

The people for component bargains

Scund audio equipment
ORIGINATORS OF PRE-PACKED COMPONENTS IN BRITAIN - AND STILL LEADING!

AUDIO MODULES - today's most challenging values!

POWER AMPS
SS103
Compact I.C amp. 3 watts R M.S. Single channel (mono) On P.C. 8 . size $3^{1 / 12^{\prime \prime} \times 2^{\prime \prime} \text {. Needs } 6-22 \mathrm{~V} \text { supply. } \quad \mathbb{1} .75}$ SS103-3
Stereo version of above. (Two I. Cs.)
£3.25
NEW! SS105 Mk. 2
A compact all-purpose power amp. Can be run from 12 V car battery. Size $31 / 2^{\prime \prime} \times 2^{\prime \prime}$. Useful 5 w output (mono) into 4Ω using 24 V . Excelient value. $\mathbf{£ 2 . 2 5}$

SS 110 Mk. 2
Similar in size to SS 105 but will give 10 w output into 4Ω using 24 V (mono) Two in stereo give first-class results, suitable for many domestic applications. $\mathbb{\bullet 2 . 7 5}$

SS140

Beautifully designed Will give up to 40 w R M S. into 4Ω Excellent S.N.R. and transient response. Fine for P.A. disco use, etc Operates from 45V DC Two in bridge formation will give 80w R.M.S into $8 \Omega \quad \mathbf{£ 3 . 6 0}$

SUNDRY

ductors and components PNP NPN diodes rectifiers, etc on PC8s At least 30% factory marked. Some data supplied. $\mathbf{5 0 p}$.
UHF 625 line tuner rotary
$\mathbf{E 2 . 5 0}$
. Rev Counter (for cars) (8%) $£ 1.00$. Books by Bernard's Publications. 8utterworth's. etc

TERMS OF BUSINESS:

NEW RANGE TRANSISTOR \& COMPONENT PACKS

Four-pattem selector switch $3^{\prime \prime} \times 5^{1 / 4^{\prime \prime} \times 3^{\prime \prime}}$ Ready-built Ready-built
and tested In kit form Please add 30 o for postage $\mathbf{£ 7 . 9 3}$ is invaluable to industrial and home user alke improved circuity is invaluable to industrial and home user alike improved circuitry
assures reliability and still better accuracy Very compact: assures reiliabiny and still better accuracy, very compact: engineers With reinforced fibreglass case, instructions, but iess batteries. (Three U2 type required.)
TV SIGNAL STRENGTH METER plus VAT at current rate.

TP SELECTION

TP5 TP6 TP7
TP19 assembir. with mounting 100 diodes. mixed Germanium, Gold-bonded etc Marked/Un
TP23 Twenty NPN Silicon uncoded 2N696. 2N1613 etc Comple mentary to TP 24 etc Comple
TP24 Twenty PNP Silicon, uncoded 2N2904/5 TP29 $\begin{gathered}8 \text { power diodes } 400 \mathrm{~V}, ~ 1.25 A\end{gathered}$

UT SELECTION

UT1 50 PNP's Germanium. AF \& RF
UT2 150 Germanium diodes, min glass.
UT4 100 Silicon diodes, min glass similar to IN914. IN916
UT5 40250 mW Zener diodes 40250 mW Zener diodes
OAZ24 range: average 50% OAZ24 range: average
good
50%
UT7 30 Sillcon rectifiers 750 mA mixed voltages. Top Hats etc.
UT9 40 NPN Silicon planers Similar to 2 N3707.11 range Low noise to 2 N3707.11 range Low noise
amps
UT12 25 2N3702/3 Transistors, PNP

CP SELECTION

CPI Mixed bag of capacitors Electrolytic. Paper, Sitver Mica
Approx $150-$ sold by CP2 200 (approx.) Resistors various types, values, watts (Sold by weight)

CP3 40 Wire-wound resiftors mixed CP4 12 pots - pre-set, w/wound carbon, dual, with/without switches - all mixed

CP7 Heat sinks, assorted. To fit SO-Z (OC72) TO-1 (AC128), etc. (OC72) TO-1 (AC128), etc. CAPACITOR DISCHARGE IGNITION KIT SS300 POWVR SUPPLY STABILISER
 BI-PRE-PAK X-HATCH GENERATOR MK. 2 Money saving and very reliable $\mathbf{£ 3 . 2 5}$

PLASTIC POWER TRANSISTORS 40 WATT SILICON

Type	Polarity	Gain	VCE	Price
40N1	NPN	15	15	20p
40N2	NPN	40	40	30 p
40 P 1	W PNP	15	15	20p
40P2	PNP	40	40	30 p
90 WATT SILICON				
Type	Polarity	Gain	vce	Price
90 N 1	NPN	15	15	25p
90N2	NPN	40	40	35p
90 P 1	PNP	15	15	25p
90 P 2	PNP	40	40	35p

pastage and packing charges. except tor items marked WVIT on overseas orders. POST \& PACKING Add 20p tor UK arders Minimum mail order acceplable - $£ 1$. Overseas orders. add $£ 1$ lor postage. Any difterence will be credited or charged. PRICES Subject to alteralion without notice. A A AILABILITY Ail items availabie at lime ol going to press when every effort is made to ensure correctiness of information.

To BI-PRE-PAK, 222-224 WEST ROAD WESTCLIFF-ON-SEA, ESSEX
EHFRF-MKRB
222224 WEST ROAD, WESTCLIFF-ON-XEA, ESSEX SSO SDF. TELEPHONE: SOUTHEND (0702) 46344.
FOUNDED IN 1959
Please send

Alatronibs totay international

Main Features

UNWANTED AUDIO
How to stop breakthrough of unwanted signals
14
PROJECT BUILDING GUIDE17

Component codings and identification 20
FM RECEIVING TECHNIQUES
Part two continues our insight into VHF FM
THE PHOTOPHONE 45
Light beam communication is far from new!
UNDERSTANDING COLOUR TV 54
The line output stage
ELECTRONICS IT'S EASY
58
Generating non-sinusoidal waveforms

Projects

PHOTO TIMER
Accurate circuit gives elapsed time inaication
INTERNATIONAL FM TUNER
A first rate design stereo tuner
STAGE MIXER: PART TWO
Sixteen-line amplifier submixes to eight channels - plus monitor
41
Original design makes best use of ceramic cartridges
ELECTRONIC ONE-ARM BANDIT
48
Final constructional details

News \& Information

NEWS DIGEST .. 6
PREVIEW OF NEXT MONTH'S ETI 31
PROJECTS BOOKS 1 and 2 32
BOOKS FROM ETI 44
ELECTRONICS TOMORROW 62
TECH-TIPS 64

PULSAR CLOCK OFFER
57
Extended by popular demand

ETI/DORAM DESIGN COMPETITION
$\ddagger 500$ must be won in this fabulous competition

Cover: The international FM Tuner is not only a first-class deisn, it is easy to build. See page 26

EDITORIAL \& ADVERTISEMENT OFFICE
36. Ebury Street, London SWIW OLW.

Tel. $01-7308282$.
HALVOR W. MOORSHEAD
Editor
ROBERT C. EVANS
Advertisement Manager
STEVE BRAIDWOOD, G3WKE
Assistant Editor
JEAN BELL
Production
HELEN COHEN
Administration
VALERIE FULLER
Subscriptions \& Back Numbers
In'ternational Editions
COLLYN RIVERS
Editorial Director
Australia
BRIAN CHAPMAN
Technical Editor
BARRY WILKINSON
Engineering Manager
France
DENIS JACOB
Editor-in-chief
CHRISTIAN DARTEVELLE Editor

Published by:
Modern Magazines (Holdings) Ltd 36, Ebury Street, London SWIW OLW.

From the October 1975 issue. Electronics Today International will be published on the first Friday of the month prior to cover date
Distributed by: Argus Distribution Lid. Printed by:
Q.B. Newspapers Limited, Colchester.

International Associates:
Australia: Modern Magazines (Holdings) Lid, Ryrie House, 15 Boundary Street, Rushcutters Bay 2011, Sydney, Australia.
France: Electroniques Pour Vous International,
17 Rue de Buci, Paris, France.
USA: ACP, Room 401, 1501 Broadway, New
York, USA.

READER QUERIES: These can only be answered if they clate to recent articles published in the mapazine Parely ene to rent aricies published in the magazine. Rarely can we supply information in addition to that published self-addressed envelope and telephone aueries must be self-addressed envelope, and telephone queries must be brief, not before $4.00 \mathrm{p} . \mathrm{m}$. and can only be answered. subject to the availabilip or iechnical stafl
ACK NUMBERS: Back numbers of many issues are vailable for 35 p each plus 10 p postage.
SUBSCRIPTIONS: Great Britain, $£ 4.25$ per year. Overseas. 4.75 per year (Air Mail $£ 7.50$).
COPYRIGHT: All material is subject to World-wide Copyright protection. All reasonable care is taken in the prepartion of the magazine to ensure accuracy but ETI cannot be held responsible for it legally. Where errors do occur. a correction will be printed as soon as possible
afterwards in the magazine.

BI－PAK

SEMICONDUCTORS

COMPONENTS
CARBON RESISTOR PAKS
These Paks contain a range of Carbon groups：－
R． 150 Mixed 100 ohms 820 ohms 1／8th

23． 50 Mixed 10 K ohms

4． 50 Mixed 100 K ohms 820 Kohms $1 / 8$ th W． 0.60 R5． 30 Mixed 100 ohms R6． 30 Mixed 1 K ohms R7． 30 Mixed 10 K ohms R8． 30 Mixed 100 K ， $1 / 2$ $820 \mathrm{Kohms} 1 / 2$ LOW COST CAPACITORS | 500 | $\mu \mathrm{~F}$ | 50 V Elect |
| :---: | :---: | :---: |
| 01 | 0.09 | each |
| F | 400 V | 0.03 each | REPANCO CHOKES \＆COILS RF Chokes CHI $\quad 2.5 \mathrm{mH} \quad 0.27$ CH5 $\quad .5 \mathrm{mH}-0.29$ $\begin{array}{lll}\mathrm{CH} & 1.5 \mathrm{mH} & 0.26 \\ \mathrm{CH} 2 & 5.0 \mathrm{mH} & 0.28\end{array}$ $\begin{array}{lll}\mathrm{CH} & 5.0 \mathrm{mH} & 0.28 \\ \mathrm{CH} 4 & 10 \mathrm{mH} & -0.31\end{array}$

COILS $\frac{\mathrm{CRXI}}{\mathrm{RRX}}-\stackrel{1}{\text { rystal set }} 0.29$ CARBON POTENTIOMETERS
Log and $\operatorname{Lin} 4.7 \mathrm{~K}, 10 \mathrm{~K}, 22 \mathrm{~K}, 47 \mathrm{~K}, 100 \mathrm{~K}$ ，
VC 1 Single Less Switch VC3 2 Single D．P．Switch VC 41 K Lin Less Switch Watt 0.06 each

DP／DT Toggle 0．28p
Sp／ST Toggle 0．22p
FUSES
$4^{\prime \prime}$ and $20 \mathrm{~mm}, 100 \mathrm{~mA}, 200 \mathrm{~mA}, 250 \mathrm{~mA}$

VEROBOARDS＊
VB 1 VB 2 clip and lead

ABLES＊

SEE OUH COMPLETE RANGE
－
PRACTICAL WIREEESS
RADIO CONSTRUCTOR． PRODUCTS
0.14

$$
6
$$

$$
\begin{array}{ll}
0 & C \\
3 & \\
4 &
\end{array}
$$

HORIZONTAL CARBON PRESETS

$100,220,470,1 \mathrm{~K}, 2.2 \mathrm{~K}, 4.7 \mathrm{~K}, 10 \mathrm{~K}, 22 \mathrm{~K}$

REPANCO TRANSFORMERS

240 V ．Primary．Secondary voltages available from selected tappings $4 \mathrm{~V}, 7 \mathrm{~V}$
$8 \mathrm{~V}, 10 \mathrm{~V}, 40 \mathrm{~V}, 50 \mathrm{~V}$ and $25 \mathrm{~V} \cdot 0-25 \mathrm{~V}$ ．

Type	Amps	Price	P\＆P
MT50／1／2	1／2	$¢ 1.79$	0．45p
MT50／1	1	E2． 24	0．48p
MT50／2	2	E3．06	0．60p
COIL FORMERS \＆CORES			
NORMAN $1 / /^{\prime \prime}$ Cores \＆Formers			0．07p
3／4＂Cores \＆Formers			0．09p

Anti－surge 20 mm only $\ldots . .{ }^{*} 0.8 \mathrm{p}$ each
containing approx． 50 sq．ins．various
VB 2 containing approx． 50 sq．ins．various sizes all 0．15 matrix ${ }^{*} 0$ Etch resistant printed circuit marker pen．Full instructions supplied with
each pen \quad BATTERY HOLDERS $*$＊ 0.92 p Takes 6 H．P．7s complete with terminal

Single lapped screen Per Metre
 PP 2 Twin Common Screen
 ＊0．08
 CP 3 Stereo Screened
 CP 5 Four Core individually P 6 screened $\quad * 0.28$ Cicrophono Fully Braided ${ }^{*} 0.11$ PP 9 Speaker Cable

RACTICAL ELECTRONICS

EVERYDAY ELECTRONICS，
WIRELESS WORLD OR SEND 5p FOR THE FULL LIST OF ALL BI－PAK

C

INSTRUMENT CASES

Pak Description－Price Cl 200 Resistors mixed values approx．count by weight 150 C3

$$
\begin{array}{|l|l|}
4 \\
4 & \text { C5 } \\
\text { C6 }
\end{array}
$$ C7 1 Pak Wire 50 metres assorted colours

C8 10 Reed Switches
$\begin{array}{lll}\text { C9 } & \text { 3 Micro Switches } & .60 \\ \text { C10 } & 15 \text { Assorted Pots \＆Pre－Sets } & .60\end{array}$
C1l 5 Jack Sockets $3 \times 3.5 \mathrm{~m}, 2 \times$
standard Switch Type
30 Paper Condensers preferred $\quad .60$ types mixed values
C 1320 Flectrolytics Trans types
1 Pack assorted Hardware Nuts／Bolts Grommare Nuts／Bolts，Grommets，etc．
C16 20 Assorted Tag Strips \＆Pan－．60 els
C18 10 Assorted Control Knobs
R Rotary Wave Change Switches
C19
C20 $\quad \begin{gathered}\text { Relays } 6-24 V \text { Operating } \\ \text { Sheets Copper Laminate．}\end{gathered}$ approx． 200 sq．ins．
Please add 20 p post and packing on al component packs，plus a further 10 p on pack nos．C1，C2，C19 \＆C20． AVDEL BOND

SOLVE THOSE STICKY

 PROBLEMS
with

自电雨品

cyanoachylate c2 adhesive

 The wonder bond which works inseconds－bond plastuc，ruber，transistors．

OUR PRICE ONLY 60p

for 2 gm phial

BIB HI－FI ACCESSORIES

ref

B Stylus and turntable cleaning
Hi－Fi cleaner
Wire stripper／Cutter
Tape editing kit
32A Stylus balance
36A Record stylus cleaning kit
43 Record care kit 5 Auto changer

Spirit level
Hi－Fi stereo
Ci－Fistreo hints \＆tips
BI－PAK 1975

NEW EDITION

JUST OUT！
Send S．A．E．And $10 p$

ANTEXEQUIPMENT

 SOLDERINGIRONS
$\times 25.25$ watt

Model G． 18 watt SK2．Soldering Kit

BITS A Bit No．

Bit No．
102 for model CN240
104 for model CN240
1100 for model CCN240
1101 for model CCN240
1102 for model CCN240
1020 for model G240
1021 for model G240
1022 for model X25
50 for model X25
52 for model X25

ELEMENTS

Model ECN 240
Model ECCN 240
Model EX 25

240

SOLDERING IRON STAND
ST3 Suitable for all models
Antex heat shunt
PLUGS

D．L．N． 2 Pin（Speak
D．I．N． 3 Pin
D．I．N． 5 Pin 180° D．I．N． 6 Pin
D．IN 7 Pin Jack 2.5 mm Screened
Jack 3.5 mm Plastic
Jack $1 / 4^{\prime \prime}$ Plastic
Jack $1 /{ }^{\prime \prime}$ Screened
PS 14 Phono
PS 15 Car Aerial
PS 16 Co－Axial
INLINE SOCKETS
PS 21 D．I．N． 2 Pin（Speaker） PS
PS 24 D．I．N． 5 Pin 180°
PS 25 Jack 2.5 mm Plastic
PS 26 Jack 3.5 mm Plastic
PS 27 Jack $1 /{ }^{\prime \prime}$＂Plastic
PS 29 Jack Stereo Plastic
PS 30 Jack Stereo Screened
PS 31 Phono Screened
PS 32 Car Aerial PS 33 Co－Axial

SOCKETS

PS 35 D．I．N． 2 Pin（Speaker） PS 36 D．I．N． 3 Pin
PS 37 D．I．N． 5 Pin 180°
PS 39 Jack 2.5 mm Switche
40 Jack 3.5 mm Switched
4）Jack $1 / 4^{\prime \prime}$ Switched
42 Jack Stereo Switched
PS 43 Phono Single
PS 44 Phono Double
47 Co－Axial Flush

P．C．B．KITS \＆PENS

PROFEESSIONAL D．I．Y．PRINTED CIRCUIT KIT
Containing 6 sheets of $6^{\prime \prime} \times 4^{\prime \prime}$ single sided laminate，a generous supply of etchant powder，etching dish，etchant
measure，tweezers，etch resistant measure，tweezers，etch resistant
marking pen，high quality pump drill with spares，cutting knife with spare blades， $6^{\prime \prime}$ metal ruler，plus full easy to follow instructions．
＊$£ 7.80$
per kit
Spare container of etchant for above．
complete with instructions P．C．B．MARKING PENS
$2 \times$ quality market pens，specifically designed for drawing fine etchant resistant circuits on copper laminate． Complete with full instructions＊£1．53
per pair

LOW－NOISE CASSETTES

 C60C90
C 60
C 120
SLIÜEK PĀK
Containing a range of slider pots． SPl 6 mixed values sliders SP2 6 47OR Lin，sliders SP3 610 K Lin．sliders
SP4 622 K lin．sliders
SP5 $647 \mathrm{~K} \log$ ．sliders
SP6 647 K lin．sliders
0.60
.60
0.60
0.60

AUDIO LEADS

S221 5 pin DIN plug to 4 phono plugs S222 5 pin DIN plug to 5 pin DIN socket length 1.5 m
S237 5 pin DIN plug to 5 pin DIN plug S238 2 pin DIN plug to 2 pin DIN socket length 5 m
S268
5 pin DIN plug to 3 pin DIN plug 1 $\& 4$ and $3 \& 5$ length 1.5 m E 1,00 S270 2 pin DIN plug to 2 pin DIN socket S271 5 pin DIN plug to 2 phone plugs connected to pins $3 \& 5$ length
S275 5 pin Din plug to 2 phono sockets connected to pins $3 \& 5$ length
S318 5 pin DIN socket to 2 phono plugs connected to pin $3 \& 5$ length
S404 Coiled stereo headphones exten－
S217 3 pin DIN plug to 3 pin DIN plug
S219 5 pin DIN plug to 5 pin DIN plug
S474 $\begin{gathered}\text { length } 1.5 \mathrm{~m} \\ 3.5 \mathrm{~mm} \text { Jack to } 3.5 \mathrm{~mm} \text { Jack length }\end{gathered}$
S 6005 fin DIN plug to $3.5 \mathrm{~mm} \underset{\mathrm{Jack}}{.68 \mathrm{~m}}$ connected to pins $3 \& 5$ length
S700 $5 \underset{\text { pin DIN plug to }}{\text { connected to pins } 18.5} 4$ jack 1.5 m conned to pins $1 \& 4$ length

CROSSOVER NETWORK

K4007 1／P Impedance 8 ohms
Crossover Frequency 3 KHz ．

3－WAY－STEREO
 H／PHONE JUNCTBOX

 loudspeaker to headphone listening．Also has a centreposition for both outputs．PRICE ©1．73

HANDBOOKS

TRANSISTOR DATA BOOF．DTE 2
227 Pages packed with information on
European Transistors．Full specification
including outlines Price $\# £ 2.95$ each
TRANSISTOR EQUIVALENT BOOK
BPE 75256 Pages of cross references
American and Japanese Transistors． This is the most comprehensive equivalents book on the market today
and has an introduction in 13 languages Price \＃$£ 2.68$ each 144 Pages of cross references and equivalents for European，American and Japanese Diodes．Zeners，
Thyristors．Triacs，Diacs and L．E．D．＇s Mrice \＃$£ 1.98$ each MULLARD DATA BOOK 1974／75 MDB 74 The latest edition of this popular handbook contains information on Semiconductors，Integrated Circuits，
Television Picture Tubes Capacitors and Resistors．Included in the 161 informative pages are 21 pages on Semiconductor Comparables

Price $=\mathbf{c 0 . 4 0}$
TTL DATA BOOK DIC 75 Now complete Data book of 74 series TTL （7400－74132）．Covering 13 main
manufacturers in the U．S．A．and Europe，this book gives full data as wel］ as equivalents Price \＃ $\mathbf{4} 3.74$ THE WORLD＇S BROADCASTING STATIONS WBS 75 An up－to－the－minute guide for those world＇s broadcasters on SW，MW and LW ${ }_{\text {L }}$ as well as European $\mathrm{FM} / \mathrm{TV}$ stations \quad Price \＃€ 3.56 A full range of technical books a vailable on request．

INDICATORS

3015F Minitron 7 Segment Indicator
MAN 3M L．E．D． 7 SEGMENT DISPLAY
－0．127＂High Characters E1．76＊
ZENER DIODES
FULL RANGE I STOCK
VOLTAGE RANGE 2.33 V
C280 CAPACITOR PAK

CERAMIC PAKS
Containing a range of miniature unrepeatable value．
MC1 24 ceramic capacitors： $22 \overline{\mathrm{p} F}, 27 \mathrm{p} \dot{\mathrm{F}}$ $33 \mathrm{pF}, 39 \mathrm{pF}, 47 \mathrm{pF}, 56 \mathrm{pF}, 68 \mathrm{pF}$ ，and MC2 24 ceramic capacitors： 100 pF ， $120 \mathrm{pF}, 150 \mathrm{pF}, 180 \mathrm{pF}, 220 \mathrm{pF}, 270 \mathrm{pF}$ MC3 24 ceramic capacitors： 470 pF ． 1500 pF 220 pF and 3300 pF
MC4 21 ceramic capacitors： 4700 pF $6800 \mathrm{pF}, 01 \mu \mathrm{~F}, .015 \mu \mathrm{~F}, .022 \mu \mathrm{~F}, .033 \mu \mathrm{~F}$ and $.047 \mu \mathrm{~F}$

MAMMOTH I．C．PAK＊

APPROX． 200 PIECEXS
Assorted fall－out integrated circuits， including；Logic， 74 series，Linear，Audio and D．T．L．Many coded devices but

OUR SPECIAL PRICE $\mathbf{E 1 . 2 0}$

WORLD SCOOP

JUMBO SEMICONDUCTOR PAK
ransistors－Germ．and Silicon． Rectifiers－Diodes－Triacs－
Thyristors NEW AND CODED．

APPROX． 100 PIECES
Offering the amateur a fantastic bargain PAK and an enormous saving－ pak pak．

ONLY E1．85 each

UNTESTED LIN PAK

Manufacturers＂Fall＂Outs＂which
include Functional and part Functional Units．These are classed as＇out－of－spec＇ specifications，but are ideal for learning bout I．C．＇s and experimental work．

PAK NO．CONTENTS PRICE

ULIC709	$=$	10	x	709	0.60
ULIC710	$=$	7	x	710	0.60
ULIC741	$=$	7	x	741	0.60
ULIC747	$=$	5	x	747	0.60

ALL PRIGES
EXCLUDE V．A．T．
Postage \＆packing add 20p overseas d extra for airmail．
Minimum order 75p
SIL G．P．DIODES
300 mW 40 PIV（min）SUB－MIN
eal for Organ build
30 for 50 p． 100 for $£ 1.50,500$ for $£ 5$
1,000 for E 9

G．P．SWITCHING TRANS

TOI 8 SIM．TO 2N706／8
BSY27／28／95A．All usable devices．No open and shorts．ALSO AVAILABLE IN 20 for 50 p 50 for f 1.100 BCH
£8， 1,000 for $£ 14$ ．$£ 1,100$ for $£ 1.80,500$ for
C8， 1,000 for $€ 14$ ．

PO BOX 6 WARE HERTS

AL 60

ONLY £3.95

50w. PEAK (25w. R.M.S.)

- Max Heat Sink temp $90^{\circ} \mathrm{C}$ - Frequency Response 20 Hz to 100 K Hz - Distortion better than 0.1 at 1 KHz Supply voltage $15-50$ volts Thermal Feedback Latest Design Improvements Load - 3, 4,5 or 16 ohms Signal to noise ratio 80 dH - Overall size $63 \mathrm{~mm} \times 105 \mathrm{~mm} \times 13 \mathrm{~mm}$. Especially designed to a strict specification. Only the finest components have been used and the latest solid state circuitry incorporated in this powerful little amplifier which should satisfy the most critical A.F. enthusiast.

STABLISED POWER MODULE SPM80

SPM80 is especially designed to power 2 of the AL60 Amplifiers, up to 15 watt (r.m.s.) per channel simultaneously. This module embodies the latest components and circuit techniques incorporating complete short circuit protection. With the addition of the Mains Transformer BMT80, the unit will provide outputs of up to 1.5 amps at 35 volts. Size: $63 \mathrm{~mm} \times 105 \mathrm{~mm}$ $\times 30 \mathrm{~mm}$.
These units enable you to build Audio Systems of the highest quality at a hitherto unobtainable price. Also ideal for many other applications including:- Disco Systems. Public Address Intercom Units, etc. Handbook available 10p.

TRANSFORMER BMT80 $£ 2.60$
PRICE £3.00

STEREO PRE-AMPLIFIER TYPE PA100

Built to a specification and NOT a price, and yet still the greatest value on the market, the PA100 stereo pre-amplifier has been conceived from the latest circuit techniques. Designed for use with the AL50 power amplifier system, this quality made unit incorporates no less than eight silicon planar transistors, two of these are specially selected low noise NPN devices for use in the input stages. Three switched stereo inputs, and rumble and scratch filters are features of the PA100 which also has a STEREO/MONO switch, volume, balance and continuously variable bass and treble controls.
£13.20.

MK 60 AUDIO KIT
Comprising: $2 \times$ AL60, $1 \times$ SPM80, $1 \times$ BTM80, $1 \times$ PA100, 1 front panel, 1 kit of parts to include on-off switch, neon indicator, stereo headphone sockets plus instruction booklets.
COMPLETE PRICE: $\mathbf{2 7 . 5 5}$ plus 45 p postage

TEAK 60 AUDIO KIT
Comprising: Teak veneered cabinet size $16 \%^{\prime \prime} \times 111^{\prime \prime} \times 3 \%^{\prime \prime}$, other parts include aluminium chassis, heatsink and front panel bracket, plus back include aluminium chassis, heatsink
panel and appropriate sockets, etc.
KIT PRICE: 89.20 plus 45p postage.

STEREO 30 COMPLETE AUDIO CHASSIS

PLEASE ADD V.A.T. AT 25% TO ALL ITEMS EXCEPT * ADD 8\% \#\# NO V.A.T. GIRO NUMBER 388-7006

$7+7$ WATTS R.M.S.

The Stereo 30 comprises a complete stereo pre-amplifier, power amplifiers and power supply. This with only the addition of a transformer or overwind, will produce a high quality audio unit suitable for use with a wide range of inputs, i.e. high quality ceramic pickup, stereo tuner, stereo tape deck, etc.
Simple to install, capable of producing really first-class results, this unit is supplied with full instructions, black front panel, knobs, mains switch, fuse \& fuse holder and universal mounting bracket, enabling it to be installed in a record plinth, cabinets of your own construction or the cabinet available.

Ideal for the beginner or advanced constructor who requires Hi-Fi performance with a minimum of installation difficulty. Can be installed in 30 mins.

PRICE £15.75
Plus 45p postage \& packing

TRANSFORMER £2.45 $\begin{gathered}\text { plus 45p } \\ \text { postage \& packing }\end{gathered}$
TEAK CASE £3.65
plus 45p
postage \& packing

AL 10/AL 20/AL 30

The AL10, AL20 and AL30 units are similar in their appearance and in their general specification. However, careful selection of the plastic power devices has resulted in a range of output powers from 3 to 10 watts R.M.S.
The versatility of their design makes them ideal for use in record players,tape recorders, stereo amplifiers and cassette and cartridge tape players in the car and at home.

AL10 £2.30. AL20 £2.65, AL30 £2.95

4-16 ohms impedance frequency response 20 to $20,000 \mathrm{~Hz}$ stereo/mono switch and
Volume Contro! es 55

FOR PA100.
Attractive matt silver. Finish with black trim and lettering. Adds that professional touch. El.1A only.

M.P.A. 30

Enjoy the quality of a magnetic cartridge with your existing ceramic equipment using the new Bi-Pak M.P.A. 30 which is a high quality cartridges only.
cartridges only.
Used in the construction are 4 low noise. high gain, siticon transistors and it is provided with a connection.
Supplied with full. easy to follow instructions.
PRICE £2.65

STORAGE-CARRY CASES

recorp cases
7 in E.P. $183 / 8 \mathrm{th}$ in. $\times 7$ in $\times 8$ in (50 records)
12 in L.P 133.in 7 3/8th in $\times 12 \%$ in (50 (2.48

CASSETTE CASES

Holds 15 . $10 \mathrm{in} \times 3^{31 / 4}$ in $\times 5 \mathrm{in}$. Lock and handle
8-TRACK CARTRIDGE CASES
Holds 14 . 13 in $\times 5$ in $\times 6$ in. Lock and handle
Holds 24.13 3/8th in $\times 8$ in $\times 53 / 8$ th in Lock and ri:ndle

ZARTRIDGES

ACOS GP91-1 SC 200 mV at $1.2 \mathrm{cms} / \mathrm{sec}^{\circ}$
GP93-1
GP96-1
280 mV at $1 \mathrm{~cm} / \mathrm{sec}$
J-2005 100 mV at $\mathrm{cm} / \mathrm{sec}$
61.11 Crystal/Hi Output
Crystal/Hi Output Compatible

$$
\begin{aligned}
& \mathrm{J}-2006 \mathrm{~S} \text { Stereo/ Hi Output } \\
& \mathrm{J}-2105 \text { Ceramic/Med Outp }
\end{aligned}
$$

$$
\begin{array}{ll}
\mathrm{J}-2105 & \text { Ceramic } / \text { Med Output } \\
\mathrm{J}-2203 & \text { Magnetic } 5 \mathrm{mV} / 5 \mathrm{~cm} / \mathrm{sec}
\end{array}
$$

$$
\begin{array}{ll}
\text { J-203 Magnetic smiv } \\
\text { including stylus } \\
\text { J-22038 } & \text { Replacement styl }
\end{array}
$$

J-22038 Replacement stylus for above
AT-55 Audio-technica magnetic Audio-technica magnetic
cartridge $4 \mathrm{mV} / 5 \mathrm{~cm} / \mathrm{sec}$

FRONT PANEL.

