
 W

 Esctrancs in

 Esctrancs in Surreying

 Surreying}

PROJECTS

CMOS HOUSE ALARM HAMMER THROW GAME RACE TRACK GAME DRUNKEN SAILOR PUZZLE SYSTEM 68 -CUTS CARD

16 Bulding and installing to protect
29 Led into a throwaway
36 Place yer bets here
46 Can you solve it - sober?
61 Getting a bit taped

NEWS

NEWS DIGEST 11 Electronics news travels fast here
OATA SHEET 53 A new famly of bi-fet op-amps AUDIOPHILE 70 Class E sprays and a super-fa cassette MICROFILE 74 The MPU mans news pages You don thave to be sirong but you have to be quick - Hammer Throw game $p 29$

Nostaigia trm $77-$ but you don t
nava to be ofd - -50
INFORMATION

WANT TO WORK FOR ETI	$\mathbf{1 4}$	Two lobs - one here one down under
ETI PRINTS	$\mathbf{1 5}$	You asked it - and now you ve got it
SUBSCRIPTIONS	$\mathbf{3 9}$	Give yourself a treat!
NEXT MONTHS ETI	$\mathbf{4 4}$	Freview of February ETI
ELECTRONICS TOMORROW	$\mathbf{4 8}$	Our best special yet - got yours?
SPECIALS	$\mathbf{5 2}$	All our wares on display
ETI CLOCK	$\mathbf{5 5}$	Time to keep time
TECHNICAL EOOK SERVICE	$\mathbf{6 4}$	Books from ETI
PANEL TRANSFERS	$\mathbf{7 5}$	Fimsh it off professionally

INTERNATIONAL UEDIFIONS

: \& Edita
Grahram widemant

Looking around electronicaly Readers make their points How private is private? Down tube lane at the V\&A Fun and games with calculators Flipping and flopping
w you ve got it
Give yourself a treat!
44 Preview of February ETI
Our best special yet - got yours?
All our wares on display
Time to keep time
Fimish it off professionally

[^0]
PAKS - PARTS - AUDIO MODULES

K
 High quality modules for stereo, mono and other audio equipment.

$£ 20.45$

Fitted with Phase Lock-loop Decoder

The 450 Tuner provides anstant pragram selection at the touch of a button enturing accurate tuming of 4 pre-selecteo stations any of which may be altered as often as you chnose by simply changing the settings of the pre-set contros Used wit your exising audio equisment or with the BI-KITS STEREG 30 or the MK60 Kit etc Altematively the P5 12 can the used it no suital e supply is available logether with the Trarsformer 7538
The $\$ 450$ is supplied fully buitt lested and aligned The unit is

STERED PRE-AMPLIFIER

 A top quality slereo pre-ampliti=1 push bure canimel unlt the six sides a cho ce of inplis logethei wath puo realiy effecive filters for high ama low frequencies plus tape output
MK 60 AUDIO KIT Comprasing $2 \times$ AL6O's $\dagger \times$ SPM80 ETM80 $1 \times$ PA 1001 front panel and knobs 1 Kit of psits to include ont off switch neon indicator. steres headphone sockete plus insiruction booklet COMPLETE PRICE 53500 plus 85 p pos 1 ag . TEAK 60 AUD 10 KIT Comprising Teak veneered cabinet
 parts include diuminium chassis hoatank and front panel bracket plus back par. and app opriate sock ect KIT PRIGE $\{1325$ plus $85 p$
postage

Frequensy Hesponse + 1dB 20 H
 Rasclo Tuner 100 my into Radio Tuner 100 mv inio Mactraticf:
Magnetic
SOK alma
50k olrma
1 de imm 20 Hz to 20 AA

 SPECIFICATION bintrs

- EET Input Siaga
* UARI-CAP diode turifla - Swatchad AFC
* Multi turŕr pie-sets - LED Stereo Indicator

Typical Specification Sensitivity $3 u$ valts Sterea separation 30 ofb Supply requred 2030 v at 90 Ma max.

PA 10 DUR PRICE £13.75

10w R.M.S. AUDIO AMPLIFIER MODULE
The ALSOA Is a tigh ouality autio umpifior module repiacting our AL20 \& 30 The versatilly of ins degign mekes it ideat for record plavers tape recorders stereo atmps, cassette and cardidge players A power supply is
available compising a PS 12 together with a transtormei T538 also tor stereo the pre-amp PA12

 30

Enfoy the quality of a magnetic cartridge with your existing cetamic equipment using the new MP A 30, a high quality pre-amplifier enabling magnetuc cartridges to be used where facilities it ist prov the use of ceramic cantridge
ith a standard in input socket for ease of connection £2.85 output

- Lamanerins $90 \times 54 \times 27 \mathrm{~mm}$
 TEAK CASE ¢5.45 plus $70 \rho \beta$ o p

The Stereo 30 eamprises a complot stereo pre amp:tin, power amplifiers and powe bupply. This. with orily the addution of a transformer or overwind will prociuce a ligh qualiay audio unit suitable tor use with a wide range of mputs:e hegh quality ceramic pick-up. sapethk of srodereo tape deck etc Simple to uni is capeble cal Statbled with fil inst uctions black front pancl knoos, man swich tuse and fuse holder ane unversal mour)ting biackets enabing to we nister ofla a record pintr cabinets of your own construcinon of the cabinet atablable ideal for the beginner or the advanced constructar s.ho requires Hi_{1} Fi performence with a minimiurn ut installation difficulty lear be installed in 30 mins

TRANSFORMER E3 25 plus $50 p p$ \& p NEW PA1Z Stereo Pra.Amplifier cem-
pletely rechesigned
 Al30A Ampliftil Modules. Fantures inciude onfolf valumby Balance, ERFK

AL 60

25 Watts [RMS]

* Max Heat Sink temp 90C. * Frequency response 20 Hz to 100 KHz * Distortion better than 0.1 af 1 KHz * Supply voltage $\$ 5-50 v$ * Thermal Feedback * Latest Design Imprôver̦ients * Load - 3.4.8, or 16 ohms * Signal to noise ratio 80db * Overall size fi3mm 105 mm 13 mm .

Stahilised Power Supply Type SPM80

SPM BO is espectally designed to power 2 of the AL60 Armplitiers up to 15 waits (\mathcal{F} M S) per channel simultaneously w th the add tion of the Mains Transtormer BMT80, the bint will prowide outp is ol uD to 1 5A at 35 V Size 63 mm 105 mam 30 mm Incorporating short crecuit protection
Transformer BMT80 $£ 540+86 p$ postage

Input voltage $15-20 \mathrm{v}$ A C Ourput voltage 22-30v Output current 800 mA Max $\mathrm{Size} 50 \mathrm{~mm} \times 43 \mathrm{~mm} \times 26 \mathrm{~mm}$. E1. 3 Transformer T538 E3.20

GREENWELD 443 Millbrook Foaed Scutharmpton SO^ DHx Tel:[DTOS] 772501

BUY A COMPLETE RANGE OF COMPONENTS AND THESE PACKS WHLL HELP YOU

- FAVe ab Tiderino viringt Ti meveras foe aivit to cantior shons to +1/an!	
	taw In MONEY - Burs dupust wreh adthert
	 -7
	VACKS GOMTAIMRJ is A C GQMND $16 \cdot 5$

635

wosi Mo zer ar zeparis's 15 meh of

K307Ewioly vocke Jo hosh aq

nops Eweltact rarig as Nive
oesith

E300

verooffeuts
F<

${ }_{53}+\mathrm{L}_{4} \mathrm{C}$
かりद 1 c31

1977/8 CATALOGUE

4B BIG pages packed wieh over 4000 items maris of them illustreted Discount vouchers werih 50p Proce 30p + 150 pion

 minamuk onme

 Lomen $508101+152$ 20001 18 kerit Aukyicomber nosd eraydan

Primutiank electronic ignition kits
 of 5 gysTems TETtEDEy PaNu moreluc:

Smoother running Instant all weather starting Continual peak performance Langer coll/battery/plug hite
Improydd acceleration/top speeds Optimum fuel consumption
 (6) $5+4$

 Hiynnad
THE KT DOMFPISES EVERYTH NG NEEDED

CPT OKAL EXTFAS

GALLEFS WELGOME
Improve performance \& economy NOW

PFACEI INEL WDE WAT, POST ANDPACKING

POST TODAY!

Guick instaflation Wengine modiffcalion Mequired

Name

Adderss

GREENWELD 443 Millbrook Foaed Scutharmpton SO^ DHx Tel:[DTOS] 772501

BUY A COMPLETE RANGE OF COMPONENTS AND THESE PACKS WHLL HELP YOU

- FAVe ab Tiderino viringt Ti meveras foe aivit to cantior shons to +1/an!	
	taw In MONEY - Burs dupust wreh adthert
	 -7
	VACKS GOMTAIMRJ is A C GQMND $16 \cdot 5$

635

wosi Mo zer ar zeparis's 15 meh of

K307Ewioly vocke Jo hosh aq

nops Eweltact rarig as Nive
oesith

E300

verooffeuts
F<

${ }_{53}+\mathrm{L}_{4} \mathrm{C}$
かりद 1 c31

1977/8 CATALOGUE

4B BIG pages packed wieh over 4000 items maris of them illustreted Discount vouchers werih 50p Proce 30p + 150 pion

 minamuk onme

 Lomen $508101+152$ 20001 18 kerit Aukyicomber nosd eraydan

Primutiank electronic ignition kits
 of 5 gysTems TETtEDEy PaNu moreluc:

Smoother running Instant all weather starting Continual peak performance Langer coll/battery/plug hite
Improydd acceleration/top speeds Optimum fuel consumption
 (6) $5+4$

 Hiynnad
THE KT DOMFPISES EVERYTH NG NEEDED

CPT OKAL EXTFAS

GALLEFS WELGOME
Improve performance \& economy NOW

PFACEI INEL WDE WAT, POST ANDPACKING

POST TODAY!

Guick instaflation Wengine modiffcalion Mequired

Name

Adderss

THE MOST COMPREHENSIVE RANGE OF TUNER MODULES EVER DISPLAYED

HF 7948 FRONT END

TECHNICAL CHARACTEATSTICS
Output toiminal lor digital !roquency moker Antenna impertacce 7510300 Ohms Frequency ranges $8750104 \mathrm{MaH}_{t}$ or to 108 MAHz Sensituity G ratio 75 kHz devialion Intermplulaten EODB/Imeps rexection Bodg Tuning valtage 1V to 11 V Totat gain 3306 Ir-igmestain Ficcuercy 107 MHz Pawer supply voltage $+15 y$ Fovegr somsumption 15 mA Dimensions $100 \times 50 \mathrm{~mm}$

TEGHNGLOGY

Ooubles ded eporr printed Gircult board with plated through hales Dual gote elfaci thensustors Sulversd conls

FI 2846
IF AMP AND DECODER

TECHFICAL CHAAAGTERISTICS
Incermedialo Frequency 107 MH 2 if Eancwedrh 280 kHz Signal to nouse rsho TOdB with 1 mu inpui Distartion mona 01% stereo du 3% Sensitisuly 30 D 'u up to the 30. 1 mir Channo separation 4048 at 1kHz Fass band 20 to 15000 Hz Repociom 0138 WHz growlor than 55 dE Am reftemon $46 d 8$ Do emphera 50 ta $75_{H}=$ pilat captura al $1 \mathrm{EHH}_{i} \rightarrow$ 1\%i Channal matching whthen bass than (1) 3de Onplut impedance 10 Ohms Dulpul woitage 500 m 't Phase lackert lobe slereo decoser Outivut for LED Vh mever Nult indirator Outpurs Ior AGC AFC and orler statesn mutrizg Consumplion 55 ma LEO; 6aing wished 100 mA LED3 Huminstad Fower supply 1 EV Dmens ons $155 \times 36 \mathrm{rm}$
CIACUIT TECHNOLOGY
Epeny printed cricut boarth Monol thac integrated crecuris ceramic ficer

ALS 1500
STABILESED POWER SUPPLY

£2.53
Inc VAT PGPR

FECHNICAL CHARACTERISTACS-
 50L.mA. Ther nugt copiliciem less than 1 mb C. 15V power apply ion motiules HF 794s and Fizhas Supply protected agansi shon bircull dpowar and ristrent pratactams Dmmenscons $65 \times 55 \mathrm{~mm}$

TECHNOLOGY
Doulye sced epoxy circuit tocaraf Mandob the Thot atad circuit

OPTOELECTRONIC OPTIONS

Inc VAT PGT
ILLUMINATED POINTER
Staben lindar

FREQUENCY METER
Dugical desploy of recenead sut con frequeracy

LED VU-METER
5thuon sirengit inticalor

A NEW SUPER DRIL from PREHIGIOU PETITE

An Extra powerful pletinay=il ho fir-TH
 need a shisil Inw uoltan awcazr onll wint for cascoly :.. Cot drew all metal stant for grative stowitivy
PZ Drall cic 50 co $86=$
$\mathbf{5 2 5}$ tand E1850 op 106 p

WIRELESS TIME: 12: $\exists 4$

 atarm urdi, operitang from 90 or 60 HE owe ing ant offering ull the leaiuras you wousd expeat Hours mainutes display in laryht 05 lods With opignal seconds cluxp and anoced alatms fast zind stan tetting

 and requires pist $175=375$ w 077 1Ats! |Ex clenspormar

 \qquad

DETECINOWLEDGEY

Natal locater puinciples and prasitac, insluding some of the fants and informatian mantulaturels of Cl oी + detectars weuld wather yon didn I hnaw it 00 fich The Etonic Fatret 4000 ₹ $\forall C 0$ mptal iocator bsees are I he PPI

COMPONENTS

 $84 n^{2} 6 \mathrm{t}$

 UAT 15 çara st $12 . / 2 \%$ caspol whera otharwisg ihowill'g\%. Fin now

 safalale to gallers st our hith enty to qut fo premites

ambit INTERNATIONAL

Hurber 2 Greshara Road Bramwod Esses CN14 4 HN

THE
 METAC DIGITAL CLOCKS

ह

KIT PRICE $£ 9.75$ Apady drilorl PCE to accapt cemponanis
 designed th anginests using the robl moutra tecriopuluts and

DIGITAL CAR GLOCK Quanz Ceysicl comelled

£ 19.50

THE BLACK WATCH 	GRUEN DRESS WATGH for that saectal occasion Matal 300 tute Buck/rax £23.00	BULER LCO DUARTZ CHIRONDGAAPH

NEN METAL LOGATOR KIt

- Uses prolessicnal ICsa - Electrastanicaly E12.55 Tronsibuers scraened seanch enil +9日p VAI

10

Metac-Electronics \& Time Centre

ELECTHONICS TODAY INTERNATIONAL - JANUARY 1978

 Branwink（ontr．just a［f Rissef］squari wheh ilualt es

 repreterte the efidston tat present＇l in Lasectic icelenalapl．The

 Anw，Salet and Scrice knonsuick E eptr－Etommkurs I wrilen怅 1

A nau lind iperited wamat cattre sefipnat bas been imito dacall by as Euendernial fominas undul the mobil nuinler COAX 1 Smiple liand prexure emares iclurait sinps ings if theviston thl－taminum
 un tis 子与 11 m dimelet the
toch intorporace hotr apertures
offset（1）a tommean cultrat
blade whlich proside iperture
Prertur iva wut，through the
c．peen and sitipe ithe misulution
toating a 3 inn or 12 mm
lenas．th apriturl three strips
the thalkelith diverture latit－
tut tlirinugh the catb
F Lithee dictsils IINy b．ith
tuated from dB－ngenermat
（ompans）kpom worthe S1

TAD＊ 7
Lasear I lesernmice hase intror Suced 」 w dout Diny lithel
 The riw miters hive the
 sere，bif acurats et．

 The one ispo nptisi Irim ， smbs supple tal h pacti 5IIV De The low fow．
 culteme dram！malis thation adit far ase in partact instrumicnts

If is claimid that 4 Pry haters worlid Lith seveful monitis ORE「amen mi mormal ust
（uhtiratiosh is st1 by an
 is．rfane inpa！indivited by suppisiselin of the the therce di it Progrusinitic Lil the jital fatim ind inpur rmpedance
 ort utan 1 andeble
I char I｜ectriames I imbld F0 Few 12 Macent lowise Hallertion fick（M1？90n

Join the Digital Revolution

Understand the latest developments in calculators,

 computers, watches, telephones, refavinon, autometive instrumentation . . osmbins 60 piges paikned with irfarmstuon suglamacnd cuoatieng der grosd id

 surimer perbl arimitere on tha world

Over cess curstomets Thapld 5 ana ior Priormainvora

Digital Edmpleter Loqie und Electronis
in 4 volunters

Desigmer
Manager
Enthuslast
Scientist
Engineer
Student

Tham rolargas sore writ"or 20 lital you cxizld Hult poathall the thecs ip atol app estigit ol digial cg gic lamening bs, gil instruckicn has ite adoarcajec of bern binker ama mere 170 orugh
 speudand Tust restrono by ansoverin? gurshoiss ell fach now pace ad intamanion betore prosecedreg to the nowi
Mern
NEW tram Cameridge be Brang toltorpnses
THE ALGORITHM WRITCR S GUIDE
use desgn and layout wial for compatire
pluat 459 trainung mall charts ate

...news

The firx Comenodure TY gamis is luthed SV 3000H and cum be

vintall

Itnglv (lua ac four flayert).
Squaritr IGBla ne later plaveris).

And
Tutien shantiong
Othes tratures
 reailitis soundk heilp to ado rezassa to the garne 'To sare buticos cokis a manns soaptor is prowaded inclused in the piseed

The easile k corcour and duto inted up ol the bail in abo included Tic TY 3000

 (includange VAT) Commadure Rasimese Machines flik) Led 446 B21fi Rosid, Slough, Herks 351 क 8 B

A blu lasalue Inirs teced in tuater Funct wir is 17tu $\{1$ ªl atrle Iram! Thotan Tlie umis convists of 1 vild state passive piliturad servin wiskl vorsh an ures thacugh a sevest Iacif eplical sy xlem Mikn the seates deleses an mitraired embsuran
 acrows the optixd erstem ef reliv

 conditinas must be wortplied
 Likis place tic beal cmisvisit
 talat abutins will mat solur from slath hul bodes nust as radto
thrs dutum rieds ere
Tike bilit is hoJTiall; filto an : Aatll sobie 3 inctscs shothe ground kest the itci ol
 1 つ matriv)

The riatn ute for the douluc Is to prokel specilic lingh rish ate is is a buildigf arat is lles

 uned in arsay \&satll large elaind кurlaues ar liçlituciebt pasfition
 Phasain coniruls lid Unus 18
 Inrd Arundel ti Sutse

 (10, $\mathrm{d}+1$)

 (3 8 $1.1 \times 7 \mathrm{~J}$ cth $\left(296^{\circ}\right)$

 | orel Hampata $30532 R$

digest...

Junors ar or
 developmunt of the initial ICS il Utuphath fommuns itamy

 th 1981 by the Europasan AnyinL liusehes and is is planned

 iald withetals.

 ${ }^{3}$ Dur cull
 (2) avolt

THe DYNaMIC ovo

The C15, 15 is a unuque Power Armolifier providing Stereo 15 watts pet channel or 30 watts fono and can be used with any car redw' lape und It is elmply wired in series with the existing speaking leads and in conjunction with our speakers S 15 produces a system of incredible performance
A noved feature is that the a mp-ifier is a utomatically sumtched on or off by sensing the power fune of the radio: lape unis herice allewieting the need for an on 'OtI switeh
The ampitfier is seeled into an integral heatsink and is terminatod by screw ponnectors making instal lation a very easy procets
Tha S 15 has been specially designad for car use and produces perlormance equal to domestic speakert yet retaining high power hancling and cormpact stze
c15/15
15 watts per channel in 1040
Distortion 02% at 1 kHz at 15 waits
Frequency Pesponse 50 Hz 3 Ok Hz
hnput Impedance 80 nommal
Input 5 encitivity 2 volts R W 5 for 15 watts output Power Line 10 i 8 walis
Open and Shat Gricuit Prorection
Thermal Provection
Size $4 \times 4 \times 1$ inches
C15 15 Price E1774 + E2 21 VATP\&P Pree
Data on \$15
5's Diamgter
$51 / 4^{+1}$ Arr Suspension
2 Achve Tweeter
2002 Бeramic Magnet
15 wotts f M M Handlang
50 Hz 15 kHz Frequency Response
4.J Impedance

S15 Price per par E1774+E2 21 VATP\&P tret TWO VEARS GUARANTEF ON ALL OF OLIR
PRODUCTS

Please supply

Tocal Purchase Prace
tenctosa choque — Postal Ordor - htomey Order \square Pieasa debti my Accass Account \square Barclaycard AGCOLNT \square
Acrobart Nurtider
Narme \& Adotress
Sugnalare

MERRY CHRISTMAS AND A VIDEO NEW YEAR

BASED ON AY－38600

 ＊Autamail Eall Sceed Up＊Phoyers Colour Coded ＊Thiee Tone Sound Efracts＊soure fram TV
＊Eall Colour Coridd to medicste turn in Sousth－Game
 Thadulator C．H 8t LHP

 tolour 52900 anly E 20 क力
 COLOUA MIN Thet．Chip＋DCB only ETJ．90

POPULAR AY－3－8500

 PADDLEI＊EThum Tork Sound Effuch
 pusanteec juin odd centreds． зppaher and ows
＊UHF vericep modulaner［B＊W］

8lack＋Wh H \＃E゙1

JOY STICK CONTROLS
DESIGNED FORTV GAMES
（AY－3． 8550 AY $38600 \mid$ Subiminasiure Size
UNBEATABLE LOM PR KCE
One off El 90
Two of 1530

COLOUR CONVERTER KIT

 WGreen bockground－Mad bqundgrat－Yatow and tlum bats－Hhitl ball

＊）Nixu tum Nowar arice fe8 50 complote
VISION MODULATOR UHF－CH3 BUIL LTESTED E2s0
SOUND MODULATOR Hogethef－
Ondier both
CONNECTS WITH ABOVE E290 to9 E5． 90 TELETEXT DECODER ${ }^{\text {SAVEOVER }}$

TEXAS TIFAX－XMH1
Twred and Guarameed Only Ege 00 Full Coucur CIspliy OMACLE AND CEEFAX

Simplo to ingeripet wath mozt TV．
Kaybeard and pewer sucply axtra
Also in stock NEW Colaur TV s compirty
wilk Tolertxt F AOM $£ 39900$

A．Dedicaied Visual Digolev Comping

Mant Onden 53 Warufick Rived New Garnei Harts ERE SEO
 For further Detaila ame Teohmical 性少－Phond 01.4467033
iFrefich and＇Ser mor tariaken．
Obantar eqsecunt regolistin

[^1]
digest. .. .

A new eclition of ETI storls this month - Elrad in Getmeny The name Elrad itself meany nothing and tis simply an amalyamawon of efectronics and radio it is baing puklished by Heinz Hase in Hanover and is adited by Udo Wittr shown with pive on the photograph examuning a publicity leailet with the advertising and production managers

Following German tradition the first issue is numb sred zero and given away This came out in Nowember and the fiont cower is shrwn on the left

with ET

This bidge sume arc setious aboult bexk ny a aiplicalats
We Are saming a young serson - protzaty under 25 who is gen simply imterexiod it electrorics the ate no -pexititally smeking someono with jath nalistic easerience ds this sta* easer lagent than fix a poluralist to tearn alpc ironice

 -wited Furmal <uulificet ons n plectromes ale not db ก po te 7 हis mperest in the 1 eli
Intelly the shtitwiful appucant ip I woik on the Eritigh
 Trat per os the successtull applican visi go to Sudney if is a

 LK
 F. ET|Magasme 7527 Balora Street Lorides © 1 月
 r-f ed a'vang ary other remoet it fur malo Appligntinns
 L note inpally Jom b:

Yes folks it s you the readers at home whose vote really counts (we mean that most sincerely) and your vote is that ETIPRINTS should tyecome a regular part of our readers services The resacoste to ETIPRINTS 001 has been overwhelming so that we have decided to make this new method of PCB production a regular ETI icature

In case you have missed out an ETIPRIMTS thus far they are ofomplete PCB patterm already to rub down th seconds The patterns are produged from our original artwork so that the results they produce are nice and sharp

We think that ETIPFINIS are such a good idea that we rave palented the 5 ystem (Patent numbers 1445171 and 14451721

Until now the only ETIPRINT avanable has been 001 but itus month we publish two turther sheets 002 and 003 leaturing projects from this and tast month sissues

Details of ocdering the ETIPRINTS are shoven below

ORDEA TODAY

Sond cheque or PO (pzyable to ETI Magazine) 10 . ETIPRINT 001
ETI MAGAZINE,
25/27, OXFDRD \$TAEET, LONOON. WI R. 1RF

Pleasg ind cate clearly the ETI PRINTS you tequire Those avalable at present are

001 White tastencis for skaper coock boant a ang the combender from fow 77 gids the spuati leval
 mameter iram 051 77
002 With edrems lar hommer theis and race truch foom Jat 78 plus the traeres alacns trown Bac iT
003 Whth pitterus to sho tungiar alamen fion jan 78 plas ribci heand \mathbb{E} and the vev mon bor from Dec 7

HOUSE ALRRIII

> IN these days of increasing crime and vandalism an alarm system for the home can add greatly to ones peace of mind. To be effective however. not only must the alarmi circuitry be well designed, it must also be correctly installed. This article describes a sophisticated alarm sysiem and how best to commission it.

