You don't have to be strong but you have to be quick — Hammer Throw game p 29

New AWA deck does it all — p 72

You don't have to be strong but you have to be quick — Hammer Throw game p 29
PAKS - PARTS - AUDIO MODULES

TRANSISTORS

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
<th>Type</th>
<th>Price</th>
<th>Type</th>
<th>Price</th>
<th>Type</th>
<th>Price</th>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC1</td>
<td>£3.50</td>
<td>AC1</td>
<td>£3.50</td>
<td>AC1</td>
<td>£3.50</td>
<td>AC1</td>
<td>£3.50</td>
<td>AC1</td>
<td>£3.50</td>
</tr>
<tr>
<td>AC2</td>
<td>£3.50</td>
<td>AC2</td>
<td>£3.50</td>
<td>AC2</td>
<td>£3.50</td>
<td>AC2</td>
<td>£3.50</td>
<td>AC2</td>
<td>£3.50</td>
</tr>
<tr>
<td>AC3</td>
<td>£3.50</td>
<td>AC3</td>
<td>£3.50</td>
<td>AC3</td>
<td>£3.50</td>
<td>AC3</td>
<td>£3.50</td>
<td>AC3</td>
<td>£3.50</td>
</tr>
<tr>
<td>AC4</td>
<td>£3.50</td>
<td>AC4</td>
<td>£3.50</td>
<td>AC4</td>
<td>£3.50</td>
<td>AC4</td>
<td>£3.50</td>
<td>AC4</td>
<td>£3.50</td>
</tr>
<tr>
<td>AC5</td>
<td>£3.50</td>
<td>AC5</td>
<td>£3.50</td>
<td>AC5</td>
<td>£3.50</td>
<td>AC5</td>
<td>£3.50</td>
<td>AC5</td>
<td>£3.50</td>
</tr>
<tr>
<td>AC6</td>
<td>£3.50</td>
<td>AC6</td>
<td>£3.50</td>
<td>AC6</td>
<td>£3.50</td>
<td>AC6</td>
<td>£3.50</td>
<td>AC6</td>
<td>£3.50</td>
</tr>
<tr>
<td>AC7</td>
<td>£3.50</td>
<td>AC7</td>
<td>£3.50</td>
<td>AC7</td>
<td>£3.50</td>
<td>AC7</td>
<td>£3.50</td>
<td>AC7</td>
<td>£3.50</td>
</tr>
<tr>
<td>AC8</td>
<td>£3.50</td>
<td>AC8</td>
<td>£3.50</td>
<td>AC8</td>
<td>£3.50</td>
<td>AC8</td>
<td>£3.50</td>
<td>AC8</td>
<td>£3.50</td>
</tr>
</tbody>
</table>

NEWNES TECHNICAL BOOKS

<table>
<thead>
<tr>
<th>No</th>
<th>Title</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>229</td>
<td>BEGINNERS GUIDE TO ELECTRONICS</td>
<td>£2.25</td>
</tr>
<tr>
<td>230</td>
<td>BEGINNERS GUIDE TO TELEVISION</td>
<td>£2.25</td>
</tr>
<tr>
<td>231</td>
<td>BEGINNERS GUIDE TO TRANSISTORS</td>
<td>£2.25</td>
</tr>
<tr>
<td>232</td>
<td>BEGINNERS GUIDE TO RADIO</td>
<td>£2.25</td>
</tr>
<tr>
<td>233</td>
<td>BEGINNERS GUIDE TO COLOUR TELEVISION</td>
<td>£2.25</td>
</tr>
<tr>
<td>234</td>
<td>MINIATURE ELECTRONIC COMPONENTS</td>
<td>£1.80</td>
</tr>
<tr>
<td>235</td>
<td>PRINTED CIRCUIT ASSEMBLY</td>
<td>£1.80</td>
</tr>
</tbody>
</table>

THYRISTORS

<table>
<thead>
<tr>
<th>No</th>
<th>Title</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>TO 18 Case</td>
<td>£0.25</td>
</tr>
<tr>
<td>500</td>
<td>TO 68 Case</td>
<td>£0.25</td>
</tr>
</tbody>
</table>

CMOS ICs

<table>
<thead>
<tr>
<th>No</th>
<th>Title</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5 AMP TO 66 Case</td>
<td>£0.25</td>
</tr>
<tr>
<td>3</td>
<td>30 AMP TO 96 Case</td>
<td>£0.45</td>
</tr>
</tbody>
</table>

AVDEL BOND

Please word your orders exactly as printed, not forgetting to include our part number. V.A.T. Add 11.8% to prices marked. Add 8% to others excepting those marked. These are zero.

SILICON RECTIFIERS

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
<th>Type</th>
<th>Price</th>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>P9</td>
<td>£0.25</td>
<td>P9</td>
<td>£0.25</td>
<td>P9</td>
<td>£0.25</td>
</tr>
<tr>
<td>P10</td>
<td>£0.25</td>
<td>P10</td>
<td>£0.25</td>
<td>P10</td>
<td>£0.25</td>
</tr>
<tr>
<td>P11</td>
<td>£0.25</td>
<td>P11</td>
<td>£0.25</td>
<td>P11</td>
<td>£0.25</td>
</tr>
<tr>
<td>P12</td>
<td>£0.25</td>
<td>P12</td>
<td>£0.25</td>
<td>P12</td>
<td>£0.25</td>
</tr>
<tr>
<td>P13</td>
<td>£0.25</td>
<td>P13</td>
<td>£0.25</td>
<td>P13</td>
<td>£0.25</td>
</tr>
<tr>
<td>P14</td>
<td>£0.25</td>
<td>P14</td>
<td>£0.25</td>
<td>P14</td>
<td>£0.25</td>
</tr>
<tr>
<td>P15</td>
<td>£0.25</td>
<td>P15</td>
<td>£0.25</td>
<td>P15</td>
<td>£0.25</td>
</tr>
<tr>
<td>P16</td>
<td>£0.25</td>
<td>P16</td>
<td>£0.25</td>
<td>P16</td>
<td>£0.25</td>
</tr>
</tbody>
</table>

ODERING

Please word your orders exactly as printed, not forgetting to include our part number. V.A.T. Add 11.8% to prices marked. Add 8% to others excepting those marked. These are zero.
High quality modules for stereo, mono and other audio equipment.

STEREO FM TUNER

OUR PRICE ONLY £20.45
Fitted with Phase Lock-loop Decoder

The 450 Tuner provides instant program selection at the touch of a button ensuring trouble-free tuning of 4 pre-selected stations, also of which may be altered as often as you choose, by simply changing the settings of the preset controls, fitted with your existing audio equipment or with the BI-PACKS **STEREO 30** or the **MK60 Kit** etc. Alternatively the **PS12** can be used where no suitable supply is available, together with the Transformer T38.

The **SA40** is supplied fully built, tested and aligned. The unit is easily installed using the simple instructions supplied.

STEREO PRE-AMPLIFIER

OUR PRICE ONLY £20.45
Fitted with Phase Lock-loop Decoder

A top quality stereo pre-amplifier and tone control unit. The six push-button selector switch provides a choice of inputs together with tap relay offering filters for high and low frequencies plus tone adjustment. **MK50 AUDIO KIT**: Comprising 2 x AL50's, 1 x SPM80, 1 x PA100 1 front panel and knobs. 1 x kit of parts in metal on-off switch neon and indicator. stereo headphones plus instruction booklet COMPLETE PRICE £35.00 plus 65p postage.

TEAK 60 AUDIO KIT

OUR PRICE £14.95

A pre-amplifier and tone control unit. The six push-button selector switch provides a choice of inputs together with tap relay offering filters for high and low frequencies plus tone adjustment. **MK50 AUDIO KIT**: Comprising 2 x AL50's, 1 x SPM80, 1 x PA100 1 front panel and knobs. 1 x kit of parts in metal on-off switch neon and indicator. stereo headphones plus instruction booklet COMPLETE PRICE £35.00 plus 65p postage.
SCRUMPI is good for you!

I'm the new (and larger) SCRUMPI 2. Play with my PROM: conduct my buses, weave my extra RAM.

Only with 2.5 V. We also stock:

ION

SCRUMPI 1
SCRUMPI 2
SCRUMP! 2F

8% VAT Excluded.

7400 Quad NAND
7400N Hex Inverter
7401 Triple NAND
7402 BCD Decoder
74077 Dual 2 x 4 Dec
DM8055 32 Hex buffer
DM8056 = 8095
DM801S 355 3 bit buffer
DM801S 296 3 bit buffer
DM801S 796 3 bit buffer
DM801S 796 3 bit buffer

EM SCRUMP! 1, the lowest cost MPU kit available!

CA Products from: Fairchild, General Instruments, Litton, Litronix, Mextek, Motorola, National Semi, SMC, Verob.

We also stock:

Eti. System 68 MPU kits, VDU kits, Case kit

COMPREHENSIVE SELECTION OF HARDWARE & SOFTWARE SUPPLY

Digital clock chips, kits displays. Please send SAE for our catalogue.

BYWOOD ELECTRONICS
68 Ebbw Road, Tel 0442-62757
Hemel Hempstead, HP3 9QR

PRODUCTS FROM:

Fairchild, General Instruments, Litton, Litronix, Mextek, Motorola, National Semi, SMC, Verob.

BYWOOD ELECTRONICS
68 Ebbw Road, Tel 0442-62757
Hemel Hempstead, HP3 9QR

ELECTRONICS TODAY INTERNATIONAL - JANUARY 1978
BUY A COMPLETE RANGE OF COMPONENTS AND THESE PACKS WILL HELP YOU

* SAVE ON TIME. No delay - waiting for parts or service to arrive.

* SAVE ON MONEY - lower buying, reduced per part costs - just compare with others!

* HAVE THE RIGHT PART - no 'just in case' work!

ALL PACKS CONTAIN 100% BRAND NEW WORKING EQUIPMENT. RETURN OF POST VAT INLCUD

Contact:

GREENWELD
443 Milbrooke Peed St, Sealcott, Sox, OX5
Tel: 0703 772501

TRANISTORS

<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>400a</td>
</tr>
<tr>
<td>401</td>
</tr>
<tr>
<td>402</td>
</tr>
<tr>
<td>403</td>
</tr>
</tbody>
</table>

DIGITAL IC

<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
</tr>
<tr>
<td>401</td>
</tr>
<tr>
<td>402</td>
</tr>
<tr>
<td>403</td>
</tr>
</tbody>
</table>

BULK OFFERS

OFFERS APPLY ONLY TO LARGE ORDERS

<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
</tr>
<tr>
<td>401</td>
</tr>
<tr>
<td>402</td>
</tr>
</tbody>
</table>

SIRENS

<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
</tr>
<tr>
<td>401</td>
</tr>
</tbody>
</table>

EDGE CONNECTORS

<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
</tr>
<tr>
<td>401</td>
</tr>
</tbody>
</table>

SOLAR CELLS

<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
</tr>
<tr>
<td>401</td>
</tr>
</tbody>
</table>

1977/8 CATALOGUE

48 Big pages packed with over 4,000 items, many of them illustrated. Discount vouchers worth 50p.

Price: 30p + 15p post

After 2nd Feb 1978, cut down to 15p plus 10p post.

VOTE BEST OF 15 SYSTEMS TESTED BY POPULAR MOTIONING MAGAZINE

THE KIT COMPRISES EVERYTHING NEEDED

OPTIONAL EXTRAS

CALLERS WELCOME

IMPROVE PERFORMANCE & ECONOMY NOW

PRICES INCLUDE VAT, POST AND PACKING
BUY A COMPLETE RANGE OF COMPONENTS AND THESE PACKS WILL HELP YOU

- SAVE ON TIMES - no delays - working to your time - same or better than others.
- SAVE ON MONEY - better buying making against prices - just compare.
- HAVE THE RIGHT PART - no guesswork in substitution necessary.

ALL PARTS CONTAIN VLSI - BRAND NEW - THOROUGHLY TESTED ON RETURN OF POST VAT INC. LEVY.

K9006 512×4 static RAMs 62k $250.00 16k $160.00 8k $63.00
K9007 4k static RAMs 16k $47.00 8k $23.00
K9009 4k static RAMs 64k $240.00 32k $120.00
K9010 64k static RAMs 256k $550.00 128k $275.00
K9011 128k static RAMs 512k $1050.00 256k $525.00
K9012 256k static RAMs 1024k $2100.00 512k $1050.00
K9013 512k static RAMs 2048k $4500.00 1024k $2250.00
K9014 1024k static RAMs 4096k $9000.00 2048k $4500.00
K9015 2048k static RAMs 8192k $18000.00 4096k $9000.00
K9016 4096k static RAMs 16384k $36000.00 8192k $18000.00
K9017 8192k static RAMs 32768k $72000.00 16384k $36000.00
K9018 16384k static RAMs 65536k $144000.00 32768k $72000.00
K9019 32768k static RAMs 131072k $288000.00 65536k $144000.00
K9020 65536k static RAMs 262144k $576000.00 131072k $288000.00
K9021 131072k static RAMs 524288k $1152000.00 262144k $576000.00
K9022 262144k static RAMs 1048576k $2304000.00 524288k $1152000.00

DIGITAL ICs

- smoothen running
- instant all-weather starting
- continual peak performance
- longer coil/battery/plug life
- improved acceleration/top speeds
- optimum fuel consumption

THE KIT COMPRIZES EVERYTHING NEEDED

Obligatory 15% High Tax

Callers Welcome

Improve performance & economy NOW

Price includes VAT, post and packing

POST TODAY! Quick installation No engine modification Required

Electronics Design Associates, Dept ET1, 82 Bath Street, Hasting, SUS 3DE, Phone 0992 33652

Name
Address
Bank Cheque 60 60
Cheque No.

Send SAE & brochure on receipt required

1977/8 CATALOGUE

48 big pages packed with over 4000 items - many of them illustrated. Discount vouchers worth 50p.

Price 30p + 10p post
THE MOST COMPREHENSIVE RANGE OF TUNER MODULES EVER DISPLAYED

HF 7948 FRONT END

£13.12 Inc VAT P&P

TECHNICAL CHARACTERISTICS
Output terminal for digital frequency meter
Antenna impedance 75 to 300 ohms
Frequency range 87.5 to 104 MHz or 105 MHz
Sensitivity 0.9 uV/25dB signal-to-noise ratio
-75 dB deviation
Intermodulation
30dB Image rejection 60dB Tuning voltage
7V to 11V
Total gain 31dB Intermediate frequency
10.7 MHz Power supply voltage
+15V Power consumption 10mA
Dimensions 104 x 50 mm

TECHNOLOGY
Double-sided epoxy printed circuit board with plated through holes. Dual gate effect transistors. Silvered ends.

IF 2846 IF AMP AND DECODER

£9.05 Inc VAT P&P

TECHNICAL CHARACTERISTICS
Intermediate frequency 10.7 MHz IF Bandwidth 250Hz Signal to noise ratio
70dB with 1mV input
Sensitivity 30uV up to
the 36dB limit
Channel separation 400Hz at
1kHz Pass Band 20 to 1500Hz Rejection
at 36 dB greater than 55dB
Silent operation
45dB Deemphasis 50 to 75ms Filter
response at 1kHz +4dB Channel matching
within less than 0.3dB. Output impedance
100 ohms. Output voltage 500mV Phase
locked loop stereo decoder. Output for LED
VU meter. Null indicator. Outputs for AGC
AFC and inter station mixing. Consumption
85mA LEDs extinguished 100mA. LEDs
Illuminated Power supply 18V. Dimensions
195 x 76mm

CIRCUIT TECHNOLOGY

ALS 1500 STABILISED POWER SUPPLY

£2.53 Inc VAT P&P

TECHNICAL CHARACTERISTICS
Output voltage 15V Max output current
500mA. Thermal coefficient less than 1mv
C. 15V power supply for modules HF 7948 and
IF 2846. Supply protected against short
circuit (power and current protection). Dimensions 65 x 55mm

TECHNOLOGY
Double-sided epoxy circuit board. Monolithic integrated circuit.

OPTOELECTRONIC OPTIONS

£8.06 Inc VAT P&P

LED VU METER
Station strength indicator

£13.50 Inc VAT P&P

ILLUMINATED POINTER
Station finder

£8.77 Inc VAT P&P

TOUCH CONTROL PRE-SELECTION UNIT
LED channel indication

£22.74 Inc VAT P&P

FREQUENCY METER
Digital display of received station frequency

£4.35 Inc VAT P&P

NUMERICAL DISPLAY
Pre-selected channel number

CROSSLAND HOUSE \ NACKINGTON \ CANTERBURY \ KENT
Telephone (0227) 63218
Telex 965780

ELECTRONICS TODAY INTERNATIONAL - JANUARY 1978
A NEW SUPER DRILL from PRECISION PETITE

An extra powerful armature in F-2 Design and Development need a small, low-voltage, high-current power source. This means the new all-metal stand for greater accuracy.

P2 Drill £16 50 pp 36
S2 Stand £18 60 ap 105a

And the popular P1
P1 Drill £9 67
S1 Stand £9 13 ap 28p

Accessories include drills, chucks, saw blades etc.
Sizes x 4 SA & SE for full details and price list.

For the Professional Amateur

PRECISION PETITE LTD

Electronics Today International — January 19...
THE METAC DIGITAL CLOCKS

- COMPLETE KIT -

- Pussard green display
- 12/24 hour format
- Silent Synchronous accuracy
- Full electronic
- Push button settings
- Battery life 1 yr.
- Adjustable case position
- Dual alarm

MODEL 119 KIT PRICE £9.75

- Metac BARGAINS -

Model 200
Amazing value
£25.50

6 digit 6 function for lounge or office
- Hours
- Minutes
- Seconds
- Month
- Day
- Year
- Back light
- Auto day
- Calendar
- Superb metal slim line case with matching bracelet

THE BLACK WATCH
by Metac
Swiss Made LCD

THE GRUEN DRESS WATCH
for that special occasion

NEW METAL LOCATOR KIT
- Easy to build
- Uses professional ICs and transistors
- Electronically
- Powered
- Search coil
- Only £12.55

TV GAMES
- 4 Games clock and white
- 4 Games black and white with gun
- 6 Games black and white with gun
- 6 Games colour with gun
- £26.00
- £29.00
- £35.00
- £45.66

Metac-Electronics & Time Centre

Awa has become the third Japanese hi-fi company to open showrooms in the UK. The new premises are at 50-58 Brunswick Centre, just off Russell Square, which marks the highest profile yet of Awa's efforts to capture a slice of the UK market.

The idea of such a place is to allow people to inspect the goods without the usual hi-fi shop frills. Sony started the idea in Regent Street some nine years ago, but only a place at the back of the store. It is difficult to get a place in Regent Street, but to get a place in Regent Street would cost a fortune. It is fortunate that Mr. W. Cuthbert in Lucknow House in Russell Square was available to take a lease of the premises at the bottom of the Russell Square.

A new hand operated coaxial cable stripper has been introduced by A.B. Engineering Company under the model name COAX. This simple hand pressure eases the stripping of coaxial cable. The tool incorporates four apertures offset to a common cutting blade which needs aperture 1. A simple hand pressure ensures accurate stripping of the outer jacket and the inner jacket can be cut with the blade.

Further details may be obtained from A.B. Engineering Company, 36 Woburn Road, Watford, Herts.

A new portable battery pack PP3 has been introduced by A.B. Engineering Company under the model name COAX. This simple hand pressure eases the stripping of coaxial cable. The tool incorporates four apertures offset to a common cutting blade which needs aperture 1. A simple hand pressure ensures accurate stripping of the outer jacket and the inner jacket can be cut with the blade.

Further details may be obtained from A.B. Engineering Company, 36 Woburn Road, Watford, Herts.

ELECTRONICS TODAY INTERNATIONAL - JANUARY 1978
Join the Digital Revolution

Understand the latest developments in calculators, computers, watches, telephones, television, automotive instrumentation . . .

Each of the 8 volumes of this self-instruction course contains 112 A4 pages packed with information, diagrams and questions designed to lead you step by step through number systems and Boolean algebra to memory circuits and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.

Design of Digital Systems

£7.10

plus 50p p&p and insurance of course anywhere in the world

Overseas customers should send for Postage rate card.

Also available - a more elementary course assuming no prior knowledge except simple arithmetic.

Digital Computer Logic and Electronics

£4.60

plus 30p p&p

Alternatively by special arrangement for the bargain price £1.10

plus 30p p&p

£2.95

plus 5p p&p

These courses were written so that you could work through the theory and application of digital logic by self-instruction but the advantages of being quicker and more thorough than formal learning. You'll work at your own pace and receive regular response by answering questions on each new piece of information before proceeding to the next.

NEW from Cambridge Learning Enterprises

THE ALGORITHM WRITER'S GUIDE

use design and layout vital for computing training, well worth it!

£2.95

plus 5p p&p

Guarantee: If you are not entirely satisfied with your money will be refunded

Cambridge Learning Enterprises

212 New Barn Lane, Cambridge

Send for the free catalogue of Digital Systems at £2.95 each P&P included

or

send for Digital Computer Logic and Electronics at £5.00 each P&P included

or

send for the Algorithm Writer's Guide at £4.00 each P&P included

or

including post and packing. All enquiries to

Altrincham

Dear Reader

No need to lose time - just write EP100 FORM. In the envelope.

...news

The first Commodore TV game is titled TV 3000B and can be used by up to four players. The good news is that four games are available:

Football (Two or four players)

Tennis (Two or four players)

Squash (Two or four players)

Target Shooting

Other features

On Screen Stamping shows the score after every point and three realistic sounds help to add realism to the game. The joystick controls a means of adapting it provided, included in the price.

The game is color and sound, up to speed of the ball is also included. The TV 3000B is covered by a one-year guarantee and is available at a PRR of £39.95 (including VAT and adapter). A pistol which can be assembled into a kit for use with two target games is available at an optional extra at £12.95 (including VAT) Commodore Business Machines (UK) Ltd.

466 Bath Road, Sunbury, Middlesex SL1 2EE

A new Printed Circuit Board designed for the home constructor and has been introduced by Vero Electronics Limited designed by Vero Electronics Limited.

Circle the PNC, 7-9, 01-440 4167.

Primary design considerations were to design the production board capable of accepting any component, but especially integrated circuits - regardless of pin spacing, V.C. or DIN matrix, and a layout such that the 11 components of the copper pattern are pushed on, with assembly time or twelve and 16 pin ICs can be accomplished on the board, which measures 147 mm (5.8") x 73 mm (2.9")

The order code is V. O. P.M. 4164 and it is available from retail shops and mail order houses at around 15.95. Vero Electronics Limited Sales Dept., Industrial House, Chelmsford Road, Chelmsford CM2 3ER.
Digest...

We have just received a copy of Wimler Electronics' latest stock list. It is not really unusual, but it does come with a warning: we are told to order in sufficient quantities to suit our needs, as stocks are limited.

The list includes a wide range of components, from transistors and diodes to potentiometers and capacitors. Prices are also given, but it is worth noting that they are in British pounds.

The store is located at 195 Well Road, Watford, Herts.

THE DYNAMIC DUO

The C15/15 is a unique Power Amplifier providing Stereo 15 watts per channel or 30 watts Mono and can be used with any car radio/tape unit. It is simply wired in series with the existing speaking leads and in conjunction with our speakers S15 produces a system of incredible performance.

A novel feature is that the amplifier is automatically switched on or off by sensing the power line of the radio/tape unit, hence alleviating the need for an on/off switch.

The amplifier is sealed into an integral heatsink and is terminated by screw connectors making installation a very easy process.

The S15 has been specially designed for car use and produces performance equal to domestic speakers yet retaining high power handling and compact size.

C15/15
15 watts per channel into 4ohms
Distortion 2% at 1kHz at 15 watts
Frequency Response 50Hz-30kHz
Input Impedance 80 nominals
Input Sensitivity 2 volts R.M.S. for 15 watts output
Power Line 10-18 volts
Open and Short Circuit Protection
Thermal Protection
Size 4 x 4 x 1 inches
C15/15 Price £17.74 + £2.21 VAT P&P free
Data on S15
6" Diameter
5¾" Air Suspension
2" Active Tweeter
Coax Ceramic Magnet
15 watts R.M.S. Handling
50Hz-15kHz Frequency Response
40 Impedance
S15 Price per pair £17.74 + £2.21 VAT P&P free
TWO YEARS GUARANTEE ON ALL OF OUR PRODUCTS

Please supply
Total Purchase Price
Enclose cheque Record Order Money Order
Please debit my Access Account Barclays Account
Account Number
Name & Address

Signature

Electronics Today International — January 1978
MERRY CHRISTMAS AND A VIDEO NEW YEAR

8 GAME T.V. PROJECT
BASED ON AY-3 8600

- Basketball
- Grid Ball
- Hockey
- Tennis
- Squash
- Football
- Two-Man Pong
- Three Man Game
- Horizontal and Vertical Bat Coverage
- Automatic Ball Served Up
- Players Colour Coded
- Three Tone Sound Effects
- Sound from T.V.
- Bill Colour Coded to indicate turn in squash game
- All components supplied guaranteed including sound and vision modulator C M 30" Urdu
- Power requirement 12v battery
- Just add controls and case

Base : AY-3 8600 Paddle Kit B +V 21 120 only £15.00
Colour £29.00 only £20.90
B+W Mini Pack Chip + P.C.B. only £12.90
Colour Mini Pack Chip + P.C.B. only £13.90

POPULAR AY-3-8500
PADDLE I

- Three Tone Sound Effects
- All components supplied guaranteed just add controls, speaker and case
- UHF Vancap modulator (8+1W)
- Power requirement - 9v battery
- Stick clearance print down

Black + White £13.95 £9 95
Colour £18.85 £15.95
Mini Pack P.C.B. + chip B+W £9.95 Colour £14.90

JOY STICK CONTROLS
DESIGNED FOR 5 GAMES
(AY-3-8550 AY 3 8600) Sub minimum Size
UNBEATABLE LOW PRICE
One off £1.90
Two off £3.50

COLOUR CONVERTER KIT
- Easily connects to all in-games using AY-38500 – AY-38550
- Great background - Red or green - Yellow and Blue dots - White bull
- No extra parts
- No special equipment needed
- New even lower price £5.50 complete

VISION MODULATOR UHF-CH38
BUILT & TESTED £12.90
ORDER BOTH TOGETHER £5.50

SOUND MODULATOR
CONNECED WITH ABOVE £2 90

TELETEXT DECODER
SAVE OVER £50.00

TENAX TIFAX - KM1
Tested and Guaranteed Only £99.90
Full Colour Display ORACLE AND DEEFAX
Simple to interface with most TV's
Keyboard and power supply extra
Also in stock NEW Colour TV's complete with Teletext FROM £499.00

All Projects supplied with easy to follow assembly instructions.
All prices include V.A.T. + Postage Orders under £100.00 - Add 20p a p & p
Make all Cheques or Postal Orders payable to

TELECAST
A Dedicated Visual Display Company
Mail Orders 63 Winter Road, New Barnet, Herts EN5 5EO
Retail Shop and Demonstrations - 14 Station Road, New Barnet, Hereford
(French and German spoken)
Quantity discount negotiable
For express service phone your order on Barclays Access Cards

Staff Vacancies

ELECTRONICS TECHNICIAN
We need someone for the ETG Project Team. Applicants must be capable of and enjoy firstly bread boarding up prototypes from supplied circuits and then converting the printed circuit into a well built prototype.

Skills necessary are a good standard of working both electronically and mechanically and examples of previous work must be available for examination. Ability to design PCB layouts would be an advantage though related experience in this area should not preclude candidature from any one.

