

Stirling QV \dagger MODULES FOR COST-CONSCIOUS CONSTRUCTORS

STIRLING SOUND QV Modules are our own designs manufactured in our own Essex tactory Production standards are carefully controlled and you, the constructor benefit directly from our many years of experience in meeting demand for components as well as by buying direct from us

PRE-AMPS \& CONTROL MODULES Unit One
Combined pre-amp with active tone-control circuits 200 mV output for 50 mV in Runs on 101016 V supply treble +15 dB at OKHz bass +15 dB at 30 Hz Stereo bal vol treble \& bass SS. $100 \quad £ 7.80$ 100 £1.60

SS. 101
Pre-amp for ceramic cartridges etc passive tone controt cicul shown in data supplied
£1.60
POWER AMPLIFIERS ss. 103

\dagger THE BUILT-IN QV FACTOR
means Stirling Sound s guarantee of quality and value which gives you buys all round That's why you Il do better with QV Modules'

A member of the BI-PRE-PAK Group
220-224 WEST ROAD, WESTCLIFF-ON-SEA, ESSEX SSO 9DF Phone: Southend (0702) 46344. PERSONAL CALLERS WELCOME $\begin{array}{ll}\text { A } 3 \text { watt amplifier using single IC type SL } 60745 \text { with builtin } \\ \text { short circuit protection } \\ \text { SS.103-3. Stereo version (} 21 \mathrm{C} \text { s) of above } & £ 1.75 \\ \mathbf{\$ 3 . 2 5}\end{array}$

SS. 105

5 watts RMS into 4 ohms using 12 V supply Ideal for use in in-car entertainment Size $89 \times 51 \times 19 \mathrm{~mm} \quad £ 2.25$

SS. 110

Similar in size and design to SS 105 this QV module delivers 10 watts R MS into 4 ohms usting a 24 V supply e 9 SS 324 of

SS. 120

Using a 34 volt supply such as SS 334 this amplifier will deliver 20 watrs into a 4 ohm load Same dimensions as above

There are surtable Striming Sound power supplies for all the above When ordered whith above amplifier VAT becomes $12 \% / 2 \%$

FM TUNING
SS. 201
FM Front End with geared slow motion tuning and A F C facility
$\mathbf{8 8 . 1 0 8 \mathrm { MHZ }} \begin{aligned} & \mathrm{£5.00}\end{aligned}$

SS. 202

IF amp A meter andior A F C can be connected (size $3^{\prime \prime}$
£2.65

SS. 203

Sierecoder (iflustrated) For use with Surling Sound modiles or with any other good mono FM tuning section A LED beacon can be added (Price 18p) to indicate when a stereo signal is

SS. 140 Heavy duty power ampli fier giving 40 watts R.M.S. into 4 ohms using
45 V . With output capacin tor. Good for small disco
£3.95*

with 13-15V
take-off points

VARIABLE OUTPUT STABILISED SUPPLY

With continuous variable output at $2 A$ from 10 to 50 V D C With built-in protection against shorting and
fully adequate heat sink fully adequate heat sink
Guaranteed Superb value
at $£ 11.95^{\circ}$.

WHEN ORDERING

add 350 to your order tor P\&P for mal orders VAT add $121 / 2^{\mathrm{w}} \%$ to total value of order unless shown then the rate is 8 Make cheques, etc payable to BI.PRE.PAK LTD Every fron is made to ensure correctness of information at time of going to press Prices subject to change without notice

Alemponims torite
 international

MARCH 1977
VOL 6 No 3

Features

BURGLAR PROOF YOUR HOME
10
How to keep unwelcome visitors out and your valuables in! SONY EL-7 ELCASET REVIEW

26
The new cassette - revolution or ridiculous?
ETI MICROFILE
30
A look at how home constructors can put MPU's to work
BIOFEEDBACK - INSTANT YOGA?
45
Instant trance from a wire!
„ELECTRONICS - IT'S EASY PART 37
58
Series for beginners
COMPONENTS PART 8
64
Metal Film Resistors
TECH-TIPS
Readers circuits forum

Projects

50/100W AMP MODULES
Updating and up-grading to 100 W
DIGITAL VOLTMETER
First class DVM - and its so easy to build!
SHORT CIRCUITS: TEMPERATURE ALARM
53
1 kHz FUNCTION GENERATOR 55
DRILL SPEED CONTROLLER ... 56

Data Sheet

CMOS PINOUTS
41
Find out what does what in CMOS!

News

NEWS DIGEST
SYSTEM 68 - IT'S HERE!
ELECTRONICS TOMORROW

Information

SPECIALS - THERE'S A NEW ONE!
ETI BOOK SERVICE 34
APRIL ETI PREVIEWED 50
BINDERS
TRANSDUCERS IN MEASUREMENT AND CONTROL
Special offer
LCD WATCH OFFER - £16.95!!

EDITORIAL AND ADVERTISEMENT DFFICES

25-27 Oxford Street
London W1R 1RF
Telephone 01-434 1781/2
HALVOR W. MOORSHEAD Editor
RON HARRIS B.Sc
Assistant Editor
LES BELL GFCFM
Editorial
JIM PERRY
Specials Editor
TONY ALSON
Project Development
JULIAN ZINOVIEFF
Production
MAREE BREEN
Technical Drawing
SANDRA ZAMMIT-MARMARA
Subscriptions
MARGARET HEWITT Administration
DAVID LAKE (Manager) BRENDA GOODWIN
Reader Services

For Advertising Enquiries ring
MARK STRATHERN
on $4341781 / 2$

INTERNATIONAL EDITIONS

AUSTRALIA:	Collyn Rivers Editorial Director Steve Braidwood Assistant Editor
HOLLAND:	Anton Kriegsman Editor-in-chief
CAVADA	Peter Priest Publisher
FRANCE:	Denis Jacob Editor-in-chief

Electronics Todav International is normally published on the first Friday of the month prior to the cover date.

PUBLISHED BY
Modmags Lid.
25-27 Oxford Street, W1R 1 RF

DISTRIBUTED BY
Argus Distribuion Lid (British Isles)
Gordor \& Gotch Lid.
PRINTED BY
OB Newspapers Limited, Colchester
COPYRIGHT: All material is subject to world wide Copyright protection. All reasonable care is taken in the peparation of the magazine to ensure accuracy but ETI cannot be held responsible for it legally. Where errors do occur, a correction will be published as soon as. possible afterwards in the magazine.

BI-PAK $=$ SEMICONDUCTORS

POSTAGE \& PACKING Please add 25p. Overseas add extra for airmail Minimum order

 £1.00 74 SERIES TTL ICs| Type | Quantity | | Type | Quantity | | Type | Quantity | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1 | 100 | | 1 | 100 | | 7 | 100 |
| | £p | £ p | | Ep | Ep | | £p | 1 1p |
| 7400 | 0.09 | 0.08 | 7448 | 0.70 | 0.68 | 74122 | 0.45 | 0.42 |
| 7401 | 0.11 | 0.10 | 7450 | 0.12 | 0.10 | 74123 | 0.65 | 0.62 |
| 7402 | 0.11 | 0.10 | 7451 | 0.12 | 0.10 | 74141 | 0.68 | 0.65 |
| 7403 | 0.11 | 0.10 | 7453 | 0.12 | 0.10 | 74145 | 0.75 | 0.72 |
| 7404 | 0.11 | 0.10 | 7454 | 0.12 | 0.10 | 74150 | 1.10 | 1.05 |
| 7405 | 0.11 | 0.10 | 7460 | 0.12 | 0.10 | 74151 | 0.65 | 0.60 |
| 7406 | 0.28 | 0.25 | 7470 | 0.24 | 0.23 | 74153 | 0.70 | 0.68 |
| 7407 | 0.28 | 0.25 | 7472 | 0.20 | 0.19 | 74154 | 1.20 | 1.10 |
| 7408 | 0.12 | 0.11 | 7473 | 0.26 | 0.22 | 74155 | 0.70 | 0.68 |
| 7409 | 0.12 | 0.11 | 7474 | 0.24 | 0.23 | 74156 | 0.70 | 0.68 |
| 7410 | 0.09 | 0.08 | 7475 | 0.44 | 0.40 | 74157 | 0.70 | 0.68 |
| 7411 | 0.22 | 0.20 | 7476 | 0.26 | 0.25 | 74160 | 0.95 | 0.85 |
| 7412 | 0.22 | 0.20 | 7480 | 0.45 | 0.42 | 74161 | 0.95 | 0.85 |
| 7413 | 0.26 | 0.25 | 7481 | 0.90 | 0.88 | 74162 | 0.95 | 0.85 |
| 7416 | 0.28 | 0.25 | 7482 | 0.75 | 0.73 | 74163 | 0.95 | 0.85 |
| 7417 | 0.26 | 0.25 | 7483 | 0.88 | 0.82 | 74164 | 1.20 | 1.10 |
| 7420 | 0.11 | 0.10 | 7484 | 0.85 | 0.80 | 74165 | 1:20 | 1.10 |
| 7422 | 0.19 | 0.18 | 7485 | 1.10 | 1.00 | 74166 | 1.20 | 1.10 |
| 7423 | 0.21 | 0.20 | 7486 | 0.28 | 0.26 | 74174 | 1.10 | 1.00 |
| 7425 | 0.25 | 0.23 | 7489 | 2.70 | 2.50 | 74175 | 0.85 | 0.82 |
| 7426 | 0.25 | 0.23 | 7490 | 0.38 | 0.32 | 74176 | 1.10 | 1.00 |
| 7427 | 0.25 | 0.23 | 7491 | 0.65 | 0.62 | 74177 | 1.10 | 1.00 |
| 7428 | 0.36 | 0.34 | 7492 | 0.43 | 0.35 | 74180 | 1.10 | 1.00 |
| 7430 | 0.12 | 0.10 | 7493 | 0.38 | 0.35 | 74181 | 1.90 | 1.80 |
| 7432 | 0.20 | 0.19 | 7494 | 0.70 | 0.68 | 74182 | 0.80 | 0.78 |
| 7433 | 0.38 | 0.36 | 7495 | 0.60 | 0.58 | 74184 | 1.50 | 1.40 |
| 7437 | 0.26 | 0.25 | 7496 | 0.70 | 0.68 | 74190 | 1.40 | 1.30 |
| 7438 | 0.26 | 0.25 | 74100 | 0.95 | 0.90 | 74191 | 1.40 | 1.30 |
| 7440 | 0.12 | 0.10 | 74104 | 0.40 | 0.35 | 74192 | 1.10 | 1.00 |
| 7441 | 0.60 | 0.57 | 74105 | 0.30 | 0.25 | 74193 | 1.05 | 1.00 |
| 7442 | 0.60 | 0.52 | 74107 | 0.30 | 0.25 | 74194 | 1.05 | 1.00 |
| 7443 | 0.95 | 0.90 | 74110 | 0.48 | 0.45 | 74195 | 0.80 | 0.75 |
| 7444 | 0.95 | 0.90 | 74111 | 0.75 | 0.72 | 74196 | 0.90 | 0.85 |
| 7445 | 0.80 | 0.75 | 74118 | 0.85 | 0.82 | 74197 | 0.90 | 0.85 |
| 7446 | 0.80 | 0.75 | 74119 | 1.30 | 1.20 | 74198 | 1.90 | 1.80 |
| 7447 | 0.70 | 0.68 | 74121 | 0.28 | 0.26 | 74199 | 1.80 | 1.70 |

Devices may be mixed to qualify for quantity price. Data is available for the above series of I.C s in booklet form price 35p

LINEAR ICs

T8A 800

$741 \mathrm{P} \quad 8$ pin DIL $\quad .75$ $\begin{array}{lll}741 \mathrm{P} & 8 \text { pin DIL } & \mathbf{1 8} \\ \mathbf{7 2 4 7 4} & 14 \text { pinDIL } & \mathbf{3 6}\end{array}$ $748 \mathrm{P} \quad 8$ pin DIL $\quad-25 \mathrm{p}$ NE555 Timer NE556 Dual Timer
I.C. SOCKETS

8PS $8 \quad 8$ pin 1611 9p
8PS 1414 pin 1612 10p

TRIACS

BUY ONE OF EACH

ZENER PAKS

400 mW
1 containing $203 \mathrm{v}-10 \mathrm{v}$ 2 containing $2011 \mathrm{v}-33$ 1.00 PER PACK

DIACS

BR100
D32

RESISTOR PAKS
$62131 / 8$ th 100 ohm 820 ohm 6214 / 8th 1 K-8 2 K 6216 1/8th 10K-8 2 K
$620 \mathrm{~K}-1 \mathrm{M}$

BUY ONE OF EACH Special Price $£ 1.60$ " the 4

CAPACITOR PAKS

1620118 Electrolytics 47 uF- 10 uF
1620218 Electrolytics $10 ~ u F-100 ~$ 1620318 Electrolytics 100 uF 680 uF

BUY ONE OF EACH
Special Price $£ 1.20$ * the 3
616024 Ceramic Caps 22 pf-82pi
616124 Ceramic Caps 100pi-390p
616224 Ceramic Caps 470pt-3300p

DIY PRINTED

 CIRCUIT KIT CONTAINS 6 pieces copper taminate, box of etchant powder, measure, tweezers marker pen, high quality pump drill, Stanley knife 8 blades, 6in metal rule Full easy-to-follow instructions $\pm 7.80 \quad £ 5.50$
TRANSISTORS

AC 128	10p	BFY53	$12 p$	
AC153K	18p	OC44	12p	
AC 176	19p	OC45	12p	
AC176K	22p	0 O 71	9p	
AC187K	22p	OC72	14p	
AC188	$12 p$	OC81	14p	
AC188K	22p	ZTX107	6p	-
BC107	6p	ZTX108	"6p	OA47
BC108	6 p	ZTX109	${ }^{6} \mathbf{6 p}$	OAB 1
BC109	6p	ZTX300	${ }^{7} 7$	OA85
BC1 18	-10p	2TX301	*7p	0491
BC154	*16p	ZT×302	-9p	OA200/BAX 13
BC147	"8p	ZT×500	-8p	OA202/8AX 16 IN914
BC148	-8p	ZTX501	*10p	IN4148
BC149	-8p	ZTX502	-12p	IN4001
BC157	-10p	2N696	10p	IN4002
BC158	*10p	2N697	11p	IN4003
BC 159	-10p	2N706	7p	iN4004

V.A.T

Add 8\%
Add $121 / 2 \%$ to items marked

VOTAEE		
REGUATDRS		
MVR 7815		85p
MVR 7812		85p
MVR 7815		85p
OPTOELECTRONICS		
L.E.D. DISPLAYS	Order No	- Price
DL $70703^{\prime \prime}$	1510	0.70
DL $74706^{\prime \prime}$	1511	1.50
L.E.D.'s		
TIL 209 RED 125'	1501	
FLV 117 RED $2^{\prime \prime}$	1504	
5 of either 50p		
ORP 12	1515	38p
OCP 71 Pack of 5	1520	£1.00

THYRISTORS

F.E.T.

ORDERING

ELASE WORD YO

 PRINTED NOT FORGET TInG TO InClude our PART NUM8ERUT46/TIS43 18p

GEDICONDUCTORS - COMPONENIS

SUPER UNTESTED PAKS
COMPONENT PACKS

CARBON POTENTIOMETERS SINGLE GANG		CASSETTES BI-PAK LOW COS
NEAR TR		
	$\mathrm{V}_{\text {Vatuo }}^{\text {dat }}$	
	,	
	(en	
(eater		
GAN		
linear track		
	68	
,		
	${ }_{\text {N }}^{1}$	
come	(10k	
${ }_{\text {co.as }}$	${ }_{4}^{40}$	
${ }_{60.48}$	1200k	
		OUR PRICE $£ 1.00$

LINEAR PAKS

Manufacturer's Fall Outs which include
Functional and part-Functional Units These are
classed as oul-ot-spec from the maters classed as out-of-spec from the maker's very rigid
speeffications, but are ideal for learning about
IC's and experimental work.

 | Order No. 16225 |
| :--- | ---: |
| 74M 30 MSI Assored Types |
| Eic Order No 16226 |\(\quad \begin{array}{r}£ 1.20

\hline\end{array}\)

C280 CAPACITOR PAK

After several false starts - the first of them over ten years ago, Sinclair have got their miniature television into production. Entrepreneur Clive Sinclair has invested a staggering $£ 500,000$ into the research on this project and for years we have heard unofficially that it's 'about to be launched'. Well, he finally made it.

The TV is B\&W of course but there its resemblance to other sets ends. The Microvision, as it is called, measures $152 \times 102 \times 38 \mathrm{~mm}$. and sports a 2-inch (diagonal) screen.

The tube employs electrostatic deflection using an EHT of only 2 kV . The tube is supplied by AEG/Telefunken of Germany who are believed to have spent another $£ 200,000$ in development.

A major feature of the receiver is its multi-standard capability. Unlike radio, there are several world standards for TV: Britain is about the only country to rely primarily on UHF for example, and we use a 6 MHz sound-tovision spacing, whereas most of Europe uses 5.5 MHz . The receiver can
accomodate either and also the North American 525 line, 60 Hz signals with a 4.5 MHz sound-to-vision spacing.

A major aspect of the design has been to reduce current consumption to reasonable proportions. The set will work from its own mains supply while the batteries are recharged. Four hours viewing can be obtained from one recharge, which can also be done from a car battery.

Price of the Microvision will be $£ 175+$ VAT in Britain and $\$ 300$ plus sales taxes in the U.S., the area where sales are expected to be highest.

The first potential customers are seen by Sinclair as being the international executives but they also consider that the demand by value for truly portable TV is likely to exceed that for pocket calculators. Sinclair consider that they will have the market to themselves for at least $1 / 2$ years.

At the world launch to the media, held at the Savoy, London, in January, several models were shown. Certainly those sets seen by ETI worked and we wish Sinclair well in this new venture.

AMATEURS!

Aren't we all? Anyway there's a club for you if you're an electronics amateur in Britain. Not surprisingly, it's called the British Amateur Electronics Club, and is a thriving institution these days. A monthly newsletter is issued to members, and discounts on
components, cases, etc can be arranged (for members). At present they're deep into a computer project (aren't we all...), but no aspect of our subject is ignored. Details from: Mr. C. Bogod, 'Dickens', 26 Forrest Road, Penarth, Glam.

REDUCTION IN TIME

It is always a pleasant surprise to be able to announce a price reduction in our age of ever upward costs. Electronic watch prices are perhaps where one might best expect to hear the thud of bottoming margins, but even so, CBM have done nicely with these:

CBM 5000-5 func., black polystyrene case and strap: from $£ 17.50$ to £11.95.

CBM 5001-5 func., chrome with black leather strap: from $£ 18.95$ to £17.50.

CBM 5002-5 func., gilt with black leather strap: from $£ 19.95$ to £17.50.

CBM 5003 - 5 func., chrome with metal bracelet: from $£ 21.00$ to $£ 19.95$. CBM, Industrial Estate, Eaglescliffe, Stockton-on-Tees, Cleveland.

DIGITAL WATCH TUNE-UP BOX!

The digital watch industry is expanding fast and so, naturally, is the watch repair business. Intertime Corporation have come up with a machine to make calibration and testing of quartz crystal watches as simple as pushing the button - in other words at all times when you're not using both hands!

The basic unit has a self-contained voltage source for powering modules while testing, and an analogue meter for easy visual monitoring. This gives a precise setting of a wide variety of digital watches and quartz analogue watches using $32,768 \mathrm{~Hz}$ crystals, which accounts for 99% of the market.

The tester picks up the quartz crystal radiation, processes it, determines error as a function of frequency shift and displays any such error on a meter.

The basic unit without any of the options is offered at about $£ 200$, after importation levies. Intertime Corp., 17782 Sky Park Boulevard, Irvine, California 92714, U.S.A.

MPUs WEARING A MINI?

There is a micro-exhibition of MPUs being staged by Bywood Electronics this month at the Berners Hotel, Berners St., London W1. It runs on Saturday February 26th from 12-7pm. On show will be Bywood's Scrumpi, a brand new VDU system, and quite a few peripherals. Worth a walk is it not?

ETI-CANADA

As some readers may have seen in the December issue, we have launched a Canadian edition of ETI.

Les Bell, who has been on the editorial staff in Britain for about a year, is working in Canada on the magazine finding that curling (his favorite sport) and North American Hamburgers (believed to be his sole source of sustinance) in plentiful supply, he has settled happily. (If you're interested in replacing him, see our job advert elsewhere in this issue).

ETI is now published in Australia, France and Holland as well as in Britain and Canada. The combined circulations now total just under 200,000, making us the second largest electronics magazine in the world (Popular Electronics in the U.S. is the biggest).

ANY DMMs FOR DEGREES

Designated the Series 80T, these new probes have been designed as a universal accessory to the DMM and are available in both Celcius and Fahrenheit versions. 80T-150C has an operational range from $-50{ }^{\circ} \mathrm{C}$ to $+150{ }^{\circ} \mathrm{C}$, and the $80 \mathrm{~T}-150 \mathrm{~F}$ has a temperature range of -580 F to $302^{\circ} \mathrm{F}$.

Both versions provide an output in mV per degree, and feature a basic accuracy of $\pm 20 \mathrm{C}$ or F . Each model can be changed to the other simply by fitting or removing two jumper leads, and re-adjusting the calibration.
Fluke International Corp., Garnett Close, Watford WD2 4TT.

SPACE SHUTTLE ON THE TILES

Extremely pure silica glass has been manufactured for at least 40 years longer than jet aircraft have been around. Now it is to aid and abet the

ultimate aircraft - the U.S. Space Shuttle. Made into tiles (composed of 96% silica glass) of which 34,000 are used, the material covers well over 70% of the surface of the Shuttle.

These tiles are incredible heat 'shedding' devices (see photo) and will be expected to withstand temperatures of up to $1260^{\circ} \mathrm{C}$ for 100 re-entries into the atmosphere. Previous heat shields were destroyed on re-entry.

Each tile is precisely milled to fit exactly against the curvature of the Shuttle body, thus making the composite craft as light as possible, and as aerodynamic as is feasible. This does however mean that no two of those 34,000 tiles are alike! Imagine the little man in a white coat with the job of fitting them to the aircraft - a huge 3-D jigsaw puzzle with only one solution out of 34,000 (i.e. $34,000 \mathrm{x}$ $33,999 \times 33,998 \ldots \times 1$) possibilities! Rather him than me.

THE P80 INTEGRATED STEREO AMPLIFIER

The new Cambridge Audio P80 Integrated Amplifier (which supercedes the P60) offers increased power output (40 watts per channel) and incorporates a number of modifications:

Cambridge Audio employ a buffer stage to eliminate cartridge inductance problems which can plague other amplifiers. The R.I.A.A. standard is more accurate than virtually all their competitors.

A new and onobtrusive form of amplifier protection is incorporated. Musical peaks will often cause amplifiers to limit and clip. This pheno-
menon is now recognised as a major source of signal degradation in high fidelity power amplifiers. A substantial 'power margin' is built into the P80, such that the protection system allows them to pass unchecked, while still protecting the amplifier against improper load conditions.

The P80 incorporates very flexible tape facilities; the simultaneous use of three tape-recorders, or dubbing one source whilst monitoring another. Cambridge Audio Ltd., 105-109 Oyster Lane, Byfleet, Surrey, KT14 7LA.

EMS have produced a small-scale synthesizer especially for school usage It arrives with a comprehensive teaching course, and is of modular construction, such that patchcords are required for linkage.

External options include mechanical keyboard (3 octave). oscilloscope, and a mains power unit to supplement the internal batteries. EMS Ltd., 277 Putney Bridge Rood, London SW15 2PT.

A DASHING DISPLAY

This mock-up has been put together by Bowmar Instruments to show one very possible future of the car dashboard. It includes both circular and linear bargraphs along with digital and alpha-numeric displays. All the
displays are naturally made by Bowmar. I hope they've developed a gold LED to go into a Rolls-Royce! Bowmar Instruments Ltd., 41-45 High Street, Weybridge, KT13 8BB.

TELLER TALE

This rather ugly box bodes well for a steady bank balance. It simply doesn't give overdrafts! Selected (how?) branches of the Midland and Clydesdale banks are installing the autotellers in an effort to speed up bank procedures. The terminal carries out such simple actions as balance enquiries, chequebook requests, and cash withdrawals.

They will be linked to the Midlands B6700 computer systems at Bootle (Lancs.) and Brent. A built-in VDU provides the information to the customer. One of our staff wandered into such an establishment, paid in his salary (all 50 p of it), and attempted to draw his beer money for the forthcoming weekend.

The result was not the supply of crisp blue sheets of paper he eagerly awaited to finance his two-day debauch. Instead the box hummed and clicked and printed out those heartless words that spoke so eloquently of dry bread and water in the immediate future - No Funds.

Ah well - such is progress.

FOUR THOUSAND PLUS 17

RCA Solid State-Europe has launched 17 new COS/MOS digital integrated circuits in the standard CD4000 range All the devices have quiescent current specified to 20 V , a maximum input leakage current of luA at 20 V .
Among the new circuits are several unique types, CD40100B 32-bit left/ right shift register; CD40102B 8-stage pre-settable 2 -decade binary-codeddecimal synchronous down-counter.

TALE OF A NEW CAT

Arrow Electronics have issued a new catalogue to the waiting world. It is their ninth, and a very worthy present ation. It contains many unusual (and useful) semiconductors, and a good range of hardware etc. It is worth the 40 p, which will also entitle you to ring 'em up and pester the technical staff for further info on the contents. Arrow Electronics, Coptfold Road, Brentwood, Essex.

START THE NEW YEAR WITH A GREAT BARGAIN! From Inetac

WE COULDN'T WAIT TO TELL YOU! WE'VE DONE IT AGAIN!

Bringing together FUTABA of Japan and GENERAL INSTRUMENT CORP. of America to produce this attractive digital clock offered to you in easy to build kit form at a new low, low price
The kit is complete even to the attractive plastic case which is ready drilled, and can be assembled in around one hour using the easy to follow instructions

How have METAC managed to offer this world-beating high-technology clock at such a low price? Well, if you haven't already guessed, METAC is, of course, part of an established electronics manufacturing company ELECTRONIC SERVICES AND PRODUCTS, who are manufacturers of electronic instrumentation and well-known for the ESP range of electronic capacitance meters.

Our engineers are not only experts in digital instrumentation but have been involved in digital clock design possibly longer than anyone else in the United Kingdom.

This form should also be used for our watch advertisement on page 22 of this issue.
To METAC INTERNATIONAL, 67 High Street Daventry, Northants. Tel. 0327276545.
Please supply the following:-
Name

Address

I enclose cheque/Postal Order/Money Order
I wish to pay by Barclay Card/Access and my number is Signature .
Mail Order Customers.

BURGGARPROOF YOUR

 HOME!A layman's guide to protecting the home; or how to keep what you've got for longer!

THERE ARE TWO rising things in modern society, inflation and crime. We can't help you beat inflation but can help to slow down the crime rate! It seems anything, that isn't bolted down tends to disappear rapidly, the more expensive the item the faster it goes. When it comes to the home not only is the financial burden enormous, the trauma of a burglary is great as well.

Burglars fall into three general categories; the walk-in thief who does just that, and walks out with any small valuables and cash. The small time burglar, who will break in usually in the late afternoon, and take considerably more than a casual walk-in thief. Professional gangs who will literally clean out a house - carpets, furniture, hi-fi, everything!

PHYSICAL SECURITY

So how do you go about stopping them? The first step is physical security, locks and bolts, moats, bars, trained crocodiles etc. The reason physical security is mentioned first, is that burglars usually don't like making much noise, if they have to use a sledge-hammer to open a door, they'll pick another house.

All exterior doors should have mortice deadlocks fitted. The advantage of these, over the normally used front door lock, is that without a key you can't open them. Even if the door is solid wood, there are ways of opening the common front door lock - from the outside! A point to watch is that if the door is less than $11 / 2$ inches thick, a mortice may weaken the door - in cases like this consult a local locksmith. Also if you have a garage - with connecting door make sure it's as secure as the front and back doors. Further door security is provided by hinge bolts; these are fitted on the hinge side, and automatically engage when the door is closed.

An important thing to remember is to use a professional locksmith, if you have not fitted locks before. If you do fit them yourself follow the instructions carefully. A badly fitted lock can give a false sense of security. Don't fall for door to door lock salesman - they may offer to fit locks - but chances are they could keep extra keys!

WINDOWS

Next the accessible windows should be secured. Several types of
locks are available for windows, the best type for each type of window needs to be worked out. Metal framed, wood framed and sash windows all need different locks which secure the frame or the handle depending on the particular model used. They rely on the principle that burglars don't like climbing through a window, with broken glass still int it. In general windows are the weakest point of any house; all ground floor and accessible higher ones must be locked.

