

Early Beginningst Amateur Radio Before 1940

The Pamasonic Fi-FBoot
General Goverabe Receiver Pevismed

SCANNER CORNER

CHALLENGER B. 200 Mk $2 \mathrm{HF} /$ VHF scanning recelver. Our most popular scanner! 26-520 MHz (with some gaps) - 16 memory channels, search scan, priority and delay covers civit and most military bands complete with free Raycom air band antenna
£189.00 plus £ 10.00 post/packing
SONY AIR-7 AIR/PMRNHF/AM scanner. $150 \mathrm{KHz}-2.2 \mathrm{MHz}, 88-108$ $\mathrm{MHz}, 108-136 \mathrm{MHz}$ and 144-174 MHIz. A quality sensitive hand scant ner with good sound, 10 memories per band, priority and delay functions.
£249.00 pius $£ 10.00$ postpacking
SONY PRO-80 AIR/PMR/VHFIAM scanner. The executive version of the AIR-7. More teatures, functions and more coverage.
£349.00 pius £10.00 postjpacking
BEARCAT BC55 XLT starter scanner. 29-54 MHz, 136-174 MHz and $406-512 \mathrm{MHz} .10$ memorles. An ideal first unit.
£99.99 plus £10.00 postpacking

BEARCAT BC100XLT proscanner, as the BC200 XLT (see above) but without 950 MHz . This is real value at £179.99 plus £ 10.00 postpacking

MOBILE

ICOM 3210E DUAL BAND MOBILE, $144 / 430 \mathrm{MHz}$, simple to use but sounds good on the alr and packed with too many features to list. We both use one so it has to be good. £ 499.00 plus $£ 10.00$ post/packing

ICOM 3200E 144/430 MHz DUAL BAND MOBILE package. 25W on both bands, 10 memories and built in duplexer, this rig was selling at over £500 not long ago! A real bargain, and with a free dual band antenna. £399.00 plus $£ 10.00$ post/packing RAYCOM madded version for boom mics with tone on front panel at
£ 419.00 plus E 10.00 post/packing

RAYCOM COMMUNICATIONS SYSTEMS LIMITED INTERNATIONAL HOUSE, 963 WOLVERHAMPTON RD OLDBURY, WEST MIDLANDS B69 4RJ.
 TEL 021-544-6767, Fax 021-544-7124, Telex 336483.

NAVICO AMR1000/S 144 MHz mo bile transceiver. A highly intelligent and well thought out rig, it mounts fust about anywhere and features auto tone burst, proper repeater chanelling. Excellont results on our Marconi tester. Well worth a look at. Pricos from £247.25 plue $£ 10.00$ post/packing

HF/NHF/UHF RX/TRX

ICOM ICR7000 V/UHF The ultimate in receivers, all mode $25-1300 \mathrm{MHz}$ (2 GHz) with free Royal 1300 discone £ 925.00 plue $\mathbf{\Sigma 1 0 . 0 0}$ post/packing

ICOM KCR71 SW Recelver covers all short wave bands. For the serious listener, with free short wave antenna £825.00 plus $£ 10.00$ post/packing

YAESU FT747GX All band/mode transceiver with RAYCOM Mk. 2 mod for better RX performance. 120W TX, general coverage $R X$ and free 20 amp regulated PSU. A great TRX package £725.00 plus $£ 10.00$ post/packing

YAESU FRG9600 with the famous Raycom modifications. Supplied with free Royal 1300 discone and free mains psu. We really make them perform. Why not let us mod your 9600 ? Mark 2, 60-950 MHz + iwsaked RX £ 545.00 plus $£ 10.00$ post/packing Mark 5, $100 \mathrm{KHz}-950 \mathrm{MHz}$ plus N connector plus active front end £699.00 plua $£ 10.00$ post/packing Your 9600 modded to Mark 2 £ 40.00 plus $£ 10.00$ postpacking Your 9600 modded to Mark 5 £129.00 plus $£ 10.00$ post/packing (2-3 week tumround subject to parts)

TEN-TEC PARAGON. A fine transceiver from one of the worlds best. A world-dass rig you must come in and try out. 100 w all mode, general coverage receiver. Computer in and voice module optional.
£1898.00 plue £10.00 post/packing

We stock much more than we can possibly list here. Piease call us if you don't see what you want or if you would like a detailed price list ol our products.

RAYCOM gives you MORE PURCHASING POWER

ALL MAJOR CAEDIT CARDS ACCEPTED. BC. ACCESS. OINERS. WSTANT CREDIT UP TO $\$ 1000$ (SUBJECT TO STATUS) WITH RA YCOW CREDIT CARD . FREE CREDIT ON CEATAN ITEMS AT M.R.P. CALL NOW FOR APPLICATION FORMS ANO MORE DETAILS. CEL:021-544-6767 FULL RANGE OF ICOM YAES BEARCAT MF BUTTERNUT CUSHCRAFT AEA NA KCO, TONNA. TEN TEC. WELZ IN STOCK MOST PRODUCTS YOU SEE IN THIS MAG are available at baycom. plus our special package deals. call us now FOR DETALLS OR SEND LARGE SAEI

EASTERMADNESS!

Bearcat BC200xLT

THE BEST HANDHELD VHF/UHF SCANNER

COVERS 29 TO 956 MHz (with some

 gaps). Covers all popular VHF/UHF PMR, Amateur, Air Band, Marine, Cellular and many other interesting frequencies. 200 Memory Channels. Complete with helical, detachable NiCad pack and charger. Green keyboard/display nightlight. Super fast scan and search mode. Free where-tolisten guide and backed by Raycom scanner expertise and service.
$£ 1999$

Save $£ 50$ on current MRP! Bearcat 100xct as above less 950 MHz only $£ 179.99$
PLUS $£ 10.00$ post/packing
This offer cannot be repeated!

RAYCOM NEWS BOX

Lots happening at Raycom! We are now stockists of the HRS range of Cushcratt and Butternut antennas, MFJ accessories and Packet terminals. See the TEN-TEC Paragon HF TRX and have a go. It's a beauty! - We are now stocking AEA PK-232 Packet terminals and software - RAYCOM goes digttall - We are now caryying NAVICO VHF mobiles. A nicely designed rig from the marine radio specialists, worth a book. - New Yaesu handhelds in slock, little beauties and best deskgned HT we have seen for a while. Look for a RAYCOM special mod for this one. - ICOM 725's now in stock, this will be a winner with the same type of DDS synth system as the IC791. Dont buy an HF rig without looking at it. - We always look around for good scanners. Watch this space! $50-950 \mathrm{MHz}$ plus Pan Display! - New ICOM mobiles and HT's on the horizon. - Re-organisation in our service and shippling departments to improve service turnaround. - If you need anyhing to do with radio please call us, it we haven't got it we can probably get it! We have thous ands of lems too numerous to list here. We are always looking for used kit and will give you a good part exchange on new equipment. We are SONY dealers and canry a wide range of their quality re ceivers and scanners. - Don't forget wo are now open again Thursdays, and late Friday until 7 pm . ICOM 3200 with tone button mod now available for headset use at $£ 419$ plus cartiage Raynet modded 3210 avallable - call.

ANTENNA FARM

10-3CD	3-ele 10 m	$£ 115.04$
R4 vert.	10/15/20	$£ 219.00$
AV4	4-band	$£ 104.58$
Ranger	VHF	$£ 42.95$
Ranger	UHF	$£ 42.73$
HF6V	5 -band	$£ 159.00$
SC3000	Scanner	$£ 63.99$
70N2DX	Mobile dual	$£ 37.00$
G5RV	Full size	$£ 16.95$
G5RV	Half size	$£ 14.95$
RI300	Discone	$£ 59.50$

TCLDSB Single band $£ 69.95$ TCLDDB Dual band $£ 99.95$ This is only part of our stock of HF VHF, UHF and mobllo antennas. We also carry a wide range of accesso ries tor antennas. Call for info or drop in for troe advice! And of course there's always our farnous ROYAL 1300 discone (improved spec. over ICOM AH7000 Diamond D109) still at $£ 59.50$ plus $£ 5.00$ post/packing.

ORDEATNG
INFORMATION
ALL PRODUCTS SHOWN ARE NORMAL STOCK TTEMS. PHONE BEFORE 4 P.M. FOR NEXT OAY DELIVERY, MALL OADER PLEASE INCLUDE CARRIAGE ANO PHONE NUMBER. TTEMS OVEA 9750 CARRIAGE FREE. please allow time for personal CHEOUES TO CLEAR. MANY OTHERITEMS IN STOCK. PEASE CALL FOR MORE INFORMATION AND FOR EXTRA SPECILI DEASS.
$\left\lvert\, \begin{aligned} & \text { NFOLINEOB36 282228 } \\ & \text { ODM (wcekdoysonly }\end{aligned}\right.$
STOP PRESS, DUE TO POPULAR DEMAND WE ARE OPEN THURSDAYS AGA LIOPENE ING HOURS ARE NOW 9.5 MONOAY TO SATURDAY, LATE NIGHTS TILL 7 PM ON FADAY. DDE PAY CWOH ND yn CROMP.

E

P. M. COMPONENTS LTD
 SELECTRON HOUSE, SPRINGHEAD ENTERPRISE PARK
 TELEX SPRINGHEAD RD, GRAVESEND, KENT DA11 8HD

Semiconductors

8 Cl 18418	0.09
BC204	0.25
BC2078	0.25
B(2088	0.20
BC212	0.09
B(212 L	0.09
BC213	0.09
BC213t	0.09
BC214	0.09
BC214C	0.09
BC2141	0.09
BC237B	0.15
BC238	0.15
BC239	0.15
BC251A	0.15
BC252A	0.15
BC258	0.25
BC25BA	0.39
BC284	0.30
BC300	0.30
BC301	0.30
BC303	0.26
BC3078	0.09
BC327	0.10
BC328	0.10
BC337	0.10
BC338	0.09
BC347A	0.13
B(46)	0.35
BC478	0.20
BC527	0.20
BC547	0.10
BC54B	0.10
BC549A	0.10
BC550	0.14
BC557	0.08
BC55B	0.10
BC639/10	0.30
BCY33A	19.50

BDSIB	0.75	BF259	0.28	BFY50	0.32
BD520	0.65	BF271	0.28	BFY51	0.32
BD53a	0.45	BF271	0.26	BFY90	0.71
BD535	0.45	BF273	0.18	BLY48	1.75
BD575	0.95	BF335	0.35	BR100	0.45
BD587	0.95	BF336	0.34	BR101	0.49
BDS88	0.95	BF337	0.29	BR103	0.55
BD698	1.50	8F338	0.32	BR303	0.95
BD701	1.25	8F355	0.37	BRC4443	1.15
BD702	1.25	BF362	0.38	BRY39	0.45
BD707	0.90	BF363	0.65	BSW64	0.95
BD×32	1.50	BF371	0.25	BSX60	1.25
BD×538	1.65	BF394	0.19	BIIO0A/02	0.85
BF115	0.35	BF 422	0.32	B1106	1.49
BF119	0.65	8 EF 423	0.25	B1116	1.20
BF127	0.39	BF 457	0.32	81119	3.15
BF154	0.20	BF 458	0.36	B1120	1.65
BF15B	0.22	BF 467	0.68	BU105	1.95
BF160	0.27	BF493	0.35	NUIOB	1.69
BF173	0.22	814995	0.23	Bul24	1.25
BF177	0.38	Bf4997	0.25	Bul25	1.25
BF178	0.26	Bfr39	0.23	BUi26	1.60
BF179	0.34	BFR40	0.23	BU204	1.55
BF180	0.29	BFRBI	0.25	BU205	1.30
BFIBI	0.29	BFR88	0.30	BU208	0.95
BF182	0.29	BFR90	1.50	BU20BA	1.15
BF183	0.29	BFR91	1.75	BU2080	1.35
BF184	0.35	BFT42	0.35	BU326	1.20
BFIB5	0.28	BFT43	0.35	BU326s	1.50
BF195	0.11	BFW10	0.55	BU407	1.24
BF197	0.11	BFWII	0.75	BU408	1.50
BF198	0.16	BFW16A	1.15	BU426A	0.75
BF199	0.14	Bfw 6	0.60	Bu500	2.25
BF200	0.40	BFW92	0.85	BU508A	1.95
BF240	0.20	$8 \mathrm{X} \times 29$	0.30	Bu526	1.90
BF241	0.15	BFX84	0.26	BUB07	2.25
BF245	0.30	8FXB5	0.32	BUY20	2.15
BF2561C	0.35	BFX88	0.25		
BF257	0.28	BFYIB	1.35		

Buval	2.50	R2008B	1.45
GETIII	2.50	R2009	2.50
GEX542	9.50	R20108	1.45
M 33000	1.98	R2322	0.58
MJE340	0.40	R323	0.66
MJE350	0.75	R2540	2.48
MJE520	0.48	R(A16029	0.85
M.E2955	0.95	R(A16039	0.85
MPSAI3	0.29	R(A16181	0.85
MPSA92	0.30	R(A) 16334	0.90
MRF237	4.95	R(A) 6335	0.85
MRF4SOA	15.95	R(A) 6572	0.85
MRF453	17.50	S20600	0.95
MRF454	26.50	SKESF	1.45
MRF455	17.50	16021 V	0.45
MRF475	2.95	1602TV	0.45
MRF477	14.95	16029 V	0.45
MRF 479	5.50	16036 V	0.55
OCl6 W	2.50	19002 v	0.55
OC23	9.50	igoliv	0.75
OC25	1.50	19015 V	2.15
OC26	1.50	19034 V	2.15
OC2B	5.50	19038 V	3.95
OC29	4.50	THY15/80	2.25
OC32	5.50	THY15/85	2.25
0 C 42	1.50	T1P29	0.40
OCas	1.25	IIP290	0.42
0 C 45	1.00	IIP30	0.43
0¢70	1.00	IIP31C	0.55
$0 \subset 71$	0.75	IIP32C	0.42
$0 \mathrm{C7} 2$	2.50	IIP33C	0.95
OC75	1.50	IIP348	0.95
OCB)	1.00	IIPAIA	0.45
OCB4	1.50	IIPAIC	0.45
OC139	12.50	IIP42C	0.47
OC171	4.50	T1P47	0.65
OC200	4.50	11P48	0.65
OC201	5.50	TIP50	0.65
OC205	10.00	TIP120	0.60

2.50
1.45
0.58
0.66
2.48
0.85
0.85
0.85
0.90
0.85
0.85
0.95
1.45
0.45
0.45
0.45
0.55
0.55
0.75
2.15
2.15
3.95
2.25
2.25
0.40
0.42
0.43
0.55
0.42
0.95
0.95
0.45
0.45
0.47
0.65
0.65
0.65
0.60
 0.65
1.15
2.75
2.95
0.80
0.55
0.20
1.50
1.50
16.50
6.50
1.35
0.30
0.28
0.55
0.40
0.40
0.59
0.52
0.12
0.12
0.12
0.20
0.12
0.12
9.50
2.75
1.35
3.50
1.95
1.15
0.42
0.48
0.60
0.45
0.95
16.50
16.50
0.95 $\begin{array}{ll}\text { 2SA715 } & 0.55 \\ 25 C 495 & 0.80\end{array}$ $\begin{array}{ll}25(495 & 0 . \\ 25496 & 0 . \\ 25784 & 0.75 \\ 25(785 & 0.75\end{array}$ 2SC785
$25(799$
$25(9310$ 2SC9310
2SC937
2SC1034 2SC937
25C 1034
2SC 1096
2SC 1108 $\begin{array}{ll}25 C 1106 & 2.50 \\ 25 C 1124 & 0.95\end{array}$ $\begin{array}{ll}2 S C 1124 & 0.95 \\ 2 S C 1162 & 0.95 \\ 25 C 1172 \gamma & 2.20\end{array}$
2SC1173
$2 S(1306$
$25(1364$
$25(1413 A$
$2 S(1449$
$\begin{array}{ll}\text { 2SC1628 } & 0.15 \\ \text { 2SC1678 } & 1.50 \\ 2 S C 1995 & 3.75\end{array}$
$\begin{array}{ll}2 \mathrm{SC} 1953 & 0.95 \\ 25 \mathrm{Cl} 1957 & 0 . \\ \text { 2SC1969 } & \end{array}$
$\begin{array}{ll}\text { 2SC1969 } & 2.95 \\ \text { 2SC1985 } & 1.50 \\ \text { 2S } 202 \mathrm{~B} & 1.15 \\ \text { 2S } 2029 & 1.95\end{array}$
$\begin{array}{ll}\text { 25C2029 } \\ \text { 2SC2078 } \\ & 1.45 \\ 25(2091\end{array}$
$\begin{array}{ll}\text { 2SC2091 } & 0.85 \\ \text { 2SC209B } & 2.95 \\ \text { 2SC2160 } & 1.95 \\ \text { 2SC2314 } & 0.80\end{array}$
$\begin{array}{ll}\text { 2SC2314 } & 0.80 \\ \text { 2SC2371 } & 0.36 \\ \text { 2SC9310 } & 0.95\end{array}$
$\begin{array}{ll}25(2310 & 0.95 \\ 25(9310 & 0.55 \\ 25 k 19 & 0.55 \\ 25 k 33 & 0.55 \\ 35 k 88 & 0.95\end{array}$

AN 103	2.50	AN7145M	3.95	Lasl02	1.50
AN124	2.50	AN7150	2.95	LA4140	2.95
AN214	2.50	AN7151	2.50	LA 403lP	1.95
AN2140	2.50	BA521	1.50	LA4400	3.50
AN236	1.95	CAl352E	1.75	LA442D	3.50
AN239	2.50	(A3086	0.46	LA4422	1.50
AN240P	2.80	(A3123E	1.95	la4430	2.50
AN247	2.50	(A313EM	2.50	(A446)	3.95
AN260	2.95	(A3140S	2.50	1(7)20	3.25
AN262	1.95	(A3140T	1.15	LC7130	3.50
AN264	2.50	ETT60i6	2.50	1 67131	5.50
AN271	3.50	HA1137W	1.95	167137	5.50
AN3DI	2.95	HAllsow	1.50	LM323K	4.95
AN303	3.50	HA) 306	1.50	LM324N	0.45
AN313	2.95	HA1322	1.95	1 M 380 N	1.50
AN315	2.95	HA1339A	2.95	LM380NB	2.95
AN316	3.95	HAl360W	2.75	Lm383T	2.95
AN331	3.95	HA1406	1.95	(M390N	3.50
AAN342	2.95	HAl551	2.95	(M1011	3.15
AN362l	2.50	(A)201	0.95	M51551	2.95
AN612	2.15	LA1230	1.95	M515131	2.30
AN6362	3.95	(A3201	0.95	M51521L	1.50
AN7140	3.50	LAsl0	0.95	M83705	1.50
AN7145	3.50			M83712	2.00

M83756	2.50	SAS590	2.75
MC1307P	1.00	St901B	7.95
M (1310P	1.95	St9178	6.65
MC1327	1.70	St1310	1.80
MC13270	0.95	St1327	1.10
MCI351P	1.75	St13270	1.10
MC1352P	1.00	SN7414	1.50
MC1357	2.35	SN7421	0.85
MC1358	1.58	SN76110N	0.89
MC1496	1.75	SN76115N	1.25
MC1723	0.50	SN76131N	1.30
MC3357	2.75	SN762260N	N 2.95
MC3401L	2.50	SN76227N	1.05
MC14106P	2.95	SN76228N	2.95
MC1451BCP	7.50	SN76533N	1.65
ML231B	1.75	SN76650N	1.15
ML232B	2.50	SN76660N	0.90
Ml239	2.95	STK011	7.95
MSM5807	8.75	STK014	7.95
SAASOOA	3.50	STK015	5.95
SAA 1025	1.25	STK01B	7.95
SAAL251	4.95	STK025	11.95
SAASOID	5.35	STK032	7.95
SAA5020	5.75	STK078	11.95
SAB3210	3.50	STK085	8.95
SASS60S	1.75	STK415	7.95
SASS7DS	1.75	STK435	7.95
SASS80	2.85		

STK437	7.95	TA7609p	3.95	TBA5500	1.95
STK439	7.95	IA7611AP	2.95	TBAS60C	1.45
STK461	11.50	TA7629	2.50	tBA5600	1.45
STK463	11.50	taA3I0a	3.50	tBA570	1.00
STK0015	7.95	taA320a	3.50	TBA651R	2.50
STK0029	7.95	taA3SOA	1.95	tBa673	1.95
STK0039	7.95	taAs50b	0.95	tBA750	1.95
ta7061ap	1.50	tass70	1.95	TBA7500	2.65
TA7072	2.65	táab21	3.95	tBab00	0.89
TA7073	3.50	ta abzos	2.95	tBabioas	1.65
TA7108p	1.50	taAbblb	1.95	tBABIOP	1.65
TA7120P	1.65	taA700	1.70	tbabzom	0.75
TA7129P	2.50	taA930	3.95	TBAB200	1.45
TA7130P	1.50	IBAI20AS:	B/C	твав9\%	2.50
TA7137p	1.00		1.00	TBA920	1.65
TA 7146 P	1.50	SA/SB/T/L		TBA950; 2 x	1.50
TA7176AP	2.95	TBA395	1.50	TBA990	1.49
TA7193P	3.95	tBA396	0.75	TBA9900	1.49
TA7203	2.95	TBAA40N	2.55	ICA270	2.50
TA7204P	2.15	TBA4BOQ	1.95	ICA27050	2.50
TA7205AP	1.15	IBA510	2.50	tcab50	2.50
TA7208	1.95	TBA5100	2.50	TCA760	2.50
TA7222AP	1.80	tBAS20	1.10	${ }^{\text {T }}$ ($\mathrm{ABj0}$	6.95
TA7227P	4.25	IBA5200	1.10	t'abjos	1.95
TA 7228 P	1.95	tbas30	1.10	TCA900	2.50
TA731dP	1.80	tBAS300	1.10	TCA940	1.65
TA7314P	2.95	ibas40	1.25	TDA440	2.20
A7321P	2.25	tBA5400	1.35		

TDA 1001	2.95	TDA25B1	2.95
tDA 1003a	3.95	TDA25B2	2.95
TDA 1006A	2.50	TDA2593	2.95
TDA1010	2.15	TDA2600	6.50
tDA 1005	2.25	TDA2610	2.50
tDal03s	2.50	TDA2611A	1.95
TDA1037	1.95	TDA2640	3.50
TDA1044	2.15	TDA2655	4.50
TDA1170	1.95	TDA2680A	2.75
TDAll80	2.15	TDA2690	2.45
TDA12700	3.95	TDA3310	2.95
TDA1327	1.70	TDA3510	3.50
TDA2002	0.95	TDA3560	3.95
TDA2003	1.95	TDA4050	2.95
§DA2010	1.95	TDA4600	2.50
TDA2020	2.95	TDA9503	3.15
TDA2030	2.80	TEAIOOS	1.35
TDA2140	3.95	UPC4IC	3.50
TDA2150	2.50	UPC560 H	2.95
TDA2151	1.95	UPC575C2	1.50
TDA2160	2.50	UPCICOIH	1.95
TDA2524	1.95	'JPC1020H	2.95
TDA2530	1.95	UPC 1024 H	1.50
toas 32	1.95	UFC 1025 H	1.95
IDA2540	1.95	UP ${ }^{\text {C }}$ 1028H	1.95
TDA2541	2.15	UPC1032	0.95
TDA2560	1.15	UPC1158H	0.75
TDA2576	4.50	UPC1167C2	1.95

UPC(11BIH 1.25

vioto spares 8 hiads

Hrach VT T 5000	2.95	PYe 7134 LEAD	8.50
Hroch प Y TBOOO	1.25	Pre filis licad	8. 8.50
Notanol Panosonic	295	Pre ${ }^{\text {P31/2S }}$	-3.50
Notionol Penosonic	2.95	${ }_{\text {Rank }}$ RAB23	0.095
NV2008	3.75	RANK T20A	6.95
National Panosonic	275	Stemens tukriol	9.95s
NV77\% ${ }^{\text {Notanal Ponosonic }}$	2.75	(thern 1500	$\xrightarrow{7.45}$
Nv3000	3.75	THORN 1600	5.45
Notionol Ponosoric		THORN 3500	1.95
Nv7000	2.75	THORN 8000	S
Nationol Panosomic		thorn ${ }^{\text {S } 500}$	7.15
Nv88001885098820	3.75	Horn 9000	. 3.50
Sonyo	,	THORN9600	80,
Sonyo Sorus	2.75	tVi3 Stick	1.25
Sany V Vic9300	3.75		1.10
	3.90	iv20 stick	1.40
Sharp 3300	3.50		

Valve Hardware List

DIODES

AAl19	0.10	BYx 36 150R	
BA115	0.13		0.20
BA145	0.16	BYX38 600R	
BAIAB	0.17		0.60
BA15.4	0.06	BYX55 000	0.30
BA156	0.15	BYX 71600	1.75
BA157	0.30	BL×61	0.15
BA24.4	0.75	BL×88	0.10
BA301	0.75	BLY95(30	0.35
BA302	0.85	CS. 18	8.00
BA313	0.75	CS108	18.50
BA318	2.95	MR510	0.65
8A328	2.95	MRSI2	0.65
BA521	1.75	0. 47	0.15
BAV21	0.30	OA90	0.10
BAW62	0.19	OA91	0.15
BAX13	0.04	OA95	0.10
BAX16	0.12	0 O202	0.40
881058	0.30	iN210R	5.00
BIISI	0.79	1N238	2.95
BYI26	0.10	IN23C	4.95
8Y127	0.11	IN23ER	4.95
BY133	0.15	IN23Wt	2.95
BY164	0.45	1 N 4001	0.04
BY176	1.20	IN4003	0.04
BYi79	0.63	IN-100.4	0.05
BT1B2	0.55	in 4007	0.06
BY184	0.35	IN. 11.48	0.02
BY187	0.45	IN:44.48	0.10
BY199	0.40	IN5401	0.12
BY206	0.14	1N5402	0.14
BY208 800	0.33	INS403	0.12
BY210 800	0.33	IN5408	0.13
BY223	0.90	in5407	0.16
BY298 400	0.22	IN5408	0.16
BY299800	0.22	ITTA4	0.10
BYx10	0.50	179923	0.15
BYx 25.600	1.25	1512002	0.10
2fNER DIODES			
B2X61 Series		BLYB8 Series	
			0.20

	Pleose odd 53	1074 H		D9, 110 ch		1142000 M						M28 1316			
			95.00	010.2106 H		01			000			m3	000	M38 ${ }^{\text {diow }}$	
				0102300 cm	5500	OH39	35.00		15.00						
			9,950		5900		1500		350		${ }_{5500}$		555.00		55.00

