Projects inside:
LOGIC TESTER
CROSSOVER AMP
ELECTRONIC DICE
COMPARATOR

SURVEY OF
SCIENTIFIC
CALCULATORS

ANOTHER 8 PAGES EXTRA
Ten Pages
TECH-TIPS

LIFE ON
MARS?

NEWS . . . CONSTRUCTION . . . DEVELOPMENTS
3½ DECADE DVM I.C.

This state-of-the-art MOS LSI chip contains free data and circuit booklets alone \(£2.39 \) supplied with free data and circuit booklets alone \(£2.12 \)

VAT (Leaflet alone 20p., Full \(£1.50 \), Data and Circuit Booklets alone \(£1.34 \))
JANUARY 1976

Features

LIFE ON MARS? 10
The Viking Lander is on its way to Mars — to look for life.

SINCLAIR DIGITAL WATCH 17
This new product uses F.L and looks really great!

SCIENTIFIC CALCULATOR SURVEY 26
All you need to know to pick the right one for your needs.

OP-AMPS 68
Part Two uses practical projects to explain operation.

ELECTRONICS — IT'S EASY 75
Final word on filters.

Projects

LOGIC TESTER 19
Tests both CMOS and TTL.

50W + 50W MODULE 33
Versatile module used in some of our projects.

CROSSOVER AMP 38
Using the active crossover in practice.

COMPARATOR MODULE 41
An alarm facility for our Digital Stopwatch.

ELECTRONIC DICE 58
A feature/project on using electronics in dice games.

Data Sheets

TCA 208A, TRIGGER IC 61
SL415A & SL414A, 3W & 5W AUDIO AMPLIFIERS 62
M252, RHYTHM GENERATOR IC 64

Supplement

10 PAGES OF TECH — TIPS 43

News & Information

NEWS DIGEST 6
ETI BOOKS 25
ETI BINDERS 36
FEBRUARY'S ETI 53
ETI SPECIALS 54
ELECTRONICS TOMORROW 80
READER SERVICES 90

Special Offer

FND500 JUMBO LEDs FOR LESS THAN A POUND 66

COVER: The painting of the Viking Lander on Mars by Charles O. Bennett, reproduced by courtesy of the British Interplanetary Society.
Now...the most exciting Sinclair kit ever

The Black Watch kit
At £17.95, it's

* practical – easily built by anyone in an evening's straightforward assembly.
* complete – right down to strap and batteries.
* guaranteed. A correctly-assembled watch is guaranteed for a year. It works as soon as you put the batteries in. On a built watch we guarantee an accuracy within a second a day—but building it yourself you may be able to adjust the trimmer to achieve an accuracy within a second a week.

The Black Watch by Sinclair is unique. Controlled by a quartz crystal...powered by two hearing aid batteries...using bright red LEDs to show hours and minutes and minutes and seconds...it's also styled in the cool prestige Sinclair fashion: no knobs, no buttons, no flash.

The Black Watch kit is unique, too. It's rational—Sinclair have reduced the separate components to just four.

It's simple—anybody who can use a soldering iron can assemble a Black Watch without difficulty. From opening the kit to wearing the watch is a couple of hours' work.

The special features of The Black Watch
Smooth, chunky, matt-black case, with black strap. (Black stainless-steel bracelet available as extra—see order form.)

Large, bright, red display—easily read at night.
Touch-and-see case—no unprofessional buttons.

Runs on two hearing-aid batteries (supplied). Change your batteries yourself—no expensive jeweller's service.
The Black Watch—using the unique Sinclair-designed state-of-the-art IC.

The chip...
The heart of the Black Watch is a unique IC designed by Sinclair and custom-built for them using state-of-the-art technology—integrated injection logic.

This chip of silicon measures only 3 mm x 3 mm and contains over 2000 transistors. The circuit includes:

a) reference oscillator
b) divider chain
c) decoder circuits
d) display inhibit circuits
e) display driving circuits.

The chip is totally designed and manufactured in the UK, and is the first design to incorporate all circuitry for a digital watch on a single chip.

...and how it works
A crystal-controlled reference is used to drive a chain of 15 binary dividers which reduce the frequency from 32,768 Hz to 1 Hz. This accurate signal is then counted into units of seconds, minutes, and hours, and on request the stored information is processed by the decoders and display drivers to feed the four 7-segment LED displays. When the display is not in operation, special power-saving circuits on the chip reduce current consumption to only a few microamps.

The kit contains:
1. printed circuit board
2. unique Sinclair-designed IC
3. encapsulated quartz crystal
4. trimmer
5. capacitor
6. LED display
7. 2-part case with window in position
8. batteries
9. battery-clip
10. black strap (black stainless-steel bracelet optional extra—see order form)
11. full instructions for building and use.

All you provide is a fine soldering iron and a pair of cutters. If you’ve any queries or problems in building, ring or write to the Sinclair service department for help.

| Complete kit | £17.95! |

<table>
<thead>
<tr>
<th>The kit contains</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. printed circuit board</td>
</tr>
<tr>
<td>2. unique Sinclair-designed IC</td>
</tr>
<tr>
<td>3. encapsulated quartz crystal</td>
</tr>
<tr>
<td>4. trimmer</td>
</tr>
<tr>
<td>5. capacitor</td>
</tr>
<tr>
<td>6. LED display</td>
</tr>
<tr>
<td>7. 2-part case with window in position</td>
</tr>
<tr>
<td>8. batteries</td>
</tr>
<tr>
<td>9. battery-clip</td>
</tr>
<tr>
<td>10. black strap (black stainless-steel bracelet optional extra—see order form)</td>
</tr>
<tr>
<td>11. full instructions for building and use</td>
</tr>
</tbody>
</table>

To: Sinclair Radionics Ltd, FREEPOST, St Ives, Huntingdon, Cambs., PE17 4BR.

Please send me [] Sinclair Black Watch kit(s) at £17.95 (inc. black strap, VAT, p&p).

[] black stainless-steel bracelet(s) at £2.00 (inc. VAT, p&p).

* I enclose cheque for £.......................... made out to Sinclair Radionics Ltd and crossed.

* Please debit my *Barclaycard/Access/American Express account number

Name
Address

Total £

Please print. FREEPOST—no stamp required.

ELECTRONICS TODAY INTERNATIONAL—JANUARY 1976
NUCLEAR POWERED PACEMAKER

A nuclear-powered pacemaker, that could bring a new lease of life to thousands of people suffering from certain types of heart trouble, is to be made at the Harwell Atomic Energy Research Establishment. Conventional pacemakers with chemical batteries have to be replaced surgically about every three years. Prolonged trials indicate that the implanted lifetime of the Harwell units could reach 10 or even 20 years.

The Department of Health and Social Security has placed the first production order for 100 of the new nuclear batteries and an order for another 200 batteries is following. Under the present contract Harwell will prepare the heat-producing nuclear sources, each containing less than a fifth of a gram, of plutonium oxide, and assemble them, with their miniature thermocouples, in strong metal housings to form the nuclear batteries that power the pacemakers. At the request of DHSS, Harwell has also undertaken for an interim period to assemble 100 pacemakers in which solid-state DC/DC converters and electronics pulse generators (the former also made at Harwell) will be connected to the batteries. The assembly is encapsulated in an epoxy resin known to have lasting compatibility with living tissue.

About 100 pre-production models of the nuclear battery have already been made at Harwell and fitted into pacemakers of similar design. The pacemakers have been subjected to long-term controlled trials at recognised cardiological centres under DHSS supervision. First, they were tested in animals and then, during the last five years, in human patients — the earliest of whom is still using hers.

Internationally agreed safety standards require stringent tests on the batteries. The isotope Plutonium 238 has been chosen for the heat source because its power output falls by only one per cent per year, and its radiation, mainly alpha particles, requires the minimum of shielding for implantation. This isotope is specially prepared for the pacemaker batteries and is markedly different from the very long-lived Plutonium isotopes associated with nuclear weapons and nuclear fuel.

HENRY’S ‘PART EXCHANGE SCHEME’

Henry’s-Lindair have announced the formation of a new Part Exchange Department. Customers who bring their old equipment into any Henry’s-Lindair store will be given a ‘trade-in’ allowance which they may then use against the purchase of new equipment from that particular store. The trade-in equipment will then be passed to the Service Department if necessary, and then sold through one of the Bargain Centres in Edgware Road and Tottenham Court Road with a three month guarantee.

DATAPAD

Datapad is a unique computer system where freehand printing is directly input and converted into a computer medium. The system enables data capture as a by-product of normal activity such as clerical staff filling out input forms.

The Datapads are attached to minicomputers which validate the data at source and indicate any errors to the user clerks via a screen. A ‘clean’ magnetic or paper tape is produced which is read directly into a main frame computer.

The system will completely eliminate the existing punching and verifying load, source validation will improve accuracy since the data will have been ‘edited’ before leaving the user environment and this elimination of the manual conversion stage will speed up the whole process. Quest Automation Ltd., 26 Cobham Road, Stapehill, Wimborne, Dorset BH21 7NP.
MICROPROCESSING COUNTER/TIMERS

Dana Electronics, new 9000 series of microprocessing counter/timers are claimed to be the world’s most advanced. The front panel of each instrument bears no controls – the microprocessor is slid out of the front panel, and control programmed through the keyboard.

Both of the first models in the range to be announced (9015 and 9035) work to 100MHz in measuring frequency, period, period average, time interval, time interval average, frequency ratio and total count. Thanks to the microprocessor direct readout of preset operations, reciprocal calculations, and even answers in engineering units are easily achieved. 9-digit constants can operate on measurements through the keyboard.

Trigger levels can be key-set or automatically set: levels are punched into the keyboard, and the processor does the rest, digitally displaying the figures selected for each channel on the integral DVMs. An option is also available to automatically calculate rise/fall times and pulse widths to 10ns resolution, and a range of interface options are available.

The 9015 microprocessor timer costs £1885.00 with a delivery of 8-10 weeks. Dana Electronics Ltd, Collingdon Street, Luton, Beds.

ELECTRONICS HELPS CHILDREN LEARN MATHEMATICS

The Novus “Quiz Kid”, is to help children aged from about 5 to 9 years to learn mathematics. It is similar to an electronic calculator and is based on a chip we reported in our July issue. The child uses the keyboard to enter a problem followed by what is thought to be the answer (eg 2 x 2 = 4). Then he asks the machine if the answer is correct by touching a question mark key. If it is a ‘wise old owl’ with red and green eyes will light up its green eye. If the answer is wrong, the red eye comes on.

The Quiz Kid comes with an illustrated Quiz Book containing dozens of mathematical games, riddles and puzzles to help youngsters explore and have fun with numbers. Price is £11.95.

MICROPROCESSOR PRICE CUTS

To encourage more systems engineers to explore the benefits of using M6800 microprocessors in their design, Motorola are cutting the selling price of the basic MEK6800D1 designers’ kit from £177 to £85.

The kit contains all the components needed in a basic MPU system plus technical information in the form of programming and application manuals. The M6800 microprocessor unit is provided with 1 K-Byte random access memories, peripheral interface adaptors (2 off each), an 8 K-bit read only memory containing MIKBUG and the synchronous communications interface adaptor. All the devices are TTL compatible, single level (5 Volt) power driven and use a single bus for memory and input/output transactions. No multiplexing or decoding circuits are required for its operation nor is external buffering for interconnections. The kit is available from approved Motorola distributors.

CUNNING LITTLE B*****S

A recent report by the Assistant Master’s Association reveals that schoolboys with a knack for electronics are making devices to bug teachers’ studies. Instances reported include that of a boy who concealed a bug inside a radio, which was then confiscated. The radio was then left in a headmaster’s study and the boy was able to hear every word that was said there. While we cannot help but admire the ingenuity that must go into some of these espionage-style projects, we do feel that the talents of such enterprising youths could be much better employed in the construction of International 25 Amplifiers or in writing up some of their more conventional projects for ETI.
DIGITAL STORAGE OSCILLOSCOPE

The new OS4000 from Gould Advance combines the facilities and performance of a conventional 10MHz oscilloscope with a digital storage system capable of storing signals up to 450Hz (~30dB). Digital storage has several advantages over tube storage, including the ability to examine what happens immediately before a trigger signal is received, the simultaneous viewing of stored and real-time displays, absence of deterioration of the stored display over a period of time, flicker-free low-frequency performance, and the elimination of the expensive storage tube.

The OS4000 is ideally suited for viewing transient waveforms — for example, in medical, dynamic testing, vibration or pulse-testing applications. It is also suited to low-frequency measurements, where the incorporation of a ‘refresh’ mode allows flicker to be eliminated. (The longest sweep time is 200s.) In addition, normal 10MHz real-time viewing is possible, and comparisons between stored and real-time waveforms are easily made.

The OS4000 measures 178 x 312 x 417mm, and weighs 11kg. The price of the instrument is £1053 (inc. VAT).

Two-Layer Tape

A new formulation of magnetic recording cassette tape that combines the advantages of both ferric oxide and chromium dioxide tapes has been announced by BASF. Called Ferrochrom, the tape has a two-layer coating which, when used with suitable equipment, gives an improved frequency response for cassette recording. The new tape comprises a polyester base coated with a relatively thick high density ferric oxide dispersion. On top of this is added a carefully controlled layer of chromium dioxide. This composition exploits the simple theory that low frequencies are produced from the whole of the tape coating and high frequencies are reproduced from the top of the coating.

Because of its dual oxide, the optimum bias current for ferrochrom is a value approximately halfway between the current for ferric oxide and that for chromium dioxide. Ferrochrom can still be used on a conventional ferric recorder, but on playback the higher frequencies are unnaturally pronounced, giving an effect similar to those on a Dolbyised cassette played back on a non-Dolby machine. This is easily remedied by a slight adjustment of the amplifier’s treble control. The frequency response and dynamic range achieved using Ferrochrom in this way is equal to that of a chromium dioxide cassette played on a machine biased for chromium dioxide. The best results from Ferrochrom are achieved on cassette recorders biased for Fe-Cr. On these the dynamic range from a VU meter is 1.5dB greater than that possible from chromium dioxide.

Ferrochrom can still be used on a normal ferric oxide machine. This is easily remedied by a slight adjustment of the amplifier’s treble control. The frequency response and dynamic range achieved using Ferrochrom in this way is equal to that of a chromium dioxide cassette played on a machine biased for chromium dioxide. The best results from Ferrochrom are achieved on cassette recorders biased for Fe-Cr. On these the dynamic range from a VU meter is 1.5dB greater than that possible from chromium dioxide.

BASF Ferrochrom is available in C60 and C90 length in a new-style cassette housing. The housing has a large window which enables the user to see the tape hubs and BASF’s patented tape transport system — Special Mechanics (SM). The amount of tape on each hub is accurately shown and any disturbance of or damage to the tape can be seen before problems occur.

FISH QUALITY METER

An electronic fish quality meter which indicates the freshness quality of wet fish rapidly and accurately is now being produced in Scotland. The GR Torrymeter is manufactured by GR International Electronics Ltd of Perth. It was designed and developed in Perth in collaboration with Aberdeen University and the Torry Research Station, a Government establishment recognised as a world authority on fish handling and processing.

The GR Torrymeter is a simple, hand-held device 200mm in length and 75mm in width. The instrument measures an electrical property of the fish tissue; this property changes as fish spoils. Individual readings are displayed in illuminated figures one second after the sensing head has been placed on the fish. The meter, equipped with long-life rechargeable cells, is housed in a sealed plastic moulding which can be wiped clean or rinsed under running water. Each unit is supplied in an individual wooden storage case incorporating a mains-operated charger unit. GR International Electronics Ltd, Doman Camberley, Surrey GU15 3DG.

DIGITAL LENGTH GAUGE

A new miniature measuring instrument in the form of a digital gauge head is announced by Dr. Johannes Heidenhain GmbH. The Metro 1010, surpasses dial test indicators, vernier calipers or analogue measuring heads both technically and economically.

The digital gauge head is suitable for length measurement on smaller machines, micrometer stages, coordinate tables, etc. The measuring range of the MT10 is 10mm. The resolution is 1µm. The measuring accuracy of a complete system (digital gauge head with counter) is ±1µm. A genuine incremental design principle and a minimum of mechanical components enables the high degree of accuracy to be maintained.

The measured value is indicated by a five-digit LED display with arithmetical sign and decimal point. As an option, the counter can be supplied with a BCD-output (printer output) for electronic processing of measured values. Heidenhain (GB) Ltd., 202 London Road, Burgess Hill, Sussex RH15 9RD.

WATCH/CALCULATOR

Now available in the USA is the Uranus LED Solar Calculator time-piece. This is a five-function watch (hours, minutes, seconds, month, date, day) with calculator built in. The keyboard consists of 12 pressbuttons arranged around the face and gives all four arithmetic functions, in chain and constant calculations. The read-out is a four digit LED display and as far as we can discover, the watch is solar powered. The Uranus is available in gold or silver plated metal, and can be yours for only $800.
OUR GALAXY contains upwards of 100,000 million stars and their families of planets, and growing evidence suggests that Earth may not be the only life-bearing planet in this galaxy.

Telescope studies have, for example, shown that Earth's basic chemicals are distributed throughout the Universe — and organic compounds — life's building blocks — have been detected in inter-stellar space.

But believing that life may exist elsewhere is one thing — attempting to prove it is another.

At our present state of technology the most practical planet on which to search for life is Mars. For if we find that life exists or has existed in the harsh climate of Mars, we will have strong reasons to believe that planets with comfortable climates do support life and that other solar systems are inhabited.

Two unmanned, automated Viking spacecraft have recently been launched from Cape Canaveral to begin a 700 million kilometre journey to Mars. Once there the two spacecraft will seek evidence of whether life existed on other planets, and obtain information to improved our understanding of how Earth developed as a life-supporting planet and how we can better protect its environment.

Viking is the most complex mission to be flown by NASA, requiring four highly complicated science stations — two orbiters and two landers — to carry out separate co-ordinated operations simultaneously and over an extended period of time.

The 2300 kg orbiter will stay in orbit while the 1090 kg lander descends to the surface, as did the command module and the lunar module during the Apollo missions to the Moon. The Viking lander will use a parachute and retro-rockets to achieve soft landing. It will begin its programme of life-seeking biology experiments on about the 10th day after landing.

Photos from orbiters and landers and information from the science experiments will be transmitted back.
to Earth by radio. Radio signals will require more than 20 minutes to travel the 320 million kilometres from Mars to Earth. Spacecraft-tracking and communications will involve the Deep Space Network's stations at Goldstone, California, Madrid, Spain and Canberra, Australia.

VIKING SCIENTIFIC INVESTIGATIONS

The Viking spacecraft will make basically three investigations during their three-month observation of Mars from orbit and from two sites on the surface:

1. A photographic survey of Mars:
2. A search for forms of life; and
3. An analysis of the physical features and makeup of the planet and its atmosphere.

PHOTOGRAPHIC SURVEY

Each Viking spacecraft has an orbiter and a lander. Each orbiter carries two high-resolution television cameras, and each lander a pair of facsimile cameras.

During the last 180 hours of approach to Mars, each spacecraft will obtain a series of photographs of the planet from progressively closer range. After entering orbit, the spacecraft will remain above the designated lander sites to photomap these regions for a number of days before and after the landers are released for descent to the surface. Then the orbiters will leave their fixed positions above the lander sites to photomap almost the entire surface of the planet.

Orbiter photomaps and thermal and water vapour maps will be used to direct the landers to sites where conditions are most favourable to life and where landing hazards are less extreme. Lander cameras will take high-resolution photos of the ground immediately next to the landers, 360-degree panoramic views of the terrain and distance features, and long-range photos of Mars' satellites and celestial objects.

The Orbiter cameras will be rapid-sequence vidicon cameras using 475 mm telescopes. Taken from low-point in orbit a photo shows 40 square kilometre area with resolution of 50 metres. Consecutive photos from one orbital pass show a 80 km by 500 km swath. Photos are stored on magnetic tape for playback to Earth.

Identical facsimile cameras are mounted one metre apart on top of the lander for stereoscopic black and white, colour, and infrared photos. Cameras can view from the ground beside the lander up to 40 degrees above horizon. Each uses a nodding mirror to scan a scene in tiny increments, requiring 20 minutes for a full scene. Light from the scene increments is converted into digital information bits which are radioed to Earth and reconstructed into a photograph.

SEARCH FOR LIFE

Life may exist on Mars in higher forms, like moss or lichens, or in microscopic forms like viruses or bacteria. Or a rich variety of life may have existed at one time but disappeared later in the planet's history.

The two regions chosen for landings are areas where conditions could be conducive to Earth-like life forms. They are relatively low, temperate-zone sites in the northern hemisphere where there are indications of atmospheric moisture now, and of surface moisture at least at some time in the past.

Higher forms of life and fossils, surface burrows or trails, and artifacts could be identified in the lander camera photos of the surface adjacent to the landers. The search for microscopic plant or animal life will be made in Martian soil samples. The samples will be scooped up by the 3 metre lander boom and fed into automated biology test chambers where they will be observed for signs of photosynthesis and metabolism. Chemistry of the organic compounds in the soil will be analysed for indication of whether they were produced by animal or plant life, or could evolve life.

Discovery of life on another planet would have a more profound effect on man's thinking than any other discovery in history.

TEST FOR PHOTOSYNTHESIS

Photosynthesis is the basic-life sustaining process by which Earth plant life uses light energy to combine basic compounds like carbon dioxide, water, and salts — forming carbohydrates. Steps in the Viking photosynthesis test are:

(a) Inoculate three soil samples with carbon monoxide and carbon dioxide that bear radioactive tracers.
(b) Inoculate soil and gases under a lamp that simulates Martian sunlight.
(c) Evacuate any remaining free gas.
(d) Heat samples to 590°C to vaporise organic materials.
(e) Measure and analyse the vapourised materials.

Liberation of a substantial amount of tracer gas from the samples will be taken as strong evidence that plant-like organisms in the soil consumed the carbon monoxide and carbon dioxide in photosynthesis.

TEST FOR METABOLIC ACTIVITY

From a science standpoint, the Viking lander is the most complex spacecraft ever built. The biology unit will feed to three soil samples a nutrient or organic compounds like sugar which bear trace chemicals. Instruments will monitor gases given off by the samples over a period of about two weeks.

Steady production of gases by soil samples will be taken as evidence that organisms in the soil consumed the nutrient; steadily increasing production of gases will be taken as evidence of growth by the organisms.

TEST FOR RESPIRATION

Soil samples will be moistened with nutrients and surrounded in the test chamber with air from the outside, principally carbon dioxide. Constituents of the atmospheric sample will be monitored over a period of about two weeks. Changes in composition of the atmospheric sample will be taken as evidence of
life on Mars?

The three-legged lander carries life detection experiments to determine if the Martian environment can, or in fact does, support life.

respiration from metabolism of organisms in the soil.

TEST OF STERILISED SAMPLES
In parallel, a soil sample will be sterilised and subjected to the same tests as further validation of any positive results in the tests.

BIOLOGY INSTRUMENT
The complete range of experiments planned for Viking, if conducted on Earth with today's standard science instruments, would require thousands of pounds of equipment which would fill several ordinary size laboratory rooms.

The lander biology unit, in 0.25 cubic metre of space, contains: three automated chemical labs, a computer, tiny ovens, counters for radioactive tracers, filters, sun lamp, gas chromatograph to identify chemicals, 40 thermostats, 22 000 transistors, 18 000 other electronic parts, and 43 miniature valves.

THE PLANET AND ITS ATMOSPHERE
Instruments of the orbiters and landers will examine the physical features and makeup of the planet and its atmosphere in minute detail. Comparison of the geology and climate of Mars with those of the much more complex Earth and the primitive Moon is expected to resolve many questions about the evolution of Earth and our Solar System.

One landing site is in a valley at the mouth of the giant surface rift, or grand canyon, of Mars. Here, deposits from exposure and erosion of geological features around the chasm are expected to be rich in information about the history and development of the planet.

We still lack a complete understanding of Earth's complex environmental systems; for example, what accounts for the patterns of movement of water vapour and pollutants in our atmosphere. Clues should be found in study of the dynamics of Mars' more rudimentary atmospheric system in the absence of industrialised man.
The Viking Lander. After landing, the Lander's cameras will take pictures of the terrain — some in colour and some employing both cameras to produce three-dimensional stereo pairs. Other instruments will collect atmospheric and meteorological data, and a seismometer will record Martian quakes and learn about the planet's interior. Surface geology will be examined with the cameras, the soil sampler, the inorganic analysis of soil samples to determine what elements are present.

GEOLGY
The orbiters and landers will conduct experiments to study surface geology and planet internal structure, and to determine whether the planet is geologically alive. Orbiter and lander photographs will identify types of land forms, stratification, folds, joints, faults, rocks, erosion, sediments, and soil, and will give indications of mineral and chemical composition. If there are Marsquakes in adequate number, lander seismic readings can determine whether the planet has a molten core, a mantle, and a crust as does Earth, and can allow comparison of the mantles of Mars and Earth. Lander instruments will identify elements and minerals in the soil. Thermal mapping by the orbiters will allow search for ground frost and evidence of planet internal heat, and will aid in identifying surface structural character from difference in heat conductivity.

Viking radio and radar systems will provide information to improve our knowledge of the planet's size, mass, gravitational field, surface density, and electromagnetic properties, and atmospheric density and turbulence, and will allow study of the solar wind.

SCIENCE INSTRUMENTS
An infrared radiometer from the orbiter measures heat radiating from the planet's surface. It can record temperatures in both the day and night hemispheres and is accurate within 2°C.

An X-ray fluorescence spectrometer identifies basic elements in soil by measuring their fluorescence after being exposed to radioactive Cadmium 109 and Iron 55. It can detect elements present in amounts as small as 200 parts per million.
Mars

A gas chromatograph-mass spectrometer identifies gases in the atmosphere and organic compounds in the soil.

A seismometer will detect volcanic activity, planet internal structure shifts, and impacts of meteorites on planet's surface. It will be used to determine whether landers are functioning properly by measuring their vibrations.

A soil boom scoop will be used to study characteristics of the soil: cohesiveness, porosity, hardness, particle size. Magnets mounted on the sampler will determine whether soil contains magnetic materials.

