$3 / 40$

 For all two-way radio enthusiasts

 For all two-way radio enthusiasts}

Test Equipment:
 Design and Use of Dip Meters

A User Review:
 The H5-225 General-Goverage Gommunications Receiver

Construction:
RGUadablellas: Construction

YOU GET MORE AT RAYCOM!

BEARCAT 200XLT

Save money when you buy this top-of-the range scanner. 200 memories, coverage from 66-956 MHz , priority channel monitor, channel lockout delay and auto AM FM switching go to make a great package and we add further value still.
Choose either a free broadband mag-mount or a free mast-mount SkyScan scanner antenna worth $£ 14.95$ and a free clgar adapter kit when you order your Bearcat (and £30 off RRP!)
£229.99 .. save £49.45

COBRA SR-925

With coverage from $29-512 \mathrm{MHz}$ (with gaps), 16 memory channels, 2 -speed search, high sensitivity (0.3 mV) and 1 watt of audio this scanner is ideal for beginner and enthusiast alike! Raycom adds $£ 30$ worth of free antenna, cable, plugs and sockets and drops the price to bring a blistering scanner package to our customers. Call now for an information leaflet!

£159.99 ., save $£ 30.00$

ICOM IC-R7000

An unbeatable offer from Raycom - £30 off the retail price and a free Bearcal handy scanner covering $29-512 \mathrm{MHz}$ (with gaps) worth $£ 99.95$ - a total saving of an incredible $£ 129.95$! Can't believe it? Send SAE for an information leaflet and offer details. Raycom Credit Card is available - just $£ 96$ deposit and $£ 36$ per month!
2959.00 .. save $£ 130.00$

ICOM IC-3210

ICOM's popular dual bander, 25 watts on both bands, great looking and readable display, tull duplex capability, 40 memories and input monitor for instant repeater check. All you need add is an antenna and we have taken care of that.
Regular retail prices:
IC-3210
£499.00
Broadband mag-mount antenna $£ 14.95$
Total regular price
£513.95
Raycom package price
. $£ 479.00$

SAVE E35!

Raycom Credit Card is available on this pack, just $£ 48$ deposit and monthly payments of just £18! Why wait, send for written details now!

ICOM IC-725

ICOM's latest addition to the family, the 725 gives a full 100 watts of multi-mode power and is the second rig to use the DDS (Direct Digital Synthesizer) system. 10 Hz steps for smooth tuning, all mode squelch, 26 memories, and many other features make the 725 the starter rig for those who want more than a starter rig it's unbeatable value - just look!
Regular retail prices:

SAVE E116!

Raycom Credit Card is available on this pack, just $£ 85$ deposit and monthly payments of just £32! Why wait, send for written details now!

YAESU FT-747GX

HF all mode 100 W transceiver, $0.1-30 \mathrm{MHz}$, with the exclusive Raycom mod improving receiver dynamic range by $15-20 \mathrm{~dB}$. Turns a good receiver into a great receiver. Ideal as a base and particularly suited for mobile/marine use with it's light weight and click-stop dial. Save money with the RAYCOM STARTER
PACK - it's unbeatable value - just look!
Regular retail prices:
FT-747GX
£659.00
Raycom RX mod $£ 59.00$
20 Amp PSU $£ 129.99$
G5RV $1 / 2$-sized antenna $£ 14.95$
Fist mic ... £21.00
Total regular price £883.94
Raycom package price $£ 749.00$

SAVE £135!

Raycom Credit Card is available on this pack, just $£ 77$ deposit and monthly payments of just £28! Why wait, send for writen details now!

YAESU FT-470

Yaesu's new dual bander is ex-stock at last and packed with features dual display, dual band monitor, 4 VFO's and 42 memories, power saver. auto power off, CTCSS, DTMF autodial and a wide range of options - SAE for information sheet.
Regular retail prices:
FT-470
$£ 389.00$
FNB-10 nicad 7.2v, 600mAH $£ 34.50$
Wall charger £17.71
Soft carry case £10.58
Broadband mag-mount antenna £14.95
Total regular price £466.74
Raycom package price £425.00

SAVE \&42!

Raycom Credit Card is available on this pack, just $£ 45$ deposit and monthly payments of just £16! Why wait, send for written details now!

TEL: 021-544-6767 PHONE BEFORE APM FOR NEXT DAY OELIVERY BY COURIER (5 5 5.00) OR 2PM FOR DELIVERY BY POST ($E 10.00$ PsP) LEASE ALLOW TIME FOR CHEOUES TO CLEAR. MANY OTHER ITEMS IN STOCK. PLEASE CALL FOR MORE INFO AND FOR EXTRA SPECIAL DEALS!

Editorial: lain Mackenzie

Advertisement

Manager:
Maria Smith
Subscriptions:
01-6849542
Publisher:
Peter Williams

On sale:

Last Thursday of the month preceding cover date

Next issue:

Cover date December on sale 29 November 1989

Published by:
Amateur Radio
Magazines,
Sovereign House,
Brentwood, Essex.
CM144SE, England
(0277) 219876

Printed: In England
ISSN: 0264-2557
News Trade Sales by: S M Distribution, 6 Leigham Court Road, Streatham, London.
SW16 2PG
Tel: 01-677 8111
Cover: The Icom ICR9000 Communications Receiver

Whist every care is taken when accepting advertisements we cannot accept responsbinty lor unsatisfactory thoroughly investigate any complaints The views expressed by contributors are not neces sarily those of the publishers Every care is taken by Amateur Radio to
ensure that the mlormation given to our ensure that the iniormation given to our
readers is reliable We cannot however guarantee it and we cannol assume lega responsibility for 11 nor tor any ellects. howsoever caused

6 Straight and Level

The latest news, comments and developments on the amateur radio scene

8 User Review
Ken Michaelson G3RDG
looks at the HF-225
General-Coverage
Communications Receiver
11 Morse Report
Tony Smith G4FAI with his bimonthly look at the world of dots and dashes

12 Bits to Build
George Dobbs G3RJV
constructs the Jandek low power CW direct
conversion transceiver
16 DX Diary
Don Field G3XTT with this month's DX news

19 Second-hand
Hugh Allison G3XSE with more practical advice on rig repairs and improvements and, of course, a few bodges

24 On the Beam

Glen Ross G8MWR with the latest news on VHF, UHF and microwaves and another mole report

27 Project Book

Martin Williams with some more useful ideas for building power supplies

28 World of Data
 Don Field G3XTT with

advice on packet operating procedure and avoiding POOP

30 The Software File

This month's listing from Stephen Phillips is for a program to calculate resistor values required to build T and PI-type attenuators

31 Retractable Mast Construction

Alan Malcher G4TPM constructs a retractable mast that can be raised and lowered by one person

33 Short Wave Listener Trevor Morgan GW4OXB with some tips on successful contesting

35 Design and Use of Dip Meters

The first part in a series of articles by Joe Pritchard in which he demonstrates the basic principles of design and use of these handy pieces of test gear

SERVICES

38 Subscription Order Form
39 Free Classified Ads
42 Advertisers' Index
42 Advertising Rates and Information

We regret to inform readers that due to constantly rising production costs, and to enable us to maintain the high standard of content in Amateur Radio, the price of the magazine will be $£ 2.95$ from this issue

 	て్ర్ర్రీ
 	 $0000000000000000000000000-100-1000000$
 N- N-	
 	Kᄌ心

NOVEMBER ${ }^{89}$ P. M. COMPONENTS LTD NOVEMBER ' 89 PRICELIST SELECTRON HoUSE, SPRNGHEAD ENTERPRISE PARK PRICE LST
 SPRINGHEAD RD, GRAVESEND, KENT DAII BHD

	$\begin{aligned} & \text { A SELECTION FROM } \\ & \text { SOATSTOCOOF } \\ & \text { BRANDED VALVES } \end{aligned}$									
		Eriee 0.78								
.so										
					coin					
							cosiol			
							cose			
										\%
										\%

include: pinch off voltage
(-1.0V [TYP]), saturated drain current (Idss=25mA [TYP]) and thermal resistance (Rth=450 CW).

The gate length and width of the device measures $0.5 \mu \mathrm{~m}$ and $300 \mu \mathrm{~m}$ respectively.

By combining low power consumption with high speed the optical receiver FETs are ideally suited for high speed, high sensitive optical detective systems.

For further information contact Toshiba Electronics (UK) Ltd, Electron Tube and Device Division, Riverside Way, Camberley, Surrey GU15 3YA. Tel: (0276) 694600.

- High frequency stability in ranges greater than 30 MHz ($\pm 0.25 \mathrm{ppm}$) and in ranges less than 30 MHz ($\pm 25 \mathrm{~Hz}$);
- Direct keyboard entry for receiving frequencies and memory channels;
- 1000 memory channels;
- AFC function to compensate for frequency drift;
- Continuous and adjustable multi-scan functions with a speed rate in excess of thirteen channels per second;
- Four antenna connectors.

The IC-R9000's power consumption is less than 11.0 VA and measures $424 \mathrm{~mm} \times$ $150 \mathrm{~mm} \times 365 \mathrm{~mm}(W H D)$. The rig costs $£ 3,995$ including VAT.
For further information contact Icom (UK) Ltd, Unit 9, Sea Street, Herne Bay, Kent CT6 8LD. Tel: (0227) 363859.

OPICAL RECEIVER FETE

The semiconductor division of Toshiba Electronics Ltd has recently developed and launched a GaAs MESFET device for use in fibre optic communications.
The optical receiver FET is available in both chip (JS8873-AS) and packaged form (S8873) and is designed for use in high-speed lightwave detection systems.

The combination of a low leakage current (Igs=30) and very high transconductance ($\mathrm{gm}=40 \mathrm{MS}$) provides the FET with the high sensitivity needed to operate the detection systems.

Other additional features
Featured on this month's cover is the IC-R9000 communications receiver, available from Icom (UK) Ltd.
With the IC-R9000's continuous, all-mode, super wideband range of 100 kHz to 1999.8 MHz , together with its unique CRT display and numerous scan functions, this rig is capable of receiving stations world-wide.
The IC-R9000 includes the following functions: - All mode capability;

- DDS (Direct Digital Synthesiser) system, built into the PLL circuits;

STC Electronic Services now stocks the Panasonic BR2/3AE2SP, a lithium polycarbon monofluoride cell. which is ideal for small load functions, such as CMOS RAM protection.
Designed for mounting on to a PCB, it has a ten year storage life with an annual deterioration of just 0.5%. The operating temperature range is $-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$. The voltage is 3 V , capacity is 1200 mAh and the height above the board is 18.5 mm .

For further information contact STC Electronic Services, Edinburgh Way, Harlow, Essex CM2O 2DF. Tel: (0279) 626777.

LOW VOLTAGE DETECTORS

A series of low power voltage detectors is now available from Seiko Epson with either open drain N channel or CMOS output.
Detection voltages range from: 0.9 to 4.9 V minimum and 1.0 to 5.3 V maximum; operating supply current varies from $1.4 \mu \mathrm{~A}$ to $2.6 \mu \mathrm{~A}$.
The CMOS low voltage detectors give an indication of battery life, and monitor power supply faults, voltage protection, triggering backup systems and tagging devices.
For further information contact Hero Electronics Ltd,

Dunstable Street, Ampthill, Bedfordshire MK45 2JS. Tel: (0525) 405015.

BARTG will hold its annual

 AGM on 4 November at the Churchill Room, London House, Mecklenburgh Square, London WC1. The meeting will start at 2.00 pm .London House is close to the junction of Grays Inn Road and Guildford Street just a few minutes walk from Kings Cross and St Pancras rail stations.
One of the topics which will be discussed is the future of the BARTG rally. The rally organisor, G8VKY, would like to enlarge the 1990 event, but he is unable to organise enough volunteers to help.
For further information contact Ian Brothwell G4EAN, 56 Arnot Hill Road, Arnold, Nottingham NG5 6LQ. Tel: (0602) 26230 , or (0602) 592660.

DII NEWS

The DTI have anņounced the top young radio amateur of 1989. He is Ted Walker, aged sixteen, from Warwick. The runners up were Rachel Oakley, from Gateshead and Paul Moss, from Evesham.
Ted received a certificate from Nicholas Ridley, Secretary of State for Trade and Industry, and was presented with a $£ 250.00$ prize from Mike Codican, Head of Licensing at the DTI.
Ted is a keen radio enthusiast who impressed the judges with his efforts involving radio restoration, building his own antennas, and his various activities with radio clubs and on RAYNET.
Rachel, aged fourteen, of Low Fells, Gateshead, was the first guide to qualify for the new Girl Guides Radio communications badge. As well as building her own radio equipment, Rachel passed her RAE and Morse exams at only twelve years old.
Paul, aged seventeen, from Badsey, Evesham, successfully competes in radio

All the latest news, views, comment and developments on the amateur radio scene
callsign collection competitions, builds his own antennas, and uses computers for communications via radio.
The Young Amateur of the Year Award is organised by the RSGB.

THE DIXON MURDERS

On 5 July 1989, Peter and Gwenda Dixon were found murdered on the Pembrokeshire coastal path.
Following police enquiries it has been revealed that at about 2.00 pm on Sunday 25 June 1989, two men in a boat, who were fishing on Hellwick Bank, off Wormshead, near the Gower coast, overheard a conversation by two men on channel thirty-three on their CB radio.
The person transmitting on channel thirty-three said he was middle-aged, from the

Oxford area and was holidaying in Pembrokeshire.
These details - and his complicated callsign, which could be similar to Peter Dixon's callsign of GOHFQ indicate that this person could have been the murder victim.
This person had a conversation on Sunday 25 June with an unknown man called Tom, who had a broad Pembrokeshire accent. (It is also believed that Peter Dixon made contact with a mobile station on the morning of Wednesday 28 June 1989 on 10 m FM). Tom agreed to meet this person at a later date. It is not known if this meeting took place, because Tom seemed disinterested.
If you have any information as to the identity of Tom or which might help the police with their enquiries, contact
either the Dyfed-Powys Police at Haverfordwest, tel: (0437) 3355 or any police station.

CLUB NEWS
 The Bridgend and District Amateur Radio Club will hold the 1989 Bridgend Rally on 19 November at the Bridgend Recreation Centre, Angel Street, Bridgend, Mid-Glamorgan. Doors open at 11.00am.

For further information contact the Club Secretary. Tel: (0656) 723508.

The MARS will hold the Birmingham Radio Rally on 19 November at the Stockland Green Leisure Centre, Slade Road, Erdington. Doors open from 10.00 am to 5.00 pm . Admission is 50 p and parking is free.

For further information contact Pete Taylor G6DRN, 131 Bevington Road, Aston, Birmingham B6 6HS. Tel: 0214727998.

The South Bristol Amateur Radio Club will hold five meetings in November:
1 November, lecture; 8 November, $2 m$ activity evening; 15 November, 10 m activity evening; 22 November, free ice-cream evening; and 29 November, bring and buy/ junk sale.
The club meets every Wednesday at 7.30 pm at the Whitchurch Folkhouse Association, Bridge Farm House, East Dundry Road, Whitchurch, Bristol, Avon BS14 OLN.
For further information on the club's activities contact the Club Secretary. Tel: (0272) 832222.

NEW! DIGITAL READOUT!

The new HOWES DFD5 kit helps give that "prolessional" look to your home-brew recerver. transmitter or transceever project. However, the most important feature of a digital frequency display. it that il enables more accurate netting to standard morking frequencies, the ORP calling frequency lor example. If you are tuned "spot on" then your CO call is more likely to be heard by those monitong the frequency. Listeners with also find the DFD 5 with its 100 Hz resolution, a boon for finding the fixed frequency stations with precision, and repeatability. I you know the frequency you are listening to accurately, you can always retune to the the same spot.

* Five diggt . 43 " high LED display.
- Covers 1 to 30 MHz withour prescaling.
- Connects directly to all HOWES VFOs, and with the CBA2 butter amplifier, can be connecled to all HOWES receivers except TRF3.
- Assembly is straightforward, but neat soldening is required!

HOWES kits have always offered a way of bulding excellent equipment at a reasonable cost, now with the DFD5 digital trequency display you can add the mann visual feature of lactory builh gear, to your home-brew station. It will look the "bee's knees" with a DFD5! DFD5 lit: 299.90

Assembled PCBs: E59.90
HOWES CBA2 Butfer Amplifier.
A courter circuit can not be connected directly to the oscillator stage of a recerver without ctronic frequency pulling. The CBA2 buffer amplifier provides the isolation you need to avoid these problems, and so enables a digital readout to be used with all the direct conversion recervers in our range
CBA2 hit $\mathbf{E 5} .80$
Assombled PCE: ce. 90
DXR10 10, 12 \& $15 M$ AMATEUR BAND RECEIVER.
This recerver kit is designed to enable you to enjoy long distance reception. SSB and CW stations can be heard from all comers of the globe on these bands, now that the sunspo level is high. You will hear almost as much with the DXR10 as with the most expensive sets The performance for a simple recewer is amazing! Requires one 50pF tuning capachor. DXR10 litt E24.90
DeRr20 20M AMATEUR BAND RECEIVER.
A straightorward single band receiver kit, the DcR×20 has been the introduction io amateur radio for many beginners. It ofters world-wide recoption on the most popular long distance band. We have a companion transmitter (MXT20) for the licenced amateur, and this simple set can be expanded into a full tranisceiver if you wish Two 50pF funing capaciors (11.50 each) are required. Recerves SSB and CW stations. Versions of the DcRx are also available for 160,80 and 40 M amateur bands and also for the 545 MHz HF arband DcPAx lit: $\mathbf{~} 15.60$

Assemblod PCB: £21.50

TRF3 SHORTWAVE BROADCAST RECENER.
The TRF3 will pick up stations from all over the world. It tunes from around 5.7 to 12.8 MHz in three bands, covering most of the regular shortwave broadcasters. Plenty of audio output is available for loudspeaker or headphones, and it can operate with large or small antennas. This kit has been designed with the beginner in mind, and it makes an excellent introduction to shortwave listening. Requires one 50 pf turing capacitor.

TRF3 kt : $\mathrm{E14.80}$

Assembled PCB: E20.20

O2 ACTIYE ANTENWH AMPLIFER

Buld your own miniature active antenna for long, medium and shortwave reception with our very popular AA2 kit. 6 or 8 feet of wire and the AA2 ampliter will give similar signal strengths to much larger conventional antennas. You can also make your munuature antenna rotatable to reduce interference - you can't do that with a long wire! If you are limited for antenna space, need a rotatable medium wave antenna, or simply need a compact portabie antenna for holiday use, the AA2 can hetp.

AM2 kit: 87.50

Assembled PCA: 111.50
ASL5 DUAL BANDWDTH FILTER.
Add extra selectivity to your recever with the HOWES ASL5 filter. Sharper roll-off for SSB and a 300 Hz bandwidth CW fither give a very useful improvement with all the popular Japanese recerversitransceivers. Easy to build. Simply connects in line with your extemal 'speaker of 'phones, no mods to the radio are needed. Very worthwhile station accessory.
ASL5 ktt $\mathbf{E 1 4 . 9 0}$ Assembled PCB: $\mathbf{E 2 5 0}$ Al HOWES KITS include a good quality Pant ed Circuit Board, with the parts locations screen printed on it for easy, accurate assem bly. All board mounted components are supplied. as are full, clear instructions. Sales and technical advice are available by 'phone during office hours. For specific product information sheets, or a copy of our free catalogue, pleas send an SAE
Plowse add E1.00 Pap to your total order value

73 de Dave G4KOH,
Technical Manager.

The HF-225 general-coverage communications receiver from Lowe Electronics Ltd is the successor to the HF-125. It incorporates the same circuit design as its predecessor, but two years of extensive research and development have resulted in a vastly improved RF performance. This receiver will also cope with overloading from powerful stations adjacent to the one you want to hear. The specifications of the HF-225 are shown below.
The unit's steel case comprises two halves, split horizontally, and is finished in battleship grey heavy-duty epoxy paint.
The underside of the case has four rubber feet, with two extendable legs to raise the front of the unit.

The front panel

The front panel is finished in grey and white, the top half being a darker shade of grey than the body of the set, and the lower half of the front panel being white. The panel legends are printed on the reverse side, so they will not wear away in use.
The three control knobs are black with arrow-shaped indicators in white. The top half of the panel comprises, from left to right: the analogue ' S ' meter which is calibrated from S1 to $\mathrm{S} 9,+10 \mathrm{~dB},+30 \mathrm{~dB}$ and +50 dB ; a six-way rotary switch; and a large five-digit, back-lit LCD display, which shows the receiver frequency to the nearest kilohertz. Additional indicators in the display show the memory mode and AMS detector lock.
To the right of the front panel is the turing knob, which is a 'spin wheel' type with a finger detent. Its operation is satisfactorily smooth, but there is no adjustment to compensate for friction. The tuning step rate increases with rapid rotation of the tuning knob. There are three tuning rates: for CW, SSB and AMS modes the tuning rate is in 8 Hz steps or 1.6 kHz per revolution, for $A M$ it is in 50 Hz or 9 kHz steps per revolution and for FM mode, the rate is in 125 Hz or 25 kHz steps per revolution.
The tuning knob selects a particular memory channel when used in conjunction with the memory CHANNEL button.

Ingenious design

The lower-left half of the front panel contains the 6 mm 'phone socket, which accepts either mono or stereo-type headphones; the internal speaker is disconnected when the headphone plug is inserted. Next to this is the power on/off and volume control followed by the tone control, which has a very interesting operation. In its central position the response is flat. Turning it clockwise produces a high pass action cutting the bass response, whereas turning it anti-clockwise gives a lowpass fifter cuttirig the top. This is a very helpful facility, particularly while listening on

THE HF-225 General-Coverage Communications

 Receiver7 MHz , when used in conjunction with the various filters. An ingenious piece of design.
In the same horizontal line are five push buttons, four of which have multiple actions. These are: MEMORY MODE SELECT, RF ATTENUATOR/MEMORY CHANNEL, FILTER SELECT/MEMORY RECALL, MHz DOWN/MEMORY STORE and MHz UP/MEMORY STORE.