OUR MARCH ISSUE Iast vear earried a talure going under the title Burglar Prodf Your Horme Fhe item dealt with the varwous methods by which heousehalders could make their domisiles more secure and thus less attractiwe to the burcilar A wide vanoty of maans by which the security of the home could be inproved were described in same detall from sample common Eense procautions dike lecking all doors even when poppong out for a tew mimutes to the use of non drying painm and ine installation of burglar adarms The feature dud not howbever inglude any circuns of suitable alarm systems

Since last Wearch we have had a number ol requesis to design an alarm surlabla for domestic or small business use and as a result have developed the desian we present bere

We cannot amphesize enough though that any alarm system - no matler how suphusticated - wan only be of use it it is installed correctly. Further the inspallaton of an alarm should only be considarod as part of a genaral ewareness of the need for greater attention to be paid to secumty for this teason before geing on to deperibe the alarm in detad we shall deal with domastic secunty in generisl the installatwen of alarms and heow the specricication of our alarm evolved

How They Get in

Nearly 30% of all burglaries are committed by theves entering wia unlocked doors or wind aws A turker 244% are committed yia forced door locks and abou! the same perceniage va forces windous

Thus rearly four out of five potential breakins can to avoided by installing adecuale door and window locking mechanisms

Use deaclatch locks on all exlernal doors These can only be opened vath a key - even from the unside - 50 that even it a thel enters va a window tie canmol cemove any large tems as the doors reman locked and tew theyes will risk passing out itcms through a mindow

Do have locks fitted by an expermenced locksmith undess you have excenence in this heid - and do not tall for the door to door lock salesman - it is not unknown for such people to retain a duplicate key

Consult a secunty expert about window locking devaces Innumerable twes are avalable for metal wood tramed and sash wandows a burglar might treak glass but few will risk climbing through a window trame with broken glass in it

The pracautions outlined above will reduce your chances of being burgled by about 20% - the remaining 20% can be reduced to amost zero try installing a good burgiar alarm The emphasis must be on the wotd gopd a peper alarnt may go oft erraticelly or worse nol at all

Senngars

For mosi premises it is necessary lo ingiall sensors io protect tronl and rear dioors windows and gerage entrances
a faw forced entries are made through the walls of ragt or very cocasionally via the floor Although rare such forced entres moy be guarded against by plecing sensors in a strategic passage or aree through which any intruder is likely to pess

The simplesi and most reliable swiching device for alarm distallations is the magngic reed switch Thas consists of a parr of farromagnetuc contacts in a simall hermetucally sealed gloss enclosure The switch contacts are cantulever ed from the ends of the quass tube and everlap slightily at the centre with a small air gap betweers them

When a magnet is brought near the reed switch the attracting forces incrase and overcome the suttress of tha reeds bringing them into contach When the magnel is removed the contacts open the relative diptanco tor pull in is less tian for drop out a valuable feasure as smal imovements of doors and windows will not cause false thegering

Reed swithes purchaged for alarm instaliations must be ot a type specifically intended for the Dumpose - standaral reed swatetee5 will not to

Many professumal security companties install raed switches and mág nats encased in plasuc mouldings Whalsithese are neat and simple to fit it is bever io conceal both reed and magnet withim the tramework of the door or window to be protected
lof Figs 3 and 4 we shove pust two of the venous mathods of tixing the reads and miag nets inote that the magnet is to be litted to the moving part of eny doar or wridowi

Whindow glass may be protected by glueng on a loop of aluriminum fold tape ior dand a self adhesive type of forld The foll is quile thif and breaks f the glass sfractured Foll will deler all but the most determined of turgiar Alter all why risk terng caught when next door does nol seems to be protected by an alarm

Vibration sensors may be used to protect large areas of glass but these are prone to false triggering during thunderstorms etc
Many other types of intruder sensing devices may also be included in the system Pressure mats for example can be placed under carpets in strategic passageways - or even under the door mat. The mats contain a large number of normally open contacts some of which will be closed when the mat is trodden on The system can also include more sophisticated intruder detectors such as infra-red type sensors

The intruder alarm itself should be reasonably accessible to people entering and leaving the premises via a silent entry door but will hidden from the sight of an intruder the alarm s output stage should be a relay which latches when an alarm signal is received

Warning Devices

For household use a good quality 12 Volt bell should prove an adequate warning device Being mechanically resinant, bells have a very high conversion efficiency

Fig 3 Ser the reea swith nod the window rame and the magitet nto the moving pari

in fact, the average bell draws less than 500 mA at 12 V yet can be heard several hundred metres away

Good sirens can be heard well over a few kilometres away but they draw a lott of current and cost more than a good bell Small cheap sirens cannot be recammended
if at all possible, householders should make mutua; arrangements with neighbours to contact the police if the alarm is heard Similar arrangements should also be made so that neighbours can switch off the alarm when the police arrive

An alarm which resets after a period of time silencing the bell or siren, is a useful device that will be much appreciated by the neighbours Care must be taken to ensure however that the alarm when triggered and reset still provides some measure of protection 10° the property

Whatever the warning device chosen, it should be mounted unobtrusively high up in an inaccessible piace The leads to the device should be of an adequate gauge to avold any voltage drop associated with a long

HOUSE RLARII

Fig 5 Cricutt diagram of the A board
run. The wres should be concealed from view.
We strongly recommend that a seperate 12 Vbattery be used in any burglar alarm This should be checked at regular intervals to ensure it is still in good condition and should be replaced as a matter of course when it has been in service for a period of one year

Alarm Unit

The specification of our alarm unit is shown in Table 1 From this one can see that the alarm has seven normally closed carcuits (A2-AB) plus a silent entry circuit (A1) which allows about 30 seconds on entry to turn the alarm off This feature also gives a 30 second delay between turning the alarm on and the sensors being armed, this allows time to leave the house

It is possible to connect two or more alarm switches in series for each external circuit but if so doing ensure that any such series-connected switches are grouped together

The reason for providing a number of seperate alarm creuits is to do with the problems involved with resetting a triggered alarm mentioned above Most alarms work on a system where all the windows and doors have normally ciosed reed switches all wired in series so that opening any one breaks the loop and sets the alarm off The alarm then rings for ten minutes and

ELECTRONICS TODAY INTERNATIONAL - JANUARY 1978

HOW IT WORKS

UNLIKE SORTE AI ARMS that use a single sensing loop with all the swithches wired in sernes，thus design features a nurmber of different alarm groups Fhese are broken dosin into two groups designed for normally closed（N C）switches－ Permeter Group（inputs $A_{1}-B_{x}$ ）and Intemal Graup（mputs $\mathbf{B}_{1} \cdot \mathrm{~B}_{\mathrm{m}} \mathrm{m}$ ）－tagether with une group for normalls open（ N / O ） －Witches（mputes to A_{4} ）
The inpuis to each of the carculas descrabed above have theis oxn input circustry

PERIVETER CIRCUIT

The normally closed bensers associated wisth the perimeter cincuil（inputa to A，A） are connected to the eircuitry around IC and C,
Thece ICs ale Quad NOR gatec whach，in thus application afe configures as inverters The sensors are conmected to the inputs of these gates wa the resistors $\mathrm{R}_{10} \mathrm{R}_{1}$ ．With the sencor switch closed the output of the ascociated IC will be high I？the switch is opened the output will go low as the mputs to the gates are then tied high via resistors $R \cdot R$ ，R ，is included to ensure that the inputs to the CMOS ICS are termindted under all conditions The cstpacitors $C \cdot C$ ． together uith the respators $\mathrm{R}_{16} \mathrm{R}_{1}$ provide a filter to ensure that tragsienti on the mput lines do not trigger the alarm

In each output of IC，and IC C_{2} there is d LED which is connected to the securick Check Button（PB ）．Upon operation of this bution power is suppled to the LEDs which will light if the IC thev are connected to has a low output，ie the mput is triggered The dondes in series with the LEDs are necessary because of the tow reverte whage breakdown of the LLDs Diode D， supples power to the input crourcry durng the secunty check the mput A_{1} provide＇s the slent entry teacure and is deseribed below

The other sections A ，A ，have their outpuls fed vid an RC network，which generates a negatise pulse upon triggering． toone of the mputs of $l C$ ，Thus if any of the mputs are triggered a positive pulse at the output of IC_{4} will result

SILENT LNTRY CIRCUIT

Wuth the silent entry crubut a 30 second delay due ro $\mathrm{R}_{3} \mathrm{C}_{\text {in }}$ and IC ，overndes the output of $[C$ ，mmediately atter the aiarm has been energised After this tume if the inpul is triggeted the output of ： C ，will go high having been inhobited from doing so untik now by the high output of CC_{5} ，and will tuggle the RS flip flup formed by ICs， and IC_{3} ，taking the output of IC_{2} ，high After another 30 second delay due to \mathbf{R}_{3} ． ε_{1} ．the input to IC ，will be high and its output low

TRIGGERIVG CIRCUIT

The came output results of one of the other inputs is triggered and the output ot IC，goes hugh momentarily
This output is used to togele，va IC C_{0} ，the RS flyp flop formed by IC，which is wed to control the alarm and resetting circuitry described belou
IC．zalso has two other inputs The first， consising of the network $R_{,}, C_{,}$and D_{1} This circuitry disables the diarmit function when the Peamete！Swtich is in the off position and for a short perod of time after the switch is moved to the on position by holding the mput of IC，high This nresents spurious triggering
The second input to $I C,{ }_{2}$ is from the normally open mput（A），ds well as the entergency and alarm test suict hes If any of these suitches are taken low a negatise poing pulse as coupled to IC，th trigger the alatm These funcurns operate even of the permeter sensors are off．This input can be
used for emergency inputs such as tre alderms

OLTPUT

The positue going pulse at the output of IC，sets the R ，flap flop IC，\＆IC ，and in this ungered state［C，Joutput 15 low and IC， 5 high
I he delay circuitr uses a CA3130（ 1 C d （onfigured as a comparator．C ig $_{19}$ normally charged to +10 V uratil the flip flop is trefgened allowing it to dacharge vid R_{40} When the roltage on $\left({ }_{5}\right.$ ，has fallen to about 20 mV （the level set by R_{4+} and $\mathrm{R}_{4,}$ on the non－mbertug input of $\left[C_{0}\right.$ ）．The output of the IC will go high reseting the flop flops formed by $I C, \mathrm{IC}_{,}$，and $\mathrm{IC}^{-}, \rightarrow \mathrm{C},+\mathrm{R}_{+^{-1}}$ uncluded in the teedback loop to provide some hysterents

The output device can either be a reldy or stren cucult we have prosided tor both options．The siren vucput is tormed by two 355 one operding at a hight frequenc and drang the speaker va driser transistur $Q_{\text {，}}$ and the other at about 2 Hz which is uged to modulate the frequency of the tirst

The reldy and 555 s are energised when Q ， is turned on by the high output of $I C_{y}$ as the flup flop 15 set
Additon circuits can be added in blocks of four at a time（as Board B）and connected to the aux input

ALXILIAEY BOARD

The circuites of buard B is almost ddentical to that of Buated a The main difference ts that the negatwe going untputs of each IC are ORed using diodes D－D＂as opposed to a logr gate

This board can only be energised if the pesimeter hoard is powered up The capacitar $\left(\right.$ together with R_{lv} and $\mathrm{D}_{\text {s }}$ provide a shot postive going puise upun skuth on to disable che man alatm tor a brief pertod of time
resets If，however the window as is likely，is still open，the alarm must be turned off completely to prevent it continuing to ring

This is the reason that our alarm does not use a single loop but has a number of alarm groups Further， the alarm is triggered only by a change of state in any of its alarm loops．Thus if the alarm is triggered by the change of stage in any of its sensing loops when a window，say is open it will not be retriggered when after a period of time it resets and the window is still open This affords some protection to the premises under these conditrons．

We have provided a test button so that a check on the security of the house can be made before the alarm s set indicating immediately which window or door is open
is well as the external crrcuits the system has arovision for connecting a number of intemal circuits －nese may be actuated by normally closed switches－ m which case they should be connected to B1－B4－or ay hormally apen sensors connected to Ag

It may well be worth considering installing a series si emergency push buttons．Such switches should be mounted on the architraves of the front and rear doors วr n e－eadily accessible position near the doors They三nable＋he occupant to set off the alarm if a caller forces －s ta，rto the house when the door is opened

HOUSE RLPRM

Although this is not a common event, emergency switches provide elderly or timid people with a feeling of security

Use good quality bell pushes for these curcuits and connect them to the A 9 inputs on the crrcuit board

Fire Alarms

Fire sensors may be wired across the A9 input The actual fire sensors should be mounted in the cellings of rooms th which there is a fire hazard - kitchen, Itwing room, rooms with electrical or heating applicances or where people smoke (don t forget the bedroom if you've a habit of smoking in bedl'. Sensors should aiso be installed in the roof of the garage especially if this is attached to the house - the laundry, workshop etc.

Construction

Due to the number of components, it is recommended that the unit should only be built using the PCBs shown here

Assemble the components, watching the connection of all the polarised components Also solder the CMOS ICs last and then solder pins 7 and 14 first. This allows the protection diodes inside the lC to be effective The LEDs should be mounted parallel to the PCB as shown in the overlay as these have to protrude through holes in the chassis

Boxing of the alarm unit is largely a matter of choice. Our layout can be seen in the photographs. Note that we did not fit a key switch to our alarm, but installed it in a locked cupboard which could also be used for the storage of valuables.

Security Sense

May we say again that the installation of an alarm should only be part of a co-ordinated campaign to dissuade burglars Details of the various preacutions that can be taken were detaled in our feature last March Your local Crime Prevention Otficer will also be prepared to give help on most matters of security

HOUSE RLARII
 termanat block

BUY LINES

The components for this project should be avalable from most suppliers Watford Marshalls Maplin etc, or probably, from most local shops The Siren used is a matter of chore but please make sure it s up to the job

Fig 12 PCB forlparcern of B bo3ro'shown
full size (75 $\times 65 \mathrm{~mm})$

SOC20.
 The most powerful Monolithic IC amplifier in the world.

20 watts output (continuous sine wave) ... Less than 0.2% total harmonic distortion at all powers, all frequencies And totally electronically indestructible!

Until recently, all monolithe IC chips suffered from two basic design weaknesses First, thermal runaway causing heat to build up as current increased, and second short circuating.

Standard plastic package with copper slug
Untul the SOC20 IC chipl This extraordinary new power amplifier chip is uniquely designed to improve thermal dissipation It also has two separate built in cireurts, one of which measures on-chep temperature if this should rise above $150^{\circ} \mathrm{C}$ the output transistors are switched off thus preventing thermal rurtaway

And short circuits? The other carcuit continuously monitors both current and voltage it the product of current and boltage rises above a critical level, the

SOC 20 plastic package with chip difectly sott soldered to copper slug
drive is adjusted to bring the transistors within safe operating limits

The amplifier can drive speakers of any impedance - maximum power will only fall outside the recommended $4 x-8 s$ range

And any pin on the chip may be shorted to any voitage in the system for anylength of time and no damage will occurl

Superb quality . . .

extraordinary power
The SOC20 isn't only safe it's also extraordinarly sophisticated. Total harmonic distortion is less than 0 2\% at all powers and all frequencies - and in normal use is well below 0.1%

If power is at a premurm, use two S0C20 amplifiers in 'Full Bridge' to give over 40 watts continuours into 8Ω speakers

The $50 c 20$ is naturally guaranteed unconditionally for one year Although with the SOC2O's unique patented design, we think you'll have little cause to make use of any guaranteel

Specification

Maximum supplv voltege
$\pm 22 \mathrm{~V}$ (44 V total)
Output power
20 watts continuous 4Ω or 80
Open bop gain
100 dB
Supply voltagerejection
50 dB
Input noise voltage
4 nv
Number of transistors
18
Suppled with free printed circuit board, heat sink mounting bracket, comprehensive instructions, and suggested applications

The SOC20 will work on any supply from 12-44 volts and therefore can be used for in-car as well as domestic applications Apart from its obvious audio uses the fact that it is DC coupled throughout makes it ideally suited for servo systems - in radio-controlled models for example

Incorporate the SOC 20 in vour

 equipment today!SOC20's cost f4 95 each. or $£ 795$ a pair for, say. stereo applications. Only a few readily-avaliable components are needed to build a full amplifier unit.

Of course, the SOC20 comes with a 10-day money-back guarantee.
Science of Cambridge Ltd, 6 Kings Parade,
Cambridge, Cambs., CB2 1SN.
Tel: Cambridge (0223) 311488.

TECMNALOGICS PROUDLY PRESENT w" "LOGISCAN Mk. II" COLOUR TELETEXT DECODER
 WITH
 "NEW FACILITIES'

YOU CAN NOW BUY A TELETEXT DECODER TO THE LATEST BBC/IBA/BREMA JOINT SPEC (NB. Many other decoders are not full spec display)

THE LOGISCAN Mk II OFFERS THESE EXTRAS

* Double/Single Height * Background Colour Fix
* Conceal/Reveal Switch * Unfix (revert to black)
* Discrete Graphics * Continuous Graphics
* Graphics Hold/Release (Instant Colour Changes)
* Auto Newsflash * Roll Mode
* Flash/Steady Display * Subtitle Inserts
* 6800 MPU Compatible * DMA Capability

Completely self-contained in attractive earthed case, suitable for most Colour TVs the Mk II is avalable as a kit at $£ 185+121 / 2 \%$ VAT. Built $£ 250+121 / 2 \%$ VAT. Detalls large SAE Also 8ch Touch Tuner, Aerial I/P TV Pattern Gen, SAE

MAIL ORDER FROM:

THE PRACTICAL ASPECT of a professional surveyor s job requires measurement of the size, shape and position (relative to other such defined shapes) of preces of land ranging from the small household plot to the size of a country it may also involve the application of the same methods for the measurement of large manufactured objects, such as buildings, bidges and other engineered structures. Such tasks commonly require measurement of distances and lengths ranging from a few metres to thousands of kilometres to precisions as small as a millimetre and angles to precisions down to less than an arc second

Combinations of length and angle measurements, on a basis of measurement using triangles, are used in various ways to define shape and size Definition of direction, with respect to North, and with respect to a level surface or a vertical plane also enters into a surveyor's datiy needs

In many cases, for reasons of conventence the measurements made are not quite those actually needed conversion or correction is required and as the mathematical process must be performed within 5 to 7 decimal figures of precision, the calculations needed can become tedious As an exarriple, when measuring the distance between two pegs in sloping ground it is the horizontal distance to a pont vertically above the pegs that is often needed The distance measured in practice is more often than not the slope distance between the actual position of the pegs

Enter electronics

Until the 1950 s the most precise method for measuring long lengths used a steel-tape hung in catenary, this method having developed from the less accurate chain of iron links Another optical method, called tacheometry, used the telescope of the theodolite

Figure t Using a tele scope do deiprmine range by racheometry

A quiet revolution has taken place in the field with the advent of electronic methods.

Dr. P. Sydenham

 explains how.or level to determine range by observing a known length-minterval of 6 measuring staff (placed at the far point) within a given observed angle defined by two lines in the telescope s field of view - see Fig 1

By the late 1950 s the surveying instrument makers - traditonally they were then manly from Europe had acquired generations of skill with optics and fine mechanics, but little knowledge and experience with electronic technique Because of this they were. at that time, understandably reluctant to develop and market electro-optical devices for surveying However by the mid-1960s the industry had built up its confidence in electronic methods and today we are in the madst of a quet revolution.

This revolution began in earnest with the development and acceptance of an electro-optical method of long-range determination around 1945 it was called the Geodimeter and was made by AGA of Sweden to designs produced earlierby Dr E Bergstrand (History records the fact that Galileo proposed an optical

figur= 2 Telluromete mudel Ma, as uses the morowave method to mestafe discance trom 100 m to 50 km 10 an accuracy botter than 1 m $5000 \cap 0$ Meden electron es hove made teasy to operate Readoul is a 7 dight arsaliry nt ange
method which was later tried unsuccesstully in the 1600's At that time they lacked fast enough responding light sensors | The AGA method could measure 20 km distances with only a few parts per mithon error

After the Geodimeter came the Tellurometer, which made use of modulated UHF radıo waves and could do better in range than the Geodimeter with similar precision

What a Gaas

More development came about in the 1960 s . the notable addition being shorter distance ranging apparatus based upon the easily modulated gallum arsenide Ga-As solid-state infra-red diode This device was sulted for the surveyors needs in building and similar size tasks

Simultaneously came the development of automatic theodolite scale-reading electronics Observing with a second-ot-arc scale instrument can prove turing to the eyes, with the subsequent chance of a high error rate

By 1970 electronic theodolites, as they became known, were being marketed by most of the large established surveying instrument makers it was then just a matter of tume to extend the automatic reading of scales to include straightforward conversion of angles and slope-distances into the required geometric parameter These calculations were first done with separate electronic solid-state calculators; then the calculators were incorporated into the housing of the instrument itself Today the latest machmes use in-built microprocessors

When automation can reduce the labour requirement at a cost less than the labour alternative, there is a case for its adoption

That is why in cases where extensive surveying work is needed, electronic methods have been used for the same reason one instrument that marketed by Hewlett Packard, reduces the tolerances needed for inmial levelling of the 'theodolite system by incorporating compensation measurement of the out-ot-level existing at the time of measurement

Let us now turn our attention to the detal of some of these developments

[^2]
EIBCTIRONICN IN NIIRVIZYING

Ranging

Microwave methods: A continuously generated UHF signal, which is typically generated today by a Gunn diode oscillator, is sent from a small reflector or horn to a second unit placed at the other end of the distance to be determined Phase difference between sent and returned signals provides a measure of distance in terms of the velocity of electromagnetic wave propagation in free-air conditions

Accuracy is limited in all EDM (electronic distance measurement) methods by the knowledge of the refrac tive index of the air path This limits all methods to around a 2 parts per million error in determining distances which range from 100 m to 50 km

The first systems requared the operator to learn a quite complicated procedure of use Today the latest models provide digital readout, a voice channel to the person at the other station and, in some cases, an output compatible with digital data storage and processing systems A modern microwave EDM unit is shown in Fig 2

The design and construction of microwave systems follow established radio communication practice using mixing techniques and special tone pattern generation. More detall on these methods is available in the "further reading ' list given at the end of this review.

Electro-optical modulation: In these an optical carrier beam is modulated by altering the intensity of the carrier or its angle of optical polarization The modulated team is transmitted from a high-quality optical telescope to the far station where it is reflected back to the sender by one or more corner-cube reflectors. Figg 3 shows the schematic of a Geodimeter model 6A

Various sources of radiation are used in the models marketed. Originally a tungsten lamp or mercury discharge lamp was employed Later improvements to range were provided by the use of helsum-neon $\mathrm{C} W$ laser sources Lasers also provided better utility in daylight conditions The Mekometer method uses a pulsed Xenon gas source The shorter distance modern units usually use a laser-diode source of infra-red radiation

The kind of electro-optical technology involved in the manufacture of an $I-R$ ranger is seen from the schematic of the optical system of the Hewlett-Packard 3820A provided here as Fig 4

Figure 4 Electro optical tangers regume sophisticated manufactue to extreme provisions This schematic is of an I R laser diode mstrument

Figure 5 The Wide DLIO Distomat is an IR ranger that firs on to a conventionat theodolte

Tacheometry: Basically the angle subtended between a fixed interval bar of scale unit is used to determine range by redirecting the theodolite from end to end of the target interval The alternative is to observe the interval of a graduated staff seen within the angle defined in the field of view of the telescope by two parallel lines appearing in that field of view

A vanation is possible in which the optics of the telescope are altered geometrically at the operators control

This method of ranging is simple in principle, but needs many geometric corrections in practice for the subtended interval is rarely geometrically square and central with the telescope Corrections are needed to change slope to horizontal and vertical distances and to allow for the fact that the observed interval is not square to the observer

Many of the new electronic methods are called 'reducing tacheometers' These, it seems are not true tacheometers in the traditional sense but are in reality rangers to a point targe?

Automatic angle measurement

The period 1950-65 was one in which extensive development of automatic angle measurement methods took place as part of numerically controlled machine-too development Many methods of producing an electronic signal equivalent to angular rotation were invented

Around 1960 several of the instrument designers in Europe began to apply these methods to surveying instruments so that the scales of a theodolite could be read automatically providing digital readout and automatic data reading

Angular encoders for this task must provide circle subdivision to at least 21600 increments (1 arc minute) in a small diameter

Of the wite range of anguiar encoder types invented optical methods have been adopted in electronic theodolites Optical encoders may be of the incremental kind in which a pulse is produced and counted for each minimum resolvable increment of angular movement the pulse being added or subtracted for the appropriate sense of drection The alternative is to use a disk on
which a digital code pattern is manufactured. This is called the absolute method. for there is no chance of pulse loss or gam due to noise, power-supply failure does not destroy the value

Incremental methods use simpler to make measuring gratings because they need only identical lines ruled radially A much higher density of lines is possible by this method than is economically available with the absolute scale The absolute scale rs more cosily to make and read than the imcremental version

In practice experience has shown that a hybrid system is the best to use, one in which an absolute encoder disk scale provides the coarse-position component of the readout, a finer ruling incremental sale providing the less significant digits, usually by way of an analogue subdivisional method that interpolates between the rulings

The future

In the world of large commercial manufacture. new ideas are slower to reach the market place than they are to realise Over the next decade a number of

Figure 6 The 28204 electronic Totel Station is an exampte of the more sophisftcatad efectrons surveying mstruments Like some others it contams a microprogessar that does the tedrous calculations required, snd the extre computing power avarable is used to corroet readimgs ror such vartables as out of vertical of the instrument

Figure 7 Cross Section of reading heaos that sanse the angle in the Hf 3820 A Total Statmon
umprovements and altematives should emerye
Study of the time taken to set up a theodoltte or level shows that the initial levelling procedure takes a significant time to achieve Hewhett-Packard have recognised this and provided a partial solution to the user Using electro-optic sensing of a plane surface, defined by a mercury pool, two-axis correction signals are produced that compensate for the not quite truly vertical central axis The operator needs only to level the instrument within crude limits using a small circular bubbly level. The next stage must surely be to provide automatic levelling servos that set the instrument orientation regardless of gross misadjustment of the tripod top This is straightforward to design - it is a matter of cost and tume being available

The next time-consuming task is to acquire the target aryd set the telescope fudicial mark on to it so that the angles can be read out in many cases the target is identified by a special mark or pattern to make it easier to find The next logical move is to have the theodolite or level automatically seek out the target, locking on to it. Once acquired the scale values would be read automatically

Another development that may replace the theodolite in many applications is a technique called chronometric angle measurement In this method a rapidly spinning mirror causes a photo-detector to see estabhished targets in sequence The tıme between the sources is a measure of angle if the rate of rotation is known Simple arithmetic establishes that the precision of timing avalable today is able to provide second of arc accuracy There are no scales to read in the method This concept was explored and an instrument built in Germany a decade ago Perhaps the surveying instrument makers have a prototype ready to market now - such information is hard to establish in this highly competitive field of sophisticated instrumentation.

Further reading

-Sureyng by A Barmistor und S Raymond Pitman [977, contains u quite up-to-date chapter on electrone methods it does not, howevei discuss such ioncepts as electront theodohites chird instraments hamg maco processors an them

Electromagnetic Distance Rfeaswement" by C D Burnside Crosby Lockwood Stuppe pronuden detal
Hewlett Packand Journat tssues describe the theory, Dperation und constractaon of their Total-Station mstrument mensiderable depth Most compantes marketing thro find of equpment are able to prowde reprints of papers dendribing the use of ther products

LETTERS
 "Replies by Bright Spark*

Contributions to this page are invited from all our readers. If you wish to make a point--this is the place to do it. All contributions to this section should be intended for publication. Please mark your envelopes 'LETTERS PAGE'.

ANNUAL ENQUIRYY

Dear Sir,
In an advert in one of your magazmes there is one book Arc Welders Annual", I wonder if there is an Arc Welders Monthly magazine please let me know il there is and if your com-

pariy publish it. If they don i would you be so kind as to tell me the address of the company that does pubtish it.

$$
\mathrm{FQ}
$$

Eire

Excuse me . . . erm . . . I don't know how to tell you this but that was a cartoon i.e. a joke - mind you the magazine displayed beneath Arc Welders would be sure of one reader should it ever appear.

BLOB BOARDS

Dear Readers.
If you are following the series Dig. 1tal Electronics by Experment' in Electronics Today International, you will have founs the boards differenty latd out to a ZB 81C. The author of the series used pre-production samples of ZB 8IC Blob Boards and these were slightly different to the production models.

The only difficulty that this should cause with the senes is in the construction of the voltage stabilizer cil
curc, and we suggest the following modifications-

USE bus-bar J for the regulated supply. Imkiteg to bars 1 and 34.

USE bus-bar K for unregulated input and 0 for negative line. Link 0 to 141.
USL. Tire 151 in place of hne $\$.
USE line 161 in place of hine $\$$.
For the remaining profects. use the boards supplied with the letiers on top and the tombers down the left hand side.

We regret the inconvenience caused and tow hope that you can still enoy the series of artucles
P. 1 B
P B. Electromes (Scolland) Ltd

AND THE SAME TO US.........

Dear Sirs,
Can you imagine the chagran youl poor correspondents must feal at the nusty rephes to thert letters printed in the Nuvember issue? This letter is directed at you, the staft of ETI. so that you may share the expersence.

You may be expert at plapiansing and paraphasing but you do not actually know any basic theory do you? Original thoughts must be as scarce is butterflies at the offices at LTI. One should, of course, suffer fools glauly but the mendacity. jedousy and spite of the uspang intellectual makes him hard to bear and when he pours malicious scom on those noly slighty mase nalve than hamself a rebuke is in onder. How different is the humble simplicits of the truc scientist, whosc virtue lies in his readiness to admit that there are things he doesn't know.

The copy you produce, redolent of third.form wit. parading knowledge lifted veshatum from the manufacturers' handouts-the pondenous puns. the gaffes, the houlers, the malapropisms, the spedling mistakes does nothing 6 , fusidt the superority you so obvously teel.
R.S

Piddlehititon
Ouch!

BLOOMING SPELL

Dear ETI
I see the little homepride men have struch at the I. ГI olices'

You keep on spelling fhorescent as flouresient . . an mis dikshunaly don't agree"
D.J.

Chielmstord
We've downgraded the typist for that. Cos graded brains make finer fluor!

POINTING OUT

Dear Sir

Although tull of admitation for the Noxembel cover, ! feel the; is mose than meets the eye behitad the Spectal Otter.

There are in tact two pomts I should the tor see rused. hoxever. as thas indy be physually mmpussible perthap the offer could he moved to dnothen page"

W T.W.
Iledicstord

Oh yeah? What size plastic mac do you take then?

An exciting game of skill and luck that will help pass those long and
lonely winter evenings.

IF, LIKE MOST of the ETI staff, you have more brains than brawn, and would not boast about the quality of either, it is likely that the mere thought of swinging a massive weight around your cranium is enough to strain your bodily systems This probably means and we are sorry if this comes as a disappointment - that your chances of selection for the Olympic hammer throwing team are, shall we say, nil

Some may say that this is a pity as the sheer thrill of an event such as the hammer throw is probably very stimalating to those chunky brutes that are lucky enough to be able to take part This is where we come to the rescue with our armchair version of the game We think it has a number of distinet advantages over the real thing One of these is that anyone, from an anemic, sparrow upwards, can play the game A second being that it is nowhere near as messy it, when playing in your lounge, you get things wrong

The game, as can be seen from our chotograohs, has a front panel with a circle of sixteen LEDs together with a line of eight $L E D s$ at a tangent to the circle

To play, ater pressing reset, firmly press the play button The LEDs in the circle witi light one at a timesmulating a spot of light moving in a circle At the same time a distinctive, not to say
loud, sound will be generated
The spot will at first travel slowly round the circle, but will soon begin ancreasing in speed until it is travelling quite fast

The object of the garne is to release the play button at the instant that the 'top' LFD of the circlo is lit. If sucessful the line of LEDs will !ight to indicate your score, the faster the spot was moving when you scored the more will he your score. If you miss, the cirle of LEDs will contrnue to rotate at the same speed as they were when you played.

