

NEWS . . . CONSTRUCTION . . . DEVELOPMENTS . . . AUDIO

CALCULATOR DISPLAYS

digit height, bright red LED segment displays for calculators.
digital
watches. clocks, DVMs timers miniature * Fairchild FND-10 singl common cathode $£ 1.00$ (+vat 8p) 6 or $£ 5.00$ (+ vat 40 p)

* HP 74144 digit, common cathode 2 pin di.i. pin out $99 p+(v a t 8 p$) 6 or $£ 5.00(+$ val 40 p * Bowmar $8 \frac{1}{2}$ digit. common bezel £1.85 (tvat 15p) 6 for £10 + vat 80p)
* Texas 3 digit common cathode 12 pind.i.l. pin out 85 p (+ vat 7 p) 6 for E4.00 (+vat 32p)
Texas $4+5$ digit, common cathode 2×14 pin d.i.l. £1.85 pair $+\begin{aligned} & +\mathrm{vat} 15 \mathrm{p}) \\ & +30\end{aligned}$
ypes except FND-1020p (+vat 2p) Texas calculator keyboards. 19 gold plated 'snap' type key contacts on gold plated pcb. 75p (+vat 6p)

£2.95 (+vat 36p) (+vat $28 p$) TWINSTAGGERED £1.50(+vat 18p) £1.75 (+ vat21p) (+vat 28p) GX11 E388
 HENELEC

TAPE HEADS
BX12E343: TRACKERASE HEAD-E1.25 (+vat 15p) STEREO CASSETTE R/RP HEAD (200 ohm) - £ 2.25 MARRIOTTHEADS R/RP1 MARRIOTTRECORD REPLAY \& ERASEHEAD MINIFLUX R9N ERASE - £2.25 GX11 E388 ERASE 675 ohms 2 mA - £ 0.88 (+ vat 11p) GX12 E387 ERASE 675 ohms GX20 E362 ERASE 90 ohms $90 \mathrm{~mA}-\mathbf{E 0 . 8 B}(+$ vat 11 p$)$ R/RP1/3 TAPEHEAD $\frac{1}{2}$ TRACK - $£ 0.65$ (+vat 8)

MULLARD TUNER MODULES -
LP1171 combined AM/FM IF Strip- £4.29 (+vat 53p)
FM front end with AM tuning FM front end with AM tuning
gang, used with LP117t - $£ 4.29$ gang, used
$(+$ vat 53 p$) *$ LP1171 \& 79 pair
 complete AM strip- $\mathbf{2 6 2 . 0 5}$ (+vat 26p) * Ferrite Aerial - 95p (+ vat p\&pall modules 25 p each

HR-RP TAPE HEAD SINGLE RRACK £0.55 (+ vat 6p)
XRPS $17 \frac{1}{4}$ TRACK $-£ 3.25$ (+vat 40p)
XRPS 18

\section*{CIUSH fANTASTIC PRICES!

 DUK PURCHASE-EXCLUSIUE TO HENRY'S | ALLOWS US TO SELL AT SUCH FANTAS AS USED in BRRUO |
| :--- |
| OUALITY ITEMS |}

E3 2518 TRACKRED E3.25 (+ vat 40p) XRPS36 $\frac{1}{4}$ TRACK - $\mathbf{6 . 7 5}$ XES11 $\frac{1}{4}$ TRACK ERASE E1.25 (+ vat $15 p$) EX/RP/63 $\frac{1}{2}$ TRACK - $\mathbf{£ 2 . 2 5}$
(+ vat 28)
 * INCLUDING PROPORTIONALLY CONTROLLED SWITCH ©FEATURING COSMOS
DIGITALLOGIC to minimis DIGITAL LOGIC to minimise
power consumption and extend power consum
battery life.
transmitter- $\mathbf{6 1 1 . 7 5 (+ \text { vat } \mathbf { ~ } 1 . 4 7 \text {) \# }}$ Single ch add on for recelver- $-\mathbf{E 2 . 9}$
it vat $\left.37_{p}\right) * P C$ board for above

 £6.95 (+ vat 87p) Send now for
leafliot No. 8 ($35 p$) for full dotaile
Post etc. 50 peach

HENRY'S

GREAT NEW atralogue
For this latest edition, we \qquad have made nundreds of
changes and additions. Containing virtually.
everything for amateurs everything for amateurs
and protessionals and Mrotessionals
Heny's Radio CataHenry's Radio Cata-
logue is also

ufacturers.

 Mncluded a complete
alphabetical alphabetical index
as well as a sectional index. so
that you'll have no trouble at at
ail in finding what you need.

* OVER 5,000
ovens
$\times 200$ PagFs THE
BEST
EVER!
\star DISCOUNT YOUGUIERS
\Varangle guantir discounis ON most ITAMS

 Compare performance and
specification with units specting 3 times as much!
cost
 Features advanced varicap tuning. Phase lock loop
decoder. Professionally designed circuit. Everything you need
is in the kit. From the glass fibre pcb to the cabinet itself is in the kit. From the glass fibre pcb to the cabinet itself.
spec: 2.5 uV aerial sensitivity. 500 mV output (adjustable). Tuning range $87-102 \mathrm{MHz}$. Mains powered.

MAY EE ASSEMBLED IN AN EVENING. FEATURES $*$ Built-in AM Ferrite aerial KW coverage 150 KHz .
$250 \mathrm{KHz} *$ $1.6 \mathrm{MHz} * F M$ coverage 97.104 MHz * 75Ω aerial for $F M * 150 \mathrm{mV}$ outpul * Size $8 \frac{3}{2}(\mathrm{~L}) \times 6 \frac{3}{2}(\mathrm{~W}) \times 2 \frac{1}{2}(\mathrm{H})$
incorporates 2 Mullard pre-aligned and tested printed circuit, the performance modular design, phase lock constructor only has to build the PCB into the loop principle. Low pass filters for Chassis, connect the power, aerial and output loads.
Styled to match the Texan amp, mains operated. Price £8. $75+$ VAT $£ 1.02$ p\&p 50 p.

We will be pleased to quote for parts for circuits in this magazine. Send your list for quotation in S.A.E.

Ask for FREE leaflets and lists on ourkits projects
All mail to: Henry's Radio 303 Edgware Rd. London W2 LONDON W2: 404/6 Edgware Road. Tel: 01-402 8381 LONDON W1: 231 Tottenham Ct Rd. solos fifoon Tet: 01 - 6366681

d

DECEMBER 1976

Vol. 5, No. 12

Features

ELECTRONICS 2000 A.D10
Looking into the future through electronic eyes!
MAN IN SPACE 25
Space travel is commonplace now - but do we know enough about the effects?
MICROFILE PART 1037
Software and what to do with it!
COMPONENTS PART 554
Carbon resistors are not quite as they seem
ELECTRONICS - IT'S EASY!64
Continuing our series for the beginner73
TECH TIPS
Readers' own circuit ideas
Projects
HEART-RATE MONITOR19
On the beat device - for athletes or experimenters29
AUDIO PHASER
A superb unit for the guitarist41
TOUCH ORGAN
How about a two octave organ for a Xmas present?
AUDIO LIMITER58
Simple design to cater for most needs - by popular demand
Data Sheet
SPECIAL ON LED DISPLAYS49
News
NEWS DIGEST 6
ELECTRONICS TOMORROW 71
Information
ETI SPECIALS 9
BOOK SERVICE 28
SUBSCRIPTIONS 33
NEWSFLASH ABOUT ETI! 34
JANUARY ETI PREVIEW36
ETI WATCH OFFER - DOWN IN PRICE! 57
ETI CLOCK OFFER 57
READER SERVICES INFORMATION 82
ADVERTISERS INDEX 82

Our thanks go to ITC inc LTD TV company for providing the front cover insert from Space 1999

\section*{EDITORIAL AND ADVERTISEMENT OFFICES
 25-27 Oxford Street London V 11 R 2NT
 Telephong $01.4341781 / 2$
 HALVORW. MOORSHEAD
 Editor
 LES BELL, G4CFM
 RON HARRIS B.Sc
 Editoria!
 TONY ALSTON
 Project Development
 JIM PERRY
 Specials ミditor
 JEAN BUTTERWORTH
 JULIAN FITZLYON
 Production
 SANDRA ZAMMIT-MARMARA
 Subscriptions
 MARGARET HEWITT
 Administration
 DAVID LAKE (Manager)
 BRENDA GOODWIN
 Reader Services
 | For adverising enquiries: |
| :--- |
| ROBER-C. EVANS Advertisement Manager |
| Telept one 01-434 1781/2 |
 INTERNATIONAL EDITIONS
 | AUSTRALIA | Collyn Rivers
 Editorial Director
 Steve Braidwood
 Assistant Editor |
| :--- | :--- |
| HOLLAND | Anton Kriegsman
 Editor-n chief |
| CANADA | Peter Perst
 Publisner |
| FRANCE | Denis Jacob
 Editor-in-chiet |}

Electionics. Today international is normally publishaif on the firs: Friday of the month prior to the cover dete

PUBLISHECBY
Modmags L d.
25-27. Ox o d Street, W1R 2NT
DISTRIBLTED EY
Argus Diseleution Ltd (British Isles)
Gordon \& Gotch Lis \{Canada and South Africa)
PRINTED B^{*}
OB Newsfayers Limited. Colchester.
COPYaIG H^{-}All naterial is subject to world wde Copyright potection All teasonable care is taken in he preparaticn of the magazine to ensure accuracy but 三TI rannot be reld responsible for it legally where errors do occur a. correction will be published as scion as possible aterwards in the magazine.

High quality modules for stereo, mono and other audio equipment.

OUR PRICE ONLY

$£ 19.95$

Fitted with Phase Lock-loop Decoder

The 450 Tuner provides instant program selection at the touch of a button ensuring accurate tuning of 4 pre-selected stations any of which may be altered as often as you choose, by simply changing the settings of the pre-set controls. Used with your existing audio equipment or with the BI-KITS STEREO 30 or the MK60 Kit etc. Alternatively the PS 12 can be used if no suitable supply is available, together with the Transformer 7538.
The S450 is supplied fully built, tested and aligned. The unit is easily installed using the simple instructions supplied.

STEREO PRE-AMPLIFIER

Frequency Response

20 KHz Sensitivity of input B 20 Hz Tape Input $100 \mathrm{~m} /$ into 1 stereo pre-amplifier and tone control unit. The six push-button selector switch pro vides a choice of inputs together with two really effective filters for high and low frequencies, plus tape output.
MK. 60 AUDIO KIT: Comprising $2 \times$ AL60's. $1 \times$ SPM80. $1 \times$
BTM80 $1 \times$ PA100. 1 front panei and knobs. 1 Kit of parts to include on/off switch, neon indicator, stereo headphone sockets plus instruction booklet. COMPLETE PRICE £27.55.
TEAK 60 AUDIO KIT 163/" $111^{\prime \prime} \times{ }^{\prime 2}$ ened cabine parts include aluminium chassis. heatsink and front pane bracket plus back panel and appropriate socket etc KIT PRICE £9.20 plus 62p postage
2. Radıo Tuner 100 mV into

100 K ohms
Magnetic $P \cup 3 \mathrm{mV}$ into
50 K
50 K ohms
P.U. Input equalises to R1AA C
dB from 20 Hz to 20 KHz Supply $-20-35 \mathrm{~V}$ at 20 mA

* FET Input Stage

* VARI-CAP diode tuning
* Switched AFC
* Multi turn pre-sets
* LED Stereo Indicato

Typical Specification
Sensitivity 3μ volts Stereo separation 30db Supply required $20-30 v$ at 90 Ma max.

OUR PRICE $£ 13.50$

Enjoy the quality of a magnetic cartridge with your existing ceramic equipment using the new M.P.A. 30, a high quality pre-amplifier enabling magnetic cartridges to be used where facilities exist for the use of ceramic cartridges only It is provided with a standard DIN input socket for ease of connection $£ 2.65$

The Stereo 30 comprise

 pre-amplifier, power amplifiers and power supply. This with only the addition of a transformer or overwind will produce a high quality audio unit suitable for use with a wide range of inputs i.e. high quality ceramic pick-up. stereo tuner stereo tape deck etc. Simple to install. capable of producing really first class results, this unit is supplied with full instructions, black front panel knobs, main switch, fuse and fuse holder and universal mounting brackets enabling it to be installed in a record plinth, cabinets of your own construction or the cabinet available Ideal for the beginner or the advanced constructor who requires Hi Fi performance with a minimum of installation difficuliy (can be installed in 30 mins).TRANSFORMER $£ 2.45$ plus $62 p$ p \& TEAK CASE E3.65 plus $62 p$ p \& p

```
AL20 5w R.M.S. £2.65 AL30 10w R.M.S. £2.95
```


Especially designed to a strict specification Only the
finest components have been used and the latest finest components have been used and the latest
solid-state crrcuitry incorporated in this poweriul litlle
amplifier which should satisfy the most critical A.F

Stabilised Power Supply Type SPM80

SPM80 is especially designed to power 2 of the AL60 Amplifiers up to 15 watts (R.M.S.) per channel simultaneously With the addition of the Mains Transformer BMT80, the unit will provide outputs of up to 1.5 A at 35 V . Size 63 mm .105 mm . 30 mm incorporating short circuit protection
Transformer BMT80
£2.60 + 62p postage

Input voltage $15-20 \mathrm{v}$ A.C. Output voltage $22-30 \mathrm{v}$ D.C. OUR PRICE Output current 800 mA Max Size $60 \mathrm{~mm} \times 43 \mathrm{~mm} \times 26 \mathrm{~mm}$ \&
Transformer T538 $£ 2.30$

SHOP 18 BALDOCK ST., WARE, HERTS AT

MPU's SEW IT UP

Singer have just introduced a sewing machine which is MPU controlled. No, this is not a joke. Yes I did say sewing machine. The MPU replaces 300 mech-
anical parts, and means that 25 stitch patterns can be obtained at no more energy expense than a button push.

POWER TO THE PEOPLE

A new power cable is to be installed in Russia to link two power stations 1500 miles apart. Nothing special there. You might think we're just pylon it on in fact. What is unusual is that this reel of metal cotton is to carry 1.5 MV , and a later 2000 mile link will be under 2.5MV tension. The 'super-lines' will be constructed of steel strands braided with aluminium. Thyristor crystals are employed as rectifiers.

Just the thing to hang your cassette player on.

COLOUR PREJUDICE?

Official figures for the number of homes with colour TV's, i.e. those with a license, have just exceeded 50% of the total. Some lesser mortals might well be tempted to conjecture how high the total would be if the un-licensed felons in our midst could be stood up and counted. Naturally we refrain from any such thoughts.

READER WRITER (SR 52) DATA!

One of our intrepid readers - Mr. P.A. Brown of Ergonomic developments has informed us of a follow up to last months little snippet on the SR 52. It seems this machine is capable of more than anyone is letting on.

Locations 70-97 can be used to store data without affecting the programme store. If the machine is now put into the learn mode, this data will be read out into the magnetic card. Data storage with avengence! Locations 98-99 affect the programme store.

TV RENTAL PROFITS 'TOO HIGH'

The average return on capital of 16.5% a year by the TV rental companies has been condemned by Prices Secretary, Roy Hattersley, as being too high.

Wicked companies!
These are the people who have a) brought Colour TV to over half British homes b) kept TV rentals to the lowest cost anywhere in the world that we know about c) prevented TV rentals costs going up far less than inflation d) kept the British TV industry going despite the best attempts of the government to kill it by juggling with VAT e) forced down the cost of outright purchased sets to remain competitive f) raised the standard of servicing enormously.

Wicked companies!
Still, there is a foolproof way of ensuring that these companies make far less than 16.5%, in fact for them to make a loss (rather fashionable today): nationalise them. The costs of renting would go up instantly of course - but it would put an end to these wicked profits.

PLAY-ALONG-WITH-RCA

Single chip I/O for video games is the laudible aim of messers. RCA. To be introduced in January the device is primarily a vertical and horizontal synching circuit designed for use with RCA's 1802 MPU. Price could well be around $£ 12$ when and if introduced into this country

NOT A TRACE OF INSTABILITY

This new oscilloscope from Scopex offers a very high performance for its $£ 150$. With completely stabilised PSU's (trace stability over $\pm 10 \%$ mains variation) measurement accuracy $\pm 3 \%$, input up to $50 \mathrm{~V} / \mathrm{cm}$, T.V. field mode triggering to allow for Ceefax etc, and triggering up to 10 MHz in ordinary mode, the dual beam 4D10A is an attractive proposition to the affluent amateur or small business.

Scopex Ltd., Pixmore Estate, Pixmore Avenue, Letchworth, Herts.

We've moved thats whats happened! Increasing numbers of staff and our ever increasing circulation has meant that we're working stacked up like sardines in a can.

Just to keep up with ourselves - being the fastest growing, most modern (and most modest) electronics magazine in the country - we're taking up residence in Oxford Street, Our new address is shown below, and all letters, boquets of flowers, messages of congratulations and cheques for vast sums of money should be sent there in future. ETI EDITORIAL AND ADVERTISEMENT OFFICES, 25-27 OXFORD STREET, LONDON W1R 2NT. Telephone 01-434 1781/2.

BAND OF HOPE AND GLORY?

FROM: RADIO SOCIETY OF G,B.
The matter of citizens' band is under continual consideration by the Society's Telecoms Liaison committee and the council approves its present views which are
(a) The RSGB exists to safeguard the interests of its members and of the Amateur Service in the UK. The Amateur Service is a defined service in the Radio Regulations (Geneva 1976) and is accorded world wide status in the same way as the professional services.
(D) While the RSGB may have no direct interest in a citizens' band facility by its present articles of association it must, in the interests of its members, take heed of develop ments likely to affect the Amateur Service.
(c) The major consideration affecting the introduction of any new facility is the ability of the admisiatration to exercise complete and effective control. Anything less is not The RSGB
(d) The RSGB is not opposed to the introduction of a short range personal communicat ions faclity provided that its location in the spectrum and the equipment used are probably one of the most unsuitable frequency bands that could be envisaged. There are three main reasons
(i) its proximity to the amateur 28 MHz band and the consequent availability of (ii) high power equipment together with the ease of illegal operation in this band and existence of long distance propagation during part or the sunspot cycle, (iii) the interference to television receivers, particularly those operatlng in Band 1 Having regard to equipment now available it would appear that a VHF or UHF FN service with power limitation, crystal control and type approved apparatus could be suitable
(e) Location of a citizens band within an existing amateur service allocation is not acceptable to the RSGB. Further, if this facility is eventually allowed it ought to be illegal operation in an amateur band such as is now experienced in the USA

(NEW) HOME ON THE (TEXAS) RANGE?

Texas introduces its new SR-51-II. With a suggested retail price of $£ 59.95$ inc. VAT the SR-51-11 supersedes the SR-51-A.

Key features include the capability to enter complex equations in left to right order as they are staed, full memory arithmetic, key entry con-
versions and engineering notation.
Separate keys for the seven mostused conversions are included on the SR-51-II kéyboard.

The seven conversion keys include inches to centimetres; U.S. gallons to litres; pounds to kilograms; degrees to radians; grads to radians; Farenheit to Celsius (Centigrade); and degrees/ minutes/seconds to decimal degrees.

Engineering notation, which displays results having scientific notation

exponerts in multiples of three, is also included.

The SR-51-II suggested retail price includes a rechargeable battery pack AC adapter/charger and carrying case It has a 10 -digit light-emitting diode display but calculates up to 12 digits internally, rounding to 10 .

The new model is warranted for one year from the original purchase date against defective materials and workmanship to the original purchaser.

European Calculator Division Texas Instruments Ltd., Block C, Manton Centre, Manton Lane, Bedford, MK41 7PU.

The DM44 Digital Multimeter is an optional item on several Tektronix portable oscilloscopes. It permits time interval measurements between any two points on waveforms displayed by the oscilloscopes, indicated by a $31 / 2$ digit LED readout with 1% accuracy. A Delta Delayed Sweep feature is used with the oscilloscopes' main delayed to mark the start and stop points of the time interval measurement.

It also includes a DC Voltmeter ranging up to 1.2 kV with 0.1% accuracy, an Ohmmeter covering 0 to $20 \mathrm{M} \Omega$ (0.3% accuracy) and Temperature Probe from $-55^{\circ} \mathrm{C}$ to $+150{ }^{\circ} \mathrm{C}$, and is available on Tektronix 464, 465, 466, 475A and 485 portable oscilloscopes.

Tektronix UK Limited, Beaverton House, P. O. Box 69, Harpenden, Herts.

TRIPLETS FROM HP

Hewlett Packard have just released details of their latest offsprings, two of which are described here and the third in Microfile.

The 3455A is a healthy (bouncing?) $211 b$ DMM with a choice of $51 / 2$ or $61 / 2$ digit display. This siamese-twinmicroprocessor based machine (2 MPU's inside) features self-check of calibration, mathematical abilities (at less than 1 month?), HP-IB compatibility, and 0.002\% accuracy over 24 hours with resolution down to $1 \mu \mathrm{~V}$.

Sister to the 3455A is the 3437A systems voltmeter with $31 / 2$ digit digit display. Up to 5000 readings per second with .03\% accuracy, variable trigger delay from $.01 \mu \mathrm{~S}$ to .999999 seconds. Number of readings from one trigger up to 9,999.

Both these machines light up like Xmas trees, with LED's in all control buttons to indicate status.

Further details from Hewlett Packard Ltd., King Street Lane, Winnersh, Wokingham, Berks RG11 5AR.

SHIFT WORK IN CCD

Somewhere amid the redwoods in Mountain View, California although admittedly hardly under a bush Fairchild are slaving over a hot soldering iron to perfect their latest toy - a 65,536 bit shift register. Naturally CCD. This plaything of the boffins is organised in 16 blocks of 4096×1 bits. One bit from any block can be addressed, and all blocks recirculate automatically in read mode. Typical power drawn is around 400 mW , and it will arrive in a 16 pin pack - when it arrives at all.

ON THE DOT DISPLAYS

ITT Optical Equipment Division has introduced a 7×5 dot alphanumeric LED display which features 17 mm -high characters and integral MOS shift registers for serial feed electronic drive systems.

The brightness of the display can be controlled by a single DC voltage and any number of displays can be controlled by one clock and one data line.

The devices do not require separate limiting resistors.

ITT Components Group Europe, Optical Equipment Division, Westfield Mill, Broad Lane, Leeds.

BRIDGING THE GAP

Two new types of high-current bright rectifiers - the first capable of handling up to 10A, the second capable of handling up to 15A - have been announced by General Instrument (UK) Limited.

Designated the KBPC-10 and -25 series, the two types occupy identical cases, measuring 18.5×28.5 $\times 25.4 \mathrm{~mm}(11 / 8 \times 11 / 8 \times 1 \mathrm{in})$ overall. they are available in operating PIV's of $50,200,400$ and 600 V .

General Instrument (UK) Limited, Cock Lane, High Wycombe, Bucks.

CORRECTION OF THE MONTH

Project Book 4 - Sweet Sixteen. The components are missing from the over lay diagram. For those sinners amongst you who don't have the back issue July 1976 - we will forward the diagram on receipt of an SAE.

4600 Synthesiser - complete reprint of our surperb synthesiser design produced by Maplin, who can also supply the parts.

£ $1.50+20 \mathrm{p}$ \mathbf{P} and \mathbf{P}.

LE LEVEL METET, LOBIC PUSEX WAA WAA. SHMPLE ChTOS THSTGF
ME FI AMP BW - BWE CAR ALAPM ME FI AMP SW + BW CAR ALAPM DIC

rone Thackins panu.
$£ 1.00+20 \mathrm{p}$ P and P.

Project Book Two - contains 26 popular projects from the pages of ETI, first published July 1975. $75 \mathrm{p}+20 \mathrm{p}$ Pand P .

Project Book Three - 27 more popular ETI projects first published March 1976. $£ 1.00+20 \mathrm{p} P$ and P.

HURRY! PRE PUBLICATION OFFER . . . Normal mail order price for Circuits 1 is $\mathrm{E1.50}+20 \mathrm{p}$ mail. Orders placed before publication will be dispatch, hot from the printers; mail free. Orders must be postmarked before 14th November. Available after this date at $£ 1.70$

A brand new concept from the house of ETI, more than 100 pages packed with a wide range of experimenters circuits. Based on the tremendously popular 'Tech-Tips' section of ETI, Circuit 1 is the first of a series of specials - produced for the enthusiast who knows what they want, but not where to get it! Circuits 1 will also act as a catalyst for further development of ideas, ideal for'the experimenter. The collection of more than 200 circuits is complemented by a comprehensive index, making searches for a particular circuit quick and simple. Also similar circuits can be compared easily, due to the logical layout and grouping used throughout. Last and by no means least Circuits 1 has no distracting advertisements in the main section!

Available in U.K. second week of November
Overseas readers please see note below.

AUDIO	INCLUDINGMOME
SWEET SIXTEEN	HOMRER ALARM
WAA WAA	INTRUDER ALARMCH SWITCH
AUDIO LEVELMETER	PUSH BUTTON DIMMER
EXPANDER-COMPRESSOR	
MOTORIST	PHOTOGRAPHER
ANTI-THEFT ALARM	EXPOSUREMETER
AUTO AMP	PHOTO TIMER
HEADLIGHT REMINDER	
SOLID STATE FLASHER	GENERAL
TEST GEAR	ELECTRONIC DICE
DUAL TRACKING POWER SUPPLY	HIGHPOWER BEACON
SIMPLE CMOS TESTER	TEMPERATURE CONTROLLERS
AUDIOMILLIVOLTMETER	
THERMOCOUPLEMETER	PLUS MUCH MORE

Overseas readers please see note below.

[^0]

YEAR 2000 A.D. - A LOOK INTO

 THE FUTUFAE OF ELECTRONICS
Part 7. Forocesting - Fame and Forrume or Failure end Furility?

IT IS AN interesting and fascinating exercise to try and predict the future. Clairvovance asicle, this short series of articles investigates what we might expect to find ahead. It is a logical step to extrapolate into the future by studying the ideas of the past, but this does not necessarily produce correct allswers. New inventions and dis.enveries markedly alter the pattern of progress.

REASONS FOR FORECASTING

So why attempt a forecast? Many good reasons exist. One is to see if we like what we expect to see.
 Their history ont adoreqthess has optren
 cifl still put little fatith in that method A tar more reliatule way open to as at present is to systematically stuady the already proven possible, extending it to its naturally ser limits.
This approach is logical and appears to have its roots in the late 17 th and early 18 th century writings of that great mathematician, philosopher and politician, Gottfried Wilhelm von Leibniz. His hypothesis about prediction was that events of the future are determined by the many events of today. We call this approach dererminism.
uriderstaphat. Exprobibute esoritiowes ics Chemonstrateg, howiever. that the imore: wo: dek imin iprosesses the liset ter we to say a great deal can be prediciud toy using iime extensions of current systems. The problem is the enormousiv large number of variables and interconnections: these . make many a system virtuallv, unmanageable as an accurate enough model. To illustrate this point, Fig. 2 is a copy of one of many simplified models proposed to simulate the economy of a country. The difficulties still to be overcome are to get correct and relevant input data and to ascertain if the model is detailed enough.

Philosophers are still unable to resolve whether life is entirely deterministic or whether indeed there are factors that man will never

ON BREAKTHROUGHS
Looking forward 25 vears is not too great a step. Where a given currently existing state-uf-the-art will evolve to

is often ictasontatsly otwious in the "dequately Hollued and involved solscalled "ire cak through." that ehanges sodalled ite pak inrough that changes the wath ot progress abrupliy. brand-new concepts but ideas that materialise gradually from the maturing thoughts of many. finally coming to a head as an apparently "new idea". Radio waves were predicted by mathematical means (that is they were seen to exist by studying a mathematical model of the physical situation) before they were demonstrated in practice. Even when we have the final stage of a new development within our grasp we may still be unable to harness it. Edison did not realise he had built the first vacuum-tube diode during his lamp experiments. Nearly twenty years had to pass before the idea was applied.
Faraday's experience illustrates that

Wreakthroughs ird: as inuch as rebease on mallíminol. "then rew areas of the discovery. The notice given in Fig. 3 exemplifies changes in altitude. The late eminent scientist and Nobel Laureate. Sir George Thornson, skilled in physics, aviation and fuel research did not seem to conceive lin a 1955 prediction of his) inter-country communications without a massive network of waveguides or co-axial cables to convey the necessary bandwidth. And what about this futuristic, statement on television from an earlier source
"It has been assumed by many. and stated by some, that within a reasonable number of vears, long-distance transmission, even across the Atlantic, will be broadcast regularly... so the sensational theories predict. The truth is that long-distance television of the type we
know today is never likely to to
practical or evern posalble.". Alan Chappell, Discovery.

Just as wild was this statement by lee de forest (who invented the triode around 1906). He stated in sew York Times article of 1926
"While theoretically and technically television may be feasible commercially and financially I consider it an impossibility. a development of which we need waste little time dreaming.'

The art of the possitule depends not only on human ingencity but on the economic cost involved. Given a huge production run - great demand in other words - the cost per article falls remarkably. This, in turn, allows the basic idea to flow on into other areas of utility. The cheapness of domestic telephone components enabled many other sensors to be realised.

Electronics 2000

Fig.1. A mathematical model - such as this one of a'country's economy provides predictions if the right input data can be fed into it.

ESTABLISHING THE STATE OF IGNORANCE

Another reason for attempting a forecast is because:
"The first step to knowledge is to know that we are ignorant" - Cecil.
By studying the likely new situations we usually reveal areas of ignorance. The subsequent process of research aiming to reduce this lack of knowledge often leads to improved development. We have a term for such studies - impact studies. A good historical example of this principle was the discovery of the more recently found chemical elements.
Antimony was discovered in 1450 A.D. by Valentine, a German alchemist. (Iron and several other
common elements were known at that time, of course). A steady growth in the discovery of more elements continued. By 1900 about 90 were known to exist, many being added as the result of prediction based on the work of Mendelyeev. In 1869 this Russian chemist carefully studied the relat:on between all known elements of his time. He proposed the so-called periodic table which placed elements in the table according to certa:n properties. There resulted gaps in the table - such as the position of the noble gases (argon, krypton, etc.) where an element should be. Knowing the expected properties of these gases it was just a matter of time before they were isolated to further confirm

Edison Electric

 LightDo not attempt to light with match, Simply turn key on wall by the door

The use of Electricity for Highting to in no way harmiul
to health, nor does it affect the soundness of steap.
Fig.2. This notice demonstrates how our minds need releasing to understand new ideas.
the itruth of the predictive framework proposed.
Germanium and gallium were predicted in the same way; before they were known to exist.
Knowing something about the fundamental properties of material before it is isolated in workable quantities does not always assure instant technological use. Silicon was discovered in 1823, germanium in 1886. Both were available to technology at the same time that the thermionic valve grew in importance (1910 onward) as the basis of a new discipline - electronics. It is not surprising that few people could realise in the 1950's that the germanium transistor, then just invented, would so enormously alter our visions by allowing the eventual use of.mass produced dirt-cheap electronic systems.

ŚCIENCE-FICTION

Good sci-fi writers often come remarkably close to the truth about future developments. We cannot objectively assess how the writer arrives at the script but it is fairly safe to assert he or she does so largely by extrapolating current situations into time, throwing in innovations of their. own.
Jules Verne and H.G. Wells wrote fiction that seemed fantasy in their time. Verne did it for amusement; Wells as a message. In 1865 Verne wrote "De la terre a la lune"; in 1901 Wells write "The First Men on the Moon". But even before then Cyrano de Bergerac had written two novels of journeys into space using jet propulsion - and that was around 1640.

These writers are able to throw-off the bonds of the establishment, to imagine other societies, other uses of technology. Robots, in mechanical master form, go back at least to Mary Shelley's Frankenstein (1818). To the society of the day such figments of the imagination - they could be little else at that time - must have been a most

and business with interest arising in government and corporate planning. The methods employed relate to reasonably measurable quantities such as a business operation or advance in a certain kind of technology. It has the merit of being confirmable with time as its standards and norms remain much the same with time.
Systems theory and analysis, dynamic modelling: The system under study is progressively isolated from the rest of its environment. Black boxes are drawn and interconnected such that they represent the input to output changes of the variables flowing around in the total system. The system has inputs, outputs, transfer functions and measured variables as depicted by the example given in Fig. 3 The next step is to transform this form of model to a mathematical, rather than notional one, and begin computation to get the dynamic state of each part of the system.
Even the simplest systems handled this may soon tax human powers to handle the data conversions.
frightening concept. Today we regard such horror tales more as humorous recreation than likely fact.
One major difficulty with science-fiction predictions is that we cannot begin to devise tests of confidence of their validity beforehand because this mode lacks an objective scientific basis of arriving at the result. Intuition can be so wrong and 'gut-feelings' are hard, extremely hard, to justify to others.

THE ACADEMIC APPROACH TO FUTURE'S STUDIES

A significant number of Universities and other tertiary teaching institutions offer courses in the various aspects of what is collectively known as future's studies. Many topics qualify for inclusion - technology forecasting and assessment, cross impact analysis, policy studies, demographic projection, statistical prediction, economic forecasting, systems studies, peace studies, morphology, utopian litrature, science fiction and even gaming are each relevant to prediction making.
Academic studies - many hundreds of courses exist - attempt to put forecasting on a firm objective basis. There is, however, as yet, little evidence that the various methods are indeed reliable enough to be entirely worth the effort. Key methods in vogue today include the following:
Technology forecasting and assessment (TF or TA): This is used in military

Electronics 2000

Mammoth computing ability enables complicated systems to be set going into the future (the time scale being stepped up beyond real time). One example of the use of this form of simulation is when it is employed constantly to check the future stability of nuclear power stations - as based "on past to current" data. But such a system must have correct measurement inputs to give correct answers.