METEOROLOGY

Requirements for the Viking lander are space flight's most demanding: two days of sterilisation baking before launch; ascent gravity and vibration forces atop a 1.4 million pound rocket; 11 months' exposure to harsh space conditions; buffeting from Mars atmospheric entry, parachute opening and retrorocket firing; impact on surface of Mars at a speed of 1.20 metres/sec. Then it must function as a finely tuned, self-sufficient laboratory and data transmission complex for 90 days.

Landers, as they enter Mars' atmosphere, will analyse the ionosphere to determine the effect of the solar wind on the planet's atmosphere. As they descend they will record the temperature, pressure, and chemical content of the atmosphere at different altitudes.

The Orbiters will observe the formation and movement of clouds and record their temperatures for analysis of their composition. The lander mass spectrometer will analyse the amounts of carbon dioxide, oxygen, nitrogen, and other gases in the atmosphere at the surface during the first three days, before starting analysis of the soil.

Lander instruments will measure pressure, temperature, windspeed and direction periodically to log daily and season all variations in weather and will record the movement of weather fronts, thermals, and dust devils past the landing sites. Seismometers will record background noise from winds and temperature and pressure changes.

In the meteorology unit transducers will measure temperature and pressure; an anemometer measures windspeed by its cooling effect on a heated wire. Accelerometers and radar altimeter are used to determine atmospheric density and pressure from their drag on the descending lander.

An infrared spectrometer will detect and measure moisture in the atmosphere from the changes in solar radiation, as it reflects from Martian surface through the atmosphere to the orbiter. It can detect water in amounts down to one micron.

A retarding potential analyser will measure the concentration and charge of ions and electrons in the ionosphere as they flow across the analyser's charged grid in lander capsule.

An upper atmosphere mass spectrometer will identify chemical content and concentrations in the upper fringe of atmosphere.

Radio and radar systems consist of S-band Earth-Mars microwave link for commands and data relay; UHF lander-orbiter links; X-band orbiter-Earth link for science use.

COMMUNICATING WITH VIKING

The Viking Lander Communications subsystem consists of a relay link between the orbiter and lander and a direct link connecting the lander and Earth. UHF radio is employed to relay scientific data to the orbiter, and an S-band transmitter on the lander sends data directly to Earth.

The relay link is the primary means of communicating during descent and landing until a direct link between the lander and Earth can be established on the surface of Mars. The UHF circuits use compartmentalised, shielded discrete-element wired circuits.

When the lander separates from the orbiter and descends into the Martian atmosphere, UHF radio will begin transmitting real-time data at 4 000 bps and at a frequency of 381 MHz to the orbiter. This information will consist of entry science data, such as the pressure and temperature of the Martian ionosphere and atmosphere, and engineering information related to the lander's operating performance.

The subsystem utilises split-phase pulse code modulation and frequency shift keying. A fixed, crossed-dipole antenna radiates signals to the orbiter. Any one of three power modes may be selected.

Prior to separation from the orbiter, the lander will under-go a series of system checks in the lower power mode (1 watt). During descent, the 10 watt mode will be used. After touch-down, the transmitter will be switched to 30 watts power to handle a data stream rate of 16 000 bits per second. With successful completion of the soft-landing on Mars, the lander will continue to broadcast for about three days via the UHF system before switching over to the direct S-band link.

Imagery showing the area surrounding the landing site as well as data received from the meteorological and biological sensors contained on the lander can then be transmitted to the orbiter for relay to Earth.

The orbiter will be able to receive this data from the lander an average of 20 minutes each pass. It will be orbiting Mars once every 24.6 hours.
S-BAND DIRECT LINK

The lander S-band link directly transmits high-volume scientific and imaging data, Doppler tracking planetary ranging and command reception. The subsystem operates at 2.2 GHz and is coherently locked to Earth frequency references.

Engineering data is transmitted at a rate of 8 1/3 bits per second and scientific information may be sent at selectable rates of 250, 500 and 1,000 bits per second. Coded (32/S), phase shift keying-pulsecode modulating information is received at 4 bits per second.

A 760 mm parabolic reflector high-gain antenna will be used to transmit information from Mars directly to Earth. The high-gain antenna is steerable and utilizes a two-axis gimbal. The mast for this antenna is deployed and locked into position immediately upon landing on Mars. Powered by a d-c driven motor, the antenna is stepped to follow the Earth by an open-loop command and control system. A fixed, crossed dipole S-band low-gain antenna will receive the commands from Earth.

Redundant modulator-exciters and a 20 watt travelling wave tube amplifier transmits the telemetry and imaging data at a frequency of 2295 MHz for approximately two hours each day.

Two S-band receivers operate on the same frequency and use the same receiver selector. The receiver selector furnishes signals to the modulator-exciters and the command detectors. One of the receivers is connected to the low-gain antenna and is the primary command receiver. The other receiver is linked to the high-gain antenna to detect the ranging signal. This receiver also serves as a backup command receiver when the high-gain antenna is pointed toward Earth.

Kathy Daniels of Honeywell's aerospace Division examines part of a special-purpose computer which will control experiments in the Viking Lander.

VIKING ANTENA

The RCA Viking antennas are specially designed and built to operate in the hostile Martian environment. They must withstand harsh surface winds, sand and dust storms, low pressure, and a temperature range from +111°C to -126°C.

The UHF low gain antenna is 450 mm high and is located on the Viking Lander Capsule (VLC). It provides for the rapid, high volume transmission of data from the VLC to the Viking Orbiter for relay to Earth. The antenna will operate during both the descent of the VLC to the Martian surface and at programmed times during the mission after touchdown.

An insulating foam designed to minimise power disruptions during transmission in the low pressure Martian atmosphere is enclosed in cylindrical containers on the ends of the antenna elements.

UHF LOW GAIN ANTENNA
Specifications:

Use: Communications to Earth via orbiter relay.

Operation: During Martian entry and from surface

Type: Crossed dipoles, circularly polarized.

Frequency: 400 MHz.

Power: 60 Watts.

Weight: 1.3 kg.

The S-Band Low Gain Antenna is 150 mm. high and is also located on the VLC. It will receive signals from Earth and will operate according to the mission programme after the VLC lands on the planet's surface.

S-Band LOW GAIN ANTENNA
Specifications:

Use: Receive commands from Earth.

Operation: Martian Surface.

Type: Broad pattern, circularly polarized.

Frequency: 2100 MHz.

Weight: 0.11 kg.

The S-Band High Gain Antenna has a 750 mm. parabolic dish of traditional appearance. It will be used to transmit and receive radio signals between the VLC and Earth and will operate after touchdown according to the mission programme. Since Mars, like Earth, rotates on its axis, it is necessary for the S-Band High Gain Antenna to be facing toward Earth for maximum effective transmission. Once the VLC has landed safely on Mars, an on-board computer will calculate the necessary alignment (both azimuth and elevation) for the antenna. The Viking Command and Control, or controller, will transform this information into
commands to motors which will then reposition the antenna relative to Earth. Continuous adjustments will be computed during each transmission. It will take approximately 20 minutes for signals to travel the more than 362 million kilometres between the Viking spacecraft and its home planet.

S-Band High Gain Antenna
Specifications:
- Use: Transmit data
- Mars-to-Earth
- Dish: 760 mm diameter.
- Frequency: 2100-2300 MHz
- Power: 40 Watts.
- Pedestal: Elevation over azimuth

Controller Specifications:
- Use: Pedestal drive and encoder processor.
- Operation: Martian surface.
- Input: Commands from on-board computer.
- Output: Drives pulses to two stepper motors sine/cosine from two resolvers.
- Weight: 0.22 kg.
- Size, Max: 100mm x 140mm x 178mm
- Configuration: Two 2-sided four-layer printed circuit boards

Electronics Today would like to thank the British Interplanetary Society and the Martin Marietta Corporation for their assistance with the preparation of this article.

LYNX ELECTRONICS (LONDON) LTD

DIGITAL DISPLAYS & LED's

THYRISTORS

TRIACS (PLASTIC TO-220 PKGE, ISOLATED TAB)

LINEAR IC's

NATIONAL CLOCK CHIPS

HIGHAM MEAD, CHERSHAM, BUCKS. Tel. (02405) 75151

VAT--Please add 13% except items marked * which are 25%
Another digital watch? Hardly. The Sinclair 'Black Watch' has as much in common with other digital watches as the calculators of three years ago have with today's products.

There are three distinct differences between this new product and the more common digital watches. Most obvious is the styling - we like it because it is designed for this new technology, it owes nothing to conventional designs. I can however understand those who do not find it appealing but appearance is a very subjective field.

Secondly the case is plastic. Ugh, I hear some of you say but you haven't seen it or felt it. Basically it is a two part case which straps together but the plastic used is unlike any we have seen - Sinclair won't say what it is. It doesn't feel, look or behave like better known plastics. The technology and industrial design behind this case is as exciting as the chip used. The top of the case has two flexible diaphragms incorporated in the moulding only 10 thou thick - this in itself is something that has broken new ground. The case design includes no protruding switches or buttons - the switches for display and for setting are controlled by pressure through the case. Batteries can be replaced in a very short period by removing a malleable plastic plug. Sinclair don't claim the watch is waterproof - but it's certainly water resistant.

The biggest breakthrough is the chip - and only one chip is used. This uses integrated injection logic: I2L. This brand new technology is only just becoming known to the public. Sinclair believe that their chip - and they themselves designed it - is the first watch chip using I2L. Other companies have been talking about this - but to date it's only talk.

I2L is suited perfectly to digital watch design. Tiny currents are used but this is combined with the ability to supply high peak current when the display is actually used. It also offers high component packing density among other advantages. The chip contains 2,100 active devices in an area 117x123 thou.

In addition to the chip there is only the crystal - the now near standard 32.768kHz flexural bar crystal. Fine adjustment of this is obtained by means of a small trimmer. A tiny capacitor connected directly across the battery, is used to prevent very short interruptions in the supply throwing the timing out: this could occur during a violent blow to the watch.

An LED display is used. The poor contrast ratio and doubts about reliability of liquid crystal displays now available led to this choice.

Introducing a digital watch has been the aim of Sinclair; in fact it was first investigated in 1967. Prototypes were developed but a high frequency crystal (4MHz) had to be used - this led to high power consumption. LED's weren't around then so neon type displays were used.

In 1972 with the first news of I2L, the whole programme was turned in this direction. The first semiconductor company decided to pull out leading to a considerable delay. ITT are now making this chip for Sinclair.

When we first saw this watch at a press launch, we were extremely impressed - so much so that your Editor has placed what may be the first order!
YOUR CHANCE TO SAVE £12
ON THIS MODULAR STEREO FM/AMP ASSEMBLY

1. THE FRONT END
Ganged tuning. AFC facility. Reduction-gearied drive. 88-108 MHZ
Usual price
inc. VAT £8.01
-£5.34
-£4.66

2. THE I.F. BOARD
Using IC. Designed for use with above front end. Usual price inc. VAT £6.76

-£4.50

3. STEREO DECODER USING I.C.
Designed for use with the above modules. Also can be used with other mono F.M
-£4.22

4. 5+5 WATT MUSIC POWER
I.C. AMPLIFIER
Useful stereo power amplifier with good
-£5.34

performance, at a very economical price.
Usual
price £8.01

TERMS OF BUSINESS:
be credited.
Rates quoted in quantity quoted.
At least 30"

declarative ICs

£7.72

STILL SAVE SEPARATELY
33 1/3%

VAT al 25%

All items available 25p per UK orders except where shown otherwise. Minimum mail order acceptable rates quoted in quantity quoted.

220-224 WEST ROAD, WESTCLIFF-ON-SEA, ESSEX

Please send for which I enclose inc. VAT
NAME
ADDRESS

£18

-£5.34

-£4.66

-£4.50

-£4.22

-£5.34

-£4.66

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34

-£4.50

-£4.22

-£5.34
Test CMOS and TTL with this versatile instrument.

WARNING:
When using the tester, remember that manufacturers recommend that CMOS ICs should not be inserted or removed from a circuit without first switching off the power supply.

EXPERIMENTERS often damage ICs in the process of developing a new circuit and often try a new IC in a circuit that is not working to eliminate that as a possible cause. The result of this is that one usually finishes up with a box full of ICs which are of dubious value. To sort out these ICs one must use a tester that is capable of testing the wide range of differing ICs that are available in the most commonly used families.

Until recently the most commonly used family has been TTL. But CMOS is rapidly gaining widespread usage and any tester, to be of value these days, must be able to test both these families. The ETI Logic Tester is capable of testing both families, and is also capable of being used to breadboard and test simple circuits based on single ICs.

An LED indicator is associated with each pin of the IC under test and these are arranged around the perimeter of a box representing the IC under test. This allows a small card, which has the schematic of the particular IC drawn on it, to be fitted to the front of the tester as an aid to the interpretation of the LED test indications.

CONSTRUCTION

The most expensive single component in the tester, after the transformer, is the case. For this reason we decided to make a wooden case and a plain aluminium front panel. Some people may however wish to mount the unit in a diecast box and for this reason the printed circuit board has been sized to fit in a standard 222 x 146 x 51 mm die-cast box. The following description is for a wooden box specifically, but applies equally well to the metal box.

The printed-circuit board is mounted to the rear of the front panel, copper side to the panel, such that the LEDs and patch pins, mounted on the printed-circuit board, project through the front panel. This greatly simplifies construction as it saves some 48 leads and solder joints. The switches are secured to the front panel by first gluing two pieces of printed-circuit board to the rear and then soldering the switches to the copper side of the board. This procedure avoids the necessity of a multitude of screws passing through the front panel.

The printed-circuit board should be assembled with the aid of the component overlay by fitting all components with the exception of IC1, 5, 6 and 7, and LEDs 1 through 16, and the patch pins. Check that the ICs are orientated correctly as are also C2, 5, 7, 9 and D1, 2 and 3. Now solder these parts into position using the least amount of heat necessary on ICs 2, 3 and 4.

Position the LEDs and patch pins onto the copper side of the board but do not solder them in place as yet. Now fit the board to the front panel so that the pins and LEDs protrude through the panel evenly. Secure the pins and LEDs in position by using a very small drop of five minute epoxy for each, on the component side of the
HOW IT WORKS.

The tester consists of four basic sections. The socket for the IC under test, the output level detector, oscillators and switches for the inputs, and the power supply.

The socket for the IC under test has the pins in each row electrically connected to each other. These rows are the groups of five holes which are perpendicular to the central groove on the socket. Each row (ie, each pin on the IC under test) is connected via a 10 megohm resistor to ground to prevent the build up of static charges. The resistors also hold all unconnected inputs at ground potential thus preventing any damage to the IC.

Each row is also connected to a pin on the front panel. Test connections are made to these pins by patchable links from the oscillator and test switches so that the correct test conditions may be set up.

Resistors R19-26 and R43-R50 connect each row (ie pin) to a logic level detector, ICs 5, 6, and 7. These CMOS hex inverters buffer each pin and drive an LED to indicate the logic state of the pin. When the logic voltage on a pin is high the LED will be alight. Resistors R19 to R26 and R43 to 50 protect the internal diodes of ICs 5, 6, and 7 against the possibility of a pin being taken above the positive supply voltage or below ground potential. Resistors R11 to R18 and R51 to R58 in conjunction with the five volt supply set the operating currents for the LEDs.

A 555, IC4, is used as an astable oscillator which initially charges C8 via R9 and R10 until the 2/3 supply threshold is reached. C8 is then discharged via R9 and pin 7 of the 555 to the lower threshold of 1/3 supply volts. Switch SW6, when operated, puts a larger value of capacitance into the circuit which gives a frequency of about one hertz. This is slow enough so that the eye can follow each logic state transition. The high speed operation is used for checking very long counters and shift registers and can also be used in conjunction with an oscilloscope.

The square wave output of the oscillator is made available at a...
boards. Do not glue the LEDs to the front panel. Once the glue has set, carefully remove the board from the front panel and then solder the LEDs and pins into position. Fit 250 mm long leads to the board for later connection to the switches and power transformer and then, using a minimum amount of heat, solder ICs 1, 5, 6 and 7 into position. Solder the leads to the pins on the IC socket – the front panel must be cut out so that these leads may be passed through. Now affix the socket to the front panel and install the printed circuit board. Mount the transformer into the base of the box and interconnect the board and switches etc.

The wooden box was constructed from 12 mm thick pineboard such that the outside dimensions were 225 x 148 x 70 mm. We finished our box with coloured high-gloss enamel which

LOGIC TESTER

PARTS LIST — ETI 122

<table>
<thead>
<tr>
<th>Part</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R8</td>
<td>22 kΩ 0.1%</td>
</tr>
<tr>
<td>R11,18</td>
<td>560 kΩ</td>
</tr>
<tr>
<td>R51,58</td>
<td>560 kΩ</td>
</tr>
<tr>
<td>R7</td>
<td>4.7 kΩ</td>
</tr>
<tr>
<td>R19,26</td>
<td>10 kΩ</td>
</tr>
<tr>
<td>R43,50</td>
<td>10 kΩ</td>
</tr>
<tr>
<td>R16</td>
<td>100 kΩ</td>
</tr>
<tr>
<td>R10</td>
<td>100 kΩ</td>
</tr>
<tr>
<td>R9</td>
<td>100 kΩ</td>
</tr>
<tr>
<td>R27,42</td>
<td>10 MΩ</td>
</tr>
<tr>
<td>RV1</td>
<td>Potentiometer 5 kΩ</td>
</tr>
<tr>
<td>RV3</td>
<td>10 kΩ</td>
</tr>
<tr>
<td>RV2</td>
<td>10 kΩ</td>
</tr>
<tr>
<td>C4</td>
<td>100 μF 0.00333 μF polyester</td>
</tr>
<tr>
<td>C8</td>
<td>0.0033 μF polyester</td>
</tr>
<tr>
<td>C1,3,6</td>
<td>0.01 μF</td>
</tr>
<tr>
<td>C5,7</td>
<td>0.01 μF</td>
</tr>
<tr>
<td>C9</td>
<td>10 μF 10V</td>
</tr>
<tr>
<td>C2</td>
<td>470 μF 35V</td>
</tr>
<tr>
<td>D1,2,3</td>
<td>Diode 1N4001 or similar</td>
</tr>
<tr>
<td>SW1</td>
<td>DPST</td>
</tr>
<tr>
<td>SW2-SW9</td>
<td>miniature 240V rated</td>
</tr>
</tbody>
</table>

PC BOARD ETI 122

- IC Socket
- Wooden case see text
- Transformer 240 V primary 30 V CT secondary or 2 x 15 V windings
- 25 patching Pin feed throughs
- front panel
- 3 core flex and plug
- heatsink for IC3 (see Fig. 6)
LOGIC TESTER

Fig. 3. Wiring diagram of complete unit.
Fig. 4. Positioning of LEDs and terminal posts on the copper side of the printed-circuit board.

Fig. 6. Heatsink for IC3. The IC is mounted (by a screw) through a 3.2 mm hole in the base of the heatsink (see photograph of inside of unit).

Fig. 5. How the front panel and printed-circuit board are assembled.

Fig. 7. Printed circuit-board artwork. Full size 132 x 104 mm.
resulted in a very pleasing final appearance.

DESIGN FEATURES.

There are several design requirements which must be met in a unit which is designed to test both CMOS and TTL devices. These may be summarized as follows.

1) The unit must be capable of correctly testing both types of logic.

2) Simple gate functions should be tested by go/no-go checks and complex functions such as counters and shift registers should also be reliably checked.

3) There should be the least possible chance of damaging the device during testing.

4) CMOS ICs must be testable with a variety of supply voltages.

5) A clock oscillator and a means of setting up the input conditions must be provided.

One of the major design difficulties with a unit such as this is coping with the many different pin configurations of the differing functional requirements (e.g. a shift register versus a two-input NAND gate) of devices within the one family, as well as those between different families. A multi-way switch could be used for each input pin but would greatly increase the expense of the unit. A good alternative is to use patchable links, and this is the approach that we have chosen to use in our unit. In addition we have used a small breadboard socket as the test socket, rather than a standard 16 pin dual-in-line socket, as this allows us to improvise special test circuits for the more complex logic ICs, and the means to breadboard simple circuits.

The need for a variable power supply for CMOS testing presented two additional problems. The first of these was the danger of plugging a TTL IC into the unit when it is set up for CMOS and for some higher supply voltage than the five volts required for TTL. Secondly the LEDs used for monitoring each pin would draw more current as the supply voltage increased. The current ratio could be as high as four to one and a corresponding variation of LED intensity would occur. To overcome this problem it was decided to provide a second supply of five volts to operate the LEDs which will also provide the higher current required by TTL for its operation. The other supply is a variable one for testing CMOS and is not capable of supplying more than 30 mA. Thus a TTL gate inadvertently connected to this supply would not be damaged.

The regulator used for the five-volt supply is a three terminal IC which has built in current limiting and thermal shutdown. It will not therefore be damaged by a short circuit due to testing a faulty IC. It is not possible to construct a discrete design, as cheaply, that has the same performance.

Next we need a device that will detect the state of each pin on the device under test and drive an LED to indicate that state. The device has to be driven by TTL and CMOS outputs, that is, by voltages anywhere between 5 and 15 volts. A suitable IC is the CMOS 4009 IC which has six inverters in one package. Each inverter will monitor a pin without drawing appreciable current. The 4009 is also designed to translate logic levels. Thus we may use it to monitor a 5 to 15 volt input level at its input but provide a five volt signal only at its output.

Switches are provided which have debounce logic associated with them. This is necessary so that single bounce free rise and fall transitions can be generated for the testing of more complex logic. The debounce logic must be capable of operating on 5 to 15 volts and of sinking at least two milliamps for TTL tests. The 4009 IC with its high output current capability was again considered to be most suitable for this task.

We would also like to have used the 4009 as the oscillator, but RCA do not recommend using CMOS that has a high output capability in a linear mode as the power dissipation of the device may be exceeded. The oscillator must provide pulses that swing between the positive and negative supply rails (in order to drive CMOS) and must be capable of sinking the two milliamps required by TTL. It must also be capable of operating on supply voltages of 5 to 15 volts. Since the standard CMOS devices cannot provide the current requirement it was decided to use a 555 IC as the oscillator.

CMOS devices should not be operated with inputs left floating as some devices may drift into the linear mode and be destroyed by excessive power dissipation. For this reason a 10 megohm resistor is connected between each pin, on the test socket, and ground. These resistors also conduct away any static charge that may build up.
ELECTRONICS SELF-TAUGHT WITH EXPERIMENTS AND PROJECTS
J. Ash
Covers basic principles of electronics. Projects include a large number of simple circuits
£2.20

TEST INSTRUMENTS FOR ELECTRONICS
M. Clifford
How to build and use test instruments
£2.05

ELECTRONIC MUSICAL INSTRUMENTS
N. Crowhurst
This book looks at the fascinating subject of electronic music from almost every angle.
£2.05

EXPERIMENTING WITH ELECTRONIC MUSIC
R. Brown and M. Clancey
Practical Experiments offer scope for originality and research
£1.85

BEGINNERS GUIDE TO ELECTRONICS
T. L. Squires
A quick start for those wishing to obtain a quick acquaintance with electronics
£2.25

I.C. OP-AMP COOKBOOK
W. G. Jung
Covers the basic theory of IC OP-Amp in great detail, also includes 250 practical circuit applications liberally illustrated.
£8.15

TTL COOKBOOK
D. Lancaster
Computer and detailed guide to TTL, how it works, how to use it and practical applications
£5.80

110 OPERATIONAL AMPLIFIER PROJECTS FOR THE HOME CONSTRUCTOR
R. M. Marston
Outlines the essential characteristics of the OP AMP and presents 110 useful projects
£2.10

110 SEMICONDUCTOR PROJECTS FOR THE HOME CONSTRUCTOR
R. M. Marston
The book introduces the reader to useful new devices such as the FET, SCR and IC, with full constructional details of many useful circuits
£1.90

UNDERSTANDING CMOS INTEGRATED CIRCUITS
B. Mole
Begins with basic digital IC's, covers semiconductor physics. CMOS, fabrication technology and design
£3.25

INTEGRATED ELECTRONICS
J. Millman
A practical handbook dealing with all modern receivers
£5.00

LINEAR IC PRINCIPLES, EXPERIMENTS AND PROJECTS
E. M. Noll
An intro to one of electronics' most exciting devices
£5.80

DESIGNING WITH TTL INTEGRATED CIRCUITS
J. L. Lasky
Covers the entire family of TTL and practical applications of the circuits
£2.60

OPERATIONAL AMPLIFIERS DESIGN AND APPLICATION
G. Tobey (Burr-Brown)
Completely up to date, this work covers the entire field of operational amplifiers
£4.70

BEGINNERS GUIDE TO WIRELESS & ELECTRONICS
M. G. Scroggie
Tenth edition, gives data on 1,000 valves and CRTs, 9,800 transistors, diodes, rectifiers and optical devices.
£2.50

BEGINNERS' GUIDE TO TRANSISTORS
J. A. Reddihough
Covers the basic theory and practice of modern transistors
£2.15

COLOUR TV THEORY
G. F. Hutson
PAL, SECAM, principles and receiver circuits for engineers, technicians
£4.65

TV SERVICING HANDBOOK
G. King
Thorough practical handbook, deals in detail with modern receivers
£4.30

COLOUR TELEVISION SERVICING
G. King
A practical handbook, dealing with all modern receivers
£4.90

MAZDA BOOK OF PAL RECEIVER SERVICING
D. Saul
A practical handbook with over 200 illustrations
£5.30

THE OSCILLOSCOPE
G. Zwick
Starts from the first principles and takes the reader to an advanced level
£2.10

HOW TO USE VECTORSCOPES, OSCILLOSCOPES AND SWEEP SIGNAL GENERATORS
S. Prentiss
A practical and easily comprehensible work which will help to simplify the initial formidable part of learning to use oscilloscopes
£1.95

99 WAYS TO USE YOUR OSCILLOSCOPE
A. Saunders
Description how to solve practical problems using a scope
£1.40

WORKING WITH THE OSCILLOSCOPE
A. Saunders
A book devoted to circuits and illustrations of waveforms that should be present
£1.85

HOW TO USE YOUR VOM VTVM AND OSCILLOSCOPE
M. Clifford
This book aims to give you knowledge and help you perform a wide variety of essential tests on many different kinds of sets, appliances and equipment.
£1.80
IF YOU HAVE CONSIDERED buying a scientific calculator recently then you will have been faced with a bewildering choice. One of the larger retail outlets lists 28 different models in the scientific category with prices ranging from about £20 to over £440. This survey sets out to cover the more common models with prices up to about £120 although the models chosen can only be representative of those available – however this survey will enable comparisons to be made with any new or not so common models that may be found.