WET PAINT

Other physical security measures are locks on internal doors, or security bolts, so that if a room is entered the burglar is contained in one room. Non drying paint can be used on drainpipes: this wonderfully messy stuff is a good measure. It looks like normal paint, but is like jelly when the surface is broken, any cat burglar grasping the drainpipe gets a very nasty surprise, and will tend to beat a hasty retreat covered in wet paint! Don't use it less than 7 feet from the ground.

Leaving lights on at night, with a radio playing is another simple deterrent method. Of course, all of

these precautions are only effective if you use them - close windows and lock doors, even if you go out for ten minutes. A fact to bear in mind is that a good housebreaker, can "do" a house in six minutes, and get a lot of small valuables.

If in any doubt about any part of your security, contact your local Crime Prevention Officer (via any police station) who will visit you and give free sensible advice

ELECTRONIC SECURITY

If the precautions discussed have been taken, you will have cut by about 75 per cent the chances of being done. For most people this would enable them to sleep at

night, but the remaining 25 per cent risk can be cut to virtually no risk, with a well installed electronic alarm system. As with physical security an alarm system is only effective if it is used. The variety of electronic systems possible makes selection and installation a very important part of the system.

A badly thought-out system can be worse than no system at all. For example if the wrong sort of devices are used, the alarm may go off erratically or not at all. In the Greater London area alone, out of 150,000 automatic calls to police stations and security centres, 99 per cent were false alarms! This tends to create a "crying wolf" reaction from the police and neighbours. In fact some police authorities maintain a black list of erratic installations, also a 110 dB siren wailing on your roof at 4 am tends to annoy the neighbours - especially if caused by a passing car vibration!

SENSORS

All alarm systems need sensors, to detect (hopefully) an intruder. In order to be of any use they must be placed in the way of potential entry

BURGMARPROOF YOUR HOME!

points. Also the optimum type must be used at each point. For example a loop of foil on the back of a window, is not much use, without a sensor to detect if the window is open!

PASS SWITCHES

Alarm systems also need a control box to house any electronics, power supply, batteries, bell and main on/off switch. An external bell is also needed, with possibly an autodial unit, to alert the police. Usually a key operated pass switch is used, so that silent entry and exit can be made. This can either be integral with the mortice deadlock, or a separate switch mounted in the door frame. The advantage of being in the mortice deadlock, is that only one key is required. This is not good practice in industrial systems, where two keys is an added security measure. But for the home it is much simpler to have one key, as it can control a virtually automatic system, when you lock the door the alarm is on. Most security mortice deadlocks can be obtained with an integral microswitch, for a few pounds extra.

DOORS

External doors should be fitted with reed switches or microswitches. There are several types available, some are completely hidden when installed, others are mounted on the surface of the door and frame. Always fit the magnet or microswitch actuator to the door itself, not to the frame. This is to eliminate wires from the frame to the door. The only exception to this is when a pass switch is fitted, then fitting a reed switch to the door eliminates wiring over the top of the door.

WINDOWS

Windows are usually a large part of the sensor network. There are several ways of protecting them, giving different degrees of effectiveness, and various costs. Reed contacts are an obvious choice for opening windows, mounted in the frame, so that the magnet moves when the window opens. This will not prevent anyone climbing through a broken pane.

Top: Four types of reed switch, all available from Sesco.

Centre; Door loops, used to make secure flexible contact, from frame to door.

Below; Roll of self adhesive aluminium foil, used to protect windows.

Aluminium foil applied to windows, acts as part of the alarm circuit, when broken sets the alarm off and is quite cheap. However installation is not quick for the inexperienced, and can look very amateurish, if not unsightly. If installed properly foil can act as a powerful deterrent, to all but the most determined burglar. After all why risk detection, when next door is not alarmed? This reasoning also applies. to the mounting of your external bell unit, if it is visible.

SHOCK TACTICS

Vibration sensors can be used on large windows. These rely on the physical shock, produced when a window is broken. They are quite expensive, compared to using foil, but much simpler to install. Careful adjustment is needed, to prevent spurious operation.

An interesting device for window protection, is the Guard-Glass Detector. This device is an acoustic sensor that listens for the sound of breaking glass! A self-contained unit it has an on axis range of 15 feet $(4.5 \mathrm{~m})$. Electronic circuitry filters out unwanted low and high frequencies. This device along with most other alarm sensors, is available from Sesco.

MATS \& BEAMS

Another approach is to lock the windows, and defend the rooms. Rather than wire up every window only the most vulnerable are connected to the alarm. In this case the interior needs protection, to detect an intruder as soon as possible. The simplest method is to use pressure mats, placed in the positions most likely to be walked on. The obvious place is by door ways, and on the stairs. If pressure mats are used on stairs it is a good idea to use two with one at the top, and one half way. They should be installed underneath the carpet, and the wiring hidden from view

Invisible beams can be used, to cover the hallway. These operate the alarm when anything gets in the
way of the beam. Simple beams can be bypassed easily with a torch, by shining it onto the light sensitive part. More sophisticated units use modulated beams, so that the constant light from a torch will operate the alarm.

SPACE ALARMS

The hardest sensor to get past, is the space .alarm. These can be ultrasonic or microwave units. They operate by beaming out a signal and detecting the reflected signal, any change in the reflected signal (caused by an intruder) produces an alarm signal. Set up and calibration of these units is quite delicate, spurious signals can be produced by mice or even air currents. About 60 per cent of false alarms are produced by space alarms, that have been set too sensitively. The more expensive units have built-in delay electronics, to help eliminate spurious operation.

Top, left to right: K/B pass-switch 150 million keys, L/ B pairswitch (2 thousand keys), Kaye shunt mortice lock 12 thousand keys).

Centre and Bottom; Two views of the Heath kit ultrasonic intruder unit, type D039.

BURGLARPROOF YOUR HOME!

Above; Homeguard 71 Mk 11 kit and type $600 / m$ vibration contact.

Bottom; Maxi Guard ultrasonic unit.
All available from Sesco.

CONTROL UNITS

The control unit itself can be made up, or purchased complete. Various kits are available with assembled control unit, and a selection of sensors, usually with a bell for external use. Examples are the Chloride Gent 61 system, Radiovisor 600/S and Homeguard 71 Mk II. These are all basic alarm systems extra sensors can be added to those supplied. All these units are supplied with a bell, however it is a good idea to use a siren. The reason is that in general sirens are louder, and more penetrating. How many times have you heard an alarm bell ringing and walked past? Most people ignore bells because they are so common.

INSTALLATION

Actual installation is probably the key to all alarm systems. A badly installed system can be tampered with and made ineffective. A true story about installations concerns a major alarm company and a large record store. The managing director of the record store decided to have

the security system checked. He contacted a firm of consultants who agreed to check out the security. The first day the record store opened, the consultants visited it but one stayed behind in the loft space above a toilet. Later on when the store was shut, he climbed down and disabled the alarm system, with a screwdriver and a pair of side cutters. The hardest part was reconnecting the system - to stop anyone really stealing anything! The next day the company received 300 albums by taxi, with a note saying how they were taken. If the system had been installed correctly this could not have happened.

All wiring must be neat and concealed if possible. Colour codes should be changed in different parts of the system. Cutting or shorting any wires exposed should set off the alarm.

FOILED AGAIN

Window foil should only be applied to prepared glass. First clean the glass with ammonia and water (commercial cleaners tend to leave deposits), dry with a lint free
cloth. Mark the line of the foil with chinagraph on the outside of the window. Right angles are made by bending in the opposite direction first, and then in the direction you want to go. This produces a small triangular tab, which should be glued down with varnish. Although, for most home installations the foil can be used from side to side without any angles, practice on a sheet of glass first. If in doubt use another form of sensor.

UPSTAIRS/DOWNSTAIRS

It is good practice to arrange two separate circuits. One for downstairs and one for upstairs. In this way you can have the downstairs protected while you sleep without the chance of late night visits to the bathroom setting off the alarm.

Make sure everyone in the house knows how to use the system, and does use it. If you have pets, it is possible to use window vibration sensors on locked internal doors. This is instead of mats or space protectors, force used on the doors will set off the alarm. Beams should

be above the height of any dogs, liable to walk through them.

Virtually any combination of the various sensors can be used. Degrees of security can range from slight to Fort Knox. A typical system is illustrated, along with a drawing of the author's cottage system . . :

FINALLY

Don't forget the burgler is generally an opportunist, and will always take the easiest way in. Also if it is worth installing a system, it may be worth increasing your insurance cover to present values.

This article was made possible by help and advice from:
Metropolitan Police (Crime Prevention Department), Banham's Patent Locks Ltd., Chloride-Gent Ltd, Chubb \& Son's Lock and Safe Co Ltd., Radiovisor Parent Ltd and Sesco (Security) Ltd.

Further details on devices illustrated and mentioned are available from:
Banhams Patent Locks Ltd, 233-235 Kensington High Street, London W8 6SF.
Camrex Special Coating Services Ltd, P.O. Box 34, Sunderland SR120A.

Chloride Gent Ltd, Faraday Works, Leicester LE5 4JF.
Chubb \& Son's Lock and Safe Co Ltd., 14 Tottenham Street, London WIP OAA.
Radiovisor Parent Ltd, Stanhope Works, High Path, London SW19 2JX.
Sesco (Security) Ltd. Jubilee Works Chapel Road, Hounslow, Middlesex TW3 1TX.

[^0]

Available to you in kit form at the same moment as its national launch, the brilliant new Videomaster Superscore contains the latest product of MOS technology: a TV.game chip.

The logic contained in it had previously to be generated by 100 TTL devices. Now it is condensed into one 28-pin chip.

This all-new Videomaster plugs into your 625-line UHF TV set (for overseas customers having VHF sets we can supply the necessary VHF modulator) to give you four exciting games (including tennis and football) and two future game options. It features on-screen digital scoring, realistic hit sounds, two bat sizes, two
ball speeds, automatic serving and much more. It runs on six $1 \frac{1}{2}$ volt SP11 type batteries (not supplied).

The Videomaster Superscore kit costs only $£ 24.95$ including VAT (recommended retail price of the ready built model is over $£ 40.00$) and comes complete with ready-tuned UHF or VHF modulator, circuit board with printed legend, all resistors, transistors and diodes, built-in loudspeaker, socket for mains adaptor, and, of course, the TV game chip itself.

Easy to put together the Superscore has full assembly instructions, circuit diagram and circuit description. Don't miss this chance to own the newest electronic game at such low cost.

Videomaster Ltd $14 / 20$ Headitort Place, London SW1x 7 HN

\qquad
Please send me (insert No. requ'd). Videomaster Superscore Kits at $£ 24.95$ (inc. VAT \& P\&P in UK) or $£ 23.10+£ 4.00$ for P\&P overseas)
I enclose my cheque/money order* for $£$.
VHF modulator required YES/NO*
NAME
ADDRESS

-ETI project 4SO

50/IOOW AMP

MAKING HIGH POWERS EASY TO OBTAIN - 50W OR 100W THE CHOICE IS YOURS - THE ONLY DIFFERENCE IS TWO TRANSISTORS!

THE MOST POPULAR AMPLIFIERS we have ever published are the 100 W guitar amplifier (ETI 413) and the 50W stereo amplifier (ETI 422). These amplifiers have proved very reliable for the many thousands of readers who
have built them.
Both of the amplifiers are, however, a bit fiddly to build (as are most power amplifiers) because the power transistors must be mounted on a heat sink which therefore needs wiring to

The screws holding the 2N3055/MJ 2955 should also be insulated where they pass through the heatsink bracket. The BD 139 and BD 140 do not need any insulation other than the mica, provided 6 BA (or 3 mm) screws are used. In the 100W version the additional transistors are mounted on the heatsink bracket outside the PC board area.

The heat sensing transistor Q6 should be inserted into the bracket using silicon grease, bend the lead flat against the PC board and solder to the pads provided. When installed, the transistor should be in the centre of the heatsink.

The recommended power supply is shown in Fig.3. This supply gives about 40 V on no load, dropping to about 32 V on full output. This allows reproduction of transients beyond 50W (or 100W) whilst providing a degree of protection for the output

Fig. 3 supply

Graph showing relationship between output power and distortion.

Printed circuit layout of the amplifier. Full size $140 \mathrm{~mm} \times 76 \mathrm{~mm}$.
transistors. If a regulated supply is used, it should not be higher than $\pm 35 \mathrm{~V}$.

If no preamp is to be used, a couple of chassis-mounting capacitors

Parcaist	
Resistors a	all $1 / 2$ W 5\% unless noted
R1	1k5
R2	10k
R3	10R
R4	5k 6
R5	2k7
R6	3k3
R7	220
R8*	10 k
R9	1 k 2
R10	470
R11	1k2
R12	560R
R13	470R
R14	47R
R15	33R 1 W
R16	10 R1 W
R17	33R 1 W
R18	47R
R19	1 R 1 W
R20-R23	220R 1 W
R24 R26	1R1W
R27 R30*	
Potentiometer	
RV1	470R trim type
Capacitors	
C1	$4 \mu 725 \mathrm{~V}$ electrolytic
C 2	$100 \mu 16 \mathrm{~V}$ electrolytic
C3	100 p ceramic
C4	3 n 3 polyester
C5	330 p ceramic
C6	100 n polyester
C7	27 p ceramic
C8--C12	100 n polyester
Transistors	
Q1-03	BC1 77 or BC557
04	BD140
Q5	BD139
06	BC109 or BC549
Q7	BD139
08	BD140
09	MJ2955
Q10	2N3055
Q11**	

Zener diode
ZD1 $\quad 5.6 \mathrm{~V} 400 \mathrm{~mW}$
Miscellaneous
PC board ETI 480
Four PC mounting fuse clips (FC1)
Two fuses 1.5 A *
Heatsink
Insulation kits for $\mathbf{Q 7 - Q 1 2 .}$

- For 100 W version

R8 is $4 k 71 / 2 \mathrm{~W}$
R27-R30 are $1 \Omega 1 \mathrm{w}$
Q11 is MJ2955
Q12 is 2N3055
Fuses are 3A

The layout of the power supply PCB. Note the polarity of the diodes. The relay in the upper left centre is to 'dethump' any pre amp used.

-How it works

The input signal is fed via C 1 and R1 to the base of Q2 which, with Q3, forms a differential pair. Transistor Q1 is a constant-current source supplying about 2 mA . This current is shared by Q2 and Q3. Transistor Q4 is also a constant-current source supplying about 10 mA which, if no input signal exists, flows through Q5 and Q6. The differential pair controls Q5 and thus the voltage at its collector.

The resistors R11 and R12 together with potentiometer RV1 control the voltage across Q6 and maintains it at about 1.9 V . But as Q6 is mounted on the heatsink, this voltage will vary with heatsink temperature. Assuming that the voltages on the bases of Q7 and Q8 is equally spaced about zero volts (i.e. 0.95 volts) the current will be set at about 12 mA through Q7 and Q8. The voltage drop across the 47 ohm resistors (R14, R18) will be enough to bias the output transistors Q9 and Q10 sufficiently to give about 10 mA quiescent current in these transistors. This quiescent current is adjust-
able by means of potentiometer RV1.
Local feedback is applied to the output stage by the network R20-R23, giving the output stage a voltage gain of about four. The overall feedback resistor, R8, gives the required gain control.

Protection to the amplifier (against shorted output leads) is provided by fuses in the positive and negative supply rails to both amplifiers.

Temperature stability is attained by mounting Q6 on the heatsink and this transistor automatically adjusts the bias voltage.

The power supply uses a full wave rectifier and a centre tap to derive $\pm 40 \mathrm{~V}$ dc. Dropping resistors and zener diodes are also provided for a preamplifier (if required).

As some preamplifiers cause the main amplifier to give a thump on switch-on, a relay is provided to overcome this. R4 and C7 cause a delay of about 3 seconds on switch-on. The relay can be used to switch the output leads from the main amplifier.

IMPORTANT: Q9, Q1 Lare specified as MJ2955, these must be TO3 cased. If not available in TO3 under this type number - use 2N2955 which are commonly available in TO3 cases.

Rear view of the 100 W module showing the links and resistor which are external to the pc board.
 50 W version delete Q11 and Q12.

Printed circuit layout of the power supply. Full size $160 \mathrm{~mm} \times 76 \mathrm{~mm}$.
(4700uF) with the diodes wired across the terminals will suffice. If the PC board is used, there is facility for building the preamp regulator and fitting a dethump relay (if required). The power amplifier itself does not produce any thump.

ALIGNMENT

The only adjustment you have to
make is to set the current using RV1. The bias current for the 50W version should be $20-25 \mathrm{~mA}$ and for the 100 W version it should be $30-35 \mathrm{~mA}$. The figures are for the amplifier running cold. These currents increase about 50% when the amp gets hot.

To measure the current we recommend soldering a 100 ohm $1 / 2 \mathrm{~W}$ resistor across each fuse-holder and removing
the fuses. With no load connected and no input, adjust RV1 until there is about 2.5 V (3.5 V for 100 W version) across the resistors. There may be a slight voltage difference between the two resistors, so just take an average. It's not that critical. This method of measuring current is much easier on your testmeter, should there be a fault in the amplifier.

HEW TO METAC

NEW TO METAC

LADY'S WVATCH Small, graceful lady's watch. LED display. Hours, mins., secs., day. month, day of week. Gold or silver finish metal case.
THE GIFT FOR SOMEONE SPECIAL. Price
£33.00
2-year guarantee

TLC6 B LIQUID CRYSTAL ELECTRONIC

WATCH

Continuous display with backlight. Hours, mins, secs, date, month. Automatic 28 , 30, 31 day calendar. Metal bracelet in choice of gold or rhodium. Slimline case.

TLE5EA

 QUARTZ CRYSTAL ELECTRONIC WATCH8 separate functions, Hours/minutes/day/date/ a.m./p.m. indicators/Auto Fade. Available in 18 ct . Gold/Rhodium plated. Slimline Case.

THIS IS LAST MONTH'S BEST SELLING MAGAZINE SPECIAL WATCH OFFER.
REMEMBER with every WATCH you get METAC SUPER COVER Full 2 years' guarantee. Two year replace or repair if faulty. Free Calibration check 1 st, 2nd and 3rd year. Free Technical advice

METAC INTERNATIONAL

67 High St., Daventry, Northants
Phone 0327276545 . Showroom open 9-6 daily Please fill in coupon on page 9

IALS FROM

TOP PROJECTS No. 2

26 popular projects reprinted from EII, first published in July 1975. Circuits include
50 W stereo amp. Spring Line Reverb Unit, Add-on SQ Decoder. FET 4-Channel Mixer. Rumble Filter. Super-stereo, Audio Wattmeter, Linear IC Tester, Logic Probe. IC Power Supply. Ignition Timing Light, Car Theft Alarm, Battery Charger. High Power Strobe, LM380 Circuits. Temperature Alarm, Tape Slide Synchroniser, Ni-Cad Battery Charger. Digutal Stopwatch plus
more and several pages of Tech. Tips.

TOP PROJECTS No. 3
Originally published in March 1976. Top Projects No. 3 contains 27 constructional
projects including Graphic Equaliser International 25 W Stereo Amp. Simple Stereo. New Sound for your Guitar, Bass Booster, Line Amplifier, Loudness Control. Electronic Ignition, Tacho Trming Light, Car Alarm, Dual-Beam Adaptor, Af Meter. Impedance Meter, Digital Display. Digital Voltmeter. TTL Supertester. Fluorescent Light Dimmer, Radar Intruder Alarm, Light Diminer, FM Tuner, Colour Organ, Drill
$£ 1.00+20 p$ P\&P

TOP PROJECTS No. 4

Avalable at your newsagents or from ET direct. Published October 1976 This includes Sweet-Sixteen Stereo Amp, Waa-Waa, Audio Level Meter. ExpanderCompressor, Car Anti-Theft Alarm, HeadSupply, Audio Millival-tracking Power Supply, Audio Milivolmeter, Thermocou Push-utrion Dimmer Exposure Meer Photo Timer, Electronic Dice High Power Beacon. Temperature Controller, Electronic One-Armed Bandit plus many more
£1.00 +20p P\&P

ELECTRONICS - IT'S EASY. Vol. 1
The first thirteen parts of our very successful series produced in a 100 page book form. These take the reader through the Operational Amplifiers.

$$
£ 1.20+20 p \mathrm{P} \& \mathrm{P}
$$

ELECTRONICS - IT'S

EASY. Vol. 2
The "middle-third" of the series introduces the reader to more sophisticated techniques and includes power sup
filters and logic systems.
$£ 1.20+20 p$ P\&P

ETI 4600 SYNTHESISER
A complete reprint of our superb synthesiser design, published with Maplin Electronics (who also supply the parts). This reprint will also be of interest to those not specifically wanting to build the unit as the circuitry is highly original and is in fact patented by
$£ 1.50+20 p$ P\&P

HOW TO ORDER

ETI Circuits No. 1 and Top Projects No. 4 are available at newsagents or direct from ETI. The others are available only direct from ETI. Postage and packing is $20 p$ for the first, $15 p$ for each subsequent issue (overseas $25 p$ and $20 p$ respectively). Send remittance and order to: ETI SPECIALS, 25-27 OXFORD STREET, LONDON W1R 1RF
All payments must be in sterling

THE COMPACT CASSETTE FORMAT introduced by Philips some years ago has been responsible for a number of remarkable developments in the field of tape recording. Major tape manufacturers have refined and improved oxide formulations and coating processes, equipment manufacturers have researched and developed new head designs using improved materials, and of course a number of noise-reduction systems have come into being.

Even so, the Compact Cassette has inherent restrictions. Even with the finest heads and tape, it is still not possible to record the highest audio frequencies on cassettes to give useful output levels; at extreme low frequencies problems still occur with
replay equalisation and this gives audible performance deficiencies. It is clear the Compact Cassette is stretched to its performance limits at the present time, and whilst we can expect to see a continuation of the present trend of gradual improvement, it also seems unlikely that any major breakthrough is imminent that will solve the problems still remaining.

Compact Cassettes therefore remain a definite 'poor relation' to other signal sources for listeners requiring highest reproduction quality. Yet cassettes are undeniably easier to use than records, in the sense they are less easily damaged by handling and playing, and this no doubt accounts for a great deal of their popularity. Realising this, a number of

MEASURED PERFORMANCE OF SONY ELCASET DECK MODEL EL- 7

Frequency	$20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}{ }_{-3}^{+0} \mathrm{~dB}(-10 \mathrm{VUY}$			
Response:	20 Hz to $15 \mathrm{kHz}+0 \mathrm{~dB}(0 \mathrm{VU})$			
Total Harmonic Distortion	OVU	100 Hz 0.6%	$\begin{aligned} & 1 \text { kHz } \\ & 1.0 \% \end{aligned}$	$\begin{aligned} & 6.3 \mathrm{kHz} \\ & 2.3 \% \end{aligned}$
	-10VU	<0.6\%	<0.8\%	<1.1\%
Noise:	$\begin{aligned} & -52 \mathrm{~dB} \\ & -54 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & -59 \mathrm{dl} \\ & -64 \mathrm{dl} \end{aligned}$	Dolby Dolby	

Wow \& Flutter: 0.1% RMS Unweighted
(record to replay)

Sensitivity: (for 0 VU)	Line	66 mV	$86 \mathrm{k} \Omega$
	Mic	0.205 mV	$4.5 \mathrm{k} \Omega$
Outputs:			Source Impedance
	Line	830 mV	$3.3 \mathrm{k} \Omega$
	Phones	2.6 V	136Ω
Crosstalk:	100 Hz	1 kHz	$\mathbf{6 . 3 \mathrm { kHz }}$
	-40 dB	-46.4 dB	-48 dB

manufacturers have researched the possibility of producing a new format embodying the convenience of Compact Cassettes with the quality potential of open-reel. One such format, which seems to have fallen by the wayside, was BASF's Unisette. Another is the Elcaset, the result of intensive research by a consortium of interested Japanese manufacturers.

THE ELCASET SOLUTION

The Elcaset uses standard-width audio tape running at a speed of $9.5 \mathrm{~cm} / \mathrm{sec}$. Like the compact cassette and unlike open-reel, the quarter track configuration is used to give mono compatibility - stereo pairs of signals are recorded on adjacent tracks, not alternate ones. The cassette itself looks basically similar to the familiar compact and miniature (dictating machine) types.

The differences, apart from size, are confined mainly to detail design aspects For example, erase prevention is by means of retractable lugs rather than break-off tabs, the spooling hubs are titted with ratchet locks to prevent tape spillage when the cassette is removed from the recorder. The hubs are released by a recessed spring-loaded linkage operated by an appropriate bar fitted to the machine. Pressure pads are not used, tape being lifted out of the full-width aperture by moving guide posts.

The head assembly is fixed and, in the instance of the sample Sony EL-7 machine supplied for examination, uses a 'wrap-around' curved tape path Tension on the tape is applied by two hinged guides on the cassette itself, working in conjunction with pinch roller/capstan assemblies to give intimate tape-to-head contact.

THE SONY EL-7

The drive system uses three motors, the Sony has incorporated its wellknown closed-loop dual capstan system for constant-speed tape motion. All transport control functions are carried out using finger-touch push-buttons and use of servo-control enables a remote control unit to be added. Auto-stop, memory rewind and memory rewind/ auto start facilities are incorporated and unattended automatic record and playback can be carried out using an optional timer control.

Outwardly, the review sample resembled a front-loading Compact Cassette unit. The obvious difference was a larger cassette compartment, fitted with a hinge-down transparent window with damped movement applied by a mechanical governor. To the left of the compartment was the power on/off switch, a three position toggle for use in conjunction with the optional timer, a further three-position toggle covering memory rewind functions and the threedigit tape counter with push-button zero reset.

Transport controls were fitted to an angled projecting strip below the compartment.

REMOTE AND OTHERWISE

The optional remote control unit, also supplied, duplicated all these functions but did not render the builtin controls inoperative. A feature of the remote control unit was a 'recordmute' pushbutton which, when depressed, reduced the level of a signal being recorded to zero - obviating the need for operation of the machine's master level control on completion of a recording.

The remaining controls were fitted to the area on the right of the cassette compartment. A pair of large VU meters, calibrated from -20 to +5 VU, were placed close to the top edge of the front panel and were bounded on their right by a master level control, effective on both channels simultaneously and fitted with an adjustable detent preset system. Below this were dual concentric level controls for microphone and line inputs, flanked to the left witn a pair of three-position toggles for bias and equalisation adjustment.

Next was a further toggle controlling the multiple FM filter and alongside was a three-position rotary covering

Dolby on/off and calibrate functions. Screwdriver presets were provided for Dolby record level calibration, using an inbuilt 400 Hz oscillator.

Remaining controls included a pushbutton for eject, a microphone attenuation control giving a choice of 15 or 30 dB reduction of level, an output level control for use with headphones and a tape/source monitor switch. Front panel sockets (standard jacks) were provided for microphone inputs (via tip and sleeve plugs) with an auxilliary line in socket and a headphone output - both using stereo tip, ring and sleeve plugs.

BRINGING UP THE REAR

Rear panel complement included RCA-phono sockets for line inputs and outputs,。 a standard octal valvebase socket for connecting remote control or timer units, a pair of Ameri-can-pattern AC outlets and an output level preset. A screw-type earthing post was also provided.

Standard of construction and finish appeared to be excellent, the front panel having a brushed aluminium overlay. The perforated metal cover was painted grey; removal of the cover revealed easily accessible circuit boards linked by slightly untidy wiring runs.

These graphs show the results of tests made in the laboratory of ETI's acous tical consultants.

TAPES AND CONTROL

One aspect needing clarification was the tape selector controls. Three types of tape were covered - type I, type II and type IIJ. The sample tape supplied was dual-layer ferrichrome and was designated type II. We presume, there fore, but cannot confirm (no instruction manual or relevant literature was supplied with the machine) that type I refers to low-noise tape and type III to chromium dioxide.

The demonstration tape supplied was recorded on one side with the usual spectacular sounds we have come to expect from such tapes. The remaining tracks were left unrecorded.

DOLBY GIVES AN EDGE

Overall record/replay performance was considered excellent, subjectively The Sony electronics performed extremely quietly and with little audible distortion. Recordings, by direct comparison with source signals using the source/tape monitor switch, seemed only marginally inferior to the originals. The chief characteristic was a slight and barely audible loss of high frequency detail - a deficiency which we feel could only be noticed by direct comparison. With Dolby switched out, tape hiss was negligible and audible only during silences between musical sequences. With Dolby in use, no tape hiss was audible at average volume levels although the sound became slightly but noticeably edgy.

CONCLUSIONS

Assuming this sort of performance to be typical, it would seem that Dolby noise reduction is superfluous with this machine; we preferred to tolerate the small amount of noise heard with Dolby switched out than the distortion heard with noise reduction switched in.

No obvious frequency non-linearities were observed during listening tests. Even at low and high frequency tonal balance was well maintained at all level except when incoming signals caused severe record overload. There was no evidence of diminished high frequency response when high record levels were used.

The Sony EL-7 was judged to be a very good performer, and certainly convinced us that the Elcaset format is a welcome introduction to the hifi field. Combining the performance potential of good open-reel machines, and the operating convenience of cassettes, the Elcaset system is likely to have enormous appeal to critical hi-fi enthusiasts.