The majority of the work is in building but it will be necessary to cooperate with the other editorial staff in design and with the paper work needed to publish the project in the magazine.

The job is in our workshop at our Oxford Street premises. Salary will depend upon skills and experience but will be in the range £2 800 absolute minium to £7 000 for someone bringing additional skills to the team.

EDITORIAL ASSISTANT FOR ETG AUSTRALIA
An additional part time position is needed in Sydney. Australia to work on ETG AUSTRALIA. This position is only being advertised here at...

ELECTRONICS TODAY INTERNATIONAL - JANUARY 1978
A new edition of ETI starts this month — Eletric in Germany. The name Eletric itself means nothing and is simply an amalgamation of electronics and radio. It is being published by Heinz Hesse in Hanover and is edited by Udo Wirth shown with pipe in the photograph examining a publicity leaflet with the advertising and production managers.

Following German tradition the first issue is numbered zero and given away. This came out in November and the front cover is shown on the left.

ETIPRINTS

Yes folks it's you the readers at home whose vote really counts (we mean that most sincerely) and your vote is that ETIPRINTS should become a regular part of our readers' services. The response to ETIPRINTS 001 has been overwhelming so that we have decided to make this new method of PCB production a regular ETI feature.

In case you have missed out on ETIPRINTS thus far they are a complete PCB pattern already to rub down in seconds. The patterns are produced from our original artwork so that the results they produce are nice and sharp.

We think that ETIPRINTS are such a good idea that we have patented the system (Patent numbers 1446171 and 1445172).

Until now the only ETIPRINT available has been 001 but this month we publish two further sheets 002 and 003 featuring projects from this and last month's issues.

Details of ordering the ETIPRINTS are shown below.

ORDER TODAY
Send cheque or P.O (payable to ETI Magazine) to:
ETIPRINT 001
ETI MAGAZINE,
26/27, OXFORD STREET, LONDON. W1 R 1RF

75p Inc. VAT and P & P

Please indicate clearly the ETIPRINTS you require. Those available at present are

001 Web patterns for heat clock board A and the computer from Nov 77 plus the speed tunnel three channel tone control and the digital ther monument from Oct 77.

002 Web patterns for inverter throw and race track from Jun 78 plus the trecker output from Dec 77.

003 Web patterns for the burglar alarm from Jan 78 plus clock board B and the rev mon from Dec 77.

ELECTRONICS TODAY INTERNATIONAL - JANUARY 1978
HOUSE ALARM

IN these days of increasing crime and vandalism an alarm system for the home can add greatly to ones peace of mind. To be effective however, not only must the alarm circuitry be well designed, it must also be correctly installed. This article describes a sophisticated alarm system and how best to commission it.

OUR MARCH ISSUE last year carried a feature going under the title ‘Burglar Proof Your Home’. The item dealt with the various methods by which house owners could make their domiciles more secure and thus less attractive to the burglar. A wide variety of means by which the security of the home could be improved were described in some detail from simple common sense precautions like locking all doors even when popping out for a few minutes to the use of non-drying paint and the installation of burglar alarms. The feature did not however include any circuits of suitable alarm systems.

Since last March we have had a number of requests to design an alarm suitable for domestic or small business use and as a result have developed the design we present here.

We cannot emphasize enough though that any alarm system — no matter how sophisticated — can only be of use if it is installed correctly. Further the installation of an alarm should only be considered as part of a general awareness of the need for greater attention to be paid to security. For this reason before going on to describe the alarm in detail we shall deal with domestic security in general the installation of alarms and how the specification of our alarm evolved.

How They Get In

Nearly 30% of all burglaries are committed by thieves entering via unlocked doors or windows. A further 24.4% are committed via forced door locks and about the same percentage via forced windows.

Thus nearly four out of five potential break-ins can be avoided by installing adequate door and window locking mechanisms.

Use dead latch locks on all external doors. These can only be opened with a key — even from the inside — so that even if a thief enters via a window he cannot remove any large items as the doors remain locked and few thieves will risk passing through items through a window.

Do have locks fitted by an experienced locksmith unless you have experience in this field — and do not fall for the door to door lock salesman — it is not unknown for such people to retain a duplicate key.

Consult a security expert about window locking devices. Innumerable types are available for metal, wood framed and sash windows. A burglar might break glass but few will risk climbing through a window frame with broken glass in it.

The precautions outlined above will reduce your chances of being burgled by about 80% — the remaining 20% can be reduced to almost zero by installing a good burglar alarm. The emphasis must be on the word good — a poor alarm may go off erroneously or worse, not at all.

Sensors

For most premises it is necessary to install sensors to protect front and rear doors, windows and garage entrances.

A few forced entries are made through the walls or roof or very occasionally via the floor. Although rare such forced entries may be guarded against by placing sensors in a strategic passage or area through which any intruder is likely to pass.

The simplest and most reliable switching device for alarm installations is the magnetic Reed switch. This consists of a pair of ferromagnetic contacts in a small hermetically sealed glass enclosure. The switch contacts can be levered from the ends of the glass tube and overlaid slightly at the centre, with a small air gap between them.

When a magnet is brought near the Reed switch the attracting forces increase and overcome the stiffness of the reeds bringing them into contact. When the magnet is removed the contacts open. The relative distance for pull in is less than for pull out a valuable feature as small movements of doors and windows will not cause false triggering.

Reed switches purchased for alarm installations must be of a type specifically intended for the purpose — standard Reed switches will not do.

Many professional security companies install Reed switches and magnets encased in plastic mouldings. Whilst these are neat and simple to fit it is better to conceal both Reed and magnet within the framework of the door or window to be protected.

In Figs. 3 and 4 we show just two of the various methods of fixing the reeds and magnets (note that the magnet is to be fitted to the moving part of any door or window).

Window glass may be protected by gluing on a loop of aluminium foil tape (or using a self adhesive type of foil). The foil is quite thin and breaks if the glass is fractured. Foil will deter all but the most determined of burglars. After all why risk being caught when next door does not seem to be protected by an alarm.
Vibration sensors may be used to protect large areas of glass but these are prone to false triggering during thunderstorms etc. Many other types of intruder sensing devices may also be included in the system. Pressure mats for example can be placed under carpets in strategic passageways or even under the door mat. The mats contain a large number of normally open contacts some of which will be closed when the mat is trodden on. The system can also include more sophisticated intruder detectors such as infra-red type sensors.

The intruder alarm itself should be reasonably accessible to people entering and leaving the premises via a silent entry door but will hidden from the sight of an intruder. The alarm's output stage should be a relay which latches when an alarm signal is received.

Warning Devices

For household use a good quality 12 Volt bell should prove an adequate warning device. Being mechanically resonant, bells have a very high conversion efficiency in fact, the average bell draws less than 500 mA at 12 V yet can be heard several hundred metres away.

Good sirens can be heard well over a few kilometres away but they draw a lot of current and cost more than a good bell. Small cheap sirens cannot be recommended.

If at all possible, householders should make mutual arrangements with neighbours to contact the police if the alarm is heard. Similar arrangements should also be made so that neighbours can switch off the alarm when the police arrive.

An alarm which resets after a period of time silencing the bell or siren, is a useful device that will be much appreciated by the neighbours. Care must be taken to ensure however that the alarm when triggered and reset still provides some measure of protection to the property.

Whatever the warning device chosen, it should be mounted unobtrusively high up in an inaccessible place. The leads to the device should be of an adequate gauge to avoid any voltage drop associated with a long length.
The specification of our alarm unit is shown in Table 1. From this one can see that the alarm has seven 'normally closed' circuits (A2-A8) plus a silent entry circuit (A11) which allows about 30 seconds on entry to turn the alarm off. This feature also gives a 30 second delay between turning the alarm on and the sensors being armed, this allows time to leave the house.

It is possible to connect two or more alarm switches in series for each external circuit but if so doing ensure that any such series-connected switches are grouped together.

The reason for providing a number of separate alarm circuits is to do with the problems involved with resetting a triggered alarm mentioned above. Most alarms work on a system where all the windows and doors have normally closed reed switches all wired in series so that opening any one breaks the loop and sets the alarm off. The alarm then rings for ten minutes and

![Fig 5 Circuit diagram of the A board](image-url)
HOW IT WORKS

Unlike some alarms that use a single sensing loop with all the switches wired in series, this design features a number of different alarm groups. These are broken down into two groups designed for normally closed (NC) switches - perimeter switches and internal switches. These switches are connected to normally open (NO) switches. The inputs to each of the circuits described above have their own input circuitry.

Perimeter Circuit

The normally closed sensors associated with the perimeter circuit inputs to A₁-A₉ are connected to the circuitry around IC₁ and IC₂. These ICs are quad NOR gates which, in this application, are configured as inverters. The sensors are connected to the input of these gates via the resistors R₉-R₁. With the sensor switch closed, the output of the associated IC will be high. If the switch is opened, the output will go low as the inputs to the gates are then tied high via resistors R₉-R₁. An includes to ensure that the inputs to the CMOS ICs are terminated under all conditions. The capacitors C₇-C₉, together with the resistors R₉-R₁ provide a filter to ensure that transients on the input lines do not trigger the alarm.

In each output of IC₁ and IC₂, there is an LED which is connected to the security check button (PB₁). Upon operation of this button, power is supplied to the LEDs which will light if the IC and the IC₂, are connected to a low output of the IC. The diodes in series with the LEDs are necessary because of the low reverse voltage breakdown of the LEDs. When the switch is opened, the switch is also tied high via resistors R₉-R₁. The circuity disables the alarm function when the perimeter switch is in the off position and for a short period of time after the switch is moved to the on position by holding the output of IC₂ high. This prevents spurious triggering.

The second input to IC₂, is from the normally open input A₉, as well as the security and alarm test switches. If any of these switches are taken low, a negative going pulse is coupled to IC₂, to trigger the alarm. These functions operate even if the perimeter sensors are off. This input can be used for emergency inputs such as fire alarms.

Triggering Circuit

The same output results if one of the other inputs is triggered and the output of IC₂ goes high momentarily. This output is used to trigger IC₃, the RS flip flop formed by IC₃, and IC₉, taking the output of IC₉ high after another 30 second delay. Due to R₈, the input to IC₁ will be high and its output low.

Silent Entry Circuit

With the silent entry circuit, a 30 second delay is taken, and IC₁, overrides the output of IC₂, immediately after the alarm has been energized. After this time, if the input is triggered the output of IC₁ will go high having been inhibited from doing so until now by the high output of IC₂ and IC₉, and IC₉, taking the output of IC₉, high. After about another 30 second delay due to R₈, IC₂, the input to IC₁ will be high and its output low.

Output

The positive going pulse at the output of IC₁ is used to energize the RS flip flop IC₉, IC₉, and in the triggered state IC₁, output is low and IC₉, is high.

The delay circuit uses a CA3130 IC configured as a comparator. C₀, is normally charged to +10V the flip flop is triggered allowing it to discharge via R₁₆. When the voltage on C₀, has fallen to about 20mV the level set by R₆, and R₇, on the non-inverting input of IC₉. The output of the IC₉ will go high resetting the flip flops formed by IC₉, IC₉, and IC₉. IC₉, R₈ is included in the feedback loop to provide some hysteresis.

The output device can either be a delay or sound circuit. We have provided both options. The sound output is formed by two SSBs, one operating at a high frequency and driving the speaker via a transistor Q₁ and the other at about 2Hz which is used to modulate the frequency of the tone. A relay and 330 Ohm are energized when Q₁ is turned on by the high output of IC₉, as the flip flops are set. Additional circuits can be added in blocks of four at a time as board B and connected to the Aux input.

Auxiliary Board

The circuits on board B is almost identical to that of board A. The main difference is that the negative going outputs of each IC are QED using gates D-D₉, as opposed to a logic gate. This board can only be energized if the perimeter board is powered up. The capacitor C₉, together with R₉, and D₉, provides a short positive going pulse upon which on to disable the main alarm for a brief period of time

![Diagram](image-url)
Fig. 8 Component overlay of the 'A' board

Fig. 9 Component overlay of the 'B' board
Although this is not a common event, emergency switches provide elderly or timid people with a feeling of security.

Use good quality bell pushes for these circuits and connect them to the A9 inputs on the circuit board.

Fire Alarms

Fire sensors may be wired across the A9 input. The actual fire sensors should be mounted in the ceilings of rooms in which there is a fire hazard — kitchen, living room, rooms with electrical or heating appliances or where people smoke (don't forget the bedroom if you've a habit of smoking in bed!). Sensors should also be installed in the roof of the garage especially if this is attached to the house — the laundry, workshop etc.

Construction

Due to the number of components, it is recommended that the unit should only be built using the PCBs shown here.

Assemble the components, watching the connection of all the polarised components. Also solder the CMOS ICs last and then solder pins 7 and 14 first. This allows the protection diodes inside the IC to be effective. The LEDs should be mounted parallel to the PCB as shown in the overlay as these have to protrude through holes in the chassis.

Boxing of the alarm unit is largely a matter of choice. Our layout can be seen in the photographs. Note that we did not fit a key switch to our alarm, but installed it in a locked cupboard which could also be used for the storage of valuables.

Security Sense

May we say again that the installation of an alarm should only be part of a co-ordinated campaign to dissuade burglars. Details of the various precautions that can be taken were detailed in our feature last March. Your local Crime Prevention Officer will also be prepared to give help on most matters of security.

Types Of Inputs

<table>
<thead>
<tr>
<th>Silent entry</th>
<th>Perimeter circuits</th>
<th>Internal circuits</th>
<th>Emergency circuits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single circuit, 30 s exit delay, 30 s entry delay.</td>
<td>7 circuits, N/C contacts, can be expanded in units of 4.</td>
<td>4 circuits, N/C contacts, can be expanded in units of 4.</td>
<td>Any number of N/O circuits.</td>
</tr>
</tbody>
</table>

Current Drain And Battery Life (Type HP1 or similar)

<table>
<thead>
<tr>
<th>Emergency only</th>
<th>Alarm active</th>
<th>Alarm sounding</th>
<th>Alarm Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5 mA (4000 hours)</td>
<td>9 mA (2000 hours)</td>
<td>500 mA (10 hours)</td>
<td>12 minutes.</td>
</tr>
</tbody>
</table>

Parts List

- **Resistors**
 - All % W 5%
 - R1-8, 54, 22k
 - R5, 24, 47k
 - R10, 69, 1k
 - R26, 38, 4.1M
 - R27, 34, 43.49, 1M
 - R35, 10k
 - R40, 100R
 - R44, 220k
 - R45, 47, 680R
 - R50, 2k2

- **Capacitors**
 - C1-8, 16, 18, 22, 23, 10u 16 V tantalum
 - C9, 15, 17, 47k polyester
 - C19, 22u 16 V tantalum
 - C24, 26, 15u polyester
 - C25, 27, 100u 16 V

- **Semiconductors**
 - IC1, 3.5, CD 4001
 - IC4, CD 4069
 - IC6, CA 3130
 - IC7, 8, 955
 - LED1-8, 2" type LED
 - Q1, TIP 2955
 - Q2, SC109
 - Q11, 1N914
 - Q12, 1N4001

- **Miscellaneous**
 - PCB as pattern, 12 V I858 relay
The components for this project should be available from most suppliers: Watford, Marshalls, Maplin etc., or, probably, from most local shops. The Siren used is a matter of choice, but please make sure it's up to the job.
SOC20.

The most powerful Monolithic IC amplifier in the world.

20 watts output (continuous sine wave) . . .
Less than 0.2% total harmonic distortion at all powers, all frequencies . . .
And totally electronically indestructible!

Until recently, all monolithic IC chips suffered from two basic design weaknesses: First, thermal runaway causing heat to build up as current increased, and second, short circuiting.

Standard plastic package with copper slug

Until the SOC20 IC chip! This extraordinary new power amplifier chip is uniquely designed to improve thermal dissipation. It also has two separate built-in circuits, one of which measures on-chip temperature. If this should rise above 150°C the output transistors are switched off thus preventing thermal runaway.

And short circuits? The other circuit continuously monitors both current and voltage. If the product of current and voltage rises above a critical level, the drive is adjusted to bring the transistors within safe operating limits.

The amplifier can drive speakers of any impedance - maximum power will only fall outside the recommended 4 Ω - 8 Ω range.

And any pin on the chip may be shorted to any voltage in the system for any length of time - and no damage will occur!

Superb quality . . .

extraordinary power

The SOC20 isn't only safe - it's also extraordinarily sophisticated. Total harmonic distortion is less than 0.2% at all powers and all frequencies - and in normal use is well below 0.1%.

If power is at a premium, use two SOC20 amplifiers in 'Full Bridge' to give over 40 watts continuous into 8 Ω speakers.

The SOC20 is naturally guaranteed unconditionally for one year. Although with the SOC20's unique patented design, we think you'll have little cause to make use of any guarantee.

Specification

Maximum supply voltage ± 22 V (± 44 V total)
Output power 20 watts continuous or 8 Ω
Open loop gain 100 dB
Supply voltage rejection 50 dB
Input noise voltage 4 nV
Number of transistors 18

The SOC20 will work on any supply from 12-44 volts and therefore can be used for in-car as well as domestic applications. Apart from its obvious audio uses the fact that it is DC coupled throughout makes it ideally suited for servo systems - in radio-controlled models for example.

Incorporate the SOC20 in your equipment today!

SOC20's cost £4.95 each, or £7.95 a pair - or, have the convenience of stereo applications. Only a few readily-available components are needed to build a full amplifier unit.

Of course, the SOC20 comes with a 10-day money-back guarantee.

Science of Cambridge Ltd., 6 Kings Parade, Cambridge, Cambs., CB2 1SN. Tel: Cambridge (0223) 311488.

To: Science of Cambridge Ltd., 6 Kings Parade, Cambridge, Cambs., CB2 1SN.

Please send me___________ (qty)
SOC20 Monolithic IC Amplifiers (£4.95 each or £7.95 per pair, inclusive of p&p and VAT at 8%).

I enclose cheque/money order/postal order for £

Name

Address

[PLEASE PRINT]

ETI
THE PRACTICAL ASPECT of a professional surveyor's job requires measurement of the size, shape and position (relative to other defined shapes) of pieces of land ranging from the small household plot to the size of a country. It may also involve the application of the same methods for the measurement of large manufactured objects, such as buildings, bridges and other engineered structures. Such tasks commonly require measurement of distances and lengths ranging from a few metres to thousands of kilometres to precisions as small as a millimetre and angles to precisions down to less than an arc second.

Combinations of length and angle measurements, on a basis of measurement using triangles, are used in various ways to define shape and size. Definition of direction, with respect to North, and with respect to a level surface or a vertical plane, also enters into a surveyor's daily needs.

In many cases, for reasons of convenience, the measurements made are not quite those actually needed. Conversion or correction is required and, as the mathematical process must be performed within 5 to 7 decimal figures of precision, the calculations needed can become tedious. As an example, when measuring the distance between two pegs in sloping ground it is the horizontal distance to a point vertically above the pegs that is often needed. The distance measured in practice is more often than not the slope distance between the actual position of the pegs.

Enter electronics

Until the 1950s the most precise method for measuring long lengths used a steel-tape hung in catenary. This method having developed from the less accurate chain of iron links. Another optical method, called tacheometry, used the telescope of the theodolite.

Figure 1 Using a telescope to determine range by tacheometry.
A quiet revolution has taken place in the field with the advent of electronic methods. Dr. P. Sydenham explains how.

By the late 1950s the surveying instrument makers — traditionally they were then mainly from Europe — had acquired generations of skill with optics and fine mechanics, but little knowledge and experience with electronic technique. Because of this they were, at that time, understandably reluctant to develop and market electro-optical devices for surveying. However, by the mid-1960s the industry had built up its confidence in electronic methods and today we are in the midst of a quiet revolution.

This revolution began in earnest with the development and acceptance of an electro-optical method of long-range determination around 1945. It was called the Geodimeter and was made by AGA of Sweden to designs produced earlier by Dr E. Bergström. (History records the fact that Galileo proposed an optical method which was later tried unsuccessfully in the 1600's. At that time they lacked fast enough responding light sensors.) The AGA method could measure 20 km distances with only a few parts per million error.

After the Geodimeter came the Tellurometer, which made use of modulated UHF radio waves and could do better in range than the Geodimeter with similar precision.

What a Gaas

More development came about in the 1960s, the notable addition being shorter distance ranging apparatus based upon the easily modulated gallium arsenide Ga-As solid-state infra-red diode. This device was suited for the surveyor's needs in building and similar size tasks.

Simultaneously came the development of automatic theodolite scale-reading electronics. Observing with a second-of-arc scale instrument can prove tiring to the eyes, with the subsequent chance of a high error rate.

By 1970 electronic theodolites, as they became known, were being marketed by most of the large established surveying instrument makers. It was then just a matter of time to extend the automatic reading of scales to include straightforward conversion of angles and slope-distances into the required geometric parameter. These calculations were first done with separate electronic solid-state calculators; then the calculators were incorporated into the housing of the instrument itself. Today the latest machines use in-built microprocessors.

When automation can reduce the labour requirement at a cost less than the labour alternative, there is a case for its adoption.

That is why, in cases where extensive surveying work is needed, electronic methods have been used. For the same reason one instrument that marketed by Hewlett Packard, reduces the tolerances needed for initial levelling of the 'theodolite' system by incorporating compensation measurement of the out-of-level existing at the time of measurement.

Let us now turn our attention to the detail of some of these developments.

Figure 3 Much simplified schematic of Geodimeter model 6A distance meter. In this design electro-optical methods are used.

Figure 2 Tellurometer model MRA-3 uses the microwave method to measure distance from 100 m to 50 km to an accuracy better than 1 in 500 000. Modern electronics have made it easy to operate. Readout is a 7 digit display of range.
Ranging

Microwave methods: A continuously generated UHF signal, which is typically generated today by a Gunn diode oscillator, is sent from a small reflector or horn to a second unit placed at the other end of the distance to be determined. Phase difference between sent and returned signals provides a measure of distance in terms of the velocity of electromagnetic wave propagation in free-air conditions.

Accuracy is limited in all EDM (electronic distance measurement) methods by the knowledge of the refractive index of the air path. This limits all methods to around a 2 parts per million error in determining distances which range from 100 m to 50 km.

The first systems required the operator to learn a quite complicated procedure of use. Today the latest models provide digital readout, a voice channel to the person at the other station and, in some cases, an output compatible with digital data storage and processing systems. A modern microwave EDM unit is shown in Fig. 2.

The design and construction of microwave systems follow established radio communication practice using mixing techniques and special tone pattern generation. More detail on these methods is available in the "further reading" list given at the end of this review.

Electro-optical modulation: In these an optical carrier beam is modulated by altering the intensity of the carrier or its angle of optical polarization. The modulated beam is transmitted from a high-quality optical telescope to the far station where it is reflected back to the sender by one or more corner-cube reflectors. Fig. 3 shows the schematic of a Goodmeter model 6A.

Various sources of radiation are used in the models marketed. Originally a tungsten lamp or mercury discharge lamp was employed. Later improvements to range were provided by the use of helium-neon C.W. laser sources. Lasers also provided better utility in daylight conditions. The Mekometer method uses a pulsed Xenon gas source. The shorter distance modern units usually use a laser-diode source of infra-red radiation.

The kind of electro-optical technology involved in the manufacture of an I-R ranger is seen from the schematic of the optical system of the Hewlett-Packard 3820A provided here as Fig. 4.

Tacheometry: Basically the angle subtended between a fixed interval bar of scale unit is used to determine range by redirecting the theodolite from end to end of the target interval. The alternative is to observe the interval of a graduated staff seen within the angle defined in the field of view of the telescope by two parallel lines appearing in that field of view.

A variation is possible in which the optics of the telescope are altered geometrically at the operator's control.

This method of ranging is simple in principle, but needs many geometric corrections in practice for the subtended interval is rarely geometrically square and central with the telescope. Corrections are needed to change slope to horizontal and vertical distances and to allow for the fact that the observed interval is not square to the observer.

Many of the new electronic methods are called 'reducing tacheometers'. These, it seems, are not true tacheometers in the traditional sense, but are in reality rangers to a point target.

Automatic angle measurement

The period 1950-65 was one in which extensive development of automatic angle measurement methods took place as part of numerically-controlled machine-tool development. Many methods of producing an electronic signal equivalent to angular rotation were invented.

Around 1960 several of the instrument designers in Europe began to apply these methods to surveying instruments so that the scales of a theodolite could be read automatically providing digital readout and automatic data reading.

Angular encoders for this task must provide circle subdivision to at least 21600 increments (1 arc minute) in a small diameter.

Of the wide range of angular encoder types invented optical methods have been adopted in electronic theodolites. Optical encoders may be of the incremental kind in which a pulse is produced and counted for each minimum resolvable increment of angular movement, the pulse being added or subtracted for the appropriate sense of direction. The alternative is to use a disk on
which a digital code pattern is manufactured. This is called the absolute method, for there is no chance of pulse loss or gain due to noise; power-supply failure does not destroy the value.

Incremental methods use simpler to make measuring gratings because they need only identical lines ruled radially. A much higher density of lines is possible by this method than is economically available with the absolute scale. The absolute scale is more costly to make and read than the incremental version.

In practice experience has shown that a hybrid system is the best to use, one in which an absolute encoder disk scale provides the coarse-position component of the readout, a finer ruling incremental scale providing the less significant digits, usually by way of an analogue subdivisional method that interpolates between the rulings.

The future

In the world of large commercial manufacture, new ideas are slower to reach the market place than they are to realise. Over the next decade a number of improvements and alternatives should emerge.

Study of the time taken to set up a theodolite or level shows that the initial levelling procedure takes a significant time to achieve. Hewlett-Packard have recognised this and provided a partial solution to the user. Using electro-optic sensing of a plane surface, defined by a mercury pool, two-axis correction signals are produced that compensate for the not quite truly vertical central axis. The operator needs only to level the instrument within crude limits using a small circular bubbly level. The next stage must surely be to provide automatic levelling servos that set the instrument orientation regardless of gross misadjustment of the tripod top. This is straightforward to design — it is a matter of cost and time being available.

The next time-consuming task is to acquire the target and set the telescope fiducial mark on to it so that the angles can be read out. In many cases the target is identified by a special mark or pattern to make it easier to find. The next logical move is to have the theodolite or level automatically seek out the target, locking on to it. Once acquired the scale values would be read automatically.

Another development that may replace the theodolite in many applications is a technique called chronometric angle measurement. In this method a rapidly spinning mirror causes a photo-detector to see established targets in sequence. The time between the sources is a measure of angle if the rate of rotation is known. Simple arithmetic establishes that the precision of timing available today is able to provide second of arc accuracy. There are no scales to read in the method. This concept was explored and an instrument built in Germany a decade ago. Perhaps the surveying instrument makers have a prototype ready to market now — such information is hard to establish in this highly competitive field of sophisticated instrumentation.

Further reading

Surveying by A. Bannister and S. Raymond. Pitman. 1977, contains a quite up-to-date chapter on electronic methods. It does not, however, discuss such concepts as electronic theodolites and instruments having microprocessors in them.

Electromagnetic Distance Measurement by C. D. Burnside and C. Crosby. Lockwood Staples provides details.

Hewlett-Packard Journal issues describe the theory, operation and construction of their Total-Station instrument in considerable depth. Most companies marketing this kind of equipment are able to provide reprints of papers describing the use of their products.
Contributions to this page are invited from all our readers. If you wish to make a point—this is the place to do it. All contributions to this section should be intended for publication. Please mark your envelopes 'LETTERS PAGE'.