Early in 1972 Hewlett-Packard introduced the HP-35, one of the first pocket sized scientific calculators, which then cost £199. The HP-35’s calculating power was contained in 5 MOS I.C.’s.

Earlier this year, the same company introduced the HP-21, a calculator with a slightly greater calculating power than the HP-35 but selling at only £69. This dramatic price reduction has been, and still is, common to all calculator manufacturers and thus the calculators covered in this survey range in price from £19.95 (recommended retail price).

These price reductions have been due to several factors, one of which is obviously competition, as most serious calculator manufacturers now have a scientific in their model range. Another factor has been the steady advance in semiconductor technology during the very recent past. The HP-21 uses more logic circuitry than the original HP-35 yet contains only two I.C.’s against the five of the HP-35.

One new development which appears as exciting as the introduction of the first scientific is the recent introduction of the programmable scientific calculator. There are now at least three major manufacturers offering programmables covering a price range from £29.95 to £442. (The cheapest, the Sinclair Scientific Programmable, was the subject of a review in the November issue of ET1). Programmables are extremely valuable for the solution of repetitive calculators involving a large number of calculating steps having to be performed on many items of separate data. This may well occur when handling experimental data or tabulating a graph for instance. Most manufacturers offer a library of standard programs with their machines. The individual program steps are stored in either a solid state memory or on a magnetic card which is fed into the calculator by a small motor.

There are three tables covering the calculators in this survey, Table 1 deals with those machines which calculate and display in standard floating point (arithmetic) format only, Table 2 covers those calculators which calculate and display in floating point and/or scientific notation (separate mantissa and exponent) and one model which uses scientific notation only. Table 3 covers the programmables.

CHOOSING A SCIENTIFIC CALCULATOR

With such a vast range of scientifics available in more or less every price range, it is important that the right factors are considered before money is invested in the calculator of your choice. The first decision is which type of calculator will meet your needs – usually the cheaper models do not offer the option of scientific notation and so are limited in their calculating range to numbers between 10^8 and 10^-8. If you want to handle numbers outside this range then a machine which handles full scientific notation will save the bother of keeping a separate note of the powers of 10 involved, this may well happen when handling calculations in electronics with microfarads, nano seconds, giga hertz etc. being involved.

The programmable calculator is at present being hailed as the answer to everybody’s dream of infinite, instant calculating power but in general they are considerably more expensive than their non-programmable equivalents.

Having chosen the type of calculator required then the available range of that type must be carefully examined for there are several important differences between models of the same basic type.

The most important decision to be made when choosing a scientific is that of which number entry system the calculator should use. The two systems found are Algebraic and Reverse Polish Notation (RPN), sometimes called Post Fixed Operators. The difference can be seen clearly by following the sequence of keystrokes needed to add two numbers together:

ALGEBRAIC

<table>
<thead>
<tr>
<th>Key</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>+</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>=</td>
<td>5</td>
</tr>
</tbody>
</table>

RPN

<table>
<thead>
<tr>
<th>Key</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>enter</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>+</td>
<td>5</td>
</tr>
</tbody>
</table>

This sum requires the same number of keystrokes in each system but the algebraic systems operates the keys in the same order as the sum would be read aloud whereas the RPN system has this mysterious “ENTER” key. Algebraic is certainly a simpler system to operate initially but RPN has a lot going for it, especially in the field of complex scientific calculators. If combined with a working stack of data registers, RPN system gives a very great calculator power with instant access to parentheses without keying in and out of them. A four level stack...
TABLE 1 STANDING FLOATING POINT ONLY MACHINES

<table>
<thead>
<tr>
<th>Feature</th>
<th>ADLER 88T</th>
<th>DECIMO 2001</th>
<th>HANIMEX ESR100</th>
<th>NOVUS 4510</th>
<th>ROCKWELL 61R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended Price</td>
<td>£49.95</td>
<td>£49.95</td>
<td>£45.00</td>
<td>£49.95</td>
<td>£49.95</td>
</tr>
<tr>
<td>Rechargable</td>
<td>Extra</td>
<td>LED</td>
<td>Mains adaptor extra</td>
<td>LED</td>
<td>Mains adaptor extra</td>
</tr>
<tr>
<td>Digits</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Display</td>
<td>LED</td>
<td>LED</td>
<td>Fluorescent</td>
<td>LED</td>
<td>Fluorescent</td>
</tr>
<tr>
<td>No. Keys</td>
<td>25</td>
<td>25</td>
<td>26</td>
<td>32</td>
<td>20</td>
</tr>
<tr>
<td>RPN/ALG</td>
<td>ALG</td>
<td>ALG</td>
<td>ALG</td>
<td>RPN</td>
<td>ALG</td>
</tr>
<tr>
<td>Stack</td>
<td></td>
<td></td>
<td>3 Level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brackets</td>
<td>1 set</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ind. Mem.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Trig</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Radians</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Degree</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>1/x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>v/x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>x^2</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>M±x^2</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>e^x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>In x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Log x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>10^x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>x^y</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>M±±x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Change Sign</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

is equivalent to three levels of parenthesis (brackets). However the operator of a RPN machine needs to be able to transform a complex equation such as:

\[x = \tan^{-1}(1(3.5^{3} + 8 \sin 370) + 6(\cos 530 + 2(1 + \ln 3.5))) \]

into a number of 'enter' keystrokes whilst the algebraic machine operator can, if he has sufficient 'brackets' available, enter the problem as written.

A good argument can be made out for each system and the choice must be made on your ability to understand what you are doing. But do not dismiss RPN as too difficult to understand, have it demonstrated and then try some problems yourself — you might be surprised at the ease with which you can pick up a new system.

One of the arguments advanced in favour of the RPN system is that it is consistent when dealing with the more complex keyboard functions such as the trig functions, log etc. If you wish to find the 'sin' of 30° then the key sequence for each type of machine is the same: '30° 'sin' which indeed is the sequence expected for a RPN machine, but the reverse of that expected for the algebraic machine — you might find this an inconsistency.

Manufacturers of both types of machines usually offer a separate memory as well as an multi-level stack in the RPN machine or one or more sets of 'brackets' in the algebraic models. Often the choice may be one level parenthesis plus two separate memories or two levels of parenthesis plus one memory.

Having made this decision, which is the most important one, then the next factor to be considered is the type of display and number of digits to be displayed. The most popular type of display is the LED type which is usually red in colour. The cheaper models of calculators use small LED displays with magnifying lenses fixed in front. These lenses tend to narrow the viewing angle (the angle over which the display may easily be read). This is fine in a small pocket calculator but not as satisfactory in an expensive scientific model. The other, not so common type of display is the fluorescent type — this is a green display which generally is larger than the LED type and the whole display is built into an evacuated glass envelope. The basic display is more expensive than a LED type and does require more complex additional circuitry (high voltage generators etc) but has the advantage of extremely low power consumption.

Having mentioned power consumption it is a useful next point for consideration; if your choice of calculator is available with or without rechargeable batteries then the extra outlay on the rechargeable version may well be worth considering, the PP3 type battery may be fairly cheap but with the current required by some of the more complex calculators (especially those with LED displays) it will not take all that long to run down a PP3 and so the extra cost of the rechargeable batteries is soon made up.

The next factor for consideration is the keyboard and its layout. The calculators surveyed here range in number of keys from 48 down to a full scientific with only 18 keys. The lesser number of keys, the smaller the calculator and thus the more easily pocketable but with the disadvantage that there are often two keystrokes required for access to a scientific function. Thus if you are going to use the full range of the calculator fairly often then you might find double function keys awkward to use. The only double function keys which are obvious are those of...
NOTES FOR TABLE 2

1. All quoted prices are the manufacturers recommended prices, discounts of up to about 40% are not uncommon on some models.
2. Operates in scientific notation only for the input of data and the displaying of results.
3. Special type of algebraic calculator with extra register which allows the direct evaluation of the terms of products without using the memory although the 'brackets' are not separately accessible.
4. Operates in grads as well as degrees and radians for trig functions.
5. Additional function: Sexagesimal to decimal conversion, i.e. hours, minutes, seconds to decimal hours etc.
6. EE# and EE# keys provided.
7. Twelve additional features: \((\frac{x}{y}) \), \(H_n \), \(n^k \), \(r(x) \), \(z \pm il \), \(K^+, K^- \), \(\Sigma^*, \Sigma^+ \), \(C1grp. \) Item count.
8. Additional features; full arithmetic on all three separately addressable memories, selectable decimal point, live % key with addition and discounting, % difference between \(x_1 \) and \(x_2 \), linear regression, random number generation, permutations, twenty separate conversions and their inverse.

TABLE 2 FLOATING POINT AND SCIENTIFIC NOTATION

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rec.Price (1)</td>
<td>£49.50</td>
<td>£29.95</td>
<td>£39.95</td>
<td>£49.95</td>
<td>£59.95</td>
<td>£19.95</td>
<td>£24.95</td>
<td>£49.50</td>
<td></td>
</tr>
<tr>
<td>Rechargeable</td>
<td>A.C. adaptor extra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digits</td>
<td>8(6+2)</td>
<td>8(5+2)</td>
<td>8(5+2)</td>
<td>8(8+2)</td>
<td>10(10+2)</td>
<td>8(8+2)</td>
<td>8(5+2)</td>
<td>8(5+2)</td>
<td>8(5+2)</td>
</tr>
<tr>
<td>No. Keys</td>
<td>37</td>
<td>29</td>
<td>39</td>
<td>39</td>
<td>48</td>
<td>35</td>
<td>19</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>Stack</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brackets</td>
<td>1 set</td>
<td>1 set</td>
<td>1 set</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ind. Mem</td>
<td>(\sqrt{y})</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>(\sqrt{y})</td>
<td>(\sqrt{y})</td>
<td>(\sqrt{y})</td>
<td>(\sqrt{y})</td>
</tr>
<tr>
<td>Trig.</td>
<td>(\sqrt{x})</td>
</tr>
<tr>
<td>Radians</td>
<td>(x^y)</td>
</tr>
<tr>
<td>Degree</td>
<td>(x^y)</td>
</tr>
<tr>
<td>Deg./Rad.</td>
<td>(x^y)</td>
</tr>
<tr>
<td>Conversion</td>
<td>(x^y)</td>
</tr>
<tr>
<td>Rect-Polar Co-Ord Conv</td>
<td>(x^y)</td>
</tr>
<tr>
<td>Hyperbolic</td>
<td>(x^y)</td>
</tr>
<tr>
<td>functions</td>
<td>(x^y)</td>
</tr>
<tr>
<td>In x</td>
<td>(x^y)</td>
</tr>
<tr>
<td>(e^x)</td>
<td>(x^y)</td>
</tr>
<tr>
<td>log x</td>
<td>(x^y)</td>
</tr>
<tr>
<td>(10^x)</td>
<td>(x^y)</td>
</tr>
<tr>
<td>(1/x)</td>
<td>(x^y)</td>
</tr>
<tr>
<td>(x!)</td>
<td>(x^y)</td>
</tr>
<tr>
<td>Mean & stand deviation</td>
<td>(x^y)</td>
</tr>
<tr>
<td>Sum to mem</td>
<td>(x^y)</td>
</tr>
<tr>
<td>(M \infty)</td>
<td>(x^y)</td>
</tr>
<tr>
<td>(+/– key)</td>
<td>(x^y)</td>
</tr>
<tr>
<td>(x \infty)</td>
<td>(x^y)</td>
</tr>
<tr>
<td>(\pi)</td>
<td>(x^y)</td>
</tr>
<tr>
<td>Other Functions</td>
<td>(x^y)</td>
</tr>
<tr>
<td>Function (5)</td>
<td>(x^y)</td>
</tr>
<tr>
<td>Function (6)</td>
<td>(x^y)</td>
</tr>
<tr>
<td>Hanimex ESR</td>
<td>Hewlett-Packard</td>
<td>Qualitron 1448</td>
<td>Qualitron 1419</td>
<td>Qualitron 1420</td>
<td>Rockwell 63R</td>
<td>Sinclair Scientific</td>
<td>Sinclair Oxford 300</td>
<td>Texas SR 50</td>
<td>Texas SR 51</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>--------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Master</td>
<td>Novus 4520</td>
<td>£49.95</td>
<td>£72.45</td>
<td>£69.10</td>
<td>£27.33</td>
<td>£31.25</td>
<td>£61.55</td>
<td>£59.95</td>
<td>£21.55</td>
</tr>
<tr>
<td>A.C adapt</td>
<td>Extra</td>
<td>Extra</td>
<td>Extra</td>
<td>Extra</td>
<td>Extra</td>
<td>Extra</td>
<td>Extra</td>
<td>Extra</td>
<td>Extra</td>
</tr>
<tr>
<td>85 + 2</td>
<td>10/8 + 2</td>
<td>8.5 + 2</td>
<td>10/10 + 2</td>
<td>8/8 + 2</td>
<td>10/10 + 2</td>
<td>8/8 + 2</td>
<td>5 + 2 only (3)</td>
<td>8/5 + 2</td>
<td>10/10 + 2</td>
</tr>
<tr>
<td>25</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>40</td>
<td>25</td>
<td>18</td>
<td>19</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>Alg</td>
<td>R.P.N.</td>
<td>Alg</td>
<td>Alg</td>
<td>Alg</td>
<td>R.P.N.</td>
<td>Alg</td>
<td>Alg</td>
<td>Alg</td>
<td>Alg</td>
</tr>
<tr>
<td>4 level</td>
<td>4 level</td>
<td>2 sets</td>
<td>2 sets</td>
<td>2 sets</td>
<td>3</td>
<td>1 (3)</td>
<td>1 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td>v</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- 3 sets, 1 set (3), (7), (8) indicate different configurations or features.
- 3 sets refers to the number of sets available.
- 1 set (3) refers to a specific configuration or feature.
- (7) and (8) refer to additional notes or configurations not explicitly listed in the table.
NOTES FOR TABLE 3

1. Also special engineering notation capability - expressing exponent of number in multiples of three.
2. Also calculates in 'grads' for trig. functions.
3. Additional features: \(x^+ \) or \(x^- \), rectangular to polar coordinate conversion and vice versa, mean, standard deviation, \(y^x \), \(\Delta y \), \(\Delta x \), \(x \) fraction, \(x \) or \(y \), \(x \) change sign, \(x \Rightarrow y \), decimal angle/time angle in degrees/hours, minutes, seconds.
4. Not 10^x.
5. Additional features: \(M + x \), \(M - x \), \(M \times x^2 \), \(x \) change sign, \(x \Rightarrow y \).
6. Not 10^x.
7. Additional features: \(x \Rightarrow y \), \(x \) change sign.
8. Not \(x^2 \).

TABLE 3 PROGRAMMABLE SCIENTIFIC CALCULATORS

<table>
<thead>
<tr>
<th>FEATURE</th>
<th>DIXONS PROGRAM</th>
<th>HEWLETT PACKARD HP.25</th>
<th>NOVUS 4515</th>
<th>NOVUS 4525</th>
<th>QUALITRON 1421</th>
<th>SINCLAIR PROGRAMMABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>£49.95</td>
<td>£119</td>
<td>£99.95</td>
<td>£119.95</td>
<td>£45.97</td>
<td>£29.95</td>
</tr>
<tr>
<td>Rechargeable</td>
<td>(\checkmark)</td>
<td>(\checkmark)</td>
<td>(\checkmark)</td>
<td>(\checkmark)</td>
<td></td>
<td>(\checkmark)</td>
</tr>
<tr>
<td>Digits</td>
<td>8</td>
<td>10/8+2'</td>
<td>8</td>
<td>8/8+2</td>
<td>8</td>
<td>(5 \times 2)</td>
</tr>
<tr>
<td>No. Keys</td>
<td>36</td>
<td>34</td>
<td>36</td>
<td>39</td>
<td>36</td>
<td>19</td>
</tr>
<tr>
<td>Stack/Bracket</td>
<td>3 level stack</td>
<td>4 level stack</td>
<td>3 level stack</td>
<td>4 level stack</td>
<td>3 level stack</td>
<td>2 level stack</td>
</tr>
<tr>
<td>Ind. Mem.</td>
<td>(\checkmark)</td>
<td>8</td>
<td>(\checkmark)</td>
<td>(\checkmark)</td>
<td>(\checkmark)</td>
<td>(\checkmark)</td>
</tr>
<tr>
<td>Prog. Mem. (Steps)</td>
<td>102</td>
<td>49</td>
<td>(>100)</td>
<td>100</td>
<td>102</td>
<td>25</td>
</tr>
<tr>
<td>Trig</td>
<td>(\checkmark)</td>
</tr>
<tr>
<td>Rads/Degree</td>
<td>(\checkmark)</td>
</tr>
<tr>
<td>Rads/Degree Conversion</td>
<td>(\checkmark)</td>
</tr>
<tr>
<td>Direct Branching</td>
<td>(\checkmark)</td>
</tr>
<tr>
<td>Conditional Branching</td>
<td>(\checkmark)</td>
</tr>
<tr>
<td>Jests</td>
<td>(x>0, x<0)</td>
<td>(x>0, x=0)</td>
<td>(x>0, x<0)</td>
<td>(x>0, x<0)</td>
<td>(x>0, x<0)</td>
<td>(x>0, x<0)</td>
</tr>
<tr>
<td>Single Step</td>
<td>(\checkmark)</td>
</tr>
<tr>
<td>Back Step</td>
<td>(\checkmark)</td>
</tr>
<tr>
<td>Pause</td>
<td>(\checkmark)</td>
</tr>
<tr>
<td>(e^x), \ln x</td>
<td>(\checkmark)</td>
</tr>
<tr>
<td>(10^x, \log x)</td>
<td>(\checkmark)</td>
</tr>
<tr>
<td>(x^2, \sqrt{x})</td>
<td>(\checkmark)</td>
</tr>
<tr>
<td>(y^x)</td>
<td>(\checkmark)</td>
</tr>
<tr>
<td>Others</td>
<td>(\checkmark)</td>
</tr>
</tbody>
</table>
trig and inverse trig function keys. Pressing ‘arc’ ‘sin’ seems a good use of the double function key and saves two keys on the keyboard.

Whilst discussing keyboards, it is worth considering the feel of each key and whether there is any ‘break-away’ action to a keystroke or whether the key has a ‘spongy’ feel to it. There is particular advantage to either system and it is really a matter of personal choice, though it does seem as though the more expensive the machine, the more positive the action of the keys. Again the recommendation is to try several different models and see which you like.

In the tables it has been impossible to list every function for each model so the tables have only the main functions and the models which have, extra, less common functions have a separate note at the end of the table. A recent feature introduced on the latest range of CBM scientifics is worthy of note, especially to electronic enthusiasts, is the provision of two keys marked ‘EE+’ and ‘EE-’. These keys are used when the machine is being operated in the scientific notation to increase or decrease the value of the exponent whilst shifting the position of the decimal point in the mantissa. This feature appears to be very useful in electronic calculations when we tend to come across component values whose unit values are separated by a factor of 10^3. Thus if a time constant calculation is being carried out and the answer comes out as a required capacitor of 3.3 x 10^-10 Farads then by pressing the ‘EE-’ key twice the display will show 330 x 10^-12 or more simply 330pF.

As may be seen from the tables, several manufacturers are now offering statistical functions on their more expensive models. These are usually the mean and standard deviation of a set of numbers and these are very useful when handling a set of experimental data. The one problem with statistical functions in a scientific calculator is that some of them use the calculator memories during the computation of the statistic so those memories are not available for other use during the finding of statistical functions.

Well, good luck in your research for a calculator that will meet your needs. Probably the final piece of advice that we can give is to have a good look at the handbook supplied with the machine; it might make all the difference one day when you are stuck if your machine has a comprehensive handbook.

We would like to thank all those manufacturers who have assisted in the preparation of this article by supplying data and handbooks etc. A list of addresses of the major manufacturers appears at the end of this article.

MANUFACTURERS AND AGENTS

CASIO

C.B.M.
C.B.M. Business Machines Ltd, 446 Bath Road, Slough, Bucks, SL1 6BB.

DECIMO
Decimo Limited, Park House, 96-98 Park Street, Luton, Beds. LU1 3EX.

DIXONS
Dixons Photographic Limited, Devonshire House, Harrow.

HANIMEX
Hanimex Calculator Division, Hanimex House, Dorcan, Swindon, Wilts. SN3 5HW.

HEWLETT-PACKARD
Hewlett-Packard Limited, 3300 King Street Lane, Winneresh, Wokingham, Berkshire, RG11 5AR.

QUALITRON
Imtech Products Limited, Imp House, Ashford Road, Ashford, Middlesex.

NOVUS
National Semiconductor (UK) Ltd, The Precinct, Broxbourne, Hertfordshire EN10 7HY.

ROCKWELL
Rockwell International, Anita House, Rockingham Road, Uxbridge, Middlesex, UB8 2XL.

SINCLAIR
Sinclair Radionics Limited, London Road, St. Ives, Huntingdon, Cambs. PE17 4HJ.

TEXAS
Texas Instruments Limited, European Calculator Division, 165 Bath Road, Slough, SL1 4AD, Buckinghamshire.

GLOSSARY OF SCIENTIFIC CALCULATORS TERMS

Some of the terminology used with scientific calculators originated in the computer world and are therefore may be new to many engineers. Some of the terms commonly found in calculator handbooks and advertisements are given in this glossary together with brief explanations.

REGISTERS: The names of the memories in which data is stored whilst it is being operated on or used as a longer term store known as a register. The X register is the register that is used to hold the data that is shown in the display. Thus the X register holds the last key-board entry during a calculation or the answer when the calculation is terminated.

The Y register is used to store the second number during those operations requiring two variables (+,-,÷,yx).

STACK: A series of extra data registers, found especially in calculators using Reverse Polish Notation. The stack is used as a 'first-in, last-out' type of memory. Data is shifted into the stack by pressing the enter key, or by entering a new number after pressing an operational key, and is shifted down by pressing an operational key. The lowest registers of the stack are the X and Y registers described above and any subsequent registers become temporary storage registers on a non-randomly accessible basis to allow storage of intermediate results prior to their re-use with a later completing operation. Thus, access to parenthesis (brackets) is automatic upon pressing of the 'enter' key. A four level stack (X,Y,Z,t) has the capability of three levels of parenthesis (three sets of brackets).

MEMORY: One or more sets of data registers all of which are randomly accessible. It is often possible to act upon the data contained in the memory with the data in the X register by using keys such as M+, M-, Mx, M÷, and sometimes data in the memory and data in the X register can be interchanged by using the M÷=X key, which directly interchanges the contents of registers X and Y. This key is mainly used when using the function XY although it can also be used when interchanging the terms in a division or a subtraction.

STANDARD DEVIATION: A statistical measure used most often when analysing experimental data. The standard deviation of a set of data is the measure of the dispersion of data values about the mean.

LINEAR REGRESSION: This is a statistical function used again when handling experimental data. It is especially used when using the experiment to find a mathematical relationship between two variables. Linear regression is the name of the procedure which is used to find the line which best fits the set of data points which have been found experimentally. The procedure usually finds the equation of the straight line and also a parameter called the correlation coefficient which indicates how well the data fits the line.

RADIANs: A measure of angle like the degree: 1 radian = 57.30° approx, and 2 radians = 360°. Many problems use, or give results directly in radians. Thus a calculator capable of handling degrees and radians is extremely useful as is an easy conversion between the two.
Details of the basic amplifier used in the Crossover amplifier. The module can be used to boost the output of a low power stereo to 50W per channel!

Fig. 1. Circuit diagram of one channel of the 50+50 watt module.

NOTES
Q1 2N5485
Q3,5,7 BC557,BC177
Q9,11,BD139
Q13 BN3643
Q19 MJ2955
Q21 2N3505

RIGHT CHANNEL ONLY SHOWN
LEFT CHANNEL IS IDENTICAL
EXCEPT COMPONENT NUMBERS ARE THE EVEN NUMBERS
ie, R16 is the same as R15

COMPONENTS D1,2 Q1,2
R47,48,49, C23,24 ARE
ARE FOR THE DETHUMP CIRCUITRY
AND MAY NOT BE REQUIRED

LED 1, R50 AND ZD3 ARE
USED ONLY IF THE 422
PREAMPLIFIER IS USED
THE CROSSOVER AMPLIFIER described in this issue uses the power amplifier module out of the International 422 amplifier — described in the August 1974 issue of Electronics Today. For new readers who do not have this issue we are publishing details here.

Most of the electronics is mounted on either the printed circuit-board or on the heatsinks. The board may be assembled in accordance with the component overlay diagram given. Note that capacitors C25, 26, 27 and 28 do not have holes provided for them and they are therefore mounted directly across resistors R33, 34, 41 and 42 respectively.

The heatsink should be assembled as shown in the photograph and the drawing. The transistors Q13 and 14 should each be epoxied into a hole in one of the heatsinks to ensure good thermal contact. Also secure all leads to the heatsink with epoxy. The interconnections between the printed circuit board and the heatsink should be carried out in accordance with the wire numbering on the diagrams. Final wiring details are given in the respective separate projects.