DYNAMIC MICROPHONE

TYPE B1223 200 ohms impedance. Complete with stand, on/off switch and 2.5 mm and 3.5 mm plugs. Suitable for cassette tape recorders

STEREO FM TUNER
WRITE NOW FOR FULL DETAILS

news digest

ATTENTION BRISTOL

ETi readers who take this copy of the magazine to Marshall's new Bristol components shop will get 10% off advertised prices for a limited period.

The new shop at 1 Straits Parade, Fishpools, Bristol was originally intended to open towards the end of August but Marshall's now expect the opening to be just before this issue is published.

In London since 1953, Marshall's have expanded rapidly recently. Their Glasgow office opened two years ago but a shop was almost forced to open a year later due to the pressure of callers. In November last year the company entered the EEC with a large shop in Paris.

CIGARETTE PACK TV CAMERA

A tubeless television camera -- potentially no larger than a pack of cigarettes -- for possible use in advanced space missions is being developed by RCA.

The prototype monochrome camera will employ a charge-coupled device (CCD) and will be designed under a contract from NASA. The CCDs will make possible an ultrasmall, lightweight camera capable of operating in space on very low power. Those planned for use in the space camera are 512×320 element devices, the largest and highest resolution CCD television image sensors announced to date. A scanning technique will be developed for the space camera that will assure its compatibility with the 525 -line U.S. TV standard.

CALCULATOR PRICES - WHERE NEXT?

Exactly a year ago ETi carried a major survey of hand-held calculators - the cheapest was a very basic model at £10.95 and that had only just been announced. The Sinclair Cambridge was $£ 22$ - now available built from some discount houses for under $£ 10$ inclusive.

Today one CBM calculator retails widely at $£ 5.95$ and we are told is available for under $£ 5.00$! The manufacturers and importers all deny that they are interested in the low price end but sooner or later they cut their prices.

There has probably never been a product that has fallen so rapidly in price. We predict that within six months the range of calculators under $£ 8$ will be substantial with the cheapest selling for under $£ 4$ but with companies going all out for very sophisticated models in the $£ 12-£ 20$ range.

PAGING RECEIVER ADDRESS CODE STANDARDISATION STUDY

The increasing interest in area paging and the variety of codes used by the interested manufacturers has resulted in an attempt to reach standardisation.

Eight European manufacturers are involved in this study, the object being to enable area paging operators, such as post and telegraph authorities, to simplify their central equipment and engineering services when designing and operating the systems.

The British Post Office has already announced that London will hàve a paging system in early 1976.

NEW SYSTEM AIDS SATELLITE COMMUNICATIONS

A new system for the suppression of unwanted signals which interfere with transmission from communications satellites has been developed by Plessey and commissioned at the Satellite Earth Terminal Station, Goonhilly Downs, Cornwall.

Goonhilly forms part of the INTELSAT network which tinks virtually every major country in the world via satellites maintained in fixed positions over the Atlantic, Indian and Pacific Oceans.

The Indian Ocean satellite appears at a low angle from Goonhilly, just above the horizon, and the PO aerial working to it has to be aimed across France nearly in direct line with a French radio-relay station. This station transmits on frequencies in 4000 MHz band which can interfere with signals received from the satellite. During periods of anomalous propagation the power of the interfering signals has sometimes exceeded the power of the wanted signals by as much as 30 dB .

Under a preliminary study contract, Plessey proposed that the Post Office should consider use of a cancellation technique which has been used experimentally in radar applications. The prime attraction of this solution is its fundamental simplicity. A small auxiliary aerial is installed which receives a significant level of the interfering signal onty. By feeding a controlled amount of the signal from the auxiliary aerial into the main aerial receiver the interference can be cancelled.

It is believed that this is the first time that such a system has been applied to civil radio communications and foresees considerable potential for its further application in all fields of communications where interference is a growing problem.

AUDIO FAIR LOOKS PROMISING

This year's Audio Fair (Olympia, October 20-26th) seems as though it will be an improvement on the mediocre affairs of the 1973 and 1974.

For the past two years $\mathrm{Hi}-\overline{\mathrm{Fi}}$ companies have been riding the crest of a wave and only lip-service had to be paid to exhibitions, etc. Times have been hard for most of this year however with 25% VAT kicking the trade when it was down (with the exception of the enormous pre-VAT rise boom).

Organisers of the Audio Fair report stand bookings 80% ahead of the corresponding period before last year's event.

We think there will also be some excellent products at reasonable prices the VAT increase may put some sanity back into the race for the 'fanciest cabinet' award!

CMOS PLL
Designated the MC14046, a new Motorola device contains two phase comparators, a voltage controlled oscillator (VCO) and a zener diode to assist in supply voltage regulation. It operates at a VCO frequency up to
1.4 MHz . Power dissipation is in the microwatt region for all typical applications.

The new IC compares the frequency and phase of the incoming data with the output of a VCO. If the two signals differ in frequency and/or phase, an error voltage is generated and applied to the VCO, causing it to correct in the direction required for decreasing the difference. The correction procedure continues until lock is achieved, after which the VCO will continue to track the incoming signal.

The medium speed and lower power of the CMOS PLL are important in such applications as frequency synthesis and multiplication, voltage-to-frequency conversion, and data synchronization and conditioning.

FAIRCHILD SEE BRIGHT FUTURE FOR SEMICONDUCTOR INDUSTRY

Despite the depressed economic situation, Fairchild has announced that it will invest between $\$ 20$ and $\$ 25$ million in capital expansion this year. Semiconductor industry sales are expected to decline by 22 per cent this year, but "could see a growth of

American-designed projection television system, capable of beaming a 69 -inch wide image onto a special screen, is being launched in Britain. Known as the Advent VideoBeam Projection Colour Television, the equipment is to be marketed by Crown Cassette Communications Ltd. Although a tenth of the price of previous similar systems, the Advent is unlikely to be your next choice for your home with a price tag of over $£ 4,300$.

The Advent can however be viewed comfortably by forty or more people seated within a 60 degree arc from the screen so it is ideal for use in a wide variety of applications including education, entertainment, training and commerce.

37 per cent in 1976" worldwide according to W.J. Corrigan President of Fairchild. He estimated that world semiconductor consumption would increase by a further 21 per cent in 1977.

R.C.A. METER

We have received details of a new multimeter - nothing unusual in that. What is extraordinary is the manufacturer: R.C.A. What is even more surprising is the type - a $1000 \Omega / \mathrm{V}$, ultra-basic spec design aimed at the handlyman - indeed that is what they have named it: Handyman. The price at over $£ 5$ can hardly be called cheap either.

Normally the news we get of R.C.A. is exciting and at the forefront of technology which makes this a very surprising departure. Does this herald a new era with major international companies catering for the lowest end of the market? We shall keep you informed!

SLOW-SCAN TV CONVENTION

A special Slow-Scan TV Convention organised by the British Amateur Television Club, will take place at Aston University, Birmingham, on Saturday, October 11 th, from 1000 to 1800 hrs .

This convention is open to all who are interested in this fascinating topic whether they belong to the B.A.T.C. or not. There will be lectures and display of equipment and plenty of opportunity for the exchange of ideas. There is a charge of 50 p to cover expenses, and tickets may be obtained from Mike Crampion G8DLX, 16 Percival Road, Rugby CV22 5JS.

ORACLE ON AIR

ORACLE, ITV's Teletext system (see ETI, July 1975) began an on-air experiment on the ITV network on 30th June. Operating the experiment are two editorial teams and three computer systems. At ITN there is an editorial team (plus computer) for news and associated information. At London Weekend Television there will be an editorial team preparing public service and similar information pages, and the second computer. At Thames Television the third computer will be used to insert data into the network during the Monday to Friday broadcasting period with LWT taking over for the weekend transmissions. It is hoped that there will soon be sets with decoders in the main entrace lobbies of ITN House, I Iondon Weekend Television's South Bank Studios and Thames Television's Euston Studios, so that visitors can interrogate the system and see how ORACLE works.

DABS GO ON COMPUTER

Scotland Yard has just placed an order for a $£ 2$ million computer to store and compare fingerprints. In 10 years it is expected that 3.5 million sets of fingerprints will need to be filed.

The new computer, based on the Ampex Video file information system, will store the fingerprint impressions on video tape - the computer will then be able to produce possible
matches for analysis by experts.
A similar but much smaller system has been operating in Canada for the past four years. The Scotland Yard system is expected to start operation late in 1976.

CUTTING ELECTRICITY COSTS

Considerable savings can be made by industry by the installation of capacitors, it is claimed in a new publication "Capacitors for Power Factor Improvements", issued by Bryce Capacitors Limited, of Helsby, Cheshire. Because, in the average factory, electricity charges represent a high proportion of the running costs, significant savings can be made by the installation of power factor improvement capacitors. Experience has shown that this equipment can cut up to 15 per cent from electricity bills and, in most cases, capital costs can be recouped in less than two years.

The new publication explains power factor and its measurement, describes the design of power factor improvement schemes and gives examples of savings achieved in a quarry, a mill and an office block.

NEW SOLAR CELL

A new gallium-arsenide thin-film solar cell has recently been announced by NASA. The cells are' said to have longer lifetimes than conventional cells, to have higher efficiencies and potenti-
ally, much lower fabrication costs than the silicon cells now commonly used.

Sample cells have shown efficiencies of up to 15% in sunlight (compared to 8 to 9% for silicon) plus 30% less radiation damage for a longer lifetime. The Jet Propulsion Laboratory team (who developed the device) predict that within three to four months they will have cells suitable for production which have an efficiency of 19%.

The new cells called AMOS for antireflection, coated metal-oxide semiconductor, are economically promising because the gallium arsenide layer is only 5 microns thick. This allows the use of less material than in any other competing technology.

275 VOLT FETs

Siliconix have annouced a new family of high voltage JFETs with interchangeable sources and drains, and a guaranteed minimum break-down voltage of 275 V (U328, U330) and 200 V (U329, U331).

These devices open a new range of FET applications in high voltage, low frequency amplifiers; a symmetrical high voltage current sources; in high level signal handling involving low speed switching. The breakdown ratings offer a high degree of protection in systems where high voltage transients occur.

Siliconix Limited, 30a High Street, Thatcham, Newbury, Berks RG13 4JG.

TWO STUDIES IN INTERVIEW TECHNIQUES

'No, l've never actually handled a £60 million missile contract --but there's a first time for everyone -isn't there!'

Well finally, before you go, do you mind if we ask you one or two questions, Mr. Er - ?!!'

ETI AND RNID TO COOPERATE IN SOLVING PROBLEMS OF THE DEAF

ETI has carried several excellent competitions and offers in the past and the response to these has been enormous. We are logking for a similar response to a new competition.

Both individuals and groups will be asked to research and design equipment which will overcome defined problems facing deaf people. The ingenuity of readers is of an extraordinary level and it is not impossible that some major improvement in the way of life of deaf people might result. ETI is working closely with the Royal National Institute for the Deaf in this competition indeed they have set the problems for us. The prizes will be a specially designed trophy for the best entries with a donation from ETI to the RNID to help with the development of the ideas.

The competition to be known as 'Helping Hand'. will start in the October issue when full details will be given. It will remain open for six months.

COSMOS NOW CHEAPER THAN TTL FOR MAJORITY OF DIGITAL SYSTEMS

RCA has announced further price reductions in its CD4000 range of COS/MOS integrated circuits. The reductions range from 35% to 50%. The biggest price reductions have affected the more established MSI devices of the CD4000 range, with many types being reduced by over 50\%.

As a result of the price cuts, many of the popular TTL devices are currently more expensive than the equivalent COS/MOS functions.

NEW CONCEPT IN MICROPROCESSORS

Motorola have just divulged that they have a new high-speed microprocessor family in an advanced state of development at Phoenix, USA and that deliveries of these devices will commence in the early part of 1976. The new set of parts will be members of Motorola's ultra high-speed logic family MECL 10,000 (Motorola Emitter Coupled Logic type 10,000) and will enable engineers to construct computing systems that will operate with programmes that have been written for other machines. System speed will be up to ten times faster than NMOS microprocessors with a cycle time of 5 nsec.

There are five components in the

A portable defibrillator, Sirecard P/PM, developed by Siemens can be quickly on the scene and ready for instant use. With the aid of this device, cases of ventricular fibrillation or flutter can be treated by applying a brief electric shock to restore the normal heart beat. The built-in cardioscope immediately indicates the response to the measure.
new family which are designated MC10800 to MC10804. These are a 4-bit processor slice, a control chip, a timing chip, a memory interface chip and a look-ahead chip. They may be connected together to form a processor of any word length. Ten of the devices, plus external memory components, form a minimum 16 -bit system. However, expansion to any word length is possible.

The new circuits are for highperformance applications such as top-of-the-range minicomputers, high-speed instrumentation, digital communication processors, real time analysis, main frame computers, time sharing and the like. Motorola feel that this LSI approach to high-speed system building makes more sense than developing sub-nanosecond logic functions, since the potential speed of such logic functions is seldom realised in practice due to the propagation delay of the interconnecting wiring.

ONE-HOUR TV CASSETTE

Japan's Sony Corporation have introduced a new video tape recorder and playback system using $1 / 2$ inch width tapes with playing times of 30 minutes to one hour.

The tape deck called Betamex, sells in Japan for the equivalent of $£ 350$. The system complete with receiver is about $£ 750$; cassettes cost about $£ 4$ and $£ 7$ each.

DATA LIBRARY

Jermyn have just announced the introduction of the new Motorola Data Library.

This comprehensive publication

consists of seven volumes containing detailed technical information on all Motorola's Semiconductor Products, plus a cross reference to industry Standard Jedec Discretes.

Cost is $£ 14.50$. Jermyn, Sevenoaks, Kent.

AIR POLLUTION CONTROL MONITOR

Latest addition to the range of air monitoring equipment is the Model Type P3 Digital Dust Indicator from Rothroe and Mitchell using the lightscattering principle. Pushbuttons select either a meter giving instantaneous readings of contamination expressed as counts per minute, or a 4 -digit counter giving the count per unit time.

The device is one of the first in the UK to employ the technique of detecting scattered light. Air is

sucked into the instrument by a tiny fan and conveyed across a beam of light whose intensity is stabilized by a photoelectric feedback circuit. Dust particles present in the beam scatter the light through 90 degrees onto a photomultiplier which gives an output proportional to the amount of dust in the beam - the more particles there are, the more light gets scattered onto the photomultiplier and the larger is the output. The output is fed to a capacitor and when the charge builds up to a predetermined level, it is suddenly discharged, giving a pulse.

Rotheroe \& Mitchell, 6/8 Aintree Road, Greenford, Middlesex UB6 7LJ.

EXCLUSIVE to EATON AUDIO, a Professional quality modular constructural case system by VERO ELECTRONICS LTD., designed with the amateur's project in mind. Wide choice of modules from $1 / 2^{\prime \prime}$ to $8^{\prime \prime}$ wide. Send large S.A.E. or 10 p stamp for illustrated leaflet and price list before you start your next project.

	STHTHESISER? Don't buy anything UNTIL YOU HAVE ALL THE FACTS ABOUT THE MINISONIC. Without any doubt the best value for mone in synthesisers today. Performance and versatility equal to ready made instruments costing over 5 times as much. Very high stability log. oscillators (2), Filter, Noise generator, versatile Keyboard system, Envelope Shaper and V.C.A. (2 each), Ring Modulator and Headphone/L.S. Output. HEAR IT - Exclusive C20 demonstration cassettes still available. 'AUDIO FAIR 1974', an introduction to the MINISONIC by G. D. Shaw and 'SYMBIOSIS' an experimental composition for the MINISONIC by Malcolm Pointon. Each tape £1.06 post free. Together £1.86 post free SEE IT - At the AUDIO FAIR 1975 . on Practical Electronics Stand. PLAY IT - SYNTHESISER MUSIC SERVICES, 12 Holland Park Road, W. 11. Tel. $01-2215665$ have the MINISONIC on permanent demonstration. READ IT - Reprints of the MINISONIC series are available ONLY from EATON AUDIO. Details in lists. BUY IT - A top line Synthesiser in its own right, or a worthy addition to any music studio - you cannot fail to be impressed, not least by our new lower prices! BASIC COMPONENT KIT $\mathbf{£ 8 8 . 0 0}$ UK Post Free POWER SUPPLY KIT £8.90 UK Post Free Lists - Send S.A.E. or $10 p$ stamps				
		TRA SPECIAL LINEA			
	Device LM318N	Very high speed, high gain,			

nears SGG3002N
SG3402T

RESISTORS
riple rated high Triple rated high
stability carbon fill Metal oxide half for 7 p Metal oxide half watt Both types. E12 5 for 16 p Both types. E12 values
3M9.
POTENTIOMETERS and log 5 Kol , Wirewound 25p only. 10 R to 25 K semi-precision 82p PRESETS Caniature horzonal Thiniature, all values
100 R 102 M 2 Cermet, horizontal ${ }^{10 p}$ Cermet, horizontal
miniature all value 100 to IMO ${ }^{450}$ Cermet rectilinear 20 turn, all values. 10 R to $500 \mathrm{~K} \quad 128 \mathrm{p}$ RESISTANCE WIRE Constantan, 0.0293
ohms per metre
${ }_{\text {Per Metr }}^{20 \mathrm{~cm}}$
Per Metre

ERTDT RUDID

DEPT ETI
PO BOX 3
ST.NEOS
HUNTNGDON
CAMBS PEI9.3JB

TERMS: MAIL ORDER ONLY
C.W.O. MINIMIM ORDER E 1.00

VAT. Please add 25% to value of order inc: p\&p. unless otherwise stated. Cheques or P.O.s payable to Eaton Audio.
Orders over $\mathbf{£ 5} 5.00$ free of p. 8 p.
Otherwise please add 19p in the $\mathbf{8 1 . 0 g}$.

WHEN making multiple photographic prints the repeatability of exposure timing is considerably improved by using an accurate timer.
Mechanical timers, give excellent results but must be set for every exposure. Conventional electronic timers, do not need resetting but give no indication of the time remaining in the selected interval - as do mechanical timers.
Indication of progress within the selected time interval is very helpful, particularly if parts of a print need burning in. Such indication also helps co-ordinate other activities which may be carried out during the exposure period.
The electronic timer described here divides the total selected time into eight equal periods and indicates the elapse of each portion of the interval via light emitting diodes.
Eight LEDs are arranged in a vertical row. When the timing interval is initiated all LEDs light up. As time elapses the lights go out progessively, until all are out and the timing is complete. An internal relay is held on until the last of the LEDs is extinguished. This relay controls the mains output to the enlarger, or other device, via a standard three-pin power outlet.
The timing interval can be varied from one second to sixteen minutes in eleven switched ranges. Starting from the lowest, each range covers twice the time interval of the preceding one. Thus the exposure may be increased or decreased, by one stop simply by switching up one range or down one range respectively. A variable potentiometer allows the range-selected time to be adjustect by half a stop either side.

As a further aid to timing another LED is provided which flashes once per second, regardless of selected range. This once-per-second pulse may be fed to a small loudspeaker, if desired, to provide an audible one-per-second tick.

Fig. 4. Printed circuit layout. Full size $133 \times 44 \mathrm{~mm}$.

HOW IT WORIS

The basic timing is performed by an NE555 timer, 1 Cl . The timing is varied by selecting a charging resistor via the range switch $S W 2$. The range may then be varied around the SW2-selected period by providing a variable threshold voltage, (normally two-thirds supply) to pin 5 from RV1. Resistor R13 and capacitor C4 are used to ensure that C3 is completely discharged at the end of each charge cycle thus ensuring accurate timing.
Integrated circuit IC2 is a dual. four-bit shift register connected as an eight-bit shift register. lior those unfamiliar with shift registers a brief explanation follows. There are eight outputs (labelled 1-8) a clock input, a diata input, and a reset. When the unit is clocked the information at the data input is transferred into the " 1 output. The information which was at the ' 1 ' output transfers to the ' 2 ' output, and so or., so that the information, at outputs $1-8$, shifts along sequentially one place on each clock pulse - hence the name shift register.
The clock input to the shift register is the output from the 555 timer and the data input is connected directly to the +12 volt rail. Hence after eight clock pulses all outputs will be high. An LED is connected between each shift register output and +12 volts such that they are only illuminated
when the associated shift-register output is low.
If push button PBI is pressed all outputs of the shift register are sct to zero and all LEDs will light. These then go out one at a time as the "high" at the data input is clocked through the shift register.
The relay is driven by transistor Q2 which, in turn, is driven from the last LED. The relay can be switched out by SW3 and the LED display may then be used without the relay. Alternatively the relay may be switched on or off, without using the fimer, again by SW2. When the shift register is reset the relay closes and when the last light goes out the relay opens.
The output of Q 2 also controls the reset line of IC 1 thus ensuring accurate timing in the first cycle.
The third IC is also a 555 timer which provides an output of one 10 millisecond pulse per second. This pulse drives LED 9 and a speaker if required.
A 12.6 volt transformer, rectifier D1, and filter capacitor Cl feeds a regulator consisting of Q1 and ZD1 to provide an output of 12 volt dc.
If required an external push button, or foot switch, may be paralleled across the local one to enable the start. Another may be used between the relay (point T) and +12 volts to allow the relay to be closed remotely.

PARTS LIST

Fig. 1. Circuit diagram of the timer. plastic box, $160 \times 95 \times 50 \mathrm{~mm}$. The front panel shown in Fig. 6 is designed to suit that box. All the electronics apart from switches and LEDs are mounted on a single printed circuit board. It is recommended that this board be used as construction would otherwise be much more difficult.
Assemble components to the printed circuit board with the aid of component overlay Fig. 2. Make sure that the polarities of transistors, diodes and capacitors are correct and that integrated circuits are correctly orientated. Note also that IC2 is a CMOS device and should therefore be the last component to be fitted. The pins of this device should not be handled unneccessarily and an earthed soldering iron should be used. Solder the supply pins (16 and 8) first.
Capacitor C5 and transistor O2 should be mounted such that they are flat on the printed circuit board otherwise they may touch the power-outlet socket.
The components, mounted on the lid of the box, should be wired as illustrated in Fig. 3. Note that resistors 2 to 12 (with exception of R7) are mounted on SW2.
Before drilling any holes in the box for the transformer etc, make sure that all components are clear when the lid is in place as there is not a great deal of room in the box. The photograph of the box shows where components should be located.
All 240 volt ac wiring should be 23/0076 wire rated for 240 volts ac, and any bare terminals should be well covered with insulation tape to prevent accidental shorts or personal contact.
The range of timing available - one second to 16 minutes makes this timer suitable for a variety of applications other than photographic printing - it. is an extremely versatile and useful device.

UNWANTED AUDIO SIGNALS

Breakthrough of unwanted broadcasts into audio systems can be infuriating - here's how to stop them.

PERHAPS THE MOST infuriating form of RF pollution is breakthrough of. unwanted broadcasts into audio systems.
With the current proliferation of broadcasting stations, radio amateurs, taxi companies, walki-talkies etc the problem is now a major headache to manufacturers and users of hi-fi systems, public address systems, hearing aids - even electronic musical instruments may be affected from time to time.
The 'fault' that results in audio breakthrough is almost invariably within the 'interferees' audio equipment. It is hardly ever caused by a fault within the transmitter or even faulty operational procedures.
The phenomenon is now becoming generally known as 'audio rectification'. In essence the unwanted RF energy is picked up by some part of an audio system - which acts as an antenna. The energy is then rectified by an element operating non-linearly
in the equipment. This can take the form of a valve, transistor, IC - or even a poorly soldered joint! The rectified signal is then amplified by the remainder of the audio system (although in at least one instance personally known to the author the unwanted signal was picked up on the leads between the power amplifier and speakers on a large PA installation and then rectified by a faulty connection on one of the speakers).
Hopefully audio rectification will be only a short term problem because cases are now becoming so numerous that audio equipment may soon have to be designed with suitable rejection circuitry included.
In the meantime the USA's Federal Communications Commission and the Electronics Industries Association have devised a number of procedures for identifying the specific part of the circuit into which the signal is introduced - and a number of ways by which the interference may be

Fig. 1. Mains filter, availabie commercially or can be home-constructed. If you make it yourself it is essential to use capacitors rated for ac mains operation.

Figs. 2/3. These simple filters, connected in series with the pre-amplifier input, will prove effective in many cases.
eliminated or substantially reduced. This article is based on these procedures.
Ninety nine times out of a hundred the offending RF content will be introduced into the early stages of a pre-amplifier, or will be picked up and introduced by the mains power supply leads. To check that this is in fact so just turn down the volume control next time interference occurs. If the interference is reduced then it is being introduced before the volume control (which will be in the output stage of the pre-amplifier - or its equivalent in an integrated unit). If the level remains constant - then it is being picked up. after the volume control.

VOLUME CONTROL AFFECTS INTERFERENCE

The most common causes of this type of interference are signals introduced via the mains power leads, via intercónnecting cables between main amplifier and auxiliary equipment, or via the speaker leads themselves.
It may also be caused by a poor or non-existent earth connection and this should be checked before looking any further.
Having checked out the earth connections it is advisable to next check the speaker leads. At first sight it might seem that RF picked up by the speaker leads would produce a constant level signal - or that the level itself would be very low because of the low impedances involved. But this is not necessarily so, for the RF signal is fed back via the negative feedback loop. And whilst feedback is applied after the volume control, some of the RF signal may be radiated into the earlier stages of the pre-amplifier.
It is not unknown for speaker leads to be of such a length that they actually resonate at the interfering frequency - in which case an instant cure can often be effected merely by lengthening or shortening them. Murphy's Law can operate here, though. One person we know eliminated interference from a local TV station that way - only to pick up his local taxi radio service at Strength 9!
Twisting the speaker leads or using shielded cable is also generally effective. Connecting a capacitor across the amplifier output terminals

Fig. 4. Although more complex than the circuits shown in Figs. $2 / 3$ the RF filter shown here will almost invariably eliminate unwanted signals. We regret that it is impracticable to show component values as they depend totally on the circuitry of the amplifier to which it is to be installed. Note two similar filters are required - one for each channel. The filters should be wired in series with the input to the power amplifiers.
or from each termina! to earth is also effective. Note that high frequency response will not be degraded as impedance is very low at this point in the circuit.
A capacitance of about $0.1 \mu \mathrm{~F}$ is generally sufficient to remove most RF. Use the smallest value that fixes the problem and always use a ceramic capacitor for the purpose.
If the above checks don't cure the problem the next thing to check is whether or not the signal is being introduced via the signal leads. Here the quickest check is to disconnect all externally connected units - such as the turntable, cassette recorder, radio tuner etc. If disconnecting a unit eliminates the interference then the cable connecting that unit to the amplifier is not properly screened Lastly check for mains-borne interference by connecting a line filter in series with the incoming power line. These filters are made commercially by R.S. Components and are available from their distributors or their subsidiary Doram or can readily be made as shown in Fig. 1. If you make this filter yourself do not under any circumstances increase the values of the capacitors shown - and make absolutely sure that the capacitors are rated for 250 volt ac operation.
In areas where the strength of the unwanted signal is very high (as it may well be if, for instance, you live close to a TV transmitting antenna) the signal may still find its way into the input circuitry despite the precautions suggested. This is particularly likely if the amplifier has a non-metallic case or if it has a metal case that is not earthed satisfactorily. The cure here is obvious - aluminium foil makes a good shield - make sure it's earthed correctly.
If, despite all the precautions outlined, the RF signal is still finding
its way into the pre-amplifier, more drastic treatment will be necessary.
Firstly check that there are no poorly soldered joints - for a dry joint can act as an almost perfect rectifier. Resolder any joints that look at all suspicious.
Electrolytic capacitors tend to have high inductive reactance at RF frequencies thus preventing them by-passing unwanted RF to ground. Check them out by temporarily wiring an $0.01 \mu \mathrm{~F}$ ceramic in parallel. Wire in permanently if this cures the problem. If the problem still remains it will be necessary to modify the amplifier as outlined below.

VOLUME CONTROL DOES NOT AFFECT INTERFERENCE

Sometimes unwanted level signals will be heard at a constant level - not affected at all by volume control settings. If this is your problem (or if unwanted signals are breaking through in the manner described in the last paragraph) it will be necessary to use RF filtering at the input to the power amplifier. Figure 4 shows one way of doing this that has proved very satisfactory. Unfortunately it is impossible to quote actual component values as these will be determined by the circuitry of the individual amplifier. The main thing to remember is that the components should be selected so as to cause no significant change in audio frequency response. (In really severe cases however it may be necessary to trade off frequency response against interference removal).
The capacitors used for this purpose should be ceramics - not paper types. Inductor L1 may be a ferrite bead.
If despite all the foregoing you still have problems there seem to be only two remaining solutions.
Dynamite the offending source - or move!

Wilmslow

 AudioTHE firm
 speakers!

