - The CO- 1
IT'S ONLY $1 \times 21 / 2 \times 51 / 2$ inches and costs ONLY $£ 29.95$ (R.R.P £35.95)

THE SECOND BEST WATCH IN THE WORLD?

8 Functions and Backlight
STOPWATCH
DUAL TIME ZONES
Stainless Steel, Mineral Glass
The Casio Casiotron Si5B R.R.P. $£ 99.95$

OUR PRICE $£ \mathbf{7 8} .50$
Full range of NEW 1977
Casio watches from
$£ 38.50$
NEW
National Semiconductor LCDs from £23.90 Fairchild Timeband low cost LCD. Many others SEND 10p FOR OUR ILLUSTRATED CATALOGUE
The WIDEST range of the BEST watches at the LOWEST prices. Prices include VAT \& P\&P. Free Battery(s). 1 Yr. Guarantee Access \& Barclaycard welcome, C.O.D. or send cheque or P.O. to -

Talk Of The Town
19/21 Fitzroy Street Cambridge CB1 1EH Tel. 0223312866

C CLASSIFIED

THIS SECTION IS A PRE-PAYMENT SERVICE ONLY

MINIADS: $31 / 4^{\prime \prime} \times 21 / 8^{\prime \prime}(1-3) £ 26$ (4-11) £23 (12 or more) £22 per insertion. CLASSIFIED DISPLAY: £3.50 per single column centimetre. SEMI-DISPLAY: $£ 2.70$ per single column centimetre LINEAGE: $75 p$ per line average six words, minimum 3 lines. No P.O Box Numbers can be accepted without full address and phone number Adv. Dept. (01-437 5982) 25-27 Oxford St, London W1R 1RF

300W TOUCHSWITCH KITS

IS300K Contains Triac, iC, Diodes, Resistors, Frontplate, PCB, etc. Replaces conventional lightswitch with NO REWIRING. TOUCH one insulated plate for ON, another for OFF Complete with instructions. ONLY E3.67.
ALSO TSA300K AUTOMATIC, as above, but with only ONE TOUCHPLATE TOUCH for ON and light stays on for a preset time. Ideal for stairs and hall. Complete with instructions. ONLY £3.67.
300W LIGHTDIMMER KIT replaces conventional
lightswitch $\mathbf{£ 2 . 4 5}$.

$$
\begin{aligned}
& \text { SPECIAL OFFER - APRIL ONLY } \\
& 5-8.5 A / 400 V \text { TRIACS - £3.80 } \\
& \text { TO220 Case. Isolated Tab. }
\end{aligned}
$$

TURN YOUR SURPLUS capacitors, transistors, etc. into cash. Contact COLESHARDING \& CO., 103 South Brink, Wisbech. Cambs. 0945-4188. Immediate settlement.

M.A. 1001B DIGITĀL CLOCK

MODULE SIZE $3.0^{\prime \prime} \times 1.75^{\prime \prime}$
C/W $15 v+4.5-0-4.5 v$ TRANSFORMER. Requires only switches and case. DATA SUPPLIED OUR PRICE ONLY £8.74
Features Bright $0.5^{\prime \prime}$ Display. 12 hr . Format with 24 hr alarm capability Flashing Colon, Power Failure Indication, P.M. Indicator, Alarm Set Indicator, Hrs. and Mins. or Mins and Secs Display. Output Drives from Alarm and Sieep Timers, 9 Min. Snooze Timer and 59 Min. Sleep Time

Ah Items Ex Stock

CAR, BOAT OR CARAVAN CLOCK MODULE

M.A. 10018 Includes all features listed above plus Data for Conversion to 12 v D.C. plus Cystal Time Base for aocuracy to a few secs. per month.
OUR PRICE ONLY $£ 13.88$

If required with Transformer £14.74
CAYSTAL TIME BASE SUITABLE FOR C.MOS DIGITAL CLOCKS. (Built and Tested.) Size approx. $1^{\prime \prime} \times 1.5^{\prime \prime} \times 0.5^{\prime \prime}$. Can be adjusted to \pm a few seconds/month OUR PRICE ONLY ES. 25
ALL PRICES INCLUDE VAT AND POST \& PACKING
Terms Cash with Order - Mail Order Only ORDERS TO: F.E.K. SUPPLIES 18 STARAING LANE LITTLEBOROUGH, LANCS