HOW IT WORKS –

The input signal is fed via C1 and R1 to the base of Q3 which, with Q7, forms a differential pair. Transistor Q5 is a constant current source where the current is (5.6 V (ZDi) – 0.6 (Q3))/2700 (R7) — that is about 2 mA. This current is shared by Q3 and Q7. Transistor Q9 is also a constant current source supplying about 1 mA which, if no input signal exists, flows through Q13 and Q11. The differential pair controls Q11 and thus the voltage at its collector. The resistors R19 and R21, together with potentiometer RV1, control the voltage across Q13 and maintain it at about 1.9 volts. But as Q13 is mounted on the heatsink, this voltage will vary with heatsink temperature. Assuming that the voltage at points 5 and 9 is equally spaced about zero volts (ie ± 0.95 volts), the current will be set at about 12 mA through Q15 and Q17. The voltage drop across the 47 ohm resistors (R25 and R31) will be enough to bias the output transistors, Q19 and Q20, on slightly to give about 10 mA quiescent current. This quiescent current is adjustable by means of potentiometer RV1.

Local feedback is applied to the output stage by the network R33, R35, R39 and R41, giving the output stage a voltage gain of about four. The overall feedback resistor, R15, gives the required gain control. Protection to the amplifier, against shorted output leads, is provided by fuses in the positive and negative supply rails to both amplifiers.

Temperature stability is obtained by mounting Q13 on the heatsink, Q13 will thus automatically adjust the bias voltage. Frequency stability is ensured by C9/R13, C5, C7, C11, C25 and C27.

Although the power amplifier itself does not produce a thump in the loudspeakers on switch on, the preamplifier used may. To reduce any thump to an acceptable level, Q1 is used to short the input for about two seconds on switch on and immediately after switch-off.

The power supply is a conventional full-wave bridge with centre tap, providing ± 40 volts and 40 volts. Diode D1 is used to rectify a second negative supply which is used to control the FETs. Due to the resistance in series with the resistor, the charge of C24 as slow. In addition, during the charge period, C23 is also being charged increasing the delay. On switch off, however, C23 cannot assist the voltage on C24 and the off-timing is much shorter than the on-timing.

Fig.3. Component overlay.
PARTS LIST

ETI 422

R44,44,45,46 Resistor 0.5 ohm 2W
R57,48 " 10 " 1W 5%
R427,29,30 " 220 " 1W
R423,11,12 " 477 " 1W
R34,45,46,47 " 220 " 1W
R17,18,23,24 " 470 " 1W
R19,20,21,22 " 360 " 1W
R15,14,19,20 " 1k2
R11,12 " 1k2
R7,8 " 2k7
R36,35,34,33 " 220 " 1W
R39,40,41,42 " 220 " 1W
R11,12 " 220 " 1W
R33,34,35,36 " 220 " 1W
R5,6 " 5k6
R3,4,15,16 " 10k
RVI,2 Potentiometer 470 ohm Trim
C11,12 Capacitor .0022UF ceramic
C9,10 " 27pF ceramic
C7,8 " 100pF ceramic
C4,5,6,7 " 330 pF ceramic
C13,14,15,16 " 0.0033UF Polyester
C25,26,27,28 " 0.1 UF
C19,26,27,28 " 0.1 UF 250 Vac
C18 " 0.1 UF 10V Electrolytic
C19,20,21,22 " 100 UF 10V lytic
C19,20,21,22 " 2500 UF 50V
Q1,2 Transistor 2N5485
Q3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22 " 2N3055
Q21,22
ZD1,2 Zener diode 5.6V 400mW
DB1 Diode Bridge min 100V PIV, 1.5A
PC Board ETI-422
F1 4A Chassis mounting Fuse holders
F2 2A Chassis mounting Fuse holders
F3 Transformer 56V 1.5A
T1 Transformer 56V 2A
Heatsinks to fit 75mm Rohm, Mullard, Yokes 566 BMZ. Quote Ref. 400 N00750A100 and send £2.24 (includes P&P and VAT) for four 75mm pieces (2 pieces, £1.14; 1 piece 85p).

* If difficult to obtain, these Resistors may be fabricated from a short length of electric fire element: about 90mm is sufficient for each. Wind securely around a 1 watt resistor (100 ohms or higher) and solder in place.

** Heatsinks: The Mullard 40D Heatsinks are available from Sykes of Byth Road, Matley, Yorks S56 8HZ. Quote Ref. 400 N00750A100 and send £2.24 (includes P&P and VAT) for four 75mm pieces (2 pieces, £1.14; 1 piece 85p).
Fig. 5. How the heatsinks are assembled.

How the completed heatsink assembly appears.

SETTING UP

The only adjustment required is that of the bias current. This is normally done with an ammeter in the power-supply lead to the output stage and, with the speaker disconnected and no signal, RV1 is adjusted to obtain a current of about 20 milliamps. However if a major fault exists, or occurs, with the above method the meter as well as the output transistors may be damaged.

To obviate this we recommend a different approach as follows. Take out the fuses and temporarily connect a 220 ohm half-watt resistor across the fuse holder. Adjust RV1 to obtain about four volts across these resistors. If a major fault exists these resistors will get hot and possibly burn out. However no other damage will occur to the amplifier as the resistors limit the maximum current that can flow. After bias adjustment these resistors are removed and the fuses replaced.

It may be found that the voltage across the resistor in the positive lead is slightly different from that across the resistor in the negative lead. This is due to a slight offset in the output voltage but as long as the average is about four volts it will be satisfactory.

You only have to ask!

In response to those readers who wrote in to ask, we have arranged for binders to be designed for ETI. Each binder can hold up to 13 issues in such a way as to not only protect them and keep them in order but to make them look attractive on your bookshelf. Finished in black leather-look plastic with gold lettering, the binders make ideal Christmas presents (along with a subscription, perhaps?) at £2 each, including VAT and carriage.

Send your order to ETI Binders, 36 Ebury Street, London SW1W 0LW.
The
`MISTRAL` Digital Clock

* A Complete Kit *
or fully built.

Kit £12.50 (Incl) Built £18.00

- Pleasant green display
- 24 Hour readout
- Silent Synchronous Accuracy
- Fully electronic
- Pulsating colon
- Push button setting
- Building time 1Hr
- Attractive acrylic case
- Easy to follow instructions
- Size 10.5 x 5.7 x 8cm
- Ready drilled PCB to accept components

Exetron Time Ltd. offer this unique transformerless design at a substantial saving on retail price. The kit is complete less mains lead - all you require is a soldering iron, solder, and screwdriver to assemble your own digital clock.

EXETRON Time Ltd
Regal House,
Penhill Road,
LANCING, Sussex.

Payment: CWO, Cheque, Access, Barclaycard (Quote Number)
One approach to an electronic crossover system.

LAST month we published the details of active-crossover boards for use with high-fidelity speaker systems. This month we give details of a typical complete system. The system described is not intended to be considered as the only possible way, merely as an example of the way in which a system may be built.

The system described uses two 422 power-amplifier modules, but any other amplifier could equally well be used eg, the 440 amplifier. A two-way system is described, that is, one amplifier is used for the high frequencies and one amplifier is used for the low frequencies for each speaker system. Thus only two two-way crossover boards are used together with the two amplifier boards and the power supply to make the complete system.

CONSTRUCTION

We build our prototype into two pieces of channel aluminium as may be seen in the photographs. The aluminium channel used had dimensions of five inches by two inches and we used a piece 380 mm long for each side. Readers may have difficulty in getting hold of this but an equivalent can readily be made from 1.6mm aluminium bent up as required.

We suggest that you make your chassis about 430 mm long as we found ours to be a little cramped.

The heatsinks used were the Mullard 35D x 75 mm and these were assembled as detailed in the 422 amplifier section. The printed circuit boards were also assembled as detailed in that section. Printed-circuit pins should be used for all connections to the board as this makes interconnection of the unit much easier.

The location of the individual modules and components can be seen from the internal photograph of the unit. If construction similar to ours is used, with the transformer close to one end of the printed circuit boards, some trouble with hum may be encountered in the main amplifiers closest to the transformer. We overcame this problem by using these amplifiers for the high channels and by reducing their bass response by changing C4 from 100 microfarad to 2.2 microfarad. With this modification the response of the amplifier will drop off below 300 Hertz, thus reducing hum, but will still be adequate for high channel use. If the high channel response is required to be lower than 300 Hertz then the transformer must be mounted further away from the amplifier modules.

Some care must be taken to prevent earth loops causing problems. The wiring of the power cables is as shown in Fig. 1, the most important being the zero volt line. The zero volt lines of both boards are linked by a heavy cable and the common side of the transformer is joined to the centre of this link. The common for the speakers is also joined to this same point. Make sure that this junction is insulated so that a short does not occur when the unit is closed up. The plus and minus 40 volts are taken to the crossover board which has the regulator on it, and the plus and minus 7.5 volts is linked between the two boards. The zero volt line for the crossover boards is taken via the signal output leads to the appropriate amplifier board.

Due to the power dissipation in the regulator for the crossover, a heatsink must be used. We simply bolted the crossover boards onto the end panel by means of a piece of angle aluminium, and bolted the transistors onto the end panel using insulating washers. We used a piece of cardboard.
PARTS LIST – CROSSOVER AMPLIFIER

Two complete sets of components as detailed for the 422 power amplifier module except that only one transformer and rectifier bridge is required for domestic use – especially if the crossover is above 2 kHz.

Two ETI 433A boards with the following exceptions. The transformers, D1 to D4, C11 and C12 are not required for either, and C13, C14, R19, R20, Q1, Q2, ZD1 and ZD2 are not required on the second board. The value of R19 and R20 on the first board should be 8.2 k.

Switch SW1, if required, should be a double pole switch and RV1 and RV2 should be dual gang linear potentiometers.

Chassis, Input and output sockets as required.

between the two boards to prevent any shorts occurring between the two boards. We also installed cardboard under each of the power amplifier boards similarly to protect them.

Coaxial cable was used to connect the inputs from the potentiometers to the main amplifiers but only twisted pairs from the crossover boards to the potentiometers. Coaxial cable could have been used here but was found to be not necessary as these leads are a long way from the power transformer.

Finally, a word about the power transformer. We have only used a single power transformer, as used in the 422 amplifier, to power the two complete 422 amplifier boards. But remember that the frequency spectrum is split up between the high and low channels and hence each amplifier, although called upon to provide the same peak power, only has to handle half the average power. The transformer is thus quite capable of handling the total load as the system is still nominally 50 watts per channel.
ETI TIMING MODULES:

COMPARATOR MODULE

of any Q time, to exclude 'difference' outputs which are due to switching times, etc.

The Q output of a J-K Flip-Flop (4027 (A)) is set to '1' half-way through Q0 time by Q0 and C1. During one word (Q0 time to Q9 time) it will be reset if there are any differences between the numbers set by the BCD switches and the contents of the clock module (SR).

If, however, a whole word passes with no differences between the two sets of data, Q will still be set halfway through the following Q0 time, and Q of Flip-Flop (B), the comparator alarm output, will be clocked high. This alarm output is cleared when power is first applied, and may be cleared or disabled by closing the 'clear' switch.

If the jumper connection J1 is made (indicated by a dotted line), when the alarm output goes high it will stay high until the middle of the next Q0 time, i.e. it will be high for one word time. If this output is connected to the clock module reset connection it will reset the clock module to zero, and leave it counting. This can be used to provide a programmed pulse generator with a range of milliseconds to hundreds of hours. Any number of digits between 1 and 9 can be used to 'set' the comparison time. Unspecified digits will be treated by the comparator as being zero's. As mentioned earlier, any number of comparator modules may be connected to one clock module.

Any enquiries about the three timing modules can be answered by Sintel, of 53a Aston Street, Oxford. Sintel can supply pcbs and components for these projects.

A final note about the clock module described last month. The 4020 first-stage divider should be selected for operation at 5.12MHz. All the Fairchild devices are suitable.
LOW DIFFERENTIAL THERMOSTAT

This circuit evolved as a result of the need for a more satisfactory method of controlling the temperature in our paint heaters which operate at 170°F. The differential of conventional mechanical thermostats was too wide, both in actual rating and in % accuracy, so that severe overheating occurred when the demand for paint momentarily lapsed. The result was poor finish and in a number of cases the destruction of the thermometer (at approx £10 a time).

The introduction of the new thermostat completely eliminated the problem. The circuit consists of a GEC J5G424 Zero Voltage Switch in IC form together with a Mullard 2322 640 00004 which is plastic encapsulated, giving it both mechanical and electrical protection. It is available in four sizes with a temperature coverage from -30 to +200°C.

The RC network, 0.1mF + 100ohms, prevents self latching of the Triac.

The J5G424 is, by nature of its design free of RFI. The type of Triac employed will depend on the loading. We were using 6 and 15 amp loads.

30V REGULATORS

Three-terminal voltage regulators are available in 5,9,12,15,18 and 24V types. If you require a 30V supply use a 24V regulator with a 6.2V zener diode in the earth lead as shown. This increases the voltage to 30V. A 0.1µF capacitor should be connected across the zener diode as shown.

The zener should be of suitable wattage rating. In a similar manner for 27V use a 3.3V zener or for 33V a 9.1V zener.
AUDIO-RF SIGNAL TRACER
PRE-AMP

This economical signal tracer is very useful for servicing and alignment work in receivers and low power transmitters. It is easily constructed on a small piece of matrix board which can be mounted inside a commercially-available probe case or homemade probe. The slide switch can be mounted on the probe housing. A miniature toggle switch could be used as a substitute.

When switched to RF, the modulation on any signal is detected by the diode and amplified by the FET. A twin-core shielded lead can be used to connect it to an amplifier and to feed 6 volts to it.

GO/NO-GO DIODE/TRANSISTOR CHECKER

A diode can be checked by connecting it between C and E. If LED 1 lights the diode is OK and its anode is connected to C. If LED 2 lights its cathode is connected to C. If both light it is a short circuit suitable only as a link!

To check transistors with known pin connections, set VR1 at maximum resistance and connect the transistor. Advance VR1 until one LED lights. If LED 1 lights it is NPN, PNP if LED 2 lights. If both light you have a three-legged link. If neither light you have a three-legged fuse!

To check transistor connections, if unknown, short two of its leads together and check as for a diode making note of which lead/leads respond as anodes. Short two other leads together and do it again. Refer to diagrams above.

TINNING WITH SOLDER WICK

Do not discard the lengths of solder saturated solder wick. Further use can be made of them to plate printed-circuit boards by pre-tinning the joints, prior to inserting components and soldering.

The simple operation is as follows – place the saturated solder wick on the printed board and apply a heated soldering iron to melt the solder in the wick. At the same time, move the wick and iron along sections or joints requiring tinner. A neat plated copper print will result.

PRECISE AUDIO CLIPPER

A differential amplifier makes an excellent audio clipper and can provide precise, symmetrical clipping. The circuit shown commences clipping at an input of 100 mV. The output commences clipping at ±3 V. Matching Q7 and Q2 is necessary for good symmetrical clipping, however, if some asymmetry can be tolerated this need not be done.
HIGH-POWER ZENERED VOLTAGE FROM LOW POWER SOURCES

A power transistor can be used to provide a high power zenered voltage from a low wattage zener. A 400 mW zener can be used where a 10 watt zener is required or a 1 W zener can be used where a 50 to 80 watt zener is required, by using appropriate transistors for Q1 and Q2 in the circuits shown.

Where low rating is required Q1 would be a ASZ 15 (germanium) or an AY9140 (silicon). Q2 could be a 2N3054 (silicon). For higher powers Q1 could be an ASZ18 (germanium) or a 2N2955 (silicon) and Q2 a 2N3055 (silicon) or an AY8149 (silicon).

A heatsink on the transistor is required. The circuit in (a) has the advantage that power transistors can be bolted directly on to a chassis which may serve as a heatsink.

VARIABLE, HIGH VOLTAGE REGULATOR

This regulator is ideal for SSB linear amplifier tube screens. It would also have application in the repeller supply for a reflex-klystron microwave oscillator. CRO deflection amplifier supply is another possible application. Regulation is about 0.5%. The output transistor will need to be mounted on a small, insulated heatsink. A BF459 is preferred (30V Vceo) as the BF458 is sailing a bit close to the wind when the output is down to 50 V.

DOORCHIMES DELAY

Ever get tired of people who repeatedly press your doorbell?

With values shown, this simple circuit will permit one operation every 10 seconds or so. Capacitor C1 charges through R1 when the button is released. Making R1 larger will increase the delay.

FLICKER-FREE FLUORESCENT STARTING

Here is an extremely simple, yet effective modification which will eliminate the annoying flickering when a fluorescent lamp is first switched on. The modification consists of inserting a diode (P.I.V. about 600 V) in series with the starter. This results in a fairly heavy current on initial switch-on, which heats the filaments quickly. When the starter contacts open again, the lamp fires immediately.

NOTE: The effectiveness of the modification, depends largely upon the characteristics of the starter; try and find one that is quick-acting.

My original unit has been working successfully in my desk lamp for the past three years, and I’ve had no problems with dc magnetisation of the ballast, or excessive power consumption on switch-on.
Whenever sequential logic operations are to be performed, a multiphase clock generator is often required. The circuit shown, which uses only two CMOS ICs, was designed by Michel Burri of Motorola’s Geneva applications laboratories. It will produce a pulse on each of the four output lines in turn. These pulses do not overlap one another. Operation of the circuit is self-evident from an examination of the schematic; however, it is interesting to note that the power supply of the MC14001 is derived from the clock input. The maximum operating speed of this circuit is about 1 MHz.

CRYSTAL CHECKER

For checking fundamental HF crystals on a ‘Go-No-Go’ basis, the above circuit works quite well. An untuned Colpitts oscillator drives a voltage multiplier rectifier and a current amplifier. If the crystal oscillates, Q2 conducts and the LED lights. A3 or 6V, 40mA bulb could be substituted for the LED.

ZENER BOOSTS OUTPUT VOLTAGE OF REGULATOR

In this circuit the zener diode raises all voltages — with respect to earth — by the zener voltage, i.e.

\[V_{in\ (max)} + zener \quad V_{in\ (working\ min)} + zener \quad V_{out} = V_{in} + zener \]

As the voltage regulator dissipates all excess power while the zener merely clamps the output voltage above its own voltage, a low wattage zener (250 mW) should be adequate — unless lower voltage taps are used, as in the second example in which the total output is one amp.

For other value zeners, wattages can be worked out by the formula \(W = zener \times current \).

COLOUR CODING COMPONENTS

The resistor colour code can be extended for use in codifying all manner of other components. Zener diodes for example can be thus coded once their parameters have been established. Similarly it assists when building a unit to mark the leads of transformers, coils, transistors etc with short lengths of coloured insulating spaghetti. If for example one has a centre-tapped transformer then from the top of the winding inwards — the code could be top = brown, centre = red, bottom = orange. With a transistor base (B) = 2 = red; collector (C) = 3 = orange; emitter (E) = 5 = green. Just follow a numerical sequence equating numbers with letters of the alphabet.
This device will measure RF voltages beyond 200 MHz and up to about 5 V with the components as indicated. The diode etc should be mounted in a remote probe, close to the probe tip. Sensitivity is excellent and voltages less than 1 V peak can be easily measured. The unit can be calibrated by connecting input to a known level of RF voltage, such as a calibrated signal generator and setting the calibrate control. The output indicates in RMS. As it is it reads about 2 V RMS full scale. This can be increased to 20 V or more by increasing R1 to 20 M (two 10 M in series). The 100 µA meter could be a multimeter if desired.

The square wave source can be a simple IC multivibrator which is used to drive phase splitter Q1 through coupling diode D1. Base bias is established through R1 and the collector and emitter load resistors are R2 and R3 respectively.

The output power transistors Q2 and Q3 in conjunction, with diode D2, serve as a simple high level switch developing a square wave whose peak to peak amplitude is near that of the dc supply voltage.

The output square-wave is coupled via C1 (which must be a suitably chosen high-value electrolytic) and fed into a voltage doubler circuit thus producing a dc output of reverse polarity.

Capacitor C2 is the output ripple filter.

Resistor values are dependent on the original supply voltage – the drive frequency is not critical but signals in the kilohertz region are preferred (2-6 kHz).

HOME-MADE LDR

I had to find a cheap and easy way to improvise for an LDR or photo-transistor. I took several medium power silicon transistors from my surplus box and carefully cut off with a saw and filed the top part of the can, exposing only the silicon chips. They worked quite well as substitutes for LDRs or photo-transistors. For use as an LDR use only the collector and emitter legs. As a photo-transistor use all three legs – emitter base, collector.

In some circuits the component values need not be changed, while in others a change is necessary for the circuit to work. High powered silicon transistors also give a similar effect but they are costly unless found in the surplus box. Germanium transistors cannot be used because of the ‘grease’ present in them.
MEASURING RMS VALUE OF AC WITH A DC DVM

The above circuit may be used for measuring the RMS value of ac (sine wave) with a dc digital voltmeter. It has a frequency response to beyond 10 kHz and will measure signals as low as 400 mV. The error rises at low frequencies, somewhat below 50 Hz, to about 4% mean. The LM301 supply may be as low as ±4 V, or up to ±15 V, if desired, with reduced sensitivity at the lower voltage.

The DVM input must be floating and a differential input is required. To increase the input range a step attenuator may be used.

'BUCKET' REGULATOR

There are a number of applications where a simple cheap form of regulated power supply, giving a supply regulation of the order of 5-10%, is useful. One such application is the class B audio amplifier. The cost of the additional components required to achieve regulation is more than offset by the saving in cost and size of the electrolytic capacitors alone.

Fig. 1 shows the circuit of the regulated supply. The only additional components required to affect regulation are the SCR, R1, and the zener.

At switch on, the reservoir C1 is discharged and the cathode of the SCR is at zero volts. The positive going output from the bridge rectifier will cause gate current to flow via R1 triggering the SCR. The reservoir C1 starts to charge. At the end of the half-cycle the SCR will turn off.

The following half-cycles will repeat the process charging C1 until the supply voltage approaches the zener voltage. However the maximum positive potential at the SCR gate is determined by the zener, so there comes a time when the reservoir will have charged to the point where the SCR gate cannot be driven positive with respect to its cathode. At this stage the SCR will stop firing and no further charging current will be delivered to the reservoir. The reservoir will discharge via the load, whatever power is being supplied, until the gate is once more positive, when the SCR will fire again. One or more half cycles are sufficient to raise the reservoir voltage sufficiently to prevent further firing.

Thus the SCR fires as necessary to keep the reservoir "topped up" and it is this topping up action which gave the regulator its name. The number of times it fires in any particular interval being dependant on the load current taken from the supply.

There are two particularly attractive features of this type of supply. First its efficiency is high, there are none of the power losses associated with either series or shunt regulators.

The second is that it is possible to obtain very simply an indication of the current being delivered. This may be obtained by connecting a LED (in series with a current limiting resistor R3) across the main current limiting resistor R2. The LED will flash each time the SCR conducts and hence the rate at which the flashes occur will depend on load current, the flash rate varying from once every few seconds when only leakage is being made good to continuously under full load conditions.

As an indication of circuit values the following where used for a 25V, 1.5A supply: R1=1.2k, R2=2Ω, R3=330Ω, C1=5000μF, Transformer 30V.

The SCR and bridge rectifier should be rated at full load current, but for many music and speech applications the transformer can be derated as much as 50%.
The waveshape generator shown in this circuit will interest those readers experimenting with sound effects. Basically the circuit is a slow running oscillator with variable attack and decay. A variable amplitude (high impedance) output is available via the 2 meg potentiometer. Figure 2 shows an add-on circuit which should be used if a low impedance output is required. Some of the output waveforms that can be produced are shown in Fig 3.

Here two gates of a 7400 are used to provide photoelectric control in conjunction with an ORP 12 photocell. When light falls on PC1 the potential is applied to the trigger circuit consisting of ½ the 7400. The feedback provided ensures a positive output change at pin 6. The output, whilst PC1 is under illumination, is equal to the supply voltage. R1 enables a small 9V battery to be used. If PC1 is shaded the output at pin 6 is 0V. This may now be used to trigger a relay for an intruder alarm. If this is the case it is wise to use a small mains supply and to incorporate a diode across the relay coil, to prevent high back EMF from destroying the IC.

Good/No Good Battery Tester

This is a simple tester for use with a PP3 or similar battery.

It is wired to a PP3 battery clip remembering that red is connected to –ve of battery and black to the +ve. It uses 3 small LEDs of the same size: one red, one green. Due to the fact that the green LED needs a far greater current, the green will glow only if the battery is in reasonable condition. The red will glow even if battery is down. If the red glow is very faint the battery is no good.
ELECTRONIC LOCK

This device enables a solenoid to be switched on by means of an electronic key. If the correct key is used the circuit will latch, but if an incorrect key is inserted a warning tone rings until the correct key is used. The circuit has automatic switching to turn it on, but this can be replaced by a conventional ON-OFF switch if desired.

The main element of the circuit is G1 the eight-input NAND gate. If all inputs of the NAND gate are high (achieved by closing the right combination of reed switches) the output will be low. The low output is fed to G2 forcing its output high which turns on TR1 energising the solenoid coil. At the same time a low is fed back from TR1's collector to G2's other input latching it. Thus once the solenoid is energised the key may be removed. C1 (0.1µF) ensures that TR1 is always 'off' on switch-on of the circuit.

TR1's collector is also connected to G3's input which along with G4 forms a multivibrator. When TR1's output is low the multivibrator is dis-enabled. However if an incorrect key is used TR1's output will be high and the multivibrator will oscillate. G5 acts as a buffer to drive a loudspeaker.

R9 with RL1 forms the automatic switch on circuit. When R9 is closed RL1 is energised pulling in its contacts to permanently connect the supply. If R9 is opened after this the circuit continues to operate. This means if an incorrect key is used and R9 is closed the alarm tone will continue to ring even if the key is removed.

Nine reed switches are used in the circuit. One to switch on the circuit, one to switch off the circuit and the other eight to provide the correct input combination. The lock opens only if all eight inputs to the NAND gate are high. To do this the circuit is wired so that some reed switches must be on and some must be off. The eight reed switches give 2^8 = 256 possible combinations.

Reed switches that have to be turned on are wired like this:

```
<table>
<thead>
<tr>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
<th>R8</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
</tr>
</tbody>
</table>
```

If the reed switch is not closed the 470Ω will pull gate input to low and the lock will not open.
Reed switches that have to be left open are wired like this.

If the reed switch is closed it will put gate input to low and the lock will not open.

If preferred the reed switches could be replaced by simple ON/OFF switches then the circuit would act as a combination lock, like a tumbler lock.