Cross-Impact analysis: This is, in essence, a type of systems analysis because it is based on the premise that "everything is connected to everything else" and has impact on each other.
The users of cross-impact analysis devise a "mathematical matrix that expresses the probability of occurrence of a number of possible developments and represents the direction and strength of the impact one occurrence would have upon the probability of another."
An example of an impact was when silicon became so significant to us as the transistor circuit element. The matrix contains all of the many impacts involved, expressed as probability values ranging from 0 to 1 .
Delphi technique: Most people are familiar with the "think-tank" idea of generating ideas. A group of people, each expert in a specific area and each overlapping a little, meet to talk-out a scheme that will fulfil a stated need. Although this concept works reasonably well it only does so if the people involved blend satisfactorily from the human relations and sociological points of view. There is great risk that the individual views become influenced by those of the others.
In a Delphi study the experts do not meet, nor know who else in involved. Each answers questionnaires sent to them by the co-ordinator who has control over the feed-back between experts. The study passes through several 'rounds', as decided by the co-ordinator, until hopefully a consensus viewpoint emerges.
It was first developed in the 1950's by Olaf Helmer, who subsequently became Foundation President of the "Institute for the Future" in Connecticut, U.S.A. Delphi style studies have been used in education, sociology, science, weapons systems, customer choice plus many more. It is also the basis of assessing the worth of research-grant applications which by their nature, are predictions made by the applicant of what is felt should and can be achieved. It is essential that the experts are truly expert in the field

Fig. 4. A 1907 cartoon predicts aırcraft will replace the car by 1950.
of interest and that they have the flair for forecasting.
The Delphi method does, however, lack that competitive and inventive situation wherein an idea expands to a maturity by constant innovation working on the basic premise.
Experimental Learning, Creativity, Scenarios, Simulations: These are rather loose academic exercises (soft as opposed to hard thought processes are involved) wherein, as the names suggest, participants exercise artistic, intuitive skills to create new situations. Mock-up models of future cities may be built to investigate their design. Museums of the future exist in Denmark and the U.S. These methods use speculation based on reason and judgement; a game of "if".
For all of the academic effort that has been put into the design of techniques and the now many courses, the situation has been summed up as "some past futurists were amazingly accurate, others amusingly inaccurate", Langley, 1975, U.S.A.

FORECASTING SUCCESSFUL OR NOT?

Some forms of forecasting have been notably successful. Weather forecasts are more right than wrong today. Tides in the seas between Britain and the Continent can be predicted to a point where dangerously high tides can be forecast several days ahead. It was not so long ago that weather forecasting to such precision would have been regarded as fantasy. We must not lose sight of the fact that fantasy is only such because of ignorance of some aspect of physical manifestation. We are more likely, at this instant in time, to be able to correctly forecast well-known physical phenomenon than the ill-defined
sociological issues because we have more knowledge about the deterministic variables.
In this first part, we have explained the various methods of forecasting. Very few of even the most objective methods will, however, tell us much about less tangible things such as the way of life ahead. The various methods are applicable to business and military ventures, to applications where enough parameters of the system are in close enough control of the forecaster.
We now look at some more successes and failures of past forecasting.

Electric Lamp: After a discourse on the difficulties of manufacturing incandescent electric lamps, James Swinburne had this to say in 1904:
" A new invention that wants a great deal of working out has against it all the experience and knowledge gained in old manufacture: so unless it is very much better on the face of it, it is not worthwhile troubling about it."
His article suggested that electric light was not worth the development effort!

Telephone: We all have witnessed how the telephone has changed the style of commerce, how it led to radio and then to the television. But did you know Bell was regarded as an "imposter", a "ventriloquist", "a crank who says he can talk through a wire". The Times, of London; said it was humbug. Lord Kelvin greatly helped Bell by issuing a statement that is regarded as the Charter of Telephony. In it Kelvin wrote:
"With somewhat more advanced plans and more powerful apparatus, we may confidently expect that Mr Bell will give us means of making spoken words audible through electric

Fig. 5a. Sketch of a Pascal calculating mechanism (17th Century).
wire to an ear hundreds of miles distant."

Rockets: In 1955 Lord Thompson wrote:
"It is doubtful if such a large rocket 18000 tons to give one ton freedom of space was predicted) would be practical, though von Braun, the designer of the V_{2}, has seriously proposed one."
Apollo missions use Saturn rockets weighing over 3000 tons to launch a comparable payload.
Aircraft : A reversible plane was devised in 1922 with two tails, two fuselages and which could reverse direction in flight. Later, in 1932 Captain Dibovsky, a Russian, designed a plane that could rise vertically into the air and could land on a roof-top,

Fig.5b. A Babbage engine: by incorporating storage the design significantly advanced computer technology.

Fig.5c. Working face of 'Millionaire' calculating machine. (1890's).
or a river. These ideas were not sound as presented then, but today we have the Hawker-Harrier jump-jet that achieves at least part of the aim of these earlier inventors. In 1.907 the cartoon, shown in Fig.4, appeared predicting the decline of the car in favour of the airplane. It was drawn, however, just one year before the "Tin-Lizzie" put motor transport within the working-man's reach.
Writing: And who would have thought that the 1950's new-fangled writing pen of the Biro brothers would have found such overwhelming acceptance in our civilisations.

THE VARYING PACE OF DEVELOPMENT

To illustrate the varying rate of change experienced in a development let us look at some pictorial views showing successive development of the pocket-sized calculator.
The pocket calculator begins its history with the Ancient Greeks who made a calendrical computer in the tradition of planetarium construction (known as the Antikythera mechanism and dated ca. 80 B.C.). The abacus is also extremely old in origin. Other mechanical machines, such as Pascal's many variations shown sketched in Fig.5a, followed - employing small degrees of innovation and change. The real change in attitude came with the Babbage engine developments starting in '1830's. His ideas were sound but machines such as that shown in Fig.5b could not be built at the time. By the turn of the century workable mechanical calculators were in common use. Figure 5 c shows the "Millionaire" which was first marketed

Fig.5d. Handcranked mechanical calculators were common-place in the early part of this century.

Electronics 2000

Fig.5e. The first electronic computer - ENIAC, at Moore School in the US (1948).
in 1893. Until the 1950's mechanically cranked mechanical calculators, such as shown in Fig.5d were widely in use for all manner of calculation. Then came the electronic versions based on valve technology, Eniac being the first general-purpose electronic calculator. It. was begun in 1944, and, as Fig.5e shows, was hardly portable but had much greater capacity to compute
electronic calculators became closer when integrated circuits enabled the release of the desk-top style, densely-packed (by the then standard) minicomputers of the late 60 's. Then came, the truly pocket calculators of today. Today we need not regard complex calculation as a limitation of an objective. Half a week's wage now buys extraordinary capability, at least as much as cost many hundreds of

Fig.5f.Programmable pocket calculators have power undreamed of even a few years ago.
year's wages just thirty years ago. Computers cannot become much more compact - or can they? We have yet to build replicas (see Fig. 5 g) of Nature's calculators using electro-chemical signal processing!
What were the breakthroughs? They seem to be when Babbage laid the ideas for improved and advanced computing machine structure, when electronics was able to do the mechanicals job, and later, when solid-state methods allowed extremely cheap, vastly complicated, circuits to be made.

Metoc Pigitol Untches

NEW TO METAC

A QUALITY WATCH You save £15.00 on retail price

NEW TO METAC

TLC6 B LIQUID CRYSTAL ELECTRONIC WATCH Continuous display with backlight.
Hours, mins, secs,
date, month. Automatic 28, 30, 31 day calendar. Metal bracelet in choice of gold or rhodium. Slimline case.

A GENUINE BARGAIN You save £17.00 on retail price

IMPORTANT. 2 years unconditional guarantee is what it says. a commitment by us to repair or replace at our discretion any metac watch or clock failing to give satisfactory service during the first 2 Years of life thereafter to service the product at a fair and reasonable price

MPU BITS

SC/MP Introkit: 256 bytes RAM, 512 byte PROM with KITBUG debugging program, needs TTY device for operation
£92.50
SC/MP SCRUMPI: 256 byte RAM, 16 switches LEDs, and interface chips on $5 \frac{1}{2^{\prime \prime}} \times 6^{\prime \prime} \mathrm{PCB}$. Requires simple power supply or batteries £64.81
SC/MP Chip with data sheet £18.50 ME6800 Kit: Uses 6800 MPU . Requires TTY $£ 135.00$ FS Kit: Mostek F8 MPU, requires TTY... $£ 165.00$ MM2112 256×4 bit RAM £4.30 2513 Character Generator u/c ASCII $\mathbf{£ 9 . 0 0}$

HARDWARE

Power Supply: P197 gives 5 v at 2A -5 - 12v. suitable for many MPU systems, P197 Kit $\quad \mathbf{1 5 . 5 0}$ Keyboard Kit: 55 keys, upper/lower case options, KDP 5 Kit £42.00
Printer: 40 column dot matrix printer with interface for parallel ASCII input. PR-40 kit $£ 225.00$ Floppy: SA800 or SA801 floppy disk drive, disks and interrace, built, not kit
£625.00
Minifloppy SA400 mini disk drive, disks
and interface, delivery end of year

BOOKS, DATA

SCRUMPI Data
SC/MP Technical Description
75p*
£1.95*
SC/MP Programmers Guide £6.30
6800 Data (Xerox)
75p*
F8 Data (Xerox)
75p*
('Free with appropriate kits)

PRICES (All inclusive)	KIT	BUILT
Gothic Clock Kit-Diam. $6^{1 / 2 / z^{\prime \prime}}$	£23.95	£36.50
Rotating Dial Kit-Diam. ${ }^{\prime \prime}$	$£ 19.95$	£32.50
Wrought-Iron Kit-Diam. $51 / 2^{\prime \prime}$	£46.35	£69.50
Wooden Wheel Kit-Diam. $61 / 2^{\prime \prime}$	£31.50	£45.25
Knight Clock Kit-Diam. 71/2"	£39.50	£62.45
Oak Foliot Kit-Diam. 14" (As illustrated]	£89.50	£125.00

Our new range of clock kits is based on designs hundreds of years old. These clock kits use wood stone and iron to reproduce authentic olde worlde wall clocks in full detail. The kits contain all you need including glue. screws, etc.; and very comprehensive instructions. This range complements our fully electronic clock kits

CONSULTANCY

Bywood would be pleased to quote for hardware, software solutions to your design problems

GET HUNG UP!

For coloured Brochure please send $15 p$ stamps Completed clocks can be seen at our offices

PRICE LIST

CLOCK CHIPS

NATIONAL
MM5309 7 seg + BCD with reset
ALL PRICES EXCLUDE VAT AT 8%

MM53117 seg + BCD
MM5312 7 seg + BCD 4 digit only
MM53137 seg + BCD
MM5314 7 segment
MM53157 seg + BCD with rese
MM5316 Non-mpx alarm clock
MM53187 seg + BCD (external digit select)
MM5371 Alarm clock 50Hz
MM5377 Car clock, crystal controlled LCD
MM5378 Car clock. crystal controlled LED
MM5379 Car clock, crystal controlled Gas discharge MOSTEK
MK50250 Alarm clock ($12 \mathrm{Hr}+6 \mathrm{CHz} / 24 \mathrm{Hr}+50 \mathrm{~Hz}$)
MK50253 Alarm clock ($12 \mathrm{Hr}+50 \mathrm{~Hz} 24 \mathrm{Hr}+50 \mathrm{~Hz}$)
MK50204 Stopwatch / Calculator
MK50395 UP / DOWN Counter - 6 Decade
MK50396 UP/DOWN Counter-HHMMSS
MK50397 UP/DOWN Counter-MMSS 99
CALTEX
CT 7001 Alarm/calender 7 segmen
CT 7002 Alarm/calender 7 SCD
CT 7002 Alarm/calender BCD
CT 7003 Alarm/calender 7 seg . Gas discharge
CT 7004 Alarm/calender 7 seg
GENERAL INSTRUMENTS
AX5:1202 4 digit 7 seg
AY5. 1230 on-off - alarm 7 seg

MHI CLOCK KITS

MHI-5309
MHI-5311
MHI-5314
MHI-5318
MHI-5378
MHI-50250
MHI-50250
MHI-50253
$\mathrm{MHI}-50204$
$\mathrm{MHI}-50395$
1.9
735
735
660
735
1510
8.35
835
14.00
19.50

MHI-50396 MHI-50397 MHI-700 1

MHI CASE Please include + packing) 2.95 SOCKETS
18 pm
24. 28 or 40 pin

Soldercon strip sockets
5.69
5.69
4.88 LITRONIX

DL707, 704, 701
DL727, 728, 721 569 10.17 336 314
814 814
71
7.21 LITRONIX CLASS 11 PRODUCTS
$\begin{array}{lll}6.73 & \text { DL707E } 704 \mathrm{E} & 0.70 \\ 6.727 E .728 E & 1.80\end{array}$
6.73 DL727E, 728E

DL747E, 750E $1-9$
1.48

DISPLAYS

CLOCK MODULES

$3.75 \mathrm{MA1002F}$ (12 hr) or MA1002H (24
245 hr) with Alarm and Clk/Rad features
Module only
MXT101 Transformer
$£ 7.95$
$\mathbf{£} 0.90$
Vero Case
Mod + Tfmr + Case
Complete Kit
E3.00
£ 3.00
E 11.75
$£ 11.75$
$£ 13.00$
5.60 CASES WITH PEFSPEX SCREEN
5.60
11.19
1
14.50 VEPO $26^{\prime \prime} \times 3^{1 / 4} \mathbf{4}^{\prime \prime} \times 2 \frac{1 / 4}{}{ }^{\prime}$
£2.95+25p P\&P

MHI DISPLAY KITS

14.50
14.50
7.30
9.00

MHI-707/4 (digit) 0.3"
MHI-707/60 3." 950 MHI MHI.727 40.5" 850

PAYMENT TERMS

4.76
5.25 Cash with order. Access. Barclaycard (simply quote your number and sign) Credit facilites to accredited account holders Pro-forma invoices can be issued

Please send 20p for post and packing
ALL PRICES EXCLUDE VAT AT 8%
(EXCEPT MECHANICAL CLOCKS AS ABOVE)

An invaluable tool for the bio-feedback experimenter or for the assessment of athletes.

THERE ARE MANY METHODS of measuring heart rate ranging from feeling the pulse, to chart recordings via an electrocardiograph. Other methods include monitoring the electrical potential which triggers each heart best; resistance changes due to changes in blood flow; and change in the volume of blood in blood vessels with each beat.

The detection of electrical signals associated with heart action is the best and most reliable method especially if the subject is exercising. However good connection must be made to the body by special electrodes and conductive paste to ensure very low contact resistance. The method is messy and requires skill in attaching the electrodes.

Similar electrodes are required to measure changes in body impedance and in addition the measurement is usually made by passing an electrical current through the body. This poses a considerable safety hazard as any fault in the insulation of mains-operated equipment can cause lethal currents to pass through the body. For this reason we did not use the method and we strongly recommend that experimenters do not either! With very well attached electrodes even small voltages can produce lethal cur ${ }_{-}$ rents.

LIGHTING UP TIME

This leaves us with the lightbeam method, two variations of which are in common use. Onte is to pass light through flesh to a bone where it is reflected to a photo sensitive device adjacent to the lamp. This has the advantage that
the sensor may be taped to any convenient part of the body, eg, the forehead, but the signal generated is very low. A second method still uses a light source and photo-sensor but the light is passed to the sensor through some thin section of flesh - the fleshy part of a finger or the ear lobe work very well. As there are no electrical contacts with the body this type of sensor is very safe to use and was therefore chosen for use in the ETI meter.
Specific Circuitry: While the detection and amplification of the signal due to heart action can be done with normal linear amplifiers the frequencies involved are very low. Measures must be taken to reject frequencies other than those of interest and to overcome dc offset

problems due to differences in the path lengths depending on where the probe is attached.

Thought must also be given to the type of readout to be used. Were a digital readout to be used, counting of the rate would have to be performed for a full minute in order to obtain a one beat resolution and a new reading could only be taken at one minute intervals if normal frequency measurements are used. However, this problem may be overcome by measuring the period between the pulses and converting this to a frequency which can then be measured using digital logic to obtain a reading on every beat. This is quite valuable in a machine used for diagnostic work where information on the variations in regularity of the interval between adjacent beats can be quite meaningful. However, the method is complex, and expensive and requires some other type of sensor than the light beam type to obtain the accuracy required. As our meter is not intended for diagnosis the digital technique was rejected in favour of a simple analogue meter display.

CHOICE INTEGRATION

Even with an analogue readout we still have a choice of operating methods. We can measure the period between beats as previously discussed or we can use it as an integrating frequency meter. The latter method requires about 25 seconds for the reading to stabilise initially but thereafter it will follow variations in heart rate quite faithfully. The measurement of period between each beat is more rapid in its response but requires more

Fig. 1 Circuit diagram for heart-rate monitor.

How it worlas

The sensor consists of a light bulb and a light-dependant resistor mounted in a clothes peg in such a way that they may be positioned on opposite sides of a small section of flesh such as the ear lobe or a finger. As the heart beats it pumps blood through all the blood vessels of the body which swell. The density of the body therefore changes giving rise to a change in light transmission through the section of flesh to which the sensor is clipped. The LDR which is subject to this change of illumination therefore changes its resistance, and it is this change in resistance which eventually drives the meter. As the actual amount of light transmitted varies greatly from person to person and according to the thickness of flesh between the sensors, some method of stabilising the working base line is required.

The stabilising function is performed by $\mathrm{ICl} / 1$ and $\mathrm{ICl} / 2$. Due to the operating mode of ICl/l the current through the LDR is always equal to the current through R1. The current in R1 is automatically adjusted by ICl/2 such that the output of $\mathrm{ICl} / 1$ sits at about four volts (as the current in R2 must equal the current in R3). Capacitor C2 prevents the current in R1 from changing quickly and hence, relatively fast changes due to heart-beat (which cause changes in LDR resistance) are detected.

As the output of $\mathrm{ICl} / 1$ is at a very low
level this signal must be amplified by $\mathrm{ICl} / 3$ and $\mathrm{ICl} / 4$ by about 40 dB . A low-pass filter which limits the rate, which can be detected to about 250 beats per minute, is aiso formed by IC3/3; and a low-pass filter which cuts off all frequencies below 30 beats per minute is formed by $1 \mathrm{Cl} / 4$. These filters eliminate 50 Hz pickup and any other signals generated by slow movement of the body which could also interfere with the measurement. As the actual signal can vary over a range of 20 dB with different people a level control is incorporated, after IC1/4, and the output from this control is amplified by 26 dB in IC2/1.

The output of IC2/1 has now to be squared up before it can be used. This is performed by a Schmitt trigger formed by IC2/2 where the necessary positive feedback is supplied by R17. Both inputs are biased from the output of IC $2 / 1$ but the ac signal is prevented from reaching the negative input by capacitor C11. An LED driven by the output of IC $2 / 1$ is incorporated to give a visual indication that heart beat is actually being detected.
It is now necessary to convert the square wave from the output of $\mathrm{IC} 2 / 2$ into a voltage proportional to heart rate and this is the purpose of $[C 2 / 3$. Each time the output of IC2/2 goes high, capacitor C12 is charged up via R19 and the positive input from IC $2 / 3$. By the nature of the IC this current has to be balanced by a corre-
sponding current in the negative input This current can only be supplied by the output going high and supplying current via C13. This charges C13 up a little. On the negative edge of the output from IC2/2 the capacitor is discharged via the protection diodes on the input of IC2/3. If R20 was not present C13 would continue to charge up on each input pulse, however R20 bleeds a little current from C13 and the charging stops when it reaches a voltage where the amounts of charge and discharge become equal. The voltage reached will of course now be proportional to the heart rate. The amount of ripple on this voltage is determined by the time constant of R20 and C13 and this is selected as a compromise between response time and ripple. The zener diode is used to stabilise the output of IC2/2 against any changes in supply voltage.

The last section of IC2 is used as a buffer amplifier which provides the two ranges required along with an extra stage of filtering. The output of IC2/4 is metered to give a direct readout of heart rate. A resistor and trimpot in series with the meter allow the instrument to be calibrated and the potentiometer RV3 provides a zero correction (as the output of IC2/4 is not at zero volts but at about 0.8 volts). Diodes Dl and D2 stabilise this against supply variations.

complex circuitry and is very responsive to noise 'glitches' or to phenomena other than heart beat. Furthermore the scale for such an instrument is non-linear and wrong reading. That is high readings are at the left of the scale and vice versa. For these reasons the integrating frequency meter was chosen as the cheapest and most effective method for our particular application.

PROTOTYPE PROBLEMS

Our original prototype was built with 741 type operational amplifiers but in the final version we used the LM3900 which contains four Norton type operational amplifiers in the one package. This is a very economical solution as although the
circuit is quite complex in concept. the whole device only uses two inexpensive ICs.

In the development of the circuit for this instrument a laboratory power supply was used. However, when the completed board was mounted into its case and run from batteries it worked alright until the batteries had been used for a while and then problems were encountered. The unit would just not count correctly. After much experimentation it was discovered that when the Schmitt trigger operated the power rail changed by about 10 millivolts or so and this modulated the bulb thus generating a spurious pulse.

Having located the problem it was a simple matter to cure it - just run the bulb from a separate battery.

Resistors all $1 / 2 w 5 \%$

R1	4 k 7
R2	2 M 2
R3	1 M
R4,5	270 k
R6	2 M 7
R7	4 M 7
R8	100 k
R9	4 M 7
R10	2 M 2
R11	100 k
R12	4 M 7
R13	2 M 2
R14,15	470 k
R16	1 M
R17	4 M 7
R18	2 k 2
R19	10 k
R20	330 k
R21-R23	470 k
R24	1 k 2
R25	4 k 7

Potentiometers
RV1 100 klog rotary
RV2 2 k Trim.
RV3 2 k Trim.

Capacitors

C1	$1 \mu \mathrm{~F} 35 \mathrm{~V}$ electrolytic
C2	100 n polyester
C3	$1 \mu \mathrm{~F} 35 \mathrm{~V}$ electrolytic
C4	220 n polyester
C5	10 n
C6,7	$2 \mu 225 \mathrm{~V}$ electrolytic
C8	220 n polyester
C9,10	$10 \mu 35 \mathrm{~V}$ electrolytic
C13,14	$4 \mu 725 \mathrm{~V}$ electrolytic
C15	$10 \mu 16 \mathrm{~V}$ electrolytic

Semiconductors

IC1.2	LM3900
D1.2	1N914
ZD1	5.1 V Zener 400 mW
LED1	

Miscellaneous

Meter
1mAFSD
PC board ETI 544
Box to suit
$9 \vee$ battery
$2 \times 9 \mathrm{~V}$ batteries
One single pole switch
One double pole switch
LDR ORP1 2 or similar
12 V 30 mA bulb

construction

There is no need to use the box that we used either - any suitable one will do. Just use the wiring diagram supplied to connect up the unit.

The sensor was made from a spring clip type of clothes peg, by mounting the bulb on one leg of the peg and the LDR on the other. Holes must be provided in the peg so that the light can pass through to the LDR. Fix the bulb and LDR into position with a little epoxy cement. The area around the rear of the LDR should be painted black or covered with tape to prevent all light other than that from the bulb reaching it

HEART-RATE MONITOR

Whe WARNING
The ETI 544 heart rate meter described in this project is not intended to be used as a diagnostic instrument.

It is usable by those experimenting in the control of heart rate by biofeedback and is of course of value to sportsmen or sporting organizations to monitor heart rate whilst exercising.

We must advise readers that this instrument must never be used for any other purpose except under supervision of suitably qualified people.

USING THE MONITOR

To use the monitor simply clip the sensor to the ear lobe or to the fleshy part of the finger or thumb. Now adjust the sensitivity upward until the LED justs starts to flash
regularly - indicating that heart beat is being detected reliably. The reading on the meter will start to rise and will become stable after about 25 seconds. Hereafter the reading will faithfully follow variations in heart rate.

Note that the finger or thumb should not be moved whilst taking a reading as this will cause a change in the flesh - which can be interpreted as a spurious heart beat thus giving an erroneous change in the indicated rate.

MAINS TRANSFORMERS PRI 240vsec. $27 / 0 / 27 v$ at $800 \mathrm{~m} / \mathrm{a} . £ 2.35$. P P 50p PRI $110 / 240 \mathrm{v}$ sec 50 v at $10 \mathrm{amps}, ~ £ 10.00$. P.P $\therefore 150$ PRI $110 / 240 \mathrm{v} \sec 50 \mathrm{v}$ at $10 \mathrm{a}, \mathrm{ps}, £ 10.00$. P P £ 150 PRI $110 / 240 \mathrm{v} \sec 20 / 21 / 22 \mathrm{v}$ at 8 amp . £6.00. PPi150 PRI $110 / 240 \mathrm{v} \sec 23 / 24 / 25 \mathrm{v}$ at 10 amp . 7.00 . PPE150 PRI $110 / 240 \mathrm{v} \sec 24 / 40 \mathrm{v}$ at $11 / 2 \mathrm{amp} £ 1.90$. PP 60p. PRI 240 v sec $20 / 40 / 60 \mathrm{v}$ at $2 \mathrm{amp}, \mathbf{£ 3 . 0 0}$. P P 70 p PRI 240vsec $20 v$ at $21 / 2 \mathrm{amp}$. £2.00. P P 65p PRI. 240v sec 18 v at 15 amp and 12 vat 1 amp , £2.25. P P 50p PRI $240 \mathrm{v} \sec 18 \mathrm{v}$ at 1 amp £1,10. P P 35p	CIRCUIT BOARD	
	PCB 1/161 oz COPPER	
	FORMICA 	
		FIBRE GLASS BARGAIN PACK 200 sq in single \& double sided pieces $£ 1.25$. P P 25p
	BARGAIN PACK 10 pcs. $10.9 \times 79 \mathrm{in}$. Plus free $1 / 2 \mathrm{lb}$ etching Xtals, $£ 3.10$. $\text { PP } 45 p$	HIGH CAPACITY ELECTROLYTICS $250 \mathrm{mfd} / 63$ volt, 20p. P P 8p $100 \mathrm{mtd} / 100$ volt. 70p. P P $25 p$ $2200 \mathrm{mfd} / 100$ volt. 90p. P P 25 p $4700 \mathrm{mfd} / 25$ volt. 65p. P P 20p $6800 \mathrm{mfd} / 16$ volt 50 p. P P 15 p $10.000 \mathrm{mfd} / 25$ volt 75 p P F 25 p $47.000 \mathrm{mfd} / 40$ volt E 2.00 . P P $50 p$ $100.000 \mathrm{mid} / 10$ vot. $\mathbf{~ 1 . 5 0 . ~ P ~ P ~ 5 0 p ~}$ $160.000 \mathrm{mid} / 10$ volt, £2.00. P P 50p
12 volt MINI UNISELECTOR 1 1, way, 4 bank (3 non-bridging 1 homing), $\mathbf{~} 2.50$. PP 35p		
24 volt MINI UNISELECTOR 11 way, 6 bank (5 non-bridging, 1 bridging) $£ 2.00$. P P 35p		3 GANG TUNING CAPACITOR .
SIEMENS MINIATURE RELAYS $6 v 4 c$ co with base, 65p ea $24 v 2 \mathrm{c} / 0$ with base, 50p ea		
	ETCH RESIST PENS 55p. P P 5p	MINIATURE METERS 500 micro-amp (level-stereo beacon, etc) scaled half black/half red Size $1 \times 1 \mathrm{in}$. 65p. P P $15 p$
MAINS RELAY 240v $3 \mathrm{c} / 010 \mathrm{amp}$ contacts $£ 1$ with base	FERRIC CHLORIDE ETCHING XTALS 1 lb makes 1 litre pack, 70p. P.P 35p 5 th makes 5 .litre pack, E2.65. P P 65p	
		A.M. F.M. TUNING METER $125-0-125\lrcorner \mathrm{A}$, edgewise $11 / 2 \times 1 / 2 £ 1.10$.
MINIATURE RELAYS $(13 / 8 \times 11 / 4 \times 1 / 2) 24 v .4 \mathrm{c} / 040 \mathrm{p}$.	PRINTED CIRCUIT KIT The no frills all value kit Containing 4 pcs 8×7 Formica laminate 1 pce 6×6 Fibre glass laminate 1 lb Eiching Crysials, 50 cc Resist ink, with instructions $\mathbf{£ 2 . 4 0 .} \mathbf{P}$ P $65 p$	
OVERLOAD CUT-OUTS Panel mounting $800 \mathrm{M} / \mathrm{A} 18 \mathrm{amp} .10 \mathrm{amp} 55 \mathrm{p}$ ea		SIGNAL STRENGTH METER $260 . \mathrm{A}$ (illum) Edgewise $11 / 2 \times 1 / 2 \mathrm{E} 1.10$.
SCR-THYRISTOR 1 amp 400 PIV 35p. 5 amp 400 p P \| V 35p.	BLUE P.C.B. INK Etch resist use with any pen Much cheaper than seady loaded pens 50c c 55p. P P 10p	OUTPUT METER CLEAR PLASTIC $500 \Perp \mathrm{~A} 11 / 2 \times 1 \frac{1}{2}$ square E 1.30 .
EDGE CONNECTOR 54 way 1 vero size etc Can easily be cut to any length, 55p. P P $10 p$ Side Guides to sult the above 15p ea	MINNIE COMDONENTG 10 NELMES WAY, HORNCHURCH ESSEX RM11 $20 Z$ HORNCHURCH 45167 MAIL ORDER ONLY. PERSONAL CALLERS BY APPOINTMENT	

Available to you in kit form at the same moment as its national launch, the brilliant new Videomaster Superscore contains the latest product of MOS technology: a TV game chip.

The logic contained in it had previously to be generated by 100 TTL devices. Now it is condensed into one 28 -pin chip.

This all-new Videomaster plugs into your 625-line UHF TV set (for overseas customers having VHF sets we can supply the necessary VHF modulator) to give you four exciting games (including tennis and football) and two future game options. It features on-screen digital scoring, realistic hit sounds, two bat sizes, two
ball speeds, automatic serving and much more. It runs on six $1 \frac{1}{2}$ volt SP11 type batteries (not supplied).

The Videomaster Superscore kit costs only £24.95 including VAT (recommended retail price of the ready built model is over $£ 40.00$) and comes complete with ready-tuned UHF or VHF modulator, circuit board with printed legend, all resistors, transistors and diodes, built-in loudspeaker, socket for mains adaptor, and, of course, the TV game chip itself.

Easy to put together the Superscore has full assembly instructions, circuit diagram and circuit description. Don't miss this chance to own the newest electronic game at such low cost.

POST TODAY TO:

Videomaster Ltd 14/20 Headfort Place, London SW1X 7HN

Please send me (insert No. requ'd).................Videomaster Superscore Kits at $£ 24.95$ (inc. VAT \& P\&P in UK) or $£ 23.10+£ 4.00$ for P\&P overseas)
I enclose my cheque/money order* for $£$ \qquad VHF modulator required YES/NO*

NAME

\qquad
ADDRESS

BIOMEDICAL aspects of space flight are less publicized than many other phenomena associated with the exploration of space. It is the purpose of this article to attempt to 'fill-in' this gap and acquaint the reader with some possibly fascinating facts.

There are three main biomedical objectives. First, to determine how long the human organism can be exposed to the hazards of space without suffering physical or psychological harm. Secondly to determine which agents are responsible for any physical or psychological deterioration, and thirdly to discover and develop protective and preventive techniques to combat and nullify such agents.

HEARTS OF AMERICA

The combined Mercury, Gemini, and Apollo space programmes, undertaken by the Americans between 1961 and 1975, have provided many thousands of manhours of space environment experience. Generally, the effects of human beings were less serious than expected, although it is still too early for us to suppose that all of the effects experienced are completely understood and are therefore of little concern in future missions.

For example, post-flight medical examinations revealed that astronauts suffer irregular heart beat rates for several days following their mission, when standing up sudden-
ly, or when given a special 'tilting table' test. The blood also undergoes some changes, the skeleton luses calcium, the muscles deteriorate and the body loses weight.

LONG EXPOSURES

The latest findings of Apollc and Skylab suggest that long term voyages may well involve an exposure which will seriously damage the tissues of the astronauts. The variations in the blood and skeleton are believed to be the result of several influences working together - confinement, weightlessness, and possibly breathing a low pressure atmosphere of pure oxygen. Heart and breathing rates are affected by zero gravity, work loads, and possibly psychological stress.

EVA AND THE ASTRONAUTS

During the first American Space Walks (EVA - Extra-vehicular activity), the spacesuits were unable to maintain a cool environment for heavy work loads indeed, even for relatively simple tasks! This resulted in rapid fatigue, and subsequent curtailment of the EVA.

Measurements taken from the biomedical sensors indicated that the work being done by the EVA astronaut was exceeding 3000 Btu/hour. The life-support system of the early suit was rated at peak loads of 2000 Btu/hour, small
wonder their visors got fogged up! Heart and breathing rates returned to normal following rest.

Alterations to the spacesuit, including the addition of watercooled underwear, has largely removed this problem and from the manner in which the lunar astronauts performed their heavy and varied work load it would certainly appear that the original problems experienced with EVA have been overcome.

KEEPING FIT AND HEAVY

The problem involving bone calcium loss and body weight loss has been largely solved by the introduction of calcium rich diets both before and during the mission. Exercises performed regularly reduce the deterioration of muscle tissue and hence stabilize body weight.

RADIATING DANGER

There are two huge belts of radiation, called the Van Allen belts, which surround the Earth rather like the outermost layers of an onion. Missions are now planned to avoid plunging astronauts through all but the least intense regions of these belts, as the metalic walls of the spacecraft will only, shield the astronauts from the less energetic radiation, and the most powerful rays will penetrate the craft and hence the tissues of the crew.

MAN N

 SPACE
DOSED UP

Now, it is held that a short term exposure of 50 Rads (whole-body dose) is unlikely to harm the victim - unless repeated several times in one year. Between 50 and 200 rads the victim will suffer from nausea and sickness, fatigue, and his blood undergoes minor changes. At a dose of 400 Rads the victim becomes very ill and it has been statistically calculated that 50 percent of people receiving such a dose will die within a few days or a couple of weeks. The percentage of deaths rises proportionally with further increases in radiation dosage until a value of 1000 rads is reached - where there is a 99.9% certainty of death!