P．M．COMPONENTS LTD
SELECTRON HOUSE，SPRINGHEAD ENTERPRISE PARK
FEB／MAR＇89 SPRINGHEAD RD，GRAVESEND，KENT DA11 8HD

A selection from our stock of branded valves								${ }^{\text {Pry8 }}$ Prsa 0.05	${ }^{2} 241 / 41 \mathrm{~K}$			49.50	68K4	${ }^{6.50}$	\％7					59．50		
								${ }^{0.85}$		10.95		1.95		．15				0．5s	872A	${ }^{20.00}$		
						kTob teonex		0.85	vas	9.50		5． 40	6896	\％ 0		1.50	${ }_{2089}^{2084}$	1.95	cos	－		
A1714				¢98		${ }^{\text {KT6 }} 7$	${ }_{9} 9.00$	${ }^{\text {cebs }} 1750$	velot	2．93			${ }_{\text {CBNE }}$	1.05 3.95		． 50	21126	4.95	955	∞		
－194	1．150	Eabc80	1.50	¢f183 0	0.75				5／3	2.50		2.50		1.35	${ }^{\text {bub }}$ Sut	3．50		4.05				
A2087	11.50	EACP	2.50	Ef184	0.85			${ }^{000602-5} 19$		2.50		75．00		1.50	${ }_{6} 6$	30	${ }_{24} 4$	30．50	2040	${ }^{25.00}$		
${ }^{42134}$	14.95	${ }_{\text {EAP }}$	1.20	6732	4.50	${ }_{\text {kT88 }}$		Qoet		2．50	${ }^{4.2300 A}$	87.50	${ }_{\text {cher }}^{6887}$		6v6G	1.25	2489	39.50	2050 A	s．95		
		${ }_{\text {E84 }}^{1834}$	1.50 3.95	${ }_{67800}^{6}$	＋1．50		15.00	${ }^{0}$	w61	4．30	${ }_{4}{ }^{4.10000}$ A	－	${ }_{68 \text { W }}^{685}$	${ }_{5}$	6V66							
		${ }_{8891}$	0.85	8004			2.50	oovo2－6 19．50	wn	5．00	4832	35.00		1.50								
A2792	27.50	EBC33	2.50	efress	25.00		2.50	Qovo3．10 5.50	析	4.50		1.75	682	2．50								
A 29	11.50	${ }_{\text {EB }}(4)$		tr806s	25.00		${ }_{2}^{2.50}$		139	1.50				2.95		，		1．35				
${ }^{3} 283$	24.00	EBC81	1.50	Efi			2.50	MULIARD 15.00	${ }^{24}$	4.50	（23）	25.00		1.95		50						
${ }^{\text {A3343 }}$	35.95	E890	1.95	Ef1200	1.50	1877.2085	00	cova3．2023		4.50			${ }^{6 S}$	2.50		1.00						
Acsp3a	4.95		1.95 0.95		3.50 0.72		99．50		${ }^{\text {Kobx }}$	4．95	${ }_{4}^{4 C 5350 R}$		688			${ }_{\text {2，}}$	${ }_{30} \times 18$	${ }_{1}^{1.48}$		9．50		
	S．30		0.95		${ }_{1.50}$	135.0	35.00	covors．40A	${ }_{\times(224}$	S0	${ }_{\text {amac }}$	150.00	68	1.95	${ }_{\text {ald }}$	S0	30 fl 2	1.35		9．50		
	39，35			${ }_{\text {H132 }}$	0.95				（22	0.50	4 CR250			4.95						2.50		
	39.00				5.00		6.00		，	1.50				3.50						9，		
	6.00	${ }_{\text {E B }}$	4.50	込			3.25		${ }^{\text {xfw }}$ O	1.50		65．00	C85	3.95		so				25		
	14.00		4.50								${ }_{4} \times 1235$					50		0.45		0		
AR	2.50	ESS2	0.75				7.50			50			$\triangle C 066$	4.50	7	．50	3015	0.60		78．50		
	1.25		1.75											4，95	${ }_{70}$	1.50	30 P	1.00		4.50		
	${ }_{2}^{2.05}$	${ }^{\text {E881 }}$	7				5.00	OSIS015 0.95				125.00		b．95	7 H	2.50		1.00		50		
${ }_{85994}$	24．30	Cfic	1.95			s．	5．50	as 150330 li．15			4 Cx330A	100.00	${ }_{6116}$	3.25	${ }^{\text {B8B }}$							
	${ }_{55.00}$	E¢90	1.95			MB136 7.0	7.00	${ }^{\text {as } 150 / 40} 7.00$		79．50	4 4 $\times 10008$		¢c188	2.95	881	．50	${ }_{30819}^{3019}$	2s	${ }^{5704}$	3．50		
	25.		5.50	${ }^{\text {E }}$			7.95	3．95					¢くM	${ }^{2.95}$	${ }_{\text {Bub }}$	． 50	330113	2．60		2．50		
	33.00		1.50				S．s0	${ }^{45437}$		9．50，			cisb	0.15	8888	1.50				，		
	${ }^{27,50}$		7.10			5．	5.50	S． 50		is．00			685 $86 W_{4}$	0．00	${ }_{86} 817$	1.95		5．50		2.50		
	${ }^{17.95}$		1.10				4.50	Ov05．25 2.50	060	265.00			${ }_{6 \times 8} 8$	3.95	1002	1.25	33AN 58		574	${ }^{2.50}$		
	${ }_{12500}^{325}$	${ }^{32}$	3.50			6.5	6.50	6．20 29.50	Y 11020	12.50	4021／4．12	25A	606	2.35	10067	2.50		3.95	5750			
							S．500			195.00		85.0	0， 0	1．35	1008	2，		4.50	5763	${ }_{6.50}$		
	33.00		3.50				5．40			15900	4032	${ }^{123500}$			Low		355669	2.00	581	3.25		
		81	1.50	mullard 4.50			2，00	8s．00		195．00	${ }_{4} 422$	200	SpRCL	3.50 1.50	10 F	0.75				9.50		
（kiose	${ }_{\text {dise }} \mathbf{6 . 5 0}$	Quality 2	2.25			M8225 3.0	3.95	95.00	${ }^{271}$	1.20	${ }_{46} 687$	2.25	6005	8.50	1006	1．95		3.50 5.55		（350		
	8.50		0.85	${ }^{1885}$ 4．50		ME14001 29.5	2．950	${ }_{\text {R18 }}^{\text {R10 }}$	${ }_{23026}^{2300}$	co． $\begin{aligned} & \text { 12．00 } \\ & 1200\end{aligned}$	${ }_{\substack{4 \\ 4 \times 168 \\ 4 \times 16}}$	2．95	600	2．50	${ }_{112} 1204$	55.00	4020	5．50	${ }_{584}$	11.00		
Sos PRI		${ }_{\text {EPLILPS }}$		${ }_{\text {lil }}^{1180}$		29.5	2.95	RGI 1280 A 14.50	2359	．00		150.00		3.50	1123	5.50		6.95		10.95		
D3A	27.50	Ef（83	0.95	${ }_{\text {til }}$			4.00	RC3．250A 0.50	2520 M	4.00	4x150A	35.00	bes	3.95	12 A			6.00				
	1.20			$\begin{aligned} & \text { He9 } \\ & \text { Li95 } \end{aligned}$		195.0	195.00	RC3．12304 35．00		9.50		35.00	6EAT	2.50		Sso				9.50		
	22.50						3.35	15.00	2759	19．35		30.00	${ }^{6}$	2.50								
	17.50	Ecc					${ }_{125}$	3s．00	28030	18.95	sall	9．50	CEBE	3.35								
	4.50					N78 ${ }^{\text {N73 }}$	9．85	38.00	${ }_{\text {2atiou }}$	${ }_{1250}^{12.50}$	SA152M	9.00	¢ 6 6em	号．35	${ }_{12 \text { 2at }}$	1.75	${ }_{50 \mathrm{H}}$	i．so	5963	1.75		
	${ }^{0.995}$					${ }_{0 A 2}{ }^{\text {a }}$	1.50	${ }_{5 C 1 / 1300} 0.00$	${ }^{24}$	12.00	${ }_{\text {SAlOOK }}$	0．25	¢m	${ }_{2} 2.50$	1247	1.50	sors	2.95	${ }_{5965}$	2.15		
	${ }_{1.75}^{0.95}$	low nose					2.50	${ }_{3} .50$	2 L 1005	． 00	5A．18	． 20	6fU	1.75		2.50	53k					
		Low merophony				2.	${ }_{2} 2.50$	800140		． 00		10.00		2.95	${ }^{2} 2246$	1.35				225		
			1.50 250 1			（102．5300 95．00	2M102	8．00	${ }_{58}^{58.120}$	0．00	${ }^{6}$ 6ew	1．20	${ }_{12}^{12 A N}$	1.95	80	4.50	6072	9，9				
	${ }_{28.50}^{23.00}$			3.50			3.65	${ }^{0} 23$	2.50	тв3．750 115.00	2M104	14.00	58.255 m	1．4．50	${ }^{6} 55$	5.50			${ }^{83}$			
	28.50				8.95	2.5	${ }_{2}^{2.50}$	${ }^{183.2000}$	2M1092	9.00	58．285	is．00	$6{ }^{6}$	5.50	${ }_{12 \times 12 a c}$	2.50	${ }^{\text {B3al }}$	7.50		9．50		
	2.50						2，300		2 cmias	10.00	${ }^{588.259}$	s．00	${ }_{6} 6$	3.00	${ }_{2}$	2．50		95		2．50		
	33.00	8RIMA						1.75		2 m	\％．00	238 M	12500		${ }_{2} 1.15$	$2 \times 7 \times 5$	7.95		11.50		50	
	35．00		1.95				2.50	－100／E	2M1202	\＄5．00		50		${ }_{0.60}^{2,50}$	12 A 77	3.95						
	${ }_{2}^{27.50}$		1.95			ORA	3.95	35.0	${ }_{2 \times 1263}$	4.00	30E			1.25	1284	4． 50		11.50				
	${ }_{3200}^{22.00}$	Stit				P61 2.5	2.50	T15 45.00	${ }_{1 / 2}{ }^{\text {a }}$	4.50	寿	2.95	${ }_{6} 625$	1.25	12836	2.50						
Df9］	1.50		1.50				2.50	T21 45.00	1 AEA	3.50	SRacb	s． 50	${ }_{6} 628$	1.25	128		${ }^{9} 1 / \mathrm{AC}$	9.00		2.50		
	1.50		2.75			0.9	0.95	39.50	${ }^{4} \times 2$	3.50	srac	4.95		1.25			${ }^{922 A G}$	19．50	1588 6158	${ }^{3} \mathbf{3} 20$		
	1.25		${ }^{1.35}$				0.75	1254 ${ }^{69.00}$	${ }^{1822}$	10．00	${ }_{\text {SRaw }}$	S．95		－	${ }_{1288}^{288}$	1．95	9sA	${ }_{6} 8.50$	6201	b．45		
O6，	1.25		1.50			1.1	1.10	TY4．400 85.500	${ }_{\substack{1837 \\ 1839}}^{182}$	\＄1．95	${ }_{5}^{514}$	s．95	6 H	${ }_{1}^{15.50}$	12877 A	3.50	10061	10.00	${ }^{6350}$	${ }_{3}^{3.50}$		
0463	${ }_{1.50} 8$	2	2．50			PCP90 1.2	1.25		，	45．00				4.50	${ }^{22} 8$	2.50	108 C	2.50	6360	so		
DH7］	0.90	$\mathrm{Ecc}^{\text {crois }}$	6．95			${ }^{\text {Peccra }}$	0．0．95	TYQ	${ }_{8634}$	${ }^{75} 5$	SuGG	4.50		4.50	${ }_{12}^{122} 12 \times 8$	1.95	${ }^{1508}$		6386	S		
	1.120	（Ecre3s3	6.95 0.60			${ }_{\text {PCCCB }}$	0.70		¢ $\begin{aligned} & \text { K3 } \\ & \text { NSC }\end{aligned}$	2．50		${ }_{4}^{2.95}$	6 CH	2．50	1200	3．50	15002	2.50	${ }^{6463}$	7.50		
	2.50	ECC2000	7.95		Ev84 5.95		0.70	$019 \quad 0.50$	${ }^{1928}$	25.00	5×4	4.95	$6 G 7$	0.85	12003	3．50	15004	2.50		3，95		
	1.00	ECCBO	1.15				0.70	$426 \quad 0.90$	1RS	1.50	5336	2.50	$6 \mathrm{CK6}$	3.95	1223	3．95	${ }^{18581}$	1.50 1500				
	2.50		1.50			${ }^{\text {Prccies }}$	0.60	U35	${ }_{1}^{135}$	1.50	S23	4.50		${ }_{215}^{2.65}$	${ }_{1} 1214$	33.00	2300	15.00	68838	9.95		
（1）	2．50		1.85			PCC82 0.	0.80	U41 0.95	（144	1．75		2．70		0.95		1.95	2310	15.00	${ }^{6973}$	7.95		
	${ }^{3.195}$	202	1.85	$\begin{aligned} & \text { EY91 } \\ & \text { EYS00A } \end{aligned}$	0.70	${ }^{\text {PCf } 880} 0.06$	0.65	Uso 2.00	lus	i．so	${ }_{6}{ }^{\text {and }}$		${ }_{66} 6$	2.50	126 N 7	3.95	2501 H	150.00	7025	2．50		
	1.150		0.85		1.00	${ }^{\text {PCFF82 }}$	${ }^{0.60}$	U82， 3.00	1×25	2.50		4.95		4.95	${ }^{12 \mathrm{CH}}$	3，95	${ }_{3}^{307}$	S．00	${ }_{7}^{70235}$			
	13.50 10.00		2．50		${ }_{3}^{3.50}$		${ }^{0.125}$	U191 192 0.70 1.00	${ }_{2}^{2 A 3}$	$1{ }^{10.50}$	${ }_{6 A B}^{6 A B}$	2．50	${ }^{66 \mathrm{CH}}$	${ }_{\text {Q }}^{\text {2，50 }}$	1237	3.50		59.90	7119	9．00		
	9．25	${ }_{\text {cf（crab }}$	10．25					1.25	41931.00	${ }_{297}^{24}$	4.50	6ACT		${ }_{\text {SH6C }}$	2.50	1272	2.95	${ }^{\text {720SA }}$	12.50	${ }_{71789}^{7189}$	\＄．50	
	0.50	$\mathrm{EEH3}^{4}$	4.50				${ }^{\text {P PCFF200 }}$	1.180	U251 $\quad \begin{aligned} & \text { 2．50 }\end{aligned}$	${ }^{2822}$	69.50	bacs	2.50	6H8	1.95	${ }^{2 \times 6 \mathrm{CT}}$	1.50		5s．00	7247	9，95	
	${ }^{\text {7．95 }}$		4.35		． 1.50	${ }_{\text {PCFF201 }}$	1.1 .85		${ }^{2338}$	cosice	${ }^{6 A G 7}$	2．50		cisc	（12888	1.95	${ }^{724 \mathrm{~A}}$	275．00	7475	． 0		
	1.50	［EH33	1.50	W4－800 655／1k	${ }_{9}^{4.00}$	PCCF802 0.23	0.35	UAFA2 1.95	${ }_{2}^{3 C 3989}$	32．50	${ }^{\text {bahb }}$	3．50	6H0S	${ }_{3} 2.50$	1257	i．so	725A	275.00	${ }^{7} 2888$	．00		
Orroz	${ }_{0}^{0.85}$		1.75		6．95		125	3．95	$2(40$	37.00	${ }_{6 A 17}$	${ }_{2} .00$		4.95	1254	1.95	${ }^{2264}$	00		${ }_{50} .00$		
		$\mathrm{ECHB3}^{\text {ECH }}$	1.50		9.90	1	1.120	1．50		29.50		25		2.95	${ }^{256}$	4.75	${ }^{8014}$	${ }^{15.00}$	${ }_{7881}$	998		
	19.50	¢tchea	1.1 .50		17．50	1.	1.25	0．00	${ }_{2}^{2(4)}$		Sals	2.50		3.50 2.5	（12537	1．50		${ }_{\text {12，95 }}^{25.00}$	7588 758 58	cos 5		
	${ }_{18.50} 12$	tcti80	0.60		17.50	${ }^{\text {PCLCB2 }}$	0.85	U821 1.75	${ }_{20}$	1.50	6AMA	${ }_{3.25}$	${ }_{6}^{6} 5156$	2.50	${ }_{123510}$	1.85		59.00	${ }_{7597} 78$	8．95		
	29.50	${ }_{\text {ECLIB2 }}$	1.00		17．50	2	2.50 0.75	1.720	${ }^{2021}$	2.25	6AMS	6．00	${ }^{616}$	2.00	${ }_{\text {l }}$	450		3．3．500	${ }_{7815}^{7815}$	cos． 8.50		
	3.50 12.00		2.50 100			${ }^{\text {PCLI85 }}$	0.30	Uç8s ${ }^{\text {cras }}$	2022	3， 3.00	bams	li．30		4.15	12×4	1.95		33.00	7895	＋17．50		
	${ }_{4}^{1250}$	${ }_{\text {ccies }}$	0.95				0．85		2626 225	1.95	6ANBA	4.50	${ }_{6,186}{ }^{6}$	9．50	1307	3.20	813 P		${ }^{8156}$	\％ 95		
	4．50	${ }_{\text {Ec188 }}$	1．50	4 4	${ }_{15.00}^{0.00}$	5.	${ }_{5.95}^{0.90}$	2.50 2.50	3	${ }_{\substack{29500}}$	${ }^{\text {babs }}$	S		9.50	13067	2.50				50		
883	¢， 9.50		2．35			${ }^{\text {Pefl } 1000} 69$	59．90	UCHA1 2.50 UCH42 3.95	226	${ }^{49.50}$	${ }_{6}^{64 A}$	${ }^{1.95}$		${ }_{2} 9.50$		${ }^{14.550}$	${ }_{8298}^{813}$	21.40 14.50	5023	\％．50		
	1.95		${ }_{50}$ 65010c 16		（1）${ }^{10,50}$		${ }^{2} .00$	1.00	2K29	250.00	6ass	1．50	${ }^{6156}$	9.50	${ }^{13} \mathbf{3} / 2$	3.50		95.00	9003	5		
	3．95				12.00	d	3000	cin	8，${ }^{18}$	140.00	6ASS	2.50		${ }_{3}^{2.00}$	（1486	${ }^{4} 50$						
（88CC		$\substack{\text { cfan } \\ \text { fat }}_{\text {che }}$			（1）		3.	${ }_{3} .000$				${ }_{\text {basio }}$	${ }^{1.95}$		3.00 9.50	155	5．50					
mutt								2.00		新78	2．00	bATB	1.75		S．	16 A	1.95					
	7.95				（1）		${ }^{\text {Pr }}$	1，35	12	3 3A1088	9.00	6A	2.95	611	2.50	${ }^{166}$	20，	CAL	LLER	WEL	COME	
	1．95		1．201．2030，				${ }_{\substack{\text { Pl3 } \\ \text { P136 }}}^{\text {P1 }}$	1.75	UF85 UF89 1.25 1.00	1098	${ }^{11.00}$	baus	4.50			${ }_{161}$	0．40		NMON－T	UUR 9AM	5．3	
	3.95					P181 1.2	1.25	ULA1 10.00	3A1／411\％	${ }_{1}^{12.50}$	${ }_{\text {GAVE }}$	1．95		3.50	${ }_{17} 18$ A	3.30		FRI 9 A	－5．00P			
	6.95				1.50	${ }_{\text {P183 }}{ }_{\text {P182 }}$	0．0．60	Ul4s $\quad 3.50$	${ }^{3 N 146}$	7.50	${ }^{\text {baw }}$	3.50	blt	3.50		1．95		HOURA	NSWER	E		
1301 18004	18.50 10.50		边	$\begin{array}{ll}\text { creoz } \\ \text { C232 } & 1.50 \\ 2.50\end{array}$		0	0．78	U185 ${ }^{\text {U188 }}$	3AN47）	7．50	${ }_{\text {6ax }}^{\text {gax }}$	1.95 1.95	（115	3．15		${ }^{2.95}$		SER	VICE＇			
1808	6．50				4.50	P1500	1.25	3.50	333 A	${ }^{3} .95$	${ }_{\text {bAAB }}$	4.50	6148	2.50	127\％	1.50	ACCE	ESS \＆	ARCLA	YCARD		
	9．00	EFB3 EFB5 EF85 EF86			2.50 4.50		1.125	$\begin{array}{ll}\text { UuG } \\ \text { UU7 } & 8.000 \\ 8.00\end{array}$	3AA	1．50	${ }_{68186}^{6886}$	2．50	（1202	1.15	${ }_{1803}$	S00	PHON	NE ORD	ERS WEL	COME		
	$\xrightarrow{8.50}$		5	cisch	1.95	Pl509 4	4.85	UU8 ${ }^{0.00}$	3AT2	${ }_{3} 3.35$	8810	1.50	6106	9．50	18685	3.50		UK ORD	RS P\＆P	§1		
	12.50				3.50	PL519 4.5	4.95	3.50	3622	25.00	${ }_{6 B A}$	4.50	${ }^{9828}$	2.00	19905	3.50		LEASE	DD 15\％	vat		
	19.50				${ }^{3.50}$	6	． 3.00	0.70	3826	${ }^{2} 4.00$	6BA8	3.50	硅	1.50	19946	250	ExPO	ORT ORD	ERS WE	LCOME		
	${ }_{1750}^{12.00}$	${ }_{\text {Ef89 }}^{6 ¢ 99}$			${ }_{3}^{7.00}$	2	2．95		（ 3828	${ }_{1}^{15.50}$	68C8	1.50 2.95	${ }_{6}^{687}$ 6RHB	3.15 10.00	${ }_{1963}$	19.90		CARRIA	E ATC	ST		
（8iof	25.00		2．1．50	1，995	2.95		0.60	$\checkmark 23$	3845	79．50	885	${ }_{1.50}$	${ }_{6 S 5 A}$	1.95	960	9.00		PLEASE	SEND Y	UR		
	1.00				S．9．95	0．	0.50 0.00		3×300		68666 8846	${ }^{3.00}$	${ }_{6}^{6547}$	1.95	（19H4	${ }_{33.50}^{33.00}$	ENO	UUIRIES	FOR SP	ECIAL		
A52	${ }_{5}^{1.000}$	± 93	$\begin{aligned} & 1.95 \\ & \hline 0.95 \\ & 0.90 \end{aligned}$		${ }_{5.90}$	PY82	0.70			${ }^{650.50}$	н8	${ }_{1}^{1.95}$		1.95	， 0 S			otatio	NS OR	ARGE		
	${ }_{1.95}$	$\begin{gathered} \text { Ef95 } \\ \text { F97 } \end{gathered}$				0.	0.70		3021 A	20.50	6816	1.50	6S1769	1.95	2001	1.50		REQU	REMEN	TS		

TRIPLE CC POWER SUPPLY
The TS3023S is a laboratoryquality triple output power supply. Two outputs each provide 0 to 2A at 0 to 30 V and can be switched to independent tracking; the third output provides up to 4A at 4 to 6 V for logic circuits. All outputs have remote sensing.
Both 0 to 30 V 2 A outputs have 0.5 in 3.5 digit liquid crystal displays which simultaneously display output voltage and output current. With the output switch off, the display can be used to preset the output voltage and current limit prior to connection of the load. The power supply operates in constant current or constant voltage modes with automatic crossover. A display annunciator indicates constant current mode. Coarse and fine controls permit the output voltage to be set within 5 mV , and the current limit control is logarithmic to give good resolution at low-current settings. Load and line regulation are better than 0.01% with ripple and noise typically better than 1 mV . The two supplies can be switched to be independent or tracking.

The 4-6V 4A output has a single 0.5 in 3.5 digit liquid crystal display which displays either output voltage with the output switch off or output current with the output switch on. A display annunciator indicates current limit. The output voltage is set by a calibrated control. Over-voltage protection is provided.
All outputs are protected against forward or reverse voltages. The power supply has a steel case, rubber feet and integral mains lead.
The TS3023S sells at $£ 385.00$. For further information, contact the Sales Office, Thandar Electronics Ltd, 2 Glebe Road, Huntingdon, Cambridgeshire PE18 7DX. Tel: (0480) 412451.

SPEEDPLATE PENCIL

Gunson Ltd have just introduced a Speedplate pencil which removes accumulated dirt and grime from virtually any material. It
restores metal to its original brightness and gives an oxydisation-free surface, perfect for electrical contact or jointing.
The pencil uses a tip made up from a bunch of glass fibre strands. It is in a propelling case so that only a small piece of the 300 mm refill is exposed. It is accurate and able to reach difficult places.
The Speedplate pencil is available from the car and accessory counters of many high street shops. It costs £3.34 including VAT. A pack of ten refills costs $£ 2.99$.
If you have any difficulty obtaining the product, contact Gunson Ltd, Pudding Mill Lane, London E15 2PJ. Tel: 015557421.

BASE MICROPHONES

The new XL30 and CM40 Electret base microphones are available from Nevada. They have been developed using an Electret element with a tailored audio response to bring out the best in modern amateur transceivers.
When used with Kenwood equipment they may be powered directly from the microphone socket of the transceiver. For other brands a. PP3 may be fitted. as an internal power source.
Specifications are: output level - adjustable from OV to 1.4 V ; frequency response - 1 -$200-3000 \mathrm{~Hz}$; output impe-dance-1K ohm; gain-40dB; switching - isolated PTT switch; power - 9V PP3 battery or 9-15V dc from transceiver.
The XL30 is a basic amplified microphone and retails at £46.50. The CM40 uses an audio processor with volume and tone controls and retails at $£ 55.75$.
For further information, contact Nevada, 189 London Road, North End, Portsmouth, Hants PO2 9AE. TeI: (0705) 660036.

END FFED LF AERIALS

The end-fed 'Zepp' aerial derived its name from the fact that it was originally designed
for use on the Zeppelin airship. In essence it comprised an end-fed half-wave dipole. Such an aerial was very convenient; it had no untidy feeders hanging from the centre, and as a consequence was light in weight, easily erected and fairly inconspicuous. Its disadvantage was the need for an open wire feeder and an ATU.
Sagant have just produced the modern-day version of such an antenna. Each one covers a single band and incorporates the missing ATU in an encapsulation at the feed end. Thus, 50 ohm cable can be connected directly to the feed point at one end, and the opposite end can be attached to any convenient support. There is no hanging feeder from the centre. An additional bonus is the RF filtering provided by the matching. circuit.
Two models are available, one for 40 m and the other for 80 m . Dimensions are similar to a full-size dipole. The aerials come complete with a special PVC covered multistrand copper wire, matching unit fitted SO239 socket, insulators, support cord, weather sealing tape and tuning instructions. The aerial element is pre-tuned and fully assembled.
For further information and prices, contact Waters \& Stanton Electronics, 18-20 Main Road, Hockley, Essex SS5 4QS. Tel: (0702) 206835/204965.

HMS PLYMOUTH GROUP

Members of the Royal Naval Amateur Radio Society living in the Devon and Cornwall area, have formed an HMS Plymouth Group to be responsible for amateur radio operations from Falklands' veteran HMS Plymouth based at her namesake city.
The ship will be open to the public from 29 March 1989, until October. There will be a charge for admission.

The intention of the radio amateur group is to provide, as far as possible, a replica room ('W/T Office') and at the same time carry on with radio

All the latest

news, views, comment and developments on the amateur radio scene

contacts which will be seen

 and heard by visitors. Frequencies in use will be the usual HF and VHF bands, and QSL cards will be sent to all contacts via the bureau. The callsign has yet to be allocated but it is hoped to reissue the old Devonport signal letters GUZ and the ship would then use GB3GUZ.Members of the RNARS, both at home and abroad, are invited to join the Group at an annual subscription of $£ 2.00$, to be sent to the Hon Treasurer, Chris Harper, 24 Cunningham Road, Tamerton Foliot, Plymouth PL5 4PS. Other financial offers would be gratefully accepted and put towards the provision of additional equipment.
The Secretary of the Group is Mrs 'Bobby' Harper, wife of the Treasurer.

MMS Plymouth, the last of the Type-12 frigates, is now 'in retirement' and was heading for a watery grave as a missile target. Since then, the Warship Preservation Trust and a team of volunteers have worked miracles to open the ship for public display.
A warm welcome extended to all visitors and in particular to those with an interest in amateur radio.

[^0]Applications are accepted from all over the world and must consist of a log extract giving details of the fifty contacts made. This must be certified as true by the applicant and one other licensed amateur.
Applicants from outside the UK must enclose three IRCs with their application. UK applicants must enclose three first class stamps.
Applications should be sent to A D Taylor G8PG, 37 Pickerill Road, Greasby, Merseyside L49 3ND.

CENIENARY AWARD

In the year in which Birmingham celebrates the centenary of it becoming a city, MARS is offering a Centenary Award.
This will take the form of a specially designed certificate and will be awarded to any person who works 100 stations within the city boundary (not to be confused with postcodes), simplex only, in any mode except packet and on any band; plus a G1 or G3 MAR (HQ station) and two special event stations from within the city walls. No Raynet or talk-in stations may be included.
The certificate can be endorsed for any special circumstances requested by the applicant, eg, QRP, and is available to SWLs.
The award will run for the whole of 1989. Closing date for claims is 1 April 1990.
To claim your certificate, send an SAE in the first place, to Paul O'Connor G1ZCY, 100 Coldbath Road, Billesley, Birmingham B13 OAH, who will send you an application and log forms. When these are completed and verified return them to Paul with $£ 2.00$ ($£ 1.50$ for MARS members).

SPECIAL EVENT STATION

During 1989 the Bedford and District Amateur Radio Club plans to commemorate the outbreak of the Second World War by operating several special event stations using callsigns GB2WW and GB4BOB.

The locations will include a number of former Royal Air Force and United States Army Air Force stations in and around the Bedford area.

Further details can be obtained from the Special Events Secretary, Richard G1ZOJ, or the Special Events Manager, Ray GOEYM, at 30 Cotswold Close, Putnoe, Bedford MK41 9LR. Tel: (0234) 244506.

NEW SECREIARY
 The Bridgend \& District Amateur Radio Club has appointed a new secretary. He is Mr D E George GW1OUP, 24 Ty Fry Close, Brynmenyn, Bridgend, MidGlamorgan CF32 8YB. Tel:

 (0656) 723508.
BARTG NEWS

The British Amateur Radio Teledata Group now has a volunteer to handle queries about computers in datacomms. He is Arthur Bard G1XKZ, 9 Linden Road, Oak Park, Cullompton, Devon EX15 1TE.
Arthur will tackle any questions about the use of micros for amateur radio datacomms. This service isn't limited to BARTG members, but their questions naturally take precedence. This service is only available by letter.

BATC RALIY

The British Amateur Television Club is holding this year's convention/rally in the Founders Suite at the Coventry Crest Hotel on 30 April.
Doors open at 10am. Admission is free to BATC members on production of a ticket from CQTV, and 50 p to non-members.
There will be a wide range of stalls, traders and demonstrations covering all aspects of both amateur TV and satellite TV equipment. Technical lectures will take place in the afternoon.
The venue is located on the A46, 500 yards south of Junction 2 of the M6. Ample parking is available.
Trade enquiries should be addressed to G8CJS or G8OZP, both QTHR.

ANGIO-SCOTISH RALLY
The Kelso Amateur Radio Society is hosting the sixth Anglo-Scottish Rally in the Tait Hall, Kelso, on Sunday 30 April from 11.00am to 5.00 pm . Admission is $£ 1.00$.
There will be the usual stalls, talk-in on S22, Morse tests (booked through the RSGB), raffles and refreshments.
For further information, contact Bruce Cavers GM4UIB, QTHR, tel: Kelso 24654.

> We are happy to include details of new products, clubs, rallies, special events, awards, etc, in Straight \& Level. Please send your news to the editorial address on page 3 of this issue.

$2 \mathrm{~m} / 70 \mathrm{~cm}$
 $\star 25$ Watts output
 \star Full duplex operation
 * 21 Memories
 $\star 2$ Call channels
 \star Priority channel * Dual VFO's
 $E 449$ inc vat $\star 12.5$ \& 25kHz steps
 \star Memory Scan
 \star Programme Scan
 * Memory Skip

This transceiver could transform your operating habits! It contains completely separate 2 m and 70 cms transceivers, permitting full duplex operation. To the un-initiated, this means you can transmit on 2 m whilst receiving on 70 cms , or vice versa. The built-in duplexer means a single antenna socket with a full 25 watts output on both bands. Measuring only $5.5^{\prime \prime} \times 2^{\prime \prime} \times 6.5^{\prime \prime}$ it is the ideal mobile rig. Its comprehensive memory and scanning facilities provide rapid access to both

simplex and repeater channels on $2 m$ \& 70 cms . Using the dual VFO's you can instantly switch between 2 m \& 70 cm and the single knob tuning provides simple and quick frequency selection. The large LCD readout incorporates an S-meter and is back lighted. If you are looking for a completely self contained 2 m \& 70 cm station, then look no further. At this price it has to be a bargain. For further details of this amazing transceiver, send today for the full colour brochure.

OUR FAMOUS FREQUENCY MANUALS!

UK LISTENERS CONFIDENTIAL FREQUENCY LIST 5th EDITION

This publication has now sold well over 3500 copies since it was advertised only a few months ago. Now the recent updated version is selling even better. No self respecting listener should be without a copy. If you enjoy exploring the short wave bands then this publication will add to your enjoyment. It covers the hf spectrum from 2 to 30 mHz and gives details of transmissions outside the amateur bands. Specially designed for the UK and European listener it sets out in a very easy way a comprehensive list of hundreds of interesting transmissions that will keep you occupied for days on end! Only a fraction of the cost of other similar publications it contains details of Marine, Air, Military, Embassy, Press and News agencies. Many listings have time schedules included together with comprehensive RTTY details. It tells you the frequencies used by civil and military aircraft whilst flying the Atlantic, when and where to pick up the press bulletins, long distance marine traffic etc and much more. Send today for your copy of this worthwhile publication.

NEW 1988 EDITION £6.95 p\&p 90p

4th EDITION VHF-UHF AIRBAND FREQUENCY LIST

This frequency manual is without doubt the most comprehensive list of VHF/UHF aircraft listings available in the UK. Of vital importance to the airband enthusiast or indeed any keen VHF/UHF listener it sets out in a very easy to follow manner full details of a whole host of stations. Every known UK airfield frequencies, etc. Included are Civil, RAF, USAF, MOD, Naval fields on both VHF and UHF bands. There are also air to air frequencies, the Red Arrows frequency, and much more. Send today for your copy and find out just how much you have been missing!
£5.95 p\&p 90p

THE COMPLETE UHF-VHF FREQUENCY GUIDE 26-2000 mHz

Now 1988 Edition. Many listeners have asked for a guide to the wide VHF/UHF spectrum and to meet this request we have recently published this frequency manual. It covers the range 26 to 2000 mHz and has been specially prepared for the UK listener. Anybody who has used a scanning receiver will know that the wide frequency range involved means that it is difficult to know exactly where to listen. This guide takes all the guessing out of monitoring. It lists all the services throughout the spectrum together with both simplex and duplex frequency splits. If you've spent your hard earned money on a scanning receiver or are considering buying one you'll find that this publication contains a wealth of information that has previously remained un-published!
£5.95 p\&p 75p

HF OCEANIC AIRBAND COMMUNICATIONS 1988 EDITION.

Prepared in response to many requests for more information about the air traffic on the hf bands this little guide sets out to explain to the beginner how the hf band works in relation to air traffic. It contains full details of the world aircraft frequency bands in the range 2 to 23 mHz together with control frequencies and those commonly used for Oceanic control. Also included are many VOLMET frequencies, the Search and Rescue frequencies used by RAF helicopters and Nimrods, the Hf RT network, London Company frequencis, European control centres etc. An ideal companion for the hf airband tistener. Send today for your copy
£3.50 p\&p 70p

The Panesonic RF-B600L (DR R(800)

General-Coverage Communications Receiver by Ken Michaelson G3RDG

The Panasonic RF-B600L is classed as a portable receiver and weighs 4.6 kg (10.14Ib) without batteries, which is a reasonable weight to carry. It is equipped with a handle on the right-hand side of the case for this purpose. It covers four frequency ranges, one of which is the FM section of the spectrum. The specifications of the rig are in the table.
The case is finished in grey with a silver-coloured rim round the edge. The top displays a Mercator projection of the earth's surface with the world's principal cities and time zones superimposed on it. To the left of this are two tables giving the short wave allocation of the broadcast and amateur bands, the figures being given in both metres and megahertz. This is a real help when using the receiver.

Front panel

The front panel has the loudspeaker on the left, protected by a wire mesh. To the right of this are three vertical controls. At the top is the 'AM ANL' (automatic noise limiter) push on/off switch. This is used if car ignition noise becomes intrusive when you are receiving AM broadcasts. Below this is another push on/off switch controlling the bandwidth (push in for narrow). Below this is a three-position rotary switch labelled 'AM/USB/LSB'. The LSB/USB positions are also used for CW reception. At the bottom of this column of controls is the headphone jack fitted with a 6.3 mm socket. inserting a jack plug into this socket disconnects the internal speaker.

Along the bottom of the panel, in line with the headphone jack, are four rotary controls and two push on/off switches. From left to right they are 'Volume', 'Bass', 'Treble', 'AM RF Gain', 'Lock' and 'Tuning Speed'. The functions of the first four are obvious, but the addition of a tuning lock means that if you tune in a station and then press the tuning lock switch, the tuning cannot be affected by an accidental movement of the main tuning knob. Incidentally, the 'Lock' switch displays a red light when it is in the 'on' position. The last switch offers the facility of varying the tuning rate and operates in different steps for different modes. For FM you have a choice of 100 kHz or 50 kHz steps, for LW and MW the rates are either 10 kHz or 1 kHz and for the short wave band either 1 kHz or 100 Hz . The tuning knob is on the right of the set and has a very smooth feel to it.
The four rotary knobs along the bottom of the panel and the tuning knob all have rubber rings over the operating surfaces which, in my opinion, makes them easy and pleasant to handle. There is also a finger detent on the front of the tuning knob, another handy feature. At the top right of the receiver is the main on/off switch, and alongside this is a red LED indicator light which is illuminated when the set is operating.
The centre panel on the front of the rig projects slightly and is finished in silver. The top third of this area is taken up by the S meter (which doubles as a battery level indicator) and the digital frequency display. The latter gives a clear reading
of the frequency and shows additional information on either side of it. On the right MHz or kHz are displayed, and on the left either memory or channel number. The bottom two-thirds of the panel are taken up by microswitches. The right-hand side provides 'Direct Access Tuning' and is in the form of a keypad from ' 0 ' to ' 9 ', to the right of which are 'Memory', 'Direct' and 'Enter' buttons, and below them, three keys for use with the 'SW Zone Auto Tuning' ('Up', 'Down' and 'Stop'). The keys ' 1 ' to ' 9 ' are used for the nine memory channels and the ' 0 ' for the direct entry of frequency.
The left-hand side of the panel has four horizon microswitches controlling the reception ranges, each of which has a red LED which is illuminated when the particular range is in use. To the left of these are six switches arranged in two lines of three, one above the other. The top line has a switch to change from S meter readings to battery condition, and two other switches which control the illumination of the S meter and the digital display. This is in order to economise on battery consumption. Below these are three more switches encompassing 'SW Zone Auto Tuning'. When receiving short wave broadcasts, these, in conjunction with the three keys on the right of the panel, are used to tune up or down in 5 kHz increments within a $\pm 150 \mathrm{kHz}$ zone around a selected centre frequency. When in the manual position you can move the frequency in 5 kHz steps by pressing one of the keys on the right, either 'Up' or 'Down', without using
the tuning knob. When in the 'Scan' position pressing either the 'Up' or 'Down' key will make the receiver scan for a signal within the selection zone, remaining on a station for about three seconds before moving on to the next. The set can be instructed to stay on any desired signal by pressing the 'Stop' key. In 'Seek' position the receiver will automatically scan over the selected range and stop at the first readable signal, stopping the auto tuning function. To cease the operation before receiving any signal, the user has only to press the 'Stop' key.