ANNUAL ENQUIRY

Dear Sir,

In an advert in one of your magazines there is one book 'Arc Welders Annual', I wonder if there is an Arc Welders Monthly magazine please let me know if there is and if your company publish it. If they don't would you be so kind as to tell me the address of the company that does publish it.

F.O. Eire

Excuse me...erm...I don't know how to tell you this but that was a cartoon i.e. a joke—mind you the magazine displayed beneath Arc Welders would be sure of one reader should it ever appear.

BLOB BOARDS

Dear Readers,

If you are following the series 'Digital Electronics by Experiment' in Electronics Today International, you will have found the boards differently laid out to a ZB 81C. The author of the series used pre-production samples of ZB 81C Blob Boards and these were slightly different to the production models.

The only difficulty that this should cause with the series is in the construction of the voltage stabilizer circuit, and we suggest the following modifications:

USE bus-bar J for the regulated supply, linking to bars 1 and 34.

USE bus-bar K for unregulated input and 0 for negative line. Link 0 to 141.

USE line 151 in place of line A.

USE line 161 in place of line M.

For the remaining projects, use the boards supplied with the letters on top and the numbers down the left hand side.

We regret the inconvenience caused and now hope that you can still enjoy the series of articles.

P. L. B. P.B. Electronics (Scotland) Ltd.

AND THE SAME TO US........

Dear Sir,

Can you imagine the chagrin you poor correspondents must feel at the nasty replies to their letters printed in the November issue? This letter is directed at you, the staff of ETI, so that you may share the experience.

You may be expert at plagiarising and paraphrasing but you do not actually know any basic theory do you? Original thoughts must be as scarce as butterflies at the office of ETI. One should of course, suffer fools gladly but the mendacity, jealousy and spite of the aspiring intellectual makes him hard to bear—and when he pours malicious scorn on those only slightly more naive than himself a rebuke is in order. How different is the humble simplicity of the true scientist, whose virtue lies in his readiness to admit that there are things he doesn't know.

The copy you produce, redolent of third-form wit, paradiso knowledge lifted vahium from the manufacturers' handouts—the ponderous puns, the gaffes, the howlers, the malapropisms, the spelling mistakes does nothing to justify the superiority you so obviously feel.

R.S. Piddletrenth

Oh yeah? What size plastic mac do you take then?

BLOOMING SPELL

Dear ETI,

I see the little homepride men have struck at the ETI offices! You keep on spelling fluorescent as fluorescent... an ely dikshunary don't agree!

D.J. Chelmsford

We've downgraded the typist for that. Cos graded brains make finer fluor!

POINTING OUT

Dear Sir,

Although full of admiration for the November cover, I feel there is more than meets the eye behind the Special Offer.

There are in fact two points I should like to see raised, however, as this may be physically impossible perhaps the offer could be moved to another page?

W.T.W. Hednesford

Oh yeah? What size plastic mac do you take then?
An exciting game of skill and luck that will help pass those long and lonely winter evenings.

If, like most of the ET staff, you have more brains than brawn, and would not boast about the quality of either, it is likely that the mere thought of swinging a massive weight around your cranium is enough to strain your bodily systems. This probably means — and we are sorry if this comes as a disappointment — that your chances of selection for the Olympic hammer throwing team are, shall we say, nil.

Some may say that this is a pity as the sheer thrill of an event such as the hammer throw is probably very stimulating to those chunky brutes that are lucky enough to be able to take part. This is where we come to the rescue with our armchair version of the game. We think it has a number of distinct advantages over the real thing. One of these is that anyone, from an anemic sparrow upwards, can play the game. A second being that it is nowhere near as messy if, when playing in your lounge, you get things wrong.

The game, as can be seen from our photographs, has a front panel with a circle of sixteen LEDs together with a line of eight LEDs at a tangent to the circle.

To play, after pressing reset, firmly press the play button. The LEDs in the circle will light one at a time simulating a spot of light moving in a circle. At the same time a distinctive, not to say loud, sound will be generated. The spot will at first travel slowly round the circle, but will soon begin increasing in speed until it is travelling quite fast.

The object of the game is to release the play button at the instant that the ‘top’ LED of the circle is lit. If successful the line of LEDs will light to indicate your score, the faster the spot was moving when you scored the more will be your score. If you miss, the circle of LEDs will continue to rotate at the same speed as they were when you played.

Big Ones And Little Ones.

A game will consist of, say, eight rounds — the score from each being added to the last. At the end of a game the person who scored the most is the winner. The skill comes in deciding whether to go for a number of low scores that are relatively easy to get, or for a few big ones.

As befits the design of a project of this nature we were in convivial mood and pleasant surroundings when we first discussed the game. We produced the first design sketch (well a few lines on a beer mat — yes in the pub again) which used digital devices. Upon seeing this some likely person said that he thought most games featuring LEDs should generically be called “spot the 4017”.

Our initial reaction was to defend our design but a moment’s thought showed that he had a point — the 4017 CMOS counter is over-used when it comes to games. At this stage we decided to rise to the occasion and produce the game using an all-analogue approach.

The result can be seen in the circuit diagram. We are pleased with this circuit. It uses some unusual ICs and features a number of interesting circuit blocks — and of course there is not a 4017 in sight.

Construction

Construction of the game is greatly simplified if the PCBs are used. Three boards are required, one for the power supply, one for the display, and finally the main control board. Begin by building and testing the power supply. Take care to ensure that all components are mounted as shown in our overlay.

Next assemble the control and display boards. These carry a large number of components and mistakes made during assembly can be difficult to trace later — so take care at this stage. Do not insert the link between IC2/4 and IC9 at this stage.

It is best to test the boards before mounting them in the case, as it is difficult to get to some of the devices when the boards are in their final
HAMMER THROW

Setting Up

There are five preset potentiometers on the board and all must be correctly set up before the game can be played.

The first adjustment to be made is to RV4. To calibrate this control first press the reset button and then the play button for a few seconds. At this stage a sound should be heard from the speaker and the game display LEDs should be seen flashing. Adjust RV4 until the LEDs produce a continuously rotating spot of light. The speed at which the circle of light rotates can be adjusted by RV1.

The next operation is to set up the score display. To accomplish this, press reset and then operate the play button until the spot of light is rotating at maximum speed. Release the play button and enable the score display by applying a positive pulse (from supply) to the junction of R29 and IC6. RV5 should now be adjusted so that the seventh score LED is just extinguished and the eighth lit.

The final adjustments concern the 'window' discriminator. To make this adjustment R38 (the end remote from IC9) should be connected to the slider.

BUY LINES

Some of the ICs used in this project may be unfamiliar but they are stocked by most of the larger component stores. Some of the high value resistors may also prove elusive, but again, if they are not available at your local shop try the advertisers in this issue.
of RV2. Adjustment of RV2 should illuminate successive LEDs of the game display. RV2 should be set to the point at which the top LED just extinguishes and the LED to the left just lights.

Now connect the input of IC9 to the slider of RV3. Adjust this pot so that the top LED just extinguishes and the LED to the right is just on.

This completes the adjustments and the link omitted during construction, should now be fitted.

Now is the time to get in training and, if you’re good enough, you may yet make it to Moscow.

PARTS LIST

<table>
<thead>
<tr>
<th>RESISTORS</th>
<th></th>
<th>SEMICONDUCTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1,5,17,26,42,48</td>
<td>100k</td>
<td>IC1</td>
</tr>
<tr>
<td>R2,13,15</td>
<td>10M 1/2W 10%</td>
<td>IC2</td>
</tr>
<tr>
<td>R3,6,8,14,16,25,30,37,38</td>
<td>1M</td>
<td>IC4,6,7,9</td>
</tr>
<tr>
<td>R4,40,55</td>
<td>4K7</td>
<td>IC6</td>
</tr>
<tr>
<td>R7,16</td>
<td>2M2</td>
<td>IC8</td>
</tr>
<tr>
<td>R9,31</td>
<td>560K</td>
<td>IC10,11</td>
</tr>
<tr>
<td>R10</td>
<td>4M7</td>
<td>Q1</td>
</tr>
<tr>
<td>R11,12,28,29</td>
<td>820K</td>
<td>Q2</td>
</tr>
<tr>
<td>R20,21,34,36,39,41,43,45,47,49,51,52,54</td>
<td>10K</td>
<td>D1,2,3,4,12</td>
</tr>
<tr>
<td>R22</td>
<td>220K</td>
<td>LEDs 1–24</td>
</tr>
<tr>
<td>R23</td>
<td>150K</td>
<td>BR1</td>
</tr>
<tr>
<td>R24</td>
<td>2K2</td>
<td></td>
</tr>
<tr>
<td>R27</td>
<td>120K</td>
<td></td>
</tr>
<tr>
<td>R32,46,53</td>
<td>1K</td>
<td></td>
</tr>
<tr>
<td>R33</td>
<td>56K</td>
<td></td>
</tr>
<tr>
<td>R35</td>
<td>100R</td>
<td></td>
</tr>
<tr>
<td>R44,50</td>
<td>33K</td>
<td></td>
</tr>
<tr>
<td>R19</td>
<td>47K</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POTENTIOMETERS</th>
<th></th>
<th>TRANSFORMER</th>
</tr>
</thead>
<tbody>
<tr>
<td>RV1,3,4,5</td>
<td>100K min hor trim</td>
<td>T1 240 V – 15 V 6VA</td>
</tr>
<tr>
<td>RV2</td>
<td>10K min hor trim</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAPACITORS</th>
<th></th>
<th>LOUDSPEAKER</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>1000u 25 V electrolytic</td>
<td>L1</td>
</tr>
<tr>
<td>C2</td>
<td>220n polyester</td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>470n polyester</td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td>1n polystyrene</td>
<td></td>
</tr>
</tbody>
</table>

Case

Vero type 66–2523

Miscellaneous

Flex, PCBs as patterns, LED mounting clips, fuse and holder to suit.
Fig. 3. Foil pattern of power supply board shown full size (120 x 45 mm).

Fig. 4. Component overlay of PSU mains earth is connected to Ti by a solder tag under the mounting bolt. The transformer's screen should also be connected to earth.

Fig. 5. Full size (160 x 110 mm) foil pattern of display board.

Fig. 6. Circuit diagram of the game's power supply.

Fig. 7. Full size (160 x 110 mm) foil pattern of power supply board A.
Fig. 7. Full size foil pattern of main control board (160 x 110 mm)

Fig. 8. The overlay for score board

Fig. 9. The overlay for the control board
The game is initiated by operation of the reset button (PHI). This zeros the ramp and hold circuit, described below, as well as setting latch 1 IC2/3 and resetting latch 2 IC3/4. Latch 1 enables the play button when its output is high (set) — latch 2 holds the output low (reset) and that the game display when high (set).

Each latch is based on two of the amplifiers of an LM 3900 Quad-MOSFET package. This device is unusual in that instead of amplifying the difference in voltage applied to its input terminals it amplifies the difference in input current.

The + and — inputs of these Norton amplifiers are both clamped to one Diode-Drop above ground and thus all input voltages must be converted to currents (by resistors) before being applied to the inputs. This is the basis for the current Mode (PSPICE) simulation.

In operation the current flowing into the + input must equal that flowing into the — input, the difference between the currents demanded and the current provided by an external source must flow in the feedback circuitry. Operation of both latches is the same and we shall only describe the action of latch 1.

Assuming that the latch output is low (the latch is reset) the current injected into the — input of IC2/3 will ensure that the output remains low. If now a sufficient current is injected into the + input voltage will rise as the device attempts to reduce the input current to zero. Positive feedback via R9 will enhance this action and cause the amplifier to latch high. This is because the current injected into the + input via R9 in this case is greater than the input — injected via R8. A positive pulse via R11 to the — input will however once again bring the output low.

C5 and R4 ensure that when power is first applied the game is reset.

RAMP AND HOLD

The ramp and hold circuit is provided by IC2/2 and IC2/4. A positive voltage via R5 and D1 causes the output to ramp down while a similar voltage via R19 and R20 to the output to ramp up. The reset button causes the downward ramp while play causes an upward ramp.

A sample and hold application is very low input bias current is required if the hold period is to be stable. The existence of matched amplifiers with the LM 3900 allows one amplifier to bias another.

In operation the LM 3900 requires a bias current to be applied to both the terminal IC2/4 has its + terminal grounded and feedback applied via R15 and R16. The output voltage of this device will attain a level such that the current fed back via these resistors is equal to the bias current demanded by the input. This same current will flow via R15 and R16 into the — input of IC2/2 reducing the effective bias current of this amplifier to almost zero. D1 isolates this bias current from the rest of the input circuitry.

If now a positive current is injected into the — terminal, the output voltage will fall as it attempts to feedback a current of this value in order to reduce the input current differential. This current must be proportional to the voltage across C7 changes is proportional to the value of the

SYSTEM OPERATION

The game display is based on a UAA 170 IC. This device is for driving LED displays and when connected to a line of sixteen LEDs will illuminate any one of these depending on the magnitude of the analogue voltage applied to its input. For the game display we need to produce the effect of a spot of light moving in a circle. To achieve this we arranged the sixteen LEDs in a circle and fed a sawtooth waveform into the UAA 170.

A moment's thought will show that this will produce the desired effect.

In order to make the display rotate slowly at first, but speed up as play proceeds, we made the sawtooth generator voltage controlled. The control voltage is produced by a ramp and hold circuit which is reset to zero at the start of play, but begins to ramp up, thus increasing the sawtooth's frequency as play continues. When the play button is released, the voltage reached is held by the ramp and hold configuration until it is reset. This voltage is used for score purposes as described below.

The game requires that if, at the instant of releasing the play button, the 'Top' LED of the game display is lit, a score is indicated, the magnitude of the score being proportional to the speed at which the circle of LEDs was moving at the instant of release. From the description of the game display it will be seen that in order to light the specific LED the voltage input to the display driver must lie within a specific voltage range. Thus in order to detect whether or not the 'Top' LED is on we must look at the output of the sawtooth generator (this is input to UAA 170) and decide whether it lies within the range that will light the specific LED at the instant the play button is released. The circuit that accomplishes this is the 'window' discriminator.

This is formed from two voltage comparators together with two analogue switches. Detailed action is described below, but briefly the circuit, when fed with the sawtooth output, will provide an indication whenever this waveform passes through an (adjustable) 'window' voltage range.

At the instant that the play button is released a short pulse is produced from a monostable. If this pulse is coincident with an indication from the window circuit that the top LED is on we must arrange to indicate a score.

The score must be proportional to the speed of the LED circle which is in turn proportional to the voltage level reached by the ramp and hold circuit. Thus, to produce a score, we feed the output from the ramp and hold, via an analogue switch to a second UAA 170. This second display consists of eight LEDs in a line.

This completes a brief description of circuit action; we shall now deal with each block in more detail.

HOW IT WORKS

RESET CIRCUITRY

The game is initiated by operation of the reset button (PH1). This zeros the ramp and hold circuit described below, as well as setting latch 1 IC2/3 and resetting latch 2 IC3/4. Latch 1 enables the play button when its output is high (set) — latch 2 holds the output low (reset) and that the game display when high (set).

Each latch is based on two of the amplifiers of an LM 3900 Quad-MOSFET package. This device is unusual in that instead of amplifying the difference in voltage applied to its input terminals it amplifies the difference in input current.

The + and — inputs of these Norton amplifiers are both clamped to one Diode-Drop above ground and thus all input voltages must be converted to currents (by resistors) before being applied to the inputs. This is the basis for the current Mode (PSPICE) simulation.

In operation the current flowing into the + input must equal that flowing into the — input, the difference between the currents demanded and the current provided by an external source must flow in the feedback circuitry. Operation of both latches is the same and we shall only describe the action of latch 1.

Assuming that the latch output is low (the latch is reset) the current injected into the — input of IC2/3 will ensure that the output remains low. If now sufficient current is injected into the + input voltage will rise as the device attempts to reduce the input current to zero. Positive feedback via R9 will enhance this action and cause the amplifier to latch high. This is because the current injected into the + input via R9 in this case is greater than that injected via R8. A positive pulse via R11 to the — input will however once again bring the output low.

C5 and R4 ensure that when power is first applied the game is reset.

RAMP AND HOLD

The ramp and hold circuit is provided by IC2/2 and IC2/4. A positive voltage via R5 and D1 causes the output to ramp down while a similar voltage via R19 and R20 to the output to ramp up. The reset button causes the downward ramp while play causes an upward ramp.

A sample and hold application is very low input bias current is required if the hold period is to be stable. The existence of matched amplifiers with the LM 3900 allows one amplifier to bias another.

In operation the LM 3900 requires a bias current to be applied to both the terminal IC2/4 has its + terminal grounded and feedback applied via R15 and R16. The output voltage of this device will attain a level such that the current fed back via these resistors is equal to the bias current demanded by the input. This same current will flow via R15 and R16 into the — input of IC2/2 reducing the effective bias current of this amplifier to almost zero. D1 isolates this bias current from the rest of the input circuitry.

If now a positive current is injected into the — terminal, the output voltage will fall as it attempts to feedback a current of this value in order to reduce the input current differential. This current must be proportional to the voltage across C7 changes is proportional to the value of the

SYSTEM OPERATION

The game display is based on a UAA 170 IC. This device is for driving LED displays and when connected to a line of sixteen LEDs will illuminate any one of these depending on the magnitude of the analogue voltage applied to its input. For the game display we need to produce the effect of a spot of light moving in a circle. To achieve this we arranged the sixteen LEDs in a circle and fed a sawtooth waveform into the UAA 170.

A moment's thought will show that this will produce the desired effect.

In order to make the display rotate slowly at first, but speed up as play proceeds, we made the sawtooth generator voltage controlled. The control voltage is produced by a ramp and hold circuit which is reset to zero at the start of play, but begins to ramp up, thus increasing the sawtooth's frequency as play continues. When the play button is released, the voltage reached is held by the ramp and hold configuration until it is reset. This voltage is used for score purposes as described below.

The game requires that if, at the instant of releasing the play button, the 'Top' LED of the game display is lit, a score is indicated, the magnitude of the score being proportional to the speed at which the circle of LEDs was moving at the instant of release. From the description of the game display it will be seen that in order to light the specific LED the voltage input to the display driver must lie within a specific voltage range. Thus in order to detect whether or not the 'Top' LED is on we must look at the output of the sawtooth generator (this is input to UAA 170) and decide whether it lies within the range that will light the specific LED at the instant the play button is released. The circuit that accomplishes this is the 'window' discriminator.

This is formed from two voltage comparators together with two analogue switches. Detailed action is described below, but briefly the circuit, when fed with the sawtooth output, will provide an indication whenever this waveform passes through an (adjustable) 'window' voltage range.

At the instant that the play button is released a short pulse is produced from a monostable. If this pulse is coincident with an indication from the window circuit that the top LED is on we must arrange to indicate a score.

The score must be proportional to the speed of the LED circle which is in turn proportional to the voltage level reached by the ramp and hold circuit. Thus, to produce a score, we feed the output from the ramp and hold, via an analogue switch to a second UAA 170. This second display consists of eight LEDs in a line.

This completes a brief description of circuit action; we shall now deal with each block in more detail.
constant current supplied which is in turn proportional to R5 and R10. As R5 is some 400 times larger than R10, the ramp down reset is far quicker than the ramp up.

The output from the ramp and hold circuit, the IC6/1 to the score display and via IC3/2, a non-inverting scaler, to the sawtooth VCO

NON-INVERTING SCALER

A scaler is required because the output from the ramp and hold configuration can vary over nearly the whole supply voltage whereas the VCO requires only small voltage swings to provide the required frequency change.

The scaler is based on another Norton amplifier, a non-inverting amplifier feedback applied via RV1 and R19 and output is fed to a potential divider formed by R22 and R23 and hence to the VCO.

VOLTAGE CONTROLLED SAWTOOTH OSCILLATOR

The VCO is formed by IC3/3 and IC3/4.

A sawtooth waveform is based on another Norton amplifier, the output of which is fed to the input of IC3/4 and via IC3/2, a non-inverting amplifier, to the sawtooth VCO.

MONOSTABLE

The monostable is formed by IC2/1 this produces a short positive going pulse upon reception of a negative spike produced by the release of the play button.

Current injected into the - terminal via R3 will ramp up the output, however a negative pulse applied via C4 and R1 will "rob" this current from the ramp up and cause the output to go high.

R7 latches the gate in this state after the negative pulse is removed. At this stage C6 begins charging, feeding back an increasing amount of current to the output as the voltage at the junction of R6 and R3 rises.

There comes a point when this current is greater than the voltage at R2 and the output returns low. Diode D2 rapidly discharges C6 to provide reliable re-triggering.

The leading edge of the output pulse is coincident with the release of the play button. This pulse is used to turn on a logic switch IC6/3. It will be remembered that if the voltage of the VCO is within the window at this point: - switches IC6/4 and IC6/2 will also be on. Thus allows the supply voltage input to IC6/3 to assert latch 2 and thus initiate the required actions, i.e. blank game display, enable score display, etc.

The monostable also resets latch 1 and IC3/2 to remove supply from the play button, this prevents cheating.

GAME DISPLAY

The output of the sawtooth VCO is fed via an inverting buffer, IC3, to a potential divider, RV4, to the input of IC6/4 a UAA170. The input circuitry of this device consists of a series of differential amplifiers with one input of each connected to the input terminal B and the other input taken from the outputs of the differential amplifiers. The input to the window discriminator is taken from the voltage at the junction of R2 and IC6/2 and is compared with the reference voltage of a particular comparator. The output of this comparator will change state.

To reduce the package pin-out the LEDs of the display are arranged individually but are arranged in a four by four matrix pattern controlled by the row and column outputs of the same IC (IC2/4). By enabling the appropriate row and column output any one of the sixteen LEDs may be selected. The matrix outputs are controlled by the digital logic of the UAA170.

The resistor chain R42, R44 and R46 sets the reference voltage inputs of the device. The voltage on pin 12 establishes the lowest voltage to which the UAA170 will respond. If the input voltage is below this point the first LED of the display remains lit. As the voltage rises above this level the first LED is turned off the second LED is lit and so on. The input range is the output range of the input ramp up is the output range of the IC.

SOUND GENERATOR

The sound is generated by IC6 an NE555 operated in its astable mode.

The reset pin(4) is normally held low in order to disable the astable mode of operation. A positive voltage applied from latch 1 via the play button enables the sound during the game.

The output is frequency modulated by applying the output of the sawtooth VCO, via buffer IC7 to provide the necessary low impedance drive to the voltage controlled input (pin 5) of IC6.
THE DESIRE TO place bets upon almost any event, from the outcome of the big race at Newmarket to the likelihood of life on other planets, is a deep seated one in many of the inhabitants of these islands. That old joke about the guy who bet his friend a couple of quid that he can give up gambling for a week would not be amusing but for the fact that it were so near the truth.

Three Way Bet

Bets fall into a number of different categories. They may be made on disagreements of fact ('I bet mine's bigger than yours'), about events capable of being modified by skill or lack of it ('I bet I can get mine further than yours'), or bets made upon random events (The mind boggles!).

It is this latter type of bet, the toss of a coin, cut of a card or spin of a roulette wheel, that is probably the most popular form of gambling amongst groups of people, our race track game provides an exciting means of indulging in this type of activity.

The game is really a development of the well known 'heads or tails' type of game, but whereas most games of this sort are visually unexciting, the race track game more than makes up for any shortcomings in this area.

They're In The LED

When the game's reset button is pressed all the LEDs are off and the 'horses' line up at the starting post. Now is the time to choose a horse and place bets if you wish.

Releasing the button starts the action with the circles or LEDs representing the 'horses' starting to flash as first one horse then the other takes the lead. As each horse completes a lap the appropriate lap LED lights. The first horse to cross the finish line lights his 'win' LED and halts the racing horses. If lady luck did not smile on you this time, pressing the reset button gives her, and you, another chance.

Construction

Mount all the components on the PCB as indicated in our overlay diagram. We recommend that sockets are used for ICs 1-6 as these are CMOS devices and should not be placed in circuit until all constructional work is complete. The LEDs are hard wired to the PCB and the interconnection information is given in Tables 1 and 2. Note that LEDs 37 and 38 have their cathodes taken to 0V via R6 and R7 and not directly to ground as the rest.

The value of R1 should be selected to give the best display on the race track. A value somewhere between 4M7 and 10M should suit.

Now is the time to turn on, place your bets and probably lose your shirt.
The circuit uses two oscillators, each based on two of the NOR gates in the 4001 Quad NOR CMOS packing. One of these (IC1/3 and IC1/4) runs at a high frequency and its output is fed to the input of one half of a 4013 Dual D type flip-flop. The device divides the output of the high-speed oscillator by two and provides two signals that are 180° out of phase at its Q and Q outputs. These signals enable either IC3 or IC5, the ICs being enabled if their enable input is held low.

The second oscillator, based on IC1/1 and IC1/2, runs at a lower speed and is arranged to provide a non-unity mark space ratio, in effect a very short "high" output followed by a much longer "low".

The non-unity mark space ratio is achieved by the inclusion of D1 in the oscillator's timing network. This second oscillator can be gated on and off by signals to be described below.

Circuit action is as follows: F1 is closed and this resets all the counters to zero as well as inhibiting the slow running oscillator. Upon releasing F1, IC3 or IC5 will be clocked as the first positive pulse is generated by IC1/1 and IC1/2. Which counter is incremented will depend upon the state of IC2's outputs.

In general, as the two oscillators are out of phase, the counters will appear to be clocked in a random manner. A further random element is introduced because while a 4017 is normally clocked with positive going pulses at the clock input with enable held low, it is possible for it to be clocked with a negative going pulse at enable while clock is high. Thus occasionally IC2 will act as a clock.

At the end of a lap, a pulse is generated from the carry out (CO) output of either IC3 or IC5 and is used to advance the lap counters (IC4 and IC6).

The game ends on the ninth lap when the "9" output of either lap counter goes high. This turns on either Q1 or Q2 and in turn lights the appropriate win LED. The signal from either "9" output is ORed by diodes and this signal is used to halt the game by disabling the slow running oscillator.

HOW IT WORKS

This non-unity mark space ratio is achieved by the inclusion of D1 in the oscillator's timing network. This second oscillator can be gated on and off by signals to be described below.

Circuit action is as follows: F1 is closed and this resets all the counters to zero as well as inhibiting the slow running oscillator. Upon releasing F1, IC3 or IC5 will be clocked as the first positive pulse is generated by IC1/1 and IC1/2. Which counter is incremented will depend upon the state of IC2's outputs.

In general, as the two oscillators are out of phase, the counters will appear to be clocked in a random manner. A further random element is introduced because while a 4017 is normally clocked with positive going pulses at the clock input with enable held low, it is possible for it to be clocked with a negative going pulse at enable while clock is high. Thus occasionally IC2 will act as a clock.

At the end of a lap, a pulse is generated from the carry out (CO) output of either IC3 or IC5 and is used to advance the lap counters (IC4 and IC6).