Baker Group 25, 3, 8, or 15 ohn Baker Group 25, 3: 8 . or 15 ohm
Baker Group 35,
8 or 15 ohm Baker Deluxe, 8 or 15 ohm . Baker Major, 3,8 or 15 ohm Baker Regent. 8 or 15 ohm . Baker Superb. 8 or 15 ohm Celestion PSTB (for Unilex) Celestion MH 1000 horn, 8 or 15 ohm EMI $13 \times 8,150 \mathrm{~d} / \mathrm{c}$, B ohm.
EMI $13 \times 8,350,8$ or 15 otim
EMI 13×20 watt bass
EMI $1 / 4 \times$ iweeter 8 ohm
EMI $8 \times 5,10$ watt, d / c roll $/ \mathrm{s} 8 \mathrm{ohm}$ Elac 59RM 10915 ohm , 59RM114 8 ohm Elac $61 / 2^{\prime \prime} \mathrm{d} / \mathrm{c}$ roll $/ \mathrm{s} 8 \mathrm{ohm}$ Elac $61 / 2 \mathrm{~d} / \mathrm{c}$ roll/s 8
Elace $4^{\prime \prime}$ iweeter.
Fane Pop 15 watt $12^{\prime \prime}$
Fane Pop 25T $12^{\prime \prime} 8 \mathrm{ohm}$
Fan Pop 50 watt $12^{\prime \prime} 8 \mathrm{ohm}$.
Fane Pop $5512^{\prime \prime} 60$ watt 8 ohm
Fane Pop 60 watt $15^{\prime \prime} 8 \mathrm{ohm}$
Fane Pop 100 watt $18^{\prime \prime \prime} 8 \mathrm{ohm}$
Fane Crescendo 12A of B. 8 or 15 ohm
Fane Crescendo 15,8 or 15 ohm
Fane Crescendo 18 . B or $/ 5$ ohm 15 ohm
Fane $807 \mathrm{~T} 8^{\prime \prime} \mathrm{d} / \mathrm{c}$ rolis/s, or 15 ol Fane $801 \mathrm{c} 8^{\prime \prime} \mathrm{d} / \mathrm{c}$, rolls/s. B or
Fane $801 \mathrm{~T} \mathrm{~B}^{\prime} \mathrm{d} / \mathrm{coll} / \mathrm{shm}$ Goodmans 8P 8 or 15 ohm. Goodmans 8P 8 or 15 ohm.
Goodmans 10P 8 or 15 ohm .
Goodmans 12P-D 8 or 15 ohms
Goodmans 12P-G 8 or 15 ohms
Goodmans Audiom 2008 or 15 ohm
Goodmans Axtent 1008 ohm
Goodmans Axiorn 4028 or 15 ohm
Goodmans Twinaxiom $8^{\prime \prime \prime} 8$ or 15 ohm
Goodmans Twinaxiom $10^{\prime \prime} \mathrm{B}$ or 15 ohm
Kef T27
Kef T15
Kef B 110
Kef B200
Kef B200
Kef B138
Kef B138
Kef DN8
Kef DN 12
Kef DN 13
Richard Allan CG 8 T 8"' d / c roll/s
STC 4001 G super tweeter
Fane 701 twin ribbon horn
Baker Major Module, each
Goodmans Mezzo Twinkit, pair
Goodmans DIN 20, 4 ohm , each Helme XLK25, pair
Helme XLK 30, pair
Helme XLK 50, pair
Ketkit 1 , pair
Peerless $3 / 15(3 \mathrm{sp}$. system) each Richard Allan Twinkit, each. Richard Allan Twinkit, each
Richard Allan Triple 8 , each Richard Allan Triple, each Richard Allan Super Triple, each Wharfedale Linton 2 kit (pair) Wharfedale Glendale 3 kit , pair Wharfedale Dovedale 3 kit, pair Wharfedale Super 10 RS/DD Castle Super 8 RS/DD

INCLUDING VAT AT $\mathbf{2 5} \%$ ON HI-FI, $\mathbf{8} \%$ ON PRO AND PA

Cabinets for PA and HiFi, wadding, Vynair, etc
Send stamp for free booklet "Choosing a Speaker
FREE with all orders over $£ 7$ - "HiFi
Loudspeaker Enclosures" Book
All units are guaranteed now and perfect Prompt despatch
Carriage: Speakers 38 p each, $12^{\prime \prime}$ and up 50p each, tweeters and crossovers 25 p each, kits 75 p each (E. 1.50 pair)

WILMSLOW AUDIO
Swan Works, Bank Squara, Wilmslow,
Chestire SK9 1 HF. Tel. Wilmslow 29599 (Discount HiFi, PA and Radio at 10 Swan Street, Wilmslow)

Top 500 Semiconductors from the largest range in the UK

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline SN456 \& 0.80 \& 2 N 3 \& 0.4 \& 2 N 5295 \& \& \& \& BC2 \& 0.12 \& \& \& Lмзояк \& 1.88 \& OC42 \& 0.50 \\
\hline \({ }_{2}^{2 N 456 A}\) \& 0.85 \& \({ }_{2}^{2 N 33}\) \& 0.28 \& 2 N 5296 \& 0.5 \& AF117 \& 0.35 \& \({ }^{\mathrm{BCC} 208}\) \& 0.11 \& \({ }^{\text {BFF160 }}\) \& 0.23 \& LM571 \& 1.50 \& OC45 \& 0.32 \\
\hline \({ }^{2 N} 2 \mathrm{~N} 495 \mathrm{~A}\) \& 1.20
3.16 \& \({ }^{\text {2N }}\) 2 3 39929 \({ }^{\text {a }}\) \& 0.29
0.15
0. \& 2N5298 \& 0.50
0.49 \& \({ }_{\text {AFP }}^{\text {AF } 124}\) \& O.35 \& \({ }_{\text {a }}^{\text {8C2 } 212 \mathrm{~K}}\) \& 0.16
0.16 \& \(\frac{\text { BF } 163}{\text { BF } 166}\) \& 0.32 \& LM38 \& 1.10 \& \(\bigcirc{ }^{\circ} \times 1\) \& \\
\hline 2 N \& 4.38 \& 2 N 3393 \& 0.15 \& \({ }^{2} \mathbf{N} 5458\) \& 0.45 \& \({ }_{\text {AF } 125}\) \& 0.30 \& \({ }_{\text {BCC2 }}{ }^{\text {a }}\) \& 0.18 \& \({ }_{\text {BF1 }}^{\text {BF } 166}\) \& 0.40 \& [M770 \& 2.75 \& \({ }^{\circ} \mathrm{C} 72\) \& \\
\hline 2 N 4 \& 3.00 \& 2N3394 \& 0.15 \& 2N5459 \& 0.49 \& AF1 \& 0.28 \& BC237 \& 0.16 \& \({ }_{81}{ }^{\text {¢ }} 173\) \& - 0.27 \& LM7097099 \& \& \({ }^{\text {OC81 }}\) \& 0.25 \\
\hline 2 N 49 \& 5.20 \& 2N3402 \& 0.18 \& 2N5492 \& 0.58 \& AF127 \& 0.28 \& BC 238 \& 0.15 \& \({ }_{\text {8FF }}\) \& 0.29 \& \& \& \({ }^{0} 8\) \& 0.25 \\
\hline 2N696 \& 0.22 \& 2N3403 \& 0.19 \& 2N5494 \& 0.58 \& AF139 \& 0.65 \& ВС239 \& 0.15 \& \& \& 14DIL \& 0.40 \& \({ }_{\text {OR }}\) \& 0.55 \\
\hline 2N697 \& 16 \& 2N3440 \& 0.59 \& 2N5496 \& \& AF186 \& 0.46 \& BC251 \& 0.25 \& \({ }_{\text {BF179 }}\) \& -0.33 \& 14710 \& 0.4 \& SL414A \& 1.80
1.80 \\
\hline 2N698 \& 0.82 \& 2 N 3441 \& 0.97 \& 2N6027 \& 0. \& AF20 \& 0.65 \& BC253 \& 0.25 \& BF180 \& 0.35 \& ім 3900 \& 0.70 \& \({ }_{\text {SLi }}\) \& 1.70 \\
\hline 2 N 699 \& 0.59 \& \({ }_{2}^{2 N 3442}\) \& 1.40
0.10 \& 2N5777 \& 0.45 \& AF23 \& 0.65 \& BC257 \& 0.15 \& BF181 \& 0.36 \& LM 723 \& 0.90 \& SL611C \& 1.70 \\
\hline \({ }_{\text {2N706 }}\) \& 0.14 \& 2N3414 \& 0.10
0.10 \& - \& -0.73 \& \({ }_{\text {AF }}{ }_{\text {AF } 240}\) \& 0.90 \& \({ }^{\text {BC258 }}\) \& 0.16 \& BF182 \& 0.35 \& LM74 \({ }^{\text {L } 0999}\) \& \& SL612C \& 1.70 \\
\hline 2 N 708 \& 0.16
0.17 \& 2 N 3416 \& 0.15 \& \({ }_{3}{ }^{\text {N139 }}\) \& 00 \& \({ }^{\text {AFP278 }}\) \& - 0.75 \& \({ }^{\text {BC259 }}\) \& 0.17 \& BF \& 0.55 \& 8015 \& \& SL620C \& \\
\hline 2N709 \& 0.42 \& 2 N 341.7 \& 0.21 \& 3N141 \& 0.81 \& Al 102 \& 1.00 \& BC262 \& 0.25 \& \({ }_{\text {BF }}\) \& 0.30 \& 147 \& \(\stackrel{0.38}{108}\) \& \({ }_{5} 51621 \mathrm{C}\) \& 2.60 \\
\hline 2N711 \& 0.50 \& \(2 \times 3638\) \& 0.15 \& 3N200 \& 2.49 \& Al103 \& 1.00 \& \({ }_{\text {BC263 }}\) \& 0.25 \& BF194 \& -0.12 \& LM7488011 \& 1.60 \& SL62 \& 4.59 \\
\hline \({ }^{2 N 718}\) \& 0 \& 2 N 363 \& 0.15 \& 40361 \& 0.40 \& BC107 \& 0.14 \& BC300 \& 0.38 \& \({ }_{8 F 195}\) \& 0.12 \& LM7805 \& 2.00 \& SL644 \& 3.10
3.10 \\
\hline \& \& 2N3639 \& 0.27
0.17 \& \({ }_{40363}^{40362}\) \& -0.45 \& \({ }^{\text {BC }} 108\) \& 0.14 \& BC301 \& 0.34 \& BF196 \& 0.13 \& 14 DLL \& 0.73. \& SNT6003N \& 2.92 \\
\hline 2N720
2N914 \& - 0.57 \& 2N3641 \& 0.11 \& \({ }_{40389}^{40363}\) \& 0.88
0.46 \& \({ }_{\text {BC113 }}\) \& O.14 \& \({ }_{\text {BC302 }}^{\text {BC303 }}\) \& 0.29 \& \& \& LM7805 \& 2.50 \& \& \\
\hline 2 N 916 \& 0.28 \& 2N3703 \& 0.12 \& 40394 \& 0.56 \& BC 115 \& 0.17 \& ВС 307 \& 0.17 \& \({ }_{\text {8F200 }}^{8198}\) \& 0.18
0.40 \& LM7815 \& 2.50
2.50 \& SN76023N \& 1.60 \\
\hline 2N918 \& 032 \& 2 N 3704 \& 0.15 \& 40395 \& 0.65 \& - BC116 \& 0.17 \& 8С308A \& \& 8F225J \& \& \& 2.50 \& \& 2.92 \\
\hline 2 N 929 \& 0.37 \& 2 2N37 \& 0.15 \& 40406 \& 0.44 \& BC 16 16 \& 0.18 \& вС309С \& 0.20 \& BF244 \& 0.21 \& MCi303 \& 1.50 \& TAA300 \& 1.80 \\
\hline \& 0.22
0.19 \& 2N3706 \& 0.15
0.18 \& \({ }_{40408}^{40407}\) \& 0.35
0.50 \& \& 0.21
0.14 \& \({ }_{\text {BC }}{ }_{\text {BC328 }}\) \& - 0.27 \& \({ }^{85245}\) \& -0.45 \& MC1310 \& 2.92 \& taA263 \& 1.10 \\
\hline 2 Nr 303 \& 0.19 \& 2N3708 \& 0.14 \& 40409 \& 0.52 \& BC119 \& 0.28 \& \({ }_{8 C 337}\) \& O.28 \& \({ }_{8 \times 247}\) \& \& \({ }_{\text {MC1351P }}\) \& 0.90 \& TAA350 \& \\
\hline 2N1304 \& 0. \& 2N3709 \& 0.15 \& 40410 \& 0.52 \& BC12 \& 0.35 \& BC338 \& 0.20 \& \({ }_{8 F 254}\) \& 0.19 \& MC1352P \& 0.80 \& TAAGIIC \& 2.18 \\
\hline 2N1305 \& 0.24 \& 2N3710 \& 0.15
0.15 \& \({ }_{40594}^{40411}\) \& 2.25 \& \({ }^{\text {8C126 }}\) \& 0.16
0.83 \& \({ }_{8}^{8 C Y 30}\) \& 0.80 \& Bf255 \& 0.19 \& MC1466 \& 3.50 \& tas621 \& , \\
\hline 2 N 1307 \& 0.30 \& 2N3712 \& 1.20 \& 40595 \& 0.84 \& \({ }_{\text {BC }} 132\) \& 0.30 \& BCY32 \& \& \({ }^{\text {er } 2585}\) \& 0.47 \& \({ }_{\text {M }}\) \& 2.75
0.20 \& TAA661B \& 1.32 \\
\hline \(2 \mathrm{~N}+308\) \& 0.47 \& 2 N 3713 \& 1.20 \& 40601 \& 0.67 \& BC 134 \& 0.13 \& 8CY33 \& 0.85 \& \({ }_{8 F 259}\) \& 0.55 \& MEO404 \& 0.13 \& \({ }^{\text {TBAES51 }}\) \& 1.69 \\
\hline 2N1309 \& \begin{tabular}{l}
0.47 \\
1.54 \\
\hline
\end{tabular} \& 2N3715 \& \begin{tabular}{l}
1.38 \\
1.50 \\
\hline 1
\end{tabular} \& \({ }_{40603}\) \& -0.58 \& \({ }_{8}^{8 C 136}\) \& 0.13
0.17 \& \& -0.79 \& BFR3 \& 0.24
0.24

0 \& MEO412 \& 0.188 \& trabio \& 1.50

\hline 2 N 1671 A \& 1.87 \& ${ }_{2} 2 \times 3716$ \& 1.80 \& 40604 \& 0.56 \& ${ }^{\text {BC }} 137$ \& -0.17 \& BCY39 \& 1.50 \& bFS 21 A \& $\stackrel{2.30}{ }$ \& ME4 104 \& 0.11 \& \& 4.15

\hline ${ }_{2}^{2 N 1671 B}$ \& 04 \& 2N3771 \& 2. \& 40636 \& 1.10 \& ${ }^{\text {ECC }} 138$ \& 0.24 \& BCY40 \& 0.97 \& BFS28 \& 0.92 \& mJ480 \& 0.95. \& T1209 \& 0.30

\hline 2N1711
2N1907 \& 0.45

5.50 \& (2N3772 \& | 1.80 |
| :--- |
| 2.65 |
| 1 | \& ${ }_{40673}^{40669}$ \& 1.00

0.73 \& ${ }^{\text {BC }} 14140$ \& -0.68 \& ${ }^{8 C 742}$ \& 0.28 \& BF \& 0.2 \& MJ4B1 \& \& 1P29A \&

\hline 2N2102 \& 0.68 \& 2 N 3779 \& 3.15 \& ${ }_{\text {AC126 }}$ \& 0.20 \& ${ }_{\text {BC }} 142$ \& 0.23 \& ${ }^{\text {BCCY59 }}$ \& - 0.32 \& ${ }_{8}^{85 \times 29}$ \& 0.25
0.30
0.30 \& MJ49 \& 45 \& TIP30A \& 2

\hline 2N2147 \& 0.78 \& 2N3790 \& 2.40 \& ${ }^{\text {AC127 }}$ \& 0.20 \& BC143 \& 0.25 \& \& 0.17 \& ${ }_{8 \times \times 30}$ \& 0.27 \& MJ2955 \& 1.00 \& ${ }_{\text {T1P32A }}$ \& (0.62

\hline ${ }^{2} 2148$ \& 0.94 \& $2 \mathrm{N3791}$ \& 2.35 \& AC128 \& 0.20 \& BC145 \& 0.21 \& BCr71 \& 0.22 \& ${ }_{8 \times \times 84}$ \& 0.24 \& MJE340 \& 0.48 \& TIP33A \& ${ }_{1}^{1.01}$

\hline ${ }_{\text {2N2 }}$ \& 0.90
0.22 \& 2N37944 \& 2.60
0.10 \& \& ${ }_{0}^{0.27}$ \& \& 0.14
0.14 \& ${ }^{\text {BCF72 }}$ \& 0.15 \& ${ }_{8 \times \times 85}$ \& 0.30 \& M, E370 \& 0.65 \& TP34A \&

\hline 2N2219 \& 0.24 \& 2N389 \& 0.37 \& ${ }_{\text {AC153 }}$ \& 0.35 \& ${ }_{\text {BC }}$ ¢ 49 \& 0.15 . \& ${ }^{\text {BD }} 116$ \& 0.75
0.75 \& \& -0.28 \& M. M E371 \& 0.75 \& ${ }_{\text {T1P354 }}$ \& 2.90

\hline 2N2219A \& 0.26 \& 2 N 3820 \& 0.38 \& ${ }^{\text {A C }}$ 153K \& 0.40 \& ${ }^{\text {BC }} 153$ \& 0.18 \& B0121 \& 1.00 \& ${ }_{85 \times 89}$ \& 0.90 \& - \& 0.70 \& TTP41A \& 3.70
0.79

\hline 2N2220 \& 0.25 \& 2N382 \& 1.42 \& ${ }^{\text {AC } 154}$ \& 0.25 \& BC 154 \& 0.18 \& BD123 \& 0.82 \& BFF50 \& 0.23 \& MJE2955 \& 1.20 \& Tip $42 A$ \& 0.90

\hline ${ }_{2}^{2 N 22221}$ \& ${ }_{0}^{0.18}$ \& 2N3904 \& 0.27
0.27 \& ${ }_{\text {A A }}^{\text {A } 1766}$ \& ${ }_{0}^{0.30}$ \& \& 0.16
0.16 \& ${ }_{\text {coin }}^{\text {BD124 }}$ \& 0.67 \& ${ }^{\text {BFF5 }} 1$ \& 0.23 \& MJE3055 \& 0.75 \& TiP29c \& 0

\hline ${ }^{2} \mathrm{~N} 2222$ \& 0.20 \& 2 N 4036 \& 0.67 \& AC187k \& 0.35 \& ${ }_{\text {BC1 } 160}$ \& 0.80 \& ${ }_{\text {BD }} 132$ \& 0.40 \& ${ }_{\text {BFY } 53}$ \& 0.21
0.18 \& MP8 \& 0.32 \& T1P \& 0.85

\hline 2 N 2222 A \& 0.25 \& 2N403 \& 0.42 \& AC1 BBI \& 0.40 \& BC 1678 \& 0.15 \& B0135 \& 0.43 \& BFY90 \& 0.75 \& MP8113 \& 0.47 \& \& | 1.00 |
| :--- |
| 1.25 |

\hline ${ }^{2} 2 \times 2368$ \& 0.25 \& 2N4058 \& 0.18 \& ${ }^{\text {ACY18 }}$ \& 0.24 \& BC1688 \& 0.15 \& 8D136 \& 0.49 \& BRY39 \& 0.48 \& MPF102 \& 0.30 \& TIP336 \& 1.25

\hline 2N2369 \& 0.20
0.22 \& 2N4059 \& 0.15
0.15 \& ${ }_{\text {ACY }}^{\text {ACY }}$ (${ }^{\text {a }}$ \& 0.27
0.22 \& ${ }^{\text {BC } 1688}{ }^{\text {BC } 1698}$ \& 0.15
0.15 \& (ent $\begin{aligned} & 80137 \\ & 80138\end{aligned}$ \& 0.55
0.63 \& \& - 0.21 \& MPSAOS \& 0.25
0.25
0.31 \& $T{ }_{T 1}$ \& 2.60

\hline 2N2646 \& 0.55 \& 2N4061 \& 0.15 \& ${ }^{\text {ACr21 }}$ \& 0.26 \& QC169C \& 0.15 \& ${ }^{80139}$ \& 0.71 \& ${ }_{85 \times 21}$ \& 0.21
0.29 \& MPSA \& 0.31
0.35 \& TiP412 \& 1.40

\hline 2N2647 \& 0.98 \& 2 N 4062 \& 0.15 \& ACY28 \& 0.20 \& BC170 \& 0.15 \& BD140 \& 0.87 \& BU104 \& 2.00 \& mpais \& \& \& 1.60
0.70

\hline 2 N 2904 \& 0.22 \& 2N4126 \& 0.21 \& ACY30 \& 0.58 \& ${ }^{\text {BC171 }}$ \& 0.16 \& BD529 \& 0.80 \& ${ }^{\text {BU1 }} 105$ \& 2.25 \& mpSA56 \& 0.31 \& TiP5 \& ${ }_{0.53}$

\hline ${ }_{\text {2N2 }}$ \& 0.24
0.25 \& 2N4289 \& 0.34

0.95 \& \& | 0.57 |
| :--- |
| 0.68 | \& \& 0.17

0.18 \& \& 0.80
0.24 \& ${ }_{\text {Cl }}^{\substack{\text { Cl } \\ \text { CA }}}$ \& 2.25
0.65
0.85 \& MPSUO5 \& 0.65 \& T1P29555 \& 0.98

\hline 2N2905A \& 0.26 \& 2N4920 \& 1.10 \& AD149V \& 1.20 \& BC178 \& 0.27 \& BFR79 \& 0.24 \& CA3020A \& 1.80 \& MPSU55 \& ${ }_{0.63}^{0.58}$ \& \& - 0.50

\hline 2N2906 \& 0.19 \& \& 0.80 \& AD150 \& 0.63 \& BC179 \& 0.30 \& B0Y20 \& 1.05 \& \& 0.79 \& MPSU56 \& 0.80 \& \&

\hline 2N2906A \& 0.21 \& 2 N 4922 \& 0.83 \& AD161 \& 1.15 \& ${ }^{8 C 182}$ \& 0.12 \& BFF115 \& 0.36 \& C43035 \& 1.37 \& NE555V \& 0.70 \& 2Tx \& ${ }_{0.13}$

\hline ${ }_{2}^{2 N}{ }_{2} \mathrm{~N} 2907^{2907}$ \& 0.22
0.24 \& 2N4923 \& 1.00
0.92 \& ${ }_{\text {AD }}^{\text {AD } 162}$ \& 1.15 ${ }_{\text {pr }}$ \& ${ }_{\substack{\mathrm{BC} \\ \mathrm{BC} 183 \\ 8182}}$ \& ¢0.12 \& ${ }_{\text {BF1 }}{ }^{\text {BF } 17}$ \& - 0.55 \& CA3305
CA3046 \& 1.62
0.70 \& NE556 \& 1.30 \& ZTX 3 O2 \& 0.20

\hline 2N2924 \& 0.20 \& 2N5191 \& O \& AD162 \& 1.05 \& \& 0.12 \& BF123 \& 0.35 \& CA3048 \& 2.11 \& NE5661 \& 4.48 \& \&

\hline ${ }^{\text {N }} 2926$ \& 0.20 \& 2N5192 \& 1.24 \& AF106 \& 0.40 \& ${ }^{\text {BC1 } 184}$ \& 0.13 \& BF125 \& 0.35 \& Ca3089E \& 1.98 \& NE56 \& 4.48 \& 2Tx502 \& ${ }_{0}^{0.18}$

\hline - ${ }_{\text {2N3053 }}$ \& 0.25
0.60 \& 2N5195 \& 1.46
0.47 \& ${ }_{\text {AFF }}^{\text {AF } 11098}$ \& 0.40
0.35 \& \& 0.13
0.25 \& \& 0.20
0.25 \& case90a \& 4.23
0.48
2.48 \& oc \& 1.35
0.76
0.78 \& 2TK530 \& 0.23

\hline 2N3055 \& 0.75 \& 2N5294 \& 0.48 \& AF115 \& 0.35 \& BC 187 \& 0.27 \& ${ }_{8 \times 154}$ \& 0.16 \& LM308 \& 0.48
2.50 \& OC28 \& 0.76
0.60 \& \&

\hline
\end{tabular}

TTL Integrated Circuits - Quality \& Prices you can't beat

												SN74151		SN74174 SN74175	1.25 0.90
SN7400	0.16 0.16	SN7410	0.18 0.25	SN7432	0.28	SN7451	0.16	SN 7481	1.25	SN7495	0.72 0.75	SN74153	0.85 0.85	SN44175	0.95 1.44
SN7401AN	0.38	SN7412	0.28	SN7437	0.37	SN7453	0.16	SN7482	0.75	SN74100	1.25	SN74154	1.50	SN74180	1.40
SN 7402	0.16	SN7413	0.35	SN7440	0.35	SN7454	0.16	SN7483	0.95	SN74107	0.36	SN74155	1.50	SN74181	1.95
SN 7403	0.16	SN7416	0.35	SNT441AN	0.85	SN7470	0.16	SN7484	0.95	SN74118	1.00	SN74157	0.95	SN74190	2.30
SN7404	0.19	SN7417	0.35	SN7442	0.65	SN 7472	0.26	SN7485	1.25	SN74119	1.92	SN74160	1.10	SN74191	2.30
SN7405	0.19	SN7420	0.16	SN 7445	0.90	SN 7473		SN7490	0.32	SN74121	0.37	SN74161	1.10	SN74192	1.15
SN 7406	0.45	SN7423	0.29	SN7446	0.95	SN 7474	0.36	SN7491	0.85	SN74122	0.50	SN74162	1.10	SN74193	1.15
SN7407	0.45	SN7425	0.29	SN7447	0.95	SN7475	0.50		0.45	SN74123	0.60	SN74163	1.10	SN74196	1.60
SN7408	0.19	SN7427	0.29	SN7448	0.90	SN7476	0.35	SN7493	0.45	SN74141	0.85	SN74164	2.01		1.58
SN 7409	0.22		0.16	SN7450	0.16	SN7480	0.50	SN7494	0.82	SN74150	1.50	SN74167	2.01 4.10	SN74198	2.25 2.25

10\% discount
for callers at
Bristol during
August
1 STRAITS PARADE
FISHPONDS
BRISTOL BS16 2LX
TEL: BRISTOL 654201/2

PW TELETENNIS KIT As featured on $88 C$ Nationwide and in the
Daily Maii 2 Occ 74 . Ideal game for whole
family No family, No neet to moditiv your TV set. just
plugs in to arial socket. plugs in to aerial socket.

P.C. Mawk or Pon Dalo 33PC 0.87p Zenerar $400 \mathrm{MW}-11 \mathrm{p}$ iN-17p

 SAT V (
1 1MF440V- 1.10.
RSTBO246-1
${ }^{\text {ET3.00. }}$ OPTO LED'S
Red, green and yellow
0.16 diameter $31 p$
0.20 diameter 33D
Di $707 £ 2.35$

RESISTORS of 1\% tolerance sometimes have a five band code. The same colour codes are used but the first three bands represent the first three digits and the fourth band is the multiplier. With these resistors only a few of the standard values coincide with those of the four band coded resistors. For example 220 k is standard in four band code but 221 k is standard in five band code.

RESISTOR COLOUR CODE

(standard carbon series)

To read the colour code, hold resistor with. code ring nearest to end at left hand side.

Colour	1st ring; 1st figure	2nd ring 2nd figure	3rd ring multiplier	4th ring tolerance
black	-	0	1	-
brown	1	1	10	$\pm 1 \%$
red	1	2	10^{2}	$\pm 2 \%$
orange	3	3	10^{3}	-
yellow	4	4	10^{4}	-
green	5	5	105	-
blue	6	6	10^{6}	. -
violet	7	7	107	-
grey	8	8	10^{8}	-
white	9	9	10^{9}	-
silver	-	-	10^{-2}	$\pm 10 \%$ $+5 \%$

No fourth colour indicates $\pm 20 \%$ tolerance
Grade 1 ('high-stability') resistors are distinguished by a salmon-pink fifth ring or body colour.

Example: Resistor coded as A - grev,
B-red, C-orange, D-gold indicates
g value of 82 kilohms $\pm 5 \%$.

STANDARD VALUES

This table shows the preferred series of values in a decade.

RESISTORS and capacitors are generally made with the values and tolerances shown. For example 20% tolerance resistors are usually made in values of 10, 15, 22, 33, 47 and 68 whether ohms, kilohms or megohms. Thus a (nominally) 47 k, 20\% resistor may have an actual value somewhere between $37.6 \quad k$ and 56.4 k. A (nominally) 33 k, 20\% resistor may in fact be as low as $26.4 k$ or as high as 39.6 k.

Closer tolerance resistors such as 10% or 5% are not necessarily better resistors - merely that the manufacturers have weeded out products falling outside the tolerance limits.

Values in a decade

20\%	10\%	5 or 2\%					1\%			
10	10	$\begin{aligned} & 10 \\ & 11 \end{aligned}$	100	133	178	237	316	422	562	750
	12	12	102	137	182	243	324	432	576	768
15	15	15 16	105	140	187	249	332	442	590	787
	18	18	107	143	191	255	340	453	604	806
22	22	22	110	147	196	261	348	464	619	825
	27	27 30	113	150	200	267	357	475	634	845
33	33	$\begin{aligned} & 33 . \\ & 36 \end{aligned}$	115	154	205	274	365	487	649	866
	39	39 51	118	158	215	287	383	511	681	909
	56	$\begin{aligned} & 56 \\ & 62 \end{aligned}$	124	165	221	294	392	523	698	931
68	68	68 75		169	226	301	402	536	715	953
	82	$\begin{aligned} & 82 \\ & 91 \end{aligned}$	130	174	232	309	412	549	732	976

POTENTIOMETERS

POTENTIOMETERS are made in many different forms for à vast number of applications. Factors which affect design are, for example, wattage and resistance range, whether the control is to be continually or intermittently adjustable, the 'law' of resistance and the variety of mechanical arrangements required.

POWER RATING

The maximum power which may be dissipated is specified for the condition where a voltage is applied across the end terminals continuously. However under certain conditions power dissipations much lower than this can cause damage. This is because the resistive element also has a maximum current limitation. Thus a potentiometer set to its lowest resistance could be damaged if excessive current were drawn via the slider terminal.

LAW

Potentiometers are constructed with various relationships of resistance versus rotation. Those most commonly used are:-

A	linear
B	logarithmic
C	reversed logarithmic
D	tapped
E	balance

The type of relationship (law) used is indicated by stamping the appropriate letter symbol on the body of potentiometer.
eg. 10 kC is a 10 k ohm reversed logarithmic potentiometer.

LOG OR LINEAR?

Most human perception is of a logarithmic nature (eg hearing, where a doubling of power is just perceivable). Hence logarithmic potentiometers are frequently used for volume controls as

Resistance/rotation curves for commonly used potentiometers.

the logarithmic change in resistance (versus rotation) is 'heard' as a linear level-change versus rotation. Logarithmic - potentiometers are not accurate, so, where an accurate mid-point setting is required, (for example in tone controls) they are seldom used except in cheaper equipment.

TAPPED

POTENTIOMETERS

Tapped potentiometers are generally used where some form of frequency compensation versus rotation is required. They are often used in 'loudness' controls, (bass and treble frequencies boosted at low volume levels). Tapped potentiometers are usually specially made for a specific application. Because of this they are
not generally available from hobbyist supply sources.

balance controls

Balance controls are built with two separate elements connected such that each alters resistance in the opposite sense. Such controls are used where it is required accurately to balance the gain of a pair of amplifiers. Such accurate balance is not required in domestic stereo amplifiers and hence in this application a single gang potentiometer is generally used.

GANGING

Potentiometers may be obtained with two or three resistance elements driven by a common shaft. These are commonly used for volume and tone controls for stereo amplifiers.

