

NEWS . . . CONSTRUCTION . . . DEVELOPMENTS . . . AUDIO

CALCULATOR DISPLAYS

"digit height, bright red LED 7 segment displays for calculators,
digital
watches, miniature clocks, DVMs, timers etc. * Fairchild FND-10, single digi common cathode $£ 1.00$ (+vat 8p) 6 or $£ 5.00$ (+ vat 40p) * HP 74144 digit, common cathode 12 pin d.i.1. pin out 99p + (vat 8p) 6 * Bowmar $8 \frac{1}{2}$ digit, common bezel $£ 1.85$ (+vat 15p) 6 for $£ 10$ + vat 80p)

* Texas 3 digit common cathode 12 pind.i.I. pin out $85 p$ (+ vat 7 p) 6 for 84.00 (+vat 32p)
cathode 2×14 pin digit, common + val 15p)
* 30 pin termination board for all types except FND-1020p (+ vat 2p) Texas calculator keyboards. 19 gold plated 'snap' type key contacts on gold plated pcb. 75p(+ vat 6p)

TAPE HEADS

8X12E343: TRACK ERASE HEAD $£ 1.25$ (+ vat 15p)
BX12RP63 WITH BX12E 343 BX12RP63 WITH BX12E343 STEREO CASSETTERIRP HEAD (200 ohm) - £2.25
(+ val 28p) TWIN STAGGERED MARRIOTT HEADS RIRP1 MARRIOTTRECORD I REPLAY \& ERASE HEAD £1.75 (+ vat 21 p)
MINIFLUX R9N ERASE - $\mathbf{2} 2.2$ MINIFLUX R9N ERASE - $\mathbf{6 2}$.2 GX12 E387 ERASE 675 ohms 2 mA - $\mathrm{E0.88}$ (+vat11p) GX20 E362 ERAS E 90 ohms $90 \mathrm{~mA}-\mathbf{2 0 . 8 8}$ (+ vat 11p)

MULLARD TUNER MODULES -
LP1171 combined AM/FM IF Strip - $\mathbf{6 4 . 2 9}$ (+ vat 53p) * LP1179 gang. used with LP1171 - $\mathbf{\Sigma 4 . 2 9}$ (+ vat 53p) * LP1171 \& 79 pair £a.00 (+vat £1.00) * LP1157 complete AM strip - £2.05 (+vat 26p) *Ferrite Aerial - 95p (+vat
p\&p all modules 25 p each HR-RP TAPEHEAD SINGLE TRACK £0.55 (+ vat 6p) XRPS17 $\frac{1}{4}$ TRACK - $\mathbf{£ 3 . 2 5}$
(+ vat 40 p$)$ (+ vat 40p)
XRPS18: XRPS18:TRACKRED E 3.25 (+ vat 40p)
XRPS 36 XRPS 36 T TRACK - $\mathbf{6} 6.75$ XES11 TRACK ERASE E1.25 (+ vat 15p) BX/RP/63 ${ }^{\frac{1}{2}}$ TRACK - $\mathbf{£ 2 . 2 5}$

£2.95 (+vat 36p) £1.50 (+vat 18p) + vat 28p) mA - $£ 0.88$ (+ vat 11 D)
 HENELEC BIDO G0NHOM

* INCLUDING

PROPORTIONALLY CONTROLLED SWITCH *FEATURING COSMOS
DIGITAL LOGIC to minimis power consumption and extend
Specially designed to provide
aircraft and boat moder a low-cost, easy-to-use radio
control. the Henelec system you everything from single channe up to sophisticated 7-channe!
Digital Proportional System! Bu the components you want. Ideal for any radio control application. battery life

 +va 16p) * Basic receiver- $£ \mathrm{EB.95}$

+ vat 870) Send now for No. 8 (35p) for full details. Post etc., 50 p each.

HENRY'S

 Fully integrated stereo preamp and power amp, 6 IC 's, 10 protected circuitry, glass fibre pcb; Gardeners low-field i mains transformer; all facilities and controls. Slim design * Everythinn necessary suppliad, Full after seles service and guaramtees.
Thenatural follow on

Build the matching Texan st eatures advanced varicap tuning. Phase lock loop decoder. Professionally designed circuit. Everything you need Excellent spec: 2.5 uv aerial sensitivity. 500 mV output (adjustable) Tuning range $87-102 \mathrm{MHz}$. Mains powered.

MAY BE ASSEMBLED IN AN EVE NING. FEATURES $*$ Built-in AM $250 \mathrm{KHz} * \mathrm{MW}$ coverage 150 KHz $1.6 \mathrm{MHz} *$ FM coverage 97.104 MHz

incorporates 2 Mullard modules. Supplied as a Easily adapted for stereo, using the pre-aligned and tested printed circuit, the performance modular decoder kit, high constructor only has to build the PCB into the loop principle. Low pass filters tor chassis, connect the power, aerial and outputioads. Optimum performance.
Styled to match the Texan amp, mains operated. Price $£ 8.75+V A T £ 1.02$ p\&p 50p.
quotation in S.A.E.
All mail to: Henry's Radio 303 Edgware Rd. London W2
LONDON W2: 404/6 Edgware Road. Tel: 01-402 8381 LONDON W1: 231 Tottenham Ct Rd. stiestioon Tel: 01-636 6681

Achtroniostotiay
 international:

NOV 1976
Vol. 5, No. 11

Features

TCOM AEROSTAT 23
Microwave relay by balloon!
VIDEOMASTER SUPERSCORE REVIEWED 29
Superb new TV game -scoop review 36
MICROFILE PART 9
Review of the MPU kit market 39
TECH-TIPS SPECIAL
No less than SEVEN pages of our popular feature this month! £10-£20 SCIENTIFIC CALCULATOR REVIEW 53
A good close look at some of the most popular machines
58
CAPACITORS - PART 4
This month variable capacitors examined68
ELECTRONICS - IT'S EASY!
Beginners series continued - Part 33
Projects
STD TIMER10
An easy way of keeping track of the pence whilst on the line MODEL TRAIN CONTROLLER 16
Comprehensive design provides inertia control and loop facility GENERAL PURPOSE PREAMP 26
Versatile design simply adapted to any need31
Winner of the ETIIDoram design competition - find out why100W DISCO PART 3 - Light modulator63
Final part of this article - with light show and remote start circuits
Data Sheet
PLESSEY SL600 SERIES49
Details of a good range of communications circuits
News
NEWS DIGEST 6
ELECTRONICS TOMORROW 74
Information
ETI SPECIALS 24
SUBSCRIPTIONS 27
PROJECT BOOK FOUR 46
ETI CIRCUITS ONE 46
DECEMBER ETI PREVIEWED 47
BOOK SERVICE 48
ETI WATCH OFFER 61
ETI CLOCK 75
READER SERVICES INFORMATION 82

ED TORIAL AND ADVERTISEMENT OFFICES
 36 Ebury Street
 London SWIW OLW
 Telaphone: 01-730 8282
 Telex 8811896

HALVOR W. MOORSHEAD

Editor
LES BELL, G4CFM
RON HARRIS B.Sc
JITM PERRY
Editorial
JEAN BUTTERWORTH
Production
ROBERT C. EVANS
Advertisement Manager
INTERNATIONAL EDITIONS.
COLI YN RIVERS
Etingtial Drector
AUSTRALIA
STEVE BRAIDWOOD
Asbstent Editor
Madum Magazines (Holdings) Lid
Rytio House. 15 Boundary Street
Riscuiters Bay 2011
Sythey. Alstralia
FRF NCE
DEEIS JACOB
Edtion in chiof
CHRISTIAN DARTEVILLE
Ecizur
Electroniques Puur Vous internatuonaf.
17 Rue de Buct
Pars France
Electronics Today International is normally published on the firss friday of the month pitur to the cover date

RUBUSHEC BY
Mastmags Lid
36 Ebury Street, London SWIW OLW

DISTABUTED BY

Argus Distribution Lid (Butish Isles)
Goidon \& Goteh Lid. fCanada and South Atrica)
PRINTED BY
at Newspopers Limited Colchesier
READERS QUERIES These can only be answareit if thes ilata to recent artueles published in the magazine Prely can we supply information in addition to that publshecd. Written queries must be accompanied by a stamped iddressed envelope, and relephone quenes mist be triet. not betore 4 pm and can only be anewiered subject to the availability of technical stat? BAKK NUMBERS Back numbirs of sume issues are available tor 40 p each plus $15 p$ possage
SUBSCRIPTIONS Great Britain $£ 500$ per annum Deracits $E 550$ Payment in sterling onlv
CCPYRIGHT All material is subject io wortd virice Cosynght protection All reasonable care is taken in the preparaton of the magazing to ensure accuracy but ETI catinot tin hald responsitile for 1 liegally. Whare errors do accur a correction will be published as scan as possuble altervards in the magazine

WAITORD EEEGRONICS 33 CARDIFF ROAD, WATFORD, HERTS., ENGLAND

ALL DEVICES BAAND NEW, FULL SPEC. AND FULLY GUARANTEED. ORDERS DESPATCHED BY RETURN OF POST. TERMS OF BUSINESS: CASH/CHEQUE/ PEOE OR GANKERS DRAFT WITH ORDER, GOVERNMENT AND EDUCATIONAL INSTITUTIONS OFFICIAL ORDERS ACCEPTED. TRADE AND EXPORT NGUIRY
WEICOME, PAP ADD 250° TO ALL ORDERS UNDER E10.OO. OVERSEAS ORDERS WELCOME. P\&P ADD 25p' TO ALL OR
POSTAGE AT COST. AIR/SURFACE.
VAT Not applicable to Oversats Customers. All prices are exclusive of VAT. wekome to our retai shop it 33 Cardiff Road, behind Wat
Monday to Saturday. Ample Frea Car Parking apace available.

\qquad 0.033.
18p: 1.5 24p; 2.2 28p.

ELECTROLYTIC CAPACITORE: Axial lead type Nalues are in $\mu \mathrm{F}$. 50,10p; 68. 100 . 12p; 1000, 50p; 50V: 1.0 . 6p; 50, 10p; 220, 10p; 470, 28p; 40V: 33, 8p; 36v: 1000 38p; 25v: 10, 22, 40, 6p; 80, 100, 160, 8p; 220, 13p; 470, 640, 21p; 1000, 27p; 2200, 34p; 3300. 70p: $4700.47 \mathrm{p} ; 16 \mathrm{~V}: 10,40,47$, $68,100,125$. 220 . $6 \mathrm{p} ; 470$, 11p; 100,1500 , 18p; 4700, 46p; 10V: 4, 100, 6p; 640. 10p; 1000, 14p; 64V: 3300. 83p; 2200, 18p; TAG-END TYPE: 70V: 2500, 98p; 4700, 111p: 50V 2000. 72p: 40V: 10000. 145 p : 4000 70p; 2500 65p: 25V: 4700, 48p; 16V: 4500, 38p.			
tantalum bead capacitors 35V: $0.1 \mu \mathrm{~F}, 0.22,0.33,0.47,0.68,1.0$ $2.2 \mu \mathrm{~F}, 3.3,4.7,6.8,25 \mathrm{~V}: 1.5,10$ 18V: $10 \mu \mathrm{~F}, 22$ 10V: $15 \mu \mathrm{~F}$. 33 , $\mathbf{8 V}$: $47 \mu \mathrm{~F}$. 3V: $100 \mu \mathrm{~F}$. Price: 11 p each.		POTENTIOMETERS (AB OI EGEN) Carbon Track, 0.25W Log \& 0.5 W Li iKQ \& $2 K \Omega$ (LIN. ONLY Single gang $5 \mathrm{~K} \Omega-2 \mathrm{M} \Omega$ single gang $5 K \Pi-2 M \Omega$ single gang O / P switch $5 K \cap 2 M \Omega$ dual gang sterro	1p
MYLAR FILM CAPACITORS 100v: $0.001,0.002,0.005,0.01 \mu \mathrm{~F}$ $0.015,0.02,0.04,0.05,0.056 \mu \mathrm{~F}$ $0.1 \mu \mathrm{~F}, 0.15 .0 .2 .50 \mathrm{~V}: 0.47 \mu \mathrm{~F}$		SLIDER POTENTIOMETERS $0-25 \mathrm{~W}$ log and linesr values 60 mm $5 \mathrm{~K} \Omega 500 \mathrm{~K} \Omega$ single gang $10 \mathrm{~K} Q-500 \mathrm{~K} \Omega$ dual gang $50 \mathrm{~K} \Omega$ Lin 150 mm WS 150	$\begin{array}{r}45 \mathrm{p} \\ \text { 58p } \\ \text { 3.00 } \\ \hline\end{array}$
CERAMAIC CAPACITONS 50 V d.c. Plaquette body 25 mm leads Range 0.5 pF to 10.000 pF $0.15 \mu \mathrm{~F}, \mathrm{O} .022 \mu \mathrm{~F}, \mathrm{O} .33 \mu \mathrm{~F}, 0.047 \mu \mathrm{~F}$		PRESET POTENTIOMETERS 0 iw $500-2.5 \mathrm{M} \Omega$ Mini. Vert \& Horz $0.25 \mathrm{~W} 1000-3.3 \mathrm{M} \Omega$ Horizontal $0.25 \mathrm{~W} 2000-7 \mathrm{M} \Omega$ Vertical	P

SILVEA MICA (Values in pF) 3.3. 4.7, 6.8, 12. 33. 47, 50, 75. 82. 85, 100, 120, 150, 200, 250, 300, 330, 360 1000. 2200				
CERAMIC TRIMMAER CAPACITORE2-7pF; 4-15pF; 6-25pF: 8-30pF				20p
MINIATURE TYPE TRIMMEAS 3-10pF: 3-30pF; 10-40pF; 190pF 2.5-6pF: $\mathbf{5 - 2 5 p F}$: 60pF: 88pF				22p
$\begin{aligned} & \text { COMPRESSION TRIMMERS } \\ & \text { 3-40pF. 18p. } 100-500 \mathrm{pF} \text { 32p. } 1250 \mathrm{pF} 40 \mathrm{p} . \end{aligned}$				
- JACK PLUES			+ SOCKETS	
	Screened chrome 10p $14 p$ 18p 28p	Plastic body 8p $10 p$ 15p 18p	$\begin{gathered} \text { Open } \\ \text { metal } \\ 8 \mathrm{gp} \\ 8 \mathrm{sp} \\ \mathbf{1 3 p} \\ \mathbf{1 5 p} \end{gathered}$	Moulded wrth break contacts cols $17 p$ $22 p$
DIN 2 PIN Loudspeaker 3. 4. 5 (180 8 240°)		plugs		SOCKETS
				${ }^{8} \mathrm{p}$
CO-AxIAL (TV)				10 p
PHONO assorted colours Metal screened				$5 p$ (Single) 7p (Double) 10p (Triple)
$\begin{array}{ll} \hline \text { BANANA } & \begin{array}{l} 4 \mathrm{~mm} \\ 2 \mathrm{~mm} \end{array} \end{array}$				$\begin{aligned} & 10 p \\ & 11 p \end{aligned}$

SWITCHES*	SLIDE
togele: 2A, 250V	14 OP 10p
SPST 23p	1AOPC/O 12p
DPDT 29p	1/3ADP 9p
4 pole on/ot ${ }^{\text {ch }}$ 35p	4 pole/2 way ${ }^{\text {15p }}$
SUE-MIN TOGGLE	PUSH BUTTON
SP changeover 48p	Spring loaded
SPST on/off 44p	SPST on/ott 55p
DPDT 6 t 69p	SPDT C/over 65p
DPOT Centre off es	DPDT 6 Tag 85

		[
				\pm

Available to you in kit form at the same moment as its national launch, the brilliant new Videomaster Superscore contains the latest product of MOS technology: a TV game chip.

The logic contained in it had previously to be generated by 100 TTL devices. Now it is condensed into one 28-pin chip.

This all-new Videomaster plugs into your 625-line UHF TV set (for overseas customers having VHF sets we can supply the necessary VHF modulator) to give you four exciting games (including tennis and football) and two future game options. It features on-screen digital scoring, realistic hit sounds, two bat sizes, two
ball speeds, automatic serving and much more. It runs on six $1 \frac{1}{2}$ volt SP 11 type batteries (not supplied).

The Videomaster Superscore kit costs only £24.95 including VAT (recommended retail price of the ready built model is over $£ 40.00$) and comes complete with ready-tuned UHF or VHF modulator, circuit board with printed legend, all resistors, transistors and diodes, built-in loudspeaker, socket for mains adaptor, and, of course, the TV game chip itself.

Easy to put together the Superscore has full assembly instructions, circuit diagram and circuit description. Don't miss this chance to own the newest electronic game at such low cost.

POST TODAY TO:

Videonnster Ltd 14/20 Headfort Place, London SW1x 7HN		
Please send me (insert No. requ'd) \qquad .Videomaster Superscore Kits at $£ 24.95$ (inc. VAT \& P\&P in UK) or $£ 23.10+£ 4.00$ for P\&P overseas)		
I enclose my cheque/money order* for f................	VHF modulator required	YES/NO*
NAME		
ADDRESS		
ETI 68		
ALLOW 21 DAYS FOR DELIVERY		* delete

We had a very careful second look at this photograph, vowed to give up wine, women, and especially song, (for at least five minutes) then decided yes he was in the back seat, and yes the car was moving. Visions of a huge hoax flashed to the editorial mind frenzied navvies rushing about with the backdrop to simulate movement tiny men crammed into the wing mirrors steering via cunning Chinese arrangements of levers and gears. The mind boggled

Alas the answer is nought so scandalous. Quite simply an Australian electronics enthusiast has packed his car full of voice recognition and MPU circuitry to the end that it will now
obey verbal commands - even by walkie-talkie up to a range of 12 miles (Naturally it obeys only its owners voice).

The car has a CCTV system installed which enables. the driver to see behind him - very useful in injon country. Infra red sensors pick up red traffic lights and brake the car automatically - no we're not joking. Radar ranging maintains a constant distance with respect to the car in front, and sensors apply the brakes should the car come too close to any object - even people

All this makes it a better driver than most of us.

INVERTED SNOBBERY

The 6233 a new ultra high power $\approx 200 \mathrm{~W}$ per channel ($8 \Omega:$ FCC) professional amp from JBL. It boasts power metering, fan cooling and a fully complementary output stage consisting of 12150 W transistors per channel. The power supply is novel - a 2000W invertor is employed rather than a transformer and rectifier - to keep down size and weight. If you feel you need this piece of monumental suicide engineering - JBL will relieve you of $£ 1100$ for the pleasure of its company.

This 'SpectraDIL' switch is available in 2, 4, 6, 8, 10 pole modules from 5 to 25 mm in length. Features include gold plated spring loaded wiping contacts suitable for microvolt to lower power switching and a typical resistance to 10 milliohms, with a repeatability of less than one milliohm over several hundred operations is claimed Life is said to be in excess of 10,000 operations at the full 10VA rating.

Prices start from only 10p per pole per switch. ERG Industrial Corporation Ltd, Luton Road, Dunstable, Bedfordshire LU5 4LJ.

the test of time

Aerial contractors and service engineers in the television trade will be well aware that BBC-2 trade test transmissions were curtailed to save energy. To assist the trade in making the maximum use of these transmissions, a system has been devised to show a single figure in one of the grey squares at the bottom right-hand corner to indicate whole minutes of Test Card left, counting down from nine to zero. Thus ' O ' means that the Test Card will be faded out within one minute.

The system is to be tried for an experimental period beginning on 21 August and the BBC's Engineering Information Department would welcome comments or suggestions about its usefulness. These should be addressed to Engineering Information Department, Broadcasting House, London W1A 1AA.

HOW HIGH IS AN ELECTRON?

Hitachi have developed an instrument which provides a 3-D image from a scanning electron microscope, they say. It can be hooked up to provide height and width info up to 300A (height) and 30AO (width). It is rumoured somewhat facetiously we feel, that it will be first used to measure the height of Britains remaingold reserves.

HP AT A (CALCULATED) LOSS;

Hewlett-Packard - renowned for their up-market calculators, are apparently running this section of the business at a loss. Equipment and other activities are keeping then in the black, and H.P. cite the delays occurring on the introduction of new models as the cause for this. Also named as a culprit is "severe price erosion in the pocket calculator marketplace". Pick the bones out of that ye rivals of the beast.

THE TOSHIBA GRANADA?

Ford Motors have placed an order with Toshiba, of all people for an unspecified quantity of 12 -bit MPU's to be used in next years models. This is to control the ignition and the exhaust gas recirculator. Ford are apparently still looking for second sources.

Exhausting work wot?

SOCKET TO ME - BUT VERY VERY VERY GENTLY!

Designated Type 2944, this socket enables an LSI module to be inserted without any axial force being imposed on the ceramic base of the module, and hence the possibility of damage to its leads. The socket incorporates a simple mechanism which ensures that the module pins are free to enter without any obstruction or pressure from the individual contacts Only when the module is correctly seated in position are the contacts pressed into contact with the leads.

Releasing the module for removal is effected by releasing the retaining clips.

The 2944 is available in $40,36,28$ or 24 position versions, all designed for lead spacing of 0.65 in . maximum, and LSI lead lengths from 0.155 to 0.21 in. Price on application to Molex Electronics Ltd., 1 Holder Road, Aldershot, Hants GU12 4RH.

PIONEERING ULTRA-POWER

Some months ago we revealed the launch of an amazing machine from Pioneer hi-fi. At the time all we had was a picture of this creature hiding behind someones arms. Now however the $\mathrm{S} \times 1250$ is becoming readily available, after an official launch on the Pioneer Express. So, as promised, here are the full details of what must be the statest-of-the-art receiver readily available to the home hi-fi enthusiast.

SPECIFICATION

POWER AMP

$160 \mathrm{~W}+160 \mathrm{~W}(8 \Omega)$ Both channels driven $20 \mathrm{~Hz}-20 \mathrm{kHz}$. THD $20 \mathrm{~Hz}-20 \mathrm{kHz}<0.05 \%$ at 80 W output. IMD: $<0.05 \%$, at 80 W out-
put $(50 \mathrm{~Hz}: 7 \mathrm{kHz}=4: 1)$. FREQUENCY RESPONSE: $5 \mathrm{~Hz}-100 \mathrm{kHz}(+\mathrm{O},-1 \mathrm{~dB})$. DAMPING FACTOR: $30+(20 H z-20 \mathrm{KHz})$
HUM AND NOISE: $100 \mathrm{~dB}(1 \mathrm{HF})$, SENSIT HUM AND NOISE
IVITY: $1 \mathrm{~V} / 50 \mathrm{k} S$.
PREAMP
PHONO $(\times 2) 2.5 \mathrm{mV} / 50 \mathrm{~K}$ - Overland 500 mV . MIC $6 \mathrm{mV} / 50 \mathrm{k}$. AUX $150 \mathrm{mV} / 50 \mathrm{k}$ TAPE PLAY ($\times 2$) $150 \mathrm{mV} / 50 \mathrm{~K}$. THD KO.02\% 20Hz-20KHz. FREQUENCY RESPONSE: $30 \mathrm{~Hz}-15 \mathrm{kHz}(\pm 0.2 \mathrm{~dB}$) PHONO $10 \mathrm{~Hz}-50 \mathrm{kHz}+0 \mathrm{~dB}-1 \mathrm{~dB}$ AUX. TAPE. TONE CONTROLS: $\pm 10 \mathrm{~dB}$ at $\overline{100}$ Hz and $10 \mathrm{kHz} \pm 5 \mathrm{~dB}$ at 50 Hz and 20 kHz . FILTERS: $30 \mathrm{~Hz}(12 \mathrm{~dB} / \mathrm{oct}$) and 8 kHz (12dB/oct). HUM AND NOISE: Phono F75dB Aux, Tape -90dB (IHF). FM TUNER
USABLE SENSITIVITY: 14.5 dBf (stereo) 50dB QUIETING: 36.0dBf (stereo) ULTIMATE S/N RATIO: 74dB (stereo) DIS. TORTION (1KHZ): 0.2\% (stereo). FRE QUENCY RESPONSE: $30 \mathrm{~Hz}-15 \mathrm{kHz}$
(+0.3dB, -1.0 dB) CAPTURE RATIO: 1 dB (+0.3dB, -1.0 dB) CAPTURE RATIO: 1 dB
IF Rejection $=110 \mathrm{~dB}$. ALT. CHANNEL IF Rejection =110dB. ALT. CHANNEL GOdB. SPURIOUS REJECTION: 110 dB Separation $=50 \mathrm{~dB}$. 1 MAGE REJECTION: 110 dB AM Band included.

30 REGISTERED SECRETS

The SR52 programmable calculator has thirty extra data registers, over and above the facilities publicised by the manufacturer, Texas Instruments. An American engineer, Philip R. Geffe, made the discovery that locations 70 to 99 can be used to store information when the machine is in the calculator mode.

A FAN OF MIRRORS IN ONE WAY

MIT scientists have developed thin films (less than a ten thousandth of an inch thick) which freely transmit sunlight in one directional but reflect heat radiation from the other. One of the scientists, Dr John C. C. Fan, claims that 2% of the total consumption of energy in the USA could be saved by fitting the heat mirrors to all buildings.

NOT GETTING IT IN BLACK AND WHITE

Manufacturers of one-eyed monsters (i.e. televisions) in Taiwan are being politely requested to restrain themselves in their imports to Britain. Following a 'heads-together' between the government and our own TV manufacturers, the Taiwan Board of Foreign Trade is itself encouraging restraint. We have already been in touch with Japan, amongst others in an attempt to get some voluntary restrictions, since the import level of black and white sets is soaring.

Success will probably depend on the Japanese stance on the issue. I'll bet our firms would give a lot for a gunboat to send........

A TOUCHING THOUGHT!

This new Model 3435A, 3-1/2 digit mulltimeter from Hewlett-Packard has a 'touch-hold' probe available as an accessory. This lets the user 'freeze' the reading on the display -- an undoubted convenience when probing closely-packed circuit boards. The multimeter is autoranging an AC and DC volts and resistance. AC and DC current ranges are selected manually.

Front panel indication show the function in use and the units. Some idea of the ranges covered can be gleaned from the front panel switching. Price of the standard 3435A (with rechargeable lead acid batteries) is £291. The freeze reading probe is £29, extra.

Hewlett-Packard Ltd., King Street Lane, Winnersh, Wokingham, Berks. RG11 5AR.

TEXT FOR TELLIES

Spectrum Laboratories are able to offer immediate delivery on teletext decoders. Termed the Spectrum Telefax Decoder, the unit includes all standard features for receiving Ceefax and Oracle from the BBC and IBA respectively while providing optional facilities for decoding the PO Viewdata service.

Control is from a slim hand held keypad hard wired to the decoder optionally an ultrasonic cordless unit may be supplied - with remote TV receiver on/off included as standard. Page number is continuously displayed at the top left of the information page Unusual features include roll with pages changing continuously and a time display which is inserted into the top right of an ordinary TV programme. Prices at approximately $£ 300$, the Spectrum Telefax Decoder may be built-in to the TV receivers with sufficient space or alternatively mounted externally. Spectrum Laboratories Ltd., 32 Royal Avenue, Chelsea, London SW3 4QF.

KIT AND CLOCK SHOP?

A new chain of electronic hardware shops is about to be opened by Metac The outlets will specialise in kits for the home constructor, as well as digital clocks and watches. We understand our projects will be prominently features. (What more reason do you need to rush down there?).

The first is now open in Daventry (where?) with others to follow in High Wycombe, Reading and Coventry.

IBM SEES RED

The US government has decided to allow IBM to supply Russia - the Soviet Intourist Agency - with a large scale computer, a 370/45. This is against an earlier veto, and prevents two British firms sneaking in with their computers.

Apparently the reason for the veto was that the machine had too large a disc storage for the CIA's liking, and they thought old Ivan would use it to track US agents.

Oh what a tangled tape we weave................

CONFESSION TIME

This is the item we hate to print. We must humbly apologise to all our our readers for the number of errors which galloped (not crept) into last months issue. No excuses, but we will do better in future!

ERRATA

September 1976: 100W DISCO:Q4 must be mounted on the output transistor heatsinks. This component is present to prevent thermal runaway. Mounting it on the PCB may well lead to trouble!

September 1976: 560 VDU:- The $P C B$ layouts contained quite a few errors. The list below is complete as far as we know.

1. The master clock (MCKL) is synchronised by LS not LSD.
2. The circuit diagram shows IC15a as a NAND gate, the 7421 is a AND gate.
3. Having stabilised the picture by setting VR1 and VR2 the horizontal lines from RCLK will not appear until after IC9 has been inserted as RCLK is gated via IC9b.
4. The values of the components for the three oscillators associated with VR1, VR1 and VR5 may need changing to obtain optimum results, this is due to component tolerances.
5. On the layout of PCB-B pins 2 and 3 of IC12 are shown linked to FSD, this should read LSD.
6. No allowance was made on PCB-B for the inputs to IC7, ICs 9-13 should have their Vss line linked to that of ICs 8-16, IC9 was inadvertantly mirror-image reversed.
7. Several capacitor values in the parts list are given as " F " instead of $p F$. This affects Cá C6, C7, C8.
8. R20 should be 47k.
9. 'VRF' should be VR5 - $1 k$ vertical preset.

October 1976: MULTIMETER:- The patterns on page 45 are shown in reverse. To obtain the correct track layout draw the pattern through tracing paper, and then turn the paper over! A complete set of (correct) boards is available from Plessis Electronics (see ad) for $£ 5$ inc. In their ad last month, the board size was given as $7^{\prime} 7^{\prime \prime}$. Now much as we're in favour of big projects - (can you imagine the size of the transformer?).......this was misprinted for 7.7".

Penance will be served, and the sackcloth and ashes adorn our persons!

meloo Rigital

You save $£ 15.00$ on retail price
You save $£ 17.00$ on retail price

IMPORTANT. 2 YEARS UNCONDITIONAL GUARANTEE IS WHAT IT SAYS. A COMMITMENT BY US TO REPAIR OR REPLACE AT OUR DISCRETION ANY METAC WATCH OR CLOCK FAILING TO GIVE SATISFACTORY SERVICE DURING THE FIRST 2 YEARS OF LIFE. thereafter to service the product at a fair and reasonable PRICE.
NOTE ON BATTERIES: WE DON't QUIbble OVER batteries as SOME OF OUR COMPETITORS DO. WE'RE PROUD THAT YOU SHOWED ALL YOUR FRIENDS YOUR NEW WATCH, AND MAYBE YOU DID PRESS THE BUTTON 100 TIMES A DAY. THE TECHNICIAN'S INSTRUCTIONS ARE TO GET THE WATCH BACK TO YOU. NO QUESTIONS ASKED.

REMEMBER with every WATCH you ger METAC SUPER COVER. Full 2 years guaran tee. Two vear replace or repair if faulty. Free Calibration check 1st, 2nd \& 3rd year. Free Technical advice. ToMETAC INTERNATIONAL. Cross Lane, Braunston, Northants. Tel: 0327276545
Please supply the following: -
Name .
Address .
I enclose cheque/Postal Order/Money Order I wish to pay by Barclay Card/Access and my number is
Signature.
Mail Order Customers.

This compact unit calcultes the total cost of STD phone calls by counting the number of local-call charges appropriate to the called distance and duration of the call

SUBSCRIBER TRUNK DIALLING

 STD, is now the preferred method of making trunk phone calls within Britain. STD calls are easier and faster to make and can be cheaper than the old "charge per threeminute period" system. However, the method of charging for STD has a hidden trap which can result in phone bills being unexpectedly high.The STD billing system works by charging a fixed amount (equal to the local-call charge) for each time unit used in making the call. The time allocated to each unit varies according to the distance. Thus if the call is only over a short distance and at night you may be charged one local call every 180 seconds, but if over a long distance and during the day the charge may be as much as one local call every eight seconds. The disadvantage of this method as far as the subscriber is concerned is that he loses track of time when talking - there are no pips to warn him.

The ETI 543 STD Timer operates by counting the number of local call periods used. Thus at the end of the call you simply multiply the number held in the counter by the local call charge to get at an accurate cost. Local-call charges are frequently reviewed, so the timer is designed to count the number of local-call charges only.

To use the timer simply check the phone book before making the call to determine the number of seconds per charge applicable, then set this time on the selector switch of the timer. Now dial the number and when the called party answers press
the start button. The timer will switch on, " 1 " will be added to the display and the display will be incremented by " 1 " at the end of each time period (as selected). When the call is finished, you press the stop button and read the total units used. After about five seconds the timer will switch off automatically.

Note that although the power is still connected in the off-state the power consumption (in this state) is so low that battery drain doesn't affect battery life. In fact on the prototype the current drain was 2 x $10-^{10}$ amps! Yes, we actually measured it - guess how?

CONSTRUCTION

As the unit will be used on the phone table small size and neat appearance is necessary. We therefore built our unit into a zippy box which although looking neat does become a little crammed inside. For this reason it is important to use the printed circuit boards specified if all the electronics is to fit.

Commence construction by assembling components to the display board, ETI 543A, starting by installing the tinned-copper wire links as shown on the overlay diagram. Watch the orientation of the integrated circuits: the two 4511 s have opposite orientations.

Now assemble the second board, again installing the links first. Do not mount R1 to R16 just yet. The rotary switch used for range selection must now be modified by removing the wafer, cutting the spacers in half and then reassembling (as shown in Fig. 2) on the printed-circuit board. The terminals
of the switch should now be connected to the board by threading tinned-copper wire through the appropriate hole in the board (from the copperside) and through the terminal and then soldering to the terminal and the board. The resistors R1 to R16 may now be mounted into position and soldered, noting that they are mounted on-end - not flat.

Mount the two push-buttons to the front panel temporarily and then mount the completed second board and switch assembly to the front panel. Use spacing washers between the switch and the front panel. Connect the push-buttons to the board using tinned-copper wire and then remove the front panel.

Now place the two boards end-to-end about 50 mm apart and wire them together as shown in Fig. 3 . The 50 mm spacing ensures that when the boards are folded later the spacing will be OK. The battery holder may now be connected. However, note that there is insufficient room to allow a conventional , battery power clip to be used. You have to solder the leads directly to ${ }^{\circ}$ the terminals.

Impedances around the switch are fairly high, and leakage through flux could affect timing accuracy.