The game ends at the ninth lap when the "9" output of either lap counter goes high. This turns on either Q1 or Q2 and in turn lights the appropriate win LED. The signal from either "9" output is ORed by diodes and this signal is used to halt the game by disabling the slow running oscillator.
TABLE 1
CONNECTIONS TO IC3 (5)

<table>
<thead>
<tr>
<th>PIN</th>
<th>LED (ANODE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8 (16)</td>
</tr>
<tr>
<td>2</td>
<td>7 (12)</td>
</tr>
<tr>
<td>3</td>
<td>1 (11)</td>
</tr>
<tr>
<td>4</td>
<td>3 (13)</td>
</tr>
<tr>
<td>5</td>
<td>7 (7)</td>
</tr>
<tr>
<td>6</td>
<td>8 (18)</td>
</tr>
<tr>
<td>7</td>
<td>4 (14)</td>
</tr>
<tr>
<td>9</td>
<td>2 (15)</td>
</tr>
<tr>
<td>10</td>
<td>5 (16)</td>
</tr>
<tr>
<td>11</td>
<td>16 (20)</td>
</tr>
</tbody>
</table>

TABLE 2
CONNECTIONS TO IC4 (5)

<table>
<thead>
<tr>
<th>PIN</th>
<th>LED (ANODE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>26 (33)</td>
</tr>
<tr>
<td>2</td>
<td>21 (129)</td>
</tr>
<tr>
<td>3</td>
<td>22 (130)</td>
</tr>
<tr>
<td>5</td>
<td>28 (43)</td>
</tr>
<tr>
<td>6</td>
<td>27 (35)</td>
</tr>
<tr>
<td>7</td>
<td>23 (131)</td>
</tr>
<tr>
<td>9</td>
<td>24 (132)</td>
</tr>
</tbody>
</table>

BUY LINES

There should be no problem getting any of the components for this project. The ICs should be available from people like Lynx, Maplin, Watford and Marshalls. The main thing is to try and get a quantity discount on the thirty eight LEDs needed.
The thinnest, most elegant electronic watch you have ever seen!

Only £21.95

A technology so new it defies comparison. Beneath the wafer thin casing of this remarkable timepiece is the most advanced solid state technology ever crafted into a watch. Notice that there are no obtrusive buttons to interrupt the graceful lines of the watch itself and it is accurate to seconds.

The thinnest, most elegant electronic watch you have ever seen!

Only £21.95
You may think your conversation is private but

WALLS

HAVE EARS

There appears to be little control in Britain over the manufacture and sale of bugging devices. ETI has been investigating the current situation.

IT WILL COME as a big surprise to most readers that bugging is not in itself a criminal offence. Plant an RF bug in an office during working hours, listen in on highly confidential discussions and the worst that you'll be got for — if you're caught — is operating a transmitter without a licence. Technically you could also be had for listening to an unauthorised transmission but we know of no such prosecutions.

The Younger Committee on Privacy which reported in 1972 quite rightly recommended that bugging in any form should be an offence, in itself, but it has not yet been acted upon.

How serious is bugging?

In researching this feature we found ourselves continually coming up against stony silence — few people are prepared to discuss the subject and none would agree to having their comments personally attributed. Try to talk to a company that's advertising bugs and ten-to-one he'll tell you he's now stopped, but he will supply you with equipment to sweep your office (the technical term for finding other people's bugs).

It is possible to get some idea of the scale of things however. There are about ten companies in Britain openly advertising bugs — most of them appear to be very small. Even so this indicates that sales are unlikely to be worth less than £100,000 a year and since bugs are cheap, literally thousands are sold every year.

Most technical publications (this includes ETI) refuse to accept advertisements for these devices on the grounds that they are undesirable, not because we are not allowed to.

Where are these bugs used then?

We suspect that the overwhelming number are bought as toys and not for any devious purpose but this still leaves probably several hundred that are bought for their stated purpose of listening in on other people's business.

The vast majority of businesses are operated decently and honestly but in every sphere it is very useful to know about your competitor's business. There are several ways of finding this out, the commonest is to head-hunt a senior employee but his information is quickly out-of-date once he has left. Even knowing what's going on in R&D has serious limitations since even the staff in these departments don't know if their work will eventually get into production.

Bribery has been tried but you run the very serious risk of meeting one of the 95% of employees who would report it to their boss. Bugging is anonymous. Even if the bug is found, it's almost impossible to find out who planted it and since the
This telephone insert looks pretty standard. In fact it contains an FM radio transmitter with a range of several hundred metres.

The telephone insert looks pretty standard. In fact it contains an FM radio transmitter with a range of several hundred metres.

risks to a company initiating bugging are enormous. Middlemen are almost always used.

Sweeping
Many if not most of the companies selling bugs will also supply sweeping equipment — after all a radio signal is easier for someone close to the transmitter to pick up than it is for someone a hundred metres away — or is it? First you don't know what frequency it's operating on. It could in theory be from 50 kHz (though the antenna would be a problem) up to several hundred megahertz. OK, use an untuned circuit but then what do you do about regular radio and TV broadcasts? If you set the frequency of the bug close to that of a powerful FM station it's difficult to sort out the two.

The makers of the equipment are highly secretive about their techniques and not one would discuss technicalities, they claimed, perhaps with some justification, that if you know how the sweeping is done, it's all the easier to use a technique which won't be picked up. We believe many of them employ a howl-round technique — put a receiver near a bug and you'll set up an audio/RF loop which will go into oscillation.

International Espionage
Although companies will normally keep quiet about attempts to bug them, governments delight in exposing the failed attempts.

The American Embassy in Moscow recently announced that they were being subjected to extremely high power, high frequency radio signals. It was of such a magnitude that it was even suggested that it was an attempt deliberately to make the staff ill. It is now thought far more likely that the RF signals were being used to recharge batteries in bugs within the building.

In 1945, as a gesture of good will, the Russians presented the US Embassy in Moscow with a beautiful wooden carving of the US Great Seal. After several years it was discovered that this had built into it a wonderfully simple bug. Inside the seal was a copper cavity coupled to an antenna; one end of the cavity was covered by a thin metal diaphragm. The bug was activated by an external RF signal (in fact 330 MHz) — this made the cavity resonate but the diaphragm caused the reradiated signal to be modulated and this to relay conversations near the Seal. This could still have been in operation.

DISSECTING A BUG
THE RF BUG shown in the photograph is a home-brew one that came into ETI's possession. The circuit was openly published in a British book a few years ago — we show the circuit as well although we have not nor will we provide any component values. (Since there are several variables we do not suggest you 'suck-it-and-see'.)

Although a DIY circuit, it would seem that virtually all the smaller or simpler bugs are of similar complexity or even similar circuitry.

This bug operates anywhere in the 87 MHz-108 MHz range and despite the simplicity and low battery drain (only a few milliamps) it will transmit a fairly quality signal for several hundred metres in most areas and at least 30 metres even in heavily built-up areas with steel-frame buildings like city centres.

The microphone will pick up normal speech at 10 metres quite easily. The performance, frankly, is worrying — because of the effectiveness — and the unit can be built for about £3!
if some British technicians had not stumbled across the signal by accident. A thorough subsequent 'sweep' of the US Embassy brought to light no less than 60 other devices!

It is hardly surprising that British Intelligence Services are involved as well. The Russian Embassy in London moved a year or so ago and when access to the building became possible it could be seen the lengths to which the Russians went to prevent eavesdropping, even to having built a room within a room. Various bits of information have leaked out that Intelligence Services were directing a low power laser at the window glass; this would then have been slightly modulated by the sound inside the room and the reflection picked up could detect this.

One of the techniques which has recently come to light is that of 'RF flooding' of a telephone. Even when the phone is on the hook, the RF can 'jump' the contacts. This is then modulated by the microphone and can be picked up. As it can only be used with single lines, a switch-board defeats this technique.

The other phone tapping technique, the 'infinity transmitter' is also made useless with a switch-board. Many company executives use direct lines for security whereas the switch-board itself is a pretty good defence against some techniques.

Equipment Available

Laws in many countries have failed to keep pace with technology but it is ironic that most of the really sophisticated equipment being made originates in the US - the very place with the strictest laws against bugging and phone tapping. This could be because the problem there is greater but no amount of legislation is going to prevent the availability of equipment - the profits are too great.

The Future

The range of equipment is so varied and the interest so keen that in the Spring of 1977 a full scale exhibition of both bugging and anti-bugging devices was held in West Germany - a country which incidentally bans sales . . . except if it is marked as 'Export Only'. It's surprising how many retail outlets regard themselves in this field!

The Future

However superior anti-bugging equipment becomes, the number of ways of eavesdropping electronically is so varied and the techniques developed for keeping the devices undiscovered so ingenious, it seems that bugs and bugging are not likely to become any less of a problem.

Legislation may not stop bugging but it can raise the risk factor to such a level that those practising it will think carefully.

ETI

ETI is not prepared to answer any queries, for whatever reason, on the circuit components or as to the availability of the equipment shown in this feature.
IB Metal Locator Mk 2

The photo shows our Mk. 1, published a year ago but we've taken this design a stage further.

The Mk. 1 was one of the most popular projects ever published, probably because the early builders were able to demonstrate the exceptional performance to others.

We've looked at every aspect of the design and have come up with an improved version which we are sure is going to be of interest to practically everyone.

LIGHTNING

A flash of lightning rarely lasts more than a second but the power is immense. The current can reach tens of thousands of amps and potentials are believed to be of the order of 10⁷ volts - no wonder Frankenstein's monster scared us!

How lightning occurs and what happens at the ground is far more involved than you'd think. In the next issue Prof. W. R. Lee of Manchester University explains just how dangerous it is.

OP-AMPS

Following Tim Orr's very popular series on Active Filters, we've twisted his arm to cover OP-Amps in the same way. The feature will not only give the theory but will be heavily spiced with usable circuits.

Electronics & your water supply

Sounds dull? Not a bit of it. As in most fields, electronic measurement of all sorts of parameters is now widespread. Dr Sydenham describes how transducers ensure that our drinking water is monitored.

ETI Cover Price

Sorry, folks - up we go to 45p from the February issue. We hope you'll still consider it worth it. You may have noticed that recent issues have been 100 pages and although many are accounted for by the editorial pages have increased appreciably.

Ultrasonic Switch

This project describes both transmitter and receiver and unlike most can be modulated. The basic project in the February issue enables you to control a relay remotely from a very small transmitter - and no licensing problems!

Accentuated Metronome

Not just yet tick, tick, tick but a tick, tick, tock. Don't follow? Well, musical tunes (eg 3-4 time) are more complex than the regular metronome can cope with - next month's project explains.

Articles mentioned here are in an advanced state of preparation but circumstances may affect the final contents.
If they've time to invent such damn' useless trinkets int' mills time, Mr. Ackroid, then you're not working 'em hard enough!

SINTEL
FREE CATALOGUE

Send for FREE CATALOGUE

RESEARCH MACHINES COMPUTER SYSTEMS
AVAILABLE THROUGH SINTEL

RESEARCH MACHINES JANUARY SYSTEM 4/4, fully built with 16K 8-B 35-16 CMOS

- 16K RAM
- Controller
- IBM Model 4364 8-B Disk Drive

SOFTWARE: 4K Expanded Basic for 3802/2802

For details of all PC-BE systems for Sinclair, PLEASE CONTACT SINTEL FOR FULL INFORMATION AND PRICE LIST.

ORDERS TO: SINTEL, PO BOX 75A, OXFORD
Tel. 0865 49791

"FAST SERVICE": We guarantee that Telegraphe Orders be posted in bulk, received by 4.15 p.m. Orders with this note will be dispatched on the same day by 1st Class Post (appointment by parcel post) and are delivered in good order, all extra insurance charges should be added, and are payable by special Access or Electronic Accounts with a minimum order value.
Puzzle of the Drunken Sailor

The model represents a ship which has four navigation lights on the port (left) side and four on the starboard (right) side. Unfortunately, a drunken sailor installed 4 green lights in the sockets on the port side and four red lights on the starboard side — which, as everybody knows, is the wrong way round. Everybody knows too that you don’t have four navigation lights on each side — but never mind that, this is a puzzle.

And the puzzle is to get all the green lights on to the starboard side, and all the red lights on to the port side — where they belong. That would be easy if you just unplug them and swap them around, but the rules of the game are that:

a) only one lamp can be moved at a time;
b) a lamp can be moved only along the black line and must be put into a vacant socket at the end of the move,
c) a lamp can be moved as far as desired on any move, including going round corner;
d) a lamp cannot jump over another lamp.

Well that’s the puzzle. If you think it’s easy — try it. Just draw the lines on a sheet of paper, use dots for the sockets and use 4 bc and 4 2c coins as lamps.

Actually that’s all you really need for the puzzle, but to make it more attractive and electronic we used red and green LEDs which light up in the sockets.

Construction

The circuit of course is simple — just 12 audio sockets connected in parallel, a 3 volt battery, a current limiting resistor, a switch and 8 LEDs which can be plugged in.

The prototype was constructed in a plastic box measuring 140 x 100 x 75 mm with an aluminium panel. Any box about that size would do; construction is not critical.

Circuit diagram Fig 1: The value of current limiting resistor R should be found by trial to keep total battery drain to about 100 ma.

Parts List

<table>
<thead>
<tr>
<th>PARTS LIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESISTOR</td>
</tr>
<tr>
<td>LEDs</td>
</tr>
<tr>
<td>MISCELLANEOUS</td>
</tr>
</tbody>
</table>

ELECTRONICS TODAY INTERNATIONAL — JANUARY 1978
The lamps are 4 red and 4 green LEDs soldered straight on to the terminals of 2.5 mm audio plugs. Care must be taken that all LEDs are soldered in the plugs the same way round, so that the positive side of each LED is connected to the centre contact of the plug. There are available several lengths of 2.5 mm plug but the best for this project has a 'handle' measuring 22 mm and a hole in the top which is just right for a LED. The plugs should have colours to match the LEDs if possible — red and green — or at any rate red and black. Take care to get all LEDs protruding by the same amount.

The sockets mounted in the panel must all be wired the same way round too so that in every one the positive wire is connected to the contact which meets the centre contact of the plug. In this way any LED will light up in any socket.

The resistor R in the prototype was chosen to limit the current drain on the battery to a reasonable value — 100 mA, and still give adequate brightness to the LEDs.

The battery comprised two D cells soldered together in series and to the wiring on the panel. They were held in the box with suitable packing, but a clip could be made instead. The black line on the panel was made by cutting a strip from a sheet of black contact which was on hand. Scotchgel, paint or drawing ink would do instead.

Well, there you are, that’s the puzzle and nothing else need be said about its construction. Its solution is another matter. The answer will be published next month. Suffice it to say for the present that it requires several moves!
ARNOLD SKULFINGTON
I built the timer, the morse oscillator, the buzz game and the temperature alarm — all using the same PCB design. I really liked the pictures of the ETI staff, I've cut them out and stuck them on my bedroom wall (where the dartboard used to be). I want to learn more electronics so I can build a robot like R2, the internal pictures of the Star Wars robots are really good in Jim Perry's big feature on Star Wars. I asked my uncle to get me one of those futuristic calculators that Halvor Moorshead talks about, but he said that they won't be invented for a couple of years yet!

JACK WURTFAINGER
Ron Harris's report from the future has given me many new ideas for developing my hi-fi system — but I disagree with his views on valves, surely valves will never be replaced!

JASPER OATS
When I convert my TV to a display for my computer (as described in this far-out special edition), what will I do with all the print-out I've got lying around? If Gary Evans is right with his predictions about MPUs, I'll be able to build my own Star Wars robot in about a year's time. With the tips I picked up from Clive Sinclair (wasn't it good of ETI to send Steve Bradwood and Halvor Moorshead to interview him for us), I'll take on the Yanks and Japs with my own robot company — Oats Robotics.

ELECTRONICS TODAY INTERNATIONAL
On sale now at your friendly newsagent or direct from ETI for £1 inclusive of p&p. Send cheque or postal order (payable to Electronics Today International) to Electronics Tomorrow, ETI Magazine, 25-27 Oxford Street, London W1R 1RF.

ELECTRONICS TONORROW 75p
Inside Star Wars — The inside story from the most successful film ever made. Not due for release until later this month, ETI staff travelled to Canada to preview it for Electronics Tomorrow readers. Plus R2-D2 and fellow robots exposed — detailed internal shots show how they were made.

Calculators Of The Future — In the last 5 years prices have dropped and complexity has risen, we don't think prices will drop much further — but the facilities offered will become mind boggling! Halvor Moorshead designs a new model for 1979 and talks about the generation to follow — some manufacturers may think we've been at their research files!

The Sinclair Story — Steve Braidwood and Halvor Moorshead went off (tape recorder at the ready) to get Clive Sinclair's true life confessions — exclusively for Electronics Tomorrow readers. The man who brought you the world's smallest television talks about his past failures (and successes!) and the possibilities for the future — gripping stuff!

ETI Types — Graphically portrayed by Roy (you name it, I'll draw it) Pullen, this pen-in-cheek feature takes a look at the beginner, project builder, audio man and the MPU addict.

The ETI Story — In the beginning there was no ETI and there was a great wailing from the electronics enthusiasts of the world. Then Modern Magazines said 'Let there be ETI' and there was great rejoicing — read about the history of ETI and see the staff in action (downing pints) with a selection from our scrapbook.
wireless show

Pete Scott, our visiting Australian hi-fi editor, took a wander through the hallowed halls of the Victoria and Albert Museum to cast his eyes over the vintage radios displayed therein and bring us this report on the ancestors of the 'trannie'.

The NOSTALGIA TRIP of 1977 is undoubtedly the 'Wireless Show' at the Victoria and Albert Museum until December 11. The show, which consists of a fine collection of British radio receivers from a period which could loosely be called the 'valve era' is the most comprehensive survey of historical radio receiving sets ever compiled.

Scope

The 130 classic receivers have been chosen as a representative selection of equipment produced between the early 1920s — when regular public broadcasts commenced in Britain — to 1956, when the era could be said to have ended with the introduction of the first British transistorised portable radio.

The show is necessarily restricted in scope by the available space and so does not attempt to give a completely balanced view of the thirty years it covers. Items such as the combined radio-gramophone, or the larger combined radio-TV, are not included. It is also obvious that the exhibits of the larger floor-standing consoles have been limited to allow a greater overall diversity.

Table-standing valve sets — every home used to have one — form the dominant section of the show, but older visitors will have their memories stirred by the earlier units with their free-standing horn speakers.

Background

The choice of 1922 as the starting point is not random, even though a great number of the major innovations in the wireless field had already taken place by that time. Marconi had filed his first world patent in 1896, transmitted over the Atlantic in 1901, and speech had been broadcast by Fessenden in 1903.

The first broadcast of speech across the Atlantic had been achieved in 1916, using a transmitter comprising some 300 valves, and the first practical use of superhet techniques for speech broadcast across the Atlantic was made in 1921.

About this time wireless was being used only by experimenters and enthusiasts, who tended to construct their own receivers, although it was estimated that there were some 500 companies manufacturing components in Britain alone.
Wireless at this stage was not used for 'passive entertainment' in Britain, although America was being served by several hundred transmitters - largely unregulated. However, with the formation of the British Broadcasting Company, set up in 1922 to organise regular entertainment programmes through a network of eight transmitting stations, wireless began to have a less esoteric appeal.

So the starting point for the Wireless Show represents the time at which radio started to become a popular commodity. The growth rate in the industry from this time was extremely rapid, as was public acceptance.

The Technical Side

For those interested in the changing technology the show is an interesting aid to tracing technical developments through the thirty years preceding Britain's first transistor radio.

Immediately obvious features include the rapid improvement in tuning facilities, the fight for higher selectivity as the number of transmitters escalated, and the move from battery operated sets (or combined battery / ac) to ac only as more houses were wired up, and then the move back to battery power as portability became a desirable feature.

Even the gimmicks and convenience features, such as the 'magic eye', introduced as technological advances slowed in the late thirties, prove fascinating.

Stylistically

The main purpose of the exhibition at the Victoria and Albert Museum, however, is to show the changing styles in the presentation and appearance of radio receivers through the chosen period. Styles that moved from the ornate - almost ornamental - crystal sets of the very early days through to the receivers with intricate wooden cabinets and then to the architect-designed, sculpted-plastic creations, which eventually proved too much for the woodworking craftsmen, but which were dropped in post-war austerity.

The show, produced by the V&A in association with the British Vintage Wireless Society, is well worth a visit by anybody who ever built a crystal set. It will revive many memories for older visitors and give a fascinating insight into the background and formative years of radio in this country.
<table>
<thead>
<tr>
<th>TOP PROJECTS No. 1</th>
<th>TOP PROJECTS No. 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>£1.50 + 25p P&P</td>
<td>£2.50 + 25p P&P</td>
</tr>
</tbody>
</table>

TOP PROJECTS No. 3
- Originally published in March 1976, this includes a further 27 interesting projects.
- Intricacies: Mains Voltage Transmitter, LED Display, Dual Display, Dual Display, Dual Display.
- Details: £1.00 + 25p P&P

TOP PROJECTS No. 4
- Published October 1976, this includes even more interesting projects.
- Intricacies: Mobile Telephone, Audio Amplifier, Audio Mains Voltage.
- Details: £1.00 + 25p P&P

TOP PROJECTS No. 5
- Includes two complete projects, including LED Display, Audio Mains Voltage.
- Intricacies: LED Display, Audio Mains Voltage.
- Details: £1.00 + 25p P&P

How to Order
- Send cheques or postal orders to ETI Specials, PO Box 25, Oxford, OX1 2RD.
- Include your name and address on the envelope.
- Payment is required in advance.
The TL080 family of BIFET operational amplifiers provides an ideal combination of high-impedance JFET inputs with low-distortion bipolar output circuit. Quality performance in the TL080 family is achieved without complex circuitry.

TL080 family circuit description

The following sections should be read in conjunction with Fig 1, the basic schematic for one channel.

Bias circuits

EFT Q16, zener Q2, transistors Q14/Q15 and resistor R6 establish the bias currents for the input differential amplifier and the second gain stage. Epitaxial FET Q16 provides a fixed current to Q2 establishing a 2 V drop on the base of Q15. The resulting 31 µA collector current of Q15 flows through Q14 and sets the current levels in Q1 and Q9.

Resistor R1 causes 1964 µA current in Q1, that is divided between the input stage JFETs Q2 and Q3. The second gain stage bias current about 600 µA is derived from E9.

Input circuit

Input JFETs Q2 and Q3 operate into the active load circuit consisting of Q4, Q6, and Q7. Current imbalance and input offset voltages may be adjusted on the TL081 and TL083 through connections to the emitters of Q6 and Q7. External offset controls for the TL080 connect to the collectors of Q6 and Q7. The C1 compensation capacitor is internal on the TL080; TL082 and TL083 and TL084. For the TL080 connections for external compensation are provided which allow user adjustment of AC characteristics.

Ion-implanted input devices provide very high input impedance controlled pinch-off voltage for maximum common-mode input range, and matched characteristics for control of the input offset voltage. JFET inputs also allow adequate drive to the second stage resulting in maximum output peak-to-peak capability and wide power band widths.

Output stage

Q10 and Q11 provide Class AB bias to the output transistors Q12 and Q13. This allows near zero crossover distortion and produces a low total harmonic distortion at the output. The simplicity of the output circuit results in minimum silicon area requirements keeping manufacturing cost down while maintaining quality performance. R2, R3 and R4 form the output short-circuit protection network.

Icy Road Warning Indicator

Drive from the input stage is single-ended from the collector of Q7. D1 provides a clamping action across Q5 and Q8 preventing saturation of Q8 and excessive current in Q5. Q5 and Q8 form the high-gain second stage. The second stage output collector of Q8, drives the output stage consisting of bias transistors Q10 and Q11 and output drivers Q12 and Q13.
Peak Detector

V, IN4148 TL084 V#
V.

10k HIGH INPUT Z LOW OUTPUT Z LOW DRIFT

RESET

Tone Control

220k 2N929 10k
1k 1k
1M
TONE
CONTROL

1M

FEATURES

- HIGH INPUT IMPEDANCE
- HIGH SLEW RATE
- LOW DISTORTION
- CONTINUOUS SHORT CIRCUIT PROTECTION
- LOW POWER CONSUMPTION

ADVANTAGES

- Minimum loading effects allow efficient use with high impedance transducers
- Provides the desired response characteristics required in audio frequency active filters and quality sound systems
- Minimal crossover distortion yields very low total harmonic distortion for maximum performance in critical music systems
- No damage resulting from accidental shorts or operation into low impedance loads
- Only 2.8 mA per operational amplifier. Less system power required and battery operation is practicable

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th></th>
<th>TL080_C</th>
<th>TL080_AC</th>
<th>TL084_BC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage, Vcc</td>
<td>18 V</td>
<td>-18 V</td>
<td>-18 V</td>
</tr>
<tr>
<td>Differential input</td>
<td>-10 V</td>
<td>-10 V</td>
<td>-10 V</td>
</tr>
<tr>
<td>Input voltage</td>
<td>-10 V</td>
<td>-10 V</td>
<td>-10 V</td>
</tr>
<tr>
<td>Duration of output</td>
<td>Unlimited</td>
<td>Unlimited</td>
<td>Unlimited</td>
</tr>
<tr>
<td>Continuous total dissipation at 25°C</td>
<td>680 mW</td>
<td>625 mW</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. All voltage values except differential voltages are with respect to the zero reference level (ground) of the supply voltages where the zero reference level is the midpoint between Vcc and ground.
2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.
4. The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.

Electronics Today International - January 1978
THE LONG-RUNNING OFFER ON A DIGITAL ALARM CLOCK HAS BEEN ONE OF OUR MOST SUCCESSFUL EVER! OUR PRICE INCLUDES VAT AND POST & PACKING.

MAIL ORDER ONLY
TECHNOMATIC LTD.
54 Sandhurst Road, London NW9
Tel: 01-204 4333
Telex: 922800

ETI ALARM CLOCK
£14.50

VAT inclusive prices — add 25p P&P — no other extras
Govt., Colleges etc. Orders Accepted

NAME
ADDRESS

The long-running offer on a digital alarm clock

The ETI Magazine
26-34 Sandhurst Street
London NW3 1BP

For Enquiries, Payment in Pounds Sterling to The ETI Magazine Ltd., Credit Cards Accepted. Send Cheque or Postal Order and Address on the bottom of your cheque or speed

NAME
ADDRESS

These offers are limited to orders placed on or before December 31, 1977.
These games for the Sinclair Programmable were submitted by Mr P Cornea of Crewe in Cheshire. A flow chart is given with each listing, so that owners of different machines have a head start in producing a program for their machines.

Object — To simulate a show jumping course in such a way that:
1. The player enters a guess as to how many strides of acceleration he thinks will be required by a horse to clear a fence H feet high.
2. The player is given an indication of right and wrong guesses.
3. The player's total score is made available to him at the end of the game.
4. The player's score is made dependent on the value of his guesses and his successfully clearing the fences.

Execution —

```
Input H fence 1/RUN/input strides/RUN/right-wrong
Input H fence 2/RUN/input strides/RUN/right-wrong
Input last H/RUN/input strides/RUN/right-wrong
A?/Re/score.
```

The biggest problem with this program was trying to find a realistic relationship between the number of accelerating strides input and the height that these strides would enable a horse to jump. The following curve shows the sort of relationship that is required.

As you can see from the curve the extra height that the horse can jump decreases as the number of strides increases, such that after a certain point no increase in height is gained by increasing the number of strides. This is the sort of curve you would expect in reality. I have simulated this curve by using the arctan function. The tan of an angle can take any value between zero and infinity so the arctan of any number between zero and infinity has a radian value between 0 and 1.57 and you will find that taking the arctan of any number greater than about twenty gives approximately 1.57 as an answer. The only thing to be done now is to scale the arctan values up to give a reasonable range of heights, to do this we multiply by five.

Looking at the plan of the course you will see the path connecting the fifteen fences together. The number alongside each fence is its height (H) and the numbers on the paths between the fences are the distances in strides to each fence. If you input these numbers as your guesses...
Above: a suggested course for the horse race game. All the fence heights are given in feet, and the number of strides between the fences.