OFFICIAL VIEW

So far the 'officially released dosage figures' indicate that astronauts have only been exposed to doses of a few millirads. These doses have been present during the entire flight and are accordingly accumulative - hence a dose rate of say, 10 millirads per hour will add up to an accumulative dose of 100 millirads for a 10 hour mission and 1000 millirads ($=1$ Rad) for a 100 hour mission.

Naturally, longer mission times involve the astronaut in higher accumulative doses of radiation. The crews aboard the Apollo Moon craft and those' participating in experiments aboard Skylab, were subjected to much lower hourly doses of radiation. Hence their 'accumulative' whole-body dosage was relatively 'safe' upon their return to the surface of earth.

It has been suggested that an astronaut returning from a Mars mission would have 'lost' about 10 percent of his brain tissue as a result of cosmic ray bombardmient. Certainly if this theory proves correct we shall have to solve the daunting problem of cosmic radiation before we permit our astronauts to risk their 'lives' in such a way, even for such a prize as the Red Planet.

PREDICTED EFFECTS	MEASURED EFFECTS
Poor Circulation	None
Skin Infections	Same Dandruff
Sleep Deprivation	Minimal
Vision Affected	Improved - but occasionally sore
	eyes

Sore Nose and Throat
Disorientation, Nausea, Sickness, Hallucinations
Fainting
Dehydration
Body weight loss
Fatique
Blood changes
Muscular weakness
Skeletal losses
High/Low Blood pressure
High Heart Rates

Heart Failure

Low Heart Rate

Gravity tolerance

Radiation (known to cause blood and cell changes)
Cosmic Ray effects

1
Some stuffiness (due to pure oxygen atmosphere?)

None

None
Some, at first
Averages 3.4 kg ($71 / 21 \mathrm{~b}$)
Low in spacecraft, high in EVA
Red cell and plasma reduced
Slightly on return to earth
Calcium reduced in bones
Slight variations on occasions
Launch:110-180 per minute
EVA: 130-190 per minute
Re-entry: 90-185 per minute

None

In long term earth orbit dropped to 47 beats per minute
Weak on return to earth weight
Low orbital, higher on lunar flights As yet no harm experienced
Flashing Lights 'seen' within brain by cosmic rays hitting optic nerves, etc. Long term exposure suspected dangerous.

The table compares predicted spaceflights effects against those actually experienced. It was thought that weightlessness would seriously hinder the circulation of the blood, no .such effect was found. Predictions were made of fainting, variable blood pressure, nausea, hallucination, disorientation, sickness and heart failure. All of these effects did not occur

In the case of nausea, however, slight signs were discovered in a few cases.
Other forecasts involving high and low heart beat rates, chemical changes in the blood, calcium losses in the skeleton, reduced body weight and dehydration; were correct! Radiation hazard was another predicted effect, but the doses received were relatively small.

SINTEL for MEMORIES - MPU's - BOOKS confonemt row

MEMORY IC's

Intel 2102A-6 (new version of 2102.2). 16 pin IC. TTL compatible. $\left.\begin{array}{l}\text { Single } \\ \text { +5V supply, } 650 \text { nsec., } 1024 \times 1 \text { bit Static NMOS RAM } \\ \text { Intel } 2112-2650 \text { nsec. } 256 \times 4 \text { bit Static NMOS RAM } \\ \text { Intersil IM6508C CMOS } 1024 \times 1 \text { bit Static RAM }\end{array}\right) . \mathbf{£ 4 . 7 6}$

KITS

CAR CLOCK 'AUT-CK' £17.85

1y $154 \mathrm{~mm} \times 85 \mathrm{~mm} \times 40 \mathrm{~mm}$
The SINTEL Car Clock is a four-digit clock in an attractive mini white case. Features large $0.5^{\prime \prime}$ red LED displays - High frequency quartz crystal timebase - an internal backup battery supplies power if the car battery temporarily disconnected - only high quality components are used, Piher resistors, roller tinned tibreglass PC8's, etc. Full instructions included. Simple but sophisticated circuitry gives you good performance at low cost you benefit from our experience in clock design. Suitable for all 12 V , negative earth cons.
Complete kit less battery - Order as 'AUT-CK'
Atso available less case - Order as AUT-MODULE KIT

50 Hz CRYSTAL TIMEBASE KIT: provides an extremely stable outpul of one pulse every 20 msec . Uses. May be mithin is few seconds a month if usod with battery back-up also makes clocks powef-out or switch-otf proof Repiacing
50 Hz signal on battery-powered equipment Providing film 50 Hz signal on batter-powared equipment Providing film
synchronisation Monitoring or Improving turntable speed
Complete kit Order as XTK. DIGITAL CLOCK KITS WITH CRYSTAL CONTROL AND BATTERY BACK-UP

These two kits incorporate our Civstal Timebase Kit (XTK), together with components for
battery back-up. All components, plus a Pp3-type battery, fit neatiy in the clock cases. Accurate to within a tew seconds a month. It mains power is disconnected (through a power cut, accidental switching off or moving clock) the clocks will still keep perfect time. While on beck-up. the displays are off to conserve battery ine.
ATTRACTIVE 6-DIGIT ALAAM CLOCK: Uses Red $0.5^{\prime \prime}$ displays. Features bleep alarm, Touch switch snooze control and automelic intensily control. Alarm remains full Order as "ACK + XTK + BBK Kit also availabie less crystal controt and back-up. Order as "ACK
MINI GREEN CLOCK. Attractive 4 -digit Mantelpiece Clock with bright $0.5^{\prime \prime}$ Green display. complete kit inctuding case less mains cable and plug. Order as "GCK + XTK $+\underset{\mathbf{E 1 9 . 6 5}}{\mathbf{G B B K}}$ $£ 19.65$
E 12.90

DATABOOKS and Datasheets

New 1976 RCA CMOS and Linear IC Combined Databock
New 1976 RCA CMOS and Linear IC Combined Databook New 1976 RCA 'Power and Microwave' Databook 1976 National Semiconductor 7400 series TTL Databook. c. 200 pages TTL Pin-Out Card Index. Set of cards with pin-outs (1op and bottom views) range and many other T.I. IC's
niel Memory Design Handbook, c. 280 pages
ntel 8080 Microcomputer Systems Users Manual. c. 220 pages Motorola McMOS Databook Nol. 5 Series A). C. 500 pages Motorola M6800 Microprocessor Applications Manual, c. 650 pages Motorola M6800 Programming Manual, c. 200 pages Motorola Booklet introd 2650 Ming 220 pp .
2650 Microprocessor Manual 220 pp
National SC/MP Programming and Assembly Manual
National SC/MP Technical Description
DATASHEETS on Microprocessors: (usually Xerox Copies)

| | | | |
| :--- | :--- | :--- | :--- | :--- |
| Intersil IM6100 12 bit CMOS | $£ 0.75$ | RCA CDP1 8028 bit CMOS | $\mathbf{£ 0 . 3 5}$ |
| National SC/MP $\mathbf{8}$ bit. Low cost | $£ 0.75$ | Zilog Z80 (enhanced 8080) | $\mathbf{C 0 . 7 5}$ |
| Signetics 26508 bit. Low cost | $\mathbf{£ 0 . 7 5}$ | Motorola MC 6800 | $\mathbf{C 0 . 7 5}$ |

microprocessors
Please: Microprocessors should only be bought by experienced constructors. Sorry. we cannot answer technical queries or supply data other than from our selection

Please: Microprocessors should only be bought by experienced constructors. Sorry, we cannot answer technical queries or supply data other than from our selection ASSOCIATED IC's			
IM6100CCDL	$¢ 58.00$	6820	$¢ 17$
8080A ($2 \mu \mathrm{~S}$)	¢43.65	6850	£17
6800	£33.87	8224	
ISPA/100 (SC/MP)	£18.75	8228	¢12
2650	£27.00	8251	£17
2650 8255			
MICROPROCESSOR MANUFACTURERS' DEVELOPMENT KITS These include main IC's. PC8. Manuals and Data MEK6800D1 - with the 6800 MPU £137.00 ISP8K/200E-SC/MP Intro Kit MC5-80 Kit C - with 8080A (no PC8) £176.65			

MICROPROCESSOR MANUFACTURERS' DEVELOPMENT KITS
These include main IC's. PC8, Manuals and Data
MEK6800D 1 - with the 6800 MPL
ISPRK $/ 200 \mathrm{E}$
MCS-80 Kit C - with 8080A (no PC8)
CASES and other COMPONENTS

Clock transformer $5 \cdot 0.6 / 300 \mathrm{~mA}$ Order as LED. TAF \quad E1.80
For 5LTO1 $12.0 .12 / 100 \mathrm{~mA}$ 1.5-0.1.5/50mA Order as 5L-TRF perspex for some cases, making them ideal for clocks or instruments. For $751247 \mathrm{~J} P \mathrm{P}$. . $-\mathrm{J}-12$ (Aed) $\mathbf{2 8 p}$. PX.G-J-12 (Green) 28p. For 751410 J PX-R-J-14 (Red) $\mathbf{3 0 p}$, PX-G-J-14 (Green) 30p. For
7514110 PX-R-D- 14 (Red) 40p. The cases are as used in our ACK \& GCK. Dimensions are in mm
$751410 \mathrm{~J}(205 \times 140 \times 4$ $\underset{\mathbf{E 3 . 6 4}}{\mathbf{2} .64} \quad 751237 \mathrm{~J}(154 \times 85 \times 40)$ £1.72
E2.15 $751410 \mathrm{~J}(205 \times 140 \times 40)$
$7514110(205 \times 140 \times 75)$

		CD4033	1.45	CD4070	0.60	IM6508	8.05
		CD4034	1.98	CD4071	0.22		
		CD4035	1.22	CD4072	0.22		
CD4000	0.16	CD4036	3.18	CD4073	0.22		
CD4001	0.16	CD4037	0.99	CD4075	0.22		
CD4002	0.16	CD4038	1.22	CD4076	1.61	CLOCK CHIPS	
CD4006	1.22	CD4039	3.09	CD4077	0.60	AY51202	2.89
CD4007	0.17	CD4040	1.11	CD4078	0.22	AY51224	3.50
CD4008	0.95	CD4041	0.87	CD408 1	0.22	MK50253	5.60
CD4009	0.56	CD4042	0.87	CD4082	0.22	MK50253	
CD4010	0.56	CD4043	1.05	CD4085	0.74		
CD4011	0.17	CD4044	0.97	CD4086	0.74		
CD4012	0.17	CD4045	1.45	CD4089	1.61		
CD4013	0.58	CD4046	1.39	CD4093	0.89		
CD4014	1.05	CD4047	0.94	CD4094	1.94	VEROCASES	
CD4015	1.05	CD4048	0.58	CD4095	1.09		
CD4016	0.55	CD4049	0.55	CD4096	1.09	751410.1	2.64
CD4017	0.99	CD4050	0.55	CD4097	3.87	7514110	3.04
CD4018	0.99	CD405 1	0.97	CD4099	1.90	751237.」	1.72
CD4019	0.56	CO4052	0.97	CD4502	1.29	7512380	2.15
CD4020	1.16	CO4053	0.97	CD4510	1.41	751239K	2.78
C04021	1.05	CD4054	1.20	CD4511	1.62		
CD4022	1.00	CD4055	1.37	CD4514	2.85		
CD4023	0.17	CD4056	1.37	CD4515	3.25		
CD4024	0.81	CD4057	27.95	CD4516	1.41		
CD4025	0.17	CD4059	4.96	CD4518	1.30		
CD4026	1.79	CD4060	1.16	CD4520	1.30	SUNDRY	
CD4027	0.55	CD4062	9.07	CO4527	1.64		
CD4028	0.89	CD4063	1.14	CD4532	1.50	CA3130	1.14
CD4029	1.16	CD4066	0.64	CO4555	0.94	UA741	0.35
CD4030	0.56	CD4067	3.87	CD4556	0.94	(RCA 8 DIL)	
CD4031	2.24	CD4068	0.22	MC14528	1.18		
C.04032	1.11	CD4069	0.22	MC14553	5.24	78L12WC	0.77

ADD 8\% VAT +25 P P\&P on all orders. Phone orders see "Fast Service" for details. Export special order form and postage rates.

LOW COST IC SOCKETS

Soldercon Pins are the ideal low cost method of providing sockets for TTL CMOS. Displays. ICs. Simply cut off the lengths you need, solder into board and snap off the connecting carrier A single purchase of Soldercon Pins gives you any socket you may need, and at low prices. 50 p per strip of 100 pins. 1.000 for $£ 4,3.000$ for $£ 10.50$.

DISPLAYS $\begin{aligned} & \text { These Jumbo LED displays take no more current than } 0.3^{\prime \prime} \text { types. } \\ & \text { All }\end{aligned}$ other CC display (DL704, D1750. MAN 3640 , atc) as they are all electrically identical (but may
heve different pin-outs). Similarly our Common Anode digits may be used an place of any other C. A

TIL321, TIL322

Part No,
FND500
FND 500
TIL321
TIL322
XAN652
XAN654
XAN654
MAN
51TO4
Manutactur
Fairchild Mairchild
FTexas Inst $\begin{array}{ll}\text { Colour } & \text { Type } \\ \text { Red } & \text { Common Cathode LED } \\ \text { Red } & \text { Common Anode LED } \\ \text { Red } & \text { Common Cathode LED } \\ \text { Green } & \text { Common Anode LED } \\ \text { Green } & \text { Common CJthode LED } \\ \text { Red } & \text { Common Cathode LED } \\ \text { Green } & \text { Phosphor Diode }\end{array}$
 Display PCBs feach fits neatly into Verocase 751410
sullable lor FND 500 ,TIL321 TI322 D500-4 (for 4 digt clock) 90p;
DSTM 8 (for counter up to 8 digits)
USING DISPAYS WiTH CMOS £1.35 USING (for counter up to 8 digits

Official Orders Welcomed. For our complete range send for free catalogue and price list

TECHNICAL BOOKS EBOM ETTI

CALCULATORS

99 WAYS TO KNOW AND USE YOUR ELECTROMIC CAL CULATOR
SCIENTIFIC ANALYSIS ON YOUR POCKET
CAICULATOR
Smith

COMPUTERS AND MICROPROCESSORSBEGINNERS' GUIDE TO COMPUTER LOGIC
G. Stapleton
Grasp quickly computer codes. digital logic ops and switching circuits

COMPUTER CIRCUITS AND HOW THEY WORK
B. Wells
Become
1.80
technology
COMPUTER TECHMICIANS HANDBOOK
B. Ward
This giant volume compares to a 1.000 hour course on computer
This giant
mechanics
CONTROL ENGNEERING
N. M. Morris
£3.70
This is the 2nd edition of a highly successful book. keeping fully abreasi
digital electronic circuits and systems
N. M. Mortis £2.60
techniques
MICROPROCESSORS
E10.80
L. Altman
Gives a gener
application
WICROPROCESSORS
D. C. MeGIVAn $\quad \mathbf{E 8 . 0 0}$
D. C. MeGlynn

Technology Archiliecture and Applications. This introduction provides a
clear explanation of this important new device
MICROPROCESSORS AND MICROCOMPUTERS
$£ 15.90$
B. Soucek
nis.
Describes the application pros
common to all microprocessors

ELECTRONICS

ACTIVE FILTER COOKBOOK
D. Lancaster
19.95

ELECTRONIC ENGINEERS REFERENCE BOOK - 4th EDITION
L. W. Turner
A compleetly new and up-to-date reterence book for all engineers and
sudents
£25.60

BASIC MATHS COURSE FOR ELECTRONICS
H. Jacobowitz
Quick shor eul
beginners guide to electronics
T. L. Squires
Short cut for th
$E 2.55$
beginners guloe to transistors
$\frac{\text { J. A. Reddihough }}{\text { Covers the basic theory and practice of modern transistors }} \mathrm{£2.55}$
OESIGNING WITH TTL INTEGRATED CIRCUITS
Toxas instrumentu
Covers the entire family of TTL and practical applications of crevits in
dightal systems.
ELECTRONIC MEASUREMENTS SIMPLIFIED
C. Hallmank
Covers pust about every conceivable test or measurement you will need
E2.10

ELECTRONICS POCKET BOOK
IECTROMICS AMO PHOTOGRAPAY
ELECTRONICS ANO PHOTOGRAPHY
R. Brown
Practical elrcuil projects devoled io photegraphy
$\mathbf{~} 2.20$
electronics self taught
d. Ashe
Covers be £2.20

ESSENTIAL FORmULAE fOR ELECTRICAL ANO ELECTRDNiC ENGINEERS
${ }_{\text {H. Mandy reference book. includes a section on } \mathrm{S} 1 \text { units, resistor colour }}^{\mathbf{N} .20}$
codes and prelerred values
HOW TO BUILD ELECTRONIC KITS
V. Capal

Instructs the kit builder on how to check components how 10 assem 10
and how to cure tauls
FIRE ANO THET SECURITY SYSTEMS

'HANDBOOK OF IC CIRCUIT PROJECTS
J. Awhe £ 1.90
security

From hi-fi circuits to complete digital cour
HOW TO READ ELECTRONIC CIRCUIT DIAGRams

B. Brown
Everything

.
Everything you need to $£ 1.85$
Everything you n

HOW TO BUILD PROXIMITY OETECTORS AND METAL LOCATORS J. Shietds

how to use ic circuit logic elements
$\begin{array}{ll}\text { J. Streater } \\ \text { Helps those untamiliar with dighal logic circuits } & \text { £3.25 }\end{array}$
InTEGRATED ELECTRONICS
67.15
J. Millman
Using an IC approach the text leans the reader step by step from
semiconductor physics to devices, models. circuits and systems

IC OP-AMP COOKBDOK

W. Jung $\begin{aligned} & \text { Covers the basic theory or }\end{aligned}$
$£ 8.75$

INDEXED GUIDE TO MODERN ELECTRONIC CIRCUITS

R. Goodman
ractical S

nfroducing electronic srstems

1. A. Sinclair
$\{1.75$
INSTALLING AND SERVICING ELECTRONIC PROTEGTIYE
$\underset{\text { SYSTEMS }}{\text { H. Swearer }} £ 2$.
Covers installation and servicing of all electronic security systems.
LINEAR ELECTRONIC CIRCUITS AND SYSTEMS
G. Bishop£2.55
LINEAR INTEGRATED CIRCUIT APPLICATIONS

G. Clayton
$£ 4.90$

A practical approach is e
to try out devices hiniself
reader

LINEAR IC PRINCIPLES EXPERIMENTS A ND PRDJECTS
E. M. NoII
$\mathbf{5} .80$

110 OPERATIONAL AMPLIFIER PROJECTS FOR THE HOME
CONSTRUCTRR CONS TRUCTOR
R. M. Marston
Outines the essential characteristics of op amps and presents usefut
puojects

110 SEmiconductor projects for the home construcR. M. Marston

E2.85
introduces the reader to FET
details of many usetul circuits
110 COSMOS DIGITAL IC PROJEGTS FOR THE HOME R. M. Marston. 83.10

110 INTEGRATED CIRCUIT PRDJECTS FOR THE HOME
CONSTHUCTOR
CONSTRUCTOR
R. M. Marston
Ail the projects have been devised, buils and fuily evaluated by the'
Ail the projects have been devised, builh and fully evaluated by the'
author
110 THYRISTOA PROJECTS USING SCR'S
A. M. Marston
¢2.85

MOS DIGTAL ICS

G. Flynn
This book contains information about MOS and CMOS from basic
construction to clrcult application
construction to circuit application
DPERATIONAL AMPLIFFERS DESIGN AND APPLICATIONS (Butr Brown]
G. Tobey
56.60

PIN POINT TRANSISTOR TROUBLES In 12 minutes
Complete information on circuit operations, troubleshooting $£ \mathbf{£ 2 . 8 5}$ service procedures
PRACTICAL TRIAC/SCR PROJECTS FOR THE EXPERIMENTER
R. Fox 12.15

Thyristor theory and practical circuits with low cost SCA TRIACs and

PRINCPLES OF TRANSISTOR-CIRCUITS
S. Amos
Generally accepted as being a standard textbook on tundamentat principles underlying the design of circuits and using transistors
RAPID SERVICING OF TRANSISTOR EQUIPMENT
G. King
£2.85
and hi.fic equipment
SEmiconductor circuit elements
T. D. Towers
$£ 6.00$
wailable, for each device it covers a general deseription, circuit diagram
ymbols and working principles
SOLID STATE CIRCUIT GUIDE BOOK
B. Ward £2.15

TRANSISTOR CIRCUIT DESIGN
Texaz
TL COOKBOO
D. Lencaster

Complete and detailed guide to TTL how it works, han
practical applications.
UNOERSTANDING ELECTRONIC CIRCUITS

A. Sinclair

54.00
tault finding and servicing encountered

UNDERSTANOING ELECTRDNIC COMPONENTS
A. Sinclair extbooks and unapproachable advanced treatments
UNDERSTANDING CMOS INTEGRATEO CIRCUITS
R. Melen
R. Melen
Begrns with basic digral ic S. covers semeconductor physies. C3.50
CMOS

UNDERSTANDING SOLIO STATE CIRCUITS
N. Crowhurst

ع1.90

ELECTRONIC ORGAN BOOKS

transistor electronic organs for the amateur
A. Douglas
£4.90
Wirtiten in a simpie s:yte, this gives a complete explanation of everything
to do with sransistorized organs and is profusely illustrated with cleas to do with transistorized organs and is profusely illustrated with cleas
diagrams the electronic musical instrument manual
A. Dougias

ELECTRONIC MUSIC PRDDUCTION

A. Douglaz
£3.10

SEMICONDUCTOR DATA

international transistor selector
T. D. Towers
£3.75
14 it takes you longer than ane min
then you need a copy of this book
POPULAR VALVE/TRANSISTOR SUBSTITUTION GUIOE £2.15
bitition data for both valves and transistors in one new vol
RADIO VALVE AND SEmICONDUCTOR OATA
A. M. Ball

E2.50
A. ectifiers and optical sem-conductors Thus new edtion (1975) is righ up to date and over 450,000 coples have been sold

RADIO AND TELEVISION

FOUNDATIONS OF WIRELESS AND ELECTRONICS
M. G. Scroggia

SERVICING TRANSISTOR RADIOS

L. D'Airo \quad £2.30

WORLD RADIO TV HANDBOOK-1976
$€ 5.00$

TEST EQUIPMENT AND OSCILLOSCOPES -

 basic electronic test proceduresI. M. Gottlieb
£2.35
oscilloscopes.
THE OSCILLOSCOPE
G. Zwick
£2.10

PRACTICAL TEST EQUIPMENT YOU CAN BUILD
W. Green
£2.15
RADIO, TV AND AUDIO TEST EQUIPMENT
G. King

C4.95
mith the oscilloscope

TESTIMSTRUMENTS FOR ELECTRONICS

M. Clifford
f. 1.65
book
WORKING WITH THE OSCILLOSCOPE
A. Sounders
$£ 1.85$
SERVICING WTH THE OSCILLOSCOPE
G. King
55.00

Ancludes a unique series of photographs showing oscilloscope traces to
be found in normial and faulty equipment. stereo radio colour TV

_ETI project 447

THERE AREN'T MANY ELECTRONIC music accessories that we haven't published as projects in ETI and this project will make the list even shorter.

Most musicians will know what a phaser sounds like and it is going to be very difficult for us to describe the effect to readers who don't know the sound. It really has to be heard to be appreciated.

The most dramatic effect, and the easiest to describe, is that caused by feeding white noise through a phaser. The sound is similar to the sound of surf, an 'atmospheric' whooshing sound. O'n recordings phaser effects can be heard on electric guitars. drums, electric piano, and other instruments.

Technically the phaser acts as a filter - it phases out certain frequencies in the audio spectrum and over a period of a second or two these minima in the response curve sweep up and down the audio band. The response of the ETI phaser can be seen in figure 1. Frequencies between 10 Hz and 4 kHz are present in varying proportions between 0 and 100% of the input signal level. As the values of the components in the phase-shift network change, the proportions of these frequencies will change as the response curve moves up and down the audio spectrum.

The unit we have designed is a six-stage phaser (there are six phase-shift networks in the phasechange path) which gives three minima in its response curve. It is built into a die-cast box so it can be used on stage by a guitarist. The only external control adjusts the speed, except for the foot-operated switch which puts the phaser in or out of circuit. The power is switched on by plugging the jack plugs into their sockets.

CONSTRUCTION
Apart from the PCB the box contains one pot, two jack sockets and a foot-operated switch, so construction is unlikely to be any problem. Use our design for the PCB pattern and insert the components according to the overlay drawing. IC sockets do not have to be used but a socket would spare

Specification-
Phase-shift stages:
Six stages providing a maximum 1080 degrees phase-shift, and consequently three minima (see graph).

Frequency range:
With 10 n and 100 k networks, minima at $40 \mathrm{~Hz}, 160 \mathrm{~Hz}$, and 600 Hz .

With 10 n and 56 k networks, minima at $70 \mathrm{~Hz}, 270 \mathrm{~Hz}$ and 1 kHz (as shown in Figure 3).

With 10 n and 10 k networks, minima at $400 \mathrm{~Hz}, 1600 \mathrm{~Hz}$ and 60 kHz .

In operation the resistive element of the phase-shift networks varies continuously and these minima sweep across the spectrum.

Input impedance:
500k.
Input sensitivity:
3 mV to 1 V .
Overall gain: Unity.
the CMOS IC from the dangers of direct soldering.

First solder the low-profile components to the board, then the other components. When the casemounted parts have been installed, wire up the board to these using sufficiently long leads to enable easy fault-finding, should this be necessary.

For stage use, the phaser needs properly protecting against physical shocks so we strongly recommend you use a die-cast box and wrap the PCB in foam sheeting rather than screwing it to the case. If the phaser is to be built into a mixer or an effects unit then housing is obviously less important.
SETTING UP
The best way to set up the phaser is to use a white noise source and then
adjust the bias preset to give a continuous whooshing sound. If the bias is incorrectly set the sound will be interrupted, it will not whoosh continuously.

If you do not have a white noise source use a signal high in harmonic content: electric guitar, crowd noise, FM hiss, etc.

We cannot teach you how to use the phaser, it is a special effect offered as an aid to creative musicians. It can produce weird effects with almost any audio source (it can, for example, simulate long-distance phonecalls or radio stations) and it is necessary to play certain styles of electric guitar and electric piano.

The phaser can be plugged into the echo send and echo return sockets of the ETI Master Mixer for use on any channel as desired.

_AUDIO PHASER

How it works

The input impedance of the phaser has to be high to prevent damping of the strings when used with an electric guitar. Loading caused by a low input impedance would stop the notes from sustaining properly. In the ETI phaser this is achieved by the high impedance buffer, Q1.
After the input buffer the signal is split along two paths, and the two parts do not meet again until they are mixed back together again at the junction of R26 and R27. One part of the signal undergoes phase-shift, via ICs 1 to 6 , and the other part follows a direct path. Q2 amplifies the output to give an overall gain of unity.
The phase-shift is achieved in six idential RC networks; the overall shift being the sum of the shifts at each stage. IC9 varies the value of resistance in each stage, but we will first look at the operation with a fixed value, say 56 k .
In this case each stage puts a 10 n capacitor and 56 k resistor across the signal. The waveform at the junction of these two components has to be of such phasing as to reconcile the perpendicular phasing of the waveforms across each component.
The signal fed into the op-amp undergoes a phase-shift, but the phase-shift is not the same for all frequencies. In the one stage the signal undergoes a change of 180 degrees at high frequencies and a negligible
change at low frequencies. The curve of Figure 1 shows that there is little shift at 10 Hz and 1080° at 4 kHz (that is 180° at each stage: a total of 1080° from all six stages).

When all six stages are taken into account, frequencies from 10 Hz to 4 kHz have a continuous range of phase-shifts from 0 to 1080°

Figure 1 also shows what happens when equal amplitudes of the two signals (from the direct and phase-shift paths) are mixed.

Because frequencies outside the range 10 Hz to 4 kHz are in phase the response is flat. In-Phase mixing also occurs within this range at two places. These are at phase differences of 360° and 720°, in this case at 160 Hz and at 460 Hz .

The holes in the response are caused by out-of-phase mixing, as occurs when the phase differences are $180^{\circ}, 540^{\circ}$, and 900°. With 10 n and 56 k in the phase-shift networks these minima occur at $70 \mathrm{~Hz}, 270$ Hz , and 1 kHz .

The number of minima in the response is directly related to the number of phaseshift stages. Four stages would give a maximum phase shift of 720° and minima would then only occur at 180° and 540°. If you use eight stages another minimum will occur at 1260°, giving four in all.
The rest of the circuitry in the phaser is used to vary the resistance in the phase-
shift networks to move the response curve of the phaser up and down the frequency axis. IC9 is effectively six sets of complementary FETs and the resistance of each can be controlled by applying a voltage onto its gate. Varying the gate voltage of IC9 causes the effective resistance of R7 to be shunted from 100 k down to a few kilohms.
IC7 is an integrator and IC8 is a Schmitt trigger, together they make a triangle-wave oscillator. This triangle waveform gives a rising and falling voltage to the gates in IC9. The waveform has to be correctly biased to give the desired resistance change in each phase-shift stage. The bias voltage is set by RV1.

RV2 controls the speed of the trianglewave oscillator to give periods ranging from a few seconds down to a tenth of a second or so.

The zero reference voltage for the op-amps is taken from the junction of R5 and R6, which is at half the supply voltage. This does away with the need for a split supply - a single 9 V battery is sufficient. The power is switched on and off by the jack socket. The foot-switch switches the phaser in and out of circuit.

_AUDIO PHASER

Fig 4 Printed-Circuit Layout. Full Size $81 \times 76 \mathrm{~mm}$.

Parts List

Resistors	all $1 / 2$ W 5\%	Capacitors	
R1	470 k	C1,2	100 n polyester
R2	10 k	C3	10 n "
R3	1 k	C4	$100 \mu \mathrm{~F} 6 \mathrm{~V}$
R4	100 k	C5-C8	10 n polyester
R5	10 k	C9	100 n "
R6	15 k	C10	$10 \mu \mathrm{~F} 25 \mathrm{~V}$
R7-R18	100 k	C11	10 n polyester
R19	330 k	C12,13	$10 \mu \mathrm{~F} 25 \mathrm{~V}$
R20,21	100 k	C14	$1 \mu \mathrm{~F} 25 \mathrm{~V}$
R22	1 M	C15,16	$2 \mu \mathrm{~F} 25 \mathrm{~V}$
R23-R25	100 k	Semicondu	
R26	56 k	Q1	2N5485 or similar
R27	5 k 6	O2	BC109 or similar
R28	100 k	1C1-1C8	LA741 op-amp
R29	10 k	1 C 9	4049 CMOS
R30	22 k	Miscellaneous	
R31	2 M 2		
R32	4 k 7	PC Board ETI 447 Two stereo phone sockets Switch - push on push off	
R33	220		
Potentiometers			
RV1	100 k trim type	push button Case to suit	
RV2	2 M log rotary	Knob	

CONTINUOUS DISPLAY LCD WATCHES

UNIQUE ALTERNATING DISPLAY FEATURE
The watch continuously displays HRS. and MINS. with MONTH, DAY and SECONDS on demand. The owner selects the feature where the HRS. and MINS. or MONTH and DAY display alternatively for 2 second intervals until owner resets to normal display. During the alternating cycle seconds are still available on demand.
**Finest American MOS technology
**Quartz accuracy
**Multi-function:
Hrs., Mins., Month, Day, Seconds. Alternating display Back-light. Programmed 28, 30, 31 day months. A.M./P.M. indication for ease of date setting
***All important: UK factory manufacturing and servicing facilities.

Watch Division, Lee Instrumentation Ltd. Bedwas, Newport, Gwent NP1 8 YZ TEL. (0222) 885756-7-8. TELEX: 497084 Reg. No. 639437. Vat Reg. No. 133815480

Watch despatched with matching Gold plated bracelet, in presentation box with instruction booklet and guarantee. Model 1113-10 is also available in a stainless-steel bracelet.

"IF YOU CAN'T SEE IT - IT'S GONE!"

There are only two ways to ensure a copy of ETI: place a regular order with your newsagent or take out a subscription. Don't care about missing an issue? Well, it's up to you but although we do supply back numbers (several hundred are put on one side solely for future demand). However, due to increased readership, these back numbers have been lapped up and the issues for which back numbers are available has declined remarkably.

Help us to help you: please write your name and address on the back of your cheques

TO: SUBSCRIPTIONS DEPARTMENT,
ETI MAGAZINE,
25-27 Oxford Street,
London W1.
I enclose $£ 6.00$ ($£ 7.00$ overseas)
for the next twelve issues
Name
Address

PAYMENT IN STERLING ONLY PLEASE

dit is eti nederland

 (THIS IS ETI-HOLLAND)

 (THIS IS ETI-HOLLAND)}

Australia, Britain, France .. . now Holland (and as you'll see below, soon Canada) . . . the number of ETI editions is growing!

ETI-Holland - known there as Electronica Top Internationaal - was launched on October 4th with the 100W Disco article (featured in September ETI-UK) as the cover feature.

The Dutch edition is being published for the group by Radio Rotor of Emmen - a town in north-east Holland near the German border.

Although sales figures won't be known for some time, over 1,000 subscriptions were received even before the first issue was available. In a country which already has three established hobby-electronics, this can only be regarded as a good omen!

Apart from the 100 W Disco, other features include Microfile, the start of the components series, and five constructional projects. Locally produced articles are of course included, one of which covers a review of a new microprocessor kit (not available in Britain).

The staff of ETI in Britain wish ETI-Holland the same success as we have enjoyed here.

Above is shown the headquarters of Radio Rotor who are publishing our Dutch edition. The ETI offices are in the same building. Below left is Anton Kriegsmann, Editor-in-Chief of Electronica Top Internationaal. Below right is a small section of the labs where all projects are rebuilt before going into the Dutch edition.