So clean the copper side of the boards with turps or methylated spirits to remove excess flux. Insert the batteries in the holder and select the four second range. If the display is on press the stop button and after about five seconds the display should extinguish. Now press the start button and note that the display is " 01 " and should increment

STD TIMER

Front panel for the timer. Full size

The two boards and battery assembly before being mounted in the case

Fig. 1 Circuit diagram of the STD timer unit

Specification

TIMING

Periods provided
6,8,9,12,18,24,36,45,90 and 180 seconds
Accuracy
first count -20\%
successive counts $\pm 5 \%$

DISPLAY

2 digit, seven-segment LED

POWER
Batteries
$4 \times$ pen cell (6 V)
Battery drain
approx 50 mA in 'ON' state
" $\quad 1 \mu \mathrm{~A}$ in 'OFF' state
START AND STOP
by separate push buttons

Fig. 2 The switch must be disassembled, the spacers cut in halves and then reassembled to the PC board as shown in this diagram

How it works

The basic timing element is the familiar timing IC the 555. This is a convenient device as the timing may be altered by changing the value of a single resistor. The resistor in question is selected by switch SWl to provide timing periods from one to 45 seconds in duration. As the timing of long intervals is difficult due to the leakage encountered in practical large-value capacitors, a divide by four stage is used to obtain the 6 to 180 second period required. To compensate for differences in the value of capacitor Cl a variable resistor is provided between 5 of the IC and the positive rail. Adjustment of this resistor varies the threshold voltage of the IC and thereby corrects the timing

The first timing period of the 555 is about 50% longer than those following and to compensate for this the divider stage provides a by-three division, instead of the normal by-four division, on the first sequence. This is not, however, a problem: it can be an advantage. If a call is terminated just at the time the display changes the charge will be within the cheaper period.

The output of IC2 clocks the dual-decade counter IC6 which has a four-line BCD output code. This is decoded to seven-segment format by ICs four and five to drive the seven-segment LED displays. These decoders also have a store facility which is not used in this application. A link is therefore used to connect the store input to zero volta thus disabling it. The use of a link allows the store to be made available if the board is to be used for another application.
The timer is controlled by IC3 which is a hex (6) non-inverting buffer (if input is high, output is high etc). The cycle
commences when pushbutton PBl is pressed. This pulls pin 7 of IC3/1 high causing the output of the IC to go high (pin 6). IC $3 / 1$ latches in this state and stays there until the stop button is . pressed when the output goes low again. When the start button is pressed and the output of IC3/1 goes high the input of IC3/2 is also pulled high via diode Dl causing the output of IC3/2 to go high. This high turns on emitter-follower Q1 which then provides power to all circuits with the exception of IC3 which is permanently powered. The off-state current drain of IC3 on the prototype was measured at 200 nanoamps! Thus by using this technique the need to switch the unit on and off has been avoided as battery life in the OFF state will exceed the shelf-life of the battery.

When the 'start' push button is pressed the high at the output of IC3/1 is also fed to pin 4 of the 555 timer IC which starts to cycle at the rate selected by SW1. Pin 14 of IC3/4 also goes high until C3 is discharged by R21. This causes a 10 millisecond pulse to be generated at pin 15 of IC3/4 and this pulse is used to reset the display decade counter, IC6, and also IC2 at initial switch-on. In addition, after a 50 millisecond delay (due to R22 and C4) the output of IC3/3 goes high and this transition in conjunction with C5 and R23 produces another 10 millisecond pulse from IC3/5 which sets IC2/3 causing IC6 to be incremented by one.

When the stop button is pressed the 555 timer is disabled and the timing stops. However, due to the charge on C2, the power remains on for a further 5 to 10 seconds.

Fig. 5 Printed circuit pattern for the display board. Full size $83 \times 61 \mathrm{~mm}$

Fig. 6 Printed circuit pattern for the timing board. Full size $83 \times 61 \mathrm{~mm}$

by one every four seconds. Check the timing accuracy over a number of increments with a watch and adjust RV1 to obtain increments of exactly 4 seconds. Check the other ranges for accuracy and if greatly in error check and adjust the values of the appropriate resistors in the R1 to R16 chain

Remove the batteries and mount the display board onto the front panel using 6 BA screws and spacers. If the box as specified is used the front panel will have to be cut to allow the displays to protrude through, thus allowing more room for the batteries. A quick assembly check will show how much extra room is required. Now mount the second board and the push buttons and mount the completed unit into the box

That completes the unit; the only thing to do is to instruct the family how to use it and to persuade them to do so on every STD call. Best of luck

SINTEL for MEMORIES - MPU'S - BOOKS Componenes rom

KITS

AUTOCLOCK AUT-CK £17.85
nly $154 \mathrm{~mm} \times 85 \mathrm{~mm} \times 40 \mathrm{~mm}$

The SINTEL Autoclock is a four-digit clock in an attractive mini white case. Features: large $0.5^{\prime \prime}$ red LED displays - High frequency quartz crystal nimebase - an internal backup battery supplies power if the car battery voltage drops below nine volts when starting the engine, or if the clock is temporarily isconnected - only high quality components are used. Piher resistors, roller tinned fibreglass PCB's. etc. Full instructions included. Simple but sophisticated circuitry gives you good performance at low cost. You benefit Complete kit less batery - Order as
Also available less case - Order as AUT-CK. \quad £17.85
 These wo kits incorporate our Ciystal Timebase Kit (XTK), together with components for
batrery beck-up. All components. plus a PP3.lype batter, fit neaty in the clock cases.
Accurate to within a few seconds a month. If mains power is disconnected through a power Accurale to with a a few seconds a month. If mains power is disconnected through a power
cut. accidental switching off or moving clock) the elocks will still keep perfect time. While on back-up. the displays ars off to conserve battery life

TTRACTIVE 6-DIGIT ALARM CLDCK: Uses Red O.5 displays. Features bleep alarm. Touch switch shoore contel antomatic intensity control. Alarm remains full pperational white clock is on back-up. Complate kit including case less mains cable and plug.
Order as $A C K+X T K+B 8 K$. it atso aveilable less crystal control and back-up Order as "ACKe28.80 MINI GREEN CLOCK. Attractive 4-digit Mantelpiece Clock with bright $0.5^{\prime \prime}$ Green display Complete kit including case less mains cable and plug. Order as

DATABOOKS and Datasheets

New 1976 RCA CMOS and Linear IC Combined Databook			
New 1976 RCA Power and Micr	owave	book	$£ 4.9$
1976 National Semiconductor 7400 series TTL Oatabook.c. 200 pages ¢ \quad 3.45			
TTL Pin-Out Card Index. Set of cards with pin-outs (top and bottom views) of T.I. TTL range and many other T.I. IC's			
Intel Memory Design Handbook. c. 280 pages			
Intel 8080 Microcomputer Systems Users Manual, c. 220 pages £4.85			
Motorola McMOS Databook Nol. 5 Series A). c. 500 pages			
Motorola M6800 Microprocessor Applications Manual. c. 650 pages			
Motorola M6800 Programming Manual, c. 200 pages £6.85			
Motorola Booklet introducing Mi	roproce		£1.50
2650 Microprocessor Marinual 220 pp			
NEW			
National SC/MP Introkit Users Manual $\mathbf{E 0 . 7 5}^{\text {a }}$			
National SC/MP Programming and Assembly Manual 6.3			
National SC/MP Technical Description			
DATASHEETS on Microprocessors; (usually Xerox Copies)			
Intersil IM6100 12 bit CMOS	£ 0.75	RCA CDP 18028 bit CMOS	¢0.3
National SC/MP 8 bit Low cost	£0.75	Zilog 280 (enhanced 8080)	c0.75
Signetics 26508 bit, Low cost	£ 0.75	Motorola MC 6800	c0.75

microprocessors

Please Microprocessors should only be bought by experienced constructors. Sorry. we cannot answer technical queries or supply data other than from our selection

IM6100CCOL	$£ 58.00$	6820	£17.67
8080A ($2 \mu \mathrm{~S}$)	¢43.65	6850	£17.67
6800	£33.87	8224	£9.76
ISPA/100 (SC/MP)	£18.75	8228	¢. 12.16
2650	£27.00	8251	£17.67
		8255	£17.67
MICROPROCESSOR MANUFACTURERS' DEVELOPMENT KITS			
These include main IC's. PCB, Manuals and Data			
- MEK680001 - with the 6800 MPU $£ 137.00$			
MCS 80 Kit C - with 8080A (no PCB) $£ 176.65$			

CASES and other COMPONENTS

artz Crystai \quad ¢4.50. 512 MHz Crystal $\mathbf{E 3 . 6 0}^{\text {a }}$			
Clock transformer $60-6 / 300 \mathrm{~mA}$. Order as LED-TAF			
For 5LTO 1 12-0.12/100mA 1.5-0.1.5/50mA. Order as "SL-TRF", £1.80			
perspex for some cases. making them ideat for clocks or instrumenis. For 751247 J PX-R-J-12 (Red)			
28p, PX-G-J- 12 (Green) 28p. For 751410 J PX-R-J- 14 (Red) 30p. PX-G.J. 14 (Green) 30p. For $751411 \mathrm{DPX} \cdot \mathrm{R} \cdot \mathrm{D}-14$ (Red) 40p. The cases are as used in our ACK \& GCK			
Dimensions arem mm			
$751410 \mathrm{j}(205 \times 140 \times 40)$	E2.84	75:237J (154×85×40)	¢1.72
$110(205 \times 140 \times 75)$	¢ 3.04	7512380 ($154 \times 85 \times 60$)	¢2.15

FAST SERVICE Wonemen win

GM0S		CD4033	1.45	C04070	0.60	MC14552	8.05
		CD4034	1.98	CD4071	0.22	$1 \mathrm{M650B}$	8.05
		CD4035	1.22	CD4072	0.22		
CD400'	0.16	CD4036	3.18	CD4073	0.22		
C04001	0.16	CD4037	0.99	CD4075	0.22		
CD4002	0.16	CD4038	1.22	CD4076	1.61	CLOCK CHIPS	
CD4006	1.22	CD4039	3.09	C04077	0.60		
CD4007	0.17	C04040	1.11	C04078	0.22	AY51202	2.89
CD4008	0.95	CD404 1	0.87	CD4081	0.22	AY51224	3.50
CD4009	0.56	CD4042	0.87	CD4082	0.22	MK50253	5.60
CD4010	0.56	CD4043	1.05	CD4085	0.74		
CO4011	0.17	CO4044	0.97	CD4086	0.74		
CD4012	0.17	CD4045	1.45	CD4089	1.61		
CD4013	0.58	CD4046	1.39	C04093	0.89		
CD4014	1.05	CD4047	0.94	CO4094	1.94	VEROCASES	
CD4015	1.05	CD4048	0.58	CD4095	1.09		
C04016	0.55	CD4049	0.55	CD4096	1.09	751410 J	2.64
CD4017	0.99	CD4050	0.55	C04097	3.87	7514110	3.04
CD4018	0.99	CO405 1	0.97	CD4099	1.90	751237 J	1.72
CO4019	0.56	CD4052	0.97	CD4502	1.29	7512380	2.15
CD4020	1.16	CD4053	0.97	CD4510	1.41	751239 K	2.78
CD4021	1.05	CD4054	1.20	CO4511	1.62	751239 K	2.78
C04022	1.00	C04055	1.37	CO4514	2.85		
C04023	0.17	CD4056	1.37	C04515	3.25		
C04024	0.81	CD405 7	27.95	CO4516	1.41		
CD4025	0.17	CD4059	4.96	CO4518	1.30		
CD4026	1.79	CD4060	1.16	CO4520	1.30	SUNDAY	
CD4027	0.55	CD4062	9.07	CD4527	1.64		
CD4028	0.89	CD4063	1.14	CD4532	1.50	CA3130	1.14
CD4029	1.16	CD4066	0.64	CD4555	0.94	UA741	0.35
CD4030	0.56	'C04067	3.87	CO4556	0.94	(RCA 8 DIL)	
CD4031	2.24	CD4068	0.22	MC14528	1.18		
C04032	1.11	CD4069	0.22	MC14553	5.24	78L12WC	0.77

ADD 8\% VAT + 25p P\%P on all orders. Phone orders see "Fast Service" for details. Export special order form and postage rates.

Sales, PO Box 75A, Oxford Tel: 086549791

LOW COST IC SOCKETS

Sold Connecting carrier A single the lengths you. need, solder into board and snap off the need. and at low prices. 50p per strip of 100 pins. 1,000 for $£ 4,3.000$ for $\mathbf{£ 1 0 . 5 0 .}$
 other CC display (DL704. D1750, MAN 3640 etc) as they are all electrically identical (but may
have difterent pin-outs). Similarly our Common Anode digits may be used in place of any other CA. have difierent pin-outs). Similarly our Common An
types (D1707. DL747. RS/Doram $586 / 699$ etc)

Official Orders Welcomed For complete range send for free catalogue and price list

OUR 1977 ILLUSTRATED CATALOGUE

 The most comprehensive range of products and technical information ever, including OVER 800 ADDITIONS to our list of Semiconductors and Electronic Components. Fully illustrated and designed to be updated as we increase our range. This is A MUST FOR ALL, ORDER NOW ...

DL7e7 Common anode 0.3"e.p. OL747 Elisplay, common anode 0.5 ex

E.E.D.'

AveD ioble in $0.185^{\prime \prime}$ and $0.2^{\prime \prime}$ die lenset

BI.PAK STILL LOWEST IN PRICE. FULL SPCEMTCATION GUARANTEED. AL

Ty
Type
7400

 100
18
12
12
24
24
14
14
24
25
21
27
27
27
28
24
23
24
11
21
37
24
21
11
 FAM

Every copy carries a Special Discount Order Form.

ND NEW FULLY GUARANTEED
:- Type Price Type Price Tyoe Price

VOLTAGE REGULATORS TO. 3 Plastic Eneapsulation HA.7805/L124 5V (equiv. to MVRSV) $\mathbf{E 1} \cdot 25$ HA. $7812 / L 13012 \mathrm{~V}$
(equlv. 10 MVR12V) \&1. 25 (equlv. 10 MVR12V) \&1.25

A simple project offering auto-reverse, inertia, emergency brake and loop track facilities

MODEL TRAINS HAVE ALWAYS BEEN popular with both lads and dads - with dads perhaps coming first. Many a boy has complained "Daddy won't give me a turn". It seems there is some inexplicable attraction in playing trains which never dims with the passing years. A couple of our friends have recently decided to buy train sets - for the kids (they say). Our model train controller project was designed to give them many features that are not found in commercially available controllers (for roughly the same cost). Most commercial devices consist of a transformer followed by a selenium rectifier, a high power rheostat and an automotive globe. Such controllers have numerous operating disadvantages mainly due to their very poor voltage regulation.

Our controller It may look a little complex but in fact it is very simple to build and quite inexpensive. If the full capability is used the features of the controller are:

- Forward or reverse control by a single slide potentiometer (centre for stop)
- Separate reversing switch for the main track
- Short-circuit proof
- Regulator-type control circuitry
- Emergency brake (which stope the train instantly regardless of the position of other controls
- Simulated inertia (gives more realistic starts and stops)
- The facility to operate with track loops
Loops operation Although not possible with simple controllers, loop operation adds much operating fun and realism to any model railroad and the feature is well worth including. A typical loop is shown in Fig. 1. and the operational problems of such a loop are as follows:

If a train is approaching the loop and the 'main' and 'loop' switches are both set at normal, the polarity of the voltages to the track will be as shown. If the points are set so that the train enters the loop towards ' A ' it will continue normally around the loop. If the points are now set to ' B ' sp that

the train may leave the loop then the train, once it passes the breaks in the track, will find the wrong polarity on the main track. It will be unable to continue in the same direction. To overcome this problem the maintrack switch must be changed to 'reverse' whilst the train is within the loop. If the train enters the loop towards ' B ' then the loop switch must be reversed before the train enters the loop. Once again the mainline polarity is reversed whilst the train is within the loop. Providing the section of the loop between ' A ' and ' B ' is longer than the train, loop operation will be simple and trouble free.
Simpler versions If all the facilities of the controller are not required then
it may quite easily be simplified. If only a single direction is required from the throttle control then the same printed circuit board and the circuit in Fig. 5. may be used. If loop operation is not required then the controller may be further simplified by deleting SW5 and the associated wiring.

CONSTRUCTION

We built our controller into a plastic box with an aluminium lid. Some people may wish to build the controller into a complete control panel or some other box. This is quite acceptable as the method of construction is not critical. We suggest however that the printed circuit board specified be used as this greatly simplifies con-

How it works

TRANSFORMER Tl reduces the 240 volt mains to a supply of 24 volts (centre tapped) which is then rectified by D1 to D4 to provide supplies of +16 and -16 volts dc. The speed control potentiometer is connected between these supplies so that its wiper may select any potential between plus and minus 16 volts depending on setting.
The output of the potentiometer must be well buffered before it can supply enough power to run a train. This is achieved by transistors Q3 and Q5, for the forward direction (that is for output voltages between zero and +15 volts), and by Q 4 and Q 6 , for the reverse direction (that is for output voltages between zero and 15 volts). The output voltage at the collectors of Q5 and Q6 will be about 0.6 volts closer to zero than the voltage at point ' K ' (providing the voltage at point ' K ' is more than .6 volts away from zero). This means that the control potentiometer will have a small dead band in the centre of its travel where the output voltage remains at zero. This is an advantage because it is frequently necessary to set the controller for exact zero output.
To protect the transistors from
damage in the event of an overload or a short circuit, transistors Q1 and Q2 are used to monitor and output current (by measuring the voltage across R7) and the voltage across the output transistors. By this method the power dissipation in the output transistors is controlled such that when driving into a short circuit only about one ampere is available. Yet when set to about 12 volts, about two amps is available to drive normal loads. The diodes D7 and D8 are included to protect the transistors Q1 and Q2 against reverse bias which can occur under certain conditions.
To add the 'inertia' facility or 'momentum' as it is sometimes called the control voltage from RVI is filtered by C3 and C4. This means that if the potentiometer is suddenly moved from stop to full forward (for example) the voltage applied to the transistor buffer rises only slowly. The train accelerates at a realistic rate without wheel spin. A similar action takes place when the train is stopped. If the controller is moved from full forward to full reverse the train will slow down then stop for a short time and then start off and
increase speed in the reverse direction. The diodes D5 and D6 allow normal electrolytics to be used in this position.
If inertia is being used and an emergency situation occurs, eg train moving into a siding that it should not be entering, the brake facility may be used to short the track (SW3B) and also the input to the buffer stage (SW3a). The brake over-rides the speed control and by its use the train will be stopped in a much shorter distance than it would if the power were simply switched off.
When loops in the track system are used, as described in the introduction, a separate reversing switch is used to control the polarity in the loop with respect to the main line so that the train may go into and come out of the loop without any change in speed. The two controller outputs required for this mode of operation must each be reversible and this is performed by SW4 and SW5.
If a second controller is required for another train in the system then it may be built without the power supply. The second controller may be powered by linking the $+16,0$ and -16 volt lines between the two controllers.

Parts List

AUTOMATIC-REVERSE
 CONTROLLER

Resistors			
R1	22 k	1/2 W	5\%
R2	10 k		"
R3.4	4 k 7	"	"
R5,6	100 ohm	"	"
R7	0.22 ohm	$5 W$	"
R8,9	100 ohm	1/2W	"
RV1	5 k lin	45	

Capacitors

C1.2 $1000 \mu \mathrm{~F} 35 \mathrm{~V}$ pc mounting electro C3.4 $100 \mu \mathrm{~F} 25 \mathrm{~V}$ pc mounting electro

Transistors	
Q1,3	BC108
Q2,4	BC178
O5	TIP 2955

Q6 TIP 3055*
*with insulation kit

Diodes

D1-D8
1N4001 or similar

Miscellaneous

PC board ETI 541
Transformer $24 \mathrm{~V}, 1 \mathrm{~A}$
SW1 toggleswitch DPDT 240 V rated SW2 toggle switch SPDT SW3-SW5 toggle switch DP DT Plastic box $196 \times 113 \times 60 \mathrm{~mm}$ 12 Pc board pins 3 core flex, plug and clamp Heatsink/support to Fig. 8. 8 way connector strip 2-way connector strip 2 6BA c/s screws \& nuts 10 mm long Front panel

FOR MANUAL REVERSE

CONTROLLER

Delete

R4, R8 and R9
C2 and C3
Diodes D3-D8
Transistors Q2, 4 and 6
If no loops are involved in the track layout SW4 and SW5 can be deleted on automatic reverse controller and SW5 on manual reverse controller.
For a second controller delete T1, SW1, D1-D4 and the power cord in the second controller.

GETTING HOLD OF THE COMPONENTS Nothing here to trouble the constructor - all the semiconductors are common:- and the hoxing is not critical.

-TRAIN CONTROLLER

Printed-circuit board layout ETI 541 train controller. Full size $65 \times 105 \mathrm{~mm}$.

Fig. 3. Component overlay + auto reverse controlier.

Fig. 7. Interconnection diagram for the auto-reverse controller given in the circuit of Fig. 2.
struction and minimizes the possibility of wiring errors.

Assemble the components to the printed circuit board in accordance to the relevant component overlay. Watch that the polarities of components suchs as diodes, capacitors, and specially transistors, are correct. Note that two different pin connections are available in the BC108 and BC178 transistors, depending on the manufacturer. The Philips type is the one shown on the overlays.

A small bracket was used to hold the printed circuit board in such a way as to hide the two screws which
hold the power transistor. If two extra screw-heads on the front panel do not worry you, then this bracket need not be used. Bolt the power transistor onto the bracket using the insulation kit provided. Mount the bracket to the rear of the front panel by means of the slide potentiometer and its mounting screws and then mount the rest of the switches. Drill a hole through the side of the plastic box for the power cord and then fit the cord, the cable clamp and the transformer into the box. Then mount the terminal block to the box and drill small holes for the wires from inside
the box to be terminated to it. Finally wire the complete unit and test it.

Once sure that the controller works as it should the board edge should be glued to the front panel (or bracket) with a little epoxy glue. Once this has dried, and you are sure that there is a seal all along the edge of the board, pour epoxy glue along the join so as to form a fillet of glue about 5 to 10 mm wide. (A piece of sticky tape at either end will prevent the glue from running out at the ends). Once the glue has dried the completed front panel assembly may be screwed into the box.

Bpartritemhe
 Capacitive discharge electronic ignition kits

* Improved acceleration/top speeds
* Up to 20\% better fuel consumption

Sparkrite Mk. 2 is a high performance, high quality capacitive discharge electronic ignition system in kit form. Tried, tested, proven, reliable and complete. It can be assembled in two or three hours and fitted in $15 / 30$ mins
Because of the superb design of the Sparkrite circuit it completely eliminates problems of the contact breaker. There is no misfire due to contact breaker bounce which is eliminated electronically by a pulse suppression cifcuit which prevents the unit firing if the points bounce open at high R.P.M. Contact breaker burn is eliminated by reducing the current to about $1 / 50$ th of the norm. It will perform equally well with new, old, or even badly pitted points and is not dependent upon thedwell time of the contact breakers for recharging the system. Sparkrite incorporates a short circuit protected inverter which eliminates the problems of SCR lock on and, therefore, eliminates the possibility of blowing the transistors or the SCR. (Most capacitive discharge ignitions are not completely foolproof in this respect). All kits fit vehicles with coil/distributor ignition up to 8 cylinders.
THE KIT COMPRISES EVERYTHING NEEDED
Ready drifled pressed steel case coated in matt black epoxy resin, ready drilled base and heat-sink, top quality 5 year guaranteed transtormer and components, cables, coll connectors, printed circuit board, nuts, bolts, silicon grease, full instructions to make the kit negative or positive earth, and 10 page installation instructions.

OPTIONAL EXTRAS

Electronic/conventional ignition switch
Gives instant changeover from "Sparkrite," ignition to conventiona ignition for performance comparisons, static timing etc,, and will also switch the ignition off completely as a security device, includes.
switch connectors, mounting bracket and instructions. Cables excluded. Also available RPM limiting control for dashboard mounting (fitted in case on ready built unit)

CALLERS WELCOME. For Crypton tuning and fitting service 'phone (0922) 33008

PRICES INCLUDE VAT, POST AND PACKING.
Improve performance \&economy NOW
POST TODAY:
Quick installation
No engine modification required

Electronics Design Associates, Dept. ET 11
82 Bath Street, Walsall, WS1 3DE. Phone: (0922) 33652
Name
Address
E
Cheque No.

Send SAE if brochure

cn? oirinternational Coils, ICs for RF\&AF,Tuners, Modules for AM FM \&TV.

complete tuner kits

Larsholt Signalmaster Mark 8....the most stylish FM tuner kit that is available today. Suitable for even the relatively inexperienced in electronics construction, with clear and consise point-to-point details. Performance matches the excellent looks

C86.95 International Mark 2., A flexible system, with cabinet, chassis and panel designed to accomodate a variety of tuner electronics. The standard system is built around the Larsholt 7253 tuncrset, includes two meters 6 preset stations, manual tune, balanced LED tuning, PSU etc. \quad L65.00 The above tuners are supplied with prealigned RF and IF stages. AM/FM....a new low cost MW/LW and FM stereo tuner, with muting, mechanical drive, teak effect cabinet. \quad \&41.95 TV sound....the 7700 TV sound module in a chassis and cabinet that matches the AM/FM tuner.

C36.95
Please remember to include an extra $£ 3$ carriage on complete tuner kits.

Radio ICs

Misc. regs etc.
 $\begin{array}{lllllll}\text { CA } 3090 A Q \mathrm{mpx} & 3.75+78 \mathrm{M} 12 & 12 \mathrm{v} 1 / 2 \mathrm{~A} & 1.20^{*} & \text { Z'TX108 } & 0.1\end{array}$ MC1310P mpx 2.20 t TDA1412 $^{2} \quad$.. 0.95^{*} ZTX109 0.14 SN76660N IFMIF $0.75 \quad 7815 \mathrm{UC} \quad 15 \mathrm{v} 1 \mathrm{~A} \quad 1.55^{*} \quad$ ZTX212 0.16 $\begin{array}{llllllll}\text { TBAI20AS FM JF } & 1.00 & 78 \mathrm{M} 20 & 20 \mathrm{~V} 1 / 2 \mathrm{~A} & 1.20^{*} & \text { ZTX213 } & 0.16\end{array}$ MC. 1350 AM/FM IF $0.70 \quad 78 M 24 \quad 24 v 1 / 2 A \quad 1.20^{*} \quad$ ZTX214 $\quad 0.16$ $\begin{array}{lllllll}\text { HA1197 AM system } 1.40 & \text { uA723 } & 5-35 v & 0.80^{*} & \text { ZTX413 } & 0.18\end{array}$ TBA651 AM system 1.81 NE550A do. $\quad 0.80^{*} \quad$ ZTX551 0.18 uA720 A Misysicm 1.40

Audio ICs uA741 op amp
LM3900 quad amp
L.M380N 2 W scp $\quad 1.00$ TBA810AS 7W scp 109 TCA940E 10w sep 1.80 TDA2020 20w scp 2.99 LM381N stereo pre 1.81 scp $=$ short cct protection $t=$ includes coil NE565A PLL ${ }^{*}=8 \%$ VAT, others 12.5% NE567V tone trigger 2.50*

Tunerheads for VHF FM and UHF TV (All varicap types)

 EF5800 6 circuit high quality $88-108 \mathrm{MH} \mathrm{Hz}$ tunerhear EF5600 5 circuit high quality $88-108 \mathrm{NiHz}$ tunerhead 12.50 EC3302 3 circuit (sime spec to LP1186) VHF tunerhead 5.505700 UHF TV tunerhead 38 MHz IF with 4 way preset 8.00
Modules for 1 F , decoders etc. (Also available built \& tested) 7020 kit 10.7 MH F FM IF with mute, AFC, AGC, meter ops 7030 kit 10.7 MHz linear phase low distortion FM IF
92310 kit Stereo decoder with full pilot tone filtering (PLL) 93090 kit Stereo decoder, low noise and distortion
7252 FM tunersct, built - luV in, Audio out with mute and all HiFi tuner features. Varicap tuncd (mono) 24.00
7253 FM tunerset, built 1.2 uV in, stereo out, with mute and all Hi Fi tuner features. Varicap tuned.
71:97 Varicap tuned MW radio module. The best AM
8001 kit 55 kHz low pass, birdy. filter for stereo radio

2020 kit TD $\wedge 2020$ sterco amplifier, with special heatsin

Famous TOKO COILS, Mechanical filters, ceramic filters, chokes etc $455 / 470 \mathrm{kHz} / \mathrm{F}$ coils $\quad 0.30 \quad \mathrm{M} 4 \mathrm{~T} 4 \mathrm{kH} / \mathrm{z} / 455 \mathrm{kHz}$ Mech filt. $\quad 1.65$ (1st, 2nd \& 3rd)IFTs $\quad 0.70 \quad M 71 \mathrm{I}^{\circ} 7 \mathrm{kHz} / 455 \mathrm{kHz}$ Mech filter 1.65 10.7 MHF IFI's $\quad 0.32 \mathrm{C} 455 \mathrm{~B} 8 \mathrm{kHz} / 455 \mathrm{kHz}$ ceramic filt 0.55 Variable signal chokes: \quad C $455 \mathrm{C} .6 \mathrm{kHz} / 455 \mathrm{kHz}$ ceramic filt 0.55 $2 \mathrm{mH}, 23 \mathrm{mH}, 36 \mathrm{mH}, 7 \mathrm{mH} \quad \mathrm{C} 050 \mathrm{D} 6 \mathrm{kHz} / 470 \mathrm{kHz}$ ceramic filt 0.60 $11.75 \mathrm{mH} \quad 0.33 \mathrm{CIS} 10710.7 \mathrm{MHz}$ cer. FM filter 0.50 Fixed chokes: (uH) SHE 6.06 MHz TV sound IF filter 0.80 $1.0,4.7,10,33,47,100$ 3132 A linear phase FMIF filter 2.25 $22,33,470,1000$ \qquad SFD 470 B 470 kHz ceramic filter 0.75

PLEASE REMEMBER TO INCLUDE VAT - thankyou !!
If you have read this far, you probably appreciate that AMBIT tends o specialize in the areas of wireless and TV that most component sources do notinclude. Our catalogue and price list continue this themewith coils, linear ICs etc. Catalogue 40p, price list free with SAE. Post is $22 p$ per order - unless otherwise stated.

37aHIGH STREET'
BRENTWOOD telephone tel

MICROPROCESSORS

SC/MP Introkit	$\mathbf{£ 9 2 . 5 0}$
ME680 Kit	$£ 135.00$
Mostek F8 Kit	$£ 165.00$
SC/MP TTY Kit (See Electronics Tomorrow,	
76 . Sept.	
MM2112 256×4 RAM	$£ 1 \mathbf{1 8 . 0 0}$
2513 u/c ASCII ROM	$£ 4.30$
Data only on MPUs, Kits	$£ 9.00$
	$\mathbf{7 5 p}$

CLOCK MODULES
MA 1002F (12 hr) or MA 1002H (24 hr) with Alarm and Clk / Rad features

Module only	$\mathbf{£ 7 . 9 5}$
MTX1001 Transformer	$\mathbf{£ 0 . 9 0}$
Vero Case	$\mathbf{£ 3 . 0 0}$
Mod + Tfmr + Case	$£ 11.57$
Complete Kit	$\mathbf{£ 1 3 . 0 0}$

GET HUNG UP!

Our new range of clock kits is based on designs hundreds of years old. These clock kits use wood stone and iron to reproduce authentic olde worlde" wall clocks in full detail. The kits contain all you need including glue, screws, etc.; and very comprehensive instructions. This range complements our fully electronic clock kits.

PRICES (All inclusive) KIT BUILT
Rolating Dial Kit-Diam. 6

$£ 23.95$	$£ 36.50$
$£ 19.95$	$£ 32.50$
$£ 46.35$	$£ 69.50$
$£ 31.50$	$£ 45.25$
$£ 39.50$	$£ 62.45$
$£ 89.50$	$£ 125.00$

For coloured Brochure please send $15 p$ stamps
Completed clocks can be seen at our offices.

31st OCTOBER - GOING, GOING, GONE!

If it hasn't yet gone why not stock up for those long Winter nights with Bywood's Special Offers! Buy at low prices before the rush!

MHI KITS

Our MHI clock kits on special offer include clock chip + skt, driver chip. 4 or 6 DL747E and two PCBs

Order Code	4 Digit	6 Digit
So-5309 Rest to zero	£11.50	¢13.25
SO-5314 Basic Clock	£10.00	¢11.75
SO-50253 Alarm, snooze	$£ 12.50$	¢14.25
SO-5378 Car (xtal incl)	£17.00	-
SO-50395 6 dec counter	£23.50	¢25.00
SO-50396 HHMMSS Counter	£23.50	$£ 25.00$
SO-50396 HHMMSS Counter	£23.50	E25.00
SO-7001 Cai, Alm, etc	£14.00	$¢ 15.75$
MHI-Case can be ordered with	e above for	£2.50

SPECIAL OFFER TERMS:

All offers subject to availability of components. All orders must include corner coupon, closing date on offers 31 Oct 76. Payment CWO, cheque, Barclay or Access cards, pro-forma invoices will include a 50p surcharge. All prices exclude Vat @ 8\%

MHI - Case can be ordered with any of the above for $\quad £ 2.50$

CLASS II LEDS

Type		Common An/Cath	Each Pkge	4 dig	10 dig
DL701E	3	A	£0.60	£2.00	£4.50
DL704E	3	C	¢0.60	£2.00	£4.50
DL707E	3	A	¢0.60	$£ 2.00$	£4.50
DL721E	5	A	£1.50	£2.50	£6.00
DL728E	5	C	£1.50	£2.50	£6.00
DL747E	6	A	$£ 0.90$	£3.50	£8.00
DL746E	6	A	£0.90	£3.50	$£ 8.00$
DL750E	6	C	£0.90	£3.50	£8.00

BASIC KIT	
¢7 50	

MM5314, skt, CA3081
Order Code SO-Mini
Complete Kit to build this 40 watt power amplifier £17.50.
Components available separately - PCB £1.23; 2N6084, £13.60; BAVIO, 11 p; RG174/U coax, 25p/m.

```
Lerge stocke of
PHESY
Stew Serics
```

 res In out matray.

NEW LOW PRICES FOR TTL

- ALL INCLUDING VAT -

WALLINGTON, SURREY, SM6 8RG
Tel: 01-669 6700 (9 a.m. to 6 p.m., 1 p.m. Sat.)