The construction of the circuit is in no way critical. Veroboard provides a relatively cheap mounting. The connections of Vcc and gnd to the two ICs should not be forgotten!

With many LED TTL logic probes it is difficult to watch the LEDs and the circuit one is testing. The following circuit is an attempt to produce a new sort of probe.

When the probe is in contact with a TTL low (0) the probe emits a low note. With a TTL high (1) a high note is emitted.

The whole circuit uses only two TTL ICs and several auxiliary components. This low component count makes it easy to miniaturise the unit. The power is supplied by the circuit under testing so no battery is required.

The circuit shown is a simple amplifier, the gain of which can be switched between two precisely controlled values by the application of a signal voltage: V. If V is such that Q1 is saturated, then the voltage gain of the circuit is simply \(\frac{R_2}{R_1} \). If the transistor is cut off, then the voltage gain becomes \(\frac{R_3}{R_4} \).

One obvious application of the circuit is if the resistors are adjusted such that the two gains are equal in magnitude, but opposite in sign, (e.g. \(R_1 = 20k, R_2 = 10k, R_3 = 50k, R_4 = 10k \) gives voltage gains of +2 and -2) Then the circuit could be used as a chopper for the input of a DC amplifier.

The value of R5 is largely arbitrary, depending on the magnitude of the chopper signal, V. Its sole purpose is to prevent excess current being drawn by the base of Q1. Suitable components for the op amp and transistor are the 741 and BC182L.
741 TIMER

The circuit shows a very simple timer based on a 741 op amp.
R1 and R2 hold the inverting input at half supply voltage. R4 applies some feedback to increase the input impedance at pin 3, but its value is such that negligible damping of pin 2's voltage occurs. Pin 3, the non inverting input, is connected to the junction of R3 and C. After S1 is opened and C charges via R3. When the capacitor has charged up sufficiently for the potential at pin 3 to exceed that at pin 2 the output abruptly changes from 0V to positive line potential. If reverse polarity operation is required simply transpose R3 and C.

R3 and C can be any values and time delays from a fraction of a second to several hours can be obtained by judicious selection. The time delay is 0.7CR seconds where C is in Farads and R in ohms and hence is completely independent of supply voltage.

100,000Ω DC PROBE?

Most multimeters used for transistor work have an input impedance of 20,000Ω/V.

Occasionally, especially when measuring potentials on high impedance equipment, this sensitivity is sufficient. The circuit shown, however, presents negligible loading on the circuit under test.

A 741 op amp is used with 100% AC and DC feedback to provide a typical input impedance of 10^11Ω and unity gain (as so the contributor, Ed.)

MAKING SLOW LOGIC PULSES AUDIBLE

For monitoring slow logic pulses a Schmitt trigger is connected as an oscillator. The trimpot controls the pitch of the output. Very useful as a keying monitor or digital clock alarm. When the input goes high, the 7413 will oscillate.

DIL DRILLING

Drilling holes in a pcb for 14 and 16 DIL ICs is quite difficult and if the holes are slightly off centre it is tricky to fit the IC. An easy way to get it right use a small piece of 0.1 matrix veroboard as a template.
TONE BURST GENERATOR - This one won't access GB3LO but it's mighty fine for testing loudspeakers! The versatile unit will also test telephone channels and reverberation chambers, and can be modified for use as a 'silent switch' for A/B speaker testing.

CMOS TESTER - A simple and inexpensive battery-operated tester for those CMOS chips that you can't use because they're 'suspect'.

DYNAMIC NOISE FILTER - Improve your 'fidelity-to-noise' ratio with this exceptional flexibility unit which enables you to enjoy once again your aged 78's. You can also use this unit to give at least 8dB improvement in s/n ratio with magnetic tape equipment.

WHAT IS THIS?
Geophysics uses some really sophisticated electronics to find oil and minerals - in one tenth the time of conventional surveys. ETI looks at some of the electronics installed in the aircraft that help to give you more miles per pound.

FEBRUARY ISSUE PUBLISHED JANUARY 9th, 1976
1. Top Projects No. 1
with 21 projects,
published in July 1974. 75p + 15p p&p

2. Top Projects No. 2
with 26 projects,
published in July 1975. 75p + 15p p&p

3. Electronics It's Easy
The first thirteen parts of our popular introductory series. £1.20 + 15p p&p

4. International 4600
Synthesiser
Maplin Electronic Supplies, who supply the parts for this project, have published a book of reprints. £1.50 + 15p p&p
CENTURION INSTRUMENT CASES

Model No. 321 FLAT PACK: Front panel aluminium, rear panel and case, mild steel. Front panel finished in white gloss, other parts finished black, textured finish supplied with aluminium top and bottom trim.

<table>
<thead>
<tr>
<th>MODEL</th>
<th>D (mm)</th>
<th>W (mm)</th>
<th>H (mm)</th>
<th>PRICE (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>221F</td>
<td>152</td>
<td>203</td>
<td>98</td>
<td>12.70</td>
</tr>
<tr>
<td>222F</td>
<td>152</td>
<td>254</td>
<td>159</td>
<td>12.70</td>
</tr>
</tbody>
</table>

Prices also include VAT.

Model Nos. 119 & 121 two part aluminium construction base front and back unit finished in blue hammer stove enamel.

Model Nos. 119 & 121 two part aluminium construction base front and back unit finished in white gloss, other parts finished black, textured finish supplied with aluminium top and bottom trim.

To Whom it may concern,

We are the experts in our field. Why bother contacting anybody else? Call us today on 0442-62757.

Jane Kirkpatrick,
Managing Director.
PO BOX 6 WARE HERTS

AL 60

ONLY £3.95

50w. PEAK (25w. R.M.S.)

- Max Heat Sink temp 90°C
- Frequency Response 20Hz to 100K Hz
- Distortion better than 0.1 at 1KHz
- Supply voltage 15-50 volts
- Thermal Feedback
- Latest Design Improvements
- Load — 3, 4, 5 or 16 ohms
- Signal to noise ratio 80dH
- Overall size 63mm x 105mm x 13mm.

Used in the construction are 4 low noise, high gain, silicon transistors. These units enable you to build Audio Systems of the highest quality at a hitherto unobtainable price. Also ideal for many other applications including — Disco Systems. Public Address Intercom Units. etc. Handbook available 10p.

STABILISED POWER MODULE SPM80

SPM80 is especially designed to power 2 of the AL60 Amplifiers, up to 15 watt (r.m.s.) per channel simultaneously. This module embodies the latest components and circuit techniques incorporating complete short circuit protection.

With the addition of the Mains Transformer BMT80, the unit will provide outputs of up to 1.5 amps at 35 volts. Size: 63mm x 105mm x 30mm.

Complete Price: £27.55 plus 45p postage.

GUARANTEE
SATISFACTION OR YOUR MONEY REFUNDED

M.P.A.30

Enjoy the quality of a magnetic cartridge with your existing ceramic equipment using the new Hi-Pak M.P.A.30 which is a high quality pre-amplifier enabling magnetic cartridges to be used where facilities exist for the use of ceramic cartridges only.

Used in the construction are 4 low noise, high gain, silicon transistors. It is provided with a standard DIN input socket for ease of connection.

Supplied with full, easy-to-follow instructions.

PRICE £2.65

ELECTRONICS TODAY INTERNATIONAL—JANUARY 1976
Anne E. Crump looks at the development of dice and suggests a technological innovation—

ELECTRONIC DICE

THE CUBICAL DIE is the oldest game known to man. The dice our ancestors rolled more than two thousand years ago had pretty well the same configuration of dots as the ones we use today. Even before he gambled with them, primitive man considered them to be magical devices, and by their fall hedivined the future.

It wasn’t very long, of course, before he cottoned on to the possibility of making special dice with which he could cheat! We have found crooked dice along with the treasures of the tombs of the ancient Egyptians, which leads to at least two intriguing possibilities. Did they intend going on into the next world armed with slightly more than a fair sporting chance, or did they take their dice along for old times sake, having used them to acquire all that treasure in the first place? On either count, that’s really no way to get to heaven!

But times have changed. Modern man produces hand-made ‘perfect’ dice for his casinos. Sawn from extruded plastic rods and produced to a tolerance of 1/5,000in, these perfect dice have spots drilled approximately 17/1,000in into each face and filled with a paint of the exact same weight as the plastic which has been removed. Buffed and polished so that no recesses remain, they are then ready for the gambling tables of the world.

Now, after 2,000 years, electronic technology has caught up with the oldest game in the world, and electronic dice have been proven to be even more random than their predecessors. The dice described in this article have been designed with minimisation of cost in mind.

The complete circuit uses 74 series integrated circuits only, plus a few discrete components, and is divided into three main areas, i.e.: the pulse generator, the pulse counter, and the final decoding electronics.

THE PULSE COUNTER

The Pulse Counter is a simple arrangement utilising two 2-input NAND gates with the output of the second gate connected to the inputs of the first — a straightforward and convenient way of producing a low-cost oscillator. The frequency of oscillation is determined by the capacitor and resistance values selected, the actual frequency being relatively unimportant so long as it is as high as possible in order to avoid any possibility of the user being able to predetermine his ‘throw’! A figure of 120kHz is suitable. The oscillator output is connected directly to a 7492 counter, which is used in the ‘divide by six’ mode, and in this way a full scan of counts one to six occurs 20,000 times each second.

THE DECODER

The BCD output of the 7492 is connected to an arrangement of gates which decode the BCD information into suitable drive signals for the LEDs. The decoding arrangements and the diode drive combination have been derived in such a way that the final illuminated display appears in the same dot configuration as a conventional die. The Boolean equations for the gating system are shown on the circuit diagram.

THE PULSE GENERATOR

In order to obtain the maximum degree of randomness, it is essential that the dwell time should be equal on each of the six counts. The main factors affecting these requirements are the stability of the oscillator and also the spread of output reactances around the counter. If, for example, the frequency of the oscillator shifts during the one to six count cycle, the length of time spent on some of the counts will be greater, and the ‘throw’ will therefore be biased in favour of those numbers. In practice, however, the simple oscillator shown gives adequate stability over the significant period of six pulses. Long-term drift being of little importance. A further important point to be borne in mind is the parasitic reactances around the counter area, which could also be instrumental in biasing the ‘throw’ and a good layout of the final unit is therefore essential. A ready-made printed circuit board, complete with assembly and testing instructions, is currently available, and its use is recommended.

The actual degree of randomness of the die is easily obtained by pressing the operating button a number of times, and recording the amount of times each number appears. In order to get a reasonable accurate picture, it is necessary to record at least 3,000 ‘throws,’ from which an average should be worked out. The results obtained are excellent, and in tests have shown the random distribution figures of the electronic dice to be in most instances superior to that of the conventional dice. In any group of 10 or 20 ‘throws’ there will always tend to be a predominance of one or two numbers which does tend to be discouraging when first encountered. It is therefore essential to remember that this also happens when using ordinary dice!

CONSTRUCTION

There are a number of ways in which an electronic die can be activated. The method chosen for the particular unit described here is for the unit to display the last throw until play resumes and the operating switch is pressed again. The last ‘throw’ remains clearly visible for all to see, this avoiding any danger of arguments which might arise if the ‘throw’ was only displayed while the operator’s finger remained on the button. Two microswitches
are shown on this circuit. One is sufficient, but it is useful to have a number of switches in series so that people at different parts of the table can operate the unit by pushing a local button.

Power for the circuit is provided by four 1½ volt transistor radio cells, and the randomness of the counter is unimpaired so long as the brightness of the LEDs is reasonable. As soon as the LEDs begin to dim, the batteries should be changed immediately, as deterioration in the random quality of the circuitry may occur. It is important that the battery supply should not be allowed to fall below 4.5V or to exceed 7V. The voltage adversely affects the random operation and the higher voltage is the maximum safe ceiling at which TTL can be run.

With LEDs and solid-state electronics used throughout, the reliability of the dice is excellent, and the switches should be first to wear out.

The finished product is very much to the design of the individual himself. Double or even treble dice, operating from a single switch or two or three individual buttons, can be made. A buzzer could be added, to be triggered each time a single, double or treble six is "thrown." This is easily done by adding the necessary gating to the outputs of the A, B and C outputs of the 7492 so that the buzzer is activated each time the appropriate combination appears. Some form of sound, even if only the click of the microswitch, is essential in order to prove to other players that the button has actually been pressed, and a further improvement could be a brief audible tone emanating from the dice when activated.

This is easily done by adding the necessary gating to the outputs of the A, B and C outputs of the 7492 so that the buzzer is activated each time the appropriate combination appears. Some form of sound, even if only the click of the microswitch, is essential in order to prove to other players that the button has actually been pressed, and a further improvement could be a brief audible tone emanating from the dice when activated.

It is important to note that in addition to their obvious leisure uses, electronic dice have other varied applications, particularly where statistical calculations are involved, an excellent example being their use for quality assurance in factories. Here, by their use, a truly random selection of the production run of a factory can be obtained for testing purposes. Perhaps if the Romans had had electronic dice, human nature being as it is, the selection of Christians going to the lions would have been a trifle more random? And Nero would still have fiddled while Rome burned — but chances are he'd have been fiddling with an electronic die!

PARTS LIST

- **R1** Resistor 680Ω
- **R2-R6** "" 4k7
- **R7-R10** "" 100Ω
- **C1** Capacitor 0.022µF
- **D1,D2,D3** Diodes 1N4148
- **LED 'A'-LED 'G'** TIL409
- **IC1, IC4** 7400 or 7403*
- **IC2** 7492
- **IC3** 7404
- **SW1, SW2** microswitches

* NB: R2–R6 are not used with the 7400 gates — only with open — collector gates, such as 7403.
Electronic timekeeping

Sintel delivers:

- **Electronic timekeeping**

STOPWATCH

Parts for the ETI Stopwatch System:

- The Stopwatches may be used with larger displays - DL704E (0.3") or FND500 (0.5")
- Without Displays (see other options below)
- With one set of 3 x DL33MB displays
- With two sets of 3

STOPWATCH with one LATCH

- Transistors - Diodes - Wiring Pins - Screws - Sockets - 14 pin - Header -
 Contents. Verobox 75/410.1 - Red perspex front panel - Manganese batteries - clips
 Verobox supplied with the complete kits.

Note that only one of these display PCBs, together with displays, can fit in the 7510J.

FURTHER APPLICATIONS

- Alarm Systems
- Multiple Counter Systems
 - Some possibilities suggested are.

ALARM CLOCK KITS

Components including alarm circuitry: 6 for 6 digit alarm clocks with bleep alarm, snooze and intensity control, using MK50523 IC and LED displays. Kits also include PCBs - active and passive components - IC socket - min. transformer - switches - alarm base - loudspeaker.

- 6 digit Alarm Clock Kit with 0.3" DL704E displays: £34.39
- 6 digit Alarm Clock Kit with 0.5" FND500 Displays: £26.70

CLOCK CRYSTAL TIMEBASE

- 32.768 kHtz Crystal: £46.32
- 50 cps Kit: £34.39
- '50 cps Kit': £46.32
- 16 MHz Quartz Crystal: £52.89

DISPLAYS

- FND500: £34.39
- DL704E: £34.39
- D1704E: £34.39

IC's

- MK50523: £5.60
- MK50520: £5.00
- MM5314: £2.70
- 51701: £2.30
- CA3130: £2.30
- New Motorola McMOS Databook: £2.30

VEROBOXES

- Seven-way Boss Switch: 7 ultra-min. toggle switches in 14 pin DIL
- 7-way Boss Switch: 7 ultra-min. toggle switches in 14 pin DIL

HARDWARE

- LED's for larger displays for alarm clocks.
- CMOS from the leading manufacturers only

FUTURE APPLICATIONS

- Additional options for ETI Stopwatches.

SPORT WATCH

- 15p ppd on orders under £3. Orders sent by 1st Class Post.
- Full Price List and Data with any order, or on request (a large s.a.e. helps)
- Official Orders welcomed, written, phoned or telexed, from Univs., Polys., Nat. Inds. Gvt. Companies, etc. Fastest Delivery for R & D.

SINTEL

53a Aston Street, Oxford
Tel. 0865 43203
Telex: 837650 A/B ELECTRONIC OXF

ADD VAT at 8% to all Prices in this advertisement.

ELECTRONICS TODAY INTERNATIONAL—JANUARY 1976
TCA280A TRIGGER INTEGRATED CIRCUIT

The TCA280A is a monolithic IC designed for thyristor and triac control circuits. It will operate in phase control, synchronous on/off switching and time proportional modes.

Fig. 3 gives a circuit for a typical application as a synchronous on/off switching controller. The synchronous switch gives triggering around the zero crossings of the mains voltage with a typical pulse duration of 160μs. The values of Rg, Rd, and C1 are chosen for triacs requiring a gate current, 1G, typ. of 50mA at VG of 3V. For other triacs see the manufacturer’s full data sheet.

A single phase control circuit using trigger pulse bursts is shown in Fig. 4. If used in conjunction with a triac this will provide full-wave a.c. control and if used in conjunction with a thyristor, gives a controlled half-wave rectifier. Once again, component values are given for the SC45D or similar triac but can be estimated from graphs in the manufacturer’s data.

INTERNAL CIRCUIT

SYNCHRONOUS ON/OFF SWITCHING

SINGLE PHASE CONTROLLER

The TCA280A is a monolithic IC designed for thyristor and triac control circuits. It will operate in phase control, synchronous on/off switching and time proportional modes.

Fig. 3 gives a circuit for a typical application as a synchronous on/off switching controller. The synchronous switch gives triggering around the zero crossings of the mains voltage with a typical pulse duration of 160μs. The values of Rg, Rd, and C1 are chosen for triacs requiring a gate current, 1G, typ. of 50mA at VG of 3V. For other triacs see the manufacturer’s full data sheet.

A single phase control circuit using trigger pulse bursts is shown in Fig. 4. If used in conjunction with a triac this will provide full-wave a.c. control and if used in conjunction with a thyristor, gives a controlled half-wave rectifier. Once again, component values are given for the SC45D or similar triac but can be estimated from graphs in the manufacturer’s data.

SPECIFICATION — typical values

- **Supply voltage**: 14V
- **Output trigger pulse**: 250mA
- **Output voltage drop V11-10**: <2.8V

PACKAGE 16 pin DIL

For pin functions see Figs. 3 & 4.

NOTES: Values of Rg, Rd, and C1 are chosen for triacs requiring a gate current, 1G, typ. of 50mA at VG of 3V. For other conditions see manufacturer’s full data. The recommended applications circuits make use of a mains rectifying diode in series with the mains supply device. Suitable diodes from the Mullard range are the BYX10, BYX94 and the BY127.
The SL415A and SL414A are robust high gain audio power amplifiers each with a separate pre-amplifier. The circuits, which have been optimized to give maximum reliability, have guaranteed power outputs of 5W and 3W respectively under the conditions specified.

PIN CONNECTIONS

<table>
<thead>
<tr>
<th>O/P EARTH</th>
<th>I/P EARTH</th>
<th>COMP.</th>
<th>MAINAMP I/P</th>
<th>PREAMP O/P</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>I</td>
<td>I</td>
<td>C</td>
<td>D</td>
</tr>
</tbody>
</table>

FREQUENCY RESPONSE

![Frequency Response Graph](image)

OPERATING NOTES

Each circuit has been designed in resistance to damage caused by voltage overload or short circuits across the output.

For high inductive loads a high frequency load of 47nF and 22µF connected in series may be required between pins 10 and 1 to enhance stability. When connecting the circuit shown in Figs. 5, 9 and 10 it is recommended that:

(a) The capacitor between Pins 9 and 1 should be kept close to the integrated circuit.
(b) The earth path between Pins 3 and 1 should be kept short.
(c) The earth connection from the supply should be connected to Pin 1 not Pin 3.

The circuits are designed to centre the o/p DC bias point half way between supply and earth. Any variations in this level can be adjusted with the use of the circuit shown in Fig. 4.

The devices should be used with a suitable heat sink of approximately 20cm² (3 in²). Typical advertised prices are SL414A £2.00, SL415A £2.75.

MINIMUM COMPONENTS CIRCUIT

In the 'minimum components' application (which is the simplest possible configuration for the SL414/415) the preamplifier provides a temperature-compensated input bias to the power amplifier (pin 4). The circuit has an input impedance of 100kΩ. With an input of 260mV r.m.s. and a 7.5Ω load, typical power outputs of 2.5W (SL414, 18V supply) and 4.0W (SL415, 24V supply) are obtained. The supply rejection is 6dB.

CHARACTERISTIC

<table>
<thead>
<tr>
<th>SPECIFICATION</th>
<th>CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>SL414A 18V</td>
</tr>
<tr>
<td>Power into 15Ω load</td>
<td>SL414A 2.2W</td>
</tr>
<tr>
<td>Pre. amp. voltage gain</td>
<td>SL415A 3.8W</td>
</tr>
<tr>
<td>Main amp. voltage gain</td>
<td>Pre amp. 24dB</td>
</tr>
<tr>
<td>D.C. input current</td>
<td>Main amp. 26dB</td>
</tr>
<tr>
<td>Pre amp. 100nA</td>
<td></td>
</tr>
<tr>
<td>Main amp. 100nA</td>
<td></td>
</tr>
<tr>
<td>Main amp. o/p impedance 0.2Ω</td>
<td></td>
</tr>
<tr>
<td>Distortion Pre amp. 0.1%</td>
<td></td>
</tr>
<tr>
<td>Main amp. 0.3%</td>
<td></td>
</tr>
<tr>
<td>Noise level -75dB</td>
<td></td>
</tr>
<tr>
<td>Ripple rejection 30dB</td>
<td></td>
</tr>
<tr>
<td>Input impedance Pre amp. 20MΩ</td>
<td></td>
</tr>
<tr>
<td>Main amp. 100MΩ</td>
<td></td>
</tr>
</tbody>
</table>

ABSOLUTE MAXIMUM RATINGS

Supply voltage SL414A +20V
SL415A +25V
Max. peak load current 1.4A
Storage temp. -20°C to +80°C
Operating temp (with suitable heat sink) -10°C to +70°C

OUTPUT BIAS BALANCE CIRCUIT

![Output Bias Balance Circuit](image)
MONO AMPLIFIER WITH TONE CONTROLS

Note: If it is required to make the output quiescent voltage adjustable, replace R138 with a 47kΩ preset.

This circuit has a typical output power of 3W (SL414) or 5W (SL415) into a 7.5 load with an input to the preamplifier of 250mV r.m.s. The preamplifier is used at full gain to offset the 20dB midband loss in the tone control network. The tone control is an insertion 'loss' network between the preamplifier and the main amplifier.

To drive the main amplifier a maximum swing from the preamplifier of 2.5V r.m.s. is required. As the maximum output swing is normally 1V r.m.s. (limited by bottoming) the quiescent output voltage has been raised by inserting the potential divider R2/R3 in the mid-point of the divider via R1 and the feedback by passed at audio frequencies by C7. A component layout using a printed circuit board is shown.

BRIDGE OUTPUT AMPLIFIER

In this application, the load is driven from two antiphase outputs so that twice the single-ended output swing is available. With a 15Ω load, this provides twice the single-ended power and since the second harmonic distortion is out of phase in the load an improved distortion figure is obtained. The interconnections between boards should be kept as short as possible.

The input sensitivity (which can be adjusted by changing the value of R11) is typically 100mV for 5W r.m.s. output using SL415As.
M252 RHYTHM GENERATOR

SPECIFICATION

V GG -12V typ.
V SS 5V typ.
I O (at any pin) 3mA max
CLOCK HIGH 5V
& DATA LOW 0V

INPUTS

PACKAGE 16 lead DIL
M252 B1 - AA
Standard content configuration

The M252 is a PMOS IC which will supply any of fifteen rhythms to drive eight sound generators. A down-beat output is provided and a version (M252 B1AA) is available with standard music content.

RHYTHM SELECTION

The following binary code must be generated to select each rhythm (logic positive)

<table>
<thead>
<tr>
<th>CODE</th>
<th>INPUT 8</th>
<th>INPUT 4</th>
<th>INPUT 2</th>
<th>INPUT 1</th>
<th>STANDARD CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Waltz 3/4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Jazz Waltz 3/4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Tango 2/4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>March 2/4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Swing 2/4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Fox Trot 2/4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Slow Rock 6/8</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Rock Pop 4/4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Shuffie 2/4</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Mambo 4/4</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Beague 4/4</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Cha Cha 4/4</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Bajon 4/4</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Samba 4/4</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Bossa Nova 4/4</td>
</tr>
</tbody>
</table>

** This pin generates a down - beat trigger which can be used to drive an external lamp to indicate the start of each measure.

Typical Advertised Price: E7.50.

Output voltage vs. external supply voltage (V EXT-V SS)

Output voltage vs. supply voltage (V GG-V SS)

64 ELECTRONICS TODAY INTERNATIONAL—JANUARY 1976
1. Understand electronics.
Step by step, we take you through all the fundamentals of electronics and show you how easily the subject can be mastered using our unique Lerna-Kit course.

(1) Build an oscilloscope.
(2) Read, draw and understand circuit diagrams.
(3) Carry out over 40 experiments on basic electronic circuits and see how they work.

2. Become a radio amateur.
Learn how to become a radio-amateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.

Brochure, without obligation to:
BRITISH NATIONAL RADIO & ELECTRONICS SCHOOL, Dept. ETL 125
P.O. Box 156, Jersey, Channel Islands.
NAME
ADDRESS
Block caps please

ETI Rescue Service is fully operational. Many back issues are available and important information can be supplied from those which are not. So if you lose a copy send us details and 40p per issue. (plus 15p postage)

To ensure a regular supply of future issues of ETI, take out a subscription by filling in the coupon and sending it together with a cheque/ P.O. for £5.00 (£5.50 overseas) to:

ETI Subs, Electronics Today, 36 Ebury Street, London SW1W 0LW.

Please send me the next 12 issues of ETI, I enclose £5.00 (£5.50 overseas).
Name
Address

JAN 76
ETI SPECIAL OFFER:

FAIRCHILD
FND500
JUMBO RED LEADS

SIX FOR £5.10
including P&P and VAT

The FND500 is a red GaAsP single-digit seven segment LED display with common cathode configuration. The half-inch (nominal) character height makes the display suitable for applications requiring reading up to twenty feet. The decimal point is on the right and current consumption is typically 5mA per segment (VF is low: 1.7V).