Semiconductors from LYNX ELECTRONICS

TTL 74 SERIES PLASTIC			
7400	0.16	7484	0.85
7401	0.16	7485	1.25
7402	0. 16	7486	0.32
7403	0.16	7489	292
7404	0.18	7490	0.45
7405	0.18	7491	0.68
1406	0.51	7492	0.57
7407	0.18	7493	0.45
7478	0.18	7494	0.85
7409	0.18	7495	0.67
7410	0.16	7998	0.78
7412	0.25	7497	4.32
713	0.25	74100	1.15
1414	0.72	74107	0.35
1416	0.43	74118	1.16
7417	0.43	74119	1.92
7420	0.16	74121	0.34
7422	0.38	74122	0.47
1423	0.40	74123	0.40
7425	0.30	74125	0.79
1427	0.48	74.41	0.75
7428	0.53	71145	0.74
7430	0.16	74150	1.20
7432	0.37	14151	0.77
1433	0.49	74153	1.09
7437	0.35	14154	1.62
7438	0.35	74155	1.32
7440	0.16	74157	0.76
1441	0.76	74150	1.20
7442	0.65	74161	1.20
7445	1.50	74162	1.20
7446	2.56	74163	1.20
7447	0.81	14154	0.93
7448	0.81	74165	0.93
7450	0.85	14167	3.70
7451	0.16	74174	1.06
7453	0.18	14175	0.94
7454	0.18	74176	2.86
7460	0.18	71180	1.23
7470	0.32	74181	3.20
7472	0.26	74190	1.33
7473	0.30	74191	1.33
7474	0.38	74192	1.39
7475	0.47	74193	1.39
7476	0.36	74196	1.54
7480	0.55	74197	0.81
7488	1.26	74198	274
7482	0.75	74199	2.74
74838			
TO3			
HARDWVARE			
INC.			
1 Mica-2 washers			
Solder TA6			
2 Nuts/Bol			

TRANSISTORS, DIODES, RECTIFIERS
AC1
AC

92 Broad Street, Chesham, Bucks
Telephone (02405) 75154 . Telex 837571

||||||||eti micrafile||||||||||||||||||

TERMINALS

WE HAVE HAD A LARGE NUMBER OF enquiries from readers of Microfile who have had problems getting a simple MPU system (i.e. an evaluation kit) to operate. Apart from power, all that is needed is a way to access the memory, a method to initiate the monitor program commands, and an 'information retrieval' system. In short - a terminal. We have some ideas to offer in this article on how this can be achieved.

Manufacturers of evaluation kits have universally designed their kits to interface with a teletypewriter terminal. Together the monitor program and terminal provide an easy and convenient way of developing, loading and running programs. But if you don't have a terminal and can't afford to buy a new one, (they cost ōver £500), what options if any are available to you?

Well, there are a number of options we can suggest and this article looks at methods of tackling the problem.

1. TELEPRINTERS AND TYPEWRITERS

The first method is to modify one of the older-style teleprinters. These are used by hams to send and receive RTTY and this has created an active second-hand market in teleprinters, so check out the electronic disposal stores.

Although they are serial devices, these older teleprinters do not use the ASCII code expected by all the monitor programs, so you will have to construct a suitable code converter. Most IC manufacturers offer pre-programmed ROMs to convert the Baudot code to ASCII, but converting ASCII to Baudot is difficult and not to be tackled by the uninitiated.

If you do manage to pick up an old teleprinter, try for a set of engineering manuals as well. These will give you the required information on the code it uses.

Typewriters. If you don't mind extra work there are always second-hand electric typewriters There are many different models and the conversion technique for each will depend on how that model works, but the overall principle is to parallel the switches on the keyboard with your own switches.

Figure 1: Functional block diagram of a terminal

However, not all electric typewriters have such switches, some have the keys operating mechanical interlocks and use the electrical part of the typewriter to provide only the muscle. So examine the machine offered carefully before you buy it.

Others, like IBM's Selectric models, offer an electrical interface to drive other devices. A code converter as well as a parallel-roserial data converter are needed, but these are available in ROM for this model.

2. HOMEBREW

The second alternative is to build your own terminal from scratch. Ideally this would imitate a teletypewriter so the computer won't know the difference. Such a terminal would consist of three parts (1) the keyboard to input data, (2) the display to output data and (3) the serial/parallel converter to produce the teletype interface signals. See Figure 1.

Recently a number of ICs have become available to dramatically reduce the parts-count in such a terminal. For the keyboard there's special encoder ICs that scan a keyboard to detect a depressed key and then give out the appropriate 8-bit ASCII code. Chips are available for use with full alphanumeric or 16-key hex keyboards. Just such a project will appear in next month's ETI.

For displays there are chips that display hex and character generator chips to display a full set of
alphanumeric characters over several rows.

HEX TERMINAL

Since most of the monitor programs use less than 20 out of the possible 128 ASCII characters, the cheapest way to make a keyboard is to use 20 push buttons and enough diodes to make a 6×20 matrix, see Figure 2 .

The display section will need to consist of a memory, of minimum size 12 characters, and a readout capable of displaying the characters $0-9, A-F$, and 4 or 5 unique shapes to represent the other characters the monitor will output. To make sense out of this output, all 12 characters need to be displayed at once.

Now available are some interesting 16 -character plasma displays. These can be purchased ready made-up, just apply dc power and the least significant six bits of the ASCII code of the character you want to display. The module will store the character in its own memory, decode it, and display it in a 5×7 dot matrix. But these modules are expensive, costing around $£ 100$ each.

A cheaper alternative is to build your own out of seven segment LED displays. Selective lighting of the seven segments (plus decimal point) gives each display 128 unique states, more than enough for the 20 characters used by most monitor programs. Just pick twenty distinct shapes that are easily remembered. Since all the monitors use hex, 16

SIMPLE KEYBOARD

Figure 2: A simple keyboard. The circuit shows how pressing one key sets up a parallel code and instigates operation of the serial code generator. This circuit outputs an eleven-bit serial code: first a start bit (logical zero), then eight bits taken from the ASCll code, then two stop bits (logical one). To do this the shift register needs 11 clock cycles but if it gets more it doesn't matter with this circuit, it just gives out more ones. See figure 3.
of the shapes will represent 0-9 and A-F, something a seven segment display does quite well. The remaining symbols are used by the monitor to prompt the operator and so do not need to be identical to the shapes used in the ASCII set, just distinct enough to be remembered.

A decoder to drive such a display can be built using a seven-segment decoder IC and a few gates. For added clarity, light the decimal point for character other than hex.

The TTY interface and serial-toparallel converter form the remaining section. The TTY interface does a conversion between the $0 / 1$ current levels normally expected by a teletypewriter (TTY) to the $0 / 1$ level required by the logic family in your serial-to-parallel converter. See Figure 3.

The converter is a shift register of 11 bits. Added to the eight ASCII bits of data is one bit at the beginning called the start bit. It's always a logic zero and it tells the receiving unit it's about to receive another 10 bits (8 bits of data followed by two bits called stop bits). The stop bits are logical ones.

The process is asynchronous so once started the receiver expects a new bit every 9.09 milliseconds. To make life simpler, several manufacturers now offer an IC called a UART (Universal Asynchronous Receiver/Transmitter) that has all the logic included in the IC to
handle this serial-to-parallel conversion for receiving, as well as the parallel to serial conversion for transmitting. Internal logic will also check the parity and generate flag signals to say data available and data sent.

lable to describe the complete operation of the UART, but should you decide to use one it is definitely worthwhile getting an applications note about it.

Bulk Storage. A magnetic tape cassette recorder can be used with

micrafile

your home-made terminal in place of a paper-type punch and reader. The string of serial 1 s and 0 s can be stored on magnetic tape by tond and no tone or by two tones of different frequencies. A tone of around 2 kHz will do, since the data bit-rate is a low 110 bits/second; (see Figure 3).

For better noise rejection use a stereo recorder and record the 1 s on one channel and the Os on the other. A 30-minute cassette will hold some 18,000 words of data. This is equivalent to a length of paper tape 50 metres long and unlike paper tape you don't have to roll it up by hand if you drop it.

3. THE FRONT PANEL

The last method of driving your micro-computer is not to use a terminal, but instead to use what is generally called an 'operating panel' or 'front panel'. With such a panel you lose the use of the monitor program. The operator has to use more tedious operating procedures.

But you do gain a fairly inexpensive way of driving your microcomputer. Such a panel is generally quicker to get working than building your own terminal and about half as expensive. A very simple one can be built for around $£ 30$ (excluding power supply and case). Adding refinements like incrementing address counters will take the cost to around $£ 40-£ 60$.

In this method, then, program execution in the microcomputer is halted and data is loaded into read-write memory one word at a
time. The word comes from a row of toggle switches mounted on the front panel. The location in memory is selected by the value set up on another row of switches also mounted on the front panel.

To examine the contents of a memory location, the word comes back from memory to a row of LEDs on the front panel. In effect the front panel. takes control of the microcomputer's buses and the microprocessor chip disconnects itself from the circuit by disenabling its output from driving the buses. This mode of operation is sometimes referred to as DMA mode (Direct - Memory Access).

Likewise the switches on the ,front panel must be disconnected from the buses when the microcomputer is running. The logic to do this has to be built by you and included on the front panel. To this you should also ádd logic to allow the microcomputer to be singlestepped by the operator. Singlestepping is executing one instruction or cycle at a time and then going back to the halt mode. This allows the operator to step through his program an instruction at a time, and, check as he goes that what ought to happen, does actually happen.

This mode of operation is essential to debugging a program without too much difficulty. Application information included with most, but not all, evaluation boards, shows how this is done.

One disadvantage of the simple front panel is it cannot directly load the display with the contents of the microprocessor internal working
registers, it can only work on memory locations and consequently 1/O devices seen as memory locations. The feasibility of adding hardware to overcome this depends on each microprocessor chip and is complicated. Fortunately it can be done with a simple software routine loaded by the operator when the microcomputer is first switched on.

A suitable front paner then consists of the following functional sections

1. A row of toggle switches to set up addresses and input data.
2. A display to output data (say a row of LEDs driven by CMOS Tbuffers, (e.g. 4009 s).
3. Buffers between the microcomriputers buses and the front panel switches. Buffers must have If three state outputs, such as '74LS365 or CMOS transmission gates like the 4016, where suitable.
4. Control logic to halt the microcomputer, enabling the buffers to single-step the microcomputer.

Those who decide to use the front panel method will also have to address the read/write memory to be able to run programs. Alt evaluation boards come configured so that pressing the reset button. starts the microprocessor executing the program in ROM. If you do not use the ROM then the address of ROM and RAM must be changed so that pressing the reset forces the microprocessor to take its first instruction from RAM. This is where you put the beginning of any program you write, or at least the beginning of any software routine

MOTOROLA DESIGN NOTE

Fig. 1. Step 1 in the development cycle.

Fig. 2. Step 2 in the development cycle.

Fig. 3. Step 3 in the development cycle.
${ }^{\prime}$ They say every picture tells a story - and there three are relating a tale of system development. Motorola Semiconductors Products Division have issued design note M40 which deals with the development of a 6800 system lusing an exorciser. Any system which uses the 6800 - or any other bus compatible components - can be analysed or evaluated.

As the diagrams suggest the note is very comprehensive, and is well worth reading even if you are not in a position to take its advice! 'Good general interest stuff. If you want one of these worthy epistles get onto Motorola at Motorola Semiconductor Products Division, York House, Empire Way, Wembley, Middx HA9 OPR.

With apologies for the delay we are now proud to announce the launch of System 68
Our April issue will carry the first part of the hardware system - an ASCII encoded keyboard. The delay in bringing about publication has been due mainly to the fabulous rate at which improvements are made in the CPU field. Our original system har the shadow of the future dark across its path by the time we were set to begin. Several IC's looming on the horizon looked interesting enough to be menacing.

The system we will now be describing is undoubtedly more flexible - and more use than our original concept. We think this justified the delay, and think you will agree with us.

Although the CPU board of our new system still uses a Motorola 6800 chip, one of the main features of the system is that we are calling 'non CPU dependance'. This means that by simple exchange of a pin compatible) CPU board, other MPUs can run $\subseteq y s t e m 68$

1. P.S.U. - generously rated, a ec self-contained as a module
2. CPU board - based on the $M 6800$, but replaceable with pin sompatible boards containing other MPUs i.e. SCAMP etc.
3. Memory Board - basic memory is $4 K$, expandable to $64 K$. See $m \equiv p$.
4. Keyboard Interface.
5. VDU boards (2, - A new updated VDU system especially for System 68. Software will be provided to encble our 560 VDU unit to operate perfectly with the system.
Total cost of the cperational system should be around $£ 200-£ 250$! $A \equiv$ well as the (main) full ASCII keyboard we are working on a pocket sized economy version - costing less than E7! Details later. As mentioned previously we commence with the seyboard, and will progress in the May issue to give full details of the power supply anc hardware for the mainframe.

MEMORY MAP FOR SYSTEM 68

TECHNICAL BOOKS EBOM ETTI

CALCULATORS
99 WAYS TO KNOW ANO USE YOUR ELECTRONICCALCULATORcalculato£4.50
SCIENTIFIC ANALYSIS ON YOUR POCKET
GALCULATOR

$$
\begin{aligned}
& \text { GALCUI } \\
& \text { Smut }
\end{aligned}
$$18.25

COMPUTERS AND MICROPROCESSORS -
COMPUTER CIRCUITS ANO HOW THEY WORKB. Wells
11.80
Become a
COMPUTER TECHNICIANS HANOBOOK

B. Wed
E3.25
E3.25
B. WEd E3.25
OIGITAL ELECTRONIC CIBLCUITS ANO SYSTEMS
N. M. Mortiz
£2.90
The ideal bo digutal
MICROPROCESSORS £11.75
L. Altman racticat
TMICROPROCESSOR £8.00
O. C. McGlynn des a
MICROPROCESSORS ANO MICROCOMPUTERS $£ 15.90$
B. Soucah
Describeschniques
Describes the application pro
common io all microprocessors

ELECTRONICS

aCTIVE FILTER COOXBOOKD. Lancsater$£ 9.95$
electronicE25.60
a completely $E 25.60$
students.
ASIC MATMS COURSE FOR ELECTRONICS
H. Jacobowit
Quick short cut ¢1.75
OESIGNING WITH TTL INTEGRATEO CIRCUITS
Texas instrumenta £8.95
ELECTRONIC MEASUREMENTS SIMPLIFEC. Hallimark£2.10
ELECTRONICS POCKET BOOK £4,15
ELECTRONICS ANO PHOTOGRAPHY ELECTRONICS
AR Brown
Prect E2.20
ESSEMTIALENGINEERS
N. M. Morrí E1. 20
Handy reference book. inclu
codes and preterred values
IRE ANO THEFT SECURITY SYSTEMS8. Wois
Selection£1.90
how to reao electronic circuit olaghams
B. Brown
Everything $£ 1.85$
HOW TO BUIL ATORS
£3.25
J. Sheolds LO PRoximity
how to use ic circuit logic elementsHelps those£3.25
INTEGRATEO ELECTRONICS 18.60
J. Millman
Using an IC ep from
iC OP-AMP COOKBOO
W. Jung
Covers the basic theory of E8.75 250
Linear integrateo circuit applications G. Claytion £4.90
A practical approach is elm
to ty
E. M. Noll $E 6.20$

mas digtal ics
G. Fiyn
this book coniains information about MOS and CMOS from basic opeŕational amplifiers design ano applications (burt Brown
G. Tobey$£ 7.30$
PIN POINT TRANSISTOR TROUBLES IN 12 minutes
L. Garner $£ 2.85$ service procedures

LATEST EDITIONS THE OSCILLOSCOPE IN USE		
	SEMICONDUCTOR DATA	
A practical handbook aimed at the more advanced enthustast.	POPULAR VALVE/TRANSISTOR SUBSTITUTION GUIOE £2.15	
110 ELECTRONIC ALARM PROJECTS		
R. M. Marston $\mathbf{¢ 3 . 3 5}$	radio valvé ano semiconductor oata	
The latest in this popular series.	A. M. Ball $£ 4.30$	
MASTER HI-FI INSTALL ATION	Characteristics of 1.000 valves cathode ray tubes. Iransistors, diodes	
Gordon J. King $\quad \mathbf{E 3 . 0 0}$	upertiers and opticat semi-conductors this new edition (1975) is "t	
All you need to know aboul setting up:your audio system.		
TV TYPEWRITER COOK BOOKDon Lenctaster		
All the circuitry and explanations for making your own VDU.		
PRACTICAL ELECTRONIC CIRCUIT BUILOINGAinslie and Colwedl	RADIO AND TELEVISION	
	FOUNOATIONS OF WIRELESS ANO ELECTRONICS M. G. Scroggie (New 1975 editiont Cowers the whole basic theory no previous lechnica knowledge is assumed	
A concise introduction to some of the modern methods of project building.		
PRINTEO CIRCUIT ASSEmbly		
Hughes and Colwel! Abundant information on making and assembling PCBs.		
	SERVICING TRANSISTOR RAOIOS L. D'Airo	
ELEGTRONIC OIAGRAMS N. A. Colwall Comprehensive information on circuit symbois and diagrams. Complete guide giving theory an alysis		
ELECTRONIC COMPONENTS		
M. A. Colwoll Information on the different types of components and their salection.	TEST EQUIPMENT AND OSCILLOSCOPES-	
PROJECT PLANNING ANO BUILOINGM. A. Colwell	basic electhonic test proceoures 1. M. Gottlis b £2.35	
	Shows how to get acturate measurement with VOMs meters and oscilloscopes	
SIMPLE CIRCUIT BUILOING THE OSCILIOSCOPE		
	THE OSCILLOSCOPE G. Zwick E2. 10	
Practical triac/scr projects for the experimenter		
R. Fox £2.15	PRACTICAL test equipment you can builo	
Thyristor theory and practical cricurts with low cost SCR TRIACs and OLACs	W. Green £2.15	
	For technicians rado TV service opecalors and serious expertmenters	
PRINCIPLES OF TRANSISTOR-CIRCUITS		
S. Amos £4.40	TEST INSTRUMENTS FOR ELECTRONICS	
Generatly accepted as being a standard textbook on fundarmental principles underlying the design of circuits and using iransistors	M. Clitford $£ 2.30$	
	Easy' modifications to your VOM VTVM and scope with the aid of this book	
RAPIO SERVICING OF TRANSISTOR EQUIPMENT		
G. King £2.85	WDRXING WTH THE OSCILLOSCOPE	
A systematic gurde to the servicing of transistor radio television tape and hi-ti equipment	A. Saunders £1. 85 includes workshop lest projecis with large size drawings	
SEmiConductar circuit elements		
T. O. TowersGives readers an account of all semiconductor devices commeicially	SERVICING Whth the oscilloscope	
	G. King 55.00	
avaiable, for each device il covers a genetal descriphon crrcul dragram symbols and working principles	Includes a unique series of photographs showing oscolloscope traces to be found in normal and laulty equipment stereo radio. colour TV Circuis selvicing is dealt with	
sOLID State circuit guide book		
B. Ward £2.15		
Step by step instrictions to design circuits to your own specitications.		
transistor circuit design	All pricas are correct at how to oniola painn to press bul are subiect to	
	aneration without notice. All prices inctude postrge. Please print your name and addrass clarrly and list asch litle and price separately. Cheques and	
TL COOKBEOM	seven day' appraval ayianst a mill cash ramitance. ples postape. Boak slack	
D. Lancaster E6.00	is nol hold al ETI's tenden oftices and arders should be sent to ETl goox SERICE, P.O: BOX 79, MAIDENIEAD, BEDKS SLS 2 EG.	
Complete and detaled guide 10 TTL how it works, how to use 11 and		

ETI Project 155 DICITAVoutmeter

EVERY NOW AND THEN AN JC drops into the public eye, which, on removal, proves to be a new-quick-answer to an old problem. Such a useful mote is the ZNA 116 E from Ferranti. This is a DVM chip, which simplifies the construction of a $31 / 2$ digit instrument to a nicely ridiculous extent.

Armed with this device we set about the production of this project In its present form it is an extremely accurate ($<0.1 \%$ error) with a 5 V stabilised supply. It is very possible that we shall, in the future, extend the instrument to have multimeter capability, and with this in mind we leave space within our recommended case to accommodate this modification.

CONSTRUCTION COMMENCED

Although the circuit diagrams depict a complex device, construction is really very simple. The first thing to do is build the power supply as shown in fig. 9. Assemble the components onto the board as per fig 8 . The regulator is mounted onto the rear of the case - no insulator is required, but be careful that the legs do not contact the case. Check the output of this - it should lie
between 4.7 V and 5.2 V . Don't proceed if it doesn't! Wire up the mains switch and neon

Once the supply is operational and mounted in the case, assemble the main PCB's. Follow the overlays given in figs 4,5 , and $7 \rightarrow$ watch the orientation of the components. Fit link leads to the digital board, and mount this into the box such that the
display locates behind the perspex panel you fitted there when you did the metalwork. (You did leave a hole for the displays - didn't you? Oh.)

Next connect up the links to the analogue board and fit this into the case. Keep all inter board wiring as short as possible - and definitely less than six inches. The last block to

Fig. 1: Block Diagram of the ZNA $116 E$.

Resistors	
R1 $16 \mathrm{k}^{*}$	
R2, $3368 \mathrm{k}^{*}$	
R3-9 150R	
$\mathrm{R} 13,18,19,20 / 3 \mathrm{k} 3$	
R14 33k	
R15, 26 15k	
R16, 17 680R	
R21 100R	
R22, 23 100k	
R24, 25, 31, 34* 10k	
R27 27k	
R28 1 M^{*}	
R29, 30, $36.51 \mathrm{k} *$	
R32 470R	
R35 560R	
R37 240k*	
R38 180R	
R39 180k*	
R40 $2 \mathrm{M}{ }^{\text {* }}$	
R41, 42 10M ${ }^{\text { }}$	
R43 22k*	
(All Resistors 5\% Ex * $=2 \%$ type.)	
Potentiometers	
RV1 100k Bourns 3009P	
RV2, 3 5k Bourns 3009P	
RV4, 5, 64 k 7 Min Hor. Trim.	
NOTE!! .	
R1-R38 inc, RV1-RV3 inc obtainable as pack from	
Doram (997-134)	
RV1-RV3 inc	
Capacitor	
C1 2 n 2	
C2, 433 n	
C3, 5 68fi 10 V electrolytic	
C6, 10, 11, 12 100n	
C7 $2 \mu 2$	'
c8 10 n	
C9.470p	
C13 $2,200 \mu 16 \mathrm{v}$ electrolytic	
C14, 15 220n	
NOTE!!	
C1-C12 inc Obtainable as pack from Doram (997-140)	

Semiconductors

IC1 ZNA 116 E
IC2 ZN 7447A
IC3, 4 ZN 424E
TRI, 2, 3, 4 ZTX 4403
TRI-11, 13-16 ZTX 108
TRI 12 ZTX 23
D1. 2 ZN 423
D3 1N 914 (see text)
BR. 1 200V 1.6A Bridge Rectifier
REG 15 V 600 mA regulator TO3.
Display 1, DL701
Displays 2, 3, 4/DL707L

NOTE!!

IC1, D1, 2, TRI-4, TR12
Obtainable as pack
from Doram (997-112)
IC2, 3, 4, TR-11, 13-16
Displays 1, 2, 3, 4
Obtainàble as pack
from Doram (997-1 28)

Switches

S 1, 2, 3, 44 blank assembly, 4 pole 2 way push button with cancelling action
Doram
$4 \times 338-636$
$4 \times 338-563$
$1 \times 338-254$
S5 Off/On rocker

Transformer

T1 $240 \mathrm{~V}-9 \mathrm{~V} 1 \mathrm{~A}$ type
Case
Samos S7 (Doram - 984-497)
Boards
The 2 main boards, Analogue and Digital, are available as pack from Doram (997-156)

Miscellaneous

Fuse holder, fuse, mains neon, 2 mm red and black sockets, P.C.B. pillars, flex: 3 core mains flex, nuts and bolts etc., red perspex.
be positioned will be the switching bank and input attenuators. Wire this to the other boards once in place.

Before connecting anything to the PSU check over the boards again. Note the 'overload' diode D3, is mounted on the foil side of the digital PCB. Check the number of links. There are five on the analogue board, and twelve on the digital.

CALIBRATING AND ATTENUATING

Unfortunately there is no other way of calibrating such an instrument other than applying a known voltage. Before you do that put the range switch to 'one volt' position, and set RVI until the polarity indicator just flickers from ' + ' to ' - '. (Carry this out with the input shorted).

Connect your known (accurate!) voltage preferably positive, to the DVM and adjust RV3 until the instrument shows this value. Reverse the terminals, and set RV2 so that the display is again correct. The basic accuracy is now achieved.

Each range of the attenuator is independent of the others, so each can be set individually.

Calibration is now complete

USING THE METER

When the input voltage exceeds the maximum reading the display will flash and no further measurements can be taken - switch up a range. Decimal ppint is automatical-

Fig 5: Overlay - Digital Board

ETI Project 155

Fig 7: Overlay - Input Switching Board
Fig 8: Overlay - Power Supply
ly set. Input impedance of the meter varies from $100 \mathrm{k} \Omega$ on the 1 V range to $20 \mathrm{M} \Omega$ on the 1000 V range Maximum reading is ± 1999. If the accuracy of your setting up is good - so is the DVM's! Insulting though it sounds, as the constructor YOU are the weakest link in the chain!

An internal view of the DVM unit. The display board is shown fixed in place upright against the front panel. Note the three holes in the back panel to adjust the three multi-turn presets on the analogue board. The voltage regulator need not be insulated from the back panel -

SiN5

Fig 9 Circuit Diagram - Power Supply

How it worlss

The method of $\mathrm{A} \rightarrow \mathrm{D}$ conversion used in the system is dual slope integration Referring to the drawing below this operates thus:

At time T, S4 S3 and S4 are open, and S1 closes to apply the input voltage to the integrator The integrator capacitor C will charge up linearly until time $T_{2}(4000$ clock pulses later). The voltage at the integrator is proportional to Vin

After time T_{2} S1 opens and either S2 or S3 closes, applying a reference voltage (of opposite polarity to Vin) to the integrator. C now discharges at a constant rate, and at time T_{3} the output of the integrator is again
zero. This is detected by the comparator, and the ref. is switched off, and the number of clock pulses corresponding to Tx transferred to latches. This number is directly proportional to $V x$, hence to Vin . If Tx is greater than 2000 clock pulses, an overload condition exists, and the display is flashed
$\mathrm{S} \dagger$ is made to be closed for a time which is an exact multiple of 20 msec , the period of the mains, and hence any ripple superimposed on Vin will be integrated to zero. Very convenient.

Using the dual slope technique means that neither the capacitor C nor the oscillator (clock) has to possess high stability

Referring our discussion to this circuit. IC4 forms the integrator, IC3 the comparator IC 1 , the ZNA 116 E is the control logic which

performs the transfer and timing for the system. A block diagram of this chip is given in fig. 1

- Genaine 5 sificon transistor circuit, does not need a tramsistor radio to operate.
- Incerporates unique varicap tuning for extra stability.
- Search head fitted with Faraday screen to eliminate capacitive effects.
- Loudspeakel or earphone operation (both supplied).
- Britain's best selling mietal locator
kit. 4,000 already sold.
- Kit can be built in two hours using only soldering iron, screwdriver pliers and side-cutters.
- Excellent sensitivity and stability.
- Kit absolutely complete including drilled, tinned, fibreglass p.c. board with components siting printed on.
- Complete after sales service.
- Weighs only 220z; handle knocks
down to 17 " for transport.
Send stamped, self-addressed envelope for literature.

Complete kit with pre-built 5: 4.7 5
 search coil
 Plus $£ 1.00$ P\&P Plus £1.18 VAT (8\%)
 Built, tested
 wame 19.75
 Plus $£ 1.00$ P\&P
 Plus £1.58 VAT (8\%)

MINIKITS ELECTRONICS,
6d Cleveland Road, South Woodford, LONDON E18 2AN
(Mail order only)

Greenbank

TIME BOX. Digital Clock Case $56 \times 139 \times 71.5 \mathrm{~mm}$ with red acrylic window Choice of case colour white, red orange, blue £2.25.
"E" LED DISPLAYS. Class 11 devices. bul fully guaranteed by us tor even segment brilliance, etc - money back or exchange if
not sahstied
 so
10
100
25
CMOS WITH DISCOUNTS! Any mix
10% for $25+25 \%$ for $100+331 / \%$ for 1000

CRIEN:ANK ELECTRONGS Dept. TAE)

PRINTED CIRCUIT KIT £4.25
Make your own printed circuits. Contains etching dish, 100 sq ins of pc board, 1 tb ferric chloride etch resist pen, drill bit and instructions.