Then you are guaranteed to clear the fences but you will find that it is possible to clear most of the fences in less strides than shown.

Your score is calculated by totalling all your guesses round the course and by adding a penalty of nine points for each fence you do not clear. You should consider yourself to be disqualified if you knock down more than four fences.

If you clear every fence in the minimum number of strides you will end with a score of ninety five but you should consider a score of one hundred and ten or less as good.

When you master this course it is a simple matter to change the heights of the fences and this creates your own course but remember that no fence should exceed 7.6 feet in height or you will not clear it.
OBJECT - To generate a random number of any required length up to eight digits in such a way that each digit can take any value from N to M.

OR generate single random numbers with values from K to L.

OR play an ESP game such that the player has the opportunity of entering a single digit number before the calculator generates a random number, both digits being displayed at the end of the run for comparison and statistical purposes.

Execution 1 -
Any number between 0 and 1/A./Sto/1/A./goto/0/0/ce/
RUN/random digit/ if you require a two digit random number then press RUN again and a second random digit will be displayed alongside the first, a three digit random number, press RUN a third time etc.

When you have a random number of the required length and wish to generate another number press the clear button followed by RUN/random digit/etc.

Execution 2 -
Any number between 0 and 1/A./Sto/1/A./goto/0/0/ce/
RUN/random number/ RUN/random number/ RUN/random number/ etc....

Execution 3 -
Any number between 0 and 1/A./Sto/1/A./goto/0/0/ce/
Your guess/RUN/random number and your guess
Your guess/RUN/random number and your guess
Your guess/RUN/random number and your guess

With the program as it stands the variables take the following values:--
N = K = 1
M = L = 6

Obviously with these values the program can be used to simulate the throwing of dice with executions 1 or 2.

When you come to change the variables you should do it in the following way:--
Executions 1 and 3
Chose a value for N between 0 and 10 (integer).
Chose a value for N and 9 (integer).
Replace lines 9 and 10 with the value of M - N.
Replace lines 29 to 31 with the value of N - 1 (including sign).
Run as per execution instructions.

Execution 2
Chose a value K between 0 and 10 (integer).
Chose a value L between K and K + 99 (integer).
Replace lines 9 and 10 with L - K.
Replace lines 29 to 31 with K - 1 (including sign).
Run as per execution instructions.

With a moments thought you will see that there are one hundred and one uses for this program, a few of these are given below.

Slot Machine
Use execution 1 with N = 1 and M = 4 and score wins according to the following table.

<table>
<thead>
<tr>
<th>Display</th>
<th>Win</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>10</td>
</tr>
<tr>
<td>222</td>
<td>10</td>
</tr>
<tr>
<td>333</td>
<td>10</td>
</tr>
<tr>
<td>444</td>
<td>10</td>
</tr>
<tr>
<td>221</td>
<td>5</td>
</tr>
<tr>
<td>331</td>
<td>5</td>
</tr>
<tr>
<td>441</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

With the values of win shown, the program gives a 95% payout.

Race
Use execution 2 with K = 1 and L = number of players (say four). Run the program and each time a number comes up enter a one in the table shown, in the next empty square down, underneath the number displayed. The first player to fill the column below his number is the winner.

Battle
Use execution 3 with N = 0 and M = 5. Each player takes it in turn to enter his own number (one to five) and run the program. When the display appears subtract the smaller digit from the larger and then add the larger digit to this answer. The player with the highest number at the end of the round wins the round. The first player to win five rounds wins the game.
Atomic Decay Game

Object - To simulate the decay of B grams of a radioactive material with a half-life of D seconds in such a way that:
1. The player has the opportunity of guessing how much of the material (plus or minus C grams) is left after each second.
2. The player is given indications of right and wrong (hit and miss) guesses.
3. A running total of the player's score is displayed after each guess.

Execution:
1. ANCPAY's to . %/goto 10/0/0/R UN
 Your guess/RUN/Hit-Miss/RUN/score/ etc ...

2. Change the variables taking the following values:
 - B = 100 grams.
 - D = 10 seconds.
 - C = 1 gram.

3. To change B - Put the new value in place of the 100 at the beginning of the execution sequence.
4. To change C - Change lines 21 and 22 in the program to your new value (any two key-stroke number between 1 and 99).
5. To change D - This variable is the most difficult of the three to change as it requires calculation thus:
 \[D = \frac{\ln 2}{t} \]
 If the answer is less than one, then replace lines 08 to 10 with the three most significant digits after the decimal point. If the answer is greater than one then replace lines 07 to 10 with the four most significant key-strokes.
 e.g., if answer is 0.933014 then put 933 into lines 08 to 10.

N.B. The only way the answer to this sequence can be greater than one if your value for D is in which case you are no longer working with a radioactive decay curve but with an exponential growth curve.

Start the score sheet for the battle game and left are the listing and flowchart for the overall game.

Above the score sheet for the battle game and left are the listing and flowchart for the overall game.
Top 400 Semiconductors from the largest range in the UK. Express M.O. service by return post. All orders received are despatched same day on stock items. Prices correct at 7th Nov., 1977, please add VAT to your order, postage & packing 40p.

MICROPROCESSOR COMPONENTS

SC/MP INTROKIT

£68.95 excl VAT

NEW FROM MOTOROLA 6800

SC/MP KIT £190 + VAT

NEW MICROPROCESSOR SYSTEMS

CATALOGUE: COMPLETE GUIDE.

Top 400 MICROPROCESSORS

All prices are exclusive of VAT.

MICROPROCESSOR COMPONENTS

SC/MP

RAM

2102.2M

TRIPS

2102.2M

12/57

CIRCUITS

BOBAS B BIT MICROPROCESSOR

FAMILY

CLOCK MODULES

INTEGRATED CYCLES

222

CIRCUITS

INTEGRATED TA I.

MICROPROCESSOR

COMPONENTS

2 r

CONDUCTRA

the largest range in the UK.

All orders received are despatched same day on stock items.

Prices correct at 7th Nov., 1977, please add VAT to your order, postage & packing 40p.

“What is a microprocessor?” — a complete crash course with cassette — brochure £6.95 inc VAT & p&p.

NEW SC/MP RETROFIT KIT

Now available from stock this new SC/MP II retrofit which enables existing SC/MP Intro Kit users to evaluate the new SC/MP II Microprocessor £18.49 excl VAT & p&p 75p.

TTL FROM NATIONAL, ITT, TEXAS, SIGNETICS, ETC

CMOS & LOW POWER SCHOTTKY

DISPLAYS

74C MOS

LOW PROFILE SKTS

OPTO ELECTRONICS

ELECTRONICS TODAY INTERNATIONAL — JANUARY 1978
LAST MONTH WE completed the description of the System 68 TTY card and described a simple cassette interface circuit that could be used in conjunction with this card. This month we begin describing what is probably the most popular means of encoding data in a form suitable for storage on magnetic recording tape – the CUTS format. CUTS stands for Computer Users Tape System and is also sometimes referred to as Kansas City Format.

CUT Above The Rest

Figure 1 shows the basic specification of the CUTS system. From this it can be seen that a serial data stream of eight bits has a number of control bits added to it, much as a TTY has similar control information added to its output. The reason for these additional controls were dealt with in the first part of the TTY interface published in November last year.

Figure 1 also shows that the CUTS specification calls for a logic '1' to be recorded as eight cycles of a 2 400 Hz tone and a logic '0' as four cycles of 1 200 Hz. These tones have been selected as being suitable for recording on most tape systems and are also easily derived from the master 4 800 Hz clock present in standard UART systems.

The circuit diagrams of the decoder are shown in Figs. 2 and 3. These two circuit blocks replace the equivalent sections of the TTY interface circuitry to provide a complete CUTS encoder/decoder, all memory decoding and UART configuration being identical to that of the TTY card.

Next month we shall deal with the construction of the CUTS card as well as dealing with the necessary software. We shall also deal with means of providing additional RAM and PROM for the System 68.

Before winding up this month however, may we go on to discuss an interesting area of software.

Assemblers and Disassemblers.

An assembler is a program which allows instructions to be entered in a coded form which are converted by the program into a machine code form. Large programs cannot be written without an assembler or similar program to help with address and branch decoding. A disassembler works the other way round. If you feed it with a machine code program it will attempt to convert this back into the coded form used by the assembler. This is useful for documenting programs which have been written originally in machine code.

Mr. G. L. Evans of South London (not our G. Evans) has sent us an example of a routine written in Assembler for use in a disassembler. We hope that Mr. Evans will send us further details of his Disassembler as it progresses. If anybody has a small Assembler we would be very interested in that as well.

Fig. 1 The specification of the CUTS system calls for a logic '1' to be recorded as eight cycles of a 2 400 Hz and a logic '0' as four cycles of 1 200 Hz.
Much of the circuitry of the CUTS encoder is exactly the same as that used for the TTY interface described in the November 1977 copy of ETI. The CUTS format calls for a byte of data to be recorded as a START bit (logic '1') followed by eight data bits with the end of a word being signified by two STOP bits (logic '0'). The setting up of the UART's control registers to conform to this specification was dealt with in the December issue of ETI.

With a data rate of 300 baud each bit time will be equal to sixteen pulse times of the UART transmit clock (4 800 Hz). With a data rate of 300 baud each bit time will be equal to sixteen pulse times of the UART transmit clock (4 800 Hz). We require that a logic '1' be recorded as eight pulses of 2 400 Hz signal with a 50% duty cycle. The CUTS format calls for a byte of data to be recorded as a START bit (logic '1') followed by eight data bits with the end of a word being signified by two STOP bits (logic '0'). The setting up of the UART's control registers to conform to this specification was dealt with in the December issue of ETI.

The cut of the encoder as shown in Fig. 2. As mentioned above, this circuitry replaces the circuitry associated with the SO output of the UART shown in the TTY interface.

Fig. 2 Circuit diagram of the CUTS encoder. This circuit encodes the output from the UART SO output where it is divided by two to provide a 2 400 Hz signal with a 50% duty cycle. This signal is fed to the clock input of the second half of the 74C74, and via IC2 to the '1' input of IC2/74 to the input of IC2/2 a 74C02 NOR gate. Circuit action is as follows. When SO is low and we require a 1 200 Hz signal, the inverted SO output is fed to IC2/2. A glance at the truth table for a NOR gate will show that the output from this gate must then be low. This output is inverted by IC2/3 and the resultant high applied to IC1/2's CLR input. This input is low at the output of this gate which is therefore clocked and the clear is thus disabled. This means that IC1/2 will act as a divide by two element producing the required waveform.

If now SO goes high, a low is input to IC2/2 after inversion. Reference should be made to Fig. 4 to make the following description easier to follow. The signal at the CI/RI junction consists of a series of negative spikes coincident with the trailing edge of the 2 400 Hz signal at IC1/1's Q output. With a low applied via the inverter, to the other input of IC2/2, the output of this gate will be a series of short positive going pulses, which after inversion, are used to reset IC1/2. As the 74C74 clocks on the positive edge of the clock input from IC1/1's Q output but is reset on the negative edge of the same signal, the output of this IC becomes the required 2 400 Hz signal.

The 2 400 Hz or 1 200 Hz output from IC2/2 is fed via a filter formed by R2 and C2 to the AUX output and via an attenuator, R3 and R4, to the MIC output. The filter is necessary to convert the square wave logic signal to a waveform more suitable for recording on tape.

The 2 400 Hz or 1 200 Hz output from IC2/2 is fed via a filter formed by R2 and C2 to the AUX output and via an attenuator, R3 and R4, to the MIC output. The filter is necessary to convert the square wave logic signal to a waveform more suitable for recording on tape.

The 2 400 Hz or 1 200 Hz output from IC2/2 is fed via a filter formed by R2 and C2 to the AUX output and via an attenuator, R3 and R4, to the MIC output. The filter is necessary to convert the square wave logic signal to a waveform more suitable for recording on tape.
Fig. 3 Circuit diagram of the CUTS decoder; this circuit decodes a CUTS encoded signal and passes this to the UART’s SI input.

SYSTEM CLOCKS

The receive clock pulse RCP used in the decoding operation is the same as that used in the transmit mode (TCP). In order to justify the use of the same clock for both operations we need to study the operation of the UART and do some straightforward arithmetic. (For a full explanation of the terms used below see the UART data sheet published in November 77’s ETD.

Figure 6 shows the timing of the UART in receive mode, the data presented to the UART by the CUTS decoder is shown as SI. If we assume that the UART is looking for a START bit then it will recognise the transition of SI from high to low as a possible START bit. If now waits for eight pulses of its 4 800 Hz clock and then samples the SI line at what should be the mid-point of the START bit. If SI is high at this time then the START bit logic is reset and the UART waits for another high to low transition of SI. If SI is low at the sample time then the UART accepts this as a valid START bit and proceeds to sample the SI line every sixteen pulses of the 4 800 Hz clock. After inputting the correct number of data bits the UART looks for a valid STOP bit (logic 1) at which time it transfers the data and any error conditions to the output registers and signals DAV (Data Available) to the MPU. The MPU accepts the data and status words and resets the DAV line to indicate acceptance to the UART back by now it is looking for the next valid START bit.

The ideal sampling pulse is shown as Fig. 6A, two worst cases are shown as Figs. 6B and 6C. In these worst case conditions it is assumed that the 4 800 Hz clock used as TCP is also being used as RCP and thus the only variations possible are phase change and frequency change. The phase change problem is overcome inside the UART and this does not concern us here. The frequency change can only be due to changes in tape speed between recording and playback at the 555 timer used as a 4 800 Hz oscillator is independent of voltage variations in the power supply. If we examine sample pulse train B we can see that the data is being input at a faster rate than expected and as a result the sample pulses end up very close to the end of data bit seven time. As the sample pulse is set during the START bit as being the eighth pulse and in data bit seven is during the fifteenth pulse time of the input data it must change by seven pulses in eight bits (8 x 6 pulses). This can be worked out to an error variation of:

\[
\frac{7}{8} \times 100 \text{ percent} = 5.46\%.
\]

On a tape recorder of a reasonable specification this level of tape speed tolerance will not occur and thus the 4 800 Hz TCP can also be used as the RCP clock.

Fig. 5 Diagram showing the various waveforms present in the decoding circuit.

ELECTRONICS TODAY INTERNATIONAL – JANUARY 1978
TECHNICAL BOOKS

CALCULATORS

ADVANCED APPLICATIONS FOR POCKET CALCULATORS
J. Gorton
£1.29

COMPUTER & MICROPROCESSORS

BUILD YOUR OWN WORKING CPU
D. Beveridge
£3.30

COMPUTER CIRCUITS AND HOW THEY WORK
R. Wells
£1.95

DIGITAL ELECTRONIC CIRCUITS AND SYSTEMS
M. Ninomi
£2.50

INTRODUCTION TO DIGITAL FILTERING
Ryan
£3.49

MICROPROCESSORS/MICROPROGRAMMING

H. Shaw
£4.10

TRANSECTOR TABLES
Includes physical dimensions & their pin assignments
£4.10

MICROPROCESSORS
D. C. McGann
£8.40

INTRODUCTION TO MICROPROCESSORS
Waples
£5.35

MODERN GUIDE TO DIGITAL LOGIC
Processors - Memories and Connectors
£4.30

LOGIC DESIGN PROJECTS USING STANDARD CATs
J. Waddington
£8.10

PRACTICAL DIGITAL DESIGN USING 64
J. Greenfield
£12.50

COMMUNICATION

COMMUNICATION SYSTEMS INTRO TO SIGNALS & NOISE
G. Carter
£7.95

DIGITAL SIGNAL PROCESSING THEORY & APPLICATIONS
L. A. Rocken
£23.00

ELECTRONIC COMMUNICATION SYSTEMS
G. Krawczy
£8.60

FREQUENCY SYNTHESIS, THEORY & DESIGN
Mansell & Bech
£20.45

PRINCIPLES OF COMMUNICATION SYSTEMS
W. Todd
£8.10

COOKBOOKS

TV TYPETRAPER COOK
£7.60

COMM COOKBOOK
£8.90

TTL COOKBOOK
£7.50

ACTIVE FILTERS
£11.80

IC TIMER COOKBOOK
£7.50

IC OP-AMP COOKBOOK
£9.40

ELECTRONICS

BEGINNER'S HANDBOOK TO ELECTRONICS
£2.65

BEGINNER'S HANDBOOK TO TRANSISTORS
£2.55

APPLICATIONS OF OPERATIONAL AMPLIFIERS
Creamer (Eric Brown)
£8.30

BEGINNER'S COURSE IN ELECTRONICS
£1.85

BUILD IT BOOK OF MINIATURE TEST INSTRUMENTS
P. Houston
£3.95

DESIGNING WITH TTL INTEGRATED CIRCUITS
W. Stimson
£9.65

DESIGNING WITH OPERATIONAL AMPLIFIERS
Burn Brown
£13.75

ELECTRONIC ENGINEERS REFERENCE BOOK
4th Edition
E. W. Turner
£22.75

SOLID STATE CIRCUIT DESIGN BOOK
G. Ward
£2.20

TRANSISTOR CIRCUIT DESIGN
Svensson
£8.35

ELECTRONIC COMPONENTS
P. A. Collard
£2.45

ELECTRONIC DIAGRAMS
M. A. Collard
£2.15

ELECTRONIC FAULT DIAGNOSIS
E. M. Sweeney
£2.20

ELECTRONIC MEASUREMENTS
C. F. Lea
£3.20

ELECTRONICS AND PHOTOGRAPHY
P. Brown
£2.20

ELECTRONICS SELF TAUGHT
N. M. Masters
£4.40

ESSENTIAL FORMULAE FOR ELECTRICAL AND ELECTRONIC ENGINEERS
N. M. Masters
£1.85

EXPERIMENTAL WITH OPERATIONAL AMPLIFIERS
Clayton
£3.48

FIRE AND SECURITY SYSTEMS
E. Wells
£2.90

HOW TO READ ELECTRONIC CIRCUIT DIAGRAMS
E. Brown
£1.95

HOW TO BUILD ELECTRONIC CIRCUIT DIAGRAMS
J. Edwards
£3.35

HOW TO USE IC CIRCUIT LOGIC ELEMENTS
J. Stein
£6.65

INTEGRATED ELECTRONICS
J. Millman
£7.70

HOW TO BUILD ELECTRONIC KITS
Cori
£2.15

LINEAR INTEGRATED CIRCUIT APPLICATIONS
G. Clayton
£5.00

FUNCTION CIRCUIT DESIGN & APPLICATIONS
Burn Brown
£15.90

1IC ELECTRONIC ALARM PROJECTS
R. M. Masters
£3.45

110 OPERATIONAL AMPLIFIER PROJECTS FOR THE HOME CONSTRUCTOR
R. M. Masters
£2.95

110 SEMICONDUCTOR PROJECTS FOR THE HOME CONSTRUCTOR
R. M. Masters
£2.95

110 COSMOS DIGITAL IC PROJECTS FOR THE HOME CONSTRUCTOR
R. M. Masters
£3.20

ACTIVE-FILTER COOKBOOK

A complete guide to the understanding & application of Transistor, Transistor Logic (TTL) integrated circuits

64

ELECTRONICS TODAY INTERNATIONAL - JANUARY 1978
OKS FROM ETI

110 INTEGRATED CIRCUIT PROJECTS FOR THE HOME CONSTRUCTOR
S. M. Mason
£2.95

110 TRANSISTOR PROJECTS USING SCRs
R. M. Mason
£2.65

MICROELECTRONICS Handbook
£3.00

MODERN ELECTRONIC MATHEMATICS
Oxford
£1.70

MOS DIGITAL ICs
C. Prince
£1.60

OPERATIONAL AMPLIFIERS DESIGN AND APPLICATIONS
O. Turkey (W. Brown)
£1.60

OP. AMP CIRCUIT DESIGN & APPLICATIONS
T. Gore
£4.00

HANDBOOK OF SC OSCILLATOR PROJECTS
Ainslie
£2.20

INDEXED GUIDE TO MODERN ELECTRONIC CIRCUITS
Goodman
£2.30

BEGINNERS GUIDE TO INTEGRATED CIRCUITS
Goodman
£2.15

PRACTICAL ELECTRONIC PROJECT BUILDING
Aucland & Crompton
£2.65

PRACTICAL SOLID STATE & SUPPLIERS
T. D. Towers
£1.20

PRACTICAL TRANSISTOR PROJECTS FOR THE EXPERIMENTER
R. Fox
£2.25

PRINCIPLES OF TRANSISTOR CIRCUITS
R. Ansell
£1.75

PRINTED CIRCUIT ASSEMBLY
Negele & Cotter
£2.45

REFERENCE GUIDE TO TRANSISTOR EQUIPMENT
D. King
£2.85

SEMICONDUCTOR CIRCUIT ELEMENTS
T. D. Towers
£1.40

UNDERSTANDING ELECTRONIC CIRCUITS
R. Ansell
£1.10

UNDERSTANDING ELECTRONIC COMPONENTS
R. Ansell
£1.10

UNDERSTANDING CMOS INTEGRATED CIRCUITS
R. M. Mason
£2.90

UNDERSTANDING SOLID STATE CIRCUITS
R. M. Mason
£2.06

INTERNATIONAL TRANSISTOR SELECTION
T. D. Towers
£3.10

INTERNATIONAL RESISTOR SELECTION
T. D. Towers
£3.21

POPULAR VALVE/TRANSISTOR SUBSTITUTION GUIDE
British
£2.25

RADIO VALVE, AND SEMICONDUCTOR DATA AT A GLANCE
East
£2.60

MASTER TRANSISTOR INTEGRATED CIRCUIT SUBSTITUTION HANDBOOK
British
£2.80

RADIO, TELEVISION AND AUDIO

AUDIO HANDBOOK
C. Wong
£6.56

BEGINNERS GUIDE TO AUDIO
T. M. Strachan
£3.20

RADIO TV-AUDIO CASSETTE TAPE RECORDERS
J, meal
£3.25

FUNDAMENTALS OF WIRELESS AND ELECTRONICS
M. B. Cooke
£4.45

COLOUR TELEVISION THEORY
Hudson
£6.20

WORLD RADIO TV HANDBOOK 1977
(A complete Directory of Radio, TV Stations)
£3.50

RADIO TV AND AUDIO TECHNICAL REFERENCE
£2.95

SMALL STATE COLOUR TV CIRCUITS
D. R. Wolding
£4.85

TV TECHNICIANS TOOL MANUAL (NEW Action)
Hudson
£5.10

HI-FI LOUDSPEAKER AND ENCLOSURES
British
£6.24

BEGINNERS GUIDE TO RADIO
King
£3.15

TAPE RECORDER SERVICING MANUAL
VOL. I 1969-70 Edition
£4.30

VOL. II 1971-74 Edition
£4.30

HOW TO BUILD SPEAKER ENCLOSURES
Ainslie
£1.10

FM RADIO SERVICING HANDBOOK
British
£4.90

BEGINNERS GUIDE TO AUDIO
British
£3.10

MASTER HI-FI INSTALLATION
King
£2.20

TEST EQUIPMENT & OSCILLOSCOPES

AASSC ELECTRONIC TEST PROCEDURES
£4.45

THE OSCILLOSCOPE IN USE
Van Berkel
£3.10

PRACTICAL TEST EQUIPMENT YOU CAN BUILD
£2.25

TEST INSTRUMENTS FOR ELECTRONICS
M. Clifford
£4.40

WORKING WITH THE OSCILLOSCOPE
A. Croucher
£1.10

SERVICING THE OSCILLOSCOPE
£3.60

RADIO TELEVISION AND AUDIO TEST INSTRUMENTS
£5.50

HOW TO ORDER
Please note that our prices include postage and packing. Make cheques etc payable to ETI Book Service. Payment in sterling only please.
Orders should be sent to: ETI Book Service P.O. Box 79 Maidenhead Berks.

CMOS COOKBOOK
by Don Lancaster

IC TIMER COOKBOOK
by Don Lancaster

TV TYPERTWRITER COOKBOOK
by Don Lancaster
Now even better, even more powerful!
The unique wrist calculator.

AVAILABLE ONLY AS A KIT.

A wrist calculator—the ultimate in common-sense portable calculating power. Goes where you go, ready for action at a flick of your wrist.

By virtue of its size, a wrist calculator is different to a pocket calculator. And now this wrist-machine has another difference. It has even more power than some much larger pocket calculators.

And what's more, because it's a kit, supplied to you direct from the manufacturer, it costs just £9.95 (plus 8% VAT, P&P). And for that you get a calculator with extra power, and all the satisfaction of building it yourself!

Put real calculating power up your sleeve.

The Science of Cambridge wrist calculator gives you the full range of arithmetic functions: +, −, ×, ÷. It uses ordinary algebraic logic, which means you enter calculations as you would write them. It has a % key, the convenience functions, 1/x, x², and a full 5-function memory.

And incredibly, it has a clear-last-entry key, brackets, and π. It even has an automatic linear metric conversion function!

Very few ordinary calculators have the same functions for the same sort of money.

Now 10 keys can do the work of 32.

All those functions, from just 10 keys? In such a small calculator. The secret lies in the special four-level keyboard. Each level has a different set of functions. Simple two-way switching system allows you to select any keyboard level quickly and easily. Each set of functions is carefully grouped, to let you whisk through calculations with the minimum of switching.

And the answers come up bright and clear too. The display uses 8 full-size red LED digits. It has wide-angle magnification, and is easily visible under any light conditions.

More battery power, too!

With the Science of Cambridge wrist-calculator, you'll get up to 30 hours use between battery changes (that's a lot of calculating!).

Assembling the Science of Cambridge wrist calculator.

The wrist calculator comes as finished components, ready for assembly. All you need is two or three hours, and a line-up soldering iron.

If anything goes wrong, we replace damaged components free. We want you to enjoy building the kit, and to end up with a valuable, useful, powerful calculator.

Contents.

- ARF7/4BN case and display window parts
- 10-pin plug and spring bar clips, P.C.B. Special directive drive chip (no INTERN chip required)
- Display keyboard components, Batteries.

Each of the 34 components is contained in a plastic box and neatly shrink-wrapped, accompanied by full instructions for assembling and using the calculator. All components are fully guaranteed.

Science of Cambridge Ltd.

6 Kings Parade, Cambridge, Cambs CB2 1SS.

Science of Cambridge wrist calculators are available only direct from Science of Cambridge. If, for any reason, you're not completely satisfied with your wrist calculator, return it to us within 10 days for a full cash refund. Send the coupon today!

Assembly Kit only

£9.95

Plus VAT, P&P

Contents.

- ARF7/4BN case and display window parts
- 10-pin plug and spring bar clips, P.C.B. Special directive drive chip (no INTERN chip required)
- Display keyboard components, Batteries.

Each of the 34 components is contained in a plastic box and neatly shrink-wrapped, accompanied by full instructions for assembling and using the calculator. All components are fully guaranteed.

Science of Cambridge Ltd.

6 Kings Parade, Cambridge, Cambs CB2 1SS.

For Science of Cambridge Ltd. 6 Kings Parade, Cambridge.

Cambs CB2 1SS.

*Please send me a Science of Cambridge wrist calculator kit at £9.95 plus 80p VAT and 25p P&P total (£11.95 each).

Overseas orders may be subject to postal exchange.

*Enclose cheque/P.O./money order or £

NAME:

ADDRESS:

E T I

Please print.

ELECTRONICS TODAY INTERNATIONAL — JANUARY 1978
IN THIS PART of our series we shall look into sequential logic by using the 7400 IC.

Set the IC up on the board to make a circuit using two of the logic gates as shown in Fig. 1. The gate with its output taken to the LED should have its spare input marked R, while the spare input to the other gate should be marked S.