Aghtroniostotey

What to look for in the January issue: On sale Dec 3rd

R.M. MARSTON DESCRIBES:

38555 TITER CIRCUITS

The definitive words on the famous 555 IC from R. M. Marston - one of Britain's best known and respected electronics authors. This article provides no less than 38 different applications for the 555 many of them brand new!

A 'nice and easy' project. A simple but high quality 5W stereo amplifier. Based on two I.C.s, the construction is simple, but the sound is superb!

READER OFFER

READER OFFER. We're faced with a prablem with this type of offer: as the product hasn't been announced yet we're sworn to secrecy (sorry about the cloak-n-dagger bit). What we can say is that it's a very low priced offer on a new aid for the electronics lab and amateur enthusiast.

NEW SERIES: SHORT CIRCUITS

In the next issue we start a new series: Short-circuits. These will describe straightforward projects in a short and sweet form - there'll be no unnecessary 'blurb' with them. Many will be simple but it's not specifically a beginners' series - some projects will be highly sophisticated in concept.

The January issue contains three such projects. PATCH DETECTOR is a one-transistor circuit costing under $£ 2.00$. For use when buying a second-hand car to find if body filler has been used. HEADS OR TAILS is an ingenious application of a very standard circuit. Our SCR TESTER can be built easily in an evening and can also be used to test power diodes.

ELECTROMICS IN THE NORTH SEA:

We got wet on this one! Providing a well detailed look at how Britain pulls in the black gold from the North Sea - from the electronics point of view. The companies have been very co-operative and we think you'll agree this was worth the trouble.

For the last few weeks when you've met anyone well informed about electronics they'll have brought up VCT. What is it? Well it may not replace the Op. Amp but it'll stunt its growth: it's a completely new type of IC. Information is very, very scant at present - and much of sheer rumour but we hope to bring you the essence next month - at least a month before it's officially announced!

The cover price of ETI will go up from 30p to 35p with the January issue. We've held our price since May 1975 - that's probably a record for magazines - but well still be the cheapest electronics magazine and the one with the most editorial.
We hope readers will still consider ETI overwhelmingly the best value for money.

$|||||||||\mid e t i$ micrafile

PART 10 - PROGRAMMNG

IT SEEMS TO BE a fairly common problem amongst electronics engineers and enthusiasts approaching microprocessors for the first time, that although they can usually wade through the electrical characteristics, timing diagrams, interface circuitry and conventional problems of that type, they almost always have a mental block on the subject of programming. Although programming is taught in many schools and probably all universities now, it is still somewhat of a mystery to the majority of people. Perhaps this is due to the popular image of the programmer as a white-coated demi-god who commands vast roomfuls of spinning tape reels and flashing lights, and who spends his time computing the origins of the universe or checking tax returns (equally complex problems as far as I'm concerned!).

The fact of the matter is that there is no mystique to computer programming, and if the truth be known, as many computer programmers are baffled by electronics as vice-versa. Let's tackle the problem of programming and see what's involved.

A program is simply a sequence of instructions which make a computer (including a microcomputer) perform a specified function. That's the definition that's perpetually given in the textbooks, but it's not much use if you're faced with writing a program for the first time. What the budding programmer wants to know is: what is the process that takes you from the problem to be solved to the program that will give the solution?
The first step is usually a definition of the problem; in other words, ask yourself what exactly you want to do. Research the problem thoroughly so that you understand it - it's no good writing a beautifully elegant solution for the wrong problem. This is a good time to think about the people who will be using the system and design in some useful features - for instance, a program which calculates the voltages in a circuit as the input varies could give the results in the form of tables or a graph. Which would be more useful - or can you offer both?

This section of the process will usually give some possible methods of tackling the problem. The trick here is to break the problem down into a number of separate tasks which can be performed sequentially - a computer (or MPU) cannot do more than one thing at a time, though of course it operates so fast that it may seem to. Let's take as an example the simple problem of controlling a single traffic light. The processor has to first turn on the red light. It will then wait for a preset time interval by performing a a loop program such as counting down from a preset number to zero. At the end of the loop it will turn on the amber light, and start counting again. At the end of this time interval it will turn off both the red and the amber, and turn on the green. Again it counts down and then turns off the green and turns on the amber. Finally, another counter loop and then back to red.

That's a rough idea of how an MPU would tackle the job - now let's get more specific and examine how the abilities of the processor and the hardware around it can modify your approach. If we use M6800 as an example, it seems obvious to use the M6820 Peripheral Interface Adapter to drive the lamps. In fact one PIA could drive 5 sets of traffic lights and still have inputs available for detecting cars passing over sensors in the road. The individual lamps would be connected to bits in the PIA Data Registers, so that a ' 1 ' in that position would turn the light on and a ' 0 ' would turn it off. Thus, a single memory write instruction could instantaneously set up 8 lamps and there is now no need for an instruction to turn off lamps.

SUBROUTINES

Notice also that we had 4 sections of the program concerned only with counting down to zero - it seems rather silly to write the same thing 4 times over. The M6800, in common with most micros, has the capability of jumping to, and returning from, subroutines. Hence we would write a subroutine to subtract 1 perpetually

O.K. MASTERMIND -...-

DONT TEL ME YOUR DIAGNOSIS
OFEARKHAUBEN OSCILLATION
WAS WRONG AFTER ALL!?
from an accumulator and then check to see if it is zero. If it is, control will then be passed back to the main program, otherwise it will keep on subtracting. This can be written in various forms: as the flowchart in Fig.1, or as the assembly language routine or object code given in Fig. 2.

In general, flowcharts are a very good way of concreting one's thoughts on a particular problem. However, as the program gets more complex, so does the flowchart, only more so! The trend today seems to be towards programmers writing in a high level language and then either using a compiler or converting to assembly language or object code by hand. The idea is to firm up one's approach to the solution and gradually, through several intermediate stages, to become more specific until one reaches the level of machine code. This tends to ensure that all the segments of the program are compatible.

PROGRAM EXAMPLE

This is an example of a very useful program which has been sent to us by Mr. J. Kennedy of Wantage. A frequent requirement in microprocessor systems is that they respond to the passage of time. To
do this they need to have some form of internal clock apart from the one which actually drives the system. Such a device is called a Real Time Clock. The one described here relies upon both hardware and software to gain the advantages of both. To write a Real Time Clock entirely in software would mean (a) a long program and (b) the processor could not execute any other program - which is a bit useless! On the other hand, to implement a clock completely in hardware can be quite expensive, even using a CMOS clock chip with BCD outputs.
This system uses 1 Hz pulses (derived from the mains) to pulse the Non-Maskable Interrupt of the processor chip, thus causing it to jump to the interrupt service routine given here and update its internal time which is held in 3 consecutive memory locations.
A suggested circuit to derive these pulses is given in Fig.3, but this has not yet been tried and tested. An alternative would be to use a crystal controlled oscillator and dividers.
The software consists of 2 sections which is a lump of data comprising time and data required by the main program and the Real Time Clock program itself (memory locations 10 to 28). We shall leave the reader to puzzle the operation of this program out for himself but you should note the extensive use of indexed addressing which is one of the most useful features found in current microprocessors.

MICROPROCESSORS AT WORK

was the title of a symposium held for 3 days in September at Sussex University by the Society of Electronic and Radio Technicians.

The dictionary defines 'symposium' as an ancient Greek drinking party, or a set of articles on one subject, or philosophical or other free discussion. This symposium managed to be all of these, allowing for the fact that there weren't any Greeks there.
20 papers were presented by representatives from the semiconductor manufacturers, by industrial users and academics.
These were varied in content from the almost abstract to the completely down to earth. Two papers in particular are of interest to the amateur: 'Some Experience for Multipurpose Microprocessor System Development' by R.A. Smith of Essex University, and 'Hardware for Teaching Microprocessor Interfacing and Programming' by Dr. D.J. Quarmby of Loughborough University. Both these papers dealt with the development of low cost hardware, in particular avoiding the use of a Teletype.

One interesting fact that emerged from the symposium was the ability of large organisations undertaking development to generate their own development systems in both hardware and software. For instance, several large organisations anticipated that program development would be considerably speeded up by the use of a high level language and so they wrote a compiler for the language of their choice. At least one organisation specially adap-- ted a minicomputer to check out their special purpose hardware.
British Rail engineers presented an amusing (almost Pythonesque) paper on 'Microprocessors in Safety Systems'. This dealt with a self-

LOOP DEC	A	$4 A$
BEQ RETN	27	02
BRA LOOP	20	FB
RETN RTS	39	

Memory Location	Op-code	Logic Instruction		
001	11	Time $=11-03-58$		
002	03			Data
003	58			
004	24	limit of Hrs. Ioop		
005	60			Data
006	60	limit of Secs. loop		Data
010	CE	LDX	03	
011	00			
012	03			
013	A6	LDA A	0,X	
014	00			
015	4 C	INC A		
016	19	DAA		
017	A1	CMP A	3, X	
018	03			
019	2 D	BLT	OB	
01 A	OB			
018 010	$6 F$ 00	CLR	0, X	
010	09	DEX		
01 E	${ }^{86}$	CPX	0000	
01 F	00			
020	00			
021	27	BEQ	03	
022	7E			
024	00	JMP	0013	
025	13			
026	A7	STA A	0, X	
027	00			
028	3B	RTI		

checking system based on 3 micros which checked each other and on finding a disagreement tried to blow each other up. Although this may sound rather odd, it is in fact an extremely sensible principle to follow in the design of fail-safe systems where a faulty processor has to be removed from the system before it can adversely influence performance.

Volumes of papers presented at the Symposium are available from SERT at 8-10 Charing Cross Road, London $W C 2 H O H P$. for $£ 7.50$ inc. postage.

BOBO RESIDENT COMPILER

Intel have just announced a major new software system that enables PL/M programs to be compiled on the 8080 itself. The new resident compiler and its supporting software automatically link program modules together to form the user's overall program. PL/M is a high level language which was developed by Intel from the wellknown IBM language PL/1 about 3 years ago. Until now,programs written in PL/M had to be compiled into 8080 machine code using a main frame computer which usually meant that the user employed the services of a time-sharing bureau for this purpose. Running this compiler on the Intellec MDS800 development system will enable the high cost of time-sharing to be avoided.
The linkage facility is provided by a new disk operating system called ISIS2 which generates linkable and relocatable object code modules from a new macro assembler contained in the package, thus enabling several independent software designers towork on the same overall program without conflict.

The resident PL/M compiler provides other features which have not been available hitherto. It allows the programmer to define data structures and also gives him access to absolute addresses. The user can request the compiler to generate re-entrant code for any procedure, and it will also produce a cross reference list on request or optionally print an 'inner list' of generated assembly language after each PL/M statement.

Also new from Intel is a system controller chip for the 8080A micro which is particularly suited for use in systems containing dynamic RAMs. The 8238 is identical in pin-out and function to the 8228 system controller except that the that the timing of the 'Memory Write' (MEMW) and 'Input/ Output Write' (IOW) outputs has been advanced so that they become available two clock pulses earlier than with the 8228 . This means that memory and $1 / 0$ circuitry have longer to respond and system timing margins are improved.

IM6100 ON OFFER

Rapid Recall are offering the IM6100 microprocessor and support chips in a set for only $£ 42.70+$ VAT. The set comprises one IM6100 CMOS processor, one $63121 \mathrm{k} \times 12$ ROM containing a system monitor, three 6561256×4 CMOS RAMs, one 6101 CMOS parallel interface element and one 6402 CMOS UART for serial interface. The IM6100 (as we never tire of saying!) is software compatible with DEC's PDP-8/E minicomputer. In addition, being CMOS theMPU consumes very little power and can be halted without loss of register contents.
If you don't feel like doing it the hard way, Rapid Recall would no
doubt be happy to sell you an Intercept Junior evaluation system. This comprises a complete IM6100 microcomputer with 256 12-bit words of RAM and a socket for ROM evaluation, a data/instruction entry keyboard, an eight-digit octal output display, a microinterpreter, 3 expansion card connectors and a mounting arrangement for the four torch batteries which power the unit. At the present moment three expansion modules are available: a $1 \mathrm{k} \times 12 \mathrm{bit}$ non-volatile RAM card, a ROM/PROM card, and a serial communications card for VDU or TTY.
Rapid Recall Ltd., 9 Betterton Street, Drury Lane, London WC2H 9BS.

HP LOGIC ANALYZER

New keyboard-controlled logic state analyzers from Hewlett-Packard are dedicated to the design and troubleshooting of systems using 8080 or 6800 microprocessors. An HP-1611A is specialised to one type of system or the other by choice of an 8080 or 6800 'personality module.' Others will be added.
When a 1611A Logic State Analyzer is connected to the circuitry (at the microprocessor's socket, and simultaneously to as many as eight other points if desired), system activity can be displayed on the instrument's CRT directly in the alphanumeric mnemonics of the particular microprocessor's own instruction set. With powerful qualifiers, the 1611A can frame a real-time window around virtually any event, or set of related events - any desired sequence of system operations. The 1611A also accurately measures true execution timing, or counts selected events, as specified by the keyboard. At a point defined by the user, the instrument can halt microprocessor operations; then, if desired, the 1611A can control the transactions that
follow, in single or multiple keyed steps.

On the 1611A CRT screen appears alphanumeric information about the keyboard settings, as well as the data captured. As directed by the kèyboard, the instrument traces and identifies memory transaction after memory transaction in the system's sequence of operations.

It stores 64 of these, displaying the top 16 until the scroll keys are used. (The number of instructions identified is usually less than the number of memory transactions, since an instruction often calls for more than one memory fetch.) A switch selects octal or hexadecimal data listing. Op Code readout may be numeric, or alphanumeric mnemonics may be spelled out, as in the microprocessor manufacturer's programming manual.
The 1611 A is, itself, a micro-processor-controlled instrument operated from a keyboard (The micro used is the 8080). U.K. price of the HP1611 A, Option 080 (for 8080 systems) or Option 068 (for 6800 systems) is $£ 3,650$. Extra personality modules are $£ 730$. Hewlett-Packard Ltd., King Street Lane, Winnersh, Wokingham RG115AR.

Yourfree start to a rewarding newhobby.

Heathkit make the world's largest range of electronic kits. Including hi-fi, amateur radio, test equipment and general interest kits.
Every one of which comes to you absolutely complete-right down to the last nut and bolt.

You'll also get a very easy to understand instruction manual that takes you step by step through the assembly.

So, Jesides making an attractive, useful piece of equipment, you'll also have the makings of a satisfying, rewarding hobby.

To find out more, post the coupon well send you our latest catalogue. Heath (Gloucester) Ltd., Dept. ETI-126, Bristol Rd., Gloucester, GL2 6EE. Tel: Glos (0452) 29451

HEATHKIT

BETTER BUILT BECAUSE YOU BUILDIT YOURSELF

Showrooms at 233 Tottenham Court Road, London and Bristol Road, Gloucester.

-ETI project 602

TOUCH ORGAN

With all the electronics on one pc board this organ is easy to build yet has features like touch keyboard, variable tremolo, two voices and a full two-octave range.

AN ELECTRONIC ORGAN IS A fascinating instrument which these days seems to be rapidly assuming the position in the home once occupied by the piano. Modern organs are, however, very expensive which puts them beyond the reach of most people. Lower down the scale in cost and performance are chord organs which although still polyphonic are fairly limited reed type instruments operated by a small blower. The name chord organ comes from the fact that the bass accompaniment is by means of buttons which generate the appropriate chord

The cheanest possible organ is the so called monophonic organ (only one note can be played at a time) which is usually little more than pocket sized and is played with a stylus

The first obvious improvement
required is to devise a better keyboard arrangement as the stylus operation can only be described as somewhat of a nuisance. However the $£ 40$ cost of a full keyboard cannot be justified. As can be seen from the photographs the new keyboard is still of the touch type but has now been designed so that the organ is played simply by touching the appropriate key, as in a full scale instrument. Tremolo is also provided and this too is switched on and off by means of touch switches and a control is provided to adjust tremolo depth

The next improvement is in the accuracy of the tuning, which in the previous instrument varied over the keyboard due to the one-only resistor used to increment between each note. In our new version tuning over the keyboard is much improved by using two resistors,
where necessary in series or parallel, to obtain the nearest possible to the correct value of resistance. Finally the instrument is provided with two voices or stops which add greatly to the variety of the music which can be produced

This little organ is relatively inexpensive to build, should provide a great deal of enjoyment and is musically and electronically educational

DESIGN FEATURES

As mentioned earlier the major feature is the implementation of the keyboard by means of a finger touch system rather than the 'probe" type
This means that some electronics must be associated with each key to detect that it has been touched. Touch control is usually effected by the capacitive, resistive or 50 Hz injection methods. Whilst the capa-

Resistors all	1/W 5\%	R32	8k2	R46	68k	R58	120k	R79,81,83	4M7	R105	100k
R1,3,5,7	4M7	R33	1 k 2	R47	220k	R59	470k	R85,87,89	4M7	R106	5k6
R9,11, 13	4M7	R34,35	10 k			R60	150k	R91,93,95	4M7	R107	820k
R15,17,19	$4 \mathrm{M7}$	R36	270	R48	330k	R61	3 k 3			R108	2.7Ω
R21,23,25	4M7	R37	10k	R49	120 k	R62	12k	R74,76,78	100k	R109	22k
R2,4,6,8	100k			R50	180k			R80,82,84	100k	R110	330k
R10,12,14	100k	R38 R39	1 k 12 k	R51	$560 k$	R63	220k	R86,88,90	100k	R111	10k
R16,18,20	100k	R39 R40	12 k 10 k	R52	270k	R64	33k	R92,94,96	$100 k$	R112	15k
R22,24,26	100k	R41	2k2			R65,66,67 R68,	27k				
R27	6 k 8	R42	8k2	R53	180k	R70,71	18k	R98,99,100	100k		
R28	330			R54	22k	R 71		R101	820k	Potentiometers	
R29	6k8	R43	4k7	R55	390k			R102	4M7	RV1	47 k los
R30	390	R44	15k	R56	4k7	R72	15k	R103	100k	RV2	47 kloc
R31	10k	R45	8k2	R57	15k	R73,75,77	4M7	R104	4M7	RV3	2k trim

Printedraircuit board layout for the monophonic oryan. Full size 345×120 wn,

TOUCI ORGAN

How it works

Operation of the organ will be described by considering separately the five sections of which it is composed. These are
(a) Keyboard
(b) Oscillator
(c) Filter
(d) Output amplifier
(e) Tremolo circuit
(a) Keyboard. Unlike the previous organ the keyboard is operated by the contact resistance of the finger and not by a probe Each key has a CMOS gate associated with it where both inputs to the gate are connected together and to the positive supply via a 4.7 megohm resistor. When the key is touched the inputs of the gate are pulled low (0 V) via the 100 k resistor causing the output of the gate to go high. This pulls the corresponding point in the resistor chain high via the diode. Thus by selecting and touching different keys we connect various amounts of resistance between pins 2 and 6 of the 555 oscillator and the positive supply, thus enabling it and varying the frequency determining time constant circuit.
(b) The Oscillator. The oscillator is based on a 555 timer IC. The capacitor Cl is charged up via a section of the resistor chain (as by the keyboard) together with the resistor

R113. When the voltage at pins 2 and 6 reaches that set at pin 5 , the capacitor is discharged rapidly via R97 and an internal transistor connected to pin 7 of the 555 . When the voltage across Cl has dropped to half that set at pin 5 , the internal transistor turns off and the capacitor is allowed to charge up again - thus repeating the cycle and generating a sawtooth waveform across the capacitor. This waveform has a high harmonic content but is generated at a high-impedance point. A unity gain buffer is therefore used (IC8) to prevent this output from being loaded by the following circuitry. A second output of a narrow pulse waveform is available at pin 3 of the 555 and this is used to generate a second voice for the instrument
(c) Filter. A number of different filters were tried but from a cost point of view it was difficult to justify anything more than a simple RC filter on the sawtooth which gives quite a pleasant flute-like effect. As the narrow pulse train sounds somewhat similar to strings it is merely attenuated to match the level of the filtered sawtooth
(d) The Output Amplifier. The loudspeaker is driven by an LM380. Volume control is provided by means of potentiometers RV1 and the required voice is selected by means of switch SW1. The LM380 should be fitted with heatsink fins as detailed in the
struction
(e) The Tremolo Circuit. Tremolo is produced by means of a low frequency oscillator running at approximately 8 Hz (IC11). The oscillator can be turned on and off by means of the flip flop formed by gates $1 C 7 / 3$ and IC7/4. This flip flop is set to the 'on' or 'off' mode by means of touch switches which operate in exactly the same manner as the main keyboard. To increase tremolo frequency decrease R101 and vice versa.

The output from the tremolo oscillator is filtered by C12 and R109 to give a smoother waveform and the resultant waveform buffered by IC12. The gain of IC12 is adjustable by means of RV2 and this control therefore adjusts the depth of the tremolo modulation. The potentiometer RV3 is a trim potentiometer which effectively sets the output from IC12 to pin 5 of the 555 and thus the frequency of the organ. If it is required to shift the keyboard up or down an octave or so this may be done by changing the value of C 1 by a factor of two. If the keyboard tuning is found to be skewed (when tuned correctly at the centre one end of the keyboard is low whilst the other is high) this may be cured by changing the value of R97. If it is sharp at the low end decrease R97 while if flat at the low end increase R97

citive method is the best of these it is also the most expensive and for this reason is not used. The 50 Hz injection method is also complex and thus the resistive method was considered to be the only practical way from a cost point of view.

As the keyboard is now played by the finger it also needs to be larger than usual although still not quite as large as a full-size keyboard.

In the original concept an OM 802 was used as the tone oscillator. This was replaced by a 555 timer IC as this is cheaper and easier to use. The 555 has two outputs which can be used, a sawtooth wave and a narrow pulse. Both of these outputs are used in our design to provide different voices for the instrument. The sawtooth is filtered by means of a simple RC filter to remove some of the harshness due to the harmonic structure and the resultant voice has a rich flute-like sound. The pulse output is matched in level to the sawtooth by means of a resistive attenuator but is otherwise unfiltered. This voice has a string-like sound.

Filtering has been kept very simple, again from a cost point of view. If the constructor desires he may experiment with different filters in order to achieve different sounds. With conventional organs the stopfiltering is done for every octave of the organ to prevent undue tone and level changes at different frequencies. With the two octave span of this organ some change in tone and level must be accepted over the range of the keyboard when using simple filters.

As attenuating filters are used in the organ plenty of gain is required in the audio stage and for this reason an LM380 is used in the audio output stage to drive the loudspeaker.

CONSTRUCTION

The keyboard pattern is etched directly onto the printed-circuit board which also carries the rest of the electronics. As the copper of the keyboard would rapidly tarnish when continuously being touched with the finger it is necessary for the board to be either tinned or protected with some other plating process that will prevent tarnishing.

Commence construction by mounting the LM380 into position and then fit small heatsink fins, as shown in the photograph, to either side of the IC. Solder them to pins $3,4,5$ on one side and pins 10,11 and 12 on the other. This should be done first as there is little room in this area of the board once other components are in position. Fit the
two wire links and assemble the low-height components to the board as shown on the overlay.

Mount the remaining ICs last of all and take particular care not to handle the CMOS ICs excessively before insertion. Check the polarities of polarised components such as ICs, capacitors and diodes before soldering them into position.

To avoid having screws showing on the keyboard we glued the two switches into position with fiveminute epoxy. Use a piece of printed-circuit board or metal behind each mounting hole to obtain extra glueing surface and extra strength. Mount the potentiometers and wire the complete board as detailed in the overlay diagram.

The complete unit should now be tested to ensure that all notes and functions are operating correctly before mounting into a suitable cabinet

PLAYING THE ORGAN

Although the new organ is played with the fingers as with a full instrument there are a few small playing differences which should be kept in mind.

Firstly the instrument is monophonic. That is, if two notes are touched simultaneously only the higher note will sound. Secondly, the fingers must be kept dry, as any moisture across the key will hold that note on when the finger is removed. If this does happen they the keyboard should be wiped with a clean rag. In stubborn cases a little methylated spirits on the rag will help.

Finally, it should be remembered that unlike a piano there is no "touch" to the instrument and hitting the key hard will not alter the sound. In this respect it is similar to a real organ and the player should get used to touching the keys smoothly and firmly with the flat part of the finger - not the extreme tip.

TOUCI TUNES

WALTZING MATILDA
VERSE:
EEEDDCDECABC
GCEGGGGGGG CDEEEDDCDECABC GCEGFEDDDC
CHORUS:
GGGGE
CCCBA
GGGAGGGFED CDEEEDDCDECABC GCEGFEDDDC

HYMM TO JOY (BEETHOVEN'S NINTH)

EFGGFEDCCDEEDD EFGGFEDCCDEDCC DECDEFECDEFEDCDG EFGGFEDCCDEDCC
'FRERE JACQUES'
CDEC
CDEC
EFG
EFG
GAGFEC
GAGFEC
CGC
CGC

GOD SAVE THE QUEEN
CCDBCD
EEFEDC
DCBC
CDEF
GGGGFE
FFFFED
EFEDCEFG
AFEDC

COLONEL BOGEY
CAAA\#CAAF
CAAA\#ACCA\#
A\#GGAA\#CA
ABAGCABGDC

AMAZING GRACE
CFFAGFAGFDC
CFFAGFAGCC
ACCAGFAGFDC
CFFAGFAGF

Depter
ALL PRICES INCLUDE VAT. POSTAGE: 25p; over £̄5 free

DOLBY © 'B' NOISE REDUCTION KIT
 Trademark of Dolby Laboratories inc

Build your own Dolby system using this exclusive approved kit
Featuring

- switching for both encoding (low-level h.f compression) and decoding
- a switchable f.m. stereo multiplex and bias filter
- provision for decoding Dolby f.m. radio transmissions
- no equipment needed for alignment.
- suitability for both open-reel and cassette tape machines
check tape switch for encoded monitoring in three-head machines
The kit includes
- complete set of components for stereo processor
- regulated power supply components
- board-mounted DIN sockets and push-button switches
- fibreglass board designed for minimum wiring
- solid mahogany cabinet, chassis, twin meters, front panel, knobs, mounting screws and nuts

> Typical performance
> Noise reduction: better than 9 dB weighted.
> Clipping level: 16.5 dB above Dolby level (measured at 1% third harmonic content).
> Harmonic distortion 0.1% at Dolby level typically 0.05\% over most of band, rising to a maximum of 0.12%. Signal-to-noise ratio: $75 \mathrm{~dB}(20 \mathrm{~Hz}$ to 20 kHz , signal at Dolby level) at Monitor output
> Dynamic Range $>$ 90dB
> 30 mV sensitivity

PRICE: £37.90

+ VAT

Dolby level cal tapes are available for open-reel use and for cassette (specify which) Price $\mathbf{£ 2 . 0 0}+$ VAT .
Please add VAT at $121 / 2 \%$ unless marked thus', when 8% applies
We guarantee full after-sales technical and servicing facilities on all our kits
High performance Tuner-Amp and Tuners available

Bparhitamk

Capacitive discharge electronic ignition kits

VOTED BEST OF SSYSTEMS TESTED BY popular． MOTORING
＊Smoother running
＊Instant all－weather starting
＊Continual peak performance
＊Longer coil／battery／plug life
＊Improved acceleration／top speeds
＊Up to 20\％better fuel consumption
Sparkrite Mk． 2 is a high performance，high quality capacitive discharge， electranic ignition system in kit form．Tried，tested，proven，reliable and complete．It can be assembled in two or three hours and fitted in $15 / 30$ mins．
Because of the superb design of the Sparkrite circuit it completely eliminates problems of the contact breaker．There is no misfire due to contact breaker bounce which is eliminated electronically by a pulse suppression cifcuit which prevents the unit firing if the points bounce open at high R．P．M．Contact breaker burn is eliminated by reducing the current to about $1 / 50$ th of the norm．It will perform equally well with new，ald，or even badly pitted points and is not dependent upon the dwell time of the contact breakers for recharging the system．Sparkrite incorporates a short circuit protected inverter which eliminates the problems of SCR lock on and，therefore，eliminates the possibility of
blowing the transistors or the SCR．（Most capacitive discharge ignition blowing the transistors or the SCR．（Most capacitive discharge ignitions coil／distrlbutor ignition up to 8 cylinders．
THE KIT COMPRISES EVERYTHING NEEDED
Ready drilled pressed steel case coated in matt black epoxy resin，ready drilled base and heat－sink， 100 quality 5 year guaranteed transforme and components，cables，coil connectors，printed circuit board，nuts bolts，silicon grease，full instructions to make the kit negative or positive earth，and 10 page installation instructions．
OPTIONAL EXTRAS
Electronic／conventional ignition switch
Gives instant changeover from＂Sparkrite．＂ignition to convention ignition for performance comparisons，static timing etc，，and will also switch the ignition off completely as a security device，includes switch connectors，mounting bracket and instructions．Cables excluded Also available RPM limiting control for dashboard mounting
（fitted in case on ready built unit）．
CALLERS WELCOME．For Crypion turing and fititing sevive phone（0922） 33008
prices include vat，post and packing．
Improve performance \＆economy NOW

Quick installation

 No engine modification requiredElectronics Design Associates，Dept．ET12
82 Bath Street，Walsall，WS 1 3DE．Phone：（0922） 33652
Name
Address

E

Cheque No

ambit．．．．atam Coils，ICs for RF\＆AF，Tuners， Modules for AM FM \＆TV．

complete tuner kits

Larsholt Signalmaster Mark 8．．．．the most stylish FM tuner kit that is available today．Suitable for even the relatively inexperienced in electronics construction，with clear and consise point－to－point details． Performance matches the excellent looks．

Radio ICs

R 3089 E
CA3089E FMIF $1.94+7805 \mathrm{UC} 5 \mathrm{~V} 1 \mathrm{~A}$ CA3090AQ mpx $\begin{array}{ll}\text { MC1310P mpx } & 2.20+\text { TDA1412 }\end{array}$ SN76660N IVM HF $0.75 \quad 7815 \mathrm{UC} \quad 15 \mathrm{v} 1 \mathrm{~A}$ $\begin{array}{llll}\text { TBA120AS FMIF } 1.00 & 78 \mathrm{M} 20 & 20 \mathrm{~N} 1 / 2 \mathrm{~A} \\ \text { MC } 1350 \mathrm{AM} / \mathrm{FM} 1: 0.70 & 78 \mathrm{M} 24 & 24 \mathrm{v} 1 / 2 \mathrm{~A}\end{array}$ MC 1350 AM／FM 11． 0.70 TBA651 AM1 system 1.71 uA720 AA1 system 1.40

Audio ICs
LM380N 2W scp 1.00 M381N 20w scp 2.99
$t=$ includes coil
$=8 \% \vee A T$ ，others 12.5%

Transistors
ZTX107 0.14 ZTX108 0.14 Z゚「X109 0．14 ZTX212 0.16 $\begin{array}{ll}\text { ZrX213 } & 0.16\end{array}$ Z＇JX214 0.16 ZTX413 0.18 ZTXSS1－0．18 Zr＇X451 0.18 Bトこ224 0.22 BD）165 0.50 BD166 0.54 BD535 0.52 BD $536-0.53$ BD609 $\quad 0.70$ BD610 $\quad 1.20$ $40673 \quad 0.50$ $\begin{array}{ll}\text { MEN1680 } & 0.75 \\ \text { B1：256I．} & 0.38\end{array}$

Tunerheads for VHF FM and UHF TV（All varicap types） EF5800 6 cercuit high quality 88.108 M11\％tunerhead
El：5600 5 circuit high quality $88-108 \mathrm{MHz}$ tunerhead

71597 Varicap tuncd MW radio module．The best AM
$\begin{array}{lll}\text { kit } & \text { tuner，with } 75 \mathrm{~dB} \text { AGC，} 0.3 \% \text { THD．} & 9.65 \\ 8001 \mathrm{kit} & 55 \mathrm{kHz} \text { low pass，hirdy，filter forstereo radio } & 1.75\end{array}$ 2020 kit TDA2020 stereo amplifier，with special heatsinks 9.35
Famous TOK゙O COILS，Mechanical filters，ceramic filters，chokes etc． $455 / 470 \mathrm{kHz}$ IF coils $0.30 \mathrm{M} 41 \mathrm{~T} 4 \mathrm{kHz} / 455 \mathrm{kHz}$ Mech filt． 1.65 （ $1 \mathrm{st}, 2 \mathrm{nd} \& 3 \mathrm{rd}$ ）IF＇rs $\quad 0.70 \quad 3171 \mathrm{l} 7 \mathrm{klHz} / 455 \mathrm{kHz}$ Mech filter 1.65 $\begin{array}{lll}10.7 \mathrm{MHz} \mathrm{HFTs} & 0.32 & \mathrm{C} 455 \mathrm{~B} 8 \mathrm{kH} / \mathrm{z} / 455 \mathrm{kHz} \text { ceramic filt } 0.55 \\ \text { Variable signal chokes：} & \mathrm{C} 455 \mathrm{C} 6 \mathrm{kH} / 1 \mathrm{l} / 455 \mathrm{kHz} \text { ceramic filt } 0.55\end{array}$ $\begin{array}{ll}\text { Variable signal chokes：} & \text { C455C } 6 \mathrm{kllz} / 455 \mathrm{kHz} \text { ceramic filt } 0.55 \\ 2 \mathrm{mH} 23 \mathrm{mH}, 36 \mathrm{mH}, 7 \mathrm{mH} & \text { C } 050 \mathrm{D} .6 \mathrm{kHz} / 470 \mathrm{kHz} \text { ceramic filt } 0.60\end{array}$ $11.75 \mathrm{mlH} \quad 0.33$ ClS 10710.7 Mllz cer．FM filter 0.50 Fixed chokes：（uH）SliE6．0 6Miltz TV sound IF filter 0.30 1．0，4．7，10，33，47．100．$\quad 3132$ A linear phase FMIff filzer 2.25 $22,33.470,1000 \quad 0.16 \quad$ SFD 470 B 470 kltz ceramic filter 0.7
PLEASE REMEMBER TO INCLUDE VAT－thankyou
If you have read this far，you probably appreciate that AMBIT tends to specialize in the areas of wireless and TV that most component sources do notinclude．Our catalogue and price list continue this theme with coils，linear ICs etc．Cataloque 40p，price list free with SAE．Pos is $22 p$ per order－unless otherwise stated．

> 37aHIGH STREET， BRENTWOOD telephone 0277216029

ABOUT THE ONLY feature common to the ranges of displays described in this Data Sheet is the way in which the various' manufacturers identify the segments.