The Gasy woy to α PCB...

 the Seno 33 system!

Seno 33 -

The Laboratory in a box

From your usual comporient supplier or direct from
DECON LABORAIORIES LTD Ellen Steet. Poristade
Brighton BNA IEQ
Telephorie: (O273) 414371
telex. IDACON BRIGHION 87443

TCOM AEROSTATS Microwave relay by balloon

FOLLOWING THE MONTGOLFIER'S soaring successes and a brief resurrection in the form of the Zeppelin, the balloon has hardly been at the forefront of technological advance, and certainly hasn't had much impact on the modern world of instant communication by electronics. It has found a place in the meteorologists' 'tool kit" however, by carrying radio sondes to probe the behaviour of the upper atmosphere. On a more down-to-earth note, balloons (often surplus met types) have been used by amateurs to support vertical wire aerials. Until now, however, the world of ballooning has barely encountered the world of electronics.

Recent work by TCOM (Tethered COMmunication) Corp, Columbia, Maryland, promises to change this. They are advancing a new concept of airborne telecommunications aimed primarily at developing countries and utilising - yes, you've guessed it - balloons

NEW BALLOONS

Stability problems, lift restrictions and airborne powering difficulties curtailed the widespread use of balloons for communications until recently when several technological advances were made in materials science, computer-aided aerodynamic design and electronic equipment miniaturisation. The major components of the system are an aerostat (aerodynamically stable tethered balloon), a mooring system, power generation equipment, a tether, telemetry and command equipment and the electronics payload.

The family of TCOM aerostats ranges in size from the $7000 \mathrm{~m}^{3}$ volume 54 m long Mark VII, shown in Fig 1, to the $10,000 \mathrm{~m}^{3} 66 \mathrm{~m}$ long Mark VII S. The tail fins of this beast are over 27 m tall, which is about the height of a seven-storey building! Electrically powered blowers and valves automatically maintain correct pressurisation of the aerostat

Fig 1 The size of this 27 m TCOM aerostat can be judged by the size of the men on the ground

Fig. 2 The TCOM system can bring health care to rural communities while the doctor remains in his office!

The aerostats can support electronic transmitting and receiving equipment at altitudes of three to five kilometres through hurricaneforce winds supplying broadcast TV and radio signals and providing other communications services to a 125,000 to 180,000 square km area

TV AND RADIO BROADCASTING

A conventional broadcast system relies on "bending" of radio waves to give coverage beyond the typical 30 -mile line-of-sight radius of a broadcasting tower. The strength of the radio or television signal decreases substantially with longer distances or higher frequencies, as the ground partially reflects and partically absorbs the signals.

However, when the transmitter is supported by an aerostat at an altitude of 3 km , or higher, the radio and TV signals are broadcast through free space instead of along the ground. This method substantially reduces transmitter power requirements and increases the effective broadcasting area. As an example, the signal strength received at a location 100 miles from a conventional broadcasting tower with a radiating power of 100.000 watts could be equalled with only 3.2 watts from the
aerostat-supported transmitter.
The electronics on the aerostat can simultaneously transmit VHF or UHF TV channels, and FM and AM radio. Commercial, informational or educational TV programming (monochrome or colour) can originate at a distant city, be transmitted to the TCOM aerostat by microwave link and then broadcast from the aerostat. Programming can also originate at the TCOM control station or standard television programming can be picked off the air and rebroadcast. The same principles apply to $A M$ and $F M$ radio.

TELECOMMS

A TCOM aerostat system can simultaneously provide a highly flexible line-of-sight telecommunications capability, augmented by aerostat-to-aerostat microwave relaying techniques where the aerostats are located up to 400 km apart. The telecommunications capability can include several thousand channels of mobile and stationary telephone communications, Teletype, telex and Telephoto channels, high-speed digital and analog data chanrels and the collection and relaying of meteorological and other types of data over a wide area.

HEALTH CARE

The TCOM aerostat installation is used in a health care delivery system (fig 2) developed by the health. systems department of Westinghouse. This substitutes the physical presence of a doctor with a two-way TV link - doctor and patient can see and talk to each other although they may be hundreds of kilometres apart. In addition, the patient's heart beat and electrocardiogram (EKG) information can be transmitted to the physician's location.

The electronics package suspended from the aerostat is designed so that it will always stay pointed in the same direction and speed. Electric power is supplied to the electronic transmitting and receiving equipment by an efficient, lightweight Wankel engine-driven generator, and the aerostat can carry over a week's supply of fuel.

A three-mile restricted flight zone is normally declared around a TCOM station for the safety of aircraft. In addition, the aerostats and tether cables are clearly lighted, and in fact, the system can be used as a valuable aid to air navigation.

Projects Book Two contains 26 popular projects from the pages of ETI, first published July 1975 $75 p+15 p p \& p$.

Project Book Three - contains 27 popular projects from the pages of ETI, first published March 1976 $£ 1.00+15 p p \& p$.

4600 Synthesiser complete reprint of our superb, synthesiser design produced by Maplin $£ 1.50+15 p \mathrm{p} \& \mathrm{p}$.

Electronics - It's Easy the first thirteen parts of our popular introductory series $£ 1.20+15 \mathrm{p}$ p\&p.

Electronics - It's Easy Volume 2 - the next thirteen parts of our series.
$£ 1.20+15 \mathrm{p}$ p\&p.

CONTINUOUS DISPLAY LCD WATCHES
 UNIQUE ALTERNATING DISPLAY FEATURE

The watch continuously displays HRS. and MINS. with MONTH, DAY and SECONDS on demand. The owner selects the feature where the HRS. and MINS. or MONTH and DAY display alternatively for 2 second intervals until owner resets to normal display. During the alternating cycle seconds are still available on demand.
**Finest American MOS technology
**Quartz accuracy.
**Multi-function:
Hrs., Mins., Month, Day, Seconds. Alternating display Back-light. Programmed 28, 30, 31 day months. A.M./P.M. indication for ease of date setting
***All important: UK factory manufacturing and servicing facilities.

Watch Division, Lee Instrumentation Ltd. Bedwas, Newport, Gwent NP1 8 YZ TEL. (0222) 885756-7-8. TELEX: 497084
Heg. No. 639437, VAT Reg. No. 133815480

Watch despatched with matching Gold plated bracelet, in presentation box with instruction booklet and guarantee. Model 1113-10 is also available in a stainless-steel bracelet. et.

ETI project 445

 GENERAL PURPOSE PREAMPLIFIERA general purpose preamplifier using a single LM382 IC which can be used with magnetic pickups, tape recorders or microphones by changing a few components.

TABLE 1.

FUNCTION	$\mathrm{C} 3,4$	$\mathrm{C} 5,6$	$\mathrm{C} 7,8$	$\mathrm{C} 9,10$	R1, 2
Phono preamp (RIAA)	330 n	$10 \mu \mathrm{~F}$	$10 \mu \mathrm{~F}$	$1 \mathrm{n5}$	1 k
Tape preamp (NAB)	68 n	$10 \mu \mathrm{~F}$	$10 \mu \mathrm{~F}$	-	-
Flat 40dB gain	-	-	$10 \mu \mathrm{~F}$	-	-
Flat 55dB gain	-	$10 \mu \mathrm{~F}$	-	-	-
Flat 80dB gain	-	$10 \mu \mathrm{~F}$	$10 \mu \mathrm{~F}$	--	-

WE HAVE HAD MANY REQUESTS for the circuit of a simple preamplifier module suitable for fitting into an existing system. The requirements differed - many people required a module to amplify a magnetic pickup, whilst others wanted a unit that could be used for a tape recorder or microphone.

Whilst these requirements usually require different circuitry, a preamplifier based on the LM382 IC can be made to do any one of these jobs simply by chanying a few components around the basic amplifier circuit. As a straight preamplifier the frequency response extends to well beyond 20 kHz and gains of 40,50 and 80 dB can be selected by means of simple components changes.

To use the preamplifier for your application select the appropriate component values as deatiled in Table Table 1.

CONSTRUCTION

Strictly speaking a printed circuit board is not necessary and any method, such as Veroboard or Matrixboard, may be used if desired. However, the neatness and ease of construction offered by the use of a proper printed circuit board cannot be matched.

Parts List

Resistors
R1, 2 see table 1
R3, 4 100k 1/2watt 5\%
Capacitors
C1, $2 \quad 100 \mathrm{nF}$ polyester
C3-C10 see table 1
C11-C13 $10 \mu \mathrm{~F} 25 \mathrm{~V}$ electrolytic
Note that C13 should be rated at 50 V for supply voltage above 24 V
IC1 integrated circuit LM382
PC board ETI 445
10 PC board pins.

How it works

Not much can be said about how the LM382 works as most of the circuitry is contained within the IC. Most of the frequency-determining components are on the chip - only the capacitors are mounted externally.

The preamplifier may be powered by any de voltage between 10 and 40 volts the output automatically biased to about +6 volts. Duc to this bias the output must be decoupled from the following stages and this done byC11, 12 and R5,4. The LM382 has the convenient characteristic of rejecting ripple on the supply line by about 100 dB , thus greatly reducing the quality requirement for the power supply.

Thus the power rails of the main amplifier may be used.

After determining what components are required from Table 1, assemble the board as shown in the component overlay diagram. The input cables must be shielded as the signals at the input are at very low levels. If trouble with hum pickup is encountered it may be necessary to mount the whole preamplifier in a metal box to shield it.

Fig. 1. Frequency response of the NAB and RIAA versions of the preamplifier.

Fig. -3. Printed circuit lavout. Full size.

Fig. 4. Component overlay.

SUBSCRIPTIONS

"IF YOU CAN'T SEE IT - IT'S GONE!"

WHY TAKE CHANCES
 $?$

There are only two ways to ensure a copy of ETI: place a regular order with your newsagent or take out a subscription. Don't care about missing an issue? Well, it's up to you but although we do supply back numbers (several hundred are put on one side solely for future demand). However, due to increased readership, these back numbers have been lapped up and the issues for which back numbers are available has declined remarkably.

BUILD THE

- Genuine 5 sificon transistor Eircuit, does not need a tramsistor radio to. operate.
- Incorporates unique varicap tuning for extra stability.
- Search head fitted with Faraday screen to eliminate capacifive effects.
- Loudspeaker or earphone operation (both supplied).
- Britain's best selling metal locator
- kit. 4,000 already sold
- Kit can be built in two hours using only soldering iron, screwdriver, pliers and side-cutters.
- Excellent sensitivity and stability.
- Kit absolutely complete including drilled, tinned, fibreglasš p.c. board with components siting printed on.
- Complete after sales service.
- Weighs only 220z; handle knocks down to 17 " for transport
Send stamped, self-addressed envelope for literature.

Complete kit with pre-buil search coil

Plus 85p P \& P
Plus $£ 1.00$ VAT (8%)
Built, tested and Guarante

Plus 85p P \& P
Plus $£ 1.40$ VAT (8%)

MINIKITS ELECTRONICS

6d Cleveland Road, South Woodford LONDON E 18 2AN
(Mail order only)

4600 SYNTHESISERS
All parts stocked for this brilliantly designed ynthesizer, including all PCBs, metalwork and driled and printed front panel, giving a superb ETI Synthesiser is technically superior to most of today's models. Send $£ 1.50$ for construction book or s.a.e. for specification.

100W STEREO DISCO
features: Voice operated fader, belt-drive furntables, loow rms per channel. Monitor facilities (headphones and VU meters). Sound operated light show - plus ... Send just 20p for our construction leaflet MES 41

ELECTRONIC ORGAN

Build it yourself - in stages - Start with a 49-note nstrument - features tremulant and reverb. Ideal to earn on. Leaflet MES 51, price 15p $\star \star$ Add aflet MES 52 and several new tone colours with 61 -note keyboards \# \# \# Fully controllable attack and decay (normally found only on the most expensiv organs). up to seven footages on each keyboard up 1070 controls. including drawbars and 13 note pedalboard are the additions described

GRAPHIC EQUALIZER

A superior quality stereo graphic equalizer - 9 octaves per channel. All pars stocked (excep Woodwork) including metalwork drilled and printed Reprint of article. 15p

DIGITAL CLOCK KITS
 (All prices include VAT \& P\&P)

Simple Clock Kits, £9.38. Alarm Clock Kit, £10.99 Alarm Clock and Radio Controller Kit. £11.51, Smart plastic case with fully punched chassis 2.49). All above include our fully built and tested ectronic clock module (available separately .60). Data sheet (supplied) shows how simple it connect alarm and your mains/battery radio Cock has bright red 4 -digit $0.5^{\prime \prime}$ display - Flashing Colon - Swnch to Display Seconds - Alarm Se Indicator - PM Indicator - Power Failure Indicato Sleep Timer Snooze Timer. etc SAE please for clock data sheet.

ORDER OUR 1977/78

CATALOGUE NOW

Details in coupon on cover * * * * Everyone ordering before publication date witl receive a pack of ten super special offer coupons giving big discounts. on POUNDSI!! - SO DON'T DELAY FILL IN AND POST THE COUPON NOW

Here are just some of the new projects in the catalogue:
Multi-channel audio mixer - 13 -note foot pedal un for guitarist or organist - novel intercom system low distortion sine wave oscillator - battery

MAPLIN ELECTRONIC SUPPLIES

P.O. BOX 3, RAYLEIGH, ESSEX SS6 8LR

Shop: 284 London Road, Westcliff-on-Sea, Essex (closed on Monday). Tel. Southend (0702) 44101

Wilmslow

 AudioTHE firm for speakers!

Baker Group 25, 3. 8, or 15 ohm Baker Group 35, 3, 8 or 15 ohm Baker Deluxe, 8 or 15 ohm Baker Major. 3. 8 or 15 ohm Baker Regent. 8 or 15 ohm Baker Superb, 8 or ' 15 ohm Celestion MH 1000 horn, 8 or 15 ohm EMI $14^{\prime \prime \prime} \times 9^{\prime \prime}$ bass $14 \mathrm{~A} / 7008 \mathrm{ohm}$ EMI $8 \times 5,10$ watt, d/c, roll/s 8 ohm
Elac 59RM 10915 ohm. 59RM 1148 ohm
Elac 61/2" d / c roll/s B ohm
lac 10' 10 RM 2398 ohm
Fane Pop 15 watt $12^{\prime \prime}$
Fane Pop 55, 12" 60 wat
Fane Pop 60 watt. $15^{\prime \prime}$
Fane Pop 70 watt ${ }^{\prime \prime \prime} 5^{\prime \prime}$
Fane Pop 100 watt. $18^{\prime \prime}$
Fane Crescendo 12 A or B. 8 or 15 ohm
Fane Crescendo 12 A or B. 8 or
Fando 15.8 or 15 ohm
Fane Crescendo 15.8 or 15 hm
Fane Crescendo 188 or 15 hm
Fane Crescendo 18. 8 or 15 ohm

Fane $80118^{\prime \prime}$
Gondmans 8 c
8 or roll/s 8 oh

Goodmans 10P 8 or 15 ohm .
Goodmans 12P 8 or 15 ohm
Goodmans 12P-D 8 or 15 ohms
Goodmans 12P-G 8 or 15 ohms
Goodmans Audiom 2008 ohm
Goodmans Axent 1008 ohm
Goodmans Axiom 4028 or 15 ohm
Goodmans Twinaxiom $8^{\prime \prime} 8$ or 15 ohm
Goodmans Twinaxiom $10^{\prime \prime} 8$ or 15 ohm
Kef T27
Kef T15
Kef B1 10
Kef B1
Kef B200
Kef 8139
Kef DN8
Kef DN12
Kef DN13
Richard Allan CG8T 8"d/c roll/s
STC 4001 G super tweeter
STC 4001 K super tweete
Baker Major Module, each
Goodmans Mezzo Twinkit. pair,
Goodmans DIN 20.4 ohm , each
Helme XLK30, pair
Helme XLK35, pai
Helme XLK40, pai
Kefkit 1, pair
Kefkit III,
Keerless 20-50
Peerless 20-50, pair
Peerless 20.60, pair
Richard Allan Twinkit each
Richard Allan Triple 8, each
Richard Allan Triple 8, each
Richard Allan Triple 12 each
Richard Allan Super Triple, each
Wharfedale Linton 2 kit, pair
Wharfedale Glendale $3 \times P$ kit, pair
Wharfedale Dovedale 3 kit kair
Wharfedale Super 10 RS /DD
Castle Super 8 RS/DO
Jordan Watts Module 4, 8 or 15 ohm
Tannoy 10 "' Monitor HPD
Tannoy $12^{\prime \prime}$ Monitor HPD

Goodmans 8 P 8 or 15 ohm
Goodmans 12P 8 or 15 ohm
Goodmans 12P-D 8 or 15 ohms
coodmans Audiom 2008 ohm
Goodmans Axent 1008 ohm
Goodmans Axiom 4028 or 15
Goodmans Twinaxiom $8^{\prime \prime} 8$ or 15 ohm.
Goodmans Twinaxiom 10" 8 or 15 ohm .
Kef T15
Kef B110
Kef B200
Kef 8139
Kef DN8
Kef DN12
Kef DN13
Richard Allan CG8T 8" d/c roll/s
TC 4001 K super tweeter
Baker Major Module, each
Goodmans DIN 204 ohm , each
Herme XLK30, pair
Helme XLK40, pair
Kefkit, pair
Kefkit III, each
Peerless 20-50, pair
Peerless 20.60, pair
Richard Allan Twinkit, each
Richard Allan Triple 8, each
Richard Allan Super Triple, each
Wharfedale Glendale $3 \times P$ kit, pa
Wharfedale Super 10RS /DD
Jordan Watts Module 4, 8
Tannoy $10^{\prime \prime}$ Monitor HPD
Tannoy $12^{\prime \prime}$ Monitor HPD
Tannoy $15^{\prime \prime}$ Monitor HPD
$£ 6.20$
$£ 6.50$
$£ 14.95$
$£ 16.95$
16.95
16.50
$£ 16.50$
$£ 13.46$
$£ 7.60$
$£ 13.46$
$£ 7.60$
$£ 19.80$
69.50
69.86
$£ 9.86$
$£ 5.18$
$£ 6.25$
$£ 6.75$
$£ 7.85$
$£ 15.08$

$£ 2.08$ $f 5.39$

$£ 4.05$
$£ 7.65$
$£ 7.65$
$£ 5.90$
$£ 5.90$
$£ 13.28$
$£ 13.28$
$£ 46.50$
£13.28

$\mathbf{~} 21.95$
$£ 21.95$
$£ 26.75$
$£ 21.95$
$£ 26.75$
$£ 38.50$
$\mathrm{E46.00}$
E 39.50
53.00
$£ 53.00$
$£ 13.46$
$£ 20.25$
$£ 25.16$
$£ 25.16$
$£ 29.25$
$£ 29.25$
$£ 21.50$
$\mathbf{f 4 7 . 5 0}$
£21.50
£47.50
$£ 59.40$
$£ 13.50$
$£ 13.50$
$£ 9.28$
$\mathbf{E 1 5} 36$

Prices correct at 58.76
ALL PRICES INCLUDE VAT
Cabinets, wadding Vynair crossovers etc
Send stamp for free booklet "Choosing a Speaker
FREE with all orders over $\mathbf{£ 1 0}$ - "HiFi
Loudspeaker Enclozures" Book
All units are guaranteed new and perfect
Prompt despatch
Carriage Speakers 55 p each. $12^{\prime \prime}$ and up 85p each

WILMSLOW AUDIO

Dept. ETI
Swan Works, Bank Square, Wilmslow. Cheshire SK9 1 HF. Tel. Wilmslow 29599 (Discount Hifi, PA and Radio at 10 Swan Street, Wilmslow)

Access and Barclay Card orders accepted by phone.

yourones as at Superscore HomeTV Game

INTRODUCTION

Up to now the home constructor has had to use dozens, if not hundreds, of TTL or CMOS chips to produce even simple TV games. Now at last a kit is available using just one MOS chip and a few discrete components - the Videomaster Superscore. Not only is the component count low, the game variations are large! The version we constructed had 32 permutations of game and effect, 40 if the auxiliary inputs are used!

We received the first production model of the kit, minus the instruction book! However with the aid of a circuit diagram and some Xerox copies we decided to make it up.

The components were packed in polythene bags, separated into resistors, capacitors, semiconductors, hardware and the games chip itself. Also provided were the case, prebuilt UHF modulator (complete with 6 ft of coax fitted with plug) and front panel trim. It seemed that everything apart from tools was present including solder!

The printed circuit board was silkscreen printed with component positions and reference numbers. We soldered in all passive components followed by semiconductors and UHF modulator. After about $21 / 2$ hours the chip was taken from its conductive foam home and inserted in the socket on the board. The case was then closed up and screwed together, quite a delicate and fiddley operation.

After batteries had been inserted and the lead plugged into a TV we switched on - wierd noises came forth, it was working!

RAIN STOPPED PLAY

After tuning into the video signal the first problem occurred - a completely unstable picture. The TV would not lock into the games signal without adjustment of the vertical and horizontal hold controls. This meant that we couldn't tune a spare channel to the Video master and switch from BBC1, 2 or ITV to TV game without resetting the controls

The cause of this was due to the
games 2 MHz oscillator being slightly out and needed returning. Because we didn't have an instruction manual we hadn't tuned the oscillator coil before closing the case - so we had to take the case apart! To make any adjustment easier we drilled a $1 / 4$ in hole in the base of the case above the coil, and reclosed the case. This modification meant that we could tune into any set exactly very easily, and adjust for a perfectly stable picture.

ANYONE FOR TENNIS?

We started with a game of Tennis (fig 1) with 1 bat per side on slow speed. Pressing the reset button zeros the on screen score and the ball serves. If the ball hits a side boundary it bounces off at the angle it hit (producing a bounce tone on the internal speaker). The player being served must try and block the ball with his bat, if missed a score is registered and score tone produced, the ball be served again automatically. If the player blocks the ball a hit
tone is produced and the ball bounces back at a new angle. This continues until either player scores 15, at this point the ball continues bouncing but the bats do not stop it and the score does not increase.

FOOTBALL

Football is played in the same way as Tennis but the players have a goalkeeper and forward (fig. 2). If attacking the ball goes through the back of your forward and is deflected (electronic kick for good luck) but bounces off the 'front' of defenders. Scoring and game 'referee' is done automatically by the internal logic.

SQUASH AND MORE SQUASH

Squash is played with alternate attempts at hitting the ball - if it's not your turn to hit the ball will go through your player! Both bats are at one end of the screen (fig. 3).

Solo is squash with only 1 bat, you play the machine!

O.K. CORRAL

The two positions marked auxiliary are for 'rifle' attachments which will probably be available early next year. They will turn your TV into a shooting range - with no chance of injuring anyone!

During construction we selected the variable angle option and left the sound permanently on. The printed circuit is designed so that autoserve is permanently connected.

SPECIFICATIONS

Bat sizes Large 3.56 cm
Small 1.78 cm
On 56 cm screen
Audio output
Hit 32 mS 976 Hz
Bounce 32 mS 488 Hz
Score $160 \mathrm{mS} \quad 1.95 \mathrm{KHz}$
Built-in speaker
Ballspeed
Fast 0.78s
Slow 1.56 s
To traverse screen
Rebound angles

$$
\pm 20^{\circ} \text { or } \pm 20^{\circ} \pm 40^{\circ}
$$

On screen scoring 0-15

Chip used AY-3-8500 +4 transistors 2 diodes
Battery consumption 65 mA .
Output via built in UHF modulator for 625 standard.

Games available

Tennis	Solo
Football	Rifle 1
Squash	Rifle 2

Available from:
Videomaster Ltd, $14 / 20$ Headfort Place, London SW1X 7HN
£24.95 (inc VAT \& P\&P) U.K $£ 27.10$ (inc P\&P) Overseas.

POSTSCRIPT

We have just received a copy of the instruction manual. Problems we encountered during construction are covered succinctly, and in general it is a good guide for would. be constructors. Also the production model is now in a black case our's was a nice shade of brown!

ETI project 152 ETI-DORAM COMPETITION WINNER

 TV PATTERNGENERATOR

FOR ACCURATE COLOUR TV, convergence alignment, the use of a good crossbatch pattern generator is essential. Some of the cheaper, commercially available generators, though capable of producing the required patterns, are often of little use. The reason for this is their inability to generate line and field sync pulses of accurate frequency.

After using such an instrument, one often finds that the perfection achieved on the generator's crosshatch pattern no longer exists when reverting to "off air" transmissions. This is due to the frequency-conscious time constants incorporated in the reciver's convergence circuitry. The main problem lies in achieving a reasonable degree of accuracy, without the use of expensive crystals, and is overcome in this design in an unusual but effective way.
In order to produce a compact piece of test gear, the PCB's for this device are double sided, though not plated through. Add this to the complexity of the circuitry, and the fact that the modulator is working at UHF, and the result is NOT an ideal first project for beginners. We would reccommend that only experienced constructors tackle this project, but then how many people need a crosshatch generator that badly anyhow?
The chances are that if you want to build this thing it is well within your scope to do so.

Principle of Operation

The design of the generator was based on the following spe ification:
i. Accurate Line and Field sync pulse frequency
ii. A composite video waveform closely resembling that specified by the broadcasting authorities.
iii. A modulated RF output, suitable for direct connection to the receiver's serial socket.

An adjustable master oscillator of 500 kHz is used to produce both line and field sync pulses. A line frequency of $15,625 \mathrm{~Hz}$ is achieved by dividing this frequency by 32 , and a field frequency of 50 Hz by a division of 10,000 . Because of the direct relationship of these three frequencies, it is only necessary to ensure the accuracy of one of them. For this purpose, a fifth position on the 'Pattern Select' switch is included. When switched to this position a 50 Hz . mains frequency hum bar will be displayed on the TV screen. Adjusting the master oscillator for a stationary (or almost stationary) display, will ensure the accuracy of both line and field frequencies.

RF Modulator

The modulator oscillates at a frequency somewhere in Band III, a harmonic of which may be selected by the receiver's U.H.F. tuner. The fixed frequency of this oscillator may be adjusted by varying the spacing of L1, or changing the value of C11 as required.

CONSTRUCTIONAL DETAILS

As stated earlier this is not a project for the beginner. The PCB's are complex, and assembly will not be absolutely simple. Through board connections are made by soldering a link of wire at both sides of the board, and snipping to length. IC holders cannot be used, as many of the leads have to be soldered on the top of the logic board, as well as the underside.

Indeed many through-hole links are made by use of the component leads, and this involves soldering close to the actual component body. Don't linger over such joints contemplating a pint at the Plumbers Arms or anything else there'll be no crosses hatched on your screen that evening.

Make all the links on the logic board before mounting the IC's, joining each letter to its counterpart. Fit and solder the chips. The flying leads to the other board should now be cut to length ($12^{\prime \prime}$) and fitted to the logic board.

When assembling the modulator board mount the heatsink and regulator first, as it will be obstructed by the capacitors around it else. Next fit the coil and C13, (The holes might need to be enlarged to fit the coil wire supplied.) Mount the rest of the components, fitting them as close to the ground pane as possible, and taking care when soldering to this via the component leads.

Finally site the PCB's as shown in the photograph - this helps with. wiring of the PSU and function selector switch. Interwiring of the boards is fairly straightforward, and if you've gotton this far it should pose no problems now - keep going lad we're almost there! etc - fit yourself an output lead to the coax socket, and that should be that.
-

GETTING HOLD OF THE COMPONENTS

Doram Electronics are selling a complete kit of parts.

Price $£ 19.77$ + VAT

Construction of LI and C13- follow exactly

Parts List

How it worls

Sync Generation

ICIA is connected as a simple relaxation oscillator and forms the master oscillator. It's output is fed to the five $\div 2$ counters ICIOa, IC2a, IC3a, IC4a, and IC5a, to produce a line frequency of $15,625 \mathrm{~Hz}$. The output of IC4a is twice this frequency, $(31,250 \mathrm{~Hz})$ and is fed to the four $\div 5$ counters IC $2 b$, IC $3 b$, IC $4 b$ and IC5b, giving a total division of 625 to produce a field frequency 50 Hz . IC8a, Ic8b and IC9b effectively NAND the outputs of the four latter $\div 2$ counters to produce line sync pulses of $4 \mu \mathrm{~S}$ duration in every $64 \mu S$. The outputs of the first four $\div 2$ counters are similarly NANDed by IC8b, IC8c and IC9c to produce equalising pulses of $2 \mu \mathrm{~S}$ in every $32 \mu \mathrm{~S}$.

IC12a NANDS the output of IC2a, IC3a and IC4a to produce field sync pulses of 28μ S in every $32 \mu \mathrm{~S}$. These three pulse trains are then gated in their correct sequence by IC6b, IC12b and IC6a. For this purpose two timing sequence pulses are generated. The first is of $480 \mu \mathrm{~S}$ duration in every 20 mS , produced by IC9d, IC7a and IC8d. The second is of $160 \mu \mathrm{~S}$ duration in every 20 mS starting $160 \mu \mathrm{~S}$ after the start of the $480 \mu \mathrm{~S}$ pulse, and is generated by IC7b.
Both of these pulses are fed, in their corect phase, to IC6b, IC12b and IC6a to gate the required pulses at the correct times. ICl2c effectively ORs the outputs to form a composite mixed sync output at IC1le.

BLANKING

IC9a, IC6c and IC13b generate a 10 aS duration in every $64 \mu \mathrm{~S}$ pulse, starting $2 \mu \mathrm{~S}$ before the line sync pulse to form the front and back porch blanking.
ICl3a produces a 1.6 mS in every 20 mS pulse, starting at the beginning of the equalising pulse period to blank the first

25 lines of each field.
Both of these pulses are combined in IC7c and fed to the mixer stage.

PATTERN GENERATION

The vertical lines of the crosshatch pattern are generated by differentiating the $4 \mu \mathrm{~S}$ spaced positive-going edges of IC10a output (C3 and R3), producing approximately $I 4$ visible vertical lines.

ICIOb and ICIb generate a $64 \mu \mathrm{~S}$ pulse every 1.6 mS producing approximately 12 visible horizontal lines per field. (These appear two lines wide due to interlace)

The crossbatch and dot patterns are formed by OR-gating (IC6d) and ANDgating (IC7d) respectively. (Negative Logic).

R4, R5 and R6 form a simple D and A converter the output of which produces a staircase waveform by virtue of their binary values.

SYNC VIDEO MIXER

Negative-going sync pulses are fed to the top of the potential divider network R11/R10. During sync the output at R12 is close to zero, and black level produces a voltage of approximately one third of the TTL 'high' output.

QI is connected across the top half of the potential divider and is normally biassed off. The application of a positive video voltage at the base of Ql will turn the transistor on to an extent determined by the video content. This in turn will increase the voltage at the junction of R11/R10 to anything from black level to peak white (a voltage approaching TTL high).

Negative-going blanking pulses are fed to the cathode of DI which effectively short-circuits the video signal during blanking. C8 and C9 are connected back-to-back to eliminate the need for a large value, non-polarised capacitor, and a.c. couples the composite video signal to the modulator.

A Marshall (London) Ltd Dept: ETI 40-42 Cricklewood Broadway London NW2 3ET Tel: 01-452 0161/2 Telex: 21492
\& 85 West Regent St Glasgow G2 2QD
Tel: 041-332 4133
\& 1 Straits Parade Fishponds Bristol BS 16 2LX Tel: 0272-654201/2
27 Rue Danton Issy Les Moulineaux Paris 92
Call in and see us 9-5.30 Mon-Fri 9-5.00 Sat
Trade and export enquiries welcome. Catalogue price $40 p$ ($30 p$ to callers)

Top 500 Semiconductors from the largest range in the UK - All devices manufacturer's branded stock from RCA, Texas, Mullard, Motorola, National \& Siemens etc.