JC12 AMPLIFIER

6W IC audio amp
with free data and
printed circuit
DELUXE KIT FOR JC12

Contains extra parts except JCi 2 needed to complete the amp including balance, volume, bass and treble controls. Mono £2.39. Stereo £5. 25
JC12 POWER KIT
Supplies 25 V IAmp $£ 3.85$
JC12 PREAMP KITS
Type 1 for magnetic pickups, mics and tuners. Mono £1.50. Stereo £3.00. Type 2 for ceramic or crystal

SINCLAIR IC2O
IC20 10W +10 W stereo integrated circuit amolifier kit with free printed circuit and data $£ 4.95$ VP20 Volume, tone-control and preamp kit $£ 8.55$

JC40 AMPLIFIER

New integrated circuit 20W amplifier
chip, printed circuit and data $£ 4.45$.

FERRANTI ZN414

IC radio chip $£ 1.44$. Extra parts and pcb for radio
£3.85. Case $£ 1.00$. Send sae for free dara BATTERY ELIMINATDR BARGATNS RADIO MODELS
50 mA with press-stud battery connectors, $9 \mathrm{~V} £ 3.75$
$6 \mathrm{~V} £ 3.75 .9 \mathrm{~V}+9 \mathrm{~V} £ 545.6 \mathrm{~V}+6 \mathrm{~V} £ 5454 \mathrm{~V} / 2 \mathrm{~V}+$ $6 V £ 3.75 .9 V+9 V £ 5.45 .6 V+6 V £ 5.45 .41 / 2 V+$ 4VIK $E 5.45$ MAINS UNITS
CASSETTE MAI
$71 / 2 \mathrm{~V}$ with 5 pin DIN plug. $150 \mathrm{~mA} £ 3.95$
3 -WAY MODEIS 3-WAY MODELS
With switched output and 4 -way multi-jack connector Type $13 / 41 / 2 / 6 \mathrm{~V}$ at $100 \mathrm{~mA} £ 3.20$. Type 26 FULLY STABILIZED MOD
Switched output of $3 / 6 / 71 / 2 / 9 \mathrm{~V}$ stabilized at 400 mA CAR CONVERTORS $£ 5.10$

BATTERY ELIMINATOR KITS

100 mA radio rypes with press stud battery terminals $41 / 2 \mathrm{~V}$ £2.10.6V $22.10 .9 \mathrm{~V} E 2.10 .41 / 2 \mathrm{~V}+41 / 2 \mathrm{~V} £ 2.80$ $6 \mathrm{~V}+6 \mathrm{~V} £ 2.80 \quad 9 \mathrm{~V}+9 \mathrm{~V} £ 2.80$
100 mA cassette type: $71 / 2 \mathrm{~V}$ with 5 pin DIN plug. £2 10
Transistor stabilized 8 -way type for low hum. $3 / 41 / 2 / 6 / 71 / 2 / 9 / 12 / 15 / 18 \mathrm{~V} 100 \mathrm{~mA} £ 3.50$. 1 Amp E6. 50.
Heavy
Heavy dury 13-way types $41 / 2 / 6 / 7 /$
$81 / 2 / 11 / 13 / 14 / 17 / 21 / 25 / 28 / 34 / 42 \mathrm{~V}$. 1 Amp
$81 / 2 / 11 / 13 / 14 / 17 / 21 / 25 / 28 / 3$
model £4.95. 2 Amp model $£ 7.95$.
Car convertor kit: Input 12 V DC Output $6 / 7 \frac{1}{2} / 9 \mathrm{~V}$ DC 1 A transistor stabilized $£ 1.95$
MILLENIA KITS
5 Transistor highly stabilized power units. Switched 1 to 30 V in 0.1 V steps. Send sae for tree leaflet. I Amp
kit $£ 12.45 .2$ Amp kit $£ 14.95$. Case $£ 295$ extra

MAINS TRANSFORMERS

6-0-6V 100mA E1. 9-0-9V 75 mA E1. $18 \mathrm{~V} 1 \mathrm{~A} E 1.95$ $0 / 12 / 15 / 20 / 24 / 30 \mathrm{~V}$ 1A E4.30 12-0-12V 50mA $\begin{array}{lllllll}\text { £1. } 0 / 12 / 15 / 20 / 24 / 30 \mathrm{~V} & 2 \mathrm{~A} & \mathrm{E} 5.95 & 6-0-6 \mathrm{~V} & 1 / 2 \mathrm{~A} \\ \text { £2 85. } & 9-0-9 \mathrm{~V} & 1 \mathrm{~A} & £ 2.55 & 12-0.12 \mathrm{~V} & 1 \mathrm{~A} & \text { E2.95. }\end{array}$

S-DECS AND T-DECS

S-DeC £2.24. T-DeC £4.05.
u-DeCA £4.45. u-DeCB £7.85
IC carriers with sockets.
SINCLAIR CALCULATORS AND WATCHES
Cambridge memory £5.95. Cambridge Scientific £8 95. Oxford Scientific £13.30. Programmable Scientific with free mains unit £19.95. Mains adaptors
for other models (state type) $£ 3.20$. Assembled Grey Watch with free staintess steel bracelet $£ 1645$ White

SINCLAIR PROJECT 80 AUDIO

 MODULESPZ5£4.95. PZ6£8 70.Z40£5.75. Pro. $8050 £ 18.95$ BI-PAK AUDIO MODULES
S450 tuner $£ 20.95$. AL60 £4.60. PA $100 £ 14.95$
 $£ 16.95$ SPMBO £3.95. BMT80 £3.62. Send sae for free data.
SAXON ENTERTAINMENTS MODULES
SA1208 £20.50. SA1204 £14. SA608 £13. SA604 £12. PM $1201 / 8 £ 12$ PM1202/8 £19. PM1201/4
£12 PM $1202 / 4 £ 19$ PM $601 / 8$ £12 PM601/4£12.

SWANLEY ELECTRONICS

Dept. ETI, PO BOX 68, 32 Goldsel rd., Swanley,

Mail order only. We will not serve callers under any circumstances. Post 30 p on orders under $£ 2.23$.
otherwise free. Prices include VAT Oticial otherwise free. Prices include VAT. Olficial orders welcome. Overseas customers please deduct VAT. Send
sae for free leaflets on all kits

biofeedback - instant yogat

Using electronic biofeedback techniques you can monitor the internal operation of your body. But that's not all - knowing what's going on enables you to control usefully some of the processes, helping you to relieve tension and the disorders resulting from it. Collyn Rivers explains.

AN ESSENTIAL PART OF MOST control processes is some form of feedback information which enables the system to maintain a controlled equilibrium.

A room thermostat, for example, senses room temperature and regulates heat output accordingly - an indication of the heater's operation is 'fed back' to enable temperature to be automatically controlled.

When you learn the piano you see or sense where the keys are, and how hard you are striking them. The piano makes corresponding sounds which are fed back to your ear. Your brain now compares what you've got with what you hoped you had. This process of feeding back information about what you are achieving so you can compare it with what you are trying to achieve enables you to make appropriate corrections. In this example the acoustic feedback is vital.

A similar process is involved when you learn to ride a bicycle - the feedback process is so effective that balancing eventually becomes automatic.

Feedback is used when you first drive a strange car. The first time you
brake you know only within wide limits the relationship between pedal pressure and deceleration. It may be as low as 5 kg or as high as 25 kg for (say) 0.4 G. But the very first time you press that pedal several feedback loops come into operation. Your stomach is sensitive to rate of change of velocity and it sends signals to your brain your eyes sense the rate of change also - this data too is sent to your brain. If the tyres are squealing then there's an acoustic loop as well.

These and innumerable other physiological mechanisms collectively tell you whether you're pressing that pedal too hard or not hard enough, and you make a series of appropriate corrections virtually instantaneously. Once you've done this a few times the response becomes automatic. You've used feedback to learn, and subsequently reinforce, a new skill.

THE AUTOMATIC NERVOUS SYSTEM

So far we've described what are primarily external feedback loops. But the body has a vast number of internal automatic mechanisms - what medics call the autonomic nervous system. These are internal feedback loops and
whilst they're working correctly all one normally perceives is the end result. If the body is too hot it perspires - if you run for a bus your respiratory rate increases, if you walk from a light area to a dark area your pupils expand accordingly. And all these mechanisms work in very much the same way as their technological equivalents.

Until recently it has been taken totally for granted that man had no control over the autonomic nervous system. We could learn to control at least some of our external bits - but not. our internal systems. We knew we could learn to use our hands - or even wiggle our ears - but to control body temperature or heart rate was something else again.

And until very recently Western science believed this implicitly - despite ever-increasing evidence to the contrary. Yogis have long maintained that they have some measure of control over their autonomic systems, but the evidence was always anecdotal rather than scientific. (It is only in the last decade that their performances have been monitored and scientifically authenticated.)

biofeedback

Then ten or so years ago the scene suddenly changed. It was caused by a now classical experiment involving the study of part of the brain's electrical activity. Researchers were studying a subject's alpha rhythms (a low amplitude 10 Hz generated when the subject is relaxed). It was found that if the subject could perceive a signal corresponding to his alpha activity he could learn to generate more or less of it at will. Even more excitingly, it was found that almost all subjects could do the same:

CONTROLLING YOUR INSIDES

For the first time it was proved scientifically that humans could control some internal processes once a visual or aural feedback loop was established. Yet the tremendous significance of this discovery was not at first appreciated by the medical profession, but rather by engineers and physicists who were of course more familiar with the use of feedback in control systems.

Subsequent experiments have shown that a very large number of internal functions can be controlled in the same fashion - and even more importantly that many partially mal-functioning mechanisms can be 're-programmed' so that newly-learnt patterns can become automatic.

One of the most important of these is conscious control of tension and anxiety, for this implies that it is possible to control tension related conditions such as migraine, colitis, asthma etc.

Other work has shown that it is possible to control hypertension (high blood pressure), heart rate, muscular tension, body temperature - and of course to generate, or at least partially control, alpha, beta and theta brainwaves. It is in fact now commonly believed that it may eventually be possible to bring under some degree of voluntary control any physiological process that can be continuously monitored, amplified and displayed

GALVANIC SKIN RESPONSE

The skin is an extraordinarily sensitive and rapid indicator of stress. Some people know this only too well - they literally develop nervous rashes.

When you become tense a number of readily measurable changes take place. A major change is the massive shift in electrical resistance of the dermis (the layer beneath the skin's outside surface). This shift is not only large but also very swift and the reaction happens
regardless of where the centre of stress happens to be. A minor change in tension of a stomach muscle will cause just as large a change as clenching your fingers.

Galvanic skin response monitoss (or GSR machines as they're generally called) monitor the resistance between two adjacent fingers of one hand. They translate and present this data as a meter indication or as a tone of related pitch (i.e. as tension decreases, pitch falls, and vice versa).

GSR machines are quite easy to build: they can be simply expandedscale ohmeters covering the range 5000-100 000 ohms. A sensitivity control is essential, as is a readily adjustable method of switching resistance ranges.

Readout may be a simple analogue meter (digital tends to be harder to read

GSR machines make you aware .of tension - and then enable you to control that tension. Eventually - after ten or so half-hour sessions the conscious control that you have learned becomes an automatic response. From then on the GSR machine is no longer required. In fact it becomes a handicap to further progress just like retaining 'training wheels' on a kid's bicycle.

Biofeedback thus operates in the opposite way to drugs. You can use sedatives to control tension if you wish. But if you do you've then got two problems. You still have the underlying tension - which will become only too apparent when you run out of sedatives. And you've become a drug addict as well.

To fully appreciate the efficacy of GSR machines in tension reduction it should be understood that there is an almost one-for-one relationship between

in this application) or preferably a corresponding audio tone in which the pitch decreases as tension falls. Surprisingly perhaps GSR resistance increases as tension falls.

Electrodes may be made from any flexible conductive material - like steel wool, soft metal mesh etc - held firmly against the fleshy part of your finger tips by a velcro strap or something similar.

GSR machines are very easy to use. In fact one of the best ways is simply to switch on and try to cause the meter reading to fall - or the tone to drop in pitch. Usually you will find out how to do this within a few minutes.

mind and body. If you reduce muscular tension you will automatically reduce mental tension which in turn will reduce muscular tension yet further and so on.

TEMPERATURE MONITORING

Tension is also reflected in skin temperature - particularly in the hands. A considerable amount of work in this field has been performed by Green and Green of the USA's Menninger Foundation research dept, who use this technique extensively in the control of migraine.

As with GSR, the technique and equipment is remarkably simple. Subjects are simply taught to raise their hand temperature - meanwhile monitoring the effect on an expandedscale temperature meter. A small thermistor is taped to a finger tip to monitor changes and the output from this is backed off against a second thermistor within the instrument to compensate for ambient temperature changes.

Advanced alpha/theta instrument from Bioscan uses digital filtering and threshold adjustment to eliminate interference from spurious phenomena.

At a recent demonstration (attended by the writer) some fifty subjects with no previous experience of temperature training all succeeded in varying their hand temperature (in some cases by as much as $5^{\circ} \mathrm{C}$ within a single twenty minute session).

If you're contemplating building your own temperature monitor choose thermistors with a two to three second response time. Build the thermometer so that ambient temperature can be backed off, thus enabling the meter to give a centre zero indicatior at the beginning of the experiment. The instrument should have two switchable ranges $\pm 2.5^{\circ} \mathrm{F}$ and $\pm 7.5^{\circ} \mathrm{F}$

As with GSR machines the readout may be either a tone of varying pitch and/or a meter reading.

People teach themselves to use these devices very quickly - usually within ten to fifteen minutes. However, whilst almost everyone can effect a change of temperature, about 50% will find the change to be in the opposite direction to that intended! Nevertheless the correct technique is quickly acquired after a few more minutes.

ELECTROMYOGRAPHS

Feedback electromyographs (EMGs) provide information about muscular
tension by visually and aurally displaying neuron firings caused by muscular activity. They are commonly used in both clinical and research applications for the observation and reduction of stress and anxiety, tension and migraine headaches, tension backaches, muscle spasms and tics, essential hypertension etc.

Unlike the far simpler GSR and temperature indicators, myographs necessarily need sophisticated electronic circuitry in order to monitor the very low level activity of neuron firings.

The actual signals are picked off by silver, silver-chloride or gold electrodes placed on the surface of the skin directly across the muscle concerned. In some cases the signal may be obtained via implanted electrodes.

Signal level is very low - often as small as 0.1 microvolts, so noise rejection must be high. A typical unit will have common mode rejection of better than 100 dB . A bandpass filter is usually incorporated. This typically rolls off at $18 \mathrm{~dB} /$ octave beyond $100-500 \mathrm{~Hz}$. The output signal is generally averaged over an adjustable 0.5 to 5 second period.

This type of instrument is not really suitable for home designing or building.

HEART RATE

The heart is simply a four-chambered pump. It receives circulating blood, causes the blood to be pushed into the lungs where it picks up oxygen, then causes this blood to be returned to the heart and finally and very powerfully this re-oxygenated blood is forced through the body.

The rate at which the heart beats appears to be directly related to the metabolic requirements of the body, but the way in which this is done is not currently understood. However virtually every part of the brain yet examined appears to play some part in the determining and controlling heart rate.

Short of simply feeting one's pulse and timing it with a stopwatch, the next simplest method is to monitor fluctuations in blood density as the pulse occurs. This may be done optoelectronically using a simple tight source. and photccelt attached across an earlobe or finger tip.

There is growing evidence that the ability to control heart rate via a biofeedback process would be of value in protecting it from undue stress. As with most biofeedback activities it is very easy to do this given the correct apparatus. Yogis have, of course, gained such

biofeedback

control without apparatus. Nevertheless it should be emphasised that less. appears to be known about heartrate control than galvanic skin response or myography.

BRAINWAVE MONITORS

The brain produces four major electrical rhythims, classified by frequency. These rhythms may be monitored by an electroencephalograph (EEG) which detects, amplifies and displays them electrically.
The major rhythms are -
Beta: $13-30 \mathrm{~Hz}$ - associated with attention, anxiety.
Alpha: $8-12 \mathrm{~Hz}$ - associated with relaxation, well being.
Theta: $4-8 \mathrm{~Hz}-$ associated with imagery, meditation.
Delta: $0.5-4 \mathrm{~Hz}$ - associated with dreamless sleep.

Generally the rhythms are produced in short bursts - often of $10-25$ cycles - and generally non-overlapping.

The signals may all be monitored via one set of electrodes placed at the front and rear of the skull - a third electrode is also used to provide a 'reference'.

All four rhythms have very low amplitude - about a microvolt or two - so that good noise performance is essential if the equipment is to function correctly.

Very good filtering is also required to eliminate interference from stray 50 Hz signals and also to prevent interference from artifacts (spuria generated by muscular activity). Analogue filters having the required characteristics can be produced but digital filters should preferably be used. If an analogue filter is used, a good one is a three-pole Butterworth with 18 dB /octave rolloff.

It is almost essential to use a differential input amplifier using low noise devices. Input cables must be shieided. Common mode rejection. should be about 120 dB at 10 Hz and if possible at least 150 dB at 50 Hz . Input impedance should be no less than one megohm. The output indication should be aural. Most people prefer to have their eyes closed when trying to generate alpha rhythms.

Alpha training has become somewhat of a cult - particularly in the USA where a large industry exists simply to supply alpha monitors (of varying efficacy!)

Most people can learn to generate alpha rhythms at will and there is a great deal of evidence that a state of well-being and deep relaxation is associated with alpha production.

Alpha training is also used by clinical psychologists and psychiatrists particularly in attitude change and re-inforcement.

Theta waves are also controllable. This type of waveform appears to be in some way associated with creativity. It may well be that creativity can be enhanced by learning to control a theta state: we understand that some researchers are investigating this at present.

Biofeedback is still very much an infant and largely orphan science and at present it is difficult to forecast just what impact it will have on mankind.

There is ample evidence that by using biofeedback the average subject can in minutes learn to vary his state of tension, body temperature, heart rate, brainwave generation etc - tech. niques which have taken gurus a lifetime to master.

Many autonomic nervous functions clearly can be willfully controlled and there is growing evidence that many tension-related illnesses (and about 90\% of illnesses are currently believed to be so related) can be alleviated or cured by biofeedback techniques.

N NATIONAL SEMICONDUCTOR 5-FUNCTION LCD WATCH FOR ONLY

INCLUSIVE OF VAT (8\%) AND POSTAGE

Once again ETI brings you a brand new product (it's only due for launch after ETI goes to press) at a lowest-ever price. Note that this is a LCD watch with a continuous display and knocks pounds off the previous lowest discount price for a digital watch of this type.
The DAC5WS comes from National Semiconductor and is 5-Function: Hours, Minutes, Pulsing seconds, Month and Date (U.S. Style). It also has a night viewing light and stainless steel back. We have only been able to arrange this price because of the superb response to previous offers making the magazine a major marketing force in high technology products.

LCD DISPLAY
5-FUNCTION
NIGHT VIEVING LIGHT CHROME PLATED CASE

Please allow 28 days for delivery. Offer open to U.K. readers only

Aratronins totay

What to look for in the April issue, on sale March 4th

ITS OUR St BIRTHOAY!

Yes, ETI in Britain will be five years old! Since we started in April 1972 we have grown enormously in sales and popularity - we are still one of the fastest growing magazines in any field

In the five years not only have we increased our sales in Britain, we've also launched a Canadian and Dutch edition, both of which are prospering.

This marks the advent of System 68 (see page 33 for full details). However, it can be built as a free-standing unit: the output is the full ASCII code, and so will
match any other system with this I/O requirement. The encoder can even be added to an existing keyboard if you have one.

35
 741

Readers thoroughly approved of our feature in the January 1977 issue on 555 Timer Circuits: so much so that in the next issue we carry an article in the same mould, 35

(tarcoses

circuits using the 741 Op Amp. As with the 555 article, few of the circuits are standards and we're sure this is a feature you won't want to miss.

The April 1977 issue will include a complete index to all ETI issues from the time we began. You'll be able to find any previous article easily - see what you missed find out what's still available in back numbers (sadly most are sold out) and what's available in Project Books.

This index contains everything that was in the index published last year plus those things we have carried subsequently.

SHORT CIRCUITS

FUZZ BOX - we only realised this month that in five years we've never done a fuzz box! With such effect units as the phaser and the waa-waa behind us we're rectifying the omission next issue.
ALARM CONTROL - A simple intruder alarm control box using a CMOS chip!
BENCH P.S.U. - One more of our occasional 'worktop projects'. Here we present an easily assembled bench supply with variable current limiting and metered output to around 30 V . And this is a 'Short Circuit'!

TOP PROJECTS 1 \& 2

Normally when people like ETI say something's 'by popular demand' they're hoping that there is a demand rather than it existing in fact

However, we've been turning away dozens of orders for Top Projects No. 1 for so long that we've given up. Additionally Top Projects No. $2-$ which has been no less popular but of which we had large stocks, is unning out fast (about three weeks' supplies left)

So we've put a combined Top Projects 1 and 2 back on the presses to produce a real bumper. See our ad on page 24 for more details.

Uniquefull-function 8-digit wrist calculator... available only as akit.

A wristcalculator is the ultimate in common-sense portable calculating power. Even a pocket calculator goes where your pocket goes - take your jacket off, and you're lost!
But a wrist-calculator is only worth having if it offers a genuinely comprehensive range of functions, with a full-size 8 -digit display.
This one does. What's more, because it is a kit, supplied direct from the manufacturer, it costs only a very reasonable $£ 9.95$ (plus 8\% VAT, P\&P). And for that, you get not only a highcalibre calculator, but the fascination of building it yourself.
How to make 10 keys do the work of 27
The Sinclair Instrument wrist calculator offers the full range of arithmetic functions. It uses normal algebraic logic ('enter it as you write it'). But in addition, it offers a $\%$ key; plus the convenience functions $\sqrt{x}, 1 / x, x^{2}$; plus a full 5 -function memory.
All this, from just 10 keys! The secret? An ingenious, simple three-position switch. It works like this.

1. The switch in its normal, central position. With the switch centred, numbers - which make up the vast majority of key-strokes-are tapped in the normal way 2. Hold the switch to the left to use the functions to the left above the keys.
2. and hold it to the right to use the functions to the right above the keys.

The display uses 8 full-size red LED digits, and the calculator runs on readily. available hearing-aid batteries to give weeks of normal use.

Sinclair Instrument Ltd.
6 Kings Parade, Cambridge, Cambs., CB2 1SN.
Tel: Cambridge (0223) 311488

Assembling the Sinclair Instrument

 wrist calculatorThe wrist calculator kit comes to you complete and ready for assembly. All you need is a reasonable degree of skill with a fine-point soldering iron It takes about three hours to assemble. If anything goes wrong, Sinclair Instrument will replace any damaged components free: we want you to enjoy assembling the kit, and to end up with a valuable and usefu! calculator.

complete

digital clock kits TEAK CASES

prompt order despatch

NON ALARM $£ 10.65$

VAT
EO. 85
ALARM $£ 13.43+: 107$

"DELTA"
GENUINE TEAK OR PERSPEX CASE

DELTA DATA: 4 Radiant Red $1 / 2$ inch high LEDs. 12 hr display, with AM / PM indication. Beautiful Burma Teak Case or Pretty Perspex in White, Black, Blue Red Green. Power failure is indicated by flashing display
MODULES: Kits can be bought without case: Non Alarm $£ 900$ Alarme 12.50 incl
READY BUILT: Buy a working tested module and fit your own case. Non Alarm £9.50. Alarm $£ 13.00$. Or put it with our case parts @ $£ 4.32$ and save on complete clock price
Complete Clock ready built. 2 yr guarantee Non Alarm £ 13.50
Alarm $\mathbb{E} 16.50$
ALARM FEATURES: Pulsed tone. Tilt operated 10 minute Snooze period. Single switch setting. Optional extra mercury switch (45p) allows Alarm reset by tilting clock. Digit .. brightness is automatically controlled to suit lighting level.

"ALPHA" SPÉCIAL $|$| 4 Glowing Green | $\begin{array}{c}\text { Buile \& Tested } \\ 1 / 2^{\prime \prime} \text { High Digits } \\ \text { OFFER } \\ 12 \text { or } 24 \text { hr. Non Alarm }\end{array}$ |
| :---: | :---: |
| Module - Plus $\mathbf{E 1 . 0 0}$ | |
| Perspex Case | |

Send payment with order S.a.e for complete range of clocks, calculators \&

DEPT. E3, 202 SHEFFORD ROAD CLIFTON, SHEFFORD, BEDS. Telephone: Hitchin (0462) 814477
 an Nivirin ll A NWEM SIETI - DIF MSANMTC MEMIENCTIRIDNMICS

This 5 volume set contains over 500 pages. Bound in stiff linen. Cover size $81 / 2$ in $\times 5 i n$. Price $£ 7.50$ per set (we pay the postage).

Book 1. Introducing Electronics Book 4. Meters/Voltage-dividers Book 2. Resistors/Capacitors Book 5. Transistor Project Circuitry Book 3. Inductors/Diodes
The manuals are unquestionaby the finest and most up-to-date available and represent exceptional value.
This series has been written in a fascinating, absorbing and exciting way, providing an approach to acquiring knowledge that is a verv enjoyable experience. Suitable for industria! trainees, City and Guilds students, DIY enthusiasts and readers of electronic journals.
Each part explains electronics in an easy-to-follow way, and contains numerous diagrams and half tone blocks with construction details and circuit diagrams for making the following transistor projects: Lamp Flasher, Metronome, Wailer, Photographic/Monostable Timer, Metal Locator, Geiger Counter, Radio Receiver, Intercom., Intruder Alarm, Electronic Organ, Battery Eliminator, Anemometer, Sound Switch Light and Water-operated Switches, Pressure-operated Switches, Light meter, Radio Thermometer, Ice Alarm, etc., otc.
FREE. A list of components for constructing the projects
Order now:
Selray Book Company R1R TRO\% GUARANTEE 60 Hayes Hill
Bromiey
BR2 7HP
OUR 100\% GUARANTEE
Should you decide to return the set after 10 days exam.
ination, your money will be refunded by reiurn of post.
thation, vour money will be refunded by return of post.

Amount enclosed: $£$
Name:
Address

THE LONG-RUNNING OFFER ON A DIGITAL ALARM CLOCK HAS BEEN ONE OF OUR MOST SUCCESSFUL EVER! OUR PRICE INCLUDES VAT AND POST \& PACKING

Our clock shows the time 0.7in high on bright Planar Gas Discharge displays (there is a brightness control on the back). The dot on the left of the display shows AM/PM, and the flashing $(1 \mathrm{~Hz})$ colon shows that the alarm and clock are working
A bleeper alarm sounds until the clock is tipped forwards. Then the "snooze" facility can give you 5 minutes sleep before the alarm sounds again, and then another 5 minutes, etc., until you switch the alarm off. The clock also features a mains-failure indicator, and is 12 hr . - the alarm being 24 hour for this offer but please allow 28 days for delivery.

CLOCK OFFER ETI MAGAZINE 25-27 OXFORD STREET LONDON W1R1RF

1 enclose cheque/P.O. for $£ 13.95$ (payable to ETI) for an Alarm Clock. Please write your name and address on the back of your cheque to speed processng of your order.

Name
 ADDRESS

Thase not wishing to cut their magazine may order on their own notepaper.

SIIORT CIRCUITS

TEMPERATURE

A SIMPLE BUT VERSATILE monitor to provide for over or under alarm was the main aim of this circuit. It may be used to keep an eye on fish tanks, deep freezes (by monitoring the heat exchanger), cooking vessels, incubators etc etc.

The temperature at which an alarm is given is adjustable over a range predetermined by the combined values of the components RV1 and R1. RV1 is a potentiometer which is used to adjust the final 'set point' (the temperature at which the alarm is given).

Actual temperature sensing is done by a device called a 'thermistor'. This is basically a resistor in which the resistance value varies with changes in temperature. Thermistors are obtainable in innumerable shapes, sizes and temperature ranges.

The unit may be built so that a small loudspeaker provides an audible warning when the set limit is reached.

OVER + UNDER

The unit can be constructed so that the warning (or relay action) takes place as temperature exceeds the set limit - or so that the warning (or relay action) takes place as temperature falls below the preset level.

All that is required to convert either unit from one mode of oper-
ation to the other is simply to change over the position in the circuit of the thermistor and the combination RV1 and R1.

Figure 1a shows the unit with loudspeaker set up to warn if the temperature exceeds the limit preset by RV1. Figure 1b shows the circuit set up to warn when the temperature falls below the preset limit.

Figure 2 shows the circuit for adding a relay to enable a blower or heater depending on the circuit chosen, to be switched on.
HOW it worlig is a resistor which varies its resistance as temperature changes. The one chosen for this application is an NTC (negative temperature coefficient) type in which resistance falls as temperature rises. The resistance at $25^{\circ} \mathrm{C}$ is about 47 k falling to about 3 k at $100^{\circ} \mathrm{C}$. This thermistor forms a voltage divider with RV1 and R1.