Big Ones And Little Ones.

A game will consist of, say, eight rounds - the srore from each being added to the last At the end of a game the person who scured the mast is the winner The skill comes in deciding whether to go for a number of low scores that are relatively easy to get, or for a few big ones.

As befits the design of a project of this nature we were in convivial mood and pleasant surroundings when we first discussed the game We produced the first design sketch (well a few lines on a beer miat - yes in the oub again) which used digital devices. Upon seeing this some likely person said that he thought most games featuring LEDs designed over the past few years should
generically be called "spot the 4017"
Our mitial reaction was to defend our design but a moment's thought showed that he had a point - the 4017 CMOS counter is over used when it comes to games At this stage we decided to rise to the occasion and produce the game lising an all anal ogue approach.

The result can be seen in the circurt diagram We are pleased with this circuit It uses some unusual ICs and features a number of interesting circuit blocks - and of course there is not a 4017 in sight.

Construction

Construction of the game is greatly simplified it the PCBs are used Three boards are required, one for the power suoply, one for the display, and finally the main control board. Begin by building and testing the power supply Take care to ensbre that all components are mounted as shown in our overlay

Next assemble the control and display boards These carry a large number of components and mistakes made durng assembly can be difficult to trace later - so take care at this stage Do not insert the link between IC2/4 and iC9 at this stage

It is best to test the boards before mounting them in the case, as it is difficult to get to some of the devices when the boards are in theis final

HAMMER THROW

positions We used a sloping front Vero box to house our game and the general layout adopted can be seen from our photographs.

Setting Up

There are five preset potentiometers on the board and all must be correctly set up before the game can be played

The first adjustment to bemade is to RV4 To calibrate this control first pres* the reset button and then the play button for a few seconds. At this stage a sound should be heard from the speaker and the garne display LEDs should be seen flashing Adjust RV4 until the LEDs produce a continuously rotating spot of light The speed at which the circle of light rotates can be adjusted by RV1

The next operation is to set up the score display To accomplish this, oress reset and then operate the play button until the spot of light is rotating at maximum speed Release the play button and enable the score display by applying a positive pulse (from supply) to the junction of R29 and IC6. RV5 should now be adjusted so that the seventh score LED is just extinguished and the eighth lit

The final adjustments concern the 'window' discriminator. To make this adjustment Ri38 [the end remote from (C9) should be connected to the slider

[^3]of RV2 Adjustment of RV2 should illuminate successive LEDs of the game display. RV2 should be set to the point at which the top LED fust extinguishes and the LED to the left just lights Now connect the input of IC9 to the slider of RV3. Adjust this pot so that the tep LED just extinguishes and the LED to the right is just on.
This completes the adjustments and the link omitted during construction. should now be fitted.
Now is the time to get in training and, if you're good enough, you may yet make it to Moscow.
ETI

Fig 3 Foripatterm of power supply boarei shown fuft size $/ 120 \times 45 \mathrm{~mm}$

Fig 4 Component overlay of PSU mams earah is connected to It by a solder tag under the mounting boit The transformers screen should also be connected to barth

ELECT̄RONICS TODAY INTERNATIONAL - JANUARY 1978

Fig. 7. Fult size forf pattern of main controf board $(160 \times 110 \mathrm{~mm})$

Fig. 8. The overtay for score boarc'
ELECTRONICSTODAY INTERNATIONAL - JANUARY 1978

Fig 9 The overfay for the controf board

 when the play button is releasec, the voltage reached is held by the ramp and hold configuration unth it 15 reset This voltage is used for score purposes as descrubed below
The game requires that if at the instant of releasing the play button, the 'Top' LED of the game display is lit, a score is mdi cated, the magnitude of the score being proportional to the speed at which the circle of LEDs was moving at the instant of release From the description of the game display it wall be seen that in order to light a specific LED the voltage input to the ditplay driver must lie withm a specific vol tage range thus in order to detect whether or not the 'top' LED is on we must look at the output of the sawtooth generator (this Is input to UAA170) and decide whether it lies writh the range that will light the specific LED at the instant the play button is released. The circuit that accomphighes this is the "window' disermmator
This is formed from two voltage compa rators together with cwo analogue switcheb. Detaled action is described below, but brefly the ctrcuit, when fed with the sawtooth output, wall provide an ind catuon whenever this widveform passes through an (ddjustable) 'window' voltage range

At the mstant that the play button is released a short pulse is produced from a monostable If this pulse is conncident with an indication from the window circuit that the top LED is on we must arrange to indicate a score.

The score must be proportional to the speed of the LED circle which is in turn proportional to the voltage level reached by the ramp and hold circuat Thus, to produce a score, we feed the output from the ramp and hold, via an analogue switch to a second UAA 170 . This second display conbists of eight LEDs in a line

This completes a brief description of crcuit action; we shall now deal with each block in more detall

RESET CIRCUITRY
The game is initiated by operation of the reset button (PB1) Thes zeros the ramp and hold carcuit descrabed below, as wet 33 setting latch I IC2/3 and reseting late: 2 IC3/1 Latch 1 enables the plaw bution when its output is high (set) - la:ch 2 enables the score display when low (reser) the game display when figh (set)

Each latch is based on two of the am plifiers of an LM 3900 Quad Norton am. plifter package This device is unusua: it that instead of amplifying the difference in voltage appled to its input termina's it amphifes the difference in input curren:

The + and - inputs of these Norton amplifiers are both clamped to one Diode. Drop above ground and thus all inpur voltages must be converted to currents (by resistors) before being applied to the inputs This is the basis for the current Mode (Norton) type of operation.

In operation the current flowing into the + mput must equal that flowing into the input, the difference between the current demanded and the current provided by an external source must flow in the feedback circuitry

Operation of both latehes ss the same and we shall only describe the action of latch 1 .

Assuming that the latch output is low (the latch is reset) the current injected into the - input of $1 \mathrm{C} 2 / 3$ will ensure that the output remains low If now sufficient current is mjected into the + mput the output voltage will rise as the device attempts to reduce the input cursent differential to zero Postrve feedback va Rg will enhance this action and cause the dmplifier to latch high. This is because the current injected into the + input tha R9 in this case is greater than that into the - input due to R8. A positive pulse via Rll to the - input will however once again bring the output 10w

C5 and R4 ensure that when pouer is first applied the game ts reset

RAMP AND HOLD

The ramp and hold actom is provided by IC2/2 and IC2/4 A posstive voltage Vla R5 and Dl causes the output to ramp down white a similat voltage via R10 causes the output to ramp up The reset button causes the downward ramp whole play causes an upward ramp.
In any sample and hold application a very low mput btas current is regured if the hold period is to be stable The existence of matched amplifiers within the LM3900 allows one amplifier to bias another.
In operation the LM 3900 requires a bias current to be applied to its - termunal 1C2/4 has its + termanal grounded and feedback applied via R15 and R16 The output voltage of this device urll attair a level such that the current fed back via these resustors is equal to the bjas current demanded by the input This same current will flow via R13 and R14 into the - imput of $\mathrm{iC} 2 / 2$ reducing the effective bas current of this amplifier to almost zero. D1 isolates this bas curtent from the rest of the input eircuitry

If now a postive gurrent is injected into the - Eermmai, the output voltage will fall As it attempts to feedback a current of this value in order to reduce the mput current differential This constant current across C. 7 results in a Linear voltage ramp appearing across C7 Input to the + terminal causes a pobstive going ramp to the terminal d negative going ramp

The rate at which the voltage across C ? changen is proportional to the value of the
constant current supplied which is in turn proportional to R5 and R10 As R5 is some 40 times larger than R10, the ramp down (reset) a far quicker than the ramp up

The output from the ramp and hold curcuit is fed, vid IC6/1 to the score display and wia IC $3 / 2$, a non merting scaler, to the sawtooth VCO

VON.INVERTING SCALER

The scaler is required because the output from the ramp and hold configuration can vary over nearly the whole supply voltage wheres the VCO requres only small voltage swing to prowide the requited frequency change

The scaler is based on another Morton amplifier arranged as a non-inverting amplifier feedback 15 apphed vid RV1 and R19 and output is fed to a potential divider formed by R22 and R23 and thence to the vCO

VOLTAGL CONTROLLED SAWTOOTH

OSCILLATOR

The VCO is formed by IC3/3 and IC3/4 Accion of IC3/4 15 much the same as that of 1C2/2 described above The speciat mput bias curcuitry 15 not required as there is no hold reguirement.

IC $3 / 3$ acts as a comparator and carcust action is as follows. while to output of 1C3/4 15 high and ramping down (intput to - terminal) the cument into the - imput of $1 \mathrm{C} 3 / 3$ due to R 26 is greater than that to ats + terminal due to R25 - its output is thus low

As the output of IC3/4 ramps low how eter, there comes a point where this situ ation is reversed The output of ic3/3 goes high. This state being mantalned by posituve feedback via R7 and mjects a large current into the + mput of $\mathrm{IC} 3 / 3$ as R 7 is much smaller than R25.

The output if $1 \mathrm{C} 3 / 4$ thus goes high, restoring current flow vid R26 and starting the cycle agatn

By vary ing the current injected via R22 the time taken for the output of IC3/4 to ramp down to the pomi at which the comparator thggers is lessened Thas results m an increase in the frequency of the saw. tooth.

The output from the VCO is ted to the game display section $\mathrm{R}^{2 \%}$, to the 'wandow' discrminat or formed by lCs 4 dind 5 and via [C7 to the sound generator IC8 WINDOW DISCRIVINATOR
The window discrminator is formed by two comparaters IC4 and IC5 and two of the analogue switches in IC6

Operation is as follows if we assume that the output of the saw tooth VCO is high and ramping down the voltage on the -mput of 1C4 will be higher than that on the t input (a reference tevel established by RY2) and its output wall be low The output of TC 3 will be high as the mput to us + termmal is tugher than that to its - mput
As the voltage ramps down, a pont wall be reached where the output of ICA goes high ds the roltage at ins - input falls below that set by RV2 at its + terminal At this stage the outputs of both IC 4 and ICs are high, as ICE has not switched As the noltage connmues to ramp dou n, however, the voltage on 1 CS 's + mput falls to a point betow that on ils - mput and the output of this IC gocs low

Thus the outputs of both ICs will be high for a small ranige of input voltages (the winciow) defined by the ditterence in voltage bet ween the sliders of RV2 and RV3

The outputs of the ICs are fed to the impurs of two analogue suitches A posiuve volage applied to these switches turns shem "on"

hONOSTABLE

The monostable is formed by IC2/1 this produces a short positive going pulse upon recespt of a negative spike produced by the release of the play button.
Current injected into the - terminal vid R3 will normally hold the output low however a negative pulse applied via C4 and Rl will "rob" this current from the mput and causes the output to go high.

R7 latches the gate in this state after the negative pulse is removed At this stage C6 begins charging, feeding back an increasing amount of current to the - input as the voltage at the junction of R6 and R3 rises.
There comes a point when this current is greater than that fed back via $R^{2 ?}$ and the output returns low Diode D2 rapidly dis. charges C6 to provide relable re-trrggering

The leadng edge of the output pulse is coincident with the release of the play button This pulse is used to turn on analogue swatch IC6/. 3 It will be remembered that if the voltage of the VCO is within the 'window' at this pont - switches IC6/4 and IC6/2 will also be on Thas allows the supply voltage input to IC6/3 to set latch 2 and thus mitate the required actions, ie. blank game display, enable score display, etc,
The monostable also resets latch 1 IC $2 / 3$ to remove supply from the play button, this prevents cheating

GAME DISPLAY

The output of the sawtooth VCO is fed vid an inverting fuffer, $1 C 9$, and a potential duvider, RV4, to the input of IC10a UAA170 The itiput crrouitry of this device consists of a series of diffetenttal amplifiers x ith one input of each connected to the mput termmal (pm 11) via an emitter follower The other input of each is connected to a point in a potential divider chain consisting of equal value resistors The differential amplifiers thus operate as analogue voltage comparators and as the input exceeds the reference voltage of a particular comparator, the output of that comparator will change state

To reduce the package pin-out the LEDs of the display are not driven indrvidually but are arranged in a four by four matrix pattern controlled by the row and column outputs of the UAA170 (A.D and E-F respectively) By enabling the approprate row and column output any one of the sixteen LEDs may be selected. The matrix outputs are controlled by the internal logic of the UAA 170
The resistor chain R42, R44 and R45 sets up the reference voltage inputs of the device The voltage on pir 12 establishes
the lowest voltage to which the LAA170 will tespond If the input voltage is below this point the first LED of the display remanns lit. As the voltage niscs above this level the first LED is turned off the second on - as the input rises the spot moves up the chan, until the voltage reaches that set on pin 13 Thus is the maximum soltage to which the display responds and st the mput is taken above thas level the last LED remants lit
In addition to defining the indication range the voltage between pins 12 and 13 determines the abruptness of transition between any two LEDs. With this dif ference set to 1 Va the light point glides smoothly along the scale with increasing voltage difference the passagc becomes more abrupt until at $4 V$ the light spot jumps from one LED to the next We have sec this, voltage to a pornt between the two extremes

The resistors R46, R^{27} and R47 control the brightness of the display Q1 supphes power to the display and is driven from latch 1 IC2/3 This you will recall is reset, ae, its output as low, at the start of a game A low soltage appled to Q1 via R41 turns the transistor on and enables the display The latch 15 returned high at the end of a game thes turns Ql off and blanks the displds

SCORE DISPLAY

The score display is formed by a second UAA170 (IC10) Much of the curcuitry is the same as that of the game dirplay extept that we only wish to display elght LEDs The diodes from unused outpuls to the +VE supply act is 'dumm' LEDs, Te' trictirg the display to eight LEDS, you could use LEDs for extended scoring - but a larger box is needed This display is powered by Q2 which is again fed from the output of latch 1 ($1 \mathrm{C} 2 / 3$ Thas time how ever. the display is blanked, Q2 off, when the latch is low and enabled, Q2 ont when the tatch output is high

SOUND GENERATOR

The sound is generdted by IC\& an NE55j operated in its astable mode

The reset pin(4) is normdly held low by R32 and hence circut action is inhibited. A posstive voltage apphed from latch 1 vid the play button enables the sound during the game

The output is frequency modulated by applying the output of the sawtooth VCO , vla buffer TC7 io prowide the necessary low mpedance druve, th the sultage control input (pin 5) of IC8

THE DESIRE TO place bets upon a most any event, from the outcome of the big race at Nowmarket to the likelv hood of life on other planets, is a deep seated one in many of the inhabitants of these islands. That old joke about the goy who bet his friend a couple of quid that he can give up gambling for a week would not be amusing, but for the fact that it were so near the truth.

Three Way Bet

Bets fall into a number of different categories They may be made on disagreements of fact ('l bet mine's bigger than yours'|. about events capable of being modified by skill or lack of it ('I bet I can get mine further than yours'), or bets made upon random events (The mind boggles!!

It is this latter type of bet, the toss of a coin, cut of a card or spin of a roulette wheel, that is probably the most popular form of gambling amongst groups of pecple, our race track game provides an exciting means of indulging in this type of activity

The game is really a development of the well known 'heads or tails' type of game, but whereas most qames of this sort are visually unexciting, the race

track game more than makes up for any shortcomings in this area

They're in The LED

When the game's reset button is pressed all the LEDS are off and the 'horses' line up at the starling pest. Now is the time to choose a horse and place bets it you wish.

Releasing the button starts the action with the circles or LEDs representing the 'horses' starting to flash as first one horse then the other takes the lead. As each horse completes a lap the appropriate lap LED lights. The first horse to cross the finush lane lights his 'win' LED and halts the racing horses. If lady luck did not smile on you this time, pressing the reset button gives her, and you another chance.

Construction

Mount all the components on the PCB os indicated in our overlay diagram We recommend that sockets are used for ICs 16 as these are CMOS devices and should not be placed in citcuit until all constructional work is complete. The LEDs are hard wired to the PCB and the interconnection information is given in Tables 1 and 2 . Note that LEDs 37 and 38 have their cathodes taken to 0 V via $R 6$ and $R 7$ and not directly to ground as the rest

The value of R1 sould be selected to give the best display on the race track A value somewhere between 4 M ? and 10 M should suit.

Now is the time to turn on, place your bets and probably loose your shirt

Fig + Pm-out for $4016 i C$

HOW IT WORKS

The crouit uses two oscillators cach based on two of the NOR gates in the 4001 Quad NOR CMOS packing. One of these (IC1/3 and $\operatorname{LC1/4)}$ runs at a high fequency and its output is led to the input ot one half of a 4013 Dual D type frip-flop. The device devides the output of the high speed oscillator by two and provides two signals that ate 180° out of phase at its Q and 0 outputs These signtals cnable cither IC3 or IC5. the ICs being enabled if their ertable tripul is held low.

The second owillator based on IC1/1 and $\mathrm{IC1/2}$ runs at a lower speed and is arranged to provide a non-unty mark space ratio, in fact a vers short "high" output followed by a much longer "low".

Thas non-unity mark space ratio is achieved by the unclusion of DI in the osctlatot's trivine network. This second oscillator can be gated on ditd off by signals to be desatibed below.

Circuit ation is as toltows PB1 is closed and this resets all the counters to zero as well as unhibiting the slow running oscillator. Upon releasing PB1, IC3 or IC5 will be clocked as the first positive puise is generated by $\mathrm{IC1/t}$ and $\mathrm{IC1/2}$. Which counter is incremented will depend upon the state of IC2's outputs.

It general as the two oscillators ate out of phase the counters will appear to be clocked in a random maner A further randotn element is introduced becelisc

The photograph of the game shown feft shows the generat method of construction used in the prototrpe Comectron detorls for the wires between the boart and front panal are shown Tables ? and 2
white at 4017 is normally clocked with positive going pulses at the clock input with enable held low, it is possible for it to be clocked with a negative going pulse at enable while clock is high. Thus accasionally [C2 will oct as a clock

At the end of a lap a pulse is generated trom the carry out (CO) output of eather IC 3 or IC5 and is used to advance the lap counters (IC4 and I('6)

The game onds on the nisth lap whon the "g" output of either lap counter goes high This turns on tither Q1 or Q2 and in turn lights the appropriate win LFD The signal from either ' g ' output is ORed by diodes and this sigral used to halt the game by disabling the slow funning oscillator.

TABLE 1
CONNECTIONS TO IC3 (5)

PIN	LED $\$ ANODE) \hline 1 & $6\|16\rangle$
2	21121
3	11111
4	31731
5	7 (17)
6	$8(18)$
7	4 [14]
9	9 (19)
10	5 ${ }^{\text {(15) }}$
11	10 (20)

TABLE 2
CONNECTIONS TO ICA (6)

PIN	LED (ANODE)
1	$25(33)$
$\frac{2}{4}$	$21(29)$
5	$\frac{22(30)}{26\{34\}}$
6	$27(35)$
7	$23(31)$
9	$28(36)$
10	$24(32)$

Fig 3 Fuff size $1115 \times 62 \mathrm{mmp}$ foil pattem

SWITCH INCLUDED

FIIIIPTIIE

HIGH PERFORMANCE
CApacitive discharge
ELECTRONIC IGNITION,
FOR YOUR CAR.
NoW available as a KIT, offering.

- Overalifncravement in M. P.G
- increased torqua and acceleration
- Rapis first time starting.
- Reducadignion mentrtaifence.

are suind and basy conversion to conventionta groucin, at kits are stupplied complete with chsangover switen as SIANDAND equibment is can be used tor pernormance cormansons and

We will be peeased to accapt teephoned arders for payment by Access or Barclaveard. Phone 022523194	

plespatch
POST TODAY TO:

(GO)?

It can be a nuisance can't it. going from newsagent to newsagent? "Sorry squire, don't have it - next one should be out soon." Although ETI is monthly, it's very rare to find it available ofter the first week. If it is available, the newsagent's qoing to be sure to cut his order for the next issue - but we're glad to say it doesn't happen very often

Do yourself, your newagent and us a favour. Place a regular order for ETI, your newsagent will aimost certainly be delighted If not, you can take out a postal subscription so there's nothing for you to remember we'll do it for you.

For a subscription, send us $£ 600$ ($£ 7.00$ overseas) and tell us which issue you want to start with. Please make your pay ment lin sterling please for overseas readersi to $E T I$ Subscriptions and keep it separate from any ather services you want at the same time.

ETI Subscription Service,
Electronics Today International, 25.27 Oxferd Street, London W1R 1RF

The Golden Dot is truly an entirely now standerd fort meptece workmanship Never before has there been an electtonic Quartz watch so wh sper thin that its profile challenges the breadith of tis elegant mesth band
If you have ever wished to weal a puece of contemporary sculpture elegant and deserving of museum recogntion The Golden Dot is a beautiful cherce We cannot stress sirongly enough how fine this alectronic dig tal wateh is. We ca' onty urge you to wear 11 for 10 days al our expense
A technology so naw it defies comparisont Bereath the waier th n styling of this remarkable timepiece is the most advanced solid state technology ever crafted for an electronic watch Notice that there are no abtrusive butions to interrupt the graceful lines of the watch itself and is accurate to seconda
The circuitry of the Goiden Dot is so unigue that a soft fingert p touch of the Golden Dot instantly beams casy to read LED display onto the watch face

This wafer thin Golden Dot watch has a metal casing witr simulated gold tinish and mistithing mesh bracelet designed for him and her
Weat it for 10 days.
You just cannet bel eve the luxury of the Golden Dot until you have worm is until you have experienced its leatherwe ght comfort and have erjoyed the compliments it generates We are 30 certo n that you mill be satisfied that on eddition to the One Year warranty we are oifering a 10 day money back guaranter if you are not entrely satisfied
Telephone orders 01-455. 9855
Please send $\mathrm{mm}=$
Golden Dot
Watctiles) on 10-day trial
I enclose choctus/P/O tor $£$
Charge to me through
Access $A / C N o$
Barclayeard A/CNo
Name
Address
Bloch capisela plamer

Hegstration No 1011222

Callers wolcome
MOUNTANDENE LTD.
2. Cowper St. London, EC2 (Near Opd St. Stalion]

『BUILD THE

TREASURE TRACER

- Genuine 5 silicon transistor circuit does not need a transistor radin to operate

6. Incurporates unque varican tuning for extra stability

- Search head firied with 1 areday screen to ellminate capacitive effects.
- L.oudspeaker or earphone operation (both suppled).
- Britan's basi selling metal locator kit. 4,000 already sold.
- Kit can be built in Iwo hours using only solderng iton, screwdrmer pleirs and side-cutters.
o Excellent sonstowity and stability
- Kil absolutely complete including dismed titnimed, fibreglass p c. buarch with components suting princed on
- Complete after sales service.
- Wetghs only 220 z. handle knocks down tn 17 " fur transport,
Send stamped, selp-addressed envelope for literature

Complete kit with pre-buil search coil

Pius $\varepsilon 120$ P\&P
Pius Et 1.37 VA1 (886)

muilt, tested
 and
 Guaranteed

$£ 20.95$
Plus $£ 1.20$ PePP
Plus EL.77 VAT (8%)
MINIKITS ELECTRONICS,
Ed Cleveland Road, South Woodford,
LONDON E 18 2AN
Mail order only)

There appears to be little control in Britain over the manufacture and sale of bugging devices. ETI has been investigating the current situation.

IT WILL COME as a big surprise to most readers that bugging is not in itself a criminal offence Plant an RF bug in an office during working hours. listen in on highly confidential discussions and the worst that you'll be got for - if you're caught - is operating a transmitter without a licence Technically you could also be had for listening to an unauthorised transmission but we know of no such prosecutions

The Younger Committee on Privacy which reported in 1972 quite rightly recommended that bugging in any form should be an offence, in itself, but it has not yet been acted upon

How serious is bugging?

in researching this feature we found ourselves continually coming up against stony silence - few people are prepared to discuss the subject and none would agree to having the If comments personally attributed Try

to talk to a company that's advertising bugs and ten-to-one he'll tell you he s now stopped, but he will supply you with equipment to sweep' your office (the technical term for finding other people's bugs).

It is possible to get some idea of the scale of things however There are about ten companies in Britain openly advertising bugs - most of them appear to be very small Even so this indicates that sales are untikely to be worth less than $£ 100,000$ a year and since bugs are cheap, literally thousands are sold every year

Most techmical publications (this includes ETI; refuse to accept advertisements for these devices on
the grounds that they are undesirable. not because we are not allowed to

Where are these bugs used then? We suspect that the overwhelming number are bought as toys and not for any devious purpose but this still leaves probably several hundred that are bought for their stated purpose of listening in on other peoples bustness.

IJNSCRMMBLER Super Shle Our lamous Codr. Breaker Horks wilh all scannors and tunes all scremble trequencies only man COD 5 (S01) Mallormors to

The vast majorty of bustnesses are operated decently and honestly but in every sphere it is very useful to know

Arrangemant of an infrity transmitter used to eaves drop on sounds in a room thousands of miles away using the telephone as the microphone

Exploded vew of the US Grest Seal presented to the American Embassy in Moscow in 7945 This ingemous devace was passive in operation and could not be detected by most of todays ant bugging equipwent When you apprecsate that this was devised 33 vears ago it makes one wonder how sophstreatod modern-day threfligence equpment must be
about your compettors business There are several ways of finding this out the commonest is to head-hunt a sentor employee but his information is quickly out-of-date once he has left Even knowing what s golng on in $\mathrm{R} \& \mathrm{D}$ has serious limilations since even the staff in these departments don't know if therr work will eventually get into production

Eribery has been tred but you sun the very serious risk of meeting one of the 95% of employees who would report it to therr boss

Bugging is anonymous Even if the bug is found, it's almost impossible to find out who planted it and since the

broadcasts? If you set the frequency of the bug close to that of a powerful FM station it's difficult to sort out the two

The makers of the equipment are highly secretive about their techniques and not one would discuss technicalities, they clamed, perhaps with some justification, that if you know how the sweeping is done, its all the easier to use a technique which won't be picked up We believe many of them employ a howl-round technique - put a receiver near a bug and you'll set up an audio/RF loop which wil go into oscillation

risks to a company initiating bugging are enormous middlemen are almost always used

Sweeping

Many if not most of the companies selling bugs will also supply sweeping equipment - after all a radio signal is easier for someone close to the transmitter to pick up than it is for someone a hundred metres away - or is it? First you don t know what frequency it's operating on It could in theory be from 50 kHz (though the antenna would be a problems up to several hundred megahertz OK, use an untuned circuit but then what do you do about regular radio and TV

The size of this bug can be judgod from the pp3 battery plug th is clamed to have an output of 300 mW which the makers clam is good tor 5 mifes snd con be supptrad with any frequency in the range 84150 MHz We have no way of werrymg these chatms parce is anoul ElG
power. high frequency radto signals It was of such a magnitude that it was even suggested that it was an attempt detiberately to make the staff ill It is now thought far more likely that the RF signals were being used to recharge batteres in bugs within the building

In 1945, as a gesture of good will the Russians presented the US Embassy in Moscow with a beautiful wooden carving of the US Great Seal After several years it was discovered that that this had built into it a wonderfully simple bug Inside the seal was a copper cavity coupled to an antenna, one end of the cavity was covered by a thin metal diaphragm

The bug was activated by an external FF signal (in fact 330 MHz this made the cavity resonate but the diaphragm caused the reradiated signal to be modulated and this to relay conversations near the Seal This could still have been in operation

DISSECTING A BUG

THE RF BUG shown in the photograph is a home-brew one that came into ETI s possession. The crecuit was openly published in a British book a few years ago - we show the circuit as well although we have not nor will we provide any component values (Since there are several variables we do not suggest you 'suck-1t-and-see')

Although a DIY crrcult, it would seem that virtually alt the smaller or simpler bugs are of similar complexity or even simitar circuitry

This bug operates anywhere in the 87 $\mathrm{MHz}-108 \mathrm{MHz}$ range and despite the simplicity and low battery drain (only a few milliamps) it will transmit a fair qualrty signal for several hundred metres in most areas and at least 30 metres even in heavily built-up areas
with steel-frame buldings like city centres

The microphone will pick up narmai speech at 10 metres quite pasily The performance, frankly, is worrying - because of the effectiveness - and the unit can be buit for about £31

if some British technicians had not stumbled across the signal by accident A thorough subsequent 'sweep' of the US Embassy brought to light no less than 60 other devices!