Sequential Logic

The R-S flip-flop, as this is called, is an example of a sequential logic circuit, in which the output depends on the sequence of signals at the input - in other words, the state of the output depends on the previous signals as well as the present one. Strictly speaking this circuit is more of a latch, a circuit which temporarily stores an output while both inputs are high. Note that in normal use, we want two outputs Q and Q̅ to be complementary (Q is always the inverse of Q) so that the input R = 0, S = 0 must not be used, since this gives Q = Q̅ = 1.

In logic circuits, clocked flip-flops are much more common. A clocked flip-flop changes state only when a timing, or clock pulse is received. This is done by combining the flip-flop action with gating so that the signal inputs have no effect until the gating (clock) pulse arrives.

One type of clocked flip-flop is the D-type, and a typical truth table is shown in Fig. 3. In this type of circuit the signal (0 or 1) which is present at the D (for Data) terminal is transferred to the output at the clock pulse, and remains unchanged until the data changes and the clock pulse arrives.

Clocking Flip-Flop

The type of flip-flop chosen for this board is the J-K flip-flop. This is a more versatile device which combines clocking with gating to achieve a wide range of actions. On the type we have chosen, the SN7476, the action is the type known as "Master-Slave", which means that the input signals are accepted on the leading edge of the clock pulse, but the outputs do not change until the trailing edge comes along. This avoids problems which would occur if outputs were connected back to the inputs, as we shall see later.

The J-K flip-flop has five inputs and two outputs. The inputs are labelled J, K, Clock, Set and Reset (the Reset is sometimes called clear, and the Set terminal is sometimes called preset). The outputs are Q and Q̅, with Q always the inverse of Q. We shall check the action of the J-K flip-flop using signals generated on the board.

Double Flip-Flops

The connection diagram of the 7476 is shown in Fig. 5. From this you will see that the 7476 contains two J-K flip-flops which are completely independent. For the first series of practical exercises we shall use only one half.

Solder connections from pin 13 of the 7476 to earth, and from pin 5 to the +5 V line. Now solder an insulated wire connection from the clock oscillator output to pin 1 of the 7476, so that flip-flop number 1 is activated.

Connect pins 4 and 16 to earth so that J = 0 and K = 0, and connect switches so that the reset pin (pin 3) and the set pin (pin 2) can be connected momentarily to earth as needed.
From these exercises you will have found that the action of the J-K flip-flop can be controlled by the J and K inputs, which act to force the output to either 1 or 0 when the clock pulse arrives. The SET and RESET pins act independently of the clock, making the output go to 0 or 1, and holding it there until the reset or set voltage rises to 1 again, when the next clock pulse will cause whatever output is forced by the J and K voltages.

Toggling
With the power off, disconnect the wires from both J (pin 4) and K (pin 16). Switch on again, and observe both the output and the clock LEDs. Now complete the truth table of Fig. 8 (c). In this arrangement the J-K flip-flop is acting as a divide-by-two stage, for there is one complete output pulse for each two complete input pulses — we say that the flip-flop is toggling. At any time during this action, the output may be forced to 1 or 0 by the action of the SET or RESET pins, but it will revert to the toggling action when the SET or RESET is released.

Try applying a clock pulse obtained from a switch, as in Fig. 9 (a). Wire the switch to the board and replace the connection between the 7414 clock generator and the flip-flop with a connection from the switch output to the flip-flop clock input. Turn on the 5 V supply, and use the switch as a slow clock generator. You will probably find that the output is erratic, sometimes seeming not to change the output when the switch is operated. This is caused by switch contact bounce.

De-Bounce De Switch
With power off, rewire the switch with a resistor and a capacitor to one of the spare sections of the 7414, as shown in Fig. 9 (b). This is a simple de-bouncing circuit.

Solder a resistor and an LED to the output of the 7414 in the usual way to show the state of the clock pulse, and connect the output also to the clock input of the 7476. You should find that the action is perfect, and the very slow clocking which is now possible will show that the changes which take place at the output do so when the clock pulse goes low, that is, from 1 to 0.
happened at the leading edge of the clock, such feedback would cause indeterminate action — any change in Q would cause a change in J or K, which might cancel the effect on Q, and the flip-flop would probably oscillate at the high frequency. Because of the Master-Slave action, this does not happen — the changes in Q happen at the trailing edge of the clock pulse, by which time the J and K inputs are locked out and their voltages cannot affect the action until the leading edge of the next clock pulse.

Investigation

You should already have one section of the 7414 set up as a high frequency oscillator with earphones, or similar, to detect the output note. What is the effect of leading the output of the 7414 oscillator to the clock terminal of the 7476 with J = 1 and K = 1? Listen to the output wave from Q and compare it with the signal from the oscillator.

Can you now design an “octave” oscillator? This circuit will use a single clock, but its output will be alternately at oscillator frequency, then at half oscillator frequency (one musical octave below) according to the input to the gate. The gate input could then be obtained from another slow oscillator.

Finally, Fig. 10 (a) shows the complete truth table for the 7476. Fig. 10 (b) shows a changes truth table, in which the settings of J and K to produce certain changes (or non-changes) are listed. In the last table, X means “don’t care”, signifying that the value may be 1 or 0, and the action will be the same. Check that this last table agrees with the full table of Fig. 10 (a).

You may want to copy these tables, since we shall refer to them several times in Part 5 of this series.

READERS FOLLOWING THIS SERIES SHOULD REFER TO THIS MONTHS LETTERS PAGE FOR DETAILS OF SOME APPARENT CHANGES TO THE BOARD USED IN THESE ARTICLES. WE APOLOGISE FOR ANY CONFUSION THIS MAY HAVE CAUSED.

To be continued.
If you have any problems relating to hi-fi, choosing equipment, compatibility between units, weird occurrences etc., we might be able to help. Audiophile is to have its own readers queries service, for which there will be no charge - just an SAE please - and mark the envelope ‘AUDIOPHILE’ so that it gets to where it should be.

A RECENT heated discussion between several hi-fi enthusiasts here brought to light several interesting points. The first was the number of similarities which exist between the fairer sex and hi-fi equipment.

Think we’re joking eh? Well consider: both tend to dominate the room they’re situated in. Both are capable of generating very high sound levels, but will stay absolutely silent if turned off or ambient conditions are not favourable to smooth operation. Upkeep on both is horrendously expensive, and requires constant purchase of software (wear) and cleaning materials.

In fact the only major difference detectable occurs when the specimen blows a fuse. One variety refuses to make a sound, while the other demonstrates incredible slew-rate and reaches 200 dBA in a microsecond.

Class E Birds?

Be that as it may, our German edition has sent us news of the missing E amplifier configuration. We shall assume here that you’ve all read the article on class G in the last issue. If you haven’t... go directly to jail, do not pass GO, do not collect £200. As you now know then Hitachi attempted to call their Dynaharmony circuit class E when it first appeared, but found that classification already reserved.

And now we know who by: Arcus. Their DPA 320, shown in Fig 1, is a 200 W RMS per channel power amplifier - class E. Basically this configuration would appear to be a digital system, using pulse width modulation to control the output transistors.

A 100 kHz square wave is generated within the amplifier by means of a crystal-locked oscillator, and integrated to produce a triangular wave.

This wave is then superimposed on to the incoming music signal, this being put through a very fast A-D converter, the end result of all the logic circuitry producing a pulse width modulated square wave. Fig 2 shows a sine wave with the square wave produced by the logic alongside. The square wave is now used to switch the output transistors on and off very rapidly, the on time depending on the widths of the incoming pulses.

In this manner the music signal is reproduced, but theoretically without the inherent faults of the transistors affecting it. Using the output stage like a switch is not new — Quads 405 current dumper does this, but in a different manner.

Fig 1. The Arcus DPA 320 power amp
Producing some 200 W per channel this design is claimed to be totally free of crossover distortion, TID and all other bipolar amp vices!

Fig 2. A sine wave and its equivalent pulse width modulated squarewave in a class E power amp: this would hopefully induce the output stages to reproduce the sinewave.

Fig 3. The middle trace is the triangle produced by integration of the 100 kHz squarewave signal within the DPA 320. The triangle is then superimposed on the digitised music signal to control the power switch output pair.
To keep operation symmetrical the transistors are not pushed totally into saturation and this allows 'recovery' from each switching operation to occur more rapidly. Contrast this to class D switching amps which operate by completely saturating the output pair in turn. Class E is 10 times faster to 'recover'.

Those interested in further details can look up the patent on the process (No 1444201) or contact Arcus direct in Germany (Don't mention the war!) at:-
Elektroakustik GmbH, Teltower Damm 283, 1 Berlin 37, Postfach 370 370.

Don't Wear It — Spray It!

An interesting spin-off from the space programme is to be marketed in Britain by Pyser Ltd. Called Sound-Guard the product is a spray preservative for LPs. (Just around this point in the proceedings all the usual spectres of gunged-up records and glue-ridden styli ploughing through seas of dust attracting substances should leap into the enthusiast's mind. They don't? ... Sorry!)

The compond was originally produced by NASA as a dry lubricant for use in conditions of hard vacuum and high temperatures. Development has now taken it into the form of a liquid spray.

This is applied to the LP surface, and immediately polished up. A coating five millionths of an inch thick is apparently formed across the record and groove walls. The basic property of Sound-Guard is that it will not bond to itself, so that once applied a buildup on the surface is just not possible, thus alleviating the horrors associated with such an occurrence.

Benefits claimed are a cancellation of increase in harmonic distortion due to wear, reduction of surface noise generated by stylus wear, and a preservation of high frequency response by protection of the delicate groove modulations for those frequencies.

To The Test

To test these assertions, we decided to set up an A/B comparison on a Sound-Guard treated LP. This was achieved by purchasing from our local record emporium two (different) LPs in as good a condition as could be managed (after several return trips to dispose of copies with extra radial grooving) and recording these at 15 ips.

One LP was then treated with the fluid, simply by spraying on and rubbing well in with the pad provided. No trouble here — once buffed up properly no audible deterioration could be detected, and certainly the noise level was not affected. Nothing appeared round the stylus either!

So far, so good.

Both records now went into the collection as normal, and were played over a period of about a month, no special care being taken to differentiate them from any other LP other than noting when each was put under the needle.

The test was called to halt when we ran out of time on this report. Things were evened up so that the test side of each had been played the same number of times, thirty-one in fact. Yes we do play a lot of records.

Masterful Comparison

Each could now be compared with the master tape made at the time of purchase, and the by now obligatory listening panel was assembled to haggle over results. This time however no haggling was necessary, and the results could be unanimously agreed. The Sound Guard treated LP had definitely 'held' the high frequencies better than the untreated record.

On direct comparison with the tape, there was no doubt whatsoever that the treatment had preserved the frequency response to a clearly audible degree. Most people do not realise how quickly extreme high frequencies are worn off an LP, even at low tracking weights. Our tests were conducted at 1.2 g. and so heavier weights would presumably show benefits earlier and to a greater extent.

For The Record

No conclusions could be drawn, however, as to whether Sound-Guard had achieved a favourable result with regard to surface noise — both LPs were still in excellent condition. As it is, we have no hesitation in recommending Sound-Guard as a worthwhile addition to the audiophile's armary, it's worth its cost if it only prolongs the life of two LPs after all and one bottle does 25.

Price: Full kit (see photo) £4.89. Refill £3.25 (inc. VAT).
Pyser Ltd., Fircroft Way, Edenbridge, Kent.
Aiwa The Lads

And so to our main news this month, a cassette deck with several important differences. Recent models from such noteworthy manufacturers as Nakimichi, Sony, Technics and Aiwa have shown a search for something other than that last few kilohertz at the top of the range. And now Aiwa have come out with the AD 6800 which they themselves consider “as far as one can go with cassettes,” and have equipped the machine with the facilities to let you know just how far that is!

Bias Your Opinions

With all the various tape formulations on the market today the age old compromise inherent in not optimising a particular machine's bias for a particular brand is becoming ever more irksome. While being fairly satisfactory in general there is no flexibility in this system at all, and no user control since such adjustment has always had to be done by a dealer. All the user could do was to set a single three position switch to 'Fe-Cr,' 'Cr02' or 'LH'.

What has been needed, and Aiwa have now provided (else we would not be rambling on about it) is some simple user controlled system to set up the machine for any brand of tape desired, and obtain the maximum fidelity from it. Let's face it at 4.8 cm/sec and 'Aiwa wide' we need all the help we can get. Too high a bias current results in high frequency roll-off and increased distortion, and a balance has to be achieved.

On the 6800 the facilities to optimise bias are: built-in oscillator, test head, switched meters with filter, azimuth adjustment and two three-position switches for bias and equalisation, backed up by the three 'fine adjust' bias controls. All this must add a considerable amount to the cost of the machine, and shows how seriously Aiwa take the cassette. (Wonder if they'll come up with an Elcaset?)

Self Satisfied Unit

Before we move on to show how the bias adjustments are made, and what effect they have on performance, let's consider the rest of what the AD-6800 has to offer. The finish is superb, and the controls are smooth and positive. Everything about it looks — and probably is — very expensive.

The meters are a revelation in themselves. Two needles, peak and VU reading, are provided for each channel with excellent ballistics. The peak reading facility really is peak reading, not some cheap approximation, and is switchable from peak reading to peak hold, or even off if you feel like.

The hold facility makes setting up to record very easy. Just lock the hold on, and advance the record level until the needles move onto the level you want to set at. No getting eye-jump trying to watch cavorting little needles avoiding 0 VU, and much improved recording as result.

Finding Your Type

The needle meters show clearly the peak level which passed through the circuit on the last segment.

Before we could actually play anything on it, since the entire office staff from receptionist to technician insisted on having a play with the loader. On a practical note, the auto-load does mean that the tape itself is less liable to be mishandled, and the drive mechanism can be mounted further into the case with all the attendant advantages of dust avoidance. A conveniently placed head cover makes cleaning easy.

Reviewing Review

Another very useful facility is the review/cue mode. With the FWD key depressed operating rewind reverses the tape direction as normal, but leaves the head in contact with the tape so that an audio signal at reduced level appears at the output. Very handy for locating the end of tracks on recordings. The fast "FWD" keys work in a similar manner to allow you to 'CUE' up quickly to the end of a piece. If used continually no doubt head wear would be accelerated, but Aiwa contend that for the amount of use the facility will see in terms of playing time such additional wear will be negligible and well worth the facility. In our opinion a fully justified contention.

Self Satisfied Unit

Before we move on to show how the bias adjustments are made, and what effect they have on performance, let's consider the rest of what the AD-6800 has to offer. The finish is superb, and the controls are smooth and positive. Everything about it looks — and probably is — very expensive.

The meters are a revelation in themselves. Two needles, peak and VU reading, are provided for each channel with excellent ballistics. The peak reading facility really is peak reading, not some cheap approximation, and is switchable from peak reading to peak hold, or even off if you feel like.

The hold facility makes setting up to record very easy. Just lock the hold on, and advance the record level until the needles move onto the level you want to set at. No getting eye-jump trying to watch cavorting little needles avoiding 0 VU, and much improved recording as result.

Finding Your Type

Using the bias tuning is simplicity itself. Let the machine load a cassette (don't fight it — use it) put it into the record mode, with input selector at Test and Dolby off.
This allows the internal oscillator to put its signal onto the cassette. Both meters now deflect. The right channel meter indicates 8 kHz level, and the left 400 Hz. The test head itself is aligned by adjusting the slider inside the cassette compartment for maximum 8 kHz level.

To optimise the bias set the coarse control to the correct formulation, and adjust the fine control until both meters read as equal as possible. It takes longer to describe all this than it does to do it, and just to make it even easier, the fine control you should be using is illuminated as soon as the coarse bias is set. CrO₂ switching is automatic.

Aiwa intend all this to be used to obtain a flat response by setting equal levels at 400 Hz and 8 kHz. Of course, if the tape type in use sounds a little 'dead' at the top end, you can always leave a few dB extra on that meter.

We tried the AD 6800 on a whole range of cassette types from TDK SA to BASF LH Super, taking in CrO₂ and FeCr on the way. Results with all tape types were first class, but even using the fine tuning, the AD 6800 seems to display a preference for TDK Super Avilyn. Results with this tape were the best we have ever heard from a cassette deck, the sound displaying a clear and open nature with little of the usual stricture associated with the medium.

Ferry Chrome Carried?

With FeCr tape it was necessary to tune considerably from brand to brand, but once achieved the correct setting delivered a very good recorded performance. The results with CrO₂ tapes were frankly disappointing. The sound never approached that of the SA recordings and some difficulty was experienced in following through the setting-up procedure. We feel this is a minor drawback however, in view of the outstanding qualities displayed with both FeCr and Super Avilyn, and the excellent LH results.

Without doubt, the bias controls of the AD 6800 added considerably to the unit's versatility and allowed wide variety of cassette tapes to give of their best. The variation in sound quality with tuned settings is surely to be expected, after all some tapes are better than others! If you are looking for a machine that takes cassettes seriously, and are prepared to pay for it in the region of £400) then this unit merits top place on the shopping list. It costs a great deal of money, but has much to offer in return.

Manual Labour

In conclusion this month, one parting shot across the bows of the Japanese giants — Aiwa included. The standard of the instruction manual with the AD 6800 is typical of such publications — abominable! Production and layout are nicely done, but the English — oh the English! It's been said before, and now we've said it again. Please please please someone somewhere convince the powers that be and get the instructions up to the unimpeachable standards of the hardware.

SPECIFICATION

<table>
<thead>
<tr>
<th>Frequency Response</th>
<th>According to DIN 45 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>LII tape</td>
<td>25 - 15,000 Hz</td>
</tr>
<tr>
<td>CrO₂ tape</td>
<td>25 - 17,000 Hz</td>
</tr>
<tr>
<td>Fe-Cr tape</td>
<td>25 - 18,000 Hz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SN Ratio</th>
<th>According to DIN 45 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>64 dB (Fe-Cr tape DOLBY NR ON)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wow & Flutter</th>
<th>According to DIN 45 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tape Speed</th>
<th>According to DIN 45 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.8 m/sec</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Track Time</th>
<th>According to DIN 45 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 sec. (C-60)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Motor</th>
<th>38 pulse FG Servo Motor</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Tape Head</th>
<th>Ferrite Guard Head (FGH)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Distortion</th>
<th>According to DIN 45 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9% (400 Hz 0 VU, Fe-Cr tape)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Microphone sensitivity</th>
<th>6.25 mV/s inhibitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>impedance</td>
<td>200 mV to 1 kΩ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Line sensitivity</th>
<th>Microphone sensitivity</th>
<th>50 mV/s inhibitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>impedance</td>
<td>400 mV/k</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIN sensitivity</th>
<th>Microphone sensitivity</th>
<th>0.1 mV/k inhibitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>impedance</td>
<td>200 mV/k</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Headphones load impedance</th>
<th>8R to 150Ω</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Power Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 Watt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>250 W, 162 H, 353 D (mm)</th>
</tr>
</thead>
</table>

| Weight | 19 kg |

ETI
May I begin this month by asking you a question? Yes? — No, hold on! That was not the question that comes next.

Heath CUTS

If I were to ask you if you would be interested in an impact printer that produced copy with a thirty-six alpha-numeric character set on eight-inch-wide paper with sixty characters per line and five lines per inch for less than a hundred pounds, what would be your answer? If it’s No then suppose I throw in a keyboard which was capable of generating seven bit ASCII codes with parity? Still No? Well let’s also throw in a UART making the terminal TTY or CUTS compatible. If you’re not yet sold on this device what about reducing the price to less than ninety pounds? If having read this far and still not become very interested in the specification evolving I can only assume that you mistook this column for news about a new item for your tool-box (shades of needle file?).

Why have I dreamt up this machine that would answer most micro users’ prayers? Well, the answer is that it is no dream. I have been sent details of just such a device, the DTS 77 data terminal. I shall try to get hold of one of these beauties and tell you all about it when I do. In the meantime further details may be obtained from:—

Heath E & M,
26 Broad Street,
Lyme Regis,
Dorset.

Heath Kits

A few months ago I mentioned that Heathkit had launched the H8, a personal computing system, in the US. This interesting piece of hardware is yet to make it across the great divide but rumours have it that the middle of next year should see its UK launch. Microprocessors do, however, have a foothold in the range of kits that Heath offer on the UK market. The microprocessor flag is being waved (set) by Heath’s microprocessor course and computer Trainer package (Heath references EE-3401 and ET-3400 respectively).

These follow the lines of their by now familiar to connoisseurs of the Heath range, continuing Education Series. The format of these courses follows the same basic pattern of providing a ‘learning program’ which is a comprehensive set of notes dealing with the theory of the subject to be covered — in addition practical experiments are described in the text. These experiments can be carried out with the ‘trainer’ that is designed to complement each learning program. These trainers incorporate a breadboard area together with all the components necessary to carry out the experiments described. At the end of each section a self-evaluation quiz allows one to assess the progress that one has made during each unit of study. Until recently the courses covered basic AC and DC theory plus Semiconductor Principles and a Digital Techniques course.

The MPU course is the latest addition to the range and looks as if it could be a good way of getting to grips with Micros. I have not yet managed to get my hands on one, but from the photos and description shown in the new Heath catalogue, it looks good.

Based on the good old 6800 supported by a 1K ROM monitor, with 256 byte RAM plus other components and breadboard area, Heath say it should prove a valuable teaching aid. It should provide a means of gaining familiarity with machine language programming, hardware I/O interfacing, micro theory and design applications.

With data input via a hex keyboard and display of data plus address on seven segment LEDs, to use the trainer is easy. It is an expensive item and has limited applications — in that it cannot be easily expanded to form part of a larger system. It was not designed for this latter role however and should together with the learning program provide very valuable hands-on experience. For further details of these new items from Heath see their new catalogue. For a copy of this contact Heath at:

Heath (Glees) Ltd
Gloucester
GL2 6EE

A Corrupting Influence

Referring to a past microfile last month I mentioned the SERT MPU lectures at Kent University during late September. Lack of space last month prevented me from saying much about it — and it looks as if much the same thing has happened this month! So just another titbit from the event.

The idea came from R. A. Smith of Essex University and concerns the use of low-cost cassette recorders.
when recording data output from a micro system. It is a technique to overcome one of the problems often associated with this type of recorder — namely unwanted action of AGC circuits.

In the less costly recorders these AGC circuits, ideal for recording speech, often cannot be switched out of the signal path. When recording any form of digital data the action of such a circuit will be to corrupt it. Consider for example a gap in the recording. The AGC will increase the gain of the input signal, thus increasing the likelihood of noise or transients upsetting the recording.

Now we get to the clever bit. By superimposing a continuous HF signal on the, usually, LF data signal the action of the AGC can be nullified. How? Well, we arrange for the HF signal to be outside the response of the tape, usually not much more than a few KHz on the cheaper machines, but within the response range of the AGC processor.

Thus the AGC circuits think that there is a continuous high level present at the input and keep the recorders gain constant.

A simple CMOS oscillator can provide the required bias signal and be mixed with the data just before being fed to the recorder.

A simple idea that should improve the performance of these low-cost storage systems.

WE'RE OUT TO FINISH YOU OFF!

GOOD AND PROPER!

... at least your projects. If there is one thing which is impossible to do at home is lettering front panels to professional standards. At least until now. If you cast your eyes right a while you'll see our new panel transfers sheet, which has been carefully designed to allow you to do exactly that.

The transfers are easily rubbed down, and the two sheet set contains a mass of interesting and — unique — control scales for both rotary and slider pots.

Each sheet measures 180mm X 240mm and comes packed flat in a stiff cardboard envelope for protection. There should be enough for dozens of projects here — and the longer you wait the worse they'll look!

Send £1.75 (includes VAT and postage) for the two-sheet set to:
Panel Markings
ETI Magazine, 25-27 Oxford Street, London W1R 1RF.
Half price Teletext

You can now buy Texas Tifax module Teletext decoder complete with matching cable connected keyboard, power supply, interface board and complete instructions for installation in most common television receivers for only £180 + VAT (12½%) and £2.50 postage, packing and insurance.

Since the interface is connected directly to the television's video output circuitry, picture quality is excellent with pure colours — much more so than is possible from decoders which feed the aerial socket.

Due to the compact nature of the Tifax module, installation within most receiver cabinets is no problem. Facilities include seven colours, upper and lower case alphanumerics, graphics, time coded display, and newsflash and subtitle inserted in TV picture.

To enable us to supply the correct board and instructions, we must know your television set make and model and, if possible, chassis type.

Oracle T-Shirts, full colour. Please state size (L, M or S). Only £2.50. Please hurry whilst stocks last.

KITS! KITS! KITS!
AMPLIFIERS (20-75w), TUNERS, CASSETTE DECK, ETC., ETC.

De Luxe Lindsey-Hood 75w Amplifier

Based on P.W. TExAN

Circuit design published in Hi-Fi News and Record Review

Matching Tuner and Cassette Deck — Details in our free catalogue

POWERTRAN

75 + 75w AMPLIFIER
COMPLETE KIT ONLY £99.30 + VAT

Circuit design published in Hi-Fi News and Record Review

Matching Tuner and Cassette Deck — Details in our free catalogue

20 + 20w AMPLIFIER
COMPLETE KIT ONLY £33.10 + VAT

Based on P.W. TExAN

Circuit design published in Hi-Fi News and Record Review

Matching Tuner and Cassette Deck — Details in our free catalogue

30w VERSION (T30 + 30) ONLY £38.40 + VAT

PRICE STABILITY: Our list prices are confident to remain fixed. Any price changes will be noted in our future advertisements.

SILVER COUNTER: This counter is manufactured in the UK and has only been available since 1978. If you would like to order a T20, please contact us.

OUR CATALOGUE IS FREE! WRITE OR PHONE NOW!

POWERTRAN ELECTRONICS
PORTWAY INDUSTRIAL ESTATE
ANDOVER, HANTS SP10 3NM

64455
JUST A COUPLE of weeks to Christmas and you haven't yet thought what you would like Father Christmas to bring you in your stocking this year? Its time to leave extra large hints lying around. If you feel like dabling with your TV games unit try leaving this article in a place where Father Christmas is sure to find it!

Christmas Colouring Kit.
If you have one of the black and white TV games based on the 61AY-3-8500 TV games chip you can now upgrade it to colour. Watford Electronics have a kit to upgrade this type of unit to give effects such as a green court, red boundary and score yellow left bat and blue right bat. The kit includes a UHF modulator so that you can plug the game into the aerial socket of your TV. If your game was built from a kit which never quite worked then this add-on might be just the excuse to dig it out of the 'not quite completed' projects pile. If you still don't feel like trusting your ability to build such a unit you will be pleased to hear that Watford can supply it built and even installed in your own game. For details see their advertisement.

Other Upgrades and add-ons
Another way to improve your TV games unit is to change the chip for the 1AY-3-8650 which gives additional horizontal bat control together with a few other improvements. The chip is pin compatible with the 1AY-3-8500 and requires only an additional potentiometer in each hand control to complete the modification.
Alternatively you could start almost from scratch with the 1AY-3-8650 chip which gives a total of eight games including Gridball, Hockey and Basketball. The 1AY-3-8550, 1AY-3-8650 and PCBs, kits etc are available from Telecraft, for further details see their advertisement.