Rear panel

The rear panel of the RF-B600L has a number of alternate connections for external antennas, in addition to two built-in antennas. There is a telescopic one, intended for either the FM or SW band, which can be adjusted for angle as well as length, and there is also a ferrite core antenna inside the set which provides excellent reception for the MW and LW bands, provided that the signal strength is reasonably good. A normal SO239 chassis mounting socket is provided for connection to a low impedance coaxial cable from an external antenna. Below this is a control that switches between the SW built-in antenna and an external one, and also alters the impedance from low to high if required, to suit the antenna in use. When set to the external position, the telescopic antenna is disconnected. In the same area are three terminals giving either low or high impedance connections for various types of antenna which do not use a coax feeder.

On the other side of the panel is a dc input jack (13.2V dc) to allow operation from a car battery. Below this is the normal ac input socket. Towards the centre there is a bank of three further facilities, all with 3.5 mm sockets: the external earphone/speaker socket (8 ohms impedance only), the recording output jack and the stand-by jack. The output level of the recording output jack is fixed regardless of the position of the unit's volume control. The stand-by jack allows the receiver to be used as part of an amateur transmitting station; when the jack plug is connected to ground the receiver is muted. In my case, the connection was made to the 'T/R' control terminal on the IC-751.

The spaces for the batteries are on the underside of the rig. Three type 'AA' cells are required for memory back-up and eight type ' D ' cells for radio power when the receiver is used portable.

Performance

In the most important frequency range for long distance reception, 1.611029.9999 MHz , the receiver acts as a double superheterodyne with a respectable sensitivity of $1.2 \mu \mathrm{~V}$ and a selectivity in the narrow position of $\pm 1.5 \mathrm{kHz}$. These figures are borne out in use. I should point out that the narrow position of the 'Band Width' switch only applies to the

Specifications of the Panasonic RF-B600L

FM

Frequency range:
Receiver type:
IF:
Sensitivity:
Image interference ratio:

LW

Frequency range:
Receiver type:
IF:
Sensitivity:
Selectivity:

Image interference ratio:
MW
Frequency range:
Receiver type:
IF:
Sensitivity:
Selectivity:

Image interference ratio:

sw

Frequency range:
Receiver type:
IF:
Sensitivity:

Selectivity:

Image interference ratio:
Speaker:
Semi-conductors:

Output power:
Power source:
Power consumption:
Battery:
Dimensions:

$87.5-108 \mathrm{MHz}$

Single superheterodyne
10.7 MHz
2.5V/75 ohms (S/N 26dB)

30dB (at 98MHz)

$150-420 \mathrm{kHz}$

Single superheterodyne
450 kHz
S/N $6 \mathrm{~dB}, 70 \mu \mathrm{~V} / \mathrm{m}$
S/N $26 \mathrm{~dB}, 600 \mu \mathrm{~V} / \mathrm{m}$ (at 280 kHz)
Wide: $\pm 3.5 \mathrm{kHz}(-6 \mathrm{~dB})$
$\pm 7 \mathrm{kHz}(-60 \mathrm{~dB})$
Narrow: $\pm 1.5 \mathrm{kHz}$ (-6dB)
$\pm 4 \mathrm{kHz}$ (-60 dB)
35 dB (at 280 kHz)
$520-1610 \mathrm{kHz}$
Single superheterodyne
450 kHz
S/N 6dB, $35 \mu \mathrm{~V} / \mathrm{m}$
S/N $26 \mathrm{~dB}, 400 \mu \mathrm{~V}$ (at 1000 kHz)
Wide: $\pm 3.5 \mathrm{kHz}(-6 \mathrm{~dB})$
$\pm 7 \mathrm{kHz}(-60 \mathrm{~dB})$
Narrow: $\pm 1.5 \mathrm{kHz}(-6 \mathrm{~dB})$
$\pm 4 \mathrm{kHz}(-60 \mathrm{~dB})$
40 dB (at 1000 kHz)
$1.6110-29.9999 \mathrm{MHz}$
Double superheterodyne with PLL synthesiser
1st: $39.9-40 \mathrm{MHz}$
2nd: 450 kHz
($400 \mathrm{~Hz}, 30 \%$ modulation 50 mW)
S/N 6dB: $1.2 \mu \mathrm{~V}$ (50 ohms) (at 6 MHz)
$\mathrm{S} / \mathrm{N} 26 \mathrm{~dB}: 10 \mu \mathrm{~V}$ (50 ohms) (at 6 MHz)
Wide: $\pm 3.5 \mathrm{kHz}$ (-6 dB)
$\pm 7 \mathrm{kHz}(-60 \mathrm{~dB})$
Narrow: $\pm 1.5 \mathrm{kHz}(-6 \mathrm{~dB})$
$\pm 4 \mathrm{kHz}(-60 \mathrm{~dB})$
50 dB (at 6 MHz)
9 cm PM dynamic speaker
IC 15
FET 9
Transistors 96
2.0W (RMS max)
1.6W (MPO)
ac: $110-250 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$ (transformer tapping)
12W
12V (eight 'D' size cells for radio)
4.5 V (three 'AA' size cells for memory back-up)
$376 \mathrm{~mm}(\mathrm{w}) \times 122 \mathrm{~mm}(\mathrm{~h}) \times 291 \mathrm{~mm}(\mathrm{~d})$
reception of AM stations. This is fine for short wave listeners who make a practice of logging long distance broadcasts, but when the receiver is used to copy SSB signa!s in the amateur bands, I do not consider the selectivity of $\pm 3.5 \mathrm{kHz}$ at -6 dB to be sufficient. I spent a considerable time listening on the 14 MHz band and to be honest, although I was able to resolve the majority of stronger SSB signals, when I endeavoured to read a weak station close to one of the more powerful Italians, it couldn't be done.
Using the receiver for the purpose for which I imagine it must have been designed, and setting my frequency reading to one of the short wave
commercial broadcast bands, I got excellent results. With the available added selectivity in AM, a large number of stations was copied. Although I used my external dipole for some of the frequencies, most of the time it wasn't necessary, owing to the sensitivity of the receiver when copying the commercial broadcasts. In passing, Panasonic should be complimented on the smoothness of the main tuning knob, which made it a pleasure to operate the set. I consider that to listen to the commercials, it is not necessary to erect an outdoor antenna. The ferrite core one inside the set, provided excellent reception for LW and MW in my QTH.

THE PANASONIC RFFB600L RECEIVER

Interior view of the receiver

When listening to the SW band, the operator has to extend the telescopic antenna, keeping it vertical. The best results on the FM band were achieved with the telescopic antenna fully extended in the first place, and then the length and angle altered for optimum reception.

Excellent rig

The RF-B600L (otherwise known as the DR B600) is, as far as I know, the most reasonably priced communications receiver, at $£ 499.00$ including VAT and Securicor delivery. I found it an excellent rig, the only grouse I have being the selectivity in the sideband modes. It is well-finished and comes with a fully descriptive Owner's Manual.
My thanks to Waters and Stanton Electronics, 18/20 Main Road, Hockley, Essex SS5 4QS, tel: (0702) 206835, for the loan of the receiver for this review.

JOHNSONS "SOUND SERVICE" D "ANORT wave" ANIC $_{\star} \mathrm{B}_{\star}$ "MULTIBAND" SCOOP PURCHASE

RF B60DL

A compact multi-band PLL quartz synthesized digital tuner, with clock/timer and 36 station pre-set memories
Multi-band reception FM/MW/LW/SW (1.615 Multi-band
29.999 MHz).

- Double Superheterodyne system on LW/MW SW.
- 36 channel pre-set with memory back up (up to 9 stations per band)
- Two tuning methods: rotary electronic dial or 2-way direct access (frequency or meter band). - LCD multi-colour information display including dual time clock.
- Operation hold switch.
- AC adapter, earphone, carry case and lead antenna included.
 RF B600L (as reviewed this month, available ex-stock). We carry a good ran
give us a call? A very nice Eddystone 840A available shortly! Offers invited.
Remember, if you're spying out for a good radio. Czech us out.
JOHNSONS SHORTWAVE RADIO
43 Friar Street, Worcester WR1 2NA Tel: 090525740

AN EXPERIMENTAL DF ANTENNA

by Steven Goodier G4KUB and John Goodier G4KUC

Last summer a number of 'fox hunts' were organised by our local radio club. For those of you who don't know what a radio fox hunt is, then let us explain.
The idea of the hunt is to locate as quickly as possible one or several hidden transmitting stations. Usually, the hidden station transmits at a prearranged schedule, eg, thirty seconds every five minutes or one minute every ten minutes. It is then up to the 'hunters' to take bearings on the signal and, with the help of an Ordnance Survey map and a bit of luck, find the 'fox'.

After attending a few local fox hunts, a friend showed us a circuit diagram containing a couple of transistors, some capacitors and a few resistors. At the top of the diagram there were two diodes, three RF chokes and two dipoles. Apparently, the circuit was part of a DF antenna which had been used on a previous fox hunt.

The antenna

The idea for this simple antenna first appeared in an early edition of RATEC Magazine, and is based around two halfwave dipoles placed in the same plane on one boom. At a frequency of 144 MHz , the dipoles are placed approximately 1 m apart. The two aerials will never receive a given signal in the same phase until the signal is at right angles to the boom. The theory of how the aerial works is shown in Flg 1.
The output from the two dipoles is coupled into the antenna socket of the rig, but before this is done an audio tone is superimposed on to the received signal. When the rig is switched on and the aerial is connected up you will hear a high-pitched whistle, along with the received station. The whistle will vary in volume when you turn the aerial, and the tone will reduce considerably when the boom is at right angles to the transmitting station. When this 'null' is reached, you can take the bearing of the transmitting station.

The circult

The circuit diagram for the electronics used in the DF antenna is shown in Fig 2. The circuit is based around the two transistors TR1 and TR2, which form a multivibrator. The frequency at which the circuit oscillates is determined by the two capacitors C4 and C5; with the values chosen, this frequency will be about 1 kHz . The two half-wave dipoles are coupled into the circuit via C1 and C9 and the signals are passed on to the switching diodes D1 and D2, with the resulting output appearing at the Rx socket via C10.

R1 and R6 take the output from the oscillator and couple it to the input from each dipole, thus superimposing the

Fig 1: The theory behind the aerial. The two dipoles are a half-wave apart and about a half-wave in length
tone on the received signal. A 'hold' switch SW2 disables the oscillator, so that normal sound can be heard from the receiver without the 1 kHz whistle. The circuit is powered from a 9 V battery and has a supply voltage of about 5 to 15 V .

Construction

The construction of the antenna is very simple when carried out in a number of stages and there should be few problems. There are four parts to the aerial: the PBC layout for the electronics, the boom, the elements, and the final wiring.

The antenna is contained in a die-cast box, and the interconnections should be well-screened and as short as possible. The variable-resistor can be of any value from 100 to 500 ohms. A switch has been included to switch out the attenuator and provide a through-path.
At this point you may want to change antennas; a shielded loop or a small two element beam such as the HB9CV is ideal. When the signal is rock-crushing, increase the attenuation until the S meter drops or, if your receiver is not fitted with an S meter, until the back-

Fig 2: The circuit diagram for the DF aerial. RFC1, RFC2 and RFC3 are home-made
ground noise increases. Then it is just a matter of turning the antenna around until the signal strength is increased.

The PCB

The most difficult problem facing the home constructor is designing the circuit layout for the electronic components. You could build the circuit layout on a piece of veroboard, but it is better to use a printed circuit board (see Fig 3a and Fig 3b).

Constructing the PCB is a lot faster when it is correct, ie, if there are no
tracks missing. The best way to make the PCB is to use a PCB pen.

Start making the PCB by mounting all of the resistors and capacitors, being careful to mount C8 the correct way round. Next, solder the two diodes D1 and D2 into place, again making sure that they are the correct way round. RFC1, RFC2 and RFC3 are home-made chokes, using three-to-four turns of 30swg enamelled copper wire on a ferrite bead. TR1 and TR2 can be almost any generalpurpose npn silicon transistor, such as the BC108 or BC109. This device has a
small lug on one side of the 'can' which indicates the emitter lead; the middle lead is the base and the remaining lead is the collector. While fitting the device, make sure that the lug is near the bottom of the board.
When all the components are fitted, solder into place a number of soldering pins in order to attach the input/output connections, as well as the wiring for the supply voltage and hold switch. When you have completed the board, check for any mistakes, such as dry joints, etc.
To test the antenna you will need

Flg 3a: The PCB overlay. The point marked 'ANT' is the output to the receiver's antenna socket. FIg 3b: The PCB foil pattern. The size of the printed circuit board is $60 \times 45 \mathrm{~mm}$ approximately
but it is important to make sure that the diameter is no more than 3 mm . Fig 5 shows each element in more detail, as well as the rod which is attached to a 4 mm plug. The only way to attach the rod to the plug is to solder it, so you will have to obtain some special solder (Maplin Electronics supply an aluminium solder that can also be used with brass, copper, nickel, stainless steel and tin-plate).
Start by cutting a length of rod about 50 cm longer than necessary, making sure that one end is clean and clear of any grease, then solder it to the plug. After it has cooled, check the joint and, if satisfied, construct the other three elements. The best way to cut them is to plug them into the element boxes and cut an overall length of about 980 mm , being careful to trim equal lengths from each end.

Final wiring

The first thing to do is mark and drill the control box. The size of the box is 121 mm $\times 66 \mathrm{~mm} \times 40 \mathrm{~mm}$, and it is available from Verospeed, stock number 86-20102B.

Apart from the mounting holes, six more holes need to be drilled to carry cable to and from the dipoles, the on/off switch, the hold switch and the PCB mounting holes. The cable entry holes are located at both ends of the box, and the two holes for the switches are on one side. Finally, two holes are drilled into the base of the box to hold the PCB in place.
Before fitting the PCB into the box, solder all of the wiring to the solder pins (see Fig 2 and Fig 3). Use miniature RG174 coaxial cable to run up to the dipoles, although 50 ohm cable will do if necessary. Next, fit the PCB into the box and attach the connections to the switches. After you have secured the box to the boom, pass the coaxial cable through the holes in each end of the box and attach the cable to the top of the boom with tie clips or insulating tape. When you reach the element box, pass the cable through a small hole at one end

Flg 4: The boom with the element and control boxes

either a crystal earpiece or a pair of Walkman-type headphones. First, connect a supply voltage to the board and then connect the headphones or earpiece to one of the dipole's inputs. You should hear a high-pitched whistle. Change to the other dipole's input and you should hear the whistle again (if you close the hold switch the whistle will stop). That completes the construction of the PCB board.

The boom

Fig 4 shows the layout of the antenna with the two element boxes and the main control box which is attached to the boom. The boom can be made from any suitable material, but in the prototype a 1in dowel was cut to a length of 1090 mm and painted with enamel paint to make it waterproof. Two boxes are fixed to each
end of the boom (Fig 5 shows a close up view of one end) each measuring $50 \mathrm{~mm} \times$ $50 \mathrm{~mm} \times 31 \mathrm{~mm}$, and are available from Verospeed, stock number $86-21580 \mathrm{E}$.
In Fig 5 there are two 4 mm sockets fitted to the centre of the box to take the elements for the dipoles. Screw the boxes to the boom so that the sockets are 1010mm apart (see Fig 4). The next job is to temporarily fit the control box which contains the PCB, the on/off switch and the hold switch. Position the control box in the centre of the boom, but only mark and drill the fixing holes, as more work needs to be done before it is permanently fixed in place.

The elements

Four elements are needed, and are all made in the same way. Almost any type of metal rod is suitable for the elements,

Fig 5: A close-up of one of the element boxes. The elements plug into the end boxes making the antenna portable
of the box and solder it as shown in Fig 5. You are now ready to test your antenna.

Testing

Plug in the elements which make up the dipoles and connect a power supply to the unit, (ie, the battery). Make sure that the hold switch is open and switch the antenna on. If all is well you will hear a whistle, along with any station received. The whistle will vary a little when the aerial is turned, and there will also be a null when the signal is at right angles to the boom. The whistle will stop when you close the hold switch. Your antenna should now be working.
It is much better to start with a known transmission such as the local repeater, for example, as most people know where it is located. If it is 'off the air', then use the transmission from a friend's station. The null is very sharp, so you will have to turn the beam very slowly. When the boom is at right angles to the transmission there will be a drop in the tone. In practice, you cannot tell from which direction the station is coming, but this isn't a disadvantage once you have taken a second bearing and seen where the two signals cross on the map.

General fox hunting

As with all fox hunting, it is usual to take one bearing and then move off at about 45° to 90°, and take another bearing. Where they cross on the map will place you within 1 km of the fox. One problem you will encounter is that your receiver will become swamped by the transmission of the fox, so you will need to employ a 'signal attenuator' of the variable type shown in Fig 6.

ELECTRONIC COMPONENTS LIST

Resistors

$\begin{array}{ll}\text { R1, R6 } & \text { 10k } \\ \text { R2, R5 } & 1 \mathrm{k} 2\end{array}$
R3, R4 15k
Capacitors
C1, C2, C7, C9, C10 10nF
C3, C6 470pF ceramic disc
C4, C5
C8
47nF
$47 \mu \mathrm{~F} 16 \mathrm{~V}$ (working minimum)
Semiconductors
TR1, TR2 BC108 or equivalent
D1, D2
1N4148 or 1N914

Miscellaneous

RFC1, RFC2 and RFC3
3 ferrite beads
30swg enamelled copper wire
Printed circuit board and PCB pen
Ferric chloride crystals
$2 \times$ SPDT subminiature switches
Solder pins, wire, etc

THE ANTENNA COMPONENTS LIST

Length of 1 in dowel
$2 \times$ die-cast boxes measuring $50 \mathrm{~mm} \times 50 \mathrm{~mm} \times 31 \mathrm{~mm}$
Die-cast box measuring $121 \mathrm{~mm} \times 66 \mathrm{~mm} \times 40 \mathrm{~mm}$
$4 \times 4 \mathrm{~mm}$ sockets
$4 \times 4 \mathrm{~mm}$ plugs
$4 \times$ element rods
Aluminium solder
Verospeed 86-21580E
Verospeed 86-20102B
Maplin HF73Q
Maplin HF66W

50 ohm screened cable, ie, RG174 miniature coaxial cable
Nuts, bolts, screws, etc

Fig 6: A variable attenuator. The unit fits between the antenna and the antenna socket of the receiver

Conclusion

As far as we know, six DF antennas have been built to this design, and everyone has been happy with their performance. Since it is an experimental aerial, there is room for improvement to both its design and construction. Perhaps you would like to try a scaled-down
or scaled-up version to use on other bands such as 70 cm or 50 MHz ?
If you are really interested in fox hunting then there is no substitute for first-hand experience, so keep your ears to the ground to find out when there is a fox hunt in your area, and then get out there and have a go.

By talking to other people involved in fox hunting, you will obtain all the information you need to know about map reading, plotting a bearing, types of antennas to use and, finally, going for the 'kill'. Better still, try and arrange a talk about the subject at your local radio society.

The World of $\mathrm{D}|\mathrm{A}| \mathrm{T} \mid \mathrm{A}$ BY DON FIELD G3XTT

I want to start this month by looking at what equipment you need to get going with datacomms. You may be surprised to know that you almost certainly have much of the gear in your shack already, which will minimise the costs. Just what you will need will depend on your chosen mode(s) and band(s), but essentially you will end up with something like the setup shown in Fig 1.
I shall say something about the computer and the radio at a future date, but in practice your choice will almost certainly be determined by what you already use in the shack. What you won't have is the TNC (Terminal Node Controller) which, as you can see, sits between the computer and the rig. The TNC is the heart of the system, so it's worth having at least a basic understanding of what goes on inside. This will help you when choosing which one to buy. Incidentally, I should mention at this stage that the TNC is essentially for packet operation, though many TNCs also support RTTY, AMTOR and other data modes. If you only wish to operate, say, RTTY, then you can get along with a specialist RTTY terminal unit, but I am assuming that for many of you packet radio will be the starting point.
The role of the TNC is to sit between your computer and the radio and to assemble the data you wish to send into packets for transmission, and to disassemble incoming packets. For example, each packet of data which is sent out will have callsigns, routing information, parity bits, etc, included. You will have input some of this data to the TNC at the beginning of the contact,
but it needs to be included in each outgoing packet.
The TNC also controls the transmission and reception of data across the packet network, re-sending packets where necessary (for example, where they have been corrupted by QRM), or asking the distant station for a retransmission.
Your computer talks to the TNC via an RS232 or TTL link. RS232 is the common standard for asynchronous data communication; the data passes along this link as a series of dc voltages representing ones and zeros. However, your transceiver doesn't want to be presented with an RS232 signal, so the TNC will usually include a modem (modulator/ demodulator) to turn the output of the TNC into audio tones which can be fed into the microphone socket of the transceiver for transmission. The modem will also turn incoming audio back into suitable dc signals for the TNC to decode.
In theory, all the TNC operations could be carried out by the computer itself, but few home computers are fast enough to handle all the necessary operations in real time. The Cambridge packet system, developed for the BBC microcomputer, attempted to do this. However, it is not widely used nowadays, mainly because the BBC micro is not well-known outside the UK, and other, international, standards have been adopted by the packet radio fraternity. However, there is a move to KISS (Keep It Simple Stupid) mode for TNCs, where many of the TNC functions are bypassed and more of the clever stuff is done in the computer. This is useful

Fig 1: The amateur datacomms station

when playing with new protocols such as TCP/IP (don't worry about what this is for the moment).
The first packet QSO took place in Canada on 31 May 1978 on the 220 MHz band. It used a protocol developed by Doug Lockhart VE7APU for the Vancouver Amateur Digital Communications Group. The VADCG protocol was only ever intended for experimental purposes but was widely used in the USA and Canada, and TNCs were made available to support this protocol.

Other protocols have also been developed and much experimental work still goes on. However, for all practical purposes right now, if you want to get started on packet radio you want to choose a TNC that supports the AX25 protocol.
AX25 is an amateur adaptation of the commercial X25 protocols used for data transmission over public data networks. AX25 was pioneered by AMRAD (Amateur Radio Research and Development Corporation) and RATS (Radio Amateur Telecommunications Society). In 1982, with the launch of Oscar 10 imminent, it was important to select a standard from among the various packet radio protocols then in use by amateurs. The main contenders were VADCG, TAPR/DA (developed by the Tucson Amateur Packet Radio group) and AX25.
The Tucson group had been heavily involved in packet radio since the first ARRL Computer Networking Conference in October 1981, and had gained some early experience in making TNC kits. When AX25 was adopted as a standard, the TAPR group began to develop a suitable TNC. This became the TNC-1. TAPR quickly realised that demand was likely to outstrip their ability to supply and had the good sense to license manufacture of their TNC to third parties. Thus, AEA brought out their PKT1 in 1984, this being identical to the TAPR TNC-1 in almost every respect. However, AEA's ability to advertise and promote their products in a big way soon led to a rapid increase in the number of stations in the USA equipped for AX25 packet operation. Heathkit and Kantronics also brought out TNC-1 clones, and eventually TAPR were able to stop manufacturing kits of their own and were able to get back to development work.

The TNC-2

Now we get to the crucial bit. The next product from the TAPR stable was the TNC-2. This was a totally new design, based on the $\mathbf{Z 8 0}$ processor chip (the TNC-1 had used a 6809). It was smaller than the TNC-1, ran on 12 V and had a number of new features. As with the TNC-1, TAPR sold the manufacturing rights to the TNC-2 and a number of companies quickly got into production. When you buy a TNC today, it will almost certainly be based on the TNC-2. If not a direct 'clone', it will implement most, if not all, of the TNC-2 commands. For some purposes, such as NET/ROM support, you will need a very close clone, but otherwise your choice of which model to buy will be based on other factors. Some manufacturers produce a basic TNC-2 clone for a minimal price. Others prefer to add value by including other modes (such as RTTY and AMTOR), by incorporating both VHF and HF modems, and by distinguishing their products in various other ways.
I set out to compile a table of all the TNCs currently available, together with a summary of their features, price, etc. This started to get rather large, so I have provided some basic information this month and will add more detail next month. Bear in mind that prices, specifications and suppliers can change, so check before you buy. I am indebted to all the suppliers who helped me with product information, especially to Phil G6DLJ, of Siskin Electronics, who went out of his way to provide me with a wealth of detailed information. A couple of years ago TNCs were available only from a few specialist suppliers. Now all the mainstream 'black box' suppliers are jumping on the bandwagon.

All the TNCs in the table offer the full TNC-2 command set (over ninety-five commands in all) or, at least, all the commands you are likely to need in practice, and some offer additional commands. When you make your selection, bear the following in mind:

1 While much VHF operation takes place on fixed channels, a tuning unit is almost essential for HF operation. This should at least be of the dual-LED-type to indicate the upper and lower tone frequencies. A series of LEDs is to be preferred, while an oscilloscope is best of all. Some TNCs have a suitable output to connect to a 'scope.
2 Because standards for data transmission are changing so quickly, it is important to buy a TNC which can be updated as new firmware becomes available (the new software usually comes as a plug-in ROM chip). The reputable suppliers will often keep your name on file and notify you when this happens. For packet, the upgrades which you may require at some stage are KISS and level 3 networking software. At the moment, NET/ROM support is more relevant to groups wishing to set up a packet repeater. All the Pac-Comm and MFJ products support NET/ROM, and there is also a version of NET/ROM for the AEA PK88. As far as I am aware, the other current products from AEA and Kantronics do not support NET/ROM.

TNCs Currently Available		
Model	Suppliers	Notes
Pac-Comm Tiny 2	S, A, PA, AC, IS	Replaces TNC-200
Pac-Comm Micropower 2	S, PA, A, AC, IS	As Tiny-2, but uses only 40 mA (realtime clock and printer port available as options)
$\begin{aligned} & \text { Pac-Comm } \\ & \text { TNC-220 } \end{aligned}$	S, A, PA, AC, IS	Modems can be switched under S/W control
Pac-Comm PC-120	S, A, PA, AC, IS	Not a stand-alone TNC but a plug-in card for IBM PC. PC-120 can operate on two channels simultaneously. TCP/IP drivers available
Pac-Comm DR200	S, A, PA, IS	Specialist stand-alone dual-port purpose-built digipeater/gateway
Kantronics KAM	S, A, L	Both ports may be active simultaneously. Personal BBS included. S/W selection of EU or US RTTY tones. Time and Day clock. Direct FSK output
Kantronics KPC-2	L, A, S	Includes KAM PBBS and KA-node
Kantronics KPC-4	L, A, S	As KPC-2 plus gateway, allowing simultaneous operation on two bands
AEA PK232	S, I, P, IS	SIAM, 'Host mode', outputs for direct FSK, 'scope and external modem
AEA PK88	I, P, S	Host mode, output for external modem. Replaces PK87
MFJ Multi-mode Data Controller	A	Output for Direct FSK
G0BSX	G4CLI	Kit - PCB, Documentation and Firmware

Key to suppliers:

A AMDAT, Crofters, Harry Stoke Road, Stoke Gifford, Bristol BS126QH. Tel: (0272) 699352

AC Andrews Computer Services, 6 Ash Hill Close, Bushey, Herts WD2 1 BW. Tel: 01-950 9381
IICS Electronics Ltd, PO Box 2, Arundel, West Sussex BN18 0NX. Tel: (0243) 65575
IS Instrument \& Satellite Services, 175 Staffordstown Road, Randalstown, Co Antrim BT41 3LT. Tel: (08494) 73467
L Lowe Electronics, Chesterfield Road, Matlock, Derbyshire. Tel: (0629) 580800
P Photo-Acoustics Ltd, 58 High Street, Newport Pagnell, Bucks MK16 8AQ. Tel: (0908) 610625

PA Pack-Age, Braeside, Urquhart, By Crossford, Fife KY12 8QJ. Tel: 031-331 2755 (evenings)
S Siskin Electronics, PO Box 32, Hythe, Southampton SO4 6WQ. Tel: (0703) 849962
G4CLI Dave Lockwood, 3 Westfield Court, Horbury, Wakefield, West Yorkshire WF4 6EU. Tel: (0924) 275191.

3 If you want to operate on both HF and VHF it's nice to be able to leave both rigs permanently connected to the TNC, with changeover by way of a switch on the TNC. Some TNCs will also support simultaneous operation of the VHF and HF ports. Incidentally, even when TNCs boast an HF modem, the internal filters are generally optimised for VHF and are less than ideal for HF operation.
4 It is a great help to buy terminal software to run on your PC. Most of the TNCs can be driven by any of the popular terminal emulation packages such as Procomm, the shareware programe for IBM (and clones). However, with ninety-
five or more commands to remember, it's nice to have a specially-designed TNC driver software with menu selection of commands. Some of these packages are very powerful indeed, offering splitscreen (so that the information you type is separated from that which you are receiving), 'host mode' (giving detailed TNC status information on-screen), sophisticated text-editing facilities, memories and much more. YAPP, another public domain program for the IBM and clones, was written especially for driving WA7MBL mailbox software and is particularly useful if you will be doing a lot of file transfers.

5 The standard VHF modem tones are 1200 and 2200 Hz (the Bell 202 standard). On HF there is a variety of standards, but most European operators use 1460 and 1260 Hz . There is no incompatibility between this standard and others which also use 200 Hz separation (eg, the Bell 103 standard of 2025 and 2225 Hz), but the indicated carrier frequency on your rig will be different. Hence the benefit of the up-and-coming method of specifying the operating frequency as the mid-frequency of the two tones, because this is constant whatever tones you are using. The standard for frequency shift on RTTY is 170 Hz , but a packet modem with 200 Hz shift is usually all right. There is another problem here since the US convention is that the lower of the two tones represents 'mark', whereas in the rest of the world the higher tone represents mark. No problem if you operate in USB and the US station in LSB (or vice versa) but, again, the indicated frequencies on your rigs will be very different; a point to be borne in mind when setting up skeds.
As well as the TNC-2 clones in the table, Grosvenor Software, 2 Beacon Close, Seaford, Sussex, tel: (0323) 893378, supply TNC software on disc or ROM cartridge for the Dragon and Tandy Color Computer. This comes with VHF/HF modem, while RTTY, SSTV, CW and AMTOR are available for an extra charge.

News

I have covered a lot of ground above,
but I hope you found it useful. Now to some news related to datacomm operation. The good news is that UHF networking on 70 cm and 23 cm is on the increase, which will take some of the load off 144.650 MHz . Some of the 23 cm links are experimenting with the G3RUH 9600 baud modem, which will speed up inter-mailbox forwarding enormously. We can expect similar high-speed links to evolve between NET/ROM modes, and in a year or two it may actually be possible to do what the early experimenters were able to do - have realtime QSOs on VHF from one end of the country to the other. Present levels of congestion make this impossible. Having said this, one undesirable practice is mailbox 'DXing', in other words, trying to access distant mailboxes either directly during a 'lift' or via digipeaters or NET/ROM. The idea of the mailbox network is that all bulletins, other than local ones, are carried on all mailboxes. So do stick to accessing only your local mailbox, which will help to minimise congestion.

The BARTG Spring VHF/UHF RTTY Contest takes place on 15-16 April, from 1800 on the Saturday until 1200 on the Sunday. Full rules, plus copies of log and cover sheets, are available from Peter Adams G6LZB.
Arthur Bard G1XKZ, of BARTG, is apparently willing to tackle any questions about the use of micros in amateur datacomms. This service is not limited to

BARTG members, but do send your questions only by letter and enclose an SAE.
On the HF front, the Region III IARU conference last year voted to allow packet operation between 14070 and 14112 kHz , much to the consternation of many HF operators elsewhere in the world. The reason given was to include 14111 kHz which is used for inter-BBS forwarding. The whole issue of packet bandplanning on HF remains a hot potato which I can't see being resolved for some years to come.
The Vietnam DXpedition in January was active on RTTY with the callsign 3W1A, giving many operators a rare new one. YIOVP also appeared from Baghdad on both RTTY and AMTOR. A Brazilian operation from St Peter and Paul Rocks, starting 2 or 3 May, will also place special emphasis on RTTY, with the callsign ZYOSY.
Finally, it appears that there has been a lot of malicious interference to the 4X1RU to N4QQ-1 BBS link on 15m. US restrictions on third-party traffic mean that BBS linking between the US and Europe is effectively a non-starter, so a lot of European traffic has to go via Israel, this being the nearest country with which the US has a third-party agreement.
That's it for this month. Feedback on what you would like to see here is welcome, either via the mail or via packet to G3XTT at GB7WOK.