If is hardly surprising that British Intelligence Services are involved as well The Russian Embassy in London moved a year of so ago and when access to the building became possible it could be seen the lengths to which the Russians went to prevent eavesdropping, even to having built a room within a room, Various bits of information have leaked out that Intelligence Services were directing a low power laser at the window glass; this would then have been slightly modulated by the sound inside the room and the reflection picked up could detect this.

One of the techniques which has recently come to light is that of 'RF tlooding' of a telephone. Even when the phone is on the hook. the RF can 'jump' the contacts. This is then modulated by the microphone and can be picked up. As it can onty be used with single lines, a switch-board defeats this technique

The other phone tapping technique, the 'infinity transmitter is also made useless with a switchboard. Many company executives use direct fines for security whereas the switch-board itself is a pretty good defence against some techniques.

Equipment Available

Laws in many countries have failed to keep pace with technology but it is ronic that most of the really sophisticated equipment being made origunates in the US - the very place

ARE YOU beine
 EUEESD?

THE BICGEST PROBLEM fACHOg
 gatining uccetss Breakimg and entering is obviously eriminat bui a bug can-be instalfed liferally in one mintute if acome ratik of the device being discavered is
 access to a building during building ar decorsting work problems in siting the bug are teal - well-concealed hidiry places are uwually bad fot nicking ip souns. Favdurte situs raported ta us are in fow pressure arf-conditioning vente And behind radtators - anoiber one is on sticky pads under a desk; somewhere Which would not be nolleed for years
A sfinple searcla is hest and most buges will be discovered upless a true expert has been ensployed.
The extent of elelephone bugeling is unlikely to be hith - access ys so difficult that only the knteltigence seryces will be eble to handle this. In any cass electronic telephone seramblers can overcome this.

If you regard yourself as a candidate for bugging; chect the eredentiats of Post offtce engineters if you buven't called them in yourself. But don't be fooled by the rovelists who seem to indelst that 'two oninous clicks* after the telephone as Hfted क a certain indication thut there is an inwanted fistener on the line.
with the strictest laws against bugging and phone tapping This could be because the problem there is greater but no amount of legislation is going to prevent the availability of equipment - the profits are too great

UNSCRAMBLE CODED MESSAGES from Polite, Fime and
Wedical Chanreis Same day service, Satasfaction guaran-
tepd ming

The range of equipment is so varied and the interest so keen that in the Spring of 1977 a full scale exhibition of both bugging and antibugging devices was held in West Germany - a country which

At first sight an ordmary pen bus look closer Despite its size it has everything incorporated and with put out a signal over 100 metros for three days on one set of batteries

A reat spy kit advertised for 'the professionat' A 6 chonnef trensmitter operating on VHF or short wave is suppiled - there is a matching recever. A/so inctuded is a cesseite recorder mains operation facilities
incidentally bans sales . . except if it is marked as 'Export Only' It's surprising how many retail outlets regard themselves in this field!

The Future

However superior antr-bugging equipment becomes, the number of ways of eavesdroppingelectronicallyis so varied and the techniques developed for keeping the devices undiscovered so ingenious, it seems that bugs and bugging are not likely to become any less of a problem.

Legislation may not stop bugging but it can rase the risk factor to such a level that those practising it will think carefuily.

툐

ETI is not prepared to answer any queries, for whatever reason, on the circuit components or as to the availability of the equipment shown in this feature.

 international:

What to look for in the February issue: On sale Jnnuary 6th

IB Metal Locator Mk 2

The photo shows our Mk 1. published a year ago but we ve taken this design a stage further
The Mk 1 was one of the most popular projects ever published, probably because the early builders were able to demonstrate the exceptional perfor mance to others
We've looked at every aspect of the design and have come up with an improved version which we are sure is going to be of interest to practically everyone.

LIEHTNING

A flash of lightiming rarely lasts more than a secend but the
poweris immense. The current can reach tens or ever hundreds of thousands of amps and potencials are hel eved to be ebout 10^{7} or $: 10^{3}$ olis no wonder Frankensteins monster sat up!
How liahtning oc cuts and what bap. pens at the ground is ar more involved than youd itarik in the next issue Prot W R. l.ee of Manchester Universicy explains just how dangerous it is.

Electronics \& your water supply

sounds dull2 No1 a bit of it. As in most fields electronic measurement of all sorts of parameters is now widespread. Dr Sydenhart deseribes how transducers ensure that our drinkirg water is montiored.

Following Tim Orr's very popular series on Active Filters we've twisted his arm to cover OP-Amps in the same way. The feature avill mot onlv give the theory but will be heavolv spiced with usable creusts.

The next issue of ETI wall have several pages in 4-golour. At this stage it's only an meperiment owl you can be sure that it
blishing f ting field. EJI is way ahead

This project describes both cransmitter and receiver and unlike most can be modulated. The basic project in the February issue enables you to control a telay remotely from a very small transmitter - and no licensing problems

ETI Cover Price

Sorty folks - up we go to $45 p$ from the February issue We hope you'll still consider us worth it You may have noticed that recent issues have been 100 pages and although many are accounted tor by ads. the editorial pages hase increased sppreciably

Accentuated Metronome

Not Just yer tick, tuck. tuck but a tick. tick tock Don't follow? Well, musical times (eg $3-4$ time) are more comples than the regular metronome dan cope with - next month's project explains

Articles mentioned here are in an advanced state of preparation but circumstances may aftect the final contents.

If they＇ve time to invent such damn＇useless trinkets int＇mills time，Mr Ackroid，then vou＇re not working＇em hard enough？

CMOS		CO407\％ 604021	1.28	CD4DHO CD4041	1.11 0.85	ca40eb COA667	${ }^{0.1}$ 的	$\begin{aligned} & 6.4096 \\ & 0.4097 \end{aligned}$	108 2.85
		$\bigcirc 04022$	0.4	C0／042	c． 86	D4058	0.23	Cratige	9.13
6 CP 400	017	CMO23	0.23	－ 10543	1.81	004069	023	C04099	1.90
CWho3l	0.18	504028	0.80	corosi	095	C34070	0.51	C04502	124
CD40\％	017	c－4	023	CD4JE5	145	C0407	0.23	Case 50	141
CDUFEL	120	C54．25	1.78	CP4046	1.33	C0：072	023	COA511	172
colco，	0.15	cod	058	${ }^{2} \mathrm{CD} 4,947$	4.04	cotuots	0.23	CO4D14	284
counce	1.00	$\mathrm{Caj} \mathrm{C}^{\text {S }}$	0.92	CO4049	0.58	CD4075	${ }_{0}^{0.23}$	COAELIS	3.24 140
CO4C0\％	0.58	Cl	${ }^{118}$	851049	0.68	cosor	134	C04518	189
C04010	0.58	CD＝$=0$	0．58	corcso	0.68	CD407？	0．4s		129
C040＇1	0.20	$\mathrm{CDO}^{\text {co }}$	230	CD4CA 1	0.103	Colest	${ }_{0} 923$	cols	1.64
Di401，	023	Cla	1.02	204052	0.94	C02081	0.23	coss32	1.64
02013	0.58	促	144	Catak	${ }_{8} 8.98$	cosers $c 04085$	0.74	C04555	
cosela	04	604031	1.27		520		${ }^{0.74}$		0．80
cruplb	1.04	， 4	122	004055	＋ $\begin{array}{r}1.38 \\ \hline 1.38\end{array}$	54097	160	－ 14.4528	1.22
count	0.38	C－14	3，${ }^{3} 8$	c040s9	4.6	c．j043	0.92	AC14533	463
C04018	1.03	CDL 0	1.10	c24060	1.15	CD409］	1.84	190503	8．05
C04018	a．ss	CDA5－9	3.30	CLudes	113	1． $\mathrm{D}-995$	1．06		

ARANGE OF SINTEL INDUSTRIAL MODULE KITS

 KITS FOR LATCMED COUNTER MODULES

	COMPONENTS				MEmontid	
	saleracian		DLEPLAY5		？	205
MEKStiol 130.00	PIMS		TTP		2142ht	2.90
	101	0 ¢0	Fwoble	1.30		
	$\lim _{\substack{\text { and }}}$	10.90	THF			
	3 HO	10.5	12016d	148	121\％｜${ }^{\text {a }}$	356
Lemere way	clack		5 ctel	4.0	T6191］	＋10
38.98	45162	310	Crrsfuls			2.58
2a－crt 1280	H1924	350	$3!$ cek he	350	万183施	350
285－pl 12．80	Wintis	5.6	51 2natz	168	32t230	$3{ }^{4}$

DATAEOOKS	
Irind memory Desom Handlook	EE．20
	45.25
el 8085 Mrexempht Sy	58.15
	6150
Now la Micsor M	¢1295
	4.35
Netamal St＇MP immekit User s Malua	
Naional \＄t wif Pechnical Desciupion	
Vationa Smmurchathil TTL Dotaboak	12.10 8545
	¢2．05
280 hose mbly bay yuage Pogramminis Matiual	¢750
Tilag 280 －PD Techmeas kxintisa	C5．8．0
2 Zlog 280 ［IL Froduct speaticetors	5080
	E370

ALL PRICEA VALID UNTIL 31AK DECEM BEA，197T

ORDERS TO SINTEL，PO BOX 75A，OXFORD ES Tel． 086549791

AST SERVICE We guarantare that Tolophenvorditit For growd in ztetch rocervad by 4,15 ． m ．（Mon－Fn）will

 DRUNENSALOR

THE MODEL REPRESENTS a ship which has four navigation lights on the port (left) side and four on the stafboard (right) side. Unfortunately, a drunken sailor installed 4 green lights in the sockets on the port side and four red lights on the starboard side - which, as everybody knows, is the wrong way round. Everybody knows too that you don't have four navigation lights on each side - but never mind that, this is a puzzle.

And the puzzle is to get a! the green lights on to the starboard side. and all the red lights on to the port side - where they belong. That would be easy if you just unplug them and swop
them around, but the rutes of the grame are that:-
a) only one lamp can be moved at a time;
b) a lamp can be moved only along the black line and must be put into a vacant socket at the end of the move, c) a lamip can be moved as far as desired on any move, including going round corner;
d) a lamp cannot jump over another lamp.

Well that's the puzzle. If you think it's easy - try it. Just draw the lines on a sheet of paper, use dots for the sockets and use 45 c and 42 c coins as lamps.

Actuatly that's all you really need for the puzzle, but to make it more attractive and electronic we used red and green L.EDs which light up in the sockets

Construction

The circuit of course is simple - just 12 audio sockets connecred in parallel. a 3 volt battery, a current limiting resistor, a switch and 8 LEDs which can be plugged in.

The prototype was constructed in a plastic box measuring $140 \times 100 \times 75$ mm with an aluminum panel. Any box about that size would do; construction is not critical.

Circuit dlagram Fig 1 : The value of curfent ifmiting
resistor \boldsymbol{f} should be found by crial to keep total
battery dratn to about 100 ma.

$P M \square$	
RESISTOR	
8R2	3/2W (see text)
LEDS	
4 Red	(TIL. 209 or zimilar)
4 Green	(TIL 209 or similari
MISCELLANEOUS	
2.5 mm jack socket 112 off)	
2.5 mm Jack plugs (12 off) (see text)	
On/off switch \{any type)	
Hook-up wire	
Box to suit	
Battery (3 V)	

The lamps are 4 red and 4 green LEDs soldered straight on to the terminats of 2.5 mm audio plugs. Care must be taken that all LEDs are soldered in the plugs the same way round, so that the positive side of each LED is connected to the centre contact of the plug. There are available several lengths of 2.5 mm plug but the best for this project has a 'handle' measuring 22 mm and a hofe in the top which is just right for a LED. The plugs should have colours to match the LEDs if possible - red and green or at any rate red and black. Take care to get all LEDs protruding by the same amount.

The sockets mounted in the panel must all be wired the same way round too so that in every one the positive wite is connected to the contact which meets the centre contact of the plug. in this way any LED will light up in any socket.

The resistor R in the prototype was chosen to limit the current drain on the battery to a reasonable value - 100 mA , and stilil give adequate brightness to the LEDs.

The battery comprised two D cells soldered together in series and to the wiring on the panel. They were held in the box with suitable packing, but a clip

Phato 7: The finished puzzle
could be made instead.
The black line on the panel was made by cutting a strip from a sheet of black contact which was on hand. Scotcheal. paint or drawing ink would do instead.

Well, there you are, that's the puzzle
and nothing eise need be said about its construction.

Its solution is another matter. The answer will be published next month. Suffice it to say for the present that it requires several moves!

WHAT THE CRITCS

ARNOLD SKULFINGYON
I built the timer, the morse oscillator, the buzz game and the temperature alarm - all using the same PCB design. I really liked the pictures of the ETI staff, I've cut them out and stuck them on my bedroom wall (wherethe dartboard used to be). I want to learn more electronics so l can build a robot like R2, the internal pictures of the Star Wars robots are really good in Jim Perry's big feature on Star Wars. I asked my uncle to get me one of those futuristic calculators that Halvor Moorshead talks about, but he said that they won't be invented for a couple of vears yet!

JACK WURTFANGLER
Ron Harris's report from the future has given me many new ideas for developing myhr-fi system - but I disagree with his views on valves, surely valves wild rever be seplaced ${ }^{\prime}$ After reading Angus Robertson's feature on the furure of video 1 'm
thinking of installing a video complex in with my ha-ft - which is based on the system shown in the audio section.

ELECTRONICS TOMORROW
 On sale now at your

 friendly newsagent or direct from ETI for $£ 1$ inclusive of $p \& p$.Send cheque ar postal order (payable to Electronics Today International) to Electronics
Tomorrow, ETI Magazine, 25-27
Oxford Street, London W1R IRF

GERRY
LEWINKLE 1 don't
know when I'll find time to build the CMOS switched amp. but I've already started on the power supply - my old one just blew up' The cartoons by Roy Pullen are great, and all those gadgets for building projects (the ones Jim Perry talks about) are going to make electronics a lot more fun.

JASPER OATS
When I convert my TV to a display formy computer (as described in this far-out special edition), what will I do with all the print-out I've got lying around? If Gary Evans is right with his predictions about MPUs, 1 'll be able to build my own Star Wars robot in about a year's time. With the tups I picked up from Clive Sinclair (wasr't tt good of ET) to send Steve Braidwood and Halvor Moorshead to interview hom for us), I'll take on the Yanks and Japs with my own robot company - Oats Robotics

wireless show

Pete Scott, our visiting Australian hi-fi editor, took a wander through the hallowed halls of the Victoria and Albert Museum to cast his eyes over the vintage radios displayed therein and bring us this report on the ancestors of the 'Irannie'.

Decca Deccette 1553 A 4-value bettery porteble, using ministure values of superthet design and with foetachablel mans efmmotor base

THE NOSTALGIA TRIP of 1977 is undoubtedly the 'Wireless Show' at the Victoria and Albert Museum until December 11 The show, which consists of a fine collection of British radso recelvers from a period which could loosely be called the 'valve era' is the most comprehensive survey of historical radıo receiving sets ever compiled.

Scope

The 130 classic recelvers have been chosen as a representative selection of equipment produced between the early 1920 s - when regular public broadcasts commenced in Britan - to 1956, when the era could be said to have ended with the introduction of the first British transistorised portable radio

The show is necessarily restricted in scope by the available space and so does not attempt to give a completely balanced view of the thity years it covers Items such as the combined radio-gramophone, or the larger combined radio-TV, are not included it is also obvious that the exhibits of the larger floor-standing consoles have been immited to allow a greater overall diversity

Table-standing valve sets - every home used to have one - form the dominant section of the show, but older visitors will have their memories stirred by the earlier units with their free-standing horn speakers

Background

The choice of 9922 as the starling point is not random even though a great number of the major mnovations in the wreless field had already taken place by that time Marconi had filed his first world patent in 1896, transmitted over the Atlantic in 1901, and speech had been broadcast by Fessenden in 1903.

The first broadcast of speech across the Atlantic had been achieved in 1916, using a transmitter comprising some 300 valves, and the first practical use of superhet techniques for speech broadcast across the Atlantic was made in 1921

About this time wireless was being used only by expermenters and enthusiasts, who tended to construct their own recelvers, although it was estimated that there were some 500 companies manufacturng components in Britain alone

Left Ekco madel SH25 from 1932 and on the right the UAW78 five years ofder

Leftsonght $419486 E C$ a Marconiphone Fersonal (wowld you behovey ser (1947) ovit

Wireless at this stage was not used for passive entertainment' in Britarn, although America was being served by several hundred transmitters - largely unregulated However, with the formation of the British Broadcasting Company, set up in 1922 to organise regular entertamment programmes through a network of eight transmitting stations, wireless began to have a less esoteric appeal.

So the starting point for the Wireless Show represents the time at which radio started to become a popular commodity The growth rate in the industry from this ume was extremely rapid as was public acceptance

The Technical Side

For those interested in the changing technology the show is an interesting aid to tracing techmical developments through the thirty years preceding Britann's first transistor radio

Immediately obvious features include the rapid improvement in tuning facilities, the fight for higher selectivity as the number of transmitters escalated, and the move from battery operated sets (or combined battery/ac) to ac only as more houses were wared up, and and then the move back to battery power as portablity became a desirable feature

Even the gimmicks and conventence features, such as the magic eye', introduced as technological advances slowed in the late thirties, prove fascinsting

Stylistically

The main purpose of the exhibition at the Victoria and Albert however, is to show the changing styles in the presentation and appearance of radio receivers through the chosen period Styles that moved from the ornate almost ornamental - crystal sets of the very early days through to the receivers with intricate wooden cabinets and then to the architect-designed, sculpted-plastic 'creations' which eventually proved too much for the woodworking craftsmen, but which were dropped in post-war austerity

The show produced by the V\& \bar{A} in association with the British Vintage Wireless Society, is well worth a visit by anybody who ever bult a crystal set It will revive many memories for older visitors and gives a fascinating insight into the background and formative years of radio in this country

The vastly expensive $(5015 ; 9$, 5d) Marcomphone personal recerver in

Superhet from 1932 and Ekco 3 value design caulo be battery rian

frend the Deccoagary und at 1950 design bv Lawrerce Griftir

Warcomphone 1932 model 42 on the left of the Pre MM from the same year

ETI SPECIALS

ETI CIRCUITS No. 1
tom $t \times s$ hest ot un Tesh Ti is Freat care Kas bupn taken oo iredux ral h circue of:
 excellent - hardly swipnong when that
$£ 1.50+25 p$ P\&P
$\$ 5.00$ 4280 480

ELECTRONICS - IT'S EASY
Gur successfis series suthich finishes with The wery osswaly is to be awalabla in thisee ,
Goluinc 1 and 2 have now bear reprinted a mee: the contiriting dernand, and can bas ordered framour offices - as con vislume 3
$\mathrm{E} 1.20+25 \mathrm{p}$ P\&P
£1.00 + 25p P\&P

ET 4600 SYNTHESISER
A complete soprint of sur supere sphr yes sem twho ilso swaply the partet This. wprint will also be af int-rest to those not pricerimally went igg 10 buld the biri" an the erroutry so
langhy originel and in in toct peterated by
$£ 1.50+25 p$ P\&P

TOP PROJECTS No. 5 Twacrlo-croo camplete proypets inluding Touch Organ Audio I intritet Intrit-Fuls Intruder Alam Model Jrain Contreltel Beortipn Tester Hedodplano Fadio $\mathrm{S}^{\top} \mathrm{D}$ Timer Double Dhro Gip Power 5upply Lugir Jeston Fower Metat Dugita Voltmeler Univerzal Trimer Brabkekiwn Eberson 1-2 How Timer Heopt Riste Morior IB Metal tncalar alvi Tsmpelown. Mert		
¢1.01 +250 P8P		Mrtck PFHCNEE 18AOON
	plosting volf metce 	D:ste f*FT6
	TRAN COWTNOLLE (racortin*)	POLCH

HOW TO ORDER

 ET Oiters are avalable only d"act from

Posizge and pock ig is 25 p oucrseas Send oumitainse in sterimg only

ETI Specisle,
ETI Magazine. 25-27 Oxford Streat
L.ontion W1R 1RF

Ploane mark the back of yous chrque or PO with your nalre and androses
and

TL080 Family Bifet Op Amps

The TLO80 iamuly of BIFET operational amplifiers provides an ideal combination of highmmpedance JFET inputs with a low-distortion bupolar output circuit Quality periormance in the TLO80 family is achisved without complex crrcuitry

TL080 family circuit description

The following sections should be read in conjuriction with $F i g y$? the basic schematic for one channel

Bias circuits

EFT Q18 zener D2 transistors Q14/015 and resistor R6 establish the bias currents for the input differential ampliffer and the second gain stage Epitaxial FET Q16 provides a tixed current to $D 2$ establishing 52 V on the base of Q15 The resuling 317.4A collector curren of Q15 flows through ot 4 and sets the currert levels in Q1 and 29

Ritsistor R1 causes 196 A current in 01 that is divided between the riput stage JFETs Q 2 and Q 3 The second garm stage bias current about 600uA is derived from E9

Input cirouit

Input JFETs Q2 and 03 operate into the actuve load circuit consisting of Q4 Q6 and 07 Current imbalance and in pui offser voltages may be adjusted on the TLO81 and TL083 through connections to the emitters of Q6 and Q7 External offset controls for the TLO80 connes to the collectors of Q6 and 07 The C1 compensation capacitor is internal on the TL080 TL082 and TLO83 and TL084 For the TLO8O connections for external compensation are provided which allow user adjustment of $A C$ characteristics
lon-implanted input devices provide very hagh input impedance controlled pinch off voltage for maximum corrmon-mode nput range, and matched characteristics for control of the input offser voltage JFET inputs also ellow adequate drive to the second slage resuling in meximum output peak to peek copability and wide power band widths

Output stage

Q10 and 011 prowne Class $A B$ bas to the output transistors Q12 and 013 This allows near zero crossover distorion and produces a low total harmonic distortion at the output The simpliaty of the output circult results in типimusti silicon area requirements keeping menufacturing cosi down while maintaining quality performance R2 R3 and R4 form the output shor arcuit protaction network

Fig 1 Schematic didgram for TLO 00 famuly

Second stage

Drive from the input stage 15 single-ended from the coliector of Q7 D3 provides a clamping action across Q5 and Q8 preventing saturation
of Q8 and excessive current in Q5 05 and 08 form the high-gain second stage the second stage output collector of 08 , drives the output slage consisting of bias transistors 010 and Q11 and output drivers Q12 and Q13

Icy Road Warning Indicator

TL080

Peak Detector

FEATURES

- HIGH INPUT MPEDANCE
- HIGH SLEW RATE
- LOW DISTORTION

CONTINUOUS SHORT
CIACUIT PROTECTION

LOW POWER
CONSUMPTION

ADVANTAGES
Minimum lading effects allow elficsent use with high impedance transducers
Provides the desired response characteristics requited in audio trequency active filters and quality sound systems
Minimized crossover distorthon ylelds very low rotal harmonic distornon for maximum pertormance in critical music systems
No damage resulting from accidental shorts or operation into low impedance loads

Only 28 mA peroperational amplifier Less system power required and battery oporation is practicable

absolute maximum ratings	$\begin{aligned} & \text { TLO8_C } \\ & \text { TLO8_AC } \\ & \text { TL08_BC } \end{aligned}$
Supply voltuge, VCC \{see Nore 1]	19 V
Supply volteqe, VCC (see Note 11	-18V
Differentral input voltage (see Note 21	-30 V
Input voitage (see Notes 1 and 3)	$+15 \mathrm{~V}$
Duration of output short circuit (see Note 4?	Unlimited
Continuous total dissipation et 25 C free-air Д, JG, N, of P Packaqe temperature L Package	$\frac{680}{625} \mathrm{mw}$
Operating free.dir temperature range	0 to 70 C

NOTES
 the zero reference level is the midpont betweun $\mathrm{V}_{\mathrm{CC}} \mathrm{and} \mathrm{V} \mathrm{CO}$

3 The madjartude of the infut voltage must nower exceed the magratiade of tha sudplu uglacie or 15 volss whichever is less.
4. The output maty be shorted 10 ground or 10 eithor supply. Terperaturn arditor vapply voltagrs must be limited to ansure that the dissipalian ratang is not excecded.