SERIES AND PARALLEL CONNECTIONS

Resistors in series

$$
R_{\text {total }}=R 1+R 2+R 3+\ldots
$$

Resistors in parallel

$$
R_{\text {total }}=\frac{R 1 \times R 2}{R 1+R 2}
$$

Capacitors in series

$$
\frac{1}{\mathrm{C}_{\text {total }}}=\frac{1}{\mathrm{C} 1}+\frac{1}{\mathrm{C} 2}+\frac{1}{\mathrm{C} 3}+\ldots
$$

Capacitors in parallel
$\mathrm{C}_{\text {total }}=\mathrm{C} 1+\mathrm{C} 2+\mathrm{C} 3+\ldots \ldots$

TAG TANTALUM CAPACITORS

WORKING VOLTS	CAPACITANCE RANGE AVAILABLE
3	$10-100 \mu \mathrm{~F}$
6.3	$6.8-47 \mu \mathrm{~F}$
10	$4.7-33 \mu \mathrm{~F}$
16	$2.2-22 \mu \mathrm{~F}$
25	$3.3-10 \mu \mathrm{~F}$
35	$0.1-6.8 \mu \mathrm{~F}$

Tolerance $\pm 20 \%$

PROJECT BUILDING GUIDE

TAG TANTALUM CAPACITORS

CAPACITANCE IN MF				D.C. WORKING VOLTAGE	
COLOUR	$\begin{aligned} & \text { 1st } \\ & \text { RING } \end{aligned}$	$\begin{aligned} & \text { 2nd } \\ & \text { RING } \end{aligned}$	i POLARITY and I MULTIPLIER	COLOUR	VOLTS
Black Brown Red Orange Yellow Green Blue Violet Grey - White	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$	$\begin{aligned} & \times 1 \\ & \times 10 \end{aligned}$ $\begin{aligned} & \times 0.01 \\ & \times 0.1 \end{aligned}$	White Yellow Black Green Blue Grey Pink	$\begin{gathered} 3 \\ 6.3 \\ 10 \\ 16 \\ 20 \\ 25 \\ 35 \end{gathered}$

N.B. - The above sketch shows the position of the coloured spot which serves both as multiplier and anode indicator.

EXAMPLE
$6.8 \mu \mathrm{~F} / 25$ volts
 $\left.\begin{array}{l}6 \\ 8 \\ 0.1 \\ 25\end{array}\right\} 6.8 \mu F$
Volts

CERAMIC CAPACITORS

capacitance (pF)	marking	capacitance (pF)	marking	capacitance (pF)	marking	
0.68	p68	5.6	5p6	47	47p	0
0.82	p82	6.8	6 p 8	56	56p	$27 \cdot \quad$ ¢
1.0	1 p0	8.2	8 p 2	68	68p	
1.2	1 p 2	10	10p	82	82p	
1.5	1p5	12	12p	100	n10	4
1.8	1 p 8	15	15p	120	n10	
2.2	2 p 2	18	18p	150	n15	$\square \square$
2.7	2p7	22	22p	180	n18	- -
3.3	303	27	27p	220	n22	nsemen
3.9	3 p 9	33	33p	270	n27	2.5680
4.7	4 p 7	39	39p			

POLYCARBONATE CAPACITORS

MODERN FM RECEIVING TECHNIQUES

 PART

 PART TWO

 TWO}

Last month Brian Dance discussed VHF receiver front-ends. In this article he will cover some high performance 10.7 MHz amplifier/demodulator circuits. Conventional tuned circuits cannot normally be integrated on a silicon IC chip and in any case they are inconvenient to use and to align. However, ceramic filters provide a satisfactory solution to these problems:

CERAMIC FILTERS

Miniature 10.7 MHz ceramic filters are manufactured by Toko (type CFS), Vernitron (type FM-4) and Murata. They can be used to replace the tuned circuits formerly used in FM receivers and have the advantage that no alignment is required. These filters have three connections; the centre one should always be earthed, whilst the other two interchangeable connections are the input and output.

A single ceramic resonator is employed in the filters. This is equivalent to a co plex multi-section LC filter and provide excellent selectivity. The frequency response of Vernitron FM-4 filters is shown in Fig. 7. A single filter is adequate for most locations, but the use of two filters provides the really high adjacent channel rejection which is valuable when one is situated near to a transmitter.

Unfortunately two ceramic filters cannot be coupled directly together or their frequency response will be affected. Ah amplifier of moderate gain is normally inserted between two filters. The external circuit on each side of the filter should present an impedance of about 330 ohms, the parallel capacitance being under 10 pF . Although these values are not very critical, the selectivity curve will suffer if they are not within 20%.

Ceramic filters cannot be manufactured with extremely narrow centre frequency tolerances. Manufactured filters are therefore colour coded. If two filters are to be used in a receiver, the colour coding of each should be the same, but it does not matter which colour is used. Manufacturers will supply matched pairs.

Ceramic filters are almost immune to shock. They are compact and
light in weight, easy to mount and require no adjustment. The change of the centre frequency with temperature is around -40 kHz for a change from $-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$. The loss in the pass band is only about 5 or 6 dB . The price of 10.7 MHz ceramic filters is about 50 p each.

CFK FILTERS

The Toko CFK 10.7 MHz filter contains a single tuned input circuit which is coupled to a ceramic filter. The imput impedance is about $5 k$, so it is suitable for use following circuits of a relatively high output impenance. It is, however, necessary to adjust the tuned input circuit.

AMPLIFICATION

The earlier FM demodulator ICs did not incorporate a high gain internal 10.7 MHz amplifier. It is necessary to amplify the incoming signal from the front-end before feeding it to one of these circuits. Although only modern high gain demodulator ICs will be covered by this article, many readers will be interested in details of FM amplifiers.

THE μ A753

The Fairchild $\mu \mathrm{A} 753$ device is especially suited to receivers using ceramic filters since it has input and output impedances of 330 ohms. The device has two outputs: the normal one at pin 5 is taken from the third amplifier stage where the overall voltage gain is about 300 $(50 \mathrm{~dB})$. A lower level output is available from pin 7 where the overall gain is about 50 (34 dB).

A circuit using the $\mu A 753$ is shown in Fig. 8. Two ceramic filters, F1 and F2, are used. If the output impedance of the front-end is 75

Fig. 7. Typical response of circuits employing one and two Vernitron type FM-4 ceramic filters.
ohms, the value of R1 should be about $(330-75)=255$ ohms (so that the input of F1 is matched to the correct impedance). In practice, a 270 ohm resistor of 10% tolerance is quite suitable.

The output of F1 is matched by the internal 330 ohm resistor of the $\mu A 753$. Similarly, the output of the $\mu \mathrm{A} 753$ provides the required 330 ohm impedance for the input of F2, whilst the output of $F 2$ requires the matching resistor R2. The value of R2 should be selected to provide a $330 \mathrm{~m} \Omega$ output impedance when it is in parallel with the input impedance of the succeeding stage. For example, if the output feeds a circuit with an imput impedance of over 3 k ohm, the value of $R 2$ should be about 330 ohms. If the following circuit has an input impedance of 660 ohms, the value of R2 should be about 660 ohms also. (A 680 ohm resistor would be quite satisfactory.)

The μ A 753 provides a stabilised output of 7.8 V from pin 6 . This can be used as the power supply to a front-end unit, as in Fig. 8. The total current consumption of the circuit in

Fig. 8 is around 16 mA plus any current taken from pin 6. The $\mu \mathrm{A} 735$ is an 8-pin dual-in-line IC and costs around $£ 1$.

OTHER AMPLIFIERS

Quite a number of other integrated circuits are suitable for use as 10.7 MHz amplifiers. The RCA CA3076 can be used in the simple circuit of Fig. 9. R1 and R2 are the filter matching resistors. A gain of about 80 dB at 10.7 MHz can be obtained using this device if the load is about $2 k$. In the circuit shown the gain will be reduced by the tllter matching resistor R2 and the Joss in the two filters. However, it should still exceed 50dB.

THE TDA 1200/CA3089E

'The SGS-Ates TDA 1200 and the RCA CA3089E are equivalent 16-pin dual-in-line devices which form a complete FM IF and demodulation system. They contain over 80 transistors. The connections are shown in Fig. 10, and the internal circuit is shown in block form in Fig. 11.

The devices include a three-stage high-gain differential amplifier which drives the level detector circuits. The latter feed the field strength meter circuit, whilst the first level detector also provides delayed AGC for the RF stage in the front-end. The last stage of the differential amplifier also drives the quadrature detector. This provides signals to the audio amplifier, the AFC amplifier and the muting circuit.

Fig. 12 shows a typical high-performance tuner using a normal front-end (gain about 26 dB), a transistor 10.7 MHz amplifier, one ceramic filter (marked F) and a TDA 1200 circuit. R5 and R7 are the filter matching resistors. The value of R10 should be chosen so that a suitable AFC characteristic is obtained.

Two coils are employed in the circuit. L1 is a $22 \mu \mathrm{H}$ choke which can be obtained as a very neat Toko coil (type 144 LZ 220K). The coil L2 with the parallel capacitor C9 is available under the Toko type numbers KACS-K-586HM and 94AES 30465 N . The former type includes an 82 pF capacitor for C9 and the latter a 120 pF capacitor. The Q factors are quoted as 100 and 65 respectively, but R8 reduces this. The value of this resistor has been chosen to give a suitable compromise between the distortion level and the amplitude of the audio output signal. In the case of all three coil types, the connections are taken

Fig. 8. Amplifier circuit using the Fairchild $\mu A 753$ with two ceramic filters.

Fig. 9. A CA3076 amplifier stage.

Fig. 10. Connections of the TDA 1200/CA3089E devices.
from the outer pair of the row ot three connections, the other leads remaining unused. (The 94AES 30465 N has an additional coupling coil which is not used in this application.)

The coil L2 can be roughly aligned by tuning it for maximum audio output. If no wobbulator is available, reasonable alignment of L2 can be effected by adjustment of the core until the meter M2 swings almost symmetrically from one side through the centre to the other side as one tunes the receiver through a station. Correct tuning is, of course, obtained when M2 is at the centre null point.

The circuit of Fig. 12 provides a total harmonic distortion at the output of around 0.5%. Lower distortion can be obtained by using the double tuned circuit shown in Fig. $13(\mathrm{a})$ as a modification. This double-tuned circuit is claimed to have a distortion of around 0.1%. In addition it provides a lower capture ratio.

MODERN FM RECEIVER TECHNIQUES

Fig. 11. Internal circuit of the TDA $1200 /$ CA3089E in block form with basic external circuit.

Fig. 12. A typical FM tuner using the TDA 1200.

IMPROVE PETROL

 GONSUMPTION
Fit the Brilliant
 New P.E. Scorpio Mk. II "Dual Polarity" Capacitive Discharge Electronic Ignition System

* Genuine improvement in overall petrol consumption (independen report claims at least $8 \%-10 \%$)
* Much easier cold weather starting, less strain on your battery
* Less use of choke - increase engine life
* Smoother running at lower revs - makes your four cylinder car feel like a six cylinder

Together with the following "Scorpio Mk. II" plus features not previously available with other makes:-

* Only one model used for both positive (+) and negative (-) earth vehicles - if you change your car, you can certainly transter your Scorpio
* Retains your original contact breaker points, which last their mechanical life - no points burn
* Will drive electronic tachometers

Send a stamped addressed envelope for our free interesting brochure "Electronic Ignition - How it Works", containing circuit and itemised price list.
Price for complete kit of parts, with easy to follow. comprehensive instructions, connecting wire, etc. ONLY £15.50, including V.A.T and postage and packing
Ready made unit, fully tested, for immediate installation with easy to follow instructions, all leads, etc., ONLY $£ 17.50$, including V.A.T. and postage and packing

THOUSANDS ALREADY in use - fully guaranteed TRADE ENQUIRIES INVITED

ELECTRO SPARES
 288 ECCLESAL ROAD
 SHEFFIELD SII BPEA

Arhaur Clectranics imited ETI ONE ARM BANOIT CASES.

Model No. 321 F FLAT PACK front panel aluminium, rear panel and case, mild steel. Fron panel finished in white gloss, other parts finished black, textured finish supplied with aluminium top and bottom trim
D
203 mm
w
PRICE

Mocel Nos. 19 \& 121 two part aluminium construction base frontand back unit in white gloss, hooded cover finished in blue hammer stove enamel

MODEL	D	W	H	PRICE
$\$ 19$	152 mm	127 mm	89 mm	E1.80 each
121	152 mm	202 mm	76 mm	E2.20 each

Model Nos. 221 F \& 222F Flat packs. Fiorit \& rear panels àluminium case mild steel front panel finished in white gloss other paits finished in blue hammer stove enamel
$\begin{array}{cccc}\text { MODEL D W P } & \text { D } & \text { H }\end{array}$ $\begin{array}{lllll}221 \mathrm{~F} & 152 \mathrm{~mm} & 203 \mathrm{~mm} & 152 \mathrm{~mm} & \text { £3.05 each } \\ 222 \mathrm{~F} & 197 \mathrm{~mm} & 254 \mathrm{~mm} & 159 \mathrm{~mm} & \text { £3.65 each }\end{array}$ Prices include P\&P U.K. only. Add B\% VAT U.K. only. Send S.A.E. for full brochure
ARBOUR ELECTRONICS LIMITED
Unit 13 East Hanning field Industrial Eatafe, Nr. Chatmsford Essex CM3 5BG. Tel: Chelmstord (0245) 400700 Sheet motal work wiring asseimbly service available

Available from ITI Book Service

Towers' International Transistor Selector

HOW THE INFORMATION IS GIVEN (SHOWN HERE REDUCED SCALE)

Thamsiston		${ }_{\text {abe }}$	1 Imp	$\mathrm{mex}_{\text {max }}^{\text {ved }}$	max	VEE	max	max	тот	min mx	${ }^{4} \mathrm{H}$	mict	ust	mfa	${ }_{\text {cupo }}^{\text {cuvt }}$	Lusant	$15 s$
	N	(10s	108	${ }^{300}$	25	${ }_{250}^{250}$	${ }^{3000} 1$	${ }_{\text {asc }}^{\text {asc }}$			${ }_{\substack{200 \mathrm{~m} \\ 200}}$			Sas			
2n	Ne		碞	250		cos	,				comy		24	cos		年304	
$2 n$ 24	${ }_{n 6}$	${ }^{105}$	10	${ }^{250}$	13.	250	30004	${ }^{85}$	${ }^{1504}$					St 08	${ }_{29}$	${ }_{304}^{304}$	
	${ }_{9}^{\mathrm{Na}} \mathrm{C}$		10	250V		250	3004:										
			1	Sou		cr		Sc	souc							$\substack{\text { 2N11100 } \\ \text { 2N1 }}$	
$2 \mathrm{c} 4 \times$			104	S\%		ior	$254 \times$		1so	800x 300	is				${ }_{6}$	$\underset{\substack{2 \times 24 \\ 2 \times 10}}{2 \times 100}$	
${ }_{2} 2 \times 4.45$			104	isis		100					235i0						
		109	(ca	${ }_{\text {c }}$		lov											

We first saw 'Towers International Transistor Selector' when a copy was sent in for review. We were so impressed that we started to supply readers direct. If seems that you share our high opinion as several hundred have been sold to date.

This 142-page book gives com prehensive details of over 10,000 British, IJS, European and Japanese transistors încluding electronic and mechanical specifications, manufacturers and available substitutes.

ع3.40

INCLUDING
postage

TO: TOWERS INTERNATIONAL TRANSISTOR SELECTOR
ETI Book Service
25 Court Close, Bray Maidenhead, Berks

Please find enclosed cheque/P.O.
for $£ 3.40$ (payabie to E II)
NAME
I ADDRESS

MODERN FM RECEIVER TECHNIQUES

Fig. 13. Low distortion circuit using a double tuned quadrature coil.

Fig. 14. Variation of the pin 13 and pin 15 potentials with input signal level.

\bar{A} suitable double-tuned circuit can be made by using the Toko type 34342 BM coil with a separate Toko 34343 AUO coil connected as
shown in Fig. 13(b). This circuit is electrically equivalent to that of Fig. 13(a). Although these coils for the double-tuned circuit are readily

Fig. 15. A.M. rejection provided by the CA3089E/TDA 1200.
available, a wobbulator is required to align them, since any change in the sitting of the core of either coil affects the tuning of the other coil. Many readers will therefore prefer to use the simpler single tuned demodulator circuit of Fig. 12.

All of the Toko coils mentioned for both the signal and double tuned circuits are housed in miniature 10 mm square cans.

The capacitor C13 in the Fig. 12 circuit provides the normal $50 \mu \mathrm{~s}$ de-emphasis in conjunction with the sum of the resistance of R12 and the 5 k ohm output impedance of the pin 6 circuit. If the output is fed to a

stereo decoder circuit, R12 and C13 should be omitted. The de-emphasis components must be placed at the output of the stereo decoder.

The variation in the potentials of pins 13 and 15 with the input signal level is shown in Fig. 14. It can be seen that the AGC output from pin 15 remains almost constant at about +4.7 V until the input signal to pin 1 reaches a level of about 3 mV . Then the potential at this pin falls with increasing signal level. The front-end circuit must not impose a load of less than 10k ohms on the AGC output from pin 15.

It can be seen from Fig. 14 that the potential of pin 13 rises almost as the logarithm of the input signal strength over much of the working range of input levels. Thus the meter M 1 can indicate a very wide range of input signal levels.

The AM rejection provided by the type of circuit shown in Fig. 12 is plotted in Fig. 15. It can be seen that for signal levels exceeding about 1 mV the rejection of unwanted $A M$ signals (including car ignition noise) exceeds 40 db . The circuit can handle inputs of over 500 mV without any deterioration of the AM rejection factor. A signal to noise ratio at the audio output of over 20 dB can be obtained with input signals to pin 1 of the order of $12 \mu \mathrm{~V}$ RMS.

If the AFC facility is not used, it is advisable to link pin 7 with a 4.7 k ohm resistor to pin 10 to avoid the possibility of added distortion at the audio output.

The CA3089E and the TDA 1200 incorporate circuitry which enables inter-station noise to be muted. When a signal is tuned in correctly, the potential of pin 12 is approximately zero volts. If, however, only noise is present, this potential will rise and a portion of it is tapped off by VR1 of Fig. 12. If the potential of pin 5 exceeds about +1.5 V , the circuit is muted and little signal reaches the output. If a high gain front-end unit is employed, it may be necessary to employ a capacitive attenuator between the front-end and the TDA 1200/CA3089E in order to achieve satisfactory muting.

A detailed report entitled 'TDA 1200 FM-IF System for High Performance Radio Receivers' is available from SGS-Ates.

THE NE563

Phase locked loops are very attractive for use in FM receivers, since they can replace a complete IF circuit and they require no coils. Unfortunately the phase locked
loops available until recently have been suitable for communications receivers but not for high fidelity work. However, the recent development of the NE563 device by Signetics has greatly changed the position. The 563 is a new device containing about 180 transistors which can be used in the circuit shown in Fig. 16.

The incoming 10.7 MHz signal from the front-end unit is fed to pin 7 of the NE563. It is then amplified by up to 60 dB in a high gain amplifier/limiter circuit which has a bandwidth of 22 MHz . The output of the limiter at.pin 5 has an impedance of about 270 ohms, so the additional series resistor R2 increases this to the value required by the ceramic filter F for correct matching. On the output side of this filter, R1 in parallel with the input resistance at pin 2 (about 1250 ohms) makes a suitable impedance match for the filter.

The 9.8 MHz quartz crystal connected between pins 1 and 16 forms part of a 9.8 MHz local oscillator circuit. The signal from the latter is mixed with the incoming 10.7 MHz and the resulting difference frequency of 900 kHz is fed by an internal connection to the phase locked loop section of the device.

The voltage controlled oscillator of the phase locked loop will free run at a frequency determined by the value of C12. If this free running frequency is reasonably close to the 900 kHz input frequency, the loop will lock onto the frequency of the input signal. The error voltage which keeps the loop in lock will vary with the frequency of the incoming signal. Thus this error signal is the required audio voltage when the incoming signal is a frequency modulated one.

The audio output appears at pin 10 superimposed on a steady voltage. The filter R9-C13 provides the normal de-emphasis of $50 \mu \mathrm{~s}$ time constant, whilst R10 and C14 provide some attenuation of RF frequencies. A series capacitor must be employed in both the stereo and monaural output circuits to block the steady voltage at pin 10 .

The loop filter connected to pins 13 and 14 controls the bandwidth of the demodulator circuit. The impedance at these pins is typically 6.2 k . If R8 is reduced in value the bandwidth - and hence the noise level at the output - will be reduced, but the centre frequency must then be more carefully matched to the input frequency.

To be continued next month

INTERNATIONAL-

PART 1

The International FM Tuner is a first class design with an excellent specification. It is designed as the 'brother' of the International $25-\mathrm{a} \mathrm{Hi} \mathrm{Fi}$ amplifier which will be described next month.

ETI have worked closely with Ambit International in designing this Project and a kit will be available from them (see their advertisement on page 47. Without the metalwork and cabinet the cost of this project is well under $£ 30$.

The design of an FM tuner was, until quite recently, a major problem: numerous coils and i.f. cans were required and the component count, if one had a stereo decoder, was high.

The components now available to the constructor however, make the building of an FM tuner, even with a very high specification, hardly more complex than for a simple amplifier. Alignment was also a major problem and for decent quality, sophisticated equipment was necessary. Our design, the International FM Tuner has an excellent specification and is easy to build and can be lined up literally in seconds using only the meters which are an integral part of our design.

The design is greatly simplified by the use of a single p.c. board which carries all the components other than the transformer and the operator controls. These carry only d.c. (except of course the transformer) and so wires to the front panel are in no way critical. It would not be correct to say that layout is not critical - it is - but if the p.c. board layout is used, all this work is done for you already.

We have not attempted to build the tuner head, although the number of components included is not high, the construction is highly

critical and special techniques are needed to align it.

The International FM has facilities way beyond those normally found in any but the most expensive designs. Stations can be tuned in using the cursor in the usual way but also included is a preset module enabling any six stations to be preselected. A disadvantage with multi-turn presets of the type used here is that it is often difficult to know whereabouts in the FM band you are tuning: our design includes a frequency meter which registers the approximate frequency of each push-button. Also included in the design are a tuning meter - to tell you when are right on tune and a signal strength meter to register the relative strengths of the stations heard. These meters are also used in the very simple alignment procedure.

A set of push buttons can select other facilities. There is of course AFC in the circuit and its capture ratio is so good that it has to be switched out for the reception of weak stations adjacent to strong local ones. Inter-station noise is annoying so a MUTE switch is included; once again this can be disabled for the reception of weak stations.

The 19 kHz (and residual 38 kHz) on stereo transmissions can cause a

FM TUNER
 ETI PROJECT 751

whistle if it beats with the bias oscillator of a tape recorder but more serious, if there is a reasonable level of it, it can overload some amplifiers. It will not be heard at these frequencies but the amplifier can be overloaded and cause distortion as a result. To overcome this a pilot tone filter is included on the output.

We felt that this circuit design was so good that to cut corners in the final appearance could not be justified so considerable thought was put to the final shape and general appearance. There is a fair bit of metal bashing we admit but we think most readers will be happy to spend a hour or two to make the final product acceptable in the living room. A specially long slider pot has been chosen to give good resolution.

The International FM Tuner has been designed in conjunction with the International 25, an excellent 25 W r.m.s. stereo amplifier that will be described in the next issue. The chassis sizes are identical and the two look very attractive together.

CONSTRUCTION

As we have already said, the layout of the components is critical and we therefore strongly recommend the p.c.b. design shown. This

$$
7812 \text { (UC) }
$$

ground Fig. 1. The power supply circuit. Although not shown here the transformer should have two 12 V windings, one as shown, the other for applying 12 V a.c. to the panel and meter lights. The use of a voltage regulator is essential as varicap tuning is employed.
carries the power supply (except the transformer) and all the active components. The need for a properly designed layout will be appreciated when one considers that there is over 80 dB of i.f. amplification in the main signal processing IC

Room has been left on the p.c. board for the use of IC sockets and these are strongly recommended unless you always get things to work first time!

The components specified are all readily available from Ambit International who have cooperated closely with ETI in the circuit

design

A number of presets are usad on the board: these should be the horizontal types to fit onto the board. Ceramic filters are used in the i.f. stage. These come with various colour codings but this does not matter as long as the colours of both are the same.

A voltage regulator (IC3) is used in the power supply. This is almost essential as the tuner relies on a stable and hum-free supply for the varicap diodes.

Note the lead-out connections of the BF224 - this is given on the circuit: as will be seen the lead-outs

The system is basically a single superhet VHF receiver. Signals in the range of $88-104 \mathrm{MHz}$ are tuned at the R.F. stage of the front end, by means of the varicap diodes. These varicaps are simply silicon diodes whose capacity changes when a reverse bias voltage is applied.
Following the R.F. stage, the mixer converts the R.F. signal to the intermediate frequency of 10.7 MHz , by combining it with the signal from the local oscillator - which operates at the R.F. signal frequency plus 10.7 MHz .

After amplication provided by QI the resultant signals are then fed through the ceramic filter to provide the necessary selectivity to prevent interference from nearby transmissions, and thence to the main IF amplifier and detector I.C. - the KB4402 (a cheaper but direct equivalent of the CA3089).
The KB4402 contains some ninety transistors that amplify the signal from an input level of 12 microvolts, to a suitable level for the quadrature detector to operate. The amplification

HOW IT WORKS

is 'limiting', i.e. amplitude väriations are removed, since it is only the frequency variations that convey the necessary intelligence. In fact, by the time the signal is ready for detecting, it is almost a square wave - so extensive capacitive decoupling is employed around the device to prevent unwanted R.F. feedback.

The quadrature detector compares with the IF signal with itself - by feeding a signal which has been shifted through a phase network known as the quadrature coil. The effect is similar to the mixer in an DSB generator, though in this instance the frequency variations are converted to the original amplitude variations, and thence fed via the muting circuit to the AF output pin. The muting circuit quietens the noise that appears when tuning between stations, by simply rectifying part of that noise and using it as the control for the audio gate.

A peak detector provides an output for the signal strength meter that is proportional to the signal level of the
incoming signal. After the audio detector, the multiplex stereo decoder selects the 19 kHz subcarrier, around which the basic stereo information of the $\mathrm{L}-\mathrm{R}$ channel is encoded at the transmitter.
By matrixing the resultant signals, the decoder output returns the program to its original discrete form of left and right channels. The simplest analogy is to consider the decoder as switching at a rate of 38,000 times a second between left and right. A certain amount of the 19 and 38 kHz signal remains in the audio and has to be removed to prevent distortion in subsequent audio amplification - and also to prevent mixing with tape recorder bias oscillators, and thereby producing an audible whistle. A 19 kHz pilot presence detector pro vides a switch for the 'stereo-on indicator
Outside the main p.c.b., all the functions are strictly D.C. control voltages (other than audio). This permits flexibility in mounting, since no R.F. sensitive paths exist outside the main unit.

R1, 7, 9, 16,21	resistor	10k
R2		2k2
R3,26	\cdots	33k
R4,31	"	330 ohm
R5,8	'	390 ohm
R6	'	100 ohm
R10.29	"	3 k 3
R11	,	470 ohm
R12	,	68k
R13,24	"	100k
R14	"	2k2
R15	"	5k6
R17		1k2
R18	"	3 k 9
R19,27		1 k 5
R20	"	22k
R22	"	15k
R23	'	2k7
R25,28,30,33,34		4k7
R32		1 k

All resistors $1 / 4$ W. 5% types.
RV1 Slider pot. 50k linear-Rivlin Preset, six position station selector module (Ambit) 10 k skeleton type
RV8,RV1 1 Preset RV9
RV10

100 k skeleton type
$25 k$ skeleton type

PARTS LIST

C1, 2, 3, 4, 6, 19	capacitor	22 nF ceramic disc
C5,12		$4.7 \mu \mathrm{~F}, 12 \mathrm{~V}$ electrolytic
C7,8,17,18	"	10 nF ceramic disc
C9,10	"	$1 \mu \mathrm{~F}, 12 \mathrm{~V}$ electrolytic
C11	:	47 nF ceramic disc
C13	"	470 pF ceramic or polyester
C14,15	-	220 nF polyester
C16		470 nF polyester
C20.21	'	$10 \mu \mathrm{~F}, 12 \mathrm{~V}$ electrolytic
C22	-	$500 \mu \mathrm{~F}, 25 \mathrm{~V}$ electrolytic
C23		$100 \mu \mathrm{~F}, 16 \mathrm{~V}$ electrolytic
C24	.	100 nF ceramic disc
Q1	transistor	BF224 etc
Q 2,4		BC108 etc
Q3	-	BC178 etc
ICI	integrated circuit	KB4402 (CA3089)
IC2	-	KB4400 (MC1310)
1 C 3		7812 (UC) voltage regulator
D1,2	diode	1 N4148
D3-D6		1 N 4001 (50V, 1A)
LED		TIL209 etc
F1, 2	ceramic filter.	CFS-10.7 (matched pair)
F3	pilot tone filter	BLR-3107N
L1, 2	inductor	$22 \mu \mathrm{H}$ choke
Quadrature Coil		KACS-K586
Tuner Head		EC3302 Toko (Ambit)
M1	$400 \mu \mathrm{~A}$	Frequency Meter scaled 88-104
M2	$400 \mu \mathrm{~A}$	Signal Strength Meter scaled 0-10
M3	50-0-50 mA	Tuning Meter, centre zero, scaled 3-0-0 3-0-3
Transformer		$250 \mathrm{~V}: 12 \mathrm{~V}, 12 \mathrm{~V}, 250 \mathrm{~mA}$ each (one winding for panel and meter lights)
Push-button Assembly		One mains On-off, 4 single pole change-overs,
Coax socket.		all individually operated (Ambit)
Balanced feeder terminals		
Stereo phono sockets (or DIN socket)		
Metalwork - details next month		

22 nF ceramic disc $4.7 \mu \mathrm{~F}, 12 \mathrm{~V}$ electrolytic
10 nF ceramic disc $1 \mu \mathrm{~F}, 12 \mathrm{~V}$ electrolytic

7 nF ceramic disc
ceramic or polyester
20 nF polyester
470 nF polyester
丞, 12 V electrolytic 100 MF 16 V electrolyic 00 nF

BF224 etc
BC108 etc
BC178 etc
KB4402 (CA3089)
400 (MC1310)
regulator
1N4148

CFS-10.7 (matched pair)
BLR-3107N
$22 \mu \mathrm{H}$ choke
ACS-K586
C3302 Toko (Ambit)
Signal Strength Meter scaled 0-10
Tuning Meter, centre zero, scaled 3-0-0
-3
$250 \mathrm{~V}: 12 \mathrm{~V}, 12 \mathrm{~V}, 250 \mathrm{~mA}$ each (one winding
lights)
vers
all individually operated (Ambit)

Coax socket.
Stereo phono sockets (or DIN socket)
Metalwork - details next month

Fig. 3. PCB layout. Due to the high frequencies used this should not be changed.
are far from standard. The other transistors have conventional leadouts and should create no problems.