The familiar 555 IC is the basis of the unit. The IC will oscillate if pins 2 and 6 are allowed to exceed approximately two-thirds of the supply voltage. However, the voltage divider, along with diode D1 can prevent this and while it does so the alarm will be off.

As temperature increases thermistor resistance falls and the voltage begins to rise at the junction of D1, the thermistor, and R 1 . When the voltage reaches $2 / 3 \mathrm{~V}_{\mathrm{s}}-0.6 \mathrm{~V}$, the 555 begins to oscillate and causes the

loudspeaker to sound (at about 1.2 kHz). If an 8 ohm speaker is available then R 4 must be included. However if an 80 ohm speaker is available then R4 may be left out - the sound will then be much louder.

The circuit may be arranged so that a relay is actuated rather than an alarm. Figure 2 shows how this is done. Here diode D2 and capacitor C2 rectify the output of the 555 IC. Resistor R4 is added to ensure that there is some overlap between pull-in and drop-out set points. The lower the value of R4 the greater the difference there will be between these two points (this effect is known technically as 'hysterisis').

TABLE 1
APPROXIMATE VALUES OF R1 + RV1 FOR
DIFFERENT TEMPERATURES

${ }^{\circ} \mathrm{C}$	OVER ALARM	${ }^{\circ} \mathrm{C}$	UNDER ALARM
20	85k	12	37k
25	75k	14	35k
35	50k	16	31k
45	30k	18	29k
55	18k	21	27k
65	10k	24	25k
75	6k5	27	23k
85	4k	30	18k
95	2k5		
100	1 k 8		

Short Circuits

The relay is external to the board, and should be a $6 \mathrm{~V}, 185 \mathrm{R}$ (min.) coil type. The contact rating needed will depend on the application.

CONSTRUCTION

The thermistor should be mounted in some thin-walled glass tube, say an old perfume bottle (or cap!). If this component is not sealed, its working life will be very truncated to say the least! Electrolytic action quickly dissolves the leads. Our's lasted a day!

Obviously though, if all you're monitoring is air temperature, then sealing is unnecessary.

The power supply is a conventional series-pass circuit, and no comment is needed. The stabilisation components are included on the PCB. The use of a supply is recommended as the standing current is quite high.

Table 1 shows the approximate values of RV1 and R1 to cause triggering at various temperatures.

Temp Alarm P.S.U. Board Foil Pattern - Full Size

	OVER ALARM WITH 8Ω SPEAKER	UNDER ALARM WITH 8Ω SPEAKER	CHANGES FOR USING RELAY
RESISTORS WITB			
R1	1 k 8	15k	---
R2	1 M	47k	---
R3	47k	1 M	
R4	100R	100R	1M
R5	270R	270R	---
	All $1 / 2 \mathrm{~W}$ 5\%	All $1 / 2 \mathrm{~W} 5 \%$	
CAPACITORS			
C2	In ceramic	Inceramic	100 u 16 V electrolytic
c3	470 u 16 V electrolytic	470u 16V electrolytic	---
SEMICONDUCTORS			
Q1	BFY 51	BFY 51	---
IC1	555 Timer	555 Timer	-
D1, 3-6	1N4001	1N4001	----
$\begin{aligned} & \mathrm{D} 2 \\ & \text { 201 } \end{aligned}$	9V1 400 mW Zener	9V1 400mW Zener	IN4001
POTENTIOMETER			
RV1	100k Mini Trim	22k Mini Trim	---
THERMISTOR		VA 1056s (N.T.C)	---
	VA 1056s (N.T.C.)	VA 1056s (N.T.C.)	
TRANSFORMER			
T1	240V-9V-150mA	240V -9V-150mA	---
FUSE/HOLDER			
F1	To suit 250 mA fuse	To suit 250 mA fuse	
Box			
	$\begin{aligned} & 4^{41 / 2 "} \times 3^{\prime \prime} \times 2^{\prime \prime} \\ & 114 \times 75 \times 52 \mathrm{~mm} . \end{aligned}$	$\begin{aligned} & 4 \frac{112 "^{\prime} \times}{} 3^{\prime \prime} \times 2^{\prime \prime} \\ & 114 \times 5 \mathrm{~mm} . \end{aligned}$	---
Relay			
			To suit applications with $6 \mathrm{~V} 185 \Omega$ (min)
MISCELLANEOUS coil. cis			
3-core flex, 2 -core flex, P.C. board spacers, glass tube,			
grommets, etc. Cost £4-£6			

Temp Alarm P.S.U. Overlay

Temp Alarm Power Supply Circuit
 find great usage as a general servicing implement. It produces greater test flexibility than the usual sine-wave signal injector, providing 1 kHz square and triangle waves as well, and is both cheap and simple to build.

As it stands the output is around $3 V$ ptp on square wave, and 2 V r.m.s. on the sine-wave. A switched attenuator could easily be added should you wish to be kinder to the circuit you're testing, but being heartless to electrons, we haven't included one! Operation is from a PP6 battery which should last you as long as it would on the shelf!

CONSTRUCTION

Assemble the components onto the PCB as shown in the overlay, and watch the orientation of the zener, electrolytics and ICs. To set up the circuit, simply adjust RV1 until the sinewave is just below clipping level. This gives you the best sine-wave from the ascillator. The square and triangle do not need any further setting-up.

ceneratop

HOW it worlhs 1 kHz . Amplitude control is provided by the diodes D1 and D2. The output from this IC is switched through either to the output socket or to the squaring circuit. This is coupled to SWla via C4 and is a Schmidt trigger (Q1-Q2). The zener ZD1 forms a 'hysterisis-free' trigger. The integrator of IC2, C5 and R10 produces the triangular wave from the input square wave.

Circuit Diagram of the Generator

Patis isto	
RESISTORS	
R1,2,3,4	47k
R5	3k9
R6,9	1k
R7	4k7
R8	27k
R10	6k8
All $1 / 4 W 5 \%$ H.S.	
CAPACITORS	
C1,2	3n3 polystyrene
C3,4	10 u 10 V electrolytic
C5	10 n ceramic
C6	47 u 16 V electrolytic
SEMICONDUCTORS	
IC1,2	741 8-pin DIL
Q1,2	BC108 or similar
D1,2	OA91 diodes
ZD1 3V	$3 \mathrm{~V} 3 / 4 \mathrm{~W}$ zener
POTENTIOMETER	
VR1	10k vertical miniature trim
SWITCHES	
SW1 a/b	2-pole 3 way rotary
SW2 S	Single pole off-on rocker
MISCELLANEOUS	
Phono socket, knob, board spacers, nuts, bolts, etc. P.P. 6 battery, P.P. 6 battery clip.	
CASE	
Samos: S2 D	Doram 984.447.

Short Circuits PRICH SPEED

 CONTITOLLERIF YOU'VE EVER HAD TO USE your drill for anything but holes in aluminium panels, you will know how useful a speed controller is! Masonry bits need a very slow speed to be effective (they work at high speed, but not for very long); wood drills need a medium speed (too fast and the wood bursts into flames!); metalwork usually needs the full speed but better control can be obtained with the exact speed for the drill/bit combination.

The circuit used is not the most sophisticated available but it is reliable and cheap. As mains voltages are involved in all parts of the circuit, extreme care should be taken, when constructing, to make sure nothing can come loose or touch anything it shouldn't. Also all exposed metalwork must be connected to mains earth.

Because of the simplicity of the circuit, some juddering may occur at low speed. Inserting capacitor C1 across RV1 will reduce this effect, however, the torque will be slightly reduced. The value of C 1 can be from 1 uF to 4uF (63 VWG at least).

CONSTRUCTION

We used a PCB as this ensures that the parts can't move around (very dangerous at mains voltage), also the SCR uses it as a small heatsink. A 13 amp socket was used as the prototype as this gives maximum flexibility - however, your drill could be wired straight in if you intend to use the same drill all the time.

R1 is specified as a 10 W device. Don't use one with lower rating as it will get very hot - as rated it gets warm so keep all wires away from it.

If C1 is used, make sure it's positive side is connected to R1 (point X on PCB overlay), otherwise it will selfdestruct!

SCR1 is bolted to the PCB and must make electrical contact with the copper side, which also acts as a heatsink. Because of this, the PCB must be mounted on insulating pillars.

A 3 amp fuse should be fitted to the controller's mains plug to protect the circuit from any faults in the drill.

How it worlas

The silicon-controlled rectifier conducts in one direction only, and then only when it has a voltage at its gate. This triggering signal is provided by the voltage from RV1 wiper rising enough to forward bias D2. Hence RV1 provides the trigger at different parts of the mains cycle, so turning on the SCR for different amounts of time according to its setting - hey presto: speed control!

As the back EMF from the motor tends to reverse bias D2, this affects the trigger point as well. In fact at low speeds the motor back EMF is lower, and so the gate voltage is higher, providing earlier triggering - more power. This to some extent compensates for excessive loading of the drill. Switch SW1 bypasses the SCR to give full speed.

Parts List

DCR1
 (6A 400 PIV)

MISCELLANEOUS:
Single pole on/off 240V 5A
$6 \times 31 / 2 \times 2 \mathrm{in}$.
$155 \times 94 \times 50 \mathrm{~mm}$
3 -pin mains outlet to suit
3-core mains cable
Cable grommet, clip, knob.
Cost around $£ 6.00$.

Circuit Diagram - Drill Speèd Controller

Speed Controller - Foil Pattern - shown full size.

TRANSDUCERS
 IN
 MEASUREMENT AND CONTROL
 7 ~-----

This book is rather an unusual reprint from the pages of ETI. The series appeared a couple of years ago in the magazine, and was so highly thought of by the University of New England that they have re-published the series splendidly for use as a standard textbook.

Written by Peter Sydenham, M.E., Ph.D. M.Inst.M.C., F.I.I.C.A., this publication covers practically every type of transducer and deals with equipment and techniques not covered in any other book.

ETI-UK has obtained a quantity of this fine book, and it is available at present only from us. Send to: Transducers in Measurement and Control, ETI Specials, Electronics Today International, 25-27 Oxford Street, London W1R $1 R F$.

£2.75 inc. postage

Enquiries from educational authorities, universities and colleges for bulk supply of this publication are welcomed. These should be addressed to H. W. Moorshead, Editor.

ELECTRONICS -it's easy! PART 37

Memory and microprocessors

PERIPHERAL MEMORY

THE STORAGE MEDIA LISTED previously gives high-speed rapid access but all are expensive. Many other and cheaper forms of storage can be used if short access time requirements are relaxed.

Magnetic Tape - This is basically the same as reel-to-reel domestic tape recording, magnetic tape storage used in computing however records digital rather than analogue data on the magnetic coating of the tape. Reels are generally 10.5 inch in diameter with multiple track use. They are run at much greater speeds than domestic units. They can store around 30 bits per millimetre and maybe run as fast as 25. metres/second. Speeds used are not standardised to any degree. Each track on the tape can only be accessed serially: to obtain a specific data word may involve the whole tape being run through with subsequently long access time. Figure 1 shows a typical reel-toreel unit.

Magnetic Disks - These are thin disks coated with magnetic recording material. Their advantage is that they can be accessed at any point. on the surface by moving the read in read out head to the appropriate part of the disk, as the disk rotates, (at speeds of 3000 r.p.m.). In an alternative procedure the reading is done by a fixed head for each track. Each track may store 36000 bits. The moving head disk storage unit shown in fig. 2 can store up to 7.5 million words.
Even greater storage is obtained by permanently stacking as many as 72 disks on top of each other on a common drive spindle. Each surface has its own head giving access to any part of any surface. Such a unit could store 600 million words. Access time is, however, limited by mechanical response times typically $100-300 \mathrm{~ms}$. Small interchangeable disk stacks are also used. These are known as disk packs. Floppy disks are a variation of the disk memory.

Magnetic Drums - Where better access times than disks are needed, but not at the cost of magnetic core, the magnetic drum may be suitable. A large drum (0.3-0.6 m in diameter) coated with magnetic material rotates continuously at high speed. Reading heads are stacked up the drum. Access time with these is as low as 5 ms . Storage is upward of 2000 milliòn characters.
Other magnetic arrangements include short strips of tape that are individually selected to be drawn through a reading head, and magnetic cards which are held in magazines ready for automatic sorting in a special console. Card systems are not as slow as might be thought - any one of, say, 500 million characters can be accessed in 100 ms by a suitable design arrangement.

MICROPROCESSORS

We saw in the previous part that computers are based upon the availability of a CPU, stores, input/output units and other peripherals. Integrated circuit manufacturing methods become economical only when very large volume sales result and it was to the computing systems market that the IC makers looked around 1970. The main problem, however, was the need to devise a basic general-purpose integrated-circuit that would satisfy a large enough group of users.
At first the trend was to manufacture special-purpose computing systems that were hardwired (connections made permanently) to cause the system to perform a stated computing function such as a pocket calculator for commercial or scientific computation.
The trend then moved toward another philosophy - the microprocessor. These single card integrated-circuit systems (one is illustrated in Fig.3) possess the ability to be programmed to perform the task needed by the customer. Although the overall system is usually more complex than hardwired specials, the much greater increase in demand has reduced the price to quite unbelievable levels - a few hundred pounds buys a complete basic micro-processor system with as much power as the minis of a decade ago. Predictions, at present, are that they could fall further to a mere £5.00.

To make a microprocessor system, the user has to write a software program at a basic machine-language level. Each microprocessor has its own instruction set built in - this tells the system what to do with data. It is written in mnemonic code using code letters to denote operations - such a list is given in Fig. 4.

Fig.3. This National Semiconductor IMP-8C general purpose processor uses MOS/LSI devices.

ABA	Add Accumulators	INS	Increment Stack Pointer
ADC	Add with Carry	INX	Increment Index Register
ADO	Add		
AND	Logical And	JMP	Jump
ASL	Arithmatic Shift Left	JSR	Jump to Subroutine
ASR	Arithmetic Shift Right		
		LDA	Load Accumulator
BCC	Branch if Carry Clear	LDS	Load Stack Pointer
BCS	Branch if Carry Set		
		LDX	Load Index Register
BEQ	Branch if Equal to Zero	LSR	Logical Shitt Right
BGE	Branch if Grater or Equal Zero		
BGT	Branch if Grater than Zero	NEG	Negate
BHI	Branch if Higher	NOP	No Operation
BIT	Bit Test		
BLE	Branch if Less or Equal	ORA	Inclusive OR Accumulator
BLS	Branch it Lower or Same		
BLT	Branch if Less than Jero	PSH	Push Data
BMI	Branch if Minus	PUL	Pull Dats
BNE	Branch if Not Equal to Zero		
BPL	Branch if Plus	ROL	Rotate Left
BRA	Branch Always	ROR	Rotate Right
BSR	Branch to Subroutine	RTI	Return from Interrupt
BVC	Branch if Overflow Clear	RTS	Return from Subroutine
BVS	Branch if Overifow Set	SBA	Subtract Accumulators
CBA	Compare Accumulators	SBC	Subtract with Carry
CLC	Clear Carry	SEC	Sat Carry
CLI	Clear Interrupt Mask	SEI	Set Interrupt Mask
CLR	Clear	SEV	Set Overflow
CLV	Clear Overflow	STA	Store Accumulator
CMP	Compare Index Register		
		STS	Store Stack Register
COM	Complemant	STX	Store Index Register
CPX	Compare Index Register	SUB	Subtract
		SWI	Software Interrupt
DAA	Decimal Adjust		
DEC	Decremem	TAB	Transfor Accumulators
DES	Decrememt Stack Pointer	TAP	Transfer Accumulators to Condition Code Reg.
DEX	Decrament Index Repister	TBA	Transfer Accumulators
		TPA	Transfer Condition Code Reg. to Accumulator
EOR	Exclusive DR	TST	Test
		TSX	Transfer Stack Pointer to Index Repister
INC	Increment	TXS	Transfer Index Register to Stack Pointer
		WAI	Wait for Interrupt

Fig.4. Typical microprocessor instruction set.

ELECTRONICS-it's easy!

Fig.5. This flow chart shows now the Motorola Company produces a custom-tailored ROM ready to slip into their M6800 microprocessor system.

Fig.6. Array of support products for Motorola M6800 microprocessor systems.

Further reading - References listed in the previous part provide descriptions and illustrations of computer peripherals and storage methods. "Computers at Work" by J.O.E. Clark, Bantam Books, is a worthwhile discussion on how and where computer interfaces are used for all manner of needs.

Infotech International of Maidenhead, have recently released 12,000 pages of state-of-the-art reports on computer operation and trends. They are, however, much too expensive for the reader to procure. The sets cost over $£ 1,000$ on an individual basis!

The subject of microprocessors has recently been discussed in depth in several electronics publications Electronics Today International and Wireless World have each run introductary series. "Development and Trends of the Microprocessor by J. Tobias is an extensive study and it concludes a summary chart of dozens of systems offered
"Microprocessors - an Introduction" by F. Horne, NS Application Note AN114, 1974, is a basic statement
"Microprocessors - Why They Evolved and What They Are" by M. Levi, N.S. Imp Brief 1, 1974, is also useful as a starting point
'New Blocks for the Computer Builder' ${ }^{\prime \prime}$ by D. Aspinall, New Scientist, 18 September, 1975 gives a basic survey including some facts about production. An extensive self-contained introduction is "Introduction to Microprocessors", H. Tireford, Motorola Semiconductor Products, 1975
Manufacturers of microprocessors will freely supply descriptive data to aid the user of their own style of unit.

COULD

 IT
that you've been missing out on ETI Specials? These publications have really caught the imagination of readers and our sales, both on news-stands and direct from ETI, are enormous. Direct sales from ETI now exceed 1000 a week!

Our specials comprise reprints of the cream from past issues of the magazine.

See our advertisement which gives details of what is available on page 25.

VERY LATEST

LIQUID CRYSTAL (CONSTANT) DISPLAY

WATCHES FOR 1977
 AT LOWEST EVER PRICES

NEW from NATIONAL SEMICONDUCTOR 5 -function LCDs with backlight and zutomatic 28,30 and 31 -day calendar

DAC5 Series. (Similar to Timeband TC 410/411 Illustrated below)
DAC5 WS. Chrome case on strap
DAC5 YS. Gold Plated Case on strap
DAC5 WB. Chrome Case and Matching Bracelet.
DAC5GB. Gold Plated Case and Matching Bracelet
DAB5 GB, Gold Plated Case and Bracelet.
23.95

FAIRCHILD TIMEBAND, LCDs
5 functions, backlight, automatic calenda
FAIRCHILD TIMEBAND, LCDs
5 functions, backlight, automatic calendar On leather strap:
T.4 Chrome case

C410. Gold plated case
On matching adjustable bracelet TC413 Stainless Steel type finish TC412. Gold plated

Also the supert C
 $£ 25.95$
$£ 29.95$ $£ 29.95$
$£ 35.50$ £41.50

$£ 44.50$ to $£ \mathbf{9 8 . 5 0}$ WORLD
IBICO quality Swiss LCDs from
Available soon Our new low cost 5 41.50 NEW $6+3$ function "SENSOR TOUCH" LED for ONLY case
Ultrá slim stainless steel case E18.9

SEND 10p FOR OUR NEW ILLUSTRATED CATALOGUE (Refundable)
We believe our prices are the lowest anywhere and include
VAT at 8% and P\&P

TEMPUS

Talk of the Town
19/21 Fitzroy Street, Cambridge CB1 1 EH Tel. Cambridge (0223) 312866

Drram kits

DORAM KITS CONTAIN EVERYTHING DOWN TO THE LAST NUT!

TRANSISTOR TESTER CUTOUT THE GUESSWORK!

The Doram Transistor Tester measures $h_{\text {FE }}$ and leakage for PNP or NPN transistors; Silicon or
Germanium. TO5 socket, TO18 socket, flying leads and battery check facility inc

COMPLETE WITH CASE AND BATTERY
(Order code 991-990) Subject to availability

[^1]

;

THESE RESISTORS ARE MUCH THE same in appearance and size to desposited-carbon resistors. The resistive film is deposited on a ceramic or glass former by evaporating a metal or alloy in a vacuum, the metal condenses on the surface of the former, forming a hard, dense film. Nickel-chrome alloys are most commonly used. Some manufacturers use a chemical deposition process to coat a former with a nickel alloy. Packaging and protection for metal film resistors is similar to carbon film resistors.

The temperature coefficient of these resistors is superior to most other types with the exception of precision wirewound resistors. The TC is typically $\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ but they are available with a TC as low as $\pm 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. The construction of these resistors makes it possible to supply them in controlled values of temperature coefficient over a wide range of values. Typical TC ranges for such types are as follows:-

$0 \pm 50\left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$	$0+50\left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$
$0 \pm 100 \quad \prime$	$0+100 \quad$,
$0 \pm 150 \quad "$	$0-50 \quad "$
$0 \pm 200 \quad "$	$0-100 \quad "$

The thickness of the film establishes the resultant temperature coefficient. This is positive for thick films; the magnitude decreasing with decreasing film thickness, passing through zero and then turns negative for thin films.

The noise level of metal film resistors is very low, being typically $0.015 \mu \mathrm{~V} / \mathrm{V}$ which is only rivalled by metal-glaze resistors. However, wirewound resistors are superior to all the others.

Stability of these resistors under ordinary use is generally better than 0.2% which is only bettered by precision wirewound resistors. As a consequence, metal film resistors are available in tolerances as low as $\pm 0.25 \%$ and $\pm 0.5 \%$. Generally they are available in tolerances of $\pm 1 \%, \pm 2 \%$ and $\pm 5 \%$.

Some types of metal film resistors are available in hermetically sealed glass envelopes. The envelope is filled with helium and this type of construction permits a substantial increase in rating. Operation at ambient temperatures as high as 150 to $200^{\circ} \mathrm{C}$ at full ratings and up to $250^{\circ} \mathrm{C}$ at one third rating is possible. These types also have stability equivalent to precision wirewound resistors.

Most types of metal film resistors have a hot-spot temperature of 150 or $155^{\circ} \mathrm{C}$ and are derated from 100% load rating at $70^{\circ} \mathrm{C}$ ambient. The derating curve is given in Figure 2. Miniature tenth watt and eighth watt metal film resistors produced by some manufacturers may have a hot-spot temperature of only $125^{\circ} \mathrm{C}$, but are still derated from $70^{\circ} \mathrm{C}$ as shown in Figure 3. Mil-spec types are rated for full load operation to either 120 or $125^{\circ} \mathrm{C}$ and may have a hot-spot temperature of $170^{\circ} \mathrm{C}$ or as high as $200^{\circ} \mathrm{C}$ from some manufacturers. Two typical derating curves are shown in Figure 4.

STABLE COMPANION

In general, metal film resistors offer all the advantages of deposited-carbon film resistors as well as exhibiting much

Fig. 1. Range of temperature coefficients available for various values of metal film resistors having controlled TC characteristics.
superior stability and temperature coefficient characteristics. They generate much lower noise in operation than most other types of resistors. Frequency characteristics are much the same as for carbon film resistors, the construction being largely the same. Metal film resistors are available in wattage ratings from 0.1 W to 1 W , generally, but higher power types are available.

Fig. 2. Derating curve for common metal film resistors. It also applies to metal oxide film resistors up to 1 W rating.

Rated Wattage (-10 ${ }^{\circ} \mathrm{C}$	Max. Working Voltage	Max. Operating Temp.	Critical Resistance	Typical Length	Sizes Diameter	Typical Resistance Ranges	
						Metal Film	Metal Oxide Film
0.125 W	200 V	125/155 ${ }^{\circ} \mathrm{C}$	0.25 M	6.8 mm	2.3 mm	$20 \Omega-300 \mathrm{k}$	$10 \Omega-270 \mathrm{k}$
0.25 W	250 V	125/155 ${ }^{\circ} \mathrm{C}$	0.36 M	10.3 mm	4.3 mm	$0.47 \Omega-9.9 \Omega$	$10 \Omega-360 \mathrm{k}$
0.25 W	250 V	$155{ }^{\circ} \mathrm{C}$	0.36 M	9 mm	2.8 mm	$20 \Omega-560 \mathrm{k}$	$10 \Omega-270 k$
1 w	350 V	$230{ }^{\circ} \mathrm{C}$	0.12 M	12 mm	5.5 mm	$0.47 \Omega-10 \Omega$	
1 W	350 V	$230{ }^{\circ} \mathrm{C}$	0.12 M	12 mm	4 mm		0.39-13 $/ 15 \Omega-22 \mathrm{k}$
2 W	350 V	$230{ }^{\circ} \mathrm{C}$	56 k	15 mm	5.5 mm		0.47-27 $\Omega / 30 \Omega-100 \mathrm{k}$
3 W	500 V	$230{ }^{\circ} \mathrm{C}$	82 k	24 mm	8 mm		0.47-27 $/ 30 \Omega-100 \mathrm{k}$
3 W	600 V	$250^{\circ} \mathrm{C}$	12 M	22 mm	$8 \mathrm{~mm} \square$		$1 \mathrm{k}-100 \mathrm{k}$
5 W	750 V	$230{ }^{\circ} \mathrm{C}$	11 M	40 mm	8 mm		1-27 $2 / 30$ S?-100 k
7 W	750 V	$230{ }^{\circ} \mathrm{C}$	82 k	52 mm	8 mm		1-27 $/ 30 \Omega-150 \mathrm{k}$
(1) Rated Wattage assumes voltage limit not exceeded. (2) Max. Working Voltage assumes wattage rating not exceeded. (3) Max. Operating Temperature is equal to hot-spot temperature. (4) Sizes given are body sizes for axial-lead types.							
TABLE 3. General characteristics of Metal Film and Metal Oxide Film Resistors							

Metal film resistors are mostly used in applications where reliability, close tolerance and high stability are required or where controlled temperature characteristics are called for. They are generally somewhat more expensive than composition or deposited carbon film resistors but the price differential is decreasing as their, use becomes more widespread.

METAL OXIDE FILM RESISTORS

In this class of film resistor conducting oxides of tin and antimony are formed on a glass or ceramic rod which is at red heat. The chemical reaction produces hard, glass-like oxide on the surface of the former. The oxide film is conductive and is inert to common chemicals. The resistance value required is obtained by cutting a helical groove in the film, along the former, as explained in the last section. General construction and terminations are similar to the other film resistors. The resistive element is usually coated with a flame-proof epoxy material.

The noise and temperature coefficient characteristics do not vary widely with resistance value, these resistors being superior in this respect than deposited-carbon film resistors. The noise is generally around $0.03 \mu \mathrm{~V} / \mathrm{V}$ and may be as low as $0.02 \mu \mathrm{~V} / \mathrm{V}$. The TC of common types is generally $\pm 250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ but may be as low as $\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. As the film is of a semiconductive nature, the TC may be either positive or negative. The limits of precision in controlling the composition of the film produces resistors which have a positive TC over a certain range of values, and a negative TC over a different range of values.

Stability of metal oxide film resistors is better than 0.5% which is better than composition or carbon film resistors but

Fig. 3. Derating curve for some types of miniature $1 / 10 \mathrm{~W}, 1 / 8 \mathrm{~W}$ and $1 / 4 \mathrm{~W}$ metal film resistors.
not quite as good as metal film resistors. However, this is better than most commercial grade wirewound resistors. With a stability of the order quoted, metal oxide film resistors are available in tolerances of $\pm 1 \%, \pm 2 \%$, and $\pm 5 \%$.

The general characteristics of metal oxide resistors are similar to depositedcarbon film and metal film resistors. They are rated for full load operation to $70^{\circ} \mathrm{C}$ for all types. The hot-spot temperature for types up to $1 W$ rating is

Fig. 4 Two typical derating curves from different manufacturers for Mil-spec metal film resistors.

Fig. 5. Square section, 'ceramic boat'style medium power film resistor.

Fig. 6 Derating curve for cylindrical style metal oxide film resistors with ratings between 1 W and 7 W .
generally $150-155^{\circ} \mathrm{C}$ and the derating curve is the same for common metal film resistors, as shown in Figure 2.

HOT SPOTS

The particular characteristics of metal oxide film resistors enables them to be made in wattage ratings up to 7 W in the standard axial-lead type of construction. However, much higher power types are produced. Standard ratings above 1 W are $2,3,5$ and 7 watts, in axial-lead cylindrical styles and 3,4 and 10 watts in the square-section

Fig. 7. Derating curve for square-section style power metal oxide film resistors

SUBSCRIPTIONS

Well, Mr. Quigley \& Son may have got THEIR Scanning Electron Printer working but we are not YET sending ETI out on the Viewdata Link!

So if you can't get it from your newsagent, fill in the form below to ensure a regular copy -by post.