TTas liry TEXA8	74111－75p	C-MOStCR	OP，AMPY （八刀）＊	1010				MEMORY LCA		$\begin{aligned} & \text { NAE } 1055000 \\ & \text { N10 10 } \end{aligned}$		DiObes	SHIDGE	
oc t6p					109				7750					
3401 18p		1002 21p	E－J100		739			102						
110 189	7110960%	＋006 127p	［034－		［41		258	19.	1954 684p	vpriol ${ }^{\text {s }}$ 40p	2N2926FB9P		27p	
40 18p	$8: 1600 p$	4－0．7 21p	LM引18n	175	－17		${ }^{250}$			1\％5006 37p				
	7111 $7+1 / 25080$	$4008100{ }^{\circ}$	181矿	130	＜48		40 t	5	P\％			0．0．${ }^{\text {0．}}$	$\begin{aligned} & 2 A \\ & 2 \mathrm{~A} \\ & \hline 10 \% 400 \\ & \hline 100 \end{aligned}$	
		＋009 67 p		130p			218	203．1613	（1）	$M=-4540 \rho$		0ays＊p	$\begin{array}{ll} 2 \mathrm{~A} & 100 \mathrm{H} 5 \\ \& & 2000 \mathrm{SEp} \end{array}$	
， $1.3 / 83 \mathrm{l}$	731－9 285p	+011+210+212	Clubur								2N30C5 65p	0570210 p	3A 2006 70p	
			LIMEAF					ECUW PROPILE DIL			$2 \times 34 \angle 2161 p$	1113．4	3A buy kip	
7609				$\begin{aligned} & 650_{p} \\ & 775 p \end{aligned}$	NEから旗		$\begin{aligned} & 49 p_{p} \\ & \text { 97 } \end{aligned}$	SOCKETS BYTEXAS			3n3304 514 p	1月G F $\quad 70$ 1r．4001 18 g	［A 100\％${ }_{\text {che }}$	
	7412252p							B！n－12p					$\begin{aligned} & 60 \% \text { 50w enip } \\ & 6 \% \end{aligned}$	
$\div<12250$	75117375p	＋1716 ${ }^{\text {¢0pp．}}$	46	05p			$450 p$	$\begin{aligned} & 16 ; \\ & 1.18 \end{aligned}$						
$74.3{ }^{76} \mathrm{~F}$	70125700			${ }^{250 \%}$			${ }_{2}^{200 p}$		स？${ }^{\text {pll }}$ 60\％		$\begin{gathered} \text { r } 1109+14 \mathbf{p}^{2} \\ 24373 \mathbf{3 2 0 p} \end{gathered}$	$\begin{aligned} & 3 \mathrm{~N} 2003 \\ & \text { incoos } 7 \mathrm{Po} \\ & \text { in } \end{aligned}$	10tp	
76 4.85 p		4．116170¢	－ss－s	75 p			$\begin{aligned} & 209 \mathrm{p} \\ & 180 \mathrm{P} \end{aligned}$	1s on		9200822259	v78 427 F N38520 50p	$14 a-6 \text { op }$	6． 4 40u； 120p	
1017 7408	\％ 7513781 p	：019 57p	30 Cl	970	RC61510N			TRANSISTORS H （1）5 24p		RF， 4850	$\begin{array}{r} 14382050 \mathrm{p} \\ 2 \mathrm{~K} .35 .370 \mathrm{p} \end{array}$	1NEASY 15 F	－ 4 S $4000{ }^{1200}$	
7420189	－130310	202U14\％p	30335	250 p	？ 2		274p	200		－F 29 P		2EWEAS	$25 \dot{\alpha} 600 v^{370}$	
3121143	2－11．13sp	－	3090，	a 25 ¢	－r 1600			$\begin{array}{ll} 420 p \\ 176 & 20 p \end{array}$	FF10 25p		－13923＋220	2ENERS		
7622 748% 768	－109300p $741-5980$	4023 23p	¢ 4.180	4008	SNTHEIJN		$\begin{aligned} & 289 p \\ & 175 p \end{aligned}$					$\begin{array}{ll} 11 p \\ 22 p \end{array}$	432 F	
25 32p	78	－ 0.58	LM3344	176	8v？ 5011×11		16920	$\begin{array}{ll} \therefore 0144 & \mathbf{8 0 p} \\ 40161 & \mathbf{4 5 p} \end{array}$		1PFstc＊83				
1126 43p	14.49160		10314	200 p	こN1601日		260 P475				$\begin{aligned} & 2 n 1 \quad 25: 22 p \\ & 4 y \end{aligned}$	miacs		
74.77 40p	21160130		－M23040	120	5N2578 18			$\begin{cases}40161 & 45 p \\ 4012, & 48 p \\ 4 & 124\end{cases}$				Pratic	1 La 500\％	
24．${ }^{\text {4，}}$	（4）${ }^{\text {a }}$ ap	－029140	439Th	190\％				if：14 $530 p$			$\begin{aligned} & 4+\text { is } \quad 22 p \\ & 3 p, 10, \end{aligned}$	bie Afor		
		－ 150120 P		160p				\＆${ }_{5}$		¢ P940120p	2ha4 ${ }^{\text {grep }}$	$107 p$	15， 5 ¢ 2000000	
1433 7139		$\bigcirc 33087$	52\％A	880	A45014 450			$\overline{4}=15940$	$\begin{array}{ll} 3 F 12 E & 17 p \\ E F 19 & 19 p \end{array}$		2Nb1 ¢5p			
（43）37P	－10097p	4042 487	ctio	190\％	TRA O－900			$4.779{ }^{48 p}$	EF 200 40p	PPGC， 74.3 p	2VE74540p	120p	$\begin{array}{ll} 20160 \\ 4040 & 130 p \\ 40669 & 150 \mathrm{p} \\ \hline \end{array}$	
7439 27p	$\bigcirc 157970$	10aj 100 \％	sct351p	180				$3 c^{\circ} 10 \cdot 980$	$\begin{aligned} & \text { EF -4E } \\ & \text { EF2bES } \end{aligned}$		$7 N S+658 p$ M $540102 p$	10.2 AliO		
1440 18 p		104 1500	Mitash1	$490 p$ 1120			225 1120				$\begin{aligned} & \mathrm{N}-5 \mathrm{~F} 40 \mathrm{p} \\ & \mathrm{~N} 5 \mathrm{seg} 40 \mathrm{p} \end{aligned}$	OPTO		
95p	2 Cl 165130 p			1120	18，					1p，tif 30\％				
	$\begin{aligned} & 1=11 \quad 1300 \\ & 7+462130 p \end{aligned}$			180 p	ex 20		25 P	$6 \cdot 104,11 p$	$S F-58 \quad 39 p$			electronics		
$14.4120{ }^{\text {P }}$		4 4，5c 588	NE		4		405 p	C1品 Sp		「1pi2n 760	2H5107 70	SCP 117 TCO	11211 bican enp	
$7145108 p$	74104190 p	－ 004120	NE54．JK	2250	CN．		1400			96	Nbut 50	2kp is ramp	We ifosied	
744，${ }^{\text {cosp }}$	4161661900	a JE ¢ 745	olta	dato	－Fixed			＊しーサし15p	H． 4634 p	1，305ヶcto	vค／54140	Onf 61.8		
$74.888{ }^{\text {P }}$	3116 3 320p	4 14001300	Plistul 1i，${ }^{\text {a }}$	31	62		70p	11p		$\Gamma=4.1590 \mathrm{p}$	24623270	20511－489	arex 36p	
14 yO 18 p	1－1，0 280 p	4， 508					70¢	651\％20p		NE27 25p				
74.6180	71172750 p	＂27）30\％					700	17\％	3．$\quad 3{ }^{30} \mathrm{p}$	Mig9 43p	－414 97			
1463 7454 180	14．${ }^{18}$	41718		119	1 190m			－ 18.312 p	（r）－ 330 p	52018 43p	1／14 14.2000	－4050 TUS	5 p	
		$1-7145 p$	（）${ }^{\text {a }}$	115 p			80 p	5¢18．${ }^{40 p}$			703＊ 23	9a 40tue sto	1200	
3470 38p	74176130	109 30p	75 817	1150					F\％8U		40381243	2A 400v Fiss	1800	
7473 320	2417130 p			${ }_{175}^{175}$			800		22 F		4646，859	bat	2709	
1473 350	／4180980p	1．01104p		${ }_{115}$				号5フ1－16p			204， 3250		130p	
7471 37p	7－16．1324p	\rightarrow ） 140 p						36－ ¢0p	日frgu pop	3－12 122 p	－${ }^{\text {a }}$ 9\％ 9		47p	
边 475	$71162150 p$ 3114.2600	2f 140p			\checkmark Vera		${ }^{700 p}$		ग月Y36 48\％		－1337 60	MCR101 $A 15$	${ }^{-012} 27^{2}$	
	311842600	－ 81300			\checkmark－ 1 d		2739	3 Cr 70 20\％	85＞19 26909	2x．2111260\％	4×630 140	2N3525 Sxiluil	TOES 720p．	
7467105 p	／41406990p	4．E 1400	－7． 7312	${ }^{180}$	Wratie		3000		MJEAR 70\％	2N－60120p	4．-78 \＄80	ZN44443G bo	Pasto 200p	
1482 90\％	－41901800	14\％ 369	年	160 p	Maber		${ }_{1309}$	SD $2+140 \mathrm{p}$	19J－1 175 p	$2 N 2 \mathrm{~S} 922 \mathrm{D}$	ㄷ．8－ 900		ros	
	7414.1150 p 341 l 180 p	14051540		160				ED 16	Mj25 260			2N50tached	40 1092 a3p	
$7<65120 \mu$	75193160p	8113	antsmu 1？	\％25p	Wahiasi				11．245 5 130p	$2 \mathrm{~N}, 1132 \mathrm{p}$			Cxors？！	
7485350	411441800	H301 180p	curatiolie	1973	「䞨．		45p		1	$4{ }_{4}^{62}$		C．${ }^{\text {a }}$	TOROLA MuL	
	1117：110p	93071740							mi3001250p	$2 \mathrm{c}-\mathrm{Na}^{4} 422$		－		
441	$3 \rightarrow 1,130 p$	6275	110 s	34	－11		3750		T	－prices	dd 25 p	10	er extra	
\％ 49788	7190270	－ 311275		5708			70p							
7．34 \＄0p	3515 175p	${ }^{\circ} 312160 \mathrm{t}$	Disp		$7{ }^{2}$									
$3-75$	（15］ce 5500	2 216250 p	Sx bur	Prer	1309		84 p							
$\begin{aligned} & 7 A .590 p \\ & 7 د 6: 290 p \end{aligned}$	－5：ro ${ }^{\circ} \mathrm{P}$	¢ミごに2750		$5 \cdot 1$	160		8 mp ．							
100140 p	40\％ 175 F	160	－ L^{1}	Fed 9 Find			200p		54 Sandhu	Road，	On		4333	
2410475p	90.31700	． 321250 P	31 122	Fel	1300		2000					－	280	

SOFT
 WARE

GAMES
These games for the Sinclair Programmable were submitted by Mr \mathbf{P} Cornes of Crewe in Cheshire. A flow chart is given with each listing, so that owners of different machines have a head start in producing a program for their machines.

Object - To simulate a show fumping course in such a way that:-

1. The player enters a guess as to how many swides of acceleration he thinks will be required by a horse to clear a fence H feet high
2 . The player is given an indication of right and wrong guesses.
2. The players total score is made avalable to him at the end of the game.
3. The players score is made dependent on the vatue of his guesses and on his successtully efearing the fences.

Execurion -

input H fence $1 / \mathrm{RUN} /$ inpuit strides/RUN/right-wrong input H fence 2fRUN/input stides/RUNfright-wrong inpur last H/RUN/inpat strites/RUNfrightwrong $4^{7 / R e l} /$ score.
The biggest problern with this program was irying to find a realistic relationship between the number of accelerating strides input and the height that these surides would enable a horse to jump. The following curve shows the sort of relationship that is requited

MEIGHT HEY

As you can see from the curve the extra height that the norse can fump decreases as the number of strides increases, such that after a certain point no increase in height is gained by increasing the number of stides. This is the sort of curve you would expect in reality. I have simulated this curve by using the arctan function. The tarr of an angle can taks any value between zero and infinity so the arctan of any number between zaro and mfinity has a radian value between 0 and 1.57 and you will find that taking the arctan of any number greater than about twenty gives approximatefy 1.57 as an answer. The only thing to be done now is to scale the aretan values up to give a reasonable range of hesghts, to do this we multiply by five.

Looking at the plan of the course you will see the path connecting the fifteen fences together. The number alongside each fence is its height (H) and the numbers on the paths between the fences are the distances in strides to each fence. If you input these numbers as your guesses

HORSE JUMPING GAME

Above a suggested course for the horse race game All the fence heights arb givan in feet, and the number of strides between the fences
then you are guaranteed to clear the fences but you wifl find that it is possible to ciear most of the fences in less strides than shown.

Your score is calculated by totalfing all your guesses round the course and by adding a penalty of nine points for each fence you do not clear. You should considel yourself to be disqualified if you knock down more than four fences.

If you clear every fence in the minimum number of strides you will end with a score at ninety.five but you shoutd consider a score of one bundred and ten or less as good.

When you master this course it is a simple matter to change the heights of tha fences and this creates your own course but remember that no fence thould exceed 7.5 feet in height or you will not clear it.

INPUT STRIDES
UPDAEE BCOAE WITH STRIDES INPUT
calculate
HEIGHT FROM
STRIDES
NNPUT

UPDATE SCORE
WHTH'FENCE
DOWN'PENALTY

FENCE CLEARED
DOWN DISFLAY
1 -CLEARED
$0=00 \mathrm{miN}$

INFUT AEIGMT

UNIVERSAL RANDOM NUMBER GENERATOR - FOR GAMES

Object - To generate a random number of any required length up to eight digits in such a wey that each digit can take any value from N to M .
OR generate single randon numbers with values from K to L.
OR piay in ESP game such that the player has the opportunity of entering a single digit number before the calculator generates a random number, both digits being displayed at the end of the run for comparison and statistical purposes.
Execution 1 -
Any number between 0 and

RUN/randiom digit/ if you requite a two digit pandom number then press RUN again and a second random digit will be displaved slongside the first, a three diglt random number, press RUN a third time etc
When you have a random number of the required length and wish to generate another number press the clear button followed by RUN/random digit/etc.
Execution 2 -
Any number between 0 and

RUN/random number!
RUN/randem numberl
RUNFTandom number/ etc. ...

Execution 3-

Any number between 0 and

Your guess/RUN/random number and your guess Your guess/R UN/random number and vour guess Your guess/RUN/random number and your guess With the program as it stands the variables take the follow. ing values:-

$$
\begin{aligned}
& N=K=1 \\
& M=L=6
\end{aligned}
$$

Obviously with thase values the program can be used to simulate the throwing of dice with executions 1 of 2 .

When you come to change the variables you shoutd do it in the following way:-
Exacutions 1 and 3
Chose a value for N between 0 and 10 tintegert.
Chose a value for N and 9 (integes),
Replace lines 9 and 10 with the value of $\mathrm{M}-\mathrm{N}$.
Replace lines 29 to 31 with the vafue of $\mathrm{N}-1$ fincluding eign)*
Run as per execution instructions.

Execution 2

Chose a value K between 0 and 10 (integet).
Chose a value L berween K and $K+99$ fintegert.
Replace lines 9 and 10 with L $-K$.
Replace lines 29 to 31 with $K-1$ finciuding sign).
Run as per exacution instructions.
With $\&$ moments thought you witl see that there are ane hundred and one uses for this prograrts a few of these are given below.

Slot Machine

Use execution it with $N=1$ and $M=4$ and score wipt according to the following table.

Display	Win
111.	10
222	10
333.	10
444.	10
221.	5
331	5
441.	5
11.	4
\%...	2

With the values of win shown, the program gives a 95% pay-out.

Race

Use execution 2 with $K * 1$ and L = number of players (say four). Run the program and each time a number comes up enter one in the table shown, in the next empty square down, underneath the number displayed. The first player to fill the colurnn below his number is the winner.

Batte

Use execution 3 with $N=0$ and $M=5$. Each player takes it in turn to enter his own number fore to flivel and run the program. When the display appears subtract the smaller digit from the larger and then add the farger digit to this answer. The player with the highest number at the end of the round wins the round. The first player to win five rounds wins the game.

ATBMIC DEGAY GAME

Object - To smplate the detay of B gratho of a radicacthe

t. The peact has the opportunity of guessing hee treich
 esch secood.
2. Tes ptave is giver felications of righteand wirong thit sind miss) guesses
 "each quess
Exerution -

Soor qucss/RUN/HE=CNs/RUN/score
Xour guess/RUN/HHE Wiss
Noth the program listing and exectutun sequeners givert the variab es take the foflowing, xature: -

Should you wish to dhinge fhe varibles then you ges used to playing the guthef tien

To change B - Put the na watue in place of athe 100 at Whe. Weginting a tha exedution. sequericic.
 to zots now value tany z key-stroke. murnber between ot ond ock:
Fu Change D - This watable is the most difficutt of the thiee to charge a sity tequires calculation
… "theis?
 If the answer is lasss than one, then replace lines 08 to 朝 whe the thee mast signo icant diglts aftel the deramal polint. If the answer is greater that one then replace liness 07 vo. 10 with the tour most significant key strokes, eq. If answer is. 0.9330144 then ptt 933 into lines 08 to 10.

Stapareatact Stsam Marshall's
 LONOON - 325 Edgwere Road, W2 Ta 21.723 GLASGOW - 85 West Regent Strat 62700 ERISTOL - 1 Straits Parade Fishponds RA SS $1674 \times$
 COMPLETE EUYERS GUIDE TO
Call in and see us 9-5 30 Mor-Fri 9.5.00 \$at PRICE 36p POST PAID 25p FOR GALLERS
MICROPROCESSOR COMPONENTS

CPEB224N
DPER2FD
SE/MP

7E: HR

CLOCK MODULES DIGITAL
\qquad
CAF CLOCK MODUL
"What is a microprocessor?" - a complete E9 95 incl VAI \& P\&P

NEVV SC, MP RETROFITKIT
 sers to ovaluais ine processor E1B.40 excl. VAT pop $75 p$

HYRISTORS plakthe CTOMA
 VOLTAGE REGULATORS

E MICROPROCESSOR SYSTEMS

CUTS CARD

Designed by John Miller-Kirkpatrick

LAST MONTH WE completed the description of the System 68 TTY card and described a simple cassette interface circuit that could be used in coniunction with this card. This month we begin describing what is probably the most popular means of encoding data in a form suitable for storage on magnetic recording tape - the CURS format. CUTS stands for Computer Users Tape System and is also sometimes referred to as Kansas City Format.

CUT Above The Rest

Figure 1 shows the basic specification of the CUTS system. From this it can be seen that a serial data stream of eight bits has a number of control bits added to it, much as a TTY has similar control information added to its output. The reason for these additional conticls were dealt with in the first part of the TTY interface published in November last year.

Figure 1 also shows that the CUTS
specification calls for a logic ' 1 ' to be recorded as eight cycles of a 2400 Hz tone and a logic ' 0 ' as four cycles of 1200 Hz . These tones have been sefected as being surtable for recording on most tape systems and are also easily derived from the master 4800 Hz clock present in standard UART systems.

The crrcuit diagrams of the decoder are shown in Figs 2 and 3 These twe circuit blocks replace the equivalent sections of the TTY interface circuitry to provide a complete CUTS encoder/ decoder, all memory decoding and UART configuration being identical to that of the TTY card.

Next month we shall deal with the construction of the CUTS card as well as dealing with the necessary software. We shal! also deal with means of provid. ing additional RAM and PROM for the System 68

Before winding up this month however, may we go on to discuss an interesting area of software.

Assemblers and Disassemblers.

An assembler is a program which allows instructions to be entered in a coded form which are converted by the pro gram into a machine code form Large programs cannot be written without an assembler or similar program to help with address and branch decoding. A disassembler works the other way round, if you feed it with a machine code program it will attempt to convert this back into the coded form used by the assembler. This is useful for documenting programs which have been whitten orig-nally in machine code.

Mr G. L. Evans of South London (not our G. Evans) has sent us an example of a routine written in Assembler for use in a disassembler. We hope that Mr. Evans will send us further details of his Disassembier as it progresses. If anybody has a small Assembler we would be very interested in that as wel!.

CUTS CARD

HOW IT WORKS

Much of the circuicty of the CUTS encoder is exactly the same as that used for the TTY intertace described in the Novernber 1977 copy of ETI.

The CUIS format calls tor a byte of data to be recorded as a START bit (logic 0^{\prime}) followed by eight data bits with the end of a word bcing stgnified by two STOP bits (logic '1'). The setting up of the UART's control registers to conform to this specification was dealt with in the Decermber fsstie of ETI.

With a data rate of 300 baud each bit tunc will be equal to sixteen pulse times of the UART tiansmit clock (4800 Hz). We require that a logic ' I ' be recorded as eight pulses of 2400 Hz and a logic ' 0 ' be recorded at four pulses of 1200 Hz .

ENCODER

The circuit of the encoder is shown in Fig 2 As mentioned above this cracuatry replaces the oitcuitry associated with the SO output of the UART shown in the TTY intertace.

The 480011% TCP clock is mput to one half of the 74 C 74 Dual D flrp-flop
where it is divided by two to provide a 2400 Hz vignal with a 50% duty iycle. This signal is fed to the dlock input of the second halt of the 74 C 74 and, va Cl to the input of $\mathrm{IC} 2 / 2$ a $74 C 02$ NOR gateCircuit action is ds follows. Whent SO is low and we require a 1200 Hz signal, the inverted SO output is fed to IC $2 / 2$ a glance at the truth table for a NOR gate will show that the output from this gate most then be low This output is inverted by iC2/3 and the recultant high applied to IC1/2's CLR input This mput is active low and the dear is thas disabled. This means that $K 1 / 2$ will act as a divide by two element producing the required waveiorm:

If now 50 groes high, a low is input to $[C 2 / 2$ after inversion. Reference should be made to Fig. 4 to make the followime descriptron edsser to follow

The signal at the C1/R1 punction convists of a series of negative spikes co-incident with the trailing edge of the 2400 Hz signat at IC1/I's o output. With a low applicd wia the inverter, to the other input of [C2/2, the oulput of the gate will be d wries of short positive going pulses, which aiter inversion, are used to reset $\mathrm{ICl} / 2$. As the 74C74 clocks on the positive edge

of the clook input from IC1/I's Q output but is resct on the negitive edge of the same signal, the output of thes IC becomes the required 2400 Hz sipnal

The 2400 Hz or 1200 Hz output from 1C1/2 is fed wia a filter formed by R2 and C2 to the AUX output and via an attenwater, R3 and R4, to the MIC output

The filter is necessary to convert the square wave logic signal to a waveform more suitable for recording on edpe.

DECODER

Figure 3 shows the circuit of the decoder, which dedin, is used to replace the equivalent circuit block on the TTY catd.

The output of the recordes is squared up and brought to TTL levels by O1 and IC2/4. It is therr applaed to $\mathrm{IC} 3 / 1$, one hate of a 74123 dual retriggerable monostable, This device has its astable period set to a time that is longer than the period of a 2400 Hz signal, dbout 550 uS is the best.

It we now assume that the signal from the tape is of 2400 IIz . When the firct pulse reaches the 74123 its output goes high for 550 us As the input is 2490 Hz however, after some 417 uS , the device 18 retriggered. Therefort with an input of 2400 Hz the Q output will temain high

If, however, the sismal 15 Ieplaced by a 1200 Hz output from the recorder, the Q output will still go high for 550 uS, but as retriggering will not take place for di least 830 US, the Q ontput will consist of 550 US , logic ${ }^{\prime}$ " pulses with logie " 0 " pulses inbetwecn

The output trom the monostable ix input as data to the D flop-flop $1 \mathrm{C4} / 2$. The clock signal for this device is the I 200 Hz of 2400 Ine jnput to the 74123 . The D flipflop is triggered from the low to high trancition of this wavetorm and thus if the signal is 2400 Hz imply ing thet the Q output of IC3/1 19 at ' 1 ', the ouput of IC4/2 Will also be at lonc ' 1 '. If however the input is at 1200 Hz , at the moment of clockang. the Q output of $1 C 3 / 1$ wall be low, this the Q output of lC4f is also low, The waveforms shown in Fig X help explain this action

The Q output of FC4/2 is fed to the SI input of the UART thas completing the recovery of data.

Fig 5 Dtagram showing the various waveforms present in the deroding circust

SYSTEV CLOCKS

The receive tlock pulse RCP used in the decoding operation is the same as that used in the transmit mode (TCP). In order to justifv the use of the same clock tor both operations we need to study the operation of the UART and do some straightforward dithmetie. (For a fual axplatation of the terms used below see the UART datid sheet published in November 77's ETI).

Ftgure 6 shows the timing of the UART in receive mode, the data presented to the UART by the CUTS decoder 19 shown as SI If we assume that the UART is looking for a START bit then it will tecognise the transition of SI from high to low as a possible

START bit. It now warts for eight pulses of its $4800 \mathrm{H} /$ clock dind then samples the S 1 line at what should be the mid-point of the START but. If SI is high at this time then the START bit logic is Ieset and the UART waits for atother high to low transition of SI. If SI is low at the sample time then the LART accepts the As a valrd SIART bit and procedes to sample the SI line every sixteen pulses of the 4800 Hz clock After inputiing the correct number of data bits the UART looks tor a valid STOP bit (logic 1) at which time it transfers the $\mathrm{d}_{\text {et }}$ ta and any crro: conditions to the output registers and dignals DAV (Data Ayalable) to the MPU The MPU accepis the data and status words and reseis the DAV line to undicatc accept-
ance to the UART mhen by now is looking for the nest valud SIART bit

The ideal sampling pulse is shown as Fig 64. two worst cases are shown as Figs 6B and 6C. In these worst case conditions it is arsumed that the 4800 Hz clock used as TCP is also bong used as RCP and thus the only variations possible are phase change and frequency change. The phase change problem is overcome inside the UART and thus does not concern us here. The frequency change can only be due to changes in tape speed betwcen recording and playback at the 555 timer used as a 4800 H \% oscilldtor is independant of voltage varlations in the power supply. If we examine sample pulse tram B we can see that the data is being input of a faster rate than expected and as a result the sample pulses end up very close to the end of data bit seren time is the sample pulse is set during the START bit as being the caght? pulse and in data bit seven is during the fitteenth pulse tame of the inpur data it must change by seven pulses in enghe bits (8×6 pulses). This can be worked out to an error variation of:-

$$
\frac{7}{8+16} \times 100 \text { percent }
$$

$$
=5.46 \%
$$

On a tape recordet of a reasonable specification thas level of tape speed tolerance will not occur and thes the 4800 Hz TCP can also be used ds the RCP clock

Fig 6 Diagram showing the effect on the sampling pulses generated by the UART with a difference beiween TCP and RCP A shows the ideal samoling putse (TCP $=$ RCP B shows TCP \quad RCP whte C shows TCP $=$ RCP

TECHNICAL BO

CALCLLATEAS
GOFANCEI ARPLIGATIONS FOA POCKET
C．ELEELLATORS
1 Gulham
E4．21
GOMPUTER \＆MIEROP ROCESSORS
LuLD yous oww warkine robet
D Hzimomen
compurer ciacuits ana how They wghk e woll

Digital Elcotndnic ciacils and systems
re Momis
NTMADELTIOH TO DIRITAL FLTERIHG trogras
MCROPMOGESSOL／mICREPROGRAMMINE MANIDROOK
B $\omega_{\text {Nod }}$

irckudes phyticad dimensions of their pin cosignmanks

MLGROPRAGESSORS
D．C．Mcclivne
 Aspin＊॥

5535

Procestorr－Momprias and Intarfeson
OHIC OESICN PRDJEGTS USING
STANDARD ICS
4510
PRACTHEAL DIGFTAL DESIGN USANGIKS 1 Gramenfioked

COMMUNAEATION

COND WLMICATCH SYSTEMS IMTRO TO SIENALS 8 WDISE
a Eantson
DIGITAL SIGMAL PROGESSIMA，THR日早 g appuctitions
L．R．Habiner
ELECTRONIC COMNEIMEATIDN STSFEMS C．Komandy
FREQUENGY SFATMESIS．THEOAY \＆DESIGN Mamisarywitach

PrihCifles of canmanichtion systems H Tah

COOKBOOKS
TY TYPEWRITER GOOK E7．00
Cums COOKBOOL Es．00
TLE EORKBOOV E7．55
ACTIYE HLTERS E11．00
CC TIMER COQKBOOK E．7．50

If OP－AMP CADKBOOK
ELECTRENICSSquiras

BUILD IT BEOK DF Whitatuat TEST
INSTRUMENTH
£3．55

DESIGRINE WITH TTL INTEGRATED CIRCUITS 69.05

DESIGANGG WITH OPLRATIONAL AMFLIFIERS Burr trown
813.75

ELECTROMIG EMGIMEERS REFERENCE BOOK ath Ediliun1227.76

SDLIO STATE CIRCUIT GUIVE GCOK E2．25
a．Wed

Texal

E2．45

m A．Colwerl
RLECTROMIC DIAGRAMS
52.45

ELECTRONIC FAULT OIAGMOSIS
1． 1 I Smelain
how to reato elegrsomic cercuit diacrams
how ta read elegrsomic elrgult diatran
HDW TD BUILD PRCXIMITY DETECTOAS AMD HETAL LOGATORS
u，smaldi
ELECTRONIC MLASUREMEAT \＄IMPLIFIED c．tenlimark

ELEGTRONICS ANO PHOTOGRAPMY

ASSE

EXPERIMEMTS WITH OPERATIINAI AMPLIFIERS
E. Wels

HOW TO USE IC CIPCUST LOGIC ELEMENTS
ELEGTRONICS SELF TAUGHT

ELECTRICAR EMCINEERS
N．M．Morts Clayton
$\$ 3.410$
FIAE ANII THETY SECURITY STSTEMS
J．Stravater E3．

INTEQRATED ELEGTROHICS
I Stllumar
HOW TO BULD ELECTROHIC KITS Gapal

2． 2.10
LINEAR INTEGRATED GIRGUIT APPLICRTIDHS C．Clayton

钻． 20

FUMCTIDN GIRCLITS DESIGW \＆APPLICATIONS Burt 9rown
$\$ 15.95$
110 ELECTROMIC ALAAM PROUECTS
－ H Marston
©3．45
IIDOPE日ATIDNAL AMPUFIEA PROJECTS FDR THE HOMF GONSTRUCTO：
m．M Martenan
$\$ 2.95$
I1OSEMIGONDUETDR PHCLJECTS FOR THF HOME CONSTRUCTOA
H M M Martator
E2． 55
110 COSMES DIGITALIG PROJEGTS FIA THE
HOME CORSTRLCTDA
R m Marstor

OKS

11E IMTEGRATEU SIRLUUT PABDRGTS FOM THI HOME CONSTRELCTOR
R. M. Mertaton
52.95

IIC THYRISTOR PRBJECTS USIWG SCRS R M. Minaton	12.95
MIEFDELEGTRONICS	
Halmark	¢ 3.90
MODERN ELEGTRONIC MATHS	
Cliftrond	[1. 70
MOS DIGTAL IGs	
G Prymin	14.1.60
apehatiowal amplifieks deshia and	
APFILCATIONS	
5 Totmy (luir 8 rown)	\$7.40
OP-AMP CARCUIT OESIGA \& APPLICATIAHS	
1 Corr	\$4.00
hamabion de ic circuit painemts	
Ashe	12.30
INDEXED FUIDE TO MODIRA ELECTRONAC CIfCuITS	
Goodmen	E2
GEGINMESS GuIde te integrateo gircirits	
Sinictair	E3.
Practical electmanic projeet bitldine	
Amaliom and Colvall	¢2.45
PRACTICAL SDLID thate of S Supplies	
T D. Towers	[E,20
PRACTICAL TRAAC/SCR PRDEEGTS FOR THE	
EXPERTMENTER	
A Fox	¢2.25
Primgiples of tramsistor circuits	
S. Amst	84.75
PRIWTED CIBCUIT ASSEMRLY	
Heghen \& Culuryll	E.245
RAPIG SERYIEING DF TRansistor equipment	
${ }_{6} \mathrm{King}$	£2 95
SEMIGONDUGTOR GIficuis flements	
T $\mathrm{\square}$. Jower	¢6.401
UNOERSTANDING ELEGTRDAIG GEMGUTS	
R. Sinctair	E4. 10
UHDERSTANAIMFI ELECTHONAC COHPDNENTS h. Smalnir	

UMDERSTANDIWG CMDS INTEGRATED CIACUITS

AHIERSTAMOLME SOLID STATE CIACLIITS N Crowhurat

SEMICONOUETER DATA A -

interhational transisfor selegtor
T I Towees
MTERGATIDWAL FET SELECTOR
T O Towars

RABLO VALVE ANE SER|CONDUCTOR bata

- 4 Bal

MASTER 3HAHSISTOR UNTEGRATED GRCLIT SUBSTITUTIOH HANDBCIDK

RADID, TELEVISION AND AUDIO \qquad
AUDIO Hambecor
G. King
EE5,50
GESINMEAS CLIME TA AUDIO
L. R. Sinctinir

HADIG TY-aUDIO GAS5ETTE TAPE REGORDERS 3 For
E.3.20
55.25
foumiatuans of wriegess anid electrlemics
CRLOUATELEVISION THEBRY
thudgan
Hudean

(A semplete Orectary of Madso. TV Stanicres)
hadid. TY AND AISOLO TECHMELCL REFEREMCE
ECOK
SOLID STATE COLDUR TV GIRCUITS

TV TEGHNLIANS GENEH MAMUAL fnew edHina) Whaldang

Es 10
HI-FI IOALOSP EAKERS AND ENLIDSURES Cohsin

LE 20
beGimeras giloe te radic
KmHg

TAPE RECOADER SEMHCHIG MANDAL VDLI 1768-70 ©ardn**
HOw TO BULLO SPEAKER ENCLISURES

M RADIO SERVICLIE HANDEDOK
cianmfis guile tif aunio
Sinctaltr
HASTEA H:FI INSTALLATIOH
King EOUIPMENT E DSCIUASCaper C2 at
AASC ELETRONIC TEST PADCEDURES

1. Gatenath men

THE OSCHLIOSCOPE 拟 USE
lan Somelair E3-10
Phactigal test Equipment yil can gulo Grmen 1225
TEST IMSTRIUMENTS FOR ELEGTRONIGS M Elitromd
WOPRIMC WITH THE OSCILLOSCOPE
A. Saundan

O K
$E 195$

King en 60
RAOID TELEVISIGN AND AUOIO TEST IMSTRUMEWTS
King
5550

HOW TO ORDER

Please note that our prices include postage and packing. Make cheques ete payable to ETI Book Service. Payment in sterling only please. Orders should be sent to: ETI Book Service P.O. Box 79 Maidenhead Berks.