The displays fit DIP sockets with 0.6" pin row, enabling horizontal stacking of 1", typically (minimum 0.6")....The lens cap is integral and viewing angle (to half intensity) is ±25°.

The displays are on offer in multiples of six up to a maximum of five packs per box. The offer closes on 31st January, 1976, and please send an SAE* for the return of your money if the offer is over-subscribed. Enquiries and orders to: SINTEL, 53 Aston St., Oxford OX4 1EW.

Please send me:

<table>
<thead>
<tr>
<th>ITEM</th>
<th>QUANTITY</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIX FND500</td>
<td>1 PACK</td>
<td>£5.10</td>
</tr>
<tr>
<td>TWELVE FND500</td>
<td>2 PACKS</td>
<td>£10.20</td>
</tr>
<tr>
<td>EIGHTEEN FND500</td>
<td>3 PACKS</td>
<td>£15.30</td>
</tr>
<tr>
<td>TWENTY-FOUR FND500</td>
<td>4 PACKS</td>
<td>£20.40</td>
</tr>
<tr>
<td>THIRTY FND500</td>
<td>5 PACKS</td>
<td>£25.50</td>
</tr>
</tbody>
</table>

I also enclose SAE for the return of my money if the offer is over subscribed.

NAME

ADDRESS

JUST SEND THIS COUPON

MHI KIT SYSTEM

MHI-5039 (UNIVERSAL COUNTER)
Uses a new counter chip from MOSTEK (MK5359) and will count up or down at speeds of up to 1MHz with a total system speed of 400kHz. Count and compare registers can be toggled from logic ICs or BCD switches. Features count inhibit, display latch, display decode. Outputs 6 digit drives, BCD and 7-segment, count=compare, count=zero, etc. Application includes: very fast stop watch, sequence timers, auto-crop for tele-cine, batch counters, repeatable "pil" counters, etc. Interfaces with any six digit MHI display kit. £19.50 + VAT

MHI-5378 (DIGITAL CAR CLOCK KIT)
Uses the new National MM5378 Auto-Clock chip. The chip has full car/bank clock facilities with a voltage range of 5-20V with no loss-of-time down to 5V. Timing source is a 2097152 MHz Quartz Crystal which is driven and divided by the clock. Facilities include time display on-off switching with ignition leaving the clock running at all times (draws about 5mA) (display brightness control. MM5378 kit skt CA3081, 2MHz Crystal and Trimmers. F.C.R. £16.10 + VAT. (Interfaces with MHI four-digit display kits.)

MHI-5314 (BASIC CLOCK)
Uses National MM5314 chip to give a four or six digit clock with 12/24 hour readout from 0:00 to 59:59 supply. This kit and chip are so simple that no previous electronics experience is really necessary to have an electronic clock working within a couple of hours. £8.60 + VAT

MHI-5025 (ALARM CLOCK)
For a digital bedroom clock with accurate alarm time, snooze facility and display brightness control. Six digit output in 24hr, 24-hour format. Alarm tone oscillator is on chip and will drive small loudspeaker with single transistor interface. Very simple to assemble. £9.35 + VAT
MHI-5023 as MHI-5025 but with 12/24 hour option. £9.35 + VAT

MHI-7001 (ALARM/DAY/TIMER)
A six digit clock with optional display of date. Has switched alarm output and a selected timer (clock reset, sleep 1 output). Apart from being a very unusual clock this kit can be used for remote switching of tape recorders, etc. We advise the use of a six digit readout with this kit. £10.00 + VAT.

Terms C/W.0. Access. Bankcard. (Simply quote your number and sign). Credit facilities to Accredited Account Holders. All prices on this advert exclude VAT at 8%.

ELVINS
ELECTRONIC MUSICAL INSTRUMENTS
Designers and component suppliers to the musical industry
12 Brett Road, Hackney, London, E8 1JP. Tel: 01-986 8455
ETI PCB's

<table>
<thead>
<tr>
<th>Title</th>
<th>Project No</th>
<th>Issue</th>
<th>Board No</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int. Stereo Amp</td>
<td>102</td>
<td>Nov.</td>
<td>121</td>
<td>£4.21</td>
</tr>
<tr>
<td>20 watts/ch</td>
<td>102</td>
<td>Nov.</td>
<td>121</td>
<td>£4.21</td>
</tr>
<tr>
<td>Dual Power Supply</td>
<td>102</td>
<td>Nov.</td>
<td>121</td>
<td>£4.21</td>
</tr>
<tr>
<td>Wire wrap</td>
<td>102</td>
<td>Nov.</td>
<td>121</td>
<td>£4.21</td>
</tr>
<tr>
<td>Indicator</td>
<td>102</td>
<td>Nov.</td>
<td>121</td>
<td>£4.21</td>
</tr>
<tr>
<td>L.E. Power Supply</td>
<td>102</td>
<td>Nov.</td>
<td>121</td>
<td>£4.21</td>
</tr>
<tr>
<td>Thermostatic Meter</td>
<td>102</td>
<td>Nov.</td>
<td>121</td>
<td>£4.21</td>
</tr>
<tr>
<td>Dual Light Adapter</td>
<td>102</td>
<td>Nov.</td>
<td>121</td>
<td>£4.21</td>
</tr>
<tr>
<td>Ignition Module</td>
<td>102</td>
<td>Nov.</td>
<td>121</td>
<td>£4.21</td>
</tr>
<tr>
<td>Digital Timer</td>
<td>102</td>
<td>Nov.</td>
<td>121</td>
<td>£4.21</td>
</tr>
<tr>
<td>Indicator</td>
<td>102</td>
<td>Nov.</td>
<td>121</td>
<td>£4.21</td>
</tr>
<tr>
<td>Single Free counter</td>
<td>102</td>
<td>Nov.</td>
<td>121</td>
<td>£4.21</td>
</tr>
<tr>
<td>The Receiver</td>
<td>102</td>
<td>Nov.</td>
<td>121</td>
<td>£4.21</td>
</tr>
<tr>
<td>Graze Light Warning</td>
<td>102</td>
<td>Nov.</td>
<td>121</td>
<td>£4.21</td>
</tr>
<tr>
<td>Automatic Car</td>
<td>102</td>
<td>Nov.</td>
<td>121</td>
<td>£4.21</td>
</tr>
<tr>
<td>Thistle Alarm</td>
<td>102</td>
<td>Nov.</td>
<td>121</td>
<td>£4.21</td>
</tr>
<tr>
<td>International Battery Charger</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tacto Timing Light</td>
<td>102</td>
<td>Nov.</td>
<td>121</td>
<td>£4.21</td>
</tr>
<tr>
<td>Electronic Ignition</td>
<td>102</td>
<td>Nov.</td>
<td>121</td>
<td>£4.21</td>
</tr>
<tr>
<td>C/O Tacks</td>
<td>102</td>
<td>Nov.</td>
<td>121</td>
<td>£4.21</td>
</tr>
<tr>
<td>Car Name</td>
<td>102</td>
<td>Nov.</td>
<td>121</td>
<td>£4.21</td>
</tr>
<tr>
<td>Auto Amp</td>
<td>102</td>
<td>Nov.</td>
<td>121</td>
<td>£4.21</td>
</tr>
<tr>
<td>ET Four Input Mixer</td>
<td>102</td>
<td>Nov.</td>
<td>121</td>
<td>£4.21</td>
</tr>
<tr>
<td>Supper Stereo</td>
<td>102</td>
<td>Nov.</td>
<td>121</td>
<td>£4.21</td>
</tr>
<tr>
<td>100W Guitar Amp</td>
<td>102</td>
<td>Nov.</td>
<td>121</td>
<td>£4.21</td>
</tr>
<tr>
<td>Master Mixer</td>
<td>102</td>
<td>Nov.</td>
<td>121</td>
<td>£4.21</td>
</tr>
<tr>
<td>Stage Mixer</td>
<td>102</td>
<td>Nov.</td>
<td>121</td>
<td>£4.21</td>
</tr>
<tr>
<td>The Over LD B</td>
<td>102</td>
<td>Nov.</td>
<td>121</td>
<td>£4.21</td>
</tr>
<tr>
<td>Music Synthesizer</td>
<td>102</td>
<td>Nov.</td>
<td>121</td>
<td>£4.21</td>
</tr>
<tr>
<td>Digital Impedance Meter</td>
<td>102</td>
<td>Nov.</td>
<td>121</td>
<td>£4.21</td>
</tr>
<tr>
<td>Dual Beam Adaptor</td>
<td>102</td>
<td>Nov.</td>
<td>121</td>
<td>£4.21</td>
</tr>
<tr>
<td>I.C. Power Supply</td>
<td>102</td>
<td>Nov.</td>
<td>121</td>
<td>£4.21</td>
</tr>
<tr>
<td>Voltmeter</td>
<td>102</td>
<td>Nov.</td>
<td>121</td>
<td>£4.21</td>
</tr>
<tr>
<td>Dual Power Supply</td>
<td>102</td>
<td>Nov.</td>
<td>121</td>
<td>£4.21</td>
</tr>
<tr>
<td>Int. 422 Stereo Amp</td>
<td>102</td>
<td>Nov.</td>
<td>121</td>
<td>£4.21</td>
</tr>
</tbody>
</table>

CROFTON ELECTRONICS LTD.
Dept. C, 124 Colne Road, Twickenham, Middx. 01-898 1569

AMTRON KITS
- **UK 320** Radio Control Transmitter 4 channel £17.50
- **UK 105/C** Microtransmitter £8.07
- **UK 325** R/C 'Gxc2' Channel Splitting Unit 1000 kc 2000Hz £8.34
- **UK 330** Gxc2 Channel Splitting Unit 1500 kc 2500 Hz £8.34
- **UK 220** Signal injector £3.53
- **UK 345/A** Superhet R/C Receiver £8.87
- **UK 555** 20MHz Field Strength Meter £9.65
- **UK 780** Capacitive Discharge Electronic Ignition Unit Neg. Earth £17.33
- **UK 875** AM/FM Antenna Amplifier £4.16
- **UK 230** D.F.H./U.H.F. Antenna Amplifier £8.87
- **UK 285**

LITRONIX DISPLAYS
- **DL704** Common Cathode (See ETI Digital Frequency Meter in this issue) £1.80 each 4 for £7
- **DL707** (Common Anode) £1.80 each 6 for £10

MACK'S ELECTRONICS

MACK'S ELECTRONICS FOR MOTOROLA MC/MOS
- **MC14001CP Quad 2 Input NOR** 20p
- **MC14002CP Quad 4 Input NOR** 40p
- **MC14003CP Hex Inverter Buffer** 80p
- **MC14010CP Quad 2 Input NAND** 60p
- **MC14015CP Quad 2 Input NAND** 60p
- **MC14021CP 8 Bit Static Shift Register** 1p
- **MC14023CP Triple Three Input NAND** 80p
- **MC14027CP Dual J-K Flip Flop** 20p
- **MC14042CP Quad Latch** 1p
- **MC14046CP Phase Locked Loop** 20p
- **MC14151CP 8 Segment Latch Decoder Driver** £2.12
- **MC14528CP Dual Monostable** 90p

ALL PRICES INCLUDE V.A.T. Please allow 20p to cover P. and P.

The revolutionary SUPERTESt ICE 680R outstanding features:

- Full 0.05% D.C. Nom. P.O.S. accuracy
- Feature screened against external magnetic fields
- Case withstand small case dimensions (72.5 x 50 x 20mm)
- Accuracy and stability (1% D.C., 3% A.C.) at extended intervals
- Complexity and ease of use and maintainability
- Full range of accessaries
- Overall view is considered without disturbing
- 120 bits of measurement 0-10 range

MACK'S ELECTRONICS FOR FAIRCHILD
- **14 Pin Dlly var. voltage Regulator** 55p
- **FAIRCHILD 741** 30p
- **SIGNETICS NE555v** 60p
- **8 Pin Dlly Timer** 60p
- **FERRANTI ZN 414** £1.25
- **Radio Chip**
- **MOTOROLA MC 1310P** £2.10
- **14 Pin Dlly Coloured Stereo Decoder**
- **MOTOROLA MC4000B** £1.65
- **1 Watt Audio Amp**
- **NATIONAL SEMICONDUCTOR**
- **LM380** £1.20
- **8 Pin Dlly Audio Amp** 1p
- **NATIONAL SEMICONDUCTOR**
- **LM380-8** 1p
- **14 Pin Dlly Stereo Pre-Amp** £1.65
- **NATIONAL SEMICONDUCTOR**
- **LM3900** £69
- **14 Pin Dlly Quad Amp**
- **NATIONAL SEMICONDUCTOR**
- **LM314** £4.35
- **24 Pin Dlly Clock Chip**
PART 2

Op Amps

Two practical projects aid understanding

by J.T. NEILL

LAST MONTH the basic theory of operational amplifiers was given. This month we give constructional details of, firstly, a dual power supply suitable for running all the units to be described in this series, followed by the description of a sine wave audio oscillator. The oscillator is the first of a series of small projects designed to give practical experience with op-amps.

THE POWER SUPPLY

The limitation when attempting to reduce the size of any small piece of equipment is, with the present state of the art, the dimensions of the mains operated power supply required to drive it. Thus although an oscillator can be constructed with one IC and a few passive components, the companion ac power supply, by comparison, is extremely bulky. Thus it is fairly pointless to attempt to construct the power supply in such a way as to minimize its total volume. This is not really a disadvantage, however, as the power supply can be used to power other circuits and the diminutive oscillator can, of course, be powered by separate, small, batteries when that is desirable.

Small size may not be a feature of the power supply, but it does have several important characteristics, namely, automatic short circuit protection and good voltage stabilisation. A brief specification is given in Table 1, while the full circuit diagram appears in Fig. 1.

<table>
<thead>
<tr>
<th>TABLE 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
</tr>
<tr>
<td>Output voltage</td>
</tr>
<tr>
<td>or</td>
</tr>
<tr>
<td>or</td>
</tr>
<tr>
<td>Output current</td>
</tr>
<tr>
<td>Protection</td>
</tr>
<tr>
<td>Regulation</td>
</tr>
<tr>
<td>Hum and noise</td>
</tr>
</tbody>
</table>

Consider first that part of the circuit above the dotted line.

Diodes D1 and D2 full-wave rectify the transformer output and charge C1 positively. Capacitor C1 has a sufficiently large value to filter out nearly all the 100 Hz ripple component and provide a smooth dc to the regulator.

The constant potential across the Zener diode D3 maintains the base of Q1 similarly constant. Should the mains voltage vary, or the load current alter, then the output voltage will tend to change too; however, that voltage is fed, via the diode D4, to Q1 emitter, where it is compared with the Zener voltage at Q1 base. Thus, the collector current of Q1, and hence the base current of Q2, will alter, so effectively changing the emitter-collector impedance of Q2 in such a way as to correct for the original variation. The voltage drop across D4, D8 compensates for the drop across Q1 and Q3 thus ensuring the output voltage is the same as the zener voltage.

Such a configuration will give good load regulation but very large variations in mains voltage will not be counteracted as well as is done in some other circuit designs. This is because the Zener diode is fed from an unstabilised supply. Improvement in output voltage stability – by the order of a factor of five or so – can be achieved by modifying the circuit to drive the Zener from the output, rather than the input, of the regulator, but this would not permit the incorporation of short-circuit protection components, in an arrangement now to be described.

TABLE 2

<table>
<thead>
<tr>
<th>TABLE 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency range</td>
</tr>
<tr>
<td>or</td>
</tr>
<tr>
<td>Output level</td>
</tr>
<tr>
<td>Output impedance</td>
</tr>
<tr>
<td>Min. load at 1 Vrms</td>
</tr>
<tr>
<td>Power supply needed</td>
</tr>
<tr>
<td>or</td>
</tr>
</tbody>
</table>

ELECTRONICS TODAY INTERNATIONAL - JANUARY 1976
connected now to earth, is not more positive than its cathode; accordingly, D4 can be considered to be absent and the effective circuit arrangement is as in Fig. 2. The base voltage of Q1 is still fixed (by the voltage across the Zener) at 12 V with its emitter taking up a voltage about 0.7 V less. This fixed voltage appears across R2, which means that a fixed current flows through R2 and Q2 into the base of Q1 and hence, the emitter current of Q1 is fixed also. The emitter current of Q2 will be larger than its base current by a factor equal to the current gain of transistor Q2. The emitter current of Q2 is the load current however, so that it can be seen that, under short circuit conditions, a constant current of a magnitude determined by R2 flows into that short circuit.

A suitable value of R2 must be selected to obtain the desired short circuit current. Here, it is chosen so that 210 mA flows in short circuit conditions. It is under these conditions that the greatest power dissipation occurs in Q2 and accordingly it has been ensured that a continuous short circuit will not give rise to overheating of that transistor.

In point of fact, about 3.4 watts are then dissipated in Q2, a value well within the capability of the transistor type employed. It is bolted to, but insulated from, the die-cast box in which the power supply is housed, so that it is thereby provided with a very large heatsink. Accordingly, in normal use all components run with hardly any temperature rise, and even when running into a short circuit, the combination of current limiting and large heatsink ensures that the power supply is not damaged.

What has been discussed so far is a single power supply, giving an output of 12 V. The actual unit contains two such supplies, as Fig. 1 shows, of similar circuit configuration, but, in the second case, a PNP transistor is used instead of an NPN and vice versa, and with a negative supply voltage, derived from D5 and D6, fed to it. The Zener diode and its electrolytic capacitor, as well as the germanium diode, are all connected with the opposite polarity from before. Therefore, a stabilised and protected −12 volts appears at the output, relative to the centre supply terminal. As quoted in the specification, this permits the output from the power supply unit to be connected in any one of three configurations:

1. +12 V and −12 V relative to earth
2. +24 V relative to earth
3. −24 V relative to earth

This is achieved by connecting the two supplies in series, with the common point brought out as an external connection. Further, this common point is not earthed, but a separate earth terminal provided. The three different modes of operation are then obtained by means of the appropriate external connections — see Fig. 3.
Op Amps

For use with the type of operational amplifier dealt with here, the first mode i.e. ±12 V will usually be employed.

The rated output, of 100 mA from either side, will be found to be more than adequate for the intended use, since type 709 and 741 op amps. draw less than 5 mA each, unloaded.

A suggested layout and constructional technique for the dual power supply is given in Fig. 4, but the layout is by no means critical and the constructor may employ any alternative method. Nevertheless, a robust housing is required and the best is probably a die-cast box — any small extra expense incurred, to obtain such a convenient and easily worked case, is well worthwhile.

THE OSCILLATOR

Now for the first constructional project using an operational amplifier. As mentioned earlier, this is a sine wave audio oscillator. The circuit is given in Fig. 5 and its specification in Table 2.

The oscillator makes use of the well known Wien-bridge network to set the frequency of operation. A resistor (in this case RV1a and R1) and a parallel capacitor (either C1 or C2) are connected to further resistors (RV1b, RV3 and R4) in series with a further capacitor (either C3 or C4). It is a property of the Wien network that the junction of the two RC arms, has, at a single frequency only, a voltage in phase with, but smaller than, that applied to the whole network. Since, in the oscillator, this in-phase voltage is fed to the non-inverting terminal of the op. amp. it constitutes positive feedback, and thus oscillations will occur and be maintained at one specific frequency — a frequency determined by the values of the resistors and capacitors employed in the Wien network.

So much for the frequency of oscillation. What of its amplitude?

Consider for a moment what would happen if, with the oscillator already giving a sine wave output, the output amplitude should increase for some reason. If it continues to do so, eventually the voltage will become so large that it will be limited by the supply rails and a clipped sine wave will result. Conversely, if the amplitude of oscillation should decrease, then oscillations will eventually die away to nothing.

Such variations in amplitude can easily arise due to temperature changes etc., and will in any case occur as the frequency is altered, due to tolerances in the capacitor values and tracking errors in the twin-gang potentiometer.

Thus, some means of automatic gain control is essential in order to maintain a constant output amplitude. It will be recalled that the signal voltage applied to the op. amp. non-inverting input was smaller than the output voltage due to the attenuation in the Wien network. To maintain oscillation the op. amp. must have a gain equal or exceeding this attenuation — which is in fact x3. The desired gain is obtained by selecting the ratio of feedback resistance to input resistance of the inverting input (RV2 + R3)/R2.

If the overall gain, including feedback, exceeds unity the circuit will produce sine wave oscillation at a frequency set by the Wien network.

Stabilisation of the gain is brought about by the action of diodes D1 and D2.

When the instantaneous output voltage is close to zero, neither diode conducts, since even a germium diode requires 0.4 volts or so forward voltage to bias it on. Consequently, the negative feedback loop is open (giving maximum gain) and, under the action of the positive feedback via the Wien network, oscillations build up rapidly. As soon as their amplitude is sufficient to bias either D1 or D2 (depending on the polarity of the output voltage swing), then R2, R3 and RV2 provide negative feedback, so limiting oscillations to a convenient level.

Re-inforcement of such oscillations takes place close to each zero crossing when D1 and D2 are open i.e. non-conducting; the setting of RV2 determines the final amplitude.

This method of stabilisation does give rise to a very small amount of crossover distortion, but the effect of this can be minimised by setting VR2 for the largest possible sine wave without clipping. In any event, some distortion is a small price to pay for such a simple, easy-to-get-working sine wave oscillator and, further, it is a low level of distortion — some class B audio amplifiers are worse!

Range switching is confined to a choice of two ranges, in the interest of simplicity and cheapness, but more ranges could easily be provided if the constructor is so inclined.
The frequency ranges mentioned in the specification are a little unusual, in that most audio generators provide ranges starting and ending at 1 kHz, 10 kHz and so on. However, in the present case, the selection of easily available components having standard values produced the ranges shown and these were, in fact, found to be convenient in practice.

A simple emitter-follower output stage completes the unit, with a logarithmic potentiometer as a level control, enabling the output to be set from 1 V rms down to 10 mV rms or so.

Suitable compensation components R5, C5 and C6 are required for the type 709 op. amp. A layout found suitable for the oscillator is given in Fig. 6. Notice that this calls for a box of only 100 x 75 x 30 mm, which, whilst making the oscillator quite small and neat, does not result in cramming of the layout, which is straightforward and easily followed.

With wiring up completed and thoroughly checked, switch on and, if possible, monitor the output on an oscilloscope. No 'scope? Then a pair of headphones, of reasonably high impedance, can be used instead. Set RV4 about half way, S1 to “low” and RV1 about half way. If there is no output, adjust RV2; clockwise rotation should give increased output. With an ac meter, measure the signal level at the junction of D1, D2 and RV2. Adjust RV2 for 3 volts rms. This will ensure the highest output level (thus reducing the effect of crossover distortion) consistent with sine wave operation (no clipping). This should provide about one volt rms at the output.

It was found on the prototype that changing to higher frequency range gave a slightly reduced output — doubtless due to the use of 10% tolerance capacitors in the Wien network. Closer tolerance capacitors are, of course, more expensive but the amplitude difference may be overcome by adding small capacitors to either C1 and C3 or C2 and C4 whichever reduces the amplitude difference. Variation of output level as RV1 is
Op Amps

PARTS LIST - AUDIO OSCILLATOR

IC1 Integrated Circuit: 709
Q1 Transistor BC107,108
D1,D2 Diode OA95
R1 Resistor 1k, 1/8W
R2, R3 4.7k, 1/8W
R4 470 1/8W
R5 1.5k
R6 15k
R7 330k
R8 3.3k
C1,C3 Capacitor 0.01µF polyester
C2,C4,C7 0.1µF polyester
C5 10µF 0.1/8W polyester
C6 10µF electrolytic
C7 10µF electrolytic
R1 Potentiometer 10k + 10k
R2, R2'' 5k pre-set (N0rizontal)
R3, R3'' 1k pre-set (N0rizontal)
R4, R4'' 10k logarithmic
S1 Switch DPDT
Aluminium box 100 x 75 x 40 mm
Veroboard, 0.1" pitch 80 x 62 mm
8 pin IC holder
3.5 mm jack

rotated, due to tracking errors between RV1 sections, can be minimised by adjustment of RV3. To do this, set RV1 close to its high frequency end. Adjust RV3 to give about the same level of output as with RV1 at mid-travel. If the twin gang potentiometer RV1 is particularly poor in its tracking an alteration to the value of R4 may be called for.

Calibration of the frequency scale is always a problem with any home constructed audio equipment such as this oscillator. Comparison with other audio signals is one method, either by ear, oscilloscope or frequency counter. Ideally comparison with another oscillator will allow the frequency scale to be marked up accurately.

Regarding alternative components: a 741 in place of a 709 will function well, except for some slow rate limiting at the higher frequencies, leading to distortion. If a 741 is used delete C5, C6 and R5. A type 301 may also be used; in this case C5, C6 and R5 are deleted as before and a 10 pF capacitor is fitted between pins one and eight. Almost any silicon NPN transistor will be satisfactory for Q1, but some alteration in R7 value may be necessary. Silicon diodes for D1 and D2 give rise to much greater levels of crossover distortion, due to their greater forward voltage drop.

This little oscillator will be found to give a sufficiently pure sine wave to assist in the testing of almost any audio equipment, its restricted frequency range being no great drawback for that work.

A truly portable oscillator can be made by replacing the dual 12 volts batteries by two small nine volt batteries. If this is done, however, some re-adjustment of RV2 and a reduction in the value of R6 to give a sine wave free from clipping, will be required.

to be continued...

Enter the GREAT BI-PAK CHRISTMAS COMPETITION!

WIN A 22" COLOUR T.V. FREE!

2nd PRIZE: A complete Hi-Fi outfit comprising a Legionaire Amplifier, Record Deck and EMI Speaker Kits.
3rd PRIZE: Black and White mains/battery Television.
4th PRIZE: An Electronic Calculator.
PLUS: 49 runner-up prizes of Electronic Slide Rules.

HOW TO ENTER

You are allowed one line for every £1.00 spent with Bi-Pak. Opposite you will find illustrated, 20 electronic symbols. Just choose the correct descriptions for these from the 30 alternatives shown and enter the numbers of the descriptions in the entry coupon and must bear the entrant's full name and address.