THE OREN ロOQR TO CUAMTY

Electrovalue Catalogue No 8 (Issue 3 up-dated) offers items from advanced opto-electronic components to humble (but essential) washers. Many things listed are very difficult to obtain elsewhere. The Company's own computer is programmed to expedite delivery and maintain custome satisfaction. Attractive discounts are allowed on many purchases: Access and Barclaycard orders are accepted

PLUS FREE POSTAGE

on a/l C. W. O. mail orders in UK. over $£ 2.00$ list value (excluding VAT). If under add $15 p$ handling charge

Prices stabilised minimum 3-month periods

Post paid. inc.
refund voucher for $40 p$

ELEGTROMALDE LTD

All communications please to Head Otfice. Etham adtress. Dept. Egham adtress. Dept
ET. 1 . Telex 264475 Shop 9.5 . 30 , 9.1 pm Sats. NORTHERN BRANCH 680 Burnage Lane, Burnage Manchester M19 1NA. Tel. (067) 4324945 . Shop $9-5.30$ pm, 1 pm Sate

Dryam kits
 DORAM KITS CONTAIN EVERYTHING DOWN TO THE LAST NUT

POWER SUPPLY

An invaluable piece of equipment for the enthusiasts workshop. This 3.30 V d.c. power supply fulfills virtually all experimentation requirements. Avoid frustration and circuit damage with the variable current limit (0.1A max)
Regulation typically better than 0.5% (max 3%).
Ripple voltage typically better than 20 mV (max 120 mV)
$£ 19.95$ + S VAT (Order 997.027)
Subject to availability

> Oseas orders-add 15% for $\mathrm{P}+\mathrm{P}$ All items offered for sale subject to the Terms of Business set out in Doram Edition 3 catalogue, price 60 p. The Doram Kit brochure is also available. price $25 p$ Combined price only 70 p which also entitles you to 2×25 pouchers each one usable on any order placed to the value of 55.00 or more (ex. VAT) DORAM ELECTRONICS LTD.
> PO BOXTR8. WELLINGTON RD IND EST. LEEDS LS1 2 2UF.

An Electrocomponents Group Company

Spabnilank Capacitive discharge electronic ignition kits

voted bes OF 8 SYSTEMS TESTEDBY popular. MOTORING

* Smoother running
* Instant all-weather starting
* Continual peak performance
* Longer coil/battery/plug life
* Improved acceleration/top speeds
* Up to 20% better fuel consumption

Sparkrite Mk. 2 is a high performance, high quality capacitive discharge, electronic ignition system in kit form. Tried, tested, proven, reliable and complete. It can be assembled in two or three hours and fitted in $15 / 30$ mins.
Because of the superb design of the Sparkrite circuit it completelv eliminates problems of the contact breaker. There is no misfire due to contact breaker bounce which is eliminated electronically by a pulse suppression cifcuit which prevents the unit firing if the points bounce open at high R.P.M. Contact breaker burn is eliminated by reducing the current to about $1 / 50$ th of the norm. It will perform equally well with new, old, or even badly pitted points and is not dependent upon the dwell time of the contact breakers for recharging the system. Sparkrite incorporates a shor 1 circuit protected inverter which eliminates the problems of SCR lock on and, therefore, eliminates the possibility of blowing the transistors or the SCR. (Most capacitive discharge ignitions are not completely foolproof in this respect). All kits fit vehicles with coil/distributor ignition up to 8 cylinders.
THE KIT COMPRISES EVERYTHING NEEDED
Ready drilled pressed steel case coated in matt black epoxy resin, ready drilled base and heat-sink, top quality 5 year guaranteed transformer and components, cables, coil connectors, printed circuit board, nuts bolts, silicon grease, full instructions to make the kit negative or positive earth, and 10 page installation instructions OPTIONAL EXTRAS
Electronic/conventional ignition switch
Gives instant changeover from 'Sparkrite:" ignition to conventiona ignition for performance comparisons, static timing etc,, and will also switch the ignition off completely as a security device, includes switch connectors, mounting bracket and instructions. Cables excluded. Also available RPM limiting control for dashboard mounting. (fitted in case on ready built unit)
CALLERS WELCOME. For Crypton tuning and fitting service 'phone (0922) 33008
Improve performance \&economy NOW Note Vehicles with current impulse tachometers (Smiths code on dial R.V.1) will require a tachometer pulse-slave unit. PRICE $£ 3.35$
PRICES INCLUDE VAT, POST AND PACKING

CONGRATULATIONS TO UNCLE CLIVE on the eventual birth of his two-inch television. At last we can now predict that wrist or pocket TV communications units will soon be with us! (Can I put in my application now for one of the first Citizens Band TV communications licences?) To be a little more serious, now that Sinclair's TV is a reality, and with TIFAX decoders (apparently) now available - will it really be very long before we see a pocket colour Teletext unit? Or at least a small desk Viewdata unit.

MARKETS FOR AMATEURS

A more interesting application from an amateur's point of view is as a small VDU unit for a microprocessor, coupled to a calculator style keyboard (but still in QWERTYUIOP format) and a low current MPU and you have the basics of a very portable microcomputer about the same size as a desk calculator. If Mr Sinclair would like to make his unit available without a tuner section and with a video input somewhere then I think he might be able to sell a few to an unthought of market.

SUNK ON SYNC?

For a VDU project I was working on recently 1 required a TV sync generator in as few chips as possible. One method is to use a couple of 555 timers or CMOS oscillators at 50 Hz and 15 KHz and link them to form the required sync signals. This system is rather prone to changes in frequency and thus loss of sync. A more accurate method is to use one master oscillator and divide down to give a
line frequency and an interlacing frame frequency signal and then to use these as control signals to the VDU as well as mixed sync. In the latter system you would have to use several counter chips and gating chips with a total package count of about a dozen ICs. With these factors in mind I looked for a single chip solution, and found the Ferranti ZNA 134 CCIR/EIA TV synchronising pulse generator. This sixteen pin package had all of the dividers and logic gates required by the accurate method enclosed in one chip. The ZNA134 uses a 2.5625 MHz crystal as a reference source to generate all the horizontal, vertical, mixed blanking and synchronising pulses necessary for the raster generation in 525 or 625 line.

ON BENDED KNEE

So I begged and pleaded in the right direction and eventually one arrived on my desk and soon found itself nicely tucked up (with a few other fantastic new ICs) generating a nice warm environment for the crystal. Now there was the problem, crystals of a non-standard frequency are notorious for ten or sixteen week gestation periods, and as a lot of these circuits can be fooled by a capacitor 1 decided to try a CR oscillator in order to get the chip working. It worked but took a long time to settle down and seemed very prone to changes in frequency at the first hint of a change in temperature or voltage. As it was designed to take a crystal \mid could see no alternative but to order one. After a couple of ridiculous delivery
quotes the kind man at McKnight Crystals came to my rescue (with his 33% surcharge for seven day delivery) - worth remembering if you find yourself in similar circumstances. (The crystal hasn't arrived yet and so I cannot report on the success of the mission.) Ferranti have only made one tiny mistake with this chip and that is their pricing policy.

PRICE OF FAME

The ZNA134 is over $£ 20$ in quantities of 1 's, 100's and up to 999, only at 1000 off does the price change. It is unlikely that your friendly retailer is going to buy 1000 at a time so if you want to know more about it contact Ferranti direct (phone 061-624 0515). On the other hand, if all you want is a mixed sync signal (you can always separate it) there is a chip on the market from General Instruments which takes a 2 MHz oscillator, CMOS with a crystal or LC network, and produces a mixed sync output along with a few other useful outputs. For instance it has a simple seven segment character generator for the display of two two dígit counters on the TV, multiple cursor controls which enable the movement of several cursors in two dimensions, a very nice boundary output signal and a rather unique random cursor which can travel to any position on the screen. In addition to the above features there is a signal which can be used as an audio warning device if the random cursor happens to come in contact with some of the variable cursors or if the random cursor should acci-
dentally disappear by managing to cross the line defined by the previously mentioned screenboundary output.

IT'S GAME IF YOU ARE

The application of some of these features in a VDU system is not very clear and the limitation in the numeric only character generator is an unforgivable design fault.

The AY-3-8500 is a reasonable answer to the sync generator problem but I feel that Gl should take heed of my advice and continue to sell it mainly as a superb TV games chip!

In this latter form it is possible to make up a portable TV games unit with very few additional components - in fact with only two ICs and about a dozen discretes it gives a video output.

COLOURING IN

When I first started building Teletext decoders about two years ago (none worked) I couldn't understand why you could not display colour on a colour TV by
going into the aerial input. If it can be done inside a TV camera why not inside a teletext decoder? Well, whilst Texas have been working on the TIFAX decoder some genius at National Semi has come up with the LM1889 video modulator. This takes in colour signals from TV games and modulates them to produce a signal suitable for injection to the aerial socket of a colour TV set.

Apart from the obvious applications, what happens when you connect up one of these to a synthesiser or even to an audio signal? Your own home light show connected up to your favourite radio programme or recording.

I can see it now, millions of pairs of square eyeballs avidly watching Beethoven's Ninth or Floyd's Dark Side of the Moon.

If you would like one of these modern "'come up and see my etchings" devices your first step is to ring NatSemi (0234 211262) and ask for the LM1889. It should be available at reasonable prices in a couple of months

Baker Group 25. 3. 8. or 15 ohm
Baker Group 35. 3. 8 or 15 ohm Baker Group 35. 3. 8 or 15 ohm Baker Deluxe, 8 or 15 ohm
Baker Major. 3.8 or 15 ohm
Baker Regent. 8 or 15 hm
Baker Superb, 8 or 15 hm
Celestion MH 1000 horn. 8 or 15 ohm
Coles 4001 G super tweeter
Coles 400 I K super iweeter
Coles 4001 K super tweeter. Am
EMI $14^{\prime \prime} \times 9^{\prime \prime}$ bass $14 \mathrm{~A} / 7008 \mathrm{ohm}$
EMI $14^{\prime \prime} \times 9^{\prime \prime}$ bass $14 \mathrm{~A} / 7008 \mathrm{ohm}$
EMI 8×5.10 watt. d/c, roll/s 8 ohm Elac 59RM 10915 ohm. 59RM114 8 ohm Elac 59 RM
Elac $612^{\prime \prime} \mathrm{d} / \mathrm{c}$ roll/s 8 ohm Elac $6 / 2^{\prime \prime} \mathrm{d} / \mathrm{c}$ roll/s 8 ohm
Elac $10^{\circ} 10 \mathrm{RM} 2398 \mathrm{ohm}$
Fane Pop 15 watt $12^{\prime \prime}$
Fane Pop 55, 12" 60 watt
Fane Pop 60 watt. $15^{\prime \prime}$
Fane Pop 70 watt $15^{\prime \prime}$
Fane Pop 100 watt, 18^{\prime}
Fane Crescendo 12 A or B. 8 or 15 ohm
Fane Crescendo 15,8 or 15 ohm
Fane Crescendo 18.8 or 15 ohm
Fane $801 \mathrm{~T} 8^{\prime \prime} \mathrm{d} / \mathrm{c}$ roll/s 8 ohm
Goodmans 8P 8 or 15 ohm.
Goodmans 10P 8 or 150 hm
Goodmans 12P 8 or 15 ohm
Goodmans 12P 8 or 15 ohm
Goodmans 12P-D 8 or 15 ohm
Goodmans 12P-D 8 or 150 hm
Goodmans 12P-G 8 or 15 ohm
Goodmans Audiom 2008 ohm
Goodmans Axent 1008 ohm
Goodmans Axent 1008 ohm
Goodmans Axiom 4028 or 15 ohm
Goodmans Twinaxiom 8" 8 or 15 ohm .
Kef T27
Kef T15
Kef T15
Kef B110
Ket B200.
Kef B139.
Kef DN8
Kef DN12
Kef DN13
Kef DN13
Baker Majo
Baker Major Module, each
Goodmans Mezzo Twinkit. par
Goodmans DIN 20, 4 ohm . each

- Helme XLK30, par

Helme XLK 35 , par
Helme XLK40, par
Herme KLK 4 ,
Kefkit I. parr
Kefkit III, each
Peeriess 20-50, pair
Peerless 20 60, pair
Peerless 20 60. pair
Richard Allan Twinkit, each
Richard Allan Truple 8, each
Richard Allan Triple 12. each
Richard Allan Super Triple. each
Richard Allan CG8T $8^{\prime \prime} \mathrm{d} / \mathrm{c}$ roll/s
Wharfedale Denton $2 \times P$ kit. pair
Wharfedale Linton $3 \times P$ kit, pair
Wharfedale Glendale $3 \times P$ kit. pair
Castle Super 8 RS/DD.
Castle Super 8 RS/DD
Jordan Warts Module 4.8 or 15 ohm
Tannoy $12^{\prime \prime}$ Monitor HPD
Tannoy $15^{\prime \prime}$ Monitor HPD
Prices correct at $14 / 1 / 77$
ALL PRICES INCLUDE VAT
Cabinets, wadding. Vynair. crossovers etc
Send stamp for free 38 page booklet
Choosing a Speaker
FREE with all orders over $£ 10$ -
"HiFi Loudspeaker Enclosures" Book
All units are guaranteed new and perfect
Prompt despatch
Carriage Speakers up to $12^{\prime \prime} 60 \mathrm{p}, 12^{\prime \prime} £ 1: 15^{\prime \prime} £ 175$.
$18^{\prime \prime} £ 250$. Kits $£ 1$ each ($£ 2$ per pair). Tweeters and Crossovers 33p each

WILMSLOW AUDIO

Dept. ETI
Swan Works, Bank Square, Wilmstow, Cheshire SK91HF. Tel. Wilmslow 29599 (Discount HiFi, PA and Radio at 10 Swan Streat, Wilmslow)

Access and Barclaycard orders accepted by phone

P.B. ELECTRONICS' OFFER TO ETI READERS

BLOB BOARD OFFER

Save over 30\% on this new experimenter's product from P.B. Electronics!

Blob Board is a superb new aid to the home constructor, it allows prototypes to be built quickly and accurately, without the need to work out complex component patterns first.

Normally half the price of previously competitive boards, they allow the user to go direct from circuit diagram to completed board in a matter of minutes and without the use of messy chemicals. Component layout can be drawn directly onto the Blob Board, with a felt-tip eliminating many of the errors which can occur in transferring from circuit diagram to ordinary PCBs.

Components can be re-used and re-soldered making circuit prototype modifications and amendments both fast and easy. All Blob Boards are roller-tinned to facilitate easy and reliable soldering, and are reusable. The boards in this months offer have been chosen to make up two packs - one for the I.C. experimenter, and one for discrete users. The savings are at least 30% on RRP - this on a price already very low, for such a useful tool

I.C. PACK

Comprises one of each:
ZBIIC (for one 16-pin I.C. pad, total area $41 / 2 \times 3$ 3n.]
ZB2IC ffor two 16-pin I.C. pads, total area $43 / 4 \mathrm{x}$ 31/4in.)
ZBBIC (for eight 16 -pin I.C. pads, total area $91 / 2 \times$ 71/2in.]
Regular Price: $£ 2.66$
OFFER PRICE: $£ 1.79$ inc
DISCREIE PACK
Comprises one of each
ZBIV
ZB5D 〔total area $35 / 8$
ZB8D (total area $\bar{y} x$ 71/2in.)
Regular Price: $£ 2.29$
£1.64 inc

Send to:
BLOB BOARD OFFER
P.B. Electronics (Scotland) Ltd.,

57 High Street,
Saffron Walden,
Essex
CB10 1AA
Please supply me with I.C. PACKS [at $£ 1.79$ each] and DISCRETE PACKS (at £1.64 each). In addition I enclose 30 p postage irrespective of the number of packs ordered. I enclose my cheque/P.0. for $£ . .$.
\qquad

Address \qquad

12V P.A. SYSTEM

This circuit was originally built for use in a negative earth car. A miniature speaker, impedance immaterial, is connected in the emitter circuit of Q1, and acts as a microphone.

Q1 operates in the common base mode and a highly amplified signal appears at its collector. Q2, used in the common e nitter mode, provides further amplification and the signal from its
collector is fed via the blocking capacitor C3 to the volume control VR1.

Overall de-stabilisation is provided by obtaining Q1's base bias from the emitter of Q2.

The power amplifier is fairly conventional and fitted with a heavy duty output stage to enable a pair of 3Ω P.A. type horns to be driven in parallel. Under these conditions 8 W is available. A siagle 3Ω unit can be driven to 4 W .

Since the unit is intended for the reproduction of speech a wide bandwidth is not required and C7 is incorporated to roll off the response above 5 kHz . C6 also provides a rapid roll off in the bass region. Q 7 and Q 9 should be fitted to a $5^{\prime \prime} \times 4^{\prime \prime}$ finned heatsink and the body of Q 4 should be thermally in contact with this.

Fig. 1

Fig. 2

SIMPLE CROWBAR CIRCUIT

This circuit provides overvoltage protection in case of voltage regulator fail ure or application of an external volt age. It is intended to be used with a supply offering some form of short circuit protection, either foldback, current limiting or simple fuse. The circuit is less effective in the latter case however, as a good deal of damage can be done in the time taken to blow a fuse.

The most likely application is a 5 V logic supply, since TTL is easily damaged by excess voltage. The values chosen in Fig. 1 are for a 5 V supply. although any supply up to about 25 V can be protected by simply choosing the appropriate zener diode. When the supply voltage exceeds the zener voltage +0.7 V , the transistor turns on and fires the thyristor. This shorts out the supply, and prevents the voltage rising any further. In the case of a supply
with only fuse protection, it is better to connect the thyristor across the unregulated supply as shown in Fig. 2 to prevent damage to the regulator circuit when the crowbar operates.

The thyristor should have a current rating about twice the expected short circuit current and a maximum voltage greater than the supply voltage. The circuit can be reset by either switching off the supply, or by breaking the thyristor circuit with a switch.

15-240 Watts!

HY5
Preamplifier

The HY5 is a mono hybrid amplifier ideaily suited for all applications All common input functions (mag Cartridge, tuner, etc.) are catered for internally, the desired function is achieved either by a

 Supplied with each pre-amplifier
FEATURES: Complete pre-amplitier in single pack - Multi-function equalization - Low noise - Low
distortion - High overload - iwo simply combined for stereo
APPLICATIONS: Hi.Fi - Mixeŕs - Oisco - Guitar and Organ - Public address
SPECIFICATIONS:
INPUTS Magnetic Pick-up 3 mV Ceramic Pick-up 30 mV : Tuner 100 mV : Microphone 10 mV Auxiliary $3-100 \mathrm{mV}$ input impedance 47 kg at 1 kHz
OUTPUTS Tape 100 mV , Main output 500 mV R.M.
ACTIVE TONE CONTROLS Treble $\pm 12 \mathrm{~dB}$ at 10 kHz ; Bass \rightarrow at 100 Hz
DISTORTION 0.1% at 1 kHz ; Signal/ Norse Ratio 68 dB
OVERLOAD 38 dB on Magnetic Pick-up: SUPPLY VOLTAGE $\pm 1650 \mathrm{~V}$
Price 4.75 + 59p VAT P\&P free
HY30
15 Watts into 8Ω
The HY30 is an exciting New kit from I.LP it features a virtually indestructible I. C with short circuit and thermal protection. The kit consists of I.C. heatsink, P.C. board, 4 resistors, 6 capacitors, mounting kit, together with easy to follow construction and operating instructions. FEATURES: Complete kit - Low Oistortion - Short. Open and Thermal Protection - Easy to Build APPLICATIONS: Updatıng audio equipment - Guitar practice amplifier - Test amplifier - Audio SPECIFICATIONS:
OUTPUT POWER 15W R.M.S into 8 8 . DISTORTION 0.1% at 15 W
INPUT SENSITIVITY 500 mV . FREQUENCY RESPONSE $10 \mathrm{~Hz}-16 \mathrm{kHz}-3 \mathrm{~dB}$
SUPPLY VOLTAGE $=18 \mathrm{~V}$
Price £4.75 + 59p VAT P\&P Free.
HY50
25 Watts into 8Ω
The HY50 leads 1. L.P.'s total integration approach to power amplifier design The amplitier features an Integral heatsink together with the simplicity of no external components. During the past three years Fidelity modules in the World
FEATURES: Low Distortion - Integral Heatsink - Only five connections - 7 Amp output transistors - No external components.

- APPLICATIONS: Medium Power Hi-Fi systems - Low power disco - Guitar amplifier

SPECIFICATIONS: INPUT SENSITIVITY 500 m
OUTPUT POWER 25W RMS in 80 LOAD IMPEOANCE $4-160$ DISTORTION 0.04% at 25 W at 1 kHz
SIGNAL/NOISE RATIO 75 dB . FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$
SUPPLY VOLTAGE $\pm 25 \mathrm{~V}$ SIZE 10550.25 mm
Price $\mathbf{E 6 . 2 0 + 7 7 p}$ VAT P\&P free.
HY120
60 Watts into 8Ω
The HY120 is the baby of I.L.P s new high power range designed to meet the most exacting equirements including load line and thermal protection, this amplifier sets a new standard in modula
FEATURES: Very low distortion - Integral Heatsink - Load line protection - Thermal protection Five connections - No external components
APPLICATIONS: Hi-Fi - High quality disco - Public address - Monitor amplifier - Guitar and SPECIFICATIONS:
NPUT SENSITIVITY 500 mV
OUTPUT POWER 6OW RMS into 812. LOAD IMPEDANCE 4-16々 OISTORTION 004% at 60W at
1 kHz . SIGNAL /NOISE RATIO 90dB' FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~d} 8$ SUPPLY VOLTAGE $\pm 35 \mathrm{~V}$
Size $114 \times 50 \times 85 \mathrm{~mm}$
Price $£ 14.40+£ 1.16$ VAT P\&P free
HY200
120 Watts into 8Ω
The HY200, now improved to give an output of 120 Watts, has been designed to stand the mos rugged conditions, such as disco or group while still retaining true Hi-Fi performance FEATURES: Thermal shutdown - Very low distortion - Loadiline protection - integrat Heatsink NPPLICATIONS: HiFi SPECIFICATIONS
INPUT SENSITIVITY 500 mV
OUTPUT POWER 120 W RMS into 89 . LOAO IMPEDANCE 4-161 DISTORTION 005% at 100 W at 1 kHz , NIGNAL/NOISE RATIO 96dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE SIZE $114 \times 100 \times 85 \mathrm{~mm}$

Price $\mathrm{C} 21.20+£ 1.70$ VAT P\&P free

HY400
240 Watts into 4Ω
The HY400 is L.L.P "s "Big Daddy" of the range producing 240W into 4Ω ! it has been designed for high power disco or public address applications. It the amplitier is to be used at continuous high power levels a cooling fan is recommended The amplifier includes alt the qualities of the rest of the family to FEATURES: Thermal shutdown - Very low diser module
components.
APPLICATIONS: Public address - Disco - Power slave - Industrial
SPECIFICATIONS
OUTPUT POWER 24OW RMS into 4 4Ω LOAO IMPEOANCE 4.16Ω DISTORTION 0.1% at 240 W at SIGNAL/NOISE RATIO 94dB FREQUENCY RESPONSE $10 \mathrm{~Hz}-45 \mathrm{kHz}-3 \mathrm{~dB}$ SUPPLY VOLTAGE $\pm 45 \mathrm{~V}$
INPUT SENSITIVITY 500 mV SIZE $114 \times 100 \times 85 \mathrm{~mm}$
Price $£ 29.25+£ 2.34$ VAT P\&P free.
POWER
PSU36 sutable for two HY30s $£ 4.75$ pius 59 p VAT P/P tree
PSU50 suitable for two HY50 $£ 66.20$ plus 77 p VAT P/P free

PSU90 suitable for one HY200 $\mathbf{£ 1 1 . 5 0 \text { plus } 9 2 \text { p VAT P/P Free }}$
PSU180 sutable tor two HY200 s or one HY400 E21.00 plus it
PSU180 sutable tor two HY200 so one HY400 E21.00 plust'1 68 VAT P/P tiee

Available Ex-stock

TWO YEARS GUARANTEE ON ALL OF OUR PRODUCTS
I.L.P. Electronics Ltd

Crossland House
Nackington, Canterbury
Kent CT4 7AD
Tel (0227) 63218

Please Supply
Total Purchase Price
I Enclose Cheque \square Postal Orders \square Money Order \square
Please debit my Access account \square Barclaycard account \square
Account number.
Name \& Address

techtips

CLASS A AMPLIFIER

The main advantage of class A amplifiers is the absence of crossover distortion. Against this major advantage must be weighed the disadvantage of permanently hot heatsinks and large capacity power supplies.

The circuit shown here contains several novel features and will deliver 5 W of pure class A sound into an 8μ load.

Q1 and Q 2 form, with the associated components, a high quality voltage amplifier with overall ac and
dc feedback applied from the collector of Q2 via R6 to the emitter of Q1.

The output stage proper, consists of Q6 and Q7 connected as an emitter follower darlington pair. These transistors are driven by IC1, a 741 op amp, and are included in the latter's feedback loop.

These three form a near perfect output stage with an input impedance of several megohms and a bandwidth extending from dc to over 100 KHz .

Quiescent current is provided by the constant current source Q3, Q4, Q5, R9 and R10. The use of a
constant current source here effectively isolates the output from line variations and ripple.

With the components shown, the circuit has a bandwidth of 10 Hz $30 \mathrm{KHz}-3 \mathrm{db}$, a distortion of less than 0.1% before the onset of clipping, an input impedence of $1.5 \mathrm{M} \Omega$ and a sensivity of 180 mV for full output.

Transistors Q4 to Q7 must be mounted on an adequate heatsink, a $5^{\prime \prime}$ by $4^{\prime \prime}$ finned type is suitable, but must be mounted vertically and in such a position as to allow ample ventilation.

COMPARATOR VOLTMETEQ

This circuit, although simple, is capable of accurate voltage measurement. The input is applied to the high impedance input of IC 1 via the attenuator comprising of R1 to R5 inclusive.

Since this IC is used as a unity gain buffer, the output at pin 6 is equal to the input voltage at pin 3 , but at a low impedance. IC2 is connected as a comparator driving a pair of LEDs, D1 and D2.

The inverting input samples a portion of the unknown input voltage, whilst the non-inverting input is connected to a 1 V reference obtained from the stable voltage across ZD1.

In use VR1 is adjusted till D2 just illuminates. At this point, if the control knob is of the 0-10 calibrated type, the pointer will indicate the input voltage.