Nowgen bettereven more powerfuld The uniquewist ealeuleto:

AVAILABLE ONLY AS A KIT.

Assembling the Science of Cambridge wrist calculator.

The wrint talulator comesas tmohed components ready for assembly All you need is froon threc herors, and a linetup solderng irun

Tianythonggo:s (xrong, ue elliceplaze lamaged components free We want gou to enjuy bulding the kit, and to end up with a valuable, usetul, powerful calculator

Contents.

 sua thad serap and spprag har r tips. P(B. Speread dircet-
 Kintoard romponaz, Batterns.

Lach of the 34 components is contatred in a plastic tove: and neatly shrink-wrapped. decompanied by tull astrue tions for as sembling and using the calcularor All components are lully guaranteed

A w'ist calculator-the ultumate in common-sense portable calculating power. Goes where you go, ready for action at a flick of your wist.

By urtue ol its suze.a wrist calculator is different to a pocket calculator Ani now this urist. mathinc has another difference. It has even more power than some much larger pocket calculators'

And what's more, hecause it's a kit, supplied to you direct from the manufacrurer it censts |ust $/ 995$ (plus 80% Vi 1, P\&l? Ard for that vou get a calculator woh extra powerand all the saisfaction of building it yourself?

Put real calculating power up your sleeve.

The Sesence of Cambridge arist calculator gises sou the full range of anthmetic functions :,,$+- x_{3}=$ In uses ondinary algebraic loge, which means wou enter calculations as you would wrice them. It has a $\%$ ker; the convenmence functions. $1 x, 1 / x, x$? and a full 5-function memory

And theredibly, it has a clear-last-entry key pi, brackets. and-1-It even has an automate linear metric conversion function

Very few ordinary calculators have the same functions for the same sort of money

Now 10 keys can do the work of 32 .

All those functions, from just 10 keys? In such a small calculatot; The secret lies in the spectal tour-level keyboard Each level has a different sec of functions Simple wo-whay switching system allows you to select any keyboard hevcl quicklv and easily Each set of functions is carefully grouped, to let you whisk through calculations with the mmimum of switcherg

And the answers come up bright and clean too. The displas uses 8 full-size red LED digis. It has wide-angle magnitication, and is easily visible under any light conditions

More battery power, too!

With the Science of Cambriuge urist-calculator you'll get up to 30 hours use between battery changes (that's a bot of calculating
the wist calculator kit is avalable onk direct trom Science of C.ambridge. If for any
teavor. youtc bot completely satistied with vour urist calculatof, return it to us wathm 10 dans for a full cash refund. Send the coupon todav!

Science

of Cambridge Ltd.
6 King - Parade, C ambordge. Camb (B 2 ISN.

IN THIS PART of our series we shall look into sequential logic by using the 7400 IC.

Set the IC up on the board to make a circuit using two of the logic gates as shown in Fig. 1. The gate with its output taken to the LED should have its spare input marked R, while the spare input to the other gate should be marked S.

Fig \quad Cross cowpled NANO gates forming an
RS fipp-flop

This circuit is a flip-flop, as you may have guessed from the cross-section of inputs and outputs. Complete the table shown in Fig. 2, and note that the output for $R=1, S=1$ is not the same in each case.

Sequential Logic

The R-S flip.Flop, as this is called, is an example of a sequential logic circuit, in which the output depends on the sequence of signals at the input - in other words, the state of the output depends on the previous signals as well as the present ones. Strictly speaking this circuit is more of a lateh, a circuit which temporarily stores an output while both inputs are high. Note that in normal use, we want two outputs Q and $\overline{\mathrm{O}}$ to be complementary $\langle\overline{\mathrm{Q}}$ is always the inverse of Q) so that the input $R=0, S=0$ must not be used, since this gives $\mathrm{Q}=\overline{\mathrm{Q}}=1$.

In logic circuits, clocked flip-flops are much more common. A clocked flip-flop changes state only when a

R	S	Q
0	1	
1	1	
1	0	
1	1	

Fig 2 Part truth lable for R-S firp- fiop When you complete the table taking readings from your brob-board cifcult, be sure to work through each state on sequence
timing, or clock pulse is received. This is done by combining the flip-flop action with gating so that the signal inputs have no effect until the gating (clock) pulse artives.

One type of clocked flip-flop is the D-type, and a typical truth table is shown in Fig. 3. In this type of circuit the signal (0 or 1) which is present at the D (for Data) terminal is transferred to the output at the clock pulse, and remains unchanged until the data changes and the clock pulse arrives.

Clocked Flip-Flop

The type of flip-flop chosen for this board is the J.K flip-flop. This is a more versatile device which combines clocking with gating to achieve a wide range of actions. On the type we have chosen, the SN7476, the action is the type known as "Master-Slave", which means that the input signals are accept. ed on the leading edge of the clock pulse, but the outputs to not change tuntil the trailing edge comes along. This avoids problems which would occur if outputs were connected back to the inputs, as we shall see later.

The J•K flip-flop has five inputs and two outputs. The inputs are labelled J , K, Clock. Set and Reset the Reset is sometimes called clear, and the Set terminal is sometimes called preset). The outputs are Q and $\overline{\mathrm{Q}}$, with $\overline{\mathrm{Q}}$ always
the inverse of \mathbf{Q}. We shall check the action of the J-K flip-flop using signals generated on the board.

From previous work you should have available one section of the 7414 connected as a low speed oscillator. This provides an ideal slow clock pulse, and you should already have an LED connected to the output of the 7414 to monitor this pulse.

Double Flip-Flops

The connection diagfam of the 7476 is shown in Fig. 5. From this you will see that the 7476 contains two J-K flipflops which are completety independent. For the first series of practical exercises we shall use only one half.

Solder connections from pin 13 of the 7476 to earth, and from pin 5 to the +5 V line. Now solder an insufated wire connection from the clock osciflator output to pin 1 of the 7476 , so that flip-flop number 1 is activated,

Connect pins 4 and 16 to earth so that $J=0$ and $K=0$, and connect switches so that the reset pin (pin 3) and the set pin (pin2) can be connected momentarily to earth as needed. The

Fig 3 type fho fipg and whth table Note that, wribke the R.S ifp flop, changes take place only when the clock pulse prrwes

Fig 5 Pinout of the $5 N 7476$ duat master-slave $J-K$ thop flop
circuit is now as Fig. 6 , and the appearance of the board is shown in Fig. 7.

Now connect a resistor from pin 15 (Q) to a spare pad, and an LED from the spare pad to earth. This LED will indicate the state of the output from the flip-flop at Q .

Switch on, and look at the LED. Using the SET switch, set the output to give logic 1 (This happens when the SET switch is returned to 0 , whatever the clock pulse is doing at the time). When the switch is changed back again, does the output change at once? Or when a clock puise arrives?

These changes and others to follow may be easier to observe if the clock putse is very slow, and a 1000 uF, or greater, capacitor may be used in the osciflator circuit. Later, a "debounced" switch will be used.

Complete the sequential truth table, in which $\mathrm{O}_{\mathrm{n-1}}$ is the value of Q just before the clock pulse arrives, and Q_{n} is the value of Q just after the end of the clock pulse (the 1 to 0 change). Can you decide when the change, if any, occurs? Is it on the leading or the trailing edge of the clock pulse?

Nom switch off, and disconnect one end of the link between K pin (pin 16) and earth, so allowing K to float to 1 . Now we have $J=0$ and $K=1$. Switch

Fig 6 Circuil for checkmg of K actrom, see text for derasts
on and observe the output. Change the output by using a switch (which one will you use SET or RESET?). Does the clock pulse affect the output after the switch has been returned to normal?

OR-STATE OF G In OR UATTERCLOCK PULSt
Frg 7 (a) The lavout on the board with the LED in $\rho 0$ sition
(b) Form of part truth tabio

Switch off again and reverse the connections so that $\mathrm{J}=1$ and $\mathrm{K}=0$, and repeat your readings. Enter all the readings on the sequential truth table of Fig. 8.

From these exercises you will have found that the action of the J-K flipflop can be controlled by the J and K inputs, which act to force the output to eitner 1 or 0 when the clock pulse arrives. The SET and RESET pins act independently of the clock, making the output go to 0 or 1 , and holding it there until the reset or set voltage rises to 1 again, when the next clock pulse will cause whatever output is forced by the J and K voltages.

Toggling

With the power off, disconnect the wites from both J (pin 4) and K (pin 16). Switch on agairs, and observe both the output and the clock LEDs. Now complete the truth table of Fig. 8 (c), in this arrangement the J-K flip-flop is acting as a divide-by-two stage, for there is one complete output pulse for each two complete input puises - we say that the ffip-flop is togg/ing. At any time during this action, the ouput may be forced to 1 or 0 by the action of the SET or RESET pins, but it will revert to the toggling action when the SET or RESET is released.

Try applying a clock pulse obtained from a switch, as in Fig. 9 (a). Wire the switch to the board and replace the connection between the 7414 clock generator and the flip-fiop with a connection from the switch output to the flip-flop clock input Turn on the 5 V supply, and use the switch as a slow clock generator. You will probably find that the output is erratic, sometimes seeming not to change the out put when the switch is operated.

This is caused by switch contact bounce.

De-Bounce De Switch

With power off, rewire the switch with a resistor and a capacitor to one of the spare sections of the 7414, as shown in Fig. 9 (b). This is a simple de-bouncing circuit.

Solder a resistor and an LED to the output of the 7414 in the usual way to show the state of the clock pulse, and connect the output also to the clock input of the 7476. You should find that the action is perfect, and the very slow clocking which is now possible will show that the changes which take place at the output do so when the clock pulse goes low, that is, from 1 to 0 .

$\mathrm{J}=0$
$\mathrm{~K}=1$

$\mathrm{O}_{\mathrm{n}-1}$	O_{n}
0	
1	

$\mathrm{O}_{\mathrm{n}-1}$	0 n
0	
1	

$$
\begin{gathered}
\begin{array}{c}
\mathrm{J}=1 \\
\mathrm{~K}=1
\end{array} \\
\begin{array}{|c|c|}
\hline \mathrm{O}_{\mathrm{n}-1} & O_{n} \\
\hline 0 & \\
\hline 1 & \\
\hline
\end{array}
\end{gathered}
$$

Fig 8 Remanning truth tables for J - K action

Fig 9 的Ustrga push-button swith as a clock oulse supply
(b) A debounced switch orrout

Note that other flip-flop types may not have the same sequence of actions. Some, for example, are edge triggered, meaning that all the flip-flop action takes place on the leading edge of the clock.

When you are using flip-flop circuits, you must be careful to use the same type of flip-flop as that specified, since circuits which suit one type may not suit another. In particular, the 7476 "Master-Slave" type of flip-flop has a oarticularly complex action.

In essence, the action is that on the leading edge of the clock, the information which is present (1 or 0) at the J and K inputs is stored and once the clock pulse has reached its 1 value, these inputs are locked out, meaning that changes in J and K will now heve no effect. At the trailing edge of the clock pulse, the flip-flop action takes place to change the output. The reason for this construction is that several typas of circuits, some of which we shall build in this series, use foedback connections between the output of the fifip.flop and its J or K inputs.

If ail the action of the flip-flop
Fig 10 Truth toble for J.K firp flop
ta Complete truth table
J-K FLIP-FLOP
(b) Shortened truth table for changes oniy

INPUTS		OUTPUT	OUTPUT
J	K	QBEFORE CLOCK	QAFTER CLOCK
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

J	K	Q_{n-1}	Q_{n}
0	x	0	0
1	x	0	1
x	1	1	0
x	0	1	1

happened at the leading edge of the clock, such feedback would cause indetermmate action - any change in Q would cause a change in J or K , which might cancel the effect on Q , and the iflip-flop would probably oscillate at the high frequency. Because of the Master-Slave action, this does not happen - the changes in Q happen at the trailing edge of the clock pulse, by which time the J and K inputs are locked out and their voltages cannot affect the action until the leading edge of the next clock pulse.

Investigation

You should already have one section of the 7414 set up as a high frequency oscillator with earphones, or similar, to detect the output note. What is the effect of leading the output of the 7414 oscillator to the clock terminal of the 7476 with $\mathrm{J}=1$ and $\mathrm{K}=1$? Listen to the output wave from 0 and compare is with the signal from the oscillator.

Can you now design an "octave" oscillator? This circuit will use a single oscillator, but its output will be alternately at oscilator frequency, then at half oschlator frequency lone musical octave below) according to the input to the gate. The gate input could then be obtained from another slow oscillator.

Finally, Fig. 10 (a) shows the complete truth table for the 7476. Fig. 10 (b) shows a changes truth table, in which the settings of J and K to produce certan changes (or non-changes) are listed. In the last table, X means "don't care", signifying that the value may be 1 or 0 , and the action will be the same. Chack that this last table agrees with the full table of Fig. 10 (a).

You may went to copy these tables, since we shall refer to them severat times in Part 5 of this series.

ETI
READERS FOLLOWING THIS SERIES SHOULD REFER TO THIS MONTHS LETTERS PAGE FOR DETAILS OF SOME APPARENT CHANGES TO THE BOARD USED IN THESE ARTICLES. WE APOLOGISE FOR ANY CONFUSION THIS MAY HAVE CAUSED.
To be continued.

The
SLIMMEST
Most
Elegant Electronic LCD Chronograph Yet Produced!

This LCD Quprtz Eloctronic Chronograph has afeated an entirely new standard in Walches Mors than Just a watch - hous mirutes seconds $A M / P M$ - more than just a calondar - months date day of week - mae then even a stop watch minutes seconds hundredths of a second and aven lap of the Ths cicgant ultra thun preciskon ime paece is made of smbiatec swor and cames comptite with matching ank bracelet
The Remarkable Technology of thes Elect onc LCD Chronograph defies comparson no orty in styling but in its advanced preosis on tume keeping this is not 5 mpp y an 8 funktion 1 me/calendar waten With right viewing light but an advanobed chronograph incorppyating a sophisticated blop watch lackity to 100th of a second fimeng Will record dap tmes while arcult tuming convines ican fvan flick back to normal of me or date w thout interferling with top wath faohry)
WEAR IT FOR 10 DAYS
You wil not beligue the fantasalic value of this Chionograph or appreolate the duxury of wanning a truly waler therl ieather watigh LCD lime pece und you have worn it Wo ore so certain that you wil be delighted with this elegant quartz chronorgraph that we ary offoring a 10-day monoy back guarantee, if you are not complestaty setisted we aimps forgo: to ment on the e is a full year a gua antee - to order simply complete the coupon below - or ca and see us today
-Telephone 01-455 9855.
Hlease send me Chronogreph watches I enclose my cheque / postal order for f Or please debit my Access / Barclaycard No

Signature
Name
Address
Block capitals f low-4
Registration No 1011242 Long*-
Callers welcome
MOUNTANDENE LTD.
22 Cowper St. London, EC2 (Noar Old 51 Sintrin)

If you have any problems relating to hi-fi, choosing equipment, compatibility between units, weird occurances etc. we might be able to help. Audiophile is to have its own readers queries service, for which there will be no charge - just an SAE please - and mark the envelope 'AUDIOPHILE' so that it gets to where it should be.

A RECENT heated discussion between several hi-fi enthusjasts here brought to light several interestıng points. The first was the number of similarities which exist between the fairer sex and hi-fi equipment ${ }^{\prime}$

Think we're joking eh? Well consider: both tend to dominate the room they're sitwated in. Both are capable of generating very high sound levels, but will stay absolutley silent if turned off or ambient conditions are not favourabie to smooth operation. Upkeep on both is horrendously expensive, and requires constant purchase of software (wear) and cleaning materials.

In fact the only major difference detectable occurs when the specimen blows a fuse. One variety refuses to make a sound, while the other demonstrates incredible slew-rate and reaches 200 dBA in a microsecond.

Class E Birds?

Be that as it may, our German edition has sent us news of the missing E amplifier configuration. We shall assume here that you've all read the article on class G in the last issue. If you haven't . . . go directly to jaifl, do not pass GO. do not collect $£ 200$. As you now know then Hitachi
attempted to cali their Dynaharmony circuit class E when it first appeared, but found that classification already reserved.

And now we know who by; Arcus. Their DPA 320, shown in Fig 1. is a 200 W RMS per channel power amplifier-class E. Basically this configuration would appear to be a digital system, using pulse width modulation to control the output transistors.

A 100 kHz square wave is generated within the amplifier by means of a crystal-locked oscillator, and integrated to produce a triangular wave.

This wave is then superimposed on to the incoming music signal, this being put through a very fast $A-D$ convertor, the end result of all the logic circuitry producing a pulsewidth modulated square wave. Fig 2 shows a sine wave with the square wave produced by the logic alongside. The square wave is now used to switch the output transistors on and off very rapidly, the on time depending on the widths of the incoming pulses.

In this manner the music signal is reproduced, but theoretically without the inherent faults of the transistors affecting it. Using the output stage like a switch is not new - Quads 405 current dumper does this, but in a different manner.

Fig 1 The Arcus DPA 320 nDwer ampl
Producing some 200 W oes chamsel this Ahgital design is chamed to be totafly tree of crossover distortion, ThD and allother b,polar amp wices'

Fig 2
4 smewave and its equsvatent pulsewidth modutated squarewave in a class E power amp thrs woutd hope fulfy induce the output stages to reprofuce ithe smewaver

Fig 3 The modde trace is the triangle produced br - segratik of the 100 kHz squarewave rignal within the DPA 320 This rrangle is then supermposed of the digrtised music signal to contror the power switch output pail

Spray now play iater - Souna
Guard rakes pour hogiss to a mpe old age

To keep operation symmetrical the transistors are not pushed totally into saturation and this allows 'recovery' from each switching operation to accur more rapidly. Contrast this to class D switching amps which operate by completely saturating the output pair in turn. Class E is 10 times faster to 'recover'.

Those interested in further detalls can look up the patent on the process (No 1444201) or contact Arcus direct in Germany (Don't mention the war!) at:-
Elektroakustık GmbH, Teltower Damm 283, 1 Berlin 37, Postfach 370370.

Don't Wear It - Spray It!

An interesting spin-off from the space programme is to be marketed in Britan by Pyser Ltd. Called Sound-Guard the product is a spray preservative for LPs. (Just around this point in the proceedings all the usual spectres of gunged-up records and glue-ridden styli ploughing through seas of dust attracting substances should leap into the enthusiast's mind. They don't? Sorry')

The compond was originally produced by NASA as a diy lubricant for use in conditions of hard vacuum and high temperatures. Development has now taken it into the form of a liquid spray.

This is applied to the LP surface, and immediately polished up. A coating five millionths of an mach thick is apparently formed across the record and groove walls. The basic property of Sound Guard is that it will not bond to itself, so that once applied a build up on the surface is just not possible, thus alleviating the horrors associated with such an occurance.

Benefits claimed are a cancellation of increase in harmonic distortion due to wear, reduction of surface nolse generated by stylus wear,and a preservation of high fre quency response by protection of the delicate groove modulations for those frequencies.

To The Test

To test these assertions, we decided to set up an $A B$ comparison on a Sound-Guard treated LP. This was achiev ed by purchasing from our local record emporium two (different) LPS in as good a condition as could be managed
(after several return trips to dispose of copies with extra radial groovingl and recording these at 15 ips .

One LP was then treated with the fluid, simply by spraying on and rubbing well in with the pad provided. No trouble here - once buffed up properly no audible deterioration could be detected, and certandy the noise level was not affected Nothing appeared round the stylus enther'

So far, so good.
Both records now went into the collection as normal, and were played over a period of about a month, no special care being taken to differentiate them from any other LP other than noting when each was put under the needle.

The test was called to halt wher we ran out of time on this report. Things were evened up so that the test side of each had been played the same number of times, thirty-one in fact. Yes we do play a lot of records.

Masterful Comparison

Each could now be compared with the master tape made at the time of purchase, and the by now obligatory listening panel was assembled to haggle over results. This time however no haggling was necessary, and the results could be unanimousiy agreed. The Sound Guard treated LP had definitely 'held' the high frequencies better than the untreated record.

On direct comparison with the tape, there was no doubt whetsoever that the treatment had preserved the frequency response to a clearly audible degree. Most people do not realise how quickly extreme high frequencies are worn off an LP, even at low tracking weights. Our tests were conducted at 1.2 g and so heavier weights would presumably show benefits earlier and to a greater extent

For The Record

No conclusions could be drawn, however, as to whether Sound-Guard had achieved a favourable result with regard to surface noise-both LPs were still in excellent condition. As it is, we have no hesitation in recommending SoundGuard as a worthwhile addition to the audiophile s armoury, it's worth its cost if it only prolongs the life of two LPs after all and one bottle does 25
Price: Full kit (see photo) f.4.99. Refitl f. 3.25 (inc. VAT). Pyser Ltd., Fircroft Way, Edenbridge, Kent.

Aiwa The Lads

And so to our mam news this month, a cassette deck with several important differences Recent models from such noveworthy manufacturers as Nakimichi, Sony, Technics and Auwa have shown a search for something other than that last few ktlohertz at the top of the range And now Aiwa have come out with the AD 6800 which they themselves consider "as far as one can go with cassettes, " and have equipped the machine with the facilities to let you know just how far that is!

Blas Your Opinions

With all the various tape formulatione on the maket today the age old compromise antherent in not optimising a particular machines bias for a particular brand is becoming ever more urksome. While being fairly satisfactory in general there is no flexibility in this system at all, and no user control since such adjustment has always had to be done by a deater All the user could do was to set a single three position switch to ${ }^{\circ} \mathrm{Fe}-\mathrm{Cr}$, CrO 2 ' or ' LH^{\prime}.

What has been needed, and Awa have now provided (else we would not be rambling on about it) is some simple user controlied system to set up the machine for any brand of tape desired, and obtain the maximum fidelity from it. Let's face it at $4.8 \mathrm{~cm} / \mathrm{sec}$ and $1 / 4 \mathrm{in}$ wide we need all the help we can get. Too high a bias current results in high frequency roll-off and increased distortion, and a balance has to be achieved

On the 6800 the taclities to optimise bas are buitt-in oscillator, test head, switched meters with filter, azimuth adjustment and two three-position switches for bias and equatisation, backed up by the three 'fine adjust' bias controls Ail this must add a considerable amount to the cost of the machine, and shows how seriously A wa take the cassette (Wonder if they'll come up with an Elcaset?)

Selt Satistied Unit

Before we move on to show how the btas adjustments are made, and what effect they have on performance, bet's consider the rest of what the AD-6800 has to offer The finish is superb, and the controls are smooth and positive. Everything about it looks - and probably is very expensive

The meters are a revelation in themselves. Two needles, poak and $V \cup$ reading, are provided for each chamnel with excellent ballistics The peak reading facility really is peak reading, not some cheap approximation, and is switchable from peak reading to peak hold, or even to off if you teel like

The hold facility makes setting up to record very easy Just lock the hold on, and advance the record level until the needles move onto the level you want to set at No getting eye-pump trying to watch cavorting little needles avoiding $O V U$, and much improved recording as result

Even loading this anımal is different in short you don't - it does it itself. Press the open key and the door swings up and over in an slmost seductively damped manner. Facing you now is the cassette carrier. Put the tape in and give it a gentle push (or close the door) and the machine jumps to lite, takes the carrier out of your hand and locates the cassette itself, all with a mechanical whirr of efficiency. Now I know it's only a ittle motor set to activate upon movement of the carrier, and / know it's silly and probably a gimmick - but it s still beautiful

When the 6800 arrived here for review it was hours

Fig ; The twin needles meters show clearty the paak fachify is on here, and the reading is thus of the highast level which passed through the crrcurt on the last segment

before we could actually play anything on it, since the entire office staff from receptionist to technician insisted on having a play with the loader On a practical note, the auto-load does mean that the tope itself is less flable to be mishandled and the drive mechanism can be mounted further into the case with all the aitendant advantages of dust avoidance A conveniently placed head cover makes cleaning easy

Reviewing Review

Another very useful facility is the review/cue mode With the FWD key depressed operating rewind reverses the tape direction as normal, but leaves the head in contact with the tape so that an audio signal at reduced level, appears at the output Very handy for locating the end of tracks on recordings The fast FWD* keys work in a similar manner to allow you to CUE up quickly to the end of a piece If used contimually no doubt head wear would be accelerated, but Alwa contend that for the amount of use the facility will see in terms of playing time such additional wear will be negligible and well worth the facility In our opmson a fully justified contention

Finding Your Type

Using the bias tuning is simplicily itself Let the machine load a cassette (don t fight it - use it) put it into the record mode, with mput selector at Test and Dolby off

Fig 2 The aztmuth aduat contral wathin the casseate compartment This is wsed m conyunction with the BkHz oscrliator und the right heno metpr in obfanmg maximurn level and hence correct algnment

This allows the internal osciliator to put its signal onto the cassette Both meters now deflect The right channel meter indicates 8 kHz level, and the left 400 Hz The test head itself is aligned by odjusting the silder inside the cassette compartment for maximum 3 kHz level

To optimise the blas set the coarse control to the correct formulation, and adjust the fine control until both meters read as equal as possible it takes longer to describe all this than it does to do it, and just to make it even easier, the fine control you should be using is Illuminated as soon as the coarse blas is set CrO , swatching is automatic

Awa intend all this to be used to obtain a flat' frequency response by setting equal levels at 400 Hz and $8 \mathrm{kHz}_{2}$ Of course if the tape type in use sounds a ittle 'dead at the top end you can always leave a few dB extra on that meter

We tried the 6800 on a whole range of cassette types from TDK SA to BASF LH Super taking in CrO2 and FeCr on the way Results with all tape types were first class but even using the fine turing the 6800 seems to display a preference for TDK Super Avilyn Results with this tape were the best we have ever heard from a cassette deck, the sound displaying a clear and open nature with little of the usual stricture associated with the medium

Ferry Chrome Carried?