2N456	1.40	2N3390	37	2N5295	0.40	AF 186	0.50	8 C 2598	0.18	日F 194	0.12	8012	0.44	SN76003N	2.36
2N456A	1.54	2N3391	0.29	2N5296	0.36	AF200	0.70	BC261A	0.21	8F195	0.11	14 DIL	0.41	SN76013N	50
2N457A	1.70	2N3391A	0.34	2N5298	0.40	AF239	0.74	BC2628	0.19	8F196	0.13	LM7805P	1.39	SN76023N	1.95 2.50
2N490	4.60	2N3392	0.14	2N5457	0.29	AF240	0.90	BC263C	0.24	8F197	0.14	LM7812P	1.39	STI20IAC	2.50 0.20
2N491	5.00	2N3393	0.15	2N5458	0.26	AF279	0.80	BC300	0.45	8F 198	0.15	LM7815P	139	Stalac	0.20 2
2N492	5.75	2N3394	0.15	2N5459	0.29	AF 280	0.85	8С301	0.45	BF200	0.31	MC1303	1.47	TAA263	2.67 1.25
2N493	5.98	2N340.30		2N5492	0.42	AL102	1.50	8C303	0.60	BF225	0.25	MC1310	1.96	taA350	2.48
2N696	0.25	2N3414	0.15	2N5494	0.45	AL103	1.50	ВС307	0.20	BF244	0.35	MC1330P	0.75	taA550	0.60
2N697	0.16	2N3415	0.17	2N5496	0.50	8C107	0.14	${ }^{8} \mathrm{BC308}$	0.18	BF 245	0.34	MC1351P	0.87	TAA611C	2.25
7N698	0.82	2N3416	0.23	2 N 5777	0.45	BC1 108 BC 109	0.12 0.15	${ }_{\text {BC309C }}$	0.25 0.14	8F245	0.20	MC+352P	0.87	taA621	2.15
2N699	0.55	2 N 3418	0.27	2N6027 3 NT 28	0.45 0.80	${ }_{8 C 113}^{8 C 109}$	0.17	${ }_{\text {BC318 }}$	0.13	${ }^{\text {BF25 }} 25$	0.20	MC1466L	3.95	ta46618	1.32
2N706	0.12	2N3440	0.57	$3 N+128$ 3 N139	0.80 1.45	${ }_{8 C 115}$	0.19	${ }_{8 C 337}$	0.19	BF257	0.37	MC1469R	2.50	tBA6418	2.50
${ }_{\text {2N706A }}$	0.12	2N3441	0.78	$3 N 139$ $3 N 140$	1.45 1.00	8C116	0.19	вС338	0.21	BF258	0.49	ME0402	0.20	TBA65 ${ }^{1}$	1.80
2N709	0.50	2N3638	0.16	3N141	0.85	BC 116 A	0.20	BC547	0.12	8F259	0.49	ME0404	0.15	tBAB10	1.16
2N711	0.55	2N3638A	0.16	3N200	2.60	BC117	0.22	BC548	0.10	8F459	0.39	ME0412	0.20	T84820	1.03
2N718	0.22	2N3639	0.30	40361	0.45	BC118	0.16	BC549	0.13	BFR39	0.24	ME4102	0.10	T8A920	1.79
2N718A	0.40	2N3641	0.20	40362	0.48	BC119	0.30	BCY30	1.03	BFS21A	2.60	MJ480	1.05	TtP29a	0.50
2N720	0.69	2N3702	0.17	40363	1.00	BC121	0.45	${ }^{8 C Y} 31$	1.06	BFS28	1.04	M 1481	1.30	TIP3DA	0.60
2N914	0.22	2N3703	0.15	40389	0.50	BC125	0.18	${ }_{\text {BCr }}$	1.98	BFS698	0.30 0.27	MJ490	1.05	tip3iA	0.62
2N916	0.43	2N3704	0.15	40394	0.60	BC126	0.25 0.30		0.90 0.98	${ }_{8 F \times 29}$		M.J491	1.55	TIP32A	0.75
2N918	0.34	2N3705	0.15	40395	1.20	${ }^{8 C 132}$	0.30	${ }^{\text {BCY }}$ - ${ }^{\text {c }}$	0.98 2.00	BFX30	0.36 0.38	MJ2955	1.21	TIP33A	1.0
2N929	0.25	2N3706	0.14	40406	0.48	8 CC 134	0.15	${ }_{\text {BCY }}{ }^{\text {PCr }}$	2.06	${ }_{8 F \times 84}$		MJE340	0.58	TIP34A	1.20
2N930	0.26	2N3707	0.18	40407	0.38	${ }^{\text {CC1 }} 135$	0.15	${ }_{\text {BCY }}$	0.65	${ }^{85 \times 85}$	0.41	MJE370	0.68	TIP354	2.50
2N1302	0.37	2N3708	0.14	40408	0.50	BC136	0.19	BCY58 BCY59	0.55	${ }_{8 F \times 87}$	0.35	MJE371	0.81	TIP36A	3.35
2N1303	0.37	2N3709	0.15	40409	0.55	BC137	0.14	${ }_{8 C Y}{ }^{\text {BCr }}$	0.32	8F×88	0.32	MJE520	0.65	TIP41A	0.70
2N1304	0.40	2N3710	0.14	40410	0.55	BC. 140	0.60	${ }_{\text {BCY }}{ }^{\text {BCY }}$		${ }_{8 F \times 89}$	0.35	MJE521	0.75	TIP42A	0.90
2N1305	0.40	2N3711	0.15	40411	2.30	BC141	0.65	${ }_{8 C Y}{ }^{\text {BCy }}$	0.26	BFY50	0.95 0.30	MJE2955	1.25	TIP29a	0.75
2N1306	0.45	2N3712	1.20	40594	0.75	$8 \mathrm{CC142}$	0.30	8CY72	0.24 1.20	BFY59		MJE3055	0.75	TIP30c	0.85
2N1307	0.45	2N3713	2.30	40595	0.85	BC143	0.30	${ }^{80} 8116$	1.20	${ }^{8} \mathrm{FY} 52$	- 0.36	MP8111	0.35	TIP31c	0.85
2N1308	0.60	2N3714	2.45	40601	0.70	8 C 147	0.10					MP8112	0.40	TIP32c	00
2N1309	0.60	2N3715	2.45	40602	0.50	${ }^{8 C 148}$	0.10	${ }^{80} 8123$	2.00	BFY90	1.27	MP8113	0.45	TIP33c	45
2N1671	1.80	2N3716	260	40603	0.60		0.13	${ }^{80} 8124$	2.00	${ }_{\text {BRY }} 9$	0.50	MPF102	0.30	TIP34c	. 70
2N+1671A	1.92	2N3771	1.60	40604	0.60	${ }_{8 C 154}$	0.27	BD131	0.51	BS×20	0.31	MPSAD5	0.20	TIP4 1 c	1.00
2N1711	0.27	2N3773	2.65	40673	0.73	BC157	0.12	BD132	0.54	BS×21	0.32	MPSA06	0.20	TIP42c	1.20
2N1907	5.50	2N3779	6.00	AC126	0.37	BC158	0.11	80135	0.42	BU105	3.05	MPSAIL	0.35	T1P2955	1.00
2N2102	0.60	2N3790	2.75	AC127	0.44	BC160	0.78	80136	0.42	BU205	2.40	MPSA55	0.20	TIS43	0.50 0.30
2N2147	1.40	2N3791	2.75	AC128	0.37	BC167	0.12	BD137	0.45	CA3028A	0.85 1.50	MPSU05	0.40	2Tx300	0.15
2N2148	1.65	2N3792	2.90	AC151V	0.35	${ }^{8 C 168}$	0.12	BD138	0.48	Ca3030a	1.50	MPSU06	0.40	ZTX301	0.15
2N2160	1.10	2N3794	0.20	$A^{\text {A C }} 152 \mathrm{~V}$	0.50	8C169	0.12	B0139	0.50 0.50	CA3046	0.73	MPSU55	0.45	2T×302	0.20
2N2218A	0.47	2N3819	0.26 0.29	AC153 AC153k	0.40 0.42	8C170 BCT7	0.16 0.14	80529	0.55	CA3048	2.15	MPSU56	0.45	2TX500	0.15
2N2219	0.42	2N3820	0.29	${ }_{\text {ACl }}{ }^{\text {ACl }} 54 \mathrm{~L}$	0.42	8C172	0.12	80530	0.38	Ca3052	1.62	NE555V	0.48	2TX501	0.15
2N2219A	0.52	2N3823	0.61			${ }^{8 C} 177$	0.19	BDY20	1.13	CA3080A	1.10	NE556	1.30	21×502	0.18
2N2220	0.35 0.22	2N3904	0.21 0.22	${ }_{\text {ACl }}{ }^{\text {ACl }} 176 \mathrm{~K}$	0.45	8C178	0.18	BF115	0.36	CA3089E	2.00	NE5600	4.48	27×530	0.23 0.22
2N2221A	0.26	2N4036	0.67	AC187k	0.46	BC179	0.21	BF117	0.70	ca30900	4.25	NE561	4.48 1.30	SUB-MINIATURE CERAMIC PLATE CAPACITORS 1pF-0.015 5p $0.022 \mathrm{mF}-$ 0.047 mF 6 p $0.068 \mathrm{mF}-0.1$ 0.22 5% 13p Polystyrene capacitors $10 \mathrm{pF}-1000 \mathrm{pF}$ $1500 p F-.01 \mu F$ $10 p$	
2N2222	0.25	2N4037	0.55	AC188K	0.45	BC182	0.11	BF121	0.55	CA3130	0.88	OC28	2.00		
2N2222A	0.25	2N4058	0.20	AD142	0.65	BC182L	0.14	BF123	0.55	LM301A	0.47	OC35	1.50		
2N2368	0.17	2N4059	0.15	AD143	0.75	${ }^{8 C 183}$	0.11	BF152	0.25	LM308N	1.32 1.80	OC42	0.50		
2N2369	0.25	2N4060	0.20	AD149	0.74	${ }^{\text {BC, }} 183 \mathrm{~L}$	0.14					OC45	0.75		
2N2369A	0.21	2N4061	0.17	AD 150	1.20	${ }^{\text {BC1 }} 184$	0.12	BF 154 BF159	0.25	LM381A	0.98 2.07	0 C 71	0.45		
2N2646	0.55	2N4062	0.18	AD161	0.75		0.14 0.11	BF159 BF160	0.35 0.30	LM702C	0.75	OC72	0.45		
${ }_{2} \mathbf{N} 2647$	1.10 0	2N4126	0.17	AD162	0.75	BC207	0.10	BF161	0.60	LM709T099	0.40	OC81	0.75		
2 N 2904 A	0.37	2N4289 2N4919	0.30 0.85	${ }_{\text {AF }}$ AF 114	0.65	BC212	0.14	BF 166	0.40	LM74ICAN	0.38	0c83	0.50		
2N2905	0.37	2N4920	0.90	AF 115	0.65	BC212L	0.17	BF167	0.33	8DIL	0.35				
2N2905A	0.38	2N4921	0.60	AF116	0.65	${ }^{\text {BC2 }}$ 14L	0.17	BF173	0.33	14 DIL	0.40	S(414A	2.35		
2N2906	0.28	2N4922	0.65	AF117	0.65		0.14 0.12	8F178	0.38 0.45	LM3900N	0.45 0.55	SL6ioc	2.35 2		
2 N 2906 A	0.25	2N4923	0.70	AF 118	0.65	BC238	0.12 0.15	${ }^{\text {BFI }} 179$	0.48	LM723C	0.60	SL611C	2.35		
2N2907	0.21	2N5190	0.70	AF124	0.65	${ }_{8 C 251}$	0.15	BF180	0.45	LM733	0.88	SL612C	2.35		
2N2907A	0.22	2N5191	0.80	AF 125	0.65	${ }_{8 C 253}$	0.22	BF181	0.45	LMP09CAN	0.40	SL620C	3.50		
2N2926	0.13	2N5195	1.10	AF 127	0.65	BC257A	0.17	BF 182	0.45	80L	0.40	SL621C	3.50		
2N3053	0.25	2N5245	0.29	AF139	0.69	BC258A	0.17	8F183	0.45		0.40	${ }_{\text {SL6 }}$ SL623 ${ }^{\text {c }}$	5.75 4.00		
2N3054	0.50	2N5294	0.35					BF184	0.35		0.78	SL641C	4.00		
2N3055	0.65							BF185	0.35	LM 748	0.44				

MARSHALL'S QUALITY FOR TTL

TTL Integrated Circuits - Quality \& Prices you can't beat

DIN PLUGS - 14p EACH
DIN CHASSIS SOCKETS - 10p EACH
LINE SOCKETS 14p each
5 pin 180° and speaker
PHONO PLUGS (screw top). Red. White Black. Green or
LINE PLUGS (same colours) - 10p (chrome) 15p.
PHONO CHASSIS SOCKETS: Single 7p.

JACK CONNECTORS

[^0]NEW RANGE TOOLS HIGH QUALITY MINIATURE 4"
ELECTRONIC PLIERS and CUTTERS INSULATED HANDLES
$\begin{array}{ll}\text { Round nose box joint } & \mathbf{E 2 . 5 0} \\ \text { Diagonal side cutters box }\end{array}$ Diagonal side cutters box joint $\mathbf{£ 2 . 8 0}$
Flat nose box joint
£2.40 $\begin{array}{ll}\text { Snipe nose box joint } & \text { E2.40 } \\ \text { DESOLOERING TOOL } \\ \mathbf{E 5 . 0 0}\end{array}$
P.C. MARKER PEN DALO 33PC 0.87. ZENER DIODES 400MW SOCKETS 8DIL 0.14 , 14 DIL 0.15 . 16DIL O.16. RESISTORS 1/4W $0.02(100$ per value $£ 1.30) .1 / 2 W$,
$0.03(100$ per value $£ 2.00)$. SCORPIO CAR IGNITION KIT E12.95. BOX E1.80 TRANS. FORMERS E3. 75 IMF 440 VAC
E1.60 BOARD 0.95 JUMBO E1.60 BOARD 0.95
$7-$ SEGMENT DISPLAYS
E2.16. DL 707 E1. 60 . MINITRON E1.50.
LEDs RED YELLOW GREEN 2 in . dia. 0.24 .

SEE MARSHALL'S FOR

 CMOSCD4000 0.20 CD4018 1.01 CD4042

$\begin{array}{ll}\text { CO4006 } \\ \text { C04007 } \\ 0 & 0\end{array}$

S10v-S05k275 iw 350Vdc
S10V-S10K275. 4 WW 350 Vccc
$\mathrm{S} 10 \mathrm{~V}-\mathrm{S} 20 \mathrm{~K} 275.8 \mathrm{~W} 350 \mathrm{Vdc}$

FFP30 2250 E
FP 200 LI 00

Potentiometers
$\begin{array}{lll}\text { Rotary Pots } & \begin{array}{c}\text { Single } \\ \mathbf{2 5 p}\end{array} & \begin{array}{c}\text { Doubl } \\ \mathbf{7 5 p}\end{array} \\ \text { Rotary Switched } & \mathbf{5 5 p} & - \\ \text { Sliders } & \mathbf{4 5 p} & \mathbf{7 5 p}\end{array}$
FULL RANGE OF CAPACITORS
STOCKED. SEE CATALOGUE FOR
detalls.

Presets Horizontal or Verrical
01 W 9 p
0.3 W 11 p

NEW PRODUCTS, TECHNICAL INFORMATION AND ALL BACKED
BY THE USUAL SUPERLATIVE BY THE USUAL SUPERLATIVE
MARSHALL'S SERVICE - FOR ONLY 40p POST PAID OR 30p TO PERSONAL CALLERS
PLEASE ADD VAT TO YOUR
ORDER. POSTAGE \& PACKING 30p.

Part 9 Micraprofile

THE TOTAL NUMBER of microprocessors available today, counting temperature and speed spec. variations is certainly well over the century. Each of these is different in many ways; in architecture, power requirements, word length or I/O handling, so that the particular application dictates the parameters used in deciding which micro is best. For example, in a portable system where battery power is used, choice is limited to a CMOS micro, such as the Intersil IM6100.
In this survey, we have tried to present the most important characteristics of several of the more popular types, with two aims in mind: firstly, to aid those trying to choose a micro for a specific application, and secondly to show the differences between such apparently similar devices.
We have tried to show the characteristics which would generally be most important to the amateur, e.g. cost, power supplies (unless you like building supplies), and TTL compatibility, all of which bear directly on the pound in your pocket. In addition, the number of instructions and addressing modes give a rough indication of the power of the micro, i.e. the probability of being able to make it do what you want it to do.

Two arguments apply here: it's certainly true that it's not the number of instructions but their effectiveness that counts, but on the other hand, if you haven't got a lot of RAM to play with, those extra instructions can sometimes shorten your program just enough to fit. The classic example is probably hardware multiply, which would otherwise constitute a lengthy subroutine.

The number of registers in the CPU also bears on this; if you have spare registers available it can save you a lot of effort in pushing data around. In addition, some of the spare registers in various chips can be used as Index Registers or do other tricks. We've used a few abbreviations here and there: ACC means accumulator, PC is Program Counter, SP Stack Pointer.

The other devices available in a 'family' of chips can do a lot of the work a CPU would otherwise have to do. For example, a time delay can be
be implemented in software by making the micro count down from an initial value, but it can't do anything useful at the same time. A programmable timer chip can share the load and let your micro work for its living instead. But watch the cost - if all the time intervals are the same get a 555 - it's cheaper!
The availability of software may also influence one's choice. Assemblers and editors, whilst expensive, can speed up development of programs enormously as well as improving debugging. They also take the element of tedium out of programming - you've solved your problem, you have a flowchart in your mind and know exactly what logical steps to take: and then you have to sit down and convert it all to numbers.
The next stage up the ladder, high level languages like BASIC, virtually let you forget about the constraints of the machine. A program that was written in BASIC for an ICL machine will run equally well on an 8080; if you have the compiler.

Prototyping kits are a way of getting off the ground - they're cheaper than complete, boxed microcomputers with all the support, but more awkward to use and can be a bit idiosyncratic.

INTEL 8080A

The 8080A is the first of the 'industry standard' microprocessors, and consequently intel have acquired a lot of feedback from users. Consequently, this chip is backed up by a lot of software support, including at least 3 high level languages (at a price!).
Package: 40 pin DIL
Supplies: $+5 \mathrm{~V},-5 \mathrm{~V},+12 \mathrm{~V}$
Technology: NMOS
TTL Compatibility: No
Clock Phases: 2
Word Length: 8 bits
Basic Instruction Set: 88
Addressing Modes: 4
Register Arrangement: PC, SP, 3 pairs of 8 bit registers, 1 pair of temporary registers
Addressing Capabilities: 64k
Interrupt Levels: 1
Special Capabilities: 16 bit handling
Additional Family Devices: 8224

Clock Generator, 8228 System Controller, 8212 Parallel 1/O, 8255 Programmable Peripheral Interface, 8251 Programmable Communications Interface, 82051 of 8 Decoder, 8214 Priority Interrupt Controlier, 8216 Bus Driver
Available Software: Assembler, Editor, Disk Operating System, and Compilers for: PL/M (Intel), Coral 66 (GEC), Basic (Altair). Also a lot of applications software from Intel and Altair.
Prototyping Kits: SDK80
Prices: 8080A MPU chip £29.40, SDK80 board $£ 247$

ZILOG Z80

The Z 80 has been designed to get round some of the awkward points of the 8080 , and to be considerably more powerful. Certainly the most powerful micro available, it will run programs which have been written for the 8080, and will probably find main application in replacing minicomputers in dedicated systems.
Package: 40 pin DIL
Supplies: +5V
Technology: NMOS
TTL Compatibility: Yes
Clock Phases: 1
Word Length: 8 bits
Basic Instruction Set: 158
Addressing Modes: 11
Register Arrangement: 17 registers PC, SP, 2 Index Registers, Page Register, Refresh Register, 1 pair 8 bit Accumulators with 8 bit Flag Registers, and 2 sets of 6 General Purpose Registers
Addressing Capabilities: 64 k
Interrupt Levels: 3 Maskable módes, 1 non-maskable
Special Capabilities: Dynamic RAM Refresh
Additional Family Devices: Z80 ParaIlel I/O. Z80 Counter Timer Circuit, Z80 Serial 1/O, Z80 Direct Memory Access
Available Software: Assembler, Editor, Disk Operating System, Basic Compiler.
Prototyping Kits: MZ80-MCB (CPU, 4k RAM, PIO, TTY interface, CTC built and tested)

Prices: Z80 CPU £65.00, MZ80-MCB £311.15

FAIRCHILD/MOSTEK F8

The F8 is Fairchild's assault on the micro market, second sourced by Mostak. It is a two-chip set, a CPU and PSU (Program Storage Unit). Unfortunately the PSU contains 1 k bytes of mask programmed ROM, but a version containing a monitor program is available.
Package: 40 pin DIL (2 off)
Supplies: +12V,+5V
Technology: NMOS
TTL Compatibility: Yes
Clock Phases: 2
Word Length: 8 bits
Basic Instruction Set: 58
Addressing Modes: 8
Register Arrangement: The 3850 CPU contains Accumulator, Status Register, and 64 bytes of scratchpad RAM, The 3851 PSU carries the PC, Stack Register, Data Counter, 1 k bytes of ROM and a programm. able timer.
Addrassing Capabilities: 64k
Interrupt Levels: 1 prioritized interr upt on each PSU
Special Abllitiss: Decimal Arithmetic, 2 I/O ports each on CPU and PSU
Additional Family Devices: 3852/ 3853 Memory Interfaces, 3854 DMA Controller
Available Software: Resident Assemblep
Prototyping Kits: F8 Evaluation Kit
Prices: 3850 CPU $£ 15.10,3851$ PSU £24.65, F8 Evaluation Kit £123

NATIONAL SEMICONDUCTOR SC/MP

SC/MP (for Simple Cost-effective MicroProcessor) is aimed at the controller, rather than the computer, end of the market. It's really intended as a replacement for the 4 -bit micros, the advantage of 8 bits being in the handling of ASCII codes.
Package: 40 pin DIL
Supplies: $+5 \mathrm{~V},-12 \mathrm{~V}$
Technology: NMOS
TTL Compatibility: Yes
Word Length: 8 bits
Basic Instruction Set: 46
Addressing Modes: 4
Register Arrangement: PC, 3 Pointer Registers, ACC, Extension Register, Status Register.
Addressing Capabilities: 4 k (64k with external latch)
Interrupt Levels: 1
Special Capabilities: Serial 1/O onchip
Additional Family Devices: None Available Software: Cross-assemblers only - no resident software except firmware monitor

Prototyping Kits: Introkit, LCDS
Prices: SC/MP (ISP-8A/500D) £12.50, Introkit £62.50, LCDS £315.

INTERSIL IM6100

The neat thing about the IM6100 is that it runs the same software as the PDP-8/E, possibly the most popular minicomputer around today. This means that it has a very wide range of software available including assemblers and even a calculator-type program. In addition, it is CMOS and so is probably the nearest thing available to a portable computer.
Packaga: 40 pin DIL
Supplies: +5 V
Technology: CMOS
TTL Compatibility: Yes
Clock Phases: 1
Word Length: 12 bits
Basic Instruction Set: 79
Addressing Modes: 3
Register Arrangement: ACC, PC, MQ and TEMP (temporary registers)
Addressing Capabilities: 4 k
Interrupt Levels: 1
Special Abilities: Battery Operation
Additional Family Devices: IM6101 Parallel Interface Element, IM6402 UART, also CMOS RAMs
Available Software: Most PDP-8/E software will run on the IM6100 Prototyping Kits: Intercept Junior Prices: IM6100CCPL £26.46, Intercept Junior £196.39

MOTOROLA M6800

The M6800 family of chips were orig. inally oriented towards data communications - hence the 6860 modem. However, it has found its way into applications as diverse as audio control systems for rock groups. We've talked a lot about it before now and include it here for comparison.
Package: 40 pin DIL
Supplies: +5V
Technology: NMOS
TIL Compatibility?: Yes
Clock Phases: 2
Word Length: 8 bits
Basic Instruction Set: 72
Addressing Modes: 7
Register Arrangement: 2 Accumulators, Condition Codes Register, Index Register, SP, PC
Addressing Capabilities: 64k
Interrupt Levels: 2-maskable and nonmaskable
Special Capabilities: Decimal Arithmetic
Additional Family Devices: MC6820 PIA, MC6850 ACIA, MC6880 bus driver, MC6810 128 byte RAM, MC6830 ik byte ROM, MC6852 Serial Synchronous Data Adapter, MC6860 Modem, MC6862 Modem, MPQ6842 Clock Driver

Available Software: Assembler, Editor, Disk Operating System, Basic (Altair)
Prototyping Kits: MEK6800D1 Family parts and board only
Prices: MC6800L (ceramic) $£ 22.58+$ VAT MC6800P (plastic) £20.16 + VAT MEK6800D1.£85.83 (£130 total to complete)

NEWS/PRODUCTS

THE POCKET TELETYPE developed by National Semiconductors is now available from GR Electronics Ltd. It has 36 keys which, with a 'shift' switch, allow entry of a full 64 alpha. numeric character ASCII set through a 20 mA current loop interface. A 9 . digit alphanumeric LED display is used. GR Electronics Ltd., 80 Church Rosd, Newport, Gwent.
'Introduction to Minicomputers and Microprocessors' is the title of a course being given at the Polytechnic of Central London, 115 New Cavendish St., London W1 on Wednesday evenings at 6.30 pm . This 22 week course will cost you about $£ 9$, for which you get lectures by Dr. G.R. Burke, plus a bit of 'hands on' experience. For registration contact the'registry' or Dr. Burke at the above address, or phone $01-4865811$.
The first national computer show for Stateside hobbyists, Personal Computing '76, was apparently a great success, with around 5000 attending. Amongst over 100 companies exhibiting were IBM, DEC and National Semiconductor. Apparently, DEC (Digital Equipment Co.) had a 132 page 'direct sales catalogue for do-it-yourself computer equipment purchases'. Don't know if it's available in this country....
Shugart Associates have unveiled a new $5 \frac{1}{4}$ " square minifloppy disk aimed squarely at the hobby computer market and likely to hit it right between the eyes. A capacity of 110 k bytes at $125 \mathrm{kbit} / \mathrm{s}$ data transfer rate make it a very attractive proposition. The drive is $314^{\prime \prime} \times 53 / 4^{\prime \prime} \times 8^{\prime \prime}$ and consumes just 15 watts.

We regret that, owing to circumstances beyond our control, we have been forced to delay publication of the constructional details of System 68.

PRINTED CIRCUIT KIT £3.95*
100 so ins of pc board 1 lb ferric chloride dalo dish

JC12 AMPLIFIER

ata andio amp with free
DELUXE KIT FOR JC12
Contains extra pans except JC1 2 needed to complete the amp including balance, volume bass and treble

JC12 POWER KIT
JC12 PREAMP KITS
1.50 Stereo $£ 3.00$ Type 2 for ceramic or crystal

SINCLAIR IC20

int
PZ20 Power supply kit for above \& 4.95
VP20 Volume, tone-control and preamp kit $£ 7.95$

JC40 AMPLIFIER

chip, printed cith

FERRANTI ZN414

I 3.65 . Case 90 p. Send sae for free data

BATTERY ELIMINATOR BARGAINS

STABILIZED POWER UNITS

Millenia series Switched 1 to 30 V in 0.1 V steps
Amp Kit $11145 \mathrm{Kit}+$ case 1410 . Built $\ddagger 1840$ 2Amp Kit £13.95 Kit + case £ $\uparrow 6.90$. Built $£ 2095$
6.WAY SPECIAL $£ 5.2 \overrightarrow{20}$

Switched output of $3,41 / 2$
$6,71 / 2,9,12 \mathrm{~V}$ at 500 mA
3-WAY MODELS
With switched output and 4 -way multi-jack connector.
Type $1 \quad 3 / 41 / 2 / 6 \mathrm{~V}$ at 100 mA E 2.94 . Type 2 $6 / 71 / 2 / 9 \mathrm{~V}$ at 250 mA £ 310

RADIO MODELS

50mA with press-stud battery connectors. $9 \mathrm{~V} £ 3.25$.
$6 \mathrm{~V} £ 3.45 \mathrm{VV}+9 \mathrm{~V} £ 4.956 \mathrm{~V}+6 \mathrm{~V}$.
$6 \mathrm{~V} £ 3.45 .9 \mathrm{~V}+9 \mathrm{~V} £ 4.95 .6 \mathrm{~V}+6 \mathrm{~V} £ 4.95 .41 / 2 \mathrm{~V}+$
$41 / 2 \mathrm{~V} £ 4.95$ Also $9 \mathrm{~V} 300 \mathrm{~mA} £ 3.95 .6 \mathrm{~V} \quad 400 \mathrm{~mA}$ $41 / 2 \mathrm{~V} £ 4$
$£ 3.95$
CASSETTE MAINS UNITS
$.71 / 2 \mathrm{~V}$ with 5 pin din plug. $50 \mathrm{~mA} £ 3.45 \quad 300 \mathrm{~mA}$
CAR CONVERTORS £4.75'
Input 12 VDC . Output $6 / 71 / 2 / 9 \mathrm{~V}$ DC 1 Amp stabilized
BATTERY ELIMINATOR KITS
Send sae for free leaflet on range
$41 / 2 \mathrm{~V} £ 1.95 .6 \mathrm{~V} £ 1.95$ press-stud battery terminals. $2.60 .6 V+6 V £ 2.609 V+9 V £ 2.60$
$£ 2.60 .6 \mathrm{~V}+6 \mathrm{~V} £ 2.609 \mathrm{~V}+9 \mathrm{~V} £ 2.60$
100 mA casserte type $71 / 2 \mathrm{~V}$ with 5 pin din plug
Transistor stabilized 8 -way type for low hum. $£ 650$
Heavy
Heavy dury \quad 13-way types
$41 / 2 / 6 / 7 / 81 / 2 / 11 / 13 / 14 / 17 / 21 / 25 / 28 / 34 / 42 \mathrm{~V}$ 1 Amp modelif 440 . 2 Amp model i 6.95
Car convertor kit Input 12 V DC Output $6 / 7 \frac{1}{2} / 9 \mathrm{~V}$
MAINS TRANSFORMERS
$6.0-6 \mathrm{~V} 100 \mathrm{~mA}$ E 1 9-0-9V 100 mAE 9.18 V 1AEE 195 $\begin{array}{llllll}0 / 12 / 15 / 20 / 24 / 30 \mathrm{~V} & 1 \mathrm{~A} £ 3.60 \quad 12-0-12 \mathrm{~V} & 50 \mathrm{~mA} \\ £ 1 & 0 / 12 / 15 / 20 / 24 / 30 \mathrm{~V} & 2 \mathrm{~A} & £ 4 & 95 & 20 \mathrm{~V} \\ 21 / 2 \mathrm{~A}\end{array}$ $\begin{array}{lllllll} \pm 2.25 & 6-0-6 \mathrm{~V} & 11 / 2 \mathrm{~A} & £ 2.16 & 0-0.9 \mathrm{~V} & 1 \mathrm{~A} & £ 2.45 \\ 12-0-12 \mathrm{~V} & 1 \mathrm{~A} £ 2.95 & 15-0-15 \mathrm{~V} & 1 \mathrm{~A} £ 2.95 & 30-0.30 \mathrm{~V}\end{array}$ $1 \mathrm{~A} £ 3.60 .6 .3 \mathrm{~V} 1 \mathrm{Y} / \mathrm{AA}$ E1.95. 0.24 V twice 100 mA

S-DECS AND T-DECS
\& 405 u-DeCA 44.45
with sockets 16 dilf 2.21
SINCLAIR CALCULATORS AND WATCHES \star
$300 £ 13.30$ Programmable Scientific with free mains $300 £ 13.30$ Programmable Scientific with free mains
unit $£ 24.95$ Mains adaptors for other models (state type) ¿3.20. Assembled Black Watch with free stainless

SINCLAIR PROJECT 80 AUDIO MODULES
£575 Stereo 80£1995 Project 8050£18.95.

BI-PAK AUDIO MODULES

MK60 audio kit $£ 27.20$. Teak $60 £ 10.95$ Stereo 30 $£ 15.95$ TC30 £4 60. AL250 £16.15. Send sae for

SWANLEY ELECTRONICS

Send sae for free leaflets on atl kits Post 30 p on orders
under $£ 2.23$ otherwise free Prices include VAT Overseas customers deduct 7% on items marked otherwise 11%. Otficial orders welcome.

tecont

CMOS ELECTRONIC DIE

This circuit gives a readout of a random number on a 7 -segment LED display. As shown, it will generate a number from 1 to 6 as does an ordinary cubic die. However the 4029 can be made to reset on another BCD number (one greater than the higest number required) by changing teh arrangement of the diode AND gate. by changing the logic level on the preset pin (Q1:4, Q2:12, $\mathrm{Q} 3: 13$ and Q4:3), the counter will reset to the pre-programmed number. If these features are not to be used (i.e. count is $0-9$) pin 1 on IC2 should be taken to VSS.

Alphabetical symbols (L,H,P and A) will be produced on the display if pin 9 of IC2 is taken to VDD causing the counter to produce the binary numbers from $10-15$ as well.

A finger on the touch plate causes pins 5 and 1 on ICs 2 and 3 to go high, stopping the counter and enabling the latch in IC3. When the finger is

removed the number is stored in the latch and the counter restarted.

If a common anode display (DL707) is used instead of the DL704, taking pin 6 of IC3 to $V_{D D}$ will invert all its outputs, suitable for a common
anode device.
The touch switch may be replaced by a single pole push to make if required, otherwise it is a small veroboard cutoff with alternate strips wired toge ther.

12V SUPPLY FROM A BATTERY CHARGER

This 12 V regulator unit was designed to enable bench testing of mobile equipment (radios, tapes, C-D units, etc,) using a battery charger, thus avoiding the expense of a complete bench supply and the inconvenience of a car battery.

The charger output is smoothed by the 3000 mfd capacitor. The BC107 is a comparator, sampling part of the
output voltage while the reference zener holds the emitter at approximately $5 \mathrm{~V}(4.7 \mathrm{~V}$ or 5.6 V zeners could be used). The 2 N 1711 supplies the necessary current gain to drive the 2N3055 series regulator.

A heatsink of at least 16 sq.ins. should be provided for the 2N3055 but the 2N1711 will run cool without a heatsink.

ONE SPEED - TWO SPEED

Series wound 'universal' electric motors are widely used in domestic appliciances such as electric drills, sewing machines, food mixers, etc. and are usually designed as single speed devices.

Two speed operation can be achieved by switching in a diode in series with the motor. This results in a 20% speed reduction. The switch and diode can be fitted externally into a 13A socket outlet box.

techtips

SUBSTITUTE FOR BREAKDOWN DIODE

Experimenters may have tried the circuit of Fig.1, as a substitute for a diac. Due to the high $V_{\text {cbo }}$ of modern silicon planar transistors, the configuration will snap into conduction only when $20-30 \mathrm{~V}$ are reached. In addition, the breakdown voltage is IIIdefined, varying from sample to sample.

However if the transistors are used in the Inverted mode, as shown in Fig. 2, the braakdown voltage now depends upon the $V_{\text {cbo }}$ of the transistors used, which is confined to a narrow range for a given transistor type.

Experimental circuits have conducted at voltages from 2 to 6 V , depanding upon transistor type and quality.

Fig. 3 shows two typical applicat. ions. Doubtless other uses like timabase and delay circults can be concelved.

Note that the circuit can be triggered at either base with an appropriate current pulse.

COURTESY LIGHT DELAY

There are two problems with courtesy light delay switches, the first is that having the courtesy light stay on in a dark car park albeit only for a few seconds, can attract unwanted attention when you are leaving the car. The other problem is that most delay switches are set for about 10 seconds, which is too long when you wish to
drive off straight away and is too short if you wish to go into the glove compartment or perhaps put on gloves,

This circuit defeats both these problems, the light stays on for a maximum of 1 minute or goes out as soon as the ignition is turned on. Though a switch mounted under the seat which is fitted so the switch breaks when you set on it, the light goes out as soon as you leave the car.

ECONOMY 'LINE.O.LIGHT' DECODER

The decoder works in the following fashion: one NAND gate of IC2 (a 7413) is wired as a clock pulse generator, running at approximately 10 kHz . These pulses are used to clock IC4, a 74904 -bit BCD counter, which in turn drives a 7441 BCD-to-one of ten decoder. The line of ten LEDs is arranged with the anodes linked together and coupled $50+5 \mathrm{~V}$ via TR1. The ten LED cathodes can be pulled down to OV by the 7442 outputs. Thus, if TR1 is turned on, the counter will scan through 0.9 and the LEDs will turn on in sequence. If the clock frequency is high enough, all ten LEDs will appear to be on all the time.