The standard method for doing this is shown below. We have deliberately excluded the 'overflow' type of L.E.D. display, in order to provide a better selection of normal types in the space available to us.

Calculated omission

There is another type of L.E.D. display now becoming more popular in general usage. This is the calculator display, of a type personified by the H/P device shown here. We hope to deal with these more fully at a later date. Generally these

types use very low power, being readable at about $100 \mu \mathrm{~A}$ and with a varying number of digits, usually eight or ten.

Inclusion

Now that we've told you what isn't in here, perhaps we should explain what we have covered. Each display is described in a standard
manner, using the same form of presentation for the relevant technical data. This is to facilitate easy comparison and subsequent selection.

Prices vary enormously from supplier to supplier, so we have not tried to give a definite price, just an indication. Don't be mis-LED, some market segments might well display lower prices!

FND $500 / 507$

The FND 500 is a common cathode display with an integral red filter. The decimal point is on the right-hand side of the device, which measures 15.3 mm by 16.5 mm high. This device is a pin for pin replacement to the Texas Instrument TIL322 display.

The FND 507 is a common anode version of the FND 500, and as such can be used to replace a TIL 321.

ELECTRICAL CHARACTERISTICS	
DIGIT SIZE	
COLOUR	0.5 ins
AVERAGE FWD	red
CURRENT/SEGMENT	
FORWARD VOLTAGE	25 mA
MIN. REV. BREAKDOWN	1.7 V
VOLTAGE	
MAX. REV. CURRENT	3.0 V
LIGHT INTENSITY	100 uA
PER SEGMENT	600 ucd
MAX. POWER	
DISSAPATION	400 mW

TYPICAL PRICE £1.10

PIN OUT - FND 500/507

1 Segment E 6 Segment B
2 Segment D 7 Segment A
3 Common 4 Segment C 9 Segment F 8 Common 5 Dec. point 10 Segment G

FND 500----common cathode FND 507-----common anode

TYPICAL PRICE £1.00

ELECTRICAL CHARACTERISTICS	
DIGIT SIZE	0.3ins
COLOUR YELLO	ED/ORANGE
AVERAGE FWD CURRENT/SEGMENT	25mA
FORWARD VOLTAGE	2.5/1.6/1.6V
MIN. REV. BREAKDOWN VOLTAGE	3.0 V
MAX. REV. CURRENT	100uA
LIGHT INTENSITY PER SEGMENT	320ucd
MAX. POWER DISSAPATION	500 mW

A very common and widely available display, the 707 is the common anode version, with the 707 R having a right-hand decimal point, as opposed to the standard left decimal on the 704 and 707. The 704 is thus a common cathode device.

ELECTRICAL CHARACTERISTICS	
DIGIT SIZE	
COLOUR	0.6 ins
AVERAGE FWD	RED
CURRENT/SEGMENT	25 mA
FORWARD VOLTAGE	2.4 V
MIN. REV. BREAKDOWN	
VOLTAGE	6.0 V
MAX. REV. CURRENT	100 uA
LIGHT INTENSITY	
PER SEGMENT	600 ucd
MAX. POWER	960 mW
DISSAPATION	

A 'Jumbo version' of the 707 and 704 devices. Widely available. Identify the common anode 747 by the missing pins $-1,9,10$ and 18 .

The 750 is in full possession of its pins, and is common cathode. Decimal point is right-handed.

TYPICAL PRICE £1.40

PIN OUT.DL 704
1 Segment A 8 Segment D 2 Segment $F 9$ Anode
3 Anode 10 Segment C
4 NC
5 NC
11 Segment G
12 NC
6 Dec. point 13 Segment B 7 Segment E 14 Anode

1 Segment $F 8$ Segment C 2 Segment G 9 Dec. point 3 NC 10 NC 4 Cathode 11 NC 5 NC 12 Cathode 6 Segment E 13 Segment B 7 Segment D 14 Segment A

PIN OUTS- DL747/750
1 NC 10 NC
2 Segment A 11 Segment D
3 Segment F 12 Common
4 Common 13 Segment C 5 Segment E 14 Segment G 6 Common 15 Segment B 7 Dec. point 16 NC 8 NC . 17 Common 9 NC 18 NC

DL747-----common anode DL750--.-common cathode Pins $1,9,10,18$, ommitted from747

TIL RANGE

TEXAS

PIN OUTS .

TIL321/323/325
As FND 507. Direct replacement.
PIN OUTS. TIL322/324/326
As FND 500. Direct replacement.

A uniform range of large displays, with red, green or amber encapsulation. No filters are needed, and a wide viewing angle is possible. Within defined categorys, the devices are matched for luminous intensity. These can also act as direct replacements for the Fairchild FND500/507 duet.

ELECTRICAL CHARACTERISTICS	
$321 / 322$	
DIGIT SIZE	$0.5 i n s$
COLOUR	RED
AVERAGE FWD	
CURRENT/SEGMENT	20 mA
FORWARD VOLTAGE	1.7 V
MIN. REV. BREAKDOWN VOLTAGE	3 V
MAX. REV. CURRENT	100 uA
LIGHT INTENSITY	600 ucd
PER SEGMENT	
MAX. POWER	300 mW
DISSAPATION	

ELECTRICAL CHARACTERISTICS	
DIGIT SIZE	$323 / 324$
COLOUR	$0.5 i n s$
AVERAGE FWD	GREEN
CURRENT/SEGMENT	20 mA
FORWARD VOLTAGE	2.5 V
MIN. REV. BREAKDOWN	
VOLTAGE	3 V
MAX. REV. CURRENT	100 uA
LIGHT INTENSITY	320 ucd
PER SEGMENT	
MAX. POWER DISSAPATION	600 mW

ELECTRICAL CHARACTERISTICS	
DIGIT SIZE	$325 / 26$
COLOUR	0.5 ins
AVERAGE FWD	AMBER
CURRENT/SEGMENT	20 mA
FORWARD VOLTAGE	2.5 V
MIN. REV. BREAKDOWN	
VOLTAGE	3 V
MAX. REV. CURRENT	100 uA
LIGHT INTENSITY	
PER SEGMENT	340 ucd
MAX. POWER	
DISSAPATION	400 mW

XAN 352/4

These two come from what is the largest range of displays available. Xciton make big play of having all devices brighter than the competition, and a list of equivalents from their range for most of the others. These two are common cathode (XAN 354) and common anode (352) $0.3^{\prime \prime}$ numerics, using high efficiency GaAsP.

TYPICAL PRICE £1.20

XAN 650 SERIES

ELECTRICAL CHARACTERISTICS	
DIGITSIZE	(magnifier) 0.11ins
COLOUR	RED
AVERAGE FWD CURRENT/SEGMENT	5 mA
FORWARD VOLTAGE	1.6 V
MIN. REV. BREAKDOWN VOLTAGE	5 V
MAX. REV. CURRENT	100uA
LIGHT INTENSITY PER SEGMENT	20ucd
MAX. POWER digit	80 mW

Digits per Cluster	Center Decimal Point	Right Decimal Point
3 (right)	$5082-7402$	$5082-7412$
3 (left)	5082.7403	5082.7413
4	5082.7404	$5082-7414$
5	5082.7405	5082.7415

PIN OUT HP7402/7412		
1 NC	8 Segment D	
2 Segment E	9 Segment F	
3 Segment C	10 Cathode	
4 Cathode	11 Segment B	
5 Dec. point	12 Segment A	
6 Cathode	13 Omitted	
7 Segment G	14 Omitted	

PIN OUT HP7404/7414	
1 Cathode	8 Segment D
2 Segment E	9 Segment F
3 Segment C	10 Cathode
4 Cathode	11 Segment B
5 Dec. point	12 Segment A
6 Cathode	13 Omitted
7 Segment G	14 Omitted

PIN OUT HP $7403 / 7413$	
1 Cathode	8 Segment D
2 Segment E	9 Segment F
3 Segment C	10 Cathode
4 Cathode	11 Segment B
5 Dec. point	12 Segment A
6 NC	13 Omitted
7 Segment G	14 Omitted

PIN OUT HP7405/7415	
1 Cathode	8 Segment 9
2 Segment E	9 Cathode
3 Segment C	10 Segment F
4 Cathode	11 NC
5 Dec. point	12 Segment B
6 Segment D	13 Cathode
7 Cathode	14 Segment A

The 7400 series are 2.79 mm GaSP numeric indicators, packaged in end stackable DIL casings. They are readable at $500 \mu \mathrm{~A}$ per segment, and constructed for strobed operation in such a way that less lead connections are needed.

A lens magnifier is fitted, with a good viewing angle.

7750 SERIES

A fairly standard range of slightly larger than standard displays. The material is GaSP, and the devices use a standard 14 pin DIL package so that they can be plugged into standard sockets.

A Marshall (London) Ltd Dept: ETI 40-42 Cricklewood Broadway London NW2 3ET Tel: 01-452 0161/2 Telex: 21492
\& 85 West Regent St Glasgow G2 2QD Tel: 041-332 4133
\& 1 Straits Parade Fishponds Bristol BS16 2LX el: 0272-654201/2
27 Rue Danton Issy Les Moulineaux Paris 92
Trade and export enquiries welcome. Catalogue price $40 p$ ($30 p$ to callers)
Top 500 Semiconductors from the largest range in the UK - All devices manufacturer's branded stock from RCA, TEXAS, MULLARD, MOTOROLA, NATIONAL, SIEMENS, ITT, THOMSON CSF, SGS, SSDI, FERRANTI etc.

${ }^{2 \times 456}$	1.40	2 N 3390	0.37	2 N 295	0.40	AF196	0.50	BC2598	0.18	${ }^{\text {BF }} 194$	0.12	${ }^{8014}$	0.44	SN76003N	
$2{ }^{\text {N4565A }}$	1.54	2 N3391	0.29	2N5296	0.3	Af200	, 70	BC261A	0.21	8F195	0.11	1401	0.41	SN76013N	
2 N	1.	2N	0.34	2N529	0.40	Af239	0.74	BC2623	0.19	8F196	0.13	LM7805P	1.39	SN76023N	
2 N	4.60	2	0.14	2N5457	0.29	${ }^{\text {af2 } 240}$	0.90	ac	0.24	BF197	0.14	LM7812P	1.39	SN76033N	0
2 N 49	5.00	2 N	0.15	2 N 458	0.26	${ }^{\text {AF2 } 29}$	80	BC3	0.45	BF198	0.15		139	ST2DIAC	0
$2 \mathrm{Na92}$	5.75	2 N	0.15	2 N 54	0.29	Af280	85	BC3	0.45	8F200	0.31	LM 788248	1.39	TAA30	
2 N 493	E.98	2N340 3		2N54	0.4	Al 102	1.50	BC^{8}	0.60	${ }^{\text {BF2 } 25 J}$	0.25	MC130	47	${ }^{\text {T } 404350}$	1.25
${ }^{2} \mathbf{N 6 9 6}$	0.25	2N3414	0.15	2N54	45	${ }^{\text {Al } 103}$	1.50	8С3	0.20	BF244	0.35	MC13	1.96	TAA350	2.48.
2 N 697	0.16	2N	0.1	2N54	50	BC107	0.14	BC308	0.18	BF245	0.34	MC133	0.75		0.60
2 NE 98	082	2N3416	0.23	2N5	0.45	BC108	0.12	8C309C	0.25	8F246	0.75	MC1 35	0.87	tabalic	2.28 2.15
2N699	0.55	2 N 34	0.27	${ }^{2 \mathrm{~N} 60}$	0.45	${ }^{\text {8C }} 109$	0.15	${ }^{\text {BC3 }} 317$	0.14	8F254	0.20	MC1352P	${ }_{0}^{0.87}$	TA	
2 N 706	0.12	2 N 34	0.57	3N128	0.80		0.17	8С3	0.13	${ }^{8 F 255}$	0.20	MC1	3.95	TAA6618	
${ }_{2}$	- 0.12	${ }_{2}{ }^{2}$	0.78 $\mathbf{1 . 2 0}$	$3 N 139$ $3 N 140$	1.45	${ }_{8 C 116}^{8 C 115}$	0.19	${ }_{8 \mathrm{BC} 338}^{\text {BC37 }}$	0.191	${ }_{\text {BF225 }}$	0.37 0.49	(${ }_{\text {MC1469 }}^{\text {MEO402 }}$	2.50 0.20	${ }_{\text {trabis }}^{\text {tab }}$	2.50 1.80
2N709	0.50		0.16	3 314	${ }_{0.85}^{1.85}$	${ }^{\text {BCP }} 16$ A	0.20	8C547	0.12	BF25	0.49	ME0404	0.15	tbabio	18
2N711	0.55	2 N 3638 A	0.16	3N200	2.60		0.22	вС548	0.10	QF45	0.39	ME0412	0.20	TBA820	3
2N718	0.22	2 N	0.30		0.45	${ }^{\text {BC1 }} 18$	0.16	ВC549	0.13	В¢R39	0.24	ME4102	0.10	TBA920	78
2N7184	0.40	2N3641	0.20	${ }_{40362}$	0.48	${ }^{8 C 119}$	0.30	BCY30	1.03	BFS21	2.80	ME4104	0.10	T11209	0.30
2 N 720	0.69		0.17	40363	1.00	${ }^{\text {BCC }}$	0.45	${ }^{8 C} \times 31$	1.08	BFS	1.04	MJabo	1.05	T1P294	-0.50
${ }^{2 N 914}$	${ }_{0}^{0.22}$	${ }^{2} \mathbf{N 3 7}$	0.15	40389	0.50		0.18 0.25	${ }_{\text {BCr }}{ }_{8}$	1.18 0.90	${ }_{\text {BFS61 }}^{81}$	0.30	MJ481 MJ490	1.30 1.05		- 0.60
- 2 2N916 ${ }^{\text {NS } 18}$	0.34	2N370	0.15 0.15	${ }^{40394} 4$	0.80	${ }_{8 \mathrm{BC} 132}$	0.25 0.30	${ }_{\text {BCr } 34}$		${ }^{8 F 5989}$	0.27 0.36		1.05	${ }_{\text {T1P32A }}$	- 0.75
${ }^{2 N 929}$	0.25	2N3706	0.14 0.15	40406	-0.48	BC134	0.15	${ }^{\text {B }} \mathbf{C} 38$	2.00	8Fx 30	0.38	M M 2955	1.21	TiP334	1.00
	0.28	2N3707	0.18		0.38	${ }_{8 C 1} 13$	0.15	BCY42	0.60	${ }_{8 \times \times 84}$	0.38	MJE340	0.58	T1P34A	. 20
$2{ }^{\text {N1302 }}$	0.37	2 N 37	0.14	40408	0.50	${ }^{\text {BC1 }} 136$	0.19	BCY5	0.55	8Fx85	0.41	MJE370	0.68	T1P354	0
2N1303	0.37	${ }_{2}{ }^{\text {N37 }}$	- 0.15	40409	0.85	${ }^{8 \mathrm{BC}} 137$	0.14	BCY5 BCY	0.32	${ }^{\text {8F }}$ 8 $\times 87$	0.38 0.32	MJE371	${ }_{0}^{0.81}$	TIP41A	- $\begin{aligned} & \text { 3.38 } \\ & 0.70\end{aligned}$
- $2 \mathrm{NT1304}$	0.40	${ }_{2}^{2 N 37}$	0.14 0.15	40	2.30	${ }_{\text {BCI41 }}$	0.60 0.65	${ }_{\text {BCY7 }}$	0.25 0.25	${ }_{\substack{8 F \times 888 \\ 8 F \times 89}}$	-0.32	MJE521	0.8	${ }_{\text {T1P42A }}$	0.90
2N1306	0.45	${ }^{2 N 3712}$	1.20	40594	0.75	BC142	0.30	BCY	0.24	-	0.30	MJEz2955	1.25	${ }_{\text {ITP29c }}$	
2 N 1307	0.45	${ }_{2}^{2 N 3713}$	2.30	40595	0.85	${ }^{\text {BC }}$	0.30	801	1.20	-ifys	0.38 0.38	MJEE305	0.75 0.38 0.85		-0.85
(2N1308	0.60 0.80	$\xrightarrow{2 \mathrm{~N} 37}$	2.45	${ }_{40601}$	${ }_{0}^{0.70}$	${ }_{\text {BCC }}$	0.10 0.10	${ }^{\text {B0,16 }}$	1.20 2.00	${ }^{8+Y 52}$	0.38 0.34	MP81	- 0.45		(1.00
2 N 167	1.80	2 N 3716	2.60	40603	0.60	BC149	0.13	B012	2.00	8FY90	1.27	MPe,	0.45	${ }_{\text {TPP33c }}$	45
2 N 167	1.92	2N3771	${ }^{1.60}$	${ }^{40609}$	0.80	${ }^{8 C}$	0.27	801	2.00	8RY39	0.50	MPF10	0.30		
- ${ }_{2}^{2 N 167}$	${ }_{0}^{2.12}$	${ }_{2}^{2 N 3}$	1.1	${ }_{40673}^{40636}$	1.15 0.73	${ }_{\text {BC }}^{\text {BC }}$	0.27 0.12	80132	0.51 0.54 0.54	${ }_{85 \times 2}^{\text {BSX }}$	0.31 0.32	MPSA	0.20 0.20	${ }_{\text {TIP420 }}$	
907	- 2	2 N 379	6.00	AC126	0.37	BC158	0.11	80135	0.42	BU10	3.08	MPSA	0.35	TIP 295	
12N2102	0.80	2 N3790	2.75	AC127	0.44	BC1	0.78	${ }^{80136}$	0.42		2.40	MPSA	0.20	T1P305	0.50
(2N2147	1.40	2N37	2.78	${ }^{\text {AC }} 128$	-0.37	${ }^{B C}$	0.12	${ }_{80}^{80}$	- 0.45	CA3	-0.85	MPSA	0.20 0.40	${ }_{\text {LTP }}^{\text {TIS43 }}$	0.30 0.18
2N2160	1.10	${ }_{2}{ }_{2} \mathbf{N 3 7 9 7 9 2}$	2.90 0.20	${ }_{\text {AC152V }}$	0.50		0.12		0.80	CA3	$\xrightarrow{1.35}$	MPS	0.40	zTx30	0.15
2N2218A	0.47	2 23319	0.38	${ }^{\text {A C }}$ + 53	0.40	BC	0.16	80140	0.50	Ca3	${ }^{1.73}$	MPS	0.45	2Tx	20
${ }^{2} 12219$	0.42	2 N 3820	0.29	${ }^{\text {AC }} 153$	0.42		0.14		0.35	CA30	2.15	MPSL		2Tx500	
${ }^{2} \mathbf{2 N 2 2 1 9 A}$	${ }_{0}^{0.52}$	${ }_{2}^{2 N 3823}$	${ }_{0}^{0.61}$	${ }^{\text {AC }} 154$	0.45	${ }_{\text {BC17 }}^{\text {8C17 }}$	0.12	${ }^{80530}$	- 0.38	${ }_{\text {CA3 }}$	1.102	NES	0.48 1.30	${ }_{2}^{217 \times 50}$	-1.18
${ }_{2}{ }^{\text {N22222 }}$	0.32 0.25	2N390	0.21 0.22	${ }_{\text {AC }}$ A 76 6	${ }_{0}^{0.45}$	${ }_{\text {BC }}{ }^{8178}$	0.18		0.36	CA 308	2.00	NE566	4.48	KTx	0.23
2N22214	0.28	2 N 4036	0.67	AC187\%	0.48		0.21	8F117	0.70	Ca309	4.25	NE561	4.45	2Tx5	
${ }_{2}^{2 N 22222}$	-0.25	${ }^{2 \mathrm{~N} 4037}$	- 0.55	${ }^{\text {AC }}$ A 188	0.43	${ }_{\text {8C182 }}$	0.11 0.14	${ }_{\text {8F }}^{8+129}$	-0.55	Ca31	- 0.88	- ${ }_{\text {NEL26 }}$	2.00	Sue-miniature	
${ }_{2} \mathrm{~N} 23$	0.17	${ }_{2}^{2} 44059$	0.20 0.15	${ }_{\text {ADP } 43}$	0.75 0.75	${ }_{8 C 183}$	0.11	BF1	-0.26	LM30	1.32	OC	1.50	CEAAMIC PLATECAPACITOAS	
2N2369	0.25	${ }_{2} 2140$	0.20	${ }^{\text {ADP } 149}$	0.74	${ }_{\text {BC1 }}{ }_{\text {BC1 }}$	0.14	${ }^{8 F}{ }^{\text {PF }} 15$	0.25	LM30	1.80	${ }_{\text {OC4 }}{ }_{\text {O } 45}$	0.50		
- ${ }_{\text {2N }}$	0.21 0.55	${ }_{2}^{2 N 4061}$	- 0.17	${ }^{\text {AD }} 150$	1.20 0.75	${ }_{\text {ec }}{ }_{\text {8C184 }}$	${ }_{0}^{0.12}$	${ }_{\text {8F }}^{\text {BF } 159}$	0.25 0.35	LM3	${ }_{207}^{0.98}$	OC71	${ }_{0.45}$	$\begin{aligned} & 1 \mathrm{pF}-0.0155 \mathrm{p} \\ & 0022 \mathrm{mF}- \end{aligned}$	
2 N 2647	1.10	$2 \mathrm{~N}+26$	0.17	A0162	0.75	BC207	0.11	${ }^{8 F 160}$	0.30	LM70	0.75	OC72	0.45		
2 N 290	0.37	${ }^{2} \mathbf{N 4 2 8 9}$	0.30	AF106	0.48	BC208	0.10	${ }_{85161}^{8 F}$		LM70	0.40	${ }_{0}^{0} 881$	- 0.75	- $0.0688 \mathrm{mF}-0.19$	
2N2990	0.37 0.37	${ }_{2} \mathrm{~N}$	- 0.85	AFP14	- 0.68	${ }_{\text {BC212 }}^{\text {BC2 }}$	0.14 0.17	${ }_{\text {BF167 }}^{\text {8F } 166}$	0.40 0.33	LM	0.38 0.35		0.50 0.80 		
		-	0.80			${ }_{\text {BC2 }}+4 \mathrm{~L}$	0.17	${ }_{8 F 173}$	${ }_{0.33}$		0.35 0.40	R53(NTC			7 p
2 N 2906	28	2 N	0.85	${ }_{\text {AF }} \times 17$	${ }_{0.65}$	${ }_{\text {BC2 } 237}$	0.14	8F177	0.38	LM7	0.45	Si414A	2.35	0.22 5 \% 13p	
2 N 2906	0.25	2 N	0.70	AF118	0.65	${ }_{\text {BC }}{ }^{\mathrm{BC} 238}$	0.12	${ }_{\text {BF }}^{\text {BF179 }}$		LM3900	0.55	SL610	2.35		
2N2907	${ }_{0}^{0.21}$	2N5190	0.780		0.65	${ }_{\text {BC251 }}$	0.15	${ }^{\text {BFF170 }}$	-0.45		0.80	SL61		POLYSTYRENE	
2N2924	0.15		- 8	AFI25	${ }_{0}^{0.65}$	${ }_{\text {BC2 } 23}$	0.22	${ }_{8 F} 181$	${ }_{0.45}$	LM l Iogcan	0.88	SL62	3.50		
2926		N5195	1.10		0.85	8C257a			0.45		0.40	${ }^{516216}$. 50	10pF-1000pF	
3053	0.25	${ }^{2 N 5245}$	0.29	ENQURIES WELCOME FOR OEVICES not Listed				${ }^{\text {BF }} 183$	-0.45		-0.40		75		
2N3055	0.55 0.65	2N5294	0.35					${ }_{8 F 185}^{8184}$	0.35 0.35	[M747	0.78 0.44	${ }_{\text {SL64 }}$	${ }_{4.00}^{4.00}$		

MARSHALL'S QUALITY FOR TTL

TTL Integrated Circuits - Quality \& Prices you can't beat - Top manufaciurers only

SN7400	0.18	SN7412	0.25	SN7438	0.35	SN7454	0.16	SN7483	0.92					SN74174	1.06 0.94 0.85
SN7401	0.16	SN7413	0.25	SN7440	0.16	SN7460	0.16	SN7484	0.82	SN74100	1.15 0.30	SN74153	0.73	SN74176	0.86
SN7402	0.16	SN7416	0.43	SN7441	0.76	SN7470	0.32	SN7485	1.25	SN74118	0.80	SN74155	1.20	SN74181	1.23 2.58 1
SN7403	0.16	SN7417	0.43	SN7442	0.55	SN7472	0.28	SN 7486	0.29	SN74119	1.80		0.68		
SN7404	0.18	SN7420	0.16	SN7445	0.94	SN7473	0.30	SN7490	0.43	SN7412:	0.34	SN74160	0.68 1.20	SN74191	1.33
SN7405	0.18	SN7423	0.27	SN7446	0.86	SN7474	0.30	SN7491	0.63	5N74122	0.45	SN74161	1.20	SN74192	1.13
SN7406	0.51	SN7425	0.27	SN7447	0.81	SN7475	0.40	SN7492	0.43	SN74123	0.40	SN74162		SN74193	1.13
SN7407	0.18	SN7427	0.26	SN7448	0.81	SN7476	0.36	SN7493	0.43	SN74141	0.72	SN74163	1.20	SN74196	0.81
SN7408	0.18	SN7430	0.18	SN7450	0.85	SN7480	0.45	SN7494	0.74	SN74145	0.74	SN74164	0.93	SN74197	0.81
SN7408	0.18	SN7432	0.27	SN7451	0.16	SN7481	1.10	SN7495	0.9	SN74150	1.20	SN74165	0.93	SN74198	2.04
SN7410	0.16	SN7437	0.35	SN7453	0.16	SN7482	0.87	'SN7496	0.78	SNT4151	0.77	SN74167	3.70	SN74199	2.04

DIN PLUGS - 14p EACH
DIN CHASSIS SOCKETS - 10p EACH
LINE SOCKETS 14p each
PHONO PLUGS
scrow top) Red, W
LINE PLUGS (same colours) - 10p (chrome) 1 sp .
PHONO CHASSIS SOCKETS
ALL PRODUCTS FULLY GUARANTEED TO MANUFACTURER'S SPECIFICATIONS

JACK CONNECTORS

NEW RANGE TOOLS HIGH QUALITY MINIATURE 4' ELECTRONIC PLIERS and CUTTERS INSULATED HANDLES
Diagonal side cutter £2. 80
DESOLDEAING TOOL
P.C. MARKER PEN DALO 33PC 0.87 . ZENER DIODES 400 MW 0.11 . IW 0.17, 2.5W 0.35. IC SOCKETS 8DIL $0.14,14$ DIL 0.15 , 160IL 0.16. RESISTORS $1 / 4 W$ 0.02 (100 per value £1.30). $1 / 2 W$ SCORPIO CAR IGNITION KIT © 12.95 BOX € 180 TRANS FORMERS 9375 IMF 440 VAC E1.60 BOARD 0.95 JUMBO 7-SEGMENT DISPLAYS E2.16. OL 707 E1.60. MINITRON E1.50 deDa RED YELLOW GREE

SEE MARSHALL'S FOR CMOS

Potentiometers

	Single	Double
Rotary Pots	$\mathbf{2 5 p}$	$\mathbf{7 5 p}$
Rotary Switched	$55 p$	-
Sliders	$\mathbf{4 5 p}$	$\mathbf{7 5 p}$
FULL RANGE	OF CAPACITORS	

TOCKED. SEE CATALOGUE FOR details.

Presets Horizontal or Varical

| 1W |
| :--- |$\quad 03 \mathrm{WW} 11 \mathrm{p}$

SEND FOR OUR NEW 160 PAGE CATALOGUE - CRAMMED WITM INEORMATION ANO ALL BACKED MAR THE USUAL SUPERLATIV ONLY 40p POST PAID OR 30p TO PERSONAL CALLERS
PLEASE ADD VAT TO YOUR
ORDER. POSTAGE \& PACKINC 30p.

BRBMIN

PARI 5

Don't take them for granted . . . there's a

lot more to them than you ever realised . . .

CARBON COMPOSITION RESISTORS have been used extensively in the manufacture of radio and television sets since the valve era but are being rapidly replaced in production by film resistors. These have superior characteristics and are becoming increasingly cost competitive.

Carbon resistors are manufactured in wattage ratings ranging from 0.1 watt to 2 watts and resistance values ranging from 10 ohms to 100 M . They are made to tolerances of $\pm 5 \%$ (E24 series, $\pm 10 \%$ (E12 series) and $\pm 20 \%$ (E6 series), although the latter is the more usual and least expensive.

There are three basic types of carbon composition resistor:
(a) uninsulated
(b) insulated
(c) filament or filament-coated

Uninsulated type: in this type, the resistive element consists of tine carbon
particles mixed with a refractory filling, which is non-conducting, bonded together by a resin binder. The proportion of carbon particles to filler determines the resistance value. The mixture is compressed into shape, usually cylindrical, and fired in a kiln. The end connections are made by any one of a variety of methods. These are illustrated in Fig. 1. In the first method, Fig. 1 (a), the ends of the composition rod are sprayed with metal, and wire leads soldered on to provide radial connections. The resistor is then painted and colour coded. This method was extensively used with 1 W and 2 W resistors. A second method, much more widely used now, involves enlarging the ends of the connecting leads and moulding them directly into the carbon composition rod - Fig. 1(b). This method is used extensively as it is adaptable to all wattage ratings and sizes of the resistor body. A third method is
also employed. Pressed metal caps, usually having integral leads, are forced onto the ends of the carbon rod Fig. 1(c). These caps have radial leads and are particularly suited to printed circuit board mounting as they may be plugged straight into mountina holes on the board without the necessity of preforming the leads as is required with axial lead components. These are also known as 'pluggable' types. Film resistors are also made in this style.

Uninsulated carbon composition resistors are generally smaller than the insulated types for a given wattage as their open construction permits good heat dissipation. There is the danger however, that short circuits may occur to adjacent components, and for this reason, the insulated type is preferred.

Insulated Type: This type has the composition element made in the same manner as just described, but it is then

encapsulated in either a silicon lacquer, a thermoplastic moulding or epoxied into a ceramic tube. The first two generally employ a resistance element having embedded connections, as illustrated in Fig. 2(a). The type having the element sealed in a ceramic tube generally have an element constructed as shown in Fig. 2(b). The ends of the element are sprayed with metal and an end-cap having an integral lead is forcefitted over them. This assembly is then put inside the ceramic tube and the ends sealed with an epoxy or other compound.
Filament or Filament-coated Type: With this type, carbon granules are dispersed, along with a filler, in a varnish which is then applied to the surface of a continuous glass or ceramic filament which is then baked. The resistance value depends on the length and mixture, the filament is cut into appropriate lengths and leads applied by one of the methods detailed above. It is usually encapsulated in an insulating compound as per the insulated style of resistor.

Carbon composition resistors have a large voltage coefficient. The value of this coefficient varies with the resistance of the component (being highest for high value resistors) and the size of the resistance element. Small resistors of a given value have less insulating filler in their composition and will have a lower vōtage coefficient. Commonly available composition resistors have quoted voltage coefficient between 0.02 and 0.035 for values up to 1 M . Values above this have a coefficient of typically 0.05 . These values may cause a maximum change in resistance of 2% when used within their ratings. The voltage coefficient of the other types of resistors is considerably smaller than for composition types - typically 0.002% or less.

A large negative temperature coefficient is one of the disadvantages of composition resistors. It is typically between 0.1% and 0.15% per ${ }^{\circ} \mathrm{C}$ (i.e. 1000 ppm per ${ }^{\circ} \mathrm{C}$ or greater), across the whole resistance range. This means that a 1 M resistor will change its value by 1 k or more for each ${ }^{\circ} \mathrm{C}$ change in temperature. The curve of percentage resistance change versus temperature is not linear and may be positive over one portion of the temperature range and negative over another. Figures 3 and 4 show typical temperature coetficient curves for two types of carbon composition resistor for different values between 1 k and 10 W .

Critical Resistance Value: A resistor of specified power and voltage ratings has a critical resistance value above which the allowable voltage limits the permissable power dissipation. Below this value, the maximum permitted voltage across the

Fig. 3. Resistance-temperature characteristics/ $1 / 2$ watt, 3 mm by 9.5 mm , composition resistor, Curve 1, 10 megohms; curve 2, 0.27 megohm; curve 3, 10,000 ohms; curve 4 , $1,000 \mathrm{ohms}$.

Fig. 4. Resistance-temperature characteristic, $1 / 2$ watt, 3 mm by 9.5 mm , solid composition resistors. Curve 1, 1,000 ohms; curve 2, 10,000 ohms; curve 3, 0.100 megohm; curve 4, 1.00 megohm; curve 5, 10.0 megohms.

Fig. 5. Frequency characteristic of filament and solid rod types of $1 / 2$-watt composition resistors.
resistor is never reached at the rated power.

Carbon composition resistors show a pronounced fall-off in apparent AC resistance, compared to their DC value, with increasing frequency. The effect which is particularly bad with the higher values is known as the 'Boella' effect after its Italian discoveror. The filamentcoated type is less affected than the solid rod type. Figure 5 illustrates the frequency characteristics of the two basic construction styles of composition resistor for a variety of values. The values below 200 ohms are obviously quite useful right up to UHF. Values below 100 ohms may show an increase in value with increasing frequency.
Obviously at frequencies in the VHF range and above, mounting and lead length affect characteristics considerably. Absolute minimum lead length is necessary to minimise unwanted inductance. Lead lengths of 6 mm have considerable inductance at 200 MHz . Printed circuit layout can assist in minimising the problem, and mounting
the resistor flat on the board bending the leads as close as possible to the component body - is good Naturally, this applies to all resistors. Radial lead components are best in this situation.