MPU BUILDERS! We have new stocks of the excellent 150 characters per second GEC-PTR-66-1A tape reader, $£ 25$ + VAT + $£ 2$ carriage, data sheet only, 50 p. We also have a few precision made free standing 56 digit keyboards, complete with decode board and remote lock solenoid, $£ 20$ + VAT + carriage. T.M. \& C. Services, 89 Grove Road, South Benfleet, Essex SS7 1GH

SHOP 'FROM HOME with our catalogue. Fully illustrated and covering over 3,000 components, audio and disco accessories, tools and test meters. Reviewed as one of the best catalogues available. Send 30p now for your copy (issue No 5). Access, Giro Barclaycard, Government and educationa orders accepted. (Giro No 331-7056).
B. H. COMPONENT FACTURS LTD.

Leighton Electronics Centre
59 North St., Leighton Buzzard, Beds Tel: 2316 (0286) Shop hours: 9-12.30 1.30-5 p.m. Closed Wednesday

- New Comp					
Elecreovric Cso					
			${ }_{10} 10$		
			2.2		
	Sp				
Polyester Capmeitors. 250V PC mounting 0.01. 0015,0022 					
C.N. Stovenson (ETI), 304 Avery Mill Road, London SEs 2JN.					

E.T.I. P.C.B's

Available for every E.T.I. Project. Send s.a.e. for details or telephone your order using Barclaycard or Access. Alternatively send Postal Orders with written order.

CROFTON ELECTRONICS LIMITED

35 Grosvenor Road, Twickenham Middlesex TW1 4AD

Tel. No. 01-891 1923

PRECISION POLYCARBONATE CAPACITORS

All High Stability - Extremely Low Leakage

 440 V AC

MARCO TRADING
(Dept. P3)
The Old School. Edstaston. Wem. Shropshire Tel. Whixall (Shropshire] [STD 094872) 464/5

SIX 7-SEGMENT LED displays $£ 1$. Postage 10p. In arrays of six. Ex-equipment but guaranteed. With clock circuit. Mr Bobker, 29 Chadderton Drive, Unsworth, Bury, Lanes.

CARBON FILM RESISTORS. 5\% E12 Series $1 / 8 \mathrm{~W}, 1 / 4 \mathrm{~W}, 1 / 2 \mathrm{~W}$. Mixed to your choice, 100 for 90 p . Electrolytics $50 / 15 \mathrm{v}, 7 \mathrm{p}$. MICROPROCESSORS SC/MP £18. MM6800 £33 P\&P 15p. Mail Order Only. CANDAR, 8 Almond Drive, Caversham Park, Reading.

Wire Threading (separates). W/D/Pencil £1.71. DIL Board £1.62. Wire Guides (W/D/Strip) 'press' 2 inches long, 30 per pkt., £1.30. "Glue" 6 inches long, 10 per pkt., £1.30, Spare Bobbin of wire 50p Please add 35 p P\&P for every $£ 10$ of goods, or buy complete wire threading kit (W/D/System) for $£ 5.95$ inc. VAT and P\&P. Zartronix, 115 Lion Lane, Haslemere, Surrey GU27 1 JL .

Simplified TV Repairs. Full repair instructions individual British sets $£ 4.50$, request free circuit diagram. Stamp brings details unique TV publications. Auseti, 76 Church Street, Larkhall, Lanarkshire

PRINTED CIRCUIT DRAWING MATERIALS

Tapes, Terminals, Symbols etc. s.a.e. list: Ramar Constructor Services, Masons Rd., Stratford on Avon, Warwicks.

VALVES

Radio - TV - Industrial - Transmitting We dispatch Valves to all parts of the world by return of post, air or sea mail, 2700 Types in stock, 1930 to 1976. Obsolete types a speciality List 20 p Quotation S.A.E. Open to callers Monday to Saturday 930 to all types of new and boxed 1.00 . We wish to purchase Cox Radio (Sussex) Ltd Dept East Wittering Sussex PO20 8BN. W., The Parade 2023 (STD Code 024366) BBN. West Wittering
2023 (STD Code 024366).