Add-on Music.
If you already have one of the above modifications or think that they will only cover Christmas day and you are looking for something to occupy you on Boxing Day then how about making out a list of components for Father Christmas to enable you to experiment with this idea?
The TV games chips described use something like a 2MHz oscillator to generate all of the timing signals including sync. If this oscillator were also divided by about 4 and gated so that it was enabled only inside the court or visible signal time of a TV game then it should be possible to divide up the court into several horizontal sections. If the sync signals are counted (and reset during court) then the court can be similarly broken up into several vertical sections. A little additional logic will allow you to display several 1in or so squares on your TV screen. With your colour modulator kit you can also define the colours of the squares and define how the colours are allowed to change.
Now all you need is an audio signal, a bit of filtering, a few BC109s and suddenly you have your own multi-option fourth TV channel. For additional mind-bending experiences try adding the TV games signals and your generated music signals to give a multicoloured court!

1978
1978 will bring some pleasant surprises in the TV games business with some cassette or cartridge units already available. At first there will be a great divide in the market between GRAPHICS games such as those already available and BASIC games played in question and answer form. Eventually these will become combined in some really interesting TV games units — stay tuned to ETI for more information!

Software Made Simple
I have been involved in writing a lot of software for various applications over the past few months and I thought that some of the techniques I use might be of interest.
First of all get yourself a hardback or loose-leaf notebook of a reasonable size to write down all of your attempts — there is nothing worse than having to rewrite a routine from scratch because you have lost the cigarette packet which had the original notes on the back.
Decide roughly what the routine will do, a rough flowchart plus an idea of any fixed stack assignments sub-routines, etc. Convert this to a first draft machine code listing with notes and labels but leave plenty of room for additional, insertions and changes. Looking at some of my roughs and comparing them to the finished product it seems that nearly every other line has alterations.
Having decided what you think the machine code should be sit down at your MPU and try it. For most sub-routines you will probably have to set up a calling routine to test it, this routine simply sets up any parameters used by the sub-routine and then calls the routine. Do not bother to enter more than about 10 instructions at a time because the likelihood of having to shift them all is very high. At a convenient point enter an instruction inserted. etc, etc. Any changes to the original sub-routines you will probably have to set up a calling routine to test it. This routine simply sets up any parameters used by the sub-routine and then calls the routine. Do not bother to enter more than about 10 instructions at a time because the likelihood of having to shift them all is very high. At a convenient point enter an instruction to generate a Software Interrupt so that the MPU will perform the code entered so far and then return to a routine which will allow the results so far to be checked. In most 800 systems this will be a 3F instruction.
If the results so far are those expected then another 10 instructions can be entered and another 3F instruction inserted etc etc. Any changes to the original coding should be made to your original notes immediately after the change has been verified on the MPU.
Branches to parts of the routine which are not yet coded are easily handled by branching to a 3F instruction or back into a loop until the condition changes. This allows one side of the branch to be coded before attempting to do the other.
The Sinclair PDM35.
A personal digital multimeter for only £29.95

Now everyone can afford to own a digital multimeter

A digital multimeter used to mean an expensive, bulky piece of equipment. The Sinclair PDM35 changes that. It's got all the functions and features you want in a digital multimeter, yet they're neatly packaged in a rugged but light pocket-size case, ready to go anywhere.

The Sinclair PDM35 gives you all the benefits of an ordinary digital multimeter - quick clear readings, high accuracy and resolution, high input impedance. Yet at £29.95 +VAT, it costs less than you'd expect to pay for an analogue meter!

The Sinclair PDM35 is tailor-made for anyone who needs to make rapid measurements. Development engineers, field service engineers, lab technicians, computer specialists, radio and electronic hobbyists will find it ideal.

With its rugged construction and battery operation, the PDM35 is perfectly suited for hand work in the field. While its angled display and optional AC power facility make it just as useful on the bench.

What you get with a PDM35

3½ digit resolution.
Sharp, bright, easily read LED display, reading to ±1999.
Automatic polarity selection.
Resolution of ±1 mV and 0.1 mA.
0.0001 V/A.
Direct reading of semiconductor forward voltages at 5 different currents.
Resistance measured up to 20 MΩ or reading accuracy.

Technical specification

DC Volts (4 ranges)
Range: 1 mV to 1000 V.
Accuracy of reading: ±1 count.
Note: 10 MΩ input impedance.
AC Volts (4 ranges)
Range: 1 V to 500 V.
Accuracy of reading: ±2 counts.
DC Current (6 ranges)
Range: 1 mA to 200 mA.
Accuracy of reading: ±1 count.
Note: Max. resolution 0.1 mA.
Resistance (5 ranges)
Range: 1 MΩ to 20 MΩ.
Accuracy of reading: ±1 count.
Also provides 5 function-test ranges.
Dimensions: 6 in x 3 in x 1.5 in.
Weight: 6 oz.
Power supply: 9V batteries or Sinclair AC adaptor.
Sockets: Standard 1in input for resilient plugs.
Options: AC adaptor for 50 Hz power, Deluxe padded carrying wallet, 30 V probe.

The Sinclair credentials

Sinclair have pioneered a whole range of electronic world firsts - from programmable pocket calculators to miniature TVs. The PDM35 embodies six years' experience in digital multimeter design, in which time Sinclair have become one of the world's largest producers.

Tried, tested, ready to go!
The Sinclair PDM35 comes to you fully built, tested, calibrated and guaranteed. It comes complete with leads and test probes, operating instructions and a carrying wallet. And getting one couldn't be easier. Just fill in the coupon and enclose a cheque for the correct amount. And within 10 days you'll have your Sinclair PDM35, with a money-back undertaking, of course and sent to you.

We'll mail your PDM35 by return!

Sinclair Radionics Ltd, London Road, St Ives, Huntingdon, Cambs, PEI7 4HL, England. Regd No: 699183.
The Digital Echo Unit described below may be constructed on standard Eurocard PCBs with 31 way connectors, and utilizes the cheap 2102 1K static RAM, of which from any amount from (say) 32-64K may be used to achieve a (continuously variable) delay of up to a second. The delay time is of course directly proportional to the amount of memory used. There are three PCB designs used: Fig. 1: Input/Clock board (1 off), Fig. 2: Output/Control board (1 off), Fig. 3: 8K Memory Board (max. 8 off).

Dealing with the input board first, it may be seen that the 555, 7476 and 7408 constitute a non-overlapping two phase clock whose outputs are 'Enable Read' (ER), and 'Enable Write' (EW). During the write phase a bit is taken from the digitized input and fed to the 'Data Write' (DW) line. The AD convertor used is the FX209 which was featured in the ETI June 1976 Data Sheet. The bits created are placed in the memory location addressed by the 12 bit counter ('Bit Address') on this board and the 4 bit counter on the Output/Control board ('Block Address').

When the ER line goes high a bit is taken from the memory address pointed to by the counters with the 4 bit value produced by the Hexadecimal Priority encoder (Delay Switches) being added to the block address. Thus the 'distance' between the write and read 'heads' may be altered to place them any number of blocks apart, and thus create a choice of 16 basic delay lengths. The bit read is placed on the DR line and is then converted to an analog value by the DA convertor. Note that some of the output may be fed back to the input ('Regen') to create multiple echo effects.

After this sequence of a write and a read cycle the bit/block address is incremented by one so a succession of bits may be placed in memory by input, and read from the memory by the output. The rate at which this sequence occurs is controlled by the clock rate of the 555 astable, and thus this not only controls the delay time as do the delay switches, but also the quality of the sound reproduced as this independent on the number of samples taken per second in the digitizing process. The device may be set up to digitize the analog input at a maximum of 125 K bits/second — which is quite adequate for (say) an electric guitar which requires a bandwidth of some 10 KHz.

Fig. 1: Input/Clock Board
Fig. 2: Output/Control Board
Fig. 3: 8K Memory Board

Tech-Tips is an ideas forum and is not aimed at the beginner. We regret we cannot answer queries on these lines.

ETI is prepared to consider circuits or ideas submitted by readers for this page. All items used will be paid for. Drawings should be as clear as possible and the text should preferably be typewritten. Circuits must not be subject to copyright. Ideas for consideration should be sent to ETI TECH-TIPS, Electronics Today International, 23-27 Oxford St., London W1R 1RF.
The Sinclair PDM35.
digital multimeter

Now a digital multimeter at an analogue price and look at the spec!

D.C. VOLTS
- 1000V
- 10V
- 100mV

A.C. VOLTS
- 300V
- 10mV

RESISTANCE
- 110 MΩ
- 100kΩ

Company Hospital and Government Orders accepted by telephone or telex.

£28.95 inc VAT & P&P

A C Adaptor £2.95

KRAMER & CO.
9 October Place
Holders Hill Road
London, NW9
Telex: 88881 Attn. Kramer K7
Tel. 01-203 2473

Special Introductory Offer*

The all-new Photomat kit from Mega - a complete professional system for p.c. board, label and front panel production. Outstanding value at only £44.50.

Just see what you get:

- 1 UV exposure unit
- 16 sheets of drafting aids and film
- 3 sheets positive mean stranded vinyl glass laminate
- Developing and etching trays
- Developer and etchant
- 128 drill bits
- 5 twist drills
- 8 sheets pvc labels
- 5 different colours
- Photomat developer
- Pads and reversal film
- Complete instructions

Has there ever been such value? Complete the coupon and take advantage of this incredible offer right now.

Offer closes on January 15th, 1978

Send your order and welcome!

Order includes postage, packing and VAT (allow 7 to 14 days for delivery.)

Mega Electronics Ltd
9 Redwater Road
Saffron Walden
Essex CB11 3LH
Tel. (0799) 21918

Please send me the
Mega Photomat kit £44.50

My Access/Barclaycard No is

Name
Address

Special Introductory Offer*
Dec-ed Out
D. F. Tranter

When using S-Decs to test circuits, one often finds that several groups of the Dec contacts are taken up for one common connection, particularly the contacts which run to the battery connections.

In order to extend the capacity of a single S-Dec I fit a row of sockets along each of the two Dec sides which have lugs for connecting to other Decs, using the lugs as end fixing points.

If the sockets are bent and a strip of insulating tape used to anchor the lower ends, one gets a reasonably robust fitting which greatly extends the capacity of the Dec.

The Multi-zener
R. N. Soar

This is an application of zener diodes based on the binary system. In the example shown three zener diodes are used 3 V, 6 V and 12 V (ie. 3.0 V, 6.2 V and 12 V) plus three S.P.S.T. switches. In the 'on' position of a switch the diode is short circuit. In the 'off' position the diode is in circuit. Thus the effective diode by suitable operation of the switches is 3, 3+6, 3+12 etc. ie. 3, 6, 9, 12, 15, 18, 21 volts. By the addition of the next in the series 24 V and another S.P.S.T. switch the range is 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45 volts.

Cheapo VCO
A. J. Richardson

This circuit provides a cheap solution to a non-precision voltage controlled oscillator. C1 charges towards the voltage set on VR1 until inverter 1 output goes low whereupon the output of inverter 3 goes low and discharges C1 via D and R4. Inverters 2 and 3 form a Schmitt trigger circuit with positive feedback supplied by R3. Inverter 4 forms a linear amplifier with its gain set by the ratio of R5 to R6 which squares up the signal appearing on inverter 1 output. The signal is further squared up by the Schmitt trigger action of inverters 5 and 6 to provide a square wave of approximately 50% duty cycle at the output of inverter 6. With the values shown a frequency range of at least 100 Hz to 15 kHz is guaranteed with VR1 but other ranges can be covered with suitable values of R1 and C1. The circuit works well at lower supply voltages but the frequency range covered for a given set of components may be slightly less. If a square wave is not required a negative pulse of approximately 200 nS is available at the output of inverter 3 thus enabling two VCOs to be built with one chip.
15 - 240 Watts!

HY5
Preamplifier

HY30
15 Watts into 8\(\Omega\)

HY50
25 Watts into 8\(\Omega\)

HY120
60 Watts into 8\(\Omega\)

HY200
120 Watts into 8\(\Omega\)

HY400
240 Watts into 4\(\Omega\)

POWER
SUPPLIES

TWO YEARS GUARANTEE ON ALL OF OUR PRODUCTS

I.L.P. Electronics Ltd
Crossland House
Nackington, Canterbury
Kent CT4 7AD
Tel (0227) 63218
Phaser Mod

M. Headey

I constructed a simple variable gain op amp inverter and connected it between the output and the input.

When the feedback amp was switched into circuit the effect was dramatic. The phaser sounded much deeper.

The modification is simple enough and though can be adjusted to feedback (audio) level, sounds very good if the gain is kept down.

The circuit as shown gives very good results although you may be able to suggest some component value changes.

Programmable Gate

P. Mead

The Programmable Gate is a gate which converts an AND gate to an OR gate by applying a logic ‘1’ on the function input.

The logic design uses 8 x 2 input NAND gates. The number of gates may be reduced by replacing the 5 NAND gates enclosed by the dotted line, with a 2 input exclusive OR, such as the TTL 7486.

5mS Delay Unit

C. S. Rushton

The circuit shown will produce a delay of 5 mS from input to output with good correlation between amplitudes over a dynamic range of approximately 40 dB.

The circuit consists of four main sections: an input buffer, a damped resonant RLC circuit, a non-inverting amplifier and a clamping circuit.

The delay can be modified within reasonable limits by adjustment of the RLC network.
SECOND GENERATION
METAL DETECTOR KIT
DESIGNED SPECIALLY FOR THE HOME CONSTRUCTOR

EASY TO BUILD

- A second generation induction Balance system with improved Vorious-Tone detector
- Designed by professionals for easy assembly by amateurs but with very good performance
- Top search costs are fully assembled and adjusted for you

Uses include:
- Treasure hunting — it’s amazing what you can find in the garden or on the beach
- Finding lost metallic items.
- Loching waterways and cables under floorboards or in walls.
- Checking old timber for nails before cutting, etc. etc. etc.

KIT - COMPLETE WITH PRE-ASSEMBLED SEARCH COILS

£16.50

PLUS £1-26+VAT ASSEMBLED & TESTED

£22.50

PLUS £1-30+VAT

Communication Measurement Ltd
15 MALLINSON OVAL, HARRARGATE YORKS
BACK IN STOCK—CREED 7B TELEPRINTERS

THE CHEAPEST WAY OF GETTING A FULL ALPHA/NUMERIC PRINTOUT FROM YOUR MICRO

Large Ministry purchases enables us to offer these at £25 each

In good working condition. Requires 24 Volts DC. Requires ASC11/BAUDOT converter for coupling to your micro processor. These units are Processor tested before dispatch. Circuits included. Adequately packed to guarantee safe arrival for £25.

MARCONI VALVE VOLTMETER
TF4205 £15 ea

NEW STOCK OF EN MINISTRY GENERATOR 0-20KHz
Sinewave output. 5600 Ohm. Size 1 x 10 x 9. £3 Standard
Price £19.50

EX-MINISTRY MARCONI 10 WATTS
Multi Range Multi Impedance POWER METERS £30 each

MARCONI NOISE GENERATOR TF427/1
4 Bands 0.5, 0.10, 0.15, 0.30 Dua in large purchase now priced at £15 ea.

WATT METER £5 ea
By Ministry Oscilloscope £24.50 incl VAT £27

SOWATTOR C 21 £21.50 incl VAT £25

MARCONI SIGNAL GENERATOR 502 £95
Type TF4082 £125 incl VAT £135

MARCONI PRIOR DISTORTION FACTOR METER £95
Type TF4085 £115 incl VAT £125

PHOTOMULTIPLIER £14.4 Ea

POTENTIOMETERS £3.25 ea

RECEIVED TRIMMERS £3.25 ea

LARGE RANGE OF ELECTROSTATIC VOLT METERS £15.50 ea

DON FORGET YOUR MANUALS

TUBES £50 each

PICK-A-TRANSFORMERS 1:1 £6.50
2:1 £16.50
3:1 £20.50

PICK-A-PACK — 50 PENNY A POUND

PHOTOMULTIPLIER £14.4 Ea

POTENTIOMETERS £3.25 ea

RECEIVED TRIMMERS £3.25 ea

LARGE RANGE OF ELECTROSTATIC VOLT METERS £15.50 ea

DON FORGET YOUR MANUALS

TUBES £50 each

PICK-A-TRANSFORMERS 1:1 £6.50
2:1 £16.50
3:1 £20.50

PICK-A-PACK — 50 PENNY A POUND

TRANSISTORS / DIODES / RECTIFIERS, ETC

FURTHER STOCKS of the INTEGRATOR

NOW — FOR THE MICRO-PROCESSOR USER
A LINE PRINTER YOU CAN AFFORD

THE I.C.L. 667 BARREL PRINTER

150 lb. per line 92 character, ASCII character repertoire, format control. TTL input to harmonize and TTL outputs from chart or index indicator sensors. Standarde 240V Single Phase or twin unit. Attaches from design. Size only 29 x 29 x 12. £25

GOOD CONDITION — £65 50 each. As new £95 each. I.T. Hannover Direct Electronics advice and 13 x 29 x 12. £45 each. Can you go next year £3 25.

NOW — FOR THE MICRO-PROCESSOR USER
A LINE PRINTER YOU CAN AFFORD

THE I.C.L. 667 BARREL PRINTER

150 Ib. per line 96 characters, ASCII character repertoire, format control. TTL input to harmonize, and TTL outputs from chart or index indicator sensors. Standard 240V Single Phase or twin unit. Attaches from design. Size only 29 x 29 x 12. £25

GOOD CONDITION — £65 50 each. As new £95 each. I.T. Hannover Direct Electronics advice and 13 x 29 x 12. £45 each. Can you go next year £3 25.

NOW — FOR THE MICRO-PROCESSOR USER
A LINE PRINTER YOU CAN AFFORD

THE I.C.L. 667 BARREL PRINTER

150 Ib. per line 96 characters, ASCII character repertoire, format control. TTL input to harmonize, and TTL outputs from chart or index indicator sensors. Standard 240V Single Phase or twin unit. Attaches from design. Size only 29 x 29 x 12. £25

GOOD CONDITION — £65 50 each. As new £95 each. I.T. Hannover Direct Electronics advice and 13 x 29 x 12. £45 each. Can you go next year £3 25.

NOW — FOR THE MICRO-PROCESSOR USER
A LINE PRINTER YOU CAN AFFORD

THE I.C.L. 667 BARREL PRINTER

150 Ib. per line 96 characters, ASCII character repertoire, format control. TTL input to harmonize, and TTL outputs from chart or index indicator sensors. Standard 240V Single Phase or twin unit. Attaches from design. Size only 29 x 29 x 12. £25

GOOD CONDITION — £65 50 each. As new £95 each. I.T. Hannover Direct Electronics advice and 13 x 29 x 12. £45 each. Can you go next year £3 25.

NOW — FOR THE MICRO-PROCESSOR USER
A LINE PRINTER YOU CAN AFFORD

THE I.C.L. 667 BARREL PRINTER

150 Ib. per line 96 characters, ASCII character repertoire, format control. TTL input to harmonize, and TTL outputs from chart or index indicator sensors. Standard 240V Single Phase or twin unit. Attaches from design. Size only 29 x 29 x 12. £25

GOOD CONDITION — £65 50 each. As new £95 each. I.T. Hannover Direct Electronics advice and 13 x 29 x 12. £45 each. Can you go next year £3 25.

NOW — FOR THE MICRO-PROCESSOR USER
A LINE PRINTER YOU CAN AFFORD

THE I.C.L. 667 BARREL PRINTER

150 Ib. per line 96 characters, ASCII character repertoire, format control. TTL input to harmonize, and TTL outputs from chart or index indicator sensors. Standard 240V Single Phase or twin unit. Attaches from design. Size only 29 x 29 x 12. £25

GOOD CONDITION — £65 50 each. As new £95 each. I.T. Hannover Direct Electronics advice and 13 x 29 x 12. £45 each. Can you go next year £3 25.

NOW — FOR THE MICRO-PROCESSOR USER
A LINE PRINTER YOU CAN AFFORD

THE I.C.L. 667 BARREL PRINTER

150 Ib. per line 96 characters, ASCII character repertoire, format control. TTL input to harmonize, and TTL outputs from chart or index indicator sensors. Standard 240V Single Phase or twin unit. Attaches from design. Size only 29 x 29 x 12. £25

GOOD CONDITION — £65 50 each. As new £95 each. I.T. Hannover Direct Electronics advice and 13 x 29 x 12. £45 each. Can you go next year £3 25.
INTRODUCES VIDEOPLAY

Plays TV games with plug-in cartridges

- Fully Pal Colour Compatible -- just plugs into your aerial socket
- No batteries – runs from mains supply
- Automatic on-screen scoring & time-keeping
- Hold button freezes play action indefinitely
- Play action speed control
- Time limit selection
- Electronic sound effects
- Optional cartridges

This system can play a variety of different video games available on OPTIONAL VIDEOCART cartridges.

Up to 4 different games on each Videocraft
Two built-in games: Tennis/Hockey (no cartridges required)

Games available NOW
Cartridge 1: Noughts & crosses/Shooting Gallery/Doodle/Quadra-Doodle
Cartridge 2: Desert Fox/Shooting Gallery
Cartridge 3: Black Jack
Cartridge 4: Spitfire
Cartridge 5: Space War

AVAILABLE SOON: Backgammon, Magic Nos, Maths Quiz, Drag Strip, Maze, Baseball

Price Only £180.00 inclusive of VAT, Postage, Packing and Insurance

Demonstrations available at Videocraft, Assets House, Elverton Street, London SW1P 2QR. Tel: 01-828 2731/2/3
Now available from Kramer...

TRULY PORTABLE, CORDLESS, ELECTRONIC ALARM CLOCK

at only £19.95 inc VAT (+ £1 P&P)

LICUID CRYSTAL DISPLAY READOUTS (LCD) allow truly light weight portable clocks. The low power requirement of LCD display allow long battery life and elimination of battery transformers resulting in light compact effective style.

PORTABLE ALARM CLOCK

Use at the home, in offices and travel also would make an excellent car clock.

KRAMER & CO.

9 October Place, Hoppier Hill Road, London NW3 1EH
Tel: 01-203 2473
MAIL ORDER ONLY
For a merry musical Christmas an electronic musical door chime which can play 24 different tunes!

A complete Chroma-Chime Kit for only £18

* Handsome purpose built ABS cabinet
* Easy to build and install
* Uses Texas Instruments TMS1000 microcomputer
* Absolutely all parts supplied including IC socket
* Ready drilled and legended PCB included
* Comprehensive kit manual with full circuit details
* No previous microcomputer experience necessary
* All programming permanently retained on chip ROM
* Can be built in about 3 hours
* Runs off 2 PP3 type batteries
* Fully Guaranteed

The Chroma Chime is the world's first electronic musical door chime which uses a pre-programmed microcomputer chip to generate tunes. Instead of a boring old buzzing, dinging, the Chroma Chime will play one of its 24 well known tunes from its memory using its tiny 'brain' to all the music synthesising! Since everything is done by precise mathematics, it cannot play the notes out of tune.

The unit has comprehensive built-in controls so that you can not only select the tune of the day but the volume, tempo and envelope decay rate to change the sound according to taste.

Not only visitors to the front door will be amazed, if you like you can connect an additional push button for a back door which plays a different tune.

This kit has been carefully prepared so that practically anyone capable of neat soldering will have complete success in building it. The kit manual contains step by step constructional details together with a fault finding guide, circuit description, installation details and operational instructions all well illustrated with numerous figures and diagrams.

The Chroma Chime is exclusively designed by Chromatronics

River Way Harlow Essex

* A great introduction to the fascinating world of microcomputers
* Save pounds on normal retail price by building yourself

To CHROMATRONICS River Way Harlow Essex U.K.

Please send [] Chroma-Chime Kit IT £18.00 each

Including VAT and post and packing

PLEASE USE BLOCK CAPITALS

Name

Address

[] Cheque [] Postal Order

[] Postal Order P.O. value

[] Direct Debit

[] Credit Card

Card number

[] Visa

[] Maestro

[] Mastercard

[] American Express

[] Access

[] Barclaycard

[] Other

Signature

I.B. The Chroma-Chime is also available fully assembled price £24.95 including VAT and post and packing

Please allow 21 days for delivery

ELECTRONICS TODAY INTERNATIONAL JANUARY 1978
You can work wonders with your free time.

There’s immense satisfaction in making your own equipment. And you’ll get excellent results with Heathkit.

Every kit is absolutely complete down to the last nut and bolt. The quality is the best. And each kit has an easy to follow instruction manual that explains exactly what to do at each step.

So you enjoy assembling your kit and you finish with first-class equipment every time.

That’s why Heathkit are so successful. And that’s why the range is the biggest in the world.

It’s all in the new edition of the free Heathkit catalogue. Everything from the simplest to the most sophisticated. Alarm clocks, digital clocks, testers, transceivers and lots more – even the tools are there!

See for yourself. Send the coupon now.

NEW CATALOGUE
NEW TEST INSTRUMENTS
NEW DIGITAL BATHROOM SCALES
NEW AMATEUR RADIO EQUIPMENT
NEW AUDIO SYSTEMS AND MANY OTHER NEW ITEMS
Half Price Christmas Offer

S-DECNOLOGY
Build all the projects on the S-DeC

The perfect kit for beginners, students, professionals and all users of discrete components. This S-DeC Kit contains 1 S-DeC + control panel, 3 Blob Boards, 20 double ended leads + instruction book. S-DeC kit complete in ABS box, with component tray.

Normally £6.38
HALF PRICE OFFER £3.19 + £1.00 post and VAT

T DECOLOGY
Build projects using ICs on your T DeC

The T DeC Kit contains 1 T DeC + control panel + 16 DIL Carrier + 4 Blob Boards + components + Circuit Diagrams and step by step instructions to build Burglar Alarm, Sound Fuzz Circuit, SRF Latch, and Two Tone Synth Complete Kit with Components.

Normally £13.00
HALF PRICE OFFER £6.50 + £1.20 post & VAT

BLOB BOARD
CHRISTMAS PACK

Includes
B1G for doing Digital Electronics by Experiment
5D for doing S-DeCology
BD for doing Blob-a-Job

Normally £3.00
HALF PRICE OFFER £1.50 + 40p post and VAT

BRED-CIRCUIT BOARD
Combines versatility of Breadboard with usefulness of Blob Board

ECB2 board size 6" x 2" with 5 16 DIL Sockets
Pack of 3 boards with 15 sockets normally £3.84
ONLY £1.92 post & VAT

SOCKETS
16 DIL IC Sockets with stepped legs

Normally 20p each
Pack of 20 for only £2.00 + 35p Post and VAT

IC BREADBOARD

U DeC B Breadboard + 21 IC Blob Boards

Normally £14.00
HALF PRICE OFFER £7.00 + £1.30 post & VAT

TO MR BLOB P & B Electronics (Scotland) Ltd, 9 Radwinter Road, Saffron Walden, Essex CB11 3HU

S-DeC Kits at £3 10 each + £1.00 post & VAT
T DeC Kits at £6 60 each + £1.20 post & VAT
Blob Board packs at £1.50 each + 40p post & VAT
Bred Circuit Board + Socket packs at £1.92 each + 50p post & VAT
... Pack of 20 sockets at £2 50 + 35p post & VAT
... U DeC B + 21 off 2 IC Blob Bears at £7.60 each + £1.30 post & VAT
Complete digital clock kits
TEAK or PERSPEX CASE

EXCELLENT VALUE
GUARANTEED

<table>
<thead>
<tr>
<th>Feature</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plastic Case</td>
<td>£12.50</td>
</tr>
<tr>
<td>Teak or Perspex Case</td>
<td>£15.50</td>
</tr>
</tbody>
</table>

ALUMINIUM: Full aluminium frame. Suitable for suspension mounting. Includes all necessary brackets.