Prices below normal trade. Some $1 / 10$ quantity rate. Send 19p SAE or label for free catalogue. ;ovisaeis 2 nemr coveowa
 Millions of components: thousands of different lines Rechargeable Nickel Cadmium batteries (ex unused equipment) AA(HP7) 1.25 volt 500 mASet of four $£ 2$ ITT Mercury Wetted relay 20-60 VDC Coil. SPCo, 2A..... 79p. 10-£5 LED illuminates Red, Green or Yellow depending upon polarity/current. $5 \times 21 / 2 \mathrm{~mm}$ Face
 .25p or 100 for $£ 23$ or 1000 for $£ 200$ 10,000 Resistors. $1 / 3$ to 2 watt. 1Ω to 22 meg . $1 / 2 \%$ to 10% NOT a jumbled mass, but ready sorted into values
 . $£ 25$ collected $£ 29$ Mail Order
 5 mm Red Flashing LED ... or 10 for $£ 2.25$ Watch/Calculator/Lighter etc Mercury Batteries Made by Ray-O-VAC 10 mixed popular sizes.
 \qquad £1.50, 50 for $£ 5.00$ IN4004 or IN4006 Diodes.
 \qquad 300 for $£ 6.50$
 KBS005/01/02 $3 \mathrm{amp} 50 \mathrm{~V} / 100 \mathrm{~V} / 200 \mathrm{~V} /$ bridge rectifiers, $35 \mathrm{p} / 36 \mathrm{p} / 40 \mathrm{p} .10$ off $£ 3.20 / £ 3.40 / £ 3.70 .100$ off $£ 30 / £ 31 / £ 34$
 Plessey SL403 3 Watt amp, From Bankrupt source, hence sold as untested.
 \qquad 4 for 60 p or 10 for $£ 1.20 \mathrm{p}$
 5 mm LED, clear, lighting hyperbright (600 mcd), red up to 200 times brighter (gives beam of light)..
 \qquad .. 25p, 100/£20, 1000/E150 Mullard 5mm LED, 40 red, 30 green, 30 yellow $=100$ mixed $£ 7$ 'HARVI' Hardware packs (nuts-bolts-screws-self tappers, etc) marked 35 p retail, 100 mixed packs for $£ 11$.
 Modern silver/black/aluminium, etc knobs 50 mixed, $£ 6$ (sent as 10 sets of $4+5$ sets of $2-15$ different type/sizes).
 SEND PAYMENT PLUS 19p SAE
 Postal orders/cash - prompt dispatch.
 Cheques require 15 days from banking to clear.
 Cheques drawn on Barclay's Bank not accepted.
 Prices you would not believe before inflation! BRIAN J REED
 TRADE COMPONENTS, ESTABLISHED 31 YEARS 161 ST JOHNS HILL, CLAPHAM JUNCTION LONDON SW11 1 Ta.

Open 1iam till 6.30pm Tues to Sat. Telephone 01-223 5016

The amateur bands are becoming ever more crowded and finding a clear spot on the dial is increasingly difficult. Consequently several attempts have been made to persuade amateurs to make more use of space-saving techniques such as CW, but with little success. The difficulties are two-fold. First, not everyone likes the 'chore' of learning and using Morse; second, although CW will work easily in a 200 Hz bandpass; very few modern rigs are supplied with suitable filters. It is, however, normal for manufacturers to use the 2.5 kHz SSB filter for CW reception. This means that the CW transmission appears to take up the space that twelve properly filtered signals would use. It is therefore incorrectly assumed that this mode does not offer much in the way of saving space.

Zero bandwidth

Imagine the advantages of a system that used normal voice techniques and yet occupied what amounts to zero space. Such a system has recently been described in Revista de la Sociedad de los Aficionades de Radio Emisoras de Santa Euforia del Gran Puerco - no simple titles like Amateur Radio out there! The author is Hosa B Marvello, who holds the experimental callsign IM2GUD. Thanks are due to the journal for permission to republish some of the original material.

Sub-audio FM

Let us consider the normal NBFM system currently used on most VHF transceivers. The frequency response of the audio is tailored to its usual range of 300 to 3500 Hz , the level is set to give the correct deviation and used to modulate the transmitter. At the receiver the audio signal is recovered, amplified, and fed to the loudspeaker. The bandwidth needed is typically around 25 kHz to achieve this performance. The system being proposed uses a bandwidth which can be less than 10 Hz but which, for practical purposes, is set to around 30 Hz .

Reduction

This is achieved by reducing the deviation at the transmitter to a point where the carrier hardly shifts. This means that many more transmissions can be carried on the band and that all of the transmitted power is concentrated in a very narrow bandwidth instead of being dissipated in 25 kHz . The improvements in transmitting efficiency and, consequently, the distances that can be worked, are enormous.

Fig $1 a$ and b

	Parts List				
C1	.01 disc	R1	$100 \mathrm{k} \Omega$ ¹/4W	TR1	3N201
C2	.01 disc	R2	$180 \mathrm{k} \Omega$	TR2	BC108
C3	.01 disc	R3	$1 \mathrm{k} \Omega$	D1,2,3	OA81
C4	47 pF	R4	$120 \mathrm{k} \Omega$	IC1	CA3089
C5	100 pF	R5	4.7 k		
C6	0.1 disc	R6	470Ω		
C7	.01 disc	R7	330Ω		
C8	.02 disc	R8	$3.9 \mathrm{k} \Omega$		
C9	.02 disc	R9	39Ω		
C10	10μ F16V	R10	$10 \mathrm{k} \Omega$		
C11	.01 disc				

Parts list for Fig 1

Recovery

So far everything has been easy, but recovering the audio is a different matter (see Fig 1). If the signal is processed as it stands, all you would hear is a subaudible growl. Fortunately, the solution to this problem comes in the form of frequency multiplication. This is simply a method of changing frequency, but with the advantage of simultaneously multiplying the bandwidth of the signal. If you assume that the transmitted deviation is set to 30 Hz , then you must multiply by a factor of twelve to recover the original audio bandwidth of around 3500 Hz .

Method

For convenience the circuit in Fig 1, which shows how to recover the audio, is shown in two parts. In practice the two points marked ' B ' are connected. The circuit is built on a small PCB which can be installed at some convenient point in the rig.

Different rigs use different intermediate frequencies (IF) in the receive section and the first requirement is to get this to a standard frequency so that the PCB will work with any input. A sample of the receiver's IF is connected to the input of the adapter unit which consists of a broadband circuit. TR1 is a dual-gate FET which functions as a mixer. The local oscillator voltage is generated by TR2 and drives gate 2 of the FET. The crystal frequency used in the oscillator will depend on the IF used in your rig. The crystal frequency is calculated as the receiver's IF $\pm 1.18 \mathrm{MHz}$. A crystal can be used above or below the IF because sideband inversion, which would be a disaster in an SSB environment, is of no consequence in this type of circuit.

Multiplication

The output from the mixer is developed across the RF choke in the drain circuitry and applied to the first tuned circuit at 1.18 MHz .
The diode D1 is fed from a tap on the tuned circuit and placed to about 10\% of the winding from the earthed end. The multiplier diode is terminated with a similarly tuned circuit and adjusted to twice the input frequency at 3.56 MHz . A diode is an excellent generator of harmonics but, unfortunately, the available power falls rapidly when you try to remove the higher harmonics. By doubling in the first stage, a sufficient signal is gained to drive the next diode stage which is arranged to triple the frequency to 10.7 MHz .

Demodulation

The signal is applied to pin 1 of a CA3089 in the same way as a normal FM signal, which in fact it now is.
(Translator's note: 'The .01 capacitor feeding pin 1 could be replaced with a small 10.7 MHz ceramic filter. Using a filter of 2.5 kHz bandwidth, for example, would substantially improve the signal-to-noise ratio. This could approach the point where an FM signal would have

Flg 2

Parts List			
C1	$10 \mu \mathrm{~F} \mathrm{16V}$	IC1	LM380
C2	$0.1 \mu \mathrm{~F}$	VR1	$10 \mathrm{k} \Omega \mathrm{log}$
C3	$0.1 \mu \mathrm{~F}$	R1	3.3Ω
C4	$100 \mu \mathrm{~F} 16 \mathrm{~V}$		
C5	$0.1 \mu \mathrm{~F}$		
C6	$0.1 \mu \mathrm{~F}$		
C7	$100 \mu \mathrm{~F} \mathrm{16V}$		

Parts List for Fig 2
similar capabilities to those expected of a single sideband signal in a 2.5 kHz bandwidth').
Signal amplification and limiting should be carried out first, followed by the final sections of the 3089 to demodulate the signal. The recovered audio output is available at pin 6 of the integrated circuit which must be filtered to remove any residual RF and to limit the audio response to that required. The signal is then connected to the rig's volume control using screened cable to avoid picking up hum from local ac mains fields.

External

The only problem with this system in its present form is that some people are reticent about altering the rig's components. Fortunately, the system can be built as an external add-on. This requires only two changes to the basic circuitry. Replace the input resistor R1 with a small audio frequency choke and use a crystal cut to exactly 1.18 MHz .
The first stage now acts as an audio frequency up-converter, while the remaining circuitry operates as normal. A small audio amplifier and speaker should be fitted to the external box (the circuitry is shown in Fig 2). The audio system is based on an LM380 integrated circuit.

Set-up

Connect the 12 V supply, which only has to provide about 200 mA while driving the rig. It is important to use screened leads when you connect up the IF input next. There is no danger of shorting your rig because the capacitor C1 blocks any dc
which might appear on this input line. You now need a local operator to send you a signal with the usual level of tone modulation. This is achieved on a VHF or UHF rig by holding down the toneburst button. First, set up the multiplier circuitry. Disconnect the end of D1 from the 3.56 MHz tuned circuit and connect a 100 micro amp meter from the end of the diode to earth. Tune the 1.18 MHz circuit for the highest attainable reading. If the meter exceeds the full-scale reading, simply reduce the input level or use a higher-reading meter. After reconnecting the diode, disconnect D2 and repeat the procedure as before, this time tuning the 3.56 MHz circuit. Finally, connect the meter to the test point, marked 'TP' on the circuit diagram, and adjust the 10.7 MHz circuit. Carefully peak the preceding tuned circuits to get the highest reading possible on the meter. You may need to repeat this final procedure several times to accurately tune the multipliers. The only other adjustment necessary is to the discriminator coil on the 3089 . Tune to a weak signal and carefully adjust the core to obtain the best signal-to-noise ratio. Remember, do not tune for loudest recovered audio.

Note

Further research has revealed an article by W8SBQ in the April 1963 edition of OST which details experiments in Micro-FM undertaken by his local Detroit club. Although their equipment was rudimentary, the results were encouraging. I feel that the pioneering work done by W8SBQ twenty-five years ago ought to be acknowledged.

Sound the alarms! Stop press! A bargain! Yes, the find of the year: Redicom MX4100. Never heard of it? Neither had | till earlier this year, when nosing about the stalls at a rally, one caught my eye. The stallholder kindly let me open one up (a real amateur always carries a selection of screwdrivers at a rally), and I was mega-impressed with what I saw: very modern components, well laid out and all in a box only slightly bigger than a car radio. When asked what frequency it was on and what the crystal multiplication was, the stallholder uttered a helpful 'Dunno', but a fiver seemed very reasonable.
So what is it? A really nice 70 cm FM box. Sensitive? My word yes, about a third of a microvolt for 15 dB quieting, and bags of received audio available. The transmitter is also ace, well over 10 W , and in fact all examples I've played with gave about 15W out.
There are some drawbacks of course. The mike socket is very weird, so try for the matching plug, if possible, when buying. The mike socket is also on the back of the rig, which can be inconvenient. Crystal control is a hang-up. The formula is $\times 12$ for transmit, ie, a 36 MHz one is required. For receive, well, the first IF seems to be 21.418 MHz , so we need f reqd +21.418 divided by nine, ie, about 50 MHz .
Apart from the superb electrical performance and small size, one other nice point is that every pot on the boards is clearly marked - mic gain, dev, squelch, etc. Brilliant. This rig carries the Hugh Allison seal of approval, so remember the name, Redicom MX4100.

Ceramic filters (transfilters)

These things have been around now for some time, I encountered my first one twenty years ago in a 'Mohican' Heathkit receiver. They are used to shape the response of the IF.
In comes a ten-year-old home stereo system with built-in AM and FM tuner. The complaint was that the AM section didn't work; it had slowly faded away over a period of about a week. Stamped inside was a little label that said 'IF 455 kHz ', and '455' written on the ceramic filter tended to confirm it.
Audio stages were working, ditto the AM mixer/oscillator. The IF strip was looking suspect, though the strange thing was that it was 'dual' - ie, it doubled as a 10.7 MHz strip on $F M$, and it was working on FM!
One clue was that the IF seemed to be 470 kHz and very broad. On a hunch I 'shorted' the filter out with a 1000 pF capacitor. Lots of gain and the set now worked. The filter had gone to 20 dB of insertion loss whilst going walkies 15 MHz higher.

Armed with this knowledge, repairing a CB set that was low gain and off frequency (though the synthesiser was spot-on) was easy. I'd hidden it at the back of the shelf a week before 'cos I couldn't repair it. So, beware drifting ceramic filters!

RF and power supplies

The normal bench 0 to 30V PSU had been 'borrowed' to recharge some NiCads. No problem, there was another 0 to 12V 10A PSU under the bench. I swung it up, plugged it in and used it to repair a CB set with a duff display. There were no coloured lights in the bar graph-type S meter, so I fitted a spare chip and voila, a perfect repair.

Being a conscientious sort of chap, I decided to check the transmit strip. I pressed the mike button and there was a brilliant flash, then the set went dead. The 'new' PSU had its voltmeter pointer embedded in the right-hand-end stop, though a gentle tap on the top restored it to the 12 V position.

Whilst swearing and trying to work out what had happened, I noticed the needle do it again. Putting the avo across the PSU output showed it was going up to 20 V . Then I noticed it was doing it in time to a colleague transmitting into a dummy load on an adjacent bench; the PSU was sensitive to RF energy in the vicinity. Is this the first recorded incidence of power supply unit interference?

A quick check with another CB set, powered from another PSU, showed that 1W into a dummy load a foot away would provoke it into giving 20V. A $0.1 \mu \mathrm{~F}$ capacitor across the output terminals of the PSU effected a cure.
What about the 'repaired' CB set? The bulbs had all blown together with the new bar graph driver chip. Whoopee. Of course there wasn't another spare

Reusing second-hand components

Very often at junk sales you see piles of ex-computer boards at very reasonable prices, often just 10 p each. These can provide a wealth of useful components, particularly resistors, capacitors and potentiometers. These components are quite often what is termed 'computer grade'. Although an unspecific term, there is a good chance that these bits are high-quality, reliable components that, although used, still have plenty of life left in them. Also there is the possibility that the decent, professional engineer who designed the board, carefully chose components to work well within their ratings. Well, you never know.
Apart from obviously used boards there are two other boards worth looking for, both containing unused components. One is the 'components-inserted-but-never-soldered' type, often seen at
rallies. Here the leads are sometimes their original lengths, which may be handy. The other type, seen surprisingly often, is the 'it-sunk-in-the-solder-bath' board.
On a big-batch production job it is obviously not practical to have people hand-soldering every joint on to the board. What happens is that the components are inserted into the board (and leads cropped) by a machine. The boards run over some flux, then over the surface of a bath of molten solder. If there is too much solder in the bath it can run over the edges of the board and cover the top. These boards look horrible but it is worth remembering that only the bottom of the board has been fluxed, thus the solder may not have 'wet' the lead-outs on the top of the board. Apply a soldering iron around the top and very often the excess solder runs off with no problem at all. I've bought high-quality boards awash with excess solder for pennies each, and retrieved many modern, useful components. Don't be put off by appearances here.

Semiconductors, etc

You will notice that I've not mentioned active devices above, only passives. Transistors can be salvaged, and l've often suggested Pye Westminsters as good sources of RF devices for a quid or two.
Very often transistors are marked with in-house numbers on surplus boards, or sometimes ' R ' numbers, for research purposes. You stand virtually no chance of finding out what these are, or of their nearest well-known number. Perhaps I'd better not tell the story here of how I once phoned up a large semiconductor manufacturer and the customer enquiry engineer said, 'If you care to hang on I'll go and look up my "R"s'!
The trick with unknown transistors is to guess at what they might have been doing. IF strips probably contain 'linear' RF receiving-type transistors, ditto front ends and most likely multiplier strips. Computer boards, if very old, probably contain switching transistors and the like. Power supplies contain high-current devices and maybe fixed voltage regulators.
ICs are often so cheap nowadays that the risk of using a salvaged one isn't worthwhile. However, a month or two ago I desperately needed a common or garden 4001 chip. I found a scrap board with one, but it was double-sided and the chip was soldered on both sides. The best solution here, when you want the chip but don't care about the board, is to cut the chip out with an inch or so of board around it (a 'nibbler' is an excellent tool for this), or drill a series of holes around the chip, then knock the

SECOND-HAND

piece out. You can then unsolder each leg and cut away the board between it and the next leg as you go. When using a salvaged chip I try, if space permits, to employ it in a socket in the repaired equipment.

50 MHz receivers

There is a growing interest in receiving 50 MHz , reflected by queries in my postbag, and there are two major reasons for disappointment with receivers bought for this band. The first is that 50 MHz isn't there! Think back ten or twenty years. Even the most optimistic of enthusiasts wouldn't have dared hope we would get the band back. Importers and manufacturers shared this feeling, so in sets made to sell world-wide, although 50 MHz was emblazoned on the front panel, 70 MHz was fitted in models intended for the British market. It's not mega-difficult to check for yourself. Very often 50 MHz uses the 28 to 30 MHz range as the second IF, so locate the internal 'converter' and admire the crystal frequency. If it's around 20 MHz , then the thing will indeed receive 50 MHz . If we have 40 MHz in there, then beware, it's probably 70 MHz . It isn't practical to say that all examples of Yaesucom XYZ receivers cover 70 MHz when switched to 50 MHz , 'cos some will have come in via, say, America, where they will have had 50 MHz fitted. Watch out.
The other reason for disappointment is poor performance. When you look back at the kind of sensitivity people were getting twenty years ago and compare it with today's norm, you will see there have been massive advances made. Some of these sets are trying to work on 50 MHz with valves, techniques and layouts not really suitable for VHF use. The end result is, quite frankly, dreadful. Far, far better to forget the built-in 50 MHz converter/front end entirely and use the set to tune 28 to 30 MHz as the second IF on a more modern converter.
Here are two quick reviews of receivers of each type; one with 70 MHz fitted and the other with a poor 50 MHz performance. I would like to emphasise that there are many others available. It's probably true to say that any ten- to

Top: Sommerkamp FRDX500. Bottom: Lafayette HA600
twenty-year-old HF set that includes 50 MHz is not going to compete on that band with any modern-day set.

Sommerkamp/Yaesu FRDX500

Wow, what an impressive looking bit of kit. A mate of mine nearly bought one once thinking it was a transceiver. Built like the proverbial and dead reliable. Mains powered and all valves built in, except the 50 (or 70) MHz and 2 m converters. There is FM and provision for a narrower CW filter. There is a squelch, an S meter and slow and fast AGC. All 'old' bands are covered, 160 to 10 m , plus CB (11m) and WWV, and it's very stable. Performance? Well, really excellent 160 to $21 \mathrm{MHz}, 10 \mathrm{~m}$ suffers slightly - about $2 \mu \mathrm{~V}$ for 10 dB , and the 70 and 144 MHz converters are not brilliant either, about $2 \mu \mathrm{~V}$ for 15 dB sig noise. All in all an excellent HF set. Consider the VHF stuff
as a not-too-handy free gift, be it 50 or 70 MHz , and 144.
To work on, easy. Loads of room, logical layout and easy to replace components. Price, well, variable is the best I can say. Last year I saw one take all day to sell at $£ 70.00$ (Brighton) yet one was snapped up at $£ 125.00$ at Leeds. I'd say $£ 100.00$ is just too much.

Lafayeffe HA600

Bands: 80, 40, 20, 15 and 10 m . It has 50 MHz fitted, but forget it. $10 \mu \mathrm{~V}$ for 10 dB is the best l've seen out of one of these on that band, and l've seen much, much worse. There is a built-in S meter and a BFO. It's a cheap, moderately handy receiver, quite adequate as, say, a first 'amateur bands only' box. l've had great fun with one of these and a two-transistor transmitter on 80 m . Price? $£ 35.00$ to £45.00 for a worker.

SATELLITE BOOKS

WORLD SATELLITE ALMANAC

contains over 650 pages with full details on sateliftes, footprints, charts, tables, etc.
Price: $£ 15.00$ + carr.

THE WORLD OF SATELLITE TV

over 200 pages on all you need to know about selecting, installing, operating and maintaining your satellite earth station.
Price: 89.95 + carr.

HARRISON ELECTRONICS

Century Way, March, Cambs. PE15 8QW
Tel: (0354) 51289

This month I have to report that I have received no less than three letters from the RSGB, two of which they know about and one which they certainly don't as it comes from our tame mole. The first one just contained some routine information, but the other two are most interesting.

The 2 m band

When we published the 2 m bandplan two months ago, I said that there were certain to be some claimants for airspace that I was not aware of, and sure enough one has turned up. This one comes from an unexpected source, no less than Don Field of our DX Diary column. This time he is wearing his RSGB HF Committee Publicity Officer hat and his letter concerns 144.525 MHz . It appears that this frequency is used as a DX alerting net, the idea being that if someone spots a bit of choice DX on 20 m or wherever, he grabs the 2 m mike and announces it to the (local) world.

Background

The frequency involved is 144.525 MHz , which is just above the SSB section of the band. Don says that this spot was first used in the Thames Valley area but that it is now spreading. He says that there is no official RSGB backing for this frequency
usage but mentions a recent article in RadCom by Angus G3OSS, which does, in fact, promote its use for this purpose. Don requests that we either leave the channel vacant for this usage, or at least QSY if someone wants to use it to alert other operators to DX possibilities.

Reasonable?

Now on the face of it this request seems reasonable, but there is no denying the fact that it further reduces the space available on the band for VHF operators. If this were the only option open to the HF people then there could be little argument, but this is not the case and there are other possibilities available to them. Consider 1.8 MHz ; this has similar daylight range to 2 m and would serve the same purpose. The argument may go that to QSY to top band you would have to retune the rig, etc, and admittedly this could be a nuisance. Perhaps they could ask for a break on the local repeater, then we would all get to know what is going on. At least that option would give them far greater coverage than a local simplex channel.

Further options

Another alternative would be to use a converted CB rig with a dedicated
frequency on 10 m FM. This would be a very cheap option, probably costing under $£ 30.00$, and would also have the extra advantages of greater local range and of promoting extra activity on 10 m . Yet another option would be to use a converted taxi-type mobile radio unit, which can be obtained for around $£ 10.00$, and use 4 m as the news band. Heaven only knows it is used for little else at the present time. If they were to use that option they could at least rely on getting a clear spot whenever they wanted it. Under the present proposal they have to rely on someone's goodwill.

General use

The idea of a warning net is great, and the use of this frequency as a generalpurpose DX net, carrying warnings of openings and DX on the VHF/UHF bands, as well as specific DX on the HF bands, would make the whole thing more palatable. Perhaps the RSGB HF and VHF committees might talk to each other about this idea? If, however, they are adamant about it being used purely as an HF DX spot, then surely there are better ways of implementing it than to further limit the free usage of an already overfull band. I have an awful suspicion that at the end of the day we will have to learn to live with yet another intrusion of the band.

Beaconry

Beacons are very useful devices for both setting up your gear and checking for enhanced propagation. Up until now the 13 cm band has not been too wellendowed with beacons, but matters are improving. The latest unit to come on air is GB3OHM which is located near Birmingham. The beacon operates on 3.4569 GHz and runs 1.5 W to an Alford slot aerial. The beacon came on air at 1700GMT on 4 February. Reports on reception of the signal, so as to establish the coverage, etc, are welcome. All reports should be sent to Mathew Twyman G6KOA, who is QTHR in the callbook.
The Midlands area is already blessed with GB3CLE on 1.3 GHz , located on the Clee Hills; GB3LES on 2.3 GHz and GB3LEX which operates on 10 GHz , both of which are located north of Leicester. All of these beacons give excellent coverage over a wide area. The new

\triangle QRP KITS at QRP PRICES! \mathbf{D}
 BUILD THE 'CARLTON'
 SSB/CW RECEIVER KIT
 FOR JUST £63.00 COMPLETE!
 INCL P.P
 * 3 bands: 80/40/20m
 * Direct conversion
 * Full, clear instructions
 \star Needs only a 12 V power supply,
 standard 800hm 'phones/LS and an aerial!
 REMEMBER! OUR KITS ARE COMPLETE IN EVERY DETAIL! OTHER KITS INT HE 'QRP' RANGE INCLUDE: TRANSCEIVERS, ATU'S, SWR METER, FILTERS etc. PLUS A READY-BUILT POWER SUPPLY.
 For full details. SAE please to:
 LAKE ELECTRONICS
 7 Middieton Close, Nuthall, Nottingham NQ18 1BX
 Or ring Alan, G4DVW on (0602) 382509
 Callers by appointment only

Birmingham 3.4 GHz unit nearly completes the set, all we need now is one on 5.6 GHz . In case you are wondering about 24 GHz , that is already catered for by several 'private' beacons (which are now legal), any of which are available at the cost of a phone call to the operator.

Contest rules

There is a great divide in opinion as to how the microwave contests should be timed. On the bands above 3 cm , the contests have traditionally been run for a few hours on Sundays. In some quarters it is felt that better exploitation of the band's possibilities would be achieved if the hours were extended. There is some validity in this proposition, as frequently the band starts to open up as the evening starts to cool down. This, of course, coincides with the end of the contest. The feeling is that the contest should be a twenty-four-hour affair as on the lower bands.

Problems

The RSGB Microwave Committee has decided to try the twenty-four-hour idea out for one contest and has decreed a starting time of 2000 hrs GMT on the Saturday. It has been pointed out that not many operators would fancy setting up at that time at the beginning of April, simply because it will be dark. A more civilised time of 1400 hrs has been put forward and this is being considered by the committee. Another problem is that most 10 GHz operators look at the contests in a very light-hearted way; it is great to go out for a few hours on Sunday afternoon and play with the gear. How many of them will bother to put in a score when they know they are competing with the All Day Gang?

Wide v narrow

Another point that has received some attention is the possible separation of the mode scores. At the moment all contacts, whether wideband FM or SSB, are lumped together for scoring purposes. This, in theory, gives the SSB operator a great advantage because on an equal power basis the performance of SSB is 16 dB better than WBFM. The idea is to have a separated results list so that the WBFM operator does not feel that he has no chance of a good placing in the results. The opposing view is made by G3OXL, who says that unless the results are in a single list, the FM operator is not put under any pressure to upgrade his system.

Two parts

G8KQW comes up with an excellent idea: a twenty-four-hour period for the serious SSB operator, with its own results, and a separate eight-hour contest for the WBFM boys. This would be run over the same weekend to enable cross-mode contacts to be made. This should keep everyone happy. He also suggests that the twenty-four-hour period should include an enforced eighthour close-down from 2200hrs on Saturday until 0600 hrs on Sunday morning. An added advantage of this is that it would enable groups to change site for the

70 cm Bandplan

$\begin{aligned} & \text { Frequency } \\ & 433-432 \end{aligned}$	Usage Not available within 100 km of London
432	Low-end CW section
432-432.025	Moonbounce
432.05	CW calling freq
432.150	High-end CW section
432.150	Low-end SSB section
432.200	SSB calling freq
432.350	Microwave talk-back
432.500	High-end SSB section
432.500	Low-end all-mode
432.600	RTTY calling freq
432.600	FSK working
432.675	Packet working
432.700	Fax calling freq
432.800	High-end all-mode
432.800	Low-end beacons
432.810	GB3WHA
432.890	GB3SUT
432.910	GB3MLY
432.970	GB3CTC
432.980	GB3ANG
433.000	High-end beacons
433.000	Low-end FM
"	Repeater and FM simplex channels
"	
433.300	RTTY repeaters
433.500	FM calling freq
433.550	Talk-in freq
433.600	RTTY and FSK
433.700	
"	Raynet
"	
434.600	High-end FM
434.600	
"	Repeater inputs
"	
"	
435.000	
435.000	
"	ATV section plus satellites
"	
"	
440.000	

Sunday period, which would mean even more sites being activated.
The surprising thing is that the RSGB Microwave Committee apparently wasn't able to foresee these objections nor come up with the KQW idea, which is based on the rules of existing contests. Incidentally, those of you who are seriously interested in the bands above 1 GHz are recommended to subscribe to the RSGB's Microwave Newsletter. This is produced at roughly monthly intervals and is always full of interesting and useful information. The cost is low and details can be obtained from the RSGB at the usual address.

Bandplan

A 70 cm bandplan was promised to you and, even if it is a month later than promised, you will find it listed in the accompanying table above. This information is as up-to-date as 1 can make it but, as in the case of the 2 m bandplan, someone is sure to come along to claim their own spot.

Close-down

We are out of space again. What was in that third letter I told you about? Patience, my children, all will be revealed in next month's thrilling instalment!
icOM

Actual size

Features:

- Mulficolour Liquid Crystal Display.
- 25 Watt output.
- 20 Memory channels.

Take a close look at this easy to use and compact VHF Mobile Transceiver. It's unique orange, red and green LCD highlights the numbers and letters for easy viewing. With a 25 watt output from a custom designed power module and a extra large heatsink, this transceiver does not get too hot under your dashboard

Each of the 20 memory channels can store frequency, offset and direction, in fact all the information to work simplex or a repeater. The memory scan function will scan the memory channels and with the skip function

- Scanning.
- Call and priority function.
- Compaci size.
- HM15 microphone supplied. miss those you choose. The program scan will scan all frequencies between two programmable limits. The call channel ensures that your favourite frequeny is within easy reach, and with the priority watch the call channel or memory channels can be monitored every five seconds.

This transceiver provides you with so many features, its small compact size and simple front panel design make it a superb mobile transceiver. See the IC-228E or the IC-228H 45 watt high power version at your local ICOM dealer.

Icom (UK) Lid.

Dept AR, Sea Street, Herne Bay, Kent CT6 8LD. Tel: 0227 363859. 24 Hour.

Countonus!

Mobile

If you are newly licensed or just undecided about which band to operate first, then the new ICOM IC-3210 is just the answer. This dual band FM transceiver is ideally suited for the mobile operator. Transmit on one frequency and receive on the other and you're operating full duplex. It's just like talking on the telephone.

The simple and well laid-out front panel ensures quick and easy operation of all its many functions. A great convenience when driving. Optional accessories available are the UT4O tone squelch board. HS15 + SB mobile microphone and switch box SP8 external speaker and PS45 AC power supply.

Features:

- Full crossband duplex.
- 20 double-spaced memory channels.
- Built-in duplexer.
- 2 call channels.
- 4 priority watch functions.
- Programmed, memory and selected band memory scan.
- Variable LCD backlight intensity.
- Tone squelch and pocket beep functions (optional).
- 25 watts output.

[^1]

There was plenty for the DX chaser to be pleased about during February. The Russian DXpedition to Vietnam came off as planned, using the callsign 3W0A on SSB and CW and 3W1A on RTTY. 4WOPA was regularly active on 20 m on both CW and SSB, although his inexperience as an operator led to very low QSO rates. YIOVP was active from the club station in Baghdad to celebrate 'Victory and Peace'. There were a couple of successful German DXpeditions to the Pacific, putting both the Caroline Island groups on the air, plus KH8 (American Samoa). These are just the highlights. The Indians turned up from the Laccadive Islands towards the end of the month, and there was much else besides. The only disappointments were that the Russian operators in Vietnam failed to make it to Spratly, and HA5PP returned from Laos having been unable to get the expected licence.

Propagation

We are now getting a clearer idea of what sort of a sunspot peak we might be in for, and readers may well have seen some of the more fanciful stories in the press about how high-solar activity could lead to major failures in, the national grid, causing electrical blackouts across the country. Certainly there has been a rapid increase in solar flux during the early months of this year, suggesting that this sunspot peak could be the second-best since records began. Over the past months, solar activity has been following cycle 19 (which peaked in November 1957) with remarkable consistency, which would suggest a high peak in about a year's time.

QSLs again

I had an interesting phone call from Jim GUOELF, a regular reader of this column, concerning remarks I made in February about direct versus bureau QSLing, and in January about the demand for contacts with Jersey, Guernsey and the Isle of Man. Jim tells me that, despite there being about 125 licensed amateurs on Guernsey, most of them steer clear of the HF bands because of the pile-ups that always appear. As a result, those who do persevere tend to get swamped with QSL cards. Jim used to get about 1,000 a month via the bureau and found that he didn't have either the time or the funds to deal with them all. He now asks for direct QSLs and reckons that this means he only gets cards from those who really want one (as against
those ops who send out bureau cards for every contact as a matter of course). If no return postage is enclosed he is happy to return cards via the bureau, but at least by this method he has reduced the workload to manageable proportions. As he points out, there is nothing to stop even Russian amateurs mailing cards to him direct nowadays.
O_{n} a different note, Jim told me that quite frequently he gets cards arriving with extra dollar bills or IRCs for contacts which are very definitely not in his log. Clearly, there are some amateurs out there, hopefully a minority, who think they can buy a confirmation. This happened to me recently, with a Russian amateur offering me an R -100-0 certificate (for working Russian oblasts) in return for two GJ6UW QSLs (for which I am manager) for bands on which he ineeded Jersey confirmed!
Following Jim's phone call, I received a letter from Graham G4KLP on the same subject. Graham operates regularly as JY8CL and has also been QRV from ST and BV in recent years. Graham says that the time taken to handle incoming QSLs wouldn't be too bad if people were careful, but often he finds that they make mistakes with time or date on the card and he has to waste time searching through the log (not all QSL managers are as diligent in this respect as Graham, of course, and you can hardly blame them). Even so, Graham doesn't think the so-called 'honour' system for awards is satisfactory as there are definitely those who would cheat. To back up this statement, he gives several instances of QSLs which he has received for QSOs which did not and could not have taken place. Graham also mentions that a very high proportion of cards he receives are from SWLs, and that almost all of them are useless and time-wasting. However, he will always respond to SWLs who send direct with SAE and return postage.