The rear panel

The rear panel contains a number of facilities. From left to right these are: a
3.5 mm socket for the K-225 remote keypad (frequencies can be entered directly), followed by an SO239 socket for the antenna. Adjacent to this socket is the ANTENNA SELECT switch. Note that the WHIP position will only operate if the internal W-225 amplifier is fitted to the unit. Then there are: a 600 ohm terminal and its associated ground connection, followed by the FM squelch level adjustment. Like the W-225 amplifier, this pot will only be included if the D-225 detector option is fitted to the unit.

Finally there are two 3.5 mm sockets, one for the RECORD output and the other for the EXTERNAL SPEAKER output. There is also a 2.1 mm 12 V power input socket. A regulated dc PSU is

Specifications of the HF-225	
Frequency coverage	30 kHz to 30 MHz continuous coverage
Reception modes	AM, LSB, USB, CW, narrow band FM, synchronous AM (AMS)
Receiver system	Microprocessor-controlled PLL tuning, dual conversion superheterodyne receiver First intermediate frequency 44.999 to 45.000 MHz Second intermediate frequency 455 kHz
IF filters	SSB and AM: Operator selectable 2.2, 4, 7 and 10 kHz AMS: Operator selectable 2.2, 4,7 and 10 kHz CW: 2.2 kHz FM: 12 kHz (750 μ S audio de-emphasis)
Audio filters	200 Hz wide audio peak filter centred on 800 Hz , selectable in CW mode
RF attenuator	Operator selectable 20 dB attenuator
Antenna inputs	50 ohms via SO-239 socket 600 ohm input and earth connection on spring terminals High impedance active aerial for whip antenna via SO-239 socket
Audio outputs	Record output at approx 350 mV (3.5 mm socket) External loudspeaker (3.5 mm socket) Headphone output (mono or stereo) 6 mm socket Internal speaker is disconnected when headphones or external speaker are plugged in
Power supply	External 12 V dc supply (2.1 mm power jack) 240 V ac mains power unit supplied as standard Internal Ni -Cad rechargeable batteries with charging circuit (optional extra) Quiescent current 200mA (no options, no audio output) Typical power consumption is 250 to 300 mA
Dimensions	$253 \mathrm{~mm} \times 109 \mathrm{~mm} \times 204 \mathrm{~mm}$ (WHD) Weight is appro 1.9 kg (2.6 kg with internal batteries)

supplied with the receiver, the mains accepts the normal 240 V ac. The rig comes complete with a lead fitted to the PSU which ends in a normal 2.1 mm power plug ready for insertion into the back of the receiver.
The PCBs, both vertical and horizontal, are beautifully made, with the component values and their positions silkscreen printed on them. All the components are positioned in a neat and tidy manner, and the boards are a pleasure to look at. It is a tribute to the designer of the PCBs that so many facilities are available in such a small space without giving any appearance of overcrowding.

Crystal-derived frequencles

Note that only the local oscillator signal is produced by the phase-locked loop frequency synthesiser, and that the frequencies which affect the tuning of the receiver are crystal-derived to ensure good frequency accuracy and low drift in operation.

The switching and tuning functions of the receiver are controlled by a dedicated microprocessor system, which receives commands from the front panel controls and sends the information to the receiver control register and PLL system via serial DATA busses. The single chip

microprocessor is supported by a controller which drives the LCD and a frequency memory chip with lithium battery back up. These components are mounted separately from the main RF and IF circuits on a PCB behind the front panel.
The control system uses the 'static idle' principle, whereby there are no signals (other than a basic clock oscillator) in the system until the operator requires a change in the receiver's condition. The system then reacts to

Recelver perform	
Sensitivity	
Selectivity	IF filter Bandwidth (kHz) $2.2 \mathrm{kHz}:$ 2.3 at -6 dB 3.4 at -60 dB $4 \mathrm{kHz}:$ 5.9 at -6 dB 9.8 at -60 dB $7 \mathrm{kHz}:$ 8.8 at -6 dB 12.9 at -60 dB $10 \mathrm{kHz}:$ 10.5 at -6 dB 21.5 at -60 dB
Frequency stability	(Typical performance only - not guaranteed spec) At constant $20^{\circ} \mathrm{C}$ Drift $\pm 30 \mathrm{~Hz}$ in one hour Frequency error $\pm 50 \mathrm{~Hz}$ $-15^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ Frequency error $\pm 200 \mathrm{~Hz}$
Audio output	1.6 W into 8 ohm at 5% THD (with 12 V power supply unit) 2.0W into 4 ohm at 5% THD (with 12 V power supply unit) External loudspeaker output is suitable for speakers with impedances of 40 hm or greater Headphone output: up to 4 V from 220 ohm Record output: 350 to 400 mV from 5 k ohm
AMS detector	Lock range: $\pm 100 \mathrm{~Hz}$ Audio distortion under carrier fade conditions: signal modulated to 70% depth at full carrier level 6 dB carrier reduction: 2.8% THD (23% with conventional AM detector) 10 dB carrier reduction: 4\% THD (39\% with conventional AM detector) 20 dB carrier reduction: 4.1% THD (50% with conventional AM detector)
Noise blanker	Audio blanking triggered by IF signal level is permanently enabled and operates on all reception modes Blanking period 500 mS Threshold level 12 dB above normal carrier

commands from the receiver before returning to its static condition. This method of operation virtually eliminates spurious signals from the control system being picked up by the receiver's input stages. In operation, there are very few spurious signals and as they are rarely heard above the background noise of the receiver, they do not cause any degradation to the reception of radio signals.

The receiver can be used with three types of antenna: its own whip (employing the internal amplifier), a long wire running round the loft space, or an 80 m short dipole fed through an ATU. The long wire antenna is used mostly for general reception, but under certain circumstances there is a high noise level present. To listen to the amateur bands, use the 80 m dipole fed through an.ATU.

Operation

It is very simple to operate the HF-225 but the Owner's Manual must be read and thoroughly understood. The rig's thirty memories are accessed by pressing MEMORY SELECT when the MEMORY MODE flag appears at the bottomleft of the display. After one second the display changes to that of the stored frequency in that particular memory. To receive the channel press the next button marked CHANNEL. It is not possible to delete a memory channel and leave it blank, but anyfrequency inserted into a particular channel will override what is already there.

The memory channels can be accessed in sequence by rotating the tuning knob and, in each case, one second after the memory channel number appears, the frequency stored in that channel will be displayed. Memory channels 1-9 can be selected using the optional K-225 keypad. Keys \star and \# select channels 10 and 20 respectively. The 0 key alternates between the preview and channel modes key. Since the memory does not store the mode in use when, for instance, going from AM to SSB, the MODE switch must be employed. To exit from the memory mode press RECALL and tune the receiver as usual.

There are three other facilities available, which now appear on all the bigger transceivers. The first makes the memory frequency the same as the main VFO frequency ($\mathrm{A}=\mathrm{B}$); the second swaps the frequencies in the memory and VFO (A/B); and the third locks and unlocks the tuning control and functions.
These facilities are enabled by pressing and holding the red button marked FN (in fact, the MEMORY SELECT button) and any one of the other four buttons.

Altering the display

I have to remark on the clever way in which the display is altered. If you want to see if the attenuator is in circuit, then it is only necessary to press RF ATTEN, and either OFF or ATTEN will be displayed for three seconds in place of the frequency, after which time the original frequency will return. The same method applies to the filter change by pressing FILTER SELECT. A most ingenious use of the microprocessor.
The use of the synchronous AM position when operating in the commercial broadcast bands results in far better reception than would be possible using normal means of AM detection, but it must be remembered that the receiver will only tune 4 kHz in either direction when in this mode. The idea, therefore, is to tune in the desired station in the AM mode and then change to AMS (this has a

Above: Block diagram of the HF-225. Below: An interior view

locking range of only $\pm 100 \mathrm{~Hz}$). When the station is tuned in the letter ' L ' is shown in the top left-hand corner of the display.

You can move up to the CB band on 27 MHz using the FM option. Switching to the FM mode brings in the squelch circuit, the level of which is set via a blue control projecting out of the rear panel.
The operation of the squelch can be bypassed by pressing the FILTER SELECT button when in the FM mode. When this is done, either the word OFF or
the letters SQL appear in the display for three seconds, then the display returns to the tuned frequency.
The Owner's Manual contains thirtytwo pages, two of which are available for listener notes. It begins with a discussion about aerials and earths under the title 'Getting Started', and continues with 'Types of Signals', to the receiver's specification and four pages of circuit diagrams. In addition to this, I received a booklet called 'The Lowe Listener's Guide', arranged by John Wilson and written by Bob Ellis and John Thorpe. It answers all the queries which short wave listeners might want to ask.

Conclusion

The HF-225 is a very impressive receiver, and represents extremely good value for money. In my opinion, its performance is equal to many imported units which cost twice as much to buy, and should prove to be an excellent choice for any serious short wave listener.
The price of the HF-225 is $£ 395.00$. The D-225 synchronous detector and the K225 remote control keypad cost $£ 39.50$ each, and the W-225 whip antenna with the internal amplifier costs $£ 19.50$. All prices are inclusive of VAT.
Thanks to Lowe Electronics Ltd, Chesterfield Road, Matlock, Derbyshire DE4 5LE, tel: (0629) 580800, for the loan of the rig for this review.

Tony Smith G4FAI takes his bimonthly look at the world of dots and dashes

EUCW Fraternising CW Party

The European CW Association's major event of the year will be held on 18-19 November, and is open to all amateurs and SWLs whether they are members of EUCW clubs or not.
Although mounted within a contest style framework, participants can treat the Fraternising Party how they wish. They can go all-out for contest points, or take it easy and just enjoy meeting friends, old and new, with more leisurely contacts. All are asked, however, to send in logs afterwards to help assess participation in the event.
Space does not permit reproduction of the rules, but I will gladly send a copy on receipt of an sae QTHR.
FOC, the First Class CW Operators' Club, has now joined EUCW. All major UK and European CW clubs are now members of the association which exists to encourage and promote amateur CW operating.

FISTS welcomes beginners

Nervous beginners to CW are reminded that the FISTS Morse Club operates a 'phone-a-sked' service for the benefit of all amateurs, not just members of the club. Those about to go on the air for the first time can obtain sympathetic help from an experienced operator who will gently steer them through their first QSO on the key. A list of these operators, with their telephone numbers, is obtainable from Geo Longden G3ZQS, 119 Cemetery Road, Darwen, Lancs BB3 2LZ.
FISTS extends a warm welcome to beginners generally. Full details about the club, which is a member of EUCW, can be obtained from G3ZQS.

USA no-code licence proposal

As anticipated in my September column, the ARRL has agreed that the time has come to support a class of amateur radio licence which doesn't require knowledge of the Morse code. Nevertheless, according to the W5YI Report, it is
proposed that applicants be asked questions related to the code to instil in them that Morse is a basic part and tradition of amateur radio.
ARRL's Board of Directors did not entirely concur with the recommendations of its special committee, but by a vote of nine to six it finally agreed to petition for a new code-free 'Communicator' licence. This would have an upgrade path to the present Technician licence by way of the existing 5 wpm code test. Privileges would be for all modes at 220 MHz and above, and power would be limited to 250W PEP output.
This represents a considerable backing off from the committee's original proposals which suggested 50 MHz and above, with digital privileges at 2 m . So even if the new licence is agreed, US amateurs will still be some way behind the UK and other countries which already offer no-code entry into amateur radio above 30 MHz .

UK Novice licence proposals

I see that the RSGB's proposals for novice entry to amateur radio, now submitted to the DTI, include a no-code Novice ' B ' licence giving access to novice frequencies above 30 MHz , while an ' A ' licence with a 5 wpm Morse test would also permit operation on selected HF frequencies.
The forty-six-page consultative document lays great stress on Project YEAR (Youth into Electronics via Amateur Radio) and an enormous amount of work has gone into it in the hope of attracting schoolchildren, members of youth organisations etc, into amateur radio to help safeguard the future of the hobby.
The modes suggested include Morse, telephony, data, RTTY, SSTV and FSTV. Presumably the 'low cost simple kits' proposed by the Society will be designed to enable novice youngsters to get on the air with all these modes on the recommended frequencies, ranging from LF to UHF. At first sight, however, the propo-
sals seem to have lost some of the simplicity of the original idea, which was generally understood to be an introduction to basic radio techniques and operating practice by means of simple home-built CW rigs.

Overlooked?

With this emphasis on the young there is another viewpoint which can be overlooked. This is expressed by Gus Taylor G8PG, in SPRAT, journal of the GQRP Club, summer 1989.
'I am all for encouraging the young (1 became G8PF at age seventeen), but the shift in the age of our population means that more and more mature people are available to be attracted into amateur radio. Our own club does well in this respect; some other organisations do not yet seem to have woken up to this fact of late-twentieth century life.'
In subsequent correspondence with me, Gus has expanded on his views:
'... 60% of current purchasing power now lies with the over-forties, and many of them now have a great deal of leisure time. The amateur radio movement thus ignores them at its peril.
.... as parents, uncles/aunts and grandparents this group can often influence the young in a choice of hobby, both by example and joint participation.
'The supposed reason for youth emphasis in the novice area is our current lack of engineers. Amateur radio may help a little in the recruitment of such people, but a much more potent factor would be to give the brilliant young engineer capable of producing new techniques the same rewards as the young yuppie who sells insurance linked pension schemes.
'Until government and industry accept that hard fact our shortage of engineers will continue and no effort by the amateur radio movement is likely to make much improvement in the situation.'

Kitchen fable key

Many home-made keys require workshop facilities and some engineering skill. In the autumn issue of Morsum Magnificat there is an ultra simple handkey made by Barrie Brokenshaw ZS6AJY, based on a hacksaw blade, which can easily be made on the kitchen table using readily available materials and the minimum of tools. The key is bearingless and overcomes the problem of obtaining good electrical contacts by using selftapping screws with sharp points. Barrie says this works well.
He makes these keys for his learners' class. They have simple oscillators each with a distinctive tone and students sit around a table making contacts with each other, with all spoken words prohibited.

Barrie sent me one of these keys and considering its simplicity I am quite impressed by its appearance and solid feel. The gap can be adjusted and it is even possible to vary the spring tension. It is suitable for learning and for newcomers on the air.

THE JANDEK TRANSCEIVER

One of the real pleasures for a constructor of amateur radio equipment is to build his or her own home station. However humble and modest it may be, the home-brewed station never fails to gain respect from fellow radio amateurs. What is more, the builder-owner can claim to be true to the real spirit of amateur radio.
In the past I have described a series of modules for the home constructor sold by a company called Jandek. The Jandek modules are inexpensive, flexible units which can be combined together, or with other circuit modules, to make a receiver or transmitter for any single band from 160 to 20 m .
The designer, G3ZOM, supplies the kits with a PCB, which make the basic 'building blocks' of the equipment.

I described the Jandek receiver modules in June, July and August 1988 issues of Amatour Radlo. These modules are: the JD001 (audio amplifier), JD002-C and/or S (lowpass filter or CW/SSB) JD003 (product detector), JD004-xx (VFO where $x x=$ the required band) and JD007-xx.
More recently, in Amateur Radio for August and September 1989, I described the transmitter modules. These are: the JD004-xx (VFO), JD005-xx (half-wave filter), JD009 (QRP CW transmitter) and JD010 (CW transmit/receive switch).
Looking at this list of modules, it is easy to see how a single band CW direct conversion transceiver could be made using the JD004 VFO as the common signal source for both transmit and receive. The result would be an easy to
build low power CW direct conversion transceiver, the sort of equipment that thousands of members of the G QRP Club use on the bands to enjoy many contacts. To make the final result a functionally better transceiver, G3ZOM has added a couple of extra little modules to the Jandek range.

The Jandek transcelver

Fig 1 is a block diagram which shows how the Jandek modules can be combined to make a single band transceiver. Checking through the list of modules for the receiver and transmitter, it can be seen that two modules have been added. These are the JD011 (VFO switch) and JD012 (sidetone and audio mute). By following the blocks, it is easy to see how the transceiver works.
The VFO (JD004) for the band in question is the common signal source and transmit/receive. One of the new modules is a switching board which applies the VFO signal to either the receive or transmit circuits. On transmit, the VFO signal goes to the driver-power amplifier module (JD009). The half-wave filter for the desired band (JDOO5) suppresses harmonic output from the transmitter.
A changeover relay applies the antenna to the transmitter when the key is depressed. This relay is operated by the transmit/receive switch module

FIg 2a: JD011 circuit, VFO T/R switch

Fig 2b: JD011 layout

The VFO T/R Switch Parts List

Resistors (all 0.25W)

(JD010) which has a 'hang time', so that the relay is held in during normal Morse keying speeds and allows the relay to switch the antenna to the receive circuits when keying ceases. This board also supplies power to the appropriate boards during transmission.
When receiving, the JD011 delivers the VFO signal to the product detector (JD003), which also receives the incoming radio signals, and is tuned by the front end module (JD007). The resultant audio signal may be filtered by either a CW (JD002-C) or an SSB filter (JD002-C), both options are shown in Fig 1.
Although this is a CW transmitter, there is an advantage in also having a filter with a wider bandwidth as an option when tuning for signals. The filtered signal then passes to the other new module: the sidetone and audio muting board. This module serves two functions. Firstly, it gives an audio tone switched by the action of the key via the transmit/ receive module. Secondly, this tone allows the operator to monitor the Morse being sent by the transmitter.
The board also provides an audio muting facility. The receive boards are not switched off during transmit and, although the VFO input to the product detector is greatly attenuated by the VFO switch, the keyed transmitter signal will still break through on the receiver. The muting prevents this and allows the sidetone to be heard at the output. The audio output module (JD001) provides enough audio signal to drive a loudspeaker and also includes the audio frequency gain control - fancy name for a volume control!

The constructor has a choice of 160,80 , 40,30 and 20 m , depending on which frequency determining modules are used. The main modules have been described in previous issues, so let us look at the new additional modules.

Fig 3as JD012 circuit, sidetone and RX mute. Fig 3b: JD012 layout. Fig 3c: Adding the sidetone and RX mute

The VFO transmit/recelve swifch

The VFO T/R switch is shown in Fig 2, the circuit of which is quite simple (see Fig 2a). This diode-operated electronic switch allows the VFO signal to pass either to the transmitter modules or the receiver modules. The action is derived from a 12 V line controlled by the transmit/receive module. With no voltage applied to the control point, the signal appears at the R OUT port. With 12 V applied to the control point, the signal appears at the T OUT port. The insertion loss in both cases is less than 1dB. The attenuation on the unselected port depends upon the frequency. For the R OUT port it is 60 dB at 1.9 MHz and 40 dB at 14 MHz . For the T OUT port it is 40 dB at 1.9 MHz and 26 dB at 14 MHz .

The layout of the module is shown in Fig 2b. The circuit is very simple to build (mine took ten minutes) and the board is compact. The only error a beginner is likely to make is getting the diodes, or even the transistor, the wrong way round.
Fig 2c shows how the modules associated with the VFO switch are interconnected. The 12 V T/R switch line from the T/R module must be at the output designed as ' Z ' on the board. It is also important to use screened leads for the VFO signal paths, as shown in Fig 2c.

The Sidetone and Rx Mute Parts List

Resistors (all 0.25 W)

R1	$10 k$	R2	10 k	R3	4 k 7	R4	10 k
R5	10 k	R6	100 k	R7	10 k	R8	$1 \mathrm{k0}$
R9	$1 \mathrm{k0}$						
RV1	22 k	RV2	10 k				

Capacitors

C1 33n polyester
C3 10 n polyester
Semiconductors
D1 1N4148
Q1 BC182
IC1 741
Miscellaneous
8 pin DIL socket
61 mm terminal pins
1 PCB

Note that it is possible to omit the changeover relay. In such an arrangement, the tuned front end is best placed as shown in Fig 4a. This circuit allows the transmitted signal to enter directly into the receiver front end. This could damage the front end and even the product detector, so extra protection should be provided.
Fig $\mathbf{4 b}$ shows a couple of silicon diodes, mounted back to back, which limit the RF voltage reaching the front of the receiver. This can be any common silicon diode, such as the 1N4148 or 1N914.
The completed transceiver is a very acceptable rig, even for use on the crowded HF bands. By building this transceiver, the radio amateur can not only have the satisfaction of operating on the air with a completely home-made station, but can also join the increasing number of operators who enjoy the thrill of working with low power on the amateur bands.

Ideally, this should consist of miniature 50 ohm coax cable. Sometimes this is difficult to obtain so in the past I have used single core screened cable (sold as microphone cable) for such interconnections. Screened cable should be used for all the . signal path wiring throughout the transceiver.

The sidetone and recelver mute

The sidetone and receiver mute is shown in Fig 3a. The circuit serves two functions which can be explained by considering IC1 and Q1. IC1, a 741 operational amplifier, forms an RC audio oscillator. The oscillator is switched on and off in time to the Morse keying by a 12 V line from the transmit/receive changeover switch module. A preset RV1 controls the audio frequency range from around 350 to 1100 Hz . A second preset control, RV2, adjusts the output of the module. The muting of the receiver is provided by Q1. A 12 V line (on transmit only) attenuates the signal from the receiver prior to it entering the audio amplifier.
Fig 3b shows the layout of the module. Note that the polarity of IC1, Q1 and D1 must be correct. The audio signal wiring requires the use of screened cable between the modules.
Fig 3c shows how the sidetone and receiver mute module interconnects with the other modules. The correct output ports of the transmit/receive switch module must be used to give the required result. Point ' K ' requires 12 V during the keydown periods, and point ' C ' requires 12 V during the whole of the transmit condition.

Front end protection

Fig 1 shows how the antenna is switched between the receive and transmit modules in the transceiver.

Fig 4: Front end protection

Sources

The JD011 VFO T/R module	$£ 2.40$
The JD012 sidetone and Rx mute	
All the modules for the transceiver can be obtained for a total of	
(Add $£ 1.00$ postage)	$£ 45.05$
Available from: Jandek, 6 Fellows Avenue, Kingswinford, West Midlands DY6 9ET.	
Tel: (0766) 762572. For postal inquiries, include a large sae.	
The Q QRP Club	
The G QRP Club caters for those who like to build and operate low-powered	
amateur radio equipment. Details of the club and a free sample of the journal	
Sprat can be obtained in return for an sae from: Mr T Jackson G4HYY, Castle	
Lodge West, Halifax Road, Todmorden, Lancs OL14 5SQ.	