SINTEL for MEMORIES - MPUS - PGBS

AFREE CATALOGUE requested by post or phone, will be sent by return, giving full details of our range of DISPLAYS MPUS MPUKITS

- MEMORIES CASES SWITCHES and ether components not listed here, with same day despatch for goods in stock

		CD4025	0.24	CD4050	0.64	CD4086	0.82
		CD4026	1.98	CD405 1	1.07	CD4089	1.78
		CD4027	0.64	CD4052	1.07	CD4093	0:92
CD4000	0.17	CD4028	1.03	CD4053	1.07	CD4094	2.15
CD400 1	0.18	CD4029	1.31	CD4054	1.33	CD4095	1.20
CD4002	0.17	CD4030	0.64	CD4055	1.51	CD4096	1.20
CD4006	1.35	CD4031	2.55	CD4056	1.51	CD4097	4.28
CD4007	0.18	CD4032	1.23	CD4059	5.48	CD4098	1.26
CD4008	1.11	CD4033	1.60	CD4060	1.28	CD4099	2.11
CD4009	0.64	CD4034	2.19	CD4063	1.26	CD4502	1.43
CD4010	0.64	CD4035	1.35	CD4066	0.71	CD4510	1.57
CD4011	0.20	CD4036	3.65	CD4067	4.28	CD4511	1.80
CD40, 2	0.19	CD4037	1.09	CD4068	0.24	CD4514	3.15
CD4013	0.64	CD4038	1.24	CD4069	0.24	CD4515	3.60
CD4014	1.16	CD4039	3.55	CD4070	0.67	CD4516	1.56
CD4015	1.16	CD4040	1.23	CD4071	0.24	CD4518	1.25
CD4016	0.64	CD4041	0.96	CD4072	0.24	CD4520	1.43
CD4017	1.16	CD4042	0.96	CD4073	0.24	CD4527	1.82
CD4018	1.16	CD4043	1.16	CD4075	0.24	CD4532	1.65
CD4019	0.64	CD4044	1.07	CD4076	1.61	CD4555	1.04
CD4020	1.28	CD4045	1.61	CD4077	0.60	CD4556	1.04
CD4021	1.16	CD4046	1.53	CD4078	0.24	MC14528	1.22
CD4022	1.11	CD4047	1.04	CD4081	0.24	MC14553	4.68
CD4023	0.24	CD4048	0.64	CD4082	0.24	IM6508	8.05
CD4024	0.89	CD4049	0.64	CD4085	0.82		
CLOCK CHIPS		SOLDERCON		MPUs		TRANSFORMERS	
AY51202	2.89	IC PINS		1 M 6100 CCDL	45.36	Ledtra	1.95 1.95
AY51224	3.50	100	0.50	8080 (2us)	32.25	5 StRF	1.95
MK50253	5.60	100	4.00	MC6800	33.87		
flat cable		10.000	34.00	$\begin{aligned} & \text { SC/MP } \\ & \text { ISPA/ } 100 \\ & 2650 \end{aligned}$	$\begin{aligned} & 18.75 \\ & 27.00 \end{aligned}$	CRYSTALS32.768 kHz	
20w 1 m	1.00						4.50 3.60
10 m for	8.00	displays				5. 12 MHz	3.60
verocas		FND500	1.02				
7514101	3.36	TH321	1.30	MPU KITS		SUNDRIES	
7514110	3.77 2.15	T11322	1.20 2.45	MEK680001	137.00	CA3130	
$751237 J$ 7512380	2.15 3.00	XAN652 XAN654	2.45 $\mathbf{2 . 4 5}$	INTRO KIT ISP8K/200e			0.35
7512380 751239 K	3.00 3.58	XAN654 5LT01	2.450 5	MCS-80	176.65	78L12WC	0.77

DATABOOKS

New 1976 RCA CMOS and Linear IC Combined Databook New 1976 RCA Power and Microwave Databook 1976 National Semiconductor 7400 series TTL databook, c. 200 pages $\mathbf{£ 3}$ TTL Pin-Out Card Index. Set of cards with pin-outs (top and bottom views) Intel Memory Design Handbook, c. 280 pages
Intel 8080 Microcomputer Systems Users Manual, c. 220 pages
Motorola McMOS Databook (Nol 5 Series 8), c. 500 pages $f 5.25$
$f 3.50$ Motorola McMOS Databook Nol 5 Series 8), c. 500 pages 13.50 Motorola M6800 Microprocessor Applications Manual
Motorola M6800 Programming Manual, c. 200 pages Motorola 8ooklet introducing Microprocessors National SC/MP Introkit Users Manual
National SC / MP Programming and Assembly Manual National SC/MP Technical Description
DATASHEETS on Microprocessors, etc. (usually Xerox Copies) Intersil IM6 10012 bit CMOS $\mathbf{£ 0 . 7 5}$ RCA CDP1802 8 bit CMOS

Signetics 26508 bit. Low cost $\mathbf{£ 0 . 7 5}$ TMS 5501 for 8080

MEMORIES

NEW
 9131

1024×4 bit 500nsec Access time Single 5v supply 120 mA max current consumption 22 pin DIL package Fully TTL compatible When wiring up 1024×8 bit memory board using the 9131 reduces the number of wires between memory ICs from about 100 to about 18
Order as 9131
TTL COMPATIBLE STATIC RAMS

2102A-6
1024×1 bit
650 nsec
TTL Compatible
$2112 \mathrm{~A}-4$
25.6×4 bit
650 nsec
TT广L Compatible

6508
CMOS 1024×1 bit 600 nsec
TTL Compatible
Order as 2102A-6 £3.61 Order as $2112 A-4 £ 4.76$ Order as $6508 £ 8.05$
FAST SERVICE We guarantee that Telephone Orders for goods in stock received by $4.15 \mathrm{p} . \mathrm{m}$. (Mon-Fri) will be despatched on the same day by 1 st Class Post (some heavy items by parcel post) and our stocking is good Private customers should telephone and pay by giving their Access or Barclaycard number, with a minimum order vale of $£ 5$. Official orders, no minimum
Our offices are at Link Property, 209 Cowley Road, Oxford but please do no use this as a postal address
ORDERS Add VAT at $8 \%+25 p$ p\&p. Phone orders see 'Fast Service Export orders welcome. No VAT but add 10% (Europe). 15% (Overseas) for Air Mail p\&p. For export postage rates on heavy items - contact us firs

SEND YOUR
ORDER TO
P.O. BOX 75A

OXFORD
Tel. 086549791

HIGH QUALITY KITS

50 Hz CRYSTAL TIMEBASE KIT

Use to improve accuracy of your digital clock As a 50 Hz source E6. 28

ADVANCED CLOCK KIT (ALARM)

Six red $0.5^{\prime \prime}$ digits White case Touch switch snooze Crysta timebase - 8attery backup plus other features Size h. 40 mm $w 205 \mathrm{~mm}$ d 140 mm . Complete less mains cable, plug and battery Order as ACK + XTK + 88K Also available less crystal control and battery backup, which can be added later. Order as ACK

GCK CLOCK KIT
Four bright green 0.5" digit mantlepiece or office clock Crystal control Battery backup White case Size h 40 mm , w 154 mm d. 85 mm . Complete less mains cable, plug and battery Order as Also available less crystal control and battery backup. Order as GCK

THE SINTEL CAR CLOCK KIT
Four 0.5" red digits Neat white case Crystal control 8attery backup Suitable for all 12 v negative earth cars Size h. 40 mm . $w .154 \mathrm{~mm}$, d. 85 mm . Complete less battery. Order as AUT-CK Also AVAILABLE less case Order as AUT-MODULE KIT £16.45

[^2]
techtips

WIDE RANGE AMMETER

The instrument shown will measure currents from $1 \mu \mathrm{~A}$ to 1 A F.S.D. in seven ranges.

IC1 is connected as a unity gain buffer and the input current flows through the resistor selected by SW1 to earth. In so doing a voltage proportional to the input current is
developed across the resistor and this appears at the output, pin 6.
Small currents are measured by IC2. In this mode the current flows into the non inverting input. Since this is a virtual earth, the output will generate a voltage proportional to the input current.
In practice, this voltage is developed across R9 and hence provides a prop-
ortional current through Q1 and M1.
Q2 and RV1 form a meter protection circuit and the latter component should be adjusted so that Q 2 starts to conduct at F.S.D. D1 is included to prevent damage to the base emitter junction of Q1 in the event of an input of wrong polarity.

IMPROVING 7-SEGMENT DIGIT APPEARANCE

The display font of some 7 -segment output devices produce the digit 6 without the top bar. Examination of the font reveals that whenever the bottom segment ('d' segment) is on, so is the top segment ('a' segment) for all
the other digits. Hence all that is need ed is a diode connected so as to light segment ' a ' whenever segment ' d ' is on. The diagram shows the idea applied to a 7447 decoder. The drive capability of the device may be exceeded by this addition, so a buffer circuit may be required as shown.

TV-Computersystem 6800 8080 SC/MP

ROT゚EX-EMMEN - HOLLAND

The microcomputersystem specially for:

Education - schools

- selfstudy

Industry - program - development

- systems - development
- terminal

Hobby . - entertainment

- cames

From left to right, the EF5800 6 circuit varicap FM tunerhead with the 7030 linear phase IF and the 91196 PLL stereo decoder with integral 55 kHz 'birdy' filter. The system provides afc muting, meter drives, agc, auto stereo switch, $\&$ a specification that exceeds broadcast requirements. Now available with a new EF5801 tunerhead, with FET buffered oscillator output for synthesiser/frequency readout facilities.
EF5801.E17.45; EF5800.. £14.00; 7030..£10.95; 91196. .£12.99
Complete ΓM tuner kits/systems (Carriage $£ 3$ extra.) The Mark 8 Signalmaster - by Larsholt Electronics
This tuner is based on the popular 7252 tunerset, and provides an incomparable combination of style and performance that can be built by even the relatively inexperienced constructor Complete kit....f85.00; matching $25+25 \mathrm{~W}$ amplifier... 779.00 International Mark 2 Tuner kits:
Complete tuner kit, based around the 7253 tunerset, £65.00 Or just the chassis, cabinet, heavey aluminium front panel for your own choice of modules- see our new info. leaflet on the International Tuner. (SAE please)

NEW NEW NEW NEW NEW NEW NEW NEW BIONIC FERRET METAL LOCATOR

Ambit has designed a new approach to cost effective sensitive metal locators, and now we proudly present the first of the family of 'Bionic Ferrets'. Details OA but we can say it wil detect a 10 p piece at $8-10$ inches Coupled with low power consumption and many innovations, this is the first radically advanced detector that can be made from a kit. £37.99

Radio module selection: (Prices forkits in our catalogue \& PL) EF5800 Ambit 6 stage varicap $88-108 \mathrm{MHz}$ tunerhead EF5600 TOKO 5 stage varicap
EC3302 TOKO 3 stage varicap
7020 Dual ceramic filter FM IF system module 92310 MPX decoder, with stereo tilter and preamp £ 1.2 .95 £ 7.50 93090 MPX decoder with CA3090AQ + filter stage £6.95 771 New 'Off-Air' UHF varicap TV sound tunermodule with mute, AFC, dual conversion, PSU
$9014 \mathrm{MW} / \mathrm{LW} /$ Stereo $F M$ tuner chassis. Mech. tuned E26.00 Components: ICs, coils, filters, trimmers diode law pots etc. HAll37W/3089E FM IF 1.94 TOKO AM IFTs: MCI 350 FM IF and demod $0.75 \quad 455 / 470 \mathrm{kHz}$ types SN76660N FM IF and det $0.97 \quad 10.7 \mathrm{MHz}$ types SN 76660 N FM IF and det. 0.75 (10 mm square, (10 mm square, w with in $\begin{array}{llll}C A 3090 A Q P L L M P X & 2.20 & 455 \mathrm{kHz} \text { Mechanical filters }\end{array}$ HA1196 PLL MPX uA 720 AM radio system $\quad 4.20 \quad 455 \mathrm{kHz}$ ceramic IF filters TBA 651 AM radio system $1.40 \quad 6$ or 8 kHz bandwidth CFT 0.55 HA1197 AM radio system 1.81 SFD455 (Murata) 0.75 M1496 balanced mixer $1.40 \quad 455 \mathrm{kHz}$ dual ceramic CF× 1.80 11 C 90600 MHz decade ctr $1400 \quad 10.7 \mathrm{MHz}$ filters for WBFM LM380N 2 W Audio $1.00 \quad 3132$ A 6 pole lin phase DA2020 TCA940 low audio amp NE 723 vow a udio amp 1.80 Pilot tone (MPX) filters TDA14 voltage reg IC 0.80 * BLR3107N
78 M 2020 V 500 mA reg 0.95^{*} BLR3152/mono
TAA550B varicap requlatorn 50 * BLR3172N tape bias trap NE $560 / 1 / 2 \mathrm{~B}$ PLL Cs Csulatoro.50* 85 or 100 kHz pole ICL8038CC functiongen 4.50* various chokes etc. 22 turn 100 k diode law trimpots. with integral knob 270° rotary look diode law tuning pot
Also....meters for tuners.
post/packing 22p per order - except where indicated General: All prices shown here exclude VAT, which is generally $12 \frac{1}{2} \%$. (Except where marked*). The latest price leaflet is available FOC with an SAE. Please send a (large) SAE with any enquiries. Full catalogue still 40 p .

[^3]GLASS-FIBRE P.C.B.s

ETI 448 Disco Mixer . . . £ £1.75	ETI 549 Metal Detector	75p
ETI 448A Headphone Amp . . . 50p	ETl 445 G.P. Pre-amp	55p
ETI 449 Microphone Pre-amp 55p	ETI 446 Audio Limiter	85p
ETI 449A Stereo VU Meter . 75p	ETI 544 Heart Monitor	75p
Reaction Tester £1.15	Head/Tails	50p
Patch Detector 55p	Door Bell	75p
LED Dice 45p	Bench Amplifier	75p

SEMI-CONDUCTORS

SPECIAL OFFERS

TOK Lockswitches with 2 keys $-1 \mathrm{~N} / 0$. $1 \mathrm{~N} / \mathrm{C}$ Contactsets 250 v 2 A Potted Bridge Rectiiiers 10A 150v
Variable Voltage Regulators 1-45v at 4A [Suggested circuit]
This unit is complete with Diecast integral isolated Ht. Sink
CA3052 Stereo Pre-amp in 16 DIL Package [Data supplied]
IN4150 Si Switching Diodes (similar to 1N914]

.

 10 for 30 p RESISTORS 5\% Carbon Film H.S.1/4w 1p each. 100 same value 80p. $1 / 2$ w 1.5p each. 100 same value £1.20

CAPACITORS

Polyester C280-.01, .022, . 047 3p. .1, .22, .47. 1.0mF 5p. Polyester 250v$.015, .022, .033$ 4p. Ceramic Plate 68, 100, 150. 1500. . 01 4p. . $022, .225$ p. Polystyrene - 33. 47. 100. 150. 270, 1000, 3900 pf 3 p . Disc Ceramics . 1 mF 18 v 3 p . 1 mF 600 vdc 10 for 35 p .

ELECTROLYTICS Capacity/Voltage

10/12 5p. 47/47 9p. 100/10 6p. 100/16 7p. 100/350 25p. 150/25 8p. $330 / 2510 p .470 / 6330 \mathrm{p} .500 / 1010 \mathrm{p} .640 / 1614 \mathrm{p}$. $1000 / 6380 \mathrm{p}$. $4700 / 5060$ p. $4700 / 100$ £1.00. Very Special $33000 / 40 £ 1.80$.

SWITCHES

Miniature Glass encapsulated Reed Switches
10 for $50 p$
DPST 250v 3A by Arrow (Toggle) 17p. SPST 250v 3A Slide 8p.
All Prices include VAT. List 10 p . P\&P 20p

R.F. EQUIPMENT SPARES LTD.
 3 LACY CLOSE, WIMBORNE, DORSET

Learn to understand electronics
 for your hobbies

1. Lema-Kit course

Step by step, we take you through all the fundamentals of electronics and show you how easily the subject can be mastered.
(1) BUILD AN OSCILLOSCOPE.
(2) READ, DRAW AND UNDERSTAND CIRCUIT DIAGRAMS
(3) CARRY OUT OVER 40 EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS AND SEE HOW THEY WORK

2.Become a Radio-Amateur

Learn how to become a radio-amateur in contact with the wide world. We give skilled preparation for the G.P.O. licence.

MPU BITS

SC /MP Introkit: 256 bytes RAM, 512 byte PROM with KITBUG debuggíng program, needs TTY device for operation
£92.50
SC/MP SCRUMPI: 256 byte RAM, 16 switches, LEDs, and interface chips on $5 \frac{1 / 2^{\prime \prime}}{} \times 6^{\prime \prime}$ PCB. Requires simple power supply or batteries £64.81
SC/MP Chip: with data sheet £18.50 ME6800 Kit: Uses 6800 MPU . Requires TTY $£ 135.00$ FS Kit: Mostek F8 MPU, requires TTY £165.00 MM2112 256×4 bit RAM $£ 4.30$ $\mathbf{2 5 1 3}$ Character Generator, u/C ASCII..... $£ 9.00$

HARDWARE

Power Supply: P197 gives $5 v$ at $2 \mathrm{~A},-5,-12 \mathrm{v}$, suitable for many MPU systems, P197 Kit £15.50 Keyboard Kit: 55 keys, upper/lower case options, KDP 5 Kit £42.00
Printer: 40 column dot matrix printer with interface for parallel ASCII input. PR-40 kit ... £225.00
Floppy: SA800 or SA801 floppy disk drive, disks and interface, built, not kit £625.00
Minifloppy: SA400 mini disk drive, disks
and interface, delivery end of year
$£ 495.00$

BOOKS, DATA

SCRUMPI Data 75p.
 SC/MP Programmers Guide $\ldots \mathbf{E 5 p}^{*}$
6800 Data (Xerox) 6800 Data (Xerox)
F8 Data (Xerox)
75p"
("Free with appropriate kits)

CONSULTANCY

Bywood would be pleased to quote for hardware/ software solutions to your design problems.

GET HUNG UP!

Our new range of clock kits is based on designs hundreds of years old. These clock kits use wood, stone and iron to reproduce authentic "olde worlde" wall clocks in full detail. The kits contain all you need including glue, screws, etc.; and very comprehensive instructions. This range complements our fully electronic clock kits. Stones and string not supplied.

PRICES (All inclusive)	KIT	BUILT
Cothic Clock Kit-Diam. $\mathbf{6}^{1 / 2}{ }^{\prime \prime}$	£23.95	£36.50
Rotating Dial Kit-Diam. $\mathbf{6}^{\prime \prime}$	£19.95	£32.50
Wrought-Iron Kit-Diam. $5^{1 / 2 \prime 2}$	£46.35	£69.50
Wooden Wheel Kit-Diam. 61/2"	£31.50	£45.25
Knight Clock Kit-Diam. $71 / 2^{\prime \prime}$	£39.50	£62.45
Oak Foliot Kit-Diam. 14" (As illustrated)	£89.50	£125.00

For coloured Brochure please send 15 p stamps. Completed clocks can be seen at our offices.

SCRUMPI

Bywood's evaluation kit for SC/MP. Kit contains MPU chip. 256×8 bit RAM, 24 -bit $1 / 0$ tatches 24 LED lamps and drivers, 16 data and control switches, all sockets, all associated components, PCB and cable. The switches allow you to program the 256×8-bit RAM and then execute the program in that RAM, several operating modes allow for ease of programming and testing. SCRUMPI can be exterd. VDU, Printer, etc. Requires $+5,-7 \mathrm{v}$ at 200 mA
£64.81
 PRICE INCREASES!!

Prices going up next month

CLOCK CHIPS

NATIONAL

MM5309 7 seg + BCD with reset
MM53117 seg + BCD
MM5312 7 seg $+B C D .4$ digit only
MM53137seg + BCD
MM53147 segment
MM5314 7 segment
MM5315 7 seg $+B C D$ with rese
MM5315 7 seg + BCD with res
MM5316 Non-mpx alarm clock
MM5316 Non-mpx alarm clock
MM53187 seg + BCD (external digit select)
MM5371 Alarm clock 50 Hz
MM5377 Car clock, crystal controlled LCD
MM5378 Car clock, crystal controlled LED
MM5379 Car clock crystat controlled Gas discharge

MOSTEK

MK50250 Alarm clock $(12 \mathrm{Hr}+60 \mathrm{~Hz} / 24 \mathrm{Hr}+50 \mathrm{~Hz})$
MK50253 Alarm clock $(12 \mathrm{Hr}+50 \mathrm{~Hz}(24 \mathrm{Hr}+50 \mathrm{~Hz})$
MK50395 UP / DOWN Counter--6 Decade
MK50396 UP/DOWN Counter-HHMMSS
MK50397 UP/DOWN Counter-MMSS 99

CALTEX

CT7001 Alarm/calender 7 segment
CT7002 Alarm/caiender BCD
CT7003 Alarm/calender 7 seg . Gas discharge
CT7004 Alarm/calender 7 seg
GENERAL INSTRUMENTS
AX5-1202 4 digit 7 seg
AY5-1230 on-off - alarm 7 seg

MHI CLOCK KITS

MHI-5309
MHI-5311
MHI-5314
MHI-5318
MHI-5378
MHI-50250
MHI-50253
MHI-50395

ALL PRICES EXCLUDE VAT AT 8\%
1.9
5.69
5.69
5.69
4.88 LITRONIX
5.69 DL707.704.701
4.88 DL727, 728, 72
5.69
10.17
5.69
10.17
3.36
8.14

721
$\begin{array}{ll}6.73 \text { DL707E 704E } & 0.70\end{array}$
$\begin{array}{lll}6.73 & \text { DL727E } 728 \mathrm{E} & 180 \\ 673 & 185\end{array}$
6.73

560 CASES (WITH PERSPEX SCREEN)
560 VERO $18^{\prime \prime} \times 5^{1 / 2^{\prime \prime} \times 3^{\prime \prime}}$
1450 VERO $26^{\prime \prime} \times 3^{1 / 4} 4^{\prime \prime} \times 21 / 4^{\prime \prime}$
1450
1450
9.00
9.00
9.00
9.00

$$
476
$$

MHI-707/4 (digit) $03^{\prime \prime} \quad$ MHI-727/60.5 MHI.70760.3 $\quad 950$ MHI-747/60.6

PAYMENT TERMS

$$
\begin{aligned}
& 416 \\
& 525
\end{aligned}
$$

1.9	MHI-50396
7.35	MHI. 50397
735	MHI. 7001
6.60	MHI CASE Please include 2
7.35	+ packing
15.10	SOCKETS
8.35	18 pIn
8.35	24.28 or 40 pIn
19.50	Soldercon strip sockets (50)

19.50
19.50
13.00

Please send 30 p for post and packing
12.00

MH1-7 (digit) $03^{\prime \prime} \quad 6.60$ MHI-747/40 $6^{\prime \prime}$

Cash with order. Access. Barclaycard (simply quote your number and sign) Credit facdlities to accredited account holders. Pro-forma invoices can be issued

ALL PRICES EXCLUDE VAT AT. 8%
(EXCEPT MECHANICAL CLOCKS AS ABOVE)

SPECIAL OFFER
 CREED 7B TELEPRINTER LATE MODEL WITH PERFORATOR. £60 FREE WITH ALL PURCHASES PLESSEY READER

MARCONI TF675F WIDE RANGE PULSE GENERATOR

+ - - variable outputs up to 50 V . optional delay. Smalt £22.50 each

PRECISION EX-MINISTRY SIGNAL GENERATOR

Type 62 by DECCA 95 to 160 MHZ . Two front panel switches cennected to a motor driven system for rapid frequency change due to dual length (can also be operated manually) Precision attenuator system. Internal/ External AM Modulation. Carrier level meter \& \% Modulation meter. 1 MHZ \& 10 MHZ Crystal Markers. Provision for external crystal as marker. This equipment was used for aligning service type Aircraft receivers etc Complete with leads etc. Standard 240 V . ONLY £15 each

COMPRESSOR

VACUUM PUMP
Twin Cylinder opposed with Integra! $1 / 2$ H.P $220 / 110$ 50HZ̈ Single Phase Motor. Tested

Now only
£17.50 each

Limited quantity of

HONEYWELL KEYBOARDS

In attractive case - anti bounce keys no coding. Superb style £20 each

Spools of $1 / 2^{\prime \prime}$ Mag Tape
approx. 2000 ft
50p each. P.P. £1

MARCONI NOISE GENERATOR TF987/1

4 ranges $0-5,0-10$
$0.15,0-30$
ONLY $£ 17.50$ each
see
Cases and Cabinets
Power supplies; Large range of panel meters; Scopes; Computer bits and bobs;

Tubes mag \& elec. and of course BARGAINS

TRANSFORMERS - All 240 V 50 HZ
Type A $170-17 \mathrm{~V}$ inputs $250 \mathrm{MA}, 7.5-0-7.5 \mathrm{~V}$ 250MA 0.20V 5 Amps: 0-4V 5 Amps $01-1.5 \mathrm{~V} 5$ Amps $£ 2$ each. P\&P $£ 1.25$. Type B B $\quad 17-0-17 \mathrm{~V} 250 \mathrm{MA}: \quad 8-0.8 \mathrm{~V}$
$250 \mathrm{MA} 0.125-135 \mathrm{~V} 5$ Amps 0.15 .2 V $250 \mathrm{MA} .0 .125-13.5 \mathrm{~V} 5$ Amps. $0-1.5-2 \mathrm{~V}$
5 Amps.
f 1.50 ea. P\&P $£ 1$.
Type C. $19-0-19 \mathrm{~V} \quad 250 \mathrm{MA}$; 8.0.8V Type C . $19-0-19 \mathrm{~V} 250 \mathrm{MA}: 8.0 .8 \mathrm{~V}$
250 MA o. $5.5 \mathrm{~V} 5 \mathrm{Amps}: 0.1 .4 \mathrm{~V} 5 \mathrm{Amps}$ £ 1.25 ea. $P \& P £ 1.25$
Type E $3 \vee 1$ Amp. 25p ea. P\&iP 50p. Type G $20-0-20 \mathrm{~V} 200 \mathrm{MA}$; $0-6 \mathrm{~V} 100 \mathrm{MA}$. 75p ea P\&P 75p. Atlantic series.
All Brand new (APT surplus types A, B, C, Honeywell surplus type E. Parmeko Atlantic Series type G)
*POT PACK. All Brand New Modern. Single and Ganged, our choice 7 for 25p. P\&P 48p

SEMICONDUCTORS - All at 8p ea.*. P\&P extra. Guaranteed at full spec devices. Manufacturer's markings.
BC147: BC158: 2N3707; BC107; BF197; $\mathrm{BC} 327 ; 2 \mathrm{~N} 4403, \mathrm{BC} 172 \mathrm{~B} ; \mathrm{BC} 261 \mathrm{~B}$ $\begin{array}{ll}\mathrm{BC} 251 \mathrm{~B} & \mathrm{BC} 348 \mathrm{~B} \text {, BC171A/B: }\end{array}$ 2N3055RCA. 50p ea. P\&P 8p
2N5879 with 2 N 5881 Motorola 150 watt
omp. pair £2 pr. P\&P 15p
*Linear Amp 709 25p ea. P\&P 8p.

VARIACS 240 V input 0.270 V output. 8 amp £ 18 ea. 20 Amp £ 30 ea. Carr extra.

BNC Plug to BNC Plug lead, assembled ready to use 75p ea. P\&P 20 p Ex-eq. BNC Socket 15p. BNC Plug 25p.

TUBES. All Brand New Boxed
Electrostatic deflection.
Type 408A $11 / 2^{\prime \prime}$ dia., $71 / 2^{\prime \prime}$ long. Blue Trace. £2.50 ea. P\&P 75p
Type CV1526 (3EG1) $3^{\prime \prime}$ dia £3. P\&P £1. Type DB7/36 $3^{\prime \prime}$ dia. (Replacement for Telequipment S31). E12 ea. P\&P $£ 1.50$. Type GEC 924F $31 / 2^{\prime \prime}$ dia. (Replacement for Telequipment D33 \& Solartron 1016 scopes). £ 30 ea. P\&P £ 1.50 ype GEC 924 E $1 / 2$ dia. (Replacement for Solantion 1015 scope) £20 ea. P\&P 150

NEW - UPGRADED CONTENTS - FOR LESS MONEY
*31b Electronic Goodies £1.60 post paid. *High Value Printed Board Pack hundreds of components, "transistors. etc. - no flat to the board transistors. $£ 1.65$

CREED 8 Level READER
CREED 8 Level PUNCH
tally reader
TALLY PUNCH
ASC 11 coded KEYBOARD with PUNCH \& READER
IBM Coded Golfball in table with PUNCH \& READER
OLIVETTI ASC11 PRINTER ONLY
£ 35
$£ 35$
$£ 45$
$£ 45$
$£ 95$
$£ 95$
$£ 85$
$£ 140$
£200
$£ 160$

Items constantly changing - Phone or call
MARCONI TF142F DISTORTION FACTOR METER giving percentage distartion on a directly calibrated dial and includes all spurious components up to $30 \mathrm{KHZ} \mathbf{£ 3 7 . 5 0}$ ea. AVO TRANSISTOR ANALYSER CT446 £30 ea. MARCONI PORTABLE FREQUENCY METER TF1026/11. 100 to 160 MHZ . Very fine condition. Sory now $£ 27.50$ ea.
DECGANANIGATOR DISPLAY UNIT. Very impressive. $£ 12.50$ ae SOLATRON OSCILLATOR CO546. 25 HZ to 500 KHZ Constant amplitude Very reliable. Highly recommended In good condition. $£ 18$ es.

VERY SPECIAL PRICES
$\star 1000$ Feed thru Capacitors 10 for $\mathbf{3 0}$ p P\&P 15p.
*BEEHIVE TRIMMERS 3/30pf. BRAND NEW.
10 off 40p. P\&P 15p. 100 off £3.50, P\&P 75p 500 off £15. P\&P £1.25. 1.000 off £25. P\&P \& 1.50

PHOTOMULTIPLIER Type 931A £4 ea P\&P 75p. Other types available.

HIVAC Miniature NEONS

App. 60V. Brand New 10 off 20p
P\&P extra
*Meter PACKS - 3 different meters $£ 2$ P\&PE1.

DON'T FORGET YOUR MANUALS. S.A.E. with requirements

GRATICULES 12×14
plastic 15p ea. P\&P 10p
*CAPACITOR Pack. 50 components, only 50p. P\&P 48 p ©TRIMMER PACK Al Brap. Twin 50/200pACK. All Brand New. 2 ceramic 2 min cereamic: 2 Twin 10/60p ceramic; 2 min. strips with 4 preset $5 / 20 \mathrm{p}$ ceramic 3 25p the lot P\&P 15 pt
*POTENTIOMETERS -All 5p ea P\&P \#POTENTIOMETERS -All 5p ea. P\&P Brand New 10 K single; 100 K ganged 250 K ganged 100 K ganged, concentric shatts

FIBREGLASS BOARD PACK. More board - less money Larger pieces. Not less than 2.5 sq 4. for 95p. P\&P 65p. Double or single sided cut to any size. New Lower Price 1p per sq. in. P\&P extra.
LARGE RANGE ELECTROSTATIC VOLTMETERS, from 0.300 V : $2^{\prime \prime} £ 3$; to
250K Max.
General guide $5 K V 3^{1 / 2^{\prime \prime}} £ 5$; thereafter $£ 1$ per KV P\&P 75p.