		0.125	0.2	INFRA RED $550 \mu \mathrm{~W}$ Axial load 49p 6 mW £ 1.55 OPTO Data free	
	RED	15p	19p		
	G/Y	27p	33p		
	OR	27p	33p	ORP 12 55p	
OPTO-ISOLATOASTIL 1111.5 kV 150 kH					
AVOEL EOND 2 gm .					
AC125/6/7/8 15p		2N2926(G)	12 p	Voltage Rec	
AF117	40p	2N3053	15p	5 V 7805 Plastic	
	20p	2N3054	45p	12 V 78121 Amp	
AF124/5/6/734p		2N3055	41p	15 V 781518 V 7818¢1.50	
AF 139/239 ${ }_{\text {BC/107/8/9 }}$		2N3702/3/412p			
		2N3903/4/5/616p		$\begin{array}{ll} 24 V 7824 \\ 723 \text { DIP } 14 & \\ & 50 p \end{array}$	
	12p	TiS43UJT	45p$25 p$		
BC147/8/9	10p			Baidge fects.	
	11p	BF244MPF102	${ }^{35}$		
	11p		40p	2A 50V 30	
8C169CBC17/8/9	12p	MPF102	25p	2A 100V 36p	
	17p	2N3819	30p	2A 200 V 41	
BC182/3/4L	11p	+N914	3p	2A 400V 46p	
$\begin{aligned} & \mathrm{BC186} / 7 \\ & \mathrm{BC} 212 / 3 / 4 \mathrm{~L} \end{aligned}$	30p	iN400	${ }^{5 p}$	2A 1000V 56p	
$\mathrm{BC} 70 / 71 / 7213 \mathrm{p}$		IN4004/5	${ }^{7}$ P.		
BF9 94/5	12p	[N 400617	8 p	ZENERS 2.7-33V BZYBB or sim 9p	
BF196/7BFY50/51	14p	IN4148	4p		
	${ }^{16} \mathrm{P}$	$8 A 100$$8 Y 127$	${ }^{9 p}$	555 Timer	
BFX29/85	30p		16p	5562×555 £ 1.10	
BF×84	24p	0447	${ }^{6 p}$	LM380 £ 1.00	
BS×19/20	$10 p$$15 p$		8 p	7400 TL 16p	
OC7)		OA OAO OA 10479			
		OA91 0495	6p	D.1.L. SOCKETS	
2N 206$2 \mathrm{~N}: 711$	10p20p	$\begin{aligned} & \text { OA200 } \\ & \text { OA2O20 } \end{aligned}$	${ }_{7 p}{ }^{6 p}$	8-pin 12p	
				14.pin 13p	
		OP. AMPS.		16-pin 14p	
		709 all	25p29p36 p	MicatTO3 TO6	
2N2904/5/6/716p 2N2904/5/6A 18p 2N2926(R)		$\begin{aligned} & 7418 \text {-pin } \\ & 7480 \text { I.L } \end{aligned}$			
		Dato Pen 70p			
ISLAND DEVICES, PO BOX 11 . MARGATE, KENT CT9 IQX			fis cannowave Puce Prices incluanve fast \& Packing 150 [1st clesu)		

ITT 5870ST Nixi 0.9 + Data 50p, MM 5314 + Data £3.25. Fenwell-Fhermistors pair encapsulated 20 p, Sub min Toggle SP Change over 38p, BC108 10p, 1N41483p. 741 dil 18p. P\&P 10p. 555 Timer 45p. LB 43 Westacott, Hayes, Middx UB4 8AH.

HMPDIC FEEHTMDIIESS ITD. S)
 Reg. Office: LEADER MOUSE, COPTFOLD ROAD BRENTWOOD, ESSEX CM14 4BN
 Genuine fastest service in the UK Most Modern Components shop in East Anglia
 Best Semiconductor Selection in the South East
 15 years in Mail-Order Electronics Over 2000 sq. ft. of Warehousing
 OUR NEW "CAT" NOW AVAILABLE PRICE 40p

Alemproniss totey reader sevices

BACK NUMBERS

These cost 40p each. Postage and packing costs 15p for the first. and 10 p for each subsequen issue. Orders to ETI BACK ISSUES Dept. please. We CANNOT supply the following issues: All 1972 January, February, April, August, October and November 1973; January, march, September October, Hovember and December 1974: January, June, 'July, August, September, November and December 1975; January. March 1976

PHOTOCOPYING SERVICE

Due to the steady pressure on our back numbers department, and the dwindling number of issues available. we have set up a photocopying service. This involves our staff in considerable time consuming endeavour. so we hope our readers understand our decision to apply a flat charge of 50 p inclusive. This covers any article, regardless of the number of pages involved, from any ONE issue of ETI.
Please state clearly HAME of article, and from which issue the copy you require is taken. Address envelope to 'ETI Photocopy Service'

EDITORIAL QUERIES

Written queries can only be answered when accompanied by an SAE, and the reply can take up to three weeks. These must relate to recent articles and not involve ETI staff in any research. Mark your envelope ETI QUERY . . . Telephone queries can only be answered when technical staff are free, and NEVER before 4 p.m.