The Toko EC3302 Tuner Head has no provision for AGC but if an alternative is used, ICl has an output for AGC to tuners with such provision (pin 15). For use with the EC3302 R7 and C5 are unnecessary but R9 should be left in even if the EC3302 is used

To keep the leads as short as possible, the tuner head is mounted on the p.c. board. This has its own board with 15 holes all in line, eight of which are used. Holes 8 and 15 should be connected together with a short wire. The p.c. board of the tuner head sits about 3 mm above the main p.c.b. and four wires have to be run through both boards to carry the various connections. Three of the wires go directly to aerial connectors. If the p.c.b. pattern is followed exactly the holes in the two p.c.b.s will line up.

All take-off points on the boards are at the edges to neaten the wiring.

Fig. 4. The component layout on the p.c.b.

ETI TIP PROJECTS No. 2
 CONTENTS

AUDIO

100W GUITAR AMPLIFIER
MIXER PRE AMP LIFIER 100 W continuous power 11
Simple circuit for use with loow guitar amp MASTER MIXER 38
Major project gives professional performance 83
1.5W amplifier using discrete components 90SIMPLE LOUDHAILER
A few components - slot of power
TEST GEAR
WIDE RANGE VOLTMETER 14
Solid-state circuit has 22 ranges - from 10 mV to 1000 V a.c./d.c. 23
Basic circuit measures gains up to 1000
FET DC VOLTMETER 24
Cheap-to-build with $10 \mathrm{M} \Omega$ input impedance 65
A circuit to build into your 'scope 84
Provides $0-59 d B$ atfenuation in $1 d B$ steps84
FOR THE MOTORIST
ELECTRONIC TRANSISTORISED IGNITION 30
A popular design to improve your car's performance 60
Is there metal or filler undernesth the paint? 76
Rashboard indicilor filter underneeth
FOR THE PHOTOGRAPHER
PHOT OGRAPHIC TIMER 26
Provides accurate timing of photogr
SOUND OPERATED F LASH 66
Can be triggered by anything from a dropping pin to a thunderclap66
FOR THE HOME
TEMPERATURE METER 19
Gives a meter reading
UHF TV PREAMP 20
One transistor circuit peps up weak signa/s 86
a variety of alarm circuits are described
MISCELLANEOUSLOW POWER LASER62
Build your own laser for about 1100 70
COIN COLLECTOR METAL LOCATOR
80
EASY WAY TO MAKE P.C. BOARDS
Solves messy painting and hours of time 92
TECH-TIPS 92A collection of circuit ideas for the experimenter

PROJECT BOOK No. 1 NOW ONLY

AVAILABLE DIRECT FROM ETI

To: TOP PROJECTS NO. 1.
Electronics Today International, 36 Ebury Street,
London SW1W OLW.
Please send me a copy of TOP PROJECTS NO. I enclose a cheque/P.O. for 85p (payable to Electronics Today International) which includes 10p postage.

Name

Address

September 75. CENTTOGS ARE SENTTOGETHER SIMPIYIGNORE PYSTAGE: SEND 81.50

STAGE MIXER

Constructional details.

IN THE FIRST PART (July issue) we introduced the principle of our Stage Mixer and gave constructional details of the preamplifier boards. We continue now with details of the mixer board and interconnection wiring.

CONSTRUCTION

The mixer board (ETI 414E) should be assembled with the aid of the circuit diagram, Fig. 5, and the component overlay, Fig. 7. The parts
list for this board was given in the last part issue. It is advisable to use terminal posts or pins for the eight input lines, the O V line and the +19.6 volt line. This makes later interconnection considerably easier.

Our prototype was constructed in a simple pan shaped chassis and cover. We suggest that the sides of the front panel be bent up (rather than the ends as shown in the photographs). This will strengthen the front panel and allow
the transformer to be mounted on it rather than in the case as shown in our prototype unit.
Mount the spacers for the printed circuit boards, the multi-cable socket, VU meter and power outlet socket to the front panel with countersunk screws. It is suggested that the wires to the three-pin socket be attached before mounting - it is difficult later. All other front-panel components can now be mounted along with the escutcheon.

Internal view of the completed mixer.

HOW IT WORKS - ETI 414 MIXER/POWER SUPPLY

The signals from any number of line amplifiers may be summed by one of the sub mixers (eight per board ICI-IC8) the output from each mixer is taken directly via the output socket to the master mixer, and via a 22 k level control to the monitor mixer, 1 C 9 .
The output of the monitor mixer is taken to the master-monitor level control on the master mixer and then ' returned to a buffer amplifier in the stage mixer, IClO.
In an emergency (main mixer faulty) SW2 disconnects the outputs from the master mixer and connects the output of the monitor amplifier to the PA channels.
Power for the stage mixer is provided by a conventional supply which provides plus and minus 15 volts for the mixer amplifiers and plus 19.6 volts for the line amplifiers.

Fig. 7. Component overlay for the mixer/ power-supply board.

Fig. 6. Printed circuit layout for the mixer/power-supply board. Full size $182 \times 57 \mathrm{~mm}$.

STAGE MIXER

Fig. 9. Connection diagram for the mixer/ power-supply board.

Fig. 8. Wiring to input sockets.

Since the mixer may be subject to rough handling it is recommended that all screws be sealed in position with LOCTITE or similar compound.
Commence interconnection wiring by connecting the input sockets and potentiometers as shown in Fig. 8. This diagram shows connections to channel 1 of the preamplifiers - alr other channels being similar. For neatness, we terminated these wires by soldering to the appropriate places on the underside of the board. Attach wires to the preamplifier outputs, on both boards, long enough to reach the appropriate mixer inputs. Similarly attach wires for the O volt and +18 volt supply lines.
The +18 volt supply comes from the negative side of the LED, the positive side being fed from the 19.6 volts of the power supply (1.6 volts drop across LED). When all these leads are attached, both boards may be

Fig. 10. Interconnection of output sockets VU meter and switch and backup switch.

This picture shows the power supply/mixer board at top and one of the pre-amplifier boards (bottom) in position in the chassis.
output sockets and VU meter.
The selector switch and VU meter wiring is as șhown in Fig. 10 and 11. Note that pins 1 to 9 of the
multi-cable socket will have 2 sets of leads, one set from the mixer outputs and one set from the VU meter selector switch.
mounted in position on the chassis.
The mixer/power-supply board may now be interconnected with the aid of Fig. 9. Figure 10 shows the wiring to

CLOCK CRYSTAL TIMEBASE

32.786 kHz QUARTZ CRYSTAL: High accuracy/stability for clock and watch timebases. Can be used with CMOS divider \& ogic to provide stable 50 cps
' 50 cps KTI - will provide 50 cps for clock IC's giving time accurate to within a few seconds a month. Kit consists of PCB 32.768 kHz Xtal, CD4011, CD4020, CD4025, trimmer, C's

R's. IC sockets. Also ideal for car and boat clocks

ALARM CLOCK KITS

Complete kits except for case for 4 or 6 digit alarm clocks with
bleep alarm, snooze and intensity control, using MK50253 IC and DL704E displays. Kits also include: PCB's - active and passive components - IC skt - miniature transformer passive components - IC
switches - flat cable - LS
SUCCESS GUARANTEED: to encourage even the least experienced constructor we happily undertake to repair free of charge any clock which does not function perfectly when completed.

4 DIGIT ALARM CLOCK KIT: £ 18.06 6 DIGIT ALARM CLOCK KIT: £19.86

IC's

MK50253
MK50206
MK5030
MM5314
AY51224
DISPLAYS:
DL704E
5LTO1
5 LT.O1 $\quad 0.5^{\prime \prime} \quad 4$ digit green flourescent 7 seg
$\begin{array}{lllll}\text { DL707 } & \text { i } 1.70 & \text { MAN3M } & 48 p & \text { FND500 }\end{array}$
SUPPORTING ICs, PCBs, HARDWARE
7447 £1.05 $7448 \quad 85 p \quad 75491$ Clock Display PCB for 4 or 6 DL704E
$81 p 75492$ £1.02
Plock Display PCBK 40 D 10 20-way Colour Coded Flexible Flat Cable 20-way Colour Coded Flexible Flat Cable
SOLDERCON DIL SOCKETS: (in strips of SOLDERCON DIL SOCKETS: (in strips of 100) Low cost sockets for TTL, CMOS, displays, ICs Send sae for sample

12/24 hr 6 dioit alarm clock Appliance Timer				E5.60
				£11.50
CMOS LED watch IC with date and seconds				E19.50
4 or 6 digit clock, 12 or 24 hr				£4.44
4 digit clock				$£ 4.25$
0.3.' common cathode 7 segment LED				Only 85p
0.5"	4 digit gree	ouresce		£5.80
£1.70	MAN3M	48p	FND500	E2.20
£2.45	NSN33	£1.65	FND5000	95p

28 pin Zaro 28 pin Zero insertion force Socket for easy insertion and
extraction of LSI 1C's where much handling is required 1.00

MODULES (add 25\% VAT to these)
LG110K Logarithmic Voltage Controlled Oscillator
$\Sigma 5.25$
FX1 100 Low Frequency Function Generator 4.95 $\Sigma 9.95$

SINTEL - SPECIALISTS IN CMOS

UK's Widest Range of CMOS - all devices below in stock at time of going to Press.

CD4000AE	0.21	CD4032AE	1.77	CD4063BE	2.22
CD4001AE	0.21	CD4033AE	2.48	CD4066AE	1.05
CD4002AE	0.21	CD4034AD	8.26	CD4068BE	0.26
CD4006AE	1.47	CD4035AE	1.63	CD4069BE	0.26
CD4007AE	0.21	CD4036AD	7.88	CD4070BE	0.26
CD4008AE	1.63	CD4037AE	1.83	CD4071BE	0.26
CD4009AE	0.67	CD4038AE	1.80	CD4072BE	0.26
CD4010AE	0.67	CD4040AE	1.86	CD4073BE	0.26
CD4011AE	0.21	CD404 1AE	2.02	CD4076BE	1.63
CD4012AE	0.21	CD4042AE	1.37	CD4077BE	0.65
CD4013AE	0.63	CD4043AE	2.02	CD4078BE	0.26
CD4014AE	1.62	CD4044AE	2.02	CD4081 ${ }^{\text {C }}$	0.26
CD4015AE	1.62	CD4045AE	2.29	CD4082BE	0.26
CD4016AE	0.62	CD4046AE	2.02	CD4085BE	1.17
CD4017AE	1.63	CD4047AE	1.37	CD4086BE	1.17
CD4018AE	2.29	CD4048AE	0.78	CD4095BE	1.82
CD4019AE	0.73	CD4049AE	0.62	MC14501CP	0.32
CD4020AE	1.82	CD4050AE	0.62	MC14502CP	0.65
CD402 1AE	1.63	CD4051AE	2.57	MC14508CP	4.20
CD4022AE	1.69	CD4052AE	2.57	MC14510CP	1.26
CD4023AE	0.21	CD4053AE	2.57	MC14511CP	1.95
CD4024AE	1.16	CD4054AE	1.96	MC14518CP	1.87
CD4025AE	0.21	CD4055AE	1.96	MC14520CP	1.87
CD4026AE	1.96	CD4056AE	1.96	MC14528CP	0.87
CD4027AE	0.91	CD4059AD	16.10	MC14553CP	4.07
CD4028AE	1.40	CD4060AE	2.29	MC14566CP	1.21
CD4029AE	1.96	CD4061AD	20.03	MC14585CP	1.45
CD4030AE	0.65	CD4062AT	7.33	MM74C14N	1.16
CD4031AE	4.05				
RCA 1875 CMOS Databook: 400 pages of data sheets and 200 pages of circuits, applications and other useful information.$£ 2.30 \text { (no VAT) }+37 p p \& p$					
Telephoned or written orders welcomed from Polys, Universities, Nationalised Industries, Government Depts, Rated Companies, etc.					
* ALL ORDERS ARE PROCESSED ON DAY OF RECEIPT. Goods are despatched by First Class Post. ADD VAT $8 \%-(25 \%$ rate does not apply to any of the above). 10p p\&p on orders under £2					
$\text { (No VaT on Export orders - } \quad 35 p \text { Air Mail p\&p (Europe) }$					
.53a Aston Street, Oxford				SINTEL	

RCA 1875 CMOS Detabook: 400 pages of data sheets and 200 pages of circuits, applications and other useful information.

$$
2.30 \text { (no VAT) }+37 p \text { p\&p }
$$

Telephoned or written orders welcomed from Polys, Universities, Nationalised Industries, Government Depts, Rated Companies, etc.

* ALL ORDERS ARE PROCESSED ON DAY OF RECEIPT ADD VAT at $8 \%-(25 \%$ rate does not apply to any of the above) $10 p$ p\&p on orders under $£ 2$

5p Air Mail p\&p (Europe)
.53a Aston Street, Oxford
SINTEL
Tel. 086543203

CATALOGUE 2nd Edition

SPECIFICALLY DESIGNED FOR THE AMATEUR RADIO, ELECTRONICS AND HI-FI ENTHUSIAST.
s/? MUCH, MUCH BIGGER RANGE OF QUALITY ELECTRONIC COMPONENTS AND AUDIO ACCESSORIES FROM TRUSTED BIG NAME MANUFACTURERS THOUSANDS UPON THOUSANDS OF COMPONENTS - ILLUSTRATED. INDIVIDUALLY CODED AND PRICED. MANY NEW COMPONENTS ADDED FROM CUSTOMER REQUESTS

* 16 EXTRA PAGE DATA SECTION
* UNIQUE FREE UP-DATE PRODUCT INFORMATION SERVICE DURING LIFE SPAN OF CATALOGUE
$3 /$
ALL COMPONENT REQUIREMENTS SENT BY RETURN POST

5\% POST AND PACKING FREE (only applies for Great Britain, N. Ireland plus B.F.P.O. Nos. - overseas arders F.O.B.)

* no-quibble replacement part service

DORAM ELECTRONICS LIMITED P. O. Box TR8
| Leeds LS12 2UF
I enclose 60p. Please send me by return my new Doram Catalogue. (Overseas orders except for N. Ireland, please add 30 p for post and packing surface onlyl.

PLEASE PRINT BLOCK CAPITALS

NAME \qquad
ADDRESS \qquad
\qquad
\qquad

Design a simple, effective and economical project and you could win one of nine prizes of $\varepsilon 50$ worth of Doram $\varepsilon 5$ vouchers - and if your entry is considered the, best overall you will receive an additional 850 in cash!

All the components used (except common household objects) must be fisted in the new Edition of the Doram Catalogue, but this is hardly a restriction because of the enormous range included. It is not necessary to buy any components, only to decide which to use.

The winning entries will be the most practical, ingenious and well designed in their group
commensurate with the most economical use of components.

Any type of electronic or electromechanical design is eligible providing it has essentially practical value. Self contained designs will be preferred to sub-assemblies (but see note on power supplies).

ETI reserve the right to publish any of the winning entries but any material used will be paid for at our standard rates.

We know how ingenious many ETI readers are - now's your chance to prove it!

ENTRY PRESENTATION

Entries should consist of a clear clrcuit diagram, a full parts list and a description of the purpose and uses of the entry. A brief technical description explaining the operation and the reason for the particular design approach. The text in total should not exceed 300 words and need not be written in 'article' form but with the prime aim of giving information to the judges.

Photographs may be included if required. Entrants should keep a copy of all material submitted as ETI cannot undertake to return entries. Please ensure that
every sheet of your entry, and every photograph carries your name and address.

Do not send in the project; if it is necessary for the judges to see this, they will ask for it.

Each entry must be accompanied by an entry coupon and each entrant must have purchased the Doram Catalogue Edition 2 before the closing date of the competition. (Doram keep records of names and addresses of all catalogue purchases and the winners names will be checked against this before any announcement is made.)

JUDEGNG

Entries will be judged by a panel of three including a representative of the Electro-components Group and the Editor of Electronics Today International.

Marks will be awarded as follows:
Economical use of components
Practicality
Ingenuity
Engineering excellence
Clarity of presentation

The prize in each category will be awarded to the entrant with the highest cumulative total. The additional 850 cash prize will be awarded to the entrant with the highest marks.

It is quite possible that when a short list of possible winners is drawn up, that the judges may wish to see the built-up project before making a final decision, readers should be prepared for this and also to give additional information. However, entrants should take no action on this until they are contacted.

To: ETI/DORAM DESIGN CONTEST

Electronics Today International
36 Ebury Street
London SW1W OLW
Please find enclosed my entry for this competition.

Name (block letters)
ADDRESS

Day-time telephone number

I agree to abide by the rules and regard the judge's decision as final.

Signed

Closing date for the competition is October 31, 1975.
A separate coupon must accompany each entry - but readers may submit as many entries as they wish.

CERAMIC CARTRIDGE PREAMPLIFIER

Use of charge amplifier improves performance of ceramic cartridges.

MOST amplifiers of commercial design, including our own ETI designs, omit facilities for ceramic cartridges and allow only for the use of magnetic cartridges. This is because magnetic cartridges are capable of much better performance than ceramic although top line magnetics are much more expensive.
Magnetic cartridges are expensive to build whereas ceramic cartridges are relatively cheap to build so there is a crossover point, and many top line ceramic cartridges are much better value-for-money than are magnetic cartridges in the same price range. Hence many people with limited funds have asked for details of a preamplifier input stage specifically tailored for use with ceramic cartridges.
The two types of cartridge, ceramic and magnetic are entirely different in terms of electrical qualities. The ceramic cartridge has a much higher output, the working load impedances of the two are entirely different and the magnetic type requires equalization whereas the ceramic type does not (or does it?). The magnetic provides an output which is proportional to stylus velocity whilst the ceramic provides an output proportional to acceleration. This means that where a record is recorded with constant acceleration characteristic the output from a ceramic cartridge would be flat with frequency whereas the output from a magnetic cartridge would be a response rising with frequency at 6 $\mathrm{dB} / o c t a v e$. Converseley if a constant velocity record characteristic were used the ceramic output would fall with frequency at $6 \mathrm{~dB} /$ octave.
Today all records are recorded to the RIAA standard of equalization. This attenuates bass and boosts treble to provide a characteristic very close to constant acceleration. This procedure gives best compromise between the conflicting requirements signal-to-noise ratio and of pickup trackability. To replay dn RIAA equalized record with a magnetic cartridge we must use a preamplifier having the reverse characteristic, i.e, bass must be boosted and treble must be cut in order to obtain a flat frequency response. This process is
used on all preamplifiers for magnetic cartridges and is loosely just known as equalization.
However a perfect ceramic cartridge, when replaying R|AA equalized material would give an unequalized response as shown in Fig. 1. In order the make ceramic cartridges easier to use manufacturers build in a broad mechanical resonance at the high frequency end to boost the response. At the low end, the rise in response below 50 Hz is cured by selecting a terminating impedance which causes a roll off at about 130 Hz . The response of such a cartridge would be as shown in Fig. 2. If the bass end were not
corrected rumble of the turntable would' be accentuated and this is clearly not desirable.
Thus clearly, the impedance into which a ceramic cartridge works is of great importance and with this in mind we investigated different methods of matching the cartridge to the amplifier with a view to obtaining the utmost from ceramic cartridges.

DESIGN APPROACH

The ceramic pickup may be simulated by a voltage source and a series capacitor.
The value of the capacitor and the magnitude of the voltage source vary

Fig. 1. Typical response of a ceramic pickup without mechanical equalization.

Fig. 2. Response of Decca Deram showing effect of terminating impedance at low end and of mechanical equalization at top end.

Fig. 3. Overall response of a Decca Deram into a charge amplifier.

Fig. 4. Response of charge amplifier. Roll off at low end is designed to compensate for rising response of cartridge in this area.
from manufacturer to manufacturer but lie in the range $200-900 \mathrm{pF}$ and 100 to 1000 mV at 1 kHz and $5 \mathrm{cms} /$ second.
One of the most popular and readily available cartridges is the Decca Deram and we performed all our tests with this cartridge. The unit has an output of about 150 mV and a capacitance of 600 pF . The recommended load impedance is 2 megohms and this gives the response as shown in Fig. 2. The bass response can be improved but only at the expense of greatly increasing the rumble. The dip at 2 kHz can readily be compensated for but we have not experimented in this area.
Another system commonly used is to load the unit with a low impedance (e.g. 75 k ohm) which causes a loss of bass below 3 kHz , and then boost the
bass again electronically. This overcomes the need for a very high impedance. Such a technique combined with a rumble filter to cut the rising response below 50 Hz can give good results. However due to the large differences between various makes a different network needs to be designed to suit the bass roll-off characteristic of each cartridge type.
A third system which we propose, and to our knowledge this is the first time such a system has been described, is to use a "charge" amplifier.

CHARGE AMPLIFIER

With the charge amplifier the input impedance is zero - how then does it work? A conventional inverting amplifier is shown in Fig. 5. and, as anyone familiar with amplifiers will know, the output voltage will be:-

TABLE 1			
GAIN (600 pF cartridge)	C 2	C 3	R4
unity	560 pF	$0.0082 \mu \mathrm{~F}$	390 k
6 dB	330 pF	$0.015 \mu \mathrm{~F}$	180 k
12 dB	150 pF	$0.039 \mu \mathrm{~F}$	47 k

Fig. 5. Conventional inverting amplifier stage.

$$
V_{\text {out }}=\frac{R 2}{R 1} \cdot V_{\text {in }}
$$

What is not always realized by beginners is that R1 and R2 need not be resistive - they may be capacitors, inductors or combination of impedances. It is only the impedance that is important. Since the output of the ceramic pickup is a capacitor we may connect it directly to the input of an inverting amplifier and use a capacitor as the feedback element. The gain of the stage now becomes the ratio of the two capacitor impedances. Although the impedance of the capacitor drops with increasing frequency the ratio remains constant. Therefore, with a 'perfect' amplifier, the frequency response is flat at al! frequencies.
In real circuits we generally need a bias resistor across the feedback capacitor. This causes a roll-off at the low end similar to that obtained when using a FET amplifier.
If a response down to 10 Hz is required a resistance of 50 megohm minimum is required. However this is

Fig. 6. Basic charge amplifier with bias and filter network. Gain control elements are capacitors. Bias network R1, 2, 3 and C3 are required for dc stability and to roll of bass response.

Fig. 7. Circuit of FET follower used to obtain the responses shown ir Fig. 2.
much too high for correct biassing and a different technique is called for.
With the arrangement illustrated in Fig. 6, the effective resistance is:-

$$
R_{e f f}=\frac{R 2+R 3}{R 2} \cdot R 1
$$

provided R2 <<R1, 3 and

$$
x_{C 3} \ll R 2
$$

If the value of $X_{C 3}$ approaches $R 2$ the effective resistance drops and, if the value of R2 and C3 are properly chosen, a 12 dB /octave cut-off at the low end can be obtained which effectively removes the rising low-end response due to the recording characteristic.
Other advantages of the charge amplifier are firstly that it is easy to obtain gain (unlike the source follower FET approach) and secondly that cable capacitance does not affect the performance in any way. One disadvantage is that the cables are slightly microphonic and movement of the leads can cause an output - this however is not an insurmountable problem.
The overall response of the Decca Deram Cartridge into a charge amplifier is given in Fig. 3, and as can be seen the response at the low end is greatly improved. As said before the drop around 2 kHz could readily be
compensated for but this was not considered necessary.
If a pickup having a different capacitance were to be used the only change would be in the gain of the amplifier - the frequency response (of the amplifier) remains the same. If the gain is too high then simply changing the feedback capacitor to a higher value will restore it. However, if the low frequency cut-off is to be maintained both R4 and C3 must also be altered. Table 1 illustrates the values required.

CONCLUSION

Cost for cost the ceramic cartridge is better value for money than the magnetic type. The use of a properly designed preamplifier can produce a substantially flat response.
However whilst an almost perfect frequency response can be obtained by properly processing the output from a cartridge like the Decca Deram it can never sound like the Shure V15 MK 3! Other factors such as transient response and channel separation are generally not as good as those of a magnetic cartridge. - Whether the inbuilt mechanical resonance is actually responsible for the poor transient response is probably known only to the cartridge manufacturers -

Fig. 8. Circuit of practical charge amplifier for ceramic cartridges which gave the overall response as in Fig. 4. For values of C2, 3 and R4 see table 1.
'one feels that if it were done electronically it may well be better.
This has not been presented as a normal project but rather as a basis for experimentation. The circuit described has been built up and does give the response expected. Try it. The results may be surprising.

NEW MHI DIGITAL TIMING KITS

MHI-5024 (DIGITAL STOPWATCH KIT)

Based on the MOSTEK MK50204 chip the MHI5024 is a modified calculator chip which will still function as an 8 -digit four-function calculator but has the additional facilities of conversion of hours, minutes and seconds to seconds or vice-versa. The Chip will also count in Hours, Minutes, Seconds and tenths with start/stop/reset facilities. The timing source for the counting is an RC network set to run at 140 KHz .
The Kit includes: MK50204, 28-pin skt., CA3081 segment driver and P.C.B. £ $14.00+$ VAT.
(For H.MM.SS s use MHI-D $7 \times 7 / 6$, for M.SS s use a four-digit MHI display).

MHI-5378 (DIGITAL CAR CLOCK KIT)

Uses the new National MM5378 Auto-Clock chip. The Chip has full car/boat clock facilities with a voltage range of $9-20 \mathrm{v}$ with no-loss-of-time down to 5 v . Timing source is a 2.097152 MHz Quartz Crystal which is driven and divided by the chip. Facilities include: (i) display on/off switching with ignition leaving the clock running at all times (draws about 5 mA). (ii) - display brightness control. MM5738 kit skt CA3081, 2 MHz Xtal and Trimmers, P.C.B. £ 15.10 + VAT. (Interfaces with MHI four-digit displays kits).

NEW MHI-D727 0.5' DIGITAL DISPLAY KITS
The DL727 is a new double-digit display from Litronix presented in an 18-pin pack. Four or six digits are provided with P.C.B. The MHI display kits connect directly to the outputs of any of the MHI clock kits.

Four digits - MHI-D727/4 £8.50 + VAT
Six digits - MHI-D727/6£12.00 + VAT

MHI CASE

A limited quantity available of the new attractive Vero plastic cases with the aluminium face replaced by our own silk-screen printed red perspex (or similar). The case is suitable for any of our MHI Kits. MHI CASE E2.95 + 25 p P\&P + VAT. $(8 \%$ if sold for use with MHI Clock Kits).

OTHER MHI KITS AVAILABLE

MHI-5314 6-digit basic clock, $12 / 24$ hour. MM5314 chip.
$£ 6.60+V A T$
MHI-5025 6-digit alarm cloek. Snooze, MK50250 chip.
£9.35 + VAT
MHI-7001 6 digit Time / Date / Alarm / Timer, can be used as electronic time-switch in addition to other functions.
MHI-D 7074 or 6 -digit display kit, $0.3^{\prime \prime}$ digits supplied with PCB.
$£ 10.00+$ VAT
HHID74 supplied with PCB. 6dig.£9.50 + VAT
4 or 6 digits, $0.6^{\prime \prime}$ high digits 4dig.£. 9.80 +VAT supplied with PCB for 6 digits. 6 dig.£ $14.70+$ VAT

Terms: C.W.O., Access, Barclaycard (Simply quote your number and sign). Credit facilities to Accredited Account Holders.

All prices on this advert exclude VAT

BYWOOD ELECTRONICS

181 Ebberns Road Hemel Hempstead Herts. HP3 9RD Tel. 044262757

A SMALL SELECTION FROM OUR RANGE

\section*{CO4017AE $£ 1.85$} $\begin{array}{ll}\text { CO4017AE } & \mathbf{£ 1 . 8 5} \\ \text { CD4018AE } & \text { E2.59 }\end{array}$ CD4019AE 84p CD4019AE $\begin{array}{ll}\text { CD4020AE } & \text { E2.06 } \\ \text { CD4022AE } & \mathbf{E 1 . 9 2}\end{array}$ CD40223AE CD4023AE CD4024AE CD4025AE | CD4026AE | 27 P 27 |
| :--- | ---: | CD4026AE E2.21 CD4027AE E1.03 $\begin{array}{llll}\text { CD4028AE } & £ 1.59 & \text { CD4051AE } & \mathbf{£ 2 . 9 2} \\ \text { CD4029AE } & \text { CD4056AE } & £ 1.83\end{array}$ $\begin{array}{lllr}\text { CD4028AE } & £ 1.59 & \text { CD4056AE } & \text { £1.83 } \\ \text { CD4029AE } & \text { £2.21 } & \text { CD4069AE } & 27 \mathrm{p}\end{array}$

CD4030AE	$\mathbf{7 7 p}$
CD4035AE	$\mathbf{£ 1 . 8 5}$
CD4040AE	$\mathbf{~} 2.11$
CD4042AE	$\mathbf{1 1 5 6}$
CD4043AE	$\mathbf{£ 2 . 2 9}$
CD4044AE	$\mathbf{£ 2 . 2 9}$
CD4046AE	$\mathbf{2 . 2 9}$
CD4049AE	$\mathbf{2 7 p}$
CD4050AE	$71 p$
CD4051AE	$\mathbf{£ 2 . 9 2}$
CD4056AE	$\mathbf{1 . 8 3}$
CD4069AE	$\mathbf{2 7 p}$

$A C 176$
$A D 161$
$A D 162$
$B C 107$
$B C 108$
$B C 109$
$B C 109 C$
$B C 182$
$B C 212$
$B F Y 51$
$B Z Y 8$

22p	MC1310P	£2.86
26p	NE555V	63 p
51p	ORP 12	56p
51p	TBA810S	E1. 29
12p	TIL209	14p
12 p	2TX300	15p
12p	2TX500	15p
21p	2N2926	12p
14p	2N3055	48 p
17p	2N3702	15p
26p	$741 / \mathrm{BDL}$	33p
$11 p$	40673	68 p

$63 p$
$56 p$
f1.29
$14 p$
$15 p$
$15 p$
$12 p$
$48 p$
$15 p$
$33 p$
$68 p$

SEEETII

1 TRANSISTOR POCKET BOOK

 by R. G. HibberdA comprehensive guide to the characteristics and uses of various types 2 BASIC ELECTRONIC PROBLEMS SOLVED by D. A. Smith
A reference source of the pertinent basics illustrated with clear diagrams
3 ELECTRONICS SELF-TAUGHT WITH EXPERIMENTS AND PROJECTS
by James Ashe
Covers basic principles of electronics. Projects include a large number of simple circuits . £2.15 4 BEGINNERS GUIDE TO ELECTRONICS by T. L. Squires and C. M. Deason
A short cut for those wishing to obtain a quick acquaintance with modern electronics £2.20 5 INTRODUCING AMATEUR ELECTRONICS by I. R. Sinclair
The book for the complete novice of any age as no previous knowledge is assumed $£ 1.55$ 6 RADIO-ELECTRONICS HOBBY PROJECTS Thirty-two novel and useful projects (originated from
U.S.A)
£1.75 7 I.C. PROJECTS FOR AMATEUR AND EXPERIMENTER
Edited by Wayne Green
Over 30 circuits using I. C.'s both linear and digital (originated from U.S.A.) $£ 1.75$ 8 DIGITAL ELECTRONIC CIRCUITS
AND SYSTEMS
by N. M. Morris
The ideal book for the enthusiast confused by logic and digital techniques £2.55 9 GETTING THE MOST OUT OF YOUR
ELECTRONIC CALCULATOR
by W. L. Hunter
Helps you get infinitely better value out of the average modern calculator
£2.15
10 BEGINNERS GUIDE TO TRANSISTORS
by J. A. Reddihough and I. R. Sinclair
Covers the basic theory and practice of modern transistors
£2.10
All prices include Postage and Packing

Please list titles (with price) separately. Cheques. etc., to be payable to Electronics Today International and sent to:
ETI BOOK SERVICE, 25 Court Close, Bray, Maidenhead, Berks.