The amount of noise gene,ated by carbon composition resistors is a function of the materials used in the composition mix. Generally, the noise generated increases with increasing voltage, increasing resistance, and decreasing size, for a given mix of materials. The noise due to current flowing through the resistor is generated by random changes in the material of the element, caused by the current flow. This noise decreases with increasing frequency and Johnson noise, which is frequency independent, becomes dominant above about 1 kHz . The current noise generated by composition resistors is a major limitation against using them at dc and low frequencies. They are not recommended for use in amplifier input stages or DC amplifiers for this reason. Microphony is also

RATROM

noticeable, caused by modulation of the noise voltage generated by the com ponent. Composition resistors having values above about 1 M Johnson noise makes them unsuitable for use in high impedance amplifier inputs or other critical applications.

When subjected to overload, carbon composition resistors usually decrease in value owing to their large negative temperature coefficient. This causes the temperature to rise until the hotspot temperature is exceeded and failure occurs, usually by fracturing

There are two basic power derating curves for carbon composition resistors. The common commercial grade types have a spot temperature of about $107^{\circ} \mathrm{C}$ while the more expensive types that meet more stringent specifications (usually produced to meet military specifications - MIL-spec.) have a hot spot temperature of $130^{\circ} \mathrm{C}$ and can be used to full ratings up to $70^{\circ} \mathrm{C}$ whereas the former types must be derated above $40^{\circ} \mathrm{C}$. The commercial grade derating curve is given in Fig. 6 and the military grade derating in Fig. 7

 Fig. 6. Power derating curve for ordinary commercial grade carbon composition resistors.

The requirements of solid state circuitry created a demand for high stability, high quality resistors. Increasing use of electronics, and the demands of evermore complex consumer and domestic electronic equipment and appliances contributed to the development and production of low cost film resistors. Carbon composition resistors are gradually being superceded, despite the excellent specifications of types available, by film resistors which are inherently superior in many respects.

VAT 8% EXCEPT FOR ITEM. WHICH ARE $121 / 2 \%$ NO VAT ON OVERSEAS
LYNX ELECTRONICS (LONDON) LTD
Higham Mead, Chesham, Bucks
Tolephone (02405) 75154 Telex 837571

A gold plated, LED display 5 function watch at tie VERY special price of $£ 16.97$ inclusive of VAT, postage and packing (normal price £23.75).

As well as hours/minutes (with AM/PM indicator), cay/date and seconds, you also get a guarantee which in this case is no small addition!

Two vears cover - repairer replacement on any watch developing a fault within two years of purchase.
Free calibration check at the end of each of the first 3 years.

WATCH OFFER
ETI MAGAZINE
25-27 OXFORD STREET, LONDON WIR $2 N T$
1 enclose cheque/P.O. for $£ 16.97$ (payable to ETI) for a Digital Watch.
NAME.
ADDRESS

Those not wishing to cut their magazine may order on their own notepaper.

EII CLOCK:E13.95

THE LONG-RUNNING OFFER ON A DIGITAL ALARM CLOCK HAS BEEN ONE OF OUR MOST SUCCESSFUL EVER! OUR PRICE INCLUDES VAT AND POST \& PACKING

Fullsize $=5$ in across and 3
"We have previously sold this Digital Clock under the name Pulsar. At the time that this name was chosen by us we were unaware that the name Pulsar hed been previosly registered, but it has been drawn to our attention that this is the case. We have been asked to point out that our Digital Clock is not associated with Pulsar Watches, Time Computer Inc. or Pulsar S.A."

Our clock shows the time 0.7 in high on bright Planar Gas Discharge displays (there is a brightness control on the back). The dot on the left of the display shows AM/PM, and the flashing (1 Hz) colon shows that the alarm and clock are working:

A bleeper alarm sounds untul the clock is tipped forwards. Then the "snooze" facility can give you 5 minutes sleep before the alarm sounds again, and then another 5 minutes, etc, until you switch the alarm off. The clock also features a mains-failure indicator, and is 12 hr - the alarm being 24 hour.
We have a large number of units in stock for this offer but please allow 28 days for delivery.

CLOCK OFFER ETI MAGAZINE 25-27 OXFORD STREET, LONDON W1R $2 N T$

I enclose cheque/P.O. for E13.95 (payable to ETI) for an Alarm Clock. Please write your name and address on the back of your cheque to speed processing of your order.

NAME

ADDRESS

Those not wishing to cut their magazine may order on their own notepaper.

-ETI project 446

AUDIO LIMITER
This simple but effective unit can be used as a limiter, automatic
volume control or voltage controlled amplifier.

THE AUDIO COMPRESSOR EXPANDER project described in the May 1976 issue of ETI has proved. to be very popular with readers and we have since had many requests for a simpler limiter circuit. Whilst limiters and compressors are similar in operation they are used in completely different ways.

A compressor is normally used in a linear compression mode. That is, for say every 10 dB of input signal level change the output is arranged to change by, for example, 6 dB . The output will change this fixed amount of 6 dB for every 10 dB increment of input. The reverse of this procedure is called expansion. That is, for a 6 dB change in input signal level the output is caused to change by 10 dB .

A compressor/expander is typically used for improving the dynamic range (and hence signal-tonoise ratio) of tape recorders. The signal is first compressed so that its dynamic range can be handled by the tape. On subsequent replay the signal is expanded by a corresponding amount to restore the original dynamic range. As the amount of noise on the tape is constant and the level of signal has been effectively increased, the signal-to-noise ratio has also been increased.

A limiter is a form of compressor which operates only when the signal exceeds a certain predetermined level. For example signals which do not exceed say 80% of the predetermined maximum are not compressed at all and are amplified with their full dynamic range. For signals above the 80% level the limiter begins to operate and very large input signals are required to obtain the extra 20% of output.

Another use of a limiter is in the continuous-limit mode such that it acts as an automatic volume control (AVC). In this mode a 60 dB change in input level can be limited to say, a 6 dB change in output level.

Finally the limiter may also be used as a voltage controlled ampli-
fier having a range of about 55 dB . A typical application of such a device would be a remote volume control. It should be noted, however, that although the transfer function of such a voltage,controlled amplifier is fairly sharp, two of them may not necessarily track perfectly due to differences in the FETs in the ICs. Thus on our prototype the difference between channels when used as a stereo volume control was up to 5 dB at some points with any given input.

DESIGN FEATURES

The first decision to be made when designing a limiter is what type of controlled resistive element to use. Common alternatives are FETs, LDRs, base-emitter junctions of transistors, thermistor or balanced modulator ICs. All of these have their respective advantages and disadvantages and all have been tried in our laboratory at one time or another. We selected FETs because we considered them the most cost effective.

When FETs are used in voltage controlled amplifiers it is essential that the voltage across them is kept as low as possible if the distortion is also to be kept low. This means that the FET must be used as an attenuator where the voltage across
the FET can be kept low irrespective of input voltage. The most suitable type of FET for this purpose is the enhancement-mode device but these are not readily available. The commonly available types require a negative voltage to turn them off. However, there is a suitable alternative, the 4049 CMOS IC which contains six inverting buffers. By suitable interconnection the IC may be made to provide six enhance-ment-mode FETs and this is the approach we decided to use.

To restore the signal level an amplifier is required and originally we intended to use the LM382 but, because of cost and availability considerations, we finally decided to use an LM301 or 741 operational amplifier together with a transistor pair at the front end. The noise performance of this arrangement was found to be as good as the LM382's and supply voltage to be less critical (although a dual supply is required). If only a single-ended supply is available then a 382 may be used, although a different board layout would be required.

CONSTRUCTION

Although a printed-circuit board is not essential it certainly makes construction very much easier. Before assembly decide whether a limiter or an AVC is required as the

Specification ETI 446

Input voltage range	$1 \mathrm{mV}-10 \mathrm{~V}$
Frequency response Limiting point	
Equivalent signal-to-noise ratio	70 dB re 1 V out
Distortion	see graph
Input impedance	47 k
Maximum gain	
$R 2 / 16=4 \mathrm{k} 7$	26 dB
$R 2 / 16=47 k$	40 dB
Maximum attenuation as voltage controlled amplifier	55 dB
Supply voltage	$\begin{aligned} & \pm 8 \mathrm{~V} \text { to } \pm 16 \mathrm{~V} \text { dc } \\ & \text { at } 5 \mathrm{~mA} \end{aligned}$

values of R2 and R16 will vary accordingly. Use 47 k for R2 and R16 in the AVC mode and in limit mode, depending on limit point, between 470 and $4 k 7$. The transistor type specified is available from a number of different manufacturers but pin connections are different. If a different brand is used the transistor should be reversed (emitter and collector interchanged). The overlay also shows the arrangement for using the LM301 ICs - these may be directly replaced by 741 s simply by omitting the 33 pF capacitors

Although the CMOS ICs 4449 and 4009 are electrically similar to the 4049 and are interchangeable with it when the devices are used as hex-inverters, they cannot be used as replacements in this circuit. The 4049 must be used. The 4449 and 4009 have different circuitry and will not work in this mode

How it works

The circuit basically consists of a voltagecontrolled attenuator followed by a lownoise amplifier with a gain of 46 dB . The output of this amplifier is rectified to generate a dc voltage which is used to control the attenuator.
The variable element in the attenuator is an enhancement mode FET. This is made from a CMOS hex-inverter IC, the 4049, by special interconnection. The difference between enhancement mode FETs and the normally available depletion-mode junction FETs is as follows: The enhancement mode FET has a high resistance between source and drain when the gate is at zero volts, but this decreases as the gate is taken more positive. A JFET (N type) is hard-on with the gate at zero volts and turns off as the voltage is taken negative.
The amplifier is required to have high open-loop gain and have fairly low noise. The gain requirement is provided by an LM301 operational amplifier and the low-noise requirement by a pair of transistors (connected as a differential pair) placed before the operational amplifier. The gain is set, by the combination of resistors R6 and R7, to 215 (or 46 dB). The lower 3 dB point is set at 15 Hz by C4 and R6 whilst the upper 3 dB point is set at 33 kHz by C 6 and R7.

The outputs of both channels are sammed and rectified by diodes D1 and D2 to charge C8 via R14. The voltage on C8 is coupled to the gate of the FETs (three in parallel on each channel) via R11 and R12.
As the input voltage increases the output also tends to increase and voltage on capacitor C8 also increases and this increase is applied back to the gates of the FETs. This reduces the resistance of the FETs and thus increases the attenuation, tending to prevent the output from changing as much as the input does.
With al! FETs the resistance changes with applied voltage and this gives rise to distortion. However by modulating the gate voltage with a signal equivalent to the voltage across the FETs the distortion is greatly reduced (3.5% down to 0.8%)
The attack and release times can be adjusted by varying R14 for attack and R13 for release.

Printed-Circuit layout for the limiter. Full size $58 \mathrm{~mm} \times 110 \mathrm{~mm}$.

As this unit will normally be used in association with another piece of equipment, and most likely built in to it, a case has not been described. When installing the unit make sure that the input cables are coaxial or shielded cable -- outputs are not important and can be normal hookup wire.

USES OF A LIMITER

Peak Limiting. In this mode only signals above 85% of maximum level are attenuated. This is useful for preventing amplifier clipping (for pop groups or other live shows) which gives rise to objectionable distortion. It may also be used when tape recording the same type of programme material as above, to prevent the tape being saturated, which again would give rise to distortion
AVC. In this mode, the limiter is used typically to drastically reduce the dynamic range of a programme being recorded. For example, when recording a lecture the 60 dB dynamic range of lecture room speech may be compressed to 6 dB . Voltage Controlled Amplifier. As a voltage-controlled amplifier the unit lends itself to a variety of remote or automatic control applications. For example, it may be used as a remote control for stereo amplifier volume. Alternatively, it may be adjusted to increase car radio volume as ambient noise level rises.

Special Effects. The limiter may also be used to modify the sound of musical instruments. For example, such a limiter is often used to eliminate the attack transient on a bass guitar to give a smoother mellower sound:

The uses of such a circuit are wide indeed, and we are sure our readers will think of many more applications for this interesting circuit.

Internal circuit diagram of one of the six inverter stages in the CMOS 4049 IC

FREQUENCY
COUNTERS rfc. 30 and rfc.-250
A professional frequency counter with up to 4 measuring ranges
8 mm cipher LEDS. Count-and overflowindication by green and red indicator LED. Max. input voltage 200 Vrms , input sensitivity till $10 \mathrm{Mc} / \mathrm{s}$ better than 250 mV . Crystal time base $1 \mathrm{Mc} / \mathrm{s}$. Accuracy ± 1 digit \pm time-base stability.
Power supply $220 \mathrm{~V} 50 \mathrm{c} / \mathrm{s}$. Dimensions: bxhxd $16 \times 8 \times 25 \mathrm{~cm}$ Power supply $220 \mathrm{~V} 50 \mathrm{c} / \mathrm{s}$. Dimensions: bxhxd $16 \times 8 \times 25 \mathrm{~cm}$
Weight: $1,2 \mathrm{~kg}$. Double side plated through epoxy print has been used
This reat quality with 12 months guaranty at the best price possible. A special designed cabinet which can stand upright and with a very golution to get rid of the Cable When not in use FOR MONEY NOT ONLY FOR AMATEURS, BUT ALSO FOR INDUSTRY - SCHOOLS ETC.
rfc. 30 £ 85.36
rfc-250 £ 111.07

Terms of Business
Prices are excl. VAT. C.W.O Post and packing, add f 4.00 per order. Any difference will be credited or charged. Prices are subject to alteration without notice.
All these articles are available at time of going to press. Send your cheque or money order to ROTEX
P.O. Box 260, Emmen, Holland Telef. 0031-5910-16810 Telex $\$ 3910$

STEREO MIXERS
MP- 2001 MD STEREO MIXER
Order no. 15.068
Your house-sound-stualo with the semi-pro
fessional ROTEX stereo-mixer.

- 4 stereo-inputs for pick-up, microphone
tuner, taperecorder etc.
- Separate volume control
- Level indication by means of illuminated
stereo VU-meter
- Separate controls for treble and bass
- Freq. range $20 \mathrm{c} / \mathrm{s}-20 \mathrm{k} / \mathrm{s} / \mathrm{s}+1,5 \mathrm{~dB}$
- Output level
- $2,5 \mathrm{k}$ Ohms Size \& weight: $60 \times 160 \times 405 \mathrm{~mm}, 1,7 \mathrm{k}$

This type of mixer is at 2 channets, namely channel 1 and 2, supplied with a compen
sating-amplifier for MD (Magneto Dynamic) pick-up elements. The third input is suitable for connection of a dynamic or capacitor (electret) microphone. The fourth input is uitable for a tuner, tapepart or crystal p.u. wP. 202 MD STEREO MIXER

Order no. 15.134
A second type from the ROTEX mixer series ike the MP-2001, but incl. adapted micro phone with swan-neck, fadingslide control and front monitor. Connection for headphone of which the volume can be separately adjusted
by means of stide control.

£ 51.08 £ 42.51

METALDETECTOR
RMZ-7
Order no. 25.057
Order no. 25.057
A simple, reliable water proof, shock proof, well balanced and very light werding to BFO (Beat Frequency Oscil-
cor lation) system. With tone signal, built-in loudspeaker and connection for an earphone, which is supplied. Operates on a
simple 9 Volt battery.
RMZ-8 as the RMZ-7, but with both sensitive signal intensity meter and
signalindication. signal indication

WAITORD EEEGRONICS
33 GARDIFF ROAD, WATFORD, HERTS., ENGLAND
ALL DEVICES BRAND NEW, FULL SPEC. AND FULLY GUARANTEED. ORDERS DESPATCHED BY RETURN OF POST. TERMS OF BUSINESS: CASH/CHEQUE/ P.O. OR GANKERS DRAFT WITH ORDER. GOVERNMENT AND EDUCATIONAL
INSTITUTIONS OFFICIAL ORDERS ACCEPTED. TRADE AND EXPORT INQUIRY POSTAGE AT COST. AIR/SURFACE
VAT Not applicable to Oversast Customert, All prices are exclusive of VAT. walcome to our retail shop at 33 Cardiff Rosd, behind Watford Football Ground. Monday to Saturday. Ample Free Car Parking space availabte.

 ELECTROLYTIC CAPACITOR S: Axia
$250 \mathrm{~V}, 100 \mu \mathrm{~F}, 40 \mathrm{p}, 100 \mathrm{~V}: 20,6 \mathrm{p}: 83 \mathrm{~V}$
$50,10 \mathrm{p} ; 68,100,12 \mathrm{p}, 1000,500.50 \mathrm{~V}:$

 $65 \mathrm{p} ; 25 \mathrm{~V}$ - 4700 . 48 p ; $16 \mathrm{~V}: 4500$; 38

TANTALUM BEAD GAPACITORS ```35V: 0.1\muF, 0.22, 0.33, 0.47, 0.68, 1.0 2.2uF. 3.3. 4.7. 6.8. 25v: 1.5. 10 16V: 10\muF, 22. 10V: 15 %F, 33, 6V: 47\muF 3V: 100 \muF Price: 11p each.```	POTENTHOMETERS (AB OR EGEN? Carbon Track. 0.25 W Log \& 0.5 W tinear Values $1 \mathrm{~K} \cap$ \& $2 \mathrm{~K} \Omega$ (LIN ONLY) Single gang $5 \mathrm{~K} \Omega-2 \mathrm{M} \Omega$ single gang ${ }_{21 p}^{21 p}$ $5 K \Omega \cdot 2 M \Omega$ single gang D / P switch $5 \mathrm{~K} \cap-2 \mathrm{M} \Omega$ dual gang stereo
MYLAR FILM CAPACITORS 100V: 0.001,0.002.0.005, 0.01 LF $0.015,0.02,0.04,0.05,0.056 \mu \mathrm{~F}$ $0.1 \mu \mathrm{~F}, 0.15,0.2$ 50V: $0.47 \mu \mathrm{~F}$	
CERAMIC CAPACITORS $\mathbf{5 0 V}$ d.e. Plaquette body 25 mm leads. Range: 0.5 pf to $10,000 \mathrm{pF}$ $0.15 \mu \mathrm{~F}, 0.022 \mu \mathrm{~F}, 0.33 \mu \mathrm{~F}, 0.047 u \mathrm{~F}$	PRESET POTENTIOMETERS 0. IW 500-2.5MOMini Vert. \& Horz. $0.25 \mathrm{~W} 100 \Omega-3.3 \mathrm{M} \Omega$ Horizontal $0.25 \mathrm{~W} 200 \Omega 4.7 \mathrm{M} \Omega$ Verical

$\begin{aligned} & \text { SILVER } \\ & 3.3 .4 .7 .6 \\ & 150.200 \\ & 1000.220 \end{aligned}$	CA (values 8, 12, 33. 50, 300.	pf) 50, 75 . 360	$\text { 82. } 85 .$	100. 120, sp rach 12p each	RESISTORS Minature High S	- Eque make Stability. RANGE	5\% cart ow noise VAL	bon 1.99	$100+$
CERAMIC	TRIMMER	$\begin{aligned} & \text { APACIT } \\ & -30 \mathrm{pF} \end{aligned}$		20p			E24 E12 E12	(1.5p	, 1pp
N1/	TYPE	ME			2\% 0 5W Meral F	al Film E12			8 p
2.5-6pF;	5pF; 60pF			309	GENE	NERAY			
$\begin{aligned} & \text { COMPRES } \\ & 3.40 \mathrm{pF} ; \\ & \hline 18 \end{aligned}$	SION TRIM	$\begin{aligned} & \text { MERS } \\ & \text { 32p. } \end{aligned}$	$\text { OpF } 40$		(Practicar Wireles Complete Kit (inc Ready built (incl. Send SAE for com		197		$\begin{array}{r} £ 39.95 \\ £ 49.95 \end{array}$
	Ex Plues		50 C	KETS	SWITCHES		Slide	250 V	
	Screened				SPST	23p	1 A DP C	C/0	$10 p$ 12 p
	chrome	body	metal	with	DPDT	29p	1/2A DP		
2.5 mm	10 p	${ }^{8} \mathrm{P}$	${ }^{8 p}$	break	4 pole on/oht	35p	4 pole/	2 way	
3.5 mm	14p	10p	8^{8}	contacts	SUR-MIN TOGG	GGLE	PUSH	button	
MONO	19p	15p	13p	17p	SP changoover	48p	Spring	londed	
Stereo	28p	18p	$15 p$	22p	SPST on/otf	44p	SPST on	n/oth	55p
					OPDT 6 t	${ }_{69}$	SPDT C	/over	65p
		U		Ockets	DPDT Centre off	88p	OPD 6	Tag	85
2 PIN Louds	peaker				SWITCHES* PU	PUSH BUT	TON		
3.4.5 118	8240°)			8 p	Miniature Non lock	locking			
co-axial	(TV)			10p	Push to Make 15p	15p	Push	to Break	k 25p
					SP changeover ce	centre oft			25p
PHONO	ours			P(Singie)	HOCKER: (black)	ck) on/ot	104250		20p
Metal scree				0 (Triple)	ROCKER: lilumin	minated (wh			
						US	Stop		
gamana	${ }^{4 \mathrm{~mm}}$			10p	way. $2 \mathrm{p} / 2.6 \mathrm{WW}$. 3	3p/2-4	$4 \mathrm{p} / 2$,	30p
	2 mm			$81 p$	ROTARY: Mains	Ms 250 V AC	C. 4 Amp		28p

AUDIO MODULES

A NEW APPROACH TO QUALITY HI-FI

Cliffpalm Lid. introduce a flexible range of high quality sophisticated hi-fi system to be built up from simple beginnings
An initial $20 \mathrm{Wrms}+20 \mathrm{Wrms}$. stereo with standard controls can be expanded to give a $40 \mathrm{~W}+40 \mathrm{~W}$ system with (in addition to the normal bass, treble and balance controls) a further range comprising "rumble" and "hiss" switchable controls with a range of frequencies; and a stereo image width control.

STEREO PRE-AMP: CP-P1
PRICE $£ 13.30$
Specificention:

Input	Senaltivity Signal/Noise	Impedence	
Magnetic	3 mV	$>70 \mathrm{~dB}$	$47 \mathrm{~K} \Omega$
Tuner	100 mV	$>70 \mathrm{~dB}$	$10 \mathrm{~K} \Omega$
Tape	100 mV	$>70 \mathrm{~dB}$	$10 \mathrm{~K} \Omega$
Auxiliary	1.900 mV	$60 \mathrm{~dB}-70 \mathrm{~dB}$	$200 \mathrm{~K} \Omega$

Magnetic $/ /$ poverload 33 dB
Distortion 0.04% at 1 KHz Output Ivem.s. into
Distortio
$10 \mathrm{~K} \Omega \mathrm{i}$
Supply voltage $\pm 18 \mathrm{v}$ nominal:
Tone controls, Bass $\pm 12 \mathrm{~dB}$ at 100 Hz : Treble

Deacription: This is a general purpose 2 -channel preamplifier, suitable for use with gramophone, tepe microphone or tuner inputs. It requires no external components other
than the potentiometers for the bass, teble, balance and volume controls and the input selector switch The unit is internally protected agains! accidental reversed supply connection.

AMPLIFIER: CP2-15-20
40W r.m.s. single.
解

Specification:

Power output: 40 W r.m.s. into $8 \Omega 1$ channel
OR 30 W r.m.s into 15Ω, 1 channel
OR $20 \mathrm{Wr.m.s}+20 \mathrm{Wr} . \mathrm{m} . \mathrm{s}$ into $4 \Omega 2$ channel OR $15 \mathrm{~W} . \mathrm{m} . \mathrm{s}+15 \mathrm{Wr} . \mathrm{m} . \mathrm{s}$ into $8 \Omega 2$ channel

Input Sensitivity 1v r.m.s.; Frequency response $20 \mathrm{~Hz}=20 \mathrm{KHz}$, at -3 dB ; Distortion 0.04% at 15 W Supply Voltage $\pm 18 \mathrm{v}$ nominal; Size $51 \times 4 \times 1.25$ inches. $130 \times 102 \times 32 \mathrm{~mm}$

PRICE: £12.85

Description: This module is designed to give either a $20 \mathrm{~W}+20 \mathrm{~W}$ stereo amplifier or alternatively a 40 W single channel it has built-in protection against accidential reversed supply connection and it incorporates a thermal shurdown facility to prevent over-dissipation. No external components are required

FUNCTION GENERATOR: CP-FG1 PRICE: $£ 11.75$
For those requiring wider range of taciltues, this module provides bass and treble fitter controls, comprising switchable cut-off frequencies tor "pumble" and "hiss" reduction. Also included is a stereo separation control. The unit is complete except for the potentiometer and switches

POWER SUPPLY: CP-PS 18/2D

PRICE: $£ 5.75$
This is suitable for one 20W +20 W complete system For a $40 \mathrm{~W}+40 \mathrm{~W}$ system, two power supplies are required

Full application notes are provided. Post and Packing are free on all orders. All units are guaranteed for 2 years

Clififalim Lta.

Dept. HF/ETI

13 HAZELBURY CRESCENT LUTON LU1 1DF, BEDS.

AN L.C.D. FOR UNDER £22!

'OUR INTRQDUCTORY OFFER-
INSTAR 103P L.C.D
Constant, readout of H'rs, Mins \& pulsating Sec colon. No buttons to push. Built-in trimmer for precise timekeeping. Gold-plated case with S/S back and matching adjustable bracelet. Supplied in presentation box. Limited availability.
$£ 21.50$ incl
SPECIAL OFFER - NEW FROM USA
Advanced technology of
FAIRCHILD TIMEBAND L.C.D.
5/4 functions - Continuous readout of Hrs; Mins \& pulsating Secs. Single command button - push once for Month/Date - Twice for Secs - PLUS - programmed 4 Yr . calendar/Back light for viewing in darkness/Optional continuously alternating Time-Date display/AM PM setting indicator. Thase are beautiful watches Supplied in Presentation Boxes.

TC 411 White $\quad £ 29.50$ incl.
TC 410 Gold $\quad £ 32.50$ incl.
On leather strap

$$
\begin{array}{ll}
\text { TC } 413 \text { White } & \mathbf{£ 3 4 . 5 0} \text { incl. } \\
\text { TC } 412 \text { Gold } & \mathbf{£ 3 7 . 5 0} \text { incl. }
\end{array}
$$

With matching bracelet
OUR VERY SPECIAL L.E.D. OFFER-
GALA $6+3$ functions. Hrs/Mins/Secs/Atpha Day/Date/Month PLUS - Programmed 4 Yr Calendar/A.M.-P.M. sel Ind./Auto hold and fade Available in Stainless Steel or Gold plated with S / S back and matching bracelet. Sold elsewhere at $£ 22.90$

$$
\text { OUR PRICE }-£ 18.95
$$

Prices include V.A.T at 8% P \& P., AND RECENT MANUFACTURERS INCREASE DUE TO DEVALUATION. Free battery/s. No quibble 1 Yr guarantee, Quariz accuracy to within a very few seconds a month A LOT OF TIME FOR THE MONEY from TEMPUS, the electronics firm specialising in L.C.D. and L.E.D. watches.

Cheque or Money Order please to
TEMPUS, Dept. ETI, 5-7 NORFOLK STREET CAMBRIDGE CB1 2LD. Tel: Cambridge 55094

Offors subject to availability

Vero Electronics Ltd, manufacture cases to give your projects a professional finish. Cases are available in plastic, extruded aluminium and PVC coated steel. A new catalogue describing these cases,
 Veroboard, pins, tools, card frame etc. is available (price $10 p+$ S.A.E. $7^{\prime \prime} \times 9^{\prime \prime}$)

pronisional :WISht.

Vero Electronics Limited, Retail Dept Industrial Estate, Chandler's Ford, Hants., SO5 3ZR Telephone : Chandler's Ford 2956 (STD 0421 5)

-it's easy!

ELECTRONICS PART 34

More about digital instrumentation.

VERY FEW VARIABLES to be measured by electronic means provide a digital signal directly: this is because the real-world is predominantly analogue by nature. Consequently, most so-called digital measurement systems involve a number of stages to make the signal compatible with the digital circuits of a system.
The most straight-forward 'digital' measurement method (at least at present), is to employ a suitable analogue sensor that provides a voltage (or current) output, related to the variable being measured. This signal then feeds an A/D converter to obtain a digital equivalent.
The low cost of digital calculation circuitry now enables linearization of sensor processes at moderate cost. Figure 1 gives an example of the digital linearization used in a thermocouple thermometer unit.
By referring to Fig. 2.we see that the linearization process, in the dual-slope digital voltmeter section of the system, is achieved by changing the ramp slope at a number of points. To do this a rate multiplier is used to multiply the clock frequency by a variable number, N/256, where N may be any number between 1 and 256 . By this means 256 different ramp slopes may be generated. The slope in use is tracked by a segment counter which, in turn, causes a read-only-memory (ROM) to set up the correct digital-readout code.
Some sensing principles lend themselves to a more direct digital signal approach. For example, in the Moire-fringe displacement sensor, a grid of fine lines (called a grating) formed on glass is attached to the moving (or fixed) member of the machine whose movement is to be monitored. This is shown in Fig. 3. The other member carries a small index grating set to produce Moire-fringes which move as the two grids pass relative to each other. Movement of these fringes is monitored by photocells which provide a number of electronic pulses proportional to the magnitude of the displacement. These pulses can be counted directly with a reversible

Fig. 1. This Fluke 2100 series digital thermometer incor porates digital linearization. It is suitabie for use with any one of six common thermocouples.

Fig. 2. Block diagram of the digital linearization technique used in a digital thermometer.
those shown in Fig. 4. This is an absolute method which is not subject

Fig. 4. A 10 bit optical Gray code disc. The value read from this gives the angular displacement.
to pulse loss or gain, or to power failure errors which occur in the previous system if not fitted with a special non-volatile memory. The discs of such a system are read optically as though they were registers or other forms of digital store, each position
I having a different digital code as read across a radial line.
In some forms of digital pulse transducer it is the rate of pulse production that represents the variable, not the absolute number of pulses. An example of this sensor is the turbine flow meter used to measure liquid or gas flow. Figure 5 shows such a flowmeter where a small turbine rotates inside a pipe at a speed related to the flow rate. Rotation may be converted into pulses using optical, magnetic, capacitive or, in earlier designs, mechanical sensing. This form of sensor provides a variable frequency output which can be converted by a counter/timer system into a direct readout of flow rate.
Digital transducers are somewhat similar. They provide a signal which varies in frequency as the variable being measured changes. The sensor of such a transducer is made such that it alters a parameter of a frequency generating circuit. For example the quartz-crystal thermometer shown in Fig. 6 operates in this manner. In this unit temperature causes the resonant frequency of a crystal, mounted in the end of the probe, to change in a predictable fashion.
It is interesting to note that many natural physiological sensors operate on the pulse-rate system - neurons (the digital nerve sensors on the end of the nervous system) trigger with pulse repetition rates that rise in accordance with the intensity of the actuating signal (heat, cold etc).

Considerable effort has been expended - especially in the Eastern European countries in the late 60's to produce reliable low-cost industrial sensors that provide a digital form of output. These have not, however, been accepted to the extent hoped. The current low-cost of extremely powerful digital circuits, however, is likely soon to produce a trend toward sensing devices having digital output.

ANALYSERS

Analysis is the general process used to break down an unknown by methods which separate and distinguish basic elements of seemingly complex arrangements, the elements so derived being satisfactorily

Fig. 5. Turbine flow meters like this one provide an output in the form of a pulse train with a pulse repetition rate proportional to flow rate.
understood basic quantities.
Synthesis is the alternative approach wherein a system is built up from known elements to produce the complex case.
Analysis may be regarded as being required when the behaviour of an existing system needs to be studied. Synthesis is used when a system is to be devised. There are of course many instances when both approaches are used to yield a solution.

Various types of electronic analysers are used in electronics. We will look here at spectrum analysers, logic state analysers and pulse-height analysers as these types are commonly met in modern circuit work. Each of these operates on an existing electrical signal
breaking it down into frequency content, logic-state content and height of pulses, respectively.

SPECTRUM ANALYSERS

Signals in the time-domain, that is those displayed as amplitude versus' time graphs, can also be displayed in terms of their amplitude-versus-frequency and phase-versus-frequency characteristics. (This was discussed in Part 4 where an example wave-form a square wave - was broken up into its harmonics). The relationship between time, amplitude and frequency are seen by studying the three forms (shown in Fig. 7) of a fundamental sinewave having a large degree of second harmonic added in. Signals displayed as amplitude. (or phase) versus frequency are said to be in the frequency domain. This kind of plot shows the frequency spectra of the signal, hence the name spectrum analysers.
The role of spectrum analysers is to display the signal content in its frequency domain form. There exists many instances where this form of display is better than a time-domain representation. Typical examples are where a fundamental has distortion (Fig. 8a) or where low levels of modulation or noise exist (Fig. 8b). Neither of these conditions could be satisfactorily detected, let' alone measured, by a time-domain test.
Basic spectrum analysers use analogue circuitry and therefore do not qualify properly for inclusion in a discussion on digital instruments. However, as we will see later, the current trend is to incluc digital techniques in such ins1 ments. Advanced analysis equipments, for example, often use a built-in digital computer.
There are two alternative forms of spectrum display. First, the repetitive signal can be studied over an extended time period by scanning across the expected frequency-range with narrow band-pass filters. A speedier, but more expensive method, works in a real-time mode thus preserving the time-dependency between signals.

ELECTRONICS-it's easy!