RULES

There is no entry fee but one line is allowed for every £1.00 spent with Bi-Pak. Every entry must be made on a proper entry coupon and must bear the entrant's full name and address. All accepted entries will be assessed and the Adjudicating Committee will award the FIRST PRIZE of a COLOUR TELEVISION to the competitor they consider to show the correct answers and who submits the best slogan. The remaining prizes will be awarded for the next best entries in order of merit. Closing date February 25th. Entries arriving after this date will be disqualified.

No responsibility can be taken for entries lost or delayed in the post or otherwise. Proof of posting will not be accepted as proof of receipt. All decisions of the Adjudicating Committee will be final and legally binding. No correspondence will be entered. Winners will be notified and the result published in the earliest possible issue of the magazine.

The competition is open to all except employees (and their families) of Bi-Pak Semiconductors. We regret that this competition is restricted to U.K. residents only. Entrants must agree to abide by the rules of the competition. All entries become the property of Bi-Pak Semiconductors and any slogan submitted may be used at the discretion of the company.

SLOGAN
Name
Address

SEND TO BI-PAK P.O. BOX 6, WARE, HERTS.

ELECTRONICS TODAY INTERNATIONAL - JANUARY 1976
... and now the
MINISONIC II

Electronic Music Synthesizer

Based on the original P.E. Minisonic the Mark II is a three-octave keyboard instrument which sets new standards of performance and flexibility designed for construction by the amateur electronics enthusiast or "do-it-yourself" musician. The Minisonic II has a truly "professional" sound which has to be believed.

Features:

- Pre-finished case including panel and solid wood feet and chassis.
- Push-button, phishing, enabling accurate and rapid selection or modulation of signal settings.
- Twin extended range DCOs - 30kHz - 35kHz.
- VCO synchronization facility enables "phase-lock" to be achieved up to the ninth harmonic. An invaluable asset when mixing in conjunction with ring modulator. Stabilizes entire obligation.
- Ring modulator section enables the production of a wide range of complex waveforms. Used in conjunction with a phase inverter to produce an infinite range of sounds.
- Star features include:
 * VCO synchronization facility enables "phase-lock" to be achieved up to the ninth harmonic. An invaluable asset when mixing in conjunction with ring modulator. Stabilizes entire obligation.
 * Push-button patching enabling accurate and rapid selection or modulation of signal settings.
- Star features include:
 * VCO synchronization facility enables "phase-lock" to be achieved up to the ninth harmonic. An invaluable asset when mixing in conjunction with ring modulator. Stabilizes entire obligation.
 * Push-button patching enabling accurate and rapid selection or modulation of signal settings.
- Star features include:
 * VCO synchronization facility enables "phase-lock" to be achieved up to the ninth harmonic. An invaluable asset when mixing in conjunction with ring modulator. Stabilizes entire obligation.
 * Push-button patching enabling accurate and rapid selection or modulation of signal settings.
- Star features include:
 * VCO synchronization facility enables "phase-lock" to be achieved up to the ninth harmonic. An invaluable asset when mixing in conjunction with ring modulator. Stabilizes entire obligation.
 * Push-button patching enabling accurate and rapid selection or modulation of signal settings.
- Star features include:
 * VCO synchronization facility enables "phase-lock" to be achieved up to the ninth harmonic. An invaluable asset when mixing in conjunction with ring modulator. Stabilizes entire obligation.
 * Push-button patching enabling accurate and rapid selection or modulation of signal settings.
- Star features include:
 * VCO synchronization facility enables "phase-lock" to be achieved up to the ninth harmonic. An invaluable asset when mixing in conjunction with ring modulator. Stabilizes entire obligation.
 * Push-button patching enabling accurate and rapid selection or modulation of signal settings.

For first-time builders we offer a complete kit of parts to construct this fabulous instrument.

WANT TO KNOW MORE? For full details send a 5" x 4" S.A.E.

As demonstrated "Live" at the Audio Fair 1975
New Course in Digital Design

Understand the latest developments in calculators, computers, watches, telephones, television, automotive instrumentation...

Each of the 6 volumes of this self-instruction course measures 11½" x 8¼" and contains 60 pages packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.

After completing this course you will have broadened your career prospects and considerably increased your fundamental understanding of the changing technological world around you.

£3.95 plus 50p

Design of Digital Systems contains over twice as much information in each volume as the simpler course, Digital Computer Logic and Electronics. All the information in the simpler course is covered as part of the first volumes of Design of Digital Systems which, as you can see from its contents, also...

Also available - a more elementary course assuming no prior knowledge except simple arithmetic.
In 4 volumes:
1. Basic Computer Logic
2. Logical Circuit Elements
3. Designing Circuits to Carry Out Logical Functions
4. Flip flops and Registers

Offer. Order this together with Design of Digital Systems for the bargain price of £9.25, plus 50p p&p. Payment may be made in foreign currencies. Quantity discounts are available on request.

Guarantee - 100% risk to you
If you are not entirely satisfied with Design of Digital Systems or Digital Computer Logic and Electronics, you may return them to us and your money will be refunded in full, no questions asked.

£5.95

To: Cambridge Learning Enterprises,
FREEPOST, St. Ives, Huntingdon, Cambs PE17 4BR

*Please send me set(s) of Design of Digital Systems at £6.45 each, p&p included

*or set(s) of Digital Computer Logic and Electronics at £4.45 each, p&p included

*or combined set(s) at £9.75 each, p&p included

Name: __
Address: _______________________________________

*delete as applicable.

No need to use a stamp—just print FREEPOST on the envelope.

ELECTRONICS TODAY INTERNATIONAL—JANUARY 1976
WE CONTINUE our discussion of active filter design following our analysis of single and multiple feedback systems. The most common active filter is the multiple feedback path design shown last month. Other options open to us are to use an op-amp set up as either a controlled source with added elements — see Fig. 1, or as the negative-impedance converter shown schematically last month. These can offer certain advantages over the voltage-amplifier design but suffer some disadvantages. NIC devices, for instance, do not give the ideal zero output impedance. Stages must be buffered to retain designed performance for example, when they are cascaded to obtain higher orders. One the good side is the small number of passive elements needed. Fig. 2 compares the four alternatives showing that no one type is exclusively the best choice.

At this stage we can only suggest that details of designs can be found in the many text books and application notes now available. Very few people would attempt (or even could) design an active filter from basic theory today. There are now available many well-prepared circuit design guides — we heartily recommend the Burr-Brown "Handbook of Operational Amplifier Active RC Networks". This contains twelve basic circuits, along with quite manageable design procedures for each, in which desired values are put in formulae to arrive at circuit values for low-pass, band-pass and high-pass requirements. The Butterworth response is said to be maximally flat (that is as flat as possible) in the pass-band region. It has the optimum constancy possible with a given number of available peaking resonances (the complex passive or active filter circuits can be regarded as a group of stagger-tuned resonating sections, each arranged to peak just aside of the others, thereby, providing a broadened response band and a reject region). Fig. 3 shows the kind of Butterworth responses obtainable. Note that each passes through the 3 dB, down half power, point. The order (a mathematical term denoting the number of resonances available) of the filter is denoted 'n' in the chart. A typical roll-off rate is 20 n dB/decade so a fourth order Butterworth response filter (which can

FILTER CHARACTERISTIC TERMINOLOGY

The ideal edge on a filter characteristic is usually a sharp “square” response with attenuation occurring instantly as the frequency passes through the corner point. It should also have a constant response level at all points in the pass-band regions. As well as the rudimentary RC filter characteristic which falls off at 20 dB/decade from a breakpoint, two other kinds of response are commonly encountered. These are Butterworth and Chebyshev responses. Both derive their names from persons who developed the mathematics involved — (Butterworth designed filters around 1930, Chebyshev developed certain mathematical theory in his study of steam-engine linkages around 1850).
be realised by either passive or active methods) will attenuate at around 80 dB/decade.

Whereas the pass-band response is reasonably constant, the rate of roll-off is not as good as can be obtained if the resonating sections are staggered differently. Other criteria of staggering the resonances can provide higher roll-off rates but only by introducing “ripples” in the pass-band response. When these individual ripples have equal amplitude across the pass-band response Chebyshev polynomials describe the shape, thus giving the name to an alternative response situation. As with Butterworth designs the higher the order the better the roll-off rate as can be seen diagrammatically in Fig. 4. The depth of ripple that can be tolerated also influences the roll-off rate – the smaller the variation that can be allowed the less the roll-off rate. (This can be readily seen by sketching in the required number of ripples of given depth at the appropriate scale).

Normally Butterworth or Chebyshev response filters will be of order 1 to 4 but higher orders are possible. These two forms are not the only sophisticated filter responses available: other mathematical criteria could be used to set up workable mathematical equations for designing other networks. These two will, however, meet most demands required and all filter design, as we have seen, is dominated by need to compromise between what is needed and what can be handled mathematically.

PHASE SHIFT AND DELAY FILTERS

These act to provide a phase shift to a signal without selectively attenuating the frequency content. They are sometimes called all-pass filters. The amount of phase shift of practical circuits, however, usually varies with the frequency of the signal even though the amplitude response is invariant. Constant time-delay or linear-phase filters have a reasonably straight (linear) phase response as shown in Fig. 5. The so-called Bessel filter approximates this response using a workable mathematical formulation. Fig. 6 gives the general configuration of such a method realised as an active filter design.

COMPONENTS TO USE

Resistors – In non critical applications the normal 20% tolerance carbon composition resistor may be acceptable. If tighter filter characteristics are needed then one must resort to more expensive resistors such as 5% or closer tolerance carbon composition. Even better, use
Sometimes permissible to hand choose requirements of the op-amp. Procedures an open-loop gain at least 50 times the filters also add gain; they should have the more critical the need the better long-period being a factor, filters but this is not so. The main factor is a low offset current, this being especially important in long-period filters. As a general rule the more critical the need the better the op-amp should be. When op-amp filters also add gain they should have an open-loop gain at least 50 times the filter gain. Many active-filter design procedures enumerate the requirements of the op-amp.

RESPONSE TO TRANSIENTS
Filters of second order and higher invoke the characteristics of resonating circuits for their operation. In passive filters we can readily identify the inductance and capacitance; in active circuits these may not be so obvious, the mathematical expression showing that resonances do occur.

When a step change in signal is applied to a resonant circuit, the circuit 'rings', that is, the output rises rapidly but then oscillates with decreasing amplitude to the final value as indicated in Fig. 7. The extent to which a resonant circuit rings is decided by the damping provided -- the higher the Q of the resonant configuration the greater the ringing effect.

It is not hard to see that higher order filters, therefore, will tend to ring more than the lower order designs when transient signals appear at their input terminals. Transients occur in practice as noise spikes, switching spikes, sudden signal appearance and departure.

THE S-PLANE, POLES AND ZEROS
(For the advanced reader)

S-Notation
The above study of filters can only act as a guide to filter selection. From there one must turn to the many articles and books available for details. To make good use of such material it is necessary to have a basic understanding of the mathematical methods used. This section is given to assist the more advanced reader. It is possible to get by without this information, provided a suitable configuration and design procedure can be located. Therefore do not be concerned if you are unable to understand this section.

Scanning through even basic, well-organised books on filter (and feedback amplifier) design the terms transfer function, s-plane, poles, zeros and root-locus will be encountered. Sadly, most books omit to provide the background explaining what this is all about. The concepts are not difficult to grasp, any confusion arising almost certainly from the number of synonymous terms used and the fact that the concepts are, perhaps, quite alien to begin with.

We have seen how reactive elements (capacitance and inductance) have apparent resistances of 2πfL for inductance and 1/2πfC for capacitance. These terms, however, do not provide information about the phase changes produced with these reactance elements.

Electronic circuit designers use the operator symbol j (mathematicians use i) to denote a phase change of 90° hence, j2πfL represents both the reactive value and the phase change. Furthermore j = √-1. For capacitive reactance the complete notation is -j2πfC, as the capacitor introduces a 90° phase shift of opposite sign to inductance. Resistance, having no phase shift, nor being frequency dependent is merely R. We can be a little more basic still and use ω instead of 2πf. ω is the angular frequency being expressed in radians sec⁻¹. (There are 2π radians in one cycle).

When reactance and resistance are mixed we represent the value as a complex number as, for example, R + jωL. The left-hand part is known as the Real part, the other (that after j) the Imaginary part, the whole forming what is called a complex number.

Where the circuit element is only reactive the complex number representing the impedance reduces to jωL or -jωC for which the symbol 's' is used instead of jω. (In some books 'p' is used instead of 's'). A trap can occur here for the -j of -jωC indicates a 180° phase shift over j, not a negative quantity in the normal way. To avoid confusion we rewrite -jωC as 1/jωC (which is valid -- it comes from multiplying both numerator and denominator -jωC by j. Hence we obtain 1L and 1/sC as the shorthand way of writing inductive and capacitive reactance in which frequency dependency and phase information are both retained.

Once these terms and concepts are mastered it becomes much more straightforward to write down the transfer function for a frequency dependent network. For example, consider finding the impedance presented by a series, lossless, resonant circuit shown in Fig. 8a.

$$Z = sL + 1/sC = \frac{L (s^2 + 1/LC)}{s}$$

(The individual components of the expression are put on a common denominator, dividing out to get the s² terms with unity coefficients).

For the series resonant lossy circuit of Fig. 8b.

$$Z = sL + 1/sC + R = \frac{s^2 + R/Ls + 1/LC}{s + 1/L}$$

Again, for the parallel L and R circuit of Fig. 8c.

$$\frac{1}{Z} = \frac{1}{1/sL + 1/R} \text{ from which } \frac{Z}{R/s} = \frac{s}{s + R/L}$$
ELECTRONICS - it's easy!

Fig. 9 Typical low-pass active filter with its transfer function in s-notation form.

Fig. 10 Complex numbers are plotted on the s-plane.

Fig. 11 Poles and zeros plotted on the s-plane for example given in text.

Fig. 12 Topographical representation of poles and zeros in s-plane.

Fig. 13 The root-locus shows how the all frequency dependent reactive networks. Fig. 9 gives the circuit of a low-pass multiple feedback active filter along with its derived transfer function expressed in 's' notation form.

As these complex numbers possess two parts we must use a two-axis graph to represent them in which the two axes are mutually perpendicular. Thus complex-number quantities need a plane rather than a line to depict a unique number. This plane is known as the s-plane (see Fig. 10). The two axes are usually labelled Real and Imaginary axis, each pair being used respectively.

POLES AND ZEROS

We have seen above how a network of passive elements (active designs also apply) produces a mathematical expression in terms of s notation. As s merely represents jw and j denotes only phase information we can, whenever s appears, substitute \(\omega \) (or \(2\pi f \)) to see how the expression varies in magnitude with varying frequency. Consider the case where a function is given by the numerical example:

\[
(s + 1) (s + 2) (s + 3) (s + 4)
\]

When \(s = -1, -2 - j1 \) or \(-2 + j1\), the numerator becomes zero for one of the bracketed terms becomes zero. Hence at each of these frequency values the expression becomes zero. We say it has 'zeros' at these points. Zeros also exist when the singular term goes to infinity in the denominator. When \(s = 0 \) (three times, as it is from \(s^3 = s.s.s. \)), \(-3\) or \(-5\), we get the reverse situation for at all of these values of \(\omega \) the denominator goes to zero making the function rise to infinity. These frequency points are called 'poles'.

Thus the poles and zeros express the peaks and hollows of the function. The position of these can be plotted on the s-plane diagram as shown in Fig. 11. 0 is used for zeros, a cross X for poles. In realisable networks there must be as many poles as zeros - including those at zero and infinity.

Another way to imagine the network characteristic is to draw a topographical representation giving relative height to poles and zeros on the s-plane placed horizontally as shown by the example of Fig. 12. This makes the terms poles and zeros more meaningful in a physical sense.

In the numerical example we avoided, in that case, using a quadratic or higher order term such as \(s^2 + 4s + 5 \). When these are encountered they must be factorized by finding the roots of the expression — giving the two terms \(s + (2 + j1) \) and \(s + (2 - j1) \) all frequency dependent reactive networks. Fig. 9 gives the circuit of a low-pass multiple feedback active filter along with its derived transfer function expressed in 's' notation form.
in this case. These are the individual roots, i.e., poles and zeros, of the expression. Note that quadratic elements involving an Imaginary part form mirror image pole or zero pairs — called a conjugate pair. If these are lossless (no Real part) they lie on the imaginary axis, if lossy (with Real part) they will be displaced out into the s-plane depending upon the resistive value. Positive values of resistance result in displacement into the left-hand plane, negative resistance gives poles or zeros in the right-hand plane. These halves being denoted LHP and RHP respectively.

Mathematics of complex numbers show that resonant systems with roots lying in the LHP are stable systems, their oscillations die down because to be in the LHP they must contain resistive damping. If the roots lie on the Imaginary axis itself the system is marginally stable — transients will undoubtedly create unstable situations at times even though the system is not absolutely unstable. Note that this situation only arises if the resistive component occurs as negative resistance — oscillators create this condition by the use of an active element.

ROOT LOCUS

When considering the behaviour of feedback systems, such as amplifiers, controllers and active filters, it is highly valuable to plot the changes in position on the s-plane of the closed-loop poles of the system transfer function as the open-loop gain changes. The path traced by the movement of the poles in this way is called the root-locus. These are often referred to in amplifier and other feedback-mechanism designs and it is, therefore, helpful to at least appreciate what they are. It is, however, not a simple matter to produce them from an original expression; lots of experience is vital.

By way of example the root-locus for a relatively simple transfer function is given in Fig. 13. This tells us that an open-loop gain in excess of 48 places some of its poles in the RHP establishing an unstable situation. The value of the root-locus is that we can “see” the behaviour of the system as the gain is increased and, more importantly, what we should do to the position of the poles most influencing an unstable condition. By altering the transfer function we can place the locus in more favourable situations. This is done by altering original component values where possible or by adding other networks that reduce the effect of the dominant poles — those lying close to the RHP.

Next month we look at digital electronics.

Wilslow Audio

THE firm for speakers!

Baker Group 25, 3, 8, or 15 ohm £6.64
Baker Group 35, 3, or 15 ohm £10.00
Baker Deluxe, 8 or 15 ohm £13.75
Baker Major, 3, 8, or 15 ohm £11.87
Baker Regent, 8 or 15 ohm £10.00
Baker Superb, 8 or 15 ohm £18.12
Carnecios P8RI (for Useeko) £3.75
Carnecios MM 1000 horn, 8 or 15 ohm £13.50
EMI 13 x 8, 150 c. or 8 ohm £2.94
EMI 13 x 8, 350 B. or 15 ohm £9.56
EMI 15 x 25 watt bass £9.00
EMI 7/4" tweeter 8 ohm £0.77
EMI 8 x 15 watt, c. or rolls/s 8 ohm £3.44
Elec 59RM 109 15 ohm, 59RM114 8 ohm £3.44
Elec 6/4" c. rolls/s 8 or 15 ohm £6.65
Elec TV4 4" tweeter £1.75
Fane Pop 515 15 or 8 ohm £3.59
Fane Pop 251 12" 8 ohm £7.40
Fane Pop 55, 12" 80 watt 8 ohm £13.95
Fane Pop 60 watt 10" 8 ohm £14.75
Fane Pop 100 watt, 18" 8 ohm £25.95
Fane Crescendo 124 or 8 or 15 ohm £24.00
Fane Crescendo 15, 8 or 15 ohm £47.50
Fane Crescendo 18, 8 or 15 ohm £82.95
Fane BOFT 8" c. rolls/s 8 or 15 ohm £5.75
Fane BOFT 8" c. rolls/s 8 ohm £5.50
Goodmans BP 8 or 15 ohm £5.50
Goodmans 12P or 8 or 15 ohm £15.95
Goodmans 12DS or 8 or 15 ohms £16.95
Goodmans 12DP or 8 or 15 ohms £15.95
Goodmans Audiom 200 or 8 or 15 ohm £13.90
Goodmans Axor 100 8 or 15 ohm £8.44
Goodmans Audiom 402 or 8 or 15 ohm £20.00
Goodmans Tensionax 8" 8 or 15 ohm £10.14
Goodmans Twinaxom 10" 8 or 15 ohm £10.75
Kef T27 £26.06
Kef T15 £6.94
Kef B110 £8.25
Kef B200 £9.50
Kef B139 £16.95
Kef DH4 £2.31
Kef DN12 £5.99
Kef DN13 £4.50
Richard Allen CBGT 8" d/c/rolls/s £7.50
SC 400 16 super tweeter £6.56
Baker Major Module, each £13.44
Goodmans Major Tunevei, pair £87.14
Goodmans DIN 20-4 ohm, each £14.75
Helme KLX £25.00
Helme KLX100, pair £17.19
Helme KLX1500 £46.22
Kef/1, pair £48.44
Kef/1i, each £2.50
Peerless 3/15 15 (up) system, each £17.19
Richard Allan Tantoo, each £10.44
Richard Allan Triple II, each £16.50
Richard Allan Tantoo II, each £23.35
Richard Allan Super Triple, each £28.75
Wharfedale Eton 2 kit (jap) £32.80
Wharfedale Glendene 3 kit, pair £40.62
Wharfedale Gwentlake 3 kit, pair £63.12
Wharfedale Super 10 RS/DD £15.00
Coste Super, 10/10 £10.31

BUILD THE TREASURE TRACER MK-III METAL LOCATOR

- Genuine 5-ohm transistor circuit, does not need a transistor radio to operate.
- Incorporates unique varicap tuning for extra stability.
- Search head fitted with Faraday screen to eliminate capacitive effects.
- Loudspeaker or earphone operation (both supplied).
- Britain’s best selling metal locator kit.
- Kit can be built in two hours using only soldering iron, screwdriver, pliers and side-cutters.
- Excellent sensitivity and stability.
- Kit absolutely complete including drilled, tinned, fibreglass p.c. board with components scribing printed on.
- Complete after sales service.
- Weighs only 22oz; handle knocks down to 17" for transport.

Send stamped, self-addressed envelope for literature.

MINIKITS ELECTRONICS, 6d Cleveland Road, South Woodford, LONDON E18 2AN (Mail order only)

WILMSLOW AUDIO

Dept. ETI

10 Swan Street, Wilmslow

ELECTRONICS TODAY INTERNATIONAL—JANUARY 1976

MORE MONEY-SAVING IDEAS

Yet again we bring you news of how to get more from a clock chip for less money! National Semiconductor have now released the MM5318 clock chip as a separate chip. You may remember that we mentioned it a couple of months ago as being connected to the TV time display chip. The IC has all of the features of the MM5311 six digits, seven segment and BCD outputs, 12/24 hour and 50/60 Hz operation. The outputs are multiplexed but controlled. Whereas the MM5311 outputs were under the control of an internal oscillator and multiplexer, the MM5318 outputs are demanded by the data input on three pins. To operate the MM5318 you need a simple oscillator and a BCD divide-by-6 counter, about £1, or less, in cost. (In addition to the displays and drivers you would need with the MM5311). ‘How is this a saving?’, I hear you ask — the answer is quite simply that the recommended price of the MM5311 is £5.69, but the MM5318 is only £3.36. a staggering difference of £2.33! Thus for about £4.50 you can build a £5.69 clock chip. I can only assume that National have sold such vast quantities of these chips to TV manufacturers that the production costs are very low and that these low costs are being passed on to the low volume market. Large industrial sales can mean that there are no low volume chips available but it could be worth trying to get one if you want to save some money.

To those of you who build computers, data recorders and similar bit processing systems, it is interesting to note that the MM5318 can be strobed by any BCD data highway and deliver its digit data in BCD and seven segment data to any TTL or MOS system. Much to my own personal annoyance I have recently completed the building of a system to feed a pen plotter with a time signal in BCD format for printing, the unit was built in TTL and took many hours and many chips. It could have been built using a MM5318 and a couple of other chips — less time, fewer chips and less money.

DON'T MISS A THING!

Whilst on the subject of TV clocks and tuners we bring you news of the latest in the ‘let’s get more ICs in TVs’ onslaught. The most elaborate channel-selection device is due on the market from Toshiba early in 1976. No more clock watching so that you don’t miss Magic Roundabout, no more boring changing channels when News at Ten starts. With this new chip you settle down with the evening paper sprawled open at the TV page and program the TV to change channels at predetermined times, then you can ease back in your armchair to an evening’s uninterrupted viewing. The chip displays your selection and lists the time and channel as you choose them, up to 16 programs with the on and off time for each-channel. The clock operates from 4.5MHz (presumably a crystal) and has full power-failure back-up facilities. It would seem that the chip could also be used outside of a television set for programming central-heating, anti-burglar lights and any number of other useful things in the home, do not even bother to start thinking of its applications in the industrial area, and yet this chip has come to life as a chip to make a boring life even more boring.

Programming chips are next year’s IN product: microprocessors at under £200, TV programmers, oven programmers, central-heating, etc. The latest is another National chip for programming calculators, or how to put new life into last year’s calculator. The MM5765 calculator programmer provides a convenient and inexpensive way of adding a ‘Learn mode’ to virtually any calculator chip. It memorizes any combination of key entries — during the Learn mode, then automatically plays back the programmed sequence as often as required when in the Run mode. Up to 120 characters or operations can be stored in multiprogram sequence blocks. Each program can be executed individually or the operator can make the decision to branch to specific programs.