The forthcoming operation from Bouvet Island continues to be the main topic of conversation among DXers. At the time of writing some $\$ 76,000$ has been pledged of the $\$ 100,000$ needed from the amateur community to allow the Bouvet Island expedition to go ahead. However, the deadline for a final decision has been put back to 15 October, by which time the remaining funds may well have been raised.

This is only part of the story. Of the money pledged, 62% has been raised from Japan, and none of the US DX Foundations have come forward. Why not? Because, it seems, there are plans for a US-organised DXpedition to Bouvet Island next February (the Norwegian operation is scheduled for the Christmas holiday period). The Norwegian expedition will involve two amateurs and a small number of scientists. The American expedition is to be a much bigger affair. No less than fifteen amateurs will take part, and the aim is to keep six stations on the air round the clock. Eight FT-1000 transceivers have been donated by Yaesu.

There will also be scientific activities associated with the expedition, and seventeen US universities are involved in the scientific programme. Expedition sponsors include the Saturday Evening Post, National Geographic Magazine, IBM, Pan Am, Pentax and Nikon, as well as Yaesu.

Clearly this is no fly-by-night affair and has been in planning for a long time. In fact, it appears that they were almost ready to go last year, and had been allocated the callsign 3YOB, but in the end had to put the expedition back one season. The group plan to leave the US on 19 January and will travel via London to arrive in Cape Town on the 21st, where they will pick up their 168ft boat. They hope to be on Bouvet Isiand itself for twelve days.

The US group had invited the Norwegian amateurs to join them, rather than have two competing expeditions. The Norwegians, at least for now, have declined on the basis that they believe a Christmas expedition (therefore coinciding with the holiday period) will give more amateurs the chance to try for a contact, and also that the Americans are not planning to use a helicopter, which the Norwegians believe to be essential to make a successful landing on the island.

We can only hope all this gets resolved. Even at $\$ 100,000$, the Norwegian expedition represents an extremely high cost per contact, assuming a QSO total of up to about 40,000 . This seems an enormous waste of resources when another, externally funded expedition is ready to go. That sort of money could fund a myriad of operations from rather less remote but still much-wanted locations. Watch this space!

The bands

At a more mundane level, what did the bands produce during September? Rather less than last year by all accounts. Although the solar flux was high, the bands have been affected by frequent solar flares which have severely disrupted HF propagation. This may well be the pattern for the next few months as we approach the peak of this solar cycle. Between disturbances Pacific stations have been worked on 10 m , and certainly the lower bands have been quite lively at times. I have spent a lot of time on 18 MHz , and during the evening it is frequently possible to tune across the band and hear all continents at good strength.
In terms of DX I worked the ZSIIS expedition, from Walvis Bay, on a few bands. Although the pile-ups were largel have the feeling that many DXers are beginning to lose the thrill of the chase with these various 'new ones', at least until we know whether they will count. V63AR and others turned up with this new prefix from the Eastern Carolines, even showing up on 18 MHz . Though, perhaps, the most interesting operation was one of the briefest.

GM4YLN/P showed up for a short, low power operation from Rockall, that remote outpost of the British Isles. Although seafarer Tom Maclean has operated from there previously, he did not hold a legitimate amateur licence, so GM4YLN's operation was definitely a 'first'. It's a pity he wasn't able to do more, but even getting ashore on Rockall is a major feat, never mind managing to set up an amateur radio station. Still, maybe this brief operation will encourage others to have a go in future. There have been endless debates in the past as to whether Rockall would count for DXCC. The answer has always been no, but there are lots of island chasers out there who would like a contact with this one. As it was, only a handful were lucky enough to catch it.

Forthcoming DX

By the time you read this, Christian OE2CAN wilt have started a world trip which will run until early February. Most of the countries he plans to visit are relatively common in DX terms but, nevertheless, it will be interesting to follow his progress. His itinerary includes: VS6, XX, BY1, BY4, JA, KH6, W6, XE, HK, HC, OA, CP, CE, CEOA, LU, CX, ZP, PY, YV, 9 Y4 (Tobago), 8P, J6, FM, FG, V4, KP2, KP4, HI, HH, 6Y, C6 and W4.

F6EUX starts a one year tour of duty from Kerguelen island this month, and hopes to sign FT5XA. FD6ITD will handle the QSL chores.

DX News Sheet reports rumours of a possible operation during November from Cocos Island, with the callsign TE90M. Other news is that: RB5IJ/ UG9G, UB4IYU/UG1G and UB4IRZ/ UG8G will operate from oblast 304 from 920 November, and W1GAY will operate from the Turks and Caicos islands from 10-13 November.
Finally, some dates are firming up for the various Scandinavian operations from the Pacific this autumn. SM7PKK will join some of the Finnish boys from ZK3 (Tokelau) between 4 and 14 November, where they hope to keep two stations operating round the clock, and also to show up on RTTY and the WARC bands. SM7PKK will then move to Western Samoa where he will operate from 16-27 November, and then maybe to T30 (Kiribati). Meanwhile, OH4ML will sign A35ML from 7-22 November (3D2ML in the contest) and will then be in the South Cook islands from 28 November until 4 December.

To celebrate the period of maximum activity in the present-day sunspot cycle twenty-two, there will be a Dutch special event radio amateur station active from 11-12 November. This station will be situated within the grounds of the astronomical observatory 'Simon Stevin', at Hoeven, in the southern part of the Netherlands, near the sun observatory. Activity will be from 0800-2100hrs on the Saturday and $0800-1500 \mathrm{hrs}$ on the Sunday around 3675, 3775, 7075, 14275, 21275 and 28575 kHz . All QSOs will be confirmed via the bureau with a special QSL card showing an aerial picture of the observatory in full colour.

Prefixes

To celebrate sixty years of amateur licensing in the Netherlands, Dutch
amateurs were to be allowed to add sixty to their prefix from 1 October until 30 November. Thus, for example, PA3ZZZ would become PA63ZZZ. A free certificate will be available for working thirty of these special stations. Send a certified list to PAOBN.
One of the US bulletins reports that stations from Franz Josef Land will soon have new prefixes, perhaps 4 K3 or 4 K5. To celebrate the 350th anniversary of the province, stations in Ontario were due to use the XL3 prefix from 24 October until 24 November.

Islands on the alr

Roger G3KMA, who administers the IOTA programme on behalf of the RSGB, has recently announced some administrative changes to reduce his rapidly increasing workload. With immediate effect any claims and updates from UK amateurs and SWLs should be sent not to Roger but John Kay G3AAE. I will be dealing with claims from several European countries, including Eire. And for the island chasers, the Florida West Coast DX Ring will sign KO4J on all bands CW and SSB on 11-12 November. This is NA64 for IOTA. QSL to KO4J.

DXCC nows

Still no clue as to when the DXCC will vote on the various potential new countries. Meanwhile, one piece of good news is that A61AC QSL cards are now acceptable for DXCC credit.

Hambank

The special telephone number for getting the latest DX information has recently changed to (0426) 925240. Calls from anywhere in the UK will now be charged at the local rate, which should do much to reduce the phone bills of active DX chasers!

Packet Cluster

The Chiltern DX Club have gained permission from the RSGB to set up the UK's first Packet Cluster network for DX alerting. The cluster node has been allocated the callsign GB7DXI (DX Information) and will be located in Wokingham. Primary access will be on 4 m (probably 70.325 MHz), though it will also be possible to network into the system via NET/ROM on 144.675 MHz . Anyone interested in using the system is invited to contact G4LJF. A donation of a few pounds towards the setting up and running costs would be appreciated.

I have mentioned Packet Cluster in the past in both this and my World of Data columns but, just to remind you, it enables stations equipped for packet radio to put out or receive 'alerts' regarding DX stations, unusual propagation etc. The software also provides for a database of QSL managers, beam headings and other useful information. There is, of course, no reason why the system

CQ World-wide CW Contest - Expected Activity

CT3 . . Madeira	SM5GMG will operate single-op all bands from the Atlantis Hotel. CR3A will be a big multi multi
J6... St Lucia	Members of the SW Ohio DX Association will return for a multi multi operation as J6DX. They will be there from 21-30 November with SSB and RTTY outside the contest
KC6... Belau	K1XM and KQ1F hope to be on from here
P4... Aruba	W2GD will sign P40GD from 22-28 November taking in the contest. During the contest check 160 m each hour and 80 m each half-hour from $0200-0800 \mathrm{hrs}$. QSL to N2MM
T32 ... Christmas Island	WC5P plans an operation as T32BE, and WD5F as T32BO
VP2M . . . Montserrat	NF6S and others will operate as VP2MU
3D2 . . Fiji	OH4ML will sign 3D2ML
4U1ITU . . . ITU Geneva	CQWW CW will be operated by a large team consisting of N7BG, K5VT, KC7V, W7CB, W6OUL, W6MSG, WZ6Z (and maybe G3SXW). There will be SSB activity outside the contest
8P... Barbados	K4BAI will operate once again as $8 P 9 H T$. He will be there from 22-29 November, concentrating on 1832, 3525, 7025, 10118, 14025, 18070, 21025, 24898 and 28025 kHz . QSL to his home call

Table 1

should not also be used by the VHF fraternity for similar purposes.

Contests

The big event this month is, of course, the CQ World-Wide CW Contest on 25-26 November (see the September column for general background and operating tips). Table 1 gives details of all the special contest operations which I am aware of. No doubt there will be others. To encourage single-operator multiband operation (perhaps the most challenging entry category) in the CQWW Contests, the Chiltern DX Club has announced that it will sponsor trophies for the leading UK station in each leg of the contest, starting with this year's events.
Of course, there are plenty of other contests during November. The OK DX Contest, a multimode event, is on 11-12 November and runs from midday to midday (GMT). The same weekend sees the Worked All Europe RTTY (thirty-six hours from 1200hrs on the Saturday), so these two contests manage to take up all three principal modes between them! If you want to escape it will have to be to the WARC bands. The RSGB and the Austrian 160 m contests are on 18-19 November.
Looking into December, there is the ARRL 160 m Contest on 1 st -3rd, the EA DX CW Contest on 2nd-3rd, and the ARRL 10m Contest on 9-10th.

Awards

I am pleased to say that the price of the various Ascension Island awards which I mentioned in the September column has
now been halved to $£ 2.50, \$ 5.00$ or ten IRCs.
The special callsigns CT500A CT500B CT500C and CT500D will be aired from Portugal from 1-12 December to celebrate the discoveries made by Portuguese navigators five centuries ago. If you work all four stations you can apply for a special award, consisting of a colourful reproduction of an Old World map showing Portuguese discoveries. Send details of the contacts plus the fee of $\$ 5.00$ or eight IRCs to: REP Awards Manager, Portuguese Discoveries Award, PO Box 2483, 1112 Lisbon, Portugal.
The Kuwait Amateur Radio Society is sponsoring a contest from 30 October until 12 November. The aim is to work at least two Kuwaiti stations or the club station 9K2RA on any of the 80 to 10 m bands. The stations you work will give you a special serial number. Send details of the contacts including this serial number to: The Kuwaiti Society, PO Box 5240,13053 Safat, Kuwait, to claim your award.

Congratulations

A number of congratulations are in order this month. Firstly to Andrew Shaw GOHSD, the first recipient of the G5RP Trophy for the most progress in DXing in a tweive month period. Andrew is a young amateur who has achieved a high countries score in just a short time, mostly running 'barefoot'. Andrew has also done his bit for other DXers by taking part in the GBOFLA/GBOSK operation last July.

Secondly, congratulations are due to Ian Shepherd G4LJF, who is this year's winner of the ROTAB Trophy for consistent DX achievement over a period of time. lan is an airline pilot and spends long spells away from home, but has nevertheless achieved high DX scores on all bands and is one of the few UK holders of the five-band WAZ award. Ian has also put his travels to good use with excellent DXpedition operations from D68, 3B8, S7, V2A and other exotic locations. He is also the current chair-
man of the Chiltern DX Club.
While talking about the Chiltern DX Club, they have recently decided to award their Certificate of Merit to Martti Laine OH2BH, who this year alone has been involved in DXpeditions to XF4, SO, CT3, EA8 and 4J1, and over the years has done a tremendous amount for both DXing and contesting.

Roger GW4OFQ and Dave G4GED have both joined the exalted ranks of fiveband WAZ holders in recent months. There are still fewer than 250 holders of
this award world-wide, despite the fact that it has been around for over ten years.
Last but by no means least, congratulations to Fred Hall G3NSY, a 'white stick' operator, who recently made it to the DXCC Honor Roll.
That's it for another month. I'm always interested in any snippets of news you may pick up on the bands, so keep the information rolling in via the editorial office or direct to: 105 Shiplake Bottom, Peppard, Henley-on-Thames, Oxon RG9 5HJ.

AIR SUPPLY

 TEL: 0532509581
(24hrs Answerphone)

83B High Street, Yeadon, Leeds LS19 TTA (FAX 0532 508772)

AR TRAFFIC CONTROLLERS - on hend to holp 'guide' you towards in inloresthy and rowardiong patimo
AR BAND RADIOS • SCAMUJR • TRANSCENERS • AERMLS \&
ACCESEORESS MAPS - BOOKS - CHARTS - CAA PUBLCATIOHS • TE PMB \& EADCESS - POSTCARDS • MODELS - PHOTOS - ARTOUR ACENCY
For our latest information pack please send SAE (with stamps to value of 50 p) Shop hours do vary owing to Airshows, fly-ins and other events. We are normally open 10.00-13.00 $+1400-1730$ (closed Wednesday \& Sunday) Shop funt two minutes from Leode Eradtord Alport

L F HANNEY

77 Lower Bristol Road, Bath, Avon TEL: 022524811

Your electronic component specialist for Avon, Wilts \& Somerset

 Closed Thursdays| WESTFLEX 103, low loss air spaced 50 ohm
 POPES H100, low loss sir spaced 50 ohm. \qquad
 RG213U (URB7) Mil spec 50 chm low loss. \qquad
 URM3 5 mm dia, 50 ohm single centre. \qquad
 UR76 5 mm dia, 50 ohm stranded centre. \qquad
 RG58CU 5 mm dia, 50 ohm stranded centro. \qquad
 RG174U $2.3 \mathrm{~mm}, 50 \mathrm{ohm}$ miniature Coax. \qquad
 UR95 23 mm , 50 ohm mini Nylon Coax. \qquad
 UR11123mm, 75 ohm PTFE mini Coax. \qquad
 UR57 10.3 mm , 75 ohm low loss Coax.
 UR706mm dia, 75 ohm Transmitting Coax \qquad
 DOUBLE SCREENED 75 chm Coax, 8 mm dia. \qquad
 UHF LOW LOSS TV DOWNLEAD 75 ohm . \qquad
 75 hm TWIN BALANCED FEEDER 400 w PEP. \qquad
 75 chm TWIN FEEDER screened, 6 mm dis \qquad
 300 ohm SLOTTED RIB8ON Limited supply. \qquad
 300 ohm standerd RIBBON. \qquad
 RGG2AU 6 mm dia, 95 ohm Coax. \qquad
 SINGLE CORE Screened cable 2.3 mm dia . \qquad
 TWO CORE SCREENED Cable 5 mm . \qquad
 3 CORE MAINS 5 amp Cable. \qquad
 3 CORE MAINS 8 amp Cable. \qquad
 5 Core ROTATOR CABLE Medium Duty . \qquad
 6 Core ROTATOR CABLE Heavy Duty \qquad
 14 SWG HD COPPER 28ヵh... 16 SWG HD COPPER
 PVCCOATED AE WIRE Medium Duty. \qquad
 combermen
 N PLUG 10.3 mm Transradio \qquad enco ditto for 5 mm . \qquad 2.20
 N LINE SOCKET \qquad 2.50 only in 10.3 mm size
 N 4 hole sq CHASSIS SOCIET \qquad 1.80
 BNC PLUG Trantradio 5 m . \qquad ti. 30 ditto 10.3 mm \qquad [200
 N SKT to N SKT LINE adaptor. \qquad B.00 ditto N PLUG to N PLUG. \qquad $2: 0$
 N SOCKET to BNC PLUG adtr \qquad 83.00 BNC PLUG to N Socket. \qquad
 PL259 PLUG Transradio PTFE/SLLVER \qquad 21.00 21.20 1.20
 POSTAGE EXTRA as quoted subject to minimum of 750 of heavy ilems marked t min postage of $\mathbf{2} .50$. THIS IS A sumall SELECTION FROM OUR FULL LISTS. 30p stamps for complete lists. TRADE PRICES to Est RETAIL OUTLETS.
 W H WESTLAKE, WEST PARK, CLAWTON, HOLSWORTHY, DEVON EX22 6ON Td: 0409253758 |
| :---: |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |

You've taken it to bits, repaired it and are just putting the final few screws back in the case when 'click' - the thread strips. It's bound to be a screw on the front, right where it shows. First of all, unscrew it. Very occasionally the thread has gone on the screw - if you can, wop in an identical replacement.
More often than not, it's the thread in the equipment. If the screw goes into wood (rare in amateur or domestic stuff these days), a matchstick, with the head removed, inserted in the hole might restore the action. I've occasionally got away with this in plastic, but take care, too much wood down the hole may split the plastic and make things worse than they are.
Another case has a thin metal panel tapped with a fine pitch thread - say a sixteenth of an inch of aluminium with a 6BA hole in it (no metric rubbish here!). Sure, you can enthusiastically drive in a slightly larger self tapper, but you are going to be extremely lucky if the head looks identical to all the other screws One solution is to change them all for identical self tappers, though this can be time consuming.
The Allison bodge is to cut slivers of Sellotape and poke them through the hole, so that the sliver is sticking out of both the top and bottom of the hole. Now, do the screw back up. This works really well and can be tightened to a surprisingly high torque. For a 4 or 6BA hole, only one or two slivers, twenty-five thou wide, will be needed. When the screw is done up cut off any excess with a sharp blade. Incidentally, the adhesive side of the tape to the old thread in the hole seems to work best.

Load lengths

In came an early Yaesu $2 m$ wonderbox, FM and crystal controlled. The thing had stopped transmitting. The proud owner had found an open circuit driver transistor, replaced it and now there were only three watts out instead of the expected ten.
On opening up the rig, I discovered what a magnificent job he had made of his attempted repair. No half-burnt cable forms, no missing hardware, no blobs of solder - an excellent repair; well, almost.
I turned my attention to the repair. To my feeble brain it didn't look quite right. I got out the handbook (arrgh, don't tell anyone) and sure enough there was a photograph of the PA stage, not looking quite as it did now.

It later transpired that the owner had been worried about the emitter lead shorting to the transistor case (the transistor was inverted within the PA, about level with the track). Thus, he had
put a bit of insulating sleeving over the emitter lead and run it round, in a big arc, well clear of everything to a new earth half an inch or so from the original Yaesu earthing point. This was his big mistake.
A short length of wire at 144 MHz , or above, can have a considerable inductance compared with the low impedance of the emitter. This leads to low output power. In this case, restoring the layout to its original state, with about threesixteenths of an inch of wire, instantly gave 11W out.
A very similar effect is noticeable in high power, lower frequency amplifiers, say the PA in an HF band transceiver. Short emitter leads or tags must be kept as per the original design, or you are going to be disappointed.

Lodge Farm car boot sale

How about a car boot sale held in an open field with no shelter, in a thunderstorm? You wouldn't expect it to be a success, would you? The surprising thing was, for buyers, it was excellent. The poor sellers were obviously trying to prevent their stock being ruined by the rain, yet, having paid their exhibitors' fee, wanted to sell it. Hence, there were some excellent bargains to be had.
The turnout, given the atrocious weather, was amazing. In a large field there were two rows of sellers, and a third of the field was taken up with buyers' cars. Given better weather this event could well mature into a winner. It has definitely got to be a date for your diary next year.
I have only two moans. One; my wife described the toilet as 'basic' - she was being polite. Two; buyers were left to park their cars, get out, don bad weather gear and get good and wet, then an official came up and asked them to park elsewhere. Why not show people where you want them to park when they come in, not five minutes later?

Screening

In came one of those modern Micro Miniature 'put it in your pocket and lose it 'cos it's so small' 2 m FM boxes. The fault was it 'blocked out TVs'. The first move was to put it, via an attenuator, into a spectrum analyser. Good grief, it was a comb generator. Mucked every MHz or so from 1 MHz to beyond 900 .

I took the covers off and, keeping it transmitting, ran my fingers round the unit and watched the spectrum display. One can was obviously 'hot' - a finger on the can radically altered the rubbish coming out. I turned it off and AVO'd the said can, on ohms, to another can. It was a dead short, as it should have been.

I up-ended the board and examined
the solder connections with an eyeglass. The can had two earthing lugs, as usual. One was a dry joint. Now, the can wasn't being used to transfer an earth across the board or anything flash, there was plenty of copper in the area and the lugs were only holding/earthing the can. I remade the joint and the set was clean, without a trace of instability.

Wrong' If

At the Lodge Farm 'do'. I came across an elderly amateur flogging an amateur bands only receiver in good physical condition for a tenner. It was obviously easily worth that and, even if not working, I was sure I could sort it out. He said that it more or less worked, but the BFO didn't and the tracking (ie, the alignment of where it tuned and where the dial said it should be) was a bit out. He said he had aligned it himself. Perhaps I should have known better. .
On the bench, the signal generator was $10 \mu \mathrm{~V}$ at $14 \mathrm{MHz}, 90 \% \mathrm{AM}$, and a good healthy squark came out at the appropriate spot. 14.2 MHz came up at an indicated 14.3. I turned on the BFO... and, nothing. I went in with a 'scope and the BFO started oscillating. I transferred the lead from the 'scope to the counter; 1.62 MHz , spot on. Did I mention there were two crystals, resplendent in the IF chain, with 1.62 MHz stamped on them?
I must confess, I tried to increase the BFO injection into the last IF coil. I really am stupid at times. Then I stuffed an aerial up the receiver's appropriate socket, tuned in an SSB station and reset the signal generator to carrier only, 1.62 MHz , mod off, iV out. Even this wouldn't produce any resolved SSB.
I swung the generator frequency round a bit; nothing. I swung the generator frequency round a lot; bingo, it 'mixed' at about 2 MHz . Intrigued, I connected the counter to the local oscillator and set the receiver dial at the low band edge-3.5, 7 , 14 MHz etc. Each local oscillator was coming up 2 MHz high, not 1.62 as you would have expected.
I connected the signal generator to the IF strip, and got loads of reaction to a 2 MHz signal, but bugger all to 1.62, despite those two crystals. I left the generator connected, $1.62 \mathrm{MHz}, 90 \%$ mod, 1V out blasting into the mixer grid, and tweaked an IF coil. There was a faint squark. Twiddled some more, and up came the sensitivity.
Of course, the set was now 400 kHz out on all ranges, but the front end was soon re-aligned and then tracked well. As a bonus the BFO worked and overall sensitivity was about the microvolt level.