MARCONI TF1101 Audio Oscillator. $20 \mathrm{c} / \mathrm{s}$ to 200 ks /. Low distortion. 60 dB step artenuator f50 each
\#SPECIAL OFFER
Guaranteed full spec devices. Manu-
facturers markings
BC 204 \& BC 207A 4p ea P\&P extra

*TELEPHONES

Post Office Style 746. Black or two-tone
Grey $£ 6.50$ ea
Modern Style 706. Black or two-tone Grey $£ 4.60$ ea.
older BLACK Style $£ 1.50$ ea
All telephones complete with standard dial and bells. P\&P all styles 75p ea. Handsets P\&P65p.

ROYAL INVERTORS manufactured USA 28 V DC input. Output 115 V AC 400 HZ up to 2 KVA . Brand new. Crated $\mathbf{£ 1 2 . 5 0}$ each

HONEYWELL MAGNETIC TAPE UNITS

Self-contained, complete with heads, magnetic tape, leads, etc
Tested. Carriage paid. $£ 57.50$

FOR THE VDU BUILDER

New stock of Large Rectangular Screen $30 \times 20 \mathrm{~cm}$ tube. Type M38 at the ridiculous price of $£ 4 \mathrm{ea}$ Artd also still available the CME $1220.24 \times 15 \mathrm{~cm}$ at $£ 9$ ea.

Minimum Mail Order £2. Excess postage refunded
Unless stated - please add $£ 2.50$ carriage to all units
VALUE ADDED TAX not included in prices - Goods marked with $\star 12 \frac{1}{2} \%$ VAT, otherwise 8% Official Orders Welcomed. Gov./Educational Depts., Authorities etc., otherwise Cash with Order Open $9 \mathrm{a} . \mathrm{m}$. to $5.30 \mathrm{p} . \mathrm{m}$. Mon. to Sat

7/9 ARTHUR ROAD, READING, BERKS. (rear Tech. College, King's Road). Tel. Reading 582605

MTN-ADS\angle CLASSIFIED

THIS SECTION IS A PRE-PAYMENT SERVICE ONLY
MINIADS: $31 / 4^{\prime \prime} \times 21 / 8^{\prime \prime}(1-3) £ 26(4-11) £ 23$ (12 or more) £22 per insertion. CLASSIFIED DISPLAY: $£ 3.50$ per single column centimetre. SEMI-DISPLAY: $£ 2.70$ per single column centimetre LINEAGE: $75 p$ per line average six words, minimum 3 lines. No P.O Box Numbers can be accepted without full address and phone number Adv. Dept. (01-437 5982) 25-27 Oxford St, London W1R 1.RF.

PRECISION POLYCARBONATE CAPACITORS

All High Stability - Extremely Low Leakage 410 V AC

 1ANTALLM BEAD CAPACITORS - Values avalable: 0.1 .0 .22. 22.0, F at EV or 16 V : $33.0,4 \mathrm{~F}$ at 6 V or 10 V . 47.0 miF at 3 V or 6 V : 100.0 at 3 V . ALL at 12 peach . 10 for Cl .10 . 50 for $\mathrm{C5.00}$. 100 for $\mathrm{C9.00}$. | at 3 V . ALL at 12 p each. 10 for Cl | | |
| :--- | :--- | :--- |
| TRANSISTOR \& 1C's | BC267 | |
| AC128 | $14 p$ | BC268A |

14 p	-BC268A	10 p	$0 C 7172$	
AC.176 16p	BC547'55	12p	2 N 29266	
10p	BCY72	15 p	2N 2926 Y	
AF178 40p	BDI31/1	39p	-2N2926	
AF239 38p	BFI15/16	22p	2N3054	
BC107.8 9 9p	BF173		2 N 3055	
BC114 12p	BF178	${ }^{26 p}$	2N3702	
-BC147/8/9 10p	BF184	22p	370	
*BC153 16p	BF194	12	TIP30	
*BC157/8/9 12p	-BF196/197		TIP31A	
BC177 18p	BF 200	27	TIP32A	
-BC182/182L 11p	-BF262 2		TIP305	
-BC183/183L 11p	BF'Y50/51/52	20	MPU13	
-BC184/184L. 12 p	BFX84/86/4		NE555	
-BC212/212L 12p	BF $\times 85$	25p	7418	
- BC213/213L 11p	BR101		2N414	
BC214/2141. 11p	F		S.N7601	
 LOW PRICE $\angle E N E R$ DIODES -400 mW . Tol $\pm 5 \%$ at 5 mA Values avallable: $3 \mathrm{~V}, 33 \mathrm{~V}, 3.6 \mathrm{~V}, 47 \mathrm{~V}, 5.1 \mathrm{~V}, 5.6 \mathrm{~V}, 62 \mathrm{~V}, 6.8 \mathrm{~V}, 75 \mathrm{~V}, 8.2 \mathrm{~V}$. $91 \mathrm{~V}, 10 \mathrm{~V}, 11 \mathrm{~V}, 12 \mathrm{~V}, 13 \mathrm{~V}, 135 \mathrm{~V}, 15 \mathrm{~V}, 16 \mathrm{~V} 18 \mathrm{~V}, 20 \mathrm{~V} .22 \mathrm{~V}, 24 \mathrm{~V}, 27 \mathrm{~V}$. 30 V . All at 7 p each: 5 for $33 \mathrm{p}: 10$ for 65 p . SPECLAL OFFER- 100				
Zener, for $\mathbf{~ 6 6 . 0 0 .}$ *RESISTORS-High stability. low norse carbon film 5%. $\mathrm{I}_{2} \mathrm{~W}$ at				
*RESISTORS-High stubillty. low norse carbon film 5%. ' ${ }_{2} \mathrm{~W}$ at $40 \mathrm{C}, \mathrm{s} \mathrm{W}$ at $70^{\circ} \mathrm{C}$. E. 12 sentes only-from 2.29 to $22 \mathrm{M}!\mathrm{ALL}$ at 1 p				
each. kp for 10 of any one value. 70 p for 100 of any one value.				
SILICON PLASTIC RECCIFIERS- 1.5 amp brand new wire ended DO27: 100 P.IV. 7 p (t for 26 p). 400 P.I.V. $8 p$ ((for 30 p).				
BRIDGE RECTIFIERS-212 amp. 200 V 40 p . $350 \mathrm{~V} 45 \mathrm{p}, 600 \mathrm{~V} 55 \mathrm{p}$.				
PLEASE ADD 20p POST AND PACKING ON ALL ORDERS. ALL				
EXPORT ORDERS PLEASE ADD COST OF SEA/AIR MAIL.				
PLEASE ADD \&/ VAT to all items except thise marked with				
Send S.A.E for hists of additional ex-stock them				

Wholesale price lists available to bona fide cormpanies.
MARCO TRADING (Dept. P3)
The Old School, Edsiaston, Wem. Shropshire Tel. Whixall (Shropshire) (STD 094872) 464/5 (Proprs: Minicost Trading Ltd.)

300W TOUCHSWITCH KITS

TS 300 K Contains Triac, C . Diodes. Resistors

 Frontplate, PCB, etc. Replaces conventional lightswitch with NO REWIRING. TOUCH one insulated plate fo ON, another for OFF. Complete with instructions ONLY E3.67ALSO TSA300K AUTOMATIC, as above, but with only ONE TOUCHPLATE TOUCH for ON and light stays on for a preset time. Ideal for stair 300W LIGHTDIMMER KIT lightswitch £2.45.

SPECIAL OFFER

10 ROCKER SWITCHES, white SPST 10A/250V snap fixing. $£ 1.20$.

CMOS Moterole		TRIACS 400 V TO220C ${ }^{\text {SOA }}$ISOLATEO TAB		$\begin{array}{lr} \text { BC148 } & \text { 9p }{ }^{*} \\ \text { BC158 } & 11 p^{\prime} \\ 2 N 3055 & 36 p \end{array}$			
4000 4001 $\mathbf{2 0 p}$							
		6548					
4002	20 p			PUT			
4007	200	85 A 85p					
4011	20p	NE555 8.p.n DIL		in4148			
4015 105p		7418 pin OIL					
4016	57p						
4017	105p						
4040	105p	LDR $1 / 4.4$ da 400.2 to 1 Mal light 10 dark $45 p$					
4049	570	NEON ware-ended Choke $11 / 2$ Amp			0		
4050	57p				12p		
4501	200	Rocker Swich while SPST 10A 250 V 15 p					
4510	135p						
16	135p	MINI MAINS TRANSFORMERS606 V$606 \mathrm{~V}$					
4566	155p				$\begin{aligned} & 85 p \\ & 050 \end{aligned}$		
ADD 8\% VAT ($\mathrm{C}_{1} 121 / 2 \%$) PLUS 25p P\&P Mall Order Only 10.							
T.K. ELECTRONICS (ETI)							
106 Studley Grange Roed, London W7 2LX							

P.C.B.S
 ETI444 136 SHORT CIRCUITS
$\begin{array}{llll}\text { Patch Detector } & \text { 40p } & \text { Bench Amp } & 60 p \\ \text { Heads or tails } & 40 p & \text { Door Bell } & 56 p\end{array}$ All prices shown include VAT. Add 20 p post $\&$
P.C.B.s also available for this month's ETI projects. Send SAE for full list of available boards
Also a comprehensive or part service from
Artwork and layout design to assembled P.C.B.
for batch quantities or one-aff prototypes -

TAPE READER GE PTR 66 1A 8 hole optical sense tape reader head complete with motor control board and sense amp board $150 \mathrm{ch} / \mathrm{s}$, self contained, only requires 250 V AC. Secondhand but in good working order Complete with cct. diag. and setting up procedure. Ideal microprocessor peripheral Limited quantity. $£ 25$ ea. $+8 \%$ VAT. Carr £1.50. Documentation only 50p. T. M. \& C SERVICES, 89 Grove Road, South Benfleet Essex.

E.T.I. P.C.B's

Available for every E.T.I. Project. Send s.a.e. for details or telephone your order using Barclaycard or Access. Alternatively send Postal Orders with written order

CROFTON ELECTRONICS LIMITED

35 Grosvenor Road, Twickenham Middlesex TW1 4AD

Tel. No. 01-891 1923

LIMITED SURPLUS STOCK BARGAINS

		4035		2	
4001	13p				
4002	13p	4042	70p	4511	140p
4006	110p	4049	50p	4512	85p
4011	15p	4050	50p	4518	100p
4012	15p	4069	20p	4520	110p
4013	50p	4071	20p	4528	95p
4015	85p	4072	20p	4553	390p
4017	85p	4073	20p	4555	$85 p$
4021	$85 p$	4075	20p	4556	$85 p$
4023	20p.	4078	20p	4562	450p
4024	70p	4081	20p	4558	100p
4025	20p	4093	70p	4572	20p
4030	50p	4501	15p		

with metal end clips. 65 p.
Heimann G98 LDR $9 \times 13 \mathrm{~mm} 500.1 \mathrm{M}$ light to dark res 35p. 7447 J 7 seg. drive chip on small PCB. 50p. Casio C-100P Mini-printer calculator with mains charger. $£ 28$.
Philips PM25 13 digital multimeter with manns adaptor, temperature probe and 30 Amp shunt. $\mathbf{\mathrm { C }} 88$.
Bowmar TP. 3100 alphanumeric thermal printer with paper, ASC11 character generator chip and drive electronic circuit diagrams. £45.
Twin mosaic alphanumeric printers each with Datac OM64 electronic drives complete in single 19 in . rack mounting. €350.
Glazer money refunded if goods out payable son
J. GLAZER, 15 Vicarage Close, Shillington,

Mitchin, Harts SG5 3LS. Tel. Shillington 375

VALVES

Radio - TV - Industrial - Transmitting We dispatch Valves to all parts of the world by return of 1976. Obsolete types a speciality List 20 p Quotation S.A.E. Open to callers Monday to Saturday 930 to 5.00 . Closed Wednesday 1.00 . We wish to purchase all types of new and boxed Valves.
Cox Radio (Sussex) Lid., Dept. E.T.I., The Parade, East Wittering, Sussex PO20 8BN. West Wittering 2023 (STD Code 024366).

W-D-S WIRE THREADING KIT VIRE DISTIBUTION SVST WIRE DISTRIBUTION SYSTEM INTRO-KIT £5.95 inclusive of VAT \& P\&P (Mall Order only) Kit consiaxs:

* Wire distribution pencil
* WIRE distribution board
* WIRE distribution strips
* spare spool of wire
*IC. leg deformer
* COMPREHENSIVE INSTRUCTIONS

For further detats please send a S.a
Trade and overseas enquiries welcome
ZARTRONIX ${ }^{115}$ Lion lane. hastemerr SURREY GUZ7 1JL

CARBON FILM RESISTORS. 5\% E12 Series $1 / 8 W, 1 / 4 \mathrm{~W}, 1 / 2 \mathrm{~W}$. Mixed to your choice, 100 for 90p. Electrolytics $50 / 15 \mathrm{v}$, 7p. MiCROPROCESSORS SC/MP £18. MM6800 £33. P\&P 15p. Mail Order Only. CANDAR, 8 Almond Drive, Caversham Park, Reading.

M.A. 1001B DIGITAL CLOCK

MODULE SIZE $3.0^{\prime \prime} \times 1.75^{\prime \prime}$
CNW 15v $+45-0-45 v$ TRANSFORMER Requires and case DATA SUPPLIED
OUR PRICE ONLY $\mathbf{6} 9.74$
Features Brigho 5" Display 12 hr Format with 24 hr alarm capability Flashing Colon. Power Falure Indication, P M. Indicator, Alarm Set Indicator. Hrs and Mins.. or Mins and Secs Display Output Drives from Alarm and Sleep Timers, 9 Snooze Timer and 59 Min. Sleep Time

CAR, BOAT OR CARAVAN CLOCK MODULE

M A 10018 Includes all features listed above plus Data for Conversion to $12 v$ D C plus Crystal Time Base for accuracy to a tew secs. per month
OUR PRICE ONLY £13.88

If required with Transformer $£ 14.74$ CRYSTAL TIME BASE SUITABLE FOR C.MOS DIGITAL CLOCKS. (Built and Tested.) Size approx $1^{\prime \prime} \times 15^{\prime \prime} \times 05^{\prime \prime}$ Can be adjusted to \pm a few seconds/mont

OUR PRICE ONLY $£ 5.25$ ALL PRICES INCLUDE VAT AND POST \& PACKING
-- Mal Order Only ORDERS TO: F.E.K. SUPPLIES LITTLEBOROUGH, LANCS.

		0.125	0.2	INFRA RED $550 u \mathrm{~W}$ Axial lead 49p 6mW E1.55 OPTO Data free		
			19p			
	G/	27p	33p			
	R	27p	33p	ORP 1255		
OPTO-ISOLATORS TILIII 15 kV 150 kHz		SCRs 50 V TO5 TO66 25 p SO		$\checkmark 100$		
		P 27p 46				
$4350 \quad 2.5 \mathrm{kV}$	5 MHz			35p 50p		
AVDEL BOND 2gm				65p ${ }^{\text {ST }}$	STUO 7a 50p	55p
AC126/6/7/815		2N2926(G)	12p	voltage regs		
AD161/162AF117		$\begin{aligned} & \text { 2N3053 } \\ & 2 \text { N } 3054 \end{aligned}$	15p	5 V 7805 Plastic		
	20p					
AF $124 / 5 / 6 / 734_{\text {P }}$		$\begin{aligned} & 2 N 3054 \\ & \text { 2N3055 } \end{aligned}$	$41 p$	15 V 7815 All		
AF 139/239 40p		2N3702/3/4 12p		18 V 7818		
BC/107/8/9		2N3903/4/5/616p		$24 \vee 7824$		
BC1C0C$8 \mathrm{Cl} 147 / 8$$8 \mathrm{C} 157 / 8 / 9$	12p			723 DIP $14 \quad 50$ p		
	10p$11 p$	2N2646 TIS43UJT				
		T/S43UJT BF 244	35p			
$8 C 157 / 8 / 9$ BC167/8/9	1 P	MPF102	40 p	BRIDG		
BC 169 C$\mathrm{BC} 177 / 8 / 9$	12p	2N3819	25p			
	17p	2N3823Ein914	30 p	$2 \mathrm{~A} 200 \mathrm{~V}$		
BC 182/3/4L			3 p	2 A 400 V		
		IN4001 iN4002/3	$5 \mathrm{5p}$	2A 1000 V		
$\mathrm{BCY} 70 / 71 / 7213 \mathrm{p}$$\mathrm{BF} 194 / 5 \quad 12 \mathrm{p}$			IN4004/5	${ }^{7 p}$	ZENERS 2.7-33V BZYB8 or sim 9p	
		IN $4006 / 7$	4 p			
BF196/7BFY50/51BFX	14 p	IN4148				
	16p	BA 100 -BY 127				
BFX84	30p	0447	16p			
BS×19/20				$\begin{aligned} & 5562 \times 555 £ 1.10 \\ & 1 M 4380 \\ & \hline 11.00 \end{aligned}$		
OC712N6972N706		OA70 0479 OA81 OA9O	8p			
		$\begin{aligned} & \text { OAB1 OA90 } \\ & \text { OA910A95 } \end{aligned}$		D.I.L. SOCKETS		
		$\begin{aligned} & 0 A 200 \\ & 0 A 2 D 2 \end{aligned}$	$\frac{6 p}{7 p}$			
			OP. AMPS.		16 -pin	
		$\begin{aligned} & 709 \text { al } \\ & 741 \text { 日-pin } \\ & 748010 \end{aligned}$	$\begin{aligned} & 25 p \\ & 29 p \\ & 36 p \\ & \hline \end{aligned}$	${ }_{\text {Mica }}^{\text {Mica }}$ + bushes		
2N2904/5/6/716p 2N2904/5/6A 18p 2N2926(R) 7p						
		Dalo Pen 70p				
ISLAND DEVICES, PO BOX 11. MARGATE, KENT CTS 10X			[19 canmowars fack] Pritess inclusive Past 8 Packinf 150 \|! al cland			

SCIENTIFIC CALCULATOR SALE! TEXAS: SR 52 (mand card prog] SR 56 [Key proge). PC 100 (Printing unit for SR52/SA55 Sit @ 194.40 @: | @ |
| :---: |
| @ 47.40 | T1 30 (is levels of 0) H.P. 2

${ }_{25} 21$ (Programmabie)
25C [conitinuous meniory]
67 [Mag card programmable]
CASIO $201 P$ [11 memaries.
127 pron sleps)
127 prop sleps $] \ldots . .$.
FK $19[6+2$, fraction $)$
FXI 02 (8 +2. fraction
AL8 |fraction) AL 10 firaction
FK 21 [now scientific]
ROCKWELL 44RD ($5+2$) 64RD [8+2] STONE: SC60 \{ mamm/staif SCO10 [l3 mem/siat] $419 / 519$
4148
4148
C.W.O. TO: KRAMER \& CO. 9 OCTOBER PLACE. HOLDERS HILL ROAO

LOMDON M.W. 4
IELEX 88894I ATTN KRAMER. TEL: 2032473 MAL OROER OMLY. SA.E. FOR FURTHER DETAILS. EXPORT EMQURIES WELCOME

Reg. Otfice: LEADER HOUSE, COPTFOLD ROAD BRENTWOOD, ESSEX CM14 4BN Tol: BRENTWOOD 219435

Genuine fastest service in the UK Most Modern Components shop in East Anglia
Best Semiconductor Selection in the South East
15 years in Mail-Order Electronics Over 2000 sq. ft. of Warehousing

OUR NEW "CAT" NOW AVAILABLE PRICE 40p

BACK NUMBERS

These cost $40 p$ each. Postage and packing costs $15 p$ for the first. and $10 p$ for each subsequent issue. Orders to ETI BACK ISSUES Dept. please. We CANNOT supply the following issues: All 1972: January, February, April, August, October and November 1973; January, March, September, October, November and December 1974; January, June, July, August, September, November and December 1975; January, March 1976.

PHOTOCOPYING SERVICE

Due to the steady pressure on our back numbers department, and the dwindling number of issues available, we have set up a photocopying service. This involves our staft in considerable time consuming endeavour. so we hope our readers understand our decision do apply a flat charge of 50 p inclusive. This covers any article. regardless of the number of pages involved, from any ONE issue of ETI
Please state clearly NAME of article, and from Please state clearly NA
Address envelope to 'ETI Photocopy Service'

EDITORIAL QUERIES

Writien queries can only be answered when accompanied by an SAE, and the reply can take up to three weeks. These must relate to recent up to three weeks. These mustict in any research articles and not invoive ETI staft in any research
Mark your letter ETI QUERY...Telephone queries can only be answered when technical staff are free, and never before 4 p.m.

BINDERS

Binders, for up to 13 issues, are available for £2.50 including VAT and carriage. Send orders to ETI BINDERS DEPT.

SPECIAL ISSUES

Presently we produce eight specials. See our ads on pages 25 and 57

T-SHIRTS

ETI T-shirts are available in Large, Medium, or Small sizes. They are yellow cotton with black printing and cost $£ 2.00$ each. Send orders to ETI T-SHIRTS Dept.

B00KS

ETI Book Service sells books to our readers b mail order. The prices advertised in the magazine include postage and packing. Send orders to ETT Sook Service, P.O. Box 79, Maidenhead, Berks

NON-FUNCTIONING PROJECTS

We cannot solve the problems faced by inidividual readers building our projects uniess they are concerning interpretation of our articles. When we know of any error we print a correction as soon as possible at the end o News Oigest. Any useful addenda to a project will be similarly deall with. We cannot advise readers on modifications to our projects.

SUBSCRIPTIONS

he annual subscription to ETI for UK readers is c6. The current rate for readers overseas is $\mathbf{E} 7$ Send orders to ETI SUBS Dept. PAYMENT IN STERLING ONLY PLEASE.

PCBs

PCBs are available for our projects from companies advertising in-the magazine.

PLEASE MARK AEVGRSE OF EACH CHEQUE WTH NAME \& ADPRESS AND ITEMS REOUIRED.

AD INDEX

A.D. Electronics

Ambit
Anco
Arrow
Bi-Pak
B.R.N.S

Bywood
Cambridge Learning
Chiltmead
D.B.M. Products

Detector
Doram
Electronic Design Assocs
Electrovalue
FEK
Greenbank
miniad
p77
miniad
miniad
pp4 \& 5
p78
p83
p79
miniad
miniad
pp62 \& 67
pp62 \&
p67
miniad Radio Rotor
p40 Ramar

Lynx Electronics

Nexus-Click
P.B. Electronics
J. Glaser
I.L.P.

Integrex
Island Devices
Kramer
Maplin
Marco
Marshalls
Metac
Minikits
miniad
p 72
p23
miniad
miniad Technomatic
pp9/24 \& miniad Tempus
p61 Vero
p52 Wilmslow
p76
miniad

$$
\begin{aligned}
\text { iniad } & \text { R.F. Equipment } \\
\text { p72 } & \text { Selray Book } \\
\text { p23 } & \text { Sinclair } \\
\text { iniad } & \text { Sintel } \\
\text { iniad } & \text { Sterling Sound } \\
\text { p29 } & \text { C. N. Stevenson } \\
\text { p84 } & \text { Swanley } \\
\text { iniad } & \text { Technomatic } \\
\text { p63 } & \text { Tamtronik } \\
\text { iniad } & \text { Tempus } \\
\text { p40 } & \text { T.K. Electromics } \\
\text { p61 } & \text { Vero } \\
\text { p70 } & \text { Videomaster }
\end{aligned}
$$

p77
p52
p51
p74
p2
miniad
p69
p17
p69

SHOP FROM HOME with our catalogue Fully illustrated and covering over 3,000 components, audio and disco accessories, tools and test meters. Reviewed as one of the best catalogues available. Send 30 p now for your copy (issue No 5). Access, Giro, Barclaycard, Government and educational orders accepted (Giro No 331-7056)
B. H. COMPONENT FACTORS LTD Leighton Electronics Centre
59 North St., Leighton Buzzard, Beds Tel: 2316 (0286) Shop hours: $9-12.30$, 1.30-5 p.m. Closed Wednesday

[^4]SIX 7-SEGMENT LED displays $£ 1$. Postage 10 p . In arrays of six. Ex-equipment but guaranteed. With clock circuit. Mr Bobker, 29 Chadderton Drive, Unsworth, Bury, Lancs.

TURN YOUR SURPLUS capacitors, transistors etc., into cash. Contact COLES. HARDING \& CO., 103 South Brink, Wisbech Cambs. 0945-4 188. Immediate settlement

New Course in Digital Design

Understand the latest developments in calculators,

 computers, watches, telephones, television, automotive instrumentationEach of the 6 volumes of this self-instruction course measures $11 \frac{3}{4} 4^{\prime \prime} \times 8 \frac{1}{4^{\prime \prime}}$ and contains 60 pages packed with information, diagrams and ${ }^{*}$ questions designed to lead you step-by-step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.

After completing this course you will have broadened your career prospects and considerably increased your fundamental understanding of the changing technological world around you.

Guarantee-no risk to you

If you are not entirely satisfied with Design of Digital Systems or Digital Computer Logic and Electronics, you may return them to us and your money will be refunded in full, no questions asked.

Design of Digital Systems

A Self-Instruction Course in $\mathbf{6}$ Volumes

1 ComputerArithmetic

2 BooleanLogic

 3 Arithmetic Circuits 4 Memories \& Counters
5 Calculator Design

 -Computer Architecture

£6.20

plus 80p packing and surface post anywhere in the world (VAT zero rated). Payments may be made in foreign currencies. Quantity discounts are available on request.

To: Cambridge Learning Enterprises, Dept. Dig. FREEPOST, RIVERMILL HOUSE, St. Ives, Huntingdon, Cambs PE1 7 4BR.

- Please send me set(s) of Design of Digital Systems at $£ 7.00$ each, p\&p included
*or set(s) of Digital Computer Logic and Electronics at $£ 5.00$ each, p\&p included
*or \ldots combined set(s at $£ 10.50$ each, p\&p included
Name..
\qquad
\qquad

The new Maplin Catalogue is no ordinary catalogue...

Catalogue includes a very wide range of components: hundreds of different capacitors; resistors; transistors; I.C.'s; diodes; wires and cables; discotheque equipment; organ components; musical effects units; microphones; turntables; cartridges; styli; test equipment; boxes and instrument cases; knobs, plugs and sockets: audio leads; switches; loudspeakers; books; tools AND MANY MANY MORE.

Component section includes a wound Componont coils pot cores. ready-wound rails and chokes from microtils and it coils and plus range of Denco colls and Mennsformers etc

SEND THIS COUPON FOR YOUR COPY OF OUR
CATALOGUEONAPPROVAL! PriCe 50ρ - SEND NO MONEY Please rush me a copy of your am completely satisfied that it is by return of post. Will send $50 p$ within 14 day you within 14 worth not saristied I may return I understand that I need hoep it. days without obligation I understauld
anything from your catalogue shoul

NAME

ADDRESS

Our bi-monthly newsletter keeps you up to date with latest guaranteed prices - our latest special offers (they save you poundsl - details of new projects and new lines. Send 30p for the next six issues (5 p discount voucher with each copy)

กำกุค넾

ELECTRONIC SUPPLIES P.O. BOX 3, RAYLEIGH, ESSEX SS6 8LR Telephone Southend (0702) 715155
Call at our shop 284 London Road. Westcliffon-Sea Essex (Closed all day Monday). Telephone Southend (0702) 47379

[^0]: Left to right; Carter ' M ' siren (100dB), Madewell 'Mini Siren' (100dB), Carter 'Mini-mitre' $(93 d B)$, Gent Siren (1 $10 d B$). A / l dB ratings measured at 3 metres.

[^1]: O'seas orders-add 15\% for P+P All items offered for sale subject to the Terms of Business set out in Doram Edition 3 catalogue. price 60 p The Doram Kit brochure is also available, price 25 p Combined price only 70 p which also entitles you to 2×25 p vouchers, each one usable on any order placed to the value of $£ 5.00$ or more (ex. VAT). DORAM ELECTRONICS LTD
 PO. BOX TR8. WELLINGTON RD. IND EST., LEEDS LS 122 UF
 An Electrocomponents Group Company

[^2]: CRYSTAL CONTROLLED G-DIGIT CAR CLOCK KIT WITH INDEPENDENT JOURNEY TIMER
 Runs off 12 v car battery Protected against low voltage dropout Display comes on with ignition Internal battery backup allows temporary disconnection 6-digit timer, imes journeys up to 24 hrs , in hours, minutes and seconds Automatic intensity ACK but with 8 push buttons for setting time, starting, stopping and resetting timer, selecting display thow "time or journey time All control burtons functional irrespective of display mode selected. Complete including case. Order as CCK, £38.00

[^3]: 37 High Street, Brentwood, Essex. CM 14 4RH.
 TELEPHONE (0277) 216029 - after 3pm it possible please.

[^4]: ITT 5870ST Nixi 0-9 + Data 50p. MM 5314 + Data £3.25. TIL 209 (red) 10 p . Fenwell Thermistors, pair encapsulated 20p, Sub min Toggle SP Change over 38 p , BC 10810 p . 1 N 4148 3p. 741 dil 18 p . P\&P 10p. LB 43 Westacott, Hayes, Middx UB4 8AH