With FeCr tape it was necessary to tune considerably from brand to brand, but once acheved the correct setting delwered a very good recorded performance The resuits with CrO2 tapes were frankly disappointing The sound never approached that of the SA recordings and some difficulty was experienced in following through the setting-up procedure We feel this is a minor drawback however, in view of the outstanding qualities displayed with both FeCr and Super Avilyn, and the excellent LH results

Without doubt the bias controls of the ADG800 added considerably to the unit s versatility and allowed wide varlety of cassette tapes to give of their best The vartation in sound quality with tuned settings is surely to be expected, after all some tapes are better than others' If you are looking for a machine that takes cassettes seriously, and are prepared to pay for it in the

Fig 3 Close up of the claverbits Above the gengraimput controfs can De seen the bras tme adus: corvol which aflow tuning up for each tupe formmita avarlable The contro' ito be used is Mlammated once the mput is set to Test
region of $£ 400$) then this unit merits top place on the shopping list it costs a great deal of money, but has much to offer in return

Manual Labour

In conclusion this month one parting shot across the bows of the Japanese grants - Arwa included The standard of the instruction manual with the AD 6800 is typical of such publications - abominablel Production and layout are micely done, but the English - oh the English1 It's been said before and now we've said it again Please please please someone somewhere convince the powers that be and get the instructions up to the unimpeachable standards of the hardware.

ETI

Erequency Response
Aecording to DIN 45500 $\begin{array}{lr}\text { LHtupe } & 25-15,000 \mathrm{~Hz} \\ \mathrm{CrOz} \text { tare } & 25-17,160 \mathrm{~Hz} \\ \text { Ic-Cr lape } & 25-18.000 \mathrm{~Hz}\end{array}$ Accordar to DIN 455010 64 dB (Fe (r tape DOLEY NR ON) Accordine 10 DTV 45500 (1) 1_{1}^{\prime}

48 (mi/sec (I -7/8 mps)
90 sec (C 60)
$90 \mathrm{sec}(\mathrm{C}-60)$
106 k Hz
38 pulse FG Servo Mutor
1 errite Gudrd Heud (FGH)
$0.9<(400 \mathrm{H}=0 \mathrm{~V} 1, \mathrm{Fe}$ (rtape)
Mas rophome sensitivary 0.25 mJ impeciance

200R to 10 k
i me sensitivity 50 mV
DIN impedence over 50 k
Limpedance'3k
0775 V (9) VU)
optimal [odd mpedance over 50 k
DI $\quad 0775 \mathrm{~V}$ (0 VU)
optimal loda mpedance over 50 k Headphones.
load ampedance 8 R to 150 R 20 Wats?
$450 \mathrm{H}, 162 \mathrm{H}, 335 \mathrm{D}$ (mm) 10 kg

Mosct Cumsumption
Dimensolls
Wewht

May I begin this month by asking you a question? Yes? - No, hold on that was not the question that comes next

Heath CUTS

If I were to ask you if you would be interested in an impact printer that produced copy with a thirty-six alpha-numeric character set on eight inch-wide paper with sixty characters per line and five lines per inch for less than a hundred pounds, what would be your answer? If it's No then suppose I threw in a keyboard which was capable of generating seven bit ASCII codes with parity? Still No? Well let s also throw in a UART making the terminal TTY or CUTS compatible. If you're not yet sold on this device what about reducing the price to less than ninety pounds? If having read this far and stil not become very interested in the specification evolving ! can only assume that you mistook this column for news about a new item for your tool-box \{shades of needle file?

Why have I dreamt up this machine that would answer most mocro users prayers? Well the answer is that it is no dream I have been sent detals of just such a device, the DTS 77 data terminal I shall try to get hold of one of these beauties and tell you all about it when ! do in the meantime further detalls may be obtained from. -
Heath E \&e M,
26 Broad Street,
Lyme Regis,
Darset.

Heath Kits

A few months ago i mentioned that Heathkis had launched the H 8 a personal computing system, in the US This interesting piece of hardware is yet to make it across the great divide but rumours have it that the mudle of next year should see its UK launch Microprocessors do, however have a foothold in the range of kuts that Heath offer on the UK market The microprocessor flag is being waved (set) by Heath s microprocessor course and computer Tramer package (Heath references $E E-3401$ and ET 3400 respectively)

These follow the lines of their by now fambiar to connolsseurs of the Heath range continuing Education Series. The format of these courses follows the same basic pattern of providing a 'learning program' which is a comprehensive set of notes dealing with the theory of the subject to be covered - in addition practical expertments are described in the text These experiments can be carred out with the trainer that is designed to complement each learning program These tramers incorporate a breadboard area together with all the components necessary to carry put the experments described

At the end of pach section a self-evaluation quiz allows one to assess the progress that one has made during each unit of study Until recently the courses covered basig AC and DC theory plus Semiconductor Principles and a Digital Techniques course

The MPU course is the latest addition to the range and looks as if it could be a good way of getting to grips with Micros I have not yet managed to get my hands on one, but from the photos and description shown in the new Heath catalogue, it looks good

Based on the good old 6800 supported by a 1 K ROM monitor, with 256 byte RAM plus other components and breadboard area, Heath say it should prove a valuable teaching and it should provide a means of gaining famularity with machine language programming, hardware $1 / 0$ interfacing, micro theory and design applications

With data input via a hex keyboard and display of data plus address on seven segment LEDs, to use the trainer is easy It is an expensive item and has imited applications - in that it cannot be easily expanded to form part of a larger system It was not designed for this latter role however and should together with the learning program provide very valuable handson expersence For further detals of these new items from Heath see their new catalogue For a copy of this contect. Heath at. -

Heath (Glous) Ltd
 Gloucester

GL2 6EE

A Corrupting Influence

Referring to a past microfile last month I mentioned the SERT MPU lectures at Kent University during late September Lack of space last month prevented me from saying much about at - and it looks as if much the same thing has happened this month' So Just another titbit from the event

The idea came from R A. Smith of Essex University and concerns the use of low-cost cassette recorders

Fig 1 Circur of osciflator to produce signal surtable for disabling AGC cifcuits Solect R and C to grve freque $\pi \bar{c} y$ of about $18 \mathrm{KH} / \mathrm{Ct}=22 \mathrm{RCl}$
when recording data output from a micro system It is a technique to overcome one of the problems often associated with this type of recorder－namely un－ wanted action of AGC circuits

In the less costly recorders these AGC circuits deal for recording speech often cannot be switched out of the signal path When recording any form of digital data the action of such a circuit will be to corrupt it Consider for example a gap in the recording The AGC will in－ crease the gain of the mput signal thus increasing the likelihood of noise or transients upsetting the recording

Now we get to the clever bit by supermposing a continuous HF signal on the，usualiy．LF data signal the action of the AGC can be nullified How？Well，we arrange for the HF signal to be outside the response of the tape usually not much more than a few KHz on the cheaper machines but within the response range of the AGC processor

Thus the AGC circuits think that there is a con－ tinuous high level present at the mput and keep the recorders gain constant

A simple CMOS oscilator can provide the required buas signal and be mixed with the data｜ust before being fed to the recorder
A simple idea that should improve the performance of these low－cost storage systems

ETI

This comouter has a unque securtr sustem Make like voit re going to samper with is

GOOD AND PROPER！

．．．．or at hast you rroucts．If there is one thing which is infass ble ta do of hame is lettering front pands to pro

 when gos been carefilly destened to allow sou to do es actl\} that.

The transfers are casily ruhbed down， and the tho sheet set contams a mast of Letcrisa and－unquels－control icalis for both rotary and slider puss

Each theet measuten 1 Bomm X 2413 mm and comes packed flat in a shel！wathoard covelope oril protection There should be chouel for doren of propects here－atrd the longer wou wat the norse they＇ll lootk＇

Send $\mathbf{E 1 . 7 5}$ fincladers पat．解的 pastage lor the two： shane sed tos
Panel harkhags EIt magazine， 25－27 oxtord Street． London W满 IRF．

videooraft

NEW
Cordless Keypad $\mathbf{£ 6 0}+1 \mathbf{2}^{1 / 2} \%$ VAT

Half price Teletext

You can now buy Texas Tifax module Teletext decoder complete with matching cable connected keyboard, power supply, interface board and complete instructions for installation in most commion television recelvers for only $£ 180$ + VAT ($121 / 2 \%$) and E2 50 postage. packing and insurance.

Since the anterface is connected directly to the television's video output circurtry, picture quality is excellent with pure colours - much more so than is possible from decoders which feed the aerial socket
Due to the compact nature of the Tifax module, installation within most receiver cabinets is no problem. Faciltes include seven colours, upper and lower case alphanumerics graphics time coded display and newsflash and subtitle inserted in TV picture
To enable us to supply the correct board and instructions we must know your television set make and model and if possible, chassis type.
Oracle T-Shirts, ful! colour Please state size $\{L \mathrm{M}$ or S) Only £2 50 Please hurry whilst stocks last

Assets House, Elverton St London SW1P 2QR

Phone: 01-828 2731
Telex: 896953

KITS! KITS! KITS!

AMPLIFIERS (20.75w), TUNERS, CASSETTE DECK, ETC., ETC.

$75+75 w$ AMPLIFIER COMPLETE KIT ONLY £99.30 + VAT

Circuit design published in Hi-Fi News and Record Review

Matching Tuner and Cassette Deck Dotails in our free catalogue
De Luxe Linsley-Hood 75w Amplifier

$20+20 w$ AMPLIFIER
 COMPLETE KIT ONLY
 Based on P.WV. TEXAN
 £33.10 + vat

 ToAurita for chatne

Matchong Tuners Details in our Fres Catalogme
our catalogue is FREE! write orphone NOW!
POWERTRAN ELECTRONICS
PORTWAY INDUSTRIAL ESTATE
ANDOVER, HANTS SP 10 3NM
ANDOVER 64455

JUST A COUPLE of weeks to Christmas and you haven t yet thought what you would like Father Christmas to bring you in your stacking this year? Its time to leave extra large hunts lying around, if you feel like dabbing with your TV games unit try leaving this article in a place where Father Christmas is sure to find it

Christmas Colouring Kit,

If you have one of the black and white TV games based on the GIAY-3-8500 TV games chip you can now upgrade it to colour Wattord Electronics have a kit to upgrade this type of unit to give effects such as a green court, red boundary and score vellow left bat and blue right bat The kit includes a UHF modulator so that you can plug the game into the aerial socket of your TV if your game was bult from a kit which never quite worked then this add-on might be just the excuse to dig it out of the not quite completed projects pile If you still don t feel like trusting your abidty to build such a unit you will be pleased to hear that Wattord can supply it built tested and even installed in your own game For detalls see their advertisement

Other Upgrades and add-ons

Another way to improve your TV ga mes unit is to change the chip for the AY-3-8550 which gives addıtional horizontal bat control together with a few other improvements The chip is pin compatible with the AY-3-8500 and requires only an additional potentiometer in each hand control to complete the modification

Alternatively you could st art almost from scratch with the AY-3.8600 chip which gives a total of eight games meluding Gridball, Hockey and Basketball The AY-38550. AY-3-8600 and PCBs. kits. etc are avalable from Telecraft, for further detalls see their advertisement

Add-on Music.

If you already have enough of the above modifications or think that they will only cover Christmas day and you are looking for something to occupy you on Boxing Day then how about making out a list of components for Father Christmas to enable you to experiment with this idea?

The TV games chips described use something like a 2 MHz oscillator to generate all of the timing signals including sync If this oscillator were also divided by
about 4 and gated so that it was enabled only inside the court or visible signal trme of a TV game then it should be possible to divide up the court into several horizontal sections If the sync signals are counted fand reset during court) then the coutl can be similatly broken up into several vertical sections A little additional logic will allow you to display several 1 in or so squares on your TV screen With your colour modulator kit you can also define the colours of the squares and define how the colours are allowed to change

Now all you need is an audio signal a bit of filtering a few BC109s and suddenly you have your own multioption fourth TV channel For additional mind-bending experiences try adding the TV games signals and your generated music signals to give a multicoloured court'

1978

1978 will bring some pleasant surprises in the TV games business with some cassette or cartridge units already avalable At furst there will be a great divide on the market between GRAPHICS games such as those already avalable and BASIC games played in question and answer form Eventually these will become combined in some realiy interesting TV games units - stay tuned to ETI for more intormation'

Software Made Simple

I have been involved in writing a lat of software for various applications over the past few months and I thought that some of the techniques I use might be of interest

Frrst of all get yourself a hardback or loose-leaf notebook of a reasonable size to write down all of your attempts - there is nothing worse than having to rewrite a routine from scratch because you have lost the cigarette packet which had the original notes on the back

Decide roughly what the routune will do, a rough flowichart plus an idea of any fixed stack assignments sub-routines, etc Convert this to a first draft machine code listing with notes and labels but leave plenty of room for additional, insertions and changes Looking at some of my roughs and comparing them to the finished product it seems that nearly every other line has alterations

Having decided what you think the machine code should the sit down at your MPU and try it For most sub-routines you will probably have to set up a calling routine to test it. this routine simply sets up any parameters used by the sub-routine and then calls the foutine Do not bother to enter more than about to insiructions at s time because the likelihood of having to shift them all is very high At a convenient point enter an instruction to generate a Soffware Interrupt so that the MPU will perform the code entered so far and then return to a routine which will allow the results so far to be checked in most 6800 systems this will be a $3 F$ instruction

If the results so far are those expected then another 10 instructions can be entered and another $3 f$ instruction inserted etc etc Anychanges to the original coding should be made to your original notes immediately after the change has been verified on the MPU

Branches to parts of the routine which are not yet coded are easily handled by branching to a 3 F instruction or back into a loop untal the condition changes this allows one side of the branch to be coded before attempting to do the other

ETI

The Sinclair PDM35. A personal digital multimeter for only $£ 29.95$

 Technical specification

 Technical specification}

Now everyone con afford to own a digital multimeter

A digitel muthmoter uned to mean an expensma, bulks prece ot

The Smblatr 13) 1135 changex that It got dill the turntions and deaturec $\begin{aligned} & \text { ou want un a dental }\end{aligned}$ multumeter. set thex te neatly prakazed in a rugged toul light poket-5LA cusc, tead to go drywhere

Whe Sink laur PDMB3 glvestou all the bencfits of an orsimate diyutal mulaneter - duck clear leadings. tigh a worace and revolution, bigh input bompedence lot at $£ 2995$ $+8^{\circ}$ VAl , it coser leve than wou'd clyect to pay for an undogut neter

TheSinalar PDith 3^{5} as tathormate tor ansune a ho reeds w make rafid measurements Devalopment cngineer, field ach we engunecers. labtechmatanh, wompruter spectalists. radionand eleatomoch hobyete will lind It ded

Whth ts riged comstructuons whd hattery operator, the PD2t135 is pertectl? sunted for hand work in the theld, while uce angled diaplas and optionat AC power lawitu makert just as usedul in che ternch

What you get with a PDM35

3'2 Aigit resuluthon
Sham, bugts. eatily read I I I) disflan, madinar to - 1459 Sutomatiefolarmes seleutom Resolution at Imb and $\{1 \mathrm{~m}$) 000014.1

Drest tedding or semmendtikior tolbard voltages at 5 diderent wurtents Reblstance measured up to 20 . Mf 10cいtrading atioutar
DC. Volts (4 ranges)

 Vate 10 Mampus mpedanch
AC. Volts ($40 \mathrm{~Hz}-5 \mathrm{k} 1 \mathrm{I} 7$)
Rance 1Vtu50)

DC Current (6 ranges)
Runge 1 几 102000 mt
 Sote Had renoluthon (1 ded
Resistance (5 rangea)
Range 1al to 20 ithia

Dimensions: 6 m $\times 3$ m m !, m .
Weight: 6 -or.
Power supply:95 hatcen or
Sumbur At adaptur
Sockets: Stundad! man lon re-iluent flug,
Options: No ndutur lot 2 bot jo It/ former 1)e-luma padded catrsing ualle 30 kt prote

The Sinclair credentials

buncur have pioneerad a whole winge nfelatrom, woild-firsts - Irom progldmmathe purket calculater, (to manature IFs The PI) $\$ 135$
 dgital mulumeter deagn. in whoh ume sinclat have become one of the world's largest moduten

Tried, tested, ready to go!

The Simblar [1] 1135 comen an zou tulls hualt, testera whbratud and Hadranteed It womed completh with lead a mod teat pund oreratura

 trl the souporis entore a bloguc l' for the woreat artoumat unad lfi-ala

 sinclar Keldunnev I :d, I madon Kinaj
 1 Tirlatd RavdNo 649 183

wh
at: De-l!et pataled

and lisp eant.

tic 4 Blo ondicki caul

madkete total amoun!
I and ratard that it anan not wompletely

World leaders in fingertip electronics

Bigital Echo Unit

J. A. Murdie

The Digital Echo Unit described below may be constructed on standard Euro card PCBs with 31 way connectors, and utilizes the cheap 21021 K static RAM, of which from any amount from (say) 32.64 K may be used to achieve a (continuously variable) delay of up to a second. The delay time is of course directly proportional to the amount of mempry used. There are three PCB designs used: Fig. 1: Input/Clock board (1 off), Fig. 2: Output/Control board (1 off), Fig. 3. 8K Memory Board (max. 8 off).

Dealing with the input board first, it may be seen that the 555, 7476 and 7408 constitute a non overlapping two phase ciock whose outputs are 'Enable Read' (ER), and 'Enable Write' (EW). During the write phase a bit is taken from the digitized input and fed to the 'Data Write' (DW) ine. The AD con vertor used is the FX209 which was featured in the ETI June 1976 Data Sheet. The bits created are placed in the memory location addressed by the 12 bit counter ('Bit Address'). on this board and the 4 bit counter on the Output/Control board ('Block Add ress').

Wheri the ER line goes hugh a bit is taken from the memory address pointed to by the counters with the 4 bit value produced by the Hexadecimal Priority encoder (Delay Switches) being added to the block address. Thus the 'distance' between the write and read 'heads' may be altered to place them any number of blocks apart, and thus create a choice of 16 basic delay lengths. The bit read is placed on the DR line and is then converted to an analog value by the DA convertor. Note that some of the output may be fed back to the input |'Regen') to create multiple echo effects.

After this sequence of a write and a read cycle the bit/block address is in. cremented by one so a succession of bits may be placed in memory by input, and read from the memory by the output. The rate at which this sequence occurs is controlled by the clock rate of the 555 astable, and thus this not only controls the delay tume as do the delay switches, but also the quality of the sound reproduced as this indepen dent on the number of samples taken
per second in the digitizıng process. The device may be set up to dagitize the analog input at a maximum of 125 K
bits/second - which is quite adequate for (say) an electric gutar which requires a bandwidth of some 10 KHz .

The Sinclair PDM35. digital multimeter

Company Hospital and Government Drders accepted thy telephone or telex
£28.95
Ine VAT \& P\&P
$A C$ Abapror $£ 2.95$ เsc

KRAMER \& CO.

9 October Place Holders Hill Road London, NW4

Special Introductory Offer

Dec-ed Out

D. F. Tranter

When using 5-Decs to test circuits, one often finds that several groups of the Dec contacts are taken up for one common connection, particularly the contacts which run to the battery connections.

In order to extend the capacity of a single S-Dec 1 fit a row of sockets along each of the two Dec sides which have lugs for conrecting to other Decs, using the lugs as end fixing ooints.

If the sockets are bent and a strip of insulating tape used to anchor the lower

ends, one gets a reesonably robust fitting which greatly extends the capactry of the Dec.

The lug recesses along the other two sides can also be used for attaching more rows of sockets.

The Multi-zener

R. N. Soar

This is an application of zener diodes based on the binary system. In the example shown three zener diodes are used $3 \mathrm{~V}, 6 \mathrm{~V}$ and 12 V ie 3.0 V , 6.2 V and 12 V plus three S.P.S.T. switches In the on position of a switch the diode is short circuit. In the 'off' position the diode is in circuit. Thus the effective dode by suitable
operation of the switches is $3,3+6$, $3+12$ ete le. $3,6,9,12,15,18,21$ volts By the addition of the next in the
series 24 V and another S.P.S.T. switch the range is $3,6,9,12,15,18,21,24,27$, $30,33,36,39,42,45$ volts.

EFFECTIVE ZENER

Cheapo VGO

A. J. Fichardson

This curcuit provides a cheap solution to a non precision voltage controlled oscillator. Cf charges towards the volt age set on VR1 until inverter 1 output goes low whereupon the output of inverter 3 goes low and discharges C ? via D and R4. Inverters 2 and 3 form a Schmitt trigger circuit with positive feedback supplsed by R3, Inverter 4 forms a linear amplifier with its gain
set by the ratio of R5 to R6 which squares up the signal appearing on inverter 1 output. The signal is further squared up by the Schmitt trigger action of inverters 5 and 6 to provide a square wave of approximately 50% duty cycle at the output of inverter 6. With the values shown a frequency range of at least 100 Hz to 15 kHz is quaranteed with VR1 but other ranges can be covered with suitable values of R1 and C1. The circuit works well at lower supply voltages but the frequency range covered for a given set of com-
ponents may be slightly less. If a square wave is not required a negative pulse of approxmately 200 nS is avaliable at the output of inverter 3 thus enabling two VCOs to be built with one chip.

15-240 Watts!


```
Preamplifier
```



``` -upol ore with each preamoita
```



```
APPLICATIONS
SPECIFICATION
```



```
Price\&5 \(22+65 \mathrm{p}\) VAT P\&Pfreo
```


HY30

15 Watts into 8Ω

 SPECIFICATIONS

HY50

25 Watts into 8Ω

 FiCnlity midules ntre $\begin{aligned} & \text { no }\end{aligned}$

1 LJFL
1 kHP

HY120
60 Watts into 8,

SPECIFICATIONS
NPL EFNEITIVITY b(O)M

SIONAL NOFSE RATIO GOHE FREQUENCY RFGPONEE $10 H$, AFkN: - 3 AB SUPOLY VOLTAGF 5 दe $114 \times 50 \times$ ev
Frica $51584+5127$ VAT PGP fiee

120 Watts into 8Ω
 §PECIFICATIONS

 =ITC 11 AA $\times 1019 \times$ E575 Price E23 32 + E187VAT P\&P free

HY400

\qquad

HY200

240 Watts into 4Ω
FEATURES
PPLICATION
SPECIFICATIONS

POWER
SUPPLIES

$$
+\mathbb{E}_{n}
$$

TWO YFARS GLARANTEE ONALL OF OLR PRODLCTS
I.L.P. Electronics Ltd

Crossland House
Nackington, Canterbury
Kent CT4 7AD
Tel (0227) 63218

Please Siapmax
Total Purchuse Prich - - - - - - - - -
1 Entorse Chelue ${ }^{-}$Postal Orders 7
Pleasc tobt my Access accourl
Accouns rimmaer
patme \& Audress

Phaser Mod

M. Header

I constructed a simple variable gan op amp inverter and connected it between the output and the input.

When the feedback amp was switch. ed into circuit the effect was dramatre. The phaser sounded much deeper.

The modification is simple enough and though can he adjusted to feedback (audia) tevel, sounds very good if the gairl is kept down.

The circuit as shown gives very good results although you may be able to suggest some component value changes.

Programmable Gate

P. Mead

The Programmable Gate is a gate which converts an AND gate to an OR gate by applying a logic ' 1 ' on the function input.

The logic design uses 8×2 input NAND gates. The number of gates may be reduced by replacing the 5 NAND gates enclosed by the dotted line, with a 2 mput exclusive $O R$, such as the TTL 7486.

5mS Delay Unit

C. S. Rushton

The circuir shown will produce a delay of 5 mS from input to output with good correlation between amplitudes over a dynamic range of approximately 40 dB .

The circuit eonsists of four main sections: an input buffer, a damped resonant RLC circuit, a non-inverting amplifier and a clamping circuit.

The delay can be modified withon
 reasonable limits by adjustment of the RIC network.

SECOND GENERATION
METAL
DETECTOR KIT

DESIGNED SPECIALLY FOR THE HOME CONSTRUCTOR

EASY

TO
BULID

EASY TO
USE

- A second generation Induction Balance sysiem with improved Variable-Tone daisctian
- Designed by protessionals far easy assembly by amaleurs but with very good performance
- The search colls arg fully assembied and adjuiled for you

Uses lacluds:

* Treasure humbing - it"s amazing what you can tind in the garcen or on the beach
* Finding lest metalic items.
thocahing watargipes and cables under fllogrtoards on in walls.
* Checking ofd ambar for nails betore culting. etc. *1c. alc., etc

Communication Measurement Ltd IS MALLINSON OVAL, HARROGATE YOFAKS

NEW NEW NEW

THE AMAZING VIDEOGRAPH CONVERTS YOUR TV INTO THE BEST DISCO LIGHT SHOW EVER!
Watcl stereo soutsd waves in toll colon I tout tromt I ete oitput to TV asmak socker Mono $B B^{\prime} M$ compatible com petekit oflered fou limited perod at

$£ 15.95$

COLOUR MOOULATOR
 For a TV games $£ 5.50$

The only design to olfef

- 3 separate inpuis R G\&B
- Variable colour depth

3 switchable background colours
Easy connecton to any game

TENNIS/FDOTBALL GAME KIT ONLY £ 3.95

Suttabe for use with AY 38500 or AY 38550 ghor zonta and vertical bat mos cmenti and above modulatol Pots and swatches not supplied
W. P. STUART-BRUGES

137 Bllericay Road
Herongate, Brentwood Essex CM13 3SD
Tel 0277810244

BACK IN STOCK-GREED 7B TELEPRINTERS

THE CHEAPEST WAY OF GETTING A FULL ALPHA NLLMERIL PRINTOUT FROM YOUR MICRO Larqe Ministry ourchases enables us an offer these at $\mathbf{£ 2 5}$ each In geod workmg conditiom Requites $2 厶$ volis DC Requires ASC11/RAUDF conveitor for coupling to your micro processor these units are processor tested before dispateh Circuis included Adequately facked to guatantee sple arrival tor EJ 25

videocraft INTRODUGES VIDEOPLAY

Ptays TV games with plug in cartridges

Fully Pal Colour Compatıble -- just plugs into your aerial socket

No batteries runs from mains supply

- Automatic on-screen scoring \& turne-keeping

Hold button freezes play action indefinitely

- Play action speed control
- Time limit selection

Electronte sound effects

- Optınal cartridges

2-Player Blackjack:
 cege J a nor crean re 5u. ${ }^{2}$ an

This system can play a variety of different video games avalable on OPTIONAL VIDEOCART cartridges.

Up to 4 different games on each Videocraft
Two buittin games Tennis/Hockev (no cartridges required)

Games available NOW

Cartridge 1. Noughts a crosses/Shooting Gallery/Doodle/Quadra-Doodle
Cartridge 2 Desert Fox/Shooting Galtery
Cartridge 3 Black Jack
Cartridge 4 Spitfire
Cartridge 5 Space War
AVAILABLE SOON: Backgammon Magic Nos Maths Quiz, Drag Strip, Maze, Baseba!

Price Only $£ \mathbf{1 8 0 . 0 0}$ inclusive of VAT, Postage, Packing and Insurance
Demonstrations avallable at Videocraft, Assets House, Elverton Stront London SW1P 2QR. Tel: 01-828 2731/2/3

Now available from Kramer ．．．

tRULY PORTABLE，CORDLESS．ELECTRONIC ALARM CLOCK at only $\mathbf{1} \mathbf{1 9 . 9 5}$ inc VAT（ + £I P\＆P） LIQUID CRYSTAL DISPLAY READOUTS ：LCD atow ruly bight weight porcable dowis the law power tequrement of LCD display allow long bal tey ylife and elm netion of heavy．bulk transformess resuftinginight compack itractive stye

Steek contemporary siying

PORTABLE ALARM CLOCK

Use in the homes，in oftices and Iravel also would make an excellent car clock

－7hirymunt＝ne yes holeryby
813 artz inv－1＂iccur sit
 1trabe erse $n^{*}+\operatorname{cosen}^{-6}$
－Reador＝sach ，ho hot＇rith siven ns

－Smpe time sev＊H preced ie Tima zone st＇anger coraly matal
Titt xinshomp ng swat foy zval wime unt1 ng

－Tou to ast／asi4 rovini $*+1$ ，owsst t，nit on

An gr＇e 120 gramt it 2 ou ces！me wit ng git hoy and twokng
Fo sh Meth with is act－t set

KRAMER \＆CO．

9 Octoboth ivwn．Hod arz Hill hoad Izndan WW4 $1+1$ Thisx 8Bysil，ATTN KRAMER，KJ T＊，01． 2032473 MAIL ORDER ONLY

WE ARE YOUR＇SINGLE SOURCE＇ LOW INCLUSIVE PRICES－FAST EERVICE PMBSTOF QUALITY FITARE GLASS

L nol Rot is －Dowe d B framese as ） Gomel GFS Fing if

2） 16	
［ 710	Fi．Ang er
	，
E276	dich LCLID

GFSi thon if
556
$c 180$
 $85 p$
$85 p$
6899

POPVLAR INTEKRATED GRCUITS

183361	23）	tuss ir	E1 60	sat ent	1110
¢0372	5140	－ 87×15	c10	$5 \mathrm{c}-$	4sp
760004	E590	cin ${ }^{2}$	C 151	141	$27 p$
Mryith	75，	TS」を 1	（1ヵ）	1 mov	

$\angle 143450+1$
$14-14930$
$14-1485$
1 N 1002 $5 p$
$5 p$
180
iv dodnch Zevers
 POTENTIOMATETS

ELECTADHYTICS（它服ACITY，WOLTHGE）

－
Pcivender C2B5
1 wF tog im JT

R．F EQUIPMENT SPARES LIMITED

Wilmslow Audio

THE firm for speakers！

Send 15 p stamp for tha worle＇ y best catatogue of Spajh ark，Drive Units，Kits，Crossovers，etc，and discourt price lisi
ムTC AUOAX B BAKER BOWVES 8 WDLKINS
－CASTLE EELESTION CHARTWELL
［BLES DALESFORD DECGA EMI EAGLE
－ELAC FANE GAUSS GOODMAHS
HELVE I MF ISOPHON JR JORDAN
\＆ATTS KEF LEAK LOWTHER
MCKENZIE NONITOA AUDIO PEERLESS P
R $A D F O R D$ RAM R RICHARD ALLAR SEAS
TANNOY VIDEOTONE NHAAFEDALE

WILMSLDW AUDID Dept．ETI

SWAN WORKS，BANK SQUARE，WILMSLOW CHESHIRE SK9 1HF
Discouni Hifi，etc．，ht \＆Swam Stroet and 10 Swan Street
TEL WILMSLOW 2SGSS FOR SPEAKEAS
WILMSLOU INS213 FOR HIFI

For a merry musical Christmas an electronic musical door chime which can play 24 different tunes!