80 m DXCC

The ARRL has announced the top ten recipients of the new single-band 80 m DXCC award. Not surprisingly John ON4UN heads the list with 326 all-time countries credited, followed by W4DR with 304 . John is the only European in the top ten.

WARC bands

I see from DX News Sheet that Tom GW3AHN, who has made a speciality of the so-called WARC bands since they became available, now has 176 countries
worked on 24 MHz and 128 on 18 MHz . This makes my own scores of thirty-two and thirty-six look rather pathetic! However, it just shows what is possible. The scope should increase enormously later this year, when the current power, mode and antenna restrictions are lifted. There are strong rumours that this will happen in July. Activity on 18 MHz received an unexpected boost when US amateurs were given access to the band on 1 February. No doubt this will serve to attract more DX stations, and I imagine the ARRL will soon start to allow 18 MHz contacts to count towards the DXCC awards. W1JR achieved WAS (Worked All States) on 18 MHz in just five days! This was the twelfth band on which Jim has managed WAS!

SM7PKK

Cass WAGAUD, writing in the US CQ Magazine, recently gave some interesting background on Mats SM7PKK, who has spent the Swedish winter operating from various islands in the Pacific. Mats, now twenty-one, took up amateur radio at seventeen years of age and, within a year, advanced through all grades of the Swedish licence. His favourite mode is CW, where he has been showing about 5 kHz above the bandedges. By the time you read this he should be in the South Cook Islands. Not a bad way for a young man to spend the long winter months! Send QSLs to Mats Persson, Betsev 22, S-240-10 Dalby, Sweden, to be dealt with on his return.

DX news

When 4WOPA appeared on the bands at the end of January, few people took much notice. North Yemen has been off the air for many years, and pirate 4 W callsigns have appeared during that period with monotonous regularity. However, this one turns out to be genuine, in much the same way that 5A0A took us all by surprise from Libya a few years ago. Hans 4WOPA is a doctor based in Yemen for two years with the MedicalAid programme. He is not an experienced DXer but has been doing his best to cope with the inevitable pile-ups. John PA3CXC, who is handling his QSLs, is hoping to get permission to go out as a guest operator at some stage to put 4WOPA on the air in some of the major contests.
The frequencies to watch are 14010 and 14180 kHz , though Hans will also seek permission to operate on the other bands, and word is that he may well
appear on 10 and 15 m very soon. Let's just hope the paperwork is forthcoming to keep the ARRL happy!
If you see this column early enough, you might still be in time to catch DJ6SI and his XYL, who were due to sign TY9SI and TY9YL from 22 March until 3 April. One report also says that they will be accompanied by DJ6JC who will operate mainly on RTTY.
There were rumours that Ron ZL1AMO would visit the North Cook Islands around mid-March. This is quite a rare one, so let's hope the rumours were true.
C9MKT hopes to be active on the weekends of 7-9 April, 12-14 May and 9-11 June. Ken is also reported to be planning some activity from Swaziland and Tanzania during April or May. 3DAOBK, who is ex-ZS5MY, is also active from Swaziland and will be working hard for the various major awards.
The Natal DX Group is planning an operation from St Peter and Paul Rocks, to start around 2 or 3 May. The callsigns will be ZYOSW on CW, ZYOSS on SSB and ZYOSY on RTTY. Check the usual DX frequencies, but bear in mind that they will usually be operating split-frequency.
There have been a number of reports that the operator at XU1SS has been arrested and the gear impounded. This does not bode well for future operation from Kampuchea, so I hope that you managed to catch this one while it was around.
How about this? The Long Island DX Bulletin reported recently that Ronald and Nancy Reagan plan to take their amateur licence exams and to set up a contest-style multi-op station at their retirement ranch in California!
I5DEX will be in Angola for six months from late March and has applied for a licence. This is a rare one nowadays, so let's hope he pulls it off.
The much-postponed Mexican operation from Revilla Gigedo looks set for ten days in early May, depending upon military co-operation to get them there. The callsign will be XF4T. The SSB frequencies are 3795, 7050, 14250, 21300 and 28500 kHz . CW on 025.

IOTA

Island chasers should note that YJ8JS is due to operate from Banks Island off the New Hebrides from 9-12 May, probably using the callsign YJ1BK. He will then move to Torres Island for a 15-18 May operation, probably as YJ1TR. This project, which started out as a modest one-man holiday cum DXpedition, has apparently now become something of a cause celèbre in the Pacific, with various major companies offering sponsorship, and the possibility of some further operators joining Norman for the operation. Promises to be an interesting one! Incidentally, Islands on the Air manager, G3KMA, has recently updated the IOTA Directory, and has taken this opportunity to make some revisions to the rules. If you feel like getting involved in island chasing, then drop Roger a line at his callbook address. At the last count, the directories were $£ 2.00$ each. The IOTA net continues to meet at 1300GMT on 14260 kHz on Saturdays and Sundays.

DX nets

OE2DYL has recently sent me details of the new 1989 edition of his publication 'DX Nets Around the World' List 8. This contains information about more than 100 active DX nets. The price is $\$ 3.00$ (US) or nine IRCs. For $\$ 10.00$ (thirty IRCs) he will send you all eight lists published to date (the theory behind this is that old nets may be reactivated as the sunspots increase). Order from Dieter Konrad, Bessarabierstr 39, 5020 Salzburg, Austria.

Intemational Marconl Day

Once again there will be a number of special stations on the bands to celebrate International Marconi Day which, this year, falls on 12 April. The stations concerned are:
KIWVIMD near Cape Cod, the North American end of the first Europe to USA radio transmission.
VEIIMD at the site of the new Marconi museum in Nova Scotia.
VOIIMD at St John's, where the first transatlantic contact was made.
EIIIMD near where the first Irish experiments took place.
IY4FGM the official Marconi Club station. GBOIMD from the Isle of Wight, used by Marconi for many of his experiments.
GB4IMD from Marconi's original site at Poldhu Cove in Cornwall.
GB2IMD from Northern Ireland.
GB2MAR from the Marconi Club in Portsmouth.
All operations will be on SSB in the following bands: 3770-3780, 7070-7080, 14260-14280, 21360-21380, 28360-28380, $28760-28780 \mathrm{kHz}$, plus FM on 29640 kHz . An attractive certificate will be available from the Cornish Amateur Radio Club (PO Bux 100, Truro TR1 1RX) for working (or hearing in the case of SWLs) at least six of the special stations. The charge is $£ 2.00$, and you need to send along details of the contacts made. Contacts made on Marconi Day may also be counted towards the Mary Rose Award and the Marconi Spectrum Award. Further details from G3FWE.

OH-DX-Ring

I was interested recently to receive a QSL card from OHOAM, which carried the following information:
'The OH-DX-Ring - OH2AM - was founded 7 August 1964. We like to think that the kids added a page to the history of DX then or created one of the Mysteries of Ages. Anyway, it marked an event when Finland ceased to be just a small, modest country tucked away in the far north of Europe. Finland decided to stand tall in DX - to assert itself in the game. Always!
'In 1986, having run the track more than once, the DX-Ring decided to take a new step by doubling its membership and invited another ten, qualified, true-blue DXers to join its ranks. The criteria were the same as those used more than twenty years earlier.
'Membership in OH2AM testifies to distinguished service in the DX vineyards and contests. It also involves a commitment to further the cause of Finnish Amateur Radio and to represent Finland with honour overseas.
'Today we are enjoying the Great Days of DX and Contesting. Advanced in numerous fields, Finland's contribution to amateur radio is well-known and appreciated throughout the world. Attuned to the finer things, OH2AM has been leading the way, with many firsts in amateur radio bearing the AM label.
'You'll be hearing about us time and again. Remember OH2AM - it stands for DX Magic. We believe in the Mystique of DX; we are Believers.
And, indeed, who can disagree with them. From their contest activities, including the OHOW super-station, to their DXpeditions, which include helping to put some brand new countries like SORASD and 4J1FS on the bands, the Finnish boys have become a legend over the past few years and an inspiration to us all.

Visalla

Should you just happen to be in the USA in late April, remember that the Visalia International DX Convention, the leading event of its kind, takes place in Visalia, California from 21-23 April. From past experience I can heartily recommend this one.

Contests

April is relatively quiet, with no major international contests. Locally, there is the SP-DX Contest, a CW event, on 1-2 April (starting at 1500GMT on the Saturday) and the Helvetia Contest on 29-30 April. The latter is both CW and SSB and runs for twenty-four hours from 1300GMT on the Saturday. Looking towards May, on 6-7th there is the Italian RTTY Contest, and the following weekend the Russian CQ-M Contest. More details on these and other May contests next month.

Awards

The Luxembourg Independency Award commemorates the independence of Luxembourg, gained by treaty in 1839. To obtain the award you need to score 150 points from contacts made with LX stations during 1989. Each contact scores ten points, and each station can only be counted once per band. To claim the award, send a certified list of contacts (with usual log details) to Reseau Luxembourgeois des Amateurs d'Ondes Courtes, Awards Manager, PO Box 1352, L-1013 Luxembourg, no later than 31 July 1990. There appears to be no charges for the award, but you are asked to provide a self-addressed, adhesive mailing label.
The Andorra 5 Bands Award is also for contacts made since 1 January 1989. Work five different C31 stations (other Andorra prefixes do not count), one per band, and send QSLs to URA, PO Box 150, Andorra la Vella, Andorra. Again, there appears to be no charge.

Stop press . . .

Martti OH 2 BH and seven other amateurs from Finland, Mexico, the USA and Japan, will operate as XF4L in a major effort from Revilla Gigedo from 1119 April. They will look especially for Europe. The QSL route is to OH2BN.

It is a pleasure to be able to review a really different receiver for the serious listener. It is expensive but it does cover most interests from amateur and broadcast monitoring to air and marine bands. In fact, it is the short wave listener's dream.

The Solaris 1489 recelver

The Solaris 1489 is not just a short wave receiver. It is the embodiment of all the features that many short wave enthusiasts consider to be essential in a listening station.
The receiver has a frequency range of 150 kHz to 650 MHz , catering for upper and lower sidebands, CW, AM and FM. Mode selection is made by front-panel mode keys which have LED indicators. The frequencies from 150 kHz to 30 MHz are tuned in 10 Hz steps via the main tuning knob or by using the scan mode, and provision is made for 100 Hz steps for fast tuning. Above 30 MHz , tuning is in 12.5 kHz steps. An RIT control allows tuning between these parameters.
The scanning system allows scanning in either direction at two speeds and provision is made for up to twenty memory
channels to be scanned independently of the main tuning. Each channel is held for three seconds and, if no signal is present, the scan moves to the next channel in the program. When a 'busy' channel is encountered, an indicator informs the operator, who can then switch in the scanned frequency. The scanning program can be set for any mode.
As an alternative to selected frequencies, the receiver can scan continuously between chosen points by programming the higher and lower frequencies.
The main tuning indicator is the standard seven-digit LED display. A separate two-digit display shows the channel scanning. As stated, the station caters for all modes and a fully screened built-in microprocessor deals with RTTY, SSTV, AMTOR and Morse systems. Control keys for these are set at the front of the unit. The display for these modes is on a $100 \mathrm{~mm} \times 70 \mathrm{~mm}$ miniature flat television screen. On entering the system, the screen displays a menu from which the operator selects the mode required. Speed, frame
adjustments and baud rates are selected from the panel and are indicated on the screen.
There are sockets provided for input of signals from other sources and output to a standard video monitor. There is also a centronics parallel port for a standard printer for hard copy.
A cassette recorder is fitted which allows recording of signals from the main receiver so permanent records can be kept of stations received.
The antenna inputs are on the rear of the casing. There is provision for coax-fed aerials for HF and VHF/UHF and wire aerials for HF. The latter are fed to an in-built antenna tuner. There is also a fitted 160 cm telescopic aerial for portable use.
In practice, the main receiver is extremely stable and operation is the same as for a normal general-coverage receiver. A flywheel-type drive makes fast tuning up and down the band simple but an adjustable 'drag' can be used. With the memory scanner in operation, an LED shows if a signal has been received and the operator selects the override, thus
switching in the second VFO. This can be done at any time and does not affect the main tuning.
Having the in-built computer is a real boon for the data mode fans. Select 'Data' switches on the on-board computer, and the screen displays a menu from which you choose the mode required. The necessary programs are in ROM, so no loading of programs is needed. The signals from the receiver are fed directly to the computer and shown on screen.
The usual adjustments for baud or frame rate, as well as CW speed, can be made but, as the television is preset, there are no brightness or contrast controls.
Although the picture is quite small, the image is sharp and clear. A single 'Print' command enables hard copy to be made with a suitable printer. Audio recordings can be made using the on-board cassette unit and replayed into the computer or transferred to another recorder via an extension socket on the back of the unit.
Provision is made for standard 8 ohm headphones and an extension loudspeaker,
but the built-in speaker is very good.
There is also a built-in 24-hour-mode digital clock which has six alarm settings. If 'Timer' mode is selected, the receiver will be switched on at a preset time and on a preset frequency (selected on the memory VFO).

Power consumption is about 2.5A with the computer in circuit, and the weight is about 4.5 kg including the batteries. The batteries are rechargeable and will run a good eight hours per charge, even in data mode.
The price of the Solaris 1489 is around $£ 650.00$. Taking into account the all-mode capability and the excellent performance of the receiver, it is good value for money.

Dream-land

Traditionally, the April issue of many magazines contains an item that, despite its initial seriousness that leads the reader to believe its content, turns out to be a practical joke. To be quite honest, I was thinking in these terms when I started preparing my article this month. However, I decided to break with tradition a little. Instead of a practical joke, why not a dream?
Listeners, like all hobbyists, have dreams of things that could be if only the manufacturers had the vision. The Solaris 1489 is such a dream. It is composed of those technical features that listeners have said, 'If only it had... '.

As such, it bears no relation to any station in production. Whether it could be produced is a matter of conjecture but it is nice to dream occasionally!

Back to reality

Coming down to earth, the winter season has meant that DX has been more difficult to
find, however, the bands have been better than expected. The peak of the current sunspot cycle is due around 1990. Nobody is sure of precisely when, but if things continue to improve over the next twelve months, the HF bands will be really humming.
Mike Turner of London has been filling his log with amateur stations, as he has found the broadcast side boring lately. Typical loggings are AA4TH from Stone Mountain, Atlanta, all the US states, 5 B4TI, HZ1AB, J52US, 5V2UD, TF5BW, JF7TYA and a nice one in JY1 chatting to GOBBD from his aircraft.
Peter Rhein of Torrington came across a handy piece of information. Apparently, a batch of Sangean ATS 803A receivers has a fault in that there is a programming error in the organising software for IC402. This means that when you press the SW button 27, it calls up the twelve short wave bands sequentially, the error being that on 16, 19, 25 and 31 m , the start frequency is wrongly programmed. Comet are selling these receivers at £79.95 which is a very good price indeed for a rig that many readers are finding as good as some receivers costing a lot more.
Jim Lawrence of Halstead has added a new receiver, the Trio RZ1 Scanner, to his equipment line-up, as well as a Yoko multi-standard TV receiver. The television gave some excellent pictures during the recent Sporadic E period and fifteen stations in ten countries were logged: USSR (two), Norway (five), Yugoslavia, Iceland, Sweden, Italy, Spain, German Democratic Republic, German Federal Republic and Czechoslovakia, and all these using a simple discone!
On the fax scene, Jim has
been adding to his newstransmission loggings with a nice new one from Buenos Aires on 20.736 - a frequency worth watching.
Darrell Jacobs of Mortimer is still in the awards' lists and this month claimed the Continental award for North America on 20 m only. Darrell also queries an SU3 call heard on 40 m at 1640 hrs on 9 January. Is he genuine?
Philip Davies of Market Drayton sent in his usual excellent report (where do you find the time, Phil?). The 10 m band has been superb, particularly during the ARRL 28 MHz Contest. Ninety-four new US prefixes were logged with forty different states during the contest, including: K5TA, KF7B, KY0B, WX6M, NK7U, NTOV, WG7Z, NIOE, KODD, WEOA, KBOPR and WAODYU and, just to keep the East Coast on the map, AD3V (Delaware).
The two best loggings during the contest were FP5HL on St Pierre et Miqelon and HKOHEU (who didn't give his QTH). The 15 m band offered a couple of nice catches in VE8CB from Cambridge Bay, Victoria Island and A47RS from Muscat in Oman. There were some nice openings on 40 m with OY5J (Faroes), GU3EJL (Alderney), TA4A (Aydin, Turkey), LW1 (Argentina) and T77 (San Marino). However, the best QSO logged on 40 m has got to be TI2KD working 9K2EC (Kuwait). GBONIN was also logged on 40 m from the oil rig Ninian in the North Sea.
Here is some information gleaned from the air on the situation in the USSR. Celebrating the 70th Anniversary of the Byelorussian State (oblasts in brackets): EW1LWN(005) Brest, op/QSL UC1LWN; EW2AB (188) Minsk, op/QSL UC2AB;

EW2WO(006) Vitebsk, op/QSL UC2WO; UC7E (188) Minsk, op/QSL UC1AWZ. Also Latvia and Lithuanian celebrations with: LY2ZO (038), op/QSL UP1BZO; LY2ZZ (038), op/QSL UP1BZZ; LY2WW (038), op/ QSL UP1BWW and YL2VZ (037), op/QSL UQ2GM.
The Turkoman Republic has also been logged on 40 m with RH8AZ(191) and RH8BG (180).

Phil's oblast score is now 145 with UZ4SWU being the latest in 091 (Volzhsk). Many thanks for the report, Phil.

New computer program

Some exciting news from Technical Software for those with BBC computers. A new program consisting of software and hardware interface has been produced, which enables BBC users to resolve fax, packet, SSTV, RTTY, Morse, AMTOR/SITOR, UoSAT and ASCII.
The program has full printer support including screen dump of SSTV pictures, filter, shift and speed adjustments in all modes, text store and full save facilities for fax and SSTV. The package supplied includes the interface, EPROM, all connecting leads and a demonstration cassette at an all-in price of $£ 259.00$. Considering the price of 'stand alone' decoders, this is very reasonable and gives the BBC computer a substantial upgrade for radio monitoring purposes. (Technical Software, Fron, Upper Llandwrog, Caernarfon LL54 7RF).

That's about it for this month, folks. Next month we'll have a look at what's happening in the world of broadcast monitoring. Meanwhile, have a good month of listening.
Any questions or reports to: 1 Jersey Street, Hafod, Swansea SA1 2 HF .

SPECTRUM COMMUNICATIONS

 MANUFACTURERS OF RADIO EQUIPMENT AND KITSOver 100 kits \& ready built units for the radio amateur \& CB enthusiast, including preamps, linears, conveters, transverters, CB to ten conversion kits, etc. Also a wide variety of components.
SEND SAE FOR LISTS

VAT \& P\&P INC PRICES Delivery within 14 days if available 24hr answering	```SHOP TIMES: 9am-1 pm & 2pm 5pm TUES-FRI 9am-1pm & 2pm-4pm SAT CLOSED SUNDAY & MONDAY```
UNTT B6, MARABO DORCHESTER, D	DUSTRIAL ESTATE TEL: 030562250

EVERYTHING BUT THE SQUEAK

by Ken Williams

There are three ways of tackling the problem of obtaining components for a constructional project. The first task is always to draw up a list of required components, after which the constructor must:

- Purchase his requirements in shops or by mail order.
-Attempt to find what he needs at rallies and club junk sales.
- Remove the required items from his personal component store (otherwise known as the junk box).

If the first method is chosen, it may prove quite expensive, even to the point where it would be cheaper to purchase a ready-built item for the same task.

If the second method is adopted, it may well prove to be quite long-winded, for there are only a limited number of rallies and club sales within a given area. This method may also prove expensive, particularly if transport costs and entrance fees are taken into account.

For the enthusiastic experimenter there remains only the final option, by which means construction can be pursued without incurring excessive expense.

Of course, new components will need to be purchased from time to time, but, with a deep junk box, you should find that you already have most hardware needed for the proposed project. Very often also, the design of the equipment can be adapted to use the components in stock.

Stocking a junk box

The art of developing a comprehensive, yet inexpensive, junk box is to recognise equipment which may contain useful components, yet is insufficiently attractive to the radio amateur population at large to provoke interest.
For an example, at a club sale the auctioneer may hold up an old AM Pye Ranger and ask for an opening bid. Nobody in his right mind would consider modifying the equipment for use on the air, so there is little interest and a bid of 10 p or 20 p will often secure.
When you get the equipment on to your bench, open up the case and see what you have purchased. Initial inspection will reveal three chassis bolted to a frame. Cut the interconnecting wires and unscrew the chassis-fixing screws.
The centre chassis is the power unit. Except for perhaps an odd resistor, nothing of much use will be found so this can be safely consigned to the dustbin. The remaining chassis are the transmitter and the receiver respectively. Depending on your philosophy towards valves, two courses of action could be followed.

If you favour valves, the transmitter could be used for experimenting with aerials without the danger of damaging
the main rig's output transistors with high VSWR, etc. The circuit is very similar to that of the much later Cambridge equipment and is capable of $4-5 \mathrm{~W}$ output on 2 m .
The receiver is insensitive by modern standards, but could perhaps be retuned to listen to a local aeromobile channel where signal strengths are high. Otherwise, the best policy is to reduce it to produce.
If you do not favour the use of valves, strip both chassis. Remove all the valves and put them in two plastic bags, the power valves in one and the remainder in the other. Put on one side for disposal at the next junk sale where they will probably fetch as much as you paid for the whole equipment!
Remove the aerial changeover relay from the transmitter chassis. This was manufactured by Magnetic Devices and is quite capable of handling 50W up to 500 MHz . Now remove the crystal holders together with the ceramic switch wafer and associated trimming capacitors. Other components from this chassis include the airspaced aerial trimming capacitor, miniature HF chokes, some ceramic and silver mica capacitors and such resistors as can be removed leaving sufficiently long leads. Finally, remove the coils and screening cans and, if thermionic equipment is ever constructed, the valve-holders.
Much the same technique can be employed in stripping the receiver. Particularly useful is a number of ferrite cored ceramic VHF chokes in the heater circuits of the RF stages, the IF transformers on 10.7 MHz and 465 kHz , which can be used with either valves or FETs, and the 10.7 MHz to 465 kHz conversion crystal.
The control unit will disgorge a loudspeaker, another yaxley switch and a couple of indicator lamps.
Dispose of the stripped chassis in the dustbin and consider what you have obtained: a 50 W aerial changeover relay; a number of trimmer capacitors; a dozen or so crystal holders; a two-pole six-way ceramic wafer switch; RF chokes for HF and VHF; IF transformers; sundry capacitors and resistors; a loudspeaker; another yaxley switch; some indicator lamps and a box full of nuts and bolts, all for a cost of 10 p or 20 p and half an hour's time. Against this may be set the resale value of the valves at the next junk sale.

Cleaning

There are few things more annoying when starting construction than having to spend time preparing components for use. So, after completing a chassisstripping operation, it is well worthwhile spending a few minutes cleaning the
recovered items. Straighten the wires on resistors and capacitors; remove strands of wire, surplus solder and dirt or grease. Ceramic components can often benefit from a few minutes' scrub with a stiff brush under the tap.

Hard-wired chassis

This technique of 'component recovery' may be applied to almost any hardwired chassis, the main consideration for retention being whether the components will be of future use or have resale value.
It is also wise to purchase valve equipment containing mains transformers whenever possible, for even if the construction of thermionic equipment is not contemplated, most of the older types intended for valve equipment have several substantial heater windings which can be used in series for lowvoltage power units.

Do not neglect reusable chassis fittings. I well remember purchasing a chassis for 20p at a junk sale, from which I removed a pair of chrome handies. These were not of immediate use, so I cleaned them on a buffing wheel before returning them to the next sale. They were purchased for 50p - by the vendor of the original equipment!

Solid-state equipment

More care has to be takén when selecting solid-state equipment, for PCB construction means that far shorter lead lengths are employed. A transistor will be of little future use if the connections are less than an eighth of an inch long, whilst ICs which are soldered directly on to the board are likely to be damaged when you try to remove them.

Nevertheless, there are many other useful items which may be removed. These include: PCB mounting switches; potentiometers; plugs; sockets; capacitors and, from time to time, filters; oscillator units, etc.
When stripping components from old chassis or PCBs, there is always the danger that they will be damaged in the process, or were unserviceable even before removal. Therefore, it is always a good idea to check any components removed before storing away.

Obviously, any showing signs of overheating should be rejected immediately, likewise any with obvious defects, such as missing connections or cracked seals.
In general, resistors, provided that the leads are of adequate length, will be serviceable. A simple check with a multimeter will confirm this.

Capacitors present a greater problem. You will usually find that low-value ceramic and silver mica capacitors will be perfectly serviceable no matter what
their age. Modern types of mid-range (11000 nF) will usually be reusable, but the older types using paper or wax insulation are very prone to leakage and are not really worth keeping.

High voltage electrolytic capacitors are suspect, especially those from older equipment. Unfortunately, at the present time these are difficult and expensive to obtain and it would be regrettable if serviceable items were discarded.

One method of testing is to charge the capacitor to its working voltage through a high-value resistor, disconnect and wait to see whether it retains its charge. If it doesn't, reject it immediately, but if after a few minutes a reasonable charge remains, it will probably be serviceable.

It is hardly worth keeping low-voltage electrolytics from thermionic equipment as modern PCBs use smaller and more efficient equivalents in abundance.
Providing that the lead lengths are adequate, transistors can usually be removed from PCBs without damage. A simple check with a multimeter will confirm that the junctions are unharmed.
As long as excessive heat has not been applied to crystal or mechanical filter units, they should be serviceable, and can be placed directly in store.
Constructors anticipating building valve equipment may be suspicious of any valves removed from surplus chassis. This fear is generally unfounded because, although some may be a little
low in emission, the vast majority will prove perfectly satisfactory for most purposes. In the past twenty years, I cannot remember more than one or two valves obtained at club sales which would not operate.

Valuable asset

The novelist, Neville Shute, once defined an engineer as a person who could do for ten bob what anybody could do for a pound. In meeting this criterion, a deep junk box is probably the constructor's most valuable asset. Without it he is reduced to endless searches through catalogues and rally stalls. With it he can concentrate on his main interest - constructing equipment.

The 1988 Annual General Meeting of the RSGB

by Martyn Bolt G4SUI

The 62nd Annual General Meeting of the Radio Society of Great Britain, which took place in December last year, was particularly significant, firstly, because 1988 was the 75th anniversary of the Society and secondly, because it was the first AGM to be held outside London. This will hopefully go some way in dispelling the 'London Wireless Club' tag which has so often been given to the Society.
The venue was the University of Manchester Institute of Science and Technology, which has excellent lecture theatre facilities. Situated in the centre of Manchester, the venue was easy to find; the talk-in by local radio amateurs being appreciated by everybody. There was adequate and, more importantly, free parking. The meeting was well attended with just under 250 people present. My membership renewal was around the time of the AGM and as I was unable to renew it before the meeting, I did not have voting rights, although I could still attend the meeting.
The turnout, whilst a significant increase on recent years was, in my opinion, disappointing. One often hears amateurs voicing their solutions to the problems of the Society and the apparent north/south divide, yet when presented with an opportunity to go on record with their thoughts they are noticeably absent. My advice to these amateurs is to 'put up or shut up'; anybody can knock a body of volunteers such as the council members, but it takes a good man or woman to get out of the armchair and do something about it.
There were several familiar faces at the meeting, and I was glad to see that people who had attended the old venue were also prepared to support the RSGB at its new one.
The seats at the front of the auditorium, which were reserved for council and committee members, had quite a few empty spaces when the meeting started and I feel sure that the official apologies received did not cover all those missing.

As the AGM presents the only real opportunity for RSGB members to have their queries answered by the heads of the relevant committees, it should be attended by all the council and I would like to see more than 1% of the membership turn out.
A welcome change from previous years was the prompt start to the meeting. The minutes of last year's AGM were not challenged this year.
The accounts again showed a deficit and quite a few of the older members expressed their dismay at this. Although the loss was less than last year, it would be nice to see the Society make at least a small profit next year. I was disappointed that several times during the AGM members were put off asking questions by the President repeatedly saying, 'Time is short, we must press on'. It was not until later that I realised that an hour had been taken off the meeting time to allow a small percentage of RSGB members to prepare for the Presidential Installation Dinner which was to take place later in the evening.
The names of those elected to serve on the council during 1989 were announced. I do not propose to reproduce the list here as those who are interested will have been able to read it in the January issue of RadCom. I was pleased to hear that all the members who had overseen the last council election had volunteered to do so again. I think these people deserve the thanks of all members for what could be an onerous task.
There was some debate on the reappointment of the auditors. Some members felt that money might be saved by appointing a new firm of accountants, and whilst I suspect that charges may be less away from the City, the time and money spent in acquainting a new firm with the specific needs of the Society might outweigh any savings. In the end it was agreed to reappoint. The 62nd Annual General Meeting of the RSGB was then concluded. In all, I think it had taken just over an hour.

After a break for tea and biscuits, we returned to the lecture theatre for the 'Open Meeting' which began with the presentation of awards for services to the Society, amateur radio, and contributions to RadCom during the year. Following this we were treated to a fifteen-minute video of the opening of the 75th National Convention earlier in 1988. In view of the apparent shortage of time, I considered this unnecessary as it had already been covered in detail in RadCom earlier in the year.
The President, Sir Richard Davies KCVO G2XM, then delivered the presidential address. This contained some very interesting points, including the announcement of sponsorship towards the preparation and presentation of promotional material, in the region of £150,000.
The open forum is the most interesting part of the annual meeting for me, as this is when amateurs can try to get answers to the questions that have been puzzling them all year. Once again, the old faithfuls' were raised: 'Why does my mate get RadCom before me?', 'What about the abuse of repeaters?', etc. I sometimes think that it would be beneficial if the RSGB printed a list of the most common questions and answers, to save time.
The next prefix for new car registrations is ' G ' and the Society has approached the DVLC at Swansea to see if amateurs can have their callsign as a car registration number. One member present was in total opposition to this 'posing' as he called it. I see it merely as an extension of the recent craze of emblazoning the callsign on badges, hats and jumpers, etc.
The proposed new beginners' licence was also discussed. My feelings on this are that it will inevitably come about, so instead of burying our heads in the excuse, 'I did the RAE and so should everybody else', we should offer constructive ideas on introducing new recruits to the hobby. There are fewer new licensees every year, so if we are not careful the hobby will die of apathy in the not too distant future.
The meeting finished at 6 pm with the draw for the 75th Anniversary lottery. The names of the prize-winners are published in the February 1989 issue of RadCom.

AMATEUR RADIO BEFORT 1940

The origins of radio date back to a series of experiments by a German physicist named Heinrich Hertz in 1887 and 1888. Continuing the theoretical work of James Clerk Maxwell, Hertz demonstrated that electromagnetic waves actually existed. In fact, he managed to transmit a signal over a short distance by generating a spark in one circuit which generated a smaller spark in a receiving circuit. Unfortunately, Hertz died in 1894 at the age of thirtyseven. His death was a great loss to science and many people have since wondered what would have happened had he lived longer.

The genius of Marconi

After reading an article about Hertz written by Professor Reghi, the idea of 'wire less' communication caught the imagination of a young Italian named Guglielmo Marconi. Marconi first set about repeating Hertz's experiments and, at first, achieved similar distances of only a few yards. Then he added a coherer; an early device for detecting a radio spark. By trial and error he was soon able to achieve distances of over a mile and a half.
Despite his achievements, Marconi could not sell his ideas in his native Italy and so in 1896 he came to England. Here he met men like Campbell Swinton and Sir William Preece who shared his interest in wireless.

Popularising wireless

Initially the idea of wireless appeared to be little more than a conjuring trick to most people. Marconi played on this fact by regularly giving demonstrations to the public. Before long he succeeded in transmitting over a distance of nearly nine miles. Then, in 1898 he established communication across the English Channel.
In December 1901, after many setbacks, Marconi managed to send the letter 'S' in Morse code from Poldhu in Cornwall to St John's in Newfoundland. This triumph brought the new science of wireless to the attention of newspapers all over the world.

First licences

With the achievements and advances being made in wireless, more and more people were becoming interested in it. At this time there were no restrictions on its use. However, the British Government quickly realised that the use of wireless would have to be regulated, so in 1904 the Wireless Telegraphy Act was passed. This Bill required that each station should be licensed. Even so, the Government stated that it wanted only to regulate without placing any undue restrictions on amateur experiments.

By June 1906 as many as sixty-eight people had licences. Some were famous such as Dr J A Fleming of University College London, a former colleague of Marconi and the inventor of the diode valve.

The first licensees were not issued with callsigns. It was soon decided, however, that some means of identification was necessary. So in 1910 the first callsigns were introduced. These consisted solely of three letters and gave no indication of the country of origin. All new stations were given a callsign when the licence was issued, and existing stations were sent a letter informing them of their callsign, politely telling them how to use it.

Onset of war

With interest in experimental wireless rising rapidly, the onset of World War One brought everything to an abrupt halt. By early 1914 a total of 1,963 licences had been issued. Then on 1 August 1914, a telegram was sent to most stations instructing the owner to remove his aerial and dismantle the apparatus. As time progressed it was announced that all equipment had to be surrendered to the Post Office for the duration of the war. This was adhered to very strictly, as one poor soul discovered to his cost, when he was prosecuted for merely possessing a small transmitter.

There was no amateur activity during the war, but many enthusiasts found that their skills were eagerly sought for the war effort.