The previous owner must have really
put some effort into finding a spurious response with the two crystals and 'realigning' the whole front end to suit. Arrgh!

Betcom LS20 XE

These fag packet-sized boxes are 2 m FM hand-portables. Synthesised tuning in 10 kHz steps is done on thumbwheel switches, then there is a push button for another 5 kHz . There is a little flap for other tricks: $\pm 600 \mathrm{kHz}$ offset, high, medium or low power etc.
These rigs are very, very reliable. Some people don't like their transmitted audio and it does, indeed, sound a little muffled, but it's not too bad. Receiver sensitivity is good; a couple of hundred nanovolts seem the going rate for 12 dB or so quieting on second-hand examples that have come my way. The plastic case is a bit fragile and the little flap, referred to above, is easy to lose.
Now the good news. Internal batteries are four of the 'next size down from a pencell', AAA size if you must be technical. You can buy these for 25 p each at photographic shops, and a quid's worth lasts a surprisingly long time. You can also buy rechargeables in this size quite cheaply.
Prices are all over the place. At the GMex rally at the start of the year I was amused to see two examples sell on the bring and buy, one at $£ 85.00$ and one at £35.00, both in equally presentable condition. The $£ 85.00$ rig sold first, which had me puzzled. I've seen another eight sell this year and overall the price averages out at a shade under $£ 70.00$, which seems reasonable. I like them.

Multione TBI

I can remember, as a kid, going to the 'RSGB Show' in the Royal Horticultural Halls in London. It must have been in the early 'sixties, and there wasn't a lot of your Japanese rubbish there then.
One stand that really stood out was the Multitone display. They were exhibiting a really small, hand-held, self-contained transmitter. About the size of a small matchbox, these things ran a few milliwatts on 172.5 MHz and were proudly stamped 'Made in England'. The aerial was a foot or so of trailing wire.
At the time my home-made 2 m rig covered the best part of a table, so this wonderful little box was unbelievable. I remember standing in awe as the salesman demonstrated it, saying how it was rugged and designed for use on building sites and the like. The cost was staggering to me - about a year's pocket money - so I could only dream.
A few weeks ago I came across a box full of brand new Multitone TB1s, at a very reasonable price indeed. Shortly after I bought the lot I started coming across them at rallies; after twenty-five years of not seeing one they are now freely available.

Most of the ones I have come across don't work. Nobody seems to know what batteries they are supposed to run on, or if they are still available. There is space inside for two cells - therefore, it could be 3 V or the slots could be for, say, two batteries of 3 V each, viz 6 V . One I bought came with two good 1.4 V mercury batteries fitted, but that didn't work either. As they come, they seem to run all right with greater than 4.5 V applied.

On the workbench

Opened up on the workbench it was quickly revealed that, with 2.8 V applied, there was only a couple of hundred millivolts to turn on the oscillator transistor. Increasing this produced all the required action, so assuming we are indeed modifying for 2.8 V I'd suggest a 2.7 k resistor across the oscillator base bias resistor. This is easy to find since it's the only 4.7 k resistor on the board. There is, surprisingly, plenty of room inside to add this resistor.
Continuing with batteries, take care. There is, freely available through photographic shops, a battery that looks like it will fit. And so it will, but the connections, + and -, are wrong. The TB1 has a big red + inside and it means it (both cells point the same way). Since these are the only batteries l've managed to obtain for them, I've modified the battery contacts to suit.
I'll bet l've got the above totally wrongsomeone is bound to write in and say the TB1 runs on 9 V using such and such a battery, freely available in their area. Nevertheless, I'm happy with what l've done.
The TB1 will modify for 2 m , given the correct crystal and a couple of 20 pF capacitors across the coils, and the range is quite surprising, often half a mile hand-held to hand-held.

Prices seem all over the place, $£ 5.00$ to £15.00.

One final point, on getting it out of its case. First undo the crosshead screw on the front. Next, take the back off using the 'secret' button. It's hidden in the battery compartment, on the back, and looks like a silver dot. Press this in with a pin and off comes the back. The front is held with two very small screws halfway down the side. Incidentally, these screws must be present and correct as they make the contact to the case, which is part of the on/off switch. No screws, no action.
All in all, a dead handy little gizmo. Ideal for keeping in touch with friends at rallies, around the house etc.

Counters and stuff

A friend's counter had died on him. This was a fairly early device built by a firm that no longer existed. It did 0 to 35 MHz direct, then 30 to 350 MHz via another socket, ie, via a $\div 10$ prescaler, see Fig 1.
A counter is not that difficult a concept to understand. A preamp amplifies the minimum input signal, often 5 to 10 mV , up to, say, 5 V . This goes up one leg of a gate, the other leg being fed the time interval signal-often 1 Hz . All that happens is the gate lets through a number of cycles of the input signal for a known time. This total is then displayed.
Since the overall accuracy of the instrument depends on the tolerance of the time signal, this is derived from a high stability crystal, often 10 MHz , divided down to give an accurate 1 Hz . For increased stability the crystal may be in a temperature-controlled oven.
For higher frequency work, say above 50 MHz , special chips have been developed that will happily whizz away to GHz , often at millivolt input levels, and give out $\div 10$ of their input frequency at about the 5V level. This feeds directly into the gate, as in Flg 1.

This was not always the case. Some
years ago only $\div 4$ was available, for example. A counter that required its display to be multiplied by 4 was obviously not going to be a big seller, so the crystal in the timing circuit was changed to make the display read correctly. This explains why some counters contain 'odd ball' crystal frequencies.

The 'scope probe revealed . . .

Right, back to our friend's dead counter. The display just showed noughts. An attack by a 'scope-probe revealed that the preamp and prescaler were working, the timing was working but nothing was going through the gate into the display section. The gate had bought it, a humble 7400. In with a new one; bingo, it worked.
Most chips have a clearly defined upper frequency limit, let us say 30 MHz . This is specified as the maximum speed they can whizz at driving a defined number of loading gates. A chip might be capable of going at 30 MHz into ten loads, but load it with only one gate to drive and it might go at 50 MHz .
I'd noticed that the $\div 10$ prescaler was a 520 MHz spec device, yet the counter had been sold as a 350 MHz unit. This was due to the 7400 being used as a gate. My
friend confirmed that the counter did, indeed, conk out at $35 / 350 \mathrm{MHz}$, yet with my 7400 fitted it now did 40/400.

My friend is a 70 cm fiend and said that he would like his counter to work there. How could the response be 'stretched'?

In the end it was decided to gamble. A whole quid was fluttered at the Woburn rally to buy as many different versions of 7400 as could be found - ie, different manufacturers and dates. We got thirteen for our pound (priced from 5 to 10p) and one worked to 65 MHz .
The counter now did 65 MHz direct and 530 MHz via the prescaler - the specification of the prescaler chip was now the limiting factor.

MX4/MX6

Many moons ago, no-one would have dared dream that British amateurs would get back 50 MHz . Thus when Mizuho made a 50 MHz variant of their super little SSB hand-portable transceivers, they became 70 MHz boxes for this country. These sold quite well and turn up occasionally, second-hand, at rallies in the $£ 35.00$ to $£ 55.00$ price range. Of course, now people want to convert them back to 50 MHz .
Good news. I received a few queries on the conversion from readers and con-
tacted Lowes, the original importers. They have prepared what they call 'a screed' on conversion and are happy to send a free copy of this, which includes a circuit diagram, crystal calculations and what capacitors go where, if you send them an sae marked MX4 Conversion. Considering the sets were sold several years ago, and could well have changed hands many times, I think this is an excellent after-sales service!
A warning on legality. We are not permitted mobile or portable on 50 MHz , and aerials are supposed to be horizontal. With such a fine little rig it's tempting to take one out for a walk with you. Naughty, naughty.

> Next month Figh
> Allison reviews a few of the rallies he has attended recently and reveals the bargains he found there

TX-3 RTTY/CW/ASCII TRANSCEIVE

The high performance, low cost system

Split-screen, type-ahead operation. Unbeatable features. Needs TIF1 interface or TU. BBC, CBMO4 tape £20, disc £22. SPECTRUM tape $£ 35$, +3 disc $£ 37$ inc adapter board (needs TIF1 or TU also).

RX-8 for the BBC computer

Receives screen and printer FAX charts \& photos, HF and VHF PACKET, Colour SSTV, RTTY, AMTOR, CW, ASCM, VOSAT 1 \& 2. Receive them all with every possible feature, superb performance and ease of use. Full printer and support. The best receive system ever. £259. PREE Klingenfuss Utility Guide for 1 st 50 purchasers, DISCOUNT for RX-4 users. Send for full information on this amazing product.

RX-4 RTTY/CW/SSTV/ AMTOR RECEIVE

Performance, features and ease of use make this still a best-seller. Text and picture store, disc and printer support. Needs TIF1 interface. BEC2, CBMO4 tape E25, disc E27. VIC20 tape E25. spectiun tape E40, +3 disc E42 inc adapter boards (needs TIF1 also) or software-only version £25.
THF1 MTIERFACE Optimum HF and VHF performance with our software. 4-pole filtering and computer noise isolation for excellent reception. MIC, PTT \& KEY TX outputs. Kit £20, ready-made, boxed with all connections £40. Available only with TX-3 or RX-4 software. AISO MORSE TUTOR £6, LOGBOOK £8, RAE MATHS $£ 9$ for BAC, CBME4, VIC20, sPECTRUM, BRC LOCATOR with UK, Europe, World maps $£ 10$. All available on disc $£ 2$ extra.
D technical software (AR)
V/5

> Fron, Upper Llandwrog, Caemarfon LL54 7RF Tel: 0286881886

\square QRP KITS at QRP PRICES! 0
 BUILD THE 'CARLTON' SSB/CW RECEIVER KIT FOR JUST E83.00 COMPLETE! INCL P.P
 * 3 bands: 80/40/20m
 * Direct conversion
 * Full, clear instructions
 * Needs only a 12 V power supply,

 REMEMBER! OUR KITS ARE COMPLETE IN EVERY DETAIL! OTHER KITS IN THE 'QRP' RANGE INCLUDE: TRANSCEIVERS, ATU'S, SWR METER, FILTERS Etc. PLUS A READY-BUILT POWER SUPPLY.
 For full details, SAE please to:
 LAKE ELECTRONICS
 7 Midelioton Close, Muthall, Mottioythem Na16 1BX OT riny Alan, G4DVW on (0002) 382609
 Callers by appointment only

Start training now for the following courses. Send for our brochure without obligation or Telephone us on		
REF: AR11	0626779398	Σ
NA \square	$\begin{aligned} & \text { Tolecoms Tech } \\ & 271 \mathrm{C} \& \mathrm{a} \end{aligned}$
	\ldots	Redio Amateur Licence C: G
		Miero- processor
		minroduction to Teloviston
Radio \& Telecommunications Correspondence School 12 Moor View Drive, Telgnmouth, Devon TQ14 9UN		

icom

YOUHAVE

HF. SSB. CW. RTTY. AM. FM. 150W

ع2,499
HF.SSB. CW. RTTY. AM. FM. 100W

IC-726

$\varepsilon 989$

HF/50MHz. SSB. CW. AM. FM. 100W.

IC-725
HF. SSB. CW (AM.FM). 100W.
commundatlons RECEMVES

IC-R9000

$30 \mathrm{KHz}-1999.99999 \mathrm{MHz}$

C-R7000

£989
$25-1000 \mathrm{MHz} .1025-2000 \mathrm{MHz}$

8855
IC-RTIE
$100 \mathrm{KHz}-30 \mathrm{MHz}$

MIF-UHF TMANSGENE:S

IC-505
5529
50 MHz . SSB. CW (FM) 3W/10W.

IC-575 10W
£1,042
81,199
$28 / 50 \mathrm{MHz}$. SSB. CW. AM. FM.

IC-275E 25W
£1,069
E1,039 144 MHz SSB. CW. FM

c-475E 25W
E1, 185
IC-475H 75W
£1,250
430 MHz SSB. CW. FM.

THE ICOM RANGE SATISFIES

Icom (UK) Ltd.

Dept AR, Sea Street, Herne Bay, Kent CT6 8LD. Tel: 0227 363859. 24 Hour.

Countonus!

EVERYOPERATIONAL NEED

Helpline: Telephone us free-of-charge on 0800 521145, Mon-Fri09.00-13.00 and 14.00-17.30. This service is strictly for obtaining information about or ordering Icom equipment. We regret this cannot be used by dealers or for repair enquiries and parts orders, thank you.
Datapost: Despatch on same day whenever possible.
Access Barclaycard: Telephone orders taken by our mail order dept, instant credit \& interest-free H.P

> News and comment from Glen Ross G8MWR

In the August edition of this column, I wrote about the problems of repeater abuse and how little seems to be done about it. I quoted some interesting points made in a DTI report which seemingly gave the RSGB the opportunity to engage in self-policing of the amateur bands. The idea was that the society would gather all the evidence, send it to the powers that be, then the offender would be warned and, if no notice were taken of this, would be closed down. It would seem that if this facility had been made available to us, the society would have grabbed the opportunity, advertised it like mad and waited for the documented complaints to come pouring in.

So what?

As none of this has happened, I assumed that these powers were not offered to the society or, if they were offered, had been refused. 'So', I ask, 'who blew it?' The answer seems to be that nobody blew it and that the society can actually do these things. Being very 'British' and therefore not the sort of people to advertise their importance ('I say, just not done, old man!'), they simply kept a discreet silence about it.

The mole report

Yes, our friendly little mole has been busy again with the following information from the society ranks. I quote, more or less verbatim:
'We do already have an agreed procedure which is well established. Under this the RIS will respond to any cases of fully documented illegal activity which are reported to them by the RSGB. Most reports of repeater abuse which the society receives do not contain any information which would stand up in a law court. I am afraid that, without proper evidence, our hands are tied.

The evidence

Now we know the procedure exists and that it is not being put into operation
owing to a lack of suitable evidence. This now brings up two further points. The first is that since the society has not told us that they have these powers, they are not likely to get any evidence. Secondly, they have not told us the type of evidence we need to obtain so that it will stand up in court.
Obviously, what we need to have in RadCom is a clear-cut statement telling members exactly what powers the RSGB now has and which also clearly defines the type of evidence that is required.

More feedback

You may remember my comment about the strange burbling noise being heard around 144.4 MHz , a frequency used by many meteor scatter operators. A packet message from G4FIK throws some light on the problem.
After a lot of DF work the source of the problem was traced to an Economy Seven switching system, made by Sangamo Schlumberger. This time-switching device is used by several electricity authorities. It contains a receiver which is tuned to the Radio Four broadcasts on 198 kHz and listens for a superimposed signal which tells it when to switch to and from the cheap rate. Martin says that further searches have located similar nasty noises at three other locations and that in each case the problem was traced to the same switching device. He is now trying to gather as much information as possible to pass on to the RSGB in the hope that they will do something about it. You can contact him QTHR.

Beaconry

Strange things have been happening to the 432.98 MHz beacon at Sutton Coldfield. People have been reporting a vast increase in signal strength for short periods, with changes in apparent frequency and all sorts of odd-beat notes and heterodynes appearing. All is solved.

Someone, and at the moment no one seems to know who, has launched a new
satellite which is transmitting on a central frequency of 432.88 MHz . But owing to Doppler frequency shifting effects as the craft moves, the received frequency varies and so causes the problems. Doppler shift is well demonstrated when you hear the change of pitch to the siren of an ambulance as it passes you. The new craft takes about two hours to orbit the Earth and, on a fairly overhead pass, can be received for about twenty minutes.

Packet matters

A report from G8ADH mentions that he and G4FPV are now running a packet link on 10 GHz . One thing is for sure, the system will not be asking for repeats on packets that have been corrupted because of collisions; it must be a real joy to operate that outfit.

There has also been a lot of interest in just how much privacy there is for messages that are sent around the country. Yes, I know that if you send your message as SP G8MWR @ GB7NUN then, in theory, it is a private message to me and is only readable by my TNC.

Simplistic

It really is not as simple as that though. What happens as one board passes it along to the next in the chain? Anyone who has spent some time monitoring will know that there is little privacy in that part of the chain. Also, if I want to be sneaky and read some other person's mail, then all I have to do is issue a MYCALL to the TNC telling it that I have changed my call to that of the person whose mail I want to read. The system will think it recognises me and promptly send me your mail. The truth is that there is no privacy on packet.

WT acts

The argument continues: it is an offence to read someone's mail under the various regulations, and you cannot make use of or divulge such information to a third party.
This may well be true if you are listening to, say, a Reuter's news service, but does it apply to the amateur service? The answer, I think, is it does not. Because under the general licence conditions anyone is entitled to listen to broadcasting stations, amateur stations, standard frequency transmissions, and the like. There is no implied confidentiality allowed to any of these types of transmission. The answer seems to be that, apart from expecting reasonable standards of decorum from your fellow amateurs, once you press CONTROL-Z to send your message it is open to anyone who cares to read it. About the only thing that SP achieves is to stop your message getting listed on the contents of the local bulletin board.

VHF nets

I thought it was easy to understand the uses of the VHF nets which operate on the HF bands, but there is still confusion as to where they are and how they work. So let's run it again.

First the VHF net on 20m. This one can be found by tuning around 14.34 MHz using USB. There you will hear people setting up moonbounce skeds, details of tropo openings, and all sorts of other news. The net is not run on formal lines people simply come on frequency, call CQ VHF and pass information to whoever may be around.
The second one is concerned with people who are not licensed for 50 MHz and who try to work crossband from 10 6 m . You will find this one on 28.855 MHz USB. Listening on this frequency usualiy gives an early warning of openings on 6 m and is a must for all serious operators.

6 m

Good news of more countries coming up on 6 m . ZC4 stations, in Cyprus, are now allowed on the band, and ZC4MK has been active from the Episcopi club station and regularly monitors 28.885 MHz . There are no details so far as to any power, aerial or other restrictions that may apply. Turkey was due to appear on the 6 m map early in October when G3SDL was given permission to operate from Antalya in locator square KM56IV.
Moving a little nearer home we come to the biggest surprise of all with the news that the Belgian authorities are going to start issuing permits for the band. Our own power limitations etc, are because of Belgian worries about TVI, so it would seem that either there have been no problems or the Belgian lads are going to
have to operate under some very stringent constraints. This one is not a new country but rather news of continued operation from Gibraltar, where GM6TKS has been posted for a threeyear period. He will probably be active by the time you read this.

50 MHz analysis

Much of the following information is from G2AHU and his excellent analysis report. He starts by saying that August showed a definite seasonal decline in the amount of Sporadic-E activity, particularly from the middle of the month. At the same time the TEP activity started to improve, as did F layer propagation; this was particularly noticeable towards South America. A particularly good day in that direction was 24 August when signals from LU, CX, PY and ZD8 appeared in the late evening and culminated in the first QSOs between Britain and Brazil.

Track record

Looking at some specific paths and areas, we get the following results for August. The ZB2VHF beacon was heard on twenty-five days, with signal strengths averaging S7. CT1WW and various EA and CT amateurs were heard on fourteen days, with signals at about S8. The 9 H 1 SIX beacon and various Maltese amateurs were heard on ten days, with signal strengths consistently around S6. Scandinavia (which, for our
purposes, includes LA, SM and OH stations) was available on only four days, with signals running at around S 7 . France, Italy and San Marino did slightly better with signals at S9 on eight days.

Moving on

Central Europe, which includes Switzerland, Germany and Austria, was only available on five days. The Cyprus beacon, 5B4CY, only appeared on 2 August but Uraguay and Argentina managed five days each. Greece, Corsica and Algeria all weigh in with six days. Going South, ZD8VHF, the Ascension Island beacon, was received on four days at about S5, as was ZS3JO in Zimbabwe. The Transvaal ZS6 was heard on eight days while ZS3VHF, in Namibia, was heard on no less than seventeen days with signal strengths ranging from S3 to S9, but averaging out at S6. Reports of aurora were made on the 17th, 21st and 23rd of the month.

Close-down

Late news is that ZS3JO worked twenty-seven G stations on 5 August, three on the 6th, four on the 8th and three on the 25 th, you must be in with a chance! We are now coming into the period when we usually get very good tropo openings on the VHF bands, early November being excellent year after year. Send your news and comment to: 81 Ringwood Highway, Coventry, or contact me on packet at GB7NUN.

CENTRE ELECTRONICS

* EDDYSTONE ORIGINAL WORKSHOP + INSTRUCTION MANUALS *

Hore are just a fow examples of the ones avallable:

Models 투옹 @ £7.50 each, models 1000/1, 1002, 1004@ £4.00 each, models 1570, 1590, 1830,1837,1838-@ £4.75 each, models 990R, 990S, 1990R, 1990S, @ $£ 5.50$ each. Prices include post \& packing - UK only. Overseas enquiries welcome. Please enquire about other models not listed ALSO about the limited quantity of NEM spares that we have in stock for many Eddystone Receivers including Dial Plates, Knobs, Transformers, Valves and many other service parts.

EA12, 770S, 770R, 880, 830 EC964@ $\mathbf{~} 8.00$ each; 960, 910, 770U @ £6.00 each; 730, 850 @ £5.00 each; 920, 504, 640, 680, 358, 950, 930 @ £4.00 each; 940, 909, 556, 659, 750, EC10@ £3.50 each; 888, 840, 870, 820, 670, 730/1A, 740, 720, EB37, EB35 @ £3.00 each.

* EDDYSTONE RECEIVERS ALWAYS IN STOCK *
coimplete valve packs available for all communications RECEIVERS
EDDYSTONE, RACAL, RCA, MURPHY, MARCONI, ETC
ALSO PACKS FOR TEST EQUIPMENT
PLEASE ENQUIRE FOR PRICES
Callers welcome Thurs, Friday, Sat. Hours 10am-5pm.

345 Stockfield Road, Yardley Birmingham B25 8JP 021-706-0261

Cood prices paid for any Eddyatone spare perts, recolvers, equipment etc.