In Fig. 1, the second half of IC2 is used to detect when the counter outputs are at 9 , and this signal is used to trigger the 555 timer, IC1, which is connected as a monostable. The output of the mono drives the base of TR1. Thus, every time IC4 reaches 9, IC1 will fire and switch the LED array on.

The voltage input to the decoder, Vin, is fed to the control voltage input of !C1, altering the threshold at which the internal comparators of the 555 will switch. This in turn decides (in conjunction with the values of R3 and

LINE-O-LIGHT cont.

C2) the length of pulse available at the mono output. IC1 is, in effect, used as a pulse-width modulator.

Fig. 2 shows the relative timing of the clock, 555 trigger and 555 output waveforms, together with the 'ON' times of the individual LEDs.

If the value of V in is such that the 555 pulse length is approximately equal to nine clock pulses, then TR1 will be on almost continuously and the LEDs will all appear to be on. As Vin is reduced, TR1 ON time will become less than nine clock pulses; consequently, the +ve supply to the LEDs will be removed at the same point in every count cycle. This will have the effect of 'shortening' the row of illuminated LEDs. Because the mono pulse length does not decrease in definate steps of one clock pulse, the row of LEDs will decrease in length by the highest gradually dimming, then the next highest, etc. a rather pleasing effect.

Some experimenting with the value of C2 may be required to achieve a realistic rane for Vin, and to prevent the mono pulse length being greater than ten clock pulses at maximum Vin.

The values for $\mathrm{C} 1, \mathrm{R} 3$ and C 2 given are those used in the prototype.

EXPONENTIAL WAVEFORM GENERATOR

This circuit produces a waveform that decays exponentially from a set voltage to near-zero, and then rapidly resets to re-start the cycle.

Initially C1 is charged to +12 V , and Q1, Q 2 are both off. The timing capacitor there discharges slowly through R1, the exponentially decaying voltage appearing at low impedance at the output of unity-gain buffer IC2. R2 prevents the leakage current from Q1 affecting the discharge as D1 is reverse-biased. When the voltage on C 1 reaches a value just above zero that is set by R3, R4, the open-collector O/P of IC1 goes low, turning on Q1 and rapidly recharging C1. IC1 of course reverts to its original state almost at once, but the recharge mode is prolonged for several milli-

seconds by the positive feedback loop through R5, C2 and Q2, to ensure C1 charges fully. After this time C2 is also fully charged, and 02 turns off, turn-
ing off Q 1 , and allowing the slow discharge of C 1 to begin again.

With the component values shown each cycle lasts about ten seconds.

techtips

TRIANGLE GENERATOR WITH INDEPENDENT SLOPE SETTING

This free-running oscillator circuit generates a triangle waveform, the rising and falling slopes of which may be set by completely indeperident controls. Simultaneously the 555 output (pin 3) provides a rectangular waveform at low impedance that is synchronised with the triangle waveform.

Assuming the 555 output is low, the output of constant-current source Q1 is shorted to earth via diode D3, and diode D5 is reverse biased. During this time current source Q2 linearly discharges the timing capacitor C through D6, D4 being reverse biased. Eventually the voltage on C falls to $1 / 3 V_{\text {cc }}$ \{set by the internal potential divider that biases the two comparators in the 555) and the 555 output goes high. Now the output of Q 2 is shorted away from the timing

capacitor, and Q1 is allowd to linearly charge it up; when the capacitor voltage reaches $2 / 3 \mathrm{~V}_{\text {cc }}$ the 555 output goes low again, and the cycle
repeats.
The biasing networks R1D1 and R2D2 compensate for the changes in V_{cc}

BRAKE LAMP FAILURE INDICATOR

Here is yet another application for the NE555 timer.

If both brake lamps are working the lamp LP lights but if one or both are open circuit the lamp will flash at 2 Hz , alerting the driver.

When both lamps are good the current through R1 turns on TR 1 preventing C from charging, and keeping pins 2 and 6 at rail potential. Under these circumstances pin 3 is low and LP is on, however if one or both lamps are faulty TR is not turned on and the NE555 time oscillates freely at 2 Hz , flashing LP.

SPST SWITCH FLIP FLOP

The circuit gives latching on-off action with a single SPST switch, utilizing the high input impedance property of CMOS logic.

It can be seen that C will go to the logic state opposite to that existing at the input to inverter A. On closing the contact, the input to inverter A is taken to the opposite logic state momentarily and the latch flips.

The RC time constant of about 100 milliseconds provides sufficient protection from switch bounce yet gives quick recovery for the next operation. The output may drive other logic gates

SIMPLE STEREO TAPE PLAYER

The circuit shown employs the National Semiconductor LM382 low noise dual preamplifier and the LM377 dual 2 W power amplifier as a complete stereo tape player circuit providing the normal NAB equalization characteristic. The number of components employed is much smaller than in conventional circuits. The power supply voltage should be in the range 10 V to 26 V , but no special precautions are required to remove hum from the supply line, since the LM382 provides 120 dB hum rejection and the LM377 80dB rejection.

LOW COST TELEVISION SOUND PICKOFF

The idea behind this circuit is the fact that in many modern TV set the sound IF and detector stages are up to $\mathrm{Hi}-\mathrm{Fi}$ standard but the output stage and loudspeaker are not, so it makes sense to extract the signal before the output stage can distort it.

This circuit uses a cheap optoisolator to couple the sound from the output of the sound detector of a television to a Hi-Fi system. The signal from the detector is buffered and amplified by TR1 and fed to the LED in the opto-isolator. This modulates the light emitted and this is detcted by the phototransistor in the optoisolator

There is no electrical connection between the two halves of the circuit and the isolator can withstand a voltage of 2.5 kV between its input and

output.
The power for the input side is taken from the television, a supply of about 6 mA at any voltage between 9 and 18 V will do, and to 36 V if a BC107C is used for TR1. (R1 should be chosen to give a voltage of about

3 V at the base of TR1)
If the TV uses a transistor IF strip. the power can normally be taken from it, otherwise a dropping resistor and zener can be used to take the power from the HT supply. The entire unit can be built for around $£ 2$

OP AMP TESTER

The design illustrated is intended for 709, 741 and similar amplifiers which can use $\pm 15 \mathrm{~V}$ rails, and $\pm 15 \mathrm{~V}$ must be used with the component values shown. For checking amplifiers such as the CA 3130 as well, the rails would have to be dropped to $\pm 8 \mathrm{~V}$ and Z 1 and $Z 2$ reduced accordingly.

Circuit operation is as follows: with S1 in the 'zero' position neither LED should be on, and one LED on indic. ates excessive offset, both LEDs on oscillation.

In the other two positions S1 the LEDs can only light if the output of the amplifier on test exceeds the zener voltage. A good amplifier should light the LED corresponding to the

position of S1.
D1 is a Ge diode (Iow voltage drop) which helps to allow for the unequal output drive of 741 s by reducing the
forward voltage drop across $\mathrm{Z1}$.
S1 can be replaced by two toggle or push-button switches if more convenient.

techtips

HLL REV COUNTER

The electrical systems of vehicles contain a great deal of noise, this being generated at the contacts by the dynamo and the petrol pump, etc. The circuit shows how a simple rev. counter can be made for a positive earth vehicle. using the H 117 dual-inline 14 pin HLL (High Level Logic) monostable device.

The positive voltage peaks produced each time the contacts open are about 150 to 300 V in amplitude. The input attenuator R2-R3 reduces this to about $10-20 \mathrm{~V}$ before it is applied to pin 10 of the H 117 . The pulse is inverted and appears at pin 8; this negative pulse is fed to both inputs of the AND gate at pins 3 and 4 and triggers the monostable circuit.

Each time the monostable is triggered, a pulse of current passes through the meter. The mean current through the meter is therefore proportional to the rate of opening of the contacts and hence to the revolution rate of the engine. The meter is calibrated before it is fitted in the vehicle by using a signal generator which can provide square waves of amplitude about 20 V .

This waveform shculd be applied directly between pin 10 and ground and not through R2.

In order to obtain the $3000 \mathrm{rev} / \mathrm{min}$ mark for a four cylinder car, one must appreciate that the cam shaft rotates at $1500 \mathrm{rev} / \mathrm{min}$ and the contacts open 6000 times per minute or 100 times per second. Thus a 100 Hz waveform
will produce the same meter reading as one obtains at $3000 \mathrm{rev} / \mathrm{min}$. In the case of a six cyclinder car, however, a 150 Hz waveform would produce the same meter deflection as would be obtained at $3000 \mathrm{rev} / \mathrm{min}$. The potentiometer VR1 is adjusted until the meter reads the correct amount on the scale.

A SIMPLE TTL CRYSTAL OSCILLATOR

This is possibly the simplest and cheapest crystal oscillator it is possible to make, comprising one third of a 7404, four resistors and a crystal. It was originally designed for a battery operated timer.

The two inverters are biased into their linear regions by R1 to R4, and the crystal provides the feedback. Oscillation can only occur at the crystals fundamental frequency.

Note that the oscillation occurs

at fundamental frequency, whereas many crystals (particularly higher frequency ones) are stamped with the overtone frequencies. These will
operate at the fundamental and not the marked value.

Trimming capacitors for fine adjustment can be added if required.

GUITAR FUZZ

The 741 has a max̌ँmum gain of 20,000 , but the circuit is so designed that the IC's gain is 2,700,000 which then distorts the output. This distortion gives the fuzzz effect. The two diodes clip the output to drop the level, also lowered by the potential divider. This circuit also sustains the notes, due to clipping, giving a totally new sound.

7400 SIREN

The circuit uses the NAND gates as Hex invertors. Two of these are used for the oscillator, and two as the control. If the two tone speed needs to be altered, the $220 \mu \mathrm{~F}$ capacitors can be changed (larger for slower operation).

When the control oscillator output is at logic " 0 " it effectively shorts out the 1 k 5 resistor, giving a low note. When the control oscillator output goes to logic " 1 " the diode blocks the output. So the "1" condition gives high note, (as if the control oscillator was disconnected).

If the frequency of the oscillator is to be changed, the capacitors can be varied and the value of R1 can be in creased. To change frequency range between the two notes ulter the ik5 resistor. (Note, this changes the

oscillator frequency altogether). DTL:
7400s but thay give a higher pitched note.

DUAL FUNCTION CHARGER

The sharger is quite straightforward; the $13 V A C$ from the transformer is rectified by the power diodes (D1-4) and then goes through the 5A fuse and then goes through a 5A fuse and 4A ammeter to the clips on the battery (it may be better to use lead clips if the clips are to be used for long periods, as steel ones tend to corrode).

However, this 13 V is also $1 / 2$ wave rectified by D5.6 which are connected to a 9 V relay (a capacitor may be connected across the relay to smooth out the supply). Most of the time the relay will hold in the contacts and break the circuit - normally closed contacts are used here. But when the power is disconnected (during a power failure) the contacts connect the supply to the inverter and the indicator lights.
(The meter can be made to measure the current drawn by the inverter from the battery by bending the needle slightly as in Fig. 2).

The inverter section is a simple positive feedback oscillator with frequency dependent on the value of C1 and the inductance of T1. This is wound as in Table 1 onto a Mullard LA5 or LA7 pot core. R1, 2 make a voltage divider for the biasing of C2, 3 . With C3 in circuit the inverter in fact becomes more efficient, but has a lower output. Using a 2N3055 enables the inverter to be modified to give higher output and also guards against thermal runaway when used for long periods. A heatsink is advisable.

The frequency of the oscillator should be kept as high as possible as the fluorescent light gives out 20 per cent more light if operated at a fre-
quency above 10 kHz . The circuit is designed to operate a 12 inch 8 W tube but can probably be made to produce up to 30 W .

LOGIC PROBE WHICH DISPLAYS 1's \& 0's

The logic probe automatically goes to power supply of the circuit under logic 1 when not in use and uses the test.

AUDIO

SWEET SIXTEEN
Sweet music from a simple design
WAA WAA
Exotic sound from your gatitar
AUDIO LEVEL METER
Solid state led display
EXPANDER-COMPRESSOR
Puts back what the studios took out

MOTORIST

ANTI-THEFT ALARM
Make sure your car stays where you leave it? AUTO AMP
5 W for your radio or cassette
HEADLIGHT REMINDER
Oon't get caught with a flat battery
SOLID STATE FLASHER
Unaffected by load or vohtage fluctuations

PHOTOGRAPHER

EXPOSURE METER
Perfect photographs made easier
PHOTO TIMER
Accurate circuit with elapsed time indication

TEST GEAR

DUAL TRACKING POWER SUPPLY Programmable laboratory standard circuit SIMPLE CMOS TESTER Sorts out the good, the bad and the ugly? AUDIO MILLIVOLTMETER
Sensitive instrument for noise and signal measurement
THERMOCOUPLE METER
Remote sensing of several points

HOME

INTRUDER ALARM
CMOS circuir for reliability
TOUCH SWITCH
Safe ac line operation
PUSH BUTTON DIMMER
Remote control from several locations

GENERAL

ELECTRONIC DICE
Feature / Project using electronics in games HIGH POWER BEACON
You never know when you may need one
TEMPERATURE CONTROLLERS
3-designs for accurate temperature control

PLUS MUCH MORE

Available in U.K. second week of October Overseas readers please see note below

TWO new specials from ETI

A brand new concept from the house of ETI, more than 100 pages packed with a wide range of experimenters circuits. Based on the tremendously popular 'Tech Tips' section of ETI, Circuits 1 is the first of a series of specials - produced for the enthusiast who knows what they want, but not where to get it! Circuits cover the whole spectrum of electronics, from simple test circuits to advanced but elegant subsystems. As well as being invaluable for finding solutions, Circuits 1 will also act as a catalyst for further development of ideas, ideal for the experimenter. The collection of more than 200 circuits is complemented by a comprehensive index, making searches for a particular circuit quick and simple. Also similar circuits can be compared easily, due to the logical layout and grouping used throughout. Last and by no means least Circuits 1 has no distracting advertisements in the main section!

Available in U.K. second week of November Overseas readers please see note below.

PRE-PUBLICATION OFFER . . Normal mail order price for Top Projects 4 is $£ 1.00+20$ p mail, Circuits 1 is $£ 1.50+20$ p mail. Orders placed before publication will be dispatched, hot from the printers, mail free. Orders must be postmarked before 14th October for Top Projects 4 and 14th November for Circuits 1. Available after these dates at $£ 1.20$ and $£ 1.70$ respectively.

E.T.I. Specials, 36 Ebury Street, London SW1W 0LW

OVERSEAS READERS PLEASE NOTE ... Both Top Projects 4 and Circuits 1 will not be generally available at newstands or bookshops, but can be obtained by direct mail from our London offices. Prices as for U.K. mail order (pre-publication offer as well!), includes surface mail -- air mail rates on application. All payments to London MUST be in Sterling.

What to look for in the December issue: On sale Nov 5th

LOOK NO KEYS OR STYLUS! THE ETI TOUCH ORGAN

Something constructive for Xmas! An easy to assemble touch-keyboard electronic organ. All the components (keyboard as well!) are on one PCB, and the instrument has two voices, and a full two-octave
range with touch controlled tremolo. Just the thing to keep someone happy - and drive someone else mad! Think of all those people you don't like - and give one to their kids!!

7-Segment Display Data sheet special

A new departure for Data Sheet this month, a step into the luminous world of 7 -segment displays. There are many many types around, and we'll be burning the midnight filament to sort them out, so that you can be sure which is ideal for your particular display system.

How long can it last?

The continually rising sales have allowed us to keep the price at 30 p - well below that of our competitors. We're proud of this and readers must forgive us for reminding them!

AUDIO LIMITER

The ETI Expander/Compressor (May 76) has proved very popular, but we have had requests for a simpler limiter circuit. So, you asked for this - here it is. A simpler circuit - a limiter which can be used as limiter,
 automatic volume control, or even a voltage controlled amplifier

ELECTRONICS: 2000AD

A new series by Dr Peter Sydenham which attempts to forecast what will be happening in the world of electronics in the year 2000. This first part is a look at how accurate forecasters have been before, and what are the chances for a successful future for looking into the future!

TECHNIGAL BUOKS FBOM ETII

CALCULATORS

99 ways to know and use your electronic
calculator
t4.50
SLIENTIFIC ANALYSIS On YOUR POCKET
calculator
smin
COMPUTERS ANO MICRDPROCESSORS-
BECINNERS' GUIDE TO COMPITER LORIC
o. Stapieton
c1.98

COMPUTER CIRCUITS AND HOW THEY WOAK
8. Walla
[1.60
bechyolegy
COMPUTER TECHNICIAN\& HANDDOOK

1. Wed 13.25

This gan volume fomia

CONTHOL ENOINE ERINO

DIOITAL ELFCTMONIC CINCUITS AND BYBTEME

N. M. Manli
42.60
 thentinupy
Michophocgesons Altman
L.
LO.80
L. Altman
Qiveli a व gun

MICAOPROCES8ORS C8,00

MMICROPROCESSORS AND MICHOCOMPUTERS E18.90

ELECTRONICS

ACTIVE FLTEA COOK 800 K

D. Lanamsibr $\quad \$ 9.95$

ELECTROMIC BNGINEERS OEPEAEMCE BOOK AINEDITION

wudents.

Ind 10
日EGINNERS GUIDE TO ELECTRONICS
T. L. Squit us
Shorl cuf for t
c2.88

whectronic

beginners guioe to transistors
 J. A. Reddthough \quad t2.05

designing with Ttl interirated circuits
Taxen inntumiuntw \quad Cs. 20

ELECTRONIC MEASUREMENTS SIMPLIFIED
C. Mellmark \quad E2.10

ELECTRONICS POCKET BOOR
C4.18
ELECTRONICS ANO PHCtOGRAPHY
R. Hrown
Praclicel clit
£2.20 *
ELECTRONICS SEIF TAURAIT
d. Asho
Covets

C2.20

ESSENTIAL FOHMULAE FOR ELECTRICAL ANO ELECTHONIC ENGINEEHS
© 1.20
HOW TO BUILD ELECTRONIC KITS

FIRE ANO THEFT SECURITY SYSTEMS
8. Wois

HANDBOOK OF IC CIRCUIT PRDJECTS
J. A she
\$1.75

how to read electronic circuit diagrams

$$
\begin{aligned}
& \text { B. Bown } \\
& \text { E Everything }
\end{aligned}
$$

Everything you neeo to know from Lasic circult conypone 8

HOW TO BUILD PROXIMITY OETEGTORS ANO METAL LOCATORS J. $\mathbf{8}$ prectical donloyouranil booh

HOW TO USE IC CIRCUIT LOQIC ELEMENTS
J. St ontor
Hmpe thone untamulat what diphal lopic cireulan.
INTEGRATEO ELECTRONICS
Using an ic apporach the lant laads ing roadsi gtep by utap thom

IC OP-AMP COOKBODK

Covers the bant thaory of Ic
NOEXED GUIDE TO MODERN ELECTHONIC CIRCUITS
A. Ocodman Pryetieal S
infermalion
INTRODUCINO ELECTHONIC SYSTEMS
 [1.76
INstalling and elnvicing eltcthonic photectivgM. Bwarar
UNAA ELECTRONIC CIROUTT ANO BYETEMY d. 日rimhap 42.88
LINEAR INTEGRATIO OINCUIT APPLICATIONS - Claptan 84.00
LINEA IC PMINCIPLES EXPERIMENTS AND PROJECTSE: M, Noll88.80
Io gPIAATIO
R. M. Matsion HOME C2.85
10 8Emicombucton phodects pon the home constnucR. M. Marston12,85
nireducas the teat
CONSTOSMOS DIOITAL IC PADJECTS FOA THE HOME110 integrated cincuit projects por the homeC2, 88
A. Morstan
All Me proipectw have boen devimed buill and fully ovaluated by the
10 THYRISTOR PROJECTS USINA SCR' [2.85
4. 80
fiynn 24.60
This bocik contambing intormation
(Burr
gPERATIONAL AMPLIFIERS OESION AND APPLICATIONS (BurtC. Tobley¢8.60
IN POINT TRANSISTOA TROUBLES IN 12 MINUTEConener[2.68Comiphera inlormaPRACTICAL TRIAC/SCR PROJECTS FOR THE EXPERIMENTER
R. Fon c2.15

$$
\begin{aligned}
& \text { DIACIO } \\
& \text { DIAC }
\end{aligned}
$$

PRINCIPLES OF TRANSISTORCIRCUITS

RAPIO SERVICING OF TRANSISTOR EQUIPMENT
C. Kiny C2.88and misti equipmant
Emiconouctor circuit elements
P. D. Towent §6.00
wailible. for each device 11 cove
OLIO STATE CIRCUIT GUIDE BOOK
Step uy c2.15transistor circuit designTexat£8.45
TL COOKBOOK$£ 6.00$D. Lencasterpracticel applications.
UNOERSTANOING ELECTRONIC CIRCUITS
R. Sinciai
c4.0uDomeriber vallous eirevita anc ountator
UNOERSTANDINE ELECTRONIC COMPONENTSEnplaine about components and bridgat the gap boinC4.00
unOERSTANDING CMOS integrated CIRCUITS
'R. Melen
 cmos
understanding solid state circuitsN. Crowhum:81.00
ELECTRONIC ORGAN BOOKS
Thansiston eleothonic ondans fon the amateun
4.90 A. Douglat
ำ. 4 คค
ำ. 4 คค
10 ofe with
flagrams
THE ELETRONIC MUSIOAL INATRUMENT MANUAL48.00
A. Douplas A © ©
LLDOTRONIC MUSIO PRODUETIONA. Deuytants. 10
SEMICONDUCTOR DATA
intennational thansiston selegtonT. D. Towirt
4.76
II it tekes you longer than one min
POPULAR VALVE/TRANEISTON SUBETITUTION QUIDE E2.15
haOIO VALVE AND SEmICONDUCTOM DATA
c2.30 up 10 diate and over $A 50.000$ coplaf hive lueen sold
RAOID AND TELEVISION
FOUNOATIONS OF WIRELESS AND ELECTHONICS
M. C. Scragole C4.35
-
-
SERVICING TRANSISTOR RAOIOSL. D'AlroE2.30
WORLD RADIO TV HANDBOOK-1976 EB. 00
TEST EQUIPMENT AND OSCILLOSCOPES -basic electmonic test proceoures

1. M, Contiob C2.38Showi nowfind
THE OSCILLOSCOPE0. ZwlekE2.10
PRAGTICAL TEST EQUIPRENT YOU GAN BUHLO[2.15RAOID, TV ANO AUDIO TEST EQUIPMENT

PLESSEY

ELECTRICAL CHARACTERISTICS

Characteristic	Circuit	Value		Test Conditions
		Typ.	Units	
Voltage gain	$\begin{aligned} & \text { SL610C } \\ & \text { SL 611C } \\ & \text { SL612C } \end{aligned}$	$\begin{aligned} & 20 \\ & 26 \\ & 34 \end{aligned}$	$\begin{aligned} & d B \\ & d B \\ & d B \end{aligned}$	$\left.\begin{array}{l}30 \mathrm{MHz} \\ 30 \mathrm{MHz} \\ 1.75 \mathrm{MHz}\end{array}\right\}$Source $=25 \Omega$ Load $\mathrm{R} \geqslant 500 \Omega 2$ Load $\mathrm{C} \leqslant 5 \mathrm{p} F$
Cut off frequency (-3 dB) (See Fig. 9)	$\begin{aligned} & \text { SL610C } \\ & \text { SL611C } \\ & \text { SL612C } \end{aligned}$	$\begin{array}{r} 140 \\ 100 \\ 15 \end{array}$	$\left.\begin{array}{c} \mathrm{MHz} \\ \mathrm{MHz} \\ \mathrm{MHz} \end{array}\right\}$	$\begin{aligned} & \text { Source }=25 \Omega \\ & \text { Load } R \geqslant 500 \Omega \\ & \text { Load } C \leqslant 5 p F \end{aligned}$
Noise Figure	$\begin{aligned} & \text { SL610C } \\ & \text { SL611C } \\ & \text { SL612C } \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \\ & 3 \end{aligned}$	$\begin{aligned} & d B \\ & d B \\ & d B \end{aligned}$	$\begin{aligned} & \text { Source }=300 \Omega 2, f=30 \mathrm{MHz} \\ & \text { Source }=300 \Omega, 4=30 \mathrm{MHz} \\ & \text { Source }=800 \Omega 2 . f=1.75 \mathrm{MHz} \end{aligned}$
Max input signal ($1 \%_{0}$ cross modulation) No AGC applied	$\begin{aligned} & \text { SL610C } \\ & \text { SL611C } \\ & \text { SL612C } \end{aligned}$	$\begin{array}{r} 100 \\ 50 \\ 20 \end{array}$	mVrms mVims mVrms	Load $150 \Omega, \mathrm{f}=10 \mathrm{MHz}$ Load $150 \Omega 2, f=10 \mathrm{MHz}$ Load $1.2 \mathrm{k} \Omega, \mathrm{f}=1.75 \mathrm{MHz}$
Max. input signat (1% cross riodulation) Full AGC applied	SL610C SL611C SL612C	$\begin{aligned} & 250 \\ & 250 \\ & 250 \end{aligned}$	mVrms mVrms mVrms	$\begin{aligned} & f=10 \mathrm{MHZ} \\ & \boldsymbol{f}=10 \mathrm{MHZ} \\ & \boldsymbol{f} \end{aligned}$
AGC range (See Fig 10)	$\begin{aligned} & \text { SL610C } \\ & \text { SL611C } \\ & \text { SL612C } \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 70 \end{aligned}$	$\begin{aligned} & d B \\ & d B \\ & d B \end{aligned}$	
AGC current	$\begin{aligned} & \text { SL610C } \\ & \text { SL611C } \\ & \text { SL612C } \end{aligned}$	$\begin{aligned} & 0.15 \\ & 0.15 \\ & 0.15 \end{aligned}$	$\left.\begin{array}{l} \mathrm{mA} \\ \mathrm{~mA} \\ \mathrm{~mA} \end{array}\right\}$	AGC Voltage $=5.1 \mathrm{~V}$
Quiescent current consumption	$\begin{aligned} & \text { SL610C } \\ & \text { SL611C } \\ & \text { SL612C } \end{aligned}$	$\begin{array}{r} 15 \\ 15 \\ 3.3 \end{array}$	$\left.\begin{array}{l} m A \\ m A \\ m A \end{array}\right\}$	Output open circuit
Cha'ge of voltage * gan with temperature Change of AGC range* with temperature	All types All types	$\begin{aligned} & \because 1 \\ & \because 2 \end{aligned}$	dB $d B$	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$
-from nominal				

OPERATING NOTES

The SL610C, SL611C and SL612C are normally used with pins 5 and 6 strapped. A slight improvement in noise figure, and an increase in the LF input impedance may be obtained by making the necessary $A C$ connection via the earthy end of an input tuned circuit in the conventional manner.

It is evident that if an inductive element having inductance L1 and parallel resistance R l is connected across the input, oscillation will occur if $R_{\text {in }}$ is negative at the resonant frequency of C_{I} and L ? and R 1 is higher than R_{In}.

Similarly, if a capacitor C 1 in series with a resistance R2 is connected across the output oscillation will occur if. at the resonant frequency of $L_{\text {out }}$ and $\mathrm{C} 1, \mathrm{R}_{\text {out }}$ has a negative resistance greater than the positive resistance R2. Where the input may be inductive, therefore, it may be shunted by a resistor and where the load may be capacitive 47Ω should be placed in series with the output.

These devices may be used with supplies up to +9 V with increased dissipation

The AGC characteristics shown in Fig. 8 vary somewhat with temperature: a preset potentlometer should not, therefore, be used to set the gain of either of these circuits if gain stability is required.

Test conditions: Supply voltage $=6 \mathrm{~V}$
 Temperature $=+25^{\circ} \mathrm{C}$ (unless otherwise stated) Pins 5 and 6 strapped together
 AGC not applied unless specified.

Fig. 2 Circuir disgrem of SL612C

SL 620C SL 621 C

ELECTRICAL CHARACTERISTICS

Characterstic	Circuit	Typ.	Units				
Input for 0.65 V dc output	SL620C		mVrms	Maximum fave rate ${ }^{\text {e }}$	$\begin{aligned} & \text { SL620C } \\ & \text { SL62IC } \end{aligned}$	$\begin{aligned} & 0.22 \\ & 0.45 \end{aligned}$	$\begin{aligned} & \mathrm{V} / \mathrm{s} \\ & \mathrm{~V} / \mathrm{s} \end{aligned}$
Input for 1.5 V dc output	SL620C		invrms	- Hold coltapse time, t_{4} - Hold tume is	Both Both	200	ms
Input for 2.2 V dc output	SL621C	7.0	mVrms	A.C. ripple on output	Both	12	$m \vee p \cdot p$
Inpu: for 4.6 V dc output	SL621C	11.0	mVrms	Maximuin output voltage	$\begin{aligned} & \text { SL620C } \\ & \text { SL621C } \end{aligned}$		v
- Fast rise time, t_{1}	Both	20	ms	Qulescent current consumption	Both	3.1	mA
*Fast decay time, t_{2}	Both	200	ms	consumption Surge current	Both	30	mA
*Slow rise time, t_{3}	- Both	200	msec	Input iesistance	$\begin{aligned} & \text { SL620C } \\ & \text { SL621C } \end{aligned}$	$\begin{gathered} 1.4 \\ 500 \end{gathered}$	$\begin{gathered} \mathrm{k} \Omega \\ \Omega \end{gathered}$
Input 3 dB point	Both	10	kHz	Output resistance	$\begin{aligned} & \text { SL620C } \\ & \text { SL621C } \end{aligned}$	$\begin{aligned} & 40 \\ & 70 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$

OPERATING NOTES

The SL621C consists of an input AF amplifier TRI TR4 (3 dB point: 10 KHz) coupled to a DC output amplifier, TR16 - TR19, by means of a voltage back-off circuit, TR5 and two detectors, TR14 and TR15, having short and long rise and fall time constants respectively.

The detected audio signal at the input will rapidly establish an AGC level, via TR 14, in time t_{1} (see Fig. 2). Meanwhile the long time constant detector output will rise and after t_{3} will control the output because this detector is the more sensitive.

If signals exist at the SL621C input which are greater than approximately 4 mV rms they will actuate the trigger circuit TR6 - TR8 whose output pulses will provide a discharge current for C2 via TR 10, TR 13.

By this means the voltage on C2 can decay at a maximum rate, which corresponds to a rise in receiver gain of $20 \mathrm{~dB} / \mathrm{s}$. Therefore the $A G C$ system will smoothly follow.

Fig. 2 Dynamic response of a system controlled by SL620C or SL621C AGC generator

Fig. 3 SL621C used to control SSB receiver

Fig. 4 SL620C used to control SL630C audio amplifier
signals which are fading at this rate or slower. However, should the receiver input signals fade faster than this, or disappear completely as during pauses in speech, then the input to the AGC generator will drop below the 4 mV rms threshold and the trigger will cease to operate. As C2 then has no discharge path, it will hold its charge (and hence the output AGC level) at the last attained value. The output of the short time constant detector will drop to zero in time t_{2} after the disappearance of the signal.

The trigger pulses also charge C3 via TR9, so holding off TR12 via TR11. When the trigger pulses cease, C3 discharges and after t_{5} turns on TR12. Capacitor C2 is discharged rapidly (in time t_{4}) via TR 12 and so full receiver gain is restored. The hold time, is is approximately one second with $\mathrm{C} 3=100 \mu \mathrm{~F}$. If signals reappear during t_{5}, then C3 will re-charge and normal operation will continue. The C3 re-charge time is made long enough to prevent prolongation of the hold time by noise pulses.

Fig. 2 shows how a noise burst superimposed on speech will initiate rapid AGC action via the short ime constant detector while the long time constant detector effectively remembers the pre-noise AGC level.

The various time constants quoted are for $\mathrm{C} 1=50 \mu \mathrm{~F}$ and $\mathrm{C} 2=\mathrm{C} 3=100 \mu \mathrm{~F}$. These time constants may be altered by varying the appropriate capacitors.

An input coupling capacitor is required. This should normally be $0.33 \mu \mathrm{~F}$ for an SL621C and about $1 \mu \mathrm{~F}$ for an SL620C.

Fig. 2 shows how the SL621C may be connected into a typical SSB receiver
\bar{F} ig. 3 shows how the SL620C is used to control the gain of the SL630C audio amplifier. The operation of the SL620C is exactly the same as that of the SL621C and the diagram showing the dynamic response of the closed loop system, Fig. ${ }^{1}$, is equally applicable to the SL630C/SL620C combination. Again, the time constants may be altered by varying the capacitor values.

The supply must either have a source resistance of less than 2Ω at LF or be decoupled by at least $500 \mu \mathrm{~F}$ so that it is not affected by the current surge resulting from a sudden input on pin 1. The devices may be used with a supply of up to +9 V .

In a receiver for both AM and SSB using an SL623C detector/Carrier AGC generator, the AGC outputs of the SL621C and SL623C may be connected together provided that no audio reaches the SL621C input while the SL623C is controlling the system.

AGC lines may require some RF decoupling but the total capacitance on the output of an SL620 or SL621 should not exceed 15000 pF or the impulse suppression will suffer.

ELECTRICAL CHARACTERISTICS

Characteristic	Value		Test Conditions
	Typ.	Units	
Differential input voltage gain	40	dB	Input 1 mV ms
Single ended input voltuge gain	46	dB	Input 1 mV ms
Maximum output voltage	1.2	Vrms	6 V supply
	2.8	Vrms	12V sup̊ply
Maximum output power			0.5\% distortion
Quiescent current		mA	6 V supply
		mA	12 V supply
Differential input impedance	2.0	$k \Omega$	
Single ended input impedance	1.0	$k \Omega$	
Output impedance	1.5	Ω	
Gain control range (See Fig. 5)	100	dB	
Maximum input (with gain reduced)	50	mVrms	10\% distortion
Short circuit output current	110	mA	Irrespective of supply

SL630C used as a microphone amplifief

SL630C used with a balanced input on pins 5 and 6.. If the load resistance increases with frequency it is necessary to stabilize the output circuitry This is accomplished with 10Ω in series with $1 \overline{n F}$ connected between pin 1 and earth. The earth return to pin 10 must not share any common leads. particularly. with the input Decouping pins 2 and 6 should follow normal engineering practice

SL630C used with SL620C to achieve automatic gain controf

SL630C used as a headphone amplifier

To apply a g c ., an SL620C should be used as shown in the circuit of fig 4 This will give effective gain control with a low audio-frequency cut-oft of 200 Hz and a control response of approximately 20 ms

To preserve low-frequency stability and prevent motor-boating. C4 should not exceed the value given and, whilst R1 should not exceed 300n, the time constant C3R 1 must not be greater than $800 \mu \mathrm{~s}$

R2 is non-essential, but is usetul it the input is likely to contain a large component below 300 Hz
C2 should be used if the power supply has a source impedance of more than a few ohms or is connected by long wires
The system should not be tested with sinewave inputs below 300 Hz as such signals can give rise to delay effects not produced by speech waveforms.