The war was also a time when great technological advances were made. Transmitters became more sophisticated and better receivers were needed. The major requirements were for better selectivity and greater sensitivity. In order to solve these problems, countless hours were spent developing new ideas.

On the side of the allies, men like Lucien Levy and Captain $H J$ Round made great developments, which enabled Edwin Armstrong to develop the first superhet receiver. This tremendous breakthrough enabled far greater selectivity and gain to be achieved. This was because valves were prone to oscillate at radio frequencies if the gain was increased beyond comparatively small values. By converting the incoming signal to a fixed lower frequency, both gain and stability could be improved.

Back on the air

After the end of the war, the authorities were slow to allow experimental amateur activity to start again. It was not until the middle of 1920, after a great deal of lobbying by wireless societies, that licences were reissued.

This time the licence conditions were

by Ian Poole G3YWX

different. Applicants had to satisfy the authorities on a greater number of requirements. Not only had they to outline a series of experimental tests they wished to conduct, but they also had to prove they were capable of using wireless transmitting equipment, and that they could send and receive Morse at 12 wpm .

Callsigns were reissued with a different format which consisted of a number, usually ' 2 ', followed by two letters. Some of these callsigns became famous, particularly the one held by the British Broadcasting Company - 2 LO.

Despite the restrictions imposed, many people took out these new licences and interest began to grow at an increasing rate.

Challenge of the Atlantic

America had been much less affected by the war than Europe. It had far more radio amateurs, many of whom were interested in making DX contacts. Some notable successes had been achieved as the distances covered gradually increased the number of contacts being made across the American continent.

Very soon people became interested in the possibility of a transatlantic contact. This was not as straightforward as it first appeared, since there was a number of difficulties. For example, American stations were allowed to use up to 1 kW of power, whereas British stations were limited to a meagre 10W. Also as British stations were only just getting back on the air, their progress was hindered by their receivers which were less sophisticated than those in the USA.

Feeling that lack of experience and poor equipment were the causes of Great Britain's difficulties, the American Radio Relay League sent over an experienced operator named Paul Godley. He came to Great Britain with an Armstrong superhet to perform a series of tests. Initially, he set up his station in London, but found the level of electronic noise was too high. Accordingly, he moved to Ardrossan, a small town in Scotland. It was here, during 12 December 1921, that he heard 1BCG in Connecticut.

The next hurdle was to achieve a twoway contact. This was more difficult in view of the power available to British stations, and the level of interference from the enormous number of amateurs in the USA.

Nevertheless, a British station, SWS, was copied by eight Americans in December 1922. Yet, surprisingly, this did not produce a two-way contact. This honour went to the French station 8AB, operated by Leon Deloy, in 1923. The first transatlantic contact from the UK was
made between Jack Partridge 2KF in Merton and 1MO in Connecticut.
Once the challenge of the Atlantic had been conquered, this opened the way for contacts over even greater distances. As equipment gradually improved, so did the distances that could be achieved. Then in 1924 the first contact between Great Britain and New Zealand was made.

Prefixes

As contacts between different countries and continents became commonplace, it became obvious that it was necessary to devise an easy way of identifying a station's country of origin. At this time it was possible for a station in one country to contact a station abroad, using exactly the same callsign.
The problem was not as easy to solve as it might have been today, since there were no international regulatory bodies. As a result, various countries suggested and implemented different solutions. Accordingly, confusion reigned because there were at least two systems in operation.
The ARRL wanted to use a system where the 'de' or 'from' sent between the callsigns was replaced by a letter indicating the country each station transmitted from. For example, one might have heard 2AA GU 1AA, the ' G ' indicating 2AA was in Great Britain, and the ' U ' indicating that 1AA was in the USA.
An alternative system, similar to the
one used today, was devised and adopted in Europe. A callsign had a prefix of one or two letters, indicating the station's country of origin. In fact. many of the original prefixes have remained: G for Great Britain, F for France, EA for Spain, etc. Other prefixes have changed, such as KB for Germany, OU for Denmark and SA for Sweden.

Licence conditions

The licences that were issued around this time bore little resemblance to those we know today. Originally there were no internationally agreed amateur bands. Sometimes people had to obtain permission to operate on a certain 'wavelength', but occasionally they used it without prior consent.

As occupancy of the short wave bands rose and pressure on space started to become a problem, it was necessary to set aside certain bands purely for amateur use. This happened in 1927 when an international conference agreed on a set of bands to be used by radio amateurs and experimenters.

Experimenters in Great Britain found that their licences gave them access to most of the bands, but they were full of restrictions that were not placed on foreign amateurs. Being experimenters and not amateurs as such, they were not allowed to call CQ. Instead, they had to put out a 'test' call. Originally they could not operate within 25 kHz of any bandedge, and aerials could be no more than 100 ft in length. The most amusing
restriction was that 80 m could not be used on weekdays between May and September before 1935!
The issuing of licences was somewhat haphazard by today's standards. Having satisfied the tests, the next step was to convince the Post Office that it was necessary to possess a transmitting licence to carry out a series of experiments. At the first attempt it was normal for an artificial aerial licence to be issued. This allowed transmitters to be built and tested, but only into a dummy load. These artificial aerial licences had a callsign consisting of the number 2 followed by three letters.
To obtain a full licence it was usual for at least two attempts to be made. Once a full licence was issued, a callsign consisted of the prefix ' G ' followed by a number then two letters. Initially, the number was 2 , but later some with a 5 were issued and then with the figures 3 , 4,6 and 8.

Another war

Amateur radio continued to develop until the start of World War Two. On 31 August 1939 it was announced that amateur activity was to cease and equipment was to be impounded.
By 1939 amateur radio had progressed from spark transmission covering only a few feet, to AM and CW contacts worldwide. During those early years radio amateurs contributed a wealth of experience to lay the foundations of the technology we know today.

$\begin{aligned} & \text { HICH } \\ & \text { QUALITY } \end{aligned}$			011			1	E	LOW PRICES
Order code	cuantity of parts	(Pock description - oil K pocks ore fust $\mathrm{\Sigma} 1$ each - oill parts brand now						
K1	400	Mued iesistors. mosty $1 / 1.1$		$k 34$	1	39.000 pF .20 V computer electrontic		
K2	50	Mued dowei/wirawound lestitars		$k 35$	5			
K3	50	Musd elechome cosoctiors		$k 36$	5			
K4	100	Mixed polvester capo	$1{ }^{1}$	133	50			
Ks	200	Mued copociors, oll l ypesivolues		$k 39$	7	Ceromic 2 woy Chock-Block, noh temo		
K6	200	Mued mico a ceromic copocitors		K42	20	4 din tronsslor sockets ${ }^{\text {a }}$		
K7	100	Mued orodes, silicon \& oermonium		kst	10			
K8	40	Muxed honsistors fonloshe value		kS	10	Muxed connectors. piups. sockels etc		
K9	25	Mued pols a dresels.	ery populat	kss	10	Clip-on toinstor heatsinks		
k10	100	Hordwore eo knobs, grommets, clips		K57	。			
K 14	12	Wrewound potentiometers. good max Fuseholders, of leost 3 aitherent		K05	1	Citherenilinds of swiches		
k16	5 F			Kos	6	Assored volve holders, min 4 dilerent		
K1	25	Fuseholders, of leost 3 aitlerent EHT copocitors, mostly 8xV wko		K67	6	torpe corbon brushes for motars		
K18	1 R	gPY20 light dependen' resistor		$k 69$	100	Assorled prommets usetul sizes		
K24	25	Mixed zener diodes. ype nos merked		1770		'Ecipse Duton mognels a keepers		
K25	3 9	rea lif disdioys. 7 seo dolo		$k 76$	20			
${ }^{2}$	so	Mrcioswiches wit longlever orm		kso	20	Auminumbockets .4 .5 ypes suesSurtoce mounting ics. vorious ypes		
$k 3$	3 M			More packs avo toble - osk lot our tioe list				
TRANSISTORS			880-_69p	Trrominmi		Components - win rection olectrovitica		
2N2223-57.50			cmos 4000	Lewalalerich				
ec393	- 50p	p 1N541 _. ${ }^{\text {Pp }}$	HCC4002 - 14p	709 (1099) . . 29 p				
${ }^{80375}$	$39 \mathrm{p}$	1N3062_-120	HCF4051 - 4 P	741 (14014)				
$\left\lvert\, \begin{aligned} & 80376 \\ & 80710-2 \end{aligned}\right.$	$\begin{array}{r} .29 p \\ \\ \hline 9 p \end{array}$	in $3605-12 p$ AAl $16-12 \mathrm{D}$	MICEOCPO	747 (1401) $49 p$				
60x338	6sp		Ef6800 - $\mathbf{5 2 . 5 0}$	COMPAEATORS		Mixed dieiectric caps $1.0 \mu \mathrm{~F} / 600 \mathrm{~V}$ \qquad 30p		
BOYS3P	. 51.50	OA91 $\quad 4 \mathrm{p}$	Et888000 cate	311(1099)-45p		Mlxed dietectric caps $1.0 \mu F / 800 \mathrm{~V}$ Polentiometers		
BF393		OAOS … ip	Ef6803P [6.50	POWFR DIODKs				
6F939	- - 14p	SFD49 9 PD	10 mil CPO			$1 \mathrm{~K} \ln .2$ watt. wirewound \qquad 10 for $£ 2.00$		
	-. 90p	ICEPROMS	28002AD2 -515					
OC71	${ }^{29}$	2716	I CONTR	$87 \times 17.50-51.55$$8 \times 62-60$8.2 .25		Vero pul unpertorated 3 szes		
IIP31C	24p	2764 \quad \$1.99	EF9385C [24	$8 \times 65.50 \quad \$ 1.95$$\text { Brx } 67.000 _£ 2.50$		A. $100 \times 125 \mathrm{~mm}, 0.1010 .15 \mathrm{~min}$ pitch …...........25p B: $70 \mathrm{n} 125 \mathrm{~mm} .0101015 \mathrm{plch} \ldots . . .20 \mathrm{c}$		
		27128.-15.49	IMTERTACE	TWन\|				
TIP11		Jasiocic	AM261532.51.15			C $65 \times 95 \mathrm{~mm} .015 \mathrm{mpoten} \quad 71021$		
IIP 112	39p		IIGULTORS	$\begin{aligned} & \text { RRY54-400t:25p } \\ & (400 \mathrm{~V}, 25 \mathrm{~A} \mathrm{~ms}) \end{aligned}$		Sound elfectir modulo - incredtbie value		
TP115		$741510-20 \mathrm{D}$	2815 (1N - 290			ready ossembled PCB co		
TIP116. TIP117			Spectalic	$\begin{aligned} & \text { Brw27.2008 } 55 \mathrm{p} \\ & (200 \mathrm{~V}, 4.7 \mathrm{ACC}) \end{aligned}$		with o wide variely of sound ollects, en seam		
		74155a-_20p	151.	(20				
IIP132		7415175 - -44p	TDA1670 $\quad 81.09$	400 miw moss . Sp 1 woll moss 10 p		enc suith - wn oudio omplitler. Just add		
MOSFITS		7415195_- 500	EsRDMS 450ns					
189120	c1.	7415259 - . 690	Sff82114J S4.3	$\begin{aligned} & 1 \text { woll moss } 10 \mathrm{p} \\ & 10 \mathrm{w} .36 \mathrm{~V} \text {.....95p } \end{aligned}$				
Valves. Brand new, boxed quality vaivet - just ese wection from our vast stocks. Quotations given tar any type not listed. Many rartilas and 'mantiques' avaliable.								
SAIS:	85p/cr			50 \|er80 $\quad 60 \mathrm{p}$ \|		\|E5183		
GAlV.	30 p	OAF91..... ¢1 EbF	80 p ECC189 \&	1.90 6883	53.50	EF184-50p	G232-52.75	vecsi 81.25
OBEOW.	E2 ${ }^{\text {d }}$		ع1 ECF80	${ }^{\text {85 }}$ P Ef85	. 50 p	EL32 - - 70p	G234 - \quad L 50	UF42 E1
	$\varepsilon 9$ Dr	DF92 .70p ${ }^{\text {'ECC83 }}$	80p \|ecrion	(1.80 1 EFSS	\&1.40	El34 $\quad 82.75$	KT66	uf80 51.50
OX5GT	¢1 OF	OF96 600 \|ECC83	¢1 EF36 c.	$2.95{ }^{\text {FF89 }}$	E1.50	El85 - $\quad 44$	K188 - ¢ 20	
- 3012	35p Dk		55p\|ef37A. .	1.75 EF91	81.25	E191 55	N37 - ¢5.30	Ur41
128H7	ع1.20 0	(192- ¢1	70p Ef $39 . .$.	1.45 ¢f92	\&1.75	Exan7. S0p	OA2 \quad ¢ 1.25	x78 - - cs
0059	E3.60 Or	Or802	\&1.30 Efal	50 ¢F\%od		Ez41 $\quad 12.50 \mid 5$	SP61 - \&1.70\|	X79 E7.50
		Alf prices inelude VAI when opplicoble. Please add El post/packing. Cheques payabie to:						
Kenzen, Unit 9, 16.20 George Street, Balsall Heath, Birmingham B12 9RG. Tel: 021-4723688								

NEW RX-8 MULTIMODE RECEIVE For the BBC computer

FAX screen and printer
PACKET HF and VHF
SSTV in colour
RTTY copies any signal
AMTOR/SITOR ARQ and FEC
MORSE best copy available
UoSAT 1 and 2
ASCCI all speeds
Full specification in every mode. Printer and tape/disc support. Text store etc, etc.

This is the ultimate receive system for the serious listener with a BBC computer.

We can't begin to list all the features here so send for full information about it and all our other products.

RX-8 system (EPROM, interface, leads and instructions) £259.00 inc VAT and p\&p.

FREE Klingenfuss 1989 Utility Guide to first 50 purchasers of RX-8. DISCOUNT to existing RX-4 users.

> D technical software (AR) 플
> Fron, Upper Llandwrog, Caernarion LL54 7RF Tel: 0286881886

BLACK JAGUAR MkIII

The new Mark III is probably our most popular handhold scanner with 16 channels of memory and a sensitive receiver. Selectable AM or FM reception and the facility to power the set from the mains of car using one of the many accessories now available.
Frequencies: $28-30 \mathrm{MHz} .50-88 \mathrm{MHz}$
$115-178 \mathrm{MHz}, 200-280 \mathrm{MHz} .360-520 \mathrm{MHz}$

P199 NEW LOW PRICE

Black Jaguar Accessories
(suitable for all models. BJ200. Challenger etc.) Mobile Mount £6.95 Base Mount $£ 5.95$ BJl Car Supply (Mk III version only) £14.95 BCA6 Mains Slow/Fast Charger $£ 14.95$ Airbond Rubber Duck Antenna £6.00 SA7 UHF Stub Antenna
We are the UK Distributors for Bearcat Scanners Handheld Scanners
Bearcat 55 XLT
$\$ 99.00$
Bearcat 70 XLT $\$ 149.99$
Bearcat 100 XL \$189,99
Bearcat 100 XLT £199,99
Bearat 200 XLT (including 900 MHz) £249.00
Base/Mobile Scanners
Bearcat 175 XLT
$£ 169.99$
Bearcat 210 XLW
$\varepsilon 179.99$
Bearcat 580 XLT £199.C0
Becarcat 800 XLT (including 900 MHz) £229.00
Bearcat 950 XLT (including 900 MHz)
£269.00

NEW MODELS

COBRA SR925 Base Receiver - Ideal for carcraft enthusiasts.
Covers $29-54 \mathrm{MHz}, 118-174 \mathrm{MHz}$, $406-512 \mathrm{MHz}$..... $£ 149.00$
AOR 800 Hondheld with 900 MHz
AOR 900 Hondheld with 900 MHz £199.00

AOR 3000 New Broadband Base Model P. O. A.
SAB9 MW and Airband Handheld £19.95
Sony Air 7 Hondheld - Arboand
£249.95
Sony Pro 80 Handheld - Wide bomd
£349.95
NEW LOW LOSS JAPANESE COAX
Essential for best performonce with widebond UHF sconners We have directly imported this cable which has exceptional low loss.
Frequency
Loss/mtr @ 100 MHz (dB)
Loss/mtr @ $400 \mathrm{MHz}(\mathrm{dB})$

5D	8D	10D
0.055	0.039	0.031
0.121	0.085	0.068
0.187	0.130	0.105
£0.56	$\mathbf{~} 1.40$	$\mathbf{E 1 . 9 9}$

Price per meter
£0.56 $£ 1.40$
1.99

DISCONE ANTENNAS - New British Made Antennas Nevada WBl 300 (25.1300 MHz)
 Wideband Top of the range stounless steel
$£ 59.95$

NEVADA COMMUNICATIONS 189 London Road, North End,
Portsmouth PO2 9AE. Telex: 869107

by Martin Williams

It is common knowledge that whenever there is a group of VHF operators, the conversation will invariably include the subject of aerials. A major problem with these discussions is that they are often based on misconception and half-truths, coupled with an unswerving trust in the accuracy of an SWR meter. Another problem is the near impossibility of making accurate measurements under amateur conditions. If things are difficult when you have a professional aerial test range, what chance do we have?

Claimed gain

Aerial makers claim various gain figures for their arrays. These figures are difficult to dispute because they often do not take account of the conditions under which the measurements were taken. I am not saying that we are being deliberately misinformed, but the figures are usually calculated at the most favourable frequency while using a particular mounting and feed arrangement.

Your choice

It is important to bear in mind that gain is not the only criterion when buying an aerial. You must also decide on things like the front-to-back ratio and the frequency bandwidth needed. For example, a beam which is ideal for 70 cm DX would have a narrow frequency response of around 432.5 MHz and a tight beamwidth. This would be useless when working amateur TV because you need at least 6 MHz bandwidth at the top end of the band, say around 437 MHz .

No gain

An aerial does not produce actual gain in the sense that it increases the transmitted power. The apparent gain is due to the aerial sending all of the power in one direction, unlike the average vertical which spreads it around. A convenient way to measure the gain of an aerial is to compare it with a 'standard' array, such as the long-established dipole aerial.

Isotropic radiator

The dipole aerial has a gain of around 2.14 dB when compared to the classic, but non-existent, isotropic radiator. This is a device which would evenly illuminate the inside of a sphere with equal radiation at all points. The purpose of
referring to the isotropic is that the gain figures for the aerial rise dramatically. For instance, an aerial giving 4 dB referenced to a dipole can be quoted at 6.14 dB compared to an isotropic radiator. This sounds like a better buy, since it appears to the unwary to have 50% more gain!

How much?

There has been a lot of research on the maximum amount of gain which can be obtained from a given number of elements in a Yagi-type array. The NBS figures are best known, but important work has also been done by Krautz and Greenbaum, among others. These figures assume that the aerial has no sidelobes or resistive losses, therefore the amount of gain appears to be higher than can be obtained in practice. The figures are calculated by measuring the 3dB points in the vertical and horizontal directions. These figures are then used
to derive the data which is shown in Table 1.

How many?

It is commonly believed that the gain can be increased by piling more elements on to the boom. In fact, provided that the element lengths have been optimised, as they should have been, the gain of an array depends more on the length of the boom rather than on the number of elements. Adding extra elements might increase the bandwidth but it will do little else. The maximum gain is achieved from a given boom length by using the number of elements shown in Table 2. These are the sort of figures you can expect from using normal home construction techniques, provided the elements' lengths and spacings are optimised. The figures in Table 2 apply to any band, since the boom measurements refer to the wavelength and are not absolute measurements.

CAM VERSES MEMBEROE ELEMENTS		
Elements	NBS(dBi)	Krautz(dBi)
3	9.25	10.95
5	11.3	12.15
6	12.35	13.20
12	14.40	15.13
15	15.55	16.55
17	16.35	16.90

Table 1

Table 2

CAM VERSES 300M LENCTM		
Boom length (wavelength)	Number of elements	Gain(dBi)
0.2	2	5.0
0.3	3	7.5
0.6	4	8.5
0.8	5	9.5
1.1	6	10.5
1.5	7	11.0
1.75	8	12.0
2.1	9	12.5
2.5	10	13.0
3.20	12	14.5
4.00	14	15.5
4.80	16	16.5

Major DX openings

I would like to begin this month's column with a comment from one of my regular contributors, 'A fantastic month, my best since I started on 6 m many years ago'!
The active part of the twenty-sevenday Carrington cycle continued to produce high solar flux numbers and excellent propagation conditions during February. The January peak of 291 on the 13th was followed on 12 February by a peak of 279 with DX openings to the central Americas and at the end of the month to Hong Kong, Japan and Africa, but as is usual during February, there were few openings to North America. This was probably due to polar absorpdion via the 'stratwarm exists alerts' sent out by WWV and other agencies.
Enhanced F2 propagation was in evidence on the north/south and other routes. There were also indications of African TEP to the Mediterranean and Europe; an early start to the spring equinox season. I have been asked to explain what the stratwarm exists alerts mean. Rick K1JRW gave me the following resume on stratwarm exists and polar absorption. I hope that it will make the subject clearer.
-... Winter-time absorption results in weak signals lasting a few days. The cause is not simple, but basically it involves the arrival of particles into the polar regions during geomagnetic disturbances. These particles trigger a series of events, including the ionisation of nitric oxide and oxygen in the auroral zones 60 to 70° latitude, north and south. This causes absorption and electron depletion in these regions for about three days.

Some two to four days later, the heat which builds up from this reaction causes. winds in the stratosphere to blow the neutral nitrous oxide and heat to the west in the northern hemisphere and towards lower latitudes. This results in large absorption areas, 1,000 to $2,000 \mathrm{~km}$ in diameter, spreading south and west from the polar regions and affecting midlatitude east/west DX paths for the following five to six days. The absorption develops in two opposite areas of the globe. The regions in-between often experience lower than normal signal absorption. Consequently, the earth is divided into four alternating bands of above average and below average signal absorption. This pattern moves about 30° each day; the equivalent of two, one hour time zones'.

New countries worked by UK

Several UK operators now have over forty countries to their credit. TR8CA from Gabon, West Africa, running only 5 W to a five element beam, is a much sought after DX signal, but there have been problems caused by a few irrespossible UK operators sending long replies and calling CQ on his frequency, despite his frequent protests. On one occasion he had three QSOs while a caller was sending his own calisign; obviously he was not conversant with DX procedure!
I do not like criticising Class B operators, but there are those who still have a lot to learn. Regrettably, some of the more experienced operators were not above criticism either. It is a pity that 50 MHz users do not make more use of split frequency operation which is so successfully employed on the HF bands.

All-time first G/V56

Another welcome station was VS6UP, Hong Kong, worked for an all-time first by Ted Collins G4UPS at 0900hrs on 25 February, and later by G3JVL, G4JCC, G3COJ and G3SED. During the same day, several Japanese stations broke through on $\mathbf{5 0 . 1 1 0}$ causing QRM to each other. I first heard JH41IUC shortly before 0900 hrs but despite calling the station, I received no reply. Several others came through by 0911 hrs, but only JA4MBM, a club station using high power and a multi-element beam antenna, and J54IFU were positively identified due to QRM. Operators in other parts of the country heard other Jd, but there were no QSOs reported. Apparently, a few got through on the 26th as the Is spread out above the DX frequency. Many UK operators had QSOs with African statons and many new squares were contacted. PA3CCl contacted Hong Kong stations during the weekend.

VK6s heard in Europe

Eric F9LT, who unfortunately has not yet received his 6 m permit, heard two VK6s and other DX but he was unable to reply. As I mentioned last month, WAC is just around the corner, so by the time you read this it may already have taken place.

SMIRK

The Six Metre International Radio 'Klub' was formed on 13 October 1973 by Ray Clark K5ZMS, Secretary/Treasurer; Tex Kennedy N5TX, President; Gene Barnes; Pat Dyer WA5IYX and others, to increase interest and activity on the 6 m
band throughout the world.
At present, there are over 5,400 members in all fifty American states and eighty-eight other countries. Members include some of the most well-known HF, VHF and UHF operators in the world. Many members are also known for their links with various national and international organisations.
The accomplishments of the organisadion include: special awards for working different countries; a 6 m contest, held in June each year; a newsletter called 'The Six Shooter'; a QSL information list to help operators obtain QSL cards, and services providing information on technical issues and propagation.
Perhaps the most important contributimon to the band by SMIRK's members is to obtain and then loan equipment to operators who want to work 6 m . Memberg, such as G4UPS and G4JCC in Europe, have helped to provide equipment, and ZS6WB and others in Africa have been active in getting more African countries on 6 m .
Application forms can be obtained from Ted Collins QTHR, on receipt of an SAE. The annual membership fee is US \$6.00.

UK Six Metre Group

The Six Metre Group was formed in 1982 by Steve G4JCC and Ken G5KW for amateurs who share a common interest in the $50-54 \mathrm{MHz}$ band. The aims of the group are: to encourage interest, provide assistance, and offer advice to other countries trying to obtain a 50 MHz allocation for their amateurs; to maintain a fund to support 6 m beacons, and to publish a newsletter which is sent to all members and 50 MHz orientated amateurs overseas.
Membership is open to all UK and overseas amateurs at an annual cost of £5.00. The 1989 AGM will be held at the RSGB VHF Convention, Sandown Park, on 16 April. If you are interested in becoming a member contact Alan Wright GW3LDH or Peter Turner G4IIL QTHR.

ZS news by Hal Lung ZS6WB

'Propagation on 6 m continued to be poor in ZS during January with only occasional openings, most falling on weekdays with low or nil activity levels. The higher flux numbers had little effect on TEP and F2 propagation. On the 23rd, there was a brief opening from ZS6 to SV1 which was followed by an excellent TEP opening to the Mediterranean on 25 January, extending south to ZS4/5.

Conditions improved on 4 February when a brief opening occurred to Cape Town with ZR1DS and ZR1MI/M; the first stations worked from Pretoria via the 50.200 repeater. SSB openings to Cape Town are frequently missed because of low ZS1 activity.
'ZS1IS will be on 6 m from the South African coastal town of Walvis Bay, which is fifty miles from Windhoek and completely surrounded by Namibia. W3AZD of the ARRL DX department, advises that QSOs with Walvis Bay will not count for either South Africa or Namibia until Namibia gains independence from South Africa when it will count as a new country. Meanwhile, for ARRL and other awards, it is only a new grid square (JG77).
'A new African country on 6 m is TU2MA who appeared for the first time on 11 February. TR8CA (who hopes to be joined soon by TR8BL) is also new on 6 m running 5 W to a five-element yagi.
'Watch 50.115 and. 28.885 for 8Q7/JF1UMK and JF2MBF. JG2BR1 and JS2BLS DXpeditions are expected to visit Kruger National Park this year Punda Maria in KG57; Letaba, KG56 and Satara, KG55.
'Other rare squares to watch for include ZS1IS-JG77, ZR1L-JG77, ZS3ATJG86, ZR6KE-KF18, ZS2NR-KF37, ZS4NSKG32 and ZR6CBK-KG53'.

From the mailbag

Geoff Brown GJ4ICD, from St Helier, Jersey, writes, 'UK stamps are not valid in Jersey'. Many UK stations are still sending them for the return of QSL cards. Since 1 June 1987 Geoff has worked 173 squares and forty-two countries two-way on 50 MHz ; the highest reported to date. Highlights for 1989 include two-way QSOs with: TI2HL, 23/1/89; ZD8MB, 1/2/89; T77C, 11/2/89; 9Y4VU, 14/2/89, and TU2MA, 16/2/89.
Geoff continues, 'On 24 January I switched off our beacon at 0215hrs and tuned over the band to find a QSO occurring on 50.115 between two or three JAs lasting for about eight minutes. Two of the stations were certainly JAs but the other station had, I think, an " 8 " in the callsign (signals were weak). St Helier does not have a 50 MHz beam so I was unable to tell which path the signals were coming from'.
On 21 February Geoff had another alltime first working TRBCA Gabon, at 1311hrs, making six new firsts for GJ during February. Congratulations Geoff, on an outstanding performance.

Ray Cracknell G2AHU sent in this report.

Costas SV1DH/SZ2DH, Athens, asks if his $30,650 \mathrm{~km}$ QSO with JG2BRI on 9 October 1988 at 2310 hrs constitutes a new record on 6 m ? It has been the practice to put the limit as the antipodes ($20,004 \mathrm{~km}$, or slightly more on some routes) since night-time paths, following the equatorial highs, sometimes occur at 50 MHz . Costas is well-known for his indepth knowledge of TEP and its successful operation over many years. He experienced early TEP openings during January to ZS3,4,5,6, and by other modes worked FY7, F, T7, J5, CT and VE1. Costas reports that evening TEP is more reliable than afternoon TEP.

JJA1VCK Hatauo, Japan, reports that at the time of writing the first F2 openings of the year to KL7 and W6 had occurred (JA-W contacts are rare during January).
'VK3OT reports hearing the 9H1SIX beacon and OH signals around 1300 hrs beaming long path. 9M2AQ is officially operational from the end of February, and A35EM will be activated by JA10EM from mid-March. ZK3YY by 5W1GP is expected on 6 m from mid-April.
'Despite all the American 50 MHz beacons listed, none have been reported as heard in the UK or elsewhere. The reason is probably that most beacons do not have the ERP necessary to work longdistance DX. Nevertheless, a dedicated beacon such as GB3SIX which is beamed to the USA has been successful, and QRP beacons on omni-directional aerials are successfully used for Sporadic E and TEP between optimum zones'.
Ted Collins G4UPS, Devon, recently sent this report.
'FY5DG, French Guiana, is now active on 6 m using a dipole and 3 W , and will soon have a beam and more power. QSL via Box 450 Kourou, French Guiana.
'The Gonsett Sidewinder 6 m rig which I sent to St Helena while I was at ZD8 has now been located and handed over to Julian ZD7CW. Unfortunately, it required a step-down transformer on arrival. However, SMIRK has decided to send an FT-620B and a three-element antenna to St Helena for Julian to use.
'From the Canary Islands, I overheard a W station report that DJ3OS/EA8 had his EA8 licence withdrawn for transmitting on 6 m .
'The club station, T70A, San Marino, has been awarded a three-year 6 m permit. Tony T77C and Julian T77J worked 6 m on 6 January and had a QSO with Steve G4JCC at 1533 hrs .
'Costas SV1DH, Greece, states that all QSOs with SV1DO and SVOFE between 19 April 1988 and 15 July are valid.
'The USA base station HZ1AB has been granted permission to operate on 6 m and should be on the air soon, if not already.
'A five-element tonna antenna has arrived in the Falkland Islands, so Fred VP8PTG should now be operational.
'LA6XL will be going on his annual DXpedition to Iceland from 20 July to 7 August using an FT-726 and a fiveelement antenna.
'In Venezuela, Gerry DL3ZM/YV5 was very active on 6 m during the last solar cycle but he is now back in YV5. His keyer on 50.044 .5 has been heard by several Gs on 10 January but no QSOs were reported'.
Mike G3SED, Portsmouth, writes: 'This February, with its rising solar flux, has seen the early start of the TEP season on 6 m . From the middle of the month we have had almost daily openings to central Africa, with South Africa coming in again from the 20th. At last, the band opened to the Far East from the 25th. 6 m is beginning to sound like 10 m !
'Stations worked: 11 January, 4X1IF, Xband; 19 January at 1319hrs, HC5K; 28 January, 1119 hrs , T77C (they are only on at weekends - I was pleased to work San Marino for a new one and after thirty minutes of trying we caught a meteor burst and exchanged 509 reports); 1 February, 1700 hrs , ZD8MB (after many months of hearing the beacon we exchanged 5-9 reports). From 1655 to 1730 hrs I heard the J52 keyer peaking at S9. 25 February, 0910hrs VS6UP; 26 February, at 0950 I heard JA4MBM calling CQ. At 1010 hrs , JA4MBM was my first JA QSO on 6 m peaking at S9. Also at 1010 hrs I heard the following: JA6TEW, JE3GUG, JI3OPA, JA6TEW, JA6IML. At 1120 hrs , TR8CA - my thirty-eighth country on 6 m . At 1145 hrs I worked: ZS6WB, ZS4WS, ZS6BMS, ZS6SS and ZS6KE'.
That ends an exciting and historic month on 6 m with the prospect of even better things to come as we near the peak of cycle 22. Until next time, good DX on 6 m .

> Please continue to send in your reports and comments to Ken Ellis G5KW, 19 Joyes Road, Folkestone, Kent CT19 6NX.

RF SIDETONE: AN UPDATE AND IMPROVEMENT

In the December 1988 issue of Amateur Radio, I described some simple sidetone circuits for monitoring the keying of a CW transmitter. The last of these circuits was an RF activated sidetone, produced in kit form by Kanga Products. Useful little thing; it simply sits on the shelf and emits a 'bleep' every time the
transmitter is keyed, and without any form of connection to the transmitter.
The PCB had a built-in audio amplifier to drive a loudspeaker, and the device chosen was the ULN2283. Sad to say, the supplies of this device appear to have dried up, consequently, this has forced Kanga Products to look for a replace-
ment. They have chosen the LM386.

The audlo amplifier

The need to redesign the board to accommodate the new device, set their minds to developing further improvements to its performance and versatility. As a result, they have improved the

BIIS TO BUILD

quality of the oscillator and also enabled the board to function as an RF activated sidetone, Morse practice oscillator, AF signal generator and bench amplifier. Not a bad set of improvements, so let us look at the new circuit.
Fig 1 shows the circuit diagram. (A comparison with Fig 4 in the December 1988 article shows that the oscillator circuit has been completely changed. The original used a multivibrator-type circuit, which, although effective, hardly produces the sweetest of sounds). The new circuit has a 'twin T' oscillator with the advantage of a near sine-wave. This gives a far more pleasant tone. The circuit also allows for a small degree of frequency adjustment.