Prices below normal trade. Some $1 / 10$ quantity rate. Send 19p SAE or label for free catalogue. povemas a neur courome Millions of components: thousands of different lines Rechargeable Nickel Cadmium batteries (ex unused equipment) AA(HP7) 1.25 volt 500 mA . \qquad ... Set of four $£ 2$ ITT Mercury Wetted relay 20-60 VDC Coil. SPCo, 2A79p. 10-£5 LED illuminates Red, Green or Yellow depending upon polarity/current. $5 \times 21 / 2 \mathrm{~mm}$ Face
...25p or 100 for $£ 23$ or 1000 for $£ 200$
10,000 Resistors. $1 / 3$ to 2 watt. 1Ω to 22 meg . $1 / 2 \%$ to 10% NOT a jumbled mass, but ready sorted into values
5 mm Red Flashing LED. \qquad ed £29 Mail Order ..25p or 10 for $£ 2.25$ Watch/Calculator/ligher etc Mercury Batteries Made by Ray-O-VAC 10 mixed popular sizes $1.50,50$ for $£ 5.00$ IN4004 or IN4006 Diodes. \qquad
\qquad ... 300 for $£ 6.50$ KBS005/01/02 $3 \mathrm{amp} 50 \mathrm{~V} 100 \mathrm{~V} 200 \mathrm{~V} /$ bridge rectifiers, $35 \mathrm{p} / 36 \mathrm{p} /$ 40 p. 10 off $£ 3.20 / £ 3.40 / £ 3.70$. 100 off $£ 30 / £ 31 / £ 34$
Plessey SL403 3 Watt amp. From Bankrupt source, herice sold as untested. \qquad 4 for 60 o or 10 for $£ 1.20 \mathrm{p}$ 5 mm LED, clear, lighting hyperbright (600 mcd), red up to 200 times brighter (gives beam of light). \qquad 25p, 100/£20, 1000/£150 Mullard 5 mm LED, 40 red, 30 green, 30 yellow $=100$ mixed $. ~ . ~ . ~ 7 ~$ 'HARVI' Hardware packs (nuts-bolts-screws-self tappers, etc) marked 35 p retail, 100 mixed packs for $£ 11$.
Modern silver/black/aluminium, etc knobs 50 mixed, $£ 6$ (sent as 10 sets of $4+5$ sets of 2-15 different type/sizes).
send payment plus 19p saE
Postal orders/cash - prompt dispatch.
Cheques require 15 days from banking to clear.
Cheques drawn on Barclay's Bank not accepted.
Prices you would not belleve before inflation! BRIAN J REED
TRADE COMPONENTS, ESTABLSHED 32 YEARS 161 ST JOHNS HILL, CLAPHAM JUNGTION LONDON SW11 1TQ.
Open 11am till 6.30pm Tues to Sat. Telephone 01-223 5016

MICROREADER
A COMPLETE MORSE/RTTY DECODER WITH TUTOR
PRICE £139.95 includes VAT \& Postage.

TO ORDER OR FOR
MORE INFORMATION ON
THIS OR ANY OF OUR
OTHER PRODUCTS:-
ERA LIMITED
26 CLARENDON COURT WINWICK QUAY
WARRINGTON WA2 8QP
Tel: (0925) 573118

ALSO AVAILABLE FROM
CRT: ST HELIER JERSEY ELECTROMART: NEATH HOWES KITS: DAVENTRY RAS: NOTTINGHAM. STAR: TYNE \& WEAR WATERS \& STANTON ESSEX

WHAT IS A MICROREADER?

The Microreader is a small compact unit that allows anyone, equipped with a suitable SW receiver, to read Morse and radio teletype signals simply and without fuss. No computers, interfaces or program tapes are needed. Just connect the Microreader into the ear or speaker socket and switch on. It really is that easy. The decoded words appear on the built in 16 character LCD display.
The Microreader has all the necessary filtering and noise blanking included to allow reception even under bad conditions. This makes it suitable for use with lower cost or home made sets. Receivers such as the Lowe HF $125 / 225$ with their smooth tuning are ideal. Even the Sony 20010 with its 100 Hz step size will still give very good results. A three colour bargraph tuning indicator makes precise station tuning simple, while shift indicators take the guess work out of RTTY
The main processor in the Microreader is an Intel 8032 running at 12 MHz . This makes it fast enough to not only decode and display the text but also to measure and diplay the frequency a few thousand times each second. It's even fast enough to use its own dictionary to check and correct the text even down to punctuation. The RS232 port in the Microreader can if you wish be used to send decoded messages directly to the screen of a terminal unit or suitable computer. If a permanent record (hard copy) is needed, then just connect it direcly to a compatible serial printer.

The Morse tutor can send and receive Morse. No more guessing what was sent at which speed. You see exactly what is being sent as it's sent and you may repeat it as many times as you like. The random characters are sent as ten groups of five characters with precise digital control over speed, spacing and type. Plug in a Morse key and see what your sending is really like. Even experienced CW operators find this feature extremely useful for showing up embarrassing keying faults (especially own name and callsign).

ERA Ltd. is a manufacturing facility and as such has no showroom. We do however accept personal callers who may like to find out more about the Microreader or try one on their own equipment without obligation. Due to limited parking during the week we must restrict this to Saturdays only, but please do ring us first.

J. BIRKETT

RADIO COMPONENT SUPPLIERS

EX-MILITARY COMMUNICATIONS RECEIVER R210. Frequency 2 to 16 MHz in 7 switched bands AM, CW, SSB, FCo, Aerial inputs 80 ohm balanced line, long wire or whip, CW filter, BFO, Noise blanker, complete with 240 volt AC power pack, loudspeaker, headphone jack and pair of lightweight headphones.

Price $\mathbf{£ 7 9 . 8 0}$ carr. Mainland only $\mathbf{£ 8 . 0 0}$.
EX-MILITARY COMMUNICATION RECEIVERS TYPE R210 unconverted $\mathbf{£ 5 0}$ (curr £6.00).
Air Spaced Variable capacitors $15+15 \mathrm{pF} £ 2.50,125+125 \mathrm{pF} £ 1.95,10$ $+10+20 \mathrm{pF} \mathrm{£1} 1-50,200+350 \mathrm{pF} \mathrm{E} 2.50,430+530 \mathrm{pF} \mathrm{E} 2.50,200+220$ pF $£ 2.50200+300$ pF $£ 2.50$
Pye Westminster W15FM. $80-110 \mathrm{MHz}$. 10 channal £15.00 (carriage £3.00).
Dymar 25W. 16 channel FM $80-110 \mathrm{MHz}$ £15.00 (carriage $£ 3.00$). With data to convert to 4 M .

ACCESS AND BARCLAY CARDS ACCEPTED.

UNIQUE NATURIST \& ADULT SOCIAL CLUB

Exclusively for liberated and uninhibited

 people who want that little extra out of life- Three nightclubs
- Informal get-togethers, BBQs, beach parties plus iots more
- Many theme nights - dress as you dare
© Naughty and exotic cabarets
- Monthly newsletters and programme
- Quarterly personal contacts supplement
- Massage fuition
- Invitations to the "Sex Maniacs Ball"
- Special events and a chance to meet people throughout

$$
\begin{aligned}
& \text { STRICTLY PRIVATE } \\
& \text { FRIENDLY \& VERY DISCREET } \\
& \text { ALL FUN LOVING ADULTS WELCOMED } \\
& \text { TO FIND OUT MORE YOU SHOULD PHONE } \\
& \text { 'It was an incredible sight' } \\
& \text { 'The most outrageous club in Britain' } \begin{array}{l}
\text { News of the Worla } \\
\text { The People }
\end{array} \\
& \begin{array}{l}
\text { News of the World }
\end{array} \\
& \text { Britain's fastest growing and number one odult social contact club }
\end{aligned}
$$

P

by Martin Williams

This month, let's continue with the saga of useful ideas for building power supplies from material that is not what you wanted but is cheap.
The October edition ended with information on using more than one secondary winding to obtain the volts and amps that you want. What happens if, even after the horse-trading, you are still a bit short?

Boosting

The various voltages shown on the transformer label are only accurate if the mains voltage is fed to the correct tap. Now, there is nothing sacrosanct about these inputs and it is perfectly safe to feed the normal mains into the pin marked 240 V . All that will happen is that the secondary output voltages will rise by about 10%, giving an extra 1.5 V on a 15 V secondary. This may make all the difference between having enough volts for the stabiliser to work properly or not.
Remember, though, if you have raised the voltage by 10% then you should downrate the current rating by the same amount so that the secondary wattage stays within specification. I say you should because, in fact, most secondary windings - and indeed the core ratings always have more than enough in-hand to cope with the extra little bit of load.

Extra volts

If after using all the ideas presented so far you are still a little short on volts, then the answer may be to wind on some extra turns. Many transformers have sufficient space between the winding and the inner edge of the iron core to accept extra turns without much difficulty.
Now to the method. First of all wind ten turns of wire, the gauge is immaterial, around the existing transformer windings, taking the wire between the existing windings and the core. Now connect an ac voltmeter to this winding and connect the normal primary to the mains. This will show you how many volts the extra ten turns are providing, and from this information it is simple to calculate how many extra turns of wire you need to meet your extra voltage requirements.

Windings

Now remove your test winding and wind on the calculated number of turns, using some tension to keep the wire firmly in contact with the existing transformer covering. You should also ensure that there are no kinks or damaged insulation between adjacent turns of wire. Remember that you must
use well insulated wire which is capable of carrying the current required. When this is done, connect one end of the new winding to one end of the secondary to be boosted.

Tested

Connect your ac voltmeter across the free ends of the old and new secondaries and switch on. If the voltage obtained is less than the original secondary voltage, then the new winding has been connected out of phase. Disconnect the join between the two secondaries and remake it using the other, previously
free, end. Now check again and ensure that you have the voltage you were looking for. Remember that for a stabiliser to work correctly at full load, the voltage into the stabiliser should be at least 4 V more than the required output voltage at full load. To finish the job cover the new winding with some tape, and then apply several coats of a goodquality varnish.

Next Instalment

Next month, I will look at rectifiers, capacitors and other mysteries of the power supply art.

Flg 1: Method of fitting extra turns

Flg 2: Theory of extra turns

The World of $\mathrm{D}|\mathrm{A}| \mathrm{T} \mid \mathrm{A}$

 BY DON FIELD G3XTT

 BY DON FIELD G3XTT}

The winter months mean long dark evenings and plenty of time to sit in the shack and experiment. Just as well, since anything to do with computers takes for ever to sort out! Every application writer has his own approach, therefore very few applications can be used intuitively from the word go. Perhaps one day we will see some consistency!

Future potential

It will be interesting to see how our software develops, though at least there are now some very easy-to-use TNC driver programs, not only catering for packet but also the other data modes as well. If we are to take full advantage of the potential which these modes offer, it is essential that they are easy to use. Mind you, this makes some operators a little careless, so this month I want to pass on some hints and tips about packet operating procedure and the avoidance of POOP (Poor Operating on Packet).
One of the first lessons to be learned is to avoid sending frequent and elaborate beacon messages. I still see plenty of them about, with long and involved station details sent every few minutes. The beacon facility offered by the TNC2 and its clones is useful if used sparingly, but can cause lots of unnecessary channel congestion.
I explained in an earlier column about the need to set up the timing parameters on your TNC so that your packets were not corrupted by your radio as it is switched between transmit and receive. On the other hand, to set too long a timing interval will mean that you are putting out unmodulated carrier when you could be transmitting usefut information. This slows down throughput from your own station and causes channel congestion for others. Experimentation is important to optimise not only these settings but others, such as PACLEN (length of packet) to make the most efficient use of the channel.
The ideal settings for PACLEN, RETRY (the number of retry attempts), FRACK (length of wait before retransmitting a frame), MAXFRAME (maximum number of frames transmitted at one time) and others will vary according to prevailing channel conditions and whether you are
operating on HF or VHF, in direct contact, or via one or more repeaters, and so on.
Some software packages will allow you to store various combinations of parameters which can be reloaded into your TNC as required. Despite this, I suspect that many packet operators find a combination which suits them when they first become active on the mode, and then leave well alone.

Operoting procedures

I could say quite a lot about operating procedures when connected to a bulletin board:

The way in which some operators must sit and have a cup of tea while thinking about which messages they want to read; their reluctance to change their user profile to expert (yes, just type X), despite having used the BBS for months; their insistence on typing messages into the BBS in realtime, when many TNC drivers allow you to prepare messages off-line; their insistence on reading just one message at a time, despite the fact that you can ask for up to six or more with one READ command (depending upon which BBS software is in use at your local box); and so it goes on.
All these practices mean that you are taking longer on the BBS than is necessary, and are therefore keeping other users waiting.

Fortunately, a rather different cure is in sight. As I mentioned last month, the G8BPQ and G4YFB software, running under DESQview, make it possible for the first time to have more than one user connected at once so that, unless demand is very high, you probably won't be preventing someone else from getting access.

Mailboxes

There are, of course, much worse 'crimes' where mailboxes are concerned. Every BBS carries every national bulletin, all local bulletins and personal mail addressed to its registered users. Therefore there is simply no need to connect to one BBS after another, as you will find the same bulletins at each. Despite this, I often see it happening, and mailbox DXers get in on the act when there is a lift in propagation. Mailbox

DXing is downright antisocial, especially now that the packet channels are getting so busy.
Another aspect, which is often forgotten when operating packet is the tuning control! The main packet frequency of 144.650 is highly congested, but it's the standard frequency on 2 m for BBS activity. This has been done deliberately to keep ' 625 and ' 675 free for other uses. Therefore, if you are involved in any sort of direct contact, QSY off ' 650 at the earliest opportunity. The wonderful thing about packet is that this can be done without losing the connection. Even better, of course, aim to have capability for the other bands in order to keep off 2 m as much as possible.

Finally, keep your transmitted power to the minimum necessary to maintain a reasonable data rate and, if possible, use a directional antenna. This will minimise interference to other stations and reduce the amount of interference you suffer and will lead to increased throughput. Most BBS stations, by necessity, will use omnidirectional antennas. There is no excuse for the rest of us doing the same.

If you can plead innocent to all of the above, then you are doing better than I am! However, as with all things in life we really shouldn't wait for others to set a good example, but should make the running ourselves and hope that others start to see the light.

I realise that those of you living in more remote parts of the country may be wondering what all the fuss is about. What is all this congestion I am talking about? Count your blessings. Those of us who live in the South East or in or near the major centres of population are only too well aware of the difficulties. In time more channels may become available on 2 m as 12.5 kHz channel spacing becomes the norm and, hopefully, it won't be too long before we see BBS access being allowed on 70 cm . However, learning good operating procedures now will undoubtedly help in future, because traffic is likely to keep rising to fill the bandwidth available. I suppose what we need is some driver software which will automatically adjust the transmission parameters to maximise throughput, but at least some of the factors I have
mentioned will always be up to you, the operator.
Incidentally, I'm quite sure there are other good and bad practices I could have mentioned. I will be pleased to receive any hints and tips to pass on through these pages.

DOSGATE

I was very interested to read in a recent issue of Cateway, the US packet radio publication, an article by Rich Bono NM1D about DOSGATE, especially given my enthusiasm for new ways to use the packet network. I make no apology for going into some detail on DOSGATE, and in the following I have drawn heavily on Rich's article (which first appeared in NEPRA, PacketEar before being picked up by Gatoway).
Rich started the DOSGATE project about seven years ago. He saw a need for users to understand that packet radio has a greater purpose in life than simply being a great big network of PBBSs. Packet radio promised to bring computers and radio together, and most users tend to think 'PBBS' when they think of packet radio. In contrast, Rich sees packet radio evolving into something more and of DOSGATE as 'a ray of light creeping under the door that is waiting to be opened'!
If you are familiar with using an MS-DOS-based PC, then you are familiar with the DOSGATE system, as DOSGATE is the only window between the amateur packet radio network and the MS-DOS machine (MS-DOS is the operating system for IBM and compatible PCs). The functions that may be performed by a DOSGATE system are limited only by the imagination.
Where the typical PBBS allows users to send, read or forward mail, messages and files to one another and to the world at large, DOSGATE is not limited to these functions. DOSGATE allows the packet radio user to access a PC and perform almost any task, just as if he were sitting in front of the PC in his own shack. The user can be in complete control of the computer and decide which software application to use. Any hardware available to the DOSGATE system can be used by the remote network user.

It takes little imagination to understand the power available to the packet radio network with one of these machines. Just think about the applications that could be made available with a system that has a 32 bit, $25 \mathrm{MHz}, 80386$ CPU, an 80387 floating-point co-processor, sixteen Mbytes of RAM and 300 Mbytes of disc storage - not to mention optical disc drives! This power is available to any user on the amateur packet radio network, including users who have only 'simple' computers at home. For example, $\mathrm{C}-64 \mathrm{~s}$ or lap-tops, or even a 'dumb' terminal. Of course, all this presupposes that amateurs with sophisticated machines are willing and able to offer them for use to the amateur world at large, just as many already do by way of tying up their PCs as mailboxes.

Technically, DOSGATE is a software
device driver for the MS-DOS operating system, running on PC-compatible computers. Simply, this means that DOSGATE is a software product that runs in conjunction with MS-DOS and allows the packet radio world to interface with the PC via an EIA-232 serial port. Basically, the computer console (the keyboard and CRT) is 'paralleled' with the EIA-232 serial port. When a remote packet radio user types something into his TNC, the data is entered into the system as if the user had been sitting in front of the DOSGATE computer and typed the data on the local keyboard. Similarly, as data is sent to the local screen on the DOSGATE system, the same data is sent out via the EIA-232 serial port in order to be sent to the remote user via the packet radio network.

Interface problems

The DOSGATE driver is needed to resolve packet radio interface problems. All problems are not solved, however, and there are some limitations. For instance, most packet radio users have local echo of their keyboards, so they can see what they are typing without the usual packet radio delays. The first problem is that most DOS systems that are not designed to be used remotely, also have local echo of the keyboard. If you were simply to interface the computer with a TNC the results would be unsatisfactory, since the user would see each character echoed twice, once immediately as the character is typed and again as it is echoed from the remote computer, but delayed by the turnaround delays of the packet radio network. DOSGATE attempts to solve this problem by cancelling the echoing of characters to the remote port.
All this sounds wonderful but, inevitably, there are limitations. DOSGATE is tightly coupled with the operating system. Any programs that bypass the operating system and use the system BIOS or directly access the hardware will not be compatible with DOSGATE. This software will still work correctly for a local user, but the remote user will be unable to make use of it. Unfortunately, mainly for reasons of speed, a lot of current software bypasses the operating system in this way and, in these cases, DOSGATE cannot help. Also, any software that simply erases the screen or uses graphics, direct cursor addressing, or ANSI escape sequences should be considered as non-DOSGATE compatible.

Using DOSGATE

By the very nature of packet radio, we have many different types of users on the network. Some use C-64s with only forty columns on their screens, some have lap-tops with limited LCD screens, while others use Macs or ATs. This all boils down to one thing: for programs to be usable with the wide range of systems that appear on the packet radio network, all software should use only the normal printable ASCII character set. This means no block graphic characters, no
erasing of screens, and no direct cursor addressing etc. If you wanted to limit DOSGATE activities to a small group of compatible computers, then you could remove many of these restrictions.

So how might DOSGATE be used in practice? NM1D describes a system currently in use in Derry, New Hampshire (callsign NM1D-2), which consists of the following hardware: PC-XT with 640 kbyte of RAM; 10 Mbyte of hard disc storage; 8087 math coprocessor, Kantronics TNC 2 compatible TNC; Icom 2 m 25 W transceiver; 12 V power supply for the transceiver; and a $2 m$ omnidirectional antenna.

On-line software

The following software is available 'on line' to users:

AUTOEXAM - Allows a user to 'take' an amateur radio exam from Novice to Extra class. Generates a different exam for each session.

SEESATS - Generates realtime output to show where various OSCAR satellites are currently located, and can be used in a prediction mode to allow the user to plan for future passes.
GCIRCLE-The user inputs his latitude and longitude and the program then outputs a custom great circle bearing and distance chart for the DXCC countries' list.
DOSMAIL - A simple (not autoforwarding) mail system, similar to a typical PBBS that uses the standard READ, LIST and KILL commands.
AUTOCALL - An on-line (electronic) callsign directory that allows the user to find other amateur radio operators. Type AUTOLOG NM1D and you will be given NM1D's name, address, licence, Class and previous callsign, if any (I find this ironic in the light of the heated debate currently raging as to whether the UK callbook should be made available on disc).
REPEATER - An on-line database of repeaters in the local area. For example, type REPEATER 146.85 to receive a list of repeaters on the area in 146.85 MHz , or type REPEATER BOSTON to receive a list of repeaters in Boston.
HELP - Type HELP to receive a list of some of the more popular commands, or type HELP MAIL to receive help on the mail utilities.
GAMES - Various text-based adven-ture-style games that can be played in realtime.

Applications

Having read all this, you may' be tempted to compare DOSGATE with the AK1A Packet Cluster software which I have described here previously. The difference is that Packet Cluster includes several specially written applications, whereas DOSGATE allows access to a range of traditional application software resident on a remote machine.
And on that note, I had better wrap up for this month. Please pass on any items of news you think may be of interest to your fellow data enthusiasts.

THE SOFTWARE FILE

> Stephen Phillips with the second in his series of articles giving software listings for amateur radio and electronic engineering use

This month's listing is for a program which will calculate the resistor values required to build a wide range of T and Pl-type attenuators. The circuit diagrams of both types are drawn on screen and a listing is given of the components required. If the listing contains any values of loss than one ohm, then use the alternative type of attenuator.

Program detalls

This program is written for the IBM, Amstrad and similar machines but is easily portable to other systems. The section which draws the circuits is located in lines ninety to 250 . If your machine is not IBM compatible do not enter these lines, but keep the numbering of the following lines as they are shown. You should also remove the statements 'SCREEN 2,1:KEY OFF:' in line twenty. The program will still give all the component values but will not draw the circuit.

Input and output impedances are asked for in lines 260 and 270 and the required loss, which must be 40 dB or less, is entered at line 350. Any error is trapped at line 360.