These are known as swept-tuned and real-time spectrum analysers respectively.
Swept-tuned systems - Basically the task is to establish the amplitude (and sometimes phase) of the signal at each frequency in turn. Many practical difficulties exist because the absolutely narrow band filter does not exist and even if it did, it would take an enormous time to sweep it across the full bandwidth of the signal. Practical filters also have finite bandwidth and roll-offs. The bandwidth of the filter may also need to change if the requirement is for a filter bandwidth that is always a given proportion of the signal frequency as it sweeps the range,
Most difficulties are overcome by mixing the signal with a swept local oscillator and then detecting the output and using it to drive the Y plates of an oscilloscope. The sweep signal drives the X plates. Figure 9 depicts this arrangement.
Real-time systems - These use a stack of band-pass filters and detectors each connected to the signal simultaneously and with each having staggered centre frequencies. This is shown schematically in Fig. 10. The scan generator multiplexes the individual channels in order to produce a continuous spectrum on the oscilloscope screen.
It is clear that this method is much more expensive because many filters are needed. It does, however, enable a detailed analysis of once-only transient signals which could not be analysed with the swept-tuned arrangement of a spectrum analyser.
A range of spectrum analysers is available for the study of signals from 5 Hz to 50 GHz . Different instruments (or the use of different plug-ins with the same display unit) are needed because units typically cover only 4 to 5 decades, that is, say $5 \mathrm{~Hz}-50 \mathrm{kHz}$, $10 \mathrm{kHz}-300 \mathrm{MHz}$ and so on. The range is, however, ever widening. Wide range, however, is not always the virtue needed for spectral resolution is related to width of display screen.
Fourier Analysers - A third method of providing a frequency analysis is based on direct mathematical calculation using the Fourier transform technique to convert a time-domain signal into its frequency-domain equivalent. Such systems are extremely expensive compared with the above analysers, but provide a vastly greater capability.
They can also handle signals at the very-low-frequency end - dc to 100 kHz is typical. Their operation is

教

Fig. 7. Second harmonic distortion is not always easily seen on an amolitude versus time display. In the amplitude versus frequency display the second harmonic distortion and its amplitude are clearly seen.

Fig. 8a. Frequency domain displays are often better than the time-domain method as these HP displays illustrate: (a) In the time domain (left) the signal looks pure but the spectrum analyser shows that it has significant distortion.

Fig. 8b. A 2\% amplitude modulation is barely discernible on time domain plot (left). The frequency domain plot clearly shows the frequencies present and their amplitude.
quite different from the above in that the signal is fed as data values into the analyser unit via keyboard or paper tape from another computer or mass-storage system. It can also be fed in as an analogue signal from, for example, magnetic tape. The heart of the Fourier analyser is a microprogrammable computer system which can be set to compute using various programmes such as the so-called FastFourier method of analysis. The same unit may also be able to carry out correlations between signals, plus many other processing techniques.
Digital circuitry in spectrum analysers - Digital circuits are being added by manufacturers to enhance the performance of analysers. Advantages

Fig. 9 : Schematic of swept-tuned form of spectrum analyser.
claimed include operating ease and better placement of controls. Digital storage of the display signals can be used to enhance the display brightness and to allow a spectrum to be 'held' for comparison against a second spectrum obtained later. Digital
included; this reduces the noise thereby enhancing the signal/noise ratio on the display - as is illustrated in Fig. 11. Character generation (using digital methods) has been incorporated to display the relevant graph-axes factors - as shown in Fig. 11. The same unit also uses a photo-optical absolute-digital code disk to replace -the mechanical switch usually used in a range control-knob.
Spectrum analysers are invaluable and are finding increasing use. Successful use is, however, a matter of experience and frequency-domain techniques are not dealt with as extensively as time-domain ones in training programmes. More details are available in the reading list - we can only provide the most elementary introduction here.
Logic-State Analysers - We check the operation of analogue circuits by measuring signal levels and frequency spectra at various points in the circuit. Digital circuits are different in that they contain the signal information in the form of multi-digit 'words' made up of two-state bits. To check operation, therefore, we must ascertain simultaneous logic-states at various points in the circuitry. The simplest analyser for this work is a probe which indicates logic hi or lo state at a selected point; coloured lights are used as indicators. A store function can be built-in to the probe to catch a short transition that would not otherwise be seen in the lamp display. It must also have connections suitable for PC board digital circuitry - see Fig. 12.

The single probe can be used to analyse the state of a circuit by moving from point to point in turn. To speed-up the analysing process a more extensive facility to use would be one that simultaneously shows the logic states of multiple points in the so-called Data-domain. The Hewlett-Packard system, for example (shown in Fig. 13), displays over 500 points as a matrix of O's or 1 's on a CRO screen. These instruments are used to debug, test or trouble-shoot complex digital circuits. Onily large laboratories, however, would be able to justify the cost of such advanced logic analysers.
Pulse-height analysers (Discriminators) - Measurement processes involving ionising radiation and sometimes light-intensity levels rely on pulse counting, the pulses appear as rapid electrical currents produced from a photo-multiplier or ionisation detector. The relative amplitude of a pulse often distinguishes it from pulses from other sources. For example, different radio-active isotopes produce pulses of different energy, enabling an assay of radio-active mineral to be

Fig. 10. Block diagram of real-time spectrum analyser based on stacked filters:
(a) schematic
(b) frequency response showing individual filter windows.

SYNTHESIZERS

These are a special kind of signal generator in that the signal output is formed by addition of a number of sources or by manipulation of a single, stable-reference frequency. A music synthesizer provides a whole range of musical sounds by combining many different tones into a single output. Although synthesizers work upon basic analogue signals the trend is to combine or modify the signals using digital control.
The advantages offered are (in the variable frequency generator kind of synthesizer) that a very stable reference oscillator has its frequency translated to (literally) billions of other values (the HP 8660 gives

Fig. 11. The Tektronix .spectrum analyser incorporates various digital techniques that provide character generation on the display and reduce the noise !evel of a signal. The adjacent photo shows the original unfiltered signal containing the two small signals and noise (recovered in the CRO display).
made by a study of occurence of pulses of different height. Pitutons arising from the various noise sources in photo-multipliers have cifferent energy from those generated at the photo-cathode. This is a true detection process: noise can be reduced by discrimination of pulse heights.
Pulse height analysers use carefully selected trigger levels to accept only those pulses (for counting) that arise from the particular source of interest. Pulses above the trigger window, or below are rejected (not counted) as demonstrated in Fig. 15.
$10 \mathrm{kHz}-2600 \mathrm{MHz}$) whilst retaining. high stability. By pressing digital-key inputs, any chosen frequency value is generated. It is also possible to control the output via a programmable BCD digital input. Programming enables an enormous range of signals to be synthesized, a typical requirement being as part of an automatic test procedure. Figure 14 shows the philosophy of the HP 3330 series of automatic synthesizers with a typical programme card marked up for a frequency sweep routine.
Digitally-controlled power sources

Fig. 12. Simple logic probe in action.

ELECTRONICS-it’s easy!

Fig. 13. Hewlett Packard logic-state analyser as set up to test a printed-circuit board card.
, may be used to synthesize varying' voltage (or current) levels over a test period at the commands of a mini computer in the same way as the above unit synthesizes frequencies.
Frequency and voltage synthesizers are often combined in the hybrid-computer (digital and analogue combined) in order to generate synthesized signals which are needed to derive a simulation of a complex system, such as a missile in flight.

COMPUTER CONTROLLEO TEST SYSTEMS

With the enormous increase in complexity of routine complex processes lsuch as aircraft instrumentation and controls, refineries, automatic and large-volume manufacture of electronic systems) came the need to improve and speed-up the testing procedures needed to check out the thousands of different parameters involved. Computer controlled testing is far more reliable than human operator testing and is extremely fast. It can be economic even for the testing of small volume electronic equipment, especially where a large range of tests is involved.
The instrument or process to be tested is interfaced to the main test console which usually incorporates a wide range of facilities that are chosen with flexibility of operation in mind. Figure 15 shows an automatic system used to calibrate a test instrument. The test programme must be devised by a highly-trained professional designer, but once developed and programmed the testing can be performed by a less trained person.
It is not possible here to deal in depth with automatic testing as the range of requirements and equipment available are both great. The overall concept and scope of an automatic test system is shown in Fig. 16. Suffice to say very complicated automatic
testing systems are in routine use in à wide variety of manufacturing and maintenance situation.

New Course in Digital Design

Understand the latest

 developments in calculators, computers, watches, telephones, television, automotive instrumentation. . . .Each of the 6 volumes of this self-instruction course measures $113 / 4^{\prime \prime} \times 81 / 4^{\prime \prime}$ and contains 60 pages packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.

After completing this course you will have broadened your career prospects and considerably increased your fundamental understanding of the changing technological world around you.

Also available - a more elementary course assuming no prior knowledge except simple arithmetic.
In 4 volumes:

1. Basic Computer Logic
2. Logical Circuit Elements
3. Designing Circuits to Carry Out Logical Functions
4. Flip flops and Registers

Offer. Order this together with Design of Digital Systems for the bargain price of $£ 9.70$, plus 80 p p\&p.
Design of Digital Systems contains over twice as much information in each volume as the simpler course. Digitai Computer Logic and Electronics. All the information in the simpler course is covered as part of the first volumes of Design of Digital Systems which, as you can see from its contents, also covers many more advanced topics.

Designer
Manager
Enthusiast
Scientist
Engineer
Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

Guarantee-no risk to you

If you are not entirely satisfied with Design of Digital Systems or Digital Computer Logic and Electronics, you may return them to us and your money will be refunded in full, no questions asked.

Design of Digital Systems

A Self-Instruction Course in 6 Volumes

Computer Arithmetic

9 Boolean Logic 3 Arithmetic Circuits 4 Memories \& Counters 5 Calculator Design Computer Architecture

£6.20
plus 80 p packing and surface post anywhere in the world (VAT zero rated). Payments may be made in foreign currencies. Quantity discounts are available on request.

CREED 5 LEVEL COMBINED PRINTER AND PERFORATOR NEW CRATED £35.each

CREED 5 LEVEL PAPER TAPE READER £25 each

CREED 7B TELEPRINTER CRATED £40 each

$£ 5$ discount on any pair plus FREE carriage. Otherwise $£ 2.50$ carriage each item

MARCONI TF675F WIDE RANGE PULSE GENERATOR

+1 - variable outputs up to 50 V Optional delay Small compact unit

MARCONI TFI106
NOISE GENERATOR
4 ranges 0.5:0.1n;0.15;0.30

THE LATE MODEL MARCONI OSCILLATOR TF885A/1

in superb condition covering 25 HZ to 12 MHZ sine wave in 3 ranges and 50 HZ to 150 KHZ square wave. High nutput $31: 6 \mathrm{~V}$. Meter scaled in volts and dBs.

all items $£ 22.50$
 each

SPECIAL OFFER - pick 3 different items of the 5 for

£60

Carriage $£ 2.50$ each or $£ 5$ for 3

FURZEHILL VALVE VOLTMETER

V200A Audio to 10 MHz with probe 1 MV FSD as new condition

AVO VALVE TESTER CT160

'The Suitcase". Size approx. 15' wide $\times 10^{\prime \prime}$ high $\times 11^{\prime \prime}$ deep.

8 An
extra.
BNC Plug to BNC Plug lead assemblet
ready to use $75 p$ ea. P\&P 20 p.
Ex-eq. BNC Socket $15 p$. BNC Plug 20p
BNC Plug \& Socket 30p pair. P\&P 15p

TUBES - All Brand New. Boxed

Electrostatic Deflection
Electrostatic Deflection. $71 /{ }^{\prime \prime}$ long. Blue Trace $£ 2.50$ es. Psip 75
Type CV 526 (3EG1) 3" dia. £4 ea, P\&P
$\begin{array}{ll}\text { Type DB7/36 } & 3^{\prime \prime} \text { dia. (Replacement fo }\end{array}$
Telequipment S31) £15 ea. P\&P 1150
Type $5 \mathrm{BVP} 95^{\prime \prime}$ dia PDA, X Y Low Capacitance Side Pins. Green Trace £5 ea. \& \& £ 1.50
Type GEC 924F $31 / 2^{\prime \prime}$ dia. (Replacement for Telequipment D33 \& Solartron 1016 scnpes) £ $\mathbf{3 0}$ ea. P\&P \& 1.50
Type GEC $924 \mathrm{E} 31 / 2^{\prime \prime}$ dia. (Replacement for Solartron 1015 scope) £20 ea. Г\&P $£ 1.50$ Magnetic Deflection
120 Prich Blue with yellow afterglow. £1 ea
And ar the VDU BUILDERS
M .38 .11 GH Rectangular $30 \times 20 \mathrm{~cm}$ Green Irace. Superh value £ 12 ea. White Trace £9 ea.

COME - WHEN
 NOW - WHY
 BARGAINS GALORE

or send for lists

- SPECIAL OFFEA

Guaranteed full spec devices Manufacturers markings.
BC 204 \& BC 207A 4p ea.' P\&P extra.

TELEPHONES
Post Office Style 746. Black or Grey $£ 6.50$ ea.
Modern Sitlo 706 Biack ar $€ 4.50$ ea
Modern Standard Style in Grey or Black 746 a place to put your fingers like the 746. £2 ea. As above bur discoloured Grey standard dial and bells P\&PP all styles 750 ea. Handsets, complete with 2 inserts and lead £ 1.75 ea. P\& ${ }^{2}$ P65

NEW - UPGRADED CONTENTS - FOR LESS MONEY
*31b Electrontic Goodies £1.60 post paid *

* ligh Vilue Finted Board Pack -- hundred of components. ttansistors, etc. - no flat to the hoard 1 ransistors $£ 1.65$ post paid

VERY SPECIAL PRICES

* 10001 Feed thru Capacitors 10 for 30p.

P\&P 15 n
*BEEHIVE TRIMMERS $3 / 30 \mathrm{pf}$ BRAND NEW
10 Off 40p, P\&P 15p; 100 off $\mathbf{£ 3 . 5 0 , ~ P \& P ~}$ $75 \mathrm{p}, 500$ off £ 15, P\&P ET. 25; 1.000 off £25, P\&PE150

HIVAC Miniature NEONS App 60V. Brand New. 10 nfi 20p.

LARGE RANGE ELECTROSTATIC VOLT. METERS from $0.300 \mathrm{~V} 2^{\prime \prime} £ 3$; to 250 KV Max.
General guide $5 \mathrm{KV} 3 \sqrt[1]{2}$ " $£ 5$; thereafter $£ 1$ per KV. P\& P 75 p

MARCONI TF 1901 Audio Oscillator. 20c/s attenuator f 45 each

MUFFIN Fans 230 volt Size $5 \times 5 \times 11 / 2^{\prime \prime}$ Superbly quiet and reliable Ex.-eq but rested $£ 1.50$ ea. P\&P $75 p$
P\&M CLOCKS - SLAVES. $111 / 2^{\prime \prime}$ £ $£ \mathbf{~ e a}$. ¢ 7 ea. Plus $£ 5$ oo., Plus Carr.: 231/2 £7 ea., Plus Carr., ITR CLOCKS SLAVES *Meter PACKS - 3 different meters $\mathbf{\text { C2, }}$ P\&PE1.
DON'T FORGET YOUR MANUALS S.A.E. with requirements
GRATICULES $12 \times 14 \mathrm{~cm}$ high quality plastic 15p ea. P\& P 10p
*CAPACITOR Pack. 50 Brand New components only 50p. P\&P 48p
\star TRIMMER PACK All Brand New. 2 Twin 50/200pf ceramic, 2 Twin $10 / 60 \mathrm{pf}$ ceramic: 2 min. strips with 4 preset $5 / 20 \mathrm{pf}$ on each; 3 air spaced preset $30 / 100$ pt on ceramic base 25p the lot, P\&P ${ }_{4}$ dig Stonebridge/ Sodeco 1000 ohm coil $\mathbf{£ 2} \mathbf{e a}$. P\&P 35 p.
*POTENTIOMETERS - All 5p each. P\&P extra. Metal bodied AB Linear. PCB mount Brand new. 10 K single: 100 K Ganged; 250 K Ganged; 100 K Ganged concentric shafts.

FIBREGLASS BOARD PACK. More board -sq. Ft for 95p, P\&P 65p.
Double or single sided cut to any size. New Lower Price $1 p$ per sq. in. P\&\& extra

HONEYWELL MAGNETIC TAPE UNITS

Self-contained, complete with heads, magnetic tape, leads, etc Tested Carriage paid. FROM £65

NOW AVAILABLE

Various punches, tape reader, low voltage power supplies, card frame modular cases, etc. Lists available

Minimum Mail Order $£ 2$. Excess postage refunded
Unless stated - please add $£ 2.50$ carriage to all units VALUE ADDED TAX not included in prices - Goods marked with $\star 121 / 2 \%$ VAT, otherwise 8% Official Orders Welcomed. Gov./Educational Depts., Authorities, etc., otherwise Cash with Order

PROM copy made and plugged in in place of the RAM. The PROM programming sequence is fairly simple and a programmer could be
© built at little cost (again, let me know if you do build one). Programming will occur at a selected address when Vcc is held at 10.5 v , the appropriate output is held between 9.5 v arid 11 v and the chip is subsequently enabled.

1. Select the word address by applying high or low togic levels to the appropriate address pins. Ensure that the chip is disabled by a high level to one or both of the chip enable inputs.
2. Increase Vcc to 10.5 v at a rate between 1 and 10 volts per microsecond, (Vcc must be capable of supplying 400 mA).
3. Select one of the outputs where a logical ' 1 ' is required by raising that pin to 10.5 v . Outputs not being programmed must be left open circuit and only one output can be programmed at each time.
4. Enable the chip by taking both enable inputs low for $10 \mu \mathrm{~S}$.
5. Remove the voltage from the output pin and then reduce Vcc to 4 v . Enable the chip and check that the bit has been pro. grammed to a logical '1'. For high programming yield steps $2-5$ may be repeated up to 10 times.
6. Repeat $2-5$ for each bit to be progranmed in the selected word.
7. Repeat 1-6 until all 256 words are proyrammed, recheck each word
Full details of the programming procedure of these PROMs and similar devices can be obtained from the manufacturers.

REAL FLOPPIES

Previously we discussed the idea of a direct-access device for use by an amateur constructor but we missed out on one important point. If you only require to store and retrieve information on your own MPU then a unit which is unique to your system is ${ }^{-}$OK. If you wanted to exchange data with another MPU or with a large mainframe computer then you would have to use cassette or floppies. I have not heard of a mainframe unit which will accept CUTS format cassette tapes and therefore the best intercommunications device would be a floppy disk. Several types are now available on the market covering a range from full IBM compatibility to a new mini-floppy which was mentioned a couple of months ago.

The SA800 Diskette Storage Drive from Shugart Associates has an IBM compatible capacity of 2 Megabits and an absolute maximum of 6.4 Megabits. The diagram shows its mechanical operation as follows - the required disk is slid into place and the unit started, this causes the drive motor to spin the disk at high speed. The Write Protect system works in a similar manner to that of a cassette tape by
not allowing a write to the disk if the disk is for read-only operation. An electrical stepping motor and lead screw positions the read/write head. The stepping motor rotates the lead screw clockwise or counter-clockwise in 15° increments, each increment moves the R / W head one track position. The R/W head is mounted on a carriage which is located on the Head Postion Actuator lead screw

The high rotational speed of the floppy (360 RPM) gives data transfer rates of 250 kilobits per second and an access time for any data on the disk of 260 mS (average). Compare this to our earlier figures and some of you may decide to save up to buy a floppy rather than building your own. If the $£ 625$ price tag for the SA800 is too high then how about the $£ 495$ tag on a minifloppy? The SA400 is only $31 / 2$ $\times 6 \times 8$ inches in size but has about one-third of the capacity of the SA800 and uses a 5 in disk rather than the 8 in disk used on the standard floppy. With each disk costing only about $£ 5$ and holding nearly 100 kilobytes of data the price per kbyte is only 5 p compared to 50 p for our system and $£ 50$ for RAM

REFERENCES:

RAM/PROMs - National semiconductors (UK) Ltd, 19 Goldington Road, Bedford. Signetics, Texas, Intel, etc. also do similar chips Floppies: Shugart Associates, 435 Indio Way, Sunnyvale, Calif 94086; or contact Bywood Electronics.

ETI DIGITAL MULTIMETER KIT DMKI

This kit has been specially made available to ETI readers, and comes complete, down to the last screw All you need is a few spare hours and some tools. The result will be a superb piece of test equipment that will be of invaluable use to the serious constructor or test lab

* High accuracy, spec as in project text

Special Note
This kit has been produced in conjunction with the designer and author of the project in the October issue of ETI as several parts are not normally available, or specially manufactured

Please allow 21 days for delivery

* A demonstration model can be seen working at our electronics centre. Full list and specifications. Send s.a.e. please.

B H COMPONENT FACTORS LTD.

LEIGHTON ELECTRONICS CENTRE
 59 NORTH ST., LEIGHTON BUZZARD, BEDS. LU7 TEG TEL: 2316 (STD 05253)

GOVERNMENT \& EDUCATIONAL ORDERS ACCEPTED
GIRO NO. 3317056 . ACCESS \& BARCLAYCARDS ACCEPTED

ORDER FORM
TO B H COMPONENT FACTORS LTD. 59 NORTH ST., LEIGHTON BUZZARD, BEDS.

Please supply 1 DMK 1 kit

Name
Address

I enclose cheque / PO for E
Access of B/card No

COMBINATION LOCK

The circuit and switching system is simplified by the use of a multiplex system. S1 inputs pulses to the decade counter 7490. The resulting BCD is decoded by the 7442. It is the decimal output of this which carries out the multiplexing via the AND-gates.

S2 inputs pulses which are transferred to the other 7490 decade counters by the AND-gate multiplex system. The BCD output from the 7490's is taken to the AND-gates whose outputs control the Alarm 'Disable' and 'Enable' switch system.

The 'Disable' function effectively prevents TR2 from being biased on and hence prevents the 'Enable' Reed relay from working.

This circuit has several advantages over conventional electronuc combination locks as only two switches need be installed on the object to be guarded, regardless of the number of figures in the combination. The value of the example combination is 314 . The alarm is triggered if any of these digits is exceeded in value. While the circuit is capable of directly driving an actuator it is recommended that it is only used to disable an alarm system -

conventional locks doing the actual locking. (To operate the example the
switch sequence would be: S1, S2, S2, S2, S1, S2, S1, S2, S2, S2, S2.)

FILTERS USING CMOS

High pass and low pass filters may be readily constructed using CMOS inverters (CD4007 CD4069 74C04) since these have only a single complementary pair, and hence lower power dissipation and less likelihood of instability. A form of Sallen and Key:

Standard equations are used to determine component values. It is recommended that passband gain be restricted to unity.

THYRISTOR TIP

For full-wave control from a thyristor, add a bridge, how about:

ADSR ENVELOPE SHAPER

When a negative going trigger pulse is applied to the input, IC2(c) disconnects the 'release' pot, the bistable is set and the 'attack' pot connected to C1. C1 charges up to the threshold voltage of IC1(c) where the bistable is reset. IC2(b) causes C1 to discharge to the level set on the sustain level' pot. If S1 is in position ' 1 ', when the trigger pulse goes high again IC2(c) causes C 1 to discharge via the 'release' pot.

During the time IC1(a) is high C2 is charged up forcing the output of IC1(d) Iow. Once IC1(a) has gone low C2 begines to discharge and after a

while IC1(d)'s output will go high again. When S 1 is in position ' 2 ' the sustain is controlled by the mono stable thus formed. It is retriggable so
that should a second trigger arrive before the cycle has completed the cycle will restart. The 741 buffers the output.

15-240 Watts!

HY5

Preamplifier

HY30
15 Watts into 8Ω

HY50
25 Watts into 8Ω

HY120
60 Watts into 8Ω

120 Watts into 8Ω

SPECIFICATIONS

INPUT SENSITIVITY 50 ORIV
OUTPUT POWER 6OW RMS IMU 8:! LOAD IMPEDANCE 4168 DISTORTION 004 al 6OW a SIGNAL NOISE RATIO GOUAB FREQUENCY RESPONSE $10 H_{2} 45 \mathrm{kH}$, 3dB SUPPIY VOLTAGE SILE 114.5085 mm
Price $\mathrm{f14.40}+\mathrm{E} \mathbf{1 . 1 6}$ VAT PEP free

HY200

The HY400 is I LP S Big Daddy of the range producing 240 W into $4!? 11$ has been designed for high power disco of public address applications if the amplitiet is to be used at conimuous high power
levels a cooling fan is recommended The amplitie inctudes all the qualities of the rest of the family to leads a cooling ian is recommended as a rue high power tinf fidelity powet module
FEATURES: Thetnal shuldown Very low distorion
compone: as
SPECIFICATIONS
OUTPUT POWER 240W RMS InIO 4!) LOAD IMPEDANCE \& $16: 3$ DISTORTION 01 al 240 W SIGNAL NOISE RATIO $94 \mathrm{~d}^{\circ} \mathrm{B}$ FREQUENCY RESPONSE 10 H : 45 kH ; 3 dB SUPPLYVOLIAGE INPLIT SENSITIVITY 500 mV SIZE $114 \times 100 \times 85 \mathrm{~mm}$
Price $\mathbf{E 2 9 . 2 5}+\mathbf{E 2 . 3 4}$ VAT P\& P free
POWER
SUPPLIES

TWO YEARS GUARANTEE ON ALL OF OUR PRODUCTS

I.L.P. Electronics Ltd Crossland House Nackington, Canterbury Kent CT4 7AD
Tel (0227) 63218

Please Supply
Total Purchase Price
I Enclose Cheque \square Postal Orders \square Money Order \square
Please debit my Access account \square Barclaycard account \square
Account number
Name \& Address

Now Available

techtips

TONE BURST GENERATOR

The circuit in Fig. 1 generates the waveform shown in Fig. 2. The output is basically oscillations at a certain frequency outputed in small pulses. This type of waveform has varied uses ranging from a beat for an organ or synthesizer to audio or radio frequency testing.

The variable parameters of the waveform are shown in Fig. 3:-

VR1 alters the time between pulses. C1 alters the length of the pulse. VR2 alters the amplitude of the waveform.
Cx alters the frequency of the waveform within a pulse. This ranges from .0005 giving RF, to 5 giving AF. (microfarads)

MOBILE POWER SUPPLY

R1, C1 and 2D1 provide clipping and smoothing of supply spikes, while D1 protects against reverse polarity connection. The reference voltage is provided by the ring-of-two, since in this configuration the zeners bias constant-current sources for each other, the output across ZD3 is almost totally independent of supply variations. R2 ensures the ring starts reliably.

A set fraction of the reference voltage is applied, via VR1, to the 741, which in conjunction with current amplifiers $\mathrm{Q} 4, \mathrm{Q} 5$ forms a negative feedback loop to maintain the output voltage constant. It may be set

between 10 and 6 volts, so, for instance, most battery cassette equipment may be driven. Short-circuit protection is provided by Q3; when the output current exceeds 400 mA
.sufficient voltage is dropped across R3 to turn on Q3, which shunts drive away from the base of Q4 and hence prevents the output current from rising further.

techtips

LOW FREQUENCY SQUARE WAVE

 OSCILLATORA drawback of low frequency oscillators using bipolar transistors or TTL logic is that the timing capacitor usually has to be a high value electrolytic. Using a field effect transistor at the input of a schmitt trigger, means a low value capacitor can be employed. The trigger by TR1 and TR2 has a hysterisis of approximately 3 V . This is controoled by the 3 V zener

With C1 uncharged TR1 is off and TR2 is forward biased. The voltage at the source of TR1 is approximately +4 V . TR2 conducts, thus turning on TR3. The output is therefore at +10 V . C1 then charges via R1 and the gate voltage of TR1 goes positive. When the gate voltage is sufficiently positive TR1 conducts, turning off TR2. The positive feedback from the emitter of TR2 to the source of TR1 ensures a

rapid switch off. TR3 also switches off and the output goes to -5 V . Capacitor C1 now discharges towards -5 V , but when the voltage across C 1 falls by approximately 3 V , TR 1 ceases to conduct, turning on TR2.

The collector load of TR3 is connected to a negative supply giving a

50\% duty cycle. (The circuit still oscillates if R7 is connected to OV but the duty cycle will change, the output remaining at $O V$ for a longer period than at +10 V).

With the components as shown the frequency of the output is approx imately 0.025 Hz .

CODE SWITCH

When button 3 is pressed R3 'Gates' SCR 1, which remains on with a load of R1. It also supplies voltage to the anode of SCR 2.

When button 7 is pressed SCR 2 is 'Gated' by R3 also, and held on by R2, thus supplying the anode of SCR 3, which when 'Gated' by button 9 closes the relay and makes an external circuit.

It can also be used to switch a circuit off depending on how the relay is wired. This would be an advantage in a home intruder alarm.

Components: The Thyristors can be any type and values for R1 and 2 selected to hold the SCR's in conduct-

ion. R3 is selected to suit the thyrist ors. The remaining buttons, 1,2,4,5,6,

8,0 when pressed short out SCR1, thus switching off any following SCR.

THE 7400 A TWO-WAY DATA

SELECTOR!

When the "DATA SELECT" terminal is at logical ' O ', the output of $N 1$ is held high whilst information presented on the "DATA B" terminal is transferred to the output of the circuit. Similarly, when the "DATA SELECT" terminal is at logical " 1 ", the output of N3 is held high, whilst "DATA A" is transferred to the output. In a parallel data system one 7400 would be used for each bit

PRINTED CIRCUIT KIT E3.95*
Make your own printed circuits Contains etching dish
100 sa ins of pe board 11 b ferric chloride dalo pen drill but, laminate cutter
$\underset{\text { GWIC a Adio amp with tree }}{\text { JC1 }}$
data and printed circuit

DELUXE KIT FOR JC12

 amp including balance volume bass and treble controls Monoz2 33 Stereof 495
JC12 POWER KIT
JC 12 PREAMP KITS
type for magnetic pickups, mics and tuners. Mono $£ 1.50$. Stereo $£ 3.00$ Type 2 for ceramic or crystal pickups. Mono 88p. Stereo 117

SINCLAIR IC20

with free primed circuit + datat 495
PZ20 Power supply kit for above $£ 395$

JC40 AMPLIFIER

thip printed circuit 20 W amplifier kit complete with

FERRANTI ZN414

BATTERY ELIMINATOR BARGAINS

 STABILIZED POWER UNITS *Millenia series Switched 1 to 30V in 01 V steps
 6-WAY SPECIAL E4.95*
Switched output of $341 / 2$
FULLY STABILIZED MODEL E5.45*
Switched output of $3 / 6 \quad 71 / 2 / 9 \mathrm{~V}$ stabilized at 400 mA 3-WAY MODELS
With switched output and 4 -way multi-ack connecto Type $13 / 41 / 2 / 6 \mathrm{~V}$ at $100 \mathrm{~mA}: 294$ Type 26 RADIO MODELS
50mA with press-stud battery connectors $9 \mathrm{~V}=325$ $6 \mathrm{~V}: 3459 \mathrm{~V}+9 \mathrm{~V} \ddagger 5456 \mathrm{~V}+6 \mathrm{~V} \pm 54541 / 2 \mathrm{~V}+$ CASSETTE MAINS UNITS
$71 / 2 \mathrm{~V}$ with 5 pin DIN plug 50 mA : $345 \quad 300 \mathrm{~mA}$ $\div 395$
CAR CONVERTORS £5.10*
mul
BATTERY ELIMINATOR KITS
Send sae for free leaflet on range
100 mA radio
100mA radio types with press stud battery terminals $41 / 2 V+1956 V f 1959 V=19541 / 2 V+41 / 2 V E 260$
$6 V+6 V+260 \quad 9 V+9 V+260$ $6 V+6 V$ f $2609 V+9 V £ 260$
100 mA cassette
100mA cassette type: $71 / 2 \mathrm{~V}$ with 5 pin DIN plug
Transistor stabilized 8 -way type for low hum $3 / 41 / 2 / 6 / 71 / 2 / 9 / 12 / 15 / 18 \mathrm{~V} 50 \mathrm{~mA}=3151 \mathrm{Amp}$ i6 50
Heavy duty 13-way types
$41 / 2 / 6 / 7 / 81 / 2 / 11 / 13 / 14 / 17 / 21 / 25 / 28 / 34 / 42 \mathrm{~V}$ 1 Amp model i 495 2Amp model $i 755$ Car convertor kit: Input 12 V DC Output $6 / 71 / 2 / 9 \mathrm{~V}$ OC 1A transistor stabilized f1 95
MAINS TRANSFORMERS
6.0-6V 100mA : 1 9-0-9V 100mA $=118 \mathrm{~V} 1 \mathrm{~A}=195$
 $\begin{array}{rrrr}295 & 6-0-6 \mathrm{~V} \quad 11 / 2 \mathrm{~A} & =285 \quad 9-0-9 \mathrm{~V} & 1 \mathrm{~A} \quad 2 \mathrm{O}^{1 / 2 \mathrm{~A}}\end{array}$ $12.0-12 \mathrm{~V} 1 \mathrm{~A}=295 \quad 15-0 \cdot 15 \mathrm{~V} 1 \mathrm{~A}=320 \quad 30-0 \cdot 30 \mathrm{~V}$

S-DECS AND T-DECS \star

$-405 \quad \mathrm{U}-\mathrm{DeCA}: 445$
$\mathrm{u}-\mathrm{DeC} 8: 785$
u-DeC8 z 785 IC carrier
with sockets
10 TO5 $£ 195$
SINCLAIR CALCULATORS AND
WATCHES*
Cambridge Universal 660 Cambridge Sciensific i 895 Oxford 300 £ 1330 Programmable Screntific
with free mains unit: 2495 Mains adaptors for ont with ree mains unit $\mathbf{2 4}$ models (state typel i 320 Assembled Grey Watch with
free stainless steel bracelet $t 1645$
SINCLAIR PROJECT 80 AUDIO MODULES
BI-PAK AUDIO MODULES
S450 tuner 1895 AL60.433 PA $100: 1345$
 tree data SPM $0: 335$ BMT $80 \cdot 350$ Send
SAXON ENTERTAINMENTS MODULES

SWANLEY ELECTRONICS

Dept. ETI, PO BOX 68, Swartley. Kent Send sae for free leaflets on all kits Post $30 p$ on orders under :2 23 otherwise free Prices include VA
Overseas customers deduct 7% on items marked Overseas rustomers deduct 7% on items mark

BUILD THE

- Genuine 5 sificon transistor Eircuit, does not need a transistor radio to operate
- Incorporates unique varicap tuning
for extra stability.
- Search head fitted with Faradayi sereen to eliminate capacitive: effects.
- Loudspeaker or earphone operation. (both supplied)
- Britain's best selling metal locator
kit. 4,000 already sold
- Kit can be built in two hours using only soldering iron, screwdriver, pliers and side-cutters.
- Excellent sensitivity and stability.
- Kit absolutely complete including drilled, tinned, fibreglass p.c. board with components siting printed on.
- Complete after sales service.
- Weighs only 22oz; handle knocks
down to $17^{\text {² }}$ for transport.
Send stamped, self-addressed envelope for literature.