ELECTRICAL CHARACTERISTICS

Characteristic	Value		Test Conditions
	Typ.	Units	
SSB Audio Output	30	mV rms	Signal Input 20 mV rms @ 1.748 MHz . Ref. Signal Input 100 mV rms @ 1.750 MHz
AM Audio Output	, 55	mVrms	Signal Input 125 mV rms @ 1.75 MHz . Modulated to 80% @ 1 kHz .
Quiescent Current Consumption	9	mA	Output open circuit
Max. operating frequency	30	MHz	
Change of SSB audio output with temperature $+85^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C}$	$\begin{array}{r} -05 \\ +0.5 \end{array}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	Signal Input 20 mV rms @ 1.784 MHz . Ref. signal input 100 mV rms 1.75 MHz .
Change of AM audio output with temperature $+85^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C}$	$\begin{aligned} & -0.25 \\ & -0.25 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	Signal Input 125 mV rms @ 1.75 MHz Modulated to 80% @ 1 kHz .

The SL623C is a silicon integrated circuit combıning the functions of low level, low distortion AM detector and AGC generator with SSB demodulator. It is designed specially for use in SSB/AM receivers in conjunction with SL610C, SL611C and SL612C RF and IF amplifiers. It is complementary to the SL621C SSB AGC generator.

The AGC voltage is generated directly from the detected carrier signal and is independent of the depth of modulation used. Its response is fast enough to follow the most rapidly fading signals. When used in a receiver comprising one SL610C and one SL612C amplifier, the SL623C will maintain the putput within a 5 dB range for a 90 dB range of receiver input signal

The AM detector, which will work with a carrer level down to 100 mV . contributes negligible distortion up to 90% modulation. The SSB demodulator is of single balanced form. The SL623C is designed to operate at intermediate frequencies up to 30 MHz . In addition it functions at frequencies up to 120 MHz with some degradation in detection efficiencies. The encapsulation is a 10 lead TO- 5 package and the device is designed to operate from a 6 volt supply, over a temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Fig. 1 Block Diagram

Fig. 2 Tvpical circuit using the $S L 623 C$ as signal derector and $A G C$
generator.

THESE DEVICES ARE ALL AVAILABLE FROM MARSHALLS, 42 CRICKLEWOOD BROADWAY, LONDON.

PRICES: SL 610/611/612:- £2.35 SL 620/621:- £3.50 SL 623:- £5.75 SL 630:- £2.35

Complete the couponand wéll send you our complete, new catalogue.

The new Heathkit catalogue is now out. Full as ever with exciting, new models. To make building a Heathkit even more interesting and satisfying.

Clip the coupon now (enclosing a 10 p stamp for postage) and we'll send you your copy to browse through.

With the world's largest range of electronic kits to choose from, there really is something for everyone.

Including our full range of test equipment, amate ur radio gear, hi-fi equipment and many general interest kits.

And, if you happen to be in London or Cloucester, call in and see us. The Iondon Heathkit Centre is at 233 Tottenham Court Road The Gloucester showroom is next to our factory in Bristol Road

Heath (Gloucester) Limited Dept. ETI-106 Bristol Road. Gloucester, (rL2 6EE Tel: Gloucester (0452) 29451.

\section*{Greenbank Electronics

 TIME BOX Digital Clock Case $56 \times 131 \times$ 715 mm with red acrylic window Choice

of case colour, white of case colour, white

red, orange, blue.
 | | DIGITAL CLOCK MODULES. CLOCK CHIPS | | | |
| :---: | :---: | :---: | :---: | :---: |
| | Further details free | uest | MK 50253 | ¢5.50 |
| | "E" LED DISPLA | lass II | OP-AMPS | |
| | devices, but fully gua | eed by | CA 3130 (COS/MOS) | 81.00 |
| | us. for 'even' se | bril- | CA 3140 (BI MOS) | 95p |
| | liance. etc - mon exchange if not satis | ack or | 741 Minidip SOLDERCON PINS | pp |
| TIME BOX Digıtal | DL.704E 0 3ın | 70p | 100 | 60p |
| Clock Case $56 \times 131 \times$ | DL-707E 0 3ın | 70p | 1000 | £4.00 |
| 715 mm with red | DL-728E $2 \times 0.5 \mathrm{n}$ | £1.80 | 2500 | £8.75 |
| acrylic window Choice | DL-727E 2×05 In | £1.80 | DIL SOCKETS | |
| of case colour, white | DL-750E 06 In | £1.50 | 14/16 pin | 15p |
| red, orange, blue. | DL.747E 0.6in | £1.50 | CATALOGUE Free on | equest |

\& 175
 WE GUARANTEE NO ONE CAN BEAT OUR PRICES!

If you can find any advertiser or special offer in this magazine giving you lower prices than us (after allowing for all quantity discounts, post charges, etc.), then we will match their prices with pleasure.

WE GUARANTEE NO ONE CAN BEAT OUR PRICES! If you can find any advertiser or special offer in this magazine giving you lower prices than us (after allowing for all quantity discounts, post charges, etc.), then we will match their prices with pleasure.													
CMOS WITH DISCOUNTS! Any													
10\%	020	228				for		14175	1.04	145:8		145560	
				4054	1.29	4089	1.74		1.17	14519	0.57		
4001	0.20 0.20	4030	0.150	4055	46	93	0.89		5.70	14520	1.39	14562	
4006	1.31	4031	2.46	56	1.46	4094	. 08		9.54	14521	5	14566	1.67
4007	0.20	4032	1.19		29.81			12		14526	2.15	14569	2
008	1.07	4033	7.55		. 20	96	1.16	4419	2.67	14527	6	14572	
4009	0.60	4034	2.11	4061	25.60	-98	1.22	22		1452		14	
4010	0.20	4036	3.09	4062	10.10	4099	2.03		7.93	14529	2	458	4.30
4012	0.20	4037	1.06	4063	1.22	40101	1.76	14440	11.58	14530	0.95 1.74	14582	,
4013	0.60		1.20			40102				14532	9	14585	
4014	1.12	4039	3.09	067	4.13	40103	2.16	144	6.51	14534	8.15	74000	
4015	1.12	4040	1.19	4068	24	40107	0.66	14501	. 20	14536		74.	0.25
40146	1.12	4042	0.93	4070	0.65	40108	6.18	45			3.17	$74 \mathrm{CO4}$	
4018	1.12	4043	1.12	4071	0.24	40109	2.21		8	14539	. 62	74 CO	25
4019	0.60	4044	1.04				1.73	14505		14543		74 C 20	
4020	1.24	4045	1.56	4073	0.24	40182	1.73	14507	0.60	14549	4.10	74C30	0.25
4021	1.12	4046	1.48 1.01		1.71	40257	2.26	14508	3.08	14552	10.50		
	1.07				0.65	4700	1.75	14510		+4553		746	
4024	0.87	4049	0.60	4078	0.24	7083	4.25			14554 14555 1		$74 \mathrm{C4}$	
4025	0.20	4050	0.60	4081	0.24	14160	1.18	4512 4514	1.03	14555 14556			
					$\begin{aligned} & 0.24 \\ & 0.80 \\ & \hline \end{aligned}$	14.6	1.18			1455			
lerms C.W.O. Add VAT to all prices at 8%. Post etc. UK $25 p(+2 p=27 p)$ per order. export $£ 2.00$ (no VAT) All orders processed on day of receipt GREENBANK ELEGTRONICS (Dept. T11E 94 New Chester Road, New Ferry, Wirral, Merseyside L62 5AG, England. Tel. 051-6453391													

ELECTRONICS TODAY INTERNATIONAL-NOVEMBER 1976°

THE IDEA FOR THIS survey was spawned in the entrance hall to one of those huge 'electrical office' shops. You know the kind, the carpet rustle's affectionately around your knees as you walk in, and your eyes are blinded by the reflections from the bright steel wallracks and the salesmen's chiomium teeth.

Along the stretching-into-infinity shelves lie every possible denomination of machine, from the angels harp tuner (digital) to the Gestapo Mk IV hydraulic thumb screws (sure to break the ice at parties!) Our eyes wandered lovingly over the Kenweed Food Destroyer - guaranteed to mash anything and everything (dead or alive) into a tasteless, featureless, odourless pulp. Complete with 10 megaton coffee grinder. At last we reached the calculators. This is what we came for

OBJECTIVE IN SIGHT

On special offer is the BMC 452 maxi-calculator. Intrigued by the kilo-button case, we picked up the instruction manual-volume one, first supplement, and read:

Complete with 152 fully addressable and potty trained memories, this programmable marvel comes to you with quadruple function keys and its own 2 MV anti-theft alarm. (New! 21 digit code to rememberl).

Naturally the thing gives you an I.Q. test on purchase, and will refuse to work untess you score at least 250. Price? Mortgages available on request.

REALISM RETURNS

Somewhere amid these monuments to Man's incomprehension of Man are hidden away the budget ($<£ 1,000$) range of calculators, the ones people actually buy to use! A simple four function machine these days will rarely set you back more than $£ 8$, and by a little judicious pushing aside of RRP you can obtain memory and percentage facilities for even less than this.

Complex scientifics seem to begin at around $£ 10$ discount these days, and work their way (all to 10 decimal places with two digit exponent of course) towards that mythical brain destroyer mentioned above. At present the dizzy heights for portable machinery seems to lie amid the H.P. programmables and their rivals - admittedly few.

An increasingly popular pasture appears to be the £10-£20 field, and so it was here we decided to take a closer look at some of the boxes vying for your funds. In the past surveys of calculators, or indeed most other things, have attempted to include every machine within reach, be it manufactured in Balham or on the outer moons of Jupiter

FIELD DEFINITION

Inevitably this results in a cross-indexed table of features and models. With such wide coverage it is impractical to test run every one. and so no clues as to how the beass were tamed, how they 'felt' to use can be included. Such things as whether the buttons are so close only a stick insect can operate them, but sobstiff it takes 20 tons p s.i. to do so, get lost in translation.

So gathering up our stick insects and courage we decided to be different. This time we'd take only a small number of the most popular calculators and put them through the same tests together. In this way a comparison of vices and virtues can be arrived at more readily, and should be of more use to those considering lashing out the hard-earned lucre on one of these worthy items.

ASSESSING . . .

Machines we included from National, Rockwell, Sinclair and CBM. We know there are many, many more, but this seemed a representative sample if not a complete population.

Each calculator is given consideration on the same criteria, and good and bad points are noted. We have attempted to draw no comparative conclusions, we'll leave that task to you and just hope we've provided enough information to make it easy.

... ACCURACY

It is difficult to give a deforitive accuracy test for a pocker marhine. What we did was to attempt to assess the accuracy of the truyonometric section of the calculators To do this we keyed in 45 , or 0.8 rack, and then took sin, cob tun, arcton, arcos, and arsin. We should now be back at 45° with a pertect machine.

Percentage errors are given for each machine. A word on pricing. We took the limits rather loosely, and worked in actual selling price, often a lot lower than RRP in these days of the dreaded discount.

CBM SR 1800

THINGS WE DIDN'T:- The display was un-readable under a

FEATURES:

DISPLAY:INSTRUCTION MAN:-

CASE STYLING:-

TRIG ACCURACY:-
THINGS WE LIKED:-

R.R.P. £24.00

$\sin , \sin ^{-1}, x^{2}, ~ \sqrt{x}, \log _{e}, R \rightarrow P, \frac{1}{x}, E E \uparrow$, $\cos , \cos ^{-1}, \sqrt[x]{y}, y^{x}, \log _{10}, d \rightarrow r, x \rightarrow y$, $E E \downarrow$, $\tan , \tan ^{-1}, e^{x}, 10^{x}$, parentheses, memory, \bar{x} and $\sigma, E E, \pi$.
Large, pleasant green colour.
Well provided with examples, and layed out in a logical and clear manner. The text is slightly patronising though, and we wish they wouldn't refer to the 1800 as the mini-computer! A good manual nonetheless.
Display visible over a wide area - can be used on a desk. Fitted with rubber feet, so it doesn't leap away whenever a key is pushed. Keys well spaced, with a light springy touch. No 'click' action.
Degrees:- 0.00238% error Radians:- no error detected.
Good feel to the buttons: can be used with rechargeable battery pack: sensible range of functions: good styling. 2000W green spotlight! - Otherwise absolutely nothing!

CBM SR7919
FEATURES:

DISPLAY:-
INSTRUCTION MAN:-

CASE STYLING:-

TRIG. ACCURACY:THINGS WE LIKED:-

sin, $\cos , \tan , \sin ^{-1}, \cos ^{-1}, \tan ^{-1} x^{2}$, $\sqrt{x}, \frac{1}{x}, \log _{e} \log _{10}, e^{x}, \pi, y^{x}$, memory, $x \rightarrow y, \varepsilon \rightarrow 5$ (see text) EE.
Small, magnified, beneath wired red filter. Red naturally.
Not so much a manual, more a way of folding up a sheet of paper! A small but clear pamphlet is provided, which covers all the machines functions and how to use them. It is well written and perfectly adequate for the job. A handy reference point since it is feasible to keep this in the pouch with the machine.
CBM have avoided having too many keys on too small a space by making EVERY key double function. This can slow down operations, but once used to it should pose no problems. The case is solid and easy to hold in the hand. Just as well since the damn thing did a highland reel all over the desk when we tried to use it there!

Degrees:- 0.039\% error.

Sensible size, and good action to the keys. The $8 \longleftrightarrow 5$ key which displays all the 8 digits the machine works in, rather than the 5 it usually shows in scientific notation. Excellent value for money.
THINGS WE DIDN'T:- Unavoidable we know, but all those double function keys unnerved us.
R.R.P. £14.50

SINCLAIR SCIENTIFIC

DISPLAY:-
INSTRUCTION MAN:

CASE STYLING:-

TRIG. ACCURACY:-

THINGS WE LIKED:THINGS WE DIDN'T:-
$\sin , \cos , \tan , \sin ^{-1}, \tan ^{-1}, \frac{1}{x}, \sqrt{x}, \pi$, $\log _{\mathrm{e}}$, e^{x}, memory.
Tiny (magnified) red.
O.K. We give up. Please Sinclair, why make the book the same size as the calculator? As a result the print is minute, and the information not presented in a way that the (excellent) content deserves. A useful production all the same. I wonder if they'll try to put it on a postage stamp next time?
Definitively pocket sized! As a result we have crowded keys, and very limited viewing angle on the display. Not for desk use, - it slides all over the place. Click action keys, but they are so stiff and so close that this negates the advantage. Perhaps the style has aged a little in comparison with its peers.
Degrees:- 33.3\% (Thirty three point three) error.
Radians:- 0.005\% error.
Degree error abominable!
True algebraic e.g. $12 \times(.3)=36$
Size, key spacing and stiffness, display, trig accuracy. The fact it doesn't work out trig function for angles greater than 90° is a little annoying!

DISCOUNT PRICE £12.95

SINCLAIR OXFORD 300

FEATURES: DISPLAY:-

INSTRUCTION MAN:- Apart from the introduction this is identical to the book on the Cambridge, not surprising since the insides are the same as well! The larger page size helps the presentation.
CASE STYLING:- Very good as a small desk-top machine Large angle of display visibility, good stability and well spaced keys. If anything these were a little too positive, and tended to slow down operation.
Degrees:- 33.3% error. No further comments.
Radians:- . 025% error.
As on the Scientific, the 'function in use' and error indicators, and the overall style. Very good value for money, and ergonomically sound as a desk-top.
THINGS WE DIDN'T:- That terrible trig accuracy, in degrees. Work in radians if possible.

ROCKWELL 64RD

FEATURES:-

DISPLAY:INSTRUCTION MAN:-

CASE STYLING:-

TRIG. ACCURACY:-

THINGS WE LIKED:-
THINGS WE DIDN'T:-
R.R.P. £29.95
$\sin , \sin ^{-1}, x^{2}, \sqrt{x}, \log _{e}, R \rightarrow P, \frac{1}{x}, \cos$, $\cos ^{-1}, \times{ }_{y}, y^{x}, \log _{10}, r a d s \rightarrow$ deg \rightarrow grad, $x \leftrightarrow y, \tan , \tan ^{-1}, e^{x}, 10 x$, parentheses, memory, EE, π
Large, green in colour.
A multi-lingual brew, which tends to lose a little in detail as a result. The examples are not as clear as they might be. Useful, but not as good as the machine!
Very nice key action, although a little too close together for our personal taste. The clear button seemed somehow out of the way up in the top left-hand corner. Excellent display viewing angle-good for desk use (fitted with rubber feet). Nicely styled overall.
Degrees:- 0.7% error
Radians:- 0.028\% error Grad:- 2.384% error
The styling and the feet of the keys. Also the good display visibility.
Those closely packed keys, and the conversion error when working in grads. Misplaced y^{x} and clear keys.

ROCKWEIL 44RD

FEATURES:-

DISPLAY:-
INSTRUCTION MAN:-

CASE STYLING:-

TRIG. ACCURACY:-

THINGS WE LIKED:-
THINGS WE DIDN'T:-
$\sin , \cos , \tan , \sin ^{-1}, \cos ^{-1}, \tan ^{-1}, \pi, e^{x}$, $\log _{e}, \log _{10}, 10 x, \sqrt{x}, x^{2}, \frac{1}{x}$, memory, y^{x}.
As 64RD
Written to the same standard as the manual for the 64RD. For this machine this makes it very adequate indeed. A little more detail could have been included we feel, but no real complaints.
Virtually identical to its big brother, except that the case is smaller so the keys look even more cramped! In fact they're not, so don't worry. Once again good for desk use, and easy to hold in the hand being slimmer than most. All 64RD comments apply!
Degrees:- 1.546% error.
Radians:- No error detected. Different algorithims to 64RD.
Good size for hand use, and very good value.
Those lost y^{x} and clear keys, and once again the stick insect key spacing.

NOVUS 4510

75 mm wide $\times 145 \mathrm{~mm}$ long $\times 30 \mathrm{~mm}$ deep

DISPLAY:
INSTRUCTION MAN:-

CASE STYLING:-

TRIG. ACCURACY:-
THINGS WE LIKED:
THINGS WE DIDN'T:
$\sin , \cos , \tan , \sin ^{-1}, \tan ^{-1}, y^{x}, \log _{e}$ $\log _{10}, \frac{1}{x}, \pi, x^{2}, \sqrt{x}, x \leftrightarrow y$, memory. $M+x^{2}, d \rightarrow r$.
Small, magnified National display-red. An excellent example this of all a manual should be. Well presented, comprehensive instructions with good clear examples. A useful bonus is the explanation of RPN included as an appendix. Ten out of ten.
In a word - bulky. The case is large but light, giving the machine a perculiar 'hollow' feel. A fairly good viewing angle means it could be put to desk use if needs must. The buttons are very small, but are well spaced. The 'feel' of the buttons though is very 'springy' and frankly disconcerting
Degrees:- 1.63\% error. No radians mode.
Battery saving display turn-off after no keys have been pressed for 35 secs.
The 'hollow' feel of the machine, and the buttons. One major drawback is the lack of ability to work in scientific notation. This limited the machine to numbers smaller than 99,999,999! Not good therefore for scientific use

DISCOUNT PRICE £14.60

SURVEY SUMMARY

CBM SR 1800: - Very good manual. Excellent value for money. Good large display with good viewing angle. Incredible trig accuracy. Good for either desk or hand use. Good well spaced keys with good sound action. Rechargeable punch available
CBM SR 7919: - Very good value for money. Small display not vertically readable. Good hand held machine and good instruction pamphlet. All keys are double function, and have a good feel to them
NATIONAL 4510: - Excellent instruction manual Poor case and key construction. Cannot work in scientific notation. Good viewing angle to display
ROCKWELL 44RD: - Very good value for money sensible size, good display, cramped keys once again, but with a good operational feel to them Adequate instruction manual
ROCKWELL 64RD: - Superbly styled Good for desk use. Large display with large visibility angle Keys very close together. Clear key in odd position Good key action, nice solid feel to it as a whole.
SINCLAIR OXFORD 300: - Good display intended as desk-top machine - good large keys, with solid click action. Trig accuracy atrocious in degrees mode makes a better desk calculator than it does a hand-held machine
SINCLAIR SCIENTIFIC: - Althrugh introduced some thiz aso it astil th smatlest - genuine pocke size id suifers jecaus + th espect of key ipecin display eic. A inell writte, nounual - pl . he y made it the cize iney have

parit
 Our series on passive components has already presented valuable reference data on fixed capacitors. In this part we look at the range of variable capacitors available and where to use them.

VARIABLE CAPACITORS CAN BE divided into two basic groups: continuously variable types, generally cälled tuning capacitors, and preset types, generally called trimmers.
Tuning capacitors have a set of fixed plates and a set of moving plates that mesh with the fixed plates. The position of the moving plates with respect to the fixed plates determines the capacitance. Capacitance is maximum when the
plates are fully meshed. The dielectric may be air, mica or plastic film. Various tuning capacitors are shown in Fig. 1. Most tuning capacitors have air as the dielectric. Miniature tuning capacitors such as those used in portable transistor radios, have a plastic film dielectric. As this has a greater permittivity than air, a considerable reduction in size is achieved. Precision tuning capacitors such as those used in instruments and

communications receivers have precision ball-race bearings at each end of the shaft and a heavy, rigid frame to provide stability and reset accuracy.
Tuning capacitors are available in various sizes and values for different applications. Those for receiver applications generally have small, closely-spaced plates, several units being "ganged" together in one frame so that several circuits may be tuned simultaneously. Two and three gang capacitors are quite common. The plates are often semi-circular or specially shaped to produce the desired tuning scale or "law". This is done to obtain linear or logarithmic dial calibrations for example.
There are four basic tuning characteristics.
Linear Capacitance For each degree of rotation there is an equal change in capacitance. For example, a capacitor may change by 2 pF for each degree of rotation. This produces a square-law dial scale.
Linear Frequency Each degree of rotation causes an equal change in frequency. This produces a linear dial scale. This characterisation is very useful in tuners and communication receivers. Log Frequency Each degree of rotation produces a constant percentage change in frequency, e.g. a 1% change in frequency for each degree of rotation. This produces a logarithmic dial scale which is sometimes seen on $A M$ tuners and broadcast receivers. It is often used in measuring instruments and signal generators.
Square Law The variation in capacitance is proportional to the square of the angle of rotation. This is also used in measuring instruments. Typical dial calibrations and capacitor tuning law curves are shown in Fig. 2.
Multiplegang capacitors are commonly used in superhet receivers, particularly $A M$ and $F M$ broadcast receivers, where the RF, mixer and
oscillator circuits are ganged to tune a range of frequencies. Usually, each section of a gang covers the same capacitance range and has the same tuning law. As the oscillator circuit covers a different frequency range from the RF and mixer, one section of a gang may have less plates and thus a different capacitance range or a slightly different tuning law. This is done so that the oscillator can correctly "track" the R \bar{r} and mixer circuit with an almost cohstant frequency difference (the intermediate frequency).
'Maximum and minimum capacitance values used for tuning the AM broadcast band and in general coverage HF receivers are:-

$$
\begin{array}{r}
3-120 \mathrm{pF} \\
10-240 \mathrm{pF} \\
4-250 \mathrm{pF} \\
6-340 \mathrm{pF} \\
10-365 \mathrm{pF} \\
11-415 \mathrm{pF}
\end{array}
$$

For the $88-108 \mathrm{MHz}$ FM broadcast band, common values are:-

$$
\begin{gathered}
0.9-19 \mathrm{pF} \\
1-22 \mathrm{pF} \\
2-32 \mathrm{pF} \\
7-40 \mathrm{pF}
\end{gathered}
$$

Some gangs may have each section fitted with trimmers so that the effect of stray capacitance may be compensated for and to provide alignment for the high frequency end of the tuning range.

Tuning capacitors for use in transmitters usually have large, widely-spaced plates to withstand high voltages, and special connections to reduce inductance and to conduct high RF currents. Semi-circular plates are commonly used. For push-pull tuned circuits, requiring two sets of fixed plates and common moving plates, 'butterfly' capacitors are used. See Fig. 3. The construction permits 90° rotation only. 'Split-Stator' capacitors are also used in this application: these have two sets of semi-circular rotor plates on opposite sides of a common shaft and two sets of stator plates with separate connections. These turn a full 180°.

TRIMMERS

Trimming capacitors are available in a wide variety of constructions and adjustment methods. The most common dielectrics are air, mica and ceramic, although glass and quartz are also used for their superior temperature stability. A representative selection is illustrated in Fig. 3.
Vane Trimmers These trimmers have solid metal plates that may be silver-soldered to a rigid frame or the plates and frame milled from a single piece of specially shaped metal. The latter have better mechanical and electrical stability. The capacitor assembly is usually fixed to a ceramic mounting plate. This type of trimmer is
usually more costly than other types but has superior electrical characteristics. Vane trimmers are available in a wide variety of values and sizes, with breakdown voltage ratings from 100 V to 1500 V , depending on the air gap between the fixed and moving plates. Butterfly and split-stator types can also be obtained.
Concentric or 'Beehive' Trimmers The fixed and moving plates of these trimmers are constructed from short sections of different diameter aluminium cylinders, nested inside each other and mounted concentrically around a central shaft. The diameters of the moving plates are such that they mesh between the fixed plates with a small air gap. The central shaft is threaded and a hexagonal boss on top of the moving plates enables capacitance to be adjusted by using a simple plastic tool. These trimmers are cheap and have a wide variety of applications. They are made in several values, the most common being $3-30 \mathrm{pF}$ and $5-60 \mathrm{pF}$. Their breakdown voltage is usually above 250 V , although it is not recommended that they be operated at high voltages. The threaded centre shaft imparts a vernier action which makes adjustment easy and accurate.

Compression Trimmers These consist of several thin plates of springy metal interleaved with a mica or plastic film

Fig. 3. Different types of trimmers. These are used when the circuit requires adjustment in setting-up but not in everyday use.
dielectric. An insulated screw is passed through the centre of the plates and threaded into a phenolic, plastic or ceramic mounting compressing the springy plates. The further the screw is turned in, the more compression is applied to the plates, thus increasing the capacitance. Trimmers of this type are usually quite inexpensive. Their stability is not very good but is nevertheless adequate for many applications, but they drift appreciably with time necessitating frequent realignment.
Mica compression trimmers are generally constructed on a ceramic mount. They have the best characteristics of all the compression trimmers and find application in solid state transmitters as they can withstand appreciable RF currents. Some types are manufactured especially for this application. The other styles having a phenolic or plastic mount are used mostly in receiver or non-critical instrument applications.
Compression trimmers are capable of quite a wide adjustment range - an advantage over other trimmers, although the adjustment may be coarse and quite non-linear. Typical minimum and maximum values are:-

$$
\begin{gathered}
2-25 \mathrm{pF} \\
3-30 \mathrm{pF} \\
2.5-40 \mathrm{pF} \\
3-55 \mathrm{pF} \\
10-80 \mathrm{pF} \\
30-150 \mathrm{pF} \\
20-220 \mathrm{pF}
\end{gathered}
$$

Compression trimmers have a large, and not really predictable temperature co-efficient that varies appreciably over their range. Their breakdown voltage is in the order of 100 V to 300 V .
Plastic Film Trimmers. These are constructed in a way similar to vane trimmers and generally have semicircular fixed and moving plates with a plastic film dielectric. Consequently they are smaller in size for similar values. These trimmers are relatively inexpensive and are a good alternative to air dielectric trimmers. They generally have a negative temperature coefficient of about $200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (decrease capacitance with increasing temperature). They are generally manufactured for p.c. board mounting although chassis-mounting styles are available. Typical minimum and maximum values are:-

$$
\begin{gathered}
1-5 \mathrm{pF} \\
1.8-10 \mathrm{pF} \\
2-18 \mathrm{pF} \\
1.5-20 \mathrm{pF} \\
4-40 \mathrm{pF} \\
5-60 \mathrm{pF} \\
7-100 \mathrm{pF}
\end{gathered}
$$

Film dielectric trimmers generally have a breakdown voltage of 100 V .
Ceramic Trimmers. These consist of a ceramic body with a semi-circular metal film deposited on it as the fixed plate. The moving plate is a ceramic disc with a semi-circular film (the same size as the fixed plate) deposited on it, and pivoted over the fixed plate by a metal screw which is soldered to the metal film. The screw passes through a nut in the ceramic body, the moving plate connection being made to this nut.
Ceramic trimmers are available having a variety of temperature characteristics ranging from $P 100$ to $N 500$, the more common values having negative temperature coefficients. Typical maximum and minimum values and temperature coefficients are:-

$$
\begin{aligned}
& 2-4 \mathrm{pF} / \mathrm{P} 100 \\
& 3-9 \mathrm{pF} / \mathrm{N} 033 \text { or N075* } \\
& 3-12 \mathrm{pF} / \mathrm{N} 470 \\
& 4-20 \mathrm{pF} / \mathrm{N} 470 \text { or } \mathrm{N} 750^{*} \\
& 7-35 \mathrm{pF} / \mathrm{N} 1500 \\
& 10-60 \mathrm{pF} / \mathrm{N} 1500
\end{aligned}
$$

* Characteristic depends on size, the subminiature ones having the smaller coefficient. Ceramic trimmers are obtainable in pc board or chassis mounting styles and may be operated at voltages of at least 200 V or greater.
Tubular Trimmers. Tubular trimmers are also known as 'piston' trimmers.

They consist of a tube of dielectric material which has a metal band or metal film around one end forming the fixed plate and a threaded metal cap on the other, through which passes a screw; this latter assembly forms the moving plate. The dielectric material may be ceramic, glass, PTFE (Teflon), polypropylene or quartz. Tubular trimmers are very stable but are used only in VHF/UHF receiver applications (i.e. TV tuners, VHF converters as their particular construction limits the maximum capacitance obtainable. However, ceramic, glass and quartz types can withstand considerable RF currents and voltages, so find some applications in transmitters. Typical working voltages are 250 Vdc to 600 Vdc. Tubular trimmers with a plastic dielectric are generally cheapest, the more costly styles being ceramic, glass and quartz. Typical maximum and minimum values are:-

$$
\begin{aligned}
& 0.25-1.5 \mathrm{pF} \\
& 0.7-3 \mathrm{pF} \\
& 0.8-8.5 \mathrm{pF} \\
& 1.8-10 \mathrm{pF} \\
& 0.8-12 \mathrm{pF} \\
& 0.8-23 \mathrm{pF} \\
& 0.8-38 \mathrm{pF} \\
& 2-60
\end{aligned}
$$

Both printed circuit and chassis mounting styles are available.

ETI DIGITAL MULTIMETER KIT DMKI

This kit has been specially made available to ETI readers, and comes complete, down to the last screw. All you need is a few spare hours and some tools. The result will be a superb piece of test equipment that will be of invaluable use to the serious constructor or test lab

Special Note
This kit has been produced in conjunction with the designer and author of the project in this
issue of ETI as
several parts are
not normally available,
or specially manufactured

Please allow 21 days for delivery
\star A demonstration model can be seen
working at our electronics centre.
S.A.E. list.