Matching

If the attenuator is used to match between different impedances the larger impedance must be entered first. If you get it wrong the program will trap the error (in line 300) and ask you to re-enter the data. On receipt of valid data the program will indicate the minimum loss that can be used for this purpose (in line 350) and ask you to enter the loss required. This cannot be less than the minimum loss indicated and if your input is too low, the program will trap the error and ask you to re-enter the data (in line 370).

The Program

10 CLS: REM This program is copyright AMSOFT 1989.
20 SCREEN 2,1:KEY OFF:LOCATE 12, 15
30 PRINT "This program calculates resistor values for"
40 LOCATE 13,27:PRINT "T and PI attenuators.":LOCATE 15,12
50 PRINT "It will match UNEQUAL impedances, eg 50 and 75 ohms."
60 LOCATE 17,16:PRINT "Values under 1 ohm show unusable solution."
70 FOR $T=1$ TO 8000:NEXT T:CLS
80 LOCATE 1,25:PRINT "Resistive T and PI attenuators."
90 WINDOW SCREEN $(0,0)-(600,85)$:VIEW $(90,10)-(590,90)$
100 LINE $(0,80)-(550,80)$:LINE $(0,25)-(50,25)$
110 LOCATE 5,8:PRINT "In":LINE $(50,20)-(90,30)$, B
120 LOCATE 6,19:PRINT "R1"
130 LINE $(90,25)-(130,25)$: LINE $(130,25)-(130,40)^{6}$
140 LINE (120,40)-(140,60), ,B:LOCATE 6,31:PRINT "R2"
$150 \operatorname{LINE}(130,60)-(130,80)$: $\operatorname{LINE}(130,25)-(170,25)$
160 LINE $(170,20)-(220,30)$,.B:LOCATE $8,21:$ PRINT "R3"
170 LINE $(220,25)-(270,25)$: LINE $(300,25)-(350,25)$
$180 \operatorname{LINE}(350,25)-(350,40)$: $\operatorname{LINE}(340,40)-(300,60)$, , B
180 LOCATE 6,55:PRINT "R5"
200 LINE $(350,60)-(350,80)$: LINE $(350,25)-(400,25)$
210 LINE $(400,20)-(440,30)$, ,B:LOCATE $8,45:$ PRINT "R4"
$220 \operatorname{LINE}(440,25)-(480,25)$: $\operatorname{LINE}(480,25)-(480,40)$
230 LINE $(470,40)-(490,60)$, ,B:LOCATE $8,65:$ PRINT "R6"
240 LINE $(480,60)-(480,80)$:LINE $(480,25)-(550,25)$
250 LOCATE 5,72:PRINT "Out"
260 LOCATE 12,20:INPUT "Enter Input impedance in Ohms........."; Z1
270 LOCATE 14,20:INPUT "Enter output impedance in Ohms........";Z2
280 IF $Z 2>Z 1$ THEN BEEP ELSE 320
290 LOCATE 14,20
300 PRINT "Output ohms must be equal to or less than input ohms."
310 FOR T=1 TO 4000:NEXT T:LOCATE 14,20: PRINT SPACE\$(55):GOTO 270
$320 \mathrm{~T}=(\mathrm{SQR}(\mathrm{Z} 1 / Z 2)+\operatorname{SQR}(Z 1 / Z 2-1))-2$
$330 \mathrm{M}=10 \star$ LOG(T)/2.3025: $\mathrm{M}=$ INT(M):LOCATE 16,20
340 LOCATE 16,20
350 PRINT "Enter required loss ["; M;" to 40 db]...";:INPUT L
360 IF L<40 THEN 390 ELSE BEEP
370 LOCATE 16,20:PRINT "Loss must not be greater than 40 db ."
380 FOR T= 1 TO 4000:NEXT T:LOCATE 16,20:PRINT SPACES(55):GOTO 340
390 IF L<M THEN BEEP:GOTO 400 ELSE GOTO 430
400 LOCATE 16,20:PRINT SPACE\$(55)
410 LOCATE 16,20:PRINT "Loss must be equal to or more than"; M^{\prime} " db ."
420 FOR T=1 TO 4000:NEXT T:LOCATE 16,20:PRINT SPACES(55):GOTO 340
$430 \mathrm{~L}=10 \wedge(\mathrm{~L} / 10): R 3=(2 \star S Q R(L \star Z 1 \star Z 2) /(L-1))+1$
$440 \mathrm{R} 1=\mathrm{Z1} *(\mathrm{~L}+1) /(\mathrm{L}-1)-\mathrm{R} 3: R 2=\mathrm{Z2} *(L+1) /(L-1)-\mathrm{R} 3$
450 R5 $=(L-1) / 2 \star \operatorname{SQR}(Z 1 \star Z 2 / L): T=(L+1) /(L-1) / Z 1-1 / R 5$
$460 \mathrm{R} 4=1 / \mathrm{T}: T=(L+1) /(L-1) / Z 2-1 / R 5: R 6=1 / T$
470 LOCATE 18,20:PRINT "R1.......";CINT(R1)
480 LOCATE 19,20:PRINT "R2.......":CINT(R3)
490 LOCATE 20,20:PRINT "R3.......";CINT(R2)
500 LOCATE 18,50:PRINT "R4.......";CINT(R4)
510 LOCATE 19,50:PRINT "R5.......";CINT(R5)
520 LOCATE 20,50:PRINT "R6.......";CINT(R6)
530 LOCATE 23,27:PRINT "Type R to rerun or E to end."
540 LOCATE 23,60:AS=INKEYS
550 IF AS="R" OR AS = " r " THEN GOTO 570
560 IF AS="E" OR AS=" e^{\prime} " THEN 590 ELSE 540
570 FOR ER = 23 TO 12 STEP- 1
580 LOCATE ER,10:PRINT SPACES(70):NEXT ER:GOTO 260
590 LOCATE 23,20:PRINT SPACE\$(50)
600 LOCATE 23,27:PRINT ".... Program closed"

RETRACTABLE
 MAST CONSTRUCTION
 by Alan Malcher G4TPM

Like many radio amateurs, I gained my ' B ' licence before I sat my Morse exam. And being restricted to very high frequencies, I raised my antennas as high as possible in an attempt to hunt those elusive DX stations on the continent.
Using scaffolding poles as a means of securing a mast is very effective, but carrying out routine maintenance or adding another antenna to the mast requires the help of an army of fellow radio enthusiasts to lower the mast and erect it again. Even when the greatest of care is taken, some damage to the garden is inevitable.
I therefore decided to construct a retractable mast which could be raised and lowered by one person. Since I live on a hill surrounded by wide open fields, my antenna also had to be capable of withstanding gale-force winds.
Prior to constructing and erecting a mast which can be considered a permanent structure, I strongly recommend that planning permission is obtained. You should also inform your immediate neighbours of your intention, otherwise you may find your array being blamed for causing interference in the neighbourhood.
The height of your mast can be varied to suit your particular environment. The construction is the same for a 25 ft or 40 ft mast, but the latter requires more elaborate guying to overcome the additional torque encountered during high winds.
The mast pivots on a 1 in diameter bolt between two steel supports, one either side of the mast. In fact, these supports are cut-down scaffold poles embedded in concrete (see Fig 1). A counterbalance connected to the base of the mast enables it to be raised or lowered by one person. Weighting the counterbalance is achieved by making a simple wooden box, filling it with concrete and embedding the mast into it. Once the concrete is dry the box can be painted, if necessary. The principle of how the mast will pivot is shown in Fig 2.

Drilling the base of the mast

Using a very large drill and file make a hole for the in diameter bolt, upon which the entire mast will pivot. If the mast is intended to be more than 40ft high, then an 18 ft hardened steel scaffold pole should be used as the first section. Instead of drilling through these hardened steel poles, which is laborious work, I contacted a local mobile motor mechanic to carry out some on the spot
welding. Within a few minutes, he had cut a hole using an oxyacetelene torch; this only cost about $£ 5.00$. There will be no problems if the hole is drilled but if it has been cut, you will need to file down the jagged edges.
To prevent the bolt biting into the steel when weight and torque are applied simultaneously, greased steel bushes must be hammered into the two holes at
either side of the mast. There is a large variety of steel bushes available from car spares shops - ask for the type used on aluminium wheels.

Connecting the aluminium sections

Now that you have completed the base section, you can now build the rest of the mast. All the other sections are made of aluminium, which is obtainable from

Fig 1: The two steel supports embedded in concrete

Flg 2: Showing how the mast pivots

Flg 3: The carriage assembly

Flg 5: The pulley system
aerial erecting contractors. Each section is secured with a purpose-made collar, also obtainable from aerial erecting contractors. These collars bolt together and require no further explanation.

Facia board and tracking

A facia board is attached to the entire length of the mast and secured in place with ' U ' bolts. Ensure that the board is made of $11 / 2$ in thick wood, since it will need to take the strain of the antenna and rotator being buffeted in high winds. The facia board should be weatherproofed with yacht varnish to prevent it warping or rotting.

The iron track used in this project is made of cast-iron and is available from manufacturers of up-and-over garage doors. Although this type of track is readily available and has been used in this sort of project before, I suggest that a few extra pounds are spent on the heavy-duty commercial variety used to support doors in factories and other such premises. Whichever type of track used, it will have been predrilled by the manufacturer and is easily secured into place using 1 in wood screws.

Once securely in place, ensure that it is straight and apply a liberal coating of grease. It should be noted that the last screw at the top of the mast secures the track to the facia board and holds a $1 / 4 \mathrm{in}$

Fle 4: Cast-iron runners
wooden block, which acts as a stop at the top of the track.

Connecting the carriage to the track

The carriage carries the antennas, rotator and coaxial cable up and down the mast, as shown in Fig 3. We now come across a slight problem, depending on the type of antenna rotator used. If the fitting on your rotator is similar to that shown in Fig 3, then you will have no problem. But if it is different, then a little improvisation is required to secure it to the carriage.
It should be noticed that the two castiron runners slide into the track and that a further carriage stop is built into the base of the mast (see Fig 4).

Winches

There are two separate methods of winching the antenna system up or down the mast. The simplest method is to attach a boat winch to the mast (see Fig 5). Alternatively, a dc motor can be used. Although more expensive the latter can be operated directly from the shack, so it is easy to lower your antennas when, for example, gale-force winds are forecast. Whichever method is used, the pulley system is the same.

Pulley system

In this design, I used steel cable with a braking strain of half a ton. The cable runs from the boat winch to the top of the mast and is then guided by a pulley, as shown in Fig 5. The cable runs down the front of the mast and the end is secured to the carriage.

Although the cable has a breaking strain that should be more than adequate for supporting the carriage, some form of guard must be used to prevent the cable whiplashing if it snaps whilst under tension.

SHORT WAVE LISTENER

TREVOR MORGAN GW40XB

Another month bites the dust and we are entering winter once again with its longer periods of darkness. Of course, now we expect some reduction in propagation on the higher bands but an improvement in conditions on the lower bands from 40 m to 160 m . More importantly, it means that many of us can relax after the summer chores of gardening and exterior decorating. It's now just a matter of dodging the paper-hanging to get into the shack.

I like the winter months as I can, when work permits, sit in the shack knowing that I'm not missing the glorious sunshine or neglecting the garden. Because it's a lot cooler I can concentrate on working a few stations on the WAB net or getting stuck into a contest or two.

Cursing contests

Of course, contests are not everyone's cup of tea and there are many amateurs and listeners who curse every time one is announced. The main problems are that they are' normally held over a weekend, which is when most people have their only spare time to get into the shack, and many are held on more than one band simultaneously, often using the whole band. Naturally, there are operators who wish to pursue their own interests in the hobby, such as regular DXing, operating their favourite net or simply rag-chewing, so this is where the antagonism arises.

Although I do enjoy working a few contests, I must agree that it's high time the contest organisers limited the range covered to set areas of the bands, leaving plenty of space for the general traffic. Why not impose a 'not above .200' rule on 20, 15 and 10m, for instance?

I know this is an old argument, but it is still something that has to be resolved and a solution is long overdue.

However, as listeners, we
can detach ourselves somewhat from the 'in-fighting' and concentrate more on an overall view of contesting.

Preparing for operation

Setting up for a contest is an essential part of the operation and can often take as long as the contest itself. You should know your receiver and its capabilities well enough to limit the setting up to a quick check shortly before the contest to ensure that everything is working well. Your antenna system will, I assume, already be the best you can manage, considering your budget/location, and be in tip-top working condition.
These things are obvious. Much more important, if you intend submitting an entry to the organisers, is the attention to the rules governing the contest and the necessary paperwork involved in keeping accurate logs and score sheets.

Rules for contests can be very complicated, especially as regards scoring, and must be studied carefully before the day. Many otherwise excellent contest entries have been disqualified or lost valuable points by not complying with the rules.

The 'multiplier' system used by most contest organisers for calculating points can be very involved and a simple miscalculation can lose an awful lot of points. Let's take a look at a simplified scoresheet to see exactly what happens.

Say, for instance, the rules state that multipliers are in operation for countries and bands. During that contest, you work seven stations in seven countries on five bands. Your total score could be 245 points $(6 \times 6 \times 5)$. However, if the operation is broken down (see the table), you can accumulate a score of 10,584 points! See how an error in translating the rules can make a difference?

Losing just one point in the
last column can lose you 3,528 points in your total score.

Duplicates

It is obvious that the way to be in the top scorers in any contest like this is to get the highest number of entries you can in each column, but it is also important not to get any duplicate entries.

Duplicates are the pitfall in contests, the trap to catch the bloke who doesn't check his entry properly. Although you can use one sheet to each band for each country, in a twenty-four-hour contest you could finish up with a couple of dozen sheets; checking for duplicates each time you hear a station will waste valuable time. Even using an 'idiot board' with everything laid out as the sample chart would take a lot of checking.

This is where the computer really comes into its own and saves an awful lot of headaches. During the contest, you can concentrate on the job in hand, getting as many stations as you can on the bands in use without the need to check for duplicates. After the contest, you can feed the computer with the details and let it find the duplicates for you. When you make up your entry forms, you can be sure there are not any duplicates which will lose you points.
Any good filing program could be adapted for this
purpose or you could write one yourself if you are reasonably competent. (A suitable program by Mike Ribton, ILA 328, for the Spectrum is available from the ILA for $£ 1.50$, with a program for 'Bearings and distance' on the same tape.)

'New' stations available

This may all seem very complicated and a waste of time if your interests do not include contesting, but consider for a moment. If you are an enthusiastic listener or just an occasional DXer, you may well find that you can hear and log a great many 'new' stations that are not around at other times, at least, not at the times you are usually listening.

Contests can take place over a few hours or a whole weekend and, during that time, stations that may normally spend only an hour or so a day on the air will be available to be logged. Also, some club stations use either their official club callsigns or special ones during contests, so these are worth looking for. Therefore, even if you are not interested in entering the contest, you can still use it as a vehicle for your listening.
A final point about entries to major contests. Some organisers prefer dedicated contest forms (the RSGB, for instance). These forms are of a standard format which

Rulea: points are 1 for each station heard. Multipliers are 1 for each country heard on each band.First logging only counts on each band.

		80		40		20		15		10
GW4XX		1		1						
DL1XX		1		1		1				1
OK7XX		1				1		1		
UA5XX				1		1				1
ON4XX		1				1				1
LA6XX		1				1		1		
PAOXX				1		1		1		
7	\times	7		$\begin{aligned} & 4 \\ & 10,5 \end{aligned}$	x	6 oint		3	\times	3

makes it easier for the judges to check the scores, saving them a lot of time. You can get these forms from the organisation concerned.

Normally, contest stations are not interested in QSLing, so unless you have something very unusual to report, don't bother to send cards. However, I have known a listener to log a contest station over the whole period and send a checklog which was appreciated.

Aming for awards

Award hunting is another side of listening that has its devotees and many readers of this column have entered for awards promoted over the years. Once again, it's a matter of personal preference and not everyone is prepared or able to put in the time and effort necessary.

As with contesting, it is very important to study the rules of the game. Although not as involved as contest rules, awards attract their own scoring systems and your entries
must be correct.
The date, time, frequency, mode and report format is usual but the rules should be checked for anything that may be peculiar to that particular award.

Prefixes

For some reason, prefixes seem to confuse people. The prefix is the 'designator' of a callsign, it denotes the location of the station. For the most part, the last three letters are the actual station code or suffix and the first part of one or two letters and a number are the prefix. So, GW4 is the prefix or designator $(G W=$ Wales - full ' A ' licence) and OXB is the station code.

For award purposes, the usual rule again is no duplications, so if you have logged GW4 on a band, it should not be repeated, regardless of the suffix.

In the UK and most other countries, the number in a callsign denotes the type of licence issued. For instance,

JAVIATION
 Specialists in VHFNHF Airband equipment

We carry in stock one of the widest ranges of scanning receivers available and can offer expert advice on all matters aviation wise.

New MVT-5000 H/Held 25-550/800-1300 - PLEASE CALL FOR PRICE New MVT-6000 Base 25-550/800-1300 - PLEASE CALL FOR PRICE

AOR900 Leather carry cases and Spare Battery Packs also in Stock
Latest UHF airband frequency list: $£ 2.00$
VHF airband frequency list: $£ 3.00$

JAVIATION

Cartion Works, Cartion Street, Bradiord BD7 1DA Telephone: 0274-732146 Fax: 0274-722627

' A ' or full licences in the UK are 2, 3, 4, 5 and 0 , while ' B ' or restricted $(144 \mathrm{MHz}$ and up) licences are $1,6,7$ and 8 . Other countries have similar arrangements for different licence grades.
There is a huge number of awards available to the interested listener. They range from the very simple ones principally aimed at promoting clubs or organisations to the more complicated ones promoted by national societies.
Books are available from the RSGB and other sources with full details of awards available.

Japanese award

An interesting award from Japan has just been brought to my attention.
The award is presented for confirmed loggings of Japanese 'prefectures'. The ' A ' award is for ten prefectures and the ' B ' award is for five. A log extract giving the usual details with seven IRCs should be sent to: Tuyoshi Ohashi, 62 Sakuraoi, YoroGun, Gifu, 530-12, Japan.
The prefectures are Aichi, Chiba, Gifu, Hyogo, Kanagawa, Kyoto, Nagano, Okayama, Shiga, Shimane, Shzuoka, Tottri and Yamanashi.

Thanks to Hitoshi Ohashi JA2-8764 for the information.

Award winners

Our latest award winner is Clifford Tooke G1516, of Rayleigh, who claimed the ILA Lifeboat award. This is offered for logging 100 stations based in towns in the UK that support a lifeboat service. It is not an easy task, as Clifford will verify, but after some hard listening over nearly two years, he got his claim in and it was a pleasure to present him with his trophy. Well done, Cliff!

Our hearty congratulations to Dave Burt El982/G, of Bideford, who succeeded in winning the lan Morris Memorial Trophy via the IRTS by being the SWL with the greatest number of confirmed reports in the year; a total of sixty-four countries.
Luciano Marquardt of Hereford is still in there pitching, and has logged some nice stuff with D44BS, $5 \mathrm{H} 3 Z \mathrm{~W}$, N7JJQ/P/DU3, TR8SA, PP5JD and LU4AA on 10m, HC2AQ on

15m, JX7DFA, JF2JYH, UJ8JCM and VK2QK on 20m and HG89HQ on 40 m .
Geoff Hughes of Chelsea is one of those with a new callsign to celebrate. After taking his Morse test, he now has GOLUJ and hopes to be around the bands with his Swan SS200, linear and dipole. Well done, Geotf!

News from the RSGB

Well, the proposed new novice radio licence is in the news and the RSGB is 'banging the drum' for its introduction. This may mean that more listeners will be tempted to get the ticket.

I am all for promoting the hobby, but I have found, as one American was reported as saying, that if a million licences were given away at the entrance to the World Fair, very few would ever be put to use and of those, even fewer would continue to be used after a year.
People who become interested in radio tend to do so regardless of outside influence rather than because of it. The trouble nowadays is that youngsters are so technically orientated that a 'simple' thing like radio holds .little interest.
The RSGB has announced that it will be holding its International Convention and Exhibition on 21-22 April 1990 at the NEC in Birmingham. Many of you will remember the 75th Anniversary Exhibition, and we hope this event is as successful. With any luck the listeners will be represented by yours truly.

SWL in Peland

Finally, news sent in by Dines Bogoe OZ1CFV of an SWL club in Poland. Remarkably announcing itself as the only SWL club in the world (where have they been?), it offers awards for DXCC and WAZ. Membership is open for ten IRCs. Letters to Kazimierz Czech, UI Gornicza 36/6, 44300 Wodislaw S1, Poland, should bring interesting replies!

Sign-off

Well, that's it for this month. Our final for 1989 will include some useful Christmas gift ideas.

Reports, please, to 1 Jersey Street, Hafod, Swansea SA1 2 HF .

by Joe Pritchard

One of the most useful pieces of test gear that an amateur can possess is undoubtedly a dip meter, also called a grid dip oscillator, dip oscillator or GDO. What other single piece of equipment will allow you to roughly align receivers or transmitters, tune aerials, provide a low power modulated or unmodulated RF signal, calculate the values of capacitors or inductors and act as a transmitted field strength meter? Other uses are limited only by the imagination.

What exactly is this marvellous piece of kit, and how can we build and use one? In this series l'll be showing you the basic principles of design and use of dip meters.

A short history lesson

A simple physical effect is at the heart of the dip meter, that of resonance. If you have an LC tuned oscillator, the frequency of which is made variable via the adjustable capacitance, and you loosely couple it to a tuned circuit, the resonant frequency of which is within the range of the oscillator, the tuned circuit will absorb power from the oscillator as resonance is passed through (see Fig 1). In the good old days of valves, a meter connected in the grid circuit of the oscillator ($\operatorname{Fig} 2$) would show a dip in its reading as resonance was passed through and power was lost from the oscillator to the tuned circuit. The dip given by such a circuit would be quite sharp, because the meter applied very little loading to the tuned circuit.

The accuracy with which the dip is determined depends largely on the depth of the dip, and this in turn depends upon the Q of the tuned circuit and the Q of the tuned circuit under test. The Q can be reduced by overclose coupling of the dip oscillator coil to the circuit under test or by the meter used to monitor the dip applying heavy loading to the tuned circuit.
A valve oscillator as shown in Fig 2 doesn't suffer from the latter problem owing to the high impedance applied to the tuned circuit via the grid connection of the triode valve, but the former problem can only be solved by skill in use.