NON-ALUMINIUM: Complete kit including case. All necessary brackets. £10.00

TWO DISCOUNTS
- **Minimum Order** £10 excl VAT
- **20% OFF** on order over £50

OFFER CLOSES ON 21.1.1978

BARON
SOUTHEND HOUSE
6 GOWERS ROAD
HOYSTON, HERTS.
Phone: Hyston (0783) 47465

TECHNOMATIC LTD. (ETI)
59 SANDHURST ROAD, LONDON NW6 6QK
Tél: 01-204 4333 TELEX 922800

FIRST GRADE DEVICES by MAJOR MFRRS.

Special Xmas Offer

OF POPULAR ITEMS SELECTED FOR REGULAR REQUIREMENTS

<table>
<thead>
<tr>
<th>Texas TLI</th>
<th>CMOS</th>
<th>STAR OFFERS</th>
<th>VOLTAGE REGULATORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>7400</td>
<td>12p</td>
<td>74018 8pm DIL</td>
<td>Plastic — 70220</td>
</tr>
<tr>
<td>7402</td>
<td>12p</td>
<td>74018 8pm DIL</td>
<td>555.8pm DIL</td>
</tr>
<tr>
<td>7404</td>
<td>18p</td>
<td>74018 8pm DIL</td>
<td>723.14pm DIL</td>
</tr>
<tr>
<td>7406</td>
<td>18p</td>
<td>74018 8pm DIL</td>
<td>LM308R 103</td>
</tr>
<tr>
<td>7408</td>
<td>18p</td>
<td>74018 8pm DIL</td>
<td>T1209 LED</td>
</tr>
<tr>
<td>7410</td>
<td>12p</td>
<td>74018 8pm DIL</td>
<td>2102-2 RGM</td>
</tr>
<tr>
<td>7412</td>
<td>12p</td>
<td>74018 8pm DIL</td>
<td>100mA Positive — 7092</td>
</tr>
<tr>
<td>7414</td>
<td>12p</td>
<td>74018 8pm DIL</td>
<td>5v 12v 12V</td>
</tr>
<tr>
<td>7416</td>
<td>12p</td>
<td>74018 8pm DIL</td>
<td>FND500/507 0.6" Red CC/CA</td>
</tr>
<tr>
<td>7418</td>
<td>12p</td>
<td>74018 8pm DIL</td>
<td>T7212/222 0.5" Red CC/CA</td>
</tr>
</tbody>
</table>

MINIMUM ORDER £10 EXC VAT

DISCOUNTS
- 10% off on order over £50
- 20% off on order over £100

MAIL ORDER ONLY

TECHNOMATIC LTD. (ETI)
59 SANDHURST ROAD, LONDON NW6 6QK
Tél: 01-204 4333 TELEX 922800
PROGRESSIVE RADIO
31 CHEAPIDE
LIVERPOOL 2. 051-235 0982

AUDIBLY SUPERIOR AMPLIFICATION

HIGH DEFINITION - 'MUSICAL' - POWER AMP MODULES

* T.H.D. TYPICALLY 0.07%

@ 100W, 3kHz

★ ZERO T.H.D. (SLEW-RATE LIMIT 18V - 0)

Module size
120 x 90 x 25mm, 30g
plugs in PCB with heat
and solder resist
Ripcord
10 x 10 x 5mm

SEAS
HIGH QUALITY SPEAKER KITS
9,9,9

dr, dv, dp

Value and Reliability

ELECTRONICS TODAY INTERNATIONAL DECEMBER 1977

GREENBANK
DIGITAL CLOCK MODULES

IDEAL FOR XMAS!
1224 302E £7.95 8mm Digits
1224-7476 £11.95 16mm Digits

FEATURES: 12 hr - Reset Can also be modified
for use as 4 range times e. 24 mins + seconds, etc

KIT INCLUDES: P C B chip, displays transistors,越来越多 capacitors and instructions. Just connect 12V 500mA AC and it ticks away. (Transformer can be purchased at £2 25)

BEGINNERS NOTE: For an extra 50p (optional pay in advance) we will undertake to repair your clock whenever the fault!

PLUS

Our new CXL liquid crystal display clock quarter crystal controlled works off 110v £11 battery type of component. No PCB case or wire supplied. £25.00

FREE CATALOGUE & FURTHER DETAILS On request

TERMS: Add 5% VAT to all above prices. Postage 25p + 5% VAT = 27p

GREENBANK ELECTRONICS Dept. CK3
Grand Central Arcade
New Ferry, Wirral. Merseyside L52 8AG
Tel: 051-446 1386

SEAS
DIGITAL MEASURE MODULES

FREE CATALOGUE

CRIMSON ELECTRIK
16 ST ANDREWS STREET
FENCHURCH LONDON
TEL: 01-613 3991

NOTE OUR WWW ADDRESS

CALL IN AND SEE FOR YOURSELF

AUDIO ELECTRONICS
301 EDGWARE RD., LONDON NW1 8BN
01-724 3564 OPEN 9-6. MON-SAT.

ELECTRONICS COMPONENTS AND EQUIPMENT

IDEAL FOR XMAS!
1224 302E £7.95 8mm Digits
1224-7476 £11.95 16mm Digits

FEATURES: 12 hr - Reset Can also be modified
for use as 4 range times e. 24 mins + seconds, etc

KIT INCLUDES: P C B chip, displays transistors,越来越多 capacitors and instructions. Just connect 12V 500mA AC and it ticks away. (Transformer can be purchased at £2 25)

BEGINNERS NOTE: For an extra 50p (optional pay in advance) we will undertake to repair your clock whenever the fault!

PLUS

Our new CXL liquid crystal display clock quarter crystal controlled works off 110v £11 battery type of component. No PCB case or wire supplied. £25.00

FREE CATALOGUE & FURTHER DETAILS On request

TERMS: Add 5% VAT to all above prices. Postage 25p + 5% VAT = 27p

GREENBANK ELECTRONICS Dept. CK3
Grand Central Arcade
New Ferry, Wirral. Merseyside L52 8AG
Tel: 051-446 1386

SEAS
DIGITAL MEASURE MODULES

FREE CATALOGUE

CRIMSON ELECTRIK
16 ST ANDREWS STREET
FENCHURCH LONDON
TEL: 01-613 3991

NOTE OUR WWW ADDRESS

CALL IN AND SEE FOR YOURSELF

AUDIO ELECTRONICS
301 EDGWARE RD., LONDON NW1 8BN
01-724 3564 OPEN 9-6. MON-SAT.

ELECTRONICS COMPONENTS AND EQUIPMENT

IDEAL FOR XMAS!
1224 302E £7.95 8mm Digits
1224-7476 £11.95 16mm Digits

FEATURES: 12 hr - Reset Can also be modified
for use as 4 range times e. 24 mins + seconds, etc

KIT INCLUDES: P C B chip, displays transistors,越来越多 capacitors and instructions. Just connect 12V 500mA AC and it ticks away. (Transformer can be purchased at £2 25)

BEGINNERS NOTE: For an extra 50p (optional pay in advance) we will undertake to repair your clock whenever the fault!

PLUS

Our new CXL liquid crystal display clock quarter crystal controlled works off 110v £11 battery type of component. No PCB case or wire supplied. £25.00

FREE CATALOGUE & FURTHER DETAILS On request

TERMS: Add 5% VAT to all above prices. Postage 25p + 5% VAT = 27p

GREENBANK ELECTRONICS Dept. CK3
Grand Central Arcade
New Ferry, Wirral. Merseyside L52 8AG
Tel: 051-446 1386

SEAS
DIGITAL MEASURE MODULES

FREE CATALOGUE

CRIMSON ELECTRIK
16 ST ANDREWS STREET
FENCHURCH LONDON
TEL: 01-613 3991

NOTE OUR WWW ADDRESS

CALL IN AND SEE FOR YOURSELF

AUDIO ELECTRONICS
301 EDGWARE RD., LONDON NW1 8BN
01-724 3564 OPEN 9-6. MON-SAT.

ELECTRONICS COMPONENTS AND EQUIPMENT
TELETEXT WITHOUT TEARS

- *Who has supplied three times as many Teletext kits as any other company?*
- *Who can offer a full Technical back up service?*
- *Who can supply the FULL KIT ex stock?*
- *Who can offer such a competitive price?*
- *Who can offer remote corded cordless keyboard control?*

Call videocraft

ETCH RESIST TRANSFER KIT SIZE 1.1

Complete kit 13 sheets 6in x 4 3/4in £25.00 with all symbols for direct projection on P.C. board. Individual sheets 25p each (1) Mixed Symbols (2) Lines 0.05 (3) Pads (4) Fish Pales and Connectors (5) A Lead and (6) 3 Lead and Pads (6) OILS (7) BENDS 50, 90 and 135 (8) 8-10-12 T.C. Bars (9) Edge Connectors (11) Lines (12) Edges Connectors (13) Lines (14) Lines (15) Lines (16) Lines (17) Lines (18) Lines (19) Lines (20) Lines (21) Lines (22) Lines (23) Lines (24) Lines (25) Lines (26) Lines (27) Lines (28) Lines (29) Lines (30) Lines (31) Lines (32) Lines (33) Lines (34) Lines (35) Lines (36) Lines (37) Lines (38) Lines (39) Lines (40) Lines (41) Lines (42) Lines (43) Lines (44) Lines (45) Lines (46) Lines (47) Lines (48) Lines (49) Lines (50) Lines (51) Lines (52) Lines (53) Lines (54) Lines (55) Lines (56) Lines (57) Lines (58) Lines (59) Lines (60) Lines (61) Lines (62) Lines (63) Lines (64) Lines (65) Lines (66) Lines (67) Lines (68) Lines (69) Lines (70) Lines (71) Lines (72) Lines (73) Lines (74) Lines (75) Lines (76) Lines (77) Lines (78) Lines (79) Lines (80) Lines (81) Lines (82) Lines (83) Lines (84) Lines (85) Lines (86) Lines (87) Lines (88) Lines (89) Lines (90) Lines (91) Lines (92) Lines (93) Lines (94) Lines (95) Lines (96) Lines (97) Lines (98) Lines (99) Lines (100) Lines

CIRCUIT LAYOUT TRANSFERS SIZE 2.1

One sheet 12in x 18in giving all transf. as in each sheet from No. 1 to No. 10 inclusive makes circuit layout easy. Black only. Price £1

CIRCUIT LAYOUT TRANSFERS SIZE 2.1

One sheet 12in x 18in giving all transf. as in each sheet from No. 1 to No. 10 inclusive makes circuit layout easy. Black only. Price £1

FRONT AND REAR PANEL TRANSFER SIGNS

All standard symbols and wording. Over 250 symbols signs and words also available in reverse for per. $2. Choice of colour red blue black or white. Size of sheet 12in x 18in. Price £1

GRAPHIC TRANSFERS WITH SPACER ACCESSORIES

Available also in reverse lettering. Colours red blue black or white. Each sheet 12in x 18in contains capitals lower case and numerals 1/4in to 1/2in. Price £1

GRAPHIC TRANSFERS 1/4in WITH SPACER ACCESSORIES

Comprising 10 sheets 6in x 4 3/4in capitals lower case and numerals from working only red blue black or white. Complete kit £2.50

GRAPHIC TRANSFERS 1/16in IDEAL FOR P.C.B.

Identification with reverse Red blue black or white. Capitals and numerals only. Not available in reverse. 4 sheets 6in x 4 3/4in £1

Special TRANSLUCENT ARTWORK PLASTIC

Ideal for graphic or circuit layout. Size 12in x 9in. 10 sheets for £1

PRINTED CIRCUIT BOARD

Clipped unmarked. Size 10 1/2in x 4 1/2in. 4 pieces for £1 includes package.

SILK SCREENS

Made to customer's requirements. Print your own P.C. boards. Send details for quote.

All orders dispatched promptly.

All post and VAT paid.

Ex UK and 50p to air mail.

Shop and Trade enquiries welcome.

Special Transfers made to order.

E R NICHOLLS P.C.B. TRANSFERS

DEPT PE/10

46 LUNFIELD ROAD

STOCKPORT. CH62 6QO 061-480 2179
Hi-Fi Stereo at prices everyone can afford

Our finger is right on the button when it comes to SCIENTIFIC PRODUCTS at the right price

THE NEW DECIIMO CLOCK RADIO — VHF/MW

NEW RANGE

WORLD PATHFINDER

NEW DECIMO CLOCK RADIO — VHF/MW

Hi-Fi Stereo at prices everyone can afford

Our finger is right on the button when it comes to SCIENTIFIC PRODUCTS at the right price

NEW DECIMO CLOCK RADIO — VHF/MW

NEW RANGE

WORLD PATHFINDER

Hi-Fi Stereo at prices everyone can afford

Our finger is right on the button when it comes to SCIENTIFIC PRODUCTS at the right price

NEW DECIMO CLOCK RADIO — VHF/MW

NEW RANGE

WORLD PATHFINDER

Hi-Fi Stereo at prices everyone can afford

Our finger is right on the button when it comes to SCIENTIFIC PRODUCTS at the right price

NEW DECIMO CLOCK RADIO — VHF/MW

NEW RANGE

WORLD PATHFINDER

Hi-Fi Stereo at prices everyone can afford

Our finger is right on the button when it comes to SCIENTIFIC PRODUCTS at the right price

NEW DECIMO CLOCK RADIO — VHF/MW

NEW RANGE

WORLD PATHFINDER

Hi-Fi Stereo at prices everyone can afford

Our finger is right on the button when it comes to SCIENTIFIC PRODUCTS at the right price

NEW DECIMO CLOCK RADIO — VHF/MW

NEW RANGE

WORLD PATHFINDER

Hi-Fi Stereo at prices everyone can afford

Our finger is right on the button when it comes to SCIENTIFIC PRODUCTS at the right price

NEW DECIMO CLOCK RADIO — VHF/MW

NEW RANGE

WORLD PATHFINDER

Hi-Fi Stereo at prices everyone can afford

Our finger is right on the button when it comes to SCIENTIFIC PRODUCTS at the right price

NEW DECIMO CLOCK RADIO — VHF/MW

NEW RANGE

WORLD PATHFINDER

Hi-Fi Stereo at prices everyone can afford

Our finger is right on the button when it comes to SCIENTIFIC PRODUCTS at the right price

NEW DECIMO CLOCK RADIO — VHF/MW

NEW RANGE

WORLD PATHFINDER

Hi-Fi Stereo at prices everyone can afford

Our finger is right on the button when it comes to SCIENTIFIC PRODUCTS at the right price

NEW DECIMO CLOCK RADIO — VHF/MW

NEW RANGE

WORLD PATHFINDER

Hi-Fi Stereo at prices everyone can afford

Our finger is right on the button when it comes to SCIENTIFIC PRODUCTS at the right price

NEW DECIMO CLOCK RADIO — VHF/MW

NEW RANGE

WORLD PATHFINDER

Hi-Fi Stereo at prices everyone can afford

Our finger is right on the button when it comes to SCIENTIFIC PRODUCTS at the right price

NEW DECIMO CLOCK RADIO — VHF/MW

NEW RANGE

WORLD PATHFINDER

Hi-Fi Stereo at prices everyone can afford

Our finger is right on the button when it comes to SCIENTIFIC PRODUCTS at the right price

NEW DECIMO CLOCK RADIO — VHF/MW

NEW RANGE

WORLD PATHFINDER

Hi-Fi Stereo at prices everyone can afford

Our finger is right on the button when it comes to SCIENTIFIC PRODUCTS at the right price

NEW DECIMO CLOCK RADIO — VHF/MW

NEW RANGE

WORLD PATHFINDER

Hi-Fi Stereo at prices everyone can afford

Our finger is right on the button when it comes to SCIENTIFIC PRODUCTS at the right price

NEW DECIMO CLOCK RADIO — VHF/MW

NEW RANGE

WORLD PATHFINDER

Hi-Fi Stereo at prices everyone can afford

Our finger is right on the button when it comes to SCIENTIFIC PRODUCTS at the right price

NEW DECIMO CLOCK RADIO — VHF/MW

NEW RANGE

WORLD PATHFINDER

Hi-Fi Stereo at prices everyone can afford
MINI-ADS

IS YOUR CHESS UP TO OUR COMPUTER'S CHALLENGE?

COMPUTERISED "CHESS CHALLENGER"

-Microprocessor Brain Power

A chessboard with a micro-computer built into it. You can compete against the remote computer at this challenging game of skill. BASIC code is programmed so that 1,000 moves can be played, a good idea if you fancy a quick game when you are absent. A good that will actually be a game for two will be played in the future.

The computer has been specifically programmed with some 1,000 opening moves (the sort of game a good chess player would have played in a game of chess) and will actually surprise you if you get the first move right. The computer will only play games of 100 moves or less. If you win, you will automatically have been defeated in 20 to 30 moves. Of the 10 moves, the computer will be unable to checkmate you in 10 moves. The computer will only play games of 100 moves or less. If you win, you will automatically have won the game. Send 15p for catalogue.

RAMAR CONSTRUCTOR SERVICES

MASONS ROAD
STRATFORD-ON-AVON
WARWICKS. Tel. 4878

MEMORIES! MEMORIES!

- **INTEL 2102 SRAM** £1.79
- **INTEL 1702A EPRCM** 770p
- Texas TIL311 Hex Display (O-F) on chip Latch and decoder for BCD input 800p
- 16 pin DIL Skts 1.65
- 24 pin DIL Skts 3.60

PRINTED CIRCUITS and HARDWARE

- Comprehensive range Constructors Hardware
- Selected range of popular components
- Full range of ETI printed circuit boards normally stock for same day dispatch at competitive prices
- P.C. Boards to individual designs
- Resist coated epoxy glass laminate for the dry iron with full processing instructions (no unusual chemicals required)

Send 15p for catalogue.

RAMAR CONSTRUCTOR SERVICES

MASONS ROAD
STRATFORD-ON-AVON
WARWICKS. Tel. 4878

THE BRITISH AMATEUR ELECTRONICS CLUB

For all interested in electronics. Four newsletter per year with help and special offers for members. Major projects sponsored by the B.A.E.C. designed and made by members, sponsored by the B.A.E.C. Major projects. Membership fee for 1978 £3.50 U.K., £4.50 overseas. Send £5.50 airmail payable in sterling. SAE for details and application form to the Hon. Sec. J. G. Margretts, 42 Old Vicarage Green, Keynham, Bristol.

STRAWTHARD SECURITY

39 AND 45 BARGAIN

BARGAIN Secure Keyhole
BRONZEBRONZE
PAKIN CRAMER LON
PAKIN CRAMER 9C2000
PAKIN CRAMER 3,900
PAKIN CRAMER 1,900

SECURITY PRODUCTS

Developed for the Do-it-yourself market. Fully modified for 16 instructions supplied as required.

- **Main Alarm** £9.50
- **Re-Charge** £3.50
- **Pressure Mats** £1.70
- **Smoke Detector** 80p
- **Bell Starters** £5.00
- **Bell Controls** £5.00
- **Voice Stylebell** £2.50
- **IR Block** £15.00
- **2 Door Locks** £2.50

LED DISPLAY O1707 ... 70p

- Vero cores 60 x 105 x 100mm £2.50
- Acrylic block core 105 x 100 x 100mm £2.60
- Metal instrument case 218 x 205 x 60 £15.00
- Metal Instrument case 210 x 145 x 180 £15.00
- £15.00

ADD P&P per order

+ 30p P&P per order

Bicron Display £1.90

TAMRONIK LIMITED

217 TOLL END ROAD, TIPTON, WEST MIDLANDS DY4 0HW

LED DISPLAY

- **70p**
- **£1.90**
- **£2.50**
- **£2.60**

METAL ELECTRONICS & TIME CENTRE

- **£1.90**
- **£2.50**
- **£2.60**
- **£2.90**

P.C.B.s

- **Standard or FR Garam** 16 microcomputer P.C.B.s for ETI projects supplied tinned and drilled.
- **ETI 810 17p**
- **566 IVY 153p**
- **ETI 812 77p**
- **568 VDU 80 Mod 161p**
- **568 VDU b 80 Mod 163p**
- **568 Mainframe PSU Compendia 154p**
- **568 CPU 21695 Prover alarm 165p**

PLUS Special Offers now valid till Dec. 1, 1977

Item 1: Full set 568 PCBs (VDU a & b, PSU) only £6.75. Item 2: ETI 810 IVY Game, £1.00 each Item 3: ETI 810 4 x 40 PSU, £1.10 per pair.

P.C.B.s also available for this month's ETI projects. Send SAE for full list of available boards.
Ertl.
Electronic Calculators Scientific

Microbits 1702A Pro one of the best in the world. A 1.2 watt power supply, 16 function + input/output and much more. £139.95.

Send us your ERASABLE PROMS for erasing and reprogramming. 1012 -3 2764 -5 SN74H15 16 including custom programming. PROMIC ELECTRONICS 10 Baker Street, London, W1.

Valves

CROFTON ELECTRONICS LIMITED
38 Grosvenor Road Tivckenham Middlesex TWI 4AD. Tel: 01-691 1923.

DE LUXE STAB POWER SUPPLY MODE. Offer edgy output 9-30v at 0-2 amp. Adj current limit, overload sensor, s% proof. No fuses (require a 25v 22uf). £5.99 (inc data). K. Lawrence, 1 Regent Road, Ilkley, W. Yorks. (Free 741 IC + Data)

Carbon Film Resistors 5% Essens 1/2W, 1/4W, 1/2W. Mixed to your choice. 100 for Sop Electrolytics 50/15v 1p. 1000 for Sop Electrolytics 50/15v 1p. 1000 for Sop Electrolytics 50/15v 1p.

Carbonsfilm Resistors 5% Essens 1/2W, 1/4W, 1/2W. Mixed to your choice. 100 for Sop Electrolytics 50/15v 1p. 1000 for Sop Electrolytics 50/15v 1p. 1000 for Sop Electrolytics 50/15v 1p.

Main's Transformers 120v 0.2v 100mA Secondary £1.30 each U11 equivalent Rechargeable Ni CAD Cells 90p each PCB's with long lead components. Our selection £1.50 Add 20p p @ 6p. R. Jones Supplies, 3 Centre Vale Close, Littleborough, Lancs. OL15 9EE.

Software for System 68. The Sciflo 6600 Cookbook includes routines for floating point arithmatic Input/output and much more. £10 paper or £15 for SA for details and new list which includes a 6800 Assembler K. Roche 20 Stocker Close Barking Close.

Software for System 68. The Sciflo 6600 Cookbook includes routines for floating point arithmatic Input/output and much more. £10 paper or £15 for SA for details and new list which includes a 6800 Assembler K. Roche 20 Stocker Close Barking Close.

5000 PROMS PROGRAMMED from your hex listing. £5.00A - £25. From paper matrix tape £1. Other types available on request. Our Guide to SC/MP programming - introduction techniques and many examples over 50 pages £3.50 Kentron Electronics 65 Warren Rise, Frimley, Camberley, Surrey 0276 21612.

Save on Watches

Black Noryl mineral glass 11 function Chronograph £37.95.

Save on Watches

Black Noryl mineral glass 11 function Chronograph £37.95.

Save on Watches

Black Noryl mineral glass 11 function Chronograph £37.95.

Save on Watches

Black Noryl mineral glass 11 function Chronograph £37.95.
SPECIAL OFFER FOR READERS

£18.50
INC. VAT
+ £1.45 p&p & I

- AM/FM Radio Alarm Clock (AC 220-240V only)
- 24-hour Clock
- High quality white ABS Case
- Push-button Mode Selection
- Sleep delay Control
- Illuminated Clock and Radio Scale
- Alarm with Buzzer and/or Music
- All Black Control Knobs and Brown Buttons
- Complied with BS415 (1972) Safety Requirements
- Each Unit fully inspected before despatch
- Guaranteed for one year

SPECIAL OFFER
FOR READERS

AM /FM Radio Alarm Clock (AC 220-240V only)
24-hour Clock
High quality white ABS Case
Push-button Mode Selection
Sleep delay Control
Illuminated Clock and Radio Scale
Alarm with Buzzer and/or Music
All Black Control Knobs and Brown Buttons
Complied with BS415 (1972) Safety Requirements
Each Unit fully inspected before despatch
Guaranteed for one year

D&D POWER SUPPLY CO. LTD.
79 LOWFIELD STREET, DARTFORD, KENT
Please allow 10-14 days for delivery
Callers welcome Monday-Friday 9-5, Saturday 9-1

£13.75
D&D POWER SUPPLY CO. LTD.
79 LOWFIELD STREET, DARTFORD, KENT
Please allow 10-14 days for delivery
Callers welcome Monday-Friday 9-5, Saturday 9-1

ELECTRONICS TODAY INTERNATIONAL — DECEMBER 1977
Still soldering on?

You may be that rare person who gets his circuit designs right first time, everytime.
But it's much more likely that you experiment to see what works, and what doesn't.
In which case you ought to know about Bandridge Decs.

Bandridge Decs enable you to try almost any number of possible circuits, without having to use your soldering iron.
You simply push the wires of your circuit components into the holes in the Dec to make a perfect solderless contact.
Which means that you can use the components over and over again.
And, of course, we don't have to tell you how much time it will save you.

There are four Decs available to suit every possible circuitry requirement.
From simple discrete work to 2xDIL or 4xTOS Station work.
And for larger or more complex circuits you can use any number of Decs linked together.
Eventually of course, you'll need that soldering iron to make up the permanent version of your circuit design.
And when you do you'll probably want to use one of the matching Bandridge Blob boards, to make your job that much easier.
But until then we suggest you put your soldering iron aside and get yourself a Bandridge Dec.

Bandridge Decs – Available at all good component stockists, where you see the Bandridge sign.
AUDIO MIXER
A superb stereo audio mixer. It can be equipped with up to 16 input modules of your choice and its performance matches that of the very best tape-recorders and hi-fi equipment. It meets the requirements of professional recording studios, FM radio stations, concert halls and theatres. Full construction details in our catalogue. A components schedule is available on request.

18-CHANNEL STEREO GRAPHIC EQUALISER
A new design with no difficult coils to wind, but a specification that puts it in the top-flight Hi-Fi class. All this for less than £70 including fully punched and printed metalwork and woodwork. Send for our component schedule now. Full construction details price 40p.

SWITCHES
We stock a wide range of switches including a really low-priced high-quality interlocking push-pull switch system which is extremely versatile. We've got toggle switches, slide switches, push switches, rotary switches - there are dozens to choose from. But it's only a very small part of our fantastic range.

PEDAL UNIT
A completely self-contained pedal unit. 13-note, 2-octave range, 4 organ slots. It can be added to any organ. A really unusual extra is the bass guitar stop which uses four envelope shapers to give a real bass guitar sound. A must for the solo guitarist. Full construction details in our catalogue - post the coupon below now!

SYNTHEISISER
The International 4600 Synthesiser. A very comprehensive unit. Over 400 sold. We stock all the parts costing less than £500 including fully punched and printed metalwork and a smart leak cabinet. Far less than half what you'd pay for a ready-made synthesiser of equal quality. Specification on request. Full construction details in our construction book £1.50.

WHO SAYS THE MAPLIN CATALOGUE'S WORTH HAVING??
If our price list or prices list does not contain just about everything the DIY enthusiast might need, you can say it is very comprehensive catalogue which contains not only everything the DIY enthusiast might need, but also all the parts costing less than £500 including fully punched and printed metalwork and a smart leak cabinet. Far less than half what you'd pay for a ready-made synthesisers of equal quality. Specification on request. Full construction details in our construction book £1.50.

OUR BI-MONTHLY NEWSLETTER keeps you up to date with latest guaranteed prices - our latest special offers - details of new projects and new lines. Send 30p for the next six issues [5p discount voucher with each copy].