11110 OPERATIONAL AMPLIFIER PROJECTS FDR THE HOME CONSTRUCTOR by R. M. Marston
Outlines the essential characteristics of the op-amp and presents 110 useful projects (limp cover)
12 AUDIO HANDBOOK
by Gordon King
£2.10
Deals fulliy with all aspects of audio reproduction
$£ 5.25$
1364 HOBBY PROJECTS FOR HOME AND CAR

by Bob Brown and Mark Olsen

A variety of novel circuits, many of them unique which should please almost everybody ...£2.10 14 THE OSCILLOSCOPE
by George Zwick
Starts from first principles and takes the reader to an advanced level

15 HOW TO USE VECTORSCOPES, DSCILLOSCOPES AND SWEEP-SIGNAL GENERATORS
by Stan Prentiss
Goes into the whole subject deeply in 250 heavily £1.90
1699 WAYS TO USE YOUR OSCILLOSCOPE
by A. Saunders
Describes how to solve particular problems using a
'scope
17 WORKING WITH THE OSCILLOSCOPE
by A. Saunders
A book devoted to circuits and illustrations of waveforms that should be present. $£ 1.80$ I8 TOWERS' INTERNATIONAL TRANSISTOR SELECTOR
A super best-seller - details given elsewhere in this issue.
$£ 3.40$

The

Photophone

Abstract

THE TERMS 'RADIO' AND 'WIRELESS' are now usually taken as referring to the transmission and reception of signals using 'radio waves'. In the early 1880s, more than 10 years before Marconi's first experiments, these terms were also used but had different connotations.

Wireless telegraphy, or the transmission of signals without using wires to link the transmitter and receiver, had long been an aim of mankind and by 1880 many such systems had been devised and tried out. There were, for example, electrical wireless systems relying on induction between spaced current carrying wires, and systems involving the use of the ground or waterways as electrical conductors. Some of these induction and 'earth leakage' systems were described in the article on Early Radio Patents in the June 1974 edition of ETI. There were also optical signalling systems using shuttered lights, and indeed a chain of optical relay stations was set up at the end of the 18 th century and used to pass a daily time signal between London and Portsmouth.

OPTICAL COMMUNICATIONS

Optical signalling systems have always been particularly popular and perhaps one of the earliest examples of this is simply the candle in a window to guide the homecoming travetler! A system involving somewhat more sophisticated apparatus, if equally undiscriminating in its broadcasting of information, followed on the development of the electric light: a beam of light from a powerful arc lamp was projected on to a cloud and signals were transmitted by shuttering the beam. This is probably the only communication system which is dependent for good operation on poor weather!

SPEAKING ALONG SUN SUNBEAMS

All of the optical systems tried out by 1880 had however one thing in

common, they could not be used to transmit continuously fluctuating signals such as speech and music; except, that is, for the system developed that year by the famous Scottish-American inventor, Alexander Graham Bell. With Bell's system it became possible at last to "speak along a sun-beam", as a contemporary writer put it.

Bell had a profound interest in the mechanism of speech, arising out of
his own and his father's work with deaf and dumb children, and this interest spread to a study of mechanical speech reproducing devices and his search for a device to convert speech into electrical signals, which could be transmitted along a wire. He eventually solved this problem in 1875, when he was only 28 , whilst experimenting with a harmonic telegraph: a telegraph system

The

Photophone
using different tones to enable several messages to be transmitted simultaneously along the same wire. By accident he found that one of the tone generators, made from a thin metal diaphragm vibrating close to a solenoid, would transmit speech when wrongly adjusted; and the telephone was born.

SELENIUM

Later, whilst in England, Bell saw experiments on selenium, a substance which in 1873 was found to have the property of varying in electrical resistance when illuminated. He was still preoccupied with his experiments on the telephone, and he immediately realised that here was another way of converting speech into fluctuating electric currents. He subsequently put his idea into practice and developed a wireless telephony system based on the use of light beams and a selenium detector, which he named the Photophone. This system is described in British Patent No. 3885 of 1880 .

The original Photophone as described in Bell's Patent used as the transmitter a thin flexible mirror fixed across the end of a mouthpiece. A beam of sunlight was focused on the mirror and speech vibrations directed into the mouthpiece caused the mirror and hence the beam of light to vibrate. At the receiving end a parabolic reflector was used to focus the vibrating light beam on to a selenium detector wired in circuit with a battery and a telephone receiver. The selenium detector converted the light vibrations into electric currents which were converted into sound vibrations in the telephone receiver. With this set up Bell transmitted speech over short distances without using wires to link the transmitter and receiver and the Photophone may thus be considered to be the first telephonic wireless system.

FURTHER EXPERIMENTS

Bell did not restrict his researches to selenium but concerned himself more broadly with all substances which when exposed to radiant energy undergo "changes which the sense of touch or the sense of sight has not been able to take notice of." This changed condition he suggested "may be fitly called a state of strain." In addition to selenium he suggested the use of thin sheets of

M

hard rubber which could be caused to vibrate in response to illumination by a vibrating light beam and therefore convert light variations directly into sounds. A long list of other suitable materials is given in the Patent.

As an alternative to the use of sưnlight reflected from a vibrated mirror, the Patent refers to a well known device used to convert speech into vibrating light - the manometric flame apparatus. With this apparatus, the supply of gas toa flame is varied in accordance with speech vibrations by passing the gas through a chamber, the volume of which can be varied by vibration of a diaphragm.

OTHER WORKERS

Bell was not the only person to be considering wireless transmissions using light beams, and in an article in The Times in 1881 the researches of Bell in conjunction with his associate Sumner Tainter were reported and reference was made to the similar work being done in Europe by Rontgen, Tyndall, Mercadier, and Preece. Mercadier was particularly active in this field and he derived the term 'radio' from 'radiant energy' to produce the generic term 'radiophone' for telephonic wireless systems, the Photophone being one form of radiophone. Mercadier had in mind the fact that forms of radiant energy other than light could be used as a vehicle for telephonic transmissions although he was thinking more of the kind of devices which we now associate with the term 'radio'.

The article in The Times went on to refer to the work being done by Bell and Tainter as described in a paper submitted to the Academy of Arts and Sciences in the U.S.A. and this included the substitution of lamp black for selenium and the invention of a rather interesting device which Bell and Tainter called the Spectrophone.

THE INVISIBLE SPECTRUM

Contemporary laboratory instruments enabled scientists to examine the wavelengths absorbed by various substances in the visible spectrum. Bell and Tainter realised that an instrument capable of also operating outside the visible region would be an invaluable research aid and with this in mind they proposed a variation on the basic Photophone which was capable of scanning the 'invisible' as well as the visible spectrum and would convert detected radiant energy into sounds. This enabled scientists to hear the characteristic absorption pattern of a substance.

Bell's Photophone raised a great. deal of interest at first but was then quickly written off as being no more than a toy because the distance over which a light, beam could be transmitted at a sufficent level of intensity to operate the receiver was very limited. The problem was that for effective long distance transmission a closely parallel high energy beam of light was required and as everyone knows a light beam of this kind is a sheer impossibility! Or rather it was before the laser was invented. Now, long distance photophonic communications is very much a practical proposition and indeed has important advantages in certain respects, particularly where a high security communications link is required

Bell's original ideas on the Photophonic stemmed from his work on the telephone and a search for an alternative to the use of wires to link the transmitter and receiver. Ironically, history now repeats itself and, as reported for example in the April 1973 edition of ETI, laser beam photophonic communication systems have been developed as a consequence of a search for alternative ways of supplementing existing overload telephone cable links.

It's another knockout offer from AMBIT, the wireless specialists.

The phone rang in the AMBIT office the other day. It was Halvor Moorshead - the editor of this fine magazine.
"Can you do anything about an FM tuner article ?" he asked. "Of course we can, Halvor. After all; we claim to be the wireless specialists."
And so the project was born. When choosing the specification, we thought we would present a smart, sophisticated and stylish unit - but not so expensive as to be beyond the means of the readers of this magazine. And as this is the first fully documented FM tuner to appear in ETI, we wanted something that would become a standard - like some of the audio projects that have preceeded the International FM tuner.
We feel that we may have been successful in our aim.

The International FM tuner

EC3302 FET tunerhead

 KB4402 IC IF system KB4400 IC MPX decoder BLR pilot tone filter 7812UC'voltage regulator 99326 preset bank WS150 long slider pot 5 way push button unit Meters, each type Cabinet and panelThe details of the special offer ${ }_{i}$ strictly limited to orders which are accompanied by the coupon from this issue of ETI, appear elsewhere in this issue. The regular price for the kit of the International FMi tuner will be $£ 45.00$ including VAT. Postage $£ 2.50$ per kit.
FOR those constructors who live in fringe areas for FM reception, or those of you looking for a tuner for DX listening, we have two alternative RF/IF strip modules. Ready built by Larsholt of Denmark.

The 7252, featuring dual MOS front end, with four tuned circuits, AGC, AFC, total muting, scan and hold, 0.1\% typ THD. Due to the complexity of the IF system, a stereo decoder is not included in the 7252 .
The 7253 has an FET input, with a four circuit tunerhead. The IF is similar to the circuit published for the internationalbut the pilot tone filter is not integral. 0.5% typ THD

7252	£24.00 (ex VAT)
7253	£24.00 (ex VAT)

993090 deluxe $m p x$ decoder and filter $£ 7.60$ (ex VAT) Ambit also sells components:Coils, ceramic and mechanical filters from TOKO inc.
Linear ICs: NE560 series PLL, the 78 series voltage regulators, ICs for AM/FM radio and audio, (LM380N $£ 1.00$), and still a few DL704 LED 7 segment displays from our offer last year - 10for $£ 7.50$ ($+8 \%$ VAT).
All prices are quoted EXCLUSTVE of VAT unless otherwise stated. In most instances the rate will be 25%. Postage 20 p per order (unless otherwise indicated). A shortform price list and product summary is available free with an SAE. Full catalogue 40 p(inc).
Dept. ET: 3 ; High Street, Brentwood, Essex. CM14 4RH tel:216029 tix 995194

ELEGTRONIC ON =ARM BANDIT

 PART TWO

The final part of our special project article gives all the constructional details.

Fig. 1. Printed circuit design for the main logic board.

CONSTRUCTION

Because of circuit complexity it is recommended that printed-circuit boards be used as their use will greatly simplify construction.
When assembling components to the printed circuit bqards take particular care to correctly orientate integrated circuits, electrolytic capacitors, diodes and transistors. Construction should commence by installing links to the logic board in accordance with overlay diagram Fig. 4. Make sure that the supply-rail decoupling capacitors C2, $3,16,17,22$ and 23 are ceramic types for best possible bypassing.
On the display board $\mathrm{Q1}, \mathrm{Q} 2$ and C 1 should be laid flat on the PC board so that there is sufficient clearance when the board is mounted to the front panel. The leads of the LEDs were bent to form the shape of a circle (don't bend close to the body of the LED or the lead will fracture) thus giving a spring action against the rear of the panel.

When assembling the main logic board, use care with integrated circuits 1C11, 12, 13, 14 and 17. These are CMOS devices and are easily damaged by static discharges. Avoid handfing the pins, insert them after all other components are mounted and insert them as quickly and cleanly as possible. Lastly with these ICs, and indeed all semiconductors avoid overheating the device when soldering. Apply the iron only long enough to obtain a good joint.

Interconnect the two boards as shown in Fig. 7. Keep the leads as short as possible especially power supply leads E, D and G as interference picked up on these leads could affect the operation of the machine. Also at this time attach leads to the outputs of the boards which are long enough to reach the switches and power supply.

Both boards may now be mounted on the rear of the sloping front panel. Making sure that the LEDs are aligned
with the holes, mount the display panel (component side towards rear of panel) by means of 19 mm countersunk screws. Space the board from the front panel about 8 mm by means of a pair of nuts or plain spacers. Hold the board in position by screwing 12 mm spacers onto the protruding screws. Now attach the logic board by screwing to the 12 mm spacers (component side away from front panel).

The power supply is built into the bottom of the box and wired up as in Fig. 5. An eight-way tag strip being used to support all the components Make sure that the polarities of the diodes and electrolytic capacitors are correct. The five volt regulator, IC 18, is bolted to the bottom of the box after first scratching away the paint so that good thermal conduction is obtained - a little silicon grease between tab and box will help. When mounting the tag strip make sure that both earth lugs have good electrical contact with the box.

-

Fig. 2. Printed circuit design for the display board

Fig. 3. Component overlay for display board.

Fig. 4. Linking diagram for the logic board.

Fig. 5. Wiring of the power supply.

Fig. 6. Component overlay for the logic board.

Fig. 8. Alternate arrangement of two microswitches on the play handle.

The play handle may be fashioned. from a piece of 6 mm metal rod, formed into an ' L ' and fitted with a wooden handle (a file handle is just right). The handle should be passed through holes drilled in either side of the box and held in position by split pins or small collars and grub screws. A microswitch may then be. mounted such that it is actuated by the grub screw (or end of the split pin) when the arm is pulled forward. A pin and spring should be fitted such that the handle returns to the upright position when released. The travel of the handle should be restricted by means of two bolts through the side of the case. Rubber grommets may be mounted under the head of the bolt to cushion the end stop.

The 'load' and 'unload' switches may then be mounted on the top of the front panel and the unit interconnected.
Note that, if desired, extra realism may be added by using two microswitches to replace SW2 (the play switch). The first microswitch is operated with the arm fully vertical and the second one with the arm fully forward as before. This means that the arm must be fully depressed and then fully returned for each play. Connection of the microswitches is illustrated in Fig. 8.

COMPONENT

CONNECTIONS

little differently from conventional

Unlike the conventional op－amp

0
0
0
0
0
0
0
0
0
0
0
0
0
0

 s．
第
0 suyptiond vui I of \forall riol kes wory

 0
\＃
0
0
0
0
0

 ．
 s！to pue mol s！indino st！try

 output to go to +10 volts．As a result
the current into the positive input

号
0
0
0
0
0
0

Mou mim to ssoive aspion aul

There are two ways to stop the

عoita rẹa osind prol e solpapues
 е！＾pa！！q！чu！s！\downarrow Iolelipso passad

 2 $=$
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

 6 pue 8

 d
0
0
0
0
0
0
0 す
0
0
0
0

 E
3
3
0
0
0
0
0
0
0
0

THE OSCILLATORS
 Oscillators 1，2，3 and 4 are based amplifiers．These amplifiers operate a

 믇

 јо роиәа әчъ кя раи！игәәр киитви

the roller counters．
 2.
0
0
0
0
0
0
0
0
0
0
0
0

 N
0
0
0
0
0
0
0
0
0
0
0

Should the display counters all be

To restart playing，the load switch

흘テ～N

 discharges C14 rapidly ensuring no

 oscillator starts－hence ensuring an

0
0
0
0
0
0
0
0
0
0
2
N
2
0
 four will not be started．

the load

号
 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
 low enables roller－counters

and 13 ．The same low gives a high at | 들 |
| :---: |
| |

ジッび

HOW IT WORKS ETI 529
Before reading this section it is advisable to read last month＇s general

The
13 are CMOS decade counters and decoders．These counters provide a
high output on only one of the ten output lines for each and，when enabled，this high will shift through the outputs at a rate determined by respectively）associated with each respectively）associated with
countêr．The oscillators continuously but the counters are only enabled when pins 13 are taken The
The outputs of the roller counters are taken via resistors R33 through
R62 to the＇odds decoders＇Q7，8， 9 ， and 11 through 18 ．These transistors gates．Thus，for example，the collector of Q14 will be low when ever any of IC12 pins 5，6， 9 or 11
are high．When the collector of Q14 is low the roller indicator LED， connected to B4，will be illuminated．
Note that the emitters of Q7，8 and

 and Q18 are both on，in which case

are suolt！puos Ked nol aull decoded by Q19，20， 21 and Q1
which are all wired as NOR gates．Fo
 3 on IC11， 12 and 13 all will be high
 potential and its collector at +5 volts．

UNDERSTANDING COLOUR TV The line output stage

by Caleb Bradley B.Sc.

THE previous parts of this series have described every part of a colour receiver's circuitry except the stage which drives the horizontal deflection coils. This is known as the line output (LOP) stage. Its description has been left until now because its design is closely linked with the requirements of the shadowmask tube, described last month.
Both the vertical and horizontal deflection coils are fed with sawtooth-waveform currents to cause the focussed electron beam to scan in the raster pattern, but some ten times more power is needed to drive the horizontal coils because of the higher
scanning frequency in this direction (i.e. 15625 Hz compared to 50 Hz). It is especially difficult to obtain an adequately fast 'flyback' from the end of one line to the start of the next, demanding a near-instantaneous reversal of current in the deflection coils. The inductance of the coils becomes significant at this point and a large driving voltage is required. Because of this it would be impractical to design the line output stage along the same lines as the field scan circuit (described in Part 6) where a low-power sawtooth generator is followed by a linear output stage
The same problem exists for
monochrome receivers although here the scan power needed is less because the small-diameter neck of a monochrome cathode ray tube allows the deflection coils to be closer to the electron beam.

ENERGY RECOVERY

The solution is to turn - the inductance of the horizontal deflection coils to advantage by making them part of a resonant circuit during the critical flyback period. This allows minimum driving voltage to cause the fast reversal of current which follows the 'up' slope of a sinusoidal waveshape. The next trick is to recover

backswing energy from the resonant circuit (i.e. all the energy which was put into the circuit minus small resistive losses) for future use! This is achieved by an 'efficiency diode' which can be found in every modern television receiver. The circuit operation depends on whether a valve or a transistor driver is used, and since the former is still preferred by many manufacturers we shall describe both arrangements.

VALVE LINE OUTPUT

A typical stage, minus the frills, is shown in Fig. 44. It contains a high-power pentode valve (PL509) which switches current flowing in the primary of the line output transformer (LOPT). This transformer is wound on a high efficiency ferrite core and is heavily insulated to withstand high peak voltages.
Current flows into the circuit via the PY500 efficiency diode from the high tension rail - which can be merely the mains voltage rectified and smoothed. In monochrome circuits all the current passes through the transformer. Here, for greater scan power, a large choke L1 provides a dc route from ht to the pentode; the alternating voltage appearing across it is coupled into the transformer by C1. this removal of dc from the transformer allows the use of a smaller more efficient core.
The secondary of the LOPT drives the horizontal scan coils and the combined inductance of transformer and coils is tuned to about three times line scan frequency by C 2 . From an ac point of view it is convenient to regard L1 as an open circuit and C1 as a short circuit.
The sequence is best understood by starting half way through a line where the deflection current (Fig. 43a) is zero. At this point the pentode is switched on by positive drive to its control grid and current builds up in the LOPT primary, and therefore in the scan coils, in the direction shown by the arrows.
At the end of the scan the pentode is abruptly turned off by the negative swing at its control grid. The tuned secondary circuit has a large amount of energy stored in it in the form of forward current and this continues to flow into C2, decaying towards zero as C 2 charges up and then reversing as C2 discharges back into the inductance. As C2 charges a large positive pulse appears at the pentode anode but no current flows in the primary. The energy recovery bit happens as C2 drives current in reverse direction through the secondary. By transformer action in reverse the upper (dotted) end of the primary is induced positive with respect to the tap connected via C 1 and PY500 to ht. Therefore

current is drawn from ht and the resonant energy is recovered by charging the 'boost reservoir' C3 to a voltage as much as 500 V more positive than the ht rail.
Thus at the end of flyback the correct current (opposite to the arrows) is flowing in the scan coils and a 'bonus' packet of high voltage energy has been accumulated on C3. As the first half of the scan proceeds, the primary current into C3, and hence the reverse current in the scan coils, linearly decays to zero to reach the point where we began. However it can now be seen that when the pentode turns on, the source of current will be the high voltage and C3 and the efficiency diode serves to prevent C3 discharging back into the ht rail. In short, the efficiency diode conducts during the left half of the picture, the pentode during the right half.
Also, C3 is a useful source of high voltage, albeit at low current, for other circuits in the receiver. The 'boost ht' rail usually feeds one end of the potentiometers which set the voltages of the tube first anodes, and may also be the charging source for the vertical scan sawtooth generator.

SCAN STABILISATION

The field scan circuit contained a thermistor to stabilise the picture height against supply voltage changes
and component ageing. Valve line output stages are also stabilised by means of a special component - a Voltage Dependent Resistor (VDR in Fig. 44). This is a non-linear resistor which passes virtually no current until several hundreds of volts are applied across it whereupon its resistance drops and current flows. It behaves like a high-voltage (950 V approx.) zener diode except that it is not polarity sensitive.
In Fig. 44 positive-going flyback pulses are applied to VDR by C4 from a tapping on the transformer. VDR conducts only on the tips of the pulses causing C4 to charge. This causes the pentode control grid to be held further negative via R1 during the next scan line. It therefore switches on later on the positive swing of the drive waveform so less energy is stored in the tuned circuit on this line and the width is reduced. To prevent the valve eventually cutting off entirely the negative supply due to the VDR is opposed by positive current from R2 and the circuit stabilises at a particular scan width. The effectiveness (gain) of the stabilisation feedback depends on the drive waveform having a fairly steep rising edge. The $500 \mathrm{k} \Omega$ control (variously labelled 'width', 'set eht' or 'line amplitude') allows the VDR conduction to be reduced by inserting resistance in series with it, which results in increased width.

UNDERSTANDING COLOUR TV

The horizontal linearity of the picture is controlled in a simple way. The control (L2) consists of a small coil wound on a core small enough to saturate at the deflection currents involved. Before saturation occurs the inductance of L2 restricts the scan current; as saturation occurs its inductance falls towards zero. A bar magnet is mounted close to L2 and can be rotated to apply a steady field to the core in either direction. This renders unequal the critical currents for saturation in opposite directions with a useful effect on picturè linearity.

TRANSISTOR LINE OUTPUT

The efficiency diode principle cannot be used in the same way in a transistor line output stage because of the excessive flyback voltage. Also it is undesirable to stabilise transistor line output stages by the VDR method because the transistor should receive a base drive waveform with near vertical
edges to minimise power dissipation during switching. Because of this a pulse shaper stage is usually included between the line oscillator and line output stages. The only available means of stabilising the width against mains variation is by regulating the supply rail
A typical circuit is shown in Fig. 45. The rectangular switching drive to the line output transistor is transformer coupled at low impedance to ensure fast switching. The transistor is held on for most of the line and current builds up linearly in the primary of the LOPT and therefore in the scan coils. Near the end of the line the transistor is switched off and a high voltage pulse (1000 V) appears at its collector, necessitating a specially designed transistor. As before, the LOPT inductance resonates with a tuning capacitor (connected in the primary this time) which first charges, then discharges back into the LOPT. As the resonant current backswings into

COCKROFT-WALTON MULTIPLIER

Fig. 46. Old (a) and naw (b) methods of abtaining 25 kV third anode supply from the line output stage.
reverse the diode D conducts. It is interesting to note that D can be omitted (and sometimes is) because the base-collector junction of the line output transistor also forms a route by which current can flow from earth to the LOPT. There is no boost ht rail in Fig. 45 although auxiliary supplies can easily be obtained by tapping off flyback pulses from the LOPT, rectifying and smoothing them. In some receivers quite remote circuits are powered in this way, e.g. the IF strip, and this can lead to some misleading fault symptoms.
Width adjustment is by setting the ht regulator output. The regulator may be a conventional series type as shown in Fig. 45 or it may be the 'chopper' type where the incoming mains is rectified and passed to an integrating filter via a series switching transistor or SCR (thyristor) which is driven by pulses of controlled mark/space ratio.

HORIZONTAL SHIFT

Neither of the simplified line output circuits include a means for shifting the picture horizontally - which is often necessary after setting the purity magnets. Arrangements for this vary, but all basically involve breaking the dc continuity between the LOPT and the scan coils by inserting a capacitor at some point and setting a dc bleed current through the coils by means of a potentiometer. The source of current may be rectified flyback pulses or the cathode current of the line output valve. Often a two-position link is found which must be set according to whether shift to the right or left is required.

EHT

The shadowmask tube requires an extraordinarily high eht supply $(25 \mathrm{kV})$ to its third anode and this is normally obtained by rectifying pulses from an extra many-turn overwinding on the LOPT. Early colour receivers used simple valve rectification as in Fig. 46a. Here the stepped up pulses are rectified by the GY501 diode whose heater is supplied by an isolated winding on the LOPT to avoid impossible demands on its heater-cathode insulation. The capacity between the inner and outer (earthed) conductive coatings on the tube makes a reservoir capacitor unnecessary.
The inherent output impedance of this simple supply is rather high and would allow the eht level to vary with changing beam current (picture brightness). This would upset the critical focus, purity and registration settings for the tube. Therefore a
shunt stabiliser employing a special high-voltage triode PD500 is used to reduce the output impedance. Its operation is simple:
With no beam current (black picture) the divider R1/VR1 is adjusted to bias the PD500 to draw a specified current $(1.2 \mathrm{~mA})$ from the eht line, checked by a voltmeter connected to its cathode resistor. After this, any beam current flowing in the overwind will drive the PD500 grid in a negative direction which reduces its cathode current and counteracts the voltage drop in eht.
While the performance of this circuit is hard to match it has the shortcomings of (1) needing a massively insulated overwinding, which can be a source of expensive burnouts, and (2) running two valves at such high voltage that they emit dangerous X -rays and must be shielded
for safety. These disadvantages are overcome by using a voltage multiplier to provide eht from a relatively small overwind (typically 7 to 8.5 kV pulse output) as in Fig. 46b. Both tripler and quadrupler multipliers are used. The first multipliers using selenium stick rectifiers were sometimes unreliable (the bad-egg odour of a burnt-out selenium stick is once-smelt, never forgotten!) but silicon diode multipliers are more satisfactory. The first stage of the multiplier is a convenient takeoff point for the tube focus (A2) supply which would otherwise be obtained from line pulses by a separate rectifier and reservoir capacitor.

FRILLS

This part has shown that the line output stage does much more than just drive the scan coils. For example it
generates radio interference at short range, and magnetostriction of the LOPT core produces a whistle at line frequency (15625 Hz) - deafness to which separates men from boys! The line output circuit of a commercial receiver always appears complex with a multiplicity of windings and tappings on the LOPT. The reason is that line pulses are tapped off the LOPT and shaped if necessary for a variety of odd jobs throughout the receiver. These jobs include:

1

- driving the line flywheel discriminator,
- operating gated a.g.c. in the IF strip,
- blanking the luminance signal during line flyback
and in the decoder department:
- gating the burst,
- 'toggling' the PAL bistable,
- and clamping the decoder outputs. to be continued
 inclusive
When we first came across this inexpensive, superbly designed digital clock we knew that ETI readers would share our enthusiasm. So carrying ETI's own name: Pulsar. Not only that, but the price of only $£ 13.95$ (including postage and 8% VAT) is far less than you will pay for this clock esiewhere.
Pulsar is of course fully built, tested and guaranteed - and is completely electronic. The display is Planar Gas Discharge giving very bright 0.7 in high characters - so
bright in fact that there is a control on the
back panel for reducing it!
The photograph shows EThs Pulsar as
close to full size as possible. The colon There is a full alarm facility: using a dividing the size as possible. flashes conce small switch on the back displays the alarm diving the hours and minutes flashes once time for setting. There is also a 'snooze' indicates p.m. facility. You want five minutes more sleep? Just tip Pulsar forward, the 'bleeper'

TO: PULSAR OKFER
TO: ELSAR OFFER,
 for a Pukny Alarya Clock.
Name
ADDRESS

ELECTRONICS it's easy!

THE UNIJUNCTION TRANSISTOR

The unijunction transistor, UJT for short is a three terminal semi-conductor device somewhat akin to the normal transistor. The exception is that by appropriate choice of the manufacturing placement and thickness of material, it has entirely different characteristics between the currents and voltages of its three terminals. It becomes a device in which a current flows once it is triggered on. It features a stable triggering voltage Vp , a very low value of firing current Ip, a negative resistance region (where a rise in voltage between terminals is related to a fall not a rise in current) and a high current carrying capacity once it has been pulsed on. As there are 50 different kinds we can only give a general impression of their operation here. The symbol is shown in Fig. 1.
When the emitter, \mathbf{E}, is reverse-biased no current can flow between B_{1} and B_{2} bases. When V_{E} rises sufficiently it alters the state between the bases and, quite sharply, $\mathrm{I}_{\mathrm{B} 2}$ commences to flow. This is seen by studying the representative static emitter characteristic curve given in Fig. 2.

Until V_{E} rises to close to Vp (the actual value depends upon the standing value of V_{BB} and ranges typically from 3 V to 20 V for V_{Db} of $4 \mathrm{~V}-30 \mathrm{~V}$) I_{E} remains virtually zero. After the $I_{E O}$ value, emitter current can be absorbed and V_{E} drops back exhibiting a negative resistance region. In the unijunction, therefore, the equivalent of the collector-emitter current flow of normal transistors takes place between the emitter and base 1; base 2 acting as the input that decides at which point the circuit goes into the conduction state.

Fig. 1. The basic unijunction symbol.

Fig. 2. The unijunction characteristics.

A BRIEF description of how a cathode ray oscilloscope operates was given in part 4 of this course. There we saw how a sweep generator is used to provide a signal that causes the spot to sweep across the screen thus tracing the waveform. A television receiver uses the same principle as indeed, does a television camera also. This effect is achieved by steadily increasing the voltage applied to a deflection plate (or deflection coil in a TV system).

Fig. 1. Functional block diagram of basic relaxation oscillator.