The frequency at which the dip occurred could be read off a calibrated scale, and so the resonant frequency of the circuit under test can be measured. If the capacitance or inductance is known, the other value can thus be calculated. As well as being used in an active mode, a
dip oscillator can be used in a nonoscillating mode as a field strength meter to indicate the frequency of another signal source.

Modern circults

With the advent of semiconductors, transistor oscillators were soon put to use, but the name 'grid dip oscillator' stuck.

Bipolar or field-effect transistors can both be employed in modern dip oscillator circuits, and good results can be obtained from either type of transistor. The performance of a dip oscillator depends mainly on two things: the type of oscillator circuit used and the means of measuring the dip at resonance.

Fig 1: LC funed oscillator

Fig 2: A valve oscillator with a grid circuit

The oscillator design

Spectral purity

Any oscillator used as the heart of a dip oscillator must have an output frequency that is spectrally pure - that is, containing only one frequency. This means that the oscillator must not generate any harmonic frequencies, and so in practical terms we're talking about a sine-wave oscillator. This is essential because if a signal was generated that contained harmonic energy, a tuned circuit tuned to the harmonic frequency being tested with the dip oscillator would absorb the harmonic energy, and would thus cause a dip on the meter which would be indistinguishable from that caused by

F.g 3: A typical dip meter
the fundamental frequency generated by the dip oscillator.

Tuning range and the tuned circult

The oscillator must, of course, be tunable! The tuning range of the oscillator is set by a variable capacitor and a range of plug-in coils. For practical purposes, it's often useful for a coil to cover a fair range of frequency. For example, a commercial dip meter may cover the range 100 kHz to 250 MHz with five coils. Owing to the physics of the tuned circuit, the frequency range in terms of number of megahertz covered by a coil won't be the same for each coil. For example, the coils at low frequencies will cover a few hundred kilohertz whilst those in the low short range frequencies may cover a few megahertz and those at VHF frequencies will cover a few tens of megahertz. On commercial dip meters, the tuning scales are very much 'ball park' figures, especially at higher frequencies.
A slow motion drive on the variable capacitor is most useful in determining the precise position of the dip. I've already mentioned that the Q, or 'goodness' of the tuned circuit is important; the coils should have as low an electrical resistance as possible, and should be wound on low loss materials and in such a way as to minimise losses. Owing to the role of the circuit in testing other circuits, the coil must be positioned in such a way so as to allow it to be brought into close proximity with the circuit under test. A typical arrangement to allow this is shown in Fig 3. In addition, coils in dip meters are air-cored. Ferrite cores aren't used.
One problem that you need to bear in mind whilst winding coils and producing

Fig 4a: First example of an oscillator circuit

Fig 4b: Second example of an oscillator circuit
a suitable means of mounting is that of self-resonance, especially at VHF frequencies. The sockets used for coils and the wiring leading from the coil to the variable capacitor and oscillator circuit, may be resonant at particular frequencies in the range covered by the dip meter. Thus, spurious dips would be introduced if these resonances were present.
Unfortunately, there are going to be some resonances like this in any piece of equipment. The best way to reduce the problem to manageable proportions is to minimise the length of connections, thus pushing any self-resonances into areas of the VHF spectrum preferably not covered by the GDO.

Mechanical construction

The tuned circuit and oscillator circuit must clearly be mechanically robust and
there shouldn't be any possibility of vibration or movement causing detuning of the circuit. This would cause the frequency generated by the GDO to vary should the oscillator be moved around. In addition, you need to be careful about such effects as 'hand capacitance', where the movement of the operator's hand near the tuning control of the oscillator varies the oscillator tuning. This is best dealt with by building the oscillator into a metal case, which will screen the oscillator and tuning capacitor from detuning in this way.

Output fevel

The output level of a GDO should be fairly constant across the range of frequencies covered, and it's often useful if the output level can be varied by a simple control. This allows you to test a wide range of circuits without the risk of

Fly 4c: Third example of an oscillator circuit

Flg 4ds Fourth example of an oscillator circuit

Flg 5a: Micrometer connection
be based around bipolar, FET or MOSFET transistors. Your first consideration must be whether or not a transistor will operate at the frequencies of interest no point trying to build a GDO for VHF using a 2N3055 power transistor!
For bipolar transistors, the Ft parameter in the transistor's specifications is the one to watch. This is the 'Current Gain - Bandwidth Product'. In simple terms the higher the Ft parameter the higher the frequency at which the transistor can operate will be. For low frequency GDOs, the common 2N2222 transistor can be used, and some good specimens of BC108s or BC109s may work quite well up to 10 to 15 MHz . In my experiments, l've never got good results from these transistors above this frequency. A good choice for generat purpose use in GDOs would be either the 2N2369FA or, preferably, the BFY90. The latter has an Ft parameter of over 1 GHz , and so will work well into the low UHF frequencies! Regarding FET devices, the internal capacitance must be as low a possible, and for low frequencies the 2N3819 FET will work. For generalpurpose usage, the 2 N5486 FET will work. The 40673 MOSFET will work up to about 60 MHz , and for higher frequencies the 3N202 will work.
One thing that you need to be cautious about here is that parasitic oscillations don't start, especially if the active device can work at VHF or UHF. Any selfresonances in the circuit, as might be caused by the wiring to the coil and tuning capacitor, may allow these parasitic oscillations to take place if there's enough stray feedback in the circuit. So, when you build the circuit take care to minimise the possibilities of stray feedback. More on this next month.

Finally, the device chosen will have some impact on the Q of the tuned circuit and thus on the dip given at resonance.

The FET devices will not load the tuned circuit as much as bipolar devices, and so will give a better dip.
Figs 4a to d show some possible oscillator circuits. One interesting point about the circuits in Figs $4 a$ and $4 b$ is that to ensure constant feedback at all frequencies of operation, the feedback capacitors need to be combined with the coil assembly. This is so that on plugging
Oscillators used in GDO circuits can
overloading the circuit under test. It also makes comparative readings at different frequencies more straightforward, as you don't have to constantly adjust the output level to obtain a particular meter reading at a new frequency before looking for a dip at that frequency.

The active device

Fig 5b: Micrometer connection to the oscillator

DESIGN AND USE OF DIP METERS

in a new coil, new feedback capacitors are plugged in as well to give the best results over that frequency range, and thus keep a fairly constant output level over the different frequency ranges.
In each circuit, feedback components are shown with a letter ' F ', and L and C indicate the tuned circuit. Point ' M ' in each circuit indicates where the metering circuit is connected.

The motering circult

The word 'metering' might be a misnomer here; what we need is simply some sort of indicator to determine whether a dip has been detected or not. Three techniques are in common use:

1. The meter

In this method, a microammeter is connected in one of the configurations shown in Figs 5a and b and is connected to the oscillator at the point shown by the letter ' M ' in Flg 4. It is common for a variable resistor to be included in this metering circuit to allow the sensitivity of the circuit to be varied.
The use of an active device, as shown in Fig 5b is valuable, because such a metering circuit will not load the oscillator as much as a direct meter connection and will offer greater sensitivity. 'VU' meters designed for use in tape recorders and other audio equipment are
available for a couple of pounds, and are suitable for this sort of application.
2. The LED

An LED can be fed by a circuit such as that in Fig 6. Here, the LED is extinguished at the dip frequency. Personally, don't like this sort of detector device as I find it more difficult to detect slight dips with an LED than with a meter, but it has the advantage of being cheaper and is also easier to build into a small case. 3. Audio indication

The signal from a detector circuit such as that used in the metering arrangement shown in Figs 5a and b drives a voltage controlled oscillator in such a way that a dip corresponds to a drop in the frequency of the audio oscillator. Again, I find that I cannot accurately determine a dip by this method. However, this method of determining a dip is invaluable for blind amateurs.
Next month, l'll get on with the construction of a practical dip meter.

AMATEUR RADIO SUBSCRIPTION ORDER FORM

[^0]
FREE CLASSIFIED ADS

RREE CLASSIFIED ADS CAN WORK FOR YOU

We are pleased to be able to offer you the opportunity to sell your unwanted equipment or advertise your 'wants'.

Simply complete the order form at the end of these ads. Feel free to use an extra sheet of paper if there is not enough space. We, will accept ads not on our order form.

Send to: Amateur Radio ClessifiedAds, Sovereign House, Brentwood, Essex CM14 4SE.

DEADLINE AND CONDITIONS

Advertisements will be published in the first available issue on a first come first served basis. We reserve the right to edit or exclude any ad. Trade advertisements are not accepted.

Abstract

\section*{FOR SALE} - Yaesu FRG7, good condition, £140.00. Tel: (0272) 685210 - BNOS power supply, 12/40A, $£ 150.00$. Black Star frequency counter, $5 \mathrm{~Hz}-600 \mathrm{MHz}, £ 50.00$. Welz SWR and power meter, SP $300,1.8-500 \mathrm{MHz}, 1000 \mathrm{~W}, J$ Sensons, $£ 50.00$. 1000 W dry dummy load, $£ 25.00$. Trio MC60A base mic, $£ 30.00$. Tel: (0869) 58825, or (0836) 679393, ask for Rodney

E Sony 2001 World Radio, FM/AM SS/CW coverage (SW $150-29995 \mathrm{kHz}$ continuous coverage), excellent condition, £95.00. Amstrad PCW 8256 computer with printer, unwanted gift, in original box, not used, $£ 280.00$. Tel: (0245) 322082 evenings or weekends - Trio R2000 Rx, good condition, all leads and switches, plus Jaybeam TB1 and 2 m Tonna antenna, both with cable, $£ 400.00$ no offers. Write to: W Abbey, 21 Moat Close, Bramley, Nr Basingstoke, Hants RG26 5AD Eanasonic radio RF-9000, FM/LW/MW/SW, phase-locked loop synthesiser, as new, originally cost over $£ 1,000$, offers? Tel: (0436) 74532 - For NRD525: 1.8 kHz CFL 218A crystal filter, excellent steep-sided response, $£ 70.00$. NRD ST3 communications headphones, made for professional marine use, $£ 45.00$. Icom CC5 world clock £25.00. Active antenna for HF-225, £12.00. All boxed, as new, carriage extra. Tel: 01-570 5603 evenings - Jaybeam five-element folded dipole Yagi 2 m boom, length 1.6 m, good condition, $£ 15.00$ ovno. 2 m linear amp, 10W in, 50 W out, from Micro Mod, with

preamp, mint condition, $£ 55.00$ ovno. Antenna rotator 200 XL , plus control box, 220 kg torque, vertical load 45 kg , with three-core cable, mint condition, £30.00 ovno. Mark. Tel: 01-571 1609 National Panasonic CCTV system, with monitor and three cameras, all new, unused, sensible offers considered, cash or swap for WARC band linear amp and/or other ham gear. Tel: (0295) 253407 between 8.00 pm and 9.00 pm

- Kenwood TS-680S, HF 6m, complete with Adonis 5039 comp mic, only six months old, $£ 700.00$. SP430, £20.00. RN $6 \mathrm{~m}, 25 \mathrm{~W}$ amp, $£ 40.00$. RN 6 m preamp, $£ 15.00$. SEM 6 m tranzmatch, $£ 15.00$. Skyking rotator, $£ 15.00$. Three-element 6 m me Yagi, $£ 20.00$. SEM 2 m preamp, £5.00. Twelveelement ZL 2 m beam, $£ 5.00$. Will split or $£ 880.00$ the lot. Tel: (0483) 233991

[^1]- Pre-1950 QSL cards (postally used) required by collector, also postcards related to radio, wireless, wireless stations etc. (No comic cards). Please contact with price required. Tel: (0674) 76503 - Early Cobra or President AM, SSB, CB radio for conversion. Write to: PO Box 16, Heaton, Newcas-tle-on-Tyne NE6 4AL
- I have found my copy of Camm's 1949 issue of Wirelees Colls, Chokes and Transformers. If the reader who needed copies of missing pages some months ago still needs them, contact me via post. I will supply copies at cost price plus post. Need operating instructions for Grundig TD24L automatic de luxe reel to reel recorder, plus circuit and any service data for Teleton TF182 eight-band large portable. Write to: M Shepherd, 66 Westerand Avenue, Canvey Isiand, Essex SS8 8JS - Practical Wiroless 1930-1960s, Radio Constructor and Aero Modellers 1930-1960s. Any radio books by George Newnes. Plan of simple all band 160 to 10 m converter with IF out, 160 m all transistor, good price paid. Write to: Savage, 7 Weyhill Close, Park North, Swindon, Wiltshire - Manual and service sheet for Yaesu FRDX400. Tel: (0298) 77007
EX-WD19 set with accessories. 1155 with mains power supply. Two FM CB radios: one BAS2, one mobile. BAS2 and mobile CB aerials. Carriage arranged. Tal: (0326) 240781
Sony CRF-330K or 320 radio, al so Panasonic RF9000 Rx, cash paid. Must be mint and sensibly priced. Tel: 061-743 1570

FREE CLASSIFIED AD FORM

Send to: Amateur Radio Classified Ads • Sovereign House • Brentwood • Essex CM14 4SE
Classification: (tick appropriate box) if you want to insert ads under more than one classification use separate sheets for second and subsequent ads
For Sale. \square Wanted .\square
USE BLOCK CAPITALS (One word per box)
To avoid mistakes please write clearly and punctuate your ad

					,	-	
		=					
		\square					
\|le		*					

USE SEPARATE SHEET FOR MORE WORDS
Ensure that you have included your name and address, and/or telephone number
CONDITIONS: Ads will be published in the first available issue on a first come first served basis. We reserve the right to edit or exclude any ad. Trade advertisements are not accepted

TURN YOUR SURPLUS

IC's TRANSISTORS etc, into cash, immediate settlement. We also welcome the opportunity to quote for complete factory clearance. COWTACT:

COLES-HARDING E CO
103 South Erink, Wlabech, Cambe
T낸 0948 se418eFfax. Mo. 0945-588844
Est Over 10 years

ICOM NAMCO YAESU Alan Hooker Electonics
42 Nethernall Road, Doncaster Tel: 0302325690 Open Mon-Sat 10-5pm Closed Thursdays

AGRIMOTORS

martow CB AND RADIO CENTRE muston carlace and post office, mugton. H OAKHAMPTON, DEVON EX20 302 OPEN 6 DAYS 9.30-5.30 LUNCH 1-2pm OPEN 6 DARS $9.30-5.3 U R S$ SI EARLUNDAYS BY APPOINTMENT)

SUNDAYS BY APPOINTMENT
SPECIALIST IN 934 MHz SUPPLIERS OF ALL 27MHZ AND 934 MH2 EQUIPMENT AMATEUR ACCESSORIES CATERED FOR 08053200 -

USED AMATEUR EQURPMENTQ I buy, sell and exchange
For the deal you've been looking lor, phone Dave, Gunv. anywne on (0708) 862841 or (0836) 2015309 am-7pm Tues-Sat or send SAE
personal collent by apponiment piease
GITNY Amoteur Radio
UNT 14, THURROCX COMMERCNAL CENTRE, JUUT
WAY, SOUTH OCKENDOM, RESEX, RM15 AYO.

MILTARY SURPLUS ECUIPMENT MANUAL

Giant collection Military Equipment Circuits/Data.
Only casso including PostPacking. Or LSAE Index
Just one of many unique Repair and Data Guides. LSAE for your FREE catalogue.
WORKSHOP SERVICE MANUALS
Available for most Audio, Amateur Radio, Televisions, Video Recorders. Military Surplus, Test Equipment etc. LSAE Enquiries, state Make/Model etc.

MMUNTRON (AR)
8 Cherry Tree Road, Chinnor, Oxfordahire Ox9 $40 Y$ Tel: (0844) 51684

This method of advertising is available in multiples of a single column centimetres (minimum 2 cms). Copy can be changed every month.

RATES

per single column centimetre:
1 insertion $£ 7.00,3-£ 6.60,6-£ 6.30,12-£ 5.60$.

Aerials \& Lashing Equipment
TAR Caralogue
FOR FREE COPY JUST SEND SAE 9½×6½

TAR COMMUNICATIONS King William Street, Stourbridge, W. Midisinds DV8 4EY 8 0384390944

Selectronic

Radio communications and scanning receiver specialist

203 High Street Canvey Island, Essex, Tol: 0268691481 (Open Mon-Sat 9-5.30)
Amateur radio equipment also in stock

TO ADVERTISE IN THIS SPACE CALL MARIA ON 0277219876

LONDON
DIRECT ELECTRONICS
ELECTRONICS COMPONENT SPECIALISTS
G27 ROMFORD RD
mANOR PARK, LONDON E12 SAD
Tel: 01-553 1174
mon-Sat 10-6pm/Thurs 10-1pm
We stock a large range of TV \& Video spares
Personal callers only

G.W.M. Radio Ltd

40/42 Portland Road Worthing, Sussex Telephone: 090334897

Many bargains in surplus equipment available for callers.

LAN FISHER COMMUNICATIONS OF STANHOPE

CB Works, The Market Shop, Market Place, Stanhope, County Durham区 (0388) 528464
Main Distributors of 27 MHz CB radios and the NEW CEPT models including UNIDEN and DNT
including U.K. and CEPT waikie talkies from $£ 45.00$ each.
Father good $1 / 2$ mile radius 2 channel walkie talkies $[22.50$ each Large stocks of coaxial cable, plugs, sockets and adaptors. Stockists of the new CT1600 Hand-Set. 800 channels covering 2 mtrs . Price on request

ARBAND RADO

Very latest sonic $4=8342$ multiband radio receiver airband +PMR from 54 MHz to 176 MHz two aerials $\mathrm{F21.00}$
All available via mail order. Retai/Wholesale
OPEN: MON-SAT 10.30am-6.00pm SUN 2.30-4.30 RING FOR DETAILS (0388) 528464

COURSE for CITY \& GUILDS, Radio Amateurs Examination. Pass this important examination and obtain your licence, with an RRC Home Study Course. For details of this and other courses (GCSE, Career and professional examinations, etc) write or phone - THE RAPID RESULTS COLLEGE, Dept JS24, Tuition House, London SW19 4DS. Tel: 01-947 7272 ($9 \mathrm{am}-5 \mathrm{pm}$) or use our 24 hr Recordacall service 01-946 1102 quoting JS24

Revistore $1 / 4 \mathrm{w} 5 \%$ carbon E12 is 1% motal film 30
Reasistor peck 86 different E12 values + 2ero ohm link totel content LEDs 3 mm or 5 mm reo or preen epach yellow 1 Yowach Cable ties 75 mm ip each. . per 1000 s. 49.50 per 10,000 Stepping motor 4 phace 12 2. $7 . \mathrm{s}^{\prime}$ spep 50 ohma SM 1027 stepping motor driver chip...... 23.08 High quatity photo resiet copper clad opoxy glase boarde

Dunemereme	to elted	oontur maie
3×4 inches	0.80	\$1.07
axs inchee	8.40	s2.es
12×12 inches	\$10.08	

computer grad
sroovil 10 V \$1.5 capacitore with ecrow terminals 380000
7 seqment commen
 BS250 P channel mosfet E0.45. BC550 tranaistor 84. 06 per 100 74 LS05 hex invertor $\$ 10.00$ per 100 , used 8748 Microcontroler $\$ 3.80$ Stereo LW/MW/FM Tuner/preamp asay with volume/tone controls \&
tuning scale. Brand now in maker carton etc for above 80.80 . 5-digit ov electromagnotic counter 31.26 Hour counter used 7 digit $240 v$ ec $50 \mathrm{~Hz} . . .$.
CD Oisplay 16 digit 7×5 dots dot matrix
 OWERTY keyboard 50 key good quality switches........................0 Cenpacitore tools. AtC alway in atock
Please add $05 P P+P$ JPG Electronics
276 Chetsworth Romed, Choeterfled \$40 2BH Aceest Ontere (0240) 211202 enllers melcom

JANDEK

6 Fellows Avenue Kingswinford W Midlands DY6 9ET
sae for details 0384288900

PACKET RADIO
 from the experts

Packet equipment available from E119.00. We also stock many Icom rigs and accessories.
Tel: (0527) 79556 and (0527) 71165
Open: Tues-Firi 9-5.30pm; Sat 9-3pm

Crofters, AMDIry stoke Road,
\$iok, Gifford, Bristol Tol: 0272 699355/559398

AD	$\bigcirc \square$
Air Supply 18	C M Howes................................... 7
J Birkett 26	Icom22, 23
Brian J Reed .. 44J Bull........	ICS International 34
	Javiation 34
Candy Club................................. 26	Lake Electronics 21
Centre Electronics.................... 25	
P M Components.......................4, 5	Radio \& Telecommunications
Display Electronics 43	Correspondence School........... 21
Display Electronics 43	Raycom Communications 2
Enterprise Radio Applications	Technical Software 21
Ltd .. 26	Thought Factory 18
L F Hanney.................................. 18	W H Westlake 18