The sidefone

The tone is variable from about 500 Hz to 1500 Hz . Most sidetones are set too high in frequency for listening comfort. The human ear is much happier listening at the 500 Hz end of this range, rather than the usual 800 to 1000 Hz in sidetone circuits. Being able to vary the pitch of the sidetone in use is not a bad idea either. It is also a good idea to make VR1 a front panel control, and to vary the pitch from time-to-time during long operating sessions.
This was routine in the days when separate transmitter and receiver stations monitored the transmitted signal on the receiver during transmission.
To use the unit as a stand-alone RF activated sidetone, a small pick-up wire is connected via C12 to diodes D1 and D2. The resultant dc potential turns on the
transistor TR3. This shorts out the 22Ω resistor R9, allowing the tone to be generated. A key can also be inserted at this point so that the unit can be used as a Morse practice oscillator.

The PCB layout

The audio signal is controlled by a front panel volume control (22k potentiometer), which will accept an input point so that the unit can be used as a testbench audio amplifier. The LM386 will drive an 8Ω loudspeaker, and has a supply-voltage of 10 V . The board is powered by a 9 V battery. If a station power supply unit is used, it may be necessary to add a small 3 pin regulator such as the 78 L 8 , since most station supplies are 12 V .

Fig 2 shows the PCB layout as supplied by Kanga Products. Fig 3 shows the interconnections between the PCB and the panel-mounted controls and terminations, as well as all of the possible applications for the board. On this diagram, an output socket for the tone and a tone amplitude control are shown, should the unit be required as an audio source.
The new circuit adds up to a versatile piece of equipment for the amateur radio shack. It is simple to build and works well.
The CW practice oscillator and RF sidetone kit is available from: Kanga Products, 3 Limes Road, Folkestone, Kent CT19 4AU. Tel: (0303) 76171. It is priced at $£ 10.95$.

Fig 2

Fig 3

MODERN COMMUNICATIONS SATELLITES

by Angus Fairfax-Lucy

Satellites are now a part of our lives whether we realise it or not. A new era in commercial television is dawning because of them. So, what are they really?
These lumps of metal hurtling around the earth are roughly divided into two categories: radio/telecommunications and television satellites. The principles governing the use of satellites are not as complex as you might think.

Gravily

The first thing to consider is gravity. Imagine that someone has the misfortune to drive a car off the edge of a cliff. Obviously, it would not drop straight down but would travel forwards and downwards at the same time. The faster the car was travelling when it left the edge, the further it would travel before
landing. If you ignore the effects of air resistance for a moment, and imagine that the 'car' was travelling at $17,000 \mathrm{mph}$, it would orbit the earth once before landing.

In reality, as the speed of sound (around 762 mph) is approached, the air molecules pack together to form dense airwaves and, as the atmospheric pressure momentarily drops sharply, a sonic boom occurs, indicating that the 'sound barrier' has been broken. Friction is a problem, and that is why the US space shuttle is covered with special tiles to prevent the spacecraft from burning upon re-entry into the atmosphere.

Low orbit

Satellites are normally first encountered between 150 and 400 miles high. At this 'low' orbit, air resistance is not a
problem - but gravity still is. All types of satellites at this altitude are only accessible during certain hours of the day and have to be tracked, ie, followed across the sky. This is not only highly inconvenient, but uneconomical for commercial satellite users, such as television companies and international telecommunications companies. The satellites they use are particularly expensive to operate, therefore it makes good sense to use them all the time, without having to continually keep track of them across the sky. These satellites are in what is called a geosynchronous orbit. This is a special 'high' orbit of about 22,000 miles high.
When a satellite is in orbit, there are two main things that affect its performance. The first is gravity and the second is centrifugal force. The latter tries to

Intelsat 6: the world's largest commercial communications satellite

The BTI Skyphone aerial provides in-flight communications for transatlantic air travellers
make something travel in a straight line; thus, although gravity is 'pulling' the satellite towards the earth, centrifugal force is trying to keep it in a straight line away from the earth. The balance between these two opposing forces is achieved by the speed of the satellite too fast, and it would disappear in a straight line - too slow, and gravity becomes the dominant force, pulling the machine to its inevitable destruction upon entering the atmosphere. Obviously, the higher the orbit, the higher the speed needs to be.

Geosynchronous orblh

To obviate these problems, a satellite must also adopt a geosynchronous orbit. This allows the satellite to circle the earth in time with the earth's own rotation, thereby allowing the satellite to remain at the same (geostationary) point above the earth's surface.
There are currently two main delivery systems whereby a satellite can be placed into a high orbit. These are Ariane, the French and European rocket venture, and NASA, using the American space shuttle. These two systems use different methods of placing satellites into a high orbit.
The speed of the satellite, once in a low circular orbit, is increased from $17,000 \mathrm{mph}$ to $22,800 \mathrm{mph}$. Then the satellite slows down and its orbit becomes elliptical (the furthest point reached from the earth is about 22,000 miles). Since the speed of a satellite in an elliptical orbit is initially only $3,000 \mathrm{mph}$, then gravity, weak though it is at such a distance from earth, starts dragging it back. The speed of the satellite at its furthest point from earth is increased via
onboard motors to about $7,000 \mathrm{mph}$, thus putting it into a high circular orbit. Both Ariane and the space shuttle release their satellites at low orbit.
Since the final path of all satellites follows the equator, American satellites have to use more fuel because their launching position is further from the equator than the European's launching site at Kourou, French Guiana. Unfortunately, once a satellite is in position, there are many adverse gravitational forces trying to change it.
Let us examine how satellites operate. A typical modern communications satellite contains many transponders, each

Communications module
receiving a specific signal from earth, and broadcasting it back; just like a collection of repeaters in the sky, except that these transponders operate in the microwave bands, not V/UHF. The received signal is rebroadcast to earth on an RF power output of between 10 and 400W. Obviously, the stronger the signal from the satellite, the smaller its receiving dish needs to be on earth. Unfortunately, the power output of a satellite is limited by its capacity to dissipate the heat generated by the microwave transmitter. Microwaves are used, among other reasons, because of the relative size of the antenna required for the satellite. The frequencies normally used for satellite communications are between 800 MHz and 30 GHz .
Satellites have a lifetime of many years, although this ultimately depends on how much fuel is carried on board.
Satellites in lower orbits do not last very long due to the stronger gravitational forces present at lower altitudes, which eventually pull the satellite back into the atmosphere and to its destruction.

Radio amoteurs

Satellites used by radio amateurs are in low orbit and are becoming ever more sophisticated in terms of the increased use of packet and data traffic, as well as phone and CW traffic.
Since satellite TV in the home has become more commonplace and cheaper to use, increasing our knowledge of these new developments can only contribute towards the use of amateur radio and its participation in today's world of modern technological science.

LOOK WHAT YOU GET EVERY MONTH IN

DX DIARY Don Field G3XTT with all the news of rare DX, contests and DXpeditions
\star ON THE BEAM Glen Ross G8Mwr with all the news and comment from bands above 50 MHz

* SECOND-HAND Hugh Allison with valuable advice on buying second-hand and plenty of tips on repairs and improvements to your gear
KEN ELLIS G5KW with the latest developments on 6 m

MORE NEWS, MORE FEATURES, MORE FUN, MORE STYLE THAN ANY MAGAZINE AVAILABLE ON THE MARKET TODAY

Make sure of your copy by placing a regular order at your newsagents or by taking out an inflation proof subscription, with early delivery to your door each month

FREE CLASSIFIED ADS

[^2]Send to: Amateur Redlo ClagstfiodAcls, Sovereign House, Brentwood, Essex CM14 4SE.

DEADUNE AND CONDMTIONS
Advertisements will be published in the first available issue on a first come first served basis. We reserve the right to edit or exclude any ad. Trade advertisements are not accepted.

FOR SALI

- FT-790R, some scratches, working CW, soft case, Ni-Cads, WD 12W H/B pa, collinear, mobile antenna, Hansen FS-7, SWR/P meter, GPV-7 collinear, $\mathbf{£ 3 2 0 . 0 0}$. Write to: Mr Atkins, 81 The Marles, Exmouth, Devon EX8 4NU buyer collects - Clearout of components and equipment assorted parcels. 10 lb box $£ 6.00,20 \mathrm{lb}$ box $£ 9.00$. Send cheque, postal order or cash. Also have fouroff 2C39 valves, unused 'ceramic' type, best written offer secures. Write to: Mr Bailey, 40 Seymour Close, Selly Park, Birmingham B29 7JD - Yaesu MD1B8 base station microphone, as new, £50.00. Tokyo high power HL160V 2 m linear, $3 / 10 \mathrm{~W}$ in 180W out, with preamp, £185.00. Tokyo high power 70 cm HL 120 V linear, 1-14W in 100W out, with preamp, $£ 300.00$. ICS, AMTI, RTTY/AMTOR unit, plus BBC driver, EPROM, £95.00. AEA PK80 VHF packet (TNC-2) unit, $£ 75.00$. Black Star Meteor counter $600 \mathrm{MHz}, £ 100.00$ ono. Tel: (0293) 515201, Paul G4XHF
- Yaesu FT-102. 9 band, 150W transceiver, fitted with optional FM/AM unit, very good condition, mainly used as a receiver, $£ 450.00$ ovno. Will partexchange for FT-23 digital 2 m portable, or dual band portable $2 \mathrm{~m} / 70 \mathrm{~cm}$. Tel: 01-898 3255 after 5.15 pm or weekend

Datong FL1 frequency-agile audio filter, £35.00. TS-174M frequency meter, $20-280 \mathrm{MHz}$, headset. calibration book and spare set of valves, PSU needed. £25.00. Tel: (0886) 32453

- FT-69011 50W linear amplifier, mint condition, will exchange for 70 cm multimode with 100 W amplifier, must have satellite mode. Tel: 061-205 2715 after 10am
- VHF/UHF version of the BC221, 85 to 1000 MHz , CAL charts, mains PSU, offers. Tandy Realistic short wave Rx, offers. Type DX302 synthesiser with LED digital read-out, excellent condition, swap for Realistic PRO 30 or Uniden Bearcat 100XL handheld scanner. Tel: (0207) 544342 after 7pm
- Icom 720A, all band, all mode, Tx with matching PS20 PSU with speaker, both boxed, vgc, would exchange for vgc Ford Transit 12 -seater mini-bus (new baby due soon). Tel: (0692) 82075 daytime
. . Swap Matsui MR4099 HF receiver, 150 kHz to 30 MHz AM/SSB/CW, memories, scan, etc, for ATU which is suitable to use with a Yaesu FT-101E 180W rig. Would prefer ATU with built-in SWR/PWR meter but not essential. Write to: Leighton, 33 Nant Gwyn, Trelewis CF46 6DB, Wales
- Exchange a pair of Reftec 934MHz sets in gwo, complete with mics and manual for a Yaesu FC-902 ATU. Also have Spectrum ZX+ computer, manual, PSU, boxed, thirty games, speech synthesiser, chatbox, RX4 program, Scarab tape with manual and cassette player - exchange for good medium rotator. Tel: (0692) 82075 daytime
- Sony ICF-7600DS with PSU, manual, etc, guaranteed till May, £100.00. Realistic PRO 30, £90.00. Tel: 01-850 8294 (evening), 01-859 4971 daytime
- $28-70 \mathrm{MHz} \mathrm{Tx}$, high output, wired to suit Yaesu but easy to change, also PSU, very good condition, serious offers only. Comms unit for CBM 64 or 128, £75.00. Tel: (0924) 495916 from 7pm-9pm only
- AOR 2001, good condition, offers. Avo valve tester, complete with manual, offers. Pye VHF 500 MHz Siggen, offers. Highest offer secures. Tel: (0932) 242469
- Icom dual-band transceiver with voice synthesiser, 25W, £295.00. Yaesu 209 hand-held, $£ 150.00$. Matching automatic base charger, new, £50.00. Tel: (0277) 823434
- SR88, 31, 38, A40, CPRC26, A41, C11, C12, C13, all complete stations and in working order, offers. Tel: 01-654 2582
- Icom IC-751 general-coverage Tx/Rx with additional FL-33 high-performance AM filter, mint, £925.00. Ranger 480028 MHz Tx , needs attention,
with hand mic, $£ 25.00$. Pentax ME with $F 1.750 \mathrm{~mm}$ lens, $£ 95.00$. Hanimex HMG $80-200 \mathrm{~mm}$ lens, 54.5 , £25.00. Tandy P2M mic, £15.00. Polasonic auto focus 500 Polaroid camera with Polartronic 5 flashgun, £35.00. Tel: (0704) 840328
- Howes dc Rx 80, built, boxed and working, plus CSL-4 filter kit, unopened, 9in B/W tv with loop aerial and car battery lead. AmRad from issue one to September 1987, plus 3 easibinders, offers. Roy. Tel: (048839) 441 (Berkshire)
- Realistic PRO-2004 scanner, $£ 200.00$. Realistic DX440 receiver, $£ 50.00$. Exchange both for a Yaesu FRG-7700 receiver. Tel: (0443) 755876
■ Large Solartron signal generator, 50 kHz to 50 MHz , contains eight valves, four gang, etc, could be used as a giant VFO, $£ 30,00$. Stabilised variablevoltage power supply $0-50 \mathrm{~V}$ at 2 amps, $£ 30.00$. Valves for callers only: EL34, KT66, EF86, ECC83, 12E1 - all cheap. Leak 35 W power amp (audio) £20.00. Tel: 01-657 0716
\square Hildmast NK12 pneumatic telescopic mast with side-mounting brackets, $£ 500.00$. Tel: (04867) 2011 - Dressler AR30 active antenna, £60.00. ERA, SSB audio filter, 660.00 . Racal RA17L, fitted with rare seven-digit LED MHz and kHz digital read-out, £500.00. Tel: (0306) 712878
■ Packet radio TNC, radio port, supports VHF or HF packet operation, 300/1200 baud, 12 V supply, fitted with personal mailbox system, boxed, $£ 85.00$. Tel: (0283) 37237
- Heathkit SW717 general-coverage receiver, 0.55 kHz to 30 MHz , good condition, will swap for a Daiwa Search 9 VHF Rx or similar, must be in good condition, or sell for $\$ 40.00$. Prefer buyer inspects/collects or pays postage, possibly swap for Colt 444 or computer for RTTY/CW. No ZX80/81's. Tel: (0302) 866256
- Yaesu FRG7700 Rx, vgc, preamp. ATU with mods, all three major call books: world, USA and UK, £200.00 ono. Tel: (0634) 404096 buyer collects - FDK 750X multimode 2 m transceiver, 1-20W output, £185.00. Tel: (0792) 466383
- Icom IC-735 all-mode HF transceiver, 100W. Matching Icom HM12 scan mic, $£ 750.00$. Write to: Gregg, 2 Park Road, Granborough, Bucks MK18 3NS
- Urgently needed, Acoms remote-control servo models AS one or AS two to use on an Acoms AP535 FM radio-control system. Your price paid for a good working unit. Tel: (0723) 584028
■ Various RS232 video terminals from $£ 15.00$, all in good working order, some new and boxed. Barry. Tel: (0908) 618129 buyer collects
- Yaesu FTd-x401 high-power HF rig, complete with SP401 speaker, UD844 base mic, spare valves including PA valves, £135.00. Dave. Tel: (0246) 824061 after 6 pm
- Yaesu FT-290R, perfect condition, little used, £280.00. Yaesu FT-708R, good condition, 70 cm hand-held, fist mic, carry-case and shoulder strap. Tandy TRS-80 9 pin dot-matrix printer, good condition, $£ 200.00$. TRS-80 computer, dual disc drives, slight fault, $£ 50.00$. FT-708R, $£ 160.00$. Martin. Tel: (0602) 260234 after 5pm
- Homebrew 70 cm transceiver - Wood and Douglas Tx, Pye PF1 Rx, boxed, mic, pip tone, S meter, audio processing and selection of RB xtals, £50.00. Also CW Howes 40 m Tx module, 4 W CW ready-built $£ 15.00$. Tony. Tel: (0642) 671835
- Telequipment 'scope D53, dual channels, complete with probes, instruction manual and circuits. Rogers Hifi system, FET stereo receiver, Ravensbourne amplifier and two large speakers WHY? Offers. Tel: (0293) 884204
- Yaesu MF-1A3B boom mobile mic, SB-10 PTT switch box, unused, $£ 25.00$. MM8-31 mobile mount for FT-290R mkll, unused, $£ 10.00$. Yaesu SP55 mobile speaker, $£ 10.00$. Gutter mount and $5 / 8$ whip (stainless steel) for $2 \mathrm{~m}, ~ £ 10.00$. Carriage extra for all items. Tel: (0462) 35248 after 6pm

■ Sony PRO 80, as new, boxed, $£ 250.00$ ono. Tel:012284835

- Technics SX-K500 digital electronic keyboard 4 $1 / 2$ octaves. Full rhythm section, percussion, special $F x$, fully polyphonic, built-in sequencer, storage memories, key transposer, composer functions, all fully editable, memory card facility. Midi in/out, complete with stand and foot switch, etc, $£ 550.00$. Tel: (0224) 743039 anytime
- Sangen ATS 803A portable all-wave digital receiver, scanning, memory bands $150 \mathrm{kHz}-$ 29.999 MHz , five tuning functions, receives SSB and CW, full AM, boxed, as new, $£ 75.00$. Tel: (0442) 216776
- Panasonic DR49 comm's receiver, covers LW, MW, SW, in eight bands, plus FM b/cast, digital frequency display with tuning scales, built-in ferrite aerials for LW, MW, FM, telescopic aerial for SW bands, modes: AM, SSB, CW, works from ac mains, 12 V dc or batteries, $£ 175.00$ ovno, carriage extra. Tel: (0657) 3305
- Eddystone 680X receiver, any offer considered or will part exchange for 2 m receiver. Tel: (0522) 752184
- Swap Apricot portable 256K, 3.5in disc with U3.2 MS-DOS, discs and programs plus books, graphic pull-down displays, very fast, loads of paperwork, cost $£ 1,500$, will swap for AR2002 radio scanner, £325.00. Tel: (0473) 85203
■ Uniden Bearcat 100XL, hand-held scanner, complete with ac power supply/charger, carrycase, antenna, etc, boxed, $£ 150.00$. Tel: (0353) 661323
- KW Ten-tec solid-state HF station comprising Ten-tec Corsair 160-10m, Ten-tec 1200W. Hercules 444 linear amp with 45 V power supply. Ten-tec 229 ATU 2 kW rating and Shure 444D desk microphone. All equipment protected by circuit breakers, inspect and try out at your leisure, can deliver and set up. Also Moseley TA33 Junior 3 ele Tribander with Kenpro 600RC rotator. Tel: (0269) 844061
- Standard 790070 cm transceiver, 10 MHz coverage, 10W, original packing, $£ 125.00$. Amstrad 464 computer, green screen, joystick, games, as new, £120.00. 40ft tower (two sections), wall mount, £60.00. 20ft tower (one section) £30.00. Tel: (0724) 846441
- Amateur tv txcvr, £120.00 ono. Yaesu 780R, £325.00. Tandy PRO 2004 scanner, as new, $£ 300.00$ ono. HF amp Yaesu, 2100Z, 1.2kW, £600.00. Yaesu 'scope and bandscan YO901P, £375.00. Cordless telephone, $£ 60.00$. High power amp, valves, HF, £80.00 each. CBM 64 software and hardware, offers. Dc converter for Yaesu 101, 901, etc, £40.00. P/ex WHY? Tel: (0924) 495916
- Ex-WD radio equipment: telephones ' F ' and ' L ', cable, fuller phones mkV, cables, trays, ATUs, etc. Offers. Tel: 01-654 2582 ask for Mike
- Ham International multimode II citizen's band transceiver, convertible to 10 m , perfect working order, 240 channels, sideband, MID/LOWS/AM/FM/clarifier, etc, accept $£ 110.00$. Tel: 01-460 3194 anytime
- Icom R71E receiver and Datong AD270 aerial, £400.00 ono. Tel: 01-226 1278
- Silent Key sale: Icom 745, KW2000B, FT-201, FT290R, IC2E, FT-227R. Capco, SPC300, PRO 2004 scanner, HRO with coils, Codar ATS, T28, HQ1, minibeam, various antennas and other items. Tel: (0249) 653740 daytime only (not Sundays)
- Trio R820 Rx, extra bands, $£ 420.00$. FL3, $£ 90.00$. DM10 digimeter, £25.00. Trio SWR/PWR meter, PF810, $£ 80.00$. NRD525, extra filters, $£ 850.00$. FRG9600, $950 \mathrm{MHz}, £ 375.00$. ARA900, UHF antenna, £100.00. BRT400, good condition, $\mathrm{dx}, ~ £ 110.00$. Marconi xtal calibrator, TF1374, £12.00. ARA30 antenna, $£ 90.00$. Pocom 2010 fully expanded, £550.00. Tel: (0908) 313507
- FT-107M HF transceiver, £525.00. ATU HC200, £75.00. FT-7B HF transceiver, $£ 245.00$. 5-band
vertical, $£ 25.00$. Write to: John Biggs, 33 Hicks Close, Warwick CV34 5ND
- TS-930S, SP-930, mic, 500 Hz and 270 Hz filters, very good condition, $£ 1,275$. Tel: (04023) 73366 - VC10 VHF converter for Trio R2000, as new, checked by Lowe Electronics, includes manual and whip antenna, $£ 110.00$. Write to: S Martin, 24 Collingwood Close, Worle, Weston-super-Mare, Avon BS22 9PQ
- Old books: send sae for list. S G Brown ' F ' 'phones, £5.00. Howes ST sidetone unit, unused, £5.00. Write to: Richard Q Marris, 35 Kingswood House, Farnham Road, Slough, Berkshire SL2 1DA - Receiver JR $31080-10 \mathrm{~m}, 10 \mathrm{MHz}$, ham bands only, Rx very sensitive, CW, £50.00. Peter. Tel: (0287) 34397 buyer collects, $9-5$ pm (not Sunday)
- Atlas 210X 100W HF mobile, $80-10 \mathrm{~m}$, $£ 260.00$. Tel: (0705) 371183
- Cobra 148GTLDX mkll, immaculate, all modes, ideal for amateur conversion, $£ 130.00$ ono. Tel: (0243) 82628
- Barlow Wadley XCR-30 mk2 portable mains/battery HF receiver, $A M, S S B, 100 \mathrm{kHz}-30 \mathrm{MHz}$, collector's item, £150.00. Tel: (0604) 414498
- VHF air monitor DR600 with six crystalcontrolled channels, manual tune, headphone sockets, external aerial and lead, e55.00. Tel: 060875202
- Kenpro KR250 rotator, as new, will easily turn 2 m beam, offers. 20 m six-core control cable, 30 m Heliax feeder, offers. Two goid-plated ' N ' type plugs, offers. 12 V antenna relay, offers. Heavy-duty antenna change over switch, $£ 90.00$, or exchange for general-coverage receiver, cash adjustment if required. FRG-7, JR310, KW77, Eddystone 888, EA12 940C, DX300, offers. Also 144 MHz masthead preamp, if required. Willing to travel reasonable distance. All letters answered, or send your 'phone number and l'll 'phone you. Write to: E Parkes, 1 Silkstone View, Platts Common, Barnsley, South Yorkshire
- Trio TR-2300 portable 2 m transceiver, two aerials, Ni -Cads, charger, car cigarette lighter lead, case, manual, £165.00. Dave. Tel: 01-460 3194

■ Yaesu FRG-7700, 0-30MHz, with Yaesu FRT-7700 ATU and 2 m converter, £300.00. Tel: (0484) 661101 - Realistic PRO-2021, six months old, mint condition, complete with box, manual, bracket and discone, $£ 150.00$ ono, or will swap for 2 m hand-held or WHY? Andy. Tel: (0604) 415650 (evenings) - Tandy TRS-80 computer interface, catalogue number 26-3029. Offers. Derek G4WLA. Tel: (0626) 863217
Complete SWL station: Yaesu FRG-8800 with VHF converter plus NBFM module; Datong FL3 filter: Yaesu FRT-7700 ATU; Datong active antenna; Microwave Modutes 2001; RTTY conveter; Technical Software RTTY module for Commodore 64, 5900.00 ono. All in mint condition. Mike. Tel: (0256) 476023 evenings (Basingstoke)

- Icom ICR70, $0-30 \mathrm{MHz}$ revr, $£ 400.00$. Tel: (0243) 865468
\square Scanner, Realistic PRO-31 hand-held, 66-88, 138-174, 380-512, ham, marine, police, etc. Perfect, boxed, one year old, ten channels, $£ 105.00$. Buyer collects or P\&P extra. David Burton, 100 Carden Hill, Hollingbury, Brighton, Sussex BN1 8DB. Tel: (0273) 566178
- Farnell DM10 dig meter, £25.00. Trio SWR-PWR meter mod, PF810, £75.00. Marconi xtal calibrator, £12.00. Hantarex TV monitor, 12in, £75.00, Brother printer mod M1109, £100.00. Farnell 'scope mod DTV 12-14, £80.00. All FB. Exchange for Trio R5000. Tel: (0908) 313507
- Realistic DX-300 comms receiver, 10 kHz to 30 MHz , digital frequency display, as new condition with manual, and boxed, £130.00 ono. Tel: (0708) 755781 after 5.30 pm
- Marconi TF144/4S signal generator, 10 kHz to 72 MHz . Metered calibrated output, $2 \mu \mathrm{~V}$ to 2 V inbuilt crystal calibrator, excellent condition, \$55.00. Prefer buyer collect, or carriage extra. G Millington. Tel: (0902) 333971 (Wolverhampton) - Yaesu FT-102 HF transceiver, FG-102 ATU, FTV 107R 2m transverter, SMC PSU, Hanson SWR meter. All excellent order and boxed; $£ 700.00$. Tel: (0905) 640672
- 20 MHz oscilloscope - Crotech 3031. Little used,

VGC, but no box or manual, £225.00. I'm looking for an HF Rx, Trio 600, 1000 or 2000, and will consider a swap. Also a 7700 considered or maybe an 8800. Chris. Tel: (0227) 711172 after 5pm

- Yaesu FT, one HF transceiver, AM, FM, board, full cov, no mike, very little use, as new. Present cost approx $£ 2,500$. Price required $£ 850.00$. No offers. Tel: (0744) 26951
- FRG-7700M HF comm receiver, $0-30 \mathrm{MHz}$, all mode with FRA-7700 active antenna, mint condition. All for $£ 310.00$ ono, or swap for $2 \mathrm{~m} \mathrm{Tx}, \mathrm{FT}$-290 or similar. Philips D2935, $150 \mathrm{kHz}-26 \mathrm{MHz}$, AM, SSB, USB and LSB used. Digital frequency readout and keyboard frequency entry with nine memories. Mint condition, £80.00 ovno. Mark. Tel: 01-571 1609 ■ Memgr 7700 memory unit for FRG-7700, $\mathbf{\varepsilon 6 7 . 0 0}$. FRV-7700-D VHF converter, $\mathbf{£ 5 0 . 0 0}$. FRT-7700 antenna tuner, $£ 50.00$. Global coupler AT-1000, £45.00. Datong broad-band RFA amplifier, $£ 20.00$. Kenwood HS-6 de luxe headphone, $£ 10.00$. Trio R1000 communication receiver, factory improved model, $£ 225.00$. All equipment as new condition. Tel: 01-590 9366 (evenings only)
- Sony ICF-2001D. Boxed, in mint condition, £230.00. Realistic PRO-32A. Boxed with Ni-Cads, £15.00. Era 80 RTTY CW micro reader, $£ 45.00$. Paul. Tel: (0604) 413131 after 5.30pm
- Video monitors, green screen 12in, Honeywell. In good order, standard video input, BNC socket. Ideal for RTTY and other data signals, $£ 24.00$ each to callers. Qty four. L W Crabbe, 47 Kempton Grove, Fiddlers Green, Cheltenham, Glos GL51 OUX. Tel: (0242) 514357
\square Kenwood TR-751E, 2 m multi-mode. Boxed as new, C/W, mobile bracket, voice synth, DCL modem, 5/ain whip gutter mount and 12 -ele ZL special yagi, $£ 500.00$. Buyer collects. John. Tel: (0278) 455896 evenings
- Exchange Realistic PRO-2004 scanner, 25-1300, plus Sony PRO 80 receiver for AOR 2002 scanner. Both items are as new and in mint condition. Tel: (0773) 530703
- Amstrad CPC 464 computer with colour monitor, over twenty magazines, more than $£ 160.00$

FRIEE CLASSIFIED AD FORM

Send to: Amateur Radio Classified Ads • Sovereign House • Brentwood • Essex CM14 4SE
Classification: (tick appropriate box) If you want to insert ads under more than one classification use separate sheets for second and subsequent ads
For Sale
USE BLOCK CAPITALS (One word per box)
To avoid mistakes please write clearly and punctuate your ad

Fimematememen							

USE SEPARATE SHEET FOR MORE WORDS
Ensure that you have included your name and address, and/or telephone number
CONDITIONS: Ads will be published in the first available issue on a first come first served basis. We reserve the right to edit or exclude any ad. Trade advertisements are not accepted

FREE CLASSIFIED ADS

worth of original games. Full working order, only £150.00. Tel: (0959) 74275 after 6pm

- Microwave Modules xutr, 10 m in, 2 m out, excellent condition, 885.00 . Kenwood mic, MC60 base mic with built-in preamp, good working order, wired for TS-430S, £40.00. Alan G1EBH. Tel: (0268) 45573 after 6pm
- Racal 1217 receiver. Solid state, digital readout, 200 kHz to $30 \mathrm{MHz} .0 .2,0.5,1.2,3$ and 8 kHz filters installed. With manual, £160.00. Racal 117E receiver. 200 kHz to $30 \mathrm{MHz}, 0.1,0.3,1.2,3,6,12 \mathrm{kHz}$ filters installed, with manual, $£ 260.00$. Both in VGC and working order. Tel: 01-570 5603
- Black Jaguar MklI scanner. Immaculate condition, six months old, complete with Ni -Cads charger, $£ 150.00$ ono. Keith Mullis, 28 Mount Crescent, Tupsley, Hereford HR1 1NQ. Tel: (0432) 273216
- Old wireless and electronics books. SAE for list. R Marris, 35 Kingswood House, Farnham Road, Slough, Berks SL2 1DA

E Collector wishes to buy pre-1940 QSL cards (postalify used), also any postcards related to radio, wireless or Nipper-HMV (no comics). Tom Valentine, 38 Grampian View, Montrose, Angus DD10 9SX. Tel: (0674) 76503

- Trio TS830S and ATU. Tel: (0243) 865468 after 8pm
- Two chrome strips for sides of RA17 front panel. Tel: (0908) 313507
- 2 m element for Bird wattmeter, 50 or 100 W rating. Tom Valentine, 38 Grampian View, Montrose, Angus DD10 9SX. Tel: (0674) 76503
- Totsuko TR2100M with all extras. Good price paid. Gillies, 1 Hawkshead Close, Bradford, West Yorkshire BD5 0TH. Tel: (0274) 390237
- FRG-9600, 100 kHz to 950 MHz , or 60 MHz to 950 MHz . Cash waiting. S P Martin, 24 Collingwood Close, Worle, Weston-super-Mare, Avon
- Matching loudspeaker for FRDX400 Rx and matching loudspeaker for JR310 Trio Rx. Also conical porcelain stand-off-type insulators. Your price plus carriage paid. Tel: (0287) 34397 9.005.00 pm . Ask for Peter
- IRCs and Datong Morse Tutor D70. Good prices paid. A Blackburn, 2 Blackthorn Road, Stratford-upon-Avon, Warks CV37 6TD. Tel: (0789) 296342 - Circuit or service sheet for Eagle Products communication receiver, model RX60N. R J Crome, 26 Duchy Avenue, Preston, Paignton, South Devon TQ3 1ER
- A reasonably priced terminal unit to try RTTY, and any info on Joystick VFA antenna. Alan G1EBH. Tel: (0268) 45573 after 6pm
- Codar ac power unit 250/S as used with AT5 Tx. Details and price to R Marris, 35 Kingswood House, Farnham Road, Slough, Berks SL2 1DA
- Bird thru-line wattmeter inserts, VHF-1W, 10W, $50 \mathrm{~W}(25 / 60 \mathrm{MHz}) \mathrm{HF}-10 \mathrm{~W}$, $50 \mathrm{~W}(2 / 30 \mathrm{MHz})$. WHY? Mike. Tel: 01-654 2582
Airmec C864 receiver. Also vox unit for FT-75. Tel: (0861) 524267
- Power-supply urgently wanted for army wireless set, $\mathrm{C} 12,12 \mathrm{~V}$ or 24 V , faulty units considered, sensible price paid. Write to: I Stevenson, 2A Fife Crescent, Bothwell, Glasgow G71 8DG
- Carrier No 4, aerial tuning No 2A, switchboard charging No C5, cases operating remote receiver, spare valve and parts, for W/S No 52 Canadian, or any other items. Also PSU No 15 for R206 receiver. Also W/S No 12 and remote control unit ' C ' which links W/S No 12 to R107 receiver. Tel: (0488) 71325 Manual urgently required for FT-101E, also hand mic. Tel: (0603) 413129 after 6pm
- Trio 9R-590 manual or photocopy, your price paid. Write to: Ron Shaw, 37 Lawns Wood, Malinslee, Telford, Shropshire TF3 2HS
- Trio TR9300 or Icom 5516 m transceiver, quote price, etc. Tel: (0752) 709956 - Linear amplifier required. Model CP163X2.