The MM5765 is coupled to the calculator by paralleling the digit drives and key inputs between the calculator chip and the programmer chip. The calculator encodes a key depression by sensing which digit drive was active when an input was received by one of its ‘K’ inputs. Most calculators have 6, 8, 10 or 12 digit drives and up to 4 ‘K’ inputs; thus a six-digit calculator with 3 ‘K’ inputs can recognise 18 different key inputs and a 12-digit machine with 4 ‘K’ inputs can have up to 48 keys. The MM5765 can
handle 47 different key positions by having 12 digit inputs and 4 'K' drives. In operation a calculator key is pressed and this will connect one of the digit drives to one of the 'K' inputs, at the same time the digit drive is connected to the digit input of the programmer and to the 'K' input of the programmer. The programmer stores this information as a binary number in six bits (up to decimal 64) as a number 0-46, or series of non-keyboard entries such as SKIP and HALT give codes in the series 47-63. When the program is put into the RUN mode the programmer will decode this number into a high level output on one of the 'K' lines when the same digit drive is strobed again, in this way the calculator chip is fooled into thinking that a keyboard depression has caused that digit drive to be directed to that 'K' input and will thus execute that function. As we are fooling the calculator chip we can enter any valid key depression or series of depressions and on a scientific machine (such as the NOVUS) the radius of a circle of known area could be —

HALT Enter known area
START start programmer
+ Divide
3 by Pi
1
4
1
4
= Give Result 1
LOG Log of RES 1
+ Divide
2 log by 2
= ALOG Compute Antilog
HALT with approx result.

If you are satisfied with this result you can SKIP to program 2 and use it in a calculation there, otherwise you can continue with program 1 which might now reverse the computation in order to check its accuracy —

START Cont PGM 1 with previous result
X Multiply result by itself
X and then by Pi
1
4
= to give comparison with orig area.

If the calculator has memories then it would have been possible to save the original area in a memory and calculate the percentage error in program 1 before continuing with program 2.

The applications of this chip do not end at calculators, many clock chips use the Digit/’K’ method of inputting data and a MM5765 plus a CT7001 could probably make a Lunar Module Command Computer look sick. If the Mostek cooker timer MK50206 is ever fully released it could be combined with the MM5765 to cook a meal or range of meals, all programmed as switch on and off times. You could even use the same combination to set up a selection of TV programmes on and off times! The price of the MM5765 calculator programmer chip is £9.97, data from National.

CT7001 et al

The CT7001 series of clock chips and the CT6002 series of watch chips from Caltex were so widespread at the time of the financial crisis of the company that supplies did not start to dry up for some time. Eventually no CT7004s could be found, then 7002s, 6003s, 6002s, and now even the CT7003 and Big Daddy the CT7001 are becoming scarce. This chip caused a great stir some time after its announcement and when its capabilities became known: but just at its peak two things happened. First a lot of faulty chips came onto the market, and secondly Caltex had financial problems. The company finally stopped trading last spring and the future of the 7001 looked grim indeed. The last batch of full-spec devices had just been delivered to the UK and there were no more to come — that batch number 7448 indicated that the 7001s had been made in 1974, it is probable that none were made in 1975 at all.

If you are a TIME/DATE/ALARM fanatic fear not, because the CT7001 has now become the HCM7001 from Fairchild, who bought the Caltex plants, a few CT7001s are still around at £7.30 (Bywood, Walter Scott and some other retailers) but nobody yet knows the availability or the price of it now that it is the HCM7001. Fairchild also seem to intend to produce the HCM7002, 3 and 4 as well as introducing the HCM 7010 which seems to incorporate most of the family features, further details on the 7010 as soon as Fairchild let me have them.

PERSONAL

Two personal things from me, firstly I would like to buy a cheap teletype terminal to interface to a microprocessor — if you know of one please let me know. Secondly, I would like to wish you all the compliments of the season and an electrifying 1976.
Videomaster
urge all good electronics enthusiasts to play the game

The best thing about the Videomaster Home T.V. Game Mk. III is that the sheer pleasure of building it is immediately followed by the excitement of playing three fascinating games.

The famous Videomaster is now available for you to make. It plugs into any standard UHF 625 line TV set, and it shouldn’t take you longer than a few hours to build.

POST TODAY TO:
Videomaster Ltd
119/120 Chancery Lane, London WC2A 1QU

Please send me (insert no.) Videomaster Mk. III kits at £21.55 ea. inc. VAT. P & P

I enclose my cheque/money order for £

Tick if VHF Modulator required □ -£1 extra

NAME
ADDRESS

ALLOW 14 DAYS FOR DELIVERY

The cost? Only £19.95 (+ VAT)
The ORIGINAL electronic dice!

from 99p! + 10p p&p

Now you can build it yourself! This unique electronic gaming dice, as seen on TV; has fingertip control, displays throw in lights, an ideal gift for all ages, lasts a lifetime.

Ready-built dice (as illustrated) £5 + 35p p&p (VAT incl.). (Batteries not supplied.)

Cash with order to:

SPECTRONICS
UNIT 18, DAWKINS RD., HAMWORTHY
POOLE, DORSET

PRICE LIST

CLOCK CHIPS

NATIONAL
MM5309 7 seg + BCD with reset 1.9
MM5311 7 seg + BCD 5.69
MM5312 7 seg + BCD 4 digit only 4.88
MM5313 7 seg + BCD 5.69
MM5314 7 segment 4.88
MM5315 7 seg + BCD with reset 5.69
MM5316 Non-mpx alarm clock 10.17
MM5317 Alarm clock 0.5Hz 3.36
MM5377 Car clock. crystal controlled, LCD 10.17
MM5378 Car clock. crystal controlled LED 6.73
MM5379 Car clock. crystal controlled Gas discharge 6.73

MOSTEK
MK50250 Alarm clock (12Hr+60Hz/24Hr+50Hz) 5.60
MK50253 Alarm clock (12Hr+50Hz/24Hr+60Hz) 5.60
MK50204 Stopwatch/Calculator 11.19
MK50395 UP/DOWN Counter—6 Decade 14.50
MK50386 UP/DOWN Counter—HHMMSS 14.50
MK50397 UP/DOWN Counter—MMSS 9.90

CALTEx
CT7001 Alarm/calender. 7 segment 7.30
CT7002 Alarm/calender BCD 7.30
CT7003 Alarm/calender BCD 7.30
CT7004 Alarm/calender 7 seg Gas discharge 7.30
CT6002 LCD/CMOS. Clock/watch chip 15.00

MHI CLOCK KITS

1.9 MHI-50396 19.50
MHI-50397 19.50
MHI-7001 10.00
MHI-5314 6.60
MHI-5318 7.35
MHI-5376 15.10
MHI-50250 8.35
MHI-50253 8.35
MHI-50204 14.00
MHI-50395 19.50

MHI CASE Please include 25p post + packing 2.95

SOCKETS

18 pin 0.00
24 pin 0.00
40 pin 0.00

DISPLAYS

LITRONIX
DL707. 704, 701 1.48
DL727. 728, 721 3.75
DL747. 746, 750 2.45

LITRONIX CLASS 11 PRODUCTS
DL707E. 704E 0.70
DL727E. 728E 1.80
DL747E. 750E 1.50

FUTABA PHOSPHOR DIODES
SLT01 5.80
SLT03 5.80

MHI DISPLAY KITS

MHI-77/4 (digit) 0.3" 6.60
MHI-77/6 0.5" 9.50
MHI-77/4 0.5" 8.50
MHI-77/6 0.5" 14.25

MAIL DISPLAY KITS

PAYMENT TERMS
Cash with order. Access, Barclaycard (simply quote your number and sign)
Credit facilities to accredited account holders. Pro-forma invoices can be issued

Please send 20p for post and packing.

ALL PRICES EXCLUDE VAT AT 8%
PROM SELECTOR WALLCHART

Intel have published an attractive wallchart which has been designed to aid the engineer in the selection of programmable read only memories. It lists the significant characteristics of 39 different PROM types manufactured by Intel. These are divided into three groups on the chart: Schottky bipolar, silicon gate EPROMs (ultra-violet erasable) and silicon gate MOS.

For each Intel PROM there is a pin-for-pin compatible mask programmable ROM shown on the chart; therefore, one a design has passed from the development cycle into production, the PROMs can be replaced with ROMs without the need for any circuit or printed board changes.

Also featured on the chart is a comprehensive PROM equivalents guide which lists the important characteristics of PROMs from many manufacturers and gives the Intel equivalent, if one exists. Intel Corporation, Broadfield House, 4 Between Towns Road, Cowley, Oxford OX4 3NB.

RCA TO BUILD METEOROLOGICAL SPACECRAFT

RCA has announced receipt of a $45.6 million NASA contract to design and build eight third generation meteorological spacecraft known as TIROS-N. These are expected to make possible weather forecasts two days in advance with accuracy equal to present day predictions. The first launch is scheduled for 1978.

TIROS-N will weigh about 1,400 pounds in orbit and will stand 17 feet tall. They will be advanced polar orbiting satellites that will carry out not only weather forecasting but also worldwide oceanographic and hydrological services.

The TIROS-N spacecraft will provide day and night cloud cover imagery and will take atmospheric and sea surface temperature and water vapour readings. The device will also measure proton, electron and alpha particle activity around the planet.

MOTOROLA SEMICONDUCTOR DATA

Motorola have published a seven-volume Semiconductor Data Library with a combined thickness of about nine inches giving specifications for all their semiconductor devices. The library also lists the function and the significant characteristics of all EIA registered semiconductor devices.

The product range is divided into six volumes (1N 2N, 3N 4N, in-house type numbers, MECL, CMOS and linear ICs). The seventh volume functions as an index and an equivalents guide, and it contains outline drawings and an index of application notes.

The Semiconductor Data Library is available from Motorola Distributors for £15. Individual prices include the MECL Data Book for £2, the CMOS book for £1.50 and the Linear Data Book for £2.50.

After the successful launching and initial performance checks, the Satellite very rapidly commenced its scientific observation programme by looking at the Crab Nebula. Approximately 14 days after launching a genuine Gamma event was observed and with all systems functioning perfectly COS-B is giving every indication of fulfilling its two year mission lifetime successfully.

ADDENDA

3600 Synthesiser, ETI July '76. The pcb design shown alongside is for the Voltage Controlled Filter.
TELEYTYPE 28 — NEW SPECIAL PRICE

TELEYTYPE 28 without keyboard. Good condition (can be used as receive only) **£32.50**

Limited quantities — information in process of being obtained — this may not be available when orders are dispatched but we guarantee to forward comprehensive information at the earliest possible time.

FHACHI VCO MODULE FX11 — 10HZ - 100KHZ

Size 2 x 1 1/4 x 1/4" H. Input 12V to 24V DC (not centre tapped) 18V input giving 10V constant amplitude output. Requires only 1 meg ohm potentiometer to tune entire range — or can be swopped with a saw tooth input.

Price **£5.75. P & P 20p.**

FHACHI RAMP MODULE FX21, 24 Volt DC input for 18 volt saw tooth output. Requires only external capacitor and 100K ohm potentiometer. The control frequency range up to 100KHZ (eg 60 mfd electrolytic gives sweep of approx 1 KHZ per second). 1V out or sync capable.

Price **£5.75. P & P 20p.**

MARCONI OSCILLOSCOPES

DC — 15 MHZ

TF1330 — Single Beam **£65 ea.**

TF 1331 — Double Beam **£85 ea.**

LOW FREQUENCY ANALYSER

50HZ - 40KHZ

DON'T FORGET YOUR MANUALS S.A.E. with REQUIREMENTS

20HZ to 200KHZ

SINE AND SQUARE WAVE GENERATOR

In four ranges. Wien bridge oscillator thermostabilised. Separate independent sine and square wave amplitude controls. 3V max sine, 6V max square outputs. Completely assembled P.C. Board, ready to use. Serial number 9 to 12V supply required. **£85** each. P. & P. 25p.

LOW FREQUENCY WOBBULATOR

For alignment of Receivers, Filters etc. 250KHz to 5 MHz, effective to 30 MHz on harmonics. Three controls — RF level, sweep width and frequency. Order LX63. Price **£6.50 P. & P. 35p.**

As above but can have extended cover range down to 20KHz by addition of external capacitors. Order LX63E. Price **£11.50 P. & P. 35p.**

Both models can be used with any general purpose oscilloscope. Requires 6.3V AC input. Supplied connected for automatic 50Hz sweeping. An external sweep voltage can be used instead. These units are encapsulated for additional reliability, with the exception of the controls (not cased, not calibrated).

STILL AVAILABLE our 20 MHZ version consists of 2 50-way plug/sock-ets; 3 multiway switch assembly; a 2 rack mount Control Units by Univac. **£45 ea.** P & P 20p.

WIDE RANGE WOBBULATOR

5 MHZ to 150 MHZ (Useful harmonics up to 1.5 GHZ) up to 15 MHZ sweep width. Only 3 controls, preset RF level, sweep width and frequency. Ideal for 10/7 or TV IF alignment, filters; receivers. Can be used with any general purpose scope. Full instructions supplied. Connect 6.3V AC and use within minutes of receiving. All this for only **£75. P. & P. 25p.** (Not cased, not calibrated.

MAKE YOUR SINGLE BEAM SCOPe INTO A DOUBLE WITH OUR NEW LOW PRICED SOLID STATE SWITCH.

2 HZ to 8 MHZ. Hook up a 9 volt battery and connect your scope and have two traces for ONLY £6.25 P. & P. 25p.

Still available our 20 MHZ version at **£9.75. P. & P. 25p.**

VALUE ADDED TAX not included in prices — Goods marked with **+ 25% VAT, otherwise 8%**

Official Orders Welcomed, Gov./Educational Depts., Authorities, etc., otherwise Cash with Order

Open 9am to 5.30pm Mon to Sat.

CHILTMED LTD

7/9 ARTHUR ROAD, READING, BERKS. (rear Tech. College, Kings Road) Tel.: Reading 582605/65916

£2.00 carriage to all units.
thoroughly tested projects using new ideas available now at newsagents price 35p
Designer-approved

TEXAN AMPLIFIER AND TUNER KITS

from Henry's Radio. The Sole UK Distributors.

Here’s your opportunity to build the superb Texan amplifier and tuner! Designed especially for Henry’s by Richard Mann of Texas Instruments, the Texan amplifier was featured in Practical Wireless. Through bulk buying, Henry’s are able to offer these kits of quality components at low cost. Naturally, as sole appointed UK distributors, Henry’s offer a full after sales service - so if your kits don’t result in properly functioning units, we’ll help you sort them out!

TEXAN AMPLIFIER

Incorporating fully integrated stereo preamplifier and power amp, with 6 IC’s, 10 transistors, 6 rectifiers and zener diodes. Plus stabilised, protected circuitry, glass fibre pcb, Gardner low field low line mains transformer, and all facilities and controls. Slim design, chassis 14" x 6" x 2" overall. Professional appearance and performance. 20 watts per channel RMS, less than 0.1% distortion at 1 kHz. £39.50 inc VAT - £1.00 p&p.

TEXAN TUNER

Featuring varicap tuning and phase lock loop decoder in a professional! designed circuit, this tuner has a glass fibre pcb, built-in AFC, 9 transistors, 1 IC, 9 diodes, and a 400kHz AM/LF detector. Aerial sensitivity 2.5uV; stereo separation 40dB; frequency response on stereo 20 - 15,000 Hz ± 3dB (upper limit set by transmitter), on mono 20 - 22,000 Hz ± 3 dB, Circuit can be altered to cover amateur and aircraft bands. 100% operational. £25.95 inc VAT - £1.00 p&p.

ELECTRONIC FOOTBALL & TENNIS VIDEO SPORT

ON YOUR OWN TV

Play these exciting electronic ball games - FOOTBALL • TENNIS • HOLE IN THE WALL on your own TV! Just plug Video Sport into the aerial socket of your TV and away you go. Completely safe for you, your children and your TV. Mains operated. £29.50 inc VAT £30.50 inc VAT + £1.50 p&p.

OUTSIDE IT'S A BOOK. INSIDE IT'S AN INGENIOUS ULTRASONIC BURGLAR ALARM FROM HEATHKIT. THE GD-39.

A complete kit that can be assembled in only a few enjoyable hours, with the help of a very easy to follow instruction manual.

The GD-39 works by transmitting a silent, ultrasonic signal throughout the room. And continuously monitoring it. Any movement made by an intruder in the room will then automatically produce a change in the signal. Which triggers off a lamp and, thirty seconds later, a remote buzzer, that just you hear, or a loud bell. Enough to scare the living daylights out of a burglar.

For more details, and a bookful of other ideas, just post the coupon now for your Heathkit catalogue.

Enough books are written about crime, this one stops it.
Resistors, New Company offers their List, wide range of
2N3055 40p, 2N3819E 25p, 741 op-amp in
40 1N914 type diodes, 40 0A200 diodes, 20
zeners, 40 2W zeners, 50 mixed IC's, 200
1000uF 60v electrolytic, 1000uF or 2000uF 30v electrolytics 25p each.

Special Offer 3. The above four packs
744797p

15 assorted potentiometers 54p

All packs 54p

10% VAT

Send SAE for complete catalogue

MINIADS

FOR DETAILS ON ADVERTISING IN MINIADS, OR ELSEWHERE IN ETI,

MAGSWITCH
troduce their brilliant and comprehensive range of
digital clocks

The MAGSWITCH philosophy is to offer a range of
clocks, kits and accessories that are imaginative in concept — exciting to construct — styled to add prestige to any home or office setting.

BASIC KITS

Designed and engineered for successful assembly. Versatile and advanced for extended functions — calendar — alarm — radio — timer.

MODULES

Build into your hifi, embed it into a wall or anywhere.

COMPLETE CLOCKS

Assembled and tested in kit form. A charming choice of styles, cases and colours. From the simple to the prestigious.

Square clocks — cylindrical clocks — trendy clock kits — hifi rainbow clocks — ultra-modern chrome clocks

Priced from £15.45 to £99.95 VAT

Let MAGSWITCH convince you with a set of information sheets and full colour photographs of the range. Send 15p (guaranteed refunded against order)

MAGSWITCH
36 CELL BARNS LANE
ST. ALBANS, HERTS. ALL S QY

ALUMINIUM PROJECT BOXES

<table>
<thead>
<tr>
<th>Box</th>
<th>Length</th>
<th>Width</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>5/8</td>
<td>3/8</td>
<td>4p</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>1/2</td>
<td>4p</td>
</tr>
<tr>
<td>9</td>
<td>5/8</td>
<td>3/8</td>
<td>4p</td>
</tr>
<tr>
<td>10</td>
<td>3/4</td>
<td>3/4</td>
<td>5p</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>1/2</td>
<td>6p</td>
</tr>
<tr>
<td>14</td>
<td>5/8</td>
<td>3/8</td>
<td>6p</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>3/4</td>
<td>7p</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>1</td>
<td>7p</td>
</tr>
<tr>
<td>18</td>
<td>1 1/2</td>
<td>1 1/2</td>
<td>8p</td>
</tr>
</tbody>
</table>

Prices include VAT (at 18%) but 18p should be added to the total order value for postage & packing.

8 WATT 12 VOLT FLUORESCENT LIGHT KIT

Complete Kit including all components. hasten, channel, tube, etc.

ONLY £3.49 inc. VAT & PO

Ready Built 10" KC inc. VAT & PO

Bulb 10" KC inc. VAT & PO

Send cheque or PO's with your order. We accept all major cards.

ELECTRONICS DESIGN ASSOCIATES Dept. ETI 8, 82
Bath Street, Walcot WSL 3DE, Phone Walcot 33582
Ambit's range of sophisticated, now wireless, and new audio, project kits and components are designed to offer a complete range of levels of sophistication. Now supplied with a new 'data system' leaflet covering design criteria and applications information.

The Elektrik FM wireless. A restyled version of the International FM tuner - with wrap around teak finish sleeve. Fully prepared chassis. kit:£40.00 (pp £2.50)

The 9720 AM varicap tuned MW radio receiver module. Three stage tuning. A uniquely versatile AM radio unit. kit £8.00, built and aligned £9.95.

Ambit International
37 High Street
BRENTWOOD, Essex
Postcode CM14 4RH; tel: 216029, telex:995194
Build the Texan and Stereo FM Tuner
TEXAN 20 + 20 WATT IC STEREO AMPLIFIER
Features: 20 & 20 WATT boards
• High Quality
• Low distortion
• Easy to Build
• Requires minimum soldering skill
£29.95 Inc VAT C + P
Join the large band of happy constructors!

LARGEST SELECTION OF ELECTRONIC COMPONENTS AND EQUIPMENT.
LOW PRICES - MEAN LESS VAT.

ELECTRONIC COMPONENTS AND EQUIPMENT
Note selection - Bigger Stocks for your requirements. Let us quote enclose SAE with all inquiries.

ALL HENRY'S PRICES ARE NOW INCLUSIVE OF VAT

TAPE HEADS P & P 15p
Marxite X 100 Tape Head £3.00
Marxite X 150 Tape Head £3.50
Marxite X 250 Tape Head £4.50
Marxite X 350 Tape Head £5.00
Marxite X 500 Tape Head £7.50
Marxite X 750 Tape Head £9.00
Marxite X 1000 Tape Head £12.50
Marxite X 1500 Tape Head £15.00

THL33 Multimeter £8.10
IC1-1 Multimeter £7.00
IC1-2 Multimeter £7.00

SPECIAL OFFER
GARRARD CT4 STEREO
N THE WALL or your own TV) Just £19.50 C+ P 50p

Electronic Football & Tennis With the Fabulous Demonstrations
Our Incredible Price £29.50 Inc VAT

Electronics With the Fabulous Demonstrations
Now in All Centres!

Stop Press
Video Sport Now Available as a Kit
Full Kit and Parts with Instructions
Only £19.50, C + P 50p

Special Purchase
CARRONITE STEREO AMPLIFIER
Join the large band of happy constructors!
Input and control facilities with full chassis work, detailed construction handbook and all necessary parts full
Designed by Texas Instruments engineers for Henry's and P W 1972 Supplied
Transformer £29.95 Inc VAT
Irrs Perm F.M loner £5.00
Mallard Modules £2.50 each or £4.80 pair
Suitable Ferrite Aerial 83p.

AM Bandwidth 6-5kHz
Selectivity 35 dB
PM Coverage 87-108 MHz

Sinclair Modules and Kits
£14.05
£8.40
£5.73
£18.18
£4.98
£2.65
£5.88
£22.55 Inc VAT BUILT & TESTED £31.20 C + P 50p

Special Sinclaire Special Purchases
S-tek 50 series receiver £7.19 (post 25p)
Project 650 Kit £24.22 (post 25p)

Sinclair Special Purchases
£7.19
£24.22

Test Meters & Test Equipment

THL33 Multimeter £8.10
IC1-1 Multimeter £7.00
IC1-2 Multimeter £7.00

Sinclair Multimeters and Kits
£14.05
£8.40
£5.73
£18.18
£4.98
£2.65
£5.88
£22.55 Inc VAT BUILT & TESTED £31.20 C + P 50p

Test Meters & Test Equipment

Te22 Audio Generator £25.00
Te220 Radio Signal Generator £26.50

Henry's New 1975 Catalogue

Low Prices - Mean Less VAT.

New Largest Selection of Electronic Components and Equipment

New Low Prices - Mean Less VAT.

Electrical Football & Tennis

With the Fabulous Demonstrations
Our Incredible Price £29.50 Inc VAT

Electronic Football & Tennis
With the Fabulous Demonstrations
Now in All Centres!
More than just a catalogue!

PROJECTS FOR YOU TO BUILD

4-digit clock, 6-digit clock, 10W high quality power amp., High quality stereo pre-amp., Stereo Tuner, F.M. Stereo decoder, etc., etc.

CIRCUITS . . . Frequency Doublers, Oscillators, Timers, Voltmeters, Power Supplies, Amplifiers, Capacitance Multiplier, etc., etc. . . .

Full details and pictures of our wide range of components, e.g. capacitors, cases, knobs, veroboards, edge connectors, plugs and sockets, lamps and lampholders, audio leads, adaptor plugs, rotary and slide potentiometers, presets, relays, resistors (even 1% types!), switches, inter-locking pushbutton switches, pot cores, transformers, cable and wire, panel meters, nuts and bolts, tools, organ components keyboards, L.E.D.'s, 7-segment displays, heatsinks, transistors, diodes, integrated circuits, etc., etc., etc. . . .

Really good value for money at just 40p.

The 3600 SYNTHESIZER

The 3600 synthesizer includes the most popular features of the 4600 model, but is simpler. Faster to operate, it has a switch patching system rather than the matrix patchboard of the larger unit and is particularly suitable for live performance and portable use.

Please send S.A.E. for our price list.

GRAPHIC EQUALIZER

A really superior high quality stereo graphic equaliser as described in Jan. 1975 issue of ETI. We stock all parts (except woodwork) including all the metal work drilled and printed as required to suit our components and PCB's.

S.A.E. for price list or complete reprint of article — price 15p.

The 4600 SYNTHESIZER

We stock all the parts for this brilliantly designed synthesizer, including all the PCB's, metalwork and a drilled and printed front panel, giving a superb professional finish. Opinions of authority agree the ETI International Synthesizer is technically superior to most of today's models. Complete construction details in our booklet available now, price £1.50, or S.A.E. please for specification.

ELECTRONIC ORGAN

Build yourself an exciting Electronic Organ. Our leaflet MES51, price 15p, deals with the basic theory of electronic organs and describes the construction of a simple 49-note instrument with a single keyboard and a limited number of stops. Leaflet MES52, price 15p, describes the extension of the organ to two keyboards each with five voices and the extension by an octave of the organ's range.

Solid-state switching and new footages along with a pedal board and a further extension of the organ's range are shown in leaflet MES53 priced at 35p. (Pre-publication price 15p.)

NO MORE DOUBTS ABOUT PRICES

Now our prices are GUARANTEED (changes in VAT excluded) for two month periods. We'll tell you about price changes in advance for just 30p a year (refunded on purchases). If you already have our catalogue send us an s.a.e. and we'll send you our latest list of GUARANTEED prices. Send us 30p and we'll put you on our mailing list — you'll receive immediately our latest price list then every two months from the starting date shown on that list you'll receive details of our prices for the next GUARANTEED period before the prices are implemented — plus details of any new lines, special offers, interesting projects — and coupons to spend on components to repay your 30p.

NOTE: The price list is based on the Order Codes shown in our catalogue so an investment in our super catalogue is an essential first step.

Call in at our shop, 284 London Road, Westcliff on Sea, Essex. Please address all mail to:

MAPLIN ELECTRONIC SUPPLIES

P.O. Box 3 Rayleigh Essex SS6 8LR

For copy/copies of your Catalogue

Name

Address

MAPlIN ELECTRONIC SUPPlIES P.O. Box 3 Rayleigh Essex SS6 8LR