RALDO

ADVERTISIMG RATES \& INFORMATION

HEMEMGIN/			
	LOPPY DISK DRIVES		
	BARGAINS GALORE !	owave	
	NEW 51/4 inch from £29.95		
	present prime product at indusiry beating low pricesi All untls (unless staled) are removed from often brand now equipmem guaramtee and operate from $+5 \&+12 \mathrm{zdc}$, are of standiand size		
resolution, all at a give away price. H			
		poimm distance measurng sel. Intuith in the unit ts a tuit cuplex	
	and accept the standard 34 way connector. SHUGART SAMO5. BRAND NEW \qquad		
COMPUTER S	nge,		
TPC2000 Prolesslonal 3 plece system comprises: Cuality high $31 / 2$ INCH BRAND NEW AT E19.95!			
		. Only $\mathbf{E} 29$	
	Sh... ${ }^{\text {a }}$	(3 hours approximate duration).........E22 mited quantity - don't miss out this time!!!	
	Mitubithi M2904-63 double sided switchable hand or soft sectors. BRAND NEW		
	SPECAAL OFFERSII Duel 8 " didvee with 2 megabyte capacity housed in a smart case	OV	
		Al PSU: 220-240vac mput and are BRAND NEW undeas tated. Many types rangling from $3 v$ to 10 kv alway in etock Byte B0301 5vdc © 1.6a. 12vdc © 1.5a. Perfect lor dlsk ditives;	
	with bulli in power supplyl Only E499.00 (F) End of line purchase scoopl Brand new NEC D2246 8" 85 megabyle of hard disk storagel Full CPU control and industry standard SMDinterface. Ultra hi speed transler and accoss uime leaves the good old ST506 interface slanding. In mint condtilon and comes complete with manual. Onty		
		1a,t1 10 . 130 watt hi-grede VDE spec.Switch mode. +5 V (9) $15 \mathrm{a},-5 \mathrm{v}$ (1) $1 \mathrm{a}, 112 \mathrm{v} 96 \mathrm{a} .27 \times 12.5 \times 6.5 \mathrm{cms} \quad \varepsilon 40.9(\mathrm{C})$	
	for your equipmem plug and a flying tead terminates in a qually IBM KEYBOARD DEAL		
		mem or backup keyboard, swilchable for IBM PC,	
	belge,grey and cream finlsh, with the usual retractable logs undemeath. A generous length of cully cord, lemminating In the standard 5 pln DN plug. A beautiful clean plece of manutac-		
	(English coding), and a three pin minlature non-reversible socket and a mating plug, to go to the equipment. ldeal for those who are bugged by RF Interference. Very compact. Dims 3-1/8"	standard 5 pln DN plug. A beautiful clean plece of manutacturers surplus. What a deal BRAND NEW AND BOXED ONLY.... $£ 49$ (B)	
		HE AMAZING TELEBOX!	
includa Pi. tube, housed in a beautiful teak style case and guaranfeed 80 column resolution, leatures which are oniy normally seen on colour monitiors cosing 3 itmes our pricel in isabsolutery ready to connect to outputs. Manulacturers fully tested surplus, soddin little or hardy used condillon with 90 day full RTB guarantee. Decce 86 COMPO 75 ohm composile video input with integral audio amp, or any other audlo visual use. Ont 599 (E)		meiebox:	
		Wan \% 0 \% O TUNER!	
	in	Brand new high qually, fully cased, 7 channel UHF PAL TV Iuner sysiem. Unit simply connocts to your TV aarlal socket and colour	
	92 mm		
		sideo monitor luming same into a fabulous colour TV. Dont worry	
	RECHARGEABLE BATTERIES		
		speecs. Many other usas for TV sound or video etc.	
Mitsubushi 0.42 dol pitch glving 669×507 plxels. Big 28 Mhz bandwith. A super monitorin aftrective style moulded case.Full			
		BAND NEW PRINTERS	
Superty made UK manuiacture. Pie al solid state colour tive teak style case. Perfect for Schools,Shops, Disco, clubs. In EXCELLENT little used condtion with full 90 day guarante.			
	Quality 12 y 4ah coll pack. Orginally made lor the Technicololor label removed from from. Handles tractor, ianfotd and indvydual		
20"....£155 22"....£170 $26{ }^{\prime \prime}$.....£185 (F)MONOCHROME MONTORS			
	(e)		
Weng green screen $12^{\prime \prime}$ chassis monitor with composite video input.Adjustable for tilt. Requires 12 vic. Brand naw and boxed			
	equipment. Brandnow. Exequipment NICAD cells GE. Removed from equipmem 		
	Racel-fiedec real Ume colour drating PCB layout system. In-150-sNup to 9.5 paper.. ع155.001E cludes furriture and huge monitor.Complete ready to gol $£ 3950$ 150-8W up to 14.5° paper. ع109.00 E)		
		CALL FOR THE MANY OTHERS IN STOCK INCLUDING DAISY WHEELS.	
		lus many un-advertised specials. You can buy a colour television for as little as $£ 291$ Come and join the gang at 215 Whitehorse Lane!	

BAKERS DOZEN PACKS

All packs are $£ 1$ each, if you order 12 then you are entitled to another free. Please state which one you want. Note the figure on the extreme let of the pack ref number and the next figure is the
in the pack, finally a short description.
B02 513 A spurs provide a fused outlet to a ring main where devices such as clock must not be switched off
leaving things switched on.
6 V 1 A mains transformers uorioht mountino with
fixing clamps. $61 / 2 i n$ speaker cabinet ideal for extensions, take our speaker. Ref BDi37
B013 1230 watt reed switches, it's surprising what you can make with these-burglar alarms, secret switches, relay, etc., etc.
25 watt loudspeaker two unit crossovers
1 B.O.A.C. stereo unit is wonderful breakdown value. 2 Nicad constant current chargers adapt to charge almost any nic ad batter
Humidity switches, as the air becomes damper the 13A rocker swertches three tags so on/off, or chang over with centre off
24 hr time switch, ex-Electricity Board, automati cally adjust for lengthening and shortening day original cost $£ 40$ each
night lights
Mini uniselector, one use is for an electric jigsaw puzzle, we give circuit diagram for this. One pulse into motor, moves switch through one pole.
Flat solenoids-you could make your multi-tester read $A C$ amps with this.
Suck or blow operated pressure switch, or it can be operated by any low pressure variation such as water level in water tanks input and 6 V output leads.
Stripper boards, each contains a 400 V 2 A bridg rectifier and 14 other diodes and rectifiers as well as dozens of condensers, etc
B0128 10 Very fine drills for pcb boards etc. Normal cos about 80p each
Plastic boxes approx 3in cube with square hol through top so ideal for interrupted beam switch. Motors for model aeroplanes, spin to start so needs no switch.
Microphone inserts-magnetic 400 ohm also act as speakers. Reed relay kits, you get 16 reed switches and 4 co gadgets. 134 sols Safety cover for 13A sockets - preven
6 Sitive little fingers getting nasty shocks. lens.
5 amp 3 pin flush mounting sockets make a low cost disco panel.
nex simmerstat-keeps your soldering iron etc Mains solenoid very push if modified
Keyboard switches - made for computers but have many other applications.
Electric clock, mains operated, put this in a box and you need never be late.
12 V Slighty soiled buise about as loud as a ca horn. Slightly soiled but OK
made from Radiomobile so very good quality mer up boil.
8025950 Leads with push-on $1 / 4 \mathrm{in}$ tags - must for hook 50 Leads with push-on 1 in t
ups-mains connections etc
BD263 2 Oblong push switches for bell or chimes, these ca mains up to 5 amps so could be foot switch if fitted into pattress
Mini 1 watl amp for record player. Will also change speed of record player moto
BD2B3 3 Mild steel boxes approx 3 in $\times \operatorname{3in} \times \operatorname{lin}$ deep-stan dard electrical.
B0293 50 Mixed silicon diodes
BD305 I Tubular dynamic mic with optional table rest.
8D400 4 Books, useful for beginners, describes amplifiers
80653 2 Mintature diver trans
BD553a $2 \quad 3.5 \mathrm{~V}$ relays each with 2 pairs changeover contacts. BD667 $\quad 2 \quad 4$ \% non-polarised block capacitors, pcb mounting There are over 1,000 items in our Bakers Dozen List. If you want a com plete copy please request this when ordering.
EOUIPMENT WALL MOUNT It is a muiti adjustable metal bracke that could be used for mounting flood light, loudspeaker, iV camera even a fan and on almost any sort of wall or ceiling even between wal outward corner can be accommodated Front panel also tilts upward or downwards to a reasonable angle and can be easily removed sepa rately for wiring. A very useful bracket. Regular price would be around $£ 6$ each. Our price only $£ 3$. Our ref $3 P 72$. Or 2 for $£ 5$. Our ref $5 P 152$. SUB-MAN TOGGLE SWITCH Body size Bmm $\times 4 \mathrm{~mm} \times 7 \mathrm{~mm}$ SBDT with chrome dolly fixing nuts. 3 for 1.00 . Order ref BD649.
COPPER CLAD PANEL for making PCB. Size approx 12 in lang $\times B^{1}$ '2n wide . Double-sided on fibreglass middle which is quite
thick (about 116 in' so this woula support quite heavy components and could even form a chassis so hold a mains transformer, etc. Price f1 each Our ref 80683

POWERFUL IONISER

Generates approx 10 times more IONS than the ETI and similar circuits Will refresh your home, office, workroom etc Makes you

REAL POWER AMPLIFIER for Your car, it has 150 wants output. Fre quency response 20 hz to 20 Khz and signal to noise ratio better than suit. Has buit in short circuit protection and adjustable input level to suit your existing car stereo, so needs no pre-amp. Works into speakers
ret. 3007 described below. A real bargain at only $£ 57.50$. Order ref:

REAL POWER CAR SPEAKERS. Stereo pair output 100W each. consisting of 61/2 wooter, 2 mid range and tweeter. Each set in a compact purpose built shelf mounting unit. Idea 10 work with the amplifier described above. Price per pair f29.96. Orde ref: 30P7
STEREO CAR SPEAKERS. Not quite so powerful - 70w per chan nel. 3 woofer, 2 mid range and I" tweeter. Again, in a super purpo built shelf mounting unit. Price per pair: $\mathbf{f} 27.95$. Order ref: 28 P 1
VIDEO TAPES These are three hour tapes of superior quality, made under licence from the famous JVC Company. Offered at only $£ 3$ each. Our ref 3 P63. Or 5 for f 11 . Our ref 11 P 3 . Or for the really big user 10 for £20. Our ref 20P20.

ELECTRONIC SPACESHIP Sound and impact controlled, responds to claps and shouts and peverses when it hits anything. Kit with really detailed instructions. Ideal present for budding young electrihelp with the soldering of the compo nents on the pcb. Complete kit EB. Our ref 8 P 30
12" HIGH RESOLUTION MONITOR, Black and white screen beautifully cased for free standing, needs only a $12 \mathrm{~V} 1,5 \mathrm{amp}$ supply. Technical data is on its way but we understand these are TTL inpu Brand new in maker's cartons. Price: $£ 25.00$ plus $£ 5$ insured deliven
14" COLOUR MONITOR made by the American Display Tek Com pany. Uses high resolution lube made by the famous Japanes Toshiba company. Beautifully made unit intended for console moun ing, buit top and sides adequately covered by platêd metal panels. Full rechnical spec. on its way to us. We have a limited number $f 6$ ese. Al carriage Order ref: 89P'1.
BUSH RADIO MIDI SPEAKERS Stereo pair, BASS reflex sys tem, using a full range 4 in driver of 40 hms impedance. Mounted inver nicely made black tronter wainut inish cabinets. Cabinat size approx $81 / 2$ in wide, 14 in high and $31 / 2$ in deep. Fitted with a good longin 31/2in FLOPPY DRIVES sided 80 . dich Chinon. This is in the manufacturers metar case with leads and IOC clnnectors. Price $£ 40$, reference 40P1. Also a double
sided, 80 track, by NEC. This is uncased. Price $£ 59.50$, reforence 60 P 2 8 oth are brand new. Insured delivery $£ 3$ on each or both

ATARI 65XE COMPU. TER At 64 K this is most powe ful and suitable for home and
business. Complete with PSU, TV lead, owner's manual ands six games. Can be yours for onl
$\mathbf{£ 4 5}$ plus $£ 3$ insured delivery.

REMOTE CONTROL FOR YOUR 65XE COMPUTER with this REMOTE CONTROL FOR YOUR 65XE COMPUTER Wit this can iransmit and a receiver to plug into and operate your computer and TV. This is also just right if you want to use it with a big screen TV. The joystick has two fire buttons and is of a really superior quality, with four suction cups for additional control and one handed play. Price $£ 15$ for the radio controlled pair. Our ref 15P27
ASTEC PSU. Mains operated switch mode, so very compact. Output $+12 \mathrm{v} 2.5 \mathrm{~A}_{.}+5 \mathrm{v} 6 \mathrm{~A}, \pm 5 v .5 \mathrm{~A}, \pm 12 \mathrm{v} 5 \mathrm{~A}$. Size: $71 / 2 \mathrm{zin}$ long $\times 43 / 4 \mathrm{in}$ wide $\times 2^{1 / 4 i n}$ high. Cased ready for use. Brand new. Normal price $£ 30+$ our price only £ 12.95 . Order ref 13P2
VERY POWERFUL 12 VOLT MOTORS. 13rd Horsepower Made to drive the Sinclair C5 electric car but adaptable to power a gokart, a mower, a rail car, model railway, etc. Brand new. Price $£ 20$ plus £2 postage. Our ref. 20 P22

PHILIPS LASER

This is helium-neon and has a power rating of 2 mW . Completely safe as long as you do not look directly into the beam when eye damage could result. Brand new, fulil spec. $£ 30$ plus $£ 3$ insured delivery. Mains operated power supply for this tube gives Bivy striking and 1.25 kv at 5 mA running. Complete kit with case f 15 .

ORGAN MASTER is a three octave musical keyboard. It is beaut ifully made, has full size (piano size) keys, has gold plated contacts and is complete with ribbon cable and edge connector. Can be used with f3 postage. Our ref 15P15.

FULL RANGE OF COMPONENTS

COMI RANGE available from our associate company SCS COMPONENTS. You may
already have their catalogue, if not request one and we will send it FOC already have their
with your goods.
HIGH RESOLUTION MONITOR. gin black and white. used Philips tube M24:306W. Made up in a lacquered frame and has ope sides. Made for use with OPD computer but suitable for most others Brand new. $\mathbf{f} 16$ plus 55 post. Our ref 16 PI
12 VOLT BRUSHLESS FAN. Japanese made. The popu:ar square shape ($4^{1 / 2 i n} \times 4^{1 / 2}$ in $\times 1^{3 / 4 a n}$). The electronically run fans not only consume very little current but also they do not cause interference as the brush type motors do. Ideal for cooling computers, etc., or for a caravan 88 each. Out ref BP26

MINI MONO AMP on p.c.b. size $4^{\prime \prime} \times 2^{\prime \prime}$ lapp

Fitted Volume control and a hole for a ton
trol should yopu require it. The amplifier trol should yopu require it. The amplifier
has three transistors and we estimate the output to be 3 W rms More technical data will be included with the amp. Brand new,

perfect condition, offered at the very

J \& N BULL ELECTRICAL Dept AR, 250 PORTLAND ROAD, HOVE BRIGHTON, SUSSEX BN3 50t

MAIL ORDER TERMS: Cash, PO or cheque with order. Orders under $£ 20$ add $£ 2.00$ service charge. Monthly account orders accepted from schools and public companies. Access and B Card orders accepted -

POPULAR ITEMS - MANY NEW THIS MONTH
JOYSTICKS for BBC, Atari, Dragon, Commodore, etc. All 55 each. TELEPHONE TYPE KEY PAD. Really first class rear mounting unit White lettering on black buttons. Has conductive rubbers contacts with
soff click operation. Circuit arranged in sof click operation. Circuit arranged in telephone type array. Requires
70 mm by 55 mm cut out and is connected by 10 -pin $10 C$ socket. Price: 70 mm by 55 mm cut out and
$£ 2.00$ each Order ret: $2 P 251$.
TELESCOPIC FM AERIAL. Stands up or folds over Solidy constructed and heavily nickel plated. Supplied complete with fixing nut.
Price $f\}$ each. Order ref: BC741.
SUB-MIN PUSH SWITCHES Not much bigger than a plastic tran
istor but double pole. PCB mounting. Three for $£ 1$. Our ref BO 688. CARTRIDGES for the Double Microdrive. Price 4 for $\mathrm{f5}$. Our ${ }^{5 P 146}$.
NICAD CHARGER UNIT Metal pronged, plastic case contains mains transformer and rectifiers with output lead and plug - made to charge two cells but no doube adaptabl
EDGEWISE PANEL METER If you are short of panel space then this may be the answer. It has a $F S D$ of $100 \mu \mathrm{~A}$ and a nice full vision scale. It fits through a hole approx $11 / 4 \mathrm{in} \times 1 / \mathrm{zin}$. Another feature is that it has an indicator lamp behind the scale which you could igh
serve as an onjoff indicator. Price $£ 1$. Our ref $B D 700$.
AA CELLS Probably the most popular of the rechargeable NICAD AA CELLS Probably the
types. 4 for $£ 4$ Our ref 4 P44.
COMPUTER SPECIAL The Perex 16 meg Byte tape streamer. These are brand new and really an exceptional bargain. A few only so hurry Only $£ 15$. Ouf ref 15P29.
20 WATT 4OHM SPEAKER with buith in tweeter. Really well made unit which has the power and the quality for hi-fi reproduction. $61 / 2$ in
diameter. Price $£ 5$. Our ref 5 P 155 . It is heavy so please add f 1 to cover diameter. Price f5. Our re
postage if not collecting.
MINI RADIO MODULE Only about 2in square with ferrite aerial and solid dia tuner with its own knob. It is a superhet and it operates from PP3 battery and would drive a crystal headphone direct but be better with our mini mono amp. Price E 1 . Our ref BD716.
BULGIN MAINS PLUG AND SOCKET The old faithful 3 pin with scrow terminals. The socket mounts through a 1 1/2in hole and the mains is brought in by the insulatod plug. Used to be quite expensive but you can have 2 pairs for $£ 1$ or 4 of bither plug or socket for $£ 1$. You could make yourseif a neat and
MKROPHONE if you want a low cost microphone then just arrived we have a very small hand-held dynamic mic with onjoff switch in it handle, its lead terminates with one 3.5 plugg a
ramote control. Price only f1. Our rof 80711
EXTENSION CABLE WITH A DIFFERENCE it is flat on one side making it easy to fix and to look tidy. It is 4 core so suitable for tele MOSFES FOR POWER AMPLIERS AND HIGH CURAENT MOSFETS FOR POWER AMPLIFIERS AND HIGH CURRENT DEVICES 140 v 100 w pair made by the famous Hitachi Company. Refere
4 P 42.
BATTERY OPERATED TRAVEL MECHANISM On a plastic panel measuring approx. 9 in $\times 31 / 2 \mathrm{in}$. Is driven by a reversible 12 v battery motor, fitted with a pulley and belt which rotates through a threaded rod and causes a platform 10 travel backwards and forwards through a
distance of approx. 5 in Price f5 Our ref 5P140. distance of approx. 5in. Price E5. Our ref 5P140
MAINS OP ERATED WATER VALVE with hose connection for inlet and outlet suitable for low pressure. Auto plant watering, etc. Only $£ 1$ each. Our ref BD370.
20 VOLT 4 AMP MAINS TRANSFORMER Upright mounting with fixing feet. Price $£ 3.3$ P59.
16 OHM PM SPEAKERS Approx. $7 \mathrm{in} \times 4$ in. 5 watts. Offered at a very low price so you can use two in parallel to give you 10 watts at B ohms. f 1 for the two. Our ref B0684.
EHT TRANSFORMER 4kv 2 mA Ex-unused equipment. £5. Our ref 5139
4 CORE TINSEL COPP ER LEAD As fittd to telephones, terminating with flat BT plug. 2 for $\mathrm{E1}$. Our ref BD639.
EHT TRANSFORMER BkV 3mA. $\mathbf{£ 1 0}$. Our ref 10P56
VERY USEFUL MAGNETS Flat, about 1 in long, $1 / 2$ in wide and $1 / 4 a i n$ thick. Very powerful. 6 for $£ 1$. Our ref BD274(a).
ACORN COMPUTER DATA RECORDER Ref ALF03. Made for the Electron or BBC computers but suitable for most others. Complete with mains adaptor, leads and handbook. $£ 10.00$. Ref 10P44. Add $£ 2$ special packing.
SOLAR CELLS Will give good current (depending on size) from sunlight or bright daylight. Module A gives 100 mA . Price f1. Our ref BD631.
Model C gives 400 mA . Price £2. Our ref 2P199. Model 0 gives 700 mA . Model C gives 400 mA
Price f 3 . Our ref 3 P42.
SOLAR POWERED NI-CAD CHARGER 4 Ni-CAD batteries AA (HP7) charged in eight hours or two in only 4 hours. It is complete, boxed ready to use unit. Price $£ 6$. Our ref 6P3
METAL PROJECT BOX Ideal for battery charger, power supply etc. sprayed grey, size $B^{\prime} \times 4 /{ }^{4} \times 4^{\prime}$ high, ends are louvred for ventilation other sides are flat and undrilled. Price $\mathbf{5 3}$. Order ref 3P75
CAPACITOR BARGAIN Axial ended - $4700 \mu \mathrm{f}$ at 25 v . Jap made. Normally 50 p each, but you will get 4 for f 1 . Ref 613 .
SINGLE SCREENED FLEX 7.02 copper conductors, pvc insulated then with copper screen, finally outer ins
screened filex. 10 m for $\mathrm{E1}$ Our ref 80668 .
3 CORE FLEX BARGAIN No. 1 Core size 5 mm so ideal for long extension leaos carrying up to 5 amps or short leads up to 10 amps. 3 CORE FLEX BA
3 CORE FLEX BARGAIN No. 2 Core size 1.25 mm so ideal for long extension leads carrying
for f2. Order ref 2P190
ALPHA.NUMERIC KEYBOARD This keyboard has 73 keys with contactless capacitance switches giving long trouble free life and no contact bounce. The keys are arranged in two groups, the main area
field is a QWERTY array and on the right is a 15 key number pad, board freld is a QWERTY array and on the right is a 15 key number pad, board
size is approx. $13^{\prime \prime} \times 4^{\prime \prime}-$ brand new but offered at only a fraction of its cost namely $£ 3$ plus $£ 1$ post. Ref 3 P27
$1 / 8$ HORSEPOWER 12 VOLT MOTOR Made by Smiths, the body length of this is approximately 3 in, the diameter 3 in. and the spindle
$3 / 15$ th of an inch diameter. It has acentre flange for fixing or can be fixed from the end by means of 2 nuts. A very powerful little motor which revs at $3,000 \mathrm{rpm}$. We have a large quantity of them so if you have any projects in mind then you could rely on supplies for at least two years. projects in mind then you could rely on supplies for at leas
Price $\mathrm{f6}$. Our ref $6 \mathrm{P1}$, discount for quantities of 10 or mo

[^0]: Signature

[^1]: EWMEWTED

 - General-coverage communications receiver, 150 kHz to 30 MHz, AM/SSB and FM, if possible. Tel: (0533) 777636
 - Heathkit modulation meter, any condition. Tel: (0705) 461769
 - FDK-750: spare boards or parts to repair multirig (faults mostly intermittent). Also, technical handbook for 430 expander unit. I have CRT diagrams, so any information on same will be helpful. Also need spare output transistors. Send photocopies, postage refunded. Write to: George Haylock, 28 Longlands Road, Sidcup, Kent DA15 7LT