A common use of saw-tooth-like signals is in the modulation of tones eg, the rise and rapid fall of modern police sirens. The tones used in some telephone systems and in organs and electronic music synthesizers are other well known examples of the application of saw-tooth waveforms.
Most simple sawtooth generators are based upon what is known as the relaxation principle. In this method a capacitor is charged (Fig. 1) though resistor, R, which limits the current and hence the rate of rise of voltage across the capacitor. When the voltage across the capacitor reaches a preset limit, some form of device is actuated that discharges the capacitor back to its initial point. Inductors could also be used in a similar manner but the use of capacittors is more usual. Once the capacitor is discharged the device becomes inoperative and the voltage rises again to repeat the cycle. The simplest form of relaxation oscillator

Fig.2. The unijunction transistor together with three resistors and one capacitor makes a simple sawtooth generator.

uses no more than a capacitor, a resistor and a neon lamp as the device to discharge the capacitor. The details of this method were given in Part 7.
As with most electronic techniques. (and life in general) the simplest method is not necessarily the best. The neon method requires a high voltage supply, by today's standards, and the charge and discharge slopes are exponential rather than straight linear rises and falls.
Improvement can be made by
making the charge process more linear, that is, by using a method that gives a purer integration. The first steps toward improvement are to use a much smaller part of the exponential charge curve of a capacitor, for this will be more linear, alternatively we can provide a more linear charge technique. These methods however, usually call for a more sensitive trigger to discharge the capacitor, that is, an active trigger element. Whereas it is quite feasible to use transistors as

Fig.3. This generator adjusts the sawtooth to a high degree of linearity.

Fig.4. A symmetrical triangular wave may be generated by integrating a square wave.
discharge elements the more practical method, usually employed in relaxation designs, is based upon a device known as the unijunction transistor.
The unijunction transistor has three terminals labelled base 1, base 2 and emitter. The emitter to base 1 resistance of a unijunction is normally very high, however, when the emitter is raised to a voltage known as the peak point, emitter to base 1 resistance drops to a very. low value. This property may be used quite effectively to discharge a capacitor once it has reached the peak point voltage of the unijunction.

In the circuit of Fig. 2, capacitor C1 charges through R_{T} from source V_{1} therefore, no emitter to base circuit is made. When V_{E} reaches the peak emitter voltage V_{p} of the unijunction (decided by the circuit values R_{1}, R_{2}) the unijunction changes state and the emitter to base-one resistance falls to a low value. This discharges C_{T} through R_{1}. When the voltage has fallen to $V_{E}(\min)$ the emitter to base 1 discharge circuit becomes a high resistance again and the cycle repeats. Provided R_{1}, R_{2} have small values compared to R_{T} the oscillation frequency is given by

$$
f=\frac{1}{R_{T} C_{T} \ln \left(\frac{1}{1-\eta}\right)}
$$

where η is the intrinsic stand-off ratio quoted for the unijunction device. It has values typically around 0.6.
If V is kept large compared with V_{P} the capacitor is charged from a more constant-current source improving linearity: With this technique the linearity, however, still has an error of 10% or so. Using a separate, even-higher charging voltage further improves linearity but at the expense of a more complex supply. Another method is to use a transistor in the charging path to provide constant-current flow to the capacitor.
A much superior circuit is given in Fig. 3. The capacitor C_{2} and the output buffer stage improve the linearity by stabilising the voltage across the charging resistor feeding the 100 nF capacitor. Components R_{1} and C_{1} are added as an integrating compensating network that further improves the linearity of the charge process. Variation in $\mathrm{R}_{\mathbf{1}}$ is provided to trim the wave shape rise characteristic from concave through linear to convex. As shown, the circuit generates a 1 kHz sawtooth. Note the ability to provide two anti-phase signals and the input that enables the system to be started in synchronism with an external event - as is required to trigger, say, a CRO trace upon demand.

ELECTRONICS -it's easy!

Fig.5. Frequency spectra of commonly encountered noise sources.

NOISE GENERATION

So far we have said little about noise, that generally unwanted signal that must (usually) be kept to a satisfactory minimum in circuit design. Indeed, it might seem strange that we should sometimes want to generate it," when the usual aim in design is to eliminate it.
By appropriate design, relaxation oscillators can be made to provide sawtooth, triangular and pulse wave shapes. They are also the basis of timing circuits - for the time-constant of the capacitor and the trigger relaxation level effectively defines a time interval.
Yet another way to produce a sawtooth is to generate a number of sinewave signals of chosen frequencies and amplitudes covering the spectrum of the sawtooth. These can then be combined to produce the sawtooth. This method is suitable for synthesizers or other precision generators but would normally be prohibitively expensive - over ten generators would be needed to provide a reasonably accurate waveshape.
A symmetrical triangular waveform may be generated by starting with a square-wave source and integrating it with an op-amp type of integrator.

Fig.6. How random noise looks on a CRO screen.

This is shown diagrammatically in Fig. 4. At point ' a ' the integrator output starts to rise in the positive direction. When the square wave reaches ' b ' the integrator input reverses and the output starts to fall until ' c ' is reached. It is, however, not fundamentally possible to have different rise and fall times if the amplitude is to be held constant: different rates require different integration time constants for both directions of signal change.
Although noise may be any unwanted signal and, therefore, can consist of any combination of an enormous variety of waveforms, the noise usually referred to will be what is known as random noise. Random noise is a signal that has the interesting, but frustrating property that one cannot predict the exact level of signal at any particular instance. We can only characterise it by the use of random statistics that will tell us, if we know the type of noise, the chances of certain levels occurring at a given time.
Various kinds of noise are termed white, pink and grey. Each is typified by the nature of its frequency spectrum. White noise, the usual one considered (but in reality not always the one that really occurs) has equal energy at all frequencies. The energy level of the signal will be the same at 1 kHz as it is at 100 kHz . There is equal noise energy at all frequencies with white noise. In practice noise energy may fall off uniformly with rising frequency (pink noise), or it might not be quite white in that there may be variation in energy at various points of the spectrum (grey noise).

Unwanted white noise mainly arises due to thermal agitation in resistors. This effect is called Johnson noise. It is a basic effect that can only be reduced by reducing resistance values, or by operation at lower temperatures.
As noise exists at all frequencies, reducing the band-width of a system
reduces the total noise power occurring at the output.
Another noise phenonemon is known as excess or flicker noise. It is also sometimes called $1 / f$ or hyperbolic noise. This is noise that rises in level as the frequency is reduced. It occurs in all semi-conductors. It is usually less than the resistor-generated white noise (above 1 kHz) so is not a problem at high operating frequencies. The various types of noise are depicted by a representative plot of their frequency spectra as in Fig. 5. In contrast to noise of the random kind the spectrum of induced 50 Hz hum is a single line. Random noise, usually presumed to approximate white noise, appears as shown in Fig. 6 on an oscilloscope screen. Audibly it sounds like hiss because the ear is most sensitive to frequencies in the 1.5-6 kHz region, thus the ear subjectively attenuates frequencies above and below these rough limits.
The amount of noise generated internally in an electronic system is a limiting factor. The noise performance is usually specified as the noise figure of the system. Noise figure is the ratio of signal-to-noise at the output to signal-to-noise at the input expressed in decibels. Thus a noise figure of 2 dB is much better than one of 6 dB .
One way of ascertaining the noise contributed by a system is to measure the total output power of the system under test with a suitable driving (wanted) signal and then without the test signal. The residue is noise power. The usual method of stating noise power is as the RMS level of the random process.
In another class of tests, noise of a known level and character is added until the noise output of the system is doubled. The amount added then equals the amount internally generated.
White noise generators can be built using a wide-band amplifier to raise the signal level of Johnson resistor noise. This method, however, is seldom used in practice due to the comparatively lower noise output from resistors compared to other alternatives.
For example, a Zener diode generates much more intense internal noise than does a resistor. Two simple noise generating circuits are given in Fig. 7. One, Fig. 7a, will provide white noise suitable for audio work. Capacitor C_{2} (if added) filters the output reducing the noise level as the frequency rises thus providing pink noise. The other, Fig. 7b, is suited to VHF work as the bandwidth extends beyond 150 MHz . Resistor R is adjusted to pass about 6 mA through the circuit. Capacitor C_{2} should be a ceramic capacitor. Output

Fig.7. Two noise generators. (a) noise generator suitable for audio work. (b) for VHF use.

Fig. 8. Complicated wave shapes may be generated by opto-mechanical methods. A specially masked disc, as it rotates, is used to vary the amount of light transmitted to a photocell.
via a coaxial cable, in this case, is essential to preserve the bandwidth of the signal.
Another noise source sometimes encountered relies on the variation of contact resistance in an electro-chemical cell - this produces a good signal at relatively low frequencies. It is also possible to approximate noise in certain cases as a binary (that is, two-state only) signal. that switches between states in an ap'parently random fashion - such generators are called pseudo-random binary sequence generators, PRBS for short. These generate their signal by
virtue of specially connected ring-counters, a technique we will study later in the series. The output of these can be averaged with a CR filter to provide analogue noise.

NON LINEAR AND NONREPETITIVE ANALOGUE WAVE SHAPES

The waveform producing circuits considered so far generate sinewaves or linear ramps. In some instances the need may be for a special shape other than those producable by standard circuits. If you are lucky the distortion of some oscillators. may be the waveform needed - the exponential rise of single relaxation oscillators can sometimes suit the non-linear characteristics of CRO tube deflection systems.
Provided the cyclic frequency needed is not too high, that is, up to about 10 kHz , it is possible to make use of an optical-disk generator. In this method a transparent disk, on which is placed a mask of the required signal shape rotates at a controlled speed. Light passing through a portion of the disk is integrated by a photo-detector and collection system providing an output proportional to the degree of masking at each point. Figure 8 shows disks suitably masked to provide random noise, sawtooths and heart beats. This method' is admirably suited to the generation of very low frequency
complex waveshapes - down to 0.001 Hz but suffers from the possible disadvantage that the waveshape period is rigidly related to frequency. It is not possible to retain a fixed cycle time with changing repetition rate.
Given a mini-computer facility it is possible to generate any waveshape as a repetitive event, or as a "one-shot" event, by controlling the signal flow with time. In hybrid computer operations (those combining analogue with digital methods) the mini-computer operates switches that gate voltages to the output. Each change in the circuit alters the rate of rise of the output, that is, the instantaneous slope is controlled. It is, therefore, possible to create a waveshape by successive linearisation of the originally smooth curve into one made up of a string of different slopes joined end to end. The number of stages used decides the degree of accuracy of generation.
It is also possible to generate unusual voltage-versus-time functions using diodes in conjunction with op-amps. Figure 9 shows the schematic diagram of an analogue, op-amp set-up that gei,erates an output voltage as would come from, say, a potentiometer driven back and fourth by a badly worn mechanical linkage. It also simulates gear backlash and a crude approximation to magnetic hysteresis. All resistors are equal and the integrator time-constant is very small. As it rises from zero there is no change in I_{o} initially, as there is no current flow into the integrator because of the reversed-biased state of the diodes. When the input reaches, say E_{2} a diode conducts, starting the integrator which operates until the output causes the same diode to cut off. If $\mathrm{e}_{\boldsymbol{j}}$ now decreases, the output is held high since the integrator cannot discharge until $\mathbf{e}_{\boldsymbol{i}}$ falls to a value which causes the other diode to conduct. The functional relationship between input and output

Fig.9. Special diode function generator for simulating backlash or hysteresis characteristics.
that results is that depicted in Fig. 9. This example shows how seemingly difficult-to-produce functions can in fact often be quite easily produced using op-amp techniques. The batteries are included to set the voltage at which the diode conducts. The need for batteries may be eliminated by using Zener diodes in place of the simple diodes used in Fig. 9.

To be continued.

ำกำกรำ

Last month we mentioned some digital stopwatch chips and stated that in most cases the main requirements were six digits giving readouts at least to seconds and a reset to zero facility. There are some other chips being made which have the reset to zero facility but are only four digit (Hours \& Minutes), as such they are not very useful in most stopwatch applications unless the timing period is very long and seconds accuracy is not required.

One such chip is the GI AY-5-1200 one of a new family of chips from General Instruments. This family is not yet available on the retail market as it is designed for manufacturers only but no doubt the chips will be available to the amateur constructor in the not too distant future.

The main idea behind this family was to produce a chip which would satisfy the requirements for a simple interface to a cheap display, low current drive, four digit output, $12 / 24$ hour and $50 / 60 \mathrm{~Hz}$ operation. The display type used is the Phosphor-diode or Fluorescent display typified by the Futaba 5-LT-01 unit, an interface circuit is shown in Fig 1 and as you can see the component count is very low. G.I. have used a double wound transformer giving 12-0-12 at 50 mA and $3-0-3$ at 200 mA but as the latter is only driving a 50 mA filament I see no reason why a 3 v winding at 50 mA could not be used. If you cannot find such a transformer and do not fancy winding one of your own you could always use two miniature transformers, N.B. it is important to remember to have two separate windings - a 0-3-12 transformer just will not do.

There are at present only four chips in this family with options that are chip options that could surely just as easily have been pin selected options. The four versions are -

AY-5-1200 7 segment output, leading zero suppression.
AY-5-1 201 As above but with a flashing colon output.
AY-5-1204 As 1201 but without leading zero supp. on tens of hours.

AY-5-1203 BCD output only, none of the other features incorporated.
The 1203 is thus a very simple digital clock chip with BCD outputs, but if you need a decoder to get back to 7 segments why bother to produce a BCD version at all? One answer is to read last month's column again where it was pointed out just how useful a BCD clock can be when connected up to some TTL chips. Another answer is that it interfaces with another new G 1 chip called the AY-5-8300 TV channel/ time display interface chip. Unfortunately the promised evaluation samples have not yet arrived from GI so I have not yet been able to build this one and report whether it is any better than the similar National chip mentioned a few months ago.

The basic idea behind such a chip is that TV channels in the USA have to be identified by a two digit code and this code must be visible on the front of the set. With the advent of touch tuning and varicap diodes the multi-turn turret knob has started to disappear with the result that television manufacturers have to identify the channel number in some other way. One such way is to display the channel number as a
video picture superimposed on the programme picture and this requires a simple lump of logic which is provided by the AY-5-8300.

The information is displayed as coloured characters on a black background, the character colour can be red, green, blue, yellow, magenta, cyan or white. The characters are formed from a 5×7 dot matrix which in turn is controlled from a 1.1 MHz oscillator and the line sync pulse.

The usual television picture (for 625 line operation) is made up of two frames of $3121 / 2$ lines each transmitted at 50 Hz and thus a complete picture is transmitted 25 times per second. If you assume that the height of the picture on your screen is just over 12 inches then each line is about 0.04 in high, each dot in the 8300 is defined as five lines and thus each dot is about 0.2 in high. As seven vertical dots define a character the character height is just under 1.5 in , i.e., easily visible from the other end of even a very large room. The character width is defined in a similar way based on the 1.1 MHz oscillator. The TV lines are about $60 \mu \mathrm{~S}$ long and represents about 16 in , therefore each $1 \mu \mathrm{~S}$ repre-
sents about 0.25 in , with a 1.1 MHz oscillator the pulse widths are $0.9 \mu \mathrm{~S}$ or about 0.2 in wide, this gives a character width of 5 dots at 0.2 in or 1.0 in . Thus we have defined a character five dots wide and seven dots high giving a total of 35 dots, by lighting or darkening varióus dots we can define the numerals 0-9 (and A-Z, etc, but not in this example).

Now we have one character defined we can easily define another as being a certain distance from the first and a third from the second and so on until we have defined a row of two or four digit spaces. We can define the position of this group on the screen by counting TV lines from the top of the picture (frame sync pulse) and also by counting the 1.1 MHz pulses from the left hand side of the picture (line sync pulse).

The AY-5-8300 accepts a four bit BCD line and displays one or two digits $0-15$, the AY-5-83 10 accepts two four digit multiplexed inputs, the first defining a two digit
multiplexed channel number and the second a four digit multiplexed time. It is not clear from the data sheet (and I haven't built one) whether the channel input could take a four digit input, if so it would be possible to display two times, time and date, seconds, or time and an event number, etc.

I think that GI have a great little chip here with a little more potential than they realise! It would seem to interface not only with the 1203 but also with any other clock chip or multiplexed counter with BCD outputs, the National chip would only interface to the MM5318 clock chip. Gl have put input latches and re-multiplexers into the front end of the 8310 and made it a lot more versatile, the interface for the basic 8300 is shown as Fig. 2.

On the subject of digital TV channel tuning, for obvious reasons there are no chips available in this country for producing the channel number from the tuning voltage or from the resultant oscillator frequency. Varicap tuning

systems have caused great changes in UHF and VHF receivers and similar varicap diodes are now available for tuning MW broadcasts. With a tuning voltage available it is possible to get a digital readout of the tuned frequency by having a digital voltmeter trimmed to give a reading proportional to the tuned voltage. In non-varicap systems this is not possible and the only method of getting a digital readout of the frequency is to use the more correct method of counting that frequency. This is not very easy as you have to remove the If from the tuned frequency to get a correct figure, this involves a lot of counting and comparator logic and is too expensive for most people to even consider building one.

General Instruments to the rescue once again with the AY-5-8100 frequency counter chip. The AY-5-8100 is a four and a half digit frequency counter for use in radio receivers. Three main frequency ranges are provided, $2999 \mathrm{KHz}, \quad 29.995 \mathrm{MHz}$ and 299.95 MHz , the first two having an If of 460 kHz and the latter an If of 10.7 MHz . For use in VHF FM tuners an alternative channel mode is available, this displays a channel number 0-99 with a +1 - tuning indicator (IF is 10.7 and channel 0 is 87 MHz). The chip will drive either a Phosphor-diode display (eg Futaba 5-LT-03) or a liquid-crystal display, in the L-C mode the digits are multiplexed in such a way as to be suitable for driving $\mathrm{L}-\mathrm{C}$ digits (presumably Dynamic Scattering). In G.I.'s data sheet the 8100 is shown interfaced to share the display with a 1200 series clock chip - now that really is what I call a digital clock/radio! I assume that the display could also be shared with a digital clock chip capable of controlling an alarm/radio system (CT7001) the only question left is how, why and when do they put the calculator chip in it as well?

A system diagram of the 8100 is shown as Fig 3. As can be seen the system uses prescaler dividers to interface, between the local oscillator input and the 8100 itself, these are divided by 8 for MW, by 80 for SW and by 800 for VHF. The prescaler reset pulse (PR) not only resets the prescaler to zero after each count period but can also be used as the 50 Hz input for a digital clock chip.

For further information on any of the above chips contact: General Instrument Microelectronics Ltd, 57/61 Mortimer St, London W1N 7TD.

techti 09

ADJUSTING POWER SUPPLIES

When the output voltage of a power supply comes out a little higher than expected it can be adjusted by making the simple addition illustrated above. R1 is a 500 ohm or 1000 ohm potentiometer (10 watt rating) inserted in series with the input filter capacitor. Adjust it to give the correct
voltage under load.
For low voltage supplies (i.e, up to 50 V or sol a 50 ohm or 100 ohm pot might be more suitable.
The pot could be connected between the negative lead of C1 and ground and would not then need to be insulated.

SIMPLE RF PREAMP

Many shortwave receivers of the cheaper variety and old surplus general coverage receivers (i.e. RBZ, AR8 etc) don't have a great deal of sensitivity, and are prone to image problems due to poor front-end selectivity.

This circuit considerably improves matters, providing a worthwhile increase in sensitivity and considerable improvement in front-end selectivity.
The transistor, Q1, can be any of BFY90, 2N3653, BF115, SE3001, TT3001, BC108 or any good RF amplifier trensistor.
The tuning capacitor can be any standard broadcast-type (i.e. Roblan

RMG-1). The RFC can be either 1 mH or 2.5 mH (i.e. Aegis C13 or C4 or C2).
The coil, L1, can be 20 turns on a
suitable toroid tapped at 4 turns (try also tapped at 7 turns). Alternatively it could be any suitable coil tapped at about one fifth of the total turns.

100 KHZ MARKER GENERATOR

The above marker generator will produce strong signals every 100 kHz from 100 kHz to over 200 MHz . It is very useful for calibrating receivers and for use as a signal generator.
Cheap transistors type BC108 give good results but almost any PNP or NPN transistor having a gain-bandwidth product greater than the desired frequency range will give good results.
The oscillator should be calibrated by adjusting it to zero-beat with WWV at 10 MHz , or 15 MHz , on a

communications receiver, or with a digital-frequency meter.
The choke, RFC1, can be any
suitable small RFC (i.e. Aegis C13), the same for RFC 2 (i.e. Aegis C13 or UPC 100 to UPC 560).

REGULATED VOLTAGE DIVIDER

IC's requiring 3.6 or 6 volts can be run from a battery or fixed-regulated supply of a higher voltage by using the circuit shown.
The transistor should be mounted on a heatsink as considerable power will be dissipated by its collector.
Additional filtering can be obtained
by fitting a capacitor (C1) as shown. The capacitance is effectively multiplied by the gain of the transistor. A ripple of 200 mV (peak to peak) at the input can be reduced to 2 mV in this fashion.
Maximum output current depends on the supply rating and transistor type (with heatsink) used.

Tech-Tips is an ideas forum and is not aimed at the beginner. We regret we cannot answer queries on these items.

ETI is prepared to consider circuits or ideas submitted by readers for this page. All items used will be paid for. Drawings should be as clear as possible and the text should preferably be typed. Circuits must not be subject to apyright. Items for consideration should be sent to the Editor, Electronics Today International, 36 Ebury Street, London SWIW OLW.

CLIPPER PREAMP

Maintaining a high average modulation level for mobile communications transmitters considerably improves the effectiveness of a transmitter especially under difficult conditions.
This circuit provides a small amount of preamplification as well as variable clipping level (preset).
The two diodes should be a matched pair or clipping will not be symmetrical.

It is possible to mount the complete unit in many styles of hand-held microphone cases.

DC TO DC/AC INVERTER

This inverter uses no special components such as the torodial transformer used in many inverters. Cost is kept low with the use of cheap. readily available components.
Essentially, it is a power amplifier driven by an astable multivibrator. The frequency is around 1200 Hz which most 50 Hz power transformers handle well without too much loss. Increasing the value of capacitors C 1 and C 2 will lower the frequency if any trouble is experienced. However, rectifier filtering capacitors required are considerably smaller at the higher operating frequéency.
The two 2N3055 transistors should

be mounted on an adequately sized heatsink.
The transformer should be rated
according to the amount of output power required allowing for conversion efficiency of approx. 60\%.

HIGH IMPEDANCE BRIDGE AMPLIFIER

The MC1556 operational amplifier may be used as a voltage follower in a bridge amplifier application. The high
input impedance avoids loading effects on the bridge and transforms the impedance down to a level where a
third amplifier used in a differential mode can provide voltage gain, 10 in this case. The third amplifier employs the standard offset adjust circuit to provide nulling capability for the configuration.
Although the circuit is shown for complementary supply voltages, it lends itself well to operation from a single supply since the bridge can be operated just as well from the single supply. One must, however, provide for biasing the now-grounded $100 \mathrm{k} \Omega$ resistor to half the supply voltage using a simple resistive divider. Also, of course, the output is no longer referenced to ground, but to half the supply voltage. MOTOROLA.AN531.

techtips

GENERAL PURPOSE RF DETECTOR

When constructing or developing communications equipment, such as transmitters, receivers etc, a very handy gadget is this general purpose RF detector. It provides dc output to a meter and audio output (if necessary) for checking transmitters or modulated signals.
It can be used also as a field strength meter or transmitter monitor.
The values of C1 and RFC vary depending on the frequency range in use. Below $1 \mathrm{MHz}, \mathrm{C} 1$ can be $.001 \mu \mathrm{~F}$ and RFC at 2.5 mH or 5 mH RFC (i.e. Aegis C2, C4 or C9). In the HF region to $30 \mathrm{MHz}, \mathrm{C} 1$ can be 20 pF or a $5-40$ pF trimmer while RFC1 can be a 2.5 mH choke (i.e. Aegis C2 or C4) or any

choke down to $470 \mu \mathrm{H}$ (i.e. Aegis C 13 , UPC560 or VPC470). In the VHF range C 1 can be a 2 to 10 pF capacitor or 0.8 to 7 pF trimmer. RFC1 can be between $47 \mu \mathrm{H}$ and $150 \mu \mathrm{H}$ (i.e. Aegis VPC 150, UPC120, VPC100, VPC82, VPC68, VPC56 or VPC47).

Diode D1 can be almost any germanium diode or a hot-carrier diode. Mixer diodes such as the IN21 and IN23 series are also excellent. Use a diode with a high reverse-voltage rating if working with valve transmitters.

NOISE LIMITER

Noise pulse interference from motor vehicle ignition systems (another form of pollution - cars just can't win) can render a communications or shortwave
receiver unuseable, completely blanketing reception of all signals except the very strong ones.
The limiter shown will very
effectively improve the signal-to-noise ratio so that even quite weak signals can be copied.

It is connected between the detector output and the audio input (if high impedance) or at some relatively high-impedance section between two audio stages - preferably the low level stages.

The diodes, D1 and D2 can be any diode having relatively low forward resistance and very high back resistance. Types OA202, IN457, IN458 or IN459 are suitable. Resistors of $1 / 4$ watt or $1 / 8$ watt rating can be used if miniaturization is desired.

The circuit is excellent for receivers having bandwidths down to 2 or 3 kHz . Increase the value of C 1 for receivers having narrower bandwidths.

BETTER ELECTRONIC FUSE

The electronic fuse published in the April 75 "Tech-Tips" implies that load current is disconnected in the event of an overload. in fact it merely limits the load current to a value given by $\frac{0.7}{\mathrm{R} 2}$ amps. The following circuit will actually cause the load current to fall to zero.

If it increases so that $I_{L} R_{2}>0.7 \mathrm{~V}$. Q4 will turn on, supplying base current to Q3. Q4 thus turns on, supplying further base current for Q 4 . Regenerative action continues until Q4 and Q3 are saturated. Q3 will then remove ail base current from Q1, thus switching Q2 off making the load safe.

If the reset button is depressed, all current drive will be removed from

Q3 and Q4, bringing them out of been removed, or will snap off again if saturation. On releasing the reset it is still present.

Care should be taken with earthing to avoid shorting R2.

Join the Digit latest techniques of digital electronics

Computers and calculators are only the beginning of the digital revolution in electronics. Telephones, wristwatches, TV. automobile instrumentatıon - these will be just some of the application areas in the next few years.

Are you prepared to cope with these developments?
This four volume course - each volume measuring $11 \frac{3}{4}{ }^{\prime \prime} \times 8 \frac{1}{4}{ }^{\prime \prime}$ and containing 40 pages - guides you step-by-step with hundreds of diagrams and questions through number systems, Boolean algebra, truth tables. de Morgan's theorem, flipflops, registers, counters and adders. All from first principles. The only initial ability assumed is simple arithmetic.

At the end of the course you will have broadened your horizons, career prospects and your fundamental understanding of the changing world around you.

Also available - a more advanced course in 6 volumes:

1. Computer Arithmetic
2. Boolean Logic
3. Arithmetic Circuits
4. Memories \& Counters
5. Calculator Design
6. Computer Architecture

Offer. Order this together with Digital Computer Logic \& Electronics for the bargain price of £9.25. plus 50p p\&p.

Design of Digital Systems contains over twice as much information in each volume as the simpler course Digital Computer Logic and Electronics. All the information in the simpler course is covered as part of the first volumes of Design of Digital Systems which as you can see from its contents also covers many more advanced topics

Designer

Manager
Enthusiast
Scientist
Engineer
Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

Guarantee - no risk to you

If you are not entirely satisfied with Digital Computer Logic and Electronics or Design of Digital Systems, you may return them to, us and your money will be refunded in full, no questions asked.

A Self-instructional Course
Book 1

Book 9 locald elements

$£ 3.95$
plus 50 p packing and surface mail anywhere in the world.

Quantity discounts available on request.

Payment may be made in foreign currencies.

VAT zero rated.

I. Understand electronics.

Step by step, we take you through all the fundamentals of electronics and show you how easily the subject can be mastered using our unique Lerna-Kit course.

(1) Build an oscilloscope.
(2) Read, draw and understand circuit diagrams.
(3) Carry out over 40 experiments on basic electronic circuits and see how they work.

2. Become a radio amateur.

Learn how to become a radioamateur in contact with the whole world. We give skilled preparation for the G.P.O. licence.

BRITISH NATIONAL RADIO \& ELECTRONICS SCHOOL, Dept. E95
P.O. Box 156, Jersey, Channel Islands.

NAME
ADDRESS

PHOTOCELL PLUS

Photocells and phototransistors are available by the score but a new type available from Photain looks extremely interesting.

The IS-006 is spectrally matched to both Gallium Arsenide and Tungsten Lamp light sources making it suitable

for most types of photocell application. An I.C. and power output stage are incorporated. Current capacity is 80 mA making it possible to energise a relay directly. A pot can be incorporated to determine the switch on intensity. Price is $£ 3.50$ plus VAT downwards depending on quantity.

Photain Controls Ltd., Unit 18, 'Hangar 3, The Aerodrome, Ford, Sussex.

LITHIUM/METAL SULPHIDE BATTERIES

Commercial development of lithium/ metal sulphide batteries gets under way as Argonne National Laboratory (USA) awards contracts to three firms for making cells and electrodes. The highperformance batteries have about five times the energy density of lead-acid batteries. First test cells are due by October; full-sized prototypes for electric vehicle tests may be available by 1981, Argonne says.

MINI BLOW TORCH

A new blow-torch which has a pencil point slim flame and is claimed to have wide use for electronic engineers has

been announced by Longs Limited.
The small butane cyclinder has a life of $4-5$ hours give an operating temperature up to $2,200{ }^{\circ} \mathrm{C}$; refills are readily available.

The gas burner has a brass nozzle

Latest product from E.M.S. is the Synthi Q.U.E.G (Quadraphonic Effects Generator) an electronic device for processing quadraphonic audio signals. It has the ability to place 4 mono signals anywhere, and independently, inside a square domain. The position of the four signals may be moved manually, with a joystick control or automatically using the internal Quadrature Voltage Controlled Oscillator. Combinations of the automatic and/or manual control may be selected.

Each of the four audio channels has a level control. The audio signal
fitted with special cooling fins. A detachable solder pencil and standing base are included. Cost is $£ 6.25$ including VAT and postage.

Longs Limited, Hanworth Lane Trading Estate, Chertsey, Surrey KT16 9LZ.

BIPOLAR TRANSIENT SPIKE SIJPPRESSORS

The first two in a range of voltage spike suppressors for protecting semiconductor circuit boards from random analogue and digital input transients and noise have been introduced by Coutant Electronics Ltd. Called 'transtectors' these tiny devices, which have the appearance and size of a resistor, eliminate entirely both incoming spikes (particularly critical
passes via this control to a bank of four Voltage Controlled Amplifiers. The four outputs are controlled such that the total power is maintained constant (assuming a constant input) no matter where the signal is placed. Each channel has a display of 4 LED's which indicate the position of the signal of that particular channel. There are 4 channels and each channel has 4 outputs. Thus there is a total of sixteen outputs, which is available at the facilities socket. However, to make life easier, these 16 have been mixed down into four (also available at the facilities socket).
with TTL circuitry) as well as any reflected spikes that may emanate from the load.