* Handsorte purpose bult $A B S$ cabinat
* Easy to bund andinstall
* Uses Texas instruments TMS1000 microcomputer
* Absol utely all parts Eupplied including I C socket
* Ready drilted and legended PCB included
* Comprahensive kil manual with full circuil detals
* No previous microcomputer experisnce necessary
* All programming permanent iy retaned is onchipRON * Canbebunt in about 3 hours ${ }^{\prime}$
* Runsott 2 PF 3 type batteries
* Fully Guaranteed

Thachroma Chumensthe worlds first electionic musical dobr chime which uses o pre programmed microcomputer chup to generate funes Insteadof bonngold buzzes dings ox dongs, the Chroms Chiree will play one of its 24 well known tunes fromits memory using its tiny'bram to all the music. syn tiesizingl Since evervthing is done by precise mathe ratics it comnot play the notes out of tune

The unithas comprehansive bull incontrok so that vou can not only select the tune of the day but the volume. tempo and anvelope decay rate to change the sound according le taste

Not only y sitors to the front door wall be amarea, if you like you can connect an additional push button tor a back door which plays a different turel

This kit has been caretully prepared so that prectically anyone capable of neat toldering wall have complete success in building t tine kit manwal cortanins step tiy stedconstruc tionol detenls together witha taultinding guide, circuit description installation detalis and operetenalimstructions all well illustrated wath numereus figures and diagrams

The CHROMA CIIME is exclusiuely desugned by
figy
Grunncleaves
bos Sue 1r+GLET,
bir Inlank:
Lanul 014 remult m

9 xgmata-Ans
wext 1 nsperch mir
cols s hnr bane
Oeviloven chlit Kn ha
liemarte in ior
011
10eld g s.

* Agreat werzacunctear to the fascuenitua undidt of mectocankylevs
* Sace podiarts on moten al retactíntee by fuctiong yourself

In CHROHATRONILS Fivel Mar Harlon Eszex LK
 "cluding wat and postadidiok ing
pLEASEUSE BLOCKCAFITALS

Nume

Acxiress
lenclose chequa POVAlue L
or detat my ACCESS EARCLAYCARD rectunt Ma

Srgnature
NB The CHRDMA CHIME is alsu suallable fally asserabled price 224 \#t incVAT and pusland pecking
Flesse allow 7 21clewsfordelwery \qquad
 linent $x=1$ $\begin{array}{ll}8 \\ 8 & 1\end{array}+1$ 12 bir it al Cirizictil
 Je 1sL $\mathrm{Je}, 15 \mathrm{~L}$
$\mathrm{CH}, 1$
Cil IEvile
\qquad

\qquad A complete achroma-ochime E Kiit for only fi8*) mackudes $F \& F+V A T$

COMPONENTS BY RETURN

C．Ai STEVENSON［13）

SAVE POUNDS

WITH THIS UNEEATABLE OFFER
from Briain＇s Largest Dimmer Makers
Corrplete Kit of Parts for out VCL500M． 500 W Dimmer 5wnch caly 「 185 ，phus ptrp 2Eipa （anc vát）Fullinstructions supplied

BARGAIN COMPONENTS

ELECTROLYTIC CAPACITORS

470 MFD	63	1 Ep.	1000 MFD	16 v
150 MFD	63 V	17p	330 MFD	63y
97O MFD	10V	1 F ．	6日 MFD	63 V

POLVESTER CAPACIYOAS
001 MFD － $4 C 0 \mathrm{~V}$
$5 p$
ThYRISTGR5
C106．01 76041 由csen 4450
B． 12 WAV TERHINAL BLOCN
BC B MOUNTING 39
POTENTIOMETERE
Prover 1 1 M 个 Linwar 11p．Preset $4.7 \mathrm{~K} \Omega$ Lnear 120 Piotet 206k ？Linear 11p Pre sal 25K Ω Lusear 190

All pricas inglude VAT Postaga E papking dncluded on all orders ayar 50p．Winder 50p．please add pactage．Fior quick deiryary plowse warnd chequa or F／O to－Deat ETI

Fotherby，Willis Electroniss Ltd．

GLADSTONE TEAAHCE，STANMINGLEY，LEEDS，L，S29 SNE．

You can work wonders with your free time．

Thele＇s tumense satisfaction in makmg your own equpment．And youll gel evellent results with Heathkit．

Every kit is absolutely complece domit to the last mind and boht．The ciushty is the best And each kit has an casy to follow instructoti manual that eyplats evactly what to do at each step

So ，ou enyoy dosembling zom but and vou fursh with frost－class equppisent every the

That＇s why Heathat we on muctes finl and thatt why the ravige is the buggest in the weild

If a all at the nex editimof the free Heathant catalogue Eserythung frem the simplest to the most sophisticated Akams destal clocks
 took are theme

See fon yourself．Send the coupor mons

NEW CATALOGUE

NEW TEST INSTRUMENTS
NEW DIGITAL BATHROOM SCALES
NEW AMATEUP RADIO EQUAPMENT
NEW AUDIO SYSTEMS AND MANY OTHER NEW ITEMS

S-DECNOLOGY
Build all the prosects on the s-DaC
Tha parfect kit tor beganners studanis protessionals and al users of discrese comoonents Thas S.Drekit contems 1 SDeC + wontral panel, 9 plos Boarda 20 double ended byda + hnstrution bogle SDeK IT apmplate in ABS hox, witer compon ent trav
Normaly $\mathbf{f 6 . 3 8}$
HALFPRICE OFFER $\mathbf{5 3 . 7 9}$

+ E1.00 post ¥nd VAT

BRED-CARCUIT BOARD
Combines versatility of Eread board with usafultess of Blab Board

BCB2 bodre $\$ 170^{\circ} 6^{\circ} \times 2^{\prime \prime}$ with 516 DIL Sockets
Pack of 3 boords with 15 sockets notrmally 53.84
ONLY £1.92 poct \& VAT

Half Price $m^{20} 1885$ Christmas Offer

T DECNDLDGY
Euld projects using ics on vour T Dec
Thas DEK.1T comkains 1 T. OnG + con ircl canel +116 DiL Carner +4 Blote Eonrde + compiponents + Circuat Disprains ond step by stop fintuructions to build Ewrglar Alarm Saund Fuzz Cirguit, SR Laleh, and Tiwa Tone Sifen Complfte Kit with Components

Normally $\mathbf{£ 1 3 . 0 0}$
HALF PRICE OFFER 66,50 + f. 20 pOSt \& VAT

SOCKETS

46 OHL IC Sockets wh stepped legs

Mormally 20p wach
Pack of 20 for conly $£ 200+35 p$
Postand VAT

BLOB BOARD CHAISTHAS PACK

Ingludor
B1C for Haing Duital Electronies by Expuhment
5 D for toind 5 Dachmology gD for daing elpo a-Jab

Normally E300 HALF PRICE OFFER 1150 40p post and VAT

IC BREADEOARD

UDeC B Breadbatrid +212 IC Glob Boerds

Normally, £14 00
HALF PRICE OFFERE7.00 + £ 1.30 post \& VAT

THE ERFG mopa TE लly,

UP-DATED Ath EDITION

- Mnent stabierseof mianibut
mionet pomocts

 comprneztis to huyblo leat factitel washers Many romgs hsted ase rery glaticult ta obtarit thewhere Tot Company s, owrn compuiser is arexratined wo pxpedit: delisen and mandart custmmer salabetron Altaw wo oleccoins ate allownd in many pucitidees, Acless and Brachach ard pick 's.

PLUS FREE POSTAGE

an M CW0 msirmors in UK vie cz oo has vaing tarciwill V^{\prime} If) it crider atto : 50 ipariovig chayje

144 pages, 40p
Fisl paid lix riliad toicher lor 431

ELECTROALIUE LTID plis is faio lyse form vilits Dipk a

FIRST GRADE DEVICES bY MAJOR MFRRS. Special Xmas Offer of ofpounhrins stecieo

PROGRESSIVE RADIO
31 CHEAPSIDE
LUEA POOL 2.051.7350982

GREENBANK OIGITAL CLICK MODULES

IDEAL FOR XMAS!

1224 フ04E € 795.8 mm [ligits
1224.747E € 11.95 1EmmDigits

FEATURES: 1224 ht - Reper: Consla be modified 4 use as 4 range trme e 24 mins + seoends, \#ic
KIT INCLIUDES PCB chip. displays iransisters. nisislors eapactiors and nstruchons. Just connect 12 v 500 ma A C and n litks' sway. (Transtormer can be purchased 31 £ 225)
BEGINNERS NOTE For an oxcrs EOp foptnonal pay in advancel we well undertake to repar your thek whatever top lawl!

PLUS

Our nesy CKI tiquid crytal display clock quartz erystal introlled works oll $1 / 2 \mathrm{~L}$ chl ballery (kit of componentsi NoPCB case or wre sugphed f2500
FPEE CATALOGUE \& FUPTHER DETAILS ON -quest
TERMS: Add 6\% V/A 1 to all above pricera Postage 25p + 8. $2 V A T=27$

GREE WLANK ELECTROMICS BGM CX 3 41 Now Chputer Moed
Maw Forv, Wrra, Meroymide tar bink TE): 051 c4s 320

SEAS

HIGH QUALITY SPEAKER KITS

SiNO STAMP ADDAESSED ENVLLGPE HON FDR THE EASYY TO LSE NCE OLDEA FOAM COWTAIN NG 500 TOP QUNLTY POPLLAR ELECTMCNIC COWECNENTS AT PR CES YOU CAN AFFOAC PGA
 GUAH ANTE ED ONE YEAR LF CORARCD TLSED SOME CXAMPLES FFGMATHE COMPET THE ACE DANGE WITH YAT NCLUSIVC PROCES AAE SHCONY BE！ION

ECLOF 108 yog mela
 2N3055
 555 Twnor WO4 JA Brroge 34007 TL M．449 Orode W4COnfoc Byrbs Zerors

Cet en hesup uan sieste

GARGAIN OF THE YEAR

12 FUNETION GMFOWGGRAPH £39．90
is wht PLP

Hours inis there ossu nier rh and

＊DSE DF THE MUS ACEUAATE＊ LCO＊ATG TFO DR SA，N ThT UK

FISHER
SPALE
PEN
＋ 1 に
＊ctaci 11 m floom
＊Al 1 ter unde Nale

＊＜ 2 blan epure beater opme．
 हI 55 mis YAT Phe

KRAMER \＆CO．

SOcmor Pimct Mopdan Hall hosed Lonrimen WINA IE」
Tal at 2042472

 FHGU 川N O 1

TELETEXT WITHOUT TEARS

－Who has suppied chlee turnes as many Teletex1 kits as any other compairy？
－tho can offer forll Technical theck up bervice？
＊Who can supply the FULL KIT ex 5100×3
＊Nho con ofter such a complitive price？
－Whor can offer lemote corded cordiess keyboard contral？

Call

on $41828<131$

ETCH RESIST TRANSFER

KIT SIZE 1.1
Complete kit 1.3 shepts bun a 4 ＂3m $\mathrm{f} \boldsymbol{Z} 50$ wh gil symbok lor direm application is PC beard richeridual shecu $25 p$ each（1）Mixed Simbols（2） Lings 005 131 Perda（4）Fish Flales and Connaevey i51 4 Lend and 3 tead nnd Pads is DILS（7）EENDS 90 met 130 （B1 8－10－12 T05 Cans 151 Euge Connectars $0+5110$, Edge Comnectu $=$ 011111 Lines 0021121 Benas． 0021131 Qustin Line

CIRCUIT LAVOUT

TRANSFERS SIZE 2.1
 25 in fich reest trum No 3 to Mo 10 felusive makos circuit nyout pasy Black anlu Price हो

CIRCUIT LAVOUT

TRANSFERS SIZE 2．1
One sheet 12 in x sun lines and bends自lack Prly Price Et 00

FRONT AND REAR PANEL TAANSFER SIGNS
All stanciesd syimbais and woridang Diver 2508 ymbels spris and wherds Ahso arailabue in reverse for bersionk ene Chaver of coicurs red blue black or white Size of shem 12 in \times Gin Price है 1

GRAPHIC TRAN SFEMS

WITH SPACER

ACCESSORAES
Aven in ble aloo in reverse lewering collurls red thuc black on white Each Jaiger

 camplete Stake ace

GRAPHIC TRANSFERS $1 / 2 \mathrm{~m}$

 WITH \＄PACERACCESSORIES
Camprising it sheests Exy a A＇sin E0pulsis lowat cage and roumorals from charka anly fied blue buck or whate Camplete bt E250

GRAPHICTRANS FERS

1／16in IDEAL FOR P．C．B．
Identhasion ewh resart！fed blue block or white Capitala and numerals only Not awalable in rovalse \＆sheets Sin $x \operatorname{lin}_{1} / 1$
Speciol THANSLUCENT ARTVYORK FLASTIC
keteal far trachan or cricun hyaut sise 12π ， 9 in 10 streets ble 1

PRINTEO CIRCUIT BOARD
 preces for E1．Inclutag posiaga

SILK SCREENS

vade tal rustonters lequirements Frint Your（urai） $\mathrm{P} \hat{C}$ bowrds Send detals fot quote

Alierders depanched fromptiy
All pose and VAT paid
Ex UK sotd 50ptar an mal
Shap ann Trade anqu nes melcoma
Skecial Tranisters made io order
E R NHEHOLLS
P．C．B．TRANSFERS
DEPT PE／10
46 LOWFIELD ROAD
STOCKPQRT EHE3 OE1－480 2179

Greenbank
 CMOS WITH DFSCOUNTS

CASIO QUALITY FOR CHRISTMAS

CASIOCALCULATOR/CLOCKS

F4LCTRONICS TODAV INTERNATIONA - ロECEMBFR 197°

SENSATIONAL NEWS!

 Hi-Fi Stereo at prices everyone can afford

MINI－ADS

	2996	voltagenfgis $\rho \mathrm{P}$ sic 1 kms 140 ¢ 250
51240 p	2N2C20 G1 12n	
228		
24	$2 n^{2}$	
$1 \cdots 10$	21993 1551	
$1 \mathrm{M}_{3} \mathrm{~S}^{5}$	2125＊3 ${ }_{\text {T }}$	
1.83100	Tcaid	
16 y － 110	hirFiol 400	OP RMPS
1 FaC 125	V13012 25	，
17\％${ }^{\circ} \mathrm{F} 170$	243923	
16？ $3^{2}+110$	－43243	
$85,4130 p$	2 h 50273	M 冫欠1 T05 409
	1 Nat	WN：DV C L3Et 10
	Nat Nap	Luyatic－
139：1．0 80p	1N403	650 in \％ $45 p$
$10=$ ¢ A＋${ }^{\text {an }}$	1 Nayoz	$35 \mathrm{Ex5} 5 \mathrm{FET} 10$
（180	1 Vde0	－Med E\％Oo
	1 V400c	LM3E E185
		－a，jac a alasp
	is 1006	
E306b 85p	ia for	M：965 E2 E0
TIFこの4，30，	${ }^{4}$	RIDAES 1A 24
$-10-144 \times 40^{2}$		50，300 36p
$\mathrm{C}^{*} 115 \mathrm{p}$	ef 60 12p	20．
2 nc 097	＋～xis	
2070n ${ }^{\text {20，}}$ 20		3 SH
$\begin{array}{ll} 2 N 1,1 & 20^{n} \\ 2 \mathrm{k} 2>13 & 20_{\mathrm{p}} \end{array}$		
	OA79－xa 12 p	
－	OU206 0こ．い28p	
1054 1二25p 278	 	
Tuct 34．27p 35p		$\begin{aligned} 70 \\ \text { Ef } \end{aligned}$
		E120 2r－3JY
ISLANG DEVIC MAPGATE，KE	PO BOK	19 CARADWAY：MLKE Freas indity

PRINTED CIRCUITS

and

 HARDWARE CompremensiveSelected renge of popular component
\＄elected rang Full range of ETI printed circuit boards normanty ex stock same day despatch at competitive prices
FC Boards to andividual designs
Resist coetad epoxy glass laminata fol the di y man wath full processing instructions（no unususl ohemicals required
Send $15 p$ for catalogue．
RAMAR CONSTRUCTOR SERVICES
MASONS ROAD STRATFORD－QN－AVON WARYVICK\＄．Tel，4879

MEMORIES！ MEMORIES！

```
* INTEL 2102 SAAM\(179 p\)
* INTEL 1702A EPROM 770p
* Texas TIL311 Hex Display (O
    F) on chip Latch and decoder
    for BCD input 800p
* 16 pin dil Skts
                            18p
* 24 pIn DILSkts 30p
Add 8% + 40p P&F
Ma.l Order only
Airameo Ltd．， 30 Witches Linn Ardrossan，Ayrshite KA22 8NP
```


COMPLTERISED
＂CHESS CHALLENGER＂
－Microprocessor Brain Power
A chossboted aith a matro nompiser bult intoin You can compere agains）the micre computer at the
 different and axcitro
Ihe computer has been specialit progtarmmed with some＇gaps in ts know iedge the son ur gaps a guot
 plaver who is aserage ly tairlf gond will तetuatio be athe to brat the game $23 \% 76$ of the bamic teatures include Colleng and en pasent plavs Bhack or Whute ant posstoun tan ho qel up phelion whicalimn hy exmputer and rent ran
What int scans bun Mime andepter， 3 lewits of plat（a） q sat and utenucal to the level at whish tesc model plave（n）intermediare level of plav fon （cima ot stali）（c）bighk skilles lenel of play keteg sou or rath toes ditticult 10 bea．verv gatha on the

Electronc Backgamman fame aralidale sAE
We dsten l niversits Gowt compans Purchave ondero the leke or Phione all prices hel bus wid ThE for clata gheets + quannele pruce talil order

KRAMER \＆ 50 DEPT FLT
HOLDERS FHLL ROAD，LONDOM NW4 1FI
Tclex 888041 Attr KRAMERK5
Telephone 01－203 2473
EXPORI ORDERGWICCWHE

THE BRITISH AMATEUR ELEC． TRONECS CLUS for all interested in elec－ trontes Four Newsletters a year with help and specal offers for members Major projects sponsored by the E A EC designed anc made by members currently the B A E C 280 Computer Membership fee for 1978 £ 350 UK overseas $£ 450$ surface and E5 50 atrmail payable in sterling S A E for details and application form to the Hon．Sec J．G．Margetts， 42 Old Vicarage Green， Kevnatham，Bristol

Mbsestan

GIVE AWAY PRICE

PCB $41 / 1^{1 r} \times 2^{r d}$ contesning $12 v 4$ pole mırature relay $2 N 2646$ diodes capeutors etc 40p Alf pip $10 p$

PCB $41^{\prime \prime} \times 2^{\prime \prime}$ containung $2 \times 24 \mathrm{~V} 115 \mathrm{~V}$ 4 pale manature retay，diode onpacitor etc $30 p \| A, p+10 p$
pCE $41 / 2^{\prime \prime} \times 2^{\prime \prime}$ conlaning 24 V 140 V 4 pole miniature reay diode capacitors etc $20 p$ all boards $(A, 3) p / P 10 p$

2 N 2132 ｜P rastic to med TO5 leats 25－E｜｜A4｜

Standard or FR Gapex tbraglass P C B s for ET p ofects suppl ed thned and drifed ETI 541 B8p 568 TTY ．193p ET1 $549 \quad 77 p \quad 3$ Channel tone con－ 568 VDU a （Mod trod 630 255 p Digita Therm 112 p 568 VDUb Mod GockA 971 249 p Clock B $\quad 197 \mathrm{p}$ 568 Mainframe PSU Comnsinda 152 P $568 \mathrm{CPU} \quad 22 \mathrm{Bp}$ 「roczeralarm 46p PLUS Special Offers now valid till Dee．1， 77 Ftem 1．Full set 568 pebs（VDU a B b．PSU CPU）only $£ 6.75$ par sat
Itam 2 EFI 804 TV Game，$£ 1.00$ each
Itom 3 EII $480+480 \mathrm{PSU}, \mathbf{£} 1: 90$ per pair
A prices shewn tid ude VAT Add 200 post $\&$ packang
PC．B． 8 aliso available for this month＇s ETI project Send SAE for full list of awailable hoards

SECURITY PRODUCTS

Desmoned for the Dioll Yublact＇nid ket Fasily ristalled Fillimstractions supplited As s applied to the tastir

Mag \cdots ar Reed a surh

Flush 65p
Suifoce 70 p
Presshim Mats －$\ddagger \mathrm{r} \mathrm{y} \in \mathrm{E} 1.20$

Folls arid Sirens fresil
Bell Courrs－Mirtot Plestal coatert haniow toal soll ad！lathe
F .1510 cm
Doar Loopa bomplete

able Gion tor detans

STRATHAND SECURITY
PLEASE ORDER BY $\{$（A）NUMBERS LB ELECTRONICS
43 WESTACOTT，HAYES FHOOX．UB4 8AH

DE LUXE STAB POWER SUPPLY MO. DULE. Ofter ad; output g-30v at 02 amp Adj current limit overload sensor s,e proof No fuses (require xtormer $25 v$ at 2A) $£ 599$ (inc deta) K. Lawrence, 1 Regent Road, Hklev, W. Yorks. IFree 741 IC + Datai

CARBON FILM RESISTORS 5% E 12 Sernes 1/8W 1/4W 1/2W Mixed to your chaice 100 for 90 p Electrolyucs $50 / 15$ v 7p M1CROPROCESSORS SC/APE1270 Introkit $£ 71$ Kayboard kit $£ 74$ MME800 £20 280 ع25 No extras P\&P $15 p$ CANDAR, 9 Galloway Close, Denlbigh Hall. Bletchley.

MIAINS TRANSFORMERS - $12 v 012 v$ 100 mA Secondary $£ 130$ p each Ull equivalent Re-chargeatole NI CAD Cells $90 p$ each PCB 's with long lead components Our selection f 150 Add $20 p \mathrm{p}$ \& F . Jones Supplias, 3 Centre Vale Close, Littleborough, Lancs. OL15 9E2.

SOFTWARE FOR SYSTEM 68. The Scelbi 6B00 Cookbook includes routines for floating point arithmetic Input/Output and much more £ 10 post paid or SAE tor detals and new list which includes a 6800 Assembler K Fioche 20 Stocker Close Basingstoke Hants

MICROBITS 1702A Proms E4 ea Erasing and Progremming facilities avalable P\&P 150 DHOS 4022 A VDUs ASCII No control unit required Et 130 Manual avalable Carr by arrangement LM309 tive voit regulators 90_{p} F\&P 12p Many cheap tems always avalable Send 5 a e with your require ments Dane Services 2 Lupin Close Hinckley Leics LE 10 2UJ Tel 045535621 (ev \& weekends)

Send us your ERASABLE PROMS for erasing and re-programming $1702-£ 3$ 2708-£10 SN74188-£316 including custom progranming PROMIC ELEC TRONILS 30 Eaker Street Lordon Wi

EEECTRONIC CALCULATORS SCIENTIFIC

AM/FM Radio Alarm Clock (AC $220-240 \mathrm{~V}$ on y)

- 24-hour Clock
- High quality whate ABS Case
- Push-button Mode Selection
- Sleep delay Control
- I uminated Clock and Radio Scale
- Alarm with Buzzer and for Music
- All Black Control Knobs and Brown Buttons
- Complies with BS415 (1972) Safety Requirements
- Each Unit full inspected before despatch
- Guaranteed for one year
"See our exira special ofter on special otfer pages. Please send cheque or postal order to
D\&D POWER SUPPLY CD. LTD. 79 LOWFIELD STREET, LAARTFORD, KENT

You may be that rare person who gets his circuit designs right first time, everytime.

But it's much more likely that you experiment to see what works, and what doesn't.

In which case you ought to know about Bandridge Decs.

Bandridge Decs enable you to try almost any number of possible circuits, without having to use your soldering iron.

You simply push the wires of your circuit components into the holes in the Dec to make a perfect solderiess contact.

Which means that you can use the components over and over again.
to suit every possible circuitry requirement.
From simple discrete work to $2 \times$ DIL or 4xTO5 Station work.

And for larger or more complex circuits you can use any number of Decs linked together.

Eventually of course, you'll need that soldering iron to make up the permanent version of your circuit design.

And when you do you'll probably want to use one of the matching Bandridge Blob boards, to make your job that much easier.

But until then we suggest you put your soldering iron aside and get yourself a Bandridge Dec. tell you how much time it will save you.

There are four Decs available

Bandridge Decs - Available at all good component stockists, where you see the Bandridge sign.

กITPUI

in a modern world of electronics

AUDIO MIXER

superb storen audio mixer. It can the equipped with up to 16 input modules of your choice and its performance matches that wh the wery best lape-rectrders and hi-fi equipment. Il meets the requirements of protessional racording studios. FM radio stations. cenceri halls and the atres Full canstruction details in our catalogue A camponent schedule is available on request.

PEDAL UNIT

A completely self-contained pedal unit. 13 -note, 2 -octave range. 4 organ stops. It can be added to any organ. A really unusual extra is the bass guitar stop which uses four envelope shapers 10 give a real bass guitar sound. A must for the solo guitarist. Full construction details in our tatalogue - post the coupon below now

[^0]: COFYABGH7 All material is subpect to wofld wide Copyright protoction. All reasonable care is taken in the preparation of the magazine to ensure accuracy but ET/cannot be held resoonstate for it tegally. Where errors do sccur a correction will be published as soon as possible afterwards

[^1]: Staff Vacancies

 ## ELECTRONICS TECHNICIAN

 We need sompons for the ETI Propect Team Appl cants rtust be capablo of and enfoy firstly hiead heastiong up prototypes from suppled cacuits and then convering the proved circurt into o well hult protolype

 Skills necesswy ore a gaod sandird of worlmensh p hoth electonkeilly and mechanically and exnmples o prevaus wark nust be avalatile for a xenkinalıor Abulity o design PCB lavouls would be ath edvornoge thuygh rimed caper ence in this area shouk mak aremude cand cales from op ν yints

 Tre mbjurity of the work s in haloif y but it wilt be rierecsaty io co－operate wit the other edigial staff roth with design and witiv the papen stork needed to prist itheprojectin the mingaine

 The jobib in out woikshop at our Gitory Seren premises Salery will cepend woon ok lif and esoer herse hut will the in the range f ？ 8 Wi absoluep mir m tr $10: 3$ bud tor someone broging odd tonat abr a＂b he Eam

 EDITORIAL ASSSISTANT FOR ETI AUSTRAL\＄A
 An aoditional katl momber 15 needed a Sviruby Aubl ald it

[^2]: Figure 3 Much simolified schematic of Geodimeter model biA distance meter in this design electro optrat methods are used

[^3]: Some of the ICs used in this propect may be unfamiliar but they are stocked by most of the larger component stores. Some of the hight value resistors may also prove illusive, but again, if they are not available at your local shop try the advertisers in this issue