B H COMPONENT FACTORS LTD.

```
LEIGHTON ELECTRONICS CENTRE
59 NORTH ST., LEIGHTON BUZZARD, BEDS. LU7 7EG
TEL: 2316 (STD 05253)
* High accuracy, spec as in project text.
* Designer approved kit.
* Silk screened panel with all lettering.
\(\star\) Test leads, prods, etc. supplied.
* Assembly instructions included.

ORDER FORM
TO B H COMPONENT FACTORS LTD. 59 NORTH ST., LEIGHTON BUZZARD, BEDS.

Please supply 1 DMK 1 kit
Name
Address

I enclose cheque/PO for \(£\)
Access of \(\mathrm{B} /\) card \(N \mathrm{No}\)\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline & & & & & & & \\
\hline
\end{tabular}

ENGINEERS

Whit:
YOURSELF FOR A BETTER JOB "m


Do you want promotion, a better job, higher pay? "New opportunities" shows you how to get them through. a low-cost, Home Study Course. There are no books to buy and you can pay as you learn.

This easy to follow GUIDE TO SUCCESS should be read by every ambitious engineer. Send for this helpfut 444-page free book NOW! Noobligation, nobody will cal! on you. It could be the best thing you ever did.

\section*{CHOOSE A BRAND NEW FUTURE HERE}



\section*{THE OPEN DOOR TO EUALTY}

tlectrovalue Catalogue No. 8 (Issue 2, up-dated) offers items from advanced opto-electronic components to humble (but essential) washers. Many things listed are very difficult to obtain elsewhere. The Company's own computer is programmed to expedite delivery and maintain customer satisfaction. Attractive discounts are allowed on many purchases; Access and Barclaycard orders are accepted

\section*{PLUS FREE POSTAGE}
on all C.W.Q. mail arders in U.K. over E 2.00 list value (excluding VAT). If under. add \(15 p\) handling charge.


THIS LIGHT MODULATOR is a high quality unit having three output channels, each capable of driving loads in excess of \(1 \mathrm{~kW}, 750 \mathrm{~W}\) with spotlamps, or 100 W when fitted within the console. The unit includes an automatic gain control so that continual readjustment of the sensitivity controls is not necessary and after initial adjustment will operate correctly with inputs from \(100 \mathrm{~mW}-100 \mathrm{~W}\) ! However, manual control is provided, and may be selected if desired. Individual sensitivity controls are provided so that trigger levels may be set individually for each channel.

The crossover frequencies for the channels are at approximately 550 Hz and 3 kHz , and the filters have a very sharp roll-off outside the pass band. The triggering is designed to occur just after the instantaneous a.c. mains voltage crosses the OV point so that radio frequency interference is virtually eliminated.
L.E.D.'s are provided which light in unison with the lamps, and thus it is possible to check from the
console that the individual sensitivity controls are at their most favourable settings. The circuit is arranged such that if a bulb goes open circuit the L.E.D. associated with that channel lights continuously, providing immediate indication of the failure.

\section*{SETTING-UP}

Turn VR2, 3 and 4 fully clockwise, VR1 to "off"' (auto) and feed in a music signal (about 1 W ) which contains all frequencies - all the lamps will flash. Adjust VR5 fully clockwise (minimum resistance). If the lights do not flash disconnect the mains and reverse the connections to the primary of T4. Re-connect the mains and turn VR5 anti-clockwise until one or more of the lamps ceases to flash altogether. Now turn VR5 clockwise again very slowly until all the lamps operate. All the thyristors should now be firing at the correct point. To obtain the most pleasing effect the channel controls VR2, 3 and 4 can be adjusted.

\section*{CONSTRUCTION}

Fit the components to the circuit board as shown. The wiring of the components on the front panel associated with this board is shown. Connect the \(O V\) from the p.c.b. to the earth link between the two main power supply capacitors C1, C2. Run a wire from the \(0 / P\) of FSI on each 100W Amp Board to pin LM1 and pin LM2 for the other channel. The transformer should be bolted to the p.c.b. using \(4 B A \times 1 / 4 \mathrm{in}\). bolts and nuts. Twist together the pair of wires to each L.E.D. and insulate the leads of the L.E.D.'s.

\section*{DECKS MOTOR SWITCHING BOARD}

Fit the diodes, relays and wiring pins to the board \({ }^{-}\)as \({ }^{-}\)shown.

Fix the p.c.b. to the underside of the motor board between the two decks making quite certain that the circuit board does not foul the top of the transformer or any other component which is mounted on the baseboard. This is most important since the chassis of the relay will be live when in use. Drill two \(1 / 4 \mathrm{in}\). holes in the front pane such that one hole is \(3 / 4 \mathrm{in}\). from one end of the cross-fade control slot (and in line with it) and the other hole is \(3 / 4 \mathrm{in}\). from the other end of that slot, and fit SW21 and SW22.

On both decks; before fixing the platter on the BDS80 turntable, remove the two screws securing the paxolin cover on the motor switch which is next to the motor (taking care that you don't lose the nylon nut which holds one of the screws tight, and is on the other side of the chassis) and connect wires to the tags inside the switch as shown

This will enable the deck


\section*{How it works}

A full wave rectified supply is provided by T4, D11, D12, C21 and R40, and is fully smoothed by C23. The mixed stereo signals are applied to an automatic gain control (IC1). When VR1 is fully anti-clockwise its switch contacts are open and the gain of ICl is controlled by its own output
TR1 is an emitter follower which couples the high impedance control voltage into pin 2 of IC1. When VR1 is turned clockwise SW1 closes and pin 2 of IC1 is connected to OV thus fixing the gain of ICl at maximum. R4 is short circuited and the sensitivity of the unit is now completely under the control of VR1. Since the amplitude of the high frequencies is usually much less than the bass frequencies, Cl has been added to boost these frequencies
The components around TR3 form a high pass filter for the high frequency channel; those around TR6 a band-pass filter for the mid range channel; and those around TR8 a low pass filter for the bass. The subsequent circuitry is identical for each channel, and so, considering the treble:- the output from the filter is rectified by D3 and D4 and used to charge C12. This voltage appears across the anode (a) and cathode (k) of a programmable unijunction transistor TR4, which presents a very high impedance until a trigger pulse is applied to the cathode gate (kg)
This is produced as follows: A d.c. voltage flows through R44 and charges C22. This remains charged until the unrectified (instantaneous) voltage from T4 reaches the trigger valve for TR7.
TR7 switches on very quickly causing C22 to discharge through R43 and produce a very short duration pulse used to trigger TR4, 5 and 9
VR5 is provided so that the timing of the trigger pulse may be adjusted to coincide with the a.c. mains on the bulbs just crossing over into its positive phase. Thus a trigger pulse is applied to the cathode gate (kg) of TR4 by TR7 at the instant when the a.c. mains voitage is about +10 V . This pulse causes TR4 to turn on and C12 to discharge through the primary of Tl. A pulse appears on the secondary. This fires SCR1 as the voltage exceeds the threshold point, thus lighting LP1.
The L.E.D., D5, also lights. D6 prevents current flowing through the resistor chain to the L.E.D. when the mains voltage is in its negative phase. If a bulb goes open circuit the a.c. mains is coupled through C13 to the L.E.D. which lights continuous ly.

LIGHT MODULATOR
\begin{tabular}{|c|c|}
\hline R1, 2 & 1k5 1/2w std res \\
\hline R3 & 6k8 \(1 / 2 \mathrm{w}\) stdres \\
\hline R4 & 220R \(1 / 4 \mathrm{w}\) min res \\
\hline R5 & 330k \(1 / 4 \mathrm{w}\) min res \\
\hline R6, 7, 17, 32, 53 & 22k \(1 / 4 \mathrm{w}\) min res \\
\hline R8 & 3k3 \(1 / r w\) min res \\
\hline R9 & 560K 1/aw min res \\
\hline \multicolumn{2}{|l|}{R10, 11, 13, 14, 16, 25,} \\
\hline 26, 27, 29, 31, 47, 52, & 100k 1/4w min res \\
\hline R12. & 22R \(1 / 4 \mathrm{w}\) min res \\
\hline R15, 30, 50 & \(6 \mathrm{k} 81 / 4 \mathrm{w}\) min res \\
\hline R18, 19, 33, 34, 46, 48, & 10k \(1 / 4 \mathrm{w}\) min res \\
\hline 49, 54, 55, & 220k \(1 / 4 \mathrm{w}\) min res \\
\hline R20, 35, 44, 45, 56 & 2k2 1/4w min res \\
\hline \multicolumn{2}{|l|}{R21, 36, 57} \\
\hline R 22, 23, 24, 37, 38, 39, & 8 k 2 1w res \\
\hline 58, 59, 60 & 39 Rmin res \\
\hline R28 & 120R \(1 / 2 \mathrm{wsid}\) res \\
\hline R40 & 270k min res \\
\hline R41 & 33k min res \\
\hline R43, 51 & 1k min res \\
\hline R50 & 8k2 \(1 / 4 \mathrm{w}\) min res \\
\hline \multicolumn{2}{|l|}{R61} \\
\hline VR 1 & SW Pot Log 5k \\
\hline VR2, 3, 4 & Pot Log 100k \\
\hline VR5 & Horiz S-min preset 100k \\
\hline R53 & 22k \\
\hline C1 & Polyester . 033 kF \\
\hline C2 & Axial 1uF 63V \\
\hline C3 & Polystyrene 470pF \\
\hline C4 & Axial \(4.7 \mu \mathrm{~F}\) 63V \\
\hline C5, 7 & Axial 10 \({ }_{\mu} \mathrm{F}\) 25V \\
\hline C6, 11, 18, 22, 24, 26, & Polyester \(1 \mu \mathrm{~F}\) \\
\hline 28 & Mylar \(001 \mu \mathrm{~F}\) \\
\hline C8, 25 & Polystyrene 680 pF \\
\hline C9, 10 & Polyester . \(047 \mu \mathrm{~F}\) \\
\hline C12, 19, 29 & Mixed D 047 at 300V \\
\hline C13, 20, 30 & AC. \\
\hline C14, 15, 16 & Ceramic 3900pF \\
\hline C17 & Polystyrene 100pF \\
\hline C21 & Axial 470رF 25 V \\
\hline C23 & Axial 1000رF 16 V \\
\hline C27 & Axial 150 \({ }^{\text {F }} \mathbf{6 . 3 V}\) \\
\hline
\end{tabular}

\section*{REMOTE SWITCHING OF} TURNTABLE
[Headphone amp. power supply]

\(\begin{array}{ll}\text { 1k5 } 1 / 2 w \text { std res } \\ 6 k 8 ~ \\ 220 \mathrm{w} \text { std res } & \text { IC } \\ \text { TR }\end{array}\)
ICI
TR1
TR2,
TR

TR1
\begin{tabular}{lll} 
TR2, 3, 6, \\
TR4 \\
\hline
\end{tabular}
TR4, 5, 7, 9
SCR1, 2,3
SCR1, 2,
D1,
D1, 2
D3, 4, 7, 8, 13, 14
05, 9, 15
06, 10, 16
011, 12
TR1, 2, 3

\author{
MC3340 \\ 2N3905
2NC108 \\ BC108 \\ BRY39A \\ BT109 \\ OA 91
1N 4148 \\ 1N 4148
LED RED \\ IN4004 IN4004
IN 4001 \\ Pulse Transformer 1:1 Sub Min Transformer 12V
}

Misc., \(3 \times\) BC Lampholders \(3 \times\) Coloured Spot Lamps (Red, Amber, Green Blue, Clear or Violet). 1x Light Modulator PCB Veropins

\section*{MOTOR SWITCHER}

RLA1, 2, OPEN RELAY 12 V
01, 21 N4148.
SW21, 22, Sub. Min Toggle spot (Type A)
Misc. \(1 \times\) P.c.b. "Motor Switcher" Veropins
MISC PARTS FOR FINISHING DISCO.
2 "Flexilamps" Flexible operating lamps
Tumtables BOS80 BSR/McDonald
Cartridges Sonotone 9TAHC
Hluminating Kits for Panel Meters
Microphone Eletret type 50K impedence
Mic. Stand Gooseneck Type 21'
Bracket for Gooseneck Mic. Stand
Transformer Mounting Plates.
1 Front Panel Fully Drilled and Printed
Cabinet complete with lid, all covered hard-wearing Vinyl cloth. Motor board finished white laminate.
motors to be turned on and off fro(h the console when the switch on the decks is at "stop". Whilst this method of switching is being used gently release the tone-arm from its latch and leave it released

\section*{FINAL DETAILS}

Fit and wire up the flexible operating lights and the VU meter lights as shown

Ready-made cabinets complete with lid and carrying handle are available from Maplin, overall dimensions (excluding lid) are \(36 \times 24 \times 91 / 2 \mathrm{ins}\). To make sorting out the components you will need easier Maplin have made available a schedule which lists everything required - right down to the last nut and bolt!





\title{
ELECTRONICS -it's easy!
}

\section*{Digital instruments and test equipment}


IN THE previous two sections we discussed the basic building blocks of digital systems. We are now in a position to study how these blocks are assembled into specific types of general-purpose instruments and test equipment.

Digital instruments may be defined as those in which the major proportion of the circuitry is digital rather than a nalogue. The circuitry of such instruments is seldom all digital, as few of the natural processes we require to measure are in digital form (a notable
exception is counting - a digital procedure). Hence the digital instruments that are used to measure real-world variables usually have an analogue-to-digital converter at the input. However there are many modern instruments designed to 'see' into logic circuitry - such instruments (having direct digital inputs) are truly digital.
Many test procedures could be implemented using solely analogue circuit techniques. However, there now exists a definite trend to replace analogue techniques with much more complex, but cheaper, digital equivalents.
Digital measuring equipments range in size and complexity from the simple panel meter for measuring voltage, current or resistance, through medium complexity, portable and highlyflexible digital instrument systems, to large automatic testing plants, Fig. Fig. 1 which operate on commands of in-built computers.
Today, many testing instruments (even quite small units) possess self-testing facilities, in-built diagnostic ability and other advanced capabilities such as the automatic readjustment of the circuit under test to bring it within quoted specifications.

\section*{SOME HISTORY OF DIGITAL INSTRUMENT DEVELOPMENT}

We have seen that most analogue signals can be converted to a digital equivalent. This concept first found serious economic application in computational systems.
In the early days of digital systems even simple equipment had to be built using large numbers of thermionic valves and electro-mechanical relays. In the early 1940's the power requirements and the sheer bulk of such systems severely restricted the application of digital techniques to computers. Hence the early uses of digital systems in testing and evaluation first appeared in applications where portability was not required.
The need for an adequately-fast training simulator for aircraft pilots led to the development of the 'Whirlwind 1' computer by MIT in 1946. This evolved from work
previously done on the use of digital techniques in the fire control of guns.
Digital voltmeters first appeared in the mid fifties and at least two companies, Non Linear Systems and Schumberger, lay claim to being first in the field. In the period 1955 to 1960 new skills, developed in the manufacture of computers, were used to build smaller cheaper and more effective instruments thus commencing the swing from analogue to digital instrumention. The introduction of transistors enabled large-scale digital process control to be realised - Texaco Refinery at Port Arthur, 1959, was the first. They also allowed portable digital instrumentation to be made.
In the early 1960's integrated-circuits were conceived. The cost and space savings gained with their use removed any doubt that digital techniques were not competitive with traditional analogue methods.

\section*{THE DIGITAL MULTI-FUNCTION METER}

We have already dealt with the basic sub-systems used to form most digital instruments. They usually comprise various assemblages of digital displays, \(A / D\) and \(D / A\) converters, counters, registers, gates and sources of precise frequency signals.
A digital multi-meter, for instance, consists of analogue input, function and range selection stages which feed an A/D converter; this drives the digital readout form of display. They are marketed in a wide range of forms - from the nest compact fixed purpose units in which modules are interchangeable to suit the very wide range of possibilities that the common power supply and digital readout allow. Functions offered (by choice of appropriate modules) may include more than the traditional multi-meter measurements. Frequency measurement, timing, counting, totalising, and


Fig. 1. Schematic of HP 970 A digital multimeter.
ratio measurement may all be offered. Readout of any physical variable is possible provided a sensor exists that may be correctly interfaced with the digital end of the measurement system.
The simplified block diagram of the very compact H.P. 970A a hand-held digital multimeter, is given in Fig. 2 The circuits are of analogue form until the comparator stage after which digital signals are used. This unit uses the dual-slope integration method to convert from analogue to digital. Most of the circuitry is manufactured on just two custom-made monolithic IC chips - Fig. 3a shows an assembly with 40 flip-flops, 19 MOSFET switches and some 3500 bits of ROM (read only memory); Fig 6b shows the chip which carries the bulk of the linear circuits used.

Multimeter measurements of alternating current or voltage are only meaningful if the waveform is


Fig. 2. Automatic Wiring Tester VD30, by Siemens - it handles 12,000 connections.
sinusoidal. If the waveform is complex it is necessary to use an oscilloscope to gain knowledge of the ratio of peak to average or rms as measured by the multimeter. There are instruments available which incorporate the multimeter and CRO functions within the one case. Such an instrument is the Tektronix type 213 unit as illustrated in Fig. 4. This instrument displays either the waveform or the scan-generated multimeter measurement as required.


Fig. 3. Digital instrument circuits are often manufactured as custom-built chips (a) Digital chip of HP 970A is just 3.9 by 4.3 mm in size.

\section*{CCUNTER-BASED DIGITAL INSTRUMENTS}

Combining a display with a suitably gated counter and timing system provides the ability to count events; totalize and indicate elapsed time;

\section*{ELECTRONICS-it's easy!}


Fig. 3(b). Thin-film hybrid of HP 970A carries much of the analogue circuit on its \(28 \times 38 \mathrm{~mm}\) substrate.

'Fig. 4. The digital multimeter function is combined with a C.R.O. facility in the Tektronix 213 unit.


Fig. 5. Schematic diagram of totalizing and batching use of counter with display.
determine frequency and period of periodic waveforms or provide a time-clock. In these options little analogue circuitry is involved, the unit either generating its own digital signals (a clock) or operating on input signals that are already in digital form.
We have dealt with the internal operation of counters in Parts 24 and 25: here we expand their use by studying the various modes of operation possible with a basic counter.

\section*{rDTALIZING AND BATCHING}

This is the simplest use of a counter. Events to be counted (for example packages on a conveyor belt may intercept an optical link, thus causing an electrical pulse to be generated each time the beam is broken). These pulses enter the counter, (Fig. 5) and are shaped into clearly recognisable counting pulses. Whether or not an event is counted is decided by the condition of the input gate which can be opened or closed on electronic

command. In many applications the gate is quite simple, but its design can be a major problem when very fast signals are to be totalized to high-accuracy.

A batching counter goes a little further in that it counts to a predetermined value. When this is reached it provides an output command to the process being batched (for example, tins being counted into cartons) which causes some change in the process. At the same time, if the process is repetitive, the counter is reset to the starting value ready to count the next batch. It is sometimes more convenient to count downward from the number required, operating the batch command at the zero value. More complicated batching systemis may have a stored program that sets each batch sequence to varying count values.

\section*{TIME INTERVAL MEASUREMENT}

It is possible to measure the time-interval between two events by feeding pulses of known time separation into the input of the counter, as shown in Fig. 6, where a
clock drives the counter. An example is the timing of a race. The gate is opened at the starting signal and stopped at the end. Counts accumulated represent the time interval. Obviously there is an advantage in choosing a pulse repetition rate that suits the units of time being used. The choice of clock frequency therefore depends on the resolution needed. For example, to measure one second with a resolution of 1 in \(10^{6}\) a pulse frequency of 1 MHz is needed to gain \(1 \mu \mathrm{~s}\) discrimination.
In some applications a common gate - control input is suitable - where the on and off event reproduces the same situation such as in period measurement of a sine-wave signal. Often, however, two separate input channels are needed so that each can have the specific pulse conditioning needed by different signal sources. Race timing, for example, might initiate the count on the sound of the starter gun and stop it on the signal from a pressure-pad sensor.
Because many triggering signals are ill-defined in time, most counter/timers have input stages that trigger at preset adjustable levels Schmidtt triggers or comparators are used. This enables the operator to discriminate the events to be counted from relatively noisy backgrounds that have a lower peak value - see later. Another reason for selective-level triggering is to allow the counter to operate at different points on a waveform - a sinewave input can be used to produce pulses of varying widths in this way. The counter output may also be used to trigger an event so as to provide automatic timing sequences, this being similar in priniciple to batch counting.

\section*{PERIOD OF REPETITIVE SIGNAL}

The time interval measurement arrangement also enables the period of

a wave-form to be measured. The most basic procedure is to gate the clock into the counter for the interval between the same trigger level of successive waveforms. The precision can be greatly improved by extending the gate-open time to \(10,100,1000\), or 10000 periods, dividing the count by the appropriate divisor (which means a mere shift of the decimal point if deciral multiples are used). This is referred to as multiple-period measurement, it yives greater precision but at the expense of greatly increased time for each measurement.

\section*{PULSE WIDTH}

A special case of period measurement occurs when the width of a pulse is to be determined. If the pulse had a perfect square response profile the on and off gating points would always give an accurate answer because the triggering transitions would occur precisely on the rise and fall of the pulse. Trigger-level would not affect


Fig. 7. Trigger level must be considered in pulse width measurement to obtain the parameter required.
the interval measured. Practical pulses, however, will not be perfect, the edges having definite rise and fall times. In this case the trigger-level becomes critical in width determination, as is depicted in Fig. 7. Counters usually provide a slope selection control. This decides whether the trigger operates on the positive or negative slope, that is, a or b slopes respectively (Fig. 7)

\section*{PHASE DIFFERENCE}

Two identical waveforms can be regarded as two separate inputs for the start-stop inputs. If both trigger at the same point on each waveform (preferably at the zero-crossing to gain maximum precision) the ratio of the time-interval between the two crossings to the period of the waveform is the phase shift in terms of a fraction of one cycle.

\section*{FREQUENCY MEASUREMENT}

The frequency of a repetitive signal is defined as the number of cycles (events) per unit time. A digital frequency meter, therefore, can be made with controlled gate-on period of precisely known time interval. In other words, it is the same combination as the interval timer (i.e. oscillator counter with display, gate control and precision) but with the difference that the clock now controls the gate (not the counter) through a precision divider that scales the basic clock frequency down to obtain the gate duration needed. Gate periods range from \(1 \mu \mathrm{~s}\) to 1 s . A simplified schematic is given in Fig. 8. The input signal is often sinusoidal; the input stage shapes this into a square wave to enhance individual cycle detection by the counter.

\section*{ELECTRONICS-it's easy!}

\section*{NOISE ERROR REDUCTION}

The above descriptions give the basic operating modes of the various counter/time/frequency-meter combinations. In practice a number of refinements may be incorporated to obtain better practical performance.
Noise can be reduced by incorporating a fixed amount of backlash in the trigger circuit; this produces what is called the trigger window. On the way up the trigger level is at a higher level than on the way down.

Provided the noise added to the signal has an amplitude smaller than the window width, the counter will only trigger once on the way up and once on the way down. This method works well for high frequency measurements where the noise is usually a small percent of the signal plus-noise signal amplitude.
Low frequency measurements can often involve interference sources that produce rapid spike transients. One simple method of reducing this is to use filters. Advanced designs contain filter systems that reject all frequencies higher than that being tested, the appropriate filter being automatically selected by the counter itself after it has made a determination of the frequency of the signal.


Fig. 9. Trigger height for the window must be chosen to suit the wave shape.

A recent approach to the noise problem is to set up a time-window (as opposed to the trigger height window) that, once the counter gate is on, inhibits the off-state chance until after a time just shorter than the expected interval. This is known as trigger masking. It is very useful in eliminating contact-bounce retriggers. Before using a counter/timer on an unknown waveform it is, where feasible, good practice to study the waveshape on an oscilloscope in order
to decide the best strategy for trigger-level and height-window width settings. Figure 9 illustrates the differences between window level settings on various waveshapes.
As the readout is in digital form it is necessary to hold the display at the determined value for a period long enough to allow the value to be read. Some units incorporate a control that gives the operator a choice of hold time.


JOIN THE
TiFasUil CDNTHis
NEW! MONEY SAVING BFO METAL DETECTOR KIT!

Enjoy the world's most exciting hobby with this high quality metal detector. Search for old silver, coins, jewellery, antiques and many more valuable articles. Simple to make, the detector embodies the latest circuitry and design features and its performance is comparable to detectors costing twice as much. Circuit incorporates varicap tuning Loudspeaker, Faraday Screen gives excellent sensitivity and stability
Complete kit includes all parts, compon ents, printed CCT Board, aluminium frame, incorporating search head, all hardware and full instructions. Circuit diagram and instructions available separately, price \(£ 1\) refunded with kit.

> COMPLETE KIT \(\varepsilon 11-95_{p+p}^{85 p}\)

BUILT \& TESTED E15-75
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
MAINS TRANSFORMERS \\
PRI. \(240 \mathrm{vsec}, 27 / 0 / 27 \mathrm{v}\) at \(800 \mathrm{~m} / \mathrm{a}\). £2.35. P P. 50 p
PRI \(110 / 240 \mathrm{sec} 50 \mathrm{v}\) at 10 mps . 510.00 P P PRI \(110 / 240 \mathrm{v} \sec 50 \mathrm{v}\) at 10 a.os £10.00. P. P \& 150 PRI. \(110 / 240 \mathrm{vec} 20 / 21 / 22 \mathrm{v}\) at 8 amp . £6.00.
PP.E 50 PRI \(110 / 240 \mathrm{v}\) sec \(23 / 24 / 25 \mathrm{v}\) at 10 amp . \(\mathbf{~ 7 ~} 7.00\) PRI. \(110 / 240 \mathrm{v}\) sec \(24 / 40 \mathrm{v}\) at \(11 / 2 \mathrm{amp}\). \(\mathbf{£ 1 . 9 0}\). PRI \(240 \mathrm{vsec} 20 / 40 / 60 \mathrm{v}\) at 2 amp £3.00. P.P 70 p PRI 240 vsec 18 v at 15 amp and 12 vat 1 amp . \(\mathbf{E 2 . 2 5}\) \\
PRI 240v sec 18 vat 1 amp, £1,10. P.P 35p
\end{tabular}} &  & \multirow[b]{2}{*}{\begin{tabular}{l}
S-DECS AND T-DECS \\

\end{tabular}} \\
\hline & \multirow[t]{2}{*}{} & \\
\hline & & \begin{tabular}{l}
FIBRE GLASS BARGAIN PACK \\
200 sq in single \& double sided pieces. £1.25. P.P \\
\(25 p\).
\end{tabular} \\
\hline & \begin{tabular}{l}
BARGAIN PACK \\
10 pcs. \(101 \times 79\) in Plus free \(1 / 2 \mathrm{lb}\) etching \(\times\) tals, \(\mathbf{£ 3 . 1 0}\). P.P. 45p
\end{tabular} & \multirow[t]{3}{*}{\begin{tabular}{l}
high Capacity electrolytics \\
\(250 \mathrm{mfd} / 63\) volt, 20 p . P.P. 8 p . \\
\(2200 \mathrm{mfd} / 100\) volt, 90p. P.P \(25 p\) \\
\(4700 \mathrm{mfd} / 25\) volt, 65 p. P.P 20 p
\(6800 \mathrm{mfd} / 6\) volt 50 p. P.P \(15 p\) \\
\(10.000 \mathrm{mfd} / 25\) volt 75 p P.P. 25 p \\
\(47.000 \mathrm{mfd} / 40\) volt \(£ 2.00\). P.P 50 p \\
\(160,000 \mathrm{mfd} / 10\) volt, \(£ 2.00\). P.P 50 p
\end{tabular}} \\
\hline \begin{tabular}{l}
12 voit MINI UNISELECTOR \\
\({ }^{12}\) Pay, 45 bank (3 non-bridging 1 homing) \(\in 2.50\) \\
P.P. 35p
\end{tabular} & \multirow[t]{2}{*}{} & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
24 volt MINI UNISELECTOR \\
1 way, 6 bank ( 5 non-bridging. 1 bridging) \(\mathbf{E 2 . 0 0}\) PP 35
\end{tabular}} & & \\
\hline & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{\begin{tabular}{l}
3 GANG TUNING CAPACITOR \\
8.5pf to 320pf. 80p. P.P. 20p
\end{tabular}} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
SIEMENS MINIATURE RELAYS \\
\(6 \vee 4 c / 0\) with base. \(65 p\) ea \\
\(24 \mathrm{v} 2 \mathrm{c} / 0\) with base 50 p ea
\end{tabular}} & & \\
\hline & \begin{tabular}{l}
ETCH RESIST PENS \\
55p.P. . 5p
\end{tabular} & \multirow[t]{2}{*}{\begin{tabular}{l}
MINIATURE METERS \\
500 micro-amp (level-stereo beacon, etc) scaled half
black /half red. Size \(1 \times 1 \mathrm{in} .65\) p. P.p. 15 p
\end{tabular}} \\
\hline \begin{tabular}{l}
MAINS RELAY 240v \\
3c/0 10 amp tonnacts \(£ 1\) with hase
\end{tabular} & \multirow[t]{2}{*}{\begin{tabular}{l}
FERRIC CHLORIDE ETCHING XTALS \\
5 lb makes 5 . lıre pack. E2.65. P P 65p
\end{tabular}} & \\
\hline \multirow[t]{2}{*}{MINIATURE RELAYS} & & \multirow[t]{2}{*}{\begin{tabular}{l}
A.M. F.M. TUNING METER \\
125-0. 125 4A. edgewise \(1 / 2 \times 1 / 2 \mathbf{E 1} .10\)
\end{tabular}} \\
\hline & \multirow[t]{2}{*}{\begin{tabular}{l}
PRINTED CIRCUIT KIT \\
the no frils all value kit. Containting 4 pcs \(8 \times 7\) Formica laminate. 1 pce \(6 \times 6\) Fibre glass aminate. 1 tb Etching 65 p.
\end{tabular}} & \\
\hline \begin{tabular}{l}
overload cut-duts \\
Panel mouning \(800 \mathrm{M} / \mathrm{A} 18\) amp 10 amp 55p ea
\end{tabular} & & \begin{tabular}{l}
SIGNAL STRENGTH METER \\
260 uA (illum) Edgewise \(11 / 2 \times 1 / 2, £ 1.10\).
\end{tabular} \\
\hline SCR-THYRISTOR 5 amp 400 PIV 3 35p. & \begin{tabular}{l}
BLUE P.C.B. INK \\
Etch resis1, use with any pen Much cheaper than ready
loaded pens 50 c. \(\mathbf{5 5 p}\). P.P 10 p.
\end{tabular} & OUTPUT METER CLEAR PLASTIC 500 uA \(11 / 2 \times 1 \frac{1 / 2}{}\) square \(£ 1.30\). \\
\hline \begin{tabular}{l}
EDGE CONNECTOR \\
Can easily be cut to any length. 55p. P P 10 p \\
Side Guides to suit the above \(\mathbf{1 5 p}\) ea
\end{tabular} & \begin{tabular}{l}
KINNIE COMPONENT \\
MAIL ORDER ONLY. PERSONA
\end{tabular} & 10 NELMES WAY, HORNCHURCH ESSEX RM11 207 HORNCHURCH 45167 CALLERS BY APPOINTMENT \\
\hline
\end{tabular}



\section*{A NEW FORM OF TAPE READER}

Visaud is a new way of using our friend the C60 cassette, this time in education. If you imagine a standard C60 cassette opened up at one end and extended at that end by about 6 inches then you have the basis of this rather clever (patented) idea. The extension loops the magnetic tape around a detour of about 12 inches, 3 inches of which can be seen travelling right to left through a small window cut in the plastic extension. The part which can be seen is the back (non magnetic) side of the tape and on this is written a text in a special pen or white Lettraset. The text which is passing through this window can be read at the same time that its audio counterpart is passing over the playback head, thus the tape can be read and listened to at the same time. This system is ideal for youngsters just starting to read, children or adults with a reading problem or even for students of a foreign language or even shorthand. The simplicity of this technique underlines the thought that the great technological advances being made at present can lead to stupid solutions to problems

Just after I had seen the Visaud system I was discussing a problem with someone who wanted to use a similar cassette with an audio and a digital track. The Audio track would be the spoken word as before but the digital track would contain the same word in digital form to be reproduced as a travelling character string on a VDU. The first solution can be made in small volumes for less than \(£ 50\) including the recorder, the second solution would cost about £200 for each playback unit plus a similar figure for each recording unit. Both give the same end result, a string of written and spoken words, but the first solution is a non-electronic solution. Next time you decide to design or build a new project have a quick check that modern electronics gives the best solution - some of Marconi's ideas are still being used in their crudest form today

\section*{MINI-FLOPPY ANSWER?}

Last month we described the problem of direct-access storage systems using discs and the requirement in the amateur market for a cheap system. Now a company in the USA have announced miniaturised versions of the popular
floppy-disc systems for applications that are at present dominated by cassette tape units. Shugart Associates of Sunnyvale, California will start to ship their SA400 "Minjfloppy," SA104 "Mini-diskette" and SA440 "Mini-streaker" later this month. These controllers are expected to triple the present market for floppy disc systems because of the \(\$ 250\) price tag for large volumes. The Minifloppy controller is about half the size and half the cost of a standard floppy controller and gives one-third of the capacity which would be sufficient for most applications. Applications for such miniaturised systems would include word processing, mini and microcomputer program storage, intelligent calculators and terminals and the emerging microcomputer hobby market

\section*{REFERENCES:}

Mullard Research Labs, Redhill Surrey
Catronics, Wallington Square, Wal lington, Surrey. 01-6696700 Spectrum Labs Ltd, 32 Royal Ave, London SW3. 01-730 1801
Visaud, 29 Bar Lane, Stapleford, Cambs.

\section*{ETI CLOCK:E13.95}

THE LONG-RUNNING OFFER ON A DIGITAL ALARM CLOCK HAS BEEN ONE OF OUR MOST SUCCESSFUL EVER! OUR PRICE INCLUDES VAT AND POST \& PACKING

"We have previously sold this Digital Clock under the name Pulsar. At the time that this name was chosen by us we were unaware that the name Pulsar had been previosly registered, but it has been drawn to our attention that this is the case. We have been asked to point out that our Digital Clock is not associated with Pulsar Watches, Time Computer Inc. or Pulsar S.A.'a

Our clock shows the time 0.7 in high on bright Planar Gas Discharge displays (there is a brightness control on the back). The dot on the left of the display shows AM/PM, and the flashing \((1 \mathrm{~Hz})\) colon shows that the alarm and clock are working:

A bleeper alarm sounds until the clock is tipped forwards. Then the "snooze" facility can give you 5 minutes sleep before the alarm sounds again, and then another 5 minutes, etc, until you switch the alarm off. The clock also features a mains-failure indicator, and is 12 hr - the alarm being 24 hour.
We have a large number of units in stock for this offer but please allow 28 days for delivery.

\section*{CLOCK OFFER \\ ETI MAGAZINE 36 Ebury Street,}
```