27 MHz , or SL250DX. Both required to work with Cobra 148 G7LDX, from $26-065 \mathrm{MHz}$ upwards, must be in very good condition. Will pay good price for good equipment. Tel; (0228) 23408
■ Yaesu FT-2, working order. Tel: 01-300 1649

- High-band FM only, Pye Westminsters, Europas, working or not. Other types of high-band FM PMR equipment considered, cash waiting, will collect. Tel: 01-501 2807 evenings only
- 934 MHz preamp, must be in mint condition, fair price paid. Also Ham International Jumbo and Ham International Hercules. Write to: Martin Williams, 8 Gaiach Terrace, Trelewis, Mid-Glamorgan, South Wales. Tel: (0443) 411954 anytime - HF rig: FT-757, FT-747, FT-767 or similar. Also early HF TX/Rx KW2000, FT-200, FT-101B, FT-101E, Swan 100, 350 or similar, faulty unit preferred. 2 m hand-helds: Alinco, Trio, Yaesu, etc. Tel: (0843) 294446
- SWR/PWR meter, must work 1.8 to $30 \mathrm{MHz}, 20 \mathrm{~W}$ to 200W PWR, must be no more than $£ 45.00$. Write to: Mr Leighton, 33 Nant Gwyn, Trelewis, Wales - German WW2 ex-service equipment, parts, WHY? WS No 1, WS No 11, WS 18, will swap Collins 51JY and Siemens for receivers WS 19, WS 58, WS 38. Tel: 010-752 801875, will collect
- HRO bits and pieces, speaker, PSU, would consider unmodified non-worker. Also circuit diagram for Codar 70A and preselector PR30. Tel: (0293) 884204
- Datong ASP automatic RF speech processor. Tel: (0224) 743039 anytime
- Hallicrafter's SX24 Rx or similar. Also avo 8 and avo valve tester. Will consider exchanging Marconi CR150 Rx, complete with separate PSU and workshop manual. Instruction book or workshop manual needed for a Taylor valve tester - type 45A. Tel: (0526) 20520 anytime
- Yaesu sold-state HF linear amplifier, FL-110 or equivalent, must be suitable to use with Yaesu FT7 as driver. Tel: (0328) 710345

Tel: 061-445-8918 061-434-5701 061-446-2347 Fax: 061-445-0978 Tlx: 666762 PAMACO G

24 v ni-cad battery contains twenty XD type cells, used condition, some cells may be faulty...£12.00 Spring tension gauges, set of 3 . 0-4 ounce, 0-16 ounce, 0-61b... £8.00 Ex Vulcan bomber hitch and roll assembly, contains gears, shafts, bearings etc...... $\mathbf{\Sigma 1 5 . 0 0}$ Range and bearing marker unit, contains bevel gears, servos, shafts etc...............£15.00 Ex Government Geiger counter with 3 probes x-ray, alpha, betae45.00 MUIRHEAD Fax reciever type K401845.00 Transmitter type K400
Other types in stock
Type R210 receiver $2-15 \mathrm{MHz}$, complete with plug and headphones..................................55.00 ITT UHF TX-RX base station $\mathbf{8 4 0 . 0 0}$ ITT 149 MHz VHF transmitter840.00 Collins R390A receiver, poor condition
£150.00 Ring for details
Readyphone 100 watt, LIN, amplifier, complete with ATU
.875 .00
Prices include postage and packing

A C ELECTRONIC SERVICE

 17 APPLETON GROVE, LEEDS LSS 9EN TELEPHONE: 0532496048
LAN FISHER COMMUNICATIONS OF STANHOPE

CB Works, The Market Shop, Market Place, Stanhope, County Durham 앙 (0388) 528464
Main Distributors of 27 MHz CB radios and the NEW CEPT models Main Distributors of 27 MHz CB
including UNIDEN and DNT.
Including U.K. and CEPT walkie talkies.
Large stocks of coaxial cable, plugs, sockets and adaptors. Stockists of the new UNIDEN $28 / 30$ Multimode Transmitter reciever

AIRBAND RADHO

Superb new SKIPTECH 9,000 airband and PMR band receivers $\$ 18.50$
Very latest sonic $4=8342$ multiband radio receiver airband + PMR from 54 MHz to 176 MHz two aerials $£ 21.00$
Very latest SONIC 8342 Multi Band Radio receiver AIRBAND \& PMR from 54 MHz to 176 MHz with two aerials $£ 21.00$
All available via mail order. Retai/ Wholesale
OPEN: MON-SAT 10.30am-6.00pm SUN 2.30-4.30 RING FOR DETAILS (0388) 528464

WHOLESALE DISTRIBUTORS OF CB

we deliver nationwide
Pama House, 433 Wlimslow Road, Manchester M20 9AF

Distribuators of CB,
Scanner and some amateur equipment.

USED AMMATEUR E@URPMENTR

I buy, sell and exchange

 for the deal you've been looking for, phone Dave, Gainy. anytime on Homchurch (0708) 882841 or (0836) 201530 gam-7pm Mon-Sot or send SAEPersonal callers by appointment please OATNY Amateur Radio, UnH 14 Thurrock Commerctal Centro, Julitit Way, South Ockendon, Easox, RM15 4 TY

Anotaur 1 D O

This method of advertising is available in multiples of a single column centimetres (minimum 2 cms). Copy can be changed every month.

RATES

per single column centimetre:
1 insertion £7.00, 3 - £6.60, $6-£ 6.30,12-£ 5.60$.

NATIONWIDE DELIVERY

DEALERS contact us today for very fast, Friendly Service, Competitive Prices, Widest Range \& Latest CB Products
Order Line: 0800262963
Tel: 061-445-8918 061-434-5701 Fax: 061-445-0978 Tix: 666762 PAMACO G

JAPANESE Ic's (PART OF OUR RANGE)

 CO GOP POST AND PACKING AND TMEN ADD 15\% VAT TO TOTA OWLI PADONOTON OM NLOMDON WE 110

G42PY PADDLE KEYS

Britain's leading manufacturer of HANDBUILT brass and nickel plated Morse keys. Keys of quality at competitive prices. Send a $41 / 4$ " $\times 61 / 4$ " SAE for our "NEW" COLOUR illustrated brochure to:

41 Mill Dam Lane, Burscough Ormskirk, Lanes L40 7TG Tel: 0704894299

NAVCO

YAESU
icom

Alan Hooker Electonics

42 Nethernall Road, Doncaster Tel: 0302325690 Open Mon-Sat 10-5pm Closed Thursdays

QUARTZ CRYSTALS and FILTERS

Large numbers of standard frequencies in stock for amateur, CB, professional and industrial applications. Stock crystals $\mathbf{5} 5.00$ each (inc VAT and UK post). Any requency or type made-to-order from EB.50. Phone or SAE for lists.

GOLLEDGE ELECTRONICS Merriott, Somerset TA16 5NS Tel: (0460) 73718

JAYCEE ELECTRONICS LTD

20 Woodside Way, Clenrothes Fite KY7 5DF
Tel: 0592756962 (Day or Night)
Open: Tues-Fri 9-5; Sat 9-4; Sunday by appointment Good range Kenwood \& Yaesu etc, plus Quality Secondhand Equipment

Caీ\&(Ogu®
FOR FREE COPY JUST SEND SAE 9½x61⁄2

TAR COMMUNICATIONS

King William Street, Stourbridge, W. Midlands DY8 4EY 8 0384390944

SOUTH WALES ELECTROMART

Equipment, Components, Howes Kits, Eldy Kits, A.R. Gear \& much more.
Taillwyd Road (off Main Road) Neath Abbey, Neath Tel: (0639) 644111

MILITARY SURPLUS EQUIPMENT MANUAL

Giant collection Military Equipment Circuits/Data. Only $£ 10.00$ including Post/Packing. Just one of many unique Repair and Data Guides. LSAE for your FREE catalogue.
FULL WORKSHOP SERVICE MANUALS Video Recorders $£ 12.50$. All others $£ 6.00$ inclusive. State Make/Model/Type with order.
muuarroon ELECTmomes Lumme (af) 8 Cheryy Tree Road, Chinnor Oxfordshire OX9 40
Tel: (0844) 51694

THE SCIENTIFIC WIRE COMPANY 811 Forest Road, London E17. Telephone 01-531 1568 ENAMELLED COPPER WIRE				
Swa	11b	802	402	202
8 to 34	3.63	2.09	1.10	0.88
35 to 39	3.82	2.31	1.27	0.93
40 to 43	6.00	3.20	2.25	1.61
44 to 47	8.67	5.80	3.49	2.75
48	15.96	9.58	6.38	3.69
SILVER PLATED COPPER WIRE				
14 to 30	9.09		2.93	1.97
TINHED COPPER WIRE				
14 to 30	3.97	2.41	1.39	0.94
Fluxcore				
Please add 15\% VAT. Orders under $£ 3$ add 50 p. SAE for list of copper and resistance wire. Dealer enquiries wetcome.				

Selectronic

Radio communications and scanning receiver specialist

203 High Street

 Canvey Island, Essex, Tel: 0268691481 (Open Mon-Sat 9-5.30)Amateur radio equipment also in stock

ADVERTIING RATES \& MNOOMATION

ADVERTISERS INDEXJ Bull51 Kensen36
PM Components 4,5 Lake Electronics 24
Display Electronics 52
Radio \& Tele Corresponse Sch 23
Enterprise Radio Brian J Reed 19
Applications 16
GCHQ 19
Spectrum Communications31
Harrison Electronics 23 Technical Software 36
Telecoms 36
ICOM 26,27
Waters \& Stanton 8
Johnsons Shortwave 11 R Withers 2

No． 1 LIST BAKERS DOZEN PACKS
All packs we E1 mech，in you arder 12 than you are mitesed to anetior tom．Plisisi trite which ane you wire．Nitat the flown on the extrove whet of the pact rof number and tha man murn is the quantity of famt

513 A spurs provide a fused ourbet to 1 ing man whare devices euch is a ctock mum not be mitched off
4 la fiex swhithas with man or／on beits，gaves laiving thinas switchad on
2 EV iA manm trenstormars upriqit mounting with frod champe．
1 SYain manker cabine idal for matonsions，takes our spaider．Rof EDI37．
En13 \｛1 30 whit reod mitches，ifs sarprising when you can makn with tham－burgiar alama，secref swithas， relay，mex．，ete．

Eaza I B．OAC．ntaras unit is mondertul vilus．
 choont any ricad botiory．
2 Hunidity switches，es the sir tecomad dempar the membranil struchem and operation omicrospiteh．
13A rockar metch ofrie tugs so onlof，of change Owir with cante off．
24hr time muitch，ax－Electricity Board，nutomati cally adjum for lencthoning and shortaning dry ariqinal cantimench．
日D4s 10 Neon valves，with sarles reeiator，these maka good night liphas

60sa \quad into motor，mbeven mitch through onil pols． 2 Fer somonde－you could makl your muth－mester radd AC Enpa wint tive．
日087 I Suck or blow apertad prosurn suitch，or ik con
 water laval in water tanks．
BD91 I Mein！oparaed motors whth getrbox．Finei apeed 15 rpm 2 wit rated．
DDISA 1 EV TEOMA power mpply，nicely cacad wiel main Input mind ©V output leate．
BDtin 2 Stripper boarta，anch commine 1400724 bidge ractiver and is ound dodes and ractivers ll Wh in dozmins of cond miteand，etic．
BOI2 10m Twin certened flox wher white pNe cove
601210 Very fied drila for pach bande rece．Nommal coet about 10 p tach
 through top to ideal for Intermpiad bean owneh
0 Motart for moder atraplanes，spin to itart 20 needs no anizan．
8013 E Microphena insertimagnatic 400 ohm aleo act as spemers．
 sets whin hotes on mating cia ralap and ofrer gatocts．
 siver ium fingers peong naty shocts．
EDIEO A Neon indicition In pamal mounting holdurs with － 5 In．
 coat dince pand．
 Gwrya in the raty．
 pugh II modified．
－Ropboard miechus－meda for computars hut hive

BD2II I Elactric clack，mains eperated，put this in ebok Ind you niad nover ba lats．
cozal 5 1ZV alamas，maki a noise about in loud an a cw
hon．Sijiptiy soined but OK．
B0242 $2 \operatorname{lin} x$ 4henspabiers， 4 ohm made from Rediomabile ma vary good puatity．
BDEs I Panostin，concrial autput of boiling ring from sme mar up boll
Boza mix Leald with pubt－on Win tuge－I must for hook－
DDZS 2 Oblord push sultecher for boll ar chimes，thess can maina up to 5 ampes so could ba loot meitich il fited inte patroses．
 moand of record plaver metos．
 dard alactriced．
B023：5 Mbud ellican dodes
B0305 1 Tubular Anmernce mive with optional fubla rese．
VENY POWERFUL 12 VOLT MOTORS－ynd HORSEPOWER． Made to drive the Sinelair C5 alectric car but sdaptable to power a gotert，a mowar，a rait cas，modill ruilway，wh．

 Busi
Ifa SMTIGN socxers Top quality made by Crabsien，fined in meter

POWERFUL IONISER

 ciruis．Will refreh y yur homs，ofice，worlioom tic．Maten yeu

 chich，win you know the war，hes del－i ackon anaing yout very pern raing und hich pached und would friaten wey mos
 ciarm W requirad．
 Instenco：you caudd disconnect the Intamial counder and uting that internal swituhes you would unow whme momabody antives winou therf person being awore thri you know．Similety，隹！welh could be und to operite other equipmem uhtresonically．R is brand now，

 for ectorndil positioning to serfact the zitantion of neighbourt thouk comes compiete with pood treath of leod Froes E7．Our ri JP9．tred

 difurent indent curvers．Al in firts cleen condthion，bulized to be in perface working order but rodd ma untexted You cen heve them for IIO the throte induding VAT，which must be a bergain－h only for the lonsex，fin gew，etc．Gur ral IGP3
 trin is mot powortul and giver－ bie for horne and buelneses． Brand new，completer whth PSU， TY lood，owmara manumin and six garnen．Con be your for only E45 plan I3 Ineurad delvery．

 poek．Order rail 10p44
ATMEI XC12 for all ther horwa computers．With leade and hanchook Brand new．Prica 515 phus $Z 2$ pose Order rit IEP20．

 XC12，jorwick and din gemed for 257.50 plua fa inoured detivery．

sOUnD TO LENT UNT．Complote tie of perts for a threa chame sound to lipte unt controiling owar 2000 wetas of IIgiting．Use thls af home if you whan buthila plenky nuged anough for dhoowort．Theunim
 channal，and a meater ondof．Tha mucta inqut and output wry by
 Textion．A four pin phag mend moch：
Spaciel prope is C14SS in kis form

 Sur Our rif 5P132．

These ars tagpad the macy joining tapothor but tape，wing spod

Mesa by Phipas Electrical Now end unusad．This it halinatr
Neon and has a trpicul powar rating of J．Brow．Ha amits rent neon and has a trpical powar rating of J．Grw．ha amita rour not book direction into thi buen when wis dimage could resur DONT MISS TWIS SPECLAL DARGANI PTCE E2．S5 pua $\mathbf{E 3}$ inaurad dalivery．

Price C15 pian EZ portapo．

 E1．ED．HA BDER

CRBAN MASTEN in I thrie octovi musices keyboard．II it bepuththly made，has goid plated contectiand is camplete with rituon arbiele and mdy

 cotivil kerpoomed，complete with unde and the interice whith plugs imso your 228．You can than compose，pley．rocord，store，atc，your

 RA 2 PI 1 BA ．
 prolestional mexdard videca．Meces by the famous Forguson Cora peny，thla unes a 1000 wh hologen lampin a fan cooled，husd huld and hand－rwith ed matal housing．Comes complatis with optannt ben－
 AM Aularis cave w hern ogened inother shop in Howe AN AUADIN＇S CAVE Wu have opaned another shop in How，the addrome is Aumber 12 Boundiny hosd Which in batwaen hove Ind boy end when you went to browne hown yos wan to m boll ble，this la whers you strowid mate for ts the fortand pond shop in future with bo jus mil arder．You cas of coursa cotoct trom Pordent Road but you should bring in en ordme complate wikh riderences fum． bers so that the gtoren cin mitand toit eacily．

J\＆NBULL ELECTRICAL
 JOR AR， 250 PORTLCMO ROAD，HOVI BRicartom，sussex bias cot

POPULAT TEAS

 which you will recolve il you requett it
DOURE MCRCOMVES．We ura plen med to advieo you then the Double Ancrodivet which we wre oflering if cbovithis tims lat yarar in benng switele for the＇al＇，Opy and several othre computur
 gumen．Al urs on nor miltape spool in camore hodders end thould bo
 mportant note：We cannot sey which titiss you will grt noy sccerpt
 you can tist them they come．Order rif for EZ is 2PY24， 100 meorted is 29 P10
 fick．These mri posisrised an their fross which metes them ideal to aparite reed swiches in doors and windows of to hatd papers or

 nent cow

 －

soun monter mican owne i Mi－Cad betaries oh IMPT charged in might hours or two in ondy 4

 On rat．3P4t．

THN GANG TUMIKE CABACTOR Esch section Is COOBat with orim． mers tend pood longth hain apindie I 1 eech．Dur rel Bos30．
 2ptis

Usernl maws mawsfones Upridx mounting，normat tapped
 x the other glves tov a 3 Imper in ucod sion Join the twa in serien for

 Iny 50

 form for fl ．our rat Boste．
MESA WUS HCADERA Circula bese bstten type fiting 4 for C1．Our Hel BO127a

TELEMsONES．We have jure ractived a congignmunt of das hale phones，rotary dial typa，in qood working ordir and in new concition

 her 2 nokapice

 netre，and thin wire hid idal for puah on Eennections．
1／hen HORserowen 12 vOLT motom Made by Semiths，the body lengeth of thim is approximntaty 3 m ，tha diamatar In and the apmedla 5 100t of an inch diamntar，th hes i conter fingu for fring or cin bo fixad rom thy and by meens of 2 nuss k very powertul hatil motor wich ovi at 3,000 pprn．We hrve alarge qumrity of efome so it you heva any

FDO PARCANL 31／im made by Chinon of Jrown．Singte Eided，BOIrack Smugert compuribid intartaco，Intanchurgentile winh most othor 3 yim and 5 in drives Complototy rated wh

THE 'ALADDINS' CAVE OF ELECTRONIC \& COMPUTER EOUIPMENT

Abstract

COLOUR MONITORS $16^{\prime \prime}$ Decca, 80 series budget range. colour monitors, features inresolution. only seen on monitors costing 3 times our price, ready o connect to a host of compister or video outputs. Manufacturers full'RTB guarantee. 1000 's Sold to date. DECCA 80 COMP 75 I composite video input whth integral audio any other audio visual use. Only $\mathbf{~ E 9 9 . 0 0 (E) ~}$

HIGH DEFINITION COLOUR

BRAND NEW CENTRONIC 14' monitors in attractive style moulded

 $20^{11} \& 22^{\prime \prime}$ AV Specials
Superbly made, UK manuacture, PIL tube, all solid state colour monitors, complete whth composite video and sound inputs, attractive teak style case, Ideal for a host of applications including Schools,
Shops, Disco's, Clubs efc. Supplied in EXCELENT Intle used condition with 90 day guarantee.
20^{\prime} Montor $£ 165.00$ ($)$

(F)
 22' Monitor £185.00 (F)

MONOCHROME

MOTOROLA M1000-100 5' CRT black \& white compact chassis puter appticadions. Accepts standard Composite video or indlvidual $H \& V$ syncs. Operates from 12v DC at apprx $0.8 a$. Some units may
have minor screen marks, but still in very usable condilion. Fuly tested whth 30 day guarantee \& full data Fulty cased as above, with attractive moulded, desk standing swne9
and thi case Dim. cm $12 \mathrm{~h}, 14.5 \mathrm{w}, 26 \mathrm{~d}$. and type $751-75{ }^{\circ}$ Uttra compact black \& whille chassis monkor for inctuded to convert data and separate sync inpunt to composite video Input. Ideal portable equipment etc, Supplled with full data. KGM 3249^{\prime} Green Screen, Litte used fully cased, mains powered high res monttors wht standard composile video input. Fuly teeted
and in excellent condition
E49.00 (E) AN solid state, fulty cased montors, ldeal for all types of AV or CCTV applications. Units have standard composite video inputs with int tegral audlo amp and speaker. Sold in good, used condhion- fully
tested with 90 day guarantee.

FLOPPY DRIVE SCOOP Drives from Only £39.95

A MASSIVE purchase of standard 5.25" dlak ditees enables us to offer you prime product at all time super low prices. All unlts unless
stated are removed from often BRAND NEW equipment, fully stated are removed from when bill 120 day gueraniee. All units
tested and shipped to you with hill
offered operatefrom +5 and +12 volt DC, are of stendard slze and accept the common standard 34 way intentace connector.
TANDON TM101-4 FH 80 track double sided Only $£ 39.95$ (B)
 JAPANESE Half Helight double sded
TOshiba etc. Specily 40 or 80 track
TEAC FD55-F 40-80 track double sided Half Hetigh
DISK DRIVE ACCESSORIES
34 Way interface cable and connector single $£ 5.50$, Dual 88.50 (A)
$5.255^{\prime \prime}$ DC power cable $£ 1.75$, Fully cased 1 PSU for $2 \times 5.25^{\prime \prime}$ Drtves $\mathbf{\Sigma 1 9 . 5 0}$ (A) Chassis PSU for $2 \times 8^{\prime}$ drives

8" DISK DRIVES

SUGART 800/B01 single sided refurbished SUGART 151 doubbisided refurbished ${ }_{\text {En }}^{1755.00}$ ((E)
 with integral PSU

[^3]
PRINTERS

 HAZELTINE ESPRINT Smal desktop 100 cps print speed whih both
 CENTRONICS 150 serles. A real worktorse for continulus use with tractor feed papet, ether in the office, home or factory, desk standing,
150 cps 4 type foris and cholce of intertaces. Suppled BRAND NEW 150 -SN up to $9.5 "$ "paper handling
150 SW to $14.5^{\prime \prime}$ paper handltha
${ }^{\text {E1825.00 }}$ (E)
150-GR up to 14.5 " paper plus fill graphics

Ultra Fast 240 cps NEWBURY DATA NDR 8840 High Speed Printers Only £449 !!

A special purchase from a now defunct Governeni Dept enabies us co ofer you thls amazing British Made quailly printer at clearance speed 240 cps print speed with integral, , fuly adjustable paper tracor, qiving exceptional cast paper handing for mitit part torms etc.The characters on a single line. Many offer features inctude Internal $15.5^{\prime \prime}$ papertal and horzontel tabs, Self test, 9 needie head, Up to 15.5" paper, 15 millon characier riboon cartridge ille and standard guarantee matik model 51240 column 3.5 " wide paper roll feed, high speed matitx (3 Ines per second) printer mechianlsm for hcorporation In directional prink head and integrà roll paper feed mech with tear bar directional printhead and integred roil paper teed mech with tear bar WPh daata. RFE and tested sed as moder 542 Same spec as above model, bu destigned to be Supplied tuly cased in attractive, smat, desk top metad housing. Com plete with data. RFE and lested pe bi directional dalsy wheel printer
 dude full width platten - upto 15 " paper, host of avalabledasy wheels singe sheer paper handing, supenb quality print Supplled complofe wheel.

Most of the ilems in this Advert, plus a whole range of other
electronic components and goodies can be seen of purchased electro
at our

** South London Shop **

Located at 215 Whitehorse Lane, London SE25. The shop is On the main 68 bus route and only a few miles from the main
A23 and South Circular roads. Open Monday to Seturday from A23 and South Circuar roads. Open Monday to Saturday from
9 to 5.30 , parking is unlimited and broweers are most wet 9 to 5.30, parking is unimited and
come. Shop callers also save the cost of carriage.

POWER SUPPLIES

All power supplies operate from $220-240 \vee$ ACMany other types from TV to 10KV in stock. Contact sales office tor more details.
PLESSEY PL12/2 Fuly enclosed 12v DC 2 amp PSU. Regulated and protected. Dim cm $13.5 \times 11 \times 11 \quad$ New $£ 16.95$ (B) ated and short proutputs of $+5 \mathrm{v} 5.5 \mathrm{a},-5 v 0.6 \mathrm{a},+24 \mathrm{~V} 5 \mathrm{a}$. Fully reguPOWER ONE PHC 24v DC 2 amps Linear PSU fully regulated BOSHERT 13088 swith mode supply ideal disk ditves or comp (B)俍 $5.6 \times 21 \times 10.8$ BOSHERT 13090 same as above spec but outputs of +5 1.5 a + $12 \mathrm{~V} 0.5 \mathrm{a},-12 \mathrm{0} .5 \mathrm{a} \quad$ New £39.95 (B)

 $\times 27 \times 12.5$ Current list price 2190 . Our price New $\begin{aligned} & \text { 59.05.00 (C }\end{aligned}$ ARNELL 6 /40A Compact 5 v 40 amp swith mode fully enclosed

| Special Offor |
| :---: | :---: |
| EXPERIMENTORS PSU |
| 16.95 (C) |

Made to the highest spec for BT thls unit gives several fully
protected DC outputs most sulted to the Electronics Mobbyist. protected DC outputs most sutted to the Electronics Hobbytst deaal for school labs etc. Quantiy discount avalable.

The AMAZING TELEBOX

Brand new high quality, fully cased, 7 channel UHF PAL TV tuner sysurning same into a labulous colour TV. Dont worry if your monttor doesn't have sound, the TELEBOX even has an integral audio amp for driving a speaker plus an auximary output for Headphones or Hi Fisyscase, Mains powered, Bult to BS safety specs. Many other uses for TV sound or video etc. Supplied BRAND NEW with full 1 year guaraniee
Camiage code (B)

TELEBOX ST for monitors with composte video Input $£ 29.95$ TELEBOX STL as ST- but fited with integral speaker
TELEBOX RGB for use with analogue RGB monilors

MODEMS

Modems to sut all applications and budgets.
Please contact our tectnical seles stafi if you require more information or assistance.
SPECIAL PURCHASE
V22 1200 baud MODEMS 1200 baud MOD
ONLY £149 I!
MASTER SYSTEMS type $2 / 12$ microprocess. sor controlled V22 full duplex 1200 buud. This
fully BT approved modem employs ati he latest
 gering speed of 120 characters per second
Biving you 75% of your BT phore bill and date connect time II Add these facts to our give away price and you have a supent buy t!
Ultra sim unit measures only 45 mm high wth mary integra features such as Auto answer. Remote error diagnostics, SYNC or ASYNC
use, SPEECH or DATA switching integral use, SPEECH or DATA switching Integral
mains PSU, 2 wire connection to Bt Ine etc. Supplied fully tested, EXCELLENT slightly used
condition with data and full 120 day guarantee.

LuMTED Only f149(0)

CONCORD V22 1200 baud as new $£ 330.00$ (E) CONCORD V22 1200-2400 BIS E399.00 E RIXON Ex BT Modem 27 V22 1200 225.00 (E)
DATEL 4800 / RACAL MPS 4800 EX BT DATEL 4800 /RACAL MPS 4800 EXBT
modem for 4800 baud sync use. 8295.00 (E) modem for 4800 baud sync use. 295.00 (E)
DATEL $24122790 / 37804$ wre modem unl EXBTfully tested. $£ 199.00$ (E) MODEM 20-1 75-1200 BAUD for use with
PRESTEL etc EXBT fully tested. PRESTEL ELC EX BT fuly tested. \$49.00 (E) TRANSDAIA $307 A 300$ baud acoustic couplor
with RS232 I/O Erand New $£ 49.00$ (E) with IS232 $/ 1 \mathrm{O}$
RS232 DATA CABLES Brand New 16 fl long 25 w D plug to 25 way D socket. Brand New Onty c9.95 (A) $\begin{array}{ll}\text { As above but } 2 \text { metres long } & \sum 4.99 \text { (A) } \\ \text { BT plug \& cable for new type socket } \\ \text { E.95 (A) }\end{array}$

RECHARGEABLE BATTERIES

Maintenance free, seeled longife LEAD ACID

 A300 12 V 3 AhA 300 EV 3 Ah A300 6v 3 Ah

RFE $\mathbb{E 9 . 0 5}$ (A) NICKEL CADMIUM
Qually 12 y 4 Ah cell pack. Orginally made for the TECHNICOLOUA video company, this unit contains 10 high qually GE nicad,
type cells, configured in a smart robust
moulded case withDC output connector. Dim $\mathrm{cm} 19.5 \times 4.5 \times 12.5$. Ideal portable equipment
BRAND NEW C 24.95 (8) $12 v 17$ Ah Ulta rugged, all wather, virtually
indestructable refilable NICAD stack by Indestructable refillable NICAD stack by X1. 5 cells in wooden crate. Suppiled to the
MOD and made to delliver exceptionally high output currents \& withstand long perrods o 22 Cost over $£ 250$ Supplied unused 8 tested EX EQUIPMENT NICAD cells by GE
Removed from equibment and belleved in good but used condition. 'F' stze 7 Ah 8 for

BRAND NEW 85 Mb Disk Drives ONLY $£ 399$

End of line purchase enables this brand new unit to be ofered at an all time super low price.
The NEC D2246 $8^{\prime \prime} 80 \mathrm{Mb}$ disk dive features full CPU control and industry standard SMD intertace, Ultra high speed data ransiser and access times leave the good dld ST506 inter-
face standing. Supplied BRAND NEW wth face standing. Suppled BRAND NEW with
full manual.
Only $£ 399.00$ (E) full manual
AT unit in case with PSU sub system for IEM Interface cards for upto 4 dives on IBM At eic avallable Brand new at $£ 395.00$

COOLING FANS

SPECIAL INTEREST
Please call for availability or further info.
RACAL-REDAC real time, colour drafing PCB layout system
DEC VAX $11 / 750 \mathrm{inc} 2 \mathrm{Mb}$ Ram DZ and full Brand New es es.
HP7500
HP pen digital A1 drum plotter with CHEETAH Telox machin As New $£ 4750$
 wave 50 Hz output
SOLDER SYSTEMS tin lead roller tinning CALLAN DATA SYSTEMS multi user INTEL based UNIX system complete with software and 40 Mb winchester disk ditve. $\mathcal{E 2 7 5 0}$
WAYNE KERR RA200 Audio, reai time frequency response analyzer
TEKTHONIX $1411 / R$ PAL TV test signal Standard. 210 NTSC TV test 88900 $\begin{array}{ll}\text { standard. } \\ \text { HP } & \text { 2271A } \\ \text { Correlator system } & £ 350 \\ £ 350\end{array}$ PLESSEY portable Microwave speech / data link $12 v \mathrm{DC}, 70$ mile range.The pair $£ 275.00$
19 ' Rack cablnets 100 's in stock from $£ 15.00$

[^0]: CW NOVICE AWARD
 Many amateurs have been encouraged to use the CW operating mode by the prospect of gaining an award for their earliest efforts on the key.
 The CW Novice Award is administered by the G-QRP Club on behalf of the European CW Association and the World QRP Federation.
 To qualify, the applicant must work fifty different stations using the CW mode during the first twelve months of holding an amateur licence.
 For a Class A award, maximum power to be used when making the fifty contacts is 3W RF output for contacts made up to 31 December 1988, and 5 W RF output for contacts made from 1 January 1989. For a Class B award, any licensed power is allowed.

[^1]: Melpline: Telephone us tree-ot-charge on 0800521145 . Mon-Frio9.00-13.00 and 14.00-17.30. This service is strictly for obtaining information about or ordering lcom equipment. We regret this cannot be used by dealers or for repair enquiries and parts orders, thank you.
 Datapost: Despatch on same day whenever possible.
 Access \& Barclaycard: Telephone orders taken by our mail order dept, instant credit \& interest-free H.P.

[^2]: FREE CLASSIFED ADS CAN WORK FOR YOU
 We are pleased to be able to offer you the opportunity to sell your unwanted equipment or advertise your 'wants'.

 Simply complete the order form at the end of these ads. Feel free to use an extra sheet of paper if there is not enough space. We will accept ads not on our order form.

[^3]: ## COMPUTER SYSTEMS

 TATUNG PC2000. Big brother of the famous EINSTEIN, the
 TPC2000 professional 3 piece system comprises: Qually high res GREEN 12 monitor. Scuipiured 92 key keyboard and pinth unit con taining the Z80A CPU and all controd electronics PLUS 2 integrad incude Dual 8"IBM format disk drive support, Serkal and paralle plipd complete whth CPM, WORDSTAR, BASIC and accounts pack age. BRAND NEW
 Original price OVER $£ 1400$
 Only £299(E)
 EQUINOX (IMS) S100 system capable of running ellher TURBO o standard CPM. Uni features heavy duty box containing a powert Two Indvidual 280 cpu Goards with 192k of RAM allow the use of
 multi user software wh upto 4 RS232 serial interfaces. Many other faatures indude battery backed real time clock, all IC's socketed etc at presien hence price of only $£ 245.00$ (F)

 A 802 CPU \& VO $\mathbf{2 5 . 0 0}$ (B) IMS A930 FDC
 SAE for full list of other S100 boards and accessories.