BINDERS

Binders, for up to 13 issues, are available for 2.50 including VAT and carriage. Send orders to ETI BINDERS DEPT.

SPECIAL ISSUES

Presently we produce six specials. See our ads on pages 58 and 59.

T-SHIRTS

ETI T-shirts are available in Large, Medium, or Small sizes. They are yellow cotton with black printing and cost $£ 2.00$ each. Send orders to ET T-SHIRTS Dept.

B00KS
ETI Book Service sells books to our readers by mail order. The prices advertised in the magazine include postage and packing. Send orders to ETI Book Service, P.O. Box 79, Maidenhead. Berks

NON-FUNCTIONING PROJECTS

We cannot solve the problems faced by inidividual readers building our projects unless they are concerning interpretation of our articles. When we know of any error we print a correction as soon as possible at the end of News Digest. Rny useful addenda to a project will be similarly dealt with. We cannot advise readers on modifications to our projects.

SUBSCRIPTIONS

The annual subscription to ETI for UK readers is E6. The current rate for readers overseas is $\mathbf{£ 7}$. Send orders to ETI SUBS Dept. PAYMENT IN STERLING ONLY PLEASE.

PCBs

PCBs are available for our projects from companies advertising in the magazine.

PLGASEMAAK RGVERSE OF GACH CHEQUE WITH NAME A ADDAESS AND ITEMS AEQUIRED.

ALLOW 10 TO 14 DAYS FOR DELIVERY

Now there's a better way to keep your ETI copies

We reckon ETI is worth keeping: and our surveys indicate that a staggering 97% of readers keep their copies for at least three months. Now we can offer you a binder which holds 12 issues whose quality befits the magazine excellent. Send $£ 2.50$ (which includes VAT and postage) to: ETI Binder, 25-27 Oxford Street, London, W1R 1 RF.

AD INDEX

A.D. Electronics	Miniad	Marco Trading	Miniad
Ambit		Marshall's	p37
Anco	Miniad	Metac	p9 \& p70
Arrow Electronics	Miniad	Minikits	p24
Bi-Pak	p4 \& p5	Nexus-Click	p23
B.H. Components	Miniad	P.B. Electronics	p45
Bywood	p56	Pulse	p46
Cambridge Learning	p46	R.F. Equipment Spares	p79
Chiltmead	p74	Rotex	p76
Crofton Electronics	Miniad	Sinclair	p83
D.B.M. Products	Miniad	Sintel	p61
E.D.A.	p62	Stevenson	Miniad
Electronic Brokers	p50	Swanley	p72
Electrovalue	p46	Tamtronik	Miniad
F.E.K. Supplies	Miniad	Technomatic	p70
Gottschalk	p70	Tempus	p79
Greenbank	p72	TK Electronics	Mimiad
Henry's Radio	p71	Vero	p50
I.L.P.	p64	Videomaster	p51
Island Devices	Miniad	Watiord	p2
Kramer	p37 \& p79	Wilmslow	p31
Lynx	p24	Zartronix	Miniad
Maplin	p84		

A.D. Electronics

Ambit
Anco
Arrow Electronics
Bi-Pak
B.H. Components

By
Chiltmead Crofton Electronics O.B.M. Products E.D.A.