\section*{| $\begin{array}{l}\text { Complete kit } \\ \text { with pre-built } \\ \text { search coil }\end{array}$ |
| :--- |
 Plus E1.00 P\&P
 Plus £1.18 VAT (8\%)}

Plus $£ 1.00$ P\&P
Plus £1.58 VAT (8\%)
MINIKITS ELECTRONICS,
6d Cleveland Road, South Woodford, LONDON E18 2AN (Mail order only)

Wilmslow Audio
 THE firm for speakers!

8aker Group 25. 3. 8, or 15 ohm
Baker Deluxe, 8 or 15 ohm
Baker Major, 3, 8 or 15 ohm
Baker Superb. 8 or 15 ohm
Celestion MH 1000 horn. 8 or 15 ohm
Coles 4001 G super tweeter
EMI $14^{\prime \prime} \times 9^{\prime \prime}$ bass $14 \mathrm{~A} / 7008 \mathrm{ohm}$
Elac 59RM $10915 \mathrm{ohm}, 59$ RM 1148 ohm
Elac $61 / 2^{\prime \prime} \mathrm{d} / \mathrm{c}$ roll/s B ohm
Elac $10^{\prime \prime} 10 \mathrm{RM} 2398$ ohm
Elac 10" 10RM239 8 ohm
Fane Pop 15 watt $12^{\prime \prime}$
Fane Pop $55,12^{\prime \prime} 60$ watt
Fane Pop 60 watt, $15^{\prime \prime}$
Fane Pop 70 watt $15^{\prime \prime}$

Fane Pop 70 watt 15

Fane Pop 100 watt. $18^{\prime \prime}$
Fane Crescendo 12 A or 8,8 or 15 ohm

Fane Crescendo 15.8 or 15 ohm

Fane 801T $8^{\prime \prime} \mathrm{d} / \mathrm{c}$ roll/s 8 ohm

Goodmans 8 P 8 or 15 ohm

Goodmans 10P 8 or 15 ohm

Goodmans $12 \mathrm{P}-\mathrm{D} 8$ or 15 ohm
Goodmans 12P-G 8 or 15 ohm
Goodmans Audiom 2008 ohm

Goodmans Axım 4028 or 15 ohm
Goodmans Twinaxiom $8^{\prime \prime} 8$ or 15 ohm
Goodmans Twinaxıom $10^{\prime \prime} 8$ or 15 ohm
Goodmans Twinaxiom $10^{\prime \prime} 8$ or 15 ohm
Kef T27

Kef B1 10

Kef B200
Kef B139

Kef DN8

Kef DN 13

Baker Major Module, each

Goodmans Mezzo Twinkit, pair
Goodmans DIN 20,
Helme XLK 30 , pair

Helme XLK35, pair
Helme XLK40, pair

Kefkit I. pair

Kefkit III, each
Peerless $20-50$.

Peerless 20-50, parr
Peerless 20-60, par

Richard Allan Twinkıt, each

Richard Allan Triple 8, each
Richard Allan Triple 12 each

Richard Allan Super Triple, each

Richard Allan CG8T 8" d/c roll/s

Wharfedale Glendale 3 XP kıt. parr

Wharfedale Dovedale 3 kit, pair

Wharfedale Super 10RS/OD

Castle Super 8 RS/00

Jordan Watts Module 4, B or 15 ohm

Tannoy 10"' Monitor HPD

Tannoy $15^{\prime \prime}$ Montor HPD

$£ 9.00$ $£ 16.31$

$£ 16.31$ $£ 13.50$

$£ 5.90$

$£ 5.90$
$£ 11.92$
$£ 3.75$

$£ 3.38$ $£ 3.95$

$£ 3.95$ $\mathbf{£ 3 . 9 5}$

$£ 3.95$ $£ 5.50$ $\mathbf{c 1 5} 75$

$\mathbf{£ 1 6 . 7 5}$
$£ 19.95$

$£ 21.75$
$£ 33.95$

$£ 42.95$
$\mathbf{~} 54.95$

$〔 54.95$ $£ 75.95$

Prices correct at 5.1076

ALL PRICES INCLUDE VAT

Cabinets, wadding, Vynarf, crossovers etc

Send stamp for free 38 page booklet Choosing a Speaker
FREE with all orders over £. 10 -
"Hifi Loudspeaker Enclosures" Book
All units are guaranteed new and perfect
Prompt despatch
Carriage Speakers up to $1^{\prime \prime} 60$ p, $12^{\prime \prime} £ 1,15^{\prime \prime £ 175, ~}$ $18^{\prime \prime} £ 250$ Kıts $£ 1$ each (i2 2 per parr) Tweeters and Crossovers 33p each

WILMSLOW AUDIO

Dept. ETI

Swan Works, Bank Square, Wilmslow,
Cheshire SK9 1 HF. Tel. Wilmslow 29599 (Discount MiFi, PA and Radio at 10 Swan Street, Wilmslow)

Access and Barclay Card orders accepted by

Learn to understand electronics for your hobbies

1. Lema-Kit course

Step by step, we take you through all the fundomentals of electronics and show you how easily the subject can be mastered.
(1) BUILD AN OSCILLOSCOPE
(2) READ, DRAW AND UNDERSTAND CIRCUIT DIAGRAMS.
(3) CARRY OUT OVER 40 EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS AND SEE HOW THEY WORK

2.Become a Radio-Amateur

Learn how to become a radio-amateur in contact with the wide world. We give skilled preparation for the G.P.O. licence.

CROFTON ELECTRONICS LTD.
35 Grosvenor Road, Twickenham, Middlesex Tel. 01-8911923

Now there's a better way to keep your EII copies

We reckon ETI is worth keeping: and our surveys indicate that a staggering. 97\% of readers keep their copies for at teast three months. Now we can offer you a binder which holds 12 issues whose quality befits the magazine: excellent. Send E2. 50 (which includes VAT and postage) to
25-27 OXFORD STREET, LONDON W1R 2NT

NOVEMBER ISSUE INCLUDES

WITH THESE TABLES

Design Data Tables 2 contain the following tables -
MILLIMETRE-INCH CONVERSION, PHASE SHIFT OSCILLATOR C-R VALUES, $2 \pi f$ VALUES, AUDIO OUTPUT POWERS, PARALLEL-R SERIES-C VALUES, E-R DISSIPATION, INCH-MILLIMETRE CONVERSION
Full notes given on how to make full use of the tables to obtain the maximum benefit.

T.T.L. CALIBRATION GENERATOR

This unusual design employs an LC oscillator which is set to correct frequency by zero-beating with the long wave Radio 2 transmission on 200 kHz . Another novel feature is the use of a t.t.i. decade counter to obtain division by 2 and by 10 of the oscillator frequency.

THIS SECTION IS A PRE-PAYMENT SERVICE ONLY

MINIADS: $31 / 4^{\prime \prime} \times 21 / 8^{\prime \prime}(1-3) £ 22(4-11) £ 20$ (12 or more) $£ 19$ per insertion. CLASSIFIED DISPLAY: $£ 3$ per single column centimetre SEMI-DISPLAY: $£ 2.30$ per single column centimetre. LINEAGE: 65 p © CLASSHFIED per line average six words, minimum 3 lines. BOX NO: allow 50p extra Contact BOB EVANS, (01-434 1781/2) 25-27 Oxford Street, London W1R 2NT.

M.A. 1001B DIGITAL CLOCK

MODULE SIZE $3.0^{\prime \prime} \times 1.75^{\prime \prime}$
C/W $15 v+45 \cdot 0.45 v$ TRANSFORMER Requires only switches and case DATA SUPPLIED OUR PRICE ONLY $£ 9.74$
Features Bright $05^{\prime \prime}$ Display 12 hr Format with 24 hr alarm capability Flashing Coton. Power Fatlure Indication, P.M. Indicator, Alarm Set Indicator. Hrs and Mins.. or Mins and Secs Display Output Drives from Alarm and Sleep Timers. 9 Min Snooze Timer and 59 Min Sleep Timer

CAR, BOAT OR CARAVAN CLOCK MODULE
M A 1001 B Includes all features listed above plus Data for Conversion. $1012 v$ D.C plus Crystal Time Base for accuracy to a few secs. per month. required with Transformer £14.7.
CRYSTAL TIME BASE SUITABLE FOR C.MOS DIGITAL CLOCKS. (Built and Tested.) Size approx seconds/month

OUR PRICE ONLY $£ 5.25$
ALL PRICES INCLUDE VAT AND POST PACKING
Terms Cash with Order - Mail Order Only ORDERS TO. F.E.K. SUPPLIES 18 STARRING LANE LITTLEBOROUGH, LANCS

TRANSISTORS + ICs

Frices VAT inclusive $+20 p \mathrm{P} \& \mathrm{P}$
500 types of Diodes Transistors + ICs SCRs Triacs
AITKEN BROS. \& CO
35 HIGH BRIDGE NEWCASTLE-ON-TYNE NE1 1 EW
\qquad
Callers welcume

		0.125	0.2	INFRA RED $550 \mu \mathrm{~W}$ Axial lead 49p $6 \mathrm{~mW} E 1.55$ OPTO Data free
	RED	15p	19p	
	G/Y	27p	33p	
	OR	27p	33p	ORP 12 55p
OPTO-ISOLATORS		SCR: 50 V 100 V 400 V Diac		
			50 V 250	$\begin{aligned} & 100 \mathrm{~V} 400 \mathrm{~V} \text { Dack } \\ & 27 \mathrm{p} \text { \& } 8 \mathrm{pR} 100 \end{aligned}$
$4350 \quad 25 \mathrm{kV}$	5 MHz			
AVDEL BOND 2 gm .65 p (40		65p 40	00 V TRIACS 2A 60p j0a ex 50	
AC126/6/7	$15 p$	2 N 3	15p	voltage regs
AD161/162	40	2N3054	45p	5 V 7805 Plastic
AF117	20p	2N3055	41p	12 V 78121 Amp
AF 124/5/6/7	34p	2N3702/3/4		15 V 7815 all
9C/107/8/9	9 p	2N3903/4/5/616p		$\begin{array}{lll}18 \mathrm{~V} 7818 & \text { E1.50 } \\ 723 & \text { O1P14 } \\ 50\end{array}$
${ }^{\text {PC1 } 109 C}$	129		35p	
BC147/8/9	10p			
BC157/8/9	11p	MPF102	$\begin{aligned} & 40 p \\ & 25 p \end{aligned}$	
BC167/8/9	11p	2 33819		BRIDGE RECTS.
${ }^{\text {BC169C }}$	12p	2N3823	309	2A 100V
	${ }_{11 p}^{17 p}$	in914		$\begin{aligned} & 2 \mathrm{~A} 200 \mathrm{~V} \\ & 2 \mathrm{~A} 400 \mathrm{~V} \end{aligned}$
- ${ }_{\text {BC182/3/4L }}^{\text {BC186/7 }}$	119 $30 p$	iNa00 1	8p	
BC212/3/	12p	iN4002/3		ZENERS 27.33 V
BCY70/71/72	13p	iN4006/7	$7 p$	BZV88 or sim 9p
BF194/5	12		${ }_{8 p}^{8 p}$	
Bri96/7 Bry $50 / 51$	14 p	$\text { IN4 } 148$	9 p	55 Timer 60p
${ }_{\text {Bra }} \times 29$	${ }_{30}$	BY127	${ }_{\substack{16 p \\ 8 p}}$	
B 8×84	24 p	OA70 OA79		$\begin{array}{lr}\text { LM380 } & \text { E1.00 } \\ 7400 & 18 p\end{array}$
BS×19/20	18p		$\begin{aligned} & 8 p \\ & 7 p \end{aligned}$	7400 16p
$\stackrel{0}{2} 1011$	10p	$\begin{aligned} & \text { OAB1 OA90 } \\ & \text { OA91 OA95 } \end{aligned}$	8p	D.I.L. SJ̇CKETS
2N1711	200	OA200	6 p	
2N2219	20 p	OAZO2	7p	1.ppin $12 p$ 14 pm 13 p 16 -pun 14 p
2N2904/5/6/71	年	709 all	25p	
2N2904/5/6A	18p			${ }_{\text {Mich }}+$ buatrees
2N2926(R)	${ }^{7 p}$	$\begin{aligned} & 741 \text { 8-pin } \\ & 748 \text { D.I.L } \end{aligned}$	$\begin{aligned} & 29 \mathrm{p} \\ & \text { 36p } \\ & \hline \end{aligned}$	$\begin{array}{ll} \text { TO3 Toss } \\ \text { Dalo Pen } & 70 p \\ \hline \end{array}$
2N292916)	12p			
PRICES INCLUSIVE + 15p P\&P (1st class)				
ISLAND DEVICES, P.D. Box 11, Margate, Kent				

FIBRE-GLASS P.C.B.s
ETI 560 vD́U (Corrected) Set of 3 Boards. 445p ETI 458100 watt Stereo Disco \quad, D, E, F \& H1 50 p ETI 458 Remote Start Board \cdots 70p ET1 458 Light Modulator Board.
ETI 543 A STD Timer Oisplay Board 300p ETI 5438 Timing Display Board ET! 544 See this issue
ETI 620 Touch Organ (SRBP)
ALL OTHER PREVIOUSLY AOVERTITISED BOARDS STILL AVAILABLE SEMI-CONDUCTORS

All Data supplied. Provision for Equabisation and Tone

rices Vat inclusive list 10 P\&P 20p

R.F. EQUIPMENT SPARES LTD.

FREE TV

CIRCUIT DIAGRAMS

All main British TV sets (plus many foreign) comprehensively covered in our easy-to-follow TV Repair Manuals - 4 mono and 3 colour. Just send Model No., if colour (mfrs. chassis type helps) with $£ 4.50$ and receive the manual covering your set plus yur set's circuit diagram on request free. Set of nly $£ 27.50$. British TV Circuit Diagram Manuals - the main mono over 37 series) for $\mathbf{5 9 . 9 0}$ and virtually every colour for £17.50.
Full details of these and other publications from:
T.V. TECHNIC (ETI)

76 Church Street, Larkhail, Lanarks, ML9 1 HE ㅇ. (0698) 883334

P.C.B.S

Glass Fibre P.C.B.s for ETI projects, supplied tinned and drilled

All prices shown include VAT. Add 20 p post \& packing
P.C.B.s also available for this month's ETI projects. Send SAE for full list of available boards
Also a comprehensive or part service from Artwork and layout design to assembled P.C.B. for batch quantities or one-off

300W TOUCHSWITCH KITS

TS300K Contains Triac. IC. Diodes, Resistors, Frontplate. PCB, etc. Replaces conventional lightswitch
with NO REWIRING. TOUCH one insulated plate for ON, another for OFF. Complete with instructions ONLY E3.67.
ALSO TSA3OOK AUTOMATIC, as above, but with only ONE TOUCHPLATE TOUCH for ON and light stays on for a preset time. Ideal for stairs and hall. Complete with instructions. ONLY £3.67.
300W LIGHTDIMMER KIT replaces comventional lightswitch $£ 2.45$.

SPECIAL OFFER
10 ROCKER SWITCHES, white SPST
$10 A / 250 \mathrm{~V}$ snap fixing. £1.20.

cmos Motorola		$\begin{aligned} & \text { TRIACS } 400 \mathrm{~V} \text { T0220 } \\ & \text { Case } \end{aligned}$			
		1654 isolated tab		BC158	$1 p^{\circ}$
	$20 p$ $57 p$	110A (TAG250)		2N3055	35p
4050	57p		90)	2N602l	
4501	20p	Trac ${ }^{\text {L }}$	20p		30p
4000	20p	NE555 8 pun DIL	44p	$1 \mathrm{Nal}{ }^{\text {1 }}$	4^{4}.
4007	20p	74:8 pin Dil	24p	17al48	${ }^{4}$
	20p	RESISTORS in 5 Fl.2 ?2! 10 Mm			
4015	105p	Mullart ${ }^{\text {M }}$			
4016	57p				
4017	105p	NEON wire mided			
4040	105p	Choke 11/2 Amp			
4049	57p	Fernte Rod $1 / 4 / 4 \times 3 /$ diameter 192p			
4510	135p	Pocker Switen white sPs 1UA Sbuv 13p			
4516	135p	MIN: MAINS TRANSFORMERS 100ma			
4566	155p	$\begin{aligned} & 6060 \\ & 12012 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 85 p \\ & 85 p \end{aligned}$
ADD 8\% VAT $(\star 121 / 2 \%$) PLUS 20p P\&P. Mall Order Only to					
T.K. ELECTRONICS (ETI)					
106	adi	range Road,	London	72	

GLASS FIBRE P.C.B.s
from rour own lape. film or ink master
Send $S A E$ for quotation

GP Power Supply ETI 131	
100 Gurar Amplifier ETI 413	c1.40
Mixer Pre Amplifier ETI 419	30p
Audio Level Meter ETI 438	78p
Sweet Sixteen Amplitier ETI 457	1.92
Power Supply 100w Disco Ampliter ETI 458a	2 p
100w Disco Amplifer ETI 458b	1.18
Disco FET Ceramic P U ETI 458c	55p
Disco Tone Control Pre Amplifier ETI 458d	$5^{\text {P }}$
Disco Pre Amplifter ETI 458e	1.14
Disco Headphone Amp/VU Meter ET/ 4581/g	cz. 10
Disco Fader ET1 458h	${ }^{34} \mathrm{p}$
Sound Light Flash Trigger ETI 514b	48p
2 m Power Amplifer ETI 710	${ }^{85 p}$
PROTO DESIGN, 4 Higheliff Wey, Wiekford, Eseox $\mathbf{8 8} 11$ s	

TURN YOUR SURPLUS capacitors, transistors. etc., into cash. Contact COLES-HARDING \& CO., P.O. Box 5, Frome, Somerset. Immediate settlement.

Carbon Film Resistors 5\% E12 Series $1 / 8 \mathrm{~W}$ $1 / 4 \mathrm{~W}, 1 / 2 \mathrm{~W}$. Mixed to your choice, 100 for 90p. Electrolytics $50 / 15 \mathrm{v} 7 \mathrm{p}$. MICRO PROCESSORS SC/MP£18. MM6800£33 P\&P 15 p. CANDAR, Freepost, Reading RG 1 1 BR

PRECISION POLYCARBONATE CAPACITORS

All High Stability - Extremely Low Leakage Range: dimensions

 - SLICOL PLASTIC RECTEIERS-1.5 amp brind new wre ended

 PLEEASF ADD 2mp POST AND FACKING ON ALII CRDERS. ALI. PLEASE ADD X VAT Lu ill
\qquad MARCO TRADING (Dept. P3)
The Old School. Edstaston. Wem. Shropshire Tel. Whixall (Shropshire) (STD 094872) 464/5

Proprs Minesen Trading Lud.

OVER 2,000 ELECTRONIC COMPONENTS INA

Half completed 4600 Synthesiser, 95% of components. Oscilloscope. Lots of other bits, mags., £145 o.n.o. Des, 01-278 1723

E2
12
Totalel 14 incl. VAT p\&p
Solid aluminium frame with an efficient s.a.e. to:

58a King Street, Blackburn, Lancs Tel. 62561 or 54105

SHOP FROM HOME with our catalogue. Fully illustrated and covering over 3.000 components, audio and disco accessories, tools and test meters. Reviewed as one of the best catalogues available. Send 30 p now for your copy (issue No 5). Access, Giro, Barclaycard, Government and educational orders accepted. (Giro No 331-7056).
B. H. COMPONENT FACTORS LTD. Leighton Electronics Centre
59 North St., Leighton Buzzard, Beds Tel: 2316 (0286) Shop hours: 9 -12.30, 1.30-5 p.m. Closed Wednésday

DRILLED AND TINNED PCBs FOR ETI PROJECTS							
ET 422			¢.00				
ET1 114	89	ET 438	75				
囘 177	35p	Et7 441	41 p	ET560c			
En 117b	35 p	ET1 443	£3.00	E17 72			
ET131	$94 p$	En 5148	40 p	EIT ET 706 105			
En 241	${ }^{85 p}$	En 533a	42p				
En 252 40p En 5336 35p En 931 35p							
Send for a full list of over 70 ETI boards COMPONENTS Resistors $1 / 1 / \mathrm{W} 5 \%$ (e12) 12 p							
Capacitors ceramic plate $27 \mathrm{pt}-0047$ uf 35 eac tantalum bead $0.1 \mathrm{uf}-68 \mathrm{gut} 35 \mathrm{v} 15 \mathrm{p}$ each							
$\begin{aligned} & \text { Diodes 1N4001 5p. IN4002 5p. IN4003 7p } \\ & \text { iN4004 8p. } 1 \text { N9145p } \end{aligned}$							
Zeners 400 mW 27.33 v 12 p each							
BC107.8,9 12p. BC177 B, 9 20p. BC147 8911 p							
Dil sockets. Bw 12p. 14w 16p 16w 17p. 24w 70p							
LEDs 0 125" red 15p. Green 25p. Yellow 25p, Clips 2p							
Jack Plug $1 / 4^{\prime \prime} 2$ pole 20p. Socket 32 p Jack Plug $1 / 4^{\prime \prime} 3$ pole 25p Socket 50p							
Jack Plug 35 mm 15 p . Socket 23p. Jack Plug 25 mm							
15p. Socket 24p							
72741C	30p	1 LM380	$¢ 105$				
	40 p .	Me555		4A7812			
41703	${ }^{30}$	He556	£1.00	U47815			
		TCA220	1.54	447818			
All prices include VAT, please add 20 p postage (overseas post at cost) PCBs post fiee							
Send LARGE SAE for full list of boards and components. etc Mail Orders please to: D.B.M. PRODUCTS Unit 14, Sourthem Road, Aylesbury, Bucks.							

ONLY THE BEST!

VAT Inc.
P\& P 15 p
741 DIL 8 -pin 29p each, $4 / \mathrm{E} 1$ 2N3055 30p each 4
1N4002. iN4003, 1N4004 5p each Any 10 4Op 0 375" 7.SEG Comm Cath LED Display (FND357) 90 peach 4.
TIP2955 W/Mig KIt 85p each. 4

$+280$
 TIL209 0.125" Red LED W/Clip 19p each 10E1,60 GREEN, ORANGE, YELLOW $0125^{\prime \prime}$ LEDS W/Clip $\begin{array}{ll}\text { 29p each ANY } 10 & \text { E2 } 30 \\ 0.2 \text { " RED LED W/Clip 20p each } 10 & E 170\end{array}$ 10 mfd. $/ 12 \mathrm{~V}$. Electrolytic Capacitors 1030 B O . $10 \overline{0} \mathrm{O}_{\mathrm{E}} \mathrm{i}$ AUDIO-OPTICS, 19 MIDDLEWAY, CHINNOR.

OXON. TEL. 084452683

H.M. ELECTRONICS

275a FULWOOD ROAD, BROOMHILL SHEFFIELD S10 3BD
bec Cabinets (IILus'd)
metal cases
DRY TRANSFER LETTERING
Send $\mathbf{1 5 p}$ for leaflets (Refundable)
Trade enqumes invited

VALVES

Radio-TV Industrial Transmitting 2200 Types. 1930 to 1975, many obsolete. List 20p. S.A.E. for quotation. Postal export service. We wish to purchase all types of new and boxed valves. Wholesaler's Dealer's, etč., stocks purchased. COX RADIO (SUSSEX) LTD., The Parade, East Wittering, Sussex, West Wittering 2923
$-$

 ADVERTISERS:-
 PLEASE NOTE NEW ADDRESS
 25-27 OXFORD STREET
LONDON W.1.

read der er senices

BACK ISSUES

These cost $40 p$ each. Postage and packing costs 15 p for the first, and 10 p for each subsequent sssue. Orders to ETI BACK ISSUES Dept. please. We CANNOT supply the following issues:- All 1972; January, February and November 1973: January, March, September, October, November and December 1974; January, June, July, August, September. November and December 1975; January. March 1976; April, August Dctober 1973.

PHOTOCOPIES
Due to the steady pressure on our back numbers department, and the dwindling number of issues available, we have decided to set up a photocopies service. This involves our staff in considerable time consuming endeavour, so we hope our readers understand the need for our decision to apply a flat charge of 50p inclusive. This covers any article, regardless of the number of pages involved, from any ONE issue of ETI.

Mark envelope to 'ETI Photocopy Service',

EDITORIAL QUERIES

Written queries can only be answered when accompanied by an SAE, and the reply can take up to three weeks. These must relate to recent articles and not involve ETI staft in any research Mark your letter ETI QUERY . . . Telephone queries can only be answered when technical staft are free, and never before 4 pm.

BINDERS

Binders, for up to 13 issues, are available for E2.50 including VAT and carriage. Send orders to ETI BINDERS DEPT.

SPECIAL ISSUES

Presently we produce five specials - Top Projec 2 and 3. Electronics it's Easy (parts 1-13 and Parts 14-24) and 4600 Synthesiser (published by Maplin). Prices are 75p, £1, £1.20 and £1.50 respectively. Post and packing $15 p$ per copy. Orders to ETI SPECIALS Dept. please.

T-SHIRTS

ET! T-shirts are available in Large, Medium, or Small sizes. They are yellow cotton with black printing and cost \&1.50 each. Send orders to ET -SHIRTS Dept.

BOOKS

ETI Book Service sells books to our readers by mail order. The prices advertised in the magazine include postage and packing. Send orders to ET Book Service, P.O. Box 79, Maidenhead. Berks.

NON-FUNCTIONING PROJECTS

We cannot solve the problems faced by individual readers building our projects unless they are concerning interpretation of ou articles. When we know of any error we print a correction as soon as possible at the end of News Digest. Any useful addenda to a project witi be similarly dealt with. We cannot advise readers on modifications to our projects.

SUBSCRIPTIONS

The annual subscription to ETI for UK readers is C6. The current rate for readers overseas is $£ 7$ Send orders to ETI SUBS Dept. Payment IN STERLING ONLY PLEASE

PCBs

PCBs are available for our projects Irom companies advertising in the magazine.

INDEX TO ADVERTISERS PIEASE NOTE NEN ADDRESS
 KINNIE COMPONENTS

AITKEN BROS. Mini-Ads
AMBIT INTERNATIONAL 48
ARROW ELECTRONICS LTD. 47
BH COMPONENTS LTD. 722 Mini-Ads
BI-PAK LTD. 4.5
BI-PRE-PAK LTD. I.B.C. 83
B.N.R.S. 78
BYWOOD 18
CAMBRIDGE LEARNING ENTERPRISES 69
CATRONICS 35
CHILTMEAD LTD 70
CLIFFPALM LTD. 63
CROFTON ELECTRONICS LTD. 78
D.B.M. PRODUCTS Mini-Ads
DECON LABORATORIES LTD. 40
DORAM ELECTRONICS LTD. 23
E.D.A. 48
ELECTRONIC BROKERS LTD 32
F.E.K. SUPPLIES Mini-Ads
GREENBANK ELECTRONICS 79
HEATHKIT LTD. 40
HENRY'S LTD. 2
I.L.P 74
INTEGREX LTD. 47
ISLAND DEVICES Mini-Ads23
LEE INSTRUMENTATION LTD. 33
LYNX ELECTRONICS (LONDON) LTD. 56
MAPLIN ELECTRONIC SUPPLIES O.B.C. 84
MARCO TRADING Mini-Ads
MARSHALL'S 53
METAC INTERNATIONAL 17
MINI KITS 77
ORCHARD ELECTRONICS 13
PULSE ELECTRONICS 79
RADIO CONSTRUCTOR 79
RADIO ROTOR 61
RAMAR CONSTRUCTOR SERVICES Mini-Ads
RF EQUIPMENT SPARES Mini-Ads
SINTEL 27
SWANLEY ELECTRONICS 77
TAMTRONIK LTD. Mini-Ads
TANDY CORPORATION Mini-Ads
TECHNOMATIC LTD. 16
TEMPUS 63
T.K. ELECTRONICS Mini-Ads
VERO ELECTRONICS 63
VIDEO MASTER LTD. 24
WATFORD ELECTRONICS 62
WILMSLOW AUDIO 77

Stirling QV ${ }^{\text {MMODULES FOR }}$ COST-CONSCIOUS CONSTRUCTORS

STIRLING SOUND QV Modules are our own designs manufactured in our own Essex factory. Production standards are carefully controlled and you, the constructor, benefit directly from our many years of experience in meeting demand for components as well as by buying direct from us.

PRE-AMPS \& CONTROL MODULES

 Unit OneCombined pre-amp with active tone control circuits 200 mV output for 50 mV in Runs on 10 to 16 V supply treble $\pm 15 \mathrm{~dB}$ at controls bass $\pm 15 \mathrm{~dB}$ at 30 Hz Stereo bal, vol, treble $\&$ bass SS. 100
£7.80
£1.60

SS. 102 STEREO PRE-AMP $£ 2.65$
SS. 101
Pre-amp for ceramic cartridges etc, passive tone control circuit
shown in data supplied
$£ 1.60$

WER AMPLIFIERS
SS. 103
A 3 watt amplifier using single IC type SL 60745 with buit-in $\mathbf{S S . 1 0 3 - 3}$. Stereo version (21 C s) of above

SS. 105

5 watts RM S into 4 ohms using 12 V supply Ideal for use in in-car entertamment Size $89 \times 51 \times 19 \mathrm{~mm}$
SS. 110
Similar in size and design to SS 105 this QV module delivers 10 watts R M S. into 4 ohms ustng a 24 V supply. e g SS 324 Of
great use in domestic applications
2.75

SS. 120

Using a 34 volt supply, such as SS 334 this amplifier will deliver 20 watts into a 4 ohm load Same dimensions as above $\begin{array}{r}£ 3.25\end{array}$
There are sultable Stirling Sound power supplies for all the above

FM TUNING

SS. 201
FM Front End with geared slow motion tuning and A F C facility
$88-108 \mathrm{MHZ}$ SS. 202
IF amp A meter and/or A F C can be connected (size $3^{\prime \prime} \times$
$2^{\prime \prime}$) For use with SS 201
£2.65

SS. 203

Stereo decoder (illustrated) For use with Stirling Sound medules or with any other good mono FM tuning section A LED beacon
can be added (Price 18 p) to indicate when a stereo signal is can be added (Price 18p) to indicate when a stereo signal is
tuned in ($3^{\prime \prime} \times 2^{\prime \prime}$)
$\mathbf{£ 3 . 8 5}$
\dagger THE BUILT-IN QV FACTOR
means Stirling Sound's guarantee of quality and value which gives you today's best

[Stiring sound

SS.310/350 VARIABLE OUTPUT STABILISED SUPPLY With continuous variable output at 2 A from 10 to 50
VDC With bult-in protec VD Win buit-in protectom against shoring and Guaranteed Superb value Guaranteed Superb value
at $\mathbf{£ 1 1 . 9 5}$

WHEN ORDERING

Add $35 p$ to your order for P\&P for mall orders VAT add $121 / 2 \%$ to total value of order unless shown then the rate is 8\% Make cheques, etc, payable to BI-PRE-PAK LTD Every
effort is made to ensure correctness of information at time of going to press Prices subject to change without notice

[^1]
The new Maplin Catalogute is no ordinary catalogue...

 cables; discotheque equipment; organ components; musical effects units; microphones; turntables; cartridges; styli; test equipment; boxes and instrument cases; knobs, plugs and sockets; audio leads; switches; loudspeakers; books; tools AND MANY MANY MDRE. Just one of the hundreds of new ef FULLY component section A ne interlocking push BuTTON SWITCHES high quality - low price - large range

SENO THIS COUPON FOR YOUR COPY OF OUR CATALOGUE ON APPROVAL! Price 50p - SENO NO MONEY NOW.
Please rush me a copy of your brand new 1977/78 catalogue the instant it is published. Only if \mid am completely satisfied that it is nstant it is pubeny, will I send 50p within 14 days of receipt. If I an worth every penny, will sene catalogue to you within 14 days not satisfied, I may return the catalogue need not purchase without obligation. I understand that I choose to keep it. anything from your catalogue should I choose to keep it.

NAME ADORESS

Meplin Electronic Supplies P.O. Box 3. Rayleigh. Essex, SS6 8LR warehouse, catalogue will be delayed by up to four weeks - 50 there's still time to order before publication and get your pack of ten super special offer coupons, giving big discounts on ten different popular items. YOU COULD SAVE POUNDS! - SO DON'T DELAY FILL IN AND POST COUPON NOW!

Our bi-monthly newsletter keeps you up to date with latest guaranteed prices - our latest special offers (they save you pounds) - details of new projects and new lines. Send 30p for the next six issues (5 p discount voucher with each copy)
 ELECTRONIC SUPPLIES P.O.BOX 3, RAYLEIGH, ESSEX SS6 8LR Shop: 284, London Road. Westcliff-on-Sea, Essex (Closed on Monday) Telephone: Southend (O702) 44101

[^0]: -To: ETI SPECIALS, 25-27 OXFORD STREET, LONDON W1R 2NT
 POSTAGE AND PACKING is 20 p for the first, $15 p$ for subsequent issues (overseas $25 p$ and 20 p for subsequent issues).
 OVERSEAS READERS PLEASE NOTE ... Both Top Projects 4 and Circuits 1 will not be generally available at newsagents or bookshops, but can be obtained by direct mail from our London Offices, Prices as for U.K. mail order (pre-publication offer as well!!), includes surface mail - air mail on application. All payments to London MUST be in Sterling.

[^1]: 220-224 WEST ROAD, WESTCLIFF-ON-SEA, ESSEX SSO 9DF Phone: Southend (0702) 46344. PERSONAL CALLERS WELCOME