Their principal advantage is that they can be used in parallel with a standard delayed SCR overvoltage 'crowbar' unit to provide a satisfactory method of meeting two prime requirements for semiconductor circuits: very fast acting protection when it is needed (their response time is only 5 nanoseconds), and the avoidance of unnecessary circuit shutdown (the so-called 'nuisance shutdown that is so common with conventional high-speed overvoltage protectors).

The transtectors operate by clamping the input and output lines of the device being protected to a specified voltage. Coutant Electronics Ltd., 3 Trafford Road, Reading, RG1 8JR.

TELETYPE 28

TELETYPE 28 without keyboard. Good condition (can be used as receive only) $£ 42.50$.

TELETYPE 28 with housing, keyboard and Power supply £55 ea.

Limited quantities - information in process of being obtained this may not be available when orders are dispatched but we guarantee to forward comprehensive information at the earliest possible time.

Ex BEA

Control Units by Univac
Consisting of $2-50$ way plug/socket; 3 multiway switch assembly; a 2 \& 4 decade push button assembly electrical reset; etc. Very good value. £12.50 each.

FHACHI VCO MODULE FX11-10-100KHZ
Size $2 \times 1 / 6 \times 5 /{ }^{\prime \prime}{ }^{\prime \prime} H$. Input 12 V to 24 VDC (not centre tapped) 18 V input giving 10 V constant amplitude output. Requires only a 1 meg ohm potentiometer to tune entire range-or can be swept with a saw tooth input. Price E5.75 P\&P 20p

A: B. POTENTIOMETERS LIN

$100 K+100 K$ DUAL GANG 25p each.
Discount for quantities. P\&P extra

FHACHI RAMP MODULE FX21. 24 Volt DC input for 18 volt saw tooth output. Requires only external capacitor and 100 K ohm external capacitor and potentiometer to control frequency potentiometer to control frequency
range up to 100 KHZ (eg 50 mfd range up to 100 KHZ (eg 50 mfd
electrolytic gives sweep of approx 1 cm per second). In or out sync capability. Price £5.75. P. \&P. 20p
Q日aticules. 12 cm , by $\$ 4 \mathrm{~cm}$, in Hig Quary plasic. isp each. P. \& F. op.
PANEL mounting lamp holders. Fed or green
BECKMAM MULTITUAN DIAL
Model Re, Brand new
£1.90. P. \& P. 15p.
FIBRE GLASS PRINTED CIRCUIT BOARD. Brand new. Single or Double sided. Any size $1 \frac{1}{2} p$ pe LIGHT EMITTING DIODES (Red) from Hewlett-Packard. Brand New (Red) from
Intormation Sp. Holders 1p. Information sp. Holders 1p.

METEAS by SIIFAM type M 42. 25-0-2 250 red: line.si. As new 22.95 ea. P. \& P. 37p ALOCK PAPER CAPACITORS AVAIL. PHOTOCELL equivalent OCP 71, 13pes.

STANDARD 2 meg. log pots. Current iype 1bpea
INSTMUMENT 3in. Coivern 5 ohm 35p es.
BOURNS TMMPOT POTENTIOMETERS 20: 50; 100: 200: 500 ohms: 1. 2. 2.5; 5: 10 25 K at $35^{\mathrm{p}} \mathrm{E}$ e. ALL BRAND NEW

EX-MINISTRY CT436 Double Beam Oscilloscope DC-6 megs. Max Sensitivity $10 \mathrm{mv} / \mathrm{cm}$. Small compact. Size $10 \times 10 \times 16 \mathrm{in}$. Suitable for Colour TV servicing. Price $\mathbf{£ 8 5}$ each including copy of manual

RELIANCE P.C.E. Mounting 270: 470
500 ohms: 10 K at 35 F es. ALL BRAND NEW.
VENNER Hour Meters- 5 digit. wall mount -sealed case. Standard mains. E3.75 ea

TRANSFORMERS All standard inpult Gard/Parm/Parr. $450-400-0-400-450.180$ MA. $2 \times 6.3 \mathrm{v} \mathrm{E} 3 \mathrm{ea}$

```
Miniature FANTASSTIC VALUE
Miniature Transtormer.Standard 240V
input, 3Volt! amp output. Brand New
6}60\mathrm{ quanuty each P. & P. 20p. Discount for
```

12" CRT Magnetic Deflection. Blue Trace Yellow Afterglow (P7). Information and recommended circuits with all purchases. Brand new boxed £4 each. Carriage $\mathbf{E} 2$

100MHZ SCOPE TUBES. Mullard D13-450GH-03. P31 Phosphor In ernal graticule,$-6 \mathrm{~cm} \times 10 \mathrm{~cm}$ rec tangular. Y sensitivity 3 V per cm . X sensitivity 11 V per cm . Single gun. Distributed Y plates. Trace rotate coils. Brand new boxed. $\mathbf{E} 30$ ea. Car riage $£ 2$.

Capacitoa pack 50 brand new compo
nents only 50 p. P. \& P. 27p
P.C. MOUNT SKELETON PRE-gETS M 5002 200 3 C lust 10.5 and $2.5 \mathrm{M} @ 3 \mathrm{M}$ @ ep ed. Finger ad. and 25K@ Ep es. Min P. \& P. 15p.

000pf FEED THRU CAPACITORS. OnIV sold in nacks of 10-30p P \& P 15 n
RECTANGULAR INSTRUMENT FANS American Ex-equ. Size $41 \times 4 \frac{1}{2} \times 11^{*}, 115$ Volt very quite $£ 3$ ea. P. \& P. 47_{p}.
DELIVERED TO YOUR DOOR ' cwt. of Electronic Scrap chassis, boards. etc. No
Aubbish. FOR ONLY f4. N. Ireland $\mathbf{c} 2$ extra
P.C.B. PACK S \& 0. Quantity
tiny pieces, 50p plus P. \& P. 200

TAIMAMER PACK. 2 Twin 50/200 pf ceramic 2 Twin $10 / 60$ pf ceramic: 2 min strips with 4 nesef $5 / 20$ pt on each: ${ }^{3}$ air spaced prese
$30 / 100$ pf on ceramic base. ALL BRAND NEW 250 the LOT. P. \& P. 150.

ALMA precision resistors 200K: $400 \mathrm{~K}: 497 \mathrm{~K}$ 20pe.

RElays
 Variey YP4 plastic covers 4 pole c/o 15 K - 33p: $5.8 \mathrm{~K}-40 \mathrm{pes}$

HIGH-YALUE-PRINTED BOARD PACK. Hundreds of components, transistors, etc.-no wo boards the same-no short-leaded transis-
Large quantity LT. HT. EHT transformers and
chokes.
Vast quentity of good quality components

- NO PASSING TRADE-so we offer - NO PASSING TRADE- so we offer
$\mathbf{3}$ LB. of ELECTRONIC GOODIES for $£ 1.70$ post paid

ChYsTALS. Cotour 4.43 MHz . Brand New
f1.25 ea. P. \& P. 15 p .

Beohive Trimmer 3/30 pt. Brand new Oty $1-9$ 13p ea. P \& p $10-9910 p$ ea. P \& P. 25p: $100-999$ 10.

HF Crystal Drive Unit. 19 in. rack mount Standard 240 O input with superb crystal ov by Labgear (no crystals) 55 ea. Carr. $f 2.00$

METER PACKS-3 different meters for £Z. P.\&P. 55p.
RESETTABLE COUNTERS-4 digit by Stonebridge/Sodeco. 10000 hm
coit. $£ 2$ ea. P. 8 P. 350 .

LOW FREQUENCY WOBBULATOR

DON'T FORGE

YOUR MANUALS
S.A.E. WITH

REQUIREMENTS
For alignment of Receivers, Filters etc. 250 KHz to 5 MHz , effective to 30 MHz on harmonics. Three controls-RF leve sweep, width and frequency: Order LX63. Price £8.50 P. \& P. 35p.
As above but can have extended cover range down to 20 KHz by addition of external capacitors. Order LX63E. Price 11.50 P. \& P. 35p.

Both models can be used with any general purpose oscilloscope. Requires 6.3 V AC input. Supplied connected for automatic 50 Hz sweeping. An external sweep voltage can be used instead. These units are encapsulated for additional reliability, with the exception of the controls (not cased, not calibrated)

20 HZ to 200KHZ

SINE AND SQUARE WAVE GENERATOR

In four ranges. Wien bridge oscillator thermistor stabilised. Separate independent sine and square wave amplitude controls. 3 V max sine, 6 V max square outputs. Completely assembled P.C. Board, ready to use 9 to 12 V supply required. $£ 8.85$ each. P. \& P. 25p. Sine Wave only $\mathbf{2 6} 85$ each. P. \& P. 25 p.

WIDE RANGE WOBBULATOR

5 MHZ to 150 MHZ (Useful harmonics up to 1.5 GHZ) up to 15 MHZ sweep width Only 3 controls, preset RF level, sweep width and \ddagger requency. Ideal for 10.7 or TV IF alignment, filters" "eceivers. Can be used with any general purpose scope. Full instructions supplied. Connect 6.3 V AC and use within minutes of receiving. All this for only $\mathbf{6 6} \mathbf{7 5}$. P. \& P. 25p. (Not' cased, not calibrated.)

TRANSISTOR INVERTORS

TYPE A
Input: 12VDC Output: 13 kV AC 1.5 MA Price $£ 3.45$
 TYPE B

Input: 12V DC | Input: 12 VDC | Input 12 V to 24 V DC |
| :---: | ---: |
| Output: 1.3 kV DC 1.5 MA | Output: 1.5 kV to $4 \mathrm{kV} A C 0$. | Price $£ 4.70$

TYPEC Output: 1.5 kV to 4 kV AC 0.5 MA Price $\mathbf{£ 6 . 3 5}$ Postage \& Packing 36p

TYPED
Input 12V to 24V DC
Output: 14 kV DC 100 micro amps at 24 V
Progressively reducing for lower input voltages
Price $\mathbf{£ 1 1}$
Unless stated - please add $\mathcal{E 2 . 0 0}$ carriage to all units.
VALUE ADDED TAX not included in prices-please add 8\%
Official Orders Welcomed, Gov./Educational Depts., Authorities, etc., otherwise Cash with Order
Open 9am to 5.30pim Mon to Sat.

7/9 ARTHUR ROAD, READING, BERKS. (rear Tech. College, Kings Road) Tel.: Reading 582605/65916

Don't miss your copy of mans这
 Rex CATALOGUE

ENGINEERS

LiPlYOURSELF FOR A BETTER JOB "-"
more Pay!
Do you want promotion, a better job, higher pay? "New opportunities" shows you how to get them through a low-cost, Home Study Course. There are no books to buy and you can pay as you learn.

This easy to follow GUIDE TO SUCCESS should be read by every ambitious engineer. Send for this helpful 76-page free book NOW! No obligation, nobody will call on you. It could be the best thing you ever did.

CHOOSE A BRAND NEW FUTURE HERE

MIN-ADS

PRECISION POLYCARBONATE CAPAGITORS 40 V AC $1 \pm 10 \%$
 TANTALUM BEAD CAPACITORS - Values available $0.1,0.22,0.47,1.0,2.2,4.7,6.8 \mu \mathrm{~F}$ at $15 \mathrm{~V} / 25 \mathrm{~V}$ or or $16 \mathrm{~V} ; 33.0 \mu \mathrm{~F}$ at 6 V or $10 \mathrm{~V} ; 47.0 \mu \mathrm{~F}$ at 3 V or 6 V $100.0 \mu \mathrm{~F}$ at 3 V . All at 10 p each: 10 for 95 p ; 50 for £4.00.
TRANSISTORS
BC107/8/9 9p BC212/212L 14p BFY50 $\begin{array}{lll}\text { BC147/8/9 } & 10 \mathrm{p} \text { BC547 } & 12 \mathrm{p} \\ \text { BFY51 }\end{array}$ BC $157 / 8$ 12p BC558A BC183/1831 11P BF 97 8C184/184L 12p AF178 12 p
$4 \mathrm{BFY52}$
42 p
OC 71 42 p
13 p
2 N 305 POPULAR DIODES. Allbrand $\quad 30 p \quad 2 N 3702 / 4.50$
 $6 p ; 8$ for $45 p ; 18$ for $90 p ; 1 N 9168 p ; 6$ for $45 p ; 14$ for
$90 p$, $\$ 445 p ; 11$ for $50 p ; 24$ for $£ 1.00$. $1 \mathrm{~N} 41485 p$ $90 p, 1 S 445 p ; 11$ for $50 \mathrm{p} ; 24$ for £1.00. IN4 1485 p
6 for 27 p ; 12 for 48 p . LOW PRICE ZENER DIODES 400 mW ; Tol $\pm 5 \%$ at 5 mA . Values available $3 \mathrm{~V} ; 3.6 \mathrm{~V}$; $4.7 \mathrm{~V}, 5.1 \mathrm{~V} ; 6.2 \mathrm{~V}, 6.8 \mathrm{~V} ; 7.5 \mathrm{~V} ; 8.2 \mathrm{~V} ; 9.1 \mathrm{~V} ; 10 \mathrm{~V} ; 11 \mathrm{~V}$
$12 \mathrm{~V} .13 \mathrm{~V}, 135 \mathrm{~V}, 15 \mathrm{~V}, 16 \mathrm{~V} ; 18 \mathrm{~V} ; 20 \mathrm{~V}, 22 \mathrm{~V}$ $12 \mathrm{~V}: 13 \mathrm{~V} ; 13.5 \mathrm{~V} ; 15 \mathrm{~V}: 16 \mathrm{~V} ; 18 \mathrm{~V} ; 20 \mathrm{~V}: 22 \mathrm{~V}$;
$24 \mathrm{~V} ; 27 \mathrm{~V} ; 30 \mathrm{~V}$. All at 7 p each: 6 for $39 \mathrm{p} ; 14$ for 84 p Special OHer: 100 Zeners for 55.50 RESISTORS: High stability, low noise carbon film $5 \%, 1 / 2 \mathrm{~W}$ at $40^{\circ} \mathrm{C}$: $1 / 3 \mathrm{~W}$ at $70^{\circ} \mathrm{C}$. E1 2 series only, from 2.20 to 2.2 Mn . All at 1p each: $8 p$ for 10 of any one value: 70 p for 100 of any one value. Special Pack: 10 of each value
2.2Ω to $2.2 \mathrm{M} \Omega(730$ resistors $) £ 5.00$ SILICON PLASTIC RECTTIFIERS, $1.5 A$. Brand new wire ended D027 100 P.IV-7P BRIDGE RECTIFIERS $21 / 2 A$ 200V-400 $350 \mathrm{~V}-45 \mathrm{p}$. $600 \mathrm{~V}-55 \mathrm{p}$. SUB-MINIATURE VERTICALPRESETS: 0.1 W only, All at $5 p$ each $50 \Omega, 100 \Omega$. $220 \Omega, 4700,680 \mathrm{Mm} 1 \mathrm{k}, ~ 2.2 \mathrm{k}, ~ 4.7 \mathrm{k}, 6.8 \mathrm{k}, ~ 10 \mathrm{k}$. $15 \mathrm{k}, 22 \mathrm{k}, 47 \mathrm{k}, 68 \mathrm{k}, ~ 100 \mathrm{k}, 250 \mathrm{k}, 680 \mathrm{k}, 1 \mathrm{M}, ~ 2.5 \mathrm{M}$, 5 M
Please add 15p Post and Packing on all orderg below £5.00. All export ordere add cost of Sea/ Airmail. Please add 25% VAT to orders. Send SAE for lists of additional ex-stock liems. Wholesale

MARCOTRADING

Dept. T8. The Old School. Edstaston, Near WEM Salop 'ci. WIXHALL 464/465 STD (094872) Props: Minicos! Trading Ltd)

AERIAL BOOSTERS: $\mathbf{\text { E3.20}}$. Can produce remarkable improvements on the picture and the sound in fringe or ditticulr areas. L11 for the VHF Radio L12 for the VHF TV Bands (Please state Band 1 and 3 channels). 145
BARGAIN PACK POLYESTER (C280) CAPACIBARGAIN PACK POLYESTER (C280) CAPACI-
TORS. $250 \mathrm{~V} / \mathrm{W}$ and $400 \mathrm{~V} / \mathrm{W}$ Very good mixed TORS. $250 \mathrm{~V} / \mathrm{W}$ and $400 \mathrm{~V} / \mathrm{W}$. Very good mixed
selection from $0.01 \mu \mathrm{~F}$ to $2.2 \mu \mathrm{~F}$. Price $100 £ 1$. P\&P 15 p (our choice)
VALVE BARGAINS. 10p each 5-45p. ECC 82 ECL $80 \mathrm{EF} 80 / 183 / 184 \mathrm{PC} 86 / 88$ PCF $80 / 802 \mathrm{PC}$ $82 / 84 / 85 / 805$ PL 36/504 PY 33/81/800. COLOUR VALVES $12 p$ EACH. PL $508 / 509 \mathrm{P}$ 500A. P8
$£ 3 / 20$ p.

LANCASHIRE MAIL ORDER SUPPLIES

```
#, sTUBBINGS
```

RAMSBOTTOM, LANCS

The Proprjetors of British Patent No 1022360, for "Method and apparatus for coating an article" desire to negotiate for the sale of the patent, or for the grant of licences thereunder. Further particulars may be obtained from Marks \& Clerk, 57-60 Lincoln's Inn Fields, London WC2A 3LS

TAMAR ELECTRONICS LOW PRICES

Bargain Untested Packs: All packs 54 p each unless otherwise marked, 80 Transistors 200 Diodes, 50400 mW zeners, 402 W zeners, 50 Mixed IC's, 200 assorted semiconductors.
Special offer 1. The above six packs (value £3.24) for £2.9040 1N914 type diodes, 40 OA200 type diodes, 20 unijunction transistors. $201 N 4000$ series diodes, 40 Silicon Alloy Transistors.
Special offer 2. The above five packs (value £2.70) for £2.40, 20 Polyester Capacitors 40p. 50 Disc ceramics 30p. 25 Electrolytics 54 p. 5 mixed LED's 70p
Special offer 3. The above four packs (value E1.94) for E1.65, BC107 and BC 10812 p each, BC109 13p, 2N3819E 25p, 2N3055 $40 p$. AC1 28 10p. AC176 $12 p$ each, or all seven (value £1.24) for £1.10

DL704 seven segment LED display with data $95 p$. Driver IC for DL. 704 (7448) 90p, small red LED's $15 \mathrm{p}, 741$ op-amp (8 DIL) 30p. MFC6040 IC $£ 1.05$, 3los. computer panels E1.65, 1 lb bag of ferric chloride $800,1000 \mu \mathrm{~F}$ 30 v and $2000 \mu \mathrm{~F} 30 \mathrm{v}$ electrolytics 25 p each. $1000 \mu \mathrm{~F} 60 \mathrm{v}$ high surge rating electrolytics $\left(5^{1 / 2} \times 21 / 2^{\prime \prime}\right) 35$ p. IC pin sockets in strips of $10055 p$. 10 assorted potentiometers 54 p. Burgess microswitches ($2 x^{1 / 2} x^{1 / 2^{11}}$) 20p

All prices include VAT. Please enclose 20p P\&P per order, orders over $£ 6$ post free. For latest list send SAE or $10 p$ in stamps. All items offered while stocks last

TAMAR ELECTRONICS
P.O. Box 17, Plymouth

Devon PL1 1 YJ
 DISPLAY

limear		C-mos		tramsistor	
Lu3aiv	40	SOOCAE	22	${ }_{8 C 107}$. 14
Lm3017	.4)	4 COOLE	22	${ }_{8 C}$ (10)	14
4 mmogk	1.50	4002N	22	BC109	18
mci310a	2.50	4026AE	1.60	${ }_{8 C 147}$. 13
mC1456	1.30	+007AE	22	вctige	. 15
Messal	1.18	4008 ${ }^{\text {a }}$	1.75	8 Cl er	.12
Me5504	75	4009\%	1.05	3ctic	. 12
ME555V	. 50	4010	1.05	BCL_{17}	24
ME556\%	1.20	4011AE	22	eriso	21
ME560	3.25	4012 $\mathrm{H}^{\text {c }}$	22	[rims	. 23
Me561	3.25	4013AE	. 68	218204	. 32
- 565	3.25	4014AE	1.70	20×105	. 30
Mests	2.70	4015 ${ }^{\text {a }}$	1.70	2129005	. 21
709Ca	. 30	4016*	. 68	270053	20
7096T	. 33	402TaE	1.90	213055	68
70909	. 30	4021发	1.70	2312646	75
710¢a	34	4022aE	1.80		
${ }^{723} \mathrm{CA}$	55	4233k	. 22	$0100{ }^{\text {d }}$	
74194	36	4024AE	1.25	1 14007	4789
${ }^{74151}$. 40	4025 LE	. 22	114002	5\%p
${ }^{714164}$. 35	40828 F	2.70	1414002	6\% ${ }^{\text {p }}$
${ }^{7174 C H}$. 73	4277a	. 95	14005	${ }_{\text {sp }}$
Thscy	4	40234,	1.50	144007	$11 p$
$\pi \mathrm{T}$		403515	1.70	14.168	4.0p
7430	16	4062)	1.30	B7rga	
7413	30	404Saf	. 73	400imm	
744	98	4050 ${ }^{\text {H }}$. 73	2.7.334	
7673 7475	. 30				
7475 7490	. 62	C	S	EC	
74141	-888				
74182	1.50				
3 Bakerville Rd., Wandsworth London, SW18					
+ VAT lo all erders + 15p Pap [Mialimum ordar हI]					

HARDWARE
 1/9/75

Screws, nuts, washers, etc.
Sheet aluminium cut to size or in standard packs, plain or punched / drilled to spec.
Printed circuit boards for published designs or individual requirements, one-off or small runs.
Fascia panels, dials, nameplates, etc., in etched aluminium. 6 p for details.

> Ramar Constructor Services 29 Shelbourne Road Stratford on Avon, Warwicks.

Greenbank Electronics

FREE!

Data and suggested circuits for AY-5-1 224 and MK 50253 clock chips, details of PCB's and component kits for AY-5-1224, data sheets for LED $0.3^{\prime \prime}$ and $0.6^{\prime \prime}$ displays.
NEW:
PCB TO SUIT AY'-5-1 224 clock chip.
4 DIGIT KITS
Kit includes: PCB, AY-5-1 224 chip, 4 LED digits, transistors, diodes, resistors, capacitors, solder pins (success guaranteed), with $0.3^{\prime \prime}$ digits $£ 9.95$ ($0.6^{\prime \prime}$ high digit version also available)

MK 50253 4/6 digit alarm clock
LED DISPLAYS (ECONOMY TYPES)
DL-704E 0.3 ${ }^{\prime \prime}$ common cathode
DL. 747 E $0.6^{\prime \prime}$ common anode

Add 8\% VAT to all prices, post, etc. 10p + VAT per order GREENBANK ELECTRONICS (Dept. T9E; 94 New Chester Road, New Ferry Wirral, Merseyside 162 5AG Tel: 051-6453391

B H COMPONENT FACTORS LTD.

LEIGHTON ELECTRONICS CENTRE, 59 NORTH ST. LEIGHTON BUZZARD, BEDS. LU7 7EG. Tel. (05253) 2316.

DO-IT-YOURSELF INTEGRATED CIRCUIT HOLDERS. Soldercon I.C socket pins in strips of 100 . Ideal for making sockets for $8-40$ pin I.C.s. Now only 49 p including V.A.T. Postage free. S.a.e. for samples. Mostek integrated circuits as mentioned in "Electronics Tomorrow", May, 1975, now available. Mk. 50204 £15.11, Mk. $50206 £ 15.11$ including V.A.T. $10 p$ for catalogue. Mail order only to: G. Newman, 12 Francis Avenue, St. Albans AL3 6BX.

BURGLAR ALARM. Complete security system comprising: Control Box, 4 door/window switches, battery operated. £8.50. Money back guarantee. Castle Alarms, Box WO6, Windsor, Berks

* Electronic PIANO KIT \star SYNTHESISER KIT
 \star Electronic ORGAN KITS

There are five superb Electronic Organ kits specially tronic Organ kits specially
designed for the D-I-Y endesigned for the D-i-Y en-
thusiast. With the extreme thusiast. With the extreme
fiexibility allowed in design.

you can bulld an organ to your requirements.
which will compare with an organ commercially built costing double the price.
\star Portable organ with 4 octave keyboard, £145.29. $*$ Console organ with 5 octave keyboard, £250.95* Console organ with 2×4 octave keyboards and 13 note pedal board. £470.65. * Console organ with 2×5 octave keyboards and 32 note peda board. $£ 680$. t Console organ with 3×5 octave keyboards and 32 note pedal board. £960.*W/W Sound Synthesiser Kit. £130. \star W/W Touch Sensitive Electronic Piano. £100.
All components can be purchased separately, i.e., semiconductor devices. M.O.S. master oscillators, coils, keyboards pedal boards, stop tabs, draw bars, hey-contacts, etc.
Send 50 p for catalogue which includes 5×10 p vouchers or send your own parts list, enclosing S.A.E. for quotation.

ELVINS

ELECTRONIC MUSICAL INSTRUMENTS
Designers and component suppliers to the musical industry 12 Brett Road, Hackney, London, E8 1JP. Tel. 01-986 8455

INDEX TO ADVERTISERS

Ambit. 47

Arbour Electronics
23

Arrow Electronics . 44
Axial Products . M/A
B.H. Components. 73
B.I.E.T. 71

Bi-Pak 4,5
Bi-Pre-Pack . 75
BNRS . 68
Bywood 43
Cambridge Learning . 67
Chiltmead . 70
Crofton Electronics . 71
Davian . $/$ /
Dorain . 37, 40
Eaton Audio 10
E.D.A.. 10

Electrospares . 23
Elvins 74
Greenband
Heathkit 2
Henry's . 71
Maplin . 76
Marco Trading . M/A
Marshall's . 16
Minikits . 25
Ramar M/A
Sintel 36
Tràmpus 68
Wilmslow
15

PLEASE MENTION ETI WHEN REPLYING

TO ADVERTISEMENTS

FII SUBECRIPIIONS

If you have no trouble obtaining ETI from your newsagent, that's the obvious place to get it. However an early analysis of the reader questionnaire has shown that one in three readers has trouble in buying ETI.

If you are one of those having trouble, why not take out a subscription? Normally you receive your copy for a few days before our official publication.

Complete the coupon and weill sendyou our complete, new catalogue.

HEATHKIT:

The new Heathkit catalogue is now out. Full as ever with exciting, new models. To make building a Heathkit even more interesting and satisfying.

And, naturally, being Heathkit, every kit is absolutely complete. Right down to the last nut and bolt. So you won't find yourself embarrassingly short of a vital component on a Saturday evening-when the shops are shut.
.You'll also get a very easy to understand instruction manual that takes you step by step through the assembly.

Clip the coupon now (enclosing a 10 p stamp for postage) and we'll send you your copy to browse through.

With the world's largest range of electronic kits to choose from, there really is something for everyone.

Including our full range of test equipment, amateur radio gear,hi-fl equipment and many general interest kits.

So, when you receive your catalogue you should have hours of pleasant reading.

And, if you happen to be in London or Gloucester, call in and see us. The London Heathkit Centre is at 233 Tottenham Court Road. The Gloucester showroom is next to our factory in Bristol Road.

At either one you'll be able to see for yourself the one thing the catalogue can't show you.

Namely, how well a completed Heathkit performs. Heath (Gloucester) Limited, Dept. ETI-95, Bristol Road, Gloucester,GL2 6EE. Tel: Gloucester (0452) 29451.

DC-5 MHz, 100 mV oscilloscope

AM/FM 60 watt r.m.s. stereo receiver.

Deluxe digital alarm clock.

More than just a catalogue! PROJECTS FOR YOU TO BUILD

4-digit clock, 6-cigit clock, 10 W high quality power amp., High quality stereo pre-amp., Stereo Tuner, F.M. Stereo decoder, etc., etc.

CIRCUITS . . Frequency Doublers, Oscillators, Timers, Voltmeters, Power Supplies, Amplifiers, Capacitance Multiplier, etc., etc.
Full details and pictures of our wide range of components, e.g. capacitors, cases, knobs, veroboards, edge connectors, plugs and sockets, lamps and lampholders, audio leads, adaptor plugs, rotary and slide potentiometers, presets, relays, resistors (even 1\% types!), switches, interlocking pushbutton switches, pot cores, transformers, cable and wire, panel meters, nuts and bolts, tools, organ components, keyboards, L.E.D.'s, 7 -segment displays, heatsinks, transistors, diodes, integrated circuits, etc., etc., etc.
Really good value for money at just 40p.

The 3600 SYNTHESISER

The 3600 synthesiser includes the most popular features of the 4600 model, but is simpler. Faster to operate, it has a switch patching system rather than the matrix patchboard of the larger unit and is particularly suitable for live performance and portable lise.
Please send S.A.E. for our price list.

GRAPHIC EQUALIZER

A really superior

high quality stereo graphic equaliser as described in
Jan. 1975 issue
of ETI. We stock
all parts (except woodwork)
including all the metal work

drilled and
printed as required to suit our components and PCB's.
S.A.E. for price list or complete reprint of article - price $15 p$

The 4600 SYNTHESISER

We stock all the parts for this brilliantly designed synthesiser, inclusing all the PCB's, metalwork and a drilled and printed front panel, giving a superb professional finish. Opinions of authority agree the ETI International Synthesiser is technically superior to most of today's models. Complete construction details available shortly in our booklet price $£ 1.50$, or S.A.E. please for specification

ELECTRONIC ORGAN

Build yourself an exciting Electronic Organ. Our leaflet MES51, price 15p, deals with the basic theory of electronic organs and describes the construction of a simple 49 -note instrument with a single keyboard and a limited number of stops. Leaflet MES52, price 15 p, describes the extension of the organ to two keyboards each with five voices and the extension by an octave of the organ's range,
 Solid-state switching and new footages along with a pedal board and a further extension of the organ's range are shown in leaflet MES53, also priced at 15 p .

NO MORE DOUBTS ABOUT PRICES
 Now our prices are GUARANTEED (changes in VAT excluded) for two month periods. We'll tell you about price changes in advance for just 30 p a year (refunded on purchases). If you already have our catalogue send us an s.a.e. and we'll send you our latest list of GUARANTEED prices. Send us 30 p and we'll put you on our mailing list - you'll receive immediately our latest price list then every two months from the starting date shown on that list vou'll receive details of our prices for the next GUARANTEED period before the prices are implemented! - plus details of any new lines, special offers, interesting projects - and coupons to spend on components to

 repay your 30pNOTE: The price list is based on the Order Codes shown in our catalogue so an investment in our super catalogue is an essential first step.
Call in at our shop, 284 London Road, Westcliffon-Sea, Essex Please address all mail to

MAPLIN ELECTRONIC SUPPLIES
P.O. Box 3 Rayleigh Essex SS6 8LR

For copy/copies of your Catalogue
Name
Address \qquad