Electronic Brokers
Electrovalue
F.E.K. Supplies

Gotschaik
Greenbank
Henry's Radio
Island Devices
Kramer
Maplin

CALCULATOR DISPLAYS

"" digit hoight, brioht red LED 7 seoment displays for calculators
digital watches. miniature clocks, DVMatches

* Fairchild FND-10, single dig
common cathode $£ 1.00$ (+ vat 8 p$)$ for $£ 5.00(+$ vat 40p $)$
+ HP 74144 digit A HP 74144 digit, common cathode 12 pind.i.l. pin out 99p + (vat 8p)
for $£ 5.00(+$ vat 40 p) * Bowmar 81 cathode with peconnector and $8 \frac{1}{3}$ digit bezel $\mathbf{£ 1 . 8 5}$ (trat 45p) 6 for $\mathbf{E 1 0}$ (+ wat 80p) * Texas 3 digir common cathode 12 pind.i.I. pin out $35 p(+$ vat 7p) 6 for E 4.00 (+ vat 32 p) cathode 2×14 pin digit. common cathode 2
$(+$ vat 15p) * 30 pin termination board for all types except FND-1020p (+ vat 2p) Texas calculatorkeyboards. is gold plated 'snap' type key contacts on gold plated pcb. 75p (+ vat

TAPE HEADS

AXI2E34 - TRACKERAS HEAD-f1.25 (+vat 15D) C2 (5 WITH BX12E343 STEREO CASSETTER/RP HEAD (200 ohm) - £2.25

VINSTAGGERED MARRIOTTRECORD I REPLAY A ERASE HEAD £1.75 (+rat 21p)
MINIFLUXR9NERASE- $\mathbf{~} 2.25$ ERASE GXII E388 ERASE 675 ohms
 MA -E0.A! (+ vat 11 p) GX20 E362 ERASE 90 ohms
 R/RP1/3 TAPE HEAD

MULLARD TUNER MODULES -
LP1171 combined AM/FM IF
strip- £4.29 (tvat 53 p) \rightarrow LP 1179 FM front end with $A M$ tuning gang, used with LP1171-E4.29 +rat 53p) * LP 1171 a 79 pair£ 0.00 (+ vat $£ 1.00$) $*$ LP 1157 complete AM strip $\mathbf{£ 2 . 0 5}$ (+vat 26p)
p\& pall modules 25 peach
HR-RP TAPE HEAD SINGLE
TRACK COS5 (+7at 6p).
XRPS $17 \frac{1}{4}$ TRACK- $\mathbf{E 3 . 2 5}$ (+vat 40p)
E3.25 (+ TRACK RED XRPS $36 \div$ TRACK - E 4.75 (+ val 79p) XES11 TRACKERASE £1.25 (+ val 15p) BX/RP/63:TRACK- $\mathbf{6 . 2 5}$ (tvat28p)

Specially designed to provide arciat and boa! modelmakers with a low cosi easy to use radio control the Henelec system gives you everything tiom singla channel up to sophisticated 7 channel Oigitai Proponional System' Buy the components you want ideal for any

 ceartor No. (35p) for full details

HENRYS

The new Maplin Catalogue is no ordinary catalogue...

 components: hundreds of different capacitors; resistors; transistors; I.C.s; diodes; wires and cables; discotheque equipment; organ components; musical effects units; microphones; turntables; cartridges; styli; test equipment; boxes and instrument cases; knobs, plugs and sockets; audio leads; switches; loudspeakers; books; tools AND MANY MANY MORE

Our bi-monthly newsletter keeps you up to date with latest guaranteed prices - our latest special offers (they save you pounds) - details of new projects and new lines. Send 30p for the next six issues (5p discount voucher with each copy).

กาำผค네ำ

ELECTRONIC SUPPLIES P.O. BOX 3, RAYLEIGH, ESSEX SS6 8LR Telephone Southend (0702) 715155

[^0]: 37 High Street, Brentwood, Essex. CM14 4RH.

[^1]: KEYBOARDS WOULD APPEAR TO BE DIFFICULT TO LAY HANDS ON THESE DAYS. CHILTMEAD, WHO ADVERTISE ELSEWHERE IN THIS ISSUE HAVE A LIMITED SUPPLY OF SUITABLE UNITS. RING TO CHECK BEFORE ORDERING. ANOTHER NAME TO TRY IS ELECTRONIC BROKERS. A THIRD ALTERNATIVE IS TO BUY THE SWITCH UNITS FROM R.S. AND BUILD YOUR OWN. EXPENSIVE THIS [THERE IS NO REASON WHY A PRE-ENCODED ASCII KEYBOARD CANNOT BE USED WITH SYSTEM 68.)

[^2]: Close-up of board and wiring, this was an earlier version - hence slightly different to overlay shown.