I enclose cheque/P.O. for £13.95
(payable to ETI) for an Alamm Clock.
Please writo your name and address
on the back of your cheque to speed
procestoing of your order
ADDRESS

```
..........................


Those not wishing to cut their magazine may order on their own notepaper.

\title{
CREED 5 LEVEL COMBINED PRINTER AND PERFORATOR NEW CRATED £35.each
}

\author{
CREED 5 LEVEL \\ PAPER TAPE READER £25 each
}

\section*{CREED 7B \\ TELEPRINTER CRATED £40 each}
£5 discount on any pair plus FREE carriage. Otherwise \(£ 2.50\) carriage each item

\section*{MARCONI PORTABLE FREQUENCY METER}

TF1026/11 100 to 160 MHz . Very fine condition.

\section*{AVO RF SIGNAL GENERATOR}

AM Modulation. Freq. range \(\overline{2}\) to 250 MHZ 240 V operation. Suitcase style. Size approx \(15^{\prime \prime}\) wide \(\times 10^{\prime \prime}\) high \(\times 6^{\prime \prime}\) deep

\section*{THE LATE MODEL MARCONI OSCILLATOR TF885A/1}
in superb condition covering 25 HZ to 12 MHZ sine wave in 3 ranges and 50 HZ to 150 KHZ square wave. High output 31.6 V . Meter scaled in volts and dBs

\section*{all items \(£ \mathbf{2 2 . 5 0}\) \\ each}

SPECIAL OFFER - pick 3 different items of the 5 for

\section*{£60}

Carriage \(£ 2.50\) each or \(£ 5\) for 3

\section*{FURZEHILL VALVE VOLTMETER}

V200A Audio to 10 MHz with probe 1MV FSD as new condition

\section*{AVO VALVE TESTED CT160}
"The Suitcase". Size approx. \(15^{\prime \prime}\) wide \(\times 10^{\prime \prime}\) high \(\times 11^{\prime \prime}\) deep


Type GEC 924F \(31 / 2^{\prime \prime}\) dia, (Replacement to Teldquipment D33 \& Solartion 1016 scoples) £30 ea. P\&PE150


SEMICONDUCTORS - All at 8p eak. P\& extra Guaranteed all full spec devices Manulacturer's markings
BC147, BC15B: 2N3707, BC107, BF197 BC317 2N4403 BC172B BC261B \(\mathrm{BC} 251 \mathrm{~B}, \mathrm{BC} 34 \mathrm{BB}, \mathrm{BC} 171 \mathrm{~A} / \mathrm{B}\) 2N3055RCA 50p ea. P\&P Bp 2N5B79 with 2N5B8 1 Motorola 150 Wat comp par £2 pr. P\&P 15
(Linear amp 709 25p ea. P\&P 8p
VARIACS 240 V input \(0-270 \mathrm{~V}\) output 8 Amp \(£ 18\) ea. 20 Amp \(£ 30\) ea. extra.

BNC Plug to BNC Plug lead assembled eady to use 50 ea. 15 20 ENC Plug \({ }^{2}\) Sacket 30p pat

Type GEC 924 E \(31 / 2^{\prime \prime}\) dia. (Replacement for Solartron 1015 scope) \(£ \mathbf{2 0}\) ea. P\&PE1. 50
Magnetic Deflection.
12DP7 12" round. Blue with vellow afterglow. £1 as.
And for the VDU BUILDERS
M38-111GH Rectangular \(30 \times 20 \mathrm{~cm}\) Green Trace. Superb value \(£ 12\) ea White Trace \(\mathbf{£ 9}\) ea.

CRYSTALS. High quality B7Ğ. etc
\(2 \mathrm{MHZ} £ 2.20\) ea
MHZ 22.75 ea.
60KHZ 3 ea ea
50KHZ £3 ea.
P\&P all 50 p .
\({ }^{*} 4.43 \mathrm{MHZ}\)
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
*SFECIAL OFFER \\
Guaranteed full spec devices Manufacturers markings \(B C 204 \& B C 207 A\) 4p e\&. P\&P exira.
\end{tabular} & LARGE RANGE ELECTROSTATIC VOLTNETERS, from 0-300V 2" £3; to 250 KV Max General guide \(5 \mathrm{KV} 31 / 2^{\prime \prime} £ 5\); thereafter \(£ 1\) per KV P\&P 75p. \\
\hline \begin{tabular}{l}
-TELEPHONES \\
Post Office Siyle 746 Black or two tone
\end{tabular} & MARCONI TF 1101 Audio Oscillator. \(20 \mathrm{c} / \mathrm{s}\) to \(200 \mathrm{kc} / \mathrm{s}\). Low distortion 60 db step attenuator \(£ 45\) each. \\
\hline \begin{tabular}{l}
\(£ 4.50\) ea. \\
Modern Standard Style in Grey or Black with a place to put your fingers like the 746. £3 ea. As above but discoloured Grey only \(\mathbf{£ 2}\) ea. All telephones complete with standard dial and bells. P\&P all styles \(75 \rho\) ea. Handsets, complete with 2 inserts and lead \(£ 1.75\) ea. P\&P 65p.
\end{tabular} & \begin{tabular}{l}
MUFFIN Fans \(1: 5\) Volt Size \(5 \times 5 \times 1 / 2^{\prime \prime}\) Superbly quiet and reliable Ex.-eq. but tested £1.50 ea. P\&P 75p \\
IBM CLOCKS - SLAVES \(11 \frac{1}{2 \prime \prime} \mathbf{£ 3} \boldsymbol{e a}\). P\&PE1: \(171^{\prime \prime \prime} £ 5\) ea., Plus Carr.: \(23^{1} / 2^{\prime \prime}\) 67 ea.. Plus Carr., ITR CLOCKS SLAVES \(71 / 2^{\prime \prime}\) £5 ea. P\&P 75p. \\
*Meter PACKS - 3 different meters £2, P\&PE1.
\end{tabular} \\
\hline \begin{tabular}{l}
NEW - UPGRADED CONTENTS - FOR LESS MONEY \\
*3Ib Electronic Goodies \(\mathbf{£ 1 . 6 0}\) post paid *High Value Punted Board Pack - hundred of components, transistors, etc. - no flat to the board transistors \(£ 1.65\) post paid
\end{tabular} & \begin{tabular}{l}
DON'T FORGET YOUR MANUALS S.A.E with requirements. \\
GRATICULES \(12 \times 14 \mathrm{~cm}\) high quality plastic 15p ea. P\&P 10p. \\
*CAPACITOR Pack 50 Brand New components. only 50p. P\&P \(48 \rho\). \\
*TRIMMER PACK. All Brand New. 2 Twin \\
50/200pt ceramic: 2 Twin \(10 / 60 \mathrm{pf}\)
\end{tabular} \\
\hline \begin{tabular}{l}
VERY SPECIAL PRICES \\
*1000f Feed thru Capacitors 10 for 30p. P\&P \(15 p\)
\end{tabular} & on each: 3 air spaced preset \(30 / 100 \mathrm{pt}\) on ceramic base 25p the lot, P\&P 15 p RESETTABLE COUNTERS, 4 digit by Stonebridge/Sodeco 1000 hm coil \(£ 2\) ea. P\&P 35 p. \\
\hline \begin{tabular}{l}
*BEEHIVE TRIMMERS 3/30pt BRAND NEW. \\
 75 p; 500 off £15, P\&P£1.25; 1,000 off £25, P\&PE1.50
\end{tabular} & *POTENTIOMETERS - All 5p aach. P\&P extra. Metal bodied AB Linear. PCB mount Brand new 10K single; 100 K Ganged; 250 K Gatroc Houk-Ganged eoccentric shates. \\
\hline \begin{tabular}{l}
HIVAC Miniature NEONS \\
App 60 V Brand New. 10 off 20p. P\&P extra.
\end{tabular} & \begin{tabular}{l}
FIBREGLASS BOARD PACK. More board lessmoney Larger pieces. Not less than 2,5 sq ft for 95p, P\&P 650 \\
Double or single-stred cut to any size. New Lower Price 1p per sq. in. P\&P exira
\end{tabular} \\
\hline
\end{tabular}

Dear Customer
We are selling off large quantities of stock ftest gear, components, etc. at much reduced prices, and would sincerely welcome callers any time Monday to Saturday between 9 am and 5 pm. Many thousands of items are priced and listed. If you cannot visit us, please send for lists. If you wish on the list a short telephone call will secure (providing it isn't already sold). Barclaycard and Access orders are taken over the telephone

CHILTMEAD

\footnotetext{
P.S So don't delay - come today and PLEASE take something away
}

Minimum Mail Order \(£ 2\). Excess postage refunded
Unless stated - please add \(\mathbf{£ 2 . 5 0}\) carriage to all units
VALUE ADDED TAX not included in prices - Goods marked with \(\star 121 / 2 \%\) VAT, otherwise \(8 \%\) Official Orders Welcomed. Gov./Educational Depts., Authorities, etc., otherwise Cash with Order

Open 9 a m. to \(5.30 \mathrm{p} . \mathrm{m}\). . Mon to Sat.
\(\square\)
7/9 ARTHUR ROAD, READING, BERKS. (rear Tech. College, King's Road). Tel. Reading 582605

\section*{15-240 Watts!}

\section*{HY5}

Preamplifier


HY30
15 Watts into \(8 \Omega\)


HY50
25 Watts into \(8 \Omega\)
he HY50 leads I LP s total integration approact to power amplifier design The amplifier leatures a the amplifier has been refined to the extent that if must be one of the most reliable and robust High Fidelity modules in the World
FEATURES: Low Distortion Integral Hedismk - Oniy five connections - 7 Ampouthul fransisiors APPLICATIONS: Mediunt Power Hi Fi systems - Low power disco - Gutar anmplifier SPECIFICATIONS: INPUT SENSITIVITY 5OOMV
OUTPUT POWER 25W RMS InIO 8!! LOAD IMPEDANCE 4 16:! DISTORTION 004 SIGNAL NOISE RATIO 75 dB FREQUENCY RESPONSE \(10 \mathrm{~Hz} \cdot 45 \mathrm{kHz}-3 \mathrm{~dB}\) SPPLY VOLTAGE 25 V SILE 1055025 mm
HY120
60 Watts into \(8 \Omega\)
The HY120 is the baby of ILP s new high powe iange designed to meet the most exacting
reguirements including load line and thermiat protection this amplitier sets a new standard in modula
 Five connections - No external components
APPLICATIONS: HiFi - Hight quality disco Public atidzess - Monitor amplifter - Guitar and SPECIFICATIONS
INPUT SENSITIVITY 50OMV
OUTPUT POWER 6OW RMS into 8!! LOAD IMPEDANCE 416 !! DISIORTION 004 at 60 W SIGNAL NOISE RATIO 90 dB FREQUENCY RESPONSE \(10 \mathrm{H}_{7} .45 \mathrm{kHz}-3 \mathrm{~dB}\) SUPPIY VOLTAGE SIZE 1145085 m

HY200
120 Watts into \(8 \Omega\)


\section*{HY400}

240 Watts into \(4 \Omega\)
The HY400 is I \& P s Big Daddy
high powe disco or public address applicatange proclucing 240 W into 4 !? It has been designed to levels a cooling tan is reconmended ihe amplifier includes all the quatities of contirnuous high powe lead the market as a true high power hi-fidelity power module
componeus
SPECIFICATIONS
1 kHz POWER 240W RMS Into 4!) LOAD IMPEDANCE 4.16:1 DISTORTION O \(1 \%\) at 2 AOW a
SIGNAL NOISE RATIO 94dB FREQUENCY RESPONSE 10 Hz .45 kHz - 3 dB SUPPLY VOLTAGE INPUT SENSITIVITY 500 mV SIZE \(114 \times 100 \times 85 \mathrm{~mm}\)
Price \(£ 29.25+\) E2.34 VAT P\&P free
POWER
SUPPLIES
PSU 36 surable to two HY 30 s \(£ 4,75\) phis 59 p VAI P P Pree
PSU50 sultable

PSU99 suitable loi one HY 200 © 11.50 plus 2092 VAT P P free
PSUI 80 surtable lol

\section*{TWO YEARS' GUARANTEE ON ALL OF OUR PRODUCTS}
I.L.P. Electronics Ltd Crossland House Nackington, Canterbury Kent CT4 7AD
Tel (0227) 63218

Please Supply
Total Purchase Price
1 Enclose Cheque \(\square\) Postal Orders \(\square\) Money Order \(\square\)
Please debit my Access account \(\square\) Barclaycard account \(\square\)
Account number
Name \& Address


POST HASTE PCB KIT
Compstock, the Basildon-based distributors, announces its own PCB lab kit, comprising an etching system, an abrasive block for cleaning and degrea sing metal surfaces, etch-resist transfer symbols, and etch-resist marker pens

to prepare the PCB. Major difference from existing systems is that the etchant is supplied in pellet form to which is added a bottle of buffer solution. Compstock claim that this system is safer to send by post. Price £8.25 inc. VAT \& \(P\) and \(P\). Compstock L.td., 42-44 Bowlers Craft, Basildon, Essex.

\section*{BRIGHTIDEA}

Hitachi will be marketing sets later this year which incorporate colour picture tubes twice as bright as current types. A high potential is set up between mask and screen and the guns fire almost twice as many electrons as before.

\section*{BULBS FOR TUBES}

A fluorescent lamp that will replace ordinary electric lights but will use only a third of the power and will last for up to ten years is being developed in America. The common construction of a fluorescent lamp is a long tube with a phosphor coating on the mercury vapour. The phosphor emits visible light when hit by UV photons, which are emitted by the electrically-excited mercury atoms.

The electrical discharge is initiated and controlled by starters and ballasts.

To fit the starting and controlling electrics for the discharge into a small package would not be possible, so the inventor of the new globe has taken another approach. He uses radiofrequency excitation, produced by a transistoried circuit in the base of the globe and radiated by a coil in the centre.

\section*{GENERATING POLES?}

New from Poland come two Function Generators which are imported by Electronic Brokers Limited, London NW1.

Model G430 provides a source of sine and square-wave signals across the frequency range 1 Hz to 1 MHz , in six

switchable sub-ranges, continuously variable from 0 to 10 V .

Distortion is less than \(0.03 \%\) in the range from 100 Hz to \(20 \mathrm{kHz}, 0.1 \%\) from 20 Hz to 100 kHz , and \(1 \%\) in the range from 1 Hz to 1 MHz . Rise time of square wave is less than 50 nsec

Model G432 is a precision source of square, triangle and sine waveforms, operating within a wide frequency range. Providing a universal source of signals, the instrument has a wide range of applications in scientific laboratories, design workrooms and school laboratories. Square, triangle and sine waveforms are generated, and the frequency range is from 1 Hz to 1.1 MHz in six sub-ranges.

\section*{Learn to understand electronics for your hobbies}

\section*{1. Lema-Kit course}

Step by step, we take you through all the fundamentals of electronics and show you how easily the subject can be mastered
(1) BUILD AN OSCILLOSCOPE.
(2) READ, DRAW AND UNDERSTAND CIRCUIT DIAGRAMS.
(3) CARRY OUT OVER 40 EXPERIMENTS ON BASIC ELECTRONIC CIRCUITS AND SEE HOW THEY WORK

\section*{2.Become a Radio-Amateur}

Learn how to become a radio-amateur in contact with the wide world. We give skilled preparation for the G.P.O. licence.

complete

\section*{DIGITAL CLOCK KITS TEAK CASES}
prompt order despatch

\subsection*{10.58 \\ 'DELTA"}
NON ALARM \(£ 10.65\)
VAT alarm \(£ 13.43\) \(+£ 1.07\)
including P\&P
GENUINE TEAK OR PERSPEX CASE
DELTA DATA: 4 Radiant Red \(1 / 2\) inch high LEDs 12 hr display with AM/PM indication. Beautiful Burma Teak Case or Pretty Perspex in White, Black, Blue Red Green Power failure is indicated by flashing display
MODULES: Kits can be bought without case Non Alarm £9.00 Alarm£ 12.50 incl
READY BUILT: Buy a working tested module and fit your own case Non Alarm \(£ 9.50\). Alarm \(£ 13.00\) Or put it with our case parts @ \(\pm 4.32\) and save on complete clock price
Complete Clock ready built 2 yr. guarantee Non Alarm \(£ 1350\) Alarm £ 16.50
ALARM FEATURES: Pulsed tone. Tilt operated 10 minute 'Snooze period Single switch setting. Optional extra mercury switch (45p) llows Alarm reset by tilting clock. Digit. brightness is automatically controlled to suit lighting level

NOVUS \(650 \quad \mathbf{£ 5 . 4 0 \quad 4 5 1 0 \quad £ 1 6 . 2 0}\) CALCULATORS: \(\quad 850\) £6.75 6030 £21.60

PULSE ELECTRONICS LTD.
DEPT. E3, 202 SHEFFORD ROAD
CLIFTON, SHEFFORD, BEDS
Telephone: Hitchin (0462) 814477

\title{
New Course in Digital Design
}

\section*{Understand the latest developments in calculators, computers, watches, telephones,}
television, automotive instrumentation
Each of the 6 volumes of this self-instruction course measures \(113 / 4^{\prime \prime} \times 81 / 4^{\prime \prime}\) and contains 60 pages packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.

After completing this course you will have broadened your career prospects and considerably increased your fundamental understanding of the changing technological world around you.


Also available - a more elementary course assuming no prior knowledge except simple arithmetic.
In 4 volumes:
1. Basic Computer Logic
2. Logical Circuit Elements
3. Designing Circuits to Carry Out Logical
Functions
4. Flip flops and Registers

Offer. Order this together with Design of Digital Systems for the bargain price of \(£ 9.70\), plus 80 p p\&p
Design of Digital Systems contains over twice as much information in each volume as the simpler course. Digitai Computer Logic and Electronics. All the information in the simpler course is covered as part of the first volumes of Design of Digital Systems which, as you can see from its contents. also covers many more advanced topics.

\section*{Designer}

Manager
Enthusiast
Scientist
Engineer
Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

\section*{Guarantee-no risk to you}

If you are not entirely satisfied with Design of Digital Systems or Digital Computer Logic and Electronics, you may return them to us and your money will be refunded in full, no questions asked.

\section*{Design of Digital Systems}

\author{
A Self-Instruction Course in 6 Volumes
}

1 ComputerArithmetic
2 Boolean Logic
3 Arithmetic Circuits 4 Memories \& Counters

\section*{5 Calculator Design} ComputerArchitecture

£6.20
plus 80 p packing and surface post anywhere in the world (VAT zero rated). Payments may be made in foreign currencies. Quantity discounts are available on request.

To: Cambridge Learning Enterprises, Dept. Dig.. FREEPOST, St. Ives, Huntingdon, Cambs PE 17 4BR "Please send me . . . . . set(s) of Design of Digital Systems at \(£ 7.00\) each, p\&p included
*or . . . . set(s) of Digital Computer Logic and Electronics at \(£ 5.00\) each, p\&p included
*or \(\ldots\) combined set(s at \(£ 10.50\) each, p\&p included Name..
\(\qquad\)
*delete as applicable.

ETIT1

No need to use a stamp-just print FREEPOST on the envelope

```

M.A. 1001 B DIGITAL CLOCK
MODULE SIZE 3.0'1\times1.75''
C/W 15v + 4.5-0.4.5v TRANSFORMER. Requires
only switches and case. DATA SUPPLIED.
OUR PRICE ONLY £9.74
Features: Bright 0.5"' Display. 12-hr Format with }2
hr. alarm capability. Flashing Colon Power Failure
Indication, P.M. Indicator, Alarm Set Indicator. Hrs.
and Mins, or Mins. and Sec Diplay. Output Drives from
Alarm and Sleep Timers.9 min Snooze Timer and 59
Min Sleep timer.
$15 v+4.5-0-4.5 v$ TRANSFORMER M.A. 1001

``` Modules
OUR PRICE ONLY £1.12
CAR, BOAT OR CARAVAN CLOCK MODULE
M.A. 1001 B includes all features listed above plus Data for Conversion to 12 V.D.C plus Crystal Time Data for Conversion 10 12 V.D.C Plus Ciystal Time protection incorporated.

OUR PRICE ONLY £13.88
If required with Transformer £14.75
CRYSTAL TIME BASE FOR C.MOS DIGITAL CLOCKS (Built and Tested). Size approx \(1^{\prime \prime} \times 1.5^{\prime \prime} \times 0.5^{\prime \prime}\) Can be adjusted to \(\pm\) a lew seconds/month.

OUR PRICE ONLY E5.25
all prices include vat and post and
PACKING ORDERS TO: F.E.K. SUPPLIES, 18 STARRING ORDERS TO: F.E.K. SUPPLIES,
LANE, LITTLEBOROUGH, LANCS

\section*{PRINTED CIRCUITS} and

\section*{HARDWARE}

Readily available supplies of Construc tors' hardware, Aluminium .sheet and sections, Printed circuit boards, top quality for individual designs.
Full range of E.T.I. boards always in stock. Prompt service
Send 15p for catalogue.

\section*{ramar constructor} SERVICES

MASONS ROAD
STRATFORD-ON-AVON WARWICKS. Tel. 4879

\section*{PADEC ONE-POUNDERS}

Frontplate. PCB, etc. Replaces conventional lightswitch with NO REWIRING. TOUCH one insulated plate for ON, another for OFF. Complete with instructions. ONLY £2.97.
ALSO TSA300K AUTOMATIC, as above but with only ONE TOUCHPLATE TOUCH for ON and light stays on for a preset time. Ideal for stairs and hall. Complete with
instructions. ONLY £2.97. instructions. ONLY E.2.9
replaces conventional lightswitch. £1.95
THIS MONTH'S SPECIAL OFFER
\[
\begin{gathered}
10 \text { TAG250 10A/400V TRIACS for ONLY } \\
\text { £6.00 }
\end{gathered}
\]
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{CMOS Motorola}} & \multicolumn{2}{|l|}{\[
\text { TRIACS } 400 \mathrm{~V} \text { T0220 }
\]} & \multicolumn{2}{|l|}{-1060/SCR 52p} \\
\hline & & 6.5A isolated tab & & BC148 & \\
\hline 4002 & 20p & 10A (TAG250) & 70p & \({ }^{\text {BC1 }} 158\) & 11p \({ }^{\text {c }}\) \\
\hline \multirow[t]{2}{*}{4013
4050} & 57p & & \((3+67 \mathrm{p})\) & 2N3055 & 36 p \\
\hline & 57 p & Isolating Kit & 5 p & \({ }^{2} \mathrm{~N} 602\) & \\
\hline \[
\begin{aligned}
& 4050 \\
& 4501
\end{aligned}
\] & 20p & \begin{tabular}{l}
Diac \\
NE555 B pin
\end{tabular} & 20 p & \begin{tabular}{l}
PUT \\
1 Na00
\end{tabular} & \\
\hline \[
\begin{aligned}
& 4501 \\
& 4000
\end{aligned}
\] & 20 p
200 & \begin{tabular}{l}
NE555 8-pin OIL \\
7418 pIn DHL
\end{tabular} & \[
\begin{aligned}
& 44 p \\
& 24 p
\end{aligned}
\] & 1N4
in4 & \({ }_{4 p}{ }^{\text {p }}\). \\
\hline 4007 & 20 p & RESISTORS \(1 / 3 \mathrm{~W}\) & 5\% E12 & 221 & \(0 \mathrm{M} \bar{\square}\) \\
\hline 4011 & 20p & Mullard & - & & \\
\hline 4015 & 105p & LOR \(1 / 4{ }^{\prime \prime}\) dia 4000 & to 1 M & ght 10 & 45p \\
\hline 4016 & 57p & NEON wire-ended & & & \(7 p\) \\
\hline 4017 & 105p & Choke 11/2 Amp & & & 5p \\
\hline 4040 & 105p & Ferrite Rod 1/4" & x 7/8' diar & neter & 9 p \\
\hline & 57p & Rocker Swith wh & , & 10A/25 & OV 15p \\
\hline 4510 & 135p & MINI MAINS T & TRANSFOR & Mmers & 100 mA \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 4516 \\
& 4566 \\
& \hline
\end{aligned}
\]} & \({ }^{135}\) p & 6.0 .6 V & & & 85p \\
\hline & 155p & 12-0.12V & & & \(95 p\) \\
\hline \multicolumn{6}{|c|}{ADD 8\% VAT ( \(121 / 2 \%\) ) PLUS 20p PBAP} \\
\hline \multicolumn{6}{|c|}{T.K. ELECTRONICS (ETI)} \\
\hline
\end{tabular}

NO VAT CHARGES NO P\&P, NO EXTRAS

Each pack contains our mixture of the type/series described.All components are new and unused.
200pcs 2BA, 4BA, 6BA, 8BA/screws,
nuts, washers (plain and \(s\) /proof) and solder tags
110 1/4 watt Carbon film res., mostl
from E12 series ........ E1
201 N4000 series diodes . . . . . . \(£\)
18 Glass wire ended neons .... \(£ 1\)
12 Zener Diodes ( 400 mW type) . £1
\(47 / 0.2 \times 10\) metres PVC wire (4
different colours) ........... £1
3 Assorted Bridge Rectifiers . . . £1
2 Plastic Triacs (1.6 amp. /400v min.)
PADEC COMPONENTS

\section*{P.O. BOX 71}

SOUTHEND-ON-SEA ESSEX SS2 5DZ

\section*{DETECTOR PRODUCTS}

Suppliers to the U.K \& Abroad Circuits \& Instructions Complete Kit


OVER 2,000 ELECTRONIC COMPONENTS INA


TURN YOUR SURPLUS capacitors, transistors, etc., into cash. Contact COLES-HARDING \& CO., P.O. Box 5, Frome, Somerset. Immediate settlement.


BUILD THIS ADVANCED DESIGN F.M. STEREO RECEIVER
\(\star\) Designed around TCA940 output CA3089E F.M. I.F. \& MC 1310 stereo I.C.'s * Toko EC3302 capacitance diode tuned F.M. Front end with F.E.T. R.F. stage.
* Baxandall type (active) tone control circuits \(\star\) Plug in Ceramic or Magnetic P.U. compensation boards. Tape input.
* 10 watts/channel

JAYEN Developments. 25 Westgate. Louth, Lincs. LNII 9Yo Please send set(si of JAYEN FM7X7 PC boards (1 main +2 sub) with instructioris \& component shopping list at \(£ 3.85\) each (nncl. VAT \& \(P+P\) )

Name

Address


GLASS FIBRE P.C.B.s
Send SAE for quotation
GP Power Supply ETI 131
High Power Beacon ETI 240
High Power Beacon ETI 240
100 Guttar Amolitier ETI 413
100 Gutar Amplifier ETI 413
Audto Level Meter ETI 438
Sweet Sixteon Amplifier ETI 457
Power Supply 100w Disco Amplifer ETI 458a
\({ }_{0}\) DSCO FET Ceramic P U ETI 458c
Disco Tone Control Pre Amplifier ETI 458d
Disco Pre Amplifier ETI 458e
Disco Headphone Amp/VU Meter ETI 458//g
Sound Light Flash Trigger ETI 514
2 m Power Amplifier ETI 710
PROTO DESIGN, 4 Highcliffe Wey, Wickford, Emeex 8811 bLA

\section*{MICROPROCESSORS \\ DO YOU NEED ASSISTANCE? \\ HARDWARE AND SOFTWARE EXPERTISE IS AVAILABLE \\ MEK kits \& components supplied. Send SAE to: \\ FRASER-MANNING LTD. \\ 26 Hervey Street, Ipswich, Suffolk}

\section*{VALVES}

Radio-TV Industrial Transmitting 2200 Types. 1930 to 1975 , many obsolete. List 20p. S.A.E. for quotation. Postal export service. We wish to purchase all types of new and boxed valves. Wholesaler's Dealer's, etc., stocks purchased COX RADIO (SUSSEX) LTD., The Parade, East Wittering, Sussex, West Wittering 2923

Nine 7 -segment Displays \(£ 1\). Postage \(15 p\). Two lots post free. In arrays of nine. With clock circuit and suggestions. Mr. Bobker, 29 Chadderton Drive, Unsworth, Bury, Lancs.

\section*{DRILLED AND TINNED P.C.B.S FOR E.T.I. PROJECTS}
\begin{tabular}{|c|c|c|}
\hline Universal Tiner & E.T.I. 540 & £1.91 \\
\hline High Power Baacon & E.T.I. 240 & . 43 \\
\hline Headphone Radio & E.T.I. 251 & . 75 \\
\hline Sound/Light Flash Trigger & ET.I. 5148 & . 40 \\
\hline Low Cost V.D.U. & ET.I. 560 A & \\
\hline .. & \[
\left.\begin{array}{l}
\text { ET.I. 560B } \\
\text { E.T.I. 560C }
\end{array}\right\}
\] & £5.00 \\
\hline 24.10 Power Amplifer & E.T.I. 710 & . 82 \\
\hline 100W Stereo Disco & ET.I. 458A & . 96 \\
\hline & ET.I. 458B & £1.25 \\
\hline
\end{tabular}

Send a s.a.e. for full list of hoards.
Components for many of the E.T.I. projects now available. details available on request.
Mail orders only please to: D.B.M. PRODUCTS, Unit 14, Southern Road, Aylesbury, Bucks.

> COPPER-CLAD 8.4" x 7.7" 4 sheets for £1, p\&p 35p
> DIGITAL MULTIMETER
> PRINTED CIRCUIT BOARDS FROM DESIGNER. COMPLETE SET \(\mathbf{£ 5 . 0 0}+\mathbf{3 5 p} \mathbf{p \& p}\) \(+121 / 2 \%\) VAT
> PLESSIS ELECTRONICS, 237 Bicester Road, Aylesbury, Bucks. (0296-81584)

Digit Counters, perfect spec. £ 4.00 (inc.) 4 digits, reset, zounting/reverse with presetting, auto zero \(s / w\), auto reset. 12-110-240v State. - Klifco Electronics, 1 Regent Road, llkley, W. Yorkshire.


SHOP FROM HOME with our catalogue. Fully illustrated and covering over 3,000 components, audio and disco accessories, tools and test meters. Reviewed as one of the best catalogues available. Send 30 p now for your copy (issue No 5). Access, Giro. Barclaycard, Government and educational orders accepted. (Giro No 331-7056).
B. H. COMPONENT FACTORS LTD. Leighton Electronics Centre
59 North St., Leighton Buzzard, Beds Tel: 2316 (0286) Shop hours: 9-12.30, 1.30-5 p.m. Closed Wednesday

\section*{BACK ISSUES}

These cost 40 peach. Postage and packing costs I5p for the first, and 10p for each subsequen issue. Orders to ETI BACK ISSUES Depl. please We CANHOT supply the following issues:- All 1972; January. February and November 1973; January, March, September, October, November and December 1974; January, June, July Qugust, September, November and December 1975; January, March 1976; April, August Dctober 1973

\section*{PHOTOCOPIES}

Due to the steady pressure on our back numbers department, and the dwindling number of issues available, we have decided to set up a photocopies service. This involves our staff in considerable time consuming endeavour, so we hope our readers understand the need for our decision to apply a flat charge of 50 p inclusive. This covers any article, regardless of the number of pages involved, from any ONE issue of ETI.
Mark envelope to 'ETI Photocopy Service \({ }^{\circ}\)

\section*{EDITORIAL QUERIES}

Written queries can only be answered when accompanied by an SAE, and the reply can take up to three weeks. These musi relate to recent articles and not involve ETI slaft in any research. Mark your letter ETI QUERY . . . Telephone queries can only be answered when technical stafl are free, and never before 4 pm.

\section*{BINDERS}

Binders, for up to 13 issues, are available for E2.50 including VAT and carriage. Send orders to ETI BINDERS DEPT

\section*{SPECIAL ISSUES}

Presently we produce five specials - Top Project 2 and 3, Electronics it's Easy [parts 1-13 and Parts 14-24) and 4600 Synthesiser (published by Maplin). Prices are 75p, E1, £1.20 and £1.50 respectively. Post and packing 15p per copy. Orders to ETI SPECIALS Dept. please.

\section*{T-SHIRTS}

ETI T-shirts are available in Large, Medium, or Small sizes. They are yellow cotton with black printing and cost £ 1.50 each. Send orders to ETI T-SHIRTS DepI.

\section*{BOOKS}

ETI Book Service sells books to our readers by mail order. The prices advertised in the magazine include postage and packing. Send orders to ETI Book Service. P.0. Box 79, Maidenhead, Berks.

\section*{NON-FUNCTIONING PROJECTS}

We cannot solve the problems faced by individual readers building our projects unless they are concerning interpretation of our articles. When we know of any error we print a correction as soon as possible at the end of News Digest. Any useful addenda to a project will be similarly dealt with. We cannot advise readers on modifications to our projects.

\section*{SUBSCRIPTIONS}

The annual subscription to ETI for UK readers is 55.00. The current rate for readers overseas is E5.50. Send orders to ETI SUBS DepI. PAYMENT IN STERLING ONLY PLEASE.

\section*{PCBs}

PCBs are available for our projects from companies advertising in the magazine.

\section*{ADDRESS FOR EI DEPARTMENTS36 EBURY ST, LONDON SWW OLW}

\section*{PLEASE MARK REVERSE OF EACH CHEQUE MTH NAME \& ADDRESS AND ITEMS REOUIRED.}

ALLOW 10 TO 14 DAYS FOR DELIVERY

\section*{INDEX TO ADVERTISERS}


\section*{Full Tech. Cert.}

Study in the evenings for your FTC. Courses 271 and 272 are offered to Part III in the following subjects:-

Advanced Electronic Switching Principles, Advanced Microwave Principles, Advanced Telecommunications Principles, Radar and Radio Navigational Aids, Sound Studies and Recording, Colour Television, F.M. and Multiplex Stereo, Microelectronic and Semiconductor Technology.

Other courses cover subjects suitable for CEI Part II and advanced subjects, generally at postgraduate level

For further details write to: Secretary, Department of Electronics and Communications Engineering, The Polytechnic of North London, Holloway Road, London N7 8DB.

The Polytechnic of North London

\section*{NOW-just when you/neéd it most!}
BI-PRE PAKS'
ONCEN-A
LIFEINE

\section*{MISCELLANEOUS-YOUR CHANCE TO SAVE POUNDS}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Printed circuit panels (Ex Equipment)} \\
\hline  & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline
\end{tabular}

UHF TUNER UNITS
- THE SEARCHING STOPS HERE-BI-PRE-PAK HAVE IT

SUNDRY POST DFFICE [G.P.O.] ITEMS

EX G.P.O. telephone dials, as used in 700 and 300 type phones. Complete
EX G.P.O. telephone handsets with lead black (Aditiot \(P\)
\& P. 25p) 40p
EX G.P.O. buzzers, \(12 / 24\) volt operation, clean condition 20p EX G.P.O. push button key switches, 2 pole change over Brand new
EXG.P.O. counter units 0000-9999, 10 per second (24.48v operation)

\section*{instrument cases}

Beautifully finished in stove enamelled grey crackle, in heavy gauge aluminium with internal racking and heavy gauge panels
(suitable as heatsinks). Ideal for PA systems, bench power (suitable as heatsinks). Ideal for P.A systems, bench power
supplies. oscilloscopes, metered instruments, etc. BRAND NEW AND BOXED

SIZE "A" \(14^{\prime \prime} \times 15^{\prime \prime} \times 6\) " deep£550+ additional \(75 p\) for \(P / P\)
SIZE "B' \(17^{\prime \prime} \times 16^{\prime \prime} \times 12^{\prime \prime}\) deep \(£ 6.50+\) additional \(£ 1\) for \(P / P\)

A FASCINATING \& UNUSUAL OFFER VARIABLE PRE-SET VOICE DECODERS


\section*{STEREO DECODERS (FM)}
\begin{tabular}{|c|c|}
\hline  & £1.95* \\
\hline  & E1.75 \\
\hline
\end{tabular}

\section*{12 RELAYS E1 ONLY}

Ex G.P.O and others; various voltages and coil impedances, non-specified but exiremely useful to keep for when wanted
Add 35 p per pack to postage charge

\section*{ORDER WITHOUT DELAY-OFFERS CANNOT BE REPEATED - CALLERS WELCOME}
\begin{tabular}{l} 
Originators of \\
and first with \\
component \\
paks in UK \\
and stifl \\
leading
\end{tabular}


THE MAGIC WORDS TO A HUGE CACHE OF
```


[^0]: ALL PRODUCTS FULLY GUARANTEEO TO MANUFACTURER'S SPECIFICATIONS

